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A STUDY ON PERFECT AND REGULAR RINGS

Pınar Aydoğdu

ABSTRACT

One of the starting points of the historical developments of non-commutative

rings and their modules is algebras over a field K. A K-algebra, its ideals and its

modules are K-vector spaces. If a K-vector space is finite dimensional, then it sat-

isfies some finiteness conditions. Emmy Noether worked on commutative rings with

the ascending chain condition which are now called Noetherian rings. Emil Artin,

who inspired by Noether’s works, generalized Wedderburn’s structure theorems on

algebras to non-commutative rings with the descending chain condition, which are

now called Artinian rings.

Regular rings were invented by von Neumann in the mid-1930’s in order to pro-

vide an algebraic framework for studying the lattices of projections in the operator

algebras. Von Neumann modelled this framework on the coordinatization of projec-

tive geometry.

Artinian and regular rings have been studied extensively and generalized in dif-

ferent ways by many authors (e.g. [7], [19], [23], [30], [43]). Some of these general-

izations are perfect, semiperfect and semiregular rings.

The goal of this dissertation is to work on new concepts which are derived from

Artinian and regular rings. Our aim is to characterize perfect and regular rings

and some of their generalizations by considering some chain conditions as well as

semiregular and semiperfect modules, and to investigate semiregular and semiperfect

rings relative to some special ideals.

In the first chapter of this dissertation, we give the definitions of some basic

notions and investigate some of their properties which are useful tools for our further

studies, and we study the rings that are mentioned above.

In the second chapter, we introduce the notion of ‘strong lifting submodule’

which is a module theoretic version of the notion of strong lifting ideal. Strongly

lifting ideals were studied by Nicholson and Zhou ([31]) to characterize semiregular

and semiperfect rings relative to an ideal. Inspired by these works, we investigate
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strongly lifting submodules and obtain some new characterizations of semiregular

and semiperfect modules relative to a projection-invariant submodule. In the last

section of this chapter, we investigate rings over which every (projective) module M

is τ(M)-semiperfect for a preradical τ , and notice that this condition is one of the

necessary and sufficient conditions for a ring to be (δ-)perfect.

The class of semiregular rings and the class of almost principally injective rings

are contained in the class of generalized semiregular rings which are defined by

Xiao and Tong ([42]). In the third chapter, we introduce generalized semiregular

rings relative to an ideal, and investigate some of their properties. We also consider

generalized semiregular rings relative to some special ideals such as the socle, the δ

radical and the singular ideal of the ring.

The last chapter, Chapter 4, is concerned with chain conditions on non-summands.

We investigate the properties of modules with chain conditions on non-summands

by considering some module classes. We characterize Artinian and Noetherian mod-

ules in terms of these chain conditions. It is well known that a ring is right perfect

if and only if it satisfies descending chain condition on cyclic left ideals. We deduce

that a ring is right perfect if and only if it satisfies descending chain condition on

non-summand cyclic left ideals and on summand left ideals. Moreover, if a ring

satisfies descending chain condition on non-summand cyclic right ideals, then it is a

semiregular ring with a left T -nilpotent Jacobson radical.

Keywords: (Semi)Perfect rings, (semi)regular rings, Artinian rings and modules,

Noetherian rings and modules, injective modules, projective modules.

Supervisor: Prof. Dr. A.Çiğdem ÖZCAN

Hacettepe University, Faculty of Science, Department of Mathematics.
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TAM VE DÜZENLİ HALKALAR ÜZERİNE BİR ÇALIŞMA

Pınar Aydoğdu

ÖZET

Değişmeli olmayan halkaların ve bu halkalar üzerindeki modüllerin tarihi gelişi-

mindeki başlangıç noktalarından biri bir K cismi üzerindeki cebirlerdir. Bu cebirler,

bunların idealleri ve bu cebirler üzerindeki modüller K-vektör uzaylarıdır. Eğer

bir K-vektör uzayı sonlu boyutlu ise bu modüller üzerinde bazı sonluluk özellikleri

sağlanmaktadır. Emmy Noether, artan zincir koşulunu sağlayan değişmeli hal-

kalar üzerinde çalışmıştır. Bu halkalar günümüzde, Noether halkalar olarak ad-

landırılmaktadır. Noether’in çalışmalarından etkilenen Emil Artin, Wedderburn’ün

cebirler üzerindeki yapısal teoremlerini azalan zincir koşulunu sağlayan değişmeli

olmayan halkalara genellemiştir. Literatürde bu halkalar, Artin halkalar olarak bil-

inmektedir.

Von Neumann düzenli halkalar, 1930’ların ortalarında, von Neumann tarafından

operatör cebirlerin projeksiyon latislerini çalışmak için cebirsel bir çerçeve oluşturmak

amacıyla tanımlanmıştır. Von Neumann’ın oluşturduğu bu cebirsel çerçeve projektif

geometride kullanılmıştır.

Artin ve (von Neumann) düzenli halkalar pek çok yazarın ilgi odağı olmuş ve

araştırmacılar tarafından farklı şekillerde genelleştirilmiştir (bkz. [7], [19], [23], [30],

[43]). Tam (perfect), yarıtam (semiperfect) ve yarıdüzenli (semiregular) halkalar bu

genellemelerin bazılarıdır.

Bu tezin amacı tam ve (von Neumann) düzenli halkalar ile bu halkaların bazı

genellemelerini, bir altmodüle göre yarıdüzenli ya da yarıtam olan modüller ile bazı

zincir koşulları göz önüne alınarak karakterize etmek; bir takım özel idealler ele

alınarak tanımlanan yarıdüzenli ve yarıtam halkaları incelemektir.

Bu tezin birinci bölümü, çalışmalarımızda ihtiyaç duyulan bazı temel kavram-

ların ve yukarıda söz konusu olan halka ile modüllerin tanıtılmasına ayrılmıştır. Bu

çalışmada, R değişmeli olması gerekmeyen birimli ve birleşmeli bir halkayı temsil

etmektedir. Modüller aksi belirtilmedikçe birimsel sağ R-modüller olacaktır.
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Yarıdüzenli ve yarıtam halka kavramları, Yousif ve Zhou ([43]) tarafından, bir

I ideali göz önüne alınarak I-yarıdüzenli ve I-yarıtam halkalara genelleştirilmiştir.

Nicholson ve Zhou ([31]), I-yarıdüzenli ve I-yarıtam halkaları karakterize etmek

amacıyla kuvvetli yükselten (strongly lifting) ideal (bkz. [25]) kavramı üzerinde

çalışmışlardır. Nicholson ve Zhou’nun elde ettiği sonuçlara göre, bir R halkası I-

yarıdüzenlidir (I-yarıtamdır) ancak ve ancak R/I halkası düzenlidir (yarıbasittir)

ve I kuvvetli yükselten bir idealdir. I-yarıdüzenli ve I-yarıtam halka kavramları

sağ-sol simetriktir.

Alkan ve Özcan ([1] ve [32]), bir modülün endomorfizmalar altında korunan

bir U altmodülünü göz önüne alarak, I-yarıdüzenli ve I-yarıtam halkaların modül

versiyonları olan U -yarıdüzenli ve U -yarıtam modülleri tanımlamışlar; I-yarıdüzenli

ve I-yarıtam halkaların bazı özelliklerini modüllere taşımışlardır.

Tezin ikinci bölümünde, kuvvetli yükselten ideal tanımına paralel olarak kuvvetli

yükselten altmodül tanımı verilmiş ve bu altmodüllerin bazı özellikleri incelenmiştir.

U , bir M R-modülünün bir altmodülü olsun. M/U = (A+U)/U ⊕ (B+U)/U iken,

P ≤ A, (A+U)/U = (P+U)/U ve (B+U)/U = (Q+U)/U olacak şekildeM = P⊕Q

ayrışımı varsa U altmodülüne kuvvetli yükselten altmodül (strongly lifting submodule)

diyeceğiz. Bir R halkasının bir I ideali kuvvetli yükselten idealdir ancak ve ancak

I, R sağ R-modülünün kuvvetli yükselten bir altmodülüdür. Yarı-projektif (self-

projective) modüllerin dik toplananları kuvvetli yükselten altmodüllerdir. Ayrıca,

yarı-projektif bir modülün sonlu değişim özelliğini (finite exchange property) sağ-

laması ile her altmodülünün kuvvetli yükselten olması denk ifadelerdir.

Bu bölümde, I-yarıtam halkaların karakterizasyonunda önemli bir rol oynayan

I-yarıgüçlü ideal kavramı modüllere taşınmıştır. A 6⊆ U koşulunu sağlayan M ’nin

her A altmodülü için B ≤ A ve B 6⊆ U olacak şekilde M ’nin bir B dik toplananı

varsa M modülüne U-yarıgüçlü (U-semipotent) denir. M U -yarıgüçlü ve U , M ’nin

kuvvetli yükselten bir altmodülü ise M ’ye U-güçlü (U-potent) denir. U izdüşümler

altında korunan bir altmodül ve M U -yarıgüçlü bir modül ise M/U 0-güçlüdür. Bu

ifadenin tersi U ’nun kuvvetli yükselten bir altmodül olması durumunda doğrudur.

M U -yarıgüçlü bir modül ise N * U olan M ’nin her N altmodülünün ayrıştırılamaz
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(indecomposable) olması ile yerel (local) olması denktir.

U -yarıgüçlü modüller yardımıyla U -yarıtam modüller karakterize edilmiştir. U ,

izdüşümler altında korunan bir altmodül olmak üzere, kuvvetli yükselten altmodüller

göz önüne alınarak, U -yarıdüzenli ve U -yarıtam modüllerin yeni karakterizasyonları

elde edilmiştir. M sonlu üretilmiş ve projektif bir R-modül ise, M U -yarıdüzenlidir

ancak ve ancak M/U modülünün sonlu üretilmiş her altmodülü bir dik topla-

nandır ve U kuvvetli yükselten bir altmodüldür. M projektif bir R-modül ise,

M U -yarıtamdır ancak ve ancak M/U yarıbasittir ve U kuvvetli yükselten bir

altmodüldür. Bu bölümün son kısmında, τ bir preradikal olmak üzere, her (pro-

jektif) modülü τ()-yarıtam olan halkalar incelenmiştir. Jacobson radikali Rad,

Goldie torsion altmodülü Z2 ve δ gibi bazı özel preradikaller göz önüne alınarak

şu sonuçlar elde edilmiştir: Her R-modül M Z2(M)-yarıtamdır ancak ve ancak R

Zr
2 -yarıtam halkadır; her projektif R-modül M δ(M)-yarıtamdır ancak ve ancak

R δ-tam halkadır; bir R halkası Zr-yarıtamdır ve Zr
2 injektiftir ancak ve ancak R

halkası yarıtam ve sağ injektiftir.

Xiao ve Tong’un tanımlamış olduğu genelleştirilmiş yarıdüzenli halkalar (gener-

alized semiregular rings), yarıdüzenli ve AP -injektif halkaları kapsamaktadır ([42]).

Aynı çalışmada, söz konusu yazarlar, yarıdüzenli ve AP -injektif halkalar için bilinen

bazı sonuçları genellemişlerdir. Tezin üçüncü bölümünde, bazı (özel) idealler göz

önünde bulundurularak tanımlanan halka ve modüller, bu genellemelerden yarar-

lanılarak, incelenmiştir.

F , bir M R-modülünün bir altmodülü olsun. [1]’e göre, bir M modülü F -

yarıdüzenlidir ancak ve ancak her m ∈M için P projektif, P ⊆ mR ve Q∩mR ⊆ F

olacak şekilde M = P ⊕Q ayrısımı vardır. Eğer F , M ’nin endomorfizmaları altında

korunan bir altmodül ise, M F -yarıdüzenlidir ancak ve ancak her m ∈ M için P

M ’nin projektif dik toplananı ve S ⊆ F olacak biçimde mR = P ⊕ S ayrışımı

vardır. Üçüncü bölümde, yaklaşık yarıdüzenli modüller şu şekilde tanımlanmıştır:

M bir R-modül, S = EndR(M) ve F M ’nin bir S-altmodülü olsun. Her m ∈ M

için, P ⊆ Sm ve Q∩Sm ⊆ F olacak şekilde lMrR(m) = P ⊕Q sol S-modül ayrışımı

var ise M ’ye yaklaşık F -yarıdüzenli (almost F -semiregular) denir. I, R halkasının
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bir ideali olsun. Bir R halkası bir sağ R-modül olarak yaklaşık I-yarıdüzenli ise,

R’ye sağ yaklaşık I-yarıdüzenli halka denir. Yaklaşık I-yarıdüzenli halka kavramının

sağ-sol simetrik olup olmadığı bilinmemektedir. S = EndR(M) olmak üzere, SM F -

yarıdüzenli bir modül ise, MR yaklaşık F -yarıdüzenlidir. Bir APQ-injektif modül,

her S-altmodülü F için, yaklaşık F -yarıdüzenlidir. Dahası, MR APQ-injektiftir

ancak ve ancak MR yaklaşık 0-yarıdüzenlidir. Özel olarak, bir R halkasının AP -

injektif olması için gerek ve yeter koşul R’nin sağ yaklaşık 0-yarıdüzenli olmasıdır.

Sağ J(R)-yarıdüzenli halkalar, Xiao ve Tong’un tanımlamış olduğu genelleştirilmiş

yarıdüzenli halkalardır.

Tezin bu bölümünde, F -yarıdüzenli modüllerle ilgili yeni karakterizasyonlar elde

edilmiştir. Sağ yaklaşık I-yarıdüzenli halkaların ne zaman I-yarıdüzenli olabileceği

sorusu üzerinde durulmuş ve [42]’de elde edilen bazı sonuçlar sağ yaklaşık I-yarı-

düzenli halkalara genelleştirilmiştir. R halkasının bir e eşkare elemanı eR = eRe

ya da ReR = R koşulunu sağlıyorsa R halkasının sağ yaklaşık I-yarıdüzenli olması

eRe halkasının da sağ yaklaşık eIe-yarıdüzenli olmasını gerektirir. I, R halkasının

bir ideali olmak üzere, Mn(R) matris halkası sağ yaklaşık Mn(I)-yarıdüzenli ise,

R de sağ yaklaşık I-yarıdüzenlidir. Alkan ve Özcan ([1, Sonuç 4.6]), projektif

bir M R-modülü Soc(M)-yarıdüzenli ise M ’nin düzenli olduğunu göstermişlerdir.

Yaklaşık yarıdüzenli modüller için ise şu sonucun var olduğu gözlemlenmiştir: MR

yaklaşık Soc(SM)-yarıdüzenli ise, M yaklaşık yarıdüzenlidir; yani her m ∈ M

için P ⊆ Sm ve Q ∩ Sm � SM olacak şekilde lMrR(m) = P ⊕ Q sol S-modül

ayrışımı vardır. Rad(SM) � SM ise, yaklaşık yarıdüzenli modüller Rad(SM)-

yarıdüzenli olan modüllerdir. Bir R halkası için aşağıdaki gerektirmelerin var olduğu

gözlemlenmiştir:

Sl-yarıdüzenli ⇒ sağ yaklaşık Sl-yarıdüzenli ⇒ sağ yaklaşık yarıdüzenli ⇒ sağ

yaklaşık δr-yarıdüzenli ve sağ yaklaşık δl-yarıdüzenli.

Zr-yarıdüzenli ⇒ sağ yaklaşık Zr-yarıdüzenli ⇒ sağ yaklaşık yarıdüzenli ⇒ sağ

yaklaşık δr-yarıdüzenli ve sağ yaklaşık δl-yarıdüzenli.

Bu gerektirmelerin terslerinin doğru olması gerekmediğine dair örnekler ver-

ilmiştir.

Bir e ∈ R eşkare elemanı için J(eRe) = eJ(R)e eşitliğinin var olduğu iyi bilinen
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bir sonuçtur. Aynı soru δ ideali için de göz önüne alınmış ve eR = eRe koşulunu

sağlayan bir eşkare eleman için bile benzer sonucun doğru olmadığı görülmüştür.

Ancak, bir e eşkare elemanı ReR = R koşulunu sağlıyorsa δl(eRe) = eδle eşitliği

sağlanır. Sonuç olarak, R sağ yaklaçık δl-yarıdüzenli bir halka ve ReR = R ise, eRe

halkası δl(eRe)-yarıdüzenlidir.

Bir modülün öz geniş altmodülleri ve sıfırdan farklı dar altmodülleri o modülün

dik toplanan olmayan altmodülleridir. Bu durumda, eğer bir modül dik toplanan

olmayan altmodüller üzerinde artan (azalan) zincir koşulunu sağlıyorsa, o zaman

geniş ve dar altmodülleri üzerinde de artan (azalan) zincir koşulunu sağlar. An-

cak, bu basit gözlemin tersinin her zaman doğru olmadığına dair değişmeli ve (von

Neumann) düzenli bir halka örneği vardır (Örnek 4.2.5). Goodearl’ün [17, Önerme

3.6] sonucundan yararlanılarak geniş altmodülleri üzerinde artan zincir koşulunu

sağlayan modüller karakterize edilmiştir. Buna göre, bir M R-modülünün geniş

altmodülleri üzerinde artan zincir koşulunu sağlaması için gerek ve yeter koşul

M/Soc(M)’nin Noether modül olmasıdır. Armendariz, bu sonucun bir duali olarak,

bir M R-modülünün geniş altmodülleri üzerinde azalan zincir koşulunu sağlaması

ile M/Soc(M)’nin Artin olmasının denk ifadeler olduğunu ispatlamıştır (bkz. [5,

Önerme 1.1]). Varadarajan ([38, Önteorem 2.1]) ise, bir M R-modülünün dar

altmodülleri üzerinde artan zincir koşulunu sağlaması ile Rad(M)’nin Noether ol-

masının denk olduğunu göstermiştir. Bu sonucun duali Al-Khazzi ve Smith ([2, Teo-

rem 5]) tarafından ispatlanmıştır. Yani, bir M R-modülü dar altmodülleri üzerinde

azalan zincir koşulunu sağlar ancak ve ancak Rad(M) Artindir.

Tezin dördüncü ve son bölümünde, dik toplanan olmayan altmodüller üzerinde

azalan ve artan zincir koşullarını sağlayan modüller, bazı modül sınıfları ele alınarak,

detaylı olarak incelenmiştir. Dik toplanan olmayan altmodüller üzerinde artan ya da

azalan zincir koşullarını sağlayan modüller yardımıyla Noether ve Artin modüllerle

ilgili bazı karakterizasyonlar elde edilmiştir. BirM R-modülünün Noether (Artin) ya

da yarıbasit olması için gerek ve yeter koşul M ’nin dik toplanan olmayan altmodüller

üzerinde artan (azalan) zincir koşulunu sağlamasıdır. R bir sağ Noether halka ise,

bir M R-modülü dik toplanan olmayan sonlu üretilmiş altmodüller üzerinde artan
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zincir koşulunu sağlar ancak ve ancak M dik toplanan olmayan altmodüller üzerinde

artan zincir koşulunu sağlar. Bir M modülü dik toplanan olmayan sonlu üretilmiş

altmodüller üzerinde azalan zincir koşulunu sağlar ancak ve ancak M yerel Artin bir

modüldür. Bir R halkasının sol tam olması ile devirli sağ idealler üzerinde azalan

zincir koşulunu sağlamasının denk ifadeler oluşu iyi bilinen bir sonuçtur. Buradan,

bir R halkası sol tamdır ancak ve ancak R, hem dik toplanan sağ idealler hem de dik

toplanan olmayan devirli sağ idealler üzerinde azalan zincir koşulunu sağlar. Ayrıca,

R halkası dik toplanan olmayan devirli sağ idealler üzerinde azalan zincir koşulunu

sağlıyorsa R, Jacobson radikali sol T -üstelsıfır olan yarıdüzenli bir halkadır.

Anahtar Kelimeler: (Yarı)tam halkalar, (yarı)düzenli halkalar, Artin halkalar ve

modüller, Noether halkalar ve modüller, injektif modüller, projektif modüller.

Danışman: Prof.Dr. A. Çiğdem ÖZCAN

Hacettepe Üniversitesi, Fen Fakültesi, Matematik Bölümü.
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1 PRELIMINARIES

In this chapter, we shall give some basic notions and their properties which will

be frequently used. Throughout this dissertation, R will stand for a noncommutative

and associative ring with identity. Modules will be unital right R-modules unless

otherwise stated.

1.1 Basic Notions

The basic notions and the basic properties mentioned in this section may be found

in any standard text of Ring and Module Theory (e.g. [3], [18], [21]).

Definitions 1.1.1 A submodule N of an R-module M is called essential in M or

M is called an essential extension of N if every nonzero submodule of M intersects

N nontrivially, and we write N ≤e M . If every nonzero submodule of an R-module

is essential in M , then we say that M is uniform.

Proposition 1.1.2 Let M be an R-module. Then the following statements hold:

1) K ≤e M if and only if for each 0 6= x ∈ M there exists an r ∈ R such that

0 6= rx ∈ K.

2) Let A ≤ B ≤M . Then A ≤e M if and only if A ≤e B ≤e M .

3) If A ≤e B ≤M and A′ ≤e B′ ≤M , then A ∩ A′ ≤e B ∩B′.

4) If f : N →M and A ≤e M , then f−1(A) ≤e N .

5) If {Aα}α∈I is an independent family of submodules of M , and if Aα ≤e Bα ≤

M for each α, then {Bα}α∈I is an independent family and ⊕Aα ≤e ⊕Bα. Con-

versely, if ⊕Aα ≤e ⊕Bα, then Aα ≤e Bα for each α.

Definitions 1.1.3 A submodule N of an R-module M is called a complement if

there exists a submodule N ′ of M such that N is maximal with respect to the

property that N ∩N ′ = 0. If N is a complement of a submodule of M , then we say

that N is closed in M , and write N ≤c M .

