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KOMBINATORYAL OPTIMiZASYON PROBLEMLERINDE ARI SiISTEMi
YAKLASIMI

Pmar Zarif TAPKAN

Erciyes Universitesi, Fen Bilimleri Enstitiisii
Doktora Tezi, Haziran, 2010
Tez Damismani: Yrd. Dog. Dr. Lale OZBAKIR

OZET

Bircok gercek hayat probleminin kombinatoryal optimizasyon problemi olarak
modellenebilmesi ve klasik optimizasyon tekniklerinin bu tiir problemleri ¢ézmedeki gesitli
yetersizlikleri, kombinatoryal optimizasyon problemlerinin ¢dziimiinde hizli ve etkin olarak
kullanilacak araglarin gelistirilmesi ihtiyacint dogurmustur. Bu amagla problemden ve
modelden bagimsiz bir yapiya sahip olan dogadan esinlenmis sezgisel optimizasyon
algoritmalari, son yillarda artan bir hizla zor kombinatoryal optimizasyon problemlerinin
¢oziimiinde kullanilmaktadir. Bu tekniklerin bir dali olan siirii zekési algoritmalar1 ise
bdceklerin problem ¢ézme becerilerini taklit eden metasezgisel yontemler gelistirebilmek icin

bocek davranislarina odaklanmustir.

Arilarin yiyecek arama davranislari, 6grenme, hatirlama ve bilgi paylasma o&zellikleri siirii
zekasmin en ilgi g¢ekici arastirma alanlarindan birisidir. Birbiriyle etkilesen bireyler sistemi
olarak ele alinan ar1 kolonisinde kolektif zeka, sinerjik bilgi degisimine dayanmaktadir. Temel
olarak, bulunan yiyecek kaynaklarinin kalitesi hakkinda bilgi paylasiminin gerceklestirildigi ar1
kolonisinde amag, farkli ve kaliteli yiyecek kaynaklarina ulasabilmek ic¢in kolonideki diger
arillarin da iyi bolgelere cekilmesine dayanmaktadir. Arilar arasindaki bu etkilesim, zor
kombinatoryal optimizasyon problemlerine kaliteli ve uygun ¢6ziimlerin daha hizli bulunmasini

saglamaktadir.

Bu tez c¢aligmasiin amaci zor kombinatoryal optimizasyon problemlerine iyi ¢oziimler iireten
ve ar1 davraniglarii  modelleyen yapay sistemler gelistirmektir. Bu dogrultuda zor
kombinatoryal optimizasyon problemleri sinifinda yer alan Genellestirilmis Atama Problemi ve
Cift Tarafli Montaj Hatti Dengeleme Problemi’ne etkin bir ¢oziim yaklagimi gelistirmek
amaciyla son yillarda Onerilen Ar Algoritmas1 ve Yapay Art Kolonisi Algoritmasi’ndan

faydalanilmis ve oldukca basarili sonuglar elde edilmistir.

Anahtar Kelimeler: Art Sistemi, Ar1 Algoritmasi, Yapay Ari1 Kolonisi Algoritmasi,

Genellestirilmis Atama Problemi, Cift Tarafli Montaj Hatti Dengeleme Problemi.



BEE SYSTEM APPROACH FOR COMBINATORIAL OPTIMIZATION
PROBLEMS

Pinar Zarif TAPKAN
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Ph. D. Thesis, June, 2010
Thesis Supervisor: Assist. Prof. Lale OZBAKIR

ABSTRACT

Due to the fact that most of real life problems can be modelled as a combinatorial optimization
problem and presence of various insufficiencies on solving these problems by classical
optimization techniques, it has required developing rapid and effective tools to solve
combinatorial optimization problems. For this purpose, problem and model independent nature
inspired heuristic optimization algorithms have been utilized for solving hard combinatorial
optimization problems with an increasing trend. Such a branch of nature inspired algorithms
which are known as swarm intelligence focuses on insect behavior in order to develop some

meta-heuristics which can mimic insect’s problem solution abilities.

The foraging behaviour, learning, memorizing and information sharing characteristics of bees
have recently been one of the most interesting research areas in swarm intelligence. The
collective intelligence of interacting bee colony is based on synergic information exchange.
Basically, the aim of the bee colony depends on attracting other bees to productive locations to
collect different and qualified food sources by sharing information about quality of food
sources. This interaction among bees provides finding qualified and feasible solutions to hard

combinatorial optimization problems much more quickly.

This thesis is focused on developing artificial systems that generate good solutions to hard
combinatorial optimization problems by utilizing bee behaviours. Accordingly, with the aim of
developing an effective solution approach for Generalized Assignment Problem and Two-Sided
Assembly Line Balancing Problem that can be classified as hard combinatorial optimization
problems, recently proposed Bees Algorithm and Artificial Bee Colony Algorithm are utilized

and considerably effective results are obtained.

Keywords: Bee System, Bees Algorithm, Artificial Bee Colony Algorithm, Generalized

Assignment Problem, Two-Sided Assembly Line Balancing Problem.



ICINDEKILER

KABUL VE ONAY ..ottt ettt ettt et st saeestassaesseensessaeseensesssensesnsenseensens i
TESEKKUR ...ttt ettt ettt ettt es et s et esesese st s s s esesenenenas ii
OZET oottt ettt iii
ABSTRACT ...ttt ettt ettt ste e teentesse e seeneasseenteeneenseens v
KISALTMA VE SIMGELER.......c.ccovtiitiiiiniiniineieisseseineeessse s ssesseseeseens viii
TABLOLAR LISTESI ..ottt ix
SEKILLER LISTESI ..ottt Xi
1. BOLUM

GIRIS oottt annns 1
2. BOLUM

SURU ZEKASINA DAYALI OPTIMIZASYON ALGORITMALARI ......................... 6
2L TS it ettt e e et e e et e e e e et e e e et e e e e e etaae e e e eaaaaeeeeaaeaeeeataaaeeanraaaaan 6
2.2. Siirii Zekasina Dayal1 Optimizasyon Algoritmalart..........ccoceveeneeveniencnncnecneenne. 6
2.2.1. Parcacik Siirii Optimizasyonu AIZOTitmast ........cc.eeeeveerueerieeriienieenie e eiee e eneen 9
2.2.2. Karinca Koloni Optimizasyonu AlgOritmast..........cccceeeueerieecieeneensieeneenreenneenns 10
2.3. Dogadaki Gergek Art DavraniSlart ..........cccccveeeiieeiiiieiiieeieeee e 10
2.4. An Sistemi ile Baglantili Mithendislik Calismalart...........ccooceviieniniiinieniiee 13
2.4.1. Yiyecek Arama Davranigina Dayali Calismalar .............cccoeoveiiiniiiniiniieeee 13
2.4.2. Ciftlesme Davranisina Dayali Caligsmalar...........c.coceevvvieiiieiiienienieciecieeee 14
2.4.3. Kombinatoryal Optimizasyon Problemlerinde Ar1 Sistemi Uygulamalari ......... 18
2.4.3.1.  Ulastirma Problemleri..........cccviiiiiieiiiieiiieeeiee e 18
2.4.3.2. Telekomiinikasyon Uygulamalari..........cccoocuevoiieriiiiienieniieiecieeee e 21
2.4.3.3. Cizelgeleme Problemi..........ccoooiiiiieiiiiiieiieeieee e 21
2.4.3.4. Ekonomik Gii¢ Gonderme Problemi ............cccoeeiiiiiiiiieiiiieieeeeceeeee 22
2.4.3.5. Diger Uygulamalar ..........ccooeoiiieiiiiieiiiecciie ettt 22
2.5. Anlarin Yiyecek Arama Davrani§lart..........coocceeviiiiiiiiiiiiiiniiieeeeeee e 26
2.6. Yapay Art Kolonisi AIZOTItMAST......cccueeevierieeiieriieeiieiie ettt 29
2.7, ATT ALZOTIEMAST c.veeenitieeiiieeiiee et e et e et e e et e e et e e et eeesaaeeeaaeeeeseesnsneesnseeeenseeesnseaenns 38
3. BOLUM

GENELLESTIRILMIS ATAMA PROBLEMI COZUM YAKLASIMLARI ............... 42



Vi

3.2. Genellestirilmis Atama Problemi.............cccooiiiiiiiiiiii e 42
3.3. Genellestirilmis Atama Problemi i¢in Gelistirilmis Ar1 Algoritmasi ...................... 44
3.3.1. Ar1 Kolonisinin Olusturulmasi ............cccueeevuirieiiiieeiie e 47
3.3.2. KOMSUIUK YaPIAIT ..cooiiiiiiiiieiiciieceeeee ettt et s 47
3.3.2.1.  Kaydirma KomguluK YapiSi......ccceeeiieriiieiiie ettt 48
3.3.2.2.  Cift Kaydirma Komsuluk Yapist......cccoooeeiiiniiiiieniieieieeeee e 48
3.3.2.3.  Cikarim Zinciri Komguluk Yapist......cocceeviiiiieiiieniiiiieieeeeee e 49
3.3.3. Uygunluk FONKSIYONU .......coiviiiiiiiieiiieiieeie ettt ettt sve e sse e e 52
3.3.4. Ceza Katsayisinin Uyarlanir Kontrolii..........cccccvveeiiieniiiiniiicieceee e 53

3.4. Genellestirilmis Atama Problemi i¢in Gelistirilmis Yapay Ar1 Kolonisi Algoritmasi

.................................................................................................................................. 54
3.5. Deneysel CaliSIma.......cccueeiiiiiiiieiiiie ettt et e e e et e et e e 56
3.5.1. Problem TIPIeIT ....eeeeuiieeiiieeiie ettt ettt ettt e e e e e e ennaeeenns 56
3.5.2. Gelistirilmis Ar1 Algoritmast SONUGIATT.........eecuiiiiiiiiiiiiiiee e 57
3.5.3. Gelistirilmis Yapay Ar1 Kolonisi Algoritmasi Sonuglari..........cccceeeeeeerienieenennne. 59
3.5.4. Gelistirilmis Ar1 Algoritmasi ve Yapay Ar1 Kolonisi Algoritmalarinin Bilimsel

Yazindaki Algoritmalarla Karsilagtirtlmasi...........ccceeeeieeecieiniiecciieeieeeeeeee, 60

3.6. Genellestirilmis Atama Problemi’nin Ar1 Algoritmasi ile Coziimiinde Farkli

Komsuluk Yapilarinin Kargilastirtlmast ..........ccceeeevieiiiiniinieeieeieceeceeeee e, 67
3.6.1. Deneysel CaliSma.......c.ccoviieiiiiiiiiieiieeiieeie ettt et seae et e aeebee e 68
4. BOLUM
CIFT TARAFLI MONTAJ HATTI DENGELEME PROBLEMI COZUM
YAKLASIMLARI ..ottt st sttt et 75
BT, GITTS e cutieeeteee ettt ettt e et e et e e e te e e et ae e e taee e aaeeeeabeeetbeeeaaeeetaeeebaeeetaeeeataeeereeeanraeas 75
4.2. Montaj Hatt1 Dengeleme Problemi............ccccoeovieiiiiiiiniieiiecicceece e 75
4.3. Cift Tarafli Montaj Hatt1 Dengeleme Problemi ............ccccooevieeeiiiiiiiieeiiecieeee, 77
4.3.1. Cift Tarafli Montaj Hatt1 Dengeleme Problemi Kisitlart ............cccocceeiennin. 78
4.4. Cift Tarafli Montaj Hatt1 Dengeleme Problemi Coziim Yaklagimlari..................... 79

4.5. Cift Tarafli Montaj Hatt1 Dengeleme Problemi igin Onerilen Matematiksel Model

4.5.1. Ozel Kisit Igermeyen Cift Tarafli Montaj Hatt1 Dengeleme Problemi igin

Onerilen Matematiksel Model Ve SONUGIATT............ocooiuiiieieieeeeeeeeeeen. 85



Vii

4.5.2. Bolgesel Kisita Sahip Cift Tarafli Montaj Hatt1 Dengeleme Problemi i¢in
Onerilen Matematiksel Model ve SONUGIATT............ocoovuiiieiieeeeeeec e 89
4.5.3. Konumsal, Bolgesel ve Senkronizasyon Kisitlarina Sahip Cift Tarafli Montaj

Hatt1 Dengeleme Problemi igin Onerilen Matematiksel Model ve Sonuglar..... 90

4.6. Cift Tarafli Montaj Hatt1 Dengeleme Problemi i¢in Ar1 Algoritmasi...................... 92
4.6.1. Ar1 Kolonisinin OIusturulmast..........cceieeuiieriieeiiieeiee e 94
4.6.2. Uygunluk Fonksiyonu ve Komsuluk Yapilart ........ccccecveviiiiiniiiniieieenieee. 101
4.7. Cift Tarafli Montaj Hatt1 Dengeleme Problemi i¢in Yapay Ar1 Kolonisi Algoritmasi

................................................................................................................................ 101
4.8. Deneysel CallSma.......cccueiiiiiiiiiiieiiee et 102
4.8.1. Ar1 Algoritmast SONUGIATT ........ccueeviiiiiiiiiieiieie e 103
4.8.2. Yapay Ar1 Kolonisi Algoritmast SONUGlart..........cccccveeciierieeieenieeieeieeveenen. 106
4.8.3. Arn Algoritmasi ve Yapay Ar1 Kolonisi Algoritmasinin Bilimsel Yazindaki

Algoritmalarla Karsilagtirtlmast.........cceeviiiiiiiiiiiiiieee e 109

4.9. Ar1 Algoritmasi ile Bulanik Cok Amach Cift Tarafli Montaj Hatt1 Dengeleme

Problemi COzZUM YaKIaSIMI......cc.ocooiiiiiiiieiieceiee e 121
4.9.1. Bulanik Cok Amacli Cift Tarafli Montaj Hatt1 Dengeleme Problemi i¢in Ar1

ALGOTIEMAST. ...ttt ettt ettt e st e et e s eteebeesabeenbeesnes 124
4.9.2. Deneysel CaliSma.......cccueeiuiiiiieiiiiiiecieeete ettt ettt 126
5.BOLUM
SONUCLAR VE ONERILER ......c.coovoiiiiuiieieectecceeeeeeeeeee e, 135
8.1. Calismanin KatK1lart .............coooviiiiiiiiiiiieec e 135
8.2. Tleriye YONelik OnNETiler.........ocoovvivveiueeeeeieeeeeeeeeeeeeeeeeee e 136
KAYNAKLAR ottt sttt ettt et sbe e 138

OZGECMIS oo e ee s esen e ese e 159



viii

KISALTMA VE SIMGELER

GAP : Genellestirilmis Atama Problemi

CTMHDP : Cift Tarafli Montaj Hatt1 Dengeleme Problemi

AA : A Algoritmasi

YAK : Yapay Ari Kolonisi

PSO : Pargacik Siirii Optimizasyonu

KKO : Karinca Koloni Optimizasyonu

ACO : Arilarin Ciftlesme Optimizasyonu

Sp : Saglanabilirlik Problemi

BACO : Bal Arilarinin Ciftlesme Optimizasyonu

ARUAP : Acgozlii Rastgele Uyarlanir Arama Prosediirii

KAE : Kralice Art Evrim

AS : Art Sistemi

GSP : Gezgin Satic1 Problemi

SARP : Stokastik Ara¢ Rotalama Problemi

AKO : Ar1 Kolonisi Optimizasyonu

MHDP : Montaj Hatt1 Dengeleme Problemi

TTMHDP : Tek Tarafli Montaj Hatti Dengeleme Problemi

CTKMMHDP : Cift Tarafli Karma Model Montaj Hatti Dengeleme

Problemi

EKIS : En Kisa Islem Siiresi

EUIS : En Uzun Islem Siiresi

MiiSa : Kendinden Sonraki Is Sayis1 Toplaminin Minimumu

MaiSa : Kendinden Sonraki Is Sayis1 Toplaminin Maksimumu

MilSii : Kendinden Sonraki Islerin Toplam Islem Siiresinin
Minimumu

MaiSii : Kendinden Sonraki Islerin Toplam Islem Siiresinin
Maksimumu

MaSKA : Maksimum Sirali Konumsal Agirlik

MaOSKA : Maksimum Ortalama Sirali Konumsal Agirhik

PBO : Pozitif Bolgesel Kisit Onceligi

KO : Konumsal Kisit Onceligi

SO : Senkronizasyon Kisit: Onceligi

BAP : Bulanik Amag Programlama



TABLOLAR LiSTESI

Tablo 2.1. Ar sistemi ve uygulama alanlar1 konusundaki ¢alismalarin

SINITTANAITIIMAST ...ttt 24
Tablo 2.2. YAK algoritmasinin temel adimlart ...........cccoeeveeeiienieniiienienieeieeeeen. 30
Tablo 2.3. YAK algoritmasinin detaylt adimlart ..........ccceeeevieeniieeniieeieeeeeeeen 32
Tablo 2.4. AA’nIn temel adimlart..........coooiiiiiiiii e 38
Tablo 3.1. GAP igin gelistirilmis AA adimlart.........cocceevieviieiieniieieeieeeeeee e 45
Tablo 3.2. Acggozlii rastgele uyarlanir atama prosediirii adimlart...........c.cceeeenee. 47
Tablo 3.3. Kaydirma komsguluk yap1sinin iS1€yisi .....c.eeeeveeeeieeicieeeiieeeieeeiee e 48
Tablo 3.4. Cikarim zinciri komsuluk yapisinin isleyisi......coceeveevieeiieniieenienieenen. 50
Tablo 3.5. @ parametresinin uyarlanir kontrolil...............cccocooiiiiiiiiiinnn. 54
Tablo 3.6. GAP igin gelistirilmis YAK algoritmast adimlari............cccceeveervennnennnen. 55
Tablo 3.7. GAP i¢in gelistirilmis AA parametrelerinin degerleri............cceeevveennnee. 58
Tablo 3.8. GAP icin gelistirilmis AA ile elde edilen gapa-d sonuglari .................... 59
Tablo 3.9. GAP igin gelistirilmis YAK algoritmasi parametrelerinin degerleri....... 60
Tablo 3.10.  GAP i¢in gelistirilmis YAK algoritmasi ile elde edilen gapa-d sonuglari
......................................................................................................................................... 60
Tablo 3.11.  Gelistirilmis AA ve YAK algoritmasi ile elde edilen gap1-12
sonuglarinin Karsilastirtimast ..........c.ecooiiiieiiiiiiecee e 62

Tablo 3.12.  Gelistirilmis AA ve YAK algoritmasi ile elde edilen gapa-d sonuglarinin
KarSHaStIrIIMAST ....coeiiiiiiieceiee e e ettt e e e e aaeeas 64
Tablo 3.13. GAP’nde komsuluk yapisi karsilastirmasi i¢in gelistirilmis AA
parametrelerinin deGeTIOTT .......ccouiiiiiiiiiiiieiiee e 68
Tablo 3.14.  Farkli komsuluk yapilariin karstlagtirtlmast.........cccccecveveeviniencnnennen. 69
Tablo 3.15.  Farkli komsuluk yapilarinin iglem siiresi bakimindan karsilastirilmasi .. 70
Tablo 3.16.  Wilcoxon sirali toplam testi ile komsuluk yapilarinin degerlendirilmesi 72
Tablo 4.1. CTMHDP calismalarinin siiflandirtlmasi...........ccoceeeeeevieeieiineneeecnne.. 84
Tablo 4.2. Ozel kisit icermeyen CTMHDP i¢in 6nerilen karma tamsayili dogrusal
olmayan matematiksel model SONUGIATT ..........cceevviieiiiiiiieieciieeee e 89
Tablo 4.3. Bolgesel kisita sahip CTMHDP i¢in 6nerilen karma tamsayili1 dogrusal

olmayan matematiksel model sonuGlart...........cccoociiiiiiiiiiiii 90



Tablo 4.4. Konumsal, bolgesel ve senkronizasyon kisitlarina sahip CTMHDP i¢in
Onerilen karma tamsayili dogrusal olmayan matematiksel model sonuglari ................. 92
Tablo 4.5. CTMHDP’nin ¢6ziimii igin AA adimlart .........cocceeeieviienieniiieieeeeee. 93
Tablo 4.6. CTMHDP’nin ¢oziimii i¢in YAK algoritmast adimlari ........................ 102
Tablo 4.7. CTMHDP i¢in AA parametrelerinin degerleri..........ccceeeeveeecieennnennee. 103
Tablo 4.8. AA ile 6zel kisit igermeyen CTMHDP sonuglart..........ccccceeviieiennnn. 104
Tablo 4.9. AA ile bolgesel kisita sahip CTMHDP sonuglari..........cccccceevveeniiennnnn. 105
Tablo 4.10.  AA ile konumsal, bolgesel ve senkronizasyon kisitlarina sahip CTMHDP
SOMUGIATT ...ttt e et e e e et e e e e et e e e e eeataeeeeetraeeeeenaaeeeeeasaeaeas 106
Tablo 4.11. CTMHDP i¢cin YAK algoritmasi parametrelerinin degerleri................. 106
Tablo 4.12.  YAK algoritmasi ile 6zel kisit icermeyen CTMHDP sonuglari............ 107
Tablo 4.13.  YAK algoritmasi ile bolgesel kisita sahip CTMHDP sonuglari............ 108
Tablo 4.14. ' YAK algoritmasi ile konumsal, bolgesel ve senkronizasyon kisitlarina
sahip CTMHDP SONUGIATT....c.eiiiiiiiiiiieit et 109
Tablo 4.15. AA ve YAK algoritmasi ile elde edilen 6zel kisita sahip olmayan
CTMHDP sonuglarinin Kargtlastirtlmasi...........cceeeeeveeieiiieeeiieeeiee e 110
Tablo 4.16. AA ve YAK algoritmasi ile elde edilen bolgesel kisita sahip CTMHDP
sonuclarmnin Karsilastirtlmast ..........ccoveeiiiiiiiiiiii e 115
Tablo 4.17. AA ve YAK algoritmasi ile elde edilen konumsal, bolgesel ve
senkronizasyon kisitlarina sahip CTMHDP sonuglarinin karsilastirilmast .................. 119
Tablo 4.18.  Bulanik ¢ok amagli CTMHDP icin AA parametrelerinin degerleri...... 126
Tablo 4.19.  Amaglara ait aspirasyon seviyeleri ve tolerans degerleri....................... 126
Tablo 4.20. Amag-1’¢e ait deneysel sonuglar.............cccceevieeiiieniiniiinieieeeeeee, 128
Tablo 4.21. Amag-2’ye ait deneysel SONUCIAr.........c.ccovveriiieriieiiiieeiee e, 129
Tablo 4.22. Amag-3’¢e ait deneysel sonuglar...........c.cccceeevieriiieiiieiiieieceeeeeeee, 130
Tablo 4.23.  Minimum karsilikl1 istasyon sayilar1 ve CPU siiresi sonuglari ............. 132



Sekil 2.1.
Sekil 2.2.
Sekil 2.3.
Sekil 3.1.
Sekil 3.2.
Sekil 3.3.
Sekil 3.4.
Sekil 3.5.
Sekil 4.1.
Sekil 4.2.
Sekil 4.3.
olusturulmasi
Sekil 4.4.
olusturulmasi

Sekil 4.5.

Xi

SEKILLER LISTESI
Arilarin yiyecek arama davraniSl.........cooceeceerieeiiienienieenie e 28
YAK algoritmast akis diyagrami.........cccceeeeerieeiiienieniieniecieeeeeee e 31
AA aKig dIYaGraml.....cccoeeevieiieiiieiieeieeeie et ere e ebeebeeesae e 39
Kaydirma komsuluk yapi1s1 Ornegi........cceevveeerveeerieeeiieeeieeeieeeevee e 48
Cift kaydirma komsuluk yap1st 0rnegi ........coecveveeeiieenieenienieeiesie e 49
Cikarim zinciri komsuluk yapist 0rmegi ........ocveeveeeiienieeniienieeieeieeen 51
Coziim kalitesine gore algoritmalarin siralanmast ..........ccceeeeveeeneennnnnns 66
En iyi performansa sahip algoritmalarin islem siiresi performanst......... 67
Cift tarafli montaj hatti........ccooieiiiiiiiiie e 78
COZUM dIZIST OTNEG.vvieeieeirieiieeieeeiie et see ettt ettt et e beessaeeaeeas 94

Ozel kisita sahip olmayan CTMHDP i¢in baslangic ¢dziimlerinin

Konumsal, bolgesel ve senkronizasyon kisitlarina sahip CTMHDP igin

baslangi¢ ¢oziimlerinin oluSturulmMaST........cceevieeiiieeriie e 100



1. BOLUM
GIRIS

Matematiksel model, bir siireci ya da sistem davranisini matematiksel olarak temsil
eden denklemler takimidir. Matematiksel modeller ¢esitli 6zelliklerine gore farkl
siniflara ayrilabilirler. Bu siniflandirmalardan biri de karar degiskenlerinin pozitif reel
degerler almasi ya da tamsayr degerler almasi seklinde ikiye ayrilan stirekli
optimizasyon problemi ve kesikli optimizasyon problemidir. Siirekli optimizasyon
problemleri tiim fonksiyonlarin dogrusal olmasi durumunda dogrusal programlama, en
az bir fonksiyonun dogrusal olmamasi durumunda ise dogrusal olmayan programlama
yontemi ile ¢oziilmektedir. Diger taraftan kesikli optimizasyon problemleri ise karar
degiskenlerinin tamsay1 degerler almasi durumunda tamsayili programlama, karar
degiskenlerinin kombinatoryal secenekleri s6z konusu oldugunda ise kombinatoryal

optimizasyon yontemleri ile ¢ozlilmektedir.

Tez caligmasinin temelini olusturan kombinatoryal optimizasyon problemleri, dikkate
alman amag¢ fonksiyonunu en iyileyen kesikli karar degiskenlerinin degerlerinin
bulunmasi ile ilgilenir. Diger bir deyisle kombinatoryal optimizasyon, belirli kisitlardan
olugsmus, sayilabilir sonlu bir uygun ¢o6ziim uzayinda, en kiiciikleme ya da en
biiylikleme 6lgiitliyle, matematiksel olarak modellenmis problemlerin incelenmesi ve en
iyl ¢O0ziimlin bulunmasini igerir. Teorik ve pratik 6nemi olan ¢ogu optimizasyon
problemi kombinatoryal yapidadir; bu tiir problemlere 6rnek olarak en kisa yol
problemi, gezgin satici problemi, atama problemi, atdlye cizelgeleme problemi ve arag
rotalama problemi verilebilir. Kombinatoryal optimizasyon problemleri ¢6ziim
acisindan hem kolay hem de zor problemleri bilinyesinde barindirmakta ve bu baglamda
P ve NP-zor olmak iizere iki sinifa ayrilmaktadir. Bir problem P sinifinda ise erisilebilir,
kolay ve optimum ¢oziimii elde edilebilir nitelikte; NP-zor sinifinda ise erisilemez, zor
ve optimum ¢Oziimii makul zamanlarda elde edilemez niteliktedir. P sinifindaki bir

problem, ¢oziim zamani problem boyutunun polinom fonksiyonu olarak artan bir



algoritma ile ¢oziilebilir. Ornegin atama, minimum kapsayan aga¢ ve sebeke akis
problemleri P sinifinda yer alan kombinatoryal optimizasyon problemlerindendir. NP-
zor sinifindaki problemlerin ¢6ziimii icin ise polinom zamanli bir algoritma yoktur;
clinkii optimum ¢6ziimii bulmak i¢in gerekli siire, problem boyutuna bagli olarak {istel
artis gostermektedir. 0 ya da 1 degerini alan n degiskene sahip bir problem i¢in tiim
¢oziimlerin birerleme zamam O(2")’dir. Kiigiik boyutlu problemler birerleme ile
¢oziilebilmesine ragmen, biiyiik boyutlu problemler i¢in bu yontem ile ¢dziime ulagsmak
miimkiin degildir. NP-zor siifindaki problemler i¢in dal-sinir ya da kesme diizlemi gibi
etkin yontemlerin basarisiz olmasinin nedeni, bu yontemlerin de iistel sinirlara sahip
olmasidir. NP-zor yapiya sahip kombinatoryal optimizasyon problemlerine 6rnek olarak
ise karesel atama problemi, gezgin satict problemi, montaj hatti dengeleme problemi,

ara¢ rotalama problemi, ¢izelgeleme problemi ve yer se¢imi problemi verilebilir.

Kombinatoryal optimizasyon problemlerinin ¢oziimiinde kullanilan algoritmalar kesin
algoritmalar ve sezgisel algoritmalar olmak {izere ikiye ayrilir. Dogrusal programlama,
dinamik programlama, dal-sinir algoritmasi, kesme diizlem yontemi gibi kesin
algoritmalar optimum ¢oziimii garanti eden algoritmalardir. Sezgisel algoritmalar ise
optimum ¢6ziimii garanti etmeksizin daha az ¢6ziim zamani ile optimuma yakin iyi bir
¢oziimii elde etmeyi hedefler. Optimum olmayan ¢oziimler liretebilen bu tekniklerin
gelistirilmesinin sebebi, problem boyutunun ¢ok biiylik olmasi ya da problemin kii¢ciik
alt problemlere ayrilmasinin zor oldugu durumlarda kesin yontemlerle probleme ¢6ziim

bulmanin mimkiin olmamasidir.

Bahsedildigi gibi geleneksel matematiksel yontemlerle sezgisel algoritmalar arasindaki
en 6nemli ayrim ¢ézlimiin optimalligi ve hesaplama siiresidir. Geleneksel matematiksel
yontemler optimum ¢Oziimii  verebilmekte ancak biiyiik boyutlu Ornekler
diistintildiiginde hesaplama stiresi bir dezavantaj haline gelmektedir. Ayrica geleneksel
yaklagimlar orijinal problem iizerinde bazi varsayimlar ve basitlestirmeler gerektirmekte
ve bulunan ¢6ziim orijinal problemin temsili ic¢in yeterli olmayabilmektedir.
Arastirmacilar ¢esitli optimizasyon problemlerini klasik optimizasyon prosediirlerine
uyarlamak i¢in oldukga caba gostermislerdir. Ancak bir ger¢ek hayat problemini belli
bir ¢oziim prosediiriine uyacak sekilde modellemek genellikle pek kolay degildir. Klasik

optimizasyon algoritmalar1 farkli tipte degiskenler, amac fonksiyonu ve kisitlar i¢eren



problem formiilasyonlarina uygulanabilecek genel bir ¢oziim stratejisi sunmamaktadir.
Ornegin simpleks algoritmas1, dogrusal amag fonksiyonu ve kisitlara sahip modellerin
cozlimiinde; geometrik programlama ise pozitif katsayili polinom ya da isaret¢e sinirh
olmasi gerekmeyen polinom yapida amag¢ fonksiyonuna sahip dogrusal olmayan
modellerin ¢oziimiinde kullanilabilmektedir. Ancak bircok optimizasyon problemi ayni
formiilasyon i¢inde farkl tipte degiskenler, amag fonksiyonlar1 ve kisitlar icermektedir.
Bu zorlugu asabilmek i¢in orijinal problemin parametreleri lizerinde bazi degisiklikler
ya da varsayimlar yapmak gerekmekte (degiskenlerin yuvarlanmasi, kisitlarin
gevsetilmesi gibi) ancak bu da ¢oziimiin kalitesini etkilemektedir. Dolayisiyla klasik
optimizasyon teknikleri bu tiir problemlerin ¢dziimii icin yeterli olmamaktadir. Iste
klasik optimizasyon tekniklerinin bu yetersizliklerini agabilmek i¢in problemden ve
modelden bagimsiz olan dogadan esinlenmis sezgisel optimizasyon algoritmalari
onerilmektedir. Bu teknikler hem etkin hem de daha esnek olup belirli problem

gereksinimlerine gore uyarlanabilmektedir [1].

Bircok gercek hayat probleminin kombinatoryal optimizasyon problemi olarak
modellenebilmesi, bu tiir problemlerin ¢oziimiinde hizli ve etkin olarak kullanilacak
araclarin gelistirilmesi ihtiyacin1 dogurmustur. Son yillarda metasezgisel algoritmalar
artan bir hizla zor kombinatoryal optimizasyon problemlerinin ¢dziimiinde
kullanilmaktadir. Ciinkii gercek hayatta genellikle sadece iyi c¢oziimlere ihtiyag
duyulmakta yani karar vericiler i¢in alt optimum bir ¢6ziim de yeterli olabilmektedir.
Baslangicta metasezgisel algoritmalar benzetimli tavlama, genetik algoritma ve tabu
aramadan olusurken, daha 1yi ¢6ziimler iretebilmek icin son yillarda birgok farkli teknik
gelistirilmistir. Bu tekniklerin bir dali olan siirii zekdsmna dayali algoritmalar ise
boceklerin - problem ¢6zme becerilerini taklit eden metasezgisel yOntemler
gelistirebilmek i¢in bdcek davraniglarina odaklanmistir. Sosyal bocek kolonileri
cevreden bilgi toplayan ve bu bilgiye goére davranislarini uyarlayan dinamik bir sistem
olarak diisiintilebilir. Bocekler arasindaki etkilesimin bir sonucu olan kolektif zekanin

en 6nemli parcalarindan biri ise bireysel bocekler arasindaki bilgi paylagimidir.

Diger taraftan arilarin yiyecek arama davranislari, 6grenme, hatirlama ve bilgi paylasma
Ozellikleri siirii zekasinin en ilgi ¢ekici arastirma alanlarindan birisidir. Bir ar1 kolonisi
birbiriyle etkilesen bireyler sistemi olarak diisliniilebilir. Bu tiir etkilesimli davranis

orneklerinden biri de bal arilarinin bulduklar1 yiyecek kaynagi hakkindaki bilgiyi



paylastiklar1 salimim dansidir. Bu dans aracilifiyla kaliteli bir yiyecek kaynagi bulan
arilar, yiyecek kaynagi hakkindaki yon, uzaklik ve nektar miktar1 bilgilerini diger
arilarla paylasirlar. Boylece farkli yiyecek kaynaklar1 bulabilmek i¢in, kolonideki diger
arilar da iyi bolgelere g¢ekilmektedir. Arilarin dans davraniglariyla ilgili yapilmis
caligmalar, arinin dans esnasindaki yOniiniin yiyecek kaynagi ile giines arasindaki
iliskiyi, dansin yogunlugunun yiyecek kaynagimnin uzakligini ve dansin siiresinin ise
nektar miktarin1 gosterdigini ortaya c¢ikarmistir. Yani arilarin kolektif zekasi sinerjik

bilgi degisimine dayanmaktadir [2, 3].

Bal arilarmin davramiglarina yonelik yapilan aragtirmalar yeni optimizasyon
algoritmalarinin gelistirilmesini saglamistir. Bal arilarinda yiyecek toplama olciitii yeni
yiyecek kaynaklarinin ne kadar hizli bulunup tiiketildigiyle; yapay yiyecek toplama ise
benzer olarak uygun ya da iyi kalitedeki ¢ozlimlerin bulunma hiziyla iliskilidir. Yeni
yiyecek kaynaklarinin bulunma maliyeti ise arilar arasindaki etkilesime bagli olarak
azalmaktadir. Yani yapay arilar arasindaki etkilesim uygun ¢oziimlerin daha hizh
bulunmasini saglamakta ve bulunan yiyecek kaynaklarinin kalitesi de artmaktadir.
Arilar arasindaki bu etkilesim zor kombinatoryal optimizasyon problemlerine iyi

¢Oziimler bulmaya yardimci olmaktadir.

Bu tez calismasinin amaci da zor kombinatoryal optimizasyon problemlerine iyi
coziimler iireten ve art davranislarini modelleyen yapay sistemler gelistirmektir. Bu
dogrultuda sirasiyla Fisher ve ark. [4] ve Bartholdi [5] tarafindan NP-zor yapiya sahip
oldugu ispatlanan Genellestirilmis Atama Problemi (GAP) ve Cift Tarafli Montaj Hatt
Dengeleme Problemi’ne (CTMHDP), Ar1 Algoritmasi (AA) [6] ve Yapay Ar1 Kolonisi
(YAK) algoritmast [7] temel alinarak ¢oziim aranmis ve ilgili algoritmalarin bu zor
kombinatoryal optimizasyon problemleri {izerindeki performansi incelenmistir. Her iki
problem i¢in de bilimsel yazindaki kesin ve sezgisel ¢oziim yontemleriyle yapilan
karsilastirmalar, Onerilen algoritmalarin etkin bir performansa sahip oldugunu

gostermistir.

Tez ¢aligmasinin ikinci boliimil, siirli zekas1 optimizasyon tekniklerinden biri olan ar
sisteminin kombinatoryal optimizasyon problemlerinin ¢dziimiinde kullanimina temel
olusturmasi igin siirii zekas1 ve ar1 sistemine ayrilmistir. ilk olarak siirii zekasindan ve

bu kavrama dayali optimizasyon algoritmalarindan bahsedildikten sonra dogadaki



gergek ar1 davraniglar1 detaylandirilarak bilimsel yazinda ar1 sistemi ile baglantili
miihendislik ¢aligmalar1 incelenmistir. Ardindan 6zellikle kombinatoryal optimizasyon
problemlerinin ¢oziimiinde kullanilan ar1 sistemi uygulamalarina deginilmistir. Ayrica
bu boliimde arilarin yiyecek arama davraniglari hakkinda detaylar verilerek tez

calismasinda temel alinan AA ve YAK algoritmasi agiklanmistir.

Ugiincii boliimde genellikle siirekli optimizasyon problemlerine uygulanmis olan AA ve
YAK algoritmasinin karmasik tamsayili optimizasyon problemlerindeki performansini
inceleyebilmek i¢in NP-zor bir problem olan GAP’nin ¢oziimiinde kullanilmasina yer
verilmistir. Ayrica GAP’nin AA ile ¢oziimiinde kullanilan komsuluk yapilarinin

algoritma tizerindeki etkisi incelenmistir.

Doérdiincii  bolimde yine zor bir kombinatoryal optimizasyon problemi olan
CTMHDP’nin genel yapisi ve bilimsel yazindaki ¢oziim yaklasimlari incelendikten
sonra probleme ait farkli kisitlar altinda ilgili algoritmalarla elde edilen genis deneysel
calisma sonuglart sunulmustur. Diger taraftan AA, bulanik ¢ok amacli CTMHDP nin
¢Oziimii i¢in de kullanilmis ve bulanik amagclar farkli teknikler altinda incelenerek bu

tekniklerin algoritma performansi tizerindeki etkisi incelenmistir.

Son olarak sonu¢ ve Oneriler boliimiinde, tez calismasindan elde edilen sonuglar ve

Oneriler tartigilmistir.



2. BOLUM
SURU ZEKASINA DAYALI OPTIiMiZASYON ALGORITMALARI

2.1. Giris

Bu boliim, siirii zekast optimizasyon tekniklerinden biri olan ar1 sisteminin
kombinatoryal optimizasyon problemlerinin ¢dziimiinde kullanimina temel olusturmasi
igin siirii zekas1 ve ar1 sistemine ayrilmustir. {lk olarak siirii zekdsindan ve bu kavrama
dayali optimizasyon algoritmalarindan bahsedildikten sonra dogadaki gergek ar1
davraniglar1 detaylandirilarak bilimsel yazinda ar1 sistemi ile baglantili miihendislik
calismalar1  incelenecektir. Ardindan  ozellikle kombinatoryal —optimizasyon
problemlerinin ¢éziimiinde kullanilan ar1 sistemi uygulamalarina deginilecektir. Ayrica
bu boliimde arilarin yiyecek arama davramiglart hakkinda detaylar verilerek tez

calismasinda temel alinan AA ve YAK algoritmasi agiklanacaktir.

2.2. Siirii Zekasina Dayali Optimizasyon Algoritmalar

Bilimsel yazinda kombinatoryal ve sayisal optimizasyon problemlerinin ¢oziimii i¢in
gelistirilen birgok modern sezgisel algoritma bulunmaktadir. Bu algoritmalar ele alinan
kritere bagli olarak popiilasyon tabanli, tekrarli, stokastik ve deterministik gibi farkl
gruplara ayrilabilir. Popiilasyon tabanli algoritmalar, tek bir ¢6ziim yerine bir ¢ozliimler
kiimesini temel almakta; tekrarlamali algoritmalar ise c¢oziime ¢oklu iterasyonlar
kullanarak yaklasmaktadir. Eger kullanilan algoritma bir ¢oziimii gelistirmek ig¢in
olasilik tabanlt bir kural kullaniyorsa stokastik, kesin bir kural kullaniyorsa
deterministik olarak adlandirilmaktadir. Diger taraftan popiilasyon tabanli algoritmalar
evrimsel algoritmalar ve siirli zekasina dayali algoritmalar olmak {izere iki 6nemli sinifa
ayrilmaktadir [8]. Evrimsel algoritmalar, organizma popiilasyonlarinin genetik kalitim
ve en iyinin yasamast gibi biyolojik islemlerden esinlendigi stokastik optimizasyon

algoritmalarin1 igerir. Genetik algoritma, genetik programlama, evrimsel strateji,



evrimsel programlama ve diferansiyel gelisim algoritmalar1 popiiler evrimsel

algoritmalardandir.

Tez caligmasinda temel alinin siirii zekas: ise son yillarda bir¢cok arastirmaci bilim
adamui i¢in bir ilgi alan1 haline gelmistir. Siirii zekasi, yetenekleri kisitli canlilarin bir
takim haline geldiklerinde iistiin yetenek ve yonetim gerektiren davranislar sergilemesi
olarak agiklanabilir. Bonabeau ve ark. [9] ise siirii zekasin “sosyal bocek kolonilerinin
ya da diger hayvan topluluklarmin kolektif davraniglarindan esinlenen herhangi bir
algoritma ya da dagitimli problem ¢6zme mekanizmasi tasarlama girisimi” olarak
tanimlamaktadir. Bonabeau ve ark. [9] bakis acilarin1 sadece termit, ar1, yaban aris1 ve
diger karinca tiirleri gibi sosyal boceklere yogunlagtirmislardir. Ancak siirii kelimesi
genel olarak birbiriyle iliskili ajan ya da bireyler toplulugu seklinde kullanilmaktadir.
Ajanlar arasindaki bu iliskiler dogal ortamda yiyecek bulma, yuva insa etme ya da
genisletme, ajanlar arasindaki etkili isboliimii, yavru besleme ve dis etkenlere cevap
verebilme seklinde ortaya c¢ikmaktadir [9]. Siirli yapisina ornek olarak, kovanlari
etrafinda hareket halinde olan arilar, bireysel ajanlar1 karincalar olan karinca kolonisi,
kus siirtileri, hiicre ve molekiil siirtisli olarak diisiiniilebilen bagisiklik sistemi verilebilir.
Dogadan esinlenen sezgisel yontemlerin temel 6zellikleri, dogada bulunan bir olguyu
modellemeleri, stokastik bir yapiya sahip olmalari, ¢ok ajanl sistemlerde genellikle
paralel bir yapt bulunmasi ve geri besleme bilgisinin kullanilmasidir [10]. Kendi
kendine orgiitlenen ve i¢inde bulundugu c¢evreye uyum saglayabilen dagitimli problem
¢6zme sistemleri gibi zeki siiri davraniglar1 edinebilmek i¢in kendi kendine orgiitlenme

ve is boliimii olmak {izere iki temel 6zellik gerekli ve yeterlidir [9].

e Kendi kendine orgiitlenme, sistemin diisiikk seviye bilesenleri arasindaki
etkilesim sayesinde global seviyede yapilar olarak karsimiza cikan dinamik
mekanizmalar kiimesi olarak tanimlanabilir. Bu mekanizmalar sistemin
bilesenleri arasindaki etkilesim i¢in temel kurallari olusturur. Bu kurallar ise
etkilesimin global oOriintiiyle higbir iligskisi olmadan tamamen yerel bilgiye
dayanarak gerceklestirilmesini saglar. Diger bir deyisle, siiriiyii olusturan ajanlar
degisen sartlara gore kendilerini Orgiitleyebilirler, yaptiklar1 igin cinsini
degistirme ve duruma gore kendilerine uygun isi tayin edebilme yeteneklerine

sahiptirler. Bonabeau ve ark. [9] kendi kendine orgilitlenmenin 4 temel 6zelligini



pozitif geri besleme, negatif geri besleme, siirekli degisim ve ¢oklu etkilesim
seklinde belirlemislerdir.

