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RECONSTRUCTION OF BINARY ELECTRICAL CONDUCTIVITY 
DISTRIBUTIONS USING GENETIC ALGORITHMS 

SUMMARY 

Electrical impedance imaging is a noninvasive technique to determine the internal 
conductivity distribution of an object based on electrical measurements obtained on 
its outer boundary. This technique has been increasingly used in recent decades for 
monitoring industrial processes for safe, reliable, and optimal operating conditions. 
The wide acceptance of electrical impedance imaging technique is mainly due to its 
safety, unique portability, and its dependence on sufficiently inexpensive data 
acquisition hardware. However, the problem of image reconstruction to calculate the 
unknown electrical properties inside the object is extremely ill conditioned due to the 
nonlinear relationship between the measured data and the unknown conducivity 
parameters. In addition to the ill conditioning, search space of candidate solutions to 
the image reconstruction problem is excessively large, making the problem largely 
dependent on the computational efficiency of the solution algorithm. Although 
deterministic optimization algorithms based on differential search directions are 
widely used in image reconstructions, there are several new promising studies 
linking stochastic algorithms and the impedance imaging method in recent years. 
Genetic algorithms are stochastic search and optimization methods that are inspired 
by the principles of biological evolution to achieve convergence to a population of 
candidate solutions by using genetic operators such as selection, crossover and 
mutation. Particularly for ill-conditioned problems, genetic algorithms have 
significant advantages over the deterministic methods due to their stochastic nature, 
parallel searching capabilities and robustness in avoiding local minima.  

In this thesis, an improved genetic algorithm is developed for the reconstruction of 
two-dimensional and binary conductivity distributions in electrical impedance 
imaging. The electrical impedance imaging method used in this thesis is based on the 
minimization of the discrepancies between measured and computed electrode 
voltages in a least-square sense. The electrode voltages are obtained from two-
dimensional 16-electrode and 32-electrode phantoms, modeled by the finite element 
method using 9x9 and 17x17 quadrilateral elements, respectively. The voltage 
response on the boundary electrodes induced by the electrostatic field for a known 
conductivity distribution and injected electrode currents is simulated by the finite 
element method. The problem of ill conditioning due to the relatively weak voltage 
response to the targets that are located far away from the boundary electrodes is 
surmounted by a new special weight function developed in this thesis. This weight 
function calculates the scale factors for each current excitation pattern to equalize the 
contribution of different regions of the conductivity distribution to the fitness values 
of the candidate solutions. 

The genetic algorithm developed for image reconstructions consists of two stages, 
each having different objectives and different genetic operators. The aim of the first 
stage is to make the population converge near the optimal solution. Because the 
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initial population of a genetic algorithm is randomly created, the diversity of the 
population is very rich at the beginning of the algorithm. Therefore, high 
convergence speeds can be achieved in the first stage with high selection pressures 
and low mutation probabilities. Convergence speed of a genetic algorithm generally 
becomes slower as the population converges near the optimal solution. As the 
convergence is achieved, the diversity of the population dramatically decreases. 
However, for the final iterations of the algorithm, diversity must be forced to 
increase by using high mutation probabilities and low selection pressures. The aim of 
the second stage is eventually to attain the true conductivity distribution by 
increasing the mutation probability and decreasing the selection pressure. 

Four new mutation operators are developed in this thesis. Two of the mutation 
operators work in a shape searching mentality to aid the algorithm to attain the true 
conductivity distribution in the second stage. The other two mutation operators work 
in both stages of the algoritm to help the algorithm to avoid the premature 
convergence. An improved ranked proportionate selection operator is developed to 
prevent any candidate solution from dominating over others.  Uniform crossover 
method is used in the algorithm as recombination operator to ensure an effective 
mixture of genes among the population. 

Two most important factors for a genetic algorithm are the diversity of the 
population and the convergence speed of the algorithm. Genetic algorithms achieve 
convergence at the expense of diversity. Increasing the convergence speed decreases 
the diversity of the population. On the other hand, rich diversity provides robustness 
to a genetic algorithm. With a less diverse population, genetic algorithms are more 
likely to be trapped in local minima. Therefore, efficiency of the genetic algorithm is 
maximized when the convergence speed and the diversity are optimally balanced. By 
using parameter adaptation operator, which is developed to achieve efficiency from 
the start to the end of the algorithm, important parameters of the genetic algorithm, 
such as the selection pressure, the mutation probability and the crossover probability 
are controlled adaptively to maintain the diversity of the population at an efficient 
level. 

A series of tests is conducted to observe the genetic algorithms performance on 
various conditions. Measurement process of each test is simulated using the finite 
element model with the optional addition of Gaussian white noise. The genetic 
algorithm performed well by attaining the true conductivity distribution in most of 
the tests for both 16-electrode and 32-electrode model without noise. The algorithm 
achieved convergence in all the tests with noise and attained the true conductivity 
distribution up to a certain noise level, showing robust characteristics. In all tests, it 
is observed that the adaptive parameter control effectively helps maintaining the 
diversity of population as the process converges.  
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ĐKĐLĐ ELEKTRĐK ĐLETKENLĐK DAĞILIMLARININ GENETĐK 
ALGORĐTMALAR ĐLE YENĐDEN OLUŞTURULMASI 

ÖZET 

Elektriksel empedans görüntüleme, bir nesnenin içsel iletkenlik dağılımının dış 
sınırlarından elde edilen elektriksel ölçümlere dayanarak belirlendiği girişimsel 
olmayan bir görüntüleme yöntemdir. Bu yöntem; güvenli, güvenilir ve optimal 
çalışma koşullarının sağlanması için endüstriyel proseslerin görüntülenmesinde son 
on yıllarda artan bir oranla kullanım alanı bulmaktadır. Elektriksel empedans 
görüntüleme tekniğinin geniş uygulama alanlarında kabul görmesinin başlıca 
nedenleri yöntemin güvenliği, kendine özgü taşınabilirliği ve yeterince ucuz veri 
toplama donanımına bağımlı olmasıdır. Ancak, görüntülenen nesnenin içerisinin 
elektriksel özelliklerinin hesaplandığı görüntü oluşturma problemi, ölçülen veri ile 
bilinmeyen iletkenlik parametreleri arasındaki doğrusal olmayan ilişki nedeniyle son 
derece kötü koşullu bir problemdir. Bununla birlikte, görüntü oluşturma probleminin 
aday çözümlerini kapsayan arama uzayı aşırı ölçüde büyüktür ve bu durum problemi 
çözüm algoritmasının etkinliğine oldukça bağımlı duruma getirir. Determinist 
prensibe sahip görüntü oluşturma algoritmalarının yaygın kullanımına karşın, son 
yıllarda stokastik algoritmalar ile elektriksel empedans görüntüleme yöntemini 
birleştiren ümit verici çalışmalar yapılmıştır. Genetik algoritma, biyolojik evrimin 
prensiplerinden esinlenerek, aday çözümlerin oluşturduğu bir popülasyonda 
yakınsama sağlanması amacıyla seçilim, çaprazlama ve mutasyon gibi genetik 
operatörlerin kullanıldığı stokastik arama ve optimizasyon yöntemidir. Genetik 
algoritmalar; stokastik yapıları, paralel arama kapasiteleri ve yerel minimum 
noktalardan kurtulmadaki dayanıklılık nitelikleri sayesinde özellikle kötü koşullu 
problemlerin çözümünde deterministik yöntemlere göre önemli avantajlara sahiptir.  

Bu tezde, elektriksel empedans görüntüleme prensibi kullanılarak iki boyutlu ve ikili 
iletkenlik dağılımlarının yeniden oluşturulması amacıyla iyileştirilmiş bir genetik 
algoritma geliştirilmiştir. Tezde kullanılan elektriksel empedans görüntüleme 
yöntemi; ölçülen ve hesaplanan elektrot gerilim değerlerinin farklılıklarının en küçük 
kareler yaklaşımıyla minimizasyonuna dayanmaktadır. Elektrot gerilimleri, sırasıyla 
9x9 ve 17x17 dörtgen eleman kullanılarak sonlu elemanlar yöntemi ile modellenen 
iki boyutlu 16 ve 32 elektrotlu fantomlardan elde edilir. Bilinen bir iletkenlik 
dağılımına sahip ve elektrotlarından akım uygulanan elektrostatik bir alan tarafından 
uyarılan sınır elektrotlarındaki gerilimler sonlu elemanlar metodu kullanılarak simüle 
edilir. Sınır elektrotlarından uzakta bulunan hedeflerin elektrotlarda göreceli olarak 
düşük bir gerilim değişimine neden olmasından kaynaklanan kötü koşulluluk sorunu, 
bu tezde yeni olarak geliştirilen özel bir ağırlık fonksiyonu ile aşılmıştır. Ağırlık 
fonksiyonu, iletkenlik dağılımındaki değişik bölgelerin aday çözümlerin uygunluk 
değerlerine olan katkısını eşitlemek üzere her akım uygulama kalıbı için oranlama 
faktörlerini hesaplamaktadır. 

Görüntü oluşturma probleminin çözümü için geliştirilen genetik algoritma, her bir 
aşaması farklı hedeflere ve farklı genetik operatörlere sahip olmak üzere iki 
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aşamadan oluşmaktadır. Đlk aşamanın amacı optimal çözüme yaklaşılacak şekilde 
yakınsama sağlamaktır. Genetik algoritmanın Đlk popülasyonu rastgele oluşturulduğu 
için, başlangıçta popülasyonun çeşitliliği oldukça zengindir. Bu nedenle algoritmanın 
ilk aşamasında yüksek seçilim baskısı ve düşük mutasyon olasılıkları kullanılarak 
yüksek yakınsama hızları sağlanabilir. Genetik algoritmaların yakınsama hızları 
genel olarak optimal çözüme doğru yakınsama sağlandıkça azalır. Yakınsama 
gerçekleştikçe popülasyonun çeşitliliği çarpıcı bir biçimde düşer. Ancak, 
algoritmanın son iterasyonlarında, yüksek mutasyon olasılıkları ve düşük seçilim 
baskıları ile çeşitlilik yükselmeye zorlanmalıdır. Algoritmanın ikinci aşamasının 
amacı mutasyon olasılığını artırıp, seçilim baskısını azaltarak tam iletkenlik 
dağılımına ulaşmaktır.  

Bu tez çalışmasında dört yeni mutasyon operatörü geliştirilmiştir. Bu mutasyon 
operatörlerinden ikisi algoritmanın ikinci aşamasında tam iletkenlik dağılımına 
ulaşılmasını kolaylaştırmak için biçim arama anlayışı ile çalışmaktadır. Diğer iki 
mutasyon operatörü ise prematüre yakınsama durumundan kaçınmak için her iki 
aşamada da çalışmak üzere düzenlenmiştir. Bir diğer geliştirme de, herhangi bir aday 
çözümün diğerleri üzerinde baskın hale gelmesini önlemek amacıyla gerçekleştirilen 
sıra orantılı seçilim operatörünün iyileştirilmesidir. Popülasyon içindeki genlerin 
etkin karışımını sağlamak için de algoritmanın yeniden birleştirim operatörü olarak 
birörnek çaprazlama yöntemi kullanılmıştır. 

Genetik algoritmalar için en önemli iki faktör popülasyonun çeşitliliği ve 
algoritmanın yakınsama hızıdır. Genetik algoritmalar çeşitlilik kaybederek 
yakınsama sağlar. Yakınsama hızının artırılması popülasyonun çeşitliliğinin 
düşmesine neden olur. Diğer yandan, yüksek çeşitlilik algoritmaya dayanıklılık 
özellikleri kazandırır. Popülasyonun çeşitliliği düştükçe, genetik algoritmanın yerel 
minimum noktalarında takılma olasılığı yükselir. Bu nedenle, genetik algoritmanın 
verimi ancak yakınsama hızı ile popülasyonun çeşitliliği optimal olarak 
dengelendiğinde maksimum değere ulaşır. Baştan sona verimliliğin sağlanması için 
geliştirilen parametre adaptasyon operatörünün yardımıyla; seçilim baskısı, 
mutasyon olasılığı ve çaprazlama olasılığı gibi genetik algoritmanın önemli 
parametreleri, popülasyonun çeşitliliğini verimli bir düzeyde korunmak için 
uyarlamalı olarak kontrol edildi. 

Genetik algoritmanın farklı koşullardaki performansının gözlemlenmesi için 
denemeler gerçekleştirildi. Her denemenin ölçüm işlemi sonlu elemanlar modeli 
kullanılarak ve seçime bağlı Gaussian beyaz gürültü eklenerek simüle edildi. Genetik 
algoritma, 16 elektrotlu ve 32 elektrotlu model üzerinde gürültü içermeyen veri 
kullanılarak yapılan çoğu denemede, gerçek iletkenlik dağılımına ulaşarak oldukça 
iyi bir performans gösterdi. Algoritmanın gürültü içeren veri kullanılarak yapılan 
denemelerde yakınsama sağladığı ve belirli bir gürültü düzeyine kadar gerçek 
iletkenlik dağılımına ulaşarak dayanıklı bir karakteristik sergilediği gözlemlendi. 
Bütün denemelerde, uyarlamalı parametre kontrolünün, bir yandan yakınsama 
sağlanırken, çeşitliliğin korunmasına etkin bir biçimde yardım ettiği saptandı. 
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1.  INTRODUCTION 

Recent technological advances in computerized tomography have led to many useful 

and inspiring results for visualization of inaccessible objects or media. Despite the 

high quality of images obtained with X-ray, positron emission and nuclear magnetic 

resonance tomography, the use of highly sophisticated equipment for such imaging 

modalities under uncontrollable harsh environmental conditions (due to excessive 

heat, pressure, electromagnetic interference, etc.) is problematic. For various 

industrial processes, particularly in heat exchangers, natural gas pumping systems 

and underwater petroleum pipelines, determination of spatial and temporal 

distribution of phase boundaries within two-phase flow fields is a critical task to 

assess safety and optimality in the process design. The imaging systems used for 

these processes depend on sufficiently fast, portable, inexpensive, and sensitive 

measurement and data acquisition instrument (Ceccio and George, 1996). 

Alternatively, some other nondestructive testing techniques based on acoustical and 

electrical impedance measurements offer great advantages to overcome the 

drawbacks of these imaging techniques. They require a relatively simple sensing 

hardware, but intrinsically suffer from an ill conditioning problem due to 

integral/differential operators relating the measured data to the properties of sensed 

field (Rolnik and Seleghim, 2006). 

Acoustical sensing methods benefit from the principles of reflection and attenuation 

of ultrasonic waves propagating in a medium with different sonic features. The 

reflection and attenuation coefficients of the medium are determined from acoustical 

sensing devices placed on the outer boundary of the flow medium. This technique is 

prone to some imaging artifacts due to scattering and diffraction of incident waves at 

liquid-gas interfaces whenever the wavelength of the ultrasonic sound is close to the 

size of the phase boundary (Atkinson and Kytomaa, 1992). A crucial resolution 

problem arises with particularly small-sized gas bubbles when their size is 

significantly smaller than the wavelength of the ultrasonic wave. As the wave 

frequency is increased to a 10-30 MHz range to annihilate this resolution problem, 

the high-frequency ultrasonic waves heavily attenuate and slowly propagate into the 
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flow medium as a result of multiple reflections of the ultrasonic wave in gas phases. 

This natural behavior of ultrasonic waves degrades the measurement speed, impeding 

the use of ultrasonic methods for real-time visualization of dynamic flow regimes 

(Atkinson and Kytomaa, 1993). 

Imaging techniques based on electrical impedance measurements, however, do not 

severely suffer from the constraints arising from slow propagation of applied current 

waves. The gas phase has virtually no electrical conductivity and its permittivity is 

about two orders of magnitude lower than that of the liquid phase. Thus, the gas 

phase behaves as a purely capacitive medium into which propagation of electrical 

currents within 10 kHz to 1 MHz range is insignificant. If the conductivity of the 

liquid phase is significantly larger than its capacitive component at this frequency 

range, the electrical time constant of the medium is negligibly small, behaving a 

purely conductive medium. Since early 1990s, electrical impedance tomography 

(EIT) has been considered as a new visualization tool for two-phase flows. As the 

electrical conductivity (and/or permittivity) of the liquid phase significantly differ 

from that of the gas phase, the phase boundaries can be identified from the spatial 

variation of electrical properties without disturbing the flow field. Therefore, 

distribution of electrical properties is inferred from surface measurements of electric 

potentials resulting from independent electric current patterns repetitively injected 

into the outer surface of the flow. The hardware used for EIT systems is relatively 

inexpensive, portable and fast enough to acquire data in reasonable time and 

accuracy. This imaging modality is accepted as the most suitable one compared with 

other known modalities. 

1.1 Background 

The idea of impedance methods originated in geophysics in early 1930s (Langer, 

1933) when Slichter (Slichter, 1933) attempted to determine the electrical resistivity 

of horizontally uniform geological structures from potential measurements observed 

on the earth’s surface. This problem was first identified by Calderon (Calderon, 

1980) in 1980 as the “inverse conductivity problem” in mathematics literature. The 

mathematical study inverse conductivity problem has had a great impetus to many 

mathematicians and scientists until mid 1990s with the proof of uniqueness by Kohn 
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and Vogelius (Kohn and Vogelius, 1984), Sylvester and Uhlmann (Sylvester and 

Uhlmann, 1987) and later by Nachman (Nachman, 1995). 

Active research in EIT has started in the late 1970s when Henderson and Webster 

developed an EIT system as a medical imaging tool (Henderson and Webster, 1978). 

In about the same period Little and Dynes and independently presented a new EIT 

system for geophysical surveying (Dynes and Lytle, 1981). Since 1980s the 

computing power has incresed drastically and many large scale EIT systems are 

developed by different research groups worldwide. 

The reconstruction algorithms for EIT can be sorted into noniterative and iterative 

algorithms. Noniterative algorithms are based on linear approximations relying on 

the assumption that the conductivity does not differ very much from a constant. Most 

important noniterative reconstruction algorithms are backprojection method (Barber 

and Brown, 1984) and Newton’s one-step reconstruction algorithm (Cheney et al., 

1990). These methods generally operate by using simplifying assumptions that limit 

the accuracy and the scope of their application to few problems of practical interest. 

Iterative algorithms are based on the premises that conductivity of the visualized 

body differs slightly from a known conductivity distribution. They require relatively 

fewer assumptions, therefore yielding better approximate solutions to the image 

reconstruction problem than using noniterative methods. Furthermore, iterative 

methods have a wider range of application since the construction of the solution 

algorithms is relatively easy. 

Iterative reconstruction algorithms can be categorized into two groups, consisting of 

deterministic and stochastic algorithms. The most popular deterministic 

reconstruction algorithms are based on regularized Newton-Raphson method and 

their variations are widely used in industrial applications (Yorkey et al., 1987). 

Jones, Lin, Ovacık and Shu created an algorithm named “block decomposition 

method” by combining the finite element and Newton-Raphson methods in the early 

1990s. This new method allowed the number of elements used in the finite element 

model to decrease by applying locally analytic solutions as the shape functions inside 

the elements (Jones et al., 1993). 

In recent decades, stochastic reconstruction algorithms are started to gain popularity 

due to their robustness and ability to avoid local minima more effectively. Genetic 
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algorithms (Cheng et al., 1996) and Monte Carlo method (Kaipio et al., 2000) are 

among the stochastic methods applied to the EIT image reconstruction problem. Of 

these studies, most promising results are obtained using the genetic algorithm 

method due to its parallel processing capability. In early 2000s, Olmi, Bini and Priori 

created an improved genetic algorithm for reconstruction of high-resolution images 

by using three successive genetic algorithms, each with different parameters (Olmi et 

al., 2000). Kim, Moon and their co-workers improved the efficiency of the image 

reconstruction process by developing a two-stage genetic algorithm (Kim et al., 

2002). 

1.2 Contributions 

First contribution of this thesis is the development of a new special weight function 

to overcome the problem of ill conditioning due to the relatively weak voltage 

response to the targets that are located far away from the boundary electrodes. 

