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FOREWORD

Cavitation is a most unpleasant hydrodynamic phenomenon, whose harmful effects is
both widespread and obvious and seriously handicap many phases of science and
engineering. Conversely, its basic nature has long been veiled in mystery and only
recently is it beginning to be understood.

The generation of cavitation can cause severe damage in hydraulic structures and
machinery Therefore, the prevention of cavitation is an important concern for
designers of hydraulic structures.

This study is mainly concerned about the characteristics of cavitation and its
prevention ways, and it can be very instructive for advanced students, scientists and
engineers, who want to understand the true nature of cavitation.

I would like to express my deep appreciation and thanks to my advisor Mr. Prof. Dr.
Ilhan AVCI and my grateful thanks to my family members for their support, and my
special thanks to my roommate and best friend Mr. Mani BAGHAEI FARD for
his patience and tolerance to me, also, my high regards to my friends Burcu
ODABASI and Volkan OGUT for their helps in writing this thesis.

September 2011 Mehdi JAHANI
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CAVITATION EFFECTS ON STABILITY, ECONOMIC LIFE AND
PERFORMANCE OF HYDRAULIC STRUCTURES

SUMMARY

Cavitation is the formation of bubbles or cavities in a liquid, initiated by surface
irregularities and roughnesses that are subjected to high-velocity water flow. The
bubble cavities are filled with water vapor and air, and form where the local pressure
drops to a value that will cause the water to vaporize at the prevailing water
temperature. Cavitation bubbles will grow and travel with the flowing water to an
area where the pressure field will cause collapse. When a bubble collapses or
implodes close to or against a solid surface, an extremely high pressure is
generated, which acts on an infinitesimal area of the surface for a very short time
and damages the substrate materials. When cavitation bubbles implode on a metal
surface, pressures of up to 1300 kg/cm?are produced, and the velocity of impact of
the fluid on the surface may reach 85 m/s.

Cavitation damage in hydraulic structures is a function of the cavitation potential, the
duration of the operation, the boundary roughness and alignment, and the strength of
the materials from which the boundary is constructed, a method of locating sites of
cavitation damage in spillways is presented. Curves delineating damage as a function
of the cavitation potential and the duration of operation are given. The formulas
allow a determination of areas in which attention to surface tolerances can protect the
boundary. These damages are affecting performance and economic life of hydraulic
structures and machinery.

In addition, for protecting structures there are some ways that can be used to define
when and where aeration grooves must be used. Some methods of preventing
cavitation damage, other than aeration grooves, are discussed. The flow conditions
that dictate the various cavitation presentation methods are delineated.

Noise and vibration occur in many applications, ranging from all forms of turbo
machinery to large valves in industrial plants and spillways. Associated with the
deleterious effects of performance breakdown, noise, and vibration, there is the
possibility of erosion.
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SU YAPILARINDAKI KAVITASYON OLAYININ YAPI STABILITESI,
EKONOMIK OMUR VE ISLETME VERIMLILiGI UZERINDEKI
ETKILERI

OZET

Kavitasyon ; kabarciklarin veya bosluklarin bir siv1 iginde, yiiksek hizli su akisina
maruz kalan , yiizey diizensizlikleri ve piiriizliiliik sebebiyle baglatilan olusumdur.
Kabarcik bosluklar1t su buhari ve hava ile doludur ve yerel basing mevcut su
sicakliginda buharlagsma degerinin altina diistiigii anda olusacaktir.

Kavitasyon kabarciklar1 bliyiiyecek ve ta ki bir yerdeki basing baloncuklarin
patlamasina neden oluncaya kadar akiskanla birlikte hareket edecektir. Ne zamanKi
bir baloncuk yiizeye yakin bir yerde patlarsa,cok biiyiik basinglar olusur ve cok
kiiglik bir alanda cok kisa zamanda buyuk hasarlar olusacaktir. Eger baloncuklar
metal ylizey yakinlarinda patlarsa; yerel hiz 85 m/s’ e yiikselerek 1300 kg/cmzbasmg:
olusacaktir.

Su vyapilarindaki kavitasyon hasari, isletme zamanina, siir tabakasindaki
puriizlilige ,smirdaki ¢ikintilara ve malzeme kuvvetine baghdir. Kavitasyon yerini
bulmak i¢in bu c¢alismada bir yontem gosterilmistir. Bir kag ¢izelgede kavitasyon
hasarin1 ve kavitasyon potansiyelini, kavitasyon zamanin etkilerini ve bunlarin
baglantilarim1 gostermekteyiz. Formiiller hangi alanlarin piiriizliiliikklerinin kavitasyon
icin tehlikeli olabileceklerini tahminine izin verirler.S6z konusu olan hasarlar yap1
tizerinde isletme verimliligini ve ekonomik 6mriinii etkilemektedir.

Kavitasyondan korunmak igin bir ka¢ yol vardir. Bunlardan biri de vantuz
kullanmaktir.Vantuzdan bagska yollar1 da bahsetmis bulunmaktayiz. Kavitasyona
etkili olan akim kosullar1 da ¢ok 6nemlidir. Gurultl ve titresim de kavitasyonun yan
etkileridir ki bunlar1 genellikle makinelerde, sanayi valflerinde ve dolu savaklarda
gormekteyiz. Bahsedilen isletme verimliligi diisiisii, gliriiltii ve titresim bir yerde
olusan erozyonun isaretidir.
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1. INTRODUCTION

Cavitation had been postulated theoretically by Reynolds long before it was first
observed in the trials of the destroyer HMS Daring in 1893. The speeds reached by
HMS Daring were well below those expected and the trouble was traced to poor
propeller performance due to formation of vapor bubbles on the blades. A few years
later the first turbine ship, the Turbinia, met similar difficulties. She was fitted with
seven different propellers in turn but none enabled her to reach anything like the
predicted speed. Eventually, it was found necessary to replace the single shaft by
triple shafts with three propellers on each; thus equipped, the Turbinia, attained a

speed of 32 knots.

Cavitation is caused by the boiling of a liquid at normal temperatures and low
pressure. It is accentuated by the presence of dissolved air which is released when
pressures are reduced. It is the combination of air release and vaporization caused by

low pressures induced in a fluid that we call cavitation.

Since the time of the Daring and the Turbinia investigations, the chemical, physical
and engineering aspects of cavitation have been the subject of intensive research.
Investigations have been made of the process of bubble formation and collapse, the
role of gases dissolved in the liquid, the effect of bubble formation and collapse on
pumps, turbines, propellers, dams and similar structures. It has been found for
instance that the formation of bubbles upsets the flow of fluid through a machine,
causing loss of pressure, efficiency and thrust. Also the collapse of the bubbles

causes shock waves which erode the metal of the turbine impeller or propeller.

Its effect on hydrofoils is to cause loss of lift, and a similar effect is caused on the
performance of machines, pumps, turbines and propellers. Each type of machine is
examined in turn and the cavitation performance characteristic investigated, together
with the design recommendation and optimization. Cavitation erosion causes trouble

in many machines and static devices.



In the past decade high dams have been constructed and the flow rates discharged
over the spillways have been very large. In many projects, the heights of dams are in
excess of 200m and the velocities on the concrete chutes of spillway can be of the
order of 50m/s. As the velocity on the spillway increases, the threat of damage to the
structure by cavitation erosion also increases. Once damage is initiated on the
concrete surface, catastrophic damage is accelerated by the combined action of
cavitation and impingement attack. An extreme example is shown in Figure 1, which
illustrates the damage sustained in the spillway tunnel of the Yellowtail Dam in
South Central Montana.

Figure 1.1: Cavitation damage in the spillway tunnel of the Yellowtail Dam
(Arndt, 2009).

The following Chapters are mainly subjected to find out more information on the
phenomena and ways to predict, prevention of cavitation in large hydraulic structures

and Fluid machinery.



2. FUNDAMENTALS OF CAVITATION

2.1. Hydraulic Structures, Hydraulic Structures Stability, Economic Life, and

Management Productivity Concepts

A hydraulic structure is a structure submerged or partially submerged in any body of
water, which disrupts the natural flow of water. They can be used to divert, disrupt or
completely stop the flow. An example of a hydraulic structure would be a dam,
which slows the normal flow rate of river in order to power turbines. A hydraulic
structure can be built in rivers, a sea, or any body of water where there is a need for a

change in the natural flow of water.

One of the main considerations of Dams and turbines design is stability of these

structures during their use or economic life.

Since we spend too much money to build such structures and it’s important to keep
these structures working cause of flood or energy problems, we have to pay attention

to stability of these structures.

One of the main problems which endanger the stability and performance of hydraulic

structures is Cavitation.

Hydraulic structures are among the most widespread engineering objects with a high
economic significance and social and ecological responsibility; Special attention has

always been devoted to provision of their reliability and safety.

In Table 2.1 you can see estimated average lives for many thousands of different
types of industrial assets. The lives (in years) given for certain elements of hydraulic
projects are listed. Such estimates of average lives may be helpful even though they
are not necessarily the most appropriate figures to use in any given instance (Mays,
2001).



Table 2.1: Live (in years) for elements of hydraulic projects (Linsley et al, 1992).

Elements Years | Elements Years
Barges 12 Pipes, Cast iron 2-4in. 50
Booms, log 15 Pipes, Cast iron 4-6in 65
Canals and ditches 75 Pipes, Cast iron 8-10in 75
Coagulating basins 50 Pipes, Cast iron 12in and over | 100
Construction equipment 5 Concrete Pipes 20-30
Crib Dams 25 PVC Pipes 40
Earthen, concrete or masonry Dams | 150 Steel Pipes Under 4in 30
Loose rock Dams 60 Steel Pipes over 4in 40
Steel Dams 40 Pumps 18-25
Filters 50 Reservoirs 75
Fossil-fuel power plants 28 Standpipes 50
Generators above 3000kva 28 Concrete Tanks 50
Generators 1000-3000kva 25 Steel Tanks 40
Generators 50hp-1000kva 17-25 | Wood Tanks 20
Generators Below 50hp 14-17 | Tunnels 100
Hydrants 50 Turbines, Hydraulic 35
Marine construction equipment 12 Wells 40-50
Meters, water 30 Penstocks 50
Nuclear power plants 20




2.2. Basic Definition of Cavitation

Cavitation is a process that usually is associated with damage to a surface or marked
by intense noise. Both phenomena may occur during cavitation, but actually
cavitation is neither of these. Instead, Cavitation is defined as the formation of a
bubble or void within a liquid. An understanding of the cavitation process can be
obtained by examining the process of boiling. When water is heated the temperature
increases which results in increases in its vapor pressure. When the vapor pressure
equals the local pressure, boiling will occur. At the boiling point, water is changed
into water vapor. This change first occurs at localized points within the water and it
is observed as small bubbles. The temperature at which boiling occurs is a function
of pressure. As pressure decreases, boiling will occur at lower and lower
temperatures. Since the pressure is a function of elevation, boiling occurs at lower
temperatures at higher elevations as noted on Figure 2.1. If it were possible to go to a

high enough elevation, boiling would occur at room temperature.

Although cavities are formed in water by boiling and the process occurs when the
local pressure equals the water vapor pressure, a technical difference between boiling
and cavitation exists. Boiling is the process of passing from the liquid to the vapor
state by changing temperature while holding the local pressure constant. Cavitation is
the process of passing from the liquid to the vapor state by changing the local
pressure while holding the temperature constant (Fig. 2.1). The local pressure
reductions associated with cavitation can be caused by turbulence or vortices in

flowing water.

An example of bubble formation within a liquid, which occurs by reductions in
pressure, can be seen when a bottle containing a carbonated liquid is opened. Upon
opening the bottle, bubbles form within the liquid and rise to the surface. While in
the capped bottle, the liquid is under enough pressure to keep the carbon dioxide in
solution. However, as the bottle is opened, the pressure is reduced and the liquid
becomes supersaturated relative to the carbon dioxide. Therefore, the carbon dioxide
begins to diffuse out of the liquid (Falvey, 1990).
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Figure 2.1: Phase diagram for water (Falvey, 1990).
2.3. Mechanism of Happening Cavitation in a Flow

In hydraulic structures, water contains air bubbles and various types of impurities of
many different sizes. As will be seen later, microscopic air bubbles or impurities in
the water are necessary to initiate cavitation. However, once started, vaporization is
the most important factor in the cavitation bubble growth. The presence of air
bubbles in the flow also has an effect on damage and noise produced by the

cavitation.

Water does not spontaneously change from the liquid to the vapor state as either the
temperature is raised or the pressure is decreased. Water which has been distilled and
filtered many times can sustain extremely large negative pressures without
cavitating. Cavitation and boiling are both observed to begin at the location of
impurities in the flow or at minute cracks on a smooth boundary. It is not known if
particles of dirt serve as nuclei for the vaporization. However, Katz (1984) observed
that the appearance of visible cavitation in flowing water was always preceded by the
occurrence of a swarm of microscopic bubbles in a small region of the flow field.

The importance of bubbles-as cavitation nuclei-has been known for a long time and



all of the theory, for the formation of cavitation, has been built up around the

existence of microscopic bubbles in the flow.

The sizes of these nuclei need to be in the range 0.1 to 10um, and two theories have
been proposed to explain their existence and persistence. The first is that the nuclei
are stabilized within the interstices of microscopic dust particles; the second is that
an organic film forms around a nucleus and thereby maintains the internal pressure

and prevents diffusion of air.

When the ambient pressure in the liquid falls close to the vapor pressure, the nuclei
grow rapidly and become visible as a cloud of tiny cavitation bubbles. The inception
pressure which triggers this growth is usually slightly lower that the vapor pressure,
but depends upon the initial size of the nuclei and upon the ratio of air pressure to
vapor pressure within them. The ultimate size of the cavities is determined by the
time that they are subject to pressures lower than the inception pressure.

In addition to describing cavitation it can be described by its occurrence. For
instance, if the pressure of flowing water is decreased through increases in the flow
velocity, a critical condition is reached when cavitation will just begin. This critical
condition is called incipient cavitation. Similarly, if cavitation exists and the flow
velocity is decreased or the pressure is increased, a critical condition is reached when
the cavitation will disappear. This condition is called desinent cavitation. Incipient
cavitation and desinent cavitation often do not occur at the same flow conditions.
The distinction is especially important in laboratory investigations, but can usually

be ignored for all practical purposes in hydraulic structures.

Finally, a set of critical flow conditions exists for which the individual cavitation
bubbles suddenly transition into one large void. A condition under which the large
void occurs is called variously as cavity flow, developed cavitation, or

supercavitation (May, 1987).



2.4. Parameters of Cavitation and Cavitation's Structure

The preceding section alluded to the existence of a critical combination of the flow
velocity, flow pressure, and vapor pressure of the water at which cavitation will
appear, disappear, or spontaneously transition into supercavitation. A parameter
exists which can be used to define these various occurrences of cavitation. The

parameter is known as the cavitation index and is derived below (Falvey, 1990).

The equation for steady flow between two points in a flow stream is known as the

Bernoulli equation. It can be written:

PV

2
S+ Py + Zopg =2+ P + Zpg (2.1)

Where:

P = pressure intensity

Po = reference pressure

V = flow velocity

V, = reference velocity

Z = elevation

Zo = reference elevation

g = gravitational constant (acceleration)

p = density of water

(The subscript o refers to upstream flow location as noted on Fig 2.2)

In dimensionless terms, the comparable equation results in a pressure coefficient, Cp.

_ (P+Zpg)—(Po+Zopg) _ Ef~Eo _ . V2
Cp = PVE/2 S pvE/z (Vo) &2
Where:

Er = potential energy of flow (defined by values in parentheses)
Eo = potential energy at reference point

In many cases, the gravitational terms are small relative to the pressure term or they

are about equal; thus, the pressure coefficient can be written:
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Figure 2.2: Pressure distribution on hemispherical rod (Falvey 1990).
The pressure coefficient is also known as the pressure parameter or Euler number.

The value of the Euler number, at any point on a body, is a constant as long as the
minimum pressure on the body is greater than the vapor pressure of water. For
example, on Figure 2.2, the pressure at any point on a rod-having a hemispherical
end-is predictable in terms of the upstream conditions. However, if the pressure at
the location that corresponds to the minimum Euler number drops to vapor pressure,
then the pressure at that point will not decrease any further. The upstream conditions
that correspond to the onset of cavitation can be calculated by replacing the boundary
pressure in Equation 2.2 with vapor pressure and setting the value of the ratio equal
to the minimum Euler number. The resulting parameter is known as the cavitation

index, o.

_ Eo—Zpg—Py _
0= OpVT = _(Cp)min (23)

If elevation Z and Z, are equal, the cavitation index is expressed as:

Po—Py
= m = _(Cp)min (2.4)

Where P, is the vapor pressure of water.

For smooth streamlined bodies, the most negative pressure occurs on the boundary.
For these cases, the cavitation index can be estimated from pressure measurements
made on the surface. However, if the body is not streamlined, the flow will separate
from the body and the most negative pressures will occur within the flow. In these
cases, the cavitation index will be less than the absolute value of the minimum Euler

number on the body.



