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AMENABLE BANACH CEBIRLERI

OZET

Soyut harmonik analizin temel taslari yerel kompakt gruplar ve bu gruplara bagh
cebirlerdir. Bu cebirlerin en dnemlilerinden biri Fourier cebirleridir. Yerel kompakt
grup, yerel Haussdorf topolojik uzay ve grubun ¢arpma islemi ile ters alma islemini
karsilagtirilabilir yapan bir gruptur. Yani ¢carpma islemi ve ters alma islemi siireklidir.

Yerel kompakt gruplar i¢in en belirleyici 6zelllik amenable kavramidir. Ilk olarak
diskirit gruplarda Von Neuman tarafindan tanimlanmistir. Bu gruplar i¢in amenable
kavrami Banach —Tarski paradoksuna bagli olarak ortaya ¢ikmistir. Banach — Tarski
paradoksunun en cok bilinen ifadesi; “ Bir portakali sonlu dilimlere ayirip, tekrar
birlestirerek yarigaplar1 ilk portakalin yarigapt kadar olan iki tane portakal elde
edebiliriz”  seklindedir. Banach-Tarski paradoksu, paradoksal ayristirmanin
(paradoxical decomposition) bir O6rnegidir. Bir grubun paradoksal olmamasi onun
amenable olmasini gerektirir. Tersi de amenable ise paradoksal degildir.

Amenable kelimesini ilk olarak M.M. Day kullandi. Day, amenable yar1 gruplar
lizerine calismalarindan sonra, yerel kompakt gruplar i¢in amenable tanimini vermistir;

L*(G)lzerinde sol doniisiim degismez bir mean varsa bir G yerel kompakt grubuna

amenable denir. Biitiin sonlu, degismeli ve kompakt gruplar amenabledir. Iki iiretecli
serbest grup ise amenable degildir.

1972 yilinda B. E. Johnson, Hochschild kohomoloji yardimiyla Banach cebirlerinde
amenable tanimini vermistir. Johnson, bir yerel kompakt grubun grup cebrinin, grup
amenable ise amenable oldugunu gostermistir.

Bilinen Banach cebirlerinin ¢ogu amenabledir. Ornegin, degismeli C*-cebirleri,
kompakt operatorlerin cebirleri, amenable gruplarin grup cebri amenabledir. Bu
calismada amenable radikal Banach cebirleri incelenmistir. Runde degismeli olmayan
amenable radikal Banach cebirlerinin oldugunu gdosterirken, degismeli amenable
radikal Banach cebirlerinin olup olmadig1 bilinmiyordu. Runde’nin 6rneginden bir yil
sonra C. J. Read degismeli amenable radikal Banach cebrine bir 6rnek vermistir. Bu
cebrin ingasinda teknik zorluklar olmasina ragmen insa fikrinin daha basit oldugu
gosterilmistir.
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AMENABLE BANACH ALGEBRAS

SUMMARY

The cornerstones of Abstract Harmonic Analysis are locally compact groups and
algebras related to these groups. One of the most important of these algebras is Fourier
algebras. Locally compact group is a group that makes it possible to compare locally
Hausdorff topological space with the product and inverse of the group. Namely,
product and inverse operations are continuous.

The most distinctive feature of locally compact groups is the concept of “amenable”.
This was first defined by Von Neuman in discrete groups. The concept of amenable for
these groups first emerged in relation to the Banach —Tarski paradox. The most
common known expression of Banach —Tarski paradox is; “An orange can be chopped
into a finite number of chunks, and these chunks can then be put together again to yield
two oranges, each of which has the same diameter as the one that just went into
pieces.”. Banach—Tarski paradox is an example of paradoxical decomposition. The fact
that a group is not paradoxical requires that group to be amenable. And reversely, if the
group is amenable, then it is not paradoxical.

The word “amenable” was first used by M.M. Day. After his studies on amenable
semi-groups, Day gave the definition of amenable for locally compact groups; If there

is a left translation invariant mean on LOO(G), a locally compact group G is called

amenable. All finite, commutative and compact groups are amenable. Two generators
on free group are not amenable.

In 1972, B. E. Johnson gave the amenable definition in Banach algebras with the help
of Hochschild cohomology. Johnson showed that the group algebra of a locally
compact group is amenable if the group is amenable.

Most of the known Banach algebras are amenable. For instance, commutative C" -
algebras, algebras of compact operators, group algebra of amenable groups are
amenable. This study analyzes the amenable radical Banach algebras. When Runde
showed that there are non-commutative amenable radical Banach algebras, it was not
known whether there were commutative amenable radical Banach algebras. One year
later the example of Runde, C. J. Read gave an example of commutative amenable
radical Banach algebra. Although there are technical difficulties in the construction of
this algebra, it is shown that the construction idea is more simple.
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1. GIRIS

“Amenable” kavrami ilk olarak, 1904 yilinda Lebesgue’nin R iizerinde Lebesgue
integralinin Ozelliklerinin bir listesini vermesiyle ortaya ¢ikmustir. Bu 6zelliklerin
biri hari¢, hepsi, Riemann integralinin temel Ozellikleriyle ayniydi. Farkli olan
0zellik Monoton Yakinsaklik Teoremi’nin bir versiyonuydu. Lebesgue dogal olarak,
Monoton Yakinsaklik Teoremi bir kenara birakilirsa, integralin 6zelliklerinin yine
ayn1 sekilde verilip verilemeyecegini sordu. Monoton Yakinsaklik Teoremi aslinda
sayilabilir toplamsallik ile denk oldugundan Lebesgue’in sorusu su sekilde de
sorulabilirdi: Eger Monoton Yakinsaklik Teoremindeki kosullar sadece sonlu

toplamsallik ile yer degistirirse Lebesgue integrali hala tek midir?

Banach, daha sonra Lebesgue integralinden farkli olarak R iizerinde sonlu toplamsal
ve invaryant olan integral Ornegi verdi ve bdylece bu soru olumsuz olarak

yanitlanmis oldu.

Daha sonra R iizerinde bir invaryant 8lciiniin varlig: kanitlandi. Invaryant dlgii u
ile ilgili géze ¢arpan iki dnemli gercek vardi: Birincisi; R ’nin biitiin altkiimelerinde
tanimlanmis olmasi, ikincisi R ’nin g -6lgiisiiniin sonlu olmasiydi. ( ,u(]R)zl).
Halbuki bu R ’nin Lebesgue 6l¢iisiiniin c olmasi ile ¢elisiyordu. Modern dilde, R

bir diskirit grup olarak amenable’d1 ve g Ol¢iisii bir invaryant mean’di.

1920’lerde ve 1930’larda, bir X kiimesi lizerinde bir G grubu i¢in invaryant mean’nin
varlig1 Banach ve Tarski tarafindan arastirildi. 1929 yilinda Von Neuman Banach-
Tarski teoremleri ile ¢alismasinda [29] makalesinde ilk olarak amenable kavramini
tanimladi. Bu gruplar i¢in amenable kavrami Banach Tarski paradoksuna bagh
olarak ortaya ¢ikmistir. Tarski 1938 yilinda bdyle bir mean’nin ancak ve ancak X

kiimesinin bir “G-paradoksal ayrisimi” olmadigi durumda var olabilecegini gosterdi.

“ Amenable” terimi ilk olarak Mahlon Marsh Day tarafindan 1950 yilinda kullanildi.
(amenable = mittelbar (Almanca) = moyennable (Fransizca)). Day, [7], [8], [9], [4],



[11] makalelerinde diskirit yar1 grup ve gruplardan, yerel kompakt gruplara amenable
kavramini gelistirmistir. L (G) {izerinde sol doniisiim degismez bir mean varsa bir

G yerel kompakt grubuna amenable denir. Yine bu yillarda Rosen [24] , Silverren
[28], Folner [13], amenable diskirit ve yerel kompakt gruplar iizerinde 6nemli

caligsmalar yapmuslardir.

B. E. Johnson, Hochschild kohomoloji gruplarindan faydalanarak, Banach cebirleri

icin, amenable kavramini anlamh kildi. 1972 yilinda yayinlanan {inlii makalesinde
[17] G bir grup olmak iizere L'(G) Banach cebrinin amenable olmas: i¢in gerek ve

yeter sartin G’nin amenable olmasi gerektigini kanitlamistir.

Daha sonraki yillarda, Helemskii [16] makalesinde amenable Banach cebirlerinin
homolojik 6zelliklerini incelemistir. Bundan sonraki ¢alismalar daha derin teoriler

gerektirmis ve kuvvetli, zayif amenable kavramlarinin dogmasina sebep olmustur.
Haagerup’un [15] makalesinde C”-cebirlerinin amenable olmasi igin gerek ve yeter

sartin niikleer olmas1 gerektigine dair teoremi ¢ok derin bir teorem drnegidir.

(13

Amenable konusunda, 1988 yilinda basilan A.L.T. Paterson’nun “ Amenability”,
2001 yilinda basilan H.G. Dales’in “Banach algebras and automatic continuity”,
2002 yilinda basilan V. Runde’nin “Lectures on amenability” kitaplar1 son yillardaki

temel kitaplardir.

Bu tezin, birinci béliimiinde amenable konusunun tarihsel gelisimi verilmistir. Ikinci
ve dordiincii bolimlerde temel bilgi ve kavramlar verilerek, Banach cebirlerinde
amenable kavramina hazirlik yapilmistir. Uciincii boliimde harmonik analiz ve
operator uzaylarinda hayati rol oynayan tensor carpimlart verilmistir. Besinci
boliimde topolojik gruplar, altinct boliimde harmonik analizin temel araci olan yerel
kompakt uzaylarda Ol¢ii ve integrasyon kavramlar1 verilmistir. Yedinci bdliimde
diskirit ve yerel kompakt gruplar iizerinde amenable kavrami verildikten sonra son
boliimde Banach cebirlerinde degismeli ve degismeli olmayan amenable radikal

Banach cebirlerinin insas1 verilmistir.



2. CEBIRLER

Bu béliimde amenable Banach cebirleri i¢in gerekli olacak temel tanim ve teoremler
verilmigtir.

2.1. Cebirler

2.1.1. Tammm: F cismi (F =R veya F=C )ﬁzerinde Ax A’dan A’ya giden,

(x, y)—) x-y tasviri ile verilen ve asagidaki sartlar1 saglayan 4 lineer uzayina cebir

denir.  Literatiirde [lineer birlesim cebri (linear associative algebra) olarakta
isimlendirilir.
Vx,y,zed ve VaeF,
D x(yz)=(xy)z
2) x(y+z ):xy+xz
(x+y)z=xz+yz
3) (ax)y=a(xy)=x(ay) 2.1

F =R ise cebire reel cebir, F=C ise kompleks cebir denir.

2.1.2. Tanim: A cebrinin 4, c A4 alt kiimesi 4’daki toplama, skalerle ¢arpma ve
carpma islemleri altinda bir cebir olusturuyorsa, A4,’e 4’nin bir alt cebri denir.

2.1.3. Teorem: A, A cebrinin bir alt kiimesi olsun. Vx,y€4, ve VaeF,

1) x+yeA

2) axe A4,

3) xye4, 2.2)

ise A, bir alt cebirdir.



2.1.4. Tammm: A4 cebrinde Vxe 4 igin xe=ex=x olacak sekilde bir e € 4 varsa 4

cebrine “birimli cebir” denir. e elemanina da A cebrinin birim eleman: denir.

2.1.5. Tamim: Birim elemanl bir 4 cebrinde yx=e ise y’ye x’in sol tersi denir ve
x;" ile gosterilir. xy=e ise y’ye x’in sag tersi denir ve x.' ile gosterilir.

Bir elemanin sag ve sol tersi varsa bunlar aynidir.
x,’lzle(xx;l):(xl’lx)x;lzew;l:x;l 2.3)

= x,'=x_' bulunur. Bu durumda x’in tersi vardir ve x~' ile gosterilir.

2.1.6. Teorem: Birimli bir A cebrinde x’in tersi var ve xy=yx ise x ' ile y

degismelidir.

2.1.7. Tammm: Bir degismeli alt cebir baska bir degismeli alt cebir tarafindan

kapsanmiyorsa bu cebire maksimal alt cebir denir.

2.1.8. Teorem: Her degismeli alt cebir bir maksimal degigmeli alt cebir tarafindan

igerilir.
2.1.9. Teorem: x bir maksimal degismeli alt cebir 4,’in elemam ve x™' varsa

xed, dir.

2.1.10. Tanim: Bir birimli 4 cebrinin sifirdan farkli her elemaninin tersi varsa 4’ya

boliim cebri (division algebra)denir.

2.1.11. Teorem: Bir birimli 4 cebrinin sifirdan farkli her elemaninin sol tersi ( ya da

sag tersi ) varsa 4 bir boliim cebridir.

2.1.12. Tamim: Bir 4 cebrinin merkezi (center)

C :{xeA: xy=yx, VyeAd }

olarak tanimlanir. Bir 4 cebrinin merkezi bir degismeli alt cebirdir.
2.1.13. Tamum: Bir 4 cebrinin /=1, alt kiimesi,

1) 1, , A lineer uzayinin bir alt uzay1



i) xel; , YVaceAd i¢in axel,

sartlarin1 sagliyorsa /, ’ye A’nin bir sol ideali denir. Sag ve iki tarafli ideal benzer

sekilde tanimlanir.

2.1.14. Teorem: Birimli bir 4 cebrinde bir x elemaninin sol ( sag ) tersinin olmasi

icin gerek ve yeter sart herhangi bir 6z ( proper ) sol ( sag ) ideale ait olmamasidir.

2.1.15. Tanmim: A4 cebrinin bir sol ( sag veya iki tarafli ) ideali 4 cebrinin baska sol
(sag veya iki tarafli)) ideali tarafindan kapsanmiyorsa maksimal ideal olarak

adlandirlir.

2.1.16. Teorem: Birimli 4 cebrinde her sol (sag veya iki tarafli) ideal bir maksimal

sol (sag veya iki tarafli ) ideal tarafindan kapsanir.

2.1.17. Teorem: Birimli bir cebirde bir x elemaninin sol (sag) tersinin olmasi i¢in

gerek ve yeter sart herhangi bir maksimal sol ( sag ) ideale ait olmamasidir.

2.1.18. Tanim: Sifirdan farkli, iki-tarafli ideali olmayan cebire basit ( simple) cebir

denir.

2.1.19. Tammm: /, A cebrinin iki tarafli bir ideali olsun. 4’nin iki elemam x, ve x,

icin x, —x, €l ise I'ya denk modiil (equivalent modiilo I') denir.

2.1.20. Tammm: A cebrinde bir xe 4 alalim. x ’in sinifi,

[x]={yeA:x—yeI}=x+I 24
seklinde tanimlanir.

2.1.21. Tamim: Asagidaki islemler altindaki cebire boliim ( quotient ) cebri denir.
[x+y]=[x]+[¥]

[ax]=af x]

[ y]=[x ][] 25)

Boliim cebri 4/1 ile gosterilir.



2.1.22. Tanmmm: A4 cebrinin /, sol idealine, Vxe 4 i¢in xu—xel, olacak sekilde bir

ue A varsa regiiler denir. u elemanina birim modiil I ideali ( identity modiilo the

ideal 1, ) denir.
1 iki tarafli idealinin regiiler olmasi demek Jue 4,
ux—xel ve xu—xel , VxeAd (2.6)

olmasidir. Eger 4 birimli ise u=e olmalidir ve her ideal regiiler olur.

2.1.23. Teorem: A cebrinde bir x elemaninin bir sol tersinin olmamasi i¢in gerek ve

yeter sart /, :{ a +ax} , a4 bir sol ideal olmasidir. Bu durumda 7, , x’1 igermeyen

regiiler sol idealdir.

2.1.24. Teorem: A cebrinde bir x elamaninin bir sol tersinin olmasi i¢in gerek ve

yeter sart keyfi maksimal regiiler sol ideal M, icin x+y+yxeM, olacak sekilde

bir y elemaninin olmasidir.

2.2. Banach Cebirleri

2.2.1. Tanmmm: E bir lineer uzay olsun. Asagidaki sartlar1 saglayan ||||E —->R

tasvirine E tuizerinde bir norm denir.

1) ||x||20 (xeE); ||x||:0<:>x:0
i [ax]=lall+] (a<C.reE)
i) || x+y||$||x||+||y|| (x,yeE) . 2.7

Uzerinde norm tanimlanan E uzayina normlu uzay denir ve (E || . || ) ile gosterilir.

2.2.2. Tanim: Bir normlu uzayda her Cauchy dizisi yakinsak ise diger bir deyisle,

normlu uzay tam ise Banach uzay1 olarak adlandirilir.

2.2.3. Tanim: 4 bir cebir olsun. 4 lizerinde cebir normu, A’y1 normlu uzay yapan ve

iv)|ab|<|a]|6] — (a.b€4) (2.8)



kosulunu saglayan || . ||:A—>R tasviridir. Bu norm ile 4 cebrine normlu cebir denir

ve (A|| . ||) ile gosterilir. (A” . ||) normlu cebri, normlu uzay tam ise Banach cebri
olarak adlandirilir.

