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OZET

ACILABILIR VE REGLE YUZEY TASARIMINDA
DUALLIK

ERKAN, Esra

Yiiksek Lisans Tezi, Matematik Boliimii
Tez Danigsmani: Yard. Dog. Dr. Bahadir TANTAY
Mayis 2011, 45 sayfa

Bu ¢alismanin amaci, Endiistri ve Tasarimda en ¢ok kullanilan agilabilir ve
regle ylizeylerin daha hizli ve hassas dizaynt i¢in duallik kavrammin

uygulanmasidir.

Bu tez, ii¢ boliimden olugmaktadir. Birinci boliim, ¢caliyma hakkinda genel bir
bilginin verildigi giris kismma ayrilmustir. ikinci ve iigiincii boliimde, Ravani ve
Ku’ nun 1991°deki ¢alismasi esas olarak ele alinmis, dogrular geometrisine dayali
olarak agilabilir ve regle ylizeyler i¢cin Bertrand egriler teorisi genellestirilmesi
sunulmustur.Ayrica, diizlem ve noktalarin lic boyutlu uzayda birbirlerinin
geometrik dualleri olmasindan ve agilabilir yiizeylerin bir parametreli diizlemler
ailesi olmasindan bahsedilmistir.

Anahtar sozciikler: Bertrand egrileri, Bertrand ciftleri, Regle yiizeyler,

Acilabilir yilizeyler, Ofsetler, Duallik, Diferansiyel geometri
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ABSTRACT

DUALITY IN DESIGNING OF RULED AND
DEVELOPABLE SURFACES

ERKAN, Esra

MSc. in Mathematics
Supervisor: Assis. Prof. Dr. Bahadir TANTAY
June 2011, 45 pages

The purpose of this study, we will apply duality concept for faster and more
sensitive design of ruled and developable surfaces that used in industry and

designing.

This thesis is consisted of three chapters. The first chapter is devoted to the
introduction. The second and third chapter Ravani and Ku’s study at 1991 is
examined, a generalization of the theory of Bertrand curves is presented for ruled
and developable surfaces based on line geometry. Moreover, it is touched that
planes and points are geometric duals of one another in three dimnsional space
and that a developable surface can also be considered as a one parameter famil of

planes .

Keywords: Bertrand curves, Bertrand mates, ruled surfaces, developable

surfaces, offsets, duality, differential geometry
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1.GIRIS

Bir dogrunun bir egri boyunca hareket ettirilmesiyle elde edilen regle
yiizeyler, Oklid geometrisinde ilgi cekici bir arastirma konusu olmustur. Regle
yiizeyler ilk olarak, biitiin regle yiizeylerin sagladigi lineer denklemi kuran G.
Monge tarafindan arastirilmistir. En bilinen regle yiizeyler, diizlem, silindir veya
koninin egrilmis yiizeyleri, diizgiin bir uzay egrisinin olusturdugu yiizeyler,

hiperbolik paraboloid ve bir pargali hiperboloid dir.

Regle yiizeyler ve Ozellikle agilabilir yiizeyler, araba, gemi triinlerinin
imalat1 ve diger bir¢ok alanda 6rnegin, hareket analizi, kat1 cisim simiilasyonu ve
model tabanli nesne tanima sistemlerini tasarlamada kullanilmistir. Regle
ylizeylerin tanimlanmasi, tasarlanmasi ve iiretilmesi, makine miihendisligi ve

miihendislik matematiginde 6nemli bir konu olmustur (Zha, 1997)

Regle yiizeyler igerisindeki agilabilir yiizeyler, metal tabaka tasarimi ve
islenmesinde yararli oldugundan 6nemli bir alt sinifi olustururlar. Her agilabilir
ylizey, hareketli bir diizlemin (bir parametreli hareket altinda) zarf yiizeyi olarak
elde edilebilir. Agilabilir regle yilizeyler, genis 6lciide CAD (Bilgisayar Destekli
Tasarim) ve CADM (Bilgisayar Destekli Tasarim ve Uretim) alaninda kullanilir.
Bir “‘acilabilir’’ regle yiizey, diizleme acilabilen bir ylizeydir. Boyle bir yiizey,
tim doguranlar1 boyunca sabit bir teget diizleme sahiptir. Bilgisayar destekli
tasarim ve Uretim sistemlerinde agilabilir yiizeylerden yaygin olarak istifade
edilir; ¢linkii acilabilir ylizeyler materyalin bir diiz levhasmin esneme ve yirtma
yapmadan biikiilmesiyle olusturulabilir. Acilabilir yiizeyler, metal levha, kagit,
deri ya da kontrplak gibi materyallerden olusan {iriinlerin modellenmesi i¢in
potansiyel olarak uygundur. Acilabilir yiizeylerin uygulamalar1 gemi gdvdelerinin
tasariminda, otomotiv ve ugak gdvdelerinin pargalarinda, borulama isi ve kanal
sisteminde, ayakkabi tasarimi ve giyimde ortaya ¢ikmaktadir (Chu and Sequin,

2002).

Bu tezde amag, endiistride ve tasarimda en ¢ok kullanilan acilabilir ve regle
yiizeylerin daha hizli ve hassas dizayni i¢in duallik kavramimi uygulamaktir. Bu
amacla, Ravani ve Ku’nun (1991) ¢alismasi esas alinarak, regle yiizeyler ve

acilabilir yilizeylerin 6zel bir ofset egrisi ve tasarimi incelenmistir. Regle ve



acilabilir ylizey tasarimi i¢in dualligi incelemek, bu tezin ikinci amacidir. Bu

amagla, ilgili caligmalar incelenmistir.



2. BERTRAND EGRILERI VE REGLE YUZEYLERIN
DIFERENSIYEL GEOMETRISI

Bu boliimde, Bertrand egrileri teorisinin genellestirilmesi, dogrular
geometrisine dayandirilan acilabilir ve regle yiizeyler i¢in gosterilecektir. Uzayin
geometrik yapi bloklar1 olarak, noktalar yerine dogrular kullanilarak Bertrand
anlaminda ofset olan iki regle ylizey tanimlanacaktir. Bu, genelde her regle
yiizeyin Bertrand ofsetlerinin ¢ift sonsuzluga sahip olabildigini gdsterir; fakat
acilabilir bir regle yiizeyin agilabilir bir Bertrand ofsete sahip olmasi i¢in

regresyon kenarinin egrilik ve burulmasi arasindaki lineer denklem saglanmalidir.

Sabit egrilikli egrilerde ofset uzakligini —% = —R egrilik merkezi alirsak ofset bir

noktaya dejenere 01ur.|— R| den daha biiylik (- yonde) alirsak, egri ters doner

(paralel egri olmaz). Ek olarak, bu agilabilir yiizeyin agilabilir ofsetleri paralel
ofsetlerdir. Sonuclar, teorik merak olmasinin yani sira, iriinlerin geometrik

modelleme ve iiretiminde uygulamalara sahiptir.

Egri ve yilizeylerin ofsetlerinin dogusu, mekanik {iriinlerin geometrik
modelleme ve model tabanli {iretiminde pek cok uygulamaya sahiptir. Ofset
yiizeyler, kabuk tipli nesneler ve kalin yiizeylerin geometrik modellerini
olusturmak ya da geometrik modellemedeki toleranslar1 ifade etmek igin
kullanilabilir. Yizeylerin yuvarlak tip kesicilerle niimerik kontrol araciligiyla
frezelenmesinde kesicinin hareket programi, gergek yiizeyden kesicinin yarigapi
kadar uzaklikta bulunan bir ofset yiizey lizerinde hareket eden kesicinin merkezi
cinsinden meydana getirilir. Ayn1 durum, koordinat 6l¢iim makineleri kullanilarak
yontulan yiizeylerin incelenmesinde meydana gelir. Bu durumda CMM
(Koordinat Olgiim Makineleri) igin hareket programi, yuvar tipli kesicinin
kiiresel ucunun merkezi cinsindendir. Bu merkez nokta, Olciilen orijinal yiizey

parcasindan hafif bir ofset olan yiizey tizerinde hareket eder.

Ofset profilleri ile ilgili caligmalar, 19. yiizyila kadar uzanir. Bu alandaki
ornek teskil edecek calisma, Bertrand indir. Bertrand, ortak asal normallere sahip
egri ¢iftleri lizerinde ¢alismistir. Boyle egriler, gilinlimiizde Bertrand egrileri
olarak adlandirilir ve birbirlerinin ofsetleri olarak g6z 6niine alinabilir. Bertrand

egrilerinin teorisi, bir sonraki boliimde ayrintili bir sekilde tekrar incelenecektir.



Son zamanlarda, egrilerin ve ofsetlerin yiizeyleriyle ilgilenen CAGD
(Bilgisayar Destekli Geometrik Tasarim) literatiiriinde bir dizi c¢alismalar
yapilmistir. Klass (1983), Tiller ve Hanson (1984), Hoschek (1985) ve Farouki
(1985), egrilerin ve yiizeylerin ofsetlerini olusturmak i¢cin metodlar
gelistirmiglerdir. Hem Papaioannou ve Kritsis (1985) hem de Faux ve Pratt
(1979), NC (Niimerik Kontrol) makinelerindeki ofset ylizeylerin kullanimini ele
almislardir. Chen ve Ravani (1987), ylizeylerin ofsetlerinde kendi kendilerine
kesigim diiglimlerinin tespit edilmesi ve ortadan kaldirilmasi i¢in interaktif

prosediirler gelistirmislerdir.