To avoid ambiguities, both vapor pressure and reference pressure are referenced to
absolute zero pressure as shown on Figure 2.3. For example, in absolute units, the

reference pressure is given by:
Py=P,+P, (2.5)

In the literature, sometimes one notes a reference to a reduced or vacuum pressure.
This is done to avoid expressing the gauge pressure as a negative number when the
reference pressure is less than the atmospheric pressure. When using values of the

vacuum pressure, the appropriate relationship for the reference pressure, Pq , is given
by:

P,=P,— P, (2.6)
Where:

Po = atmospheric pressure

Py = gauge pressure

P, = reduced pressure (vacuum)

Reference Pressure, Pg

P‘J
Atmospheric Pressure, P,
Pa
Vacuum,
2
Reference Pressure, Py

—"—F‘\.. Vapor Pressure, Py

Absolute Zero Pressure

Figure 2.3: Definition of pressure scales.

For example, the cavitation index can be calculated for the following conditions by
using Equations 2.4 and 2.5:
T.=10C V =30 m/s

Py, =1.23 kPa Py =9.8 kPa (1.0 m water column)
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P, =101.0 kPa p =999.7 kg/m®

_ (101 +9.8-1.23) x 10°
h 30)2

5]
Table 2.2 provides values of density, vapor pressure, and viscosity of water as a

= 0.244

g

999.7 [(

Function of temperature.

Table 2.2: Properties of pure water (Falvey, 1990)

Temperature C | Density Kg/m® | Vapor Pressure KPa | Kinematic viscosity
m?/sx10*

0 999.868 0.61 1.787

5 999.992 0.87 1.519
10 999.726 1.23 1.307
15 999.125 1.70 1.140
20 998.228 2.33 1.004
25 997.069 3.16 0.893
30 995.671 4.23 0.801
35 994.055 5.62 0.724
40 992.238 7.38 0.658
45 990.233 9.58 0.602
50 988.052 12.3 0.553
60 983.20 19.9 0.475
70 977.77 31.1 0.413
80 971.80 47.3 0.365
90 965.31 70.1 0.326
100 958.36 101.3 0.294

In practical situations, flow conditions are not as ideal as those shown on Figure 2.2.
For instance, for a bluff body within a boundary layer, the definition of the cavitation
index depends upon the reference location as shown on Figure 2.4. In this case, three
different reference locations are noted; the three locations and corresponding

cavitation indexes are:

1. Far upstream and outside of the effects of the boundary layer;

_ Pu_Pv
O-u - 2
pVi/2

2.7)
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2. Immediately upstream of an offset and at the maximum height of the offset;

_ Pp—Py
op = _prf/Z (28)

3. Outside of the boundary layer and in the plane of the offset;

_ Pp—Py,
= i (2.9)

Where:

Pn = Pressure in free stream in plane of offset

Pu = pressure in free stream upstream of beginning of boundary layer
P, = vapor pressure of water

V}, = free stream velocity in plane of offset

V}, = velocity at height of offset

V., = free stream velocity upstream of beginning of boundary layer

Boundary
layar — p— . —
. J—
L - -
—
— B
)

VH —]
- o0l C"‘ r_..r“
2
IIIATR XTI I T 7, —L

Figure 2.4: Reference Velocity definitions (Falvey, 1990).

For shear flows, several forms of the cavitation parameter have been proposed. Each
is based upon easily measurable reference conditions. For example, the cavitation
index for a submerged jet, oj, is given by:

_ Pe_Pv
%= vz (210)
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Where:
Pe = Pressure in core of jet
V. = Velocity in core of jet

Although one parameter such as the cavitation index-in whatever form it is
expressed-cannot describe many of the complexities of cavitation, it is an extremely
useful parameter to indicate the state of cavitation in a hydraulic structure. For
example, for flow past a sudden into-the-flow offset, cavitation will not occur if the
cavitation index (defined by Equation 2.7) is greater than about 1.8 as noted on
Figure 2.5. As the cavitation index decreases below 1.8, more and more cavitation
bubbles form within the flow. To the naked eye, the cavitation appears to be a fuzzy
white cloud. However, a flash photograph reveals that the cloud consists of
individual bubbles. For even lower values of the cavitation index, the cloud suddenly
forms one long supercavitating pocket (Falvey, 1990).

Occaslonal cavltatlon
Fll.. EEL.. bubb les observed
-‘0
i i
a. No cavitation, ¢ = 3.0 b. Incipient cavitation, ¢ = 1.8
Many smal!l bubbles one large cavity Detached cav!+ty

—_———

c. Developed cavitation, 0.3 < ¢ < 1.8 d. Supercavitation, o < 0.3

Figure 2.5: Cavitation development (Falvey, 1990).
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3.CAVITATION IN HYDRAULIC STRUCTURES

3.1.0ccurrence of Cavitation Phenomena in Hydraulic Structures

In most hydraulic structures the ambient pressure is close to atmospheric, so
cavitation is normally associated with flows of high velocity. Cavitation problems
can arise when the velocity reaches about 15m/s, and above 25m/s serious damage

can be expected if adequate precautions are not taken.

If a flow remains attached to a bounding surface, cavitation-producing pressures are
normally the result of turbulent velocity fluctuations in the boundary layer and/or of
flow curvature. The point of minimum pressure on a surface can be measured or can
sometimes be calculated theoretically from potential theory, with if necessary a

suitable allowance for displacement thickness of the boundary layer.

However, turbulent fluctuations may cause cavitation to occur sooner than predicted,
while the position at which it starts may be downstream of the point of minimum
pressure (due for example to the formation of a laminar separation bubble). If a
pressure transducer, mounted at a suitable point on the boundary, indicates transient
values close to vapor pressure, the cavitation is likely to occur. Damage will

normally take place to the spot at which the cavities are generated.

If a flow separates from a surface, cavities will form first in the fast-rotating eddies
that are shed downstream. The pressure in the eddies will be lower than at the point
of separation, so surface —mounted transducers will not provide a good indication of
the likelihood of cavitation. The cavities will be swept downstream and will collapse

when they enter a region of high pressure (May, 1987).

3.1.1. Typical situations favorable to cavitation

e Wall geometry may give rise to sharp local velocity increases and resulting
pressure drops within a globally steady flow. This happens in the case of a

restriction in the cross-sectional area of liquid ducts (Venturi nozzles), or due
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to curvature imposed on flow streamlines by the local geometry (bends in
pipe flow, upper sides of blades in propellers and pumps).

Cavitation can also occur in shear flows due to large turbulent pressure
fluctuations Damage caused by shear flows can therefore occur a
considerable distance downstream of the point of separation. This type of
cavitation can be produced by local irregularities in the boundary (e.g. sharp
steps at joints) or by the overall geometry of the structure. Examples of the
latter include horizontal shear flows generated by high-velocity submerged
jets, or vertical shear flows created by a sudden increase in channel width
(e.g. two or more control gates discharging to a single tunnel).

The basic unsteady nature of some flows (e.g. water hammer in hydraulic
control circuits or ducts of hydraulic power plants, or in the fuel feed lines of
Diesel engines) can result in strong fluid acceleration and consequently in the
instantaneous production of low pressures at some points in the flow leading
to cavitation.

The local roughness of the walls (e.g. the concrete walls of dam spillways)
produces local wakes in which small attached cavities may develop.

As a consequence of the vibratory motion of the walls (e.g. liquid cooling of
Diesel engines, standard A.S.T.M.E. erosion device) oscillating pressure
fields are created and superimposed on an otherwise uniform pressure field. If
the oscillation amplitude is large enough, cavitation can appear when the
negative oscillation occurs.

Finally, attention has to be drawn to the case of solid bodies that are suddenly
accelerated by a shock in a quiescent liquid, particularly if they have sharp
edges. The liquid acceleration needed to get round these edges produces low
pressures even if the velocities are relatively small immediately after the
shock (Pierre Franc and Marine Michel, 2004).

Structures where damage has been reported include:

1
2
3.
4

Open-Channel spillways

Bottom outlets in dams

High-Head gates and gate slots

Energy dissipaters including hydraulic-jump stilling basin.

In next parts we will mention cavitation in Tunnels and Energy dissipaters.
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3.2. The Main Effects of Cavitation in Hydraulic Structures

If a hydraulic system is designed to operate with a homogeneous liquid, additional
vapor structures due to cavitation can be interpreted, by analogy with the case of
mechanical systems, as mechanical clearances. The vapor structures are often
unstable, and when they reach a region of increased pressure, they often violently
collapse since the internal pressure hardly varies and remains close to the vapor
pressure. The collapse can be considered analogous to shocks in mechanical systems
by which clearances between neighboring pieces disappear. Following this, a number
of consequences can be expected:

— Alteration of the performance of the system (reduction in lift and increase in drag
of a foil, fall in turbo machinery efficiency, reduced capacity to evacuate water in

spillways, energy dissipation, etc.);
— The appearance of additional forces on the solid structures;
— Production of noise and vibrations;

— wall erosion, in the case of developed cavitation if the velocity difference between

the liquid and the solid wall is high enough.

Thus, at first glance, cavitation appears as a harmful phenomenon that must be
avoided. In many cases, the free cavitation condition is the most severe condition
with which the designer is faced. To avoid the excessive financial charges that would
be associated with this, a certain degree of cavitation development may be allowed.
Of course, this can be done only if the effects of developed cavitation are controlled.
The negative effects of cavitation are often stressed (Pierre Franc and Marine Michel,
2004).

3.3. Significant Causes of Flow and Structure Profile Parameters on Happening

a Cavitation

Categories of Surface Roughness

Upon examining the flow surface of a hydraulic structure, the flow surface
irregularities & or the surface roughness can be characterized usually as belonging to
one of two main categories (1) singular (isolated) roughnesses or (2) uniformly

distributed roughnesses. Singular roughnesses are irregularities in a surface that are
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large relative to the surface irregularities from where they protrude. A uniformly

distributed roughness is a surface texture that does not contain singular roughnesses.

Sometimes, singular roughnesses are referred to as local asperities. Typical examples
of these in hydraulic structures include:

1. offset into-the flow, Fig 3.1a;

2. offset away-from the flow, Fig 3.Ib, c, d;
3. Voids or grooves, Fig 3.le; and

4. Protruding joints Fig 3.1g.

In all these cases, cavitation is formed by turbulence in the shear zone; the action is
produced by the sudden change in flow direction at the irregularity. The location of

the shear zone can be predicted from the shape of the roughness.

Depending upon the shape of the roughness, cavitation bubbles will collapse either
within the flow or near the flow boundary.

Figure 3.If depicts cavitation above a distributed roughness. Cavitation occurs within
the flow because of turbulence generated by the roughness of the boundary. The
cavitation location is not predictable; however, cavitation always occurs within the

body of the flow for distributed roughnesses (Falvey, 1990).

The principal method of predicting whether a surface irregularity will cause
cavitation in a prototype structure is to calculate the cavitation number ¢ of the flow
from Equation (2.4), and compare it with previously determined values of the
incipient cavitation index o; for that type of irregularity; cavitation will occur if o <

oj.

Values of g; have been obtained for many types of irregularity, some of which are

shown above. The methods of determining o; include:

1. Theoretical predictions of the minimum pressure on the surface of the

irregularity;

2. Laboratory measurements of the minimum pressure on the surface of the

irregularity;

3. Laboratory observations of cavity formation using cavitation tunnels (no free

surface) or vacuum test rigs (with free surface);
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4. Field measurements of surface pressure or cavitation damage at irregularities.

FLOW L - Vapor cavities
Vapor cavities
T e A ~ Domage>
.- Domage
q_ b. Offset away from
a. Offset into flow flow

Vapor cavities

c. Abrupt curvature d. Abrupt slope away
away from flow from flow

— ;Vupnr cavities:

e. Void or transverse Pl -""‘Dumuge
groove f. Roughened surface
— Vapor cavities
7 "NpDamage g Protruding joint

Figure 3.1: Typical isolated roughness elements found in hydraulic structures
(Falvey, 1990).
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Results based on field studies are the most appropriate, but very few are available
because of the difficulties of carrying out controlled tests. If the flow separates at an
irregularity, the lowest pressures will occur in eddies within the fluid; values of a;
determined from measured or predicted surface pressures may thus be under-
estimated. Data from cavitation tunnels and vacuum test rigs, backed up by field

measurements, should therefore be used where possible.

In general, most of the experimental results for a given type of irregularity are in
reasonable agreement. Discrepancies between tests do exist, but they are normally
fairly small in comparison with the effects produced by minor changes in shape (e.g.
rounded edges instead of sharp edges). Moreover, irregularities due to construction
faults in spillways and tunnels have three-dimensional shapes which will seldom

match precisely those tested in the laboratory.

Movement of concrete formwork is the most common cause of irregularities, and can
give rise to abrupt offsets and chamfers (both into and away from the flow), sudden
changes in slope, cusped joints, and undulations (see types a, b, c, d, e, f, g in Figure
3.1). Of these, abrupt offsets into the flow (Type a) have the greatest cavitation
potential, and a suitable formula for calculating the o; value is that due to (Liu,
1983),

o; = 1.02h%326 | h < 15mm (3.1)
Where h is the height of the step in mm.

If the edge of the offset is rounded to a radius of r=0.5h, the value of o; is reduced to
86% of that given by Equation (3.1).

Figure 3.2: Abrupt offsets into the flow

When calculating the cavitation number o of the flow from equation 2.4, the values
of velocity V, and absolute static pressure Py should be those at the level of the top of
the offset; Surface irregularities just downstream of high-head gates are particularly
liable to cause cavitation because the boundary layers are very thin, and do not

protect the irregularities from the high free-stream velocities.
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The cavitation potential of construction faults can be reduced by grinding them to
form chamfers (May, 1987).

Data for chamfers angled away from the flow (Type c, d on Fig 3.1) are limited, and
may not be comparable because of different definitions of the characteristic velocity
(e.g. near the bed, or depth-averaged). Laboratory studies indicate that the values of

oi tend to be higher than for into-flow chamfers of equal slope.

As the flow velocity is increased, the standards of surface finish required to prevent
cavitation eventually become impracticable, particularly in cases where a convex
surface reduces the static pressure, or the boundary layers are not fully developed.
Some references suggest that use of the parameter o; for cavitation inception is not
appropriate in design, because damage does not occur until the cavitation index o of
the flow falls below ;. Wang & Chou (1979) proposed that the design criterion
should be o > 0.8 g;. Field tests at Bratsk Dam (USSR) reported by Galpertin et al
(1977) and Oskolkov & Semenkov (1979) provided values of the index o; for

incipient damage at chamfers angled into and away from the flow.
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Figure 3.3: Values of g for surface irregularities (Wang & Chou, 1979).
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The results are presented in Figure 3.4, and indicate that chamfers away from the

flow have slightly higher values of g; than chamfers projecting into the flow.
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Figure 3.4: Values of g;for surface irregularities (Oskolkov & Semenkov, 1979)

Another factor to be considered in design is the likely duration of the cavitation
attack; as the cavitation number o of the flow decreases, the safe operating time is
reduced. Falvey (1983) used field data to produce Figure 3.5, which shows a
relationship between the value of cavitation parameter, its duration and the amount of

cavitation damage.
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Figure 3.5: Cavitation damage curve (Falvey, 1983)

When the geometry of flow boundaries causes streamlines to curve or converge, the
pressure will drop in the direction toward the center of curvature or in the direction
along the converging streamlines. For example, Fig. 3.6 shows a tunnel contraction
in which a cloud of cavities could start to form at Point ¢ and then collapse at Point d.
The velocity near Point ¢ is much higher than the average velocity in the tunnel
upstream, and the streamlines near Point ¢ are curved. Thus, for proper values of
flow rate and tunnel pressure at 0, the local pressure near Point ¢ will drop to the

vapor pressure of water and cavities will occur.

- {3}

" Loom _

Figure 3.6: Tunnel Contraction
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3.4. Happening of Cavitation in Tunnels and Gates

Cavitation can be a potentially serious problem in intermediate and low-level outlets
in dams, and may occur at inlets to tunnels, at high-head gates, and in tunnels
downstream of gates.

Convergence and curvature of the flow entering a tunnel can produce sub-
atmospheric pressures, which together with the effect of turbulent fluctuations may
be low enough to cause cavitation. If the flow separates in an inlet, these methods
will under-estimate the likelihood of cavitation, because the lowest pressures will not
occur at the boundaries but within the fluid. Separation may be caused by a poorly-
designed transition, by a notch or slot, or by a secondary flow issuing from a

connecting shaft.

The supporters and lifting mechanisms for vertical leaf gates are normally located on
the downstream side of the gate, and are accommodated in slots in the side walls so
as to protect them from high velocity flow. Such slots have often been a cause of
cavitation damage. High velocity flow past a rectangular slot (Figure 3.7) may

produce cavitation in three ways:

1. Flow separation at the upstream corner, with cavities being generated in the
free shear layer and carried downstream by the flow;

2. Flow separation at the downstream corner, with cavities collapsing where the
flow re-attaches to the wall of the tunnel;

3. Vortex formation within the slot, with possible damage to the sides and the

gate supports (May, 1987).

The relative importance of these sources various with the aspect ratio of the slot, and

may be altered by the use of offsets and transitions.
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d s o Gate slot

Figure 3.7: Flow around rectangular slot.

