
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EEGGEE  ÜÜNN İİVV EERRSSİİTT EESSİİ   
 

YÜKSEK L İSANS TEZİ 

 

AKILLI UÇU Ş YÖNETİM SİSTEMİ 
TASARIMI ÜZER İNE 

Harun BAVUNOĞLU 

Tez Danışmanı : Prof. Dr. Urfat NUR İYEV 

Matematik Anabilim Dalı 

Bilim Dalı Kodu : 619.03.03 
Sunuş Tarihi : 10.06.2011 

 

 

 

 

 

 

 

Bornova-İZM İR 

2011 

 

 

 

EE
..   

ÜÜ
..   

FF
EE

NN
  BB

İİ
LL
İİ
MM

LL
EE

RR
İİ
  EE

NN
SS

TT
İİ
TT

ÜÜ
SS

ÜÜ
  



 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

EGE ÜNİVERSİTESİ FEN BİLİMLER İ ENSTİTÜSÜ 

(YÜKSEK L İSANS TEZİ) 

AKILLI UÇU Ş YÖNETİM SİSTEMİ TASARIMI 
ÜZERİNE 

Harun BAVUNOĞLU 

Tez Danışmanı : Prof. Dr. Urfat NUR İYEV 

Matematik Anabilim Dalı 

Bilim Dalı Kodu : 619.03.03 
Sunuş Tarihi : 10.06.2011 

 

 

 

 

 

 

Bornova-İZM İR 

2011 

 



 
 

 



iii 
 

 

 

 

Sayın Harun BAVUNOĞLU tarafından YÜKSEK LİSANS TEZİ  tezi olarak 

sunulan “Akıllı Uçuş Yönetim Sistemi Tasarımı Üzerine” başlıklı bu çalışma E.Ü. 

Lisansüstü Eğitim ve Öğretim Yönetmeliği ile  E.Ü. Fen Bilimleri Enstitüsü Eğitim 

ve Öğretim Yönergesi’nin ilgili hükümleri uyarınca tarafımızdan değerlendirilerek 

savunmaya değer bulunmuş ve 10.06.2011 tarihinde yapılan tez savunma sınavında  

aday oybirliği/oyçokluğu ile başarılı bulunmuştur. 

Jüri Üyeleri :       İmza 

Jüri Başkanı  : ...........................................  ................................. 

Raportör Üye  : ...........................................  .................................  

Üye   : ...........................................  ................................. 

 



iv 
 

 

 

 



v 
 

ÖZET 

AKILLI UÇU Ş YÖNETİM SİSTEMİ TASARIMI ÜZER İNE 

 

BAVUNOĞLU, Harun 

Yüksek Lisans Tezi, Matematik Bölümü 

Tez Danışmanı: Prof. Dr. Urfat NURİYEV 

Haziran 2011, 37 sayfa 

Bu tezde, okyanus aşırı uçan uçaklar için iki farklı tür acil durum anında 

gerçekçi ve akıllı acil iniş rota planlaması yapan sistem oluşturulması amaçlanmıştır. 

Bu türlerden ilki havalimanına en kısa zamanda iniş gerektiren durumlar ki 

bunlar bir yolcunun kalp krizi geçirmesi, uçağın yapısalındaki herhangi bir hasar, 

kabin basıncının aniden düşmesi, yangın çıkması vb. gibi durumlar olabilir bu 

durumlarda amaç, uçağın yere göre hızını uçağın limitlerine göre en üst seviyede 

tutup acil iniş noktasına en kısa sürede varmasını sağlamaktır. İkinci tür acil durum 

olarak uçağın motorlarında yakıt sızıntısı olması ele alınmıştır ve bu durumlarda 

amaç, zaman kısıtı olmadan uçağın en az yakıtı harcayarak yani rüzgarın hızını 

olabildiğince etkin kullanarak acil iniş noktasına varmasını sağlamaktır. 

Rotanın bulmasında sezgisel arama yöntemi olan, A yıldız(A*) arama 

algoritması kullanılmıştır. Rotanın bulunma süresinin kabul edilebilir olması için 

kullanılan veri yapıları ve algoritmalar optimize edilmiştir. 

Gerçeğe olabildiğince yakın veriler kullanılmış, hesaplamalardaki detaylardan 

kaçınılmamış ve optimum rota, kabul edilebilir bir sürede bulunmuştur. 

Anahtar sözcükler: Uçuş rota planlaması, acil durum rotası, A* algoritması, A 

yıldız algoritması 



vi 
 

 



vii 
 

ABSTRACT 

ON INTELLIGENT FLIGHT MANAGEMENT SYSTEM DESIGN 

BAVUNOĞLU, Harun 

MSc in Mathematics 

Supervisor: Prof. Dr. Urfat NURİYEV 

June 2011, 37 pages 

In this thesis, its aimed to build a system which makes realistic and smart route 

planning for emergency landing for transoceanic aircrafts in two kind of emergency 

situation. 

One of that kind of emergency situation is that the stiuation which is required 

soonest landing. Examples of this kind of stiuation may be a passenger having heart 

attack, any damage of structure of aircraft, sudden and rapid depressurization of the 

aircraft cabin, fire on board the aircraft etc. The aim is keeping the ground speed on 

upper limit of aircraft and guaranteeing the landing soonest as possible in this kind of 

situation. The other kind of emergency situation is that the situation which is the 

aircraft engine has fuel leakage. The aim is keeping the fuel flow minimum by using 

the advantages of wind without any time constraints. 

A star(A*) algorithm which is heuristic search method is used by route finding. 

Used data structures and algorithms are optimized to make the time of finding 

emergency route acceptable. 

As near as possible to the reality datas were used, did not avoid detailed 

calculations and optimum route was found in acceptable amount of time. 

Keywords: Flight planning, Emergency landing, A* algorithm, A star 

algorithm 

 



viii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

 

 

 

 

 

 

 

 

 

 

 

 

TEŞEKKÜR 

  Bu çalışma süresince, özellikle kıymetli görüşlerinden yararlandığım ve tezin 

biçimlenmesinde değerli katkılarını aldığım danışman hocam sayın Prof. Dr. Urfat 

Nuriyev’e, Güray Yıldız ve Elif Saygı’ ya,  gerekli verilerin sağlanmasında kolaylık 

gösteren   TUSAŞ-Türk Havacılık ve Uzay Sanayii A.Ş.’ ne ve çalışanlarına 

teşekkürü bir borç bilirim. 

 



x 
 

 



xi 
 

İÇİNDEKİLER 

Sayfa 

ÖZET ..................................................................................................................... v 

ABSTRACT ......................................................................................................... vii 

TEŞEKKÜR  ......................................................................................................... ix 

ŞEKİLLER DİZİNİ ............................................................................................. xii 

ÇİZELGELER DİZİNİ ....................................................................................... xiii 

SİMGELER VE KISALTMALAR DİZİNİ ....................................................... xiv 

1. GİRİŞ ................................................................................................................. 1 

2. SİSTEMİN AKIŞI ............................................................................................. 5 

2.1 Mevcut Grid Numarasının Bulunması ............................................................. 5 

2.2 Hedef Grdilerin Aranması ................................................................................ 6 

2.3 A Yıldız(A*) Algoritması ................................................................................ 9 

2.3.1 A* algoritması ............................................................................................. 10 

2.3.2 Sezgisel fonksiyonun muteberlik ispatı ...................................................... 15 

2.3.3 Maliyet hesaplaması .................................................................................... 16 

2.4 Optimalleştirme .............................................................................................. 23 



xii 
 

İÇİNDEKİLER (devam) 

Sayfa 

3. DENEYSEL BULGULAR ............................................................................... 28 

3.1 Deney Koşulları .............................................................................................. 28 

3.2 Deney Sonuçları ............................................................................................. 30 

4. SONUÇ............................................................................................................. 31 

5. ÖNERİLER ...................................................................................................... 32 

EK AÇIKLAMALAR .......................................................................................... 33 

KAYNAKLAR D İZİNİ........................................................................................ 34 

ÖZGEÇMİŞ .......................................................................................................... 37 

EKLER .....................................................................................................................  

Ek 1 Kaynak Kod .....................................................................................................  

 



xiii 
 

ŞEKİLLER D İZİNİ 

    Şekil     Sayfa 

    1.1       Büyük Okyanus Hava Durumu .............................................................. 2 

    2.3a    AutoDesk-Kynogon................................................................................. 9 

    2.3b    Robot A* algoritmasını çalıştırıyor ....................................................... 10 

    2.3.1.1 A* algoritması koşturulması sonucu adım 1 ........................................ 12 

    2.3.1.2 A* algoritması koşturulması sonucu adım 2 ........................................ 13 

    2.3.1.3 A* algoritması koşturulması sonucu adım 3 ........................................ 13 

    2.3.1.4 A* algoritması koşturulması ................................................................ 14 

    2.3.1.5 A* algoritması optimum yolu buluyor ................................................. 15 

    2.4.1   İkili En Küçük Yığını ............................................................................ 23 

    2.4.2   İEKY’nin Dizideki Görünüşü ............................................................... 24 

    2.4.3   Düğüm Ekleme...................................................................................... 24 

    2.4.4   Düğüm Çıkarma .................................................................................... 25 

    2.4.5   Yığın veri yapısının bağlı liste gösterimi .............................................. 27 

3.1.1   Uçuş Alanı..............................................................................................28 

3.2.1   Simülatör................................................................................................30



xiv 
 

 

 

 



xv 
 

ÇİZELGELER D İZİNİ 

Çizelge                                           Sayfa 

 2.1.1        Grid Numaraları .................................................................................... 5 

 2.2.1        Algoritmanın çalışma örüntüsü ............................................................. 7 

 2.3a        En kısa yol algoritmalarının zamansal karşılaştırması ........................... 9 

 2.3.3.2.1  Uçağın derece cinsinden yön bilgisi ................................................... 21 

 2.4.1        İEKY yapısının karmaşıklık tablosu ................................................... 26 

3.1.2        Hava Sıcaklığının Yakıt Akışına Etkisi................................................29 

3.2.1        Deney Sonuçları....................................................................................30 

 

 

 

 

 



xvi 
 

 

 

 

 



xvii 
 

 

SİMGELER VE KISALTMALAR D İZİNİ 

Kısaltmalar 

İHA   İnsanız Hava Aracı 

GPS   Global Pozisyon Sistemi 

VOR   Çok Yüksek Frekanslı 360 Derece Yönlü Uzaklık 

DME   Mesafe Ölçme Ekipmanı 

TACAN  Taktiksel Hava Navigasyon Sistemi 

ADC   Hava Veri Bilgisayarı 

NM  Deniz Mili 

FMS  Uçuş Yönetim Sistemi 

 

