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RECONSTRUCTION OF BINARY ELECTRICAL CONDUCTIVITY
DISTRIBUTIONS USING GENETIC ALGORITHMS

SUMMARY

Electrical impedance imaging is a noninvasive technique to determine the internal
conductivity distribution of an object based on electrical measurements obtained on
its outer boundary. This technique has been increasingly used in recent decades for
monitoring industrial processes for safe, reliable, and optimal operating conditions.
The wide acceptance of electrical impedance imaging technique is mainly due to its
safety, unique portability, and its dependence on sufficiently inexpensive data
acquisition hardware. However, the problem of image reconstruction to calculate the
unknown electrical properties inside the object is extremely ill conditioned due to the
nonlinear relationship between the measured data and the unknown conducivity
parameters. In addition to the ill conditioning, search space of candidate solutions to
the image reconstruction problem is excessively large, making the problem largely
dependent on the computational efficiency of the solution algorithm. Although
deterministic optimization algorithms based on differential search directions are
widely used in image reconstructions, there are several new promising studies
linking stochastic algorithms and the impedance imaging method in recent years.
Genetic algorithms are stochastic search and optimization methods that are inspired
by the principles of biological evolution to achieve convergence to a population of
candidate solutions by using genetic operators such as selection, crossover and
mutation. Particularly for ill-conditioned problems, genetic algorithms have
significant advantages over the deterministic methods due to their stochastic nature,
parallel searching capabilities and robustness in avoiding local minima.

In this thesis, an improved genetic algorithm is developed for the reconstruction of
two-dimensional and binary conductivity distributions in electrical impedance
imaging. The electrical impedance imaging method used in this thesis is based on the
minimization of the discrepancies between measured and computed electrode
voltages in a least-square sense. The electrode voltages are obtained from two-
dimensional 16-electrode and 32-electrode phantoms, modeled by the finite element
method using 9x9 and 17x17 quadrilateral elements, respectively. The voltage
response on the boundary electrodes induced by the electrostatic field for a known
conductivity distribution and injected electrode currents is simulated by the finite
element method. The problem of ill conditioning due to the relatively weak voltage
response to the targets that are located far away from the boundary electrodes is
surmounted by a new special weight function developed in this thesis. This weight
function calculates the scale factors for each current excitation pattern to equalize the
contribution of different regions of the conductivity distribution to the fitness values
of the candidate solutions.

The genetic algorithm developed for image reconstructions consists of two stages,
each having different objectives and different genetic operators. The aim of the first
stage is to make the population converge near the optimal solution. Because the

Xix



initial population of a genetic algorithm is randomly created, the diversity of the
population is very rich at the beginning of the algorithm. Therefore, high
convergence speeds can be achieved in the first stage with high selection pressures
and low mutation probabilities. Convergence speed of a genetic algorithm generally
becomes slower as the population converges near the optimal solution. As the
convergence is achieved, the diversity of the population dramatically decreases.
However, for the final iterations of the algorithm, diversity must be forced to
increase by using high mutation probabilities and low selection pressures. The aim of
the second stage is eventually to attain the true conductivity distribution by
increasing the mutation probability and decreasing the selection pressure.

Four new mutation operators are developed in this thesis. Two of the mutation
operators work in a shape searching mentality to aid the algorithm to attain the true
conductivity distribution in the second stage. The other two mutation operators work
in both stages of the algoritm to help the algorithm to avoid the premature
convergence. An improved ranked proportionate selection operator is developed to
prevent any candidate solution from dominating over others. Uniform crossover
method is used in the algorithm as recombination operator to ensure an effective
mixture of genes among the population.

Two most important factors for a genetic algorithm are the diversity of the
population and the convergence speed of the algorithm. Genetic algorithms achieve
convergence at the expense of diversity. Increasing the convergence speed decreases
the diversity of the population. On the other hand, rich diversity provides robustness
to a genetic algorithm. With a less diverse population, genetic algorithms are more
likely to be trapped in local minima. Therefore, efficiency of the genetic algorithm is
maximized when the convergence speed and the diversity are optimally balanced. By
using parameter adaptation operator, which is developed to achieve efficiency from
the start to the end of the algorithm, important parameters of the genetic algorithm,
such as the selection pressure, the mutation probability and the crossover probability
are controlled adaptively to maintain the diversity of the population at an efficient
level.

A series of tests is conducted to observe the genetic algorithms performance on
various conditions. Measurement process of each test is simulated using the finite
element model with the optional addition of Gaussian white noise. The genetic
algorithm performed well by attaining the true conductivity distribution in most of
the tests for both 16-electrode and 32-electrode model without noise. The algorithm
achieved convergence in all the tests with noise and attained the true conductivity
distribution up to a certain noise level, showing robust characteristics. In all tests, it
is observed that the adaptive parameter control effectively helps maintaining the
diversity of population as the process converges.
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IKiLi ELEKTRIK iLETKENLIK DAGILIMLARININ GENETIK
ALGORITMALAR ILE YENIDEN OLUSTURULMASI

OZET

Elektriksel empedans goriintiileme, bir nesnenin icsel iletkenlik dagiliminin dig
sinirlarindan elde edilen elektriksel Olciimlere dayanarak belirlendigi girisimsel
olmayan bir goriintileme yontemdir. Bu yontem; giivenli, giivenilir ve optimal
calisma kosullarinin saglanmasi i¢in endiistriyel proseslerin goriintiilenmesinde son
on yillarda artan bir oranla kullanim alani bulmaktadir. Elektriksel empedans
gorilintiileme tekniginin genis uygulama alanlarinda kabul gormesinin baslica
nedenleri yontemin giivenligi, kendine 6zgii tasinabilirligi ve yeterince ucuz veri
toplama donanimina bagimli olmasidir. Ancak, goriintillenen nesnenin icerisinin
elektriksel ozelliklerinin hesaplandigi goriintii olusturma problemi, Olgiilen veri ile
bilinmeyen iletkenlik parametreleri arasindaki dogrusal olmayan iliski nedeniyle son
derece kotii kosullu bir problemdir. Bununla birlikte, goriintii olusturma probleminin
aday ¢oziimlerini kapsayan arama uzay asir dlciide biiyiiktiir ve bu durum problemi
¢Oziim algoritmasinin etkinligine olduk¢a bagimli duruma getirir. Determinist
prensibe sahip goriintii olusturma algoritmalarinin yaygin kullanimina karsin, son
yillarda stokastik algoritmalar ile elektriksel empedans goriintiileme yontemini
birlestiren timit verici ¢aligmalar yapilmistir. Genetik algoritma, biyolojik evrimin
prensiplerinden esinlenerek, aday coziimlerin olusturdugu bir popiilasyonda
yakinsama saglanmasi amaciyla secilim, caprazlama ve mutasyon gibi genetik
operatorlerin  kullanildig1 stokastik arama ve optimizasyon yontemidir. Genetik
algoritmalar; stokastik yapilari, paralel arama kapasiteleri ve yerel minimum
noktalardan kurtulmadaki dayaniklilik nitelikleri sayesinde ozellikle kotii kosullu
problemlerin ¢oziimiinde deterministik yontemlere gore onemli avantajlara sahiptir.

Bu tezde, elektriksel empedans goriintiileme prensibi kullanilarak iki boyutlu ve ikili
iletkenlik dagilimlarinin yeniden olusturulmas: amaciyla iyilestirilmis bir genetik
algoritma gelistirilmistir. Tezde kullanilan elektriksel empedans goriintiileme
yontemi; Olciilen ve hesaplanan elektrot gerilim degerlerinin farkliliklarinin en kiigiik
kareler yaklagimiyla minimizasyonuna dayanmaktadir. Elektrot gerilimleri, sirasiyla
9x9 ve 17x17 dortgen eleman kullanilarak sonlu elemanlar yontemi ile modellenen
iki boyutlu 16 ve 32 elektrotlu fantomlardan elde edilir. Bilinen bir iletkenlik
dagilimina sahip ve elektrotlarindan akim uygulanan elektrostatik bir alan tarafindan
uyarilan sinir elektrotlarindaki gerilimler sonlu elemanlar metodu kullanilarak simiile
edilir. Sinir elektrotlarindan uzakta bulunan hedeflerin elektrotlarda goreceli olarak
diisiik bir gerilim degisimine neden olmasindan kaynaklanan koétii kosulluluk sorunu,
bu tezde yeni olarak gelistirilen 6zel bir agirlik fonksiyonu ile asilmistir. Agirlik
fonksiyonu, iletkenlik dagilimindaki degisik bolgelerin aday c¢oziimlerin uygunluk
degerlerine olan katkisini esitlemek tizere her akim uygulama kalib1 i¢in oranlama
faktorlerini hesaplamaktadir.

Goriintii olusturma probleminin ¢oziimii i¢in gelistirilen genetik algoritma, her bir
asamas1 farkli hedeflere ve farkli genetik operatorlere sahip olmak {iizere iki
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asamadan olusmaktadir. ilk asamanin amaci optimal ¢oziime yaklasilacak sekilde
yakinsama saglamaktir. Genetik algoritmanin ilk popiilasyonu rastgele olusturuldugu
icin, baslangigta popiilasyonun cesitliligi oldukca zengindir. Bu nedenle algoritmanin
ilk asamasinda yiiksek secilim baskisi ve diisiik mutasyon olasiliklar1 kullanilarak
yiiksek yakinsama hizlar1 saglanabilir. Genetik algoritmalarin yakinsama hizlar
genel olarak optimal ¢oziime dogru yakinsama saglandikca azalir. Yakinsama
gerceklestikce popiilasyonun ¢esitliligi carpici1  bir bicimde diiser. Ancak,
algoritmanin son iterasyonlarinda, yiiksek mutasyon olasiliklar1 ve diisiik secilim
baskilar1 ile cesitlilik ylikselmeye zorlanmalidir. Algoritmanin ikinci asamasinin
amacit mutasyon olasiligint artirip, secilim baskisin1 azaltarak tam iletkenlik
dagilimina ulagmaktir.

Bu tez calismasinda dort yeni mutasyon operatorii gelistirilmistir. Bu mutasyon
operatorlerinden ikisi algoritmanin ikinci asamasinda tam iletkenlik dagilimina
ulasilmasini kolaylastirmak i¢in bi¢cim arama anlayist ile calismaktadir. Diger iki
mutasyon operatoril ise prematiire yakinsama durumundan kag¢inmak i¢in her iki
asamada da calismak iizere diizenlenmistir. Bir diger gelistirme de, herhangi bir aday
¢cOziimiin digerleri iizerinde baskin hale gelmesini 6nlemek amaciyla gerceklestirilen
sira orantili secilim operatOriiniin 1iyilestirilmesidir. Popiilasyon i¢indeki genlerin
etkin karisimimi saglamak i¢in de algoritmanin yeniden birlestirim operatorii olarak
birdrnek ¢aprazlama yontemi kullanilmistir.

Genetik algoritmalar i¢in en Onemli iki faktor popiilasyonun cesitliligi ve
algoritmanin yakinsama hizidir. Genetik algoritmalar cesitlilik  kaybederek
yakinsama saglar. Yakinsama hizinin artirilmasi popiilasyonun ¢esitliliginin
diismesine neden olur. Diger yandan, yiiksek cesitlilik algoritmaya dayaniklilik
ozellikleri kazandirir. Popiilasyonun ¢esitliligi diistiikgce, genetik algoritmanin yerel
minimum noktalarinda takilma olasilig1 yiikselir. Bu nedenle, genetik algoritmanin
verimi ancak yakinsama hizi ile popiilasyonun c¢esitliligi optimal olarak
dengelendiginde maksimum degere ulasir. Bastan sona verimliligin saglanmasi i¢in
gelistirilen parametre adaptasyon operatoriiniin  yardimiyla; seg¢ilim baskist,
mutasyon olasilifi ve caprazlama olasiligi gibi genetik algoritmanin Onemli
parametreleri, popiilasyonun c¢esitliligini verimli bir diizeyde korunmak igin
uyarlamal1 olarak kontrol edildi.

Genetik algoritmanin farkli kosullardaki performansinin gozlemlenmesi icin
denemeler gerceklestirildi. Her denemenin ol¢iim islemi sonlu elemanlar modeli
kullanilarak ve secime bagli Gaussian beyaz giiriiltii eklenerek simiile edildi. Genetik
algoritma, 16 elektrotlu ve 32 elektrotlu model iizerinde giiriiltii icermeyen veri
kullanilarak yapilan ¢ogu denemede, gercek iletkenlik dagilimina ulasarak oldukca
iyl bir performans gosterdi. Algoritmanin giiriiltii iceren veri kullanilarak yapilan
denemelerde yakinsama sagladigi ve belirli bir giiriiltii diizeyine kadar gercek
iletkenlik dagilimina ulasarak dayamikli bir karakteristik sergiledigi gozlemlendi.
Biitiin denemelerde, uyarlamali parametre kontroliiniin, bir yandan yakinsama
saglanirken, ¢esitliligin korunmasina etkin bir bicimde yardim ettigi saptandi.
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1. INTRODUCTION

Recent technological advances in computerized tomography have led to many useful
and inspiring results for visualization of inaccessible objects or media. Despite the
high quality of images obtained with X-ray, positron emission and nuclear magnetic
resonance tomography, the use of highly sophisticated equipment for such imaging
modalities under uncontrollable harsh environmental conditions (due to excessive
heat, pressure, electromagnetic interference, etc.) is problematic. For various
industrial processes, particularly in heat exchangers, natural gas pumping systems
and underwater petroleum pipelines, determination of spatial and temporal
distribution of phase boundaries within two-phase flow fields is a critical task to
assess safety and optimality in the process design. The imaging systems used for
these processes depend on sufficiently fast, portable, inexpensive, and sensitive

measurement and data acquisition instrument (Ceccio and George, 1996).

Alternatively, some other nondestructive testing techniques based on acoustical and
electrical impedance measurements offer great advantages to overcome the
drawbacks of these imaging techniques. They require a relatively simple sensing
hardware, but intrinsically suffer from an ill conditioning problem due to
integral/differential operators relating the measured data to the properties of sensed

field (Rolnik and Seleghim, 2006).

Acoustical sensing methods benefit from the principles of reflection and attenuation
of ultrasonic waves propagating in a medium with different sonic features. The
reflection and attenuation coefficients of the medium are determined from acoustical
sensing devices placed on the outer boundary of the flow medium. This technique is
prone to some imaging artifacts due to scattering and diffraction of incident waves at
liquid-gas interfaces whenever the wavelength of the ultrasonic sound is close to the
size of the phase boundary (Atkinson and Kytomaa, 1992). A crucial resolution
problem arises with particularly small-sized gas bubbles when their size is
significantly smaller than the wavelength of the ultrasonic wave. As the wave
frequency is increased to a 10-30 MHz range to annihilate this resolution problem,

the high-frequency ultrasonic waves heavily attenuate and slowly propagate into the



flow medium as a result of multiple reflections of the ultrasonic wave in gas phases.
This natural behavior of ultrasonic waves degrades the measurement speed, impeding
the use of ultrasonic methods for real-time visualization of dynamic flow regimes

(Atkinson and Kytomaa, 1993).

Imaging techniques based on electrical impedance measurements, however, do not
severely suffer from the constraints arising from slow propagation of applied current
waves. The gas phase has virtually no electrical conductivity and its permittivity is
about two orders of magnitude lower than that of the liquid phase. Thus, the gas
phase behaves as a purely capacitive medium into which propagation of electrical
currents within 10 kHz to 1 MHz range is insignificant. If the conductivity of the
liquid phase is significantly larger than its capacitive component at this frequency
range, the electrical time constant of the medium is negligibly small, behaving a
purely conductive medium. Since early 1990s, electrical impedance tomography
(EIT) has been considered as a new visualization tool for two-phase flows. As the
electrical conductivity (and/or permittivity) of the liquid phase significantly differ
from that of the gas phase, the phase boundaries can be identified from the spatial
variation of electrical properties without disturbing the flow field. Therefore,
distribution of electrical properties is inferred from surface measurements of electric
potentials resulting from independent electric current patterns repetitively injected
into the outer surface of the flow. The hardware used for EIT systems is relatively
inexpensive, portable and fast enough to acquire data in reasonable time and
accuracy. This imaging modality is accepted as the most suitable one compared with

other known modalities.

1.1 Background

The idea of impedance methods originated in geophysics in early 1930s (Langer,
1933) when Slichter (Slichter, 1933) attempted to determine the electrical resistivity
of horizontally uniform geological structures from potential measurements observed
on the earth’s surface. This problem was first identified by Calderon (Calderon,
1980) in 1980 as the “inverse conductivity problem” in mathematics literature. The
mathematical study inverse conductivity problem has had a great impetus to many

mathematicians and scientists until mid 1990s with the proof of uniqueness by Kohn



and Vogelius (Kohn and Vogelius, 1984), Sylvester and Uhlmann (Sylvester and
Uhlmann, 1987) and later by Nachman (Nachman, 1995).

Active research in EIT has started in the late 1970s when Henderson and Webster
developed an EIT system as a medical imaging tool (Henderson and Webster, 1978).
In about the same period Little and Dynes and independently presented a new EIT
system for geophysical surveying (Dynes and Lytle, 1981). Since 1980s the
computing power has incresed drastically and many large scale EIT systems are

developed by different research groups worldwide.

The reconstruction algorithms for EIT can be sorted into noniterative and iterative
algorithms. Noniterative algorithms are based on linear approximations relying on
the assumption that the conductivity does not differ very much from a constant. Most
important noniterative reconstruction algorithms are backprojection method (Barber
and Brown, 1984) and Newton’s one-step reconstruction algorithm (Cheney et al.,
1990). These methods generally operate by using simplifying assumptions that limit

the accuracy and the scope of their application to few problems of practical interest.

Iterative algorithms are based on the premises that conductivity of the visualized
body differs slightly from a known conductivity distribution. They require relatively
fewer assumptions, therefore yielding better approximate solutions to the image
reconstruction problem than using noniterative methods. Furthermore, iterative
methods have a wider range of application since the construction of the solution

algorithms is relatively easy.

Iterative reconstruction algorithms can be categorized into two groups, consisting of
deterministic and stochastic algorithms. The most popular deterministic
reconstruction algorithms are based on regularized Newton-Raphson method and
their variations are widely used in industrial applications (Yorkey et al., 1987).
Jones, Lin, Ovacik and Shu created an algorithm named “block decomposition
method” by combining the finite element and Newton-Raphson methods in the early
1990s. This new method allowed the number of elements used in the finite element
model to decrease by applying locally analytic solutions as the shape functions inside

the elements (Jones et al., 1993).

In recent decades, stochastic reconstruction algorithms are started to gain popularity

due to their robustness and ability to avoid local minima more effectively. Genetic



algorithms (Cheng et al., 1996) and Monte Carlo method (Kaipio et al., 2000) are
among the stochastic methods applied to the EIT image reconstruction problem. Of
these studies, most promising results are obtained using the genetic algorithm
method due to its parallel processing capability. In early 2000s, Olmi, Bini and Priori
created an improved genetic algorithm for reconstruction of high-resolution images
by using three successive genetic algorithms, each with different parameters (Olmi et
al., 2000). Kim, Moon and their co-workers improved the efficiency of the image
reconstruction process by developing a two-stage genetic algorithm (Kim et al.,

2002).