Many studies have been made of two-dimensional flow past various shapes of slot,
some of which are shown in Figure 3.8. The tests correspond approximately to the
conditions which exist when a gate is fully open and the slot is not occupied by the
lifting mechanism. Some studies have compared different shapes of slot on the basis
of pressure measurements around the boundaries. However, studies carried out in
cavitation tunnels are more useful and reliable, because the conditions for cavitation

inception can be measured directly.

There is general agreement between studies about which types of gate slot have the
lowest cavitation potential. A plan rectangular slot (Type 1A in Figure 3.8) is
satisfactory for low heads, but Jin et al (1980) recommend that the length/ depth ratio
should be kept in the range 1.4 < L/h < 2.5, and if possible between 1.6 <L/h < 1.8

for the best performance.
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Figure 3.8: Types of Gate Slots

Strong vortex action occurs if L/h < 1.2, and cavitation due to flow separation
becomes serious if L /h > 2.5. Offsetting the wall downstream of the slot (as in Type
1B in Fig 3.8) is, by itself, not effective; the offset reduces the risk of cavitation at
the downstream corner of the slot, but increases it at the upstream one. The designs
which were found to have the lowest cavitation potential were slots with an offset
(t/h = 0.2) and either a radiused transition (Type 4B, 100 < r/t < 250) or an elliptical
transition (Type 5A, E/t =5).
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Separate values of g; are calculated for the upstream and downstream corners of the
slot, and take account of the width of the conduit, the aspect ratio of the slot, the

amount of any downstream offset, and the relative thickness of the boundary layer.

In the presence of a gate rail can alter the flow conditions at the downstream corner.
If a gate rail projects into the slot, the notch between the edge of the rail and the
downstream face of the slot should be faired in order to prevent flow separation.

When a leaf gate is partially open, the flow past the slot becomes three-dimensional,
and is influenced by the shape and proximity of the gate. The incipient cavitation
number o; of a gate is higher if it is submerged on the downstream side than if it
discharges freely. Above the level of the gate lip, the lifting mechanism should, if
possible, fully occupy the slot. If it does not, downward flow develops in the slot;
this increases the value of o, and can result in additional cavitation damage on the

wall near the floor of the tunnel.

Gate lips should be designed to produce a clean flow separation without re-
attachment. A lip with a smooth upstream profile produces less intense separation
under submerged conditions, and reduces the risk of cavities forming in the
horizontal shear layer between the high-velocity jet and the water above it.
Cavitation in such shear layers can cause serious damage along walls downstream of

partially-open gates.

Radial gates with attached seals have the advantage of not requiring slots. Under
submerged conditions, cavitation occurs along the bottom edge of the gate, and is

particularly intense at the side walls.

Alternatively, radial gates may close against recessed seals mounted in offsets in the
walls and floor of the tunnel. The values of o; for the offsets are similar to those for

the upstream corners of gate slots.

High-velocity flow through small gaps and at gate seals can lead to cavitation
damage. Seals should have smooth profiles in order to prevent flow separation. Gaps
of more than 2mm can result in serious erosion, and the seals may themselves be

damaged by vibrations induced by unstable cavity formation (May, 1987).
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3.5. Energy Dissipaters

Most types of energy dissipater produce large amounts of flow turbulence. Cavitation
will occur if the velocity fluctuations are large enough to cause the static pressure to
fall occasionally to the vapor pressure of the water.

Laboratory and prototype measurements of pressures beneath hydraulic jumps
indicate that the maximum root mean-square (rms) values of the fluctuations are
typically between 3% and 9% of the velocity head entering the jump. Using a sill to
produce a forced jump shortens the distance over which the energy dissipation
occurs, and tends, as might be expected, to increase the magnitude of the rms
fluctuations on the floor of the basin. Flow separation behind baffle blocks and chute
blocks can produce much larger variations in pressure; for example, Lopardo et al
(1982) measured rms fluctuations on the rear face of a chute block equal to 27% of
the upstream velocity head.

Near the toe of a jump, the positive pressure fluctuations tend to be larger than the
negative ones, but further downstream the departures from the mean become more
symmetrical and conform approximately to a Gaussian probability distribution.
However, in zones of flow separation, the negative fluctuations may become bigger
than the positive ones. Thus, for a given rms level of turbulence, cavitation is more

likely behind a sill or baffle block than on a level floor.

Lopardo et al (1985) compared model and prototype data, and suggested that
cavitation may occur if the pressure falls to vapor pressure for more than 0.1% of the
time. This limit can be used to obtain a very approximate guide as to when cavitation
might be expected to develop on the floor of a stilling basin. Assuming an rms
pressure fluctuation of 9% of the upstream velocity head, a Gaussian distribution,
and a mean absolute pressure of 13m head of water, leads to a limiting velocity of
about 30m/s. For stills and baffle blocks, a higher turbulence level of 27% would
indicate that cavitation might occur at velocities above about 17m/s. As explained
above, all these assumptions are affected by changes in the flow conditions and the

configuration of the basin, so each case needs to be assessed individually.

Chute blocks and baffle blocks are the features most vulnerable to cavitation damage
in hydraulic jump basins, because they are subject to the highest velocities and
produce the largest pressure fluctuations. Thus, although they allow the use of
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shorter basins, they are often omitted in high-head installations. To be effective,
blocks need to have high drag coefficients (Cq), but this also results in high values of
the cavitation inception parameter K;. rounding the corners reduces K; but also Cy.
Shapes of baffle blocks investigated by Oskolkov & Semenkov (1979) and by
Rozanova & Ariel (1983) are shown in Figure 3.9. Cavitation damage can be reduced
or avoided by using a super-cavitating design which causes the flow to separate at
the upstream face and form a large fixed cavity that encloses the block; damage is
avoided by removing the solid surfaces from the region in which the individual
cavity bubbles collapse. This can be achieved by sloping the sides of the block away
from the flow in the downstream direction and by introducing a step in the floor (see,

for example, Type 1 in Figure 3.9).
Prototype study:

The Bureau of Reclamation and the US Army Corps of Engineers have joined
together to build a new Auxiliary Spillway on Folsom Dam to comply with dam
safety requirements and reduce the flood risk in Sacramento. Folsom Dam is located
on the American River approximately 32 km (20 miles) northeast of Sacramento
California. The Auxiliary Spillway consists of six submerged tainter gates, each 7 m
(23 ft) wide by 10 m (33 ft) high, with a maximum discharge greater than 8,495m®s.

Baffle blocks designed for a unique stilling basin have been tested in Reclamation’s
Low Ambient Pressure Chamber (LAPC) to evaluate their cavitation potential and to
compare modified block designs for possible prototype use. Standard block designs
have long been known to be susceptible to cavitation damage and are not
recommended for designs where the baffle blocks are exposed to velocities of 15m/s
(50 ft/s) and above without realization that cavitation and resulting damage will

Ooccur.

A sectional model was constructed in Reclamation’s LAPC to evaluate the cavitation
potential of several different baffle block configurations. A closed conduit section
included a full block with two half-blocks. The water tunnel could be exposed to a
reduced ambient pressure by applying up to 74 kPa (10.7 Ib/in®) vacuum. Velocities
up to 6 m/s (19.7 ft/s) were possible. Instrumentation allowed for relative
comparisons of forces on the center baffle block, detection of cavitation inception,
and some evidence of the type of cavitation present.
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Visual observations of cavitation were performed with the aid of a high-speed video
camera. Three configurations were tested, the standard “original” baffle block
design, the original block with a 1V: 3H ramp upstream from the blocks, and a
modified block shape with various ramp combinations. Elimination of cavitation is
not possible under the flow conditions that are present, so creating supercavitation or
the formation of a large vapor cavity that envelope the entire baffle block is desired
in order to prevent typical damage that would occur with the standard block shape.
Baffle blocks with the addition of the upstream ramp were able to achieve
supercaviting conditions at much lower velocities and this condition was much more

stable than the blocks without ramps.

Schematic views of the block and ramp configurations tested appear in Figure 3.10.a
to 3.10.e.

These views show the central full block with a half-width block on either side.

The original block design did show substantial cavitation potential. As with all the
blocks, the first sign of cavitation takes the form of a horseshoe vortex out in front of
the blocks, near the floor, Figure 3.11. This vortex is formed by the interaction of the
streamlines due to the stagnation at the block face and the floor intersection.

This vortex occurred for all block/ramp combinations that were tested. The ramp
location preceding the block caused the horseshoe vortex to be slightly closer to the

ramp surface due to the change in pressure gradient over the flat floor approach.

High-speed video allowed the observation of attached vortices at the downstream
corners of the blocks, Figure 3.12. These vortices were formed in the shear layer of
the block but attached to the floor and remained attached until dissipation or
implosion. This location is typical of where damage at previous locations with
similar designs has occurred. These vortices intensified in strength with lowering of
the cavitation parameter. In addition, this shape would not pass into a supercavitating
regime within the operating range of the facility. Addition of the ramp to the original
block reduced the intensity and consistency of the floor attached vortices, however it
transferred the attachment point up onto the down sloping edge of the block itself,
still creating the potential to severely damage the baffle blocks during operation. On
a positive note, the ramp prompted supercavition at the design condition (Frizell and
Cox, 2009).
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a.) Original block design. b.) 1V:3H ramp (1.22-m-high (4-ft-high))

c.) tapered block with ramp preceding  d.) Tapered block with 1V:3H ramp inside

e.) tapered block with 1V:9H ramp between

Figure 3.10: Block/ramp combinations testing in the LAPC (Frizell and Cox, 2009).
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Figure 3.12: Floor attached vortex at downstream corner of baffle blocks (Frizell &
Cox, 2009).

Testing of the new tapered block design was accomplished in three steps, each with a
different ramp configuration. The first configuration was with a 1V:3H ramp
preceding the block. All ramps had a maximum height of 1.22 m (4 ft). The general
flow conditions featured many vertically oriented free stream vortices that traveled
downstream from the front edge of the block, Figure 3.13. The floor attached
vortices observed with the original design were not present. There was still indication
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of vortices that contacted the floor between the blocks even during ventilated
supercavitation. Top and side views of this block/ramp combination in a

supercavitating condition are shown on Figure 3.14.

Two ramp configurations were tested, the same 1V:3H ramp as previously tested
placed between the blocks starting at the front edge, and a 1V:9H ramp that began at
the front edge and ended at the rear edge of the blocks. The first ramp showed
general improvement but there was still visual evidence of possible vortex collapse
on the floor between the blocks. The extension of the ramp to the end of the blocks
lessened the occurrence of collapse or possible implosions on the blocks and floor
ramp. For the design condition, any chance of damage with this final configuration

will be relegated to downstream from the blocks on the floor of the basin.

Figure 3.13: Near vertically oriented vortices in the shear layer between blocks
(Frizell and Cox, 2009).

Half block against wall in clear acrylic to facilitate viewing between the blocks.

The original goal was to produce a baffle block that would not have cavitation
damage during basin operation. The velocities entering the basin for almost all flow
conditions are well above any recommended values so to accomplish this; the block
must operate within a supercavitating regime with the cavity enveloping the entire
block. This was accomplished with the new tapered block design that was tested.

Possible collapse of shear layer vortices on the floor between the blocks was
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addressed by moving the ramp such that it fills the entire area between the blocks,
resembling an “oversized” dentated end-sill. Supercavitation resulted in a very stable
condition and should be present at the design condition for the basin. Smaller flows
leading up to the transition to supercavitation could possibly result in some minor
damage to the floor downstream from the baffle blocks if operated for a long

durations (Frizell and Cox, 2009).

a.) Side View

b.) Top View

Figure 3.14: New block with preceding ramp in a supercavitating — ventilated cavity
condition (Frizell and Cox, 2009).

Sudden expansions in high-head tunnels can be used to convert kinetic energy to
turbulence. Cavities are liable to be formed around the perimeter of the high velocity

jet, and can damage the walls of the chamber if they are too close. The performance
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of the expansion chamber can be affected by small changes in configuration, and

model tests are normally necessary (Frizell and Cox, 2009).

3.6. Cavitation in Siphon Spillways

The discharge over an overflow spillway is a function of the head measured over its
crest. Enclosing the crest and making the resulting conduit flow full can substantially
increase this effective head. The head on the spillway (as shown in Figure 3.15) is
then the difference in elevation between the reservoir surface and the spillway outlet.
However, the flow near the crest of the spillway would then be under a negative
pressure. In other words, the conduit becomes a siphon. All necessary precautions
must be taken to ensure that the vacuum is maintained and that it does not become so
excessive as to cause cavitation. The maximum negative pressure at the spillway
crest is theoretically 10 m of water at sea level. Allowing for the vapor pressure of

water, loss due to turbulence, etc., the maximum net effective head is rarely more

than about 7.5 m. This corresponds to a velocity of V2 x 9.81 x 7.5 = 12 m/s. This
means that the initial velocity in any siphon cannot exceed about 12 m/s at the inlet.
The essence of the hydraulic design of siphon spillways, therefore, lies in ensuring

maximum discharge capacity without harmful negative pressures.

To have that velocity, we have to restrict the income discharge and for that reason we

can change the outlet section, or changing the operating head (Khatsuria, 2005).

Air Vent

I

Figure 3.15: Siphon spillway
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4. CAVITATION DAMAGES ON HYDRAULIC STRUCTURES

4.1. Definition of Cavitation Damage

Collapse Dynamics:

As we know, growth and decay of bubbles was considered using a theory that
assumed water to be incompressible. In addition, the vapor pressure, surface tension,
and temperature were all considered to be constant. In reality, as a bubble collapses
these assumptions are not valid. To simulate the collapse dynamics it is necessary to
consider the compressibility of water, the compressibility of the gas in the bubble,
and the enthalpy changes. These considerations result in six differential equations

and four algebraic equations that must be solved simultaneously (Knapp et al, 1970).

Numerical solution of the equations reveals that bubble collapse consists of phases in
which the bubble diameter decreases, reaches a minimum value, and then grows or
rebounds as shown on Figure 4.1. The process is repeated for several cycles with the

bubble diameter decreasing during each cycle until it finally becomes microscopic.

During the reversal or rebound phase, a shock wave forms. The shock wave velocity-
as it radiates outward from the center of collapse-is equal to the speed of sound in
water. Assuming that water is incompressible, Hickling and Plesset (1964) found that
the shock wave intensity varies inversely with the distance from the collapse center.
At a distance of two times the initial bubble radius from the collapse center, the
pressure intensity is about 200 times the ambient pressure at the collapse site. The

following example illustrates a method of estimating the collapse pressure.
Assume a bubble diameter of 0.1 millimeter and a flow depth of 2.0 meters, then
Water pressure = 2.0 m (999 kg/m®) 9.8 m/s®=19580 Pa
Ambient pressure = water pressure + barometric pressure

=19.58 kPa + 101.3 kPa = 120.9 kPa
Pressure intensity 0.1mm from collapse center:

200 x 120.9 kPa=24 200 kPa
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These computations ignore the effect of the initial bubble diameter and the water
temperature on collapse pressure. Fujikawa and Akamatsu (1980) show that both

parameters have a significant influence.

They found that the collapse pressure increased as either the initial bubble diameter

or the water temperature decreases.

Theory also allows estimating the time for a bubble to collapse. The collapse time is

given approximately by Knapp et al (1970):
1
7= Ro(;)? (4.2)
Where:
Po = reference pressure (at collapse site)
Ro = initial radius of bubble
p = density of water
For a bubble having an initial diameter of 0.1 millimeter and an ambient pressure

corresponding to 2.0 meters of water, the collapse time is:

T =0.0001 (

2 =09, j
120900) 9.1 microseconds

Several factors modify the collapse mechanism of a purely spherical bubble. For
instance, if the bubble collapses in the presence of a pressure gradient, the shape of
the bubble does not remain symmetrical. Pressure gradients exist in flow around
submerged bodies. If the bubble collapses near a boundary, the boundary restricts the

flow toward the bubble which also causes an asymmetric collapse.

Both cases cause one side of the bubble to deform into a jet which penetrates the
opposite side of the bubble as depicted on Figure 4.1. The jet formed by the
unsymmetrical collapse of a single bubble is called a micro jet. The velocities of
micro jets are large. Hammitt (1979) concluded that in most cases cavitation damage
was due primarily to the liquid micro jet impact on the surface and not to the
spherical shock waves which emanate from the rebounding bubble. However, more
recent photo elastic studies Fujikawa and Akamatsu (1980) have shown that the

shock wave generates much higher pressure impulses than the jet.
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If more than one bubble is present, the collapse of the first will produce shock waves
that radiate to other bubbles. These shock waves will cause the sudden
unsymmetrical collapse of neighboring bubbles. The jet formed by the
unsymmetrical collapse of a bubble caused by shock waves is called an ultra-jet. The
velocities produced by ultra-jets are on the order of one-half the sonic velocity of the
liquid (Tomita and Shima, 1986). Ultra jets generate higher pressure intensities than

either spherical shock waves or micro jets.

