
T. C.
ERCİYES ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

KOMBİNATORYAL OPTİMİZASYON
PROBLEMLERİNDE ARI SİSTEMİ YAKLAŞIMI

Tezi Hazırlayan
Pınar Zarif TAPKAN

Tezi Yöneten
Yrd. Doç. Dr. Lale ÖZBAKIR

Bilgisayar Mühendisliği Anabilim Dalı
Doktora Tezi

Haziran 2010
KAYSERİ

Yrd. Doy. Dr. Lale bZBAKIR dam~manhgmda Pmar Zarif TAPKAN tarafmdan

hazlrlanan "Kombinatoryal Optimizasyon Problemlerinde An Sistemi Yak.la~lml"

adh bu yah~ma, jurimiz tarafmdan Erciyes Universitesi Fen Bilimleri Enstitusu

Bilgisayar Muhendisligi Anabilim Dalmda Doktora tezi olarak kabul edilmi~tir.

B . k b r·· E ... Y·· . K· 1 1)••.•/,..1:1 r~ 'h .2n~o/201102..u tezm a u u, nstltu onetlm uru unun.k4'lJq ZO 0 tan VP" saYI 1

karan ile onaylanml~tlr.

ii

TEŞEKKÜR

Çalışmalarım boyunca, tez konumun belirlenmesi ve yürütülmesinde değerli görüş ve

katkılarıyla beni yönlendiren, her konuda desteğini esirgemeyen, kıymetli

tecrübelerinden faydalandığım hocalarım Sayın Yrd. Doç. Dr. Lale ÖZBAKIR’a ve

Sayın Prof. Dr. Adil BAYKASOĞLU’na teşekkürü bir borç bilirim. Ayrıca EÜBAP-

FBT-07-94 kodlu proje ile çalışmalarıma maddi destek sağlayan Erciyes Üniversitesi

Rektörlüğü, Bilimsel Araştırma Projeleri Birimine teşekkür ederim.

Doktora çalışmamın her aşamasında beni teşvik eden, anlayış ve desteği ile her zaman

yanımda olan, bugüne gelmemde büyük emeği geçen TAN ailesine ve eşim Cem

TAPKAN’a; her an gülen yüzüyle tüm yorgunluğumu alan, yanımda olarak bana

çalışma azmi veren hayatımın anlamı kızım Lâl TAPKAN’a; yanımda olamasa da

desteğini her zaman hissettiren canım kardeşim Irmak Tuğba KAVAK’a ve

çalışmalarım sırasında bana destek olan tüm arkadaşlarıma, özellikle de Sinem

KULLUK’a teşekkür ederim.

iii

KOMBİNATORYAL OPTİMİZASYON PROBLEMLERİNDE ARI SİSTEMİ

YAKLAŞIMI

Pınar Zarif TAPKAN

Erciyes Üniversitesi, Fen Bilimleri Enstitüsü
Doktora Tezi, Haziran, 2010

Tez Danışmanı: Yrd. Doç. Dr. Lale ÖZBAKIR

ÖZET

Birçok gerçek hayat probleminin kombinatoryal optimizasyon problemi olarak

modellenebilmesi ve klâsik optimizasyon tekniklerinin bu tür problemleri çözmedeki çeşitli

yetersizlikleri, kombinatoryal optimizasyon problemlerinin çözümünde hızlı ve etkin olarak

kullanılacak araçların geliştirilmesi ihtiyacını doğurmuştur. Bu amaçla problemden ve

modelden bağımsız bir yapıya sahip olan doğadan esinlenmiş sezgisel optimizasyon

algoritmaları, son yıllarda artan bir hızla zor kombinatoryal optimizasyon problemlerinin

çözümünde kullanılmaktadır. Bu tekniklerin bir dalı olan sürü zekâsı algoritmaları ise

böceklerin problem çözme becerilerini taklit eden metasezgisel yöntemler geliştirebilmek için

böcek davranışlarına odaklanmıştır.

Arıların yiyecek arama davranışları, öğrenme, hatırlama ve bilgi paylaşma özellikleri sürü

zekâsının en ilgi çekici araştırma alanlarından birisidir. Birbiriyle etkileşen bireyler sistemi

olarak ele alınan arı kolonisinde kolektif zekâ, sinerjik bilgi değişimine dayanmaktadır. Temel

olarak, bulunan yiyecek kaynaklarının kalitesi hakkında bilgi paylaşımının gerçekleştirildiği arı

kolonisinde amaç, farklı ve kaliteli yiyecek kaynaklarına ulaşabilmek için kolonideki diğer

arıların da iyi bölgelere çekilmesine dayanmaktadır. Arılar arasındaki bu etkileşim, zor

kombinatoryal optimizasyon problemlerine kaliteli ve uygun çözümlerin daha hızlı bulunmasını

sağlamaktadır.

Bu tez çalışmasının amacı zor kombinatoryal optimizasyon problemlerine iyi çözümler üreten

ve arı davranışlarını modelleyen yapay sistemler geliştirmektir. Bu doğrultuda zor

kombinatoryal optimizasyon problemleri sınıfında yer alan Genelleştirilmiş Atama Problemi ve

Çift Taraflı Montaj Hattı Dengeleme Problemi’ne etkin bir çözüm yaklaşımı geliştirmek

amacıyla son yıllarda önerilen Arı Algoritması ve Yapay Arı Kolonisi Algoritması’ndan

faydalanılmış ve oldukça başarılı sonuçlar elde edilmiştir.

Anahtar Kelimeler: Arı Sistemi, Arı Algoritması, Yapay Arı Kolonisi Algoritması,

Genelleştirilmiş Atama Problemi, Çift Taraflı Montaj Hattı Dengeleme Problemi.

iv

BEE SYSTEM APPROACH FOR COMBINATORIAL OPTIMIZATION

PROBLEMS

Pınar Zarif TAPKAN

Erciyes University, Graduate School of Natural and Applied Sciences
Ph. D. Thesis, June, 2010

Thesis Supervisor: Assist. Prof. Lale ÖZBAKIR

ABSTRACT

Due to the fact that most of real life problems can be modelled as a combinatorial optimization

problem and presence of various insufficiencies on solving these problems by classical

optimization techniques, it has required developing rapid and effective tools to solve

combinatorial optimization problems. For this purpose, problem and model independent nature

inspired heuristic optimization algorithms have been utilized for solving hard combinatorial

optimization problems with an increasing trend. Such a branch of nature inspired algorithms

which are known as swarm intelligence focuses on insect behavior in order to develop some

meta-heuristics which can mimic insect’s problem solution abilities.

The foraging behaviour, learning, memorizing and information sharing characteristics of bees

have recently been one of the most interesting research areas in swarm intelligence. The

collective intelligence of interacting bee colony is based on synergic information exchange.

Basically, the aim of the bee colony depends on attracting other bees to productive locations to

collect different and qualified food sources by sharing information about quality of food

sources. This interaction among bees provides finding qualified and feasible solutions to hard

combinatorial optimization problems much more quickly.

This thesis is focused on developing artificial systems that generate good solutions to hard

combinatorial optimization problems by utilizing bee behaviours. Accordingly, with the aim of

developing an effective solution approach for Generalized Assignment Problem and Two-Sided

Assembly Line Balancing Problem that can be classified as hard combinatorial optimization

problems, recently proposed Bees Algorithm and Artificial Bee Colony Algorithm are utilized

and considerably effective results are obtained.

Keywords: Bee System, Bees Algorithm, Artificial Bee Colony Algorithm, Generalized

Assignment Problem, Two-Sided Assembly Line Balancing Problem.

v

İÇİNDEKİLER

KABUL VE ONAY ... i

TEŞEKKÜR .. ii

ÖZET ... iii

ABSTRACT ... iv

KISALTMA VE SİMGELER .. viii

TABLOLAR LİSTESİ ... ix

ŞEKİLLER LİSTESİ ... xi

1. BÖLÜM

GİRİŞ .. 1

2. BÖLÜM

SÜRÜ ZEKÂSINA DAYALI OPTİMİZASYON ALGORİTMALARI 6

2.1. Giriş .. 6

2.2. Sürü Zekâsına Dayalı Optimizasyon Algoritmaları ... 6

2.2.1. Parçacık Sürü Optimizasyonu Algoritması ... 9

2.2.2. Karınca Koloni Optimizasyonu Algoritması ... 10

2.3. Doğadaki Gerçek Arı Davranışları .. 10

2.4. Arı Sistemi ile Bağlantılı Mühendislik Çalışmaları ... 13

2.4.1. Yiyecek Arama Davranışına Dayalı Çalışmalar ... 13

2.4.2. Çiftleşme Davranışına Dayalı Çalışmalar ... 14

2.4.3. Kombinatoryal Optimizasyon Problemlerinde Arı Sistemi Uygulamaları 18

2.4.3.1. Ulaştırma Problemleri ... 18

2.4.3.2. Telekomünikasyon Uygulamaları ... 21

2.4.3.3. Çizelgeleme Problemi ... 21

2.4.3.4. Ekonomik Güç Gönderme Problemi .. 22

2.4.3.5. Diğer Uygulamalar ... 22

2.5. Arıların Yiyecek Arama Davranışları .. 26

2.6. Yapay Arı Kolonisi Algoritması .. 29

2.7. Arı Algoritması .. 38

3. BÖLÜM

GENELLEŞTİRİLMİŞ ATAMA PROBLEMİ ÇÖZÜM YAKLAŞIMLARI 42

3.1. Giriş .. 42

vi

3.2. Genelleştirilmiş Atama Problemi ... 42

3.3. Genelleştirilmiş Atama Problemi için Geliştirilmiş Arı Algoritması 44

3.3.1. Arı Kolonisinin Oluşturulması .. 47

3.3.2. Komşuluk Yapıları .. 47

3.3.2.1. Kaydırma Komşuluk Yapısı ... 48

3.3.2.2. Çift Kaydırma Komşuluk Yapısı .. 48

3.3.2.3. Çıkarım Zinciri Komşuluk Yapısı .. 49

3.3.3. Uygunluk Fonksiyonu ... 52

3.3.4. Ceza Katsayısının Uyarlanır Kontrolü .. 53

3.4. Genelleştirilmiş Atama Problemi için Geliştirilmiş Yapay Arı Kolonisi Algoritması

 .. 54

3.5. Deneysel Çalışma ... 56

3.5.1. Problem Tipleri ... 56

3.5.2. Geliştirilmiş Arı Algoritması Sonuçları .. 57

3.5.3. Geliştirilmiş Yapay Arı Kolonisi Algoritması Sonuçları 59

3.5.4. Geliştirilmiş Arı Algoritması ve Yapay Arı Kolonisi Algoritmalarının Bilimsel

Yazındaki Algoritmalarla Karşılaştırılması ... 60

3.6. Genelleştirilmiş Atama Problemi’nin Arı Algoritması ile Çözümünde Farklı

Komşuluk Yapılarının Karşılaştırılması .. 67

3.6.1. Deneysel Çalışma .. 68

4. BÖLÜM

ÇİFT TARAFLI MONTAJ HATTI DENGELEME PROBLEMİ ÇÖZÜM

YAKLAŞIMLARI .. 75

4.1. Giriş .. 75

4.2. Montaj Hattı Dengeleme Problemi .. 75

4.3. Çift Taraflı Montaj Hattı Dengeleme Problemi ... 77

4.3.1. Çift Taraflı Montaj Hattı Dengeleme Problemi Kısıtları 78

4.4. Çift Taraflı Montaj Hattı Dengeleme Problemi Çözüm Yaklaşımları 79

4.5. Çift Taraflı Montaj Hattı Dengeleme Problemi için Önerilen Matematiksel Model

 .. 85

4.5.1. Özel Kısıt İçermeyen Çift Taraflı Montaj Hattı Dengeleme Problemi için

Önerilen Matematiksel Model ve Sonuçları .. 85

vii

4.5.2. Bölgesel Kısıta Sahip Çift Taraflı Montaj Hattı Dengeleme Problemi için

Önerilen Matematiksel Model ve Sonuçları .. 89

4.5.3. Konumsal, Bölgesel ve Senkronizasyon Kısıtlarına Sahip Çift Taraflı Montaj

Hattı Dengeleme Problemi için Önerilen Matematiksel Model ve Sonuçları 90

4.6. Çift Taraflı Montaj Hattı Dengeleme Problemi için Arı Algoritması 92

4.6.1. Arı Kolonisinin Oluşturulması .. 94

4.6.2. Uygunluk Fonksiyonu ve Komşuluk Yapıları .. 101

4.7. Çift Taraflı Montaj Hattı Dengeleme Problemi için Yapay Arı Kolonisi Algoritması

 .. 101

4.8. Deneysel Çalışma ... 102

4.8.1. Arı Algoritması Sonuçları ... 103

4.8.2. Yapay Arı Kolonisi Algoritması Sonuçları ... 106

4.8.3. Arı Algoritması ve Yapay Arı Kolonisi Algoritmasının Bilimsel Yazındaki

Algoritmalarla Karşılaştırılması .. 109

4.9. Arı Algoritması ile Bulanık Çok Amaçlı Çift Taraflı Montaj Hattı Dengeleme

Problemi Çözüm Yaklaşımı ... 121

4.9.1. Bulanık Çok Amaçlı Çift Taraflı Montaj Hattı Dengeleme Problemi için Arı

Algoritması... 124

4.9.2. Deneysel Çalışma .. 126

5. BÖLÜM

SONUÇLAR VE ÖNERİLER .. 135

8.1. Çalışmanın Katkıları .. 135

8.2. İleriye Yönelik Öneriler ... 136

KAYNAKLAR ... 138

ÖZGEÇMİŞ .. 159

viii

KISALTMA VE SİMGELER

GAP : Genelleştirilmiş Atama Problemi

ÇTMHDP : Çift Taraflı Montaj Hattı Dengeleme Problemi

AA : Arı Algoritması

YAK : Yapay Arı Kolonisi

PSO : Parçacık Sürü Optimizasyonu

KKO : Karınca Koloni Optimizasyonu

AÇO : Arıların Çiftleşme Optimizasyonu

SP : Sağlanabilirlik Problemi

BAÇO : Bal Arılarının Çiftleşme Optimizasyonu

ARUAP : Açgözlü Rastgele Uyarlanır Arama Prosedürü

KAE : Kraliçe Arı Evrim

AS : Arı Sistemi

GSP : Gezgin Satıcı Problemi

SARP : Stokastik Araç Rotalama Problemi

AKO : Arı Kolonisi Optimizasyonu

MHDP : Montaj Hattı Dengeleme Problemi

TTMHDP : Tek Taraflı Montaj Hattı Dengeleme Problemi

ÇTKMMHDP : Çift Taraflı Karma Model Montaj Hattı Dengeleme

 Problemi

EKİS : En Kısa İşlem Süresi

EUİS : En Uzun İşlem Süresi

MiİSa : Kendinden Sonraki İş Sayısı Toplamının Minimumu

MaİSa : Kendinden Sonraki İş Sayısı Toplamının Maksimumu

MiİSü : Kendinden Sonraki İşlerin Toplam İşlem Süresinin

Minimumu

MaİSü : Kendinden Sonraki İşlerin Toplam İşlem Süresinin

Maksimumu

MaSKA : Maksimum Sıralı Konumsal Ağırlık

MaOSKA : Maksimum Ortalama Sıralı Konumsal Ağırlık

PBÖ : Pozitif Bölgesel Kısıt Önceliği

KÖ : Konumsal Kısıt Önceliği

SÖ : Senkronizasyon Kısıtı Önceliği

BAP : Bulanık Amaç Programlama

ix

TABLOLAR LİSTESİ

Tablo 2.1. Arı sistemi ve uygulama alanları konusundaki çalışmaların

sınıflandırılması .. 24

Tablo 2.2. YAK algoritmasının temel adımları .. 30

Tablo 2.3. YAK algoritmasının detaylı adımları .. 32

Tablo 2.4. AA’nın temel adımları ... 38

Tablo 3.1. GAP için geliştirilmiş AA adımları ... 45

Tablo 3.2. Açgözlü rastgele uyarlanır atama prosedürü adımları 47

Tablo 3.3. Kaydırma komşuluk yapısının işleyişi .. 48

Tablo 3.4. Çıkarım zinciri komşuluk yapısının işleyişi .. 50

Tablo 3.5. αj parametresinin uyarlanır kontrolü.. 54

Tablo 3.6. GAP için geliştirilmiş YAK algoritması adımları 55

Tablo 3.7. GAP için geliştirilmiş AA parametrelerinin değerleri 58

Tablo 3.8. GAP için geliştirilmiş AA ile elde edilen gapa-d sonuçları 59

Tablo 3.9. GAP için geliştirilmiş YAK algoritması parametrelerinin değerleri 60

Tablo 3.10. GAP için geliştirilmiş YAK algoritması ile elde edilen gapa-d sonuçları

 ... 60

Tablo 3.11. Geliştirilmiş AA ve YAK algoritması ile elde edilen gap1-12

sonuçlarının karşılaştırılması .. 62

Tablo 3.12. Geliştirilmiş AA ve YAK algoritması ile elde edilen gapa-d sonuçlarının

karşılaştırılması ... 64

Tablo 3.13. GAP’nde komşuluk yapısı karşılaştırması için geliştirilmiş AA

parametrelerinin değerleri ... 68

Tablo 3.14. Farklı komşuluk yapılarının karşılaştırılması .. 69

Tablo 3.15. Farklı komşuluk yapılarının işlem süresi bakımından karşılaştırılması .. 70

Tablo 3.16. Wilcoxon sıralı toplam testi ile komşuluk yapılarının değerlendirilmesi 72

Tablo 4.1. ÇTMHDP çalışmalarının sınıflandırılması .. 84

Tablo 4.2. Özel kısıt içermeyen ÇTMHDP için önerilen karma tamsayılı doğrusal

olmayan matematiksel model sonuçları ... 89

Tablo 4.3. Bölgesel kısıta sahip ÇTMHDP için önerilen karma tamsayılı doğrusal

olmayan matematiksel model sonuçları .. 90

x

Tablo 4.4. Konumsal, bölgesel ve senkronizasyon kısıtlarına sahip ÇTMHDP için

önerilen karma tamsayılı doğrusal olmayan matematiksel model sonuçları 92

Tablo 4.5. ÇTMHDP’nin çözümü için AA adımları .. 93

Tablo 4.6. ÇTMHDP’nin çözümü için YAK algoritması adımları 102

Tablo 4.7. ÇTMHDP için AA parametrelerinin değerleri 103

Tablo 4.8. AA ile özel kısıt içermeyen ÇTMHDP sonuçları 104

Tablo 4.9. AA ile bölgesel kısıta sahip ÇTMHDP sonuçları 105

Tablo 4.10. AA ile konumsal, bölgesel ve senkronizasyon kısıtlarına sahip ÇTMHDP

sonuçları .. 106

Tablo 4.11. ÇTMHDP için YAK algoritması parametrelerinin değerleri 106

Tablo 4.12. YAK algoritması ile özel kısıt içermeyen ÇTMHDP sonuçları 107

Tablo 4.13. YAK algoritması ile bölgesel kısıta sahip ÇTMHDP sonuçları 108

Tablo 4.14. YAK algoritması ile konumsal, bölgesel ve senkronizasyon kısıtlarına

sahip ÇTMHDP sonuçları ... 109

Tablo 4.15. AA ve YAK algoritması ile elde edilen özel kısıta sahip olmayan

ÇTMHDP sonuçlarının karşılaştırılması ... 110

Tablo 4.16. AA ve YAK algoritması ile elde edilen bölgesel kısıta sahip ÇTMHDP

sonuçlarının karşılaştırılması .. 115

Tablo 4.17. AA ve YAK algoritması ile elde edilen konumsal, bölgesel ve

senkronizasyon kısıtlarına sahip ÇTMHDP sonuçlarının karşılaştırılması 119

Tablo 4.18. Bulanık çok amaçlı ÇTMHDP için AA parametrelerinin değerleri 126

Tablo 4.19. Amaçlara ait aspirasyon seviyeleri ve tolerans değerleri 126

Tablo 4.20. Amaç-1’e ait deneysel sonuçlar ... 128

Tablo 4.21. Amaç-2’ye ait deneysel sonuçlar ... 129

Tablo 4.22. Amaç-3’e ait deneysel sonuçlar ... 130

Tablo 4.23. Minimum karşılıklı istasyon sayıları ve CPU süresi sonuçları 132

xi

ŞEKİLLER LİSTESİ

Şekil 2.1. Arıların yiyecek arama davranışı ... 28

Şekil 2.2. YAK algoritması akış diyagramı ... 31

Şekil 2.3. AA akış diyagramı ... 39

Şekil 3.1. Kaydırma komşuluk yapısı örneği ... 48

Şekil 3.2. Çift kaydırma komşuluk yapısı örneği .. 49

Şekil 3.3. Çıkarım zinciri komşuluk yapısı örneği .. 51

Şekil 3.4. Çözüm kalitesine göre algoritmaların sıralanması 66

Şekil 3.5. En iyi performansa sahip algoritmaların işlem süresi performansı 67

Şekil 4.1. Çift taraflı montaj hattı .. 78

Şekil 4.2. Çözüm dizisi örneği ... 94

Şekil 4.3. Özel kısıta sahip olmayan ÇTMHDP için başlangıç çözümlerinin

oluşturulması ... 96

Şekil 4.4. Bölgesel kısıta sahip ÇTMHDP için başlangıç çözümlerinin

oluşturulması ... 98

Şekil 4.5. Konumsal, bölgesel ve senkronizasyon kısıtlarına sahip ÇTMHDP için

başlangıç çözümlerinin oluşturulması ... 100

1. BÖLÜM

 GİRİŞ

Matematiksel model, bir süreci ya da sistem davranışını matematiksel olarak temsil

eden denklemler takımıdır. Matematiksel modeller çeşitli özelliklerine göre farklı

sınıflara ayrılabilirler. Bu sınıflandırmalardan biri de karar değişkenlerinin pozitif reel

değerler alması ya da tamsayı değerler alması şeklinde ikiye ayrılan sürekli

optimizasyon problemi ve kesikli optimizasyon problemidir. Sürekli optimizasyon

problemleri tüm fonksiyonların doğrusal olması durumunda doğrusal programlama, en

az bir fonksiyonun doğrusal olmaması durumunda ise doğrusal olmayan programlama

yöntemi ile çözülmektedir. Diğer taraftan kesikli optimizasyon problemleri ise karar

değişkenlerinin tamsayı değerler alması durumunda tamsayılı programlama, karar

değişkenlerinin kombinatoryal seçenekleri söz konusu olduğunda ise kombinatoryal

optimizasyon yöntemleri ile çözülmektedir.

Tez çalışmasının temelini oluşturan kombinatoryal optimizasyon problemleri, dikkate

alınan amaç fonksiyonunu en iyileyen kesikli karar değişkenlerinin değerlerinin

bulunması ile ilgilenir. Diğer bir deyişle kombinatoryal optimizasyon, belirli kısıtlardan

oluşmuş, sayılabilir sonlu bir uygun çözüm uzayında, en küçükleme ya da en

büyükleme ölçütüyle, matematiksel olarak modellenmiş problemlerin incelenmesi ve en

iyi çözümün bulunmasını içerir. Teorik ve pratik önemi olan çoğu optimizasyon

problemi kombinatoryal yapıdadır; bu tür problemlere örnek olarak en kısa yol

problemi, gezgin satıcı problemi, atama problemi, atölye çizelgeleme problemi ve araç

rotalama problemi verilebilir. Kombinatoryal optimizasyon problemleri çözüm

açısından hem kolay hem de zor problemleri bünyesinde barındırmakta ve bu bağlamda

P ve NP-zor olmak üzere iki sınıfa ayrılmaktadır. Bir problem P sınıfında ise erişilebilir,

kolay ve optimum çözümü elde edilebilir nitelikte; NP-zor sınıfında ise erişilemez, zor

ve optimum çözümü makul zamanlarda elde edilemez niteliktedir. P sınıfındaki bir

problem, çözüm zamanı problem boyutunun polinom fonksiyonu olarak artan bir

2

algoritma ile çözülebilir. Örneğin atama, minimum kapsayan ağaç ve şebeke akış

problemleri P sınıfında yer alan kombinatoryal optimizasyon problemlerindendir. NP-

zor sınıfındaki problemlerin çözümü için ise polinom zamanlı bir algoritma yoktur;

çünkü optimum çözümü bulmak için gerekli süre, problem boyutuna bağlı olarak üstel

artış göstermektedir. 0 ya da 1 değerini alan n değişkene sahip bir problem için tüm

çözümlerin birerleme zamanı O(2n)’dir. Küçük boyutlu problemler birerleme ile

çözülebilmesine rağmen, büyük boyutlu problemler için bu yöntem ile çözüme ulaşmak

mümkün değildir. NP-zor sınıfındaki problemler için dal-sınır ya da kesme düzlemi gibi

etkin yöntemlerin başarısız olmasının nedeni, bu yöntemlerin de üstel sınırlara sahip

olmasıdır. NP-zor yapıya sahip kombinatoryal optimizasyon problemlerine örnek olarak

ise karesel atama problemi, gezgin satıcı problemi, montaj hattı dengeleme problemi,

araç rotalama problemi, çizelgeleme problemi ve yer seçimi problemi verilebilir.

Kombinatoryal optimizasyon problemlerinin çözümünde kullanılan algoritmalar kesin

algoritmalar ve sezgisel algoritmalar olmak üzere ikiye ayrılır. Doğrusal programlama,

dinamik programlama, dal-sınır algoritması, kesme düzlem yöntemi gibi kesin

algoritmalar optimum çözümü garanti eden algoritmalardır. Sezgisel algoritmalar ise

optimum çözümü garanti etmeksizin daha az çözüm zamanı ile optimuma yakın iyi bir

çözümü elde etmeyi hedefler. Optimum olmayan çözümler üretebilen bu tekniklerin

geliştirilmesinin sebebi, problem boyutunun çok büyük olması ya da problemin küçük

alt problemlere ayrılmasının zor olduğu durumlarda kesin yöntemlerle probleme çözüm

bulmanın mümkün olmamasıdır.

Bahsedildiği gibi geleneksel matematiksel yöntemlerle sezgisel algoritmalar arasındaki

en önemli ayrım çözümün optimalliği ve hesaplama süresidir. Geleneksel matematiksel

yöntemler optimum çözümü verebilmekte ancak büyük boyutlu örnekler

düşünüldüğünde hesaplama süresi bir dezavantaj haline gelmektedir. Ayrıca geleneksel

yaklaşımlar orijinal problem üzerinde bazı varsayımlar ve basitleştirmeler gerektirmekte

ve bulunan çözüm orijinal problemin temsili için yeterli olmayabilmektedir.

Araştırmacılar çeşitli optimizasyon problemlerini klasik optimizasyon prosedürlerine

uyarlamak için oldukça çaba göstermişlerdir. Ancak bir gerçek hayat problemini belli

bir çözüm prosedürüne uyacak şekilde modellemek genellikle pek kolay değildir. Klasik

optimizasyon algoritmaları farklı tipte değişkenler, amaç fonksiyonu ve kısıtlar içeren

3

problem formülasyonlarına uygulanabilecek genel bir çözüm stratejisi sunmamaktadır.

Örneğin simpleks algoritması, doğrusal amaç fonksiyonu ve kısıtlara sahip modellerin

çözümünde; geometrik programlama ise pozitif katsayılı polinom ya da işaretçe sınırlı

olması gerekmeyen polinom yapıda amaç fonksiyonuna sahip doğrusal olmayan

modellerin çözümünde kullanılabilmektedir. Ancak birçok optimizasyon problemi aynı

formülasyon içinde farklı tipte değişkenler, amaç fonksiyonları ve kısıtlar içermektedir.

Bu zorluğu aşabilmek için orijinal problemin parametreleri üzerinde bazı değişiklikler

ya da varsayımlar yapmak gerekmekte (değişkenlerin yuvarlanması, kısıtların

gevşetilmesi gibi) ancak bu da çözümün kalitesini etkilemektedir. Dolayısıyla klasik

optimizasyon teknikleri bu tür problemlerin çözümü için yeterli olmamaktadır. İşte

klasik optimizasyon tekniklerinin bu yetersizliklerini aşabilmek için problemden ve

modelden bağımsız olan doğadan esinlenmiş sezgisel optimizasyon algoritmaları

önerilmektedir. Bu teknikler hem etkin hem de daha esnek olup belirli problem

gereksinimlerine göre uyarlanabilmektedir [1].

Birçok gerçek hayat probleminin kombinatoryal optimizasyon problemi olarak

modellenebilmesi, bu tür problemlerin çözümünde hızlı ve etkin olarak kullanılacak

araçların geliştirilmesi ihtiyacını doğurmuştur. Son yıllarda metasezgisel algoritmalar

artan bir hızla zor kombinatoryal optimizasyon problemlerinin çözümünde

kullanılmaktadır. Çünkü gerçek hayatta genellikle sadece iyi çözümlere ihtiyaç

duyulmakta yani karar vericiler için alt optimum bir çözüm de yeterli olabilmektedir.

Başlangıçta metasezgisel algoritmalar benzetimli tavlama, genetik algoritma ve tabu

aramadan oluşurken, daha iyi çözümler üretebilmek için son yıllarda birçok farklı teknik

geliştirilmiştir. Bu tekniklerin bir dalı olan sürü zekâsına dayalı algoritmalar ise

böceklerin problem çözme becerilerini taklit eden metasezgisel yöntemler

geliştirebilmek için böcek davranışlarına odaklanmıştır. Sosyal böcek kolonileri

çevreden bilgi toplayan ve bu bilgiye göre davranışlarını uyarlayan dinamik bir sistem

olarak düşünülebilir. Böcekler arasındaki etkileşimin bir sonucu olan kolektif zekânın

en önemli parçalarından biri ise bireysel böcekler arasındaki bilgi paylaşımıdır.

Diğer taraftan arıların yiyecek arama davranışları, öğrenme, hatırlama ve bilgi paylaşma

özellikleri sürü zekâsının en ilgi çekici araştırma alanlarından birisidir. Bir arı kolonisi

birbiriyle etkileşen bireyler sistemi olarak düşünülebilir. Bu tür etkileşimli davranış

örneklerinden biri de bal arılarının buldukları yiyecek kaynağı hakkındaki bilgiyi

4

paylaştıkları salınım dansıdır. Bu dans aracılığıyla kaliteli bir yiyecek kaynağı bulan

arılar, yiyecek kaynağı hakkındaki yön, uzaklık ve nektar miktarı bilgilerini diğer

arılarla paylaşırlar. Böylece farklı yiyecek kaynakları bulabilmek için, kolonideki diğer

arılar da iyi bölgelere çekilmektedir. Arıların dans davranışlarıyla ilgili yapılmış

çalışmalar, arının dans esnasındaki yönünün yiyecek kaynağı ile güneş arasındaki

ilişkiyi, dansın yoğunluğunun yiyecek kaynağının uzaklığını ve dansın süresinin ise

nektar miktarını gösterdiğini ortaya çıkarmıştır. Yani arıların kolektif zekâsı sinerjik

bilgi değişimine dayanmaktadır [2, 3].

Bal arılarının davranışlarına yönelik yapılan araştırmalar yeni optimizasyon

algoritmalarının geliştirilmesini sağlamıştır. Bal arılarında yiyecek toplama ölçütü yeni

yiyecek kaynaklarının ne kadar hızlı bulunup tüketildiğiyle; yapay yiyecek toplama ise

benzer olarak uygun ya da iyi kalitedeki çözümlerin bulunma hızıyla ilişkilidir. Yeni

yiyecek kaynaklarının bulunma maliyeti ise arılar arasındaki etkileşime bağlı olarak

azalmaktadır. Yani yapay arılar arasındaki etkileşim uygun çözümlerin daha hızlı

bulunmasını sağlamakta ve bulunan yiyecek kaynaklarının kalitesi de artmaktadır.

Arılar arasındaki bu etkileşim zor kombinatoryal optimizasyon problemlerine iyi

çözümler bulmaya yardımcı olmaktadır.

Bu tez çalışmasının amacı da zor kombinatoryal optimizasyon problemlerine iyi

çözümler üreten ve arı davranışlarını modelleyen yapay sistemler geliştirmektir. Bu

doğrultuda sırasıyla Fisher ve ark. [4] ve Bartholdi [5] tarafından NP-zor yapıya sahip

olduğu ispatlanan Genelleştirilmiş Atama Problemi (GAP) ve Çift Taraflı Montaj Hattı

Dengeleme Problemi’ne (ÇTMHDP), Arı Algoritması (AA) [6] ve Yapay Arı Kolonisi

(YAK) algoritması [7] temel alınarak çözüm aranmış ve ilgili algoritmaların bu zor

kombinatoryal optimizasyon problemleri üzerindeki performansı incelenmiştir. Her iki

problem için de bilimsel yazındaki kesin ve sezgisel çözüm yöntemleriyle yapılan

karşılaştırmalar, önerilen algoritmaların etkin bir performansa sahip olduğunu

göstermiştir.

Tez çalışmasının ikinci bölümü, sürü zekâsı optimizasyon tekniklerinden biri olan arı

sisteminin kombinatoryal optimizasyon problemlerinin çözümünde kullanımına temel

oluşturması için sürü zekâsı ve arı sistemine ayrılmıştır. İlk olarak sürü zekâsından ve

bu kavrama dayalı optimizasyon algoritmalarından bahsedildikten sonra doğadaki

5

gerçek arı davranışları detaylandırılarak bilimsel yazında arı sistemi ile bağlantılı

mühendislik çalışmaları incelenmiştir. Ardından özellikle kombinatoryal optimizasyon

problemlerinin çözümünde kullanılan arı sistemi uygulamalarına değinilmiştir. Ayrıca

bu bölümde arıların yiyecek arama davranışları hakkında detaylar verilerek tez

çalışmasında temel alınan AA ve YAK algoritması açıklanmıştır.

Üçüncü bölümde genellikle sürekli optimizasyon problemlerine uygulanmış olan AA ve

YAK algoritmasının karmaşık tamsayılı optimizasyon problemlerindeki performansını

inceleyebilmek için NP-zor bir problem olan GAP’nin çözümünde kullanılmasına yer

verilmiştir. Ayrıca GAP’nin AA ile çözümünde kullanılan komşuluk yapılarının

algoritma üzerindeki etkisi incelenmiştir.

Dördüncü bölümde yine zor bir kombinatoryal optimizasyon problemi olan

ÇTMHDP’nin genel yapısı ve bilimsel yazındaki çözüm yaklaşımları incelendikten

sonra probleme ait farklı kısıtlar altında ilgili algoritmalarla elde edilen geniş deneysel

çalışma sonuçları sunulmuştur. Diğer taraftan AA, bulanık çok amaçlı ÇTMHDP’nin

çözümü için de kullanılmış ve bulanık amaçlar farklı teknikler altında incelenerek bu

tekniklerin algoritma performansı üzerindeki etkisi incelenmiştir.

Son olarak sonuç ve öneriler bölümünde, tez çalışmasından elde edilen sonuçlar ve

öneriler tartışılmıştır.

2. BÖLÜM

 SÜRÜ ZEKÂSINA DAYALI OPTİMİZASYON ALGORİTMALARI

2.1. Giriş

Bu bölüm, sürü zekâsı optimizasyon tekniklerinden biri olan arı sisteminin

kombinatoryal optimizasyon problemlerinin çözümünde kullanımına temel oluşturması

için sürü zekâsı ve arı sistemine ayrılmıştır. İlk olarak sürü zekâsından ve bu kavrama

dayalı optimizasyon algoritmalarından bahsedildikten sonra doğadaki gerçek arı

davranışları detaylandırılarak bilimsel yazında arı sistemi ile bağlantılı mühendislik

çalışmaları incelenecektir. Ardından özellikle kombinatoryal optimizasyon

problemlerinin çözümünde kullanılan arı sistemi uygulamalarına değinilecektir. Ayrıca

bu bölümde arıların yiyecek arama davranışları hakkında detaylar verilerek tez

çalışmasında temel alınan AA ve YAK algoritması açıklanacaktır.

2.2. Sürü Zekâsına Dayalı Optimizasyon Algoritmaları

Bilimsel yazında kombinatoryal ve sayısal optimizasyon problemlerinin çözümü için

geliştirilen birçok modern sezgisel algoritma bulunmaktadır. Bu algoritmalar ele alınan

kritere bağlı olarak popülasyon tabanlı, tekrarlı, stokastik ve deterministik gibi farklı

gruplara ayrılabilir. Popülasyon tabanlı algoritmalar, tek bir çözüm yerine bir çözümler

kümesini temel almakta; tekrarlamalı algoritmalar ise çözüme çoklu iterasyonlar

kullanarak yaklaşmaktadır. Eğer kullanılan algoritma bir çözümü geliştirmek için

olasılık tabanlı bir kural kullanıyorsa stokastik, kesin bir kural kullanıyorsa

deterministik olarak adlandırılmaktadır. Diğer taraftan popülasyon tabanlı algoritmalar

evrimsel algoritmalar ve sürü zekâsına dayalı algoritmalar olmak üzere iki önemli sınıfa

ayrılmaktadır [8]. Evrimsel algoritmalar, organizma popülasyonlarının genetik kalıtım

ve en iyinin yaşaması gibi biyolojik işlemlerden esinlendiği stokastik optimizasyon

algoritmalarını içerir. Genetik algoritma, genetik programlama, evrimsel strateji,

7

evrimsel programlama ve diferansiyel gelişim algoritmaları popüler evrimsel

algoritmalardandır.

Tez çalışmasında temel alının sürü zekâsı ise son yıllarda birçok araştırmacı bilim

adamı için bir ilgi alanı haline gelmiştir. Sürü zekâsı, yetenekleri kısıtlı canlıların bir

takım haline geldiklerinde üstün yetenek ve yönetim gerektiren davranışlar sergilemesi

olarak açıklanabilir. Bonabeau ve ark. [9] ise sürü zekâsını “sosyal böcek kolonilerinin

ya da diğer hayvan topluluklarının kolektif davranışlarından esinlenen herhangi bir

algoritma ya da dağıtımlı problem çözme mekanizması tasarlama girişimi” olarak

tanımlamaktadır. Bonabeau ve ark. [9] bakış açılarını sadece termit, arı, yaban arısı ve

diğer karınca türleri gibi sosyal böceklere yoğunlaştırmışlardır. Ancak sürü kelimesi

genel olarak birbiriyle ilişkili ajan ya da bireyler topluluğu şeklinde kullanılmaktadır.

Ajanlar arasındaki bu ilişkiler doğal ortamda yiyecek bulma, yuva inşa etme ya da

genişletme, ajanlar arasındaki etkili işbölümü, yavru besleme ve dış etkenlere cevap

verebilme şeklinde ortaya çıkmaktadır [9]. Sürü yapısına örnek olarak, kovanları

etrafında hareket halinde olan arılar, bireysel ajanları karıncalar olan karınca kolonisi,

kuş sürüleri, hücre ve molekül sürüsü olarak düşünülebilen bağışıklık sistemi verilebilir.

Doğadan esinlenen sezgisel yöntemlerin temel özellikleri, doğada bulunan bir olguyu

modellemeleri, stokastik bir yapıya sahip olmaları, çok ajanlı sistemlerde genellikle

paralel bir yapı bulunması ve geri besleme bilgisinin kullanılmasıdır [10]. Kendi

kendine örgütlenen ve içinde bulunduğu çevreye uyum sağlayabilen dağıtımlı problem

çözme sistemleri gibi zeki sürü davranışları edinebilmek için kendi kendine örgütlenme

ve iş bölümü olmak üzere iki temel özellik gerekli ve yeterlidir [9].

• Kendi kendine örgütlenme, sistemin düşük seviye bileşenleri arasındaki

etkileşim sayesinde global seviyede yapılar olarak karşımıza çıkan dinamik

mekanizmalar kümesi olarak tanımlanabilir. Bu mekanizmalar sistemin

bileşenleri arasındaki etkileşim için temel kuralları oluşturur. Bu kurallar ise

etkileşimin global örüntüyle hiçbir ilişkisi olmadan tamamen yerel bilgiye

dayanarak gerçekleştirilmesini sağlar. Diğer bir deyişle, sürüyü oluşturan ajanlar

değişen şartlara göre kendilerini örgütleyebilirler, yaptıkları işin cinsini

değiştirme ve duruma göre kendilerine uygun işi tayin edebilme yeteneklerine

sahiptirler. Bonabeau ve ark. [9] kendi kendine örgütlenmenin 4 temel özelliğini

8

pozitif geri besleme, negatif geri besleme, sürekli değişim ve çoklu etkileşim

şeklinde belirlemişlerdir.

 Pozitif geri besleme, uygun yapıların yaratılmasını sağlayan basit bir

ampirik davranıştır. Bazı karınca türlerinde iz bırakma ve iz takip etme

ya da arılarda dans etme gibi iyileştirme ve güçlendirme davranışları

pozitif geri beslemeye örnek olarak verilebilir.

 Negatif geri besleme ise kolektif örüntüyü dengede tutmaya yardım

etmektedir. Yiyecek kaynağının tükenmesi, kalabalıklaşması ya da

yiyecek kaynağında rekabet şeklinde ortaya çıkabilen doygunluğu

engelleyebilmek için negatif geri besleme mekanizmasına ihtiyaç

duyulmaktadır.

 Rastgele yürüyüşler, hatalar, sürü bireyleri arasında rastgele iş değişimi

gibi sürekli değişimler, yaratıcılık ve yenilik için çok önemlidir. Gelişen

yapılarda rastgelelik, yeni çözümlerin keşfini sağladığı için büyük öneme

sahiptir.

 Kendi kendine örgütlenme genel olarak hem kendi hareketlerinin hem de

diğer bireylerin hareketlerinin sonuçlarını düşük seviyede kullanabilen

karşılıklı etkileşime sahip bireyler gerektirir.

• Zeki sürü davranışlarının diğer bir özelliği olan işbölümü, belirli özelliklere

sahip bireyler tarafından aynı anda gerçekleştirilen farklı işlerin varlığı şeklinde

tanımlanmaktadır. İşbirliği içindeki bu uzmanlaşmış bireylerin aynı andaki iş

performansının, uzmanlaşmamış bireylerin sıralı iş performansından daha etkin

olduğuna inanılmaktadır. İş bölümü aynı zamanda sürünün araştırma uzayındaki

değişen şartlara cevap verebilmesini de sağlamaktadır.

Sürü zekâsı temel olarak basit ajanlar arasındaki dolaylı ve dolaysız etkileşimi, değişen

çevre şartlarına uyumu gösteren esnekliği ve bazı bireylerin görevlerini

gerçekleştirememeleri durumunda kolonideki işlerin devam edebilmesi kabiliyetini

temsil eden sağlamlığı vurgulamaktadır. Koloniyi oluşturan ajanlar çok basit kuralları

takip etmekte ve bireysel ajanların nasıl hareket edeceklerini belirleyen merkezi bir

kontrol yapısı olmamasına rağmen ajanlar arasındaki yerel ve belli bir seviyedeki

rastgele etkileşim, zeki global davranışın oluşumuna liderlik etmektedir. Sürü zekâsı

algoritmalarının kombinatoryal optimizasyon, iletişim ağları ve robotikteki başarılı

9

uygulama sayısı üssel olarak artmaktadır [11]. Sürü zekâsına dayalı algoritmalardan en

yaygın olarak kullanılan Parçacık Sürü Optimizasyonu (PSO) ve Karınca Koloni

Optimizasyonu (KKO) algoritması izleyen bölümlerde daha detaylı olarak verilmiştir.

2.2.1. Parçacık Sürü Optimizasyonu Algoritması

PSO algoritması kuş sürülerinin davranışlarından esinlenerek Kennedy ve Eberhart [12]

tarafından geliştirilmiş popülasyon tabanlı stokastik bir optimizasyon tekniğidir. PSO

algoritmasının klasik optimizasyon tekniklerinden en önemli farkı türev bilgisine ihtiyaç

duymamasıdır. Bu özellik birçok problemin çözümü için gerekli olan karmaşık işlem

yükünün hafifletilmesini sağlamaktadır. Algoritma özellikle çok boyutlu uzayda

doğrusal olmayan fonksiyonların optimizasyonunda üstün performans göstermekte ve

fonksiyon optimizasyonu, bulanık sistem kontrolü, yapay sinir ağı eğitimi gibi birçok

alanda başarıyla uygulanabilmektedir.

PSO algoritması temelde kuş sürülerinin yiyecek aramaları ve yiyecek bulduktan sonra

birbirlerinden faydalanarak sürü halinde yiyeceğe doğru yönelmelerini

modellemektedir. Bu modeldeki en önemli nokta yiyeceği ilk bulan kuşun diğerlerine

rehberlik etmesi ve bireyler arasında sosyal bilgi paylaşımının var olmasıdır. Kuşların

yerini bilmedikleri bir yiyeceği aramaları, bir probleme çözüm aramaya; parçacık olarak

adlandırılan her bireyin pozisyonu, bir çözüme; bireyin hızı, değişime ve popülasyon ise

kuş sürüsüne benzetilmektedir.

