E. U. FEN BILIMLERI ENSTITUSU

s EGE UNiIVERSITESI &

YUKSEK L ISANS TEZI

AKILLI UCU S YONETIM SISTEMI
TASARIMI UZER INE

Harun BAVUNO GLU

Tez Dansmani : Prof. Dr. Urfat NURIYEV

Matematik Anabilim Dali

Bilim Dali Kodu : 619.03.03
Sunus Tarihi : 10.06.2011

Bornova-iZMiR
2011

EGE UNiVERSITESI FEN BIiLIMLER i ENSTITUSU

(YUKSEK L ISANS TEZ)

AKILLI UCU S YONETIM SISTEMI TASARIMI
UZERINE

Harun BAVUNO GLU

Tez Dansmani : Prof. Dr. Urfat NURIYEV

Matematik Anabilim Dall

Bilim Dali Kodu : 619.03.03
Sunus Tarihi : 10.06.2011

Bornova-iZMiR
2011

Sayin Harun BAVUN@LU tarafindan YUKSEK ESANS TEZ tezi olarak
sunulan “Akilll Ugs Yonetim Sistemi Tasarimi Uzerine” ¢l bu calsma E.U.
Lisansusti Eitim ve Ogsretim Yonetmelgi ile E.U. Fen Bilimleri Enstitusi gtim
ve Qpretim Yonergesi'nin ilgili hilkiimleri uyarinca tarafizdan dgerlendirilerek
savunmaya dger bulunmyg ve 10.06.2011 tarihinde yapilan tez savunma Smoiavi
aday oybirlgi/oycoklugu ile baarili bulunmytur.

Jiri Uyeleri: imza

Juri Baskani ettt e e e e eeeeeaeeeeeeeene e aaenraan
Raportor Uye e mme s e

Uye e srn i ens eereeeeeae e ae e aes

\Y

OZET

AKILLI UCU S YONETIM SISTEMI TASARIMI UZER iNE

BAVUNOGLU, Harun

Yuksek Lisans Tezi, Matematik Bolum
Tez Dangmani: Prof. Dr. Urfat NURYEV
Haziran 2011, 37 sayfa

Bu tezde, okyanussai ucan ucaklar icin iki farkh tdr acil durum ama

gercekci ve akilli acil igirota planlamasi yapan sistemgiuulmasi amaclanrtir.

Bu tdrlerden ilki havalimanina en kisa zamanda gerektiren durumlar ki
bunlar bir yolcunun kalp krizi gecirmesi, yga yapisalindaki herhangi bir hasar,
kabin basincinin aniden ghtesi, yangin ¢ikmasi vb. gibi durumlar olabilir bu
durumlarda amag, ugm yere gore hizini ugan limitlerine gbére en Ust seviyede
tutup acil ing noktasina en kisa sirede varmasiglasaaktir. ikinci tir acil durum
olarak ucg@in motorlarinda yakit sizintisi olmasi ele aligtmive bu durumlarda
amag, zaman kisiti olmadan g@ga en az yakiti harcayarak yani rtzgarin hizini

olabildigince etkin kullanarak acil iginoktasina varmasini @amaktir.

Rotanin bulmasinda sezgisel arama yontemi olan, ilBizgA*) arama
algoritmasi kullanilmgtir. Rotanin bulunma siresinin kabul edilebilir aln icin
kullanilan veri yapilari ve algoritmalar optimizeilenistir.

Gerceage olabildgince yakin veriler kullaniing; hesaplamalardaki detaylardan

kacinilmamg ve optimum rota, kabul edilebilir bir stirede butwstur.

Anahtar sdzcukler: Ugus rota planlamasi, acil durum rotasi, A* algoritmassi
yildiz algoritmasi

Vi

Vii
ABSTRACT

ON INTELLIGENT FLIGHT MANAGEMENT SYSTEM DESIGN

BAVUNOGLU, Harun

MSc in Mathematics
Supervisor: Prof. Dr. Urfat NUREV
June 2011, 37 pages

In this thesis, its aimed to build a system whickkes realistic and smart route
planning for emergency landing for transoceanicrafts in two kind of emergency
situation.

One of that kind of emergency situation is that $haation which is required
soonest landing. Examples of this kind of stiuatioay be a passenger having heart
attack, any damage of structure of aircraft, sudalah rapid depressurization of the
aircraft cabin, fire on board the aircraft etc. Tdm is keeping the ground speed on
upper limit of aircraft and guaranteeing the lagdsoonest as possible in this kind of
situation. The other kind of emergency situatiorthat the situation which is the
aircraft engine has fuel leakage. The aim is kegpwe fuel flow minimum by using
the advantages of wind without any time constraints

A star(A*) algorithm which is heuristic search medhis used by route finding.
Used data structures and algorithms are optimizeagnéke the time of finding
emergency route acceptable.

As near as possible to the reality datas were udietl,not avoid detailed
calculations and optimum route was found in acddptamount of time.

Keywords: Flight planning, Emergency landing, A* algorithnA star
algorithm

viii

TESEKKUR

Bu c¢alsma siresince, 6zellikle kiymetli ggtérinden yararlangam ve tezin
bicimlenmesinde deerli katkilarini aldgim dangman hocam sayin Prof. Dr. Urfat
Nuriyev'e, Guray Yildiz ve Elif Saygl’ ya, gereklerilerin sglanmasinda kolaylik
gosteren TUSA-Turk Havacilik ve Uzay Sanayii 8. ne ve calanlarina
tesekkirt bir borg bilirim.

Xi

ICINDEKILER

Sayfa
(@ Y74 = ST v
ABSTRACT e e e Vil
TESEKKUR ..ottt ettt ettt e et ete e ensenneere e IX
SEKILLER DIZINI ..ocviiiiiiciie ettt Xii
CIZELGELER DIZINIociviiiiiicciic ettt Xiii
SIMGELER VE KISALTMALAR DIZINIoooiiiiiiiiiieccce e Xiv
L GIRIS ottt ettt ettt ettt n ettt 1
2. ASTEMIN AKISI .ottt ettt e 5
2.1 Mevcut Grid Numarasinin BUlUNMASI ..o eeoeeiieieeeeniiieeeeee e 5
2.2 Hedef Grdilerin AranmMas............ocuueeeeec s 6
ARG TN 1 o [0Nl I 2 (o o 1 .4 = T 9
P2 T N - (o o 11 .= T P 10
2.3.2 Sezgisel fonksiyonun muteberlik iSPatl . .vvveeeeeereiiiiiiiiiiiiieeeeeeeeeee, 15
2.3.3 Maliyet NESAPIAMASI...........uuuueenmmmmmn e e e eeeeeeetrr e e e e e e e e e e e eeeeeees 16

P @ o] 1] 0 F= 1< 1 o PP 32

Xii

ICINDEKILER (devam)

Sayfa
3. DENEYSEL BULGULAR ... e 8.2
3.1 DEeNeY KQUIIAITccoeeiieeeeee e e e e e e 28.
3.2 DENEY SONUGIAIT ...vveiiiiii i e e nnaaranees 30
1 ©] | PP 31
5. ONERLERoviiiiiiictee ettt 32
EK ACIKLAMALAR ...t 33
KAYNAKLAR D IZINL..ccviiiiiiiiicceece et 34
OZGECMIS ...ttt eee ettt veeeees ettt e et et ettt er s s e s eeees 37

Xiii

SEKILLER D iZINi

Sekil Sayfa
1.1 BlyUk Okyanus Hava DUIUMU ..o eeeeeeeeeeeeeeeeeeiiiiiiienee e 2..
ZRCT- AU [(0] B 1S Gt 14 o T o o TR 9
2.3b Robot A* algoritmasini GRIFIYOr............oovvveeiiiiiiiee e 10
2.3.1.1 A* algoritmasi kurulmasi sonucu adim 1............cccvvvvimemmeeennnn.. 12
2.3.1.2 A* algoritmasi kurulmasi sonucu adim 2.............cvvvveemmmmmmennnnn. 13
2.3.1.3 A* algoritmasi kgurulmasi sonucu adim 3.............cevvvvvmmmmmmennnnn. 13
2.3.1.4 A* algoritmas! KOUIUIMASTueeiiiieiee e e s 14
2.3.1.5 A* algoritmasi optimum yolu buluyor...............ccccoeevivve, 15
2.4.1 1Kili EN KUGUK YIBINI...viiiitieiieie ettt 23
2.4.2 IEKY'nin DizideKi GOIUNGUceeeeerveeerieeeree e eeemee e 24
2.4.3 DEUM EKIEME....cco i 24
2.4.4 DEUM CIKAIMIA ...euiiiiiiiiiiiieeeeeeee e et ee s eeeree e e e eeeeeeraaa e e e e aeeaaeeaees 25
2.4.5 Ygin veri yapisinin kg liste gosterimi..........ooovvvvvvveiviiicmmmeeeeeennn. 27

G 200 0t R U o = I -V o | PP 28

3.2.1 SIMUIALOT. ..ceii ettt re e e e 30

Xiv

XV

CIZELGELER D iziNi

Cizelge —Sayfa
211 Grid NUM@ATAIAIT ...eeeieiit et 5
221 Algoritmanin ¢gima OrintlsU.........cooeeeeeeeiiiiieeeeeeeeeeee 7
2.3a En kisa yol algoritmalarinin zamaksadilastirmasiccceeeee. 9
2.3.3.2.1 Ucan derece cinsinden yon bilgisicccccoeeeeieeiiiiiiicieeiiiiiinns 21
2.4.1 IEKY yapisinin karmgklik tabloSuUccceevieeiiiecciieeeeeee e 26
3.1.2 Hava Sicaklinin Yakit Aksina EtKiSi...........ccccoovvvvvviiiiiiiiiiineenn. 29

