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ÖZET 

AÇILABİLİR VE REGLE YÜZEY TASARIMINDA  

DUALLİK  

 
ERKAN, Esra 

Yüksek Lisans Tezi, Matematik Bölümü 
Tez Danışmanı: Yard. Doç. Dr. Bahadır TANTAY 

Mayıs 2011, 45 sayfa 

Bu çalışmanın amacı, Endüstri ve Tasarımda en çok kullanılan açılabilir ve 
regle yüzeylerin daha hızlı ve hassas dizaynı için duallik kavramının 
uygulanmasıdır. 

Bu tez, üç bölümden oluşmaktadır. Birinci bölüm, çalışma hakkında genel bir 
bilginin verildiği giriş kısmına ayrılmıştır. İkinci ve üçüncü bölümde, Ravani ve 
Ku’ nun 1991’deki çalışması esas olarak ele alınmış, doğrular geometrisine dayalı 
olarak açılabilir ve regle yüzeyler için Bertrand eğriler teorisi genelleştirilmesi 
sunulmuştur.Ayrıca, düzlem ve noktaların üç boyutlu uzayda birbirlerinin 
geometrik dualleri olmasından ve açılabilir yüzeylerin bir parametreli düzlemler 
ailesi olmasından bahsedilmiştir. 

Anahtar sözcükler: Bertrand eğrileri, Bertrand çiftleri, Regle yüzeyler, 
Açılabilir yüzeyler, Ofsetler, Duallik, Diferansiyel geometri 
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ABSTRACT 

DUALITY IN DESIGNING OF RULED AND  

DEVELOPABLE SURFACES 

ERKAN, Esra 

MSc. in Mathematics 
Supervisor: Assis. Prof. Dr. Bahadır TANTAY 

June 2011,  45 pages 

The purpose of this study, we will apply duality concept for faster and more 
sensitive design of ruled and developable surfaces that used in industry and 
designing. 

This thesis is consisted of three chapters. The first chapter is devoted to the 
introduction. The second and third chapter Ravani and Ku’s study at 1991 is 
examined, a generalization of the theory of Bertrand curves is presented for ruled 
and developable surfaces based on line geometry. Moreover, it is touched that 
planes and points are geometric duals of one another in three dimnsional space 
and that a developable surface can also be considered as a one parameter famil of 
planes . 

Keywords: Bertrand curves, Bertrand mates, ruled surfaces, developable 
surfaces, offsets, duality, differential geometry 
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1.GİRİŞ 

Bir doğrunun bir eğri boyunca hareket ettirilmesiyle elde edilen regle 

yüzeyler, Öklid geometrisinde ilgi çekici bir araştırma konusu olmuştur. Regle 

yüzeyler ilk olarak, bütün regle yüzeylerin sağladığı lineer denklemi kuran G. 

Monge tarafından araştırılmıştır. En bilinen regle yüzeyler, düzlem, silindir veya 

koninin eğrilmiş yüzeyleri, düzgün bir uzay eğrisinin oluşturduğu yüzeyler, 

hiperbolik paraboloid ve bir parçalı hiperboloid dir. 

Regle yüzeyler ve özellikle açılabilir yüzeyler, araba, gemi ürünlerinin 

imalatı ve diğer birçok alanda örneğin, hareket analizi, katı cisim simülasyonu ve 

model tabanlı nesne tanıma sistemlerini tasarlamada kullanılmıştır. Regle 

yüzeylerin tanımlanması, tasarlanması ve üretilmesi, makine mühendisliği ve 

mühendislik matematiğinde önemli bir konu olmuştur (Zha, 1997) 

Regle yüzeyler içerisindeki açılabilir yüzeyler, metal tabaka tasarımı ve 

işlenmesinde yararlı olduğundan önemli bir alt sınıfı oluştururlar. Her açılabilir 

yüzey, hareketli bir düzlemin (bir parametreli hareket altında) zarf yüzeyi olarak 

elde edilebilir. Açılabilir regle yüzeyler, geniş ölçüde CAD (Bilgisayar Destekli 

Tasarım) ve CADM (Bilgisayar Destekli Tasarım ve Üretim) alanında kullanılır. 

Bir ‘‘açılabilir’’ regle yüzey, düzleme açılabilen bir yüzeydir. Böyle bir yüzey, 

tüm doğuranları boyunca sabit bir teğet düzleme sahiptir. Bilgisayar destekli 

tasarım ve üretim sistemlerinde açılabilir yüzeylerden yaygın olarak istifade 

edilir; çünkü açılabilir yüzeyler materyalin bir düz levhasının esneme ve yırtma 

yapmadan bükülmesiyle oluşturulabilir. Açılabilir yüzeyler, metal levha, kağıt, 

deri ya da kontrplak gibi materyallerden oluşan ürünlerin modellenmesi için 

potansiyel olarak uygundur. Açılabilir yüzeylerin uygulamaları gemi gövdelerinin 

tasarımında, otomotiv ve uçak gövdelerinin parçalarında, borulama işi ve kanal 

sisteminde, ayakkabı tasarımı ve giyimde ortaya çıkmaktadır (Chu and Sequin, 

2002). 

Bu tezde amaç, endüstride ve tasarımda en çok kullanılan açılabilir ve regle 

yüzeylerin daha hızlı ve hassas dizaynı için duallik kavramını uygulamaktır. Bu 

amaçla, Ravani ve Ku’nun (1991) çalışması esas alınarak, regle  yüzeyler ve 

açılabilir yüzeylerin özel bir ofset eğrisi ve tasarımı incelenmiştir. Regle ve 
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açılabilir yüzey tasarımı için dualliği incelemek, bu tezin ikinci amacıdır. Bu 

amaçla, ilgili çalışmalar incelenmiştir. 
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2. BERTRAND EĞRİLERİ VE REGLE YÜZEYLERİN 

DİFERENSİYEL GEOMETRİSİ                                                                                            

Bu bölümde, Bertrand eğrileri teorisinin genelleştirilmesi, doğrular 

geometrisine dayandırılan açılabilir ve regle yüzeyler için gösterilecektir. Uzayın 

geometrik yapı blokları olarak, noktalar yerine doğrular kullanılarak Bertrand 

anlamında ofset olan iki regle yüzey tanımlanacaktır. Bu, genelde her regle 

yüzeyin Bertrand ofsetlerinin çift sonsuzluğa sahip olabildiğini gösterir; fakat 

açılabilir bir regle yüzeyin açılabilir bir Bertrand ofsete sahip olması için 

regresyon kenarının eğrilik ve burulması arasındaki lineer denklem sağlanmalıdır. 

Sabit eğrilikli eğrilerde ofset uzaklığını R
k


1  eğrilik merkezi alırsak ofset bir 

noktaya dejenere olur. R  den daha büyük (- yönde) alırsak, eğri ters döner 

(paralel eğri olmaz). Ek olarak, bu açılabilir yüzeyin açılabilir ofsetleri paralel 

ofsetlerdir. Sonuçlar, teorik merak olmasının yanı sıra, ürünlerin geometrik 

modelleme ve üretiminde uygulamalara sahiptir. 

Eğri ve yüzeylerin ofsetlerinin doğuşu, mekanik ürünlerin geometrik 

modelleme ve model tabanlı üretiminde pek çok uygulamaya sahiptir. Ofset 

yüzeyler, kabuk tipli nesneler  ve kalın yüzeylerin geometrik modellerini 

oluşturmak ya da geometrik modellemedeki toleransları ifade etmek için 

kullanılabilir. Yüzeylerin yuvarlak tip kesicilerle nümerik kontrol aracılığıyla 

frezelenmesinde kesicinin hareket programı, gerçek yüzeyden kesicinin yarıçapı 

kadar uzaklıkta bulunan bir ofset yüzey üzerinde hareket eden kesicinin merkezi 

cinsinden meydana getirilir. Aynı durum, koordinat ölçüm makineleri kullanılarak 

yontulan yüzeylerin incelenmesinde meydana gelir. Bu durumda CMM 

(Koordinat Ölçüm Makineleri) için hareket programı,  yuvar tipli kesicinin 

küresel ucunun merkezi cinsindendir. Bu merkez nokta, ölçülen orijinal yüzey 

parçasından hafif bir ofset olan yüzey üzerinde hareket eder. 

Ofset profilleri ile ilgili çalışmalar, 19. yüzyıla kadar uzanır. Bu alandaki 

örnek teşkil edecek çalışma, Bertrand ındır. Bertrand, ortak asal normallere sahip 

eğri çiftleri üzerinde çalışmıştır. Böyle eğriler, günümüzde Bertrand eğrileri 

olarak adlandırılır ve birbirlerinin ofsetleri olarak göz önüne alınabilir. Bertrand 

eğrilerinin teorisi, bir sonraki bölümde ayrıntılı bir şekilde tekrar incelenecektir. 
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Son zamanlarda, eğrilerin ve ofsetlerin yüzeyleriyle ilgilenen CAGD 

(Bilgisayar Destekli Geometrik Tasarım) literatüründe bir dizi çalışmalar 

yapılmıştır. Klass (1983), Tiller ve Hanson (1984), Hoschek (1985) ve Farouki 

(1985), eğrilerin ve yüzeylerin ofsetlerini oluşturmak için metodlar 

geliştirmişlerdir. Hem Papaioannou ve Kritsis (1985) hem de Faux ve Pratt 

(1979), NC (Nümerik Kontrol) makinelerindeki ofset yüzeylerin kullanımını ele 

almışlardır. Chen ve Ravani (1987), yüzeylerin ofsetlerinde kendi kendilerine 

kesişim düğümlerinin tespit edilmesi ve ortadan kaldırılması için interaktif  

prosedürler geliştirmişlerdir. 