» Porzitif geri besleme, uygun yapilarin yaratilmasini saglayan basit bir
ampirik davranistir. Bazi karinca tiirlerinde iz birakma ve iz takip etme
ya da arilarda dans etme gibi iyilestirme ve giliclendirme davranislari
pozitif geri beslemeye 6rnek olarak verilebilir.

» Negatif geri besleme ise kolektif Oriintiiyli dengede tutmaya yardim
etmektedir. Yiyecek kaynaginin tiikenmesi, kalabaliklagmasi ya da
yiyecek kaynaginda rekabet seklinde ortaya c¢ikabilen doygunlugu
engelleyebilmek i¢in negatif geri besleme mekanizmasina ihtiyag
duyulmaktadir.

= Rastgele yiirliylisler, hatalar, siirli bireyleri arasinda rastgele is degisimi
gibi siirekli degisimler, yaraticilik ve yenilik i¢in ¢ok dnemlidir. Gelisen
yapilarda rastgelelik, yeni ¢ézlimlerin kesfini sagladigi i¢in biiyiik 6neme
sahiptir.

» Kendi kendine orgiitlenme genel olarak hem kendi hareketlerinin hem de
diger bireylerin hareketlerinin sonuglarimi diisiik seviyede kullanabilen

karsilikli etkilesime sahip bireyler gerektirir.

e Zeki siirli davraniglarinin diger bir 6zelligi olan isboliimii, belirli 6zelliklere
sahip bireyler tarafindan ayni anda gergeklestirilen farkli islerin varligi seklinde
tanimlanmaktadir. Isbirligi i¢indeki bu uzmanlasmis bireylerin aym andaki is
performansinin, uzmanlasmamis bireylerin sirali is performansindan daha etkin
olduguna inanilmaktadir. {s boliimii ayn1 zamanda siiriiniin arastirma uzayindaki

degisen sartlara cevap verebilmesini de saglamaktadir.

Siirli zekas1 temel olarak basit ajanlar arasindaki dolayli ve dolaysiz etkilesimi, degisen
cevre sartlarma uyumu gosteren esnekligi ve bazi bireylerin gorevlerini
gerceklestirememeleri durumunda kolonideki islerin devam edebilmesi kabiliyetini
temsil eden saglamlig1 vurgulamaktadir. Koloniyi olusturan ajanlar ¢ok basit kurallari
takip etmekte ve bireysel ajanlarin nasil hareket edeceklerini belirleyen merkezi bir
kontrol yapisi olmamasina ragmen ajanlar arasindaki yerel ve belli bir seviyedeki
rastgele etkilesim, zeki global davranisin olusumuna liderlik etmektedir. Siirii zekasi

algoritmalarinin kombinatoryal optimizasyon, iletisim aglar1 ve robotikteki basarili



uygulama sayisi lissel olarak artmaktadir [11]. Siirli zekasina dayali algoritmalardan en
yaygin olarak kullanilan Parcacik Siiri Optimizasyonu (PSO) ve Karinca Koloni

Optimizasyonu (KKO) algoritmasi izleyen boliimlerde daha detayli olarak verilmistir.

2.2.1. Parc¢acik Siirii Optimizasyonu Algoritmasi

PSO algoritmasi kus siiriilerinin davraniglarindan esinlenerek Kennedy ve Eberhart [12]
tarafindan gelistirilmis popiilasyon tabanli stokastik bir optimizasyon teknigidir. PSO
algoritmasinin klasik optimizasyon tekniklerinden en 6nemli farki tiirev bilgisine ihtiyag
duymamasidir. Bu 6zellik bir¢cok problemin ¢6ziimii i¢in gerekli olan karmasik islem
yiiklinlin hafifletilmesini saglamaktadir. Algoritma o6zellikle ¢ok boyutlu uzayda
dogrusal olmayan fonksiyonlarin optimizasyonunda iistiin performans gostermekte ve
fonksiyon optimizasyonu, bulanik sistem kontrolii, yapay sinir ag1 egitimi gibi bir¢ok

alanda basariyla uygulanabilmektedir.

PSO algoritmasi temelde kus siiriilerinin yiyecek aramalar1 ve yiyecek bulduktan sonra
birbirlerinden  faydalanarak  siirii  halinde yiyecege dogru  yonelmelerini
modellemektedir. Bu modeldeki en 6nemli nokta yiyecegi ilk bulan kusun digerlerine
rehberlik etmesi ve bireyler arasinda sosyal bilgi paylagiminin var olmasidir. Kuslarin
yerini bilmedikleri bir yiyecegi aramalari, bir probleme ¢6ziim aramaya; pargacik olarak
adlandirilan her bireyin pozisyonu, bir ¢dziime; bireyin hizi, degisime ve popiilasyon ise

kus siirtistine benzetilmektedir.

PSO algoritmasi rastgele c¢oOziimler iceren bir popiilasyonla baglatilmakta ve bu
coziimler giincellenerek optimum ¢6zlim arastirilmaktadir. Pargacik olarak adlandirilan
aday ¢oOziimler, kuslarin yiyecek ararken yiyecege en yakin kusu takip etmeleri gibi, o
andaki optimum pargacigi izleyerek problem uzayinda dolagmaktadirlar. Pargacik
hareket ettiginde, kendi koordinatlarini bir fonksiyona gondermekte, béylece parcacigin
uygunluk degeri yani yiyecege ne kadar uzaklikta oldugu olg¢iilmektedir. Bir pargaciga
ait hiz ve yon bilgisinin her seferinde nasil degisecegi, kendi koordinatlar1 ile komsu
pargaciklarin en iyi koordinatlarinin birlesimi ile belirlenmektedir. Ajanlarin kendi
tecriibelerine ve komsu ajanlarin tecriibelerine gore hareket etmeleriyle ajanlar arasinda

bilgi paylasimi saglanmaktadir [11].
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2.2.2. Karmnca Koloni Optimizasyonu Algoritmasi

KKO algoritmasi, yapay karinca adi verilen her bir ajan davranmiginin gercek karinca
davranislarina benzetildigi ¢ok ajanli bir sistemdir. Siirii zekasina dayali algoritmalarin
en basarili 6rneklerinden biri olan KKO algoritmasi klasik Gezgin Satic1 Problemi,
Karesel Atama Problemi, Genellestirilmis Atama Problemi, Ara¢ Rotalama Problemi,

Coklu Sirt Cantast Problemi gibi ¢ok ¢esitli problemlerde uygulama alani bulmustur.

KKO algoritmasi, karincalarin yiyecek arama davranisindan esinlenerek Dorigo [13]
tarafindan  Onerilmis, Ozellikle kesikli  optimizasyon problemlerinde basarili
uygulamalari olan bir yontemdir. Bir¢ok karinca kolonisinde karincalar yiyecek ararken,
oncelikle yuvalarinin etrafinda rastgele dolasarak kesfe baslarlar. Yiyecek kaynaklarini
bulduklarinda, yiyecegin kalitesi ve miktarin1 degerlendirdikten sonra bir kismini
yuvaya tagirlar. Bu doniis sirasinda diger karincalarin da ayni1 kaynagi bulabilmeleri i¢in
yiyecegin kalitesine ve miktarina bagli olarak kimyasal feremon maddesini gegtikleri
yolun tizerine birakirlar. Birakilan bu izler, diger karincalara rehberlik ederek belirli bir
olasilikla o yolu takip etmelerine ve kaynagi bulmalarima yardim eder. Feremon
vasitastyla yapilan bu dolayli iletisim, karincalarin yiyecek kaynagi ile yuva arasinda en
kisa yolu bulmalarini saglar. Iste karincalarm bu davramislari KKO algoritmasinin

gelistirilmesinde ilham kaynag1 olmustur.

Diger taraftan KKO algoritmasinin basarili uygulamalar1 arilarin kombinatoryal
optimizasyon problemlerinin ¢oziimiinde kullanilmasina bir basamak olusturmus ve son
yillarda arilarin dogal davranis Ozellikleri ¢esitli metasezgisel algoritmalarin

gelistirilmesine olanak saglamistir.

2.3. Dogadaki Ger¢ek Ar1 Davramslan

Bocekler diinyasindaki en ¢arpict mithendislik ve mimarlik bilgisine sahip olan arilar,
sosyal hayatlar1 ve aralarindaki iletisim ile diger pek ¢ok canlidan ayrilmaktadir. Bir ar
kolonisi, bir kralige, birkac yiiz erkek ve 10.000-80.000 isci aridan olusur. Kralice
arinin temel gorevi yumurtlamak olup lireme sadece kralige ar1 vasitasiyla gergeklesir.
Kralige ar1 yumurtlamadan baska, koloninin biitiinliigiinii ve kovandaki sistemin
isleyisini saglayan onemli maddeler de salgilar. Erkek arilarin tek fonksiyonu ise

kraliceyi dollemektir; yiyecek toplama, temizlik, yavrularin bakimi gibi islevlerle
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ilgilenmezler. Kovanda petek orme, yiyecek toplama, ari siitii liretme, kovan 1sisini

diizenleme, temizlik, savunma gibi diger tiim isleri ise is¢i arilar yapar.

Miihendislik ¢aligmalarinda ele alinan ar1 davraniglarinin en dnemlileri yiyecek arama
ve c¢iftlesmedir. Ari sistemi igerisinde bu tiir davraniglarin nasil gergeklestigi asagida

kisaca Ozetlenmistir.

Arilarin Yiyecek Arama Davranisi: Arilar ¢ogu zaman yiyecek bulmak i¢in kovandan
ayrilarak genis alanlar1 taramak zorunda kalirlar. Yeni bir yiyecek kaynagi bulan arilar,
koloninin diger tyelerine haber vermek fiizere kovana geri donerler. Arilar sagir
olmalarina ragmen yiyecek kaynagmin yerini, koloninin diger iiyelerine dans ederek
tarif edebilirler. Yiyecek kaynaginin bulunabilmesi i¢in kaynagin kovana uzakligi,
dogrultusu, zenginligi gibi gerekli olabilecek her tiirlii bilgi bu dansta gizlidir. Yiyecek
kaynagini1 kesfeden ar1 kovana doner ve diger arilarin dikkatini ¢ekecek sekilde stirekli
olarak belirli hareketleri tekrarlamaya baslar. Armin genel davranislarindan yiyecek
kaynag ile ilgili tiim bilgiler elde edilebilir. Ornegin nektar toplamis bir ar1 kovana
dondiiglinde sadece nektar1 bosaltip geri ugarsa bu, arinin faydalandigi kaynak bilinen
bir kaynaktir veya verimsizdir anlamina gelmektedir. Yiyecek kaynagi bulan arilardan
elde edilen bu bilgiler dogrultusunda diger arilar kolaylikla yiyecek kaynaginin yerini
bulurlar. Yiyecek kaynagina ¢ok fazla ar1 toplanmasi, kovanda dans eden arilarin sayisi
ile dogrudan baglantilidir. Tek bir armin dansi ile tim kovan harekete gecmez.
Oncelikle koloniden bir grup ar1 éncii olarak gider. Bu 6ncii grup ucustan dondiigiinde
onlar da dans ediyorsa daha fazla ar1 hedefe dogru yonelir. Bulduklar1 kaynak ne kadar
iyl ise, o kadar uzun siire dans ederler ve daha fazla ar1 toplarlar. Bdylece arilarin
dikkati daima en verimli yiyecek kaynagina yonelmis olur. Diger taraftan yiyecek
kaynagini bulan ar1 kovana geri donmeden once yiyecek kaynagma 06zel bir koku
bulastirir. Arilarin ¢igekleri isaretlemeleri sayesinde, diger arilar bu ¢icegin nektarinin
daha Once baska arilarca tliketildigini anlar ve o ¢icegi terk ederler. Boylece hem vakit

hem de enerji kaybindan kurtulurlar.

Bilimsel yazinda arilarin yiyecek arama davranisima dayali biyolojik calismalara
bakildiginda, Yonezawa ve Kikuchi [14] arilarin yiyecek arama davranigini inceleyerek
grup zekdsinin Onemini gosteren bir algoritma gelistirmislerdir. Gelistirilen

algoritmanin kolonide bir ve ii¢ ar1 oldugu varsayimiyla simiilasyonu yapilmistir. Karar
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verme siirecinde ii¢ ariya sahip sistemin bir artya sahip sisteme gore daha hizli ¢alistig
gosterilmistir. Diger taraftan arilarin degisen cevre sartlarina kolaylikla adapte olabilen
bir yiyecek arama davranigina sahip oldugu belirtilmistir. Schmickl ve ark. [15] ise ¢ok
ajanli bir simiilasyon platformu Tzerinde arilarin yiyecek arama davraniginin
saglamligini incelemislerdir. Cevresel degisikliklerin yiyecek arama stratejisini ve
etkinligini nasil etkiledigini arastirarak, ari kolonisinin bu konuda saglam ve iyi bir
adaptasyona sahip oldugunu belirtmislerdir. Yiyecek arama davranis1 konusunda,
karinca kolonisi davraniglarina dayali feremon tabanli algoritmalar ile ari kolonisi
davranislarina dayali feremon tabanli olmayan algoritmalar arasinda bir karsilastirma
calismasi gergeklestiren Lemmens [16], elde ettigi deney sonuglarina gore (i) feremon
tabanli olmayan algoritmalarin genel anlamda daha az siire gerektirdigini ve daha hizl
oldugunu, (ii) feremon tabanli algoritmalarin kii¢ciik boyutlu problemler igin iterasyon
basina daha az silire gerektirdigini, (iii) boyut arttikca feremon tabanli olmayan
algoritmalarin feremon tabanli algoritmalara gore daha iyi performansa sahip oldugunu

belirtmistir.

Ardarin Ciftlesme Davramisi: Kralice an ¢iftlesmek icin kovandan bir grup ariyla
birlikte yola c¢ikar. Bir siire sonra beraberindeki arilardan ayrilir ve erkek arilarin
toplandig1 alanlara dogru tek basina ugar. Bu alana belirli bir oranda yaklastiginda erkek
arilarin kendisini bulmalarini saglayan bir tiir feremon salgilamaya baslar. Ciftlesme
ucusu adi1 verilen bu ugus sirasinda erkek arilarin kraligeyi fark etmeleri ile ¢iftlesme
gerceklesir. Dollenmeden sonra kralige ar1 kovana geri donerken erkek arilar genellikle
hayatlarini1 kaybederler. Tek bir erkek arinin spermleri kralice arnin iireme kesesini
doldurmaya yetmediginden kralice birden fazla erkek aridan sperm alir. Déllenmeden
sonra erkek arilardan gelen biitiin spermler lireme kesesinde biriktirilir. Kralige, 4-5
senelik 0mrii boyunca ¢iftlesme ugusu sirasinda edindigi bu spermleri kullanacaktir.
Diger pek cok canlidaki iireme hiicrelerinin aksine erkek arilarin spermleri kralicenin
viicudunda bozulmadan senelerce muhafaza edilebilecek bir yapiya sahiptir. Kralice ar1
bu keseden kendi istegine gore sperm birakarak dollenmeyi diizenler. Adams ve ark.
[17], Page ve ark. [18], Dietz [19], Laidlaw ve Page [20], Rinderer ve Collins [21]

arilarin ¢iftlesme davranisini biyolojik olarak inceleyen ¢esitli caligmalar sunmusglardir.
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2.4. An Sistemi ile Baglantih Miihendislik Calismalari

Arn davraniglartyla ilgili biyolojik arastirmalar uzun yillardir devam etse de bilgisayar
bilimleri ile ilgili caligmalar pek yaygin degildir. Giinlimiize kadar yapilmis ¢aligmalar;
yiyecek arama davramigina dayali, ¢iftlesme davranisina dayali ve kombinatoryal

optimizasyon problemleri uygulamalar1 olmak {izere 3 grup altinda incelenmistir.

2.4.1. Yiyecek Arama Davramisina Dayah Calismalar

Sato ve Hagiwara [22] genetik algoritma iizerinde arilarin yiyecek arama davranisina
dayali degisiklikler yaparak Ari Sistemi algoritmasini olusturmuslardir. Bir an
kolonisinde her ar1 bireysel olarak yiyecek aramakta, yiyecek kaynagini bulduktan sonra
salinim dansiyla bilgi paylasiminda bulunmakta ve yine bireysel olarak yeni bir yiyecek
kaynag1 aramaya devam etmektedir. Benzer olarak onerilen algoritmada da dnce global
arama yapilmaktadir. Bu amacla basit genetik algoritma ile daha yiiksek uygunluk
degerine sahip siiper kromozomlar elde edilmektedir. Daha sonra kromozomlarin ¢gogu
yogunlastirilmis ¢aprazlama ile sliper kromozomlarin bilgilerini elde etmekte ve ¢oklu
popiilasyon kullanilarak daha yogun arama yapilabilmektedir. Geleneksel ¢aprazlamada
her cift rastgele secilmekte iken, yogunlastirilmis caprazlamada biitiin kromozomlar
stiper kromozomla bir ¢ift olugturmaktadir. Ayrica Ar1 Sistemi algoritmasinin yerel
arama kabiliyetini artirmak i¢in s6zde-simpleks yontemi de algoritmaya dahil edilmistir.
Eger bir dongli boyunca elde edilen ¢oziim tatmin edici degilse global arama
tekrarlanmaktadir. Bilindigi gibi genetik algoritma iyi bir global arama kabiliyetine
sahip olsa da yerel arama kabiliyeti yeterli degildir. Ancak Ar Sistemi ile yerel
minimuma diisme olasiligt azalmaktadir. Ciinkii algoritmanin amaci genetik
algoritmanin global arama kabiliyetini azaltmadan yerel arama kabiliyetini
gelistirmektir. Yapilan testlerde Ar1 Sistemi algoritmasi geleneksel genetik algoritma ile
karsilastirilmis ve ozellikle yiiksek derecede karmasik, ¢ok degiskenli fonksiyonlarda

Onerilen algoritmanin daha iyi performans gosterdigi goriilmustiir.

Siirekli fonksiyon uygulamalar1 agisindan arilarin yiyecek arama davranigini temel alan
caligmalara bakildiginda, Yang [23] 6zellikle fonksiyon optimizasyonu problemlerinde
etkin olan Sanal Ar algoritmasini gelistirmistir. Onerilen algoritma genetik algoritmaya
benzese de bagimsiz ¢ok sayida armin paralel calismasindan dolayr daha etkindir.

Deneysel c¢alisma sonuglari, Onerilen algoritmanin genetik algoritmadan daha etkin
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oldugunu gostermistir. Diger taraftan tez ¢alismasinda temel alinan YAK algoritmasi ve
AA sirastyla Karaboga [7] ve Pham ve ark. [6] tarafindan Onerilmis olup arilarin
yiyecek arama davranmigini  modelleyen siirii  zekadsina dayali metasezgisel
algoritmalardir. YAK algoritmast ve AA 6zellikle sayisal optimizasyon problemlerinin
¢Ozlimii i¢in gelistirilse de sonraki yillarda hem fonksiyonel hem de kombinatoryal
optimizasyon problemlerinin ¢oziimiinde kullanilmistir. YAK algoritmasi ve AA’nin ve
bilimsel yazindaki bu algoritmalara dayali ¢aligmalarin detaylar sirasiyla 2.6 ve 2.7

boliimlerinde verilecektir.

2.4.2. Ciftlesme Davramisina Dayalh Calismalar

Abbass [24] arlarin ¢iftlesme davramisindan esinlenerek Arilarin  Ciftlesme
Optimizasyonu (ACO) adi verilen yeni bir arama algoritmasi gelistirmistir. Gergek
hayatta bir ¢iftlesme ucusu kralicenin dansiyla baslamakta ve erkek arilar ¢iftlesmek
icin kralice ar1y1 takip etmektedir. Her ¢iftlesmede spermler koloninin genetik havuzunu
olusturmak i¢in kralige arinin {ireme kesesine alinarak birlestirilmektedir. Kralice ar1 ise
bu spermlerin rastgele bir karigimini segerek yumurtalari dollemektedir. Benzer olarak
ACO algoritmasindaki ¢iftlesme ugusu, durum uzayindaki bir gecis kiimesi olarak
diistiniilebilir ve kralice ar1 farkli durumlar arasinda hareket ederek her bir durumda
olasilikll olarak erkek ariyla ¢iftlesir. Kralige ¢iftlesme ugusunun basindaysa yani hizi
yiiksekse ya da erkek arinin uygunluk degeri kraligeninki kadar iyiyse ¢iftlesme olasiligi

daha ytiksek olacaktir.

ACO algoritmasi kraliceye ait ¢oziimiin rastgele olusturulmasiyla baslar, bu ¢6zliim isci
arilar tarafindan sezgisel bir yontemle gelistirilir ve ciftlesme uguslar1 gergeklestirilir.
Her bir ¢iftlesme ucusunda kralicenin enerjisi ve hizi baglangic durumuna
getirilmektedir. Daha sonra kralige ar1 kendi hizina bagl olarak farkli ¢oziimler arasinda
hareket ederek erkek arilarla giftlesmektedir. Eger bir erkek ar1 kralice ariyla ¢iftlesirse
(erkek ar1 olasilikli karar kuralin1 gegerse), erkek armnin spermi kralige arinin lireme
kesesine alinir (kism1 ¢oziimler listesi) ve kralige arinin hizi ve enerjisi azaltilir. Kralice
ar1 ¢iftlesme ugusunu tamamladiktan sonra kovana doner ve spermlerden birini rastgele
secerek caprazlama ve mutasyon islemlerini gerceklestirir. Is¢i ar1 ise yavru armnm
gelistirilmesinden sorumludur ve is¢i ar1 sayisi algoritmada kullanilan sezgisel yontem

sayisint gostermektedir. Eger uygunluk degeri en iyi olan yavru arinin ¢6ziimii kralige
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arminkinden daha iyiyse, krali¢e ar1 ¢6ziimii bu ¢éziimle degistirilir. Kalan yavru arilar

ise Oldiiriiliir ve yeni ¢iftlesme ugusu baslar.

Sonraki bir¢ok c¢alismaya temel olugturan ACO algoritmasinin bu halinde, koloninin bir
kralige ve bir isci aridan olustugu varsayilmaktadir. Onerilen algoritma, tek bir ¢iftlesme
ucusunda gercgeklestirilebilecek maksimum ¢iftlesme sayisini gosteren kralice arinin
tireme kesesi biiyiikliigii, kralice tarafindan iiretilecek yavru ar1 sayisi ve yerel aramanin
derinligini belirleyen yavru armin gelistirilmesi i¢in harcanacak siire olmak {izere ii¢

parametreye sahiptir.

Onerilen algoritmanin genis uygulama alam buldugu Genel Kisit Saglanabilirlik
Problemi, degiskenlerin alanlar1 dahilinde bir kisitlar kiimesini saglayacak degiskenler
kiimesinin belirlenmesidir. Saglanabilirlik Problemi (SP) ise Genel Kisit Saglanabilirlik
Problemi’nin 6zel bir tiirii olup, bu problemde her bir degiskenin alan1 dogru ya da
yanlis olarak nitelendirilmektedir. 3-SP ise Saglanabilirlik Problemi’nin 6zel bir tiiri
olup bu problem c¢esidinde her kisit ii¢ degisken igermektedir. ACO algoritmasinin
performanst 3-SP {izerinde test edilmis ve sonuglar algoritmanin oldukc¢a basaril
oldugunu gostermigstir. Abbass [25] ar1 kolonisinin bir kralige ar1 ve birden fazla isci
artya, Abbass [26] ise birden fazla kralice ar1 ve bir grup is¢i ariya sahip oldugu
varsayimiyla ACO algoritmasini giincellemistir. Gelistirilen algoritmalar 3-SP {izerinde
test edilmis ve en iyi sonuglarin diisiik koloni boyutu ve ortalama {ireme kesesi boyutu

ile elde edildigi gorilmiistiir.

Teo ve Abbass [27] ¢Oziim uzayim1 daha i1yi bolgelere tasiyacak geleneksel tavlama
yaklagimint  kullanarak ACO algoritmasim1  degistirmislerdir.  Orijinal ACO
algoritmasindaki gibi biitiin yoriingelerin kabuliiniin aksine, ancak daha iyi bir ¢éziim
uzayima hareket gerceklestirilebiliyorsa kabul karari alinmakta, daha koti bir ¢éziim
uzayina ancak kralice arinin uygunluk degerine bagli bir fonksiyonla olasilikli olarak
gecilmektedir. 3-SP {izerinde yapilan deneysel c¢alismalar sonucunda yeni tavlama

fonksiyonuyla daha fazla iyilesme saglandig1 goriilmiistiir.

ACO algoritmasindaki karar verme siirecine biyolojik acidan bakildiginda erkek arilar
genellikle bagka kolonilerden geldikleri i¢in kralige aridan bagimsiz olduklari
goriilmektedir. Bu sebeple c¢oziimler arasindaki gecislerin erkek arinin uygunluk

degerine bagli olmasi seklinde tekrar diizenlenen ACO algoritmas1 Teo ve Abbass [28]
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tarafindan 6nerilmis olup 3-SP iizerinde 6nceki ACO algoritmalariyla karsilagtiriimistir.
Yeni ACO algoritmasi ile daha iyi sonuglar elde edildigi hatta algoritmanin onceki

halleriyle ¢6ziim bulunamayan problemlere ¢oziimler bulunabildigi tespit edilmistir.

Chang [29] ACO algoritmasinin kombinatoryal optimizasyon problemlerinin
¢Ozlimiindeki etkinligini teorik agidan ortaya koyarak algoritmanin global optimuma
yakinsadigini ispatlamistir. Ayrica ACO algoritmasinin benzetimli tavlama ile genetik
algoritmanin melez bir birlesimi olarak diisiiniilebilecegini belirtmistir. Benzetimli
tavlama kralice armin ¢iftlesme ugusundaki erkek ari spermlerinin lireme kesesine
alinmasina karsilik gelirken, genetik algoritma bazi farklarla yavru ar iiretimi ve
gelisimi adimlarma karsilik gelmektedir. Ayrica bu calismada ACO algoritmasi,

Stokastik Dinamik Programlama Problemleri’nin ¢6ziimii i¢in de kullanilmigtir.

Bozorg Haddad ve ark. [30] ACO algoritmasina dayanarak yiiksek derecede dogrusal
olmayan, kisitlhi ve kisitsiz matematiksel modellerin ¢6ziimii icin Bal Arilarinin
Ciftlesme Optimizasyonu (BACO) algoritmasini gelistirmislerdir. BACO algoritmasinin
performanst bir¢ok kisith ve kisitsiz matematiksel optimizasyon fonksiyonunda test
edilerek elde edilen sonuglar genetik algoritma ile karsilastirilmistir. Sonuglar BACO
algoritmasimin az bir farkla daha {istlin performans sagladigini gostermistir. Ayrica
gelistirilen algoritma, tek su deposunda optimum operasyon politikasini gelistirmek i¢in
de kullanilmig ve yine oldukga iyi sonuclar elde edilmistir. Afshar ve ark. [31] ise
BACO algoritmasin1 siirekli optimizasyon problemleri i¢in giincelleyerek dogrusal
olmayan, siirekli ve kisith Tek Su Deposu Problemi ic¢in bir uygulama
gerceklestirmiglerdir. LINGO 8.0 NLP ile elde edilen global optimum degerlerle
yapilan karsilagtirmada algoritmanin optimum degere olduk¢a hizli yakinsadigi
gorlilmiistiir. Arefi ve ark. [32] dagitim aglarindaki harmonik durum degiskenlerini
tahmin edebilmek i¢cin BACO algoritmasina dayali bir algoritma Onermislerdir.
Simiilasyon sonuglar1 6nerilen algoritmanin hiz ve dogruluk agisindan agirlikli en kiigiik
kareler yontemi, genetik algoritma ve tabu arama algoritmalarina gore ¢ok daha etkin
oldugunu gostermistir. Marinakis ve Marinaki [33] Olasilikli Gezgin Satict Problemi
icin Ac¢gdzlii Rastgele Uyarlanir Arama Prosediirii (ARUAP), genisletilmis komsuluk
arama stratejisi ve BACO algoritmasina dayali melez bir yap1 6nermislerdir. Pargacik

stirli  optimizasyonu, klasik ARUAP algoritmasi, tabu arama ve karinca koloni
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optimizasyonu algoritmalar ile yapilan karsilagtirmalar, onerilen algoritmanin iyi bir

performansa sahip oldugunu gostermistir.

ACO ve BACO algoritmalarimin uygulama caligmalarina bakildiginda ise Bozorg
Haddad ve Afshar [34] ACO algoritmasini Su Kaynaklari Yonetimi Problemi’ne;
Fathian ve ark. [35] BACO algoritmasini bir veri madenciligi teknigi olan kiimelemeye
ve Horng [36] BACO algoritmasin dijital goriintii sikistirma uygulamalarinda gii¢lii bir

teknik olan vektdr nicelemeye uygulamiglardir.

Diger taraftan bilimsel yazinda, arilarin c¢iftlesme davranisini genetik algoritmanin
performansini iyilestirme amagl olarak kullanan c¢alismalar da mevcuttur. Jung [37]
genetik algoritmanin performansini iyilestirebilmek i¢in Kralice Ar1 Evrim (KAE)
algoritmasini gelistirmistir. KAE algoritmasinda kralice ari, rulet tekerlegi se¢me
yontemi diginda bir segme algoritmasiyla belirlenen arilar tarafindan melezlenmektedir.
Ancak bu yaklasimla erken yakinsama olasiligi artmaktadir. Bu olasiligi azaltmak i¢in
biitiin bireylerin diisiik bir oranla mutasyona ugramasi yerine bazi bireyler yiiksek
derecelerde mutasyona ugratilmistir. Onerilen algoritma, bir kombinatoryal ve iki
fonksiyon optimizasyon problemi iizerinde test edilmis ve yapilan deneyler Onerilen
algoritmanin genetik algoritmay1 daha hizli global optimuma gotiirdiiglinii géstermistir.
Azeem ve Saad [38] KAE algoritmasi iizerinde baz1 degisiklikler yapmuslardir.
Gelistirilen algoritmaya gore eger krali¢ce arinin uygunluk degerine ¢ok yakin ya da
daha iyi uygunluk degerine sahip bir ¢oziim elde edilmisse, bu ¢dziim bagka bir havuza
alinmakta ve o havuzun kralige aris1 olmaktadir. Diger bir fark ise ¢aprazlama operatorii
olup orijinal algoritma her bir genin belli bir olasilik dahilinde ¢aprazlandig: bir-bigimli
caprazlama kullanirken gelistirilen algoritmada, agirliklarin  her bir genin
popiilasyondaki diger bireylere olan benzerligine gore belirlendigi agirliklandirilmis bir-
bicimli ¢aprazlama kullanilmaktadir. Bu tip caprazlama ile genetik algoritma daha fazla
yeni durum uzayini arastirabilmektedir. Onerilen algoritma Bulanik Bilgi Kontrolii'nde
Olceklendirme faktoriinlin ayarlanmasi i¢in dogrusal olmayan iki 6rnek iizerinde test
edilmistir. Sonuglar gelistirilen algoritmanin geleneksel kontrol algoritmalarindan ¢ok
daha iyi sonuglar verdigini gostermistir. Qin ve ark. [39] ise KAE algoritmasini
Ekonomik Gii¢ Gonderme Problemi’ne uygulamislar ve KAE algoritmasinin geleneksel

genetik algoritmadan daha hizli ve saglam oldugunu belirtmislerdir.
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Karci [40] ise genetik algoritmanin performansini artirmak i¢in ‘Ar1 Caprazlamasi® adi
verilen 3 yeni ¢aprazlama yaklagimi Onermistir. Kralice ar1 diger arilarla bir birlesme
gerceklestirdiginden ¢aprazlama yapilacak ilk kromozom kralige artya aittir. Birinci
caprazlama yaklasiminda en iyi uygunluk degerine sahip birey sabitlenmekte ve kalan
kromozomlar her nesilde en az bir kere bu kromozomla ¢aprazlanmaktadir. Ikinci
yaklagimda en kotlii uygunluk degerine sahip birey sabitlenmekte ve yine kalan
kromozomlar her nesilde en az bir kere bu kromozomla ¢aprazlanmaktadir. Uciincii
yaklagimda ise popiilasyondaki bireyler uygunluk degerine gore siralanmakta ve ilk
nesilde sabitlenen birey, bu siradaki ilk kromozom, ikinci nesilde ikinci kromozom vb.
olmaktadir. Onerilen kromozom tipleri bir-bicimli ¢aprazlama ile karsilastiriimistir.
Yapilan testlerin ¢ogunda ar1 caprazlamasinin daha az iterasyon sayisina sahip oldugu
goriilmiis ve en kotii ¢oziimlerin bir-bigimli ¢aprazlama ile elde edildigi belirtilmistir.
Diger taraftan bir-bigimli ¢aprazlama ile popiilasyondaki farklilik kisa bir siire i¢inde

kaybedilmis, ar1 ¢caprazlamasiyla ise farklilik daha uzun siire korunabilmistir.

2.4.3. Kombinatoryal Optimizasyon Problemlerinde Ar Sistemi Uygulamalari

Tez ¢alismasinin temel konusu olan kombinatoryal optimizasyon problemlerinde ar1
sistemi uygulamalar1 bu boliimde incelenmistir. Giinlimiize kadar yapilan uygulama
calismalar1 ulastirma problemleri, telekomiinikasyon uygulamalari, c¢izelgeleme
problemi, ekonomik giic gonderme problemi, navigasyon problemi, saglanabilirlik
problemi, veri madenciligi, kaynak paylastirma problemi ve dalga boyu atama ve
rotalama problemi seklinde karsimiza ¢ikmaktadir. Belirtilen problemlerin ¢oziimii igin
Onerilen ar1 sistemine dayali ¢oziim yaklagimlar1 detayli bir sekilde izleyen boliimlerde

verilmigtir.
2.4.3.1. Ulastirma Problemleri

Lucic [41] ulastirma problemlerinin ¢0ziimii i¢in Ar1 Sistemi (AS) algoritmasini
onererek Gezgin Satic1 Problemi (GSP) ve Stokastik Ara¢ Rotalama Problemi (SARP)

tizerinde caligmustir.

GSP her noktadan sadece bir kere gececek minimum uzunluga sahip turu bulmayi
amaglayan NP-zor bir problemdir. Onerilen algoritma, arilarin nektar topladig1 grafik

tizerindeki noktalardan birine, kovanin yerlestirilmesiyle baslar. Yapay arilar belli bir
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siire boyunca nektar toplarlar ve kovanin pozisyonu rastgele degistirilir. Arilar yeni
pozisyondan tekrar nektar toplamaya baglarlar ve kovanin yeri tekrar degistirilir.
Arastirma prosesindeki her bir iterasyon, kovanin degisen bir pozisyonunu gostermekte

ve bir ya da daha fazla uygun ¢6ziim bulundugunda iterasyon sona ermektedir.

Yapay arilar kesikli zamana sahip bir ¢evrede yasamakta, dolayisiyla her bir iterasyon
belli sayida asamalardan olusmaktadir. Arilar herhangi bir agsamada ziyaret edecekleri
noktalari rastgele segmektedirler. Tki nokta arasindaki uzaklik arttikca bu baglantinin bir
ar1 tarafindan secilme olasilig1 da azalmaktadir. Arastirma prosesinin baginda uzakligin
etkisi az iken iterasyon sayisi arttikga uzakligin etkisi de artirilmaktadir. Diger taraftan
belli bir baglantiy1 ziyaret etmis arilarin toplam sayisi ne kadar biiyiikse o baglantinin
gelecekte de secilme olasiligl o kadar yiiksek olmaktadir. Bu da kolonideki bireysel

arilar arasindaki etkilesimi gostermektedir.

Bir asama siiresince arilar belli sayida noktay1 ziyaret ederek kismi bir gezgin satici turu
olusturmakta ve kovana donmektedir. Daha sonra kovanda bir karar verme prosesine
katilarak, yiyecek kaynagina donmeden Once dans ederek kovandaki diger arilar
yonlendirme, diger arilar1 yonlendirmeden yiyecek kaynagina geri donme ya da yiyecek
kaynagini terk etme kararlarindan birini vermektedirler. Diger arilar1 yonlendirmeden
yiyecek kaynagina geri donme alternatifi, arilarin sosyal bocekler olup aralarinda bir
etkilesim olmasi sebebiyle ¢ok diisiik bir olasiliga sahiptir. Bir arinin ayn1 kismi turu
kullanmas1 ya da onu terk etmesi ise kismi turun uzunluguna baglhidir. Arinin buldugu
tur ne kadar uzunsa, sonraki agsamada ayni turu kullanma olasilig1 o kadar azdir. Belli
bir baglanti iizerindeki nektar miktari, baglantinin uzunluguyla ters orantilidir. Herhangi
bir asamanin basinda eger bir ar1 ayn1 kismi turu kullanmamaya karar verirse dans
alanina gider ve bir olasilik fonksiyonuna gore baska bir ariy1 takip eder. Bu fonksiyon

kismi turun toplam uzunluguna ve o turu kag arinin 6nerdigine baglidir.

Diger taraftan gercek hayatta biitiin arilar es zamanl olarak yiyecek aramaya
cikmamaktadirlar. Algoritmada da her iterasyonun basinda biitiin arilarin kovanda
oldugu varsayilarak her asamada yiyecek aramaya ¢ikan ar1 sayisi artirilmistir. Bunlara
ek olarak kovani tekrar yerlestirmeden Once mevcut iterasyonda elde edilen ¢oziimii

gelistirmek amaciyla 2-opt ve 3-opt sezgisel algoritmalar1 uygulanmustir.
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AS algoritmasinin performansi c¢esitli GSP’leri iizerinde test edilmis, sonuglar 100
noktadan daha az boyuta sahip test problemlerinde AS algoritmasinin optimum ¢oziimii

bulabildigini ve hesaplama siiresinin yeterince diisiik oldugunu gdstermistir.

Lucic ve Teodorovic [42], Lucic ve Teodorovic [43], Lucic ve Teodorovic [44]
caligmalarinda, test problemleri acgisindan Lucic [41] c¢alismasinin ¢esitli uzantilarini

sunmuslardir.

Diger taraftan SARP ise depolarin ve hizmet edilecek noktalarin yerleri, arag
kapasiteleri kesin olarak ve hizmet edilecek noktalarin talepleri yaklasik olarak
biliniyorken ulagtirma maliyetini minimize edecek rotanin bulunmasi olarak
tanimlanmaktadir. Noktalardaki taleplerin belirsiz olmasi1 sebebiyle araclar belli bir
noktaya gidip yetersiz kapasiteden dolayr hizmet veremeyebilmektedir. Bu durumda
aracin depoya geri dondiigl, yiikiinii bosalttigi, basarisiz oldugu noktaya geri dondigi
ve planlanan tura devam ettigi varsayilmaktadir. Dolayisiyla noktalardaki talepler
rastgele bir degisken olarak diisiiniilmekte ve gercek talep degerleri ancak noktalara
gidildiginde bilinebilmektedir. Lucic [41] SARP’ne iyi ¢oziimler iiretebilmek i¢cin AS
algoritmast ile bulanik mantik yaklasimini birlestirmistir. Onerilen yaklasimin temel iki
adim vardir. {lk adimda Ara¢ Rotalama Problemi, AS algoritmas1 kullamlarak ilk
noktanin depo olarak diislintildiigii bir GSP gibi ¢oziiliir ve genellikle orijinal problem
i¢in uygun olmayan bir ¢dziim elde edilir. Ikinci adimda ise bir aracin rotasmin ne
zaman bitirilecegine ve dnceki adimda bulunan ¢éziimii ve bulanik kurallar1 kullanarak
siradaki aracin rotasinin ne zaman baslatilacagina karar verilir. Gelistirilen model
cesitli GSP ornekleri iizerinde test edilmis, elde edilen sonuglar AS algoritmasiyla elde
edilen en iyi ¢oziimle karsilastirilmis ve en iyi ¢ozliime ¢ok yakin sonuglar bulundugu
goriilmiistiir. Lucic ve Teodorovic [45] calismasi ise Lucic [41] calismasinda SARP igin

Onerilen ¢oziim yaklasimini igermektedir.

Teodorovic ve Dell’Orco [46] deterministik kombinatoryal problemlerin yaninda
belirsizlik altindaki kombinatoryal problemlerin de ¢ozlimii i¢in AS algoritmasinin daha
genel bir hali olan Ar1 Kolonisi Optimizasyonu (AKO) metasezgiselini dnermislerdir.
Arilar arasindaki iletisimde, yaklasik sebeplendirme ve bulanik mantik kurallarinin
kullanildig1 algoritmanin performansi, Tur Eslestirme Problemi iizerinde analiz

edilmistir. Tur Eslestirme Problemi, ara¢ ve yolcularin toplam hareket uzunlugunun ya
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da toplam gecikmenin minimize edildigi ya da ara¢ kullaniminin dengelendigi, arag ve
yolcularin rota ve ¢izelgelerinin belirlenmesi problemidir. Onerilen yaklagimi
destekleyecek teorik sonuglar olmasa da baslangi¢ sonuglari umut vericidir. Son olarak
Wong ve ark. [47] ise GSP’nin ¢oziimii i¢in AKO algoritmasi ile 2-opt yerel arama

sezgiselini birlestirmislerdir.
2.4.3.2. Telekomiinikasyon Uygulamalar

Nakrani ve Tovey [48] internet hizmetlerine dinamik olarak Yer Paylastirma Problemi
icin Bal Ars1 algoritmasim &nermistir. Onerilen algoritmada bir internet hizmet
saglayicisindaki hizmet saglayic1 ve HTTP istek kuyruklari, sirasiyla yiyecek arayan
arilar ve yiyecek kaynaklar1 olarak modellenmistir. Onerilen algoritmanin sonuglart
optimum yer ayirma politikasint hesaplayan bir algoritma, yer ayirma politikasin
hesaplamada Onceki bilgileri kullanan a¢g6zlii bir algoritma ve miimkiin biitiin statik
yer ayirma politikalar1 arasinda en 1iylyi bulan optimum-statik algoritmayla
karsilagtirilmistir. Sonuglar 6nerilen algoritmanin statik ya da a¢gdzlii algoritmalardan
daha iyi oldugunu gdstermistir. Wedde ve ark. [49] ise arilarin dans dili ve yiyecek
arama davraniglarindan etkilenerek Ar1 Kovani adi verilen, telekomiinikasyon aginda

rotalama icin hata toleransli, uyarlanir ve saglam bir rotalama protokolii sunmuslardir.
2.4.3.3. Cizelgeleme Problemi

Chong ve ark. [50], Nakrani ve Tovey [48] calismasindan etkilenerek NP-zor bir
problem olan At6lye Tipi Cizelgeleme Problemi’nin ¢ézliimii i¢in arilarin yiyecek arama
davranisini kullanan yeni bir yaklasim 6nermislerdir. Algoritmanin performansi gesitli
test problemleri {izerinde karinca koloni optimizasyonu ve tabu arama algoritmalariyla
karsilagtirilmistir. Test sonuglar1, ¢6ziim kalitesi ve hesaplama siiresi acisindan tabu
aramanin diger iki sezgiselden daha iyi performans gosterdigini ortaya koymustur.
Diger taraftan ar1 algoritmasi, karinca koloni optimizasyonu algoritmasindan daha
basarili olup her iki yontemin hesaplama siireleri yaklasik olarak esittir. Koudil ve ark.
[51] ise ACO algoritmasini Boliintileme ve Cizelgeleme Problemleri’nin
entegrasyonuna uyarlamislardir. Onerilen yaklasimin test sonuglar genetik algoritmayla
karsilastirilmig ve ACO algoritmasinin ¢6zliim kalitesi agisindan iyi ¢oziimler tirettigi ve

hesaplama siiresi agisindan genetik algoritmadan daha iyi oldugu gosterilmistir.
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2.4.3.4. Ekonomik Gii¢ Gonderme Problemi

Ekonomik Gii¢ Gonderme Problemi dogrusal olmayan, kisitlh ve karmagik bir
optimizasyon problemi olup ayn1 anda hem maliyeti minimize etmeyi hem de giic

sistemindeki talepleri karsilamay1 amaglamis bir problemdir.

