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A STUDY ON PERFECT AND REGULAR RINGS
Pimar Aydogdu
ABSTRACT

One of the starting points of the historical developments of non-commutative
rings and their modules is algebras over a field K. A K-algebra, its ideals and its
modules are K-vector spaces. If a K-vector space is finite dimensional, then it sat-
isfies some finiteness conditions. Emmy Noether worked on commutative rings with
the ascending chain condition which are now called Noetherian rings. Emil Artin,
who inspired by Noether’s works, generalized Wedderburn’s structure theorems on
algebras to non-commutative rings with the descending chain condition, which are
now called Artinian rings.

Regular rings were invented by von Neumann in the mid-1930’s in order to pro-
vide an algebraic framework for studying the lattices of projections in the operator
algebras. Von Neumann modelled this framework on the coordinatization of projec-
tive geometry.

Artinian and regular rings have been studied extensively and generalized in dif-
ferent ways by many authors (e.g. [7], [19], [23], [30], [43]). Some of these general-
izations are perfect, semiperfect and semiregular rings.

The goal of this dissertation is to work on new concepts which are derived from
Artinian and regular rings. Our aim is to characterize perfect and regular rings
and some of their generalizations by considering some chain conditions as well as
semiregular and semiperfect modules, and to investigate semiregular and semiperfect
rings relative to some special ideals.

In the first chapter of this dissertation, we give the definitions of some basic
notions and investigate some of their properties which are useful tools for our further
studies, and we study the rings that are mentioned above.

In the second chapter, we introduce the notion of ‘strong lifting submodule’
which is a module theoretic version of the notion of strong lifting ideal. Strongly
lifting ideals were studied by Nicholson and Zhou ([31]) to characterize semiregular

and semiperfect rings relative to an ideal. Inspired by these works, we investigate



strongly lifting submodules and obtain some new characterizations of semiregular
and semiperfect modules relative to a projection-invariant submodule. In the last
section of this chapter, we investigate rings over which every (projective) module M
is 7(M)-semiperfect for a preradical 7, and notice that this condition is one of the
necessary and sufficient conditions for a ring to be (J-)perfect.

The class of semiregular rings and the class of almost principally injective rings
are contained in the class of generalized semiregular rings which are defined by
Xiao and Tong ([42]). In the third chapter, we introduce generalized semiregular
rings relative to an ideal, and investigate some of their properties. We also consider
generalized semiregular rings relative to some special ideals such as the socle, the §
radical and the singular ideal of the ring.

The last chapter, Chapter 4, is concerned with chain conditions on non-summands.
We investigate the properties of modules with chain conditions on non-summands
by considering some module classes. We characterize Artinian and Noetherian mod-
ules in terms of these chain conditions. It is well known that a ring is right perfect
if and only if it satisfies descending chain condition on cyclic left ideals. We deduce
that a ring is right perfect if and only if it satisfies descending chain condition on
non-summand cyclic left ideals and on summand left ideals. Moreover, if a ring
satisfies descending chain condition on non-summand cyclic right ideals, then it is a
semiregular ring with a left T-nilpotent Jacobson radical.

Keywords: (Semi)Perfect rings, (semi)regular rings, Artinian rings and modules,
Noetherian rings and modules, injective modules, projective modules.
Supervisor: Prof. Dr. A.Cigdem OZCAN

Hacettepe University, Faculty of Science, Department of Mathematics.

i



TAM VE DUZENLI HALKALAR UZERINE BiR CALISMA
Pimar Aydogdu
OZET

Degismeli olmayan halkalarin ve bu halkalar tizerindeki modiillerin tarihi geligi-
mindeki baglangi¢ noktalarindan biri bir K cismi tizerindeki cebirlerdir. Bu cebirler,
bunlarin idealleri ve bu cebirler iizerindeki modiiller K-vektor uzaylaridir. Eger
bir K-vektor uzayi sonlu boyutlu ise bu modiiller iizerinde bazi sonluluk ozellikleri
saglanmaktadir. Emmy Noether, artan zincir kogulunu saglayan degigsmeli hal-
kalar iizerinde caligmigtir. Bu halkalar giiniimiizde, Noether halkalar olarak ad-
landirilmaktadir. Noether’in ¢caligmalarindan etkilenen Emil Artin, Wedderburn’in
cebirler tizerindeki yapisal teoremlerini azalan zincir kosulunu saglayan degismeli
olmayan halkalara genellemistir. Literatiirde bu halkalar, Artin halkalar olarak bil-
inmektedir.

Von Neumann diizenli halkalar, 1930’larin ortalarinda, von Neumann tarafindan
operator cebirlerin projeksiyon latislerini ¢aligmak igin cebirsel bir ¢erceve olugturmak
amaciyla tanimlanmigtir. Von Neumann’in olugturdugu bu cebirsel cerceve projektif
geometride kullanilmigtir.

Artin ve (von Neumann) diizenli halkalar pek ¢ok yazarm ilgi odagi olmug ve
aragtirmacilar tarafindan farkh sekillerde genellestirilmistir (bkz. [7], [19], [23], [30],
[43]). Tam (perfect), yaritam (semiperfect) ve yaridiizenli (semiregular) halkalar bu
genellemelerin bazilaridir.

Bu tezin amaci tam ve (von Neumann) diizenli halkalar ile bu halkalarin bazi
genellemelerini, bir altmodiile gore yaridiizenli ya da yaritam olan modiiller ile bazi
zincir kosullar1 goz oniine alinarak karakterize etmek; bir takim 6zel idealler ele

alinarak tanimlanan yaridiizenli ve yaritam halkalar1 incelemektir.

Bu tezin birinci boliimii, ¢aligmalarimizda ihtiya¢ duyulan bazi temel kavram-
larin ve yukarida soz konusu olan halka ile modiillerin tanitilmasina ayrilmigtir. Bu
caligmada, R degigmeli olmasi gerekmeyen birimli ve birlesmeli bir halkayi temsil

etmektedir. Modiiller aksi belirtilmedikge birimsel sag R-modiiller olacaktir.
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Yaridiizenli ve yaritam halka kavramlari, Yousif ve Zhou ([43]) tarafindan, bir
I ideali goz oniine alinarak [-yaridiizenli ve [-yaritam halkalara genellestirilmistir.
Nicholson ve Zhou ([31]), [-yaridiizenli ve [-yaritam halkalar karakterize etmek
amactyla kuvvetli yiikselten (strongly lifting) ideal (bkz. [25]) kavrami tizerinde
caligmiglardir. Nicholson ve Zhou'nun elde ettigi sonuclara gore, bir R halkas1 /-
yaridiizenlidir (/-yaritamdir) ancak ve ancak R/I halkasi diizenlidir (yaribasittir)
ve [ kuvvetli yiikselten bir idealdir. [I-yaridiizenli ve [-yaritam halka kavramlar:
sag-sol simetriktir.

Alkan ve Ozcan ([1] ve [32]), bir modiililn endomorfizmalar altnda korunan
bir U altmodiilinii goz oniine alarak, I-yaridiizenli ve [-yaritam halkalarin modiil
versiyonlari olan U-yaridiizenli ve U-yaritam modiilleri tanimlamiglar; /-yaridiizenli
ve [-yaritam halkalarin bazi ozelliklerini modiillere tagimiglardir.

Tezin ikinci boliimiinde, kuvvetli yiikselten ideal tanimina paralel olarak kuvvetli
yiikselten altmodiil tanimi verilmis ve bu altmodiillerin bazi 6zellikleri incelenmistir.
U, bir M R-modiiliintin bir altmodiilii olsun. M/U = (A+U)/U & (B+U)/U iken,
P <A (A+U)/U = (P4+U)/U ve (B4U)/U = (Q+U)/U olacak sekilde M = P&Q
ayrigimi varsa U altmodiiliine kuvvetli yiikselten altmodil (strongly lifting submodule)
diyecegiz. Bir R halkasimin bir [ ideali kuvvetli yiikselten idealdir ancak ve ancak
I, R sag R-modiiliintin kuvvetli yiikselten bir altmodiiliidiir. Yari-projektif (self-
projective) modiillerin dik toplananlar1 kuvvetli yiikselten altmodiillerdir. Ayrica,
yari-projektif bir modiiliin sonlu degigim 6zelligini (finite exchange property) sag-
lamasi ile her altmodiiliiniin kuvvetli yiikselten olmasi denk ifadelerdir.

Bu boliimde, I-yaritam halkalarin karakterizasyonunda onemli bir rol oynayan
I-yangii¢lii ideal kavrami modiillere tagimmigtir. A € U kosulunu saglayan M 'nin
her A altmodiilii icin B < A ve B € U olacak sekilde M’nin bir B dik toplanani
varsa M modiiliine U-yarigii¢li (U-semipotent) denir. M U-yanglgli ve U, M’nin
kuvvetli yiikselten bir altmodiilii ise M’ye U-giiclii (U-potent) denir. U izdiigiimler
altinda korunan bir altmodiil ve M U-yarigiiglii bir modiil ise M /U 0-giigliiddir. Bu
ifadenin tersi U'nun kuvvetli yiikselten bir altmodiil olmasi durumunda dogrudur.

M U-yanigiiclii bir modiil ise N ¢ U olan M’nin her N altmodiiliintin ayrigtirilamaz
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(indecomposable) olmasi ile yerel (local) olmasi denktir.

U-yarigii¢lii modiiller yardimiyla U-yaritam modiiller karakterize edilmistir. U,
izdiigimler altinda korunan bir altmodiil olmak tizere, kuvvetli ytikselten altmodiiller
goz oniine alinarak, U-yaridiizenli ve U-yaritam modiillerin yeni karakterizasyonlari
elde edilmistir. M sonlu iiretilmis ve projektif bir R-modiil ise, M U-yaridiizenlidir
ancak ve ancak M /U modilintin sonlu iretilmis her altmodiilii bir dik topla-
nandir ve U kuvvetli yiikselten bir altmodiildiir. M projektif bir R-modiil ise,
M U-yartamdir ancak ve ancak M /U yaribasittir ve U kuvvetli yiikselten bir
altmodiildiir. Bu béliimiin son kisminda, 7 bir preradikal olmak tizere, her (pro-
jektif) modilii 7()-yaritam olan halkalar incelenmigtir. Jacobson radikali Rad,
Goldie torsion altmodiilii Z, ve 0 gibi bazi 0zel preradikaller goz 6niine alinarak
su sonugclar elde edilmigtir: Her R-modiil M Zy(M)-yaritamdir ancak ve ancak R
Z-yantam halkadir; her projektif R-modil M 6(M)-yaritamdir ancak ve ancak
R 0-tam halkadir; bir R halkasi Z,.-yaritamdir ve Zj injektiftir ancak ve ancak R

halkasi yaritam ve sag injektiftir.

Xiao ve Tong'un tanmimlamig oldugu genellestirilmis yaridiizenli halkalar (gener-
alized semiregular rings), yaridiizenli ve AP-injektif halkalar1 kapsamaktadir ([42]).
Ayni galigmada, s6z konusu yazarlar, yaridiizenli ve A P-injektif halkalar i¢in bilinen
bazi sonuglar1 genellemiglerdir. Tezin {iglincii boliimiinde, baz1 (6zel) idealler goz
ontinde bulundurularak tanimlanan halka ve modiiller, bu genellemelerden yarar-
lanilarak, incelenmigtir.

F, bir M R-modiiliiniin bir altmodiilii olsun. [1]’e gbre, bir M modili F-
yaridiizenlidir ancak ve ancak her m € M icin P projektif, P C mR ve QNmR C F
olacak sekilde M = P & (@ ayrisimi vardir. Eger F', M’nin endomorfizmalar: altinda
korunan bir altmodiil ise, M F-yaridiizenlidir ancak ve ancak her m € M icin P
M’nin projektif dik toplanani ve S C F' olacak bigimde mR = P & S ayrigimi
vardir. Uclineil boliimde, yaklagik yaridiizenli modiiller su sekilde tanimlanmistar:
M bir R-modil, S = Endg(M) ve F' M’nin bir S-altmodiilii olsun. Her m € M
i¢cin, P C Sm ve QNSm C F olacak gekilde [y;rgr(m) = P @ Q sol S-modiil ayrigim

var ise M’ye yaklasik F-yaridizenli (almost F-semiregular) denir. I, R halkasimin



bir ideali olsun. Bir R halkas1 bir sag R-modiil olarak yaklasik /-yaridiizenli ise,
R’ye sag yaklasik I-yaridizenli halka denir. Yaklagik I-yaridiizenli halka kavraminin
sag-sol simetrik olup olmadig: bilinmemektedir. S = Endg(M) olmak {izere, ¢M F-
yaridiizenli bir modiil ise, My yaklagik F-yaridiizenlidir. Bir APQ-injektif modiil,
her S-altmodili F' i¢in, yaklagik F-yaridiizenlidir. Dahasi, Mg APQ-injektiftir
ancak ve ancak My yaklagik O-yandiizenlidir. Ozel olarak, bir R halkasiin AP-
injektif olmasi icin gerek ve yeter kosul R'nin sag yaklasik O-yaridiizenli olmasidir.
Sag J(R)-yaridiizenli halkalar, Xiao ve Tong'un tammlamig oldugu genellestirilmis
yaridiizenli halkalardir.

Tezin bu boliimiinde, F-yaridiizenli modiillerle ilgili yeni karakterizasyonlar elde
edilmistir. Sag yaklasik I-yaridiizenli halkalarin ne zaman [-yaridiizenli olabilecegi
sorusu iizerinde durulmug ve [42]'de elde edilen bazi sonuglar sag yaklagik [-yari-
diizenli halkalara genellestirilmigtir. R halkasinin bir e egkare elemani eR = eRe
ya da ReR = R kosulunu sagliyorsa R halkasinin sag yaklasik /-yaridiizenli olmasi
eRe halkasinin da sag yaklasik ele-yaridiizenli olmasini gerektirir. 7, R halkasinin
bir ideali olmak iizere, M, (R) matris halkasi sag yaklasik M, (I)-yaridiizenli ise,
R de sag yaklagik I-yandiizenlidir. Alkan ve Ozcan ([1, Sonuc 4.6]), projektif
bir M R-modiilii Soc(M)-yaridiizenli ise M 'nin diizenli oldugunu gostermislerdir.
Yaklagik yaridiizenli modiiller i¢in ise su sonucun var oldugu gozlemlenmigtir: Mg
yaklagik Soc(sM)-yandiizenli ise, M yaklagik yaridiizenlidir; yani her m € M
icin P C Sm ve Q N Sm < M olacak sekilde lyrr(m) = P @ @ sol S-modiil
ayrigimi vardir.  Rad(sM) < M ise, yaklagik yaridiizenli modiiller Rad(gM)-
yaridiizenli olan modiillerdir. Bir R halkasi i¢in agagidaki gerektirmelerin var oldugu
gozlemlenmigtir:

Si-yaridiizenli = sag yaklagik Sj-yaridiizenli = sag yaklasik yaridiizenli = sag
yaklagik d,-yaridiizenli ve sag yaklagik ;-yaridiizenli.

Z,-yaridiizenli = sag yaklasik Z,-yaridiizenli = sag yaklasik yaridiizenli = sag
yaklagik d,-yaridiizenli ve sag yaklagik d;-yaridiizenli.

Bu gerektirmelerin terslerinin dogru olmasi gerekmedigine dair ornekler ver-
ilmigtir.

Bir e € R egkare elemani i¢in J(eRe) = eJ(R)e esitliginin var oldugu iyi bilinen
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bir sonugtur. Ayni soru ¢ ideali i¢in de goz ontine alinmig ve eR = eRe kogulunu
saglayan bir eskare eleman igin bile benzer sonucun dogru olmadigi gorilmiigtiir.
Ancak, bir e egkare eleman1 ReR = R kogulunu sagliyorsa §;(eRe) = ede esitligi
saglanir. Sonug olarak, R sag yaklagik d;-yaridiizenli bir halka ve ReR = R ise, eRe
halkasi ¢;(eRe)-yaridiizenlidir.

Bir modiiliin 6z genig altmodiilleri ve sifirdan farkli dar altmodiilleri o modiiliin
dik toplanan olmayan altmodiilleridir. Bu durumda, eger bir modiil dik toplanan
olmayan altmodiiller iizerinde artan (azalan) zincir kosulunu saghyorsa, o zaman
genig ve dar altmodiilleri iizerinde de artan (azalan) zincir kogulunu saglar. An-
cak, bu basit gozlemin tersinin her zaman dogru olmadigina dair degigmeli ve (von
Neumann) diizenli bir halka 6rnegi vardir (Ornek 4.2.5). Goodearl’iin [17, Onerme
3.6] sonucundan yararlanilarak genig altmodiilleri iizerinde artan zincir kogulunu
saglayan modiiller karakterize edilmistir. Buna gore, bir M R-modiiliiniin genis
altmodiilleri tlizerinde artan zincir kosulunu saglamasi icin gerek ve yeter kosul
M /Soc(M)nin Noether modiil olmasidir. Armendariz, bu sonucun bir duali olarak,
bir M R-modiiliiniin genig altmodiilleri tizerinde azalan zincir kogulunu saglamasi
ile M/Soc(M)'nin Artin olmasimin denk ifadeler oldugunu ispatlamigtir (bkz. [5,
Onerme 1.1)). Varadarajan ([38, Onteorem 2.1]) ise, bir M R-modiiliiniin dar
altmodiilleri iizerinde artan zincir kogulunu saglamasi ile Rad(M ) nin Noether ol-
masinmin denk oldugunu géstermigtir. Bu sonucun duali Al-Khazzi ve Smith (]2, Teo-
rem 5]) tarafindan ispatlanmigtir. Yani, bir M R-modiilii dar altmodiilleri iizerinde
azalan zincir kosulunu saglar ancak ve ancak Rad(M) Artindir.

Tezin dordiincii ve son boliimiinde, dik toplanan olmayan altmodiiller iizerinde
azalan ve artan zincir kogullarini saglayan modiiller, bazi modiil siniflar1 ele alinarak,
detayli olarak incelenmisgtir. Dik toplanan olmayan altmodiiller tizerinde artan ya da
azalan zincir kogullarini saglayan modiiller yardimiyla Noether ve Artin modiillerle
ilgili baz1 karakterizasyonlar elde edilmigtir. Bir M R-modiiliiniin Noether (Artin) ya
da yaribasit olmasi i¢in gerek ve yeter kosul M’nin dik toplanan olmayan altmodiiller
tizerinde artan (azalan) zincir kogulunu saglamasidir. R bir sag Noether halka ise,

bir M R-modiili dik toplanan olmayan sonlu iiretilmig altmodiiller tizerinde artan
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zincir kogulunu saglar ancak ve ancak M dik toplanan olmayan altmodiiller tizerinde
artan zincir kogulunu saglar. Bir M modiili dik toplanan olmayan sonlu tiretilmis
altmodiiller tizerinde azalan zincir kogulunu saglar ancak ve ancak M yerel Artin bir
modiildiir. Bir R halkasinin sol tam olmasi ile devirli sag idealler iizerinde azalan
zincir kogulunu saglamasinin denk ifadeler olusu iyi bilinen bir sonu¢tur. Buradan,
bir R halkas1 sol tamdir ancak ve ancak R, hem dik toplanan sag idealler hem de dik
toplanan olmayan devirli sag idealler tizerinde azalan zincir kogulunu saglar. Ayrica,
R halkas: dik toplanan olmayan devirli sag idealler tizerinde azalan zincir kogulunu
sagliyorsa R, Jacobson radikali sol T-tistelsifir olan yaridiizenli bir halkadir.
Anahtar Kelimeler: (Yari)tam halkalar, (yari)diizenli halkalar, Artin halkalar ve
modiiller, Noether halkalar ve modiiller, injektif modiiller, projektif modiiller.
Damsgman: Prof.Dr. A. Cigdem OZCAN

Hacettepe Universitesi, Fen Fakiiltesi, Matematik Boliimil.
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The set of n X n matrices over a ring R
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1 PRELIMINARIES

In this chapter, we shall give some basic notions and their properties which will
be frequently used. Throughout this dissertation, R will stand for a noncommutative
and associative ring with identity. Modules will be unital right R-modules unless

otherwise stated.

1.1 Basic Notions

The basic notions and the basic properties mentioned in this section may be found

in any standard text of Ring and Module Theory (e.g. [3], [18], [21]).

Definitions 1.1.1 A submodule N of an R-module M is called essential in M or
M is called an essential extension of N if every nonzero submodule of M intersects
N nontrivially, and we write N <, M. If every nonzero submodule of an R-module

is essential in M, then we say that M is uniform.