1.2 Contributions

First contribution of this thesis is the development of a new special weight function
to overcome the problem of ill conditioning due to the relatively weak voltage
response to the targets that are located far away from the boundary electrodes.
Another improvement is the two-stage genetic algorithm structure, which is designed
to provide more efficient search strategies to the algorithm by using different genetic
operators and parameters for each stage. Four new mutation operators are developed
in this thesis, two of the them helping the algorithm to avoid the premature
convergence and the other two working in a shape searching mentality to aid the
algorithm to attain the true conductivity distribution in the second stage. Another
contribution is the development of an improved ranked proportionate selection
operator to achieve more efficient selection process. Final contribution of this thesis
is the parameter adaptation operator, which adaptively controls the important
parameters of the genetic algorithm, such as the selection pressure, the mutation
probability and the crossover probability to maintain the diversity of the population

at an efficient level.

1.3 Thesis Overview

This thesis consists of five chapters. Chapter 1 provides an introduction on the non-
invasive imaging methods and includes a literature survey on the image
reconstruction problem of EIl method. Contributions of this thesis are also discussed

in the first chapter.



Chapter 2 presents the finite element model developed for the solution of the forward
conductivity problem. After stating the governing field equation, the finite element
method formulation and the developed numerical simulation algorithm are presented

in chapter 2.

Chapter 3 states the image reconstruction problem of EIl method, providing
knowledge on the ill conditioning nature and the search space of the problem. This
chapter gives a general overview of evolutionary computation methods and genetic
algorithms including their historical background. The general structure and each
individual component of the genetic algorithm developed for the solution of the

image reconstruction problem are also explained in detail in this chapter.

Chapter 4 is devoted to the numerical simulations conducted to test the genetic
algorithm for the image reconstruction problem. Results of the various tests obtained
by the genetic algorithm using the data from the numerical simulations are presented

in chapter 4.

Finally, chapter 5 concludes the thesis, by briefly summarizing the study, discussing
the results obtained from the numerical simulations presented in the fourth chapter.
Performance of the genetic algorithm and its individual components are discussed in
detail. This chapter ends with suggestions for future work for the development of

genetic algorithms for the solution of the EII reconstruction problem.






2. SOLUTION OF FORWARD PROBLEM

2.1 Conductivity Problem

The concept of EII method involves a body with an unknown field of electrical
conductivity distribution that is surrounded by electrodes placed on the boundary
surface. The electrodes on the boundary surface are excited using different patterns,
and the responding voltages on the electrodes are measured. A schematic
representation of a typical electrical impedance tomography system is shown is
Figure 2.1. Solution of the forward problem of EII is the simulation of the actual
measurement of the imaging process. Because the inverse solution of the forward
problem is impossible, the solution of the forward problem has to be obtained in
order to solve the inverse problem. This situation makes the solution of the
conductivity problem necessary for imaging process. Solution of the conductivity
problem consists of calculation of measured voltage response values on the boundary
electrodes of a body with a known conductivity distribution induced by known
injected currents. To simulate the behavior of an electrostatic field with a variable
conductivity distribution, solution of the Poisson’s equation for a variable complex

conductivity field has to be solved with the appropriate boundary conditions.

I

Reference Electrode

Figure 2.1: Schematic representation of an EIT system.



Necessity of a forward mathematical model of the imaging process arises with the
need for the solution of the inverse problem of EIl method. Since the direct inverse
solution of the imaging problem is impossible, solution of the inverse problem must
use the forward problem formulation alongside a parameter estimation method,
which in our case is a genetic algorithm. Thus, the solution of the forward problem

plays a crucial role in imaging process.

Since an analytic solution of the governing equations for EII is often impossible
excluding some special cases, numerical methods must be used for the mathematical
modeling of the imaging process. The most popular numerical method for solving
electrostatic problems is the finite element method. Because the image reconstruction
is a minimization problem, an objective function is required to simulate voltage
values on the electrodes for conductivity distributions using the mathematical model
of the process and compare the simulated results with the actual data from the
phantom, calculating the error values. The objective function includes the finite
element model of the imaging process and an error function with a least-squares
approximation. The genetic algorithm minimizes the objective function to

reconstruct the conductivity distribution of the phantom body.

Electrodes can be used for injecting current into the body and measuring the voltage
on the boundary electrodes at the same time. However, because of a reported
phenomenon that causes the electrode-skin contact surface to have a resistive
behavior, different electrodes used for excitation and measurement purposes in
medical imaging applications (Hua et al., 1993). Because of this phenomenon, High
frequency alternating currents are used for excitation in medical applications.
However, in this thesis, two-phased flows are imaged, therefore allowing the same
electrodes to be used for both excitation and measurement purposes. Because every
electrode is excited, it is ideal to use low frequency currents (1-10 kHz range) with
multiple excitation patterns. Using low frequency excitation currents cause the

imaging equipment to be less complex and less expensive.

For an E-electrode imaging system, where E represents the electrode number of the
imaging system, (£ — 1) number of independent excitations can be applied. Linear
relationship between current and voltage values can be represented by an operator
matrix with the dimensions of (E — 1) x (E — 1). The operator matrix is symmetric

and has E (E — 1) / 2 degrees of freedom (The number of upper diagonal entries of



the operator matrix). These upper diagonal entries of the operator matrix represent
the admittance values between the boundary electrodes. Thus, Unknown element
conductivities of the system should be selected as equal or less than E (E — 1) / 2 to
avoid making the problem under defined. Number of independent measurements the
equation system requires to obtain an appropriate solution is at least E (E — 1) / 2.
Therefore, if the number of the unknown element conductivities is chosen as the
number of the degrees of freedom, all element conductivities are uniquely

determined (Ovacik, 1998b).

2.2 Governing Field Equation

The electromagnetic field induced by an applied current density to the surface of a
conductive body is governed by Maxwell’s equations. Ampere’s circuit law with

Maxwell’s correction is stated below.

oD
VXH=J+¥ (2.1)

Where H represents the magnetic field density, J represents the current density, and
D represents the electric flux density. Multiplying both sides with the divergence

operator, conservation of current density statement is expressed by,

oD
V-[] +§j=0 (2.2)
Current density is obtained by using the Ohm’s law.

J=0E 2.3)

Where o is the electrical conductivity and E is the electrical field. Time derivative of

the electric field displacement vector is stated as,

oD .=
o JeeE 2.4)

Electric field intensity can be stated in terms of the gradient of the electric potential

for a conservative field.



E=-V¢ (2.5)

Where ¢ is the electrical potential. Substituting Equation (2.5) into Equations (2.3)
and (2.4), and inserting these equations into Equation (2.2), the governing equation

for the electrical properties in the domain £ is reached.
V-(a+ja)£)V¢:O (2.6)

Boundary conditions for the imaging domain £,

—(c7+ja)£)'¥:iJE on 0Q,
n
2.7
- ag (2.7)
—(c7+]a)8)'a—:O on 0Q,
n

Where the term (6 + jwe) represents the complex conductivity, consisting of the
conductivity and the permittivity terms. o is the electrical conductivity and ¢ is the
electrical permittivity. n represents the outward normal vector on the boundary
surface. Qp and Qp represent the surface of the electrodes and the homogeneous
zones of the boundary condition, respectively. Jr denotes the current density vector

of injected excitation.

An electrically excited medium consists of both conductive and dielectric properties.
Conductive property of materials is influenced by term the o, while dielectric
property of materials is influenced by the term we. The ratio of we / o proportionally
increases with the increasing excitation frequency. In low frequency excitations, the
effect of dielectric constant becomes negligible compared to high conductivity
values. Thus, the phase shift between current and voltage measurement is very small
when real part of the complex conductivity dominates the imaginary part (we << o).
Considering this effect, dielectric property will be neglected (we = 0) in further
analytical developments for low frequency applications in 1-10 kHz range. Thus,
Equation (2.6) is reduced to Laplace’s equation, which is the governing equation for

low frequency electrical impedance imaging system (Ovacik, 1998b).

V-(ov9)=0 2.8)
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Laplace’s equation becomes Poisson’s equation when right side of the equation is

nonzero. Equation (2.8) can be expanded into the form below.
V-(6Vp)=0V’¢+Vo-Vp=0 (2.9)

Expanded form of Laplace’s equation exhibits a convection-diffusion phenomenon.
This well-known behavior is often seen in heat transfer, mass transfer and fluid flow
problems. An analytical solution can only be obtained for some very special cases
such as existence of symmetry in geometry or boundary conditions, using conformal

mapping, series expansion methods or integral methods.

In expanded form of Equation (2.9), the first term represents diffusion and the second
term represents convection using an analogy from mass transfer and fluid mechanics.
Numerical solution of this equation is very difficult to obtain because of the
numerical instabilities that occurs when the transport of ¢ is dominated by the

convection term (Ovacik, 1998b).

The most popular methods for solving the electrostatic field equations are finite
difference and finite element methods. In this thesis, finite element method is chosen
to solve the governing field equation for the forward problem. The quality of a FEM
approximation is often higher then FDM approximation, therefore causing less
numerical errors. In addition, FEM has the ability to handle complex geometries and
boundaries. However, numerical solution of the governing field equation is very
difficult to solve using common finite element methods directly (Ovacik, 1989). To
overcome this difficulty, Galerkin’s weighted-residual method is applied to the finite
element model of the system. Galerkin’s method makes numerical solution of
Laplace’s equation relatively less complex. It is also easy to apply to Laplace’s

equation, providing a satisfactory outcome.

2.3 Finite Element Formulation

Galerkin’s weighted-residual method includes an arbitrary and continuous weighting
function W into the governing field equation (Equation (2.8)). The parameters of the
approximation are determined such that the governing field equation is valid for
every choice of the weighting function W. After multiplying Equation (2.8) with

weighting function W, equation is integrated over the domain of the element-e, Q..
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[wv-(ovg)av =0

v(Q,) (2.10)
Using product rule of a gradient on Equation (2.10),
V(WoVg)=WV . -(oV@)+oVg-VW 2.11)
Equation (2.11) is inserted into Equation (2.10).

[Wv-(ovp)av = [Vwoveyav - [oVe-VW-dv o2

V(Q,) V(Q,) V(Q,)

The second integral term in Equation (2.12) becomes a surface integral using Gauss’s

Divergence Theorem.

[YWovprav = §Wovg)-da

v(Q,) 5(Q,) 2.13)
Inserting Equation (2.13) into Equation (2.12),
WV.-(oV@d)dV = ¢(WoVe)-dA— |oVeo-VW -dV
[Wv-(aVp)av = §wovg) [ove 14

V(Q,) 5(Q,) V(Q,)
Using Equation (2.10), the first integral term in Equation (2.14) equals to zero.

fWovg)-da— [oVe-VW-dV =0

S(Q,) viQ,) (2.15)
The current flux on the element boundary,
q"=-0ovV¢ (2.16)
Substituting Equation (2.16) into Equation (2.15),

[oVe-vW-av=— W q°-dA 21

V(Q,) 5(Q,)

Where ¢° is the current flux vector in element-e. Expanding the first integral term in

Equation (2.17),

[ove-vw-av =

viQ,)

I (aW;_'_aW}_‘_aW%j{ %;+O-a_¢}+o'a—¢%]-dxdydz
s o dy 0z ox dy 0z

(2.18)
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Combining two terms together,

[ove-vw-av =

viQ,)

V(Q,) ox ox dy dy dz Oz (2.19)

In this thesis, two-dimensional finite element approximation is used, so the volume

element has unity depth, dz=1, and the terms that includes the derivatives of z

vanishes.
oW _9¢ oW a¢j
oVo-VW -dV = (—O'—+—O'— - dxdy
V('s[p) V(L) ox odx dy dy (2.20)

2.3.1 Quadrilateral elements

Using bilinear quadrilateral elements with four straight sides, the potential inside the
element-e is represented in terms of the potentials on the nodes at the corners of the
element with the relationship below (Jones et al., 1992). Node numbers of an element

are shown in Figure 2.2.
4
o(x,y) = Z‘ Ni(x, )V, (2.21)

Vo(x,y) =D VN,(x,y)-V, 2.22)

i=1

i

>y

Figure 2.2: Node numbers of elements.

Where V’s are voltages and N’s are shape functions of the nodes. Shape functions are

used to map the element from the physical x-y plane to a standard square in the
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parametric &-n plane confined between -1 < § <1 and -1 <n <1 as shown in Figure
2.3. The first node is mapped to the point § = -1, n = -1, the second to the point = 1,
n = -1, the third to the point £ = 1, 1 = 1, and the fourth to the point { = -1, = 1. The
mapping from the x-y plane to the &~ plane is mediated using Equations (2.23) and
(2.24).

4
x(&Em =) 5N 2.23)
i=1
4
YEm =2 yiNi(&.m) (2.24)
n
y A
i L1 (L)
(X3,¥3) i i
(X4’Y4) . 04 30
>
xy)
(X,,¥5,) | )
> X C, D
(-1,-1) (1,-1)

Figure 2.3: The mapping from the x-y plane to the &-7 plane

The shape functions for bilinear quadrilateral elements,

N, =i'(l—§)'(l—ﬂ) (2.25)
N, =i-(l+§)-(1—77) (2.26)
N, =%'(l+§)-(1+77) (2.27)
N, =i'(l—§)'(1+77) (2.28)

A bilinear expansion form is utilized to transform coordinates between planes.

x(&,m=a,+aé+an+adn (2.29)
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y&.m =B, +BS+pn+ B (2.30)

An infinite-small area is transformed as following,

dx-dy=|J|-d&-dn

(2.31)
Using Equations (2.29) and (2.30), transformation Jacobean is written,
o or
J_|9¢ on|_|atan atag
N W |B+Bn BB (2.32)
g aIn

The equations for o’s and £’s is determined by writing Equations (2.29) and (2.30)
for all nodes and solving the equation system. Writing Equations (2.29) and (2.30)

for four nodes, two sets of four equations are solved to determine the mathematical

statements for o’s and f’s for computation of Jacobean matrix to be used in the

simulation algorithm.

a, = % (e, +x,) = (o +x,)) (2.33)
2, =i-((x3 +x,)—(x +x,)) 2.34)
& =5+ +x)= (v, + ) 2.3
Bi=g (a4 2) =0+ ) 236
B, = %- ((v3 +y)= (3 + 3,)) 2.37)
B = %- (0 +35)= (3, +3,)) (2.38)

Using Equation (2.20) and (2.22) together,

[ove-vw.av =

viQ,)

oW &G(oN oW &( oN
J [Uai[a;vfj“’%,_l (a_ylvln'dmydz &

V(Q,) =1

An admittance matrix Y is defined, which allows Equation (2.39) to be rewritten as,
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4
[ove-vw-av=3y, -V, (2.40)
I=1

viQ,)

Where Y, is defined by comparison to be,

Y

ml:

j GaW7wW_+GaW73N,_dﬂW
ox ox dy dy (2.41)

V(Q,)

In the Rayleight-Ritz method, the weighting function W is determined to minimize
the numerical error in Equation (2.41) (Jones et al., 1993). The weighting function W

is selected as N,,,.

Y

ml:

(G ON, ON, 0N, aN,j_ dxdy
vio) ox Ox dy dy (2.42)

Relationship between voltage and current for element-e is expressed by,

4
LY Vi=1, (2.43)
Net current 7, at the nodes into the element-¢,
I =—§N ¢ -dA

W= g (2.44)

5(8,)

Y, 1s the (m,]1)-th entry of the element stiffness matrix. Element-e also satisfies the
Kirchhoff’s law with voltages V; of the nodes at the corner of the element and the net

current /,, at the nodes into the element.

Equations (2.31) and (2.32) are substituted into Equation (2.42) to write admittance

matrix elements in terms of variables ¢ and 7.
11

Y,=0, [[Fy(&m-dédn  for i=1,..4 and j=1..4 (2.45)
-1-1

Where o, is the conductivity of element-e, which is regarded as constant inside the

element. Fj; is expressed by,

(J‘l Ny gy %j(rl N %}

1 o0& 12 on 11 oE 12 an
F,(&m)=
] LN, N Y N, N, (2.46)
+| J5 e +J5 o J oF +J5, 3
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Double integration in Equation (2.45) is numerically computed using gauss

quadrature formula with 4 x 4 points grid structure (Fish and Belytschko, 2007).

[[F&m-dgan=3"> F,&,.n)-w, w, 2.47)

—1-1 m=1 n=1

Where &, and 7, are gauss points, and w,, and w, are their corresponding gauss
weights. Gauss points and Gauss weights are shown in table 2.1 for 4 x 4 points grid.
After computation of local admittance matrix entries for every element, the next step

is to assemble the global admittance matrix using the local admittance matrices.

Table 2.1: Gauss points and their corresponding Gauss weights for 4 x 4 points grid.

Grid Points (m,n) ¢and 5 w
1 -0.8611363116 0.3478548451
2 - 0.3399810435 0.6521451548
3 0.3399810435 0.6521451548
4 0.8611363116 0.3478548451

2.3.2 Construction of admittance matrix

Computed local element admittance matrix entries are assembled to form the global
admittance matrix Y. Global admittance matrix has the dimensions of (V,N) and is

used in solving global system of equations.

Yyw Vi = Crwp (2.48)

Where N is the total number of nodes in the mesh structure and P is the number of
current excitements into the system. V matrix is the voltage matrix that consists of
the nodal voltages for each excitation and C matrix is the current matrix, which

includes the nodal current values for each excitation.

There are six local admittance matrix entries for each element. These entries are
added to the corresponding points of the global admittance matrix and the entries
between same nodes are summed together, forming the global admittance matrix.
Constructed global admittance matrix is a banded sparse matrix. Positions of six

local admittance matrix entries of an element are illustrated on Figure 2.4.

Two rectangular shaped mesh structures are used in FEM model, one with 9x9 grid
consisting of total 81 elements and the other with 17x17 grid consisting of total 289

elements. 9x9 grid model includes 16 electrodes and 17x17 model includes 32
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electrodes. In Figure 2.5, two mesh structures used in this thesis are shown with node
numbers at the corners. Elements and nodes are numbered starting from the bottom-
left corner of the mesh grid, ending in the top-right corner. Elements next to the
boundary surface are smaller than the other elements, therefore modeling the area
near the boundary surface with higher accuracy. Because the gradients are higher at
the boundaries than the middle sections of the grid, FEM approximation errors are

higher on the boundary area, where high precision modeling is very important.

4 Yaa 3
y14 y23
1 y12 2
Figure 2.4: Positions of local admittance matrix entries of an element.
91 100 307 324
1 10 1 18
(a) (b)

Figure 2.5: Mesh structures and node numbering used in the FEM model: (a) Mesh
structure of the 9x9 grid model. (b) Mesh structure of the 17x17 grid model.

2.3.3 Modeling of electrodes
Electrodes can be modeled in two ways. First is the rod electrode approximation,
where the electrodes are modeled like single points. In the rod electrode model,

current is injected into the system from a single node in FEM model. The Rod

electrode model approximation is reported to cause modeling errors in FEM model
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because the injected currents are far from being uniformly distributed. Thus, the
current gradient near the electrodes becomes extremely high and the sensitivity of the
FEM model dramatically decreases. For a more efficient modeling of the electrodes,

plate electrode model is introduced.

In plate electrode model, electrodes modeled as an area where the current is
uniformly injected. Size of the electrodes must be enough to cover two nodes at
minimum. To achieve this uniform current injection, voltage values of the nodes that
have a contact with the same electrode are forced to be equal by adding electrode

admittance entries between the nodes in the global admittance matrix.

Electrode admittance entries can be between the magnitude of 10° and 10"
depending on the electrode material. Using the plate electrode model, current flow at
the electrodes are more smoothly distributed than in the rod electrode model, thus
decreasing the modeling errors and increasing the sensitivity at the area near the
electrodes (Ovacik et al., 1998a). In this thesis, electrode admittance elements are
forced to be 10'°. Electrode numbers and positions of the FEM model structures are

shown in Figure 2.6.