 

 

 

 

 

 



xviii 
 

 



1 
 

1. GİRİŞ 

19 Temmuz 1989’ da Denver’ dan Chicago’ ya giden uçağın arka iki 

motorunun da arızalanması sonucu pilotlar, uçağın kontrolünü kalan iki motorla  

mucizevi bir şekilde sağlayıp Sioux City’ ye acil iniş yapmak durumunda 

kalmışlardır. 24 Ağustos 2001’ de, Toronto’ dan Lizbon’ a olan Air Transat 

firmasının 236 sefer sayılı uçuşunda pilotların fark ettiği yakıt sızıntısı herhangi bir 

can veya mal kaybı olmadan, fakat normal iniş hızından iki kat fazla olduğu için 

küçük yaralanmalarla atlatılmıştır. 08 Ocak 2011’ de Amerikan F16’ sı İskoçya’ ya 

yakıt sızıntısından dolayı acil iniş yapmak zorunda kalmıştır. 22 Şubat 2010’ da 

Thomas Cook firmasına ait bir yolcu uçağı yakıt sızıntısı sebebiyle acil iniş yapmak 

zorunda kalmıştır. Uçuş sırasında herhangi bir acil durumun bütün yükünü       

pilotlar üstlenmek zorundadırlar, bu yükün biraz olsun hafifletilmesi pilotların 

sağlıklı karar verebilmelerini kolaylaştırmaktadır. Bu kapsamda özellikle okyanus 

aşırı uçuşlarda oluşabilecek acil durum türlerine özgü, hava koşullarının   

avantajlarını kullanıp, dezavantajlarını olabildiğince ortadan kaldırarak ve         

uçağın performansını göz önüne alarak en yakın havalimanına üç boyutlu rota 

planlaması yapılması gerekmektedir. 

Bu tezde, okyanus aşırı uçan uçaklar için iki farklı tür acil durum anında 

gerçekçi ve akıllı acil iniş rota planlaması yapan sistem oluşturulması amaçlanmıştır. 

Bu türlerden ilki havalimanına en kısa zamanda iniş gerektiren durumlar ki 

bunlar bir yolcunun kalp krizi geçirmesi, uçağın yapısalındaki herhangi bir hasar, 

kabin basıncının aniden düşmesi, yangın çıkması vb. gibi durumlar olabilir bu 

durumlarda amaç, uçağın yere göre hızını uçağın limitlerine göre en üst seviyede 

tutup acil iniş noktasına en kısa sürede varmasını sağlamaktır. İkinci tür acil durum 

olarak uçağın motorlarında yakıt sızıntısı olması ele alınmıştır ve bu durumlarda 

amaç, zaman kısıtı olmadan uçağın en az yakıtı harcayarak yani rüzgarın hızını 

olabildiğince etkin kullanarak acil iniş noktasına varmasını sağlamaktır. 



2 
 

Rotanın bulunma sürecinde, hava tahmin verileri, yeryüzü şekilleri, uçağın 

performans verileri detaylı bir şekilde kullanılmıştır.(UTED, 2011; Wikipedia, 2011) 

Rotanın bulunma süresinin kabul edilebilir olması için kullanılan veri yapıları ve 

algoritmalar optimize edilmiştir. 

 

Şekil 1.1 Büyük Okyanus Hava Durumu 

Rota planlaması yapılırken uygun rotanın aranması grid bazlı yapılmıştır. Bu 

seçim hassaslıktan tolere edilebilir ölçüde ödün verip hesaplama zamanından büyük 

kazanç sağlamıştır. 



3 
 

Kullanıcı dilediği miktarda, tabiki hesaplama zamanını göz önüne alarak 

alternatif rota oluşturtabilecektir. Bu alternatif rotalar planlananla o anki değerler 

tutmadığında yine pilotun karar zamanını kısaltma amacıyla oluşturulacaktır. 

Rota hesaplamalarında göz önüne alınacak iki girdiden biri hava şartları diğeri 

uçak performans değerleridir. Hava şartları ki bunlar farklı irtifalar ve zaman 

periyodları için rüzgarın yönü, rüzgarın hızı ve hava sıcaklığıdır, avantaj sağlayacak 

şekilde, bunu gerçekleştirirken de uçağın performas girdilerine uygun olması koşulu 

ile üç boyutlu rota planlaması yapılmıştır. 

Bu sistem, hava tahmin girdilerinin olması sebebiyle statik graf arama 

algoritması kullanılarak tasarlanmıştır. Hava tahmin değerlerinin olmaması ya da 

tahminlerin tutması durumu öneriler kısmında ele alınmıştır. Statik graf arama 

algoritmaları arasından A* baz alınmıştır (Hart et al., 1968). Bunun sebeplerinden ilki 

sezgisel arama olması ve hesaplama zamanını yüksek oranda azaltmasıdır bir diğeri 

kolay uygulanabilir ve anlaşılabilir olmasıdır.  

Sistemin kodlaması sırasında farklı programlama dillerinin avantajları ve veri 

yapılarının uygunluğu göz önüne alınmıştır. Gerçeğe çok yakın veriler kullanılmış ve 

olumlu sonuçlar alınmıştır. Mümkün olduğu ölçüde parametrik kodlanarak esneklik 

ve tekrar kullanılabilirliği azami seviyede tutmak hedeflenmiştir. 

Hava şartları havacılıkta rota planlamasındaki en önemli faktörlerden biridir. 

Bu konuyla ilgili bir çok çalışma yapılmıştır. Özellikle fırtınalardan kaçınılarak rota 

planlanması yapılması gibi. Ulaşılması gereken havalimanına en kısa uçuş fırtına 

içinden geçerek gerçekleştirilse bile fırtınadan kaçmak daha güvenli olduğundan 

pilotu bu rotalara yönlendirmek için çalışmalar yapılmıştır.(Krozel et al., 2006; 

Meuleau et al., 2008). 

Düzlem üzerinde optimum yolu bulmak için yapılan araştırmalar daha sonra 

uzaya yani üç boyuta taşınmıştır (Stefanakis ve Kavouras, 2002). 



4 
 

Askeri havacılıkta da tekrar rota planlaması oldukça sık kullanılmaktadır, en 

çok da özel görevlerde kullanılmak üzere tasarlanmış insansız hava araçlarında(İHA). 

Yer kontrol birimiyle iletişimlerini kaybetmeleri halinde, İHA’ nın düşmemesi için 

otonom bir şekilde kalktığı havalimanına inebilme kabiliyetine sahip olması 

gerekmektedir (Cook ve Smallman, 2008). 



5 
 

 

2. SİSTEMİN AKI ŞI 

2.1 Mevcut Grid Numarasının Bulunması 

Bir acil durum oluştuğunda öncelikle üç boyutlu konum bilgisi gerekmektedir. 

Konum bilgisi iki kısımdan oluşmaktadır biri yatay diğeri dikey kısımdır. Uçuş 

sırasında bu yatay navigasyon bilgisi eğer varsa FMS ekipmanından yoksa GPS’ ten 

veya VOR, DME, TACAN kulelerinden alınmalıdır.(Ferguson,1999) Bu yatay 

konum bilgisiyle(Enlem, Boylam) önceden belirlenmiş hassaslıktaki grid dizisinden 

hangi gridin içinde olduğu formül (1) ile bulunur. Bu grid dizisi önceden belirlenmiş 

uçuş alanından oluşturulur. Gridler yatayda sağa ve yukarı artacak şekilde 

numaralandırılır. Örneğin 14 x 8’ lik bir grid yapısı Çizelge 2.1.1’ deki gibi 

numaralandırılır. 

Çizelge 2.1.1 Grid Numaraları 

104 105 106 107 108 109 110 111 

96 97 98 99 100 101 102 103 

88 89 90 91 92 93 94 95 

80 81 82 83 84 85 86 87 

72 73 74 75 76 77 78 79 

64 65 66 67 68 69 70 71 

56 57 58 59 60 61 62 63 

48 49 50 51 52 53 54 55 

40 41 42 43 44 45 46 47 

32 33 34 35 36 37 38 39 

24 25 26 27 28 29 30 31 

16 17 18 19 20 21 22 23 

8 9 10 11 12 13 14 15 

0 1 2 3 4 5 6 7 

 
 

 



6 
 

 

  enlem, boylam olarak alınan yatay konum bilgisi, 

Güneybatı noktası  ve kuzeydoğu noktası   olan m x n’ lik grid 
yapısı, 

g  hassasiyet olmak üzere; 

n =    

GridNo =     (1) 

Diğer kısım olan dikey konum bilgisi ise ADC ya da Altimetreden 

alınmalıdır. Uçaklar için ortalama maksimum irtifa deniz seviyesinden 60.000 feet’ e 

(10 NM = 18,5km)  kadar olarak alınmış ve dikey olarak 10 eşit irtifa aralığına 

bölünmüştür. Alınan irtifanın hangi irtifa aralığına düştüğü formül (2) ile bulunur. 

   alınan irtifa bilgisi olmak üzere, 

  ANo =      (2) 

2.2 Hedef Gridlerin Aranması 

Uçak grid yapısına göre  konumlandırıldıktan sonra yani, rota planlamak için 

başlangıç gridi belirlendikten sonra önceden sisteme girdi olarak sağlanmış sayıda en 

yakın hedef grid, yani havalimanı belirlenmelidir. Bu hedef gridler irtifa aralıklarının 

sadece ilkinde yani yere en yakın olanında bulunabilirler. Bu da hedef grid arama 

uzayını düzleme indirgemiştir. Tüm gridleri taramamak ve hesaplama zamanını 

kısaltmak için önceden belirlenmiş sayıdaki hedef gride ulaşıncaya kadar başlangıç 

gridinden spiral çizerek taranan grid sayısı genişletilmektedir. Bu arama, en yakın 



7 
 

istenilen sayıda hedef grid bulacağını garanti eder ve en kötü durumda karmaşıklığı 

O(n)’ dir. 

Örneğin 14x8’ lik bir grid yapısında 4 en yakın hedef grid için arama 

örüntümüz Çizelge 2.2.1’ deki gibi olacaktır. 