PSO algoritması rastgele çözümler içeren bir popülasyonla başlatılmakta ve bu

çözümler güncellenerek optimum çözüm araştırılmaktadır. Parçacık olarak adlandırılan

aday çözümler, kuşların yiyecek ararken yiyeceğe en yakın kuşu takip etmeleri gibi, o

andaki optimum parçacığı izleyerek problem uzayında dolaşmaktadırlar. Parçacık

hareket ettiğinde, kendi koordinatlarını bir fonksiyona göndermekte, böylece parçacığın

uygunluk değeri yani yiyeceğe ne kadar uzaklıkta olduğu ölçülmektedir. Bir parçacığa

ait hız ve yön bilgisinin her seferinde nasıl değişeceği, kendi koordinatları ile komşu

parçacıkların en iyi koordinatlarının birleşimi ile belirlenmektedir. Ajanların kendi

tecrübelerine ve komşu ajanların tecrübelerine göre hareket etmeleriyle ajanlar arasında

bilgi paylaşımı sağlanmaktadır [11].

10

2.2.2. Karınca Koloni Optimizasyonu Algoritması

KKO algoritması, yapay karınca adı verilen her bir ajan davranışının gerçek karınca

davranışlarına benzetildiği çok ajanlı bir sistemdir. Sürü zekâsına dayalı algoritmaların

en başarılı örneklerinden biri olan KKO algoritması klasik Gezgin Satıcı Problemi,

Karesel Atama Problemi, Genelleştirilmiş Atama Problemi, Araç Rotalama Problemi,

Çoklu Sırt Çantası Problemi gibi çok çeşitli problemlerde uygulama alanı bulmuştur.

KKO algoritması, karıncaların yiyecek arama davranışından esinlenerek Dorigo [13]

tarafından önerilmiş, özellikle kesikli optimizasyon problemlerinde başarılı

uygulamaları olan bir yöntemdir. Birçok karınca kolonisinde karıncalar yiyecek ararken,

öncelikle yuvalarının etrafında rastgele dolaşarak keşfe başlarlar. Yiyecek kaynaklarını

bulduklarında, yiyeceğin kalitesi ve miktarını değerlendirdikten sonra bir kısmını

yuvaya taşırlar. Bu dönüş sırasında diğer karıncaların da aynı kaynağı bulabilmeleri için

yiyeceğin kalitesine ve miktarına bağlı olarak kimyasal feremon maddesini geçtikleri

yolun üzerine bırakırlar. Bırakılan bu izler, diğer karıncalara rehberlik ederek belirli bir

olasılıkla o yolu takip etmelerine ve kaynağı bulmalarına yardım eder. Feremon

vasıtasıyla yapılan bu dolaylı iletişim, karıncaların yiyecek kaynağı ile yuva arasında en

kısa yolu bulmalarını sağlar. İşte karıncaların bu davranışları KKO algoritmasının

geliştirilmesinde ilham kaynağı olmuştur.

Diğer taraftan KKO algoritmasının başarılı uygulamaları arıların kombinatoryal

optimizasyon problemlerinin çözümünde kullanılmasına bir basamak oluşturmuş ve son

yıllarda arıların doğal davranış özellikleri çeşitli metasezgisel algoritmaların

geliştirilmesine olanak sağlamıştır.

2.3. Doğadaki Gerçek Arı Davranışları

Böcekler dünyasındaki en çarpıcı mühendislik ve mimarlık bilgisine sahip olan arılar,

sosyal hayatları ve aralarındaki iletişim ile diğer pek çok canlıdan ayrılmaktadır. Bir arı

kolonisi, bir kraliçe, birkaç yüz erkek ve 10.000-80.000 işçi arıdan oluşur. Kraliçe

arının temel görevi yumurtlamak olup üreme sadece kraliçe arı vasıtasıyla gerçekleşir.

Kraliçe arı yumurtlamadan başka, koloninin bütünlüğünü ve kovandaki sistemin

işleyişini sağlayan önemli maddeler de salgılar. Erkek arıların tek fonksiyonu ise

kraliçeyi döllemektir; yiyecek toplama, temizlik, yavruların bakımı gibi işlevlerle

11

ilgilenmezler. Kovanda petek örme, yiyecek toplama, arı sütü üretme, kovan ısısını

düzenleme, temizlik, savunma gibi diğer tüm işleri ise işçi arılar yapar.

Mühendislik çalışmalarında ele alınan arı davranışlarının en önemlileri yiyecek arama

ve çiftleşmedir. Arı sistemi içerisinde bu tür davranışların nasıl gerçekleştiği aşağıda

kısaca özetlenmiştir.

Arıların Yiyecek Arama Davranışı: Arılar çoğu zaman yiyecek bulmak için kovandan

ayrılarak geniş alanları taramak zorunda kalırlar. Yeni bir yiyecek kaynağı bulan arılar,

koloninin diğer üyelerine haber vermek üzere kovana geri dönerler. Arılar sağır

olmalarına rağmen yiyecek kaynağının yerini, koloninin diğer üyelerine dans ederek

tarif edebilirler. Yiyecek kaynağının bulunabilmesi için kaynağın kovana uzaklığı,

doğrultusu, zenginliği gibi gerekli olabilecek her türlü bilgi bu dansta gizlidir. Yiyecek

kaynağını keşfeden arı kovana döner ve diğer arıların dikkatini çekecek şekilde sürekli

olarak belirli hareketleri tekrarlamaya başlar. Arının genel davranışlarından yiyecek

kaynağı ile ilgili tüm bilgiler elde edilebilir. Örneğin nektar toplamış bir arı kovana

döndüğünde sadece nektarı boşaltıp geri uçarsa bu, arının faydalandığı kaynak bilinen

bir kaynaktır veya verimsizdir anlamına gelmektedir. Yiyecek kaynağı bulan arılardan

elde edilen bu bilgiler doğrultusunda diğer arılar kolaylıkla yiyecek kaynağının yerini

bulurlar. Yiyecek kaynağına çok fazla arı toplanması, kovanda dans eden arıların sayısı

ile doğrudan bağlantılıdır. Tek bir arının dansı ile tüm kovan harekete geçmez.

Öncelikle koloniden bir grup arı öncü olarak gider. Bu öncü grup uçuştan döndüğünde

onlar da dans ediyorsa daha fazla arı hedefe doğru yönelir. Buldukları kaynak ne kadar

iyi ise, o kadar uzun süre dans ederler ve daha fazla arı toplarlar. Böylece arıların

dikkati daima en verimli yiyecek kaynağına yönelmiş olur. Diğer taraftan yiyecek

kaynağını bulan arı kovana geri dönmeden önce yiyecek kaynağına özel bir koku

bulaştırır. Arıların çiçekleri işaretlemeleri sayesinde, diğer arılar bu çiçeğin nektarının

daha önce başka arılarca tüketildiğini anlar ve o çiçeği terk ederler. Böylece hem vakit

hem de enerji kaybından kurtulurlar.

Bilimsel yazında arıların yiyecek arama davranışına dayalı biyolojik çalışmalara

bakıldığında, Yonezawa ve Kikuchi [14] arıların yiyecek arama davranışını inceleyerek

grup zekâsının önemini gösteren bir algoritma geliştirmişlerdir. Geliştirilen

algoritmanın kolonide bir ve üç arı olduğu varsayımıyla simülasyonu yapılmıştır. Karar

12

verme sürecinde üç arıya sahip sistemin bir arıya sahip sisteme göre daha hızlı çalıştığı

gösterilmiştir. Diğer taraftan arıların değişen çevre şartlarına kolaylıkla adapte olabilen

bir yiyecek arama davranışına sahip olduğu belirtilmiştir. Schmickl ve ark. [15] ise çok

ajanlı bir simülasyon platformu üzerinde arıların yiyecek arama davranışının

sağlamlığını incelemişlerdir. Çevresel değişikliklerin yiyecek arama stratejisini ve

etkinliğini nasıl etkilediğini araştırarak, arı kolonisinin bu konuda sağlam ve iyi bir

adaptasyona sahip olduğunu belirtmişlerdir. Yiyecek arama davranışı konusunda,

karınca kolonisi davranışlarına dayalı feremon tabanlı algoritmalar ile arı kolonisi

davranışlarına dayalı feremon tabanlı olmayan algoritmalar arasında bir karşılaştırma

çalışması gerçekleştiren Lemmens [16], elde ettiği deney sonuçlarına göre (i) feremon

tabanlı olmayan algoritmaların genel anlamda daha az süre gerektirdiğini ve daha hızlı

olduğunu, (ii) feremon tabanlı algoritmaların küçük boyutlu problemler için iterasyon

başına daha az süre gerektirdiğini, (iii) boyut arttıkça feremon tabanlı olmayan

algoritmaların feremon tabanlı algoritmalara göre daha iyi performansa sahip olduğunu

belirtmiştir.

Arıların Çiftleşme Davranışı: Kraliçe arı çiftleşmek için kovandan bir grup arıyla

birlikte yola çıkar. Bir süre sonra beraberindeki arılardan ayrılır ve erkek arıların

toplandığı alanlara doğru tek başına uçar. Bu alana belirli bir oranda yaklaştığında erkek

arıların kendisini bulmalarını sağlayan bir tür feremon salgılamaya başlar. Çiftleşme

uçuşu adı verilen bu uçuş sırasında erkek arıların kraliçeyi fark etmeleri ile çiftleşme

gerçekleşir. Döllenmeden sonra kraliçe arı kovana geri dönerken erkek arılar genellikle

hayatlarını kaybederler. Tek bir erkek arının spermleri kraliçe arının üreme kesesini

doldurmaya yetmediğinden kraliçe birden fazla erkek arıdan sperm alır. Döllenmeden

sonra erkek arılardan gelen bütün spermler üreme kesesinde biriktirilir. Kraliçe, 4-5

senelik ömrü boyunca çiftleşme uçuşu sırasında edindiği bu spermleri kullanacaktır.

Diğer pek çok canlıdaki üreme hücrelerinin aksine erkek arıların spermleri kraliçenin

vücudunda bozulmadan senelerce muhafaza edilebilecek bir yapıya sahiptir. Kraliçe arı

bu keseden kendi isteğine göre sperm bırakarak döllenmeyi düzenler. Adams ve ark.

[17], Page ve ark. [18], Dietz [19], Laidlaw ve Page [20], Rinderer ve Collins [21]

arıların çiftleşme davranışını biyolojik olarak inceleyen çeşitli çalışmalar sunmuşlardır.

13

2.4. Arı Sistemi ile Bağlantılı Mühendislik Çalışmaları

Arı davranışlarıyla ilgili biyolojik araştırmalar uzun yıllardır devam etse de bilgisayar

bilimleri ile ilgili çalışmalar pek yaygın değildir. Günümüze kadar yapılmış çalışmalar;

yiyecek arama davranışına dayalı, çiftleşme davranışına dayalı ve kombinatoryal

optimizasyon problemleri uygulamaları olmak üzere 3 grup altında incelenmiştir.

2.4.1. Yiyecek Arama Davranışına Dayalı Çalışmalar

Sato ve Hagiwara [22] genetik algoritma üzerinde arıların yiyecek arama davranışına

dayalı değişiklikler yaparak Arı Sistemi algoritmasını oluşturmuşlardır. Bir arı

kolonisinde her arı bireysel olarak yiyecek aramakta, yiyecek kaynağını bulduktan sonra

salınım dansıyla bilgi paylaşımında bulunmakta ve yine bireysel olarak yeni bir yiyecek

kaynağı aramaya devam etmektedir. Benzer olarak önerilen algoritmada da önce global

arama yapılmaktadır. Bu amaçla basit genetik algoritma ile daha yüksek uygunluk

değerine sahip süper kromozomlar elde edilmektedir. Daha sonra kromozomların çoğu

yoğunlaştırılmış çaprazlama ile süper kromozomların bilgilerini elde etmekte ve çoklu

popülasyon kullanılarak daha yoğun arama yapılabilmektedir. Geleneksel çaprazlamada

her çift rastgele seçilmekte iken, yoğunlaştırılmış çaprazlamada bütün kromozomlar

süper kromozomla bir çift oluşturmaktadır. Ayrıca Arı Sistemi algoritmasının yerel

arama kabiliyetini artırmak için sözde-simpleks yöntemi de algoritmaya dâhil edilmiştir.

Eğer bir döngü boyunca elde edilen çözüm tatmin edici değilse global arama

tekrarlanmaktadır. Bilindiği gibi genetik algoritma iyi bir global arama kabiliyetine

sahip olsa da yerel arama kabiliyeti yeterli değildir. Ancak Arı Sistemi ile yerel

minimuma düşme olasılığı azalmaktadır. Çünkü algoritmanın amacı genetik

algoritmanın global arama kabiliyetini azaltmadan yerel arama kabiliyetini

geliştirmektir. Yapılan testlerde Arı Sistemi algoritması geleneksel genetik algoritma ile

karşılaştırılmış ve özellikle yüksek derecede karmaşık, çok değişkenli fonksiyonlarda

önerilen algoritmanın daha iyi performans gösterdiği görülmüştür.

Sürekli fonksiyon uygulamaları açısından arıların yiyecek arama davranışını temel alan

çalışmalara bakıldığında, Yang [23] özellikle fonksiyon optimizasyonu problemlerinde

etkin olan Sanal Arı algoritmasını geliştirmiştir. Önerilen algoritma genetik algoritmaya

benzese de bağımsız çok sayıda arının paralel çalışmasından dolayı daha etkindir.

Deneysel çalışma sonuçları, önerilen algoritmanın genetik algoritmadan daha etkin

14

olduğunu göstermiştir. Diğer taraftan tez çalışmasında temel alınan YAK algoritması ve

AA sırasıyla Karaboğa [7] ve Pham ve ark. [6] tarafından önerilmiş olup arıların

yiyecek arama davranışını modelleyen sürü zekâsına dayalı metasezgisel

algoritmalardır. YAK algoritması ve AA özellikle sayısal optimizasyon problemlerinin

çözümü için geliştirilse de sonraki yıllarda hem fonksiyonel hem de kombinatoryal

optimizasyon problemlerinin çözümünde kullanılmıştır. YAK algoritması ve AA’nın ve

bilimsel yazındaki bu algoritmalara dayalı çalışmaların detayları sırasıyla 2.6 ve 2.7

bölümlerinde verilecektir.

2.4.2. Çiftleşme Davranışına Dayalı Çalışmalar

Abbass [24] arıların çiftleşme davranışından esinlenerek Arıların Çiftleşme

Optimizasyonu (AÇO) adı verilen yeni bir arama algoritması geliştirmiştir. Gerçek

hayatta bir çiftleşme uçuşu kraliçenin dansıyla başlamakta ve erkek arılar çiftleşmek

için kraliçe arıyı takip etmektedir. Her çiftleşmede spermler koloninin genetik havuzunu

oluşturmak için kraliçe arının üreme kesesine alınarak birleştirilmektedir. Kraliçe arı ise

bu spermlerin rastgele bir karışımını seçerek yumurtaları döllemektedir. Benzer olarak

AÇO algoritmasındaki çiftleşme uçuşu, durum uzayındaki bir geçiş kümesi olarak

düşünülebilir ve kraliçe arı farklı durumlar arasında hareket ederek her bir durumda

olasılıklı olarak erkek arıyla çiftleşir. Kraliçe çiftleşme uçuşunun başındaysa yani hızı

yüksekse ya da erkek arının uygunluk değeri kraliçeninki kadar iyiyse çiftleşme olasılığı

daha yüksek olacaktır.

AÇO algoritması kraliçeye ait çözümün rastgele oluşturulmasıyla başlar, bu çözüm işçi

arılar tarafından sezgisel bir yöntemle geliştirilir ve çiftleşme uçuşları gerçekleştirilir.

Her bir çiftleşme uçuşunda kraliçenin enerjisi ve hızı başlangıç durumuna

getirilmektedir. Daha sonra kraliçe arı kendi hızına bağlı olarak farklı çözümler arasında

hareket ederek erkek arılarla çiftleşmektedir. Eğer bir erkek arı kraliçe arıyla çiftleşirse

(erkek arı olasılıklı karar kuralını geçerse), erkek arının spermi kraliçe arının üreme

kesesine alınır (kısmî çözümler listesi) ve kraliçe arının hızı ve enerjisi azaltılır. Kraliçe

arı çiftleşme uçuşunu tamamladıktan sonra kovana döner ve spermlerden birini rastgele

seçerek çaprazlama ve mutasyon işlemlerini gerçekleştirir. İşçi arı ise yavru arının

geliştirilmesinden sorumludur ve işçi arı sayısı algoritmada kullanılan sezgisel yöntem

sayısını göstermektedir. Eğer uygunluk değeri en iyi olan yavru arının çözümü kraliçe

15

arınınkinden daha iyiyse, kraliçe arı çözümü bu çözümle değiştirilir. Kalan yavru arılar

ise öldürülür ve yeni çiftleşme uçuşu başlar.

Sonraki birçok çalışmaya temel oluşturan AÇO algoritmasının bu hâlinde, koloninin bir

kraliçe ve bir işçi arıdan oluştuğu varsayılmaktadır. Önerilen algoritma, tek bir çiftleşme

uçuşunda gerçekleştirilebilecek maksimum çiftleşme sayısını gösteren kraliçe arının

üreme kesesi büyüklüğü, kraliçe tarafından üretilecek yavru arı sayısı ve yerel aramanın

derinliğini belirleyen yavru arının geliştirilmesi için harcanacak süre olmak üzere üç

parametreye sahiptir.

Önerilen algoritmanın geniş uygulama alanı bulduğu Genel Kısıt Sağlanabilirlik

Problemi, değişkenlerin alanları dâhilinde bir kısıtlar kümesini sağlayacak değişkenler

kümesinin belirlenmesidir. Sağlanabilirlik Problemi (SP) ise Genel Kısıt Sağlanabilirlik

Problemi’nin özel bir türü olup, bu problemde her bir değişkenin alanı doğru ya da

yanlış olarak nitelendirilmektedir. 3-SP ise Sağlanabilirlik Problemi’nin özel bir türü

olup bu problem çeşidinde her kısıt üç değişken içermektedir. AÇO algoritmasının

performansı 3-SP üzerinde test edilmiş ve sonuçlar algoritmanın oldukça başarılı

olduğunu göstermiştir. Abbass [25] arı kolonisinin bir kraliçe arı ve birden fazla işçi

arıya, Abbass [26] ise birden fazla kraliçe arı ve bir grup işçi arıya sahip olduğu

varsayımıyla AÇO algoritmasını güncellemiştir. Geliştirilen algoritmalar 3-SP üzerinde

test edilmiş ve en iyi sonuçların düşük koloni boyutu ve ortalama üreme kesesi boyutu

ile elde edildiği görülmüştür.

Teo ve Abbass [27] çözüm uzayını daha iyi bölgelere taşıyacak geleneksel tavlama

yaklaşımını kullanarak AÇO algoritmasını değiştirmişlerdir. Orijinal AÇO

algoritmasındaki gibi bütün yörüngelerin kabulünün aksine, ancak daha iyi bir çözüm

uzayına hareket gerçekleştirilebiliyorsa kabul kararı alınmakta, daha kötü bir çözüm

uzayına ancak kraliçe arının uygunluk değerine bağlı bir fonksiyonla olasılıklı olarak

geçilmektedir. 3-SP üzerinde yapılan deneysel çalışmalar sonucunda yeni tavlama

fonksiyonuyla daha fazla iyileşme sağlandığı görülmüştür.

AÇO algoritmasındaki karar verme sürecine biyolojik açıdan bakıldığında erkek arılar

genellikle başka kolonilerden geldikleri için kraliçe arıdan bağımsız oldukları

görülmektedir. Bu sebeple çözümler arasındaki geçişlerin erkek arının uygunluk

değerine bağlı olması şeklinde tekrar düzenlenen AÇO algoritması Teo ve Abbass [28]

16

tarafından önerilmiş olup 3-SP üzerinde önceki AÇO algoritmalarıyla karşılaştırılmıştır.

Yeni AÇO algoritması ile daha iyi sonuçlar elde edildiği hatta algoritmanın önceki

hâlleriyle çözüm bulunamayan problemlere çözümler bulunabildiği tespit edilmiştir.

Chang [29] AÇO algoritmasının kombinatoryal optimizasyon problemlerinin

çözümündeki etkinliğini teorik açıdan ortaya koyarak algoritmanın global optimuma

yakınsadığını ispatlamıştır. Ayrıca AÇO algoritmasının benzetimli tavlama ile genetik

algoritmanın melez bir birleşimi olarak düşünülebileceğini belirtmiştir. Benzetimli

tavlama kraliçe arının çiftleşme uçuşundaki erkek arı spermlerinin üreme kesesine

alınmasına karşılık gelirken, genetik algoritma bazı farklarla yavru arı üretimi ve

gelişimi adımlarına karşılık gelmektedir. Ayrıca bu çalışmada AÇO algoritması,

Stokastik Dinamik Programlama Problemleri’nin çözümü için de kullanılmıştır.

Bozorg Haddad ve ark. [30] AÇO algoritmasına dayanarak yüksek derecede doğrusal

olmayan, kısıtlı ve kısıtsız matematiksel modellerin çözümü için Bal Arılarının

Çiftleşme Optimizasyonu (BAÇO) algoritmasını geliştirmişlerdir. BAÇO algoritmasının

performansı birçok kısıtlı ve kısıtsız matematiksel optimizasyon fonksiyonunda test

edilerek elde edilen sonuçlar genetik algoritma ile karşılaştırılmıştır. Sonuçlar BAÇO

algoritmasının az bir farkla daha üstün performans sağladığını göstermiştir. Ayrıca

geliştirilen algoritma, tek su deposunda optimum operasyon politikasını geliştirmek için

de kullanılmış ve yine oldukça iyi sonuçlar elde edilmiştir. Afshar ve ark. [31] ise

BAÇO algoritmasını sürekli optimizasyon problemleri için güncelleyerek doğrusal

olmayan, sürekli ve kısıtlı Tek Su Deposu Problemi için bir uygulama

gerçekleştirmişlerdir. LINGO 8.0 NLP ile elde edilen global optimum değerlerle

yapılan karşılaştırmada algoritmanın optimum değere oldukça hızlı yakınsadığı

görülmüştür. Arefi ve ark. [32] dağıtım ağlarındaki harmonik durum değişkenlerini

tahmin edebilmek için BAÇO algoritmasına dayalı bir algoritma önermişlerdir.

Simülasyon sonuçları önerilen algoritmanın hız ve doğruluk açısından ağırlıklı en küçük

kareler yöntemi, genetik algoritma ve tabu arama algoritmalarına göre çok daha etkin

olduğunu göstermiştir. Marinakis ve Marinaki [33] Olasılıklı Gezgin Satıcı Problemi

için Açgözlü Rastgele Uyarlanır Arama Prosedürü (ARUAP), genişletilmiş komşuluk

arama stratejisi ve BAÇO algoritmasına dayalı melez bir yapı önermişlerdir. Parçacık

sürü optimizasyonu, klasik ARUAP algoritması, tabu arama ve karınca koloni

17

optimizasyonu algoritmaları ile yapılan karşılaştırmalar, önerilen algoritmanın iyi bir

performansa sahip olduğunu göstermiştir.

AÇO ve BAÇO algoritmalarının uygulama çalışmalarına bakıldığında ise Bozorg

Haddad ve Afshar [34] AÇO algoritmasını Su Kaynakları Yönetimi Problemi’ne;

Fathian ve ark. [35] BAÇO algoritmasını bir veri madenciliği tekniği olan kümelemeye

ve Horng [36] BAÇO algoritmasını dijital görüntü sıkıştırma uygulamalarında güçlü bir

teknik olan vektör nicelemeye uygulamışlardır.

Diğer taraftan bilimsel yazında, arıların çiftleşme davranışını genetik algoritmanın

performansını iyileştirme amaçlı olarak kullanan çalışmalar da mevcuttur. Jung [37]

genetik algoritmanın performansını iyileştirebilmek için Kraliçe Arı Evrim (KAE)

algoritmasını geliştirmiştir. KAE algoritmasında kraliçe arı, rulet tekerleği seçme

yöntemi dışında bir seçme algoritmasıyla belirlenen arılar tarafından melezlenmektedir.

Ancak bu yaklaşımla erken yakınsama olasılığı artmaktadır. Bu olasılığı azaltmak için

bütün bireylerin düşük bir oranla mutasyona uğraması yerine bazı bireyler yüksek

derecelerde mutasyona uğratılmıştır. Önerilen algoritma, bir kombinatoryal ve iki

fonksiyon optimizasyon problemi üzerinde test edilmiş ve yapılan deneyler önerilen

algoritmanın genetik algoritmayı daha hızlı global optimuma götürdüğünü göstermiştir.

Azeem ve Saad [38] KAE algoritması üzerinde bazı değişiklikler yapmışlardır.

Geliştirilen algoritmaya göre eğer kraliçe arının uygunluk değerine çok yakın ya da

daha iyi uygunluk değerine sahip bir çözüm elde edilmişse, bu çözüm başka bir havuza

alınmakta ve o havuzun kraliçe arısı olmaktadır. Diğer bir fark ise çaprazlama operatörü

olup orijinal algoritma her bir genin belli bir olasılık dâhilinde çaprazlandığı bir-biçimli

çaprazlama kullanırken geliştirilen algoritmada, ağırlıkların her bir genin

popülasyondaki diğer bireylere olan benzerliğine göre belirlendiği ağırlıklandırılmış bir-

biçimli çaprazlama kullanılmaktadır. Bu tip çaprazlama ile genetik algoritma daha fazla

yeni durum uzayını araştırabilmektedir. Önerilen algoritma Bulanık Bilgi Kontrolü’nde

ölçeklendirme faktörünün ayarlanması için doğrusal olmayan iki örnek üzerinde test

edilmiştir. Sonuçlar geliştirilen algoritmanın geleneksel kontrol algoritmalarından çok

daha iyi sonuçlar verdiğini göstermiştir. Qin ve ark. [39] ise KAE algoritmasını

Ekonomik Güç Gönderme Problemi’ne uygulamışlar ve KAE algoritmasının geleneksel

genetik algoritmadan daha hızlı ve sağlam olduğunu belirtmişlerdir.

18

Karcı [40] ise genetik algoritmanın performansını artırmak için ‘Arı Çaprazlaması’ adı

verilen 3 yeni çaprazlama yaklaşımı önermiştir. Kraliçe arı diğer arılarla bir birleşme

gerçekleştirdiğinden çaprazlama yapılacak ilk kromozom kraliçe arıya aittir. Birinci

çaprazlama yaklaşımında en iyi uygunluk değerine sahip birey sabitlenmekte ve kalan

kromozomlar her nesilde en az bir kere bu kromozomla çaprazlanmaktadır. İkinci

yaklaşımda en kötü uygunluk değerine sahip birey sabitlenmekte ve yine kalan

kromozomlar her nesilde en az bir kere bu kromozomla çaprazlanmaktadır. Üçüncü

yaklaşımda ise popülasyondaki bireyler uygunluk değerine göre sıralanmakta ve ilk

nesilde sabitlenen birey, bu sıradaki ilk kromozom, ikinci nesilde ikinci kromozom vb.

olmaktadır. Önerilen kromozom tipleri bir-biçimli çaprazlama ile karşılaştırılmıştır.

Yapılan testlerin çoğunda arı çaprazlamasının daha az iterasyon sayısına sahip olduğu

görülmüş ve en kötü çözümlerin bir-biçimli çaprazlama ile elde edildiği belirtilmiştir.

Diğer taraftan bir-biçimli çaprazlama ile popülasyondaki farklılık kısa bir süre içinde

kaybedilmiş, arı çaprazlamasıyla ise farklılık daha uzun süre korunabilmiştir.

2.4.3. Kombinatoryal Optimizasyon Problemlerinde Arı Sistemi Uygulamaları

Tez çalışmasının temel konusu olan kombinatoryal optimizasyon problemlerinde arı

sistemi uygulamaları bu bölümde incelenmiştir. Günümüze kadar yapılan uygulama

çalışmaları ulaştırma problemleri, telekomünikasyon uygulamaları, çizelgeleme

problemi, ekonomik güç gönderme problemi, navigasyon problemi, sağlanabilirlik

problemi, veri madenciliği, kaynak paylaştırma problemi ve dalga boyu atama ve

rotalama problemi şeklinde karşımıza çıkmaktadır. Belirtilen problemlerin çözümü için

önerilen arı sistemine dayalı çözüm yaklaşımları detaylı bir şekilde izleyen bölümlerde

verilmiştir.

2.4.3.1. Ulaştırma Problemleri

Lucic [41] ulaştırma problemlerinin çözümü için Arı Sistemi (AS) algoritmasını

önererek Gezgin Satıcı Problemi (GSP) ve Stokastik Araç Rotalama Problemi (SARP)

üzerinde çalışmıştır.

GSP her noktadan sadece bir kere geçecek minimum uzunluğa sahip turu bulmayı

amaçlayan NP-zor bir problemdir. Önerilen algoritma, arıların nektar topladığı grafik

üzerindeki noktalardan birine, kovanın yerleştirilmesiyle başlar. Yapay arılar belli bir

19

süre boyunca nektar toplarlar ve kovanın pozisyonu rastgele değiştirilir. Arılar yeni

pozisyondan tekrar nektar toplamaya başlarlar ve kovanın yeri tekrar değiştirilir.

Araştırma prosesindeki her bir iterasyon, kovanın değişen bir pozisyonunu göstermekte

ve bir ya da daha fazla uygun çözüm bulunduğunda iterasyon sona ermektedir.

Yapay arılar kesikli zamana sahip bir çevrede yaşamakta, dolayısıyla her bir iterasyon

belli sayıda aşamalardan oluşmaktadır. Arılar herhangi bir aşamada ziyaret edecekleri

noktaları rastgele seçmektedirler. İki nokta arasındaki uzaklık arttıkça bu bağlantının bir

arı tarafından seçilme olasılığı da azalmaktadır. Araştırma prosesinin başında uzaklığın

etkisi az iken iterasyon sayısı arttıkça uzaklığın etkisi de artırılmaktadır. Diğer taraftan

belli bir bağlantıyı ziyaret etmiş arıların toplam sayısı ne kadar büyükse o bağlantının

gelecekte de seçilme olasılığı o kadar yüksek olmaktadır. Bu da kolonideki bireysel

arılar arasındaki etkileşimi göstermektedir.

Bir aşama süresince arılar belli sayıda noktayı ziyaret ederek kısmî bir gezgin satıcı turu

oluşturmakta ve kovana dönmektedir. Daha sonra kovanda bir karar verme prosesine

katılarak, yiyecek kaynağına dönmeden önce dans ederek kovandaki diğer arıları

yönlendirme, diğer arıları yönlendirmeden yiyecek kaynağına geri dönme ya da yiyecek

kaynağını terk etme kararlarından birini vermektedirler. Diğer arıları yönlendirmeden

yiyecek kaynağına geri dönme alternatifi, arıların sosyal böcekler olup aralarında bir

etkileşim olması sebebiyle çok düşük bir olasılığa sahiptir. Bir arının aynı kısmî turu

kullanması ya da onu terk etmesi ise kısmî turun uzunluğuna bağlıdır. Arının bulduğu

tur ne kadar uzunsa, sonraki aşamada aynı turu kullanma olasılığı o kadar azdır. Belli

bir bağlantı üzerindeki nektar miktarı, bağlantının uzunluğuyla ters orantılıdır. Herhangi

bir aşamanın başında eğer bir arı aynı kısmî turu kullanmamaya karar verirse dans

alanına gider ve bir olasılık fonksiyonuna göre başka bir arıyı takip eder. Bu fonksiyon

kısmî turun toplam uzunluğuna ve o turu kaç arının önerdiğine bağlıdır.

Diğer taraftan gerçek hayatta bütün arılar eş zamanlı olarak yiyecek aramaya

çıkmamaktadırlar. Algoritmada da her iterasyonun başında bütün arıların kovanda

olduğu varsayılarak her aşamada yiyecek aramaya çıkan arı sayısı artırılmıştır. Bunlara

ek olarak kovanı tekrar yerleştirmeden önce mevcut iterasyonda elde edilen çözümü

geliştirmek amacıyla 2-opt ve 3-opt sezgisel algoritmaları uygulanmıştır.

20

AS algoritmasının performansı çeşitli GSP’leri üzerinde test edilmiş, sonuçlar 100

noktadan daha az boyuta sahip test problemlerinde AS algoritmasının optimum çözümü

bulabildiğini ve hesaplama süresinin yeterince düşük olduğunu göstermiştir.

Lucic ve Teodorovic [42], Lucic ve Teodorovic [43], Lucic ve Teodorovic [44]

çalışmalarında, test problemleri açısından Lucic [41] çalışmasının çeşitli uzantılarını

sunmuşlardır.

Diğer taraftan SARP ise depoların ve hizmet edilecek noktaların yerleri, araç

kapasiteleri kesin olarak ve hizmet edilecek noktaların talepleri yaklaşık olarak

biliniyorken ulaştırma maliyetini minimize edecek rotanın bulunması olarak

tanımlanmaktadır. Noktalardaki taleplerin belirsiz olması sebebiyle araçlar belli bir

noktaya gidip yetersiz kapasiteden dolayı hizmet veremeyebilmektedir. Bu durumda

aracın depoya geri döndüğü, yükünü boşalttığı, başarısız olduğu noktaya geri döndüğü

ve planlanan tura devam ettiği varsayılmaktadır. Dolayısıyla noktalardaki talepler

rastgele bir değişken olarak düşünülmekte ve gerçek talep değerleri ancak noktalara

gidildiğinde bilinebilmektedir. Lucic [41] SARP’ne iyi çözümler üretebilmek için AS

algoritması ile bulanık mantık yaklaşımını birleştirmiştir. Önerilen yaklaşımın temel iki

adımı vardır. İlk adımda Araç Rotalama Problemi, AS algoritması kullanılarak ilk

noktanın depo olarak düşünüldüğü bir GSP gibi çözülür ve genellikle orijinal problem

için uygun olmayan bir çözüm elde edilir. İkinci adımda ise bir aracın rotasının ne

zaman bitirileceğine ve önceki adımda bulunan çözümü ve bulanık kuralları kullanarak

sıradaki aracın rotasının ne zaman başlatılacağına karar verilir. Geliştirilen model

çeşitli GSP örnekleri üzerinde test edilmiş, elde edilen sonuçlar AS algoritmasıyla elde

edilen en iyi çözümle karşılaştırılmış ve en iyi çözüme çok yakın sonuçlar bulunduğu

görülmüştür. Lucic ve Teodorovic [45] çalışması ise Lucic [41] çalışmasında SARP için

önerilen çözüm yaklaşımını içermektedir.

Teodorovic ve Dell’Orco [46] deterministik kombinatoryal problemlerin yanında

belirsizlik altındaki kombinatoryal problemlerin de çözümü için AS algoritmasının daha

genel bir hâli olan Arı Kolonisi Optimizasyonu (AKO) metasezgiselini önermişlerdir.

Arılar arasındaki iletişimde, yaklaşık sebeplendirme ve bulanık mantık kurallarının

kullanıldığı algoritmanın performansı, Tur Eşleştirme Problemi üzerinde analiz

edilmiştir. Tur Eşleştirme Problemi, araç ve yolcuların toplam hareket uzunluğunun ya

21

da toplam gecikmenin minimize edildiği ya da araç kullanımının dengelendiği, araç ve

yolcuların rota ve çizelgelerinin belirlenmesi problemidir. Önerilen yaklaşımı

destekleyecek teorik sonuçlar olmasa da başlangıç sonuçları umut vericidir. Son olarak

Wong ve ark. [47] ise GSP’nin çözümü için AKO algoritması ile 2-opt yerel arama

sezgiselini birleştirmişlerdir.

2.4.3.2. Telekomünikasyon Uygulamaları

Nakrani ve Tovey [48] internet hizmetlerine dinamik olarak Yer Paylaştırma Problemi

için Bal Arısı algoritmasını önermiştir. Önerilen algoritmada bir internet hizmet

sağlayıcısındaki hizmet sağlayıcı ve HTTP istek kuyrukları, sırasıyla yiyecek arayan

arılar ve yiyecek kaynakları olarak modellenmiştir. Önerilen algoritmanın sonuçları

optimum yer ayırma politikasını hesaplayan bir algoritma, yer ayırma politikasını

hesaplamada önceki bilgileri kullanan açgözlü bir algoritma ve mümkün bütün statik

yer ayırma politikaları arasında en iyiyi bulan optimum-statik algoritmayla

karşılaştırılmıştır. Sonuçlar önerilen algoritmanın statik ya da açgözlü algoritmalardan

daha iyi olduğunu göstermiştir. Wedde ve ark. [49] ise arıların dans dili ve yiyecek

arama davranışlarından etkilenerek Arı Kovanı adı verilen, telekomünikasyon ağında

rotalama için hata toleranslı, uyarlanır ve sağlam bir rotalama protokolü sunmuşlardır.

2.4.3.3. Çizelgeleme Problemi

Chong ve ark. [50], Nakrani ve Tovey [48] çalışmasından etkilenerek NP-zor bir

problem olan Atölye Tipi Çizelgeleme Problemi’nin çözümü için arıların yiyecek arama

davranışını kullanan yeni bir yaklaşım önermişlerdir. Algoritmanın performansı çeşitli

test problemleri üzerinde karınca koloni optimizasyonu ve tabu arama algoritmalarıyla

karşılaştırılmıştır. Test sonuçları, çözüm kalitesi ve hesaplama süresi açısından tabu

aramanın diğer iki sezgiselden daha iyi performans gösterdiğini ortaya koymuştur.

Diğer taraftan arı algoritması, karınca koloni optimizasyonu algoritmasından daha

başarılı olup her iki yöntemin hesaplama süreleri yaklaşık olarak eşittir. Koudil ve ark.

[51] ise AÇO algoritmasını Bölüntüleme ve Çizelgeleme Problemleri’nin

entegrasyonuna uyarlamışlardır. Önerilen yaklaşımın test sonuçları genetik algoritmayla

karşılaştırılmış ve AÇO algoritmasının çözüm kalitesi açısından iyi çözümler ürettiği ve

hesaplama süresi açısından genetik algoritmadan daha iyi olduğu gösterilmiştir.

22

2.4.3.4. Ekonomik Güç Gönderme Problemi

Ekonomik Güç Gönderme Problemi doğrusal olmayan, kısıtlı ve karmaşık bir

optimizasyon problemi olup aynı anda hem maliyeti minimize etmeyi hem de güç

sistemindeki talepleri karşılamayı amaçlamış bir problemdir.

Kumar ve ark. [52] Ekonomik Güç Gönderme Problemi’nin çözümü için Arı

Optimizasyon algoritmasını önermişlerdir. Önerilen yaklaşım ile umut verici sonuçlar

elde edilmiş olup algoritmanın sağlamlığı ve etkinliği ispatlanmıştır. Chokpanyasuwan

ve ark. [53] ise jeneratör kısıtlarına sahip Ekonomik Güç Gönderme Problemi’nin

çözümü için AKO algoritmasını kullanmışlardır. Elde edilen simülasyon sonuçları

benzetimli tavlama, genetik algoritma, tabu arama, parçacık sürü optimizasyonu ile

karşılaştırılmış ve sonuçlar önerilen yaklaşımın daha yüksek kalitede sonuçları daha

hızlı bir şekilde elde ettiğini göstermiştir.

2.4.3.5. Diğer Uygulamalar

Bilimsel yazındaki diğer kombinatoryal optimizasyon problemi uygulamaları

incelendiğinde, Bianco [54] arıların navigasyon davranışından hareketle büyük boyutlu

navigasyon için bir eşlemleme modeli önermektedir. Arılar yiyecek ararken

kilometrelerce yol kat etmekte ve mükemmel bir hassasiyette arama yapabilmektedirler.

Arıların bu davranışından etkilenerek geliştirilen modelle elde edilen test sonuçları

hassas ve doğru arama yapılabildiğini göstermiştir. Drias ve ark. [55] arıların en kolay

ulaşılabilir ve en zengin kaynağı bulabildikleri yiyecek arama davranışlarından

esinlenerek Arı Sürüsü Optimizasyonu algoritmasını geliştirmişler ve NP-tam bir yapıya

sahip Maksimum Ağırlıklandırılmış Sağlanabilirlik Problemi’ne uygulamışlardır.

Benatchba ve ark. [56] ise AÇO algoritmasını bir Veri Madenciliği Problemi’ni

Maksimum Sağlanabilirlik Problemi olarak ifade ederek çözmede kullanmış ve %96

sağlanabilirlik elde etmişlerdir.

Quijano ve Passino [57] Kaynak Paylaştırma Problemi için arıların yiyecek arama

davranışları üzerine kurulu Arılarda Yiyecek Arama algoritmasını geliştirerek çok

bölgeli sıcaklık kontrolü için dinamik kaynak paylaştırma üzerine bir mühendislik

uygulaması gerçekleştirmişlerdir. Markovic ve ark. [58] ise optik ağlarda Maksimum

Rotalama ve Dalga Boyu Atama Problemi’ni çözmek için Teodorovic ve Dell’Orco [46]

23

çalışmasında önerilen AKO algoritmasını kullanmışlardır. Maksimum Rotalama ve

Dalga Boyu Atama Problemi, verilen bir optik ağda talep matrisi ve dalga boyu sayısı

biliniyorken kurulacak ışık yolu sayısını maksimize etmekle ilgilenmektedir. Önerilen

algoritma Avrupa Optik Ağı üzerinde test edilmiş ve sonuçlar doğrusal programlama

gevşetme ve tabu arama algoritması ile karşılaştırılmıştır. Deneysel sonuçlar önerilen

algoritmanın makul bir sürede karşılaştırma yapılan algoritmalardan daha iyi sonuçlar

elde etmiştir.

YAK ve AA algoritmalarına ait bilimsel yazın taraması, algoritmaların detaylarının

verildiği 2.6 ve 2.7 bölümlerinde yer almakta olup, bu bölümde yapılan bilimsel yazın

taraması sonucu oluşturulan özet, araştırmacılar, geliştirilen algoritma ve uygulama

alanları açısından Tablo 2.1’de verilmiştir.

24

Tablo 2.1. Arı sistemi ve uygulama alanları konusundaki çalışmaların sınıflandırılması.
 Araştırmacılar Algoritma Uygulama Alanı

Y
iy

ec
ek

 a
ra

m
a

da
vr

an
ış
ı

Genetik
algoritmaya dayalı Sato ve Hagiwara [22] Arı Sistemi algoritması Fonksiyon optimizasyon problemleri

Sürekli fonksiyon
uygulamaları

Yang [23] Sanal Arı algoritması Fonksiyon optimizasyon problemleri
Karaboğa [7] YAK algoritması Fonksiyon optimizasyon problemleri
Pham ve ark. [6] AA Fonksiyon optimizasyon problemleri

Ç
ift

le
şm

e
da

vr
an
ış
ı

Çiftleşme davranışı

Abbass [24] AÇO 3-SP
Abbass [25] AÇO algoritmasında değişiklik 3-SP
Abbass [26] AÇO algoritmasında değişiklik 3-SP
Teo ve Abbass [27] AÇO algoritmasında değişiklik 3-SP
Teo ve Abbass [28] AÇO algoritmasında değişiklik 3-SP
Chang [29] AÇO algoritması uygulaması Stokastik dinamik programlama problemi
Bozorg Haddad ve ark. [30] BAÇO Su kaynakları yönetimi problemi
Afshar ve ark. [31] BAÇO algoritmasında değişiklik Su kaynakları yönetimi problemi
Arefi ve ark. [32] BAÇO algoritmasında değişiklik Dağıtım ağlarındaki harmonik durum değişkenlerinin tahmini
Marinakis ve Marinaki [33] BAÇO algoritmasında değişiklik Olasılıklı gezgin satıcı problemi
Bozorg Haddad ve Afshar [34] AÇO algoritması uygulaması Su kaynakları yönetimi problemi
Fathian ve ark. [35] BAÇO algoritması uygulaması Veri madenciliği
Horng [36] BAÇO algoritması uygulaması Dijital görüntü sıkıştırmada vektör niceleme

Genetik
algoritmaya dayalı

Jung [37] KAE Kombinatoryal ve fonksiyon optimizasyon problemleri
Azeem ve Saad [38] KAE algoritmasında değişiklik Bulanık bilgi kontrolünde ölçeklendirme faktörünün ayarlanması
Qin ve ark. [39] KAE algoritması uygulaması Ekonomik güç gönderme problemi
Karcı [40] Arı Çaprazlaması

25

K
om

bi
na

to
ry

al
 o

pt
im

iz
as

yo
n

uy
gu

la
m

al
ar
ı Ulaştırma problemi

Lucic [41] AS algoritması GSP ve SARP
Lucic ve Teodorovic [42] AS algoritması GSP
Lucic ve Teodorovic [43] AS algoritması GSP
Lucic ve Teodorovic [44] AS algoritması GSP
Lucic ve Teodorovic [45] AS algoritması+Bulanık Mantık SARP
Teodorovic ve Dell'Orco [46] AKO algoritması Tur eşleştirme problemi
Wong ve ark. [47] AKO algoritması uygulaması GSP

Telekomünikasyon
Nakrani ve Tovey [48] BA algoritması Dinamik yer paylaştırma problemi
Wedde ve ark. [49] Arı Kovanı algoritması Telekomünikasyon ağında rotalama

Çizelgeleme
Chong ve ark. [50] BA algoritmasında değişiklik Atölye tipi çizelgeleme problemi
Koudil ve ark. [51] AÇO algoritması uygulaması Bölüntüleme ve çizelgeleme problemi

Ekonomik güç
gönderme problemi

Kumar ve ark. [52] Arı Optimizasyon algoritması EGG problemi
Chokpanyasuwan ve ark. [53] AKO algoritması uygulaması EGG problemi

Diğer uygulamalar

Bianco [54] Eşlemleme modeli Navigasyon problemi
Drias ve ark. [55] Arı Sürüsü Optimizasyonu algoritması Maksimum ağırlıklandırılmış SP
Benatchba ve ark. [56] AÇO algoritması uygulaması Veri madenciliği problemi
Quijano ve Passino [57] Arılarda Yiyecek Arama algoritması Kaynak paylaştırma problemi
Markovic ve ark. [58] AKO algoritması uygulaması Dalga boyu atama ve rotalama problemi

26

2.5. Arıların Yiyecek Arama Davranışları

Arıların yiyecek arama davranışları, öğrenme, hatırlama ve bilgi paylaşma özellikleri

sürü zekâsında en çok ilgi çeken alanlardan biridir. Arıların yiyecek arama davranışına

dayalı olarak Tereshko [59] tarafından geliştirilen modele göre arı sürülerinde kolektif

zekâ, 3 temel bileşen (yiyecek kaynakları, görevli arılar ve görevli olmayan arılar) ve 2

davranış türü (nektar kaynaklarından yiyecek toplama ve yiyecek kaynağını terk etme)

içerir.