Bu calismada, regle yiizeylerin Bertrand ofsetleri ele alinmakta ve dogrular
geometrisi kullanilarak, Bertrand egrilerininkine benzer bir teorinin regle ylizeyler
icin gelistirilebilecegi gosterilmektedir. Bu baglamda, iki regle yiizeyin Bertrand
cifti olmas1 kosulu gelistirilmektedir ve bunun, agilabilir regle yiizeyler durumu

disinda, iki yiizeyin paralel ofsetler olmasindan farkli oldugu ac¢ik hale gelecektir.
Bu ¢aligmanin diizenlenmesi asagidaki gibidir:

Oncelikle Bertrand egrilerinin teorisi gézden gegirilmis ve yeni terimler
dahilinde g6z Oniine alinmistir. Bu, makalede gelistirilmis olan Bertrand regle
ylizeylerinin teorisi ile iliskisini agiklamak i¢in gereklidir. Son olarak, Bertrand
regle yiizeylerinin yeni teorisi ve agilabilir yiizeylerin 6zel ama ilging bir hali
sunulmustur. Sonuglar, bilgisayar destekli 6rnekler kullanilarak agiklanmistir

(Ravani and Ku, 1991).
2.1 Bertrand Egrileri

Tamm 2.1.1 / < IR, I, IR nin ac¢ik alt aralig1 olsun.

a:lcIR—>E"
t—>alt)

seklinde tanimlanan diferansyellenebilir ve regiiler o fonksiyonuna E” de bir egri
denir (Caliskan, 2007). Diizlemde x = x(t), y = y(t) bir egrinin parametrik
denklemidir. Uzayda ise, x = x(t), y = y(t), z = z(t) bir egrinin parametrik
denklemi olup, diizlem egride t parametresi yok edilirse y = f(x) veya x = o(y)
veya daha genel olarak f(x, y) = 0 gibi x ve y arasinda bagmt1 gosterir (Akbulut,
1970).



Bir egri ¢ifti, eger karsilikli noktalar1 arasinda birebir esleme var ve her iki
egri, bu karsilikli noktalarda ortak normallere sahip iseler Bertrand cifti olarak

adlandirilirlar. Bu tiir egriler, Bertrand ofsetleri olarak verilecektir.

Iste bu az once sdyledigimiz, asal normali diger egrinin asal normali olan
egriyi bulma problemi, goriiniiste, ilk olarak Saint-Venant (Weatherburn’a (1930)
bakiniz) tarafindan kurulmus; fakat Bertrand (1850) tarafindan ¢oziilmiistiir.
Burada, regle ylizeyler icin benzer bir teori gelistirilmeden Once, gerekli
detaylarin kisa bir 6zeti verilecektir. Bu boliimde sunulan materyal, diferansiyel
geometride iyi bilinen seylerdir. Burada sadece CAGD (Bilgisayar Destekli

Geometrik Tasarim) amaglarina uygun bir formda goz 6niine aliacaktir.

Uzayda bir 7(u) dilizglin parametrik egrisini diisiinelim. 7(x)nun s yay

uzunlugu: asal normali

_ dF()

Py olmak iizere, s = j|?u (u)| du (1)

b

7, (u)

esitligi ile verilmektedir. Bu egrinin Frenet li¢ylizliisi;

T = teget vektorli=7, = i“ (2)
rlzl
- T 7 FoXF )X
N =asalnormali= —= = i‘—s = w (3)
s Ss rlzl X rl,[l,[ X rlzl
B = binormal vektér =T x N = ‘s fr“ = ’:“ . ’:”” 4)
rSS u e uu
esitlikleriyle verilen vektorlerden olusmaktadir.
Esitlikler, su sekilde elde edilmektedir: Oncelikle ilk denklem
For=lo = =7 % 5)
r du

seklinde diizenlenir ve iki taraftan u ya gore tiirev alinirsa,

2
du du du




Il
N,

(3) nolu esitlik de kullanilarak

2 2
AR AT aE
du du

esitligi elde edilir. (5) ve (6) nolu esitlikler vektorel carpilirsa,

s | (d_]
du \ du

d’s

— +TxN-
u

. - = ds
¥y xr. =(I'xT)- —-
( )du

rSS

3
.. - ds -
rMXFMM:rSS T .B
U
3
.. - ds -
rMXFMM:rSS T .B
U
= hLXT,
3
_f ds
T E

elde edilir. Bir onceki esitlikte iki tarafin normunu alalim.

ds\ (=
(2

‘E" =1 oldugu da kullanilarak,

(&)

elde edilir. Bu esitlik ile B binormalinin elde edildigi denklem diizenlenirse,

7 XF

u uu

13

ss

13

ss

N

X

s

u

B=

X

=
Y

u

bulunur ve T teget vektorii ile vektorel ¢arpilarak,

(6)



N:Exf: I"MXI"MM % I"M _ (I”XI"MM)XVM
I’MXVMM VM I’MXI’MM XI”M

elde edilir. Bu vektorlere iliskin Frenet formiilleri boylece,

r, X Vo

Kk =egrilik =

rss 3

L
A\

T :burulma: ’_/; .(;';SX’_/;SS): E/’.(Ezluxatuu)

(7,)’ (7, x7,)’

olmak iizere,

-~ dT -

TS = XZK -N (7)

N = Fir B ®)

o ds

- dB ~

B = = =7-N 9)
seklindedir.

Simdi de bir 7 uzay egrisini ve bunun 7 * Bertrand ofsetini alalim. Eger

N, 7 egrisinin asal normalini gosterirse, o zaman 7 *, N ile ayni olan N * asal
normaline sahiptir. 7 {izerindeki bir noktaya karsilik gelen 7 * {izerindeki bir

nokta

FE=F + A-N (10)

esitligi ile verilmektedir ve burada A, karsilikli noktalar arasindaki ofset
mesafesidir. Bertrand ¢ifti olan egrilerin gerekli olan Ozelliklerinden bazilar1

asagidaki teoremlere dayanilarak tanimlanabilir.
Teorem 2.1.2 Bertand ciftleri olan egriler, birbirlerinin sabit ofsetleridir.

Ispat. 7 ve 7*, 7 lizerinde s yay uzunluguna sahip Bertrand ciftlerinin bir
kiimesi olsun. 7 * Bertrand ofsetinin tegeti, 7" ye paraleldir. Bu, 7 nin N ye dik

oldugu anlamina gelir. Analitik olarak (10) esitligi ve Frenet formiillerinden



F*=F+A-N

yazilir. Iki taraftan s ye gore tiirev almarak,

ve (8) esitligi de yerlestirerek
7'=T +1, N + M-k T+7 B) (11)
esitligi elde edilir. 7°, N ye dik oldugundan, (7 ,N)=0ya da A, = 0 dir. Yani,
(T+A, -N+A-(~kT +1B),N) =0
<T,N>+ A (N NY =25 (T.N)y+ A7 (B, N)=0

=0

S
A = sabit
tir. Diger bir deyisle, bir egrinin ve onun Bertrand ofsetinin karsilikli noktalar1

arasindaki mesafe, teoremi ispatlayan sabittir.

Egri ve Bertrand ofseti arasinda karsilikli bir iligki olduguna dikkat
edilmelidir. Diger bir deyisle, bir 7 * egrisi, bir 7 egrisinin Bertrand ofseti ise, o
zaman 7 egrisi, 7 * egrisinin de Bertrand ofsetidir.

Teorem 2.1.3 Bir egri ve bu egrinin Bertrand ofsetinin karsilikli noktalarindaki

tegetleri arasinda sabit bir a¢1 vardir.
Ispat. ilk olarak did" ,T*) ifadesini hesaplamak gereklidir.
s

o o . . %k
AT Ty = (F T + (T, B2
ds ds

Frenet formiillerinden,
oo oo oo *
DAL= k(NI + c* (TN% -5
ds ds
yazilir ve bir egrinin asal normali N ve Bertrand ofsetinin asal normali N *
¢akistig1 igin yani N= N * ve N L T oldugundan N * 1 T dir. Benzer mantikla
N L T*dr. Boylece denklem,



L F =0+ K" -0
ds
d - -
—(T,T*)=0
ds< )
ya da
<T,T*) = cos @ = sabit

halini alir. Burada 0; T ve T * arasmdaki acidir ve ispat tamamlanir.

Bir egrinin ve Bertrand ofsetinin asal normallerinin c¢akistig1 gercegi
1s181nda, yukaridaki teoremden bu iki egrinin binormallerinin, iki egri iizerindeki
karsilikli noktalarda ayni sabit O agist olusturdugu ortaya ¢ikar. Bir egrinin ve

Bertrand ofsetinin Frenet li¢ylizliisii arasindaki iligki su sekilde ifade edilir:

Sekil 2.1 Bertrand ofseti olan egrilerin Frenet ¢atilariin konumu

B*, f*, f, B L N=N* oldugundan B*, f*, f, B ayni diizlemdedirler.

Buradan,

~ = = IT
T*:T-cos9+B-cos(3—9)

—T.cos6+B-sin 6

*— N

=y

. I -
B*:T-cos(3+9)+B-cos9

=_T.sin@+B-cosf
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elde edilir ve

T * cos® 0 sin@]|T

N*[=| 0 1 0 [|N

B* —sinf® 0 cosf||B
seklinde yazilir.