Çizelge 2.2.1 Algoritmanın çalışma örüntüsü 

 

m x n grid yapısı, 

l önceden bilirlenmiş havaalanı sayısı kadar eleman tutan liste,  

s başlangıç grid numarası olmak üzere;  

Adım 1)  fark = 1 

Adım 2)  s = s + n , s<= m * n ise s’ te havaalanı olup olmadığına bak varsa l’ ye at, 

             l dolduysa dur. 



8 
 

Adım 3)  fark kadar dön 

Adım 4) s = s + 1 , (s mod n) 0’ a eşit değilse s’ te havaalanı olup olmadığına 
bak varsa l’ ye at, l dolduysa dur. 

Adım 5)  fark + 1 kadar dön 

Adım 6) s = s – n, s>= 0 ve (s mod n) 0’ a eşit değilse s’ te havaalanı olup 
olmadığına bak varsa l’ ye at, l dolduysa dur. 

Adım 7)  fark + 1 kadar dön 

Adım 8) s = s – 1, ((s+1) mod n)0’ a eşit değilse s’ te havaalanı olup olmadığına 
bak varsa l’ ye at, l dolduysa dur. 

Adım 9)  fark + 1 kadar dön 

Adım 10) s = s + n ve s’ te havaalanı olup olmadığına bak varsa l’ ye at, l 
dolduysa dur. 

Adım 11)fark = fark + 2 ve {2} ye dön 

Acil ini ş için havalimanlarının içinde olduğu gridler bulunduktan sonra 

başlangıç gridinden bu gridlere rota planlaması yapılmaktadır. Rota planlaması 

yapılırken A* algoritması temel alınmış, acil durum türüne göre maliyet fonksiyonları 

belirlenmiştir. 



9 
 

 

2.3 A Yıldız(A*) Algoritması  

Graf arama algoritmalarının hesaplama süreleri, grafın boyutuna göre çok uzun 

olabilir. Hesaplama sürelerini kabul edilebilir seviyelere çekmek için sezgisel arama 

yöntemleri geliştirilmi ştir.(Russell, 2003; Nabiyev, 2005; Nabiyev, 2007) 

Çizelge 2.3a En Kısa Yol Algoritmaların Zamansal Karşılaştırması(Santoso et al., 2010) 

Algoritma Çalışma Zamanı(3007,61m için) 

Dijkstra 140 ms 

A*(Sezgisel) 94 ms 

Karınca Kolonisi 13604 ms 

 

Bunlardan en popüleri A* algoritmasıdır. Oyunlar, robot uygulamaları gibi birçok 

uygulama alanı vardır.  

 

Şekil 2.3a AutoDesk-Kynogon 



10 
 

 

Şekil 2.3b Robot A* algoritması çalıştırıyor 

A* algoritması, seçilen sezgisel fonksiyonu muteber sezgisel olduğunda optimum 

rotayı garanti eder. Öncelikle A* algoritması anlatılacak ve sonrasında seçilen 

sezgiselin muteberliği ispatlanacaktır. 

2.3.1 A* algoritması 

Açık Liste: Hesaplamaları yapılmış fakat seçilmemiş gridlerin listesi 

Kapalı Liste: Hesaplamadan sonra seçilmiş gridlerin listesi 

g(n) : Başlangıç gridinden n. gride gelişin toplam maliyeti, 

h(n) : n. gridden hedef gride gidişin sezgisel maliyeti,  

f(n) = g(n) + h(n)  

olmak üzere; 



11 
 

Adım 1) Başlangıç gridini açık listeye ekle 

Adım 2) Aşağıdakileri tekrar et : 

a) Açık listedeki en küçük F değerine sahip olan gridi al ve mevcut grid 
olarak ata 

b)  Açık listeden silip kapalı listeye ekle 

c) Bütün 26 komşu gridler için (üç boyutta mevcut grid hariç) 

• Eğer komşu grid kapalı listede veya gidilemez ise diğer 
komşuya geç, değilse aşağıdakileri yap.         

o Eğer komşu açık listede değilse açık listeye ekle, 
mevcut gridi kendisine ebeveyn grid olarak ata. F ,G ve 
H değerlerini hesapla.  

o Eğer açık listede ise G değerini kullanarak o yolun daha 
iyi olup olmamasına bak. G değeri düşük olan daha iyi 
bir yola sahip demektir. F ve G değerini yeniden 
hesapla. Eğer açık liste F değerine göre sıralı değil ise 
tekrar sırala. 

 

d) Aşağıdakilerden biri sağlandığı zaman dur: 

• Hedef gridi kapalı listeye ekle, bu noktada artık bir rota 
bulunmuş oluyor. 

• Açık listenin boş olması, yani hedef gridin bulunamaması 
durumunu 

Adım 3) Bulunan rotayı kaydet ve hedef gridden başlangıç gridine bulana kadar 
geriye doğru ebeveyn gridlerini takip et. Bulunan yolu döndür. 

 



12 
 

 

Kolay anlaşılması için iki boyutlu örnek üzerinde incelenirse; 

Yeşil grid başlangıç, kırmızı grid hedef, mavi gridler de gidilemeyen gridler olsun. 

Bir gridden diğerine gitme maliyeti diyagonaldekiler için 

  

yatay ve düşeydekiler için 10 alınmıştır. 

Bir gridden hedef gride sezgisel uzaklık için de maliyet fonksiyonunun kuş bakışı 

Manhattan uzaklığı alınmıştır.(Policyalmanac, 2005) 

Algoritmayı çalıştırmaya başladığımızda başlangıç gridi açık listeye eklenir sonra 

açık listeden en küçük F değerine sahip grid açık listeden silinip kapalı listeye eklenir 

ve tüm komşu gridleri için açık veya kapalı listede olmadıkları için F değeri G ve H 

değerleri toplamından hesaplanır, ebeveyn grid olarak atanır, açık listeye eklenir ve 

hedef gride ulaşılamadığı için ya da açık liste boş olmadığı için Adım 2’ ye 

dönülür.(Bkz. Şekil 2.3.1.1) 

 

Şekil 2.3.1.1 A* algoritması koşturulması sonucu adım 1 



13 
 

Açık listede en düşük F değeri sahip olan açık listeden silinip kapalı listeye atılır, 

yani o gride gidilir. Gidilebilen komşu gridlerine bakılır ve açık listede olan komşu 

grid ile o gridin G değerleri karşılaştırılır 14, 20(10 + 10)’ den daha küçük olduğu 

için o gridden gitmek daha iyi bir yoldur ve F, G, H değerleri güncellenir. Artık yeni 

G değerimiz 14, yeni F değerimiz de 54’ tür ve Adım 2’ ye dönülür. 

 

Şekil 2.3.1.2 A* algoritması koşturulması sonucu adım 2 

 

Şekil 2.3.1.3 A* algoritması koşturulması sonucu adım 3 

 



14 
 

Bu şekilde devam edilerek hedef grid aranır. Gidilen grid yani kapalı listeye atılan 

grid hedef grid olduğunda algoritma durur ve en kısa yol bulunmuş olur. 

 

Şekil 2.3.1.4 A* algoritması koşturulması sonucu 

Bulunan en kısa yolu belirlemek için hedef gridden geriye doğru ebeveynler 

başlangıç gride ulaşılıncaya kadar takip edilir. Başlangıç gride ulaşıldığında artık en 

kısa yol belirlenmiş, fazladan gidilenler elenmiş olur. 

 



15 
 

 

Şekil 2.3.1.5 A* algoritması optimum yolu belirliyor 

Örnek 2-boyutlu olduğu için alınan komşu grid sayısı 8’ dir, fakat bu 

çalışmada oluşturulacak rota 3-boyutlu olduğu için komşuların sayısı 26 dır, yani (3 x 

3 x 3) lük küpün merkezindeki (1 x 1 x 1) lik küp haricindekilerdir. 

Bu çalışma kapsamında bir gride gidilememesinin nedenleri, coğrafi engeller, 
hava şartlarının elverişsizliği, yakıtın bitmesi veya uçağın performans değerlerinin 
elverişsizliği gibi durumlardır. Maliyet hesapları (G(n), H(n)) kısım 2.3.3’ te detaylı 
ele alınacaktır. 

2.3.2 Sezgisel fonksiyonunun muteberlik ispatı 

A* algoritmasının optimum çözümü verdiği sezgisel fonksiyonun muteber 

sezgisel olması ile ispatlanabilir(Hart et al., 1968). Bu çalışmada kullanılan H(n) 

sezgisel fonksiyonu için, alınan iki nokta arası en kısa uzaklık hesabının muteberlik 

olduğu (3) de ispatlanmıştır. 

H(n, g), n gridinden hedef gride(g) hesaplanan sezgisel değer, yani küre 

üzerindeki n ile g noktaları arasındaki en kısa yay uzunluğu, C(n, g), n gridinden 

hedef gride(g) gidebilmenin hesaplanan gerçek değeri olmak üzere; 



16 
 

C(n, g)  = C(n+1, n+2) + C(n+2, n+3) + … + C(n+x, g) 

şeklinde bulunur. 

H(n, g) muteberdir eğer; 

     (3) 

H(n ,g) sezgiseli büyük çember uzaklığı(Great-Circle Distance) olarak 
alındığında ve büyük çember uzaklığının da küre üzerindeki en kısa uzaklık 
olmasından dolayı küre üzerindeki iki nokta arasındaki herhangi başka bir uzaklık 
büyük çember uzaklığından büyük ya da eşit olacaktır.(IAState Üniversitesi, 2010; 
Wikipedia, 2011)  

2.3.3 Maliyet hesaplaması 

2.3.3.1 Rota planlama türü 

 Bu çalışmada iki tür rota planlama üzerinde durulmuştur.  Bunlar, en kısa 
sürede acil iniş ve en az yakıt tüketimidir. Bu iki tür arasındaki en önemli fark zaman 
ve yakıt akışı kısıtlarıdır. En kısa sürede iniş türünde, yakıt akışı bakımından herhangi 
bir kısıt olmazken, en az yakıt tüketimi türünde de herhangi bir zaman kısıtı yoktur. 
İkisi için de tek kısıt hedef gride ulaşılabilmesi için yeterli yakıtın bulunmasıdır. Bu 
türlerin matematiksel olarak modellenmesi aşağıdaki gibidir. 

En az yakıt tüketimi türü için; 

 :  O anki kalan yakıt miktarı, 

 :İniş için gereken yakıt miktarı, 

 : O anki yakıt akışı, 

 : O anki yere göre hız, 

  Tutunma kaybı olmaması için gereken yere göre en az hız, 



17 
 

  Yapısal kısımda hasar oluşmaması için gereken yere göre en fazla hız, 

 : O anki irtifa, 

 : Çıkılabilecek en yüksek irtifa, 

olmak üzere; 

 , 

 , 

 , 

 , 

kısıtları altında hedef fonksiyon: 

  

en kısa sürede acil iniş türü için aynı kısıtlar altında hedef fonksiyon; 

  

olarak belirlenmiştir. 

