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SEMBOL LİSTESİ 
 
 

( )EA  :E üzerinde yaklaşık operatörler 
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(1 ,B A E )  : A’dan E’ye iç türevler 

( ),nB A E  : Hochschild kompleksin n-kosınırı 
SC  : S’den C’ye tanımlanan tasvirlerin kümesi 
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(bC X )  : X üzerindeki sınırlı fonksiyonların cebri 

0C ( X )  : X üzerinde sonsuzdaki değeri sıfır olan sürekli  
   fonksiyonların kümesi 

gδ  : G’deki nokta kütle  

Ge  : G grubunun birimi 

(1 , )A EH                : Birinci Hochschild kohomoloji grubu 

( ,n )A EH               : n-inci Hochschild kohomoloji grubu 

( ,nH A E )  : n-inci cebirsel Hochschild kohomoloji grubu 
ker T : T’nin çekirdeği 
( ),L E F  : E’den F’ye sınırlı lineer operatörlerin kümesi 

( ) ( ),L E L E E=     : E’den E’ye sınırlı lineer operatörlerin kümesi 

( )S∞A  : S üzerinde sınırlı fonksiyonların alt kümesi    

( )L G∞                     : G üzerindeki sınırlı fonksiyonların kümesi 
1L ( G )  : G üzerinde Haar ölçüsüne göre integrallenebilen  

   kompleks değerli  fonksiyonların uzayı 
( )LUC G  : G üzerindeki sol düzgün sürekli fonksiyonların  kümesi 

( )M G  : G’nin ölçü cebri 

( )1 ,A EN  : A’dan E’ye sürekli iç türevlerin uzayı 
\  : Reel sayılar kümesi 
  : A’nın Jacobson radikali rad A

( )RUC G  : G üzerindeki sağ düzgün sürekli fonksiyonların kümesi  

( )supp f  : f’in desteği 

( )UC G  : G üzerindeki düzgün sürekli fonksiyonların  kümesi. 

( )1 ,A EZ  : A’dan E’ye sınırlı türevler 

( ),n A EZ  : Hochschild kompleksin n-koçemberi 
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. ∈  : injektif tensör normu 

. π  : projektif tensör normu 
 
∗  : konvulüsyon 
⊗  : cebirsel tensör çarpımı 
∧

⊗  : projektif tensör çarpımı 
∨

⊗  : injektif tensör çarpımı 

:=  : tanıma eşit 

,                              : kanıtın sonu 
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AMENABLE BANACH CEBİRLERİ  

ÖZET 

Soyut harmonik analizin temel taşları yerel kompakt gruplar ve bu gruplara bağlı 
cebirlerdir. Bu cebirlerin en önemlilerinden biri Fourier cebirleridir. Yerel kompakt 
grup, yerel Haussdorf topolojik uzay ve grubun çarpma işlemi ile ters alma işlemini 
karşılaştırılabilir yapan bir gruptur. Yani çarpma işlemi ve ters alma işlemi süreklidir.  

Yerel kompakt gruplar için en belirleyici özelllik amenable kavramıdır. İlk olarak 
diskırit gruplarda Von Neuman tarafından tanımlanmıştır. Bu gruplar için amenable 
kavramı Banach –Tarski paradoksuna bağlı olarak ortaya çıkmıştır. Banach – Tarski 
paradoksunun en çok bilinen ifadesi; “ Bir portakalı sonlu dilimlere ayırıp, tekrar 
birleştirerek yarıçapları ilk portakalın yarıçapı kadar olan iki tane portakal elde 
edebiliriz” şeklindedir. Banach–Tarski paradoksu, paradoksal ayrıştırmanın 
(paradoxical decomposition) bir örneğidir. Bir grubun paradoksal olmaması onun 
amenable olmasını gerektirir. Tersi de amenable ise paradoksal değildir. 

Amenable kelimesini ilk olarak M.M. Day kullandı. Day, amenable yarı gruplar 
üzerine çalışmalarından sonra, yerel kompakt gruplar için amenable tanımını vermiştir; 

üzerinde sol dönüşüm değişmez bir mean varsa bir G yerel kompakt grubuna 
amenable denir. Bütün sonlu, değişmeli ve kompakt gruplar amenabledir. İki üreteçli 
serbest grup ise amenable değildir. 

( )L G∞

1972 yılında B. E. Johnson, Hochschild kohomoloji yardımıyla Banach cebirlerinde 
amenable  tanımını vermiştir. Johnson, bir yerel kompakt grubun grup cebrinin, grup 
amenable ise amenable olduğunu göstermiştir. 

Bilinen Banach cebirlerinin çoğu amenabledır. Örneğin, değişmeli -cebirleri, 
kompakt operatörlerin cebirleri, amenable grupların grup cebri amenabledır. Bu 
çalışmada amenable radikal Banach cebirleri incelenmiştir. Runde değişmeli olmayan 
amenable radikal Banach cebirlerinin olduğunu gösterirken, değişmeli amenable 
radikal Banach cebirlerinin olup olmadığı bilinmiyordu. Runde’nin örneğinden bir yıl 
sonra C. J. Read değişmeli amenable radikal Banach cebrine bir örnek vermiştir. Bu 
cebrin inşasında teknik zorluklar olmasına rağmen inşa fikrinin daha basit olduğu 
gösterilmiştir. 

C∗
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AMENABLE BANACH ALGEBRAS  

SUMMARY 

The cornerstones of Abstract Harmonic Analysis are locally compact groups and 
algebras related to these groups. One of the most important of these algebras is Fourier 
algebras. Locally compact group is a group that makes it possible to compare locally 
Hausdorff topological space with the product and inverse of the group. Namely, 
product and inverse operations are continuous.   

The most distinctive feature of locally compact groups is the concept of “amenable”. 
This was first defined by Von Neuman in discrete groups. The concept of amenable for 
these groups first emerged in relation to the Banach –Tarski paradox. The most 
common known expression of Banach –Tarski paradox is;  “An orange can be chopped 
into a finite number of chunks, and these chunks can then be put together again to yield 
two oranges, each of which has the same diameter as the one that just went into 
pieces.”. Banach–Tarski paradox is an example of paradoxical decomposition. The fact 
that a group is not paradoxical requires that group to be amenable. And reversely, if the 
group is amenable, then it is not paradoxical.    

The word “amenable” was first used by M.M. Day. After his studies on amenable 
semi-groups, Day gave the definition of amenable for locally compact groups; If there 
is a left translation invariant mean on ( )L G∞ , a locally compact group G is called 
amenable. All finite, commutative and compact groups are amenable. Two generators 
on free group are not amenable.            

In 1972, B. E. Johnson gave the amenable definition in Banach algebras with the help 
of Hochschild cohomology. Johnson showed that the group algebra of a locally 
compact group is amenable if the group is amenable.    

Most of the known Banach algebras are amenable. For instance, commutativeC∗ -
algebras, algebras of compact operators, group algebra of amenable groups are 
amenable. This study analyzes the amenable radical Banach algebras. When Runde 
showed that there are non-commutative amenable radical Banach algebras, it was not 
known whether there were commutative amenable radical Banach algebras. One year 
later the example of Runde, C. J. Read gave an example of commutative amenable 
radical Banach algebra. Although there are technical difficulties in the construction of 
this algebra, it is shown that the construction idea is more simple.      

 xi
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1. GİRİŞ 

“Amenable” kavramı ilk olarak, 1904 yılında Lebesgue’nin  üzerinde Lebesgue 

integralinin özelliklerinin bir listesini vermesiyle ortaya çıkmıştır. Bu özelliklerin  

biri hariç, hepsi, Riemann integralinin temel özellikleriyle aynıydı. Farklı olan 

özellik  Monoton Yakınsaklık Teoremi’nin bir versiyonuydu. Lebesgue doğal olarak, 

Monoton Yakınsaklık Teoremi bir kenara bırakılırsa, integralin özelliklerinin yine 

aynı şekilde verilip verilemeyeceğini sordu. Monoton Yakınsaklık Teoremi aslında 

sayılabilir toplamsallık ile denk olduğundan Lebesgue’in sorusu şu şekilde de 

sorulabilirdi: Eğer Monoton Yakınsaklık Teoremindeki koşullar sadece sonlu 

toplamsallık ile yer değiştirirse Lebesgue integrali hala tek midir?  

R

Banach, daha sonra Lebesgue integralinden farklı olarak  üzerinde sonlu toplamsal 

ve invaryant olan integral örneği verdi ve böylece bu soru olumsuz olarak 

yanıtlanmış oldu.  

R

Daha sonra  üzerinde bir invaryant ölçünün varlığı kanıtlandı. İnvaryant ölçü R µ  

ile ilgili göze çarpan iki önemli gerçek vardı: Birincisi; ’nin bütün altkümelerinde 

tanımlanmış olması, ikincisi ’nin 

R

R µ -ölçüsünün sonlu olmasıydı. ( )( )1µ =R . 

Halbuki bu ’nin Lebesgue ölçüsünün R ∞  olması ile çelişiyordu. Modern dilde,  

bir diskırit grup olarak amenable’dı ve 

R

µ  ölçüsü bir invaryant mean’di.  

1920’lerde ve 1930’larda, bir X kümesi üzerinde bir G grubu için invaryant mean’nin 

varlığı Banach ve Tarski tarafından araştırıldı. 1929 yılında Von Neuman Banach-

Tarski teoremleri ile çalışmasında [29] makalesinde ilk olarak amenable kavramını 

tanımladı. Bu gruplar için amenable kavramı Banach Tarski paradoksuna bağlı 

olarak ortaya çıkmıştır.  Tarski 1938 yılında böyle bir mean’nin ancak ve ancak X 

kümesinin bir “G-paradoksal ayrışımı” olmadığı durumda var olabileceğini gösterdi.  

“ Amenable” terimi ilk olarak Mahlon Marsh Day tarafından 1950 yılında kullanıldı. 

(amenable = mittelbar (Almanca) = moyennable (Fransızca)). Day, [7], [8], [9], [4],  

 1



 

[11] makalelerinde diskırit yarı grup ve gruplardan, yerel kompakt gruplara amenable 

kavramını geliştirmiştir.  üzerinde sol dönüşüm değişmez bir mean varsa bir 

G yerel kompakt grubuna amenable denir. Yine bu yıllarda Rosen [24] , Silverren 

[28], Folner [13], amenable diskırit ve yerel kompakt gruplar üzerinde önemli 

çalışmalar yapmışlardır. 

( )L G∞

B. E. Johnson, Hochschild kohomoloji gruplarından faydalanarak, Banach cebirleri 

için, amenable kavramını anlamlı kıldı. 1972 yılında yayınlanan ünlü makalesinde 

[17] G bir grup olmak üzere  Banach cebrinin amenable olması için gerek ve 

yeter şartın G’nin amenable olması gerektiğini kanıtlamıştır. 

1( )L G

Daha sonraki yıllarda, Helemskii [16] makalesinde amenable Banach cebirlerinin 

homolojik özelliklerini incelemiştir. Bundan sonraki çalışmalar daha derin teoriler 

gerektirmiş ve kuvvetli, zayıf amenable kavramlarının doğmasına sebep olmuştur. 

Haagerup’un [15] makalesinde -cebirlerinin amenable olması için gerek ve yeter 

şartın nükleer olması gerektiğine dair teoremi çok derin bir teorem örneğidir. 

C ∗

Amenable konusunda, 1988 yılında basılan A.L.T. Paterson’nun “ Amenability”, 

2001 yılında basılan H.G. Dales’in “Banach algebras and automatic continuity”, 

2002 yılında basılan V. Runde’nin “Lectures on amenability” kitapları son yıllardaki 

temel kitaplardır. 

Bu tezin, birinci bölümünde amenable konusunun tarihsel gelişimi verilmiştir. İkinci 

ve dördüncü bölümlerde temel bilgi ve kavramlar verilerek, Banach cebirlerinde 

amenable kavramına hazırlık yapılmıştır. Üçüncü bölümde harmonik analiz ve 

operatör uzaylarında hayati rol oynayan tensör çarpımları verilmiştir. Beşinci 

bölümde topolojik gruplar, altıncı bölümde harmonik analizin temel aracı olan yerel 

kompakt uzaylarda ölçü ve integrasyon kavramları verilmiştir. Yedinci bölümde 

diskırit ve yerel kompakt gruplar üzerinde amenable kavramı verildikten sonra son 

bölümde Banach cebirlerinde değişmeli ve değişmeli olmayan amenable radikal 

Banach cebirlerinin inşası verilmiştir. 

 

 

 2



 

2. CEBİRLER 

Bu bölümde amenable Banach cebirleri için gerekli olacak temel tanım ve teoremler 
verilmiştir. 

2.1. Cebirler 

2.1.1. Tanım: F cismi ( )

( ) yxy,x ⋅→

 veya F F= =^R üzerinde ’dan A’ya giden, 

 tasviri ile verilen ve aşağıdaki şartları sağlayan A lineer uzayına cebir 

denir.  Literatürde lineer birleşim cebri (linear associative algebra) olarakta 

isimlendirilir. 

AA x

Az,y,x ∈∀  ve F∈∀α , 

1)  ( ) ( )zyxzyx =

2)  ( ) zxyxzyx +=+

      ( ) zyzxzyx +=+  

3)  ( ) ( ) ( yxyxyx )ααα ==                                                                                    (2.1)     

F = R  ise cebire reel cebir, F = ^  ise kompleks cebir  denir. 

2.1.2. Tanım: A cebrinin  alt kümesi A’daki toplama, skalerle çarpma ve 

çarpma işlemleri altında bir cebir oluşturuyorsa, ’e A’nın bir alt cebri denir. 

AA ⊂1

1A

2.1.3. Teorem: , A cebrinin bir alt kümesi olsun. 1A 1,x y A∀ ∈  ve F∈∀α , 

1)  1Ayx ∈+

2) 1Ax∈α  

3)                                                                                                                 (2.2)     1Ayx ∈

ise  bir alt cebirdir. 1A
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2.1.4. Tanım: A cebrinde  için Ax∈∀ xxeex ==  olacak şekilde bir  varsa A 

cebrine “birimli cebir” denir. e elemanına da  A cebrinin birim elemanı denir. 

Ae∈

2.1.5. Tanım: Birim elemanlı bir A cebrinde yx e=  ise y’ye  x’in sol tersi denir ve 
1

lx−  ile gösterilir. x y e=  ise y’ye  x’in sağ tersi denir ve 1
rx−  ile gösterilir. 

Bir elemanın sağ ve sol tersi varsa bunlar aynıdır. 

( ) ( )1 1 1 1 1 1
l l r l r r r

1x x x x x x x e x x− − − − − − −= = = ⋅ =

1

              (2.3) 

1
l rx x− −⇒ =  bulunur. Bu durumda x’in tersi vardır ve 1x−  ile gösterilir. 

2.1.6. Teorem: Birimli bir A cebrinde x’in tersi var ve x y yx=  ise 1x−  ile y 

değişmelidir.  

2.1.7. Tanım: Bir değişmeli alt cebir başka bir değişmeli alt cebir tarafından 

kapsanmıyorsa bu cebire maksimal alt  cebir denir. 

2.1.8. Teorem: Her değişmeli alt cebir bir maksimal değişmeli alt  cebir tarafından 

içerilir. 

2.1.9. Teorem: x bir maksimal değişmeli alt cebir ’in elemanı ve 1A 1x−  varsa 

1
1x A∈−  dir. 

2.1.10. Tanım: Bir birimli A cebrinin sıfırdan farklı her elemanının tersi varsa A’ya 

bölüm cebri (division algebra)denir. 

2.1.11. Teorem: Bir birimli A cebrinin sıfırdan farklı her elemanının sol tersi ( ya da 

sağ tersi ) varsa A bir bölüm cebridir. 

2.1.12. Tanım: Bir A cebrinin merkezi (center) 

{ }AyxyyxAxC ∈∀=∈= ,:  

olarak tanımlanır. Bir A cebrinin merkezi bir değişmeli alt cebirdir. 

2.1.13. Tanım: Bir A cebrinin  alt kümesi, LII =

i) , A lineer uzayının bir alt uzayı LI
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ii)  ,   için  LIx∈ a A∀ ∈ LIxa ∈

şartlarını sağlıyorsa ’ye A’nın bir sol ideali denir. Sağ ve iki taraflı ideal benzer 

şekilde tanımlanır. 

LI

2.1.14. Teorem: Birimli bir A cebrinde bir x elemanının sol ( sağ ) tersinin olması 

için gerek ve yeter şart herhangi bir öz ( proper ) sol ( sağ ) ideale ait olmamasıdır. 

2.1.15. Tanım: A cebrinin bir sol ( sağ veya iki taraflı ) ideali A cebrinin başka sol 

(sağ veya iki taraflı) ideali tarafından kapsanmıyorsa maksimal ideal olarak 

adlandırılır. 

2.1.16. Teorem: Birimli A cebrinde her sol (sağ veya iki taraflı) ideal bir maksimal 

sol (sağ veya iki taraflı ) ideal tarafından kapsanır.  

2.1.17. Teorem: Birimli bir cebirde bir x elemanının sol (sağ) tersinin olması için 

gerek ve yeter şart herhangi bir maksimal sol ( sağ ) ideale ait olmamasıdır. 

2.1.18. Tanım: Sıfırdan farklı, iki-taraflı ideali olmayan cebire basit ( simple) cebir 

denir. 

2.1.19. Tanım: I, A cebrinin iki taraflı bir ideali olsun. A’nın iki elemanı 1x  ve 2x  

için 1 2x x I− ∈  ise  I’ya denk modül (equivalent modülo I ) denir. 

2.1.20. Tanım: A cebrinde bir x A∈  alalım. x’in sınıfı, 

[ ] { }:x y A x y I x I= ∈ − ∈ = +                                                                                  (2.4) 

şeklinde tanımlanır. 

2.1.21. Tanım: Aşağıdaki işlemler altındaki cebire bölüm ( quotient ) cebri denir.  

[ ] [ ] [ ]x y x y+ = +  

[ ] [ ]x xα α=                                                                                                                

[ ] [ ] [ ]x y x y⋅ = ⋅                                                                                                       (2.5)     

Bölüm cebri /A I  ile gösterilir. 
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2.1.22. Tanım: A cebrinin LI  sol idealine, x A∀ ∈  için Lxu x I− ∈  olacak şekilde bir 

 varsa regüler denir. u elemanına birim modül I ideali ( identity modülo the 

ideal 

u A∈

LI  ) denir. 

I iki taraflı idealinin regüler olması demek u A∃ ∈ ,  

  ve   u x x I− ∈ xu x I− ∈ ,  x A∀ ∈                                                                          (2.6)     

olmasıdır. Eğer A birimli ise u  olmalıdır ve her ideal regüler olur.  e=

2.1.23. Teorem: A cebrinde bir x elemanının bir sol tersinin olmaması için gerek ve 

yeter şart { }LI a ax= + ,  bir sol ideal olmasıdır. Bu durumda a A∈ LI , x’i içermeyen 

regüler sol idealdir. 

2.1.24. Teorem: A cebrinde bir x elamanının bir sol tersinin olması için gerek ve 

yeter şart keyfi maksimal regüler sol ideal LM  için Lx y yx M+ + ∈  olacak şekilde 

bir y elemanının olmasıdır.  

2.2. Banach Cebirleri 

2.2.1. Tanım: E bir lineer uzay olsun. Aşağıdaki şartları sağlayan : E⋅ →R  

tasvirine E üzerinde bir norm denir. 

i) ( ) 000 =⇔=∈≥ xx;Exx  

ii) ( ),x x xα α α= ∈^ E∈  

iii) ( Ey,xyxyx ∈+≤+ )  .                                                                       (2.7)     

Üzerinde  norm tanımlanan E uzayına normlu uzay denir ve ( )⋅,E  ile gösterilir. 

2.2.2. Tanım: Bir normlu uzayda her Cauchy dizisi yakınsak ise diğer bir deyişle, 

normlu uzay tam ise Banach uzayı olarak adlandırılır. 

2.2.3. Tanım: A bir cebir olsun. A üzerinde cebir normu, A’yı normlu uzay yapan ve 

iv) baba ≤         ( ,                                                                              (2.8) )a b A∈
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koşulunu sağlayan : A⋅ →R  tasviridir. Bu norm ile A cebrine normlu cebir denir 

ve  ( ⋅,A )  ile gösterilir. ( ⋅,A )  normlu cebri, normlu uzay tam ise Banach cebri 
olarak adlandırılır. 