(12)

Teorem 2.1.4 Bir 7 egrisi, 7 * Bertrand ofsetine sahip ise, 0 zaman 7 egrisinin

egrilik ve burulmasi arasinda asagidaki iliski yazilabilir:
(1-Ak)sin@— At cosd =0

Burada 6, karsilikli noktalardaki tegetler arasindaki sabit agidir.
Bu teoremin daha genel bir hali , a ve b sabitler olmak iizere
a-k(t)+b-7(t) =1

genel lineer bagntisi olarak, (13) esitligini ifade eder.

(13)

Ispat s, 7 egrisi boyunca yay uzunlugu olsun. A, ofset mesafesinin bir sabit

oldugu gercegi 15181nda, (10) esitliginden:

F'=F +A -N+A-N

N

Ay =0 ve Frenet denklemlerinden

9 iAok +B)
ds

9 (1= Jk)T + AcB
ds

esitligi elde edilir. Esitligin her iki tarafi B* ile skaler carpilirsa,
<di*,z§*> = (- aK)-T+2-7-B,B*)
ds ’
(T*,B* = (1-Ax)-(T,B*) + A-7-(B, B¥

elde edili,. ~Bu denklem, (T*,B%=0 ve (12

B*=-T-sin @+ B-cosO oldugu kullanilarak diizenlenirse,

(14)

esitliginden
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0=(1-Ak)(T,~Tsin @+ BcosO) + A-7-(B,~T sin 0 + Bcosh)
0 = (1— Ak)[-sin (T, T + cos (T, B)]+ At[—sin 6(T, B) + cos (B, B)]
ve <f,f>=1, <l§,l§> =1, <T,l§> =0 oldugu da kullanilarak,

0=(1-Ak)(—sinO) + At cosb
(1-Ax)sin @ — At cosf =0
esitligi bulunur ve ispat tamamlanir.

Bir egrinin ve Bertrand ofsetinin yay uzunlugu arasindaki iliski, asagidaki

gibi olusturulabilir:
s*, 7 egrisinin Bertrand ofSeti {izerindeki yay uzunlugu olsun. Oyleyse,

di' _di" ds’

7—_; * dS*
ds ds

ds ds

£

esitligi yazilir ya da (14) esitligi kullanilarak,

W Ak)T + AcB
ds

£

7B )T + B
ds

esitligi elde edilir.
(12) esitligindeki T" ifadesi yerine yerlestirilir ve katsayilar esitlenirse,

£

(fcos@+l§sin€)-a;i: (1—26)T + 1B
s

£

cosH-di-f+sinH-a;i-l§:(l—lx)f+ﬂ,rl§
s

ds
cos@-dizl—lx ve sin@-dizlr
ds ds

*

ds 1- Ak AT

= (15)

ds cosO - sin 6

esitligi bulunur.
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7 =0, yani diizlemsel egri olmas1 durumunda (13) esitligi, 6 = 0 ve A nin herhangi

bir deger alabilecegini ifade eder:
(1-Ak)sin@ —Arcosf =01
7=0=>0-Ak)-sinf=0=sinf=0=60=0

I1k sart, bir diizlem egrisi ve onun Bertrand ofsetinin karsilikli noktalarinda paralel
tegetlere sahip oldugunu gosterir. Bir uzay egrisinin karsilikli noktalarinda
ofsetine paralel tegetlerinin bulunmasi i¢in, ofsetinin 0 s1 sifir olmalidir. Bu, (13)
esitligi karsisinda egrinin ofseti ile ¢akigmasi anlamina gelen A =0 oldugunu

ifade eder:

(1-Ax)sin@ —Atcosf =0

0=0=-47=0=>1=0
Bundan dolayi, bir uzay egrisinin Bertrand ofseti, karsilikli noktalarinda paralel
tegetlere sahip degildir.

Bu, egrilerin Bertrand ofsetlerinin olusturulmasi i¢in gerekli temel
tiiretmeleri tamamlar. Bu tiir ofsetler, gecmiste liretim ve tasarim uygulamalarinda

kullanilmistir (Ravani and Ku, 1991)
2.2. Regle Yiizeylerin Diferensiyel Geometrisi

Bu boéliimde, bir sonraki boliimdeki gelismelerle ilgili olan regle yilizeylerin
diferensiyele geometrisi kisaca gozden gecirilecektir. Weatherburn da (1930) daha

fazla ayrmt1 bulunabilir.

Tanmmm 2.2.1 Ug boyutlu Oklid uzayinda verilen ] dogrusunun verilen egri
boyunca hareket ettirilmesi ile bir ylizey elde edilebiliyorsa, bu ylizeye iic boyutlu
Oklid uzayinda bir ‘‘regle yiizey’’ denir. Ya da bir regle yiizey, bir parametreli

dogrular ailesidir diyebiliriz. Bu dogrular, ‘‘ylizeyin doguranlar’’® olarak
adlandirilir. / (v), p ve q noktalarindan gecen bir dogru olsun. ] (v) nin parametrik
denklemi,

[()=p+v-(q=p)

dir.
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o

Sekil 2.2 7 (v) dogrusu
] (v) tarafindan cizilen bir parametreli ydriinge, L(u,v) olarak gdsterilen

asagidaki

L(u,v) = p(u) +v-[§(u) = pu)] = p(u) +v-é(u) (16)

denklemi ile tanimlanan regle yiizeydir. Burada p(u) ve q(u), p ve q ug
noktalarinin yoriingeleri ve u, hareket parametresidir. p noktasi, u degisirken regle
ylizeyin ‘‘dayanak egrisi’’ olarak adlandirilan genel bir uzay egrisi ¢izer. Benzer
sekilde, e(u)=q(u)— p(u) vektori, regle yiizeyin kiiresel gostergesi olarak
adlandirilan | p- q| yarigaplt bir kiirenin yiizeyi lizerindeki bir egriyi ¢izer. Eger,
doguran dogru iizerindeki p ve q noktasi disinda iki nokta segilirse, ylizeyin
meydana gelen e(u) kiiresel gostergesi, dnceki gibi ayni kiiresel egri olacak, fakat

farkli yarigaplh bir kiire {izerinde olacaktir. Buna karsin, regle yiizeyin dayanak
egrisi tek degildir. Bu yiizden, regle yiizeyde uzanan ve dayanak egrisi gibi tiim
doguranlar1 kesen herhangi bir 7(s) uzay egrisi se¢ilebilir. Boylece, regle yiizeyin
denklemi,

L(s, k) =F(s)+k-&(s) (17)
seklinde yazilabilir. Burada s, 7(s) dayanak egrisi boyunca yay uzunlugudur ve
e(s) kiiresel gdstergesi, birim yarigcapa sahiptir. Eger, ¢(s) nin yay uzunlugunu ¢

ile gosterirsek, bu deger
b
g=]

seklinde yazilir.

de(s)|
I ds (18)
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Denklem (17) ile gosterilen regle yiizey i¢in birim yiizey normali, U , soyle
elde edilmektedir: Oncelikle, yiizeyin normal vektoriinii hesaplamada ihtiyag

duyulan, L, ve L, teget vektorleri bulunmalidir,

- dr de -
L=—+k— , L, =¢e(s
s ds ds k ( )
Buradan,
I «I (@ +k @) xe
U(S,k) — _>S B #k — dS dS
LxLy| CAVLL LA
ds ds ds ds
esitligi yazilir.

Lagrange  Ozdesligi, ((xxy),(x xy )= (x Wpy ) —(nx )x,y")  de

kullanilarak,
(i+kg)><é
_ ds ds
i  de. dr  de | __ . _ . dr  de dr  de _
\/{(ds+kds)'(ds+kck)}'[e(s)'e(s)]_{e(s)'(ck+kds)}[(ds+kds)'e(s)}

yazilir. ||é (s)|| =1 oldugundan é(s)*> =1 dir ve bunun igin s ye gore tiirev almarak,

_, . de _, . de
2-e(s)-—=0=>e(s)-—=0
()~ ()~

elde edilir. Bu iki sonug, son denklemde yerlestirilirse,

dr de
MUY i

B (d y )xé
Uls,t)= §___4as

di de [, . dF _  de][dF. . de._

\/|:ds +t ds} — [e(s).ds + t'e(s)'ds)}[ak e(s)+ tds.e(s)}
(d—?+td—é)xé
U(s,0) = — jf dif (19)
7 e, ¥
(g"‘f%) —(g-@(s)) }

bulunur.
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Regle ylizeyin genel ZSZZ(so,k) doguran1 boyunca birim normali, k
sonsuz azalirken smirlayict bir dogrultuya yaklasir. Bu dogrultu, ‘‘asimptotik

normal dogrultu’’ olarak adlandirilir ve su sekilde tanimlanir:

) (Zr+kje)xé
VR = df? iﬁ R P
o Ttk ) (- é(9))? o
[(ds ds) (ds e(s) }

1(61? q] de .
k-|—-| —xe|+—xe
k \ ds ds

5=5,

| dF dé dF SRl A
k-(— —+— 2 _ (2.3 2
[( (k s ds)) (ds e(S))}
1(61? q] de .
k-|—| —xe|+—xe
k \ds ds
5=,
k——0

7.74—
k ds

1[61? \ de .
k-|—| —xe|+—xe
k \ ds ds

T, 1 dF de, df - "
[k ( g) —(ds'e(s))}

5=5,

= 1/2
(1 @ d8 1 (dF .Y k=00
kKXt — | = —-es)

k ds ds k ds
1(61? q] de .
k-|—| —xe|+—xe

B k \ds ds

- - O Sl/2 | 5=5,

1 dr de 1 (dr . k—>—o0
R I e I B O
k ds ds k ds
1(61? q] de .
k|| —xe|+—xe
k \ds ds
5=35,
k——0

= _ N2 _ 2 1/2
1 dr de 1 (dr .
—ke|| T = T E(s)
k ds ds k ds

de de _
T ¢ “ds C
_ S _
- S 1/2 | 5=S, - dé 5=5,
de k——0 ae k——0
l:(dS] :l ds
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ve buradan da,

de _
é(S) S=5) :U(S’ k) $=5 :# $=50 (20)
k——o0
ds
elde edilir.

k, +oo a dogru artarken, birim normal Zg etrafinda 180 °doner ve en

sonunda —g yOniinii alir.