Proposition 1.1.2 Let M be an R-module. Then the following statements hold:

1) K <. M if and only if for each 0 # x € M there exists an r € R such that
0#£rre K.

2) Let A< B< M. Then A <. M if and only if A <. B <. M.

3)IfA<.B<Mand A’ <. B'< M, then ANA" <. BN B

4)If f: N— M and A <, M, then f~1(A) <. N.

5) If {As}aer is an independent family of submodules of M, and if Ay <. B, <
M for each «, then {By}acr is an independent family and A, <. ®B,. Con-
versely, if DA, <. ®B,, then A, <. B, for each a.

Definitions 1.1.3 A submodule N of an R-module M is called a complement if
there exists a submodule N’ of M such that N is maximal with respect to the
property that NN N’ = 0. If N is a complement of a submodule of M, then we say
that N is closed in M , and write N <. M.

By Zorn’s Lemma, every submodule of an R-module M has a complement in M.

Proposition 1.1.4 Let M be an R-module and N < M. If N’ is a complement of
N in M, then N & N' <, M.



Proposition 1.1.5 The following statements are equivalent for a submodule C of
an R-module M :
1) C is a closed submodule of M.
2) C' has no proper essential extension; i.e., if C <, N < M, then C = N.
3)IfC < N <, M, then N/JC <, M/C.
4) If D is a complement of C in M, then C is a complement of D in M.

The additive group of all the homomorphisms from an R-module M to an R-
module N (i.e., R-homomorphisms) is denoted by Hompg(M, N); R-endomorphisms
on M is denoted by Endgr(M). An R-homomorphism f is called a monomorphism
if it is one-to-one; f is called an epimorphism if it is onto; and f is called an
isomorphism if it is both one-to-one and onto. A submodule N of an R-module M
is said to be fully-invariant if f(N) < N for any f € Endgr(M).

A simple module is a nonzero module M in which the only submodules are 0 and
M. If M is an R-module, then the socle of M is defined by Soc(M) = N{N|N <,
M} = &{L|L is a simple submodule of M}. Soc(M) is a fully-invariant submod-
ule of M. An R-module M is called semisimple if Soc(M) = M. If a module M
does not contain any simple submodules, then we may assume that Soc(M) = 0.
S, = Soc(Rg) and S; = Soc(gR) are ideals of a ring R, and they need not be equal.
For instance, if R is the ring of 2 x 2 upper triangular matrices over a field, then
S, # S;. If Rg is semisimple, then R is called a (right) semisimple ring. Rp is

semisimple if and only if zR is semisimple.

The next definition dualizes the notion of an essential extension:

Definitions 1.1.6 A submodule N of an R-module M is called a small (superflu-
ous) submodule of M provided K + N is a proper submodule of M whenever K is a
proper submodule of M, and it is denoted by N <« M. If every proper submodule
of M is small, then M is called a hollow module.

Proposition 1.1.7 Let M be an R-module. Then the following statements hold for
K<N<Mand H<M.
1) N < M if and only if K < M and N/JK < M/K.



2) H+ K < M if and only if H < M and K < M.

3)If K < M and f : M — N is an R-homomorphism, then f(K) < N. In
particular, if K < M < N, then K < N.

4) Let K1 < My < M, Ky < My < M and M = M, @& My. Then K, @ Ky < M
if and only if K1 < My ve Ko < M.

5)If K <L <M, K< MandL <% M, then K < L. In particular, if
K < M and K <% M, then K = 0.

The Jacobson radical Rad(M) of an R-module M is the intersection of all max-
imal submodules of M, or equivalently is the sum of all small submodules of M.
Rad(M) is a fully-invariant submodule of M. The Jacobson radical of a ring R is
denoted by J(R), and it is an ideal of R.

Lemma 1.1.8 (Nakayama’s Lemma) The following statements are equivalent for
an ideal I of a ring R:

1) I < J(R).

2) If MI = M, then M = 0 for every finitely generated R-module M.

3) MI < M for every finitely generated R-module M.

A nonzero R-module M is said to be indecomposable if it is not a direct sum of
two nonzero submodules; and M is called local if it has a largest proper submodule

(namely Rad(M)). A local module is indecomposable.

Theorem 1.1.9 ([41]) Let M be a nonzero R-module. Then M is local if and only

of M is cyclic and hollow.

Let I be an ideal of a ring R. I is said to be prime if, for ideals A and B of R,
ACTor BC I whenever AB C I. A ring R is called a prime ring if the zero ideal
is a prime ideal of R. An ideal of a ring is called semiprime if it is an intersection of
prime ideals. R is said to be a semiprime ring if the zero ideal is semiprime. A ring
with a zero Jacobson radical is a semiprime ring. In particular, semisimple rings

and regular rings (see Section 1.4) are all semiprime.



Let M be an R-module. The set anng(M) = {r € R|Mr = 0} is the annihilator
of M in R. M is called faithful if anng(M) = 0. If M is nonzero, then M is a
faithful R/anng(M)-module. For any m € M, the set rg(m) = {r € R|mr = 0}
is the annihilator of m in R, and it is a right ideal of R. For any a € R, the set

ly(a) = {m € M|ma = 0} is the annihilator of a in M.

Definition 1.1.10 Given any right R-module M, the singular submodule of M is
the set

Z(M)={me M |mI =0 for some essential right ideal I of R }.

Equivalently, Z(M) is the set of those m € M for which the right ideal rr(m) is

essential in R.

Lemma 1.1.11 The following statements hold for an R-module M :
1) Z(M)S, = 0.
2)If f : M — N is an R-homomorphism, then f(Z(M)) < Z(N).
3)If M < N, then Z(M)=MnNZ(N).

Corollary 1.1.12 The following statements hold for a ring R:
1) Z, = Z(Rg) is an ideal of R.
2) If R#0, then Z, # R.

3) Z, does not contain any nonzero idempotent.

An R-module M is called a singular module provided Z(M) = M; and it is
called a nonsingular module provided Z(M) = 0. Thus the ring R is a nonsingular
right module if and only if Z, = 0, and in this case R is called a right nonsingular
ring. Likewise, we say that R is a left nonsingular ring if Z; = 0. Right and left
nonsingular rings are not equivalent (see [18, Exercise 1]).

Let M be an R-module and N < M. M/N is singular whenever N <., M. The
converse of this can easily fail; for example, let M = Z/2Z and N = 0. M/N is a
singular Z-module but N is not an essential submodule of M. However, there are

two special cases in which the converse does work.

Proposition 1.1.13 Let M be nonsingular and let N < M. Then M /N is singular
iof and only if N <, M.



Note that the definition of projectivity will be given in Section 1.3.

Proposition 1.1.14 Let P be a projective R-module and let X < P. Then P/X is
singular if and only if X <. P. In particular, if P is both projective and singular,
then P = 0.

The class of all nonsingular R-modules is closed under submodules, direct prod-
ucts, essential extensions and module extensions. The class of all singular R-modules

is closed under submodules, factor modules and direct sums.

Proposition 1.1.15 If M is any simple R-module, then M 1is either singular or
projective, but not both.

We easily obtain the following from Proposition 1.1.14.

Corollary 1.1.16 If every cyclic right ideal of a ring R s projective, then R is a

right nonsingular ring.

Definition 1.1.17 Given any module M, define a submodule Zy(M) by the rule

ZZQ(%) = Z(Z%)). Zy(M) is called the Goldie torsion submodule of M; and Zj =

Zy(Rp) is called the Goldie torsion ideal of a ring R.

Equivalently, the Goldie torsion submodule can be defined as follows:
Zo(M)={x e M |zl C Z(M) for some I <, Rgp}.

Lemma 1.1.18 The following statements hold for an R-module M :
1) If N < M, then Z3(N) = N N Zy(M).
2) Z(M) < Zo(M).
9) Soe( Zy(M)) € Z(M).
4) Zo(M) <. M.
5) M/Zy(M) is nonsingular.

As a generalization of small submodules, d-small submodules were introduced
by Zhou ([46]). Various properties of -small submodules are given below. We refer

the reader to [46] for all the unproved properties.



Definition 1.1.19 Let N be a submodule of an R-module M. N is said to be
d-smallin M if N+ K # M for any proper submodule K of M with M /K singular.
We use N <5 M to indicate that N is a d-small submodule of M.

Every small submodule or nonsingular semisimple submodule of M is -small in
M. The §-small submodules of a singular module are small submodules.
The next lemma explains how close the notion of J-small submodules is to small

submodules.

Lemma 1.1.20 Let N be a submodule of an R-module M. Then the following
statements are equivalent:

1) N <5 M.

2)If X+ N =M, then M = X &Y for a projective semisimple submodule Y
with Y C N.

3) If X + N = M with M/X Goldie torsion, then X = M.

Lemma 1.1.21 Let M be an R-module. The following statements hold:
1) For submodules N, K, L of M with K C N, we have
(a) N <5 M if and only if K <5 M and N/K <; M/K.
(b) N+ L <s M if and only if N <s M and L <5 M.
2)If K <s M and f : M — N is an R-homomorphism, then f(K) <s N. In
particular, if K <s M C N, then K <5 N.
3) Let Ky C My C M, Ky C My C M and M = M; & My. Then K1 © Ky <5
My & M, if and only Ky <s My and Ky <5 M.

The Jacobson radical Rad(M) of an R-module M has the following characteri-
zations:
Rad(M) = "{Ker(f)|f : M — S is an R-homomorphism, S is a simple R-
module}
= N{K < M|K is a maximal submodule of M}
=> {L<M|L < M}.
Parallel to the definition of the Jacobson radical, the submodule §(M) of an R-
module M is defined to be the set N{K < M|M/K is a simple singular R-module}.
Then Rad(M) C §(M); and Soc(M) C §(M) if M is a projective R-module.



Proposition 1.1.22 Let M be an R-module. Each of the following sets is equal to
S(M).

1) My =n{Ker(f)|f: M — S is an R-homomorphism ,S is a simple singular
R-module}.

2) My =>{L < M|L <5 M}.

Lemma 1.1.23 Let M and N be R-modules.

1) If f: M — N is an R-homomorphism, then f(6(M)) C 6(N). Therefore,
d(M) is a fully-invariant submodule of M and Mo(Rgr) C 6(M).

2) If M = @;er M;, then §(M) = ®e16(M;).

3) If every proper submodule of M is contained in a mazimal submodule of M,

then 0(M) is the unique largest 6-small submodule of M.

Theorem 1.1.24 Given a ring R, each of the following sets is equal to 6(RRg).

1) Ry = the intersection of all essential maximal right ideals of R.

2) Ry = the unique largest 6-small right ideal of R.

3) R3={r € RlxR+ Kr = R = Kr <% Rg}.

4) Ry =N{P < R|R/P has a faithful singular simple module }.

5) Rs = {x € R|Vy € R,3 a semisimple right ideal Y of R such that (1—zy)R&®
Y = Rg}.

Corollary 1.1.25 For a ring R, 6(Rg)/Soc(Rgr) = J(R/Soc(Rg)). In particular,
R = 0(Rg) if and only if R is a semisimple ring.

Note: §(Rg) and §(gR) need not be equal for a ring R. For instance, if R is the

ring of 2 X 2 upper triangular matrices over a field, then §(Rg) # §(rR).

1.2 Injective Modules and Some of Their Generalizations

In this section, we will introduce injective modules and give some basic properties
of these modules. Also, we will deal with some generalizations of injective modules

which will be used in the third chapter.



Definition 1.2.1 An R-module M is called N-injective (or injective relative to N),
if every R-homomorphism from a submodule K of N to M can be lifted to an R-
homomorphism from N to M. An R-module M is called an injective module if it is

N-injective for every R-module N.

If an R-module M is M-injective, then it is called quasi-injective. A ring R is
called right self injective if it is R-injective as a right R-module. By Baer’s criterion,
an R-module M is injective if and only if M is R-injective.

Direct products and direct summands of injective modules are injective. On the
other hand, it is not true that every direct sum of injective modules is injective.
Indeed, it is precisely the Noetherian rings (see Section 1.9) over which every direct

sum of injectives is injective.

Proposition 1.2.2 ([24]) Any (quasi-)injective R-module M satisfies the following
two conditions:

(C1) Every submodule of M is essential in a summand of M;

(C2) If a submodule N of M is isomorphic to a summand of M, then N is a

summand of M.

An R-module M which satisfies (C'1) is also known as an eztending module or a

C'S module in the literature.

Proposition 1.2.3 ([24]) If an R-module M satisfies (C2), then it satisfies the
following condition:
(C3) If My and My are summands of M such that My, N My = 0, then My & M,

is a summand of M.

Definition 1.2.4 ([24]) An R-module M is called continuous if it satisfies (C'1) and
(C2); M is called quasi-continuous if it satisfies (C'1) and (C3).

The following implications hold for an R-module:
Injective = quasi-injective = continuous = quasi-continuous = (C'1).

The Baer criterion for testing when an R-module M is injective naturally leads
one to consider the case when one can extend any R-homomorphism from any cyclic

right ideal of R to M to an R-homomorphism of R to M.



Definition 1.2.5 ([23]) An R-module M is said to be principally injective, or P-
injective for short, if every map from any cyclic right ideal to M extends to a map

of R to M.

An R-module M is P-injective if and only if [y;rg(a) = Ma for all a € R, where
[ and r are the left and right annihilators, respectively. When the ring is P-injective

as a right R-module, the ring is said to be a right P-injective ring.

Definition 1.2.6 ([35]) Given a module Mg, let S = Endgr(M). The module M is
said to be almost principally injective (or AP-injective for short) if, for any a € R,
there exists an S-submodule X, of M such that lyrr(a) = Ma @& X, as left S-

modules.

If Rg is an AP-injective module, then R is called a right AP-injective ring. It

immediately follows from the definitions that a P-injective module is AP-injective.

Definition 1.2.7 ([45]) Given a module Mg, let S = Endgr(M). The module M
is called almost principally quasi-injective (or APQ-injective for short) if, for any

m € M, there exists an S-submodule X,,, of M such that l;7r(m) = Sm & X,,.

It is easy to observe that Rg is APQ-injective if and only if Rg is AP-injective.

1.3 Projective Modules

In this section, we refer the reader to [3] for the unproved properties of projective

modules.

Definitions 1.3.1 Let M be an R-module. If N is an R-module, then M is N-
projective (or projective relative to N) in case for each R-epimorphism g : N — K
and each R-homomorphism h : M — K there is an R-homomorphism f: M — N
such that g o f = h. An R-module P is called projective in case it is projective
relative to every R-module. If an R-module M is M-projective, then M is called a

quasi-projective module.

Direct sums and direct summands of projective modules are projective. A ring

is a projective module over itself. Every free module is a projective module, too.
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Proposition 1.3.2 The following statements are equivalent for an R-module P:
1) P is projective.
2) Every epimorphism M — P — 0 splits.

3) P is isomorphic to a direct summand of a free R-module.

We have the following useful result for quasi-projective modules.

Proposition 1.3.3 ([41, 41.14]) Let M be a quasi-projective R-module. If M =
U+V and U <® M, then there exists a submodule V' of V' such that M = U & V.

A pair (P,p) is a projective cover of an R-module M in case P is a projective
R-module and the epimorphism p : P — M has small kernel; i.e, Ker(p) < P. We
may call P itself a projective cover of M.

Every projective R-module is a projective cover of itself. The Z-modules Z, and

Q have no projective covers.

Proposition 1.3.4 If p; : P, — M; (i = 1,...,n) are projective covers, then p =
(Bipi) : i P, — B M; is a projective cover.

The next lemma is The Fundamental Lemma for Projective Covers. One of its
consequences is that if a module does have a projective cover, then it has (essentially)

only one.

Lemma 1.3.5 Suppose Mg has a projective cover p : P — M. If Qg is projective
and q : Q — M is an epimorphism, then Q has a decomposition () = P @& P such
that

1) PP,

2) P" < Ker(q);

3) (q|pr) : P' — M ‘s a projective cover for M.

Moreover, if f . My — M,y is an isomorphism and if py : P, — M and ps :
Py, — My are projective covers, then there is an isomorphism f': P, — P, such that

paf = fr1.

The Jacobson radical of a projective R-module is Rad(P) = PJ(R). A similar

result holds for 6(P) submodule as the next result shows.
10



Lemma 1.3.6 ([46]) If P is a projective R-module, then 6(P) = Pd(Rg) and §(P)

is the intersection of all essential mazimal submodules of P.

Definition 1.3.7 ([46]) A pair (P, p) is called a projective 0-cover of an R-module
M if P is projective and p is an epimorphism of P onto M with Ker(p) <5 P.

The notion of projective d-covers was introduced by Zhou ([46]) as a general-
ization of the notion of projective covers. Unlike projective covers, the projective
0-covers of a module are not unique up to isomorphism, but they differ by only a
projective semisimple direct summand.

Every projective cover of an R-module M is a projective d-cover. Some modules
may not have projective d-covers and some modules have projective d-covers but no

projective covers (see [46]).

Lemma 1.3.8 ([46]) If p; : P, — M; (i = 1,...,n) are projective d-covers, then
p = (Bip;) : &P, — ©;M; is a projective d-cover.

Lemma 1.3.9 ([46]) Suppose Mg has a projective §-cover p : P — M. If Qg
s projective and q : Q — M 1is an epimorphism, then there exist decompositions
P=A®B and Q=X ®Y such that

1) A~ X;

2) pla: A— M is a projective d-cover;

3) qlx : X — M is a projective §-cover;

4) B is a projective semisimple module with B C Ker(p) and Y C Ker(q).

Lemma 1.3.10 ([46]) Let P be a projective R-module and N a submodule of P.
Then the following statements are equivalent:

1) P/N has a projective 6-cover.

2) P =P & P, for some P, and Py with P, C N and P, NN < P.

1.4 Regular and (/-)Semiregular Rings

This section is concerned with regular rings and some of their generalizations.

11



Lemma 1.4.1 ([39]) For a ring R, the following statements are equivalent:
1) For any a € R, there exists b € R such that aba = a.
2) Every cyclic right (left) ideal is a direct summand of R.

3) Every finitely generated right (left) ideal is a direct summand of R.

Definition 1.4.2 An element a of a ring R is called regular if there exists b € R
such that @ = aba. A ring R is called (von Neumann) regular if it satisfies the

equivalent conditions of Lemma 1.4.1.

Definition 1.4.3 Let [ be aright or a left ideal of a ring R. We say that idempotents
can be lifted modulo I if, whenever a®> —a € I, a € R, there exists e = ¢ € R such

that e —a € 1.
This notion is extended as follows:

Lemma 1.4.4 ([31]) The following are equivalent for a right ideal T" of a ring R:
1) If a*> —a € T, there exists ¢* = e € aR such thate —a € T.
2) If a> —a € T, there exists € = e € aRa such thate —a € T.

3) If a*> —a € T, there erists ¢ = e € Ra such thate —a € T.

Definition 1.4.5 ([25]) We say that a right ideal T of a ring R is strongly lifting,
or that idempotents lift strongly modulo T, if the conditions in Lemma 1.4.4 are

satisfied.

Let I be an ideal of a ring R. If idempotents lift modulo 7, then I need not be a
strongly lifting ideal. For instance, suppose that 0 and 1 are the only idempotents
in Rand R/I. If I # R, and I ¢ J(R), then idempotents lift modulo I, but not
strongly. More specifically, one can consider R = Z and I = p*Z, where p is a prime

number and k£ > 1 (see [31, Example 2]).

Lemma 1.4.6 ([31, Lemma 5]) If idempotents can be lifted in R modulo J(R), then

they can be lifted strongly modulo every one-sided ideal contained in J(R).

Theorem 1.4.7 ([31, Theorem 10]) The right socle S, is strongly lifting in any

Tng.
12



Proposition 1.4.8 ([31, Proposition 11]) Let I be an ideal of a ring R and write
a=a+1 fora € R. Assume that I is strongly lifting and that {ay,...,a,} are
orthogonal idempotents in R/1.

1) For each n > 1, there exist orthogonal idempotents {ey, ..., e,} in R such that
e; =a; and e; € a;R for each i =1,2,... n.

2) If I contains no nonzero idempotent and a; + -+ + @, = 1, we can choose

orthogonal idempotents e; € a; R for each i such that e; +---+ e, = 1.

Lemma 1.4.9 ([31, Lemma 26]) Let I be an ideal of a ring R. The following are
equivalent for a right ideal T of R:

1) T=eR® S, where e* = e and S C I is a right ideal.

2) There exists €* = e € T with (1 —e)T C I.