Kumar ve ark. [52] Ekonomik Gii¢ Gonderme Problemi’nin ¢6ziimii i¢in Ari
Optimizasyon algoritmasini énermislerdir. Onerilen yaklasim ile umut verici sonuglar
elde edilmis olup algoritmanin saglamlig1 ve etkinligi ispatlanmistir. Chokpanyasuwan
ve ark. [53] ise jenerator kisitlarina sahip Ekonomik Gii¢ Gonderme Problemi’nin
¢Oziimii i¢in AKO algoritmasimi kullanmiglardir. Elde edilen simiilasyon sonuglari
benzetimli tavlama, genetik algoritma, tabu arama, parcacik siirii optimizasyonu ile
karsilastirilmig ve sonuglar Onerilen yaklasimin daha yiiksek kalitede sonuglar1 daha

hizl bir sekilde elde ettigini gdstermistir.
2.4.3.5. Diger Uygulamalar

Bilimsel yazindaki diger kombinatoryal optimizasyon problemi uygulamalari
incelendiginde, Bianco [54] arilarin navigasyon davranisindan hareketle biiyiik boyutlu
navigasyon i¢in bir eslemleme modeli Onermektedir. Arilar yiyecek ararken
kilometrelerce yol kat etmekte ve miikemmel bir hassasiyette arama yapabilmektedirler.
Arilarin bu davranisindan etkilenerek gelistirilen modelle elde edilen test sonuglari
hassas ve dogru arama yapilabildigini gostermistir. Drias ve ark. [55] arilarin en kolay
ulagilabilir ve en zengin kaynagi bulabildikleri yiyecek arama davraniglarindan
esinlenerek Ar Siiriisii Optimizasyonu algoritmasini gelistirmisler ve NP-tam bir yapiya
sahip Maksimum Agirliklandirilmis Saglanabilirlik Problemi’ne uygulamiglardir.
Benatchba ve ark. [56] ise ACO algoritmasini bir Veri Madenciligi Problemi’ni
Maksimum Saglanabilirlik Problemi olarak ifade ederek ¢ézmede kullanmis ve %96

saglanabilirlik elde etmislerdir.

Quijano ve Passino [57] Kaynak Paylastirma Problemi i¢in arilarin yiyecek arama
davraniglar1 iizerine kurulu Arilarda Yiyecek Arama algoritmasini gelistirerek ¢ok
bolgeli sicaklik kontrolii i¢in dinamik kaynak paylastirma {izerine bir miihendislik
uygulamasi gergeklestirmislerdir. Markovic ve ark. [58] ise optik aglarda Maksimum

Rotalama ve Dalga Boyu Atama Problemi’ni ¢6zmek i¢in Teodorovic ve Dell’Orco [46]
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calismasinda onerilen AKO algoritmasin1 kullanmislardir. Maksimum Rotalama ve
Dalga Boyu Atama Problemi, verilen bir optik agda talep matrisi ve dalga boyu sayisi
biliniyorken kurulacak 1s1k yolu sayisin1 maksimize etmekle ilgilenmektedir. Onerilen
algoritma Avrupa Optik Ag1 iizerinde test edilmis ve sonucglar dogrusal programlama
gevsetme ve tabu arama algoritmasi ile karsilastirilmistir. Deneysel sonuglar 6nerilen
algoritmanin makul bir siirede karsilastirma yapilan algoritmalardan daha iyi sonuglar

elde etmistir.

YAK ve AA algoritmalarina ait bilimsel yazin taramasi, algoritmalarin detaylarinin
verildigi 2.6 ve 2.7 boliimlerinde yer almakta olup, bu boliimde yapilan bilimsel yazin
taramas1 sonucu olusturulan Ozet, arastirmacilar, gelistirilen algoritma ve uygulama

alanlar1 agisindan Tablo 2.1°de verilmistir.
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Tablo 2.1. Ar1 sistemi ve uygulama alanlar1 konusundaki ¢alismalarin siniflandirilmasi.

Arastirmacilar

Algoritma

Uygulama Alam

Genetik
algoritmaya dayali

Sato ve Hagiwara [22]

Ar Sistemi algoritmasi

Fonksiyon optimizasyon problemleri

Ciftlesme davranisi

Ciftlesme davranisi

<
g
£z
; g Yang [23] Sanal Ar algoritmasi Fonksiyon optimizasyon problemleri
[5) - . . .
§ 55 Su;;l;\ilio[g{:]s;zon Karaboga [7] YAK algoritmasi Fonksiyon optimizasyon problemleri
> Pham ve ark. [6] AA Fonksiyon optimizasyon problemleri
Abbass [24] ACO 3-SP
Abbass [25] ACO algoritmasinda degisiklik 3-SP
Abbass [26] ACO algoritmasinda degisiklik 3-SP
Teo ve Abbass [27] ACO algoritmasinda degisiklik 3-SP
Teo ve Abbass [28] ACO algoritmasinda degisiklik 3-Sp

Chang [29]

ACO algoritmasi uygulamasi

Stokastik dinamik programlama problemi

Bozorg Haddad ve ark. [30]

BACO

Su kaynaklar1 yonetimi problemi

Afshar ve ark. [31]

BACO algoritmasinda degisiklik

Su kaynaklar1 yonetimi problemi

Arefi ve ark. [32]

BACO algoritmasinda degisiklik

Dagitim aglarindaki harmonik durum degiskenlerinin tahmini

Marinakis ve Marinaki [33]

BACO algoritmasinda degisiklik

Olasilikli gezgin satici problemi

Bozorg Haddad ve Afshar [34]

ACO algoritmas1 uygulamasi

Su kaynaklar1 yonetimi problemi

Fathian ve ark. [35]

BACO algoritmasi uygulamasi

Veri madenciligi

Horng [36]

BACO algoritmast uygulamast

Dijital goriintii sikistirmada vektdr niceleme

Genetik
algoritmaya dayali

Jung [37]

KAE

Kombinatoryal ve fonksiyon optimizasyon problemleri

Azeem ve Saad [38]

KAE algoritmasinda degisiklik

Bulanik bilgi kontroliinde 6l¢eklendirme faktoriiniin ayarlanmast

Qin ve ark. [39]

KAE algoritmasi uygulamasi

Ekonomik gii¢ gonderme problemi

Karci [40]

Ar1 Caprazlamast
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Kombinatoryal optimizasyon uygulamalari

Ulastirma problemi

Lucic [41] AS algoritmasi GSP ve SARP

Lucic ve Teodorovic [42] AS algoritmasi GSP

Lucic ve Teodorovic [43] AS algoritmasi GSP

Lucic ve Teodorovic [44] AS algoritmasi GSP

Lucic ve Teodorovic [45] AS algoritmasi+Bulanik Mantik SARP

Teodorovic ve Dell'Orco [46] | AKO algoritmasi Tur eslestirme problemi
Wong ve ark. [47] AKO algoritmasi uygulamasi GSP

Telekomiinikasyon

Nakrani ve Tovey [48]

BA algoritmasi

Dinamik yer paylagtirma problemi

Wedde ve ark. [49]

Ar1 Kovani algoritmast

Telekomiinikasyon aginda rotalama

Chong ve ark. [50]

BA algoritmasinda degisiklik

Atdlye tipi ¢izelgeleme problemi

Cizelgeleme X . T . .
Koudil ve ark. [51] ACO algoritmasi uygulamasi Boliintiileme ve gizelgeleme problemi
Ekonomik gii¢ Kumar ve ark. [52] Ar1 Optimizasyon algoritmast EGG problemi
gonderme problemi | Chokpanyasuwan ve ark. [53] | AKO algoritmasi uygulamasi EGG problemi

Diger uygulamalar

Bianco [54]

Eslemleme modeli

Navigasyon problemi

Drias ve ark. [55]

Ari Siiriisii Optimizasyonu algoritmast

Maksimum agirliklandirilmig SP

Benatchba ve ark. [56]

ACO algoritmasi uygulamasi

Veri madenciligi problemi

Quijano ve Passino [57]

Arilarda Yiyecek Arama algoritmasi

Kaynak paylagtirma problemi

Markovic ve ark. [58]

AKO algoritmasi uygulamasi

Dalga boyu atama ve rotalama problemi
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2.5. Arnlarm Yiyecek Arama Davranislar

Arilarin yiyecek arama davraniglari, 6grenme, hatirlama ve bilgi paylasma 6zellikleri
stirli zekdsinda en ¢ok ilgi ¢eken alanlardan biridir. Arilarin yiyecek arama davranigina
dayali olarak Tereshko [59] tarafindan gelistirilen modele gore ar siiriilerinde kolektif
zeka, 3 temel bilesen (yiyecek kaynaklari, gorevli arilar ve gorevli olmayan arilar) ve 2
davranis tiirii (nektar kaynaklarindan yiyecek toplama ve yiyecek kaynagini terk etme)

igerir.

1. Yiyecek kaynaklari: Yiyecek kaynaginin kalitesi; kovana olan uzaklik, nektar
zenginligi, enerji yogunlugu ve bu enerjinin ¢ikarim kolaylig1 gibi birgok etkene
baglidir. Ancak basitlik acisindan bir yiyecek kaynaginin kalitesi tek bir
nicelikle ifade edilmektedir.

2. Gorevli arlar: Tiiketmekte olduklar1 ya da gorevlendirildikleri yiyecek
kaynagiyla iliskilendirilmislerdir. Ilgili yiyecek kaynaginin kalitesi, kovana olan
uzaklik ve yon bilgilerini kendileriyle birlikte tasiyarak bu bilgileri belirli bir
olasilik dahilinde diger arilarla paylasirlar.

3. Gorevli olmayan arilar: Siirekli olarak tiiketmek icin yiyecek kaynagi arayan
gorevli olmayan arilar, kasif ve izci arilar olmak tizere iki tiirdiir. Kasif arilar ar
sistemi icerisinde tamamen bagimsiz davranarak herhangi bir Onbilgi
kullanmadan yiyecek kaynagi ararken, izci arillar kovanda bekleyerek gorevli
arillarca paylasilan bilgiler dogrultusunda yeni bir yiyecek kaynagi bulan
arilardir. Yapilan biyolojik ¢aligmalara gore kovandaki kasif ar1 sayist %5-10

arasinda degismektedir [60].

Arilar arasindaki bilgi degisimi kolektif bilginin en Onemli gostergesidir. Kovanin
tamami ele alindiginda biitiin kovanlarda genel olarak bulunan belirli boliimler
mevcuttur. Bunlardan en Onemlisi bilgi degisiminin gergeklestirildigi dans alanidir.
Arlar arasinda yiyecek kaynaginin kalitesi hakkindaki iletisim, dans alaninda
gergeklestirilmekte ve bu dansa salinim dansi adi verilmektedir. Salinim dansinin
uzunlugu, yiyecek kaynagimin karliligini; giinese olan agisi, yiyecek kaynaginin yerini;
dans esnasinda yapilan zig-zag hareketlerinin sayisi, yiyecek kaynagina olan uzakligi
gostermektedir. Mevcut tiim zengin yiyecek kaynaklari hakkindaki bu bilgi, dans

alaninda izci arilara sunulmakta ve izci arilar en karli kaynagi se¢cmektedirler. Daha
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karli kaynaklar hakkinda daha fazla bilgi paylasimi olacagindan izci arilarin karh
yiyecek kaynaklarini se¢me olasiligi da daha yiiksek olmaktadir. Ar1 sisteminde kendi

kendine orgiitlenme asagidaki gibi ger¢eklesmektedir [7].

e Pozitif geri besleme: Yiyecek kaynaklarindaki nektar miktar1 arttik¢a o yiyecek
kaynaklarini ziyaret eden izci ar1 sayis1 da artar.

e Negatif geri besleme: Terk edilen yiyecek kaynaklarindaki arastirma prosesi
sonlandirilir.

e Siirekli degisim: Kasif arilar yeni yiyecek kaynaklar kesfetmek icin rastgele
arama yaparlar.

e Coklu etkilesim: Arilar yiyecek kaynagmin pozisyonu hakkinda edindikleri

bilgileri dans alaninda kovandaki diger arilarla paylasirlar.