Bu çalışmada, regle yüzeylerin Bertrand ofsetleri ele alınmakta ve doğrular 

geometrisi kullanılarak, Bertrand eğrilerininkine benzer bir teorinin regle yüzeyler 

için geliştirilebileceği gösterilmektedir. Bu bağlamda, iki regle yüzeyin Bertrand 

çifti olması koşulu geliştirilmektedir ve bunun, açılabilir regle yüzeyler durumu 

dışında, iki yüzeyin paralel ofsetler olmasından farklı olduğu açık hale gelecektir. 

Bu çalışmanın düzenlenmesi aşağıdaki gibidir: 

Öncelikle Bertrand eğrilerinin teorisi gözden geçirilmiş ve yeni terimler 

dahilinde göz önüne alınmıştır. Bu, makalede geliştirilmiş olan Bertrand regle 

yüzeylerinin teorisi ile ilişkisini açıklamak için gereklidir. Son olarak, Bertrand 

regle yüzeylerinin yeni teorisi ve açılabilir yüzeylerin özel ama ilginç bir hali 

sunulmuştur. Sonuçlar, bilgisayar destekli örnekler kullanılarak açıklanmıştır 

(Ravani and Ku, 1991). 

2.1 Bertrand Eğrileri 

Tanım 2.1.1 IRI  , I, IR nin açık alt aralığı olsun.  

nEIRI :                 

               )(tt   

şeklinde tanımlanan diferansyellenebilir ve regüler  fonksiyonuna nE  de bir eğri 

denir (Çalışkan, 2007). Düzlemde x = x(t), y = y(t) bir eğrinin parametrik 

denklemidir. Uzayda ise, x = x(t), y = y(t), z = z(t) bir eğrinin parametrik 

denklemi olup, düzlem eğride t parametresi yok edilirse y = f(x) veya x = φ(y) 

veya daha genel olarak f(x, y) = 0 gibi x ve y arasında bağıntı gösterir (Akbulut, 

1970). 
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Bir eğri çifti, eğer karşılıklı noktaları arasında birebir eşleme var ve her iki 

eğri, bu karşılıklı noktalarda ortak normallere sahip iseler Bertrand çifti olarak 

adlandırılırlar. Bu tür eğriler, Bertrand ofsetleri olarak verilecektir. 

İşte bu az önce söylediğimiz, asal normali diğer eğrinin asal normali olan 

eğriyi bulma problemi, görünüşte, ilk olarak Saint-Venant (Weatherburn’a (1930) 

bakınız)  tarafından kurulmuş; fakat Bertrand (1850) tarafından çözülmüştür. 

Burada, regle yüzeyler için benzer bir teori geliştirilmeden önce, gerekli 

detayların kısa bir özeti verilecektir. Bu bölümde sunulan materyal, diferansiyel 

geometride iyi bilinen şeylerdir. Burada sadece CAGD (Bilgisayar Destekli 

Geometrik Tasarım) amaçlarına uygun bir formda göz önüne alınacaktır. 

Uzayda bir )(ur  düzgün parametrik eğrisini düşünelim. )(ur nun s yay 

uzunluğu:  asal normali 

)(uru


du
urd )(  olmak üzere, s = 

a

b
u ur )( du                                                 (1) 

eşitliği ile verilmektedir. Bu eğrinin Frenet üçyüzlüsü; 

 T


 = teğet vektörü= sr
  = 

u

u

r
r




                                                                        (2) 

          N


 = asal normali = 
uuuu

uuuu

ss

ss

s

s

rrr
rrr

r
r

T
T

















)(

                                           (3) 

          B


 = binormal vektör = NT


 = 
ss

sss

r
rr






=
uuu

uuu

rr
rr







                                      (4)       

eşitlikleriyle verilen vektörlerden oluşmaktadır.           

Eşitlikler, şu şekilde elde edilmektedir: Öncelikle ilk denklem 

T


= sr
 =

u

u

r
r




    ur
 = sr



du
ds                                                                       (5) 

şeklinde düzenlenir ve iki taraftan u ya göre türev alınırsa, 

uur = T


2

2

du
sd  + sT




du
ds

du
ds   
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    = T


2

2

du
sd  + sT

 2









du
ds  

    = T


2

2

du
sd  +  sTN

 2









du
ds    

(3) nolu eşitlik de kullanılarak 

uur = T


2

2

du
sd  +  Nrss


2









du
ds                                                                    (6) 

eşitliği elde edilir. (5) ve  (6) nolu  eşitlikler vektörel çarpılırsa, 

 uuu rr 
 )( TT




du
ds

2

2

du
sd  +  NT


 ssr 

du
ds 2









du
ds  

  uuu rr 
ssr 








3

du
ds B


 

 uuu rr 
ssr 








3

du
ds B


   

    B


    = 3

. 









du
dsr

rr

ss

uuu





               

elde edilir. Bir önceki eşitlikte iki tarafın normunu alalım. 

uuu rr 
  =  ssr 








3

du
ds B


   

B


=1 olduğu da kullanılarak, 

uuu rr 
  =  ssr

3









du
ds  

elde edilir. Bu eşitlik ile B


 binormalinin elde edildiği denklem düzenlenirse,         

B


=  
uuu

uuu

rr
rr







 

bulunur ve T


 teğet vektörü ile vektörel çarpılarak, 
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 TBN


uuu

uuu

rr
rr








u

u

r
r




 = 
 

uuuu

uuu

rrr
rrr







 

elde edilir. Bu vektörlere ilişkin Frenet formülleri böylece, 

  = eğrilik = ssr = 3
u

uuu

r

rr





 

ve 

  = burulma = 2)(
)(

ss

ssssss

r
rrr






= 2)(
)(

uuu

uuuuuu

rr
rrr








 

olmak üzere, 

sT


ds
Td


= N


                                                                                             (7) 

sN


ds
Nd


= BT


                                      (8) 

sB


 
ds
Bd


 = N


                                    (9) 

şeklindedir. 

Şimdi de bir r  uzay eğrisini ve bunun r *  Bertrand ofsetini alalım. Eğer 

N


, r eğrisinin asal normalini gösterirse, o zaman  r *, N


 ile aynı olan N


* asal 

normaline sahiptir. r  üzerindeki bir noktaya karşılık gelen r * üzerindeki bir 

nokta  

r *= r  + N


                                                                                            (10) 

eşitliği ile verilmektedir ve burada  λ, karşılıklı noktalar arasındaki ofset 

mesafesidir. Bertrand çifti olan eğrilerin gerekli olan özelliklerinden bazıları 

aşağıdaki teoremlere dayanılarak tanımlanabilir. 

Teorem 2.1.2 Bertand çiftleri olan eğriler, birbirlerinin sabit ofsetleridir. 

İspat. r  ve r *, r  üzerinde s yay uzunluğuna sahip Bertrand çiftlerinin bir 

kümesi olsun. r * Bertrand ofsetinin teğeti, *
sr
  ye paraleldir. Bu, *

sr
 nin N


 ye dik 

olduğu anlamına gelir. Analitik olarak (10) eşitliği ve Frenet formüllerinden  
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Nrr


 *  

yazılır. İki taraftan s ye göre türev alınarak, 

ssss NNrr


 *  

ve (8) eşitliği de yerleştirerek  

*
sr
  =T


 + s N


 + λ(- T


+ B


)                                                                 (11) 

eşitliği elde edilir. *
sr
 , N


 ye dik olduğundan , 0,*  Nrs

 ya da 0s dır. Yani, 

0),(  NBTNT s


  

         NT


, + s ,N


N


 NT


, +  NB


, = 0 

          0s  

            = sabit 

tir. Diğer bir deyişle, bir eğrinin ve onun Bertrand ofsetinin karşılıklı noktaları 

arasındaki mesafe, teoremi ispatlayan sabittir. 

Eğri ve Bertrand ofseti arasında karşılıklı bir ilişki olduğuna dikkat 

edilmelidir. Diğer bir deyişle, bir  r * eğrisi, bir r  eğrisinin Bertrand ofseti ise, o 

zaman r  eğrisi, r * eğrisinin de Bertrand ofsetidir. 

Teorem 2.1.3 Bir eğri ve bu eğrinin Bertrand ofsetinin karşılıklı noktalarındaki 

teğetleri arasında sabit bir açı vardır. 

    İspat. İlk olarak  *,TT
ds
d 

 ifadesini hesaplamak gereklidir. 

          *,TT
ds
d 

 *,TTs


 + 

ds
dsTT s

*, *
* 


 

Frenet formüllerinden,  

          *,TT
ds
d 

=  *,TN


  + 
ds

dsNT **,* 


  

yazılır ve bir eğrinin asal normali N


 ve Bertrand ofsetinin asal normali N


* 

çakıştığı için yani N


= N


*  ve N

 T


 olduğundan N


* T


 dir. Benzer mantıkla 

N

 T


* dır. Böylece denklem, 
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           *,TT
ds
d 

0  + 0*   

          0*,  TT
ds
d 

                

ya da  

           *,TT


 = cos = sabit 

halini alır. Burada  ; T


 ve T


* arasındaki açıdır ve ispat tamamlanır. 