2.2.4. Tanım: Bir A Banach cebri bir  birim elemanına sahip ve Ae 1=Ae  ise 

birimli (unital) Banach cebri olarak adlandırılır. 

2.2.5. Örnekler: 

2.2.5.1. Örnek: S, boş olmayan bir küme ve C bir cebir olsun. , S’den C’ye 

tanımlanan fonksiyonların kümesini göstersin ve üzerindeki cebirsel işlemler şu 

şekilde tanımlansın. 

SC

SCgfSs ∈∀∈∀ ,,  ve ,α β∀ ∈^  

( )( ) ( ) ( )sgsfsgf βαβα +=+  

( )( ) ( ) ( )sgsfsgf =  

( ) 11 =s .                                                                                                                    (2.9) 

SC , değişmeli ve birimli cebirdir. 

2.2.5.2. Örnek:  , S üzerindeki sınırlı fonksiyonların altkümesini göstersin. 

(S’den C’ye giden sınırlı fonksiyonlar) S üzerinde düzgün norm (uniform norm) şu 

şekilde tanımlansın. 

( )S∞A

( ){ } ( )( )SfSssff
S

∞∈∈= A:sup                                                            (2.10) 

O halde ( )( )sS ⋅∞ ,A  birimli Banach cebridir. 

2.2.5.3. Örnek: X bir topolojik uzay olsun. ( )XC , X üzerindeki bütün sürekli 

fonksiyonların cebrini ve ( )b XC , X üzerindeki, sınırlı fonksiyonların cebrini 

göstersin. ( ){ } ( )( )sup :
X

f f x x X f X= ∈ ∈A∞  

olmak üzere, ( )( )
X

b XC ⋅,  bir birimli cebirdir. 
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2.2.5.4. Örnek: E ve F lineer uzaylar olsun. ( )FEL ,  , E’den F’ye bütün lineer 

tasvirlerin koleksiyonunu göstersin. ( )FEL ,  standart işlemler altında lineer uzaydır. 

E ve F’yi Banach uzayları olarak alalım. ( )FEB , , E’den F’ye bütün sınırlı (diğer bir 

deyişle sürekli) lineer operatörlerin ailesini göstersin. Bu durumda ( )FEL , ’nin alt 

uzayıdır ve Banach uzayıdır. Operatör normu, 

{ 1,:sup ≤∈= xExTxT }

)

                                                                         (2.11) 

şeklinde tanımlanır. 

( EEL ,  için kısaca ( )EL  ve  için kısaca ( EEB , ) ( )EB  kullanılabilir. ’deki S 

ve T operatörlerinin çarpımı, 

( )EL

( )( ) ( )( ) ( ) ( )ExxTSxTSxTS ∈== D                                                                  (2.12) 

ile  verilir. Aşikar olarak, 

( )( EBTSTSST ∈≤ , )                                                                             (2.13) 

sağlanır. ( )( ⋅,EB )

)

 bir birimli Banach cebridir. 

( EB ’nin birimi,  birim operatörüdür. EI ( )EB  değişmeli olmayan Banach cebrine 

bir örnektir. 

2.3. Modüller 

2.3.1. Tanım: A, ^  üzerinde bir cebir ve E,  üzerinde bir lineer uzay olsun. ^

)

)

 ( )  , ,a x a x A E E⋅ × →6

tasviri aşağıdaki koşulları sağlar ise E’ye bir sol A-modül denir. 

i)  ( ) ( , , , ,a x y a x a y a A x y Eα β α β α β⋅ + = ⋅ + ⋅ ∈ ∈ ∈^

ii)  ( ) ( , , , ,a b x a x b x a b A x Eα β α β α β+ ⋅ = ⋅ + ⋅ ∈ ∈ ∈^

iii) ( ) ( )ExAbaxbaxba ∈∈⋅=⋅⋅ ,,                                                           (2.14)     

A, ^  üzerinde bir cebir ve E,  üzerinde bir lineer uzay olsun. ^
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( ) EEAaxxa →⋅ x,, 6  

tasviri aşağıdaki koşulları sağlar ise E’ye bir sağ A-modül denir. 

i) ( ) ( ), , , ,x y a x a y a a A x y Eα β α β α β+ ⋅ = ⋅ + ⋅ ∀ ∈ ∈ ∈^  

ii) ( ) ( ), , , ,x a b x a x b a b A x Eα β α β α β⋅ + = ⋅ + ⋅ ∈ ∈ ∈^  

iii) ( ) ( ExAbabaxbax )∈∈⋅=⋅⋅ ,,                                                               (2.15)     

Bir A-bimodül , sol A-modül ve sağ A-modül olan bir E uzayıdır ve 

( ) ( ) ( ExAbabxabxa )∈∈⋅⋅=⋅⋅ ,,                                                               (2.16) 

koşulunu sağlar. Varsayalım ki A değişmeli ve 

( ExAaaxxa ∈ )∈⋅=⋅ ,                                                                                     (2.17) 

olacak şekilde E bir A-bimodül olsun. O halde E bir A-modüldür. 

2.3.2. Tanım: E bir sol A-modül olsun. 

( )( ) ( )ExAaxaxa ∈∈⋅= ,ρ                                                                             (2.18)     

ile tanımlanan ( )ELA →:ρ  tasviri bir homorfizmdir ve bu şekildeki her 

homomorfizm bir sol A-modül tanımlar. ρ  tasviri, E lineer uzayı üzerinde A cebrinin 

temsili olarak adlandırılır. 

2.3.3. Tanım: Farzedelim ki A birimli olsun. Eğer 

( )ExxxeA ∈=⋅  

koşulu sağlanıyorsa sol A-modül E’ye birimli denir. 

2.3.4. Tanım: Eğer  ve E’nin alt modülleri sadece 

 ve E ise E modülüne basit (simple) denir. 

{ }{ . : , } 0A E a x a A x E⋅ = ∈ ∈ ≠

{ }0

Bir basit modül E için, ExExA ∈∀=⋅ \{ }0  

2.3.5. Tanım: E ve F sol A-modül olmak üzere, 

( ) ( ExAaxTaxaT )∈∈⋅=⋅ ,                                                                          (2.19)                      

koşulunu sağlayan   lineer tasvirine sol A-modül homomorfizm denir. FET →:
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Benzer şekilde A-bimodül homomorfizm de tanımlanabilir. 

2.3.6. Tanım: A bir Banach cebri ve E bir sol A-modül olan bir Banach uzayı olsun. 

Eğer, 

( ) EExaxa →⋅ ,: 6ρ                                                                                        (2.20)     

tasviri her için sürekli ise E’ye zayıf Banach sol A-modül denir. Eğer, Aa∈

( ), , xa x a x A E E⋅6 →                                                                                   (2.21)       

tasviri sürekli ise E’ye Banach sol A-modül denir. 

Benzer şekilde sağ A-modüller ve A-bimodüller tanımlanabilir. Her Aa∈  için 

( ExxCxa a ∈≤⋅ )                                                                                        (2.22)    

olacak şekilde bir  sabiti varsa E, zayıf Banach’tır. 0>aC

( )ExAaxaCxa ∈∈≤⋅ ,                                                                     (2.23)     

olacak şekilde  sabiti varsa E  Banach’tır. 0>C

A ve B Banach cebirleri, BA→:θ  homomorfizm olsun. 

( )baba θ=⋅   ,  ( )abab θ=⋅     ( BbAa )∈∈ ,                                                       (2.24)     

tasvirleri için B zayıf Banach A-bimodüldür. Fakat θ  sürekli ise B Banach                      

A-bimodüldür. 

2.3.7. Önerme: A birimli Banach cebri olsun. 

i) A’daki her primitif ideal kapalıdır. 

ii) E basit sol A-modül olsun. E üzerinde, ( )⋅,E  bir Banach sol A-modül olacak 

şekilde ⋅  normu vardır. 

2.3.8. Tanım: A bir Banach cebri ve E bir Banach A-bimodül olsun. Aa∈  ve E ′∈λ  

için λ⋅ a⋅a  ve λ  şu şekilde tanımlanır. 

, ,x a x aλ λ< ⋅ >=< ⋅ >    ,    , ,x a a xλ λ< ⋅ >=< ⋅ >   ( )Ex∈                                  (2.25)     
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O halde λ⋅a  ,   Ea ′∈⋅λ  ve E ′  bir Banach A-bimodüldür ve E ′ ’ye E’nin dual 

modülü denir.  alınırsa, AE =

, ,b a b aλ λ< ⋅ >=< >    ,     , ,b a abλ λ< ⋅ >=< >      ( )AAba ′∈∈ λ,,                (2.26)     

işlemleri için A′  bir Banach A-bimodüldür. Bu modül A’nın dual modülü olarak 

adlandırılır. 

2.4. Türevler 

2.4.1. Tanım: A bir cebir ve E bir A-bimodül olsun. 

( ) ( )Ab,abaDbDabaD ∈⋅+⋅=                                                                 (2.27)     

koşulunu sağlayan  lineer tasvirine türev (derivation) denir. EAD →:

(2.27) denklemi birim türev (derivation identity) olarak adlandırılır. A’dan E’ye 

türevlerin kümesi  ile gösterilir. ( E,AZ 1 ) )( ) (1 , , ,Z A E A EL ’nin bir lineer 

altuzayıdır. Örneğin, bir  ve Ex∈

( ) ( )Aaaxxaax ∈⋅−⋅=δ                                                                                 (2.28)     

kümesi alınırsa  ,  için Ab,a ∈

( ) ( ) ( ) baxxabxxbabax ⋅⋅−⋅+⋅−⋅⋅=δ  

              ( ) baba xx ( )δδ ⋅+⋅=                                                                               (2.29)     

elde edilir ve xδ  bir türevdir. Bu formdaki türev iç türev (inner derivation) olarak 

adlandırılır. İç türev olmayan türevlere  ise dış türev (outer derivation) denir. 

AA,abbaab →−6:δ                                                                                      (2.30)                         

tasviri, A cebri üzerinde bir iç türevdir. A’dan E’ye tanımlanan iç türevlerin kümesi 

 ile gösterilir ve ( E,AN 1 ) ( )E,AZ 1 ’nin bir lineer alt uzayıdır.  lineer uzayı, 

 tasviri için A-modüldür ve bu da 

^

( , ) ( ) ,a z a z Aϕ × →6 ^ ^ ϕ^ ile gösterilir. 

(1 ,Z A )ϕ^  kümesi,  

( ) ( ) ( ) ( ) ( )d a b a d b d a bϕ ϕ= +     ( )Ab,a ∈                                                 (2.31)     
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olacak şekilde  lineer fonksiyonellerinden oluşur. Bu tasvirler :d A →^ ϕ ’deki 

noktasal türevlerdir. 

A bir Banach cebri ve E bir Banach A-bimodül olsun. A’dan E’ye sürekli türevlerin 

uzayı (1 , )A EZ  ile sürekli iç türevlerin uzayı ise ( )1 ,A EN  ile gösterilir.  

2.4.2. Teorem: ( Singer ve Wermer ) 

A bir değişmeli Banach cebri ve  bir sürekli türev olsun. O halde 

. 

AAD →:

( ) AradAD ⊂

2.4.3 Teorem:  ( Sinclair ) 

A bir Banach cebri ve  bir sürekli türev olsun. O halde, A’nın her primitif 

P ideali için  dir. 

AAD →:

( ) PPD ⊂

2.5. Radikaller 

2.5.1. Tanım: R değişmeli bir halka ve I bir ideal olsun. a b, R∈  olmak üzere 

 iken  veya b  ise I’ya asal (prime) ideal denir. a b I⋅ ∈ a I∈ I∈

2.5.2. Tanım: R bir halka ve M bir ideal olsun. M R≠  ve M’yi içeren R ile M 

arasında bir ideal yoksa M’ye maksimal ideal denir. Yani, 

M maksimal M J R J R⇔ ⊂ ⊂ ⇒ =  

2.5.3. Teorem: Her değişmeli ve birimli halkada maksimal ideal asal idealdir.  

2.5.4. Teorem: Her değişmeli ve birimli halkada M idealinin maksimal ideal olması 

için gerek ve yeter şart nin cisim olmasıdır.  /R M

2.5.5. Teorem: Her değişmeli ve birimli halkada I idealinin asal ideal olması için 

gerek ve yeter şart R/I nın tamlık bölgesi olmasıdır. 

2.5.6 Tanım: R değişmeli halkasında bir a R∈  elemanı ( )0n n> ∈` ,  şartını 

sağlıyorsa a’ya nilpotent eleman denir. 

0na =

2.5.7. Teorem: Bir R değişmeli halkasında bütün nilpotent elemanların kümesi N, 

R’nin bir idealidir ve R/N’nin sıfırdan farklı nilpotent elemanı yoktur. 

 12



 

2.5.8. Tanım: Teorem 2.5.7.’deki N idealine Nil radikal denir. 

2.5.9. Teorem: R halkasının nil radikali R’nin bütün asal ideallerinin kesişimidir.  

2.5.10. Tanım: Değişmeli R halkasının bütün maksimal ideallerinin kesişimi J’ye 

R’nin Jacobson radikali denir.  

2.5.11. Teorem: Bir a elemanının R halkasının Jacobson radikaline ait olması için 

gerek ve yeter şart  için 1 ’nin birim olmasıdır. r R∀ ∈ ar−

2.5.12. Teorem: Bir a elemanının R’de tersi olması için gerek ve yeter şart ’nin 

R/J’de tersinin olmasıdır. 

a J+

2.5.13. Teorem: N, R’de bir nil ideal ise N, Jacobson radikal J’dir. 

2.5.14. Tanım:  R’nin bir x elemanı için 0x y x y+ + =  şartını sağlayan R’de bir y 

elemanı varsa x’e sağ quasi-regüler denir. Eğer 0x y yx+ + =

y R∈

1

 olacak şekilde bir 

 varsa x’e sol quasi-regüler denir. 

Sağ quasi-regüler eleman nilpotent elemanın genellemesidir.  için 

oluyorsa x’e nilpotent eleman demiştik. Eğer 

n Z +∃ ∈

0nx =

( ) 12 3 1 n ny x x x x− −=− + − + + −…  seçilirse, 

( )( ) ( )( )1 12 3 1 2 3 41 1n nn nx y xy x x x x x x x x x− −−+ + = + − + − + + − + − + − + + −… …  

     ( ) 11 n nx−= −  

      =0                                                                                                         (2.32)     

bulunur.  

2.5.15. Teorem: x’in sağ quasi-regüler olması için gerek ve yeter şart { }r xr R+ =  

olmasıdır. 

2.5.16. Tanım: Bir halkanın her elemanı sağ quasi-regüler ise halkaya sağ quasi-

regüler denir. 

 13



 

2.5.17. Tanım: Bir R halkasının bir I sağ idealinin ( sol ya da iki taraflı ideal de 

olabilir ) her elamanı sağ quasi-regüler ise I’ya sağ quasi-regüler sağ ideal denir. I 

sol idealinin her elemanı sağ quasi-regüler ise I’ya sağ quasi-regüler sol ideal denir. 

2.5.18. Teorem: x sağ quasi-regüler ve y bir sağ quasi-regüler sağ ideal I’ya ait ise 

 bir sağ quasi-regüler elemandır. x y+

2.5.19. Sonuç: İki sağ quasi-regüler sağ idealin toplamı bir sağ quasi-regüler 

idealdir. 

2.5.20. Sonuç: Bir R halkasının bütün sağ quasi-regüler ideallerinin toplamını J ile 

gösterelim. J, sağ quasi-regüler sağ idealdir. J, R’nin her sağ quasi-regüler sağ 

idealini içerir.  

2.5.21. Teorem: J iki taraflı idealdir. 

2.5.22. Teorem: Bir z elemanı hem sağ quasi-regüler 0z w zw+ + =  ve hem de sol 

quasi-regüler yani ise t w  ve w tektir.  0z t t z+ + = , wz zw= =

2.5.23. Tanım: I, R’nin bir sağ ideali olsun. r R∀ ∈   , er r I− ∈  olacak şekilde R’de 

bir e elemanı varsa I sağ idealine modüler denir. Böyle bir e elamanına I’nın bir sol 

birimi denir. 

2.5.24. Teorem: Herhangi bir R halkasının Jacobson radikali, 

 R’nin bütün modüler sağ maksimal ideallerinin kesişimi ( )α ’ya,  

R’nin bütün modüler sol maksimal ideallerinin kesişimi ( )β ’ya,  

{ }: sağ quasi-regüler ,x xr r R∀ ∈  kümesi ( )γ ’ya, 

{ }: solquasi-regüler ,x r x r R∀ ∈  kümesi ( )δ ’ya 

eşittir.  

2.5.25. Sonuç: R halkası birimli halka ise bütün sağ ( sol ya da iki taraflı ) idealler 

modüler sağ ( sol ya da iki taraflı ) ideallerdir. Dolayısıyla, Jacobson radikal bütün 

sağ maksimal ideallerin kesişimidir. 
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2.5.26. Tanım: R bir halka ve M, R’nin bir ideali olsun. 

( ) { }: :M R r R Rr M≡ ∈ ⊆                                                                                    (2.33)     

olarak tanımlanır. ,I J R∈  idealleri için, 

( ) { }: :I J r R r J I= ∈ ⊆                                                                                       (2.34)     

olarak tanımlanır. 

2.5.27. Teorem: M bir modüler sağ ideal ise ( ):M R M⊆  ve ( ):M R , M’de içerilen 

en büyük iki taraflı idealdir. 

2.5.28. Tanım: R’de ( ):M R 0= olacak şekilde bir maksimal sağ ideal varsa R’ye 

sağ primitif denir.  

2.5.29. Tanım: P, R’de bir ideal ise ve  sağ primitif ise P’ye sağ primitif ideal 

denir.  

/R P

2.5.30. Teorem: M, R’nin bir maksimal modüler sağ ideali ise ( ):M R  bir sağ 

primitif idealdir. 

2.5.31. Teorem: Jacobson radikali J, R’nin bütün sağ primitif (veya sol primitif ) 

ideallerinin kesişimine eşittir.  

2.6. Banach Cebirlerinde Radikaller 

2.6.1. Tanım: Birimli bir A cebrinde keyfi y elemanı için ( 0 )
1

L
e yx+ −  varsa 0x  

elemanına genelleştirilmiş nilpotent eleman denir. 

2.6.2. Tanım: A cebrindeki bütün genelleştirilmiş nilpotent elemanların kümesine 

A’nın Jacobson radikali denir. 

2.6.3. Teorem: Birim elemanlı bir cebrin radikali cebrin bütün maksimal sol 

ideallerinin kesişimine eşittir. 

Benzeri maksimal sağ idealler içinde söylenebilir. O halde radikal iki taraflı idealdir. 
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Kanıt: 0x  bütün maksimal sol ideallerde olsun. Kabul edelim ki öyle bir  

vardır ki ( ’nin tersi olmasın. Sol tersi yoksa z bir maksimal sol 

y A∃ ∈

)0e yx z+ = LI  

idealine aittir. 0x  bütün maksimal sol ideallerde ise 0 Lx I∈  dir.  

O halde  dir. Buradan  bulunur. Bu da çelişkidir çünkü sol 

idealde birim eleman olamaz. O halde 

0 Lyx I∈ 0 Le z yx I= − ∈

0e yx+ ’ın sol tersi her y için vardır. Yani 0x  

radikale aittir.  

Tersine, 0x  radikalin elemanı olsun. 0x  elemanının bütün maksimal sol ideallere ait 

olduğunu göstermemiz gerekir. Tersine olarak kabul edelim ki  0,L LI x I∃ ∉  

koşulunu sağlayan bir LI  maksimal sol ideali olsun. 

( )0 , ,Lz a yx a I y A= − ∈ ∈  

şeklindeki bütün z elemanlarının kümesi bir sol idealdir ve LI ’yi kapsar. Bu durumda 

z’lerden oluşan küme A olmalıdır, çünkü LI  maksimal idealdir.  

Bu durumda,   vardır ki   dır.  ,y a A∃ ∈ 0e a yx= −

O halde  dir ve ’ın sol tersi olamaz. Bu ise hipotez ile 

çelişkilidir. Çünkü 

0 Le yx a I+ = ∈ 0e yx+

0x  elemanı radikalden alınmıştı ve sol tersi olması gerekirdi. 