1. Yiyecek kaynakları: Yiyecek kaynağının kalitesi; kovana olan uzaklık, nektar

zenginliği, enerji yoğunluğu ve bu enerjinin çıkarım kolaylığı gibi birçok etkene

bağlıdır. Ancak basitlik açısından bir yiyecek kaynağının kalitesi tek bir

nicelikle ifade edilmektedir.

2. Görevli arılar: Tüketmekte oldukları ya da görevlendirildikleri yiyecek

kaynağıyla ilişkilendirilmişlerdir. İlgili yiyecek kaynağının kalitesi, kovana olan

uzaklık ve yön bilgilerini kendileriyle birlikte taşıyarak bu bilgileri belirli bir

olasılık dâhilinde diğer arılarla paylaşırlar.

3. Görevli olmayan arılar: Sürekli olarak tüketmek için yiyecek kaynağı arayan

görevli olmayan arılar, kâşif ve izci arılar olmak üzere iki türdür. Kâşif arılar arı

sistemi içerisinde tamamen bağımsız davranarak herhangi bir önbilgi

kullanmadan yiyecek kaynağı ararken, izci arılar kovanda bekleyerek görevli

arılarca paylaşılan bilgiler doğrultusunda yeni bir yiyecek kaynağı bulan

arılardır. Yapılan biyolojik çalışmalara göre kovandaki kâşif arı sayısı %5-10

arasında değişmektedir [60].

Arılar arasındaki bilgi değişimi kolektif bilginin en önemli göstergesidir. Kovanın

tamamı ele alındığında bütün kovanlarda genel olarak bulunan belirli bölümler

mevcuttur. Bunlardan en önemlisi bilgi değişiminin gerçekleştirildiği dans alanıdır.

Arılar arasında yiyecek kaynağının kalitesi hakkındaki iletişim, dans alanında

gerçekleştirilmekte ve bu dansa salınım dansı adı verilmektedir. Salınım dansının

uzunluğu, yiyecek kaynağının kârlılığını; güneşe olan açısı, yiyecek kaynağının yerini;

dans esnasında yapılan zig-zag hareketlerinin sayısı, yiyecek kaynağına olan uzaklığı

göstermektedir. Mevcut tüm zengin yiyecek kaynakları hakkındaki bu bilgi, dans

alanında izci arılara sunulmakta ve izci arılar en kârlı kaynağı seçmektedirler. Daha

27

kârlı kaynaklar hakkında daha fazla bilgi paylaşımı olacağından izci arıların kârlı

yiyecek kaynaklarını seçme olasılığı da daha yüksek olmaktadır. Arı sisteminde kendi

kendine örgütlenme aşağıdaki gibi gerçekleşmektedir [7].

• Pozitif geri besleme: Yiyecek kaynaklarındaki nektar miktarı arttıkça o yiyecek

kaynaklarını ziyaret eden izci arı sayısı da artar.

• Negatif geri besleme: Terk edilen yiyecek kaynaklarındaki araştırma prosesi

sonlandırılır.

• Sürekli değişim: Kâşif arılar yeni yiyecek kaynakları keşfetmek için rastgele

arama yaparlar.

• Çoklu etkileşim: Arılar yiyecek kaynağının pozisyonu hakkında edindikleri

bilgileri dans alanında kovandaki diğer arılarla paylaşırlar.

Yiyecek toplayan arıların temel davranış özellikleri görsel olarak Şekil 2.1’de

sunulmaktadır.

28

Şekil 2.1. Arıların yiyecek arama davranışı [41].

Şekil 2.1’de gösterildiği gibi bir arı başlangıçta kovan etrafındaki yiyecek kaynakları

hakkında herhangi bir bilgisi olmadan yiyecek aramaya başlar ve görevli olmayan arı

olarak adlandırılır. Bu tür bir arı için iki alternatif vardır:

• Kâşif arılar: İçsel güdüler sebebiyle, herhangi bir önbilgi olmaksızın, kovan

etrafında kendiliğinden yiyecek aramaya başlayan arılardır (S).

29

• İzci arılar: Başka arılarca yapılan salınım dansını izleyerek yiyecek kaynakları

hakkında bilgi edinen ve daha sonra bu bilgiye göre hareket ederek yiyecek

kaynaklarına ulaşan arılardır (R).

Görevli olmayan arı yiyecek kaynağını bulduktan sonra yiyecek kaynağının yerini

hafızasında tutarak o kaynağı tüketmeye başlar. Dolayısıyla görevli olmayan arı, bir

görevli arı haline gelir. Yiyecek kaynağından bir miktar nektar alarak kovana dönüp

yiyecek depolama alanına nektarı boşaltan bir arı için 4 alternatif vardır ve bu

alternatiflerin gerçekleşme olasılığı yüksek oranda yiyecek kaynağının kalitesine

bağlıdır.

• Nektar miktarı düşük seviyelere inmişse ya da tükenmişse, arı bu yiyecek

kaynağını terk eder ve görevli olmayan bir arıya dönüşür (ES).

• Aynı yiyecek kaynağına dönmeden önce dans ederek kovandaki diğer arıları

bilgilendirir (RF).

• Eğer yiyecek kaynağında yeterli miktarda nektar varsa, bilgi paylaşımında

bulunmadan yiyecek kaynağını tüketmeye devam edebilir (EF).

• Tüketmekte olduğu yiyecek kaynağının kalitesinden tatmin olmayan arı, dans

alanında önerilen yeni bir yiyecek kaynağını aramaya başlar (ER).

2.6. Yapay Arı Kolonisi Algoritması

YAK algoritması arıların yiyecek arama davranışından esinlenen, çok boyutlu ve çok

doruklu optimizasyon problemlerinin çözümü için geliştirilmiş, popülasyon tabanlı bir

algoritmadır. Algoritmada bir yiyecek kaynağı pozisyonu, optimizasyon probleminin

olası bir çözümünü temsil ederken yiyecek kaynağındaki nektar miktarı ise ilgili

çözümün kalitesi yani uygunluk değeri ile ilişkilidir. Bir yapay arı kolonisi görevli, izci

ve kâşif arılar olmak üzere 3 grup arı içermektedir. Koloninin ilk yarısı görevli

arılardan, ikinci yarısı ise izci arılardan oluşmaktadır. Diğer taraftan görevli arı sayısı,

kovan etrafındaki yiyecek kaynağı sayısına yani popülasyondaki çözüm sayısına eşittir.

Kâşif arılar ise bir yiyecek kaynağındaki nektar miktarı tükendiğinde ortaya çıkmakta

ve yiyecek ararken herhangi bir önbilgiye sahip olmadıklarından buldukları yiyecek

kaynağı, düşük arama maliyetine ve ortalama bir kaliteye sahip olmaktadır. Ancak kâşif

30

arılar bazen hiç bilinmeyen zengin bir yiyecek kaynağı da keşfedebilirler. Algoritmanın

temel adımları Tablo 2.2’de verilmektedir.

Tablo 2.2. YAK algoritmasının temel adımları.

1. Görevli arı sayısı kadar yiyecek kaynağını rastgele oluştur

2. Repeat

3. Görevli arıları yiyecek kaynaklarına yerleştir

4. Nektar miktarlarına bağlı olarak izci arıları yiyecek kaynaklarına yerleştir

5. Arılarca terk edilen yiyecek kaynaklarının tüketim prosesini sonlandır

6. Yeni yiyecek kaynaklarının keşfi için kâşif arıları yiyecek kaynaklarına gönder

7. O ana kadar bulunan en iyi yiyecek kaynağını hafızada tut

8. Until (istenen şartlar sağlanana kadar)

YAK algoritmasında her araştırma döngüsü, görevli arıları yiyecek kaynaklarına

göndererek nektar miktarlarının değerlendirilmesi, yiyecek kaynakları hakkındaki

nektar bilgisi paylaşımından sonra izci arılarca yiyecek kaynağı bölgelerinin seçimi ve

nektar miktarlarının değerlendirilmesi, kâşif arıların yeni yiyecek kaynaklarına rastgele

gönderilmesi olmak üzere 3 temel adımdan oluşur. YAK algoritmasına ait akış

diyagramı Şekil 2.2’de sunulmaktadır.

31

Şekil 2.2. YAK algoritması akış diyagramı [61].

YAK algoritmasına ilişkin detaylı adımlar Tablo 2.3’te yer almakta olup kullanılan

notasyonlar aşağıdaki gibi tanımlanmıştır.

P: Görevli arı sayısı (p=1,…,P)

σp: Görevli arı çözümü

pp: İzci arı ataması için p. görevli arıya ait olasılık değeri

MaksIter: Maksimum iterasyon sayısı (durdurma kriteri)

fit(σp): Görevli arı çözümünün uygunluk fonksiyonu değeri

limit: Gelişme olmaksızın geçirilebilecek maksimum iterasyon sayısı

32

Tablo 2.3. YAK algoritmasının detaylı adımları.

1. Başlangıç popülasyonunu oluştur (σp, p=1,…,P)

2. Popülasyonu değerlendir

3. k=1

4. Repeat

5. Görevli arılar için yeni çözümler üret ve değerlendir

6. Görevli arılar için açgözlü seçim prosesini uygula

7. σp çözümleri için olasılık değerlerini (pp) hesapla

8. pp değerlerine bağlı olarak seçilen σp çözümlerini kullanarak, izci arılar için yeni

çözümler üret ve bu çözümleri değerlendir

9. İzci arılar için açgözlü seçim prosesini uygula

10. Kâşif arılar için, varsa, terk edilen çözümleri belirle ve rastgele yeni üretilen

çözümle değiştir

11. O ana kadar elde edilen en iyi çözümü hafızada tut

12. k=k+1

13. Until (k=MaksIter)

Başlangıç aşamasında arılar tarafından bir yiyecek kaynağı kümesi rastgele seçilir ve

nektar miktarları belirlenir. Bir yiyecek kaynağı bulmuş olan görevli arılar kovana

dönerek dans alanında bekleyen arılarla, ilişkili oldukları yiyecek kaynağı hakkındaki

nektar bilgisini paylaşırlar. İzci arılarla bilgi paylaşımından sonra bütün görevli arılar,

ilişkili oldukları yiyecek kaynağına geri dönerek hafızalarındaki bu kaynağın

komşuluğunda yeni bir yiyecek kaynağını görsel bilgi yardımıyla seçerler ve nektar

miktarını değerlendirirler. Eğer komşu çözümün nektar miktarı hafızadaki çözümden

daha iyiyse, hafızadaki çözüm güncellenir; aksi takdirde hafızadaki çözüm

değiştirilmez. İzci arılar ise dans alanında görevli arılarca verilen nektar miktarı

bilgisine bağlı bir olasılıkla (pp) bir yiyecek kaynağı alanı seçerler. Bir yiyecek

kaynağının seçilme olasılığı aşağıdaki gibi hesaplanmaktadır.

௣݌ ൌ
௙௜௧ሺఙ೛ሻ

∑ ௙௜௧ሺఙ೙ሻು
೙సభ

 (2.1.)

Yukarıdaki formülasyonda fit(σp), p. pozisyondaki yiyecek kaynağının nektar miktarı ile

orantılı olup p. çözümün uygunluk değerini göstermektedir. Dolayısıyla p. kaynağın

33

seçilme olasılığı, p. kaynağın nektar miktarının bütün kaynakların nektar miktarları

toplamına oranlanması ile bulunur. Görüldüğü gibi bir yiyecek kaynağındaki nektar

miktarı arttıkça o yiyecek kaynağının izci arılar tarafından tercih edilme olasılığı da

artmaktadır. İzci arılar seçilen alana geldiklerinde, görevli arılarda olduğu gibi görsel

bilgi ile hafızalarındaki kaynağın komşuluğunda yeni bir yiyecek kaynağı seçer ve

nektar miktarını değerlendirirler. Diğer taraftan bir yiyecek kaynağındaki nektar miktarı

tüketildiğinde, kâşif bir arı tarafından rastgele yeni bir yiyecek kaynağı belirlenir ve

önceki çözümle değiştirilir. Başka bir deyişle, YAK algoritmasında yiyecek kaynağını

temsil eden bir çözüm önceden belirlenmiş iterasyon sayısınca (limit) geliştirilememişse

o yiyecek kaynağının tükendiği varsayılır ve ilgili yiyecek kaynağı görevli arı tarafından

terk edilerek, görevli arı bir kâşif arıya dönüştürülür. Belirtmek gerekir ki, YAK

algoritması her iterasyonda en fazla bir kâşif arı çözümüne izin vermektedir. Bahsedilen

bu adımlar önceden belirlenmiş sayıda iterasyon boyunca (MaksIter) tekrarlanır. Sonuç

olarak YAK algoritması P, limit ve MaksIter olmak üzere 3 kontrol parametresine

sahiptir.

Algoritmanın detaylı adımlarından da anlaşıldığı gibi YAK algoritması 4 farklı seçim

prosesi kullanır.

• Dans alanında verilen bilgilere göre umut verici bölgeleri keşfetmek için izci

arıların kullandığı global seçim prosesi

• Hafızadaki yiyecek kaynağının komşuluğunda yeni bir yiyecek kaynağı

belirlemek için görevli arılar ve izci arıların görsel bilgiye dayanarak

gerçekleştirdiği yerel seçim prosesi

• Bütün arılar tarafından gerçekleştirilen, aday yiyecek kaynağının nektar miktarı

mevcut kaynağın nektar miktarından daha iyiyse, arının mevcut kaynak yerine

aday kaynağı hafızasına almasına dayanan açgözlü seçim prosesi

• Kâşif arılarca gerçekleştirilen rastgele seçim prosesi

Bir yapay arı kolonisinde var olan görevli, izci ve kâşif arıların algoritmadaki görevleri

şu şekilde özetlenebilir.

• Görevli arılar: Problemin farklı çözümlerini oluşturan ve bu çözümlerin

kalitesine ilişkin bilgi sahibi olan yapılar

34

• İzci arılar: Görevli arıları takip ederek komşu çözümleri oluşturup yerel aramayı

gerçekleştiren yapılar

• Kâşif arılar: Yerel optimuma yakalanmayı engellemek amacıyla, görevli ve izci

arılardan bağımsız yeni çözüm alanları arayan yapılar

YAK algoritmasının çalışma prensibi ve temel yapısı ilk kez Karaboğa [7] tarafından

önerilmiş olup tek doruklu (tek yerel optimuma sahip) ve çok doruklu (iki ya da daha

fazla yerel optimuma sahip) sayısal optimizasyon problemlerinin çözümü için

kullanılmıştır. Karaboğa [7] çalışmasının bir uzantısı olarak, elde edilen deneysel

çalışma sonuçları Baştürk ve Karaboğa [62] tarafından genetik algoritma ile; Karaboğa

ve Baştürk [8] tarafından genetik algoritma, parçacık sürü optimizasyonu ve parçacık

sürüden esinlenen evrimsel algoritma ile; Karaboğa ve Baştürk [63] tarafından

diferansiyel gelişim, parçacık sürü optimizasyonu ve evrimsel algoritma ile; Karaboğa

ve Akay [64] tarafından Harmoni Arama algoritması, AA ve Geliştirilmiş AA ile

karşılaştırılmıştır. Bu çalışmalar neticesinde YAK algoritmasının çok boyutlu ve çok

doruklu fonksiyonlarda oldukça etkin ve karşılaştırma yapılan algoritmalardan daha iyi

performansa sahip olduğu görülmüştür. Diğer taraftan Karaboğa ve Baştürk [63]

çalışmalarında, farklı kontrol parametresi değerleri altında YAK algoritmasının

performansını incelenmişlerdir. Popülasyon büyüklüğü arttıkça algoritmanın daha iyi

sonuçlar verdiği ancak belirli bir değerden sonra popülasyon büyüklüğü artırılsa da

algoritmanın performansının geliştirilemediği görülmüştür. Limit değerinin ise tek

doruklu fonksiyonlarda algoritmaya bir etkisi yokken çok doruklu fonksiyonlarda limit

değeri yükseldikçe algoritma performansının düştüğü gözlenmiştir. Tüm bu çalışmalar

sonucunda Karaboğa ve Akay [65] YAK algoritmasının performansını

değerlendirebilmek için çok boyutlu, tek doruklu-çok doruklu, düzenli-düzensiz, ayrışır-

ayrışamaz özelliklere sahip test problemleri üzerinde geniş bir deneysel çalışma

sunmuşlardır. Elde edilen sonuçları genetik algoritma, parçacık sürü optimizasyonu

algoritması, diferansiyel gelişim algoritması ve evrimsel stratejiler ile karşılaştırmışlar

ve YAK algoritmasının diğer algoritmalara göre daha iyi ya da benzer sonuçlara

ulaştığını belirtmişlerdir. Diğer taraftan bir optimizasyon algoritmasıyla bir problemi

çözerken algoritma parametrelerinin ayarlanmasının algoritma performansı üzerinde

çok önemli bir etkisi olduğu gerçeğiyle Akay ve Karaboğa [66] kontrol parametrelerinin

YAK algoritmasının performansı üzerindeki etkisini araştırmışlardır. Ayrıca YAK

35

algoritması ile diferansiyel gelişim ve parçacık sürü optimizasyonu algoritmaları da

karşılaştırılarak hangi algoritmanın parametre değerlerine karşı daha duyarlı olduğu

incelenmiştir.

YAK algoritmasının kısıtsız optimizasyon problemlerindeki başarısından sonra

Karaboğa ve Baştürk [67] kısıtlı optimizasyon problemlerinin çözümü için YAK

algoritmasında çeşitli değişiklikler yapmışlardır. Bu değişiklikler temelde seçim

mekanizmasına bağlı olup orijinal YAK algoritmasında kullanılan açgözlü seçim

mekanizması yerine kısıt elde tutma mekanizması adı da verilen Deb seçim

mekanizması [68] kullanılmıştır. Deb seçim mekanizmasına göre iki çözüm şu üç

kritere göre karşılaştırılmaktadır: 1) Uygun bir çözüm, uygun olmayan bir çözüme göre

tercih sebebidir, 2) İki uygun çözüm arasından amaç fonksiyonu değeri daha iyi olan

tercih edilir, 3) İki uygun olmayan çözüm arasından kısıt ihlâli en az olan seçilir.

Popülasyonu uygun çözümlerle başlatmak zaman kaybettirici bir proses olup uygun

çözümler üretmek her zaman mümkün olmayabildiğinden, önerilen YAK

algoritmasında başlangıç popülasyonunda uygunluk şartı yer almamaktadır. Ancak Deb

kuralı sayesinde çözümler uygun alanlara yönlendirilmekte, diğer taraftan da kâşif arılar

ile yeni ve uygun olmayabilen çözümler elde edilerek çeşitlilik sağlanmaktadır. Orijinal

YAK algoritması ile kısıtlandırılmış problemler için geliştirilen YAK algoritmasındaki

diğer bir farklılık ise kâşif arıların terk edilen yiyecek kaynaklarının yerine hemen yeni

bir çözüm üretmesi yerine kâşif arıların yeni yiyecek kaynağı aramaya önceden

belirlenmiş periyotlarda gönderilmesidir. Bu periyot YAK algoritmasının diğer bir

kontrol parametresi olup kâşif üretme periyotu olarak adlandırılmıştır. Her bir kâşif

üretme periyotunda terk edilmiş bir yiyecek kaynağı olup olmadığı kontrol edilmekte,

eğer varsa kâşif arı yeni yiyecek kaynakları bulmak için gönderilmektedir.

Kısıtlandırılmış optimizasyon problemleri için tekrar düzenlenen YAK algoritması

doğrusal, doğrusal olmayan ve karesel amaçlara sahip çeşitli kısıtlandırılmış

optimizasyon problemleri üzerinde test edilerek parçacık sürü optimizasyonu ve

diferansiyel gelişim algoritması ile karşılaştırılmış ve YAK algoritmasının ortalama

değerler açısından karşılaştırma yapılan algoritmalara göre daha etkin olduğu

belirtilmiştir. Diğer taraftan Akay ve Karaboğa [69] tamsayılı programlama

problemlerine YAK algoritmasını uygulayarak algoritmanın performansını çeşitli

parçacık sürü optimizasyonu algoritmaları ve dal-sınır algoritması ile

36

karşılaştırmışlardır. Algoritmanın tamsayılı programlama problemleri üzerindeki

performansını görebilmek için elde edilen çözümler en yakın tamsayı değerine

yuvarlanmıştır. Deneysel çalışma sonuçları YAK algoritmasının tamsayılı programlama

problemlerinde sağlam bir yapıya ve diğer algoritmalara göre karşılaştırılabilir ya da

daha iyi performansa sahip olduğu belirtilmiştir.

YAK algoritmasının farklı uyarlamaları incelenecek olursa Quan ve Shi [70] YAK

algoritmasına anlaşmalı eşlemedeki sabit nokta teoremine dayalı yeni bir arama

operatörü eklemiş ve geliştirilen YAK algoritmasını çeşitli doğrusal, doğrusal olmayan

ve karesel çok değişkenli test fonksiyonlarının çözümünde kullanmışlardır. Tsai ve ark.

[71] ise izci arıların rulet tekerleği yöntemine göre seçildiği orijinal YAK

algoritmasındaki izci arıların seçim aşamasını Newton’un evrensel çekim yasasına göre

tekrar düzenlemişlerdir. Kang ve ark. [72] Ters Analiz Problemi’nin çözümü için,

kısıtlandırılmamış problemlere özel olarak tasarlanmış ve gradyan bilgisi kullanmayan

Nelder-Mead simpleks yöntemi [73] ile YAK algoritmasını birleştiren melez bir

algoritma önermişlerdir. Deneysel sonuçlar önerilen algoritmanın ters analiz için etkin

bir araç olduğunu göstermiştir. Bao ve Zeng [74] orijinal YAK algoritmasındaki izci

arıların erken yakınsamaya sebep olabilen orantısal seçim stratejisi yerine popülasyonun

çeşitliliğini artırabilmek ve erken yakınsamayı engelleyebilmek için sıraya bağlı seçim

stratejisi, bölücü seçim stratejisi [75] ve turnuva seçim stratejilerini [76] algoritmaya

uyarlamışlardır. Elde edilen simülasyon sonuçları geliştirilen YAK algoritmasının

orijinal YAK algoritmasına göre daha iyi sonuçlar verdiğini göstermiştir. Mezura-

Montes ve Cetina-Dominguez [77] kısıtlandırılmış sayısal optimizasyon problemlerinin

çözümü için temel YAK algoritması üzerinde çeşitli değişiklikler yapmışlardır.

Bunlardan ilki kâşif arı davranışlarıyla ilgili olup rastgele çözümler üretmek yerine

mevcut en iyi çözümün komşuluğundaki çözümlerden faydalanmaya dayanmaktadır.

Çünkü kısıtlandırılmış alanlarda çalışılırken, temel YAK algoritmasındaki kâşif arı

davranışları yerel optimum çözümlerden kaçınmaya yardımcı olamamakta ve genellikle

uygun olmayan çözümler üreterek araştırmayı tetikleyici özelliğe sahip olamamaktadır.

YAK algoritmasına ikinci bir katkı ise Hamida ve Schoenauer [78] tarafından önerilen

ve tolerans değerine bağlı dinamik bir mekanizmayı eşitlik kısıtlarına uygulamaktır.

Böylece araştırmanın başlarında eşitlik kısıtları kolaylıkla sağlanabilecek, araştırmanın

ileriki iterasyonlarında ise tolerans değeri azaltılarak algoritmanın uygun çözümler

37

bulması sağlanacaktır. Geliştirilen yöntem ile orijinal YAK algoritmasının

performansının iyileştiği belirtilmiştir. Duan ve ark. [79] doğada yaşayan canlı

organizmaların evrim prensibinden esinlenen ve kombinatoryal optimizasyon

problemlerinin yaklaşık çözümleri için kullanılan, kuantum hesaplama prensiplerine

dayalı Kuantum Evrimsel algoritması ile YAK algoritmasını birleştirilerek melez bir

algoritma önermişlerdir. Deneysel çalışma sonuçları önerilen algoritmanın karmaşık

optimizasyon problemlerinin çözümü için uygun ve etkin olduğunu göstermiştir. Tsai ve

ark. [80] orijinal YAK algoritmasındaki izci hareketlerini evrensel yerçekimi yasasına

dayandırarak interaktif YAK algoritmasını önermişlerdir. Geliştirilen algoritma, orijinal

YAK ve parçacık sürü optimizasyonu algoritmaları ile karşılaştırılmış ve interaktif

YAK algoritmasının diğerlerine göre daha üstün performansa sahip olduğu

belirtilmiştir.

YAK algoritması, geliştiricileri tarafından yapay sinir ağlarının eğitiminde de

kullanılmıştır. Karaboğa ve Öztürk [81] ileri bildirimli sinir ağlarının eğitiminde,

makine öğrenmede sıkça kullanılan farklı veri kümelerinin sınıflandırılması için YAK

algoritmasından faydalanmışlardır. Algoritmanın performansı gradyan tabanlı

algoritmalar olan geri yayılım ve Levenberg-Marquardt algoritmaları ile popülasyon

tabanlı algoritmalar olan parçacık sürü optimizasyonu, diferansiyel gelişim ve genetik

algoritma ile karşılaştırılmıştır. Deneysel çalışma sonuçları YAK algoritmasının

sınıflandırma problemlerinde ileri bildirimli sinir ağlarının eğitimine başarıyla

uygulanabildiğini göstermiştir. YAK algoritmasının diğer uygulama alanları, radyal

dağıtım sistemlerinde güç kaybının en küçüklenmesini amaçlayan ağ yapılandırması

[82], dolaysız doğrusal transformasyon yöntemi [83], dijital IIR filtre tasarımı [84],

yaprak-kısıtlı minimum kapsayan ağaç problemi [85], maksimum mekanik işleme

hızına erişme amacına sahip optimum proses parametreleri kombinasyonunu bulma

problemi [86], radyal tabanlı fonksiyon ağlarının eğitimi [87], gömülü riske sahip

tedarik zinciri maliyetinin en küçüklenmesi [88], özdeş olmayan iş büyüklüklerine sahip

tek toplu işleme makinesinde çizelgeleme [89], en düşük serbest enerjiye sahip protein

yapısını bulma problemi [90], NP-Tam bir problem olan sudoku bulmacalarının çözümü

[91], çok katmanlı algılayıcı yapay sinir ağının eğitimi [92] olarak karşımıza

çıkmaktadır. Son olarak ise Karaboğa ve Akay [93] arı sürüsü davranışları ve bu

38

davranışlara dayalı geliştirilen algoritmaları içeren bir sınıflandırma ve inceleme

çalışması sunmuşlardır.

2.7. Arı Algoritması

AA popülasyon tabanlı bir arama algoritması olup sürü zekâsına dayalı meta sezgisel

yöntemlerden birisidir. Algoritma gerçek arıların yiyecek arama davranışlarını

modellemeye dayanmakta olup literatürde kombinatoryal ve genellikle sürekli

optimizasyon problemlerinin çözümünde kullanılmıştır.

AA’nın genel yapısı Tablo 2.4’te detaylı olarak verilmiştir.

Tablo 2.4. AA’nın temel adımları.
1. Rastgele çözümlerle başlangıç arı popülasyonunu oluştur

2. Popülasyonun uygunluğunu değerlendir

3. While (durdurma kriteri sağlanana kadar)

// Yeni arı popülasyonunun oluşturulması

4. Komşuluk araması için bölgeleri seç

5. Arıları seçilen bölgelere gönder ve uygunluklarını değerlendir

6. Her bir bölgedeki en iyi uygunluk değerine sahip arıyı seç

7. Kalan arıları rastgele arama için ata ve uygunluklarını değerlendir

8. End While

Doğadaki arılarda yiyecek arama işlemini önce kâşif arılar başlatır ve rastgele yiyecek

kaynakları seçerler. Ayrıca yiyecek toplama süreci boyunca popülasyonun belli bir

yüzdesi kâşif arılar olarak kalır. Benzer olarak AA da n adet kâşif arının araştırma

uzayına rastgele yerleştirilmesi ile başlar. Kâşif arılarca ziyaret edilen noktaların

uygunlukları 2. adımda değerlendirilir. Doğadaki arılara bakıldığında, bir arı kolonisi

çok sayıda yiyecek kaynağını tüketmek için birçok yönde ve büyük uzaklıklar boyunca

arama yapabilmektedir. Prensipte nektar miktarı fazla olan ve düşük bir çabayla

tüketilebilen yiyecek kaynakları daha fazla arı tarafından, az miktarda nektara sahip

yiyecek kaynakları ise daha az arı tarafından ziyaret edilecektir. Bu gerçekten hareketle

4. adımda en iyi uygunluk değerine sahip arılar (m) komşuluk araması için seçilir. 5.

adımda seçilen arıların komşuluğunda araştırma başlar ve daha umut verici çözümleri

temsil eden en iyi e bölgeye, seçilen diğer bölgelere (m-e) göre daha fazla arı

39

gönderilerek daha detaylı arama yapılır. Yeni popülasyonun oluşturulması için her

bölgedeki en iyi uygunluk değerine sahip arı 6. adımda seçilir. 7. adımda

popülasyondaki diğer arılar (n-m) yeni potansiyel çözümler elde etmek için rastgele

olarak araştırma uzayına atanırlar. Böylece her iterasyonun sonunda yeni popülasyon,

seçilen her bölgenin temsilcileri ve rastgele arama yapan kâşif arılar olmak üzere iki

parçadan oluşacaktır. Diğer taraftan AA kâşif arı sayısı ile temsil edilen popülasyon

boyutu (n), ziyaret edilen n bölge içinden seçilen bölge sayısı (m), seçilen m bölge

içindeki en iyi bölge sayısı (e), en iyi e bölgeye gönderilen izci arı sayısı (nep), seçilen

diğer bölgelere (m-e) gönderilen izci arı sayısı (nsp), komşuluk arama boyutu (ngh) ve

durdurma kriteri olmak üzere birçok parametre içermektedir. AA’na ait akış diyagramı

Şekil 2.3’te sunulmaktadır.

Şekil 2.3. AA akış diyagramı [61].

AA’nın çalışma prensibi ve temel yapısı ilk kez Pham ve ark. [6] tarafından önerilmiş

olup çok boyutlu ve çok doruklu sayısal test fonksiyonları üzerinde algoritmanın

etkinliği ve sağlamlığı gösterilmiştir. Elde edilen sonuçlar deterministik simpleks

yöntemi, stokastik benzetimli tavlama, genetik algoritma ve karınca koloni

40

optimizasyonu algoritmaları ile karşılaştırılmıştır. Önerilen algoritma, karşılaştırma

yapılan optimizasyon algoritmalarına göre gradyan bilgisini çok az kullandığından yerel

optimumdan kolayca kurtulabilmektedir. Dolayısıyla AA genel olarak optimizasyon

hızı ve sonuçların doğruluğu açısından diğer tekniklerden daha üstün performans

göstermiştir.

AA geliştiricileri tarafından birçok alana uygulanmış olup bu çalışmalardan bazıları

izleyen şekilde özetlenmiştir. İlk olarak Pham ve ark. [94] ahşap kaplama levhalarındaki

kusurların belirlenmesinde AA ile yapay sinir ağlarını optimize etmişlerdir. Bu

çalışmada arılar nöronlar arasındaki bağlantılara yerleştirilmiş olup ağırlıkların optimum

değerini aramaktadır. Yapay sinir ağındaki ağırlıkların optimizasyonu için geri yayılım

algoritması yerine kullanılan AA’nın amacı en küçük hata fonksiyonu değerine sahip

arıyı bulmaktır. Elde edilen deneysel çalışma sonuçları geri yayılım ve minimum

uzaklık sınıflandırıcı [95] algoritmaları ile karşılaştırılmış ve AA’nın doğru sonuçlara

daha hızlı ulaştığı belirtilmiştir. Benzer şekilde Pham ve ark. [96] çok katmanlı

algılayıcı ağlarının eğitiminde, Pham ve ark. [97] istatistiksel proses kontrolünde

kullanılan kontrol grafiklerinde örüntü tanıma için radyal temel fonksiyon ağının

eğitiminde, Pham ve ark. [98] ise yine kontrol grafiklerinde örüntü tanıma için öğrenen

vektör nicelendirme ağının eğitiminde AA algoritmasını kullanmış ve geri yayılım

algoritmasına göre daha iyi sonuçlar elde edilmiştir.

AA’nın diğer uygulama alanları ise hücresel imalat sistemlerinde parça aileleri ve

makine hücrelerinin eş zamanlı belirlenmesine dayanan hücre oluşturma problemi [99],

tek makinede çizelgeleme problemi [100], bulanık mantık kontrolörlerinin ayarlanması

[101], veri sınıflandırma [102], çok boyutlu optimizasyon problemlerinden standart bir

mekanik tasarım problemi olan kaynaklı kiriş yapısının tasarımı [103], ahşap

kusurlarının sınıflandırılmasında özellik belirleme ve parametre optimizasyonu [104],

bir veri kümesini farklı gruplara ayırabilmek için belirlenmesi gereken niteliklerin

sayısını azaltmaya yönelik nitelik seçimi problemi [105], baskı devre kartı montaj

planlama problemi [106], bulanık kümeleme [107], Coca Cola için şişe şekli tasarımı

[108], bir robot kolunun ters kinematiğinin modellenmesi için çok katmanlı algılayıcı

yapay sinir ağının eğitimi [109], mekanik tasarım optimizasyonu [110, 111] ve çok

amaçlı ekonomik güç gönderme problemi [112, 113] olarak karşımıza çıkmaktadır.

41

AA’nın farklı uyarlamalarına bakacak olursak Pham ve Haj Darwish [114] orijinal

AA’ndaki kontrol parametresi sayısını indirgemeye yönelik olarak bulanık açgözlü

seçim mekanizmasını kullanmışlardır. Geliştirilen algoritma ile m, e, nep ve nsp

parametrelerinin kullanıcı tarafından belirlenmesi yerine önerilen mekanizma ile bu

parametre değerleri otomatik olarak seçilmektedir. Pham ve ark. [115] ise kimya

mühendisliği alanında dinamik optimizasyon problemlerinin çözümü için orijinal

AA’ndaki rastgele aramayı tamamlayacak şekilde mutasyon, sünme, çaprazlama, ara

değerleme ve dış değerleme operatörlerini algoritmaya dâhil etmişlerdir. Önerilen

algoritma karınca koloni optimizasyonu algoritması ile karşılaştırılmış ve önerilen

algoritmanın daha üstün performans gösterdiği belirtilmiştir. Pham ve Sholedolu [116]

parçacık sürü optimizasyonu algoritmasının erken yakınsama problemini çözebilmek

için ilgili algoritmaya AA’nı da dâhil ederek melez bir yapı geliştirmişler ve önerilen

algoritmayı çok katmanlı yapay sinir ağlarının eğitiminde kullanmışlardır. Deterministik

problemlerin AA ile çözümde tek değerlendirme ve sabit uygunluk değeri yeterli iken,

stokastik optimizasyon problemlerinde aynı noktada çok sayıda deneme ve ortalama bir

uygunluk değeri hesaplaması gerekmektedir. Bu bilgiden hareketle Pham ve ark. [117]

stokastik optimizasyon problemlerinin çözümü için AA’na yeni bir uygunluk

değerlendirme mekanizması eklemişlerdir. Bu mekanizma ile her arı için tek bir

denemedeki uygunluk değeri yerine birçok deneme sonucunda elde edilen uygunluk

değerlerinin ortalaması kullanılmıştır. Pham ve Castellani [61] AA’na araştırma hızını

ve doğruluğu artıracak iki prosedür eklemişlerdir. Bunlardan ilki komşuluk arama

boyutunun uyarlanır hâle getirilmesidir. Bu mekanizma, yerel arama ile daha iyi

uygunluk değerleri elde edildiğinde komşuluk boyutunun sabit tutulmasına, uygunluk

değerlerinde bir gelişme olmadığında ise komşuluk boyutunun azaltılmasına

dayanmaktadır. AA’nda ikinci iyileştirme ise YAK algoritmasında olduğu gibi bir

çözüm belirli bir iterasyon boyunca geliştirilemediğinde rastgele oluşturulan yeni bir

çözümle değiştirilmesini içermektedir. Önerilen algoritmanın etkinliği farklı

karmaşıklık derecelerine sahip fonksiyon optimizasyon problemleri üzerinde evrimsel

algoritma, parçacık sürü optimizasyonu ve YAK algoritması ile karşılaştırılmıştır. AA

neredeyse bütün test problemlerinde optimum ya da optimuma yakın sonuçlar elde

etmiş ve deneysel sonuçlar AA’nın doğruluk, öğrenme hızı ve sağlamlıktaki gücünü

ispatlamıştır.

3. BÖLÜM

 GENELLEŞTİRİLMİŞ ATAMA PROBLEMİ ÇÖZÜM YAKLAŞIMLARI

3.1. Giriş

Çalışmanın bu bölümünde genellikle sürekli optimizasyon problemlerine uygulanmış

olan AA ve YAK algoritmasının karmaşık tamsayılı optimizasyon problemlerindeki

performansını inceleyebilmek için NP-zor bir problem olan GAP’nin çözümünde

kullanılmasına yer verilmiştir. Ayrıca GAP’nin AA ile çözümünde kullanılan komşuluk

yapılarının algoritma üzerindeki etkisi incelenmiştir.

3.2. Genelleştirilmiş Atama Problemi

GAP’nin amacı minimum toplam maliyetle belirli bir iş kümesini belirli ajanlar

kümesine atamayı içermektedir. Her ajan sınırlı kapasiteye sahip tek bir kaynağı temsil

etmekte olup her iş mutlaka tek bir ajana atanmalıdır. Bu atama esnasında ajan

kapasitesinden belirli bir miktar kullanılmaktadır. GAP bilgisayar ve iletişim ağları,

yerleştirme problemleri, araç rotalama, grup teknolojisi ve çizelgeleme gibi birçok

uygulama alanına sahiptir. GAP’ne ait geniş inceleme çalışmaları ve uygulama alanları

Martello ve Toth [118, 119], Cattrysse [120], Cattrysse ve ark. [121] ve Öncan [122]

çalışmalarında sunulmaktadır. Bilimsel yazında GAP’nin çözümü için Ross ve Soland

[123], Fisher ve ark. [4], Martello ve Toth [119], Savelsbergh [124], Nauss [125]

tarafından çeşitli kesin çözüm algoritmaları önerilmiştir. Diğer taraftan GAP’nin

çözümü için birçok sezgisel yöntem de geliştirilmiştir. Martello ve Toth [118, 119]

yerel arama ve açgözlü yöntemin birleşiminden oluşan bir algoritma sunarken, Osman

[126] GAP’nin çözümü için benzetimli tavlama ve tabu arama algoritmalarını

geliştirmiştir. Chu ve Beasley [127] eniyilik ve uygunluğu aynı anda iyileştirmeye

çalışan bir genetik algoritma yaklaşımı önermişlerdir. Farklı değişken

43

derinlik arama algoritmaları [128-130], çıkarım zinciri tabanlı tabu arama algoritmaları

[131-133], açgözlü rastgele uyarlanır sezgiseline dayalı maks-min karınca sistemi [134],

yol birleştirme yaklaşımları [135-140], karınca koloni optimizasyonu [141], kısıt-oran

sezgiseli ile birleştirilmiş genetik algoritma [142], diferansiyel gelişim algoritması [143]

son yıllarda GAP için önerilmiş diğer meta-sezgisel yaklaşımlar olarak verilebilir.

AA ve YAK algoritmasının uygulama alanı olarak GAP’nin seçilmesi ise Fisher ve ark.

[4] tarafından ispatlandığı gibi problemin NP-zor yapısından kaynaklanmaktadır. Diğer

taraftan Martello ve Toth [119] GAP’nin NP-tam bir yapıya sahip olduğunu da

ispatlamıştır. Bu çalışmada geliştirilen arı algoritmalarının GAP üzerindeki

performansı, algoritmaların karmaşık kısıtlandırılmış kombinatoryal optimizasyon

problemlerindeki becerisi için iyi bir gösterge olacaktır.

GAP tamsayılı programlama modeli, kullanılan notasyonlarla birlikte aşağıdaki şekilde

formüle edilmektedir.

I: İşler kümesi (i=1,…,n)

J: Ajanlar kümesi (j=1,…,m)

bj: j ajanının kaynak kapasitesi (bj≥0)

aij: i işi j ajanına atandığında ihtiyaç duyulan kaynak miktarı (aij≥0)

cij: i işini j ajanına atama maliyeti (cij≥0)

xij: Karar değişkeni (xij=1, i işi j ajanına atanırsa; 0, diğer durumlarda)

min ෍ ෍ ܿ௜௝ݔ௜௝

௠

௝ୀଵ

௡

௜ୀଵ

 ݎ݈ܽݐıݏıܭ

෍ ܽ௜௝ݔ௜௝

௡

௜ୀଵ

൑ ௝ܾ 1 ൑ ݆ ൑ .ሺ3.1 ݆׊ ݉ ሻ

෍ ௜௝ݔ

௠

௝ୀଵ

ൌ 1 1 ൑ ݅ ൑ .ሺ3.2 ݅׊ ݊ ሻ

44

௜௝ݔ א ሼ0,1ሽ 1 ൑ ݅ ൑ 1 ,݅׊ ݊ ൑ ݆ ൑ ݆׊ ݉

Yukarıdaki formülasyonda amaç fonksiyonu toplam atama maliyetini temsil ederken

birinci kısıt kümesi ajanlara ait kaynak kapasitesiyle ilişkili olup ikinci kısıtlar kümesi

her bir işin tek bir ajana atanmasını sağlamaktadır.

3.3. Genelleştirilmiş Atama Problemi için Geliştirilmiş Arı Algoritması

GAP’nin çözümü için çıkarım zinciri komşuluk mekanizmasına sahip AA geliştirilmiş,

geniş bir deneysel çalışma neticesinde önerilen algoritma sonuçları bilimsel yazında

sunulan meta-sezgisel algoritma sonuçları ile karşılaştırılmış ve önerilen algoritmanın

iyi sonuçlar verdiği tespit edilmiştir. Geliştirilmiş AA’nın detaylı adımları Tablo 3.1’de

yer almakta olup kullanılan notasyonlar aşağıdaki gibi tanımlanmıştır.