Bu hesaplamalar A* algoritması çalışması sırasında açılan komşu gridlerden 
hangisine gidilmesinin, o rota planlama türünde daha büyük avantaj sağlayacağını 
belirlemek için kullanılmaktadır.  

2.3.3.2 Koşulların planlamaya etkisi 

Rota planlaması yapılırken dikkat edilmesi gereken üç önemli kısıt vardır, 

bunlar acil durum anının koşulları, hava şartları ve uçağın performans değerleridir. 

Uçağın performans değerleri;  



18 
 

� Uçağın yapısalının hasar görmemesi için gereken en yüksek hız  

� Uçağın yapabileceği en dar dönüş açısı 

� İniş için gereken en az yakıt miktarı 

� İniş için gereken en kısa uzaklık 

� Birim zamandaki yakıt akışı 

bilgileridir. Uçağın yapabileceği en dar dönüş açısı ve iniş için gereken en kısa 

uzaklık grid boyutlarını belirlerken kullanılmaktadır. Acil durumun oluştuğu şartların 

da maliyet hesabında kullanılması gerekir, bu şartlar; 

� Uçaktaki yakıt miktarı 

� Uçağın enlem ve boylam olarak pozisyonu, irtifası 

� Uçağın hızı 

� Uçağın toplam ağırlığı 

bilgileridir. Hava şartları rota planlamasında büyük rol oynamaktadır. Özellikle yakıt 

sızıntısı sırasında rüzgarın avantajı planlama için çok önemlidir. Hava şartları 

değişkenleri; 

� Acil durum anında rüzgarın yönü ve hızı, 

� Acil durum irtifasındaki hava sıcaklığı 

� Acil durum anının hava tahmin verileri 



19 
 

� Farklı zaman periyotları ve farklı bölgeler için hava tahmin verileri 

� Hava radarı görüntüsü değerleri 

bilgileridir. Hava radarı görünütüsü değerleri, o anki hava tahmin verileriyle 

karşılaştırılarak iki değer arasında bir kalibrasyon yapılmaktadır. 

 

Önceki kısım kısımda belirtildiği gibi acil durum türlerine göre farklı maliyet 

hesapları kullanılmaktadır. Bunlar şu şekilde modellenmiştir; 

en kısa sürede acil iniş türü için maliyet değeri, 

    : c ve d noktaları arasındaki maliyet değeri, 

 : c ve d noktaları arasındaki büyük çember uzaklığı, 

      : Yere göre hız 

olmak üzere; 

 

şeklinde hesaplanır ve en az yakıt tüketimi türü için maliyet değeri, 

   : c ve d noktaları arasındaki maliyet değeri, 

 : c ve d noktaları arasındaki büyük çember uzaklığı, 

      : Yere göre hız, 



20 
 

   : c ve d  noktaları arasındaki yakıt akış değeri 

olmak üzere; 

 

şeklinde hesaplanır. Bu hesaplamalar için gerekli olan büyük çember uzaklığı 

aşağıdaki şekilde hesaplanır; 

  : Küre üzerindeki iki noktanın enlem ve boylamları, 

 D    : Bu iki nokta arasındaki büyük çember uzaklığı 

olmak üzere; 

 

şeklinde hesaplanır.(Wikipedia, 2011) 

Maliyet hesaplamarı için gerekli bir diğer parametre de yere göre hız 

değeridir. Yere göre hız, uçağın pito tüpünden ölçtüğü hız ile rüzgarın hızının 

vektörel bileşkesinden hesaplanır. Bu hesaplamayı yapabilmek için öncelikle uçağın 

coğrafi kuzeye göre yön bilgisinin bulunması gerekmektedir. Bu bilgi de şu şekilde 

bulunur; bir gridin üç boyutta 26 komşu gridi vardır fakat yatayda üst 9 ve alt 9 

komşu grid için yön değişmeyeceğinden  aynı irtifadaki 8 koşmu grid için yön 

hesaplaması yapılmıştır. Iki grid arasındaki yönü coğrafi kuzeye göre bulmak için 

aşağıdaki Çizelge 2.3.3.2.1 oluşturulmuştur. 

 

 



21 
 

m x n grid yapısı olmak üzere, 

Çizelge 2.3.3.2.1 Uçağın derece cinsinden yön bilgisi 

Gidilecek grid ile aradaki gridNo farkı Yön (Derece) 

n 0 

n + 1 45 

1 90 

1 - n 135 

-n 180 

-(n + 1) 225 

-1 270 

n - 1 315 

Iki grid arasındaki yön (artık buna grid yönü denecek) bulunduktan sonra 

rüzgarın bu yönde etkisi hesaplanır Rüzgarın ektisini katmadan önce hangi zaman 

periyodu için rüzgar durumuna bakılacağı hesaplanmalıdır, bu da iki grid arası büyük 

çember uzaklığının yarısının yere göre hıza bölünmesiyle elde edilir. Büyük çember 

uzaklığının yarısının alınmasının sebebi, iki grid arası işlem yapılırken orta noktaları 

baz alınır, bu orta noktardan geçerken iki gridin hava durumunun göz önüne alınması 

gerekir, büyük çember uzaklığının yarısı geçilen gridin verilerine ulaşmak için 

kullanılır.. Rüzgarın yönüyle gridin yönünün farkı alınarak rüzgar yönü ile grid 

yönünün arasındaki açı bulunur. Bu açı rüzgarın hızının grid yönünde ne kadarlık 

hıza karşılık geldiğinin hesaplanmasında kullanılır. Rüzgar hızının grid yönündeki 

hızıyla o anki hızın toplam değerine yere göre hız denir. Yere göre hız aşağıdaki 

şekilde hesaplanır. (Aeronautical Inc, 2006; Airbus, 2011) 

Eğer uçak tırmanışta ise  şeklinde alınabilir ve eğer rüzgarın 

yönü ile gridin yönü arasındaki açı ’ den büyükse yavaşlatıcı, küçükse arttırıcı 

ektisi olmaktadır. (Cary, 2001) 



22 
 

  : Yere göre hız değeri, 

  : Pito tüpünden okunan hızın gerçek hava hızına çevrilmiş hali, 

  : Rüzgarın hızı, 

  : Rüzgarın coğrafi kuzeye göre saat yönünde yönü, 

  : Uçağın coğrafi kuzeye göre saat yönünde yönü 

olmak üzere yere göre hız eğeri; 

  , eğer  

  , eğer  

şeklinde hesaplanır. Yere göre hız acil durum türüne göre tutunma hızının üstünde en 

az ya da yapısalın izin verdiği en üst limitte olabilmektedir. O irtifada, o sıcaklıkta ve 

o ağırlıktaki en küçük tutunma hızı, değişenlerin gerçek hava hızına etkileri, 

performans polinomu aracılığı ile hesaplanır.(Stengel, 1993) 

Uçaktan uçağa , motordan motora değişiklik gösteren özelliklerden bir tanesi 

de yakıt tüketimidir. Motor, türüne göre uçak farklı irtifa, ağırlık ve hava sıcaklığında 

farklı yakıt tüketebilir. Uçağın bu özellikleri her bir değişken için(diğerlerini sabit 

tutup) ayrı ayrı önceden belirlenmiş sayıda değerlerle ölçülür. Bu değerler, değer 

sayısı-1 kadar dereceden polinomun katsayılarını belirlemek için kullanılırlar. Oluşan 

denklemler Gauss-Eliminasyon yöntemi yardımı ile çözülür ve o uçağın yakıt 

tüketiminin irtifadan, hava sıcaklığından ve ağırlıktan hangi ölçüde etkilendiği 

belirlenmiş olur. Sezgisel fonksiyonla hesaplanan uzaklık için en yüksek hızda 

gidildiğinde geçen sürenin yakıt akışıyla çarpılmasından, o an için gereken en az 

miktarda yakıt hesaplanır ve kısıt olarak kullanılır.



23 
 

2.4 Optimalleştirme  

A* algoritması gereği F değerine göre küçükten büyüğe sıralı komşu gridlerin 

olması büyük avantaj sağlamaktadır. Öncelikli kuyruk metodu bu avantajı elde etmek 

için diealdir ve bu metodu ikili en küçük yığını(Binary Min Heap) veri yapısı en az 

karmaşıklıkla oluşturur. İkili en küçük yığını(İEKY) aslında bir ağaç yapısıdır ve bu 

ağaç yapısını oluşturmanın iki yolu vardır. Bunlardan ilki bağlı liste ile diğeri dizi 

kullanarak. İki yönteminde kendine özgü avantajları vardır; bağlı liste yöntemi sınırlı 

belleğe sahip sistemler için idealken dizi içinde tutmak işlem süresinin en aza 

indirgenmesi için idealdir. Bu çalışmada bellek kısıtı olmadığı varsayılmıştır. 

(Cormen, 2000) 

 

Şekil 2.4.1 İkili En Küçük Yığını 

İEKY‘ e bir düğüm ekleme, en düşük F değerine sahip düğümü çıkarma, boş 

mu dolu mu kontrolü, en düşük F değerine sahip düğümü bulma algoritmaları 

aşağıdaki gibidir. 

İEKY’ nin oluşturulacağı indisi 0’ dan başlayan bir A dizisi olsun; 

Bir i düğümü sol çocuk düğümüne A[2i+1] den  sağ çocuk düğümüne A[2i+2] 

Bir i düğümü de kendi ebeveyn düğümüne A[           ] indislerinden erişebilir. 



24 
 

 

Şekil 2.4.2 İEKY’ nin Dizideki Görünüşü 

Düğüm Ekleme: 

1. Eklenecek düğümü İEKY’nin en alt seviyesine yani dizinin sonuna 

ekle. 

2. Eklenen düğümün F değeriyle ebevyninin F değeri karşılaştır; 

a.  Eğer yeni eklenen düğümün F değeri daha büyükse dur. 

b.  Değilse, yeni eklenen düğümle ebeveyn düğümünü yer    

değiştir ve 2. adıma geri dön. 