2.2.4. Tammm: Bir 4 Banach cebri bir e, birim elemanina sahip ve H e, H =1 ise

birimli (unital) Banach cebri olarak adlandirilir.

2.2.5. Ornekler:

2.2.5.1. Ornek: S, bos olmayan bir kiime ve C bir cebir olsun. C¥, S’den C’ye
tanimlanan fonksiyonlarin kiimesini gostersin ve iizerindeki cebirsel islemler su

sekilde tammlansin.

VseS ,Vf.geC’ ve Va,feC

(af+pBg)(s)=af(s)+pgls)

(fg)(s)=r(s)e(s)

1(s)=1. (2.9)
C%, degismeli ve birimli cebirdir.

2.2.5.2. Ornek: (*(S) , S iizerindeki simirh fonksiyonlarin altkiimesini géstersin.

(S’den C’ye giden sinirhi fonksiyonlar) S iizerinde diizgiin norm (uniform norm) su

sekilde tanimlansin.
£l =supd| £ (s):se s} (ree=(s)) (2.10)

O halde (£ (S),-]. ) birimli Banach cebridir.

2.2.5.3. Ornek: X bir topolojik uzay olsun. C(X ), X Tlzerindeki biitiin stirekli

fonksiyonlarin cebrini ve C b(X ), X izerindeki, smirli fonksiyonlarin cebrini

gostersin. | £, :sup{‘f(x)‘:xeX} (fEE“’(X))

olmak tizere, (C b (X ), . | X) bir birimli cebirdir.




2.2.5.4. Ornek: E ve F lineer uzaylar olsun. L(E,F ) , E’den F’ye biitiin lineer

tasvirlerin koleksiyonunu gostersin. L(E, F ) standart islemler altinda lineer uzaydur.

E ve F’yi Banach uzaylari olarak alalim. B (E F ), E’den F’ye biitlin sinirh (diger bir
deyisle stirekli) lineer operatorlerin ailesini gostersin. Bu durumda L(E,F )’nin alt

uzayidir ve Banach uzayidir. Operator normu,

||T||:sup{||Tx||:er , x||£1} (2.11)

seklinde tanimlanir.

L(E,E) igin kisaca L (E) ve B(E,E) i¢in kisaca B(E) kullamlabilir. L (E)deki S

ve T operatorlerinin ¢arpimi,
(ST)(x)=(SoT)(x)=8(Tx) (xeE) (2.12)
ile verilir. Asikar olarak,

|sT|<|s||T] (S.TeB(E)) (2.13)

saglanir. (B (E), || ) bir birimli Banach cebridir.

B ( E )’nin birimi, /, birim operatoridiir. B ( E ) degismeli olmayan Banach cebrine

bir ornektir.

2.3. Modiiller

2.3.1. Tammm: 4, C {izerinde bir cebir ve E, C iizerinde bir lineer uzay olsun.
( a,x)»—>a~x ,AXE — E

tasviri asagidaki kosullar1 saglar ise E’ye bir sol A-modiil denir.
1) a-(ax+ﬂy):aa‘x+ﬁa-y (a,ﬂe(C, aeA, x,yeE)
1) (aa +ﬁb)-x:aa-x+ﬂb-x (a,,Be(C , abed, er)

iii) a-(b-x )=ab-x  (abed ,xeE) (2.14)

A, C iizerinde bir cebir ve E, C iizerinde bir lineer uzay olsun.



(a,x )Hxa , AXE—E

tasviri asagidaki kosullar1 saglar ise £’ye bir sag A-modiil denir.

1) ( ax+ [y )~a:ax-a+,3y-a (‘v’a,ﬂe(C, acAd, x,yeE )

i) x-(aa+ pb)=ax-a+px-b (a,feC, abed , xeE)

1i1) (x'a )-bzx-ab (a,b €A, xe E)

Bir A-bimodiil , sol A-modiil ve sag 4-modiil olan bir £ uzayidir ve
a-(x-b)=(a-x)-b (a,ped , xeE)

kosulunu saglar. Varsayalim ki 4 degismeli ve

a-x=x-a (aEA , er)

olacak sekilde E bir A-bimodiil olsun. O halde E bir 4-modiildiir.

2.3.2. Tanmum: E bir sol 4-modiil olsun.

p(a)(x)=a-x (aEA, er)

2.15)

(2.16)

(2.17)

(2.18)

ile tanimlanan p:4 —>L(E) tasviri bir homorfizmdir ve bu sekildeki her

homomorfizm bir sol 4-modiil tanimlar. p tasviri, £ lineer uzayi iizerinde 4 cebrinin

temsili olarak adlandirilir.
2.3.3. Tanim: Farzedelim ki 4 birimli olsun. Eger
€, X=x ( xek )

kosulu saglantyorsa sol A-modiil £’ye birimli denir.

2.3.4. Tanim: Eger A-E={a.x:a €A, xEE}i{O} ve E’nin alt modiilleri sadece

{O } ve E ise E modiiliine basit (simple) denir.

Bir basit modiil £ i¢in, 4-x=E vxeE\{0}

2.3.5. Tanmm: E ve F sol A-modiil olmak iizere,

T(a-x):a-Tx (aeA ,er)

kosulunu saglayan 7:E — F lineer tasvirine sol A-modiil homomorfizm denir.

(2.19)



Benzer sekilde A-bimodiil homomorfizm de tanimlanabilir.

2.3.6. Tammm: A bir Banach cebri ve E bir sol 4-modiil olan bir Banach uzay1 olsun.

Eger,

pla)x—ax ,E—>E (2.20)
tasviri her a € 4 i¢in siirekli ise E’ye zayif Banach sol A-modiil denir. Eger,
(a,x)l—>a~x, AXE—FE (2.21)
tasviri stirekli ise £’ye Banach sol A-modiil denir.

Benzer sekilde sag 4-modiiller ve A-bimodiiller tanimlanabilir. Her a€ 4 igin

Jax]<c,

x| (xeE) (2.22)
olacak sekilde bir C, >0 sabiti varsa £, zayif Banach’tr.

|a-x|<C|a||x| (acd, xeE) (2.23)
olacak sekilde C>0 sabiti varsa £ Banach’tir.

A ve B Banach cebirleri, 0:4— B homomorfizm olsun.

a-b=6(a)b , b-a=bO(a) (acd ,beB) (2.24)

tasvirleri i¢in B zayif Banach A4-bimodiildiir. Fakat & siirekli ise B Banach
A-bimodiildiir.

2.3.7. Onerme: 4 birimli Banach cebri olsun.
1) A’daki her primitif ideal kapalidir.

i1) E basit sol 4-modiil olsun. E iizerinde, (E , ||) bir Banach sol A-modiil olacak

sekilde |||| normu vardir.

2.3.8. Tamim: A bir Banach cebri ve E bir Banach A-bimodiil olsun. ae 4 ve A€ E'

icin a-A ve A-a su sekilde tanimlanir.

<x,a-A>=<x-a,A> , <x,A-a>=<ax,l> (xe€E) (2.25)
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O halde a-4 , A-aeE’ ve E' bir Banach 4-bimodiildiir ve E'’ye E’nin dual

modiilii denir. E = A4 alinirsa,
<b,a-A>=<ba,A> , <b,A-a>=<ab,A> (a,bed,lecd’) (2.26)
islemleri i¢cin A" bir Banach A-bimodiildiir. Bu modiil 4’nin dual modiilii olarak

adlandirlir.

2.4. Tiirevler

2.4.1. Tanim: A4 bir cebir ve E bir A-bimodiil olsun.
D(ab)=a-Db+Da-b  (abeA) (2.27)
kosulunu saglayan D:A4 — E lineer tasvirine tiirev (derivation) denir.
(2.27) denklemi birim tiirev (derivation identity) olarak adlandirilir. 4’dan E’ye
tirevlerin kiimesi ~ Z' (A,E ) ile gosterilir. Z ! ( AE ) , L(A,E ) ‘nin bir lineer
altuzayidir. Ornegin, bir xeE ve
S.(a)=a-x—x-a (acAd) (2.28)
kiimesi alinirsa , a,b € 4 i¢in
S.(ab)=a-(b-x—x-b)+(a-x—x-a)b

=5 (a)-b+a-5.(b) (2.29)

elde edilir ve o, bir tiirevdir. Bu formdaki tiirev i¢ tiirev (inner derivation) olarak

adlandirilir. i¢ tiirev olmayan tiirevlere ise dis tiirev (outer derivation) denir.

0, :ar»ab-ba ,A—> A4 (2.30)

tasviri, 4 cebri lizerinde bir i¢ tiirevdir. 4’dan E’ye tanimlanan ig¢ tiirevlerin kiimesi
N'(4,E) ile gosterilir ve Z'( 4,E)nin bir lineer alt uzayidir.C lineer uzayi,

(a,z2)—yp(a)z ,AXC— C tasviri ig¢in A-modiildir ve bu da C ile gosterilir.

Zl( A,Cw) kiimesi,

d(ab)=p(a)d(b)+d(a)e(b) (abed) (2.31)
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olacak sekilde d:4—C lineer fonksiyonellerinden olusur. Bu tasvirler ¢ ’deki

noktasal tiirevlerdir.

A bir Banach cebri ve E bir Banach 4-bimodiil olsun. 4’dan E’ye siirekli tiirevlerin

uzay1 Z' (A,E ) ile siirekli i¢ tiirevlerin uzay1 ise N ( AE ) ile gosterilir.

2.4.2. Teorem: ( Singer ve Wermer )

A bir degismeli Banach cebri ve D:A4— A bir siirekli tiirev olsun. O halde
D(A)cradA.

2.4.3 Teorem: ( Sinclair )

A bir Banach cebri ve D: 4 — A bir stirekli tiirev olsun. O halde, 4’nin her primitif
P ideali igin D(P)c P dir.
2.5. Radikaller

2.5.1. Tammim: R degismeli bir halka ve [ bir ideal olsun. a,beR olmak iizere

a-bel iken ael veya bel ise I'ya asal (prime) ideal denir.

2.5.2. Tanmm: R bir halka ve M bir ideal olsun. M #R ve M’yi igeren R ile M

arasinda bir ideal yoksa M’ye maksimal ideal denir. Yani,

M maksimal &M cJc R=J=R

2.5.3. Teorem: Her degismeli ve birimli halkada maksimal ideal asal idealdir.

2.5.4. Teorem: Her degismeli ve birimli halkada M idealinin maksimal ideal olmasi

icin gerek ve yeter sart R/ M nin cisim olmasidir.

2.5.5. Teorem: Her degismeli ve birimli halkada 7 idealinin asal ideal olmasi i¢in

gerek ve yeter sart R/I nin tamlik bolgesi olmasidir.

2.5.6 Tamim: R degismeli halkasinda bir ae R elemant n>0 (neN ), a" =0 sartini

sagliyorsa a’ya nilpotent eleman denir.

2.5.7. Teorem: Bir R degismeli halkasinda biitlin nilpotent elemanlarin kiimesi N,

R’nin bir idealidir ve R/N’nin sifirdan farkli nilpotent eleman1 yoktur.
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2.5.8. Tammm: Teorem 2.5.7.’deki N idealine Nil radikal denir.
2.5.9. Teorem: R halkasinin nil radikali R’nin biitiin asal ideallerinin kesisimidir.

2.5.10. Tanim: Degismeli R halkasinin biitiin maksimal ideallerinin kesisimi Jye

R’nin Jacobson radikali denir.

2.5.11. Teorem: Bir a elemaninin R halkasiin Jacobson radikaline ait olmasi i¢in

gerek ve yeter sart VreR i¢in 1—ar ’nin birim olmasidir.

2.5.12. Teorem: Bir a elemaninin R’de tersi olmasi i¢in gerek ve yeter sart a+J 'nin

R/Jde tersinin olmasidir.
2.5.13. Teorem: N, R’de bir nil ideal ise N, Jacobson radikal J’dir.

2.5.14. Tammm: R’nin bir x eleman: i¢in x+ y+xy=0 sartin1 saglayan R’de bir y
eleman1 varsa x’e sag quasi-regiiler denir. Eger x+ y+yx=0 olacak sekilde bir

ye R varsa x’e sol quasi-regiiler denir.

Sag quasi-regiiler eleman nilpotent elemanin genellemesidir. 3IneZ” igin

x" =0 oluyorsa x’e nilpotent eleman demistik. Eger

n—1

-1 ey
y=—x+x"—x +..+(=1)" x"" segilirse,

x+y+xy:x+( —Xx+x X +...+(—1)H x"! )+( —X"+ X —x4+...—i-(—1)"71 x")
1y

=0 (2.32)

bulunur.

2.5.15. Teorem: x’in sag quasi-regiiler olmasi i¢in gerek ve yeter sart { r+xr } =R

olmasidir.

2.5.16. Tanim: Bir halkanin her elemani1 sag quasi-regiiler ise halkaya sag quasi-

regiiler denir.
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2.5.17. Tanim: Bir R halkasinin bir / sag idealinin ( sol ya da iki tarafli ideal de
olabilir ) her elamani1 sag quasi-regiiler ise I’ya sag quasi-regiiler sag ideal denir. [

sol idealinin her elemani sag quasi-regiiler ise I’ya sag quasi-regiiler sol ideal denir.

2.5.18. Teorem: x sag quasi-regiiler ve y bir sag quasi-regiiler sag ideal I’ya ait ise

x+y bir sag quasi-regiiler elemandir.

2.5.19. Sonug: Iki sag quasi-regiiler sag idealin toplami bir sag quasi-regiiler

idealdir.

2.5.20. Sonug¢: Bir R halkasinin biitiin sag quasi-regiiler ideallerinin toplamini J ile
gosterelim. J, sag quasi-regiiler sag idealdir. J, R’nin her sag quasi-regiiler sag

idealini igerir.
2.5.21. Teorem: J iki tarafl: idealdir.

2.5.22. Teorem: Bir z eleman1 hem sag quasi-regiiler z+w+zw=0 ve hem de sol

quasi-regiiler yani z+¢+¢z=01ise t=w , wz=zw ve w tektir.

2.5.23. Tanim: /, R’nin bir sag ideali olsun. VreR , er—rel olacak sekilde R’de

bir e eleman varsa / sag idealine modiiler denir. Boyle bir e elamanina I’nin bir so/

birimi denir.
2.5.24. Teorem: Herhangi bir R halkasinin Jacobson radikali,

R’nin biitiin modiiler sag maksimal ideallerinin kesisimi (a) 'ya,
R’nin biitiin modiiler sol maksimal ideallerinin kesigimi ( p ) ya,

{ x:xr sag quasi-regiiler, VreR | kiimesi (7)’ya,
{ x:rx solquasi-regiiler, Vr €R} kiimesi (&)’ya
esittir.

2.5.25. Sonug: R halkasi birimli halka ise biitiin sag ( sol ya da iki tarafl1 ) idealler
modiiler sag ( sol ya da iki tarafli ) ideallerdir. Dolayisiyla, Jacobson radikal biitiin

sag maksimal ideallerin kesisimidir.
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2.5.26. Tanmmm: R bir halka ve M, R’nin bir ideali olsun.

(M:R)={reR :RrcM} (2.33)
olarak tanimlanir. 7,/ € R idealleri igin,

(I:J):{reR: rJgI} (2.34)

olarak tanimlanir.

2.5.27. Teorem: M bir modiiler sag ideal ise ( M:R )gM ve (M:R ), M’ de igerilen

en biiylik iki tarafli idealdir.

2.5.28. Tanim: R’de (M ‘R ):0 olacak sekilde bir maksimal sag ideal varsa R’ye

sag primitif denir.

2.5.29. Tammm: P, R’de bir ideal ise ve R/ P sag primitif ise P’ye sag primitif ideal

denir.

2.5.30. Teorem: M, R’nin bir maksimal modiiler sag ideali ise (M :R) bir sag

primitif idealdir.

2.5.31. Teorem: Jacobson radikali J, R’nin biitiin sag primitif (veya sol primitif )

ideallerinin kesisimine esittir.
2.6. Banach Cebirlerinde Radikaller

2.6.1. Tamm: Birimli bir 4 cebrinde keyfi y elemam igin ( e+ yx, );l varsa X,

elemanina genellestirilmis nilpotent eleman denir.

2.6.2. Tanmm: A4 cebrindeki biitiin genellestirilmis nilpotent elemanlarin kiimesine

A’nin Jacobson radikali denir.

2.6.3. Teorem: Birim elemanli bir cebrin radikali cebrin biitin maksimal sol

ideallerinin kesigsimine esittir.

Benzeri maksimal sag idealler i¢inde sdylenebilir. O halde radikal iki tarafli idealdir.
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Kamt: x, biitlin maksimal sol ideallerde olsun. Kabul edelim ki &yle bir 3ye 4
vardir ki (e+ VX, )=z ‘nin tersi olmasin. Sol tersi yoksa z bir maksimal sol 7,

idealine aittir. x, biitlin maksimal sol ideallerde ise x, €/, dir.