Unfortunately, theory does not exist to predict the magnitude of the pressures
generated by the collapse of a swarm of bubbles. One can hypothesize: if one bubble
in a swarm collapses, the shock wave the bubble produced during rebound will cause
other bubbles in the vicinity to collapse. The process will continue in the form of a
chain reaction until the remainder of the swarm effectively collapses simultaneously.
It is logical that the synchronous collapse of a bubble swarm would produce higher

pressure intensity than the random collapse of individual bubbles in the swarm.

Another important factor influencing collapse of the cavitation bubble is the presence
of vortices within the flow. Shear flows generate vortices that collect bubbles on
their axes. Depending upon the proximity of bubbles, they may remain near each
other in a swarm or they may coalesce into one filament shaped bubble (Falvey,
1990).

Damage caused by the group of bubbles-trapped on the axis of a vortex- can be many
times greater than that caused by the collapse of an individual bubble or even a
swarm of bubbles. For example, an individual bubble having a 2.7-millimeter
diameter can create a depression in aluminum which is about 0.2 millimeter in
diameter (Knapp et al, 1970). However, cavitation occurring in the vortices of the
shear layer formed by a partially opened slide gate (operating submerged) has caused
depressions up to 16 millimeters long and measured pressure intensities of 1500

megapascals (Lesleighter, 1983).

4.1.1.Mode of damage

Several mechanisms are usually involved in damage of hydraulic structures. For
example, when cavitation forms because of a surface irregularity, surface damage
will begin at the downstream end of the cloud of collapsing cavitation bubbles. After

some time, an elongated hole will form in the concrete surface. As time progresses,
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the hole will get larger with high velocity flow impinging on the downstream end of
the hole. This flow creates high pressures within the minute cracks around individual
pieces of aggregate or within temperature cracks which form during the curing
process. Pressure differentials between the impact zone and the surrounding area are
created which can cause aggregate or even chunks of concrete, to be broken from the
surface and swept away by the flow. This damage process can be accurately regarded
as erosion; whereas, the loss of material due to cavitation is not strictly erosion. Here,
erosion is defined as an abrasion, dissolution, or transport process. As erosion from
high velocity flow continues, reinforcing bars can become exposed. The bars may

begin to vibrate which can lead to mechanical damage of the surface.

At the Bureau’s Glen Canyon Dam, concrete lumps were found attached to the end
of the reinforcing steel. At this stage, high velocity flow acting on the lumps rip
reinforcement bars from the concrete even though the steel may be imbedded as deep
as 150 millimeters. After the structure’s lining has been penetrated, erosion can
continue into the underlying foundation material. When damage penetrates the liner,

the integrity of the structure is the first concern (Falvey, 1990).

4.2. Parameters Which Affecting Cavitation Damage on Surface

As high velocity flow passes over a surface, a potential exists for the surface to be
damaged by cavitation. Various factors that determine whether or not the surface will

be damaged include:

e Cause of the cavitation

e Location of the damage

¢ Intensity of the cavitation

e Magnitude of the flow velocity

e Air content of the water

e Resistance of the surface to damage

e Length of time the surface is exposed
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4.2.1. Cavitation and causes of cavitation erosion

It is well-known that cavitation can severely damage solid walls by removing
material from the surface. The phenomenon of cavitation erosion is complex since it

includes both hydrodynamic and material aspects.

From a hydrodynamic viewpoint, vapor structures are produced in the low pressure
regions of a cavitating flow. They are entrained by the flow and may violently
collapse when entering regions of pressure recovery, causing the erosion of the solid

walls.

Erosion is due to the concentration of mechanical energy on very small areas of the
walls exposed to cavitation, following the collapse of vapor structures. This energy
concentration results in high stress levels which can exceed the resistance of the
material, such as its yield strength, ultimate strength or fatigue limit. The response of
the material to such a micro-bombardment by a myriad of collapsing vapor structures
from the standpoint of continuum mechanics, solid physics and metallurgy is also a

key point in cavitation erosion (Pierre Franc & Marie Michel, 2004).

4.2.2.Location and intensity of damage zone

Observations of damage zones in many types of hydraulic equipment are in
agreement with the laboratory experiments in that the zone of maximum damage is
located at the downstream end of the mean length of the cavity, but the zone is
relatively broad, extending both upstream and downstream from the maximum

damage point (Knapp et al, 1970).

Stinehring (1976) showed for a cylinder-with its end facing into the flow-that the
damage begins when the length of the cavitation cloud is equal to the diameter of the

cylinder. Also, he found that the length of the cavitation cloud, L, was given by:

Lk _ 5957263

k=23 (4.2)
Where:

H = characteristic dimension, offset height, radius of cylinder, etc.

Lk = length of cavitation cloud

¢ = cavitation index of the flow
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os = cavitation index when damage begins, o5 corresponds to cavitation index when
L/H=1

Stinehring (1976) also showed that maximum damage occurs near the end of the
cavitation cloud. His experiments agree relatively well with observations of

cavitation damage in the Glen Canyon Dam tunnel spillways.

After approximately 20 days of operation, at a discharge of about 205m*/s, damage
was observed in the left tunnel spillway downstream of a calcite deposit which
formed in a shrinkage crack as shown on figure 4.2a. After 3-day operation, at an
average discharge of about 425m%s, a second damaged area was observed

downstream of the first as shown on Figure 4.2b.

Figure 4.2a: Damage observed during a photographic survey (Fall, 1981)
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b. Damage observed on June 6, 1983
Figure 4.2: Glen Canyon Dam, left tunnel spillway-station 760.70 (Falvey, 1990)

Equation (4.2) can be used to predict the distance to maximum damaged areas.
Appropriate values are given in Table 4.1. Note the locations were estimated
relatively well for the approximations that must be made for the estimated height of

the calcite deposits and their cavitation characteristics.

This analysis shows that the distance to maximum damage increases as both the
discharge and the height of the surface irregularity increase. The photographic survey
indicates the extent of damage; that is, the length of the damaged area also increases

as the height of the irregularity increases.

Table 4.1: Length of cavitation cavities in Glen Canyon Dam left tunnel spillway-
station 760.70 (m) (Falvey, 1990).

Discharge m*/s Estimated height of Cavitation index of Distance to
deposit, mm deposit maximum damage

205 7 0.713 0.99

425 7 0.728 1.22

Farther up-in the spillway-damage was observed, but two distinct areas of damage
did not develop as shown on Figures 4.3a and 4.3b. Stinebring’s equation predicts a
difference between the two damaged areas as shown in Table 4.2. However, the
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difference is so small relative to the size of the damaged area that two areas of

damage cannot be discerned.

Table 4.2: Length of cavitation cavities in Glen Canyon Dam left tunnel spillway-
station 739.38 (m) (Falvey, 1990).

Discharge m°/s Estimated height of Cavitation Distance to
deposit, mm index of maximum
deposit damage
205 5 0.635 0.57
425 5 0.652 0.67

These two observations bring into question a widely held assumption about the
formation of cavitation damage. This assumption is that cavitation tends to
“leapfrog-forming a Christmas-tree shaped damage pattern as shown on Figure 4.4.
That is, once cavitation damage has formed, it is assumed that the damaged area
becomes a source of cavitation which then creates another damage area downstream.

Because the damaged area is larger than the irregularity which caused it, the process

continues to produce larger and larger damage areas.

Figure 4.3a: Damage observed during a photographic survey (Fall, 1981)
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b. Damage observed on June 6.1983

Figure 4.3: Glen Canyon Dam left tunnel spillway - station 739.38 (m) (Falvey,
1990)

Once cavitation damage has substantially altered the flow regime, other mechanisms
then begin to act on the surface. These, fatigue due to vibrations of the mass, include
high water velocities striking the irregular surface and mechanical failure due to
vibrating reinforcing steel. Significant amounts of material may be removed by these
added forces, thereby accelerating failure of the structure (Graham ACI Report,
1998).

The excellent prediction of the observed damage patterns using equation (4.2) shows
that only consideration of changes in discharge is sufficient to explain the leapfrog
pattern in the damage observed in the Glen Canyon tunnel spillway.

The Christmas-tree pattern of damage develops only after the depth of the cavitation
damage becomes large relative to the flow depth. For a large hole, the damage
mechanism is undoubtedly more that of erosion-by a high velocity jet on a rough
surface-than that of cavitation. The erosion of a surface by a high velocity jet in the

absence of cavitation has not been systematically studied (Falvey, 1990).
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Figure 4.4: Hoover Dam, Nevada tunnel spillway- Christmas tree pattern of damage.
Cavitation Intensity:

Cavitation intensity is an extremely difficult parameter to quantify. Stinebring (1976)
observed that as the cavitation index, 6, decreases relative to the incipient index, 6;,
the damage rate increases slowly as noted on Figure 4.5. If the cavitation index is
decreased further, a zone is reached where the damage rate (expressed as pits per
square centimeter per second) is inversely proportional to the cavitation index.
Further decreasing the index will results in a point being reached where the damage
rate has a maximum value. As the index is decreased even further, the damage rate
decreases. From this, it appears that the cavitation intensity increases and then
decreases as the cavitation index are lowered below the value of the incipient

cavitation index. The noise spectrum has a similar behavior.
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Figure 4.5: Cavitation damage rate (Stinebring, 1976).

Colgate (1977) proposed a similarly shaped curve for the damage intensity as the
cavitation index decreases (decreasing ambient pressure). Also, he indicated the
maximum of the total damage curve does not coincide with the maximum of the
damage intensity curve. In addition, he showed the area of damage continues to grow

larger as the cavitation index decreases as shown on Figure 4.6.

Colgate's observations can be explained by the following reasoning. As damage rate
increases-for decreasing values of the cavitation index-the length of the cavitation
cloud increases. However, length of the cavitation cloud is sensitive to variations in
velocity. Therefore, length of the damage area tends to get larger and larger as the
difference between the incipient cavitation index and the cavitation index of the flow
increases. Thus, the intensity, measured in pits per square centimeter per second,

may decrease while the total amount of material removed actually increases.
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Figure 4.6: Cavitation damage with respect to cavitation index (Colgate, 1977).

Damage observed in hydraulic structures occurs downstream of an irregularity at
distances up to 100 times the height of the irregularity. A solution of Equation (4.2),
for these distances to height ratios, indicates the cavitation index of the flow must be
on the order of one-sixth of the incipient cavitation index. Therefore, based upon
Figure 4.5, damage which occurs in hydraulic structures is in the decreasing range of
damage rates. Rarely are laboratory experiments made in this range because of the
difficulty to create a facility that will produce damage at such low values of the
cavitation index. Consequently, the only reliable data must come from field

observations. Unfortunately, there is a paucity of good data (Falvey, 1990).

4.2.3.Flow velocity and importance of air amount in the flow

A common assumption is that a potential for damage exists when the flow velocity
exceeds some critical value (Figure 4.7). Some justification exists for this
assumption. For instance, a typical value of the incipient cavitation index for abrupt
changes in geometry is on the order of 2.0. If this value is substituted into equation
(2.4), along with the assumption that the reference pressure is equal to the barometric
pressure at sea level, the resulting velocity is equal to 10m/s. Therefore, it is prudent

to investigate the possibility of cavitation for velocities exceeding 10 m/s.
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If a surface is exposed to cavitation, at a constant velocity, for a while material will
not be lost from the surface. This period is known as the incubation phase. The
surface then enters an accumulation phase wherein the rate of loss increases
dramatically with time. This is followed by a steady-state phase and the rate of loss is
constant. The steady-state phase may be preceded by an attenuation phase in which

the rate of loss decreases (Falvey, 1990).

Tests on aluminum plate show that the surface is being pitted during the incubation
phase (Stinebring, 1976). The average energy per pit increases as the 5th power and
the number of pits increases as the 6th power of velocity. Therefore, the total energy

of the collapsing bubbles increases as the 11th power of velocity.

Once material begins to be lost from the surface, the dependence of the rate of loss
with respect to velocity becomes ambiguous. Some investigators claim the rate of
loss varies with the 5th power of velocity, while others have found it varies with the
6th power. Undoubtedly, the variation is a function of the base material, the method

of testing, and the damage phase.

Air Content Effect:

For low values of air concentration, damage has been found to vary inversely with
the air concentration (Stinebring, 1976). The tests were conducted at air
concentrations between 8 x 10 and 20 x 10™® moles of air per mole of water. At high
air concentrations, of around 0.07 moles of air per mole of water, damage was found
to be completely eliminated over a 2-hour test period in a Venturi-type test facility
(Peterka, 1953).

In 1945, assumptions were that air injected under a water prism would “act as a
cushion between the high-velocity water and the tunnel lining”. It was further
reasoned that “the air would aid in relieving the sub atmospheric pressures”. Neither

axiom is correct (Bradley, 1945).

Currently, two theories explain the mitigating effects of aeration on cavitation
damage. One theory is based upon the presence of no condensable gases in the vapor
pocket that cushion or retard the collapse process. The second theory is based upon
the change in sonic velocity of the fluid surrounding the collapsing vapor bubble due

to the presence of undissolved air.
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Of the two current theories, about the effect of undissolved air in water, the theory
regarding the change in sonic velocity seems to be the most valid. Studies have
shown that diffusion of undissolved gases into a vapor cavity proceeds at a very slow
rate relative to the rate of vaporization.

Because the vapor cavity growth time is short, it seems unlikely for sufficient gas to
be present (in the vapor cavity) to significantly affect the rate of collapse of the

cavity or the pressures generated by the collapse (Falvey, 1990).

4.2.4.Effects of structure’s surface resistance and material to cavitation damage

The resistance of a surface to damage depends upon several factors including the
ultimate strength of the material, ductility, and homogeneity. It is not clear which
strength characteristics of a material are significant when evaluating the surface
resistance. With metals, surface deformation caused by the impact of collapsing
bubbles produces tensile forces within the material. On concrete surfaces, tensile
forces are also possibly the significant factor. Thus, tensile strength and not
compressive nor shear strengths may be the more important parameter. The
properties of strength and ductility can be combined into one parameter known as
resilience (Rao et al, 1981). Resilience is defined as the area under the stress-strain

curve of a material.

Presently, correlations have not been developed that quantify the amount of damage,
of a given material, for a specified amount of cavitation. However, to express the
resistance of a material relative to the resistance of other materials-for a given
cavitation condition-is possible. For example, in a Venturi testing device, cavitation
produced a hole 13 mm deep in concrete after 3 hours at a flow velocity of 30 m/s.
The same size hole was produced in polymer concrete after 125 hours and in
stainless steel after about 6,000 hours. Carbon steel was found to be damaged about 7
times faster than stainless steel; aluminum or copper is damaged about 25 times
faster than stainless steel. Figure 4.8 shows a curve of relative damage developed for
this and other data on materials conventionally used in construction of hydraulic
structures. For the effect of velocity, an 11th power dependence on velocity was
assumed (Colgate, 1977).
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Exposure Time Effect:

The rate of erosion-of any surface-caused by cavitation is not constant with time.
Observations have shown that several different rates actually occur. Each rate has

been given a specific name, (Heymann, 1967), as noted on Figure 4.9.

At first, a period begins where loss of material does not occur. The period is known
as the “incubation zone.” In this zone, metal surfaces become pitted. Many
investigators use data taken in the incubation zone as the most significant for damage

correlations (Stinebring, 1980).

Following the incubation zone, the damage rate increases rapidly during a period
called the “accumulation zone.” This rate reaches a peak. Depending upon the type
of testing facility, the damage rate follows one of two trends. The damage rate either
decreases into an “attenuation zone”- which is followed by a constant damage rate
plateau called a “steady-state zone,” or the damage rate reaches a steady-state
plateau-which is then followed by an attenuation zone, as shown on Figure 4.9.
These damage rate characteristics have been explained using a statistical

representation of the cavitation collapse mechanism (Heymann, 1967).

In hydraulic structures, which have irregularities on the boundaries, the location
where cavitation bubbles collapse does not change significantly during the damage
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process. This means that as damage increases, the distance between the collapsing
bubble and the surface increases. Thus, it can be expected that the damage rate will
tend to vary inversely with time. With increasing time, for a constant flow rate, the
depth of damage downstream from an irregularity will appear to reach a constant
value. This hypothesis has been verified in field investigations (Wang and Chou,
1979).
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Figure 4.9: Cavitation damage rate (Heyman, 1967)
4.2 .5.Short-Time cavitation erosion of concrete

The behavior of concrete under long-time cavitation erosion — several hours up to
several years — has been an issue since concrete is used for dams, spillways,
channels and other hydraulic structures. Some classical investigations have been

performed by Price and Wallace.

A general review about this problem is given by (Graham et al, 1987). The results of

these investigations can be summarized as follows:

e The cavitation resistance increases if the compressive strength increases.

e The cavitation resistance increases if the water—cement ratio decreases.

e The cement type does not influence the cavitation resistance.

e Coarse aggregates are more easily plucked away due to cavitation than small
aggregate. Therefore, a maximum aggregate size of 20 mm is recommended.

e The bond between cement matrix and aggregate grains plays a major role.
The better the bond, the higher the cavitation resistance.

e The aggregate material hardness is not critical for the cavitation resistance.