3) There exists e =e € T with TN (1 —e)R C I.

Following [31], if I is an ideal of a ring R, we say that I respects a right ideal

T C R if the conditions in Lemma 1.4.9 are satisfied.

Lemma 1.4.10 ([31, Lemma 27]) Let I be an ideal of a ring R and a € R. Then I
respects aR if and only if I respects Ra.

Definition 1.4.11 ([31]) Let I be an ideal of a ring R. An element a of a ring R is
called I-semiregular if I respects aR. The ring R is called an [-semiregular ring if

every element is /-semiregular.

Theorem 1.4.12 ([31, Theorem 28]) The following conditions are equivalent for an
tdeal I of a ring R:

1) R is I-semireqular.

2) I respects every finitely generated right (left) ideal of R.

3) R/I is reqular and idempotents lift strongly modulo I.

Hence, every ring R is R-semiregular, and the 0O-semiregular rings are just the
regular rings.
An [-semiregular ring R is called semiregular in case I = J(R). Combining

Theorem 1.4.12 with Lemma 1.4.6, one can observe that a ring R is semiregular if
13



and only if R/J(R) is regular and idempotents lift modulo J(R). A well known
result of Utumi ([37]) asserts that if R is a right continuous ring (i.e., the ring which
satisfies (C'1) and (C2)), then R is semiregular and J(R) = Z,. The converse of this
problem was studied in [29] by Nicholson and Yousif. They showed that a ring R
is semiregular and J(R) = Z, if and only if R is Z,-semiregular (see [29, Theorem
2.4]), and called such rings right weakly continuous. It follows from Theorem 1.4.7
that a ring R is S,-semiregular if and only if R/S, is regular. It was shown in [1,
Corollary 4.6] that S,-semiregular rings are semiregular. But the converse need not
be true (e.g. consider the ring Zg). d,-semiregular rings were defined by Zhou ([46])
as a generalization of a semiregular ring: A ring R is said to be d,-semiregular if
R/), is regular and idempotents lift modulo 4.

We have the following implications for a ring R:

S,-semiregular = semiregular = ¢,-semiregular;

Z,-semiregular = semiregular = J,-semiregular.

1.5 Perfect and (/-)Semiperfect Rings

In this section, we introduce perfect rings and some of their generalizations.

Definition 1.5.1 A set I is said to be right T-nilpotent if, for any sequence {a;|i >
1} in I, there exists an integer n > 1 such that a,a,_;---a; = 0; I is said to be left

T-nilpotent if aqas - - - ap_1a, = 0.

Definition 1.5.2 A ring R is called right perfect if R/J(R) is semisimple and J(R)
is right T-nilpotent.

Theorem 1.5.3 ([7], [10]) The following statements are equivalent for a ring R:
1) R is right perfect.
2) Every right R-module has a projective cover.
3) Every semisimple right R-module has a projective cover.
4) R satisfies descending chain condition on cyclic left ideals.

5) R satisfies descending chain condition on finitely generated left ideals.
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Note: The notion of perfect rings is not left-right symmetric (see [30, Example

B.36)).

Proposition 1.5.4 ([30]) Let R be a right perfect ring. Then the following state-
ments hold:

1) eRe is a right perfect ring for any e = e € R.

2) ML,,(R) is a right perfect ring for n > 1.

3) R/A is a right perfect ring for any ideal A of R.

A ring R is called semipotent if each one-sided ideal not contained in J(R)
contains a nonzero idempotent, and R is called potent if, in addition, idempotents

lift modulo J(R). In [31], the semipotent rings are generalized as follows:

Lemma 1.5.5 ([31, Lemma 19]) Let I be an ideal of a ring R. The following are
equivalent:

1) If T € I is a right (respectively, left) ideal there exists e* =e € T — 1.

2) If a € I there exists e*> = e € aR — I (respectively, e € Ra — I ).

3) If a & I there exists x € R such that vaxr =x & I.

Definition 1.5.6 ([31]) If R is a ring and [ is an ideal of R, we say that R is I-
semipotent if the conditions in Lemma 1.5.5 are satisfied, and say that R is I-potent

if it is I-semipotent and idempotents lift strongly modulo 1.

Semipotent (potent) rings are just the J(R)-semipotent (J(R)-potent) rings.

Every regular ring is 0-potent.

Theorem 1.5.7 ([31]) Let I be an ideal of a ring R. The following are equivalent:

1) R/1 is semisimple and idempotents lift strongly modulo 1.

2) I respects every right (respectively, left) ideal of R.

3) I respects countably generated right (respectively, left) ideal of R.

4) R is I-semipotent and I respects &2 e;R (respectively, &2, Re;) for any
orthogonal idempotents e; € R.

5) R is I-semipotent and contains no infinite orthogonal family of idempotents
outside 1.

6) R is I-semipotent and R/I is semisimple.
15



If I is an ideal of a ring R, the ring R is called I-semiperfect if it satisfies the
equivalent conditions in Theorem 1.5.7; R is called semiperfect in case I = J(R).
Theorem 1.5.7, together with Lemma 1.4.6, gives that a ring R is semiperfect if and
only if R/J(R) is semisimple and idempotents lift modulo J(R). By Theorem 1.4.7,
we obtain that R is S,-semiperfect if and only if R/S, is semisimple. It is proved
in [31, Corollary 37| that a ring R is Z,-semiperfect is equivalent to the fact that
R is a semiperfect ring and J(R) = Z,. Zhou ([46]) defined d,-semiperfect rings
as a generalization of semiperfect rings: A ring R is called o,-semiperfect if R/§, is
semisimple and idempotents lift modulo 9,.

S,-semiregular rings are semiregular (see [1, Corollary 4.6]), but this is not the
case for S,.-semiperfect rings; i.e., S,-semiperfect rings need not be semiperfect (see
46, Example 4.1]).

It easily follows from the definitions that semiperfect rings are semiregular. But
the converse is not true in general. For example, consider the ring R = [[..; F,
where F; = F'is a field. R is a regular ring but it is not semisimple since Soc(R) =
Dier Fi.

As a generalization of right perfect rings, Zhou ([46]) introduced right 0-perfect
rings. Following [46], a ring R is called right d-perfect if every right R-module has a
projective d-cover. Notice that we use the notation 'd-perfect’ instead of ’d,-perfect’.

Since there is no definition of a perfect ring relative to an ideal, we do not have a

notion of §,-perfect rings.

Theorem 1.5.8 ([46, Theorem 3.8]) The following conditions are equivalent for a
ring R:

1) R is a right 0-perfect ring.

2) Every semisimple right R-module has a projective 6-cover.

3) R is a 0.-semiperfect ring and 6(M) <s M for any module M.

4) R/S, is a right perfect ring and idempotents lift modulo 0,.

1.6 Generalized Semiregular Rings

In 2005, Xiao and Tong ([42]) introduced generalized semiregular rings as a gener-

alization of semiregular and AP-injective rings. In this section, all the results are
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taken from the paper [42]. We will use the notation I(a) (respectively, r(a)) for the

left (respectively, right) annihilator of an element @ of a ring R.

Definition 1.6.1 An element a of a ring R is called right generalized semireqular
if there exixts two left ideals P, L of R such that Ir(a) = P & L, where P C Ra
and RaN L < R. A ring R is called right generalized semireqular if each of its
elements is right generalized semiregular. Left generalized semireqular elements and

left generalized semireqular rings can be defined similarly.

Note: It is not known if the notion of right generalized semiregular rings is left-right
symmetric.

It is known from [28] that a ring R is right P-injective if and only if for any a € R,
Ir(a) = Ra. Thus, every right P-injective ring is right generalized semiregular. In

particular, a right self-injective ring is right generalized semiregular.

Proposition 1.6.2 ([42, Proposition 1.2]) If R is a right AP-injective or a semireg-

ular ring, then R s right generalized semireqular.

The following examples show that right generalized semiregular rings need not

be semiregular or right AP-injective.

Example 1.6.3 ([42, Example 1.3(1)]) The trivial extension of R by a bimodule
rVR is the direct sum T(R,V) = R @ V with multiplication (r + v)(r' +v') =
rr’ + (rv' + vr'). It is shown in [29] that the trivial extension R = T(Z,Q/Z) is a

[a¥)

commutative P-injective ring, but it is not semiregular since R/J(R) = Z.

Note: If R is a right AP-injective ring, then J(R) = Z(Rg) (see [35]).

Lo Zo 0 Zy
Example 1.6.4 ([42, Example 1.3(2)]) Let R = . Then J(R) =
0 Zy 0 0
and Z(Rgr) = Z(grR) = 0. Since J(R) # Z(Rr) = Z(rR), R is neither left nor right
Zy 0
AP-injective. But R/J(R) = ? is regular and idempotents lift modulo
0 Zy

J(R).

In [42], Xiao and Tong gave some sufficient conditions under which right gener-

alized semiregular rings are semiregular.
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Lemma 1.6.5 ([42, Lemma 1.4)) If R is a right generalized semireqular ring and

or every a € R there exists € = e € R such that r(a) = r(e), then R is semireqular.
Y

Due to Armendariz ([4]), a ring R is called right (left) PP if every cyclic right
(left) ideal of R is projective. R is a right PP ring if and only if for every a € R

there exists an idempotent e € R such that r(a) = eR.

Corollary 1.6.6 ([42, Corollary 1.7]) Let R be a right PP ring. If R is a right

generalized semireqular ring, then R is semiregular.

Proposition 1.6.7 ([42, Proposition 1.8]) If R is a right generalized semiregular
ring, then Z, C J(R).

Corollary 1.6.8 ([42, Corollary 1.9]) If R is a semiregular ring, then Z, C J(R)
and Z; C J(R).

It is known that if R is a semiregular ring, then so is the ring eRe for any
idempotent e of R (see [30, Corollary B.42]). Hence, if the n x n matrix ring M, (R)
over a ring R is semiregular for some n > 1, then so is R.

An idempotent element e € R is left (respectively, right) semicentral in R if
Re = eRe (respectively, eR = eRe) (see [8]).

Proposition 1.6.9 ([42, Proposition 1.11]) Let R be a right generalized semiregular
ring. 1If an idempotent e of R is right semicentral, then eRe is right generalized

semareqular.

Theorem 1.6.10 ([42, Theorem 1.15]) Let e be an idempotent of R such that
ReR = R. If R is a right generalized semireqular ring, then eRe is right gener-

alized semiregular.

Corollary 1.6.11 ([42, Corollary 1.16]) Let R be a ring. If M, (R) is right gener-

alized semiregular for some n > 1, then so is R.
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1.7 Semiregular and Semiperfect Modules

Mares ([22]) called a projective module semiperfect if every homomorphic image has
a projective cover, and showed that many of the properties of semiperfect rings can
be extended to these modules. In [20], semiperfect modules were defined without
the projectivity assumption on modules. In this dissertation, we will consider the
latter definition of semiperfect modules.

An element z in an R-module M is called regular if x(ax) = = for some « €
Hompg(M, R). Zelmanowitz ([44]) called a module regular if each of its elements is
regular. He also proved that a module is regular if and only if every finitely generated
(cyclic) submodule is a projective direct summand (see [44, Theorem 2.2]).

A class of semiregular modules was introduced by Nicholson ([26]). This class

contains all regular and all semiperfect modules.

Definition 1.7.1 ([26]) An element x of an R-module M is called semiregular if
there exists a decomposition M = P @ () with P C xR projective and xR N Q <
M. The module M is said to be a semireqular module if each of its elements is

semiregular.

As the next result shows, Nicholson characterized the semiperfect modules among

the projective semiregular ones.

Proposition 1.7.2 ([26, Proposition 1.19]) A projective R-module M is semiperfect
if and only if it is semireqular, Rad(M) < M and M/Rad(M) is semisimple.

Dual to the continuous modules, discrete modules are defined as follows:

Definition 1.7.3 ([24]) Let M be an R-module.
(D1) For every submodule A of M, there exists a decomposition M = M; & M,
such that M; < Ave ANM, < M.
(D2) For A < M, if M /A is isomorphic to a direct summand of M, then A <% M.
The module M is called discrete if it satisfies the conditions (D1) and (D2).

Proposition 1.7.4 ([24, Corollary 4.54]) Let M be a projective R-module. Then M

is discrete if and only if M is a direct sum of local submodules and Rad(M) < M.
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Proposition 1.7.5 ([24, Corollary 4.43]) A projective module P is semiperfect if
and only if P is discrete.

1.8 The Exchange Property

Definition 1.8.1 ([14]) An R-module M is said to have the exchange property if

for any module X and decompositions
X =M Y = ®ic1Ni,
where M’ = M, there exist submodules N/ C N; for each i such that
X =M o (@N)).

If this condition holds for finite sets I (equivalently for |I| = 2) the module M is

said to have the finite exchange property.

Every quasi-injective R-module has the exchange property (see [24, Theorem
1.21)).

Warfield (][40]) called a ring R an exchange ring if Rr has the (finite) exchange
property. He verified that the definition was left-right symmetric and that a module
has the finite exchange property if and only if its endomorphism ring is an exchange
ring (see [40, Theorem 10]). He also showed that ([40, Theorem 3]) every semiregular
ring is an exchange ring. Also, it was proved by Nicholson ([27, Corollary 2.4]) that
aring R is exchange if and only if R/J(R) is exchange and idempotents lift modulo
J(R).

Theorem 1.8.2 ([27, Theorem 2.1]) Let M be an R-module. Then Endgr(M) is an
exchange ring if and only if M has the finite exchange property.

Theorem 1.8.3 ([9, Theorem 3|) A quasi-projective R-module M has the finite
exchange property if and only if whenever M = A+ B, there exists a decomposition

M =P®Q such that P < A and ) < B.

Due to Nicholson ([27]), a ring R is called clean if every element of R is the sum

of a unit and an idempotent. Every local ring is clean. Also, the ring of all n x n
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matrices over an algebraically closed field is clean. Moreover, a ring R is clean if
and only if R/J(R) is clean and idempotents lift modulo J(R) (see [27]). Note that
clean rings are exchange rings (see [27, Proposition 1.8]).

Following [11], a module is said to be clean if its endomorphism ring is clean.
Discrete modules over any ring, quasi-projective modules over a right perfect ring

and continuous modules are some examples of clean modules (see [11]).

1.9 Chain conditions

We refer the reader to [13], [15] and [21] for the unproved results in this section.
Let M be an R-module and § a non-empty collection of submodules of M ordered
under inclusion. § is said to satisfy the mazimum (minimum) condition if every
subset of S has a maximal (minimal) element. S is said to satisfy the ascending
chain condition (acc) if every chain M; C My C ... with M; € S eventually stops;
the descending chain condition (dcc) is analogously defined. In the case where S
is the set of all submodules of M, modules satisfying the maximum condition are
called Noetherian; modules satisfying the minimum condition are called Artinian.
A ring R is called right Artnian (right Noetherian) if Rg is Artinian (Noetherian).
A similar definition may be made on the left. R is Artinian (Noetherian) if it
is both right and left Artinian (Noetherian). It is well known that an R-module
M is Artinian (Noetherian) if and only if M has dce (acc) on submodules; and
that M is Noetherian if and only if every submodule of M is finitely generated.
The Artinian and Noetherian properties are inherited by submodules and factor
modules. Finitely generated modules over a right Artinian (right Noetherian) ring

are Artinian (Noetherian), too.

Theorem 1.9.1 (Hopkins-Levitzki) A ring R is right Artinian if and only if it is
right Noetherian, J(R) is nilpotent and R/J(R) is semisimple.

Corollary 1.9.2 A right Artinian ring is right perfect.

Theorem 1.9.3 The following statements hold for an R-module M :
1) M has acc (dcc) on essential submodules if and only if M /Soc(M) is Noethe-

rian (Artinian).
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2) M has acc (dcc) on small submodules if and only if Rad(M) is Noetherian
(Artinian).

An R-module M is called locally Artinian (locally Noetherian) provided every
finitely generated submodule of M is Artinian (Noetherian).

An R-module M is said to be semiartinian if every nonzero homomorphic image
of M has an essential socle, or equivalently, if every nonzero homomorphic image of
M has a nonzero socle. A ring R is right semiartinian if Rg is semiartinian. Clearly,
every Artinian module is semiartinian and every right Artinian ring is right semiar-
tinian. Submodules and factor modules of a semiartinian module are semiartinian,
too.

Let M be an R-module. We say that M has finite Goldie dimension if M does
not contain a direct sum of an infinite number of non-zero submodules. A ring R is
said to have finite right Goldie dimension if Rg has finite Goldie dimension. Goldie
dimension of a module is also known as uniform dimension in the literature. The

next lemma gives the basic properties of modules of finite Goldie dimension.

Lemma 1.9.4 Let M be a non-zero R-module.

1) If M has finite Goldie dimension, then each non-zero submodule of M contains
a uniform submodule, and there is a finite number of uniform submodules of M whose
sum is direct and is an essential submodule of M.

2) Suppose that M has uniform submodules Uy, ..., U, such that the sum Uy +
-« 4+ U, is direct and is an essential submodule of M. Then M has finite Goldie
dimension and the positive integer n is independent of the choice of the U;. We call

n the Goldie dimension of M and denote it by udim(M).

A Noetherian or an Artinian R-module has finite Goldie dimension. If a semisim-

ple R-module has finite Goldie dimension, then it s both Artinian and Noetherian.

Theorem 1.9.5 Let M be a semisimple R-module. The following are equivalent:
1) M is Artinian.
2) M is Noetherian.
3) M has finite Goldie dimension.
4) M is finitely generated.
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2 SEMIREGULAR AND SEMIPERFECT
MODULES RELATIVE TO A SUBMODULE

Semiregular and semiperfect rings were generalized to [-semiregular and /-semi-
perfect rings, for an ideal I of a ring R, by Yousif and Zhou ([43]). Nicholson
and Zhou ([31]) studied on the concept of strongly lifting ideals to characterize I-
semiregular and [-semiperfect rings. They proved that a ring R is [-semiregular
(I-semiperfect) if and only if R/I is regular (semisimple) and I is strongly lifting.
The notions of I-semiregular rings and [-semiperfect rings are left-right symmetric
by Theorem 1.4.12 and Theorem 1.5.7.

In [1] and [32], U-semiregular and U-semiperfect modules are defined as module
theoretic versions of [-semiregular and /-semiperfect rings by considering a fully-
invariant submodule U of an R-module, and some properties of I-semiregular and
I-semiperfect rings are generalized to modules.

In this chapter, we investigate strongly lifting submodules and U-semipotent
modules for a submodule U of an R-module. We call a submodule U of a module
M strongly lifting if whenever M /U = (A+U)/U & (B + U)/U, then M has a
decomposition M = P @ @ such that P < A, (A+U)/U = (P +U)/U and
(B+U)/U = (Q+U)/U. We prove that an ideal I of a ring R is a strongly lifting
ideal if and only if [ is a strongly lifting submodule of Rg. M is called U-semipotent
if for every submodule A of M such that A € U, there exists a summand B of M
such that B < A and B € U. We prove that if U < M and M is U-semipotent,
then for any submodule N of M with N € U, N is indecomposable if and only if N
is local.

Moreover, we consider strongly lifting submodules to obtain a new characteri-
zation of U-semiregular and U-semiperfect modules for a projection-invariant sub-
module U. We prove that if M is a finitely generated and projective R-module, then
M is U-semiregular if and only if every finitely generated submodule of M /U is a
direct summand and U is strongly lifting. If M is a projective R-module, then M
is U-semiperfect if and only if M /U is semisimple and U is strongly lifting.

Finally, we characterize rings over which every (projective) module M is 7(M)-
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semiperfect, where 7 is a preradical. We consider some special preradicals such as
Rad, Z5 and 6. We prove that every right R-module M is Zy(M)-semiperfect if and
only if R is Z}-semiperfect; every projective R-module M is 0(M )-semiperfect if and
only if R is right d-perfect; and a ring R is Z,-semiperfect and Z7 is injective if and

only if R is semiperfect and right self-injective.

2.1 Strongly Lifting Submodules and Semipotent Modules
Relative To A Submodule

Definition 2.1.1 Let U be a submodule of a module M. U is called a strongly
lifting submodule of M if whenever M /U = (A+U)/U & (B + U)/U, then M has
a decomposition M = P @ @ such that P < A, (A+U)/U = (P+ U)/U and
(B+U)/U=(Q+U)/U.

Proposition 2.1.2 Let I be an ideal of a ring R. Let R = R/I and T =r + I for
any r € R. The following statements are equivalent:

(1) I is a strongly lifting ideal.

(2) I is a strongly lifting submodule of Rg.