O halde yx,el, dir. Buradan e=z—yx,€/, bulunur. Bu da ¢eliskidir ¢iinkii sol
idealde birim eleman olamaz. O halde e+ yx,’1in sol tersi her y i¢in vardir. Yani x,

radikale aittir.

Tersine, x, radikalin eleman1 olsun. x, elemaninin biitiin maksimal sol ideallere ait
oldugunu gostermemiz gerekir. Tersine olarak kabul edelim ki 37, , x,¢/,

kosulunu saglayan bir /, maksimal sol ideali olsun.
z=a-yx, , ( acl, , yeA)

seklindeki biitiin z elemanlarinin kiimesi bir sol idealdir ve [, ’yi kapsar. Bu durumda

z’lerden olusan kiime A4 olmalidir, ¢iinkii /, maksimal idealdir.
Bu durumda, 3y,a€ 4 vardirki e=a-yx, dir.

O halde e+yx,=ael, dir ve e+yx,’mn sol tersi olamaz. Bu ise hipotez ile

celiskilidir. Ciinkii x, eleman: radikalden alinmist1 ve sol tersi olmasi gerekirdi.
Dolayisiyla, x, biitiin maksimal sol ideallere aittir. o
2.6.4. Sonuc: Bu teoreme gore radikal bir sol idealdir.

2.6.5. Teorem: x, 1 birimli bir 4 cebrinin radikaline ait olmasi i¢in gerek ve yeter

sart ( e+ax, )71 in Yae A, varolmasidir.

2.6.6. Teorem: Biitiin maksimal sol ideallerin kesisimi biitin maksimal sag

ideallerin keigimine esittir. O halde radikal iki tarafl1 idealdir.

2.6.7. Tanim: Keyfi zed4 ve keyfi a skaleri i¢in ax,+zx,’ 1n bir sol quasi-tersi

varsa x, elemanina genellestirilmis nilpotent eleman denir.
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2.6.8. Tamm: A4 cebrinde biitiin genellestirilmis nilpotent elemanlarin kiimesine

cebrin radikali denir ve radA ile gosterilir.

2.6.9. Tanmim: Eger cebir radikaline esit ise ( yani rad4 = A ise ) A cebrine radikal

cebir denir. Diger durumda cebire radikal olmayan cebir denir.

2.6.10. Teorem: Bir radikal olmayan cebirde, radikal, biitiin maksimal regiiler sol
ideallerin kesisimi veya biitiin maksimal regiiler sag ideallerin kesisimine esittir.

Dolayisiyla, radikal iki tarafli idealdir.

2.6.11. Teorem: A’nin biitin indirgenemez (irreduciable) temsillerinin

(representation ) ¢ekirdeginin kesisimi Jacobson radikaldir.

2.6.12. Teorem: Eger A bir radikal olmayan cebir ise, cebrin radikali A’nin biitiin

primitif ideallerinin kesisimidir.

2.6.13. Tamim: Bir cebrin radikali yalniz sifir elemanini igeriyorsa (yani rad4= {0}),
cebire yari-basit (semi-simple) denir.

2.6.14. Teorem: rad4 , A cebrinin radikali ise 4 / rad4 bir yari-basit cebirdir.

2.6.15. Teorem: Bir cebrin radikali , A’daki biitiin quasi-regiiler sol ( ya da sag )
ideallerinin toplamina esittir.

2.6.16. Teorem: Cebrin radikali, VxeA ve her « skaleri igin ( E+x )q
( veya q( E+x ) ) quasi-regiiler olacak sekilde biitiin g elemanlarindan olusur.

2.6.17. Tanim: Bir normlu cebirde bir ideal, topolojik nilpotent elemanlarin kiimesi

N’de igeriliyorsa topolojik nil ideal olarak adlandirilir.
2.6.18. Teorem: Bir normlu cebrin radikali bir topolojik nil idealdir.

2.6.19. Teorem: Bir 4 Banach cebrinin radikali agagidaki 6zelliklere sahiptir:
1) Radikal, kapal1 iki tarafli idealdir.

i1) Radikal, topolojik nil idealdir ve biitiin topolojik nil sol (veya sag) ideallerin

toplamina esittir.

ii1) Radikalin her elemany, iki tarafli topolojik sifir bolendir.
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2.6.20. Sonuc¢: Banach cebrinde, topolojik nilpotent elemanlarin kiimesi N bir ideal

ise, o halde radikal N’ye esittir.

2.6.21. Sonug: Bir degismeli yar1 basit cebrin herhangi alt cebri ( kapali veya degil)

yari-basittir.
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3. TENSOR CARPIMI

Bu boliimde harmonik analiz ve operatér uzaylarda cebirin yapisini belirleyen en
Oonemli kavramlardan biri olan tensor ¢arpimlart verilmistir. Tensér carpimlart ile

ilgili detayli bilgiler [27] da bulunabilir.

3.1. Cebirsel Tensor Carpimi

3.1.1. Tamm: E,,...,E, lineer uzaylar olsun. E,,E, ,...,E, nin tensor ¢carpimi T
bir lineer uzay ve 7 :E x---xE —T asagidaki evrensel 6zelligi saglayan bir n-lineer
tasvir olmak {izere (7' ,’7') ikilisidir. Her F' lineer uzay1 ve her n-lineer tasvir

V:Ex--xE,—F igin V=Vor olacak sekilde tek bir V:T—>F lineer tasviri

vardir. E,...,E nin (7' ,’7') tensOr ¢arpimi tek degildir. 7 " bir baska lineer uzay

ve O:7"—7 lineer uzaylarin bir izomorfizmi ise (7",(907') , E,...,E, nin bir

baska tensor ¢arpimidir.
Verilen iki (7'1,7'1) ve (T,,7,) tensdr garpimu; (’7'1 ,7'1) ve (T,.7,)nin bir

izomorfizmi, 7, = o T, olacak sekilde 6.7, - T, ye bir izomorfizmdir.

Verilen E,...,E, lineer uzaylar ve (7' ,’7') tensOr ¢arpimi i¢in standart notasyon

kullanilirsa, 7 i¢in E, ®...... ®E yazilir ve
x®...... ®xn:=r(xl,...,xn) (xleE1 ....... X eEn) 3.1)

seklinde tanimlanir. Yukaridaki formun elemanlarina temel tensérler ( elementary

tensors) denir ve E ®......® E nin elemanlar tensorler olarak adlandirilir.
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3.1.2. Onerme: E,,...,E, lineer uzaylar ve xeE®...... ®E, olsun. O halde bir

meN ve her bir j=1,...,n i¢in,
x=> e ..o (3.2)

olacak sekilde, x(,l) ,...,xﬁm) ek ; vardir.
3.1.3. Ornek: 4 bir cebir, E bir sol 4-modiil ve F bir sag 4-modiil olsun.
a~(x®y)=a-x®y ve (x®y)-a:x®y-a ( acA, xek, yeF) 3.3)

olacak sekilde, £® F ’de A’nin tek bir bimodiil aksiyonu vardir.
3.1.4. Teorem: E,,...,E lineer uzaylari i¢in £, ®...® E_ tensor ¢arpimi mevcuttur.

3.1.5.Lemma: meN , E|,...,E lineer uzaylarve j=1,...,n icin
Y e...ex =0 (3.4)
k=1

olacak sekilde xﬁ.l), X 5.'")EE olsun. Eger x\",...... ,x," lineer bagimsiz ise,

We..ox =0 (k=1,...m) elde edilir.

3.2. Banach Uzaylarinda Tensor Carpimi

Eger E,,...,E, Banach uzaylar1 ise Teorem 3.1.4° e gore tensdr carpiminin
E ®...®E oldugunu biliyoruz. Tensor ¢arpimi genelde Banach uzay1 degildir.
E ®...®E, lizerinde norm tanimlayabiliriz. Bu norma gore tamlastirma yapilarak

Banach uzayi elde edilebilir.

3.2.1. Tanm: E,,....E,

Hxl@)...@)xn

(x €E,.....x,€E,) (3.5)

kosulunu saglarsa ¢apraz norm (cross norm) olarak adlandirilir. Béyle bir normun
olup olmadig1 akla gelen ilk sorudur. Cevabi asagidaki 3.3 ve 3.4 alt boliimlerinde

verilmigtir.
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3.3. Injektif Tensér Carpim

E,,...,E, Banach uzaylari ve E/,...... ,E onlarin dual uzaylari olsun. j=1,...,n

icin ¢jeEj' olsun.C®..®C = C oldugu i¢in ¢, ®...0¢, , E ®..QFE, uzerinde

bir lineer fonksiyoneldir.

3.3.1. Tamm: E,,...,E, Banach uzaylar ve E, ,...... ,E onlarm dual uzaylari

olsun. Bu durumda xeE, ®...®F i¢in,

||X||E:=sup“<x,¢l® ...... ®¢n>‘:¢jeB1[O,Ej']jzl,...,n} (3.6)

olarak tanimlansin. £, ®...® E lizerinde ||||e normuna injektif norm denir.

3.3.2. Onerme: E,,...,E, Banach uzaylar1 olsun. Bu durumda,

|||E normu

E ®...® E lzerinde bir ¢apraz normdur.

3.3.3. Tanmm: E,,...,E Banach uzaylan olsun. £ ®...®E nin ||-||€normuna gore

tamlastirilmasina injektif tensér ¢carpimi denir ve E, ®...Q E ile gosterilir.

3.3.4. Ornek: 4 bir Banach cebri, E bir sol Banach 4-modiil ve F bir sag Banach
A-modiil olsun. E® F’deki A’nin bimodiil aksiyonu, bir Banach A4-bimodiilde

E®F ye donisiir.

Q bir kiime ve E bir lineer uzay olsun. feC® ve xeE icin fxeE® su sekilde

tanimlanir.
(fx)(w):zf(w)x (WEQ) 3.7

3.3.5. Teorem: Q bir yerel kompakt Hausdorff uzay1 ve E bir Banach uzay1 olsun.
O halde,

C(Q)XE-C)(QE), (f.x)-fx (3.8)

bilineer tasviri bir izometrik izomorfizm uretir.
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C,(Q)®E=C,(Q,E) (3.9)

3.3.6. Ornek: Q, ve Q, yerel kompakt Hausdorff uzaylari olsun. Bu durumda, bir

kanonik izometrik cebir izomorfizmi vardir.

A\

G,(Q,)®C, (2,)=C,(9,x0,) (3.10)

3.3.7. Tamm: E bir Banach uzayi, x,,...x,€E ve ¢,...,¢,€E’ olsun.Bu durumda,

T:=iij¢jeF’(E) (3.11)
j=1

su sekilde tanimlanir:

Tx=i<x,¢j>xj (er) 3.12)
=

3.3.8. Onerme: E bir Banach uzay1 olsun. Bu durumda,

EQE' >L(E), x®p>x0¢ 3.13)

lineer tasviri, £® E' lizerindeki injektif norma gore bir izometridir ve £ é E' ve

A ( E ) ’nin bir izometrik izomorfizmine genisler.

3.4. Projektif Tensor Carpim

3.4.1. Tamm: E,,...,E Banach uzaylari olsun. E, ®...® Elizerinde ||||” projektif

normu, XxeE,®...®E i¢in

e

m
=1

el = {3 |
k

px=> " ®...®x§j‘>} (3.14)

k=1

seklinde tanimlanir.

3.4.2. Onerme: E,,...,E, Banach uzaylan Ve||-|| normu £ ®...®FE, lzerinde
herhangi bir capraz norm olsun. Bu durumda || ||ﬂ projektif normu x€E, ®...QF,
igin,

Ix|<|x]. (xeE®..®F,) (3.15)
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sartin1 saglayan bir capraz normdur.
3.43. Tanmm: E,,...,E, Banach uzaylarn olsun. £, ®...® E, nin || ||” normuna gore

tamlastirilmasina projektif tensor ¢arpimi denir ve E ®...Q E  ile gosterilir.

3.4.4. Ornek: A bir Banach cebri, E bir sol Banach 4-modiil ve F bir sag Banach
A-modiil olsun. O halde, E®F iizerinde A’nin bimodiil aksiyonu, bir Banach

A-bimodiilde E §A<)F ye doniisir.

3.4.5. Onerme: E,,...,E, Banach uzaylari ve xeE, ééEn olsun.Bu durumda,

3 ‘xf” ...fof> <o (3.16)

k=1

ve

x=Y s e. .ox" (3.17)
k=1

olacak sekilde j=1,..., n igin E ; ’de (xg.k) )0:1 dizileri vardir.
(3.18) saglanacak sekilde (3.17) daki biitiin sonsuz serilerin infumumu || ||” dir.

3.4.6. Teorem: (Q,S, 1) bir 8l¢ii uzay1 ve E bir Banach uzay1 olsun. O halde,

L(Q,8, u)xE>L(Q,S, i E), (f.x)> f(x) (3.18)

bilineer tasviri L' (Q, S, u ) ®E ve [ (Q, S, u E ) nin bir izometrik izomorfizmini
uretir.

3.4.7. Ornek: E bir Banach uzay1 ve F bir sonlu boyutlu Banach uzay1 olsun. O

halde, E® F injektif ve projektif normda tamdir ve £ (:9 F=FE (>A§F dir.
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4. HOCHSCHILD KOHOMOLOJI

Cebirsel kohomoloji gruplart H "(A,E )’i 1945-1946 yillarinda ilk olarak

Hochschild tanimlamistir. Banach cebirlerinde amenable tanimini vermek i¢in 1972
yilinda Johnson, Hochschild kohomolojisinden faydalanmigtir. Bu bolimde

Hochschild kohomolojinin temel kavramlar1 verilmistir.

A bir cebir ve E bir A-bimodiil olsun. 4X....... X A (n tane) dan E’ye biitliin n-lineer
tasvirlerin lineer uzay1 Z' ( AE ) ile gosterilir. (LO (4,E)=E )

4.1. Tamim: 4 bir cebir ve E bir A-bimodiil olsun. V xe E i¢gin,
50(x):a|—>a-x—x-a , A>E 4.1)
tanimlansin. neN ve TelL’ ( AE ) icin 0" T eL"“(A,E ) su sekilde tanimlanir.

§”T(a1, ....... ,a, ., ):al-T( Ay .. ,an+1)+( —1)"+IT(a1,...,an )@,

+Z(—1)‘/ T( Ay gy @y 15050 A s d,, ) 4.2)

J=1

neZ" olsun. 6" , L'(A,E)’den L™ (A,E)’ye bir lineer tasvirdir. Bu tasvirlere

baglanti  tasvirleri (connecting maps ) denir. Islemler uzun olmasma karsin

dogrudan hesaplama ile
5"™08" =0 ve im 5" ckerd"" oldugu goriiliir.
L'(4,E):05E—L5L(4,E)—251*(4,E)> -

L'(A4,E)—251" (4,E)—"L"(4,E)—>-- 4.3)
lineer uzaylar ve lineer tasvirlerin bir kompleksidir.

neN igin ker 8" ve im "' ’in elemanlari sirastyla n-kogember ve n-kosinirdir.

Z"(A,E)=kers" ve N"(A4,E)=ims" (4.4)
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olarak alalim.

4.2. Tanim: A4 bir cebir ve E bir A-bimodiil olsun. neN i¢in E’deki katsayilarla

A’min n-inci kohomoloji grubu,
H"(A,E)=Z2"(A,E)/N"( 4,E) 4.5)
H( A,E)=kers’={xeE: a-x=x-a (acd)} (4.6)
dir.Aslinda, H"( 4,E) kohomoloji gruplari lineer uzaylardr.

TelL(A,E) igin, Teimd® olmast igin gerek ve yeter sart

T(a)=a-x—-x-a (abeA) 4.7)
kosulunu saglayan bir xcE olmasidir. Ayni zamanda,
(6'T)(a.b)=a-Tb-T(ab)+Ta-b (a,bed) (4.8)

d1r.N1(A,E) ve Zl(A,E) 2.4.1 deki tanimlama ile aymdir. HI(A,E), ic
tirevlerin  uzay1r olarak, tiim tlrevlerin uzaymin bir  bolimidiir.
H 1(A,E):{O}olma51 icin gerek ve yeter sart A’dan E’ye her tiirevin, i¢ tiirev
(inner derivation) olmasidir. 4 bir Banach cebri ve £ bir Banach 4-bimodiil olsun.

B"(A,E), L'(A,E)’deki siurh tasvirlerin Banach uzaymi gostersin. Kompleks

B'(A,E ) 4.3 denkleminde L yerine B yazilarak tanimlanir:
B*(A,E):0——E—>>B(A,E)—">B"(A,E)—>—>
B"(A,E)—">B" (4, E) " B"(4,E)—>-  (49)

ker 8" ve im "' ’in elemanlari sirasiyla, siirekli n-kogember ve siirekli n-kosmir’dir

ve 2" (A,E) ve N (A,E) uzaylaridir.
E’deki katsayilarla 4 'nin n-inci siirekli kohomoloji grubu su sekilde tanimlanir:
H"(A,E)=2"(A,E)/N"( A,E) (4.10)

Bu bir yar1 normlu uzaydir.
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( Genellikle, V" (4,E), Z"(A,E)'dekapali degildir.) H'(A4,E) i¢ tiirevlerin

uzayi1 olarak , A’dan E’ye siirekli tiirevlerin uzayinin bolimiidiir.