By Zorn’s Lemma, every submodule of an R-module M has a complement in M .

Proposition 1.1.4 Let M be an R-module and N ≤ M . If N ′ is a complement of

N in M , then N ⊕N ′ ≤e M .
1



Proposition 1.1.5 The following statements are equivalent for a submodule C of

an R-module M :

1) C is a closed submodule of M .

2) C has no proper essential extension; i.e., if C ≤e N ≤M , then C = N .

3) If C ≤ N ≤e M , then N/C ≤e M/C.

4) If D is a complement of C in M , then C is a complement of D in M .

The additive group of all the homomorphisms from an R-module M to an R-

module N (i.e., R-homomorphisms) is denoted by HomR(M,N); R-endomorphisms

on M is denoted by EndR(M). An R-homomorphism f is called a monomorphism

if it is one-to-one; f is called an epimorphism if it is onto; and f is called an

isomorphism if it is both one-to-one and onto. A submodule N of an R-module M

is said to be fully-invariant if f(N) ≤ N for any f ∈ EndR(M).

A simple module is a nonzero module M in which the only submodules are 0 and

M . If M is an R-module, then the socle of M is defined by Soc(M) = ∩{N |N ≤e
M} = ⊕{L|L is a simple submodule of M}. Soc(M) is a fully-invariant submod-

ule of M . An R-module M is called semisimple if Soc(M) = M . If a module M

does not contain any simple submodules, then we may assume that Soc(M) = 0.

Sr = Soc(RR) and Sl = Soc(RR) are ideals of a ring R, and they need not be equal.

For instance, if R is the ring of 2 × 2 upper triangular matrices over a field, then

Sr 6= Sl. If RR is semisimple, then R is called a (right) semisimple ring. RR is

semisimple if and only if RR is semisimple.

The next definition dualizes the notion of an essential extension:

Definitions 1.1.6 A submodule N of an R-module M is called a small (superflu-

ous) submodule of M provided K +N is a proper submodule of M whenever K is a

proper submodule of M , and it is denoted by N � M . If every proper submodule

of M is small, then M is called a hollow module.

Proposition 1.1.7 Let M be an R-module. Then the following statements hold for

K ≤ N ≤M and H ≤M .

1) N �M if and only if K �M and N/K �M/K.
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2) H +K �M if and only if H �M and K �M .

3) If K � M and f : M → N is an R-homomorphism, then f(K) � N . In

particular, if K �M ≤ N , then K � N .

4) Let K1 ≤M1 ≤M , K2 ≤M2 ≤M and M = M1 ⊕M2. Then K1 ⊕K2 �M

if and only if K1 �M1 ve K2 �M2.

5) If K ≤ L ≤ M , K � M and L ≤⊕ M , then K � L. In particular, if

K �M and K ≤⊕ M , then K = 0.

The Jacobson radical Rad(M) of an R-module M is the intersection of all max-

imal submodules of M , or equivalently is the sum of all small submodules of M .

Rad(M) is a fully-invariant submodule of M . The Jacobson radical of a ring R is

denoted by J(R), and it is an ideal of R.

Lemma 1.1.8 (Nakayama’s Lemma) The following statements are equivalent for

an ideal I of a ring R:

1) I ≤ J(R).

2) If MI = M , then M = 0 for every finitely generated R-module M .

3) MI �M for every finitely generated R-module M .

A nonzero R-module M is said to be indecomposable if it is not a direct sum of

two nonzero submodules; and M is called local if it has a largest proper submodule

(namely Rad(M)). A local module is indecomposable.

Theorem 1.1.9 ([41]) Let M be a nonzero R-module. Then M is local if and only

if M is cyclic and hollow.

Let I be an ideal of a ring R. I is said to be prime if, for ideals A and B of R,

A ⊆ I or B ⊆ I whenever AB ⊆ I. A ring R is called a prime ring if the zero ideal

is a prime ideal of R. An ideal of a ring is called semiprime if it is an intersection of

prime ideals. R is said to be a semiprime ring if the zero ideal is semiprime. A ring

with a zero Jacobson radical is a semiprime ring. In particular, semisimple rings

and regular rings (see Section 1.4) are all semiprime.
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Let M be an R-module. The set annR(M) = {r ∈ R|Mr = 0} is the annihilator

of M in R. M is called faithful if annR(M) = 0. If M is nonzero, then M is a

faithful R/annR(M)-module. For any m ∈ M , the set rR(m) = {r ∈ R|mr = 0}

is the annihilator of m in R, and it is a right ideal of R. For any a ∈ R, the set

lM(a) = {m ∈M |ma = 0} is the annihilator of a in M .

Definition 1.1.10 Given any right R-module M , the singular submodule of M is

the set

Z(M) = {m ∈M | mI = 0 for some essential right ideal I of R }.

Equivalently, Z(M) is the set of those m ∈ M for which the right ideal rR(m) is

essential in R.

Lemma 1.1.11 The following statements hold for an R-module M :

1) Z(M)Sr = 0.

2) If f : M → N is an R-homomorphism, then f(Z(M)) ≤ Z(N).

3) If M ≤ N , then Z(M) = M ∩ Z(N).

Corollary 1.1.12 The following statements hold for a ring R:

1) Zr = Z(RR) is an ideal of R.

2) If R 6= 0, then Zr 6= R.

3) Zr does not contain any nonzero idempotent.

An R-module M is called a singular module provided Z(M) = M ; and it is

called a nonsingular module provided Z(M) = 0. Thus the ring R is a nonsingular

right module if and only if Zr = 0, and in this case R is called a right nonsingular

ring. Likewise, we say that R is a left nonsingular ring if Zl = 0. Right and left

nonsingular rings are not equivalent (see [18, Exercise 1]).

Let M be an R-module and N ≤ M . M/N is singular whenever N ≤e M . The

converse of this can easily fail; for example, let M = Z/2Z and N = 0. M/N is a

singular Z-module but N is not an essential submodule of M . However, there are

two special cases in which the converse does work.

Proposition 1.1.13 Let M be nonsingular and let N ≤M . Then M/N is singular

if and only if N ≤e M .
4



Note that the definition of projectivity will be given in Section 1.3.

Proposition 1.1.14 Let P be a projective R-module and let X ≤ P . Then P/X is

singular if and only if X ≤e P . In particular, if P is both projective and singular,

then P = 0.

The class of all nonsingular R-modules is closed under submodules, direct prod-

ucts, essential extensions and module extensions. The class of all singular R-modules

is closed under submodules, factor modules and direct sums.

Proposition 1.1.15 If M is any simple R-module, then M is either singular or

projective, but not both.

We easily obtain the following from Proposition 1.1.14.

Corollary 1.1.16 If every cyclic right ideal of a ring R is projective, then R is a

right nonsingular ring.

Definition 1.1.17 Given any module M , define a submodule Z2(M) by the rule

Z2(M)
Z(M)

= Z( M
Z(M)

). Z2(M) is called the Goldie torsion submodule of M ; and Zr
2 =

Z2(RR) is called the Goldie torsion ideal of a ring R.

Equivalently, the Goldie torsion submodule can be defined as follows:

Z2(M) = {x ∈M | xI ⊆ Z(M) for some I ≤e RR}.

Lemma 1.1.18 The following statements hold for an R-module M :

1) If N ≤M , then Z2(N) = N ∩ Z2(M).

2) Z(M) ≤e Z2(M).

3) Soc(Z2(M)) ⊆ Z(M).

4) Z2(M) ≤c M .

5) M/Z2(M) is nonsingular.

As a generalization of small submodules, δ-small submodules were introduced

by Zhou ([46]). Various properties of δ-small submodules are given below. We refer

the reader to [46] for all the unproved properties.
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Definition 1.1.19 Let N be a submodule of an R-module M . N is said to be

δ-small in M if N +K 6= M for any proper submodule K of M with M/K singular.

We use N �δ M to indicate that N is a δ-small submodule of M .

Every small submodule or nonsingular semisimple submodule of M is δ-small in

M . The δ-small submodules of a singular module are small submodules.

The next lemma explains how close the notion of δ-small submodules is to small

submodules.

Lemma 1.1.20 Let N be a submodule of an R-module M . Then the following

statements are equivalent:

1) N �δ M .

2) If X + N = M , then M = X ⊕ Y for a projective semisimple submodule Y

with Y ⊆ N .

3) If X +N = M with M/X Goldie torsion, then X = M .

Lemma 1.1.21 Let M be an R-module. The following statements hold:

1) For submodules N,K,L of M with K ⊆ N , we have

(a) N �δ M if and only if K �δ M and N/K �δ M/K.

(b) N + L�δ M if and only if N �δ M and L�δ M .

2) If K �δ M and f : M → N is an R-homomorphism, then f(K) �δ N . In

particular, if K �δ M ⊆ N , then K �δ N .

3) Let K1 ⊆ M1 ⊆ M , K2 ⊆ M2 ⊆ M and M = M1 ⊕M2. Then K1 ⊕K2 �δ

M1 ⊕M2 if and only K1 �δ M1 and K2 �δ M2.

The Jacobson radical Rad(M) of an R-module M has the following characteri-

zations:

Rad(M) = ∩{Ker(f)|f : M → S is an R-homomorphism, S is a simple R-

module}

= ∩{K ≤M |K is a maximal submodule of M}

=
∑
{L ≤M |L�M}.

Parallel to the definition of the Jacobson radical, the submodule δ(M) of an R-

module M is defined to be the set ∩{K ≤M |M/K is a simple singular R-module}.

Then Rad(M) ⊆ δ(M); and Soc(M) ⊆ δ(M) if M is a projective R-module.
6



Proposition 1.1.22 Let M be an R-module. Each of the following sets is equal to

δ(M).

1) M1 = ∩{Ker(f)|f : M → S is an R-homomorphism , S is a simple singular

R-module}.

2) M2 =
∑
{L ≤M |L�δ M}.

Lemma 1.1.23 Let M and N be R-modules.

1) If f : M → N is an R-homomorphism, then f(δ(M)) ⊆ δ(N). Therefore,

δ(M) is a fully-invariant submodule of M and Mδ(RR) ⊆ δ(M).

2) If M = ⊕i∈IMi, then δ(M) = ⊕i∈Iδ(Mi).

3) If every proper submodule of M is contained in a maximal submodule of M ,

then δ(M) is the unique largest δ-small submodule of M .

Theorem 1.1.24 Given a ring R, each of the following sets is equal to δ(RR).

1) R1 = the intersection of all essential maximal right ideals of R.

2) R2 = the unique largest δ-small right ideal of R.

3) R3 = {x ∈ R|xR +KR = R⇒ KR ≤⊕ RR}.

4) R4 = ∩{P CR|R/P has a faithful singular simple module }.

5) R5 = {x ∈ R|∀y ∈ R, ∃ a semisimple right ideal Y of R such that (1−xy)R⊕

Y = RR}.

Corollary 1.1.25 For a ring R, δ(RR)/Soc(RR) = J(R/Soc(RR)). In particular,

R = δ(RR) if and only if R is a semisimple ring.

Note: δ(RR) and δ(RR) need not be equal for a ring R. For instance, if R is the

ring of 2× 2 upper triangular matrices over a field, then δ(RR) 6= δ(RR).

1.2 Injective Modules and Some of Their Generalizations

In this section, we will introduce injective modules and give some basic properties

of these modules. Also, we will deal with some generalizations of injective modules

which will be used in the third chapter.
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Definition 1.2.1 An R-module M is called N-injective (or injective relative to N),

if every R-homomorphism from a submodule K of N to M can be lifted to an R-

homomorphism from N to M . An R-module M is called an injective module if it is

N -injective for every R-module N .

If an R-module M is M -injective, then it is called quasi-injective. A ring R is

called right self injective if it is R-injective as a right R-module. By Baer’s criterion,

an R-module M is injective if and only if M is R-injective.

Direct products and direct summands of injective modules are injective. On the

other hand, it is not true that every direct sum of injective modules is injective.

Indeed, it is precisely the Noetherian rings (see Section 1.9) over which every direct

sum of injectives is injective.

Proposition 1.2.2 ([24]) Any (quasi-)injective R-module M satisfies the following

two conditions:

(C1) Every submodule of M is essential in a summand of M ;

(C2) If a submodule N of M is isomorphic to a summand of M , then N is a

summand of M .

An R-module M which satisfies (C1) is also known as an extending module or a

CS module in the literature.

Proposition 1.2.3 ([24]) If an R-module M satisfies (C2), then it satisfies the

following condition:

(C3) If M1 and M2 are summands of M such that M1 ∩M2 = 0, then M1 ⊕M2

is a summand of M .

Definition 1.2.4 ([24]) An R-module M is called continuous if it satisfies (C1) and

(C2); M is called quasi-continuous if it satisfies (C1) and (C3).

The following implications hold for an R-module:

Injective ⇒ quasi-injective ⇒ continuous ⇒ quasi-continuous ⇒ (C1).

The Baer criterion for testing when an R-module M is injective naturally leads

one to consider the case when one can extend any R-homomorphism from any cyclic

right ideal of R to M to an R-homomorphism of R to M .
8



Definition 1.2.5 ([23]) An R-module M is said to be principally injective, or P -

injective for short, if every map from any cyclic right ideal to M extends to a map

of R to M .

An R-module M is P -injective if and only if lMrR(a) = Ma for all a ∈ R, where

l and r are the left and right annihilators, respectively. When the ring is P -injective

as a right R-module, the ring is said to be a right P -injective ring.

Definition 1.2.6 ([35]) Given a module MR, let S = EndR(M). The module M is

said to be almost principally injective (or AP -injective for short) if, for any a ∈ R,

there exists an S-submodule Xa of M such that lMrR(a) = Ma ⊕ Xa as left S-

modules.

If RR is an AP -injective module, then R is called a right AP -injective ring. It

immediately follows from the definitions that a P -injective module is AP -injective.

Definition 1.2.7 ([45]) Given a module MR, let S = EndR(M). The module M

is called almost principally quasi-injective (or APQ-injective for short) if, for any

m ∈M , there exists an S-submodule Xm of M such that lMrR(m) = Sm⊕Xm.

It is easy to observe that RR is APQ-injective if and only if RR is AP -injective.

1.3 Projective Modules

In this section, we refer the reader to [3] for the unproved properties of projective

modules.

Definitions 1.3.1 Let M be an R-module. If N is an R-module, then M is N-

projective (or projective relative to N) in case for each R-epimorphism g : N → K

and each R-homomorphism h : M → K there is an R-homomorphism f : M → N

such that g ◦ f = h. An R-module P is called projective in case it is projective

relative to every R-module. If an R-module M is M -projective, then M is called a

quasi-projective module.

Direct sums and direct summands of projective modules are projective. A ring

is a projective module over itself. Every free module is a projective module, too.
9



Proposition 1.3.2 The following statements are equivalent for an R-module P :

1) P is projective.

2) Every epimorphism M → P → 0 splits.

3) P is isomorphic to a direct summand of a free R-module.

We have the following useful result for quasi-projective modules.

Proposition 1.3.3 ([41, 41.14]) Let M be a quasi-projective R-module. If M =

U + V and U ≤⊕ M , then there exists a submodule V ′ of V such that M = U ⊕ V ′.

A pair (P, p) is a projective cover of an R-module M in case P is a projective

R-module and the epimorphism p : P →M has small kernel; i.e, Ker(p)� P . We

may call P itself a projective cover of M .

Every projective R-module is a projective cover of itself. The Z-modules Z2 and

Q have no projective covers.

Proposition 1.3.4 If pi : Pi → Mi (i = 1, . . . , n) are projective covers, then p =

(⊕ipi) : ⊕iPi → ⊕iMi is a projective cover.

The next lemma is The Fundamental Lemma for Projective Covers. One of its

consequences is that if a module does have a projective cover, then it has (essentially)

only one.

Lemma 1.3.5 Suppose MR has a projective cover p : P → M . If QR is projective

and q : Q → M is an epimorphism, then Q has a decomposition Q = P ⊕ P ′ such

that

1) P ∼= P ′;

2) P ′′ ≤ Ker(q);

3) (q|P ′) : P ′ →M is a projective cover for M .

Moreover, if f : M1 → M2 is an isomorphism and if p1 : P1 → M1 and p2 :

P2 →M2 are projective covers, then there is an isomorphism f ′ : P1 → P2 such that

p2f
′ = fp1.

The Jacobson radical of a projective R-module is Rad(P ) = PJ(R). A similar

result holds for δ(P ) submodule as the next result shows.

10



Lemma 1.3.6 ([46]) If P is a projective R-module, then δ(P ) = Pδ(RR) and δ(P )

is the intersection of all essential maximal submodules of P .

Definition 1.3.7 ([46]) A pair (P, p) is called a projective δ-cover of an R-module

M if P is projective and p is an epimorphism of P onto M with Ker(p)�δ P .

The notion of projective δ-covers was introduced by Zhou ([46]) as a general-

ization of the notion of projective covers. Unlike projective covers, the projective

δ-covers of a module are not unique up to isomorphism, but they differ by only a

projective semisimple direct summand.

Every projective cover of an R-module M is a projective δ-cover. Some modules

may not have projective δ-covers and some modules have projective δ-covers but no

projective covers (see [46]).

Lemma 1.3.8 ([46]) If pi : Pi → Mi (i = 1, . . . , n) are projective δ-covers, then

p = (⊕ipi) : ⊕iPi → ⊕iMi is a projective δ-cover.

Lemma 1.3.9 ([46]) Suppose MR has a projective δ-cover p : P → M . If QR

is projective and q : Q → M is an epimorphism, then there exist decompositions

P = A⊕B and Q = X ⊕ Y such that

1) A ∼= X;

2) p|A : A→M is a projective δ-cover;

3) q|X : X →M is a projective δ-cover;

4) B is a projective semisimple module with B ⊆ Ker(p) and Y ⊆ Ker(q).

Lemma 1.3.10 ([46]) Let P be a projective R-module and N a submodule of P .

Then the following statements are equivalent:

1) P/N has a projective δ-cover.

2) P = P1 ⊕ P2 for some P1 and P2 with P1 ⊆ N and P2 ∩N �δ P .

1.4 Regular and (I-)Semiregular Rings

This section is concerned with regular rings and some of their generalizations.
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Lemma 1.4.1 ([39]) For a ring R, the following statements are equivalent:

1) For any a ∈ R, there exists b ∈ R such that aba = a.

2) Every cyclic right (left) ideal is a direct summand of R.

3) Every finitely generated right (left) ideal is a direct summand of R.

Definition 1.4.2 An element a of a ring R is called regular if there exists b ∈ R

such that a = aba. A ring R is called (von Neumann) regular if it satisfies the

equivalent conditions of Lemma 1.4.1.

Definition 1.4.3 Let I be a right or a left ideal of a ringR. We say that idempotents

can be lifted modulo I if, whenever a2 − a ∈ I, a ∈ R, there exists e2 = e ∈ R such

that e− a ∈ I.

This notion is extended as follows:

Lemma 1.4.4 ([31]) The following are equivalent for a right ideal T of a ring R:

1) If a2 − a ∈ T , there exists e2 = e ∈ aR such that e− a ∈ T .

2) If a2 − a ∈ T , there exists e2 = e ∈ aRa such that e− a ∈ T .

3) If a2 − a ∈ T , there exists e2 = e ∈ Ra such that e− a ∈ T .

Definition 1.4.5 ([25]) We say that a right ideal T of a ring R is strongly lifting,

or that idempotents lift strongly modulo T , if the conditions in Lemma 1.4.4 are

satisfied.

Let I be an ideal of a ring R. If idempotents lift modulo I, then I need not be a

strongly lifting ideal. For instance, suppose that 0 and 1 are the only idempotents

in R and R/I. If I 6= R, and I * J(R), then idempotents lift modulo I, but not

strongly. More specifically, one can consider R = Z and I = pkZ, where p is a prime

number and k ≥ 1 (see [31, Example 2]).

Lemma 1.4.6 ([31, Lemma 5]) If idempotents can be lifted in R modulo J(R), then

they can be lifted strongly modulo every one-sided ideal contained in J(R).

Theorem 1.4.7 ([31, Theorem 10]) The right socle Sr is strongly lifting in any

ring.

12



Proposition 1.4.8 ([31, Proposition 11]) Let I be an ideal of a ring R and write

a = a + I for a ∈ R. Assume that I is strongly lifting and that {a1, . . . , an} are

orthogonal idempotents in R/I.

1) For each n ≥ 1, there exist orthogonal idempotents {e1, . . . , en} in R such that

ei = ai and ei ∈ aiR for each i = 1, 2, . . . , n.

2) If I contains no nonzero idempotent and a1 + · · · + an = 1, we can choose

orthogonal idempotents ei ∈ aiR for each i such that e1 + · · ·+ en = 1.

Lemma 1.4.9 ([31, Lemma 26]) Let I be an ideal of a ring R. The following are

equivalent for a right ideal T of R:

1) T = eR⊕ S, where e2 = e and S ⊆ I is a right ideal.

2) There exists e2 = e ∈ T with (1− e)T ⊆ I.

3) There exists e2 = e ∈ T with T ∩ (1− e)R ⊆ I.

Following [31], if I is an ideal of a ring R, we say that I respects a right ideal

T ⊆ R if the conditions in Lemma 1.4.9 are satisfied.

Lemma 1.4.10 ([31, Lemma 27]) Let I be an ideal of a ring R and a ∈ R. Then I

respects aR if and only if I respects Ra.

Definition 1.4.11 ([31]) Let I be an ideal of a ring R. An element a of a ring R is

called I-semiregular if I respects aR. The ring R is called an I-semiregular ring if

every element is I-semiregular.

Theorem 1.4.12 ([31, Theorem 28]) The following conditions are equivalent for an

ideal I of a ring R:

1) R is I-semiregular.