 

Şekil 2.4.3 Düğüm Ekleme 



25 
 

Düğüm Çıkarma: 

1. Dizideki son düğümü kök düğüm yap. 

2. Yeni kök düğümün F değeri ile çocuk düğümlerin F değerlerini 

karşılaştır; 

a) Eğer kök düğümün F değeri çocuk düğümlerin F değerinden 

küçükse dur. 

b) Değilse, çocuk düğümle kök düğümü yer değiştir ve 2. adıma 

dön. 

 

Şekil 2.4.4 Düğüm Çıkarma 



26 
 

Boş mu dolu mu Kontrolü: 

1. Dizinin ilk indisi yani 0. indiste bir düğüm varsa dolu yoksa boş 

döndür. 

En küçük f değerine sahip düğümü Bulma: 

1. Kök düğümün indisini döndür. 

Algoritmalardan da görüldüğü gibi yeni düğüm ekleme, çıkarma ve en az f 

değerine sahip düğümü alma, boş olup olmama kontrolü karmaşıklıkları Çizelge 

2.4.1’ deki gibidir. 

Çizelge 2.4.1 İEKY yapısının karmaşıklık tablosu 

İşlem Karmaşıklık 
Boşmu() O(1) 

enKüçük() O(1) 
Ekle() O(log n) 

enKüçükÇıkar() O(log n) 

Görüldüğü gibi İEKY tüm düğümleri sıralamadığı için ki bu durum en küçük 

düğümü bulmak için yeterlidir, hızlı sıralama(Quicksort), kümeli sıralama(Mergesort) 

ve yığın sıralama(Heapsort) gibi karmaşıklığı   O(n log n) olan en hızlı sıralama 

algoritmalarından daha hızlı çalışmaktadır. 

 

 

 

 



27 
 

A* algoritması bittikten sonra yani hedef gride ulaşıldıktan sonra geriye, 

başlangıç gridine doğru gidilerek rotanın oluşturulması, fazladan gidilen gridlerin 

elenmesi gerekmektedir. Bu işlem için yığın veri yapısı, bağlı liste kullanılarak 

oluşturulmuştur. Bunun amacı bağlı liste şeklinde tutulan yığının, dizide tutulan 

yığına göre geri izlenebilirlik açısından daha az hesap gerektirmesidir. 

 

Şekil 2.4.5 Yığın veri yapısının bağlı liste gösterimi 



28 
 

3. DENEYSEL BULGULAR 

3.1 Deney Koşulları 

Yapılan bu çalışmanın uygulanabilir ve kullanılabilir olması için 

deneyde olabildiğince gerçekçi veriler kullanılmaya çalışılmıştır. Deneyde 

bellek sıkıntısı olmadığı varsayılmış ve program, çalışma süresine göre 

optimize edilmiştir. 

Okyanus aşırı uçuşlarda kıtadan ayrılırken belirlenmiş hava yollarına 

uyma kısıtı kalktığı ve bu da arama uzayını genişlettiği için okyanus üzerinde 

bir acil durum yaşanmış gibi programa veri sağlanacaktır. En kötü durum 

senaryosu için de en büyük okyanus olan pasifik okyanusu değerleri 

kullanılacaktır. 

89.812.800  (10692 x 8400)lik bir uçuş alanından(Pasifik 

Okyanusunun alanı 63.800.000 ’ dir.) 12NM’ lık hassaslıkla oluşturulan 

700 x 892 (m x n)’ lik bir grid yapısı Şekil 3.1.1’ deki gibidir.  

623507 623508 …     624399 
        
        
        
        
        
        

…        
…        
…        
892 893       
0 1 2 3 4 5 … 891 

Şekil 3.1.1 Uçuş Alanı 



29 
 

Hassaslığın 12 NM seçilmesinin sebebi, ortalama 200 knots ile giden 

bir uçağın bu mesafeyi 3,6 dakikada alabilmesi, enlem ve boylam olarak da 

0,2 derecelik olup, karar verme süresi bakımından kabul edilebilir olmasıdır. 

Böylelikle 12 NM hassaslığında gelen hava durumu tahminleriyle de uyum 

sağlamaktadır. En yüksek irtifa 10NM alınmış ve 1NM’ lık 10 eşit parçaya 

bölünmüştür. Hava tahminleri farklı yükselikler ve 3 saatlik zaman aralıkları 

için sağlanmıştır. Gridler arası mesafenin hesaplanması için kullanılan büyük 

çember uzaklığı, iki gridin merkez noktalarını kullanır. Bu hesaplama için 

gerekli olan Dünya’ nın yarıçapı 3443.8984NM alınmıştır. (McNamara, 2004; 

Moir 2006; Moir 2008)  

Yakıt akışı ve calibre edilmiş hava hızı performans polinomları, 

gerçek bir uçağın performans polinomlarının katsayıları uygun şekilde 

değiştirilerek oluşturulmuştur(Bkz. Çizelge 3.1.1). İniş için gerekli en az yakıt 

4000 galon, iniş için gerekli en az mesafe 4NM alınmıştır. Yapısalı 

etkilemeyecek en yüksek hız 300 knots, kabul edilebilir en yüksek rüzgar hızı 

da 50 knots alınmıştır. Hava radarı ile hava tahmini arasındaki kayma 1 

alınmış, yani örtüştüğü varsayılmıştır.  

Uçağın boş ağırlığı 70.000 lb, en fazla yakıt miktarı da 80.000 lb 

olarak alınmıştır. 

Çizelge 3.1.1 Hava Sıcaklığının Yakıt Akışına Etkisi 

 



30 
 

3.2 Deney Sonuçları 

 

Şekil 3.2.1 Simülatör 

Çizelge 3.2.1 Deney Sonuçları 

 

 

 Yakıt Sızıntısı En kısa sürede iniş 

624400(x10 katman) 
30,006 s 29,3965 s 

1350 MB 1350 MB 

112(x10 katman) 
3 ms 1 ms 

2,5 MB 2,5 MB 



31 
 

4. SONUÇ 

Görüldüğü gibi önceki çalışmalar hava koşullarının dezavantajlarından 

kaçınılarak yapılmıştır, bu çalışmada ise hava koşullarını avantaja dönüştürebilmesine 

amaçlanmıştır, bu şekilde yakıttan tasarruf sağlanması ve olası bir yakıt sızıntısı acil 

durumunda kabul edilebilir en yüksek hızla en az yakıt tüketecek şekilde rota 

planlaması yapılması amaçlanmıştır. 

Gerçeğe olabildiğince yakın veriler kullanılmış, çalışma zamanını kısaltmak 

için program optimize edilmiş, hesaplamalardaki detaylardan kaçınılmamış ve 

optimum rota, kabul edilebilir bir sürede bulunmuştur. 



32 
 

5. ÖNERİLER 

Hava durumu tahminlerinin girdi olarak sağlanabilmesinden ötürü, rotanın 

planlanması statik olarak yapılmıştır. Yani belirli periyotlarla hava durumu 

bilgilerinin bilinmesi bir sonraki adımın daha o gride gitmeden göz önüne 

alınabilmesini sağlamıştır. Eğer yapılacak çalışmada düğümlerin durumları(gidilebilir 

– gidilemez veya gitme maliyetleri) o düğüme gidildiğinde tahmin edilenden farklı 

olacağı varsayılıyorsa bu rota planlaması dinamiktir ve anlık verilere göre sürekli 

yapılmalıdır. Böyle durumlar için geliştirilmi ş artımsal A* algoritmalarından D* Lite 

(Dynamic A* Lite) (Koenig, Likhachev, 2002) algoritması kullanılabilir. Dinamik 

rota bulma çalışmaları çoğunlukla robotbilim ile uğraşan araştırmacılar tarafından 

kullanılmaktadır.



33 
 

EK AÇIKLAMALAR 

Bu kısımda yapılan çalışmanın gerçekçi olabilmesi için kullanılan verilerin ve 

deneysel bulgulardaki değerlerin açıklamaları, bunun dışında ismi verilmiş fakat 

açıklaması yapılmamış terimlerin ve cihazların açıklamaları yer almaktadır.   

 

Altimetre : Deniz seviyesine göre bir yerin yüksekliğini ölçebilen özel bir barometre. 

Hava Veri Bilgisayarı(ADC) : Gerçek hava hızını, irtifayı ve GPS’ i kontrol eder. 

Coğrafi Kuzey(True North): Kuzey kutbunda tam 90 derece kuzey noktasıdır. 

Dünyanın küre biçiminde olması dolayısıyla sürekli kuzeye gidilirse bir noktada daha 

fazla kuzeye gidilemeyecek, dünyanın en tepesi olarak adlandırılabilecek bir nokta 

bulunması gerekir.  

Pito Tüpü: Akışkanın hızını ölçmek için kullanılan basınç sensörü barındıran tüp. 



34 
 

KAYNAKLAR D İZİNİ 

Aeronautical Inc, 2006, Advanced Flight Management System, ARINC. 

Cary, E. and Spitzer, R., 2001, The Avionics Handbook, CRC Press LLC, Boca 

 Raton, 542p. 

Cook, M. B. and Smallman, H. S., 2008, When Plans Change: Task Analysis with 
Navy  UAV Operators, Display Requirements, and UAV Re-Routing Taxonomy, 
 Pacific Science & Engineering Group, California, 29p 
 
Cormen, T. H., Leiserson, C. E., Rivest R. L. and Stein C., 2000, Introduction to 

 Algorithms, McGraw-Hill, Columbus, 1003p. 

Ferguson, M., 1999, GPS Land-Navigation, Glassford Publication. 

Gill, J. A., 1995, Flight Control Computer Development through Application of Software 

  Safety Technology, Naval Air Warfare Center Aircraft Division. 

Hart, P. E., Nilsson, N. J. and Raphael, B., 1968, A Formal Basis for the Heuristic          

 Determination of Minimum Cost Paths, IEEE Transactions on Systems 

 Science and Cybernetics, California, 8p 

IA State University, 2010, Geodesics∗, IA State University, IA State, 7p 

 

Koenig, S. and Likhachev, M., 2002, D* Lite, American Association for Artificial 

 Intelligence, Atlanta, 8p 

 

Krozel, J., Lee C. and Mitchell J.S.B., 2006, Turn-Constrained RoutePlanning for 

AvoidingHazardous Weather, Air Traffic Control Quarterly, New York, 24p 

 

McNamara, J., 2004, GPS for Dummies, Wiley Publishing, Inc. 



35 
 

Meuleau, N., Plaunt, C. and Smith, D. E., 2008, Emergency Landing Planning for 

 Damaged Aircraft, NASA Ames Research Center, California, 8p 

 

Moir, I. and Seabridge, A. G., 2006, Military Avionics Systems, John Wiley & Sons Ltd. 