Yiyecek toplayan arilarin temel davranis oOzellikleri gorsel olarak Sekil 2.1°de

sunulmaktadir.
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Kovan

B'den nektar
bosaltma

Yiyecek aramaya baslama

=
-
-7

~~~~~
~o
<

..

B i¢in dans alani

ol

A i¢in dans alani

C'den nektar
bosaltma

A'dan nektar
bosaltma

Sekil 2.1. Arilarin yiyecek arama davranisi [41].

Sekil 2.1°de gosterildigi gibi bir ar1 baslangigta kovan etrafindaki yiyecek kaynaklari
hakkinda herhangi bir bilgisi olmadan yiyecek aramaya baslar ve gorevli olmayan ar1

olarak adlandirilir. Bu tiir bir ar1 i¢in iki alternatif vardir:

e Kasif arilar: Igsel giidiiler sebebiyle, herhangi bir &nbilgi olmaksizin, kovan

etrafinda kendiliginden yiyecek aramaya baslayan arilardir (S).
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e lzci anlar: Baska arilarca yapilan salinim dansini izleyerek yiyecek kaynaklari
hakkinda bilgi edinen ve daha sonra bu bilgiye gore hareket ederek yiyecek

kaynaklarina ulagan arilardir (R).

Gorevli olmayan ar1 yiyecek kaynagimi bulduktan sonra yiyecek kaynaginin yerini
hafizasinda tutarak o kaynagi tiiketmeye baglar. Dolayisiyla gorevli olmayan ar1, bir
gorevli ar1 haline gelir. Yiyecek kaynagindan bir miktar nektar alarak kovana doniip
yiyecek depolama alanina nektar1 bosaltan bir ar1 i¢in 4 alternatif vardir ve bu
alternatiflerin gergeklesme olasilig1r yiiksek oranda yiyecek kaynagmin kalitesine

baglidir.

e Nektar miktar1 diisiik seviyelere inmigse ya da tiikkenmisse, ar1 bu yiyecek
kaynagin1 terk eder ve gorevli olmayan bir artya dontisiir (ES).

e Ayni yiyecek kaynagma donmeden once dans ederek kovandaki diger arilari
bilgilendirir (RF).

e Eger yiyecek kaynaginda yeterli miktarda nektar varsa, bilgi paylasiminda
bulunmadan yiyecek kaynagini tiiketmeye devam edebilir (EF).

e Tiiketmekte oldugu yiyecek kaynaginin kalitesinden tatmin olmayan ari, dans

alaninda 6nerilen yeni bir yiyecek kaynagini aramaya baglar (ER).

2.6. Yapay Ar Kolonisi Algoritmasi

YAK algoritmasi arilarin yiyecek arama davranisindan esinlenen, ¢ok boyutlu ve ¢ok
doruklu optimizasyon problemlerinin ¢éziimii i¢in gelistirilmis, popiilasyon tabanli bir
algoritmadir. Algoritmada bir yiyecek kaynagi pozisyonu, optimizasyon probleminin
olast bir ¢oziimiinii temsil ederken yiyecek kaynagindaki nektar miktar1 ise ilgili
¢ozlimiin kalitesi yani uygunluk degeri ile iliskilidir. Bir yapay ar1 kolonisi gorevli, izci
ve kasif arillar olmak tizere 3 grup ar icermektedir. Koloninin ilk yarisi gorevli
arilardan, ikinci yarisi ise izci arilardan olugmaktadir. Diger taraftan gorevli ar1 sayisi,
kovan etrafindaki yiyecek kaynagi sayisina yani popiilasyondaki ¢dziim sayisina esittir.
Kagif arilar ise bir yiyecek kaynagindaki nektar miktar: tiilkendiginde ortaya ¢ikmakta
ve yiyecek ararken herhangi bir onbilgiye sahip olmadiklarindan bulduklar yiyecek

kaynagi, diisiik arama maliyetine ve ortalama bir kaliteye sahip olmaktadir. Ancak kasif
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arilar bazen hi¢ bilinmeyen zengin bir yiyecek kaynagi da kesfedebilirler. Algoritmanin

temel adimlar1 Tablo 2.2°de verilmektedir.

Tablo 2.2. YAK algoritmasinin temel adimlari.

1. Gorevli ar1 sayis1 kadar yiyecek kaynagini rastgele olustur

Repeat

Gorevli arilart yiyecek kaynaklarina yerlestir

Nektar miktarlarina bagl olarak izci arilar yiyecek kaynaklarina yerlestir
Arilarca terk edilen yiyecek kaynaklarinin tiikketim prosesini sonlandir

Yeni yiyecek kaynaklarinin kesfi i¢in kasif arilar1 yiyecek kaynaklarina gonder

O ana kadar bulunan en iyi yiyecek kaynagini hafizada tut

e B

Until (istenen sartlar saglanana kadar)

YAK algoritmasinda her arastirma dongiisii, gorevli arilar1 yiyecek kaynaklarina
gondererek nektar miktarlarinin degerlendirilmesi, yiyecek kaynaklari hakkindaki
nektar bilgisi paylasimindan sonra izci arilarca yiyecek kaynagi bdlgelerinin se¢imi ve
nektar miktarlarinin degerlendirilmesi, kasif arilarin yeni yiyecek kaynaklarina rastgele
gonderilmesi olmak tlizere 3 temel adimdan olusur. YAK algoritmasina ait akis

diyagrami Sekil 2.2°de sunulmaktadir.



31

Rastgele baglatma

v

—p Salinim dans1

v

Gorevli ar1 aramasi

v

izci ar1 aramasi

¥

Kasif ar1 aramasi

<>

Evet
A 4

Hayir

Cozim

Sekil 2.2. YAK algoritmasi akig diyagrami [61].

YAK algoritmasina iliskin detayli adimlar Tablo 2.3’te yer almakta olup kullanilan

notasyonlar asagidaki gibi tanimlanmustir.

P: Gorevli art sayist (p=1,....,P)

o”: Gorevli ar1 ¢oziimii

Ppp: lzci ar1 atamast igin p. gérevli ariya ait olasilik degeri
Makslter: Maksimum iterasyon sayist (durdurma kriteri)
fit(6”): Gorevli ar1 ¢oziimiintin uygunluk fonksiyonu degeri

limit: Gelisme olmaksizin gegirilebilecek maksimum iterasyon sayisi
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Tablo 2.3. YAK algoritmasinin detayli adimlari.

1. Baslangi¢ popiilasyonunu olustur (¢*, p=1,...,P)
Popiilasyonu degerlendir

k=1

Repeat

Gorevli arilar i¢in yeni ¢oziimler iiret ve degerlendir
Gorevli arilar i¢in agg6zlii se¢im prosesini uygula

o ¢ozuimleri i¢in olasilik degerlerini (p,) hesapla

® =N A WD

pp degerlerine bagli olarak segilen ¢” ¢oziimlerini kullanarak, izci arilar igin yeni

¢Oziimler liret ve bu ¢ozlimleri degerlendir

9. lzci anlar i¢in aggdzlii se¢im prosesini uygula

10. Kasif arilar igin, varsa, terk edilen ¢ozlimleri belirle ve rastgele yeni lretilen
¢Ozlimle degistir

11. O ana kadar elde edilen en iyi ¢6ziimii hafizada tut

12. k=k+1

13. Until (k=Makslter)

Baslangic asamasinda arilar tarafindan bir yiyecek kaynagi kiimesi rastgele secilir ve
nektar miktarlar1 belirlenir. Bir yiyecek kaynagi bulmus olan gorevli arilar kovana
donerek dans alaninda bekleyen arilarla, iliskili olduklar1 yiyecek kaynagi hakkindaki
nektar bilgisini paylasirlar. Izci arlarla bilgi paylasimindan sonra biitiin gérevli arilar,
iliskili olduklar1 yiyecek kaynagina geri donerek hafizalarindaki bu kaynagin
komsulugunda yeni bir yiyecek kaynagini gorsel bilgi yardimiyla segerler ve nektar
miktarini1 degerlendirirler. Eger komsu ¢oziimiin nektar miktar1 hafizadaki ¢éziimden
daha 1iyiyse, hafizadaki ¢Oziim gilincellenir; aksi takdirde hafizadaki ¢o6ziim
degistirilmez. Izci arilar ise dans alaminda gorevli arilarca verilen nektar miktar
bilgisine bagli bir olasilikla (p,) bir yiyecek kaynagi alami secerler. Bir yiyecek
kaynaginin se¢ilme olasilig1 agagidaki gibi hesaplanmaktadir.

Pp = % 2.1)
Yukaridaki formiilasyonda fit(c”), p. pozisyondaki yiyecek kaynaginin nektar miktari ile

orantili olup p. ¢6ziimiin uygunluk degerini gostermektedir. Dolayisiyla p. kaynagin
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secilme olasiligl, p. kaynagin nektar miktarmin biitiin kaynaklarin nektar miktarlar
toplamina oranlanmasi ile bulunur. Goriildiigii gibi bir yiyecek kaynagindaki nektar
miktar1 arttikga o yiyecek kaynaginin izci arilar tarafindan tercih edilme olasiligi da
artmaktadir. Izci arilar secilen alana geldiklerinde, gorevli arilarda oldugu gibi gorsel
bilgi ile hafizalarindaki kaynagin komsulugunda yeni bir yiyecek kaynagi secer ve
nektar miktarini degerlendirirler. Diger taraftan bir yiyecek kaynagindaki nektar miktari
tiiketildiginde, kasif bir ar1 tarafindan rastgele yeni bir yiyecek kaynagi belirlenir ve
onceki ¢oziimle degistirilir. Baska bir deyisle, YAK algoritmasinda yiyecek kaynagini
temsil eden bir ¢oziim 6nceden belirlenmis iterasyon sayisinca (/imit) gelistirilememisse
o yiyecek kaynaginin tiikendigi varsayilir ve ilgili yiyecek kaynagi gorevli ar tarafindan
terk edilerek, gorevli ar1 bir kasif ariya doniistiriiliir. Belirtmek gerekir ki, YAK
algoritmasi her iterasyonda en fazla bir kasif ar1 ¢éziimiine izin vermektedir. Bahsedilen
bu adimlar 6nceden belirlenmis sayida iterasyon boyunca (Makslter) tekrarlanir. Sonug
olarak YAK algoritmas1 P, limit ve Makslter olmak iizere 3 kontrol parametresine

sahiptir.

Algoritmanin detayli adimlarindan da anlasildig1 gibi YAK algoritmasi 4 farkli se¢im

prosesi kullanir.

e Dans alaninda verilen bilgilere goére umut verici bolgeleri kesfetmek igin izci
arilarin kullandig1 global se¢im prosesi

e Hafizadaki yiyecek kaynagmin komsulugunda yeni bir yiyecek kaynagi
belirlemek icin gorevli arilar ve izci arilarin gorsel bilgiye dayanarak
gergeklestirdigi yerel se¢im prosesi

e Biitiin arilar tarafindan gerceklestirilen, aday yiyecek kaynaginin nektar miktari
mevcut kaynagin nektar miktarindan daha iyiyse, armin mevcut kaynak yerine
aday kaynagi hafizasina almasina dayanan a¢g6zIlii segim prosesi

o Kasif arilarca gerceklestirilen rastgele se¢im prosesi

Bir yapay ar1 kolonisinde var olan gorevli, izci ve kasif arilarin algoritmadaki gorevleri

su sekilde 6zetlenebilir.

e Gorevli arilar: Problemin farkli ¢ozlimlerini olusturan ve bu ¢dziimlerin

kalitesine iligkin bilgi sahibi olan yapilar
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e lzci arilar: Gorevli arilar takip ederek komsu ¢oziimleri olusturup yerel aramay1

gerceklestiren yapilar

e Kasif arilar: Yerel optimuma yakalanmay1 engellemek amaciyla, gorevli ve izci

arillardan bagimsiz yeni ¢6ziim alanlar1 arayan yapilar

YAK algoritmasinin ¢aligsma prensibi ve temel yapist ilk kez Karaboga [7] tarafindan
onerilmis olup tek doruklu (tek yerel optimuma sahip) ve ¢ok doruklu (iki ya da daha
fazla yerel optimuma sahip) sayisal optimizasyon problemlerinin ¢oziimii igin
kullanilmistir. Karaboga [7] calismasimin bir uzantis1 olarak, elde edilen deneysel
calisma sonuglar1 Bastiirk ve Karaboga [62] tarafindan genetik algoritma ile; Karaboga
ve Bagtiirk [8] tarafindan genetik algoritma, parcacik siirii optimizasyonu ve parcacik
siiriiden esinlenen evrimsel algoritma ile; Karaboga ve Bastiirk [63] tarafindan
diferansiyel gelisim, parcacik siirii optimizasyonu ve evrimsel algoritma ile; Karaboga
ve Akay [64] tarafindan Harmoni Arama algoritmasi, AA ve Gelistirilmis AA ile
karsilagtirilmistir. Bu calismalar neticesinde YAK algoritmasinin ¢ok boyutlu ve cok
doruklu fonksiyonlarda oldukg¢a etkin ve karsilagtirma yapilan algoritmalardan daha iyi
performansa sahip oldugu goriilmiistiir. Diger taraftan Karaboga ve Bastiirk [63]
caligmalarinda, farkli kontrol parametresi degerleri altinda YAK algoritmasinin
performansini incelenmislerdir. Popiilasyon biiyiikliigli arttikca algoritmanin daha iyi
sonuglar verdigi ancak belirli bir degerden sonra popiilasyon biiyiikliigii artirilsa da
algoritmanin performansinin gelistirilemedigi goriilmiistiir. Limit degerinin ise tek
doruklu fonksiyonlarda algoritmaya bir etkisi yokken ¢ok doruklu fonksiyonlarda /imit
degeri yiikseldikce algoritma performansinin diistiigii gézlenmistir. Tiim bu c¢aligsmalar
sonucunda Karaboga ve Akay [65] YAK algoritmasinin performansini
degerlendirebilmek i¢in ¢ok boyutlu, tek doruklu-¢ok doruklu, diizenli-diizensiz, ayrisir-
ayrisamaz Ozelliklere sahip test problemleri iizerinde genis bir deneysel calisma
sunmuslardir. Elde edilen sonuclar1 genetik algoritma, parcacik siirii optimizasyonu
algoritmasi, diferansiyel gelisim algoritmasi ve evrimsel stratejiler ile karsilagtirmiglar
ve YAK algoritmasimin diger algoritmalara gore daha iyi ya da benzer sonuglara
ulagtigin1 belirtmislerdir. Diger taraftan bir optimizasyon algoritmasiyla bir problemi
cozerken algoritma parametrelerinin ayarlanmasinin algoritma performansi iizerinde
cok dnemli bir etkisi oldugu gercegiyle Akay ve Karaboga [66] kontrol parametrelerinin

YAK algoritmasinin performansi iizerindeki etkisini aragtirmiglardir. Ayrica YAK
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algoritmasi ile diferansiyel gelisim ve parcacik siirli optimizasyonu algoritmalar1 da
karsilagtirilarak hangi algoritmanin parametre degerlerine karst daha duyarli oldugu

incelenmistir.

YAK algoritmasinin kisitsiz optimizasyon problemlerindeki bagarisindan sonra
Karaboga ve Bastiirk [67] kisith optimizasyon problemlerinin ¢6éziimii i¢in YAK
algoritmasinda c¢esitli degisiklikler yapmislardir. Bu degisiklikler temelde se¢im
mekanizmasina bagli olup orijinal YAK algoritmasinda kullanilan aggdzlii se¢im
mekanizmas1 yerine kisit elde tutma mekanizmasi adi da verilen Deb se¢im
mekanizmasi1 [68] kullanilmistir. Deb se¢im mekanizmasina gore iki ¢éziim su iig
kritere gore karsilastirilmaktadir: 1) Uygun bir ¢6ziim, uygun olmayan bir ¢oziime gore
tercih sebebidir, 2) Iki uygun ¢dziim arasindan amag fonksiyonu degeri daha iyi olan
tercih edilir, 3) Iki uygun olmayan ¢dziim arasindan kisit ihlali en az olan secilir.
Popiilasyonu uygun ¢oziimlerle baslatmak zaman kaybettirici bir proses olup uygun
coziimler {iiretmek her zaman miimkiin olmayabildiginden, Onerilen YAK
algoritmasinda baglangi¢ popiilasyonunda uygunluk sart1 yer almamaktadir. Ancak Deb
kural1 sayesinde ¢oziimler uygun alanlara yonlendirilmekte, diger taraftan da kasif arilar
ile yeni ve uygun olmayabilen ¢oziimler elde edilerek c¢esitlilik saglanmaktadir. Orijinal
YAK algoritmasi ile kisitlandirilmis problemler icin gelistirilen YAK algoritmasindaki
diger bir farklilik ise kasif arilarin terk edilen yiyecek kaynaklarinin yerine hemen yeni
bir ¢oziim {lretmesi yerine kasif arilarin yeni yiyecek kaynagi aramaya oOnceden
belirlenmis periyotlarda gonderilmesidir. Bu periyot YAK algoritmasinin diger bir
kontrol parametresi olup kasif liretme periyotu olarak adlandirilmistir. Her bir kasif
tiretme periyotunda terk edilmis bir yiyecek kaynagi olup olmadigi kontrol edilmekte,
eger varsa kasif ar1 yeni yiyecek kaynaklart bulmak icin gonderilmektedir.
Kisitlandirilmis optimizasyon problemleri igin tekrar diizenlenen YAK algoritmasi
dogrusal, dogrusal olmayan ve karesel amaglara sahip cesitli kisitlandirilmis
optimizasyon problemleri iizerinde test edilerek parcacik siirii optimizasyonu ve
diferansiyel gelisim algoritmasi ile karsilagtirilmis ve YAK algoritmasinin ortalama
degerler agisindan karsilagtirma yapilan algoritmalara goére daha etkin oldugu
belirtilmisgtir. Diger taraftan Akay ve Karaboga [69] tamsayili programlama
problemlerine YAK algoritmasin1 uygulayarak algoritmanin performansini ¢esitli

pargacik  siirii  optimizasyonu  algoritmalar1 ve dal-smir algoritmast ile
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karsilastirmiglardir. Algoritmanin tamsayili programlama problemleri {izerindeki
performansin1  gorebilmek icin elde edilen c¢oziimler en yakin tamsayr degerine
yuvarlanmistir. Deneysel ¢alisma sonuglar1 YAK algoritmasinin tamsayili programlama
problemlerinde saglam bir yapiya ve diger algoritmalara gore karsilastirilabilir ya da

daha iyi performansa sahip oldugu belirtilmistir.

YAK algoritmasinin farkli uyarlamalar incelenecek olursa Quan ve Shi [70] YAK
algoritmasina anlagsmali eslemedeki sabit nokta teoremine dayali yeni bir arama
operatorii eklemis ve gelistirilen YAK algoritmasini ¢esitli dogrusal, dogrusal olmayan
ve karesel ¢cok degiskenli test fonksiyonlarinin ¢éziimiinde kullanmisglardir. Tsai ve ark.
[71] ise izci arilarin rulet tekerlegi yontemine gore secildigi orijinal YAK
algoritmasindaki izci arilarin se¢im asamasini Newton’un evrensel ¢cekim yasasina gore
tekrar diizenlemislerdir. Kang ve ark. [72] Ters Analiz Problemi’nin ¢éziimii igin,
kisitlandirilmamis problemlere 6zel olarak tasarlanmis ve gradyan bilgisi kullanmayan
Nelder-Mead simpleks yontemi [73] ile YAK algoritmasini birlestiren melez bir
algoritma Onermislerdir. Deneysel sonuglar 6nerilen algoritmanin ters analiz i¢in etkin
bir ara¢ oldugunu gostermistir. Bao ve Zeng [74] orijinal YAK algoritmasindaki izci
arilarin erken yakinsamaya sebep olabilen orantisal se¢im stratejisi yerine popiilasyonun
cesitliligini artirabilmek ve erken yakinsamay1 engelleyebilmek i¢in siraya bagl secim
stratejisi, bollicii secim stratejisi [75] ve turnuva sec¢im stratejilerini [76] algoritmaya
uyarlamiglardir. Elde edilen simiilasyon sonuglar1 gelistirilen YAK algoritmasinin
orijinal YAK algoritmasina gore daha iyi sonuglar verdigini gostermistir. Mezura-
Montes ve Cetina-Dominguez [77] kisitlandirilmig sayisal optimizasyon problemlerinin
¢oziimli i¢in temel YAK algoritmast lizerinde ¢esitli degisiklikler yapmislardir.
Bunlardan ilki kasif ar1 davraniglariyla ilgili olup rastgele ¢oziimler iiretmek yerine
mevcut en iyi ¢oziimiin komsulugundaki ¢éziimlerden faydalanmaya dayanmaktadir.
Cinkii kisitlandirilmig alanlarda c¢alisilirken, temel YAK algoritmasindaki kasif ari
davranislar1 yerel optimum ¢ozlimlerden kaginmaya yardimci olamamakta ve genellikle
uygun olmayan ¢ozlimler iireterek arastirmayi tetikleyici 6zellige sahip olamamaktadir.
YAK algoritmasina ikinci bir katki ise Hamida ve Schoenauer [78] tarafindan onerilen
ve tolerans degerine bagli dinamik bir mekanizmay1 esitlik kisitlarina uygulamaktir.
Boylece arastirmanin baglarinda esitlik kisitlar1 kolaylikla saglanabilecek, arastirmanin

ileriki iterasyonlarinda ise tolerans degeri azaltilarak algoritmanin uygun c¢oziimler
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bulmas1 saglanacaktir. Gelistirilen yontem ile orijinal YAK algoritmasinin
performansinin iyilestigi belirtilmistir. Duan ve ark. [79] dogada yasayan canl
organizmalarin evrim prensibinden esinlenen ve kombinatoryal optimizasyon
problemlerinin yaklagik ¢oziimleri i¢in kullanilan, kuantum hesaplama prensiplerine
dayali Kuantum Evrimsel algoritmasi ile YAK algoritmasini birlestirilerek melez bir
algoritma Onermislerdir. Deneysel calisma sonuglar1 Onerilen algoritmanin karmasik
optimizasyon problemlerinin ¢6ziimii i¢in uygun ve etkin oldugunu gdstermistir. Tsai ve
ark. [80] orijinal YAK algoritmasindaki izci hareketlerini evrensel yercekimi yasasina
dayandirarak interaktif YAK algoritmasini1 6nermislerdir. Gelistirilen algoritma, orijinal
YAK ve pargacik siirli optimizasyonu algoritmalari ile karsilastirilmis ve interaktif
YAK algoritmasinin digerlerine gore daha {istiin performansa sahip oldugu

belirtilmistir.

YAK algoritmasi, gelistiricileri tarafindan yapay sinir aglarinin egitiminde de
kullanilmistir. Karaboga ve Oztiirk [81] ileri bildirimli sinir aglarmin egitiminde,
makine 6grenmede sik¢a kullanilan farkli veri kiimelerinin siniflandirilmasi i¢in YAK
algoritmasindan faydalanmiglardir. ~ Algoritmanin performansi gradyan tabanh
algoritmalar olan geri yayilim ve Levenberg-Marquardt algoritmalar1 ile popiilasyon
tabanl algoritmalar olan pargacik siirii optimizasyonu, diferansiyel gelisim ve genetik
algoritma ile karsilastirilmistir. Deneysel ¢alisma sonuglart YAK algoritmasinin
siiflandirma problemlerinde ileri bildirimli sinir aglarinin egitimine basariyla
uygulanabildigini gostermistir. YAK algoritmasimin diger uygulama alanlari, radyal
dagitim sistemlerinde gili¢ kaybmin en kiigiiklenmesini amaglayan ag yapilandirmasi
[82], dolaysiz dogrusal transformasyon yontemi [83], dijital IIR filtre tasarimi [84],
yaprak-kisith minimum kapsayan aga¢ problemi [85], maksimum mekanik isleme
hizina erisme amacina sahip optimum proses parametreleri kombinasyonunu bulma
problemi [86], radyal tabanli fonksiyon aglarmin egitimi [87], gomiilii riske sahip
tedarik zinciri maliyetinin en kiigiiklenmesi [88], 6zdes olmayan is biiytikliiklerine sahip
tek toplu isleme makinesinde ¢izelgeleme [89], en diisiik serbest enerjiye sahip protein
yapisini bulma problemi [90], NP-Tam bir problem olan sudoku bulmacalarinin ¢éziimii
[91], ¢ok katmanli algilayici yapay sinir aginin egitimi [92] olarak karsimiza

cikmaktadir. Son olarak ise Karaboga ve Akay [93] ar siiriisii davraniglart ve bu
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davraniglara dayali gelistirilen algoritmalar1 iceren bir smiflandirma ve inceleme

calismas1 sunmuslardir.

2.7. An Algoritmasi

AA popiilasyon tabanli bir arama algoritmasi olup siirii zekasina dayali meta sezgisel
yontemlerden birisidir. Algoritma gercek arillarin yiyecek arama davranislarini
modellemeye dayanmakta olup literatiirde kombinatoryal ve genellikle siirekli

optimizasyon problemlerinin ¢éziimiinde kullanilmistir.
AA’nin genel yapis1 Tablo 2.4’te detayl olarak verilmistir.

Tablo 2.4. AA’nin temel adimlari.

1. Rastgele ¢oziimlerle baslangi¢ ar1 popiilasyonunu olustur

2. Popiilasyonun uygunlugunu degerlendir

(98]

While (durdurma kriteri saglanana kadar)

// Yeni ar1 popiilasyonunun olusturulmasi

4. Komsuluk aramasi igin bolgeleri se¢

5. Arnilan segilen bolgelere gonder ve uygunluklarin1 degerlendir

6. Her bir bolgedeki en iyi uygunluk degerine sahip ariy1 se¢

7. Kalan arilari rastgele arama i¢in ata ve uygunluklarini degerlendir
8. End While

Dogadaki arilarda yiyecek arama islemini dnce kasif arilar baslatir ve rastgele yiyecek
kaynaklar1 secerler. Ayrica yiyecek toplama siireci boyunca popiilasyonun belli bir
yilizdesi kasif arilar olarak kalir. Benzer olarak AA da n adet kasif arinin arastirma
uzayina rastgele yerlestirilmesi ile bagslar. Kasif arilarca ziyaret edilen noktalarin
uygunluklar1 2. adimda degerlendirilir. Dogadaki arilara bakildiginda, bir ar1 kolonisi
cok sayida yiyecek kaynagini tikketmek i¢in birgok yonde ve biiyiik uzakliklar boyunca
arama yapabilmektedir. Prensipte nektar miktar1 fazla olan ve diisiik bir cabayla
tilkketilebilen yiyecek kaynaklari daha fazla ar tarafindan, az miktarda nektara sahip
yiyecek kaynaklari ise daha az ar1 tarafindan ziyaret edilecektir. Bu gergekten hareketle
4. adimda en iyi uygunluk degerine sahip arilar (m) komsuluk aramasi i¢in segcilir. 5.
adimda secilen arilarin komsulugunda arastirma baglar ve daha umut verici ¢ézlimleri

temsil eden en iyi e bdlgeye, secilen diger bolgelere (m-e) gore daha fazla an
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gonderilerek daha detayli arama yapilir. Yeni popiilasyonun olusturulmasi igin her
bolgedeki en iyi uygunluk degerine sahip ar1 6. adimda secilir. 7. adimda
popiilasyondaki diger arilar (n-m) yeni potansiyel ¢oziimler elde etmek igin rastgele
olarak arastirma uzayina atanirlar. Bdylece her iterasyonun sonunda yeni popiilasyon,
secilen her bolgenin temsilcileri ve rastgele arama yapan kasif arilar olmak {izere iki
par¢adan olusacaktir. Diger taraftan AA kasif ar1 sayis1 ile temsil edilen popiilasyon
boyutu (n), ziyaret edilen n bolge icinden secilen bolge sayist (m), secilen m bolge
icindeki en iyi bolge sayisi (e), en iyi e bolgeye gonderilen izci ar1 sayisi (nep), secilen
diger bolgelere (m-e) gonderilen izci ar1 sayisi (nsp), komsuluk arama boyutu (ngh) ve
durdurma kriteri olmak tiizere bircok parametre igermektedir. AA’na ait akis diyagrami

Sekil 2.3°te sunulmaktadir.

Rastgele baslatma

¢ [ o

, :
Segim 1

—. 1
Uygunluk degerlendirme : / \ i
: 1
¢ : Elit bolgeler (e) En iyi bolgeler (m-e) :
i i
1 1
Yerel arama —D: ¢ ¢ I
1 Uygunluk Uygunluk :
+ H degerlendirme degerlendirme !
R v :
i 1
Hayir Global arama : 1
1 En iyiyi se¢ En iyiyi se¢ :

1
v - =
o o ————————————————— -

Yeni popiilasyon,

i
i
1 Rastgele ¢oziimler (n-m)
1
1

Uygunluk degerlendirme]

Evet
\ 4

Coziim

Sekil 2.3. AA akis diyagramu [61].

AA’nin ¢alisma prensibi ve temel yapisi ilk kez Pham ve ark. [6] tarafindan Onerilmis
olup ¢ok boyutlu ve ¢ok doruklu sayisal test fonksiyonlari iizerinde algoritmanin
etkinligi ve saglamlig1 gosterilmistir. Elde edilen sonuglar deterministik simpleks

yontemi, stokastik benzetimli tavlama, genetik algoritma ve karinca koloni
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optimizasyonu algoritmalar1 ile karsilastirilmistir. Onerilen algoritma, karsilastirma
yapilan optimizasyon algoritmalarina gore gradyan bilgisini ¢ok az kullandigindan yerel
optimumdan kolayca kurtulabilmektedir. Dolayisiyla AA genel olarak optimizasyon
hizi ve sonuglarin dogrulugu agisindan diger tekniklerden daha {istiin performans

gostermistir.

AA gelistiricileri tarafindan bir¢cok alana uygulanmis olup bu c¢alismalardan bazilari
izleyen sekilde dzetlenmistir. 11k olarak Pham ve ark. [94] ahsap kaplama levhalarindaki
kusurlarin  belirlenmesinde AA ile yapay sinir aglarini optimize etmislerdir. Bu
calismada arilar néronlar arasindaki baglantilara yerlestirilmis olup agirliklarin optimum
degerini aramaktadir. Yapay sinir agindaki agirliklarin optimizasyonu i¢in geri yayilim
algoritmasi yerine kullanilan AA’nin amaci en kiiciik hata fonksiyonu degerine sahip
artyt bulmaktir. Elde edilen deneysel ¢alisma sonuglart geri yayilim ve minimum
uzaklik siniflandirici [95] algoritmalar ile karsilastirilmis ve AA’nin dogru sonuglara
daha hizli ulastigi belirtilmistir. Benzer sekilde Pham ve ark. [96] ¢ok katmanlh
algilayic1 aglarinin egitiminde, Pham ve ark. [97] istatistiksel proses kontroliinde
kullanilan kontrol grafiklerinde oOriintii tanima i¢in radyal temel fonksiyon aginin
egitiminde, Pham ve ark. [98] ise yine kontrol grafiklerinde 6riintii tanima i¢in 6grenen
vektor nicelendirme aginin egitiminde AA algoritmasini kullanmis ve geri yayilim

algoritmasina gore daha iyi sonuglar elde edilmistir.

AA’nin diger uygulama alanlar1 ise hiicresel imalat sistemlerinde parca aileleri ve
makine hiicrelerinin es zamanli belirlenmesine dayanan hiicre olusturma problemi [99],
tek makinede cizelgeleme problemi [100], bulanik mantik kontroldrlerinin ayarlanmasi
[101], veri smniflandirma [102], ¢ok boyutlu optimizasyon problemlerinden standart bir
mekanik tasarim problemi olan kaynakli kiris yapisinin tasarimi [103], ahsap
kusurlarinin siniflandirilmasinda 6zellik belirleme ve parametre optimizasyonu [104],
bir veri kiimesini farkli gruplara ayirabilmek icin belirlenmesi gereken niteliklerin
sayisini azaltmaya yonelik nitelik secimi problemi [105], baski devre karti montaj
planlama problemi [106], bulanik kiimeleme [107], Coca Cola i¢in sise sekli tasarimi
[108], bir robot kolunun ters kinematiginin modellenmesi i¢in ¢ok katmanli algilayici
yapay sinir agmnin egitimi [109], mekanik tasarim optimizasyonu [110, 111] ve ¢ok

amagl ekonomik gii¢c gébnderme problemi [112, 113] olarak karsimiza ¢ikmaktadir.
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AA’nin farkli uyarlamalarina bakacak olursak Pham ve Haj Darwish [114] orijinal
AA’ndaki kontrol parametresi sayisini indirgemeye yonelik olarak bulanik aggdzlii
secim mekanizmasimi kullanmiglardir. Gelistirilen algoritma ile m, e, nep ve nsp
parametrelerinin kullanic1 tarafindan belirlenmesi yerine onerilen mekanizma ile bu
parametre degerleri otomatik olarak secilmektedir. Pham ve ark. [115] ise kimya
miihendisligi alaninda dinamik optimizasyon problemlerinin ¢6ziimii i¢in orijinal
AA’ndaki rastgele aramay1 tamamlayacak sekilde mutasyon, siinme, ¢aprazlama, ara
degerleme ve dis degerleme operatorlerini algoritmaya dahil etmislerdir. Onerilen
algoritma karinca koloni optimizasyonu algoritmasi ile karsilastirilmis ve Onerilen
algoritmanin daha iistiin performans gosterdigi belirtilmistir. Pham ve Sholedolu [116]
pargacik siirli optimizasyonu algoritmasinin erken yakinsama problemini ¢ézebilmek
icin ilgili algoritmaya AA’n1 da dahil ederek melez bir yapi1 gelistirmisler ve Onerilen
algoritmay1 ¢ok katmanli yapay sinir aglarinin egitiminde kullanmiglardir. Deterministik
problemlerin AA ile ¢oziimde tek degerlendirme ve sabit uygunluk degeri yeterli iken,
stokastik optimizasyon problemlerinde ayni noktada ¢ok sayida deneme ve ortalama bir
uygunluk degeri hesaplamasi gerekmektedir. Bu bilgiden hareketle Pham ve ark. [117]
stokastik optimizasyon problemlerinin ¢6ziimii i¢in AA’na yeni bir uygunluk
degerlendirme mekanizmasi eklemislerdir. Bu mekanizma ile her ar1 igin tek bir
denemedeki uygunluk degeri yerine bir¢ok deneme sonucunda elde edilen uygunluk
degerlerinin ortalamasi kullanilmistir. Pham ve Castellani [61] AA’na arastirma hizini
ve dogrulugu artiracak iki prosediir eklemislerdir. Bunlardan ilki komsuluk arama
boyutunun uyarlanir hale getirilmesidir. Bu mekanizma, yerel arama ile daha iyi
uygunluk degerleri elde edildiginde komsuluk boyutunun sabit tutulmasina, uygunluk
degerlerinde bir gelisme olmadiginda ise komsuluk boyutunun azaltilmasina
dayanmaktadir. AA’nda ikinci iyilestirme ise YAK algoritmasinda oldugu gibi bir
¢Ozlim belirli bir iterasyon boyunca gelistirilemediginde rastgele olusturulan yeni bir
¢oziimle degistirilmesini  igermektedir. Onerilen algoritmanm etkinligi farkli
karmagsiklik derecelerine sahip fonksiyon optimizasyon problemleri iizerinde evrimsel
algoritma, parcacik siirii optimizasyonu ve YAK algoritmasi ile karsilastirilmistir. AA
neredeyse biitiin test problemlerinde optimum ya da optimuma yakin sonuglar elde
etmis ve deneysel sonuclar AA’nin dogruluk, 6grenme hizi ve saglamliktaki giiclinii

ispatlamistir.



3. BOLUM
GENELLESTIRILMIiS ATAMA PROBLEMIi COZUM YAKLASIMLARI

3.1. Giris

Calismanin bu boliimiinde genellikle siirekli optimizasyon problemlerine uygulanmis
olan AA ve YAK algoritmasinin karmasik tamsayili optimizasyon problemlerindeki
performansini inceleyebilmek i¢in NP-zor bir problem olan GAP’nin ¢dziimiinde
kullanilmasina yer verilmistir. Ayrica GAP’nin AA ile ¢oziimiinde kullanilan komsuluk

yapilariin algoritma iizerindeki etkisi incelenmistir.

3.2. Genellestirilmis Atama Problemi

GAP’nin amaci minimum toplam maliyetle belirli bir is kiimesini belirli ajanlar
kiimesine atamay1 icermektedir. Her ajan sinirh kapasiteye sahip tek bir kaynagi temsil
etmekte olup her is mutlaka tek bir ajana atanmalidir. Bu atama esnasinda ajan
kapasitesinden belirli bir miktar kullanilmaktadir. GAP bilgisayar ve iletisim aglari,
yerlestirme problemleri, ara¢ rotalama, grup teknolojisi ve cizelgeleme gibi bir¢ok
uygulama alanina sahiptir. GAP’ne ait genis inceleme caligmalar1 ve uygulama alanlari
Martello ve Toth [118, 119], Cattrysse [120], Cattrysse ve ark. [121] ve Oncan [122]
calismalarinda sunulmaktadir. Bilimsel yazinda GAP’nin ¢6ziimii i¢in Ross ve Soland
[123], Fisher ve ark. [4], Martello ve Toth [119], Savelsbergh [124], Nauss [125]
tarafindan ¢esitli kesin ¢oOziim algoritmalart Onerilmistir. Diger taraftan GAP’nin
¢Oziimii i¢cin birgok sezgisel yontem de gelistirilmistir. Martello ve Toth [118, 119]
yerel arama ve aggozlii yontemin birlesiminden olusan bir algoritma sunarken, Osman
[126] GAP’nin ¢6ziimii i¢in benzetimli tavlama ve tabu arama algoritmalarini
gelistirmistir. Chu ve Beasley [127] eniyilik ve uygunlugu ayni anda iyilestirmeye

calisan  bir genetik algoritma yaklasimi  Onermislerdir. Farkli  degisken
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derinlik arama algoritmalar1 [128-130], ¢ikarim zinciri tabanl tabu arama algoritmalari
[131-133], aggozlii rastgele uyarlanir sezgiseline dayali maks-min karinca sistemi [134],
yol birlestirme yaklagimlar1 [135-140], karinca koloni optimizasyonu [141], kisit-oran
sezgiseli ile birlestirilmis genetik algoritma [142], diferansiyel gelisim algoritmasi [143]

son yillarda GAP i¢in 6nerilmis diger meta-sezgisel yaklasimlar olarak verilebilir.

AA ve YAK algoritmasinin uygulama alani olarak GAP’nin se¢ilmesi ise Fisher ve ark.
[4] tarafindan ispatlandig1 gibi problemin NP-zor yapisindan kaynaklanmaktadir. Diger
taraftan Martello ve Toth [119] GAP’nin NP-tam bir yapiya sahip oldugunu da
ispatlamistir. Bu calismada gelistirilen ar1 algoritmalarinin  GAP iizerindeki
performansi, algoritmalarin karmasik kisitlandirilmis kombinatoryal optimizasyon

problemlerindeki becerisi i¢in iyi bir gdsterge olacaktir.

GAP tamsayili programlama modeli, kullanilan notasyonlarla birlikte asagidaki sekilde
formiile edilmektedir.

I Isler kiimesi (i=1,...,n)

J: Ajanlar kiimesi (j=1,...,m)

b;: J ajaninin kaynak kapasitesi (b>0)

aj: i 151 ajanina atandiinda ihtiya¢ duyulan kaynak miktari (a;2>0)

cij: i 1$ini j ajanina atama maliyeti (¢;=0)
Xjj Karar degiskeni (x;=1, i isij ajanina atanirsa; 0, diger durumlarda)
n m
min z Z Cl'jxij
i=1 j=1
Kisitlar
n
i=1
m
zxij=1 1<i<n Vi (3.2.)
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Yukaridaki formiilasyonda amag fonksiyonu toplam atama maliyetini temsil ederken
birinci kisit kiimesi ajanlara ait kaynak kapasitesiyle iliskili olup ikinci kisitlar kiimesi

her bir isin tek bir ajana atanmasini saglamaktadir.

3.3. Genellestirilmis Atama Problemi icin Gelistirilmis Ar1 Algoritmasi

GAP’nin ¢6zlimii i¢in ¢ikarim zinciri komsuluk mekanizmasina sahip AA gelistirilmis,
genis bir deneysel calisma neticesinde Onerilen algoritma sonuglart bilimsel yazinda
sunulan meta-sezgisel algoritma sonuglart ile karsilastirilmis ve Onerilen algoritmanin
1yi sonuglar verdigi tespit edilmistir. Gelistirilmis AA’nin detayli adimlar1 Tablo 3.1°de

yer almakta olup kullanilan notasyonlar asagidaki gibi tanimlanmistir.

S: Kasif ar1 sayisi (s=1,...,S)

o’ Kasif ar1 ¢6ziimii

fit(a’): Kagsif ar1 ¢ozlimiiniin uygunluk fonksiyonu degeri

a;: Jj. ajanin kapasitesinden 1 birim fazla kullanma maliyeti

e: En iyi gorevli ar1 sayis1

nep: e adet gorevli arinin her birine gonderilecek izci ar1 sayisi

nsp: P-e adet gorevli armin her birine gonderilecek izci ari
say1s1 (nsp<nep)

o Yerel arama ile bulunan komsu ¢oziim, Is={kaydirma,
¢ciftkaydirma, ¢cikarimzinciri, eniyiizci}

fit(c"): Yerel arama ile bulunan komsu ¢Ozliimiin uygunluk
fonksiyonu  degeri,  Is={kaydirma, ¢iftkaydirma,
¢tkarimzinciri, eniyiizci}

LimitSayaci(c”): o’ ¢oziimii igin gelisme olmaksizin gegirilen iterasyon
sayisl

o En iyi ¢6zim

fit(e™™"): En iyi ¢6ziimiin uygunluk fonksiyonu degeri
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Tablo 3.1. GAP i¢in gelistirilmis AA adimlari.

Parametreleri baglangic durumuna getir
ARUAP algoritmast ile S adet kasif ar1 ¢oziimii olustur
3. Kasifan gézﬁmlerinin uygunluk fonksiyonlarin1 degerlendir

flt(aS)—ZZc Xij + Zajmaks{o,iauxu bj}

N —

j=1i= i=1
4. I=0
5. Do
Artan sekilde sirala,-; . _¢fit(c°) ve en iyi P adet ¢oziimii gorevli ar1 olarak
belirle
En iyi e adet gorevli ar1y1 se¢
En iyi e adet gorevli arinin her birine nep adet izci ar1 ata
Kalan P-e adet gorevli arinin her birine nsp adet izci ar1 ata
k=0
Do
Kaydirma
Egerﬁt(okaydzrma) <ﬁt(0p) ise Op — Ol(aydzrma
Cift Kaydirma

Egerﬁt(aflﬁkaydlrma) <ﬁf(0p) ise Op _ O_c[f'tkaydzrma
Gorevli arilara atanmus her bir izci ar1 i¢in

{

Cikarim Zinciri
Egerft(dlkarlmz"mln) <ft(0p) lse &nlyllz(,l OleLlrllenLlVl
3
Eger fit(6”"""*) < fit(d") ise ¥ =0 ve LimitSayaci(c”)=0,
Aksi takdirde LimitSayaci(o”)=LimitSayaci(o’)+1
En iyi ¢6zlimii giincelle
Eger (¢’ uygun ve fit(c?) < fit(c""") ise """ =’
Eger (LimitSayaci(o’)>limit) ise ARUAP algoritmasi ile yeni bir kasif
ar1 ¢0ziimii olustur
a; degerlerini giincelle, fit(o”) degerlendir
k=k+1
While (k<P)
ARUAP algoritmasi ile S-P adet yeni kasif ar1 ¢éziimleri olustur.
I=1+1
While (I=Makslter)

Gelistirilmis AA, parametrelerin baglangi¢ degerlerine atanmas: ile baslar (S, P, e, nep,
nsp, CZ-Uzunlugu, Makslter, limit, a;) ve genellikle uygun ¢oziimler {ireten ve Boliim
3.3.1°de detaylar1 verilecek olan ARUAP algoritmasi ile S adet baslangic kasif ari
¢Ozlimii olusturulmasi ile devam eder. Olusturulan ¢oziimler kiimesinden P adet 1yi
¢Oziim gorevli ar1 ¢ozlimleri olarak belirlenir. P adet iyi ¢6zlim arasindan segilen e adet
¢Oziim, en iyi ¢oziimler olarak belirlenir. Daha detayli bir komsuluk aramasi i¢in bu en

iyi ¢cozlimlere nep adet izci ar1 gonderilir. Daha az sayida izci ar1 ise kalan P-e adet



46

¢Oziime gonderilir. Yerel arama i¢in her gorevli artya sirasiyla kaydirma (Boliim
3.3.2.1) ve ¢ift kaydirma (Boliim 3.3.2.2) komsuluk mekanizmalar1 uygulanir. Daha iyi
bir ¢ézliim bulunmugsa gorevli ar1 ¢oziimii giincellenir. Her bir gdrevli ariya atanan izci
arilar, ¢ikarim zinciri komsuluk yapis1 (Bolim 3.3.2.3) ile komsu ¢ézlimler olusturur.
En iyi izci an orijinal gorevli ari ile karsilastirilir, eger daha iyiyse gorevli ar1 ¢oziimii
giincellenir. Diger taraftan gorevli ar1 ¢oziimleri, o ana kadar bulunan en iyi ¢oziimle
karsilagtirilir ve gerekli sartlar saglanmigsa (uygun ve bir onceki en iyi ¢oziimden daha
iyi bir ¢6ziim elde edilmigse) en iyi ¢oziim giincellenir. Gorevli ar1 ¢ozimii /imit adet
iterasyon boyunca gelistirilememisse ARUAP algoritmasi kullanilarak yeni bir kasif ar1
¢Oziimii olusturulur. Biitiin bu islemler sonucunda uygun bir ¢6ziim bulunamamissa
Tablo 3.5’te verilen algoritma kullanilarak o; degerleri artirilir; en az bir uygun ¢dziim
bulunmussa a; degerleri ayni algoritma kullanilarak azaltilir. Boylece uygun bir ¢oziim
bulunamamigsa arastirma bolgesi farklilastirilmaya, en az bir uygun ¢6ziim
bulundugunda ise bu ¢6ziim etrafinda daha detayli bir arama yapilabilmesi saglanmaya
calisilmigtir. Komguluk aramasi tamamlandiktan sonra S-P adet yeni ¢oOziim
olusturularak baglangic popiilasyon sayisinin tamamlanmasi saglanir. Boylece bir
sonraki iterasyona ait popiilasyon, giincellenen P adet gorevli ar1 ¢oziimii ile S-P adet

yeni kasif ar1 ¢6ziimiinden olusmaktadir.