Proof (1) = (2) Let R = A® B. Let 1 = a+bwherea € A, b € B. Then
@ and b are orthogonal idempotents. By Proposition 1.4.8, there exist orthogonal
idempotents e; and e; in R such that e = @, 5 = band e; € aR, es € bR. Then
R=eR®(1—e;)RandeiR<aR,etR=aR=A, (I-e)R=(1-a)R=bR = B.
Hence (2) holds.

(2) = (1) Let €2 =€ € R. Then R = eR @ (1 — e)R. By hypothesis, there is
a decomposition R = P @ Q, where P < eR, P = eR and Q = (1 —¢)R. Then
there exists an idempotent f in R such that P = fR and @ = (1 — f)R. Since
P=fR==¢R, f =¢ea, e = fb for some @,b in R. This implies that fé = €. Since

nd f = fe + f(I—e), we have that f = . Hence, I is strongly

O
|
|

=

=]
&

lifting. U

Proposition 2.1.3 Let M be a quasi-projective R-module and U a submodule of

M. If U is a summand of M, then U 1is strongly lifting.
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Proof Let N be such that M =U @& N, and let M/U = (A+U)/U&® (B+U)/U.
Consider the isomorphism f: N — M/U. Then there exist submodules B; and Bj
of N such that f(B;) = (A+U)/U = (B1+U) /U, f(By) = (B+U)/U = (By+U)/U.
Then M/U = (B1+U)/U & (By+U)/U. Since BN By < (B1+U)N(By+U) =U,
we have By N By = 0. Also, N = B+ By. Hence, M =U ® N = U & B, & Bs.
Since U @& By = U + A is quasi-projective, there exists a submodule L of A such
that U @& B; = U @ L by Proposition 1.3.3. Thus, M = U & L & By, where L < A,
(L+U)/U=(A+U)/U and (By +U)/U = (B+U)/U, i.e., U is strongly lifting.
O

Nicholson ([27, Corollary 1.3]) showed that a ring R is exchange if and only if
idempotents can be lifted modulo every right (left) ideal of R, which is also equivalent
to saying that every right (left) ideal of R is strongly lifting (see [31, Theorem 4]).

The next result shows that a similar fact holds for quasi-projective modules.

Theorem 2.1.4 Let M be a quasi-projective R-module. Then the following state-
ments are equivalent:

(1) M has the finite exchange property.

(2) Every submodule of M is strongly lifting.

Proof (1) = (2) Let N < M and M/N = (A+ N)/N @ (B + N)/N. Then
M = A+ B+ N. By Theorem 1.8.3, there is a decomposition M = P, & P, with
P <A P,<B+N. Then (P,+ N)/N =(A+ N)/N, (P,+N)/N = (B+ N)/N.
Hence, N is strongly lifting.

(2) = (1) Let M = My + My and N = My N M,. Then M/N = M;/N & Msy/N.
By (2), there is a decomposition M = P®Q such that P < M;, (P+N)/N = M;/N,
(Q+ N)/N = My/N. Then Q < M. By Theorem 1.8.3, M has the finite exchange
property. U

Now we give the definition of a semipotent module relative to a submodule.

Definition 2.1.5 Let U be a submodule of an R-module M. The module M is
called U-semipotent if, for every submodule A of M such that A € U, there exists a

summand B of M such that B < Aand B € U. A ring R is called semipotent if Rp
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is J(R)-semipotent. M is called U-potent if M is U-semipotent and U is a strongly
lifting submodule of M.

The next example shows that there exists a U-semipotent module M where U

is not strongly lifting.

Example 2.1.6 ([31, Example 23]) Consider the direct product QQ = Z X Zy X Zs X

Zo X --- of rings. Write m = nl for all n € Z. Let R denote the following subring
of Q:

R ={(n,ng, 03, , g, m, M, ...)|n,n; € Z, k > 2}.

I = {(2m,0,0,...)|m € Z} is an ideal of R. It was shown in [31] that R is an

I-semipotent ring where idempotents lift modulo I but not strongly.

An R-module M is 0-potent if every non-zero submodule of M contains a non-
zero summand of M. Every regular module is O-potent. In fact, let M be a regular
R-module and 0 # A < M. Then there exists 0 # a € A and « € Homg(M, R)
such that a(aa) = a. This implies that aR is a non-zero summand of M in A.

On the other hand, an R-module M with zero radical and essential socle is 0-
potent. In fact, let 0 # A < M. Then A contains a simple submodule S. Since S is

not small in M, then S is a summand of M.

Let I be an ideal of a ring R. It was shown in [31, Proposition 20] that if R is
I-semipotent, then R/I is O-potent, and that the converse holds if I is a strongly

lifting ideal. We have the following module theoretic versions of these results.

Proposition 2.1.7 Let M be an R-module and U a submodule of M. If M/U is
0-potent and U is strongly lifting, then M is U-potent.

Proof Let A be a submodule of M such that A € U. Then (A+U)/U is a non-zero
submodule of the factor module M /U, so there exists a non-zero element @ = a+U of
(A+U)/U. Since M /U is 0-potent, there exists a non-zero summand B/U of M /U
which is contained in (aR + U)/U. Hence, B/U is cyclic. Let B/U = (bR+U)/U,

where b € B. On the other hand, there exists © € A such that b = Z. Then
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M/U = (zR+U)/U & C/U for some C' < M. Since U is strongly lifting, there is
a decomposition M = P @ @ such that P < zR, (P+U)/U = (zR+ U)/U and
(Q+U)/U=C/U. Thus, P is a summand of M with P < Aand P Z U. O

Note that a submodule U of an R-module M is called projection-invariant if

m(U) < U for every projection m of M.

Lemma 2.1.8 ([16, Exercise 4.d, page 50]) Let M = M; & My and U be any
projection-invariant submodule of M. Then U = (U N M) @ (U N My).

Proposition 2.1.9 Let U be a projection-invariant submodule of an R-module M .

If M is U-semipotent, then M /U is 0-potent.

Proof Let0# A/U < M/U. Then A Z U. By hypothesis, there exists a summand
B of M such that B < A, B Z U. Let B’ be such that M = B & B’. Since U is
projection-invariant, U = (BNU) & (B'NU) by Lemma 2.1.8. This implies that
(B+U)N(B'+U)=[B+(B'NU)|Nn[B"+(BNU)]=U. Hence, (B+U)/U is a
non-zero summand of M /U in A/U. O

Proposition 2.1.10 Let U be a submodule of an R-module M. If M is U-semipotent,
then for every submodule N of M with N € U, N is U N N-semipotent.

Proof Assume that M is U-semipotent. Let N < M and X < N be such that
X ZUNN. Then X € U. By assumption, there exits a summand Y of M such that
Y<XandY € U. Then Y is a summand of N such that Y < X and Y Z UNN.
Hence, N is U N N-semipotent. U

Proposition 2.1.11 If an R-module M is quasi-projective with the finite exchange
property, then M is Rad(M)-semipotent.

Proof Let N < M be such that N € Rad(M). Let n € N\ Rad(M). Then there
exists a maximal submodule K of M such that M = nR + K. By Theorem 1.8.3,
there is a decomposition M = P@®Q such that P <nRand Q < K. If P < Rad(M),
then P < K, and so M = K, a contradiction. Hence, P ¢ Rad(M), and so the
proof is completed. O
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Proposition 2.1.12 Let U be a submodule of an R-module M and assume that M
is U-semipotent. Then the following statements are equivalent for a submodule N
of M with N € U:

(1) N is indecomposable.

(2) For any submodule A of N with AZ U, A= N.

(3) N is local.

Proof (3) = (1) It is obvious. (1) = (2) Let A < N with A € U. Then there
exists a summand B of M such that B < A, B Z U. So B is a summand of N. If
B =0, then B < U, a contradiction. Then B = N. This implies that A = N.

(2) = (3) Since N € U, by (2) N is cyclic. Now let K be a proper submodule
of N and N = K + L for some L. We claim that L = N. Assume that L < U. If
K < U, then N C U, acontradiction. If K Z U, then K = N, again a contradiction.
Hence, L € U and so L = N. By Theorem 1.1.9, N is local. U

Proposition 2.1.13 If M is a Rad(M)-semipotent R-module, then every indecom-
posable summand N of M with N Z Rad(M) is local.

Proof Let N be an indecomposable summand of M with N ¢ Rad(M). We
claim that for every proper submodule K of N, K < Rad(N). Let K be a proper
submodule of N and assume that K ¢ Rad(N). Since Rad(N) = N N Rad(M),
K ¢ Rad(M). Since M is Rad(M )-semipotent, there exists a summand X of M
such that X < K and X ¢ Rad(M). Then X is a summand of N. Since N is

indecomposable, we have that X = N = K, a contradiction. Hence N is local. [

Proposition 2.1.14 Let U be a projection-invariant submodule of an R-module M .
If M is U-semipotent, then for any indecomposable summand (A + U)/U of M/U,
there exists a summand P of M such that P < A and (P+U)/U = (A+U)/U.

Proof Let (A+ U)/U be an indecomposable summand of M/U. Then A Z U.
Since M is U-semipotent, there exists a summand P of M such that P < A, P Z U.
Since U is projection-invariant, (P + U)/U is a summand of M /U, and hence a
summand of (A + U)/U. Since (P +U)/U # 0, then (P+U)/U =(A+U)/U. O

28



2.2 Some Characterizations of U-semiregular and

U-semiperfect Modules

Let U be a submodule of an R-module M. Following [1] and [32], the module
M is called U-semiperfect (U-semiregular) if for any (cyclic) submodule N of M,
there exists a decomposition M = A & B such that A is projective, A < N and
NN B<U. If U is a projection-invariant submodule of M, then this is equivalent
to saying that for any (cyclic) submodule N of M, there exists a decomposition
N = A @ B such that A is a projective summand of M and B < U (see [1, 32]).
Clearly, U-semiperfect modules are U-semiregular. An R-module M is semiregular
if and only if M is Rad(M )-semiregular. If M is projective and Rad(M) < M, then
M is semiperfect if and only if M is Rad(M )-semiperfect.

Let U and N be any submodules of an R-module M. We say that U respects
N if there exists a summand A of M contained in N such that M = A& B and
BNN<U.

Lemma 2.2.1 Let U be a projection-invariant submodule of an R-module M and
N any submodule of M. Then the following statements are equivalent:

(1) U respects N.

(2) There ezists a summand A of M contained in N such that N = A@ B and
B<U.
(3) There exists 7* = 7 in Endp(M) with (M) < N such that (1 —7)(N) < U.

Proof By Lemma 2.1.8, it is obvious. U

If an R-module M satisfies (D1), then for any submodule N of M, N has a
decomposition N = A @® B, where A <% M and B < M. Hence, B < Rad(M).
Therefore, Rad(M) respects every submodule of M whenever M satisfies (D1).

Let U be a submodule of an R-module M. It is obvious that if M is U-
semiregular, then U respects every cyclic submodule of M. The converse holds if M
is projective. It was shown in [1, Theorem 2.3] that an R-module M is U-semiregular
if and only if for any finitely generated submodule N of M, there exists a decom-
position M = A @ B such that A is a projective summand of N and BN N C U.

Using a similar technique, we show the following result:
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Proposition 2.2.2 Let U be a projection-invariant submodule of an R-module M.
Then U respects every finitely generated submodule of M if and only if U respects

every cyclic submodule of M.

Proof Let N be a finitely generated submodule of M. Let N =z R+ --- 4+ 2, R,
where z; € N for ¢ = 1,...,n. We will use induction on the generating set of N.
By assumption, we have 8 : M — z,R such that 3> = 8 and (1 — §8)(z,) C U.
Consider K = (1 — )z R+ --- + (1 — B)x,—1 R. By induction, we may choose
a: M — K such that o® = @ and (1 — a)(K) C U. Define v = 3+ a — af8. Then
v? =~ and y(M) = B(M) & a(M) since fa = 0. Since N = K + x,,R, we obtain
y(M) = B(M) @ a(M) C N. Now take n = a+ x,r, where a € K and r € R. Since
U is projection-invariant, (1 —v)(a + z,7) = (1 — a)(a) + (1 — a)(1 — B)(z,r) € U.
Hence, (1—7)(N) C U. Thus, M = v(M)@(1—~)(M) is the desired decomposition.
O

Now we will give some necessary and sufficient conditions for an R-module M

to be U-semiregular, where U is a projection-invariant submodule of M.

Theorem 2.2.3 Let U be a projection-invariant submodule of an R-module M and
M = M/U. Consider the following conditions:
(1) (i) Bvery finitely generated submodule of M is a summand.
(ii) If M = A® B, where A is finitely generated, then there exists a decom-
position M = P ® Q such that P < A, P=A and Q = B.
(2) U respects every finitely generated submodule of M.
Then (1) = (2); and (2) = (1) if M is quasi-projective.

Proof (1) = (2) Let N be a finitely generated submodule of M. Then M = N& B
for some submodule B. By hypothesis, M = P @ @ such that P < N, P = N,
= B. Since N = P+(NNU) and U = (UNP)®(UNQ), we have that QNN < U.
So (2)
(2) = (1) (i) Let X/U < M/U be finitely generated. Choose a finitely generated
submodule N of M such that X/U = (N +U)/U. By (2), there is a decomposition
M = A& B such that A < N and BN N < U. Then X/U = (A+ U)/U. Since

Q

follows.
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U={UnA)®(UnB)and (B+U)N(A+U)=(B+(UNA)NA+UNB))="U,
we get A® B =M. So X is a summand of M.

For (ii), let M = A @ B, where A is finitely generated. Let N be a finitely
generated submodule of A such that A = N. Then M = C & D such that C < N
and DNN < U. Since N = C®(DNN), we obtain M = (A+U)+B = (C+U)+B.
Since C' is a summand of M and M is quasi-projective, there exists a summand @)
of M such that M = C & Q and Q < U + B (see Proposition 1.3.3). Now it can be
seen that C < A, C = A and Q = B. O

Corollary 2.2.4 Let U be a projection-invariant submodule of a projective R-module
M and M = M/U. Then the following statements are equivalent:
(1) M is U-semireqular.
(2) (i) Bvery finitely generated submodule of M is a summand.
(ii) If M = A® B, where A is finitely generated, then there exists a decom-
position M = P& Q such that P< A, P =A and Q = B.
In addition, if M is finitely generated, then they are equivalent to,
(3) (i) Bvery finitely generated submodule of M is a summand.
(17) U 1is strongly lifting.

Corollary 2.2.5 Let U be a submodule of an R-module M. If M s U-semiregular,
then M is U-semipotent. If in addition, M is cyclic and quasi-projective, then M
18 U-potent.

Proof Let A be a submodule of M with A € U. Let a € A\U. Then M = X @Y,
where X < aR and Y NaR < U. This implies that aR = X & (Y NaR) and so
X Z U. Hence, M is U-semipotent. If M is finitely generated and quasi-projective,
by the proof of (2) = (1)(i¢) in Theorem 2.2.3, U is strongly lifting. O

The next example shows that U-semipotent modules need not be U-semiregular

even if M /U is regular.

Example 2.2.6 ([31, Example 52]) Let

n o m 2n m
Ry ={ :n,m € Z} and K = { :n,m € Z},
0 n 0 2n
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and, for any natural number j, let

0 m .
K; ={ :m € jL}.
0 0

Then R; is a ring and K, K are ideals of R;. Let Q = [[, F;, where each
F; = Zy, and Ry = (&, F;, 1g) be the subring of Q generated by &2, F; and 1¢.
Set T'= Ry & Ry. The subring R = (K & (&2, F;), 11) of T is a Zj-semipotent ring

but it is not Zj-semiregular. However, R/Z} is regular.

Proposition 2.2.7 Let U be a proper submodule of an indecomposable R-module
M. Then the following statements are equivalent:

(1) U respects every finitely generated (cyclic) submodule of M.

(2) M is U-semipotent.

(3) M is local and U = Rad(M).

Proof (1) = (2) It follows from the proof of Corollary 2.2.5.

(2) = (3) By Proposition 2.1.12, M is local. Since Rad(M) is maximal, then
U < Rad(M). Now let x € Rad(M) \ U. Then there exists a summand B of M
such that B < 2R, B € U. Since R < M, we have B < M. Then B = 0, a
contradiction. Hence, Rad(M) = U.

(3) = (1) Let N be a finitely generated (cyclic) submodule of M. If N = M,
there is nothing to prove. Assume N # M. Then N < Rad(M). Hence, the
decomposition M = 0 & M completes the proof. U

Remark 2.2.8 In [1, Proposition 2.2], it was proved that for any fully-invariant
submodule U of an R-module M, M is U-semiregular if and only if for any z € M,
there exists a regular element y € xR such that z —y € U and zR = yR® (v — y) R.
The same proof shows that the condition “zR = yR & (x — y)R” is removable,
even for a projection-invariant submodule U of M. We give below its proof for
completeness. Also, it was proved in [1, Corollary 2.7] with some conditions that M
is U-semiregular if and only if for all x € M, there exists a regular element y € M

such that x —y € U.

Note the following lemma due to Nicholson ([26]).
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Lemma 2.2.9 (26, Lemma 1.1)) Let M be an R-module and let x € M be a regular
element. If « € Hom(M, R) satisfies x(ax) = x and if we write e = ax, then:

(1) e* = e and v = ze.

(2) a: xR — eR 1is an isomorphism so xR is projective.

(3) M =xzR@® W, where W = {w € M|z(aw) = 0}.

Theorem 2.2.10 Let U be a projection-invariant submodule of an R-module M.
Then the following statements are equivalent:
(1) M is U-semiregular .

(2) For any x € M, there ezists a regular element y € xR such that x —y € U.

Proof (1) = (2) It follows from the Remark 2.2.8.

(2) = (1) Let x and y be as in (2) and let &« € Hompg(M, R) be such that
y(ay) = y. By Lemma 2.2.9, M = yR & W, where W = {w € M|y(aw) = 0}
Hence, xR = yR @ (kRN W). Let m : M — W be the projection map. Then
cROW =n(zRNW) =n(zR) =7((z —y)R) <7(U) < U. O

Now we consider U-semiperfect modules. If M is a U-semiperfect R-module,
then U respects every submodule of M. If M is projective, then the converse is
also true. We now give some characterizations of a U-semiperfect module which are

analogous to that of a semiperfect ring relative to an ideal (see Theorem 1.5.7).

Theorem 2.2.11 Let U be a projection-invariant submodule of an R-module M,
M = M/U and S = Endg(M). Consider the following conditions:

(1) M is semisimple and U is strongly lifting.

(2) U respects every submodule of M.

(3) U respects every countably generated submodule of M.

(4) M is U-semipotent and U respects @2, m;(M) for any orthogonal idempotents

(5) M is U-semipotent and there is no infinite orthogonal family of idempotents
m; € S such that m;(M) Z U.

(6) M is U-semipotent and M is semisimple.
Then (1) = (2) = (3), (5) = (2) = (6); (2) = (1) if M is quasi-projective;
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(3) = (4) = (5) if M is finitely generated; and (6) = (1) if M is finitely generated

and quasi-projective.

Proof (1) = (2) Let N be a submodule of an R-module M. Since M is semisimple,
there exists B < M such that U < B and M = N @ B. By hypothesis, M has a
decomposition M = P @& Q such that P < N, P = N and Q = B. Now we show
that QNN < U. Since N=NN(N+U)=NnN(P+U)=P+ (NNU), then
QNN =QN(P+(NNU)) <Q@NP+(PNU)+(@QNV))=QNn(P+(QNU)) =
@Q@NU)+(QNP)=QNU<U.

(2) = (1) It follows from a proof similar to that of (2) = (1) in Theorem 2.2.3.

(2) = (3) It is obvious.

(3) = (4) It follows from the proof of Corollary 2.2.5.

(4) = (5) Assume that M is finitely generated. Let {m;}3°; be a family of
orthogonal idempotents in S such that m;(M) € U. By (4), &°,m(M) = A® B,
where A is a summand of M and B < U. Since A is finitely generated, A is
contained in &} m;(M) for some n. Then &2, m (M) = & m(M) + B. Let
k > n and mp(m) = m(my) + - - - + m(my) + b, where m,m; € M, i =1,...n and
b € B. Then m(m) = m(b). Since U is projection-invariant, m(m) € U. Hence
(M) < U, a contradiction.