2) I respects every finitely generated right (left) ideal of R.

3) R/I is regular and idempotents lift strongly modulo I.

Hence, every ring R is R-semiregular, and the 0-semiregular rings are just the

regular rings.

An I-semiregular ring R is called semiregular in case I = J(R). Combining

Theorem 1.4.12 with Lemma 1.4.6, one can observe that a ring R is semiregular if

13



and only if R/J(R) is regular and idempotents lift modulo J(R). A well known

result of Utumi ([37]) asserts that if R is a right continuous ring (i.e., the ring which

satisfies (C1) and (C2)), then R is semiregular and J(R) = Zr. The converse of this

problem was studied in [29] by Nicholson and Yousif. They showed that a ring R

is semiregular and J(R) = Zr if and only if R is Zr-semiregular (see [29, Theorem

2.4]), and called such rings right weakly continuous. It follows from Theorem 1.4.7

that a ring R is Sr-semiregular if and only if R/Sr is regular. It was shown in [1,

Corollary 4.6] that Sr-semiregular rings are semiregular. But the converse need not

be true (e.g. consider the ring Z8). δr-semiregular rings were defined by Zhou ([46])

as a generalization of a semiregular ring: A ring R is said to be δr-semiregular if

R/δr is regular and idempotents lift modulo δr.

We have the following implications for a ring R:

Sr-semiregular ⇒ semiregular ⇒ δr-semiregular;

Zr-semiregular ⇒ semiregular ⇒ δr-semiregular.

1.5 Perfect and (I-)Semiperfect Rings

In this section, we introduce perfect rings and some of their generalizations.

Definition 1.5.1 A set I is said to be right T -nilpotent if, for any sequence {ai|i ≥

1} in I, there exists an integer n ≥ 1 such that anan−1 · · · a1 = 0; I is said to be left

T -nilpotent if a1a2 · · · an−1an = 0.

Definition 1.5.2 A ring R is called right perfect if R/J(R) is semisimple and J(R)

is right T -nilpotent.

Theorem 1.5.3 ([7], [10]) The following statements are equivalent for a ring R:

1) R is right perfect.

2) Every right R-module has a projective cover.

3) Every semisimple right R-module has a projective cover.

4) R satisfies descending chain condition on cyclic left ideals.

5) R satisfies descending chain condition on finitely generated left ideals.
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Note: The notion of perfect rings is not left-right symmetric (see [30, Example

B.36]).

Proposition 1.5.4 ([30]) Let R be a right perfect ring. Then the following state-

ments hold:

1) eRe is a right perfect ring for any e2 = e ∈ R.

2) Mn(R) is a right perfect ring for n ≥ 1.

3) R/A is a right perfect ring for any ideal A of R.

A ring R is called semipotent if each one-sided ideal not contained in J(R)

contains a nonzero idempotent, and R is called potent if, in addition, idempotents

lift modulo J(R). In [31], the semipotent rings are generalized as follows:

Lemma 1.5.5 ([31, Lemma 19]) Let I be an ideal of a ring R. The following are

equivalent:

1) If T * I is a right (respectively, left) ideal there exists e2 = e ∈ T − I.

2) If a 6∈ I there exists e2 = e ∈ aR− I (respectively, e ∈ Ra− I).

3) If a 6∈ I there exists x ∈ R such that xax = x 6∈ I.

Definition 1.5.6 ([31]) If R is a ring and I is an ideal of R, we say that R is I-

semipotent if the conditions in Lemma 1.5.5 are satisfied, and say that R is I-potent

if it is I-semipotent and idempotents lift strongly modulo I.

Semipotent (potent) rings are just the J(R)-semipotent (J(R)-potent) rings.

Every regular ring is 0-potent.

Theorem 1.5.7 ([31]) Let I be an ideal of a ring R. The following are equivalent:

1) R/I is semisimple and idempotents lift strongly modulo I.

2) I respects every right (respectively, left) ideal of R.

3) I respects countably generated right (respectively, left) ideal of R.

4) R is I-semipotent and I respects ⊕∞i=1eiR (respectively, ⊕∞i=1Rei) for any

orthogonal idempotents ei ∈ R.

5) R is I-semipotent and contains no infinite orthogonal family of idempotents

outside I.

6) R is I-semipotent and R/I is semisimple.
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If I is an ideal of a ring R, the ring R is called I-semiperfect if it satisfies the

equivalent conditions in Theorem 1.5.7; R is called semiperfect in case I = J(R).

Theorem 1.5.7, together with Lemma 1.4.6, gives that a ring R is semiperfect if and

only if R/J(R) is semisimple and idempotents lift modulo J(R). By Theorem 1.4.7,

we obtain that R is Sr-semiperfect if and only if R/Sr is semisimple. It is proved

in [31, Corollary 37] that a ring R is Zr-semiperfect is equivalent to the fact that

R is a semiperfect ring and J(R) = Zr. Zhou ([46]) defined δr-semiperfect rings

as a generalization of semiperfect rings: A ring R is called δr-semiperfect if R/δr is

semisimple and idempotents lift modulo δr.

Sr-semiregular rings are semiregular (see [1, Corollary 4.6]), but this is not the

case for Sr-semiperfect rings; i.e., Sr-semiperfect rings need not be semiperfect (see

[46, Example 4.1]).

It easily follows from the definitions that semiperfect rings are semiregular. But

the converse is not true in general. For example, consider the ring R =
∏

i∈I Fi,

where Fi = F is a field. R is a regular ring but it is not semisimple since Soc(R) =

⊕i∈IFi.

As a generalization of right perfect rings, Zhou ([46]) introduced right δ-perfect

rings. Following [46], a ring R is called right δ-perfect if every right R-module has a

projective δ-cover. Notice that we use the notation ’δ-perfect’ instead of ’δr-perfect’.

Since there is no definition of a perfect ring relative to an ideal, we do not have a

notion of δr-perfect rings.

Theorem 1.5.8 ([46, Theorem 3.8]) The following conditions are equivalent for a

ring R:

1) R is a right δ-perfect ring.

2) Every semisimple right R-module has a projective δ-cover.

3) R is a δr-semiperfect ring and δ(M)�δ M for any module M .

4) R/Sr is a right perfect ring and idempotents lift modulo δr.

1.6 Generalized Semiregular Rings

In 2005, Xiao and Tong ([42]) introduced generalized semiregular rings as a gener-

alization of semiregular and AP -injective rings. In this section, all the results are
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taken from the paper [42]. We will use the notation l(a) (respectively, r(a)) for the

left (respectively, right) annihilator of an element a of a ring R.

Definition 1.6.1 An element a of a ring R is called right generalized semiregular

if there exixts two left ideals P,L of R such that lr(a) = P ⊕ L, where P ⊆ Ra

and Ra ∩ L � R. A ring R is called right generalized semiregular if each of its

elements is right generalized semiregular. Left generalized semiregular elements and

left generalized semiregular rings can be defined similarly.

Note: It is not known if the notion of right generalized semiregular rings is left-right

symmetric.

It is known from [28] that a ring R is right P -injective if and only if for any a ∈ R,

lr(a) = Ra. Thus, every right P -injective ring is right generalized semiregular. In

particular, a right self-injective ring is right generalized semiregular.

Proposition 1.6.2 ([42, Proposition 1.2]) If R is a right AP -injective or a semireg-

ular ring, then R is right generalized semiregular.

The following examples show that right generalized semiregular rings need not

be semiregular or right AP -injective.

Example 1.6.3 ([42, Example 1.3(1)]) The trivial extension of R by a bimodule

RVR is the direct sum T (R, V ) = R ⊕ V with multiplication (r + v)(r′ + v′) =

rr′ + (rv′ + vr′). It is shown in [29] that the trivial extension R = T (Z,Q/Z) is a

commutative P -injective ring, but it is not semiregular since R/J(R) ∼= Z.

Note: If R is a right AP -injective ring, then J(R) = Z(RR) (see [35]).

Example 1.6.4 ([42, Example 1.3(2)]) LetR =

 Z2 Z2

0 Z2

. Then J(R) =

 0 Z2

0 0


and Z(RR) = Z(RR) = 0. Since J(R) 6= Z(RR) = Z(RR), R is neither left nor right

AP -injective. But R/J(R) ∼=

 Z2 0

0 Z2

 is regular and idempotents lift modulo

J(R).

In [42], Xiao and Tong gave some sufficient conditions under which right gener-

alized semiregular rings are semiregular.
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Lemma 1.6.5 ([42, Lemma 1.4]) If R is a right generalized semiregular ring and

for every a ∈ R there exists e2 = e ∈ R such that r(a) = r(e), then R is semiregular.

Due to Armendariz ([4]), a ring R is called right (left) PP if every cyclic right

(left) ideal of R is projective. R is a right PP ring if and only if for every a ∈ R

there exists an idempotent e ∈ R such that r(a) = eR.

Corollary 1.6.6 ([42, Corollary 1.7]) Let R be a right PP ring. If R is a right

generalized semiregular ring, then R is semiregular.

Proposition 1.6.7 ([42, Proposition 1.8]) If R is a right generalized semiregular

ring, then Zr ⊆ J(R).

Corollary 1.6.8 ([42, Corollary 1.9]) If R is a semiregular ring, then Zr ⊆ J(R)

and Zl ⊆ J(R).

It is known that if R is a semiregular ring, then so is the ring eRe for any

idempotent e of R (see [30, Corollary B.42]). Hence, if the n×n matrix ring Mn(R)

over a ring R is semiregular for some n ≥ 1, then so is R.

An idempotent element e ∈ R is left (respectively, right) semicentral in R if

Re = eRe (respectively, eR = eRe) (see [8]).

Proposition 1.6.9 ([42, Proposition 1.11]) Let R be a right generalized semiregular

ring. If an idempotent e of R is right semicentral, then eRe is right generalized

semiregular.

Theorem 1.6.10 ([42, Theorem 1.15]) Let e be an idempotent of R such that

ReR = R. If R is a right generalized semiregular ring, then eRe is right gener-

alized semiregular.

Corollary 1.6.11 ([42, Corollary 1.16]) Let R be a ring. If Mn(R) is right gener-

alized semiregular for some n ≥ 1, then so is R.
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1.7 Semiregular and Semiperfect Modules

Mares ([22]) called a projective module semiperfect if every homomorphic image has

a projective cover, and showed that many of the properties of semiperfect rings can

be extended to these modules. In [20], semiperfect modules were defined without

the projectivity assumption on modules. In this dissertation, we will consider the

latter definition of semiperfect modules.

An element x in an R-module M is called regular if x(αx) = x for some α ∈

HomR(M,R). Zelmanowitz ([44]) called a module regular if each of its elements is

regular. He also proved that a module is regular if and only if every finitely generated

(cyclic) submodule is a projective direct summand (see [44, Theorem 2.2]).

A class of semiregular modules was introduced by Nicholson ([26]). This class

contains all regular and all semiperfect modules.

Definition 1.7.1 ([26]) An element x of an R-module M is called semiregular if

there exists a decomposition M = P ⊕ Q with P ⊆ xR projective and xR ∩ Q �

M . The module M is said to be a semiregular module if each of its elements is

semiregular.

As the next result shows, Nicholson characterized the semiperfect modules among

the projective semiregular ones.

Proposition 1.7.2 ([26, Proposition 1.19]) A projective R-module M is semiperfect

if and only if it is semiregular, Rad(M)�M and M/Rad(M) is semisimple.

Dual to the continuous modules, discrete modules are defined as follows:

Definition 1.7.3 ([24]) Let M be an R-module.

(D1) For every submodule A of M , there exists a decomposition M = M1 ⊕M2

such that M1 ≤ A ve A ∩M2 �M .

(D2) For A ≤M , ifM/A is isomorphic to a direct summand ofM , then A ≤⊕ M .

The module M is called discrete if it satisfies the conditions (D1) and (D2).

Proposition 1.7.4 ([24, Corollary 4.54]) Let M be a projective R-module. Then M

is discrete if and only if M is a direct sum of local submodules and Rad(M)�M .
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Proposition 1.7.5 ([24, Corollary 4.43]) A projective module P is semiperfect if

and only if P is discrete.

1.8 The Exchange Property

Definition 1.8.1 ([14]) An R-module M is said to have the exchange property if

for any module X and decompositions

X = M ′ ⊕ Y = ⊕i∈INi,

where M ′ ∼= M , there exist submodules N ′i ⊆ Ni for each i such that

X = M ′ ⊕ (⊕N ′i).

If this condition holds for finite sets I (equivalently for |I| = 2) the module M is

said to have the finite exchange property.

Every quasi-injective R-module has the exchange property (see [24, Theorem

1.21]).

Warfield ([40]) called a ring R an exchange ring if RR has the (finite) exchange

property. He verified that the definition was left-right symmetric and that a module

has the finite exchange property if and only if its endomorphism ring is an exchange

ring (see [40, Theorem 10]). He also showed that ([40, Theorem 3]) every semiregular

ring is an exchange ring. Also, it was proved by Nicholson ([27, Corollary 2.4]) that

a ring R is exchange if and only if R/J(R) is exchange and idempotents lift modulo

J(R).

Theorem 1.8.2 ([27, Theorem 2.1]) Let M be an R-module. Then EndR(M) is an

exchange ring if and only if M has the finite exchange property.

Theorem 1.8.3 ([9, Theorem 3]) A quasi-projective R-module M has the finite

exchange property if and only if whenever M = A+B, there exists a decomposition

M = P ⊕Q such that P ≤ A and Q ≤ B.

Due to Nicholson ([27]), a ring R is called clean if every element of R is the sum

of a unit and an idempotent. Every local ring is clean. Also, the ring of all n × n
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matrices over an algebraically closed field is clean. Moreover, a ring R is clean if

and only if R/J(R) is clean and idempotents lift modulo J(R) (see [27]). Note that

clean rings are exchange rings (see [27, Proposition 1.8]).

Following [11], a module is said to be clean if its endomorphism ring is clean.

Discrete modules over any ring, quasi-projective modules over a right perfect ring

and continuous modules are some examples of clean modules (see [11]).

1.9 Chain conditions

We refer the reader to [13], [15] and [21] for the unproved results in this section.

Let M be an R-module and S a non-empty collection of submodules of M ordered

under inclusion. S is said to satisfy the maximum (minimum) condition if every

subset of S has a maximal (minimal) element. S is said to satisfy the ascending

chain condition (acc) if every chain M1 ⊂ M2 ⊂ . . . with Mi ∈ S eventually stops;

the descending chain condition (dcc) is analogously defined. In the case where S

is the set of all submodules of M , modules satisfying the maximum condition are

called Noetherian; modules satisfying the minimum condition are called Artinian.

A ring R is called right Artnian (right Noetherian) if RR is Artinian (Noetherian).

A similar definition may be made on the left. R is Artinian (Noetherian) if it

is both right and left Artinian (Noetherian). It is well known that an R-module

M is Artinian (Noetherian) if and only if M has dcc (acc) on submodules; and

that M is Noetherian if and only if every submodule of M is finitely generated.

The Artinian and Noetherian properties are inherited by submodules and factor

modules. Finitely generated modules over a right Artinian (right Noetherian) ring

are Artinian (Noetherian), too.

Theorem 1.9.1 (Hopkins-Levitzki) A ring R is right Artinian if and only if it is

right Noetherian, J(R) is nilpotent and R/J(R) is semisimple.

Corollary 1.9.2 A right Artinian ring is right perfect.

Theorem 1.9.3 The following statements hold for an R-module M :

1) M has acc (dcc) on essential submodules if and only if M/Soc(M) is Noethe-

rian (Artinian).
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2) M has acc (dcc) on small submodules if and only if Rad(M) is Noetherian

(Artinian).

An R-module M is called locally Artinian (locally Noetherian) provided every

finitely generated submodule of M is Artinian (Noetherian).

An R-module M is said to be semiartinian if every nonzero homomorphic image

of M has an essential socle, or equivalently, if every nonzero homomorphic image of

M has a nonzero socle. A ring R is right semiartinian if RR is semiartinian. Clearly,

every Artinian module is semiartinian and every right Artinian ring is right semiar-

tinian. Submodules and factor modules of a semiartinian module are semiartinian,

too.

Let M be an R-module. We say that M has finite Goldie dimension if M does

not contain a direct sum of an infinite number of non-zero submodules. A ring R is

said to have finite right Goldie dimension if RR has finite Goldie dimension. Goldie

dimension of a module is also known as uniform dimension in the literature. The

next lemma gives the basic properties of modules of finite Goldie dimension.

Lemma 1.9.4 Let M be a non-zero R-module.

1) If M has finite Goldie dimension, then each non-zero submodule of M contains

a uniform submodule, and there is a finite number of uniform submodules of M whose

sum is direct and is an essential submodule of M .

2) Suppose that M has uniform submodules U1, . . . , Un such that the sum U1 +

· · · + Un is direct and is an essential submodule of M . Then M has finite Goldie

dimension and the positive integer n is independent of the choice of the Ui. We call

n the Goldie dimension of M and denote it by udim(M).

A Noetherian or an Artinian R-module has finite Goldie dimension. If a semisim-

ple R-module has finite Goldie dimension, then it s both Artinian and Noetherian.

Theorem 1.9.5 Let M be a semisimple R-module. The following are equivalent:

1) M is Artinian.

2) M is Noetherian.

3) M has finite Goldie dimension.

4) M is finitely generated.
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2 SEMIREGULAR AND SEMIPERFECT

MODULES RELATIVE TO A SUBMODULE

Semiregular and semiperfect rings were generalized to I-semiregular and I-semi-

perfect rings, for an ideal I of a ring R, by Yousif and Zhou ([43]). Nicholson

and Zhou ([31]) studied on the concept of strongly lifting ideals to characterize I-

semiregular and I-semiperfect rings. They proved that a ring R is I-semiregular

(I-semiperfect) if and only if R/I is regular (semisimple) and I is strongly lifting.

The notions of I-semiregular rings and I-semiperfect rings are left-right symmetric

by Theorem 1.4.12 and Theorem 1.5.7.

In [1] and [32], U -semiregular and U -semiperfect modules are defined as module

theoretic versions of I-semiregular and I-semiperfect rings by considering a fully-

invariant submodule U of an R-module, and some properties of I-semiregular and

I-semiperfect rings are generalized to modules.

In this chapter, we investigate strongly lifting submodules and U -semipotent

modules for a submodule U of an R-module. We call a submodule U of a module

M strongly lifting if whenever M/U = (A + U)/U ⊕ (B + U)/U , then M has a

decomposition M = P ⊕ Q such that P ≤ A, (A + U)/U = (P + U)/U and

(B + U)/U = (Q+ U)/U . We prove that an ideal I of a ring R is a strongly lifting

ideal if and only if I is a strongly lifting submodule of RR. M is called U-semipotent

if for every submodule A of M such that A 6⊆ U , there exists a summand B of M

such that B ≤ A and B 6⊆ U . We prove that if U ≤ M and M is U -semipotent,

then for any submodule N of M with N 6⊆ U , N is indecomposable if and only if N

is local.

Moreover, we consider strongly lifting submodules to obtain a new characteri-

zation of U -semiregular and U -semiperfect modules for a projection-invariant sub-

module U . We prove that if M is a finitely generated and projective R-module, then

M is U -semiregular if and only if every finitely generated submodule of M/U is a

direct summand and U is strongly lifting. If M is a projective R-module, then M

is U -semiperfect if and only if M/U is semisimple and U is strongly lifting.

Finally, we characterize rings over which every (projective) module M is τ(M)-
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semiperfect, where τ is a preradical. We consider some special preradicals such as

Rad, Z2 and δ. We prove that every right R-module M is Z2(M)-semiperfect if and

only if R is Zr
2 -semiperfect; every projective R-module M is δ(M)-semiperfect if and

only if R is right δ-perfect; and a ring R is Zr-semiperfect and Zr
2 is injective if and

only if R is semiperfect and right self-injective.

2.1 Strongly Lifting Submodules and Semipotent Modules

Relative To A Submodule

Definition 2.1.1 Let U be a submodule of a module M . U is called a strongly

lifting submodule of M if whenever M/U = (A + U)/U ⊕ (B + U)/U , then M has

a decomposition M = P ⊕ Q such that P ≤ A, (A + U)/U = (P + U)/U and

(B + U)/U = (Q+ U)/U .

Proposition 2.1.2 Let I be an ideal of a ring R. Let R = R/I and r = r + I for

any r ∈ R. The following statements are equivalent:

(1) I is a strongly lifting ideal.

(2) I is a strongly lifting submodule of RR.

Proof (1) ⇒ (2) Let R = A ⊕ B. Let 1 = a + b where a ∈ A, b ∈ B. Then

a and b are orthogonal idempotents. By Proposition 1.4.8, there exist orthogonal

idempotents e1 and e2 in R such that e1 = a, e2 = b and e1 ∈ aR, e2 ∈ bR. Then

R = e1R⊕(1−e1)R and e1R ≤ aR, e1R = aR = A, (1−e1)R = (1−a)R = bR = B.

Hence (2) holds.

(2) ⇒ (1) Let e2 = e ∈ R. Then R = eR ⊕ (1− e)R. By hypothesis, there is

a decomposition R = P ⊕ Q, where P ≤ eR, P = eR and Q = (1− e)R. Then

there exists an idempotent f in R such that P = fR and Q = (1 − f)R. Since

P = fR = eR, f = ea, e = fb for some a, b in R. This implies that fe = e. Since

Q = (1− f)R and f = fe + f(1− e), we have that f = e. Hence, I is strongly

lifting. �

Proposition 2.1.3 Let M be a quasi-projective R-module and U a submodule of

M . If U is a summand of M , then U is strongly lifting.
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Proof Let N be such that M = U ⊕N , and let M/U = (A+U)/U ⊕ (B +U)/U .