Dolayısıyla, 0x  bütün maksimal sol ideallere aittir. ,  

2.6.4. Sonuç: Bu teoreme göre radikal bir sol idealdir.  

2.6.5. Teorem: 0x ’ın birimli bir A cebrinin radikaline ait olması için gerek ve yeter 

şart ( )  in , varolmasıdır.  1−
0e ax+ a A∀ ∈

2.6.6. Teorem: Bütün maksimal sol ideallerin kesişimi bütün maksimal sağ 

ideallerin keişimine eşittir. O halde radikal iki taraflı idealdir. 

2.6.7. Tanım: Keyfi  ve keyfi z A∈ α  skaleri için 0 0x zxα + ’ın bir sol quasi-tersi 

varsa 0x  elemanına genelleştirilmiş nilpotent eleman denir. 
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2.6.8. Tanım: A cebrinde bütün genelleştirilmiş nilpotent elemanların kümesine 

cebrin radikali denir ve radA ile gösterilir.  

2.6.9. Tanım: Eğer cebir radikaline eşit ise ( yani radA = A ise ) A cebrine radikal 

cebir denir. Diğer durumda cebire radikal olmayan cebir denir. 

2.6.10. Teorem: Bir radikal olmayan cebirde, radikal, bütün maksimal regüler sol 

ideallerin kesişimi veya bütün maksimal regüler sağ ideallerin kesişimine eşittir. 

Dolayısıyla, radikal iki taraflı idealdir.  

2.6.11. Teorem: A’nın bütün indirgenemez (irreduciable) temsillerinin 

(representation ) çekirdeğinin kesişimi Jacobson radikaldir. 

2.6.12. Teorem: Eğer A bir radikal olmayan cebir ise, cebrin radikali A’nın  bütün 

primitif ideallerinin kesişimidir. 

2.6.13. Tanım: Bir cebrin radikali yalnız sıfır elemanını içeriyorsa (yani { }0rad =A ), 

cebire yarı-basit (semi-simple) denir. 

2.6.14. Teorem: radA  , A cebrinin radikali ise A / radA bir yarı-basit cebirdir. 

2.6.15. Teorem: Bir cebrin radikali , A’daki bütün quasi-regüler sol ( ya da sağ ) 

ideallerinin toplamına eşittir. 

2.6.16. Teorem: Cebrin radikali, Ax∈∀  ve her α  skaleri için ( )x qξ +  

( )( )veya q xξ +  quasi-regüler olacak şekilde bütün q elemanlarından oluşur. 

2.6.17. Tanım: Bir normlu cebirde bir ideal, topolojik nilpotent elemanların kümesi 

N’de içeriliyorsa topolojik nil ideal olarak adlandırılır. 

2.6.18. Teorem: Bir normlu cebrin radikali bir topolojik nil idealdir. 

2.6.19. Teorem: Bir A Banach cebrinin radikali aşağıdaki özelliklere sahiptir: 

i) Radikal, kapalı iki taraflı idealdir.  

ii) Radikal, topolojik nil idealdir ve bütün topolojik nil sol (veya sağ) ideallerin 

toplamına eşittir. 

iii) Radikalin her elemanı, iki taraflı topolojik sıfır bölendir. 
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2.6.20. Sonuç: Banach cebrinde, topolojik nilpotent elemanların kümesi N bir ideal 

ise, o halde radikal N’ye eşittir. 

2.6.21. Sonuç: Bir değişmeli yarı basit cebrin herhangi alt cebri ( kapalı veya değil)     

yarı-basittir. 
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3. TENSÖR ÇARPIMI 

Bu bölümde harmonik analiz ve operatör uzaylarda cebirin yapısını belirleyen en 

önemli kavramlardan biri olan tensör çarpımları verilmiştir. Tensör çarpımları ile 

ilgili detaylı bilgiler [27] da bulunabilir. 

3.1. Cebirsel Tensör Çarpımı 

3.1.1. Tanım:  lineer uzaylar olsun. 1 n…, ,E E , , ,1 2 nE E E τ
:E Eτ τ× × →"

…  nin tensör çarpımı  

bir lineer uzay ve  aşağıdaki evrensel özelliği sağlayan bir n-lineer 

tasvir olmak üzere 

1 n

( ),ττ  ikilisidir.  Her F lineer uzayı ve her n-lineer tasvir 

 için 1 nV :E E F× × →" iV V τ= D  olacak şekilde tek bir V :
~

F→τ  lineer tasviri 

vardır.  nin (  tensör çarpımı tek değildir. 1, , nE E… ),ττ ′τ  bir başka lineer uzay 

ve :θ ′ τ→τ  lineer uzayların bir izomorfizmi ise ( )′ ,θ Dτ τ  ,   nin bir 

başka tensör çarpımıdır. 

1, , nE E…

Verilen iki ( )1 1,ττ   ve (  tensör çarpımı;  )2 2,ττ ( )1 1,ττ   ve nin bir 

izomorfizmi, 

( 2 2,ττ )

12 θ= Dτ τ  olacak şekilde 1 2:θ →τ τ  ye bir izomorfizmdir. 

Verilen  lineer uzayları ve 1, , nE E… ( ),ττ  tensör çarpımı için standart notasyon 

kullanılırsa, τ  için  yazılır ve  1 nE ⊗ ⊗…… E

( ) ( )1 1 1 1:n n n nx x x , ,x x E , ,x Eτ⊗ ⊗ = ∈ ∈…… … ……                                        (3.1) 

şeklinde tanımlanır. Yukarıdaki formun elemanlarına temel tensörler ( elementary 

tensors)  denir ve  nin elemanları tensörler olarak adlandırılır.  1 nE ⊗ ⊗…… E
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3.1.2. Önerme:  lineer uzaylar ve 1, , nE E… 1 nx E E∈ ⊗ ⊗……  olsun. O halde bir 

 ve her bir  için,  m∈` 1j , ,= … n

k( ) ( )
1

1

x
m

k
n

k

x x
=

= ⊗ ⊗∑ ……                                                                                            (3.2) 

olacak şekilde, ( ) ( )1
j

m
j jx , ,x E∈…  vardır.  

3.1.3. Örnek: A bir cebir, E bir sol A-modül ve F bir sağ A-modül olsun. 

( )a x y a x y⋅ ⊗ = ⋅ ⊗   ve ( ) ( )x y a x y a a A, x E , y F⊗ ⋅ = ⊗ ⋅ ∈ ∈ ∈                   (3.3) 

olacak şekilde, E F⊗ ’de A’nın tek bir bimodül aksiyonu vardır. 

3.1.4. Teorem:  lineer uzayları için 1, , nE E… 1 nE E⊗ ⊗…  tensör çarpımı mevcuttur. 

3.1.5. Lemma:  ,   lineer uzaylar ve m∈` 1, , nE E… 1j , ,n= …  için 

( ) ( )
1

1

0
m

k k
n

k

x x
=

⊗ ⊗ =∑ …                                                                                                 (3.4) 

olacak şekilde  ( ) ( )1 m
j j jx , ,x E∈…   olsun.  Eğer ( ) ( )1 m

n nx , ,x……  lineer bağımsız ise, 

( ) ( ) ( )1 1 0 1k k
nx x k ,−⊗ ⊗ = =… … ,m

, ,E E

1 nE E⊗ ⊗…

E

E

  elde edilir. 

3.2. Banach Uzaylarında Tensör Çarpımı 

Eğer  Banach uzayları ise Teorem 3.1.4’ e göre tensör çarpımının 

 olduğunu biliyoruz. Tensör çarpımı genelde Banach uzayı değildir. 

 üzerinde norm tanımlayabiliriz. Bu norma göre tamlaştırma yapılarak 

Banach uzayı elde edilebilir. 

1 n…

1 nE ⊗ ⊗…

3.2.1. Tanım:  Banach uzayları olsun. 1, , nE E… 1 nE ⊗ ⊗…  üzerinde bir norm ⋅ ,  

(1 1 1 1n n )n nx x x x x E , ,x E⊗ ⊗ = ∈ ∈… …… …                                        (3.5) 

koşulunu sağlarsa çapraz  norm (cross norm) olarak adlandırılır. Böyle bir normun 

olup olmadığı akla gelen ilk sorudur. Cevabı aşağıdaki 3.3 ve 3.4 alt bölümlerinde 

verilmiştir. 
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3.3. İnjektif Tensör Çarpımı 

1, , nE E…  Banach uzayları ve 1 nE , ,E′ ′……  onların dual uzayları olsun.  

için  olsun.  olduğu için  ,  üzerinde 

bir lineer fonksiyoneldir. 

1j , ,= … n

j Ej Eφ ′∈ ⊗ ⊗ ≅^ … ^ ^ 1 nφ φ⊗ ⊗… 1 nE ⊗ ⊗…

3.3.1. Tanım:  Banach uzayları ve 1, , nE E… 1 nE , ,E′ ′……  onların dual uzayları 

olsun. Bu durumda  için, 1 n…x E E∈ ⊗ ⊗

{ }1 1x : sup x : 0 1n j j, B ,E ,φ φ φ
∈

⎡ ⎤′= < ⊗ ⊗ > ∈ =
⎣ ⎦

…… …j , ,n

E

                              (3.6) 

olarak tanımlansın.  üzerinde 1 nE ⊗ ⊗…
∈

⋅  normuna injektif norm denir.  

3.3.2. Önerme:   Banach uzayları olsun. Bu durumda, 1, , nE E…
∈

⋅  normu 

 üzerinde bir çapraz  normdur.  1 n…E E⊗ ⊗

3.3.3. Tanım:  Banach uzayları olsun. 1, , nE E… 1 nE E⊗ ⊗…  nin  
∈

⋅ normuna göre 

tamlaştırılmasına injektif tensör çarpımı denir ve 1 nE E⊗ ⊗…
∨ ∨

  ile gösterilir. 

3.3.4. Örnek: A bir Banach cebri, E bir sol Banach A-modül ve F bir sağ Banach          

A-modül olsun. E F⊗

∨

’deki A’nın bimodül aksiyonu, bir Banach A-bimodülde 

 ye dönüşür. E F⊗

Ω  bir küme ve E bir lineer uzay olsun. f Ω∈^  ve x E∈  için f x E Ω∈  şu şekilde 

tanımlanır. 

( )( ) ( ) ( ):f x w f w x w= ∈Ω                                                                               (3.7) 

3.3.5. Teorem:  bir yerel kompakt Hausdorff uzayı ve E bir Banach uzayı olsun. 

O halde, 

Ω

( ) ( ) ( )0 0xC E C ,E , f ,xΩ → Ω 6 f x                                                              (3.8) 

bilineer tasviri bir izometrik izomorfizm üretir.  
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( ) ( )0 0C E C ,
∨

Ω ⊗ ≅ Ω E                                                                                         (3.9) 

3.3.6. Örnek:  ve 1Ω 2Ω  yerel kompakt Hausdorff uzayları olsun. Bu durumda, bir 

kanonik izometrik cebir izomorfizmi vardır. 

( ) ( ) (0 1 0 2 0 1 2C C C
∨

Ω ⊗ Ω ≅ Ω ×Ω )                                                                          (3.10) 

3.3.7. Tanım: E bir Banach uzayı,  1 nx , ,x E∈…  ve 1 n, , Eφ φ ′∈…  olsun.Bu durumda, 

                                                                                          (3.11)   ( )
1

: j j
j

T x Eφ
=

= ∈∑ : F
n

)

 şu şekilde tanımlanır: 

(
1

n

j j
j

T x x , x x Eφ
=

= < > ∈∑                                                                              (3.12) 

3.3.8. Önerme: E bir Banach uzayı olsun. Bu durumda,  

( )E E L E , x xφ φ′⊗ → ⊗ 6 :                                                                            (3.13)                                        

lineer tasviri, E E′⊗  üzerindeki injektif norma göre bir izometridir ve  ve 

’nin bir izometrik izomorfizmine genişler.  

E E
∨

′⊗

( )EA

3.4. Projektif Tensör Çarpımı 

3.4.1. Tanım:  Banach  uzayları olsun. 1, , nE E… 1 nE E⊗ ⊗…  üzerinde 
π

⋅  projektif 

normu,  için 1 n…x E E∈ ⊗ ⊗

( ) ( ) ( ) ( )
1 1

1 1

x : : x
m m

k k k k
n

k k

inf x x x x
π

= =

⎧ ⎫= =⎨ ⎬
⎩ ⎭
∑ ∑… … n⊗ ⊗                                          (3.14) 

şeklinde tanımlanır. 

3.4.2. Önerme:  Banach uzayları ve1, , nE E… ⋅  normu 1 nE E⊗ ⊗…  üzerinde 

herhangi bir çapraz  norm olsun. Bu durumda 
π

⋅  projektif  normu 1x nE E∈ ⊗ ⊗…  

için, 

( 1x x x nE
π

≤ ∈ ⊗ ⊗… )E                                                                            (3.15) 
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şartını sağlayan bir çapraz normdur. 

3.4.3. Tanım:  Banach uzayları olsun.1, , nE E… 1 nE E⊗ ⊗…  nin 
π

⋅  normuna göre 

tamlaştırılmasına  projektif tensör çarpımı denir ve 1 nE E⊗ ⊗…
∧ ∧

 ile gösterilir. 

3.4.4. Örnek: A bir Banach cebri, E bir sol Banach A-modül ve F bir sağ Banach           

A-modül olsun. O halde, E F⊗  üzerinde A’nın bimodül aksiyonu, bir Banach         

A-bimodülde ye dönüşür. E F⊗
∧

3.4.5. Önerme:  Banach uzayları ve 1, , nE E… 1x nE E
∧ ∧

∈ ⊗ ⊗…  olsun.Bu durumda,  

( ) ( )
1

1

k k
n

k
x x

∞

=

<∞∑ …                                                                                               (3.16) 

ve 

( ) ( )
1

1

x k
n

k

kx x
∞

=

= ⊗ ⊗∑ …                                                                                               (3.17) 

olacak şekilde  için 1j , ,= … n jE ’de ( )( ) 1k

k
jx

=

∞
 dizileri vardır. 

(3.18) sağlanacak şekilde (3.17) daki  bütün sonsuz serilerin infumumu 
π

⋅  dir.  

3.4.6. Teorem: ( ),S ,µΩ  bir ölçü uzayı ve E bir Banach uzayı olsun. O halde, 

( ) ( ) ( ) ( )1 1xL ,S , E L ,S , ;E , f ,x f xµ µΩ → Ω 6                                           (3.18) 

bilineer tasviri  ve ( )1L ,S ,µ
∧

Ω ⊗E ( )1L ,S , ;EµΩ  nin bir izometrik izomorfizmini 

üretir. 

3.4.7. Örnek: E bir Banach uzayı ve F bir sonlu boyutlu Banach uzayı olsun. O 

halde,  E F⊗  injektif ve projektif normda tamdır ve E F E F
∨ ∧

⊗ ≅ ⊗  dir. 
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4. HOCHSCHILD KOHOMOLOJİ 

Cebirsel kohomoloji grupları ( ),nH A E ’i 1945-1946 yıllarında ilk olarak 

Hochschild tanımlamıştır. Banach cebirlerinde amenable tanımını vermek için 1972 

yılında Johnson, Hochschild kohomolojisinden faydalanmıştır. Bu bölümde 

Hochschild kohomolojinin temel kavramları verilmiştir. 

A bir cebir ve E bir A-bimodül olsun.  (n tane) dan E’ye bütün n-lineer 

tasvirlerin lineer uzayı 

.......A× ×A

( ),n A EL  ile gösterilir. ( )( )0 ,A E E=L  

4.1. Tanım: A bir cebir ve E bir A-bimodül olsun. Ex∈∀  için, 

( )0 : ,x a a x x a A Eδ ⋅ − ⋅ →6                                                                          (4.1) 

tanımlansın. n∈`  ve ( ),nT L A E∈  için ( )1 ,n nT L A Eδ +∈  şu şekilde tanımlanır. 

( ) ( ) ( ) ( )1
1 1 1 2 1 1,......., ,....., 1 ,...,nn

n nT a a a T a a T a a aδ +
+ += ⋅ + − ⋅ 1n n+

1+

 

                                                       (4.2) ( ) ( )1 1 1 2
1

1 ,..., , . , ....,
n

j
j j j j n

j
T a a a a a a− + +

=

+ −∑

n +∈]  olsun. nδ  ,  ’den ( ,nL A E ) ( )1 ,nL A E+ ’ye bir lineer tasvirdir. Bu tasvirlere 

bağlantı  tasvirleri (connecting maps ) denir. İşlemler uzun olmasına karşın 

doğrudan hesaplama ile 

1 0n nδ δ+ =D  ve 1kernim nδ δ +⊂    olduğu görülür. 

( ) ( ) ( )0 1 2, :0 , ,L A E E L A E L A Eδ δ• → ⎯⎯→ ⎯⎯→ →"→

→

 

                                           (4.3) ( ) ( ) ( )11 2, , ,
n nn n nL A E L A E L A Eδ δ ++ +⎯⎯→ ⎯⎯⎯→ "

lineer uzaylar ve lineer tasvirlerin bir kompleksidir. 

n∈`  için ker nδ  ve 1nimδ − ’in elemanları sırasıyla n-koçember ve n-kosınırdır. 

( ) ( ) 1, ker ve ,n n nZ A E N A E imδ −= nδ=                                                     (4.4) 
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olarak alalım. 

4.2. Tanım: A bir cebir ve E bir A-bimodül olsun. n∈`  için E’deki katsayılarla 

A’nın n-inci kohomoloji grubu, 

( ) ( ) (, , /n n nH A E Z A E N A E= ),                                                                        (4.5) 

( ) ( ){ }0 0, ker :H A E x E a x x a a Aδ= = ∈ ⋅ = ⋅ ∈                                                   (4.6) 

dır.Aslında,  kohomoloji grupları lineer uzaylardır. ( ,nH A E )

)( ,T A E∈L  için, 0T imδ∈  olması için gerek ve yeter şart 

( ) ( ),T a a x x a a b A= ⋅ − ⋅ ∈                                                                                   (4.7) 

koşulunu sağlayan bir  x E∈  olmasıdır. Aynı zamanda, 

( )( ) ( ) ( )1 ,T a b a T b T a b T a b a b Aδ = ⋅ − + ⋅ ∈,

), )

                                                   (4.8) 

dır.  2.4.1 deki tanımlama ile aynıdır. , iç 

türevlerin uzayı olarak, tüm türevlerin uzayının bir bölümüdür. 

( ) (1 1,N A E ve Z A E (1 ,H A E

( ) { }1 ,H A E = 0

)

olması için gerek ve yeter şart A’dan E’ye her türevin, iç türev 

(inner derivation) olmasıdır. A bir Banach cebri ve E bir Banach A-bimodül olsun.  

’deki sınırlı tasvirlerin Banach uzayını göstersin. Kompleks ( ) (, , ,n nB A E L A E

( ),B A E•  4.3 denkleminde L  yerine B  yazılarak  tanımlanır: 

( ) ( ) ( )0 1 2, :0 , ,B A E E B A E B A Eδ δ• ⎯⎯→ ⎯⎯→ ⎯⎯→ ⎯⎯→ ⎯⎯→"  

                         (4.9) ( ) ( ) ( )11 2, , ,
n nn n nB A E B A E B A Eδ δ ++ +⎯⎯→ ⎯⎯⎯→ ⎯→"⎯

 ker nδ  ve 1nimδ − ’in elemanları sırasıyla, sürekli n-koçember ve sürekli n-kosınır’dır 

ve ( ) (, ve ,n n )A EZ N A E

),

 uzaylarıdır. 

E’deki katsayılarla A’nın n-inci sürekli kohomoloji grubu şu şekilde tanımlanır: 

( ) ( ) (, , /n n nA E A E A=H Z N E                                                                     (4.10) 

Bu bir yarı normlu uzaydır. 
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( ) ( )( )Genellikle, , , , 'de kapalıdeğildir.n nA E A EN Z ( )1 ,A EH  iç türevlerin 

uzayı olarak , A’dan E’ye sürekli türevlerin uzayının bölümüdür. 

Her için 2-koçember birim (2-cocycle identity) elde edilir. (2 ,T A∈Z )E

 ( ) ( ) ( ) ( ) ( ), , , , 0 , ,a T b c T ab c T a bc T a b c a b c A⋅ − + − ⋅ = ∈                        (4.11) 

Bundan dolayı ( ) { }2 ,H A E = 0  olması için gerek ve yeter şart  bazı  

için her böyle T’ nin , 

( ),S L A E∈

1 Sδ  formunda olmasıdır. 
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5. TOPOLOJİK GRUPLAR 

Bu bölümde topolojik grup tanımı ve gerekli teoremler verilmiştir. 