S: Kâşif arı sayısı (s=1,…,S)

σs: Kâşif arı çözümü

fit(σs): Kâşif arı çözümünün uygunluk fonksiyonu değeri

αj: j. ajanın kapasitesinden 1 birim fazla kullanma maliyeti

e: En iyi görevli arı sayısı

nep: e adet görevli arının her birine gönderilecek izci arı sayısı

nsp: P-e adet görevli arının her birine gönderilecek izci arı
sayısı (nsp<nep)

σls: Yerel arama ile bulunan komşu çözüm, ls={kaydırma,
çiftkaydırma, çıkarımzinciri, eniyiizci}

fit(σls): Yerel arama ile bulunan komşu çözümün uygunluk
fonksiyonu değeri, ls={kaydırma, çiftkaydırma,
çıkarımzinciri, eniyiizci}

LimitSayacı(σp): σp çözümü için gelişme olmaksızın geçirilen iterasyon
sayısı

σeniyi: En iyi çözüm

fit(σeniyi): En iyi çözümün uygunluk fonksiyonu değeri

45

Tablo 3.1. GAP için geliştirilmiş AA adımları.
1. Parametreleri başlangıç durumuna getir
2. ARUAP algoritması ile S adet kâşif arı çözümü oluştur
3. Kâşif arı çözümlerinin uygunluk fonksiyonlarını değerlendir

௦ሻߪሺݐ݂݅ ൌ ෍ ෍ ܿ௜௝ݔ௜௝ ൅ ቌ෍ ݏ௝݉ܽ݇ߙ ൝0, ෍ ܽ௜௝ݔ௜௝ െ ௝ܾ

௡

௜ୀଵ

ൡ
௠

௝ୀଵ

ቍ
௡

௜ୀଵ

௠

௝ୀଵ

4. I=0
5. Do

 Artan şekilde sıralas=1….Sfit(σs) ve en iyi P adet çözümü görevli arı olarak
 belirle
 En iyi e adet görevli arıyı seç
 En iyi e adet görevli arının her birine nep adet izci arı ata
 Kalan P-e adet görevli arının her birine nsp adet izci arı ata
 k=0
 Do
 Kaydırma
 Eğer fit(σkaydırma) < fit(σp) ise σp = σkaydırma
 Çift Kaydırma
 Eğer fit(σçiftkaydırma) < fit(σp) ise σp = σçiftkaydırma
 Görevli arılara atanmış her bir izci arı için
 {
 Çıkarım Zinciri
 Eğer fit(σçıkarımzinciri) < fit(σp) ise σeniyiizci = σçıkarımzinciri
 }
 Eğer fit(σeniyiizci) < fit(σp) ise σp =σeniyiizci ve LimitSayacı(σp)=0,
 Aksi takdirde LimitSayacı(σp)=LimitSayacı(σp)+1
 En iyi çözümü güncelle
 Eğer (σp uygun ve fit(σp) < fit(σeniyi) ise σeniyi =σp
 Eğer (LimitSayacı(σp)>limit) ise ARUAP algoritması ile yeni bir kâşif
 arı çözümü oluştur
 αj değerlerini güncelle, fit(σp) değerlendir
 k=k+1
 While (k<P)

 ARUAP algoritması ile S-P adet yeni kâşif arı çözümleri oluştur.
 I=I+1
 While (I=MaksIter)

Geliştirilmiş AA, parametrelerin başlangıç değerlerine atanması ile başlar (S, P, e, nep,

nsp, ÇZ-Uzunluğu, MaksIter, limit, αj) ve genellikle uygun çözümler üreten ve Bölüm

3.3.1’de detayları verilecek olan ARUAP algoritması ile S adet başlangıç kâşif arı

çözümü oluşturulması ile devam eder. Oluşturulan çözümler kümesinden P adet iyi

çözüm görevli arı çözümleri olarak belirlenir. P adet iyi çözüm arasından seçilen e adet

çözüm, en iyi çözümler olarak belirlenir. Daha detaylı bir komşuluk araması için bu en

iyi çözümlere nep adet izci arı gönderilir. Daha az sayıda izci arı ise kalan P-e adet

46

çözüme gönderilir. Yerel arama için her görevli arıya sırasıyla kaydırma (Bölüm

3.3.2.1) ve çift kaydırma (Bölüm 3.3.2.2) komşuluk mekanizmaları uygulanır. Daha iyi

bir çözüm bulunmuşsa görevli arı çözümü güncellenir. Her bir görevli arıya atanan izci

arılar, çıkarım zinciri komşuluk yapısı (Bölüm 3.3.2.3) ile komşu çözümler oluşturur.

En iyi izci arı orijinal görevli arı ile karşılaştırılır, eğer daha iyiyse görevli arı çözümü

güncellenir. Diğer taraftan görevli arı çözümleri, o ana kadar bulunan en iyi çözümle

karşılaştırılır ve gerekli şartlar sağlanmışsa (uygun ve bir önceki en iyi çözümden daha

iyi bir çözüm elde edilmişse) en iyi çözüm güncellenir. Görevli arı çözümü limit adet

iterasyon boyunca geliştirilememişse ARUAP algoritması kullanılarak yeni bir kâşif arı

çözümü oluşturulur. Bütün bu işlemler sonucunda uygun bir çözüm bulunamamışsa

Tablo 3.5’te verilen algoritma kullanılarak αj değerleri artırılır; en az bir uygun çözüm

bulunmuşsa αj değerleri aynı algoritma kullanılarak azaltılır. Böylece uygun bir çözüm

bulunamamışsa araştırma bölgesi farklılaştırılmaya, en az bir uygun çözüm

bulunduğunda ise bu çözüm etrafında daha detaylı bir arama yapılabilmesi sağlanmaya

çalışılmıştır. Komşuluk araması tamamlandıktan sonra S-P adet yeni çözüm

oluşturularak başlangıç popülasyon sayısının tamamlanması sağlanır. Böylece bir

sonraki iterasyona ait popülasyon, güncellenen P adet görevli arı çözümü ile S-P adet

yeni kâşif arı çözümünden oluşmaktadır.

Bu çalışmada orijinal AA’nın bazı adımları GAP’nin çözümü için farklılaştırılmıştır. Bu

farklılıklardan ilki sürekli optimizasyon problemlerinin çözümü için önerilen orijinal

AA’na ait komşuluk boyutu parametresi yerine GAP için tasarlanmış çıkarım zinciri

komşuluk mekanizmasına ait ÇZ-Uzunluğu parametresinin kullanılmasıdır. Çıkarım

zinciri komşuluğunda gerçekleştirilecek kaydırma hareketi sayısını gösteren ÇZ-

Uzunluğu komşuluk boyutunu belirlemektedir. Diğer bir farklılık ise kâşif arılarla ilgili

olup orijinal AA’nda kâşif arılar algoritma sonlandırılana kadar çözüm uzayında arama

yapmaya devam ederken Geliştirilmiş AA’nda buna ek olarak bir araştırma

bölgesindeki nektar miktarı yeterince azaldığında yeni kâşif arıların algoritmaya dâhil

edilmesine karar verilmiştir. Diğer bir deyişle belirli bir iterasyon ya da süre sonunda

geliştirilemeyen bir çözüm varsa o çözüm tekrar oluşturulmaktadır. Geliştirilmiş

AA’nın önemli adımlarının detayları sonraki bölümlerde verilmiştir.

47

3.3.1. Arı Kolonisinin Oluşturulması

Başlangıç arı kolonisi, rastgele çözümler yerine genellikle uygun çözümler üreten

Açgözlü Rastgele Uyarlanır Arama Prosedürü (ARUAP, [134]) kullanılarak

oluşturulmuştur. ARUAP algoritmasında gerçekleştirilen seçim işlemi bir olasılık

fonksiyonuna bağlı olarak yapılmakta ve bu fonksiyon her iterasyon sonunda iyi

çözümlere göre güncellenmektedir. İlgili algoritmanın adımları Tablo 3.2’de yer

almakta olup algoritmanın kısaca işleyişi ve kullanılan notasyonlar aşağıdaki gibidir.

• Her bir adımda atanacak bir sonraki iş seçilir.

• Seçilen işin atanacağı ajan belirlenir.

• Bütün işler bir ajana atanana kadar bu iki adım tekrarlanır.

Sj: j ajanına atanan işler kümesi

Li: i işinin atanabileceği ajanlar kümesi

pij: i işinin j ajanına atanma olasılığı

σ(i): i işinin atanmış olduğu ajan

Tablo 3.2. Açgözlü rastgele uyarlanır arama prosedürü adımları.
1. Sj =Ø, ׊j=1,…,m olsun
2. Her iş için bütün ajanları içeren bir Li ajanlar listesi oluştur,

başlangıçta Li ={1,…,m} ∀i olsun
3. İşlerin herhangi bir sırasını ele al, i=1
4. While (bütün işler atanana kadar) Repeat

 Li listesindeki bütün ajanlar için aşağıdaki olasılık fonksiyonunu hesapla
 (minimum maliyete sahip ajanın seçilme olasılığı daha yüksek olacaktır)

௜௝݌ ൌ ௝ܾ ܽ௜௝⁄
∑ ܾ௟ ܽ௜௟⁄௟א௅೔

, ݆ א ௜ܮ

 i işinin atanacağı ajanı bu olasılık değerine göre rastgele seç
 (seçilen ajan j* olsun)
 i işini j* ajanına ata, ௝ܵכ ൌ ௝ܵכ ׫ ሼ݅ሽ
 Eğer ∑ ܽ௜௝כ ൐ ௝ܾכ௜אௌೕכ ise j* ajanını bütün listelerden sil. 4 nolu adımı
 tekrarla (kapasite kısıtı sağlanmayabilir)
 i=i+1

5. i∈Sj ise σ(i)=j

3.3.2. Komşuluk Yapıları

GAP’nin AA ile çözümünde kullanılan kaydırma, çift kaydırma ve çıkarım zinciri

komşuluk yapıları aşağıdaki bölümlerde detaylı olarak açıklanmıştır.

48

3.3.2.1. Kaydırma Komşuluk Yapısı

Kaydırma komşuluk yapısında komşu çözümler, orijinal çözümdeki bir işin ajan

atamasının değiştirilmesi sonucu elde edilir (i işi j ajanından çıkarılarak w ajanına atanır

w≠j). İlgili komşuluğun işleyişi Tablo 3.3’te özetlenmiş ve Şekil 3.1’de örnek bir

uygulama verilmiştir.

Tablo 3.3. Kaydırma komşuluk yapısının işleyişi.
1. S={i|i∈{1,…,n}}, i=1, σkaydırma =σp olsun
2. Eğer S=Ø ise dur; aksi takdirde σ’ =σp, i işi σ’ den çıkarılır, S=S-{i}
3. j* ajanı j∈J/{σ(i)} kümesi içinden ܿ௜௝ ൅ ,൛0ݏ௝݉ܽ݇ߙ ൫∑ ܽ௜௝௜אூ,ఙሺ௜ሻୀ௝ ൯ ൅ ܽ௜௝ െ ௝ܾൟ
 fonksiyonunu minimize eden ajan olsun

i işini j* ajanına ata, σ’ çözümünü al ve fit(σ') hesapla
4. Eğer fit(σ')< fit(σkaydırma) ise σkaydırma = σ’
5. i = i+1, 2 nolu adıma dön
6. σkaydırma çözümünü al

Şekil 3.1. Kaydırma komşuluk yapısı örneği.

Yukarıdaki örnekte 2 nolu ajana atanmış olan 5. iş, kaydırma hareketinden sonra 1 nolu

ajana atanmıştır.

3.3.2.2. Çift Kaydırma Komşuluk Yapısı

Bu komşuluk yapısı çıkarım zinciri komşuluğunun özel bir biçimi olup iki kaydırma

hareketi gerçekleştirildiğinden çıkarım zinciri uzunluğunun 2 olduğu durumdur (i işi j

ajanından çıkarılarak w ajanına atanır w≠j, w ajanından k işi çıkarılır ve q ajanına atanır

q≠w). Çift kaydırma komşuluğu kendi içinde, iki farklı işin ajan atamalarının kendi

arasında yer değiştirilmesine dayanan, değiştirme komşuluk yapısını da içerir (orijinal

çözümde i işi j ajanına, k işi w ajanına atanmış iken, i işinin ataması w ajanına, k işinin

ataması da j ajanına olacak şekilde değiştirilir). Çift kaydırma ve çıkarım zinciri

komşuluk yapıları arasındaki temel fark, çıkarım zinciri komşuluğunda her kaydırma

49

hareketi için işler B listesinden seçilirken çift kaydırma komşuluğunda yeni bir

kaydırma hareketinin bütün işler listesi kullanılarak belirlenmesidir. Bu komşuluk

yapısı Yagiura ve ark. [133] çalışmasında önerilen çift kaydırma mekanizmasının

basitleştirilmiş hâlidir. Şekil 3.2’de çift kaydırma komşuluk yapısına ait bir örnek

verilmiş olup 5 nolu ajana atanmış olan 13. iş 2 nolu ajana, 2 nolu ajana atanmış olan 5.

iş 1 nolu ajana kaydırılarak iki kaydırma hareketi gerçekleştirilmiştir.

Şekil 3.2. Çift kaydırma komşuluk yapısı örneği.

3.3.2.3. Çıkarım Zinciri Komşuluk Yapısı

Diğer komşuluk yapılarına göre daha güçlü ancak daha karmaşık olan çıkarım zinciri

komşuluk yapısında bir komşu çözüm, sayısı zincir uzunluğu ile belirlenen çoklu

kaydırma hareketlerinin gerçekleştirilmesi ile elde edilir. i0 işinin atanmış olduğu σ(i0)

ajanından çıkarılıp serbest bir iş haline getirildiğini varsayalım. Bu çıkarım hareketi

sonucunda σ(i0) ajanının kullanılabilir kaynak miktarı artmıştır. Mevcut(i0), i0 işinin

çıktığı ajanda kalan kaynak miktarı olup aşağıdaki gibi tanımlanmıştır.

ሺ݅଴ሻݐݑܿݒ݁ܯ ൌ ቊ
ܽ௜బ,ఙሺ௜బሻ െ ௜బ,ఙሺ௜బሻܽ ݎሻ ݁ğ݁ߪఙሺ௜బሻሺ݌ ൐ ሻߪఙሺ௜బሻሺ݌
ܽ௜బ,ఙሺ௜బሻ ݀݅ğ݁ܽ݀ݎ݈ܽ݉ݑݎݑ݀ ݎ ሺ3.3. ሻ

50

ሻߪ௝ሺ݌ ൌ ݏ݇ܽ݉ ቐ0, ቌ ෍ ܽ௜௝
௜אூ,ఙሺ௜ሻୀ௝

ቍ െ ௝ܾቑ ሺ3.4. ሻ

ܽ௞,ఙሺ௜బሻ ൑ ሺ݅଴ሻ eşitsizliğini sağlayan işler içinden σ(i0) ajanına kaydırılması enݐݑܿݒ݁ܯ

kârlı olan işin i1 olduğu varsayımıyla i1 işi σ(i0) ajanına kaydırılır ve bu çözüme

referans yapısı adı verilir. Bu çıkarım hareketinden sonra serbest iş i0 Tablo 3.4’te

(Adım-3) verilen uygunluk fonksiyonuna olan etkisine göre başka bir ajana atanmaya

çalışılacaktır. Bu aşamaya da deneme hareketi adı verilir. Bir sonraki çıkarım hareketi

deneme hareketleri sonucu elde edilen çözümlere değil, bir önceki referans yapısına

uygulanmaktadır. Çıkarım zinciri komşuluğunun genel işleyişi Tablo 3.4’te, örnek bir

uygulama ise Şekil 3.3’te verilmiştir.

Tablo 3.4. Çıkarım zinciri komşuluk yapısının işleyişi.
1. S=Ø olsun
2. Eğer S=I'

 ya da l=ÇZ-Uzunluğu ise dur; aksi takdirde rastgele bir i0∈I'\S seç,
S=SU{i0} ve σ'=σ olsun (i0 işi σ(i0) ajanından çıkarılır)

3. j* ajanı j∈J\{σ(i0)} kümesi içinden

ܿ௜బ௝ ൅ ݏ௝݉ܽ݇ߙ ቐ0, ቌ ෍ ܽ௜௝
௜אூ,ఙሺ௜ሻୀ௝

ቍ ൅ ܽ௜బ௝ െ ௝ܾቑ

fonksiyonunu minimize eden ajan ve l=0 olsun
4. Eğer B(il)\{ik|k≤l}=Ø ise 2 nolu adıma dön, aksi takdirde l=l+1 olsun ve 5 nolu

adıma geç.
5. il∈B(il-1)\{ik|k≤l-1} listesinden rastgele bir iş seç ve σ'(il)=σ(il-1) (il işinin çıkarım

hareketi)
 σ'(i0)=σ(il) (i0, σ(il) ajanına eklenir - deneme hareketi)
 σ'(i0)=j* (i0, j* ajanına eklenir - deneme hareketi)

6. 4 nolu adıma dön.

Tablo 3.4’te kullanılan çeşitli fonksiyon ve kümeler aşağıdaki gibi tanımlanmıştır.

′ܫ ൌ ൛݇ א ݄׌หܫ א .ݏ ܫ .ݐ ܽ௛,ఙሺ௞ሻ ൑ ሺ݄ሻߪ ݁ݒ ሺ݇ሻݐݑܿݒ݁ܯ ് .ሺ݇ሻൟ ሺ3.5ߪ ሻ

,ሺ݅ݎ݋݇ݏ ݆ሻ ൌ ܿ௜௝ ሺ3.6. ሻ

ሺ݅ሻݎ݋݇ݏ݅ݕ݅݊݁ ൌ ݉݅݊൛ݎ݋݇ݏሺ݇, ሺ݅ሻሻห݇ߪ א ,′ܫ ሺ݇ሻߪ ് ௞,ఙሺ௜ሻܽ݁ݒሺ݅ሻߪ ൑ .ሺ݅ሻൟ ሺ3.7ݐݑܿݒ݁ܯ ሻ

ሺ݅ሻܤ ൌ ൛݇ א ,൫݇ݎ݋݇ݏห′ܫ ሺ݅ሻ൯ߪ ൌ ,ሺ݅ሻݎ݋݇ݏ݅ݕ݅݊݁ ሺ݇ሻߪ ് ௞,ఙሺ௜ሻܽ݁ݒሺ݅ሻߪ ൑ .ሺ݅ሻൟ ሺ3.8ݐݑܿݒ݁ܯ ሻ

51

 başka bir ajandan σ(i) ajanına kaydırılması mümkün işler kümesini; skor(i,j), i işini j ,′ࡵ

ajanına kaydırma maliyetini; ݁݊݅ݎ݋݇ݏ݅ݕሺ݅ሻ, ࡵ′kümesindeki kaynak gereksinimi

Mevcut(i)’den az olan işler içinden en düşük skor değerine sahip işin skor değerini; B(i),

ise en iyi skor değerine sahip işler kümesini temsil etmektedir.

Şekil 3.3. Çıkarım zinciri komşuluk yapısı örneği.

Yukarıdaki şekilde 5. iş 2 nolu ajandan çıkarılarak serbest iş haline getirilmiştir. Kaynak

kullanım miktarı Mevcut(5) değerinden az olan işler arasında en iyi skor değerine sahip

olan 13. iş kaydırma hareketi için seçilir. 13. iş 5 nolu ajandan çıkarılarak 2 nolu ajana

atanır ve bu çözüme referans yapısı adı verilir. Sonraki adımda uygunluk fonksiyonuna

olan etkisine göre, serbest olan 5. iş 1 nolu ajana atanır ve deneme hareketi

gerçekleştirilmiş olur. Elde edilen bu çözüm ÇZ-Uzunluğu=2 için oluşturulmuştur ve

çift kaydırma hareketi olarak adlandırılır.

ÇZ-Uzunluğu>2 ise aynı adımlar önceki referans yapısı üzerinde tekrarlanır. Örneğe

dönecek olursak, Mevcut(13) değeri güncellenerek bir sonraki kaydırma hareketi için 2.

iş seçilir. 2. iş 5 nolu ajana atandıktan sonra yine uygunluk fonksiyonuna olan etkisine

göre serbest olan 5. iş 2 nolu ajana atanır. Elde edilen bu çözüm ise ÇZ-Uzunluğu=3 için

oluşturulmuş durumdur ve önceden belirlenen zincir uzunluğunca aynı adımlar

tekrarlanarak tam bir komşu çözüme ulaşılır.

52

Yagiura ve ark. [133] tabu arama algoritması ile birlikte kaydırma, çift kaydırma ve

çıkarım zinciri komşuluk yapılarını kullanmıştır. Bu tez çalışmasında ise yerel arama

stratejileri daha farklı bir şekilde uygulanmıştır.

• Mevcut çalışmada skor fonksiyonu olarak maliyetler (cij) tercih edilmiştir.

Yagiura ve ark. [133] çalışmasında verilen diğer skor fonksiyonlarının

kullanımıyla bazı problemlerde daha iyi çözümler ya da daha düşük CPU

süreleri elde edilebilmektedir. Ancak bütünlük açısından tüm problemler için

minimum maliyet değeri kullanılmıştır.

• Kaydırma komşuluk yapısı her iş için tekrarlanmakta ve en iyi gelişme, yeni

çözüm olarak kabul edilmektedir.

• Çift kaydırma mekanizması, çıkarım zinciri uzunluğunun 2 olduğu durum

şeklinde basitleştirilmiş ve aynı zamanda değiştirme deneme hareketine de izin

verilmiştir. En iyi gelişmeyi veren çift kaydırma hareketini belirleyebilmek için

I' kümesindeki her iş için ilgili mekanizma çalıştırılmıştır.

• Çıkarım zinciri komşuluk yapısının karmaşıklığı ve uzun işlem süresi sebebiyle

ilk gelişme, yeni çözüm olarak kabul edilmiştir. Aynı çözüm üzerinde çıkarım

zinciri komşuluğuyla farklı çözümler elde eden izci arıların her birinin farklı bir

işten başlayarak kaydırma hareketlerini gerçekleştirmesi sağlanmıştır.

• Tablo 3.5’te detayları verilen ceza katsayısının (αj) uyarlanır kontrolü

mekanizması, önerilen algoritmada da kullanılmıştır. Ancak αj başlangıç

değerleri, algoritmanın yakınsama yeteneğini görebilmek için 1 olarak

belirlenmiştir.

• AA popülasyon tabanlı bir arama stratejisi kullanmakta ve arama stratejisinin bu

özelliğinin problem karmaşıklığı arttıkça daha faydalı olması beklenmektedir.

3.3.3. Uygunluk Fonksiyonu

GAP’nde optimum çözümlerin uygun olmayan çözümlere çok yakın olduğu tespit

edildiği için [133] araştırma alanında uygun olmayan çözümlerin de yer almasına izin

verilmiştir. Böylece uygun çözümlere sahip bölgelerin dar olduğu ya da ayrı ayrı birkaç

53

dar bölgeden oluştuğu durumlarda fayda sağlanmıştır. Bu doğrultuda başlangıç ve

komşu çözümlerin oluşturulması aşamasında, uygun olmayan çözümlerin üretilmesine

izin verilmiştir. Dolayısıyla uygunluk fonksiyonu olarak, GAP’ne ait amaç

fonksiyonuna uygun olmayan çözümlerin cezalandırılmasını amaçlayan bir ceza terimi

eklenmiştir. Böylece GAP üzerine yapılan çalışmaların çoğunda olduğu gibi uygun

olmayan alanlarda da çalışmaya izin verilmiş, ancak uygun olmayan çözümler uygun

olmama derecesine göre cezalandırılmıştır.

௦ሻߪሺݐ݂݅ ൌ ෍ ෍ ܿ௜௝ݔ௜௝ ൅ ቌ෍ ݏ௝݉ܽ݇ߙ ൝0, ෍ ܽ௜௝ݔ௜௝ െ ௝ܾ

௡

௜ୀଵ

ൡ
௠

௝ୀଵ

ቍ
௡

௜ୀଵ

௠

௝ୀଵ

 ሺ3.9. ሻ

Uygunluk fonksiyonundaki ilk terim toplam atama maliyetini, ikinci terim ise ceza

fonksiyonunu temsil etmektedir. Eğer bir çözüm uygun değilse o çözüme ait uygunluk

fonksiyonunun ikinci terimi pozitif değer alacak, dolayısıyla araştırma uygun bir

çözüme doğru yönlendirilecektir. Diğer taraftan eğer kapasite aşılmamışsa ikinci terim 0

değerini alacaktır. αj parametresinin değeri, uygun olmayan çözümlerin cezalandırılması

ve araştırmayı uygun çözümlere yönlendirebilmek amacıyla programın çalıştırılması

süresince değiştirilmekte yani ceza maliyeti uyarlanır olarak kontrol edilmektedir.

3.3.4. Ceza Katsayısının Uyarlanır Kontrolü

Ceza katsayısının uyarlanır kontrolü Yagiura ve ark. [133] çalışması esas alınarak

gerçekleştirilmiş olup detaylı adımlar Tablo 3.5’te verilmiştir. Komşuluk yapıları için

bir iterasyonun tamamlanmasından sonra αj değerleri güncellenmektedir. Böylece

uygun bir çözüm bulunduğunda bu çözüm etrafında daha detaylı bir arama

yapılabilmesi sağlanmaktadır.

54

Tablo 3.5. αj parametresinin uyarlanır kontrolü.
1. İzci arı komşuluklarında uygun bir çözüm bulunamamışsa aşağıdaki

formülasyonla bütün j∈J için αj değerlerini artır

௝ߙ ൌ

ە
۔

௝ߙۓ ቀ1 ൅ ∆. ௝ݍ
௔௥௧ışሺߪሻቁ, ߙ௝ ൐ 0

∆.
௝ݍ

௔௥௧ışሺߪሻ݉݅݊௛א௃ሼܾ௛ߙ௛|ܾ௛ߙ௛ ൐ 0ሽ

௝ܾ
, ݀݅ğ݁ܽ݀ݎ݈ܽ݉ݑݎݑ݀ ݎ

∆ൌ ൞

ܽ݀ıܾ݉üݕü݈݇üğüܽݐݎışı

௃א௝ݏ݇ܽ݉ ቚݍ௝
௔௥௧ışሺߪሻቚ

, ݁ğ݁ݏ݇ܽ݉ ݎ௝א௃หݍ௝
௔௥௧ışሺߪሻห ൐ 0

0, ݀݅ğ݁ܽ݀ݎ݈ܽ݉ݑݎݑ݀ ݎ

௝ݍ

௔௥௧ışሺߪሻ ൌ /ሻߪ௝ሺ݌ ௝ܾ

2. İzci arı komşuluklarında en az bir uygun çözüm bulunmuşsa bütün αj
değerlerini, qartış(σ) değeri qazalış(σ) ve adımbüyüklüğüartışı değeri
adımbüyüklüğüazalışı olacak şekilde yukarıdaki formülasyonları kullanılarak
azalt.

,

௝ݍ
௔௭௔௟ışሺߪሻ ൌ ൜

െ1, ݁ğ݁݌ ݎ௝ሺߪሻ ൌ 0
0, ݀݅ğ݁ݎ ܽ݀ݎ݈ܽ݉ݑݎݑ݀

3.4. Genelleştirilmiş Atama Problemi için Geliştirilmiş Yapay Arı Kolonisi
Algoritması

GAP’nin çözümü için çıkarım zinciri komşuluk mekanizmasına sahip YAK algoritması

geliştirilmiştir. Tablo 3.6’da Geliştirilmiş YAK algoritmasının detaylı adımları

verilmiştir.

55

Tablo 3.6. GAP için geliştirilmiş YAK algoritması adımları.
1. Parametreleri başlangıç değerlerine ata
2. ARUAP algoritması ile P adet başlangıç görevli arı çözümü oluştur (σp)
3. Görevli arı çözümlerinin uygunluk fonksiyonlarını değerlendir

௣ሻߪሺݐ݂݅ ൌ ෍ ෍ ܿ௜௝ݔ௜௝ ൅ ቌ෍ ݏ௝݉ܽ݇ߙ ൝0, ෍ ܽ௜௝ݔ௜௝ െ ௝ܾ

௡

௜ୀଵ

ൡ
௠

௝ୀଵ

ቍ
௡

௜ୀଵ

௠

௝ୀଵ

4. I=0
5. Do

 Uygunluk değerleriyle ilişkili olasılıkları hesapla (en küçükleme için)

௣݌ ൌ
ቀ∑ 1

௣ሻൗߪሺݐ݂݅ ቁ
ିଵ

௣ሻߪሺݐ݂݅

 Hesaplanan olasılıklara göre, görevli arıların yiyecek kaynaklarına
 gönderilecek izci arı sayısını belirle, pp*P

 k=0
 Do
 Kaydırma
 Eğer fit(σkaydırma)<fit(σp) ise σp=σkaydırma
 Çift Kaydırma
 Eğer fit(σçiftkaydırma)<fit(σp) ise σp=σçiftkaydırma
 Görevli arılara atanmış her bir izci arı için
 {
 Çıkarım Zinciri
 Eğer fit(σçıkarımzinciri)<fit(σp) ise σeniyiizci=σçıkarımzinciri
 }
 Eğer fit(σeniyiizci)<fit(σp) ise σp=σeniyiizci ve LimitSayacı(σp)=0,
 Aksi takdirde LimitSayacı(σp)=LimitSayacı(σp)+1
 En iyi çözümü güncelle
 Eğer (σp uygun ve fit(σp) < fit(σeniyi) ise σeniyi =σp
 Eğer (LimitSayacı(σp)>limit) ise ARUAP algoritması ile yeni bir kâşif
 arı çözümü oluştur
 αj değerlerini güncelle, fit(σp) değerlendir
 k=k+1
 While (k<P)
 Kâşif arı çözümleri ile görevli arı çözümlerini karşılaştır
 ARUAP algoritması ile S adet kâşif arı çözümü oluştur (ߪ௦)
 Artan şekilde sıralas=1…Sfit(σs)
 Azalan şekilde sıralap=1…Pfit(σp)
 r=0
 Repeat
 Eğer fit(ߪௌି௥) < fit(σP-r) ise σP-r = ߪௌି௥
 r=r+1

 Until (r=S)
 I=I+1
 While (I=MaksIter)

56

Geliştirilmiş YAK algoritması, parametrelerin başlangıç değerlerine atanması başlar ve

ARUAP algoritması ile P adet başlangıç görevli arı çözümü oluşturulması ile devam

eder. Görevli arı çözümlerine, çözümün kalitesi ile orantılı sayıda izci arı atanır. Yerel

arama için her görevli arıya sırasıyla kaydırma ve çift kaydırma komşuluk

mekanizmaları uygulanır. Daha iyi bir çözüm bulunmuşsa görevli arı çözümü

güncellenir. Her bir görevli arıya atanan izci arılar, çıkarım zinciri komşuluk yapısı ile

komşu çözümler oluşturur. En iyi izci arı orijinal görevli arı ile karşılaştırılır, eğer daha

iyiyse görevli arı çözümü güncellenir. Diğer taraftan görevli arı çözümleri o ana kadar

bulunan en iyi çözümle karşılaştırılır ve gerekli şartlar sağlanmışsa (uygun ve bir önceki

en iyi çözümden daha iyi bir çözüm elde edilmişse) en iyi çözüm güncellenir. Görevli

arı çözümü limit adet iterasyon boyunca geliştirilememişse ARUAP algoritması

kullanılarak yeni bir kâşif arı çözümü oluşturulur. Bütün bu işlemler sonucunda uygun

bir çözüm bulunamamışsa Tablo 3.5’te verilen algoritma kullanılarak αj değerleri

artırılır; en az bir uygun çözüm bulunmuşsa αj değerleri aynı algoritma kullanılarak

azaltılır. İzci arılar tarafından gerçekleştirilen yerel aramaya paralel olarak, kâşif arılar

da yeni çözümler araştırmaktadırlar. Elde edilen kâşif arı çözümleri en düşük uygunluk

değerine sahip görevli arı çözümleri ile karşılaştırılır ve kâşif arılarla daha iyi bir çözüm

elde edilmişse görevli arı çözümleri güncellenir. Son olarak algoritma adımları önceden

belirlenmiş iterasyon sayısı kadar tekrarlanır.

Geliştirilmiş YAK algoritmasında başlangıç çözümlerinin oluşturulması, kullanılan

komşuluk yapıları, uygunluk fonksiyonu ve ceza katsayısının uyarlanır kontrolü

aşamaları Geliştirilmiş AA’ndakiler ile aynıdır.

3.5. Deneysel Çalışma

3.5.1. Problem Tipleri

Test problemleri gap1-gap12 (gap1-gap6/kolay, gap7-gap12/zor) ve gapa-gapd (gapa-

gapb/kolay, gapc-gapd/zor) problemlerini içermektedir. Diğer taraftan gap1-12

problemleri, gapa-gapd problemlerine göre daha kolay problemlerdir. gap1-12

problemleri 5 ajan-15 iş ile 10 ajan-60 iş arasında değişen problemler kümesine sahip

olup her problem kümesi 5 farklı problem içermekte; dolayısıyla çözülmesi gereken 60

problem bulunmaktadır. Bu problem kümeleri en büyükleme formunda olup optimum

57

değerleri bilinmektedir. gapa-gapd problemleri ise 5 ajan-100 iş ile 20 ajan-200 iş

arasında değişen daha zor problemler olup her problem kümesi 6 farklı problem

içermektedir. Dolayısıyla çözülmesi gereken 24 problem vardır. Bu gruptaki problemler

en küçükleme formunda olup sadece en iyi değerleri bilinmektedir. Bütün test

problemleri OR-Kütüphanesinden (http://mscmga.ms.ic.ac.uk/jeb/orlib/gapinfo.html)

temin edilmiştir. gapa-gapd test problemlerinin detayları aşağıda verilmiştir.

gapa: aij∈U(5,25) ve tamsayı, cij∈U(10,50) ve tamsayı, bj=0.6(n/m)15+0.4R şeklinde

hesaplanmaktadır.

ܴ ൌ ௃א௝ݏ݇ܽ݉ ∑ ܽ௜௝ ve ܬ௜ ൌ ݉݅݊൫݆หܿ௜௝ ൑ ܿ௞௝, ݇׊ א ூ,௃೔సೕא൯௜ܬ ሺ3.10. ሻ

gapb: aij ve cij gapa’daki gibi hesaplanırken bj gapa problemlerinde verilen değerlerin

%70’i şeklinde hesaplanmaktadır.

gapc: aij ve cij gapa’daki gibi hesaplanırken ௝ܾ ൌ 0.8 ∑ ܽ௜௝ ݉⁄௜ୀூ şeklinde

hesaplanmaktadır.

gapd: aij∈U(1,100) ve tamsayı, cij = 111-aij+e, e∈U(-10,10) ve tamsayı, ௝ܾ ൌ

0.8 ∑ ܽ௜௝ ݉⁄௜ୀூ

3.5.2. Geliştirilmiş Arı Algoritması Sonuçları

Geliştirilmiş AA, C# programlama dilinde kodlanmış ve 1.6 GHz CPU ve 512 MB

RAM özelliklere sahip Intel Pentium CoreDuo PC kullanılarak gap1-12 ve gapa-d

problemleri üzerinde analiz edilmiştir.

Geliştirilmiş AA parametreleri aşağıdaki gibi tanımlanmıştır:

• Kâşif arı sayısı (S)

• Görevli arı sayısı (P)

• En iyi görevli arı sayısı (e)

• Her bir e adet görevli arıya gönderilecek izci arı sayısı (nep)

• Her bir P-e adet görevli arıya gönderilecek izci arı sayısı (nsp)

• Çıkarım zinciri komşuluk yapısının uzunluğu (ÇZ-Uzunluğu)

• Maksimum iterasyon sayısı (MaksIter)

58

• Gelişme olmaksızın geçirilebilecek maksimum iterasyon sayısı (limit)

• Ceza katsayısının başlangıç değeri (αjb)

• adımbüyüklüğüazalışı > 0

• 0 < adımbüyüklüğüartışı < 1

Test problemlerinin yapısı gereği Tablo 3.7’de gösterildiği gibi üç farklı parametre

kümesi belirlenmiştir. Bu parametreler bilimsel yazında verilen genel öneriler ve

deneyimlere göre belirlenmiştir.

Tablo 3.7. GAP için geliştirilmiş AA parametrelerinin değerleri.
Parametreler gap1-12 gapa, gapb gapc, gapd
S 50 100 200
P 20 40 80
e 10 20 40
nep 5 5 5
nsp 2 2 2
ÇZ-Uzunluğu 25 50 75
MaksIter 250 500 1000
limit 25 50 100
αjb 1 1 1
adımbüyüklüğüazalışı 0.1 0.1 0.1
adımbüyüklüğüartışı 0.01 0.01 0.01

Bilimsel yazındaki en iyi sonuçlar genellikle algoritmanın 5 kez çalıştırılması sonucu

elde edildiğinden, daha âdil bir karşılaştırma için Geliştirilmiş AA da her test problemi

için 5 kez çalıştırılmış ve elde edilen minimum, ortalama, maksimum ve standart sapma

değerleri ile 5 koşma sonucu elde edilen en iyi çözüm sayısı Tablo 3.8’de verilmiştir.

Tablo 3.8’deki sonuçlar gapa-d problemlerini içermekte olup, gap1-12 problemlerine ait

sonuçlar karşılaştırma bölümünde verilecektir.

59

Tablo 3.8. GAP için geliştirilmiş AA ile elde edilen gapa-d sonuçları.
Problem Minimum Ortalama Maksimum Standart sapma En iyi çözüm sayısı
gapa1 1698 1698 1698 0.00 5/5
gapa2 3235 3235 3235 0.00 5/5
gapa3 1360 1360 1360 0.00 5/5
gapa4 2623 2623 2623 0.00 5/5
gapa5 1158 1158 1158 0.00 5/5
gapa6 2339 2339 2339 0.00 5/5
gapb1 1843 1843 1843 0.00 5/5
gapb2 3552 3552 3552 0.00 5/5
gapb3 1407 1407 1407 0.00 5/5
gapb4 2827 2827 2827 0.00 5/5
gapb5 1166 1166 1166 0.00 5/5
gapb6 2339 2339 2339 0.00 5/5
gapc1 1931 1931 1931 0.00 5/5
gapc2 3456 3456.60 3457 0.54 2/5
gapc3 1402 1402 1402 0.00 5/5
gapc4 2806 2806.60 2807 0.54 2/5
gapc5 1243 1243.60 1244 0.54 2/5
gapc6 2392 2392.60 2393 0.54 2/5
gapd1 6353 6354.40 6356 1.34 2/5
gapd2 12744 12746.20 12748 1.78 1/5
gapd3 6356 6358.80 6362 2.58 1/5
gapd4 12442 12445.20 12447 2.04 1/5
gapd5 6221 6226.60 6232 4.61 1/5
gapd6 12276 12280 12284 2.91 1/5

3.5.3. Geliştirilmiş Yapay Arı Kolonisi Algoritması Sonuçları

Önerilen YAK algoritmasının performans analizi için C# programlama dili ve aynı

özelliklere sahip PC kullanılarak gap1-12 ve gapa-gapd problem grupları

değerlendirilmiştir.

Geliştirilmiş YAK algoritmasının parametreleri aşağıdaki gibi tanımlanmıştır.

• Görevli arı sayısı (P)

• Kâşif arı sayısı (S)

• Çıkarım zinciri komşuluk yapısının uzunluğu (ÇZ-Uzunluğu)

• Gelişme olmaksızın geçirilebilecek maksimum iterasyon sayısı (limit)

• Maksimum iterasyon sayısı (MaksIter)

• Ceza katsayısının başlangıç değeri (αjb)

• adımbüyüklüğüazalışı > 0

• 0 < adımbüyüklüğüartışı < 1

Test problemlerinin yapısı, bilimsel yazında belirtilen ilkeler ve deneyimlere göre 3

farklı parametre kümesi tanımlanmıştır (Tablo 3.9). Diğer taraftan kolonideki kâşif arı

60

sayısı, biyolojik araştırmalar baz alınarak [60] görevli arı sayısının %10’u şeklinde

belirlenmiştir.

Tablo 3.9. GAP için geliştirilmiş YAK algoritması parametrelerinin değerleri.
Parametreler gap1-gap12 gapa, gapb gapc, gapd
P 50 100 250
S 5 10 25
ÇZ-Uzunluğu 25 50 75
limit 25 50 100
MaksIter 250 500 1000
αjb 1 1 1
adımbüyüklüğüazalışı 0.1 0.1 0.1
adımbüyüklüğüartışı 0.01 0.01 0.01

Önerilen YAK algoritması, gapa-gapd problemleri için yine 5 kez çalıştırılarak elde

edilen minimum, ortalama, maksimum ve standart sapma değerleri Tablo 3.10’da

verilmiştir.

Tablo 3.10. GAP için geliştirilmiş YAK algoritması ile elde edilen gapa-gapd sonuçları.
Problem Minimum Ortalama Maksimum Standart sapma En iyi çözüm sayısı
gapa1 1698 1698 1698 0 5/5
gapa2 3235 3235 3235 0 5/5
gapa3 1360 1360 1360 0 5/5
gapa4 2623 2623 2623 0 5/5
gapa5 1158 1158 1158 0 5/5
gapa6 2339 2339 2339 0 5/5
gapb1 1843 1843 1843 0 5/5
gapb2 3552 3552 3552 0 5/5
gapb3 1407 1407 1407 0 5/5
gapb4 2828 2828.40 2829 0.54 3/5
gapb5 1166 1166 1166 0 5/5
gapb6 2339 2339 2339 0 5/5
gapc1 1931 1931 1931 0 5/5
gapc2 3456 3457 3458 0.70 1/5
gapc3 1402 1402 1402 0 5/5
gapc4 2806 2806.40 2807 0.54 3/5
gapc5 1243 1243 1243 0 5/5
gapc6 2392 2392.80 2394 1.09 3/5
gapd1 6357 6358.40 6360 1.34 2/5
gapd2 12750 12750.60 12751 0.54 2/5
gapd3 6362 6362.40 6363 0.54 3/5
gapd4 12454 12455.80 12460 2.38 1/5
gapd5 6235 6237 6239 1.87 1/5
gapd6 12293 12297.40 12299 2.60 1/5

3.5.4. Geliştirilmiş Arı Algoritması ve Yapay Arı Kolonisi Algoritmalarının

Bilimsel Yazındaki Algoritmalarla Karşılaştırılması

Tez çalışmasının bu bölümünde öncelikle gap1-12 daha sonra da gapa-d problem

kümesi için karşılaştırma sonuçlarına yer verilmiştir. Tablo 3.11 bilimsel yazındaki

61

farklı algoritmalar ve önerilen AA ve YAK algoritmalarına ait gap1-12 sonuçlarının

optimum değerden ortalama sapmalarını vermektedir. En düşük ortalama sapma

değerleri koyu renklendirilmiş ve görüldüğü gibi her iki algoritma da bütün problem

kümeleri için algoritmanın her çalışmasında optimum değere ulaşmıştır. Bilimsel

yazındaki diğer 12 algoritmayla karşılaştırıldığında önerilen algoritmaların daha iyi

performans gösterdiği aşağıdaki tabloda açıkça görülmektedir.

62

Tablo 3.11. Geliştirilmiş AA ve YAK algoritması ile elde edilen gap1-gap12 sonuçlarının karşılaştırılması.
 AA YAK MTH FJVBB FSA MTBB SPH LT1FA RSSA TS6 TS1 GAb GAa ASH+LS+TS
gap1 0.00 0.00 5.43 0.00 0.00 0.00 0.08 1.74 0.00 0.00 0.00 0.00 0.00 -
gap2 0.00 0.00 5.02 0.00 0.19 0.00 0.11 0.89 0.00 0.24 0.10 0.00 0.01 -
gap3 0.00 0.00 2.14 0.00 0.00 0.00 0.09 1.26 0.00 0.03 0.00 0.00 0.01 -
gap4 0.00 0.00 2.35 0.83 0.06 0.18 0.04 0.72 0.00 0.03 0.03 0.00 0.03 -
gap5 0.00 0.00 2.63 0.07 0.11 0.00 0.35 1.42 0.00 0.04 0.00 0.00 0.10 -
gap6 0.00 0.00 1.67 0.58 0.85 0.52 0.15 0.82 0.05 0.00 0.03 0.01 0.08 -
gap7 0.00 0.00 2.02 1.58 0.99 1.32 0.00 1.22 0.02 0.02 0.00 0.00 0.08 0.00
gap8 0.00 0.00 2.45 2.48 0.41 1.32 0.23 1.13 0.10 0.14 0.09 0.05 0.33 0.04
gap9 0.00 0.00 2.18 0.61 1.46 1.06 0.12 1.48 0.08 0.06 0.06 0.00 0.17 0.00
gap10 0.00 0.00 1.75 1.29 1.72 1.15 0.25 1.19 0.14 0.15 0.08 0.04 0.27 0.01
gap11 0.00 0.00 1.78 1.32 1.10 2.01 0.00 1.17 0.05 0.02 0.02 0.00 0.20 0.00
gap12 0.00 0.00 1.37 1.37 1.68 1.55 0.10 0.81 0.11 0.07 0.04 0.01 0.17 0.00
AA: Geliştirilmiş Arı Algoritması, YAK: Geliştirilmiş Yapay Arı Kolonisi Algoritması, MTH: yapısal sezgisel [118], FJVBB:
bir üst CPU limiti dâhilinde dal-sınır yöntemi [4], FSA: benzetimli tavlama algoritmasında sabitleme [120], MTBB: bir üst CPU
limiti dâhilinde dal-sınır yöntemi [119], SPH: küme bölüntüleme [121], LT1FA: ilk en iyiyi seçme stratejisiyle uzun dönem iniş
algoritması [126], RSSA: melez benzetimli tavlama ve tabu arama [126], TS6: ilk en iyiyi seçme stratejisiyle uzun dönem tabu
arama [126], TS1: en iyiyi seçme stratejisiyle uzun dönem tabu arama [126], GAb: sezgisel operatörlerle genetik algoritma [127],
GAa: sezgisel operatör olmadan genetik algoritma [127], ASH+LS+TS: yerel arama ve tabu arama ile birleştirilmiş maks-min
karınca sistemi [134].