Consider the isomorphism f : N →M/U . Then there exist submodules B1 and B2

of N such that f(B1) = (A+U)/U = (B1+U)/U , f(B2) = (B+U)/U = (B2+U)/U .

Then M/U = (B1 +U)/U ⊕ (B2 +U)/U . Since B1∩B2 ≤ (B1 +U)∩ (B2 +U) = U ,

we have B1 ∩ B2 = 0. Also, N = B1 + B2. Hence, M = U ⊕ N = U ⊕ B1 ⊕ B2.

Since U ⊕ B1 = U + A is quasi-projective, there exists a submodule L of A such

that U ⊕ B1 = U ⊕ L by Proposition 1.3.3. Thus, M = U ⊕ L⊕ B2, where L ≤ A,

(L + U)/U = (A + U)/U and (B2 + U)/U = (B + U)/U , i.e., U is strongly lifting.

�

Nicholson ([27, Corollary 1.3]) showed that a ring R is exchange if and only if

idempotents can be lifted modulo every right (left) ideal ofR, which is also equivalent

to saying that every right (left) ideal of R is strongly lifting (see [31, Theorem 4]).

The next result shows that a similar fact holds for quasi-projective modules.

Theorem 2.1.4 Let M be a quasi-projective R-module. Then the following state-

ments are equivalent:

(1) M has the finite exchange property.

(2) Every submodule of M is strongly lifting.

Proof (1) ⇒ (2) Let N ≤ M and M/N = (A + N)/N ⊕ (B + N)/N . Then

M = A + B + N . By Theorem 1.8.3, there is a decomposition M = P1 ⊕ P2 with

P1 ≤ A, P2 ≤ B +N . Then (P1 +N)/N = (A+N)/N , (P2 +N)/N = (B +N)/N .

Hence, N is strongly lifting.

(2)⇒ (1) Let M = M1 +M2 and N = M1 ∩M2. Then M/N = M1/N ⊕M2/N .

By (2), there is a decomposition M = P⊕Q such that P ≤M1, (P+N)/N = M1/N ,

(Q+N)/N = M2/N . Then Q ≤M2. By Theorem 1.8.3, M has the finite exchange

property. �

Now we give the definition of a semipotent module relative to a submodule.

Definition 2.1.5 Let U be a submodule of an R-module M . The module M is

called U-semipotent if, for every submodule A of M such that A 6⊆ U , there exists a

summand B of M such that B ≤ A and B 6⊆ U . A ring R is called semipotent if RR

25



is J(R)-semipotent. M is called U-potent if M is U -semipotent and U is a strongly

lifting submodule of M .

The next example shows that there exists a U -semipotent module M where U

is not strongly lifting.

Example 2.1.6 ([31, Example 23]) Consider the direct product Q = Z×Z2×Z2×

Z2 × · · · of rings. Write n = n1 for all n ∈ Z. Let R denote the following subring

of Q:

R = {(n, n2, n3, · · · , nk, n, n, . . .)|n, ni ∈ Z, k ≥ 2}.

I = {(2m, 0, 0, . . .)|m ∈ Z} is an ideal of R. It was shown in [31] that R is an

I-semipotent ring where idempotents lift modulo I but not strongly.

An R-module M is 0-potent if every non-zero submodule of M contains a non-

zero summand of M . Every regular module is 0-potent. In fact, let M be a regular

R-module and 0 6= A ≤ M . Then there exists 0 6= a ∈ A and α ∈ HomR(M,R)

such that a(αa) = a. This implies that aR is a non-zero summand of M in A.

On the other hand, an R-module M with zero radical and essential socle is 0-

potent. In fact, let 0 6= A ≤M . Then A contains a simple submodule S. Since S is

not small in M , then S is a summand of M .

Let I be an ideal of a ring R. It was shown in [31, Proposition 20] that if R is

I-semipotent, then R/I is 0-potent, and that the converse holds if I is a strongly

lifting ideal. We have the following module theoretic versions of these results.

Proposition 2.1.7 Let M be an R-module and U a submodule of M . If M/U is

0-potent and U is strongly lifting, then M is U-potent.

Proof Let A be a submodule of M such that A 6⊆ U . Then (A+U)/U is a non-zero

submodule of the factor module M/U , so there exists a non-zero element a = a+U of

(A+U)/U . Since M/U is 0-potent, there exists a non-zero summand B/U of M/U

which is contained in (aR + U)/U . Hence, B/U is cyclic. Let B/U = (bR + U)/U ,

where b ∈ B. On the other hand, there exists x ∈ A such that b = x. Then
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M/U = (xR + U)/U ⊕ C/U for some C ≤ M . Since U is strongly lifting, there is

a decomposition M = P ⊕ Q such that P ≤ xR, (P + U)/U = (xR + U)/U and

(Q+ U)/U = C/U . Thus, P is a summand of M with P ≤ A and P * U . �

Note that a submodule U of an R-module M is called projection-invariant if

π(U) ≤ U for every projection π of M .

Lemma 2.1.8 ([16, Exercise 4.d, page 50]) Let M = M1 ⊕ M2 and U be any

projection-invariant submodule of M . Then U = (U ∩M1)⊕ (U ∩M2).

Proposition 2.1.9 Let U be a projection-invariant submodule of an R-module M .

If M is U-semipotent, then M/U is 0-potent.

Proof Let 0 6= A/U ≤M/U . Then A 6⊆ U . By hypothesis, there exists a summand

B of M such that B ≤ A, B 6⊆ U . Let B′ be such that M = B ⊕ B′. Since U is

projection-invariant, U = (B ∩ U) ⊕ (B′ ∩ U) by Lemma 2.1.8. This implies that

(B + U) ∩ (B′ + U) = [B + (B′ ∩ U)] ∩ [B′ + (B ∩ U)] = U . Hence, (B + U)/U is a

non-zero summand of M/U in A/U . �

Proposition 2.1.10 Let U be a submodule of an R-module M . If M is U-semipotent,

then for every submodule N of M with N 6⊆ U , N is U ∩N-semipotent.

Proof Assume that M is U -semipotent. Let N ≤ M and X ≤ N be such that

X 6⊆ U∩N . Then X 6⊆ U . By assumption, there exits a summand Y of M such that

Y ≤ X and Y 6⊆ U . Then Y is a summand of N such that Y ≤ X and Y 6⊆ U ∩N .

Hence, N is U ∩N -semipotent. �

Proposition 2.1.11 If an R-module M is quasi-projective with the finite exchange

property, then M is Rad(M)-semipotent.

Proof Let N ≤M be such that N 6⊆ Rad(M). Let n ∈ N \Rad(M). Then there

exists a maximal submodule K of M such that M = nR + K. By Theorem 1.8.3,

there is a decomposition M = P⊕Q such that P ≤ nR and Q ≤ K. If P ≤ Rad(M),

then P ≤ K, and so M = K, a contradiction. Hence, P 6⊆ Rad(M), and so the

proof is completed. �
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Proposition 2.1.12 Let U be a submodule of an R-module M and assume that M

is U-semipotent. Then the following statements are equivalent for a submodule N

of M with N 6⊆ U :

(1) N is indecomposable.

(2) For any submodule A of N with A 6⊆ U , A = N .

(3) N is local.

Proof (3) ⇒ (1) It is obvious. (1) ⇒ (2) Let A ≤ N with A 6⊆ U . Then there

exists a summand B of M such that B ≤ A, B 6⊆ U . So B is a summand of N . If

B = 0, then B ≤ U , a contradiction. Then B = N . This implies that A = N .

(2) ⇒ (3) Since N 6⊆ U , by (2) N is cyclic. Now let K be a proper submodule

of N and N = K + L for some L. We claim that L = N . Assume that L ≤ U . If

K ≤ U , then N ⊆ U , a contradiction. If K 6⊆ U , then K = N , again a contradiction.

Hence, L 6⊆ U and so L = N . By Theorem 1.1.9, N is local. �

Proposition 2.1.13 If M is a Rad(M)-semipotent R-module, then every indecom-

posable summand N of M with N 6⊆ Rad(M) is local.

Proof Let N be an indecomposable summand of M with N 6⊆ Rad(M). We

claim that for every proper submodule K of N , K ≤ Rad(N). Let K be a proper

submodule of N and assume that K 6⊆ Rad(N). Since Rad(N) = N ∩ Rad(M),

K 6⊆ Rad(M). Since M is Rad(M)-semipotent, there exists a summand X of M

such that X ≤ K and X 6⊆ Rad(M). Then X is a summand of N . Since N is

indecomposable, we have that X = N = K, a contradiction. Hence N is local. �

Proposition 2.1.14 Let U be a projection-invariant submodule of an R-module M .

If M is U-semipotent, then for any indecomposable summand (A + U)/U of M/U ,

there exists a summand P of M such that P ≤ A and (P + U)/U = (A+ U)/U .

Proof Let (A + U)/U be an indecomposable summand of M/U . Then A 6⊆ U .

Since M is U -semipotent, there exists a summand P of M such that P ≤ A, P 6⊆ U .

Since U is projection-invariant, (P + U)/U is a summand of M/U , and hence a

summand of (A+ U)/U . Since (P + U)/U 6= 0, then (P + U)/U = (A+ U)/U . �

28



2.2 Some Characterizations of U-semiregular and

U-semiperfect Modules

Let U be a submodule of an R-module M . Following [1] and [32], the module

M is called U-semiperfect (U-semiregular) if for any (cyclic) submodule N of M ,

there exists a decomposition M = A ⊕ B such that A is projective, A ≤ N and

N ∩ B ≤ U . If U is a projection-invariant submodule of M , then this is equivalent

to saying that for any (cyclic) submodule N of M , there exists a decomposition

N = A ⊕ B such that A is a projective summand of M and B ≤ U (see [1, 32]).

Clearly, U -semiperfect modules are U -semiregular. An R-module M is semiregular

if and only if M is Rad(M)-semiregular. If M is projective and Rad(M)�M , then

M is semiperfect if and only if M is Rad(M)-semiperfect.

Let U and N be any submodules of an R-module M . We say that U respects

N if there exists a summand A of M contained in N such that M = A ⊕ B and

B ∩N ≤ U .

Lemma 2.2.1 Let U be a projection-invariant submodule of an R-module M and

N any submodule of M . Then the following statements are equivalent:

(1) U respects N .

(2) There exists a summand A of M contained in N such that N = A⊕ B and

B ≤ U .

(3) There exists π2 = π in EndR(M) with π(M) ≤ N such that (1− π)(N) ≤ U .

Proof By Lemma 2.1.8, it is obvious. �

If an R-module M satisfies (D1), then for any submodule N of M , N has a

decomposition N = A ⊕ B, where A ≤⊕ M and B � M . Hence, B ≤ Rad(M).

Therefore, Rad(M) respects every submodule of M whenever M satisfies (D1).

Let U be a submodule of an R-module M . It is obvious that if M is U -

semiregular, then U respects every cyclic submodule of M . The converse holds if M

is projective. It was shown in [1, Theorem 2.3] that an R-module M is U -semiregular

if and only if for any finitely generated submodule N of M , there exists a decom-

position M = A ⊕ B such that A is a projective summand of N and B ∩ N ⊆ U .

Using a similar technique, we show the following result:
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Proposition 2.2.2 Let U be a projection-invariant submodule of an R-module M .

Then U respects every finitely generated submodule of M if and only if U respects

every cyclic submodule of M .

Proof Let N be a finitely generated submodule of M . Let N = x1R + · · ·+ xnR,

where xi ∈ N for i = 1, . . . , n. We will use induction on the generating set of N .

By assumption, we have β : M → xnR such that β2 = β and (1 − β)(xn) ⊆ U .

Consider K = (1 − β)x1R + · · · + (1 − β)xn−1R. By induction, we may choose

α : M → K such that α2 = α and (1− α)(K) ⊆ U . Define γ = β + α − αβ. Then

γ2 = γ and γ(M) = β(M) ⊕ α(M) since βα = 0. Since N = K + xnR, we obtain

γ(M) = β(M)⊕α(M) ⊆ N . Now take n = a+ xnr, where a ∈ K and r ∈ R. Since

U is projection-invariant, (1− γ)(a+ xnr) = (1− α)(a) + (1− α)(1− β)(xnr) ∈ U .

Hence, (1−γ)(N) ⊆ U . Thus, M = γ(M)⊕(1−γ)(M) is the desired decomposition.

�

Now we will give some necessary and sufficient conditions for an R-module M

to be U -semiregular, where U is a projection-invariant submodule of M .

Theorem 2.2.3 Let U be a projection-invariant submodule of an R-module M and

M = M/U . Consider the following conditions:

(1) (i) Every finitely generated submodule of M is a summand.

(ii) If M = A ⊕ B, where A is finitely generated, then there exists a decom-

position M = P ⊕Q such that P ≤ A, P = A and Q = B.

(2) U respects every finitely generated submodule of M .

Then (1)⇒ (2); and (2)⇒ (1) if M is quasi-projective.

Proof (1)⇒ (2) Let N be a finitely generated submodule of M . Then M = N⊕B

for some submodule B. By hypothesis, M = P ⊕ Q such that P ≤ N , P = N ,

Q = B. Since N = P+(N∩U) and U = (U∩P )⊕(U∩Q), we have that Q∩N ≤ U .

So (2) follows.

(2)⇒ (1) (i) Let X/U ≤M/U be finitely generated. Choose a finitely generated

submodule N of M such that X/U = (N +U)/U . By (2), there is a decomposition

M = A ⊕ B such that A ≤ N and B ∩ N ≤ U . Then X/U = (A + U)/U . Since
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U = (U ∩A)⊕ (U ∩B) and (B+U)∩ (A+U) = (B+ (U ∩A))∩ (A+ (U ∩B)) = U ,

we get A⊕B = M . So X is a summand of M .

For (ii), let M = A ⊕ B, where A is finitely generated. Let N be a finitely

generated submodule of A such that A = N . Then M = C ⊕D such that C ≤ N

and D∩N ≤ U . Since N = C⊕(D∩N), we obtain M = (A+U)+B = (C+U)+B.

Since C is a summand of M and M is quasi-projective, there exists a summand Q

of M such that M = C ⊕Q and Q ≤ U +B (see Proposition 1.3.3). Now it can be

seen that C ≤ A, C = A and Q = B. �

Corollary 2.2.4 Let U be a projection-invariant submodule of a projective R-module

M and M = M/U . Then the following statements are equivalent:

(1) M is U-semiregular.

(2) (i) Every finitely generated submodule of M is a summand.

(ii) If M = A ⊕ B, where A is finitely generated, then there exists a decom-

position M = P ⊕Q such that P ≤ A, P = A and Q = B.

In addition, if M is finitely generated, then they are equivalent to,

(3) (i) Every finitely generated submodule of M is a summand.

(ii) U is strongly lifting.

Corollary 2.2.5 Let U be a submodule of an R-module M . If M is U-semiregular,

then M is U-semipotent. If in addition, M is cyclic and quasi-projective, then M

is U-potent.

Proof Let A be a submodule of M with A 6⊆ U . Let a ∈ A\U . Then M = X⊕Y ,

where X ≤ aR and Y ∩ aR ≤ U . This implies that aR = X ⊕ (Y ∩ aR) and so

X 6⊆ U . Hence, M is U -semipotent. If M is finitely generated and quasi-projective,

by the proof of (2)⇒ (1)(ii) in Theorem 2.2.3, U is strongly lifting. �

The next example shows that U -semipotent modules need not be U -semiregular

even if M/U is regular.

Example 2.2.6 ([31, Example 52]) Let

R1 = {

 n m

0 n

: n,m ∈ Z} and K = {

 2n m

0 2n

 : n,m ∈ Z},
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and, for any natural number j, let

Kj = {

 0 m

0 0

: m ∈ jZ}.

Then R1 is a ring and K, Kj are ideals of R1. Let Q =
∏∞

i=1 Fi, where each

Fi = Z2, and R2 = 〈⊕∞i=1Fi, 1Q〉 be the subring of Q generated by ⊕∞i=1Fi and 1Q.

Set T = R1⊕R2. The subring R = 〈K ⊕ (⊕∞i=1Fi), 1T 〉 of T is a Zr
2 -semipotent ring

but it is not Zr
2 -semiregular. However, R/Zr

2 is regular.

Proposition 2.2.7 Let U be a proper submodule of an indecomposable R-module

M . Then the following statements are equivalent:

(1) U respects every finitely generated (cyclic) submodule of M .

(2) M is U-semipotent.

(3) M is local and U = Rad(M).

Proof (1)⇒ (2) It follows from the proof of Corollary 2.2.5.

(2) ⇒ (3) By Proposition 2.1.12, M is local. Since Rad(M) is maximal, then

U ≤ Rad(M). Now let x ∈ Rad(M) \ U . Then there exists a summand B of M

such that B ≤ xR, B 6⊆ U . Since xR � M , we have B � M . Then B = 0, a

contradiction. Hence, Rad(M) = U .

(3) ⇒ (1) Let N be a finitely generated (cyclic) submodule of M . If N = M ,

there is nothing to prove. Assume N 6= M . Then N ≤ Rad(M). Hence, the

decomposition M = 0⊕M completes the proof. �

Remark 2.2.8 In [1, Proposition 2.2], it was proved that for any fully-invariant

submodule U of an R-module M , M is U -semiregular if and only if for any x ∈M ,

there exists a regular element y ∈ xR such that x− y ∈ U and xR = yR⊕ (x− y)R.

The same proof shows that the condition “xR = yR ⊕ (x − y)R” is removable,

even for a projection-invariant submodule U of M . We give below its proof for

completeness. Also, it was proved in [1, Corollary 2.7] with some conditions that M

is U -semiregular if and only if for all x ∈ M , there exists a regular element y ∈ M

such that x− y ∈ U .

Note the following lemma due to Nicholson ([26]).
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Lemma 2.2.9 ([26, Lemma 1.1]) Let M be an R-module and let x ∈M be a regular

element. If α ∈ Hom(M,R) satisfies x(αx) = x and if we write e = αx, then:

(1) e2 = e and x = xe.

(2) α : xR→ eR is an isomorphism so xR is projective.

(3) M = xR⊕W , where W = {w ∈M |x(αw) = 0}.

Theorem 2.2.10 Let U be a projection-invariant submodule of an R-module M .

Then the following statements are equivalent:

(1) M is U-semiregular .

(2) For any x ∈M , there exists a regular element y ∈ xR such that x− y ∈ U .

Proof (1)⇒ (2) It follows from the Remark 2.2.8.

(2) ⇒ (1) Let x and y be as in (2) and let α ∈ HomR(M,R) be such that

y(αy) = y. By Lemma 2.2.9, M = yR ⊕ W , where W = {w ∈ M |y(αw) = 0}

Hence, xR = yR ⊕ (xR ∩ W ). Let π : M → W be the projection map. Then

xR ∩W = π(xR ∩W ) = π(xR) = π((x− y)R) ≤ π(U) ≤ U . �

Now we consider U -semiperfect modules. If M is a U -semiperfect R-module,

then U respects every submodule of M . If M is projective, then the converse is

also true. We now give some characterizations of a U -semiperfect module which are

analogous to that of a semiperfect ring relative to an ideal (see Theorem 1.5.7).

Theorem 2.2.11 Let U be a projection-invariant submodule of an R-module M ,

M = M/U and S = EndR(M). Consider the following conditions:

(1) M is semisimple and U is strongly lifting.

(2) U respects every submodule of M .

(3) U respects every countably generated submodule of M .

(4) M is U-semipotent and U respects ⊕∞i=1πi(M) for any orthogonal idempotents

πi ∈ S.

(5) M is U-semipotent and there is no infinite orthogonal family of idempotents

πi ∈ S such that πi(M) 6⊆ U .

(6) M is U-semipotent and M is semisimple.

Then (1) ⇒ (2) ⇒ (3), (5) ⇒ (2) ⇒ (6); (2) ⇒ (1) if M is quasi-projective;
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(3)⇒ (4)⇒ (5) if M is finitely generated; and (6)⇒ (1) if M is finitely generated

and quasi-projective.

Proof (1)⇒ (2) Let N be a submodule of an R-module M . Since M is semisimple,

there exists B ≤ M such that U ≤ B and M = N ⊕ B. By hypothesis, M has a

decomposition M = P ⊕ Q such that P ≤ N , P = N and Q = B. Now we show

that Q ∩ N ≤ U . Since N = N ∩ (N + U) = N ∩ (P + U) = P + (N ∩ U), then

Q∩N = Q∩ (P + (N ∩U)) ≤ Q∩ (P + (P ∩U) + (Q∩U)) = Q∩ (P + (Q∩U)) =

(Q ∩ U) + (Q ∩ P ) = Q ∩ U ≤ U .

(2)⇒ (1) It follows from a proof similar to that of (2)⇒ (1) in Theorem 2.2.3.

(2)⇒ (3) It is obvious.

(3)⇒ (4) It follows from the proof of Corollary 2.2.5.

(4) ⇒ (5) Assume that M is finitely generated. Let {πi}∞i=1 be a family of

orthogonal idempotents in S such that πi(M) 6⊆ U . By (4), ⊕∞i=1πi(M) = A ⊕ B,

where A is a summand of M and B ≤ U . Since A is finitely generated, A is

contained in ⊕ni=1πi(M) for some n. Then ⊕∞i=1πi(M) = ⊕ni=1πi(M) + B. Let

k > n and πk(m) = π1(m1) + · · · + πn(mn) + b, where m,mi ∈ M , i = 1, . . . n and

b ∈ B. Then πk(m) = πk(b). Since U is projection-invariant, πk(m) ∈ U . Hence

πk(M) ≤ U , a contradiction.