5.1. Tanım: Üzerinde bir topoloji ve grup yapısı oluşturan G kümesine, grup 

işlemlerinin sürekliliği ile ilgili aşağıdaki iki şartı sağlarsa, bir topolojik  grup denir. 

i) GxG’den G’ye giden ( ),x y x→ y  tasviri süreklidir. 

ii) G’den G’ye giden 1x x−→  tasviri süreklidir. 

Birinci koşul için şunları söyleyebiliriz: G’nin keyfi x, y elemanları ve xy’nin keyfi U 

komşuluğu için x’in ve y’nin sırasıyla öyle V, W komşulukları vardır ki V W  

şartı sağlanır. Özel olarak e’nin bir U komşuluğu için e’nin öyle bir V komşuluğu 

vardır ki  dir . Yine birinci şarttan, keyfi 

U⊂

2V U⊂ y G∈  için G’den G’ye giden x x y→  

ve x yx→  tasvirlerinin sürekli olduğunu söyleyebiliriz. Bu ifade, U, G’nin bir açık 

alt kümesi ise Uy ve yU kümelerinin keyfi y G∈  için açık olmasına denktir. Diğer 

bir deyişle bir topolojik grubun topolojisi sağ ve sol dönüşüm ( translation ) altında 

değişmezdir (invariant ). 

İkinci koşul için ise şunları söyleyebiliriz: V, G’nin herhangi bir alt kümesi olsun.  

 ile 1V − { }1 1 :V x x G− −= ∈  kümesini göstereceğiz. G’nin herhangi bir  kümesi 

açık ise V’de açık kümedir. Tersi de doğrudur: V açık ise 

1V −

1V −  kümeside açıktır. 

G topolojik grubu üzerindeki topoloji Hausdorff, diskırit, kompakt veya yerel 

kompakt ise G’ye Hausdorff, diskırit, kompakt veya yerel kompakt topolojik grup 

denir. Bir topolojik grupta topolojinin dönüşümü değişmez olduğundan e’nin bir 

kompakt komşuluğu varsa G, bir yerel kompakt topolojik gruptur. 

Bir G topolojik grup -uzayı ise Hausdorfftur. Bunu gösterelim. 0T ,x y G∈  ise öyle 

bir U açık kümesi vardır ki ,x U y U∈ ∉  dır. Bu durumda e’nin öyle V, W 

komşulukları vardır ki U xV=  ve  dir. Bu ise xW ve 2W V⊂ 1yW − ’nin 

arakesitlerinin boş küme olmasını gerektirir. 
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5.2. Tanım:  topolojik gurubundan  topolojik grubuna giden bire-bir, üzerine 

bir tasvir, cebirsel izomorfizm ve homeomorfizm ise  ve ’ye izomorfiktir denir. 

1G 2G

1G 2G

5.3. Tanım:  grubunun  grubu içinde bir temsili (representation)  ’den 

’ye giden 

1G 2G 1G

2G ,x y G∀ ∈  için  

( ) ( ) ( )f x y f x f y=                                                                                               (5.1) 

şartını sağlayan f tasviridir. Eğer  ve  topolojik gruplar ve f temsili sürekli ise f 

tasvirine morfizm denir.  

1G 2G

G topolojik grubunun bir H alt grubu alt uzay topoloji ile bir topolojik gruptur. 

5.4. Tanım: G bir  topolojik Hausdorff  grup ve H, G’nin herhangi bir alt grubu 

olsun. H’ın sol kalanları yeni bir topolojik uzay oluşturur. Bu uzaya bölüm uzayı 

denir ve G/H ile gösterilir. Bölüm uzayındaki sürekli topoloji aşağıdaki gibidir;  

G’den G/H üzerine gelen Hπ kanonik ( doğal ) tasviri 

( ): / ,H HG G H x xHπ π→ =                                                                                  (5.2) 

sürekli yapan bölüm topolojisidir. ( Hπ  yalnız sürekli değil aynı zamanda açık 

tasvirdir.) Hπ ’nın sürekli ve açık tasvir olmasından dolayı G yerel kompakt ise 

G/H’da yerel kompakttır. H normal alt grup ise G/H bir topolojik gruptur.  

5.5. Teorem: G bir topolojik grup olsun. 

a) K , G’nin bir kompakt alt kümesi ve U, K’yı içeren G’de bir açık küme olsun. Bu 

durumda e’nin öyle bir V komşuluğu vardır ki KV U⊂ dur. 

b) G yerel kompakt ve H, G’nin bir kapalı alt grubu ise G/H’ın herhangi bir L 

kompakt kümesi için  şartını sağlayan ( )H K Lπ = K G⊂  kompakt kümesi vardır. 

c) GxG’den G’ye giden ( ),x y x→ y  tasviri açıktır. Benzer şekilde 

( ) ( )1, , ,x y y x x y x−→ → ( ), ,, x y y→ "                                                          (5.3) 

açıktır.  

d) Sayılabilir bir yerel kompakt grup veya bölüm uzayı diskırittir. 
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6. YEREL KOMPAKT UZAYLAR ÜZERİNDE İNTEGRASYON 

Yerel kompakt gruplar üzerinde amenable tanımı Haar ölçüsü ile verilir. Bu bölümde 

yerel kompakt uzaylar üzerinde ölçü, ölçülebilir fonksiyonlar ve integrasyon tanımı 

verilmiş ve temel teoremler ele alınmıştır. Daha sonra Haar ölçüsü verilerek  

uzayları incelenmiştir. 

1( )L G

6.1. Ölçü 

X bir yerel kompakt uzay olsun. X üzerinde reel ( kompleks ) değerli, kompakt 

destekli (destek(support): ( ) 0f x ≠  olan bütün x’lerin oluşturduğu kümenin 

kapanışına denir) bütün sürekli fonksiyonların uzayı ( ) ( )( )X X\ ^K K  ile gösterilir. 

X kompakt değilse ( ) ( )( )X X\ ^K K ’in tamlaştırılması ( ) ((0 0 ) )X X\ ^C C  Banach 

uzayı ile gösterilir.  de norm  ( )0 X\C

( )
x X

f maks f x∞ ∈
=                                                                                                  (6.1) 

ile verilir. ( ) ((0 0, ) )X X\ ^C C , X üzerinde sonsuzda sıfır olan reel (kompleks) sürekli 

fonksiyonların yukarıdaki norma göre Banach uzayıdır.  

6.1.1. Tanım: X üzerinde bir reel (kompleks) ölçü µ , ( ) ((X X\ ^K K ) )  üzerinde 

aşağıdaki özelliği sağlayan bir reel (kompleks) lineer fonksiyonel olarak tanımlanır. 

Her K X⊂  kompakt kümesi ve  K’da destekli  olan keyfi ( ) ( )( )f X f X∈ ∈\ ^K K  

fonksiyonu için 

( ) Kf M fµ ∞≤                                                                                                    (6.2) 

şartını sağlayacak bir KM  sabiti vardır. 
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( )X\K ’ın bütün pozitif fonksiyonlarının kümesi ( )X+K  üzerindeki keyfi 

( )f x+∈K  için şartını sağlayan reel ( ) 0fµ ≥ µ  ölçüsüne pozitif denir. ( )fµ  

sayısına,  f ’in µ ’ye göre integrali denir ve 

( ) ( )
X

f x d xµ∫  ,  ( ) ( )f x d xµ∫  veya f dµ∫                                                         (6.3) 

notasyonları ile gösterilir. 

6.1.2. Teorem: µ  pozitif ölçü ise  

( ) ( )f fµ µ≤                                                                                                      (6.4) 

dir. 

6.1.3. Teorem:  üzerinde bir pozitif lineer fonksiyonel bir pozitif ölçüdür. ( )XK

6.1.4. Tanım: Keyfi ( )f X∈K  için 

 ( )f M fµ
∞

≤                                                                                                     (6.5) 

şartını sağlayan bir M sayısı varsa µ ölçüsüne sınırlı ölçü denir. M sayısının en 

küçüğüne µ ’nün normu denir ve µ  ile gösterilir. 

( ) ( ){ }sup : , 1f f K X fµ µ
∞

= ∈ ≤                                                                (6.6) 

Kompakt olmayan X için, sınırlı ölçü süreklilik tarafından ( )0C X ’e genişletilebilir. 

Yukarıdaki norma göre bunlar bir Banach uzayı oluşturur. Bu uzay ( )1M X  ile 

gösterilir. Bu uzay ( )0C X ’in dual uzayıdır.  

6.1.5. Tanım: µ  ölçüsünün desteği (support), suppµ ,  X \ E ’ de destekli keyfi 

( )f K X∈  için  şartını sağlayan en küçük kapalı ( ) 0fµ = E X⊂  kümesidir. 

Verilen bir µ  ölçüsü için bir µ  pozitif ölçüsü aşağıdaki gibi tanımlanır. 

( )f X+∈K  için,  

( ) ( ) ( ){ }sup : ,f g g K X g fµ µ= ∈ ≤                                                            (6.7) 
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Her reel ölçü, iki reel pozitif ölçünün farkı olarak yazılabilir. 

2
µ µ

µ+

+
=    ,      

2
µ µ

µ−

−
=      ,         µ µ µ+ −= −                                                (6.8) 

µ µ= ⇔µ  pozitif     ( ) ( )( )f f f Kµ µ≤ ∈                                                  (6.9) 

6.2. Pozitif Ölçülerin Alttan Yarı Sürekli Fonksiyonlara Genişlemeleri 

Bu bölümde  X yerel kompakt uzay ve X üzerinde, değerleri [ ]0,+= ∞R ’da olan 

fonksiyonlar düşünülecektir. +R ’dan +R  ye toplam ve çarpımın genişlemeleri 

α +∀ ∈R  için , 0α α α+∞=∞+ =∞ < ≤∞  için α α∞⋅ = ⋅∞=∞  ve  

olarak tanımlanır. X üzerindeki tanımlı, değerleri 

0 0 0∞ ⋅ = ⋅∞ =

+R ’da olan bütün fonksiyonların 

kümesi  veya kısaca ( X+H ) +H  ile gösterilir. 

Bir pozitif ölçünün ’dan +K +H ’ya genişlemesini inceleyelim.  

X üzerindeki tanımlı değerleri R  veya +R  da olan bir fonksiyonlar ailesi S olsun.  

Bir x X∈  için, ( ){ }:f x f S∈ kümesini ( )S x  ile gösterelim.  

supS  fonksiyonu X üzerinde aşağıdaki gibi noktasal tanımlanır: 

( )( ) ((sup supS x S x= ) )                                                                                        (6.10) 

6.2.1. Tanım: Keyfi a +∈R  için ( ){ }:x F x a>  kümesi açık ise F +∈H  

fonksiyonuna alttan yarı-sürekli denir. (Değerleri ’de olan fonksiyonlar içinde 

benzer tanım verilir.) Üstten yarı-süreklilik “ > ” yerine  “ < ” alınarak tanımlanır. 

R

X üzerinde, değerleri +R ’da olan bütün alttan yarı-sürekli fonksiyonların sınıfını 

( X+ )I  veya kısaca +I  ile gösterelim. 

+ +⊂ ⊂K +HI                                                                                                           (6.11) 

6.2.2. Tanım: Değerleri +R ’de  veya R ’de olan F   fonksiyonların ailesine keyfi 

,f g∈F  çifti için  ve  f h≤ g h≤  şartını sağlayacak bir h≤F  fonksiyonu varsa, 

’ya göre filitre (filtering) veya basitçe filitre denir. Benzer olarak keyfi " "≤ ,f g∈G  
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çifti için h  veya f≤ h g≤  olacak şekilde bir h∈G  varsa G  ailesine "  göre filitre 

denir.  

"≥

6.2.3. Tanım: Herhangi bir f +∈H  için " "≤ ’ya göre +K ’da fF  ailesini ve " ’ya 

göre 

"≥

+I ’da fG  ailesini aşağıdaki gibi tanımlarız: 

{ }: ,f k k k f+= ∈ ≤F K                                                                                            (6.12) 

{ }: ,f F F f F+= ∈ ≤G I                                                                                         (6.13) 

fF  ve fG  gerçekten filitredir. 1 2, fk k ∈F  ile ( )1 2sup , fk k ∈F  ve  , fF G∈G  ise 

( )inf , fF G ∈G  dir. 

6.2.4. Teorem:  +I  uzayı aşağıdaki özelliklere sahiptir: 

i) +I  ,  +R ’nın elemanları ile çarpım altında ve toplama altında kapalıdır. 

ii ) +I , supremum alma altında kapalıdır. 

iii) f +∈H  ise sup ff f+∈ ⇔ = FI  dır. 

6.2.5. Tanım: (Birinci Genişleme )  µ , X üzerinde tanımlı bir pozitif ölçü olsun. +I  

üzerinde µ×

F∈

 fonksiyoneli 

( ) ( )sup ,fFµ µ×
+= F I                                                                              (6.14) 

tarafından tanımlanır.  

,µ×
+K  üzerinde µ  ile çakışır. Bu yüzden µ× , +K ’dan +I ’ya µ ’nin bir 

genişlemesidir. F +∀ ∈I  için  dır. ( )0 Fµ×≤ ≤∞

6.2.6. Teorem: +I  üzerinde tanımlı µ×  için aşağıdaki özellikler sağlar 

i)      ( ) (aF a Fµ µ× ×= ) ( ,a F+ +∈ ∈R )I  

ii) ( ) ( )1 2 1 2 1 2,F F F F F Fµ µ× ×
+≤ ⇒ ≤ ∈I                                                       (6.15) 
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6.2.7. Teorem: 1 2, ,F F F   +K ’da  filitre aileleri olsun. X üzerindeki herhangi bir 

pozitif µ  ölçüsü için aşağıdakiler sağlanır. 

i) sup +∈F K  ise ( ) ( )sup supµ µ=F F  

ii) 1 2sup sup=F F  ise ( ) ( )1 2sup supµ µ=F F  

iii) ( ) (sup supµ× = )µF F                                                                                      (6.16) 

6.2.8. Teorem:  +I  üzerinde µ×  fonksiyoneli toplamsaldır. Yani 

( ) ( ) (1 2 1 2F F F Fµ µ µ× × ×+ = + )  ,       1 2,F F +∈I                                                  (6.17) 

6.2.9. Tanım: (İkinci Genişleme )  µ , X üzerinde bir pozitif ölçü olsun. µ× , +I  

üzerinde birinci genişlemede tanımlandığı gibi tanımlansın. +H  üzerinde µ×

f

 

fonksiyoneli  

( ) ( )inf ffµ µ× ×
+= ∈G H                                                                               (6.18) 

tarafından tanımlanır. ( )X fµ  yerine genellikle 

 ( ) ( )
X

f x d xµ
×

∫  veya f dµ
×

∫                                                                            (6.19) 

 yazılır ve f’ın µ  ’ye göre üst integrali denir.  

f +∀ ∈H  için  dir. ( )0 fµ×≤ ≤∞ f +∈I  için µ×  birinci tanımdaki gibidir. Bu yüzden 

+I ’dan +H ’ya µ×  fonksiyonelinin bir genişlemesidir. 

6.2.10. Teorem: +H  üzerinde tanımlı µ×  için aşağıdaki özellikler sağlanır. 

i) ( ) ( ) ,a f a f a fµ µ× ×
+ += ∈R ∈H  

ii) ( ) ( )1 2 1 2 1 2, ,f f f f f fµ µ× ×
+≤ ⇒ ≤ ∈H                                                     (6.20) 

f f g g≤ − +  olduğundan ,f g +∈H  için 

( ) ( ) ( )f g fµ µ µ× × ×− ≤ − g                                                                         (6.21) 

dir. 
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6.2.11. Teorem: F , +I ’da filitre ailesi olsun. Bu durumda sup +∈F I  ve X üzerinde 

tanımlı herhangi pozitif  µ  ölçüsü için  

( ) (sup supµ× = )µ×F F                                                                                           (6.22) 

integral notasyonu ile, 

sup sup
F F

Fd Fdµ µ
F F

×

∈ ∈
=∫

×

∫                                                                                       (6.23) 

dır. 

6.2.12. Tanım: µ , X üzerinde tanımlı bir pozitif ölçü olsun. Keyfi A X⊂  kümesi 

için A’nın dış ölçüsü, ( )Aµ× , Aϕ  , A’nın karakteristik fonksiyonu olmak üzere 

( )Aµ ϕ×  olarak tanımlanır. Burada µ× , ikinci genişlemedeki tanımdır. 

Her A X⊂  için ( )0 Aµ×≤ ≤ ∞  

6.2.13. Teorem: µ×  dış ölçüsü, 

i) ( ) ( ) ,A B A B A Bµ µ× ×⊂ ⇒ ≤ ⊂ X

1≥

 

ii)                                                     (6.24) ( ) ( )
1 1

,n n nn n

U A A A X nµ µ× ×

≥
≥

≤ ⊂∑

şartlarını sağlar. 

6.2.14. Tanım:  ise ( ) 0X Aµ = A X⊂  alt kümesine µ ’ye göre önemsiz küme 

(negligable) denir. Hemen hemen her yerde (h.h.h) terimi bir önemsiz küme dışında 

X’in her noktası için anlamında kullanılacaktır.  

6.2.15. Teorem: µ  bir pozitif ölçü ve ,f g +∈H  olsun. 

i)  ( )0 0f d h h h f x. .
×

µ = ⇔ =∫

ii)  ( ). . .f d h h h f xµ <∞⇒ <∞∫
×

iii)  h.h.h. ( ) ( )f x g x f d g dµ µ≤ ⇒ ≤∫ ∫
××
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iv) h.h.h.  ( ) ( )f x g x f d g dµ µ= ⇒ =∫ ∫
× ×

                                                      (6.25) 

dır. 

6.3. İntegre Edilebilir Fonksiyonlar 

B reel veya kompleks Banach uzayı olsun. ( )B XK  veya kısaca  ile kompakt 

destekli, değerleri B’de olan X üzerindeki bütün sürekli fonksiyonların kümesini 

göstersin. 

BK

6.3.1. Tanım: ( )1 ,B X µF  veya kısaca  1
BF  uzayı, aşağıdaki şartı sağlayan bütün 

 fonksiyonlarının lineer uzayı olarak tanımlanır. ’de f’in ilgili :f X B→ ( )X+H

:f X +→R   fonksiyonu 

( )fµ× <∞                                                                                                         (6.26)     

şartını sağlasın veya integral notasyonu ile 

( ) ( )f x d xµ <∞∫
×

                                                                                           (6.27) 

şartı sağlansın. ( )fµ×  üst integrali ( )1N f  ile gösterilecektir. 

6.3.2. Teorem: 1
BF  uzayı için aşağıdaki özellikler sağlanır. 

i) 1
1 ,     BN F üzerinde bir yarı-normdur. 

ii)  ( ) ( )1 0 . .N f h h h f x= ⇔ =0

iii) 1
BF   ,  yarı-normuna göre tamdır.                                                                (6.28) 1N

6.3.3. Tanım: (1 ,B X )µL  veya kısa  ,  1
BL 1

BF ’de ’nin kapanışı olarak tanımlanır. BK

6.3.4. Tanım:  i)  yarınormuna göre tamdır. 1
1,B NL

ii)  1
Bf ∈F  ise 1f ∈ \F   ve  ( ) ( )1 1N f N f=  dir. 

iii)  ise Bk∈K K +∈K  ve supp k = supp k dır. 
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iv)  ise 1
Bf ∈L 1H ∈ \L  dir. Özel olarak 1f ∈ \L  ise 1f ∈ \L  dır.                           

v)    ise                                                                            (6.29) 1,f g∈ \L ( ) 1sup ,f g ∈ \L

6.3.5. Tanım: ( ),Bn X µ  veya kısaca  notasyonu ile Bn ( )1 0N f =  olan bütün  

fonksiyonlarının kapalı lineer alt uzayını gösterelim.  bölüm uzayı bir Banach 

uzayıdır ve 

1
Bf ∈L

1 /B BnL

( )1 ,BL X µ  veya kısaca 1
BL  ile gösterilir. f ’in normu  1⋅  ile gösterilir.  