Bir eğrinin ve Bertrand ofsetinin asal normallerinin çakıştığı gerçeği 

ışığında, yukarıdaki teoremden bu iki eğrinin binormallerinin, iki eğri üzerindeki 

karşılıklı noktalarda aynı sabit  açısı oluşturduğu ortaya çıkar. Bir eğrinin ve 

Bertrand ofsetinin Frenet üçyüzlüsü arasındaki ilişki şu şekilde ifade edilir: 

                             

                     Şekil 2.1 Bertrand ofseti olan eğrilerin Frenet çatılarının konumu 

B


*, T


*, T


, B


   N


= N


* olduğundan  B


*, T


*, T


, B


  aynı düzlemdedirler. 

Buradan,  

)
2

cos(cos*  


 BTT


 

                  sincos  BT


 

         NN


*  

          cos)
2

cos(* 


 BTB


 

                =  cossin  BT


 

   
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elde edilir ve  

         



















































B
N
T

B
N
T

















cos0sin
010

sin0cos

*
*
*

                                                              (12) 

şeklinde yazılır. 

Teorem 2.1.4 Bir r  eğrisi , r * Bertrand ofsetine sahip ise, o zaman r  eğrisinin 

eğrilik ve burulması arasında aşağıdaki ilişki yazılabilir: 

 ( 1 )sin  cos  = 0                                                                       (13) 

Burada , karşılıklı noktalardaki teğetler arasındaki sabit açıdır. 

 Bu teoremin daha genel bir hali , a ve b sabitler olmak üzere  

         1)()(  tbta   

genel lineer bağıntısı olarak, (13) eşitliğini ifade eder. 

İspat  s, r  eğrisi boyunca yay uzunluğu olsun. λ, ofset mesafesinin bir sabit 

olduğu gerçeği ışığında, (10) eşitliğinden: 

          Nrr


 *                                                                                                                

          ssss NNrr


 *                         

 s  = 0  ve Frenet denklemlerinden 

          
ds
rd *

)( BTT


                                    

          
ds
rd *

= BT


  )1(                                                                              (14) 

eşitliği elde edilir. Eşitliğin her iki tarafı B


*  ile skaler çarpılırsa, 

 *,
*

B
ds
rd 

 = *,)1( BBT


              

          **, BT


 =  *,*,)1( BBBT


             

elde edilir. Bu denklem, 0**,  BT


 ve (12) eşitliğinden 

 cossin*  BTB


 olduğu kullanılarak  düzenlenirse,  
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    cossin,cossin,)1(0 BTBBTT


 

  ],cos,sin[],cos,sin)[1(0  BBBTBTTT


   

ve TT


, =1, 1, BB


, BT


, =0 olduğu da kullanılarak,  

  cos)sin)(1(0   

         0cossin)1(            

eşitliği bulunur ve ispat tamamlanır. 

Bir eğrinin ve Bertrand ofsetinin yay uzunluğu arasındaki ilişki, aşağıdaki 

gibi oluşturulabilir: 

s*, r  eğrisinin Bertrand ofseti üzerindeki yay uzunluğu olsun. Öyleyse, 

        
ds
dsT

ds
ds

ds
rd

ds
rd *

*
*

*

** 

  

eşitliği yazılır ya da (14) eşitliği kullanılarak, 

         
ds
rd *

 = BT


  )1(                                   

          
ds
dsT

*
* 


 = BT


  )1(                                   

eşitliği elde edilir. 

(12) eşitliğindeki *T


 ifadesi yerine yerleştirilir ve katsayılar eşitlenirse, 

 BT
ds
dsBT


  )1()sincos(

*

                       

          BTB
ds
dsT

ds
ds 

  )1(sincos
**

  

            1cos
*

ds
ds   ve   

ds
ds*

sin  

          






sincos
1*





ds
ds                                                                                 (15) 

eşitliği bulunur. 
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0 , yani düzlemsel eğri olması durumunda (13) eşitliği,  = 0 ve λ nın herhangi 

bir değer alabileceğini ifade eder: 

0cossin)1(   τ 

 0 00sin0sin)1(    

İlk şart, bir düzlem eğrisi ve onun Bertrand ofsetinin karşılıklı noktalarında paralel 

teğetlere sahip olduğunu gösterir. Bir uzay eğrisinin karşılıklı noktalarında 

ofsetine paralel teğetlerinin bulunması için, ofsetinin  sı sıfır olmalıdır. Bu, (13) 

eşitliği karşısında eğrinin ofseti ile çakışması anlamına gelen 0  olduğunu 

ifade eder: 

0cossin)1(    

         000    

Bundan dolayı, bir uzay eğrisinin Bertrand ofseti, karşılıklı noktalarında paralel 

teğetlere sahip değildir. 

          Bu, eğrilerin Bertrand ofsetlerinin oluşturulması için gerekli temel 

türetmeleri tamamlar. Bu tür ofsetler, geçmişte üretim ve tasarım uygulamalarında 

kullanılmıştır (Ravani and Ku, 1991) 

2.2. Regle Yüzeylerin Diferensiyel Geometrisi 

Bu bölümde, bir sonraki bölümdeki gelişmelerle ilgili olan regle yüzeylerin 

diferensiyele geometrisi kısaca gözden geçirilecektir. Weatherburn da (1930) daha 

fazla ayrıntı bulunabilir.  

Tanım 2.2.1 Üç boyutlu Öklid uzayında verilen l


 doğrusunun verilen eğri 

boyunca hareket ettirilmesi ile bir yüzey elde edilebiliyorsa, bu yüzeye üç boyutlu 

Öklid uzayında bir ‘‘regle yüzey’’ denir. Ya da bir regle yüzey,  bir parametreli 

doğrular ailesidir diyebiliriz. Bu doğrular, ‘‘yüzeyin doğuranları’’ olarak 

adlandırılır. )(vl


, p ve q noktalarından geçen bir doğru olsun. )(vl


 nin parametrik 

denklemi, 

         )()( pqvpvl 


 

dir.   
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                                                   Şekil 2.2  )(vl


 doğrusu  

 )(vl


 tarafından çizilen bir parametreli yörünge, ),( vuL


 olarak gösterilen 

aşağıdaki 

)()()]()([)(),( uevupupuqvupvuL 
                                       (16) 

denklemi ile tanımlanan regle yüzeydir. Burada )(up  ve )(uq , p ve q uç 

noktalarının yörüngeleri ve u, hareket parametresidir. p noktası, u değişirken regle 

yüzeyin ‘‘dayanak eğrisi’’  olarak adlandırılan genel bir uzay eğrisi çizer. Benzer 

şekilde, )()()( upuque 
  vektörü, regle yüzeyin küresel göstergesi olarak 

adlandırılan qp   yarıçaplı bir kürenin yüzeyi üzerindeki bir eğriyi çizer. Eğer, 

doğuran doğru üzerindeki p ve q noktası dışında iki nokta seçilirse, yüzeyin 

meydana gelen )(ue  küresel göstergesi, önceki gibi aynı küresel eğri olacak, fakat 

farklı yarıçaplı bir küre üzerinde olacaktır. Buna karşın, regle yüzeyin dayanak 

eğrisi tek değildir. Bu yüzden, regle yüzeyde uzanan ve dayanak eğrisi gibi tüm 

doğuranları kesen herhangi bir )(sr  uzay eğrisi seçilebilir. Böylece, regle yüzeyin 

denklemi, 

)()(),( seksrksL 
                                                                                (17) 

şeklinde yazılabilir. Burada s, )(sr  dayanak eğrisi boyunca yay uzunluğudur ve 

)(se  küresel göstergesi, birim yarıçapa sahiptir. Eğer, )(se nin yay uzunluğunu q 

ile gösterirsek, bu değer 

    
b

a

ds
ds

sedq )(                                                                                        (18) 

şeklinde yazılır. 
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Denklem (17) ile gösterilen regle yüzey için birim yüzey normali, U


, şöyle 

elde edilmektedir: Öncelikle, yüzeyin normal vektörünü hesaplamada ihtiyaç 

duyulan, sL


 ve tL


 teğet vektörleri bulunmalıdır. 

sL


=
ds
edk

ds
rd 
   ,  kL


= )(se  

Buradan, 

e
ds
dek

ds
dre

ds
dek

ds
dr

e
ds
dek

ds
dr

LL
LL

ksU
ks

ks











)(,)(

)(
),( 




 

eşitliği yazılır.  

Lagrange Özdeşliği,  ****** ,.,,.,)(),( yxxyyyxxyxyx  de 

kullanılarak, 

                                                                









 



 






)()()()()]()([)()(

)(

se
ds
edk

ds
rd

ds
edk

ds
rdsesese

ds
edk

ds
rd

ds
edk

ds
rd

e
ds
edk

ds
rd










 

yazılır. 1)( se  olduğundan 1)( 2 se  dir ve bunun için s ye göre türev alınarak, 

0)(0)(2 
ds
edse

ds
edse





  

elde edilir. Bu iki sonuç, son denklemde yerleştirilirse, 

        










 



 






)(.)(..)).(.).(

)(
),(

2

se
ds
edtse

ds
rd

ds
edset

ds
rdse

ds
edt

ds
rd

e
ds
edt

ds
rd

tsU

















 

         2/1
22 ))(.()(

)(
),(





 




se
ds
rd

ds
edt

ds
rd

e
ds
edt

ds
rd

tsU








                                                   (19) 

bulunur. 
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Regle yüzeyin genel L


= ),( 0 ksL


 doğuranı boyunca birim normali, k 

sonsuz azalırken sınırlayıcı bir doğrultuya yaklaşır. Bu doğrultu, ‘‘asimptotik 

normal doğrultu’’ olarak adlandırılır ve şu şekilde tanımlanır:  

         



k

ssksU
0

),(


= 2/1
22 ))(.()(

)(





 



se
ds
rd

ds
edk

ds
rd

e
ds
edk

ds
rd










k
ss 0

 

                              = 2/1
22 ))(())1((

1





 
















 

se
ds
rd

ds
ed

ds
rd

k
k

e
ds
ede

ds
rd

k
k













k
ss 0

                                              

               = 2/1
222 ))(()1(

1





 
















 

se
ds
rd

ds
ed

ds
rd

k
k

e
ds
ede

ds
rd

k
k













k
ss 0

 

                           = 2/12

2
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2 )(11

1






























 






 
















 

se
ds
rd

kds
ed

ds
rd

k
k

e
ds
ede

ds
rd

k
k













k
ss 0
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2

2
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















 






 
















 

se
ds
rd

kds
ed

ds
rd

k
k

e
ds
ede

ds
rd

k
k













k
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2

2
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
















 






 
















 

se
ds
rd

kds
ed

ds
rd

k
k

e
ds
ede

ds
rd

k
k













k
ss 0

 

                           = 2/12






















ds
ed

e
ds
ed









k
ss 0

= 

ds
ed

e
ds
ed











k
ss 0
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ve buradan da, 

0
)( sssg 


=




k
ssksU

0
),(


=

ds
ed

e
ds
ed








0ss                                                      (20) 

elde edilir. 

k, +  a doğru artarken, birim normal  L


 etrafında 180 döner ve en 

sonunda –g yönünü alır. 