Her Te %’ (A,E ) icin 2-kogember birim (2-cocycle identity) elde edilir.
a-T(b,c)—T(ab,c)+T(a,bc)—T(a,b)-c:O (a,b,ceA) 4.11)

Bundan dolayr H?( 4,E)={0} olmasi i¢in gerek ve yeter sart baz1 SeL(A,E)

i¢in her boyle T’ nin , 5'S formunda olmasidir.
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5. TOPOLOJIK GRUPLAR

Bu boliimde topolojik grup tanimi ve gerekli teoremler verilmistir.

5.1. Tamm: Uzerinde bir topoloji ve grup yapist olusturan G kiimesine, grup

islemlerinin stirekliligi ile ilgili agagidaki iki sart1 saglarsa, bir topolojik grup denir.

i) GxG’den G’ye giden (x,y)—>xy tasviri siireklidir.

ii) G’den G’ye giden x—> x~' tasviri siireklidir.

Birinci kosul i¢in sunlar1 soyleyebiliriz: G’nin keyfi x, y elemanlar1 ve xy’nin keyfi U
komsulugu i¢in x’in ve y’nin sirasiyla dyle V, W komsuluklart vardir ki VW cU
sart1 saglanir. Ozel olarak e’nin bir U komsulugu i¢in e’nin dyle bir ¥ komsulugu
vardir ki V> U dir . Yine birinci sarttan, keyfi yeG i¢in G’den G’ye giden x—xy
ve x —yx tasvirlerinin siirekli oldugunu sdyleyebiliriz. Bu ifade, U, G’nin bir agik
alt kiimesi ise Uy ve yU kiimelerinin keyfi ye G i¢in agik olmasina denktir. Diger
bir deyisle bir topolojik grubun topolojisi sag ve sol doniisiim ( translation ) altinda
degismezdir (invariant ).

Ikinci kosul igin ise sunlar1 sdyleyebiliriz: ¥, G’nin herhangi bir alt kiimesi olsun.

vy ile V‘1={x‘1 iX eG} kiimesini gdsterecegiz. G’nin herhangi bir V™' kiimesi
acik ise V”de agik kiimedir. Tersi de dogrudur: ¥ agik ise ¥~ kiimeside agiktir.

G topolojik grubu {iizerindeki topoloji Hausdorff, diskirit, kompakt veya yerel
kompakt ise G’ye Hausdorff, diskirit, kompakt veya yerel kompakt topolojik grup
denir. Bir topolojik grupta topolojinin doniisiimii degismez oldugundan e’nin bir
kompakt komsulugu varsa G, bir yerel kompakt topolojik gruptur.

Bir G topolojik grup 7, -uzay: ise Hausdorfftur. Bunu gosterelim. x,yeG ise dyle
bir U acik kiimesi vardir ki xeU,y¢U dir. Bu durumda e’nin oyle V, W
komsuluklar1 vardir ki U=xV ve W’cV dir. Bu ise xW ve yW ' ’nin

arakesitlerinin bos kiime olmasin1 gerektirir.
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5.2. Tanim: G, topolojik gurubundan G, topolojik grubuna giden bire-bir, iizerine

bir tasvir, cebirsel izomorfizm ve homeomorfizm ise G, ve G, ’ye izomorfiktir denir.

5.3. Tamm: G, grubunun G, grubu iginde bir temsili (representation) G, den

G,’ye giden Vx,yeG i¢in

f(xy)=f(x)/(») (5.1)

sartin1 saglayan f'tasviridir. Eger G, ve G, topolojik gruplar ve ftemsili siirekli ise f
tasvirine morfizm denir.

G topolojik grubunun bir A alt grubu alt uzay topoloji ile bir topolojik gruptur.

5.4. Tamm: G bir topolojik Hausdorff grup ve H, G’nin herhangi bir alt grubu

olsun. A’1n sol kalanlar1 yeni bir topolojik uzay olusturur. Bu uzaya béliim uzay:

denir ve G/H ile gosterilir. Boliim uzayindaki siirekli topoloji asagidaki gibidir;

G’den G/H tizerine gelen 7, kanonik ( dogal ) tasviri
7,:G—>G/H |, 7, (x)=xH (5.2)

stirekli yapan bolim topolojisidir. (7, yalmz siirekli degil ayni zamanda agik
tasvirdir.) 7, 'nin siirekli ve agik tasvir olmasindan dolayr G yerel kompakt ise

G/H’da yerel kompakttir. H normal alt grup ise G/H bir topolojik gruptur.

5.5. Teorem: G bir topolojik grup olsun.

a) K, G’nin bir kompakt alt kiimesi ve U, K’y1 igeren G’de bir a¢ik kiime olsun. Bu

durumda e’nin dyle bir V' komsulugu vardir ki KV cU dur.

b) G yerel kompakt ve H, G’nin bir kapali alt grubu ise G/H’in herhangi bir L

kompakt kiimesi i¢in 7, (K )=L sartin saglayan K <G kompakt kiimesi vardir.

¢) GxG’den G’ye giden (x,y)—>xy tasviri agiktir. Benzer sekilde
(x,0)=>y "%, (x,0)=x, (x,0)=p, (5-3)
aciktir.

d) Sayilabilir bir yerel kompakt grup veya boliim uzay: diskarittir.
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6. YEREL KOMPAKT UZAYLAR UZERINDE INTEGRASYON

Yerel kompakt gruplar iizerinde amenable tanim1 Haar 6l¢iisii ile verilir. Bu boliimde

yerel kompakt uzaylar iizerinde 6l¢ii, 6l¢iilebilir fonksiyonlar ve integrasyon tanimi
verilmis ve temel teoremler ele alinmistir. Daha sonra Haar dlciisii verilerek L'(G)

uzaylar1 incelenmistir.

6.1. Ol¢ii

X bir yerel kompakt uzay olsun. X iizerinde reel ( kompleks ) degerli, kompakt

destekli (destek(support): f ( x);t 0 olan biitiin x’lerin olusturdugu kiimenin
kapanigina denir) biitilin siirekli fonksiyonlarin uzayi KR(X ) (ch( X )) ile gosterilir.
X kompakt degilse K (X) (K:(X))’in tamlasgtrimast ¢(X) (¢2(X)) Banach

uzay ile gdsterilir. G;(X ) de norm
| ]l =maks]| f(x)] 6.1)

ile verilir. ¢ (X ), (Gg (X )), X tizerinde sonsuzda sifir olan reel (kompleks) siirekli

fonksiyonlarin yukaridaki norma gore Banach uzayidir.

6.1.1. Tanim: X {izerinde bir reel (kompleks) ol¢ii u, KR(X ) (KC(X )) tizerinde

asagidaki 6zelligi saglayan bir reel (kompleks) lineer fonksiyonel olarak tanimlanir.

Her K = X kompakt kiimesi ve K’da destekli olan keyfi feX, (X) (fe[CC(X))

fonksiyonu i¢in
| u(f)|sMi] 7] (6.2)

sartin1 saglayacak bir M, sabiti vardir.
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Ko(X)’m biitin pozitif fonksiyonlarinin kiimesi K, (X ) iizerindeki keyfi

fek,(x) igin pu(f)>0sartim saglayan reel u Olglisiine pozitif denir. u(f)

sayisina, f’in u ’ye gore integrali denir ve

If(x)d,u(x) , If(x)dﬂ(x) veya Ifd,u (6.3)
X

notasyonlart ile gosterilir.

6.1.2. Teorem: u pozitif Ol¢ii ise

| ()< u(l 1) (6.4)

dir.
6.1.3. Teorem: K ( X ) tizerinde bir pozitif lineer fonksiyonel bir pozitif dl¢tidiir.
6.1.4. Tamm: Keyfi feK(X) i¢in

|u(1)|=M] 1], (6.5)

sartin1 saglayan bir M sayis1 varsa u Olgiisiine sinirlt 6l¢ii denir. M sayisinin en

kiigligline x 'niin normu denir ve || ,u|| ile gosterilir.

| =sup{ | (£ )|: £ ek(X).1 7], <1 (6.6)

Kompakt olmayan X i¢in, stmirh 6lcii siireklilik tarafindan C° ( X ) ’e genisletilebilir.
Yukaridaki norma gore bunlar bir Banach uzayi olusturur. Bu uzay M'(X) ile

gosterilir. Buuzay C 0( X ) ’in dual uzayidir.

6.1.5. Tammm: 4 Olclslniin destegi (support), suppu, X | E’ de destekli keyfi
feK(X) igin u(f)=0 sartim saglayan en kiigik kapali EcX kiimesidir.
Verilen bir x Olgiisii igin bir | y| pozitif Olciisii asagidaki gibi tanimlanir.

fek (X) igin,

|1|(f)=sup{|u(g)|: gek(X).|g|<r | (6.7)
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Her reel 6l¢ii, iki reel pozitif 6l¢iiniin farki olarak yazilabilir.

ey |u|-n o
H="=0— » AT M= = p (6.8)
p=|p|e p pozitif (‘,u(f)‘s|,u|(f) feK) (6.9)

6.2. Pozitif Olgiilerin Alttan Yari Siirekli Fonksiyonlara Genislemeleri

Bu boliimde X yerel kompakt uzay ve X iizerinde, degerleri ﬁ;[o,oo] ’da olan
fonksiyonlar diisiiniilecektir. R, ’dan R. ye toplam ve carpimin genislemeleri
‘v’aeﬁ+ icin g+w=w+a=0 , 0<a <o i¢in ©-g=q-w0=0 ve ©-0=0.-00=0
olarak tanimlanir. X iizerindeki tanimli, degerleri R. ’da olan biitiin fonksiyonlarin
kiimesi . (X) veyakisaca /. ile gosterilir.

Bir pozitif 6l¢iinlin £ ’dan /, ’ya genislemesini inceleyelim.

X iizerindeki taniml1 degerleri R veya R. da olan bir fonksiyonlar ailesi S olsun.
Bir xe X igin, { f(x) : feS} kiimesini S(x) ile gosterelim.

supS fonksiyonu X iizerinde asagidaki gibi noktasal tanimlanir:

(supS)(x)=sup(S(x)) (6.10)

6.2.1. Tamm: Keyfi aceR, igin {x:F(x)>a} kiimesi acgik ise FeH,

fonksiyonuna alttan yari-siirekli denir. (Degerleri R ’de olan fonksiyonlar iginde

benzer tanim verilir.) Ustten yari-siireklilik “ > yerine “ <’ alinarak tanimlanir.

X tizerinde, degerleri R.’da olan biitiin alttan yari-siirekli fonksiyonlarin sinifini

e

+

(X)) veyakisaca 7 ile gosterelim.
K.l cH, (6.11)

6.2.2. Tanim: Degerleri R.’de veya R’de olan F fonksiyonlarin ailesine keyfi
f,geF ciftiicin f<h ve g<h sartin1 saglayacak bir ~<F fonksiyonu varsa,
"<"’ya gore filitre (filtering) veya basitce filitre denir. Benzer olarak keyfi f,ge@
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cifti icin A< f veya h<g olacak sekilde bir e varsa G ailesine ">" gore filitre

denir.

6.2.3. Tamm: Herhangi bir e/, igin "<"’ya gére K, ’da F, ailesini ve ">"’ya

gore 7, ’da G, ailesini agagidaki gibi tanimlariz:

E={k:kek ,k<f} (6.12)
Gf:{F: Fe[+,f£F} (6.13)
F, ve G, gergekten filitredir. k ,k,eF, ile sup(k1 ,k, )eFf ve F,GeG, ise
inf(F,G)e@} dir.

6.2.4. Teorem: 7 uzayi asagidaki ozelliklere sahiptir:

1) 7, R- ’nin elemanlari ile carpim altinda ve toplama altinda kapalidir.
ii) 7 , supremum alma altinda kapalidir.

iii) feH, ise fes < f=supF dir.

6.2.5. Tanim: (Birinci Genisleme ) ., X lizerinde tanimli bir pozitif 6l¢ii olsun. 7,

tizerinde y fonksiyoneli
w(F)=supu(F) . Fer, (6.14)
tarafindan tanimlanir.

u K uzerinde u ile gakisir. Bu yiizden x4, K ’dan 7 ’ya u’nin bir

genislemesidir. VF e/ igin 0< ,uX(F )Soo dir.

6.2.6. Teorem: 7, iizerinde taniml1 " icin asagidaki ozellikler saglar
1) ,ux(aF):a,ux(F) (a€ﬁ+,F€Lr)

i) F<F,=u (K)<u'(F) F.Fel (6.15)
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6.2.7. Teorem: F,F,5 K ’da filitre aileleri olsun. X tzerindeki herhangi bir

pozitif x Ol¢iisii icin agsagidakiler saglanir.

i) supFeX, ise u(supF)=supu(F)

i) supE=sup 5 ise sup u( £)=sup u(5)

iii) *(sup F)=sup u( F) (6.16)
6.2.8. Teorem: / iizerinde x* fonksiyoneli toplamsaldir. Yani
W(F+F)=u(R)+u (F)., K.Fel (6.17)
6.2.9. Tamim: (ikinci Genisleme ) 1, X iizerinde bir pozitif 6l¢ii olsun. u*, 7.

tizerinde birinci genislemede tanimlandig1 gibi tanimlansin. H, lizerinde "

fonksiyoneli

w(f)=infu(G,) feH. (6.18)
tarafindan tanimlanir. 1 (/) yerine genellikle

'[Xf(x)dﬂ(x) veya [ fdu (6.19)
yazilir ve fin u ’ye gore iist integrali denir.

VfeH, igin 0<u” ( f )Soo dir. fe/ i¢in y birinci tamimdaki gibidir. Bu yiizden

J>dan H ’ya p” fonksiyonelinin bir genislemesidir.

6.2.10. Teorem: /{, lizerinde taniml £ i¢in asagidaki dzellikler saglanir.

D u(af)=au’(f)  aeR., fer,

i) fi<f, = (S)<w (L) ffel (6.20)

f<| f-g|+g oldugundan f,geH, i¢in

| (f)=w (&) (| £ -gl) (6.21)

dir.
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6.2.11. Teorem: F, / ’da filitre ailesi olsun. Bu durumda sup Fe/, ve X iizerinde

tanimli herhangi pozitif x O6lgiisii igin

(- (supF )=supu” (F) (6.22)

integral notasyonu ile,

[“sup Fdu=sup [ Fdu (6.23)

Fer Fer

dir.

6.2.12. Tammm: u, X iizerinde taniml bir pozitif 6l¢ii olsun. Keyfi Ac X kiimesi

i¢cin A’nin dis ol¢iisii, qu( A) , @, , A’nin karakteristik fonksiyonu olmak iizere

,ux( ®, ) olarak tanimlanir. Burada x", ikinci genislemedeki tanimdir.
Her Ac X igin 0< " (A)< o0

6.2.13. Teorem: " dis Olgiisii,

i) AcB=>u (A)<u(B) A,BcX

ii) y*(nglA,,)s du(4,)  A,cX,n=l (6.24)

nx1

sartlarini saglar.

6.2.14. Tamm: u"(A4)=0 ise AcX alt kimesine u’ye gore cnemsiz kiime

(negligable) denir. Hemen hemen her yerde (4.4.4) terimi bir 6nemsiz kiime disinda

X’in her noktas1 i¢in anlaminda kullanilacaktir.

6.2.15. Teorem: u bir pozitif 6l¢ii ve f,ge /', olsun.
D [ fdu=0 hhh f(x)=0

i) [ fdu<oo=  hhh f(x)<oo

iii) hhh. f(x)<g(x)= [ fdu<[ gdp
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) hhh f(x)=g(x)= [ fdu=[ gdu (6.25)

dir.

6.3. integre Edilebilir Fonksiyonlar

B reel veya kompleks Banach uzay1 olsun. KB(X ) veya kisaca K, ile kompakt

destekli, degerleri B’de olan X iizerindeki biitiin siirekli fonksiyonlarin kiimesini

gostersin.

6.3.1. Tamim: ]"BI(X , ,u) veya kisaca &' uzayi, asagidaki sarti saglayan biitiin
f:X — B fonksiyonlarinin lineer uzayr olarak tanimlanir. Jﬁ(X )’de fin ilgili

||f||:X—>]R+ fonksiyonu

e (

| )< (6.26)

sartin1 saglasin veya integral notasyonu ile

[ 17 ()] p(x) <0 (6.27)
sart1 saglansin. (|| f ||) tist integrali N, ( f ) ile gosterilecektir.