Short-time cavitation erosion is defined here as cavitation acting over a maximum
duration of 10 s. Short-time cavitation is a phenomenon that could play a role during
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water jet impact of solid materials. Especially in concrete hydro demolition (is
a concrete removal technique which utilizes high-pressure water to remove
deteriorated and sound concrete as well as asphalt and grout), which is one of the
most important useful applications of water jet erosion, short-time cavitation erosion
may occur. Scheuer (1985) investigated the influence of the surface profile and flow
velocity on the introduction of cavitation on solid surfaces and found that,
independent of the geometry, a disproportion 5 mm high introduces cavitation at a
flow velocity as low as V=4.0m/s. This velocity will reliably be reached in any jet
flow that develops a stagnation pressure of P=25 MPa on the solid surface.
Therefore, short-time cavitation erosion, as an additionally contributing failure
mechanism, seems to be very likely in concrete hydro demolition. Nevertheless, no

investigation is known so far that deals with this very special issue.

Moreover, short-time cavitation erosion is a promising method to study the material

removal mechanisms acting in the early stage of cavitation (momber, 2000).

To find out the short-time effect of cavitation, the study is done by two different

aggregate type concretes under same cavitation situations:

Concrete No. 1 contains round quartz with Compressive strength 21 MPa; whereas,

concrete No. 2 contains broken limestone with Compressive strength 39MPa.

With modeling the cavitation chamber, experiment is done and results are shown

below on Fig. 4.10.

e The average mass loss after t =10s was 1.1 g for concrete 1 and 0.3 g for the
concrete 2. The cavitation resistance increases as the compressive strength
increases. This is in agreement with experience from long-time cavitation
experiments on concrete.

e Short-time cavitation erosion may be a considerable erosion phenomenon that
directly contributes to the material removal in concrete hydro demolition
processes.

e Even a very short exposure time t=2s is sufficient to modify the surface
topography of the investigated specimens.

e The material’s behavior during cavitation erosion significantly depends on its
capability to transfer local stresses and to locally deform. High stiffness and

brittleness promote Trans granular fracture.
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e The interfacial bond between aggregate and cement matrix is on decisive

importance for the cavitation erosion resistance (Momber, 2000).

'(l)lll“ll”

Figure 4.10: Macroscopic view on the cavitation damage for t. = 10s Left: concrete
1. Right: concrete 2.

4.2.6. Effect of changes in liquid properties on damage

There have been reports from various hydraulic-turbine installations that the rate of
cavitation damage varies with the season of the year even under the same operating
conditions of head, loss, tail-water level, etc. The explanation for this seems to be
connected with a change in the pertinent physical properties of the water and its
contaminants. For example, temperature, dissolved-gas content, and size and
concentration of the nuclei may vary with the season. Several of the physical
properties of water change with the temperature. The vapor pressure increases as
temperature increases, the density decreases, and the bulk modulus increases in the
range of interest for hydraulic turbines. If the system head remains constant,
velocities will also remain constant independent of changes in density. For the same
initial cavity size and collapsing head, radiated collapse pressures should increase
with density increase. Since the natural density changes are very small, this effect
should not be important. The degree of cavitation will, of course, vary with changes

in vapor pressure (Knapp et al, 1970).
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4.2.7. Recognition of cavitation damage

When damage has occurred in the field, it is important to know the cause of the
damage so that appropriate remedial action can be initiated. The following discussion
is general observations, which will provide guidelines, for the recognition of

cavitation damage.
Texture

It was mentioned that damage caused by a collapsing cavity is primarily caused by a

pressure wave that travels at the speed of sound in the water. Since the speed of
sound is between 10 and 40 times greater than the flow velocities, which are
normally associated with damage, damage appears to be caused by a source
perpendicular to the surface. This means the direction of flow cannot be determined
by examining the damaged area. Also, this effect has an impact on the texture of the
damage.

In steel, the effect of the collapse of the many minute cavitation bubbles
perpendicular to the surface is to produce a grainy texture. The scale, of surface
texture, depends upon the size of the cavitation bubbles which are produced. In a
laboratory facility, the structure of the damage is fine grained as shown on Figure
4.11a because the bubbles are small. Whereas, in the liner of an outlet conduit the

surface texture is much coarser grained because the cavitation bubbles are larger as

shown on Figure 4.11b.

a. Venturi throat of cavitation test facility b. Ross Dam (Seattle, Washington) outlet
works conduit

Figure 4.11: Texture of cavitation damage in steel (Falvey, 1990)

The effect of the collapse perpendicular to a concrete surface produces a surface in

which the individual pieces of aggregate are cleaned of the cement which binds the
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concrete. Deep crevices and holes can be found in the matrix. It almost appears as
though worms bored into the concrete. The difference in appearance of laboratory
and field produced damage is not significant as shown on Figure 4.13. None of the

aggregate is broken.

The contrast between the texture of damage caused by cavitation and that caused by
erosion, with sand-Laden water, is easily recognized in steel. With cavitation,
direction cannot be detected and the surface has a grainy texture. With erosion by

sand-laden water, flow direction is apparent and the surface is smooth and shiny.

Similarly, the difference between cavitation, freeze-thaw damage, and erosion by
sand-laden water is apparent in concrete. With cavitation, individual, polished pieces

of aggregate are exposed in the damaged zone as shown on Figure 4.13a.

Whereas, in the freeze-thaw zone, individual pieces of aggregate are broken and the

profile through the damaged area is relatively flat as shown on Figure 4.12.

Figure 4.12: Kortes Dam, Wyoming, freeze-thaw damage.
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b. hoover Dam, Nevada spillway tunnel - initiation of damage

Figure 4.13: Cavitation damage in concrete (Falvey, 1990)
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Symmetry

If cavitation damage occurs on a structure, it will occur in similar locations
elsewhere on the structure. For instance, if cavitation damage is observed on the
conduit wall downstream of a gate slot, it will occur downstream of the opposite gate

slot as shown on Figure 4.14.

Damage

a. Left side of outlet

A
.

.

-

Damage. 8

b. Right side outlet
Figure 4.14: Palisades Dam, symmetrical damage in outlet structure.
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Origin

Cavitation damage always occurs downstream from its source. This has two
important implications. First, there must be a source of the cavitation and secondly,
the damage will not progress upstream of the source. Usually, the source is easily
identified. Surface irregularities, calcite deposits, gate slots, and sudden changes in

flow alignment are typical sources for damage.

Longitudinal vortices in the flow are known also to be sources of cavitation which
have caused damage. Generally, the exact location of these sources cannot be
accurately specified. A typical example of cavitation damage caused by longitudinal

vortices in the flow through a slide gate is shown on Figure 4.15.

Slide gate

Figure 4.15: Palisades Dam, outlet works vortex caused damage downstream of
slide gate (Falvey, 1990).

61



62



5. CAVITATION DAMAGE ON BIG SCALES OF SOME HYDRAULIC
STRUCTURES AND TURBINES

Blue Mesa Dam is a part of the Bureau’s Wayne N. Aspinall Storage Unit,
Gunnison Division of the Colorado River Storage Project. The dam is located in
mountainous country on the Gunnison River 40 km west of Gunnison, Colorado. The
primary purpose of the unit is to develop the water storage and hydroelectric power
generating potential along a 64-km section of the Gunnison River above the Black
Canyon of the Gunnison National Monument. Other purposes of the unit are

irrigation, recreation, and flood control.

The dam is a zoned earth fill structure 240 m long at the crest and 104 m high above
the riverbed. The reservoir is 30-km long having a storage capacity of 1.2 x 10° m®. A

60-MW power plant is located at the toe of the dam.

Figure 5.1 shows the spillway on the right abutment (Beichley, 1964); its capacity is
about 963m®/s at the maximum reservoir water surface elevation of 2292m. Water
discharges through: a gate section a tunnel transition section, a tapering inclined
tunnel, a vertical bend, a nearly horizontal tunnel, and a flip bucket. The flip bucket

directs flow into the river channel about 150 m downstream of the power plant.

During construction, the nearly horizontal section of the tunnel and the flip bucket

were used to pass diversion flows around the construction site.

The spillway operated several days in June and July 1970. On 2 days, the discharge

reached 99m?%/s.

Upon inspection, an area of cavitation damage was discovered. At station 4+54.15,
cavitation damage had begun downstream from a hole which was formed when a
piece of wood popped out of the concrete liner. The pop out was 150 mm wide, 127
mm long and 25 mm deep. Cavitation damage began 63 mm downstream of the pop
out. The damage-nearly circular-with a diameter of 76 mm was 13 mm deep. The
cavitation index at this location is 0.19 at 10 percent of the design discharge. The

spillway operating history is not known; therefore, the damage index could not he
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calculated. Other pop outs and spalls had occurred throughout the tunnel. However,

cavitation was not discovered at any of the other sites.

The analysis reveals that the lowest cavitation index occurs at the point of tangency
of the vertical curve with the nearly horizontal tunnel (STA 4+73.88). The second
lowest value occurs at the point of curvature of the vertical bend (STA 4+33.66).
Cavitation indexes at these locations are 0.159 and 0.188 respectively, for a flow of

99m°/s. The maximum values of the damage potential also occur at these locations.

The analysis indicated extensive damage could he expected if the spillway were to
operate for periods of 1 week or more. The most susceptible location for damage to
occur was immediately downstream of the vertical bend. Because of this potential for

damage, an aerator was designed and constructed in the spillway tunnel.

The aerator was placed at station 4+16.05. At this location, the cavitation index is
greater than a value of 0.218 for all discharges. Therefore, damage upstream of the
aerator is extremely unlikely. At this location, the aerator is 54.3 m below the

maximum reservoir elevation.

The aerator consisted of a ramp, a downstream aeration groove, and a concentric

conical offset located downstream of the aeration groove as noted on Figure 5.1.

The aerator was completed in 1985. Following its completion, the spillway passed
flow up to 56.63m°/s. These flows occurred in the late summer of 1986 and lasted for

several days. There have been no reports of damage to the tunnel.
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Figure 5.1: Blue Mesa Dam, tunnel spillway, aeration slot

Glen Canyon Dam is part of the Glen Canyon Unit, Middle River Division of the
Colorado River Storage Project. The dam is located on the Colorado River in

northeast Arizona 25 km upstream of Lee’s Ferry.

The structure is a 216-m-high concrete arch dam having a crest length of 475 m. The
reservoir has a storage capacity of 3.3 x 10° m®. A 950 MW power plant is located at
the toe of the dam. An outlet works, with four hollow jet valves; having a total

capacity of 425m®/s is located on the left abutment of the dam.

The dam has an open-channel flow tunnel spillway on each abutment as shown on
Figure 5.2. Each spillway is 12 500 mm in diameter and has a maximum capacity of
2900m°/s. Flow to each spillway passes radial gates, a 55 inclined tunnel, a vertical

bend (elbow), and 305 m of horizontal tunnel to a flip bucket.

Both spillways were operated for extended periods in 1980 (Burgi and Eckley,
1987). In 1981, an inspection revealed that deposits from cracks in the lining had
initiated cavitation damage at several locations in the left spillway. Little damage had
occurred in the right spillway. This was probably due to the shorter operating time.
Following this inspection, a photographic survey of the tunnels was performed to
document the damage.
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Figure 5.2: Glen Canyon Dam, tunnel spillways - aeration slots

Following the inspection, a study was made to identify the scope of work required to
repair the damage and to prevent future occurrence. It was recommended the damage
be repaired and aerators be installed near station 6+86.0. These modifications were
planned to begin in 1984. Unfortunately, high flows in the Colorado River occurring

in the spring of 1983 had to be passed through the spillways.

The first indication that damage was occurring to the left tunnel spillway (during the
1983 flood) came on June 6, when loud rumblings were heard from the tunnel (Burgi
et al, 1984). Several large holes were found in the invert during an inspection in the
afternoon of June 6. Flows were resumed through both tunnels. At the end of the
flood, extensive damage had taken place in both tunnels as shown on Figure 5.3.
Even though damage was extensive, it only excavated a hole whose depth was about
equal to the spillway diameter. At this point, the eroded cavity was evidently large
enough to dissipate the energy of the high velocity water. In the elbow portion of the
tunnels, the depth of the damage as noted on Figure 5.4 was on the same order as the
depth of the flow.

Even while the spillway flows were continuing, an emergency program was initiated

to design, model test, and construct aerators in the inclined portions of the spillways
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(Pugh, 1984). These aerators consisted of: a ramp, a groove or slot, a downstream
offset, and a transition back to the original tunnel diameter as shown on Figure 5.2.
The ramp is 1295 mm long and 180 mm high at the centerline of the invert. The
groove is 1200 by 1200 mm. The downstream edge of the slot is offset 305 mm from
the original tunnel diameter. The length of the transition to the original tunnel
diameter is 6096 mm. The end of the ramp is at station 6+85.80 which is 96.2 m

below the maximum reservoir elevation.
The tunnels were ready for service after finishing construction on October 10, 1984.

In August 1984, the left tunnel was tested to verify the operation of the aerator.
Pressure measurements were taken in the invert to compare with model studies and
air velocities were measured in the air groove to estimate the airflow quantities
(Frizell, 1985). Flow rates up to 1416 m®s were passed through the spillway. This
discharge was 40 percent greater than had previously passed through the spillways.
In addition, a discharge of 566m?>/s was maintained for 48 hours. This flow rate and

duration had caused damage to the spillway during the 1980-81 flows.
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b. Right tunnel

Figure 5.3: Glen Canyon Dam, tunnel spillways major damage (Falvey, 1990).
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Figure 5.4: Glen Canyon Dam, tunnel spillways - damage profiles (Falvey, 1990).

69



Hoover Dam is a part of the Boulder Canyon Project. It is located on the Colorado
River about 58 km from Las Vegas, Nevada. The purpose of the project is to: provide

river regulation, flood control, storage for irrigation, and power generation.

The dam is a concrete gravity-arch structure 221 m high having a crest length of 373
m. The original reservoir had a storage capacity of 40 x 10° m®. A survey in 1963-64
showed that the original capacity had been reduced by 12 percent since its dedication
in 1935. The power plant has 14 hydro turbines with a combined capacity of 1344.8
MW. The combined output of the river outlet works is 1269 m?/s.

The dam has an open-channel type tunnel spillway on each abutment of the dam as
shown on Figure 5.7. Water enters each spillway by first passing through a gated,

side-channel overflow weir. Then it flows over an ogee crest into an inclined tunnel.

A vertical bend connects the end of the inclined tunnel to an almost horizontal
tunnel. The horizontal tunnel terminates in a flip bucket. The combined capacity of
the tunnels is about 11300m®/s.

The spillway tunnels operated for the first time in the winter of 1941. The Arizona
spillway operated for 116.5 days at an average flow of 366m*/s with a maximum
flow of 1076m?*/s. The Nevada spillway operated for only 19.5 hours at an average
flow of 227m®s and a maximum flow of 407m®s (Keener, 1943). At the conclusion
of the spill, the Arizona spillway had suffered severe damage, but the Nevada
spillway was essentially undamaged. Figure 5.5 shows the damage to the Arizona
spillway consisting of a hole 35 m long, 9 m wide and 13.7 m deep. Evidently, the
damage was caused by a misalignment in the tunnel invert (Warnock, 1945). The

misalignment is shown on Figure 5.6.

Undoubtedly, the depth of the hole was influenced by the presence of a fault that
passed obliquely across the tunnel. Hot water (32 C) flowed from the fault under a
pressure of 895 kPa (Walter, 1957).

The Arizona tunnel was repaired by backfilling and compacting river rock and then
covering with a thick layer of concrete. Finishing was done by bushing and wet

sandblasting, followed by stoning, and finally, by grinding with a terrazzo machine.

This produced an exceptionally smooth and durable surface.
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Figure 5.6: Hoover Dam, Arizona tunnel spillway-misalignment that caused major
damage (Falvey, 1990).
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In 1983, both tunnels operated for several hundred hours at discharges of about
283m?/s. This time only minor damage occurred in the Arizona tunnel. However, in

the Nevada tunnel the damage was on the verge of becoming severe.

The cause of this damage was a relatively insignificant pop out. The damage index,
at the station where the damage began, is 6900 for a 10-mm sudden offset. This value
compares favorably with the recommended range of design values for the description

of damage.

Since damage occurred in both tunnels-even with exceptionally smooth surfaces-
aeration devices were designed for each spillway (Houston et al, 1985) as shown on
Figure 5.7. Each aerator consisted of a ramp and a downstream offset. The ramp is
900 mm high on the invert and feathers to zero height at 35° on each side of the
tunnel crown. The offset is concentric with the original tunnel diameter. The 1500-
mm offset transitions back to the original diameter in 7620 mm. Each aerator is
located about 78 m below the inlet to the tunnel. The installation of both aerators was

completed in June 1987.

Agrglor
Sim
7.78m
7.57m Romp |
SECTION A-A 15.2m3

Figure 5.7: Hoover Dam, tunnel spillways-aeration slots (Falvey, 1990)
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Yellowtail Dam is located 66 km southeast of Billings, Montana, on the Bighorn
River. It is a part of the Pick-Sloan Missouri Basin Program. The purpose of the

project is to: provide irrigation water, flood control, and power generation.