 

Moir, I. and Seabridge, A. G., 2008, Aircraft Systems, John Wiley & Sons Ltd. 

Nabiyev V.V., 2005, Yapay Zeka Problemler-Yöntemler-Algoritmalar, Seçkin Yayıncılık. 

Nabiyev V.V., 2007, Algoritmalar Teoriden Uygulamalara, Seçkin Yayıncılık. 

Russell, S. and Nowig, P., 2003, Artificial Intelligence: A Modern Approach, Prentice 

Hall. 

Santoso, L. W., Setiawan, A. and Prajog, A. K., 2010, Performance Analysis of 

Dijkstra, A* and Ant Algorithm for Finding Optimal Path, Petra Christian 

University, Surabaya. 8p 

Stefanakis, E. and Kavouras, M., 2002, Navigating In Space Under Constraints, 

International Journal of Pure and Applied Mathematics, Athens, 22p 

Stengel, R. F., 1993, Toward Intelligent Flight Control, IEEE Transactions on 

Systems, Man, and Cybernetics. 23(6). 



36 
 

KAYNAKLAR D İZİNİ (devam) 

Airbus, Flight Management Systems on Commercial Aircraft - Past, Present and 

Future (Airbus), 

http://www.airbus.com/store/mm_repository/pdf/att00012529/media_object_file_fast

_42_p2_p7.pdf (Erişim tarihi: 02 Haziran 2011) 

Lester, P.,  2005 , A* Pathfinding for Beginners, Policy Almanac, 
http://www.policyalmanac.org/games/aStarTutorial.htm (Erişim Tarihi: 02 Haziran 
2011) 
 

UTED, “Flight Management System”, 

http://www.uted.org/dergi/2009/mart/KemalK_ZaferU/fms.htm (Erişim tarihi: 8 

Ocak 2011) 

Wikipedia,  “Flight Plan”, http://en.wikipedia.org/wiki/Flight_plan (Erişim tarihi: 8 

Ocak 2011)  

Wikipedia,  “Flight Management System”, 

http://en.wikipedia.org/wiki/Flight_management_system (Erişim tarihi: 8 Ocak 2011) 

Wikipedia,  “Aircraft flight control system” 

http://en.wikipedia.org/wiki/Aircraft_flight_control_system (Erişim tarihi: 8 Ocak 

2011) 

 

 

 



37 
 

ÖZGEÇM İŞ 

BAVUNOĞLU, Harun, Mustafa oğlu, 14/11/1984 tarihinde İzmir’ de doğdu. 
Dokuz Eylül İlköğretim Okulu’ nda okudu. 1995 yılında Bornova Anadolu Lisesi 
Almanca bölümüne başladı ve 2002 yılında bu liseyi bitirdi. Aynı yıl Ege 
Üniversitesi Matematik Bölümüne başladı. 

3. sınıfta Bilgisayar Bilimleri opsiyonunu seçti ve  2007 yılında mezun oldu. 
Aynı yıl aynı bölümde yüksek lisansına başladı. 2008 – 2009 arasında Almanya’ da 
savunma sanayinde staj yapıp, 2009 yılında TUSAŞ Havacılıkta çalışmaya başladı.





 
 

EKLER 

EK 1 

Kaynak Kod 

/**************************** 
 * Ege Üniversitesi  * 
 **************************** 
 * Harun Bavunoglu * 
 *    * 
 * Yüksek Lisans Tezi * 
 * 03.06.2011  * 
 *    * 
 * entryPoint.c  * 
 ****************************/ 
#include "grid.h" 
#include "Configuration.h" 
#include <stdlib.h> 
 
extern void getNearestArpt(UInt32, GridCell**, Configuration*, UInt32*); 
extern UInt32 findShortestPath(GridCell*, GridCell*, GridCell**, 
Configuration*); 
 
void __declspec( dllexport ) entryPointEmergency(GridCell* currentGrid, 
Configuration* config, GridCell** grids, UInt32* nearestArpts) 
{  
 // get n(comes from config) nearest airports grids 
 // if you have FMS skip this step 
 getNearestArpt(currentGrid->gridNumber, grids, config, nearestArpts); 
 
 findShortestPath(currentGrid, &grids[0][nearestArpts[0]], grids, 
config); 
} 

 
/**************************** 
 * Ege Üniversitesi  * 
 **************************** 
 * Harun Bavunoglu * 
 *    * 
 * Yüksek Lisans Tezi * 
 * 03.06.2011  * 
 *    * 
 * grids.c  * 
 ****************************/ 
#include <stdlib.h> 
#include "grid.h" 
#include "Configuration.h" 
 
 



 
 

// Spiral order traversal algorithm O(n) 
void getNearestArpt(UInt32 currentGrid, GridCell** grids, Configuration* 
config, UInt32* nearestArpts) 
{  
 UInt32  diff,i; 
 UInt32  tempGrid; 
 UInt8  nearestIndex = 0, result = 1; 
 UInt16  rowC; 
 
 
 rowC = config->rowWidth; 
 tempGrid = currentGrid; 
 
 
 for(diff = 1; ; diff += 2) 
 { 
  // just one step up to start new spiral 
  if(nearestIndex == config->nearestLimit)return; 
  tempGrid += rowC; 
  if(tempGrid > rowC * config->heightRes)continue; 
  if(grids[0][tempGrid].hasAirport == 1) 
  { 
   nearestArpts[nearestIndex] = tempGrid; 
   nearestIndex++; 
  } 
 
  // expand to the right 
  for(i = 1; i <= diff ; i++) 
  { 
   if(nearestIndex == config->nearestLimit)return; 
   tempGrid++; 
   if((tempGrid % rowC == 0) || (tempGrid > config-
>flightArea))continue; 
   if(grids[0][tempGrid].hasAirport == 1) 
   { 
    nearestArpts[nearestIndex] = tempGrid; 
    nearestIndex++; 
   } 
  } 
 
  //expand to the down 
  for(i = 1; i <= diff + 1 ; i++) 
  { 
   if(nearestIndex == config->nearestLimit)return; 
   tempGrid -= rowC; 
   if((tempGrid > config->flightArea)||(tempGrid % rowC == 
0))continue; 
   if(grids[0][tempGrid].hasAirport == 1) 
   { 
    nearestArpts[nearestIndex] = tempGrid; 
    nearestIndex++; 
   } 
  } 
 
  //expand to the left 



 
 

  for(i = 1; i <= diff + 1 ; i++) 
  { 
   if(nearestIndex == config->nearestLimit)return; 
   tempGrid--; 
   if((tempGrid > config->flightArea)||((tempGrid+1) % rowC 
== 0))continue; 
   if(grids[0][tempGrid].hasAirport == 1) 
   { 
    nearestArpts[nearestIndex] = tempGrid; 
    nearestIndex++; 
   } 
  } 
 
  // expand to the up 
  for(i = 1; i <= diff + 1 ; i++) 
  { 
   if(nearestIndex == config->nearestLimit)return; 
   tempGrid += rowC; 
   if((tempGrid > config->flightArea)||((tempGrid+1) % rowC 
== 0))continue; 
   if(grids[0][tempGrid].hasAirport == 1) 
   { 
    nearestArpts[nearestIndex] = tempGrid; 
    nearestIndex++; 
   } 
  } 
 } 
} 
 
 
UInt8 getNeighbours(GridCell* currentGrid, GridCell* startGrid, GridCell** 
grids, GridCell* neighbourArray, Configuration* config) 
{ 
 UInt32 rowC; 
 UInt32 i, j, l, neighbourIndex = 0; 
 Int32 verTrav[3], horTrav[3]; 
 
 rowC = config->rowWidth; 
  
 verTrav[0] = -rowC; 
 verTrav[1] =  0; 
 verTrav[2] =  rowC; 
 
 horTrav[0] = -1; 
 horTrav[1] =  0; 
 horTrav[2] =  1; 
 
 
 for(l = currentGrid->layer - 1; l<=currentGrid->layer + 1; l++) 
 { 
  for(i = 0; i < 3; i++) 
  { 
   for(j = 0; j < 3; j++) 
   { 
    if( ((i==1) && (j==1))|| 



 
 

     ((j==2) && ((currentGrid->gridNumber + 
horTrav[j]) % rowC == 0))|| 
     ((j==0) && (currentGrid->gridNumber % rowC 
== 0))|| 
     (currentGrid->gridNumber + verTrav[i] + 
horTrav[j] > config->flightArea)|| 
     ((currentGrid->gridNumber + verTrav[i] + 
horTrav[j] == startGrid->gridNumber) && (l == startGrid->layer))|| 
     (l >= config->layerSize)) 
      continue; 
     
    if(grids[l][currentGrid->gridNumber + verTrav[i] + 
horTrav[j]].isWalkable == 1) 
    { 
     neighbourArray[neighbourIndex] = 
grids[l][currentGrid->gridNumber + verTrav[i] + horTrav[j]]; 
      
     if(neighbourArray[neighbourIndex].parent == 
0x0) 
     
 grids[neighbourArray[neighbourIndex].layer][neighbourArray[neighbourInde
x].gridNumber].parent = &grids[currentGrid->layer][currentGrid->gridNumber]; 
      
     neighbourIndex++; 
    } 
   } 
  } 
 } 
 
 return neighbourIndex; 
} 
 
/**************************** 
 * Ege Üniversitesi  * 
 **************************** 
 * Harun Bavunoglu * 
 *    * 
 * Yüksek Lisans Tezi * 
 * 03.06.2011  * 
 *    * 
 * aStar.c  * 
 ****************************/ 
#include "grid.h" 
#include "Configuration.h" 
#include <stdlib.h> 
#include <string.h> 
 
extern UInt8  getNeighbours(GridCell*, GridCell*, GridCell**, GridCell*, 
Configuration*); 
extern Float32  g(GridCell*, GridCell*, GridCell*, GridCell**, 
Configuration*); 
extern Float32  h(GridCell*, GridCell*, GridCell**); 
extern void   binaryHeapOpenAdd(GridCell); 
extern GridCell  binaryHeapOpenGetLowest(); 
extern void   binaryHeapOpenInit(UInt32); 