U birim yiizey normalinin yalnizca 90°déndiigi ve g asimptotik
normaline dik oldugu nokta ya da ‘‘Acilabilir olmayan bir regle ylizey iizerinde
alman bir nokta, yilizeyin [ ana dogrusunu ¢izerken, bu noktadaki teget diizlem
[ anadogrusu etrafinda doner. Burada, acilabilir yiizey ic¢in, herhangi bir
anadogrusu boyunca ylizey normali daima ayni dogrultuyu muhafaza ettiginden
ve teget diizlem de normale dik oldugundan, bir acilabilir ylizeyin herhangi bir
anadogrusu boyunca teget diizlemin ayni oldugunu hatirlayalim. Yiizey iizerinde
alman nokta, anadogru etrafinda sonsuz uzaklastig1 vakit normal dogrultusu
yukaridaki ifadeye gore g asimptotik normalidir. Bu normal dogrultuya karsilik
gelen teget diizleme, ‘‘asimptotik diizlem’’ denir. Anadogru iizerinde teget

diizlemin asimptotik diizleme dik oldugu nokta (Biran, 1970) > L, lizerindeki

““bogaz noktasr’’ olarak adlandirilir. U birim yiizey normalinin bu noktadaki, 7

ile gosterilen, yonii regle yiizeyin merkezi normalidir ve

= 1)

ile verilir.

Oyleyse, regle yiizey iizerindeki Frenet iigyiizliisii; é, f ve g vektorlerinin

dexterous triplet i ile tanimlanabilir. Bu vektorler,
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¢ = kiiresel gosterge

- . . _ e

¢ =merkezi normal= ¢, = - (22)
eS

_ . . exe,

g = asimptotik normal = ——
eS

denklemleri ile verilir.

Bu son esitliklerin tiirevleri almarak, bir egrinin Frenet denklemlerine

benzeyen denklem kiimesine ulasilir.

. _de -
eq— d_q_ t
__dr
t,=—=yg—e¢e 23
" dg Y & (23)
. dg -
gq: d_iz _7/ t
Burada, y :M; e nin jeodezik egriligidir. Bu egrilik su sekilde elde
~ 3 g g
eS
edilir:
¢ —e, ;.00

_ dq dqg . d’q - (dq]z - d’q
e, =e, -— —+é, - =7 |22 47
YoM ods ds ! dst ! \ds ds’

tiirevleri bulunur ve elde edilen iki esitlige vektorel carpim uygulanirsa,

2 2
Z xE, :(;.ﬂjx ; .(ﬂ] L7.99
ds “ \ds ds?

bulunur. Son esitlik, tiirev formiilleri kullanilarak diizenlenirse,

5 w5 =i [B) iy 4
e xe =(x — J—=1 +(t xt) —-—
yxe, =t x(g—e)) (dsj (Ext)— >

d 3
és Xéss :(}/(;X§)—;X5)(—qj
ds
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esitligi elde edilir. Ayrica, f x g =¢é ve f xé = —g oldugu da esitlikte yerlestirilip

tekrar diizenlenirse,
3
2 x, =(y-é+§>-(@]
ds
bulunur. y jeodezik egriligini bulmak icin esitlik e vektori ile skaler carpilirsa,

(e,e, xe)=(e,(re +§)-(%) )

=(y<é,é>+<é,g>>-(ﬂ]

ds
(2]
4 ds

elde edilir ve dg = [[¢,|-ds oldugundan esitlik diizenlenirse,
b

3

e

N

jeodezik egriligi bulunur.
Ayrica (23) nolu esitliklere su yolla ulagilir:

I1k esitlik, (22) nolu esitlik yardimiyla

~ de -
e, =—=1
q dq
bulunur.

Ikinci esitlik 7, =—é+y-f i¢in 7, =aé+bf +cg esitligindeki a, b ve c
katsayilar1 bulunmalidir. Bunun i¢in,

e Esitligi e vektori ile skaler ¢arpalim.
(t,,é)=a(e,e)+b(i,é)+c(g.e) ; (¢,€)=1, ({,e)=0 , (g,é)= 0 oldugundan
esitlik,

(t,,€)=a
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halini alir ve (f,é) = 0 oldugundan bu esitligin q ya gore tiirevi alinarak,
(t,,ey+(t,e,)=0
a+{f,t)=0
a=-1
bulunur.

. Esitligi ¢ vektorii ile skaler ¢arpalim:
(,.1)=a(@.fy+b{,f)+c(g.f); (,f)=0, (f.,f)=1, (g,f)=0 oldugundan
esitlik,

(7,.1)=b
halini alir ve

f|=1==1=277=0=77,=0 il
b=0
bulunur.

o Esitligi g vektorii ile skaler carpalim:
(t,,8)=aé,8) +b(1,8) +c(g,8) ; (¢,8)=(,8) =0, (g,8)=1
oldugundan esitlik,

<Zq’é > -C
halini alir ve <?, §> =0 oldugundan q ya gore tilirevi alinarak

(7, 8)+(7.8,)=0=>c+(7,,)=0
=c= —‘f‘ -‘éq‘ -cosf
= ¢ =y = skaler

bulunur. Béylece, 7, =—é +y -7 elde edilir.
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Ugiincii esitlik, g, =-y-7 igin g, =aé+bl +cg esitligindeki a, b ve ¢
katsayilar1 bulunmalidir. Bunun i¢in,
o Esitligi e vektori ile skaler ¢carpalim:
(8,.6)=a(é,éy+b(f,é)+c(g,é); (6.6)=1, (f,é)=(g,2)=0
oldugundan esitlik,
(g,.¢)=a
halini alir ve < g, é> =0 oldugundan q ya gore tiirevi alinarak,
<éq’é>+<é’éq>: 0= <§q’é> - _<§’Eq>:<§’;>
= (g,.¢)=~&.D)
= a=0
bulunur.
. Esitligi 7 vektorii ile i¢ carpalim:
(8,.€) = a(é,éy+b(f,é)+c(g,é); (6,)=0, (f,7)=1, (.F)=0 oldugundan
esitlik,
<§ g ’;> =b
halini alir ve < g,?) = 0 oldugundan q ya gore tiirevi almarak,
<§q’;>+<é’;q>:0: <éq’z>: _<é’;q>
=(g,.1)=—~(g.18~¢)
= (g,.1)=-7(g.8) +(&.¢)
= b=-y

bulunur.

. Esitligi g vektori ile skaler ¢arpalim:
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(8,,8) =ale,g) +b(1,8)+(g.8); (6,8)=(1,§) =0, (g,8)=1 oldugundan
esitligi,

(g,.8)=c
halini alir ve (g,g) =1 oldugundan q ya gore tiirevi alinarak,

(8,,8)+(8,8,)=0=(g,,8)=0

=c=0

bulunur. Béylece, g, =—y -7 elde edilir.

Bu son esitlikler, bir regle yiizeyin Jeodezik-Frenet denklemleri olarak

adlandirilir.

Regle vyiizey {izerindeki bogaz noktalarinin kiimesi, bogaz egrisini

tanimlar. ¢(s) bogaz egrisi, 7(s) dayanak egrisi cinsinden

N

LY

c(s)=7(s) -

L 3(s) (24)

N

[ D

N

Q

seklinde yazilir. Bu esitligin elde edilisi asagida verilmektedir.

L ¢ ana dogrusu iizerinde bogaz noktasmna karsilik gelen k parametresinin
degerini arayalim. Bogaz noktasinda teget diizlem asimptotik diizleme dik,

asimptotik diizlem ise (20) nolu esitlik ile verilen asimptotik normal dogrultuya
diktir. Bu yiizden, bogaz noktasinda normalin paralel oldugu L x L, vektorii ile

é, ve e vektorleri ayn diizleme paraleldir. Yani,
(LyxL,,é,,6)=0
yazilir ve buradan

(7 +key)xe -

,e.xe )=0
[(Fs +kés)2 _(;:s 'é(s))z]]/z

N

((F, + keg)x é,e, xe) =0
Lagrange 6zdesliginin kullanilmasiyla,

((;:s +kés)é)(éés)'(éé)((?s +kés)'és:0
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elde edilen esitlik, bogaz noktasinin k parametresine bagli degerini verir. Simdi bu
k parametre degerini bulalim.

é=1 oldugundan & 2 =1 dir. Buradan tiirev almarak, é-&, =0 elde edilir. Bu
degerleri son esitlikte yerlestirirsek,

—(ry +key) e, =0 = —r.-e,—k-é;,-e,=0

!
QY

“

=>k=-

|
|

)

N

bulunur. Elde edilen k parametre degeri, yiizey denkleminde yazilarak (24) nolu

esitlik ile ifade edilen bogaz egrisi denklemi bulunur.