(5)⇒ (2) Assume (2) is not satisfied. By Lemma 2.2.1, there exists N ≤M such

that N ∩ (1− π)(M) 6⊆ U for all π2 = π ∈ S with π(M) ≤ N . Since N 6⊆ U , there

exists a summand A1 of M such that A1 ≤ N and A1 6⊆ U . Let M = A1⊕B1 and let

π1 : M → A1 be the projection onto A1 along B1. Then N = π1(M)⊕ (N ∩B1) and

N1 = N ∩B1 6⊆ U . Let A2 be a summand of M such that A2 ≤ N1 and A2 6⊆ U . If

M = A2⊕B2 and α : M → A2 is the projection onto A2 along B2, then π1α = 0. Let

π2 = α(1−π1). Then {π1, π2} is an orthogonal set such that πi(M) ≤ N for i = 1, 2.

Since π2α = α and α(M) * U , we have π2(M) 6⊆ U . Continuing the construction,

suppose that {π1, . . . , πn} are orthogonal idempotents in S such that πi(M) ≤ N

and πi(M) 6⊆ U for i = 1, . . . n. Let π = π1 + · · · + πn. Then π is an idempotent,

π(M) ≤ N and so N ∩ (1 − π)(M) 6⊆ U . Let Y be a summand of M such that

Y ≤ N ∩ (1−π)(M), Y 6⊆ U . If M = Y ⊕Y ′ and β : M → Y is the projection onto

Y along Y ′, then let πn+1 = β(1− π). This implies that {π, πn+1} is an orthogonal
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set of idempotents in S such that π(M) 6⊆ U , πn+1(M) 6⊆ U since πn+1β = β.

Hence, {π1, . . . , πn, πn+1} are orthogonal idempotents in S such that πi(M) 6⊆ U for

i = 1, . . . , n+ 1. Thus, this process continues inductively to contradict (5).

(2)⇒ (6) By the proof of Corollary 2.2.5, M is U -semipotent, and by the proof

of (2)⇒ (1)(i) in Theorem 2.2.3, M is semisimple.

(6) ⇒ (1) Assume that M is finitely generated and quasi-projective. Let M =

A⊕B. We will show that there exists a decomposition M = P⊕Q such that P ≤ A,

P = A, Q = B.

If A ⊆ U , then M = B and hence M = 0⊕M is the desired decomposition.

If A 6⊆ U , then there exists a summand Y1 of M such that Y1 ≤ A and Y1 6⊆ U .

Let W1 be such that M = Y1 ⊕W1. Then A = Y1 ⊕ (A ∩W1).

If A∩W1 ⊆ U , then (A+U)/U = (Y1 +U)/U . Also M = A+B+U = Y1 +(A∩

W1) + B + U = Y1 + B + U . Since M is quasi-projective, there exists a submodule

X ⊆ B + U such that M = Y1 ⊕X by Theorem 1.3.3. Since M = A⊕X = A⊕B,

we have X = B. Thus, we obtain M = Y1 ⊕X, Y1 ≤ A, Y1 = A and X = B.

If A ∩W1 6⊆ U , then there exists a summand Y2 of M such that Y2 ≤ A ∩W1,

Y2 6⊆ U . Let W2 be such that M = Y2 ⊕ W2. Then W1 = Y2 ⊕ (W1 ∩ W2). So

M = Y1 ⊕W1 = Y1 ⊕ Y2 ⊕ (W1 ∩W2) implies that A = Y1 ⊕ Y2 ⊕ (A ∩W1 ∩W2).

This process produces strictly ascending chain Y1 ⊂ Y1⊕ Y2 ⊂ · · · ⊂M . Since M is

Noetherian, this process must stop so that A∩W1 ∩ . . .∩Wn ⊆ U for some positive

integer n. Hence the proof is completed. �

Corollary 2.2.12 Let M be a projective R-module and U a projection-invariant

submodule of M . The following statements are equivalent:

(1) M is U-semiperfect.

(2) M/U is semisimple and U is strongly lifting.

Now we will characterize semiperfect modules. Recall that a projective mod-

ule M with Rad(M) � M is semiperfect if and only if Rad(M) respects every

submodule of M .

Theorem 2.2.13 Let M be a projective R-module with Rad(M) � M and let

S = EndR(M). Consider the following conditions:
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(1) Every indecomposable summand of M is local and there is no infinite orthog-

onal family of idempotents πi ∈ S such that πi(M) 6⊆ Rad(M).

(2) EndR(M) is clean and there is no infinite orthogonal family of idempotents

πi ∈ S such that πi(M) 6⊆ Rad(M).

(3) M has the finite exchange property and there is no infinite orthogonal family

of idempotents πi ∈ S such that πi(M) 6⊆ Rad(M).

(4) M is semiperfect.

Then (1)⇔ (2)⇔ (3)⇒ (4). In addition, (4)⇒ (1) if M is finitely generated.

Proof (1)⇒ (2) Since there is no infinite orthogonal family of idempotents πi ∈ S

such that πi(M) 6⊆ Rad(M), M is a finite direct sum of indecomposable submodules

Mi such that Mi 6⊆ Rad(M). Then each Mi is local. By Proposition 1.7.4, M is

discrete. Thus, EndR(M) is clean (see Section 1.8).

(2) ⇒ (3) Since EndR(M) is clean, M has the finite exchange property by

Theorem 1.8.2.

(3) ⇒ (1) By Propositions 2.1.11 and 2.1.13, every indecomposable summand

of M is local.

(1)⇒ (4) By Propositions 1.7.4 and 1.7.5, M is semiperfect.

(4)⇒ (1) Assume that M is finitely generated. By Theorem 2.2.11 and Propo-

sition 2.1.13, (1) holds. �

A ring R is called I-finite if R has no infinite set of orthogonal idempotents.

By Theorems 2.2.11 and 2.2.13 we have the following corollary. For the equiv-

alences (1)-(4) we refer the reader to [30]. The equivalences of (1), (5) and (6) are

given in [12].

Corollary 2.2.14 The following statements are equivalent for a ring R:

(1) R is semiperfect.

(2) R is semipotent and R/J(R) is semisimple.

(3) R is semipotent and I-finite.

(4) Every primitive idempotent in R is local and R is I-finite.

(5) R is clean and I-finite.

(6) R is an exchange ring and I-finite.
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2.3 Rings Over Which Every (Projective) Module Is τ()-

semiperfect

A functor τ from Mod-R to itself is called a preradical on Mod-R if it satisfies the

following properties:

i) τ(M) is a submodule of M for every left R-module M .

ii) If f : M ′ → M is a homomorphism in Mod-R, then f(τ(M ′)) ≤ τ(M) and

τ(f) is the restriction of f to τ(M ′).

It was shown in [36] that any fully-invariant submodule defines a preradical.

In this section, we characterize rings R for which every projective R-module M

is τ(M)-semiperfect for some preradicals τ on R-Mod.

By definitions, every projective module M is τ(M)-semiperfect if and only if for

every projective module M , τ(M) respects every submodule of M .

Remark 2.3.1 It is well-known that a ring R is right perfect if and only if every

projective right R-module is semiperfect (see [24, Theorem 4.41 and Corollary 4.43]).

Also, if a projective module M is semiperfect, then M is Rad(M)-semiperfect. The

converse is true if Rad(M)�M .

Theorem 2.3.2 Let R be a ring. Then the following statements are equivalent:

(1) Every projective right R-module M is Rad(M)-semiperfect.

(2) R is right perfect.

Proof (2) ⇒ (1) It is obvious. (1) ⇒ (2) It is enough to prove that for any

projective R-module P , Rad(P ) � P by Remark 2.3.1. Let Y be a submodule

of a projective module P such that P = Rad(P ) + Y . By hypothesis, there is a

decomposition P = A⊕B, where A ≤ Y andB∩Y ≤ Rad(P ). Then Y = A⊕(B∩Y )

and so P = Rad(P )+A. Since A is a summand of P , there exists a submodule X of

Rad(P ) such that P = X⊕A by Proposition 1.3.3. Then Rad(X) = X ∩Rad(P ) =

X. Since X is projective, X = 0. So P = Y . �

For the singular submodule Z(M) for a module M , the following theorem is

given in [43, Proposition 3.3].
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Theorem 2.3.3 Let R be a ring. Then the following statements are equivalent:

(1) Every projective right R-module M is Z(M)-semiperfect.

(2) R is right perfect and Zr = J(R).

There exists a right perfect ring R with Zr 6= J(R), for example the ring of

2× 2 upper triangular matrices over a field. Hence, this ring does not satisfy (1) of

Theorem 2.3.3.

Self-injective Artinian rings are known as Quasi-Frobenius (QF -ring, for short)

in the literature. It is a well-known fact that R is a QF -ring if and only if every

projective (injective) R-module is injective (projective). Also, it was proved in [32,

Corollary 3.8] that R is a QF -ring if and only if every right R-module M is Z(M)-

semiperfect.

Now we will deal with the Goldie torsion submodule. The next result was proven

by Nicholson and Zhou in [31, Theorem 49].

Theorem 2.3.4 Let R be a ring. The following statements are equivalent:

(1) R is Zr
2-semiperfect.

(2) For any module M , M = Z2(M)⊕X, where X is semisimple.

(3) Every nonsingular R-module is injective.

(4) Every projective R-module M is Z2(M)-semiperfect.

In addition to Theorem 2.3.4 we may add the following characterization for Zr
2 -

semiperfect rings.

Theorem 2.3.5 R is a Zr
2-semiperfect ring if and only if every R-module M is

Z2(M)-semiperfect.

Proof The necessity is obvious. For the sufficiency, let M be an R-module and N

a submodule of M . Then by the condition (2) in Theorem 2.3.4, N = Z2(N) ⊕X

for some semisimple submodule X. Then X is nonsingular and projective. By the

condition (3) in Theorem 2.3.4, X is injective and hence a projective summand of

M . It follows that N has a decomposition N = A ⊕ B such that A ≤⊕ M , A is

projective and B ≤ Z2(M). Thus, M is Z2(M)-semiperfect. �
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Lemma 2.3.6 If R is Zr
2-semiperfect and Zr

2 is injective, then every finitely gener-

ated projective right R-module is injective. In particular, R is right self-injective.

Proof Let P be a finitely generated projective R-module. Then P is a summand

of a finitely generated free R-module. Since Zr
2 is injective, we have that Z2(P )

is injective. Hence, P = Z2(P ) ⊕ X for some submodule X. On the other hand,

P/Z2(P ) is injective by Theorem 2.3.4. Then X is injective and so P is injective. �

Theorem 2.3.7 Let R be a ring. Then the following statements are equivalent:

(1) R is Zr-semiperfect and Zr
2 is injective.

(2) R is Zr
2-semiperfect, Zr

2 is injective and R is I-finite.

(3) R is semiperfect and right self-injective.

Proof (1)⇒ (2) R is Zr-semiperfect if and only if R is semiperfect and J(R) = Zr

(see Section 1.5). Hence, (2) follows.

(2)⇒ (3) By Lemma 2.3.6, R is right self-injective. Since any right self-injective

ring is clean (see Section 1.8), it follows from Corollary 2.2.14 that R is semiperfect.

(3) ⇒ (1) Since R is right self-injective, J(R) = Zr. Then R is Zr-semiperfect.

Since Zr
2 is closed in R, we have that Zr

2 is injective. �

Now we will give some necessary and sufficient conditions for a ring to be QF .

Theorem 2.3.8 Let R be a ring. Then the following statements are equivalent:

(1) R is a QF -ring.

(2) R is Zr
2-semiperfect and for every projective right R-module P , Z2(P ) is

injective.

(3) R is Zr
2-semiperfect, Zr

2 is injective and R is right Noetherian.

Proof (1) ⇒ (2) and (3) Since R is QF, R is semiperfect and J(R) = Zr ≤ Zr
2 .

ThenR is Zr
2 -semiperfect. Let P be a projective rightR-module. Then P is injective.

Since Z2(P ) is closed in P , we have that Z2(P ) ≤⊕ P . Hence, Z2(P ) is injective.

(2) ⇒ (1) Let P be a projective R-module. By hypothesis, Z2(P ) is injective.

Hence, there exists a submodule X of P such that P = Z2(P )⊕X. Since P/Z2(P )

is nonsingular, X is injective by Theorem 2.3.4. Hence, P is injective.
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(3) ⇒ (1) Let P be a projective R-module. Then P is a summand of a free R-

module R(Λ) for some index set Λ. Since R is right Noetherian, Z2(R(Λ)) = Z2(RR)(Λ)

is injective. Hence, Z2(P ) is injective. By a proof similar to that of (2)⇒ (1), P is

injective. �

Theorem 2.3.9 Let R be a ring. Then the following statements are equivalent:

(1) Every projective right R-module M is δ(M)-semiperfect.

(2) R is right δ-perfect.

Proof (2) ⇒ (1) Let R be a right δ-perfect ring. Then for any submodule N of a

projective module P , P/N has a projective δ-cover. Hence, P is δ(P )-semiperfect.

(1) ⇒ (2) If every projective right R-module M is δ(M)-semiperfect, then R is

δr-semiperfect, and so idempotents lift modulo δr. By Theorem 1.5.8, it is enough

to prove that R = R/Sr is right perfect. Since J(R) = δr/Sr, R/J(R) is semisimple.

Now we claim that, for every projective right R-module P , δ(P ) �δ P . Let P

be a projective R-module and P = δ(P )+Y , where P/Y is singular. By hypothesis,

P = A ⊕ B such that A ≤ Y and B ∩ Y ≤ δ(P ). Then Y = A ⊕ (B ∩ Y ) and so

P = δ(P ) + Y = δ(P ) + A. Since A is a summand of P , there exists a submodule

X ≤ δ(P ) such that P = X ⊕A by Proposition 1.3.3. Since δ(X) = X ∩ δ(P ) = X,

X is semisimple projective. Since P/Y is an epimorphic image of P/A ∼= X , P/Y

is projective. Because P/Y is singular, we have that P = Y . Hence δ(P )�δ P .

Using the technique of [46, Theorem 3.7] and [3, Lemma 28.2], it can be seen

that J(R) is right T -nilpotent. We will give the proof for completeness.

Let F ∼= R(ℵ0) have a free basis {x1, x2, . . .}. Let a1, a2, . . . be a sequence in δr

and G =
∑∞

i=1(xi−xi+1ai)R. Then F = G+δ(F ). Since δ(F )�δ F , F = G⊕Y for

a semisimple submodule Y by Lemma 1.1.20. But then there exists a number n such

that Ran+1an · · · a1 = Ran · · · a1 by [3, Lemma 28.2]. Then an · · · a1 = ran+1 · · · a1

for some r ∈ R and so (1 − ran+1)an · · · a1 = 0. Hence, an · · · a1 ∈ Sr. Thus,

J(R) = δr/Sr is right T -nilpotent. �

Özcan and Alkan proved in [32, Corollary 3.10] that R is semisimple if and only

if every right R-module M is δ(M)-semiperfect, if and only if every right R-module

M is δ(M)-semiregular.
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The following results are also given in [32, Corollaries 2.24 and 3.5]: Every pro-

jective right R-module M is Soc(M)-semiperfect if and only if R is Sr-semiperfect.

R is a QF -ring with J(R)2 = 0 if and only if J(R) ≤ Zr and every right R-module

M is Soc(M)-semiperfect.

In addition, we note that for an ideal I of a ring R, R is I-semiperfect if and

only if every finitely generated projective R-module M is MI-semiperfect (see [32,

Corollary 2.11]).
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3 A GENERALIZATION OF SEMIREGULAR

AND ALMOST PRINCIPALLY INJECTIVE

RINGS

Let M be an R-module and F a submodule of MR. Recall that the module

M is F -semiregular if and only if for any m ∈ M , there exists a decomposition

M = P ⊕ Q such that P is projective, P ⊆ mR and Q ∩mR ⊆ F . If F is a fully-

invariant submodule of MR, then M is F -semiregular if and only if for any m ∈M ,

there exists a decomposition mR = P ⊕ S such that P is a projective summand of

M and S ⊆ F .

In this chapter, we call a right R-module M almost F -semiregular if for any

m ∈ M , there exists an S-module decomposition lMrR(m) = P ⊕ Q such that

P ⊆ Sm andQ∩Sm ⊆ F , where S = EndR(M) and F is a submodule of SM . A ring

R is called right almost I-semiregular for an ideal I ofR ifRR is almost I-semiregular.

If SM is F -semiregular, thenMR is almost F -semiregular. An APQ-injective module

MR is almost F -semiregular for any S-submodule F of M . Moreover,

MR is APQ-injective ⇔ MR is almost 0-semiregular.

Note that right almost J(R)-semiregular rings are called right generalized semireg-

ular rings in [42].

We give a new characterization of F -semiregular modules by modifying the def-

inition of almost F -semiregular modules. We give some conditions under which a

right almost I-semiregular ring is I-semiregular. Some of the results in [42] are ex-

tended to a right almost I-semiregular ring R for an ideal I of R. We also prove that

if R is a right almost I-semiregular ring, then eRe is a right almost eIe-semiregular

ring for a right semicentral idempotent e of R (i.e., eR = eRe) or an idempotent e of

R satisfying ReR = R. If the matrix ring Mn(R) is right almost Mn(I)-semiregular

for an ideal I of R, then R is right almost I-semiregular.

It was shown in [1, Corollary 4.6] that if an R-module M is projective and

Soc(M)-semiregular, then M is semiregular. We are able to show that if MR is

almost Soc(SM)-semiregular, then MR is almost semiregular, i.e., for any m ∈ M ,
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there exists an S-module decomposition lMrR(m) = P ⊕Q such that P ⊆ Sm and

Q ∩ Sm � SM . Note that almost semiregular R-modules are precisely Rad(SM)-

semiregular R-modules whenever Rad(SM)� SM .

We also consider right almost I-semiregular rings for some special ideals such

as the socle, the singular ideal and the ideal δ. We prove that if R is right almost

Zr-semiregular, then RR satisfies (C2) and is almost semiregular.

We show that the following implications hold for a ring R:

Sl-semiregular ⇒ right almost Sl-semiregular ⇒ right almost semiregular ⇒

right almost δr-semiregular and right almost δl-semiregular.

Zr-semiregular ⇒ right almost Zr-semiregular ⇒ right almost semiregular ⇒

right almost δr-semiregular and right almost δl-semiregular.

Counterexamples to each of the inverse implications are given.

It is well known that J(eRe) = eJ(R)e for any idempotent e ∈ R, but we observe

with an example that δr(eRe) 6= eδre even if e is a right semicentral idempotent.

However, if e ∈ R is an idempotent with ReR = R, then δr(eRe) = eδre. Conse-

quently, if R is right almost δl-semiregular and ReR = R, then eRe is right almost

δl(eRe)-semiregular.

3.1 Almost Semiregular Modules

Definition 3.1.1 Let M be a right R-module, S = EndR(M) and F a submodule

of SM . The module MR is called almost F -semiregular if for any m ∈M , there exists

an S-module decomposition lMrR(m) = P ⊕Q such that P ⊆ Sm and Q∩Sm ⊆ F .

A ring R is called right almost I-semiregular for an ideal I of R if RR is almost

I-semiregular.

If a module MR is APQ-injective, then MR is almost F -semiregular for any

submodule F of SM , where S = EndR(M). Moreover, MR is almost 0-semiregular if

and only if MR is APQ-injective. In particular, a ring R is right almost 0-semiregular

if and only if R is right AP -injective.

Proposition 3.1.2 Let M be a right R-module, S = EndR(M) and F any submod-

ule of SM . If SM is F -semiregular, then MR is almost F -semiregular.
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Proof Let m ∈ M . Then there exists a decomposition SM = P ⊕ Q such that

P ⊆ Sm and Q ∩ Sm ⊆ F . Since lMrR(m) = lMrR(m) ∩M , by the modular law,

we have lMrR(m) = P ⊕ (lMrR(m) ∩Q) and (lMrR(m) ∩Q) ∩ Sm = Q ∩ Sm ⊆ F .

Hence, MR is almost F -semiregular. �

Let M be an R-module and S = EndR(M). It follows from Proposition 3.1.2

that if SM is semiregular, then MR is almost Rad(SM)-semiregular. If R is an I-

semiregular ring for an ideal I, then it is right and left almost I-semiregular, because

the notion of I-semiregular rings is left-right symmetric.

When we take the summand P of lMrR(m) as a summand of M in Defini-

tion 3.1.1, we have the following result:

Theorem 3.1.3 Let M be a right R-module and S = EndR(M). If SM is projective

and SF is a fully-invariant submodule of SM , then the following are equivalent:

(1) SM is F -semiregular.

(2) For any m ∈M , there exists an S-module decomposition lMrR(m) = P ⊕Q,

where P ⊆ Sm, P is a summand of M and Q ∩ Sm ⊆ F .

Proof (1)⇒ (2) It follows from the proof of Proposition 3.1.2.

(2)⇒ (1) Let m ∈M and lMrR(m) = P⊕Q, where P ⊆ Sm, P is a summand of

M and Q∩Sm ⊆ F . Then Sm = P ⊕ (Q∩Sm), where P is a projective summand

of M and Q ∩ Sm ⊆ F . Hence, SM is F -semiregular. �

By Theorem 3.1.3, we obtain the following characterization of I-semiregular rings

for an ideal I:

Corollary 3.1.4 Let I be an ideal of a ring R. The following statements are equiv-

alent:

(1) R is I-semiregular.

(2) For any a ∈ R, there exists a decomposition lRrR(a) = P ⊕ Q, where P =

Re ⊆ Ra for some e2 = e ∈ R and Q ∩Ra ⊆ I.

(3) For any a ∈ R, there exists a decomposition rRlR(a) = P ⊕ Q, where P =

eR ⊆ aR for some e2 = e ∈ R and Q ∩ aR ⊆ I.
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Now we consider the module theoretic version of right generalized semiregular

rings defined by Xiao and Tong ([42]).