63

Daha büyük boyutlu gapa-d problem kümeleri için geliştirilmiş AA ve YAK

algoritmalarıyla elde edilen sonuçlar ise bilimsel yazındaki 2000 yılından sonra yapılan

çalışmalarla karşılaştırılmıştır. Karşılaştırma çalışmasının yayınların basım yılı esas

alınarak gerçekleştirilmesinin sebebi 2000 yılından önce geliştirilen algoritma

sonuçlarının kötü performansa sahip olmasıdır. gapa-gapd problemleri için bilimsel

yazındaki 10 farklı algoritmayla yapılan karşılaştırma sonuçları hesaplama süreleri

(saniye) ile birlikte Tablo 3.12’de verilmiştir. Ayrıca önerilen algoritmalarla elde edilen

çözümlerin kalitesinin karşılaştırılabilmesi için kesin bir çözüm yöntemi olan CPLEX

6.5 sonuçları da Tablo 3.12’de yer almaktadır. Ancak verilen CPLEX 6.5 sonuçları, 100

iş için 150 saniye, 200 iş için de 300 saniyelik bir süre kısıtına sahiptir.

64

Tablo 3.12. Geliştirilmiş AA ve YAK algoritması ile elde edilen gapa-gapd sonuçlarının karşılaştırılması.

Problem
Geliştirilmiş AA Geliştirilmiş YAK DF CGA RLS APT

CPU Maliyet CPU Maliyet CPU Maliyet CPU Maliyet CPU Maliyet CPU Maliyet

gapa1 0.18 1698(1) 0.16 1698(1) - - 253 1698(1) - - - -
gapa2 0.95 3235(1) 0.86 3235(1) - - 502 3235(1) - - - -
gapa3 0.27 1360(1) 0.33 1360(1) - - 308 1360(1) - - - -
gapa4 1.31 2623(1) 0.92 2623(1) - - 930 2623(1) - - - -
gapa5 0.41 1158(1) 0.56 1158(1) - - 350 1158(1) - - - -
gapa6 1.81 2339(1) 1.27 2339(1) - - 860 2339(1) - - - -
gapb1 5.97 1843(1) 4.81 1843(1) - 1843(1) 302 1843(1) - - 10.0 1843(1)
gapb2 45.99 3552(1) 29.67 3552(1) - 3552(1) 432 3601(4) - - 121.9 3553(2)
gapb3 0.36 1407(1) 0.54 1407(1) - 1407(1) 165 1410(2) - - 7.3 1407(1)
gapb4 315.04 2827(1) 402.35 2828(2) - 2828(2) 949 2831(4) - - 37.6 2829(3)
gapb5 1.12 1166(1) 1.67 1166(1) - 1166(1) 474 1166(1) - - 11.4 1166(1)
gapb6 28.65 2339(1) 17.83 2339(1) - 2340(2) 683 2347(3) - - 132.7 2340(2)
gapc1 3.61 1931(1) 3.93 1931(1) 0.6 1931(1) 195 1941(2) 137.1 1942(3) 6.6 1931(1)
gapc2 18.09 3456(1) 15.82 3456(1) 3.7 3457(2) 405 3460(4) 1693.8 3467(6) 146.1 3458(3)
gapc3 5.81 1402(1) 7.35 1402(1) 3.0 1402(1) 203 1423(5) 178.3 1407(4) 31.5 1402(1)
gapc4 488.89 2806(1) 368.34 2806(1) 100.5 2807(2) 498 2815(4) 1086.0 2818(5) 104.3 2810(3)
gapc5 23.16 1243(1) 24.12 1243(1) 21.6 1243(1) 479 1244(2) 309.6 1247(5) 47.5 1244(2)
gapc6 646.18 2392(2) 562.86 2392(2) 137.4 2391(1) 1059 2397(5) 2694.8 2405(6) 146.4 2396(4)
gapd1 916.03 6353(1) 828.24 6357(3) 62.6 6357(3) 259 6479(7) 2459.2 6476(6) 71.5 6365(5)
gapd2 122.41 12744(3) 92.65 12750(6) 95.5 12747(5) 1253 12823(8) 11106.9 12923(9) 318.1 12747(5)
gapd3 538.29 6356(4) 416.43 6362(4) 107.2 6355(3) 497 6390(9) 5587.3 6469(10) 77.3 6372(5)
gapd4 743.95 12442(3) 527.92 12454(5) 129.2 12457(6) 1321 12634(9) 47538.7 12746(10) 105.2 12457(6)
gapd5 1704.46 6221(5) 860.43 6235(6) 111.0 6220(4) 974 6280(9) 13656.8 6358(10) 108.8 6267(8)
gapd6 922.94 12276(3) 526.02 12293(5) 120.7 12351(8) 2158 12471(11) 116969.0 12617(12) 308.7 12333(6)

65

Problem
ACO CRH-GA TSEC PREC PRSS NBB CPLEX 6.5

CPU Maliyet CPU Maliyet CPU Maliyet CPU Maliyet CPU Maliyet CPU Maliyet CPU Maliyet
gapa1 0.17 1698(1) 1.0 1698(1) -- - - - - - 0.12 1698(1) - 1698(1)
gapa2 0.61 3235(1) 25.9 3235(1) - - - - - - 0.06 3235(1) - 3235(1)
gapa3 0.69 1360(1) 97.1 1360(1) - - - - - - 0.05 1360(1) - 1360(1)
gapa4 126.58 2623(1) 10.2 2623(1) - - - - - - 0.16 2623(1) - 2623(1)
gapa5 6.71 1158(1) 22.2 1158(1) - - - - - - 0.16 1158(1) - 1158(1)
gapa6 158.5 2341(2) 24.2 2339(1) - - - - - - 0.28 2339(1) - 2339(1)
gapb1 191.25 1846(2) 51.2 1843(1) 0.81 1843(1) 0.95 1843(1) 1.41 1843(1) 4.18 1843(1) - 1843(1)
gapb2 2605.55 3561(3) 165.4 3553(2) 3.13 3552(1) 2.35 3552(1) 2.59 3552(1) 14.66 3552(1) - 3552(1)
gapb3 115.78 1407(1) 30.9 1407(1) 0.22 1407(1) 0.33 1407(1) 0.18 1407(1) 0.11 1407(1) - 1407(1)
gapb4 5482.81 2849(5) 381.8 2829(3) 16.00 2827(1) 18.97 2827(1) 91.64 2827(1) 235.85 2827(1) - 2827(1)
gapb5 613.28 1166(1) 189.3 1166(1) 9.00 1166(1) 3.64 1166(1) 7.24 1166(1) 0.17 1166(1) - 1166(1)
gapb6 2865.04 2350(4) 378.5 2340(2) 5.19 2339(1) 11.53 2339(1) 18.21 2339(1) 88.98 2340(2) - 2339(1)
gapc1 192.13 1931(1) 39.2 1931(1) 0.6 1931(1) 0.52 1931(1) 1.34 1931(1) 0.05 1931(1) 2 1931(1)
gapc2 429.09 3464(5) 320.0 3457(2) 3.7 3456(1) 12.09 3456(1) 2.12 3456(1) 30.43 3456(1) 35 3456(1)
gapc3 122.43 1406(3) 54.1 1403(2) 3.0 1402(1) 3.20 1402(1) 1.86 1402(1) 7.25 1402(1) 9 1402(1)
gapc4 1112.31 2825(6) 304.6 2807(2) 403.8 2806(1) 2710.87 2806(1) 48.47 2807(2) 312.64 2806(1) 249 2806(1)
gapc5 193.85 1246(4) 289.6 1243(1) 22.5 1243(1) 35.83 1243(1) 17.99 1245(3) 90.19 1243(1) 8 1243(1)
gapc6 1119.25 2411(7) 1140.1 2396(4) 301.8 2391(1) 1268.83 2391(1) 191.32 2394(3) 968.66 2391(1) 296 2391(1)
gapd1 1.81 6625(8) 327.4 6365(5) 649.2 6353(1) 83.62 6353(1) 14.24 6356(2) 349.93 6353(1) 43 6358(4)
gapd2 3.31 13197(10) 814.7 12767(7) 3564.8 12743(2) 5712.49 12742(1) 249.89 12745(4) 2937.03 12745(4) 62 12750(6)
gapd3 174.46 6613(11) 472.6 6373(6) 2440.7 6349(2) 988.07 6348(1) 74.12 6373(6) 2831.47 6349(2) 132 6381(8)
gapd4 1155.21 13024(11) 1909.7 12536(8) 5829.9 12440(2) 5520.51 12433(1) 246.32 12468(7) 1896.80 12447(4) 27 12457(6)
gapd5 189.92 6484(11) 902.3 6259(7) 1591.9 6206(3) 2254.88 6192(1) 129.33 6235(6) 2829.38 6200(2) 60 6280(9)
gapd6 1270.43 12951(13) 3825.7 12386(9) 1757.7 12277(4) 5777.10 12245(1) 518.30 12334(7) 2375.42 12263(2) 297 12393(10)
DF: tabu arama [132], CGA: yapısal genetik algoritma [144], RLS: yerel arama ve tabu arama ile birleştirilmiş maks-min karınca sistemi [134], APT: yol
birleştirme algoritması [136], ACO: karınca koloni optimizasyonu [141], CRH-GA: kısıt-oran sezgiseline dayalı genetik algoritma [142], TSEC: çıkarım
zincirine dayalı tabu arama [133], PREC: çıkarım zincirine dayalı yol birleştirme yaklaşımı [140], PRSS: kaydırma ve çift kaydırma komşuluklarına dayalı yol
birleştirme yaklaşımı [140], NBB: uygun çözüm üreten dal-sınır algoritması [125], CPLEX 6.5: [133].

Çevresel

algoritmal

algoritmal

için basit

renklendir

kez 1, 2, 3

Şekil 3.4’t

AA, Geliş

performan

yöntemini

üzerindeki

Diğer tara

süresi perf

Şekil 3.5’t

CPU süre

süreleri α

Geliştirilm

0

2

4

6

8

10

12

14

etkenler, te

ların perfor

ların GAP’n

bir sıralam

rilmiş ve sır

3 ve ≥4 sıral

Şekil 3.

teki sonuçla

ştirilmiş YA

nsa sahip a

in performa

i performan

aftan bahsed

formansları

te sunulmuş

sine sahipti

αj parame

miş AA’na a

est şartları,

rmansını d

nin çözümü

ma yöntemi

ralama para

lamasına gir

.4. Çözüm

ara göre PR

AK, TSEC

algoritmalar

ansı ise gap

nsı düşüktür

dilen algori

 aynı maliy

ş olup görü

ir. Belirtme

etresinin o

ait CPU sür

6

6

parametre

direkt olara

ü üzerindeki

i kullanılm

antez içinde

rdiğini göst

kalitesine g

REC en iyi p

ve NBB i

r olarak sı

pc problemle

r.

itmaların (P

yet değerleri

üldüğü gibi

ek gerekir k

optimizasyon

releri αj para

66

66

optimizasy

ak karşılaşt

i performan

mıştır. Tablo

e belirtilmiş

teren Şekil 3

göre algoritm

performansa

se çözüm k

ınıflandırıla

eri için iyi

PREC, AA,

inin bulundu

Geliştirilmi

ki PREC v

nu sonras

ametresinin

yonu gibi b

tırmak kola

nsı hakkında

o 3.12’de e

tir. Bu bilg

3.4’te birleş

maların sıra

a sahip algo

kalitesi bak

abilir. CPLE

sonuçlar ve

, YAK, TS

uğu gapc1-g

iş AA ve Y

e TSEC alg

ında hesap

n en iyi değe

birçok sebep

ay değildir

a bir fikir e

en iyi çözü

i, bir algori

ştirilmiştir.

alanması.

oritmadır. G

kımından en

EX 6.5 ke

erse de gap

SEC, NBB)

gapc5 prob

YAK algoritm

goritmaların

planmaktad

erine getirilm

pten, farklı

r. Önerilen

edinebilmek

ümler koyu

itmanın kaç

Geliştirilmiş

n iyi ikinci

esin çözüm

pd problemi

hesaplama

lemleri için

ması düşük

na ait CPU

dır. Ancak

me süresini

1.

2.

3.

>=4

ı

n

k

u

ç

ş

i

m

i

a

n

k

U

k

i

67

67

de içermektedir. Dolayısıyla PREC ve TSEC algoritmalarının CPU süresi

gereksiniminin Geliştirilmiş AA’ndan çok daha yüksek olduğunu söyleyebiliriz.

Şekil 3.5. En iyi performansa sahip algoritmaların işlem süresi performansı.

Deneysel çalışmalar sonucunda önerilen algoritmaların gapa, gapb ve gapc (gapc6

hariç) problem kümelerinin çözümünde oldukça etkin olduğu ve koşmaların neredeyse

tamamında en iyi çözüme ulaşılabildiği görülmektedir. Diğer taraftan önerilen

algoritmalar gapd problem kümesinin çözümünde de diğer birçok algoritmaya göre

oldukça başarılı sonuçlar elde etmiştir. Sonuç olarak yapılan geniş deneysel çalışmalar,

Geliştirilmiş AA ve YAK algoritmasının karmaşık atama problemlerinin çözümünde

büyük bir potansiyele sahip olduğunu göstermektedir.

3.6. Genelleştirilmiş Atama Problemi’nin Arı Algoritması ile Çözümünde

Farklı Komşuluk Yapılarının Karşılaştırılması

Bu bölümde GAP için geliştirilmiş olan AA dört farklı komşuluk yapısı kullanılarak test

edilmiş ve bu komşuluk yapılarının AA‘nın performansı üzerindeki etkileri

incelenmiştir.

0

500

1000

1500

2000

2500

3000

Geliştirilmiş AA

Geliştirilmiş YAK

PREC

TSEC

NBB

68

68

Yapılan bilimsel yazın araştırması neticesinde kaydırma, çift kaydırma, değiştirme ve

çıkarım zinciri komşulukları olmak üzere GAP’ne özel dört tip komşuluk yapısı

belirlenmiştir. İlgili komşuluk yapılarının algoritmaya tek tek dâhil edilmesiyle

algoritma çalıştırılmış ve her bir komşuluk yapısının bireysel performansı incelenmiştir.

3.6.1. Deneysel Çalışma

Geliştirilmiş AA C# dilinde kodlanarak 2.20 GHz CPU, 2.00 GB RAM özelliklere sahip

Intel Pentium CoreDuo PC kullanılarak gapa, gapb test problemlerine uygulanmıştır.

Algoritma parametreleri bilimsel yazında verilen genel öneriler ve deneyimlere göre

belirlenmiş olup Tablo 3.14’te verildiği gibidir.

Tablo 3.13. GAP’nde komşuluk yapısı karşılaştırması için geliştirilmiş AA
 parametrelerinin değerleri.

Parametre Değer
S 500
P 50
e 10
nep 10
nsp 5
ÇZ-Uzunluğu 70
MaksIter 1000
limit 50
αjb 1
adımbüyüklüğüazalışı 0.1
adımbüyüklüğüartışı 0.01

Her komşuluk yapısı için test problemlerinin 10 kez çalıştırılması sonucunda elde edilen

minimum, ortalama, maksimum ve standart sapma değerleri, optimum CPLEX 6.5

sonuçları ile birlikte Tablo 3.15’te; bu verilere ait CPU sürelerinin (sn.) minimum,

ortalama, maksimum ve standart sapma değerleri ise Tablo 3.16’da verilmiştir.

69

69

Tablo 3.14. Farklı komşuluk yapılarının karşılaştırılması.

Kaydırma Çift kaydırma

CPLEX 6.5
min() ort maks ss min() ort maks ss

gapa1 1698 (10) 1698.0 1698 0.0 1698 (10) 1698.0 1698 0.0 1698
gapa2 3235 (10) 3235.0 3235 0.0 3235 (9) 3235.1 3236 0.3 3235
gapa3 1360 (10) 1360.0 1360 0.0 1360 (10) 1360.0 1360 0.0 1360
gapa4 2623 (10) 2623.0 2623 0.0 2623 (10) 2623.0 2623 0.0 2623
gapa5 1158 (10) 1158.0 1158 0.0 1158 (10) 1158.0 1158 0.0 1158
gapa6 2339 (10) 2339.0 2339 0.0 2339 (10) 2339.0 2339 0.0 2339
gapb1 1855 (1) 1866.2 1879 7.8 1843 (2) 1857.7 1881 12.1 1843
gapb2 3590 (1) 3610.8 3673 24.8 3557 (1) 3565.4 3571 4.4 3552
gapb3 1407 (2) 1409.6 1413 2.3 1407 (3) 1409.6 1412 2.0 1407
gapb4 2859 (1) 2886.2 2919 18.3 2842 (1) 2853.5 2865 6.4 2827
gapb5 1167 (2) 1170.1 1174 2.4 1166 (1) 1169.5 1171 1.7 1166
gapb6 2345 (1) 2349.8 2355 3.4 2343 (2) 2345.4 2348 1.7 2339

Değiştirme Çıkarım zinciri

min() ort maks ss min() ort maks ss
gapa1 1703 (1) 1711.6 1721 5.1 1698 (4) 1699.4 1702 1.4
gapa2 3252 (1) 3264.3 3285 10.0 3235 (7) 3235.5 3237 0.8
gapa3 1394 (1) 1406.0 1421 9.2 1360 (8) 1360.2 1361 0.4
gapa4 2710 (1) 2728.3 2753 16.0 2635 (1) 2665.7 2698 23.4
gapa5 1247 (1) 1264.9 1290 12.8 1158 (10) 1158.0 1158 0.0
gapa6 2511 (1) 2559.3 2613 32.9 2400 (1) 2442.0 2485 26.7
gapb1 1874 (1) 1889.8 1906 10.0 1857 (1) 1888.5 1915 17.4
gapb2 3588 (1) 3604.0 3616 9.7 3628 (1) 3648.5 3677 14.4
gapb3 1438 (1) 1470.0 1504 20.5 1407 (6) 1407.8 1411 1.3
gapb4 2988 (1) 3010.2 3070 24.1 2846 (1) 2865.2 2881 12.2
gapb5 1249 (1) 1275.4 1307 19.4 1167 (2) 1168.9 1172 1.5
gapb6 2586 (1) 2653.1 2698 37.8 2346 (1) 2352.5 2357 3.5

* min() sütunundaki parantez içindeki değerler algoritmanın 10 kez çalıştırılması
sonucunda ilgili minimum değerin kaç kez bulunduğunu ifade etmektedir.

70

70

Tablo 3.15. Farklı komşuluk yapılarının işlem süresi bakımından karşılaştırılması.

Kaydırma Çift kaydırma

min ort maks ss min ort maks ss
gapa1 3.23 4.08 4.59 0.48 6.65 96.04 231.81 71.19
gapa2 8.21 12.69 16.67 2.67 44.81 286.03 923.00 279.89
gapa3 4.07 5.61 8.95 1.48 5.31 25.56 90.10 32.42
gapa4 11.71 54.30 141.85 41.46 37.84 168.02 341.89 114.71
gapa5 5.53 8.13 10.34 1.56 5.42 7.58 10.25 1.26
gapa6 14.76 31.57 52.23 11.27 54.84 87.68 156.37 31.56
gapb1 19.21 60.07 103.95 26.48 23.75 111.69 202.09 63.62
gapb2 6.46 81.50 193.12 61.33 113.59 592.79 1036.93 324.82
gapb3 12.40 387.89 1106.04 333.10 11.90 123.87 333.17 95.78
gapb4 17.68 351.59 805.62 289.03 92.25 399.81 904.64 242.25
gapb5 71.87 421.04 799.14 236.44 17.89 107.01 209.89 82.32
gapb6 204.12 676.22 1577.96 455.78 103.92 694.48 1162.64 322.97

Değiştirme Çıkarım zinciri

min ort maks ss min ort maks ss
gapa1 32.37 148.41 534.67 146.31 60.59 273.52 436.43 129.78
gapa2 53.98 166.86 328.20 88.12 180.54 628.99 1119.48 307.40
gapa3 34.37 164.77 357.71 88.45 73.12 237.13 498.65 131.99
gapa4 83.40 139.95 214.64 45.53 268.53 653.85 1159.01 322.72
gapa5 60.00 102.31 170.65 33.69 14.78 68.00 160.04 42.60
gapa6 101.53 211.02 406.03 93.70 260.25 642.56 1174.50 303.52
gapb1 40.32 101.61 191.20 45.09 54.85 668.43 1576.18 396.06
gapb2 66.00 235.14 448.14 108.23 446.62 838.03 1591.14 359.32
gapb3 49.65 193.90 468.75 123.50 98.53 352.28 683.46 210.83
gapb4 89.70 155.79 237.20 49.10 934.93 1847.56 2925.28 731.27
gapb5 53.75 144.96 248.07 58.23 183.31 564.74 929.70 232.63
gapb6 67.06 161.28 216.82 45.72 452.45 1299.56 2919.26 841.56

Elde edilen sonuçların anlamlı bir şekilde karşılaştırılabilmesi için öncelikle uygun bir

hipotez testinin seçilmesi gerekmektedir. Uygun hipotez testinin seçimi aşağıdaki

durumlara bağlıdır (Öztuna ve Elhan):

• Verilerin ölçüm biçimi: Hipotez testinin seçimini etkileyen en önemli

faktörlerden biri olan ölçüm biçimi, nitel (sayımla) ya da nicel (ölçümle) olarak

ikiye ayrılmaktadır.

• İncelenen grupların bağımlı ya da bağımsız olması: İncelenen grupların

bağımsız olması, grupların ayrı bireylerden oluşması, diğer bir deyişle bir grupta

bulunan bir bireyin diğer grupta bulunmaması demektir. Bir birey üzerinde

birden çok gözlem yapıldığında gruplar bağımlı olmaktadır.

71

71

• Verilerin dağılımı: İstatistiksel analiz yapılırken dağılımın özelliği çok

önemlidir. Çünkü parametrik testlerin uygulanabilmesi için dağılımın normal ya

da normale yakın olması gerekmektedir.

• Örneklem büyüklüğü: Gruplardaki birey sayısı arttıkça kullanılan testin gücü ve

güvenilirliği de artar. Gruplardaki birey sayısı fazla ise verilerin normal dağılıma

uyma ihtimali artar, dolayısıyla parametrik test kullanma şansı artmış olur.

Gruplardaki birey sayısı az olduğunda ise (30’un altında) genellikle parametrik

olmayan testler tercih edilir.

Bilimsel yazında iki bağımsız örnek grubunun karşılaştırılması için farklı yöntemler

geliştirilmiştir. Bu yöntemler parametrik ve parametrik olmayan yöntemler olmak üzere

iki gruba ayrılmaktadır. Veri dağılımının normal, varyansların eşit, birbirinden bağımsız

ve rastgele seçilmiş olan örnek grubu sayısının 30’dan fazla olduğu durumlarda

parametrik testler (t-testi, varyans analizi gibi), veri dağılımının normal olmadığı ve veri

sayısının 30’dan az olduğu nicel verilerin varlığında ise parametrik olmayan testler

(Wilcoxon sıralı toplam testi, Mann-Whitney U testi, Kruskal-Wallis varyans analizi

gibi) kullanılmaktadır.

Yukarıda verilen bilgiler ışığında, komşuluk karşılaştırması için elde edilen sonuçların

nicel ve bağımlı bir yapıya sahip olması, verilerin normal dağılıma uymaması ve

örneklem büyüklüğünün 30’un altında olması sebebiyle komşuluk yapılarının

karşılaştırılmasında Wilcoxon sıralı toplam testinin kullanılmasına karar verilmiştir.

Wilcoxon sıralı toplam testi Wilcoxon [146] tarafından geliştirilmiş olup iki grubun

ortanca değerleri arasında fark olup olmadığını araştırmaktadır. Ancak ortanca değerler

arasındaki farkın istatistiksel olarak anlamlı olup olmadığını söyleyebilmek için p

değerlerine bakmak gerekir. Eğer p değeri α=0,05 önemlilik değerinden küçükse,

karşılaştırılan ortanca değerler arasında istatistiksel olarak anlamlı bir farklılık var

demektir.

Her problem tipi için komşuluk yapıları çiftler halinde ele alınarak elde edilen eşitsizlik

ilişkisine dayalı Wilcoxon sıralı toplam testi sonuçları Tablo 3.17’de verilmiştir.

72

72

Tablo 3.16. Wilcoxon sıralı toplam testi ile komşuluk yapılarının değerlendirilmesi.

Kaydırma,
Çift
kaydırma

Kaydırma,
Değiştirme

Kaydırma,
Çıkarım
zinciri

Çift
kaydırma,
Değiştirme

Çift
kaydırma,
Çıkarım
zinciri

Değiştirme,
Çıkarım zinciri

ga
pa

1 ortanca-1 - - - - - 1711.5
ortanca-2 - - - - - 1699.5
p - - - - - 0.0002

ga
pa

2 ortanca-1 - - - 3235 3235 3263
ortanca-2 - - - 3263 3235 3235
p - - - 0.0002 0.4274 0.0002

ga
pa

3 ortanca-1 - - - - - 1406
ortanca-2 - - - - - 1360
p - - - - - 0.0002

ga
pa

4 ortanca-1 - - - - - 2722.5
ortanca-2 - - - - - 2664.5
p - - - - - 0.0002

ga
pa

5 ortanca-1 - - - - - -
ortanca-2 - - - - - -
p - - - - - -

ga
pa

6 ortanca-1 - - - - - 2554.5
ortanca-2 - - - - - 2445
p - - - - - 0.0002

ga
pb

1 ortanca-1 1864.5 1864.5 1864.5 1859 1859 1890.5
ortanca-2 1859 1890.5 1890 1890.5 1890 1890
p 0.0963 0.0006 0.0052 0.0003 0.0017 0.9097

ga
pb

2 ortanca-1 3603.5 3603.5 3603.5 3565.5 3565.5 3605
ortanca-2 3565.5 3605 3646 3605 3646 3646
p 0.0002 0.7913 0.0022 0.0002 0.0002 0.0002

ga
pb

3 ortanca-1 1409 1409 1409 1410 1410 1471.5
ortanca-2 1410 1471.5 1407 1471.5 1407 1407
p 0.9698 0.0002 0.0539 0.0002 0.0696 0.0002

ga
pb

4 ortanca-1 2881 2881 2881 2854.5 2854.5 3005.5
ortanca-2 2854.5 3005.5 2867.5 3005.5 2867.5 2867.5
p 0.0003 0.0002 0.0073 0.0002 0.0588 0.0002

ga
pb

5 ortanca-1 1170 1170 1170 1170 1170 1275
ortanca-2 1170 1275 1169 1275 1169 1169
p 0.6232 0.0002 0.3258 0.0002 0.3075 0.0002

ga
pb

6 ortanca-1 2350 2350 2350 2345.5 2345.5 2658.5
ortanca-2 2345.5 2658.5 2353 2658.5 2353 2353
p 0.0082 0.0002 0.1212 0.0002 0.0006 0.0002

* ‘-’ komşuluk yapıları ile elde edilen değerlerin kendi içinde farklılık göstermemesi nedeniyle Wilcoxon
sıralı toplam testinin gerçekleştirilemediğini göstermektedir.

* α=0.05

Yapılan analizler neticesinde gapa1, gapa3, gapa4, gapa6 problemleri için çıkarım

zinciri komşuluk yapısının değiştirmeye göre daha üstün olduğu belirlenmiştir. gapa2

73

73

problemi için önceki problemler için yapılan tespitin yanı sıra çift kaydırma komşuluk

yapısının değiştirmeye göre daha iyi performans gösterdiği belirlenmiştir. gapa5

problem tipi için kaydırma, çift kaydırma ve çıkarım zinciri komşuluklarıyla elde edilen

çözümlerin kendi içinde farklılık göstermemesi sebebiyle Wilcoxon sıralı toplam testi

gerçekleştirilememiştir. Wilcoxon sıralı toplam testinin yapılamadığı ikili

karşılaştırmalar için grup ortalamalarına bakıldığında ise gapa1, gapa3, gapa4 ve gapa6

problemleri için en iyi performans gösteren komşuluk yapısının kaydırma ve çift

kaydırma, ikinci en iyi performansa sahip yapının ise çıkarım zinciri olduğu

görülmektedir. gapa2 problemi için kaydırma komşuluk yapısın en iyi, çift kaydırma

komşuluğunun ikinci en iyi ve son olarak çıkarım zinciri komşuluk yapısının üçüncü en

iyi performansa sahip olduğu görülmüştür. Hiçbir ikili karşılaştırmada Wilcoxon sıralı

toplam testinin gerçekleştirilemediği gapa5 problemi için ise kaydırma, çift kaydırma ve

çıkarım zinciri komşuluk yapılarının eşit performansa sahip olup değiştirme komşuluk

yapısından daha üstün olduğu gözlemlenmiştir.

Gapb problemlerini tek tek ele alacak olursak; gapb1 problem tipi için kaydırma

komşuluk yapısının değiştirme ve çıkarım zinciri komşuluk yapılarına göre daha üstün;

çift kaydırma komşuluk yapısının ise yine değiştirme ve çıkarım zinciri komşuluk

yapılarına göre daha üstün olduğu belirlenmiş; ancak kaydırma ve çift kaydırma

komşuluk yapıları arasında ve değiştirme ve çıkarım zinciri komşuluk yapıları arasında

anlamlı bir farklılık tespit edilememiştir. gapb2 problemleri için çift kaydırma komşuluk

yapısının diğer komşuluk yapılarına göre daha iyi performans gösterdiği belirlenmiştir.

gapb3 ve gapb5 problemleri için bütün komşuluk yapılarının değiştirme komşuluk

yapısından daha üstün olduğu tespit edilmiş ancak bu komşuluklar arasında anlamlı bir

farklılık belirlenememiştir. gapb4 problemleri için çift kaydırma ve çıkarım zinciri

komşuluk yapılarının kaydırma ve değiştirme komşuluk yapılarından daha iyi olduğu

belirlenmiş ancak çift kaydırma ve çıkarım zinciri komşuluk yapıları arasında anlamlı

bir fark tespit edilememiştir. gapb6 problemi için bütün komşuluk yapılarının

değiştirme komşuluk yapısından daha üstün olduğu tespit edilmiş, diğer taraftan çift

kaydırma komşuluk yapısının kaydırma ve çıkarım zincirine göre daha iyi performans

gösterdiği belirlenmiştir.

Sonuç olarak ele alınan test problemleri için çift kaydırma komşuluk yapısının en iyi

performansa, kaydırma ve çıkarım zinciri komşuluk yapılarının ikinci en iyi

74

74

performansa, değiştirme komşuluk yapısının ise en düşük performansa sahip olduğu

tespit edilmiştir.

4. BÖLÜM

ÇİFT TARAFLI MONTAJ HATTI DENGELEME PROBLEMİ ÇÖZÜM

YAKLAŞIMLARI

4.1. Giriş

Tez çalışmasının bu bölümünde ÇTMHDP’nin çözümü için YAK ve AA

algoritmalarından faydalanılacaktır. ÇTMHDP’nin detayları ve bilimsel yazındaki

çözüm yaklaşımları verildikten sonra probleme ait farklı kısıtlar altında ilgili

algoritmalarla elde edilen geniş deneysel çalışma sonuçları sunulacaktır.

Diğer taraftan AA, bulanık çok amaçlı ÇTMHDP’nin çözümü için kullanılacak ve

bulanık amaçlar farklı teknikler altında incelenerek bu tekniklerin algoritma

performansı üzerindeki etkisi incelenecektir.

4.2. Montaj Hattı Dengeleme Problemi

İşletmelerin temel amaçları verimlilik düzeyini yükseltmek, kapasite ve kaliteyi

artırmak, maliyetleri düşürmek ve çalışma ortamını insancıllaştırmaktır. Bu amaçlara

ulaşmak için ise kullanılan işgücü, makine, malzeme ve teçhizattan oluşan iş

yöntemlerinin yeniden tasarlanması gerekmektedir. Sürekli üretim sistemlerinde,

üretimin birimler halinde gerçekleştirildiği ve kitle talebin olduğu durumlarda, yüksek

üretim hızıyla talebi karşılamanın en makul yolu montaj hatlarının yapılandırılmasıdır.

Montaj hattı tasarımındaki ana amaçlardan biri, her iş istasyonuna eşit miktarda iş

dağıtımını yapabilmektir. Bu amaç doğrultusunda işler, istasyon süreleri birbirine eşit

ya da çok yakın olacak şekilde istasyonlar arasında paylaştırılır. Montaj hattı dengeleme

ile işler gruplandırılarak istasyonlar kurulur, istasyonların işlem süreleri birbirine yakın

hale getirilir ve bu şartlar altında montaj hattının aksamadan çalışması sağlanarak

kaynaklardan maksimum fayda elde edilir. Dengenin sağlanamadığı durumda ise bazı

76

istasyonlarda diğerlerinden daha fazla iş yükü olacağı için, verimlilikte düşüşlerin

olması ve bir takım kayıpların ortaya çıkması kaçınılmazdır.

Montaj Hattı Dengeleme Problemi (MHDP) çevrim süresi ve iş sayısının verildiği

varsayımı altında öncelik ilişkileri ve çevrim süresi kısıtlarına uyarak bir veya daha

fazla amacı eniyileyecek şekilde, işlerin istasyonlara atanması problemidir. Öncelik

ilişkisi, montaj prosesindeki işlerin hangi sıra ile gerçekleştirileceğini gösterirken;

çevrim süresi, bir istasyonda yapılması gereken işlerin tamamlanabilmesi için ürünün o

istasyonda kalabileceği en uzun süreyi temsil etmektedir. MHDP, Karp [147] tarafından

ispatlandığı üzere NP-zor yapıya sahip kombinatoryal bir problemdir.

MHDP çeşitli kriterlere göre aşağıdaki gibi sınıflandırılabilir:

• Amaç fonksiyonuna göre [148]

 Tip-1: Belirli bir çevrim süresi dâhilinde istasyon sayısını minimize

etmeyi amaçlar.

 Tip-2: Belirli bir istasyon sayısı dâhilinde çevrim süresini minimize

etmeyi amaçlar.

 Tip-3: İşyükleri arasındaki dengeyi maksimize etmeyi amaçlar.

 Tip-4: İşler arasındaki öncelik ilişkilerini dikkate alarak birbiriyle ilişkili

işlerin aynı istasyonda yer almasını sağlamayı amaçlar.

 Tip-5: Tip-3 ve tip-4’te kullanılan amaçları aynı zamanda maksimize

etmeyi amaçlar.

 Tip-E: Çevrim süresi ve istasyon sayısını aynı zamanda minimize ederek

hattın verimliliğini maksimize etmeyi amaçlar.

 Tip-F: Belirli bir iş sayısı ve çevrim süresi için uygun bir hat

dengelemesi olup olmadığını bulmayı amaçlar.

• Problemin yapısına göre

 Scholl [149] ve Becker ve Scholl [150]’e göre

⎯ Tek modelli montaj hattı dengeleme: Tek tip ürün ya da modelin

üretildiği hatlardır.

⎯ Karma modelli montaj hattı dengeleme: Aynı anda birden fazla

benzer tipteki modelin karma olarak üretildiği hatlardır. Karma

77

modelli üretimin en önemli faydası, müşteri isteklerini

karşılamak üzere değişik modellerin sürekli olarak üretilmesi ve

büyük bitmiş ürün stoklarını gerektirmemesidir.

⎯ Çok modelli montaj hattı dengeleme: Değişik model veya

ürünlerin üretildiği hatlardır. Belirli bir zamanda bir model parti

halinde üretilir ve arkadan diğer modellerin üretimine geçilir.

 Baybars [151]’a göre

⎯ Basit montaj hattı dengeleme: Kesin ve birbirinden bağımsız

işlem sürelerine, seri yerleşime, tek yönlü ve özdeş istasyonlara

sahip tek bir ürünün üretildiği hatlardır.

⎯ Genel montaj hattı dengeleme: Basit montaj hattı dengelemeye

göre daha gerçekçi olup paralel, U tipi ve çift taraflı montaj hattı

dengeleme gibi basit montaj hattı dengelemeye girmeyen bütün

problemleri içerir.

Diğer taraftan bilimsel yazında MHDP üzerine yapılan bazı çalışmalar şu şekilde

özetlenebilir. Salveson [152] doğrusal programlama, Jackson [153] dal ve sınır

yaklaşımı, Bowman [154] tam sayılı programlama, Held ve ark. [155] dinamik

programlama üzerinde çalışırken Dar-El [156], Dar-El ve Rubinovitch [157], Baybars

[158] çeşitli sezgisel yöntemler geliştirmişlerdir. Literatürdeki meta-sezgisel tekniklere

bakıldığında ise benzetimli tavlama [159], tabu arama [160, 161], genetik algoritma

[162-166] yaklaşımlarını kullanarak montaj hattı dengeleme problemini çözmüşlerdir.

Montaj hattı problemlerinin sınıflandırılması ise Baybars [151], Ghosh ve Gagnon

[167], Kim ve ark. [148], Erel ve Sarin [168], Scholl [149], Becker ve Scholl [150],

Boysen ve ark. [169] çalışmalarının konusu olmuştur.

4.3. Çift Taraflı Montaj Hattı Dengeleme Problemi

Montaj hatları üzerindeki diğer bir sınıflandırma ise hattın tek ya da çift yönünün

kullanılmasına bağlı olarak tek ve çift taraflı hatlar olarak karşımıza çıkmaktadır. Tek

taraflı montaj hattı, montaj hattının sadece bir yönünün kullanıldığı, hat dengeleme

probleminin temel ve basit hali olup en yaygın incelenen tipidir. Çift taraflı montaj

hattında ise aynı ürün üzerindeki farklı montaj işleri hattın sağ ve sol yönünde paralel

olarak gerçekleştirilmektedir. Bu tip montaj hatları genel olarak otobüs ve kamyon gibi

78

büyük boyutlu ürünlerin üretildiği işletmelerde görülmektedir. Tek Taraflı Montaj Hattı

Dengeleme Problemi’nin (TTMHDP) çözümü için birçok algoritma ve sezgisel yöntem

önerilmiştir, fakat ÇTMHDP’nin çözümüne yönelik çalışmalar oldukça azdır. Bunun

nedeninin ÇTMHDP’nin, tek taraflı olana göre çok daha zor olmasından kaynaklandığı

düşünülmektedir [170]. Nitekim TTMHDP’nde önemli olan hangi işin hangi istasyonda

işleneceği iken ÇTMHDP’nde hem hangi işin hangi istasyonda işleneceği hem de hangi

sırayla işleneceği belirlenmelidir. Diğer bir deyişle ÇTMHDP’nde aralarında yakın

öncelik ilişkisi olan iki iş karşılıklı istasyonlara atandığında biri tamamlanmadan diğeri

başlayamayacağından boş zaman ortaya çıkabilecektir. Dolayısıyla hattı dengelerken

işlerin sırasına bağlı tamamlanma zamanları dikkate alınmalıdır. Böylece problem daha

karmaşık ve çözülmesi zor bir hâl almaktadır. Bartholdi [5] çalışmasında da belirtildiği

gibi ÇTMHDP NP-Tam bir yapıya sahiptir. Diğer taraftan çift taraflı hatların kullanımı,

tek taraflı hatlara göre hat uzunluğunun kısalması, üretim süresinin kısalması, araçların

her iki yönden paylaşılması sebebiyle daha az araç maliyeti, elde bulundurma

maliyetinin, işçi hareketlerinin ve kurulum süresinin kısalması gibi birçok avantaja

sahiptir [5]. Şekil 4.1’de bir çift taraflı montaj hattı şematik olarak gösterilmiştir.

Şekil 4.1. Çift taraflı montaj hattı.

4.3.1. Çift Taraflı Montaj Hattı Dengeleme Problemi Kısıtları

Çift taraflı montaj hattının tek taraflı montaj hattından temel farkı işlerin operasyon

yönü kısıtı olmasıdır. Bazı montaj işleri iki yönden birini tercih ederken bazıları ise

herhangi bir yönde yapılabilmektedir. Bu durumda işler üç şekilde sınıflandırılır:

sağ(R), sol(L) ve herhangi biri (E). Örneğin bir kamyon montaj hattında benzin deposu

ve hava filtresinin montajı sadece sol yönde; akü, hava tankı ve egzoz montajı sadece

sağ yönde yapılabilecek işler iken aks, pervane ve radyatör montajı hattın herhangi bir

yönünde yapılabilmektedir [170].

79

TTMHDP sadece öncelik ilişkileri ve çevrim süresi kısıtı olmak üzere iki temel kısıt

içerirken ÇTMHDP için yalnızca bu kısıtları ele almak yeterli değildir. Çift taraflı

montaj hattında kullanılan diğer kısıtlar şöyle sıralanabilir:

• Konumsal kısıtlar: Belirli bir işin işletmenin yerleşiminden dolayı önceden

belirlenmiş bir istasyona atanması gerektiğini belirtir. Kamyon ve otobüs gibi

büyük boyutlu ürünlerin üretildiği montaj hatlarında, bazı istasyonlar ağır

makineler içerebilir ve tasarım aşamasında kurulduktan sonra yerinin

değiştirilmesi çok zordur. Bundan dolayı bu makinelerde yapılacak işler mutlaka

bu istasyonlara atanmalıdır.

• Bölgesel kısıtlar: Hangi işlerin aynı istasyona atanması (pozitif bölgesel) ve

hangi işlerin aynı istasyona atanmaması (negatif bölgesel) gerektiğini gösterir.

Pozitif bölgesel kısıta sahip işler ortak bir teçhizat ya da beceri gerektirirken,

negatif bölgesel kısıta sahip işler aynı istasyona atandığında istasyon alanı

yetersizliği ortaya çıkabilir. Pozitif bölgesel kısıta sahip işler karşılıklı iki

istasyona da atanabilirken, negatif bölgesel kısıtlar karşılıklı iki istasyona da

atanmamalıdır.

• Senkronizasyon kısıtları: Hattın her iki yönünde aynı anda gerçekleştirilmesi

gereken, aynı süreye sahip işleri tanımlar. Bu kısıt türüne örnek olarak kamyon

kabinine ait üst panelin aynı anda her iki yönden yerleştirilmesi verilebilir.

4.4. Çift Taraflı Montaj Hattı Dengeleme Problemi Çözüm Yaklaşımları

Çift taraflı montaj hatlarının tasarımı ve hattın dengelenmesi ilk olarak Bartholdi [5]

tarafından incelenerek İlk Uygun Kural adı verilen basit bir atama kuralı önerilmiş ve

temel olarak interaktif bir program üzerine yoğunlaşılmıştır. Kim ve ark. [171] ise

ÇTMHDP’ne ait ilk matematiksel modelleri sunarak hat uzunluğunun, istasyon

sayısının ve iş yükü sapmalarının en küçüklenmesi gibi farklı amaçları

değerlendirmişlerdir.

Kim ve ark. [170] verilen bir çevrim süresi dâhilinde istasyon sayısını minimize etmeyi

amaçlayan konumsal kısıtlara sahip ÇTMHDP’nin çözümü için genetik algoritmayı

kullanmışlardır. Uygun olmayan çözümlere izin veren algoritmada genetik algoritma

operatörleri olarak ÇTMHDP’ne özel olarak geliştirilmiş, yapılandırılmış tek nokta

çaprazlama ve mutasyon kullanılmıştır. Önerilen algoritma otomotiv sektöründe faaliyet

80

gösteren bir firmaya uygulanmış, diğer taraftan algoritmanın performansı bilimsel

yazındaki çeşitli test problemleri üzerinde de denenmiştir. Küçük boyutlu problemler

için, Kim ve ark. [172] çalışmasındaki tamsayılı programlama yaklaşımı ile elde edilen

optimum çözümlerle karşılaştırma yapılmış ve önerilen yaklaşımla optimum çözümlerin

daha kısa sürede bulunduğu belirtilmiştir. Büyük boyutlu problemler için ise tamsayılı

programlama yaklaşımıyla optimum çözümler bulunamadığından Bartholdi [5]

çalışmasında verilen İlk Uygun Kural sezgiseli ile karşılaştırma yapılmış ve yine

önerilen algoritmanın daha iyi performans gösterdiği belirtilmiştir.