Bogaz noktas1 ayn1 zamanda, iki ardisik doguran arasindaki ortak normalin
ayagidir. Eger regle ylizeyin ardisik doguranlar1 kesisirse, o zaman yiizeye

acilabilir denir. Bunun i¢in analitik sart sudur :
Fo-(éxég)=0 (25)

Agilabilir bir regle ylizeyde, her ardisik doguran ¢ifti kesistiginde bir diizlem
tanimlar. Bu yiizden, agilabilir bir regle yiizey, bir parametreli diizlemler ailesi
olarak diisiiniilebilir. Yiizeyin doguranlari, her iki ardigik diizlemin kesigimidir.
Bir acilabilir regle yilizey icin her diizlem ailesi dogurani boyunca ylizeye
dokundugundan, yiizey normali ayni dogrultuyu korudugundan ve teget diizlem
de normale dik oldugundan teget diizlem doguranin tiim noktalarinda aynidir. Bu
nedenle acilabilir bir yiizey, ywrtmaksizin veya uzatmaksizin bir diizleme
acilabilir. Acilabilir bir yiizey i¢in ardisik doguranlarin kesisimlerinin geometrik
yeri, her doguranin temas ettigi ve yiizeyin regresyon ayrit1 olarak ifade edildigi

yerdir.

Regresyon ayrit1 ise, diizlemler ailesindeki t parametresine karsilik gelen ti¢
ardigik diizlem, ‘karakteristik nokta’’ olarak adlandirilan bir noktada kesisir ve
bu karakteristik noktanin geometrik yeri, agilabilir ylizeyin ‘‘regresyon ayrit1’’ ya

da “‘keskin ayrit1’’ olarak bilinen egridir (Balki, 2010)

Bu kisimda, ¢(s) bogaz egrisi bir yiizeyin dayanak egrisi olarak alinacak ve

e(s) kiiresel gostergesi, birim kiireye normallestirilecektir. Yani,
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e(s) =1
olacaktir.

e(s) dogrultusundaki doguranin birim vektoriine es bir birim vektoriin O

baslangi¢c noktasina tagmir ve bu vektor birim kiire lizerinde bir kiiresel egri

tanimlar. Bu egri, yiizeyin kiiresel gostergesidir (Valiron, 1986).

Bu, genelligi bozmadan herhangi bir regle ylizey iizerinde uygulanabilirdir.

L(s,k)=¢(s)+k-&(s) (26)

Bu son denklem, ¢(s) bogaz egrisinin tegetinin, regle yiizeyin ¢ = E merkezi
s
normaline dik olmasin gerektirir. Bu sart analitik olarak,
C,-e, =0 (27)
seklinde ifade edilir.

Regle yiizey acilabilir yiizey ise o zaman

¢y (6x8)=0 (28)

dir, yani yiizeyin normal dogrultusunun, anadogrusu boyunca ayni kalmasi

sartidir.

(27) ve (28) nolu esitliklerden acgilabilir ylizeyin kiiresel gostergesi, e, bogaz
egrisinin (regresyon kenarmim) tegeti oldugu sonucu ¢ikar. Yani, ¢, L e, ve

¢, L exé, oldugundan ¢, vektorii, ¢ vektorli yoniinde olmahdir (Sekil 1.2).

Sekil 2.3 Agilabilir yiizeyin kiiresel gostergesi ve bogaz egrisinin tegeti
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3. REGLE YUZEYLERIN BERTRAND OFSETLERI

Bu boliimde, regle ve agilabilir yiizeyler i¢in Bertrand ofsetleri kavrami
olusturulacaktir. iki parametreli noktalar ailesi olarak genel bir yiizey gibi bir
regle ylizey gz Oniine alirsak, bu ylizeyin normal ofseti, orijinal taban yiizeyi ile
her noktasinda ortak normale sahip bir yiizeydir. Boyle ylizeyler, paralel ofsetler
olarak verilecektir. Farouki (1985,1986) tarafindan, belirli bir yiizey sinifi i¢in
hem tam hem de yaklasik paralel ofset iiretim metotlar1 gelistirilmistir. Ayni
teknikler, regle ve acilabilir ylizey durumlar1 i¢in kolayca ozellestirilebilir. Ama,
burada elde edilen sonuglar Bertrand egri ciftlerinin sahip oldugu egrilik ve
burulma gibi Ozelliklerinin birbiri cinsinden ifade edilmesi durumlarini
icermemektedir. Bu ylizden, ayni giizellik ve avantajlar1 tasimaz. Burada, regle
yiizeyler, dogrular geometrisi kapsaminda bir parametreli dogrular ailesi olarak
g0z Oniine alinirsa, o zaman boyle ylizeyler i¢in Bertrand ciftleri ile ilgili yukarida

bahsedilen 6zelliklerin kullanilabilecegi gosterilir.

Dogrular geometrisinde, iki dogru arasindaki ofset mesafesi, lineer ve acisal

ofset cinsinden tanimlanir (Sekil 3.1).

Sekil 3.1 iki dogru arasindaki ofset

Lineer ofset, A, iki dogru arasindaki ortak dikmenin uzunlugudur.

Acisal ofset, 0, iki dogrudan birinin ortak dikme boyunca kaydirilip diger

dogruyla kesistirilmesi sonucu aralarinda olusan agidir.

Birbirinin Bertrand ofseti olan iki egri i¢cin ofset mesafesi, taban egrisinin her bir
noktasindaki normali boyunca almnir. Bir regle ylizey i¢in, her doguran
konumunda, doguran boyunca yiizeyin pek ¢ok normali vardir. Ornegin, regle
ylizey parcalariyla sinirli kalmazsa, doguranin sonsuzdaki yiizey normali, yiizeyin

g asimptotik normaline paraleldir. Ayn1 doguran {izerindeki merkez ya da bogaz
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noktasinda, yiizeyin normali asimptotik dogrultudan 90°doner ve yiizeyin f
merkez normaline paralel konuma gelir. Ayn1 doguran izlenirse, yiizeyin normali
90°daha doner ve doguranin diger ug noktasi —g ye paralel konuma gelir. Bunu

akilda tutarak, regle yiizeyin Bertrand ofseti i¢in asagidaki tanim verilir.

Tanim 3.1 Her iki ylizeyin karsilikli doguranlarmin bogaz noktalarinda ortak asal
normale sahip olacak sekilde doguranlar1 arasinda birebir egleme var ise, bu iki

regle yiizey birbirlerinin Bertrand ofsetleri olarak adlandirilir.
Z(s,k) taban regle yiizeyi,
L(s, k) =¢(s) +k-&(s)

denklemi ile ifade edilir. Burada ¢, ylizeyin bogaz egrisi ve s, ¢ egrisi boyunca
yay uzunlugudur. Eger 7, é ve g, L yiizeyinin jeodezik Frenet tigylizliisii ise, o

zaman L yiizeyinin L" Bertrand ofsetinin jeodezik Frenet ligytizliisi (bir egri ve

Bertrand ofsetinin Frenet {igyiizliisii arasindaki iligkiden),

*

cos@ O sind
= 0 1 0

—sn@ 0 cos@

' (29)

*

0Qr <N ®)
0Qr N ®)

ile verilir.

Yukaridaki esitligin, Bertrand egrileri i¢in verilen paralelinin esitligi ile tamamen

ayni olduguna dikkat edelim.
L ofset yiizeyinin denklemi, L taban yiizeyi cinsinden,
L*(s,k)=¢*(s)+k-&*(s)=[C(s) + AL (s)] + k[(cosO) é(s) + (sinB) g(s)] (30)
olarak yazilabilir, burada A, lineer ofset ve 0, iki yiizey arasindaki acisal ofsettir.
Eger 6 = 0 olursa, taban yilizeyi ve ofseti lizerindeki karsilikli doguranlarin
birbirine paralel olduguna dikkate edilmelidir. Bu durumda, bu iki yiizey *‘yonlii

ofsetler’” olarak adlandirilacaktir. (30) nolu denklem 6 = 0 i¢in asagidaki sekilde
basitlestirilebilir:

L*(s,k)=3E(s)+ AL () + ké(s) = L(s, k) + AL (s) (31)
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Benzer sekilde, & = 90°olursa taban yiizeyi ve Bertrand ofsetinin kargilikli

doguranlar1 dik agida olurlar. Bu durumda, bu iki ylizey ‘‘dik ofsetler’” olarak

adlandirilacaktir. (30) nolu denklem 6 =90 °i¢in
L*(s,k) =¢(s)+ Al (s) + kg (s) (32)
seklinde basitlesir.

CAGD (Bilgisayar Destekli Geometrik Tasarim) acisindan, yonlii ofsetlerin
sifirdan farkli O degerine sahip ofsetlerde daha faydali goriindiigline dikkat
edilmelidir. Renk Levhasi 3.2, regle yiizeyin ve onun yonlii ofsetinin bilgisayarla

olusturulmus bir resmidir.

Renk Plakasi 3.2 Regle yiizey ve yonlii ofseti

Renk levhasi 3.3, yonlii olmayan (aykir1) ofseti ve daha biiyiik lineer ofset

uzaklig1 ile ayn1 ylizeyi gosterir.

Renk Plakasi 3.3 Regle yiizey ve yonlii olmayan ofseti
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Teorem 3.2 Tanim 2.1 de tanimlandig1 gibi Bertrand ¢ifti olan iki regle yiizey

birbirinin sabit ofsetleridir.