Definition 3.1.5 LetM be a right R-module and S = EndR(M). The moduleM is

called almost semiregular if for any m ∈M , there exists an S-module decomposition

lMrR(m) = P ⊕Q such that P ⊆ Sm and Q ∩ Sm�M . A ring R is called a right

almost semiregular if RR is almost semiregular.

Obviously, R is right almost J(R)-semiregular if and only if R is right almost

semiregular. Semiregular or right AP -injective rings are right almost semiregular

by Proposition 1.6.2.

Let M be a right R-module and S = EndR(M). If SM is semiregular, then MR

is almost semiregular by a proof similar to that of Proposition 3.1.2. Moreover, if

MR is almost semiregular, then it is almost Rad(SM)-semiregular. The converse is

true if Rad(SM)� SM .

The following result generalizes Lemma 1.6.5.

Proposition 3.1.6 Let I be an ideal of a ring R. If R is right almost I-semiregular

and there exists e2 = e ∈ R such that rR(a) = rR(e) for any a ∈ R, then R is I-

semiregular.

Proof Let a ∈ R. Then there exists a decomposition lRrR(a) = P ⊕ Q such that

P ⊆ Ra and Q ∩ Ra ⊆ I as left ideals. Since rR(a) = rR(e) for some e2 = e ∈ R,

Re = P ⊕ Q and a = ae. Let e = p + q, where p = ra ∈ P and q ∈ Q. Then

a = ae = ara+ aq and ra = rara+ raq. Since ra− rara = raq ∈ P ∩Q = 0, ra is

an idempotent. Also, we have a(1− ra) = a− ara = aq ∈ Q ∩Ra ⊆ I. Hence, R is

I-semiregular. �

Corollary 3.1.7 If lRrR(a) is a summand of R for any a ∈ R and R is right almost

I-semiregular for an ideal I, then R is I-semiregular.

Proof Let a ∈ R. By hypothesis lRrR(a) = Re for some idempotent e. Then

rR(a) = rRlRrR(a) = rR(e) and the claim holds by Proposition 3.1.6. �
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Recall that a ring R is a right PP -ring if and only if for any a ∈ R, rR(a) = eR

for some idempotent e ∈ R. Hence, we have the following result:

Corollary 3.1.8 Let R be a right PP -ring. If R is a right almost I-semiregular

ring for an ideal I, then R is I-semiregular.

Nicholson and Zhou proved in [31, Proposition 41] that if R is an I-semiregular

ring for an ideal I, then eRe is eIe-semiregular for any idempotent e of R. We con-

sider this property for almost I-semiregular rings. Using the techniques of Proposi-

tion 1.6.9 and Theorem 1.6.10 we obtain the following two results:

Theorem 3.1.9 If R is a right almost I-semiregular ring for an ideal I and e is a

right semicentral idempotent of R, then eRe is a right almost eIe-semiregular ring.

Proof Let a ∈ eRe. Then there is a decomposition lRrR(a) = P ⊕ Q such that

P ⊆ Ra and Q ∩ Ra ⊆ I. We claim that leRereRe(a) = eP ⊕ eQ. Take any y ∈

eP ⊆ ePe, where y = ey1, y1 ∈ P ⊆ lRrR(a). For any x ∈ reRe(a) ⊆ rR(a), y1x = 0

which gives yx = ey1x = 0. Hence, eP ⊆ leRereRe(a). Similarly, eQ ⊆ leRereRe(a).

Now take x ∈ leRereRe(a). Then for any y ∈ rR(a), we obtain aeye = aye = 0

since a ∈ eRe. So xeye = 0. Since x, y ∈ eRe and e is right semicentral, we have

xy = xey = xeye = 0. Thus, leRereRe(a) ⊆ lRrR(a). Write x = p + q, where p ∈ P

and q ∈ Q. Then x = ex = ep + eq ∈ eP + eQ. Since eP ∩ eQ ⊆ P ∩ Q = 0, we

obtain leRereRe(a) = P ⊕Q.

We also have eP ⊆ eRa = eRea and eQ ∩ eRea ⊆ e(eQ ∩ eRea)e. Hence,

eQ ∩ eRea ⊆ Q ∩Ra ⊆ I implies that eQ ∩ eRea ⊆ eIe. �

Theorem 3.1.10 Let e be an idempotent of R such that ReR = R. If R is a right

almost I-semiregular ring for an ideal I, then eRe is a right almost eIe-semiregular

ring.

Proof Let a ∈ eRe. Then there exists a decomposition lRrR(a) = P ⊕ Q, where

P ⊆ Ra and Q ∩ Ra ⊆ I. We will show that leRereRe(a) = ePe ⊕ eQe. Since

1 − e ∈ rR(a), we observe that q(1 − e) = 0 for any q ∈ Q, which implies Q = Qe.

Similarly, P = Pe. Hence, ePe ∩ eQe = 0. Since P = Pe and Q = Qe, we
46



have ePe ⊆ leRereRe(a) and eQe ⊆ leRereRe(a). Now take x ∈ leRereRe(a). Write

1 =
∑n

i=1 aiebi for some ai, bi ∈ R. For any y ∈ rR(a), we get aeyaie = ayaie = 0

for each i. Then xeyaie = 0 for each i, which gives xy = xey = xey
∑n

i=1 aiebi = 0

since x ∈ eRe. It follows that leRereRe(a) ⊆ lRrR(a). Let x = p+q, where p ∈ P and

q ∈ Q. Hence, x = exe = epe + eqe ∈ ePe + eQe. Thus, leRereRe(a) = ePe ⊕ eQe.

Also, we have ePe ⊆ (eRe)a and eQe ∩ (eRe)a ⊆ e(Q ∩Ra)e ⊆ eIe. �

Proposition 3.1.11 Let S be a right almost I-semiregular ring for an ideal I of S.

If ϕ : S → R is a ring isomorphism, then R is a right almost ϕ(I)-semiregular ring.

Proof Let a ∈ R. Then there is a decomposition lSrS(ϕ−1(a)) = P ⊕Q such that

P ⊆ Sϕ−1(a) and Q ∩ Sϕ−1(a) ⊆ I. If x ∈ lRrR(a), then ϕ−1(x) ∈ lSrS(ϕ−1(a)).

Then we obtain a decomposition lRrR(a) = ϕ(P ) ⊕ ϕ(Q), where ϕ(P ) ⊆ Ra and

ϕ(Q) ∩Ra ⊆ ϕ(I). Hence, R is a right almost ϕ(I)-semiregular ring. �

The following result generalizes Corollary 1.6.11.

Corollary 3.1.12 Let I be an ideal of a ring R and let n ≥ 1. If Mn(R) is right

almost Mn(I)-semiregular, then R is right almost I-semiregular.

Proof Let S = Mn(R). Then Se11S = S and R ∼= e11Se11, where e11 is the n× n

matrix whose (1, 1)-entry is 1, others are 0. By Theorem 3.1.10, e11Se11 is right

almost e11Mn(I)e11-semiregular. Let ϕ : e11Se11 → R be the isomorphism. Since

ϕ(e11Mn(I)e11) = I, R is right almost I-semiregular by Proposition 3.1.11. �

3.2 Almost Semiregular Rings Relative To Some Special

Ideals

In this section, we will consider right almost semiregular rings relative to some

special ideals, i.e., we will deal with right almost I-semiregular rings, where I = Sr

or I = δr or I = Zr.

We begin with some examples.
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Example 3.2.1 There exists a right AP -injective ring R that is not semiregular.

Hence, there exists a right almost I-semiregular ring R that is not I-semiregular for

ideals I = J(R) or Zr or Sr.

Proof Consider the trivial extension R = T (Z,Q/Z). R is a commutative P -

injective ring with J(R) = Zr ([29]). Hence, R is an almost I-semiregular ring for

any ideal I of R. Since R/J(R) ∼= Z, the ring R is not semiregular whence R is not

Zr-semiregular (see Section 1.4). If R was Sr-semiregular, it would be semiregular

(see Section 1.4). Thus, R is not Sr-semiregular, either. �

Example 3.2.2 There exists a right almost Sr-semiregular ring R that is not Sr-

semiregular.

Proof Let R = Z8. Since R is a self-injective ring, it is almost I-semiregular for

any ideal I of R. But since R/Sr is not regular, R is not Sr-semiregular (see Section

1.4). �

Xiao and Tong ([42, Example 4.8]) showed that Z is not a right almost semireg-

ular ring. Hence, Example 3.2.1 shows that the class of right almost semiregular

rings is not closed under homomorphic images.

Alkan and Özcan proved in [1] that if MR is a projective Soc(MR)-semiregular

module, then MR is semiregular. We have the following result for almost semiregular

modules:

Proposition 3.2.3 Let M be a right R-module and S = EndR(M). If MR is almost

Soc(SM)-semiregular, then MR is almost semiregular.

Proof Let m ∈M . Then there exists a decomposition lMrR(m) = A⊕B such that

A ⊆ Sm and B ∩Sm ⊆ Soc(SM). By the modular law, Sm = A⊕ (B ∩Sm). Then

B ∩ Sm is a finite direct sum of simple S-submodules. If every simple submodule

of B ∩Sm is in Rad(SM), then B ∩Sm�M and hence MR is almost semiregular.

Assume that there exists a simple submodule S1 of B∩Sm such that S1 6⊆ Rad(SM).
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Then S1 is a summand of M and hence a summand of B. Let L1 be such that

B = S1 ⊕ L1. Then lMrR(m) = A⊕ S1 ⊕ L1.

Similarly, L1 ∩ Sm is a finite direct sum of simple submodules. If every simple

submodule of L1∩Sm is in Rad(SM), then MR is almost semiregular. Assume that

there exists a simple submodule S2 of L1 ∩ Sm such that S2 6⊆ Rad(SM). Then S2

is a summand of M and so there exists a submodule L2 such that L1 = S2 ⊕ L2. It

follows that lMrR(m) = A⊕S1⊕S2⊕L2. This process produces a strictly descending

chain B ∩ Sm ⊃ L1 ∩ Sm ⊃ L2 ∩ Sm . . .. Since B ∩ Sm is semisimple and finitely

generated, it is Artinian. Hence, this process must stop so that Ln∩Sm ⊆ Rad(SM)

for some positive integer n. Hence, lMrR(m) = (A ⊕ S1 ⊕ . . . ⊕ Sn) ⊕ Ln, where

A⊕ S1 ⊕ . . .⊕ Sn ≤ Sm and Ln ∩ Sm�M . Thus, MR is almost semiregular. �

Corollary 3.2.4 If R is right almost Sl-semiregular, then R is right almost semireg-

ular.

The converse of Corollary 3.2.4 is not true in general as the next example shows.

Example 3.2.5 There exists a right almost semiregular ring that is not right almost

Sl-semiregular (Sr-semiregular).

Proof Let R = Z(p) be the localization of the ring of integers Z at a prime p. Since

R is a local ring, it is semiregular whence it is right almost semiregular. We claim

that the ring R is not right almost Sl-semiregular. Take a non-zero element a in

J(R). Since a is non-zero, we have lRrR(a) = R. Because R is indecomposable as a

left R-module, the only decomposition is lRrR(a) = R = R⊕0. Because a is non-unit

in R, we have Ra 6= R. On the other hand, if R was right almost Sl-semiregular,

then we would have Ra ⊆ Sl by the definition of the almost Sl-semiregularity. But

this is a contradiction since Sl = 0. �

IfR is a right almost Sl-semiregular ring, then the ringR need not be semiregular,

because right AP -injective rings need not be semiregular (see Example 3.2.1).

Lemma 3.2.6 ([15, Lemma 18.4]) Let M be an R-module. If A is summand of M ,

then (A+ Soc(M))/Soc(M) is a summand of M/Soc(M).
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Recall from Section 1.4 that R is Sl-semiregular if and only if R/Sl is a regu-

lar ring. If R is right almost Sl-semiregular, then (Ra + Sl)/Sl is a summand of

(lRrR(a) + Sl)/Sl for any a ∈ R by Lemma 3.2.6.

Nicholson and Yousif ([29]) showed that if R is an I-semiregular ring for an ideal

I of R, then J(R) ⊆ I and Zr ⊆ I. In particular, if R is a Sl-semiregular ring, then

J(R) ⊆ Sl and Zr ⊆ Sl. On the other hand, J(R) or Zr need not be contained in

Sl if R is right almost Sl-semiregular (see Example 3.2.2).

We know from Proposition 1.6.7 that if R is a right almost semiregular ring, then

Zr ⊆ J(R). Hence, if R is right almost Sl-semiregular, then Zr ⊆ J(R).

Because of the fact that Sl ⊆ δl, R being right almost Sl-semiregular implies

that R is right almost δl-semiregular. Also, if R is δl-semiregular, then Zr ⊆ δl. We

have the following result for right almost δl-semiregular rings:

Proposition 3.2.7 If R is right almost δl-semiregular and R/Sl is a projective right

R-module, then Zr ⊆ δl.

Proof Let a ∈ Zr. If a 6∈ δl, then there exists an essential maximal left ideal N of

R such that a 6∈ N . Then R = Ra+N . Write 1 = ya+ n, where y ∈ R and n ∈ N .

Since Zr is an ideal and R 6= Zr, we have n 6= 0. Because rR(ya) ∩ rR(n) = 0 and

ya ∈ Zr, we obtain that rR(n) = 0. By hypothesis, R = lRrR(n) = P ⊕ Q, where

P = Re ⊆ Rn for some e2 = e ∈ R and Q ∩Rn ⊆ δl.

Let R = R/Sl. If R = 0, then R is semisimple and Zr = 0 ⊆ δl = R. Assume

that R 6= 0. If e = 1, then Rn = N = R. Since Sl ⊆ N , we have N = R, which is a

contradiction. Hence, e 6= 1. Since rR(ya) ≤e R, R/rR(ya) ∼= R/(rR(ya) + Sl) is a

singular right R-module. This implies that rR(ya) ≤e R, because R is a projective

right R-module. Since rR(ya) ⊆ rR(ya), we have that rR(ya) ≤e R.

Now (1− e)R∩ rR(ya) 6= 0. Let 0 6= (1− e)r ∈ (1− e)R∩ rR(ya). Let n = se+ t,

where s ∈ R and t ∈ Q. Then t = n − se ∈ Q ∩ Rn ⊆ δl and t ∈ δl/Sl = J(R/Sl).

So 1 − t is unit in R. Also, we have n(1 − e)r = (1 − ya)(1 − e)r = (1 − e)r and

n(1−e)r = (se+t)(1−e)r = t(1−e)r. Then (1−t)(1−e)r = 0. Hence, (1−e)r = 0,

a contradiction. �
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Proposition 3.2.8 If R is right almost δl-semiregular, R/Sl is a projective right

R-module and Sl ⊆ Zl, then Zr ⊆ J(R).

Proof It follows from a proof similar to that of Proposition 3.2.7. �

Example 3.2.9 There exists a right almost δl (or δr)-semiregular ring that is not

right almost semiregular.

Proof ([26, Example 2.15]) Let F be a field and I =

 F F

0 F

. Consider the ring

R = {(x1, x2, . . . , xn, x, x, . . .) | n ∈ N, xi ∈M2(F ), x ∈ I}.

Zhou showed that R is a δr-semiregular (δl-semiregular) ring but it is not semireg-

ular ([46, Example 4.3]). Since every nonzero one-sided ideal contains a nonzero

idempotent, we have Zr = Zl = J(R) = 0.

Now we claim that RR does not satisfy (C2) condition. Take the element α =

(x, x, . . .) of R and the idempotent g = (e, e, . . .), where x =

 0 1

0 0

 and e = 0 0

0 1

. Then αR ∼= gR. One can observe that the idempotents in αR is of

the form f = (f1, f2, . . . , fn, 0, 0, . . .), where fi = 0 or fi =

 1 d

0 0

, d ∈ F for

i = 1, 2, . . . , n. Hence, fR 6= αR for each idempotent f ∈ αR. Thus, RR does not

satisfy (C2). By Theorem 3.2.16 below, R is not right almost semiregular. �

It is well known that J(eRe) = eJ(R)e for any idempotent e of R. We consider

this property for δr which will be used in the forthcoming corollary. Recall that

δr = {x ∈ R : ∀y ∈ R, ∃a semisimple right idealY ofR 3 RR = (1− xy)R⊕ Y }

=
⋂
{idealsP ofR : R/P has a faithful singular simple module}

.

Theorem 3.2.10 Let e be an idempotent of R such that ReR = R. Then δl(eRe) =

eδle.
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Proof It is known that if e is an idempotent such that ReR = R, then the category

of left R-modules, R-Mod, and the category of left eRe-modules, eRe-Mod, are

Morita equivalent (see [21]) under the functors given by

F : R-Mod −→ eRe-Mod, G : eRe-Mod −→ R-Mod

M 7−→ eM T 7−→ Re⊗eRe T.

We know from Corollary 1.1.25 that δl = R if and only if R is semisimple.

Therefore, if δl = R, then R is semisimple and so is eRe. This gives that δl(eRe) =

eRe = eδle.

Now assume that δl 6= R. Let P be an ideal of R such that R/P has a faithful

singular simple module N . Denote R = R/P . Since ReR = R, the categories R-

Mod and eRe-Mod are Morita equivalent. It is known that being faithful ([21, 18.47

and 18.30]), being a singular module ([18, p. 34]) and being a simple module ([30,

Corollary A.8]) are Morita invariant properties. Therefore, eN is a faithful singular

simple eRe-module. Since eRe ∼= eRe/ePe, we have that δl(eRe) ⊆ ePe ⊆ P . This

holds for any ideal P such that R/P has a faithful singular simple module. Thus,

δl(eRe) ⊆ eδle.

For the reverse inclusion, let a ∈ δl. Then Reae �δ R. Now we claim that

eRe(eae) �δ eRe. Let K be a left ideal of eRe such that eRe = eRe(eae) + K.

Write e = ereae + k, where r ∈ R and k ∈ K. This implies that 1 = e + (1− e) =

ereae + k + (1 − e) ∈ Reae + RK + R(1 − e) and so R = Reae + RK + R(1 − e).

Since Reae �δ R, there exists a semisimple projective left ideal Y of R such that

Y ⊆ Reae and R = Y ⊕ [RK +R(1− e)] by Lemma 1.1.20. Hence, we obtain that

eRe = eY e+ (eRe)K = eY +K. Since Y ∩RK = 0, we have that eY ∩K = 0. But

since ReR = R, eY is a semisimple projective left eRe-module. So eRe = eY ⊕K,

eY ⊆ eRe(eae) and eY is a semisimple projective eRe-module. By Lemma 1.1.20,

eRe(eae)�δ eRe. Thus, eδle ⊆ δl(eRe). �

Corollary 3.2.11 Let e be an idempotent of R such that ReR = R. If R is right

almost δl-semiregular, then eRe is right almost δl(eRe)-semiregular.

Proof It follows from Theorems 3.2.10 and 3.1.10. �
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Now we will consider right semicentral idempotents.

Theorem 3.2.12 If e is a right semicentral idempotent of R, then eδle ⊆ δl(eRe)

and δr(eRe) ⊆ eδre.

Proof Let a ∈ δl. Since δl is an ideal, eae ∈ δl. By Theorem 1.1.24, there exists a

semisimple left ideal Y of R such that RR = R(1−eae)⊕Y . Let 1 = x(1−eae)+y,

where x ∈ R and y ∈ Y . Then e = ex(1− eae)e+ eye = exe(e− eae) + eye and so

eRe = eRe(e− eae) + eY e. Since e is right semicentral, this sum is direct. Now we

claim that eY e is a semisimple eRe-module. Let Y = ⊕ni=1Si, where Si is a simple

left R-module, for i = 1, 2, . . . , n. Since e is right semicentral, eY e = ⊕ni=1eSie. Let

S1 = Rs for some s ∈ R. Then eS1e = eRse = eRe(ese) ∼= eRe/leRe(ese). Let

K be a left ideal of eRe such that leRe(ese) ⊂ K. Then there exists k ∈ K such

that k 6∈ leRe(ese). Since leRe(ese) = leRe(es) = lR(es) ∩ eRe, we have k 6∈ lR(es).

Then kes 6= 0. But since lR(s) is maximal in R, we have that lR(s) +Rke = R. Let

1 = x+yke, where x ∈ lR(s) and y ∈ R. Then e = ex+eyek. Since xs = 0, we have

exese = 0. Then ex ∈ leRe(ese) ⊂ K, so ex ∈ K. It follows that e ∈ K. Hence, we

show that leRe(ese) is a maximal left ideal of eRe. So eS1e is simple. This proves

that eY e is semisimple.

Now eRe = eRe(e− eae)⊕ eY e with eY e semisimple. Since a is any element in

δl, we have that eδle ⊆ δl(eRe).

For the other inclusion, let P be an ideal of R and V be a faithful singular simple

right R/P -module. Then V e is an eRe-module. If V e = 0, then δr(eRe) ⊆ eRe ⊆ P .

Assume that V e 6= 0. First note that V is a simple singular R-module, because

V ∼= R/P
K/P

for some essential maximal right ideal K/P of R/P . It follows that

V ∼= R/K as right R-modules and K is an essential maximal right ideal of R. Hence,

V is a simple singular R-module. Since V is a simple R-module, V e is a simple eRe-

module. We claim that V e is a singular eRe-module. Let ve be the generator

of V e. To show that reRe(ve) = rR(v) ∩ eRe is an essential right ideal of eRe, let

0 6= exe ∈ eRe. Since ex 6= 0 and rR(v) is essential in R, there exists t ∈ R such that

0 6= ext ∈ rR(v). Because e is right semicentral, we have 0 6= ext = exte ∈ reRe(ve).