6.3.2. Teorem: %' uzayi igin asagidaki ozellikler saglanr.

i) N,, %' lizerinde bir yari-normdur.

i) Nl(f):O<:>h.h.h f(x):()

iii) &' , N, yari-normuna gére tamdir. (6.28)
6.3.3. Tamm: L, (X, u) veyakisa L, , '°de K, nin kapanisi olarak tanimlanr.

6.3.4. Tamm: i) L, , N, yarinormuna gore tamdur.
i) fer ise|f|e® ve N (/)=N(]/]) dir

iil) ke K, ise ||K||e]<+ ve supp”k”:supp k dir.
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iv) fel, ise | H|eLy dir. Ozel olarak fely ise | f|eLs dur.

v) f,gely isesup(f,g)ely (6.29)

6.3.5. Tamm: n,( X, u) veya kisaca n, notasyonu ile N,( f)=0 olan biitin feL,
fonksiyonlarinin kapali lineer alt uzayim gosterelim. L,/n, bdliim uzay1 bir Banach
uzayidir ve LIB(X , y) veya kisaca L, ile gosterilir. /”in normu || ||1 ile gosterilir.
Benzer olarak 1< p<oo igin L (X , ,u) veya kisaca L] uzaylar

1/p

Np(f)=(Ix“f(x)“pdy(x)) (6.30)

tarafindan tanimlanan N, yari-normu ile tanimlanir. || || , normu ile de Lj (x, ,u)

veya kisaca L} Banach uzaylar1 tanimlanir.

K, veya K lizerinde tammlanan g integrali B Banach uzaylar1 i¢in K, ’de heniiz
tanimlanmadi. Once B’yi R veya C alalm. K, , L , L, veya K., L L, L,

yerine K, L', L' alalim. Verilen integral X *dan L'’e siireklilik yardimiyla

genisletilebilir.

u(f)=limu(k)  fel' (6.31)

k—f
keK

6.3.6. Tanim: LNIR(X , ,u) veya ksiaca I:Ié h.h.h. f( x):g( x) olacak sekilde bir

gel  fonksiyonun var oldugu, u ’ye gdre hemen hemen her yerde tanimli,
degerleri R *de olan biitiin f fonksiyonlarinin kiimesi gosterilir. Z;R ‘nin elemanlarina

integrallenebilir fonksiyonlar denir. fel y i¢in p( f) integrali u( f/)=p(g)

olarak tammlanir. z( /) integrali

[ fdu veya [ f(x)du(x) (6.32)

ile gosterilir.
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6.3.7. Teorem: L },’de ( fn) g dizisi hemen hemen heryerde lim f,(x) var olan bir

dizi olsun. Limit varsa lim f,(x)=f(x) alahm. n>1 i¢in
n—p

1, (x)|<g(x) (6.33)
olacak sekilde 4*(g)<oo olmak iizere bir ge /f, fonksiyonu var oldugunu kabul
edelim. Bu durumda f'e LNIB , LNIB "de

lim £, = ve p(f)=lim u( f; ) (6.34)
dir. Integral notasyonu,

i =t w39
dir.

6.3.8. Tanim: u, X yerel kompakt uzay1 lizerinde bir pozitif 6l¢ii olsun.
@,€L'(X,u) olacak sekilde bir Ac X kiimesine u ’ye gore integrallenebilir kiime

denir.
u(A)=[pdu (6.36)

olarak tanimlanir ve A’nin Olciisii ,u(A) ’dir denir. (Burada ¢, karakteristik

fonksiyondur.) 0<z(4)<o oldugu kolayca goriiliir. Biitiin sonlu dis Slgiiye sahip

acik ve kapali kiimeler integrallenebilirdir. Ozel olarak kompakt kiimeler

integrallenebilirdir.

6.3.9. Teorem: Bir Ac X kiimesinin integrallenebilir olmasi i¢in gerek ve yeter
sart V>0 icin ,u(Q) - ,u(K )<8 olacak sekilde bir integrallenebilir Q> 4 acik

kiimesi ve kompakt K — 4 kiimesinin olmasidir. Yani, her integrallenebilir 4 kiimesi

i¢in

,u( A ) = irg) y7, ( Q ) Q acik ve integrallenebilir (6.37)

pu(A)=supu(K) K kompakt (6.38)
KcA
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ile ifade edilir.

6.4. Olgiilebilir Fonksiyonlar

6.4.1. Tammm: p , X yerel kompakt uzayi iizerinde bir pozitif 6l¢ii ve @, degerleri bir
topolojik uzayda olan X iizerinde bir fonksiyon olsun. Verilen herhangi bir K c X
kompakt kiimesi i¢cin K’nin bir dnemsiz kiimeye bir pargalanisi var ve @ ’nin her

K, ’ye kisitlanmasi siirekli olacak sekilde sayilabilir kompakt K, kiime ise varsa

®’ye u Olgiisiine gore ol¢iilebilir fonksiyon denir.

6.4.2. Tamm: Bir Ac X alt kiimesinin karakteristik fonksiyonu 0lgiilebilir ise 4’ya

olciilebilir kiime denir.

Biitiin ac¢ik ve kapali kiimeler 6l¢iilebilir. 4 ve B ol¢iilebilir ise AUB, ANB, X \4

Olgiilebilirdir.

6.4.3. Tamm: Her K — X kompakt kiimesi icin 4" K ©Onemsiz kiime ise X’in A4 alt

kiimesine yerel onemsiz kiime denir. Yerel hemen hemen her yerde demek (y.4.4.h.)

yerel Onemsiz kiime haricindeki X’in biitiin noktalar1 demektir.

6.4.4. Tamim: f, degerleri R. da olan X iizerinde herhangi bir fonksiyon olsun. y ’ye

gore yerel hemen hemen heryerde f (x)SM olacak sekilde en kiigiik

M (OSM < oo) sayisina yeterli supremum denir ve

esssup f ( x) (6.39)

reX
ile gosterilir.

6.4.5. Tammm: Degerleri B Banach uzayinda olan X lizerindeki ¢ fonksiyonu
fes}?supugo(x)u <o (6.40)

sartin1 sagliyorsa (u’ye gore) yeterli simirli denir. Eger ¢ yeterli smirli ise

, N, () ile gosterilir.

00

esssup” ¢( X) ‘

xeX
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X tlzerinde Olgiilebilir, yeterli sinirlt degerleri bir B Banach uzayinda olan ¢

fonksiyonlart bir tam uzay olusturur. Bu uzay L) (X ,y) veya kisaca L, ile
gosterilir. Bu uzayda N yari-normdur. L, , L, 1< p<o’de oldugu gibi heryerde

taniml1 fonksiyonlar igerir.

0

6.4.6. Tanim: B bir Banach uzayi olsun. nj (X,u) veya kisaca nj, N, (¢)=0
olan biitiin gL, fonksiyonlarin kapali lineer alt uzay1 olsun. Bu durumda L, /»;
bir Banach uzayidir ve L7 (X , ,u) veya kisaca L7 ile gosterilir. Norm, N ’dan elde

edilir ve ||||w ile gosterilir.

L, ve L} uzaylarindaki iki fonksiyonun ayni elemani temsil etmesi igin gerek ve

yeter sart yerel hemen hemen her yerde ikisinin ¢akigsmasidir. Genellikle stirekli

fonksiyonlar L, ’da yogun bir alt uzay olusturmaz.

f., f, €L ' hemen hemen her yerde ayni ve ¢,,@, €L yerel hemen hemen heryerde

ayntise f,@,,f,,€L' ve hemen hemen heryerde aynidur.

6.4.7. Tamm: feL(X,u) ve peLl”(X,u) ise

<fr0>=[ f(x)p(x)du(x) (6.41)
olarak tanimlanir.

6.4.8. Teorem: L (X , ,u) Banach uzayinin dual uzayi L°°(X , ,u) ’ye izomorfiktir.

L (X , ,u) tizerindeki her siirekli lineer fonksiyonel

fo<f.p> fel (X,u) (6.42)

formunda yazilabilir. Burada peL”( X, ) ve fonksiyonelin normu || dur.

6.5. Haar Olciisii

6.5.1. Tanim: G bir yerel kompakt grup olsun. Sol déniisiim operatérii L,, a €G

olmak tizere,
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Lf(x)=f(a'x)  xeG,[feK(G) (6.43)

olarak tanimlanir. Keyfi f ek ( G) ve aeG igin

H(L,f)=u(f) (6.44)

esitligini saglayan G lizerinde u Olgiisiine sol degismez denir.
6.5.2. Teorem: Yerel kompakt gruplar tizerinde, sifira denk olmayan ve bir sabit
carpanla tek tiirlii belirlenen bir sol degismez pozitif 6l¢ii vardir.

Yukaridaki teoremde adi gecen Olciiye sol Haar ol¢iisii ya da kisaca Haar olgiisti

denir. Haar 6lgiisii, klasik notasyona benzer olarak dx ile gosterilir ve J‘ f (x) dx ,
G

[ £(x)dx veya| s (6.45)
ile de yazariz. Sol degismezlik
jf(a’lx)dx:Jf(x)dx veya d(ax):a’x, aeG (6.46)

ile ifade edilir.

6.5.3. Teorem: €K (G) ve/, sifira denk degilse j f(x)dx integrali pozitiftir. Bu

ylzden Haar Olgiisiiniin destegi G’nin kendisidir ve e’nin herhangi bir kompakt

komsulugu bir pozitif Haar dl¢iisiine sahiptir.
6.5.4. Teorem: G’nin Haar dl¢iisti sonlu ise G kompakttir. (Terside dogrudur.)

Kamt: feK(G), f#0, 0< f<1 alalim. C =suppf bir kompakt kiimedir. Eger G

kompakt degilse, a,C, n>1 igin ayr1 ayr1 arakesitleri bos kiime olacak sekilde G’de

alalim. Boyle bir dizi i¢in

n+l
1<m<n

(a,) n=1 dizisi vardir. ( U aij C™' diginda bir a

N >1 olmak tizere,

Ji%f:i\’ff ve iLa,,fﬁl (6.47)

n=l n=1

dir. Bu Haar 6l¢iisiiniin siirsiz oldugunu gerektirir. Tersi agiktir. G kompakt ise

¢GEK(G)dir.
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Haar 6l¢iisii i¢in asagidakiler saglanir:

Bir siirekli fonksiyon yerel hemen hemen heryerde sifir ise her yerde sifirdir. Daha

genel olarak ¢ stirekli fonksiyon ise

esssup‘w(x)‘:squ‘w(x)‘ (6.48)

xeG
dir. Benzer olarak FeZ (G) ve IXF(x)dx=0 ise VxeG igin F(x)=0 dur.
Bir integrallenebilir A G kiimesinin Haar dl¢iisii mG( A) veya m( A) ile gosterilir.

6.5.5. Tammm: G lizerinde sifira esit olmayan x# kompleks Olgiisiine, keyfi

fe]é(G)igin

If(a-lx)d/u(x):Dy(a)If(x)d,u(x) , (ae@) (6.49)
veya

a’,u(ax):Dﬂ(a)d,u(x) (6.50)

sartin1 saglayacak G tizerinde bir D, fonksiyonu varsa, bagil degismez ( relatively

invariant) denir.
D, dlgiisiiniin D, (e)=1 ve
D,(ab)=D,(a) D,(b) a,beG (6.51)

sartlarini sagladign agiktir. VaeG igin D, (a)#0 ve u pozitifise D, >0 dir. (6.49)
denkleminin sol tarafi aeG tuzerinde stireklilige bagl oldugunda D, sitireklidir. Bu
sekilde tamimlanan D, ’ye bagil sol degismez denir, benzer sekilde bagil sag
degismez tanimlanir.

G tizerinde bagil sol degismez Ol¢ii w4 ’yi biliyorsak Haar ol¢iisiinii kolayca elde

edebiliriz. Gergekten,

1
D,(x)

bir sol degismez 6l¢iidiir ve bir Haar 6l¢iisiine bir sabitle baglanir.

=] f(x) du(x) fek(G) (6.52)
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dx , G iizerinde bir Haar 6l¢iisii olsun. Her aeG ig¢in

f[f(xat)dx  fex(G) (6.53)
0l¢ii sol degismez oldugundan

[f(xa")dx=A(a)[ f(x)dx fek(G) (6.54)
sartin1 saglayacak bir A(a) sayisi vardir.

Buna gére Haar 6lgiisii bagil sag degismezdir. A, G’den R’ ’a bir morfizmdir.

6.5.6. Tammm: (6.56) denklemi ile tanimlanan A siirekli fonksiyonuna G’nin Haar

modiilii denir. Eger A=1 ise G’ye unimodiiler grup denir.
6.5.7. Ornekler:

6.5.7.1. Ornek: n>2 i¢in GL(n,R) determinanti sifirdan farkli biitin nxn

matrislerin (carpmaya gore) grubu topolojiksel olarak R" °de bir acik kiimedir.

dR”zx Lebesgue Olciisiiniin bu kiimeye kisitlanmist bagil sol ve sag degismezdir.

Haar dlgiisii ﬁdsz dir ve sol ve sag degismezdir. Yani GL(n,R) bir
detx| ¥

unimodiilerdir.

6.5.7.2. Ornek: n>2 i¢in SL(n,R) determinanti 1 olan nxn matrislerin grubu,

GL(n,R)’nin bir kapali normal altgrubudur. Bu yiizden unimodiilerdir. Haar

Olclistinii elde etmek icin e’nin bir acik komsulugunu R” e daldirmaliy1z.

n=2, x:(xl.j) ise birim matrisin bir komsulugunu u=x,, v=x,, w=x,,
parametrelerini alabiliriz. Bu komsuluk R*’iin %>0 yari-uzayma topolojiksel

daldirilir (kisitlanirsa) Haar ol¢iisii « ™' du dvdw olur.

6.5.8. Gruplar Uzerinde L' -Uzaylar

G yerel kompakt uzay olsun G iizerinde Haar Olglisiine gore integrallenebilen

kompleks degerli fonksiyonlarin uzayr L'(G) ile gosterilir. Ilgili bolim uzay: da
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L(G) ile gosterili. Eger G diskirit ise L(G) yerine ['(G) yazilr.
kek.(G)=K(G) i¢in k—)”k(x)‘dx K(G) tizerinde yalmzca bir yari norm
degil ayn1 zamanda bir normdur. Bu yilizden LI(G) bu norma gore K(G)’nin
tamamlanmisi olarak diistiniilebilir. Benzer sekilde 1< p<oo igin L” ( G) ve I ( G)
tanimlanir. A (G) normlu uzayi, konvoliisyon ile tanimlanan ¢arpma islemine gore

bir Banach cebridir. f,geX(G) i¢in f*g carpimi

£rg(x)=[f(y)e(y"x)dy (6.55)

ile verilir. f*geK(G),

supp f*g(x)csupp(/f)supp(g) . f.geK(G) (6.56)
ve
|7 =gl<l 71,2l (6.57)

olduklar1 kolayca goriiliir.
6.5.8.1. Teorem: G yerel kompakt grup ve f,g€L'(G) olsun. Bu durumda

) y>f (y)g( y’lx) fonksiyonu G’nin bir énemsiz alt kiimesi digindaki biitiin
x€G igin L'(G) dedir.

i1) G lizerinde hemen hemen heryerde tanimli x—)j f ( y) g( y_lx)dy fonksiyonu
integrallenebilir.

iii) f*g, hemen hemen heryerde ii’deki fonksiyonla ¢akisan Ll(G) ’de herhangi

bir fonksiyon ise
”f*g(x)‘dxS”f(x)‘dxﬂg(x)‘dx (6.58)

dir.
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6.6. Beurling Cebri

6.6.1. Tanim: G yerel bir kompakt grup olsun. Asagidaki ozellikleri saglayan G

tizerinde reel degerli w fonksiyonuna bir agirlik fonksiyonu denir.

i) w(x)z1, xeG

11) w(xy)éw(x)w(y) x,yeG
1i1) w Olgiilebilir ve yerel sinirlidir.

f weﬁ( G) sartin1 saglayan f fonksiyonlari Ll( G) ‘nin bir altcebrini olusturur. Eger

fin normu
171,217 (o) wlx)dx (6.59)
seklinde tanimlanirsa bu cebir bir Banach cebridir.

6.6.2. Tammm: w, bir yerel kompakt grup G lizerinde bir agirlik fonksiyonu olsun.

fwel(G) olacak sekilde biitin feZ(G) fonksiyonlarmmn Banach cebrine G

iizerinde bir Beurling cebri denir ve L, (G ) ile gosterilir.

w yerel smirlt oldugu i¢in, her Beurling cebri L, (G) , K(G)’yi igerir. Daha da

onemlisi K ( G) , L, ( G) ’de yogundur.