Another improvement is the two-stage genetic algorithm structure, which is designed 

to provide more efficient search strategies to the algorithm by using different genetic 

operators and parameters for each stage. Four new mutation operators are developed 

in this thesis, two of the them helping the algorithm to avoid the premature 

convergence and the other two working in a shape searching mentality to aid the 

algorithm to attain the true conductivity distribution in the second stage. Another 

contribution is the development of an improved ranked proportionate selection 

operator to achieve more efficient selection process. Final contribution of this thesis 

is the parameter adaptation operator, which adaptively controls the important 

parameters of the genetic algorithm, such as the selection pressure, the mutation 

probability and the crossover probability to maintain the diversity of the population 

at an efficient level.  

1.3 Thesis Overview 

This thesis consists of five chapters. Chapter 1 provides an introduction on the non-

invasive imaging methods and includes a literature survey on the image 

reconstruction problem of EII method. Contributions of this thesis are also discussed 

in the first chapter.  
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Chapter 2 presents the finite element model developed for the solution of the forward 

conductivity problem. After stating the governing field equation, the finite element 

method formulation and the developed numerical simulation algorithm are presented 

in chapter 2. 

Chapter 3 states the image reconstruction problem of EII method, providing 

knowledge on the ill conditioning nature and the search space of the problem. This 

chapter gives a general overview of evolutionary computation methods and genetic 

algorithms including their historical background. The general structure and each 

individual component of the genetic algorithm developed for the solution of the 

image reconstruction problem are also explained in detail in this chapter. 

Chapter 4 is devoted to the numerical simulations conducted to test the genetic 

algorithm for the image reconstruction problem. Results of the various tests obtained 

by the genetic algorithm using the data from the numerical simulations are presented 

in chapter 4. 

Finally, chapter 5 concludes the thesis, by briefly summarizing the study, discussing 

the results obtained from the numerical simulations presented in the fourth chapter. 

Performance of the genetic algorithm and its individual components are discussed in 

detail. This chapter ends with suggestions for future work for the development of 

genetic algorithms for the solution of the EII reconstruction problem.  
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2.  SOLUTION OF FORWARD PROBLEM 

2.1 Conductivity Problem 

The concept of EII method involves a body with an unknown field of electrical 

conductivity distribution that is surrounded by electrodes placed on the boundary 

surface. The electrodes on the boundary surface are excited using different patterns, 

and the responding voltages on the electrodes are measured. A schematic 

representation of a typical electrical impedance tomography system is shown is 

Figure 2.1. Solution of the forward problem of EII is the simulation of the actual 

measurement of the imaging process. Because the inverse solution of the forward 

problem is impossible, the solution of the forward problem has to be obtained in 

order to solve the inverse problem. This situation makes the solution of the 

conductivity problem necessary for imaging process. Solution of the conductivity 

problem consists of calculation of measured voltage response values on the boundary 

electrodes of a body with a known conductivity distribution induced by known 

injected currents. To simulate the behavior of an electrostatic field with a variable 

conductivity distribution, solution of the Poisson’s equation for a variable complex 

conductivity field has to be solved with the appropriate boundary conditions. 

Body

Reference Electrode

I

V

I

 

Figure 2.1: Schematic representation of an EIT system. 
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Necessity of a forward mathematical model of the imaging process arises with the 

need for the solution of the inverse problem of EII method. Since the direct inverse 

solution of the imaging problem is impossible, solution of the inverse problem must 

use the forward problem formulation alongside a parameter estimation method, 

which in our case is a genetic algorithm. Thus, the solution of the forward problem 

plays a crucial role in imaging process. 

Since an analytic solution of the governing equations for EII is often impossible 

excluding some special cases, numerical methods must be used for the mathematical 

modeling of the imaging process. The most popular numerical method for solving 

electrostatic problems is the finite element method. Because the image reconstruction 

is a minimization problem, an objective function is required to simulate voltage 

values on the electrodes for conductivity distributions using the mathematical model 

of the process and compare the simulated results with the actual data from the 

phantom, calculating the error values. The objective function includes the finite 

element model of the imaging process and an error function with a least-squares 

approximation. The genetic algorithm minimizes the objective function to 

reconstruct the conductivity distribution of the phantom body. 

Electrodes can be used for injecting current into the body and measuring the voltage 

on the boundary electrodes at the same time. However, because of a reported 

phenomenon that causes the electrode-skin contact surface to have a resistive 

behavior, different electrodes used for excitation and measurement purposes in 

medical imaging applications (Hua et al., 1993). Because of this phenomenon, High 

frequency alternating currents are used for excitation in medical applications. 

However, in this thesis, two-phased flows are imaged, therefore allowing the same 

electrodes to be used for both excitation and measurement purposes. Because every 

electrode is excited, it is ideal to use low frequency currents (1-10 kHz range) with 

multiple excitation patterns. Using low frequency excitation currents cause the 

imaging equipment to be less complex and less expensive. 

For an E-electrode imaging system, where E represents the electrode number of the 

imaging system, (E – 1) number of independent excitations can be applied. Linear 

relationship between current and voltage values can be represented by an operator 

matrix with the dimensions of (E – 1) x (E – 1). The operator matrix is symmetric 

and has E (E – 1) / 2 degrees of freedom (The number of upper diagonal entries of 
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the operator matrix). These upper diagonal entries of the operator matrix represent 

the admittance values between the boundary electrodes. Thus, Unknown element 

conductivities of the system should be selected as equal or less than E (E – 1) / 2 to 

avoid making the problem under defined. Number of independent measurements the 

equation system requires to obtain an appropriate solution is at least E (E – 1) / 2. 

Therefore, if the number of the unknown element conductivities is chosen as the 

number of the degrees of freedom, all element conductivities are uniquely 

determined (Ovacık, 1998b). 

2.2 Governing Field Equation 

The electromagnetic field induced by an applied current density to the surface of a 

conductive body is governed by Maxwell’s equations. Ampere’s circuit law with 

Maxwell’s correction is stated below. 

t

D
JH

∂

∂
+=×∇  (2.1) 

Where H represents the magnetic field density, J represents the current density, and 

D represents the electric flux density. Multiplying both sides with the divergence 

operator, conservation of current density statement is expressed by, 

0=








∂

∂
+⋅∇

t

D
J  (2.2) 

Current density is obtained by using the Ohm’s law. 

EJ ⋅= σ  (2.3) 

Where σ is the electrical conductivity and Ē is the electrical field. Time derivative of 

the electric field displacement vector is stated as, 

Ej
t

D
⋅−=

∂

∂
ωε  (2.4) 

Electric field intensity can be stated in terms of the gradient of the electric potential 

for a conservative field. 
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φ−∇=E  (2.5) 

Where φ is the electrical potential. Substituting Equation (2.5) into Equations (2.3) 

and (2.4), and inserting these equations into Equation (2.2), the governing equation 

for the electrical properties in the domain Ω is reached. 

( ) 0=∇+⋅∇ φωεσ j  (2.6) 

Boundary conditions for the imaging domain Ω, 

( ) EJ
n

j ±=
∂

∂
⋅+−

φ
ωεσ       on     EΩ∂  

( ) 0=
∂

∂
⋅+−

n
j

φ
ωεσ           on     HΩ∂  

(2.7) 

Where the term (σ + jωε) represents the complex conductivity, consisting of the 

conductivity and the permittivity terms. σ is the electrical conductivity and ε is the 

electrical permittivity. n represents the outward normal vector on the boundary 

surface. ΩE and ΩH represent the surface of the electrodes and the homogeneous 

zones of the boundary condition, respectively. JE denotes the current density vector 

of injected excitation. 

An electrically excited medium consists of both conductive and dielectric properties. 

Conductive property of materials is influenced by term the σ, while dielectric 

property of materials is influenced by the term ωε. The ratio of ωε / σ proportionally 

increases with the increasing excitation frequency. In low frequency excitations, the 

effect of dielectric constant becomes negligible compared to high conductivity 

values. Thus, the phase shift between current and voltage measurement is very small 

when real part of the complex conductivity dominates the imaginary part (ωε << σ). 

Considering this effect, dielectric property will be neglected (ωε ≈ 0) in further 

analytical developments for low frequency applications in 1-10 kHz range. Thus, 

Equation (2.6) is reduced to Laplace’s equation, which is the governing equation for 

low frequency electrical impedance imaging system (Ovacık, 1998b). 

( ) 0=∇⋅∇ φσ  (2.8) 
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Laplace’s equation becomes Poisson’s equation when right side of the equation is 

nonzero. Equation (2.8) can be expanded into the form below. 

( ) 02 =∇⋅∇+∇=∇⋅∇ φσφσφσ  (2.9) 

Expanded form of Laplace’s equation exhibits a convection-diffusion phenomenon. 

This well-known behavior is often seen in heat transfer, mass transfer and fluid flow 

problems. An analytical solution can only be obtained for some very special cases 

such as existence of symmetry in geometry or boundary conditions, using conformal 

mapping, series expansion methods or integral methods. 

In expanded form of Equation (2.9), the first term represents diffusion and the second 

term represents convection using an analogy from mass transfer and fluid mechanics. 

Numerical solution of this equation is very difficult to obtain because of the 

numerical instabilities that occurs when the transport of φ is dominated by the 

convection term (Ovacık, 1998b). 

The most popular methods for solving the electrostatic field equations are finite 

difference and finite element methods. In this thesis, finite element method is chosen 

to solve the governing field equation for the forward problem. The quality of a FEM 

approximation is often higher then FDM approximation, therefore causing less 

numerical errors. In addition, FEM has the ability to handle complex geometries and 

boundaries. However, numerical solution of the governing field equation is very 

difficult to solve using common finite element methods directly (Ovacık, 1989). To 

overcome this difficulty, Galerkin’s weighted-residual method is applied to the finite 

element model of the system. Galerkin’s method makes numerical solution of 

Laplace’s equation relatively less complex. It is also easy to apply to Laplace’s 

equation, providing a satisfactory outcome. 

2.3 Finite Element Formulation 

Galerkin’s weighted-residual method includes an arbitrary and continuous weighting 

function W into the governing field equation (Equation (2.8)). The parameters of the 

approximation are determined such that the governing field equation is valid for 

every choice of the weighting function W. After multiplying Equation (2.8) with 

weighting function W, equation is integrated over the domain of the element-e, Ωe. 
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∫
Ω

=∇⋅∇
)(

0)(
eV

dVW φσ  
(2.10) 

Using product rule of a gradient on Equation (2.10), 

WWW ∇⋅∇+∇⋅∇=∇∇ φσφσφσ )()(  (2.11) 

Equation (2.11) is inserted into Equation (2.10). 

∫∫∫
ΩΩΩ

⋅∇⋅∇−∇∇=∇⋅∇
)()()(

)()(
eee VVV

dVWdVWdVW φσφσφσ  
(2.12) 

The second integral term in Equation (2.12) becomes a surface integral using Gauss’s 

Divergence Theorem. 

∫∫
ΩΩ

⋅∇=∇∇
)()(

)()(
ee SV

dAWdVW φσφσ  
(2.13) 

Inserting Equation (2.13) into Equation (2.12), 

∫∫∫
ΩΩΩ

⋅∇⋅∇−⋅∇=∇⋅∇
)()()(

)()(
eee VSV

dVWdAWdVW φσφσφσ  
(2.14) 

Using Equation (2.10), the first integral term in Equation (2.14) equals to zero. 

0)(
)()(

=⋅∇⋅∇−⋅∇ ∫∫
ΩΩ ee VS

dVWdAW φσφσ  
(2.15) 

The current flux on the element boundary, 

φσ∇−≡eq  (2.16) 

Substituting Equation (2.16) into Equation (2.15), 

∫∫
ΩΩ

⋅⋅−=⋅∇⋅∇
)()( ee S

e

V

dAqWdVWφσ  
(2.17) 

Where qe is the current flux vector in element-e. Expanding the first integral term in 

Equation (2.17), 
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Ω )( eV
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Combining two terms together, 

=⋅∇⋅∇∫
Ω )( eV

dVWφσ  

∫
Ω

⋅

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σ  (2.19) 

In this thesis, two-dimensional finite element approximation is used, so the volume 

element has unity depth, dz=1, and the terms that includes the derivatives of z 

vanishes. 

=⋅∇⋅∇∫
Ω )( eV

dVWφσ ∫
Ω

⋅
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xx

W φ
σ

φ
σ  (2.20) 

2.3.1 Quadrilateral elements 

Using bilinear quadrilateral elements with four straight sides, the potential inside the 

element-e is represented in terms of the potentials on the nodes at the corners of the 

element with the relationship below (Jones et al., 1992). Node numbers of an element 

are shown in Figure 2.2. 

∑
=

⋅=
4

1

),(),(
i

ii VyxNyxφ  (2.21) 

∑
=

⋅∇=∇
4

1

),(),(
i

ii VyxNyxφ  (2.22) 
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Figure 2.2: Node numbers of elements. 

Where V’s are voltages and N’s are shape functions of the nodes. Shape functions are 

used to map the element from the physical x-y plane to a standard square in the 
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parametric ξ-η plane confined between -1 ≤ ξ ≤ 1 and -1 ≤ η ≤ 1 as shown in Figure 

2.3. The first node is mapped to the point ξ = -1, η = -1, the second to the point ξ = 1, 

η = -1, the third to the point ξ = 1, η = 1, and the fourth to the point ξ = -1, η = 1. The 

mapping from the x-y plane to the ξ-η plane is mediated using Equations (2.23) and 

(2.24). 
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Figure 2.3: The mapping from the x-y plane to the ξ-η plane  

The shape functions for bilinear quadrilateral elements, 
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A bilinear expansion form is utilized to transform coordinates between planes. 

ξηαηαξααηξ 3210),( +++=x  (2.29) 
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ξηβηβξββηξ 3210),( +++=y  (2.30) 

An infinite-small area is transformed as following, 

ηξ ddJdydx ⋅⋅=⋅  (2.31) 

Using Equations (2.29) and (2.30), transformation Jacobean is written, 
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The equations for α’s and β’s is determined by writing Equations (2.29) and (2.30) 

for all nodes and solving the equation system. Writing Equations (2.29) and (2.30) 

for four nodes, two sets of four equations are solved to determine the mathematical 

statements for α’s and β’s for computation of Jacobean matrix to be used in the 

simulation algorithm. 
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Using Equation (2.20) and (2.22) together, 
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An admittance matrix Y is defined, which allows Equation (2.39) to be rewritten as, 
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Where Yml is defined by comparison to be, 
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In the Rayleight-Ritz method, the weighting function W is determined to minimize 

the numerical error in Equation (2.41) (Jones et al., 1993). The weighting function W 

is selected as Nm. 

∫
Ω

⋅








∂

∂

∂

∂
+

∂

∂

∂

∂
=

)( eV

lmlm
ml dxdy

y

N

y

N

x

N

x

N
Y σσ  (2.42) 

Relationship between voltage and current for element-e is expressed by, 

m

l
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 (2.43) 

Net current Im at the nodes into the element-e, 

∫
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Yml is the (m,l)-th entry of the element stiffness matrix. Element-e also satisfies the 

Kirchhoff’s law with voltages Vl of the nodes at the corner of the element and the net 

current Im at the nodes into the element. 

Equations (2.31) and (2.32) are substituted into Equation (2.42) to write admittance 

matrix elements in terms of variables ξ and η. 
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Where σe is the conductivity of element-e, which is regarded as constant inside the 

element. Fij is expressed by, 
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Double integration in Equation (2.45) is numerically computed using gauss 

quadrature formula with 4 x 4 points grid structure (Fish and Belytschko, 2007). 
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Where ξm and ηn are gauss points, and wm and wn are their corresponding gauss 

weights. Gauss points and Gauss weights are shown in table 2.1 for 4 x 4 points grid. 

After computation of local admittance matrix entries for every element, the next step 

is to assemble the global admittance matrix using the local admittance matrices. 

Table 2.1: Gauss points and their corresponding Gauss weights for 4 x 4 points grid. 

Grid Points (m,n) ξ and η w 

1 - 0.8611363116 0.3478548451 
2 - 0.3399810435 0.6521451548 
3 0.3399810435 0.6521451548 
4 0.8611363116 0.3478548451 

2.3.2 Construction of admittance matrix 

Computed local element admittance matrix entries are assembled to form the global 

admittance matrix Y. Global admittance matrix has the dimensions of (N,N) and is 

used in solving global system of equations. 

NxPNxPNxN CVY =⋅  (2.48) 

Where N is the total number of nodes in the mesh structure and P is the number of 

current excitements into the system. V matrix is the voltage matrix that consists of 

the nodal voltages for each excitation and C matrix is the current matrix, which 

includes the nodal current values for each excitation. 

There are six local admittance matrix entries for each element. These entries are 

added to the corresponding points of the global admittance matrix and the entries 

between same nodes are summed together, forming the global admittance matrix. 

Constructed global admittance matrix is a banded sparse matrix. Positions of six 

local admittance matrix entries of an element are illustrated on Figure 2.4.  

Two rectangular shaped mesh structures are used in FEM model, one with 9x9 grid 

consisting of total 81 elements and the other with 17x17 grid consisting of total 289 

elements. 9x9 grid model includes 16 electrodes and 17x17 model includes 32 
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electrodes. In Figure 2.5, two mesh structures used in this thesis are shown with node 

numbers at the corners. Elements and nodes are numbered starting from the bottom-

left corner of the mesh grid, ending in the top-right corner. Elements next to the 

boundary surface are smaller than the other elements, therefore modeling the area 

near the boundary surface with higher accuracy. Because the gradients are higher at 

the boundaries than the middle sections of the grid, FEM approximation errors are 

higher on the boundary area, where high precision modeling is very important. 

 

Figure 2.4: Positions of local admittance matrix entries of an element. 

 

Figure 2.5: Mesh structures and node numbering used in the FEM model: (a) Mesh 
structure of the 9x9 grid model. (b) Mesh structure of the 17x17 grid model. 

2.3.3 Modeling of electrodes 

Electrodes can be modeled in two ways. First is the rod electrode approximation, 

where the electrodes are modeled like single points. In the rod electrode model, 

current is injected into the system from a single node in FEM model. The Rod 

electrode model approximation is reported to cause modeling errors in FEM model 
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because the injected currents are far from being uniformly distributed. Thus, the 

current gradient near the electrodes becomes extremely high and the sensitivity of the 

FEM model dramatically decreases. For a more efficient modeling of the electrodes, 

plate electrode model is introduced. 

In plate electrode model, electrodes modeled as an area where the current is 

uniformly injected. Size of the electrodes must be enough to cover two nodes at 

minimum. To achieve this uniform current injection, voltage values of the nodes that 

have a contact with the same electrode are forced to be equal by adding electrode 

admittance entries between the nodes in the global admittance matrix. 

Electrode admittance entries can be between the magnitude of 106 and 1010 

depending on the electrode material. Using the plate electrode model, current flow at 

the electrodes are more smoothly distributed than in the rod electrode model, thus 

decreasing the modeling errors and increasing the sensitivity at the area near the 

electrodes (Ovacık et al., 1998a). In this thesis, electrode admittance elements are 

forced to be 1010. Electrode numbers and positions of the FEM model structures are 

shown in Figure 2.6.  

 

Figure 2.6: Electrode numbers and positions for the FEM model: (a) 16-electrode 
model. (b) 32-electrode model. 

2.3.4 Boundary conditions 

In impedance imaging measurement process, one of the electrodes is selected as the 

reference electrode to be used as a reference point in relative voltage measurement 

process. Therefore, the rank of the global admittance matrices rank decreases to (N - 



 
20 

1), where N is total node number of the model. In order to have a fully defined linear 

equation system, (E - 1) number of measurements are necessary, where E is the 

number of the electrodes. Thus, (E - 1) number of excitations is required to solve the 

linear equation system. 

First boundary condition to apply to model is the reference electrode. Because 

reference electrode is grounded, voltage on the reference electrode must be zero. In 

order to apply the reference electrode boundary condition to the model, following 

tasks are performed. Keeping in mind that R is the number of the node that the 

reference electrode stands on; first, all the elements on the R-th column and R-th row 

of the global admittance matrix Y is set to zero. Second, diagonal element of the 

global admittance matrix YRxR is set to unity. Finally, all the elements on the R-th row 

of the current matrix C is set to zero (Pozrikidis, 2005). The other boundary 

conditions are the injected current values from the electrodes, which is applied by 

setting corresponding entries of the current matrix C. 