Benzer olarak 1  için  p< <∞ ( ),p
B X µL  veya kısaca  uzayları  p

BL

( ) ( ) ( )( )1/ p
p

pN f f x d x
×

µ= ∫                                                                        (6.30) 

tarafından tanımlanan  yarı-normu ile tanımlanır. pN p⋅  normu ile de ( ),p
BL x µ  

veya kısaca p
BL  Banach uzayları tanımlanır. 

\K   veya  üzerinde tanımlanan ^K µ  integrali B Banach uzayları için ’de henüz 

tanımlanmadı. Önce B’yi  veya ^  alalım.  ,  , 

BK

R KR
1
\L 1L\  veya K ^  ,   , 1

^L 1L^  

yerine K , ,  alalım. Verilen integral ’dan ’e süreklilik yardımıyla 

genişletilebilir.  

1L 1L K 1L

( ) ( )lim
k f
k K

f kµ µ
→
∈

=                                                                                        (6.31) 1f ∈L

6.3.6. Tanım: (
~
1 ,X )µ\L  veya ksıaca  

~
1
\L ( ) ( ). . .h h h f x g x=  olacak şekilde bir 

  fonksiyonun var olduğu, 1∈g \L µ ’ye göre hemen hemen her yerde tanımlı, 

değerleri R ’de olan bütün f fonksiyonlarının kümesi gösterilir.
~

RL ’nin elemanlarına 

integrallenebilir  fonksiyonlar denir.   için 
~
1f ∈ \L ( )fµ  integrali ( ) ( )f gµ µ=  

olarak tanımlanır. ( )fµ  integrali  

f dµ∫   veya  ( ) ( )f x d xµ∫                                                                                (6.32) 

 ile  gösterilir. 
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6.3.7. Teorem: ’de  (  dizisi  hemen hemen heryerde 1
BL )

1n n
f

≥
( )lim nn

f x
→∞

 var olan bir 

dizi olsun. Limit varsa ( ) ( )lim nn p
f x f x

→
=  alalım.  için  1n≥

( ) ( )nf x g x≤                                                                                                     (6.33) 

 olacak şekilde ( )gµ× <∞  olmak üzere bir g +∈H  fonksiyonu var olduğunu kabul 

edelim. Bu durumda  ,  ’de  
~

1
Bf ∈L

~
1
BL

 lim nn
f f

→∞
=  ve ( ) ( )lim nn

f fµ µ
→∞

=                                                                         (6.34) 

dır. İntegral notasyonu, 

lim limnn n nf d f dµ µ
→∞ →∞

=∫ ∫                                                                                         (6.35)     

dir. 

6.3.8. Tanım: µ , X yerel kompakt uzayı üzerinde bir pozitif ölçü olsun. 

( )1 ,A Xϕ µ∈L  olacak şekilde bir A X⊂  kümesine µ ’ye göre integrallenebilir küme 

denir. 

( ) AA dµ ϕ µ= ∫                                                                                                       (6.36) 

olarak tanımlanır ve A’nın ölçüsü  ( )Aµ ’dır denir. (Burada Aϕ  karakteristik 

fonksiyondur.)  olduğu kolayca görülür. Bütün sonlu dış ölçüye sahip 

açık ve kapalı kümeler integrallenebilirdir. Özel olarak kompakt kümeler 

integrallenebilirdir. 

( )0 Aµ≤ <∞

6.3.9. Teorem:  Bir A X⊂  kümesinin integrallenebilir olması için gerek ve yeter 

şart 0ε∀ >  için ( ) ( )Kµ µΩ − <ε  olacak şekilde bir integrallenebilir AΩ ⊃  açık 

kümesi ve kompakt K A⊂  kümesinin olmasıdır. Yani, her integrallenebilir A kümesi 

için 

( ) ( )inf
A

Aµ µ
⊂Ω

= Ω               Ω  açık ve integrallenebilir                                        (6.37)     

( ) ( )sup
K A

Aµ µ
⊂

= K        K  kompakt                                                                  (6.38) 
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ile ifade edilir. 

6.4. Ölçülebilir Fonksiyonlar 

6.4.1. Tanım: µ , X yerel kompakt uzayı üzerinde bir pozitif ölçü ve Φ , değerleri bir 

topolojik uzayda olan X üzerinde bir fonksiyon olsun. Verilen herhangi bir K X⊂

Φ

K K

Φ

 

kompakt kümesi için K’nın bir önemsiz kümeye bir parçalanışı var ve ’nin her 

’ye kısıtlanması sürekli olacak şekilde sayılabilir kompakt  küme ise varsa 

’ye  

n n

µ  ölçüsüne göre ölçülebilir fonksiyon denir.  

6.4.2. Tanım:  Bir A X⊂  alt kümesinin karakteristik fonksiyonu ölçülebilir ise A’ya 

ölçülebilir küme denir.  

Bütün açık ve kapalı kümeler ölçülebilir. A ve B ölçülebilir ise , ,A B A B X∪ ∩ \A 

ölçülebilirdir. 

6.4.3. Tanım:  Her K X⊂  kompakt kümesi için A K∩  önemsiz küme ise X’in A alt 

kümesine yerel önemsiz küme denir. Yerel hemen hemen her yerde demek (y.h.h.h.) 

yerel önemsiz küme haricindeki X’in bütün noktaları demektir.  

6.4.4. Tanım: f, değerleri +R  da olan X üzerinde herhangi bir fonksiyon olsun. µ ’ye 

göre yerel hemen hemen heryerde ( )f x M≤  olacak şekilde en küçük 

  sayısına yeterli supremum denir ve ( )0M M≤ ≤ ∞

( )sup
x X
ess f x
∈

                                                                                               (6.39) 

ile gösterilir.  

6.4.5. Tanım: Değerleri B Banach uzayında olan X üzerindeki ϕ  fonksiyonu 

( )sup
x X
ess xϕ
∈

<∞                                                                                                  (6.40) 

şartını sağlıyorsa (µ ’ye göre) yeterli sınırlı denir. Eğer ϕ  yeterli sınırlı ise  

( )sup
x X
ess xϕ
∈

  ,   ( )N ϕ∞  ile gösterilir.  
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X üzerinde ölçülebilir, yeterli sınırlı değerleri bir B Banach uzayında olan ϕ  

fonksiyonları bir tam uzay oluşturur. Bu uzay ( ),B X µ∞L  veya kısaca B
∞L  ile 

gösterilir. Bu uzayda  yarı-normdur. N∞ B
∞L  , , 1p

BL p≤ ≤∞ ’de olduğu gibi heryerde 

tanımlı fonksiyonları içerir. 

6.4.6. Tanım: B bir Banach uzayı olsun. ( ),Bn X µ∞  veya kısaca , Bn∞ ( ) 0N ϕ∞ =  

olan bütün  fonksiyonların kapalı lineer alt uzayı olsun. Bu durumda Bϕ∈L ∞ /B B
∞ ∞nL  

bir Banach uzayıdır ve ( ),BL X µ∞  veya kısaca BL∞  ile gösterilir. Norm, ’dan elde 

edilir ve 

N∞

∞
⋅  ile gösterilir.  

B
∞L  ve  uzaylarındaki iki fonksiyonun aynı elemanı temsil etmesi için gerek ve 

yeter şart yerel hemen hemen her yerde ikisinin çakışmasıdır. Genellikle sürekli 

fonksiyonlar ’da yoğun bir alt uzay oluşturmaz. 

BL∞

B
∞L

1
1 2,f f ∈L  hemen hemen her yerde aynı ve 1 2,ϕ ϕ ∞∈L  yerel hemen hemen heryerde 

aynı ise  ve hemen hemen heryerde aynıdır. 1
1 1 2 2,f fϕ ϕ ∈L

6.4.7. Tanım:  (1 ,f L X )µ∈   ve  ( ),L Xϕ µ∞∈  ise  

( ) ( ) ( ),f f x x d xϕ ϕ< >= ∫ µ

)

                                                                              (6.41) 

olarak tanımlanır. 

6.4.8. Teorem: (1 ,L X µ  Banach uzayının dual uzayı ( ),L X µ∞ ’ye izomorfiktir. 

( )1 ,L X µ  üzerindeki her sürekli lineer fonksiyonel  

,f f ϕ→< >       ( )1 ,f L X µ∈                                                                             (6.42) 

formunda yazılabilir. Burada ( ),L Xϕ µ∞∈  ve fonksiyonelin normu ϕ
∞

 dır. 

6.5. Haar Ölçüsü 

6.5.1. Tanım: G bir yerel kompakt grup olsun. Sol dönüşüm operatörü ,  

olmak üzere, 

aL a G∈
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( ) ( 1
a )L f x f a x−=         ( ),x G f G∈ ∈K                                                            (6.43) 

olarak tanımlanır. Keyfi ( )f G∈K  ve a G∈  için 

( ) (aL f fµ µ= )                                                                                                    (6.44) 

eşitliğini sağlayan G üzerinde µ  ölçüsüne sol değişmez denir.  

6.5.2. Teorem: Yerel kompakt gruplar üzerinde, sıfıra denk olmayan ve  bir sabit 

çarpanla tek türlü belirlenen bir sol değişmez pozitif ölçü vardır. 

Yukarıdaki teoremde adı geçen ölçüye sol Haar ölçüsü ya da kısaca Haar ölçüsü 

denir. Haar ölçüsü, klasik notasyona benzer olarak  ile gösterilir ve d x ( )
G

f x d x∫  , 

( )f x d x∫  veya f∫                                                                                                (6.45) 

ile de yazarız. Sol değişmezlik 

( ) ( )1f a x d x f x d x− =∫ ∫  veya ( ) ,d ax d x a G= ∈                                             (6.46) 

ile ifade edilir. 

6.5.3. Teorem: ( )f G+∈K  ve f, sıfıra denk değilse ( )f x d x∫  integrali pozitiftir. Bu 

yüzden Haar ölçüsünün desteği G’nin kendisidir ve e’nin herhangi bir kompakt 

komşuluğu bir pozitif Haar ölçüsüne sahiptir.  

6.5.4. Teorem:  G’nin Haar ölçüsü sonlu ise G kompakttır. (Terside doğrudur.) 

Kanıt:  ( )f G∈K , 0f ≠ ,  alalım. C = suppf   bir kompakt kümedir. Eğer G 

kompakt değilse, ,  için ayrı ayrı arakesitleri boş küme olacak şekilde G’de 

 dizisi vardır. 

0 f≤ ≤1

a C 1n ≥

m
m n

a C C

n

( ) 1na n≥ 1

1

−

≤ ≤

⎛ ⎞
⎜ ⎟
⎝ ⎠
∪  dışında bir 1na +  alalım. Böyle bir dizi için 

 olmak üzere, 1N ≥

1
n

N

a
n

L f N f
=

=∑∫ ∫    ve   
1

1
n

N

a
n

L f
=

≤∑                                                                       (6.47) 

dır. Bu Haar ölçüsünün sınırsız olduğunu gerektirir. Tersi açıktır. G kompakt ise 

dir. ( )G Gϕ ∈K
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Haar ölçüsü için aşağıdakiler sağlanır:  

 Bir sürekli fonksiyon yerel hemen hemen heryerde sıfır ise her yerde sıfırdır. Daha 

genel olarak ϕ  sürekli fonksiyon ise  

( ) ( )sup sup
x Gx G

ess x xϕ ϕ
∈∈

=                                                                                     (6.48) 

dir. Benzer olarak ( )F G+∈I  ve ( ) 0F x d x
×

=∫  ise x G∀ ∈  için ( ) 0F x =  dır. 

Bir integrallenebilir A G⊂  kümesinin Haar ölçüsü ( )Gm A  veya  ile gösterilir. ( )m A

6.5.5. Tanım: G üzerinde sıfıra eşit olmayan µ  kompleks ölçüsüne, keyfi 

( )f G∈K için   

( ) ( ) ( ) ( ) ( ) ( )1 ,f a x d x D a f x d x a Gµµ µ− =∫ ∫ ∈                                            (6.49) 

veya   

( ) ( ) (d ax D a d xµµ = )µ                                                                                         (6.50) 

şartını sağlayacak G üzerinde bir Dµ  fonksiyonu varsa, bağıl değişmez ( relatively 

invariant) denir. 

Dµ  ölçüsünün  ve  ( ) 1D eµ =

( ) ( ) ( )D ab D a D bµ µ µ=    ,a b G∈                                                                        (6.51) 

şartlarını sağladığı açıktır.  için a G∀ ∈ ( ) 0D aµ ≠  ve µ  pozitif ise  dır. (6.49) 

denkleminin sol tarafı  üzerinde sürekliliğe bağlı olduğunda 

0Dµ >

a G∈ Dµ  süreklidir. Bu 

şekilde tanımlanan Dµ ’ye bağıl sol değişmez denir, benzer şekilde bağıl sağ 

değişmez tanımlanır. 

G üzerinde bağıl sol değişmez ölçü µ ’yü biliyorsak Haar ölçüsünü kolayca elde 

edebiliriz. Gerçekten, 

( ) ( ) ( ) ( )1f f x d x f G
D xµ

µ→∫ K∈                                                                  (6.52) 

 bir sol değişmez ölçüdür ve bir Haar ölçüsüne bir sabitle bağlanır. 
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d x  , G üzerinde bir Haar ölçüsü olsun. Her a G∈  için  

( ) ( )1f f xa d x f G−→∫ K∈                                                                           (6.53) 

ölçü sol değişmez olduğundan  

( ) ( ) ( ) ( )1f xa d x a f x d x f G− =∆ ∈∫ ∫ K                                               (6.54) 

şartını sağlayacak bir ( )a∆  sayısı vardır. 

Buna göre Haar ölçüsü bağıl sağ değişmezdir. ∆ ,  G’den *
+R ’a bir morfizmdir. 

6.5.6. Tanım:  (6.56) denklemi ile tanımlanan ∆  sürekli fonksiyonuna G’nin Haar 

modülü denir. Eğer  ise G’ye unimodüler grup denir.  1∆=

)
2n

d x

6.5.7. Örnekler: 

6.5.7.1. Örnek:  için  determinantı sıfırdan farklı bütün  

matrislerin (çarpmaya göre) grubu topolojiksel olarak ’de bir açık kümedir. 

 Lebesgue ölçüsünün bu kümeye kısıtlanmışı bağıl sol ve sağ değişmezdir. 

Haar ölçüsü 

2n≥ (G L n ,R xn n

R

2n\

2nn d x
det x R

1 )

)

( )
2 1n

 dir ve sol ve sağ değişmezdir. Yani  bir 

unimodülerdir. 

(GL n ,R

6.5.7.2. Örnek:  için  determinantı 1 olan  matrislerin grubu, 

’nin bir kapalı normal altgrubudur. Bu yüzden unimodülerdir. Haar 

ölçüsünü elde etmek için e’nin bir açık komşuluğunu 

2n≥ (S L n ,R xn n

GL n ,R

−R ’e daldırmalıyız. 

 ise birim matrisin bir komşuluğunu ( )2 i jn , x x= = 11 12 21u x , v x , w x= = =  

parametrelerini alabiliriz. Bu komşuluk ’ün  yarı-uzayına topolojiksel 

daldırılır (kısıtlanırsa) Haar ölçüsü u d  olur.  

3

1−

R 0u >

u dv dw

6.5.8. Gruplar Üzerinde -Uzayları 1L

G yerel kompakt uzay olsun G üzerinde Haar ölçüsüne göre integrallenebilen 

kompleks değerli fonksiyonların uzayı ( )1 GL  ile gösterilir. İlgili bölüm uzayı da 
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( )1L G  ile gösterilir. Eğer G diskırit ise ( )1L G  yerine  yazılır. ( )1l G

( ) ( )k G G∈ =^K K   için ( )k k x d→ x∫   ( )GK  üzerinde yalnızca bir yarı norm 

değil aynı zamanda bir normdur. Bu yüzden ( )1L G  bu norma göre ’nin 

tamamlanmışı olarak düşünülebilir. Benzer şekilde 1

( )GK

p< <∞  için  ve ( )p GL ( )pL G  

tanımlanır. ( )GK  normlu uzayı, konvolüsyon ile tanımlanan çarpma işlemine göre 

bir Banach cebridir. ( )f ,g G∈K  için f g∗  çarpımı  

( ) ( ) ( )1f g x f y g y x d y−∗ = ∫                                                                                 (6.55) 

ile verilir.  f g ( G )∗ ∈K , 

( ) ( ) ( ) ( )supp supp suppf g x f g , f ,g G∗ ⊂ ∈K                                             (6.56) 

ve 

 
1 1

f g f g∗ ≤ ⋅                                                                                                (6.57) 

oldukları kolayca görülür. 

6.5.8.1. Teorem: G yerel kompakt grup ve ( )1f ,g G∈L  olsun. Bu durumda  

i)  fonksiyonu G’nin bir önemsiz alt kümesi dışındaki bütün ( ) ( 1y f y g y x−→ )
x G∈  için ( )1 GL  dedir. 

ii) G üzerinde hemen hemen heryerde tanımlı ( ) ( )1x f y g y x dy−→∫  fonksiyonu 

integrallenebilir. 

iii) , hemen hemen heryerde ii’deki fonksiyonla çakışan ’de herhangi 

bir fonksiyon ise  

f g∗ ( )1 GL

( ) ( ) ( )f g x d x f x d x g x d x∗ ≤ ⋅∫ ∫ ∫                                                             (6.58)  

dir. 
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6.6. Beurling Cebri 

6.6.1. Tanım: G yerel bir kompakt grup olsun. Aşağıdaki özellikleri sağlayan G 

üzerinde reel değerli w fonksiyonuna bir ağırlık fonksiyonu denir. 

i)  ( ) 1w x , x G≥ ∈

ii)  ( ) ( ) ( )w x y w x w y x , y G≤ ∈

iii) w ölçülebilir ve yerel sınırlıdır. 

( )1f w G∈L  şartını sağlayan f fonksiyonları ( )1 GL ’nin bir altcebrini oluşturur. Eğer 

f’in normu 

( ) ( )1,w
f f x w x d x= ∫                                                                                      (6.59) 

şeklinde tanımlanırsa bu cebir bir Banach cebridir. 

6.6.2. Tanım: w, bir yerel kompakt grup G üzerinde bir ağırlık fonksiyonu olsun. 

( )1f w G∈L  olacak şekilde  bütün ( )1f G∈L  fonksiyonlarının Banach cebrine G 

üzerinde bir Beurling cebri denir ve ( )1
wL G  ile gösterilir.  

w yerel sınırlı olduğu için, her Beurling cebri ( )1
wL G  ,  ( )GK ’yi içerir. Daha da 

önemlisi , ’de yoğundur. ( )GK ( )1
wL G

6.6.3. Teorem:  Bir yerel kompakt G grubu üzerinde her ağırlık fonksiyonu  için 

denk normlara sahip, ’nin aynı alt cebrini tanımlayan bir sürekli ağırlık 

fonksiyonu w vardır.

1w

( )1 GL

( )GK ’de    

  ( ) ( ) (1 )1f x f x x∗ −= + −                                                                                         (6.60) 

şeklinde tanımlanan *f f→  involüsyonu vardır. 

f f∗∗ =                                                                                                                   (6.61) 

( )f g f g f ,gα β α β∗ ∗ ∗+ = + ∈^                                                                  (6.62) 

( )f g g f∗ ∗∗ = ∗ ∗                                                                                                    (6.63) 
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dır. İnvolüsyon,  

11
f f∗ =                                                                                                           (6.64) 

olduğundan izometriktir. Dolayısıyla süreklidir. Bu involüsyon süreklilik ile 

’ye genişletilebilir. ( )1 GL

( )1
wL G  ve  arasındaki en önemli fark; G abelyen olsa bile izometrik 

involüsyon ’ye genelde uygulunamaz. Gerçekten eğer w simetrik değilse her 

( )1 GL

( )1
wL G

( )1
wf L G∈  için f ∗ , ’de değildir. ( )1

wL G
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7. AMENABLE YARI GRUPLAR 

Soyut harmonik analiz, yerel kompakt gruplar ve bu gruplara bağlı cebirler ile 

ilgilenir. Bu bölümde yerel kompakt gruplarda amenable kavramı ve ilgili teoremler 

verilmiştir. Her grup diskırit topoloji ile  yerel kompakttır. Reel sayılar kümesi 

toplama ve doğal topoloji altında yerel kompakt  gruptur. Kompleks düzlemde birim 

çember, çarpım işlemi altında yerel kompakttır.Sonsuz boyutlu B Banach uzayı 

toplama altında değişmeli topolojik gruptur, fakat yerel kompakt değildir. 