12 11 10 9 24 23 22 21 20 19 18 17

25 16

26 15

27 14

28 13

|
I 29 12

30 11
31 10
16 5
32 9
1 2 3 4 1 2 3 4 5 6 7 8
(@) (b)

Figure 2.6: Electrode numbers and positions for the FEM model: (a) 16-electrode
model. (b) 32-electrode model.

2.3.4 Boundary conditions

In impedance imaging measurement process, one of the electrodes is selected as the
reference electrode to be used as a reference point in relative voltage measurement

process. Therefore, the rank of the global admittance matrices rank decreases to (N -
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1), where N is total node number of the model. In order to have a fully defined linear
equation system, (E - 1) number of measurements are necessary, where E is the
number of the electrodes. Thus, (E - 1) number of excitations is required to solve the

linear equation system.

First boundary condition to apply to model is the reference electrode. Because
reference electrode is grounded, voltage on the reference electrode must be zero. In
order to apply the reference electrode boundary condition to the model, following
tasks are performed. Keeping in mind that R is the number of the node that the
reference electrode stands on; first, all the elements on the R-th column and R-th row
of the global admittance matrix Y is set to zero. Second, diagonal element of the
global admittance matrix Ygrxr is set to unity. Finally, all the elements on the R-th row
of the current matrix C is set to zero (Pozrikidis, 2005). The other boundary
conditions are the injected current values from the electrodes, which is applied by

setting corresponding entries of the current matrix C.

2.3.5 Linear system solution

Linear equation system, which is shown in Equation (2.46), is a symmetric and
sparse system. Admittance matrix Y is a banded matrix that has the bandwidth of
BW=m + 2, where m is the number of the horizontal index of the nodes in the finite
element mesh structure (Ovacik, 1998b). Solution of the linear system is the
determination of nodal voltages in the mesh structure, using the global admittance

matrix and the current matrix. Equation (2.46) can be represented as following,

Vir =Yyov - Cor (2.49)

A basic method for solving the linear system is computing the inverse of the
admittance matrix and then multiplying with the current matrix. However, this
method is not efficient in terms of computing resources. For linear systems with
relatively large admittance matrices, inversion procedure requires extremely high
computing resources. Because the objective function is executed frequently,
performance of the image reconstruction algorithms depends on its forward solution
algorithm. Majority of the computing time needed for the simulation algorithm is
consumed by the linear system solver; thus making speed of linear system solver

algorithm crucial for the overall image reconstruction performance. MATLAB’s
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built-in ‘linsolve’ algorithm, which uses LU factorization method, is used as the

linear solver operator in this thesis.

2.4 Test Phantom Simulation Algorithm

Simulation of the measurement system starts with reading the data files, including
excited current values, conductivity distribution of the body and the mesh structure
data. Then, the local admittance elements of FEM model are computed and
assembled together to form the global admittance matrix. Next step is to solve the
equation system using linear solver operator. Artificial noise is added to the
computed voltage values if required. Last step of the algorithm is to write the voltage
data for every excitement to the output file. In Figure 2.7, flowchart of the simulation

algorithm is shown.

Simulation algorithm is coded using MATLAB language; approximately, it takes
0.001 second to run the forward model with 9x9 mesh grid and 0.01 second to run
the forward model with 17x17 mesh grid using a computer with a 2.0 GHz dual-core
CPU. Because the memory consumption of the algorithm is under 1 MB,

performance of the algorithm is not affected by the amount of RAM the system has.

The algorithm developed in this thesis uses Walsh functions as injected current
patterns. Because only two levels of current values (-1 and +1) are used, Walsh
functions simplify the design of the data acquisition hardware (See Figure B.1 and
Figure B.2 in Appendix B for Walsh patterns used for excitation of 16-electrode and
32-electrode model phantoms respectively.). Compared to other excitation patterns,
Walsh function current injection is reported to provide the most efficient excitation
in terms of the useful information collected about the interior conductivity
distribution of the body (Woo et al., 1990). Walsh functions also have the
computational simplicity advantage. Number of required measurements to fully
define the solution of the equation system is (E - 1), where E is the total number of
the electrodes on the boundary surface. Therefore, one Walsh function pattern (more
specifically, the pattern that continuously equals to unity.) is discarded and the
remaining patterns are used as the injected excitation current values for all of the

electrodes.
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Read Excitation Data Read Mesh Data Read Conductivity Data

Computation of Local Stiffness Matrices

Construction of Global Stiffness Matrix — j———

———P Linear Solver

Addition of Artificial Noise

Write Voltage Output Data

Figure 2.7: Flowchart of the test phantom simulation algorithm to generate test data.

22



3. SOLUTION OF INVERSE PROBLEM

3.1 Image Reconstruction Problem

Inverse problem of the electrical impedance imaging consists of estimation of
electrical conductivity distribution of the body that is being imaged. Using the
measured voltage amplitudes at the electrodes and the current values that are injected
from electrodes, conductivity distribution along the body is calculated. Flowchart of
the solution of the inverse problem is shown in Figure 3.1. The inverse problem of
the EIl method can be considered as an image reconstruction problem because the
result of the problem is the image of the electrical conductivity distribution of the
body. As discussed earlier, the inverse solution of the EII forward imaging problem
is impossible to obtain analytically, unless the geometry of the body has some special
properties. As a result, direct solution of the inverse problem is impossible for most
cases, which makes the implementation of an additional inverse solution method
necessary. However, due to the non-linear and ill-conditioned nature of the EII

problem, solution of the inverse problem is very difficult to obtain.

/ Voltage and current input /

I

Inverse solution algorithm

I

/ Conductivity distribution output /

Figure 3.1: Flowchart of the solution of the inverse problem in EII.

Optimization, search and parameter estimation methods can be used to solve the
image reconstruction problem of EII method. In this thesis, a genetic algorithm is
developed to solve the image reconstruction problem. The inverse problem of EII has

multiple local minimum solutions and only one global minimum solution, which is
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the true conductivity distribution of the body. This problematic nature puts an extra
emphasis on inverse solution method that is being used. Some parameter estimation
methods that have a tendency to fall into the local minima instead of the global
minimum solution are not ideal for the image reconstruction problem because they
are likely to obtain premature results by converging into the local minima. Best
results are achieved by using inverse solution methods that possesses robust

characteristics.

Before genetic algorithms are started to be used as the image reconstruction
algorithms, the most widespread method to solve this problem was Newton-Raphson
minimization. Even today, Newton-Raphson method is very popular in the image
reconstruction problem of EIT method due to its practical yet efficient nature.
Newton-Raphson algorithm is fast and efficient when used with a good starting
point. Nonetheless, it fails to achieve convergence when used with an inappropriate
initial guess. Therefore, initial guess is extremely important in Newton-Raphson
algorithm for a successful convergence. However, as the inverse problem of the
electrical impedance imaging method is ill-conditioned and the search space has
multiple local minimum solutions, selection of the initial guess is extremely difficult.
Any initial guess that is chosen too distant to global minimum point may cause
Newton-Raphson algorithm to converge into one of the local minimum solutions,
resulting in a prematurely incorrect conductivity distribution. This phenomenon
prevents Newton—Raphson method from being the ideal method for the solution of
the image reconstruction problem in EIl. The search for finding much efficient
methods to solve the image reconstruction problem of EII continues. Evolutionary
computation methods, which are being increasingly applied to similar problems in
recent years, are between the methods that are being tested for this task. Among
these evolutionary computing methods, the most popular one is the genetic algorithm

method.

Genetic algorithms are starting to be applied to many optimization and search
applications, including the image reconstruction problem in electrical impedance
imaging, in recent years. Several studies (including Cheng et al. (1996), Meng et al.
(1999), Olmi et al. (2000), Kim et al. (2002), Kim et al. (2006), Rolnik and Seleghim
(2006)) claim to obtain optimistic results using GAs with the EIl method. These

studies point out that the stochastic nature of the genetic algorithms helps to
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overcome the premature convergence problem by preventing the algorithm from
converging into the local minima. Stochastic optimization methods, including the
GAs, are not dependent to initial guesses, which makes these methods ideal for the
problems with multiple local minima. According to the studies, the only drawback of
GAs is their high computing time requirements, thus making them impossible to use

them in real-time imaging applications.

3.1.1 Ill-conditioning

Solution of an inverse problem is ill-conditioned if the system has low sensitivity to
its parameters. Conductivities of every pixel in the body have their effects on the
boundary response. Because the measurements are obtained from the boundary in EIl
method, the conductivity values of the pixels in the interior region of the body have a
reduced effect on the measured data. The image reconstruction problem of EII
method is extremely ill-conditioned because due to the nonlinear relationship
between the measured data and the unknown conducivity parameters. In 1ill-
conditioned problems, noise on the measurements may be critical for the stability of

the solution.

3.1.2 Search space

In optimization and search problems, the space of all feasible solutions is called
search space. The search space consists of the set of all solutions that the desired
solution resides. Every point in the search space represents one possible solution of
the problem. As the search space becomes larger, the number of candidate solutions
increases. Thus, a larger state space results in a more difficult search problem

(Sivanandam and Deepa, 2008).

Search spaces of image reconstruction problems are generally quite large because of
the number of variables. Every pixel of the reconstructed image is represented with
an independent variable, which increases the degree of freedom of the system
dramatically. Even for binary image reconstruction problems, search spaces are
massively large. As mentioned in the previous chapter, two finite element models are
used in this thesis, one with a 9x9 mesh grid and the other with a 17x17 mesh grid.
For 9x9 mesh grid, the reconstructed image has the dimensions of 9x9 pixels, thus,
the total number of pixels is 81. Therefore, the search space of the image

reconstruction problem is 2*', which is equal to 2,418.10**, an extraordinary large
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number for a small grid of 9x9. For 17x17 mesh grid, the reconstructed image has the
dimensions of 17x17 pixels, thus making the total number of pixels 289. For 17x17
pixels, the search space of the image reconstruction problem becomes 2**, which is
equal to 9,946.10*°, a gigantically large number. From these numbers, we can see
that the search space of 17x17 pixels is 4.10% times larger than the search space of
9x9 grid; an extraordinary big difference between search spaces of 9x9 and 17x17
mesh grid structures. Therefore, it shows the complexity difference between two grid
structures, image reconstruction problem becomes dramatically more difficult as the
pixel number increases. Taking into account that the estimated number of atoms in
the observable universe is in the magnitude of 10%, we can see that the search space
of 17x17 pixels is ten million times of the estimated number of atoms in the
observable universe. This gives an impression of how big the search space is for the
image reconstruction problem for 17x17 pixels. Thus, solving the inverse problem of
EIl is extremely difficult and it becomes dramatically more difficult as the number of
pixels increases. Thinking that the forward simulation takes 0.01 second of
computing time to calculate the voltage response values, using the blind search
method, which is a search method that every possible solution is evaluated until the
correct result is found, it would take nearly 10”" years to find the true conductivity
distribution on a modern computer, which is practically impossible. Therefore, to
find the true result in much lesser evaluations and practical computing times, a

stronger inverse solution algorithm is required.

3.2 Introduction to Evolutionary Computation

Among the nature, “survival of the fittest” principle can be observed. According to
this principle, a number of organisms that co-exist in the same environment compete
over natural resources. The organisms that gather more resources than the others
have an increased chance of reproducing themselves for the next generations. Ability
of surviving and reproducing of an organism can be described as the fitness of the
organism. The organisms that can adapt to their environment gain an edge over their
competitors, therefore the fitter individuals have a higher chance to reproduce
themselves for next generations. Individuals in a population are selected for their
fitness to form the future generations, evolving the population to a fitter state in the

process. Thus, future generations carry the characteristics of today’s fittest
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individuals. This process continuously shapes tomorrows generations towards a
better adaptation to the environment. These principles form the modern idea of

biological evolution by natural selection.

Evolutionary computation techniques summarize these evolutionary principles into
the algorithms that search for optimal solutions to a problem. In a search algorithm,
the task is to find the best solution between a number of possible solutions to a
problem in a practical amount of time. For a search space with a limited number of
possible solutions, all the solutions can be checked out in a reasonable amount of
time to find the optimal one. This comprehensive search (which is called blind
search), however, becomes impractical as the search space gets larger. Traditional
search algorithms sample the search space one solution at a time to find the optimal
solution. The key aspect that distinguishes an evolutionary search algorithm from
traditional search methods is its population-based nature. By the adaptation of
successive generations for a number of individuals, evolutionary algorithms are
efficient direct search tools. The evolutionary computation concept can be applied to
the problems where heuristic solutions are not possible or leading to unsatisfactory
results. Therefore, evolutionary algorithms are becoming increasingly popular,
particularly for solving practical optimization and search problems. Genetic
Algorithms, genetic programming, evolutionary strategies and evolutionary
programming methods are among the most popular EC techniques (Sivanandam and

Deepa, 2008).

3.2.1 Historical background

Several computer scientists studied evolutionary systems independently in the 1950s
and the 1960s, with the idea that the evolutionary principles can be used as an
optimization tool for the engineering problems. The idea of evolutionary
computation was to evolve a population of candidate solutions to a given problem,

using operators inspired by genetics and natural selection.

Evolution strategies firstly introduced by Rechenberg in 1960s as a method to
optimize real-valued parameters for devices such as airfoils and the idea was further
developed by Schwefel in 1970s. Although recently the field of evolution strategies
have begun to interact with the field of genetic algorithms, evolution strategies has

remained an active area of research. Evolutionary programming is developed by
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Fogel, Owens and Walsh in 1966. Evolutionary programming is a technique in which
the candidate solutions are represented as finite-state machines, evolving by mutating
randomly their state—transition diagrams and selecting the fittest of the solutions.
Evolution strategies, evolutionary programming, and genetic algorithms together

form the backbone of the field of evolutionary computation (Mitchell, 1999).

Genetic algorithms were invented by John Holland in the 1960s and were developed
by Holland and his students at the University of Michigan in the 1960s and the
1970s. Unlike evolution strategies and evolutionary programming, Holland's original
idea was to study the phenomenon of adaptation as it happens in nature and to
develop algorithms to import the mechanisms of natural adaptation into computer

systems, rather than to design algorithms to solve optimization problems.

Holland's GA was a method for evolving from one population of chromosomes to a
new population by using a kind of natural selection together with the genetics-
inspired operators of crossover and mutation. Each chromosome consisted of genes,
which was represented by bits in the algorithm, each representing a property. The
selection operator was used to choose the chromosomes that will be allowed to
reproduce, specifically, fitter chromosomes reproduced more than the less fit ones.
Crossover operator combined two chromosomes in an analogy to biological
recombination between two single-chromosome organisms. Mutation operator

randomly changed the contents of genes on the chromosomes (Mitchell, 1999).

Holland's invention of a population-based algorithm with selection, crossover and
mutation was a major innovation. Compared to Rechenberg's evolution strategies,
which used a population of only two individuals, one parent and one offspring
derived from the parent by being subject to mutation, Holand’s GA was a more
realistic implementation of biological evolution to the world of computation with its
solid theoretical foundation. Today, the boundaries between genetic algorithms,
evolution strategies, evolutionary programming, and other evolutionary approaches
have broken down to some range. Genetic algorithm term is often used for different

evolutionary algorithms very far from Holland’s original concept.

3.2.2 Advantages of evolutionary computation

Evolutionary computation techniques offer practical advantages to the optimization

problems. A key advantage of evolutionary computation is that it has a simple
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concept. Quite satisfactory results can be achieved with relatively simple algorithms.
In particular, the algorithm does not require any gradient information to operate.
Because no gradient information is required, for mathematically complex problems,
it is relatively easy to apply evolutionary computing to the problem than the
traditional optimization methods. Search problems over discontinuous domains,
where no gradient information is available, can also be solved with evolutionary
computation techniques. Because gradient operator amplifies noise, evolutionary
computation methods are more successful with the problems where noise presence is

high.

Another advantage of the evolutionary computation is that it can be applied to a very
wide range of problems. Any problem that can be formulated as a function
optimization problem is solvable using the evolutionary computation methods.
Evolutionary algorithms can be combined with traditional optimization techniques. It
may be by the use of a conjugate-gradient minimization after primary search with an
evolutionary algorithm. It may also involve simultaneous application of evolutionary

algorithm with gradient-based search methods.

Because evolution is a parallel process, evolutionary algorithms can benefit very
much from parallel computing techniques. As distributed processing computers
become popular, application of evolutionary computation to highly complex
problems are being possible. In a typical evolutionary computation algorithm, the
individual solutions are evaluated independently of the competing solutions. To
decrease the computing time required to solve the problem, evaluation of each
solution can be handled by a single processor. The computing time required for an
evolutionary application can be nearly inversely proportional with the number of

processors used in parallel.

Traditional optimization methods are generally not robust to dynamic changes in the
environment. On the other hand, evolutionary computation can be used to adapt to
changing situations. Because of their nature, evolutionary computation techniques
exhibit robust properties and they can easily adapt to dynamic changes of the
parameters. As the population of candidate solutions continuously evolves to adapt
the environment, robustness can be achieved and it is not necessary to reinitialize the

algorithm at any stage for any change in the circumstances. Robustness of the
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evolutionary computation methods is a key advantage compared to the traditional

optimization methods (Sivanandam and Deepa, 2008).

3.2.3 Genetic algorithms

In nature, every individual in a population competes with each other for resources
like food, shelter and reproduction. The individuals that are better adapted to their
environments have more chance of surviving. Individuals that survive longer have a
higher chance to attract a mate for reproduction than the less surviving ones,
producing a relatively large number of offspring. Through the recombination of the
genes, child individuals carry both parents characteristics. A child individual tends to
have good characteristics than its ancestors, because of the increased chance that the
offspring will carry the combination of the good genes of both parents. After
generations, species evolve spontaneously to become more and more adapted to their
environment. In 1975, Holland described how to apply the principles of natural
evolution to optimization problems and built the first GA. After further development
until today, GAs became a powerful tool for solving search and optimization

problems (Holland, 1975).

GAs, which are based on the principles of genetics and evolution, possess a variety
of important features. First, GAs are stochastic algorithms. Randomness of a GA
plays an essential role. Both selection and reproduction needs random procedures. Its
stochastic properties are among the most important features of GAs, preventing the
algorithm to stall into local minima. Another very important feature of the GAs is
that, a population of candidate solutions is evaluated instead of a solution. Evaluating
more than a single solution in every iteration offers many advantages. Recombining
different candidate solutions helps achieving better results. Population-based
methods are superior to single-point methods in terms of robustness and they are also
very applicable for parallelization. The robustness of the algorithm is also an
essential property for the algorithms success. Robustness refers to the ability to
perform consistently well on changing conditions for a large range of problem types.
Robustness of the algorithm is the outcome of the stochastic and the population-
based properties of GAs. Application range of the genetic algorithms is another
important feature. Genetic algorithms can be applied to solve any problem that can
be represented with a fitness function. All these features make GAs very powerful

search and optimization tools. However, it is also important to mention the
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limitations of GAs. Like the most stochastic methods, GAs does not guarantee to find
the global optimum solution to a problem at every time the algorithm is executed,

showing unpredictable characteristics.

3.2.3.1 Comparison with other optimization methods

Most significant difference between the genetic algorithms and the conventional
optimization methods is that, the GAs are stochastic methods while the conventional
optimization methods are generally deterministic. A stochastic method can be
disadvantageous in some situations but for ill-conditioned problems with multiple
local minimum points, they become advantageous because they are less likely to fall
into local minimums. Most of the conventional optimization methods require a good
initial guess to be used as a starting point for convergence. On the other hand, GAs
do not require any initial guesses and because of their stochastic nature, GA can

achieve convergence by starting from any point in the search space.