Lee ve ark. [173] geliştirdikleri, tek bir işi atamak yerine işleri gruplar halinde atamaya

dayanan, grup atama prosedürü ile aynı kurulum ya da teçhizat gerektiren birbiriyle

ilişkili işlerin aynı istasyona atanmasını sağlamaya çalışırken aynı zamanda da bu işler

arasındaki boş zamanı minimize etmeyi amaçlamaktadırlar. TTMHDP için geliştirilen

en uzun işlem süresine sahip işin, kendinden sonra gelen iş sayısı en fazla olan işin,

kendinden hemen sonra gelen iş sayısı en fazla olan işin ve maksimum sıralı konumsal

ağırlık değerine sahip işin seçimi şeklinde belirlenen atama kuralları ÇTMHDP için

güncellenerek büyük boyutlu test problemleri üzerinde önerilen yöntemle

karşılaştırılmıştır. Karşılaştırma sonucunda geliştirilen yöntem birbiriyle ilişkili işlerin

aynı istasyona atanması ve bu işler arasındaki boş zamanın minimize edilmesi amacına

göre bütün problem örneklerinde diğer sezgisel kurallardan daha iyi; istasyon sayısı,

çevrim süresi ve hattın verimliliği açısından ise bazı problemler için daha iyi

performans göstermiştir.

Lapierre ve Ruiz [174] çift taraflı montaj hatlarının yönetimi ve dengelenmesi için

öncelik tabanlı bir sezgisel yöntem geliştirerek endüstriyel bir uygulama

gerçekleştirmişlerdir. Firmaya özel olarak oluşturulan ÇTMHDP’nin bilimsel yazındaki

problemlerden farkı, iki farklı yükseklik ve alt montaj hatlarına sahip olmasıdır. Bu

özelliklere uygun 248 işe sahip yeni bir veri kümesi oluşturulmuş ve yapılan deneysel

çalışmada, geliştirilen yöntemle elde edilen çözümler firmanın deneyimlerine dayanarak

oluşturduğu çözümle karşılaştırılmıştır. İstasyon sayısı açısından önerilen yöntemin

daha iyi sonuçlar verdiği ancak firmaya ait çözümde daha iyi bir işyükü dağılımının söz

konusu olduğu görülmüştür.

81

Simaria ve Vilarinho [175] karınca koloni optimizasyonu algoritmasını kullanarak

bölgesel ve senkronizasyon kısıtlarına sahip Çift Taraflı Karma Model Montaj Hattı

Dengeleme Problemi’ni (ÇTKMMHDP) çözen ilk çalışmayı gerçekleştirmişlerdir.

Problemin amacı istasyon sayısını minimize etmek olup, ek amaçlar istasyonlar

arasındaki işyükünü dengelemek, farklı modeller için istasyonlardaki işyükünü

dengelemek ve montaj planlayıcısının gruplama tercihlerini sağlamaktır. Gruplama

tercihleri, montaj hattını planlayan kişinin tercihleri doğrultusunda bazı işlerin aynı

istasyonda gruplandırılması şeklinde tanımlanmış olup pozitif bölgesel kısıtlarda olduğu

gibi bir zorunluluk söz konusu değildir. Simaria ve Vilarinho [176] bölgesel ve

senkronizasyon kısıtlarına sahip ÇTKMMHDP’nin yapısına uygun bir matematiksel

model sunarak önceki çalışmalarında önerdikleri karınca koloni optimizasyonu

algoritması üzerinde geniş bir deneysel çalışma gerçekleştirmişlerdir. Aynı hat üzerinde

eşzamanlı olarak montajı yapılacak iki modele ve 14 işe sahip sayısal bir örnek

oluşturularak algoritmanın performansı incelenmiştir. Ayrıca büyük boyutlu test

problemleri için tek modelli, bölgesel ve senkronizasyon kısıtları içermeyen ÇTMHDP

çözülmüş, elde edilen sonuçlar grup atama prosedürü [173] ile karşılaştırılmış ve çok

daha iyi sonuçlar elde edilmiştir.

Hu ve ark. [177] ÇTMHDP’nin çözümü için, geliştirdikleri istasyon tabanlı atama

prosedürü ile Hoffmann sezgiselinin [178] kombinasyonunu önermişlerdir. Küçük

boyutlu problemlerle gerçekleştirilen deneysel çalışmada 13 problemin 10’unda alt sınır

değerine ulaşılmıştır.

Baykasoglu ve Dereli [179] çalışmalarında bölgesel kısıtlara sahip ÇTMHDP’nin

çözümü için karınca koloni optimizasyonu algoritmasını kullanmışlardır. Problemin

amacı verilen çevrim süresi dâhilinde istasyon sayısını minimize etmek ve mümkünse

birbiriyle ilişkili işlerin aynı istasyona atanmasını sağlamaktır. Genetik algoritma [170]

ve grup atama prosedürü [173] ile küçük ve büyük boyutlu test problemleri üzerinde

bölgesel kısıtlar olmadan yapılan karşılaştırmalar önerilen yöntemin daha iyi sonuçlar

elde ettiğini göstermiştir.

Wu ve ark. [180] ÇTMHDP’nde istasyon sayısının en küçüklenmesini amaçlayan bir

matematiksel model önererek dal-sınır algoritmasıyla çözüm yoluna gitmişlerdir.

TTMHDP için geliştirilen iş-tabanlı dal sınır algoritması ÇTMHDP’ne uyarlanmış,

82

ancak ağaç yapısının aynı boyuttaki bir TTMHDP’ndeki yapıya göre çok büyük olması

sebebiyle iş atama kuralları ile ağacın boyutu küçültülmüştür. Küçük ve büyük boyutlu

bazı test problemleri üzerinde algoritmanın etkinliği test edilmiş ve problemlerin

tamamında optimum çözüm elde edilmiştir.

Kim ve ark. [181] verilen istasyon sayısı dâhilinde çevrim süresini minimize edecek bir

matematiksel model geliştirerek genetik algoritmaya dayalı bir çözüm yöntemi

önermişlerdir. Geliştirilen matematiksel model ile küçük boyutlu test problemlerinin

optimum çözümleri elde edilmiş, ancak daha büyük boyutlu problemlerin matematiksel

modelle çözümü mümkün olmadığından genetik algoritma kullanılmıştır. Büyük

boyutlu problemler için genetik algoritma ile elde edilen sonuçlar Bartholdi [5]

tarafından geliştirilen İlk Uygun Kural ve Kim ve ark. [170] çalışmasında önerilen

genetik algoritmanın performansıyla karşılaştırılmıştır. Çözüm kalitesi ve yakınsama

hızı açısından önerilen algoritmanın daha iyi performans gösterdiği belirtilmiştir.

Özcan ve Toklu [182] istasyon sayısının en küçüklenmesini ve iş yükünün istasyonlar

arasında mümkün olduğunca eşit paylaştırılmasını amaçlayan ÇTMHDP’nin çözümü

için tabu arama algoritmasını kullanmışlardır. Önerilen algoritma küçük ve büyük

boyutlu test problemleri üzerinde çalıştırılmış ve sonuçlar genetik algoritma [170], grup

atama prosedürü [173], karınca koloni optimizasyonu algoritması [179] ve istasyon

tabanlı atama prosedürü [177] ile karşılaştırılmıştır. Karşılaştırma sonucunda önerilen

algoritmanın p205 problem kümesi dışında diğer test problemlerinin hepsinde

karşılaştırılan sonuçlara göre daha iyi ya da aynı sonuçlara ulaşıldığı ancak diğer

algoritmalara göre daha çok hesaplama süresi gerektirdiği belirtilmiştir.

Özcan ve Toklu [183] öncelikle Kim ve ark. [181] çalışmasında verilen karma tamsayılı

programlama modelini istasyon sayısının en küçüklenmesi amacına uygun olarak

düzenlemiş ve modele bölgesel kısıtları eklemişlerdir. Önerilen model ile küçük boyutlu

test problemleri çözülerek optimum çözümler elde edilmiştir. Diğer taraftan

ÇTMHDP’nin çözümü için ilk kez çok-kriterli karar-verme yaklaşımı kullanılmış;

deterministik ve bulanık olmak üzere iki karma tamsayılı amaç programlama modeli

önerilmiştir. Bahsedilen modellere ait amaçlar karşılıklı istasyon sayısı, çevrim süresi

ve her istasyona atanan iş sayısı olarak belirlenmiştir. Amaç programlama modellerinin

83

deneysel sonuçları önerilen modellerin geçerli olduğunu ve karar vericinin çeşitli şartlar

altında birçok senaryoyu değerlendirebileceğini göstermiştir.

Özcan ve Toklu [184] ÇTKMMHD probleminin çözümü için bir matematiksel model

ve benzetimli tavlama yaklaşımı önermişlerdir. Önerilen matematiksel model istasyon

sayısının en küçüklenmesini amaçlarken, benzetimli tavlama yaklaşımı ise

ağırlıklandırılmış hat etkinliğinin en büyüklenmesi ve birbiriyle ilişkili işler arasındaki

boş zamanın en küçüklenmesi ile ilgilenmektedir.

Tablo 4.1’de bilimsel yazında ÇTMHDP ile ilgili yapılmış çalışmalar problemin yapısı,

kullanılan amaç, yöntem ve kısıtlara göre özetlenmiştir. Görüldüğü gibi çalışmaların

çoğu belirli bir çevrim süresi dâhilinde istasyon sayısını minimize etmeyi

amaçlamaktadır. Her ne kadar probleme ait matematiksel modeller önerilse de

problemin NP-zor yapısı sebebiyle birçok metasezgisel yöntem de önerilmiştir. Diğer

taraftan ÇTMHDP’ne özel kısıtlar çözüm yaklaşımına dâhil edildikçe problem daha

karmaşıklaşmaktadır. Tablo 4.1’de belirtildiği gibi bir çalışmada sadece konumsal

kısıtlara sahip ÇTMHDP, iki çalışmada sadece bölgesel kısıtlara sahip ÇTMHDP, iki

çalışmada ise bölgesel ve senkronizasyon kısıtlarına sahip ÇTKMMHDP ele alınmıştır.

Tablo 4.1’den görüldüğü gibi bilimsel yazında konumsal, bölgesel ve senkronizasyon

kısıtlarının tamamının aynı anda probleme dahil edildiği bir çalışma yoktur.

84

Tablo 4.1. ÇTMHDP çalışmalarının sınıflandırılması.
Araştırmacılar Problem Amaç Kullanılan Yöntem Kullanılan Kısıtlar

Konumsal Bölgesel Senkronizasyon
Kim ve ark. [170] ÇTMHDP Tip-1 Genetik algoritma √ - -
Lee ve ark. [173] ÇTMHDP Tip-5 Grup atama prosedürü - - -
Lapierre ve Ruiz [174] ÇTMHDP Tip-1 Öncelik tabanlı bir sezgisel yöntem - - -
Simaria ve Vilarinho [175] ÇTKMMHDP Tip-1 Karınca koloni optimizasyonu algoritması - √ √

Simaria ve Vilarinho [176] ÇTKMMHDP ve
ÇTMHDP Tip-1 Matematiksel model ve karınca koloni optimizasyonu algoritması - √ √

Hu ve ark. [177] ÇTMHDP Tip-1 İstasyon tabanlı atama prosedürü - - -
Baykasoğlu ve Dereli [179] ÇTMHDP Tip-1 Karınca koloni optimizasyonu algoritması - √ -
Wu ve ark. [180] ÇTMHDP Tip-1 Matematiksel model ve dal-sınır algoritması - - -
Kim ve ark. [181] ÇTMHDP Tip-2 Matematiksel model ve genetik algoritma - - -
Özcan ve Toklu [182] ÇTMHDP Tip-1 Tabu arama - - -
Özcan ve Toklu [183] ÇTMHDP Tip-1 Matematiksel model, deterministik ve bulanık amaç programlama - √ -
Özcan ve Toklu [184] ÇTKMMHDP Tip-1 Matematiksel model ve benzetimli tavlama - - -

85

4.5. Çift Taraflı Montaj Hattı Dengeleme Problemi için Önerilen Matematiksel

Model

Bu bölümde sunulan matematiksel model Simaria ve Vilarinho (2007) çalışmasında

önerilen matematiksel modele dayanmaktadır. Simaria ve Vilarinho (2007)

çalışmasında sunulan matematiksel model, bölgesel ve senkronizasyon kısıtlarına sahip

karma model ÇTMHDP için geliştirilmiş iken, bu çalışmada ilgili matematiksel model

tek modele indirgenmiş, amaç fonksiyonu farklılaştırılarak herhangi bir özel kısıta sahip

olmayan ÇTMHDP, bölgesel kısıta sahip ÇTMHDP ve konumsal, bölgesel ve

senkronizasyon kısıtlarına sahip ÇTMHDP için güncellenmiştir.

4.5.1. Özel Kısıt İçermeyen Çift Taraflı Montaj Hattı Dengeleme Problemi için

Önerilen Matematiksel Model ve Sonuçları

Önerilen karma tamsayılı doğrusal olmayan programlama modeline ait parametreler,

tamsayılı ve ikili değişkenler, kısıtlar ve amaç fonksiyonu aşağıdaki gibi tanımlanmıştır.

Parametreler:

N = işler kümesi (i = 1,…,N)

K = istasyonlar kümesi (k = 1,…,N)

B = yönler kümesi (b = 1,2)

ti = i işinin işlem süresi

ct = çevrim süresi

M = büyük bir sayı

SL= sol yönde yapılacak işler kümesi

SR= sağ yönde yapılacak işler kümesi

Sucij = i işinden sonra gelen j işleri kümesi

Tamsayılı değişkenler:

di = i işinin başlangıç zamanı

skb = k. istasyonun b. yönünde kullanılan toplam süre

istsay = istasyon sayısı

86

İkili değişkenler:

௜௞௕ݔ ൌ ൜1, ݅. ݅ş ݇. ݅݊ݑ݊݋ݕݏܽݐݏ ܾ. ܽݏݎı݊ܽݐܽ ö݊ü݊݁ݕ
0, ݀݅ğ݁ܽ݀ݎ݈ܽ݉ݑݎݑ݀ ݎ

௞௕ݕ ൌ ൜1, ݇. .ܾ ݊ݑ݊݋ݕݏܽݐݏ݅ ܽݏݎ݋ݕı݈ı݈݈݊ܽݑ݇ ö݊üݕ
0, ݀݅ğ݁ܽ݀ݎ݈ܽ݉ݑݎݑ݀ ݎ

௜௝ݑ ൌ ൜1, ݅ ݅ş݅ ݆ ݅ş݅݊݀݁݊ ݉݊ܽݐܽ ܽݎ݊݋ݏışܽݏ
0, ݀݅ğ݁ܽ݀ݎ݈ܽ݉ݑݎݑ݀ ݎ

Kısıtlar:

 ∑ ௜௞௕ݔ ൌ ௄.஻݅׊ 1

Bir işin sadece bir istasyona atanmasını sağlar.

 ∑ ௜௞ଵݔ ൌ ݅׊ 1 א ௜௄ܮܵ

Sol yönde yapılması gereken işleri sol yöne atamayı sağlar.

 ∑ ௜௞ଶݔ ൌ ݅׊ 1 א ܴܵ௜௄

Sağ yönde yapılması gereken işleri sağ yöne atamayı sağlar.

௜௞௕ሺ݀௜ݔ ൅ ௜ሻݐ ൑ ,݅׊ ݐܿ ݇, ܾ

Bir istasyona atanmış işlerin toplam sürelerinin çevrim süresini aşmasını sağlar.

Diğer bir deyişle işin başlangıç zamanı ve süresinin toplamı çevrim süresini

geçmemelidir.

 ∑ ௜௞௕ሺ݀௜ݔ ൅ ሺ݇ െ 1ሻܿݐሻ ൅ ௜ݐ െ ∑ ௝௞௕൫ݔ ௝݀ ൅ ሺ݇ െ 1ሻܿݐ൯ ൑ 0௄,஻௄,஻ ,݅׊ ݆ א

 ௜௝ܿݑܵ

Öncelik ilişkilerini sağlar (i işinden sonra j işinin geldiğini varsayalım; j işinin

başlangıç zamanı, i işinin başlangıç zamanı ile süresinin toplamından küçük

olmamalıdır).

 ∑ ௜௞௕ሺ݀௜ݔ ൅ ሺ݇ െ 1ሻܿݐሻ ൅ ௜ݐ െ ∑ ௝௞௕൫ݔ ௝݀ ൅ ሺ݇ െ 1ሻܿݐ൯ ൑ ௜௝௄,஻௄,஻ݑܯ ,݅׊ ݆ ב

,௜௝ܿݑܵ ݅ ് ݆

 ∑ ௝௞௕൫ݔ ௝݀ ൅ ሺ݇ െ 1ሻܿݐ൯ ൅ ௝ݐ െ ∑ ௜௞௕ሺ݀௜ݔ ൅ ሺ݇ െ 1ሻܿݐሻ ൑ ሺ1ܯ െ ௜௝ሻ௄,஻௄,஻ݑ ,݅׊ ݆ ב

,௜௝ܿݑܵ ݅ ് ݆

Arasında öncelik ilişkisi olmayan işler için çakışmayı önler. i ve j olmak üzere

iki iş için ya i işi j işinden sonra ya da j işi i işinden sonra atanmıştır. Yukarıdaki

kısıt kümesindeki ilk kısıt j işinin i işinden sonra, ikinci kısıt ise i işinin j işinden

sonra atanmış olması durumları için geçerlidir.

87

௞௕ݏ ൌ ∑ ,݇׊ ௜ݐ௜௞௕ݔ ܾே

Her yöndeki toplam işlem süresini hesaplar.

 ∑ ௜௞௕ݔ ൒ ,݇׊ ௞௕ݕ ܾே

 ∑ ௜௞௕ݔ ൑ ,݇׊ ௞௕ݕܯ ܾே

Sadece açılan istasyonlara iş atanmasını sağlar.

ݕܽݏݐݏ݅ ൌ ∑ ௞௕௄,஻ݕ

Açılan istasyonlara göre istasyon sayısını hesaplar.

Amaç fonksiyonu:

 min 2ට∑ ൫௬ೖ್ሺ௖௧ି௦ೖ್ሻ൯಼,ಳ
మ

௜௦௧௦௔௬
൅ ∑ ௬ೖ್ሺ௖௧ି௦ೖ್ሻ಼,ಳ

௜௦௧௦௔௬

Bilimsel yazın araştırmasından görüldüğü gibi ÇTMHDP çalışmaları genellikle

belirli bir çevrim süresi dâhilinde istasyon sayısının en küçüklenmesi (tip-1)

amacına yöneliktir. Bu tez çalışmasında da önerilen algoritmaların performansını

değerlendirmek açısından aynı amaç kullanılmıştır. Ancak aynı istasyon sayısına

sahip iki çözümün biri diğerinden daha dengeli bir iş dağılımına sahip

olabileceğinden amaç fonksiyonu iki parçaya ayrılmıştır. Amaç fonksiyonunun

ilk parçası aynı istasyon sayısına sahip çözümler arasında en iyi dengeye sahip

olanı bulmayı amaçlarken ikinci kısım çözümdeki istasyon sayısını minimize

etmektedir. İlk amacın diğerine göre daha önemli olduğu düşünüldüğünden 2 ile

çarpılmıştır [185].

88

Önerilen matematiksel model GAMS 22.7.2 optimizasyon paket programı ile küçük

boyutlu test problemlerinin bir kısmı için sonuçlar elde edebilmiş, ancak daha büyük

boyutlu test problemleri için hesaplama süresi çok uzun sürdüğünden sonuç

alınamamıştır. Herhangi bir özel kısıt içermeyen p9 ve p12 test problemlerine ait

optimum sonuçlar hesaplama süreleri ile birlikte Tablo 4.2’de verilmiştir.

min 2ඨ∑ ൫ݕ௞௕ሺܿݐ െ ௞௕ሻ൯௄,஻ݏ
ଶ

ݕܽݏݐݏ݅ ൅
∑ ݐ௞௕ሺܿݕ െ ௞௕ሻ௄,஻ݏ

ݕܽݏݐݏ݅

෍ ௜௞௕ݔ ൌ ݅׊ 1
௄.஻

 ሺ1ሻ

෍ ௜௞ଵݔ ൌ ݅׊ 1 א ௜ ሺ2ሻܮܵ
௄

෍ ௜௞ଶݔ ൌ ݅׊ 1 א ܴܵ௜ ሺ3ሻ
௄

௜௞௕ሺ݀௜ݔ ൅ ௜ሻݐ ൑ ,݅׊ ݐܿ ݇, ܾ ሺ4ሻ

෍ ௜௞௕ሺ݀௜ݔ ൅ ሺ݇ െ 1ሻܿݐሻ ൅ ௜ݐ െ ෍ ௝௞௕൫ݔ ௝݀ ൅ ሺ݇ െ 1ሻܿݐ൯ ൑ 0
௄,஻௄,஻

,ሼ݅׊ ݆ሽ א ௜௝ ሺ5ሻܿݑܵ

෍ ௜௞௕ሺ݀௜ݔ ൅ ሺ݇ െ 1ሻܿݐሻ ൅ ௜ݐ െ ෍ ௝௞௕൫ݔ ௝݀ ൅ ሺ݇ െ 1ሻܿݐ൯ ൑ ௜௝ݑܯ
௄,஻௄,஻

,ሼ݅׊ ݆ሽ ב ݅ ௜௝ܿݑܵ ് ݆ ሺ6ሻ

෍ ௝௞௕൫ݔ ௝݀ ൅ ሺ݇ െ 1ሻܿݐ൯ ൅ ௝ݐ െ ෍ ௜௞௕ሺ݀௜ݔ ൅ ሺ݇ െ 1ሻܿݐሻ ൑ ሺ1ܯ െ ௜௝ሻݑ
௄,஻௄,஻

,ሼ݅׊ ݆ሽ ב ݅ ௜௝ܿݑܵ

് ݆ ሺ7ሻ

௞௕ݏ ൌ ෍ ,݇׊ ௜ݐ௜௞௕ݔ ܾ
ே

 ሺ8ሻ

෍ ௜௞௕ݔ ൒ ,݇׊ ௞௕ݕ ܾ
ே

 ሺ9ሻ

෍ ௜௞௕ݔ ൑ ,݇׊ ௞௕ݕܯ ܾ ሺ10ሻ
ே

݀௜ ൒ ሺ12ሻ ݅׊ 0

௞௕ݏ ൒ ,݇׊ 0 ܾ ሺ13ሻ

ݕܽݏݐݏ݅ ൒ ı ሺ14ሻݕܽݏ݉ܽݐ 0

௜௞௕ݔ א ሼ0,1ሽ ݅׊, ݇, ܾ ሺ15ሻ

௞௕ݕ א ሼ0,1ሽ ݇׊, ܾ ሺ16ሻ

Kısıtlar

ݕܽݏݐݏ݅ ൌ ∑ ௞௕௄,஻ݕ (11)

89

Tablo 4.2. Özel kısıt içermeyen ÇTMHDP için önerilen karma tamsayılı doğrusal
 olmayan matematiksel model sonuçları.

Problem Çevrim süresi İstasyon sayısı CPU (sn.)

p9

3 6 28588.61
4 5 10456.81
5 4 2549.20
6 3 799.31

p12

4 - 7200
5 - 7200
6 - 7200
7 - 7200
8 7 7200

* p12 problem kümesine ait istasyon sayısı değerleri,
programın 7200 saniye çalıştırılması sonucu elde
edilen uygun çözüme ait istasyon sayısını vermektedir.
‘-’ 7200 saniye içerisinde uygun bir çözüm
bulunamadığını göstermektedir.

4.5.2. Bölgesel Kısıta Sahip Çift Taraflı Montaj Hattı Dengeleme Problemi için

Önerilen Matematiksel Model ve Sonuçları

Bölgesel kısıta sahip ÇTMHDP’nin çözümü için önerilen matematiksel modele iki

parametre ve iki kısıt eklenmiştir.

Eklenen Parametreler:

ZPij=aynı istasyona atanması gereken işler kümesi

ZNij=aynı istasyona atanmaması gereken işler kümesi

Eklenen Kısıtlar:

 ∑ ݇ሺݔ௜௞ଵ ൅ ௜௞ଶሻݔ െ ∑ ݇൫ݔ௝௞ଵ ൅ ௝௞ଶ൯௄ݔ ൌ 0௄ ,݅׊ ݆ א ܼ ௜ܲ௝

Pozitif bölgesel kısıta sahip işlerin aynı istasyona atanmasını sağlar.

 ∑ ݇ሺݔ௜௞ଵ ൅ ௜௞ଶሻݔ െ ∑ ݇൫ݔ௝௞ଵ ൅ ௝௞ଶ൯௄ݔ ് 0௄ ,݅׊ ݆ א ܼ ௜ܰ௝

Negatif bölgesel kısıta sahip işlerin aynı istasyona atanmamasını sağlar.

90

Önerilen matematiksel model GAMS 22.7.2 optimizasyon paket programı ile küçük

boyutlu test problemlerinin bir kısmı için sonuçlar elde edebilmiş, ancak daha büyük

boyutlu test problemleri için hesaplama süresi çok uzun sürdüğünden sonuç

alınamamıştır. Bölgesel kısıta sahip p9 ve p12 test problemlerine ait optimum sonuçlar

hesaplama süreleri ile birlikte aşağıdaki tabloda (Tablo 4.3) verilmiştir.

Tablo 4.3. Bölgesel kısıta sahip ÇTMHDP için önerilen karma tamsayılı doğrusal
 olmayan matematiksel model sonuçları.

Problem Çevrim süresi İstasyon sayısı CPU (sn.)

p9

3 6 15225.09
4 5 6399.62
5 4 3806.94
6 3 3109.53

p12

5 - 7200
6 - 7200
7 - 7200
8 7 7200

* p12 problem kümesine ait istasyon sayısı değerleri,
programın 7200 saniye çalıştırılması sonucu elde
edilen uygun çözüme ait istasyon sayısını vermektedir.
‘-’ 7200 saniye içerisinde uygun bir çözüm
bulunamadığını göstermektedir.

4.5.3. Konumsal, Bölgesel ve Senkronizasyon Kısıtlarına Sahip Çift Taraflı

Montaj Hattı Dengeleme Problemi için Önerilen Matematiksel Model ve

Sonuçları

Konumsal, bölgesel ve senkronizasyon kısıtlarına sahip ÇTMHDP’nin çözümü için

önerilen matematiksel modele aşağıdaki parametre ve kısıtlar eklenmiştir.

min 2ඨ∑ ൫ݕ௞௕ሺܿݐ െ ௞௕ሻ൯௄,஻ݏ
ଶ

ݕܽݏݐݏ݅ ൅
∑ ݐ௞௕ሺܿݕ െ ௞௕ሻ௄,஻ݏ

ݕܽݏݐݏ݅

෍ ݇ሺݔ௜௞ଵ ൅ ௜௞ଶሻݔ െ ෍ ݇൫ݔ௝௞ଵ ൅ ௝௞ଶ൯ݔ
௄

ൌ 0
௄

,ሼ݅׊ ݆ሽ א ܼ ௜ܲ௝ ሺ18ሻ

෍ ݇ሺݔ௜௞ଵ ൅ ௜௞ଶሻݔ െ ෍ ݇൫ݔ௝௞ଵ ൅ ௝௞ଶ൯ݔ
௄

് 0
௄

,ሼ݅׊ ݆ሽ א ܼ ௜ܰ௝ ሺ19ሻ

Kısıtlar

(1)-(17)

91

Eklenen Parametreler:

Posik=konumsal kısıta sahip işler kümesi

ZPij=aynı istasyona atanması gereken işler kümesi

ZNij=aynı istasyona atanmaması gereken işler kümesi

SCij= hattın her iki yönünde aynı anda yapılması gereken işler kümesi

Eklenen Kısıtlar:

 ∑ ௜௞௕ሺ݀௜ݔ ൅ ሺ݇ െ 1ሻܿݐሻ ൅ ௜ݐ െ௄,஻

∑ ௝௞௕൫ݔ ௝݀ ൅ ሺ݇ െ 1ሻܿݐ൯ ൑ ௜௝௄,஻ݑܯ ,݅׊ ݆ ב ,௜௝ܿݑܵ ,௜௝ܥܵ ݅ ് ݆

 ∑ ௝௞௕൫ݔ ௝݀ ൅ ሺ݇ െ 1ሻܿݐ൯ ൅ ௝ݐ െ ∑ ௜௞௕ሺ݀௜ݔ ൅ ሺ݇ െ 1ሻܿݐሻ ൑ ሺ1ܯ െ௄,஻௄,஻

,݅׊ ௜௝ሻݑ ݆ ב ,௜௝ܿݑܵ ,௜௝ܥܵ ݅ ് ݆

Arasında öncelik ilişkisi ve senkronizasyon kısıtı olmayan işler için çakışmayı

önler.

 ∑ ௜௞௕ݔ ൌ ,݅׊ 1 ݇ א ௜௞஻ݏ݋ܲ

Konumsal kısıta sahip işlerin belirlenen istasyonlara atanmasını sağlar.

 ∑ ݇ሺݔ௜௞ଵ ൅ ௜௞ଶሻݔ െ ∑ ݇൫ݔ௝௞ଵ ൅ ௝௞ଶ൯௄ݔ ൌ 0௄ ,݅׊ ݆ א ܼ ௜ܲ௝

Pozitif bölgesel kısıta sahip işlerin aynı istasyona atanmasını sağlar.

 ∑ ݇ሺݔ௜௞ଵ ൅ ௜௞ଶሻݔ െ ∑ ݇൫ݔ௝௞ଵ ൅ ௝௞ଶ൯௄ݔ ് 0௄ ,݅׊ ݆ א ܼ ௜ܰ௝

Negatif bölgesel kısıta sahip işlerin aynı istasyona atanmamasını sağlar.

 ∑ ௜௞ଵሺ݀௜ݔ ൅ ሺ݇ െ 1ሻܿݐሻ െ ∑ ௝௞ଶሺݔ ௝݀ ൅ ሺ݇ െ 1ሻܿݐሻ௄ ൌ ,݅׊ 0 ݆ א ௜௝௄ܥܵ

Senkronizasyon kısıtına sahip işlerin aynı başlangıç zamanıyla aynı istasyonun

karşılıklı yönlerine atanmasını sağlar.

92

Önerilen matematiksel model GAMS 22.7.2 optimizasyon paket programı ile küçük

boyutlu test problemlerinin bir kısmı için sonuçlar elde edebilmiş, ancak daha büyük

boyutlu test problemleri için hesaplama süresi çok uzun sürdüğünden sonuç

alınamamıştır. Konumsal, bölgesel ve senkronizasyon kısıtlarına sahip p9 ve p12 test

problemlerine ait optimum sonuçlar hesaplama süreleri ile birlikte aşağıdaki tabloda

(Tablo 4.4) verilmiştir.

Tablo 4.4. Konumsal, bölgesel ve senkronizasyon kısıtlarına sahip ÇTMHDP için
 önerilen karma tamsayılı doğrusal olmayan matematiksel model sonuçları.

Problem Çevrim süresi İstasyon sayısı CPU (sn.)

p9
4 5 421.09
5 4 200.09
6 4 292.77

p12

5 6 53173.70
6 5 17337.06
7 5 46576.48
8 4 11225.56

4.6. Çift Taraflı Montaj Hattı Dengeleme Problemi için Arı Algoritması

ÇTMHDP’nin çözümünde kullanılan AA’nın detaylı adımları Tablo 4.5’te

verilmektedir.

min 2ඨ∑ ൫ݕ௞௕ሺܿݐ െ ௞௕ሻ൯௄,஻ݏ
ଶ

ݕܽݏݐݏ݅ ൅
∑ ݐ௞௕ሺܿݕ െ ௞௕ሻ௄,஻ݏ

ݕܽݏݐݏ݅

෍ ݇ሺݔ௜௞ଵ ൅ ௜௞ଶሻݔ െ ෍ ݇൫ݔ௝௞ଵ ൅ ௝௞ଶ൯ݔ
௄

ൌ 0
௄

,ሼ݅׊ ݆ሽ א ܼ ௜ܲ௝ ሺ18ሻ

෍ ݇ሺݔ௜௞ଵ ൅ ௜௞ଶሻݔ െ ෍ ݇൫ݔ௝௞ଵ ൅ ௝௞ଶ൯ݔ
௄

് 0
௄

,ሼ݅׊ ݆ሽ א ܼ ௜ܰ௝ ሺ19ሻ

෍ ௜௞௕ݔ ൌ ,ሼ݅׊ 1 ݇ሽ א ௜௞ݏ݋ܲ
஻

 ሺ20ሻ

෍ ௜௞ଵሺ݀௜ݔ ൅ ሺ݇ െ 1ሻܿݐሻ െ ෍ ௝௞ଶሺݔ ௝݀ ൅ ሺ݇ െ 1ሻܿݐሻ
௄

ൌ ,ሼ݅׊ 0 ݆ሽ א ௜௝ܥܵ
௄

 ሺ21ሻ

෍ ௜௞௕ሺ݀௜ݔ ൅ ሺ݇ െ 1ሻܿݐሻ ൅ ௜ݐ െ ෍ ௝௞௕൫ݔ ௝݀ ൅ ሺ݇ െ 1ሻܿݐ൯ ൑ ௜௝ݑܯ
௄,஻௄,஻

,ሼ݅׊ ݆ሽ ב ,௜௝ܿݑܵ ݅ ௜௝ܥܵ ് ݆ ሺ22ሻ

෍ ௝௞௕൫ݔ ௝݀ ൅ ሺ݇ െ 1ሻܿݐ൯ ൅ ௝ݐ െ ෍ ௜௞௕ሺ݀௜ݔ ൅ ሺ݇ െ 1ሻܿݐሻ ൑ ሺ1ܯ െ ௜௝ሻݑ
௄,஻௄,஻

,ሼ݅׊ ݆ሽ ב ,௜௝ܿݑܵ ݅ ௜௝ܥܵ ് ݆ ሺ23ሻ

Kısıtlar

(1)-(5), (8)-(17)

93

Tablo 4.5. ÇTMHDP’nin çözümü için AA adımları.
1. Parametreleri başlangıç durumuna getir
2. Sezgisel kurallarla kâşif arı çözümlerini oluştur
3. Kâşif arı çözümlerinin uygunluk fonksiyonlarını değerlendir

௦ሻߪሺݐ݂݅ ൌ 2ට∑ ሺ௖௧ିௌೖሻమ೙
ೖసభ

௡
൅ ∑ ሺ௖௧ିௌೖሻ೙

ೖసభ
௡

4. I=0
5. Do
 Artan şekilde sıralas=1….S fit(σs) ve en iyi P adet çözümü görevli arı
 olarak belirle
 En iyi e adet görevli arıyı seç
 En iyi e adet görevli arının her birine nep adet izci arı ata
 Kalan P-e adet görevli arının her birine nsp adet izci arı ata
 k=0
 Do
 Her izci arıya komşuluk yapılarından birini %50 olasılıkla uygula
 Eğer fit(σkaydırma) < fit(σp) ise σp = σkaydırma
 Eğer fit(σdeğiştirme) < fit(σp) ise σp = σdeğiştirme
 En iyi çözümü güncelle
 Eğer minp=1,…,Pfit(σp)<fit(σeniyi) ise σeniyi=σp
 k=k+1
 While (k<P)
 Sezgisel kurallar ile S-P adet yeni kâşif arı çözümleri oluştur
 I=I+1
 While (I<MaksIter)

ÇTMHDP için AA, parametrelerin başlangıç değerlerine atanması ile başlar (S, P, e,

nep, nsp, MaksIter) ve 4.6.1 bölümünde detayları verilecek olan sezgisel kurallarla S

adet başlangıç kâşif arı çözümü oluşturulması ile devam eder. Oluşturulan çözümler

kümesinden P adet iyi çözüm görevli arı çözümleri olarak; P adet iyi çözüm arasından

seçilen e adet çözüm ise en iyi çözümler olarak belirlenir. Daha detaylı bir komşuluk

araması için en iyi çözümlere nep adet izci arı gönderilir. Daha az sayıda izci arı ise

kalan P-e adet çözüme gönderilir. Yerel arama için her görevli arıya kaydırma ve

değiştirme komşuluk mekanizmalarından biri uygulanır. Daha iyi bir çözüm

bulunmuşsa görevli arı çözümü güncellenir. Diğer taraftan en iyi görevli arı çözümü o

ana kadar bulunan en iyi çözümle karşılaştırılır ve daha iyi bir çözüm bulunmuşsa en iyi

çözüm güncellenir. Global arama için sezgisel kurallarla S-P adet kâşif arı çözümü

oluşturularak bir sonraki iterasyona geçecek popülasyon sayısı tamamlanır. Bahsedilen

adımlar MaxIter sayısınca tekrarlanır. ÇTMHDP’nin çözümünde kullanılan AA’nın

önemli adımlarının detayları sonraki bölümlerde verilmiştir.

94

4.6.1. Arı Kolonisinin Oluşturulması

ÇTMHDP’nin çözümü için önerilen AA’nda çözüm dizilerinin gösterim şekli olarak

sezgisel tabanlı gösterim kullanılmıştır. Bu gösterim şeklinde çözümler dolaylı bir yolla

temsil edilmekte yani çözüm dizisinin her değeri bir sezgisel kuralı ifade etmektedir.

Şekil 4.2’de 9 işe sahip bir veri kümesi için örnek bir çözüm dizisi gösterilmiştir.

Verilen örnekte 2. sırada atanacak işin en kısa işlem süresine sahip iş kuralına göre, 5.

sırada atanacak işin konumsal kısıta sahip bir işin önceki işine öncelik verme kuralına

göre ve 7. sırada atanacak işin en uzun işlem süresine sahip iş kuralına göre seçileceği

ifade edilmektedir. Yani çözüm dizisinin i. elemanı i. sırada atanacak işi atamak için

kullanılacak sezgisel kuralı temsil etmektedir.

Şekil 4.2. Çözüm dizisi örneği.

Algoritmaya dâhil edilen sezgisel kurallar aşağıdaki gibidir:

1) En kısa işlem süresi (EKİS): Minimum işlem süresine sahip işi seçer.

2) En uzun işlem süresi (EUİS): Maksimum işlem süresine sahip işi seçer.

3) Kendinden sonraki iş sayısı toplamının minimumu (MiİSa): Kendinden sonra

gelen iş sayısı en az olan işi seçer.

4) Kendinden sonraki iş sayısı toplamının maksimumu (MaİSa): Kendinden sonra

gelen iş sayısı en çok olan işi seçer.

5) Kendinden sonraki işlerin toplam işlem süresinin minimumu (MiİSü):

Kendinden sonra gelen işlerin işlem süresi toplamı en az olan işi seçer.

6) Kendinden sonraki işlerin toplam işlem süresinin maksimumu (MaİSü):

Kendinden sonra gelen işlerin işlem süresi toplamı en çok olan işi seçer.

7) Maksimum sıralı konumsal ağırlık (MaSKA): Sıralı konumsal ağırlık değeri en

büyük olan işi seçer. Bir işe ait sıralı konumsal ağırlık değeri ise o işin işlem

süresi ile kendinden sonra gelen işlerin işlem sürelerinin toplamı ile elde edilir.

95

8) Maksimum ortalama sıralı konumsal ağırlık (MaOSKA): Ortalama sıralı

konumsal ağırlık değeri en büyük olan işi seçer. Bir işe ait ortalama sıralı

konumsal ağırlık değeri ise o işin işlem süresi ile kendinden sonra gelen işlerin

işlem sürelerinin toplamının iş sayısına bölünmesi ile elde edilir.

9) Pozitif bölgesel kısıt önceliği (PBÖ): Pozitif bölgesel kısıta sahip bir işin önceki

işini seçer. Eğer atanabilir işler listesinde bu özelliğe sahip bir iş yoksa rastgele

seçim yapılır.

10) Konumsal kısıt önceliği (KÖ): Konumsal kısıta sahip bir işin önceki işini seçer.

Eğer atanabilir işler listesinde bu özelliğe sahip bir iş yoksa rastgele seçim

yapılır.

11) Senkronizasyon kısıtı önceliği (SÖ): Senkronizasyon kısıtına sahip bir işin

önceki işini seçer. Eğer atanabilir işler listesinde bu özelliğe sahip bir iş yoksa

rastgele seçim yapılır.

Herhangi bir özel kısıta sahip olmayan ÇTMHDP için çözüm dizilerinin oluşturulması

esnasında (1)-(8) kuralları kullanılır ve çözüm dizisi uzunluğu iş sayısına eşittir.

Bahsedilen problem için başlangıç çözümlerinin oluşturulması aşaması Şekil 4.3’te

açıklanmaktadır. Öncelikle ilgili istasyonun kapasitesini aşmayan ve varsa önceki işleri

bir istasyona atanmış işlerden (Predi, i işinden hemen önceki işler kümesini göstermek

üzere) atanabilir işler listesi oluşturulur. Eğer atanabilir işler listesi boş ise yeni bir

istasyon açılır, aksi takdirde verilen çözüm dizisinde sıradaki kural kullanılarak bir iş

seçilir ve ataması gerçekleştirilir. Atanan iş, atanabilir işler listesinden çıkarılır. Bu

adımlar bütün işler bir istasyona atanana kadar tekrarlanır.

96

Şekil 4.3. Özel kısıta sahip olmayan ÇTMHDP için başlangıç çözümlerinin

oluşturulması.

97

Bölgesel kısıta sahip ÇTMHDP için çözüm dizilerinin oluşturulması esnasında ise (1)-

(9) kuralları kullanılır ve çözüm dizisi uzunluğu, iş sayısından pozitif bölgesel kısıt

sayısının çıkarılması ile hesaplanır. Çünkü pozitif bölgesel kısıta sahip bir iş

atandığında karşılık işin de aynı istasyona atanması gerekir ve bu atama esnasında

atama kurallarından biri kullanılmaz. Bahsedilen problem için başlangıç çözümlerinin

oluşturulması aşaması Şekil 4.4’te açıklanmaktadır. Öncelikle ilgili istasyonun

kapasitesini aşmayan, varsa önceki işleri bir istasyona atanmış ve atama yapılacak

istasyonda negatif bölgesel kısıt karşılığı olmayan işlerden atanabilir işler listesi

oluşturulur. Eğer atanabilir işler listesi boş ise yeni bir istasyon açılır, aksi takdirde

verilen çözüm dizisinde sıradaki kural kullanılarak bir iş seçilir. Seçilen işin ataması

gerçekleştirilmeden önce bu işe ait bir pozitif bölgesel kısıt olup olmadığı kontrol edilir.

Eğer varsa ve her iki iş de aynı istasyona atanabiliyorsa (öncelik, çevrim süresi ve ilgili

istasyonda negatif bölgesel kısıt karşılığı olmama şartları sağlanıyorsa) atama

gerçekleştirilir ve karşılık iş de aynı istasyona atanır, eğer atama gerçekleştirilemiyorsa

seçilen iş atanabilir işler listesinden çıkarılır. Bu adımlar bütün işler atanana kadar

tekrarlanır.

98

Şekil 4.4. Bölgesel kısıta sahip ÇTMHDP için başlangıç çözümlerinin oluşturulması.

99

Konumsal, bölgesel ve senkronizasyon kısıtlarına sahip ÇTMHDP için çözüm

dizilerinin oluşturulması esnasında (1)-(11) kuralları kullanılmakta ve çözüm dizisi

uzunluğu, iş sayısından konumsal kısıt, pozitif bölgesel kısıt ve senkronizasyon kısıtı

sayısı çıkarılarak hesaplanmaktadır. Bahsedilen problem için başlangıç çözümlerinin

oluşturulması aşaması Şekil 4.5’te açıklanmaktadır. Diğer modellerden farklı olarak

öncelik konumsal kısıta sahip işlere verilmektedir. Konumsal kısıta sahip iş, belirlenen

istasyona atandıktan sonra bu işe ait bir pozitif bölgesel kısıt olup olmadığı kontrol

edilerek eğer varsa karşılık iş de aynı istasyona atanır. Diğer taraftan yine konumsal

kısıta sahip işe ait bir senkronizasyon kısıtı olup olmadığı kontrol edilir ve karşılık iş de

aynı başlangıç süresiyle karşılık istasyona atanır. Daha sonra başlangıç istasyonuna

dönülerek ilgili istasyonun kapasitesini aşmayan, varsa önceki işleri bir istasyona

atanmış ve atama yapılacak istasyonda negatif bölgesel kısıt karşılığı olmayan işlerden

atanabilir işler listesi oluşturulur. Eğer atanabilir işler listesi boş ise yeni bir istasyon

açılır, aksi takdirde verilen çözüm dizisinde sıradaki kural kullanılarak bir iş seçilir.