U


 birim yüzey normalinin yalnızca 90 döndüğü ve g  asimptotik 

normaline dik olduğu nokta ya da ‘‘Açılabilir olmayan bir regle yüzey üzerinde 

alınan bir nokta, yüzeyin l


ana doğrusunu çizerken, bu noktadaki teğet düzlem 

l


anadoğrusu etrafında döner. Burada, açılabilir yüzey için, herhangi bir 

anadoğrusu boyunca yüzey normali daima aynı doğrultuyu muhafaza ettiğinden 

ve teğet düzlem de normale dik olduğundan, bir açılabilir yüzeyin herhangi bir 

anadoğrusu boyunca teğet düzlemin aynı olduğunu hatırlayalım. Yüzey üzerinde 

alınan nokta, anadoğru etrafında sonsuz uzaklaştığı vakit normal doğrultusu 

yukarıdaki ifadeye göre g asimptotik normalidir. Bu normal doğrultuya karşılık 

gelen teğet düzleme, ‘‘asimptotik düzlem’’ denir. Anadoğru üzerinde teğet 

düzlemin asimptotik düzleme dik olduğu nokta (Biran, 1970) ’’ L üzerindeki 

‘‘boğaz noktası’’ olarak adlandırılır. U


 birim yüzey normalinin bu noktadaki, t


 

ile gösterilen, yönü regle yüzeyin merkezi normalidir ve  

 t


=

ds
ed

ds
ed





                                                                                                      (21) 

ile verilir. 

Öyleyse, regle yüzey üzerindeki Frenet üçyüzlüsü; e , t


 ve g  vektörlerinin 

dexterous triplet i ile tanımlanabilir. Bu vektörler, 
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e  = küresel gösterge                                                                                  

 t


=merkezi normal= qe = 
s

s

e
e




                                                                (22) 

g  = asimptotik normal = 
s

s

e
ee






                                                                

denklemleri ile verilir. 

Bu son eşitliklerin türevleri alınarak, bir eğrinin Frenet denklemlerine 

benzeyen denklem kümesine ulaşılır. 

qe = 
dq
ed = t


                                                                                                 

qt


= 
dq

td


= g  e                                                                                        (23) 

qg = 
dq
gd =  t


                                                                                           

Burada, 3

)(

s

sss

e
eee






 ; e nin jeodezik eğriliğidir. Bu eğrilik şu şekilde elde 

edilir: 

ds
dqt

ds
dqee qs 

  

2

22

2

2

ds
qdt

ds
dqt

ds
qde

ds
dq

ds
dqee qqqqss 








  

türevleri bulunur ve elde edilen iki eşitliğe vektörel çarpım uygulanırsa,       

























  2

22

ds
qdt

ds
dqt

ds
dqtee qsss

  

bulunur. Son eşitlik, türev formülleri kullanılarak düzenlenirse, 

          2

23

)())((
ds

qd
ds
dqtt

ds
dqegtee sss 









  

          
3

))(( 







ds
dqetgtee sss


  
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eşitliği elde edilir. Ayrıca, egt 
  ve get 

 olduğu da eşitlikte yerleştirilip 

tekrar düzenlenirse, 

          
3

)( 







ds
dqgeee sss


  

bulunur.  jeodezik eğriliğini bulmak için eşitlik e  vektörü ile skaler çarpılırsa, 

         







3

)(,,
ds
dqgeeeee sss


  

                             
3

),,( 







ds
dqgeee 

  

                             
3









ds
dq

  

  elde edilir ve  
a

b
s dsedq   olduğundan eşitlik düzenlenirse, 

3

,

s

sss

e
eee






  

jeodezik eğriliği bulunur. 

Ayrıca (23) nolu eşitliklere şu yolla ulaşılır: 

İlk eşitlik, (22) nolu eşitlik yardımıyla 

qe = 
dq
ed = t


  

bulunur. 

İkinci eşitlik tetq


    için gctbeatq


  eşitliğindeki a, b ve c 

katsayıları bulunmalıdır. Bunun için,  

 Eşitliği e  vektörü ile skaler çarpalım. 

 egcetbeeaetq


,,,,  ; ee , =1 , et , =0 , eg , = 0 olduğundan 

eşitlik, 

aetq 


,  
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halini alır ve 0,  et   olduğundan bu eşitliğin q ya göre türevi alınarak,  

0,,  qq etet 
 

          0,  tta


 

                    1a  

bulunur. 

 Eşitliği t


 vektörü ile skaler çarpalım:  

 tgcttbteattq


,,,, ; 0, te

 , 1, tt


, 0, tg
  olduğundan 

eşitlik, 

         ttq


, =b  

halini alır ve  

  t


= 1  2t =1 02  qtt


 0 qtt


 ile 

    b = 0 

bulunur. 

 Eşitliği g  vektörü ile skaler çarpalım: 

 ggcgtbgeagtq


,,,,  ; 0,,  gtge  , 1, gg    

olduğundan eşitlik,                                            

gtq


,  = c  

halini alır ve 0, gt 
 olduğundan q ya göre türevi alınarak 

  0,,  qq gtgt 
 0,  qgtc 

 

                          cos qgtc 
 

                          skalerc                                                           

bulunur. Böylece, tetq


     elde edilir. 
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Üçüncü eşitlik,  tgq


   için gctbeag q


  eşitliğindeki a, b ve c 

katsayıları bulunmalıdır. Bunun için, 

 Eşitliği e  vektörü ile skaler çarpalım:  

          egcetbeeaegq
 ,,,, ; 1, ee  , 0,,  eget   

olduğundan eşitlik, 

         egq


, = a 

halini alır ve eg , =0  olduğundan q ya göre türevi alınarak, 

         egq


, + qeg 
, = 0 egq


,  = qeg 

, = tg
,                                   

                                tgeg q


,,  

                               a = 0 

bulunur. 

 Eşitliği t


 vektörü ile iç çarpalım: 

 egcetbeeaegq
 ,,,, ; te

, =0, tt


, =1, tg
, =0 olduğundan 

eşitlik, 

tg q


, =b 

halini alır ve  0, tg
 olduğundan q ya göre türevi alınarak, 

         tg q


, + qtg


, =0 tg q


, = qtg


,                                             

                            eggtgq


 ,,  

                              egggtgq
 ,,,   

                                      b  

bulunur.  

 Eşitliği g  vektörü ile skaler çarpalım: 
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 gggtbgeaggq
 ,,,, ; 0,,  gtge  , 1,  gg   olduğundan 

eşitliği, 

cggq 
 ,  

halini alır ve  1,  gg    olduğundan q ya göre türevi alınarak,  

0,,  qq gggg  0,  gg q
             

                               0 c  

bulunur. Böylece,  tgq


   elde edilir. 

Bu son eşitlikler, bir regle yüzeyin Jeodezik-Frenet denklemleri olarak 

adlandırılır. 

Regle yüzey üzerindeki boğaz noktalarının kümesi, boğaz eğrisini 

tanımlar. )(sc  boğaz eğrisi, )(sr  dayanak eğrisi cinsinden  

 )(sc = )()( se
ee
ersr

ss

ss 









                                                                         (24) 

şeklinde yazılır. Bu eşitliğin elde edilişi aşağıda verilmektedir. 

         L


ε ana doğrusu üzerinde boğaz noktasına karşılık gelen k parametresinin 

değerini arayalım. Boğaz noktasında teğet düzlem asimptotik düzleme dik, 

asimptotik düzlem ise (20) nolu eşitlik ile verilen asimptotik normal doğrultuya 

diktir. Bu yüzden, boğaz noktasında normalin paralel olduğu ks LL


  vektörü ile 

se  ve e vektörleri aynı düzleme paraleldir. Yani,  

 0),,(  eeLL sts


 

yazılır ve buradan 

 
0,

))(()(

)(
2/122





ee

serekr

eekr
s

sss

ss 




  

0,)(  eeeekr sss
  

Lagrange özdeşliğinin kullanılmasıyla, 

( eekr ss

 )( ) )( see 

 - sss eekree 
 )(()( = 0 
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elde edilen eşitlik, boğaz noktasının k parametresine bağlı değerini verir. Şimdi bu 

k parametre değerini bulalım. 