7.1. Amenable Yarı Gruplar 

7.1.1. Tanım: Bir S kümesi üzerinde tanımlanan  cebirsel işlemine göre aşağıdaki 

özellikleri sağlayan S kümesine  yarıgrup denir. 

D

a)      ,      1 2,s s S∀ ∈ 1 2s s S∈D

b)  ,  1 2 3, ,s s s S∀ ∈ ( ) ( )1 2 3 1 2s s s s s s=D D D D 3                                                          (7.1) 

7.1.2.Örnekler: 

1) Tamsayılar kümesi ve pozitif tamsayılar kümesi adi toplama işlemine göre yarı 

gruptur. 

2)  türünden matrisler, matris çarpımına göre yarıgruptur. nnx

3)Herhangi bir B Banach cebri üzerindeki ( )BL  operatör cebri çarpımsal 

yarıgruptur. 

4)Herhangi bir  kümesi üzerinde tanımlı, S

1 2 2s s s=    ,    1 2,s s S∀ ∈

 işlemine göre S kümesi bir yarıgruptur. 

S bir yarı grup veya grup olsun. 

S üzerinde tanımlı bütün reel değerli θ  fonksiyonlarının kümesi üzerinde 

( )
s S

sθ θ
∈

=∑                                                                                                       (7.2) 
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şeklinde  tanımlı norma göre, normlu uzay ( )1 SA  ile gösterilir. Kısaca, 

( ) ( )1 : : , .
s S

S S sθ θ θ θ
∈

⎧ ⎫
⎪= → = <∞⎨
⎪ ⎪⎩ ⎭

∑A R ⎪
⎬                                               (7.3) 

 S üzerinde tanımlı bütün sınırlı reel değerli  fonksiyonlarının kümesi üzerinde  x

( )sup
s S

x x s
∈

=                                                                                                       (7.4) 

şeklinde tanımlı norma göre, normlu uzay ( )S∞A  ile gösterilir. Kısaca, 

( ) ( ): : ,sınırlı , sup
s S

S x x S x sθ∞

∈

⎧ ⎫⎪= → =⎨
⎪ ⎪⎩ ⎭

A R .⎪⎬                                                  (7.5) 

( )1 SA  ve ( )S∞A  tam uzay olduklarından Banach uzaylarıdır. Her B Banach uzayı , 

B üzerindeki lineer , reel değerli β  fonksiyonlarından oluşan B′  dual uzayı, 

( )b
b

ββ
1

sup
≤

=                                                                                                        (7.6) 

normuna göre bir Banach uzayıdır. 

Yakınsak diziler uzayının duali, sürekli fonksiyonlar uzayına izomorftur. Yani, 

( ) ( )1 S ∞′≈A A S                                                                                                        (7.7) 

7.1.3. Tanım: ( )S∞A  sınırlı diziler kümesi üzerinde mean µ , 

( ) ( ) ( )inf sup
s S s S

x s x xµ
∈ ∈

≤ ≤ s    ,  ( )x S∞∀ ∈A                                                           (7.8) 

koşulunu sağlayan ’ ın bir elemanıdır. ( )S∞ ′A

A) ( )S∞A  üzerindeki her mean µ  aşağıdaki özellikleri sağlar: 

a) µ ,  daki birim küre içindedir. ( )S∞ ′A

( ) ( )
0 0

sup
sup sup 1
x x

x x s
x x

µ
µ

≠ ≠
= ≤ =                                                                         (7.9) 

 O halde  1≤µ  , yani ( )1B Sµ ∞⎛ ⎞′⎟⎜∈ ⎟⎜ ⎟⎜⎝ ⎠
A  dır. 
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b) Eğer e, S’nin her noktasındaki değeri 1 olan bir fonksiyon ise o halde ( ) 1=eµ  dir. 

Burada  ,  ,  :e S R→ ( ) 1e s = s S∀ ∈

( ) 1=eµ  ve a) şıkkından, 

( ) 11 ≤≤ eµ buradan ( ) 1=eµ bulunur. 

c) ,            ise o halde      ( )x 0s ≥ s S∀ ∈ ( ) 0xµ ≥     dır. 

d) 1=µ  

( )0

x 0 0

x( x )
sup

x x
µµ

µ
≠

= ≥                                                                              (7.10) 

  , b) şıkkındaki e olarak seçilirse, yani 0x e=0x    alınırsa, 

( )
1=

e
eµ

 olduğundan 1=µ  bulunur. 

B) Eğer  ın bir elemanı, a) ve b) koşullarını sağlıyorsa veya b) , c) , ve d) 

koşullarından herhangi ikisini sağlıyorsa 

( )S∞ ′A

µ  elemanı, ( )S∞A  üzerinde bir mean’dir. 

C )  ( )S∞A  üzerindeki mean’lerin kümesi boşküme değildir, konveks ve 

 w*-kompakttır. 

7.1.4. Tanım:  nın bir ( )1 SA θ  elemanı, her  için s S∈ ( ) 0sθ ≥  oluyorsa ve 

 ise ( ) 1
s S

sθΣ
∈

= θ ’ya sayılabilir mean denir. Bunlara ek olarak, ( ){ }0s sϕ >  kümesi 

sonlu bir küme ise ϕ sayılabilir mean’e S üzerinde bir sonlu mean denir. 

Eğer S yarıgrup ise ( )S∞A  de birçok yeni işlem tanımlamak mümkündür. Örneğin, S 

homomorfik olarak aşağıdaki teknik ile  içine gömülebilir. ( )( SAL )∞

s S∀ ∈  ve her ( )x S∞∈ A  için, sr  ,  nın bir elemanı olsun ve şu şekilde 

tanımlansın; 

( )( S∞AL )

′( )( ) ( )sr x s x s s′ =     ,     s S′∀ ∈

Benzer şekilde sl ’yı tanımlarsak, 

( )( ) ( )sl x s x s s′ ′=    ,    s S′∀ ∈
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Burada sr ’ya sağ dönüşüm operatörü (right translation operator),  sl ’ya sol 

dönüşüm operatörü (left translation operator) denir. 

sr  ,  ’dan ’ya bir homomorfizmdir yani S ( )( S∞AL ) ss s sr r r′ ′=  

sl  ,  ’dan  ‘ya bir antihomomorfizmdir yani S ( )( S∞AL ) ss s sl l′ ′= l  

Bununla birlikte sr x x≤  ve  olduğundan, her s için sr e e= 1sr = bulunur. Benzer 

şekilde her s için 1sl =  dir. 

7.1.5. Tanım:  ın bir elemanı ( )S∞ ′A µ  , 

( ) ( )sl x xµ µ=    ,   ( )x S∞∀ ∈A    ,                                                           (7.11) s S∀ ∈

eşitliğini sağlıyorsa sol invaryant (left invariant) olarak adlandırılır. Benzer şekilde 

µ  elemanı, 

( ) ( )sr x xµ µ=    ,   ( )x S∞∀ ∈A    ,                                                          (7.12) s S∀ ∈

eşitliğini sağlıyorsa sağ invaryant (right invariant) olarak adlandırılır. 

Bunu,  cebrinde eşlenik operatörlerle başka şekilde de ifade edebiliriz. ( )S∞⎛ ⎞′⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
AL

µ  left invaryanttır       ,                                                         (7.13) ⇔ *
sl µ µ= s S∀ ∈

µ  right invaryanttır       ,                                                      (7.14) ⇔ *
sr µ µ= s S∀ ∈

7.1.6. Tanım: Bir S yarıgrubu için, ( )S∞A  üzerinde hem sol hem de sağ invaryant 

bir mean µ  varsa S’ye amenable denir. Eğer sadece sol invaryant mean mevcutsa 

S’ye 1-amenable, sadece sağ invaryant mean mevcutsa S’ye r-amenable denir. 

İnvaryant mean’lerin bazı özellikleri şunlardır: 

A) Eğer S hem l-amenable hem de r-amenable ise , S amenable’dır. 

B) Bir  amenable grup aynı zamanda [ −− rl ] [ ]−− lr  amenable’dır. 

Bundan dolayı amenable’dır. 

C)  f ,  ’den ’ye bir homomorfizm olmak üzere, S S ′

 S amenable ise  amenable , S   l-amenable ise  l-amenable, S         S ′ S ′

r-amenable ise  right amenable’dır. S ′

D) Eğer G bir  amenable grup ise, G’nin her alt grubu da [ −− rl ] [ ]−− rl  

amenable’dır. 
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E)  H ve G/H  amenable olacak şekilde, H, G’nin bir normal alt grubu ise G de 

 amenable’dır. 

F)  Her değişmeli yarıgrup amenable’dır. 

G)  Her sonlu grup amenable’dır. 

7.2. Amenable Kompakt Yarı Gruplar 

Yarıgrup tanımını tekrar hatırlatalım. Bir S kümesi, üzerinde tanımlanan cebirsel 

işleme göre kapalılık ve birleşme özelliklerini sağlıyorsa yarıgrup olarak adlandırılır. 

Eğer ’nin bir  alt kümesi için  oluyorsa  kümesine alt yarıgrup 

denir.  S’nin boş kümeden farklı bir L alt kümesi için  oluyorsa L’ye sol 

ideal denir. S’nin boş kümeden farklı bir R alt kümesi için 

S 1S 1 1 1.S S S⊆ 1S

.S L L⊆

.R S R⊆  oluyorsa R’ye 

sağ ideal denir. Bir küme hem sağ hemde sol ideal ise ideal olarak adlandırlır. Bir 

 için  oluyorsa e elemanına idempotent eleman denir. e S∈ ee =2

7.2.1. Tanım:  Bir  kümesi hem yarıgrup hemde Haussdorff uzayı  ve ’den 

’ye  tanımlı  tasviri ile verilen topolojide sürekli ise S’ye topolojik 

yarıgrup denir. 

S S S×

S ( ),s t s t→

S üzerindeki bir m ölçüsü, her A Borel kümesi ve  için  u S∀ ∈

{1 : }Au t S t u− = ∈ ∈A                                                                                         (7.15) 

olacak şekilde, 

( ) ( )1m A m Au−=                                                                                                  (7.16) 

şartını sağlıyorsa r*-invaryant olarak adlandırılır. 

7.2.2. Teorem: Bir  kompakt yarıgrubu üzerinde aşağıdaki koşullar birbirine 

denktir.. 

S

1.   da bir sağ invaryant mean m vardır. ( )S∞ ′A

2. ’da bir r*-invaryant ölçü m vardır. S

3.  , tam olarak bir tane minimal sol ideal içerir. S
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7.2.3. Sonuç: Bir  kompakt semigrubu üzerinde aşağıdaki koşullar birbirine 

denktir. 

S

1.  da bir invaryant mean vardır. ( )S∞ ′A

2. ’nın çekirdeği K bir gruptur. S

7.2.4. Sonuç: Eğer  kompakt yarıgrubu tek bir sağ invaryant mean m’ye sahip ise o 

halde  ’nın çekirdeği K bir gruptur ve m iki taraflı invaryanttır. 

S

S

7.3. Amenable Yerel Kompakt Gruplar 

7.3.1. Tanım: Üzerinde tanımlandığı topoloji yerel kompakt ve Hausdorff uzay olan 

topolojik gruba yerel kompakt grup denir.  

X herhangi bir küme ve  sonlu toplamsal, 2X:µ →\ ( X )µ <∞  şartını sağlayan bir 

küme fonksiyonu ise  için m ( X ′∈A )∞

X
,m : ( x )d ( x ) , ( ( X ) )φ φ µ φ ∞< > = ∈∫ A                                                                (7.17) 

ile tanımlıdır. 

7.3.2. Tanım: G bir yerel kompakt gurup ve E , ( )GL∞  ‘nin sabit fonksiyonları 

içeren bir alt uzayı olsun. E üzerinde bir mean 

11 ==>< mm,      

 şartını sağlayan E′ ’ın elemanı bir fonksiyoneldir. 

7.3.3. Önerme: G bir yerel kompakt grup ve E , ( )GL∞ ’nin sabit fonksiyonları 

içeren ve kompleks eşlenik altında kapalı bir alt uzayı olsun. 

Bu durumda,  şartını sağlayan  lineer fonksiyoneli için 

aşağıdakiler birbirine denktir. 

11 =>< m, :m E→ ^

i)  m, E üzerinde bir meandir. 

ii)  m, pozitiftir. Diğer bir deyişle, 

( 00 ≥∈≥>< )φφφ ,Em,   .                                                                                   (7.18) 
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7.3.4. Tanım: G bir yerel kompakt grup olsun. ( )GM  ,  G üzerindeki bütün (sonlu) 

kompleks regüler Borel ölçülerinin uzayını göstersin. Bir Gg∈  için g’deki nokta 

kütle (point mass) ( )GMg ∈δ  şu şekilde tanımlanır : 

( )gf,f g =>< δ         .                                                                    (7.19) ( )( GCf o∈ )

7.3.5. Tanım: G bir yerel kompakt grup ve ( )GM, ∈νµ  olsun. 

( )GM, ∈νµ  için ( )GM∈∗νµ  konvulüsyon çarpım şu şekilde tanımlanır 

( ) ( ) (hdgdhgf,f
G G

ννµ µ∫ ∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=>∗< )       ( )( )GCf o∈   .                               (7.20) 

7.3.6. Tanım: G bir yerel kompakt grup ve E, ( )GL∞ ’nin sabit fonksiyonları içeren 

ve kompleks eşlenik altında kapalı bir altuzayı olsun. 

i)  Eğer her E∈φ  ve Gg∈  için Eg ∈∗φδ  ise E’ye sol invaryant denir. 

ii)  Eğer E sol invaryant ise, o halde 

><=>∗< m,m,g φφδ    ( EGg )∈∈ φ,                                                            (7.21) 

oluyorsa E üzerindeki mean m’ye sol invaryant denir. 

7.3.7. Tanım:  Eğer  de bir sol invaryant mean var ise G yerel kompakt 

grubuna amenable denir. 

( )GL∞

7.3.8. Tanım: G bir yerel kompakt grubu olsun. 

i)  şu şekilde tanımlansın, ( )GP

( ) ( ){ }10 1
1 =≥∈= f,f:GLfGP                                                                     (7.22) 

 ii) E uzayı, , , ( )GL∞ ( )GCb ( )GCUL , ( )GCUR  veya ( )GUC  uzaylarından biri 

olsun. Eğer 

><=>∗< m,m,f φφ  ( )( GPf,E )∈∈φ                                                             (7.23) 

ise bir mean  topolojik sol invaryant olarak adlandırılır. ∗∈Em
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7.3.9. Lemma: G bir yerel kompakt grup ve E uzayı, ( )GL∞ , ( )GCb , , 

 veya UC  uzaylarından biri olsun. O halde E üzerindeki her topolojik 

sol invaryant mean, sol invaryanttır. 

( )GCUL

( )GCUR ( )G

HG: →

7.3.10. Teorem: Bir yerel kompakt grup G için aşağıdakiler denktir: 

i) G amenable’dır. 

ii) ’de sol invaryant mean vardır. ( )GCb

iii) ’de sol invaryant mean vardır. ( )GCUL

iv) ’de sol invaryant mean vardır. ( )GCUR

v) ’de sol invaryant vardır. ( )GCU

7.3.11. Teorem: Bir yerel kompakt grup G için aşağıdakiler denktir. 

i) G amenable’dır. 

ii) ’de sağ invaryant mean vardır. ( )GL∞

iii) ’de invaryant mean vardır. ( )GL∞

7.3.12. Önerme: G amenable, yerel kompakt grup ve H bir başka yerel kompakt 

grup olsun. θ yoğun görüntü kümesine sahip sürekli homomorfizm ise o 

halde H de amenable’dır. 

7.3.13. Sonuç: G amenable, yerel kompakt grup ve N, G’nin kapalı alt grubu olsun. 

O halde G/N  amenable’dır. 

7.3.14. Teorem: G amenable, yerel kompakt grup ve H, G’nin  kapalı alt grubu 

olsun. O halde H amenable’dır. 

7.3.15. Teorem:  G yerel kompakt grup, N ve G/N amenable olacak şekilde N, G’nin 

kapalı normal altgrubu olsun. O halde G amenable’dır. 

7.3.16. Örnekler: 

7.3.16.1. Örnek:   alalım. Acaba Tam sayılar kümesi ]’de  invaryant mean 

var mıdır? 

G = ]
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( )GP ’nin tipik bir elemanı,  formunda sonsuz toplam olacaktır. Burada 

 ve  dir. Zayıf* yığılma noktalarının ( weak* cluster points) en 

az biri invaryant mean olacak şekilde 

rra δ∑∞
∞−

0≥∀ ra,r 1=∑∞
∞− ra

( )GP ’de bir { }nf  dizisi oluşturmaya 

çalışalım. ’i şu şekilde seçelim: nf

∑
−=+

=
n

nr
rn n

f δ
12

1   (Cesaro toplamı )                                                                 (7.24) 

Eğer  ve ( )1ϕ ∞∈ ] ( )0s s≥ ∈]  ise, 

 

( ) ( ) ( ) ( )( )⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+

+
=− ∑

−=

n

nr

^

n

^
rsr

n
fsf φφφφ

12
1  

                             ( ) ( )∑∑
+

+

−+−

−
+−

+
=

sn

n

sn

n
rr

n 1

1

12
1 φφ  

                               
2

0 ,
2 1
s

n
n
ϕ

≤ → →
+

∞                                                         (7.25)  

elde edilir. Benzer  bir sonuç 0s<  için elde edilirç ( )M ] ’deki  dizisinin her 

zayıf* yığılma noktası bir sol invaryant meandir. Dolayısıyla,  amenabledır. 

⎭
⎬
⎫

⎩
⎨
⎧

n

^
f

]

7.3.16.2. Örnek:   alalım. Bir önceki örneği kullanalım ve G =\ [ ]

2
n ,n

nf n
−=

c
 

alalım. O halde  ve 0≥x ( )Lϕ ∞∈ \  için, 

( ) ( ) ( ) ( )∫
−

−+=−
n

n
n

^

n

^
tdttx

n
fxf φφφφ

2
1  

                                 
2

0 ,
2
x

n
n
ϕ

≤ → →∞                                                      (7.26) 

elde edilir.  dizisinin her zayıf* yığılma noktası bir  (sol) invaryant meandir. 

Dolayısıyla, amenabledır. 

⎭
⎬
⎫

⎩
⎨
⎧

n

^
f

\
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7.4. Amenable Kavramının Alternatif Karakterizasyonları 

7.4.1. İnvaryant  Meanlar 

İnvaryant meanin tanımına göre; G, ancak ve ancak ( )L G∞ ’de bir sol-dönüşüm 

invaryant mean var ise amenabledır. Amenable kavramı, ( )L G∞ ’de sağ-dönüşüm 

invaryant mean’in, iki taraflı dönüşüm invaryant mean’in ve topolojik olarak 

invaryant mean’lerin varlığına denktir. 

Kompakt grupların karakteristik özelliği Haar ölçülerinin sonlu olmasıdır ve tüm 

grupların Haar ölçüleri genellikle normalize edildiğinde 1’e eşittir. Haar ölçüsüne 

göre integrasyon, sınırlı fonksiyonlar uzayında bir invaryant mean’dir. G kompakt 

değil ise, sınırlı fonksiyonlar genellikle integre edilemez.  

(Çünkü ( ) ( )1,L G m L G m∞ ⊄ ,  ) Bu sebepten ( ),L G m∞  deki dönüşüm-invaryant 

meanlerin varlığı araştırılırken kompakt grupların bazı özellikleri amenable, yerel 

kompakt gruplara genişler. 

Haar ölçüsü tek olmasına rağmen invaryant meanler tek değildir. Rudin, 1972’de 

kompakt abelian grup T’nın Haar ölçüsünden başka invaryant meanleri olduğunu 

gösterdi. Daha sonra, genel yerel kompakt bir gruptaki invaryant meanlerin sayısı 

tam olarak bulundu. [2] 

7.4.2. Paradoksal Ayrışım ( Paradoxical Decomposition ) 

Bir G grubunun paradoksal ayrışımı, aşağıdaki şartı sağlayan G’nin sonlu  

1 1kG A A B B= ∪ ∪ ∪ ∪ ∪… … l                                                                                (7.27)   

ayrışımıdır. 1 1, , , , ,k lx x y y G∈… …  ve 1 1,k lA A B B… …  ölçülebilir alt kümeler olmak 

üzere,  

1 1 k kG x A x A= ∪ ∪…   ve                                                       (7.28)   1 1 l lG y B y B= ∪ ∪…

de G’nin ayrışımlarıdır. 