Another difference is that, GAs use fitness function to evaluate the candidate
solutions, while the conventional optimization algorithms use derivative information.
This is a major advantage of the GAs, because they can be applied to both
continuous and discrete problems while the conventional methods suffer difficulties
in adapting to discrete problems. Because of this property, GAs can solve any
problem that is stated with an objective function. Another very important difference
is that, the GAs operate on a whole population of points while the conventional
methods search from only a single-point. This population-based structure of the GAs
is one of their most significant advantages for achieving robustness. It improves the
chance of reaching the global optimum solution by helping to avoid the local
minimum points. GAs are more suited to parallel computing than the conventional
methods. Genetic algorithms also operate better on the problems with large search
spaces. Most important disadvantage of the genetic algorithms is their relatively high
computing time requirements. However, as the parallel computing systems become
widespread, this drawback of GAs becomes less important. Another drawback of the
GAs is that, the determination of parameters is a difficult process and the success of

the algorithm strongly depends on its parameters.
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3.2.3.2 General structure of a genetic algorithm

The most important stages of a genetic algorithm are objective function, selection,
crossover and mutation stages. A typical GA starts with the creation of initial
population, which is followed by the evaluation of fitness function for all individuals
of the initial population. Results of the fitness function are checked to see if the
criteria for convergence are met to end the algorithm. Individuals are selected for
reproduction in the selection stage according to their fitness values. In crossover
stage, selected individuals are recombined to form the population of the next
generation. Mutation operator randomly changes bits of individuals by a small
percentage, hoping to achieve improvement. Next step is to evaluate the fitness
function for all the individuals in the child generation. This loop continues until the
required convergence criteria are met. Flowchart of a common genetic algorithm is

shown in Figure 3.2. Encoding is also an important aspect of a genetic algorithm.

Encoding is the process of representing the individual genes. Encoding of the genes
can be done in binary, octal, hexadecimal or real numbers, depending on the
problem. Individuals of the population are possible solutions of the problem.
Individuals are represented by the strings of bits that carry the properties of the
corresponding solutions. These properties can be values or characteristics. Genes are
encoded in the way that every possible individual represents one candidate solution
in the search space and every candidate solution in the search space must be
represented by a possible individual. Encoding stage of the GA directly alters the
complexity of the process. For example, encoding a parameter estimation problem
with binary parameters, simplifies crossover and mutation processes while increasing

number of variables in the problem. Initial population of a GA is created randomly.

GAs, unlike conventional optimization methods, do not depend on starting point for
convergence. Convergence can be achieved by starting from any point in the search
space. However, having an initial population with a rich diversity increases the
convergence speeds. As a result, all of the genetic algorithms start with random
initial population. Fitness function is evaluated for all individuals of the population in
every iteration. Fitness values of the individuals are checked for the convergence
criteria to stop the algorithm. There can be multiple conditions to end the program
and these examinations must be done in every iteration. If any of these criteria is met,

the fittest individual is selected as the result and the algorithm ends. If not, the fitness
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values of the individuals are stored to be recalled in the selection routine and the

algorithm advances into the breeding process.

Random creation of initial population

—P Evaluation of objective function for all individuals

o Yes
Has the criteria been met?

No

A 4

Best individual is selected as result

A 4

Selection of individuals

Crossover

Mutation

Figure 3.2: Flowchart of a common genetic algorithm.
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Breeding process, which consists of selection and recombination operations, is the
core of all genetic algorithms. In selection operation, individuals are selected for
reproducing according to their fitness values. Selection operator is an extremely
important operator for GAs and it must include randomness for a successful
operation. The individuals with relatively higher fitness values must have a higher
chance of selection than the individuals with lower fitness values. Even the least fit
individual of the population might have a chance of being selected and this behavior
adds stochastic properties to the genetic algorithms. If there is no randomness in the
selection operation, the GA loses most of its stochastic properties, which often

results in failure of converging to the true solution of the problem.

There are numerous selection algorithms for GAs to choose from. Most important
ones are tournament selection, fitness proportionate selection and ranked selection.
In tournament selection, a predetermined number of individuals are randomly picked
from the population and the one with the highest fitness value is selected for
reproducing. Another selection method is fitness proportionate selection, in which
the individual’s chances to be selected are in proportionate to their fitness values.
Fitness values can also be normalized for a more balanced selection operation. In
ranked selection, all the individuals are sorted in respect to their fitness values and
they are given chances for selection in proportionate to their ranks. With rank
selection method, selection pressure can be applied to the individuals according to

their relative fitness values.

Selection operation is followed by recombination, which is called the crossover
operation in genetic terminology. Crossover operator is the recombination of the
selected individuals into the individuals of next generation. Population of the next
generation is formed in crossover operation. The simplest crossover method is
one—point crossover, where the strings of bits are cut from a randomly chosen point
and remaining parts are exchanged between the individuals. However, better results
can be achieved with more advanced crossover methods like N-point crossover and

uniform crossover methods.

After the population of next generation is formed by breeding process, the
individuals are subjected to mutation operation. Mutation is the random changes
applied to individuals with a predetermined probability. However, the mutation

probability must have a very small value, typically below one percent. Setting the
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mutation probability too high decreases the algorithms convergence speeds, even at
some point, preventing the convergence and causing the algorithm to stall. After the
mutation stage, objective function is evaluated for all the individuals of newly
created population and this process continues for every generation until the required

criteria to stop are met.

3.2.3.3 Search strategies

Main target of a GA is to find the best possible solution to a problem by achieving
convergence. However, there are numerous parameters in a GA that influence the
performance and the results of the algorithm directly. Therefore, when designing a

GA for a specific problem, having a search strategy is crucial for convergence.

There are important factors for GAs to consider when adapting a search strategy.
Most important of these are convergence speed and diversity of the population.
Convergence speed is how fast the algorithm converges to the best solution over
successive iterations. Diversity is defined as the distance between the individual
solutions in a population. Diversity increases with the variety of the individual
solutions in a population. By increasing the selection pressure for fitter individuals,
better convergence speeds can be achieved. However, increasing the selection
pressure of better individuals causes those individuals to be dominant in the
populations of the future generations; thus, it dramatically decreases the diversity of
the population. If the fittest individuals of the early populations become dominant,
there is a risk of premature convergence, which leads to converging into wrong
solutions by falling into a local minimum point. Therefore, diversity among the
population is very important in terms of stability and convergence of the algorithm.
Decreasing the selection pressure increases the diversity, in the cost of convergence
speed. However, too much diversity may even lead to a point where no convergence
can be achieved at all. Thus, the right strategy is to set the selection pressure to an
optimal point, where convergence speed and diversity of the population stays in
balance. With the right strategy, reasonably good convergence speeds can be

achieved, maintaining enough diversity among population at the same time.

Changing parameters in the genetic algorithm adaptively is a good strategy. Using
adaptive parameters can be a solution to convergence speed-diversity dilemma. The

selection pressure parameter adaptively changing with the diversity of the
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population, the algorithm performs better on changing situations by keeping the

diversity at reasonable levels while achieving optimal convergence speeds.

Another search strategy is to employ a multi-stage genetic algorithm. Every stage
may serve to a different purpose, each having different parameters and even different
operators. It is a good strategy to use this technique on problems with large search
spaces. In problems where GAs become inefficient, they can be combined with
another optimization method in hybrid scheme. There are studies that report to be
successful by using hybrid algorithms including GAs and conventional optimization

methods (Hsiao, 2001).

Applying elitist selection can be a good strategy to keep the best solution of the
population safe. In elitist selection, a small number of the fittest individuals survive
through the next generation. A good strategy would be to employ elitist selection to
prevent the algorithm from divergence by losing the best individual of the
population. Elitist selected members should also be protected from mutation

operators.

3.3 Genetic Algorithm for Image Reconstruction Problem

Genetic algorithm method is very applicable to image reconstruction problem
because of its many properties. Among these properties, the most significant one is
the genetic algorithms ability to operate relatively better on ill-conditioned problems
with multiple local minima due to its stochastic nature. Another important property is
that the GAs are relatively successful on problems with large search spaces than the
conventional optimization methods. Lastly, because no derivative information is
needed, genetic algorithms work relatively well with noisy data. Thanks to these
properties, GAs are starting to gain importance in electrical impedance imaging field.
However, all the studies combining genetic algorithms and EIIl method are in
development stage; no commercial impedance imaging system using GA is available
as today. This thesis covers the application of GA method to electrical impedance
imaging for reconstruction of binary conductivity distributions. Due to its high
performance when working with matrices and its fast built-in linear equation solver,
the genetic algorithm for the image reconstruction problem is developed using

MATLAB 7.7 (MATLAB R2008b) programming environment. MATLAB
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programming language is very suitable to technical applications and its performance

with vector and matrix operations is quite high.

Focus of the GA for the image reconstruction problem is to find the true conductivity
distribution of the body; or for some cases the closest possible solution to the true
conductivity distribution. For some cases, where the electrical currents path is
blocked, it may be impossible to determine the true conductivity distribution of the
body. In situations like these, algorithm should find the best possible solution, which
is the closest distribution possible to the actual distribution. To achieve these results,
there are two important objectives to consider before the development of the genetic
algorithm. First of these objectives is to achieve convergence to a population of
solutions and the second one is to find the true conductivity distribution from the
population of the solutions that are close to the exact result. Considering these two
objectives, a strategy of a two-staged genetic algorithm is developed. A GA is
developed with two stages, each stage being a genetic algorithm with different
parameters and operators for two different objectives. Objective of the first stage of
the GA is to achieve convergence in the population into a state that the distance
between the individuals of the population and the actual conductivity distribution is
at minimum. Objective of the second stage is to find the exact conductivity
distribution using the population from the first stage of the algorithm as the initial

population.

General overview of the genetic algorithm is seen in Figure 3.3. Algorithm starts
with the reading of measurement data and GA parameters from the disk and saving
to the memory. Next step of the algorithm is the calculation of local admittance
matrices for the FEM model. These local admittance matrices don’t depend on the
conductivity distribution, therefore, they are calculated before the algorithm starts to
prevent the same matrices from being computed every time the fitness function is
evaluated. This pre-calculation step speeds up the evaluation of the fitness function
later on. After the calculation of local admittance matrices, weight function factors
are computed. Weight function is applied because of the ill-conditioning nature of
the imaging system. Weight functions purpose is to increase the sensitivity of the
pixels that are located in the center of the body. Details of the weight function are
discussed later in this chapter. First stage of the algorithm runs until the desired

convergence criteria are satisfied. After the first stage, the second stage of the GA
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runs until an exact or acceptably good result is reached. Algorithm ends with

displaying the results.

Input of EIT Data and GA Parameters

Calculation of Common Constants for FEM Model

A 4

Calculation of Weight Function

Ist Stage of Genetic Algorithm

2nd Stage of Genetic Algorithm

Display Results

Figure 3.3: Flowchart of the two-stage genetic algorithm for image reconstruction
problem.
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3.3.1 Structure of two-stage genetic algorithm

Genetic algorithm for the image reconstruction problem consists of two stages, each
having a separate objective. Objective of the first stage is to converge the population
closer to the exact solution of the problem. Because the first stage of the algorithm
starts with a random initial population, diversity among the population is very high at
the beginning. Therefore, no additional operation to increase the diversity is
necessary and the mutation rate is kept at a minimum value. Selection pressure is
applied sensitively to increase the convergence speed of the algorithm. In the second
stage, diversity among the population becomes lower than the first stage of the
algorithm. At this stage, mutation rate must be increased in order to maintain rich
diversity levels. High mutation rates also help the algorithm to evade the local
minimum points to reach the true result. Selection pressure is also reduced to prevent
the diversity from falling beneath a low limit. In the second stage of the algorithm,
rich diversity is maintained mostly by the mutation operator and keeping a rich

diversity level among the population is vital for algorithms success.

Flowcharts of the first and the second stages of the genetic algorithm are shown in
Figure 3.4 and Figure 3.5 respectively. Main differences between the first and the
second stages are the mutation operators and the application of fitness memory for
objective function. Fitness memory is an additional function to speed up the
execution of the objective function. Fitness memory function stores population of the
previous generation and their fitness values. During the execution of the objective
function, all members of the current population are compared to the previous
population. For the individuals that present in the previous population, the algorithm
uses the fitness value from the last generation, thus speeding up the whole process.
However, because the distances between the individuals are relatively bigger in the
first stage of the algorithm, only a very little amount of individuals survives exactly
to the next generation. Therefore, it is only beneficial to use fitness memory in the
second stage of the algorithm. Neighborhood shift mutation and center fill mutation
operators are also used only in the second stage of the algorithm. These mutation
operators help finding the exact solution with a shape search mentality.
Neighborhood shift mutation randomly moves a foreground pixel to one of its

neighbor pixels with a predefined probability. Center fill mutation turns a
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background pixel that which has three foreground neighbor pixels into a foreground

pixel with a fixed probability.

Random Creation of Initial Poupulation

'

—»| Evaluation of Objective Function For All Individuals

Yes
Has The 2nd Stage Criterion Met ?

Export Population to 2nd Stage of GA

Adaptation of GA Parameters

: o )

Rank Based Proportionate Selection

I

Uniform Crossover Operation

I

Adaptive Mutation Probability Filter

'

Identical Individual Eliminator

Figure 3.4: Flowchart of first stage of the genetic algorithm.
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—p» Evaluation of Objective Function For All Individuals With Fitness Memory
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Display and Write Results

Adaptation of GA Parameters
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Uniform Crossover Operation

'

Adaptive Mutation Probability Filter With Center and Neighbor Multipliers

'

Neighborhood Shift Mutation

l

Center Fill Mutatiom
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Identical Individual Eliminator

Figure 3.5: Flowchart of second stage of the genetic algorithm.
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3.3.2 Population encoding

Encoding process of the population is the first stage of any genetic algorithm. Any
property, which represents a quality or a quantity of a possible solution in the search
space, must be encoded as bits in a GA. Bits represents genes in analogy with genetic
science; as every property of organisms is represented by genes, every distinctive
property of a possible solution is defined by bits. Every bit of a candidate solution is
combined to form an individual. An individual is a string of bits that carries the
information of a candidate solution. All the individuals of a generation form the

population of the corresponding generation.

In the image reconstruction problem, every pixel of the conductivity distribution is
represented by a variable. Because only the binary conductivity distributions are
imaged in this thesis, reconstructed distributions includes two levels of conductivity
values, a background and a foreground conductivity level. Thus, every pixel is
represented by a binary variable, taking the value of one for the foreground
conductivity value, zero for the background conductivity value. Any solution in the
search space is fully defined using the number of binary variables that equals to the
number of pixels of the reconstructed image. For the 16-electrode model, image
dimensions are 9x9 pixels; the total number of pixels is 81 and therefore, any
possible solution in the search space is encoded by 81 bits. For 32-electrode model,
image dimensions of 17x17 sums up to a total of 289 pixels; therefore, any candidate
solution in the search space is encoded by 289 bits. Bits are numbered starting from
the pixel at the top-left corner to the pixel at the downright corner. Numbering of the
bits is illustrated in Figure 3.6. All the bits that belong to a possible solution form a

string, which is called an individual of the population.

=181, 80es &os & } (3.1)

Where g represents a bit, i represents an individual and M is the total number of the
bits in an individual. Strings of all individuals in a generation form the population of
the corresponding generation. In the GA, the population is specified with a
population matrix. The population matrix consists of all the individuals and it has the
dimensions of R and M, where R is the number individuals in a generation and M is
the total number of bits of an individual. A population matrix is shown in Equation

3.2
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Figure 3.6: Numbering of the bits on their corresponding pixels for 16-electrode
model.
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Where [ represents the population matrix.

Initial population is randomly created at the start of the algorithm. In terms of
efficiency of the algorithm, rich diversity among the initial population is an
important factor. It also contributes to the stochastic nature of the algorithm. Random
creation operation ensures a diverse starting population and therefore, increases

efficiency of the genetic algorithm.

3.3.3 Weight function

As mentioned earlier, the image reconstruction problem of EII is an extremely ill-
conditioned problem. Interior pixels cause lesser response on the boundaries, where
the measuring electrodes are located, than the pixels that are located near the
boundary surface. This phenomenon causes sensitivity of the interior pixels to drop.
Therefore, conductivity of the pixels near the boundaries dominates the error
function and the pixels located near the center of the body have a lesser impact on
the fitness values of the individuals. This situation prevents the convergence in the

central region of the conductivity distribution.
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To overcome the low sensitivity issue, error function must be modified to decrease
the ill conditioning of the problem. There are several methods to improve the
conditioning of the inverse problems. However, most of these methods are not very
applicable to the image reconstruction problem. Therefore, a special weight function
is developed specifically for the image reconstruction problem of impedance imaging
to increase the sensitivity of the interior pixels, thus, reducing the ill conditioning of
the problem. Main idea behind the weight function approach is that every excitation
focuses different areas of the body; therefore, the data from different excitations
amplify the information from different regions of the conductivity distribution.
However, magnitudes of this amplification vary dramatically because of the ill-
conditioned nature of the system. Therefore, extremely important data are neglected
because of this difference. Aim of the weight function is to scale the data from each
excitation in respect to the magnitudes of the error function value each excitation
contributes. Weight function determines the scaling factors for each excitation by
comparing the data from the actual measurement to the data from the numerical

simulation using homogeneous background distribution.

A series of numerical simulations is conducted to show the sensitivity drop in the
central area of the body by using the conductivity distribution including a foreground
pixel moving in the horizontal direction on a homogeneous background. Results are

shown in Figure 3.7.
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Figure 3.7: Error function values for a foreground pixel moving horizontally in a
homogeneous distribution.
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As the foreground pixel moves to the central region of the body, its impact on the
error function is dramatically reduced. A pixel near the boundary is more than six

times sensitive than a pixel in the central region.

In the execution of weight function, numerical simulation of the imaging system
using the homogeneous conductivity distribution, where all the pixel conductivities
set equal to the background conductivity value, is computed. For the numerical
simulation, parameters are selected as same as the actual measurement of the
imaging process. After the simulation, the difference between the actual voltage data
and the voltage output of the homogeneous simulation is calculated. Error values are
obtained using the difference data for each excitation. The weight function then
analyses the error values for every excitation and calculates the factors to reduce the
difference between the error value contributions of each excitation. Weight function
factors range from zero to one. Excitations that provide a higher error value are
multiplied with smaller factors in the execution of the objective function; thus,
closing the gap between the magnitudes of data from the different excitations.
Weight function prevents some pixels from becoming too dominant and increases the
sensitivity of the pixels that resides in the center of the body. In Figure 3.8, flowchart

of calculation of the weight function is illustrated.

Error values for each excitation are calculated using Equation (3.3).

E

we) =3 (H,G.e)=T,Ge))  fori=123, ... P (3.3)

e=1

Where wy denotes error values, H; denotes the voltage values on the corresponding
electrodes from the numerical simulation data using homogeneous distribution, T,
denotes the voltage values on the corresponding electrodes from the actual
measurement data, e index represents the electrode numbers and i index represents
the excitation numbers. E is the total number of electrodes and P equals to the total
number of excitations of the imaging system. Weight function scaling factors are

calculated for all excitations using Equation (3.4).

w, (0)

max

Wf (l) = l—erf[a- ] fori= 1,2,3, ,P (3.4)

Where Wy represents the weight function scaling factors for each excitation, wuq,

represents the highest error function (wy) value that is computed in Equation (3.3),
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and a represents the weight function parameter that controls the sharpness of the

scaling operation.

Increasing o parameter increases the presence of the weight function, setting the
scaling factors more radically, causing more amount of information to be cut out
from the data and increasing sensitivity of interior pixels. Decreasing a parameter
reduces weight functions effects and limits weight functions scaling factors from

decreasing beyond a certain level.

< Start ’
l A 4 l
Import Excitation Data Import Actual Data / / Import Hom. Dist. Data

Construction of Global Stiffness Matrix [ ——

Hom. Dist. Actual Data.
—p Linear Solver
Hom. Dist. Actual Data.