Hence, V e is a singular simple eRe-module. Now, V δr(eRe) = V eδr(eRe) = 0 by

the definition of δr. Since V is a faithful R/P–module, we have that δr(eRe) ⊆ P .
53



Therefore δr(eRe) ⊆ P for each ideal P of R such that R/P has a faithful singular

simple module. So δr(eRe) ⊆ δr and hence δr(eRe) ⊆ eδre. �

Corollary 3.2.13 Let e be a right semicentral idempotent of R. If R is right almost

δl-semiregular, then eRe is right almost δl(eRe)-semiregular.

Proof It follows from Theorems 3.2.12 and 3.1.9. �

The following example shows that the equality eδle = δl(eRe) does not hold even

if e is a right semicentral idempotent.

Example 3.2.14 There exists a right semicentral idempotent e ∈ R such that

eδle ⊂ δl(eRe).

Proof Let R be the ring of 2 × 2 upper triangular matrices over a field F and

e =

 0 1

0 1

. Then eR = eRe and eδle = 0, where δl is the first row of R. Since

eRe is a semisimple projective left eRe-module, δl(eRe) = eRe. �

We have the following results about right almost Zr-semiregular (Zl-semiregular)

rings:

Lemma 3.2.15 ([35, Lemma 2.12]) Let a, b ∈ R such that aR ∼= bR = eR, where

e2 = e ∈ R. Then there exists an idempotent f ∈ R such that af = a and rR(a) =

rR(f).

Theorem 3.2.16 Let I be an ideal of a ring R. If R is right almost I-semiregular

and I ⊆ Zr, then RR satisfies (C2).

Proof Let a ∈ R such that aR ∼= eR, where e2 = e ∈ R. By Lemma 3.2.15,

there exists an idempotent f ∈ R such that a = af and rR(a) = rR(f). By the

proof of Proposition 3.1.6, there exists an idempotent h ∈ R such that h ∈ Ra and

a(1−h) ∈ I. By Lemma 1.4.10, there exists an idempotent g ∈ R such that g ∈ aR

and (1 − g)a ∈ I. Then aR = gR ⊕ S, where S = (1 − g)aR ⊆ I. By assumption,

S is a singular right R–module. Since aR is projective, we have that S = 0. Thus,

aR = gR. �
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Corollary 3.2.17 If R is right almost Zr-semiregular, then RR satisfies (C2).

We know from [30, Lemma 2.3] that if RR satisfies (C2), then Zr ⊆ J(R). Hence,

we have the following result:

Corollary 3.2.18 If R is right almost Zr-semiregular, then R is right almost semireg-

ular.

The following two examples show that the converse of Corollary 3.2.18 is not

true in general.

Example 3.2.19 There is an Artinian ring R such that R is Zl-semiregular but

not right almost Zr-semiregular.

Proof Let R =

 Z4 Z2

0 Z2

. Then

Sr =

 2Z4 Z2

0 Z2

 , Sl =

 2Z4 Z2

0 0

 ,
Zr = lR(Sr) =

 2Z4 0

0 0

 , Zl = rR(Sl) =

 2Z4 Z2

0 0

 .
The ring R is Zl-semiregular but it is not Zr-semiregular ([31, Example 40]). Now

we claim that R is not right almost Zr-semiregular. Let a =

 0 1

0 0

 in R. Then

Ra =

 0 Z2

0 0

 and lRrR(a) =

 0 Z2

0 Z2

. If R is right almost Zr-semiregular,

then there is a decomposition lRrR(a) = P ⊕ Q, where P ⊆ Ra and Q ∩ Ra ⊆ Zr.

Since Ra∩Zr = 0, Q∩Ra = 0. This implies that Ra = P is a summand of lRrR(a)

which is a contradiction. Hence, R is not right almost Zr-semiregular. �

Example 3.2.20 Let R be the ring of 2× 2 upper triangular matrices over a field

F . The ring R is Artinian but RR does not satisfy (C2) ([30, Example 1.20]). Hence,

R is right almost semiregular but not right almost Zr-semiregular.
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A well known result of Utumi asserts that if RR is continuous, then it is semireg-

ular and Zr = J(R) (see Section 1.4). This fact together with Corollary 3.2.17 gives

us the following result:

Proposition 3.2.21 A ring R is right almost Zr-semiregular and RR satisfies (C1)

if and only if R is right continuous.

In [1, Corollary 3.5], it was proved that a finitely generated projective module

M is continuous if and only if M is Z(M)-semiregular and M satisfies (C1). Hence,

Proposition 3.2.21 generalizes this result in the ring case.

Proposition 3.2.22 If R is right almost Zl ∩ δl-semiregular, then it is right almost

semiregular.

Proof Let a ∈ R. Then there exists a decomposition lRrR(a) = P ⊕ Q such that

P ⊆ Ra and Q ∩Ra ⊆ Zl ∩ δl. We claim that Q ∩Ra ⊆ J(R). Let x ∈ Q ∩Ra. To

see that x ∈ J(R), we must show that 1 − yx is left invertible in R for any y ∈ R.

Let u = 1−yx, where y ∈ R. Since x ∈ δl, there exists a semisimple left ideal Y of R

such that R(1− yx)⊕ Y = R by Theorem 1.1.24. Let ϕ : R→ Y be the projection.

Then ϕ(Q∩Ra) ⊆ ϕ(Zl) ⊆ Z(Y ) = 0, and so Ryx ⊆ Q∩Ra ⊆ Kerϕ = R(1− yx).

Since R = Ryx + R(1 − yx), we have that R = R(1 − yx). Hence, x ∈ J(R) and

Q ∩Ra� R. �

Proposition 3.2.23 If R is right almost I-semiregular for an ideal I such that

J(R) ∩ I = 0, then J(R) ⊆ Zr.

Proof Let a ∈ J(R) and assume that a 6∈ Zr. Then there exists a nonzero right

ideal K of R such that rR(a) ∩ K = 0. Take s ∈ K such that as 6= 0. Let

0 6= u ∈ asR. By hypothesis, there is a decomposition lRrR(u) = P ⊕ Q, where

P ⊆ Ru, Q∩Ru ⊆ I. Without loss of generality we can assume that u = as. Then

it can be seen that rR(as) = rR(s). Then lRrR(as) = lRrR(s) = P ⊕ Q. Write

s = das + x, where d ∈ R and x ∈ Q. Then (1 − da)s = x and so u = as =

a(1− da)−1x ∈ J(R)∩ (Q∩Ru) ⊆ J(R)∩ I = 0, a contradiction. Hence, a ∈ Zr. �
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Corollary 3.2.24 If R is right almost Sl-semiregular and R/Sl is a projective right

R-module, then J(R) = Zr and R is right almost Zr-semiregular.

Proof Since Sl is a summand of R, J(R)∩Sl = Rad(Sl) = 0. By Proposition 3.2.23,

J(R) ⊆ Zr. By Corollary 3.2.4, R is right almost semiregular. By Proposition 1.6.7,

Zr ⊆ J(R). Hence, J(R) = Zr and R is right almost Zr-semiregular. �

The following example shows that the assumption “J(R) ∩ I = 0” in Proposi-

tion 3.2.23 is not removable in case I = Zl.

Example 3.2.25 Let R be the ring in Example 3.2.19. R is a right almost Zl-

semiregular ring. Since J(R) =

 2Z4 Z2

0 0

, we obtain J(R)∩Zl 6= 0 and J(R) 6⊆

Zr.
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4 CHAIN CONDITIONS ON NON-SUMMANDS

Let M be an R-module. By a non-summand of the module M we mean a

submodule K which is not a direct summand of M . Among the non-summands of M

we could mention proper essential submodules and non-zero small submodules. This

chapter is concerned with the study of ascending and descending chain conditions

(respectively, acc and dcc) on certain non-summands.

Goodearl ([17, Proposition 3.6]) proved that an R-module M satisfies acc on

essential submodules if and only if M/Soc(M) is Noetherian. Goodearl’s result

has a dual due to Armendariz ([5, Proposition 1.1]) who proved that a module M

satisfies dcc on essential submodules if and only if M/Soc(M) is Artinian. The

results of Goodearl and Armendariz can also be found at [15, 5.15]. Varadarajan

([38, Lemma 2.1]) proved that a module M satisfies acc on small submodules if and

only if Rad(M) is Noetherian; Al-Khazzi and Smith ([2, Theorem 5]) proved that a

module M satisfies dcc on small submodules if and only if Rad(M) is Artinian. We

shall give an example of a commutative von Neumann regular ring R such that R

satisfies acc and dcc on essential ideals and on small ideals but R satisfies neither

acc nor dcc on non-summands.

In this chapter, modules satisfying ascending or descending chain conditions on

non-summand submodules belongs to some particular classes X , such as the class of

all R-modules, finitely generated, finite dimensional and cyclic modules, are consid-

ered. It is proved that a module M satisfies acc (respectively, dcc) on non-summands

if and only if M is semisimple or Noetherian (respectively, Artinian). Over a right

Noetherian ring R, a right R-module M satisfies acc on finitely generated non-

summands if and only if M satisfies acc on non-summands; a right R-module M

satisfies dcc on finitely generated non-summands if and only if M is locally Artinian.

Moreover, if a ring R satisfies dcc on cyclic non-summand right ideals, then R is a

semiregular ring such that the Jacobson radical J(R) is left T -nilpotent.
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4.1 Module Classes

Let R be a ring. By a class X of R-modules we mean a collection of R-modules

which contains a zero module and which is closed under isomorphisms. If a module

belongs to X , then we say that it is an X -module. By an X -submodule (respec-

tively, X -summand, X -non-summand) we mean an X -module which is also a sub-

module (respectively, summand, non-summand) of M . This section is concerned

with chain conditions on X -non-summands of a module. It is clear that every

semisimple R-module satisfies both acc and dcc on X -non-summands and that ev-

ery Noetherian (respectively, Artinian) R-module satisfies acc (respectively, dcc) on

X -non-summands. Note the following elementary fact:

Proposition 4.1.1 An R-module M satisfies acc (respectively, dcc) on X -submo-

dules if and only if M satisfies acc (respectively, dcc) both on X -summands and on

X -non-summands.

Recall that a module is Noetherian if and only if it satisfies acc on finitely

generated submodules. Thus Proposition 4.1.1 shows that a module M is Noetherian

if and only if M satisfies acc both on finitely generated summands and on finitely

generated non-summands. Note too that every finite dimensional module satisfies

acc and dcc on summands so that we have the following immediate corollary to

Proposition 4.1.1.

Corollary 4.1.2 A finite dimensional module satisfies acc (respectively, dcc) on X -

non-summands if and only if M satisfies acc (respectively, dcc) on X -submodules.

Lemma 4.1.3 Let M be a module which satisfies acc (respectively, dcc) on X -non-

summands. Then every submodule of M satisfies acc (respectively, dcc) on X -non-

summands.

Proof Let N be any submodule of M . If K is an X -non-summand of N then K

is an X -non-summand of M . The result follows. �
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Lemma 4.1.4 Let X be a class of R-modules which is closed under extensions and

let N be an X -submodule of an R-module M . Suppose that M satisfies acc (respec-

tively, dcc) on X -non-summands. Then M/N satisfies acc (respectively, dcc) on

X -non-summands.

Proof Let K be a submodule of M containing N such that K/N is an X -non-

summand of M/N . Then K is an X -submodule of M because X is closed under

extensions. Moreover, K is a non-summand of M . Thus K is an X -non-summand

of M . The result follows. �

We shall see in Section 4.2 that if N is a submodule of an R-module M such that

the modules N and M/N both satisfy acc (respectively, dcc) on non-summands then

M need not satisfy acc (respectively, dcc) on non-summands. Indeed, more is true.

We shall give an example of R-modules A1 and A2 which both satisfy acc on non-

summands such that the module A1⊕A2 does not satisfy acc on non-summands and

also an example of R-modules B1 and B2 which both satisfy dcc on non-summands

but B1 ⊕ B2 does not satisfy dcc on non-summands. However, in some situations

the direct sum of modules with acc (respectively, dcc) on X -non-summands also has

the same property. For example, note the following result:

Lemma 4.1.5 Let X be a class of R-modules such that, for each non-zero X -module

X, every non-zero submodule of X contains a non-zero X -submodule. Let an R-

module M = M1 ⊕ M2 be a direct sum of submodules Mi (i = 1,2) such that

M1 contains no non-zero X -submodule and M2 satisfies acc (respectively, dcc) on

X -non-summands. Then M satisfies acc (respectively, dcc) on X -non-summands.

Proof Let L be an X -non-summand of M . By hypothesis, L ∩ M1 = 0. Let

π : M → M2 denote the canonical projection. Then π(L) ∼= L so that π(L) is

an X -submodule of M2. Next note that M1 ⊕ L = M1 ⊕ π(L) so that π(L) is

a non-summand of M and hence also of M2, because L is a non-summand of M .

Let L1 ⊆ L2 ⊆ . . . be any ascending chain of X -non-summands of M . Then

π(L1) ⊆ π(L2) ⊆ . . . is an ascending chain of X -non-summands of M2. Suppose

that there exists a positive integer n such that π(Ln) = π(Ln+1) = . . . . Then

M1 ⊕ Ln = M1 ⊕ Ln+1 = . . . and hence Ln = Ln+1 = . . . . Thus if M2 satisfies
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acc on X -non-summands then so too does M . A similar result give the proof for

descending chains. �

In particular, Lemma 4.1.5 applies to classes X which are closed under taking

submodules. However, it applies more widely. For example, the class of finitely gen-

erated R-modules is not closed under taking submodules (if R is not right Noethe-

rian) but satisfies the property of Lemma 4.1.5.

Lemma 4.1.6 Let X be a class of modules closed under finite direct sums. Let M

be a module which satisfies acc (respectively, dcc) on X -non-summands. Let L and

N be submodules of M such that L∩N = 0. Then L satisfies acc (respectively, dcc)

on X -submodules or every X -submodule of N is a direct summand of M and hence

also of N .

Proof Suppose that M satisfies acc on X -non-summands. By Lemma 4.1.3, the

module L ⊕ N also satisfies acc on X -non-summands. Suppose there exists an X -

submodule K of N which is not a direct summand of M . Let H1 ⊆ H2 ⊆ . . .

be any ascending chain of X -submodules of L. For each i ≥ 1, Hi ∩ K = 0 and

Hi⊕K is an X -non-summand of M (otherwise, K is a direct summand of M). Thus

H1 ⊕K ⊆ H2 ⊕K ⊆ . . . is an ascending chain of X -non-summands of M and, by

hypothesis, Hn ⊕K = Hn+1 ⊕K = . . . for some positive integer n. It follows that

Hn = Hn+1 = . . . . Thus L satisfies acc on X -submodules. The proof for descending

chains is similar. �

Theorem 4.1.7 Let X be a class of R-modules which is closed under finite direct

sums and under taking direct summands. Then an R-module M satisfies acc on

X -non-summands if and only if, for every X -non-summand N of M , M satisfies

acc on X -submodules which contain N .

Proof The sufficiency is clear. Conversely, suppose that M satisfies acc on X -

non-summands. Let L be any X -submodule of M such that there exists a properly

ascending chain L = L1 ⊂ L2 ⊂ . . . of X -submodules of M . By hypothesis, there

exists a positive integer n such that Ln is a direct summand of M . Let N be a
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submodule of M such that M = Ln ⊕N . For each i ≥ n, Li = Ln ⊕ (Li ∩N). By

hypothesis, Ln∩N ⊂ Ln+1∩N ⊂ . . . is a properly ascending chain of X -submodules

of N . By Lemma 4.1.6, L is a direct summand of M . The result follows. �

Corollary 4.1.8 Let X be a class of R-modules which is closed under extensions

and also under taking homomorphic images. Then an R-module M satisfies acc

on X -non-summands if and only if M/N satisfies acc on X -submodules for every

X -non-summand N of M .

Proof Suppose first that M satisfies acc on X -non-summands. Let N be any X -

non-summand of M . Let L̄1 ⊆ L̄2 ⊆ . . . be any ascending chain of X -submodules

of M/N . For each i ≥ 1, L̄i = Li/N for some submodule Li of M containing

N . By hypothesis, Li is an X -submodule of M for all i ≥ 1. By Theorem 4.1.7,

Ln = Ln+1 = . . . and hence L̄n = L̄n+1 = . . . for some positive integer n. Thus

M/N satisfies acc on X -submodules.

Conversely, suppose that M/N satisfies acc on X -submodules for each X -non-

summand N of M . Let L be any X -non-summand of M and let H1 ⊆ H2 ⊆ . . .

be any ascending chain of X -submodules of M such that L ⊆ H1. Then H1/L ⊆

H2/L ⊆ . . . is an ascending chain of X -submodules of M/L. There exists a positive

integer k such that Hk/L = Hk+1/L = . . . and hence Hk = Hk+1 = . . . . By

Theorem 4.1.7, M satisfies acc on X -non-summands. �

The next result is a companion theorem to Theorem 4.1.7.

Theorem 4.1.9 Let X be a class of R-modules which is closed under finite direct

sums and under taking direct summands. Then an R-module M satisfies dcc on

X -non-summands if and only if every X -non-summand of M satisfies dcc on X -

submodules.

Proof The sufficiency is clear. Conversely, suppose that M satisfies dcc on X -

non-summands. Let N be any X -non-summand of M . Suppose that N does not

satisfy dcc on X -submodules and let N1 ⊃ N2 ⊃ . . . be a properly descending chain

of X -submodules of N . By hypothesis, there exists a positive integer k such that
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Nk is a direct summand of M . Let L be a submodule of M such that M = Nk ⊕L.

Now Nk ⊃ Nk+1 ⊃ . . . is a properly descending chain of X -submodules of Nk so

that, by Lemma 4.1.6, every X -submodule of L is a direct summand of L. However,

N = Nk ⊕ (N ∩ L) gives that N ∩ L is a direct summand of L and hence N is a

direct summand of M , a contradiction. The result follows. �

4.2 The Class of R-modules

Let R be any ring. In this section, we consider modules with ascending or descending

chain conditions on X -non-summands, where X = Mod− R. Lemma 4.1.6 has the

following immediate consequence:

Lemma 4.2.1 Let M be a module which satisfies acc (respectively, dcc) on non-

summands and let L and N be submodules of M such that L ∩ N = 0. Then L is

Noetherian (respectively, Artinian) or N is semisimple.

Now let R be a right Noetherian ring which is not semiprime Artinian and let U

be any non-finitely generated semisimple R-module. Then the R-modules R and U

both satisfy acc on non-summands, but Lemma 4.2.1 shows that the module R⊕U

does not satisfy acc on non-summands. In the same way, if R is right Artinian (but

not semiprime) then the R-modules R and U both satisfy dcc on non-summands

but the module R⊕ U does not satisfy dcc on non-summands by Lemma 4.2.1.

Theorem 4.2.2 An R-module M satisfies acc on non-summands if and only if M

is semisimple or Noetherian.

Proof The necessity is clear. For the sufficiency assume that M satisfies acc

on non-summands. Since M satisfies acc on essential submodules, M/Soc(M) is

Noetherian (see Section 1.9). If Soc(M) is finitely generated, then M is Noetherian.

Suppose that Soc(M) is not finitely generated. Then Soc(M) = S1 ⊕ S2 for some

non-finitely generated submodules S1, S2. Because S2 is not Noetherian, M = S1⊕L

for some submodule L of M by Lemma 4.1.6. But S1 not being Noetherian gives

that L is semisimple by Lemma 4.2.1. Hence, if Soc(M) is not finitely generated

then M is semisimple. �
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Theorem 4.2.2 has the following analogue. The proof is rather similar but we

give it for completeness.

Theorem 4.2.3 A module M satisfies dcc on non-summands if and only if M is

semisimple or Artinian.

Proof The necessity is clear. For the sufficiency assume that M satisfies dcc on non-

summands. Since M satisfies dcc on essential submodules, M/Soc(M) is Artinian

(see Section 1.9). If Soc(M) is finitely generated, then M is Artinian. On the other

hand, if Soc(M) is not finitely generated then M is semisimple by the proof of

Theorem 4.2.2. �

Theorems 4.2.2 and 4.2.3 have the following immediate consequence which also

give a new characterization of right Noetherian and right Artinian rings.

Corollary 4.2.4 For any ring R, a finitely generated R-module M satisfies acc

(respectively, dcc) on non-summands if and only if M is Noetherian (respectively,

Artinian).

In particular, for a ring R, if RR satisfies dcc on non-summands, then RR satisfies

acc on non-summands.

Now we give an example to show that there exist modules with acc (respectively,

dcc) on essential and on small submodules but which do not have acc (respectively,

dcc) on non-summands.

Example 4.2.5 Let K be any field and let S be the commutative ring which is the

direct product of a countably infinite number of copies of K, that is, S =
∏∞

i=1 Ki,

where Ki = K for all i ≥ 1. Let R denote the subring of S consisting of all elements

{ki} such that ki ∈ K (i ∈ I) and kn = kn+1 = . . . for some positive integer n.

Then R is a commutative von Neumann regular ring which satisfies acc and dcc on

essential ideals and on small ideals but satisfies neither acc nor dcc on non-summand

ideals.
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Proof It is clear that R is a von Neumann regular ring. Thus, J(R) = 0 and

trivially R satisfies acc and dcc on small ideals. Moreover, Sr is the set of elements

{ki} of R such that, for some positive integer n, ki = 0 for all i ≥ n. Thus, R/Sr is

isomorphic to K and R satisfies acc and dcc on essential ideals. By Corollary 4.2.4,

R does not satisfy acc on non-summand ideals and also does not satisfy dcc on

non-summand ideals. �

4.3 The Class of Finitely Generated and Finite Dimensional

Modules

In this section, we let X denote the class of finitely generated R-modules. Clearly,

regular modules satisfy both acc and dcc on finitely generated non-summands.

Lemma 4.3.1 Let M be an R-module. If every cyclic submodule of M is a finite

dimensional direct summand, then M is semisimple.