(5) = (2) Assume (2) is not satisfied. By Lemma 2.2.1, there exists N < M such
that NN (1 —m)(M) € U for all 72 = 7 € S with n(M) < N. Since N € U, there
exists a summand A; of M such that Ay < N and Ay Z U. Let M = A; ® B; and let
m : M — Aj; be the projection onto A; along By. Then N = 7(M) & (NN By) and
Ny =NNB; £U. Let Ay be a summand of M such that Ay < Ny and Ay € U. If
M = Ay®Bs and a : M — A, is the projection onto Ay along By, then mya = 0. Let
o = a(l—m1). Then {m,m} is an orthogonal set such that m;(M) < N fori =1, 2.
Since ma = o and a(M) € U, we have mo(M) € U. Continuing the construction,
suppose that {m,...,m,} are orthogonal idempotents in S such that m;(M) < N
and m;(M) € U fori=1,...n. Let # = m + -+ + m,. Then 7 is an idempotent,
(M) < Nandso NN (1 —m)(M) € U. Let Y be a summand of M such that
Y<NNA-m)(M),YZU. If M=Y @Y and f: M — Y is the projection onto
Y along Y’, then let 7,1 = 3(1 — ). This implies that {m, 7,1} is an orthogonal
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set of idempotents in S such that 7(M) € U, m,41(M) € U since m,410 = 5.
Hence, {71, ..., 7y, my11} are orthogonal idempotents in S such that m;(M) € U for
i=1,...,n+ 1. Thus, this process continues inductively to contradict (5).

(2) = (6) By the proof of Corollary 2.2.5, M is U-semipotent, and by the proof
of (2) = (1)(4) in Theorem 2.2.3, M is semisimple.

(6) = (1) Assume that M is finitely generated and quasi-projective. Let M =
A®B. We will show that there exists a decomposition M = P@®Q such that P < A,
P=A Q=05

If AC U, then M = B and hence M = 0@ M is the desired decomposition.

If A Z U, then there exists a summand Y; of M such that Y; < Aand Y; € U.
Let Wi be such that M =Y; & W;. Then A =Y; & (AN W).

If AnW; CU, then (A+U)/U = (Y14+U)/U. Also M = A+B+U =Y+ (AN
W)+ B+ U =Y+ B+U. Since M is quasi-projective, there exists a submodule
X C B+ U such that M =Y; & X by Theorem 1.3.3. Since M=A¢X =Aa B,
we have X = B. Thus, we obtain M =Y, @ X, Y; <A, Y, =Aand X = B.

It AnW; & U, then there exists a summand Y5 of M such that Yo < AN Wy,
Yo & U. Let Wy be such that M = Yo & W5, Then Wy = Y, & (W7 N W), So
M=YieW, =Y, &Y, ® (W, NWs,) implies that A =Y, &Yy & (ANW NW,).
This process produces strictly ascending chain Y; C Y, @Y, C --- C M. Since M is
Noetherian, this process must stop so that ANWiN...NW,, C U for some positive

integer n. Hence the proof is completed. O

Corollary 2.2.12 Let M be a projective R-module and U a projection-invariant
submodule of M. The following statements are equivalent:
(1) M is U-semiperfect.

(2) M/U is semisimple and U is strongly lifting.

Now we will characterize semiperfect modules. Recall that a projective mod-
ule M with Rad(M) < M is semiperfect if and only if Rad(M) respects every
submodule of M.

Theorem 2.2.13 Let M be a projective R-module with Rad(M) < M and let

S = Endr(M). Consider the following conditions:
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(1) Every indecomposable summand of M is local and there is no infinite orthog-
onal family of idempotents m; € S such that m;(M) € Rad(M).

(2) Endgr(M) is clean and there is no infinite orthogonal family of idempotents
m € S such that m;(M) € Rad(M).

(3) M has the finite exchange property and there is no infinite orthogonal family
of idempotents m; € S such that m;(M) < Rad(M).

(4) M is semiperfect.
Then (1) & (2) < (3) = (4). In addition, (4) = (1) if M is finitely generated.

Proof (1) = (2) Since there is no infinite orthogonal family of idempotents m; € S
such that m;(M) € Rad(M), M is a finite direct sum of indecomposable submodules
M; such that M; € Rad(M). Then each M; is local. By Proposition 1.7.4, M is
discrete. Thus, Endr(M) is clean (see Section 1.8).

(2) = (3) Since Endg(M) is clean, M has the finite exchange property by
Theorem 1.8.2.

(3) = (1) By Propositions 2.1.11 and 2.1.13, every indecomposable summand
of M is local.

(1) = (4) By Propositions 1.7.4 and 1.7.5, M is semiperfect.

(4) = (1) Assume that M is finitely generated. By Theorem 2.2.11 and Propo-
sition 2.1.13, (1) holds. O

A ring R is called I-finite if R has no infinite set of orthogonal idempotents.
By Theorems 2.2.11 and 2.2.13 we have the following corollary. For the equiv-
alences (1)-(4) we refer the reader to [30]. The equivalences of (1), (5) and (6) are

given in [12].

Corollary 2.2.14 The following statements are equivalent for a ring R:
(1) R is semiperfect.
2) R is semipotent and R/J(R) is semisimple.
3) R 1s semupotent and I-finite.

(2)
(3)
(4) Every primitive idempotent in R is local and R is I-finite.
(5) R is clean and I-finite.

(6)

6) R is an exchange ring and I-finite.
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2.3 Rings Over Which Every (Projective) Module Is 7()-

semiperfect

A functor 7 from Mod-R to itself is called a preradical on Mod-R if it satisfies the
following properties:

i) 7(M) is a submodule of M for every left R-module M.

ii) If f: M’ — M is a homomorphism in Mod-R, then f(7(M')) < 7(M) and
7(f) is the restriction of f to 7(M’).

It was shown in [36] that any fully-invariant submodule defines a preradical.

In this section, we characterize rings R for which every projective R-module M
is 7(M)-semiperfect for some preradicals 7 on R-Mod.

By definitions, every projective module M is 7(M )-semiperfect if and only if for

every projective module M, 7(M) respects every submodule of M.

Remark 2.3.1 It is well-known that a ring R is right perfect if and only if every
projective right R-module is semiperfect (see [24, Theorem 4.41 and Corollary 4.43]).
Also, if a projective module M is semiperfect, then M is Rad(M )-semiperfect. The
converse is true if Rad(M) < M.

Theorem 2.3.2 Let R be a ring. Then the following statements are equivalent:
(1) Every projective right R-module M is Rad(M )-semiperfect.
(2) R is right perfect.

Proof (2) = (1) It is obvious. (1) = (2) It is enough to prove that for any
projective R-module P, Rad(P) < P by Remark 2.3.1. Let Y be a submodule
of a projective module P such that P = Rad(P) 4+ Y. By hypothesis, there is a
decomposition P = A®B, where A <Y and BNY < Rad(P). ThenY = A& (BNY)
and so P = Rad(P)+ A. Since A is a summand of P, there exists a submodule X of
Rad(P) such that P = X & A by Proposition 1.3.3. Then Rad(X) = X N Rad(P) =
X. Since X is projective, X =0. So P =Y. O

For the singular submodule Z(M) for a module M, the following theorem is
given in [43, Proposition 3.3].
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Theorem 2.3.3 Let R be a ring. Then the following statements are equivalent:
(1) Every projective right R-module M is Z(M)-semiperfect.
(2) R is right perfect and Z, = J(R).

There exists a right perfect ring R with Z, # J(R), for example the ring of
2 x 2 upper triangular matrices over a field. Hence, this ring does not satisfy (1) of

Theorem 2.3.3.

Self-injective Artinian rings are known as Quasi-Frobenius (QF-ring, for short)
in the literature. It is a well-known fact that R is a QF-ring if and only if every
projective (injective) R-module is injective (projective). Also, it was proved in [32,
Corollary 3.8] that R is a QF-ring if and only if every right R-module M is Z(M)-
semiperfect.

Now we will deal with the Goldie torsion submodule. The next result was proven

by Nicholson and Zhou in [31, Theorem 49].

Theorem 2.3.4 Let R be a ring. The following statements are equivalent:
(1) R is Z5-semiperfect.
(2) For any module M, M = Zy(M) & X, where X is semisimple.
(3) Every nonsingular R-module is injective.
(4)

4) Every projective R-module M is Zo(M)-semiperfect.

In addition to Theorem 2.3.4 we may add the following characterization for Z3-

semiperfect rings.

Theorem 2.3.5 R is a Zj-semiperfect ring if and only if every R-module M is
Zo(M)-semiperfect.

Proof The necessity is obvious. For the sufficiency, let M be an R-module and N
a submodule of M. Then by the condition (2) in Theorem 2.3.4, N = Z3(N) & X
for some semisimple submodule X. Then X is nonsingular and projective. By the
condition (3) in Theorem 2.3.4, X is injective and hence a projective summand of
M. Tt follows that N has a decomposition N = A @ B such that A <% M, A is
projective and B < Zy(M). Thus, M is Zy(M)-semiperfect. O
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Lemma 2.3.6 If R is Zj-semiperfect and Zj is injective, then every finitely gener-

ated projective right R-module is injective. In particular, R is right self-injective.

Proof Let P be a finitely generated projective R-module. Then P is a summand
of a finitely generated free R-module. Since ZI is injective, we have that Zy(P)
is injective. Hence, P = Zy(P) & X for some submodule X. On the other hand,
P/Z5(P) is injective by Theorem 2.3.4. Then X is injective and so P is injective. [J

Theorem 2.3.7 Let R be a ring. Then the following statements are equivalent:
(1) R is Z.-semiperfect and Z3 is injective.
(2) R is Z3-semiperfect, Zj is injective and R is I-finite.
(3) R is semiperfect and right self-injective.

Proof (1) = (2) Ris Z,-semiperfect if and only if R is semiperfect and J(R) = Z,
(see Section 1.5). Hence, (2) follows.
(2) = (3) By Lemma 2.3.6, R is right self-injective. Since any right self-injective
ring is clean (see Section 1.8), it follows from Corollary 2.2.14 that R is semiperfect.
(3) = (1) Since R is right self-injective, J(R) = Z,. Then R is Z,-semiperfect.

Since ZJ is closed in R, we have that Z7 is injective. U
Now we will give some necessary and sufficient conditions for a ring to be QF'.

Theorem 2.3.8 Let R be a ring. Then the following statements are equivalent:
(1) R is a QF -ring.
(2) R is Zy-semiperfect and for every projective right R-module P, Zy(P) is
mjective.

(3) R is Z-semiperfect, Z5 is injective and R is right Noetherian.

Proof (1) = (2) and (3) Since R is QF, R is semiperfect and J(R) = Z, < Z3.
Then R is Zj-semiperfect. Let P be a projective right R-module. Then P is injective.
Since Zy(P) is closed in P, we have that Zy(P) <% P. Hence, Zy(P) is injective.
(2) = (1) Let P be a projective R-module. By hypothesis, Zy(P) is injective.
Hence, there exists a submodule X of P such that P = Zy(P) @ X. Since P/Z,y(P)

is nonsingular, X is injective by Theorem 2.3.4. Hence, P is injective.
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(3) = (1) Let P be a projective R-module. Then P is a summand of a free R-
module R™ for some index set A. Since R is right Noetherian, Z,(R™) = Zy(Rg)™
is injective. Hence, Z5(P) is injective. By a proof similar to that of (2) = (1), P is

injective. U

Theorem 2.3.9 Let R be a ring. Then the following statements are equivalent:
(1) Every projective right R-module M is 6(M)-semiperfect.
(2) R is right d-perfect.

Proof (2) = (1) Let R be a right d-perfect ring. Then for any submodule N of a
projective module P, P/N has a projective d-cover. Hence, P is §(P)-semiperfect.

(1) = (2) If every projective right R-module M is (M )-semiperfect, then R is
0-semiperfect, and so idempotents lift modulo 9,. By Theorem 1.5.8, it is enough
to prove that R = R/S, is right perfect. Since J(R) = 6,/S,, R/J(R) is semisimple.

Now we claim that, for every projective right R-module P, §(P) <5 P. Let P
be a projective R-module and P = §(P)+Y, where P/Y is singular. By hypothesis,
P =A® B such that A <Y and BNY < §(P). ThenY = Ad (BNY) and so
P=0(P)+Y =4(P)+ A. Since A is a summand of P, there exists a submodule
X < §(P) such that P = X @& A by Proposition 1.3.3. Since §(X) = X NJ(P) = X,
X is semisimple projective. Since P/Y is an epimorphic image of P/A = X | P/Y
is projective. Because P/Y is singular, we have that P =Y. Hence 0(P) <, P.

Using the technique of [46, Theorem 3.7] and [3, Lemma 28.2], it can be seen
that J(R) is right T-nilpotent. We will give the proof for completeness.

Let F' =2 R®0) have a free basis {1, s,...}. Let a1, as,... be a sequence in 6,
and G =3 ° (z;—x;110;)R. Then F = G+6(F). Since 6(F) <5 F, F = G&Y for
a semisimple submodule Y by Lemma 1.1.20. But then there exists a number n such
that Ra,y1a,---a; = Ray---aj by [3, Lemma 28.2]. Then a,---a; = rayy1--- a1
for some r € R and so (1 — ra,i1)a,---a; = 0. Hence, a,---a; € S,. Thus,

J(R) = 4,/S, is right T-nilpotent. O

Ozcan and Alkan proved in [32, Corollary 3.10] that R is semisimple if and only
if every right R-module M is (M )-semiperfect, if and only if every right R-module

M is 6(M)-semiregular.
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The following results are also given in [32, Corollaries 2.24 and 3.5]: Every pro-
jective right R-module M is Soc(M)-semiperfect if and only if R is S,-semiperfect.
R is a QF-ring with J(R)? = 0 if and only if J(R) < Z, and every right R-module
M is Soc(M)-semiperfect.

In addition, we note that for an ideal I of a ring R, R is I-semiperfect if and
only if every finitely generated projective R-module M is M I[-semiperfect (see [32,
Corollary 2.11]).
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3 A GENERALIZATION OF SEMIREGULAR
AND ALMOST PRINCIPALLY INJECTIVE
RINGS

Let M be an R-module and F' a submodule of Mgz. Recall that the module
M is F-semiregular if and only if for any m € M, there exists a decomposition
M = P & (@ such that P is projective, P C mR and Q "mR C F. If F is a fully-
invariant submodule of Mg, then M is F-semiregular if and only if for any m € M,
there exists a decomposition mR = P & S such that P is a projective summand of
M and S C F.

In this chapter, we call a right R-module M almost F-semiregular if for any
m € M, there exists an S-module decomposition lyrgr(m) = P @ @ such that
P C Smand QNSm C F, where S = Endg(M) and F' is a submodule of s M. A ring
R is called right almost I-semiregular for an ideal I of R if Rg is almost I-semiregular.
If ¢ M is F-semiregular, then My is almost F-semiregular. An APQ-injective module

Mp, is almost F-semiregular for any S-submodule F' of M. Moreover,
Mp is APQ-injective < Mpg is almost O-semiregular.

Note that right almost J(R)-semiregular rings are called right generalized semireg-
ular rings in [42].

We give a new characterization of F-semiregular modules by modifying the def-
inition of almost F-semiregular modules. We give some conditions under which a
right almost I-semiregular ring is I-semiregular. Some of the results in [42] are ex-
tended to a right almost I-semiregular ring R for an ideal I of R. We also prove that
if R is a right almost I-semiregular ring, then eRe is a right almost ele-semiregular
ring for a right semicentral idempotent e of R (i.e., eR = eRe) or an idempotent e of
R satisfying ReR = R. If the matrix ring M,,(R) is right almost M,,(I)-semiregular
for an ideal I of R, then R is right almost I-semiregular.

It was shown in [1, Corollary 4.6] that if an R-module M is projective and
Soc(M)-semiregular, then M is semiregular. We are able to show that if Mg is

almost Soc(gM)-semiregular, then Mg is almost semiregular, i.e., for any m € M,
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there exists an S-module decomposition Iy rgr(m) = P @ @ such that P C Sm and
Q N Sm < gM. Note that almost semiregular R-modules are precisely Rad(sM)-
semiregular R-modules whenever Rad(sM) < sM.

We also consider right almost [-semiregular rings for some special ideals such
as the socle, the singular ideal and the ideal . We prove that if R is right almost
Z,-semiregular, then Rp satisfies (C2) and is almost semiregular.

We show that the following implications hold for a ring R:

Si-semiregular = right almost Sj-semiregular = right almost semiregular =
right almost d,-semiregular and right almost d;-semiregular.

Z,-semiregular = right almost Z,.-semiregular = right almost semiregular =
right almost ¢,-semiregular and right almost §;-semiregular.

Counterexamples to each of the inverse implications are given.

It is well known that J(eRe) = eJ(R)e for any idempotent e € R, but we observe
with an example that 0,.(eRe) # ed.e even if e is a right semicentral idempotent.
However, if e € R is an idempotent with ReR = R, then 0,(eRe) = ed,e. Conse-
quently, if R is right almost ;-semiregular and ReR = R, then eRe is right almost

d1(eRe)-semiregular.

3.1 Almost Semiregular Modules

Definition 3.1.1 Let M be a right R-module, S = Endg(M) and F' a submodule
of ¢ M. The module Mp, is called almost F-semiregularif for any m € M, there exists
an S-module decomposition Iy rr(m) = P® @ such that P C Sm and QNSm C F.
A ring R is called right almost I-semireqular for an ideal I of R if Ry is almost

I-semiregular.

If a module Mg is APQ-injective, then Mpg is almost F-semiregular for any
submodule F of ¢ M, where S = Endgr(M). Moreover, Mg is almost 0-semiregular if
and only if Mg is APQ-injective. In particular, a ring R is right almost 0-semiregular

if and only if R is right AP-injective.

Proposition 3.1.2 Let M be a right R-module, S = Endgr(M) and F any submod-

ule of sM. If sM s F-semiregular, then Mg is almost F'-semireqular.
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Proof Let m € M. Then there exists a decomposition ¢M = P & () such that
P C Smand Q NSm C F. Since lyrr(m) = lyrr(m) N M, by the modular law,
we have Iy rr(m) = P @ (Iyrr(m) N Q) and (Iyrp(m) N Q)N Sm=QNSm C F.

Hence, My is almost F-semiregular. O

Let M be an R-module and S = Endgr(M). It follows from Proposition 3.1.2
that if M is semiregular, then My is almost Rad(sM )-semiregular. If R is an I-
semiregular ring for an ideal I, then it is right and left almost I-semiregular, because

the notion of I-semiregular rings is left-right symmetric.

When we take the summand P of [yrg(m) as a summand of M in Defini-

tion 3.1.1, we have the following result:

Theorem 3.1.3 Let M be a right R-module and S = Endgr(M). If sM is projective
and sF' is a fully-invariant submodule of sM , then the following are equivalent:

(1) sM is F-semiregular.

(2) For any m € M, there exists an S-module decomposition lyrr(m) = P& Q,
where P C Sm, P is a summand of M and QN Sm C F.

Proof (1) = (2) It follows from the proof of Proposition 3.1.2.

(2) = (1) Let m € M and lyyrp(m) = P®Q, where P C Sm, P is a summand of
M and QN Sm C F. Then Sm = P & (Q N.Sm), where P is a projective summand
of M and Q@ NSm C F. Hence, s M is F-semiregular. O

By Theorem 3.1.3, we obtain the following characterization of /-semiregular rings

for an ideal I:

Corollary 3.1.4 Let I be an ideal of a ring R. The following statements are equiv-
alent:

(1) R is I-semiregular.

(2) For any a € R, there exists a decomposition lgrr(a) = P & Q, where P =
Re C Ra for somee?> =e € R and QN Ra C I.

(3) For any a € R, there exists a decomposition rrlgr(a) = P & Q, where P =

eR C aR for somee? =e€ R and QNaR C I.
44



Now we consider the module theoretic version of right generalized semiregular

rings defined by Xiao and Tong ([42]).

Definition 3.1.5 Let M be aright R-module and S = Endgr(M). The module M is
called almost semireqular if for any m € M, there exists an S-module decomposition
Iyrr(m) = P @ @ such that P C Sm and QN Sm < M. A ring R is called a right

almost semiregular if Ry is almost semiregular.

Obviously, R is right almost J(R)-semiregular if and only if R is right almost
semiregular. Semiregular or right AP-injective rings are right almost semiregular
by Proposition 1.6.2.

Let M be a right R-module and S = Endgr(M). If ¢M is semiregular, then Mg
is almost semiregular by a proof similar to that of Proposition 3.1.2. Moreover, if
Mp, is almost semiregular, then it is almost Rad(sM )-semiregular. The converse is

true if Rad(sM) < sM.

The following result generalizes Lemma 1.6.5.