2.3.5 Linear system solution 

Linear equation system, which is shown in Equation (2.46), is a symmetric and 

sparse system. Admittance matrix Y is a banded matrix that has the bandwidth of 

BW=m + 2, where m is the number of the horizontal index of the nodes in the finite 

element mesh structure (Ovacık, 1998b). Solution of the linear system is the 

determination of nodal voltages in the mesh structure, using the global admittance 

matrix and the current matrix. Equation (2.46) can be represented as following, 

NxPNxNNxP CYV ⋅= −1  (2.49) 

A basic method for solving the linear system is computing the inverse of the 

admittance matrix and then multiplying with the current matrix. However, this 

method is not efficient in terms of computing resources. For linear systems with 

relatively large admittance matrices, inversion procedure requires extremely high 

computing resources. Because the objective function is executed frequently, 

performance of the image reconstruction algorithms depends on its forward solution 

algorithm. Majority of the computing time needed for the simulation algorithm is 

consumed by the linear system solver; thus making speed of linear system solver 

algorithm crucial for the overall image reconstruction performance. MATLAB’s 
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built-in ‘linsolve’ algorithm, which uses LU factorization method, is used as the 

linear solver operator in this thesis. 

2.4 Test Phantom Simulation Algorithm 

Simulation of the measurement system starts with reading the data files, including 

excited current values, conductivity distribution of the body and the mesh structure 

data. Then, the local admittance elements of FEM model are computed and 

assembled together to form the global admittance matrix. Next step is to solve the 

equation system using linear solver operator. Artificial noise is added to the 

computed voltage values if required. Last step of the algorithm is to write the voltage 

data for every excitement to the output file. In Figure 2.7, flowchart of the simulation 

algorithm is shown. 

Simulation algorithm is coded using MATLAB language; approximately, it takes 

0.001 second to run the forward model with 9x9 mesh grid and 0.01 second to run 

the forward model with 17x17 mesh grid using a computer with a 2.0 GHz dual-core 

CPU. Because the memory consumption of the algorithm is under 1 MB, 

performance of the algorithm is not affected by the amount of RAM the system has. 

The algorithm developed in this thesis uses Walsh functions as injected current 

patterns. Because only two levels of current values (-1 and +1) are used, Walsh 

functions simplify the design of the data acquisition hardware (See Figure B.1 and 

Figure B.2 in Appendix B for Walsh patterns used for excitation of 16-electrode and 

32-electrode model phantoms respectively.). Compared to other excitation patterns, 

Walsh function current injection is reported to provide the most efficient excitation 

in terms of the useful information collected about the interior conductivity 

distribution of the body (Woo et al., 1990). Walsh functions also have the 

computational simplicity advantage. Number of required measurements to fully 

define the solution of the equation system is (E - 1), where E is the total number of 

the electrodes on the boundary surface. Therefore, one Walsh function pattern (more 

specifically, the pattern that continuously equals to unity.) is discarded and the 

remaining patterns are used as the injected excitation current values for all of the 

electrodes. 
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Read Excitation Data Read Conductivity DataRead Mesh Data

Computation of Local Stiffness Matrices

Construction of Global Stiffness Matrix

Linear Solver

Start

Addition of Artificial Noise

Write Voltage Output Data

Stop
 

Figure 2.7: Flowchart of the test phantom simulation algorithm to generate test data. 
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3.  SOLUTION OF INVERSE PROBLEM 

3.1 Image Reconstruction Problem 

Inverse problem of the electrical impedance imaging consists of estimation of 

electrical conductivity distribution of the body that is being imaged. Using the 

measured voltage amplitudes at the electrodes and the current values that are injected 

from electrodes, conductivity distribution along the body is calculated. Flowchart of 

the solution of the inverse problem is shown in Figure 3.1. The inverse problem of 

the EII method can be considered as an image reconstruction problem because the 

result of the problem is the image of the electrical conductivity distribution of the 

body. As discussed earlier, the inverse solution of the EII forward imaging problem 

is impossible to obtain analytically, unless the geometry of the body has some special 

properties. As a result, direct solution of the inverse problem is impossible for most 

cases, which makes the implementation of an additional inverse solution method 

necessary. However, due to the non-linear and ill-conditioned nature of the EII 

problem, solution of the inverse problem is very difficult to obtain. 

Inverse solution algorithm

Voltage and current input

Conductivity distribution output

 

Figure 3.1: Flowchart of the solution of the inverse problem in EII. 

Optimization, search and parameter estimation methods can be used to solve the 

image reconstruction problem of EII method. In this thesis, a genetic algorithm is 

developed to solve the image reconstruction problem. The inverse problem of EII has 

multiple local minimum solutions and only one global minimum solution, which is 
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the true conductivity distribution of the body. This problematic nature puts an extra 

emphasis on inverse solution method that is being used. Some parameter estimation 

methods that have a tendency to fall into the local minima instead of the global 

minimum solution are not ideal for the image reconstruction problem because they 

are likely to obtain premature results by converging into the local minima. Best 

results are achieved by using inverse solution methods that possesses robust 

characteristics. 

Before genetic algorithms are started to be used as the image reconstruction 

algorithms, the most widespread method to solve this problem was Newton-Raphson 

minimization. Even today, Newton-Raphson method is very popular in the image 

reconstruction problem of EIT method due to its practical yet efficient nature. 

Newton-Raphson algorithm is fast and efficient when used with a good starting 

point. Nonetheless, it fails to achieve convergence when used with an inappropriate 

initial guess. Therefore, initial guess is extremely important in Newton-Raphson 

algorithm for a successful convergence. However, as the inverse problem of the 

electrical impedance imaging method is ill-conditioned and the search space has 

multiple local minimum solutions, selection of the initial guess is extremely difficult. 

Any initial guess that is chosen too distant to global minimum point may cause 

Newton-Raphson algorithm to converge into one of the local minimum solutions, 

resulting in a prematurely incorrect conductivity distribution. This phenomenon 

prevents Newton–Raphson method from being the ideal method for the solution of 

the image reconstruction problem in EII. The search for finding much efficient 

methods to solve the image reconstruction problem of EII continues. Evolutionary 

computation methods, which are being increasingly applied to similar problems in 

recent years, are between the methods that are being tested for this task. Among 

these evolutionary computing methods, the most popular one is the genetic algorithm 

method. 

Genetic algorithms are starting to be applied to many optimization and search 

applications, including the image reconstruction problem in electrical impedance 

imaging, in recent years. Several studies (including Cheng et al. (1996), Meng et al. 

(1999), Olmi et al. (2000), Kim et al. (2002), Kim et al. (2006), Rolnik and Seleghim 

(2006)) claim to obtain optimistic results using GAs with the EII method. These 

studies point out that the stochastic nature of the genetic algorithms helps to 
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overcome the premature convergence problem by preventing the algorithm from 

converging into the local minima. Stochastic optimization methods, including the 

GAs, are not dependent to initial guesses, which makes these methods ideal for the 

problems with multiple local minima. According to the studies, the only drawback of 

GAs is their high computing time requirements, thus making them impossible to use 

them in real-time imaging applications. 

3.1.1 Ill-conditioning 

Solution of an inverse problem is ill-conditioned if the system has low sensitivity to 

its parameters. Conductivities of every pixel in the body have their effects on the 

boundary response. Because the measurements are obtained from the boundary in EII 

method, the conductivity values of the pixels in the interior region of the body have a 

reduced effect on the measured data. The image reconstruction problem of EII 

method is extremely ill-conditioned because due to the nonlinear relationship 

between the measured data and the unknown conducivity parameters. In ill-

conditioned problems, noise on the measurements may be critical for the stability of 

the solution.  

3.1.2 Search space 

In optimization and search problems, the space of all feasible solutions is called 

search space. The search space consists of the set of all solutions that the desired 

solution resides. Every point in the search space represents one possible solution of 

the problem. As the search space becomes larger, the number of candidate solutions 

increases. Thus, a larger state space results in a more difficult search problem 

(Sivanandam and Deepa, 2008). 

Search spaces of image reconstruction problems are generally quite large because of 

the number of variables. Every pixel of the reconstructed image is represented with 

an independent variable, which increases the degree of freedom of the system 

dramatically. Even for binary image reconstruction problems, search spaces are 

massively large. As mentioned in the previous chapter, two finite element models are 

used in this thesis, one with a 9x9 mesh grid and the other with a 17x17 mesh grid. 

For 9x9 mesh grid, the reconstructed image has the dimensions of 9x9 pixels, thus, 

the total number of pixels is 81. Therefore, the search space of the image 

reconstruction problem is 281, which is equal to 2,418.1024, an extraordinary large 
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number for a small grid of 9x9. For 17x17 mesh grid, the reconstructed image has the 

dimensions of 17x17 pixels, thus making the total number of pixels 289. For 17x17 

pixels, the search space of the image reconstruction problem becomes 2289, which is 

equal to 9,946.1086,  a gigantically large number. From these numbers, we can see 

that the search space of 17x17 pixels is 4.1062 times larger than the search space of 

9x9 grid; an extraordinary big difference between search spaces of 9x9 and 17x17 

mesh grid structures. Therefore, it shows the complexity difference between two grid 

structures, image reconstruction problem becomes dramatically more difficult as the 

pixel number increases. Taking into account that the estimated number of atoms in 

the observable universe is in the magnitude of 1080, we can see that the search space 

of 17x17 pixels is ten million times of the estimated number of atoms in the 

observable universe. This gives an impression of how big the search space is for the 

image reconstruction problem for 17x17 pixels. Thus, solving the inverse problem of 

EII is extremely difficult and it becomes dramatically more difficult as the number of 

pixels increases. Thinking that the forward simulation takes 0.01 second of 

computing time to calculate the voltage response values, using the blind search 

method, which is a search method that every possible solution is evaluated until the 

correct result is found, it would take nearly 1077 years to find the true conductivity 

distribution on a modern computer, which is practically impossible. Therefore, to 

find the true result in much lesser evaluations and practical computing times, a 

stronger inverse solution algorithm is required. 

3.2 Introduction to Evolutionary Computation 

Among the nature, “survival of the fittest” principle can be observed. According to 

this principle, a number of organisms that co-exist in the same environment compete 

over natural resources. The organisms that gather more resources than the others 

have an increased chance of reproducing themselves for the next generations. Ability 

of surviving and reproducing of an organism can be described as the fitness of the 

organism. The organisms that can adapt to their environment gain an edge over their 

competitors, therefore the fitter individuals have a higher chance to reproduce 

themselves for next generations. Individuals in a population are selected for their 

fitness to form the future generations, evolving the population to a fitter state in the 

process. Thus, future generations carry the characteristics of today’s fittest 
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individuals. This process continuously shapes tomorrows generations towards a 

better adaptation to the environment. These principles form the modern idea of 

biological evolution by natural selection. 

Evolutionary computation techniques summarize these evolutionary principles into 

the algorithms that search for optimal solutions to a problem. In a search algorithm, 

the task is to find the best solution between a number of possible solutions to a 

problem in a practical amount of time. For a search space with a limited number of 

possible solutions, all the solutions can be checked out in a reasonable amount of 

time to find the optimal one. This comprehensive search (which is called blind 

search), however, becomes impractical as the search space gets larger. Traditional 

search algorithms sample the search space one solution at a time to find the optimal 

solution. The key aspect that distinguishes an evolutionary search algorithm from 

traditional search methods is its population-based nature. By the adaptation of 

successive generations for a number of individuals, evolutionary algorithms are 

efficient direct search tools. The evolutionary computation concept can be applied to 

the problems where heuristic solutions are not possible or leading to unsatisfactory 

results. Therefore, evolutionary algorithms are becoming increasingly popular, 

particularly for solving practical optimization and search problems. Genetic 

Algorithms, genetic programming, evolutionary strategies and evolutionary 

programming methods are among the most popular EC techniques (Sivanandam and 

Deepa, 2008). 

3.2.1 Historical background 

Several computer scientists studied evolutionary systems independently in the 1950s 

and the 1960s, with the idea that the evolutionary principles can be used as an 

optimization tool for the engineering problems. The idea of evolutionary 

computation was to evolve a population of candidate solutions to a given problem, 

using operators inspired by genetics and natural selection. 

Evolution strategies firstly introduced by Rechenberg in 1960s as a method to 

optimize real-valued parameters for devices such as airfoils and the idea was further 

developed by Schwefel in 1970s. Although recently the field of evolution strategies 

have begun to interact with the field of genetic algorithms, evolution strategies has 

remained an active area of research. Evolutionary programming is developed by 
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Fogel, Owens and Walsh in 1966. Evolutionary programming is a technique in which 

the candidate solutions are represented as finite-state machines, evolving by mutating 

randomly their state−transition diagrams and selecting the fittest of the solutions. 

Evolution strategies, evolutionary programming, and genetic algorithms together 

form the backbone of the field of evolutionary computation (Mitchell, 1999). 

Genetic algorithms were invented by John Holland in the 1960s and were developed 

by Holland and his students at the University of Michigan in the 1960s and the 

1970s. Unlike evolution strategies and evolutionary programming, Holland's original 

idea was to study the phenomenon of adaptation as it happens in nature and to 

develop algorithms to import the mechanisms of natural adaptation into computer 

systems, rather than to design algorithms to solve optimization problems.  

Holland's GA was a method for evolving from one population of chromosomes to a 

new population by using a kind of natural selection together with the genetics-

inspired operators of crossover and mutation. Each chromosome consisted of genes, 

which was represented by bits in the algorithm, each representing a property. The 

selection operator was used to choose the chromosomes that will be allowed to 

reproduce, specifically, fitter chromosomes reproduced more than the less fit ones. 

Crossover operator combined two chromosomes in an analogy to biological 

recombination between two single-chromosome organisms. Mutation operator 

randomly changed the contents of genes on the chromosomes (Mitchell, 1999). 

Holland's invention of a population-based algorithm with selection, crossover and 

mutation was a major innovation. Compared to Rechenberg's evolution strategies, 

which used a population of only two individuals, one parent and one offspring 

derived from the parent by being subject to mutation, Holand’s GA was a more 

realistic implementation of biological evolution to the world of computation with its 

solid theoretical foundation. Today, the boundaries between genetic algorithms, 

evolution strategies, evolutionary programming, and other evolutionary approaches 

have broken down to some range. Genetic algorithm term is often used for different 

evolutionary algorithms very far from Holland’s original concept. 

3.2.2 Advantages of evolutionary computation 

Evolutionary computation techniques offer practical advantages to the optimization 

problems. A key advantage of evolutionary computation is that it has a simple 
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concept. Quite satisfactory results can be achieved with relatively simple algorithms. 

In particular, the algorithm does not require any gradient information to operate. 

Because no gradient information is required, for mathematically complex problems, 

it is relatively easy to apply evolutionary computing to the problem than the 

traditional optimization methods. Search problems over discontinuous domains, 

where no gradient information is available, can also be solved with evolutionary 

computation techniques. Because gradient operator amplifies noise, evolutionary 

computation methods are more successful with the problems where noise presence is 

high. 

Another advantage of the evolutionary computation is that it can be applied to a very 

wide range of problems. Any problem that can be formulated as a function 

optimization problem is solvable using the evolutionary computation methods. 

Evolutionary algorithms can be combined with traditional optimization techniques. It 

may be by the use of a conjugate-gradient minimization after primary search with an 

evolutionary algorithm. It may also involve simultaneous application of evolutionary 

algorithm with gradient-based search methods. 

Because evolution is a parallel process, evolutionary algorithms can benefit very 

much from parallel computing techniques. As distributed processing computers 

become popular, application of evolutionary computation to highly complex 

problems are being possible. In a typical evolutionary computation algorithm, the 

individual solutions are evaluated independently of the competing solutions. To 

decrease the computing time required to solve the problem, evaluation of each 

solution can be handled by a single processor. The computing time required for an 

evolutionary application can be nearly inversely proportional with the number of 

processors used in parallel. 

Traditional optimization methods are generally not robust to dynamic changes in the 

environment. On the other hand, evolutionary computation can be used to adapt to 

changing situations. Because of their nature, evolutionary computation techniques 

exhibit robust properties and they can easily adapt to dynamic changes of the 

parameters.  As the population of candidate solutions continuously evolves to adapt 

the environment, robustness can be achieved and it is not necessary to reinitialize the 

algorithm at any stage for any change in the circumstances. Robustness of the 
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evolutionary computation methods is a key advantage compared to the traditional 

optimization methods (Sivanandam and Deepa, 2008). 

3.2.3 Genetic algorithms 

In nature, every individual in a population competes with each other for resources 

like food, shelter and reproduction. The individuals that are better adapted to their 

environments have more chance of surviving.  Individuals that survive longer have a 

higher chance to attract a mate for reproduction than the less surviving ones, 

producing a relatively large number of offspring. Through the recombination of the 

genes, child individuals carry both parents characteristics. A child individual tends to 

have good characteristics than its ancestors, because of the increased chance that the 

offspring will carry the combination of the good genes of both parents. After 

generations, species evolve spontaneously to become more and more adapted to their 

environment. In 1975, Holland described how to apply the principles of natural 

evolution to optimization problems and built the first GA. After further development 

until today, GAs became a powerful tool for solving search and optimization 

problems (Holland, 1975). 

GAs, which are based on the principles of genetics and evolution, possess a variety 

of important features. First, GAs are stochastic algorithms. Randomness of a GA 

plays an essential role. Both selection and reproduction needs random procedures. Its 

stochastic properties are among the most important features of GAs, preventing the 

algorithm to stall into local minima. Another very important feature of the GAs is 

that, a population of candidate solutions is evaluated instead of a solution. Evaluating 

more than a single solution in every iteration offers many advantages. Recombining 

different candidate solutions helps achieving better results. Population-based 

methods are superior to single-point methods in terms of robustness and they are also 

very applicable for parallelization. The robustness of the algorithm is also an 

essential property for the algorithms success. Robustness refers to the ability to 

perform consistently well on changing conditions for a large range of problem types. 

Robustness of the algorithm is the outcome of the stochastic and the population-

based properties of GAs. Application range of the genetic algorithms is another 

important feature. Genetic algorithms can be applied to solve any problem that can 

be represented with a fitness function. All these features make GAs very powerful 

search and optimization tools. However, it is also important to mention the 



 
31

limitations of GAs. Like the most stochastic methods, GAs does not guarantee to find 

the global optimum solution to a problem at every time the algorithm is executed, 

showing unpredictable characteristics. 

3.2.3.1 Comparison with other optimization methods 

Most significant difference between the genetic algorithms and the conventional 

optimization methods is that, the GAs are stochastic methods while the conventional 

optimization methods are generally deterministic. A stochastic method can be 

disadvantageous in some situations but for ill-conditioned problems with multiple 

local minimum points, they become advantageous because they are less likely to fall 

into local minimums. Most of the conventional optimization methods require a good 

initial guess to be used as a starting point for convergence. On the other hand, GAs 

do not require any initial guesses and because of their stochastic nature, GA can 

achieve convergence by starting from any point in the search space.  

Another difference is that, GAs use fitness function to evaluate the candidate 

solutions, while the conventional optimization algorithms use derivative information. 