Calculation of Weight Function

Weight Function Output

Figure 3.8: Flowchart of calculation of the weight function.
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To demonstrate the effects of o parameter, weight function scaling factors is plotted
using different a values for a fixed conductivity distribution on 32-electrode model.
Figure 3.9 (a) shows the weight function factors for each excitation for a parameter
equal to one. Figure 3.9 (b) shows the weight function factors for o parameter equal
to 100 using the same conductivity distribution. In Figure 3.9 (b), we can see that
more data are discarded from the excitations starting from the excitation number 15.
Comparing two plots, a higher a parameter causes the weight function to behave
more aggressively, having freedom to discard more data from the excitations.
However, increasing o parameter keeps the error values closer to each other in terms

of contributions of every excitation.

Weight Function Factor

Weight Function Factor

Excitation Number

(b)

Figure 3.9: Weight function scaling factors for each excitation: (a) Weight function
factors for a = 1. (b) Weight function factors for o = 100.
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3.3.4 Objective function

Aim of the objective function (also called “fitness function”) is to measure the fitness
of the individuals. Genetic algorithms need a mathematical function to trial the
individuals according to their fitness. To select the better individuals for
recombination, first, it is crucial to measure their fitness levels numerically. After
this numerical representation of fitness, different individuals can be compared for
their distance to the exact solution. Objective functions aim is to represent the fitness

of the individuals using numerical values.

Objective function of the image reconstruction problem is very similar to an error
function. However, in contrast with an error function, smaller error value points to a
fitter individual. To determine the fitness of an individual, which is the distance to
the true solution in this case, firstly an error measuring function is created. An error
function with a least squares approximation is used in the algorithm. Error function is

shown in Equation (3.5).

1
e =5(de Vo) Vi = V) (3.5)

Where ey is the error value of the individual, V;,, 1s the voltage output values from the
simulation using the conductivity distribution of the individual and Vj is the voltage
output values from the actual measurement. After the combination with the weight

function factors, least squares error function stated in Equation (3.6).

=ZZ W, i)V, (€)=Y, io0)f (3.6)

Where ¢ represents the error value of the corresponding individual. Objective
function numerically simulates the voltage values on the electrodes for the
individual’s conductivity distributions using the FEM model that is introduced in the
second chapter of the thesis. Results of this simulation are compared to the results
from the actual measurement of the imaging process using the error function stated

above.

Results of the objective function are stored as a string in the algorithm. This fitness
string carries the error values for every individual in the population. Error values are
inverse proportional with the fitness of the individuals. Fitness string is shown in

Equation (3.7).
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f=100.0.000.0,0. 0, ] 3.7)

Where f represents the fitness string and ¢ represents the calculated error values of
the individuals. Fitness string is used by the selection operator for deciding the
individuals that will be selected for recombination process later in the algorithm.

Flowchart of the objective function is shown in Figure 3.10.
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Figure 3.10: Flowchart of the objective function.
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3.3.5 End criteria of genetic algorithm

Like every other search and optimization method, genetic algorithms also need to be
stopped when the desired criteria are met. End criteria of a GA are the group of
conditions that directs the GA to stop working and output the results to the user.
There can be single or multiple ending conditions depending on the structure of the

GA.

There are three conditions to stop for the genetic algorithm for the image
reconstruction problem; first is to reach the maximum desired error value, second is
the end of the convergence and the last is to reach the maximum iteration limit. In the
first condition, the algorithm stops when an individual’s error value falls below a
certain threshold and the individual is selected as the result of the algorithm.
However, value of this threshold must be selected small enough to prevent the
algorithm from stopping before attaining the true solution. Generally, values between
10° and 10™ are observed to be suitable for low-noise imaging conditions. When
working with data that contain heavy noise, this value should be increased further.

An optimal value for the threshold should be selected experimentally.

Second condition is activated when the number of successive iterations without an
improvement reaches to a certain limit. Criterion for no improvement is triggered
when the best individuals of predetermined number of successive generations have
the same error values. The limit must be set high enough to ensure that the
convergence is stopped completely to prevent any premature results. Generally,
values above 200 are suitable for this limit. Value of this limit is safely selected as
250 for the genetic algorithm. Activation of the second condition means that the
algorithm has stopped without reaching the exact conductivity distribution. Presence
of this condition is crucial to prevent the algorithm from running pointlessly when no

convergence can be achieved.

The last condition stops the algorithm when the maximum iterations limit is reached.
Maximum iterations limit is selected high enough (around 1000-2000) to prevent the
algorithm from stopping too early before finding the true solution. There is also the

condition to stop for the first stage of the algorithm.

When a predetermined number of successive iterations pass without any

improvement, the first stage of the algorithm ends and the second stage of the
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algorithm starts. The number of successive iterations requires for the initiation of the
second stage of the algorithm can be selected between 10 and 50; for this studys, it is

experimentally selected as 20.

3.3.6 Selection

Selection is the process of choosing parents from the population for recombination.
The purpose of selection is to emphasize fitter individuals of the population to form a
fitter population in the next generations. Selection algorithm is built in a mentality
that the fitter individuals of the population have a higher chance of selection than the
less fit ones. These selection chances are regulated by applying selection pressure.
The selection pressure is defined as the degree that the fitter individuals are favored
in terms of selection chances. The higher selection pressure means the better
individuals will be favored more. Main factor behind the convergence of a genetic
algorithm is selection pressure. The convergence speed of a GA is mostly influenced
by the magnitude of the selection pressure. Higher selection pressures often result in
higher convergence speeds. However, if the selection pressure is set too high,
because of the reduced diversity among the population, there is a big chance that the
algorithm prematurely converges into an incorrect solution. If the selection pressure
is set too low, the convergence rate decreases dramatically and the time required for
reaching a solution unnecessarily increases. Exact solution can only be reached

within minimal computing times by using optimum selection pressure values.

There are three most common selection methods for GAs, Tournament selection,
fitness proportionate selection, and rank-based proportionate selection. In tournament
selection, a group of individuals is chosen randomly from the population and the
individual with the highest fitness value is selected to be a parent for the next
generation’s population. Selection pressure can be controlled by the number of the
individuals selected to the group, which is also called tournament size. Despite being
a simple and efficient method, it is very difficult to control the characteristics of the
selection pressure in this method. Another selection method is fitness proportionate
selection, where each individual is given a probability of selection in proportionate to
its fitness level. Selection of parents is executed randomly using the probabilities
calculated according to the individuals’ fitness values. Fitness proportionate selection
is a popular method; however, controlling the selection pressure is impossible

without using a scaling function.
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Rank-based proportionate selection method uses ranks of the individuals rather than
their raw fitness levels. In this method, all the individuals of the population are sorted
according to their fitness levels. The individuals are given selection probabilities in
proportionate to their position (their rank) in the sorted population. This method is
very flexible and efficient, because it allows the distribution of the selection
probabilities to have any predetermined characteristic and shape. Diversity is
preserved more efficiently with the rank-based proportionate selection than the other
methods due to its nature that prevents any individual from becoming too dominant.
It is also very easy to apply the selection pressure with this method, because the
selection probabilities curve is determined before the algorithm starts. Due to these
advantages, rank-based proportionate selection with an elitist selection scheme is

developed for the genetic algorithm for the image reconstruction problem.

3.3.6.1 Elitist selection

Elitist selection is a selection method, where the best individuals of the population
survive to the next generation. Elitist selection is used in combination with the other
selection methods. After a constant number of individuals with the highest fitness
values are selected directly to the next generation by the elitist selection, an another
stochastic selection method choses other parents to fill the remaining spaces in the
population of the next generation. Number of individuals that are selected by the
elitist selection, (in other words, “elitist selection quota”) must be rather small
compared to the population size. Generally, values between %0.5 and %3 of the
population size is suitable for GAs. Elitist selection quota is determined to take the
value of two for the first stage and four for the second stage of the GA for the image

reconstruction problem.

Because the elitist selected individuals are not subjected to recombination, setting the
elitist selection quota too high diminishes the stochastic nature of the genetic
algorithm and keeps algorithm from converging to the true solution. Elitist selected
individuals are also not affected by the mutation filters. While reducing the diversity
of the population, elitist selection increases the convergence speed. Elitist selection is
a useful tool for GAs, because it prevents the algorithm from diverging by losing the
best individual of the population. Always preserving the best individual of the
population to the next generation, elitist selection is an insurance to prevent the

divergence.
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3.3.6.2 Rank-based proportionate selection

First step of the rank-based proportionate selection method is to construct the
selection probabilities string, which includes the selection probability values of all
individuals of the population. There is a wide range of mathematical functions that
can be used as the selection probability curve; however, exponential functions are
proved to be the most efficient ones for the genetic algorithm, because exponentially
increasing selection probabilities fits the stochastic nature of the GAs better. Before
the calculation of selection probabilities, individuals of the population are sorted
according to their fitness values and every individual are given a rank value in
respect of the individual’s sorted position. Rank values are integers ranging from one
to R, where R is the population size, and the rank value of one refers to the best
individual. Normalized rank of the individuals is calculated by dividing the

individuals rank value with the population size.

~_ r@) .
r, (l)_T for i=1,...,R (3.8)

Where r(i) represents the i-th individuals rank and r,(i) represents normalized rank of
the i-th individual. Normalized rank values ranges from zero to one. Selection

probabilities of the individuals are computed using Equation (3.9).

A

pi)=—— for i=1,....R

Z Q) 3.9

n=1
In Equation (3.9), p(i) represents the selection probability of i-th individual and f is
the selection pressure parameter. The sum of selection probabilities of all individuals
in a population is equal to unity. Increasing the selection pressure parameter
increases the selection probability of the fitter individuals. Selection pressure of zero
means every individual has equal selection probability, which would prevent the
convergence of the algorithm. Therefore, the selection pressure must be selected
greater than zero in order to achieve convergence. To show the effects of the
selection pressure parameter S, Selection probabilities for a population size of twenty
individuals are plotted using £ values of two and five in Figure 3.11. It is seen from
these figures that increasing S value increases the selection probabilities of the

individuals with high fitness values, while decreasing the selection probabilities of
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the individuals with low fitness values. Individuals with mid-range fitness values are

not remarkably affected from f.
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Figure 3.11: Selection probabilities of the individuals for a population size of 20
using selection pressure value of 2 and 5.

After the calculation of the selection probabilities, selection string is formed. The
selection string is the series of sums of the probabilities from first to each individual
of the population. Starting with zero, it has (R + 1) terms. The selection string is

shown in Equation (3.10).

2 3 4 R
s = {0, p).Y p(n).Y> p(n),Y p(n),...... Y, p(n)} (3.10)

Selection string is used in the algorithm by creating a random real number between
zero and one, and checking the selection string for the condition that the random
number is greater than the n-th term and it is less than the (n+1)-th term. The n value
that satisfies this condition is selected as the parent individual by the selection

algorithm.

In this routine, there is a chance that the same individual is selected for both parents.
If this situation occurs, selection routine is repeated until different individuals are
selected as parents. This selection process continues until the desired amount of
parents is selected for the recombination. Pseudocode of the selection algorithm is

shown in Figure 3.12.
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Sort the individuals according to their fitness wvalues.
For i=1:(elitist selection quota);
Select i-th best individual as a parent.
Assign rank numbers to individuals according to sorted positions.
For i=l:population size;
Calculate selection probabilities of individuals.
Construct the selection string.
For i=1l:(required number of parents - elitist selection quota)/2;
Create a random number between (0,1)
For j=1:(population size);
If the random number > j-th term of the selection string and
the random number < (j+1)-th term of the selection string;
Select j-th individual as a parent.
Create a random number between (0,1)
For j=1:(population size);
If the random number > j-th term of the selection string and
the random number < (j+1)-th term of the selection string;
Select j-th individual as a parent.
If the first parent is the same as the second parent;

Repeat selection routine with different random numbers

Figure 3.12: Pseudocode of the selection algorithm.
3.3.7 Crossover

Crossover is the process of recombining two parent individuals and creating two
child individuals using the parents’ genes. Crossover process enriches the population
with better individuals by recombining the fitter individuals of the previous
generation. After recombining two selected individuals, there is a chance that the
offspring will carry the good characteristics of both parents. Crossover operator
recombines the individuals that are chosen as parents by the selection. Because the
selection operator increases the selection probabilities of the better individuals, the
individuals with good characteristics tend to mix with each other more frequently
than the others, increasing the fitness of the next generation’s populations and

achieving convergence in the process. Shaping the breeding process of a genetic
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algorithm with the selection operator, crossover operation is vital for convergence of

any GA.

During the crossover operation, strings of both parents are mixed together, forming
two child individuals. This exchange of the bits can be done with different methods.
The most simple crossover method is one-point crossover, where the strings of both
parents are cut from a random position into two pieces and one of the pieces is
exchanged between parents. However, this method does not provide a good mixture.
In two-point crossover technique, strings are cut from two random points, providing
a better mixture rate. The crossover technique that provides the best mixture is
uniform crossover. In uniform crossover technique, crossover is applied to the strings
of bits using a random crossover mask. Exchange of the bits is independently
decided using the crossover mask for each bit in the string. Uniform crossover
method is the most advanced crossover method to use with the binary variables and
because the image reconstruction problem demands good mixture rates for success,

this method is ideal for the GA for the image reconstruction problem.

3.3.7.1 Uniform crossover

Uniform crossover is a technique where each gene in the offspring is created by
copying the corresponding gene from the parent that is chosen according to a random
generated binary crossover mask that has the same length as the chromosome size of
the individuals. Crossover between parents is executed for each bit if the
corresponding entry of the crossover mask equals to one. An Illustration of the

uniform crossover method is shown in Figure 3.13.

Parent 1 1/10(0|1|0|O0O|1]0|0]1

Parent 2 o(1{11]0|1|]0]0|1]0]0

Crossover Mask 1/0(1(0|0|1]0|0]|1]O0

Offspring 1 0/|0|1[1|]0]0|1]|0]|O0|1

Offspring 2 11010 1{0(0]1]0]|O0

Figure 3.13: Illustration of the uniform crossover method.
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Randomized crossover mask is a random binary string with the length of the bit
number of the individuals. For every bit of the individuals, algorithm checks the
corresponding term of the crossover mask. If the corresponding entry of the
crossover mask equals to zero, first offspring takes the corresponding bit from the
first parent and second offspring from the second parent. If the crossover mask
equals to one, first offspring takes the corresponding bit from the second parent and
the second offspring from the first parent. Because the entries of the crossover mask
are created randomly using equal probability for each binary value, perfect mixture
rates can be achieved using the uniform crossover method. Pseudocode of the

crossover algorithm is shown in Figure 3.14.

For i=1:(population size - elitist selection quota)/2;
Create a random number between (0,1).
If the random number < crossover rate;
Create the crossover mask as a random logical string.
If the random number > crossover rate;
Set all the entries of crossover mask to zero.
For j=1:(individual string length);
If j-th term of crossover mask is zero;
Assign j-th bit of the first parent to first offspring.
Assign j-th bit of the second parent to second offspring.
If j-th term of crossover mask is one;
Assign j-th bit of the first parent to second offspring.

Assign j-th bit of the second parent to first offspring.

Figure 3.14: Pseudocode of the crossover algorithm.

Crossover is applied to the selected individuals with a probability called crossover
rate (crossover probability). Crossover rate determines whether the selected parent
individuals will be subjected to the crossover operation or they will be transferred to
the next generation without being mixed with each other. Before execution of the
crossover operation, a random real number is generated between zero and one. If the
generated number is greater than the crossover probability, parent individuals are
transferred to the next generation’s population without any changes, otherwise the
crossover routine is applied to the parent individuals. Because the genetic algorithms

operate more efficiently with good mixture rates, crossover probability should be
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selected higher than 0.5. Values around 0.9 are ideal for crossover probability for the

image reconstruction algorithm.

3.3.8 Mutation

After crossover, newly formed population is subjected to mutation. Main purpose of
the mutation operator is to prevent the algorithm from being trapped in a local
minimum. Mutation maintains diversity in the population and it is an insurance
against the irreversible loss of the genetic material. Mutation operator randomly
changes the bits of the individuals. These random changes help the GA to move
forward when a better solution is not available in the gene pool. When the algorithm
is stalled due to the poor diversity in the population, mutation is the only way to
improve the population. In binary strings, mutation is executed by inverting the value
of the bit that is subjected to mutation. An illustration of mutation for binary strings

is shown in Figure 3.15.

Mutating bit

1({0]110(1]1(1]0]1(0

Figure 3.15: Illustration of mutation for binary strings.

Success of the genetic algorithm for the image reconstruction problem relies heavily
on the mutation operator. For the first stage of the algorithm, diversity among the
population is rich enough to maintain good convergence speeds. Therefore, intensive
mutation rates are not required for the convergence of the algorithm. Mutation

probabilities for the first stage of the algorithm are kept around minimal values.

Two mutation operators are used in the first stage of the algorithm, Adaptive
mutation probability filter and identical individual eliminator mutation filter. Both of
the operators, which are first introduced in this thesis, are developed specifically for

the GA for the image reconstruction problem.

Aim of the second stage of the GA 1is to find the exact conductivity distribution of the
body using a population of converged solutions. Because the population is converged

close to the true solution in the first stage, diversity among the population is very low
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in the second stage of the algorithm. To enrich the diversity of the population in the
second stage, mutation probabilities are radically increased. Two additional mutation
types are developed to provide additional diversity to the population. Neighborhood
shift mutation filter and center fill mutation filter operators, which are first
introduced in this thesis, are developed specifically for the second stage of the
algorithm using a shape searching mentality. These two mutation operators are used
intensively with high mutation probabilities with the aim of reaching the exact

conductivity distribution image by searching in the population of solutions.

3.3.8.1 Adaptive mutation probability filter

Adaptive mutation probability filter is a modified version of the conventional
mutation operator that is developed exclusively for two-dimensional image
reconstruction problem. This mutation filter adaptively alters the mutation
probability of each bit according to the diversity of the population for the
corresponding bit. As the algorithm advances through the generations, diversity of
some bits may fall radically where certain bits of the most individuals of the
population carries the same value. This reduction of diversity for certain bits slows
down the convergence of the algorithm and it may stall the algorithm completely as
well. The idea behind the adaptive mutation probability filter is that increasing the
mutation probability for these bits increases the diversity of the corresponding bits,
increasing the efficiency of the overall algorithm and the convergence speed. In
adaptive mutation probability filter, mean values of each bit of the population is
calculated and the mutation probability for each bit is computed adaptively using the
mean values independent from each other. Pseudocode of the adaptive mutation
probability filter for the first stage of the genetic algorithm is shown in Figure 3.16.
Diversity of the bits is defined by the normalized mutation parameter that is shown in

Equation (3.11).

R
I(m) :‘ Zb(m)—l‘ form=1,2,3, ... M (3.11)

n=1

S| o

Where [(m) represents the normalized mutation parameter for m-th bit, b(m)
represents the binary value of m-th bit, R represents the population size and M
represents the string length of the individuals. Indexes n and m represent the

individual and bit numbers respectively. Normalized mutation parameter of the bits
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ranges between zero and one, taking the value of zero in the case of the richest
diversity. Normalized mutation parameter changes linearly with the diversity for
each bit. Mutation probability for m-th bit, which is represented by P,,(m), is stated in
Equation 3.12.

P.(m)=I(m)-(P,_ —P._)+P. form=1,2,3, ... M (3.12)

max min min

Where P, and P,;, are the maximum and the minimum limit values for the
mutation probability. Mutation probability varies linearly between these values
depending on the diversity of m-th bit in the population. After the calculation of the
mutation probabilities for each bit in the string, each bit of the individuals is
subjected to mutation with the mutation probability of the corresponding bit.
Mutation is operated by inverting the binary value of the bit if a randomly created

number is lesser than the mutation probability of the corresponding bit.