Proposition 3.1.6 Let I be an ideal of a ring R. If R is right almost I-semireqular
and there exists €> = e € R such that rgr(a) = rg(e) for any a € R, then R is I-

semareqular.

Proof Let a € R. Then there exists a decomposition lgrr(a) = P @& @ such that
P C Ra and Q N Ra C I as left ideals. Since rr(a) = rg(e) for some e = ¢ € R,
Re = P& Q@ and a = ae. Let e = p+ ¢, where p = ra € P and ¢ € (. Then
a = ae = ara + aq and ra = rara + raq. Since ra —rara =raq € PNQ =0, ra is
an idempotent. Also, we have a(1 —ra) = a—ara =aq € QN Ra C I. Hence, R is

I-semiregular. U

Corollary 3.1.7 Iflgrg(a) is a summand of R for any a € R and R is right almost

I-semiregular for an ideal I, then R is I-semiregular.

Proof Let a € R. By hypothesis Igrg(a) = Re for some idempotent e. Then

rr(a) = rrlgrr(a) = rr(e) and the claim holds by Proposition 3.1.6. d
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Recall that a ring R is a right PP-ring if and only if for any a € R, rg(a) = eR

for some idempotent e € R. Hence, we have the following result:

Corollary 3.1.8 Let R be a right PP-ring. If R is a right almost I-semireqular

ring for an ideal I, then R is [-semireqular.

Nicholson and Zhou proved in [31, Proposition 41] that if R is an [-semiregular
ring for an ideal I, then eRe is ele-semiregular for any idempotent e of R. We con-
sider this property for almost /-semiregular rings. Using the techniques of Proposi-

tion 1.6.9 and Theorem 1.6.10 we obtain the following two results:

Theorem 3.1.9 If R is a right almost I-semireqular ring for an ideal I and e is a

right semicentral idempotent of R, then eRe is a right almost ele-semiregular ring.

Proof Let a € eRe. Then there is a decomposition [grr(a) = P @ @ such that
P C Ra and Q@ N Ra C I. We claim that l.g.Tere(a) = eP @ eQ). Take any y €
eP C ePe, where y = ey, y1 € P C lgrg(a). For any = € rege(a) C rr(a), 12 =0
which gives yr = ey;x = 0. Hence, eP C lcgerere(a). Similarly, eQ C legerere(a).
Now take x € l.gerere(a). Then for any y € rr(a), we obtain aeye = aye = 0
since a € eRe. So reye = 0. Since z,y € eRe and e is right semicentral, we have
xy = zey = veye = 0. Thus, l.gerere(a) C lgrr(a). Write z = p + ¢, where p € P
and ¢ € ). Then x = ex =ep+eq € eP + e). Since ePNe®) C PNE =0, we
obtain logeTere(a) = P @ Q.

We also have eP C eRa = eRea and eQ N eRea C e(e@) N eRea)e. Hence,
e NeRea C QN Ra C I implies that eQ) NeRea C ele. O

Theorem 3.1.10 Let e be an idempotent of R such that ReR = R. If R is a right
almost I-semireqular ring for an ideal I, then eRe is a right almost ele-semireqular

ring.

Proof Let a € eRe. Then there exists a decomposition lgrg(a) = P & @, where
P C Ra and @ N Ra C I. We will show that l.gerere(a) = ePe @ eQe. Since
1 —e € rg(a), we observe that ¢(1 —e) = 0 for any g € @, which implies Q = Qe.

Similarly, P = Pe. Hence, ePe NeQe = 0. Since P = Pe and @) = Qe, we
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have ePe C l.gerere(a) and eQe C logerere(a). Now take x € logerere(a). Write
1 =>"" aeb; for some a;,b; € R. For any y € rr(a), we get aeyae = aya;e = 0
for each i. Then zeya;e = 0 for each ¢, which gives zy = zey = zey ) ., a;eb; = 0
since = € eRe. It follows that logerere(a) C Igrrg(a). Let z = p+q, where p € P and
q € Q. Hence, x = exe = epe + eqe € ePe + eQe. Thus, logeTere(a) = ePe @ eQe.
Also, we have ePe C (eRe)a and eQe N (eRe)a C e(Q N Ra)e C ele. O

Proposition 3.1.11 Let S be a right almost I-semireqular ring for an ideal I of S.

If o © S — R is a ring isomorphism, then R is a right almost ¢(I)-semiregular ring.

Proof Let a € R. Then there is a decomposition lsrs(¢~*(a)) = P @ @ such that
P C Sp7'(a) and Q N Sp~'(a) C I. If z € lgrr(a), then ¢~ (z) € lsrs(¢~*(a)).
Then we obtain a decomposition (grr(a) = ¢(P) @ ¢(Q), where ¢(P) C Ra and
©(Q) N Ra C ¢(I). Hence, R is a right almost ¢(I)-semiregular ring. O

The following result generalizes Corollary 1.6.11.

Corollary 3.1.12 Let I be an ideal of a ring R and let n > 1. If M, (R) is right

almost M., (I)-semiregular, then R is right almost I-semireqular.

Proof Let S =M, (R). Then Se;;.S =S and R = e115¢1;, where e is the n X n
matrix whose (1,1)-entry is 1, others are 0. By Theorem 3.1.10, e;;Se;; is right
almost eq1 M, (I)ej;-semiregular. Let ¢ : e;1.5¢1; — R be the isomorphism. Since

p(enM,,(I)e11) = I, R is right almost I-semiregular by Proposition 3.1.11. O

3.2 Almost Semiregular Rings Relative To Some Special

Ideals

In this section, we will consider right almost semiregular rings relative to some
special ideals, i.e., we will deal with right almost I-semiregular rings, where I = S,
or I =0d,o0rl=7Z,.

We begin with some examples.
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Example 3.2.1 There exists a right AP-injective ring R that is not semireqular.
Hence, there exists a right almost I-semireqular ring R that is not I-semireqular for

ideals I = J(R) or Z, or S,.

Proof Consider the trivial extension R = T(Z,Q/Z). R is a commutative P-
injective ring with J(R) = Z, ([29]). Hence, R is an almost [-semiregular ring for
any ideal I of R. Since R/J(R) = Z, the ring R is not semiregular whence R is not
Z.-semiregular (see Section 1.4). If R was S,-semiregular, it would be semiregular

(see Section 1.4). Thus, R is not S,-semiregular, either. O

Example 3.2.2 There exists a right almost S,.-semireqular ring R that is not S,.-

semaregular.

Proof Let R = Zg. Since R is a self-injective ring, it is almost /-semiregular for
any ideal I of R. But since R/S, is not regular, R is not S,-semiregular (see Section

1.4). O

Xiao and Tong ([42, Example 4.8]) showed that Z is not a right almost semireg-
ular ring. Hence, Example 3.2.1 shows that the class of right almost semiregular

rings is not closed under homomorphic images.

Alkan and Ozcan proved in [1] that if My is a projective Soc(Mpg)-semiregular
module, then Mp, is semiregular. We have the following result for almost semiregular

modules:

Proposition 3.2.3 Let M be a right R-module and S = Endr(M). If Mg is almost

Soc(gM)-semireqular, then My is almost semiregqular.

Proof Let m € M. Then there exists a decomposition lyrg(m) = A® B such that
A C Smand BNSm C Soc(sM). By the modular law, Sm = A@ (BN .Sm). Then
B N Sm is a finite direct sum of simple S-submodules. If every simple submodule
of BN Sm is in Rad(sM), then BN Sm < M and hence M, is almost semiregular.
Assume that there exists a simple submodule S, of BN.Sm such that S; € Rad(sM).
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Then S; is a summand of M and hence a summand of B. Let L; be such that
B =5, ® Ly. Then lyrgr(m) =A@ S, @ L.

Similarly, L; N Sm is a finite direct sum of simple submodules. If every simple
submodule of Ly N.Sm is in Rad(sM), then Mg is almost semiregular. Assume that
there exists a simple submodule Sy of Ly N Sm such that Sy € Rad(sM). Then S,
is a summand of M and so there exists a submodule Ly such that Ly = Sy @ L. It
follows that Iy rr(m) = A®S;1®Se® Ly. This process produces a strictly descending
chain BNSm D LiNSm D LyNSm.... Since BN Sm is semisimple and finitely
generated, it is Artinian. Hence, this process must stop so that L, NSm C Rad(sM)
for some positive integer n. Hence, lyrp(m) = (A® S1 @& ... 8 S,) & L, where
A S ®...8 S5, < Smand L, NSm < M. Thus, Mg is almost semiregular. [

Corollary 3.2.4 If R is right almost S;-semiregular, then R is right almost semireg-

ular.
The converse of Corollary 3.2.4 is not true in general as the next example shows.

Example 3.2.5 There exists a right almost semiregular ring that is not right almost

S;-semireqular (S,-semireqular).

Proof Let R = Z,) be the localization of the ring of integers Z at a prime p. Since
R is a local ring, it is semiregular whence it is right almost semiregular. We claim
that the ring R is not right almost S;-semiregular. Take a non-zero element a in
J(R). Since a is non-zero, we have lgrg(a) = R. Because R is indecomposable as a
left R-module, the only decomposition is [grr(a) = R = R®0. Because a is non-unit
in R, we have Ra # R. On the other hand, if R was right almost S;-semiregular,
then we would have Ra C S; by the definition of the almost Sj-semiregularity. But

this is a contradiction since .S; = 0. O

If R is aright almost Sj-semiregular ring, then the ring R need not be semiregular,

because right AP-injective rings need not be semiregular (see Example 3.2.1).

Lemma 3.2.6 ([15, Lemma 18.4]) Let M be an R-module. If A is summand of M,

then (A + Soc(M))/Soc(M) is a summand of M/Soc(M).
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Recall from Section 1.4 that R is Sj-semiregular if and only if R/S; is a regu-
lar ring. If R is right almost Sj-semiregular, then (Ra + S;)/S; is a summand of
(Igrr(a) 4+ S;)/S; for any a € R by Lemma 3.2.6.

Nicholson and Yousif ([29]) showed that if R is an I-semiregular ring for an ideal
I of R, then J(R) C I and Z, C I. In particular, if R is a Sj-semiregular ring, then
J(R) C S, and Z, C S;. On the other hand, J(R) or Z,. need not be contained in
Sy if R is right almost Sj-semiregular (see Example 3.2.2).

We know from Proposition 1.6.7 that if R is a right almost semiregular ring, then

Z, C J(R). Hence, if R is right almost S;-semiregular, then Z, C J(R).

Because of the fact that S; C ¢;, R being right almost Sj-semiregular implies
that R is right almost d;-semiregular. Also, if R is §;-semiregular, then Z,. C §;. We

have the following result for right almost d;-semiregular rings:

Proposition 3.2.7 If R is right almost §;-semireqular and R/S) is a projective right
R-module, then Z, C 9.

Proof Let a € Z,.. If a ¢ §;, then there exists an essential maximal left ideal N of
R such that a ¢ N. Then R = Ra+ N. Write 1 = ya +n, where y € Rand n € N.
Since Z, is an ideal and R # Z,, we have n # 0. Because rg(ya) Nrg(n) = 0 and
ya € Z,, we obtain that rr(n) = 0. By hypothesis, R = lgrr(n) = P & @, where
P = Re C Rn for some e? =e € Rand QN Rn C 4.

Let R = R/S;. If R = 0, then R is semisimple and Z, = 0 C § = R. Assume
that R #0. If e =1, then Rn = N = R. Since S; C N, we have N = R, which is a
contradiction. Hence, € # 1. Since rg(ya) <. R, R/rr(ya) = R/(rr(ya) + ) is a

singular right R-module. This implies that m <. R, because R is a projective
right R-module. Since rz(ya) C r#(7a), we have that r5(7a) <. R.

Now (I—2)RNrz(ya) # 0. Let 0 # (1—2)7 € (1—e)RNrz(ya). Let n = se+t,
where s € Rand t € Q. Thent =n—se € QN Rn C § and ¢ € §,/S, = J(R/S)).
So T — is unit in R. Also, we have n(1 — )7 = (I —ya)(1 — )7 = (1 — &)7 and
n(1—e)r = (se+t)(1—e)r = t(1—e)r. Then (1—¢)(1—€)7 = 0. Hence, (1—¢)T =

0,
a contradiction. O
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Proposition 3.2.8 If R is right almost 6;-semireqular, R/S; is a projective right
R-module and S; C Z;, then Z, C J(R).

Proof It follows from a proof similar to that of Proposition 3.2.7. U

Example 3.2.9 There ezists a right almost 6, (or 6, )-semiregular ring that is not

right almost semireqular.

F F
Proof ([26, Example 2.15]) Let F' be a field and [ = . Consider the ring
0 F

R={(x1,29,...,xp,x,2,...) | n €N, x; € My(F), x € I'}.

Zhou showed that R is a d,-semiregular (§;-semiregular) ring but it is not semireg-
ular ([46, Example 4.3]). Since every nonzero one-sided ideal contains a nonzero
idempotent, we have Z, = Z; = J(R) = 0.

Now we claim that Rr does not satisfy (C2) condition. Take the element o =

01
(x,z,...) of R and the idempotent g = (e, e,...), where z = and e =

0 0

Then aR = gR. One can observe that the idempotents in aR is of

1 d
the form f = (f1, f2, .-+, fn,0,0,...), where f; = 0 or f; = , d € F for
00

1 =1,2,...,n. Hence, fR # aR for each idempotent f € aR. Thus, Rz does not

satisfy (C2). By Theorem 3.2.16 below, R is not right almost semiregular. O

It is well known that J(eRe) = eJ(R)e for any idempotent e of R. We consider

this property for d, which will be used in the forthcoming corollary. Recall that

6, = {x € R:Vy € R, Ja semisimple right ideal Y of R 2 Rp = (1 —2y)R® Y}

= ﬂ{ideals PofR : R/Phas a faithful singular simple module}

Theorem 3.2.10 Let e be an idempotent of R such that ReR = R. Then §;(eRe) =
ede.

51



Proof It is known that if e is an idempotent such that ReR = R, then the category
of left R-modules, R-Mod, and the category of left eRe-modules, eRe-Mod, are

Morita equivalent (see [21]) under the functors given by

F: R-Mod — eRe-Mod, G: eRe-Mod — R-Mod
Mv+—eM Tr—— Re Q@cpe T.

We know from Corollary 1.1.25 that §; = R if and only if R is semisimple.
Therefore, if §, = R, then R is semisimple and so is eRe. This gives that §;(eRe) =
eRe = edje.

Now assume that §; # R. Let P be an ideal of R such that R/P has a faithful
singular simple module N. Denote R = R/P. Since RER = R, the categories R-
Mod and eRe-Mod are Morita equivalent. It is known that being faithful ([21, 18.47
and 18.30]), being a singular module ([18, p. 34]) and being a simple module ([30,
Corollary A.8]) are Morita invariant properties. Therefore, €N is a faithful singular
simple eRe-module. Since eRe = eRe/ePe, we have that §;(eRe) C ePe C P. This
holds for any ideal P such that R/P has a faithful singular simple module. Thus,
di(eRe) C edje.

For the reverse inclusion, let a € §;. Then Reae <5 R. Now we claim that
eRe(eae) <5 eRe. Let K be a left ideal of eRe such that eRe = eRe(eae) + K.
Write e = ereae + k, where r € R and k € K. This implies that 1 = e+ (1 —¢) =
ereae + k+ (1 —e) € Reae + RK + R(1 —e) and so R = Reae + RK + R(1 — e).
Since Reae <5 R, there exists a semisimple projective left ideal Y of R such that
Y C Reae and R=Y & [RK + R(1 — e)] by Lemma 1.1.20. Hence, we obtain that
eRe = eYe+ (eRe)K = eY + K. Since Y N RK = 0, we have that e¥Y N K = 0. But
since ReR = R, eY is a semisimple projective left e Re-module. So eRe = €Y & K,
eY C eRe(eae) and €Y is a semisimple projective e Re-module. By Lemma 1.1.20,

eRe(eae) <5 eRe. Thus, ede C §(eRe). O
Corollary 3.2.11 Let e be an idempotent of R such that ReR = R. If R is right
almost &;-semiregular, then eRe is right almost 0;(e Re)-semiregular.

Proof It follows from Theorems 3.2.10 and 3.1.10. O
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Now we will consider right semicentral idempotents.

Theorem 3.2.12 If e is a right semicentral idempotent of R, then ede C 0;(eRe)
and d,(eRe) C eé,e.

Proof Let a € §;. Since 9, is an ideal, eae € §;. By Theorem 1.1.24, there exists a
semisimple left ideal Y of R such that pR = R(1 —eae)®Y. Let 1 = z(1 —eae) +y,
where x € R and y € Y. Then e = ex(1 — eae)e + eye = exe(e — eae) + eye and so
eRe = eRe(e — eae) 4+ eYe. Since e is right semicentral, this sum is direct. Now we
claim that eYe is a semisimple eRe-module. Let Y = @' ,S;, where S; is a simple
left R-module, for ¢ = 1,2,...,n. Since e is right semicentral, eYe = @' ;eS;e. Let
S1 = Rs for some s € R. Then eSie = eRse = eRe(ese) = eRe/l.g.(ese). Let
K be a left ideal of eRe such that l.g.(ese) C K. Then there exists k € K such
that k & l.ge(ese). Since l.ge(ese) = lere(es) = lr(es) N eRe, we have k & Ig(es).
Then kes # 0. But since [z(s) is maximal in R, we have that [g(s) + Rke = R. Let
1 = x+yke, where x € Ig(s) and y € R. Then e = ex+eyek. Since s = 0, we have
exese = 0. Then ex € l.g.(ese) C K, so ex € K. It follows that e € K. Hence, we
show that l.g.(ese) is a maximal left ideal of eRe. So eSie is simple. This proves
that eYe is semisimple.

Now eRe = eRe(e — eae) @ eY e with eY e semisimple. Since a is any element in
d;, we have that ede C d;(eRe).

For the other inclusion, let P be an ideal of R and V' be a faithful singular simple
right R/P-module. Then Ve is an eRe-module. If Ve = 0, then §,(eRe) C eRe C P.

Assume that Ve # 0. First note that V' is a simple singular R-module, because
V = % for some essential maximal right ideal K/P of R/P. It follows that
V & R/K asright R-modules and K is an essential maximal right ideal of R. Hence,
V' is a simple singular R-module. Since V' is a simple R-module, Ve is a simple e Re-
module. We claim that Ve is a singular eRe-module. Let ve be the generator
of Ve. To show that r.g.(ve) = rg(v) NeRe is an essential right ideal of eRe, let
0 # exe € eRe. Since ex # 0 and rr(v) is essential in R, there exists ¢t € R such that
0 # ext € rr(v). Because e is right semicentral, we have 0 # ext = exte € r.g.(ve).
Hence, Ve is a singular simple eRe-module. Now, Vé,(eRe) = Ved,(eRe) = 0 by

the definition of ,. Since V is a faithful R/P-module, we have that d,(eRe) C P.
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Therefore §,(eRe) C P for each ideal P of R such that R/P has a faithful singular
simple module. So ¢,(eRe) C §, and hence d,(eRe) C edye. O

Corollary 3.2.13 Let e be a right semicentral idempotent of R. If R is right almost
d;-semiregular, then eRe is right almost &,(eRe)-semireqular.
Proof It follows from Theorems 3.2.12 and 3.1.9. U

The following example shows that the equality ed;e = §;(eRe) does not hold even

if e is a right semicentral idempotent.

Example 3.2.14 There exists a right semicentral idempotent e € R such that
ede C 6(eRe).

Proof Let R be the ring of 2 x 2 upper triangular matrices over a field F' and

01

e = . Then eR = eRe and ede = 0, where ¢; is the first row of R. Since
01

eRe is a semisimple projective left e Re-module, §;(eRe) = eRe. O

We have the following results about right almost Z,-semiregular (Z;-semiregular)

rings:

Lemma 3.2.15 ([35, Lemma 2.12]) Let a,b € R such that aR = bR = eR, where
e = e € R. Then there exists an idempotent f € R such that af = a and rg(a) =

Tr(f)-

Theorem 3.2.16 Let I be an ideal of a ring R. If R is right almost I-semireqular
and I C Z,, then Rg satisfies (C2).

Proof Let a € R such that aR = eR, where €2 = ¢ € R. By Lemma 3.2.15,
there exists an idempotent f € R such that a = af and rgr(a) = rr(f). By the
proof of Proposition 3.1.6, there exists an idempotent A € R such that h € Ra and
a(l—h) € I. By Lemma 1.4.10, there exists an idempotent g € R such that g € aR
and (1 —g)a € I. Then aR = gR® S, where S = (1 — g)aR C I. By assumption,
S is a singular right R-module. Since aR is projective, we have that S = 0. Thus,
aR = gR. U
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Corollary 3.2.17 If R is right almost Z.-semireqular, then Rg satisfies (C2).