1e  olduğundan 12 e  dir. Buradan türev alınarak, 0 see   elde edilir. Bu 

değerleri son eşitlikte yerleştirirsek,  

0)(  sss eekr      0 ssss eeker   

                                         
ss

ss

ee
erk 






  

bulunur. Elde edilen k parametre değeri, yüzey denkleminde yazılarak (24) nolu 

eşitlik ile ifade edilen boğaz eğrisi denklemi bulunur. 

Boğaz noktası aynı zamanda, iki ardışık doğuran arasındaki ortak normalin 

ayağıdır. Eğer regle yüzeyin ardışık doğuranları kesişirse, o zaman yüzeye 

açılabilir denir. Bunun için analitik şart şudur : 

0)(  ss eer                                                                                          (25) 

Açılabilir bir regle yüzeyde, her ardışık doğuran çifti kesiştiğinde bir düzlem 

tanımlar. Bu yüzden, açılabilir bir regle yüzey, bir parametreli düzlemler ailesi 

olarak düşünülebilir. Yüzeyin doğuranları, her iki ardışık düzlemin kesişimidir. 

Bir açılabilir regle yüzey için her düzlem ailesi doğuranı boyunca yüzeye 

dokunduğundan, yüzey normali aynı doğrultuyu koruduğundan ve teğet düzlem 

de normale dik olduğundan teğet düzlem doğuranın tüm noktalarında aynıdır. Bu 

nedenle açılabilir bir yüzey, yırtmaksızın veya uzatmaksızın bir düzleme 

açılabilir. Açılabilir bir yüzey için ardışık doğuranların kesişimlerinin geometrik 

yeri, her doğuranın temas ettiği ve yüzeyin regresyon ayrıtı olarak ifade edildiği 

yerdir.  

Regresyon ayrıtı ise, düzlemler ailesindeki t parametresine karşılık gelen üç 

ardışık düzlem, ‘‘karakteristik nokta’’ olarak adlandırılan bir noktada kesişir ve 

bu karakteristik noktanın geometrik yeri, açılabilir yüzeyin ‘‘regresyon ayrıtı’’ ya 

da ‘‘keskin ayrıtı’’ olarak bilinen eğridir (Balkı, 2010) 

Bu kısımda, )(sc  boğaz eğrisi bir yüzeyin dayanak eğrisi olarak alınacak ve 

)(se  küresel göstergesi, birim küreye normalleştirilecektir. Yani, 
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        1)( se  

olacaktır.  

)(se doğrultusundaki doğuranın birim vektörüne eş bir birim vektörün O 

başlangıç noktasına taşınır ve bu vektör birim küre üzerinde bir küresel eğri 

tanımlar. Bu eğri, yüzeyin küresel göstergesidir (Valiron, 1986). 

Bu, genelliği bozmadan herhangi bir regle yüzey üzerinde uygulanabilirdir. 

        )()(),( sekscksL 
                                                                                 (26) 

Bu son denklem, )(sc  boğaz eğrisinin teğetinin, regle yüzeyin t


s

s
e
e




 merkezi 

normaline dik olmasını gerektirir. Bu şart analitik olarak, 

0 ss ec                                                                                                 (27) 

şeklinde ifade edilir. 

Regle yüzey açılabilir yüzey ise o zaman 

0)(  ss eec                                                                                          (28) 

dir, yani yüzeyin normal doğrultusunun, anadoğrusu boyunca aynı kalması 

şartıdır. 

(27) ve (28) nolu eşitliklerden açılabilir yüzeyin küresel göstergesi, e , boğaz 
eğrisinin (regresyon kenarının) teğeti olduğu sonucu çıkar. Yani, ss ec 

   ve 

ss eec 
  olduğundan sc  vektörü, e  vektörü yönünde olmalıdır (Şekil 1.2). 

 

                                                                                 

                                                          

    

 
                     

                 
Şekil 2.3 Açılabilir yüzeyin küresel göstergesi ve boğaz eğrisinin teğeti 

e  

   se  

  see 
  

sc  
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3. REGLE YÜZEYLERİN BERTRAND OFSETLERİ 

          Bu bölümde, regle ve açılabilir yüzeyler için Bertrand ofsetleri kavramı 

oluşturulacaktır. İki parametreli noktalar ailesi olarak genel bir yüzey gibi bir 

regle yüzey göz önüne alırsak, bu yüzeyin normal ofseti, orijinal taban yüzeyi ile 

her noktasında ortak normale sahip bir yüzeydir. Böyle yüzeyler, paralel ofsetler 

olarak verilecektir. Farouki (1985,1986) tarafından, belirli bir yüzey sınıfı için 

hem tam hem de yaklaşık paralel ofset üretim metotları geliştirilmiştir. Aynı 

teknikler, regle ve açılabilir yüzey durumları için kolayca özelleştirilebilir. Ama,  

burada elde edilen sonuçlar Bertrand eğri çiftlerinin sahip olduğu eğrilik ve 

burulma gibi özelliklerinin birbiri cinsinden ifade edilmesi durumlarını 

içermemektedir. Bu yüzden, aynı güzellik ve avantajları taşımaz. Burada, regle 

yüzeyler, doğrular geometrisi kapsamında bir parametreli doğrular ailesi olarak 

göz önüne alınırsa, o zaman böyle yüzeyler için Bertrand çiftleri ile ilgili yukarıda 

bahsedilen özelliklerin kullanılabileceği gösterilir. 

Doğrular geometrisinde, iki doğru arasındaki ofset mesafesi, lineer ve açısal 

ofset cinsinden tanımlanır (Şekil 3.1). 

              

                                                                              

                                                 

 

Şekil 3.1 İki doğru arasındaki ofset 

Lineer ofset, λ, iki doğru arasındaki ortak dikmenin uzunluğudur.  

Açısal ofset, , iki doğrudan birinin ortak dikme boyunca kaydırılıp diğer 

doğruyla kesiştirilmesi sonucu aralarında oluşan açıdır.  

Birbirinin Bertrand ofseti olan iki eğri için ofset mesafesi, taban eğrisinin her bir 

noktasındaki normali boyunca alınır. Bir regle yüzey için, her doğuran 

konumunda, doğuran boyunca yüzeyin pek çok normali vardır. Örneğin, regle 

yüzey parçalarıyla sınırlı kalmazsa, doğuranın sonsuzdaki yüzey normali, yüzeyin 

g  asimptotik normaline paraleldir. Aynı doğuran üzerindeki merkez ya da boğaz 

λ 
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noktasında, yüzeyin normali asimptotik doğrultudan 90 döner ve yüzeyin t


 

merkez normaline paralel konuma gelir. Aynı doğuran izlenirse, yüzeyin normali 

90 daha döner ve doğuranın diğer uç noktası –g ye paralel konuma gelir. Bunu 

akılda tutarak, regle yüzeyin Bertrand ofseti için aşağıdaki tanım verilir.  

Tanım 3.1 Her iki yüzeyin karşılıklı doğuranlarının boğaz noktalarında ortak asal 

normale sahip olacak şekilde doğuranları arasında birebir eşleme var ise, bu iki 

regle yüzey birbirlerinin Bertrand ofsetleri olarak adlandırılır.  

         ),( ksL


 taban regle yüzeyi,  

         )()(),( sekscksL 
  

denklemi ile ifade edilir. Burada c , yüzeyin boğaz eğrisi ve s, c  eğrisi boyunca 

yay uzunluğudur. Eğer t


, e  ve g , L


 yüzeyinin jeodezik Frenet üçyüzlüsü ise, o 

zaman L


 yüzeyinin L
 *  Bertrand ofsetinin jeodezik Frenet üçyüzlüsü (bir eğri ve 

Bertrand ofsetinin Frenet üçyüzlüsü arasındaki ilişkiden), 




















































g
t
e

g
t
e

















cos0sin
010

sin0cos

*

*

*

                                                             (29) 

ile verilir. 

Yukarıdaki eşitliğin, Bertrand eğrileri için verilen paralelinin eşitliği ile tamamen 

aynı olduğuna dikkat edelim. 

        L
 * ofset yüzeyinin denklemi, L


 taban yüzeyi cinsinden,  

         )]()([)(*)(*),(* stscsekscksL


 k[(cos) )(se (sin) )(sg ]    (30) 

olarak yazılabilir, burada λ, lineer ofset ve , iki yüzey arasındaki açısal ofsettir. 

Eğer  = 0 olursa, taban yüzeyi ve ofseti üzerindeki karşılıklı doğuranların 

birbirine paralel olduğuna dikkate edilmelidir. Bu durumda, bu iki yüzey ‘‘yönlü 

ofsetler’’ olarak adlandırılacaktır. (30) nolu denklem  = 0 için aşağıdaki şekilde 

basitleştirilebilir: 

        )(),()()()(),(* stksLsekstscksL


                                         (31)  
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Benzer şekilde,  = 90 olursa taban yüzeyi ve Bertrand ofsetinin karşılıklı 

doğuranları dik açıda olurlar. Bu durumda, bu iki yüzey ‘‘dik ofsetler’’ olarak 

adlandırılacaktır. (30) nolu denklem  = 90  için  

        )()()(),(* sgkstscksL 
                                                                    (32)     

şeklinde basitleşir. 

CAGD (Bilgisayar Destekli Geometrik Tasarım) açısından, yönlü ofsetlerin 

sıfırdan farklı  değerine sahip ofsetlerde daha faydalı göründüğüne dikkat 

edilmelidir. Renk Levhası 3.2, regle yüzeyin ve onun yönlü ofsetinin bilgisayarla 

oluşturulmuş bir resmidir.  