3.2.1 [D1=T g[SV Ao] 11 o F= 1 U 30

XVi

XVii

SIMGELER VE KISALTMALAR D iziNi

Kisaltmalar

HA Insaniz Hava Araci

GPS Global Pozisyon Sistemi

VOR Cok Yuksek Frekansli 360 Derece Yonlu Uzaklik
DME Mesafe Olgme Ekipmani

TACAN Taktiksel Hava Navigasyon Sistemi

ADC Hava Veri Bilgisayari

NM Deniz Mili

FMS Ucy YOnetim Sistemi

Xviii

1. GIRIS

19 Temmuz 1989 da Denver dan Chicago’ ya gideragut arka iki
motorunun da arizalanmasi sonucu pilotlar, gutakontrolini kalan iki motorla
mucizevi bir sekilde sglayip Sioux City’ ye acil in§ yapmak durumunda
kalmiglardir. 24 Asustos 2001’ de, Toronto’ dan Lizbon’ a olan Air fisat
firmasinin 236 sefer sayili uginda pilotlarin fark etii yakit sizintisi herhangi bir
can veya mal kaybl olmadan, fakat normak ihizindan iki kat fazla oldiu igin
kiicuk yaralanmalarla atlatilgtir. 08 Ocak 2011’ de Amerikan F16’ kogya’ ya
yakit sizintisindan dolay! acil iniyapmak zorunda kalstir. 22 Subat 2010’ da
Thomas Cook firmasina ait bir yolcu @eayakit sizintisi sebebiyle acil inyapmak
zorunda kalmgtir. Ugus sirasinda herhangi bir acil durumun batin yokdnd
pilotlar Ustlenmek zorundadirlar, bu yukin birazsusl hafifletiimesi pilotlarin
salikh karar verebilmelerini kolaykirmaktadir. Bu kapsamda 06zellikle okyanus
asiri ucwlarda olgabilecek acil durum tirlerine 6zgu, hava sldtarinin
avantajlarint kullanip, dezavantajlarini olakildce ortadan kaldirarak ve
ucagin performansini géz 6nine alarak en yakin havalinaa U¢ boyutlu rota

planlamasi yapilmasi gerekmektedir.

Bu tezde, okyanussai ucan ucaklar icin iki farkli tir acil durum anda

gercekci ve akilli acil igirota planlamasi yapan sistemglurulmasi amaclanrytr.

Bu tlurlerden ilki havalimanina en kisa zamanda gerektiren durumlar ki
bunlar bir yolcunun kalp krizi gecirmesi, @ga yapisalindaki herhangi bir hasar,
kabin basincinin aniden ghesi, yangin c¢ikmasi vb. gibi durumlar olabilir bu
durumlarda amag, ugm yere gore hizini ugan limitlerine gére en st seviyede
tutup acil ing noktasina en kisa sirede varmasiglasaaktir. Ikinci tir acil durum
olarak ucd@in motorlarinda yakit sizintisi olmasi ele aligtmive bu durumlarda
amag, zaman kisitt olmadan g@ga en az yakiti harcayarak yani rtizgarin hizini
olabildigince etkin kullanarak acil iginoktasina varmasini@amaktir.

2

Rotanin bulunma sturecinde, hava tahmin verilerryyeu sekilleri, ucain
performans verileri detayl biekilde kullaniimgtir.(UTED, 2011; Wikipedia, 2011)
Rotanin bulunma siresinin kabul edilebilir olmagnikullanilan veri yapilari ve
algoritmalar optimize edilngtir.

120E 1358 150E 120 105W 90W

4 B 12 16 20 24 28 32 36 40 44 4B 52 5B 60 64 68

Sekil 1.1 Buyuk Okyanus Hava Durumu
Rota planlamasi yapilirken uygun rotanin aranmadilgazli yapilmgtir. Bu

secim hassasliktan tolere edilebilir 6lcide 6dunpveesaplama zamanindan buyik
kazang sgamistir.

3

Kullanici diledgi miktarda, tabiki hesaplama zamanini géz oOnineakla
alternatif rota olgturtabilecektir. Bu alternatif rotalar planlanardaanki dgerler

tutmadginda yine pilotun karar zamanini kisaltma amaaidigturulacaktir.

Rota hesaplamalarinda g6z 6ntine alinacak iki ggrdlgri havasartlari digeri
ucak performans gerleridir. Havasartlari ki bunlar farkli irtifalar ve zaman
periyodlari i¢in rizgarin yonu, rizgarin hizi vev&aicaklgidir, avantaj sglayacak
sekilde, bunu gercekitéirirken de ucgin performas girdilerine uygun olmasiskdu

ile Gi¢ boyutlu rota planlamasi yapikr.

Bu sistem, hava tahmin girdilerinin olmasi sebebidtatik graf arama
algoritmasi kullanilarak tasarlanghr. Hava tahmin dgerlerinin olmamasi ya da
tahminlerin tutmasi durumu O6neriler kisminda elewralstir. Statik graf arama
algoritmalari arasindan A* baz alingir (Hart et al., 1968). Bunun sebeplerinden ilki
sezgisel arama olmasi ve hesaplama zamanini yidkaekla azaltmasidir bir ghri
kolay uygulanabilir ve anidabilir olmasidir.

Sistemin kodlamasi sirasinda farkli programlamierifiin avantajlari ve veri
yapilarinin uygunlgu g6z éntine alinrgiir. Gercge cok yakin veriler kullaniimive
olumlu sonuglar alinmgtir. MUmkiin oldgu olgtide parametrik kodlanarak esneklik
ve tekrar kullanilabilirlgi azami seviyede tutmak hedeflertii

Havasartlari havacilikta rota planlamasindaki en ondakiorlerden biridir.
Bu konuyla ilgili bir cok cakma yapilmgtir. Ozellikle firtinalardan kaginilarak rota
planlanmasi yapilmasi gibi. Uldmasi gereken havalimanina en kisasu@uina
icinden gecerek gerceklailse bile firtinadan kagmak daha guvenli giddadan
pilotu bu rotalara yonlendirmek icin c¢ghalar yapilmgtir.(Krozel et al., 2006;
Meuleau et al., 2008).

Duzlem lzerinde optimum yolu bulmak icin yapilamsarmalar daha sonra

uzaya yani U¢ boyutagmmistir (Stefanakis ve Kavouras, 2002).

4

Askeri havacilikta da tekrar rota planlamasi oldukg kullaniimaktadir, en
cok da 6zel gorevlerde kullaniimak (izere tasarlannsansiz hava araclarindid@).
Yer kontrol birimiyle iletsimlerini kaybetmeleri halindelHA’ nin dismemesi icin
otonom bir sekilde kalktgl havalimanina inebilme Kkabiliyetine sahip olmasi

gerekmektedir (Cook ve Smallman, 2008).

2. ISTEMIN AKI SI

2.1 Mevcut Grid Numarasinin Bulunmasi

Bir acil durum olgtugunda 6ncelikle G¢ boyutlu konum bilgisi gerekmelted
Konum bilgisi iki kisimdan olgmaktadir biri yatay dieri dikey kisimdir. Ucg
sirasinda bu yatay navigasyon bilgigeevarsa FMS ekipmanindan yoksa GPS’ ten
veya VOR, DME, TACAN kulelerinden alinmahdir.(Feispn,1999) Bu yatay
konum bilgisiyle(Enlem, Boylam) énceden belirlegrhiassasliktaki grid dizisinden
hangi gridin i¢cinde oldgu formal (1) ile bulunur. Bu grid dizisi 6énceden belirlenmi
ucws alanindan olgturulur. Gridler yatayda ga ve yukari artacaksekilde
numaralandirilir. Orngn 14 x 8 lik bir grid yapisi Cizelge 2.1.1' dekgibi

numaralandirilir.

Cizelge 2.1.1 Grid Numaralari

X:¥Y: enlem, boylam olarak alinan yatay konum bilgisi,

Glneybati noktasi1¥: ve kuzeydgu noktas¥z¥z olan m x n’ lik grid
yapisl,

g hassasiyet olmak tzere;

=5
n=l g
(| X —XLD Yo - Yll
. n = +
GridNo = | g | &g

1)

Diger kisim olan dikey konum bilgisi ise ADC ya da iAletreden
alinmalidir. Ucgaklar icin ortalama maksimum irtdaniz seviyesinden 60.000 feet’ e
(10 NM = 18,5km) kadar olarak alingnve dikey olarak 10 & irtifa araligina
bolunmigtar. Alinan irtifanin hangi irtifa argtina digtaga formul (2) ile bulunur.

A ahinan irtifa bilgisi olmak Gzere,
ANo =l4.] 2

2.2 Hedef Gridlerin Aranmasi

Ucak grid yapisina gore konumlandirildiktan soyaai, rota planlamak igin
baslangic gridi belirlendikten sonra 6énceden sisteringi @larak sglanms sayida en
yakin hedef grid, yani havalimani belirlenmeliddu hedef gridler irtifa araliklarinin
sadece ilkinde yani yere en yakin olaninda buldmkni Bu da hedef grid arama
uzayini duzleme indirgestir. Tum gridleri taramamak ve hesaplama zamanini
kisaltmak icin dnceden belirlengnsayidaki hedef gride ulencaya kadar #angic

gridinden spiral cizerek taranan grid sayisi gletiimektedir. Bu arama, en yakin

7

istenilen sayida hedef grid bulgoa garanti eder ve en kéti durumda kagrkag!
O(n)’ dir.

Ornezin 14x8’ lik bir grid yapisinda 4 en yakin hedefidgicin arama

orantimaz Cizelge 2.2.1’ deki gibi olacaktir.