Ofset terimi, karsilikli doguranlar arasindaki lineer ve agisal ofsetleri

kapsamasi ile dogru geometrisi bakis acisiyla yukarida tanimlanmistir.

ispat Bertrand ofseti tammindan, L~ yiizeyinin 7 merkezi normali ile L

ylizeyinin # merkezi normali aynidir, yani
[*=t
vardir ve buradan,

%
€s
%

N

r*=

, é::u-f (u bir skaler)

Q

dir. g, e(s) boyunca yay uzunlugu olarak almirsa, (29) nolu esitligi ve tiirevin

zincir kurali kullanilarak,
é*=cos0-¢+0-f +sinf-g
é: =(-sinf)-6,-e +cosf-e, +cosO-0,-g+sinf-g;
elde edilir ve
€ =€, g =7-q,
g =8,q5s=(=r-1)-q,
oldugundan, bu esitlikler é: esitliginde yerlestirilirse,
p-t=(-sinB)-0,-é+cosO-q, -1 +cos@-0,-g+sin@-q,-(-y-1)

bulunur. Burada y, ¢ nin jeodezik egriligidir. Esitlik Frenet vektorlerine gore

diizenlenirse,
p-t =(—sin@)-0, -é+(cos@-q, —sinO-q,-y)-f +cosh-0,-g
esitligi elde edilir. Esitligin iki tarafindaki katsayilar esitlenirse,

(—sin@)-0; -e +cos@-6,-g=0

O,((—sin@)-e+cosf-g)=0, (—sin9)-é+cos9-§:§* #0
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6.= 40
ds

bulunur.

Bu, 6 nin sabit olmasini gerektirir ve Bertrand ofseti olan iki regle ylizeyin

karsilikl1 doguranlar1 arasindaki agisal ofsetin sabit oldugu anlamina gelir. Ayrica,
L yiizeyinin dayanak egrisi, kendisinin bogaz ¢izgisi oldugundan

Lk %
¢y e, =0

dir ve &, = u -7 oldugundan esitlik diizenlenirse,

*

U-cgt=0
bulunur. Ayrica ¢ =¢+A-7 oldugundan

d(C+ Af) .
ds

0

esitligi yazilir ve bu son esitlik,
(Cs+ A, E+AL)1=0
(Cs +Ag L+ A1, -q5)1=0
(23) esitligi yardimuyla,
(Cy+ Ay T+2-q,-(18—€)1=0

halini alir. Islemlere devam edilirse,

e T+ T2 +Aq,-(8—8)-1=0

Gy S A T2 Aq,y BT =g, ET=0

" e
(27) esitligi ve (g,7) = (¢,7) =0iile
A

F2=0 = A, =0 = A= sabit

)
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bulunur. Sonug olarak, 4 = sabit ve 6 = sabit gercegi, ispat1 tamamlar.
O halde, genelde, bir regle yiizey, cift sonsuzlukta Bertrand ofsetlere
sahiptir. Her bir Bertrand ofset, sabit lineer ofset, A ve sabit acisal ofset, O

kullanilarak,
L (s,k) =c*(s)+ke *(s) =[c(s)+ A (s)]+ k[(cosB)é(s) + (sin B)g(s)] (33)

denkleminden iiretilebilir. Bu regle yiizey ailesindeki herhangi iki yiizey, Bertrand

regle yiizeyleri tanimi anlaminda birbirinin tersidir.

Bir regle ylizeyin yonlii Bertrand ofsetlerinin, genelde, paralel ofsetler
olmadigmna dikkat edelim. Bu, bir regle ylizeyin her bir dogurani boyunca
normallerinin ayni olmadi1 gerceginden agiktrr. Iki Bertrand ofSetin, paralel
ofsetler olmadig1 gergegi, bir regle yiizey ve onun yonlii ofsetlerinden birini

gosteren Renk Levhasi 3.4°de 6rneklenmistir.

Renk Levhasi 3.4 Regle yiizey ve paralel olmayan ofseti

Boylece, ‘‘Bir regle yiizeyin yonlii Bertrand ofsetleri hangi kosullar altinda
paralel ofsetlerdir?’’ sorusu ortaya ¢ikar. Yonlii Bertrand ofsetin, paralel ofsetinin
olmasi i¢in, karsilikli doguran ciftinin farkli noktalarindaki normalleri tamamen
ayni olmahdir. Bu, taban yiizeyinin ve onun Bertrand ofsetinin her ikisinin de
acilabilir olmak zorunda oldugu anlamimna gelir. Oysa, bir acilabilir yiizeyin
Bertrand ofsetinin, genelde, acilabilir olmak zorunda olmadigina ve bir regiiler

regle yiizey olabilecegine dikkat ¢ekmelidir.
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Acilabilir bir ylizeyde, kiiresel gostergesi, e(s), regresyon kenarina (bogaz
egrisine) tegettir.Yani, ylizeyin doguranlari, yiizeyin bogaz egrisinin tegetleridir.

Boylece, acilabilir bir yiizey,
L(s,k)=¢(s)+kT(s) (34

olarak tamimlanabilir. Burada T(s), &(s) egrisinin tegetidir ve &(s), yiizeyin

regresyon ayrit1 ya da bogaz egrisidir. Yiizeyin jeodezik Frenet {igyiizliisi,

{=¢ =qT =gk N=N yada ¢ nin asal normali (39)

g=éxi=TxN =Byada ¢ nin binormali
seklindedir.
Acilabilir bir ylizeyin Bertrand ofseti,
L*(s,k) = (¢(s)+ A (5)) + k[(cos0)@ + (sin 0)Z]
yada é=T,7 =N ve g =B yazlarak
L*(s,k) = (¢(s)+ AN(s)) + k[(cosO)T + (sin 6)B] (36)
seklinde ifade edilir.

L" regle yiizeyinin, genelde, agilabilir olmadig1 (36) nolu esitlikten agiktir. Ciinkii

L regle ylizeyinin acilabilir olmasi i¢in,
d . = = = . .
d—(c + AN) =n[(cosO)T + (sin 8)B] (n bir skalerdir.)
s

So (G, + AN ) = n[(cosO)T + (sin ) B]

esitligi saglanmalidir. Yani, (36) nolu regle yiizey denklemi icin agilabilir olma

sart1,

(di(g +AN) , (cosO)T +(sin 0)B] , [(cosO)T +(sin@)B] ) =0
S
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seklindedir. Yorumlayacak olursak, karma carpimin sifir olmasi i¢in bu ii¢
vektdrden ikisi birbirine paralel olmalidir. Ikinci ve iigiincii vektdrler birbirine

paralel olamayacag1 i¢in bu iki vektor, birinci ve ikinci vektordiir.
(8) ve (35) nolu esitlikler yani, ¢, =T ve N, = —«T + B kullamlarak,

(€, + AN,) =n[(cos®)T + (sin 6)B]
esitligi diizenlenirse,

T + A (—«T +1B) =n[(cosO)T + (sin 0)B]

(1—2&)T + 728 = n[(cosO)T + (sin 6)B]

elde edilir. Bu son esitligin iki tarafini B * ile skaler carpalim.

<(1 — )T + 7B, B *> = <77[(cos 0)T + (sin 6)B], B *>
(12) nolu esitlikten B*=-Tsin 6 + Bcos0 degerini yukaridaki esitlikte
yerlestirelim:
<(1 - izc)f +7AB,~T sin 0 + B cos 9> = <17[(c0s H)T + (sin 9)5],—T sin@ + B cos 9>
—(1-Ak)sind <f, f> +(1-Ak)cos 9<f,§> —Atsin0 <l§, f> - AT cos9<l§,l§>
= n[cosBsinO <f,f> +cos’ 0 <f,l§> -sin% 6 <l§, f> + cos0 sind <l§, E’>]
Gerekli sadelestirmelerin yapilmasiyla esitlik,

(1-Ak)sin @ — At cos@ =n[—cosOsin O + cos?0-0+sin6-0+sin O cosd |

(1-Ax)sin@ — A7 cos@ = 0 (37)

halini alir. Son denklem, agilabilir bir Bertrand ofsete sahip olan agilabilir ylizey
icin, regresyon kenarmnin egrilik ve burulmasi arasinda lineer bir denklemin var
olmasi1 gerektigini ifade eder. Bu denklem, Bertrand egrileri i¢in ifade edilen (10)
nolu denklem ile tamamen benzerdir. Sonuclar, asagidaki teorem ve sonucu ile

Ozetlenebilir.

Teorem 3.3 Eger bir L acilabilir yiizeyi, bir L* acilabilir Bertrand ofsetine
sahipse, Oyleyse regresyon kenarmin egrilik ve burulmasi arasinda hem gerek hem

yeter kosul olan su bagnt1 yazilabilir:
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(1-Ax )sin@ — At cos@ =0

Sonu¢ Teorem 3.4 Acilabilir bir yiizeyin acilabilir ofseti, yonlii ofset ise 0 zaman

bu paralel ofsettir.

Renk Levhasi 3.5, bir agilabilir yiizeyi ve onun ayni zamanda paralel olan yonlii

Bertrand ofsetini gostermektedir.