The dam is a concrete thin arch structure having a height of 151 m and a crest length
of 451 m. The reservoir capacity is 0.32 X 10° m>. The power plant contains four

units with a combined nameplate capacity of 250 MW.

The spillway consists of: an approach channel, a radial gate controlled intake
structure, a concrete lined tunnel, and a combination stilling basin-flip bucket
(Beichley, 1964). The maximum capacity of the spillway is 2605 m/s.

Because of high inflows to the reservoir, the spillway began discharging for the first
time on June 26, 1967 (Borden et al, 1971). On July 4, the flows were high enough to
flip the water out of the bucket at the end of the spillway. The flows continued at a
discharge of about 425m%s until July 14 when the flip suddenly stopped. The
cessation of the flip indicated that energy dissipation was occurring within the
spillway tunnel. The cause of the energy dissipation was discovered to be a large
cavitation caused hole 2.1 m deep, 14.0 m long, and 5.9 m wide as shown on Figure
5.8. Downstream of this large hole, several smaller holes had developed. The large
patch 6 mm deep, 152 mm wide, and 254 mm long at station 3+ 16. The damage

index for this hole is 9600. The minimum cavitation index at station 3+16 is 0.15.

Higher up in the elbow of the tunnel, another damaged area was found at station
2+88 which was 9 m long and centered about 1 m to the right of the tunnel center
line as shown on Figure 5.9. This damage was initiated by the failure of an epoxy
mortar patch located within a 457-mm square dry patch. This damage formed five
distinct teardrop shaped holes. The most upstream hole was 305 mm wide and 152
mm deep. The next downstream hole was 610 mm wide, followed by a hole 910 mm
wide. The fourth hole was 1829 mm wide and the last about 1520 mm wide. The
damage index for this damaged area is 3520. The minimum cavitation index at
station 2+88 is 0.15.

Following this damage, one of the most ambitious repair procedures ever undertaken
by the Bureau was begun. Borden et al. (1971) an aerator was designed for the
tunnel, which was located 103 m below the maximum reservoir elevation (Colgate,

1971), as shown on Figure 5.10. The aerator consisted of a ramp 685.8 mm long and
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76.2 mm high at the invert. Immediately downstream of the ramp, a 914-mm square

aeration groove was located.

Figure 5.8: Yellowtail Dam, tunnel spillway-major damage downstream of elbow
(Falvey, 1990)

Figure 5.9: Yellowtail Dam, tunnel spillway - damage in elbow (Falvey, 1990)
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The downstream edge of the groove was connected to a 152-mm offset which
transitioned back to the original diameter of the tunnel in 2635 mm. The transition

had a 22.86-m radius of curvature in the flow direction.

daraiion slof
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Figure 5.10: Yellowtail Dam, tunnel spillway - aeration slot (Falvey, 1990)

In addition to the aerator installation, large damaged areas were repaired with epoxy
bonded concrete (Borden et al, 1971). Shallower damaged areas were repaired with
epoxy-bonded concrete and epoxy bonded epoxy mortar. Irregularities in the epoxy
bonded concrete were removed by grinding them to a 1:100slope. Finally, the tunnel
surface below the springline (The springline is the generatrix for the tunnel roof arch)
was painted with an epoxy-phenolic paint.

Following the 1969 repair, the spillway was operated at a discharge of 141m°/s for
118 hours and at a discharge of 425m°/s for 24 hours. In 1970, another spillway test
was conducted. The test began with a flow of 141m?®s for 11.5 hours; then the flow
was increased to a discharge of 396 m®/s and held there for 95.2 hours. This was
followed by a release of 113m®/s for about 18 hours. Following the test, an
inspection of the tunnel revealed absolutely no damage. The damage index for the
station at which the maximum damage occurred was 7690. Without an aerator or the
extremely smooth surface treatment, moderate damage would have been predicted

for a damage index this large.

Therefore, the tests at sufficiently high discharges and durations proved the

effectiveness of the repair (Falvey, 1990).
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Keban Hydroelectric Power Station

Keban hydroelectric power station first entered in service in 1974. Power plant has
4x157, 5 + 4x175 in overall 1330 MW installed power. Keban dam is third big
power station in turkey, and each year it is producing around 6600000000 kWh
energy, every year two of eight units are closed for cavitation repair, each turbine has
249.000 HP power and can get 135 m*/s (discharge).

Keban’s power station was repaired during 30.04.2007 to 29.06.2007 and procedure

was at written below:

Units repair period was told to be 40 days, but it is extended to 61 days. Cavitation

happened in wings of turbines and wheels.

The company made welding parts and renews the materials, and all the expenses are

listed below:

Materials used: 11.205.25 TL

Workers expenses: 93.046.50 TL

Tenders expenses: 10.620 TL

Overall: 114.871.75 TL

The amount of stopping the units from working for 61 days was 3 million TL.
Kara Kaya Hydroelectric Power Station

The most serious cavitation damage was seen in Kara kaya power plant. Power
station has 6x300 MW overall 1800 MW build power and with producing
7.500.000.000 kWh energy it is second big in turkey.

In 1987 when it was first in use, there were huge cavitation damages.

Each year two unit is closed for repair, the units which were closed for repair was
worked for 22092.30 hours.

It was planned to finish repair in 60 days but it is done in 66 days.

They worked on welding with special Cr-Ni material to fix the problem, and because

of this period of time not working the cost, is almost 7 million TL (Uni, 2010).
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6. PREVENTION OF CAVITATION IN HYDRAULIC STRUCTURES

6.1. Structure Geometry and Flow Boundary Conditions Precautions

As water flow down a chute, its velocity increases and the flow depth decreases. This
combined effect causes the cavitation index of the flow to decrease with the
longitudinal distance along the chute. Eventually, a point is reached on the chute

where normal surface irregularities will cause cavitation to begin.

Cavitation could be prevented from forming if it were possible to reduce the velocity
or to increase the boundary pressure. For straight spillways, the pressure can be

increased by increasing the flow depth through the use of convergent chute walls.

For spillways-composed of vertical curves-the boundary pressure can be increased
by changing the curvature of the flow boundary.

Curvature on a spillway or chute can be manipulated to produce a profile having a
constant cavitation index or it can be varied so as to control the pressure distribution

in a prescribed manner.

The first technique produces a constant cavitation number spillway. The second
technique produces a controlled pressure spillway. Both techniques use the same

fundamental equations Named Equations of Motion.

Another method for reducing the flow velocity is to increase the boundary friction;
that is, make the surface rougher. At first thought, this appears to be contrary to
everything that has been published on the requirement of making boundaries smooth
for high velocity flow. However, the real culprit in causing cavitation is not the
roughness of the boundary, but the roughness of individual asperities. If making a
surface uniformly rough is possible, then its cavitation characteristics will actually

improve (Falvey, 1990).

Lin et al. (1982) proposed a method in which the vertical radius of curvature is

varied to produce a constant cavitation index value over the length of the vertical
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bend. The method is sufficiently general to include the effect of convergence of the

sidewalls.

The resulting profile produces a gradually increasing pressure distribution through
the vertical curve. If the vertical curve terminates at a chute or in a tunnel, a large
pressure gradient is produced at the point of tangency. The large gradient may have
an adverse effect on the flow conditions at this point. However, if the vertical curve
terminates in a flip bucket, the method produces an excellent spillway profile that has
the minimum potential for cavitation damage. The invert profile produced by this
method is known as a constant cavitation number profile, Fig 6.1.

To eliminate the generation of large pressure gradients at the end of the vertical
curve, Ku and Jin (1985) proposed an equation for the vertical curve which is tangent
to the upstream and downstream slopes. In addition, the reciprocal of the radius of
curvature varies uniformly from a value of zero, at the point of curvature, to a
maximum value at the center of the curve and then back to zero at the end of the
vertical curve. This method produces a triangular-shaped variation in the pressure
distribution along the boundary. Although Ku and Jin used a linear variation for the
radius of curvature, any shape of curve could be used. This method produces a

controlled pressure profile.

HO

Point of
Curvoture——

Figure 6.1: Definition sketch for geometry
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Example of Changing Invert Curvature:

The techniques of designing with a constant cavitation number and a controlled
pressure profile were applied to the Bureau’s Glen Canyon Dam configuration to
illustrate the methods and the potential benefits. The benefits are increased values of
the cavitation index of the flow. Increasing the cavitation index reduces the potential
for damage by cavitation. This implies that during construction surface tolerances
might be relaxed. In addition, potentially dangerous conditions caused by growth of

calcite deposits, after construction will not develop.

An analysis of the cavitation potential, of Glen Canyon Dam tunnel spillway, using
the program HFWS (A program which is developed to calculate the hydraulic and
cavitation properties of free water surface flow), showed the lowest values of the
cavitation index occurred upstream of the point of curvature and downstream of the
point of tangency of the vertical bend (see Fig. 6.2). The lowest values of the
cavitation index for flow through the elbow occurred for a discharge of about
475m°/s (Falvey, 1990).
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Figure 6.2: Glen Canyon Dam, left spillway tunnel-cavitation index for flow of Q
=475m*/s (Falvey, 1990).

Constant Cavitation Number Profile

With a constant cavitation number profile it is not possible to control the cavitation
index downstream of the point of tangency. However, all of the spillway from the

end of the crest profile to the point of tangency can be controlled.
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The problem is to determine a constant cavitation number profile that is tangent to
the spillway crest profile and that terminates at an elevation equal to the elevation of
the point of tangency. To perform these computations, the following procedure was
followed:

1. Variation in flow depth and velocity is determined along the spillway crest

profile using the computer program HFWS.

2. A point is arbitrarily selected along the crest profile as the starting location
for the constant sigma profile. This point should have a value of the
cavitation index greater than or equal to 0.2. In some cases, this is not
possible if the vertical drop to the lower tangent point is too great.

3. Initial conditions are calculated using equations for the definition of the
unit discharge in a circular section and using the flow depth and invert
slope at the selected starting location.

4. Constant cavitation number profile program is run.

5. If the final elevation of the constant cavitation profile does not match the
desired elevation of the point of tangency, increase the value of the unit
discharge and repeat steps 3 and 4. If the unit discharge gets so large that
the radius of curvature becomes negative-somewhere on the profile-select,
for the initial station, a location that has a lower elevation.

6. Flows conditions with the resulting profile are recalculated with program
HFWS to investigate the effect of boundary friction.

The results of the analysis show that the cavitation index could have been increased
from a minimum value of 6 = 0.104 (shown on Fig. 6.2) to a minimum value of ¢ =
0.115 (shown on Fig. 6.3) for the portion of the tunnel between the spillway crest and

the point of tangency at the end of the vertical curve.

This increase in the flow cavitation index would not have prevented the damage
which occurred in the Glen Canyon spillways during the 1983 flood. However, the

time of operation before damage occurred would have been extended.

The cavitation index of Figure 6.3 is not constant because the equal cavitation
number profile was developed using rectangular sections. The conversion of the

cavitation index from the rectangular to the circular section can be calculated by
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equation. Also, the index is not constant because boundary friction is neglected in the
development of the equal cavitation number profile, but is considered in the water

surface profile program HFWS.

Two problems exist with the constant cavitation number profile: a large pressure

gradient exists at the point of tangency, and the curve is too short.

The gradient will not induce cavitation, but it may cause rapid variations in the water
level depth. The second problem is the most severe. Because the curve is too short,
the cavitation index at the end of the curve is still very low-being about equal to
0.101.
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Figure 6.3: Glen Canyon Dam, equal cavitation number spillway profile — cavitation
index for flow of Q = 475m*/s (Falvey, 1990).

Controlled Pressure Profile:

With the controlled pressure profile, the radius of curvature at both the point of
curvature and at the point of tangency is infinite. Therefore, large pressure gradients

do not exist with these profiles.

A great difference between the cavitation indexes, with either the linear or the
sinusoidal variation in pressure along the vertical curve, is not evident as noted on
Figure 6.4. Because both curves are longer than the equal cavitation number profile,

improvements in the cavitation index have been made at the point of tangency.
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For Glen Canyon Dam, the controlled pressure profile resulted in the most favorable
cavitation characteristics in the vertical bend. At station 720 the cavitation index

reached a value of 0.20 as compared to a value of 0.14 in the existing design.

All of the controlled pressure profiles began at station 678.86 which is the location

where the crest profile matches the equal cavitation number profile.
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Figure 6.4: Glen Canyon Dam, controlled pressure spillway profiles - cavitation
index for flow of Q = 475m%/s (Falvey, 1990).

Example of changing surface roughness:

The beneficial effect of increasing the surface roughness on the cavitation index can
be seen by examining the cavitation index of the flow for the Glen Canyon tunnel
spillways having rugosities of 0.015 and 1.5 millimeters. The smaller value of the
rugosity corresponds to new, unusually smooth, and concrete placed against steel
forms having excellent workmanship. With this surface, construction joints are well
aligned. The larger value of rugosity corresponds to an unusually rough surface
placed against rough wood forms, where erosion at poor concrete and poor alignment

of joints occurred.
These values represent the extremes of what actually will he achieved in the field.

As shown on Figure 6.5, increasing the rugosity results in an increase in the
cavitation index from 0.091 to 0.118 at station 800 the site of the most severe
damage during the 1983 spill. The damage potential also experienced significant
decreases. For the larger rugosity value, the damage potential was 3.2 times smaller
than for the smaller rugosity as shown on Figure 6.5.
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These examples show that, on Glen Canyon Dam tunnel spillways, the effect of

increasing the surface roughness is greater than the effect of changing the invert

curvature.
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Figure 6.5: Effect of rugosity on cavitation characteristics (Falvey, 1990).

The effect of increased surface roughness has not been conclusively tested in the
field. However, at Glen Canyon Dam, the left tunnel spillway invert was not repaired
downstream of station 850. This area had suffered severe erosion during diversion;
irregularities varied between 25 and 76 millimeters deep. During the 1984 tests,
cavitation damage did not occur in this area. The air content in the water (from the
aerator) probably had the greatest impact on this result. Similarly, the “rocky road”
or “cobble stone” appearing surface of the invert (downstream of the vertical bend at
the Nevada spillway of Hoover Dam) was not repaired when the aerator was
installed. Nevertheless, all isolated irregularities on the otherwise smooth walls

above the invert were removed (Falvey, 1990).
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6.2. Flow Aeration and Aeration Design

6.2.1. Purpose and types of aerators

Damage experience, for flows in spillway tunnels and chutes, indicates that damage
becomes significant when water velocities exceed 30 meters per second (Fig 4.7).
This velocity corresponds to a head of about 45 meters. From cavitation damage
viewpoint, this velocity or head can be considered as the borderline for high velocity
or high head flows. Past practice recommended that surfaces exposed to high
velocity flows be protected by strict attention to the surface tolerances. For new
construction, this procedure may be acceptable. However, weathering of the concrete
surface or the deposition of calcite through minute cracks in the boundary (after
construction) can soon create a surface which is not within the specified or
constructed tolerances. Therefore, other means of protecting the surface need to be
considered.

It is known that extremely small quantities of air, dispersed through a water prism,
will significantly reduce the tendency for cavitation to damage a surface. Peterka
(1953) found that about 7.5-percent air was needed to stop damage in concrete
having a 28-day compressive strength of about 17-megapascal. Semenkov and
Lentiaev (1973) found that the quantity of air needed to protect a surface increased as
the strength of the surface decreased. They found an air concentration of 3 percent
was needed for 40-megapascal strength concrete and an air concentration of almost
10 percent is needed to protect 10-megapascal strength concrete. These values

compare favorably with the experiments of Peterka.

Apparently, the first successful application of aerators in a hydraulic structure-to
prevent cavitation damage-was at Grand Coulee Dam, (Colgate and Elder, 1961). In
this case, excessive damage had occurred at the intersection of the river outlet tubes
with the downstream face of the spillway. Previous attempts to protect the surface
with epoxy coatings had been unsuccessful. After installing the aerators, reports of

damage have stopped.

The first known installation of aerators in a spillway was at the Bureau’s Yellowtail
Dam following large discharges in June 1967, (Borden et al, 1971). The installation
included not only the construction of an aerator, but careful attention was given to
flow surface irregularities downstream of the aerator. For the first 7-meters
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downstream from the vertical bend, all into-the-flow misalignments were removed
by grinding to a 1:100 chamfer. For the next 15 meters, a 1:50 chamfer was used.
After all holes were patched and all misalignments were removed by grinding, the
entire surface below the spring line was painted with a two-coat epoxy phenolic paint
to provide a smooth surface and to cement particles of the epoxy mortar or concrete
to each other. This work was one of the most difficult repairs undertaken by the
Bureau. However, subsequent tests indicated that the repairs were completely

successful.

Following the success at Yellowtail Dam spillway, aerators have been installed on
spillways worldwide. Although much theory has been developed, aerator design is
still somewhat of an art. The following sections summarize the present theory and
design methods that can be used to size aerators. However, the results should be
regarded as preliminary subject to verification by model testing.

Types of Aerators:

The principal types of aerators shown on Figure 6.6 consist of deflectors, grooves,
offsets, and combinations of these, (Vischer et al, 1982). The purpose of the deflector
is to lift the flow from the boundary so that air can be entrained underneath the flow
surface. In this manner, air enters the flow without using mechanical methods like air
pumps-which require energy. Aeration grooves, slots, or air ducts are used to
distribute air across the entire width of the aerator. Finally, an offset is used on flat
slopes to prevent the aerator from being submerged by a portion of the flow from the

jet as it strikes the downstream boundary.