6.6.3. Teorem: Bir yerel kompakt G grubu lizerinde her agirlik fonksiyonu w, icin
denk normlara sahip, Ll(G) ‘nin ayni alt cebrini tanimlayan bir siirekli agirlik

fonksiyonu w vardir. K ( G) "de

L(x)=f(x")a(x7) (6.60)

seklinde tanimlanan f — f~ involiisyonu vardir.

f=f (6.61)
(af+pg) =af'+pg"  f,geC (6.62)
(f*g) =g *f (6.63)
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dir. Involiisyon,

|

=l (6.64)

oldugundan izometriktir. Dolayisiyla siireklidir. Bu involiisyon siireklilik ile

]J( G ) ’ye genisletilebilir.

L,(G) ve L(G) arasindaki en ¢nemli fark; G abelyen olsa bile izometrik

involiisyon L, (G)’ye genelde uygulunamaz. Gergekten eger w simetrik degilse her

feL (G)igin /7, L (G)’de degildir.
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7. AMENABLE YARI GRUPLAR

Soyut harmonik analiz, yerel kompakt gruplar ve bu gruplara bagli cebirler ile
ilgilenir. Bu boliimde yerel kompakt gruplarda amenable kavrami ve ilgili teoremler
verilmistir. Her grup diskirit topoloji ile yerel kompakttir. Reel sayilar kiimesi
toplama ve dogal topoloji altinda yerel kompakt gruptur. Kompleks diizlemde birim
cember, carpim islemi altinda yerel kompakttir.Sonsuz boyutlu B Banach uzayi

toplama altinda degismeli topolojik gruptur, fakat yerel kompakt degildir.

7.1. Amenable Yar1 Gruplar

7.1.1. Tamim: Bir S kiimesi lizerinde tanimlanan o cebirsel islemine gore asagidaki

ozellikleri saglayan S kiimesine yarigrup denir.

a) Vs,,s, €S , s0s,€S
b)Vs,,s,,5,€S , s0(s,08;)=(s,05,)0s, 7.1)
7.1.2.0rnekler:

1) Tamsayilar kiimesi ve pozitif tamsayilar kiimesi adi toplama islemine gore yari
gruptur.

2) nxn tiriinden matrisler, matris carpimina gore yarigruptur.

3)Herhangi bir B Banach cebri iizerindeki L(B) operatdr cebri carpimsal
yarigruptur.

4)Herhangi bir S kiimesi lizerinde tanimli,

s, 8,=s, , Vs,5,€S8

islemine gore S klimesi bir yarigruptur.

S bir yar1 grup veya grup olsun.

S tizerinde taniml biitiin reel degerli 6 fonksiyonlarinin kiimesi iizerinde

[6]=>_16(s)] (7.2)

seS
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seklinde tanimli norma gdre, normlu uzay ¢'(.S) ile gosterilir. Kisaca,

z%s):{e: 6:S >R ||9||=Z\9(s)\<oo} : (7.3)

S {izerinde tanimli biitlin sinirhi reel degerli x fonksiyonlarinin kiimesi lizerinde

| x[=sup|x(s) (7.4)

seklinde tanimli norma gore, normlu uzay ¢ (S ) ile gosterilir. Kisaca,

K‘”(S):{x: x:S>R ,smirl, | 0 |=sup

x(s )\} . (7.5)

seS

A (S ) ve (> (S ) tam uzay olduklarindan Banach uzaylaridir. Her B Banach uzay1 ,

B iizerindeki lineer , reel degerli S fonksiyonlarindan olusan B’ dual uzay,

| B]=sup| (b)) (1.6)

[o]<1

normuna gore bir Banach uzayidir.

Yakinsak diziler uzaymin duali, siirekli fonksiyonlar uzayina izomorftur. Yani,
~0*(S) (7.7)

7.1.3. Tamm: (> (S) smurh diziler kiimesi lizerinde mean

infx(s)gp(x)g supx(s) , ‘v’xGﬁ”(S) (7.8)

SES ses

kosulunu saglayan £ (S )/ > 1n bir elemanidir.

A) £~ (S ) tizerindeki her mean u asagidaki 6zellikleri saglar:
a) u, L~ (S )/ daki birim kiire igindedir.

ij=sup 2] <)
GEF R AT

-1 (7.9)

O halde ||,u||Sl ,yani (€ B, [ﬁw(S)/] dir.
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b) Eger e, S’nin her noktasindaki degeri 1 olan bir fonksiyon ise o halde u (e)=1 dir.
Burada e:S >R , e(s)=1, VseS

,u(e):l ve a) sikkindan,

I<u (e)S 1 buradan u (e)zl bulunur.

©) x(s)>0, VseS iseohalde p(x)>0 du.
B =t

| o] =sup | JeCa )] (7.10)
o [

X, , b) stkkindaki e olarak secilirse, yani x,=e almnirsa,

)]

*——==1 oldugundan ||z|=1 bulunur.

el

B) Eger (> (S )/ 1n bir elemani, a) ve b) kosullar sagliyorsa veya b) , c) , ve d)
kosullarindan herhangi ikisini sagliyorsa x elemani, ¢~ (S ) tizerinde bir mean’dir.

C) (> (S) iizerindeki mean’lerin kiimesi boskiime degildir, konveks ve

w*-kompakttir.

7.1.4. Tanm: /(' (S) nin bir @ elemani, her s€S§ i¢in 0(3)20 oluyorsa ve

X 6(s)=1 ise 8’ya sayilabilir mean denir. Bunlara ek olarak, { s go(s)>0} kiimesi

ses

sonlu bir kiime ise ¢ sayilabilir mean’e S {lizerinde bir sonlu mean denir.

Eger S yarigrup ise ¢> (S ) de birgok yeni islem tanimlamak miimkiindiir. Ornegin, S

homomorfik olarak asagidaki teknik ile Z (6 *(S )) icine gomiilebilir.

Vs €S ve her x€ £>(S) igin, , , L (¢*(S)) nin bir elemant olsun ve su sekilde
tanimlansin;

(rx)(s")=x(s's) , Vs'eS

Benzer sekilde / *y1 tanimlarsak,

(1, x)(s')zx(ss’) , Vs'eS
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Burada r,’ya sag doniisiim operatorii (right translation operator), [ ’ya sol
doniisiim operatorii (left translation operator) denir.

r., S’dan L <€°° (S )) ’ya bir homomorfizmdir yani 7, , =r,r,
I, S’dan L <£°° (S )) ‘ya bir antihomomorfizmdir yani / , =11,

Bununla birlikte ||rsx||§||x|| ve re=e oldugundan, her s i¢in ||rS ||:1bulunur. Benzer

sekilde her s igin ||/ [|=1 dir.

7.1.5. Tamim: K“(S)/ 1n bir eleman1 x ,

u(lsx):,u(x) , Vxeé""(S) , VseS (7.11)
esitligini sagliyorsa sol invaryant (left invariant) olarak adlandirilir. Benzer sekilde
i elemant,

,u(rs x)z,u(x) , Vx€€°°<S) , VseS§ (7.12)

esitligini saglhyorsa sag invaryant (right invariant) olarak adlandirilir.

Bunu, Z;[E > (S )/] cebrinde eslenik operatorlerle baska sekilde de ifade edebiliriz.

u leftinvaryanttir < Lpu=p , Vs€S (7.13)

u right invaryanttir < u=p , VsES (7.14)

7.1.6. Tanim: Bir S yarigrubu igin, £~ (S ) tizerinde hem sol hem de sag invaryant

bir mean u varsa S’ye amenable denir. Eger sadece sol invaryant mean mevcutsa

S’ye I-amenable, sadece sag invaryant mean mevcutsa S’ye r-amenable denir.

Invaryant mean’lerin bazi &zellikleri sunlardir:

A) Eger S hem /-amenable hem de r-amenable ise , S amenable’dir.

B) Bir / —[r —] amenable grup ayni zamanda r—[l —] amenable’dir.
Bundan dolay1 amenable’dir.

C) f, S’den S’ ye bir homomorfizm olmak iizere,

S amenable ise S’ amenable, S I-amenable ise S’ /-amenable, S
r-amenable ise S right amenable’dir.

D) Eger G bir / —[r —] amenable grup ise, G’nin her alt grubu da / —[r —]

amenable’dir.

52



E) H ve G/H amenable olacak sekilde, H, G nin bir normal alt grubu ise G de
amenable’dir.
F) Her degismeli yarigrup amenable’dir.

G) Her sonlu grup amenable’dir.

7.2. Amenable Kompakt Yar1 Gruplar

Yarigrup tanimini tekrar hatirlatalim. Bir S kiimesi, ilizerinde tanimlanan cebirsel
isleme gore kapalilik ve birlesme 6zelliklerini sagliyorsa yarigrup olarak adlandirilir.
Eger S ’nin bir §, alt kiimesi i¢in S,.5,CS, oluyorsa S, kiimesine alt yarigrup
denir. S’nin bos kiimeden farkli bir L alt kiimesi i¢cin S.L < L oluyorsa L’ye sol
ideal denir. $’nin bos kiimeden farkli bir R alt kiimesi i¢in R.Sc R oluyorsa R’ye
sag ideal denir. Bir kiime hem sag hemde sol ideal ise ideal olarak adlandirlir. Bir

e€S icin e =e oluyorsa e elemanina idempotent eleman denir.

7.2.1. Tammm: Bir S kiimesi hem yarigrup hemde Haussdorff uzayr ve §xS§ ’den
S’ye tamml (s,¢)— st tasviri ile verilen topolojide siirekli ise S’ye topolojik
yarigrup denir.

S iizerindeki bir m Ol¢iisii, her A Borel kiimesi ve Yu € S igin

Au~'={reS: tued} (7.15)
olacak sekilde,
m(A)=m(Au") (7.16)

sartin1 sagliyorsa r*-invaryant olarak adlandirilir.

7.2.2. Teorem: Bir § kompakt yarigrubu iizerinde asagidaki kosullar birbirine

denktir..

1. ¢~ (S )/ da bir sag invaryant mean m vardir.

2. § ’da bir r*-invaryant 6l¢ii m vardir.

3. § , tam olarak bir tane minimal sol ideal igerir.
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7.2.3. Sonuc¢: Bir § kompakt semigrubu lizerinde asagidaki kosullar birbirine

denktir.
1. 0~ (S )/ da bir invaryant mean vardir.
2. S ’nin ¢ekirdegi K bir gruptur.

7.2.4. Sonuc: Eger S kompakt yarigrubu tek bir sag invaryant mean m’ye sahip ise o

halde § ’nin ¢ekirdegi K bir gruptur ve m iki tarafli invaryanttir.

7.3. Amenable Yerel Kompakt Gruplar

7.3.1. Tamm: Uzerinde tamimlandig1 topoloji yerel kompakt ve Hausdorff uzay olan

topolojik gruba yerel kompakt grup denir.

X herhangi bir kiime ve ,u.'ZX —R sonlu toplamsal, g( X )<oo sartini saglayan bir
kiime fonksiyonu ise me/” (X ) icin

<¢,m>-'=)ff #(x)du(x) (pel”(X)) (7.17)
ile tanimlidir.

7.3.2. Tammm: G bir yerel kompakt gurup ve E , L°°(G) ‘nin sabit fonksiyonlari

iceren bir alt uzay1 olsun. E iizerinde bir mean

<l,m >:||m||=1
sartim1 saglayan £’ ’m elemani bir fonksiyoneldir.

7.3.3. Onerme: G bir yerel kompakt grup ve E , L°°(G)’nin sabit fonksiyonlari

iceren ve kompleks eslenik altinda kapali bir alt uzay1 olsun.

Bu durumda, <1,m>=1 sartin1 saglayan m:E— C lineer fonksiyoneli i¢in
asagidakiler birbirine denktir.

1) m, E lizerinde bir meandir.

i) m, pozitiftir. Diger bir deyisle,

<¢,m>>0(geE,$>0) . (7.18)
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7.3.4. Tammm: G bir yerel kompakt grup olsun. M (G) , G lizerindeki biitiin (sonlu)
kompleks regiiler Borel 6l¢iilerinin uzayini gostersin. Bir g€ G i¢in g’deki nokta

kitle (point mass) 5, e M (G) su sekilde tanimlanir :
<f.6,>=f(g) (feC,(G)) . (7.19)

7.3.5. Tanim: G bir yerel kompakt grup ve u,veM (G) olsun.

u,veM(G) igin u*xveM (G) konvuliisyon ¢arpim su sekilde tammlamr
<[ [Flem o)) (rec,(o) (720
G\G

7.3.6. Tamim: G bir yerel kompakt grup ve E, L” (G) ‘nin sabit fonksiyonlar1 i¢eren

ve kompleks eslenik altinda kapali bir altuzay1 olsun.
1) Eger her geE ve geG i¢in &, *¢eE ise E’ye sol invaryant denir.
i1) Eger E sol invaryant ise, o halde

<S,xp.m>=<g.m> (geG,pek) (7.21)

oluyorsa E tizerindeki mean m’ye sol invaryant denir.

7.3.7. Tanim: Eger L°O(G) de bir sol invaryant mean var ise G yerel kompakt

grubuna amenable denir.

7.3.8. Tammm: G bir yerel kompakt grubu olsun.

1) P(G) su sekilde tanimlansin,
P(G)={fel'G): £20 ] f], =1} (7.22)

ii) E uzay, L”(G), C,(G), LUC(G), RUC(G) veya UC(G) uzaylarindan biri

olsun. Eger

<frp,m>=<¢.m> (pcE,feP(G)) (7.23)

ise bir mean me E ™ topolojik sol invaryant olarak adlandirilir.
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7.3.9. Lemma: G bir yerel kompakt grup ve E uzay1, L*(G), C,(G), LUC(G),

RU C(G) veya UC(G) uzaylarindan biri olsun. O halde E iizerindeki her topolojik

sol invaryant mean, sol invaryanttir.

7.3.10. Teorem: Bir yerel kompakt grup G i¢in asagidakiler denktir:
1) G amenable’dir.

ii) C,(G) de sol invaryant mean vardur.
iii) LU C(G)"de sol invaryant mean vardur.
iv) RU C(G)’de sol invaryant mean vardir.
v) UC(G)’de sol invaryant vardur.

7.3.11. Teorem: Bir yerel kompakt grup G i¢in asagidakiler denktir.

1) G amenable’dur.
ii) L”(G)’de sag invaryant mean vardir.

iii) L*(G)’de invaryant mean vardir.

7.3.12. Onerme: G amenable, yerel kompakt grup ve H bir baska yerel kompakt

grup olsun. 8:G — H yogun goriintii kiimesine sahip siirekli homomorfizm ise o

halde H de amenable’dir.

7.3.13. Sonug¢: G amenable, yerel kompakt grup ve N, G’nin kapal1 alt grubu olsun.
O halde G/N amenable’dir.

7.3.14. Teorem: G amenable, yerel kompakt grup ve H, G’nin kapali alt grubu

olsun. O halde H amenable’dir.

7.3.15. Teorem: G yerel kompakt grup, N ve G/N amenable olacak sekilde N, G’nin

kapali normal altgrubu olsun. O halde G amenable’dir.
7.3.16. Ornekler:

7.3.16.1. Ornek: G=7 alalim. Acaba Tam sayilar kiimesi Z’de invaryant mean

var midir?
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P(G)’nin tipik bir eleman, > a,5, formunda sonsuz toplam olacaktir. Burada

Vr ,a,.20 ve Z a, =1 dir. Zayif* yi1gilma noktalarinin ( weak™ cluster points) en

s Uy =

az biri invaryant mean olacak sekilde P(G)’de bir { fn} dizisi olusturmaya

calisalim. f, ’1 su sekilde secelim:

il Z S, (Cesaro toplami ) (7.24)

Jn=

Eger (oelm(Z) ve s20 (SEZ) ise,

F9)-1.00) - 2;“[:2_ (51t
- S o)
22Sn”f1” n—>w (1.25)

A

elde edilir. Benzer bir sonu¢ s<0 i¢in elde edilir¢ M (Z) “deki { f n} dizisinin her

zay1f* y1gilma noktasi bir sol invaryant meandir. Dolayisiyla, Z amenabledir.

Cc
7.3.16.2. Ornek: G=R alalim. Bir énceki rnegi kullanalim ve f, = [2_”]
n

alalim. O halde x>0 ve (oeLw(]R) icin,

A A 1 n

12800 1,0)| = | Tl ot0p

SM—N , 1—>0 (7.26)
2n

A

elde edilir. { /. } dizisinin her zay1f* yi1gilma noktasi bir (sol) invaryant meandir.

Dolayistyla, R amenabledir.
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7.4. Amenable Kavraminin Alternatif Karakterizasyonlar:

7.4.1. Invaryant Meanlar
Invaryant meanin tanimina gore; G, ancak ve ancak L°°(G)’de bir sol-doniisiim

invaryant mean var ise amenabledir. Amenable kavramu, Lw(G)’de sag-doniislim

invaryant mean’in, iki tarafli doniisiim invaryant mean’in ve topolojik olarak

invaryant mean’lerin varligina denktir.