Cizelge 2.2.1 Algoritmanin ¢ama orintisi

104 105 106 107 108 109 110 111
96 97 98 99 100 101 102 103
@ss 29 90 91 32 93 94 95
80 81 82 83 84 85 36 87
72 73 74 75 76 77 |{c)8 73
64 65 66 | 69 70 71
56 57 58 61 62 63
43 49 50 51 52 53 54 55
40 41 a2 43 44 45 46 lt-_‘:};?
32 33 34 35 36 37 38 39
24 25 26 27 28 29 30 31
16 :r 18 19 20 21 22 23
8 3 10 i1 12 13 14 15
0 1 3 3 4 5 B 7

m X n grid yapisil,

| 6nceden bilirlenmyi havaalani sayisi kadar eleman tutan liste,

s balangi¢ grid numarasi olmak tzere;

Adim 1) fark =1

Adim2) s=s+n,s<=m*nise s te havaalani olupadgina bak varsa I’ ye at,

| dolduysa dur.

Adim 3) fark kadar don

Adim 4) s=s+ 1, (smodn) 0 giedegilse s’ te havaalani olup olma&ana
bak varsa I’ ye at, | dolduysa dur.

Adim 5) fark + 1 kadar don

Adim 6) s=s-n,s>=0ve (s mod n) O'st elegilse s’ te havaalani olup
olmadgina bak varsa I ye at, | dolduysa dur.

Adim 7) fark + 1 kadar don

Adim 8) s=s-1, ((s+1) mod n)O’ aiedegilse s’ te havaalani olup olmaaina
bak varsa I’ ye at, | dolduysa dur.

Adim 9) fark + 1 kadar don

Adim 10) S =s + nve s’ te havaalani olup olngada bak varsa |’ ye at, |
dolduysa dur.

Adim 11)fark = fark + 2 ve {2} ye don

Acil inis icin havalimanlarinin icinde olgu gridler bulunduktan sonra
baslangic gridinden bu gridlere rota planlamasi yapktadir. Rota planlamasi
yapilirken A* algoritmasi temel alingaiacil durum turiine goére maliyet fonksiyonlari

belirlenmitir.

2.3 A Yildiz(A*) Algoritmasi

Graf arama algoritmalarinin hesaplama surelerifigtaoyutuna gore ¢ok uzun
olabilir. Hesaplama surelerini kabul edilebilir sglere ¢cekmek igin sezgisel arama
yontemleri gektirilmi stir.(Russell, 2003; Nabiyev, 2005; Nabiyev, 2007)

Cizelge 2.3a En Kisa Yol Algoritmalarin Zamansatastirmasi(Santoso et al., 2010)

140 ms
94 ms

13604 ms

Bunlardan en popduleri A* algoritmasidir. Oyunlasbot uygulamalari gibi birgcok

uygulama alani vardir.

Sekil 2.3a AutoDesk-Kynogon

10

Sekil 2.3b Robot A* algoritmasi ¢atiriyor

A* algoritmasi, secilen sezgisel fonksiyonu mutebezgisel oldgunda optimum
rotayr garanti eder. Oncelikle A* algoritmasi arétak ve sonrasinda segcilen
sezgiselin mutebegi ispatlanacaktir.

2.3.1 A* algoritmasi

Acik Liste: Hesaplamalar yapilgiiakat secilmensigridlerin listesi
Kapali Liste: Hesaplamadan sonra segilgridlerin listesi

g(n) : Balangic¢ gridinden n. gride gein toplam maliyeti,

h(n) : n. gridden hedef gride gsth sezgisel maliyeti,

f(n) = g(n) + h(n)

olmak Uzere;

11
Adim 1) Baslangic gridini acik listeye ekle
Adim 2) Asagidakileri tekrar et :

a) Aclk listedeki en kicuk F gerine sahip olan gridi al ve mevcut grid
olarak ata

b) Acik listeden silip kapali listeye ekle
c) Butin 26 komu gridler icin (U¢ boyutta mevcut grid harig)

 [Eger komyu grid kapah listede veya gidilemez isegeti
komsuya gec, dgilse aagidakileri yap.

o Eger komgu acik listede dglse acik listeye ekle,
mevcut gridi kendisine ebeveyn grid olarak ataGFve
H degerlerini hesapla.

o Eger acik listede ise G derini kullanarak o yolun daha
Iyi olup olmamasina bak. G geri disuk olan daha iyi
bir yola sahip demektir. F ve G ghxini yeniden
hesapla. Eer acik liste F dgerine gore sirali dd ise
tekrar sirala.

d) Asagidakilerden biri sglandgl zaman dur:

e Hedef gridi kapah listeye ekle, bu noktada artik kota
bulunmu oluyor.

* Aclk listenin bg olmasi, yani hedef gridin bulunamamasi
durumunu

Adim 3) Bulunan rotay kaydet ve hedef griddenlbagic gridine bulana kadar
geriye d@ru ebeveyn gridlerini takip et. Bulunan yolu dondur

12

Kolay anlgilmasi icin iki boyutlu 6érnek tGizerinde incelenirse;
Yesil grid baglangig, kirmizi grid hedef, mavi gridler de gidileyen gridler olsun.

Bir gridden dgerine gitme maliyeti diyagonaldekiler igin

cla, b)= 10+ v2 = 14

yatay ve diéeydekiler icin 10 alinngtir.

Bir gridden hedef gride sezgisel uzaklik icin delige fonksiyonunun kg baksi
Manhattan uzakgn alinmstir.(Policyalmanac, 2005)

Algoritmay1 calstirmaya baladigimizda balangi¢ gridi acik listeye eklenir sonra
acik listeden en kicuk F glerine sahip grid acik listeden silinip kapali hstesklenir
ve tum komgu gridleri icin acik veya kapali listede olmadiklagin F degeri G ve H
degerleri toplamindan hesaplanir, ebeveyn grid olatair, acik listeye eklenir ve
hedef gride ulglamadgl icin ya da acik liste Boolmadgl icin Adim 2’ ye
donular.(Bkz.Sekil 2.3.1.1)

Sekil 2.3.1.1 A* algoritmas! kgurulmasi sonucu adim 1

13

Acik listede en diuk F deeri sahip olan acgik listeden silinip kapah listegelir,

yani o gride gidilir. Gidilebilen kogu gridlerine bakilir ve acik listede olan kg
grid ile o gridin G dgerleri kasllastirilir 14, 20(10 + 10)’ den daha kicuk ofdu
icin o gridden gitmek daha iyi bir yoldur ve F, B,deserleri guncellenir. Artik yeni
G dezerimiz 14, yeni F dgerimiz de 54’ tir ve Adim 2’ ye donuldr.

7 I[=n 5y ‘
s L] fe)

Iy Bofl 1o smff 1w 4o |

| Lt

Sekil 2.3.1.2 A* algoritmasi kgurulmasi sonucu adim 2

Sekil 2.3.1.3 A* algoritmasi kgurulmasi sonucu adim 3

14

Bu sekilde devam edilerek hedef grid aranir. Gidilerd grani kapali listeye atilan
grid hedef grid oldgunda algoritma durur ve en kisa yol bulurotur.

Sekil 2.3.1.4 A* algoritmasi kgurulmasi sonucu

Bulunan en kisa yolu belirlemek icin hedef griddgariye d@ru ebeveynler
baslangic gride ulglincaya kadar takip edilir. BeEngi¢ gride ulaldiginda artik en
kisa yol belirlenmy, fazladan gidilenler elengplur.

15

N N ol

Sekil 2.3.1.5 A* algoritmasi optimum yolu belirliyor

Ornek 2-boyutlu oldgu icin alinan korpu grid sayisi 8 dir, fakat bu
calismada olgturulacak rota 3-boyutlu olgw icin konsularin sayisi 26 dir, yani (3 x
3 x 3) luk kaplin merkezindeki (1 x 1 x 1) lik ktipricindekilerdir.

Bu calsma kapsaminda bir gride gidilememesinin nedentegrafi engeller,
havasartlarinin elvegsizligi, yakitin bitmesi veya u@n performans deerlerinin
elverissizligi gibi durumlardir. Maliyet hesaplari (G(n), H(R)sim 2.3.3’ te detayl
ele alinacaktir.

2.3.2 Sezgisel fonksiyonunun muteberlik ispati

A* algoritmasinin optimum ¢6zimu vepidisezgisel fonksiyonun muteber
sezgisel olmasi ile ispatlanabilir(Hart et al., 86Bu calsmada kullanilan H(n)
sezgisel fonksiyonu igin, alinan iki nokta arasikesa uzaklikhesabinin muteberlik
oldugu (3) de ispatlannstir.

H(n, g), n gridinden hedef gride(g) hesaplanan sezgisgkerd yani kire
Uzerindeki n ile g noktalari arasindaki en kisa yaynligu, C(n, g), n gridinden
hedef gride(g) gidebilmenin hesaplanan gercededelmak lzere;

16

C(n,g) =C(n+1, n+2) + C(n+2, n+3) + ... + C(n+X, Q)
seklinde bulunur.
H(n, g) muteberdir ger;

v, h(n, g) < C(n, g) 3)

H(n ,g) sezgiseli buylik cember uzagkliGreat-Circle Distance) olarak
alindginda ve buyuk cember uzakinin da kire ulzerindeki en kisa uzaklk
olmasindan dolay! kure Uzerindeki iki nokta araakncherhangi bgka bir uzaklik
buyiuk cember uzakdindan buyik ya dasi olacaktir.(IAState Universitesi, 2010;
Wikipedia, 2011)

2.3.3 Maliyet hesaplamasi

2.3.3.1 Rota planlama turi

Bu calsmada iki tir rota planlama Uzerinde duruktam. Bunlar, en kisa
suirede acil i ve en az yakit tiketimidir. Bu iki tir arasindaki nemli fark zaman
ve yakit akgi kisitlaridir. En kisa surede grtiirinde, yakit aki bakimindan herhangi
bir kisit olmazken, en az yakit tiketimi tirindehgghangi bir zaman kisiti yoktur.
Ikisi icin de tek kisit hedef gride glabilmesi icin yeterli yakitin bulunmasidir. Bu
turlerin matematiksel olarak modellenmegagadaki gibidir.