This is a major advantage of the GAs, because they can be applied to both 

continuous and discrete problems while the conventional methods suffer difficulties 

in adapting to discrete problems. Because of this property, GAs can solve any 

problem that is stated with an objective function. Another very important difference 

is that, the GAs operate on a whole population of points while the conventional 

methods search from only a single-point. This population-based structure of the GAs 

is one of their most significant advantages for achieving robustness. It improves the 

chance of reaching the global optimum solution by helping to avoid the local 

minimum points. GAs are more suited to parallel computing than the conventional 

methods. Genetic algorithms also operate better on the problems with large search 

spaces. Most important disadvantage of the genetic algorithms is their relatively high 

computing time requirements. However, as the parallel computing systems become 

widespread, this drawback of GAs becomes less important. Another drawback of the 

GAs is that, the determination of parameters is a difficult process and the success of 

the algorithm strongly depends on its parameters. 
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3.2.3.2 General structure of a genetic algorithm 

The most important stages of a genetic algorithm are objective function, selection, 

crossover and mutation stages. A typical GA starts with the creation of initial 

population, which is followed by the evaluation of fitness function for all individuals 

of the initial population. Results of the fitness function are checked to see if the 

criteria for convergence are met to end the algorithm. Individuals are selected for 

reproduction in the selection stage according to their fitness values. In crossover 

stage, selected individuals are recombined to form the population of the next 

generation. Mutation operator randomly changes bits of individuals by a small 

percentage, hoping to achieve improvement. Next step is to evaluate the fitness 

function for all the individuals in the child generation. This loop continues until the 

required convergence criteria are met. Flowchart of a common genetic algorithm is 

shown in Figure 3.2. Encoding is also an important aspect of a genetic algorithm.  

Encoding is the process of representing the individual genes. Encoding of the genes 

can be done in binary, octal, hexadecimal or real numbers, depending on the 

problem. Individuals of the population are possible solutions of the problem.  

Individuals are represented by the strings of bits that carry the properties of the 

corresponding solutions. These properties can be values or characteristics. Genes are 

encoded in the way that every possible individual represents one candidate solution 

in the search space and every candidate solution in the search space must be 

represented by a possible individual. Encoding stage of the GA directly alters the 

complexity of the process. For example, encoding a parameter estimation problem 

with binary parameters, simplifies crossover and mutation processes while increasing 

number of variables in the problem. Initial population of a GA is created randomly.  

GAs, unlike conventional optimization methods, do not depend on starting point for 

convergence. Convergence can be achieved by starting from any point in the search 

space. However, having an initial population with a rich diversity increases the 

convergence speeds. As a result, all of the genetic algorithms start with random 

initial population. Fitness function is evaluated for all individuals of the population in 

every iteration. Fitness values of the individuals are checked for the convergence 

criteria to stop the algorithm. There can be multiple conditions to end the program 

and these examinations must be done in every iteration. If any of these criteria is met, 

the fittest individual is selected as the result and the algorithm ends. If not, the fitness 
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values of the individuals are stored to be recalled in the selection routine and the 

algorithm advances into the breeding process. 

Random creation of initial population

Evaluation of objective function for all individuals

Has the criteria been met?

Best individual is selected as result

Yes

No

Selection of individuals

Crossover

Mutation

 

Figure 3.2: Flowchart of a common genetic algorithm. 
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Breeding process, which consists of selection and recombination operations, is the 

core of all genetic algorithms. In selection operation, individuals are selected for 

reproducing according to their fitness values. Selection operator is an extremely 

important operator for GAs and it must include randomness for a successful 

operation. The individuals with relatively higher fitness values must have a higher 

chance of selection than the individuals with lower fitness values. Even the least fit 

individual of the population might have a chance of being selected and this behavior 

adds stochastic properties to the genetic algorithms. If there is no randomness in the 

selection operation, the GA loses most of its stochastic properties, which often 

results in failure of converging to the true solution of the problem. 

There are numerous selection algorithms for GAs to choose from. Most important 

ones are tournament selection, fitness proportionate selection and ranked selection. 

In tournament selection, a predetermined number of individuals are randomly picked 

from the population and the one with the highest fitness value is selected for 

reproducing. Another selection method is fitness proportionate selection, in which 

the individual’s chances to be selected are in proportionate to their fitness values. 

Fitness values can also be normalized for a more balanced selection operation. In 

ranked selection, all the individuals are sorted in respect to their fitness values and 

they are given chances for selection in proportionate to their ranks. With rank 

selection method, selection pressure can be applied to the individuals according to 

their relative fitness values. 

Selection operation is followed by recombination, which is called the crossover 

operation in genetic terminology. Crossover operator is the recombination of the 

selected individuals into the individuals of next generation. Population of the next 

generation is formed in crossover operation. The simplest crossover method is 

one−point crossover, where the strings of bits are cut from a randomly chosen point 

and remaining parts are exchanged between the individuals. However, better results 

can be achieved with more advanced crossover methods like N-point crossover and 

uniform crossover methods.  

After the population of next generation is formed by breeding process, the 

individuals are subjected to mutation operation. Mutation is the random changes 

applied to individuals with a predetermined probability. However, the mutation 

probability must have a very small value, typically below one percent. Setting the 
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mutation probability too high decreases the algorithms convergence speeds, even at 

some point, preventing the convergence and causing the algorithm to stall. After the 

mutation stage, objective function is evaluated for all the individuals of newly 

created population and this process continues for every generation until the required 

criteria to stop are met. 

3.2.3.3 Search strategies 

Main target of a GA is to find the best possible solution to a problem by achieving 

convergence. However, there are numerous parameters in a GA that influence the 

performance and the results of the algorithm directly. Therefore, when designing a 

GA for a specific problem, having a search strategy is crucial for convergence. 

There are important factors for GAs to consider when adapting a search strategy. 

Most important of these are convergence speed and diversity of the population. 

Convergence speed is how fast the algorithm converges to the best solution over 

successive iterations. Diversity is defined as the distance between the individual 

solutions in a population. Diversity increases with the variety of the individual 

solutions in a population. By increasing the selection pressure for fitter individuals, 

better convergence speeds can be achieved. However, increasing the selection 

pressure of better individuals causes those individuals to be dominant in the 

populations of the future generations; thus, it dramatically decreases the diversity of 

the population. If the fittest individuals of the early populations become dominant, 

there is a risk of premature convergence, which leads to converging into wrong 

solutions by falling into a local minimum point. Therefore, diversity among the 

population is very important in terms of stability and convergence of the algorithm. 

Decreasing the selection pressure increases the diversity, in the cost of convergence 

speed. However, too much diversity may even lead to a point where no convergence 

can be achieved at all. Thus, the right strategy is to set the selection pressure to an 

optimal point, where convergence speed and diversity of the population stays in 

balance. With the right strategy, reasonably good convergence speeds can be 

achieved, maintaining enough diversity among population at the same time. 

Changing parameters in the genetic algorithm adaptively is a good strategy. Using 

adaptive parameters can be a solution to convergence speed-diversity dilemma. The 

selection pressure parameter adaptively changing with the diversity of the 
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population, the algorithm performs better on changing situations by keeping the 

diversity at reasonable levels while achieving optimal convergence speeds.  

Another search strategy is to employ a multi-stage genetic algorithm. Every stage 

may serve to a different purpose, each having different parameters and even different 

operators. It is a good strategy to use this technique on problems with large search 

spaces. In problems where GAs become inefficient, they can be combined with 

another optimization method in hybrid scheme. There are studies that report to be 

successful by using hybrid algorithms including GAs and conventional optimization 

methods (Hsiao, 2001). 

Applying elitist selection can be a good strategy to keep the best solution of the 

population safe. In elitist selection, a small number of the fittest individuals survive 

through the next generation. A good strategy would be to employ elitist selection to 

prevent the algorithm from divergence by losing the best individual of the 

population. Elitist selected members should also be protected from mutation 

operators.  

3.3 Genetic Algorithm for Image Reconstruction Problem 

Genetic algorithm method is very applicable to image reconstruction problem 

because of its many properties. Among these properties, the most significant one is 

the genetic algorithms ability to operate relatively better on ill-conditioned problems 

with multiple local minima due to its stochastic nature. Another important property is 

that the GAs are relatively successful on problems with large search spaces than the 

conventional optimization methods. Lastly, because no derivative information is 

needed, genetic algorithms work relatively well with noisy data. Thanks to these 

properties, GAs are starting to gain importance in electrical impedance imaging field. 

However, all the studies combining genetic algorithms and EII method are in 

development stage; no commercial impedance imaging system using GA is available 

as today. This thesis covers the application of GA method to electrical impedance 

imaging for reconstruction of binary conductivity distributions. Due to its high 

performance when working with matrices and its fast built-in linear equation solver, 

the genetic algorithm for the image reconstruction problem is developed using 

MATLAB 7.7 (MATLAB R2008b) programming environment. MATLAB 
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programming language is very suitable to technical applications and its performance 

with vector and matrix operations is quite high. 

Focus of the GA for the image reconstruction problem is to find the true conductivity 

distribution of the body; or for some cases the closest possible solution to the true 

conductivity distribution. For some cases, where the electrical currents path is 

blocked, it may be impossible to determine the true conductivity distribution of the 

body. In situations like these, algorithm should find the best possible solution, which 

is the closest distribution possible to the actual distribution. To achieve these results, 

there are two important objectives to consider before the development of the genetic 

algorithm. First of these objectives is to achieve convergence to a population of 

solutions and the second one is to find the true conductivity distribution from the 

population of the solutions that are close to the exact result. Considering these two 

objectives, a strategy of a two-staged genetic algorithm is developed. A GA is 

developed with two stages, each stage being a genetic algorithm with different 

parameters and operators for two different objectives. Objective of the first stage of 

the GA is to achieve convergence in the population into a state that the distance 

between the individuals of the population and the actual conductivity distribution is 

at minimum. Objective of the second stage is to find the exact conductivity 

distribution using the population from the first stage of the algorithm as the initial 

population. 

General overview of the genetic algorithm is seen in Figure 3.3. Algorithm starts 

with the reading of measurement data and GA parameters from the disk and saving 

to the memory. Next step of the algorithm is the calculation of local admittance 

matrices for the FEM model. These local admittance matrices don’t depend on the 

conductivity distribution, therefore, they are calculated before the algorithm starts to 

prevent the same matrices from being computed every time the fitness function is 

evaluated. This pre-calculation step speeds up the evaluation of the fitness function 

later on. After the calculation of local admittance matrices, weight function factors 

are computed. Weight function is applied because of the ill-conditioning nature of 

the imaging system. Weight functions purpose is to increase the sensitivity of the 

pixels that are located in the center of the body. Details of the weight function are 

discussed later in this chapter. First stage of the algorithm runs until the desired 

convergence criteria are satisfied. After the first stage, the second stage of the GA 
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runs until an exact or acceptably good result is reached. Algorithm ends with 

displaying the results. 

1st Stage of Genetic Algorithm

2nd Stage of Genetic Algorithm

Display Results

Input of EIT Data and GA Parameters

Calculation of Weight Function

Calculation of Common Constants for FEM Model

Start

Stop
 

Figure 3.3: Flowchart of the two-stage genetic algorithm for image reconstruction 
problem. 
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3.3.1 Structure of two-stage genetic algorithm 

Genetic algorithm for the image reconstruction problem consists of two stages, each 

having a separate objective. Objective of the first stage is to converge the population 

closer to the exact solution of the problem. Because the first stage of the algorithm 

starts with a random initial population, diversity among the population is very high at 

the beginning. Therefore, no additional operation to increase the diversity is 

necessary and the mutation rate is kept at a minimum value. Selection pressure is 

applied sensitively to increase the convergence speed of the algorithm. In the second 

stage, diversity among the population becomes lower than the first stage of the 

algorithm. At this stage, mutation rate must be increased in order to maintain rich 

diversity levels. High mutation rates also help the algorithm to evade the local 

minimum points to reach the true result. Selection pressure is also reduced to prevent 

the diversity from falling beneath a low limit. In the second stage of the algorithm, 

rich diversity is maintained mostly by the mutation operator and keeping a rich 

diversity level among the population is vital for algorithms success. 

Flowcharts of the first and the second stages of the genetic algorithm are shown in 

Figure 3.4 and Figure 3.5 respectively. Main differences between the first and the 

second stages are the mutation operators and the application of fitness memory for 

objective function. Fitness memory is an additional function to speed up the 

execution of the objective function. Fitness memory function stores population of the 

previous generation and their fitness values. During the execution of the objective 

function, all members of the current population are compared to the previous 

population. For the individuals that present in the previous population, the algorithm 

uses the fitness value from the last generation, thus speeding up the whole process. 

However, because the distances between the individuals are relatively bigger in the 

first stage of the algorithm, only a very little amount of individuals survives exactly 

to the next generation. Therefore, it is only beneficial to use fitness memory in the 

second stage of the algorithm. Neighborhood shift mutation and center fill mutation 

operators are also used only in the second stage of the algorithm. These mutation 

operators help finding the exact solution with a shape search mentality. 

Neighborhood shift mutation randomly moves a foreground pixel to one of its 

neighbor pixels with a predefined probability. Center fill mutation turns a 
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background pixel that which has three foreground neighbor pixels into a foreground 

pixel with a fixed probability. 

Start

Random Creation of Initial Poupulation

Evaluation of Objective Function For All Individuals

Has The 2nd Stage Criterion Met ?

Stop

Export Population to 2nd Stage of GA

Yes

Rank Based Proportionate Selection

No

Uniform Crossover Operation

Adaptation of GA Parameters

Adaptive Mutation Probability Filter

Identical Individual Eliminator

 

Figure 3.4: Flowchart of first stage of the genetic algorithm. 
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Start

Evaluation of Objective Function For All Individuals With Fitness Memory

Have the Criteria To Stop Met ?

Stop

Display and Write Results

Yes

Rank Based Proportionate Selection

No

Uniform Crossover Operation

Adaptation of GA Parameters

Adaptive Mutation Probability Filter With Center and Neighbor Multipliers

Identical Individual Eliminator

Neighborhood Shift Mutation

Center Fill Mutatiom

 

Figure 3.5: Flowchart of second stage of the genetic algorithm. 
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3.3.2 Population encoding 

Encoding process of the population is the first stage of any genetic algorithm. Any 

property, which represents a quality or a quantity of a possible solution in the search 

space, must be encoded as bits in a GA. Bits represents genes in analogy with genetic 

science; as every property of organisms is represented by genes, every distinctive 

property of a possible solution is defined by bits. Every bit of a candidate solution is 

combined to form an individual. An individual is a string of bits that carries the 

information of a candidate solution. All the individuals of a generation form the 

population of the corresponding generation. 

In the image reconstruction problem, every pixel of the conductivity distribution is 

represented by a variable. Because only the binary conductivity distributions are 

imaged in this thesis, reconstructed distributions includes two levels of conductivity 

values, a background and a foreground conductivity level. Thus, every pixel is 

represented by a binary variable, taking the value of one for the foreground 

conductivity value, zero for the background conductivity value. Any solution in the 

search space is fully defined using the number of binary variables that equals to the 

number of pixels of the reconstructed image. For the 16-electrode model, image 

dimensions are 9x9 pixels; the total number of pixels is 81 and therefore, any 

possible solution in the search space is encoded by 81 bits. For 32-electrode model, 

image dimensions of 17x17 sums up to a total of 289 pixels; therefore, any candidate 

solution in the search space is encoded by 289 bits. Bits are numbered starting from 

the pixel at the top-left corner to the pixel at the downright corner. Numbering of the 

bits is illustrated in Figure 3.6. All the bits that belong to a possible solution form a 

string, which is called an individual of the population. 

{ }Mm ggggi ,...,,...,, 21=  (3.1) 

Where g represents a bit, i represents an individual and M is the total number of the 

bits in an individual. Strings of all individuals in a generation form the population of 

the corresponding generation. In the GA, the population is specified with a 

population matrix. The population matrix consists of all the individuals and it has the 

dimensions of R and M, where R is the number individuals in a generation and M is 

the total number of bits of an individual. A population matrix is shown in Equation 

3.2. 
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1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45

46 47 48 49 50 51 52 53 54

55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72

73 74 75 76 77 78 79 80 81
 

Figure 3.6: Numbering of the bits on their corresponding pixels for 16-electrode 
model. 
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Where I represents the population matrix. 

Initial population is randomly created at the start of the algorithm. In terms of 

efficiency of the algorithm, rich diversity among the initial population is an 

important factor. It also contributes to the stochastic nature of the algorithm. Random 

creation operation ensures a diverse starting population and therefore, increases 

efficiency of the genetic algorithm.  

3.3.3 Weight function 

As mentioned earlier, the image reconstruction problem of EII is an extremely ill-

conditioned problem. Interior pixels cause lesser response on the boundaries, where 

the measuring electrodes are located, than the pixels that are located near the 

boundary surface. This phenomenon causes sensitivity of the interior pixels to drop. 

Therefore, conductivity of the pixels near the boundaries dominates the error 

function and the pixels located near the center of the body have a lesser impact on 

the fitness values of the individuals. This situation prevents the convergence in the 

central region of the conductivity distribution. 



 
44

To overcome the low sensitivity issue, error function must be modified to decrease 

the ill conditioning of the problem. There are several methods to improve the 

conditioning of the inverse problems. However, most of these methods are not very 

applicable to the image reconstruction problem. Therefore, a special weight function 

is developed specifically for the image reconstruction problem of impedance imaging 

to increase the sensitivity of the interior pixels, thus, reducing the ill conditioning of 

the problem. Main idea behind the weight function approach is that every excitation 

focuses different areas of the body; therefore, the data from different excitations 

amplify the information from different regions of the conductivity distribution. 

However, magnitudes of this amplification vary dramatically because of the ill-

conditioned nature of the system. Therefore, extremely important data are neglected 

because of this difference. Aim of the weight function is to scale the data from each 

excitation in respect to the magnitudes of the error function value each excitation 

contributes. Weight function determines the scaling factors for each excitation by 

comparing the data from the actual measurement to the data from the numerical 

simulation using homogeneous background distribution. 

A series of numerical simulations is conducted to show the sensitivity drop in the 

central area of the body by using the conductivity distribution including a foreground 

pixel moving in the horizontal direction on a homogeneous background. Results are 

shown in Figure 3.7. 
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Figure 3.7: Error function values for a foreground pixel moving horizontally in a 
homogeneous distribution. 
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As the foreground pixel moves to the central region of the body, its impact on the 

error function is dramatically reduced. A pixel near the boundary is more than six 

times sensitive than a pixel in the central region. 

In the execution of weight function, numerical simulation of the imaging system 

using the homogeneous conductivity distribution, where all the pixel conductivities 

set equal to the background conductivity value, is computed. For the numerical 

simulation, parameters are selected as same as the actual measurement of the 

imaging process. After the simulation, the difference between the actual voltage data 

and the voltage output of the homogeneous simulation is calculated. Error values are 

obtained using the difference data for each excitation. The weight function then 

analyses the error values for every excitation and calculates the factors to reduce the 

difference between the error value contributions of each excitation. Weight function 

factors range from zero to one. Excitations that provide a higher error value are 

multiplied with smaller factors in the execution of the objective function; thus, 

closing the gap between the magnitudes of data from the different excitations. 

Weight function prevents some pixels from becoming too dominant and increases the 

sensitivity of the pixels that resides in the center of the body. In Figure 3.8, flowchart 

of calculation of the weight function is illustrated. 

Error values for each excitation are calculated using Equation (3.3). 
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Where wf denotes error values, Hd denotes the voltage values on the corresponding 

electrodes from the numerical simulation data using homogeneous distribution, Td 

denotes the voltage values on the corresponding electrodes from the actual 

measurement data, e index represents the electrode numbers and i index represents 

the excitation numbers. E is the total number of electrodes and P equals to the total 

number of excitations of the imaging system. Weight function scaling factors are 

calculated for all excitations using Equation (3.4). 
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Where Wf represents the weight function scaling factors for each excitation, wmax 

represents the highest error function (wf) value that is computed in Equation (3.3), 
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and α represents the weight function parameter that controls the sharpness of the 

scaling operation. 

Increasing α parameter increases the presence of the weight function, setting the 

scaling factors more radically, causing more amount of information to be cut out 

from the data and increasing sensitivity of interior pixels. Decreasing α parameter 

reduces weight functions effects and limits weight functions scaling factors from 

decreasing beyond a certain level. 

Import Excitation Data Import Hom. Dist. DataImport Actual Data

Construction of Global Stiffness Matrix

Linear Solver

Start

Weight Function Output

Return to GA

Calculation of Weight Function

Hom. Dist. Actual Data.

Hom. Dist. Actual Data.

 

Figure 3.8: Flowchart of calculation of the weight function. 
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To demonstrate the effects of α parameter, weight function scaling factors is plotted 

using different α values for a fixed conductivity distribution on 32-electrode model. 