Kompakt gruplarin karakteristik 6zelligi Haar Ol¢iilerinin sonlu olmasidir ve tiim
gruplarin Haar o6lgiileri genellikle normalize edildiginde 1’e esittir. Haar Olciisiine
gore integrasyon, sinirli fonksiyonlar uzayinda bir invaryant mean’dir. G kompakt

degil ise, sinirli fonksiyonlar genellikle integre edilemez.

(Ctinkii L°°( G,m )CZ Ll( G,m ) ) Bu sebepten L°°( G,m ) deki doniisiim-invaryant

meanlerin varhigi arastirilirken kompakt gruplarin bazi 6zellikleri amenable, yerel

kompakt gruplara genisler.

Haar olgiisii tek olmasina ragmen invaryant meanler tek degildir. Rudin, 1972°de
kompakt abelian grup T’nin Haar 6lgiisiinden baska invaryant meanleri oldugunu
gosterdi. Daha sonra, genel yerel kompakt bir gruptaki invaryant meanlerin sayisi
tam olarak bulundu. [2]

7.4.2. Paradoksal Ayrisim ( Paradoxical Decomposition )

Bir G grubunun paradoksal ayrisimi, agagidaki sart1 saglayan G’nin sonlu

G=40...04,UBUL...UB (7.27)

aynsimudir. x,,...,.x,,¥,,....y, €G ve A4,...4, ,B,...B, dlgiilebilir alt kiimeler olmak

lizere,
G=x,4..ux, 4 ve G=y BuU..UyB (7.28)
de G’nin ayrigimlaridir.

G’nin ancak ve ancak paradoksal ayristirmasi yoksa amenable olacagi 1938 yilinda
Tarski tarafindan gosterildi. Amenable kavramu ilk olarak paradoksal ayristirmasi ile

baglantili olarak ortaya ¢ikt1.
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7.4.2.1.0rnek:

Iki iiretegli F, serbest grubunun amenable olmadigini iki ydntemle gdsterelim:

a ve b F,’nin iki tireteci olsun. 4, kiimesi a ile baslayan biitiin kelimelerin, B,
kiimesi b ile baslayan biitiin kelimelerin, A, kiimesi a' ile baslayan biitiin
kelimelerin ve B, kiimesi b~ le baslayan biitiin kelimelerin kiimesi olsun.
A.,B,A,,B, arakesitleri bos ve F\{e}=4 UB U4, UB, dir. Herhangi
keF\A, igin a 'ke 4, dir. k=a(a 'k)ead, oldugundan F =4 Uad, dir.
Benzer sekilde F, = B, UbB, dir. Yani ]‘72 paradoksal ayrisgimdir.Dolayisiyla 7,

amenable degildir.

Veya me L”( I, ) oldugunu kabul edelim.Bu durumda,

m({e} )+m( A1)+m(A2)+m(B1 )+m(B2):m(G) ,
m(G )=m(4)+m(ady) .,  m(G)=m(B,)+m(bB,) (7.29)
ve m( G )=1 olmas gerektiginden m’nin invaryant olmasi ile ¢elisir yani bdyle bir m

invaryant 6l¢ii bulunamaz, dolayisiyla 7, amenable degildir.

7.4.3. Folner Kosulu

Bu kosula gore, amenable gruplar doniistimler altinda neredeyse invaryant kompakt
altkiimelere sahiptir. Ornegin, G kompakt ise grubun kendisi doniisiim altinda

invaryanttir.
7.4.3.1. Tammm: Eger her £ >0 ve G’nin her kompakt alt kiimesi C ig¢in,
m((xK \ K)u (K\xK))/m(K)<e (xeC) (7.30)

olacak sekilde G’nin bir K kompakt altkiimesi var ise, G yerel kompakt gurubu

Folner kosulunu saglar denir.

Bir G yerel kompakt grubu ancak ve ancak Folner kosulunu saglarsa amenable’dur.
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7.4.3.2. Sonug¢: G bir amenable olmayan grup olsun. O halde LZ( G) de sifir

olmayan doniistim-invaryant fonksiyonel yoktur.

7.4.4. Sabit Nokta Ozelligi ( The Fixed Point Property )

Bir yerel konveks topolojik lineer uzayin bir C kompakt, konveks altkiimesinde

G’nin her stirekli ve afin aksiyonu bir sabit noktaya sahiptir.

7.4.4.1. Onerme: G yerel kompakt grubu ancak ve ancak sabit nokta 6zelligine sahip

ise amenable’dir.

7.4.4.2. Teorem: G bir yerel kompakt grup olsun. G ancak ve ancak her Banach

L(G)-bimodiil x igin

H'(L(G).x")={0} (1.31)
oluyorsa amenable’dir.

7.4.4.3. Sonug: G bir amenable grup ve D:L'(G)—> L (G ) bir siirekli tiirev olsun.
O halde,

D(f)=f*u-uxf (feL(G)) (7.32)
olacak sekilde xeM(G) vardir.

7.4.5. Yaklasik Birim

Bir G grubunun amenable olmasi, Ll( G ) nin ideallerinde yaklasik birimin varligina

denktir. Esboyutu 1 olan

L(G):={feLl(G): (j;fdm=0}

alt uzay1 Ll( G ) ’nin bir kapali idealidir. Bu konuda 1968 yilinda Reiter ilk sonucu

vermistir.

7.4.5.1.Teorem: G yerel kompakt grubunun amenable olmasi i¢in gerek ve yeter sart

Llo( G ) ’nin bir sol siirl yaklasik birime sahip olmasidir.
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8. AMENABLE RADIKAL BANACH CEBIRLERI

Bu boliimde degismeli ve degismeli olmayan amenable radikal Banach cebirleri
incelenmistir. Runde [26] makalesinde degismeli olmayan amenable radikal Banach
cebrine zayif Wiener oOzelligini kullanarak bir 6rnek vermistir. Read, [21]
makalesinde degismeli amenable radikal Banach cebrine, yaklasik kosegen

karakterizasyonunu kullanarak bir 6rnek vermistir.

8.1. Amenable Banach Cebirleri

A bir birimli cebir ve

ﬂ(d@b):ab (a,beA) (8.1
olacak sekilde 7:4®A4—>A4 bir lineer tasvir olsun. 7z(u)=e, ve
a-u=u-a (aeA) 8.2)

olacak sekilde ue A® 4 elemanina 4 i¢in bir kosegen (diogonal ) denir.

8.1.1. Teorem: A bir cebir olsun. Bu durumda asagidakiler birbirine denktir:

i) Her 4-bimodiil £ i¢in H'( 4,E)={0} dur.

i1) A birimlidir ve A’nin A ® A4 ’da bir kdsegeni vardir.

iii) A yari-basittir ve sonlu boyutludur.

8.1.2. Tammm: A4 bir Banach cebri olsun. Her Banach  A-bimodiil E igin
HI(A,E'):{O} 8.3)
ise A amenable’dir.

Bundan dolay1, 4’dan dual modiil E£'’ye giden her siirekli tiirev i¢ (inner) ise 4

amenabledir. 4 bir birimli cebir olsun. 4’nin amenable oldugunu gostermek igin, her

birimli Banach 4-bimodiil £ i¢in A" ( 4,E")={0} oldugunu gdstermek yeterlidir.
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E ve F Banach uzaylari ve TeB(E,F) olsun. T'nin duali T'eB(F',E')

elemanlarindan olusur ve
<x,T'A>=<Tx,A> (xeF , AeF") (8.4)
seklinde belirlenir. £’ ve F' kendi zayif * topolojilerine sahip oldugunda bu tasvir

sireklidir. B( E",F") de T"nin ikinci duali 7"=(T ')' dir.

8.1.3. Tanim: A bir birimli Banach cebri olsun.

7"(M)=e, ve a-M=M-a (acAd) 8.5)

olacak sekilde (AGA?Aj deki bir M elemanina A igin bir sanal kosegen (virtual
diagonal) denir.

8.1.4. Teorem: A bir birimli Banach cebri olsun. Bu durumda, 4 ancak ve ancak

A’nin bir virtual diagonali varsa amenabledir.

G bir grup ve A=/'(G) olsun. Verilen f,ge4 i¢cin G®G de f®g su sekilde

tanimlanir:

(f®g)(s,t):f(s)g(t) (s,teG) (8.6)

A (>A§A—>£ 1 ( Gx G) bir izometrik izomorfizm vardir. Bu A® A4 da f®g yi

yukaridaki gibi tanimlar.

¢'(G) nin dual uzayr (*(G)’dir. fe(”(G) lizerinde &;€¢'(G) nin aksiyonlar:

(actions) su sekilde verilir:

(8,-1)=(1)=1(15) . (£-8,)(1)=1(st) (1<G) .7

7 ( GxG)nin duali,

(4®4) =r"(GxG) (8.8)
dir ve bu bir Banach 4-bimodiildiir. Modiil iglemleri « asagidaki denklemleri saglar:

seG ve Fel”(GxG) olmak iizere,
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(5S-F)(u,v):F(u,vs) , (F-b’s)(u,v)z(su,v) (u,veG) (8.9)

ﬂ:A(>A9A—>A iretilmis c¢arpim tasvirinin (the induced product map) duali
707 (G)—>L” (GxG) dir ve
7 (f)uv)=f(uv) . (u.veG, fer*(G)) (8.10)

Bundan dolayi, bir virtual diagonal

<F-5, ,M>=<6,-F.M> (seG,Fel*(GxG)) (8.11)
veE
< (f)M>=<f(e;) (fel*(G)) (8.12)

olacak sekilde /¢ °°( Gx G) de bir siirekli lineer M fonksiyonelidir.
8.1.5. Tanim: G bir grup olsun. £*(G) de bir mean
A(1)=]|A]=1 (8.13)

olacak sekilde (f“’ (G),

. | o ) de bir siirekli lineer A fonksiyonelidir.
<fA>=<f-5,,A> (seG, fel*(G)) (8.14)

ise mean A sol invaryanttir.

G’de bir sol invaryant mean varsa G grubu amenabledir.

8.1.6. Teorem: ( Johnson)

G bir grup olsun. O halde, /' ( G) Banach cebri, ancak ve ancak G grubu amenable

ise amenabledir.

8.1.7. Onerme: 4 ve B Banach cebirleri ve 6(4)=B olacak sekilde 6:4—> B bir

stirekli homomorfizm olsun. Varsayalim ki 4 amenabledir. O halde B amenabledir.

8.1.8. Teorem: Her kompakt uzay Q icin, C ( Q) Banach cebri amenabledir.
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8.2. Degismeli Olmayan Amenable Radikal Banach Cebirleri

A bir Banach cebri ve Prim(4) primitif ideallerin uzaymi gostersin. / < A4 ve

J c Prim(A4) igin

hull(1):={P e Prim(A):I1c P}, ker(J)=({P:PelJ}
ve J = hull(ker(J)) olarak tanimlanir./ c A4 ve J:hull(l) ise J =J dir.

Prim(4)’nin kapali alt kiimesi F, F=hull (1 ) olacak sekilde 4’nin kapali ideali /

yalniz ker(F) ise A igin bir sentez kiimesi denir. Diger durumda F’ye A igin sentez

olmayan bir kiime denir.

8.2.1. Tamim: 4 i¢in sentez kiimesi bos kiime olan bir Banach cebrine zayif Wiener

(weakly Wiener) denir.
Bir yerel kompakt G grubunun zayif Wiener olmasi, Ll( G) ‘nin zay1f Wiener olmasi

olarak tanimlanir.

8.2.2. Yardimc1 Teorem: A bir zayif Wiener olan bir Banach cebri olsun. Bu

durumda 4’nin her boliimii zayi1f Wienerdir.

A bir Banach cebri S ve T, A’dan 4’ya giden x.7y =Sx.y Vx,y € A sartin1 saglayan
sinirlt lineer operatorler ise (S T ) ikilisine ¢ift merkezleyici denir. Bu ikililerin

olusturdugu M ( A4) kiimesi
(S1.T)(S,.1,)=(8,S,.T\T;)

carpimu altinda bir cebir olusturur. Bu cebire ¢ift merkezlestirilmis cebir denir.

8.2.3. Yardimci Teorem: A4 bir zayif Wiener olan bir Banach cebri ve ApA4 , A’da
yogun olacak sekilde peM(A) bir esgiiclii (idempotent) olsun. Bu durumda pAp

zayif Wienerdir.

Kamt: Jc pAp , J#pAp bir kapali ideal olsun. I, J ile tiretilen A nin kapali bir

ideali olsun.

I,=J+AJ+JA+AJA 1, =hull( ker1, ) (8.15)
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I=1; ve plpcldur. Bunun anlami /cA4 ve [#Adir. A zayif Wiener
oldugundan /c P olacak sekilde bir pirimitif ideal vardir. Q=pApn p alalim.
Q:=pAp oldugunu disimiirsek, (A4 pA)ch ve primitif oldugundan ApAc P
olur. 4’da ApA’nin yogun olmasindan 4=P elde edilir. Bu ise ¢eliskidir. 7z, bir E

lineer uzayr lizerinde 4’nin bir indirgenemez temsili ( represantation) olsun. A4,
M(A)’da bir ideal oldugundan, 7’yi E {lizeinde M(A)’nin bir indirgeme tersine

kanonik olarak genisletebiliriz, bunu yine 7 ile gdsterelim. pAp ¢ p olmadigindan

ﬂ(p);tOdlr.

Xe 7z( p)E / {0} alalim, bu durumda

zz(pAp)xzzz(pA)x:ﬂ'(p)ﬁ(A)xzﬂ(p)E (8.16)
ve sonugta ( 7r|p " 7z(p)E) ., pAp ninbir indirgenemez temsilidir ve O
primitifdir. O

G yerel kompakt grup olsun. G, 4 iizerinde izometrik *-otomorfizm grubu olarak

hareket etmek lizere 4, izometrik involiisyonlu bir Banach*-cebri olsun. xeG ile

belirlenen otomorfizmi 4>a—>a" olarak yazalim. L ( G, A) Banach uzay1

-1

(f*e)(x):=[ f(xy) g(y")dy @8.17)
f*(x)::AG(x)l(f(x‘l)x)* f.gel'(G,A), xeG (8.18)

ile izometrik involiisyonlu bir Banach*-cebri olusturur. Burada dx Haar Ol¢iisli ve

A, , G lizerinde modiiler fonksiyondur.

G ve H yerel kompakt gruplar olsun. G, H iizerinde siirekli ve otomorfisel olarak

hareket etsin. Yani, dyle bir stirekli Gx H > H ( g,x)—)xg tasviri vardir ki

(xy)g =x*y*% (xg )h =x*" (8.19)
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ve x '=x dir. Her geG, i¢in dx® bir Haar olgiisiidiir. Bu yiizden

dxg:AG'H(g)dx (8.20)

olacak sekilde bir A, (g) pozitif reel sayisi vardir. feCy(H ) ve heH igin f,

ve f" asagidaki gibi tanimlanir:
SM(x)=f(hx) ve f,=f(xh) xeH 8.21)

Simdi C,(H ) n asagidaki dzellikleri saglayan Q alt cebrini alalim.

i Q,

q”w S|q|=‘ q*‘ olacak sekilde | . | normu ile bir Banach cebri olmak iizere
C,(H )’in bir *-altcebridir.

ii) geQ vehicin, ¢" €0 ve |¢"|=[q| dir.

iii) geQ icin, H3>h—>¢q" tasviri siireklidir.

iv) QO ’da kompakt destekli fonksiyonlar bir O, yogun alt cebir olusturur.

v) 1,,’mn her U komsulugu icin

a)uz0 ve supp(u)cU

b) VheH i¢in U, €Q

c) H>h—U, tasvir siireklidir.

sartlarin1 sagliyan bir ueQ Ornegin;

CO(H ) bu sartlar1 saglar. Eger H abelyen ise Q’yu

O=A(H)=L(4) (8.22)
olarak secebiliriz. Yukarida tanimlanan Q’da, ue O ve geG igin
(Uog)(x):zu(ngl) , xeH (8.23)

tanimlayalim. Ayrica

vi) Her geG i¢in 03¢ —¢qog tasviri, Q’nun izometrik izomorfizmi olsun.
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vii) Her ge G icin G>g— gog tasviri slireklidir.

sartlarini ele alalim. Bu durumda L ( H,Q) dan sdz edebilir.

feLl(H,Q) ve geG i¢in

Fo ()= ()" f(x* )og  xeH (8.24)
olsun. Buna gore her geG icin LI(H ,Q)a f— f% bir izometrik *-izomorfizmdir

ve L'(G,L(H,Q))sbz edilir.

8.2.4. Teorem: G,H ve Q yukandaki sekilde verilsin. 4:=L'(H,Q) ve A, #1

olsun. Bu durumda Ll( G, 4) zayif Wiener degildir.

e x €z
G,(0)=110 &' y t,x,yzeR (8.25)
0 0 1

olarak tammlansin. G,,(0) grubunu tanimlamanin diger bir yolu asagidaki gibidir.