The design of an aerator consists of:

. Locating the aerator

o Proportioning the ramp or deflector

o Sizing the air supply duct and air groove
o Dimensioning the downstream offset

The goals of the aerator design are to construct a device that will protect the flow

surface and not self-destruct if the aerator happens to fill with water.
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Figure 6.6: Types of aerators.

6.2.2. Aeration techniques and some installing examples

Location of aerator:

Significant damage on spillways has been observed to occur when the cavitation
index of the flow is less than 0.20 (see Fig 4.7). Minor damage can occur for indexes
greater than 0.20, but the extent of the damage generally has not required repair.
Therefore, from a design viewpoint, flow boundaries exposed to flows that have
cavitation indexes greater than 0.20 will be essentially safe from damage. Obviously,

the strength of the concrete and the surface tolerances will influence this assumption.

In actual practice, this criterion is difficult to achieve. Placement of an aerator high
enough on a chute or spillway to keep the cavitation index greater than 0.20, may
require the use of excessively large ramp heights. The large ramps can cause the jet
to touch the crown of a tunnel spillway or to overtop the walls of chute spillways.
Placement of the aerator in areas where the cavitation index is less than 0.20 requires
careful consideration of the flow tolerances upstream of the aerator.
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The maximum discharge is not necessarily the flow rate that produces the lowest
values of the cavitation index of the flow. This can be rationalized in the following

manner.

o For low flow rates, friction dominates. Although flow depths are small,
velocities are also small. Therefore, the cavitation index of the flow can be
large.

o As the flow rate increases, the relative effect of the boundary friction
decreases and the flow velocity increases. This causes the cavitation index of
the flow to decrease.

o Finally, at much higher flow rates, the increase in flow velocity is small.
Hence, flow depths are increasing and the cavitation index of the flow

increases.

The cavitation index at the aerators and the critical discharge (as a percent of the
design discharge) for a variety of tunnel spillways -constructed by the Bureau- are

given in Table 6.1.

Table 6.1: Location of aerator and critical discharge (Falvey, 1990)

Spillway | Cavitation index at aerator | Critical discharge (Percent of maximum)
Blue Mesa 0.22 30
Flaming Gorge 0.19 52
Glen Canyon 0.14 14
Hoover 0.18 19
McPhee 0.19 100
Yellowtail 0.13 16

With respect to the cavitation index, Yellowtail and Glen Canyon spillways have
the lowest values. However, at both of these spillways, special care was given to the
tolerances of the flow surface upstream of the aerator. For other spillways, the
required construction tolerances were relaxed due to the higher values of the

cavitation index of the flow.
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With exception of McPhee, all spillways shown in Table 6.1 are tunnel spillways
having vertical bends that are concave upward. McPhee is a chute spillway having

vertical bends that are concave downward.

In addition to consideration of the cavitation index of the flow, curvature of the
boundary should be considered. In particular, aerator installation in vertical bends
which are concave upward should be avoided. Normally, the range of flow rates over
which aerators in vertical bends will function satisfactorily is severely limited. For
flows outside this range, grooves will fill with water or the underside of the jet will

not remain aerated.

Ramp Design:

The purpose of the ramp is to lift the flow away from the lower boundary of the
chute or spillway. By lifting the flow away from the boundary, it forms a free
trajectory allowing the underside of the nappe to become aerated. When flow once
again rejoins the boundary, it should have entrained enough air to protect the

downstream flow surface from cavitation damage.
The water trajectory is a function of the:

e Height of the ramp

e Depth of flow at the ramp

e Slope of the ramp

e Length of the ramp

e Pressure underneath the nappe
e Average velocity at the ramp

e Transverse turbulent velocity component at the ramp

Several methods are available to determine the jet trajectory. Wei and DeFazio used
a finite element method to solve the Laplace equation for flow over the ramp. This
method produces excellent results for both ramps and free over falls. In addition to
solving for the jet trajectory, the pressure distribution around the ramp is determined.
Knowledge of the pressure distribution is valuable for design of chute training walls

in the vicinity of the ramp.

88



Convergling offset

Figure 6.7: Length of jet trajectory.

Through the proper choice of ramp angle and height, it is possible to cause the

trajectory to impact the downstream chute at any desired location.

Generally, the trajectory should impact downstream of the area that has the smallest
value of the cavitation index of the flow. In some cases, this is impossible because

the smallest values occur downstream of the vertical bend of a tunnel spillway.

The trajectory should be chosen so it does not impact within the vertical bend
because this usually causes the formation of fins which lead to poor downstream
flow conditions. An impact location in an area having an extremely small cavitation
index is acceptable because the surface downstream of the impact area will be

adequately aerated.

In circular tunnels, the ramp height must be tapered around the circumference from a
maximum value at the invert to zero at or above the point where the free water
surface, at maximum discharge, intersects the tunnel wall. This is done to prevent a
fin from forming where the jet impinges on the tunnel wall. Without the taper, the fin
size increases as the discharge increases. At large enough flow rates, the fin can fold

over and choke the tunnel.
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With a tapering ramp, the upper portion of the jet is subjected to less contraction than
the lower portion of the jet. Because of this, the angle where the jet impinges on the
tunnel wall decreases as the flow rate is increased. A disadvantage of tapering is that
the jet impinges closer to the ramp at the water surface than at the invert. Model
studies are usually required with aerators in circular tunnels to verify proper design

of the downstream offset for all discharges (Falvey, 1990).
Air Vent Design:

Several methods have been devised to vent air from the atmosphere to the underside

of the nappe as shown on Figure 6.8. These include the following:

e Ramps or deflectors on sidewalls
e Offset sidewalls

e Piersin the flow

e Slots and ducts in sidewalls

e Duct system underneath the ramp

e Duct system downstream of ramp

Ramps or deflectors, offset sidewalls, and piers in the flow are frequently used to
supply aeration downstream of control gates. Normally, these air vent types are not
used on wide chutes because the required offsets are impractical from a construction

or structural point of view.

Slots in walls are used in control gate structures. This solution lends itself to cases
where installation in an existing structure is required. The downstream end of the slot
may be offset in conjunction with deflectors to keep water from entering the slot. If
the cross-sectional area of the slot is too small, water and spray will he pulled into
the high velocity airstream flowing in the slot. The result will be insufficient air to
protect the flow surface on the chute floor.
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Figure 6.8: Air supply to aerator
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Ducts through the sidewall are used on wide chutes when the required slot size or
sidewall offsets are excessive. A duct is a closed conduit which may have a
rectangular or circular cross section. In areas where freezing is a problem, ducts are
routed through an embankment. This prevents the formation of ice plugs in the duct
during times when water may be standing in the chute area (Fig. 6.8 Duct through

sidewalls).

A duct, under the ramp, is used on wide chutes or in installations where a hydraulic
jump may cover the ramp. In both cases, the system of ducts and vents ensures

adequate aeration of the jet under nappe (Fig. 6.8 Dust under the ramp).

A duct-downstream of the ramp or offset-is used when the ramp height is too small
to allow adequate venting. This scheme also simplifies construction. However, a
drain for the duct must be provided to keep the duct free of water. Leakage and
extremely low flow would tend to fill the duct on flat chutes if drainage is not
provided. When operating the chute or spillway, air will enter the aerator not only
through the duct but also through the drainage gallery (Fig.6.8 Duct downstream of
ramp or offset).

In circular conduits on steep slopes, filling of the duct is not normally a problem
because only a small portion of the duct can contain water. The air duct for circular

conduits is commonly called an aeration groove or air slot.

In some cases, an air duct design having a direct connection to the atmosphere is not
feasible. This is true especially with tunnel spillways and control gates located in
outlet-works tunnels. For these structure types, ventilation is supplied to the duct
above the flowing water. If space above the free water surface is too small, pressures
under the nappe may begin to fluctuate. Criteria for the air space above the flowing

water have not been established, Fig 6.9

Presently, physical model studies must be used to investigate ventilation adequacy.
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Figure 6.9: Air entrainment under nappe.

Aerator Spacing:

Aerators produce an air-water mixture at the flow boundary. If the concentration of

the mixture is large enough, cavitation damage will be prevented.

As flow progresses downstream from an aerator, the air concentration decreases
because of buoyancy of the air bubbles. However, the bubbles’ tendency to rise is
opposed by diffusive effects of turbulence which is generated at the boundary. If the
concentration at the boundary becomes too small, another aerator would be needed.
Therefore, a means of predicting the air concentration near the boundary, as a

function of distance, is needed.

Spillway tests have shown air concentration decreases in the following manner:

Straight section . . . . .. 0.15 To 0.20% per meter
Concave section . . . .. 0.50 to 0.60% per meter
Convex section . . . . .. 0.15 To .20% per meter

Instead of a linear decrease in air concentration, it has been proposed that the air

concentration decreases in proportion to its local value.

For this assumption, air concentration is given by:

Cx _ e—0017 (Lx—L;) (6.1)
Co
Where:

Cyx = mean air concentration at distance X
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Co = mean air concentration at beginning of aeration

L = slope distance downstream from aerator

L; = slope distance downstream from aerator to beginning of aeration
0.017 = dimensional constant per meter, 0.017 m™

None of these methods considers the process of self-aeration of flow in a chute or
spillway. The development of self-aerated flow consists of three zones as shown on
Figure 6.10:

o A developing, partially aerated flow
o A developing, fully aerated flow

o A fully developed, aerated flow (equilibrium state)
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Figure 6.10: Development of self-aerated flow (Falvey, 1990).
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A well designed aerator will produce, locally, higher air concentrations than those
associated with the equilibrium state of aeration. Therefore, downstream of the
aerator, the air concentration will decrease to that of the equilibrium state and not to
zero as predicted by Equation (6.1).

Air concentration in the equilibrium state is governed by:

e Surface roughness

e Surface tension effects

e Flow velocity

e Turbulent energy at the air-water interface

e Gravity

Therefore, correlations of air concentration should include terms that contain a
friction factor, a Boussinesq number, and an Eotvos number. Yevdjevich and Levin

(1953) proposed a correlation of the form:

= = 0.062 B?a,f/? (6.2)

Where:

B= Boussinesq number of flow = U/ (g Ry)

C.= mean air concentration of developed aeration
F= Darcy-Weisbach friction factor

G= gravitational constant (acceleration)

Q.= entrained air flow rate

Quw= water flow rate

Rn=hydraulic radius

U= mean flow velocity

a, = velocity distribution coefficient (kinetic energy coefficient about equal to 1.1)

£ =Qe /Qu
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Finally, Falvey (1990) proposed an equation accounting for surface tension.

_ B _ _ (Esing)s
Cqp = i 005B - ——=—

R? (6.3)
Where:
E= Eotvos Number = (gR2)/ (pe)

e= interfacial surface tension

Obviously, none of these equations consider all the pertinent parameters. However,
Equation (6.3) tends to predict the same air concentration values; whereas, Equation

(6.2) is somewhat high for high velocity flows.

Using the concept of self-aerated flow, change in mean air concentration, Cy, as a

function of distance can be written (using the form of Equation (6.1)) as:

Cx = (Co — Cg)e™ %017 txli) (6.4)
Where:

L; = slope distance downstream from aerator to beginning of aeration

L« = slope distance downstream from aerator

For cavitation damage on a flow surface, the air concentration at the wall-and not the
mean air concentration-is the important factor. For the wall air concentration, Cy,
Rao, and Gangadharaiah (1971) derived the following expression, in terms of the

mean air concentration, Cy:

(1-1.11¢218)3 (4.2x107%-0.1¢5>)
Cg.s

C, =1.17¢33 +

(6.5)
The mean air concentrations in Equation (6.5) are determined from any of Equations
(6.2) and (6.3).

For example as an experiment in China University of technology, the following

procedure is followed:

Cs5 05 [
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The distances of measuring points from the entrance in observation section are
x=0.02 m, 0.045 m, 0.07 m, 0.095 m and 0.12 m, and the air concentration near wall
C=4.1, 6.5, 8.8, 10.0, 12.0, 14.1. It can be seen from the Fig.6.11 that the pressure at

each point increases with increasing air concentration.
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I

Figure 6.11: Variation of pressure with air concentration at V=49.6m/s (Dong and
Cheng, 2007).

It can be seen from Fig.6.12 that the cavitation number increases also with increasing

air concentration.

As it can be seen in Fig.6.13 sudden reduce in pressure due to removing the aerator

was really big.
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Figure 6.12: Variation of cavitation number with air concentration at V=49.6m/s
(Dong and Cheng, 2007).
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Figure 6.13: Pressure waveforms with and without aeration (C=6.4%) at V=49.6m/s
(Dong and Cheng, 2007).

Through the above-mentioned experimental study at flow velocity 50 m/s, some

conclusions can be drawn as follows:

The pressure and cavitation number in the cavitation region increase with the rising
in air concentration. The pressure waveforms with and without aeration exhibit a
stepped characteristic that suggested an abrupt change of pressure, in the absence of
aeration, the concrete specimen was quickly eroded and flushed away due to the
strong cavitation in a very short period. In the presence of aeration, the cavitation
erosion level of concrete specimen was considerably reduced, decreasing with
increasing air concentration. However, the phenomena of cavitation erosion still
occur when air concentration would not reach the least air concentration to prevent
cavitation control, which will not disappear until the air concentration reaches the
least air concentration. Aeration was still effective to control cavitation erosion in

flows at the velocity of the order of 50m/s (Dong and Cheng, 2007).
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6.3. Operation of Structures

Structures that are not operated in accordance with the assumptions made in the
design are likely to be damaged.
Here are some damage cases due to Operational disorders.

The studies conducted by Kenn and Garrod (1981) investigating the cause of
cavitation damage to Tarbela tunnel indicated that it could have occurred due to the
presence of severely sheared flows with a velocity exceeding 30 m/s in a stagnant or
slowly moving water pool. As shown in Figure 6.14, the central intake gate to tunnel
2 was for some time open (at first fully, later partly) while both side gates were
closed. The evidence suggests that during this time, intense vortices- induced
cavitation was generated in the two essentially vertical planes of severely sheared
flows leaving the inner walls of the adjacent piers. These cavities collapsed in the
regions of high pressure further downstream and caused severe erosion of the

concrete lining of the tunnel.
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Figure 6.14: Cavitation damage to concrete lining-Tunnel 2, Tarbela Dam, Pakistan.
(Kenn et al.1981)

Asymmetrical operation of spillway gates and sluice gates can result in a condition
conducive to the formation of shear layers and cause cavitation. It is well known that
equal and simultaneous opening of all the gates ensures better hydraulic conditions in
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the stilling basin and downstream. However, operating staff often prefer to open a
single gate, starting from central gate, adding on other gates as the discharge level
increases. Conditions resulting from such operations-with potential to cause

cavitation- are illustrated in Figure 6.15.

Burgess (1981) has described cavitation damage to the concrete floor and kicker
block of the deep sluice-stilling basin of the Roseires Dam, Sudan, Also believed to

be a vortex-induced cavitation.
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Figure 6.15: Flow separation and vortex trail due to asymmetrical operation of gates.

The deep-seated sluice structure consists of five sluices 10.5 m high by 6.0 m wide
equipped with radial gates. The overall head on the sluices is 44 m, resulting in a
velocity of about 29 m/s. the basin floor and the kicker block (a high-end sill) in front
of sluice number five were repeatedly damaged, as shown in Figure 6.16.

It was found that sluice number 5 was operated most of the time while the other
sluices were kept closed. Hydraulic model studies were conducted to study pressures

at strategic locations in the damaged regions-also shown in Figure 6.16.
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Figure 6.16: Damage to the basin floor and kicker block-Roseires dam, Sudan.
(Burgess 1981)

o Inall tests, pressures remained above the equivalent prototype vapor pressure
e Potential cavity formation and collapse condition recorded at least in one test

6.4. Other precautions and Design Recommendations

The first known major cavitation damage in a tunnel spillway occurred at the
Bureau’s Hoover Dam. After investigation and research, it was concluded the
damage was initiated by a misalignment in the spillway invert. This resulted in an
intensive period of investigations of surface irregularities and flow alignments. The
tendency was to specify more stringent design tolerances in, hydraulic structures,
(Ball, 1960). The only way to achieve rigorous tolerances was by careful attention to
the methods used in finishing concrete. As a result, the concept of surface tolerance
and surface finish became intertwined. As late as 1981, surface finishes to be used
with high velocity flow had separate requirements (Concrete Manual, 1981).

In 1981, the Concrete Manual specified that a stoned finish should be provided for all
spillways having flow velocities greater than about 23 meters per second. The

technique needed to produce the surface is quite intricate:
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The surface to receive the special finish should be thoroughly cleaned with high-
velocity water jets to remove loose particles and foreign material and then brought to
a surface-dry condition, as indicated by the absence of glistening-free water, by clean
air jet. A plastic mortar consisting of 1 part of cement and 1 to I-1/2 parts of sand, by
weight, which will pass a No. 16 screen, should be rubbed over the surface and
handstoned with No. 60 grit Carborundum stone, using additional mortar until the
surface is evenly filled. Stoning should be continued until the new material has
become rather hard. After moist curing for 7 days, the surface should be made
smooth and even by use of a No. 50 or No. 60 grit Carborundum stone or grinding
wheel. A flexible disk power sander may produce an acceptable surface. After final

stoning, curing is continued for the remainder of the 14day curing period, Fig 6.17.