Figure 3.9 (a) shows the weight function factors for each excitation for α parameter 

equal to one. Figure 3.9 (b) shows the weight function factors for α parameter equal 

to 100 using the same conductivity distribution. In Figure 3.9 (b), we can see that 

more data are discarded from the excitations starting from the excitation number 15. 

Comparing two plots, a higher α parameter causes the weight function to behave 

more aggressively, having freedom to discard more data from the excitations. 

However, increasing α parameter keeps the error values closer to each other in terms 

of contributions of every excitation. 
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Figure 3.9: Weight function scaling factors for each excitation: (a) Weight function 
factors for α = 1. (b) Weight function factors for α = 100. 
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3.3.4 Objective function 

Aim of the objective function (also called “fitness function”) is to measure the fitness 

of the individuals. Genetic algorithms need a mathematical function to trial the 

individuals according to their fitness. To select the better individuals for 

recombination, first, it is crucial to measure their fitness levels numerically. After 

this numerical representation of fitness, different individuals can be compared for 

their distance to the exact solution. Objective functions aim is to represent the fitness 

of the individuals using numerical values. 

Objective function of the image reconstruction problem is very similar to an error 

function. However, in contrast with an error function, smaller error value points to a 

fitter individual. To determine the fitness of an individual, which is the distance to 

the true solution in this case, firstly an error measuring function is created. An error 

function with a least squares approximation is used in the algorithm. Error function is 

shown in Equation (3.5). 
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Where ef is the error value of the individual, Vind is the voltage output values from the 

simulation using the conductivity distribution of the individual and V0 is the voltage 

output values from the actual measurement. After the combination with the weight 

function factors, least squares error function stated in Equation (3.6). 
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Where φ represents the error value of the corresponding individual. Objective 

function numerically simulates the voltage values on the electrodes for the 

individual’s conductivity distributions using the FEM model that is introduced in the 

second chapter of the thesis. Results of this simulation are compared to the results 

from the actual measurement of the imaging process using the error function stated 

above. 

Results of the objective function are stored as a string in the algorithm. This fitness 

string carries the error values for every individual in the population. Error values are 

inverse proportional with the fitness of the individuals. Fitness string is shown in 

Equation (3.7). 
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[ ]Nnf ϕϕϕϕϕ ,...,,...,,, 321=  (3.7) 

Where f represents the fitness string and φ represents the calculated error values of 

the individuals. Fitness string is used by the selection operator for deciding the 

individuals that will be selected for recombination process later in the algorithm. 

Flowchart of the objective function is shown in Figure 3.10. 

Import Excitation Data Import Conductivity DataImport Stiffness Matrices

Construction of Global Stiffness Matrix

Linear Solver

Start

Error Output

Return to GA

Calculation of Least Squares Error

 

Figure 3.10: Flowchart of the objective function. 
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3.3.5 End criteria of genetic algorithm 

Like every other search and optimization method, genetic algorithms also need to be 

stopped when the desired criteria are met. End criteria of a GA are the group of 

conditions that directs the GA to stop working and output the results to the user. 

There can be single or multiple ending conditions depending on the structure of the 

GA.  

There are three conditions to stop for the genetic algorithm for the image 

reconstruction problem; first is to reach the maximum desired error value, second is 

the end of the convergence and the last is to reach the maximum iteration limit. In the 

first condition, the algorithm stops when an individual’s error value falls below a 

certain threshold and the individual is selected as the result of the algorithm. 

However, value of this threshold must be selected small enough to prevent the 

algorithm from stopping before attaining the true solution. Generally, values between 

10-5 and 10-4 are observed to be suitable for low-noise imaging conditions. When 

working with data that contain heavy noise, this value should be increased further. 

An optimal value for the threshold should be selected experimentally.  

Second condition is activated when the number of successive iterations without an 

improvement reaches to a certain limit. Criterion for no improvement is triggered 

when the best individuals of predetermined number of successive generations have 

the same error values. The limit must be set high enough to ensure that the 

convergence is stopped completely to prevent any premature results. Generally, 

values above 200 are suitable for this limit. Value of this limit is safely selected as 

250 for the genetic algorithm. Activation of the second condition means that the 

algorithm has stopped without reaching the exact conductivity distribution. Presence 

of this condition is crucial to prevent the algorithm from running pointlessly when no 

convergence can be achieved. 

The last condition stops the algorithm when the maximum iterations limit is reached. 

Maximum iterations limit is selected high enough (around 1000-2000) to prevent the 

algorithm from stopping too early before finding the true solution. There is also the 

condition to stop for the first stage of the algorithm. 

When a predetermined number of successive iterations pass without any 

improvement, the first stage of the algorithm ends and the second stage of the 
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algorithm starts. The number of successive iterations requires for the initiation of the 

second stage of the algorithm can be selected between 10 and 50; for this study, it is 

experimentally selected as 20. 

3.3.6 Selection 

Selection is the process of choosing parents from the population for recombination. 

The purpose of selection is to emphasize fitter individuals of the population to form a 

fitter population in the next generations. Selection algorithm is built in a mentality 

that the fitter individuals of the population have a higher chance of selection than the 

less fit ones. These selection chances are regulated by applying selection pressure. 

The selection pressure is defined as the degree that the fitter individuals are favored 

in terms of selection chances. The higher selection pressure means the better 

individuals will be favored more. Main factor behind the convergence of a genetic 

algorithm is selection pressure. The convergence speed of a GA is mostly influenced 

by the magnitude of the selection pressure. Higher selection pressures often result in 

higher convergence speeds. However, if the selection pressure is set too high, 

because of the reduced diversity among the population, there is a big chance that the 

algorithm prematurely converges into an incorrect solution. If the selection pressure 

is set too low, the convergence rate decreases dramatically and the time required for 

reaching a solution unnecessarily increases. Exact solution can only be reached 

within minimal computing times by using optimum selection pressure values. 

There are three most common selection methods for GAs, Tournament selection, 

fitness proportionate selection, and rank-based proportionate selection. In tournament 

selection, a group of individuals is chosen randomly from the population and the 

individual with the highest fitness value is selected to be a parent for the next 

generation’s population. Selection pressure can be controlled by the number of the 

individuals selected to the group, which is also called tournament size. Despite being 

a simple and efficient method, it is very difficult to control the characteristics of the 

selection pressure in this method. Another selection method is fitness proportionate 

selection, where each individual is given a probability of selection in proportionate to 

its fitness level. Selection of parents is executed randomly using the probabilities 

calculated according to the individuals’ fitness values. Fitness proportionate selection 

is a popular method; however, controlling the selection pressure is impossible 

without using a scaling function. 
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Rank-based proportionate selection method uses ranks of the individuals rather than 

their raw fitness levels. In this method, all the individuals of the population are sorted 

according to their fitness levels. The individuals are given selection probabilities in 

proportionate to their position (their rank) in the sorted population. This method is 

very flexible and efficient, because it allows the distribution of the selection 

probabilities to have any predetermined characteristic and shape. Diversity is 

preserved more efficiently with the rank-based proportionate selection than the other 

methods due to its nature that prevents any individual from becoming too dominant. 

It is also very easy to apply the selection pressure with this method, because the 

selection probabilities curve is determined before the algorithm starts. Due to these 

advantages, rank-based proportionate selection with an elitist selection scheme is 

developed for the genetic algorithm for the image reconstruction problem. 

3.3.6.1 Elitist selection 

Elitist selection is a selection method, where the best individuals of the population 

survive to the next generation. Elitist selection is used in combination with the other 

selection methods. After a constant number of individuals with the highest fitness 

values are selected directly to the next generation by the elitist selection, an another 

stochastic selection method choses other parents to fill the remaining spaces in the 

population of the next generation. Number of individuals that are selected by the 

elitist selection, (in other words, “elitist selection quota”) must be rather small 

compared to the population size. Generally, values between %0.5 and %3 of the 

population size is suitable for GAs. Elitist selection quota is determined to take the 

value of two for the first stage and four for the second stage of the GA for the image 

reconstruction problem. 

Because the elitist selected individuals are not subjected to recombination, setting the 

elitist selection quota too high diminishes the stochastic nature of the genetic 

algorithm and keeps algorithm from converging to the true solution. Elitist selected 

individuals are also not affected by the mutation filters. While reducing the diversity 

of the population, elitist selection increases the convergence speed. Elitist selection is 

a useful tool for GAs, because it prevents the algorithm from diverging by losing the 

best individual of the population. Always preserving the best individual of the 

population to the next generation, elitist selection is an insurance to prevent the 

divergence. 
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3.3.6.2 Rank-based proportionate selection 

First step of the rank-based proportionate selection method is to construct the 

selection probabilities string, which includes the selection probability values of all 

individuals of the population. There is a wide range of mathematical functions that 

can be used as the selection probability curve; however, exponential functions are 

proved to be the most efficient ones for the genetic algorithm, because exponentially 

increasing selection probabilities fits the stochastic nature of the GAs better. Before 

the calculation of selection probabilities, individuals of the population are sorted 

according to their fitness values and every individual are given a rank value in 

respect of the individual’s sorted position. Rank values are integers ranging from one 

to R, where R is the population size, and the rank value of one refers to the best 

individual. Normalized rank of the individuals is calculated by dividing the 

individuals rank value with the population size. 
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)( =              for i=1,…,R (3.8) 

Where r(i) represents the i-th individuals rank and rn(i) represents normalized rank of 

the i-th individual. Normalized rank values ranges from zero to one. Selection 

probabilities of the individuals are computed using Equation (3.9). 
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In Equation (3.9), p(i) represents the selection probability of i-th individual and β is 

the selection pressure parameter. The sum of selection probabilities of all individuals 

in a population is equal to unity. Increasing the selection pressure parameter 

increases the selection probability of the fitter individuals. Selection pressure of zero 

means every individual has equal selection probability, which would prevent the 

convergence of the algorithm. Therefore, the selection pressure must be selected 

greater than zero in order to achieve convergence. To show the effects of the 

selection pressure parameter β, Selection probabilities for a population size of twenty 

individuals are plotted using β values of two and five in Figure 3.11. It is seen from 

these figures that increasing β value increases the selection probabilities of the 

individuals with high fitness values, while decreasing the selection probabilities of 
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the individuals with low fitness values. Individuals with mid-range fitness values are 

not remarkably affected from β. 
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Figure 3.11: Selection probabilities of the individuals for a population size of 20 
using selection pressure value of 2 and 5. 

After the calculation of the selection probabilities, selection string is formed. The 

selection string is the series of sums of the probabilities from first to each individual 

of the population. Starting with zero, it has (R + 1) terms. The selection string is 

shown in Equation (3.10). 
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Selection string is used in the algorithm by creating a random real number between 

zero and one, and checking the selection string for the condition that the random 

number is greater than the n-th term and it is less than the (n+1)-th term. The n value 

that satisfies this condition is selected as the parent individual by the selection 

algorithm. 

In this routine, there is a chance that the same individual is selected for both parents. 

If this situation occurs, selection routine is repeated until different individuals are 

selected as parents. This selection process continues until the desired amount of 

parents is selected for the recombination. Pseudocode of the selection algorithm is 

shown in Figure 3.12. 
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Sort the individuals according to their fitness values. 

For i=1:(elitist selection quota); 

   Select i-th best individual as a parent. 

Assign rank numbers to individuals according to sorted positions. 

For i=1:population size; 

   Calculate selection probabilities of individuals. 

Construct the selection string. 

For i=1:(required number of parents – elitist selection quota)/2; 

   Create a random number between (0,1) 

   For j=1:(population size); 

      If the random number > j-th term of the selection string and 

        the random number < (j+1)-th term of the selection string; 

        Select j-th individual as a parent. 

   Create a random number between (0,1) 

   For j=1:(population size); 

      If the random number > j-th term of the selection string and 

        the random number < (j+1)-th term of the selection string; 

        Select j-th individual as a parent. 

   If the first parent is the same as the second parent; 

      Repeat selection routine with different random numbers 

Figure 3.12: Pseudocode of the selection algorithm. 

3.3.7 Crossover 

Crossover is the process of recombining two parent individuals and creating two 

child individuals using the parents’ genes. Crossover process enriches the population 

with better individuals by recombining the fitter individuals of the previous 

generation. After recombining two selected individuals, there is a chance that the 

offspring will carry the good characteristics of both parents. Crossover operator 

recombines the individuals that are chosen as parents by the selection. Because the 

selection operator increases the selection probabilities of the better individuals, the 

individuals with good characteristics tend to mix with each other more frequently 

than the others, increasing the fitness of the next generation’s populations and 

achieving convergence in the process. Shaping the breeding process of a genetic 
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algorithm with the selection operator, crossover operation is vital for convergence of 

any GA. 

During the crossover operation, strings of both parents are mixed together, forming 

two child individuals. This exchange of the bits can be done with different methods. 

The most simple crossover method is one-point crossover, where the strings of both 

parents are cut from a random position into two pieces and one of the pieces is 

exchanged between parents. However, this method does not provide a good mixture. 

In two-point crossover technique, strings are cut from two random points, providing 

a better mixture rate. The crossover technique that provides the best mixture is 

uniform crossover. In uniform crossover technique, crossover is applied to the strings 

of bits using a random crossover mask. Exchange of the bits is independently 

decided using the crossover mask for each bit in the string. Uniform crossover 

method is the most advanced crossover method to use with the binary variables and 

because the image reconstruction problem demands good mixture rates for success, 

this method is ideal for the GA for the image reconstruction problem. 

3.3.7.1 Uniform crossover 

Uniform crossover is a technique where each gene in the offspring is created by 

copying the corresponding gene from the parent that is chosen according to a random 

generated binary crossover mask that has the same length as the chromosome size of 

the individuals. Crossover between parents is executed for each bit if the 

corresponding entry of the crossover mask equals to one. An Illustration of the 

uniform crossover method is shown in Figure 3.13. 
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Figure 3.13: Illustration of the uniform crossover method. 
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Randomized crossover mask is a random binary string with the length of the bit 

number of the individuals. For every bit of the individuals, algorithm checks the 

corresponding term of the crossover mask. If the corresponding entry of the 

crossover mask equals to zero, first offspring takes the corresponding bit from the 

first parent and second offspring from the second parent. If the crossover mask 

equals to one, first offspring takes the corresponding bit from the second parent and 

the second offspring from the first parent. Because the entries of the crossover mask 

are created randomly using equal probability for each binary value, perfect mixture 

rates can be achieved using the uniform crossover method. Pseudocode of the 

crossover algorithm is shown in Figure 3.14. 

For i=1:(population size – elitist selection quota)/2; 

   Create a random number between (0,1). 

   If the random number < crossover rate; 

      Create the crossover mask as a random logical string. 

   If the random number > crossover rate; 

      Set all the entries of crossover mask to zero. 

   For j=1:(individual string length); 

      If j-th term of crossover mask is zero; 

        Assign j-th bit of the first parent to first offspring. 

        Assign j-th bit of the second parent to second offspring. 

      If j-th term of crossover mask is one; 

        Assign j-th bit of the first parent to second offspring. 

        Assign j-th bit of the second parent to first offspring. 

Figure 3.14: Pseudocode of the crossover algorithm. 

Crossover is applied to the selected individuals with a probability called crossover 

rate (crossover probability). Crossover rate determines whether the selected parent 

individuals will be subjected to the crossover operation or they will be transferred to 

the next generation without being mixed with each other. Before execution of the 

crossover operation, a random real number is generated between zero and one. If the 

generated number is greater than the crossover probability, parent individuals are 

transferred to the next generation’s population without any changes, otherwise the 

crossover routine is applied to the parent individuals. Because the genetic algorithms 

operate more efficiently with good mixture rates, crossover probability should be 
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selected higher than 0.5. Values around 0.9 are ideal for crossover probability for the 

image reconstruction algorithm. 

3.3.8 Mutation 

After crossover, newly formed population is subjected to mutation. Main purpose of 

the mutation operator is to prevent the algorithm from being trapped in a local 

minimum. Mutation maintains diversity in the population and it is an insurance 

against the irreversible loss of the genetic material. Mutation operator randomly 

changes the bits of the individuals. These random changes help the GA to move 

forward when a better solution is not available in the gene pool. When the algorithm 

is stalled due to the poor diversity in the population, mutation is the only way to 

improve the population. In binary strings, mutation is executed by inverting the value 

of the bit that is subjected to mutation. An illustration of mutation for binary strings 

is shown in Figure 3.15. 

01 0 1 0 11 0 1 0

01 1 0 11 0 1 01

Mutating bit

 

Figure 3.15: Illustration of mutation for binary strings. 

Success of the genetic algorithm for the image reconstruction problem relies heavily 

on the mutation operator. For the first stage of the algorithm, diversity among the 

population is rich enough to maintain good convergence speeds. Therefore, intensive 

mutation rates are not required for the convergence of the algorithm. Mutation 

probabilities for the first stage of the algorithm are kept around minimal values. 

Two mutation operators are used in the first stage of the algorithm, Adaptive 

mutation probability filter and identical individual eliminator mutation filter. Both of 

the operators, which are first introduced in this thesis, are developed specifically for 

the GA for the image reconstruction problem. 

Aim of the second stage of the GA is to find the exact conductivity distribution of the 

body using a population of converged solutions. Because the population is converged 

close to the true solution in the first stage, diversity among the population is very low 
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in the second stage of the algorithm. To enrich the diversity of the population in the 

second stage, mutation probabilities are radically increased. Two additional mutation 

types are developed to provide additional diversity to the population. Neighborhood 

shift mutation filter and center fill mutation filter operators, which are first 

introduced in this thesis, are developed specifically for the second stage of the 

algorithm using a shape searching mentality. These two mutation operators are used 

intensively with high mutation probabilities with the aim of reaching the exact 

conductivity distribution image by searching in the population of solutions. 

3.3.8.1 Adaptive mutation probability filter 

Adaptive mutation probability filter is a modified version of the conventional 

mutation operator that is developed exclusively for two-dimensional image 

reconstruction problem. This mutation filter adaptively alters the mutation 

probability of each bit according to the diversity of the population for the 

corresponding bit. As the algorithm advances through the generations, diversity of 

some bits may fall radically where certain bits of the most individuals of the 

population carries the same value. This reduction of diversity for certain bits slows 

down the convergence of the algorithm and it may stall the algorithm completely as 

well. The idea behind the adaptive mutation probability filter is that increasing the 

mutation probability for these bits increases the diversity of the corresponding bits, 

increasing the efficiency of the overall algorithm and the convergence speed. In 

adaptive mutation probability filter, mean values of each bit of the population is 

calculated and the mutation probability for each bit is computed adaptively using the 

mean values independent from each other. Pseudocode of the adaptive mutation 

probability filter for the first stage of the genetic algorithm is shown in Figure 3.16. 

Diversity of the bits is defined by the normalized mutation parameter that is shown in 

Equation (3.11).  
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Where l(m) represents the normalized mutation parameter for m-th bit, b(m) 

represents the binary value of m-th bit, R represents the population size and M 

represents the string length of the individuals. Indexes n and m represent the 

individual and bit numbers respectively. Normalized mutation parameter of the bits 
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ranges between zero and one, taking the value of zero in the case of the richest 

diversity. Normalized mutation parameter changes linearly with the diversity for 

each bit. Mutation probability for m-th bit, which is represented by Pm(m), is stated in 

Equation 3.12. 

( ) minminmax)()( PPPmlmPm +−⋅=            for m=1,2,3, … ,M (3.12) 

Where Pmax and Pmin are the maximum and the minimum limit values for the 

mutation probability. Mutation probability varies linearly between these values 

depending on the diversity of m-th bit in the population. After the calculation of the 

mutation probabilities for each bit in the string, each bit of the individuals is 

subjected to mutation with the mutation probability of the corresponding bit. 

Mutation is operated by inverting the binary value of the bit if a randomly created 

number is lesser than the mutation probability of the corresponding bit. 

Calculate adaptive mutation probabilities for all bits. 

For i=(elitist selection quota):(population size); 

   For j=1:(individual string length); 

      Create a random number between (0,1). 

      If the random number < mutation probability for j-th bit; 

         Mutate j-th bit of i-th individual. 