We know from [30, Lemma 2.3| that if R satisfies (C2), then Z, C J(R). Hence,

we have the following result:

Corollary 3.2.18 If R is right almost Z,-semireqular, then R is right almost semireg-

ular.

The following two examples show that the converse of Corollary 3.2.18 is not

true in general.

Example 3.2.19 There is an Artinian ring R such that R is Z;-semireqular but

not right almost Z,.-semireqular.

Ly o
Proof Let R = . Then
0 Zs
274 7 274 7
S?" = ! ’ 7Sl = ! ’ )
0 Zs 0 0
2Z4 0 2Z4 ZZ
Z, = lp(S) = , Z1=1Rr(S) =
00 0 O
The ring R is Z;-semiregular but it is not Z,-semiregular ([31, Example 40]). Now
0
we claim that R is not right almost Z,-semiregular. Let a = in R. Then
00
0 Zs 0 Zj . .
Ra = and [grr(a) = . If R is right almost Z,-semiregular,
0 0 0 Zs

then there is a decomposition lgrg(a) = P @® @, where P C Ra and Q N Ra C Z,.
Since RaNZ, =0, @ N Ra = 0. This implies that Ra = P is a summand of Igrg(a)

which is a contradiction. Hence, R is not right almost Z,-semiregular. O

Example 3.2.20 Let R be the ring of 2 x 2 upper triangular matrices over a field
F. The ring R is Artinian but Rg does not satisfy (C2) ([30, Example 1.20]). Hence,

R is right almost semiregular but not right almost Z,-semiregular.

95



A well known result of Utumi asserts that if Ry is continuous, then it is semireg-
ular and Z, = J(R) (see Section 1.4). This fact together with Corollary 3.2.17 gives

us the following result:

Proposition 3.2.21 A ring R is right almost Z.-semiregular and Rg satisfies (C'1)

if and only iof R is right continuous.

In [1, Corollary 3.5], it was proved that a finitely generated projective module
M is continuous if and only if M is Z (M )-semiregular and M satisfies (C'1). Hence,

Proposition 3.2.21 generalizes this result in the ring case.

Proposition 3.2.22 If R is right almost Z; N ;-semiregular, then it is right almost

semareqular.

Proof Let a € R. Then there exists a decomposition lgrr(a) = P & @ such that
P C Ra and QN Ra C Z;N§;. We claim that Q@ N Ra C J(R). Let x € @ N Ra. To
see that z € J(R), we must show that 1 — yx is left invertible in R for any y € R.
Let u = 1—yx, where y € R. Since z € J;, there exists a semisimple left ideal Y of R
such that R(1 —yz) @Y = R by Theorem 1.1.24. Let ¢ : R — Y be the projection.
Then p(Q N Ra) C o(Z;) C Z(Y) =0, and so Ryr C QN Ra C Kerp = R(1 —yzx).
Since R = Ryz + R(1 — yz), we have that R = R(1 — yx). Hence, x € J(R) and
QN Ra < R. O

Proposition 3.2.23 If R is right almost [-semireqular for an ideal I such that
J(RYNI =0, then J(R) C Z,.

Proof Let a € J(R) and assume that a ¢ Z,.. Then there exists a nonzero right
ideal K of R such that rg(a) N K = 0. Take s € K such that as # 0. Let
0 # u € asR. By hypothesis, there is a decomposition (grg(u) = P & @, where
P C Ru, QN Ru C I. Without loss of generality we can assume that v = as. Then
it can be seen that rgr(as) = rg(s). Then lgrr(as) = lgrr(s) = P © Q. Write
s = das + x, where d € R and z € . Then (1 — da)s = x and so u = as =
a(l—da)™'z € J(R)N(QNRu) C J(R)NI = 0, a contradiction. Hence, a € Z,. O
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Corollary 3.2.24 If R is right almost S;-semiregular and R/S; is a projective right
R-module, then J(R) = Z, and R is right almost Z,.-semiregular.

Proof Since S is a summand of R, J(R)NS; = Rad(S;) = 0. By Proposition 3.2.23,
J(R) C Z,.. By Corollary 3.2.4, R is right almost semiregular. By Proposition 1.6.7,
Z. C J(R). Hence, J(R) = Z, and R is right almost Z,-semiregular. O

The following example shows that the assumption “J(R) N1 = 0” in Proposi-

tion 3.2.23 is not removable in case I = Z,.

Example 3.2.25 Let R be the ring in Example 3.2.19. R is a right almost Z;-

274 7
semiregular ring. Since J(R) = e , we obtain J(R)NZ; # 0 and J(R) &
0 O

.
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4 CHAIN CONDITIONS ON NON-SUMMANDS

Let M be an R-module. By a non-summand of the module M we mean a
submodule K which is not a direct summand of M. Among the non-summands of M
we could mention proper essential submodules and non-zero small submodules. This
chapter is concerned with the study of ascending and descending chain conditions
(respectively, acc and dcc) on certain non-summands.

Goodearl ([17, Proposition 3.6]) proved that an R-module M satisfies acc on
essential submodules if and only if M /Soc(M) is Noetherian. Goodearl’s result
has a dual due to Armendariz ([5, Proposition 1.1]) who proved that a module M
satisfies dcc on essential submodules if and only if M /Soc(M) is Artinian. The
results of Goodearl and Armendariz can also be found at [15, 5.15]. Varadarajan
([38, Lemma 2.1]) proved that a module M satisfies acc on small submodules if and
only if Rad(M) is Noetherian; Al-Khazzi and Smith ([2, Theorem 5]) proved that a
module M satisfies dcc on small submodules if and only if Rad(M) is Artinian. We
shall give an example of a commutative von Neumann regular ring R such that R
satisfies acc and dcc on essential ideals and on small ideals but R satisfies neither
acc nor dcc on non-summands.

In this chapter, modules satisfying ascending or descending chain conditions on
non-summand submodules belongs to some particular classes X', such as the class of
all R-modules, finitely generated, finite dimensional and cyclic modules, are consid-
ered. It is proved that a module M satisfies acc (respectively, dcc) on non-summands
if and only if M is semisimple or Noetherian (respectively, Artinian). Over a right
Noetherian ring R, a right R-module M satisfies acc on finitely generated non-
summands if and only if M satisfies acc on non-summands; a right R-module M
satisfies dcc on finitely generated non-summands if and only if M is locally Artinian.
Moreover, if a ring R satisfies dcc on cyclic non-summand right ideals, then R is a

semiregular ring such that the Jacobson radical J(R) is left T-nilpotent.
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4.1 Module Classes

Let R be a ring. By a class X of R-modules we mean a collection of R-modules
which contains a zero module and which is closed under isomorphisms. If a module
belongs to X, then we say that it is an X'-module. By an X-submodule (respec-
tively, X-summand, X-non-summand) we mean an X-module which is also a sub-
module (respectively, summand, non-summand) of M. This section is concerned
with chain conditions on AX-non-summands of a module. It is clear that every
semisimple R-module satisfies both acc and dcc on X-non-summands and that ev-
ery Noetherian (respectively, Artinian) R-module satisfies acc (respectively, dcc) on

X-non-summands. Note the following elementary fact:

Proposition 4.1.1 An R-module M satisfies acc (respectively, dcc) on X -submo-
dules if and only if M satisfies acc (respectively, dcc) both on X -summands and on

X -non-summands.

Recall that a module is Noetherian if and only if it satisfies acc on finitely
generated submodules. Thus Proposition 4.1.1 shows that a module M is Noetherian
if and only if M satisfies acc both on finitely generated summands and on finitely
generated non-summands. Note too that every finite dimensional module satisfies
acc and dcc on summands so that we have the following immediate corollary to

Proposition 4.1.1.

Corollary 4.1.2 A finite dimensional module satisfies acc (respectively, dcc) on X -

non-summands if and only if M satisfies acc (respectively, dcc) on X -submodules.

Lemma 4.1.3 Let M be a module which satisfies acc (respectively, dec) on X -non-
summands. Then every submodule of M satisfies acc (respectively, dec) on X-non-

summands.

Proof Let N be any submodule of M. If K is an A-non-summand of N then K

is an X-non-summand of M. The result follows. O
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Lemma 4.1.4 Let X be a class of R-modules which is closed under extensions and
let N be an X-submodule of an R-module M. Suppose that M satisfies acc (respec-
tively, decc) on X-non-summands. Then M/N satisfies acc (respectively, dec) on

X -non-summands.

Proof Let K be a submodule of M containing N such that K/N is an X'-non-
summand of M/N. Then K is an X-submodule of M because X is closed under

extensions. Moreover, K is a non-summand of M. Thus K is an X-non-summand

of M. The result follows. U

We shall see in Section 4.2 that if N is a submodule of an R-module M such that
the modules NV and M /N both satisfy acc (respectively, dcc) on non-summands then
M need not satisfy acc (respectively, dec) on non-summands. Indeed, more is true.
We shall give an example of R-modules A; and A, which both satisfy acc on non-
summands such that the module A; & Ay does not satisfy acc on non-summands and
also an example of R-modules B; and By which both satisfy dcc on non-summands
but B; @ By does not satisfy dcc on non-summands. However, in some situations
the direct sum of modules with acc (respectively, dcc) on X-non-summands also has

the same property. For example, note the following result:

Lemma 4.1.5 Let X be a class of R-modules such that, for each non-zero X -module
X, every non-zero submodule of X contains a non-zero X-submodule. Let an R-
module M = M; & My be a direct sum of submodules M; (i = 1,2) such that
M; contains no non-zero X -submodule and My satisfies acc (respectively, dec) on

X -non-summands. Then M satisfies acc (respectively, dec) on X-non-summands.

Proof Let L be an X-non-summand of M. By hypothesis, L N M; = 0. Let
m : M — M, denote the canonical projection. Then w(L) = L so that w(L) is
an X-submodule of M. Next note that M; & L = M; & w(L) so that n(L) is
a non-summand of M and hence also of M, because L is a non-summand of M.
Let L1 € Ly C ... be any ascending chain of X-non-summands of M. Then
w(Ly) C w(Lg) C ... is an ascending chain of X-non-summands of M,. Suppose

that there exists a positive integer n such that m(L,) = m(L,y1) = .... Then

My® L, =M & L,.; =... and hence L, = L,,; = .... Thus if M, satisfies
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acc on X-non-summands then so too does M. A similar result give the proof for

descending chains. O

In particular, Lemma 4.1.5 applies to classes X which are closed under taking
submodules. However, it applies more widely. For example, the class of finitely gen-
erated R-modules is not closed under taking submodules (if R is not right Noethe-

rian) but satisfies the property of Lemma 4.1.5.

Lemma 4.1.6 Let X be a class of modules closed under finite direct sums. Let M
be a module which satisfies acc (respectively, dcc) on X-non-summands. Let L and
N be submodules of M such that LON = 0. Then L satisfies acc (respectively, dec)
on X-submodules or every X-submodule of N is a direct summand of M and hence

also of N.

Proof Suppose that M satisfies acc on X-non-summands. By Lemma 4.1.3, the
module L & N also satisfies acc on X-non-summands. Suppose there exists an X-
submodule K of N which is not a direct summand of M. Let H; C Hy C ...
be any ascending chain of X-submodules of L. For each : > 1, H;N K = 0 and
H;® K is an X-non-summand of M (otherwise, K is a direct summand of M). Thus

H & K C Hy® K C ... is an ascending chain of X-non-summands of M and, by

hypothesis, H,, ® K = H,,.1 ® K = ... for some positive integer n. It follows that
H, = H,., =.... Thus L satisfies acc on X-submodules. The proof for descending
chains is similar. O

Theorem 4.1.7 Let X be a class of R-modules which is closed under finite direct
sums and under taking direct summands. Then an R-module M satisfies acc on
X -non-summands if and only if, for every X-non-summand N of M, M satisfies

acc on X-submodules which contain N.

Proof The sufficiency is clear. Conversely, suppose that M satisfies acc on X-
non-summands. Let L be any X'-submodule of M such that there exists a properly
ascending chain L = Ly C Ly C ... of X-submodules of M. By hypothesis, there
exists a positive integer n such that L, is a direct summand of M. Let N be a
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submodule of M such that M = L, & N. For each i > n, L; = L, ® (L; " N). By
hypothesis, L, "N C L,,1NN C ... is a properly ascending chain of X'-submodules
of N. By Lemma 4.1.6, L is a direct summand of M. The result follows. U

Corollary 4.1.8 Let X be a class of R-modules which is closed under extensions
and also under taking homomorphic images. Then an R-module M satisfies acc
on X-non-summands if and only if M/N satisfies acc on X-submodules for every

X -non-summand N of M.

Proof Suppose first that M satisfies acc on X-non-summands. Let N be any X-
non-summand of M. Let L; C L, C ... be any ascending chain of X-submodules
of M/N. For each i > 1, L; = L;/N for some submodule L; of M containing
N. By hypothesis, L; is an X-submodule of M for all « > 1. By Theorem 4.1.7,
L, = Lypy1 = ... and hence L, = L, = ... for some positive integer n. Thus
M/N satisfies acc on X-submodules.

Conversely, suppose that M /N satisfies acc on X-submodules for each X-non-
summand N of M. Let L be any X-non-summand of M and let H; C Hy C ...
be any ascending chain of X'-submodules of M such that L C Hy. Then H;/L C
Hy/L C ... is an ascending chain of X-submodules of M /L. There exists a positive
integer k such that Hy/L = Hp, /L = ... and hence Hy = Hy,1 = .... By

Theorem 4.1.7, M satisfies acc on A-non-summands. U
The next result is a companion theorem to Theorem 4.1.7.

Theorem 4.1.9 Let X be a class of R-modules which is closed under finite direct
sums and under taking direct summands. Then an R-module M satisfies dcc on
X -non-summands if and only if every X-non-summand of M satisfies dcc on X -

submodules.

Proof The sufficiency is clear. Conversely, suppose that M satisfies dcc on X-
non-summands. Let N be any X-non-summand of M. Suppose that N does not
satisfy dcc on X-submodules and let Ny D Ny D ... be a properly descending chain
of X-submodules of N. By hypothesis, there exists a positive integer k such that
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Ny is a direct summand of M. Let L be a submodule of M such that M = N, @ L.
Now Ny D Niyp D ... is a properly descending chain of X-submodules of Ny so
that, by Lemma 4.1.6, every X'-submodule of L is a direct summand of L. However,
N = N, & (N N L) gives that N N L is a direct summand of L and hence N is a

direct summand of M, a contradiction. The result follows. ]

4.2 The Class of R-modules

Let R be any ring. In this section, we consider modules with ascending or descending
chain conditions on X-non-summands, where X = Mod — R. Lemma 4.1.6 has the

following immediate consequence:

Lemma 4.2.1 Let M be a module which satisfies acc (respectively, dcc) on non-
summands and let L and N be submodules of M such that LN N = 0. Then L is

Noetherian (respectively, Artinian) or N is semisimple.

Now let R be a right Noetherian ring which is not semiprime Artinian and let U
be any non-finitely generated semisimple R-module. Then the R-modules R and U
both satisfy acc on non-summands, but Lemma 4.2.1 shows that the module R & U
does not satisfy acc on non-summands. In the same way, if R is right Artinian (but
not semiprime) then the R-modules R and U both satisfy dcc on non-summands

but the module R & U does not satisfy dcc on non-summands by Lemma 4.2.1.

Theorem 4.2.2 An R-module M satisfies acc on non-summands if and only if M

1s semisimple or Noetherian.

Proof The necessity is clear. For the sufficiency assume that M satisfies acc
on non-summands. Since M satisfies acc on essential submodules, M /Soc(M) is
Noetherian (see Section 1.9). If Soc(M) is finitely generated, then M is Noetherian.
Suppose that Soc(M) is not finitely generated. Then Soc(M) = S; & S, for some
non-finitely generated submodules Sy, .S,. Because S5 is not Noetherian, M = S1® L
for some submodule L of M by Lemma 4.1.6. But S; not being Noetherian gives
that L is semisimple by Lemma 4.2.1. Hence, if Soc(M) is not finitely generated

then M is semisimple. O
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Theorem 4.2.2 has the following analogue. The proof is rather similar but we

give it for completeness.

Theorem 4.2.3 A module M satisfies dcc on non-summands if and only if M is

semisimple or Artinian.

Proof The necessity is clear. For the sufficiency assume that M satisfies dcc on non-
summands. Since M satisfies dcc on essential submodules, M/Soc(M) is Artinian
(see Section 1.9). If Soc(M) is finitely generated, then M is Artinian. On the other
hand, if Soc(M) is not finitely generated then M is semisimple by the proof of
Theorem 4.2.2. U

Theorems 4.2.2 and 4.2.3 have the following immediate consequence which also

give a new characterization of right Noetherian and right Artinian rings.

Corollary 4.2.4 For any ring R, a finitely generated R-module M satisfies acc
(respectively, dcc) on non-summands if and only if M is Noetherian (respectively,

Artinian).

In particular, for a ring R, if Ry satisfies dcc on non-summands, then Ry satisfies

acc on non-summands.

Now we give an example to show that there exist modules with acc (respectively,
dce) on essential and on small submodules but which do not have acc (respectively,

dcc) on non-summands.

Example 4.2.5 Let K be any field and let S be the commutative ring which is the
direct product of a countably infinite number of copies of K, that is, S = [[;2, Kj,
where K; = K for alli > 1. Let R denote the subring of S consisting of all elements
{k;} such that k; € K (i € I) and k, = kny1 = ... for some positive integer n.
Then R is a commutative von Neumann reqular ring which satisfies acc and dcc on
essential ideals and on small ideals but satisfies neither acc nor dec on non-summand

1deals.
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Proof It is clear that R is a von Neumann regular ring. Thus, J(R) = 0 and
trivially R satisfies acc and dcc on small ideals. Moreover, S, is the set of elements
{k;} of R such that, for some positive integer n, k; = 0 for all i > n. Thus, R/S, is
isomorphic to K and R satisfies acc and dcc on essential ideals. By Corollary 4.2.4,
R does not satisfy acc on non-summand ideals and also does not satisfy dcc on

non-summand ideals. O

4.3 The Class of Finitely Generated and Finite Dimensional
Modules

In this section, we let X denote the class of finitely generated R-modules. Clearly,

regular modules satisfy both acc and dcc on finitely generated non-summands.

Lemma 4.3.1 Let M be an R-module. If every cyclic submodule of M s a finite

dimensional direct summand, then M is semisimple.

Proof Let M # 0 and let 0 # m € M. Because mR is finite dimensional, there
exist a positive integer n and non-zero indecomposable submodules L; (1 < i < n)
of mR such that mR = L1 ®---&® L,. Let 1 <i <nandlet 0 +# x € L;. By
hypothesis, xR is a direct summand of M, and hence also of L; so that L; = zR.
It follows that L; is simple for all 1 < ¢ < n. Therefore, mR is semisimple for all

m € M. It follows that M is semisimple. O

Theorem 4.3.2 The following statements are equivalent for an R-module M :
(i) M satisfies acc on finitely generated non-summands.
(ii) M/L is Noetherian for every finitely generated non-summand L of M.
(iii) For every non-finitely generated submodule N of M, every finitely generated

submodule of N is a direct summand of M.

Proof (i) < (ii) By Corollary 4.1.8.
(ii) = (iii) Let NV be any non-finitely generated submodule of M. Let L be any
finitely generated submodule of N. If L is not a direct summand of M, then M /L
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is Noetherian by (ii). Hence, N is finitely generated, a contradiction. Thus, every
finitely generated submodule L of N is a direct summand of M.

(iii) = (ii) Let H be any finitely generated non-summand of M. By (iii), every
submodule of M containing H is finitely generated, and hence M/H is Noetherian.
O

Corollary 4.3.3 Let R be a right Noetherian ring. Then the following statements
are equivalent for an R-module M :

(i) M satisfies acc on non-summands.

(ii) M satisfies acc on finitely generated non-summands.

(iii) M is semisimple or Noetherian.

Proof The implications (i) = (ii) and (iii) = (i) are obvious. For (ii) = (iii),
assume that the module M is not Noetherian. Then M is not finitely generated since
R is right Noetherian. By Theorem 4.3.2(iii), every finitely generated submodule of

M is a direct summand. It follows from Lemma 4.3.1 that M is semisimple. U

Corollary 4.3.4 Let M be an R-module which satisfies acc on finitely generated
non-summands. Then M is Noetherian or M contains an essential submodule N

such that every finitely generated submodule of N is a direct summand of M.