Seçilen işin ataması gerçekleştirilmeden önce bu işe ait bir pozitif bölgesel kısıt olup

olmadığı kontrol edilir. Eğer varsa ve her iki iş de aynı istasyona atanabiliyorsa

(öncelik, çevrim süresi ve ilgili istasyonda negatif bölgesel kısıt karşılığı olmama

şartları sağlanıyorsa) atama gerçekleştirilir ve karşılık iş de aynı istasyona atanır, eğer

atama gerçekleştirilemiyorsa seçilen iş atanabilir işler listesinden çıkarılır. Aynı şekilde

seçilen işin ataması gerçekleştirilmeden önce bu işe ait bir senkronizasyon kısıtı olup

olmadığı kontrol edilir ve eğer varsa karşılık iş de aynı başlangıç süresiyle karşılık

istasyona atanır. Eğer atama gerçekleştirilemiyorsa (öncelik, çevrim süresi ve ilgili

istasyonda negatif bölgesel kısıt karşılığı olmama şartları sağlanamıyorsa) seçilen iş

atanabilir işler listesinden çıkarılır. Bu adımlar bütün işler atanana kadar tekrarlanır.

100

Şekil 4.5. Konumsal, bölgesel ve senkronizasyon kısıtlarına sahip ÇTMHDP için

başlangıç çözümlerinin oluşturulması.

101

4.6.2. Uygunluk Fonksiyonu ve Komşuluk Yapıları

Uygunluk fonksiyonu, ÇTMHDP için önerilen matematiksel modeldeki gibi ele alınmış

olup n istasyon sayısını, sk k. istasyondaki toplam işlem süresini göstermek üzere

aşağıdaki gibi hesaplanmaktadır.

௦ሻߪሺݐ݂݅ ൌ 2ඨ∑ ሺܿݐ െ ܵ௞ሻଶ௡
௞ୀଵ

݊ ൅
∑ ሺܿݐ െ ܵ௞ሻ௡

௞ୀଵ

݊ ሺ4.1. ሻ

Komşuluk yapısı olarak ise algoritmanın performansını öne çıkarabilmek için basit

yapılar kullanılmıştır. Bu amaçla kaydırma ve değiştirme komşuluk yapıları %50

olasılıkla değişimli olarak kullanılmıştır. Diğer taraftan her bir komşuluk aramasında

dizi uzunluğunun %10’u kadar kaydırma ya da değiştirme yapılmıştır.

4.7. Çift Taraflı Montaj Hattı Dengeleme Problemi için Yapay Arı Kolonisi

Algoritması

ÇTMHDP’nin çözümünde kullanılan YAK algoritmasının detaylı adımları Tablo 4.6’da

verilmektedir.

YAK algoritması, parametrelerin başlangıç değerlerine atanması ile başlar ve sezgisel

kurallarla P adet başlangıç görevli arı çözümü oluşturulması ile devam eder. Görevli arı

çözümlerine, çözümün kalitesi ile orantılı sayıda izci arı atanır. Yerel arama için her

görevli arıya kaydırma ve çift kaydırma komşuluk mekanizmalarından biri uygulanır.

Daha iyi bir çözüm bulunmuşsa görevli arı çözümü güncellenir. Diğer taraftan görevli

arı çözümleri o ana kadar bulunan en iyi çözümle karşılaştırılır ve daha iyi bir çözüm

bulunmuşsa en iyi çözüm güncellenir. Görevli arı çözümü limit parametresi ile

belirlenen sayıda iterasyon boyunca geliştirilememişse sezgisel kurallarla yeni bir kâşif

arı çözümü oluşturulur. Son olarak algoritma adımları önceden belirlenmiş iterasyon

sayısı kadar tekrarlanır.

YAK algoritmasında başlangıç çözümlerinin oluşturulması, kullanılan komşuluk

yapıları ve uygunluk fonksiyonu AA’ndakiler ile aynıdır.

102

Tablo 4.6. ÇTMHDP için YAK algoritması adımları.
1. Parametreleri başlangıç değerlerine ata
2. Sezgisel kurallarla başlangıç görevli arı çözümlerini oluştur (σp)
3. Görevli arı çözümlerinin uygunluk fonksiyonlarını değerlendir

௣ሻߪሺݐ݂݅ ൌ 2ඨ∑ ሺܿݐ െ ܵ௞ሻଶ௡
௞ୀଵ

݊ ൅
∑ ሺܿݐ െ ܵ௞ሻ௡

௞ୀଵ

݊

4. I=0
5. Do

Uygunluk değerleriyle ilişkili olasılıkları hesapla

௣݌ ൌ
൫∑ ௣ሻିଵ൯ߪሺݐ݂݅

ିଵ

௣ሻߪሺݐ݂݅

Olasılıklara göre izci arıları görevli arılara ata

Hesaplanan olasılıklara göre, görevli arıların yiyecek kaynaklarına
gönderilecek izci arı sayısını belirle, pp*P

k=0
Do
 Her izci arıya komşuluk yapılarından birini %50 olasılıkla uygula

 Eğer fit(σkaydırma) < fit(σp) ise σp = σkaydırma, LimitSayacı(σp)=0
 Aksi takdirde LimitSayacı(σp)=LimitSayacı(σp)+1
 Eğer fit(σdeğiştirme) < fit(σp) ise σp = σdeğiştirme,
 LimitSayacı(σp)=0
 Aksi takdirde LimitSayacı(σp)=LimitSayacı(σp)+1
 En iyi çözümü güncelle

 Eğer minp=1,…,Pfit(σp)<fit(σeniyi) ise σeniyi=σp
 Eğer (LimitSayacı(σp)>limit) ise sezgisel kurallarla yeni bir
 kâşif arı çözümü oluştur
 k=k+1
 While (k<P)
 I=I+1
 While (I=MaksIter)

4.8. Deneysel Çalışma

Bilimsel yazındaki çalışmaların sonuçlarıyla birebir karşılaştırma yapabilmek için AA

ve YAK algoritmaları özel kısıt içermeyen, bölgesel kısıta sahip ve konumsal, bölgesel

ve senkronizasyon kısıtlarına sahip ÇTMHDP için ayrı ayrı çalıştırılıp sonuçlar ilgili

çalışmalarla karşılaştırılmıştır.

Test problemleri küçük boyutlu (p9, p12, p16, p24) ve büyük boyutlu (p65, p148, p205)

problemleri içermekte olup problem adlarındaki sayılar ilgili verideki iş sayısını

göstermektedir. p9, p12 ve p24 problemleri Kim ve ark. (2000) çalışmasından, p16,

p65, p205 problemleri Lee ve ark. (2001) çalışmasından ve son olarak p148 problemi

103

ise Bartholdi (1993) çalışmasından alınmıştır. p148 problemindeki 79 ve 108 nolu işlere

ait işlem süreleri diğer işlem sürelerine göre çok büyük olduğundan ve çevrim süresi

üzerinde bir kısıt oluşturduğundan karşılaştırma yapılan diğer çalışmalarda olduğu gibi

bu işlere ait süreler sırasıyla 2.81 yerine 1.11 ve 3.83 yerine 0.43 olarak alınmıştır. p9,

p12, p24, p65, p148 problemlerine ait konumsal kısıt verileri Kim ve ark. (2000)

çalışmasından alınmışken, p16 ve p205 problemlerine ait konumsal kısıt verileri ise bu

çalışmada belirlenmiştir. p9, p12, p24, p65, p148, p205 problemlerine ait bölgesel kısıt

verileri Baykasoğlu ve Dereli (2008) çalışmasından, p16 problemine ait bölgesel kısıt

verileri ise Özcan ve Toklu (2009b) çalışmasından alınmıştır. Bütün test problemlerine

ait senkronizasyon kısıtları ise verinin özelliklerine bağlı olarak bu çalışmada

belirlenmiştir.

4.8.1. Arı Algoritması Sonuçları

ÇTMHDP’nin çözümü için önerilen AA, C# programlama dilinde kodlanarak 2.2 GHz

CPU ve 2GB RAM özelliklere sahip Intel Core 2 Duo PC kullanılarak test problemleri

üzerinde analiz edilmiştir. Kullanılan kontrol parametresi değerlerinin belirlenmesi

aşamasında {S,P,e,nep,nsp}: {20,10,5,4,2}, {15,5,3,4,2}, {10,5,3,2,1}, {5,3,2,2,1}

olmak üzere 4 farklı parametre kombinasyonu oluşturulmuştur. Yapılan analizler

neticesinde 3. parametre kombinasyonu en iyi performansı gösterdiğinden Tablo 4.7’de

verildiği gibi algoritmanın parametreleri olarak bu değerler kullanılmıştır.

Tablo 4.7. ÇTMHDP için AA parametrelerinin değerleri.
Parametre Değer
S 10
P 5
e 3
nep 2
nsp 1
MaksIter 100

AA her problem kümesinin bütün çevrim süreleri için 10’ar kez çalıştırılmıştır.

Minimum, ortalama ve maksimum istasyon sayıları, minimum CPU süreleri ile birlikte

ilgili tablolarda sunulmuştur. CPU süresi olarak minimum değerlerin dikkate

alınmasının sebebi karşılaştırma yapılan çalışmalarda da minimum CPU sürelerinin

verilmesidir. Daha önce bahsedildiği gibi deneysel çalışma 3 kategoride ele alınmıştır.

Bunlardan ilki olan özel kısıt içermeyen ÇTMHDP sonuçları Tablo 4.8, bölgesel kısıta

104

sahip ÇTMHDP sonuçları Tablo 4.9, konumsal, bölgesel ve senkronizasyon kısıtlarına

sahip ÇTMHDP sonuçları ise Tablo 4.10’da verilmiştir.

Tablo 4.8. AA ile özel kısıt içermeyen ÇTMHDP sonuçları.

p9

Çevrim
süresi min ort maks CPU

(sn.)

p65

Çevrim
süresi min ort maks CPU

(sn.)
3 6 6 6 <0.02 326 17 17 17 0.250
4 5 5 5 <0.02 381 14 14.5 15 1.078
5 4 4 4 <0.02 435 12 12.9 13 5.125
6 3 3 3 <0.02 490 11 11.3 12 2.203

p12

4 7 7 7 <0.02 544 10 10 10 0.312
5 6 6 6 <0.02

p148

204 26 26 26 0.406
6 5 5 5 <0.02 255 21 21 21 0.375
7 4 4 4 <0.02 306 17 17.6 18 0.390
8 4 4 4 <0.02 357 15 15 15 0.359

p16

15 6 6 6 <0.02 408 13 13.3 14 0.453
16 6 6 6 <0.02 459 12 12 12 0.171
18 6 6 6 <0.02 510 11 11 11 0.406
19 5 5 5 <0.02

p205

1133 22 23.7 24 33.390
20 5 5 5 <0.02 1322 20 20 20 32.953
21 5 5 5 <0.02 1510 17 17.9 18 2906.859
22 4 4 4 <0.02 1699 16 16 16 5.578

p24

18 8 8 8 <0.02 1888 14 14.3 15 12.390
20 8 8 8 <0.02 2077 12 12.8 13 149.703
24 6 6.4 7 0.031 2266 12 12 12 7.359
25 6 6 6 <0.02 2454 11 11.9 12 921.682
30 5 5 5 <0.02 2643 10 10 10 21.437
35 4 4 4 <0.02 2832 10 10 10 8.640
40 4 4 4 <0.02

* CPU süresi olarak bulunan <0.02 değeri, karşılık gelen istasyon sayısının bir iterasyonda bulunduğunu
göstermektedir.

105

Tablo 4.9. AA ile bölgesel kısıta sahip ÇTMHDP sonuçları.

p9

Çevrim
süresi min ort maks CPU

(sn.)

p65

Çevrim
süresi min ort maks CPU

(sn.)
3 7 7 7 <0.02 326 17 17.3 18 0.250
4 5 5 5 <0.02 381 14 14.9 15 9.328
5 4 4 4 <0.02 435 13 13 13 0.265
6 3 3 3 <0.02 490 11 11.8 12 6.015

p12

5 6 6 6 <0.02 544 10 10 10 0.687
6 5 5 5 <0.02

p148

204 26 26.7 27 6.421
7 4 4 4 <0.02 255 21 21.2 22 1.218
8 4 4 4 <0.02 306 18 18 18 2.000

p16

15 6 6.4 7 3.657 357 15 15.6 16 14.531
16 6 6.3 7 2.625 408 14 14 14 0.734
18 6 6 6 <0.02 459 12 12.4 13 2.625
19 6 6 6 <0.02 510 11 11.4 12 4.359
20 5 5 5 <0.02

p205

1133 23 23.9 24 41.593
21 5 5 5 0.093 1322 21 21.3 22 1.843
22 5 5.2 6 0.512 1510 18 18 18 11.609

p24

18 8 8 8 <0.02 1699 17 17.8 18 13.25
20 8 8 8 <0.02 1888 16 16 16 5.015
24 6 6.2 7 0.109 2077 14 14.9 15 260.031
25 6 6 6 <0.02 2266 14 14 14 12.078
30 5 5 5 <0.02 2454 14 14 14 5.843
35 4 4 4 <0.02 2643 13 13.8 14 94.578
40 4 4 4 <0.02 2832 12 12 12 9.692

106

Tablo 4.10. AA ile konumsal, bölgesel ve senkronizasyon kısıtlarına sahip ÇTMHDP
 sonuçları.

p9

Çevrim
süresi min ort maks CPU

(sn.)

p65

Çevrim
süresi min ort maks CPU

(sn.)
4 5 5 5 <0.02 326 18 18 18 0.234
5 4 4 4 <0.02 381 15 15.1 16 0.625
6 4 4 4 <0.02 435 14 14 14 0.390

p12

5 6 6 6 <0.02 490 13 13 13 0.281
6 5 5 5 <0.02 544 12 12 12 0.578
7 5 5 5 <0.02

p148

204 26 26.9 27 19.093
8 4 4 4 <0.02 255 23 23 23 2.421

p16

15 7 7 7 <0.02 306 20 20.7 21 4.359
16 7 7 7 <0.02 357 18 18.1 19 2.015
18 7 7 7 <0.02 408 17 18 19 13.593
19 7 7 7 <0.02 459 17 17.6 18 2.078
20 7 7 7 <0.02 510 17 17 17 2.468
21 7 7 7 <0.02

p205

1133 25 25.7 26 51.843
22 6 6 6 <0.02 1322 23 23 23 10.875

p24

18 8 8 8 <0.02 1510 21 21 21 16.984
20 8 8 8 <0.02 1699 19 19.9 20 926.781
24 7 7.2 8 0.062 1888 19 19.5 20 287.109
25 7 7 7 <0.02 2077 19 19 19 34.218
30 6 6 6 <0.02 2266 18 18.2 19 41.734
35 6 6 6 <0.02 2454 18 18 18 48.312
40 6 6 6 <0.02 2643 18 18 18 55.828

 2832 18 18 18 66.093

4.8.2. Yapay Arı Kolonisi Algoritması Sonuçları

ÇTMHDP’nin çözümü için önerilen YAK algoritması, C# programlama dilinde

kodlanmış ve aynı özelliklere sahip PC kullanılarak test problemleri üzerinde analiz

edilmiştir. Parametre değerlerinin belirlenmesinde AA parametreleri temel alınarak

algoritma içerisinde aynı sayıda arı olmasına dikkat edilmiştir. YAK algoritması

parametrelerinin değerleri Tablo 4.11’deki gibi belirlenmiştir.

Tablo 4.11. ÇTMHDP için YAK algoritması parametrelerinin değerleri.
Parametre Değer
P 10
limit 25
MaksIter 100

YAK algoritması da yine AA’nda olduğu gibi her problem kümesinin bütün çevrim

süreleri için 10’ar kez çalıştırılmıştır. Minimum, ortalama ve maksimum istasyon

sayıları, minimum CPU süreleri ile birlikte ilgili tablolarda sunulmuştur. Bunlardan ilki

olan özel kısıt içermeyen ÇTMHDP sonuçları Tablo 4.12, bölgesel kısıta sahip

107

ÇTMHDP sonuçları Tablo 4.13, konumsal, bölgesel ve senkronizasyon kısıtlarına sahip

ÇTMHDP sonuçları ise Tablo 4.14’te verilmiştir.

Tablo 4.12. YAK algoritması ile özel kısıt içermeyen ÇTMHDP sonuçları.

p9

Çevrim
süresi min ort maks CPU

(sn.)

p65

Çevrim
süresi min ort maks CPU

(sn.)
3 6 6 6 <0.02 326 17 17 17 0.203
4 5 5 5 <0.02 381 14 14.5 15 0.343
5 4 4 4 <0.02 435 13 13 13 0.281
6 3 3 3 <0.02 490 11 11.4 12 1.015

p12

4 7 7 7 <0.02 544 10 10 10 0.250
5 6 6 6 <0.02

p148

204 26 26 26 0.343
6 5 5 5 <0.02 255 21 21 21 0.484
7 4 4 4 <0.02 306 17 17.9 18 14.328
8 4 4 4 <0.02 357 15 15 15 0.156

p16

15 6 6 6 <0.02 408 13 13.6 14 1.359
16 6 6 6 <0.02 459 12 12 12 5.968
18 6 6 6 <0.02 510 11 11 11 0.343
19 5 5 5 <0.02

p205

1133 22 23.3 24 71.578
20 5 5 5 <0.02 1322 20 20 20 23.312
21 5 5 5 <0.02 1510 18 18 18 4.375
22 4 4 4 <0.02 1699 16 16 16 15.625

p24

18 8 8 8 <0.02 1888 14 14.6 15 40.031
20 8 8 8 <0.02 2077 14 14 14 5.125
24 6 6.3 7 0.031 2266 12 12 12 12.328
25 6 6 6 <0.02 2454 12 12 12 60.687
30 5 5 5 <0.02 2643 10 10.1 11 17.109
35 4 4 4 <0.02 2832 10 10 10 7.390
40 4 4 4 <0.02

108

Tablo 4.13. YAK algoritması ile bölgesel kısıta sahip ÇTMHDP sonuçları.

p9

Çevrim
süresi min Ort maks CPU

(sn.)

p65

Çevrim
süresi min Ort maks CPU

(sn.)
3 7 7 7 <0.02 326 18 18 18 0.218
4 5 5 5 <0.02 381 14 14.9 15 3.687
5 4 4 4 <0.02 435 13 13 13 0.390
6 3 3 3 <0.02 490 12 12 12 0.265

p12

5 6 6 6 <0.02 544 10 10 10 0.296
6 5 5 5 <0.02

p148

204 26 26.7 27 2.203
7 4 4 4 <0.02 255 21 21.1 22 2.125
8 4 4 4 <0.02 306 18 18 18 0.546

p16

15 7 7 7 <0.02 357 15 15.7 16 0.578
16 7 7 7 <0.02 408 14 14 14 0.703
18 6 6 6 <0.02 459 12 12.3 13 0.265
19 6 6 6 <0.02 510 11 11.8 12 2.406
20 5 5 5 <0.02

p205

1133 24 24.2 25 8.031
21 5 5.2 5 0.078 1322 21 21.5 22 24.187
22 5 5 5 <0.02 1510 18 19.1 20 78.390

p24

18 8 8 8 <0.02 1699 18 18 18 4.390
20 8 8 8 <0.02 1888 16 16 16 4.703
24 6 6.2 7 <0.02 2077 14 14.8 15 83.625
25 6 6 6 <0.02 2266 14 14 14 4.328
30 5 5 5 <0.02 2454 14 14 14 4.750
35 5 5 5 <0.02 2643 14 14 14 5.671
40 4 4 4 <0.02 2832 13 13 13 12.156

109

Tablo 4.14. YAK algoritması ile konumsal, bölgesel ve senkronizasyon kısıtlarına sahip
 ÇTMHDP sonuçları.

p9

Çevrim
süresi min ort maks CPU

(sn.)

p65

Çevrim
süresi min ort maks CPU

(sn.)
4 5 5 5 <0.02 326 18 18 18 0.203
5 4 4 4 <0.02 381 15 15.1 16 1.593
6 4 4 4 <0.02 435 14 14 14 0.437

p12

5 6 6 6 <0.02 490 13 13 13 0.375
6 5 5 5 <0.02 544 12 12 12 0.296
7 5 5 5 <0.02

p148

204 26 26.4 27 1.328
8 4 4 4 <0.02 255 23 23 23 0.578

p16

15 7 7 7 <0.02 306 20 20.9 21 1.437
16 7 7 7 <0.02 357 18 18.2 19 3.046
18 7 7 7 <0.02 408 17 17.9 19 2.000
19 7 7 7 <0.02 459 17 17.8 18 20.375
20 7 7 7 <0.02 510 17 17 17 1.359
21 7 7 7 <0.02

p205

1133 24 25.2 26 115.640
22 6 6 6 <0.02 1322 23 23.1 24 24.937

p24

18 8 8 8 <0.02 1510 20 20.9 21 242.500
20 8 8 8 <0.02 1699 20 20 20 55.296
24 7 7 7 <0.02 1888 19 19.8 20 22.328
25 7 7 7 <0.02 2077 18 18.9 19 960.812
30 6 6.4 6 <0.02 2266 17 17.3 18 352.734
35 6 6 6 <0.02 2454 17 17 17 56.937
40 6 6 6 <0.02 2643 17 17 17 42.046

 2832 17 17 17 55.640

4.8.3. Arı Algoritması ve Yapay Arı Kolonisi Algoritmasının Bilimsel Yazındaki

Algoritmalarla Karşılaştırılması

AA ve YAK algoritmasının ÇTMHDP’nin çözümü için kullanıldığı bir uygulama

niteliğinde olan bu bölümde, geniş bir deneysel çalışma neticesinde AA ve YAK

algoritması sonuçları bilimsel yazında sunulan sonuçlarla karşılaştırılmıştır.

Değerlendirmeye bilimsel yazındaki sezgisel ve matematiksel model sonuçları dâhil

edilmiş ancak problemin karmaşıklığı sebebiyle karşılaştırma yapılan sonuçların çoğu

sezgisel arama algoritmalarından elde edilmiştir. Karşılaştırma bölümü, deneysel

çalışma bölümünde olduğu gibi 3 kategoride ele alınmıştır. Tablo 4.15 özel kısıta sahip

olmayan ÇTMHDP, Tablo 4.16 bölgesel kısıta sahip ÇTMHDP, Tablo 4.17 konumsal,

bölgesel ve senkronizasyon kısıtlarına sahip ÇTMHDP için elde edilen sonuçların

bilimsel yazındaki sonuçlarla karşılaştırılmasını içermektedir. Tablolardaki koyu

değerler bilinen en iyi istasyon sayısını göstermektedir.

110

Tablo 4.15. AA ve YAK algoritması ile elde edilen özel kısıta sahip olmayan ÇTMHDP sonuçlarının karşılaştırılması.

p9

Çevrim
süresi

AA YAK Baykasoğlu ve Dereli
(2008)

Hu ve ark.
(2008)

Özcan ve Toklu
(2009a)

Özcan ve Toklu
(2009b) GAMS 22.7.2

İst.
sayısı CPU İst.

sayısı CPU İst. sayısı CPU İst.
sayısı CPU İst. sayısı İst. sayısı CPU İst.

sayısı CPU

3 6 <0.02 6 <0.02 6 <1 - - 6 6 0.093 6 28588.61
4 5 <0.02 5 <0.02 5 <1 5 0.047 5 5 0.296 5 10456.81
5 4 <0.02 4 <0.02 4 <1 4 0.047 4 4 0.140 4 2549.20
6 3 <0.02 3 <0.02 3 <1 - - 3 3 0.109 3 799.31

p1
2

Çevrim
süresi

AA YAK
Baykasoğlu

ve Dereli
(2008)

Hu ve ark.
(2008)

Wu ve ark.
(2008)

Özcan
ve

Toklu
(2009a)

Özcan ve
Toklu (2009b)

GAMS
22.7.2

İst.
sayısı CPU İst.

sayısı CPU İst.
sayısı CPU İst.

sayısı CPU İst.
sayısı CPU İst.

sayısı
İst.

sayısı CPU İst.
sayısı CPU

4 7 <0.02 7 <0.02 - - - 7 0.010 - - - -
5 6 <0.02 6 <0.02 6 <1 - 6 0.210 6 6 22.609 - -
6 5 <0.02 5 <0.02 5 <1 5 0.078 5 0.010 5 5 12.042 - -
7 4 <0.02 4 <0.02 4 <1 4 0.141 4 0.001 4 4 0.203 - -
8 4 <0.02 4 <0.02 - - 4 0.250 - - 4 4 1.125 7 7200

111

p1
6

Çevrim süresi
AA YAK Hu ve ark.

(2008) Wu ve ark. (2008) Özcan ve Toklu (2009a) Özcan ve Toklu (2009b)

İst. sayısı CPU İst. sayısı CPU İst.
sayısı CPU İst. sayısı CPU İst. sayısı İst. sayısı CPU

15 6 <0.02 6 <0.02 - - 7 0.121 - 6 132.859
16 6 <0.02 6 <0.02 6 0.204 - - 6 6 2.031
18 6 <0.02 6 <0.02 - - 6 0.100 - 6 153.328
19 5 <0.02 5 <0.02 6 0.219 - - 5 5 18.125
20 5 <0.02 5 <0.02 - - 5 4.756 - 5 156.609
21 5 <0.02 5 <0.02 5 0.094 - - 5 5 399.640
22 4 <0.02 4 <0.02 4 0.156 4 0.161 4 4 0.671

p2
4

Çevrim
süresi

AA YAK
Baykasoğlu

ve Dereli
(2008)

Hu ve ark.
(2008)

Wu ve ark.
(2008)

Özcan
ve

Toklu
(2009a)

Özcan ve Toklu
(2009b)

İst.
sayısı CPU İst.

sayısı CPU İst.
sayısı CPU İst.

sayısı CPU İst.
sayısı CPU İst.

sayısı
İst.

sayısı CPU

18 8 <0.02 8 <0.02 - - 8 0.828 - - 8 8 <7200
20 8 <0.02 8 <0.02 8 <1 8 1.218 - - 8 8 <7200
24 6 0.031 6 0.031 - - 7 5.938 - - 6 6 1621.437
25 6 <0.02 6 <0.02 6 <1 6 8.627 6 0.130 6 6 <7200
30 5 <0.02 5 <0.02 5 <1 - - 5 0.010 5 5 <7200
35 4 <0.02 4 <0.02 5 <1 - - 4 21.010 4 4 259.671
40 4 <0.02 4 <0.02 4 <1 - - 4 0.010 4 4 <7200

112

p6
5

Çevrim
süresi

AA YAK Lee ve ark.
(2001)

Baykasoğlu ve Dereli
(2008)

Wu ve ark.
(2008)

Simaria ve Vilarinho
(2009)

Özcan ve Toklu
(2009a)

İst.
sayısı CPU İst.

sayısı CPU İst.
sayısı CPU İst. sayısı CPU İst.

sayısı CPU İst. sayısı İst. sayısı

326 17 0.250 17 0.203 17 <3 17 <1 - - 17 17
381 14 1.078 14 0.343 15 <3 15 <1 14 0.047 14 15
435 12 5.125 13 0.281 13 <3 13 <1 - - 13 13
490 11 2.203 11 1.015 12 <3 12 <1 11 2.187 12 11
544 10 0.312 10 0.250 10 <3 10 2.48 10 5.230 10 10

p1
48

Çevrim
süresi

AA YAK Lee ve ark.
(2001)

Baykasoğlu ve Dereli
(2008)

Wu ve ark.
(2008)

Simaria ve Vilarinho
(2009)

Özcan ve Toklu
(2009a)

İst.
sayısı CPU İst.

sayısı CPU İst.
sayısı CPU İst. sayısı CPU İst.

sayısı CPU İst. sayısı İst. sayısı

204 26 0.406 26 0.343 27 <3 26 4.39 26 3.235 26 26
255 21 0.375 21 0.484 21 <3 21 15.64 21 11.063 21 21
306 17 0.390 17 14.328 18 <3 18 50.91 - - 18 18
357 15 0.359 15 0.156 15 <3 15 3.78 15 68.152 15 15
408 13 0.453 13 1.359 14 <3 14 2.19 13 35.014 14 13
459 12 0.171 12 5.968 13 <3 12 180.76 12 9.703 12 12
510 11 0.406 11 0.343 11 <3 11 15.05 11 10.657 11 11

113

p2
05

Çevrim
süresi

AA YAK Lee ve ark.
(2001)

Baykasoğlu ve Dereli
(2008)

Simaria ve Vilarinho
(2009)

Özcan ve Toklu
(2009a)

İst.
sayısı CPU İst.

sayısı CPU İst. sayısı CPU İst. sayısı CPU İst. sayısı İst. sayısı

1133 22 33.390 22 71.578 23 <3 24 451.14 22 24
1322 20 32.953 20 23.312 20 <3 22 449.27 20 21
1510 17 2906.859 18 4.375 20 <3 18 288.20 17 18
1699 16 5.578 16 15.625 16 <3 18 448.28 15 17
1888 14 12.390 14 40.031 16 <3 15 177.84 13 16
2077 12 149.703 14 5.125 14 <3 14 7.06 12 14
2266 12 7.359 12 12.328 13 <3 12 131.30 12 13
2454 11 921.682 12 60.687 12 <3 12 6.99 10 12
2643 10 21.437 10 17.109 12 <3 11 68.54 10 11
2832 10 8.640 10 7.390 10 <3 10 303.63 10 10

114

Tablo 4.15’ten görüldüğü gibi p9, p16 ve p24 problem kümelerinin bütün çevrim

süreleri için AA ve YAK algoritmaları bilinen en iyi çözüme daha düşük CPU süresi ile

ulaşmıştır. p12 problem kümesi için ise her iki algoritma ile de bilinen en iyi çözüm tüm

çevrim süreleri için oldukça kısa CPU süreleri ile bulunmuştur. p65 problem kümesi

için AA 5 çevrim süresinden 4’ünde bilinen en iyi çözüme; 1’inde ise (ct= 435) bilinen

en iyi çözümden daha iyi bir çözüme ulaşmıştır. CPU süresi olarak ise karşılaştırma

yapılan algoritmalarla benzer süreler elde edilmiştir. Aynı problem kümesi için YAK

algoritması değerlendirildiğinde 4 problem için bilinen en iyi çözüme ulaşılmış ve CPU

süresi açısından AA’na göre daha düşük değerler elde edilmiştir. p148 problem kümesi

için AA ve YAK algoritmaları bilinen en iyi çözüme daha düşük CPU zamanları ile

ulaşmış, diğer taraftan her iki algoritma da çevrim süresinin 306 olduğu problem için

bilinen en iyi çözümden daha iyi bir çözüm bulmuştur. Son olarak p205 problem

kümesi için AA 10 çevrim süresinin 7’sinde, YAK algoritması ise 5’inde bilinen en iyi

çözüme ulaşmıştır. Bütün problem kümelerine genel olarak bakılacak olursa AA 45

problemden 42’sinde, YAK algoritması da 39’unda bilinen en iyi çözümü bulmuştur.

Diğer taraftan AA 2 kere, YAK algoritması da 1 kere daha önce elde edilmemiş bir

çözüme ulaşmıştır. Her iki algoritmada da basit komşuluk yapılarının kullanıldığı göz

önüne alınırsa AA ve YAK algoritmalarının özel kısıta sahip olmayan ÇTMHDP

üzerinde etkin bir performansa sahip olduğu söylenebilir.

115

Tablo 4.16. AA ve YAK algoritması ile elde edilen bölgesel kısıta sahip ÇTMHDP sonuçlarının karşılaştırılması.
p9

Çevrim süresi AA YAK Baykasoğlu ve Dereli (2008) Özcan ve Toklu (2009b) GAMS 22.7.2
İst. sayısı CPU İst. sayısı CPU İst. sayısı CPU İst. sayısı CPU İst sayısı CPU

3 7 <0.02 7 <0.02 7 <1 7* 1.421 6 15225.09
4 5 <0.02 5 <0.02 6 <1 5 0.234 5 6399.62
5 4 <0.02 4 <0.02 4 <1 4 0.156 4 3806.94
6 3 <0.02 3 <0.02 3 <1 3 0.203 3 3109.53

* Özcan ve Toklu (2009b) çalışması da matematiksel model sonuçlarını içermesine rağmen GAMS 22.7.2 sonuçları ile farklılık olmasının sebebi, pozitif bölgesel kısıta sahip iki işin
aynı istasyonunun farklı yönlerine atanmasına izin verilmemesinden kaynaklanmaktadır.

p1
2

Çevrim süresi AA YAK Baykasoğlu ve Dereli (2008) Özcan ve Toklu (2009b) GAMS 22.7.2
İst. sayısı CPU İst. sayısı CPU İst. sayısı CPU İst. sayısı CPU İst sayısı CPU

5 6 <0.02 6 <0.02 6 <1 6 1.640 - -
6 5 <0.02 5 <0.02 5 <1 5 4.656 - -
7 4 <0.02 4 <0.02 5 <1 4 0.281 - -
8 4 <0.02 4 <0.02 - - 4 2.562 7 7200

p1
6

Çevrim süresi AA YAK Özcan ve Toklu (2009b)
İst. sayısı CPU İst. sayısı CPU İst. sayısı CPU

15 6 3.657 7 <0.02 6 13.640
16 6 2.625 7 <0.02 6 30.234
18 6 <0.02 6 <0.02 6 0.296
19 6 <0.02 6 <0.02 6 0.359
20 5 <0.02 5 <0.02 5 0.875
21 5 0.093 5 0.078 5 1.046
22 5 0.512 5 <0.02 5 2.015

116

p2
4

Çevrim süresi AA YAK Baykasoğlu ve Dereli (2008) Özcan ve Toklu (2009b)
İst. sayısı CPU İst. sayısı CPU İst. sayısı CPU İst. sayısı CPU

18 8 <0.02 8 <0.02 - - 8 <7200
20 8 <0.02 8 <0.02 8 <1 8 3999.265
24 6 0.109 6 <0.02 - - 6 6604.968
25 6 <0.02 6 <0.02 6 <1 6 <7200
30 5 <0.02 5 <0.02 5 <1 5 <7200
35 4 <0.02 5 <0.02 5 <1 4 242.890
40 4 <0.02 4 <0.02 4 <1 4 <7200

p6
5

Çevrim süresi AA YAK Baykasoğlu ve Dereli (2008)
İst. sayısı CPU İst. sayısı CPU İst. sayısı CPU

326 17 0.250 18 0.218 17 3.52
381 14 9.328 14 3.687 15 <1
435 13 0.265 13 0.390 13 2.78
490 11 6.015 12 0.265 12 <1
544 10 0.687 10 0.296 10 1.85

p1
48

Çevrim süresi AA YAK Baykasoğlu ve Dereli (2008)
İst. sayısı CPU İst. sayısı CPU İst. sayısı CPU

204 26 6.421 26 2.203 26 10.32
255 21 1.218 21 2.125 21 3.64
306 18 2.000 18 0.546 18 463.39
357 15 14.531 15 0.578 18 2.06
408 14 0.734 14 0.703 15 2.02
459 12 2.625 12 0.265 13 465.92
510 11 4.359 11 2.406 11 6.76

117

p2
05

Çevrim süresi AA YAK Baykasoğlu ve Dereli (2008)
İst. sayısı CPU İst. sayısı CPU İst. sayısı CPU

1133 23 41.593 24 8.031 25 264.32
1322 21 1.843 21 24.187 22 264.31
1510 18 11.609 18 78.390 19 270.34
1699 17 13.250 18 4.390 18 264.28
1888 16 5.015 16 4.703 16 263.91
2077 14 260.031 14 83.625 16 266.76
2266 14 12.078 14 4.328 14 259.72
2454 14 5.843 14 4.750 14 258.44
2643 13 94.578 14 5.671 13 259.79
2832 12 9.692 13 12.156 12 258.85

118

Bilimsel yazında bölgesel kısıta sahip ÇTMHDP alanında iki çalışma bulunmaktadır.

Bunlardan ilki karınca koloni optimizasyon algoritmasını kullanan Baykasoğlu ve

Dereli (2008) çalışması, ikincisi ise küçük boyutlu problemler üzerinde matematiksel

modelle çözüm bulan Özcan ve Toklu (2009b) çalışmasıdır. Tablo 4.16’dan görüldüğü

gibi p9 problem kümesinde çevrim süresinin 3 olduğu problem için, önerilen

matematiksel modelle bulunan çözüm, karşılaştırma yapılan diğer sonuçlardan daha

düşük istasyon sayısına sahiptir. Özcan ve Toklu (2009b) çalışması da matematiksel

model sonuçlarını içermesine rağmen arada böyle bir fark çıkmasının nedeni, pozitif

bölgesel kısıta sahip iki işin aynı istasyonunun farklı yönlerine atanmasına izin

verilmemesinden kaynaklanmaktadır. Ancak tez çalışmasında temel alınan ve Simaria

ve Vilarinho (2007) çalışmasında önerilen matematiksel modelde, bilimsel yazındaki

ilkelere bağlı olarak pozitif bölgesel kısıta sahip iki işin aynı istasyonun farklı yönlerine

atanmasına izin verilmiştir. AA ve YAK algoritmalarının p9 problem kümesi üzerindeki

performansları incelendiğinde çevrim süresinin 3 olduğu problem hariç en iyi çözüme

daha düşük CPU süreleri ile ulaşıldığı görülmektedir. p12 problem kümesi için ise

önerilen her iki algoritma ile de en iyi çözüm, daha düşük CPU süreleri ile elde

edilmiştir. p16 ve p24 problem kümelerinin bütün çevrim süreleri için AA en iyi

çözüme daha düşük CPU süreleri ile ulaşmış ancak YAK algoritması p16 için 2

problemde, p24 için ise 1 problemde daha yüksek istasyon sayısını elde etmiştir. AA

p65 problem kümesi için oluşturulan 5 problemin 3’ünde bilinen en iyi çözüme ulaşmış,

2’sinde ise bilinen en iyi çözümden daha iyi bir çözüm (ct=381, 490) elde etmiştir.

YAK algoritması ise 5 problemin 3’ünde en düşük istasyon sayısını bulmuş ve

bunlardan biri yine bilinen en iyi çözümden daha iyi bir çözüm (ct=381) olmuştur. p148

problem kümesi için AA ve YAK algoritmaları bütün çevrim sürelerinde en düşük

istasyon sayısına sahip çözümleri elde etmiş ve bunlardan 3’ü (ct=357, 408, 459) ilk kez

bulunmuştur. Son olarak p205 problem kümesi için AA 10 problemin hepsinde, YAK

algoritması ise 6’sında en düşük istasyon sayısına sahip çözümleri bulmuştur. Her iki

algoritmanın CPU süreleri de karşılaştırma yapılan algoritmaya göre çok daha düşüktür.

Bütün problem kümeleri genel olarak incelenecek olursa AA 44 problemden 43’ünde,

YAK algoritması da 34’ünde bilinen en iyi çözüme ulaşmıştır. Diğer taraftan AA 10

kere, YAK algoritması da 7 kere daha önce bilinmeyen iyi bir çözüme ulaşmıştır. Netice

119

olarak AA ve YAK algoritmaları bölgesel kısıta sahip ÇTMHDP üzerinde etkin bir

performansa sahiptir

Tablo 4.17. AA ve YAK algoritması ile elde edilen konumsal, bölgesel ve
 senkronizasyon kısıtlarına sahip ÇTMHDP sonuçlarının
 karşılaştırılması.

p9

Çevrim süresi AA YAK GAMS 22.7.2
İst. sayısı CPU İst. sayısı CPU İst. sayısı CPU

4 5 <0.02 5 <0.02 5 421.09
5 4 <0.02 4 <0.02 4 200.09
6 4 <0.02 4 <0.02 4 292.77

p1
2

Çevrim süresi AA YAK GAMS 22.7.2
İst. sayısı CPU İst. sayısı CPU İst. sayısı CPU

5 6 <0.02 6 <0.02 6 53173.70
6 5 <0.02 5 <0.02 5 17337.06
7 5 <0.02 5 <0.02 5 46576.48
8 4 <0.02 4 <0.02 4 11225.56

p1
6

Çevrim süresi AA YAK
İst. sayısı CPU İst. sayısı CPU

15 7 <0.02 7 <0.02
16 7 <0.02 7 <0.02
18 7 <0.02 7 <0.02
19 7 <0.02 7 <0.02
20 7 <0.02 7 <0.02
21 7 <0.02 7 <0.02
22 6 <0.02 6 <0.02

p2
4

Çevrim süresi AA YAK
İst. sayısı CPU İst. sayısı CPU

18 8 <0.02 8 <0.02
20 8 <0.02 8 <0.02
24 7 0.062 7 <0.02
25 7 <0.02 7 <0.02
30 6 <0.02 6 <0.02
35 6 <0.02 6 <0.02
40 6 <0.02 6 <0.02

p6
5

Çevrim süresi AA YAK
İst. sayısı CPU İst. sayısı CPU

326 18 0.234 18 0.203
381 15 0.625 15 1.593
435 14 0.390 14 0.437
490 13 0.281 13 0.375
544 12 0.578 12 0.296

120

p1
48

Çevrim süresi AA YAK
İst. sayısı CPU İst. sayısı CPU

204 26 19.093 26 1.328
255 23 2.421 23 0.578
306 20 4.359 20 1.437
357 18 2.015 18 3.046
408 17 13.593 17 2.000
459 17 2.078 17 20.375
510 17 2.468 17 1.359

p2
05

Çevrim süresi AA YAK
İst. sayısı CPU İst. sayısı CPU

1133 25 51.843 24 115.640
1322 23 10.875 23 24.937
1510 21 16.984 20 242.500
1699 19 926.781 20 55.296
1888 19 287.109 19 22.328
2077 19 34.218 18 960.812
2266 18 41.734 17 352.734
2454 18 48.312 17 56.937
2643 18 55.828 17 42.046
2832 18 66.093 17 55.640

Bilimsel yazın araştırmasında da belirtildiği gibi konumsal, bölgesel ve senkronizasyon

kısıtlarının aynı anda ele alındığı bir ÇTMHDP çözüm yaklaşımı bulunmamaktadır.

Dolayısıyla bu bölümdeki karşılaştırmalarda AA, YAK algoritması ve 4.5.3 bölümünde

verilen GAMS 22.7.2 optimizasyon paket programı sonuçları değerlendirilecektir. p9 ve

p12 problem kümesi için bütün çevrim sürelerinde her iki algoritma da GAMS 22.7.2

optimizasyon paket programı ile bulunan optimum çözümleri çok daha kısa sürede elde

etmiştir. Ancak problemin boyutu arttıkça hesaplama süresinin de üstel olarak artması

sebebiyle daha büyük boyutlu problemler için optimum değerler elde edilememiştir. Bu

sebeple bu tür problemler üzerindeki etkinlik analizi için AA ve YAK algoritmaları

kendi aralarında karşılaştırılacaktır. p16, p24, p65 ve p148 problem kümeleri için her iki

algoritma da aynı değerlere ulaşmıştır. İki algoritma arasındaki farklılık p205 problem

kümesinde ortaya çıkmaktadır. AA 10 problemden 3’ünde en düşük istasyon sayısına

sahip çözümü bulurken, YAK algoritması 9 problemde en düşük istasyon sayısına sahip

çözümü elde etmiştir. Görüldüğü gibi YAK algoritması konumsal, bölgesel ve

senkronizasyon kısıtlarına sahip büyük boyutlu ÇTMHDP’inde AA’na göre daha iyi

performans göstermektedir. İki algoritma CPU süresi açısından karşılaştırıldığında ise

genel olarak YAK algoritmasının daha az CPU süresi gerektirdiği söylenebilir.

121

ÇTMHDP bilimsel yazındaki zor problemlerden biridir. Probleme özel kısıtların da

çözüme dâhil edilmesiyle problem daha da zorlaşmaktadır. Bilimsel yazın

araştırmasından da görüldüğü gibi özel kısıtların dâhil olduğu çalışmalar oldukça azdır.

AA ve YAK algoritmalarının deneysel çalışma bölümünde bahsedilen her 3 problem

türüne de uygulanmasıyla oldukça tatmin edici sonuçlar elde edilmiştir. Algoritmaların

ve komşuluk yapıların en basit hâllerinin kullanıldığı da göz önüne alındığında her iki

algoritmanın da ÇTMHDP üzerinde etkin bir performansa sahip olduğu görülmektedir.

4.9. Arı Algoritması ile Bulanık Çok Amaçlı Çift Taraflı Montaj Hattı Dengeleme
Problemi Çözüm Yaklaşımı

Birçok gerçek hayat problemi dilsel ve/veya kesin olmayan değişkenler, kısıtlar ve

amaçlar içerir. Sistem çevresinin sabit olmayan bir yapıya sahip olması ve kesin veriler

elde etmenin yüksek maliyet gerektirmesi sebebiyle kesin verileri toplamak genel olarak

çok zordur. Gerçek hayat sistemlerindeki bu belirsizliğin aşılabilmesi için genellikle

bulanık küme teorisine dayalı bulanık matematiksel programlama yaklaşımı kullanılır

[186].