Bu caligmada orijinal AA’nin bazi adimlart GAP’nin ¢6zlimii i¢in farklilagtirilmistir. Bu
farkliliklardan ilki siirekli optimizasyon problemlerinin ¢oziimii i¢in Onerilen orijinal
AA’na ait komsuluk boyutu parametresi yerine GAP i¢in tasarlanmis ¢ikarim zinciri
komsuluk mekanizmasina ait ¢Z-Uzunlugu parametresinin kullanilmasidir. Cikarim
zinciri komsulugunda gerceklestirilecek kaydirma hareketi sayisin1 gosteren (CZ-
Uzunlugu komsuluk boyutunu belirlemektedir. Diger bir farklilik ise kasif arilarla ilgili
olup orijinal AA’nda kasif arilar algoritma sonlandirilana kadar ¢6ziim uzayinda arama
yapmaya devam ederken Gelistirilmis AA’nda buna ek olarak bir arastirma
bolgesindeki nektar miktar1 yeterince azaldiginda yeni késif arilarin algoritmaya dahil
edilmesine karar verilmistir. Diger bir deyisle belirli bir iterasyon ya da siire sonunda
gelistirilemeyen bir ¢6ziim varsa o ¢oOziim tekrar olusturulmaktadir. Gelistirilmig

AA’nin 6nemli adimlarinin detaylar1 sonraki boliimlerde verilmistir.
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3.3.1. Ari Kolonisinin Olusturulmasi

Baslangi¢c ar1 kolonisi, rastgele ¢ozlimler yerine genellikle uygun c¢oziimler iireten
Acgozlii Rastgele Uyarlanir Arama Prosediiri (ARUAP, [134]) kullanilarak
olusturulmustur. ARUAP algoritmasinda gerceklestirilen secim islemi bir olasilik
fonksiyonuna bagli olarak yapilmakta ve bu fonksiyon her iterasyon sonunda iyi
¢oziimlere gore giincellenmektedir. Ilgili algoritmanmin adimlari Tablo 3.2°de yer

almakta olup algoritmanin kisaca isleyisi ve kullanilan notasyonlar asagidaki gibidir.

e Her bir adimda atanacak bir sonraki is segilir.
e Secilen isin atanacagi ajan belirlenir.

e Biitiin igler bir ajana atanana kadar bu iki adim tekrarlanir.

Sj: Jj ajanina atanan isler kiimesi
L;: i isinin atanabilecegi ajanlar kiimesi
Dij: i iinin j ajanina atanma olasilig1

o(i):  iisinin atanmis oldugu ajan

Tablo 3.2. Acgdzlii rastgele uyarlanir arama prosediirii adimlari.
S; =0, Vj=1,...,m olsun
. Her is i¢in biitlin ajanlar1 igeren bir L; ajanlar listesi olustur,
baslangigta L; ={1,...,m} Vi olsun
Islerin herhangi bir sirasimni ele al, i=1
4. While (bltiin isler atanana kadar) Repeat
L;listesindeki biitlin ajanlar i¢in asagidaki olasilik fonksiyonunu hesapla
(minimum maliyete sahip ajanin secilme olasilig1 daha yiiksek olacaktir)
__ bj/ay
Py Y, bi/ay’
i isinin atanacag1 ajan1 bu olasilik degerine gore rastgele seg
(secilen ajan j~ olsun)
i isini ;" ajanima ata, Si = S« U {i}
Eger Ziesj* a;j« > bj- ise ;" ajamin biitiin listelerden sil. 4 nolu adimi

N —

(98]

JEL;

tekrarla (kapasite kisit1 saglanmayabilir)
=i+1
5. ieS;ise a(i)=j

3.3.2. Komsuluk Yapilar

GAP’nin AA ile ¢oziimiinde kullanilan kaydirma, ¢ift kaydirma ve ¢ikarim zinciri

komsuluk yapilar1 asagidaki boliimlerde detayli olarak agiklanmustir.
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3.3.2.1. Kaydirma Komsuluk Yapis1

Kaydirma komsuluk yapisinda komsu ¢oziimler, orijinal ¢oziimdeki bir isin ajan
atamasinin degistirilmesi sonucu elde edilir (i isi j ajanindan ¢ikarilarak w ajanina atanir
w#j). Ilgili komsulugun isleyisi Tablo 3.3’te ozetlenmis ve Sekil 3.1°de drnek bir

uygulama verilmistir.

Tablo 3.3. Kaydirma komsuluk yapisinin isleyisi.

1. S={ilie{l,...,n}}, =1, "™ = olsun

2. Eger S=0 ise dur; aksi takdirde o =¢”, iisi o den ¢ikarilir, S=S-{i}

3. j ajanijeJ/{o(i)} kiimesi iginden ¢;; + aymaks{0, (Tic;oy=; @) + aij — b;}
fonksiyonunu minimize eden ajan olsun
i isini ;" ajanmna ata, o ¢oziimiinii al ve fif(c) hesapla

4. Eger fit(c)< fit(c"™¥4™) js¢ oM™ = &

5. i=1i+1, 2 nolu adima don

6. AU ¢Sziimiini al

"

Ajanl Ajan2 Ajan3 Ajan4 Ajan5

Ajanl Ajan2 Ajan3 Ajan4 Ajan5

is2 is5 is8 is2 is6 is13

is3 is8 is12 is9 is14 is1 is11 is12 is9 is14

Is11 is4 is10 is7 is3 is4 is10 is7

Is15 isi5

Sekil 3.1. Kaydirma komsuluk yapis1 6rnegi.

Yukaridaki 6rnekte 2 nolu ajana atanmis olan 5. i, kaydirma hareketinden sonra 1 nolu

ajana atanmistir.

3.3.2.2. Cift Kaydirma Komsuluk Yapisi

Bu komsuluk yapisi ¢ikarim zinciri komgulugunun 6zel bir bigimi olup iki kaydirma
hareketi gergeklestirildiginden ¢ikarim zinciri uzunlugunun 2 oldugu durumdur (7 isi j
ajanindan ¢ikarilarak w ajanina atanir w#j, w ajanindan £ isi ¢ikarilir ve g ajanina atanir
g#w). Cift kaydirma komsulugu kendi icinde, iki farkli igin ajan atamalarinin kendi
arasinda yer degistirilmesine dayanan, degistirme komsuluk yapisini da igerir (orijinal
¢Oziimde i isi j ajanina, k isi w ajanina atanmis iken, 7 iginin atamasi w ajanina, k isinin
atamas1 da j ajanina olacak sekilde degistirilir). Cift kaydirma ve ¢ikarim zinciri

komsuluk yapilar1 arasindaki temel fark, ¢ikarim zinciri komsulugunda her kaydirma
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hareketi i¢in isler B listesinden secilirken cift kaydirma komsulugunda yeni bir
kaydirma hareketinin biitiin igler listesi kullanilarak belirlenmesidir. Bu komsuluk
yapist Yagiura ve ark. [133] calismasinda Onerilen ¢ift kaydirma mekanizmasinin
basitlestirilmis halidir. Sekil 3.2’de ¢ift kaydirma komsuluk yapisina ait bir 6rnek
verilmis olup 5 nolu ajana atanmis olan 13. is 2 nolu ajana, 2 nolu ajana atanmis olan 5.

is 1 nolu ajana kaydirilarak iki kaydirma hareketi gerceklestirilmistir.

5 is13 is5

Ajan3  Ajan4 Aj

is1 is5 is2 is6 is13

is3 is8 is12 is9 is14

Isi1 is4 is10 is7

is15

Ajanl Ajan2 Ajan3 Ajan4 Ajan5

is5 is13 is2 is6 is14

is1 is8 is12 is9 is7

is3 Is11 is4 is10

is15
Komsu GCoézim

Sekil 3.2. Cift kaydirma komsuluk yapis1 6rnegi.

3.3.2.3. Cikarim Zinciri Komsuluk Yapis1

Diger komsuluk yapilarina gére daha giiclii ancak daha karmasik olan ¢ikarim zinciri
komsuluk yapisinda bir komsu ¢oziim, sayisi zincir uzunlugu ile belirlenen c¢oklu
kaydirma hareketlerinin gerceklestirilmesi ile elde edilir. iy isinin atanmis oldugu o(iy)
ajanindan cikarilip serbest bir is haline getirildigini varsayalim. Bu ¢ikarim hareketi
sonucunda o(ip) ajaninin kullanilabilir kaynak miktar1 artmistir. Mevcut(iy), iy isinin

c¢iktig1 ajanda kalan kaynak miktar1 olup asagidaki gibi tanimlanmistir.

Qiy,5(ip) — Polip)(0) eger Qi q(iy) > Po(iy)(0)
Qi o(iy) diger durumlarda

Mevcut(iy) = { (3.3.)
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pj(o) = maks0, z a;j | — b (3.4.)
ieLo(i)=j

Ako(iy) < Mevcut(iy) esitsizligini saglayan isler ig¢inden o(iy) ajanina kaydirilmasi en
karli olan isin i; oldugu varsaymmyla i; isi o(iy) ajanina kaydirilir ve bu ¢ozlime
referans yapist adi verilir. Bu ¢ikarim hareketinden sonra serbest is iy Tablo 3.4’te
(Adim-3) verilen uygunluk fonksiyonuna olan etkisine gore bagka bir ajana atanmaya
caligilacaktir. Bu asamaya da deneme hareketi ad1 verilir. Bir sonraki ¢ikarim hareketi
deneme hareketleri sonucu elde edilen ¢oziimlere degil, bir dnceki referans yapisina
uygulanmaktadir. Cikarim zinciri komsulugunun genel isleyisi Tablo 3.4’te, 6rnek bir

uygulama ise Sekil 3.3’te verilmistir.

Tablo 3.4. Cikarim zinciri komsuluk yapisinin isleyisi.

—_—

. S=0 olsun

Eger S=I ya da [=CZ-Uzunlugu ise dur; aksi takdirde rastgele bir iyel'\S seg,
S=SUf{i,} ve o'=o olsun (iy isi o(ip) ajanindan ¢ikarilir)

. j* ajan1 jeJ\{o(iy)} kiimesi i¢inden

o

(98]

Cioj + ajmaks O, Z aij + aioj - b]
iena(i)=j
fonksiyonunu minimize eden ajan ve /=0 olsun
4. Eger B(i)\{ix|k</}=0 ise 2 nolu adima don, aksi takdirde /=/+-1 olsun ve 5 nolu
adima geg.
5. ieB(ip)\{ix|k<l-1} listesinden rastgele bir is se¢ ve ¢'(i))=a(i;.;) (i; isinin ¢ikarim
hareketi)
o'(ig)=0o(iy) (ip, 0(i}) ajanina eklenir - deneme hareketi)
a'(ig)=j : (io, j* ajanina eklenir - deneme hareketi)
6. 4 nolu adima don.

Tablo 3.4’te kullanilan ¢esitli fonksiyon ve kiimeler agsagidaki gibi tanimlanmistir.

I'={k € I|3h € I 5.t.ap 4 < Mevcut(k) ve a(h) # o(k)} (3.5.)
skor(i,j) = c;j (3.6.)
eniyiskor(i) = min{skor(k,a())|k € I',a(k) # g(Dveay sy < Mevcut (i)} (3.7.)

B(i) = {k € I'|skor(k, a(i)) = eniyiskor (i), (k) # o(Dveay sy < Mevcut (i)} (3.8.)
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I', baska bir ajandan (i) ajanina kaydirilmas1 miimkiin isler kiimesini; skor(i,j), i isini j
ajanina  kaydirma maliyetini; eniyiskor(i), I'kiimesindeki kaynak gereksinimi
Mevcut(i)’den az olan isler i¢inden en diisiik skor degerine sahip isin skor degerini; B(i),

ise en 1yi skor degerine sahip isler kiimesini temsil etmektedir.

is5 is13

is5

Deneme Hareketi

Ajanl

is5 I is2
is1 is13 is2 is6
is3 is8 is12 is9 is14
is11 is4 is10 is7
is15 is11

Sekil 3.3. Cikarim zinciri komsuluk yapist 6rnegi.

Yukaridaki sekilde 5. is 2 nolu ajandan ¢ikarilarak serbest is haline getirilmistir. Kaynak
kullanim miktar1 Mevcut(5) degerinden az olan igler arasinda en iyi skor degerine sahip
olan 13. is kaydirma hareketi i¢in secilir. 13. i 5 nolu ajandan ¢ikarilarak 2 nolu ajana
atanir ve bu ¢ozlime referans yapisi adi verilir. Sonraki adimda uygunluk fonksiyonuna
olan etkisine gore, serbest olan 5. is 1 nolu ajana atanir ve deneme hareketi
gergeklestirilmis olur. Elde edilen bu ¢6ziim CZ-Uzunlugu=2 igin olusturulmustur ve

cift kaydirma hareketi olarak adlandirilir.

CZ-Uzunlugu>2 ise aym adimlar dnceki referans yapisi iizerinde tekrarlanir. Ornege
donecek olursak, Mevcut(13) degeri gilincellenerek bir sonraki kaydirma hareketi i¢in 2.
is secilir. 2. i 5 nolu ajana atandiktan sonra yine uygunluk fonksiyonuna olan etkisine
gore serbest olan 5. ig 2 nolu ajana atanir. Elde edilen bu ¢6ziim ise CZ-Uzunlugu=3 igin
olusturulmus durumdur ve oOnceden belirlenen zincir uzunlugunca aymi adimlar

tekrarlanarak tam bir komsu ¢6ziime ulasilir.
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Yagiura ve ark. [133] tabu arama algoritmasi ile birlikte kaydirma, ¢ift kaydirma ve

cikarim zinciri komsuluk yapilarini kullanmistir. Bu tez ¢alismasinda ise yerel arama

stratejileri daha farkli bir sekilde uygulanmustir.

3.3.3.

Mevcut c¢alismada skor fonksiyonu olarak maliyetler (c;) tercih edilmistir.
Yagiura ve ark. [133] caligmasinda verilen diger skor fonksiyonlarinin
kullanimiyla bazi problemlerde daha iyi ¢oziimler ya da daha diisik CPU
siireleri elde edilebilmektedir. Ancak biitlinliilk acisindan tiim problemler igin

minimum maliyet degeri kullanilmistir.

Kaydirma komsuluk yapisi her is i¢in tekrarlanmakta ve en iyi gelisme, yeni

¢Ozlim olarak kabul edilmektedir.

Cift kaydirma mekanizmasi, ¢ikarim zinciri uzunlugunun 2 oldugu durum
seklinde basitlestirilmis ve ayn1 zamanda degistirme deneme hareketine de izin
verilmigtir. En iyi gelismeyi veren cift kaydirma hareketini belirleyebilmek i¢in

I' kiimesindeki her is i¢in ilgili mekanizma c¢alistirilmistir.

Cikarim zinciri komsuluk yapisinin karmasiklig1 ve uzun islem siiresi sebebiyle
ilk gelisme, yeni ¢Oziim olarak kabul edilmistir. Ayni ¢6zliim iizerinde ¢ikarim
zinciri komsuluguyla farkli ¢oéziimler elde eden izci arilarin her birinin farkl bir

isten baglayarak kaydirma hareketlerini gerceklestirmesi saglanmistir.

Tablo 3.5’te detaylar1 verilen ceza katsayisinin (@) uyarlanir kontrolii
mekanizmasi, Onerilen algoritmada da kullanilmistir. Ancak «; baslangic
degerleri, algoritmanin yakinsama yetenegini gorebilmek igin 1 olarak

belirlenmistir.

AA popiilasyon tabanli bir arama stratejisi kullanmakta ve arama stratejisinin bu

0zelliginin problem karmasiklig1 arttikca daha faydali olmasi beklenmektedir.

Uygunluk Fonksiyonu

GAP’nde optimum c¢oziimlerin uygun olmayan ¢oziimlere ¢ok yakin oldugu tespit

edildigi i¢in [133] arastirma alaninda uygun olmayan ¢6ziimlerin de yer almasina izin

verilmigstir. Boylece uygun ¢oztimlere sahip bdlgelerin dar oldugu ya da ayr1 ayr birkag
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dar bolgeden olustugu durumlarda fayda saglanmistir. Bu dogrultuda baslangi¢ ve
komsu ¢oziimlerin olusturulmasi asamasinda, uygun olmayan ¢oziimlerin tiretilmesine
izin verilmistir. Dolayisiyla uygunluk fonksiyonu olarak, GAP’ne ait amag
fonksiyonuna uygun olmayan ¢dziimlerin cezalandirilmasini amaglayan bir ceza terimi
eklenmistir. Boylece GAP {izerine yapilan caligmalarin ¢ogunda oldugu gibi uygun
olmayan alanlarda da ¢aligmaya izin verilmis, ancak uygun olmayan ¢oziimler uygun

olmama derecesine gore cezalandirilmstir.

m n m n
fit(o‘s) = Z Z cijxl-j + Z ajmaks {O,Z aijxl-j - b]} (39)

j=1i=1 j=1 i=1

Uygunluk fonksiyonundaki ilk terim toplam atama maliyetini, ikinci terim ise ceza
fonksiyonunu temsil etmektedir. Eger bir ¢6ziim uygun degilse o ¢dziime ait uygunluk
fonksiyonunun ikinci terimi pozitif deger alacak, dolayisiyla arastirma uygun bir
¢Ozlime dogru yonlendirilecektir. Diger taraftan eger kapasite asilmamigsa ikinci terim 0O
degerini alacaktir. a; parametresinin degeri, uygun olmayan ¢oziimlerin cezalandirilmasi
ve arastirmayr uygun g¢oziimlere yonlendirebilmek amaciyla programin g¢alistiriimasi

stiresince degistirilmekte yani ceza maliyeti uyarlanir olarak kontrol edilmektedir.

3.3.4. Ceza Katsayisinin Uyarlanir Kontrolii

Ceza katsayisinin uyarlanir kontrolii Yagiura ve ark. [133] c¢alismasi esas alinarak
gergeklestirilmis olup detayli adimlar Tablo 3.5’te verilmistir. Komsuluk yapilari igin
bir iterasyonun tamamlanmasindan sonra a; degerleri giincellenmektedir. Boylece
uygun bir ¢oziim bulundugunda bu ¢ozliim etrafinda daha detayli bir arama

yapilabilmesi saglanmaktadir.
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Tablo 3.5. a; parametresinin uyarlanir kontrolii.

1. Izci an komsuluklarnda uygun bir ¢dziim bulunamamgsa asagidaki
formiilasyonla biitiin j €/ i¢in o; degerlerini artir

a; (1 + A. q?ms(a)), a; >0
a; = TS (GYminge, {byan|bpay > 0}
A. 9 he]b hoR TR , diger durumlarda
J
adimbiiytikligiartis . .
~ . ) eger maks;e ]|q;.m$(a)| >0
A= maksjg, q; (a)|
0, diger durumlarda

q;"" (o) = p;(0)/b;

2. Izci arn komsuluklarinda en az bir uygun ¢oziim bulunmugsa biitin
degerlerini, ¢“™(s) degeri ¢“““(s) ve adimbiiyiikliigiiartisi  degeri
adimbiiyiikliigiiazalis1 olacak sekilde yukaridaki formiilasyonlar1 kullanilarak
azalt.

qqzalls(g) _ {—1, egerpj(c) =0
J 0, diger durumlarda

3.4. Genellestirilmis Atama Problemi icin Gelistirilmis Yapay Ar1 Kolonisi
Algoritmasi

GAP’nin ¢6zlimii i¢in ¢ikarim zinciri komsuluk mekanizmasina sahip YAK algoritmasi
gelistirilmistir. Tablo 3.6’da  Gelistirilmis YAK algoritmasinin detayli adimlari

verilmistir.
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Tablo 3.6. GAP i¢in gelistirilmis YAK algoritmasi adimlari.

e

Parametreleri baslangic degerlerine ata
ARUAP algoritmasi ile P adet baglangi¢ gorevli ar1 ¢oziimii olustur (o)
Gorevli ar1 ¢oziimlerinin uygunluk fonksiyonlarini degerlendir

m n m n
fit(o‘p) = CijXij + Z ajmaks {O,Z ajXij — b]}
1

j=1i= j=1 i=1

Uygunluk degerleriyle iligkili olasiliklar1 hesapla (en kiigiikleme i¢in)
-1
1
(Z / f it(ap))

P Fit(o?)
Hesaplanan olasiliklara gore, gorevli arilarin yiyecek kaynaklarina
gonderilecek izci ar1 sayisini belirle, p, *P
k=0
Do
Kaydirma
Egerﬁt(o_kaydzrma)<ﬁt(ap) ise Opzo_kaya'trma
Cift Kaydirma
Egerﬁt(o_ciﬁkaydtrma)<ﬁt(ap) ise Gp:G(:;'ﬂkaydzrma
Gorevli arilara atanmis her bir izci ar1 i¢in

{

Cikarim Zinciri
Egerﬁt(o_ctkarlmzinciri)<ﬁt(op) ise &niyiizci:Gclkarlmzinciri

}
Eger fit(c"""“")<fit(d") ise &#=c""""*" ve LimitSayaci(d’)=0,
Aksi takdirde LimitSayaci(o”)=LimitSayaci(c’)+1
En iyi ¢oziimii giincelle

Eger (¢” uygun ve fit() < fit(c"™") ise """ =&’
Eger (LimitSayaci(c’)>limit) ise ARUAP algoritmasi ile yeni bir kasif
ar1 ¢0zimii olustur
a; degerlerini giincelle, fit(c”) degerlendir
k=k+1

While (k<P)

Kasif ar1 ¢oztimleri ile gorevli ar1 ¢oziimlerini karsilagtir
ARUAP algoritmasi ile S adet kasif ar1 ¢6ziimii olustur (a°)
Artan sekilde sirala,—; _gfit(c’)

Azalan sekilde sirala,-;_pfit(c”)

=0

Repeat
Eger fit(a5™") < fit(c" ") ise 6" = g5
r=r+1

Until (r=S)

I=1+1
While (I=MabkslIter)
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Gelistirilmis YAK algoritmasi, parametrelerin baslangi¢c degerlerine atanmasi baslar ve
ARUAP algoritmas ile P adet baslangi¢ goérevli ar1 ¢éziimii olusturulmasi ile devam
eder. Gorevli ar1 ¢oziimlerine, ¢dziimiin kalitesi ile orantili sayida izci ar1 atanir. Yerel
arama i¢in her gorevli artya sirastyla kaydirma ve ¢ift kaydirma komsuluk
mekanizmalar1 uygulanir. Daha iyi bir ¢oziim bulunmussa gorevli ar1 ¢oziimi
giincellenir. Her bir gorevli artya atanan izci arilar, ¢ikarim zinciri komsuluk yapist ile
komsu ¢oziimler olusturur. En iyi izci ar1 orijinal gérevli ar1 ile karsilagtirilir, eger daha
iyiyse gorevli ar1 ¢oziimii glincellenir. Diger taraftan gorevli ar1 ¢éziimleri o ana kadar
bulunan en iyi ¢ozlimle karsilastirilir ve gerekli sartlar saglanmigsa (uygun ve bir 6nceki
en 1yi ¢oziimden daha iyi bir ¢oziim elde edilmigse) en iyi ¢oziim giincellenir. Gorevli
ar1 ¢Oziimil /imit adet iterasyon boyunca gelistirilememigse ARUAP algoritmasi
kullanilarak yeni bir kasif ar1 ¢6ziimii olusturulur. Biitiin bu islemler sonucunda uygun
bir ¢6ziim bulunamamigsa Tablo 3.5°te verilen algoritma kullanilarak a; degerleri
artirilir; en az bir uygun ¢6ziim bulunmussa o; degerleri ayni algoritma kullanilarak
azaltilir. Izci arilar tarafindan gergeklestirilen yerel aramaya paralel olarak, kasif arilar
da yeni ¢oziimler arastirmaktadirlar. Elde edilen kasif ar1 ¢oziimleri en diisiik uygunluk
degerine sahip gorevli ar1 ¢oziimleri ile karsilastirilir ve kasif arilarla daha iyi bir ¢6ziim
elde edilmisse gorevli ar1 ¢oziimleri giincellenir. Son olarak algoritma adimlart 6nceden

belirlenmis iterasyon sayis1 kadar tekrarlanir.

Gelistirilmis YAK algoritmasinda baslangi¢ ¢oziimlerinin olusturulmasi, kullanilan
komsuluk yapilari, uygunluk fonksiyonu ve ceza katsayisinin uyarlanir kontroli

asamalar1 Gelistirilmis AA’ndakiler ile aynidir.

3.5. Deneysel Calisma
3.5.1. Problem Tipleri

Test problemleri gapl-gapl2 (gapl-gap6/kolay, gap7-gapl2/zor) ve gapa-gapd (gapa-
gapb/kolay, gapc-gapd/zor) problemlerini icermektedir. Diger taraftan gapl-12
problemleri, gapa-gapd problemlerine gore daha kolay problemlerdir. gapl-12
problemleri 5 ajan-15 is ile 10 ajan-60 is arasinda degisen problemler kiimesine sahip
olup her problem kiimesi 5 farkli problem icermekte; dolayisiyla ¢oziilmesi gereken 60

problem bulunmaktadir. Bu problem kiimeleri en biiylikleme formunda olup optimum
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degerleri bilinmektedir. gapa-gapd problemleri ise 5 ajan-100 is ile 20 ajan-200 is
arasinda degisen daha zor problemler olup her problem kiimesi 6 farkli problem
icermektedir. Dolayisiyla ¢oziilmesi gereken 24 problem vardir. Bu gruptaki problemler
en kiiciikleme formunda olup sadece en iyi degerleri bilinmektedir. Biitiin test
problemleri OR-Kiitiiphanesinden (http://mscmga.ms.ic.ac.uk/jeb/orlib/gapinfo.html)

temin edilmistir. gapa-gapd test problemlerinin detaylar1 asagida verilmistir.

gapa: a;eU(5,25) ve tamsayl, ¢;€U(10,50) ve tamsayi, b=0.6(n/m)15+0.4R seklinde

hesaplanmaktadir.
R = maks;j¢,; Ziel,]izj a;j ve J; = min(j|cl-j < cxj, Vk E]) (3.10.)

gapb: a; ve c; gapa’daki gibi hesaplanirken b; gapa problemlerinde verilen degerlerin

%701 seklinde hesaplanmaktadir.

gapc: a; ve c; gapa’daki gibi hesaplamrken b; = 0.8%;-;a;;/m seklinde

hesaplanmaktadir.

gapd: a;eU(1,100) ve tamsayi, c¢; = Ill-a;te, e€U(-10,10) ve tamsayi, b; =
0.8Zi=,aij/m

3.5.2. Gelistirilmis Ar1 Algoritmasi Sonuclari

Gelistirilmis AA, C# programlama dilinde kodlanmig ve 1.6 GHz CPU ve 512 MB
RAM ozelliklere sahip Intel Pentium CoreDuo PC kullanilarak gapl-12 ve gapa-d

problemleri tizerinde analiz edilmistir.
Gelistirilmis AA parametreleri asagidaki gibi tanimlanmustir:

o Kasif ar1 sayis1 (5)

e Gorevli ar1 sayis1 (P)

e Eniyi gorevli ar1 sayisi (e)

e Her bir e adet gorevli artya gonderilecek izci ar1 sayisi (nep)

e Her bir P-e adet gorevli artya gonderilecek izci ar1 sayist (nsp)
e (Cikarim zinciri komsuluk yapisinin uzunlugu (CZ-Uzunlugu)

e Maksimum iterasyon sayisi (Makslter)
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¢ Gelisme olmaksizin gegirilebilecek maksimum iterasyon sayisi (/imif)

o (Ceza katsayisinin baslangi¢ degeri ()

o adimbiiyiikliigiiazalisi > 0

o 0 <adumbiiyiikliigiiartisi < 1

Test problemlerinin yapis1 geregi Tablo 3.7°de gosterildigi gibi ii¢ farkli parametre

kiimesi belirlenmistir. Bu parametreler bilimsel yazinda verilen genel Oneriler ve

deneyimlere gore belirlenmistir.

Tablo 3.7. GAP i¢in gelistirilmis AA parametrelerinin degerleri.

Parametreler

gapl-12 gapa, gapb gapc, gapd

S
P
e
nep
nsp

CZ-Uzunlugu

Makslter
limit
b

adimbiiyiikliigiiazalist
adimbiiyiikliigiiartigi

50 100 200
20 40 80
10 20 40
5 5 5

2 2 2
25 50 75
250 500 1000
25 50 100
1 1 1
0.1 0.1 0.1
0.01 0.01 0.01

Bilimsel yazindaki en iyi sonuglar genellikle algoritmanin 5 kez calistirilmast sonucu

elde edildiginden, daha adil bir karsilastirma icin Gelistirilmis AA da her test problemi

icin 5 kez calistirilmis ve elde edilen minimum, ortalama, maksimum ve standart sapma

degerleri ile 5 kosma sonucu elde edilen en iyi ¢6ziim sayist Tablo 3.8’de verilmistir.

Tablo 3.8’deki sonuglar gapa-d problemlerini icermekte olup, gap1-12 problemlerine ait

sonuglar karsilastirma boliimiinde verilecektir.



Tablo 3.8. GAP i¢in gelistirilmis AA ile elde edilen gapa-d sonuglari.

Problem Minimum Ortalama

Maksimum Standart sapma En iyi ¢6ziim sayis1

gapal
gapa2
gapa3
gapa4
gapas
gapab
gapbl
gapb2
gapb3
gapb4
gapb5
gapb6
gapcl
gapc2
gapc3
gapcd
gapc5s
gapc6
gapdl
gapd2
gapd3
gapd4
gapd5
gapd6

1698
3235
1360
2623
1158
2339
1843
3552
1407
2827
1166
2339
1931
3456
1402
2806
1243
2392
6353
12744
6356
12442
6221
12276

1698
3235
1360
2623
1158
2339
1843
3552
1407
2827
1166
2339
1931
3456.60
1402
2806.60
1243.60
2392.60
6354.40
12746.20
6358.80
12445.20
6226.60
12280

1698
3235
1360
2623
1158
2339
1843
3552
1407
2827
1166
2339
1931
3457
1402
2807
1244
2393
6356
12748
6362
12447
6232
12284

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.54
0.00
0.54
0.54
0.54
1.34
1.78
2.58
2.04
4.61
2.91

5/5
5/5
5/5
5/5
5/5
5/5
5/5
5/5
5/5
5/5
5/5
5/5
5/5
2/5
5/5
2/5
2/5
2/5
2/5
1/5
1/5
1/5
1/5
1/5

3.5.3. Gelistirilmis Yapay Ar1 Kolonisi Algoritmasi1 Sonuclari

Onerilen YAK algoritmasinin performans analizi igin C# programlama dili ve ayni

ozelliklere

sahip PC kullanilarak gapl-12 ve

degerlendirilmistir.

gapa-gapd problem gruplar

Gelistirilmis YAK algoritmasinin parametreleri agagidaki gibi tanimlanmastir.

e Gorevli ar1 sayis1 (P)

e Kagsif ar1 sayisi (S)

e (Cikarim zinciri komsuluk yapisinin uzunlugu (CZ-Uzunlugu)

e Gelisme olmaksizin gegirilebilecek maksimum iterasyon sayisi (/imit)

e Maksimum iterasyon sayisi (Makslter)

e (Ceza katsayisinin baslangi¢ degeri (a5)

o adimbiiyiikliigiiazalisi > 0

o 0 <adumbiiyiikliigiiartis1 < 1

Test problemlerinin yapisi, bilimsel yazinda belirtilen ilkeler ve deneyimlere gore 3

farkli parametre kiimesi tanimlanmistir (Tablo 3.9). Diger taraftan kolonideki kasif ar1
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sayist, biyolojik arastirmalar baz alinarak [60] gorevli ar1 sayisinin %10°u seklinde

belirlenmistir.

Tablo 3.9. GAP i¢in gelistirilmis YAK algoritmasi parametrelerinin degerleri.

Parametreler gapl-gapl2 gapa, gapb gapc, gapd
P 50 100 250

S 5 10 25
CZ-Uzunlugu 25 50 75

limit 25 50 100
Makslter 250 500 1000

ajp 1 1 1
adimbiiyiikliigiiazalisi 0.1 0.1 0.1
adimbiiyiikliigiiartigi ~ 0.01 0.01 0.01

Onerilen YAK algoritmas1, gapa-gapd problemleri icin yine 5 kez calistirilarak elde
edilen minimum, ortalama, maksimum ve standart sapma degerleri Tablo 3.10’da

verilmigtir.

Tablo 3.10. GAP i¢in gelistirilmis YAK algoritmasi ile elde edilen gapa-gapd sonuclari.

Problem Minimum Ortalama Maksimum Standart sapma En iyi ¢6ziim sayisi

gapal 1698 1698 1698 0 5/5
gapa2 3235 3235 3235 0 5/5
gapa3 1360 1360 1360 0 5/5
gapas 2623 2623 2623 0 5/5
gapa5 1158 1158 1158 0 5/5
gapab 2339 2339 2339 0 5/5
gapbl 1843 1843 1843 0 5/5
gapb2 3552 3552 3552 0 5/5
gapb3 1407 1407 1407 0 5/5
gapb4 2828 2828.40 2829 0.54 3/5
gapb5 1166 1166 1166 0 5/5
gapb6 2339 2339 2339 0 5/5
gapcl 1931 1931 1931 0 5/5
gapc2 3456 3457 3458 0.70 1/5
gapc3 1402 1402 1402 0 5/5
gapcd 2806 2806.40 2807 0.54 3/5
gapc5 1243 1243 1243 0 5/5
gapc6 2392 2392.80 2394 1.09 3/5
gapdl 6357 6358.40 6360 1.34 2/5
gapd2 12750 12750.60 12751 0.54 2/5
gapd3 6362 636240 6363 0.54 3/5
gapd4 12454 12455.80 12460 2.38 1/5
gapd5 6235 6237 6239 1.87 1/5
gapd6 12293 12297.40 12299 2.60 1/5

3.5.4. Gelistirilmis Ar1 Algoritmasi ve Yapay Ar1 Kolonisi Algoritmalarinin

Bilimsel Yazindaki Algoritmalarla Karsilastirilmasi

Tez calismasinin bu bélimiinde 6ncelikle gapl-12 daha sonra da gapa-d problem

kiimesi icin karsilagtirma sonuglarina yer verilmistir. Tablo 3.11 bilimsel yazindaki
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farkli algoritmalar ve Onerilen AA ve YAK algoritmalarina ait gapl-12 sonuglarinin
optimum degerden ortalama sapmalarimi vermektedir. En diisiikk ortalama sapma
degerleri koyu renklendirilmis ve goriildiigii gibi her iki algoritma da biitiin problem
kiimeleri i¢in algoritmanin her calismasinda optimum degere ulagmistir. Bilimsel
yazindaki diger 12 algoritmayla karsilagtirildiginda onerilen algoritmalarin daha iyi

performans gosterdigi asagidaki tabloda agikca goriilmektedir.
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Tablo 3.11. Gelistirilmis AA ve YAK algoritmasi ile elde edilen gapl-gap12 sonuglarinin karsilastirilmasi.

AA  YAK MTH FJVBB FSA MTBB SPH LTIFA RSSA TS6 TSI GA, GA, ASH+LS+TS

gapl  0.00 0.00 543 0.00 0.00 0.00 0.08 1.74 0.00 0.00 0.00 0.00 0.00 -
gap2  0.00 0.00 5.02 000 0.19 000 0.11 0.89 000 024 0.10 0.00 0.01 -
gap3  0.00 0.00 2.14 0.00 0.00 0.00 0.09 1.26 0.00 0.03 0.00 0.00 0.01 -
gap4  0.00 0.00 235 083 0.06 018 0.04 072 0.00 0.03 0.03 0.00 0.03 -
gap5  0.00 0.00 2.63 0.07 0.11 0.00 035 1.42 0.00 0.04 0.00 0.00 0.10 -
gap6  0.00 0.00 1.67 058 085 052 015 0.82 0.05 0.00 0.03 0.01 0.08 -
gap7  0.00 0.00 2.02 1.58 099 132 0.00 1.22 0.02 0.02 0.00 0.00 0.08 0.00

gap8  0.00 0.00 2.45 248 041 132 0.23 1.13 0.10 0.14 0.09 0.05 0.33 0.04
gap9 0.00 0.00 2.18 0.61 146  1.06 0.12 1.48 0.08 0.06 0.06 0.00 0.17 0.00
gapl0 0.00 0.00 1.75 1.29 .72 1.15 025 1.19 0.14 0.15 0.08 0.04 0.27 0.01
gapll 0.00 0.00 1.78 1.32 1.10  2.01  0.00 1.17 0.05 0.02 0.02 0.00 0.20 0.00
gapl2 0.00 0.00 1.37 1.37 1.68 1.55 0.10 0.81 0.11 0.07 0.04 0.01 0.17 0.00

AA: Gelistirilmis Ar1 Algoritmasi, YAK: Gelistirilmis Yapay Ar1 Kolonisi Algoritmasi, MTH: yapisal sezgisel [118], FJVBB:
bir iist CPU limiti dahilinde dal-siir yontemi [4], FSA: benzetimli tavlama algoritmasinda sabitleme [120], MTBB: bir iist CPU
limiti dahilinde dal-sinir yontemi [119], SPH: kiime boliintiileme [121], LT1FA: ilk en iyiyi se¢me stratejisiyle uzun dénem inig
algoritmasi [126], RSSA: melez benzetimli tavlama ve tabu arama [126], TS6: ilk en iyiyi segme stratejisiyle uzun déonem tabu
arama [126], TS1: en iyiyi segme stratejisiyle uzun dénem tabu arama [126], GAy: sezgisel operatorlerle genetik algoritma [127],
GA,: sezgisel operator olmadan genetik algoritma [127], ASH+LS+TS: yerel arama ve tabu arama ile birlestirilmis maks-min
karinca sistemi [134].
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Daha biiyilk boyutlu gapa-d problem kiimeleri i¢in gelistirilmis AA ve YAK
algoritmalariyla elde edilen sonugclar ise bilimsel yazindaki 2000 yilindan sonra yapilan
calismalarla karsilagtirlmistir. Karsilagtirma caligmasinin yayinlarin basim yili esas
alinarak gerceklestirilmesinin sebebi 2000 yilindan once gelistirilen algoritma
sonuclarinin kotii performansa sahip olmasidir. gapa-gapd problemleri i¢in bilimsel
yazindaki 10 farkli algoritmayla yapilan karsilastirma sonuclart hesaplama siireleri
(saniye) ile birlikte Tablo 3.12°de verilmistir. Ayrica onerilen algoritmalarla elde edilen
cOzlimlerin kalitesinin karsilastirilabilmesi i¢in kesin bir ¢6ziim yontemi olan CPLEX
6.5 sonuglar1 da Tablo 3.12°de yer almaktadir. Ancak verilen CPLEX 6.5 sonuglari, 100
is i¢in 150 saniye, 200 is i¢in de 300 saniyelik bir siire kisitina sahiptir.
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Tablo 3.12. Gelistirilmis AA ve YAK algoritmasi ile elde edilen gapa-gapd sonuglarinin karsilagtirilmasi.

Gelistirilmis AA Gelistirilmis YAK DF CGA RLS APT

Problem

CPU Maliyet CPU Maliyet CPU Maliyet CPU Maliyet CPU Maliyet CPU Maliyet
gapal 0.18 1698  0.16 1698) - - 253 1698 - - - -
gapa2  0.95 3235 0.86 32350 - - 502 32350 - - - -
gapa3  0.27 1360V 0.33 1360 - - 308 13600 - - - -
gapa4 131 2623 0.92 26230 - - 930 26230 - - - -
gapa5  0.41 11587  0.56 11580 - - 350 11580 - - - -
gapa6 1.81 23390 127 23390 - - 860 23390 . - - -
gapbl  5.97 1843V 481 18430 - 1843 302 1843 - - 10.0 1843
gapb2 4599 35520 2967 35520 - 35520 432 36019 - - 121.9  3553@
gapb3  0.36 1407V 0.54 1407V - 1407 165 14109 - - 73 1407
gapb4 31504 28270 40235 2828® - 2828 949 28319 - - 37.6 2829
gapb5  1.12 1166V  1.67 11660 - 1166 474 1166 - - 11.4 1166
gapb6 2865 2339  17.83 23390 . 23409 683 23479 . - 1327 23409
gapcl 3.61 1931V 3.93 19310 0.6 1931 195 19419 1371 19429 6.6 1931V
gapc2 18.09 3456 1582 3456 3.7 3457 405 3460 1693.8 34679  146.1 34583
gapc3  5.81 1402 7.35 1402 3.0 1402 203 1423% 1783 14079 315 1402
gapcd  488.89 28060  368.34 2806  100.5 2807% 498 28159 1086.0  2818® 1043  2810%
gapc5 23.16 12439 2412 12439 216 1243 479 1244®  309.6 12479 475 1244
gapc6 64618 23929 56286 23929 1374 23917 1059 2397 2694.8 2405 1464  2396%
gapdl  916.03 63530 82824 63579 626 = 63579 259 6479 24592 64769 715 6365
gapd2 12241 127449 9265 12750 955 12747 1253 12823® 111069 12923 318.1 12747%
gapd3 53829 6356 41643 63629 1072 63559 497 6390° 55873  6469"7 773 6372%
gapd4 74395 124429 527.92 12454® 1292 124579 1321 126349 475387 12746”1052  12457°
gapd5 1704.46 62219 860.43 6235°  111.0 62209 974 6280°  13656.8 6358'”0 1088  6267®

gapd6 92294  12276%  526.02 12293® 1207  12351® 2158 124710 116969.0 126171 3087  12333€
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Problem ACO CRH-GA TSEC PREC PRSS NBB CPLEX 6.5

CPU Maliyet CPU Maliyet CPU Maliyet CPU Maliyet CPU Maliyet CPU Maliyet CPU Maliyet
gapal 0.17 1698 1.0 1698 - - - - - 0.12 1698 - 1698
gapa2  0.61 32350 259 323500 - - - - - - 0.06 32350 - 32350
gapa3  0.69 1360 97.1 1360 - - - - - - 0.05 1360 - 1360
gapa4 126.58 2623 102 26230 - - - - - - 0.16 26230 - 2623
gapa5  6.71 11580 222 11580 - - - - - - 0.16 11580 - 1158
gapa6 1585 23419 242 23390 - - - - - - 0.28 2339 - 2339
gapbl 19125 1846@ 512 1843 0.81 18431 0.95 1843 141 18431 4.18 1843V - 18431
gapb2  2605.55 3561° 1654  3553¥ 313 35520 235 35520 2.59 35520 1466 35520 - 35521
gapb3 11578 1407 309 1407 022 14077 033 1407 0.18 1407 0.11 1407 - 1407
gapb4  5482.81 2849® 3818 28299  16.00 28277 1897 2827  91.64 2827 23585 2827 - 28271
gapb5 61328 1166V 1893 1166  9.00 1166  3.64 11660  7.24 1166")  0.17 1166 - 1166
gapb6  2865.04 2350% 3785 23409 519 2339 1153 23399 1821 23390 8898 23409 - 2339
gapcl 19213 1931V 392 1931 0.6 1931 0.52 19310 134 1931 0.05 1931V 2 1931
gapc2  429.09  3464° 3200 34579 3.7 3456 12.09 3456  2.12 3456 3043 34560 35 3456
gapc3 12243 1406%  54.1 1403® 3.0 1402 320 1402 1.86 1402V 725 1402 9 1402
gapcd 111231 28259 304.6 28079  403.8 2806 2710.87 2806 4847 2807%  312.64 2806 249 2806
gapc5 193.85  1246“  289.6 1243V 225 12430 35.83 1243) 17.99 12459 90.19 1243V 8 12430
gapc6 111925 24117 1140.1 2396  301.8 2391V  1268.83 2391 19132 23949  968.66 2391 296 23917
gapdl 1.81 6625® 3274 63659 6492 6353 8362 6353 1424 6356 34993 6353 43 63589
gapd2 331 131979 8147 127677 35648 12743% 571249 12742  249.89 127459 2937.03 127459 62 12750
gapd3 17446  6613"Y  472.6  6373°  2440.7 6349®  988.07 6348"  74.12 6373 283147 63499 132 6381®
gapdd 115521 13024""Y 1909.7 12536® 5829.9 12440® 5520.51 124337  246.32 124687 1896.80 124479 27 12457
gapd5 189.92  6484"Y 9023 62597 15919 6206® 2254.88 6192 12933 6235 282938 6200® 60 62807
gapd6  1270.43 12951"% 38257 12386 1757.7 12277 5777.10 12245 51830 123347 237542 12263% 297 123930

DF: tabu arama [132], CGA: yapisal genetik algoritma [144], RLS: yerel arama ve tabu arama ile birlestirilmis maks-min karinca sistemi [134], APT: yol
birlestirme algoritmasi [136], ACO: karinca koloni optimizasyonu [141], CRH-GA: kisit-oran sezgiseline dayali genetik algoritma [142], TSEC: ¢ikarim
zincirine dayali tabu arama [133], PREC: ¢ikarim zincirine dayali yol birlestirme yaklasimi [140], PRSS: kaydirma ve ¢ift kaydirma komsuluklarina dayali yol
birlestirme yaklasimi [140], NBB: uygun ¢6ziim iireten dal-siir algoritmasi [125], CPLEX 6.5: [133].
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Cevresel etkenler, test sartlari, parametre optimizasyonu gibi bir¢cok sebepten, farkli
algoritmalarin performansini direkt olarak karsilastirmak kolay degildir. Onerilen
algoritmalarin GAP’nin ¢6ziimii lizerindeki performansi hakkinda bir fikir edinebilmek
icin basit bir siralama yontemi kullanilmistir. Tablo 3.12°de en iyi ¢oziimler koyu
renklendirilmis ve siralama parantez i¢inde belirtilmistir. Bu bilgi, bir algoritmanin kag

kez 1, 2, 3 ve >4 siralamasina girdigini gosteren Sekil 3.4’°te birlestirilmistir.
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Sekil 3.4. Coziim kalitesine gore algoritmalarin siralanmasi.

Sekil 3.4’teki sonuglara gére PREC en iyi performansa sahip algoritmadir. Gelistirilmis
AA, Gelistirilmis YAK, TSEC ve NBB ise ¢oziim kalitesi bakimindan en iyi ikinci
performansa sahip algoritmalar olarak siniflandirilabilir. CPLEX 6.5 kesin ¢6ziim
yonteminin performansi ise gapc problemleri i¢in iyi sonuglar verse de gapd problemi

tizerindeki performansi diistiktir.

Diger taraftan bahsedilen algoritmalarin (PREC, AA, YAK, TSEC, NBB) hesaplama
siiresi performanslar1 ayni1 maliyet degerlerinin bulundugu gapcl-gapc5 problemleri i¢in
Sekil 3.5’te sunulmus olup goriildiigli gibi Gelistirilmis AA ve YAK algoritmasi diisiik
CPU siiresine sahiptir. Belirtmek gerekir ki PREC ve TSEC algoritmalarina ait CPU
slireleri o; parametresinin optimizasyonu sonrasinda hesaplanmaktadir. Ancak

Gelistirilmis AA’na ait CPU siireleri a; parametresinin en iyi degerine getirilme siiresini
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de igermektedir. Dolayisiyla PREC ve TSEC algoritmalarinin CPU  siiresi
gereksiniminin Gelistirilmis AA’ndan ¢ok daha yiiksek oldugunu sdyleyebiliriz.

3000
2500 /A\
2000
—&— Gelistirilmis AA
Gelistirilmis YAK

1500

/ \ == PREC
1000 =>=TSEC

/ \ == NBB
0 X 1 4*; 1 T T 1

Sekil 3.5. En iyi performansa sahip algoritmalarin iglem siiresi performansi.

Deneysel c¢alismalar sonucunda Onerilen algoritmalarin gapa, gapb ve gapc (gapc6
hari¢) problem kiimelerinin ¢éziimiinde olduk¢a etkin oldugu ve kosmalarin neredeyse
tamaminda en 1iyi ¢Ozlime ulasilabildigi goriilmektedir. Diger taraftan Onerilen
algoritmalar gapd problem kiimesinin ¢oziimiinde de diger bir¢ok algoritmaya gore
oldukg¢a basarili sonuclar elde etmistir. Sonug olarak yapilan genis deneysel ¢alismalar,
Gelistirilmis AA ve YAK algoritmasinin karmasik atama problemlerinin ¢oziimiinde

biiylik bir potansiyele sahip oldugunu gostermektedir.

3.6. Genellestirilmis Atama Problemi’nin Ar1 Algoritmasi ile Coziimiinde

Farkh Komsuluk Yapilariin Karsilastirilmasi

Bu boliimde GAP i¢in gelistirilmis olan AA dort farkli komsuluk yapisi kullanilarak test
edilmis ve bu komsuluk yapilarimin AA‘nin performansi {izerindeki etkileri

incelenmistir.
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Yapilan bilimsel yazin arastirmasi neticesinde kaydirma, ¢ift kaydirma, degistirme ve
cikarim zinciri komsuluklari olmak {izere GAP’ne 6zel dort tip komsuluk yapisi
belirlenmistir. 1lgili komsuluk yapilarmin algoritmaya tek tek dahil edilmesiyle

algoritma ¢aligtiritlmis ve her bir komsuluk yapisinin bireysel performansi incelenmistir.

3.6.1. Deneysel Calisma

Gelistirilmis AA C# dilinde kodlanarak 2.20 GHz CPU, 2.00 GB RAM &zelliklere sahip
Intel Pentium CoreDuo PC kullanilarak gapa, gapb test problemlerine uygulanmistir.
Algoritma parametreleri bilimsel yazinda verilen genel Oneriler ve deneyimlere gore

belirlenmis olup Tablo 3.14’te verildigi gibidir.

Tablo 3.13. GAP’nde komsuluk yapis1 karsilagtirmasi i¢in gelistirilmis AA
parametrelerinin degerleri.

Parametre Deger
S 500

P 50

e 10
nep 10
nsp 5
CZ-Uzunlugu 70
Makslter 1000
limit 50

(253 1

adimbiiyiikliigiiazalisi 0.1
adimbiiyiikliigiiartisi  0.01

Her komsuluk yapis1 i¢in test problemlerinin 10 kez ¢alistirilmasi sonucunda elde edilen
minimum, ortalama, maksimum ve standart sapma degerleri, optimum CPLEX 6.5
sonuclar1 ile birlikte Tablo 3.15’te; bu verilere ait CPU siirelerinin (sn.) minimum,

ortalama, maksimum ve standart sapma degerleri ise Tablo 3.16’da verilmistir.