En az yakit tuketimi turd igin;
F»: O anki kalan yakit miktari,
Fmin = :Inis icin gereken yakit miktart,
FF : O anki yakit aky,
G5.: O anki yere gore hiz,

GSmin. Tutunma kaybi olmamasi icin gereken yere gorezéma

17

G5mex- Yapisal kisimda hasar glmamasi icin gereken yere goére en fazla hiz,
Alt;: O anki irtifa,
Altymayi: Cikilabilecek en yiiksek irtifa,

olmak tUzere;

Alt, = Alt,

kisitlar altinda hedef fonksiyon:
min(FF)

en kisa surede acil gturt icin ayni kisitlar altinda hedef fonksiyon;
maxi(G5.)

olarak belirlenmytir.

Bu hesaplamalar A* algoritmasi c¢ahasi sirasinda acilan kem gridlerden
hangisine gidilmesinin, o rota planlama tirindeadakiylk avantaj gtayacaini
belirlemek icin kullaniimaktadir.

2.3.3.2 Kaullarin planlamaya etkisi

Rota planlamasi yapilirken dikkat edilmesi gerekenonemli kisit vardir,
bunlar acil durum aninin kallari, havasartlari ve ucgin performans deerleridir.

Ucgagin performans deerleri;

18

= Ucagin yapisalinin hasar gérmemesi i¢in gereken enekiks
= Ucagin yapabilecgi en dar dongiacisi
» Inis icin gereken en az yakit miktari
» Inis icin gereken en kisa uzaklik
* Birim zamandaki yakit aki
bilgileridir. Ucagin yapabilecgi en dar dongl acisi ve in§ icin gereken en kisa

uzaklik grid boyutlarini belirlerken kullaniimaktadAcil durumun olgtugu sartlarin

da maliyet hesabinda kullaniimasi gerekirgsanlar;

Ucaktaki yakit miktar

Ucagin enlem ve boylam olarak pozisyonu, irtifasi

Ucagin hizi

Ucagin toplam girh g

bilgileridir. Havasartlari rota planlamasinda biiyiik rol oynamaktadmellikle yakit
sizintisi sirasinda rtzgarin avantaji planlama igok 6nemlidir. Havasartlari

desiskenleri;
» Acil durum aninda riizgarin yénu ve hizi,
* Acil durum irtifasindaki hava sicakh

= Acil durum aninin hava tahmin verileri

19

= Farkh zaman periyotlari ve farkh boélgeler icindagtahmin verileri
» Hava radari goruntlsu gerleri

bilgileridir. Hava radari goruniatist gkyleri, o anki hava tahmin verileriyle

karsilastirilarak iki dezer arasinda bir kalibrasyon yapiimaktadir.

Onceki kisim kisimda belirtildi gibi acil durum tiirlerine gore farkli maliyet

hesaplari kullaniimaktadir. Bunlgm sekilde modellennsiir;
en kisa surede acil itird icin maliyet dgeri,

Cile.d) :cve dnoktalarl arasindaki maliyegds,

ged(e,d) : ¢ ve d noktalar arasindaki bilyiik cember uzakli

G5 : Yere gore hiz
olmak Uzere;
_ grd(c, d)
Cl(c.l d) = a5

seklinde hesaplanir ve en az yakit tiketimi tira igialiyet dgeri,

C2(c.d) : c ve d noktalari arasindaki maliyetés,
ged(e,d): ¢ ve d noktalar! arasindaki biiyiik cember uzakli

GS : Yere gore hiz,

20

FF(c,d) :cved noktalar arasindaki yakitsa#eseri
olmak Uzere;

gcd(c, d)
iGS

Cz(c,d)= FF(, d)=

seklinde hesaplanir. Bu hesaplamalar icin gerekdinoblytik c¢cember uzakl

asagidaki sekilde hesaplanir;

X4.Yy ve X2, ¥z ; Klre Gzerindeki iki noktanin enlem ve boylamlari

D : Bu iki nokta arasindaki buyuk ¢cember uzgkli

olmak Uzere;

D = cos"2(sin(Y,) + =sin(X,) + cos(X;) * cos(X,) # cos(¥, — ¥,))

seklinde hesaplanir.(Wikipedia, 2011)

Maliyet hesaplamari igin gerekli bir gr parametre de yere gore hiz
degeridir. Yere gore hiz, ugan pito tipunden Olciil hiz ile rizgarin hizinin
vektorel bilgkesinden hesaplanir. Bu hesaplamayi yapabilmekdgoelikle ucgin
cografi kuzeye gore yon bilgisinin bulunmasi gerekneelkt Bu bilgi desu sekilde
bulunur; bir gridin G¢ boyutta 26 kam gridi vardir fakat yatayda Ust 9 ve alt 9
komsu grid icin yon dgismeyecginden ayni irtifadaki 8 kgnu grid igin yon
hesaplamasi yapilgtir. 1ki grid arasindaki yonu @oafi kuzeye gére bulmak icin
asagidaki Cizelge 2.3.3.2.1 ojturulmustur.

21

m X n grid yapisi olmak Uzere,

Cizelge 2.3.3.2.1 Ugan derece cinsinden yon bilgisi

Gidilecek grid ile aradaki gridNo farki Yon (Derece)

n 0

n+1 45

1 90

1-n 135

-n 180

-(n+1) 225

-1 270

n-1 315

Iki grid arasindaki yon (artik buna grid yoni desldcbulunduktan sonra
rizgarin bu yonde etkisi hesaplanir Rizgarin ektisatmadan 6nce hangi zaman
periyodu igin rizgar durumuna bakilgchesaplanmalidir, bu da iki grid arasi buyuk
cember uzak@iinin yarisinin yere gore hiza bolinmesiyle elddredityik cember
uzaklginin yarisinin alinmasinin sebebi, iki grid argkam yapilirken orta noktalari
baz alinir, bu orta noktardan gecerken iki gridavdndurumunun g6z oniine alinmasi
gerekir, buyuk cember uzaginin yarisi gecilen gridin verilerine glaak igin
kullanilir.. Ruzgarin yonuyle gridin yonuntn farklinarak rizgar yona ile grid
yonindn arasindaki a¢i bulunur. Bu ac¢i rizgarinnimzgrid yontiinde ne kadarlik
hiza kagilik geldiginin hesaplanmasinda kullanilir. Ruzgar hizinird gronindeki
hiziyla o anki hizin toplam derine yere gore hiz denir. Yere gore hsagedaki
sekilde hesaplani(Aeronautical Inc, 2006; Airbus, 2011)

TAS

ASciimp = —= : .)
€imE T "2 seklinde alinabilir ve ger riizgarin

T
Eger ucak tirmanta ise
yonii ile gridin yoni arasindaki a@9’ den bilyiikse yawdatici, kiiciikse arttirici
ektisi olmaktadir(Cary, 2001)

22

G5 : Yere gore hiz deeri,
TAS : Pito tiptnden okunan hizin gercek hava hizindlges hali,
W5 . Ruzgarin hiz,
o : Rizgarin cgrafi kuzeye gore saat yoninde yona,
xc : Ugazin casrafi kuzeye gore saat yoninde yonu
olmak Uzere yere gore higesi;
GS = TAS —WS5=cos(2 s — (&, —a.)) eser2=m—(a, —a) = 90°
GS=TAS+ WS=cos(2+m— (&, —a.)) eer2s+m— (o, —a;) < 90°

seklinde hesaplanir. Yere gore hiz acil durum tirgidee tutunma hizinin tstinde en
az ya da yapisalin izin vegilien dst limitte olabilmektedir. O irtifada, o sktkta ve
o arhktaki en kicuk tutunma hizi, geenlerin gercek hava hizina etkileri,

performans polinomu aragihile hesaplanir.(Stengel, 1993)

Ucaktan ucga , motordan motora @siklik gosteren 6zelliklerden bir tanesi
de yakit tiketimidir. Motor, tirtine gore ucak fariktifa, agirlik ve hava sicak#nda
farkl yakit tiketebilir. Ucgain bu 6zellikleri her bir dgisken icin(dgerlerini sabit
tutup) ayri ayri 6nceden belirlengnsayida dgerlerle dlculur. Bu dgerler, dger
sayisi-1 kadar dereceden polinomun katsayilariimidraek icin kullantlirlar. Olgan
denklemler Gauss-Eliminasyon yontemi yardimi ilezigdr ve o ucgin yakit
tuketiminin irtifadan, hava sicakindan ve airliktan hangi 6lcide etkilengii
belirlenmg olur. Sezgisel fonksiyonla hesaplanan uzaklik ieim yiksek hizda
gidildiginde gecen surenin yakit akila carpilmasindan, o an igin gereken en az
miktarda yakit hesaplanir ve kisit olarak kullantli

23

2.4 Optimallestirme

A* algoritmasi gergi F deserine gore kicukten bugé sirall korgu gridlerin
olmasi biyiik avantaj glmaktadir. Oncelikli kuyruk metodu bu avantajieeltmek
icin diealdir ve bu metodu ikili en kicukgmi(Binary Min Heap) veri yapisi en az
karmaiklikla olusturur. Ikili en kiguk ygini(IEKY) aslinda bir gac yapisidir ve bu
agac yapisini olgturmanin iki yolu vardir. Bunlardan ilki Bh liste ile digeri dizi
kullanarak.lki yonteminde kendine 6zgl avantajlari vardiglbliste yontemi sinirli
belleggze sahip sistemler icin idealken dizi icinde tutmiglem siresinin en aza
indirgenmesi icin idealdir. Bu camada bellek kisiti olmagh varsayilmgtir.
(Cormen,2000)

Sekil 2.4.1ikili En Kiguk Yigini

IEKY* e bir digim ekleme, en diiik F degerine sahip dglimi cikarma, bo
mu dolu mu kontroli, en guk F deerine sahip diimu bulma algoritmalar
asagidaki gibidir.