Figure 3.16: Pseudocode of the adaptive mutation probability filter for the first stage 
of the genetic algorithm. 

Adaptive mutation probability filter is used in both stages of the algorithm; however, 

additional routines are included to the operator for the second stage of the algorithm. 

Because of the sensitivity drop in the interior region of the conductivity distribution, 

convergence is achieved faster for the pixels that reside in the outer region of the 

image, than the pixels that resides in the center. Generally, the pixels in the outer 

areas of the body are determined before the end of the first stage of the algorithm. 

Considering this situation, if a pixel is located in the central half of the image, its 

mutation probability value is multiplied with a predefined factor called the central bit 

factor. This routine, which is only used in the second stage of the algorithm, helps 

finding the true conductivity distribution in the center of the body by increasing the 

mutation probability of the central pixels. 
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Another additional routine is that, if a pixel has any neighbor pixels with foreground 

conductivity value, its mutation probability is multiplied with a predefined factor 

called the neighborhood factor. Main idea behind this routine is that, the population 

is already converged to a state that the population of solutions is very close to the 

true solution of the image until the second stage; therefore, increasing the mutation 

probability of the neighbor pixels may help finding the exact shape of the 

conductivity distribution. This routine is also exclusive to the second stage of the 

algorithm. Pseudocode of the adaptive mutation probability filter with the additional 

routines for the second stage of the genetic algorithm is shown in Figure 3.17. 

Calculate adaptive mutation probabilities for all bits. 

For i=(elitist selection quota):(population size); 

   For j=1:(individual string length); 

      If j-th bit has a neighbor bit with foreground conductivity; 

         Multiply mutation probability with neighborhood factor. 

      If j-th is located in the interior of the image; 

         Multiply mutation probability with central bit factor. 

      Create a random number between (0,1). 

      If the random number < mutation probability for j-th bit; 

         Mutate j-th bit of i-th individual. 

Figure 3.17: Pseudocode of the adaptive mutation probability filter for the second 
stage of the genetic algorithm. 

3.3.8.2 Neighborhood shift mutation filter 

When the second stage of the algorithm is initiated, population is already converged 

closer to the exact result. Most of the individuals in the population evolve shapes that 

are very similar to the exact solution of the problem until the second stage. However, 

finding the exactly true solution from these close candidates can be a very difficult 

task in the case of poor diversity among the population. As the GAs converge closer 

to the exact solution, convergence speed decreases and the recombination process 

becomes ineffective because of the reduced diversity among the population. At this 

stage, mutation becomes the main force behind the convergence of the algorithm. 

Finding the true solution, which is the main purpose of the second stage of the 

algorithm, can be accelerated by using mutation filters that work in a shape searching 
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mentality. To increase the efficiency of the GA, neighborhood shift mutation filter is 

developed to be used only in the second stage of the algorithm with the purpose of 

attaining the true solution of the problem. Neighborhood shift mutation filter moves a 

foreground pixel to one of its eight neighbor pixels with a predetermined probability. 

Neighborhood shift mutation is only applied to the pixels with foreground 

conductivity. Individuals of the population are subjected to neighborhood shift 

mutation with a fixed probability called the individual mutation probability and 

selected individual’s foreground bits are moved to one of its eight neighbors with 

another probability called bit mutation probability. Neighborhood shifting mutation 

is used intensively in the second stage of the algorithm, bit mutation and individual 

mutation probabilities being around twenty percent. Process of neighborhood shift 

mutation is illustrated in Figure 3.18. 

 

Figure 3.18: Illustration of neighborhood shift mutation process. 

In neighbor shift mutation technique, a random real number between zero and one is 

created for each individual of the population, if the random number is lesser than the 

individual mutation probability, corresponding individual is selected to apply the 

mutation. Every bit of the selected individual is checked for the bit mutation 

probability by using another random number and the selected bits are moved 

randomly to one of its neighbor pixels in the eight directions. Choice of the direction 

is made by using a random integer between zero and eight, integers one to eight 

representing the direction numbers and zero representing that the corresponding bit 

mutated directly to the background conductivity. Pseudocode of the neighborhood 

shift mutation filter is shown in Figure 3.19. 

Neighborhood shift mutation filter is one of the most important components of the 

genetic algorithm for the image reconstruction problem. It vastly improves the results 
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of the GA by accelerating the process of reaching the true solution; even sometimes, 

presence of the neighborhood shift mutation filter determines the difference between 

ending the algorithm with a close solution and attaining the true solution. In the 

experiments, neighborhood shift mutation filter is observed to improve the results of 

the GA dramatically. Neighborhood shift mutation filter helped to achieve the true 

solution of the problem for some complex conductivity distributions that the true 

result cannot be reached before. 

For i=(elitist selection quota):(population size); 

  Create a random number between (0,1). 

  If the created number < nsmf individual mutation probability; 

    For j=1:(individual string length); 

      If j-th bit has foreground conductivity; 

        Create a random number between (0,1). 

        If the created number < nsmf bit mutation probability; 

          Create a random integer between (0,8). 

          Move j-th bit in the direction specified by the integer. 

          Set the j-th bit to background conductivity.  

Figure 3.19: Pseudocode of the neighborhood shift mutation filter. 

3.3.8.3 Center fill mutation filter 

Center fill mutation filter is developed exclusively for the second stage of the genetic 

algorithm with the aim of supporting the algorithm for attaining the true solution of 

the problem. Like neighborhood shift mutation filter, center fill mutation filter works 

in a shape searching mentality, by mutating a pixel that is surrounded by at least 

three foreground neighbor pixels with a predefined probability. An illustration of the 

center fill mutation is shown in Figure 3.20. 

Candidate bit for
center fill mutation filter

 

Figure 3.20: Illustration of center fill mutation filter. 
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In EII method, detection of pixels that are surrounded by other foreground pixels is a 

difficult operation. The impact that these surrounded bits causes on the boundaries is 

very low comparing to the other pixels. In these situations, electrical currents path 

often becomes blocked and very little information can be obtained from the voltage 

data. Therefore, reconstruction of images that includes large target objects becomes 

particularly difficult. To overcome this difficulty, center fill mutation filter is 

developed in this thesis. Center fill mutation scans whole strings of individuals for 

any pixels that has at least three orthogonal neighbor pixels with foreground 

conductivity and mutates the bit that represents the corresponding pixel with a 

predefined probability. Pseudocode of the center fill mutation filter is shown in 

Figure 3.21. 

For i=(elitist selection quota):(population size); 

   For j=1:(individual string length); 

      If j-th bit has at least three neighbor foreground bits; 

         Create a random number between (0,1). 

         If the random number < mutation probability for cfmf; 

            Mutate j-th bit of i-th individual. 

Figure 3.21: Pseudocode of the center fill mutation filter. 

3.3.8.4 Identical individual eliminator mutation filter 

In GAs, there is a chance that two or more individuals have exactly the same genes in 

a population. When the selection pressure is set too high, fitter individuals of the 

early generations becomes dominant over the next generations, copying themselves 

through the next generations more frequently than the other individuals. Therefore, 

there may be more than one copy of these dominant individuals in the late 

generations. This situation hinders the progress of the algorithm by slowing the 

convergence and reducing the diversity among the population. Identical individual 

eliminator mutation filter is developed to prevent the presence of multiple identical 

individuals in a generation. Because using this filter in every iteration of the 

algorithm would not be beneficial in terms of the computing resources, this mutation 

filter is applied in both stages of the GA once in an interval of five generations. 

Identical individual eliminator mutation compares all individual’s bits with each 

other. If two identical individuals are found, filter mutates one of the individual’s bits 
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with a predefined probability, which is around one to five percent. Pseudocode of 

this mutation filter is shown in Figure 3.22. 

If the generation number is exact multiple of iiemf interval; 

  For i=(elitist selection quota):(population size); 

    For j=i:(population size); 

      If i-th and j-th individuals is exactly identical; 

        For k=1:(individual string length); 

          Create a random number between (0,1). 

          If the random number < mutation probability for iiemf; 

            Mutate k-th bit of j-th individual. 

Figure 3.22: Pseudocode of the identical individual eliminator mutation filter. 

3.3.9 Adaptation of parameters 

There are two important factors for the genetic algorithms, which are the 

convergence speed and the diversity. These two factors influence GAs on a large 

scale. Genetic algorithms efficiency becomes maximum when the convergence speed 

and the diversity are optimally balanced. 

Increasing the diversity of the population increases robustness of the GA. With a 

diverse population, GAs are less likely to be trapped in a local minimum. However, 

increasing the diversity also decreases the convergence speed. Decreasing the 

diversity produces higher convergence speeds, while increasing the chance that the 

algorithm falls in a local minimum. This phenomenon reveals the need for an 

optimization in the algorithms parameters. 

At the early stages of a GA, diversity is rich enough to allow high selection 

pressures. Therefore, using relatively high selection pressure values produces fast 

convergence rates. Because the population is quite diverse, mutation probabilities 

can be kept at a small value. However, as the algorithm converges, diversity in the 

population is dramatically reduced. Thus, in the later generations of the algorithm, 

selection pressure should be decreased to help increasing the diversity of the 

population. Higher mutation probabilities also help to enrich the diversity of the 

population. This different parameter requirements of different stages of the genetic 

algorithms rises the need for the adaptation of the parameters. Therefore, an adaptive 

parameter control method is developed in this thesis. In the GA for the image 
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reconstruction problem; selection pressure, mutation probability and crossover 

probability parameters are adaptively controlled. Adaptive control system uses 

diversity of the population as input and calculates the selection pressure, the 

crossover probability and the mutation probabilities adaptively to keep the diversity 

at efficient levels. Adaptation of the parameters requires a numerical representation 

of the diversity of the population. Standard deviation approach is used in 

representing the diversity among the population as shown in Equation 3.13. 

( )∑
=

−=
R

n

meann
R 1

2)(
1

ϕϕλ  (3.13) 

Where λ is the diversity of the population, φ(n) is the error value of the n-th 

individual, and φmean is the mean value of the error values of all individuals in the 

population. Standard deviation is an effective criterion for measuring the diversity of 

the population, as it is used for similar purposes in statistics. Adaptation of 

parameters brings additional robustness to the genetic algorithm and gives the 

algorithm the ability to perform well on changing situations. 

3.3.9.1 Adaptation of selection pressure 

Selection pressure parameter, which controls the convergence speed of the algorithm, 

has an adverse effect on the diversity. Convergence is achieved in the algorithm by 

consuming the diversity of the population. Therefore, when the diversity is rich 

among the population, high selection pressure is applied to the algorithm to increase 

the convergence speed. However, when diversity drops below a certain limit, 

selection pressure is reduced. This situation often results in oscillation of the 

diversity. This oscillation behavior helps the convergence of the algorithm. Diversity 

is very high at the start of the algorithm, thus the selection pressure is at its maximum 

value. After the early generations, population enters a steady state where the 

diversity is controlled with the selection pressure and the mutation probabilities. In 

this state, when the diversity bears to the upper limit of the oscillation band, selection 

pressure increases and the mutation probability decreases to achieve convergence. 

When the diversity falls to the lower limit, the selection pressure decreases and the 

mutation probability increases to enrich the diversity. To improve the efficiency of 

the algorithm, oscillation of the diversity should be kept in an optimal band. 
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Selection pressure parameter is adapted using an exponential function of the 

diversity.  

λυυβ −−= e21  (3.14) 

Where β represents the selection pressure parameter, υ1 represents the base selection 

pressure factor, υ2 represents the selection pressure band factor and λ represents the 

diversity. The base selection pressure and the selection pressure band factors define 

the way that the selection pressure parameter changes. The base selection pressure 

factor determines the highest value that the selection pressure can take during the 

algorithm. It should be set as the highest safe value of the selection pressure 

parameter without losing efficiency of the algorithm. The selection pressure band 

factor determines the interval that the selection pressure can vary between. It restricts 

the adaptation to prevent the selection pressure from decreasing below a lower limit, 

which may result in losing the convergence. Experimentally, values around three for 

υ1 and values around one for υ2 are observed to be optimal. 

GA is executed to see the effects of adaptation of parameters using the 32-electrode 

model. Variation of selection pressure parameter and diversity is plotted versus 

generation number in Figure 3.23 (a) and (b) respectively. The diversity at the start 

of the algorithm is very high because of the random creation of initial population; 

therefore, applied selection pressure is also very high. As the convergence is 

achieved, the diversity falls very sharply and it is followed by the selection pressure 

parameter. After the algorithm reaches the steady state operation, diversity is 

controlled in a band by the selection pressure parameter and the mutation probability. 

3.3.9.2 Adaptation of crossover probability 

An ideal crossover probability should change with the diversity, decreasing slightly 

with the reducing diversity. At the early generations of the algorithm, where the 

mixture rate is very important, using crossover probabilities near one is ideal. 

However, as the algorithm achieves progress, decreasing the crossover probability at 

small scale slightly improves the results of the algorithm. 

λθ −−= ePc 1  (3.15) 
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(b) 

Figure 3.23: Variation of parameters versus generation number for 32-electrode 
model: (a) Variation of selection pressure parameter. (b) Variation of diversity. 

Where Pc is the crossover probability, θ is the crossover probability adaptation band 

and λ is the diversity. The crossover probability adaptation band determines the 

change interval for the crossover probability. Highest value for crossover probability 

is always one and the adaptation controls the crossover probability value inside the 

crossover adaptation band. Values around 0.1 are observed to be suitable for the 

crossover probability band. Variation of crossover probability versus generation 



 
69

number is plotted for 32-electrode model in Figure 3.24. Corresponding variation of 

the diversity plot can be seen in Figure 3.23 (b). 

3.3.9.3 Adaptation of mutation probability 

Mutation is an important tool to maintain the diversity in the genetic algorithms, 

especially at the later stages. Mutation probability should ideally increase with the 

reducing diversity in the population. As mentioned earlier, mutation probability plays 

a very important role to maintain the diversity in cooperation with selection pressure. 

The minimum and the maximum mutation probability values are adaptively 

calculated by using the statements in Equations (3.16) and (3.17). 

λτ −= eP 1min  (3.16) 

λτ −= eP 2max  (3.17) 

Where Pmin and Pmax is the minimum and the maximum mutation probabilities 

respectively, τ1 and τ2 are the mutation adaptation factors and λ is the diversity. 

Variation of the mutation probabilities versus generation number is plotted in Figure 

3.25 (a) and (b). Corresponding variation of the diversity plot is in Figure 3.23 (b). 
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Figure 3.24: Variation of crossover probability versus generation number for 32-
electrode model. 
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(b) 

Figure 3.25: Variation of the mutation probabilities versus generation number for 
32-electrode model: (a) Variation of the minimum mutation probability. (b) 

Variation of the maximum mutation probability. 
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4.  NUMERICAL SIMULATIONS 

Purpose of the fourth chapter is to demonstrate the performance of the genetic 

algorithm for the image reconstruction problem. A series of experiments is carried 

out to test the efficiency of the GA. Measurement stage of these experiments are 

simulated using the FEM model, which is introduced in the second chapter, and to 

reach the actual conductivity distribution of the body, the GA uses the synthetic data 

that are produced by this model. GA parameters used in the tests are shown in table 

4.1. GA is tested with the data from the numerical simulation that is produced using 

distinctive conductivity distributions that examine various properties of the GA.  

Table 4.1: Genetic algorithm parameters used in the tests. 

Genetic algorithm Parameter 16 Electrode Model 32 Electrode Model 

Population size 200 250 

Generation limit 500 2000 

Maximum acceptable error 10-3 10-4 

Successive iterations criterion 200 300 

Second stage criterion 15 20 

Background conductivity 1 1 

Foreground conductivity 0.1 0.1 

Weight function parameter 10 10 

Selection pressure base 3 3 

Selection pressure band 1 1 

Elitist quota for first stage 2 2 

Elitist quota for second stage 4 4 

Crossover probability band 0.1 0.1 

Minimum mutation factor 0.0001 0.0001 

Maximum mutation factor 0.01 0.001 

Neighborhood mutation 

probability for individuals 
0.2 0.2 

Neighborhood mutation 

probability for pixels 
0.1 0.1 

Center fill mutation prob. 0.1 0.1 

First part of the fourth chapter consists of the experiments that are conducted using 

the 16-electrode model. Second part covers the experiments that utilize the 32-



 
72

electrode model. Third part consists of the experiments that are conducted by using 

data with additive synthetic noise to test the algorithms efficiency with noisy data.  

4.1 Results for 16-Electrode Model 

First test that is conducted on the 16-electrode model is the moving object test, which 

is the series of experiments that a target object is moved to a different region in the 

conductivity distribution of the body for each single experiment. Aim of this 

experiment is to test the algorithm’s ability to detect objects in different regions of 

the body. Figures 4.1 - 4.5 shows the results of the experiment for a plus-shaped 

foreground object that is placed in the left, up, right, down and center of the 

conductivity distribution respectively. In the figures, the image on the left side, 

which is labeled as the actual distribution, is the true conductivity distribution that is 

used in the simulation of the measurement process; while the image on the right side, 

which is labeled as the calculated distribution, is the result that is obtained by the 

genetic algorithm. In the case of an exact result, two images must be identical. From 

Figures 4.1 - 4.5, we can see that the algorithm attains the true conductivity 

distribution, regardless of where the object is located on the conductivity distribution. 
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Figure 4.1: Comparison of the actual conductivity distribution and the result of the 
genetic algorithm for an object located on the left region of the body. 

Conductivity distributions that include numerous objects that stand close to each 

other are often very difficult to reconstruct correctly in impedance imaging method. 

These multiple objects are sometimes detected incorrectly as a single object. To test 

the algorithms ability to detect objects that are close to each other correctly, a second 

test was conducted using a conductivity distribution that includes two objects that 

stands close to each other. After the simulation, the genetic algorithm was used to 
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reconstruct the conductivity distribution of the body. Comparison of the actual 

conductivity distribution and the result of the GA is shown in Figure 4.6. As seen in 

Figure 4.6, exact result was achieved by the GA. It took 46 seconds for the algorithm 

to reconstruct the conductivity distribution of the body. 
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Figure 4.2: Comparison of the actual conductivity distribution and the result of the 
genetic algorithm for an object located on the upper region of the body. 
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Figure 4.3: Comparison of the actual conductivity distribution and the result of the 
genetic algorithm for an object located on the right region of the body. 
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Figure 4.4: Comparison of the actual conductivity distribution and the result of the 
genetic algorithm for an object located on the lower region of the body. 
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Figure 4.5: Comparison of the actual conductivity distribution and the result of the 
genetic algorithm for an object located on the center of the body. 

In Figure 4.7, the error values of the best individuals of each generation are plotted 

versus generation number. Diversity of the population versus generation number is 

shown in Figure 4.8. 
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Figure 4.6: Comparison of the actual conductivity distribution and the result of the 
genetic algorithm for the second test of the 16-electrode model. 
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Figure 4.7: Error values of the best individuals of each generation versus generation 
number for second test of 16-electrode model. 
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Figure 4.8: Diversity versus generation number for the second test of 16-electrode 
model. 

To demonstrate the convergence steps of the GA, best individuals of the selected 

generations of the reconstruction process are shown in Figure 4.9 for the conductivity 

distribution that is calculated in the second test of the 16-electrode model. Figure 4.9 

(a) shows the best individual of the first generation, which is randomly generated. 

Figure 4.9 (b), (c), (d) and (e) are the best individuals of the generations number ten, 

twenty, thirty and forty respectively. Figure 4.9 (f) shows the best individual of the 

last generation, which is the result of the algorithm. In Figure 4.9, it can be seen that 

the convergence is achieved by evolving the candidate solutions of the population 

and continuously improving the resemblance of the individuals to the actual 

distribution until the exact result is reached. 