After the surface was finished, it was inspected to determine adherence to specified
tolerances. If an into-the-flow offset greater than 3 millimeters high was found, it

was to be eliminated using bevels given in Table 6.2.

a. View of invert

Figure 6.17: Hoover Dam, Nevada spillway. Concrete surface near station 994.00
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b. Invert close-up
Figure 6.17: Hoover Dam, Nevada spillway. Concrete surface near station 994.00

Table 6.2: Grinding tolerances for high velocity flow (Concrete Manual, 1981)

Velocity range m/s | Grinding level, height to length

12 to 27 11020
27 to 36 1to 50
Over 36 1to 100

The tolerances were in perfect agreement with the current theory and reflected the
best efforts of concrete specialists to accomplish the exacting requirements.
However, from a practical aspect, these specifications were too exacting. Even if a
structure was constructed according to rigid specifications, deposits left by moderate
seepage could create local irregularities which would be out of the specified

tolerances-within a short period.

For instance, at Glen Canyon Dam, within one month following the reconstruction
and installation of the spillway aerators, calcite deposits-up to 10 millimeters high-

had formed on the invert. Therefore, to maintain the exacting tolerances for
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preventing cavitation damage, an extensive maintenance program would have to be

initiated before each expected spill.
Specifications of Surface Tolerances

Tolerance is defined as the range of variation allowed in a constructed dimension
from the design dimension. A tolerance can refer to either a structural feature or to a
flow surface feature. Structural tolerances include specifications of line, grade,
length, width, and plumb. Although these specifications are important, they do not

have a significant effect on the cavitation characteristics of a hydraulic structure.

The following three basic types of flow surface variations are present in hydraulic

structures.
Offset

Offset tolerances refer to variations caused by isolated abrupt surface irregularities
where the dimension of the irregularity perpendicular to the flow is large relative to
its dimension parallel with the flow. Normally, offset tolerances are the most critical.
A smooth surface containing an offset is the most susceptible surface to being

damaged by cavitation.
Slope

Slope tolerances refer to variations caused by surface irregularities where the
dimension parallel with the flow is large relative to the variation perpendicular to the
flow. The specifications of the slope tolerances ensure that variations will be gradual
enough to prevent the irregularity from causing cavitation damage.

Uniformly Distributed Roughness

Uniformly distributed roughnesses refer to variations that occur over a relatively
wide area. This type of irregularity is caused by erosion of a concrete surface by sand
or gravel in the water passing over the surface. Another example is the rough surface
left by poorly consolidated concrete which has been placed against a form. In most
cases, the absolute height of uniformly distributed roughnesses can be much larger
than offsets on a smooth surface without initiating cavitation damage. The critical

element is the uniformity of the surface roughness.
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Flow Surface Tolerance: Definition and Specifications

Flow surface tolerances for offset and slope variances, as shown in Table 6-2, have

been quantified.

Table 6.3: Flow surface tolerances

Tolerance, T | Offset, mm | Slope

T1 25 1:4
T2 12 1:8
T3 6 1:16

The tolerances (see Table 6-3) can be associated with the cavitation index of the
flow. The effect of aerated flow is included in the specifications of the required

tolerance as shown in Table 6-4.

Table 6.4: Specification of flow surface tolerance

Cavitation of the flow | Tolerance without aeration | Tolerance with aeration
>0.60 T1 T1
0.40t0 0.60 T2 Tl
0.20t0 0.40 T3 T1
0.10t0 0.20 Revise the design T2
<0.10 Revise the design Revise the design

Flow surface tolerances for uniformly distributed roughnesses have not been
developed. Generally, cavitation characteristics of a uniformly rough surface are
much better than for an isolated surface roughness element on a smooth surface. If
uniformly rough surfaces could be created in the field, they would perform much
better than the very smooth surfaces with isolated irregularities. However, a
uniformly rough surface is difficult to construct. Research studies in this area will
have to concentrate on the areal statistical properties of the roughness. One useful
parameter might be the ratio of the standard deviation of the surface roughness to the
90-percent size of the roughness elements. When this parameter is developed, Table
6.2 will require another column to show the allowable variation of a rough surface

for each of the tolerance specifications.
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Geometric Considerations:

Few structures have been designed in which the cavitation characteristics were the
overriding consideration; one exception was the Aldeadavila Dam in Spain,
(Galindez et al, 1967). Over 800 hydraulic tests on models of the spillway were
performed to develop the spillway shape. After a few years of operation with large
flows, some cavitation damage appeared at the end of the chutes caused by

irregularities in the surface. The irregularities were repaired and damage stopped.

As water flows down a chute or through a tunnel spillway, flow velocity increases;
hence, the flow depth decreases. Both effects lead to low cavitation indexes and
potential cavitation damage. If the structure does not have a vertical curve, which can
be used to control the cavitation index, then the flow depth can be controlled by
decreasing the width of the chute or diameter of the tunnel. The change in cross
section must be done carefully so that the chute walls are not overtopped or the
tunnel does not fill with water. The decrease in the cavitation index through rougher

surfaces is accomplished primarily as the result of increased flow depth.

Control of pressures in the chute downstream of the spillway crest can be
accomplished through variations in both the invert curvature and chute width. For
example, a crest having both inverts curvature and converging sidewalls was
designed by G. Lombardi of Locarno, Switzerland, as shown on Figure 6.18,
(Colgate, 1976). This spillway profile consists of a conventional spillway crest, a
transition section having a constant slope invert, and a flip bucket. The invert profile
of the bucket obeys a power law. In plan, the sidewalls converge uniformly at an
included angle of approximately 3.3’ Both of these variations in geometry (invert
curvature and convergent sidewalls) were not sufficient to prevent the cavitation
index of the flow from being less than a value of 0.2. Therefore, damage probably

would be expected to occur with the profile if the flow is not aerated.

Information on critical values of 6 for different types of appurtenances is scanty. A
summary of literature on typical values of © for various structures is summarized in
Table 6.5. It is, however, suggested that the designer may use these numbers only
after studying the relevant references. Some reasons for this are: the exact geometry
and test conditions must be understood, authors use different locations for
determining reference parameters and similitude in the model is difficult to achieve.
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Table 6.5: Values of 6 at the Beginning of Damage
Structure or type of irregularity 6 Reference
Tunnel inlet 15 Tulis (1981)
Sudden expansion in tunnel 1.0-0.19 | Russel; (1967)
Baffle pier

Pyramidal shape 1.4-2.3

Triangular (USBR basin I11) 0.33 Khatsuria;

T-shaped baffle blocks 0.68 Kuttiammu
Spillway surfaces 0.20 Falvey (1982)
Gates and gate slots 0.20-3.0 | Wagner; (1967)
Abraded concrete-20 mm  max depth of | 0.60 Arndt; (1977)
Slope into the flow 0.20 Ball; (1976)
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7. CONCLUSION

To have an overview about cavitation prevention and effects, we can gather
information in a chart like Fig 7.1. It has detailed information under the chart.

S
Cavitation

-~

Collecting Basic
Data

™

Selecting Type
and overall size

™

costructional and
structural aspects

Predesign

Design

Operational
aspects

Model Study

Construction

Final Design Economic analysis

Operation

Figure 7.1: Schematic view of cavitation prevention period

Design:

Designs that are conducive to separation of the flow and creating zones of negative
pressures are under designed crest profiles, gate grooves, and inadequate curvatures
and transitions. Generally, the crest profiles should not be designed for heads less
than 75% of the maximum depth of overflow. Sometimes, the portion of the crest
upstream of the crest axis is widened in order to accommodate stop-log gates.
However, such features have a detrimental effect on performance in terms of
negative pressures and loss of discharging capacity. If, for any reason, such an
arrangement is unavoidable, the design should be thoroughly studied in a model.
Spillway crests normally have radial gates obviating the need for gate grooves. If
vertical gates are to be adopted, the gate grooves should be designed with a recess on

the downstream as recommended by Ball (1959) and (1979) Ethembabaoglu.
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Abrupt grade-change transitions should be avoided, and the profile corresponding to
the trajectory (As shown in Thesis) should be provided. In fact, a safety factor of
1.25 multiplied to the velocity has been suggested to prevent separation of the flow
from the invert. (Regan et al. 1979)

It is generally recognized that, beyond a flow velocity of about 30 m/s and discharge
intensity of 20 cumec/m, the surface finish required to withstand cavitation in not
compatible, even with the best concrete finish and with all possible care taken.
Therefore, use of cavitation-resistant liners and special materials like epoxy, fiber-

reinforced concrete, etc., or provision of aerators is necessary in such situations.

Hydraulic-jump stilling basins and energy-dissipating appurtenances, like chute
blocks, baffle piers, etc., are the most vulnerable to cavitation. Such appurtenances
should not be used beyond the recommended velocity limit of 15-20 m/s or for
cavitation indices smaller than that borne out by experience (Khatsuria, 2000).
Alternatively, damage can be prevented by arranging the cavity’s collapse well away

from the boundary, as in the case of wedge-shaped supercavitating baffle piers.

Jet splitters at the end of the buckets have been damaged due to cavitation. Galperin
et al. (1979) suggest that considerable improvement can be achieved by converging
the two splitters instead of placing them parallel. This would create backpressure that

can eliminate separation of the flow at the flow at the entrance to the splitters.

Model Studies:

Studies on a physical hydraulic model are almost indispensable for a major spillway
project. Although designs of various elements of spillway and energy dissipation
structures have evolved through generalized model studies associated with
theoretical analysis, specific model study may still become necessary because of
some uniqueness in the design, layout, or operational aspect. Despite the advent of
mathematical and numerical modeling, which is aided by high-speed computers and
computational techniques, studies on physical models continue to be undertaken for

the solution of problems, which are presently not amenable to other approaches.

In the case of spillways, etc., at least two requirements are mandatory between the
prototype and its model: similarity of geometric form and the equality of Froude
number. With the same fluid (i.e., water) in the prototype and model, equality of

other numbers is not possible. In such a situation, a correction is made for those
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forces considered important, while those that are considered less important are
ignored. This is the origin of the so-called “scale effect,” although, more
appropriately, this should be termed effect”! Which forces are correctable and which
ones are negligible? This depends on the situation being considered and relies

heavily on the modeler’s experience and judgment.

The most important scale effects encountered in the modeling of spillways and
energy dissipaters are those phenomena that cannot be adequately simulated in

models:

e Friction

e Turbulence

e Cavitation

e Air entrainment and release
e Fluid-structure interaction

e Local scour below energy dissipaters

A useful approach in the study of cavitation potential is to use cavitation index, ©,
given by:

PO_P‘U

Cavitation index obtained from the measurement of mean pressures and velocities
with reference to the altitude of the prototype is compared to the incipient cavitation

indices from Table 6.5 in chapter 6.

Cavitation tests may also be carried out using special equipment in which the
ambient pressure is reduced below atmospheric pressure, thus encouraging cavitation
to occur in the model. The special equipment for cavitation tests of this type (i.e., a
cavitation tunnel) is elaborate, expensive to construct and maintain, and, hence,

restricted to the problems of industrial applications, such as turbines, pumps, etc.
Construction:

The precautions to be taken during construction pertain to:

e Monitoring the progress of construction as per design profile, avoiding
misalignments and large scale irregularity such as undulating or wavy surface

finish, etc.

111



e Controlling surface finish within the permissible tolerances specified in

relevant standards

While the former could be accomplished by proper supervision during construction,

the latter requires careful and extensive review.

A tolerance is defined as the range of variation allowed in a constructed dimension
from the design dimension. The following three basic types of flow surface

variations are present in hydraulic structures:

- Offset: dimension of surface irregularities perpendicular to the flow is large
relative to its dimension parallel to the flow

- Slope: dimension of the surface irregularities parallel with the flow is large
relative to the variation perpendicular to the flow

- Uniformly distributed roughness: variation over a relatively large area.

Absolute dimension of roughness element much larger than offset

For tolerances allowed USBR has designated three levels which mentioned in Table
6.3, Table 6.4 in chapter 6.

The significance of the close tolerances can be best illustrated by the example of the
Fontana Dam spillway tunnel, USA. Even with the flow velocity as high as 48 m/s,
no cavitation damage has taken place, presumably due to the close tolerances in the

surface finish and to correct alignments.
Operation of structures:

Structures that are not operated in accordance with the assumptions made in the
design are likely to be damaged. A common example is the hydraulic jump stilling
basin for a spillway having a number of gates. The design presupposes equal opening
of all the gates; hence, the invert elevation of the basin is determined on this
condition. A number of stilling basins have suffered damage due to abrasion

cavitation, and uplift as a result of asymmetrically operating the crest gates.

As shown in the cases from chapter, asymmetrical operations might induce shear
cavitation in addition to producing flow conditions that are conducive to abrasion

damage.

Asymmetrical operation of spillway gates and sluice gates can result in a condition

conducive to the formation of shear layers and cause cavitation. It is well known that
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equal and simultaneous opening of all the gates ensures better hydraulic conditions in
the stilling basin and downstream. However, operating staff often prefer to open a
single gate, starting from central gate, adding on other gates as the discharge level

increases.

Prediction of such flow conditions and remedial measures can be best studied in

hydraulic models.

Remedial measures and repairs

For existing structures that suffer repeated cavitation damage, the cause of cavitation
must be ascertained in order to determine remedial measures. Misalignments and
surface irregularities can probably be rectified; such a design profile deviation, which
can be corrected, or roughness, such as offsets, which can be grinded to permissible
values. However, inadequacy in design and certain types of irregularities cannot be
rectified. In such cases, aeration is the best remedial measures. Karun spillway, Iran,
is as example where aerators have been used after experiencing cavitation damage.

Aerators that can be utilized on existing spillways are discussed in Chapter 6.

Conventional concrete typically performs poorly where the property of resistance
against cavitation, abrasion, fatigue, and impact is important. Therefore, a variety of

material and material combinations is used for the repair of concrete.

Installing stainless steel liner plates on concrete surfaces subject to high velocity
flows has been a generally successful method for protecting against cavitation
erosion. Stainless steel is found to be about four times more resistant to cavitation
damage than ordinary concrete. The most preferred material is ASTMA 107 and
S30403, due to its excellent corrosion and cavitation resistance and weld ability. Its
drawbacks are high cost, sensitivity to vibration, and fatigue breakdown. There are
several instances where steel plates have been ripped off, adding to the severity of
the problem. Therefore, this alternative is gradually being replaced by special
concretes such as epoxy, fiber-reinforced concrete, etc.

A major factor that is critical to the success of a repair is the relative volume change
between the repair material and the concrete substratum. Many materials change
volume as they initially set or gel; others change volume due to changes in moisture
content or temperature. If a repair material’s volume relative to the concrete

decreases sufficiently, cracks perpendicular to the interface will develop.
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In such situations, epoxy compounds that provide a durable bond between the fresh
concrete and epoxy concrete are generally used. Epoxy compounds have been
recently developed that bond to damp concrete, even to concrete under water.
However, there is no unanimous opinion regarding the effectiveness of epoxy
treatment against cavitation damage. For example, Lowe et al. (1979) reported
unsatisfactory results from the application of epoxy mixes on the Tarbela spillway
structure, yet they reported positive results from the application of fibrous concrete
and polymerized fibrous concrete. Meanwhile, Corlin et al. (1979) reported that
epoxy coating on the stilling basin of Morforsen Dam, Sweden, had a satisfactory

performance.

Fiber-reinforced concrete (FRC) utilizes randomly oriented, discrete fiber
reinforcement in the concrete mixture. The superiority of FRC in comparison to
conventional and polymerized concretes has been demonstrated by Lowe et al.,
(1979) with the help of erosion tests on concrete specimen. It is claimed that FRC is

resistant to the combined effects of cavitation and abrasion erosion.

Polymers are also incorporated into concrete to produce a material with improved
properties. These are polymer-impregnated concrete (PIC), polymer-Portland cement
concrete (PPCC), and polymer concrete (PC). PIC is a hydrated Portland cement
concrete that has been impregnated with a monomer, which is subsequently
polymerized in situ. PPCC is made by adding water-soluble polymer to fresh, wet
concrete. PC is a mixture of fine and coarse aggregate with a polymer used as the

binder. These materials are used as concrete repair materials for damaged surfaces.

ALAG anti-abrasion concrete is a recent advancement. This is a special concrete
made of calcium aluminate cement and calcium aluminate reactive synthetic
aggregate. Because both the cement and the aggregates have the same physical and
mineralogical characteristics, two types of bonds, i.e., physical bonds as well as
chemical bonds, are ensured to give it mechanical strength to resist abrasion. It has
also been tested with velocities up to 110 m/s in cavitation conditions. However,
more study is required to ascertain its suitability for protection against cavitation

damage.
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