IEKY’ nin olusturulaca! indisi 0’ dan balayan bir A dizisi olsun;

.....

.....

24

CFQITUIOOTO O

b L

0 1 2 3 4 2 6

Sekil 2.4.21EKY’ nin Dizideki Goruniii
Dugum Ekleme:

1. Eklenecek dgimu IEKY'nin en alt seviyesine yani dizinin sonuna
ekle.

2. Eklenen dgumuin F dgeriyle ebevyninin F deeri kagilastir;

a. Eger yeni eklenen diiimin F dgeri daha buyikse dur.

b. Degilse, yeni eklenen diiimle ebeveyn diumunu yer
degistir ve 2. adima geri don.

Sekil 2.4.3 DEum Ekleme

25

Dugim Cikarma:

1. Dizideki son dgumu kok digum yap.

2. Yeni kok dEumin F degeri ile cocuk d@gumlerin F dgerlerini
karsilastir;

a) Eger kok digumin F deeri cocuk digumlerin F dgerinden
kigukse dur.

b) Degilse, cocuk dgimle kok diglimu yer dgistir ve 2. adima

don.

2 En kiiciigii sil

S

[

Sekil 2.4.4 Dgum Cikarma

26

Bos mu dolu mu Kontrolu:

1. Dizinin ilk indisi yani 0. indiste bir dgim varsa dolu yoksa ko

donddr.
En kiguk f dgerine sahip dgiimi Bulma:
1. Kok digimin indisini donddr.

Algoritmalardan da goruldiii gibi yeni digim ekleme, ¢cikarma ve en az f
degerine sahip dgiimi alma, bg olup olmama kontroli karmgekliklari Cizelge
2.4.1’ deki gibidir.

Cizelge 2.4.1EKY yapisinin karmgklik tablosu

Bosmu() 0(1)

enKucuk() 0(1)
Ekle() O(log n)
enKugukCikar() O(log n)

Goruldigi gibi IEKY tim digimleri siralamad icin ki bu durum en kiicik
digumu bulmak icin yeterlidir, izl siralama(Quick§pkimeli siralama(Mergesort)
ve yigin siralama(Heapsorgibi karmgikligi O(n log n) olan en hizli siralama

algoritmalarindan daha hizl gahaktadir.

27

A* algoritmasi bittikten sonra yani hedef gride wldiktan sonra geriye,
baslangi¢c gridine dgru gidilerek rotanin olgturulmasi, fazladan gidilen gridlerin
elenmesi gerekmektedir. Bylem icin ygin veri yapisi, bgh liste kullanilarak
olusturulmustur. Bunun amaci @ liste seklinde tutulan yiinin, dizide tutulan

yigina gore geri izlenebilirlik agisindan daha az pegarektirmesidir.

|
|

ama

ad

=]

SON

Sekil 2.4.5 Ygin veri yapisinin b#i liste gosterimi

28

3. DENEYSEL BULGULAR

3.1 Deney Kaullari

Yapilan bu c¢akmanin uygulanabilir ve kullanilabilir olmasi igin
deneyde olabilgince gergekgi veriler kullaniimaya calmistir. Deneyde
bellek sikintisi olmad1 varsayllms ve program, caima slresine gore

optimize edilmtir.

Okyanus airi ucwlarda kitadan ayrilirken belirlengnhava yollarina
uyma kisiti kalk@l ve bu da arama uzayini ggattigi icin okyanus tzerinde
bir acil durum ygaanmsg gibi programa veri gdanacaktir. En kotl durum
senaryosu icin de en biydk okyanus olan pasifik aolkigu dgerleri

kullanilacaktir.

89.812.808/M* (10692 x 8400)lik bir ugu alanindan(Pasifik

Okyanusunun alani 63.800.08¥>" dir.) 12NM’ ik hassaslikla olgturulan
700 x 892 (m x n)’ lik bir grid yapisiekil 3.1.1’ deki gibidir.

623507 623508 624399
892 893
0 1 2 3 4 5 891

Sekil 3.1.1 Ucy Alani

29

Hassasfin 12 NM secilmesinin sebebi, ortalama 200 knatsgiden
bir ucagsin bu mesafeyi 3,6 dakikada alabilmesi, enlem wddm olarak da
0,2 derecelik olup, karar verme suresi bakimindaouk edilebilir olmasidir.
Boylelikle 12 NM hassagiinda gelen hava durumu tahminleriyle de uyum
salamaktadir. En yuksek irtifa 20NM alingnve 1INM’ lik 10 ait parcaya
bolunmigtir. Hava tahminleri farkli yukselikler ve 3 saltiaman araliklar
icin sgslanmstir. Gridler arasi mesafenin hesaplanmasi icinakulan blyuk
cember uzak$, iki gridin merkez noktalarini kullanir. Bu hesama icin
gerekli olan Diinya’ nin yaricapi 3443.8984NM aligtmni (McNamara, 2004;
Moir 2006; Moir 2008)

Yakit aksl ve calibre edilmi hava hizi performans polinomlari,
gercek bir ucgin performans polinomlarinin katsayilar uyggekilde
desistirilerek olusturulmustur(Bkz. Cizelge 3.1.1)nis icin gerekli en az yakit
4000 galon, i icin gerekli en az mesafe 4NM alingmi. Yapisal
etkilemeyecek en yuksek hiz 300 knots, kabul editedn yiksek riizgar hizi
da 50 knots alinmtir. Hava radari ile hava tahmini arasindaki kayina

alinms, yani ortgtaga varsayilmgtir.

Ucagin bas agirhigl 70.000 Ib, en fazla yakit miktari da 80.000 Ib

olarak alinmgtir.

Cizelge 3.1.1 Hava Sicaglnin Yakit Aksina Etkisi

53,0

279,94
-50,0 50,0

30

3.2 Deney Sonuglari

usl Forml

|
100°C 0R-85°C 10K-70°C 201 01 4

==L
PUT PLANE

RUN
SIMULATION

SAVE GRIDS TO
FILE

Sekil 3.2.1 Simulator

Cizelge 3.2.1 Deney Sonuglari

30,006 s 29,3965 s
1350 MB 1350 MB
3 ms 1ms

2,5MB 2,5MB

31

4. SONUC

Goruldigu gibi onceki calkmalar hava kgullarinin dezavantajlarindan
kacinilarak yapilmtir, bu calgmada ise hava kallarini avantaja doniirebilmesine
amaclanmgtir, bu sekilde yakittan tasarruf geanmasi ve olasi bir yakit sizintisi acil
durumunda kabul edilebilir en yiksek hizla en axkitydliketeceksekilde rota

planlamasi yapilmasi amaclagim.

Gercege olabildgince yakin veriler kullanilng; calsma zamanini kisaltmak
icin program optimize edilngj hesaplamalardaki detaylardan kacinilmanie
optimum rota, kabul edilebilir bir surede bulungtur.

32

5. ONERILER

Hava durumu tahminlerinin girdi olarak @anabilmesinden 6tird, rotanin
planlanmasi statik olarak yapilghr. Yani belirli periyotlarla hava durumu
bilgilerinin bilinmesi bir sonraki adimin daha o idg gitmeden g6z O©Onlne
alinabilmesini sglamistir. Eger yapilacak cagmada dgumlerin durumlari(gidilebilir
— gidilemez veya gitme maliyetleri) o giime gidildginde tahmin edilenden farkl
olacail varsayiliyorsa bu rota planlamasi dinamiktir veilaverilere gore surekli
yapiimahdir. Boyle durumlar igin gstirilmis artimsal A* algoritmalarindan D* Lite
(Dynamic A* Lite) (Koenig, Likhachev, 20023lgoritmasi kullanilabilir. Dinamik
rota bulma cabdmalari ¢gunlukla robotbilim ile grasan aratirmacilar tarafindan

kullaniimaktadir.

33

EK ACIKLAMALAR

Bu kisimda yapilan ¢amanin gercekgi olabilmesi icin kullanilan verilexia
deneysel bulgulardaki derlerin aciklamalari, bunun ginda ismi verilmg fakat

aciklamasi yapilmamterimlerin ve cihazlarin agiklamalari yer almaktad

Altimetre : Deniz seviyesine gore bir yerin yukseihi 6lcebilen 6zel bir barometre.

Hava Veri Bilgisayari(ADC) : Gergek hava hizini, irtifayr ve GPS’ i kontrol eder

Cografi Kuzey(True North): Kuzey kutbundatam 90 derece kuzey noktasidir.
Dunyanin kire biciminde olmasi dolayisiyla surékizeye gidilirse bir noktada daha
fazla kuzeye gidilemeyecek, dinyanin en tepesiakladlandirilabilecek bir nokta

bulunmasi gerekir

Pito Tapu: Akiskaninhizini 6lgcmek igin kullanilan basing senséri barardtiip.

34

KAYNAKLAR D iziNi

Aeronautical Inc, 2006, Advanced Flight Management System, ARINC.

Cary, E. and Spitzer, R.,2001, The Avionics Handbook, CRC Press LLC, Boca
Raton, 542p.

Cook, M. B. and Smallman, H. S.2008, When Plans Change: Task Analysis with
Navy UAV Operators, Display Requirements, and UR€¢-Routing Taxonomy,
Pacific Science & Engineering Group, Californi@p2

Cormen, T. H., Leiserson, C. E., Rivest R. L. andt8in C., 2000, Introduction to
Algorithms, McGraw-Hill, Columbus, 1003p.