The third experiment was carried out by using a conductivity distribution of ten 

foreground pixels that are randomly positioned on the body. Conductivity 

distribution of the body was reconstructed using the genetic algorithm. Comparison 

of the actual conductivity distribution and the resulted conductivity distribution from 

the GA is shown in Figure 4.10. As seen in Figure 4.10, exact result was attained by 

the GA. During the image reconstruction process, the GA consumed 103 seconds of 

computing time. Convergence of the algorithm is plotted in Figure 4.11 where the 

error values of the best individuals of each generation are plotted versus generation 

number. Diversity of the population versus generation number is plotted in Figure 

4.12. 
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(c)                                                      (d) 

                                             

     

     

     

     

     

     

     

     

     

            
                                             

     

     

     

     

     

     

     

     

     

 

(e)                                                      (f) 

Figure 4.9: Best individuals of the selected generations of the reconstruction process 
for the second test of the 16-electrode model : (a) Best individual of the first 

generation. (b) Best individual of the 10th generation. (c) Best individual of the 20th 
generation. (d) Best individual of the 30th generation. (e) Best individual of the 40th 

generation. (f) Best individual of the last generation. 
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Figure 4.10: Comparison of the actual conductivity distribution and the result of the 
genetic algorithm for the third test of 16-electrode system. 
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Figure 4.11: Error values of the best individuals of each generation versus 
generation number for the third test of 16-electrode model. 
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Figure 4.12: Diversity versus generation number for the third test of 16-electrode 
model. 

4.2 Results for 32-Electrode Model 

The aim of the first test of 32-electrode model is to observe the algorithm’s ability to 

reconstruct large objects with exact details, which is a difficult task for image 

reconstruction algorithms in general because the details of large objects cause a small 

influence on the boundary electrodes. In this test, true conductivity distribution was 
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successfully reconstructed and the process lasted 772 seconds. Comparison of the 

actual conductivity distribution and the result of the genetic algorithm for the first 

test of 32-electrode model is shown in Figure 4.13. Error values of the best 

individuals of each generation and the diversity of the population are plotted versus 

generation number in Figures 4.14 and 4.15 respectively. 
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Figure 4.13: Comparison of the actual conductivity distribution and the result of the 
genetic algorithm of first test of 32-electrode model. 
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Figure 4.14: Error values of the best individuals of each generation versus 
generation number for the first test of 32-electrode model. 

Best individuals of the selected generations are shown in Figure 4.16 to demonstrate 

the convergence steps of the image reconstruction process. Figures 4.9 (a), (b), (c), 

(d), (e) and (f) show the best individual of the first, 50th, 100th, 150th, 200th and the 

last generation respectively. It can be seen that the algorithm constantly improves the 

population of candidate solutions by increasing their resemblance to the true 
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conductivity distribution starting from the area near the boundary. Ill-conditioned 

nature of the problem causes the sensitivity of the central region of the conductivity 

distribution to drop. As a direct result of this phenomenon, the boundary region of 

the conductivity distribution is reconstructed during early iterations and the central 

region is reconstructed during late iterations of the solution process. Reconstruction 

of the boundary region also requires lesser iterations than reconstruction of the 

central region. 
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Figure 4.15: Diversity versus generation number for the first test of 32-electrode 
model. 

As mentioned earlier, exact reconstruction of large objects is very difficult due to the 

reduced effect of each pixel of the object on the boundaries. Reconstruction of these 

target objects becomes increasingly difficult if it is located in the central region of 

the body because of the sensitivity drop of the pixels in the center of the conductivity 

distribution. 

To test the algorithm’s ability to reconstruct large and complex-shaped objects 

located in the central region of the conductivity distribution with exact details, 

another simulation is conducted using a conductivity distribution that consists of a 

large foreground object located in the central region of the homogeneous body. 

Comparison of the actual conductivity distribution and the resulted conductivity 

distribution from the genetic algorithm is shown in Figure 4.17. 
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(c)                                                             (d) 

                                        

     

     

     

     

     

     

     

     

                                        

     

     

     

     

     

     

     

     

 

(e)                                                             (f) 

Figure 4.16: Best individuals of the selected generations of the reconstruction 
process for the first test of 32-electrode model: (a) Best individual of the first 

generation. (b) Best individual of the 50th generation. (c) Best individual of the 
100th generation. (d) Best individual of the 150th generation. (e) Best individual of 

the 200th generation. (f) Best individual of the last generation. 

As observed in Figure 17, the genetic algorithm reconstructed the exact conductivity 

distribution successfully in 1038 seconds. The error values of the best individuals of 

each generation are plotted versus generation number in Figure 4.18. Diversity of the 

population versus generation number is plotted in Figure 4.19. 
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Figure 4.17: Comparison of the actual conductivity distribution and the result of the 
genetic algorithm for the second test of 32-electrode system. 
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Figure 4.18: Error values of the best individuals of each generation versus 
generation number for the second test of 32-electrode model. 
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Figure 4.19: Diversity versus generation number for the second test of 32-electrode 
model. 
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The third test of the 32-electrode model was conducted using a conductivity 

distribution contains two small foreground target objects that are placed on the 

homogeneous background. Comparison of the actual conductivity distribution and 

the resulted conductivity distribution from the genetic algorithm is shown in Figure 

4.20. Exact result was attained successfully in 720 seconds. The error values of the 

best individuals of each generation and the diversity of the population are plotted 

versus generation number in Figures 4.21 and 4.22 respectively. 
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Figure 4.20: Comparison of the actual conductivity distribution and the result of the 
genetic algorithm for the third test of 32-electrode system. 
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Figure 4.21: Error values of the best individuals of each generation versus 
generation number for the third test of 32-electrode model. 

The most difficult conductivity distributions for the image reconstruction problem 

are the distributions that include numerous small objects spread to the entire body. 
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Small objects cause lesser impact on the electrodes at the boundary, reducing the 

sensitivity of the pixels located in the central region of the body. There is also a 

blocking problem with the conductivity distributions that contain multiple objects 

that resides close to each other when the path of the electrical current flowing from 

the electrodes to an object is blocked by another object; therefore, preventing the 

useful data from being collected. 
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Figure 4.22: Diversity versus generation number for the third test of 32-electrode 
model. 

The ill-conditioning nature of the problem may even rise to a point where the exact 

image reconstruction is impossible because the data provided to the genetic 

algorithm is insufficient. To demonstrate the performance of the GA in extremely ill-

conditioned situations, two simulations were conducted with a conductivity 

distribution that contain ten and twenty random foreground pixels. Next, GA 

reconstructed the conductivity distributions using the data from the simulations. 

Comparison of the actual conductivity distribution and the resulted conductivity 

distribution from the GA for the distribution of ten foreground pixels is shown in 

Figure 4.23. 

The exact conductivity distribution was successfully obtained in 399 seconds of 

computing time. Error values of the best individuals of each generation and the 

diversity of the population are plotted versus generation number in Figures 4.24 and 

4.25 respectively. 
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Figure 4.23: Comparison of the actual conductivity distribution and the result of the 
genetic algorithm for the fourth test of 32-electrode system. 

The fifth test of the 32-electrode model was carried out by using a conductivity 

distribution of twenty foreground pixels that are randomly positioned on the 

homogeneous background. Comparison of the actual conductivity distribution and 

the resulted conductivity distribution from the genetic algorithm is shown in Figure 

4.26. Because no improvement was achieved in the last two hundred generations, the 

end criterion of the genetic algorithm was met and the algorithm ended without 

reaching the exact result. A similar conductivity distribution was obtained in 2173 

seconds. The error values of the best individuals of each generation and the diversity 

of the population are plotted versus generation number in Figures 4.27 and 4.28 

respectively. 
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Figure 4.24: Error values of the best individuals of each generation versus 
generation number for the fourth test of 32-electrode model. 
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Figure 4.25: Diversity versus generation number for the fourth test of 32-electrode 
model. 
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Figure 4.26: Comparison of the actual conductivity distribution and the result of the 
genetic algorithm for the fifth test of 32-electrode system. 

The reason that the algorithm has failed to reconstruct the true conductivity 

distribution for twenty small foreground pixels is the sensitivity drop in the central 

area of the body. As the number of the objects in the conductivity distribution 

increases, sensitivity of each object decreases, especially for the objects that are 

located in the center of the conductivity distribution. Combined with the blocking 

problem mentioned before, reduced sensitivity increases the ill conditioning of the 

problem dramatically. However, despite the ill-conditioned nature of the problem, 

genetic algorithm successfully converges near the optimal solution where the exact 

result cannot be obtained, demonstrating the effectiveness of the genetic algorithm. 
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Figure 4.27: Error values of the best individuals of each generation versus 
generation number for the fifth test of 32-electrode model. 
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Figure 4.28: Diversity versus generation number for the fifth test of 32-electrode 
model. 

As mentioned before, conductivity distributions that contain small objects located 

near a large object are very difficult to reconstruct exactly in electrical impedance 

imaging method, often incorrectly detecting these objects as a single object. 

Therefore, a test was conducted to analyze the genetic algorithms performance with 

conductivity distributions that contain large and small objects located closer to each 

other. 
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In the sixth test of the 32-electrode model, the algorithm was used to reconstruct a 

conductivity distribution with a large square object in the center and four small pixels 

reside close the large object. The GA successfully reconstructed the exact 

conductivity distribution in 684 seconds. Comparison of the actual conductivity 

distribution and the resulted conductivity distribution from the GA is shown in 

Figure 4.29. 
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Figure 4.29: Comparison of the actual conductivity distribution and the result of the 
genetic algorithm for the sixth test of 32-electrode system. 

Error values of the best individuals of each generation and the diversity of the 

population are plotted versus generation number in Figures 4.30 and 4.31 

respectively. 
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Figure 4.30: Error values of the best individuals of each generation versus 
generation number for the sixth test of 32-electrode model. 
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Figure 4.31: Diversity versus generation number for the sixth test of 32-electrode 
model. 

4.3 Effects of Noise 

Because the image reconstruction problem of EII method is an extremely ill-

conditioned problem, noise affects the performance of the reconstruction algorithm 

dramatically. Presence of noise further reduces the sensitivity of each pixel in the 

conductivity distribution, raising the difficulty of the image reconstruction process. 

Noise on the measurement data may even prevent the exact image reconstruction if 

the noise dominates some important information in the data. To test the genetic 

algorithms performance with the noisy data, a series of numerical simulations is 

conducted using a fixed conductivity distribution, adding Gaussian white noise to the 

data using different standard deviation value for each test. After the simulations, the 

GA is subjected to reconstruct the conductivity distributions using the data from the 

simulations with additive white Gaussian noise. 

Comparison of the actual conductivity distribution and the resulted conductivity 

distribution from the GA for uncontrolled noise test using Gaussian white noise with 

standard deviation of 0.0001 volts is shown in Figure 4.32 and the error values of the 

best individuals of each generation are plotted versus generation number in Figure 

4.33. The algorithm successfully attained the true conductivity distribution, which 

shows that the algorithm can handle noise with the standard deviation of 0.0001 

volts. 
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Figure 4.32: Comparison of the actual conductivity distribution and the result of the 
genetic algorithm for uncontrolled noise test using Gaussian white noise with 

standard deviation of 0.0001 volts. 
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Figure 4.33: Error values of the best individuals of each generation versus 
generation number for uncontrolled noise test using Gaussian white noise with 

standard deviation of 0.0001 volts. 

In Figure 4.34, comparison of the actual conductivity distribution and the result of 

the genetic algorithm for uncontrolled noise test using Gaussian white noise with 

standard deviation of 0.001 volts is shown. The error values of the best individuals of 

each generation are plotted versus generation number in Figure 4.35. From Figure 

4.34, it is seen that the GA failed to reach the true conductivity distribution using the 

data with Gaussian white noise with the standard deviation of 0.001 volts; however, a 

very similar conductivity distribution was achieved. The voltage response on the 

boundary electrodes caused by the pixels located near the center of the conductivity 

distribution is lower than the voltage response caused by the pixels located near the 
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boundary. Because of this situation, central region of the conductivity distribution is 

more sensitive to the presence of noise than the boundary region. Therefore, errors in 

the reconstructed image first appear in the central region of the conductivity 

distribution with increasing noise levels. 
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Figure 4.34: Comparison of the actual conductivity distribution and the result of the 
genetic algorithm for uncontrolled noise test using Gaussian white noise with 

standard deviation of 0.001 volts. 
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Figure 4.35: Error values of the best individuals of each generation versus 
generation number for uncontrolled noise test using Gaussian white noise with 

standard deviation of 0.001 volts. 

The actual conductivity distribution and the result of the GA are compared for 

uncontrolled noise test using Gaussian white noise with standard deviation of 0.01 

volts in Figure 4.36 and the error values of the best individuals of each generation are 

plotted versus generation number in Figure 4.37. We can see that the resemblance of 
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the result to the true conductivity distribution is reduced with the increasing noise. 

However, algorithm still achieves convergence successfully by reaching closer to the 

optimal solution of the problem with the noise standard deviation of 0.01 volts. 
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Figure 4.36: Comparison of the actual conductivity distribution and the result of the 
genetic algorithm for uncontrolled noise test using Gaussian white noise with 

standard deviation of 0.01 volts. 
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Figure 4.37: Error values of the best individuals of each generation versus 
generation number for uncontrolled noise test using Gaussian white noise with 

standard deviation of 0.01 volts. 

In Figure 4.38, comparison of the actual conductivity distribution and the result of 

the GA are compared for uncontrolled noise test using Gaussian white noise with 

standard deviation of 0.1 volts. The error values of the best individuals of each 

generation are plotted versus generation number in Figure 4.39. As the noise level 

increases, the resulted conductivity distribution further worsens. Convergence of the 
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algorithm also gets worse with the increasing noise and the convergence speed 

decreases. 
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Figure 4.38: Comparison of the actual conductivity distribution and the result of the 
genetic algorithm for uncontrolled noise test using Gaussian white noise with 

standard deviation of 0.1 volts. 
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Figure 4.39: Error values of the best individuals of each generation versus 
generation number for uncontrolled noise test using Gaussian white noise with 

standard deviation of 0.1 volts. 

The amount of Gaussian white noise that the genetic algorithm tolerates can be seen 

by analyzing the results of the noise tests. As the standard deviation of the noise 

increases up to 0.001 volts, possibility of reaching the exact result is dramatically 

decreases. If the amplitude of the noise is further increased, results of the image 

reconstruction algorithm worsen and the resemblance of the result and true 

conductivity distribution is reduced. Increasing amplitude of the noise also causes the 
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convergence speed of the GA to become slower and if it exceeds a certain level, 

convergence near the optimal solution becomes impossible. 

White Gaussian noise function is considered as the most appropriate noise generator 

to simulate the noise on a typical EII system (Holder, 2005). In the numerical 

simulations, noise is generated by using MATLAB’s Gaussian white noise function. 

Histogram of the Gaussian white noise generated by MATLAB with standard 

deviation of 0.01 volts for voltage data with 10000 elements is shown in Figure 4.40. 
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Figure 4.40: Histogram of Gaussian white noise with standard deviation of 0.01 
volts for 10000 voltage data points. 

Noise in the measurements data can be reduced by executing multiple measurements 

and averaging the collected. Because the EII is a static imaging method, it is possible 

to achieve multiple measurements for the same conductivity distribution in a short 

period of time. Changes in the electrical field for different measurements are small 

enough to neglect; therefore, the difference in the data from separate measurements 

is mainly due to the noise on the imaging system. As the noise on the data is 

randomly distributed, averaging the data from different measurements reduces the 

noise greatly by causing the collected voltage values from the electrodes to converge 

closer to their expected values, which are the ideal measured voltage values without 

the presence of the noise. This sequential averaging method controls the noise that is 

present on the measurement data and increases accuracy of the measurement process 

of EII (Ovacık, 1998b). 



 
94

The next part of the tests covers the experiments that are conducted using the data 

with the noise controlled by averaging data that are collected from multiple 

measurements. Numerical simulations are conducted using the 32-electrode model 

and the same conductivity distribution as the previous noise tests for comparison. 

Aim of the controlled noise test is to determine the performance of the algorithm 

using noise reduction by averaging. In each controlled noise test, simulation of the 

measurement process is repeated 1000 times with the addition of random Gaussian 

white noise and the output data for each simulation are averaged element-wise. Next, 

the GA reconstructs the conductivity distribution. Results of the controlled noise test 

for noise standard deviation of 0.001, 0.01 and 0.1 volts are shown in Figures 4.41, 

4.42 and 4.43 respectively. 
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(b) 

Figure 4.41: Results of the controlled noise test with 1000 measurements and noise 
standard deviation of 0.001 volts: (a) Comparison of the actual and resulted 

conductivity distributions. (b) Convergence of the algorithm. 
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(b) 

Figure 4.42: Results of the controlled noise test with 1000 measurements and noise 
standard deviation of 0.01 volts: (a) Comparison of the actual and resulted 

conductivity distributions. (b) Convergence of the algorithm. 

After comparing the results from the controlled noise tests and the uncontrolled noise 

tests for the corresponding noise levels, the improvement in the results by using 

sequential averaging method is clear. GA attained the true conductivity distribution 

in the controlled noise tests using the data with the noise levels that the exact result 

could not be reached in the uncontrolled noise tests. Even with high presence of 

noise (standard deviation of 0.1 volts), the GA managed to attain the true 

conductivity distribution in the controlled noise tests. By controlling the noise on the 

data with averaging, the GAs noise tolerance is increased dramatically. Looking at 

the convergence plots, we can see that increasing noise level also increases the 
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number of iterations that the algorithm requires to reach the true conductivity 

distribution. 

Actual Distribution

               

     

     

     

Calculated Distribution

               

     

     

     

 

(a) 

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Iteration Number

E
rr

or
 V

al
ue

 o
f 

th
e 

B
es

t 
In

di
vi

du
al

 

(b) 

Figure 4.43: Results of the controlled noise test with 1000 measurements and noise 
standard deviation of 0.1 volts: (a) Comparison of the actual and resulted 

conductivity distributions. (b) Convergence of the algorithm.  

In the last part of the tests, the GA is executed to reconstruct the conductivity 

distribution using the data that contain Gaussian white noise with a fixed signal to 

noise ratio. Fixing the SNR for every data point ensures that the noise on each point 

does not exceed a fixed fraction of the corresponding voltage value. For a better 

comparison, the measurement simulation is conducted using the same conductivity 

distribution as in the previous noise tests. The algorithm is tested with four levels of 

noise, specifically SNR of 25 dB, 50 dB, 75 dB and 100 dB. 
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Results of the noise test for the SNR of 25 dB are shown in Figure 4.44. Although 

the convergence was achieved up to a point, we can see that the algorithm failed to 

reach the true conductivity distribution for the noise level of 25 dB. In Figure 4.44 

(b), error values of the best individuals of each generation are plotted versus 

generation number. 
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(b) 

Figure 4.44: Results of the noise test for the noise level of 25 dB: (a) Comparison of 
the actual and resulted conductivity distributions. (b) Error values of the best 

individuals of each generation versus generation number.  

Results of the noise test for the SNR of 50 dB are shown in Figure 4.45. Despite 

achieving convergence, the algorithm was not successful in attaining the true 

conductivity distribution for the noise level of 50 dB. In Figure 4.45 (b), error values 

of the best individuals of each generation are plotted versus generation number. 
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(b) 

Figure 4.45: Results of the noise test for the noise level of 50 dB: (a) Comparison of 
the actual and resulted conductivity distributions. (b) Error values of the best 

individuals of each generation versus generation number. 

Comparing Figures 4.44 (b) and 4.45 (b), it is clear that the algorithm converged 

closer to the global optimum in this test than the previous test. As the noise level 

decreases, convergence speed of the genetic algorithm increases and the distance 

between the global optimum and the result of the algorithm becomes closer. 

Comparison of the actual conductivity distribution and the result of the GA using 

Gaussian white noise with the SNR of 75 dB is shown in Figure 4.46 (a) and the 

error values of the best individuals of each generation are plotted versus generation 

number in Figure 4.46 (b). From the figure, we can see that the algorithm 

successfully attained the true conductivity distribution for the noise level of 75 dB. 
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Image reconstruction process lasted 1197 seconds of computation time and 413 

iterations.  
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(b) 

Figure 4.46: Results of the noise test for the noise level of 75 dB: (a) Comparison of 
the actual and resulted conductivity distributions. (b) Error values of the best 

individuals of each generation versus generation number. 