Calculate adaptive mutation probabilities for all bits.
For i=(elitist selection quota) : (population size);
For j=1:(individual string length);
Create a random number between (0,1).
If the random number < mutation probability for j-th bit;

Mutate j-th bit of i-th individual.

Figure 3.16: Pseudocode of the adaptive mutation probability filter for the first stage
of the genetic algorithm.

Adaptive mutation probability filter is used in both stages of the algorithm; however,
additional routines are included to the operator for the second stage of the algorithm.
Because of the sensitivity drop in the interior region of the conductivity distribution,
convergence is achieved faster for the pixels that reside in the outer region of the
image, than the pixels that resides in the center. Generally, the pixels in the outer
areas of the body are determined before the end of the first stage of the algorithm.
Considering this situation, if a pixel is located in the central half of the image, its
mutation probability value is multiplied with a predefined factor called the central bit
factor. This routine, which is only used in the second stage of the algorithm, helps
finding the true conductivity distribution in the center of the body by increasing the

mutation probability of the central pixels.
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Another additional routine is that, if a pixel has any neighbor pixels with foreground
conductivity value, its mutation probability is multiplied with a predefined factor
called the neighborhood factor. Main idea behind this routine is that, the population
is already converged to a state that the population of solutions is very close to the
true solution of the image until the second stage; therefore, increasing the mutation
probability of the neighbor pixels may help finding the exact shape of the
conductivity distribution. This routine is also exclusive to the second stage of the
algorithm. Pseudocode of the adaptive mutation probability filter with the additional

routines for the second stage of the genetic algorithm is shown in Figure 3.17.

Calculate adaptive mutation probabilities for all bits.
For i=(elitist selection quota): (population size);
For j=1:(individual string length);
If j-th bit has a neighbor bit with foreground conductivity;
Multiply mutation probability with neighborhood factor.
If j-th is located in the interior of the image;
Multiply mutation probability with central bit factor.
Create a random number between (0,1).
If the random number < mutation probability for j-th bit;

Mutate j-th bit of i-th individual.

Figure 3.17: Pseudocode of the adaptive mutation probability filter for the second
stage of the genetic algorithm.

3.3.8.2 Neighborhood shift mutation filter

When the second stage of the algorithm is initiated, population is already converged
closer to the exact result. Most of the individuals in the population evolve shapes that
are very similar to the exact solution of the problem until the second stage. However,
finding the exactly true solution from these close candidates can be a very difficult
task in the case of poor diversity among the population. As the GAs converge closer
to the exact solution, convergence speed decreases and the recombination process
becomes ineffective because of the reduced diversity among the population. At this
stage, mutation becomes the main force behind the convergence of the algorithm.
Finding the true solution, which is the main purpose of the second stage of the

algorithm, can be accelerated by using mutation filters that work in a shape searching
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mentality. To increase the efficiency of the GA, neighborhood shift mutation filter is
developed to be used only in the second stage of the algorithm with the purpose of
attaining the true solution of the problem. Neighborhood shift mutation filter moves a
foreground pixel to one of its eight neighbor pixels with a predetermined probability.
Neighborhood shift mutation is only applied to the pixels with foreground
conductivity. Individuals of the population are subjected to neighborhood shift
mutation with a fixed probability called the individual mutation probability and
selected individual’s foreground bits are moved to one of its eight neighbors with
another probability called bit mutation probability. Neighborhood shifting mutation
is used intensively in the second stage of the algorithm, bit mutation and individual
mutation probabilities being around twenty percent. Process of neighborhood shift

mutation is illustrated in Figure 3.18.

Figure 3.18: Illustration of neighborhood shift mutation process.

In neighbor shift mutation technique, a random real number between zero and one is
created for each individual of the population, if the random number is lesser than the
individual mutation probability, corresponding individual is selected to apply the
mutation. Every bit of the selected individual is checked for the bit mutation
probability by using another random number and the selected bits are moved
randomly to one of its neighbor pixels in the eight directions. Choice of the direction
is made by using a random integer between zero and eight, integers one to eight
representing the direction numbers and zero representing that the corresponding bit
mutated directly to the background conductivity. Pseudocode of the neighborhood

shift mutation filter is shown in Figure 3.19.

Neighborhood shift mutation filter is one of the most important components of the

genetic algorithm for the image reconstruction problem. It vastly improves the results
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of the GA by accelerating the process of reaching the true solution; even sometimes,
presence of the neighborhood shift mutation filter determines the difference between
ending the algorithm with a close solution and attaining the true solution. In the
experiments, neighborhood shift mutation filter is observed to improve the results of
the GA dramatically. Neighborhood shift mutation filter helped to achieve the true
solution of the problem for some complex conductivity distributions that the true

result cannot be reached before.

For i=(elitist selection quota): (population size);
Create a random number between (0,1).
If the created number < nsmf individual mutation probability;
For j=1:(individual string length);
If j-th bit has foreground conductivity;
Create a random number between (0,1).
If the created number < nsmf bit mutation probability;
Create a random integer between (0,8).
Move j-th bit in the direction specified by the integer.

Set the j-th bit to background conductivity.

Figure 3.19: Pseudocode of the neighborhood shift mutation filter.
3.3.8.3 Center fill mutation filter

Center fill mutation filter is developed exclusively for the second stage of the genetic
algorithm with the aim of supporting the algorithm for attaining the true solution of
the problem. Like neighborhood shift mutation filter, center fill mutation filter works
in a shape searching mentality, by mutating a pixel that is surrounded by at least
three foreground neighbor pixels with a predefined probability. An illustration of the

center fill mutation is shown in Figure 3.20.

. Candidate bit for
» . . .
center fill mutation filter

Figure 3.20: Illustration of center fill mutation filter.
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In EIl method, detection of pixels that are surrounded by other foreground pixels is a
difficult operation. The impact that these surrounded bits causes on the boundaries is
very low comparing to the other pixels. In these situations, electrical currents path
often becomes blocked and very little information can be obtained from the voltage
data. Therefore, reconstruction of images that includes large target objects becomes
particularly difficult. To overcome this difficulty, center fill mutation filter is
developed in this thesis. Center fill mutation scans whole strings of individuals for
any pixels that has at least three orthogonal neighbor pixels with foreground
conductivity and mutates the bit that represents the corresponding pixel with a
predefined probability. Pseudocode of the center fill mutation filter is shown in

Figure 3.21.

For i=(elitist selection quota) : (population size);
For j=1:(individual string length);
If j—th bit has at least three neighbor foreground bits;
Create a random number between (0,1).
If the random number < mutation probability for cfmf;

Mutate j-th bit of i-th individual.

Figure 3.21: Pseudocode of the center fill mutation filter.
3.3.8.4 Identical individual eliminator mutation filter

In GAs, there is a chance that two or more individuals have exactly the same genes in
a population. When the selection pressure is set too high, fitter individuals of the
early generations becomes dominant over the next generations, copying themselves
through the next generations more frequently than the other individuals. Therefore,
there may be more than one copy of these dominant individuals in the late
generations. This situation hinders the progress of the algorithm by slowing the
convergence and reducing the diversity among the population. Identical individual
eliminator mutation filter is developed to prevent the presence of multiple identical
individuals in a generation. Because using this filter in every iteration of the
algorithm would not be beneficial in terms of the computing resources, this mutation
filter 1s applied in both stages of the GA once in an interval of five generations.
Identical individual eliminator mutation compares all individual’s bits with each

other. If two identical individuals are found, filter mutates one of the individual’s bits
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with a predefined probability, which is around one to five percent. Pseudocode of

this mutation filter is shown in Figure 3.22.

If the generation number is exact multiple of iiemf interval;
For i=(elitist selection quota): (population size);
For j=i: (population size);
If i-th and j-th individuals is exactly identical;
For k=1:(individual string length);
Create a random number between (0,1).
If the random number < mutation probability for iiemf;

Mutate k-th bit of j-th individual.

Figure 3.22: Pseudocode of the identical individual eliminator mutation filter.
3.3.9 Adaptation of parameters

There are two important factors for the genetic algorithms, which are the
convergence speed and the diversity. These two factors influence GAs on a large
scale. Genetic algorithms efficiency becomes maximum when the convergence speed

and the diversity are optimally balanced.

Increasing the diversity of the population increases robustness of the GA. With a
diverse population, GAs are less likely to be trapped in a local minimum. However,
increasing the diversity also decreases the convergence speed. Decreasing the
diversity produces higher convergence speeds, while increasing the chance that the
algorithm falls in a local minimum. This phenomenon reveals the need for an

optimization in the algorithms parameters.

At the early stages of a GA, diversity is rich enough to allow high selection
pressures. Therefore, using relatively high selection pressure values produces fast
convergence rates. Because the population is quite diverse, mutation probabilities
can be kept at a small value. However, as the algorithm converges, diversity in the
population is dramatically reduced. Thus, in the later generations of the algorithm,
selection pressure should be decreased to help increasing the diversity of the
population. Higher mutation probabilities also help to enrich the diversity of the
population. This different parameter requirements of different stages of the genetic
algorithms rises the need for the adaptation of the parameters. Therefore, an adaptive

parameter control method is developed in this thesis. In the GA for the image
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reconstruction problem; selection pressure, mutation probability and crossover
probability parameters are adaptively controlled. Adaptive control system uses
diversity of the population as input and calculates the selection pressure, the
crossover probability and the mutation probabilities adaptively to keep the diversity
at efficient levels. Adaptation of the parameters requires a numerical representation
of the diversity of the population. Standard deviation approach is used in

representing the diversity among the population as shown in Equation 3.13.

1 & 2
A= \/Ez (2(0) = @,.0) (3.13)

n=1

Where 1 is the diversity of the population, ¢(n) is the error value of the n-th
individual, and @, 1s the mean value of the error values of all individuals in the
population. Standard deviation is an effective criterion for measuring the diversity of
the population, as it is used for similar purposes in statistics. Adaptation of
parameters brings additional robustness to the genetic algorithm and gives the

algorithm the ability to perform well on changing situations.

3.3.9.1 Adaptation of selection pressure

Selection pressure parameter, which controls the convergence speed of the algorithm,
has an adverse effect on the diversity. Convergence is achieved in the algorithm by
consuming the diversity of the population. Therefore, when the diversity is rich
among the population, high selection pressure is applied to the algorithm to increase
the convergence speed. However, when diversity drops below a certain limit,
selection pressure is reduced. This situation often results in oscillation of the
diversity. This oscillation behavior helps the convergence of the algorithm. Diversity
is very high at the start of the algorithm, thus the selection pressure is at its maximum
value. After the early generations, population enters a steady state where the
diversity is controlled with the selection pressure and the mutation probabilities. In
this state, when the diversity bears to the upper limit of the oscillation band, selection
pressure increases and the mutation probability decreases to achieve convergence.
When the diversity falls to the lower limit, the selection pressure decreases and the
mutation probability increases to enrich the diversity. To improve the efficiency of

the algorithm, oscillation of the diversity should be kept in an optimal band.
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Selection pressure parameter is adapted using an exponential function of the

diversity.

B=v-v,¢” (3.14)

Where f represents the selection pressure parameter, v; represents the base selection
pressure factor, v, represents the selection pressure band factor and 4 represents the
diversity. The base selection pressure and the selection pressure band factors define
the way that the selection pressure parameter changes. The base selection pressure
factor determines the highest value that the selection pressure can take during the
algorithm. It should be set as the highest safe value of the selection pressure
parameter without losing efficiency of the algorithm. The selection pressure band
factor determines the interval that the selection pressure can vary between. It restricts
the adaptation to prevent the selection pressure from decreasing below a lower limit,
which may result in losing the convergence. Experimentally, values around three for

v1 and values around one for v, are observed to be optimal.

GA is executed to see the effects of adaptation of parameters using the 32-electrode
model. Variation of selection pressure parameter and diversity is plotted versus
generation number in Figure 3.23 (a) and (b) respectively. The diversity at the start
of the algorithm is very high because of the random creation of initial population;
therefore, applied selection pressure is also very high. As the convergence is
achieved, the diversity falls very sharply and it is followed by the selection pressure
parameter. After the algorithm reaches the steady state operation, diversity is

controlled in a band by the selection pressure parameter and the mutation probability.

3.3.9.2 Adaptation of crossover probability

An ideal crossover probability should change with the diversity, decreasing slightly
with the reducing diversity. At the early generations of the algorithm, where the
mixture rate is very important, using crossover probabilities near one is ideal.
However, as the algorithm achieves progress, decreasing the crossover probability at

small scale slightly improves the results of the algorithm.

_ -2
Fo=1-0e¢ (3.15)
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Figure 3.23: Variation of parameters versus generation number for 32-electrode
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model: (a) Variation of selection pressure parameter. (b) Variation of diversity.

Where P, is the crossover probability, € is the crossover probability adaptation band
and 4 is the diversity. The crossover probability adaptation band determines the

change interval for the crossover probability. Highest value for crossover probability
is always one and the adaptation controls the crossover probability value inside the
crossover adaptation band. Values around 0.1 are observed to be suitable for the
crossover probability band. Variation of crossover probability versus generation



number is plotted for 32-electrode model in Figure 3.24. Corresponding variation of

the diversity plot can be seen in Figure 3.23 (b).

3.3.9.3 Adaptation of mutation probability

Mutation is an important tool to maintain the diversity in the genetic algorithms,
especially at the later stages. Mutation probability should ideally increase with the
reducing diversity in the population. As mentioned earlier, mutation probability plays

a very important role to maintain the diversity in cooperation with selection pressure.

The minimum and the maximum mutation probability values are adaptively

calculated by using the statements in Equations (3.16) and (3.17).
P, =1¢" (3.16)

_ -1
Pmax - TZ e (3.17)

Where P, and P, is the minimum and the maximum mutation probabilities
respectively, 7; and 7, are the mutation adaptation factors and A is the diversity.
Variation of the mutation probabilities versus generation number is plotted in Figure

3.25 (a) and (b). Corresponding variation of the diversity plot is in Figure 3.23 (b).

0.99

0.98

0.97

0.96

0.95

0.94

Crossover Rate

0.93

0.92

0.91

| | |
0.9 l l l
0 20 40 60 8 100 120 140 160 180 200

Generation Number

Figure 3.24: Variation of crossover probability versus generation number for 32-
electrode model.
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Figure 3.25: Variation of the mutation probabilities versus generation number for

32-electrode model: (a) Variation of the minimum mutation probability. (b)

Variation of the maximum mutation probability.
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4. NUMERICAL SIMULATIONS

Purpose of the fourth chapter is to demonstrate the performance of the genetic
algorithm for the image reconstruction problem. A series of experiments is carried
out to test the efficiency of the GA. Measurement stage of these experiments are
simulated using the FEM model, which is introduced in the second chapter, and to
reach the actual conductivity distribution of the body, the GA uses the synthetic data
that are produced by this model. GA parameters used in the tests are shown in table
4.1. GA is tested with the data from the numerical simulation that is produced using

distinctive conductivity distributions that examine various properties of the GA.

Table 4.1: Genetic algorithm parameters used in the tests.

Genetic algorithm Parameter 16 Electrode Model 32 Electrode Model

Population size 200 250
Generation limit 500 2000
Maximum acceptable error 107 10
Successive iterations criterion 200 300
Second stage criterion 15 20
Background conductivity 1 1
Foreground conductivity 0.1 0.1
Weight function parameter 10 10
Selection pressure base 3 3
Selection pressure band 1 1
Elitist quota for first stage 2 2
Elitist quota for second stage 4 4
Crossover probability band 0.1 0.1
Minimum mutation factor 0.0001 0.0001
Maximum mutation factor 0.01 0.001
Neighborhood mutation

- o 0.2 0.2
probability for individuals
Neighborhood mutation 0.1 0.1
probability for pixels
Center fill mutation prob. 0.1 0.1

First part of the fourth chapter consists of the experiments that are conducted using

the 16-electrode model. Second part covers the experiments that utilize the 32-
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electrode model. Third part consists of the experiments that are conducted by using

data with additive synthetic noise to test the algorithms efficiency with noisy data.

4.1 Results for 16-Electrode Model

First test that is conducted on the 16-electrode model is the moving object test, which
is the series of experiments that a target object is moved to a different region in the
conductivity distribution of the body for each single experiment. Aim of this
experiment is to test the algorithm’s ability to detect objects in different regions of
the body. Figures 4.1 - 4.5 shows the results of the experiment for a plus-shaped
foreground object that is placed in the left, up, right, down and center of the
conductivity distribution respectively. In the figures, the image on the left side,
which is labeled as the actual distribution, is the true conductivity distribution that is
used in the simulation of the measurement process; while the image on the right side,
which is labeled as the calculated distribution, is the result that is obtained by the
genetic algorithm. In the case of an exact result, two images must be identical. From
Figures 4.1 - 4.5, we can see that the algorithm attains the true conductivity

distribution, regardless of where the object is located on the conductivity distribution.

Actual Distribution Calculated Distribution

Figure 4.1: Comparison of the actual conductivity distribution and the result of the
genetic algorithm for an object located on the left region of the body.

Conductivity distributions that include numerous objects that stand close to each
other are often very difficult to reconstruct correctly in impedance imaging method.
These multiple objects are sometimes detected incorrectly as a single object. To test
the algorithms ability to detect objects that are close to each other correctly, a second
test was conducted using a conductivity distribution that includes two objects that

stands close to each other. After the simulation, the genetic algorithm was used to
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reconstruct the conductivity distribution of the body. Comparison of the actual
conductivity distribution and the result of the GA is shown in Figure 4.6. As seen in
Figure 4.6, exact result was achieved by the GA. It took 46 seconds for the algorithm

to reconstruct the conductivity distribution of the body.

Actual Distribution Calculated Distribution

Figure 4.2: Comparison of the actual conductivity distribution and the result of the
genetic algorithm for an object located on the upper region of the body.

Actual Distribution Calculated Distribution

Figure 4.3: Comparison of the actual conductivity distribution and the result of the
genetic algorithm for an object located on the right region of the body.

Actual Distribution Calculated Distribution

Figure 4.4: Comparison of the actual conductivity distribution and the result of the
genetic algorithm for an object located on the lower region of the body.

73



Actual Distribution Calculated Distribution

Figure 4.5: Comparison of the actual conductivity distribution and the result of the
genetic algorithm for an object located on the center of the body.

In Figure 4.7, the error values of the best individuals of each generation are plotted
versus generation number. Diversity of the population versus generation number is

shown in Figure 4.8.

Actual Distribution Calculated Distribution

Figure 4.6: Comparison of the actual conductivity distribution and the result of the
genetic algorithm for the second test of the 16-electrode model.

Error Value of the Best Individual

100

Generation Number

Figure 4.7: Error values of the best individuals of each generation versus generation
number for second test of 16-electrode model.
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Figure 4.8: Diversity versus generation number for the second test of 16-electrode
model.

To demonstrate the convergence steps of the GA, best individuals of the selected
generations of the reconstruction process are shown in Figure 4.9 for the conductivity
distribution that is calculated in the second test of the 16-electrode model. Figure 4.9
(a) shows the best individual of the first generation, which is randomly generated.
Figure 4.9 (b), (¢), (d) and (e) are the best individuals of the generations number ten,
twenty, thirty and forty respectively. Figure 4.9 (f) shows the best individual of the
last generation, which is the result of the algorithm. In Figure 4.9, it can be seen that
the convergence is achieved by evolving the candidate solutions of the population
and continuously improving the resemblance of the individuals to the actual

distribution until the exact result is reached.