Ferguson,M., 1999, GPS Land-Navigation, Glassford Publoati

Gill, J. A., 1995, Flight Control Computer Development througiplkcation of Software
Safety Technology, Naval Air Warfare Center AaftDivision.

Hart, P. E., Nilsson, N. J. and Raphael, B1968 A Formal Basis for the Heuristic
Determination of Minimum Cost Paths, IEEE Trangat on Systems

Science and Cybernetics, California, 8p

IA State University, 2010, Geodesies IA State University, IA State, 7p

Koenig, S. and Likhachev, M.,2002, D* Lite, American Association for Artificial

Intelligence, Atlanta, 8p

Krozel, J., Lee C. and Mitchell J.S.B.2006, Turn-Constrained RoutePlanning for
AvoidingHazardous Weather, Air Traffic Control Qteaty, New York, 24p

McNamara, J., 2004, GPS for Dummies, Wiley Publishing, Inc.

35

Meuleau, N., Plaunt, C. and Smith, D. E.2008, Emergency Landing Planning for
Damaged Aircraft, NASA Ames Research Cen@alifornia, 8p

Moir, I. and Seabridge, A. G.,2006, Military Avionics Systems, John Wiley & Sdrid.

Moir, I. and Seabridge, A. G.,2008, Aircraft Systems, John Wiley & Sons Ltd.

Nabiyev V.V., 2005, Yapay Zeka Problemler-Ydntemler-Algoritmageckin Yayincilik.

Nabiyev V.V., 2007, Algoritmalar Teoriden Uygulamalara, Seckiryivailik.

Russell, S. and Nowig, P2003 Artificial Intelligence: A Modern Approach, Prergic
Hall.
Santoso, L. W., Setiawan, A. and Prajog, A. K.2010, Performance Analysis of

Dijkstra, A* and Ant Algorithm for Finding OptimaPath, Petra Christian
University, Surabaya. 8p

Stefanakis, E. and Kavouras, M.2002, Navigating In Space Under Constraints,
International Journal of Pure and Applied MathepostAthens, 22p

Stengel, R. F.,1993, Toward Intelligent Flight Control, IEEE Transactsrmn
Systems, Man, and Cybernetics. 23(6).

36

KAYNAKLAR D 1ZiNi (devam)

Airbus, Flight Management Systems on Commercial Aircréfast, Present and

Future (Airbus),

http://www.airbus.com/store/mm_repository/pdf/a@@@529/media_object file fast
42 p2_p7.pdtErisim tarihi: 02 Haziran 2011)

Lester, P., 2005, A* Pathfinding for BeginnetsPolicy Almanac,
http://www.policyalmanac.org/games/aStarTutoriah Erisim Tarihi: 02 Haziran
2011)

UTED, “Flight Management System”,
http://www.uted.org/dergi/2009/mart/KemalK Zafertdd.htm(Erisim tarihi: 8
Ocak 2011)

Wikipedia, “Flight Plan”, http://en.wikipedia.org/wiki/Flight_plagErisim tarihi: 8
Ocak 2011)

Wikipedia, “Flight Management System”,
http://en.wikipedia.org/wiki/Flight_management gmt(Erisim tarihi: 8 Ocak 2011)

Wikipedia, “Aircraft flight control system”
http://en.wikipedia.org/wiki/Aircraft_flight conttosystem(Erisim tarihi: 8 Ocak
2011)

37

OZGECM S

BAVUNOGLU, Harun, Mustafa glu, 14/11/1984 tarihindé&mir’ de dadu.
Dokuz Eylul ilkdgretim Okulu’ nda okudu. 1995 yilinda Bornova Anaddlisesi
Almanca bdlimine B&di ve 2002 yilinda bu liseyi bitirdi. Ayni yil [Eg
Universitesi Matematik Bolimuiine gad.

3. sinifta Bilgisayar Bilimleri opsiyonunu secti \2007 yilinda mezun oldu.
Ayni yil ayni bolimde yiuksek lisansinastzali. 2008 — 2009 arasinda Almanya’ da
savunma sanayinde staj yapip, 2009 yilinda TR 8avacilikta cakmaya baladi.

EKLER

EK1

Kaynak Kod

[HFHA A KA K A A KA A KA KKK K

* Ege Universitesi *
sk sk sk ok sk ok sk sk ok sk sk ok sk sk ok sk sk sk sk sk sk ok sk sk ok ok sk ok

* Harun Bavunoglu *
ES *
* Yiksek Lisans Tezi *
* 03.06.2011 *
ES *
* entryPoint.c *

****************************/
#include "grid.h"
#include "Configuration.h"
#include <stdlib.h>

extern void getNearestArpt(UInt32, GridCell**, Configuration*, UInt32*);
extern UInt32 findShortestPath(GridCell*, GridCell*, GridCell**,

Configuration*);

void __declspec(dllexport) entryPointEmergency(GridCell* currentGrid,
Configuration* config, GridCell** grids, UInt32* nearestArpts)

{

// get n(comes from config) nearest airports grids
// if you have FMS skip this step
getNearestArpt(currentGrid->gridNumber, grids, config, nearestArpts);

findShortestPath(currentGrid, &grids[@][nearestArpts[0]], grids,
config);

}

[HFHAEA AR K A KA A KA KKK K

* Ege Universitesi *
Sk sk s ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kok ok ok ok ok
* Harun Bavunoglu *
ES *
* Yiuksek Lisans Tezi *
* 03.06.2011 *
E3 *
* grids.c *

****************************/
#include <stdlib.h>

#include "grid.h"
#include "Configuration.h"

// Spiral order traversal algorithm 0(n)
void getNearestArpt(UInt32 currentGrid, GridCell** grids, Configuration*
config, UInt32* nearestArpts)

{
UInt32 diff,i;
UInt32 tempGrid;
UInt8 nearestIndex = @, result = 1;
UIntle rowC;

rowC = config->rowWidth;
tempGrid = currentGrid;

for(diff = 1; ; diff += 2)
{
// just one step up to start new spiral
if(nearestIndex == config->nearestLimit)return;
tempGrid += rowC;
if(tempGrid > rowC * config->heightRes)continue;
if(grids[@][tempGrid].hasAirport == 1)
{
nearestArpts[nearestIndex] = tempGrid;
nearestIndex++;

}

// expand to the right
for(i = 1; i <= diff ; i++)
{
if(nearestIndex == config->nearestLimit)return;
tempGrid++;
if((tempGrid % rowC == @) || (tempGrid > config-
>flightArea))continue;
if(grids[@][tempGrid].hasAirport == 1)

nearestArpts[nearestIndex] = tempGrid;
nearestIndex++;

}

//expand to the down
for(i = 1; i <= diff + 1 ; i++)

{
if(nearestIndex == config->nearestLimit)return;
tempGrid -= rowC;
if((tempGrid > config->flightArea)||(tempGrid % rowC ==
0))continue;
if(grids[@][tempGrid].hasAirport == 1)
{
nearestArpts[nearestIndex] = tempGrid;
nearestIndex++;
}
¥

//expand to the left

for(i = 1; i <= diff + 1 ; i++)
{
if(nearestIndex == config->nearestLimit)return;
tempGrid--;
if((tempGrid > config->flightArea)||((tempGrid+1l) % rowC
== 0))continue;
if(grids[@][tempGrid].hasAirport == 1)
{

nearestArpts[nearestIndex] = tempGrid;
nearestIndex++;

}

// expand to the up
for(i = 1; i <= diff + 1 ; i++)
{
if(nearestIndex == config->nearestLimit)return;
tempGrid += rowC;
if((tempGrid > config->flightArea)||((tempGrid+l) % rowC
== 0))continue;
if(grids[@][tempGrid].hasAirport == 1)
{
nearestArpts[nearestIndex] = tempGrid;
nearestIndex++;

UInt8 getNeighbours(GridCell* currentGrid, GridCell* startGrid, GridCell**
grids, GridCell* neighbourArray, Configuration* config)

{
UInt32 rowC;
UInt32 i, j, 1, neighbourIndex = 0;
Int32 verTrav[3], horTrav[3];

rowC = config->rowWidth;

verTrav[@] = -rowC;
verTrav[l] = ©;
verTrav[2] = rowC;
horTrav[@] = -1;
horTrav[l] = ©;
horTrav[2] = 1;

for(l = currentGrid->layer - 1; l<=currentGrid->layer + 1; 1l++)

{
for(i = @; i < 3; i++)
{
for(j = 0; j < 3; j++)

if(((i==1) && (j==1))]|

((j==2) && ((currentGrid->gridNumber +
horTrav[j]) % rowC == 0))]||

((j==0) && (currentGrid->gridNumber % rowC
== 0))||

(currentGrid->gridNumber + verTrav[i] +
horTrav[j] > config->flightArea)] |

((currentGrid->gridNumber + verTrav[i] +
horTrav[j] == startGrid->gridNumber) && (1 == startGrid->layer))||