In Figure 4.47, results of the noise test for the SNR of 100 dB are shown. In Figure 

4.47 (b), it is seen that the algorithm successfully achieved the true conductivity 

distribution for the noise level of 100 dB. In Figure 4.47 (b), error values of the best 

individuals of each generation are plotted versus generation number. Total 

computing time of the image reconstruction was 603 seconds and 186 iterations. 

Comparing this numbers with the previous test, we can see that increasing noise also 

increases the computing time requirement of the algorithm. 
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(b) 

Figure 4.47: Results of the noise test for the noise level of 100 dB: (a) Comparison 
of the actual and resulted conductivity distributions. (b) Error values of the best 

individuals of each generation versus generation number.
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5.  CONCLUSION AND DISCUSSIONS 

An improved two-stage genetic algorithm was developed in this thesis for the 

reconstruction of two-dimensional and binary conductivity distributions using the 

concept of electrical impedance imaging method based on the minimization of the 

discrepancies between measured and computed electrode voltages in a least-square 

sense. Mathematical model of the imaging process was established using finite 

element method to obtain the voltage response on the boundary electrodes. The 

problem of ill conditioning due to the relatively weak voltage response to the targets 

that are located far away from the boundary electrodes was surmounted by the 

development of a new weight function. Four new mutation operators and an 

improved rank proportionate selection operator were introduced in this thesis. An 

adaptive parameter control operator was established to maintain the diversity of the 

population at an efficient level. A series of tests was conducted to observe the genetic 

algorithms performance on various conditions. 

The genetic algorithm has shown an excellent performance by attaining the true 

conductivity distribution in all the tests with 16-electrode model. Despite the 

increasing vastness of the search space for the 32-electrode model, the algorithm still 

managed to attain the true conductivity distribution in most of the tests. GA 

successfully reconstructed target objects with complex details located in the center of 

the conductivity distribution, which is a particularly difficult task in EII method due 

to the reduced sensitivity of the region that is far away from the boundary. 

Reconstruction of the conductivity distributions that include numerous small objects 

spread to the entire body was observed to be the most demanding situation for the 

GA, where the objects located near the boundary becomes dominant, causing 

inaccuracy in the central region of the body. 

In the tests using the data with noise, the algorithm reached the true conductivity 

distribution up to a certain noise level, Gaussian white noise up to a fixed standard 

deviation of 0,0001 V and down to a fixed SNR of 75 dB. Working with the data that 

contain noise exceeding these levels, the GA achieved convergence in the first stage 
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and reconstructed a similar image to the actual conductivity distribution of the body. 

By taking advantage of electrical impedance imaging method’s high imaging speed, 

noise on the data was controlled by making numerous measurements and averaging 

the corresponding results to minimize the effects of the noise on the reconstruction 

algorithm. Although the noise tolerance of the GA has improved dramatically with 

the usage of this noise control technique, EII is still unsuitable for applications that 

contain excessive noise on the measurement data and low-noise data acquisition 

hardware is recommended for the stability of the results. 

The weak voltage response of the pixels located far away from the boundary 

electrodes is a common problem of EII image reconstruction process. It can clearly 

be seen in Figure 3.7 that a pixel in the central region is nearly six times less 

sensitive than a pixel near the boundary. This problem hinders the reconstruction 

algorithm’s progress of attaining the true conductivity distribution in the center 

region. The weight function developed in this thesis has improved the reconstruction 

of the central pixels of the conductivity distribution significantly. With the addition 

of this weight function, GA attained the exactly true conductivity distribution in most 

of the tests. In Figures 4.9 and 4.16, where the best individuals of the selected 

generations are shown chronologically, it can be seen that the GA reconstructs the 

conductivity distribution starting from the area near the boundary, completing the 

center of the distribution in the final generations. This is a direct result of the 

dominancy of the area near the boundary on the fitness values of the individuals. 

Because the selection operator favors the fitter individuals, GAs focus on the short-

term gain. Therefore, convergence is first achieved in the properties of the 

individuals that contribute more to the fitness function. This characteristic of the 

genetic algorithms must be taken into account when developing a search strategy. 

Multi-stage structure offers genetic algorithms very significant advantages in the 

development of a search strategy. More Efficient search strategies can be established 

by using different genetic operators in each stage to match the dynamic behavior of 

the problem. Multi-stage structure also allows altering the parameters of the GA to 

suit the characteristics of different eras of the solution process. Characteristic 

behavior of the image reconstruction problem of EII method changes dramatically 

throughout the solution process of the genetic algorithm. Convergence speed of a 

genetic algorithm generally becomes slower as the algorithm converges near the 
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optimal solution. Although the diversity of the population is very rich at the 

beginning of the algorithm due to the random creation of the initial population, it 

decreases as the algorithm achieves progress. Two-stage structure of the genetic 

algorithm, which is developed to overcome this changing behavior of the solution 

process, has improved the efficiency of the algorithm dramatically as it allows the 

use of shape-searching mutation filters in the final generations of the algorithm. The 

shape-searching mutation operators (neighborhood shift mutation filter and center fill 

mutation filter) are crucial for reaching the exact conductivity distribution. Because 

the diversity is low among the population in the final generations of the algorithm, 

genetic operators like selection and recombination becomes ineffective in the search 

for the true conductivity distribution. Neighborhood shift mutation filter and center 

fill mutation filter, which are introduced in this thesis, vastly decreases the time 

required to reach the true result by mutating the shapes of the targets located in the 

conductivity distributions of the individuals. However, these mutation operators 

should only be used in the second stage of the GA as they cause the convergence 

speed to drop. For the first stage of the algorithm, two new mutation operators 

(adaptive mutation probability filter and identical individual eliminator filter) are 

developed to increase the convergence speed. 

Deciding which individuals carry their genes to the next population, selection 

process is the heart of a genetic algorithm,. By giving higher probability of selection 

to the fitter individuals, selection operators must possess stochastic properties in 

order to provide robustness to the GA. In this thesis, an improved ranked 

proportionate selection operator is developed to achieve robustness and acquire the 

ability to apply selection pressure to the population. Conventional fitness 

proportionate selection operators does not provide the option to apply selection 

pressure. Selection pressure is a critical parameter for controlling the diversity of the 

population and the convergence speed, which are the most important factors of a 

genetic algorithm. Increasing the convergence speed decreases the diversity of the 

population. On the other hand, rich diversity provides robustness to a genetic 

algorithm, giving the it the ability of avoiding the local minima more effectively. 

Therefore, efficiency of a genetic algorithm increases to a maximum level only when 

the convergence speed and the diversity of the population are optimally balanced. 

The only way of maintaining the balance between the diversity and the convergence 
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speed at an efficient level is to control the important parameters of the genetic 

algorithm adaptively. The selection pressure, the mutation probability and the 

crossover probability are controlled adaptively in the genetic algorithm depending on 

the diversity of the population. Applying higher selection pressure to the population 

increases the convergence speed. However, to enrich the population’s diversity, the 

selection pressure should be decreased. Although controlling the crossover rate 

creates a weaker response on these two factors, an ideal crossover rate should start at 

the maximum level and decrease slightly with the reducing diversity. Mutation 

probability has an adverse effect on the convergence speed, while helping the 

algorithm to enrich the diversity of the population. By controlling these parameters 

efficiently, improving the dynamic behavior of the genetic algorithm becomes 

possible and robustness of the algorithm increases, avoiding the local minima more 

effectively. 

Genetic algorithms are promising tools for the solution of image reconstruction 

problem of electrical impedance imaging method. Although genetic algorithms are 

expensive in terms of computing time and resources, which renders them 

inappropriate for the real-time applications, they are suitable for ill-conditioned 

problems thanks to their stochastic nature, parallel searching capabilities and 

robustness in avoiding local minima. As a response to the increasing demand from 

the industry for process monitoring applications, the usage of genetic algorithms in 

image reconstruction problem of EII has been an active area of research in the recent 

years. Future developments on this subject can be achieved in different areas 

including the mathematical model and the structure of the reconstruction algorithm. 

A more accurate numerical model of the measurement process may help to increase 

the imaging resolution. Real-time imaging can be possible with the introduction of 

parallel computing to EII method.  Development of hybrid image reconstruction 

algorithms that combine genetic algorithms and gradient-based methods may lead to 

more efficient reconstruction processes, reducing the computation time requirements 

of the current-generation reconstruction algorithms. 
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APPENDIX A  

% Model parameters 

mi=17; mj=17; vne=32; cne=32; nex=31; vrefelec=1; ni=mi+1; nj=mj+1; 

m=mi*mj; n=ni*nj; backgcon=1; foregcon=0.1; wfalfa=10; 

 

% General genetic algorithm parameters 

maxpop=200; genmax=2000; errcrit=1e-4; itercrit=200; secinit=20; 

selectco1=3; selectco2=1; crossco=0.1; ieeappgen=5; 

ieemutprob=0.002; mutprob1max=0.0001; mutprob2max=0.001; elitist=1; 

 

% GA parameters for second stage 

sselitist=2;  midmutmul=2; nemutmul=2; midmutrange=[0.25 0.75]; 

nmutprobind=0.2; nmutprobbit=0.1; fillmutprob=0.1;  

 

% Import data 

fid=fopen('out.txt', 'r'); 

for i=1:(vne*nex) 

out=fscanf(fid,'%f',[1,2]); vi(i)=out(1,1); ci(i)=out(1,2); 

end, fclose(fid); 

fidie=fopen('Ielec.txt','r'); ielecnod = fscanf(fidie,'%i',[2,inf]); 

fclose(fidie); 

fidve=fopen('Velec.txt','r'); velecnod = fscanf(fidve,'%i',[2,inf]); 

fclose(fidve); 

fidme=fopen('mesh.txt','r'); 

for i=1:n 

xyco = fscanf(fidme,'%f',[1,2]); xco(i)=xyco(1); yco(i)=xyco(2); 

end    

fclose(fidme); 

fidcur=fopen('current.txt','r'); 

for i=1:nex, for j=1:cne 

cur(i,j) = fscanf(fidcur,'%f',[1,1]); 

end, end 

status = fclose(fidcur); 

 

% Calculation of Local Admittance Elements 

y2d=initmodel(mi,mj,xco,yco); 

 

% Calculation of Weight Function 

wf=wfunc(mi,mj,cne,vne,nex,vrefelec,ielecnod,velecnod,cur,vi,y2d,bac

kgcon,wfalfa); 

 

% Initiation of First Stage of the Genetic Algorithm 

stage=1; disp('First Stage of the Genetic Algorithm.'); 

clear minerr diver bestindhist selecthist crosshist mutprob1hist 

mutprob2hist 

pop=round(rand(maxpop,m)); pop=logical(pop); 

 

% Main program loop 

for gen=1:genmax 

disp('Iteration Number: '); disp(gen); 

     

% Evaluation of Fitness Fuction for Stage 1 

if stage == 1 

for ie=1:maxpop, for je=1:mj, for ke=1:mi  

if pop(ie,((je-1)*mi+ke))==0 

real(je,ke)=backgcon; 

else, real(je,ke)=foregcon; 
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end, end, end      

error=fit(mi,mj,cne,vne,nex,vrefelec,ielecnod,velecnod,real,cur,vi,w

f,y2d); 

poperr(ie)=error; 

end, end 

     

% Evaluation of Fitness Fuction for Stage 2 with fitness memory 

if stage == 2 

for ie=1:maxpop, for je=1:mj, for ke=1:mi  

if pop(ie,((je-1)*mi+ke))==0 

real(je,ke)=backgcon; 

else, real(je,ke)=foregcon; 

end, end, end 

for i=1:maxpop 

found=all(pop(ie,:) == prevpop(i,:)); 

if found == 1 

poperr(ie)=prevpoperr(i); 

break 

end, end 

if found == 0              

error=fit(mi,mj,cne,vne,nex,vrefelec,ielecnod,velecnod,real,cur,vi,w

f,y2d); poperr(ie)=error; 

end, end, end 

     

%Store the best individual of the generation 

if rem(gen,10) == 0 || gen == 1, if gen == 1 

[C,I]=min(poperr); bestindhist(1,:)=pop(I,:); 

Else, [C,I]=min(poperr); bestindhist((gen/10)+1,:)=pop(I,:); 

end, end 

     

% Termination by Error Criteria 

minerr(gen)=min(poperr); meanerr(gen)=mean(poperr); 

if minerr(gen) <= errcrit 

break 

end 

     

% Termination by maximum number of iterations without improvement 

if itercrit < gen 

for i=1:itercrit 

itercritcheck(i) = minerr(gen-i+1) == minerr(gen); 

end 

else, itercritcheck=0; 

end 

if all(itercritcheck) == 1 

break 

end 

disp('Best Individual: '); disp(minerr(gen)); 

diver(gen)=sqrt((meanerr(gen)-poperr)*(meanerr(gen)-poperr)'); 

disp('Diversity: '); disp(diver(gen)); 

     

% Initiation of Second Stage of the Genetic Algorithm 

if secinit < gen 

for i=1:secinit 

secinitcheck(i) = minerr(gen-i+1) == minerr(gen); 

end 

else, secinitcheck=0; 

end 

if all(secinitcheck) == 1 && stage == 1 

stage=2; secstageinitgen=gen; elitist=sselitist; 

disp('Second Stage of the Genetic Algorithm.'); 

end 
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% Adaptation of Parameters 

selectco=selectco1-selectco2*exp(-diver(gen)); 

crossrate=1-crossco*exp(-diver(gen)); 

mutprob1=mutprob1max*exp(-diver(gen)); 

mutprob2=mutprob2max*exp(-diver(gen)); 

mutprobpop=(mutprob2-mutprob1)*(abs(2*(mean(pop)-0.5)))+mutprob1; 

selecthist(gen)=selectco; crosshist(gen)=crossrate; 

mutprob1hist(gen)=mutprob1; mutprob2hist(gen)=mutprob2; 

     

% Elitist Selection 

if elitist ~= 0 

[sorted,sortindex]=sort(poperr,'ascend'); 

for i=1:elitist 

sel1(i)=sortindex(i); sel2(i)=sortindex(i); 

end, end 

     

% Rank-Based proportionate Selection 

[sorted,sortindex]=sort(poperr,'ascend'); 

rank=1:maxpop; 

for i=1:maxpop 

normalrank(i)=rank(i)/maxpop; 

select(i)=exp(-selectco*normalrank(i)); 

end     

sumselect=sum(select); 

selectprob(1)=0; 

for i=2:(maxpop+1) 

selectprob(i)=(select(i-1)/sumselect)+selectprob(i-1); 

end 

for i=(elitist+1):(round(maxpop/2)), for counter=1:1000 

randselect1=rand(1,1); randselect2=rand(1,1); 

for ii=1:maxpop 

if randselect1 >= selectprob(ii) && randselect1 < selectprob(ii+1) 

sel1(i)=sortindex(ii); 

end 

if randselect2 >= selectprob(ii) && randselect2 < selectprob(ii+1) 

sel2(i)=sortindex(ii); 

end, end 

if all(pop(sel1(i),:) == pop(sel2(i),:)) == 0 

break 

end, end, end 

newpop= false(maxpop,m); 

     

% Crossover 

for i=1:length(sel1) 

cross=rand(1,1); 

if cross > crossrate 

crossmask=zeros(m,1); 

else, crossmask=round(rand(m,1)); 

end 

for j=1:m 

if crossmask(j)==0 

newpop(((2*i)-1),j)=pop(sel1(i),j); newpop((2*i),j)=pop(sel2(i),j); 

else 

newpop(((2*i)-1),j)=pop(sel2(i),j); newpop((2*i),j)=pop(sel1(i),j); 

end, end, end 

     

% Mutation For 2nd Stage 

if stage == 2 

for i=1:maxpop 

randmut1=rand(1,1); 
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if randmut1 <= nmutprobind && i > (2*elitist) 

for j=1:m 

if newpop(i,j) == 1 

randmut2=rand(1,1); 

if randmut2 <= nmutprobbit 

randbitpos=ceil(9*rand(1,1)); 

divremain=((j/mi)-floor(j/mi))*mi; 

if j<=(mi+1) || j>(m-mi-1) || divremain<=1 || divremain>=(mi-1) 

randbitpos=5; 

end 

switch randbitpos 

case 1 

if newpop(i,j-mi-1) == 0 

newpop(i,j)=~newpop(i,j); 

end 

newpop(i,j-mi-1)=~newpop(i,j-mi-1); 

case 2 

if newpop(i,j-mi-1) == 0 

newpop(i,j)=~newpop(i,j); 

end 

newpop(i,j-mi)=~newpop(i,j-mi); 

case 3 

if newpop(i,j-mi-1) == 0 

newpop(i,j)=~newpop(i,j); 

end 

newpop(i,j-mi+1)=~newpop(i,j-mi+1); 

case 4 

if newpop(i,j-mi-1) == 0 

newpop(i,j)=~newpop(i,j); 

end 

newpop(i,j-1)=~newpop(i,j-1); 

case 5, newpop(i,j)=~newpop(i,j); 

case 6 

if newpop(i,j-mi-1) == 0 

newpop(i,j)=~newpop(i,j); 

end 

newpop(i,j+1)=~newpop(i,j+1); 

case 7 

if newpop(i,j-mi-1) == 0 

newpop(i,j)=~newpop(i,j); 

end 

newpop(i,j+mi-1)=~newpop(i,j+mi-1); 

case 8 

if newpop(i,j-mi-1) == 0 

newpop(i,j)=~newpop(i,j); 

end 

newpop(i,j+mi)=~newpop(i,j+mi); 

case 9 

if newpop(i,j-mi-1) == 0 

newpop(i,j)=~newpop(i,j); 

end 

newpop(i,j+mi+1)=~newpop(i,j+mi+1); 

end, end, end, end 

elseif i > (2*elitist) 

for j=1:m 

fillcount=[0, 0, 0, 0]; 

if j < (m-mj) 

fillcount(1)=newpop(i,j+mj); 

end 

if rem(j,mj) ~= 0 

fillcount(2)=newpop(i,j+1); 
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end 

if j > mj 

fillcount(3)=newpop(i,j-mj); 

end 

if rem(j,mj) > 1 

fillcount(4)=newpop(i,j-1); 

end 

fillsum=sum(fillcount); 

if rand(1,1) <= fillmutprob && fillsum >= 3 && newpop(i,j) == 0 

newpop(i,j)=1; 

end 

bithorpos=((j/mi)-floor(j/mi))*mi; 

bitverpos=ceil(j/mi); 

if bithorpos>(midmutrange(1)*mi) && bithorpos<(midmutrange(2)*mi) && 

bitverpos>(midmutrange(1)*mj) && bitverpos<(midmutrange(2)*mj) 

mutprob=midmutmul*mutprobpop(j); 

else, mutprob=mutprobpop(j); 

end 

if any(fillcount) == 1 

mutprob=mutprob*nemutmul; 

end 

mutmask=rand(1,1); 

if mutmask <= mutprob 

if newpop(i,j) == 0 

newpop(i,j)=1; 

else, newpop(i,j)=0; 

end, end, end, end, end, end 

     

% Mutation For 1st Stage 

if stage == 1 

for i=1:maxpop 

for j=1:m 

if i > (2*elitist) 

mutmask=rand(1,1); 

else, mutmask=1; 

end 

if mutmask <= mutprobpop(j) 

if newpop(i,j) == 0 

newpop(i,j)=1; 

else, newpop(i,j)=0; 

end, end, end, end, end 

     

% Identical individual eliminator mutation filter 

if (gen/ieeappgen) == floor(gen/ieeappgen) 

for i=1:maxpop 

for j=1:maxpop 

if i ~= j && j > i && all(pop(i,:) == pop(j,:)) 

for k=1:m 

randiie=rand(1,1); 

if randiie <= ieemutprob 

pop(j,m)=~pop(j,m); 

end, end, end, end, end, end 

prevpop=pop; prevpoperr=poperr; pop=newpop; clear newpop 

end 

 

% Export output data 

[sorted,sortindex]=sort(poperr,'ascend'); 

result=pop(sortindex(1),:); dispim; 
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APPENDIX B   
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Figure B.1: Walsh patterns used for excitation of a 16-electrode system. 
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Figure B.2: Walsh patterns used for excitation of a 32-electrode system. 
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