G’nin ancak ve ancak paradoksal ayrıştırması yoksa amenable olacağı 1938 yılında 

Tarski tarafından gösterildi. Amenable kavramı ilk olarak paradoksal ayrıştırması ile 

bağlantılı olarak ortaya çıktı. 
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7.4.2.1.Örnek:   

İki üreteçli  serbest grubunun amenable olmadığını iki yöntemle gösterelim: 2F

a ve b ’nin iki üreteci olsun. 2F 1A  kümesi  a ile başlayan bütün kelimelerin, 1B  

kümesi b ile başlayan bütün kelimelerin, 2A  kümesi 1a−  ile başlayan bütün 

kelimelerin ve 2B  kümesi 1b−  ile başlayan bütün kelimelerin kümesi olsun. 

1A , ,1B 2A ,  arakesitleri boş ve \  dir. Herhangi  

\

2B 2F 1 1 2{ e } A B A B= ∪ ∪ ∪ 2

2k∈F 1A  için  dir.  olduğundan 1
2a k A− ∈ 1

2k a( a k ) a A−= ∈ 2 1 2A aA∪=F  dir. 

Benzer şekilde 2 1 2B bB∪=F  dir. Yani  paradoksal ayrışımdır.Dolayısıyla  

amenable değildir. 

2F 2F

Veya  olduğunu kabul edelim.Bu durumda,  2m L (∞∈ F )

{ }( ) ( ) ( ) ( ) ( ) ( )1 2 1 2m e m A m A m B m B m G+ + + + = ,                                  

( ) ( ) ( )1m G m A m aA= + 2     ,       ( ) ( ) ( )1m G m B m bB= + 2                            (7.29)                              

ve ( ) 1m G =  olması gerektiğinden m’nin invaryant olması ile çelişir yani böyle bir m 

invaryant ölçü bulunamaz, dolayısıyla  amenable değildir. 2F

7.4.3. Folner Koşulu 

Bu koşula göre, amenable gruplar dönüşümler altında neredeyse invaryant kompakt 

altkümelere sahiptir. Örneğin, G kompakt ise grubun kendisi dönüşüm altında 

invaryanttır.  

7.4.3.1. Tanım: Eğer her 0ε >  ve G’nin her kompakt alt kümesi C için,  

( ) ( )( ) ( ) ( ) \  \ /m xK K K xK m K x Cε∪ < ∈                                                (7.30)   

olacak şekilde G’nin bir K kompakt altkümesi var ise, G yerel kompakt gurubu 

Folner koşulunu sağlar denir. 

Bir G yerel kompakt grubu ancak ve ancak Folner koşulunu sağlarsa amenable’dır. 
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7.4.3.2. Sonuç: G bir amenable olmayan grup olsun. O halde ( )2L G  de sıfır 

olmayan dönüşüm-invaryant fonksiyonel yoktur. 

7.4.4. Sabit Nokta Özelliği ( The Fixed Point Property ) 

Bir yerel konveks topolojik lineer uzayın bir C kompakt, konveks altkümesinde 

G’nin her sürekli ve afin aksiyonu bir sabit noktaya sahiptir. 

7.4.4.1. Önerme: G yerel kompakt grubu ancak ve ancak sabit nokta özelliğine sahip 

ise amenable’dır. 

7.4.4.2. Teorem: G bir yerel kompakt grup olsun. G ancak ve ancak her Banach     

-bimodül  x için  ( )1L G

( )( ) { }1 1 ,L G X ′ =H 0                                                                                         (7.31)   

 oluyorsa amenable’dır. 

7.4.4.3. Sonuç: G  bir amenable grup ve ( ) ( )1 1:D L G L G→ bir sürekli türev olsun.  

O halde, 

( ) ( )( 1D f f f f L Gµ µ= ∗ − ∗ ∈ )                                                                  (7.32)   

olacak şekilde ( )M Gµ∈  vardır. 

7.4.5. Yaklaşık Birim 

Bir G grubunun amenable olması,  nin ideallerinde yaklaşık birimin varlığına 

denktir. Eşboyutu 1 olan 

1L ( G )

1 1
0 0

G
L ( G ) : { f L ( G ): f dm }= ∈ =∫  

alt uzayı ’nin bir kapalı idealidir. Bu konuda 1968 yılında Reiter ilk sonucu 

vermiştir. 

1L ( G )

7.4.5.1.Teorem: G yerel kompakt grubunun amenable olması için gerek ve yeter şart 

’nin bir sol sınırlı yaklaşık birime sahip olmasıdır.1
0L ( G )
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8. AMENABLE  RADİKAL BANACH CEBİRLERİ 

Bu bölümde değişmeli ve değişmeli olmayan amenable radikal Banach cebirleri 

incelenmiştir. Runde [26] makalesinde değişmeli olmayan amenable radikal Banach 

cebrine zayıf Wiener özelliğini kullanarak bir örnek vermiştir. Read, [21] 

makalesinde değişmeli amenable radikal Banach cebrine, yaklaşık köşegen 

karakterizasyonunu kullanarak bir örnek vermiştir. 

8.1. Amenable Banach Cebirleri 

A bir birimli cebir ve  

( ) ( ,a b ab a b Aπ ⊗ = ∈ )                                                                                      (8.1) 

olacak şekilde : A A Aπ ⊗ →  bir lineer tasvir olsun. ( ) Au eπ =   ve  

                                                                                              (8.2) (a u u a a A⋅ = ⋅ ∈ )

olacak şekilde   elemanına A için bir köşegen  (diogonal ) denir.  u A A∈ ⊗

8.1.1. Teorem: A bir cebir olsun. Bu durumda aşağıdakiler birbirine denktir: 

i) Her A-bimodül E için ( ) { }1 ,H A E = 0  dır. 

ii) A birimlidir ve A’nın A A⊗ ’da bir köşegeni vardır. 

iii) A yarı-basittir ve sonlu boyutludur. 

8.1.2. Tanım: A bir Banach cebri olsun. Her Banach  A-bimodül E için  

( ) { }1 0′,A E =H                                                                                                   (8.3) 

ise A amenable’dır. 

Bundan dolayı, A’dan dual modül E′ ’ye giden her sürekli türev iç (inner) ise A 

amenabledır. A bir birimli cebir olsun. A’nın amenable olduğunu göstermek için, her 

birimli Banach A-bimodül E için ( ) { }1 ,A E′ =H 0  olduğunu göstermek yeterlidir.  
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E ve F Banach uzayları ve ( ),T B E F∈  olsun. T’nin duali ( ),T B F E′ ′ ′∈  

elemanlarından oluşur ve  

( ), , ,x T T x x F Fλ λ λ′< >=< > ∈ ∈ ′                                                                 (8.4) 

şeklinde belirlenir. E′  ve  kendi F ′ zayıf ∗  topolojilerine sahip olduğunda bu tasvir 

süreklidir.  de T’nin ikinci duali ( ,B E F′′ ′′ ) ( )T T ′′′ ′=  dır. 

8.1.3. Tanım: A bir birimli Banach cebri olsun. 

( ) AM eπ ′′ =    ve                                                                (8.5) (a M M a a A⋅ = ⋅ ∈ )

⎞
⎟olacak şekilde  deki bir M elemanına A için bir sanal köşegen (virtual 

diagonal) denir.  

A A
∧ ′′⎛ ⊗⎜

⎝ ⎠

8.1.4. Teorem: A bir birimli Banach cebri olsun. Bu durumda, A ancak ve ancak 

A’nın bir virtual diagonali varsa amenabledır. 

G bir grup ve ( )1A G=A  olsun. Verilen ,f g A∈  için G G⊗  de f g⊗  şu şekilde 

tanımlanır: 

( )( ) ( ) ( ) (, ),f g s t f s g t s t G⊗ = ∈                                                                (8.6) 

(1 )A A G G
∧

⊗ → ×A  bir izometrik izomorfizm vardır. Bu A A⊗  da  yi 

yukarıdaki gibi tanımlar. 

f g⊗

( )1 GA  nin dual uzayı ’dir. ( )G∞A ( )f G∞∈A  üzerinde ( )1
S Gδ ∈A  nin aksiyonları 

(actions) şu şekilde verilir: 

( ) ( ) ( ) ( )( ) ( ) ( ),S Sf t f ts f t f st t Gδ δ⋅ = = ⋅ = ∈                                         (8.7) 

(1 G G×A )

)

nin duali, 

( ) (ˆA A G∞′⊗ = ×A G

)

                                                                                          (8.8) 

dir ve bu bir Banach A-bimodüldür. Modül işlemleri i  aşağıdaki denklemleri sağlar: 

s G∈  ve  olmak üzere, (F G G∞∈ ×A
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( )( ) ( ) ( )( ) ( ) ( ), , , , , ,S sF u v F u vs F u v su v u v Gδ δ⋅ = ⋅ = ∈                         (8.9) 

: A A Aπ
∧

⊗ →  üretilmiş çarpım tasvirinin (the induced product map) duali 

dir ve  : ( ) ( )G Gπ ∞ ∞′ → ×A A G

( )( ) ( ) ( )(, , , , )f u v f uv u v G f Gπ ∞′ = ∈ ∈A                                               (8.10) 

Bundan dolayı, bir virtual diagonal 

( )( ), , ,s s xF M F M s G F Gδ δ ∞< ⋅ >=< ⋅ > ∈ ∈A G                                       (8.11) 

ve 

( ) ( ) ( )(, G )f M f e f Gπ ∞′< >=< ∈A                                                            (8.12) 

olacak  şekilde  de bir sürekli lineer M fonksiyonelidir. (G G∞ ×A )

8.1.5. Tanım: G bir grup olsun. ( )G∞A  de bir mean  

( )1Λ = Λ =1                                                                                                    (8.13) 

olacak şekilde ( )( ),
G

G∞ ⋅A de bir sürekli lineer Λ  fonksiyonelidir. 

( )(, , ,x )f f s G fδ ∞< Λ>=< ⋅ Λ> ∈ ∈A G                                                       (8.14)   

ise mean  sol invaryanttır.  Λ

G’de bir sol invaryant mean varsa G grubu amenabledır. 

8.1.6. Teorem: ( Johnson) 

G bir grup olsun. O halde, ( )1 GA  Banach cebri, ancak ve ancak G grubu amenable 

ise amenabledır. 

8.1.7. Önerme: A ve B Banach cebirleri ve ( )A Bθ =  olacak şekilde : A Bθ →  bir 

sürekli homomorfizm olsun. Varsayalım ki A amenabledır. O halde B amenabledır. 

8.1.8. Teorem: Her kompakt uzay Ω  için, ( )C Ω  Banach cebri amenabledır. 
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8.2. Değişmeli Olmayan Amenable Radikal Banach Cebirleri 

A bir Banach cebri ve Prim(A) primitif ideallerin uzayını göstersin. I A⊂  ve 

 için  J Pr im( A⊂ )

hull( I ) : { P Pr im( A ) : I P }= ∈ ⊂  ,  ker( J ) { P : P J }= ∈∩  

ve   olarak tanımlanır.J hull(ker( J ))− = I A⊂  ve ( )J hull I=  ise J J− =  dir. 

Prim(A)’nın kapalı alt kümesi F, ( )F hull I=  olacak şekilde A’nın kapalı ideali I 

yalnız ker(F) ise A için bir sentez kümesi denir. Diğer durumda F’ye A için sentez 

olmayan bir küme denir. 

 8.2.1. Tanım: A için sentez kümesi boş küme olan bir Banach cebrine zayıf Wiener 

(weakly Wiener) denir.  

Bir yerel kompakt G grubunun zayıf Wiener olması, ( )1L G ’nin zayıf Wiener olması 

olarak tanımlanır.  

8.2.2. Yardımcı Teorem: A bir zayıf Wiener olan bir Banach cebri olsun. Bu 

durumda A’nın her bölümü zayıf Wienerdir. 

A bir Banach cebri S ve T, A’dan A’ya giden x.Ty S x.y x, y A= ∀ ∈  şartını sağlayan 

sınırlı lineer operatörler ise ( )S ,T  ikilisine çift merkezleyici denir. Bu ikililerin 

oluşturduğu ( )M A  kümesi  

1 1 2 2 1 2 1 2( S ,T )( S ,T ) ( S S ,T T )=   

çarpımı altında bir cebir oluşturur. Bu cebire çift merkezleştirilmiş cebir denir. 

8.2.3. Yardımcı Teorem: A bir zayıf Wiener olan bir Banach cebri ve A p A  , A’da 

yoğun olacak şekilde ( )p M A∈  bir eşgüçlü (idempotent) olsun. Bu durumda  

zayıf Wienerdir.  

pAp

Kanıt:   bir kapalı ideal olsun. I, J ile üretilen A’nın kapalı bir 

ideali olsun.  

J p A p , J p A p⊂ ≠

0I J AJ J A AJ A= + + +    ,          ( )0 0I hull ker I− =                                             (8.15) 
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0I I −=  ve dur. Bunun anlamı p I p I⊂ I A⊂  ve I A≠ dır. A zayıf Wiener 

olduğundan I P⊂  olacak şekilde bir pirimitif ideal vardır.  alalım. 

 olduğunu düşünürsek, 

Q p A p p= ∩

:Q p A p= ( )2A p A P⊂   ve primitif olduğundan A p A P⊂  

olur. A’da A p A ’nın yoğun olmasından A=P elde edilir. Bu ise çelişkidir. π , bir E 

lineer uzayı üzerinde A’nın bir indirgenemez temsili ( represantation) olsun. A, 

M(A)’da bir ideal olduğundan, π ’yi E üzeinde M(A)’nın bir indirgeme tersine 

kanonik olarak genişletebiliriz, bunu yine π  ile gösterelim.  olmadığından p A p p⊄

( ) 0pπ ≠ dır. 

( ) { }0x p Eπ∈  alalım, bu durumda  

( ) ( ) ( ) ( ) ( )pAp x pA x p A x p Eπ π π π π≡ = =                                               (8.16)   

ve sonuçta ( )p A p
( , p E ) , p A pπ π ’nin bir indirgenemez temsilidir ve Q  

primitifdir. ,  

G yerel kompakt grup olsun. G, A üzerinde izometrik *-otomorfizm grubu olarak 

hareket etmek üzere A,  izometrik involüsyonlu bir Banach*-cebri olsun. x G∈  ile 

belirlenen otomorfizmi  olarak  yazalım. xA a a∋ → ( )1L G ,A  Banach uzayı  

( )( ) ( ) ( )
1

1: y

G

f g x f x y g y d y
−

−∗ = ∫                                                                   (8.17) 

 ve 

( ) ( ) ( )( ) ( )1 1 1:
x

Gf x x f x f ,g L G , A , x
∗

−∗ −=∆ ∈ ∈G                              (8.18) 

ile izometrik involüsyonlu bir Banach*-cebri oluşturur. Burada dx Haar ölçüsü ve 

, G üzerinde modüler fonksiyondur. G∆

G ve H yerel kompakt gruplar olsun. G, H üzerinde sürekli ve otomorfisel olarak 

hareket etsin. Yani, öyle bir sürekli  ,   xG H H→ ( )g ,x xg→  tasviri vardır ki 

( ) ( )hg g g g g hx y x y , x x= =                                                                                  (8.19) 
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ve 1x x− =  dir. Her , için g G∈ gd x  bir Haar ölçüsüdür. Bu yüzden 

                                                                                              (8.20) ( )g
G ,Hd x g d x=∆

olacak şekilde bir   pozitif reel sayısı vardır. ( ),G H g∆ ( )0f C H∈  ve  için h H∈ hf  

ve hf  aşağıdaki gibi tanımlanır: 

( ) ( ):hf x f hx=  ve ( )hf f xh=     x H∈                                                           (8.21) 

Şimdi ’ın aşağıdaki özellikleri sağlayan Q alt cebrini alalım. ( )0C H

i) Q, q q q∗
∞
≤ =  olacak şekilde ⋅  normu ile bir Banach cebri olmak üzere 

’in bir *-altcebridir.  ( )0C H

ii)  ve h için, q Q∈ hq Q∈  ve hq q=  dir. 

iii)  için,  tasviri süreklidir. q Q∈ hH h q∋ →

iv) Q ’da kompakt destekli fonksiyonlar bir  yoğun alt cebir oluşturur. 0Q

v) HI ’ın her U komşuluğu için 

a) u 0   ve  ( )supp u U⊂

b)   için  h H∀ ∈ nU Q∈

c)  tasvir süreklidir. nH h U∋ →

şartlarını sağlıyan bir u Q∈  Örneğin; 

(0C H )

)

 bu şartları sağlar. Eğer H abelyen ise Q’yu   

( ) (1Q A H L A= ≅                                                                                               (8.22) 

olarak seçebiliriz.Yukarıda tanımlanan Q’da, u Q∈   ve g G∈  için 

( )( ) ( )1

: ,gU g x u x x H
−

=D ∈                                                                         (8.23) 

tanımlayalım. Ayrıca 

vi) Her  için Q q  tasviri, Q’nun izometrik izomorfizmi olsun. g G∈ q g∋ → D
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vii) Her  için G g  tasviri süreklidir. g G∈ q g∋ → D

şartlarını ele alalım. Bu durumda ( )1 ,L H Q  dan söz edebilir. 

( )1 ,f L H Q∈  ve  için g G∈

( ) ( ) ( )11
,:g g

G Hf x g f x g x
−−=∆ ∈D H                                                          (8.24) 

olsun. Buna göre her  için g G∈ ( )1 , gL H Q f f∋ →   bir izometrik *-izomorfizmdir 

ve (( )1 1, , )L G L H Q söz edilir. 

8.2.4. Teorem: G,H ve Q yukarıdaki şekilde  verilsin. ( )1: ,A L H Q=  ve ,G H∆ 1 

olsun. Bu durumda  zayıf Wiener değildir. 1

z∈ ⎬

z ⎪∈ ⎬

L ( G,A )

( )4,9 0 : 0 , ,
0 0 1

t t

t

e x e z
G e y t x y−

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥= ⎨ ⎢ ⎥
⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

R                                                    (8.25) 

olarak tanımlansın.  grubunu tanımlamanın diğer bir yolu aşağıdaki gibidir. 

Heisenberg grubu, 

( )4,9 0G

1

1
: 0 1 ,

0 0 1

x z
H y x y

⎧ ⎫⎡ ⎤
⎪ ⎢ ⎥= ⎨ ⎢ ⎥
⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

R                                                                        (8.26) 

şeklinde tanımlanır. ’in grup otomorfizmlerini 1H ( )1U H  ile gösterelim ve 

 tasvirini ( 1: U Hφ →R )

⎥
⎟⎥( )

1 1
0 1 : 0 1
0 0 1 0 0 1

t
x

t

x z e z
a t y e y

−⎛ ⎞⎡ ⎤⎛ ⎞⎡ ⎤
⎜ ⎟⎢⎜ ⎟⎢ ⎥ =⎜ ⎢⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟ ⎢ ⎥⎢ ⎥⎣ ⎦⎝ ⎠ ⎣ ⎦⎝ ⎠

                                                          (8.27)   

olarak tanımlayalım. , ( )4,9 0G 1H φ× R  yarı çarpımı olarak tanımlayabiliriz. Özel 

olarak  ,  nilpotent grubunun bir abelyen genişlemesidir. Bu yüzden 
çözülebilirdir (solvable) ve bundan dolayıda amenabledır. 

( )4,9 0G 1H

durumda  zayıf Wiener değildir. (1 ,L G A )
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8.2.5. Sonuç:  zayıf Wiener değildir. ( )4,9 0G

Kanıt:  ve ( )(1
4,9 0L G ) ( )(1 1

1 1L L HR )  tanılayalım. ( )1
1f L H∈  için 

( ) ( ) ( ), : , , i y zf x f x y z e dydzςς − += ∫
•

                                                                   (8.28)   

olarak tanımlayalım.  ve( ):Q A= R 1A : L ( ,Q )= \  tanımlanırsa f f
•

→  tasviri 

dan  üzerine bir epimorfizm üretir. Eğer ( )( )1
4,9 0L G (1 ,L AR ) ( )( )1

4,9 0L G  zayıf 

Wiener ise yardımcı teoreme göre ( )1 ,L AR da zayıf Wienerdir. Burada  üzerine 

’nin hareketi (

R

R ), tt x e x−→  olarak verilir. Sonuçta 1
, ( )t e−∆ =R R 1. Yukarıdaki 

teoremden  zayıf Wiener değildir.    Yani (1 ,L AR ) ( )4,9 0G  zayıf 

Wiener değildir.                                                                                                     ,  

8.2.6. Teorem: Zayıf Wiener olmayan, amenable yerel kompakt bir grup varsa 

amenable, radikal Banach cebirdir. 