(1 >= config->layerSize))

continue;

if(grids[1][currentGrid->gridNumber + verTrav[i] +
horTrav[j]].isWalkable == 1)
{

neighbourArray[neighbourIndex] =
grids[1l][currentGrid->gridNumber + verTrav[i] + horTrav[j]];

if(neighbourArray[neighbourIndex].parent ==
0x0)

grids[neighbourArray[neighbourIndex].layer][neighbourArray[neighbourInde
x].gridNumber].parent = &grids[currentGrid->layer][currentGrid->gridNumber];

neighbourIndex++;
}
}
¥
}
return neighbourIndex;
}
/****************************
* Ege Universitesi *
3k 3k sk sk sk sk sk sk sk skosk sk sk sk sk sk skosk sk sk skosk skosk sk ko k ke
* Harun Bavunoglu *
* *
* Yiksek Lisans Tezi *
* 03.06.2011 *
* *
* aStar.c *
****************************/
#include "grid.h"
#include "Configuration.h"
#include <stdlib.h>
#include <string.h>
extern UInt8 getNeighbours(GridCell*, GridCell*, GridCell**, GridCell*,
Configuration*);
extern Float32 g(GridCell*, GridCell*, GridCell*, GridCell**,
Configuration*);
extern Float32 h(GridCell*, GridCell*, GridCell**);
extern void binaryHeapOpenAdd(GridCell);
extern GridCell binaryHeapOpenGetLowest();

extern void binaryHeapOpenInit(UInt32);

extern void binaryHeapOpenDelete(GridCell);
extern UInt8 binaryHeapOpenIsEmpty();
extern void pushStack(GridCell*);

void backtraceAndSmoothPath(GridCell* goalGrid)

{
//use stack to get path ordered

GridCell* temp;
temp = goalGrid;

do

{
pushStack(temp);

temp = temp->parent;
}while(temp != 0x0);

UInt32 findShortestPath(GridCell* currentGrid, GridCell* goalGrid, GridCell**
grids, Configuration* config)

{
/***/
GridCell startGrid;
UInt8 i, neighbourCount=0;
GridCell* neighbourArray;

startGrid = *currentGrid;
neighbourArray = (GridCell*)calloc(NEIGHBOUR_COUNT, sizeof(GridCell));

// Do some quick checks

/************************/

if(currentGrid == goalGrid)
return 0;

if(goalGrid->isWalkable == 0)
return -1;

[HFHAA AR A AAA KK KA KA KK KK KA KA KA KA KA KA K F KA KKK/

binaryHeapOpenInit(config->flightArea * config->layerSize);
// InitClosedList();

//1) Add the starting square (or node) to the open list.
binaryHeapOpenAdd(*currentGrid);

//2) Repeat the following:
do
{
//a) Look for the lowest F cost square on the open list. We refer
to this as the current square.
*currentGrid = binaryHeapOpenGetLowest();

//b) Switch it to the closed list.
//arrayClosedAdd(*currentGrid);
binaryHeapOpenDelete(*currentGrid);

//c) For each of the 8 squares adjacent to this current square ..

memset(neighbourArray, ©, NEIGHBOUR_COUNT * sizeof(GridCell));

neighbourCount = getNeighbours(currentGrid, &startGrid, grids,
neighbourArray, config);

for(i = ©; i < neighbourCount; i++)

//If it is not walkable or if it is on the closed 1list,
ignore it. Otherwise do the following.
//(done by getting neighbours)

//If it isn’t on the open list, add it to the open list.
Make the current square the parent of this square. Record the F, G, and H costs
of the square.

if(neighbourArray[i].f == @)

{

grids[neighbourArray[i].layer][neighbourArray[i].gridNumber].g
g(currentGrid, &neighbourArray[i], goalGrid, grids, config);

grids[neighbourArray[i].layer][neighbourArray[i].gridNumber].h
h(&neighbourArray[i], goalGrid, grids);

grids[neighbourArray[i].layer][neighbourArray[i].gridNumber].f
* grids[neighbourArray[i].layer][neighbourArray[i].gridNumber].g +

G_COEFF

H_COEFF *
grids[neighbourArray[i].layer][neighbourArray[i].gridNumber].h;

binaryHeapOpenAdd(grids[neighbourArray[i].layer][neighbourArray[i].gridN
umber]);
by
/*If it is on the open list already, check to see if this
path to that square is better, using G cost as the measure.
A lower G cost means that this is a better path. If so,
change the parent of the square to the current square, and recalculate the G
and F scores of the square.
If you are keeping your open list sorted by F score, you
may need to resort the list to account for the change.*/
else
{
if(grids[currentGrid->layer][currentGrid-
>gridNumber].g <
grids[neighbourArray[i].layer][neighbourArray[i].gridNumber].g)
{

}

*currentGrid = neighbourArray[i];

}

}
//d) Stop when you:

// Add the target square to the closed list, in which case the path

has been found (see note below), or
// Fail to find the target square, and the open list is empty. In

this case, there is no path.
while(!((currentGrid->layer == goalGrid->layer)&&(currentGrid-
>gridNumber == goalGrid->gridNumber))&&(!binaryHeapOpenIsEmpty()));

backtraceAndSmoothPath(goalGrid);

[R AR A A A KA KA KKK KA KA KA KA K H KA K HA KKK HH KA KA KKK |

[k sk kst ok ook skok sk sk ok ok sk ok skok skok sk ok
* Ege Universitesi *
Sk sk s ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kok ok ok ok ok
* Harun Bavunoglu *
* *
* Yiksek Lisans Tezi *
* 03.06.2011 *
k *
* costCalcs.c *

stk ko sk skl ko skl sk ok sk stk ok ko
#include "Configuration.h"
#include "grid.h"
#include <math.h>

const Float64 rEarth = 3443.8984;
const Float64 PI = 3.1415;

Configuration* config;

Float32 totalPassedTime;

Float32 tempDevTAS, tempDevFF;
Float32 weightDevTAS, weightDevFF;
Float32 altDevTAS, altDevFF;

Float32 distanceFlatPlane(Point* source, Point* dest)

{
Float32 deltaXSquare, deltaYSquare;
UInt32 deltaZSquare;
deltaXSquare = (dest->lat - source->lat) * (dest->lat - source->lat);
deltaYSquare = (dest->lon - source->lon) * (dest->lon - source->lon);
deltaZSquare = (dest->alt - source->alt) * (dest->alt - source->alt);
return sqrt(deltaXSquare + deltaYSquare + deltaZSquare);

}

Float32 toRadian(Float32 degree)

{
return degree * (PI / 189);

}

Float32 toDegree(Float32 radian)

{
}

return radian * (180 / PI);

Float32 distanceGreatCircle(Point* source, Point* dest)

{
Float32 temp;

temp = acos(sin(source->lat) * sin(dest->lat) + cos(source->lat) *
cos(dest->lat) * cos(dest->lon - source->lon));
return rEarth * toRadian(temp);

}

Float64 calculateTASTempDev(Int8 oat)

{
return config->tempDevPolynomTAS[@] * pow((Float32)oat, 4) +
config->tempDevPolynomTAS[1] * pow((Float32)oat, 3) +
config->tempDevPolynomTAS[2] * pow((Float32)oat, 2) +
config->tempDevPolynomTAS[3] * oat +
config->tempDevPolynomTAS[4];
¥
Float64 calculateTASWeightDev(UInt32 gW)
{
return config->weightDevPolynomTAS[@] * pow((Float32)gW, 4) +
config->weightDevPolynomTAS[1] * pow((Float32)gW, 3)
config->weightDevPolynomTAS[2] * pow((Float32)gW, 2)
config->weightDevPolynomTAS[3] * gW +
config->weightDevPolynomTAS[4];
}
Float64 calculateTASAltDev(Int8 alt)
{
return config->altDevPolynomTAS[@] * pow((Float32)alt, 4) +
config->altDevPolynomTAS[1] * pow((Float32)alt, 3) +
config->altDevPolynomTAS[2] * pow((Float32)alt, 2) +
config->altDevPolynomTAS[3] * alt +
config->altDevPolynomTAS[4];
}
Float64 calculateFFTempDev(Int8 oat)
{
return config->tempDevPolynomFF[@] * pow((Float32)oat, 4) +
config->tempDevPolynomFF[1] * pow((Float32)oat, 3) +
config->tempDevPolynomFF[2] * pow((Float32)oat, 2) +
config->tempDevPolynomFF[3] * oat +
config->tempDevPolynomFF[4];
}
Float64 calculateFFWeightDev(UInt32 gW)
{

return config->weightDevPolynomFF[@] * pow((Float32)gW, 4) +
config->weightDevPolynomFF[1] * pow((Float32)gW, 3) +
config->weightDevPolynomFF[2] * pow((Float32)gW, 2) +

config->weightDevPolynomFF[3] * gW +
config->weightDevPolynomFF[4];

}
Float64 calculateFFAltDev(Int8 alt)
{
return config->altDevPolynomFF[@] * pow((Float32)alt, 4) +
config->altDevPolynomFF[1] * pow((Float32)alt, 3) +
config->altDevPolynomFF[2] * pow((Float32)alt, 2) +
config->altDevPolynomFF[3] * alt +
config->altDevPolynomFF[4];
}
Intl6e getCourse(GridCell* source, GridCell* dest)
{
if(source->gridNumber == dest->gridNumber - config->rowWidth)
return 0;
else if(source->gridNumber == dest->gridNumber - config->rowWidth - 1)
return 45;
else if(source->gridNumber == dest->gridNumber - 1)
return 90;
else if(source->gridNumber == dest->gridNumber + config->rowWidth - 1)
return 135;
else if(source->gridNumber == dest->gridNumber + config->rowWidth)
return 180;
else if(source->gridNumber == dest->gridNumber + config->rowWidth + 1)
return 225;
else if(source->gridNumber == dest->gridNumber + 1)
return 270;
else if(source->gridNumber == dest->gridNumber - config->rowWidth + 1)
return 315;
}
UInt8 getPeriod(GridCell* current, GridCell* dest)
{
#ifdef _DEBUG
return 0;
#endif
return (UInt8)((config->currentTime + totalPassedTime) / (WEATHER_PERIOD
* 60));
}
UInt16 getTAS(GridCell* current, Int8 oat)
{

tempDevTAS = calculateTASTempDev(oat) / 10.0;

weightDevTAS = calculateTASWeightDev(current->fuelOnBoard + config-
>weightWithoutFuel) / 1el5;

altDevTAS = calculateTASAltDev(current->centerPoint.alt) /
10.0;

return current->calibratedAirSpeed + (UInt16)((tempDevTAS + weightDevTAS
+ altDevTAS)/3);