Heisenberg grubu,

=
1
S O =
S~ =

z
yv| x,yzeR (8.26)
1

seklinde tanimlanir. H ’in grup otomorfizmlerini U ( Hl) ile gosterelim ve

¢:R—>U( H, ) tasvirini

I x z 1 e, z
a(t)| |0 1 yl|=|0 1 ey (8.27)
0 0 1 0 0 1

olarak tammlayalim. G,,(0), H,x ,R yari carpimi olarak tamimlayabiliriz. Ozel

olarak G,,(0) , H, nilpotent grubunun bir abelyen genislemesidir. Bu yiizden

¢Oziilebilirdir (solvable) ve bundan dolayida amenabledir.

durumda Ll( G, A) zay1f Wiener degildir.
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8.2.5. Sonug: G, ,(0) zayif Wiener degildir.

Kanit: Ll( G,,(0) ) ve Ll( R, L(H,) ) tanilayalm.  feL(H,) i¢in
].”(x,g):zj.f(x,y,z)eii(””)dydz (8.28)

olarak tanimlayalim. Q:= A(R) ved = Ll( R,Q) tammlanirsa f —)].‘ tasviri
L'(G”(O)) dan L'(R,A) iizerine bir epimorfizm iiretir. Eger L'(G”(O)) zayif
Wiener ise yardimci teoreme gore LI(R,A)da zay1f Wienerdir. Burada R {izerine
R ’nin hareketi (#,x)—>ex olarak verilir. Sonugta Ap o(f)=e" #1. Yukaridaki

teoremden L'(R, 4) zayif Wiener degildir. Yani  G,,(0) zayif

Wiener degildir. O

8.2.6. Teorem: Zayif Wiener olmayan, amenable yerel kompakt bir grup varsa

amenable, radikal Banach cebirdir.

Kanit: G amenable, zayif Wiener olmayan bir yerel kompakt grup olsun. G, zayif
Wiener olmadigindan L'( G ) ’nin PrimL (G ) de hull’u bos olan bir kapali 6z ideali
J vardir. Bu ylizden R:= Ll( G ) /J bir radikal Banach cebridir. Bu amenable Banach

cebrin boliimii oldugundan da amenabledir.

Buna gore Ll( R, A) bir amenable, radikal Banach cebirdir.

8.3. Degismeli Amenable Radikal Banach Cebirleri

Simdi abelyen amenable, radikal Banach cebire bir 6rnek verelim. Bu cebri insa

etmek, teknigi zor olsa bile fikri o kadar zor degildir.

Her Banach A4-bimodiil X’ler i¢in

H'(4,X")={0} (8.29)

ise A Banach cebrine amenable denir. Yani 4 'dan bir dual Banach A-bimodiil X" ’e
her siirekli tiirev inner ise 4’ya amenable denir. Amenable bir karakterizasyonuna

gore A’nin yaklasik kosegen (approximate diagonal) olmasi amenable olmasini
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gerektiriyor. Yani her ae A4 i¢in komiitator [a,An]—>O olacak sekilde projektif

tensor carpiminda bir smurl net (A,) ve 7 A®A—> A carpim tasviri ise

n(A4,)a—a du.

Bu bolimde Banach cebirlerinde amenable kavramina denk olan bu tanimi
kullanilacaktir.

Degismeli amenable radikal Banach cebri (DARB) insasi i¢cin normu en fazla 1 olan

A, kosegen elemanlar1 kullanilacaktir. 4, elemanlarinin normlar1 1 ile smirh bir

yaklasik kosegene sahip ise 4 , bir metrik yaklasik kosegene sahiptir denir. Her
elementi nilpotent olan sonlu boyutlu degismeli Banach cebri kisaca “Sonlu Boyutlu,

Nilpotent Degismeli” “SBND” ile ifade edilecektir. SBND cebrinde dyle bir 6 vardir
ki her xe 4 icin x“ =0 dir. Bu 6zelligi saglayan en kiiciik d say1sina A’nin derecesi

denir.

8.3.1. Tamim: B bir Banach cebri ve A< B bir alt cebir olsun. 4 i¢in, ¢ sabiti ile bir

metrik yaklastk birimi, her ae A igin
||u||£l ve ||ua—a||£5||a|| (8.30)

sartlarini saglayan bir ae B elemanina denir.

8.3.2. Yardimci Teorem: Her SBND cebri 4 ve her 6 >0 igin O sabiti ile A i¢in bir

metrik yaklagik birimi i¢eren , ayrica SBND cebri olan B> A4 genislemesi vardir.

Kamt: Loy, Read, Runde ve Willis’in [19] makalesinde yardimeci teorem 2.2 ve

yardimci tensor 2.4 den elde edilir.

8.3.3. Tanim: 4 bir SBND cebri ve ||u||£1 olmak iizere u,ae A olsun. Eger,

7 A® A—> A dogal ¢arpim tasviri olmak {izere,

ﬂ(A):u,

Al<tve |[a,A]|<¢]a] (s sabit) (8.31)

ise A’da a igin AcA®A elemanma bir kuvvetli metrik vaklasik komiitant

(commutant) denir.
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8.3.4. Tamm: Eger 1 bagimh olarak biiyiik ve ¢>0 yeterince kiigik ve 7(A)=u

||A||£1 ve bir ae 4 igin

|y=al<nla] ve|[y.a]l<¢ Ja (8.32)
olacak sekilde bir ye 4 bulabiliyorsak A’ya wu goriintiisii ve 77,4 sabitleri ile

birlikte a icin bir zayif metrik yaklasik komiitant denir.

8.3.5. Yardimc1 Teorem: A4 bir SBND cebri ve ue 4,

u”Sl olsun. Bu durumda
herhangi aed, ¢>0vene [E 1} icin BB, u goriintiisii 77,4 sabitleri ile

birlikte « i¢in bir zay1f metrik yaklasik komiitant A’y1 igerecek sekilde A’yi1 igeren
bir SBND cebri B vardir.

Kamit: Verilen 4 cebrinin boyutu n veya 4’nin derecesi d’den biiyiikk N alalim. 4’ya
N tane (y, ),]il iireteg ekleyerek A,[y,....yy] genisletilmis cebrini diisiinelim. Sabit
katsayilar A’da olacak sekilde katsayilar1 A4,’de olan y sembollii polinomlar iceren

A[ y] cebrini ele alalim.

<" >={y"q(y):q e4[y]] (8.33)
ideali olmak iizere,
B=A[y]/<y"> (8.34)

uygun boliimiinii alarak istedigimiz A ’yi elde edecegiz.

N N
H y," genel ¢arpimini y” ve Zri toplamini |r| ile gosterelim. Yeterince biiytlik
i=1

J=1

|r ’ler i¢in y" =0 olacak sekilde bolimii segecegiz. Gergekten,

|r|=N?d (8.35)

i¢in bu dogrudur. Goriintii vektdrii u e 4 igin (dyleki 7( A)=u olmalr)
v =u (8.36)

. + N e es _es _ae . N1 .
yani 1, (1,1 ,...,l)e(Z ) vektorilinli gosteriyorsa y " =u dir.
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I, , y"'~u tarafindan iiretilen ideal ve I, {yr

r|2N *d } tarafindan tretilen ideal
ve I=1,+I olmak iizere B =4[ y] / I bolim uzayini diisiinelim. B cebri ise g’nun
sabit katsayilar1 4’da olacak sekilde q( y ) + I polinomlarinin ideali olacaktir.

A,[ y] tizerinde baslangi¢ normu

V= (8.37)
sartin1 saglayan H||H normdur.
Verilen ne{%,l} ve a€A ic¢in B, lizerinde |||| normunu asagidaki ozellikleri

saglayan Al[ y] / I boliim cebrinde en genis norm olacak sekilde tanimlayalim. Her

xeAl[y] i¢cin ||x+]||§H|x|H ve

H N Zylj —a+1

<n (8.38)

sartlar saglasin. Yeterince biiyiik N’ler igin 4’nmn izometrik olarak (B,|-|) igine

gomiilecegini ve B’'nin SBND cebri oldugunu gosterelim.

||y—a||£77 olacak sekilde y=§iyi ve A

i=1

(N-1)" >y @y" eB®B (8.39)

1<r<( N-1)1

elemani olsun.

N-1
A=(N-1)" vy (8.40)

Jj=1
olmak tizere A=1£[Al. dir. Bu yiizden || y[||sl oldugundan ||Ai||S1 ve ||A||£1 dir.
i=1

Boylece,

I[y.a]]< (8.41)

N -1

oldugu goriiliir. Bu verilen ¢>0 sabitinden daha kiigiiktlir, N’yi N >1—|—l olarak
S

secelim. Bu durumda A verilen ae 4 i¢in bir zayif metrik komiitanttir. Goriintlisti

7(A)=y""'=u (modr) (8.42)
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xed igin |x|,<|x|, bilindiginden herhangi 1 normlu a"€ A" lineer fonksiyoneli
normu 1 olan bir genislemesini (B””B) ye yapabiliriz. Once a”, a*(l):O
tanimlayarak A4, ’e genisletelim. Genislemeyi a":B, —>C asagidaki 6zelligi

saglayacak sekilde tanimlayalim. Her re(Z+ )N indis kiimesi ve her xe 4, icin

5*(y’x)={a*(”k“lx) . r=kNl+s,ke[0,d) |s|=le[0,d) 543

0 ,  diger durumda
N’>d saglandigindan @ " sifir degildir. Béylece @ *, Al[ y]—)C 1yl tanimlanmis

bir tasvirdir. N>d i¢in @” fonksiyoneldir. 7, ve 1 idealinin sifirlayicisidir.
(annilates)

Simdi verilen Ha* HSI igin HJ*HSI oldugunu gosterelim.

(8.38) denkleminden, B, iizerinde || . || normunun,

1 N
ERE

N[ ve

<n (8.44)

sartlarini saglayan boliim cebri lizerinde en biiylik norm oldugunu gorebiliriz. (8.37)

verilen H| . |H normuna gore

k
||x||inf{2”bk N XZZU"‘ (Liyi—aj yrbkrmodl} : (8.45)
A kor 2NT ’

k>N’d+d—-1 degerleri igin

1 ‘
— —a | =0 (modlI 8.46
(2 NZy j (mod 1) (8.46)
oldugundan her xe B, igin
[z | di (8.47)
9

n>— ve k> dlog 4 i¢cin (8.50) dir.
10 log 6/5

k<088 o N (8.48)
log6/5
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< dlog4

(burada 0<t<d ve r'>z,|r|<d)ile k< ve
log 6/5
r=Ntl+r' (0St<d,r’2 Zl|r'|<d,r'22,‘rl‘<d) (8.49)
disindaki r’ler i¢in
1 & ‘
at|— —al| y b|<n* 8.50
ZN;yl ] y'b|<n (8.50)

oldugundan H a’

<1 dir. (Runde s:78-79). Yani 4, B’ye izometrik olarak

gomiiliir. O

Asagidaki yardimc1 teoremde kullanilacak bir 6zelligi gosterelim. Eger a€ 4 ve

AI,A2€A®A ise

a,Al A2

a,Al

Azz

a,A2

A (8.51)
dir. Bu yénden A, ve A,, gorintiisii », ve u, ve n,,n,, s, ,s, sabitleriyle birlikte
a,,a, i¢in zayif metrik yaklasik komiitanttir. Dolayistyla A A, , gériintlisii u,u, ve

maks(nl nz), maks(gl,gz) sabitleriyle birlikte a, ve a, i¢in zayif metrik yaklasik

komiitanttir.

8.3.6. Yardimcal Teorem: neN , ne[%,l

, her ¢ >0 ve ||u||:||x||:1 olmak

tizere her x,u€ A, her SBND cebri i¢in, goriintiisii #" ve n" ve ng sabitleriyle x

i¢in bir zay1f metrik yaklasik komiitant A, ’yiigeren bir B, D A SBND cebri vardir.

Kamt: Kanit1 timevarimla yapalim. n=1 i¢in sonug¢ yukaridaki yardimci teoremdir.

Tiimevarim hipotezine gore kosullar saglayan B, genislemesi var ve biz uygun bir

metrik yaklasik komiitant A i iceren, uygun B, DB, genislemesini bulmak
istiyoruz. Hipoteze gore H [ y,An]H <ng olacak sekilde || xX— y||<77n olmak tizere bir

yEB, vardir. x'=2"2

vektoriiniin normu en fazla 1 oldugundan yukaridaki
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yardimci teoreme gore ||A||§l , W(A)ZM ve H [ Z,A]Hgg olacak sekilde bir metrik

yaklasik komiitant A ve

|z=(x=2)/n"|<n (8.52)

olmak iizere bir z elemanini igeren bir B ,,D B, genislemesi vardir.

A, =AA €B  ®B,, (8.53)
yazalim. Bu durumda,

(A, )= A<t ve |z, <s (8.54)
dir. y' =y+n"z alarak,

|y = x| =[y—x=n"z|<n"" (8.55)

elde edilir. Ayrica,
[l all= s <lal|[v.a, ]+,

oldugu goriiliir. Boylece A, 'in gerekli olan bir metrik yaklasik komiitant oldugu

HA,n"z]Hg(nH)g (8.56)

gosterilmis olur. g
8.3.7. Yardimc1 Teorem: 4 bir SBND cebir ve §>0 ise ¢ sabitiyle a i¢in bir
kuvvetli metrik yaklagik kommutant A olmak iizere her a€ A4 igin W(A):u

olacak sekilde bir AEBRB ve § sabitiyle 4 icin bir metrik yaklasik u’yu igeren
A’nin BD A genislemesi olan bir SBND cebri vardir.

n
A’nin bir bazi olsun. A4A’min her x elemanin E \a,

i=1

Kamt: g4, ,aq,....,a

n

yazdigimizda
_21:\,\,.\31{||x|| (8.57)

olacak sekilde bulabilecegimiz bir K sabitini alalim. Herhangi né& [%,1] i¢in

277”K<% (8.58)

olacak sekilde n’yi segelim. ¢ 'yi de
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ncK <§ (8.59)

olacak sekilde segelim. Yardimei teorem (1.2)’yi kullanarak &’ :% sabitiyle 4 i¢in
n

bir metrik yaklagik birim u,’1 iceren B, DA genislemesi bulabiliriz. Yukaridaki
yardimer teoremden de 7" ,n¢ sabitleri ve u, goriintiide @, igin bir zayif metrik
yaklasik kommutant A, ’e sahip B, D B, genislemesini bulabiliriz.

Benzer sekilde n",n¢ sabitleri ve u; goriintiisityle a, i¢in bir zayif metrik yaklasik
komiitant A4,’ye sahip B, DB, genislemesini bulabiliriz. Boyle devam ederek
n",ns sabitleri ve u, gorlintiisiiyle her a, , i=L,...,n i¢in zayif metrik yaklagik

komiitantlar A, ’lara sahip B, D B, genislemesini bulalim.

A=]]4, carpmu igin |A[<I wve 7r(A)ug2 =u oldugunu gorebiliriz. Burada
i=l
u,, o :i sabitiyle A i¢in bir metrik yaklasik birimdir. #’da 6 olmayan 4 i¢in bir

2
n

metrik yaklasik birimdir. Her x= E Aa, €A i¢in
i=l1

[Xaﬁ]:i%[apAi]HAJ- (8.60)
i=1 =i
oldugundan
H[x,A]ngn:‘)\i ‘maks”[ai ,AI]HSK”x”maksH[ai,Ai ]H (8.61)
i=1

dir. Her i igin H[yi’Ai]HSTIg ve Hai_yf H<nn olacak sekilde bir y, €B vardir.

Agiktir ki

l[a =».a]|<2]a -y []a <2 (8.62)
ve boylece

maks”[ai A, ]HSZT}" +ng (8.63)

(8.58) ve (8.59)’dan
[, Al|l< & [l (20" +ns)<6]x] (8.64)
Bu yiizden A, 6,6 sabitleri ve u goriintlisii ile her x€ 4 i¢in A’ya gore bir kuvvetli

metrik kdsegen elemandir. Boylece kanit tamamlanir. 0l
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il, 6, sabitiyle her i i¢in A, nin kdsegen genislemesi 4,

1

8.3.8. Teorem: (A,- )

olacak sekilde SBND cebirlerinin bir dizisi ve 6,—0 olsun. Burada 4,C4,

sartin1 sagliyor. 4 , UA . birlesiminin tamlastirilmisi olsun. Bu durumda 4 bir

i=1

degismeli amenable radikal Banach cebridir.

Kamt: A €4 ®4

n+1 n+l12

6,,0, sabitleriyle biitiin x€ 4, igin A’ya gore bir kuvvetli
metrik kosegen eleman olsun. x € 4, ise [x,An ]—>0 ve W(An )x—>x oldugundan
ve boyle elemanlar 4°da yogun oldugundan A dizisi diizglin sinirhidir, dolayisiyla

A € AR A , A i¢in bir yaklasik kosegendir. Dolayisiyla 4 amenabledir.

A, nilpotent elemanlarin bir yogun kiimesine sahip ve degismeli oldugundan

radikaldir. Sonug olarak A degismeli, amenable, radikal Banach cebridir.
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