Renk Levhasi 3.5 Acilabilir yiizey ve paralel ofseti

Teorem 3.3, Bertrand egrileri ile ilgili boliimdeki Teorem 2.1.4 e geometrik
dualligin uygulanmasiyla agik hale gelir. Bu, acilabilir ylizeylerin ayni1 zamanda

bir-parametreli diizlemler ailesi olarak diisiiniilebilmesindendir.
Diizlemler ve noktalar, {ic boyutlu uzayda birbirinin geometrik dualleridir:

Bir (p, g, 1, s) koordinat takimi, E ile gdsterilen ii¢ boyutlu Oklid uzaymdaki
bir nokta ya da bir diizlem olarak yorumlanabilir. Bu koordinatlarda verilen bir P

noktasi,

p:(x,y,z>:[£,g, ] (39)

N

v | N

seklinde ifade edilir ve U diizlemi,
U:px+qy+rz=s (39)

esitligi ile verilmektedir. (38) esitliginden x, y ve z nin karsiliklar1 alinip (39)

esitliginde yerine konuldugunda

pi+qi+ri=s’ (40)
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esitligi elde edilir. Bu esitlik saglandiginda, P noktasinin dualinin U diizlemi
oldugu ifade edilir. (Balki, 2010)

Iki nokta iki diizlem durumu igin;

P=(p,,p,,.p;»p,) ve 0=(q,.9,,95,9,)bigimindeki 1ki homojen
koordinatlar takimu, iki nokta ya da iki diizlem olarak yorumlanabilir. iki nokta bir
doguyu temsil eder; iki diizlem de bir noktada kesisir. Diizlem yorumlamasi

kullanilarak,
P:px+p,y+pz=p,
Q:qx+q,y+q,2=4,
esitligiyle ifade edilen iki diizlemin kesigsiminin bir L dogrusu oldugu goriiliir.

p=(p.,p,,pP;) Vve q=(q,,9,.q9;)0lmak tlizere bu dogrunun Pliicker

koordinatlari,
A
q.+P — P44

bi¢imindedir. Benzer ¢aligsmalar, iic nokta — ii¢ diizlem durumu i¢in incelenmistir.

(Balki, 2010)
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3.1 Acilabilir Yiizeyin 1-parametreli Diizlemler Ailesi Olarak

ifade Edilmesi

3.1.1 Bezier egrileri

Bezier egrileri, egriye yaklasim saglayan ve sirali noktalar kiimesi olan

(V,..V ) kontrol noktalarmi kullanir. Bu noktalar, grafik ekraninda temsil

edilebilir ve kullanictya egrinin seklini kontrol imkani verir. Bezier egrileri
serbest sekilli egrilerin temsilinde kullanilan polinom fonksiyonlarini baz almistir.

n.dereceden Bezier egrisi, nt+1 kontrol noktasmma sahip bir parametrik

fonksiyondur ve
0@t)=) V.B,,( (41)
i=0

denklemiyle verilir. Burada, V; ler kontrol noktalaridir. B, (z) fonksiyonu Bezier
temsili i¢cin, karma fonksiyondur ve Bernstein polinomlar1 ise asagidaki gibi

tanimlanir.

n
i

B, (1) =( ]ti(l—t)"‘i, 0<t<l (42)

n polinomun derecesidir ve

n n! .
(i]:i!(n—i)!’l_o’m’n (43)

binom katsayilaridir. Bu karma fonksiyonlar,

B, ,(t)=0, timilerigin 0 <¢<1

D B, (1)=0, 0<t<l (44)
i=0
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sartlarin1 saglarlar. (44) denklemlerinin ikincisi, normallestirme 6zelligidir. Bu
sartlar egrinin tiimiiyle kontrol noktalar1 tarafindan olusturulan konveks tekne

icinde kalmasini zorlar (Sekil 3.6)

Sekil 3.6 Bezier egrisinin konveks tekne 6zelligini saglamasi

Konveks tekne, kontrol noktalar1 arasina gerilmis bir lastigin olusturdugu ¢okgen

olarak diisiintilebilir.

Bezier karma fonksiyonlar1 n+1 kontrol noktasiyla n. dereceden polinom

iiretir ve egriyi ilk ve son noktalar1 arasinda interpole olmaya zorlar (Sekil 3.7)

Sekil 3.7 Karma fonksiyonlarinin Bezier egrisini ilk ve son noktalar1 arasinda interpole etmesi

Aradaki kontrol noktalar1 sadece egriyi kendilerine dogru cekerler ve egrinin
istenen sekle ulasmasi i¢in kullanilirlar. Sekil 3.8 ile bir kontrol noktasinin

hareketiyle Bezier egrisinin seklinin nasil degistigini gosteriyor (Anand, 1992)



Sekil 3.8 Bir kontrol noktasinin yer degistirmesiyle Bezier egrisinde olusan degisiklikler

Karma fonksiyonlarin kullanimma bir 6rnek olarak V,,V,,V,,V, doért kontrol

noktasini gz Oniine alalim. n+1= 4 oldugundan polinomun derecesi n = 3 tiir.

(41) denklemini acarak

Q(t) = VoBo,3 + V1B1,3 + Vsz,3 + VsB3,3 (45)

buluruz. (42) denkleminde verilen Bernstein polinomlarma goére dort karma

fonksiyon vardir:

3!

BO,3 :ﬁfo(l—t)S :(l—f)3
3! 1 2 2

By =t (1=0) =31(1-1) (46)
3! 2 2

32’3 :ﬂt (l—f):3t (l—t)
3!

B, :ﬁﬁ(l—t)o =

Normallestirme 06zelligi, karma fonksiyonlara uygulanir, yani toplamlar1 1 e

esittir.

(A=) 1+[3t(1-1)*1+[3°A-1)]+¢> =0 47)

Bu fonksiyonlar1 (45) denkleminde yerlestirilirse,
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O)=1-0)V, +3t(1=0)*V, + 3> (1= 1)V, + £V, (48)

elde edilir. Bezier egrisinin ilk ve son kontrol noktalarindan gectigi bilinir. Buna

gore,

t=0, 00)=V,

t=1, 0=V, (49)

Bu degerlerdeki karma fonksiyonlar,

t=0, By, =1

t=1,B,,=1ve B, =B,,=0

dir.

Kiibik Bezier egrisi i¢cin karma fonksiyonlarm ¢izimi Sekil 3.9’da

gosterilmistir.

Sekil 3.9 Kiibik Bezier Egrisi i¢in karma fonksiyonlarin ¢izimi

Her bir kontrol noktasi, kendisiyle ilgili karma fonksiyonla agirliklanir ve
her bir noktanin etkisi parametrik deger 0 dan 1 e artarken degisir. Karma
fonksiyonlar ayni zamanda Bezier egrisini ilk ve son iki kontrol noktalari

arasindaki ¢izgiye teget olmasini saglar.



38

Bezier egrileri i¢in karma fonksiyonlar olarak kullanilan Bernstein
polinomlar1 tek polinom egrisiyle kontrol noktalar1 dizisine yaklasim gosterir.
Boyle olusan seklin derecesi, kontrol noktasma baghdir. Bezier egrilerinde lokal
kontrol saglanamaz. Yani bir kontrol noktasinin degismesi tiim egri par¢asinin

seklini degistirir (Sekil 3.10). (Anand, 1992)

Sekil 3.10 Bezier egrisi lokal kontrol saglayamaz
3.1.2 Bezier egrisi icin matris formu
Bezier egrileri matris formunda uygun olarak ifade edilebilirler. Ornegin,

o) =1-0V, +3(1l-0)tV, + 3> A —0)V, + 'V,

esitligi ile verilen bir kiibik Bezier egrisini diislinelim. Bu esitlik matris formunda

asagidaki gibi yeniden yazilabilir.

o) =[1-1) 3t(1-06)* 3t>(1-1) £]

NN NS

O@)=[(1-3t+3¢t>=3t") (Bt—6t>+3) (3t°=3t") 1]

NSNS
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(V8]

(e
o o o =
NN NS

daha yogun formda da asagidaki gibi yeniden yazilabilir (Anand, 1992)
o) =[] M}, -],
3.1.3 B-Spline egrileri

Bezier karma fonksiyonlari, eldeki mevcut kontrol noktalarinin sayisima
bagli olan Bernstein polinomlarini kullanir. Bu egriler, global kontrole sahiptirler.
Yani, bir tek kontrol noktasmnin hareketi tiim egriyi etkiler. Yiiksek dereceli
fonksiyonlar1 ve global etkiyi azaltmak i¢in Bezier egrileri, diisiik dereceli bir¢ok
parcalar birlestirilerek kurulur. Bu hem lokal kontrolii hem de siirekliligi
saglayarak derece degistirme serbestligi saglar. Sonugcta elde edilen Bezier
egrisinin daha once ifade ettigimiz 6zelliklere sahip olmakla birlikte, birlesik
egrinin farkli 6zellikleri vardir. Parcalar1 birlestirmek i¢in se¢ilen metot, istenilen

stireklilik derecesine baglhdir.