}

UInt16 calculateGS(GridCell* current, GridCell* dest)

UIntle tasl, tas2;

UInt8 wsl, ws2;

Intle wdl, wd2;

Float32 gsl, gs2, efflWsl, effls2;

if((dest->weather[getPeriod(current, dest)].temp > config-

>tempUpperLimit) | |

(dest->weather[getPeriod(current, dest)].temp < config-

>tempLowerLimit)| |

(dest->weather[getPeriod(current, dest)].windSpeed > config-

>maxAccSpeed))

return VERY_BIG;

tasl = getTAS(current, current->weather[getPeriod(current, dest)].temp);

wsl = current->weather[getPeriod(current, dest)].windSpeed * config-
>driftCoeff;

wdl = current->weather[getPeriod(current, dest)].windDir * config-
>driftCoeff;

effWsl = wsl * cos(toRadian(wdl - getCourse(current, dest)));
gsl = tasl + effWsl;

tas2 = getTAS(dest, dest->weather[getPeriod(current, dest)].temp);
tas2+= tasl;

ws2 = dest->weather[getPeriod(current, dest)].windSpeed * config-
>driftCoeff;

wd2 = dest->weather[getPeriod(current, dest)].windDir * config-
>driftCoeff;

>

effWs2 = ws2 * cos(toRadian(wd2 - getCourse(current, dest)));

gs2 = tas2 + efflWs2;
if(config->optimizationCharacteristic == 1)
{
// max GS
if((gsl + gs2)/2 < config->maxAccSpeed)
{
// speed up CAS
dest->calibratedAirSpeed = tas2;
}
else if((gsl + gs2)/2 > config->maxAccSpeed)
// slow down CAS
dest->calibratedAirSpeed = tas2;
}
}
else if(config->optimizationCharacteristic == 2)
{

// min FF -> min CAS
if(tasl + tas2 - tempDevTAS - weightDevTAS - altDevTAS

calculateTASWeightDev(current->fuelOnBoard +

config->weightWithoutFuel))

{
// slow down CAS

dest->calibratedAirSpeed = current->calibratedAirSpeed -

(tasl +
tas2 - tempDevTAS - weightDevTAS - altDevTAS -

calculateTASWeightDev(current->fuelOnBoard + config-
>weightWithoutFuel));

else if(tasl + tas2 - tempDevTAS - weightDevTAS - altDevTAS
<
calculateTASWeightDev(current->fuelOnBoard +
config->weightWithoutFuel))

{
// speed up CAS

dest->calibratedAirSpeed = current->calibratedAirSpeed +

(calculateTASWeightDev(current->fuelOnBoard + config->weightWithoutFuel)

(tasl +
tas2 - tempDevTAS - weightDevTAS - altDevTAS));

}
}
dest->currentFF = dest->calibratedAirSpeed * FF_CAS_COEFF;

return (gsl + gs2)/2;
}

Float32 calculateFuelFlow(GridCell* current, GridCell* dest)
{

tempDevFF = calculateFFTempDev(dest->weather[getPeriod(current,
dest)].temp);

weightDevFF = calculateFFWeightDev(current->fuelOnBoard + config-
>weightWithoutFuel);

altDevFF = calculateFFAltDev(dest->centerPoint.alt);

return current->currentFF + tempDevTAS + weightDevTAS + altDevTAS;

}

Float32 calculatePassedTime(GridCell* current, GridCell* dest)

{
Float32 dist;

UIntl6 gs;

dist = distanceGreatCircle(¤t->centerPoint, &dest->centerPoint);

if(config->optimizationCharacteristic == 1)
{
gs = config->maxAccSpeed;
else if(config->optimizationCharacteristic == 2)
{

gs = calculateTASWeightDev(current->fuelOnBoard + config-
>weightWithoutFuel);

}

return (dist / gs) * 60;
¥

UIntl16 calculateMinRequiredFuel(GridCell* dest, GridCell* goal)
{

}

UInt8 calculateRemainingFuel(GridCell* dest, GridCell* goal)
{

return calculatePassedTime(dest, goal) * calculateFuelFlow(dest, goal);

if(calculateMinRequiredFuel(dest, goal))

return 1;
else
return 0;
}
Float32 g(GridCell* currentGrid, GridCell* destGrid, GridCell* goalGrid,
GridCell** grids, Configuration* conf)
{
Float32 dist = 0.9;
Float32 ff = 0.09;
Float32 a = 0.09;
Float32 b = 0.9;
Float32 time = 0.0;
UIntl6 gs = 0;

config = conf;

dist = distanceGreatCircle(¤tGrid->centerPoint, &destGrid-
>centerPoint);

gs = calculateGS(currentGrid, destGrid);

if(gs == VERY_BIG)
return VERY_BIG;

time = dist / gs;

if((destGrid == goalGrid) &&
(calculateRemainingFuel(currentGrid, destGrid) < config-
>minApprFuel))
return VERY_BIG;

if(config->optimizationCharacteristic == 1)
{
if(calculateRemainingFuel(currentGrid, destGrid))
return currentGrid->g + time;

else
return VERY_BIG;
}
else if(config->optimizationCharacteristic == 2)
{

if(calculateRemainingFuel(currentGrid, destGrid))
return currentGrid->g + ff * time;
else

return VERY_BIG;

}

else

{

return dist;

}
}
Float32 h(GridCell* destGrid, GridCell* goalGrid, GridCell** grids)
{

return distanceGreatCircle(&destGrid->centerPoint, &goalGrid-
>centerPoint);

}

[HFHAA A KA KA KA A KA A KA K KKK

* Ege Universitesi *
3k 3k 3k sk sk sk sk sk sk skosk sk sk sk >k sk skosk skosk skok skok kok kok
* Harun Bavunoglu *
* *
* Yuksek Lisans Tezi *
* 03.06.2011 *
* *
* binHeap.c *

AR A KKK KKK KKK KK KKK K/

#include "grid.h"
#include <stdlib.h>

GridCell* heap;
UInt32 heapSize, arraySize;

UInt32 getLeftChildIndex(UInt32 nodeIndex)

{
return 2 * nodelndex + 1;
}
UInt32 getRightChildIndex(UInt32 nodeIndex)
{
return 2 * nodelndex + 2;
}
UInt32 getParentIndex(UInt32 nodeIndex)
{
return (nodeIndex - 1) / 2;
}
void binaryHeapOpenInit(UInt32 size)
{
heap = (GridCell*)malloc(size * sizeof(GridCell));
heapSize = 0;
arraySize = size;
}

void binaryHeapOpenShiftUp(UInt32 nodeIndex)

UInt32 parentIndex;
GridCell tmp;
if (nodeIndex != @)
{
parentIndex = getParentIndex(nodeIndex);
if (heap[parentIndex].f > heap[nodeIndex].f)
{
tmp = heap[parentIndex];
heap[parentIndex] = heap[nodeIndex];
heap[nodeIndex] = tmp;
binaryHeapOpenShiftUp(parentIndex);
}
¥
¥
void binaryHeapOpenAdd(GridCell a)
{
if (heapSize == arraySize)
return;
else
{
heapSize++;
heap[heapSize - 1] = a;
binaryHeapOpenShiftUp(heapSize - 1);
¥
}

void binaryHeapOpenShiftDown(UInt32 nodeIndex)

{
UInt32 leftChildIndex, rightChildIndex, minIndex;

GridCell tmp;
leftChildIndex = getLeftChildIndex(nodeIndex);
rightChildIndex = getRightChildIndex(nodeIndex);

if (rightChildIndex >= heapSize)

{
if (leftChildIndex >= heapSize)
return;
else
minIndex = leftChildIndex;
¥
else
{
if (heap[leftChildIndex].f < heap[rightChildIndex].f)
minIndex = leftChildIndex;
else
minIndex = rightChildIndex;
b

if (heap[nodeIndex].f > heap[minIndex].f)

tmp = heap[minIndex];
heap[minIndex] = heap[nodeIndex];
heap[nodeIndex] = tmp;
binaryHeapOpenShiftDown(minIndex);

}
}
UInt8 binaryHeapOpenIsEmpty()
{
return (heapSize == 0);
}

void binaryHeapOpenDelete(GridCell* d)

{
if (binaryHeapOpenIsEmpty())

return;
else
heap[@] = heap[heapSize - 1];
heapSize--;
if (heapSize > @)
binaryHeapOpenShiftDown(9);
}
}
GridCell* binaryHeapOpenGetLowest()
{
if (binaryHeapOpenIsEmpty())
return 0x0;
else
return &heap[0];
}
void binaryHeapOpenFree()
{
free(heap);
}

[HFHAA AR A KA A KA A KA KKK K

* Ege Universitesi *
sk sk sk ok sk ok sk sk ok sk sk ok sk sk ok sk sk sk sk sk sk ok sk sk ok ok sk ok

* Harun Bavunoglu *
* *
* Yiksek Lisans Tezi *
* 03.06.2011 *
ES *
* stack.c *

****************************/

#include "grid.h"
#include <stdlib.h>

typedef struct node

{
GridCell* cell;

struct node *1link;
}stackElement;

stackElement* stackTop;

void initStack()

{
stackTop = 0x0;
¥
void pushStack(GridCell* g)
{
stackElement *x;
x=(stackElement*)malloc(sizeof(stackElement));
x->cell = g;
x->link = stackTop;
stackTop = x;
}
GridCell* popStack()
{
GridCell* a;
if(stackTop==0x0)
{
return 0x0;
¥
else
{
a=stackTop->cell;
free(stackTop);
stackTop=stackTop->1ink;
return (a);
b
¥

(Gill, 1995)