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Kaydirma Cift kaydirma
CPLEX 6.5
min() ort maks  ss min() ort maks  ss
gapal 1698 (10) 1698.0 1698 0.0 | 1698 (10) 1698.0 1698 0.0 | 1698
gapa2 3235(10) 3235.0 3235 0.0 |3235(9) 3235.1 3236 0.3 | 3235
gapa3 1360 (10) 1360.0 1360 0.0 | 1360 (10) 1360.0 1360 0.0 | 1360
gapad 2623 (10) 2623.0 2623 0.0 |2623(10) 2623.0 2623 0.0 | 2623
gapa5 1158 (10) 1158.0 1158 0.0 | 1158(10) 1158.0 1158 0.0 | 1158
gapa6 2339 (10) 2339.0 2339 0.0 |2339(10) 2339.0 2339 0.0 | 2339
gapbl 1855(1) 1866.2 1879 7.8 | 1843 (2) 1857.7 1881 12.1 | 1843
gapb2 3590 (1) 3610.8 3673 24.8|3557(1) 3565.4 3571 4.4 |]3552
gapb3 1407 (2) 1409.6 1413 2.3 | 1407 (3) 1409.6 1412 2.0 | 1407
gapb4 2859 (1) 2886.2 2919 183 | 2842(1) 2853.5 2865 6.4 |2827
gapb5 1167 (2) 1170.1 1174 2.4 | 1166(1) 11695 1171 1.7 | 1166
gapb6 2345 (1) 2349.8 2355 3.4 |2343(2) 23454 2348 1.7 2339
Degistirme Cikarim zinciri
min() ort maks ss min() ort maks ss

gapal 1703 (1) 1711.6 1721 5.1 1698 (4) 16994 1702 14

gapa2 3252(1) 32643 3285 10.0 | 3235(7) 32355 3237 0.8

gapa3 1394 (1) 1406.0 1421 9.2 | 1360(8) 1360.2 1361 0.4

gapad 2710 (1) 27283 2753 16.0 | 2635(1) 2665.7 2698 23.4

gapa5 1247 (1) 12649 1290 12.8 | 1158(10) 1158.0 1158 0.0

gapa6 2511 (1) 2559.3 2613 32.9]2400(1) 2442.0 2485 26.7

gapbl 1874 (1) 1889.8 1906 10.0 | 1857 (1) 1888.5 1915 174

gapb2 3588 (1) 3604.0 3616 9.7 |3628(1) 36485 3677 144

gapb3 1438 (1) 1470.0 1504 20.5 ] 1407 (6) 1407.8 1411 1.3

gapb4 2988 (1) 3010.2 3070 24.1]2846(1) 28652 2881 12.2

gapb5 1249 (1) 12754 1307 194 | 1167(2) 11689 1172 1.5

gapb6 2586 (1)  2653.1 2698 37.8 |2346(1) 23525 2357 3.5

*

sonucunda ilgili minimum degerin kag¢ kez bulundugunu ifade etmektedir.

min() siitunundaki parantez ig¢indeki degerler algoritmanin 10 kez g¢aligtirilmasi
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Tablo 3.15. Farkli komsuluk yapilarinin iglem siiresi bakimindan karsilastirilmasi.
Kaydirma Cift kaydirma

min ort maks ss min ort maks ss
gapal  3.23 4.08 4.59 0.48 6.65 96.04 231.81  71.19
gapa2  8.21 12.69 16.67 2.67 4481 286.03 923.00 279.89
gapa3  4.07 5.61 8.95 1.48 5.31 25.56 90.10 32.42
gapa4d 11.71 5430 141.85 4146 | 37.84 168.02 341.89 114.71
gapa5  5.53 8.13 10.34 1.56 5.42 7.58 10.25 1.26
gapa6 1476 31.57 52.23 11.27 | 54.84 87.68 15637 31.56
gapbl 19.21  60.07 103.95 2648 | 23.75 111.69 202.09  63.62
gapb2  6.46 81.50 193.12 6133 | 113.59 592.79 1036.93 324.82
gapb3 1240 387.89 1106.04 333.10 | 11.90 123.87 333.17 95.78
gapb4 17.68 351.59 805.62 289.03 | 92.25 399.81 904.64 242.25
gapb5 71.87 421.04 799.14 23644 | 17.89 107.01 209.89  82.32
gapb6 204.12 67622 1577.96 455.78 | 103.92 694.48 1162.64 322.97

Degistirme Cikarim zinciri

min ort maks Ss min ort maks Ss
gapal 3237 14841 534.67 14631 ] 60.59 273.52 43643 129.78
gapa2 5398 166.86 32820 88.12 | 180.54 62899 1119.48 307.40
gapa3 3437 16477 35771 88.45 | 73.12 237.13  498.65 131.99
gapad  83.40 13995 214.64 4553 | 268.53 653.85 1159.01 322.72
gapa5 60.00 10231 170.65 33.69 | 14.78 68.00 160.04  42.60
gapa6 101.53 211.02 406.03 93.70 | 260.25 642.56 1174.50 303.52
gapbl 40.32 101.61 191.20 45.09 | 54.85 668.43 1576.18 396.06
gapb2  66.00 235.14 448.14 10823 | 446.62 838.03 1591.14 359.32
gapb3  49.65 19390 468.75 12350 | 98.53 352.28 683.46 210.83
gapb4 89.70 155.79 237.20 49.10 | 93493 1847.56 292528 731.27
gapb5 53.75 14496 248.07 58.23 | 183.31 564.74  929.70 232.63
gapb6  67.06 16128 216.82  45.72 | 452.45 1299.56 2919.26 841.56

Elde edilen sonuglarin anlamli bir sekilde karsilastirilabilmesi i¢in 6ncelikle uygun bir
hipotez testinin secilmesi gerekmektedir. Uygun hipotez testinin se¢imi asagidaki

durumlara baglidir (Oztuna ve Elhan):

e Verilerin 0Ol¢iim bigimi: Hipotez testinin secimini etkileyen en Onemli
faktorlerden biri olan 6l¢tim bigimi, nitel (sayimla) ya da nicel (6l¢iimle) olarak
ikiye ayrilmaktadir.

e incelenen gruplarm bagimli ya da bagimmsiz olmasi: Incelenen gruplarin
bagimsiz olmasi, gruplarin ayri bireylerden olugmasi, diger bir deyisle bir grupta
bulunan bir bireyin diger grupta bulunmamasi demektir. Bir birey iizerinde

birden ¢ok gozlem yapildiginda gruplar bagimli olmaktadir.
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e Verilerin dagilimi: Istatistiksel analiz yapilirken dagilmmn 6zelligi gok
onemlidir. Ciinkii parametrik testlerin uygulanabilmesi i¢in dagilimin normal ya
da normale yakin olmasi gerekmektedir.

e Orneklem biiyiikliigii: Gruplardaki birey sayisi arttik¢a kullanilan testin giicii ve
giivenilirligi de artar. Gruplardaki birey sayisi fazla ise verilerin normal dagilima
uyma ihtimali artar, dolayisiyla parametrik test kullanma sansi artmig olur.
Gruplardaki birey sayisi az oldugunda ise (30’un altinda) genellikle parametrik

olmayan testler tercih edilir.

Bilimsel yazinda iki bagimsiz 6rnek grubunun karsilastirilmasi i¢in farkli yontemler
gelistirilmistir. Bu yontemler parametrik ve parametrik olmayan yontemler olmak iizere
iki gruba ayrilmaktadir. Veri dagiliminin normal, varyanslarin esit, birbirinden bagimsiz
ve rastgele se¢ilmis olan Ornek grubu sayisinin 30°dan fazla oldugu durumlarda
parametrik testler (t-testi, varyans analizi gibi), veri dagiliminin normal olmadig1 ve veri
sayisinin 30°dan az oldugu nicel verilerin varliginda ise parametrik olmayan testler
(Wilcoxon sirali toplam testi, Mann-Whitney U testi, Kruskal-Wallis varyans analizi
gibi) kullanilmaktadir.

Yukarida verilen bilgiler 1s181nda, komsuluk karsilastirmasi icin elde edilen sonuglarin
nicel ve bagimli bir yapiya sahip olmasi, verilerin normal dagilima uymamasi ve
orneklem biytlikligiiniin  30’un altinda olmas1 sebebiyle komsuluk yapilarinin
karsilastirilmasinda Wilcoxon sirali toplam testinin kullanilmasma karar verilmistir.
Wilcoxon sirali toplam testi Wilcoxon [146] tarafindan gelistirilmis olup iki grubun
ortanca degerleri arasinda fark olup olmadigini arastirmaktadir. Ancak ortanca degerler
arasindaki farkin istatistiksel olarak anlamli olup olmadigini sdyleyebilmek icin p
degerlerine bakmak gerekir. Eger p degeri a=0,05 onemlilik degerinden kiigiikse,
karsilastirilan ortanca degerler arasinda istatistiksel olarak anlamli bir farklilik var

demektir.

Her problem tipi i¢in komsuluk yapilar ¢iftler halinde ele alinarak elde edilen esitsizlik

iliskisine dayali Wilcoxon siral1 toplam testi sonuglar1 Tablo 3.17’de verilmistir.
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Tablo 3.16. Wilcoxon sirali toplam testi ile komsuluk yapilarinin degerlendirilmesi.

Kgydlrma, Kaydirma, Kaydirma, - Cift grgftdlrma, Degistirme,

Cift 7. Cikarim kaydirma, o

Kaydirma Degistirme pinciri Degistirme C.lka.rl.m Cikarim zinciri
zinciri

. ortanca-1 - - - - - 1711.5
§- ortanca-2 - - - - - 1699.5
* - - ; - - 0.0002

o Ortanca-1 - - - 3235 3235 3263
& ortanca-2 - - - 3263 3235 3235
* p - - - 0.0002 0.4274 0.0002

o Ortanca-1 - - - - - 1406
§ ortanca-2 - - - - - 1360
* p - - - - - 0.0002

< ortanca-1 - - - - - 2722.5
S ortanca-2 - - - - - 2664.5
®p - - - - - 0.0002
« ortanca-1 - - - - - -
§- ortanca-2 - - - - - -
on

p - - - - - -

o Ortanca-1 - - - - - 2554.5
§ ortanca-2 - - - - - 2445
* o - - - - - 0.0002

_, ortanca-1 1864.5 1864.5 1864.5 1859 1859 1890.5

f:; ortanca-2 1859 1890.5 1890 1890.5 1890 1890
o p 0.0963 0.0006 0.0052 0.0003 0.0017 0.9097

« Ortanca-1  3603.5 3603.5 3603.5 3565.5 3565.5 3605

'§- ortanca-2  3565.5 3605 3646 3605 3646 3646
o p 0.0002 0.7913 0.0022 0.0002 0.0002 0.0002

o oOrtanca-1 1409 1409 1409 1410 1410 1471.5

'c%- ortanca-2 1410 1471.5 1407 1471.5 1407 1407
o p 0.9698 0.0002 0.0539 0.0002 0.0696 0.0002

<+ ortanca-1 2881 2881 2881 2854.5 2854.5 3005.5

é- ortanca-2  2854.5 3005.5 2867.5 3005.5 2867.5 2867.5
= p 0.0003 0.0002 0.0073 0.0002 0.0588 0.0002

« ortanca-1 1170 1170 1170 1170 1170 1275

f:; ortanca-2 1170 1275 1169 1275 1169 1169
o P 0.6232 0.0002 0.3258 0.0002 0.3075 0.0002

o ortanca-1 2350 2350 2350 2345.5 2345.5 2658.5

'§- ortanca-2  2345.5 2658.5 2353 2658.5 2353 2353
o p 0.0082 0.0002 0.1212 0.0002 0.0006 0.0002

* > komsuluk yapilart ile elde edilen degerlerin kendi i¢inde farklilik gostermemesi nedeniyle Wilcoxon
sirali toplam testinin gergeklestirilemedigini gostermektedir.
* a=0.05

Yapilan analizler neticesinde gapal, gapa3, gapa4, gapa6 problemleri i¢in ¢ikarim

zinciri komsuluk yapisinin degistirmeye gore daha iistiin oldugu belirlenmistir. gapa2



73

problemi i¢in Onceki problemler i¢in yapilan tespitin yan sira ¢ift kaydirma komsuluk
yapisinin degistirmeye gore daha iyi performans gosterdigi belirlenmistir. gapa5
problem tipi i¢in kaydirma, ¢ift kaydirma ve ¢ikarim zinciri komsuluklariyla elde edilen
coztimlerin kendi iginde farklilik géstermemesi sebebiyle Wilcoxon sirali toplam testi
gerceklestirilememistir.  Wilcoxon  sirali  toplam  testinin  yapilamadigi  ikili
karsilagtirmalar i¢in grup ortalamalarina bakildiginda ise gapal, gapa3, gapa4 ve gapa6
problemleri i¢in en iyi performans gosteren komsuluk yapisinin kaydirma ve gift
kaydirma, ikinci en iyi performansa sahip yapmnin ise c¢ikarim zinciri oldugu
goriilmektedir. gapa2 problemi i¢in kaydirma komsuluk yapisin en iyi, ¢ift kaydirma
komsulugunun ikinci en iyi ve son olarak ¢ikarim zinciri komsuluk yapisinin ii¢iincii en
iyi performansa sahip oldugu goriilmiistiir. Higbir ikili karsilastirmada Wilcoxon sirali
toplam testinin gerceklestirilemedigi gapaS problemi i¢in ise kaydirma, ¢ift kaydirma ve
cikarim zinciri komsuluk yapilarinin esit performansa sahip olup degistirme komsuluk

yapisindan daha {istlin oldugu gézlemlenmistir.

Gapb problemlerini tek tek ele alacak olursak; gapbl problem tipi i¢in kaydirma
komsuluk yapisinin degistirme ve ¢ikarim zinciri komsuluk yapilarina gore daha tistiin;
cift kaydirma komsuluk yapisinin ise yine degistirme ve ¢ikarim zinciri komsuluk
yapilarma gore daha {stiin oldugu belirlenmis; ancak kaydirma ve ¢ift kaydirma
komguluk yapilar1 arasinda ve degistirme ve ¢ikarim zinciri komsuluk yapilar1 arasinda
anlamli bir farklilik tespit edilememistir. gapb2 problemleri i¢in ¢ift kaydirma komsuluk
yapisinin diger komsuluk yapilarina gore daha iyi performans gosterdigi belirlenmistir.
gapb3 ve gapb5 problemleri icin biitiin komsuluk yapilarinin degistirme komsuluk
yapisindan daha {iistiin oldugu tespit edilmis ancak bu komsuluklar arasinda anlaml1 bir
farklilik belirlenememistir. gapb4 problemleri icin ¢ift kaydirma ve ¢ikarim zinciri
komsuluk yapilarinin kaydirma ve degistirme komsuluk yapilarindan daha iyi oldugu
belirlenmis ancak cift kaydirma ve ¢ikarim zinciri komsuluk yapilar1 arasinda anlamli
bir fark tespit edilememistir. gapb6 problemi igin biitiin komsuluk yapilarinin
degistirme komsuluk yapisindan daha {istiin oldugu tespit edilmis, diger taraftan cift
kaydirma komsuluk yapisinin kaydirma ve ¢ikarim zincirine gore daha iyi performans

gosterdigi belirlenmistir.

Sonug olarak ele alinan test problemleri i¢in ¢ift kaydirma komsuluk yapisinin en iyi

performansa, kaydirma ve c¢ikarim zinciri komsuluk yapilarinin ikinci en iyi
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performansa, degistirme komsuluk yapisinin ise en diisiik performansa sahip oldugu

tespit edilmistir.



4. BOLUM
CIFT TARAFLI MONTAJ HATTI DENGELEME PROBLEMi COZUM
YAKLASIMLARI

4.1. Giris

Tez c¢aligmasinin bu boliminde CTMHDP’nin ¢6ziimii icin YAK ve AA
algoritmalarindan faydalanilacaktir. CTMHDP’nin detaylar1 ve bilimsel yazindaki
¢Oziim yaklasimlar1 verildikten sonra probleme ait farkli kisitlar altinda ilgili

algoritmalarla elde edilen genis deneysel ¢alisma sonuglari sunulacaktir.

Diger taraftan AA, bulanik ¢ok amacli CTMHDP’nin ¢6ziimii i¢in kullanilacak ve
bulanitk amagclar farkli teknikler altinda incelenerek bu tekniklerin algoritma

performansi lizerindeki etkisi incelenecektir.

4.2. Montaj Hatt1 Dengeleme Problemi

Isletmelerin temel amaglar1 verimlilik diizeyini yiikseltmek, kapasite ve kaliteyi
artirmak, maliyetleri diisiirmek ve calisma ortamini insancillastirmaktir. Bu amaglara
ulagmak i¢in ise kullanilan isgiicii, makine, malzeme ve techizattan olusan is
yontemlerinin yeniden tasarlanmasi gerekmektedir. Siirekli {iretim sistemlerinde,
tiretimin birimler halinde gerceklestirildigi ve kitle talebin oldugu durumlarda, yiiksek
tiretim hiziyla talebi karsilamanin en makul yolu montaj hatlarinin yapilandirilmasidir.
Montaj hatt1 tasarimindaki ana amaglardan biri, her is istasyonuna esit miktarda is
dagitimini yapabilmektir. Bu amag¢ dogrultusunda isler, istasyon siireleri birbirine esit
ya da ¢ok yakin olacak sekilde istasyonlar arasinda paylastirilir. Montaj hatt1 dengeleme
ile isler gruplandirilarak istasyonlar kurulur, istasyonlarin iglem siireleri birbirine yakin
hale getirilir ve bu sartlar altinda montaj hattinin aksamadan caligmasi saglanarak

kaynaklardan maksimum fayda elde edilir. Dengenin saglanamadigi durumda ise bazi
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istasyonlarda digerlerinden daha fazla is yiiki olacagi icin, verimlilikte diisiislerin

olmasi ve bir takim kayiplarin ortaya ¢ikmasi kaginilmazdir.

Montaj Hatti Dengeleme Problemi (MHDP) cevrim siiresi ve is sayisinin verildigi

varsayimi altinda Oncelik iligkileri ve ¢evrim siiresi kisitlarina uyarak bir veya daha

fazla amaci eniyileyecek sekilde, islerin istasyonlara atanmasi problemidir. Oncelik

iligkisi, montaj prosesindeki islerin hangi sira ile gergeklestirilecegini gosterirken;

cevrim siiresi, bir istasyonda yapilmasi gereken islerin tamamlanabilmesi i¢in {irliniin o

istasyonda kalabilecegi en uzun siireyi temsil etmektedir. MHDP, Karp [147] tarafindan

ispatlandig1 tizere NP-zor yapiya sahip kombinatoryal bir problemdir.

MHDP cesitli kriterlere gore asagidaki gibi siniflandirilabilir:

¢ Amag fonksiyonuna gore [148]

Tip-1: Belirli bir ¢evrim siiresi dahilinde istasyon sayisint minimize
etmeyi amaglar.

Tip-2: Belirli bir istasyon sayisi dahilinde ¢evrim siiresini minimize
etmeyi amaglar.

Tip-3: Isyiikleri arasindaki dengeyi maksimize etmeyi amaglar.

Tip-4: Isler arasindaki &ncelik iliskilerini dikkate alarak birbiriyle iliskili
islerin ayni istasyonda yer almasini saglamay1 amagclar.

Tip-5: Tip-3 ve tip-4’te kullanilan amaglar1 ayn1 zamanda maksimize
etmeyi amaglar.

Tip-E: Cevrim siiresi ve istasyon sayisini aynit zamanda minimize ederek
hattin verimliligini maksimize etmeyi amagclar.

Tip-F: Belirli bir is sayist ve ¢evrim siiresi i¢in uygun bir hat

dengelemesi olup olmadigini bulmay1 amaglar.

e Problemin yapisina gore

Scholl [149] ve Becker ve Scholl [150]’e gore
— Tek modelli montaj hatt1 dengeleme: Tek tip iiriin ya da modelin
iretildigi hatlardir.
— Karma modelli montaj hatti dengeleme: Ayni anda birden fazla

benzer tipteki modelin karma olarak iretildigi hatlardir. Karma
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modelli iiretimin en Onemli faydasi, miisteri isteklerini
karsilamak {izere degisik modellerin siirekli olarak iiretilmesi ve
biiyiik bitmis {iriin stoklarini gerektirmemesidir.

— Cok modelli montaj hatti1 dengeleme: Degisik model veya
tirtinlerin tretildigi hatlardir. Belirli bir zamanda bir model parti
halinde firetilir ve arkadan diger modellerin {iretimine gegilir.

= Baybars [151]’a gore

— Basit montaj hatt1 dengeleme: Kesin ve birbirinden bagimsiz
islem siirelerine, seri yerlesime, tek yonlii ve 6zdes istasyonlara
sahip tek bir iiriiniin tiretildigi hatlardir.

— Genel montaj hatti dengeleme: Basit montaj hatt1 dengelemeye
gore daha gergekei olup paralel, U tipi ve ¢ift tarafli montaj hatt1
dengeleme gibi basit montaj hatti dengelemeye girmeyen biitiin

problemleri igerir.

Diger taraftan bilimsel yazinda MHDP iizerine yapilan baz1 calismalar su sekilde
Ozetlenebilir. Salveson [152] dogrusal programlama, Jackson [153] dal ve smnir
yaklagimi, Bowman [154] tam sayili programlama, Held ve ark. [155] dinamik
programlama lizerinde ¢alisirken Dar-El [156], Dar-El ve Rubinovitch [157], Baybars
[158] cesitli sezgisel yontemler gelistirmislerdir. Literatiirdeki meta-sezgisel tekniklere
bakildiginda ise benzetimli tavlama [159], tabu arama [160, 161], genetik algoritma
[162-166] yaklasimlarini kullanarak montaj hattt dengeleme problemini ¢ozmislerdir.
Montaj hatti problemlerinin siniflandirilmasi ise Baybars [151], Ghosh ve Gagnon
[167], Kim ve ark. [148], Erel ve Sarin [168], Scholl [149], Becker ve Scholl [150],

Boysen ve ark. [169] ¢aligmalarinin konusu olmustur.

4.3. Cift Tarafhh Montaj Hatt1 Dengeleme Problemi

Montaj hatlar1 tizerindeki diger bir siniflandirma ise hattin tek ya da ¢ift yoniiniin
kullanilmasina bagl olarak tek ve ¢ift tarafli hatlar olarak karsimiza ¢ikmaktadir. Tek
tarafli montaj hatti, montaj hattinin sadece bir yoniinlin kullanildigi, hat dengeleme
probleminin temel ve basit hali olup en yaygin incelenen tipidir. Cift tarafli montaj
hattinda ise ayni iirlin tizerindeki farkli montaj isleri hattin sag ve sol yoniinde paralel

olarak gergeklestirilmektedir. Bu tip montaj hatlar1 genel olarak otobiis ve kamyon gibi
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bliyiik boyutlu iirtinlerin iiretildigi isletmelerde goriilmektedir. Tek Tarafli Montaj Hatti
Dengeleme Problemi’nin (TTMHDP) ¢6zlimii i¢in bir¢ok algoritma ve sezgisel yontem
Onerilmistir, fakat CTMHDP nin ¢6zlimiine yonelik caligmalar olduk¢a azdir. Bunun
nedeninin CTMHDP nin, tek tarafli olana gore ¢ok daha zor olmasindan kaynaklandigi
diisiiniilmektedir [170]. Nitekim TTMHDP’nde 6nemli olan hangi isin hangi istasyonda
islenecegi iken CTMHDP’nde hem hangi isin hangi istasyonda islenecegi hem de hangi
sirayla iglenecegi belirlenmelidir. Diger bir deyisle CTMHDP’nde aralarinda yakin
oncelik iligkisi olan iki is karsilikli istasyonlara atandiginda biri tamamlanmadan digeri
baslayamayacagindan bos zaman ortaya c¢ikabilecektir. Dolayisiyla hatti dengelerken
islerin sirasina bagli tamamlanma zamanlar1 dikkate alinmalidir. Béylece problem daha
karmagik ve ¢oziilmesi zor bir hal almaktadir. Bartholdi [5] ¢aligmasinda da belirtildigi
gibi CTMHDP NP-Tam bir yapiya sahiptir. Diger taraftan c¢ift tarafli hatlarin kullanima,
tek tarafli hatlara gore hat uzunlugunun kisalmasi, iiretim siiresinin kisalmasi, araglarin
her iki yonden paylasilmasi sebebiyle daha az ara¢ maliyeti, elde bulundurma
maliyetinin, ig¢i hareketlerinin ve kurulum siiresinin kisalmasi gibi bircok avantaja

sahiptir [5]. Sekil 4.1°de bir ¢ift tarafli montaj hatti sematik olarak gdsterilmistir.

istasyon-1 istasyon-3 | sssssssssssss istasyon-(n-1)
Uriin akisi >
istasyon-2 istasyon-4 | sessssssssans istasyon-(n)

Sekil 4.1. Cift tarafli montaj hatt.

4.3.1. Cift Tarafl Montaj Hatti Dengeleme Problemi Kisitlar

Cift tarafli montaj hattinin tek tarafli montaj hattindan temel farki iglerin operasyon
yonii kisit1 olmasidir. Bazi monta;j isleri iki yonden birini tercih ederken bazilar ise
herhangi bir yonde yapilabilmektedir. Bu durumda isler ii¢ sekilde smiflandirilir:
sag(R), sol(L) ve herhangi biri (E). Ornegin bir kamyon montaj hattinda benzin deposu
ve hava filtresinin montaj1 sadece sol yonde; akii, hava tanki ve egzoz montaj1 sadece
sag yonde yapilabilecek isler iken aks, pervane ve radyator montaji hattin herhangi bir

yoniinde yapilabilmektedir [170].
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TTMHDP sadece oncelik iliskileri ve ¢evrim siiresi kisit1 olmak {iizere iki temel kisit
icerirken CTMHDP i¢in yalnizca bu kisitlar1 ele almak yeterli degildir. Cift tarafli

montaj hattinda kullanilan diger kisitlar sdyle siralanabilir:

e Konumsal kisitlar: Belirli bir isin isletmenin yerlesiminden dolayi onceden
belirlenmis bir istasyona atanmasi gerektigini belirtir. Kamyon ve otobiis gibi
biiyilk boyutlu iiriinlerin tretildigi montaj hatlarinda, bazi istasyonlar agir
makineler igerebilir ve tasarim asamasinda kurulduktan sonra yerinin
degistirilmesi ¢ok zordur. Bundan dolay1 bu makinelerde yapilacak isler mutlaka
bu istasyonlara atanmalidir.

e Bolgesel kisitlar: Hangi isglerin ayni istasyona atanmasi (pozitif bolgesel) ve
hangi iglerin ayni istasyona atanmamasi (negatif bolgesel) gerektigini gosterir.
Pozitif bolgesel kisita sahip isler ortak bir techizat ya da beceri gerektirirken,
negatif bolgesel kisita sahip isler ayni istasyona atandiginda istasyon alam
yetersizligi ortaya ¢ikabilir. Pozitif bolgesel kisita sahip isler karsilikli iki
istasyona da atanabilirken, negatif bolgesel kisitlar karsilikli iki istasyona da
atanmamalidir.

e Senkronizasyon kisitlari: Hattin her iki yoniinde ayn1 anda gergeklestirilmesi
gereken, ayni silireye sahip isleri tanimlar. Bu kisit tliriine 6rnek olarak kamyon

kabinine ait {ist panelin ayn1 anda her iki yonden yerlestirilmesi verilebilir.

4.4. Cift Tarafhh Montaj Hatt1 Dengeleme Problemi Coziim Yaklasimlar:

Cift tarafli montaj hatlarinin tasarimi ve hattin dengelenmesi ilk olarak Bartholdi [5]
tarafindan incelenerek Ik Uygun Kural adi verilen basit bir atama kurali énerilmis ve
temel olarak interaktif bir program iizerine yogunlasilmistir. Kim ve ark. [171] ise
CTMHDP’ne ait ilk matematiksel modelleri sunarak hat uzunlugunun, istasyon
sayisinin - ve 1s yikl sapmalarinin en kiiciiklenmesi gibi farkli amaclar

degerlendirmislerdir.

Kim ve ark. [170] verilen bir ¢evrim siiresi dahilinde istasyon sayisini minimize etmeyi
amaclayan konumsal kisitlara sahip CTMHDP’nin ¢6ziimii i¢in genetik algoritmay1
kullanmiglardir. Uygun olmayan ¢oziimlere izin veren algoritmada genetik algoritma
operatorleri olarak CTMHDP’ne 6zel olarak gelistirilmis, yapilandirilmis tek nokta

caprazlama ve mutasyon kullanilmistir. Onerilen algoritma otomotiv sektdriinde faaliyet
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gosteren bir firmaya uygulanmis, diger taraftan algoritmanin performansi bilimsel
yazindaki cesitli test problemleri {izerinde de denenmistir. Kii¢iik boyutlu problemler
icin, Kim ve ark. [172] ¢alismasindaki tamsayili programlama yaklasimi ile elde edilen
optimum ¢oziimlerle karsilastirma yapilmis ve dnerilen yaklasimla optimum ¢6ziimlerin
daha kisa siirede bulundugu belirtilmistir. Biiyiik boyutlu problemler i¢in ise tamsayili
programlama yaklagimiyla optimum ¢oziimler bulunamadigindan Bartholdi [5]
calismasinda verilen ilk Uygun Kural sezgiseli ile karsilastirma yapilmis ve yine

oOnerilen algoritmanin daha iyi performans gosterdigi belirtilmistir.

Lee ve ark. [173] gelistirdikleri, tek bir isi atamak yerine isleri gruplar halinde atamaya
dayanan, grup atama prosediirii ile ayn1 kurulum ya da teghizat gerektiren birbiriyle
iligkili iglerin ayn1 istasyona atanmasini saglamaya calisirken ayni zamanda da bu isler
arasindaki bos zamani minimize etmeyi amaglamaktadirlar. TTMHDP igin gelistirilen
en uzun islem siiresine sahip isin, kendinden sonra gelen is sayisi en fazla olan isin,
kendinden hemen sonra gelen is sayisi en fazla olan isin ve maksimum sirali konumsal
agirlik degerine sahip isin secimi seklinde belirlenen atama kurallar1 CTMHDP igin
giincellenerek  biiyilkk boyutlu test problemleri {izerinde Onerilen yOntemle
karsilastirilmistir. Karsilastirma sonucunda gelistirilen yontem birbiriyle iligkili islerin
ayni1 istasyona atanmasi ve bu isler arasindaki bos zamanin minimize edilmesi amacina
gore biitlin problem Orneklerinde diger sezgisel kurallardan daha iyi; istasyon sayisi,
cevrim siliresi ve hattin verimlili§i acisindan ise bazi1 problemler i¢in daha iyi

performans gostermistir.

Lapierre ve Ruiz [174] ¢ift tarafli montaj hatlarinin yonetimi ve dengelenmesi igin
oncelik tabanli bir sezgisel yontem gelistirerek endiistriyel bir uygulama
gergeklestirmislerdir. Firmaya 6zel olarak olusturulan CTMHDP nin bilimsel yazindaki
problemlerden farki, iki farkli yiikseklik ve alt montaj hatlarina sahip olmasidir. Bu
Ozelliklere uygun 248 ise sahip yeni bir veri kiimesi olusturulmus ve yapilan deneysel
calismada, gelistirilen yontemle elde edilen ¢oziimler firmanin deneyimlerine dayanarak
olusturdugu ¢oziimle karsilastirilmistir. Istasyon sayisi agisindan onerilen ydntemin
daha iyi sonuglar verdigi ancak firmaya ait ¢dziimde daha iyi bir igytikii dagiliminin s6z

konusu oldugu goriilmiistiir.
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Simaria ve Vilarinho [175] karinca koloni optimizasyonu algoritmasin1 kullanarak
bolgesel ve senkronizasyon kisitlarina sahip Cift Tarafli Karma Model Montaj Hatti
Dengeleme Problemi’ni (CTKMMHDP) ¢ozen ilk c¢alismayr gergeklestirmislerdir.
Problemin amaci istasyon sayisini minimize etmek olup, ek amaclar istasyonlar
arasindaki isylkiini dengelemek, farkli modeller i¢in istasyonlardaki isytkiini
dengelemek ve montaj planlayicisinin gruplama tercihlerini saglamaktir. Gruplama
tercihleri, montaj hattin1 planlayan kisinin tercihleri dogrultusunda bazi islerin ayni
istasyonda gruplandirilmasi seklinde tanimlanmis olup pozitif bolgesel kisitlarda oldugu
gibi bir zorunluluk s6z konusu degildir. Simaria ve Vilarinho [176] bdlgesel ve
senkronizasyon kisitlarina sahip CTKMMHDP’ nin yapisina uygun bir matematiksel
model sunarak O©nceki ¢alismalarinda Onerdikleri karinca koloni optimizasyonu
algoritmasi lizerinde genis bir deneysel ¢alisma gerceklestirmislerdir. Ayni hat iizerinde
eszamanli olarak montaji1 yapilacak iki modele ve 14 ise sahip sayisal bir 6rnek
olusturularak algoritmanin performansi incelenmistir. Ayrica bliylikk boyutlu test
problemleri icin tek modelli, bolgesel ve senkronizasyon kisitlart igermeyen CTMHDP
¢Oziilmis, elde edilen sonuglar grup atama prosediirii [173] ile karsilagtirilmis ve ¢ok

daha iyi sonuglar elde edilmistir.

Hu ve ark. [177] CTMHDP’ nin ¢6ziimii icin, gelistirdikleri istasyon tabanli atama
prosediirii ile Hoffmann sezgiselinin [178] kombinasyonunu Onermislerdir. Kiiclik
boyutlu problemlerle gergeklestirilen deneysel ¢alismada 13 problemin 10’unda alt sinir

degerine ulasilmstir.

Baykasoglu ve Dereli [179] calismalarinda bolgesel kisitlara sahip CTMHDP’ nin
¢oziimi i¢in karinca koloni optimizasyonu algoritmasini kullanmiglardir. Problemin
amaci verilen ¢evrim siiresi dahilinde istasyon sayisini minimize etmek ve miimkiinse
birbiriyle iligkili islerin ayn1 istasyona atanmasini saglamaktir. Genetik algoritma [170]
ve grup atama prosediirii [173] ile kii¢iik ve biiyiik boyutlu test problemleri iizerinde
bolgesel kisitlar olmadan yapilan karsilagtirmalar onerilen yontemin daha iyi sonuglar

elde ettigini gostermistir.

Wu ve ark. [180] CTMHDP’nde istasyon sayisinin en kiigiiklenmesini amaglayan bir
matematiksel model Onererek dal-sinir algoritmasiyla ¢6ziim yoluna gitmislerdir.

TTMHDP i¢in gelistirilen is-tabanli dal sinir algoritmasi CTMHDP ne uyarlanmus,
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ancak aga¢ yapisinin ayni boyuttaki bir TTMHDP ’ndeki yapiya gore ¢ok biiyiik olmasi
sebebiyle is atama kurallari ile agacin boyutu kiigiiltiilmiistiir. Kiiclik ve biiyiik boyutlu
baz1 test problemleri {lizerinde algoritmanin etkinligi test edilmis ve problemlerin

tamaminda optimum ¢6ziim elde edilmistir.

Kim ve ark. [181] verilen istasyon sayist dahilinde ¢evrim siiresini minimize edecek bir
matematiksel model gelistirerek genetik algoritmaya dayali bir ¢6ziim yoOntemi
onermislerdir. Gelistirilen matematiksel model ile kiiciik boyutlu test problemlerinin
optimum ¢ozlimleri elde edilmis, ancak daha biiylik boyutlu problemlerin matematiksel
modelle ¢oziimii miimkiin olmadigindan genetik algoritma kullanilmistir. Biiytlik
boyutlu problemler icin genetik algoritma ile elde edilen sonuglar Bartholdi [5]
tarafindan gelistirilen Ilk Uygun Kural ve Kim ve ark. [170] ¢aligmasinda &nerilen
genetik algoritmanin performansiyla karsilastirilmistir. Coziim kalitesi ve yakinsama

hiz1 agisindan 6nerilen algoritmanin daha iyi performans gosterdigi belirtilmistir.

Ozcan ve Toklu [182] istasyon sayisinmn en kiigiiklenmesini ve is yiikiiniin istasyonlar
arasinda miimkiin oldugunca esit paylastirilmasini amaglayan CTMHDP nin ¢6ziimii
i¢in tabu arama algoritmasmi kullanmuslardir. Onerilen algoritma kiigiik ve biiyiik
boyutlu test problemleri lizerinde ¢alistirilmis ve sonuglar genetik algoritma [170], grup
atama prosediirii [173], karinca koloni optimizasyonu algoritmasi [179] ve istasyon
tabanli atama prosediirii [177] ile karsilastirilmistir. Karsilagtirma sonucunda Onerilen
algoritmanin p205 problem kiimesi disinda diger test problemlerinin hepsinde
karsilastirilan sonuglara gére daha iyi ya da ayni sonuglara ulasildigi ancak diger

algoritmalara gbre daha ¢ok hesaplama stiresi gerektirdigi belirtilmistir.

Ozcan ve Toklu [183] 6ncelikle Kim ve ark. [181] ¢alismasinda verilen karma tamsay1li
programlama modelini istasyon sayisinin en kiigiiklenmesi amacina uygun olarak
diizenlemis ve modele bolgesel kisitlar1 eklemislerdir. Onerilen model ile kii¢iik boyutlu
test problemleri c¢oziilerek optimum ¢oziimler elde edilmistir. Diger taraftan
CTMHDP’nin ¢ozliimii icin ilk kez g¢ok-kriterli karar-verme yaklagimi kullanilmus;
deterministik ve bulanik olmak iizere iki karma tamsayili ama¢ programlama modeli
Onerilmistir. Bahsedilen modellere ait amaglar karsilikli istasyon sayisi, ¢evrim siiresi

ve her istasyona atanan is sayisi olarak belirlenmistir. Amag programlama modellerinin
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deneysel sonuglar1 6nerilen modellerin gegerli oldugunu ve karar vericinin ¢esitli sartlar

altinda birgok senaryoyu degerlendirebilecegini gostermistir.

Ozcan ve Toklu [184] CTKMMHD probleminin ¢dziimii igin bir matematiksel model
ve benzetimli tavlama yaklagimi dnermislerdir. Onerilen matematiksel model istasyon
sayisinin  en kiicliklenmesini amacglarken, benzetimli tavlama yaklagimi ise
agirhiklandirilmig hat etkinliginin en biiyiiklenmesi ve birbiriyle iligkili isler arasindaki

bos zamanin en kii¢iiklenmesi ile ilgilenmektedir.

Tablo 4.1°de bilimsel yazinda CTMHDP ile ilgili yapilmig ¢caligmalar problemin yapisi,
kullanilan amag, yontem ve kisitlara gére ozetlenmistir. Goriildiigli gibi ¢aligmalarin
cogu belirli bir ¢evrim siiresi dahilinde istasyon sayisini minimize etmeyi
amaclamaktadir. Her ne kadar probleme ait matematiksel modeller Onerilse de
problemin NP-zor yapisi sebebiyle bir¢ok metasezgisel yontem de Onerilmistir. Diger
taraftan CTMHDP’ne 6zel kisitlar ¢6ziim yaklasimina dahil edildik¢e problem daha
karmagiklagmaktadir. Tablo 4.1°de belirtildigi gibi bir calismada sadece konumsal
kisitlara sahip CTMHDP, iki ¢aligmada sadece bolgesel kisitlara sahip CTMHDP, iki
calismada ise bolgesel ve senkronizasyon kisitlarina sahip CTKMMHDP ele alinmistir.
Tablo 4.1°den goriildiigii gibi bilimsel yazinda konumsal, bélgesel ve senkronizasyon

kisitlarinin tamaminin ayn1 anda probleme dahil edildigi bir ¢calisma yoktur.
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Tablo 4.1. CTMHDP calismalarinin siniflandirilmasi.

i Kullanilan Kisitlar
Aragtirmacilar Problem Amag | Kullanilan Yo6ntem Konumsal | Bolgesel | Senkronizasyon
Kim ve ark. [170] CTMHDP Tip-1 | Genetik algoritma \ - -
Lee ve ark. [173] CTMHDP Tip-5 | Grup atama prosediirii - - -
Lapierre ve Ruiz [174] CTMHDP Tip-1 | Oncelik tabanli bir sezgisel yontem - - -
Simaria ve Vilarinho [175] CTKMMHDP Tip-1 | Karinca koloni optimizasyonu algoritmast - \ \
. L CTKMMHDP ve | ... . . .
Simaria ve Vilarinho [176] CTMHDP Tip-1 | Matematiksel model ve karinca koloni optimizasyonu algoritmasi - \ \
Hu ve ark. [177] CTMHDP Tip-1 | Istasyon tabanl atama prosediirii - - -
Baykasoglu ve Dereli [179] | CTMHDP Tip-1 | Karinca koloni optimizasyonu algoritmast - \ -
Wu ve ark. [180] CTMHDP Tip-1 | Matematiksel model ve dal-sinir algoritmasi - - -
Kim ve ark. [181] CTMHDP Tip-2 | Matematiksel model ve genetik algoritma - - -
Ozcan ve Toklu [182] CTMHDP Tip-1 | Tabu arama - - -
Ozcan ve Toklu [183] CTMHDP Tip-1 | Matematiksel model, deterministik ve bulanik amag¢ programlama - \ -
Ozcan ve Toklu [184] CTKMMHDP Tip-1 | Matematiksel model ve benzetimli tavlama - - -
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4.5. Cift Tarafh Montaj Hatti Dengeleme Problemi icin Onerilen Matematiksel
Model

Bu boliimde sunulan matematiksel model Simaria ve Vilarinho (2007) ¢alismasinda
Onerilen matematiksel modele dayanmaktadir. Simaria ve Vilarinho (2007)
calismasinda sunulan matematiksel model, bolgesel ve senkronizasyon kisitlarina sahip
karma model CTMHDP i¢in gelistirilmis iken, bu ¢alismada ilgili matematiksel model
tek modele indirgenmis, amag fonksiyonu farklilagtirilarak herhangi bir 6zel kisita sahip
olmayan CTMHDP, bolgesel kisita sahip CTMHDP ve konumsal, bolgesel ve

senkronizasyon kisitlarina sahip CTMHDP igin giincellenmistir.

4.5.1. Ozel Kisit icermeyen Cift Tarafh Montaj Hatti Dengeleme Problemi icin

Onerilen Matematiksel Model ve Sonuclar:

Onerilen karma tamsayili dogrusal olmayan programlama modeline ait parametreler,

tamsayili ve ikili degiskenler, kisitlar ve amag fonksiyonu agagidaki gibi tanimlanmaistir.

Parametreler:

N = isler kiimesi (i = 1,...,N)

K = istasyonlar kiimesi (k= 1,...,N)
B = yonler kiimesi (b = 1,2)

t;= i isinin islem siiresi

ct = g¢evrim sliresi

M = biiyiik bir say1

S;= sol yonde yapilacak isler kiimesi
Sr= sag yonde yapilacak isler kiimesi

Suc;i= i isinden sonra gelen j isleri kiimesi
Tamsayih degiskenler:

d; = i isinin baslangi¢ zamani
Skp = k. 1stasyonun b. yoniinde kullanilan toplam stire

istsay = istasyon sayisi
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Ikili degiskenler:

M {1, i.is k. istasyonun b. yoniine atamirsa
tkb =1, diger durumlarda

_ {1, k.istasyonun b. yonii kullaniliyorsa
Yib =, diger durumlarda
_ {1, i isi j isinden sonra atanmissa
Wij = 0, diger durumlarda

Kisitlar:

>

kB Xikp =1 Vi

Bir igin sadece bir istasyona atanmasini saglar.

Yk X1 =1 Vi € SL;

Sol yonde yapilmasi gereken isleri sol yone atamay1 saglar.

Yk Xz =1 Vi € SR;

Sag yonde yapilmasi gereken isleri sag yone atamayi saglar.

Xiep (d; + ;) < ct Vi, k,b

Bir istasyona atanmus islerin toplam siirelerinin ¢evrim siiresini agmasini saglar.
Diger bir deyisle isin baslangic zamani ve siiresinin toplami ¢evrim siiresini
gecmemelidir.

Yks Xip (di + (k= Det) + t; — Ty Xjp (dj + (kK — Dct) < 0 Vi,j €
Suc;;

Oncelik iliskilerini saglar (i isinden sonra j isinin geldigini varsayalim; j isinin
baslangi¢ zamani, i isinin baslangic zamani ile siiresinin toplamindan kiigiik
olmamalidir).

YkpXip(d; + (k= Dct) +t; — Xk xjkb(dj + (k—1ct) < Muy; Vi,j &
Sucij, i #

Yk Xikn(dj + (k — Dct) + tj — Ty g Xinp (d; + (k — Det) < M(1 —uy)) vi,j &
Suc;j, i #

Arasinda Oncelik iliskisi olmayan isler i¢in ¢akismay1 onler. i ve j olmak iizere
iki 1§ i¢in ya i is1 j isinden sonra ya da j isi i isinden sonra atanmistir. Yukaridaki
kisit kiimesindeki ilk kisit j isinin 7 isinden sonra, ikinci kisit ise 7 iginin j isinden

sonra atanmis olmasi durumlari i¢in gegerlidir.
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> Skp = XN Xikpti Vk,b

Her yondeki toplam islem siiresini hesaplar.
> YNXikb = Vb Vk,b
> YNXikp < Mypp Vk,b

Sadece agilan istasyonlara ig atanmasini saglar.

> istsay = Yk pYrp

Agilan istasyonlara gore istasyon sayisini hesaplar.

Amag fonksiyonu:

> min 2\/2K,B(J’{cb(0t_5kb))2 + ZK,BJ{kb(Ct—Skb)
istsay istsay
Bilimsel yazin arastirmasindan goriildiigii gibi CTMHDP c¢alismalar1 genellikle
belirli bir ¢evrim siiresi dahilinde istasyon sayisinin en kiigiiklenmesi (tip-1)
amacina yoneliktir. Bu tez calismasinda da 6nerilen algoritmalarin performansini
degerlendirmek ac¢isindan ayni amag kullanilmistir. Ancak ayni istasyon sayisina
sahip iki ¢oziimiin biri digerinden daha dengeli bir is dagilimma sahip
olabileceginden amag fonksiyonu iki parcaya ayrilmistir. Amag¢ fonksiyonunun
ilk parcast ayni istasyon sayisina sahip ¢ézlimler arasinda en iyi dengeye sahip
olan1 bulmay1 amaglarken ikinci kisim ¢6ziimdeki istasyon sayisini minimize
etmektedir. Ilk amacin digerine gére daha 6nemli oldugu diisiiniildiigiinden 2 ile

carptlmistir [185].



88

2
ct—s t—
min 2\]21(,3()’1(17( kb)) n ZI(,B Yin(c Skb)

istsay istsay
Kisitlar
inkb =1 Vi (1)
KB
inkl =1 Vi€ SL;, (2)
K
inkz =1 Vi € SR; (3)
K
xipep(di + £) < ct Vi, k,b (4)
Z Xiep (d; + (k — Det) + t; — Z Xy (dj + (k — Dct) <0 v{i,j} € Suc;; (5)
KB KB
inkb(di + (k - 1)Ct) + ti - Z'xjkb(dj + (k - l)Ct) < Muij V{l,]} $ SuCl‘j i ;t] (6)
K,B K,B

ijkb(dj + (k - 1)Ct) + t] - inkb(di + (k - 1)Ct) < M(]. - uij) V{l,j} e SU,CL']' i

K,B K,B

#j (1)
Skp = Z Xikpti Vk,b (8)
N
Z Xikb = Yib VYk,b (9)
N
Z Xikp < MYk Vvik,b (10)
N
istsay = Yk,g kb (11)
d; >0 Vi (12)
Skp 2 0 vk,b (13)
istsay = 0 tamsay1 (14)
Xy € 10,1} Vik,b (15)
Yo € {0,1} vk,b (16)