Proof Let M 6= 0 and let 0 6= m ∈ M . Because mR is finite dimensional, there

exist a positive integer n and non-zero indecomposable submodules Li (1 ≤ i ≤ n)

of mR such that mR = L1 ⊕ · · · ⊕ Ln. Let 1 ≤ i ≤ n and let 0 6= x ∈ Li. By

hypothesis, xR is a direct summand of M , and hence also of Li so that Li = xR.

It follows that Li is simple for all 1 ≤ i ≤ n. Therefore, mR is semisimple for all

m ∈M . It follows that M is semisimple. �

Theorem 4.3.2 The following statements are equivalent for an R-module M :

(i) M satisfies acc on finitely generated non-summands.

(ii) M/L is Noetherian for every finitely generated non-summand L of M .

(iii) For every non-finitely generated submodule N of M , every finitely generated

submodule of N is a direct summand of M .

Proof (i) ⇔ (ii) By Corollary 4.1.8.

(ii) ⇒ (iii) Let N be any non-finitely generated submodule of M . Let L be any

finitely generated submodule of N . If L is not a direct summand of M , then M/L
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is Noetherian by (ii). Hence, N is finitely generated, a contradiction. Thus, every

finitely generated submodule L of N is a direct summand of M .

(iii) ⇒ (ii) Let H be any finitely generated non-summand of M . By (iii), every

submodule of M containing H is finitely generated, and hence M/H is Noetherian.

�

Corollary 4.3.3 Let R be a right Noetherian ring. Then the following statements

are equivalent for an R-module M :

(i) M satisfies acc on non-summands.

(ii) M satisfies acc on finitely generated non-summands.

(iii) M is semisimple or Noetherian.

Proof The implications (i) ⇒ (ii) and (iii) ⇒ (i) are obvious. For (ii) ⇒ (iii),

assume that the module M is not Noetherian. Then M is not finitely generated since

R is right Noetherian. By Theorem 4.3.2(iii), every finitely generated submodule of

M is a direct summand. It follows from Lemma 4.3.1 that M is semisimple. �

Corollary 4.3.4 Let M be an R-module which satisfies acc on finitely generated

non-summands. Then M is Noetherian or M contains an essential submodule N

such that every finitely generated submodule of N is a direct summand of M .

Proof If M is finite dimensional then M is Noetherian by Corollary 4.1.2. Suppose

that M is not finite dimensional. Let a submodule L = L1 ⊕ L2 ⊕ . . . be a direct

sum of non-zero submodules Li (i ≥ 1) of M . Let K be a complement of L in M

and let N = L ⊕K. Then N is an essential submodule of M . Suppose that H is

any finitely generated submodule of N . Note that H ⊆ L1 ⊕ · · · ⊕Ln ⊕K for some

positive integer n, and hence Ln+1 ⊕ Ln+2 ⊕ . . . embeds in M/H. Thus, M/H is

not Noetherian so that H is a direct summand of M by Theorem 4.3.2. �

Next we aim to give an example of a module which satisfies acc on finitely

generated non-summands but which is neither Noetherian nor regular. First we

state a well known lemma whose proof we shall include for completeness.
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Lemma 4.3.5 Let N be a finitely generated submodule of an R-module M such

that every cyclic submodule of N is a direct summand of M . Then N is a direct

summand of M .

Proof There exist a positive integer k and elements xi ∈ N (1 ≤ i ≤ k) such that

N = x1R+ · · ·+ xkR. If k = 1, then there is nothing to prove. Suppose that k ≥ 1.

There exists a submodule L of M such that M = x1R⊕L. Then N = x1R⊕(N∩L).

If π : N → N ∩ L is the canonical projection, then N ∩ L is generated by the (k-1)

elements π(x2), . . . , π(xk). By induction, N ∩ L is a direct summand of M , and

hence also of L. It follows that N is a direct summand of M . �

Example 4.3.6 Let D be a commutative Noetherian domain with field of fractions

K 6= D. Let T be the subring of the ring R of Example 4.2.5 consisting of all

elements {ki} of R such that, for some positive integer n, ki ∈ D for all i ≥ n.

Then T is a commutative ring such that the T -module T satisfies acc on finitely

generated non-summands but T is not Noetherian nor regular.

Proof Note that Soc(T ) = Soc(R). Let L be any finitely generated non-summand

of TT . By Lemma 4.3.5, there exists x ∈ L such that xT is not a direct summand

of T . Then x = {ki}, where kn = kn+1 = . . . and kn is a non-zero element of

D, for some positive integer n. Then xT contains all elements of T of the form

{hi}, where hi = 0 for all 1 ≤ i ≤ n − 1 and for all i ≥ m for some integer

m ≥ n+1. It follows that Soc(T )/(xT∩ Soc(R)) is Noetherian. But T/Soc(T ) ∼= D

so that T/Soc(T ) is Noetherian. This implies that T/xT , and hence also T/L, is

Noetherian. By Theorem 4.3.2, TT satisfies acc on finitely generated non-summands.

T is not Noetherian because Soc(T ) is not finitely generated. Also, if a is any non-

zero non-unit element of D and s is the element {ki} of T with ki = a for all i ≥ 1

then sT is not a direct summand of T so that TT is not regular. �

We now consider modules which satisfy dcc on finitely generated non-summands.

Remark 4.3.7 An R-module M satisfies dcc on finitely generated submodules if

and only if M satisfies dcc on cyclic submodules, and in this case M is semiartinian

(see [41, 31.8]).
67



Theorem 4.3.8 Let M be an R-module. Every finitely generated submodule of M

is a direct summand of M if and only if M satisfies dcc on finitely generated non-

summands and every simple submodule is a direct summand of M .

Proof The necessity is clear. Conversely, suppose that M satisfies the stated

conditions. Suppose further that M contains a finitely generated non-summand.

Let L be a minimal finitely generated non-summand of M . Note that L 6= 0. Let

x be any non-zero element of L. Suppose that L 6= xR. It follows that xR is a

direct summand of M so that M = xR ⊕ N for some submodule N of M . Now

L = xR⊕(L∩N), and hence L∩N is a finitely generated submodule of M . Clearly,

L 6= L ∩N and this implies that L ∩N is a direct summand of M , and hence also

of N , giving the contradiction that L is a direct summand of M . Thus, L = xR for

every non-zero element x of L. It follows that L is a simple module, a contradiction.

�

Theorem 4.1.9 gives the following result without further proof.

Theorem 4.3.9 An R-module M satisfies dcc on finitely generated non-summands

if and only if every finitely generated non-summand of M satisfies dcc on finitely

generated submodules.

Compare the next result with Corollary 4.3.4.

Proposition 4.3.10 Let M be a module which satisfies dcc on finitely generated

non-summands. Then every finitely generated submodule of M is a direct summand

of M or M has essential socle.

Proof Suppose that the module M has a finitely generated non-summand. By

Theorem 4.3.8, M contains a simple submodule L which is not a direct summand.

Let H be a complement of L in M so that L ⊕H is an essential submodule of M .

By Lemma 4.1.6, H satisfies dcc on finitely generated submodules, and hence H has

essential socle by Remark 4.3.7. It follows that M has essential socle. �

Clearly, locally Artinian modules satisfy dcc on finitely generated submodules.

Compare the next result with Corollary 4.3.3.
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Theorem 4.3.11 Let R be a right Noetherian ring. Then an R-module M satisfies

dcc on finitely generated non-summands if and only if M is locally Artinian.

Proof The sufficiency is clear. Conversely, suppose that M satisfies dcc on finitely

generated non-summands. Let N be any finitely generated submodule of M . If

N ⊆ SocM , then N is Artinian. Suppose that N * SocM . Then there exists

a maximal submodule L of N such that N ∩ SocM ⊆ L. Suppose that L is not

Artinian and let L1 ⊃ L2 ⊃ . . . be any properly descending chain of submodules of

L. BecauseN is finitely generated, so too is Li for each i ≥ 1, and hence Lk is a direct

summand of M for some positive integer k. There exists a submodule H of M such

that M = Lk ⊕H. By Lemma 4.1.6, every finitely generated submodule of H is a

direct summand of H. Let 0 6= h ∈ H. Every submodule of hR is finitely generated,

because R is right Noetherian, and hence is a direct summand of hR. Thus hR

is semisimple for every non-zero h ∈ H. It follows that H is semisimple and thus

H ⊆ SocM . It follows that M = Lk +SocM , and hence N = Lk +(N ∩SocM) ⊆ L,

a contradiction. Thus, L is Artinian. So N is Artinian, too. It follows that M is

locally Artinian. �

The condition that R is right Noetherian cannot be removed in Theorem 4.3.11.

Example 4.3.12 Let R be a commutative ring with unique maximal ideal J such

that J2 = 0 and J is not finitely generated. Then J is a non-finitely generated

semisimple R-module. The R-module R is not Artinian and hence is not locally

Artinian. Let A be a finitely generated non-summand of R. Then A 6= R so that

A ⊆ J . Hence, A is Artinian because A is semisimple. Thus, the R-module R

satisfies dcc on finitely generated non-summands but is not locally Artinian and is

not regular.

To be specific, let V be an infinite dimensional vector space over a field F . Con-

sider the ring R = {

 x v

0 x

 |x ∈ F, v ∈ V } and J =

 0 V

0 0

. Then R and J

satisfy the stated conditions.

Remark 4.3.13 If N is a fully-invariant submodule of an R-module M , then N =

(N ∩M1) ⊕ (N ∩M2), and hence M/N = ((M1 + N)/N) ⊕ ((M2 + N)/N) for all

submodules M1 and M2 of M such that M = M1 ⊕M2.
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Compare the following with Lemma 4.1.4.

Lemma 4.3.14 If an R-module M satisfies dcc on finitely generated non-summands

then so too does every factor module M/N , where N is a fully-invariant submodule

of M .

Proof Let N be a nonzero fully-invariant submodule of M . Let M = M/N and

let K ⊆ L be finitely generated submodules of M . There exist positive integers s,

t and elements xi, yj in M (1 ≤ i ≤ s, 1 ≤ j ≤ t) such that L = (x1 + N)R +

· · · + (xs + N)R and K = (y1 + N)R + · · · + (yt + N)R. For each 1 ≤ j ≤ t there

exist elements rij ∈ R (1 ≤ i ≤ s) and uj ∈ N such that yj =
∑s

i=1 xirij + uj.

Let zj =
∑s

i=1 xirij (1 ≤ j ≤ t). Then K = (z1 + N)R + · · · + (zt + N)R and

z1R + · · ·+ ztR ⊆ x1R + · · ·+ xsR.

Now let L1 ⊇ L2 ⊇ . . . be any descending chain of finitely generated non-

summands of M . By the above remarks, we can suppose without loss of generality

that Li = (Li + N)/N (i ≥ 1) for some descending chain L1 ⊇ L2 ⊇ . . . of finitely

generated submodules of M . Remark 4.3.13 shows that Li is a non-summand of

M for each i ≥ 1. By hypothesis, there exists a positive integer k such that Lk =

Lk+1 = . . . , and hence Lk = Lk+1 = . . . . �

Proposition 4.3.15 If M satisfies dcc on finitely generated non-summands, then

there exists a semiartinian submodule S of M such that every finitely generated

submodule of M/S is a direct summand.

Proof Let 0 = S0 ⊆ S1 ⊆ · · · ⊆ Sα ⊆ Sα+1 ⊆ . . . be the socle series of M , where

for each ordinal α ≥ 0, Sα+1/Sα = Soc(M/Sα) and Sα =
⋃

0≤β<α Sβ when α is a

limit ordinal. Note that Sα is a fully-invariant submodule of M for each ordinal

α ≥ 0. Because M is a set, there must exists an ordinal ρ ≥ 0 such that Sρ = Sρ+1,

and hence M/Sρ has zero socle. Note that Sρ is semiartinian.

Now suppose that M satisfies dcc on finitely generated non-summands. By

Lemma 4.3.14, M/Sρ satisfies dcc on finitely generated non-summands. Finally, by

Proposition 4.3.10, every finitely generated submodule of M/Sρ is a direct summand.

�
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We have the following result for the class of finite dimensional modules.

Theorem 4.3.16 Let M be a module such that every non-zero submodule contains

a uniform submodule. Then M satisfies acc on finite dimensional non-summands if

and only if M is Noetherian or every uniform submodule of M is a direct summand.

Proof (⇐) Suppose M is not Noetherian. Let L be a finite dimensional submodule

of M . Suppose L 6= 0. Let U ≤ L and U be uniform. Then M = U ⊕ U ′ for some

U ′ ≤ M . Then L = U ⊕ (L ∩ U ′), where udim(L ∩ U ′) < udim(L). By induction,

L ∩ U ′ is a direct summand of U ′ so that L is a direct summand of M .

(⇒) Suppose M satisfies acc on finite dimensional non-summands. Suppose M

contains a (non-zero) finite dimensional non-summand. We shall show that M is

Noetherian. Let H be a maximal finite dimensional non-summand of M . Then

M 6= H because H is a non-summand of M . Suppose that H is not essential in

M . Then H ∩ L = 0 for some non-zero submodule L. By hypothesis, L contains a

uniform submodule U . Then H ⊕ U is finite dimensional and hence, by the choice

of H, a direct summand of M . This implies that H is a direct summand of M , a

contradiction. Thus, H is essential in M , and so M is finite dimensional. Every

submodule of M is also finite dimensional. This gives that M satisfies acc on non-

summands. By Theorem 4.2.2, M is Noetherian or semisimple. But since M is finite

dimensional, it is Noetherian. �

4.4 The Class of Cyclic Modules

A non-empty subset I of a ring R acts t-nilpotently on an R-module M if, for every

sequence a1, a2 . . . of elements in I and every m ∈ M , we have ma1a2 · · · ai−1ai = 0

for some i ∈ N (depending on m) (see [41]). The set I is called left T -nilpotent if

it acts t-nilpotently on RR (see Section 1.5). Recall from Section 1.5 that a ring R

is left perfect if and only if J(R) is left T -nilpotent and R/J(R) is semisimple, and

this occurs if and only if R satisfies dcc on cyclic right ideals. By Proposition 4.1.1,

we have the following:

Proposition 4.4.1 A ring R is left perfect if and only if R satisfies dcc both on

summands and cyclic non-summand right ideals.
71



Example 4.2.5 shows that there exists a commutative ring satisfying dcc on

finitely generated (cyclic) non-summands but which is not perfect.

Proposition 4.4.2 Let M be an R-module which satisfies dcc on cyclic non-summands.

Then J(R) acts t-nilpotently on M .

Proof Let a1, a2, . . . be a sequence of elements in J(R) and m ∈M . Consider the

descending chain

ma1R ⊇ ma1a2R ⊇ ma1a2a3R ⊇ . . . .

Assume that there exists a k such that ma1a2 . . . akR is a direct summand of M .

Since ma1a2 . . . akR ⊆ mJ(R) ⊆ RadM , ma1a2 . . . akR is small and a direct sum-

mand of M . This implies that ma1a2 . . . ak = 0. Now we assume that for every k,

ma1a2 . . . akR is not a direct summand of M . By hypothesis, there exists i such

that ma1a2 . . . aiR = ma1a2 . . . ai+1R ⊆ ma1a2 . . . aiJ(R). By Nakayama’s Lemma,

we have ma1a2 . . . ai = 0. �

Proposition 4.4.3 Let M be an R-module satisfying dcc on cyclic non-summands

and let S = EndR(M). Suppose that the module M is a faithful right R-module and

a finitely generated left S-module. Then J(R) is left T -nilpotent.

Proof Since MR is faithful and SM is finitely generated, it follows that RR embeds

in Mk
R for some positive integer k (see [41, 15.3 and 15.4]). By Proposition 4.4.2,

J(R) acts t-nilpotently on Mk
R. Hence, J(R) is left T -nilpotent. �

Corollary 4.4.4 If R is a ring satisfying dcc on cyclic non-summand right ideals,

then J(R) is left T -nilpotent.

Remark 4.4.5 If a ∈ R and a − aba is regular for some b in R, then a is regular.

For, there exists c in R such that a− aba = (a− aba)c(a− aba), and thus a = ada,

where d = b+ (1− ba)c(1− ab).
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Theorem 4.4.6 Let R be a ring which satisfies dcc on cyclic non-summand right

ideals. Then R is a semiregular ring such that J(R) is left T -nilpotent.

Proof By Corollary 4.4.4, J(R) is left T -nilpotent. To prove that R is semireg-

ular, without loss of generality, we may assume that J(R) = 0 (adapt the proof

of Lemma 4.3.14). Let 0 6= a ∈ R. There exists a maximal right ideal M1 of R

such that a /∈ M1. Then 1 = ar + b for some r ∈ R, b ∈ M1. It follows that

a1 = a − ara = ba ∈ M1. Now suppose that a1 6= 0. By the same argument,

there exist a maximal right ideal M2 and elements r1 ∈ R, b1 ∈ M2 such that

a2 = a1 − a1r1a1 = b1a1 ∈ M1 ∩M2. If a2 6= 0, then repeat the argument. This

gives a sequence of elements a = a0, a1, a2, . . . of R and a sequence of maximal right

ideals M1,M2, . . . of R such that, for each i ≥ 0, ai+1 = ai − airiai for some ri ∈ R

and ai ∈ M1 ∩ · · · ∩Mi, ai /∈ Mi+1. Thus, we obtain a strictly descending chain

a0R ⊃ a1R ⊃ . . . . By hypothesis, there exists a positive integer n such that anR is

a direct summand of RR. There exists an idempotent e in R such that anR = eR.

It can easily be shown that an is regular. By Remark 4.4.5, a is regular, too. It

follows that every element of R is regular and so R is von Neumann regular. �

The converse of Theorem 4.4.6 need not be true. Note the following fact:

Lemma 4.4.7 Let R be a ring. Let e be an idempotent in R such that eR + J(R)

is a direct summand of RR. Then J(R) ⊆ eR.

Proof Note that

eR+J(R) = (eR+J(R))∩[eR⊕(1−e)R] = eR⊕[(1−e)R∩(eR+J(R))] = eR⊕(1−e)J(R).

It follows that (1 − e)J(R) = fR for some idempotent f in R. But f ∈ J(R) so

that f = 0. Hence, (1− e)J(R) = 0 and J(R) ⊆ eR. �

Example 4.4.8 Let K be any field, let Ki = K (i ≥ 1) and let the ring S =∏
i≥1Ki. Let U denote the simple ideal of S consisting of all elements in S of the

form (k,0,0,. . . ) with k ∈ K. Let R denote the trivial extension of S by U . Then

R is a commutative semiregular ring with simple Jacobson radical J(R) such that

J(R)2 = 0 but R does not satisfy dcc on cyclic non-summand ideals.
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Proof The ring R consists of all elements of the form (s, u), with s ∈ S and u ∈ U ,

with addition and multiplication defined by

(s, u) + (s′, u′) = (s+ s′, u+ u′) and (s, u)(s′, u′) = (ss′, su′ + s′u)

for all s, s′ ∈ S and u, u′ ∈ U . It is well known that R is a commutative ring.

Moreover, the set J of all elements of R of the form (0, u) with u ∈ U is an ideal of

R such that R/J ∼= S so that R/J is von Neumann regular and J2 = 0. Thus, J is

the Jacobson radical of R. Because U is a simple S-module, J is a simple R-module.

Let f0 = (1, 0, 0, ...) and for each i ≥ 1 let fi denote the element (0, 0, ..., 0, 1, 1, 1, ...)

of S with nth component 1 for all n ≥ i + 1. Let ei = (fi, 0) ∈ R. Note that

U = Sf0 and for each i ≥ 1, fi is an idempotent of S such that fif0 = 0. Further

note that Sf1 ⊃ Sf2 ⊃ . . . . Let i ≥ 1. Then R(fi, f0) is a cyclic ideal of R such that

R(fi, f0) = Rei + J . Because ei is an idempotent in R such that Rei = {(sfi, 0) :

s ∈ S}, J * Rei. Lemma 4.4.7 gives that R(fi, f0) is not a direct summand of RR

for each i ≥ 1. Moreover, R(f1, f0) ⊃ R(f2, f0) ⊃ . . . . Thus, R does not satisfy dcc

on cyclic non-summand ideals. �
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OPEN QUESTIONS

Question 1 It is known that the right (left) socle of any ring is a strongly lifting

ideal (see Theorem 1.4.7). Is the socle of any module a strongly lifting submodule?

Question 2 It is known that the notion of I-semiregular rings is right-left sym-

metric for any ideal I (see Theorem 1.4.12). Is this also true for almost I-semiregular

rings?

Question 3 A ring R satisfies dcc on cyclic right ideals if and only if R satis-

fies dcc on finitely generated right ideals, if and only if R is a left perfect ring (see

Theorem 1.5.3). Hence, we have the following implications for a ring R:

R is left perfect⇒ R satisfies dcc on finitely generated non-summand right ideals

⇒ R satisfies dcc on cyclic non-summand right ideals.

We know from Example 4.2.5 that if a ring satisfies dcc on finitely generated

(cyclic) non-summand right ideals, then the ring need not be left perfect. So the

following question arises:

Does a ring which satisfies dcc on cyclic non-summand right ideals, also satisfy

dcc on finitely generated non-summand right ideals?

Question 4 We proved that if M is a finite dimensional module, then M satisfies

acc on cyclic submodules if and only if it satisfies acc on cyclic non-summands.

Characterize modules which satisfy acc on cyclic non-summands.

The following implication is known for a ring R:

R satisfies dcc on cyclic right ideals (⇔ R is left perfect) ⇒ R satisfies acc on

cyclic left ideals (see [21, p. 230]).

It is also known that a ring satisfies acc on right (left) summands if and only if

it satisfies dcc on left (right) summands ([21, Proposition 6.59]).

If a ring satisfies dcc (acc) on cyclic non-summand right ideals, then does it

satisfy acc (dcc) on cyclic non-summand left ideals?
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