                                        

                                       Renk Plakası 3.2 Regle yüzey ve yönlü ofseti  

Renk levhası 3.3, yönlü olmayan (aykırı) ofseti ve daha büyük lineer ofset 

uzaklığı ile aynı yüzeyi gösterir.  

                               

                                  Renk Plakası 3.3 Regle yüzey ve yönlü olmayan ofseti  
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Teorem 3.2 Tanım 2.1 de tanımlandığı gibi Bertrand çifti olan iki regle yüzey 

birbirinin sabit ofsetleridir. 

         Ofset terimi, karşılıklı doğuranlar arasındaki lineer ve açısal ofsetleri 

kapsaması ile doğru geometrisi bakış açısıyla yukarıda tanımlanmıştır. 

İspat Bertrand ofseti tanımından, L
 * yüzeyinin t

 * merkezi normali ile L


 

yüzeyinin t


 merkezi normali aynıdır, yani  

         tt


*  

vardır ve buradan,  

        
*

*
*

s

s

e

et 




  ,  tes

 *   ( bir skaler) 

dır. q, )(se  boyunca yay  uzunluğu olarak alınırsa, (29) nolu eşitliği ve türevin 

zincir kuralı kullanılarak, 

         gtee 
  sin0cos*  

sssss ggeee 
  sincoscos)sin(*  

elde edilir ve  

         ssqs qtqee 
  

         ssqs qtqgg  )(


  

olduğundan, bu eşitlikler  *
se  eşitliğinde yerleştirilirse, 

          t


 )(sincoscos)sin( tqgtqe ssss

   

bulunur. Burada , e  nin jeodezik eğriliğidir. Eşitlik Frenet vektörlerine göre 

düzenlenirse, 

         gtqqet ssss


  cos)sin(cos)sin(  

eşitliği elde edilir. Eşitliğin iki tarafındaki katsayılar eşitlenirse, 

         0cos)sin(  ge ss


  

         0)cos)sin((  ges


 , 0cos)sin( *  gge 
    
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         s = 
ds
d =0   

bulunur. 

Bu,  nın sabit olmasını gerektirir ve Bertrand ofseti olan iki regle yüzeyin 

karşılıklı doğuranları arasındaki açısal ofsetin sabit olduğu anlamına gelir. Ayrıca,  

L
 * yüzeyinin dayanak eğrisi, kendisinin boğaz çizgisi olduğundan  

0**  ss ec   

dir ve tes

 * olduğundan eşitlik düzenlenirse, 

0*  tcs


  

bulunur. Ayrıca tcc

 *  olduğundan 

0)(


 t
ds

tcd 


  

eşitliği yazılır ve bu son eşitlik, 

0)(  tttc sss


  

   0)(  tqttc sqss


  

(23) eşitliği yardımıyla, 

0))((  tegqtc sss


  

halini alır. İşlemlere devam edilirse, 

0)(2  tegqttc sss


  

02  teqtgqt
e
ec sss

s

s
s







  

(27) eşitliği ve tg
,  = te

,  = 0 ile  
  

02  ts


   0s   λ = sabit      
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bulunur. Sonuç olarak, λ = sabit ve   = sabit gerçeği, ispatı tamamlar.       

O halde, genelde, bir regle yüzey, çift sonsuzlukta Bertrand ofsetlere 

sahiptir. Her bir Bertrand ofset, sabit lineer ofset, λ ve sabit açısal ofset,   

kullanılarak,  

)]()(sin)()[(cos)]()([)(*)(*),(* sgsekstscsekscksL 
   (33) 

denkleminden üretilebilir. Bu regle yüzey ailesindeki herhangi iki yüzey, Bertrand 

regle yüzeyleri tanımı anlamında birbirinin tersidir. 

Bir regle yüzeyin yönlü Bertrand ofsetlerinin, genelde, paralel ofsetler 

olmadığına dikkat edelim. Bu, bir regle yüzeyin her bir doğuranı boyunca 

normallerinin aynı olmadığı gerçeğinden açıktır. İki Bertrand ofsetin, paralel 

ofsetler olmadığı gerçeği, bir regle yüzey ve onun yönlü ofsetlerinden birini 

gösteren Renk Levhası 3.4’de örneklenmiştir.  

                

                               Renk Levhası 3.4  Regle yüzey ve paralel olmayan ofseti  

Böylece, ‘‘Bir regle yüzeyin yönlü Bertrand ofsetleri hangi koşullar altında 

paralel ofsetlerdir?’’ sorusu ortaya çıkar. Yönlü Bertrand ofsetin, paralel ofsetinin 

olması için, karşılıklı doğuran çiftinin farklı noktalarındaki normalleri tamamen 

aynı olmalıdır. Bu, taban yüzeyinin ve onun Bertrand ofsetinin her ikisinin de 

açılabilir olmak zorunda olduğu anlamına gelir. Oysa, bir açılabilir yüzeyin 

Bertrand ofsetinin, genelde, açılabilir olmak zorunda olmadığına ve bir regüler 

regle yüzey olabileceğine dikkat çekmelidir. 
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Açılabilir bir yüzeyde, küresel göstergesi, )(se , regresyon kenarına (boğaz 

eğrisine) teğettir.Yani, yüzeyin doğuranları, yüzeyin boğaz eğrisinin teğetleridir. 

Böylece, açılabilir bir yüzey, 

)()(),( sTkscksL


                                                                                 (34) 

olarak tanımlanabilir. Burada )(sT


, )(sc  eğrisinin teğetidir ve )(sc , yüzeyin 

regresyon ayrıtı ya da boğaz eğrisidir. Yüzeyin jeodezik Frenet üçyüzlüsü,  

          e  = sc  = T


 = c  nin teğeti 

         ssq Tqet


 =qsκ N


= N


 ya da c nin asal normali                                   (35) 

         teg
 BNT


 ya da c  nin binormali 

şeklindedir. 

Açılabilir bir yüzeyin Bertrand ofseti,  

        ])(sin)[(cos))()((),(* gekstscksL 
   

ya da Te


 , Nt


  ve Bg


  yazılarak  

        ])(sin)[(cos))()((),(* BTksNscksL


                                       (36) 

şeklinde ifade edilir. 

L* regle yüzeyinin, genelde, açılabilir olmadığı (36) nolu eşitlikten açıktır. Çünkü 

L* regle yüzeyinin açılabilir olması için, 

])(sin)[(cos)( BTNc
ds
d 

   ( bir skalerdir.) 

 ])(sin)[(cos)( BTNc ss


   

eşitliği sağlanmalıdır. Yani, (36) nolu regle yüzey denklemi için açılabilir olma 

şartı, 

( )( Nc
ds
d 

  , ])(sin)(cos BT


   , ])(sin)[(cos BT


   ) = 0 
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şeklindedir. Yorumlayacak olursak, karma çarpımın sıfır olması için bu üç 

vektörden ikisi birbirine paralel olmalıdır. İkinci ve üçüncü vektörler birbirine 

paralel olamayacağı için bu iki vektör, birinci ve ikinci vektördür. 

 (8) ve (35)  nolu eşitlikler yani, Tcs


  ve BTN s


   kullanılarak,  

])(sin)[(cos)( BTNc ss


   

eşitliği düzenlenirse, 

T


( BT


  ) = ])(sin)[(cos BT


   

             BT


 )1( ])(sin)[(cos BT


   

elde edilir. Bu son eşitliğin iki tarafını B


* ile skaler çarpalım. 

*,)1( BBT


  = *],)(sin)[(cos BBT


   

(12) nolu eşitlikten  cossin* BTB


  değerini yukarıdaki eşitlikte 

yerleştirelim: 

 cossin,)1( BTBT


 =  cossin],)(sin)[(cos BTBT




)1(  sin TT


,  sin,cos)1(  BT


TB


, BB


,cos                                                                             

= η[cossin TT


, + 2cos  BT


, - 2sin TB


, + cos sin BB


, ] 

Gerekli sadeleştirmelerin yapılmasıyla eşitlik, 

          cossin0sin0cossincos[cossin)1( 22  ] 

             (1-λκ)sin  cos = 0                                                                        (37) 

halini alır. Son denklem, açılabilir bir Bertrand ofsete sahip olan açılabilir yüzey 

için, regresyon kenarının eğrilik ve burulması arasında lineer bir denklemin var 

olması gerektiğini ifade eder. Bu denklem, Bertrand eğrileri için ifade edilen (10) 

nolu denklem ile tamamen benzerdir. Sonuçlar, aşağıdaki teorem ve sonucu ile 

özetlenebilir. 

Teorem 3.3 Eğer bir L


 açılabilir yüzeyi, bir L


* açılabilir Bertrand ofsetine 

sahipse, öyleyse regresyon kenarının eğrilik ve burulması arasında hem gerek hem 

yeter koşul olan şu bağıntı yazılabilir: 
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(1-λ )sin  cos =0 

Sonuç Teorem 3.4 Açılabilir bir yüzeyin açılabilir ofseti, yönlü ofset ise o zaman 

bu  paralel ofsettir. 

Renk Levhası 3.5, bir açılabilir yüzeyi ve onun aynı zamanda paralel olan yönlü 

Bertrand ofsetini göstermektedir. 

                          

                             Renk Levhası 3.5 Açılabilir yüzey ve paralel ofseti  

Teorem 3.3, Bertrand eğrileri ile ilgili bölümdeki  Teorem 2.1.4 e geometrik 

dualliğin uygulanmasıyla açık hale gelir. Bu, açılabilir yüzeylerin  aynı zamanda 

bir-parametreli düzlemler ailesi olarak düşünülebilmesindendir.  