Proof If M is finite dimensional then M is Noetherian by Corollary 4.1.2. Suppose
that M is not finite dimensional. Let a submodule L = L; & Ly, @ ... be a direct
sum of non-zero submodules L; (i > 1) of M. Let K be a complement of L in M
and let N = L @ K. Then N is an essential submodule of M. Suppose that H is
any finitely generated submodule of N. Note that H C Ly & --- & L,, & K for some
positive integer n, and hence L, 1 @ L,i2 @ ... embeds in M/H. Thus, M/H is
not Noetherian so that H is a direct summand of M by Theorem 4.3.2. U

Next we aim to give an example of a module which satisfies acc on finitely
generated non-summands but which is neither Noetherian nor regular. First we

state a well known lemma whose proof we shall include for completeness.

66



Lemma 4.3.5 Let N be a finitely generated submodule of an R-module M such
that every cyclic submodule of N is a direct summand of M. Then N is a direct

summand of M.

Proof There exist a positive integer k and elements z; € N (1 < i < k) such that
N =x1R+---+xR. If k=1, then there is nothing to prove. Suppose that k£ > 1.
There exists a submodule L of M such that M = 21 R&L. Then N = 2y RG&(NNL).
If #: N — NN L is the canonical projection, then N N L is generated by the (k-1)
elements 7m(x2),...,m(xx). By induction, N N L is a direct summand of M, and

hence also of L. It follows that N is a direct summand of M. O

Example 4.3.6 Let D be a commutative Noetherian domain with field of fractions
K # D. LetT be the subring of the ring R of Example 4.2.5 consisting of all
elements {k;} of R such that, for some positive integer n, k; € D for all i > n.
Then T is a commutative ring such that the T-module T satisfies acc on finitely

generated non-summands but T' is not Noetherian nor reqular.

Proof Note that Soc(T") = Soc(R). Let L be any finitely generated non-summand
of Tr. By Lemma 4.3.5, there exists x € L such that 7" is not a direct summand
of T. Then z = {k;}, where k, = k41 = ... and k, is a non-zero element of
D, for some positive integer n. Then xT contains all elements of T" of the form
{h;}, where h; = 0 for all 1 < ¢ < n — 1 and for all + > m for some integer
m > n-+1. It follows that Soc(T")/(xTN Soc(R)) is Noetherian. But T'/Soc(T') = D
so that T/Soc(T) is Noetherian. This implies that T'/zT', and hence also T'/L, is
Noetherian. By Theorem 4.3.2, T'r satisfies acc on finitely generated non-summands.
T is not Noetherian because Soc(T') is not finitely generated. Also, if a is any non-
zero non-unit element of D and s is the element {k;} of 7" with k; = a for all ¢ > 1

then sT is not a direct summand of 7" so that T is not regular. U
We now consider modules which satisfy dcc on finitely generated non-summands.

Remark 4.3.7 An R-module M satisfies dcc on finitely generated submodules if
and only if M satisfies dcc on cyclic submodules, and in this case M is semiartinian

(see [41, 31.8]).
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Theorem 4.3.8 Let M be an R-module. Every finitely generated submodule of M
is a direct summand of M if and only if M satisfies dcc on finitely generated non-

summands and every simple submodule is a direct summand of M.

Proof The necessity is clear. Conversely, suppose that M satisfies the stated
conditions. Suppose further that M contains a finitely generated non-summand.
Let L be a minimal finitely generated non-summand of M. Note that L # 0. Let
x be any non-zero element of L. Suppose that L # xR. It follows that xR is a
direct summand of M so that M = xR & N for some submodule N of M. Now
L=x2R&®(LNN), and hence LN N is a finitely generated submodule of M. Clearly,
L # LN N and this implies that L N NV is a direct summand of M, and hence also
of N, giving the contradiction that L is a direct summand of M. Thus, L = xR for
every non-zero element x of L. It follows that L is a simple module, a contradiction.

OJ
Theorem 4.1.9 gives the following result without further proof.

Theorem 4.3.9 An R-module M satisfies decc on finitely generated non-summands
if and only if every finitely generated non-summand of M satisfies dcc on finitely

generated submodules.
Compare the next result with Corollary 4.3.4.

Proposition 4.3.10 Let M be a module which satisfies dcc on finitely generated
non-summands. Then every finitely generated submodule of M is a direct summand

of M or M has essential socle.

Proof Suppose that the module M has a finitely generated non-summand. By
Theorem 4.3.8, M contains a simple submodule L which is not a direct summand.
Let H be a complement of L in M so that L & H is an essential submodule of M.
By Lemma 4.1.6, H satisfies dcc on finitely generated submodules, and hence H has
essential socle by Remark 4.3.7. It follows that M has essential socle. U

Clearly, locally Artinian modules satisfy dcc on finitely generated submodules.

Compare the next result with Corollary 4.3.3.
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Theorem 4.3.11 Let R be a right Noetherian ring. Then an R-module M satisfies

dcc on finitely generated non-summands if and only if M is locally Artinian.

Proof The sufficiency is clear. Conversely, suppose that M satisfies dcc on finitely
generated non-summands. Let N be any finitely generated submodule of M. If
N C SocM, then N is Artinian. Suppose that N ¢ SocM. Then there exists
a maximal submodule L of N such that N N SocM C L. Suppose that L is not
Artinian and let L1 D Ly D ... be any properly descending chain of submodules of
L. Because N is finitely generated, so too is L; for each ¢ > 1, and hence L is a direct
summand of M for some positive integer k. There exists a submodule H of M such
that M = Ly & H. By Lemma 4.1.6, every finitely generated submodule of H is a
direct summand of H. Let 0 # h € H. Every submodule of hR is finitely generated,
because R is right Noetherian, and hence is a direct summand of hR. Thus hR
is semisimple for every non-zero h € H. It follows that H is semisimple and thus
H C SocM. It follows that M = L+ SocM, and hence N = L+ (N NSocM) C L,
a contradiction. Thus, L is Artinian. So N is Artinian, too. It follows that M is

locally Artinian. O

The condition that R is right Noetherian cannot be removed in Theorem 4.3.11.

Example 4.3.12 Let R be a commutative ring with unique mazximal ideal J such
that J> = 0 and J is not finitely generated. Then J is a non-finitely generated
semisimple R-module. The R-module R is not Artinian and hence is not locally
Artinian. Let A be a finitely generated non-summand of R. Then A # R so that
A C J. Hence, A is Artinian because A is semisimple. Thus, the R-module R
satisfies dcc on finitely generated non-summands but is not locally Artinian and is
not reqular.

To be specific, let V' be an infinite dimensional vector space over a field F'. Con-

x v 0V
sider the ring R = { v € FLoe V}oand J = . Then R and J
0 x 0 0

satisfy the stated conditions.
Remark 4.3.13 If N is a fully-invariant submodule of an R-module M, then N =
(NN M)® (NN M,), and hence M/N = ((M; + N)/N) @ ((Mz + N)/N) for all

submodules M; and My of M such that M = M; ® M.
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Compare the following with Lemma 4.1.4.

Lemma 4.3.14 If an R-module M satisfies dcc on finitely generated non-summands

then so too does every factor module M /N, where N is a fully-invariant submodule

of M.

Proof Let N be a nonzero fully-invariant submodule of M. Let M = M/N and
let K C L be finitely generated submodules of M. There exist positive integers s,
t and elements z;, y; in M (1 < i < 5,1 < j < t) such that L = (z;1+ N)R+
oot (ws+ N)Rand K = (y; + N)R+ -+ (y; + N)R. For each 1 < j < t there
exist elements 7;; € R(1 < i < s) and u; € N such that y; = > 7, xiri; + u;.
Let z; = >0 wrij (1 < j <t). Then K = (23 + N)R+--- + (2 + N)R and
z71R+---+zRC xR+ -+ a,R.

Now let Ly D Ly D ... be any descending chain of finitely generated non-
summands of M. By the above remarks, we can suppose without loss of generality
that L; = (L; + N)/N (i > 1) for some descending chain L; D Ly O ... of finitely
generated submodules of M. Remark 4.3.13 shows that L; is a non-summand of

M for each ¢ > 1. By hypothesis, there exists a positive integer k£ such that L, =

Liji=...,and hence Ly = Ly = .... O

Proposition 4.3.15 If M satisfies dcc on finitely generated non-summands, then
there exists a semiartinian submodule S of M such that every finitely generated

submodule of M/S is a direct summand.

Proof Let0=5,C 51 C---C S, C Sur1 € ... be the socle series of M, where
for each ordinal & > 0, Sp41/Sa = Soc(M/S,) and Sy = Uycpo S when a is a
limit ordinal. Note that S, is a fully-invariant submodule of M for each ordinal
a > 0. Because M is a set, there must exists an ordinal p > 0 such that S, = S,1,
and hence M /S, has zero socle. Note that S, is semiartinian.

Now suppose that M satisfies dcc on finitely generated non-summands. By
Lemma 4.3.14, M /S, satisfies dcc on finitely generated non-summands. Finally, by
Proposition 4.3.10, every finitely generated submodule of M /S, is a direct summand.

0J
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We have the following result for the class of finite dimensional modules.

Theorem 4.3.16 Let M be a module such that every non-zero submodule contains
a uniform submodule. Then M satisfies acc on finite dimensional non-summands if

and only if M is Noetherian or every uniform submodule of M is a direct summand.

Proof (<) Suppose M is not Noetherian. Let L be a finite dimensional submodule
of M. Suppose L # 0. Let U < L and U be uniform. Then M = U & U’ for some
U <M. Then L =U @& (LNU’), where udim(L NU’) < udim(L). By induction,
LNU"is a direct summand of U’ so that L is a direct summand of M.

(=) Suppose M satisfies acc on finite dimensional non-summands. Suppose M
contains a (non-zero) finite dimensional non-summand. We shall show that M is
Noetherian. Let H be a maximal finite dimensional non-summand of M. Then
M # H because H is a non-summand of M. Suppose that H is not essential in
M. Then H N L = 0 for some non-zero submodule L. By hypothesis, L contains a
uniform submodule U. Then H 6 U is finite dimensional and hence, by the choice
of H, a direct summand of M. This implies that H is a direct summand of M, a
contradiction. Thus, H is essential in M, and so M is finite dimensional. Every
submodule of M is also finite dimensional. This gives that M satisfies acc on non-
summands. By Theorem 4.2.2, M is Noetherian or semisimple. But since M is finite

dimensional, it is Noetherian. O

4.4 The Class of Cyclic Modules

A non-empty subset I of a ring R acts t-nilpotently on an R-module M if, for every
sequence ap, as ... of elements in I and every m € M, we have majas---a;_1a; =0
for some i € N (depending on m) (see [41]). The set [ is called left T-nilpotent if
it acts t-nilpotently on Rp (see Section 1.5). Recall from Section 1.5 that a ring R
is left perfect if and only if J(R) is left T-nilpotent and R/J(R) is semisimple, and
this occurs if and only if R satisfies dcc on cyclic right ideals. By Proposition 4.1.1,

we have the following:

Proposition 4.4.1 A ring R is left perfect if and only if R satisfies dcc both on

summands and cyclic non-summand right ideals.
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Example 4.2.5 shows that there exists a commutative ring satisfying dcc on

finitely generated (cyclic) non-summands but which is not perfect.

Proposition 4.4.2 Let M be an R-module which satisfies dcc on cyclic non-summands.

Then J(R) acts t-nilpotently on M.

Proof Let aq,as,... be a sequence of elements in J(R) and m € M. Consider the
descending chain

mai R D maiaa R O majasasR 2D .. ..

Assume that there exists a k£ such that majas...arR is a direct summand of M.
Since majas ...axR C mJ(R) C RadM, majas . ..axR is small and a direct sum-
mand of M. This implies that majas...ar = 0. Now we assume that for every k,
mayas . .. apR is not a direct summand of M. By hypothesis, there exists i such
that majas . ..a; R = majas...a; ;1R C majay. ..a;J(R). By Nakayama’s Lemma,

we have majay...q; = 0. O

Proposition 4.4.3 Let M be an R-module satisfying dcc on cyclic non-summands
and let S = Endgr(M). Suppose that the module M is a faithful right R-module and
a finitely generated left S-module. Then J(R) is left T-nilpotent.

Proof Since My is faithful and ¢M is finitely generated, it follows that Rz embeds
in MF for some positive integer k (see [41, 15.3 and 15.4]). By Proposition 4.4.2,
J(R) acts t-nilpotently on M¥%. Hence, J(R) is left T-nilpotent. O

Corollary 4.4.4 If R is a ring satisfying dcc on cyclic non-summand right ideals,

then J(R) is left T-nilpotent.

Remark 4.4.5 If a € R and a — aba is regular for some b in R, then a is regular.
For, there exists ¢ in R such that a — aba = (a — aba)c(a — aba), and thus a = ada,

where d = b+ (1 — ba)c(1 — ab).
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Theorem 4.4.6 Let R be a ring which satisfies dcc on cyclic non-summand right

ideals. Then R is a semiregular ring such that J(R) is left T-nilpotent.

Proof By Corollary 4.4.4, J(R) is left T-nilpotent. To prove that R is semireg-
ular, without loss of generality, we may assume that J(R) = 0 (adapt the proof
of Lemma 4.3.14). Let 0 # a € R. There exists a maximal right ideal M; of R
such that @ ¢ M;. Then 1 = ar + b for some r € R,b € M;. It follows that
a;, = a —ara = ba € M;. Now suppose that a; # 0. By the same argument,
there exist a maximal right ideal M and elements r; € R,b; € M, such that
as = a; — ayria; = byay € My N Msy. If as # 0, then repeat the argument. This
gives a sequence of elements a = ag, ay, as, ... of R and a sequence of maximal right
ideals My, Ms, ... of R such that, for each ¢ > 0, a;11 = a; — a;r;a; for some r; € R
and a; € My N---NM;, a; ¢ M;1;. Thus, we obtain a strictly descending chain
aoR D a1 R O .... By hypothesis, there exists a positive integer n such that a, R is
a direct summand of Rg. There exists an idempotent e in R such that a,R = eR.
It can easily be shown that a, is regular. By Remark 4.4.5, a is regular, too. It

follows that every element of R is regular and so R is von Neumann regular. U
The converse of Theorem 4.4.6 need not be true. Note the following fact:

Lemma 4.4.7 Let R be a ring. Let e be an idempotent in R such that eR + J(R)
is a direct summand of Rg. Then J(R) C eR.

Proof Note that
eR+J(R) = (eR+J(R))N[eRB(1—e)R] = eRB[(1—e)RN(eR+J(R))] = eRB(1—e)J(R).

It follows that (1 —e)J(R) = fR for some idempotent f in R. But f € J(R) so
that f = 0. Hence, (1 —e)J(R) =0 and J(R) C eR. O

Example 4.4.8 Let K be any field, let K; = K (i > 1) and let the ring S =
Hizl K;. Let U denote the simple ideal of S consisting of all elements in S of the
form (k,0,0,...) with k € K. Let R denote the trivial extension of S by U. Then
R is a commutative semiregular ring with simple Jacobson radical J(R) such that

J(R)?> = 0 but R does not satisfy dcc on cyclic non-summand ideals.
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Proof The ring R consists of all elements of the form (s, u), with s € S and u € U,

with addition and multiplication defined by
(s,u) + (s, u') = (s+ s ,u+u) and (s,u)(s',u') = (s, su’ + s'u)

for all s,s € S and u,v’ € U. It is well known that R is a commutative ring.
Moreover, the set J of all elements of R of the form (0, ) with u € U is an ideal of
R such that R/J = S so that R/J is von Neumann regular and J? = 0. Thus, J is
the Jacobson radical of R. Because U is a simple S-module, J is a simple R-module.
Let fo = (1,0,0,...) and for each i > 1 let f; denote the element (0,0, ...,0,1,1,1,...)
of S with nth component 1 for all n > i+ 1. Let ¢; = (f;,0) € R. Note that
U = Sfy and for each ¢ > 1, f; is an idempotent of S such that f;fy = 0. Further
note that Sf; D Sfs D .... Let i > 1. Then R(f;, fo) is a cyclic ideal of R such that
R(fi, fo) = Re; + J. Because e; is an idempotent in R such that Re; = {(sf;,0) :
s € S}, J € Re;. Lemma 4.4.7 gives that R(f;, fo) is not a direct summand of Rg
for each ¢ > 1. Moreover, R(f1, fo) D R(fs2, fo) D .... Thus, R does not satisfy dcc

on cyclic non-summand ideals. U
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OPEN QUESTIONS

Question 1 It is known that the right (left) socle of any ring is a strongly lifting

ideal (see Theorem 1.4.7). Is the socle of any module a strongly lifting submodule?

Question 2 It is known that the notion of I-semiregular rings is right-left sym-
metric for any ideal I (see Theorem 1.4.12). Is this also true for almost /-semiregular

rings?

Question 3 A ring R satisfies dcc on cyclic right ideals if and only if R satis-
fies dcc on finitely generated right ideals, if and only if R is a left perfect ring (see

Theorem 1.5.3). Hence, we have the following implications for a ring R:

R is left perfect = R satisfies dcc on finitely generated non-summand right ideals

= R satisfies dcc on cyclic non-summand right ideals.

We know from Example 4.2.5 that if a ring satisfies dcc on finitely generated
(cyclic) non-summand right ideals, then the ring need not be left perfect. So the
following question arises:

Does a ring which satisfies dcc on cyclic non-summand right ideals, also satisfy

dcc on finitely generated non-summand right ideals?

Question 4 We proved that if M is a finite dimensional module, then M satisfies
acc on cyclic submodules if and only if it satisfies acc on cyclic non-summands.
Characterize modules which satisfy acc on cyclic non-summands.

The following implication is known for a ring R:

R satisfies dcc on cyclic right ideals (& R is left perfect) = R satisfies acc on
cyclic left ideals (see [21, p. 230]).

It is also known that a ring satisfies acc on right (left) summands if and only if
it satisfies dcc on left (right) summands ([21, Proposition 6.59]).

If a ring satisfies decc (acc) on cyclic non-summand right ideals, then does it

satisfy acc (dcc) on cyclic non-summand left ideals?
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discrete module, 19
C'S module, 8
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U-potent module, 26 finite Goldie dimension, 22

U-semiperfect module, 29
SOMHPELiEct IO, fully-invariant submodule, 2

U-semipotent module, 25

U-semiregular module, 29 Goldie torsion submodule, 5

d-small submodule, 6 hollow module, 2

acts {-nilpotently, 71 idempotents lift, 12

almost F-semiregular module, 43 idempotents strongly lift, 12

almost principally injective module, 9 indecomposable module, 3

almost principally quasi-injective module,

9

injective module, 8
isomorphism, 2
almost semiregular module, 45
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Artinian module, 21 left T-nilpotent, 14

ascending chain condition, 21 local module. 3
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maximum condition, 21 right continuous ring, 14
minimum condition, 21 right generalized semiregular element, 17
monomorphism, 2 right generalized semiregular ring, 17

right Noetherian ring, 21
Nakayama’s Lemma, 3

right nonsingular ring, 4
Noetherian module, 21

right perfect ring, 14
nonsingular module, 4

right semiartinian ring, 22

potent ring, 15 right weakly continuous ring, 14

preradical, 37

self-injective ring, 8
prime ideal, 3

semiartinian module, 22
prime ring, 3

semiperfect module, 19
principally injective module, 9

semiperfect ring, 16
projection-invariant, 27

semipotent ring, 15
projective d-cover, 11

semiprime ideal, 3
projective cover, 10

semiprime ring, 3

quasi-continuous module, 8 semiregular module, 19
Quasi-Frobenius ring, 38 semiregular ring, 13
quasi-injective module, 8 semisimple module, 2
quasi-projective module, 9 semisimple ring, 2

impl dule, 2
regular element, 12 SHIPIC THOAHe,

ingul dule, 4
regular module, 19 singular module,

. singular submodule, 4
regular ring, 12

. small (superfluous) submodule, 2
relative injectivity, 8

. D socle of a module, 2
relative projectivity, 9
strongly lifting, 12
respects an ideal, 13 FOngLy Mitng,

trongly lifting submodule, 24
right d-perfect ring, 16 strongly lifting submodule,

right AP-injective ring, 9 trivial extension, 17

right P-injective ring, 9

uniform dimension, 22
right T-nilpotent, 14

uniform module, 1
right almost I-semiregular ring, 43

right Artinian ring, 21
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