The third experiment was carried out by using a conductivity distribution of ten
foreground pixels that are randomly positioned on the body. Conductivity
distribution of the body was reconstructed using the genetic algorithm. Comparison
of the actual conductivity distribution and the resulted conductivity distribution from
the GA is shown in Figure 4.10. As seen in Figure 4.10, exact result was attained by
the GA. During the image reconstruction process, the GA consumed 103 seconds of
computing time. Convergence of the algorithm is plotted in Figure 4.11 where the
error values of the best individuals of each generation are plotted versus generation
number. Diversity of the population versus generation number is plotted in Figure

4.12.

75



(a) (b)
[ |
[ | [ |
(o (d)
(e) ®

Figure 4.9: Best individuals of the selected generations of the reconstruction process
for the second test of the 16-electrode model : (a) Best individual of the first
generation. (b) Best individual of the 10th generation. (¢) Best individual of the 20th
generation. (d) Best individual of the 30th generation. (e) Best individual of the 40th
generation. (f) Best individual of the last generation.

Actual Distribution Calculated Distribution
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Figure 4.10: Comparison of the actual conductivity distribution and the result of the
genetic algorithm for the third test of 16-electrode system.
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Figure 4.11: Error values of the best individuals of each generation versus

generation number for the third test of 16-electrode model.
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Figure 4.12: Diversity versus generation number for the third test of 16-electrode

model.

4.2 Results for 32-Electrode Model

The aim of the first test of 32-electrode model is to observe the algorithm’s ability to

reconstruct large objects with exact details, which is a difficult task for image

reconstruction algorithms in general because the details of large objects cause a small

influence on the boundary electrodes. In this test, true conductivity distribution was
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successfully reconstructed and the process lasted 772 seconds. Comparison of the
actual conductivity distribution and the result of the genetic algorithm for the first
test of 32-electrode model is shown in Figure 4.13. Error values of the best
individuals of each generation and the diversity of the population are plotted versus

generation number in Figures 4.14 and 4.15 respectively.

Actual Distribution Calculated Distribution
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Figure 4.13: Comparison of the actual conductivity distribution and the result of the
genetic algorithm of first test of 32-electrode model.
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Figure 4.14: Error values of the best individuals of each generation versus
generation number for the first test of 32-electrode model.

Best individuals of the selected generations are shown in Figure 4.16 to demonstrate
the convergence steps of the image reconstruction process. Figures 4.9 (a), (b), (c),
(d), (e) and (f) show the best individual of the first, 50th, 100th, 150th, 200th and the
last generation respectively. It can be seen that the algorithm constantly improves the

population of candidate solutions by increasing their resemblance to the true
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conductivity distribution starting from the area near the boundary. Ill-conditioned
nature of the problem causes the sensitivity of the central region of the conductivity
distribution to drop. As a direct result of this phenomenon, the boundary region of
the conductivity distribution is reconstructed during early iterations and the central
region is reconstructed during late iterations of the solution process. Reconstruction
of the boundary region also requires lesser iterations than reconstruction of the

central region.

Diversity

Iteration Number

Figure 4.15: Diversity versus generation number for the first test of 32-electrode
model.

As mentioned earlier, exact reconstruction of large objects is very difficult due to the
reduced effect of each pixel of the object on the boundaries. Reconstruction of these
target objects becomes increasingly difficult if it is located in the central region of
the body because of the sensitivity drop of the pixels in the center of the conductivity

distribution.

To test the algorithm’s ability to reconstruct large and complex-shaped objects
located in the central region of the conductivity distribution with exact details,
another simulation is conducted using a conductivity distribution that consists of a
large foreground object located in the central region of the homogeneous body.
Comparison of the actual conductivity distribution and the resulted conductivity

distribution from the genetic algorithm is shown in Figure 4.17.
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Figure 4.16: Best individuals of the selected generations of the reconstruction
process for the first test of 32-electrode model: (a) Best individual of the first
generation. (b) Best individual of the 50th generation. (¢) Best individual of the
100th generation. (d) Best individual of the 150th generation. (e) Best individual of
the 200th generation. (f) Best individual of the last generation.

As observed in Figure 17, the genetic algorithm reconstructed the exact conductivity
distribution successfully in 1038 seconds. The error values of the best individuals of
each generation are plotted versus generation number in Figure 4.18. Diversity of the

population versus generation number is plotted in Figure 4.19.
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Calculated Distribution

Actual Distribution

Figure 4.17: Comparison of the actual conductivity distribution and the result of the

genetic algorithm for the second test of 32-electrode system.
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Figure 4.18: Error values of the best individuals of each generation versus

generation number for the second test of 32-electrode model.
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Figure 4.19: Diversity versus generation number for the second test of 32-electrode

model.
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The third test of the 32-electrode model was conducted using a conductivity
distribution contains two small foreground target objects that are placed on the
homogeneous background. Comparison of the actual conductivity distribution and
the resulted conductivity distribution from the genetic algorithm is shown in Figure
4.20. Exact result was attained successfully in 720 seconds. The error values of the
best individuals of each generation and the diversity of the population are plotted

versus generation number in Figures 4.21 and 4.22 respectively.

Actual Distribution Calculated Distribution

Figure 4.20: Comparison of the actual conductivity distribution and the result of the
genetic algorithm for the third test of 32-electrode system.

1.5

1.25

0.75

0.5

Error Value of the Best Individual

0.25

Iteration Number

Figure 4.21: Error values of the best individuals of each generation versus
generation number for the third test of 32-electrode model.

The most difficult conductivity distributions for the image reconstruction problem

are the distributions that include numerous small objects spread to the entire body.
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Small objects cause lesser impact on the electrodes at the boundary, reducing the
sensitivity of the pixels located in the central region of the body. There is also a
blocking problem with the conductivity distributions that contain multiple objects
that resides close to each other when the path of the electrical current flowing from
the electrodes to an object is blocked by another object; therefore, preventing the

useful data from being collected.

Diversity

Iteration Number

Figure 4.22: Diversity versus generation number for the third test of 32-electrode
model.

The ill-conditioning nature of the problem may even rise to a point where the exact
image reconstruction is impossible because the data provided to the genetic
algorithm is insufficient. To demonstrate the performance of the GA in extremely ill-
conditioned situations, two simulations were conducted with a conductivity
distribution that contain ten and twenty random foreground pixels. Next, GA
reconstructed the conductivity distributions using the data from the simulations.
Comparison of the actual conductivity distribution and the resulted conductivity
distribution from the GA for the distribution of ten foreground pixels is shown in

Figure 4.23.

The exact conductivity distribution was successfully obtained in 399 seconds of
computing time. Error values of the best individuals of each generation and the
diversity of the population are plotted versus generation number in Figures 4.24 and

4.25 respectively.
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Actual Distribution Calculated Distribution

Figure 4.23: Comparison of the actual conductivity distribution and the result of the
genetic algorithm for the fourth test of 32-electrode system.

The fifth test of the 32-electrode model was carried out by using a conductivity
distribution of twenty foreground pixels that are randomly positioned on the
homogeneous background. Comparison of the actual conductivity distribution and
the resulted conductivity distribution from the genetic algorithm is shown in Figure
4.26. Because no improvement was achieved in the last two hundred generations, the
end criterion of the genetic algorithm was met and the algorithm ended without
reaching the exact result. A similar conductivity distribution was obtained in 2173
seconds. The error values of the best individuals of each generation and the diversity
of the population are plotted versus generation number in Figures 4.27 and 4.28

respectively.
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Figure 4.24: Error values of the best individuals of each generation versus
generation number for the fourth test of 32-electrode model.

84



Diversity

Iteration Number

Figure 4.25: Diversity versus generation number for the fourth test of 32-electrode

model.
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Figure 4.26: Comparison of the actual conductivity distribution and the result of the
genetic algorithm for the fifth test of 32-electrode system.

The reason that the algorithm has failed to reconstruct the true conductivity
distribution for twenty small foreground pixels is the sensitivity drop in the central
area of the body. As the number of the objects in the conductivity distribution
increases, sensitivity of each object decreases, especially for the objects that are
located in the center of the conductivity distribution. Combined with the blocking
problem mentioned before, reduced sensitivity increases the ill conditioning of the
problem dramatically. However, despite the ill-conditioned nature of the problem,
genetic algorithm successfully converges near the optimal solution where the exact

result cannot be obtained, demonstrating the effectiveness of the genetic algorithm.
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Figure 4.27: Error values of the best individuals of each generation versus

generation number for the fifth test of 32-electrode model.
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Figure 4.28: Diversity versus generation number for the fifth test of 32-electrode

model.

small objects located

As mentioned before, conductivity distributions that contain

near a large object are very difficult to reconstruct exactly in electrical impedance

imaging method, often incorrectly detecting these objects as a single object.

Therefore, a test was conducted to analyze the genetic algorithms performance with

conductivity distributions that contain large and small objects located closer to each

other.
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In the sixth test of the 32-electrode model, the algorithm was used to reconstruct a
conductivity distribution with a large square object in the center and four small pixels
reside close the large object. The GA successfully reconstructed the exact
conductivity distribution in 684 seconds. Comparison of the actual conductivity
distribution and the resulted conductivity distribution from the GA is shown in

Figure 4.29.

Actual Distribution Calculated Distribution
[ | [ |
[ | [ |

Figure 4.29: Comparison of the actual conductivity distribution and the result of the
genetic algorithm for the sixth test of 32-electrode system.

Error values of the best individuals of each generation and the diversity of the
population are plotted versus generation number in Figures 4.30 and 4.31

respectively.

Error Value of the Best Individual

Iteration Number

Figure 4.30: Error values of the best individuals of each generation versus
generation number for the sixth test of 32-electrode model.
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Figure 4.31: Diversity versus generation number for the sixth test of 32-electrode
model.

4.3 Effects of Noise

Because the image reconstruction problem of EII method is an extremely ill-
conditioned problem, noise affects the performance of the reconstruction algorithm
dramatically. Presence of noise further reduces the sensitivity of each pixel in the
conductivity distribution, raising the difficulty of the image reconstruction process.
Noise on the measurement data may even prevent the exact image reconstruction if
the noise dominates some important information in the data. To test the genetic
algorithms performance with the noisy data, a series of numerical simulations is
conducted using a fixed conductivity distribution, adding Gaussian white noise to the
data using different standard deviation value for each test. After the simulations, the
GA is subjected to reconstruct the conductivity distributions using the data from the

simulations with additive white Gaussian noise.

Comparison of the actual conductivity distribution and the resulted conductivity
distribution from the GA for uncontrolled noise test using Gaussian white noise with
standard deviation of 0.0001 volts is shown in Figure 4.32 and the error values of the
best individuals of each generation are plotted versus generation number in Figure
4.33. The algorithm successfully attained the true conductivity distribution, which
shows that the algorithm can handle noise with the standard deviation of 0.0001

volts.
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Figure 4.32: Comparison of the actual conductivity distribution and the result of the
genetic algorithm for uncontrolled noise test using Gaussian white noise with
standard deviation of 0.0001 volts.
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Figure 4.33: Error values of the best individuals of each generation versus
generation number for uncontrolled noise test using Gaussian white noise with
standard deviation of 0.0001 volts.
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In Figure 4.34, comparison of the actual conductivity distribution and the result of
the genetic algorithm for uncontrolled noise test using Gaussian white noise with
standard deviation of 0.001 volts is shown. The error values of the best individuals of
each generation are plotted versus generation number in Figure 4.35. From Figure
4.34, it is seen that the GA failed to reach the true conductivity distribution using the
data with Gaussian white noise with the standard deviation of 0.001 volts; however, a
very similar conductivity distribution was achieved. The voltage response on the
boundary electrodes caused by the pixels located near the center of the conductivity

distribution is lower than the voltage response caused by the pixels located near the
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boundary. Because of this situation, central region of the conductivity distribution is
more sensitive to the presence of noise than the boundary region. Therefore, errors in
the reconstructed image first appear in the central region of the conductivity

distribution with increasing noise levels.

Actual Distribution Calculated Distribution
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Figure 4.34: Comparison of the actual conductivity distribution and the result of the
genetic algorithm for uncontrolled noise test using Gaussian white noise with
standard deviation of 0.001 volts.
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Figure 4.35: Error values of the best individuals of each generation versus
generation number for uncontrolled noise test using Gaussian white noise with
standard deviation of 0.001 volts.

The actual conductivity distribution and the result of the GA are compared for
uncontrolled noise test using Gaussian white noise with standard deviation of 0.01
volts in Figure 4.36 and the error values of the best individuals of each generation are

plotted versus generation number in Figure 4.37. We can see that the resemblance of
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the result to the true conductivity distribution is reduced with the increasing noise.
However, algorithm still achieves convergence successfully by reaching closer to the

optimal solution of the problem with the noise standard deviation of 0.01 volts.

Actual Distribution Calculated Distribution

Figure 4.36: Comparison of the actual conductivity distribution and the result of the
genetic algorithm for uncontrolled noise test using Gaussian white noise with
standard deviation of 0.01 volts.
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Figure 4.37: Error values of the best individuals of each generation versus
generation number for uncontrolled noise test using Gaussian white noise with
standard deviation of 0.01 volts.

In Figure 4.38, comparison of the actual conductivity distribution and the result of
the GA are compared for uncontrolled noise test using Gaussian white noise with
standard deviation of 0.1 volts. The error values of the best individuals of each
generation are plotted versus generation number in Figure 4.39. As the noise level

increases, the resulted conductivity distribution further worsens. Convergence of the
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algorithm also gets worse with the increasing noise and the convergence speed

decreases.

Actual Distribution Calculated Distribution

Figure 4.38: Comparison of the actual conductivity distribution and the result of the
genetic algorithm for uncontrolled noise test using Gaussian white noise with
standard deviation of 0.1 volts.
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Figure 4.39: Error values of the best individuals of each generation versus
generation number for uncontrolled noise test using Gaussian white noise with
standard deviation of 0.1 volts.

The amount of Gaussian white noise that the genetic algorithm tolerates can be seen
by analyzing the results of the noise tests. As the standard deviation of the noise
increases up to 0.001 volts, possibility of reaching the exact result is dramatically
decreases. If the amplitude of the noise is further increased, results of the image
reconstruction algorithm worsen and the resemblance of the result and true

conductivity distribution is reduced. Increasing amplitude of the noise also causes the
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convergence speed of the GA to become slower and if it exceeds a certain level,

convergence near the optimal solution becomes impossible.

White Gaussian noise function is considered as the most appropriate noise generator
to simulate the noise on a typical EII system (Holder, 2005). In the numerical
simulations, noise is generated by using MATLAB’s Gaussian white noise function.
Histogram of the Gaussian white noise generated by MATLAB with standard

deviation of 0.01 volts for voltage data with 10000 elements is shown in Figure 4.40.
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Figure 4.40: Histogram of Gaussian white noise with standard deviation of 0.01
volts for 10000 voltage data points.

Noise in the measurements data can be reduced by executing multiple measurements
and averaging the collected. Because the EII is a static imaging method, it is possible
to achieve multiple measurements for the same conductivity distribution in a short
period of time. Changes in the electrical field for different measurements are small
enough to neglect; therefore, the difference in the data from separate measurements
is mainly due to the noise on the imaging system. As the noise on the data is
randomly distributed, averaging the data from different measurements reduces the
noise greatly by causing the collected voltage values from the electrodes to converge
closer to their expected values, which are the ideal measured voltage values without
the presence of the noise. This sequential averaging method controls the noise that is
present on the measurement data and increases accuracy of the measurement process

of EII (Ovacik, 1998b).
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The next part of the tests covers the experiments that are conducted using the data
with the noise controlled by averaging data that are collected from multiple
measurements. Numerical simulations are conducted using the 32-electrode model
and the same conductivity distribution as the previous noise tests for comparison.
Aim of the controlled noise test is to determine the performance of the algorithm
using noise reduction by averaging. In each controlled noise test, simulation of the
measurement process is repeated 1000 times with the addition of random Gaussian
white noise and the output data for each simulation are averaged element-wise. Next,
the GA reconstructs the conductivity distribution. Results of the controlled noise test
for noise standard deviation of 0.001, 0.01 and 0.1 volts are shown in Figures 4.41,

4.42 and 4.43 respectively.

Actual Distribution Calculated Distribution
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(b)

Figure 4.41: Results of the controlled noise test with 1000 measurements and noise
standard deviation of 0.001 volts: (a) Comparison of the actual and resulted
conductivity distributions. (b) Convergence of the algorithm.
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Figure 4.42: Results of the controlled noise test with 1000 measurements and noise
standard deviation of 0.01 volts: (a) Comparison of the actual and resulted
conductivity distributions. (b) Convergence of the algorithm.

After comparing the results from the controlled noise tests and the uncontrolled noise
tests for the corresponding noise levels, the improvement in the results by using
sequential averaging method is clear. GA attained the true conductivity distribution
in the controlled noise tests using the data with the noise levels that the exact result
could not be reached in the uncontrolled noise tests. Even with high presence of
noise (standard deviation of 0.1 volts), the GA managed to attain the true
conductivity distribution in the controlled noise tests. By controlling the noise on the
data with averaging, the GAs noise tolerance is increased dramatically. Looking at

the convergence plots, we can see that increasing noise level also increases the
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number of iterations that the algorithm requires to reach the true conductivity

distribution.

Actual Distribution Calculated Distribution
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Figure 4.43: Results of the controlled noise test with 1000 measurements and noise
standard deviation of 0.1 volts: (a) Comparison of the actual and resulted
conductivity distributions. (b) Convergence of the algorithm.

In the last part of the tests, the GA is executed to reconstruct the conductivity
distribution using the data that contain Gaussian white noise with a fixed signal to
noise ratio. Fixing the SNR for every data point ensures that the noise on each point
does not exceed a fixed fraction of the corresponding voltage value. For a better
comparison, the measurement simulation is conducted using the same conductivity
distribution as in the previous noise tests. The algorithm is tested with four levels of

noise, specifically SNR of 25 dB, 50 dB, 75 dB and 100 dB.
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Results of the noise test for the SNR of 25 dB are shown in Figure 4.44. Although
the convergence was achieved up to a point, we can see that the algorithm failed to
reach the true conductivity distribution for the noise level of 25 dB. In Figure 4.44
(b), error values of the best individuals of each generation are plotted versus

generation number.

Actual Distribution Calculated Distribution
|
(a)

Error Value of the Best Individual

Iteration Number

(b)

Figure 4.44: Results of the noise test for the noise level of 25 dB: (a) Comparison of
the actual and resulted conductivity distributions. (b) Error values of the best
individuals of each generation versus generation number.

Results of the noise test for the SNR of 50 dB are shown in Figure 4.45. Despite
achieving convergence, the algorithm was not successful in attaining the true
conductivity distribution for the noise level of 50 dB. In Figure 4.45 (b), error values

of the best individuals of each generation are plotted versus generation number.
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(b)

Figure 4.45: Results of the noise test for the noise level of 50 dB: (a) Comparison of
the actual and resulted conductivity distributions. (b) Error values of the best
individuals of each generation versus generation number.

Comparing Figures 4.44 (b) and 4.45 (b), it is clear that the algorithm converged
closer to the global optimum in this test than the previous test. As the noise level
decreases, convergence speed of the genetic algorithm increases and the distance

between the global optimum and the result of the algorithm becomes closer.

Comparison of the actual conductivity distribution and the result of the GA using
Gaussian white noise with the SNR of 75 dB is shown in Figure 4.46 (a) and the
error values of the best individuals of each generation are plotted versus generation
number in Figure 4.46 (b). From the figure, we can see that the algorithm

successfully attained the true conductivity distribution for the noise level of 75 dB.
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Image reconstruction process lasted 1197 seconds of computation time and 413

iterations.