Kanıt: G amenable, zayıf Wiener olmayan bir yerel kompakt grup olsun. G, zayıf 

Wiener olmadığından ’nin ( )1L G ( )1

( )1 /

)

PrimL G ’de hull’u boş olan bir kapalı öz ideali 

J vardır. Bu yüzden  bir  radikal Banach cebridir. Bu amenable Banach 

cebrin bölümü olduğundan da amenabledır. 

:R L G J=

Buna göre  bir amenable, radikal Banach cebirdir. (1 ,L AR

8.3. Değişmeli Amenable Radikal Banach Cebirleri 

Şimdi abelyen amenable, radikal Banach cebire bir örnek verelim. Bu cebri inşa 

etmek, tekniği zor olsa bile fikri o kadar zor değildir.  

Her Banach A-bimodül X’ler için  

( ) { }1 ,H A X ∗ = 0                                                                                                 (8.29) 

 ise A Banach cebrine amenable denir. Yani A’dan bir dual Banach A-bimodül X ∗ ’e 

her sürekli türev inner ise A’ya amenable denir. Amenable bir karakterizasyonuna 

göre A’nın yaklaşık köşegen (approximate diagonal) olması amenable olmasını  
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gerektiriyor. Yani her  için komütatör a A∈ [ ], na 0∆ →  olacak şekilde projektif 

tensör çarpımında bir sınırlı net ( )n∆  ve l: A A Aπ ⊗ →  çarpım tasviri ise 

( )nA a aπ →  dır.  

Bu bölümde Banach cebirlerinde amenable kavramına denk olan bu tanımı 
kullanılacaktır. 

Değişmeli amenable radikal Banach cebri (DARB) inşası için normu en fazla 1 olan 

 köşegen elemanları kullanılacaktır. A, elemanlarının normları 1 ile sınırlı bir 

yaklaşık köşegene sahip ise A , bir metrik yaklaşık köşegene sahiptir denir. Her 

elementi nilpotent olan sonlu boyutlu değişmeli Banach cebri kısaca “Sonlu Boyutlu, 

Nilpotent Değişmeli” “SBND” ile ifade edilecektir. SBND cebrinde öyle bir 

n∆

δ  vardır 

ki her x A∈  için  dır. Bu özelliği sağlayan en küçük d sayısına A’nın derecesi 

denir.  

0dx =

8.3.1. Tanım: B bir Banach cebri ve A B⊂  bir alt cebir olsun. A için, δ  sabiti ile bir 

metrik yaklaşık birimi, her a A∈  için  

1u ≤  ve ua a aδ− ≤                                                                               (8.30) 

şartlarını sağlayan bir  elemanına denir. a B∈

8.3.2. Yardımcı Teorem: Her SBND cebri A ve her 0δ >  için δ  sabiti ile A için bir 

metrik yaklaşık birimi içeren , ayrıca SBND cebri olan  genişlemesi vardır. B A⊃

 Kanıt:  Loy, Read, Runde ve Willis’in [19] makalesinde yardımcı teorem 2.2 ve 

yardımcı tensör 2.4 den elde edilir. 

8.3.3. Tanım: A bir SBND cebri ve 1u ≤  olmak üzere u ,  olsun. Eğer, a A∈

l: A A Aπ ⊗ →  doğal çarpım tasviri olmak üzere, 

 ( ) 1u ,π ∆ = ∆ ≤  ve  [ ]a , aς∆ ≤    ( ς  sabit)                                           (8.31) 

ise A’da a için lA A∆∈ ⊗  elemanına bir kuvvetli metrik yaklaşık komütant 

(commutant) denir.  
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8.3.4. Tanım: Eğer  η  bağımlı olarak büyük ve 0ς >  yeterince küçük ve   ( ) uπ ∆ =

1∆ ≤  ve bir  için  a A∈

y a aη− ≤    ve [ ]y , aς∆ ≤                                                                   (8.32) 

 olacak şekilde bir y A∈  bulabiliyorsak ∆ ’ya  görüntüsü ve u ,η ς  sabitleri ile 

birlikte a için  bir zayıf metrik yaklaşık komütant denir.  

8.3.5. Yardımcı Teorem: A bir SBND cebri ve u A∈ , 1u ≤  olsun. Bu durumda 

herhangi , a A∈
90 1

10
ve ,ς η ⎡ ⎤> ∈⎢ ⎥⎣ ⎦

için lB B⊗ ,  görüntüsü u ,η ς sabitleri ile 

birlikte  a için bir zayıf metrik yaklaşık komütant ∆ ’yı  içerecek şekilde  A’yı içeren 

bir SBND cebri B vardır. 

Kanıt: Verilen A cebrinin boyutu n veya A’nın derecesi d’den büyük  N alalım. A’ya 

N tane ( ) 1

N
i i

y
=

 üreteç ekleyerek [ ]1 1 NA y , y…  genişletilmiş cebrini düşünelim. Sabit 

katsayılar A’da olacak şekilde katsayıları 1A ’de olan y sembollü polinomları içeren 

[ ]A y  cebrini ele alalım.  

( ) [ ]{ }1
N Ny y q y :q A y< >= ∈                                                                          (8.33) 

ideali olmak üzere, 

[ ] NB A y y= < >                                                                                                    (8.34) 

uygun bölümünü alarak istediğimiz ∆ ’yi elde edeceğiz. 

1

i
N

r
i

j

y
=
∏  genel çarpımını  ve  toplamını ry

1

N

i
i

r
=
∑ r  ile gösterelim. Yeterince büyük 

r ’ler için  olacak şekilde bölümü seçeceğiz. Gerçekten,  0ry =

2r N d≥                                                                                                             (8.35) 

 için bu doğrudur. Görüntü vektörü u A∈  için (öyleki ( ) uπ ∆ =  olmalı)  

1

N
N
i

i

y
=

=∏ u

u

                                                                                                           (8.36) 

 yani 1,  vektörünü gösteriyorsa ( ) ( )1 1 1
N

, , , Z +∈… 1Ny =  dir. 
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1I  ,  tarafından üretilen ideal ve 1Ny −u 0I , { }2ry : r N d≥  tarafından üretilen ideal 

ve 0I I I= +  olmak üzere [ ]1 1B A y I=  bölüm uzayını düşünelim. B cebri ise q’nun 

sabit katsayıları A’da olacak şekilde ( )q y I+ polinomlarının ideali olacaktır.  

[ ]1A y  üzerinde başlangıç normu 

1

r
r r A

r
a y a=∑ ∑                                                        (8.37) 

şartını sağlayan ⋅  normdur. 

Verilen 9 1
10

,η ⎡∈⎢⎣ ⎦
⎤
⎥  ve  için a A∈ 1B  üzerinde ⋅  normunu aşağıdaki özellikleri 

sağlayan [ ]1A y I  bölüm cebrinde en geniş norm olacak şekilde tanımlayalım. Her 

[ ]1x A y∈  için  x I x+ ≤  ve 

 
1

1
2

N

i
i

y a I
N

η
=

⎛ ⎞ − + ≤⎜ ⎟
⎝ ⎠

∑                                                                            (8.38) 

şartları sağlasın.  Yeterince büyük N’ler için A’nın izometrik olarak ( B , ⋅ )  içine 

gömüleceğini ve B’nin  SBND  cebri olduğunu gösterelim. 

y a η− ≤  olacak şekilde 
1

1
2

N

i
i

y
N =

= y∑    ve  ∆  

( )
( )

l1

1 1 1
1 N r N r

r N
N y y− −

≤ ≤ −

− ⊗∑ B B∈ ⊗

j
iy

                                                                 (8.39) 

elemanı olsun.  

( )
1

1
1

N
N j N

i i
j

N y
−

− −

=

∆ = − ⊗∑                                                                                 (8.40) 

olmak üzere 
1

N

i
i=

∆ = ∆∏  dir. Bu yüzden 1iy ≤  olduğundan 1i∆ ≤   ve 1∆ ≤  dir. 

Böylece, 

 [ ] 1
1

y ,
N

∆ ≤
−

                                                                                                 (8.41) 

olduğu görülür. Bu verilen 0ς >  sabitinden daha küçüktür, N’yi 11N
ς

> +  olarak 

seçelim. Bu durumda  verilen ∆ a A∈  için bir zayıf metrik komütanttır. Görüntüsü 

( ) 1Ny uπ ∆ = = ( )mod I                                                                                       (8.42) 
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x A∈  için 
B A

x x≤  bilindiğinden herhangi 1 normlu a A∗ ∗∈  lineer fonksiyoneli 

normu 1 olan bir genişlemesini ( B
B , )⋅  ye yapabiliriz. Önce a∗ ,   

tanımlayarak 

( )1 0a∗ =

1A ’e genişletelim. Genişlemeyi 1:a B∗ →^  aşağıdaki özelliği 

sağlayacak şekilde tanımlayalım. Her ( )N
r +∈ ] indis kümesi ve her 1x A∈  için  

( ) ( ) 1 0 0

0 diğer durumda

k l
r a u a x , r k N s ,k [ ,d ) s l [ ,d )

a y x
,

∗
∗

⎧ = + ∈ = ∈⎪= ⎨
⎪⎩

         (8.43) 

2N d≥  sağlandığından a ∗  sıfır değildir. Böylece a ∗ , [ ]1A y →^  iyi tanımlanmış 

bir tasvirdir.  için N d> a ∗  fonksiyoneldir. 0I  ve I idealinin sıfırlayıcısıdır. 

(annilates) 

Şimdi  verilen 1a∗ ≤  için 1a ∗ ≤  olduğunu gösterelim. 

(8.38) denkleminden, 1B  üzerinde ⋅  normunun, ⋅ ≤ ⋅  ve  

1

1
2

N

i
i

y a
N

η
=

− ≤∑                                                                                               (8.44) 

 

 şartlarını sağlayan bölüm cebri üzerinde en büyük norm olduğunu görebiliriz. (8.37) 

verilen ⋅  normuna göre 

1 1

1:
2

kN
k r

k ,r i k ,rA
k ,r k ,r i

x inf b x y a y b mod I .
N

η−

=

⎧ ⎫⎛ ⎞⎪ ⎪= = −⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∑ ∑ ∑                        (8.45) 

   
2 1k N d d≥ + −  değerleri için 

 
1

1 0
2

kN

j
i

y a (mod I )
N =

⎛ ⎞− =⎜ ⎟
⎝ ⎠

∑                                                                           (8.46) 

olduğundan her 1x B∈  için 

 
2 1N d dx xη + −≥      dir.                                                                                    (8.47) 

9
10

η ≥  ve 4
6 5

dlogk
log

≥  için  (8.50) dir. 

4
6 5

d logk
log

≤    ve                                                                (8.48) 1r Nt r′= +
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 (burada  0  ve t d≤ < r z , r d′ ′≥ < ) ile     4
6 5

dlogk
log

≤   ve    

( )1
11 0r Nt r t d , r z r d ,r z , r d′ ′ ′= + ≤ < ≥ < ≥ <1                                             (8.49) 

dışındaki r’ler için  

 
1

1
2

kN
r

i
i

a y a y b
N

η∗

=

⎛ ⎞⎜ ⎟−⎜ ⎟⎜ ⎟⎝ ⎠∑ k≤                                                                         (8.50) 

olduğundan 1a ∗ ≤  dir. (Runde s:78-79). Yani A, B’ye izometrik olarak  

gömülür. ,  

Aşağıdaki yardımcı teoremde kullanılacak bir özelliği gösterelim. Eğer  ve a A∈

l,1 2 A A∆ ∆ ∈ ⊗  ise  

, , ,1 2 1 2 2 1a a a⎡ ⎤ ⎡ ⎤ ⎡∆ ∆ = ∆ ∆ = ∆ ∆⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎦

2

                                                                (8.51) 

 dir. Bu yönden  ve , görüntüsü  ve  ve  sabitleriyle birlikte 

 için zayıf metrik yaklaşık komütanttır. Dolayısıyla  , görüntüsü  ve 

1∆ 2∆ 1u 2u 1 2 1, , ,η η ς ς

1 2,a a 1∆ 2∆ 1 2u u

( )1 2maks η η ,  ( )1 2,maks ς ς  sabitleriyle birlikte  ve  için zayıf metrik yaklaşık 

komütanttır. 

1a 2a

8.3.6. Yardımcı  Teorem:  ,  n∈` 9 ,1
10

η
⎡ ⎤
⎢ ⎥∈
⎢ ⎥⎣ ⎦

, her  ve 0ς > 1u x= =  olmak 

üzere her ,x u A∈ , her SBND cebri için, görüntüsü u  ve  ve n  sabitleriyle x 

için bir zayıf metrik yaklaşık komütant ’yi içeren bir 

n nn ς

n+ nB A⊃    SBND cebri vardır. 

Kanıt: Kanıtı tümevarımla  yapalım. n=1 için sonuç yukarıdaki yardımcı teoremdir. 

Tümevarım hipotezine göre koşulları sağlayan nB  genişlemesi var ve biz uygun bir 

metrik yaklaşık komütant ’i içeren, uygun 1n+∆ 1n nB B+ ⊃   genişlemesini bulmak 

istiyoruz. Hipoteze göre , ny ς⎡ ⎤∆ ≤⎢ ⎥⎣ ⎦ n  olacak şekilde nx y η− <  olmak üzere bir 

 vardır. ny B∈ n

x yx
η
−′=  vektörünün normu en fazla 1 olduğundan yukarıdaki  
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yardımcı teoreme göre ( )1 , uπ∆ ≤ ∆ =  ve [ ],z ς∆ ≤  olacak şekilde bir metrik 

yaklaşık komütant ∆  ve  

( ) nz x y η− − ≤η                                                                                           (8.52)     

olmak üzere bir z elemanını içeren bir 1 nB Bη+ ⊃  genişlemesi vardır.  

l
1 1n n n 1nB B+ +∆ =∆⋅∆ ∈ ⊗ +                                                                                 (8.53) 

yazalım. Bu durumda,  

( ) 1
1 1,n

n nuπ +
+∆ = ∆ ≤1+     ve       1, nz ς+

⎡ ⎤∆ ≤⎢ ⎥⎣ ⎦                                           (8.54)  

 dir.  alarak, ny y η′ = + z

11 ny x y x zη η +′− = − − ≤ n                                                                          (8.55) 

elde edilir. Ayrıca, 

( )1, , , , n
n n n ny y y z nη ς+

⎡ ⎤ ⎡ ⎤ 1⎡ ⎤⎡ ⎤′ ′∆ = ∆⋅∆ ≤ ∆ ⋅ ∆ + ∆ ⋅ ∆ ≤ +⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦        (8.56) 

olduğu görülür. Böylece ’ın gerekli olan bir metrik yaklaşık komütant olduğu 

gösterilmiş olur.                  

1n+∆

,

8.3.7. Yardımcı Teorem: A bir SBND cebir ve  ise δ  sabitiyle a için bir 

kuvvetli metrik yaklaşık kommutant ∆  olmak üzere her a  için 

0δ>

A∈ ( ) uπ ∆ =  

olacak şekilde bir lB B∆∈ ⊗  ve  sabitiyle A için bir metrik yaklaşık u’yu içeren 

A’nın 

δ

 genişlemesi olan bir  SBND cebri vardır. B A⊃

Kanıt:  A’nın bir bazı olsun. A’nın her x elemanını  

yazdığımızda  

1 2, , , na a a…
1

n

i i
i

aλ
=
∑

1

n

i
i

K xλ
=

≤∑                                                                                                    (8.57) 

olacak şekilde bulabileceğimiz bir K sabitini alalım. Herhangi 9 ,1
10

η
⎡ ⎞⎟⎢∈ ⎟⎟⎢ ⎠⎣

 için  

2
2

n K δ
η <                                                                                          (8.58) 

olacak şekilde n’yi seçelim. ς ’yi de 
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2
n K δ
ς <                                                                                                     (8.59) 

olacak şekilde seçelim. Yardımcı teorem (1.2)’yi kullanarak 2n
δ

δ ′=  sabitiyle A için 

bir metrik yaklaşık birim ’ı içeren 0u 0B A⊃  genişlemesi bulabiliriz. Yukarıdaki 

yardımcı teoremden de  sabitleri ve  görüntüde  için bir zayıf metrik 

yaklaşık kommutant ’e sahip 

,nη ης 0
nu 1a

1∆ 1 0B B⊃  genişlemesini bulabiliriz.  

Benzer şekilde  sabitleri ve  görüntüsüyle  için bir zayıf metrik yaklaşık 

komütant 

,nη ης 0
nu 2a

2A ’ye sahip 2 1B B⊃  genişlemesini bulabiliriz. Böyle devam ederek 

 sabitleri ve  görüntüsüyle her  için zayıf metrik yaklaşık 

komütantlar ’lara sahip 

,nη ης 0
nu , 1, ,ia i n= …

i∆ 1nB B⊃  genişlemesini bulalım. 

1

n

i
i=

∆= ∆∏  çarpımı için 1∆ ≤   ve  olduğunu görebiliriz. Burada ( )
2

0
nuπ ∆ =u

0 2,u
n
δ

δ′=  sabitiyle A için bir metrik yaklaşık birimdir. u’da  olmayan A için bir 

metrik yaklaşık birimdir. Her 

δ

1

n

i i
i

x a Aλ
=

=∑ ∈   için  

[ ]
1

, ,
n

i i i j
j ii

x aλ
≠=

⎡ ⎤∆ = ∆ ∆⎢ ⎥⎣ ⎦∑ ∏                                                                               (8.60) 

olduğundan  

[ ] 1
1

, ,
n

i i i
i

x maks a K x maks aλ
=

⎡ ⎤ ⎡∆ ≤ ∆ ≤ ∆⎢ ⎥ ⎢⎣ ⎦ ⎣∑ , i
⎤⎥⎦                                    (8.61)     

dir. Her i  için ,i iy η ς⎡ ⎤∆ ≤⎢ ⎥⎣ ⎦  ve n
i ia y η− <  olacak şekilde bir  vardır. 

Açıktır ki  

iy B∈

, 2 2 n
i i i i i ia y a y η⎡ ⎤− ∆ ≤ − ⋅ ∆ ≤⎢ ⎥⎣ ⎦                                                                (8.62) 

ve böylece   

, 2 n
i imaks a nη⎡ ⎤∆ ≤ +⎢ ⎥⎣ ⎦ ς                                                                                  (8.63) 

(8.58) ve (8.59)’dan 

 [ ] ( ), 2 nx K x n xη ς δ∆ ≤ + ≤                                                                     (8.64) 

Bu yüzden ∆ ,  sabitleri ve u görüntüsü ile  her ,δ δ x A∈  için A’ya göre bir kuvvetli 

metrik köşegen elemandır. Böylece kanıt tamamlanır.            ,  

 75



 

8.3.8. Teorem: ( )
1i i

A
∞

=
,  sabitiyle her i için iδ iA ’nin köşegen genişlemesi 1iA +  

olacak şekilde   SBND  cebirlerinin bir dizisi  ve  olsun. Burada 0δ →i 1i iA A⊂ +  

şartını sağlıyor. A , 
1

i
i

A∪
=

∞

 birleşiminin tamlaştırılmışı olsun. Bu durumda A bir 

değişmeli amenable radikal Banach cebridir.  

Kanıt: l
1 1 1n n nA A+ + ⊗ ,n nδ+∆ ∈ , δ  sabitleriyle bütün nx A∈  için A’ya göre bir kuvvetli 

metrik köşegen eleman olsun. mx A∈  ise , 0nx⎡ ⎤∆ →⎢ ⎥⎣ ⎦  ve ( )n x xπ ∆ →  olduğundan 

ve böyle elemanlar A’da yoğun olduğundan  dizisi düzgün sınırlıdır, dolayısıyla n∆

l
n A A∆ ∈ ⊗  , A için bir yaklaşık köşegendir. Dolayısıyla  A amenabledir. 

A, nilpotent elemanların bir yoğun kümesine sahip ve değişmeli olduğundan 

radikaldir. Sonuç olarak A değişmeli, amenable, radikal Banach cebridir.  
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