Düzlemler ve noktalar, üç boyutlu uzayda birbirinin geometrik dualleridir: 

Bir (p, q, r, s) koordinat takımı, E ile gösterilen üç boyutlu Öklid uzayındaki 

bir nokta ya da bir düzlem olarak yorumlanabilir. Bu koordinatlarda verilen bir P 

noktası, 









s
r

s
q

s
pzyxP ,,),,(                                                                             (38) 

şeklinde ifade edilir ve U düzlemi,  

srzqypxU :                                                                                     (39) 

eşitliği ile verilmektedir. (38) eşitliğinden x, y ve z nin karşılıkları alınıp (39) 

eşitliğinde yerine konulduğunda 

         2222 srqp                                                                                         (40) 
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eşitliği elde edilir. Bu eşitlik sağlandığında, P noktasının dualinin U düzlemi 

olduğu ifade edilir. (Balkı, 2010) 

İki nokta iki düzlem durumu için;  

),,,( 4321 ppppP   ve ),,,( 4321 qqqqQ  biçimindeki iki homojen 

koordinatlar takımı, iki nokta ya da iki düzlem olarak yorumlanabilir. İki nokta bir 

doğuyu temsil eder; iki düzlem de bir noktada kesişir. Düzlem yorumlaması 

kullanılarak,  

4321: pzpypxpP   

4321: qzqyqxqQ   

eşitliğiyle ifade edilen iki düzlemin kesişiminin bir L doğrusu olduğu görülür.  

),,( 321 pppp   ve ),,( 321 qqqq  olmak üzere bu doğrunun Plücker 

koordinatları,  













qppq

qp
L 



44

 

biçimindedir. Benzer çalışmalar, üç nokta – üç düzlem durumu için incelenmiştir. 

(Balkı, 2010) 

 

 

 

 

 

 



 

 
      

34 

3.1 Açılabilir Yüzeyin 1–parametreli Düzlemler Ailesi Olarak 

İfade     Edilmesi 

3.1.1 Bezier eğrileri 

 Bezier eğrileri, eğriye yaklaşım sağlayan ve sıralı noktalar kümesi olan 

)...( 0 nVV kontrol noktalarını kullanır. Bu noktalar, grafik ekranında temsil 

edilebilir ve kullanıcıya eğrinin şeklini kontrol imkanı verir. Bezier eğrileri 

serbest şekilli eğrilerin temsilinde kullanılan polinom fonksiyonlarını baz almıştır. 

n.dereceden Bezier eğrisi, n+1 kontrol noktasına sahip bir parametrik 

fonksiyondur ve  





n

i
nii tBVtQ

0
, )()(                                                                                    (41) 

denklemiyle verilir. Burada, iV  ler kontrol noktalarıdır. )(, tB ni  fonksiyonu Bezier 

temsili için, karma fonksiyondur ve Bernstein polinomları ise aşağıdaki gibi 

tanımlanır.  

ini
ni tt

i
n

tB 







 )1()(, , 10  t                                                                (42) 

n polinomun derecesidir ve  

)!(!
!

ini
n

i
n











, i = 0, …, n                                                                        (43) 

binom katsayılarıdır. Bu karma fonksiyonlar,  

,0)(, tB ni  tüm i ler için 10  t  

,0)(
0

, 


tB
n

i
ni                   10  t                                                          (44) 
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şartlarını sağlarlar. (44) denklemlerinin ikincisi, normalleştirme özelliğidir. Bu 

şartlar eğrinin tümüyle kontrol noktaları tarafından oluşturulan konveks tekne 

içinde kalmasını zorlar (Şekil 3.6)  

 

Şekil 3.6 Bezier eğrisinin konveks tekne özelliğini sağlaması 

Konveks tekne, kontrol noktaları arasına gerilmiş bir lastiğin oluşturduğu çokgen 

olarak düşünülebilir.  

Bezier karma fonksiyonları n+1 kontrol noktasıyla n. dereceden polinom 

üretir ve eğriyi ilk ve son noktaları arasında interpole olmaya zorlar (Şekil 3.7) 

 

Şekil 3.7 Karma fonksiyonlarının Bezier eğrisini ilk ve son noktaları arasında interpole etmesi 

Aradaki kontrol noktaları sadece eğriyi kendilerine doğru çekerler ve eğrinin 

istenen şekle ulaşması için kullanılırlar. Şekil 3.8 ile bir kontrol noktasının 

hareketiyle Bezier eğrisinin şeklinin nasıl değiştiğini gösteriyor (Anand, 1992) 
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Şekil 3.8 Bir kontrol noktasının yer değiştirmesiyle Bezier eğrisinde oluşan değişiklikler 

Karma fonksiyonların kullanımına bir örnek olarak 3210 ,,, VVVV  dört  kontrol 

noktasını göz önüne alalım. n+1= 4 olduğundan polinomun derecesi n = 3 tür. 

(41) denklemini açarak 

3,333,223,113,00)( BVBVBVBVtQ                                                         (45) 

buluruz. (42) denkleminde verilen Bernstein polinomlarına göre dört karma 

fonksiyon vardır:  

330
3,0 )1()1(

!3!0
!3 tttB 


  

221
3,1 )1(3)1(

!2!1
!3 ttttB 


                                                                   (46) 

)1(3)1(
!1!2

!3 22
3,2 ttttB 


  

303
3,3 )1(

!0!3
!3 tttB 


  

Normalleştirme özelliği, karma fonksiyonlara uygulanır, yani toplamları 1 e 

eşittir.  

0)]1(3[])1(3[])1[( 3223  tttttt                                                 (47) 

Bu fonksiyonları (45) denkleminde yerleştirilirse, 
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3
3

2
2

1
2

0
3 )1(3)1(3)1()( VtVttVttVttQ                                      (48) 

elde edilir. Bezier eğrisinin ilk ve son kontrol noktalarından geçtiği bilinir. Buna 

göre,  

0t , 0)0( VQ   

1t ,  3)1( VQ                                                                                           (49) 

Bu değerlerdeki karma fonksiyonlar,  

0t , 13,0 B  

1t , 13,3 B  ve 03,23,1  BB  

dır.  

Kübik Bezier eğrisi için karma fonksiyonların çizimi Şekil 3.9’da 

gösterilmiştir. 

 

Şekil 3.9 Kübik Bezier Eğrisi için karma fonksiyonların çizimi 

Her bir kontrol noktası, kendisiyle ilgili karma fonksiyonla ağırlıklanır ve 

her bir noktanın etkisi parametrik değer 0 dan 1 e artarken değişir. Karma 

fonksiyonlar aynı zamanda Bezier eğrisini ilk ve son iki kontrol noktaları 

arasındaki çizgiye teğet olmasını sağlar. 
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Bezier eğrileri için karma fonksiyonlar olarak kullanılan Bernstein 

polinomları tek polinom eğrisiyle kontrol noktaları dizisine yaklaşım gösterir. 

Böyle oluşan şeklin derecesi, kontrol noktasına bağlıdır. Bezier eğrilerinde lokal 

kontrol sağlanamaz. Yani bir kontrol noktasının değişmesi tüm eğri parçasının 

şeklini değiştirir (Şekil 3.10). (Anand, 1992) 

 

Şekil 3.10 Bezier eğrisi lokal kontrol sağlayamaz 

3.1.2 Bezier eğrisi için matris formu 

Bezier eğrileri matris formunda uygun olarak ifade edilebilirler. Örneğin, 

3
3

2
2

10
3 )1(3)1(3)1()( VtVtttVtVttQ   

eşitliği ile verilen bir kübik Bezier eğrisini düşünelim. Bu eşitlik matris formunda 
aşağıdaki gibi yeniden yazılabilir.  





















3

2

1

0

3223 ])1(3)1(3)1([)(

V
V
V
V

tttttttQ  





















3

2

1

0

3323232 ])33()363()3331([)(

V
V
V
V

ttttttttttQ  
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










































3

2

1

0

23

0001
0033
0363
1331

]1[)(

V
V
V
V

ttttQ  

daha yoğun formda da aşağıdaki gibi yeniden yazılabilir (Anand, 1992) 

     bebe VMttQ )(  

3.1.3 B-Spline eğrileri  

Bezier karma fonksiyonları, eldeki mevcut kontrol noktalarının sayısına 
bağlı olan Bernstein polinomlarını kullanır. Bu eğriler, global kontrole sahiptirler. 
Yani, bir tek kontrol noktasının hareketi tüm eğriyi etkiler. Yüksek dereceli 
fonksiyonları ve global etkiyi azaltmak için Bezier eğrileri, düşük dereceli birçok 
parçalar birleştirilerek kurulur. Bu hem lokal kontrolü hem de sürekliliği 
sağlayarak derece değiştirme serbestliği sağlar. Sonuçta elde edilen Bezier 
eğrisinin daha önce ifade ettiğimiz özelliklere sahip olmakla birlikte, birleşik 
eğrinin farklı özellikleri vardır. Parçaları birleştirmek için seçilen metot, istenilen 
süreklilik derecesine bağlıdır.  