Bezierdeki Bernstein polinomlarina bir alternatif, herhangi sayidaki kontrol
noktalarindan gecen tek parcali geometrik polinom {ireten B-spline karma
fonksiyonlarmin kullanimidir. Polinomun derecesi kontrol nokta sayisindan
bagimsiz olarak tasarimcinin istegine bagli olarak secilir. Karma veya temel
fonksiyonun derecesi elde edilecek olan B-Spline egrisinin derecesini kontrol
eder. B-Spline egrileri, lokal kontrol yapar, yani eger bir nokta hareket ettirilirse
sadece bazi pargalar etkilenir, diger kisimlar degismeden kalir. B-Spline parcalari
arasindaki siireklilik, temel fonksiyonun derecesinin bir fonksiyonudur. Boylece
stireklilik, miimkiin olan derecede segeneklerinin daraltilmasinda, tasarimci icin
ana faktordiir. B-Spline egrileri de Bezier egrileri gibi karma fonksiyonlarla temsil
edilirler. Denklemi,

Py =3 N, )V, (50)

seklindedir. Burada, V; ler kontrol noktalari, N, lar (k-1). Dereceden karma

fonksiyonlar1 temsil ederler. Matematiksel olarak spline, par¢a (k-1). dereceden
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polinom yani C** siirekliligi varsa, k. mertebeden ya da (k-1). derecedendir
denilir. Diger bir ifadeyle,

a) Polinomun derecesi, [tl. - ] araliginda (k-1) 1 gegmez.

b) Konum ve [1 den (k-1) e kadar] tiirev siirekliligi vardir.Kiibik B-Spline

durumu i¢in, k=4, derece = 3 tiir. 2.derece siirekliligi saglanmistir. i. karma
fonksiyon N, (t) asagidaki tekrarli esitlikte tammlanmugtir.

1, t <t<t,
N (1) = . ve
’ 0, diger
(t-t) (t,., —1)
N, (t)=——N, _(t)+—————N, t 51
O oy N Oy e O D

Burada diigiim vektort, [¢,...£,,, ] dir. (51) nolu esitlikte agirliklar parantez i¢inde

verilmistirg Diiglim vektorleri su sartlara baghdir: Azalmayan sirada olmalidir,
yani diigiim vektoriiniin elemanlari olan 7, ler ¢, <t,,, sartmi saglamalidir. Ayni

deger, k dan daha fazla goériinmemelidir, yani spline in mertebesinden daha ¢ok
olamaz. Bu ayni deger diigiimler, genellikle katl diiglimler olarak
degerlendirilirler.

Bezier egrisi gibi, B-Spline lar da normallestirme ve konveks tekne

Ozelligini saglarlar. Normallestirme 6zelligi,
z N, ik (t ) =1
i=0

seklinde ifade edilir.

Herhangi bir B-Spline egrisinde, derece (k-1), kontrol noktalar1 ve diigiim
sayist birbiriyle

(m+1) = ((n+1) + k

diigiim sayis1  kontr. nok. say.  egrinin mertebesi
bagintisiyla baglidir. Buradan

m=n-+k
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elde edilir. Diglim vektorleri boylece [¢,...£,,, ] dir (Anand, 1992)

3.1.3 B-Spline egrisi icin matris formu

B-Spline’lar ile ilgilenirken matris bicimlendirilmesi kullanilabilir. Ornegin,

kiibik bir B-Spline matris formunda asagidaki gibi yazilir.

-1 3 -3 17v,

113 -6 of 7,
P()=—

6-3 0 of v,

1 4 1 o|F¥

i+2

ya da kisaca
P =<1 M, ),

seklinde yazilabilir (Anand, 1992).

3.1.5 Kiibik parametrelendirme

Genel olarak bir parametreye bagli diizlemler ailesi, bir hacim olusturur
ancak tanima gore bir agilabilir yiizey olan bu diizlemlerin olusturdugu zarfa
dikkatimizi yogunlastiriyoruz. Bu nedenle, bir agilabilir yiizeyi bir egrinin duali
olan bir kimlik olarak gézlemliyoruz. Bir egri, herhangi bir dereceden bir polinom
ile, yakinlastirilabilir: geometrik modellemede siklikla yapildigi iizere {igiinci
dereceden polinom seciyoruz. Polinom katsayilari, istenen egrinin modelleme
siirecinin parcasi olarak dikkatli bigimde segilecektir. Kontrol koseleri ve polinom
katsayilar1 arasindaki iliski, olusan egri ve kontrol kdseleri arasindaki fiziksel,

geometrik ya da cebirsel iliskiler ile belirlenmektedir. Bir kiibik parametrik egri,

P(t) = fTMG (52)



42

esitligi ile verilmektedir. Burada V., =1, 2, 3, 4 kontrol koseleri olmak iizere

esitlikleri gecerlidir. M matrisi, bir 4x4boyutlu sabit tabanli matristir. Bu
makalede, Bezier ve B-spline bicimleri ele alindigindan herhangi durumdaki

temel matrisler olan M,, ve M, matrisleri sirasiyla,

1 0
-3 3 0
Mbe:
3 -6 3 0
_1 3 -3 1_
(1 4 1 O]
-3 0 0
Mbs:
3 -6 0
_1 3 -3 1_

esitlikleri ile verilmektedir. Kontrol koseleri yerine kontrol diizlemlerini
kullandigimizda bir parametreye bagl diizlemler ailesini iiretiyoruz. Diizlemler

ailesini belirleyen esitlik,

U@t) = f"MG (53)

ile verilir. (Egrilere iliskin kiibik parametrelendirme durumundaki gibi ayni

yontemle bulunur.) Burada, f, M, G, v, nin kontrol diizlemlerinin diizlem

koordinatlar1 olarak yorumlanmasimin diginda 6nceki bicimdedir (Balki, 2010).
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(53) esitligi ile belirlenen diizlemler ailesindeki ardisik iki diizlem zarf
bicimindeki agilabilir yiizey lizerinde bulunan bir dogruda kesisir. t’nin herhangi

bir degerine uyan diizlem,

u(t) = (u,(t),u,(t),us(t)) ve X =(x,y,z)olmak iizere,

u(t)-x =u,(t) (54)

ile vektor formunda tekrar yazilan (53) esitligi verilmektedir. Bu diizleme bitisik

olan diizlem,
u(t+o-t)-x=u,(t+56-1),0-t >0 (55)

esitligi ile verilir. (54) esitliginin (55) esitliginden ¢ikarilmasiyla bulunan esitligin
her iki yanin1 § - ¢ ’ye bolmek suretiyle (54) esitliginin tiirevi elde edilir:

du(t) _ du,(0)
dt dt

(56)

Bu iki diizlemin ((54) ve (56) esitlikleri ) kesisim dogrusu, agilabilir yilizeyin
iizerinde bulunur ve t ye karsilik gelen yiizeyin dogurani olarak bilinir. Yukaridaki
iki diizlemin L(¢) =(s,7) ile gosterilen kesisim dogrusu plucker koordinatlari

cinsinden iis isaretinin t’ye gore tlirevi gosterdigi,

F =i il —u,il (57)

seklinde hesaplanir. [0,1] araliginda t parametresini degistirdikge L(t) dogrusu,
acilabilir yiizeyi olusturur. Bu durumda (53) esitligi, zarf bicimindeki agilabilir
ylizeyinin (57) esitligi ile dogru geometrik bi¢iminde verildigi tek parametreli
diizlemler ailesine iligkin bir Bezier ya da B-spline formiilasyonunu temsil eder.

Bir agilabilir yiizey, iki parametreye bagli noktalar takimi olarak bir yiizeyi
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belirlemede kullanilan geleneksel yaklasim yerine burada bir tek parametreli

diizlemler ailesi a¢isindan ele alinir.

Bu nedenle bir agilabilir yiizey, burada geleneksel durumdaki bir Bezier ya
da B-Spline egrisine benzerlikler tasir. Ciinkii hem acilabilir yiizey hem de egri,
bir tek diizlemler ya da noktalar gibi 6rnek geometrik bigimler ailesidir (Balki,

2010).

Balki (2010)’nin calismasinda acilabilir yiizeylerin temsili kullanilarak
parametrik kiibik egriler ve acilabilir yiizeylerin geometrik modellenmesi
baglaminda birbirinin duali olduklar1 incelenmis ve asagidaki ¢izelge ile kisaca

ifade edilmistir.

EGRILER ACILABILIR YUZEYLER

Egri tizerinde bir kontrol noktasi Agilabilir yiizeye teget olan bir kontrol
diizlemi

Iki kontrol noktas1 bir tegeti tammlar. | Iki koitrol diizlemi Hir dogru belirler.

Ug kontrol noktas: bir oskiilatér Ug kontrol diizlemi karakteristik noktayi

diizlem belirler. Belirler.

Dort kontrol noktasi bir egri belirler. | Dort kontrol diizlemi bir agilabilir ylizey
belirler.

Cizelge 3.1 Egrilerin ve yiizeylerin geometrik modellenmesinde noktalar ve diizlemler arasindaki
duallik
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5. SONUC

Bu caligsmada, dogrular geometrisi kullanilarak, acilabilir ve regle yiizeyler
icin egrilerin Bertrand ofsetlerinin genellestirilmesi gelistirilmistir. Sonuglar,
ilging bir sekilde hem IR? deki egrilerin nokta geometrisi ile IR deki regle
yilizeylerin dogrular geometrisi arasindaki benzerligi hem de IR deki acilabilir
yiizeyler ve egriler arasindaki dualligi gosterir. Ornegin; bir diizlem egrisi
Bertrand ¢iftlerinin sonsuzluguna sahip olabildigi gibi bir regle yiizey ayni yonde
yonlii Bertrand ofsetlerinin sonsuzluguna sahip olabilir. Bundan baska, {ic boyutlu
egrilerle benzerlik bakimindan, eger ofsetin karakteristik egrisinin (regresyon
kenar1) egrilik ve burulmasi arasindaki lineer denklem saglanirsa, acilabilir bir
yiizey agilabilir bir Bertrand ofsete sahiptir. Sonuclar, yontulmus ylizeylerin

bilgisayar destekli tasariminda birgok uygulamaya sahiptir.
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