Actual Distribution Calculated Distribution

Error Value of the Best Individual

Iteration Number

(b)

Figure 4.46: Results of the noise test for the noise level of 75 dB: (a) Comparison of
the actual and resulted conductivity distributions. (b) Error values of the best
individuals of each generation versus generation number.

In Figure 4.47, results of the noise test for the SNR of 100 dB are shown. In Figure
4.47 (b), it is seen that the algorithm successfully achieved the true conductivity
distribution for the noise level of 100 dB. In Figure 4.47 (b), error values of the best
individuals of each generation are plotted versus generation number. Total
computing time of the image reconstruction was 603 seconds and 186 iterations.
Comparing this numbers with the previous test, we can see that increasing noise also

increases the computing time requirement of the algorithm.
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Figure 4.47: Results of the noise test for the noise level of 100 dB: (a) Comparison

of the actual and resulted conductivity distributions. (b) Error values of the best

individuals of each generation versus generation number.
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5. CONCLUSION AND DISCUSSIONS

An improved two-stage genetic algorithm was developed in this thesis for the
reconstruction of two-dimensional and binary conductivity distributions using the
concept of electrical impedance imaging method based on the minimization of the
discrepancies between measured and computed electrode voltages in a least-square
sense. Mathematical model of the imaging process was established using finite
element method to obtain the voltage response on the boundary electrodes. The
problem of ill conditioning due to the relatively weak voltage response to the targets
that are located far away from the boundary electrodes was surmounted by the
development of a new weight function. Four new mutation operators and an
improved rank proportionate selection operator were introduced in this thesis. An
adaptive parameter control operator was established to maintain the diversity of the
population at an efficient level. A series of tests was conducted to observe the genetic

algorithms performance on various conditions.

The genetic algorithm has shown an excellent performance by attaining the true
conductivity distribution in all the tests with 16-electrode model. Despite the
increasing vastness of the search space for the 32-electrode model, the algorithm still
managed to attain the true conductivity distribution in most of the tests. GA
successfully reconstructed target objects with complex details located in the center of
the conductivity distribution, which is a particularly difficult task in EIl method due
to the reduced sensitivity of the region that is far away from the boundary.
Reconstruction of the conductivity distributions that include numerous small objects
spread to the entire body was observed to be the most demanding situation for the
GA, where the objects located near the boundary becomes dominant, causing

inaccuracy in the central region of the body.

In the tests using the data with noise, the algorithm reached the true conductivity
distribution up to a certain noise level, Gaussian white noise up to a fixed standard
deviation of 0,0001 V and down to a fixed SNR of 75 dB. Working with the data that

contain noise exceeding these levels, the GA achieved convergence in the first stage
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and reconstructed a similar image to the actual conductivity distribution of the body.
By taking advantage of electrical impedance imaging method’s high imaging speed,
noise on the data was controlled by making numerous measurements and averaging
the corresponding results to minimize the effects of the noise on the reconstruction
algorithm. Although the noise tolerance of the GA has improved dramatically with
the usage of this noise control technique, EII is still unsuitable for applications that
contain excessive noise on the measurement data and low-noise data acquisition

hardware is recommended for the stability of the results.

The weak voltage response of the pixels located far away from the boundary
electrodes is a common problem of EII image reconstruction process. It can clearly
be seen in Figure 3.7 that a pixel in the central region is nearly six times less
sensitive than a pixel near the boundary. This problem hinders the reconstruction
algorithm’s progress of attaining the true conductivity distribution in the center
region. The weight function developed in this thesis has improved the reconstruction
of the central pixels of the conductivity distribution significantly. With the addition
of this weight function, GA attained the exactly true conductivity distribution in most
of the tests. In Figures 4.9 and 4.16, where the best individuals of the selected
generations are shown chronologically, it can be seen that the GA reconstructs the
conductivity distribution starting from the area near the boundary, completing the
center of the distribution in the final generations. This is a direct result of the
dominancy of the area near the boundary on the fitness values of the individuals.
Because the selection operator favors the fitter individuals, GAs focus on the short-
term gain. Therefore, convergence is first achieved in the properties of the
individuals that contribute more to the fitness function. This characteristic of the

genetic algorithms must be taken into account when developing a search strategy.

Multi-stage structure offers genetic algorithms very significant advantages in the
development of a search strategy. More Efficient search strategies can be established
by using different genetic operators in each stage to match the dynamic behavior of
the problem. Multi-stage structure also allows altering the parameters of the GA to
suit the characteristics of different eras of the solution process. Characteristic
behavior of the image reconstruction problem of EIl method changes dramatically
throughout the solution process of the genetic algorithm. Convergence speed of a

genetic algorithm generally becomes slower as the algorithm converges near the
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optimal solution. Although the diversity of the population is very rich at the
beginning of the algorithm due to the random creation of the initial population, it
decreases as the algorithm achieves progress. Two-stage structure of the genetic
algorithm, which is developed to overcome this changing behavior of the solution
process, has improved the efficiency of the algorithm dramatically as it allows the
use of shape-searching mutation filters in the final generations of the algorithm. The
shape-searching mutation operators (neighborhood shift mutation filter and center fill
mutation filter) are crucial for reaching the exact conductivity distribution. Because
the diversity is low among the population in the final generations of the algorithm,
genetic operators like selection and recombination becomes ineffective in the search
for the true conductivity distribution. Neighborhood shift mutation filter and center
fill mutation filter, which are introduced in this thesis, vastly decreases the time
required to reach the true result by mutating the shapes of the targets located in the
conductivity distributions of the individuals. However, these mutation operators
should only be used in the second stage of the GA as they cause the convergence
speed to drop. For the first stage of the algorithm, two new mutation operators
(adaptive mutation probability filter and identical individual eliminator filter) are

developed to increase the convergence speed.

Deciding which individuals carry their genes to the next population, selection
process is the heart of a genetic algorithm,. By giving higher probability of selection
to the fitter individuals, selection operators must possess stochastic properties in
order to provide robustness to the GA. In this thesis, an improved ranked
proportionate selection operator is developed to achieve robustness and acquire the
ability to apply selection pressure to the population. Conventional fitness
proportionate selection operators does not provide the option to apply selection
pressure. Selection pressure is a critical parameter for controlling the diversity of the
population and the convergence speed, which are the most important factors of a
genetic algorithm. Increasing the convergence speed decreases the diversity of the
population. On the other hand, rich diversity provides robustness to a genetic
algorithm, giving the it the ability of avoiding the local minima more effectively.
Therefore, efficiency of a genetic algorithm increases to a maximum level only when
the convergence speed and the diversity of the population are optimally balanced.

The only way of maintaining the balance between the diversity and the convergence

103



speed at an efficient level is to control the important parameters of the genetic
algorithm adaptively. The selection pressure, the mutation probability and the
crossover probability are controlled adaptively in the genetic algorithm depending on
the diversity of the population. Applying higher selection pressure to the population
increases the convergence speed. However, to enrich the population’s diversity, the
selection pressure should be decreased. Although controlling the crossover rate
creates a weaker response on these two factors, an ideal crossover rate should start at
the maximum level and decrease slightly with the reducing diversity. Mutation
probability has an adverse effect on the convergence speed, while helping the
algorithm to enrich the diversity of the population. By controlling these parameters
efficiently, improving the dynamic behavior of the genetic algorithm becomes
possible and robustness of the algorithm increases, avoiding the local minima more

effectively.

Genetic algorithms are promising tools for the solution of image reconstruction
problem of electrical impedance imaging method. Although genetic algorithms are
expensive in terms of computing time and resources, which renders them
inappropriate for the real-time applications, they are suitable for ill-conditioned
problems thanks to their stochastic nature, parallel searching capabilities and
robustness in avoiding local minima. As a response to the increasing demand from
the industry for process monitoring applications, the usage of genetic algorithms in
image reconstruction problem of EII has been an active area of research in the recent
years. Future developments on this subject can be achieved in different areas
including the mathematical model and the structure of the reconstruction algorithm.
A more accurate numerical model of the measurement process may help to increase
the imaging resolution. Real-time imaging can be possible with the introduction of
parallel computing to EIl method. Development of hybrid image reconstruction
algorithms that combine genetic algorithms and gradient-based methods may lead to
more efficient reconstruction processes, reducing the computation time requirements

of the current-generation reconstruction algorithms.
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APPENDICES

APPENDIX A : MATLAB Code of the Genetic Algorithm
APPENDIX B : Walsh patterns used for excitation
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APPENDIX A

[

% Model parameters

mi=17; mj=17; vne=32; cne=32; nex=31; vrefelec=1l; ni=mi+l; nj=mj+1;
m=mi*mj; n=ni*nj; backgcon=1; foregcon=0.1; wfalfa=10;

% General genetic algorithm parameters

maxpop=200; genmax=2000; errcrit=le-4; itercrit=200; secinit=20;
selectcol=3; selectco2=1; crossco=0.1; ieeappgen=5;
ieemutprob=0.002; mutproblmax=0.0001; mutprob2max=0.001; elitist=1;
% GA parameters for second stage

sselitist=2; midmutmul=2; nemutmul=2; midmutrange=[0.25 0.75];
nmutprobind=0.2; nmutprobbit=0.1; fillmutprob=0.1;

% Import data

fid=fopen('out.txt', 'r');

for i=1: (vne*nex)

out=fscanf (fid, '$f"', [1,2]); vi(i)=out(1l,1); ci(i)=out(l,2);

end, fclose(fid);

fidie=fopen('Ielec.txt','r'); ielecnod = fscanf(fidie, '%1i"',[2,1infl]);
fclose(fidie);

fidve=fopen('Velec.txt','r'); velecnod = fscanf(fidve, '%1i"', [2,1inf]);
fclose (fidve);

fidme=fopen('mesh.txt','r');

for i=1l:n

xyco = fscanf (fidme, '$f', [1,2]); xco(i)=xyco(l); yco(i)=xyco(2);
end

fclose (fidme) ;

fidcur=fopen('current.txt', 'r");

for i=l:nex, for j=l:cne

cur (i,j) = fscanf (fidcur, '$f',[1,1]1);
end, end
status = fclose(fidcur);

Q

% Calculation of Local Admittance Elements
y2d=initmodel (mi,mj, xco, yco) ;

% Calculation of Weight Function

wf=wfunc(mi, mj, cne,vne, nex,vrefelec, ielecnod, velecnod, cur,vi, y2d, bac
kgcon,wfalfa);

% Initiation of First Stage of the Genetic Algorithm

stage=1; disp('First Stage of the Genetic Algorithm.');

clear minerr diver bestindhist selecthist crosshist mutproblhist
mutprob2hist

pop=round (rand (maxpop,m)); pop=logical (pop);

% Main program loop

for gen=1:genmax

disp('Iteration Number: '); disp(gen);

% Evaluation of Fitness Fuction for Stage 1

if stage ==

for ie=l:maxpop, for je=1l:mj, for ke=l:mi

if pop(ie, ((je-1)*mi+ke))==

real (je, ke)=backgcon;

else, real(je,ke)=foregcon;
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end, end, end

error=fit (mi,mj,cne, vne,nex,vrefelec,ielecnod, velecnod, real,cur,vi,w
f,y2d);

poperr (ie)=error;

end, end

% Evaluation of Fitness Fuction for Stage 2 with fitness memory
if stage ==

for ie=l:maxpop, for je=1l:mj, for ke=1l:mi

if pop(ie, ((je-1)*mi+ke))==

real (je, ke)=backgcon;

else, real(je,ke)=foregcon;

end, end, end

for i=1:maxpop

found=all (pop(ie, :) == prevpop(i,:));
if found == 1

poperr (ie)=prevpoperr (i) ;

break

end, end

if found == 0

error=fit (mi,mj,cne, vne,nex,vrefelec,ielecnod, velecnod, real,cur,vi,w
f,vy2d); poperr(ie)=error;
end, end, end

%$Store the best individual of the generation

if rem(gen,10) == 0 || gen == 1, if gen == 1

[C,I]=min (poperr); bestindhist (1, :)=pop (I, :);

Else, [C,I]=min(poperr); bestindhist((gen/10)+1, :)=pop(I,:);
end, end

% Termination by Error Criteria

minerr (gen)=min (poperr); meanerr (gen)=mean (poperr) ;

if minerr (gen) <= errcrit

break

end

% Termination by maximum number of iterations without improvement
if itercrit < gen

for i=l:itercrit

itercritcheck (i) = minerr (gen-i+1l) == minerr (gen);

end

else, itercritcheck=0;

end

if all(itercritcheck) == 1

break

end

disp('Best Individual: '); disp(minerr (gen));

diver (gen)=sqgrt ( (meanerr (gen)-poperr) * (meanerr (gen) —poperr) ') ;
disp('Diversity: '); disp(diver (gen));

Q

% Initiation of Second Stage of the Genetic Algorithm
if secinit < gen
for i=l:secinit

secinitcheck (i) = minerr(gen-i+1l) == minerr (gen);
end

else, secinitcheck=0;

end

if all(secinitcheck) == 1 && stage == 1

stage=2; secstageinitgen=gen; elitist=sselitist;
disp('Second Stage of the Genetic Algorithm.');
end
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Q

% Adaptation of Parameters
selectco=selectcol-selectco2*exp(-diver (gen));
crossrate=1l-crossco*exp (—-diver (gen));
mutprobl=mutproblmax*exp (-diver (gen)) ;
mutprob2=mutprobZ2max*exp (-diver (gen));

mutprobpop= (mutprob2-mutprobl) * (abs (2* (mean (pop)-0.5) ) ) +mutprobl;

selecthist (gen)=selectco; crosshist (gen)=crossrate;
mutproblhist (gen)=mutprobl; mutprob2hist (gen)=mutprob?2;

% Elitist Selection

if elitist ~= 0

[sorted, sortindex]=sort (poperr, 'ascend') ;
for i=l:elitist

sell(i)=sortindex(i); sel2(i)=sortindex(i);
end, end

% Rank-Based proportionate Selection
[sorted, sortindex]=sort (poperr, 'ascend') ;
rank=1:maxpop;

for i=1:maxpop

normalrank (i)=rank (i) /maxpop;
select(i)=exp(—selectco normalrank (i));
end

sumselect=sum(select);
selectprob(1l)=0;
for i=2: (maxpop+l)

selectprob(i)=(select(i-1)/sumselect)+selectprob(i-1);
end
for i=(elitist+1): (round(maxpop/2)), for counter=1:1000

randselectl=rand(1l,1); randselect2=rand(1l,1);
for ii=1:maxpop

if randselectl >= selectprob(ii) && randselectl < selectprob(ii+l)

sell(i)=sortindex(ii);
end

if randselect2 >= selectprob(ii) && randselect2 < selectprob(ii+l)

sel2(i)=sortindex(ii);

end, end

if all(pop(sell(i),:) == pop(sel2(i),:)) == 0
break

end, end, end

newpop= false (maxpop,m);

% Crossover

for i=l:length(sell)

cross=rand(1l,1);

if cross > crossrate

crossmask=zeros(m, 1) ;

else, crossmask=round(rand(m,1));

end

for j=1:m

if crossmask(

):
newpop ( ((2*1)-1), ) =pop(sell(i),J); newpop((2*i),j)=pop(sel2(i), J);

else

newpop ( ((2*i)-1), j)=pop(sel2(i),]); newpop((2*i), j)=pop(sell (i),
end, end, end

% Mutation For 2nd Stage

if stage ==

for i=1:maxpop

randmutl=rand(1l,1);
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if randmutl <= nmutprobind && i > (2*elitist)
for j=1:m

if newpop (i, j) ==

randmut2=rand(1,1);

if randmut2 <= nmutprobbit

randbitpos=ceil (9*rand(1,1)

)i
divremain=((j/mi)-floor (j/mi)) *mi;
if j<=(mi+1l) || j>(m-mi-1) || divremain<=1l || divremain>=(mi-1)
randbitpos=5;
end
switch randbitpos
case 1
if newpop (i, j-mi-1) == 0
newpop (i, j)=~newpop (i, J);
end
newpop (i1, j-mi-1)=~newpop (i, j-mi-1);
case 2
if newpop (i, j-mi-1) == 0
newpop (i, j)=~newpop (i, J);
end
newpop (i, j-mi)=~newpop (i, j-mi);
case 3
if newpop (i, j-mi-1) == 0
newpop (i, j)=~newpop (i, j);
end
newpop (i, j-mi+l)=~newpop (i, j—mi+1);
case 4
if newpop (i, j-mi-1) == 0
newpop (i, j)=~newpop (i, J);
end
newpop (i, j-1)=~newpop (i, j-1);
case 5, newpop (i, j)=~newpop (i, j);
case 6
if newpop (i, j-mi-1) == 0
newpop (i, j)=~newpop (i, J);
end
newpop (i, j+1)=~newpop (i, j+1);
case 7
if newpop (i, j-mi-1) == 0
newpop (i, j)=~newpop (i, J);
end
newpop (i, j+mi-1)=~newpop (i, j+mi-1);
case 8
if newpop (i, j-mi-1) == 0
newpop (i, j)=~newpop (i, J);
end
newpop (i, j+mi)=~newpop (i, j+mi) ;
case 9
if newpop (i, j-mi-1) == 0
newpop (i, j)=~newpop (i, J);
end
newpop (1, j+mi+l)=~newpop (i, j+mi+1);

end, end, end, end

elseif 1 > (2*elitist)

for j=1:m

fillcount=[0, 0, 0, 071;

if §j < (m-mj)

fillcount (1)=newpop (i, j+mj) ;
end

if rem(j,mj) ~= 0

fillcount (2)=newpop (i, j+1);
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end

if § > mj

fillcount (3)=newpop (i, j—mj) ;
end

if rem(j,mj) > 1

fillcount (4)=newpop (i, j-1);

end

fillsum=sum(fillcount) ;

if rand(l,1) <= fillmutprob && fillsum >= 3 && newpop (i, j) == 0
newpop (i, j)=1;

end

bithorpos=((j/mi)-floor (j/mi)) *mi;

bitverpos=ceil (j/mi);

if bithorpos> (midmutrange (1l)*mi) && bithorpos<(midmutrange(2)*mi) &&
bitverpos> (midmutrange (1) *mj) && bitverpos<(midmutrange (2) *mj)
mutprob=midmutmul *mutprobpop (7J) ;

else, mutprob=mutprobpop(7j);

end

if any(fillcount) == 1
mutprob=mutprob*nemutmul ;
end

mutmask=rand(1l,1);

if mutmask <= mutprob

if newpop (i, j) ==

newpop (i, j)=1;

else, newpop (i, j)=0;

end, end, end, end, end, end

% Mutation For 1st Stage

if stage ==

for i=1:maxpop

for j=1:m

if 1 > (2*elitist)

mutmask=rand(1l,1);

else, mutmask=1l;

end

if mutmask <= mutprobpop(j)

if newpop (i, j) ==

newpop (i, j)=1;

else, newpop(i,j)=0;

end, end, end, end, end

% Identical individual eliminator mutation filter
if (gen/ieeappgen) == floor (gen/ieeappgen)
for i=1:maxpop

for j=1:maxpop

if i ~= 3§ && J > 1 && all(pop(i,:) == pop(j,:))
for k=1:m

randiie=rand(1,1);

if randiie <= ieemutprob

pop (J,m)=~pop (j,m) ;

end, end, end, end, end, end

Prevpop=pop; prevpoperr=poperr; pop=newpop; clear newpop
end

% Export output data
[

sorted, sortindex]=sort (poperr, 'ascend') ;
result=pop(sortindex (1), :); dispim;
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APPENDIX B
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Figure B.1: Walsh patterns used for excitation of a 16-electrode system.
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Figure B.2: Walsh patterns used for excitation of a 32-electrode system.
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