 
 

extern void   binaryHeapOpenDelete(GridCell); 
extern UInt8  binaryHeapOpenIsEmpty(); 
extern void   pushStack(GridCell*); 
 
 
void backtraceAndSmoothPath(GridCell* goalGrid) 
{ 
 //use stack to get path ordered 
 GridCell* temp; 
  
 temp = goalGrid; 
 
 do 
 { 
  pushStack(temp); 
  temp = temp->parent; 
 }while(temp != 0x0); 
} 
 
 
UInt32 findShortestPath(GridCell* currentGrid, GridCell* goalGrid, GridCell** 
grids, Configuration* config) 
{ 
 
 /*******************************************************/ 
 GridCell startGrid; 
 UInt8  i, neighbourCount=0; 
 GridCell* neighbourArray; 
 
 startGrid = *currentGrid; 
 
 neighbourArray = (GridCell*)calloc(NEIGHBOUR_COUNT, sizeof(GridCell)); 
 
 // Do some quick checks 
 /************************/ 
 if(currentGrid == goalGrid) 
  return 0; 
  
 if(goalGrid->isWalkable == 0) 
  return -1; 
 
 /********************************************************/ 
  
 binaryHeapOpenInit(config->flightArea * config->layerSize); 
 // InitClosedList(); 
 
 //1) Add the starting square (or node) to the open list. 
 binaryHeapOpenAdd(*currentGrid); 
 
 //2) Repeat the following: 
 do 
 { 
  //a) Look for the lowest F cost square on the open list. We refer 
to this as the current square. 
  *currentGrid = binaryHeapOpenGetLowest(); 



 
 

 
  //b) Switch it to the closed list. 
  //arrayClosedAdd(*currentGrid); 
  binaryHeapOpenDelete(*currentGrid); 
      
  //c) For each of the 8 squares adjacent to this current square … 
  memset(neighbourArray, 0, NEIGHBOUR_COUNT * sizeof(GridCell)); 
  neighbourCount = getNeighbours(currentGrid, &startGrid, grids, 
neighbourArray, config); 
  for(i = 0; i < neighbourCount; i++) 
  { 
   //If it is not walkable or if it is on the closed list, 
ignore it. Otherwise do the following. 
   //(done by getting neighbours) 
    
   //If it isn’t on the open list, add it to the open list. 
Make the current square the parent of this square. Record the F, G, and H costs 
of the square. 
   if(neighbourArray[i].f == 0) 
   {     
   
 grids[neighbourArray[i].layer][neighbourArray[i].gridNumber].g = 
g(currentGrid, &neighbourArray[i], goalGrid, grids, config); 
   
 grids[neighbourArray[i].layer][neighbourArray[i].gridNumber].h = 
h(&neighbourArray[i], goalGrid, grids); 
   
 grids[neighbourArray[i].layer][neighbourArray[i].gridNumber].f = G_COEFF 
* grids[neighbourArray[i].layer][neighbourArray[i].gridNumber].g +  
           
          H_COEFF * 
grids[neighbourArray[i].layer][neighbourArray[i].gridNumber].h; 
   
 binaryHeapOpenAdd(grids[neighbourArray[i].layer][neighbourArray[i].gridN
umber]); 
   } 
   /*If it is on the open list already, check to see if this 
path to that square is better, using G cost as the measure. 
   A lower G cost means that this is a better path. If so, 
change the parent of the square to the current square, and recalculate the G 
and F scores of the square.  
   If you are keeping your open list sorted by F score, you 
may need to resort the list to account for the change.*/ 
   else 
   { 
    if(grids[currentGrid->layer][currentGrid-
>gridNumber].g < 
grids[neighbourArray[i].layer][neighbourArray[i].gridNumber].g) 
    { 
     *currentGrid = neighbourArray[i]; 
    } 
   } 
   } 
 } 
 //d) Stop when you: 



 
 

 // Add the target square to the closed list, in which case the path 
has been found (see note below), or 
 // Fail to find the target square, and the open list is empty. In 
this case, there is no path. 
 while(!((currentGrid->layer == goalGrid->layer)&&(currentGrid-
>gridNumber == goalGrid->gridNumber))&&(!binaryHeapOpenIsEmpty())); 
  
 backtraceAndSmoothPath(goalGrid); 
  
 /*********************************************************/ 
} 
 
/**************************** 
 * Ege Üniversitesi  * 
 **************************** 
 * Harun Bavunoglu * 
 *    * 
 * Yüksek Lisans Tezi * 
 * 03.06.2011  * 
 *    * 
 * costCalcs.c  * 
 ****************************/ 
#include "Configuration.h" 
#include "grid.h" 
#include <math.h> 
 
 
const Float64 rEarth = 3443.8984; 
const Float64 PI = 3.1415; 
 
Configuration* config; 
Float32   totalPassedTime; 
Float32   tempDevTAS, tempDevFF; 
Float32   weightDevTAS, weightDevFF; 
Float32   altDevTAS, altDevFF; 
 
 
Float32 distanceFlatPlane(Point* source, Point* dest) 
{ 
 Float32  deltaXSquare, deltaYSquare; 
 UInt32  deltaZSquare; 
 
 deltaXSquare = (dest->lat - source->lat) * (dest->lat - source->lat); 
 deltaYSquare = (dest->lon - source->lon) * (dest->lon - source->lon); 
 deltaZSquare = (dest->alt - source->alt) * (dest->alt - source->alt); 
  
 return sqrt(deltaXSquare + deltaYSquare + deltaZSquare); 
} 
 
Float32 toRadian(Float32 degree) 
{ 
 return degree * (PI / 180); 
} 
 
Float32 toDegree(Float32 radian) 



 
 

{ 
 return radian * (180 / PI); 
} 
 
Float32 distanceGreatCircle(Point* source, Point* dest) 
{ 
 Float32 temp; 
  
 temp = acos(sin(source->lat) * sin(dest->lat) + cos(source->lat) * 
cos(dest->lat) * cos(dest->lon - source->lon));  
 return rEarth * toRadian(temp); 
} 
 
 
Float64 calculateTASTempDev(Int8 oat) 
{ 
 return config->tempDevPolynomTAS[0] * pow((Float32)oat, 4) + 
   config->tempDevPolynomTAS[1] * pow((Float32)oat, 3) + 
   config->tempDevPolynomTAS[2] * pow((Float32)oat, 2) + 
   config->tempDevPolynomTAS[3] * oat + 
   config->tempDevPolynomTAS[4]; 
} 
 
Float64 calculateTASWeightDev(UInt32 gW) 
{ 
 return config->weightDevPolynomTAS[0] * pow((Float32)gW, 4) + 
   config->weightDevPolynomTAS[1] * pow((Float32)gW, 3) + 
   config->weightDevPolynomTAS[2] * pow((Float32)gW, 2) + 
   config->weightDevPolynomTAS[3] * gW + 
   config->weightDevPolynomTAS[4]; 
} 
 
Float64 calculateTASAltDev(Int8 alt) 
{ 
 return config->altDevPolynomTAS[0] * pow((Float32)alt, 4) + 
   config->altDevPolynomTAS[1] * pow((Float32)alt, 3) + 
   config->altDevPolynomTAS[2] * pow((Float32)alt, 2) + 
   config->altDevPolynomTAS[3] * alt + 
   config->altDevPolynomTAS[4]; 
} 
 
Float64 calculateFFTempDev(Int8 oat) 
{ 
 return config->tempDevPolynomFF[0] * pow((Float32)oat, 4) + 
   config->tempDevPolynomFF[1] * pow((Float32)oat, 3) + 
   config->tempDevPolynomFF[2] * pow((Float32)oat, 2) + 
   config->tempDevPolynomFF[3] * oat + 
   config->tempDevPolynomFF[4]; 
} 
 
Float64 calculateFFWeightDev(UInt32 gW) 
{ 
 return config->weightDevPolynomFF[0] * pow((Float32)gW, 4) + 
   config->weightDevPolynomFF[1] * pow((Float32)gW, 3) + 
   config->weightDevPolynomFF[2] * pow((Float32)gW, 2) + 



 
 

   config->weightDevPolynomFF[3] * gW + 
   config->weightDevPolynomFF[4]; 
} 
 
Float64 calculateFFAltDev(Int8 alt) 
{ 
 return config->altDevPolynomFF[0] * pow((Float32)alt, 4) + 
   config->altDevPolynomFF[1] * pow((Float32)alt, 3) + 
   config->altDevPolynomFF[2] * pow((Float32)alt, 2) + 
   config->altDevPolynomFF[3] * alt + 
   config->altDevPolynomFF[4]; 
} 
 
Int16 getCourse(GridCell* source, GridCell* dest) 
{ 
 if(source->gridNumber == dest->gridNumber - config->rowWidth) 
  return 0; 
 else if(source->gridNumber == dest->gridNumber - config->rowWidth - 1) 
  return 45; 
 else if(source->gridNumber == dest->gridNumber - 1) 
  return 90; 
 else if(source->gridNumber == dest->gridNumber + config->rowWidth - 1) 
  return 135; 
 else if(source->gridNumber == dest->gridNumber + config->rowWidth) 
  return 180; 
 else if(source->gridNumber == dest->gridNumber + config->rowWidth + 1) 
  return 225; 
 else if(source->gridNumber == dest->gridNumber + 1) 
  return 270; 
 else if(source->gridNumber == dest->gridNumber - config->rowWidth + 1) 
  return 315; 
} 
 
UInt8 getPeriod(GridCell* current, GridCell* dest) 
{ 
#ifdef _DEBUG 
 return 0; 
#endif 
 return (UInt8)((config->currentTime + totalPassedTime) / (WEATHER_PERIOD 
* 60)); 
} 
 
UInt16 getTAS(GridCell* current, Int8 oat) 
{ 
 tempDevTAS  = calculateTASTempDev(oat) / 10.0; 
 weightDevTAS = calculateTASWeightDev(current->fuelOnBoard + config-
>weightWithoutFuel) / 1e15; 
 altDevTAS  = calculateTASAltDev(current->centerPoint.alt) / 
10.0; 
 
 return current->calibratedAirSpeed + (UInt16)((tempDevTAS + weightDevTAS 
+ altDevTAS)/3); 
} 
 
UInt16 calculateGS(GridCell* current, GridCell* dest) 



 
 