Onerilen matematiksel model GAMS 22.7.2 optimizasyon paket progranu ile kiigiik
boyutlu test problemlerinin bir kismi1 i¢in sonuglar elde edebilmis, ancak daha biiyiik
boyutlu test problemleri i¢in hesaplama siliresi ¢ok uzun siirdiiglinden sonug
almamamistir. Herhangi bir 6zel kisit icermeyen p9 ve pl2 test problemlerine ait

optimum sonuglar hesaplama siireleri ile birlikte Tablo 4.2’de verilmistir.
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Tablo 4.2. Ozel kisit icermeyen CTMHDP igin &nerilen karma tamsayili dogrusal
olmayan matematiksel model sonuglari.
Problem Cevrim siiresi Istasyon sayis1 CPU (sn.)
3 6 28588.61
5 10456.81
4 2549.20
3 799.31
7200
- 7200
- 7200
- 7200
8 7 7200

* p12 problem kiimesine ait istasyon sayis1 degerleri,
programin 7200 saniye caligtirilmasi sonucu elde
edilen uygun ¢dzlime ait istasyon sayisini vermektedir.
‘> 7200 saniye igerisinde uygun bir ¢6ziim
bulunamadigimi gostermektedir.

p9

pl2

~N N RN B
1

4.5.2. Bolgesel Kisita Sahip Cift Tarafli Montaj Hatti Dengeleme Problemi icin

Onerilen Matematiksel Model ve Sonuclari

Bolgesel kisita sahip CTMHDP’nin ¢6ziimii i¢in Onerilen matematiksel modele iki

parametre ve iki kisit eklenmistir.
Eklenen Parametreler:

ZP;=ayn1 istasyona atanmasi gereken isler kiimesi

ZNj=ayn1 istasyona atanmamasi gereken isler kiimesi

Eklenen Kisitlar:

> Yk k(g + xix2) — T k(xjkr + xjia) = 0 Vi,j € ZP;j
Pozitif bolgesel kisita sahip islerin ayn1 istasyona atanmasini saglar.

> Yk k(Xipr + Xix2) — Dk k(Xjrr + Xjia) # 0 Vi,j € ZN;;

Negatif bolgesel kisita sahip islerin ayni istasyona atanmamasini saglar.
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2
ct—s ct—s
min 2\/21{,3()’%( kb)) n ZK.B Vin ( kb)

istsay istsay
Kisitlar
(H-(7)
Z k(xipr + xig2) — Z k(x]-k1 + xjkz) =0 v{i,j} € ZP; (18)
K K
Z k(xipr + xig2) — Z k(x]-k1 + xjkz) =0 v{i,j} € ZN;; (19)
K K

Onerilen matematiksel model GAMS 22.7.2 optimizasyon paket progranu ile kiigiik
boyutlu test problemlerinin bir kismi1 i¢in sonuglar elde edebilmis, ancak daha biiyiik
boyutlu test problemleri i¢in hesaplama siliresi ¢ok uzun siirdiiglinden sonug
almamamistir. Bolgesel kisita sahip p9 ve p12 test problemlerine ait optimum sonuglar
hesaplama siireleri ile birlikte asagidaki tabloda (Tablo 4.3) verilmistir.

Tablo 4.3. Bolgesel kisita sahip CTMHDP igin 6nerilen karma tamsayili dogrusal
olmayan matematiksel model sonuglari.
Problem Cevrim siiresi Istasyon sayis1 CPU (sn.)

3 6 15225.09
0 4 5 6399.62
p 5 4 3806.94
6 3 3109.53
5 R 7200
6 - 7200
pi2 7 ] 7200
8 7 7200

* pl2 problem kiimesine ait istasyon sayist degerleri,
programin 7200 saniye caligtirilmast sonucu elde
edilen uygun ¢dzlime ait istasyon sayisini vermektedir.
‘> 7200 saniye igerisinde uygun bir ¢6ziim
bulunamadigini géstermektedir.
4.5.3. Konumsal, Bolgesel ve Senkronizasyon Kisitlarina Sahip Cift Tarafh
Montaj Hatti Dengeleme Problemi icin Onerilen Matematiksel Model ve

Sonuclari

Konumsal, bolgesel ve senkronizasyon kisitlarina sahip CTMHDP’nin ¢6ziimii i¢in

Onerilen matematiksel modele asagidaki parametre ve kisitlar eklenmistir.
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Eklenen Parametreler:

Pos =konumsal kisita sahip isler kiimesi
ZP;=ayn1 istasyona atanmasi gereken isler kiimesi
ZNj=ayn1 istasyona atanmamasi gereken isler kiimesi

SC;= hattin her iki yoniinde ayn1 anda yapilmas: gereken isler kiimesi

Eklenen Kisitlar:

>

Y Xip(d; + (k — Dct) + t; —

YksXikp(dj + (k — 1)ct) < Mu; Vi,j & Suc;j, SCij,i # j
Yks Xin (dj + (k — Det) + tj — g g xip (d; + (k — 1)ct) < M(1 —
ul-]-) Vi,j & Suc;, SCij, i # j

Arasinda oncelik iliskisi ve senkronizasyon kisitt olmayan isler i¢in ¢akigsmay1

onler.

YpXiky = 1 Vi, k € Pos;,

Konumsal kisita sahip islerin belirlenen istasyonlara atanmasini saglar.

Yk kCigr + Xigz) — Tk k(xjir + x%jx2) = 0 Vi,j € ZP;;
Pozitif bolgesel kisita sahip iglerin ayni1 istasyona atanmasini saglar.

Yk k(s + i) — T k(g + xjxz) # 0 Vi, j € ZNj;

Negatif bolgesel kisita sahip islerin ayni istasyona atanmamasini saglar.

Y Xikr(d; + (k — 1)ct) — X xjk2(dj + (k — 1)ct) = 0 Vi,j € 5C;

Senkronizasyon kisitina sahip islerin ayn1 baslangic zamaniyla ayni istasyonun

karsilikli yonlerine atanmasini saglar.
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2
t— t—
min ZJZK,B(yk'b(C Skb)) n 2YK,B y{(b(c Skb)
istsay istsay
Kisitlar
(1)-(5), (8)-(17)
D kGt + ) = ) k(e + xj2) = 0 v(ij} € 2Py (18)
K K
Z (xier + Xiz2) — Z k(X1 + Xjiz) # 0 v{i,j} € ZN;; (19)
K K
inkb =1 V{l, k} S POSik (20)
B
Z X (d; + (k = Det) — Z Xa(d; + (k — Det) = 0 V{i,j}€SC; (21)
K K
Z xikb(di + (k - 1)Ct) +t — Zx]kb(d] + (k - 1)Ct) < Muij V{l,]} ¢ SuCi]',SCij i ?';] (22)
K,B K,B
Z Xjkp (dj + (k — Det) + ¢ — Z xip(d; + (k — Det) <M —w;) Vi, j} & Suc;;,SC;; i #j (23)
K.B K.B

Onerilen matematiksel model GAMS 22.7.2 optimizasyon paket progranu ile kiigiik
boyutlu test problemlerinin bir kismi1 i¢in sonuglar elde edebilmis, ancak daha biiyiik
boyutlu test problemleri i¢in hesaplama siliresi ¢ok uzun siirdiiglinden sonug
almamamistir. Konumsal, bolgesel ve senkronizasyon kisitlarina sahip p9 ve p12 test
problemlerine ait optimum sonucglar hesaplama siireleri ile birlikte asagidaki tabloda
(Tablo 4.4) verilmistir.

Tablo 4.4. Konumsal, bolgesel ve senkronizasyon kisitlarina sahip CTMHDP i¢in
onerilen karma tamsayili dogrusal olmayan matematiksel model sonuglari.
Problem Cevrim siiresi Istasyon sayis1 CPU (sn.)
4 421.09
200.09
292.77
53173.70
17337.06
46576.48
11225.56

p9

pl2

0N NN \»n
E NV, IV, Be ) NNV )

4.6. Cift Taraflh Montaj Hatti Dengeleme Problemi icin Ar1 Algoritmasi

CTMHDP’nin ¢oziimiinde kullanilan AA’nin  detayli adimlar1 Tablo 4.5’te

verilmektedir.
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Tablo 4.5. CTMHDP’nin ¢6ziimii i¢in AA adimlari.
Parametreleri baglangic durumuna getir
Sezgisel kurallarla kasif ar1 ¢oziimlerini olustur
3.  Kagsif ar1 ¢ozlimlerinin uygunluk fonksiyonlarini degerlendir

sy o |Zk=a(ct=SK)? | TRoa(ct=Sk)
flt(a)—Zﬁ + ==

N

4. 1=0
5 Do
Artan sekilde siralag-; s fit(c®) ve en iyi P adet ¢6ziimii gorevli ar1
olarak belirle
En iyi e adet gorevli ary1 seg
En iyi e adet gorevli arinin her birine nep adet izci ar1 ata
Kalan P-e adet gorevli arinin her birine nsp adet izci ar1 ata
k=0
Do
Her izci artya komsuluk yapilarindan birini %50 olasilikla uygula
Egerﬁt(al(aydlrma) <ﬁt(0p) ise & = O_l(aydlrma
Egerﬁt( eg’i;tirme) <ﬁt(ap) ise Op — O_deg'i;tirme
En iyi ¢oziimii giincelle
Eger min,—; _ pfit(o")<fit(c™"") ise o”""'=0c”
k=k+1
While (k<P)
Sezgisel kurallar ile S-P adet yeni kasif ar1 ¢dzlimleri olustur
I=1+1
While (I<Makslter)

CTMHDP i¢in AA, parametrelerin baslangi¢ degerlerine atanmasi ile baslar (S, P, e,
nep, nsp, Makslter) ve 4.6.1 boliimiinde detaylar1 verilecek olan sezgisel kurallarla S
adet baslangi¢ kasif ar1 ¢oziimii olusturulmasi ile devam eder. Olusturulan ¢oziimler
kiimesinden P adet iyi ¢oziim gorevli ar1 ¢ozlimleri olarak; P adet iyi ¢6zliim arasindan
secilen e adet ¢oziim ise en iyi ¢oziimler olarak belirlenir. Daha detayli bir komsuluk
aramasi icin en iyi ¢ozlimlere nep adet izci ar1 gonderilir. Daha az sayida izci ar1 ise
kalan P-e adet ¢Oziime gonderilir. Yerel arama igin her gorevli artya kaydirma ve
degistirme komsuluk mekanizmalarindan biri uygulanir. Daha iyi bir ¢dziim
bulunmussa gorevli ar1 ¢oziimii glincellenir. Diger taraftan en 1yi gorevli ar1 ¢6ziimii o
ana kadar bulunan en iyi ¢oziimle karsilastirilir ve daha iyi bir ¢6ziim bulunmussa en iyi
¢Oziim giincellenir. Global arama i¢in sezgisel kurallarla S-P adet kasif ar1 ¢oziimii
olusturularak bir sonraki iterasyona gegecek popiilasyon sayisi tamamlanir. Bahsedilen
adimlar Maxlter sayisinca tekrarlanir. CTMHDP nin ¢6ziimiinde kullanilan AA’nin

onemli adimlarinin detaylar1 sonraki boliimlerde verilmistir.
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4.6.1. Arn Kolonisinin Olusturulmasi

CTMHDP’nin ¢6ziimii icin onerilen AA’nda ¢oziim dizilerinin gosterim sekli olarak

sezgisel tabanli gosterim kullanilmistir. Bu gosterim seklinde ¢oztimler dolayl bir yolla

temsil edilmekte yani ¢6ziim dizisinin her degeri bir sezgisel kurali ifade etmektedir.

Sekil 4.2°de 9 ise sahip bir veri kiimesi i¢in 6rnek bir ¢oziim dizisi gosterilmistir.

Verilen Ornekte 2. sirada atanacak isin en kisa islem siiresine sahip is kuralina gore, 5.

sirada atanacak isin konumsal kisita sahip bir isin onceki isine Oncelik verme kuralina

gore ve 7. sirada atanacak isin en uzun islem siiresine sahip is kuralina gore secilecegi

ifade edilmektedir. Yani ¢6ziim dizisinin i. eleman i. sirada atanacak isi atamak icin

kullanilacak sezgisel kurali temsil etmektedir.

1] [2] [3] [a] [s] [e] [z] I[s]

L4l 2] 7z [ 3] 9] a |[ 1 |
[k6 ] EUIS

Sekil 4.2. Coziim dizisi 6rnegi.

[
[
N

Algoritmaya dahil edilen sezgisel kurallar asagidaki gibidir:

1)

2)

3)

4)

5)

6)

7)

En kisa islem siiresi (EKIS): Minimum islem siiresine sahip isi seger.

En uzun islem siiresi (EUIS): Maksimum islem siiresine sahip isi secer.
Kendinden sonraki is sayis1 toplaminin minimumu (MilSa): Kendinden sonra
gelen is sayisi en az olan isi seger.

Kendinden sonraki is sayis1 toplaminin maksimumu (MalSa): Kendinden sonra
gelen is sayisi en ¢ok olan isi seger.

Kendinden sonraki islerin toplam islem siiresinin minimumu (MilSii):
Kendinden sonra gelen islerin islem siiresi toplami en az olan isi seger.
Kendinden sonraki islerin toplam islem siiresinin maksimumu (MaiSii):
Kendinden sonra gelen islerin islem siiresi toplami en ¢ok olan isi seger.
Maksimum sirali konumsal agirlik (MaSKA): Sirali konumsal agirlik degeri en
biiylik olan isi secer. Bir ise ait sirali konumsal agirlik degeri ise o isin islem

stiresi ile kendinden sonra gelen islerin islem siirelerinin toplamu ile elde edilir.
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8) Maksimum ortalama sirali konumsal agirlik (MaOSKA): Ortalama sirali
konumsal agirlik degeri en biiylik olan isi secer. Bir ise ait ortalama siral
konumsal agirlik degeri ise o igin islem siiresi ile kendinden sonra gelen islerin
islem siirelerinin toplaminin is sayisina boliinmesi ile elde edilir.

9) Pozitif bdlgesel kisit 6nceligi (PBO): Pozitif bolgesel kisita sahip bir isin 6nceki
isini secer. Eger atanabilir isler listesinde bu 6zellige sahip bir is yoksa rastgele
secim yapilir.

10) Konumsal kisit &nceligi (KO): Konumsal kisita sahip bir isin 6nceki isini seger.
Eger atanabilir isler listesinde bu 6zellige sahip bir is yoksa rastgele se¢im
yapilir.

11) Senkronizasyon kisiti énceligi (SO): Senkronizasyon kisitina sahip bir isin
onceki isini seger. Eger atanabilir isler listesinde bu 6zellige sahip bir is yoksa

rastgele secim yapilir.

Herhangi bir 6zel kisita sahip olmayan CTMHDP i¢in ¢6ziim dizilerinin olusturulmasi
esnasinda (1)-(8) kurallar1 kullanilir ve ¢6zliim dizisi uzunlugu is sayisina esittir.
Bahsedilen problem i¢in baslangi¢ ¢Oziimlerinin olusturulmasi asamasi Sekil 4.3’te
agiklanmaktadir. Oncelikle ilgili istasyonun kapasitesini asmayan ve varsa onceki isleri
bir istasyona atanmis islerden (Pred,, i isinden hemen 6nceki isler kiimesini gostermek
lizere) atanabilir isler listesi olusturulur. Eger atanabilir isler listesi bos ise yeni bir
istasyon agilir, aksi takdirde verilen ¢6ziim dizisinde siradaki kural kullanilarak bir ig
secilir ve atamasi gergeklestirilir. Atanan is, atanabilir igler listesinden c¢ikarilir. Bu

adimlar biitiin isler bir istasyona atanana kadar tekrarlanir.
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Rastgele kurallarla
¢Oziim dizisini Coziim dizisini al
olustur

k* istasyonun b*
Yy <_

yonii igin atanabilir ¢
> isler listesini (ATL)

olustur

4[Xjkbl R VjePredi, Vik,b

LSCE-S, o« Vi }

Yeni istasyon
ac <€¢Eve

Hazlr
> Ilgili sezgisel kural1
kullanarak bir is seg, i*

i* isini k*
istasyonunun b*

Hayir yoniine ata, X, .. =1,
ATL=ATL-{i*}

Biitiin isler
atandi m1?

Evet

Dur

Sekil 4.3. Ozel kisita sahip olmayan CTMHDP i¢in baslangi¢ ¢oziimlerinin

olusturulmasi.
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Bolgesel kisita sahip CTMHDP i¢in ¢6ziim dizilerinin olusturulmasi esnasinda ise (1)-
(9) kurallar1 kullanilir ve ¢6ziim dizisi uzunlugu, is sayisindan pozitif bolgesel kisit
sayisinin ¢ikarilmast ile hesaplanir. Ciinkii pozitif bolgesel kisita sahip bir is
atandiginda karsilik isin de ayni istasyona atanmasi gerekir ve bu atama esnasinda
atama kurallarindan biri kullanilmaz. Bahsedilen problem i¢in baglangi¢ ¢oziimlerinin
olusturulmas1 asamas1 Sekil 4.4’te aciklanmaktadir. Oncelikle ilgili istasyonun
kapasitesini agmayan, varsa onceki isleri bir istasyona atanmis ve atama yapilacak
istasyonda negatif bolgesel kisit karsiligi olmayan islerden atanabilir isler listesi
olusturulur. Eger atanabilir isler listesi bos ise yeni bir istasyon acilir, aksi takdirde
verilen ¢6ziim dizisinde siradaki kural kullanilarak bir is segilir. Segilen isin atamasi
gerceklestirilmeden dnce bu ise ait bir pozitif bolgesel kisit olup olmadig1 kontrol edilir.
Eger varsa ve her iki is de ayni istasyona atanabiliyorsa (6ncelik, ¢evrim siiresi ve ilgili
istasyonda negatif bolgesel kisit karsilifi olmama sartlar1 saglaniyorsa) atama
gerceklestirilir ve karsilik is de ayni istasyona atanir, eger atama gerceklestirilemiyorsa
secilen is atanabilir isler listesinden ¢ikarilir. Bu adimlar biitiin isler atanana kadar

tekrarlanir.



Rastgele kurallarla
¢6ziim dizisini
olustur

98

Coziim dizisini al

Yeni istasyon
ac

€Eve

ATL=ATL-{i*}

—Hay

Hayir

—: kurali kullanarak]

,
xjkb=1, vj ePredi, Vik,b
\.
k* istasyonun b* < e
yonil igin atanabilir ¢ t<ct-s Vi
. . . . T *hk
isler listesini (ATL) «— i k*b
olustur N
e
xjk*b*v&l, Vj eZNij Vi
\.

Ha‘w

[lgili sezgisel

bir is sec, i*

Evet

i* isini k*
istasyonunun b*
yOniine ata, Xi*k*b*:l s
ATL=ATL-{i*}

Biittin isler
atandi m1?

Sekil 4.4. Bolgesel kisita sahip CTMHDP i¢in baglangic ¢ézlimlerinin olusturulmasi.
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Konumsal, bolgesel ve senkronizasyon kisitlarina sahip CTMHDP i¢in ¢6ziim
dizilerinin olusturulmasi esnasinda (1)-(11) kurallar1 kullanilmakta ve ¢oziim dizisi
uzunlugu, is sayisindan konumsal kisit, pozitif bolgesel kisit ve senkronizasyon kisiti
sayist ¢ikarilarak hesaplanmaktadir. Bahsedilen problem igin baslangi¢c ¢oziimlerinin
olusturulmasi1 agamasi1 Sekil 4.5’te aciklanmaktadir. Diger modellerden farkli olarak
oncelik konumsal kisita sahip islere verilmektedir. Konumsal kisita sahip is, belirlenen
istasyona atandiktan sonra bu ise ait bir pozitif bolgesel kisit olup olmadigr kontrol
edilerek eger varsa karsilik is de ayni istasyona atanir. Diger taraftan yine konumsal
kisita sahip ise ait bir senkronizasyon kisiti olup olmadigi kontrol edilir ve karsilik is de
ayni baslangi¢ siiresiyle karsilik istasyona atanir. Daha sonra baslangic istasyonuna
doniilerek ilgili istasyonun kapasitesini asmayan, varsa Onceki isleri bir istasyona
atanmig ve atama yapilacak istasyonda negatif bolgesel kisit karsiligi olmayan islerden
atanabilir isler listesi olusturulur. Eger atanabilir isler listesi bos ise yeni bir istasyon
acilir, aksi takdirde verilen ¢6ziim dizisinde siradaki kural kullanilarak bir is segcilir.
Secilen isin atamasi1 gerceklestirilmeden dnce bu ise ait bir pozitif bolgesel kisit olup
olmadigr kontrol edilir. Eger varsa ve her iki ig de aym istasyona atanabiliyorsa
(oncelik, cevrim siiresi ve ilgili istasyonda negatif bolgesel kisit karsiligi olmama
sartlar1 saglaniyorsa) atama gerceklestirilir ve karsilik is de ayni1 istasyona atanir, eger
atama gerceklestirilemiyorsa segilen is atanabilir igler listesinden ¢ikarilir. Ayni sekilde
secilen isin atamasi1 gergeklestirilmeden Once bu ise ait bir senkronizasyon kisiti olup
olmadig1 kontrol edilir ve eger varsa karsilik is de ayni baslangic siiresiyle karsilik
istasyona atanir. Eger atama gerceklestirilemiyorsa (6ncelik, ¢evrim siiresi ve ilgili
istasyonda negatif bolgesel kisit karsili§i olmama sartlar1 saglanamiyorsa) secilen is

atanabilir igler listesinden ¢ikarilir. Bu adimlar biitiin isler atanana kadar tekrarlanir.
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Rastgele kurallarla
¢Oziim dizisini
olustur

l

X_ikbzl’ ‘v’i,jeZP[i ¢— Xy, =1, Vi,kePos, . |)=l, Vi,jeSC[i

xjkb=l, VjePred, Vi,k,bJ

k* istasyonun b*
> y6nii i¢in atanabilir

tigct—s Vi J

isler listesini (ATL) | I_| k*b*
olustur
Xjk*b*il’ VjeZNij ‘v’iJ

Hilr

Yeni istasyon
ag lg—Eve

Tlgili sezgisel
—:kurall kullanarakj«g

bir is sec, i*

ATL=ATL-{i*} ¢ Hayir

X, =1
JkHb*H1) [} ATL=ATL-{i*} |t
Hayir Vi*,jeSCi*i Hay! ATL=ATL- %)

Evet

i* isini k*
istasyonunun b*
yoniine ata, Xy . «=1,

ATL=ATL-{i*}

Biitiin isler
atand1 m1?

Evet

Dur

Sekil 4.5. Konumsal, bdlgesel ve senkronizasyon kisitlarina sahip CTMHDP igin

baslangi¢ ¢oziimlerinin olusturulmasi.
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4.6.2. Uygunluk Fonksiyonu ve Komsuluk Yapilari

Uygunluk fonksiyonu, CTMHDP i¢in onerilen matematiksel modeldeki gibi ele alinmig
olup n istasyon sayisini, s; k. istasyondaki toplam iglem siiresini gOstermek tiizere

asagidaki gibi hesaplanmaktadir.

sy =1(ct —Sp)?  Lp=1(ct — S)
fit(c®) = 2\/ - + " (4.1.)

Komsuluk yapisi olarak ise algoritmanin performansini dne ¢ikarabilmek icin basit
yapilar kullanilmigtir. Bu amacgla kaydirma ve degistirme komsuluk yapilart %50
olasilikla degisimli olarak kullanilmistir. Diger taraftan her bir komsuluk aramasinda

dizi uzunlugunun %10’u kadar kaydirma ya da degistirme yapilmistir.

4.7. Cift Tarafi Montaj Hatti Dengeleme Problemi icin Yapay Ar1 Kolonisi

Algoritmasi

CTMHDP’nin ¢6ziimiinde kullanilan YAK algoritmasinin detayli adimlar1 Tablo 4.6’da

verilmektedir.

YAK algoritmasi, parametrelerin baslangic degerlerine atanmasi ile baslar ve sezgisel
kurallarla P adet baglangi¢ gorevli ar1 ¢oziimii olusturulmasi ile devam eder. Gorevli ari
¢Ozlimlerine, ¢6ziimiin kalitesi ile orantili sayida izci ar1 atanir. Yerel arama i¢in her
gorevli artya kaydirma ve ¢ift kaydirma komsuluk mekanizmalarindan biri uygulanir.
Daha iyi bir ¢6ziim bulunmugsa goérevli ar1 ¢ézlimii giincellenir. Diger taraftan gorevli
ar1 ¢oziimleri o ana kadar bulunan en iyi ¢oziimle karsilastirilir ve daha iyi bir ¢oziim
bulunmussa en iyi ¢Oziim gilincellenir. Gorevli ar1 ¢ozimi /imit parametresi ile
belirlenen sayida iterasyon boyunca gelistirilememisse sezgisel kurallarla yeni bir kasif
ar1 ¢6zimil olusturulur. Son olarak algoritma adimlar1 6dnceden belirlenmis iterasyon

sayist kadar tekrarlanir.

YAK algoritmasinda baglangi¢ c¢oziimlerinin olusturulmasi, kullanilan komsuluk

yapilar1 ve uygunluk fonksiyonu AA’ndakiler ile aynidir.
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Tablo 4.6. CTMHDP i¢in YAK algoritmas1 adimlari.
1. Parametreleri baglangic degerlerine ata
Sezgisel kurallarla baslangi¢ gorevli ar1 ¢oziimlerini olustur (o)
3. Gorevli ar1 ¢ozlimlerinin uygunluk fonksiyonlarini degerlendir

: _ ke=1(ct — Sg)? r=1(ct — S)
fit(oP) = 2\/ - + -

g

=

=0
. Do
Uygunluk degerleriyle iligkili olasiliklar hesapla

_(fit@?) ™)
P = Fit(o?)

n

Olasiliklara gore izci arilart gorevli arilara ata
Hesaplanan olasiliklara gore, gorevli arilarin yiyecek kaynaklarina
gonderilecek izci ar1 sayisini belirle, p,*P

k=0
Do
Her izci artya komsuluk yapilarindan birini %50 olasilikla uygula
Eger fit(d"™"™) < fit(?) ise & = ™ LimitSayaci(c)=0
Aksi takdirde LimitSayaci(o’)=LimitSayaci(o’)+1
Egerﬁ[(o_degistirme) <ﬁt(0p) ise o = O_degi;‘tirme’
LimitSayaci(c’)=0
Aksi takdirde LimitSayaci(o’)=LimitSayaci(o’)+1
En iyi ¢oziimii giincelle
Eger min,—; . pfit(c?)<fit(c™""") ise o”""'=c"
Eger (LimitSayaci(o’)>limit) ise sezgisel kurallarla yeni bir
kasif ar1 ¢6ziimii olugtur
k=k+1
While (k<P)
I=1+1

While (I=MaksIter)

4.8. Deneysel Calisma

Bilimsel yazindaki ¢aligmalarin sonuglariyla birebir karsilagtirma yapabilmek i¢in AA
ve YAK algoritmalar 6zel kisit icermeyen, bdlgesel kisita sahip ve konumsal, bolgesel
ve senkronizasyon kisitlarina sahip CTMHDP i¢in ayr1 ayr ¢alistirilip sonuglar ilgili

caligmalarla karsilastirilmistir.

Test problemleri kiiclik boyutlu (p9, p12, p16, p24) ve biiyiik boyutlu (p65, p148, p205)
problemleri icermekte olup problem adlarindaki sayilar ilgili verideki is sayisini
gostermektedir. p9, p12 ve p24 problemleri Kim ve ark. (2000) calismasindan, p16,
p65, p205 problemleri Lee ve ark. (2001) ¢alismasindan ve son olarak p148 problemi
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ise Bartholdi (1993) calismasindan alinmistir. p148 problemindeki 79 ve 108 nolu islere
ait islem stireleri diger islem siirelerine gore cok biiylik oldugundan ve ¢evrim siiresi
tizerinde bir kisit olusturdugundan karsilagtirma yapilan diger ¢aligmalarda oldugu gibi
bu islere ait siireler sirasiyla 2.81 yerine 1.11 ve 3.83 yerine 0.43 olarak alinmistir. p9,
pl2, p24, p65, pl48 problemlerine ait konumsal kisit verileri Kim ve ark. (2000)
calismasindan alinmisken, p16 ve p205 problemlerine ait konumsal kisit verileri ise bu
calismada belirlenmistir. p9, p12, p24, p65, p148, p205 problemlerine ait bolgesel kisit
verileri Baykasoglu ve Dereli (2008) calismasindan, p16 problemine ait bolgesel kisit
verileri ise Ozcan ve Toklu (2009b) ¢alismasindan alinmustir. Biitiin test problemlerine
ait senkronizasyon kisitlar1 ise verinin Ozelliklerine bagli olarak bu caligmada

belirlenmistir.

4.8.1. An Algoritmasi Sonugclar:

CTMHDP’nin ¢6ziimii i¢in onerilen AA, C# programlama dilinde kodlanarak 2.2 GHz
CPU ve 2GB RAM ozelliklere sahip Intel Core 2 Duo PC kullanilarak test problemleri
tizerinde analiz edilmistir. Kullanilan kontrol parametresi degerlerinin belirlenmesi
asamasinda {S,P,enep,nsp}: {20,10,5,4,2}, {15,5,3,4,2}, {10,5,3,2,1}, {5,3,2,2,1}
olmak iizere 4 farkli parametre kombinasyonu olusturulmustur. Yapilan analizler
neticesinde 3. parametre kombinasyonu en iyi performansi gosterdiginden Tablo 4.7°de

verildigi gibi algoritmanin parametreleri olarak bu degerler kullanilmstir.

Tablo 4.7. CTMHDP i¢in AA parametrelerinin degerleri.

Parametre Deger
S 10
P 5

e 3
nep 2
nsp 1
Makslter 100

AA her problem kiimesinin biitlin c¢evrim siireleri i¢in 10’ar kez calistirilmistir.
Minimum, ortalama ve maksimum istasyon sayilari, minimum CPU siireleri ile birlikte
ilgili tablolarda sunulmustur. CPU siiresi olarak minimum degerlerin dikkate
alinmasinin sebebi karsilagtirma yapilan ¢alismalarda da minimum CPU siirelerinin
verilmesidir. Daha 6nce bahsedildigi gibi deneysel ¢alisma 3 kategoride ele alinmistir.

Bunlardan ilki olan 6zel kisit icermeyen CTMHDP sonuglart Tablo 4.8, bolgesel kisita
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sahip CTMHDP sonuclar1 Tablo 4.9, konumsal, bolgesel ve senkronizasyon kisitlarina

sahip CTMHDP sonuglari ise Tablo 4.10°da verilmistir.

Tablo 4.8. AA ile 6zel kisit icermeyen CTMHDP sonuclari.

C(ivnrp min ort maks CPU C(ivnrp min  ort maks CPU
siiresi (sn.) siiresi (sn.)
3 6 6 6 <0.02 326 17 17 17 0.250
po 4 5 5 5 <0.02 p65 381 14 145 15 1.078
5 4 4 4 <0.02 435 12 129 13 5.125
6 3 3 3 <0.02 490 11 113 12 2.203
4 7 7 7 <0.02 544 10 10 10 0.312
5 6 6 6 <0.02 204 26 26 26 0.406
pl2 6 5 5 5 <0.02 255 21 21 21 0.375
7 4 4 4 <0.02 306 17 17.6 18 0.390
8 4 4 4 <0.02 | p148 357 15 15 15 0.359
15 6 6 6 <0.02 408 13 133 14 0.453
16 6 6 6 <0.02 459 12 12 12 0.171
18 6 6 6 <0.02 510 11 11 11 0.406
plé 19 5 5 5 <0.02 1133 22 237 24 33.390
20 5 5 5 <0.02 1322 20 20 20 32.953
21 5 5 5 <0.02 1510 17 179 18  2906.859
22 4 4 4 <0.02 1699 16 16 16 5.578
18 8 8 8 <0.02 1888 14 143 15 12.390
20 8 8 8 <0.02 p205 2077 12 128 13 149.703
24 6 64 7 0.031 2266 12 12 12 7.359
p24 25 6 6 6 <0.02 2454 11 119 12 921.682
30 5 5 5 <0.02 2643 10 10 10 21.437
35 4 4 4 <0.02 2832 10 10 10 8.640
40 4 4 4 <0.02

* CPU siiresi olarak bulunan <0.02 degeri, karsilik gelen istasyon sayisinin bir iterasyonda bulundugunu
gostermektedir.
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Tablo 4.9. AA ile bolgesel kisita sahip CTMHDP sonuglari.

(;;fl\r/gsr:l min ort maks ((3::3 (;;i\;élsr:l min  ort maks ((3::3

3 7 7 7 <0.02 326 17 173 18 0.250

po 4 5 05 5 <002 | p6s 381 14 149 15 9328
5 4 4 4 <0.02 435 13 13 13 0.265

6 3 3 3 <0.02 490 1 118 12 6.015

5 6 6 6 <0.02 544 10 10 10 0.687

p12 6 5 5 5 <0.02 204 26 267 27 6.421
7 4 4 4 <0.02 255 21 212 22 1.218

8 4 4 4 <0.02 306 18 18 18 2.000

15 6 64 7 3.657 | pl48 357 15 156 16 14.531

16 6 63 7 2.625 408 14 14 14 0.734

18 6 6 6 <0.02 459 12 124 13 2.625

pl6 19 6 6 6 <0.02 510 11 114 12 4.359
20 5 5 5 <0.02 1133 23 239 24 41.593

21 5 5 5 0.093 1322 21 213 22 1.843

22 5 52 6 0.512 1510 18 18 18 11.609

18 8 8 8 <0.02 1699 17 178 18 13.25

20 8 8 8 <0.02 1888 16 16 16 5.015
24 6 62 7 0.109 p203 2077 14 149 15 260.031

p24 25 6 6 6 <0.02 2266 14 14 14 12.078
30 5 5 5 <0.02 2454 14 14 14 5.843

35 4 4 4 <0.02 2643 13 138 14 94.578

40 4 4 4 <0.02 2832 12 12 12 9.692
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Tablo 4.10. AA ile konumsal, bolgesel ve senkronizasyon kisitlarina sahip CTMHDP

sonuclari.
C(ivnrp min ort maks CPU C(ivnrp min ort maks CPU
stiresi (sn.) stiresi (sn.)
p9 4 5 5 5 <0.02 326 18 18 18 0.234
5 4 4 4 <0.02 p65 381 15 151 16 0.625
6 4 4 4 <0.02 435 14 14 14 0.390
5 6 6 6 <0.02 490 13 13 13 0.281
p12 6 5 5 5 <0.02 544 12 12 12 0.578
7 5 5 5 <0.02 204 26 269 27 19.093
8 4 4 4 <0.02 255 23 23 23 2421
15 7 7 7 <0.02 306 20 207 21 4.359
16 7 7 7 <0.02 | pl148 357 18 181 19 2.015
18 7 7 7 <0.02 408 17 18 19 13.593
plé 19 7 7 7 <0.02 459 17 176 18 2.078
20 7 7 7 <0.02 510 17 17 17 2.468
21 7 7 7 <0.02 1133 25 257 26 51.843
22 6 6 6 <0.02 1322 23 23 23 10.875
18 8 8 8 <0.02 1510 21 21 21 16.984
20 8 8 8 <0.02 1699 19 199 20 926.781
24 7 72 8 0.062 1888 19 195 20 287.109
p24 25 7 7 7 <0.02 p203 2077 19 19 19 34.218
30 6 6 6 <0.02 2266 18 182 19 41.734
35 6 6 6 <0.02 2454 18 18 18 48.312
40 6 6 6 <0.02 2643 18 18 18 55.828
2832 18 18 18 66.093

4.8.2. Yapay An Kolonisi Algoritmasi Sonug¢lari

CTMHDP’nin ¢6ziimii i¢in Onerilen YAK algoritmasi, C# programlama dilinde
kodlanmis ve ayni Ozelliklere sahip PC kullanilarak test problemleri iizerinde analiz
edilmistir. Parametre degerlerinin belirlenmesinde AA parametreleri temel alinarak
algoritma igerisinde ayni sayida ar1 olmasina dikkat edilmistir. YAK algoritmasi

parametrelerinin degerleri Tablo 4.11°deki gibi belirlenmistir.

Tablo 4.11. CTMHDP i¢cin YAK algoritmasi parametrelerinin degerleri.

Parametre Deger
P 10
limit 25
Makslter 100

YAK algoritmasi da yine AA’nda oldugu gibi her problem kiimesinin biitiin ¢evrim
stireleri i¢in 10’ar kez calistirlmigtir. Minimum, ortalama ve maksimum istasyon
sayilari, minimum CPU siireleri ile birlikte ilgili tablolarda sunulmustur. Bunlardan ilki

olan ozel kisit icermeyen CTMHDP sonuclari Tablo 4.12, bolgesel kisita sahip
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CTMHDP sonuglar1 Tablo 4.13, konumsal, bolgesel ve senkronizasyon kisitlarina sahip

CTMHDP sonuclar1 ise Tablo 4.14’te verilmistir.

Tablo 4.12. YAK algoritmasi ile 6zel kisit icermeyen CTMHDP sonuglari.

C(ivnrp min ort maks CPU Cfivru.n min  ort maks CPU

stiresi (sn.) stiresi (sn.)

3 6 6 6 <0.02 326 17 17 17 0.203

po 4 5 5 5 <002 | pes 381 14 145 15 0343
5 4 4 4 <0.02 435 13 13 13 0.281

6 3 3 3 <0.02 490 1t 114 12 1.015

4 7 7 7 <0.02 544 10 10 10 0.250

5 6 6 6 <0.02 204 26 26 26 0.343

pl2 6 5 5 5 <0.02 255 21 21 21 0.484
7 4 4 4 <0.02 306 17 179 18 14.328

8 4 4 4 <0.02 | pl48 357 15 15 15 0.156

15 6 6 6 <0.02 408 13 136 14 1.359

16 6 6 6 <0.02 459 12 12 12 5.968

18 6 6 6 <0.02 510 11 11 11 0.343
pl6 19 5 5 5 <0.02 1133 22 233 24 71.578
20 5 5 5 <0.02 1322 20 20 20 23.312

21 5 5 5 <0.02 1510 18 18 18 4375
22 4 4 4 <0.02 1699 16 16 16 15.625
18 8 8 8 <0.02 1888 14 14.6 15 40.031

20 8 8 8 <0.02 p205 2077 14 14 14 5.125
24 6 63 7 0.031 2266 12 12 12 12.328
p24 25 6 6 6 <0.02 2454 12 12 12 60.687
30 5 5 5 <0.02 2643 10 101 11 17.109

35 4 4 4 <0.02 2832 10 10 10 7.390

40 4 4 4 <0.02
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Tablo 4.13. YAK algoritmasi ile bolgesel kisita sahip CTMHDP sonuglari.

C?Vfll’p min  Ort maks CPU Cﬁvmp min  Ort maks CPU

stiresi (sn.) siiresi (sn.)

3 7 7 7 <0.02 326 18 18 18 0.218

po 4 5 5 5 <002 | pes 381 14 149 15 3.687
5 4 4 4 <0.02 435 13 13 13 0.390

6 3 3 3 <0.02 490 12 12 12 0.265

5 6 6 6 <0.02 544 10 10 10 0.296

p12 6 5 5 5 <0.02 204 26 267 27 2.203
7 4 4 4 <0.02 255 21 211 22 2.125

8 4 4 4 <0.02 306 18 18 18 0.546

15 7 7 7 <0.02 | pl48 357 15 157 16 0.578

16 7 7 7 <0.02 408 14 14 14 0.703

18 6 6 6 <0.02 459 12 123 13 0.265

plé 19 6 6 6 <0.02 510 11 11.8 12 2.406
20 5 5 5 <0.02 1133 24 242 25 8.031
21 5 52 5 0.078 1322 21 215 22 24.187
22 5 5 5 <0.02 1510 18 191 20 78.390

18 8 8 8 <0.02 1699 18 18 18 4.390

20 8 8 8 <0.02 205 1888 16 16 16 4.703
24 6 62 7 <0.02 2077 14 148 15 83.625

p24 25 6 6 6 <0.02 2266 14 14 14 4.328
30 5 5 5 <0.02 2454 14 14 14 4.750

35 5 5 5 <0.02 2643 14 14 14 5.671
40 4 4 4 <0.02 2832 13 13 13 12.156




109

Tablo 4.14. YAK algoritmasi ile konumsal, bolgesel ve senkronizasyon kisitlarina sahip
CTMHDP sonuclari.

C(ivnrp min ort maks CPU C(ivnrp min ort maks CPU
stiresi (sn.) stiresi (sn.)
P9 4 5 5 5 <0.02 326 18 18 18 0.203
5 4 4 4 <0.02 p65 381 15 151 16 1.593
6 4 4 4 <0.02 435 14 14 14 0.437
5 6 6 6 <0.02 490 13 13 13 0.375
p12 6 5 5 5 <0.02 544 12 12 12 0.296
7 5 5 5 <0.02 204 26 264 27 1.328
8 4 4 4 <0.02 255 23 23 23 0.578
15 7 7 7 <0.02 306 20 209 21 1.437
16 7 7 7 <0.02 | pl148 357 18 182 19 3.046
18 7 7 7 <0.02 408 17 179 19 2.000
plé 19 7 7 7 <0.02 459 17 178 18 20.375
20 7 7 7 <0.02 510 17 17 17 1.359
21 7 7 7 <0.02 1133 24 252 26 115.640
22 6 6 6 <0.02 1322 23 231 24 24.937
18 8 8 8 <0.02 1510 20 209 21 242.500
20 8 8 8 <0.02 1699 20 20 20 55.296
24 7 7 7 <0.02 1888 19 198 20 22.328
p24 25 7 7 7 <0.02 p205 2077 18 189 19 960.812
30 6 64 6 <0.02 2266 17 173 18 352.734
35 6 6 6 <0.02 2454 17 17 17 56.937
40 6 6 6 <0.02 2643 17 17 17 42.046
2832 17 17 17 55.640

4.8.3. An Algoritmasi ve Yapay Ar1 Kolonisi Algoritmasimin Bilimsel Yazindaki

Algoritmalarla Karsilastirilmasi

AA ve YAK algoritmasinin CTMHDP nin ¢6ziimii i¢in kullanildigi bir uygulama
niteliginde olan bu boliimde, genis bir deneysel calisma neticesinde AA ve YAK
algoritmas1 sonuglar1 bilimsel yazinda sunulan sonuglarla karsilagtirilmistir.
Degerlendirmeye bilimsel yazindaki sezgisel ve matematiksel model sonuglar1 dahil
edilmis ancak problemin karmasiklig1 sebebiyle karsilastirma yapilan sonuglarin ¢ogu
sezgisel arama algoritmalarindan elde edilmistir. Karsilastirma boliimi, deneysel
calisma boliimiinde oldugu gibi 3 kategoride ele alinmistir. Tablo 4.15 6zel kisita sahip
olmayan CTMHDP, Tablo 4.16 bolgesel kisita sahip CTMHDP, Tablo 4.17 konumsal,
bolgesel ve senkronizasyon kisitlarina sahip CTMHDP i¢in elde edilen sonuglarin
bilimsel yazindaki sonuglarla karsilagtirilmasini igcermektedir. Tablolardaki koyu

degerler bilinen en iyi istasyon sayisini gostermektedir.
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Tablo 4.15. AA ve YAK algoritmasi ile elde edilen 6zel kisita sahip olmayan CTMHDP sonuglarinin karsilagtirilmasi.

Baykasoglu ve Dereli Hu ve ark. Ozcan ve Toklu Ozcan ve Toklu
Cevrim AA YAK ' (ZgOO8) (2008) (2009a) (2009b) GAMS 22.7.2
surest Ist. CPU Ist. CPU Ist. sayis1 CPU Ist. CPU Ist. say1s1 Ist.sayis1 ~ CPU Ist. CPU
o sayisi sayist sayisl sayisl
= 3 6 <0.02 6 <0.02 6 <1 - - 6 6 0.093 6 28588.61
4 5 <0.02 5 <0.02 5 <1 5 0.047 5 5 0.296 5 10456.81
5 4 <0.02 4 <0.02 4 <1 4 0.047 4 4 0.140 4 2549.20
6 3 <0.02 3 <0.02 3 <1 - - 3 3 0.109 3 799.31
Baykasoglu Ozcan ~
AA YVAK ve Dereli Hu ve ark. Wu ve ark. ve Ozcan ve GAMS
Cevrirp 2008) (2008) (2008) Toklu  Toklu (2009b) 22.7.2
siiresi ( (2009a)
o Ist. CPU Ist. CPU Ist. Ist. Ist. CPU Ist. Ist. CPU Ist.
a say1s1 sayisl say1s1 sayisi say1s1 sayisi  sayisl sayisl
=T 7 <002 7 <002 - - - 7 0010 - - - -
5 6 <0.02 6 <0.02 6 <1 - 6 0.210 6 6 22.609 - -
6 5 <0.02 5 <0.02 5 <1 5 0.078 5 0.010 5 5 12.042 - -
7 4 <0.02 4 <0.02 4 <1 4 0.141 4 0.001 4 4 0.203 - -
8 4 <0.02 4 <0.02 - - 4 0.250 - - 4 4 1.125 7 7200
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AA YAK Hl(lz\(/)%;;k‘ Wu ve ark. (2008)  Ozcan ve Toklu (2009a) Ozcan ve Toklu (2009b)
Cevrim siiresi . . T : - :
Ist. sayis1  CPU  Ist.sayist  CPU say1.51 CPU Ist.sayist  CPU Ist. say1s1 Ist. say1s1 CPU
15 6 <0.02 6 <0.02 - - 7 0.121 - 6 132.859
% 16 6 <0.02 6 <0.02 6 0.204 - - 6 6 2.031
18 6 <0.02 6 <0.02 - - 6 0.100 - 6 153.328
19 5 <0.02 5 <0.02 6 0.219 - - 5 5 18.125
20 5 <0.02 5 <0.02 - - 5 4.756 - 5 156.609
21 5 <0.02 5 <0.02 5 0.094 - - 5 5 399.640
22 4 <0.02 4 <0.02 4 0.156 4 0.161 4 4 0.671
Baykasoglu Ozcan -~
AA YAK ve Dereli Hu ve ark. Wu ve ark. ve Ozcan ve Toklu
C(Evrir.n (2008) (2008) (2008) Toklu (2009b)
siiresi (2009a)
Ist. CPU Ist. CPU Ist. Ist. CPU Ist. CPU Ist. Ist. CPU
sayi1sl sayl1st say1s1 sayi1sl say1st saylst  sayisl
S 18 8 <0.02 8 <0.02 - - 8 0.828 - - 8 8 <7200
= 20 8 <0.02 8 <0.02 8 <1 8 1.218 - - 8 8 <7200
24 6 0.031 6 0.031 - - 7 5.938 - - 6 6 1621.437
25 6 <0.02 6 <0.02 6 <1 6 8.627 6 0.130 6 6 <7200
30 5 <0.02 5 <0.02 5 <1 - - 5 0.010 5 5 <7200
35 4 <0.02 4 <0.02 5 <1 - - 4 21.010 4 4 259.671
40 4 <0.02 4 <0.02 4 <1 - - 4 0.010 4 4 <7200
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AA VAK Lee ve ark. Baykasoglu ve Dereli Wu ve ark. Simaria ve Vilarinho Ozcan ve Toklu
Cevrim (2001) (2008) (2008) (2009) (2009a)
surest st epy Bt epy Y opy fspsayis CPU st epy fst. sayust fst. sayist
sayi1st sayisi sayisi sayi1s1
l\'é 326 17 0.250 17 0.203 17 <3 17 <1 - - 17 17
381 14 1.078 14 0.343 15 <3 15 <1 14 0.047 14 15
435 12 5.125 13 0.281 13 <3 13 <1 - - 13 13
490 11 2.203 11 1.015 12 <3 12 <1 11 2.187 12 11
544 10 0.312 10 0.250 10 <3 10 2.48 10 5.230 10 10
AA YAK Lee ve ark. Baykasoglu ve Dereli Wu ve ark. Simaria ve Vilarinho Ozcan ve Toklu
Cevrim (2001) (2008) (2008) (2009) (2009a)
surest Ist. CPU Ist. CPU Ist. CPU st sayist CPU Ist. CPU Ist. say1s1 Ist. say1si
sayisl sayisl sayisl sayis1
w 204 26 0.406 26 0.343 27 <3 26 4.39 26 3.235 26 26
= 255 21 0.375 21 0.484 21 <3 21 15.64 21 11.063 21 21
= 306 17 0.390 17 14.328 18 <3 18 50.91 - - 18 18
357 15 0.359 15 0.156 15 <3 15 3.78 15 68.152 15 15
408 13 0.453 13 1.359 14 <3 14 2.19 13 35.014 14 13
459 12 0.171 12 5.968 13 <3 12 180.76 12 9.703 12 12
510 11 0.406 11 0.343 11 <3 11 15.05 11 10.657 11 11
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p205

AA YAK Lee ve ark. Baykasoglu ve Dereli Simaria ve Vilarinho Ozcan ve Toklu
Cevrim (2001) (2008) (2009) (2009a)
surest Ist. CPU Ist. CPU  Ist.sayis1  CPU Ist. say1si CPU Ist. say1s Ist. say1s1
say1si sayisi

1133 22 33.390 22 71.578 23 <3 24 451.14 22 24
1322 20 32.953 20 23.312 20 <3 22 449.27 20 21
1510 17 2906.859 18 4.375 20 <3 18 288.20 17 18
1699 16 5.578 16 15.625 16 <3 18 448.28 15 17
1888 14 12.390 14 40.031 16 <3 15 177.84 13 16
2077 12 149.703 14 5.125 14 <3 14 7.06 12 14
2266 12 7.359 12 12.328 13 <3 12 131.30 12 13
2454 11 921.682 12 60.687 12 <3 12 6.99 10 12
2643 10 21.437 10 17.109 12 <3 11 68.54 10 11
2832 10 8.640 10 7.390 10 <3 10 303.63 10 10
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Tablo 4.15’ten goriildiigii gibi p9, pl6 ve p24 problem kiimelerinin biitiin ¢evrim
stireleri icin AA ve YAK algoritmalari bilinen en iyi ¢dziime daha diisiik CPU siiresi ile
ulagmistir. p12 problem kiimesi i¢in ise her iki algoritma ile de bilinen en iyi ¢dziim tim
cevrim siireleri i¢in olduk¢a kisa CPU siireleri ile bulunmustur. p65 problem kiimesi
icin AA 5 ¢evrim siiresinden 4’linde bilinen en 1yi ¢6ziime; 1’inde ise (c= 435) bilinen
en iyl ¢ozliimden daha iyi bir ¢ozliime ulasmistir. CPU siiresi olarak ise karsilastirma
yapilan algoritmalarla benzer siireler elde edilmistir. Ayn1 problem kiimesi i¢in YAK
algoritmasi degerlendirildiginde 4 problem i¢in bilinen en iyi ¢6ziime ulasilmis ve CPU
siiresi acisindan AA’na gore daha diistik degerler elde edilmistir. p148 problem kiimesi
icin AA ve YAK algoritmalar1 bilinen en iyi ¢6ziime daha diisiik CPU zamanlar ile
ulagmis, diger taraftan her iki algoritma da ¢evrim stiresinin 306 oldugu problem i¢in
bilinen en iyi ¢oziimden daha iyi bir ¢oziim bulmustur. Son olarak p205 problem
kiimesi i¢in AA 10 ¢evrim siiresinin 7’sinde, YAK algoritmasi ise 5’inde bilinen en iyi
¢Oziime ulagmistir. Biitiin problem kiimelerine genel olarak bakilacak olursa AA 45
problemden 42’sinde, YAK algoritmasi da 39’unda bilinen en iyi ¢6ziimii bulmustur.
Diger taraftan AA 2 kere, YAK algoritmast da 1 kere daha Once elde edilmemis bir
¢Ozlime ulagmustir. Her iki algoritmada da basit komsuluk yapilarimin kullanildigi goz
Online alinirsa AA ve YAK algoritmalarinin 6zel kisita sahip olmayan CTMHDP