Bezierdeki Bernstein polinomlarına bir alternatif, herhangi sayıdaki kontrol 
noktalarından geçen tek parçalı geometrik  polinom üreten B-spline karma 
fonksiyonlarının kullanımıdır. Polinomun derecesi kontrol nokta sayısından 
bağımsız olarak tasarımcının isteğine bağlı olarak seçilir. Karma veya temel 
fonksiyonun derecesi elde edilecek olan B-Spline eğrisinin derecesini kontrol 
eder. B-Spline eğrileri, lokal kontrol yapar, yani eğer bir nokta hareket ettirilirse 
sadece bazı parçalar etkilenir, diğer kısımlar değişmeden kalır. B-Spline parçaları 
arasındaki süreklilik, temel fonksiyonun derecesinin bir fonksiyonudur. Böylece 
süreklilik, mümkün olan derecede seçeneklerinin daraltılmasında, tasarımcı için 
ana faktördür. B-Spline eğrileri de Bezier eğrileri gibi karma fonksiyonlarla temsil 
edilirler. Denklemi,  





n

i
iki VtNtP

0
, )()(                                                                                      (50) 

şeklindedir. Burada, iV  ler kontrol noktaları, kiN , lar (k-1). Dereceden karma 

fonksiyonları temsil ederler. Matematiksel olarak spline, parça (k-1). dereceden 
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polinom yani 2kC  sürekliliği varsa, k. mertebeden ya da (k-1). derecedendir 
denilir. Diğer bir ifadeyle,  

a) Polinomun derecesi,  1, ii tt  aralığında (k-1) i geçmez.  

b) Konum ve [1 den (k-1) e kadar] türev sürekliliği vardır.Kübik B-Spline 
durumu için, k=4, derece = 3 tür. 2.derece sürekliliği sağlanmıştır. i. karma 
fonksiyon kiN , (t) aşağıdaki tekrarlı eşitlikte tanımlanmıştır.  






,0
,1

)(1, tN i    
diger

ttt ii 1
  ve 

)(
)(

)(
)(

)(
)(

)( 1,1
1

1,
1

, tN
tt
tttN

tt
tttN ki

iki

ki
ki

iki

i
ki 






 






                                  (51) 

Burada düğüm vektörü, ]...[ kii tt  dır. (51) nolu eşitlikte ağırlıklar parantez içinde 

verilmiştirç Düğüm vektörleri şu şartlara bağlıdır: Azalmayan sırada olmalıdır, 
yani düğüm vektörünün elemanları olan it ler 1 ii tt  şartını sağlamalıdır. Aynı 

değer, k dan daha fazla görünmemelidir, yani spline ın mertebesinden daha çok 
olamaz. Bu aynı değer düğümler, genellikle katlı düğümler olarak 
değerlendirilirler.  

Bezier eğrisi gibi, B-Spline lar da normalleştirme ve konveks tekne 
özelliğini sağlarlar. Normalleştirme özelliği,  





n

i
ki tN

0
, 1)(  

şeklinde ifade edilir.  

Herhangi bir B-Spline eğrisinde, derece (k-1), kontrol noktaları ve düğüm 
sayısı birbiriyle  

)1( m    =     )1( n      +     k  

       düğüm sayısı    kontr. nok. say.     eğrinin mertebesi 

bağıntısıyla bağlıdır. Buradan 

m = n + k 
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elde edilir. Düğüm vektörleri böylece ]...[ 0 kntt  dır (Anand, 1992) 

 

3.1.3 B-Spline eğrisi için matris formu 

B-Spline’lar ile ilgilenirken matris biçimlendirilmesi kullanılabilir. Örneğin, 
kübik bir B-Spline matris formunda aşağıdaki gibi yazılır.  


















































2

1

1

0141
0303
0363
1331

6
1)(

i

i

i

i

i

V
V
V

V

tP  

ya da kısaca 

     BsBs VMttP 
6
1)(  

şeklinde yazılabilir (Anand, 1992). 

 

3.1.5 Kübik parametrelendirme 

Genel olarak bir parametreye bağlı düzlemler ailesi, bir hacim oluşturur 

ancak tanıma göre bir açılabilir yüzey olan bu düzlemlerin oluşturduğu zarfa 

dikkatimizi yoğunlaştırıyoruz. Bu nedenle, bir açılabilir yüzeyi bir eğrinin duali 

olan bir kimlik olarak gözlemliyoruz. Bir eğri, herhangi bir dereceden bir polinom 

ile, yakınlaştırılabilir: geometrik modellemede sıklıkla yapıldığı üzere üçüncü 

dereceden polinom seçiyoruz. Polinom katsayıları, istenen eğrinin modelleme 

sürecinin parçası olarak dikkatli biçimde seçilecektir. Kontrol köşeleri ve polinom 

katsayıları arasındaki ilişki, oluşan eğri ve kontrol köşeleri arasındaki fiziksel, 

geometrik ya da cebirsel ilişkiler ile belirlenmektedir. Bir kübik parametrik eğri, 

MGftP T)(                                                                                             (52) 
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eşitliği ile verilmektedir. Burada jV , j=1, 2, 3, 4 kontrol köşeleri olmak üzere 

]1[ 32 tttf T    





















4

3

2

1

V
V
V
V

G  

eşitlikleri geçerlidir. M matrisi, bir 44 boyutlu sabit tabanlı matristir. Bu 

makalede, Bezier ve B-spline biçimleri ele alındığından herhangi durumdaki 

temel matrisler olan beM  ve bsM  matrisleri sırasıyla,  


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







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


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1331
0363
0303
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bsM  

eşitlikleri ile verilmektedir. Kontrol köşeleri yerine kontrol düzlemlerini 

kullandığımızda bir parametreye bağlı düzlemler ailesini üretiyoruz. Düzlemler 

ailesini belirleyen eşitlik, 

MGftU T)(                                                                                             (53) 

ile verilir. (Eğrilere ilişkin kübik parametrelendirme durumundaki gibi aynı 

yöntemle bulunur.) Burada, f, M, G, jV  nin kontrol düzlemlerinin düzlem 

koordinatları olarak yorumlanmasının dışında önceki biçimdedir (Balkı, 2010). 
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(53) eşitliği ile belirlenen düzlemler ailesindeki ardışık iki düzlem zarf 

biçimindeki açılabilir yüzey üzerinde bulunan bir doğruda kesişir. t’nin herhangi 

bir değerine uyan düzlem,  

))(),(),(()( 321 tutututu   ve ),,( zyxX  olmak üzere, 

)()( 4 tuxtu                                                                                              (54) 

ile vektör formunda tekrar yazılan (53) eşitliği verilmektedir. Bu düzleme bitişik 

olan düzlem,  

)()( 4 ttuxttu   , 0 t                                                        (55) 

eşitliği ile verilir. (54) eşitliğinin (55) eşitliğinden çıkarılmasıyla bulunan eşitliğin 

her iki yanını t ’ye bölmek suretiyle (54) eşitliğinin türevi elde edilir: 

dt
tdux

dt
tdu )()( 4                                                                                        (56) 

Bu iki düzlemin ((54) ve (56) eşitlikleri ) kesişim doğrusu, açılabilir yüzeyin 

üzerinde bulunur ve t ye karşılık gelen yüzeyin doğuranı olarak bilinir. Yukarıdaki 

iki düzlemin ),()( rstL 
  ile gösterilen kesişim doğrusu plucker koordinatları 

cinsinden üs işaretinin t’ye göre türevi gösterdiği, 

uus 
  

uuuur 



44                                                                                               (57) 

şeklinde hesaplanır. [0,1] aralığında t parametresini değiştirdikçe L(t) doğrusu, 

açılabilir yüzeyi oluşturur. Bu durumda (53) eşitliği, zarf biçimindeki açılabilir 

yüzeyinin (57) eşitliği ile doğru geometrik biçiminde verildiği tek parametreli 

düzlemler ailesine ilişkin bir Bezier ya da B-spline formülasyonunu temsil eder. 

Bir açılabilir yüzey, iki parametreye bağlı noktalar takımı olarak bir yüzeyi 
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belirlemede kullanılan geleneksel yaklaşım yerine burada bir tek parametreli 

düzlemler ailesi açısından ele alınır. 

Bu nedenle bir açılabilir yüzey, burada geleneksel durumdaki bir Bezier ya 

da B-Spline eğrisine benzerlikler taşır. Çünkü hem açılabilir yüzey hem de eğri, 

bir tek düzlemler ya da noktalar gibi örnek geometrik biçimler ailesidir (Balkı, 

2010). 

Balkı (2010)’nın çalışmasında  açılabilir yüzeylerin temsili kullanılarak 

parametrik kübik eğriler ve açılabilir yüzeylerin geometrik modellenmesi 

bağlamında birbirinin duali oldukları incelenmiş ve aşağıdaki çizelge ile kısaca 

ifade edilmiştir. 

 

Çizelge 3.1 Eğrilerin ve yüzeylerin geometrik modellenmesinde noktalar ve düzlemler arasındaki 
duallik 
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5. SONUÇ 

Bu çalışmada, doğrular geometrisi kullanılarak, açılabilir ve regle yüzeyler 

için eğrilerin Bertrand ofsetlerinin genelleştirilmesi geliştirilmiştir. Sonuçlar, 

ilginç bir şekilde hem 2IR  deki eğrilerin nokta geometrisi ile 3IR deki regle 

yüzeylerin doğrular geometrisi arasındaki benzerliği hem de 3IR deki açılabilir 

yüzeyler ve eğriler arasındaki dualliği gösterir. Örneğin; bir düzlem eğrisi 

Bertrand çiftlerinin sonsuzluğuna sahip olabildiği gibi bir regle yüzey aynı yönde 

yönlü Bertrand ofsetlerinin sonsuzluğuna sahip olabilir. Bundan başka, üç boyutlu 

eğrilerle benzerlik bakımından, eğer ofsetin karakteristik eğrisinin (regresyon 

kenarı) eğrilik ve burulması arasındaki lineer denklem sağlanırsa, açılabilir bir 

yüzey açılabilir bir Bertrand ofsete sahiptir. Sonuçlar, yontulmuş yüzeylerin 

bilgisayar destekli tasarımında birçok uygulamaya sahiptir. 
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