{ 
 UInt16 tas1, tas2; 
 UInt8 ws1, ws2; 
 Int16 wd1, wd2; 
 Float32 gs1, gs2, effWs1, effWs2; 
 
 if( (dest->weather[getPeriod(current, dest)].temp > config-
>tempUpperLimit)|| 
  (dest->weather[getPeriod(current, dest)].temp < config-
>tempLowerLimit)|| 
  (dest->weather[getPeriod(current, dest)].windSpeed > config-
>maxAccSpeed)) 
   return VERY_BIG; 
 
 tas1 = getTAS(current, current->weather[getPeriod(current, dest)].temp); 
 ws1  = current->weather[getPeriod(current, dest)].windSpeed * config-
>driftCoeff; 
 wd1  = current->weather[getPeriod(current, dest)].windDir * config-
>driftCoeff; 
 effWs1 = ws1 * cos(toRadian(wd1 - getCourse(current, dest))); 
 gs1 = tas1 + effWs1; 
 
 tas2 = getTAS(dest, dest->weather[getPeriod(current, dest)].temp); 
 tas2+= tas1; 
 ws2  = dest->weather[getPeriod(current, dest)].windSpeed * config-
>driftCoeff; 
 wd2  = dest->weather[getPeriod(current, dest)].windDir * config-
>driftCoeff; 
 effWs2 = ws2 * cos(toRadian(wd2 - getCourse(current, dest))); 
 gs2 = tas2 + effWs2; 
 
 if(config->optimizationCharacteristic == 1) 
 { 
  // max GS 
  if((gs1 + gs2)/2 < config->maxAccSpeed) 
  { 
   // speed up CAS 
   dest->calibratedAirSpeed = tas2; 
  } 
  else if((gs1 + gs2)/2 > config->maxAccSpeed) 
  { 
   // slow down CAS 
   dest->calibratedAirSpeed = tas2; 
  } 
 } 
 else if(config->optimizationCharacteristic == 2) 
 { 
  // min FF -> min CAS 
  if(  tas1 + tas2 - tempDevTAS - weightDevTAS - altDevTAS 
>  
    calculateTASWeightDev(current->fuelOnBoard + 
config->weightWithoutFuel)) 
  { 
   // slow down CAS 
   dest->calibratedAirSpeed = current->calibratedAirSpeed -  



 
 

          (tas1 + 
tas2 - tempDevTAS - weightDevTAS - altDevTAS -  
         
 calculateTASWeightDev(current->fuelOnBoard + config-
>weightWithoutFuel)); 
  } 
  else if( tas1 + tas2 - tempDevTAS - weightDevTAS - altDevTAS 
<  
     calculateTASWeightDev(current->fuelOnBoard + 
config->weightWithoutFuel)) 
  { 
   // speed up CAS 
   dest->calibratedAirSpeed = current->calibratedAirSpeed +  
         
 (calculateTASWeightDev(current->fuelOnBoard + config->weightWithoutFuel) 
-  
          (tas1 + 
tas2 - tempDevTAS - weightDevTAS - altDevTAS)); 
  } 
 } 
 
 dest->currentFF = dest->calibratedAirSpeed * FF_CAS_COEFF; 
  
 return (gs1 + gs2)/2; 
} 
 
Float32 calculateFuelFlow(GridCell* current, GridCell* dest) 
{ 
 tempDevFF = calculateFFTempDev(dest->weather[getPeriod(current, 
dest)].temp); 
 weightDevFF = calculateFFWeightDev(current->fuelOnBoard + config-
>weightWithoutFuel); 
 altDevFF = calculateFFAltDev(dest->centerPoint.alt); 
 
 return current->currentFF + tempDevTAS + weightDevTAS + altDevTAS; 
} 
 
Float32 calculatePassedTime(GridCell* current, GridCell* dest) 
{ 
 Float32 dist; 
 UInt16 gs; 
 
 
 dist = distanceGreatCircle(&current->centerPoint, &dest->centerPoint); 
 
 if(config->optimizationCharacteristic == 1) 
 { 
  gs = config->maxAccSpeed; 
 } 
 else if(config->optimizationCharacteristic == 2) 
 { 
  gs = calculateTASWeightDev(current->fuelOnBoard + config-
>weightWithoutFuel); 
 } 
 



 
 

 return (dist / gs) * 60; 
} 
 
UInt16 calculateMinRequiredFuel(GridCell* dest, GridCell* goal) 
{ 
 return calculatePassedTime(dest, goal) * calculateFuelFlow(dest, goal); 
} 
 
UInt8 calculateRemainingFuel(GridCell* dest, GridCell* goal) 
{ 
 if(calculateMinRequiredFuel(dest, goal)) 
  return 1; 
 else 
  return 0; 
} 
 
Float32 g(GridCell* currentGrid, GridCell* destGrid, GridCell* goalGrid, 
GridCell** grids, Configuration* conf) 
{ 
 Float32 dist = 0.0; 
 Float32 ff  = 0.0; 
 Float32 a  = 0.0; 
 Float32 b  = 0.0; 
 Float32 time = 0.0; 
 UInt16 gs  = 0; 
 
 config = conf; 
 
 dist = distanceGreatCircle(&currentGrid->centerPoint, &destGrid-
>centerPoint); 
  
 gs = calculateGS(currentGrid, destGrid); 
  
 if(gs == VERY_BIG) 
  return VERY_BIG; 
  
 time = dist / gs; 
  
 if( (destGrid == goalGrid) &&  
  (calculateRemainingFuel(currentGrid, destGrid) < config-
>minApprFuel)) 
  return VERY_BIG; 
 
 if(config->optimizationCharacteristic == 1) 
 {   
  if(calculateRemainingFuel(currentGrid, destGrid)) 
   return currentGrid->g + time; 
  else 
   return VERY_BIG; 
 } 
 else if(config->optimizationCharacteristic == 2) 
 { 
  if(calculateRemainingFuel(currentGrid, destGrid)) 
   return currentGrid->g + ff * time; 
  else 



 
 

   return VERY_BIG; 
 } 
 else 
 { 
  return dist; 
 } 
} 
 
Float32 h(GridCell* destGrid, GridCell* goalGrid, GridCell** grids) 
{ 
 return distanceGreatCircle(&destGrid->centerPoint, &goalGrid-
>centerPoint); 
} 
 
/**************************** 
 * Ege Üniversitesi  * 
 **************************** 
 * Harun Bavunoglu * 
 *    * 
 * Yüksek Lisans Tezi * 
 * 03.06.2011  * 
 *    * 
 * binHeap.c  * 
 ****************************/ 
#include "grid.h" 
#include <stdlib.h> 
 
 
GridCell* heap; 
UInt32  heapSize, arraySize; 
 
 
UInt32 getLeftChildIndex(UInt32 nodeIndex)  
{ 
    return 2 * nodeIndex + 1; 
} 
  
UInt32 getRightChildIndex(UInt32 nodeIndex) 
{ 
    return 2 * nodeIndex + 2; 
} 
  
UInt32 getParentIndex(UInt32 nodeIndex) 
{ 
    return (nodeIndex - 1) / 2; 
} 
 
void binaryHeapOpenInit(UInt32 size) 
{ 
 heap = (GridCell*)malloc(size * sizeof(GridCell)); 
    heapSize = 0; 
    arraySize = size; 
} 
 
void binaryHeapOpenShiftUp(UInt32 nodeIndex) 



 
 

{ 
 UInt32  parentIndex; 
 GridCell tmp; 
  
 if (nodeIndex != 0) 
 { 
  parentIndex = getParentIndex(nodeIndex); 
  if (heap[parentIndex].f > heap[nodeIndex].f) 
  { 
    tmp = heap[parentIndex]; 
    heap[parentIndex] = heap[nodeIndex]; 
    heap[nodeIndex] = tmp; 
    binaryHeapOpenShiftUp(parentIndex); 
  } 
 } 
} 
  
void binaryHeapOpenAdd(GridCell a) 
{ 
 if (heapSize == arraySize) 
  return; 
 else 
 { 
  heapSize++; 
  heap[heapSize - 1] = a; 
  binaryHeapOpenShiftUp(heapSize - 1); 
 } 
} 
 
void binaryHeapOpenShiftDown(UInt32 nodeIndex)  
{ 
 UInt32 leftChildIndex, rightChildIndex, minIndex; 
 GridCell tmp; 
       
    
 leftChildIndex = getLeftChildIndex(nodeIndex); 
       
 rightChildIndex = getRightChildIndex(nodeIndex); 
       
 if (rightChildIndex >= heapSize) 
 { 
  if (leftChildIndex >= heapSize) 
   return; 
  else 
   minIndex = leftChildIndex; 
 } 
 else  
 { 
  if (heap[leftChildIndex].f < heap[rightChildIndex].f) 
   minIndex = leftChildIndex; 
  else 
   minIndex = rightChildIndex; 
 } 
 if (heap[nodeIndex].f > heap[minIndex].f)  
 { 



 
 

  tmp = heap[minIndex]; 
  heap[minIndex] = heap[nodeIndex]; 
  heap[nodeIndex] = tmp; 
  binaryHeapOpenShiftDown(minIndex); 
 } 
} 
 
UInt8 binaryHeapOpenIsEmpty() 
{ 
    return (heapSize == 0); 
} 
 
void binaryHeapOpenDelete(GridCell* d)  
{ 
 if (binaryHeapOpenIsEmpty()) 
  return; 
 else  
 { 
  heap[0] = heap[heapSize - 1]; 
  heapSize--; 
  if (heapSize > 0) 
   binaryHeapOpenShiftDown(0); 
 } 
} 
 
GridCell* binaryHeapOpenGetLowest()  
{ 
 if (binaryHeapOpenIsEmpty()) 
  return 0x0; 
 else 
  return &heap[0]; 
} 
  
void binaryHeapOpenFree() 
{ 
    free(heap); 
} 
 
/**************************** 
 * Ege Üniversitesi  * 
 **************************** 
 * Harun Bavunoglu * 
 *    * 
 * Yüksek Lisans Tezi * 
 * 03.06.2011  * 
 *    * 
 * stack.c  * 
 ****************************/ 
#include "grid.h" 
#include <stdlib.h> 
 
 
typedef struct node 
{ 
 GridCell* cell; 



 
 

 struct node *link; 
}stackElement; 
 
stackElement* stackTop; 
 
void initStack() 
{ 
 stackTop = 0x0; 
} 
 
void pushStack(GridCell* g) 
{ 
 stackElement *x; 
 x=(stackElement*)malloc(sizeof(stackElement)); 
 x->cell = g; 
 x->link = stackTop; 
 stackTop = x; 
} 
 
GridCell* popStack() 
{ 
 GridCell* a; 
 if(stackTop==0x0) 
 { 
  return 0x0; 
 } 
 else 
 { 
  a=stackTop->cell; 
  free(stackTop); 
  stackTop=stackTop->link; 
  return (a); 
 } 
} 
 

(Gill, 1995) 

 