tizerinde etkin bir performansa sahip oldugu sdylenebilir.



115

Tablo 4.16. AA ve YAK algoritmasi ile elde edilen bolgesel kisita sahip CTMHDP sonuglarinin karsilastirilmasi.

Cevrim siiresi — AA : YAK Bay}(asoglu ve Dereli (2008) O;can ve Toklu (2009b) : GAMS 22.7.2
Ist. sayis1  CPU  Ist.sayist  CPU Ist. sayis1 CPU Ist. sayisi CPU  Istsayist CPU
> 3 7 <0.02 7 <0.02 7 <1 7 1.421 6 15225.09
= 4 5 <0.02 5 <0.02 6 <l 5 0.234 5 6399.62
5 4 <0.02 4 <0.02 4 <1 4 0.156 4 3806.94
6 3 <0.02 3 <0.02 3 <1 3 0.203 3 3109.53

* Ozcan ve Toklu (2009b) caligmast da matematiksel model sonuglarini icermesine ragmen GAMS 22.7.2 sonuglari ile farklilik olmasinin sebebi, pozitif bolgesel kisita sahip iki isin

ayn1 istasyonunun farkli yonlerine atanmasina izin verilmemesinden kaynaklanmaktadir.

Cevrim siiresi — AA . YAK Bay.kasoglu ve Dereli (2008) O;can ve Toklu (2009b) . GAMS 22.7.2
Ist. sayist CPU Ist. sayis1 CPU Ist. say1s1 CPU Ist. sayis1 CPU Ist sayis1  CPU
S 5 6 <0.02 6 <0.02 6 <1 6 1.640 - -
i 6 5 <0.02 5 <0.02 5 <1 5 4.656 - -
7 4 <0.02 4 <0.02 5 <1 4 0.281 - -
8 4 <0.02 4 <0.02 - - 4 2.562 7 7200
Cevrim siiresi — AA ' YAK (")'zcan ve Toklu (2009b)
Ist. sayist  CPU Ist. sayis1  CPU Ist. sayis1 CPU
15 6 3.657 7 <0.02 6 13.640
16 6 2.625 7 <0.02 6 30.234
:; 18 6 <0.02 6 <0.02 6 0.296
19 6 <0.02 6 <0.02 6 0.359
20 5 <0.02 5 <0.02 5 0.875
21 5 0.093 5 0.078 5 1.046
22 5 0.512 5 <0.02 5 2.015
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Cevrim siiresi — AA . YAK Bay'kasoglu ve Dereli (2008) chan ve Toklu (2009b)
Ist. sayis1  CPU Ist.sayist CPU Ist. say1s1 CPU Ist. say1s1 CPU
18 8 <0.02 8 <0.02 - - 8 <7200
20 8 <0.02 8 <0.02 8 <1 8 3999.265
S 24 6 0.109 6 <0.02 - - 6 6604.968
25 6 <0.02 6 <0.02 6 <1 6 <7200
30 5 <0.02 5 <0.02 5 <1 5 <7200
35 4 <0.02 5 <0.02 5 <1 4 242.890
40 4 <0.02 4 <0.02 4 <1 4 <7200
Cevrim siiresi — AA . YAK Bay'kasoglu ve Dereli (2008)
Ist. sayist  CPU Ist. sayis1 CPU Ist. sayis1 CPU
326 17 0.250 18 0.218 17 3.52
% 381 14 9.328 14 3.687 15 <1
435 13 0.265 13 0.390 13 2.78
490 11 6.015 12 0.265 12 <1
544 10 0.687 10 0.296 10 1.85
Cevrim siiresi — AA : YAK Ba?/kasoglu ve Dereli (2008)
Ist. sayis1  CPU  Ist.sayis1  CPU Ist. sayi1s1 CPU
204 26 6.421 26 2.203 26 10.32
- 255 21 1.218 21 2.125 21 3.64
1; 306 18 2.000 18 0.546 18 463.39
357 15 14.531 15 0.578 18 2.06
408 14 0.734 14 0.703 15 2.02
459 12 2.625 12 0.265 13 465.92
510 11 4.359 11 2.406 11 6.76
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p205

Cevrim siiresi — AA : YAK Ba?/kasoglu ve Dereli (2008)

Ist.sayis1 ~ CPU  Ist.sayis1  CPU Ist. sayis1 CPU
1133 23 41.593 24 8.031 25 264.32
1322 21 1.843 21 24.187 22 264.31
1510 18 11.609 18 78.390 19 270.34
1699 17 13.250 18 4.390 18 264.28
1888 16 5.015 16 4.703 16 263.91
2077 14 260.031 14 83.625 16 266.76
2266 14 12.078 14 4.328 14 259.72
2454 14 5.843 14 4.750 14 258.44
2643 13 94.578 14 5.671 13 259.79
2832 12 9.692 13 12.156 12 258.85
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Bilimsel yazinda bolgesel kisita sahip CTMHDP alaninda iki ¢alisma bulunmaktadir.
Bunlardan ilki karinca koloni optimizasyon algoritmasini kullanan Baykasoglu ve
Dereli (2008) c¢alismasi, ikincisi ise kii¢lik boyutlu problemler {lizerinde matematiksel
modelle ¢dziim bulan Ozcan ve Toklu (2009b) calismasidir. Tablo 4.16’dan gériildiigii
gibi p9 problem kiimesinde ¢evrim siiresinin 3 oldugu problem i¢in, Onerilen
matematiksel modelle bulunan ¢6ziim, karsilagtirma yapilan diger sonuclardan daha
diisiik istasyon sayisina sahiptir. Ozcan ve Toklu (2009b) calismasi da matematiksel
model sonuglarini icermesine ragmen arada bdyle bir fark ¢ikmasinin nedeni, pozitif
bolgesel kisita sahip iki igin aynmi istasyonunun farkli yonlerine atanmasina izin
verilmemesinden kaynaklanmaktadir. Ancak tez caligmasinda temel alinan ve Simaria
ve Vilarinho (2007) calismasinda onerilen matematiksel modelde, bilimsel yazindaki
ilkelere bagl olarak pozitif bolgesel kisita sahip iki isin ayn1 istasyonun farkli yonlerine
atanmasina izin verilmistir. AA ve YAK algoritmalarinin p9 problem kiimesi iizerindeki
performanslar1 incelendiginde ¢evrim siiresinin 3 oldugu problem hari¢ en iyi ¢dziime
daha diisik CPU siireleri ile ulasildigi goriilmektedir. p12 problem kiimesi i¢in ise
Onerilen her iki algoritma ile de en iyi ¢oziim, daha diisiik CPU siireleri ile elde
edilmistir. pl6 ve p24 problem kiimelerinin biitlin ¢evrim siireleri i¢cin AA en iyi
¢oziime daha diisiik CPU siireleri ile ulagsmis ancak YAK algoritmasi pl6 i¢in 2
problemde, p24 icin ise 1 problemde daha yiiksek istasyon sayisini elde etmistir. AA
p65 problem kiimesi i¢in olusturulan 5 problemin 3’ilinde bilinen en iyi ¢6ziime ulagmis,
2’sinde ise bilinen en iyi ¢éziimden daha iyi bir ¢oziim (c=381, 490) elde etmistir.
YAK algoritmast ise 5 problemin 3’linde en diisiik istasyon sayisini bulmus ve
bunlardan biri yine bilinen en iyi ¢6ziimden daha iyi bir ¢6ziim (c/=381) olmustur. p148
problem kiimesi i¢cin AA ve YAK algoritmalar1 biitiin ¢evrim siirelerinde en diisiik
istasyon sayisina sahip ¢oziimleri elde etmis ve bunlardan 3’1 (c=357, 408, 459) ilk kez
bulunmustur. Son olarak p205 problem kiimesi i¢in AA 10 problemin hepsinde, YAK
algoritmasi ise 6’sinda en diisiik istasyon sayisina sahip ¢oziimleri bulmustur. Her iki
algoritmanin CPU siireleri de karsilastirma yapilan algoritmaya gore ¢ok daha diisiiktiir.
Biitlin problem kiimeleri genel olarak incelenecek olursa AA 44 problemden 43’{inde,
YAK algoritmas1 da 34’iinde bilinen en iyi ¢oziime ulasmistir. Diger taraftan AA 10

kere, YAK algoritmasi da 7 kere daha once bilinmeyen iyi bir ¢6ziime ulasmistir. Netice
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olarak AA ve YAK algoritmalar1 boélgesel kisita sahip CTMHDP f{izerinde etkin bir
performansa sahiptir

Tablo 4.17. AA ve YAK algoritmasi ile elde edilen konumsal, bolgesel ve
senkronizasyon kisitlarina sahip CTMHDP sonuglarinin

karsilastirilmasi.
S AA YAK GAMS 22.7.2
(-evrim siires! Ist.sayis1  CPU lst.sayiss CPU Ist.sayis1 CPU
A, 4 5 <0.02 5 <0.02 5 421.09
5 4 <0.02 4 <0.02 4 200.09
6 4 <(.02 4 <0.02 4 292.77
o AA YAK GAMS 22.7.2
Gevrim siresi Ist. sayis1  CPU lst.sayis1 CPU Ist. sayist CPU
s 5 6 <0.02 6 <0.02 6 53173.70
= 6 5 <0.02 5 <0.02 5 17337.06
7 5 <0.02 5 <0.02 5 46576.48
8 4 <0.02 4 <0.02 4 11225.56
Cevrim siiresi = AA - YAK
Ist. sayist CPU Ist. sayis1  CPU
15 7 <0.02 7 <0.02
16 7 <0.02 7 <0.02
= 18 7 <002 7 <002
19 7 <0.02 7 <0.02
20 7 <0.02 7 <0.02
21 7 <0.02 7 <0.02
22 6 <0.02 6 <0.02
Cevrim stiresi = AA - YAK
Ist. sayist  CPU  Ist.sayist CPU
18 8 <0.02 8 <0.02
20 8 <0.02 8 <0.02
< 24 70062 7 <002
25 7 <0.02 7 <0.02
30 6 <0.02 6 <0.02
35 6 <0.02 6 <0.02
40 6 <0.02 6 <0.02
Cevrim siiresi = AA - YAKR
Ist. sayis1  CPU  Ist. sayis1  CPU
326 18 0.234 18 0.203
g 381 15 0625 15 1593
435 14 0.390 14 0.437
490 13 0.281 13 0.375
544 12 0.578 12 0.296
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S AA YAK
Gevrim siiresi Ist.sayis1  CPU  ist.sayist  CPU
204 26 19.093 26 1.328
o 255 23 2421 23 0.578
X 306 20 4.359 20 1.437
= 357 18 2.015 18 3.046
408 17 13.593 17 2.000
459 17 2.078 17 20.375
510 17 2.468 17 1.359
Cevrim siiresi = AA - YAK
Ist. sayist  CPU  Ist.sayist  CPU
1133 25 51.843 24 115.640
1322 23 10.875 23 24.937
1510 21 16.984 20 242.500
- 1699 19 926.781 20 55.296
) 1888 19 287.109 19 22.328
2077 19 34.218 18 960.812
2266 18 41.734 17 352.734
2454 18 48.312 17 56.937
2643 18 55.828 17 42.046
2832 18 66.093 17 55.640

Bilimsel yazin aragtirmasinda da belirtildigi gibi konumsal, bolgesel ve senkronizasyon
kisitlarinin ayni anda ele alindigi bir CTMHDP ¢6ziim yaklasimi bulunmamaktadir.
Dolayisiyla bu boliimdeki karsilagtirmalarda AA, YAK algoritmasi ve 4.5.3 boliimiinde
verilen GAMS 22.7.2 optimizasyon paket programi sonuglar1 degerlendirilecektir. p9 ve
p12 problem kiimesi i¢in biitlin ¢evrim siirelerinde her iki algoritma da GAMS 22.7.2
optimizasyon paket programi ile bulunan optimum ¢6ziimleri cok daha kisa siirede elde
etmistir. Ancak problemin boyutu arttik¢a hesaplama siiresinin de iistel olarak artmasi
sebebiyle daha biiylik boyutlu problemler i¢in optimum degerler elde edilememistir. Bu
sebeple bu tiir problemler iizerindeki etkinlik analizi i¢in AA ve YAK algoritmalari
kendi aralarinda karsilastirilacaktir. p16, p24, p65 ve p148 problem kiimeleri i¢in her iki
algoritma da aym degerlere ulasmistir. iki algoritma arasindaki farklilik p205 problem
kiimesinde ortaya ¢ikmaktadir. AA 10 problemden 3’iinde en diisiik istasyon sayisina
sahip ¢ozliimi bulurken, YAK algoritmasi 9 problemde en diisiik istasyon sayisina sahip
coziimii elde etmistir. Gorildigi gibi YAK algoritmasi konumsal, bdlgesel ve
senkronizasyon kisitlarina sahip biiylik boyutlu CTMHDP’inde AA’na gore daha iyi
performans gostermektedir. iki algoritma CPU siiresi agisindan karsilastirildiginda ise

genel olarak YAK algoritmasinin daha az CPU siiresi gerektirdigi soylenebilir.
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CTMHDP bilimsel yazindaki zor problemlerden biridir. Probleme 6zel kisitlarin da
¢oziime dahil edilmesiyle problem daha da zorlasmaktadir. Bilimsel yazin
aragtirmasindan da goriildiigii gibi 6zel kisitlarin dahil oldugu ¢alismalar oldukga azdir.
AA ve YAK algoritmalarinin deneysel ¢alisma boliimiinde bahsedilen her 3 problem
tiirline de uygulanmasiyla oldukga tatmin edici sonuglar elde edilmistir. Algoritmalarin
ve komsuluk yapilarin en basit hallerinin kullanildig1 da géz 6niine alindiginda her iki

algoritmanin da CTMHDP {izerinde etkin bir performansa sahip oldugu goriilmektedir.

4.9. An Algoritmasi ile Bulamk Cok Amach Cift Taraflh Montaj Hatti Dengeleme
Problemi Coziim Yaklasimi

Birgok gercek hayat problemi dilsel ve/veya kesin olmayan degiskenler, kisitlar ve
amaclar igerir. Sistem ¢evresinin sabit olmayan bir yapiya sahip olmasi ve kesin veriler
elde etmenin yiiksek maliyet gerektirmesi sebebiyle kesin verileri toplamak genel olarak
cok zordur. Gergek hayat sistemlerindeki bu belirsizligin asilabilmesi i¢in genellikle
bulanik kiime teorisine dayali bulanik matematiksel programlama yaklasimi kullanilir

[186].

Bulanik matematiksel programlama modelleri bulanik bilesenlerine gore; bulanik
amaclara sahip, bulanik amag¢ fonksiyonu katsayilarina sahip ve bulanik sag taraf
sabitlerine sahip modeller olmak {izere 3 sinifa ayrilabilir [186]. Bulanik amaglara sahip
CTMHDP ise bulanik ¢ok amagli matematiksel programlama olarak adlandirilan ilk
siiflandirmaya dahil olup amaclara ait aspirasyon seviyelerinin belirlenmesine dayanan

Bulanik Amag¢ Programlama (BAP) teknikleriyle ¢oziilebilmektedir.

Bulanik ¢ok amagli matematiksel programlama problemlerinin ¢oziimii igin
gerceklestirilen ilk temel ¢alisma Zimmermann’a [187] ait olup Bellman ve Zadeh [188]
tarafindan Onerilen maks-min operatoriine dayali maks-min yontemini igermektedir.
Sinha [189] maks-min yontemini ¢ok seviyeli programlama modellerinin; Chakraborty
ve Gupta [190] ise bulanik ¢ok amaglh dogrusal kesirli programlama problemlerinin
¢Oziimi i¢in kullanmiglardir. Diger taraftan Chanas [191] bulanik dogrusal
programlama problemlerinin ¢6ziimii i¢in parametrik programlama teknigi yaklagimini
onermis; Gen ve ark. [192] bulanik dogrusal olmayan amag¢ programlama
problemlerinin ¢6ziimii i¢in genetik algoritmayr kullanmis; Baykasoglu ve Gogken

[193] ise bulanik amag¢ programlama problemlerinin ¢oziimii i¢in ¢ok amacl bir tabu
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arama algoritmasi 6nermislerdir. Ayrica Narasimhan [194] BAP probleminin ¢éziimii
icin esit agirliklara sahip ¢oklu amagclar i¢in bir ¢6ziim yontemi gelistirmis, Hannan
[195] ise ayn1 problem i¢in dogrusal ve kesikli iiyelik fonksiyonlarini kullanmigtir. Lu
ve ark. [196] ise karar vericilerin bulanik amaglari herhangi bir tiyelik fonksiyonuyla
ifade etmesine izin veren ve ¢oziim siireci boyunca karar vericilere etkilesimli karar
secenekleri sunan interaktif bulanik amag eniyileme yoOntemini Onermislerdir. Son
olarak Baykasoglu ve Gocken [186] bulanik matematiksel programlama ve ¢oziim

yaklagimlar1 lizerine genis bir inceleme ve siniflandirma ¢alismasi gergeklestirmislerdir.

BAP problemi mevcut bulanik amaglar1 saglayacak en iyi D kararimin bulunmasi

seklinde asagidaki gibi tanimlanmaktadir.

n

Z Co; = gy p=12 ..k (4.2)
j=1

n

Z CpjXj = Gp p=ki+1, ..k, (4.3)
j=1

n

Z CpjXj S Gp p=k,+1,..,ks (4.4)
j=1

Kisitlar

n

Z aijxj < bi [ = 1,2, e, m (4‘5)
j=1

xj =0 j=12,..,n (4.6)

Yukaridaki ifadede x; karar degiskenlerini, g, amaglarla iliskilendirilmis aspirasyon
seviyelerini, c,; ve a; amaglara ve kisitlara ait teknolojik katsayilari, b; ise mevcut

kaynak miktarin1 gostermektedir.

Bulanik amag¢ fonksiyonu, iiyelik fonksiyonlar ile belirlenmekte; iiyelik fonksiyonlari
ise genellikle dogrusal, dogrusal olmayan ve iistel fonksiyonlarla ifade edilmektedir. Bu
calismada  dogrusal iyelik fonksiyonlar1  kullanilmis olup  minimizasyon,
maksimizasyon ve esitlik durumlarindaki dogrusal iiyelik fonksiyonu ifadeleri asagidaki

gibi tanimlanmistir [186].
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1 Cp]'x]' < gp
, +dB) —c,ix;
Bulanik minimum (' S ): y(cpjx]-) = i(gp Z‘)* Lok 9p S Cpjx; < gp +df  (4.7)
D
0 CpjX;j = ) + dg
1 ijx]' = gp
, cpixi — (g, — db
Bulanik maksimum (' 2): ,u(cpjxj) = 4 Lakir) (gfp p) 9p — d’z; S X < 9gp (4.8)
D
0 Cp]'x]' < gp — dé
0 Cp]'x}' < gp — d%‘,
cpj%; = (gp — dp)
di Gp — dy < Cpjx; < gy
Bulanik esitlik (' ="): y(cpjxj) =41 CpjXi =9p  (49)
+dB) —c,x;
(9, Z;)e o Ip < CpjX; < gp +dyy
D
0 CpjX; = Ip + dg

Yukaridaki ifadelerde dz’f maksimum sag tolerans sinirini, dzL7 ise maksimum sol tolerans

siirmi gostermektedir.

Ulagilan bulanik karar ise bulanik amag¢ fonksiyonlarinin kesisimi olarak ifade
edilmekte olup bulanik karar kiimesine ait iiyelik fonksiyonu up(x) ve maksimizasyon

karar1 asagidaki gibi tanimlanmaktadir [187].
up(x) = ,ul(cljxj) A Uy (czjxj) A g, (ck3jxj) = mpin ,up(cpjxj) (4.10)
maks up (x) = maks min u, (c,;x;) (4.11)
x X p

Bulanik amaglarin analizi i¢in maks-min, oncelik ve toplamsal yontemler olmak tizere 3
teknik kullanilmistir. Maks-min yontemi, BAP problemlerine Narasimhan [194]
tarafindan uygulanan bir yontem olup amaglara ait en disiik iiyelik fonksiyonu
degerlerinin  maksimizasyonunu amaglamaktadir (maks —min py(x)). Oncelik
yonteminde ise bulanik amacglara onem derecelerine gore bir oncelik verilmekte ve
diisiik oncelige sahip amaglar ancak yliksek oncelige sahip amaglar saglandiginda ele
alimmaktadir. Dolayisiyla oncelikle yiiksek oOncelige sahip amaglara ait {yelik
fonksiyonlart maksimize edilmektedir [193]. Tiwari ve ark. [197] tarafindan Onerilen

toplamsal yontemde ise amaglara ait iiyelik fonksiyonu degerlerinin toplami maksimize
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edilmektedir (max Y%, u;). Her yontem i¢in komsu ¢6ziimler arasindan mevcut en iyi

¢Oziimiin secim siireci asagidaki gibi ger¢eklesmektedir.

Maks-min yontemi.

Adim 1. Her komsu ¢6ziim i¢in amaclara ait iiyelik fonksiyonu degerleri hesaplanir ve
iclerinden en diisiik degere sahip olan belirlenir.

Adim 2. Minimum tiyelik degerleri icinden en biiyilik degere sahip olan ¢6ziim, mevcut

en iyi ¢dzlim olarak segilir.

Oncelik yontemi:

Adim 1. Onceden belirlenen dncelik degerlerine gore her komsu ¢dziim igin amaclara ait
iiyelik degerleri hesaplanir.

Adim 2. Her ¢6ziim i¢in en yiiksek oncelige sahip amaca ait liyelik degeri kontrol edilir
ve en yiiksek degere sahip olan ¢oziim segilir. En yiiksek oncelige sahip amag
i¢in birden fazla alternatif komsu ¢6ziim s6z konusuysa sonraki oncelige sahip

amacin iiyelik degerleri kontrol edilir.

Toplamsal yontem:
Adim 1. Her komsu ¢6ziim i¢in amaglara ait liyelik degerleri hesaplanarak toplanir.
Adim 2. En yiiksek toplam degere sahip komsu ¢oziim, mevcut en iyi ¢6ziim olarak

secilir.

4.9.1 Bulanik Cok Amach Cift Tarafli Montaj Hatti Dengeleme Problemi icin Ar

Algoritmasi

Calismanin bu agamasinda 6zel kisita sahip olmayan CTMHDP ele alinmis olup ilgili
problemin ¢6ziimii i¢in Bolim 4.6’da detaylar1 verilmis olan AA kullanilmstir.
CTMHDP’nin bulanik amaclar icermesi sebebiyle algoritmada kullanilan uygunluk
fonksiyonu farklilastirilmistir. Bulanik ¢ok ama¢li CTMHDP 3 farkli bulanik amaca
sahip bir BAP modeli olarak asagidaki gibi tanimlanmustir.

Amag-1 Gevseklik indeksinin maksimizasyonu

Gevseklik indeksi iki baglantili is arasindaki bos zamani ifade etmektedir. Baglantili
isler ise oOncelik diyagraminda birbiriyle direkt baglantili isleri gdstermektedir. Cift

tarafli montaj hatlarinda, aralarinda yakin Oncelik iligkisi olan iki is karsilikli
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istasyonlara atandiginda, biri bitmeden digeri baslayamayacagindan iki is arasinda bos
zaman olusabilmekte ve bu durumda gevseklik indeksinin dikkate alinmasi
gerekmektedir. Gevseklik indeksi [0,1] arasinda degerler almakta olup indeks degeri
arttikca baglantili isler arasindaki bos zaman azalmaktadir. Gevseklik indeksinin

maksimizasyonunu i¢eren ilk amag asagidaki gibi tanimlanmistir.

Z?:l {ZiEQj ’tfj_t{:]’ + ZiEIj—Qj \ CT}

mvCT

=< amag, (4.12)

Yukaridaki esitsizlikte CT gevrim siiresini, j ve j karsilikl istasyonlari, J; j istasyonuna

atanan igler kiimesini, Q; hemen &nceki islerinden biri j  istasyonuna atanan igler
kiimesini, t;; ve tlfj sirasiyla j istasyonundaki i isinin baslangi¢ ve bitis siirelerini temsil

etmektedir.

Amag-2 Karsilikli istasyon sayisinin minimizasyonu

mg +my, S amag,, (4.13)

mp sag yondeki istasyon sayisint, m;, sol yondeki istasyon sayisin1 gostermektedir.

Amag-3 Hat etkinliginin maksimizasyonu

LE s amag,, (4.14)
LE hat etkinligini temsil etmekte olup asagidaki gibi hesaplanmaktadir.
LB
LE = (4.15)
m, +m
ETotal — (Max * CT — LTotal) — (Max * CT — RTotal)
LB = 2 x Maks + maks 10, T (4.16)
Maks = mak {[LTotal] [RTotal]} 417
axKs = maks CT ’ CT ( . )

LTotal, RTotal ve ETotal sirastyla sol, sag ve herhangi bir yone atanabilecek islerin
toplam stiresini gostermektedir. Cift tarafli montaj hatt1 i¢in bir alt sinir elde edebilmek
icin Oncelikle sag ve sol iglerin atanmasi i¢in gerekli istasyon sayisi belirlenmektedir.
Her istasyon karsilikli iki istasyona sahip oldugundan Max degeri 2 ile ¢arpilmistir.
Herhangi bir yone atabilecek isler i¢in ise Oncelikle ¢evrim siiresini agsmayan mevcut
istasyonlara atama yapilmakta daha sonra kalan isler i¢in yeni istasyonlar acilmaktadir

[177].
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Netice olarak AA’nda kullanilan uygunluk fonksiyonu, ele alinan yonteme gore
asagidaki gibi tanimlanmustir.

maks up(0®) = min (Uys, Hopts h1e) ~ (Maks — min yontemi igin)

maks pp(0°) =(fopt »> We » Uys ) (oncelik yontemi igin)

maks up(0°) = pys + Uope + Uie (toplamsal yontem igin)

4.9.2 Deneysel Calisma

Bulanik ¢ok amaghi CTMHDP nin ¢6ziimii i¢in kullanilan AA, C# programlama dilinde
kodlanarak 2.2 GHz CPU ve 2 GB RAM ozelliklere sahip Intel Core 2 Duo PC
kullanilarak  bilimsel yazindaki test problemlerine uygulanmistir. Algoritma
parametrelerinin degerleri Tablo 4.18’de, amaglara ait aspirasyon seviyeleri ve tolerans

degerleri ise Tablo 4.19°da sunulmaktadir.

Tablo 4.18. Bulanik ¢ok amac¢li CTMHDP icin AA parametrelerinin degerleri.
Parametre Deger

S 25
P 15
e 5
nep 3
nsp 2

Makslter 200

Tablo 4.19. Amaglara ait aspirasyon seviyeleri ve tolerans degerleri.

Amac Aspirasyon seviyesi | Tolerans Deger

amag 0.95 dk 0.1

amag o opt dipt 2

amage LB dk, LB LB
o_pt o_pt opt + 2

Birinci ve ti¢lincli amaglar bulanik maksimizasyon formunda iken ikinci amag¢ bulanik
minimizasyon formundadir. Verilen aspirasyon seviyesi ve tolerans degerlerine gore

ilgili tiyelik fonksiyonlar1 agagidaki gibi tanimlanmistir.
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Bulanik gevseklik amaci i¢in iiyelik fonksiyonu,

1 Zys = 0.95
_)z,s —0.85
Hws = T 0.85 < Zys < 0.95
0 Zys < 0.85
Z?:l {ZiEQj ’tfj_tlf:]' + ZiEIj—Qj v CT}
Z =
v mvCT

Bulanik karsilikli istasyon sayis1 amaci i¢in liyelik fonksiyonu,

1 Zopt = Opt
opt+2—z

Hopt = P > opt opt < Zpe < Opt + 2
0 Zopt = Opt + 2

Bulanik hat etkinligi amaci i¢in iiyelik fonksiyonu,

( LB
1 ZLEZO_pt
LB
_ |7 " opttz LB _ _LB
M =\IB __IB _ opt+2 = 7V = opt
opt opt+?2
LB
O LES_
\ opt + 2
ZLE=LE

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.18)-(4.23) formiilasyonlarinda; z,, z., zie amag fonksiyonu degerlerini, wys, Mops,

ure ise ilgili amaglara ait tiyelik fonksiyonlarmi temsil etmektedir. Diger taraftan opt

bilinen en iyi ¢6zlimii, LB ise karsilikli istasyon sayisi icin alt sinir1 gostermektedir.

AA 10 kez calistirilmis ve her amag i¢in maks-min, dncelik ve toplamsal yontemler ile

elde edilen ortalama amag fonksiyonu ve ortalama iiyelik fonksiyonu degerleri sirasiyla

Tablo 4.20, Tablo 4.21 ve Tablo 4.22’de verilmistir.



Tablo 4.20. Amag-1’e ait deneysel sonuglar.

128

. Maks-min Oncelik Toplamsal
Suerzrsllm Ort. amag | Ort. dyelik | Ort.  amag | Ort. dyelik | Ort.  amag | Ort. dyelik
fonk. degeri | fonk. degeri | fonk. degeri | fonk. degeri | fonk. degeri | fonk. degeri
3 0.953 1 0.953 1 0.953 1
9 4 1 1 1 1 1 1
P 5 0.956 0.988 0.956 0.988 0.952 0.965
6 1 1 1 1 1 1
4 1 1 1 1 1 1
5 0.985 1 0.995 1 0.995 1
pl2 6 0.970 1 0.972 1 0.968 1
7 0.994 1 0.988 1 0.991 1
8 0.996 1 0.985 1 0.989 1
15 0.965 1 0.961 1 0.965 1
16 0.979 1 0.975 1 0.984 1
18 0.992 1 0.986 1 0.981 1
plé 19 0.972 1 0.971 1 0.968 1
20 0.976 1 0.973 1 0.982 1
21 0.953 0.975 0.946 0.950 0.943 0.925
22 0.916 0.671 0.914 0.649 0.923 0.739
18 0.972 1 0.968 1 0.974 1
20 0.969 1 0.962 1 0.960 1
24 0.936 0.850 0.943 0.880 0.939 0.873
p24 25 0.961 1 0.966 1 0.961 1
30 0.969 1 0.965 1 0.969 1
35 0.970 1 0.970 1 0.972 1
40 0.963 1 0.960 1 0.962 1
326 0.958 1 0.959 1 0.955 1
381 0.925 0.758 0.934 0.845 0.939 0.873
p65 435 0.954 1 0.953 0.994 0.953 0.998
490 0.918 0.685 0.924 0.753 0.925 0.764
544 0.929 0.812 0.935 0.855 0.929 0.795
204 0.957 1 0.957 1 0.956 1
255 0.955 1 0.955 1 0.953 1
306 0.921 0.723 0.919 0.694 0.923 0.740
pl48 357 0.934 0.849 0.935 0.858 0.936 0.871
408 0.909 0.600 0.909 0.598 0.913 0.638
459 0.929 0.794 0.928 0.783 0.928 0.787
510 0.906 0.568 0.904 0.547 0.910 0.607
1133 0.878 0.286 0.884 0.348 0.871 0.215
1322 0.896 0.468 0.886 0.364 0.885 0.359
1510 0.876 0.270 0.878 0.292 0.876 0.269
1699 0.869 0.197 0.873 0.238 0.877 0.283
p205 1888 0.815 0.008 0.838 0.017 0.826 0.001
2077 0.812 0.010 0.823 0 0.862 0.209
2266 0.856 0.062 0.813 0.019 0.839 0.030
2454 0.811 0 0.846 0.136 0.860 0.139
2643 0.796 0 0.793 0 0.791 0
2832 0.811 0.011 0.788 0 0.790 0




Tablo 4.21. Amag-2’ye ait deneysel sonuglar.
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. Maks-min Oncelik Toplamsal
Suerzrsllm Ort. amag | Ort. dyelik | Ort.  amag | Ort. dyelik | Ort.  amag | Ort. dyelik
fonk. degeri | fonk. degeri | fonk. degeri | fonk. degeri | fonk. degeri | fonk. degeri
3 6 1 6 1 6 1
9 4 5 1 5 1 5 1
b7 s 4 1 4 1 4 1
6 3 1 3 1 3 1
4 7 1 7 1 7 1
5 6 1 6 1 6 1
pl2 6 5 1 5 1 5 1
7 4 1 4 1 4 1
8 4 1 4 1 4 1
15 6 1 6 1 6 1
16 6 1 6 1 6 1
18 6 1 6 1 6 1
plé 19 5 1 5 1 5 1
20 5 1 5 1 5 1
21 5 1 5 1 5 1
22 4 1 4 1 4 1
18 8 1 8 1 8 1
20 8 1 8 1 8 1
24 6 1 6 1 6 1
p24 25 6 1 6 1 6 1
30 5 1 5 1 5 1
35 4 1 4 1 4 1
40 4 1 4 1 4 1
326 17 1 17 1 17 1
381 14 1 14 1 14 1
p65 435 13 1 13 1 13 1
490 11.100 0.950 11 1 11 1
544 10 1 10 1 10 1
204 26 1 26 1 26 1
255 21 1 21 1 21 1
306 17 1 17 1 17 1
pl48 357 15 1 15 1 15 1
408 13.200 0.900 13 1 13 1
459 12 1 12 1 12 1
510 11 1 11 1 11 1
1133 23 0.500 23 0.500 22.900 0.550
1322 20.900 0.550 20 1 20 1
1510 18 0.500 18 0.500 17.900 0.550
1699 16 0.500 16 0.500 16 0.500
p205 1888 16.200 0.100 14 0.500 14 0.500
2077 15.500 0 13 0.500 14.800 0.200
2266 13 0.500 12 1 12 1
2454 12.800 0 12.600 0.100 12.900 0.050
2643 12 0 10 1 10 1
2832 10.600 0.700 10 1 10 1




Tablo 4.22. Amag-3’e ait deneysel sonuglar.
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. Maks-min Oncelik Toplamsal
gi\;lim Ort. amag | Ort. iyelik | Ort.  amag¢ | Ort. {yelik | Ort.  amag | Ort. iyelik
fonk. degeri | fonk. degeri | fonk. degeri | fonk. degeri | fonk. degeri | fonk. degeri
3 1 1 1 1 1 1
9 4 1 1 1 1 1 1
b7 s 1 1 1 1 1 1
6 1 1 1 1 1 1
4 1 1 1 1 1 1
5 0.833 1 0.833 1 0.833 1
pl2 6 1 1 1 1 1 1
7 1 1 1 1 1 1
8 1 1 1 1 1 1
15 1 1 1 1 1 1
16 1 1 1 1 1 1
18 0.833 1 0.833 1 0.833 1
pl6 19 1 1 1 1 1 1
20 1 1 1 1 1 1
21 0.800 1 0.800 1 0.800 1
22 1 1 1 1 1 1
18 1 1 1 1 1 1
20 0.875 1 0.875 1 0.875 1
24 1 1 1 1 1 1
p24 25 1 1 1 1 1 1
30 1 1 1 1 1 1
35 1 1 1 1 1 1
40 1 1 1 1 1 1
326 0.941 1 0.941 1 0.941 1
381 1 1 1 1 1 1
p65 435 0.923 1 0.923 1 0.923 1
490 0.991 0.945 1 1 1 1
544 1 1 1 1 1 1
204 1 1 1 1 1 1
255 1 1 1 1 1 1
306 1 1 1 1 1 1
pl48 357 1 1 1 1 1 1
408 0.985 0.892 1 1 1 1
459 1 1 1 1 1 1
510 1 1 1 1 1 1
1133 0.913 0.478 0913 0.478 0.917 0.530
1322 0.861 0.528 0.900 1 0.900 1
1510 0.888 0.472 0.888 0.472 0.893 0.524
1699 0.875 0.468 0.875 0.468 0.875 0.468
p205 1888 0.808 0.092 0.928 0.464 0.928 0.464
2077 0.776 0 0.923 0.461 0.819 0.184
2266 0.846 0.461 0.916 1 0.916 1
2454 0.785 0 0.800 0.090 0.780 0.045
2643 0.750 0 0.900 1 0.900 1
2832 0.853 0.690 0.900 1 0.900 1
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Deneysel calisma sonuglarinin karsilastirilmasinda iiyelik fonksiyonlar1 kullanilmistir.
Biitiin amaglar icin de en iyi iyelik fonksiyonu degerleri toplamsal yontemle elde
edilmistir. Oncelik yénteminin performansinin ise toplamsal ydnteme yakin oldugu
tespit edilmistir. 3 yontem icinde en kotii iiyelik fonksiyonu degerleri ise maks-min

yontemi ile elde edilmistir.

AA’nin bulanik ¢ok amagli CTMHDP iizerindeki performansinin degerlendirilme
asamasinda ise elde edilen karsilikli istasyon sayilari, bilimsel yazindaki bilinen en iyi
degerlerle karsilagtirilmistir. Tablo 4.23’te her 3 yontemle elde edilen karsilikl istasyon
sayilar1 ve bilinen en 1iyi istasyon sayilari; minimum, ortalama CPU siireleri ve standart

sapma degerleri ile birlikte verilmistir.
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Tablo 4.23. Minimum karsilikl1 istasyon sayilar1 ve CPU siiresi sonuglari.

Minimum karsilikl1 istasyon

o .. CPU(sn)
. Bilinen en iyi sayisi
Cevrim —
siiresi ist;(sarsﬁlgl o | Maks- . Minimum Ortalama Standart sapma
Y Y min Oncelik  Toplamsal Maks- Oncelik  Toplamsal Maks- Oncelik  Toplamsal Maks— Oncelik  Toplamsal
min min min
3 6 6 6 6 0.015 0.015 0.015 0.019 0.021 0.021 0.014 0.019 0.019
P9 4 5 5 5 5 0.015 0.015 0.015 0.019 0.021 0.021 0.014 0.019 0.019
5 4 4 4 4 0.015 0.015 0.015 0.165 0.085 0.121 0.144 0.082 0.144
6 3 3 3 3 0.015 0.015 0.015 0.019 0.019 0.022 0.014 0.014 0.024
4 7 7 7 7 0.015 0.015 0.015 0.021 0.021 0.021 0.019 0.019 0.019
5 6 6 6 6 0.015 0.015 0.015 0.021 0.019 0.019 0.019 0.014 0.014
pl2 6 5 5 5 5 0.015 0.015 0.015 0.021 0.019 0.019 0.019 0.014 0.014
7 4 4 4 4 0.015 0.015 0.015 0.030 0.032 0.026 0.029 0.029 0.029
8 4 4 4 4 0.015 0.015 0.015 0.022 0.021 0.021 0.024 0.019 0.019
15 6 6 6 6 0.015 0.015 0.015 0.066 0.088 0.091 0.054 0.092 0.135
16 6 6 6 6 0.015 0.015 0.015 0.065 0.050 0.068 0.045 0.049 0.074
18 6 6 6 6 0.015 0.015 0.015 0.051 0.040 0.043 0.041 0.039 0.057
plé 19 5 5 5 5 0.015 0.015 0.015 0.029 0.030 0.038 0.025 0.036 0.058
20 5 5 5 5 0.031 0.031 0.031 0.147 0.096 0.149 0.191 0.072 0.120
21 5 5 5 5 0.015 0.015 0.015 0.493 0.594 0.354 0.460 0.613 0.639
22 4 4 4 4 0.062 0.046 0.015 0.321 0.151 0.476 0.361 0.117 0.529
18 8 8 8 8 0.015 0.015 0.015 0.093 0.055 0.062 0.080 0.055 0.055
20 8 8 8 8 0.015 0.015 0.015 0.022 0.022 0.022 0.024 0.024 0.024
24 6 6 6 6 0.078 0.281 0.109 1.101 1.146 1.201 0.666 0.655 0.812
p24 25 6 6 6 6 0.015 0.015 0.015 0.132 0.055 0.105 0.155 0.044 0.081
30 5 5 5 5 0.015 0.015 0.015 0.069 0.046 0.068 0.073 0.040 0.070
35 4 4 4 4 0.015 0.015 0.015 0.063 0.087 0.069 0.075 0.055 0.052
40 4 4 4 4 0.015 0.015 0.015 0.032 0.029 0.029 0.038 0.027 0.024
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Bilinen en | Minimum karsilikli istasyon CPU(sn)
) iyi say1sl
Cevrim
siiresi katr$111k11 Maks Minimum Ortalama Standart sapma
istasyon s :
say?m min  Oncelik  Toplamsal Mn?ikns_ Oncelik Toplamsal Mnallils- Oncelik  Toplamsal l\ﬁﬁf_ Oncelik  Toplamsal
326 17 17 17 17 1.203 3.609 0.750 15.421 14.580 11.316 13.566 7.920 8.202
381 14 14 14 14 11.140 22.171 5.875 44.618 67.304 60.474 19.369  27.839 27.300
po5 435 13 13 13 13 7.812 5.781 13.453 50.670 31.869 39.185 27316  20.801 24.360
490 11 11 11 11 0.375 18.781 11.546 69.165 60.010 70.865 32206 26910 32.990
544 10 10 10 10 36.703 11.250 5.109 77.083 59.130 50.237 24.129  34.090 35.700
204 26 26 26 26 1.265 2.109 1.296 3.730 4.335 4918 3.260 2.186 2.773
255 21 21 21 21 1.203 10.031 1.265 51.976 34.587 47.151 42.673  21.037 40.568
306 17 17 17 17 9.390 15.125 15.140 76.769 78.660 84.951 38.058  49.022 41.431
pl48 357 15 15 15 15 16.343 9.796 24.515 102.558  52.302 90.351 54.871  43.833 45.926
408 13 13 13 13 0.531 52.375 3 86.371 92.618 90.082 58.033  44.813 52.455
459 12 12 12 12 3.296 34.531 14.734 86.340 101.451 92.963 71.960 35413 45.129
510 11 11 11 11 11.015 8.265 6.453 96.702 87.697 82.921 54.366  52.556 51.759
1133 22 23 23 22 151.750  92.546 54.656 747263  742.557 715909 | 426.397 391.590 430.616
1322 20 20 20 20 837.421 351.062  23.875 1339.126  1190.586  898.960 | 381.860 558.150  611.382
1510 17 18 18 17 144.062 412.171 76.546 1121.315 1134218 1267.214 | 573.696 534.308  769.849
1699 15 16 16 16 266.453  380.531  430.265 | 1077.115 1033.017 1088.767 | 650.224 514.496  530.091
p205 1888 13 14 14 14 2315218 41.421 87.515 | 2529.403 714208  779.487 | 285.713 521.125  605.364
2077 12 14 13 13 2357.421 102.796  112.843 | 2389.973 510971  1260.771 | 17.491 489.187 1003.693
2266 12 13 12 12 240.734  8.203 7.843 1184.706  434.285  709.605 | 827.492 886.861  836.005
2454 10 12 11 11 2878.968 411.875 412171 | 2919.115 1610.444 1561.831 | 26.721 859.235  752.507
2643 10 12 10 10 2965.171  8.265 24.078 ] 2999.575 216.743 152,904 | 22.610 195.708 112.440
2832 10 10 10 10 2278.484  8.015 8.843 3204.028  8.946 9.466 347.679  0.544 0.728
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Deneysel ¢alismanin gerceklestirildigi 45 test probleminin, toplamsal yontemle 41’inde,
oncelik yontemiyle 39’unda ve maks-min yontemiyle 37’sinde bilinen en iyi istasyon
sayisina ulagilmigtir. CPU siiresi agisindan kullanilan yontemler degerlendirildiginde ise
toplamsal ve Oncelik yontemlerinin maks-min yontemine gore daha kisa siirelere sahip
oldugu goriilmiistiir. Diger taraftan AA ile hem bilinen en iyi karsilikli istasyon
sayilarina biiyiik dl¢iide ulasilmis hem de diger amaglar etkin bir sekilde saglanmistir.
Sonug¢ olarak AA bulanik ¢ok amag¢li CTMHDP’ni ¢6zmede etkin bir performansa
sahiptir.



5. BOLUM
SONUC VE ONERILER

5.1. Cahsmamn Katkilari

Tez calismasinin bu boliimiinde calismanin orijinalli§inden ve bilimsel yazina olan

katkilarindan bahsedilecektir.

Birgok gercek hayat probleminin kombinatoryal optimizasyon problemi olarak
modellenebilmesi, tez ¢alismanin ¢ikis noktasini olusturmus olup bu tiir problemlerin
¢Oziimiinde hizli ve etkin olarak kullanilabilecek araglarin gelistirilmesi ya da mevcut
araglarin kullanilmasi ele alinmigtir. Zor kombinatoryal optimizasyon problemlerinin
kesin yontemlerle ¢ézliimiiniin miimkiin olamayabilmesi ve problemin boyutu arttik¢a
hesaplama siiresinin biiyiik bir sorun teskil etmesi sebebiyle siirii zekdsina dayali

algoritmalardan yararlanilmistir.

Bu dogrultuda, bilgisayar ve iletisim aglar1, yerlestirme problemleri, arag rotalama, grup
teknolojisi ve ¢izelgeleme gibi gergek hayat uygulamalarina sahip zor kombinatoryal
optimizasyon problemlerinden GAP’nin ¢oziimii i¢in siiri zekast tabanli
algoritmalardan AA ve YAK algoritmasindan faydalanilmustir. Ilgili algoritmalar
GAP’nin ¢6ziimii i¢in farklilastirilmis ve onerilen her iki algoritmanin da GAP iizerinde
ozellikle de karsilagtirma yapilan algoritmalara gdre iyi bir performansa sahip oldugu

gorilmiistiir.

Calismanin diger bir uygulama alaninda ise bilimsel yazinda 6nerilen farkli komsuluk
yapilarinin GAP i¢in gelistirilmis olan AA’nin performans: iizerindeki etkileri

incelenmis ve bu komsuluk yapilarinin farkliliklar1 ortaya konmustur.

Diger taraftan otobiis ve kamyon gibi biiylik boyutlu triinlerin tiretildigi isletmelerde
ortaya cikan ve yine NP-zor bir yapiya sahip olan CTMHDP ele alinmis ve 6zel kisitlar
¢Oziim yaklasimina dahil edildik¢e problemin daha da zorlastig1 belirtilmistir. Yapilan
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bilimsel yazin taramasi sonucunda 6zel kisitlarin dahil oldugu ¢6ziim yaklasimlarinin
olduk¢a az oldugu; 6zellikle konumsal, bolgesel ve senkronizasyon kisitlarinin ayni
anda ¢Oziim yaklasimina dahil edildigi bir calismanin bulunmadigr goriilmiistiir. Bu
amagla yine AA ve YAK algoritmalarindan faydalanilarak farkli kisitlar altinda
algoritmalarin performansi incelenmistir. Her iki algoritmada da basit komsuluk
yapilarmin kullanildigr da goz oniline alinirsa AA ve YAK algoritmasinin CTMHDP
tizerinde tistiin bir performansa sahip oldugu goriilmiistiir. Ayrica bilimsel yazinda ilk
kez konumsal, bolgesel ve senkronizasyon kisitlarina sahip CTMHDP i¢in karma

tamsayili dogrusal olmayan bir matematiksel model 6nerilmistir.

Diger taraftan AA, bulanik ¢ok amagli CTMHDP nin ¢6ziimii icin kullanilmis ve
bulanik amagclar farkli teknikler altinda incelenerek bu tekniklerin algoritma

performansi lizerindeki etkisi incelenmistir.

Sonug olarak genellikle siirekli optimizasyon problemlerine uygulanmis olan AA ve
YAK algoritmasinin karmasik tamsayili optimizasyon problemleri {izerindeki
performansi incelenmis; genis deneysel ¢alismalar sonucunda GAP ve CTMHDP i¢in
bilimsel yazindaki kesin ve sezgisel ¢oziim yoOntemleriyle yapilan karsilastirmalar,

Onerilen algoritmalarin etkin bir performansa sahip oldugunu géstermistir.

Tez c¢alismasinda elde edilen sonuglardan iki SCI’e giren [198-200], bir de SCI’e
indeksine girmeyen [201] dergilere makaleler gonderilmis olup, bu makalelerden ilki
basilmis digerleri ise inceleme asamasindadir. Ayrica bir kitap bolimii [202] ¢alismast
gerceklestirilmis olup, bir uluslararasi kongre [203] ve ii¢ ulusal kongre bildirisi [204-

207] sunulmustur.

5.2.1leriye Yonelik Oneriler

Zor kombinatoryal optimizasyon problemlerine arilarin yiyecek arama davranisina
dayali metasezgisel yontemlerle ¢oziim aramaya dayanan bu tez calismasinda,
uygulama alani olarak GAP ve CTMHDP seg¢ilmistir. Bu problemlere ek olarak atama
esnasinda kullanilan kaynak kullanim miktarlarinin  ve ajanlara ait kaynak
kapasitelerinin stokastik degerlere sahip oldugu Stokastik GAP, islem siirelerinin
stokastik degerlere sahip oldugu Stokastik CTMHDP ve diger bir¢ok zor kombinatoryal

optimizasyon probleminin ¢dziimiinde de ar1 sistemi uygulamalar1 gergeklestirilebilir.
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Bilindigi gibi parametrelerin en iyi seviyelerinin belirlenmesi, algoritma performansini
etkileyen en 6nemli unsurlardan biridir. Ele alinan GAP ve CTMHDP’nin her ikisi i¢in
de gerceklestirilecek bir parametre optimizasyonu calismasi, daha iyi c¢oziimler
bulunmasint saglayabilir. Ayrica farkli ¢6ziim dizisi gosterimleri ve uygunluk

fonksiyonu kullaniminin algoritma performansi {izerindeki etkisi incelenebilir.

Diger taraftan her iki problem i¢in de birbiriyle ¢elisen birden ¢ok amag¢ ayni1 uygunluk
fonksiyonu iizerinde degerlendirilerek farkli etkinlik Olgiitleri eszamanli olarak en
iyilebilir. Ornegin CTMHDP icin hattin dengelenmesi, istasyon sayisinin en
kiiciiklenmesi, hat etkinliinin en biiyiiklenmesi ve birbiriyle iliskili isler arasindaki bos

zamanin en kiiciiklenmesi gibi amagclar ayn1 anda ¢oziim yaklasimina dahil edilebilir.

GAP’nde kullanilan komsuluk yapilarinin algoritma performansi {izerindeki etkisinin
incelendigi boliimde ise komsuluk yapilart ikili ve Giglii olarak degerlendirilebilir ve bu

kombinasyonlarin performansa etkisi analiz edilebilir.

CTMHDP’nin ¢6ziimii i¢in kullanilan AA ve YAK algoritmasinda basit komsuluk
yapilart kullanilmistir. Deneysel ¢alismalardan oldukga tatmin edici sonuglar elde edilse
de karmagik komsuluk yapilarinin algoritmalara dahil edilmesiyle daha iyi ¢oziimler
elde edilebilecektir. Diger taraftan cift tarafli montaj hatlarinda ayni1 anda birden fazla
benzer tipteki modelin karma olarak iiretildigi CTKMMHDP de dikkate aliabilir.
Bilimsel yazin arastirmasindan da goriildiigii gibi CTKMMHDP {izerine yapilan
calismalar oldukca az olup tek modelli hatlar lizerinde etkin bir performans gosteren AA

ve YAK algoritmasinin performansi karma modelli hatlar {izerinde de incelenebilir.
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