Bulanık matematiksel programlama modelleri bulanık bileşenlerine göre; bulanık

amaçlara sahip, bulanık amaç fonksiyonu katsayılarına sahip ve bulanık sağ taraf

sabitlerine sahip modeller olmak üzere 3 sınıfa ayrılabilir [186]. Bulanık amaçlara sahip

ÇTMHDP ise bulanık çok amaçlı matematiksel programlama olarak adlandırılan ilk

sınıflandırmaya dâhil olup amaçlara ait aspirasyon seviyelerinin belirlenmesine dayanan

Bulanık Amaç Programlama (BAP) teknikleriyle çözülebilmektedir.

Bulanık çok amaçlı matematiksel programlama problemlerinin çözümü için

gerçekleştirilen ilk temel çalışma Zimmermann’a [187] ait olup Bellman ve Zadeh [188]

tarafından önerilen maks-min operatörüne dayalı maks-min yöntemini içermektedir.

Sinha [189] maks-min yöntemini çok seviyeli programlama modellerinin; Chakraborty

ve Gupta [190] ise bulanık çok amaçlı doğrusal kesirli programlama problemlerinin

çözümü için kullanmışlardır. Diğer taraftan Chanas [191] bulanık doğrusal

programlama problemlerinin çözümü için parametrik programlama tekniği yaklaşımını

önermiş; Gen ve ark. [192] bulanık doğrusal olmayan amaç programlama

problemlerinin çözümü için genetik algoritmayı kullanmış; Baykasoğlu ve Göçken

[193] ise bulanık amaç programlama problemlerinin çözümü için çok amaçlı bir tabu

122

arama algoritması önermişlerdir. Ayrıca Narasimhan [194] BAP probleminin çözümü

için eşit ağırlıklara sahip çoklu amaçlar için bir çözüm yöntemi geliştirmiş, Hannan

[195] ise aynı problem için doğrusal ve kesikli üyelik fonksiyonlarını kullanmıştır. Lu

ve ark. [196] ise karar vericilerin bulanık amaçları herhangi bir üyelik fonksiyonuyla

ifade etmesine izin veren ve çözüm süreci boyunca karar vericilere etkileşimli karar

seçenekleri sunan interaktif bulanık amaç eniyileme yöntemini önermişlerdir. Son

olarak Baykasoğlu ve Göçken [186] bulanık matematiksel programlama ve çözüm

yaklaşımları üzerine geniş bir inceleme ve sınıflandırma çalışması gerçekleştirmişlerdir.

BAP problemi mevcut bulanık amaçları sağlayacak en iyi D kararının bulunması

şeklinde aşağıdaki gibi tanımlanmaktadır.

෍ ܿ௣௝ݔ௝ ؆ ݃௣ ݌ ൌ 1,2, … , ݇ଵ

௡

௝ୀଵ

 ሺ4.2ሻ

෍ ܿ௣௝ݔ௝ ذ ݃௣ ݌ ൌ ݇ଵ ൅ 1, … , ݇ଶ

௡

௝ୀଵ

 ሺ4.3ሻ

෍ ܿ௣௝ݔ௝ د ݃௣ ݌ ൌ ݇ଶ ൅ 1, … , ݇ଷ

௡

௝ୀଵ

 ሺ4.4ሻ

 ݎ݈ܽݐıݏıܭ

෍ ܽ௜௝ݔ௝ ൑ ܾ௜ ݅ ൌ 1,2, … , ݉ ሺ4.5ሻ
௡

௝ୀଵ

௝ݔ ൒ 0 ݆ ൌ 1,2, … , ݊ ሺ4.6ሻ

Yukarıdaki ifadede xj karar değişkenlerini, gp amaçlarla ilişkilendirilmiş aspirasyon

seviyelerini, cpj ve aij amaçlara ve kısıtlara ait teknolojik katsayıları, bi ise mevcut

kaynak miktarını göstermektedir.

Bulanık amaç fonksiyonu, üyelik fonksiyonları ile belirlenmekte; üyelik fonksiyonları

ise genellikle doğrusal, doğrusal olmayan ve üstel fonksiyonlarla ifade edilmektedir. Bu

çalışmada doğrusal üyelik fonksiyonları kullanılmış olup minimizasyon,

maksimizasyon ve eşitlik durumlarındaki doğrusal üyelik fonksiyonu ifadeleri aşağıdaki

gibi tanımlanmıştır [186].

123

′ሺ ݉ݑ݉݅݊݅݉ ı݈݇݊ܽݑܤ ௝൯ݔ൫ܿ௣௝ߤ :ሻ′د ൌ

ە
ۖ
۔

ۖ
ۓ

1 ܿ௣௝ݔ௝ ൑ ݃௣

൫݃௣ ൅ ݀௣
ோ൯ െ ܿ௣௝ݔ௝

݀௣
ோ ݃௣ ൑ ܿ௣௝ݔ௝ ൑ ݃௣ ൅ ݀௣

ோ

0 ܿ௣௝ݔ௝ ൒ ݃௣ ൅ ݀௣
ோ

 ሺ4.7ሻ

′ሺ ݉ݑ݉݅ݏ݇ܽ݉ ı݈݇݊ܽݑܤ ௝൯ݔ൫ܿ௣௝ߤ :ሻ′ذ ൌ

ە
ۖ
۔

ۖ
ۓ

1 ܿ௣௝ݔ௝ ൒ ݃௣

ܿ௣௝ݔ௝ െ ൫݃௣ െ ݀௣
௅൯

݀௣
௅ ݃௣ െ ݀௣

௅ ൑ ܿ௣௝ݔ௝ ൑ ݃௣

0 ܿ௣௝ݔ௝ ൑ ݃௣ െ ݀௣
௅

 ሺ4.8ሻ

′ሺ ݈݇݅ݐı݇ ݁ş݈݅݊ܽݑܤ ؆′ሻ: ߤ൫ܿ௣௝ݔ௝൯ ൌ

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
௝ݔ௣௝ܿ 0ۓ ൑ ݃௣ െ ݀௣

௅

ܿ௣௝ݔ௝ െ ൫݃௣ െ ݀௣
௅൯

݀௣
௅ ݃௣ െ ݀௣

௅ ൑ ܿ௣௝ݔ௝ ൑ ݃௣

1 ܿ௣௝ݔ௝ ൌ ݃௣

൫݃௣ ൅ ݀௣
ோ൯ െ ܿ௣௝ݔ௝

݀௣
ோ ݃௣ ൑ ܿ௣௝ݔ௝ ൑ ݃௣ ൅ ݀௣

ோ

0 ܿ௣௝ݔ௝ ൒ ݃௣ ൅ ݀௣
ோ

 ሺ4.9ሻ

Yukarıdaki ifadelerde ݀௣
ோ maksimum sağ tolerans sınırını, ݀௣

௅ ise maksimum sol tolerans

sınırını göstermektedir.

Ulaşılan bulanık karar ise bulanık amaç fonksiyonlarının kesişimi olarak ifade

edilmekte olup bulanık karar kümesine ait üyelik fonksiyonu ߤ஽ሺݔሻ ve maksimizasyon

kararı aşağıdaki gibi tanımlanmaktadır [187].

ሻݔ஽ሺߤ ൌ ௝൯ݔଵ൫ܿଵ௝ߤ ר ௝൯ݔଶ൫ܿଶ௝ߤ ר … ר ௝൯ݔ௞య൫ܿ௞య௝ߤ ൌ min
௣

 ௝൯ ሺ4.10ሻݔ௣൫ܿ௣௝ߤ

maks
௫

ሻݔ஽ሺߤ ൌ maks
௫

min
௣

 ௝ሻ ሺ4.11ሻݔ௣ሺܿ௣௝ߤ

Bulanık amaçların analizi için maks-min, öncelik ve toplamsal yöntemler olmak üzere 3

teknik kullanılmıştır. Maks-min yöntemi, BAP problemlerine Narasimhan [194]

tarafından uygulanan bir yöntem olup amaçlara ait en düşük üyelik fonksiyonu

değerlerinin maksimizasyonunu amaçlamaktadır (݉ܽ݇ݏ െ ݉݅݊ ሻ). Öncelikݔ௚ሺߤ

yönteminde ise bulanık amaçlara önem derecelerine göre bir öncelik verilmekte ve

düşük önceliğe sahip amaçlar ancak yüksek önceliğe sahip amaçlar sağlandığında ele

alınmaktadır. Dolayısıyla öncelikle yüksek önceliğe sahip amaçlara ait üyelik

fonksiyonları maksimize edilmektedir [193]. Tiwari ve ark. [197] tarafından önerilen

toplamsal yöntemde ise amaçlara ait üyelik fonksiyonu değerlerinin toplamı maksimize

124

edilmektedir (݉ܽݔ ∑ ௜ߤ
௠
௜ୀଵ). Her yöntem için komşu çözümler arasından mevcut en iyi

çözümün seçim süreci aşağıdaki gibi gerçekleşmektedir.

Maks-min yöntemi:

Adım 1. Her komşu çözüm için amaçlara ait üyelik fonksiyonu değerleri hesaplanır ve

içlerinden en düşük değere sahip olan belirlenir.

Adım 2. Minimum üyelik değerleri içinden en büyük değere sahip olan çözüm, mevcut

en iyi çözüm olarak seçilir.

Öncelik yöntemi:

Adım 1. Önceden belirlenen öncelik değerlerine göre her komşu çözüm için amaçlara ait

üyelik değerleri hesaplanır.

Adım 2. Her çözüm için en yüksek önceliğe sahip amaca ait üyelik değeri kontrol edilir

ve en yüksek değere sahip olan çözüm seçilir. En yüksek önceliğe sahip amaç

için birden fazla alternatif komşu çözüm söz konusuysa sonraki önceliğe sahip

amacın üyelik değerleri kontrol edilir.

Toplamsal yöntem:

Adım 1. Her komşu çözüm için amaçlara ait üyelik değerleri hesaplanarak toplanır.

Adım 2. En yüksek toplam değere sahip komşu çözüm, mevcut en iyi çözüm olarak

seçilir.

4.9.1 Bulanık Çok Amaçlı Çift Taraflı Montaj Hattı Dengeleme Problemi için Arı

Algoritması

Çalışmanın bu aşamasında özel kısıta sahip olmayan ÇTMHDP ele alınmış olup ilgili

problemin çözümü için Bölüm 4.6’da detayları verilmiş olan AA kullanılmıştır.

ÇTMHDP’nin bulanık amaçlar içermesi sebebiyle algoritmada kullanılan uygunluk

fonksiyonu farklılaştırılmıştır. Bulanık çok amaçlı ÇTMHDP 3 farklı bulanık amaca

sahip bir BAP modeli olarak aşağıdaki gibi tanımlanmıştır.

Amaç-1 Gevşeklik indeksinin maksimizasyonu

Gevşeklik indeksi iki bağlantılı iş arasındaki boş zamanı ifade etmektedir. Bağlantılı

işler ise öncelik diyagramında birbiriyle direkt bağlantılı işleri göstermektedir. Çift

taraflı montaj hatlarında, aralarında yakın öncelik ilişkisi olan iki iş karşılıklı

125

istasyonlara atandığında, biri bitmeden diğeri başlayamayacağından iki iş arasında boş

zaman oluşabilmekte ve bu durumda gevşeklik indeksinin dikkate alınması

gerekmektedir. Gevşeklik indeksi [0,1] arasında değerler almakta olup indeks değeri

arttıkça bağlantılı işler arasındaki boş zaman azalmaktadır. Gevşeklik indeksinin

maksimizasyonunu içeren ilk amaç aşağıdaki gibi tanımlanmıştır.

∑ ൜∑ ටݐ௜௝
௦ െݐ௜ ′௝′

௙ ൅ ∑ ொೕאூೕିொೕ௜א௜ܶܥ√ ൠ௡
௝ୀଵ

ܶܥ√݉
ذ ܽ݉ܽç௪௦ ሺ4.12ሻ

Yukarıdaki eşitsizlikte CT çevrim süresini, j ve ݆′ karşılıklı istasyonları, Ij j istasyonuna

atanan işler kümesini, Qj hemen önceki işlerinden biri ݆′ istasyonuna atanan işler

kümesini, ݐ௜௝
௦ ve ݐ௜௝

௙ sırasıyla j istasyonundaki i işinin başlangıç ve bitiş sürelerini temsil

etmektedir.

Amaç-2 Karşılıklı istasyon sayısının minimizasyonu

݉ோ ൅ ݉௅ د ܽ݉ܽç௢௣௧ ሺ4.13ሻ

mR sağ yöndeki istasyon sayısını, mL sol yöndeki istasyon sayısını göstermektedir.

Amaç-3 Hat etkinliğinin maksimizasyonu

ܧܮ د ܽ݉ܽç௟௘ ሺ4.14ሻ

LE hat etkinliğini temsil etmekte olup aşağıdaki gibi hesaplanmaktadır.

ܧܮ ൌ
ܤܮ

݉௥ ൅ ݉௟
 ሺ4.15ሻ

ܤܮ ൌ 2 כ ݏ݇ܽܯ ൅ ݏ݇ܽ݉ ቊ0, ቈ
݈ܽݐ݋ܶܧ െ ሺݔܽܯ כ ܶܥ െ ሻ݈ܽݐ݋ܶܮ െ ሺݔܽܯ כ ܶܥ െ ሻ݈ܽݐ݋ܴܶ

ܶܥ ቉ቋ ሺ4.16ሻ

ݏ݇ܽܯ ൌ ݏ݇ܽ݉ ൜൤
݈ܽݐ݋ܶܮ

ܶܥ ൨ , ൤
݈ܽݐ݋ܴܶ

ܶܥ ൨ൠ ሺ4.17ሻ

LTotal, RTotal ve ETotal sırasıyla sol, sağ ve herhangi bir yöne atanabilecek işlerin

toplam süresini göstermektedir. Çift taraflı montaj hattı için bir alt sınır elde edebilmek

için öncelikle sağ ve sol işlerin atanması için gerekli istasyon sayısı belirlenmektedir.

Her istasyon karşılıklı iki istasyona sahip olduğundan Max değeri 2 ile çarpılmıştır.

Herhangi bir yöne atabilecek işler için ise öncelikle çevrim süresini aşmayan mevcut

istasyonlara atama yapılmakta daha sonra kalan işler için yeni istasyonlar açılmaktadır

[177].

126

Netice olarak AA’nda kullanılan uygunluk fonksiyonu, ele alınan yönteme göre

aşağıdaki gibi tanımlanmıştır.

ݏ݇ܽ݉ ௦ሻߪ஽ሺߤ ൌ min ሺߤ௪௦, ,௢௣௧ߤ ݏ௟௘ሻ ሺ݉ܽ݇ߤ െ ç݅݊ሻ݅ ݅݉݁ݐö݊ݕ ݊݅݉

௦ሻߪ஽ሺߤ ݏ݇ܽ݉ ൌሺ ߤ௢௣௧ ب ௟௘ߤ ب ç݅݊ሻ݅ ݅݉݁ݐö݊ݕ ௪௦ ሻ ሺö݈݊ܿ݁݅݇ߤ

ݏ݇ܽ݉ ௦ሻߪ஽ሺߤ ൌ ௪௦ߤ ൅ ௢௣௧ߤ ൅ ௟௘ߤ ሺݕ ݈ܽݏ݈݉ܽ݌݋ݐö݊݉݁ݐ ݅ç݅݊ሻ

4.9.2 Deneysel Çalışma

Bulanık çok amaçlı ÇTMHDP’nin çözümü için kullanılan AA, C# programlama dilinde

kodlanarak 2.2 GHz CPU ve 2 GB RAM özelliklere sahip Intel Core 2 Duo PC

kullanılarak bilimsel yazındaki test problemlerine uygulanmıştır. Algoritma

parametrelerinin değerleri Tablo 4.18’de, amaçlara ait aspirasyon seviyeleri ve tolerans

değerleri ise Tablo 4.19’da sunulmaktadır.

Tablo 4.18. Bulanık çok amaçlı ÇTMHDP için AA parametrelerinin değerleri.
Parametre Değer
S 25
P 15
e 5
nep 3
nsp 2
MaksIter 200

Tablo 4.19. Amaçlara ait aspirasyon seviyeleri ve tolerans değerleri.
Amaç Aspirasyon seviyesi Tolerans Değer
amaçws 0.95 ݀௪௦

௅ 0.1
amaçopt opt ݀௢௣௧

ோ 2
amaçle ܤܮ

௟௘݀ ݐ݌݋
௅ ܤܮ

ݐ݌݋ െ
ܤܮ

ݐ݌݋ ൅ 2

Birinci ve üçüncü amaçlar bulanık maksimizasyon formunda iken ikinci amaç bulanık

minimizasyon formundadır. Verilen aspirasyon seviyesi ve tolerans değerlerine göre

ilgili üyelik fonksiyonları aşağıdaki gibi tanımlanmıştır.

127

Bulanık gevşeklik amacı için üyelik fonksiyonu,

௪௦ߤ ൌ ൞

௪௦ݖ 1 ൒ 0.95
௪௦ݖ െ 0.85

0.1 0.85 ൑ ௪௦ݖ ൑ 0.95

௪௦ݖ 0 ൑ 0.85

 ሺ4.18ሻ

௪௦ݖ ൌ
∑ ൜∑ ටݐ௜௝

௦ െݐ௜ ′௝′
௙ ൅ ∑ ொೕאூೕିொೕ௜א௜ܶܥ√ ൠ௡

௝ୀଵ

ܶܥ√݉
 ሺ4.19ሻ

Bulanık karşılıklı istasyon sayısı amacı için üyelik fonksiyonu,

௢௣௧ߤ ൌ

ە
۔

ۓ
௢௣௧ݖ 1 ൑ ݐ݌݋
ݐ݌݋ ൅ 2 െ ௢௣௧ݖ

2 ݐ݌݋ ൑ ௢௣௧ݖ ൑ ݐ݌݋ ൅ 2
௢௣௧ݖ 0 ൒ ݐ݌݋ ൅ 2

 ሺ4.20ሻ

௢௣௧ݖ ൌ ݉ோ ൅ ݉௅ ሺ4.21ሻ

Bulanık hat etkinliği amacı için üyelik fonksiyonu,

௅ாߤ ൌ

ە
ۖۖ
ۖ
۔

ۖۖ
ۖ
ۓ ௅ாݖ 1 ൒

ܤܮ
ݐ݌݋

௅ாݖ െ ܤܮ
ݐ݌݋ ൅ 2

ܤܮ
ݐ݌݋ െ ܤܮ

ݐ݌݋ ൅ 2

ܤܮ
ݐ݌݋ ൅ 2 ൑ ௅ாݖ ൑

ܤܮ
ݐ݌݋

௅ாݖ 0 ൑
ܤܮ

ݐ݌݋ ൅ 2

 ሺ4.22ሻ

௅ாݖ ൌ ሺ4.23ሻ ܧܮ

(4.18)-(4.23) formülasyonlarında; zws, zopt, zLE amaç fonksiyonu değerlerini, µws, µopt,

µLE ise ilgili amaçlara ait üyelik fonksiyonlarını temsil etmektedir. Diğer taraftan opt

bilinen en iyi çözümü, LB ise karşılıklı istasyon sayısı için alt sınırı göstermektedir.

AA 10 kez çalıştırılmış ve her amaç için maks-min, öncelik ve toplamsal yöntemler ile

elde edilen ortalama amaç fonksiyonu ve ortalama üyelik fonksiyonu değerleri sırasıyla

Tablo 4.20, Tablo 4.21 ve Tablo 4.22’de verilmiştir.

128

Tablo 4.20. Amaç-1’e ait deneysel sonuçlar.

 Çevrim
süresi

Maks-min Öncelik Toplamsal
Ort. amaç
fonk. değeri

Ort. üyelik
fonk. değeri

Ort. amaç
fonk. değeri

Ort. üyelik
fonk. değeri

Ort. amaç
fonk. değeri

Ort. üyelik
fonk. değeri

p9

3 0.953 1 0.953 1 0.953 1
4 1 1 1 1 1 1
5 0.956 0.988 0.956 0.988 0.952 0.965
6 1 1 1 1 1 1

p12

4 1 1 1 1 1 1
5 0.985 1 0.995 1 0.995 1
6 0.970 1 0.972 1 0.968 1
7 0.994 1 0.988 1 0.991 1
8 0.996 1 0.985 1 0.989 1

p16

15 0.965 1 0.961 1 0.965 1
16 0.979 1 0.975 1 0.984 1
18 0.992 1 0.986 1 0.981 1
19 0.972 1 0.971 1 0.968 1
20 0.976 1 0.973 1 0.982 1
21 0.953 0.975 0.946 0.950 0.943 0.925
22 0.916 0.671 0.914 0.649 0.923 0.739

p24

18 0.972 1 0.968 1 0.974 1
20 0.969 1 0.962 1 0.960 1
24 0.936 0.850 0.943 0.880 0.939 0.873
25 0.961 1 0.966 1 0.961 1
30 0.969 1 0.965 1 0.969 1
35 0.970 1 0.970 1 0.972 1
40 0.963 1 0.960 1 0.962 1

p65

326 0.958 1 0.959 1 0.955 1
381 0.925 0.758 0.934 0.845 0.939 0.873
435 0.954 1 0.953 0.994 0.953 0.998
490 0.918 0.685 0.924 0.753 0.925 0.764
544 0.929 0.812 0.935 0.855 0.929 0.795

p148

204 0.957 1 0.957 1 0.956 1
255 0.955 1 0.955 1 0.953 1
306 0.921 0.723 0.919 0.694 0.923 0.740
357 0.934 0.849 0.935 0.858 0.936 0.871
408 0.909 0.600 0.909 0.598 0.913 0.638
459 0.929 0.794 0.928 0.783 0.928 0.787
510 0.906 0.568 0.904 0.547 0.910 0.607

p205

1133 0.878 0.286 0.884 0.348 0.871 0.215
1322 0.896 0.468 0.886 0.364 0.885 0.359
1510 0.876 0.270 0.878 0.292 0.876 0.269
1699 0.869 0.197 0.873 0.238 0.877 0.283
1888 0.815 0.008 0.838 0.017 0.826 0.001
2077 0.812 0.010 0.823 0 0.862 0.209
2266 0.856 0.062 0.813 0.019 0.839 0.030
2454 0.811 0 0.846 0.136 0.860 0.139
2643 0.796 0 0.793 0 0.791 0
2832 0.811 0.011 0.788 0 0.790 0

129

Tablo 4.21. Amaç-2’ye ait deneysel sonuçlar.

 Çevrim
süresi

Maks-min Öncelik Toplamsal
Ort. amaç
fonk. değeri

Ort. üyelik
fonk. değeri

Ort. amaç
fonk. değeri

Ort. üyelik
fonk. değeri

Ort. amaç
fonk. değeri

Ort. üyelik
fonk. değeri

p9

3 6 1 6 1 6 1
4 5 1 5 1 5 1
5 4 1 4 1 4 1
6 3 1 3 1 3 1

p12

4 7 1 7 1 7 1
5 6 1 6 1 6 1
6 5 1 5 1 5 1
7 4 1 4 1 4 1
8 4 1 4 1 4 1

p16

15 6 1 6 1 6 1
16 6 1 6 1 6 1
18 6 1 6 1 6 1
19 5 1 5 1 5 1
20 5 1 5 1 5 1
21 5 1 5 1 5 1
22 4 1 4 1 4 1

p24

18 8 1 8 1 8 1
20 8 1 8 1 8 1
24 6 1 6 1 6 1
25 6 1 6 1 6 1
30 5 1 5 1 5 1
35 4 1 4 1 4 1
40 4 1 4 1 4 1

p65

326 17 1 17 1 17 1
381 14 1 14 1 14 1
435 13 1 13 1 13 1
490 11.100 0.950 11 1 11 1
544 10 1 10 1 10 1

p148

204 26 1 26 1 26 1
255 21 1 21 1 21 1
306 17 1 17 1 17 1
357 15 1 15 1 15 1
408 13.200 0.900 13 1 13 1
459 12 1 12 1 12 1
510 11 1 11 1 11 1

p205

1133 23 0.500 23 0.500 22.900 0.550
1322 20.900 0.550 20 1 20 1
1510 18 0.500 18 0.500 17.900 0.550
1699 16 0.500 16 0.500 16 0.500
1888 16.200 0.100 14 0.500 14 0.500
2077 15.500 0 13 0.500 14.800 0.200
2266 13 0.500 12 1 12 1
2454 12.800 0 12.600 0.100 12.900 0.050
2643 12 0 10 1 10 1
2832 10.600 0.700 10 1 10 1

130

 Tablo 4.22. Amaç-3’e ait deneysel sonuçlar.

 Çevrim
süresi

Maks-min Öncelik Toplamsal
Ort. amaç
fonk. değeri

Ort. üyelik
fonk. değeri

Ort. amaç
fonk. değeri

Ort. üyelik
fonk. değeri

Ort. amaç
fonk. değeri

Ort. üyelik
fonk. değeri

p9

3 1 1 1 1 1 1
4 1 1 1 1 1 1
5 1 1 1 1 1 1
6 1 1 1 1 1 1

p12

4 1 1 1 1 1 1
5 0.833 1 0.833 1 0.833 1
6 1 1 1 1 1 1
7 1 1 1 1 1 1
8 1 1 1 1 1 1

p16

15 1 1 1 1 1 1
16 1 1 1 1 1 1
18 0.833 1 0.833 1 0.833 1
19 1 1 1 1 1 1
20 1 1 1 1 1 1
21 0.800 1 0.800 1 0.800 1
22 1 1 1 1 1 1

p24

18 1 1 1 1 1 1
20 0.875 1 0.875 1 0.875 1
24 1 1 1 1 1 1
25 1 1 1 1 1 1
30 1 1 1 1 1 1
35 1 1 1 1 1 1
40 1 1 1 1 1 1

p65

326 0.941 1 0.941 1 0.941 1
381 1 1 1 1 1 1
435 0.923 1 0.923 1 0.923 1
490 0.991 0.945 1 1 1 1
544 1 1 1 1 1 1

p148

204 1 1 1 1 1 1
255 1 1 1 1 1 1
306 1 1 1 1 1 1
357 1 1 1 1 1 1
408 0.985 0.892 1 1 1 1
459 1 1 1 1 1 1
510 1 1 1 1 1 1

p205

1133 0.913 0.478 0.913 0.478 0.917 0.530
1322 0.861 0.528 0.900 1 0.900 1
1510 0.888 0.472 0.888 0.472 0.893 0.524
1699 0.875 0.468 0.875 0.468 0.875 0.468
1888 0.808 0.092 0.928 0.464 0.928 0.464
2077 0.776 0 0.923 0.461 0.819 0.184
2266 0.846 0.461 0.916 1 0.916 1
2454 0.785 0 0.800 0.090 0.780 0.045
2643 0.750 0 0.900 1 0.900 1
2832 0.853 0.690 0.900 1 0.900 1

131

Deneysel çalışma sonuçlarının karşılaştırılmasında üyelik fonksiyonları kullanılmıştır.

Bütün amaçlar için de en iyi üyelik fonksiyonu değerleri toplamsal yöntemle elde

edilmiştir. Öncelik yönteminin performansının ise toplamsal yönteme yakın olduğu

tespit edilmiştir. 3 yöntem içinde en kötü üyelik fonksiyonu değerleri ise maks-min

yöntemi ile elde edilmiştir.

AA’nın bulanık çok amaçlı ÇTMHDP üzerindeki performansının değerlendirilme

aşamasında ise elde edilen karşılıklı istasyon sayıları, bilimsel yazındaki bilinen en iyi

değerlerle karşılaştırılmıştır. Tablo 4.23’te her 3 yöntemle elde edilen karşılıklı istasyon

sayıları ve bilinen en iyi istasyon sayıları; minimum, ortalama CPU süreleri ve standart

sapma değerleri ile birlikte verilmiştir.

132

Tablo 4.23. Minimum karşılıklı istasyon sayıları ve CPU süresi sonuçları.

 Çevrim
süresi

Bilinen en iyi
karşılıklı

istasyon sayısı

Minimum karşılıklı istasyon
sayısı CPU(sn)

Maks-
min Öncelik Toplamsal

Minimum Ortalama Standart sapma
Maks-

min Öncelik Toplamsal Maks-
min Öncelik Toplamsal Maks-

min Öncelik Toplamsal

p9

3 6 6 6 6 0.015 0.015 0.015 0.019 0.021 0.021 0.014 0.019 0.019
4 5 5 5 5 0.015 0.015 0.015 0.019 0.021 0.021 0.014 0.019 0.019
5 4 4 4 4 0.015 0.015 0.015 0.165 0.085 0.121 0.144 0.082 0.144
6 3 3 3 3 0.015 0.015 0.015 0.019 0.019 0.022 0.014 0.014 0.024

p12

4 7 7 7 7 0.015 0.015 0.015 0.021 0.021 0.021 0.019 0.019 0.019
5 6 6 6 6 0.015 0.015 0.015 0.021 0.019 0.019 0.019 0.014 0.014
6 5 5 5 5 0.015 0.015 0.015 0.021 0.019 0.019 0.019 0.014 0.014
7 4 4 4 4 0.015 0.015 0.015 0.030 0.032 0.026 0.029 0.029 0.029
8 4 4 4 4 0.015 0.015 0.015 0.022 0.021 0.021 0.024 0.019 0.019

p16

15 6 6 6 6 0.015 0.015 0.015 0.066 0.088 0.091 0.054 0.092 0.135
16 6 6 6 6 0.015 0.015 0.015 0.065 0.050 0.068 0.045 0.049 0.074
18 6 6 6 6 0.015 0.015 0.015 0.051 0.040 0.043 0.041 0.039 0.057
19 5 5 5 5 0.015 0.015 0.015 0.029 0.030 0.038 0.025 0.036 0.058
20 5 5 5 5 0.031 0.031 0.031 0.147 0.096 0.149 0.191 0.072 0.120
21 5 5 5 5 0.015 0.015 0.015 0.493 0.594 0.354 0.460 0.613 0.639
22 4 4 4 4 0.062 0.046 0.015 0.321 0.151 0.476 0.361 0.117 0.529

p24

18 8 8 8 8 0.015 0.015 0.015 0.093 0.055 0.062 0.080 0.055 0.055
20 8 8 8 8 0.015 0.015 0.015 0.022 0.022 0.022 0.024 0.024 0.024
24 6 6 6 6 0.078 0.281 0.109 1.101 1.146 1.201 0.666 0.655 0.812
25 6 6 6 6 0.015 0.015 0.015 0.132 0.055 0.105 0.155 0.044 0.081
30 5 5 5 5 0.015 0.015 0.015 0.069 0.046 0.068 0.073 0.040 0.070
35 4 4 4 4 0.015 0.015 0.015 0.063 0.087 0.069 0.075 0.055 0.052
40 4 4 4 4 0.015 0.015 0.015 0.032 0.029 0.029 0.038 0.027 0.024

133

 Çevrim
süresi

Bilinen en
iyi

karşılıklı
istasyon

sayısı

Minimum karşılıklı istasyon
sayısı CPU(sn)

Maks-
min Öncelik Toplamsal

Minimum Ortalama Standart sapma
Maks-

min Öncelik Toplamsal Maks-
min Öncelik Toplamsal Maks-

min Öncelik Toplamsal

p65

326 17 17 17 17 1.203 3.609 0.750 15.421 14.580 11.316 13.566 7.920 8.202
381 14 14 14 14 11.140 22.171 5.875 44.618 67.304 60.474 19.369 27.839 27.300
435 13 13 13 13 7.812 5.781 13.453 50.670 31.869 39.185 27.316 20.801 24.360
490 11 11 11 11 0.375 18.781 11.546 69.165 60.010 70.865 32.206 26.910 32.990
544 10 10 10 10 36.703 11.250 5.109 77.083 59.130 50.237 24.129 34.090 35.700

p148

204 26 26 26 26 1.265 2.109 1.296 3.730 4.335 4.918 3.260 2.186 2.773
255 21 21 21 21 1.203 10.031 1.265 51.976 34.587 47.151 42.673 21.037 40.568
306 17 17 17 17 9.390 15.125 15.140 76.769 78.660 84.951 38.058 49.022 41.431
357 15 15 15 15 16.343 9.796 24.515 102.558 52.302 90.351 54.871 43.833 45.926
408 13 13 13 13 0.531 52.375 3 86.371 92.618 90.082 58.033 44.813 52.455
459 12 12 12 12 3.296 34.531 14.734 86.340 101.451 92.963 71.960 35.413 45.129
510 11 11 11 11 11.015 8.265 6.453 96.702 87.697 82.921 54.366 52.556 51.759

p205

1133 22 23 23 22 151.750 92.546 54.656 747.263 742.557 715.909 426.397 391.590 430.616
1322 20 20 20 20 837.421 351.062 23.875 1339.126 1190.586 898.960 381.860 558.150 611.382
1510 17 18 18 17 144.062 412.171 76.546 1121.315 1134.218 1267.214 573.696 534.308 769.849
1699 15 16 16 16 266.453 380.531 430.265 1077.115 1033.017 1088.767 650.224 514.496 530.091
1888 13 14 14 14 2315.218 41.421 87.515 2529.403 714.208 779.487 285.713 521.125 605.364
2077 12 14 13 13 2357.421 102.796 112.843 2389.973 510.971 1260.771 17.491 489.187 1003.693
2266 12 13 12 12 240.734 8.203 7.843 1184.706 434.285 709.605 827.492 886.861 836.005
2454 10 12 11 11 2878.968 411.875 412.171 2919.115 1610.444 1561.831 26.721 859.235 752.507
2643 10 12 10 10 2965.171 8.265 24.078 2999.575 216.743 152.904 22.610 195.708 112.440
2832 10 10 10 10 2278.484 8.015 8.843 3204.028 8.946 9.466 347.679 0.544 0.728

134

Deneysel çalışmanın gerçekleştirildiği 45 test probleminin, toplamsal yöntemle 41’inde,

öncelik yöntemiyle 39’unda ve maks-min yöntemiyle 37’sinde bilinen en iyi istasyon

sayısına ulaşılmıştır. CPU süresi açısından kullanılan yöntemler değerlendirildiğinde ise

toplamsal ve öncelik yöntemlerinin maks-min yöntemine göre daha kısa sürelere sahip

olduğu görülmüştür. Diğer taraftan AA ile hem bilinen en iyi karşılıklı istasyon

sayılarına büyük ölçüde ulaşılmış hem de diğer amaçlar etkin bir şekilde sağlanmıştır.

Sonuç olarak AA bulanık çok amaçlı ÇTMHDP’ni çözmede etkin bir performansa

sahiptir.

5. BÖLÜM

SONUÇ VE ÖNERİLER

5.1. Çalışmanın Katkıları

Tez çalışmasının bu bölümünde çalışmanın orijinalliğinden ve bilimsel yazına olan

katkılarından bahsedilecektir.

Birçok gerçek hayat probleminin kombinatoryal optimizasyon problemi olarak

modellenebilmesi, tez çalışmanın çıkış noktasını oluşturmuş olup bu tür problemlerin

çözümünde hızlı ve etkin olarak kullanılabilecek araçların geliştirilmesi ya da mevcut

araçların kullanılması ele alınmıştır. Zor kombinatoryal optimizasyon problemlerinin

kesin yöntemlerle çözümünün mümkün olamayabilmesi ve problemin boyutu arttıkça

hesaplama süresinin büyük bir sorun teşkil etmesi sebebiyle sürü zekâsına dayalı

algoritmalardan yararlanılmıştır.

Bu doğrultuda, bilgisayar ve iletişim ağları, yerleştirme problemleri, araç rotalama, grup

teknolojisi ve çizelgeleme gibi gerçek hayat uygulamalarına sahip zor kombinatoryal

optimizasyon problemlerinden GAP’nin çözümü için sürü zekâsı tabanlı

algoritmalardan AA ve YAK algoritmasından faydalanılmıştır. İlgili algoritmalar

GAP’nin çözümü için farklılaştırılmış ve önerilen her iki algoritmanın da GAP üzerinde

özellikle de karşılaştırma yapılan algoritmalara göre iyi bir performansa sahip olduğu

görülmüştür.

Çalışmanın diğer bir uygulama alanında ise bilimsel yazında önerilen farklı komşuluk

yapılarının GAP için geliştirilmiş olan AA’nın performansı üzerindeki etkileri

incelenmiş ve bu komşuluk yapılarının farklılıkları ortaya konmuştur.

Diğer taraftan otobüs ve kamyon gibi büyük boyutlu ürünlerin üretildiği işletmelerde

ortaya çıkan ve yine NP-zor bir yapıya sahip olan ÇTMHDP ele alınmış ve özel kısıtlar

çözüm yaklaşımına dâhil edildikçe problemin daha da zorlaştığı belirtilmiştir. Yapılan

136

bilimsel yazın taraması sonucunda özel kısıtların dâhil olduğu çözüm yaklaşımlarının

oldukça az olduğu; özellikle konumsal, bölgesel ve senkronizasyon kısıtlarının aynı

anda çözüm yaklaşımına dahil edildiği bir çalışmanın bulunmadığı görülmüştür. Bu

amaçla yine AA ve YAK algoritmalarından faydalanılarak farklı kısıtlar altında

algoritmaların performansı incelenmiştir. Her iki algoritmada da basit komşuluk

yapılarının kullanıldığı da göz önüne alınırsa AA ve YAK algoritmasının ÇTMHDP

üzerinde üstün bir performansa sahip olduğu görülmüştür. Ayrıca bilimsel yazında ilk

kez konumsal, bölgesel ve senkronizasyon kısıtlarına sahip ÇTMHDP için karma

tamsayılı doğrusal olmayan bir matematiksel model önerilmiştir.

Diğer taraftan AA, bulanık çok amaçlı ÇTMHDP’nin çözümü için kullanılmış ve

bulanık amaçlar farklı teknikler altında incelenerek bu tekniklerin algoritma

performansı üzerindeki etkisi incelenmiştir.

Sonuç olarak genellikle sürekli optimizasyon problemlerine uygulanmış olan AA ve

YAK algoritmasının karmaşık tamsayılı optimizasyon problemleri üzerindeki

performansı incelenmiş; geniş deneysel çalışmalar sonucunda GAP ve ÇTMHDP için

bilimsel yazındaki kesin ve sezgisel çözüm yöntemleriyle yapılan karşılaştırmalar,

önerilen algoritmaların etkin bir performansa sahip olduğunu göstermiştir.

Tez çalışmasında elde edilen sonuçlardan iki SCI’e giren [198-200], bir de SCI’e

indeksine girmeyen [201] dergilere makaleler gönderilmiş olup, bu makalelerden ilki

basılmış diğerleri ise inceleme aşamasındadır. Ayrıca bir kitap bölümü [202] çalışması

gerçekleştirilmiş olup, bir uluslararası kongre [203] ve üç ulusal kongre bildirisi [204-

207] sunulmuştur.

5.2.İleriye Yönelik Öneriler

Zor kombinatoryal optimizasyon problemlerine arıların yiyecek arama davranışına

dayalı metasezgisel yöntemlerle çözüm aramaya dayanan bu tez çalışmasında,

uygulama alanı olarak GAP ve ÇTMHDP seçilmiştir. Bu problemlere ek olarak atama

esnasında kullanılan kaynak kullanım miktarlarının ve ajanlara ait kaynak

kapasitelerinin stokastik değerlere sahip olduğu Stokastik GAP, işlem sürelerinin

stokastik değerlere sahip olduğu Stokastik ÇTMHDP ve diğer birçok zor kombinatoryal

optimizasyon probleminin çözümünde de arı sistemi uygulamaları gerçekleştirilebilir.

137

Bilindiği gibi parametrelerin en iyi seviyelerinin belirlenmesi, algoritma performansını

etkileyen en önemli unsurlardan biridir. Ele alınan GAP ve ÇTMHDP’nin her ikisi için

de gerçekleştirilecek bir parametre optimizasyonu çalışması, daha iyi çözümler

bulunmasını sağlayabilir. Ayrıca farklı çözüm dizisi gösterimleri ve uygunluk

fonksiyonu kullanımının algoritma performansı üzerindeki etkisi incelenebilir.

Diğer taraftan her iki problem için de birbiriyle çelişen birden çok amaç aynı uygunluk

fonksiyonu üzerinde değerlendirilerek farklı etkinlik ölçütleri eşzamanlı olarak en

iyilebilir. Örneğin ÇTMHDP için hattın dengelenmesi, istasyon sayısının en

küçüklenmesi, hat etkinliğinin en büyüklenmesi ve birbiriyle ilişkili işler arasındaki boş

zamanın en küçüklenmesi gibi amaçlar aynı anda çözüm yaklaşımına dâhil edilebilir.

GAP’nde kullanılan komşuluk yapılarının algoritma performansı üzerindeki etkisinin

incelendiği bölümde ise komşuluk yapıları ikili ve üçlü olarak değerlendirilebilir ve bu

kombinasyonların performansa etkisi analiz edilebilir.

ÇTMHDP’nin çözümü için kullanılan AA ve YAK algoritmasında basit komşuluk

yapıları kullanılmıştır. Deneysel çalışmalardan oldukça tatmin edici sonuçlar elde edilse

de karmaşık komşuluk yapılarının algoritmalara dâhil edilmesiyle daha iyi çözümler

elde edilebilecektir. Diğer taraftan çift taraflı montaj hatlarında aynı anda birden fazla

benzer tipteki modelin karma olarak üretildiği ÇTKMMHDP de dikkate alınabilir.

Bilimsel yazın araştırmasından da görüldüğü gibi ÇTKMMHDP üzerine yapılan

çalışmalar oldukça az olup tek modelli hatlar üzerinde etkin bir performans gösteren AA

ve YAK algoritmasının performansı karma modelli hatlar üzerinde de incelenebilir.

138

KAYNAKLAR

1. Baykasoglu, A., Goal Programming Using the Multiple Objective Tabu Search,

Journal of Operational Research Society, 52, 1359-1369, 2001.

2. Von Frisch, K., The Dance Language and Orientation of Bees, Harvard University

Press, Cambridge, Massachusetts, 1976.

3. Michelsen, A., Andersen, B.B., Storm, J., Kirchner, W.H., Lindauer, M., How

Honeybees Perceive Communication Dances, Studied by Means of a Mechanical

Model, Behavioral Ecology and Sociobiology, 30(3-4), 143-150, 1992.

4. Fisher, M.L., Jaikumar, R., Van Wassenhove, L.N., A Multiplier Adjustment

Method for the Generalized Assignment Problem, Management Science, 32(9),

1095-1103, 1986.

5. Bartholdi, J.J., Balancing Two-Sided Assembly Lines: A Case Study, International

Journal of Production Research, 31(10), 2447-2461, 1993.

6. Pham, D.T., Ghanbarzadeh, A., Koç, E., Otri, S., Rahim, S., Zaidi, M., The Bees

Algorithm - A Novel Tool for Complex Optimisation Problems, In Proceedings of

Innovative Production Machines and Systems Virtual Conference, 454-461, 2006a.

7. Karaboga, D., An Idea Based on Honey Bee Swarm for Numerical Optimization,

Technical Report-TR06, Erciyes University, Engineering Faculty, Computer

Engineering Department, 2005.

8. Karaboga, D., Basturk, B., A Powerful and Efficient Algorithm for Numerical

Function Optimization: Artificial Bee Colony (ABC) Algorithm, Journal of Global

Optimization, 39(3), 459-471, 2007a.

9. Bonabeau, E., Dorigo, M., Theraulaz, G., Swarm Intelligence: From Natural to

Artificial Systems, New York, Oxford University Press, 1999.

10. Colorni, A., Dorigo, M., Maffioli, F., Maniezzo, V., Righini, G., Trubian, M.,

Heuristics from Nature for Hard Combinatorial Optimization Problems,

International Transactions in Operational Research, 3(1), 1-21, 1996.

11. Engelbrecht, A.P., Fundamentals of Computational Swarm Intelligence, John

Wiley and Sons Ltd, England, 2005.

139

12. Kennedy, J., Eberhart, R., Particle Swarm Optimization, In Proceedings of the

IEEE International Conference on Neural Networks, Piscataway, NJ, 1942-1948,

1995.

13. Dorigo, M., Optimization, Learning and Natural Algorithms, PhD Thesis,

Politecnico di Milano, Italy, 1992.

14. Yonezawa, Y., Kikuchi, T., Ecological Algorithm for Optimal Ordering Used by

Collective Honey Bee Behavior, In Proceedings of 7th International Symposium on

Micro Machine and Human Science, 249-256, 1996.

15. Schmickl, T., Thenius, R., Crailsheim, K., Simulating Swarm Intelligence in Honey

Bees: Foraging in Differently Fluctuating Environments, In Proceedings of Genetic

and Evolutionary Computation Conference, Washington DC, USA, 273-274, 2005.

16. Lemmens, N., To Bee or Not to Bee: A Comparative Study in Swarm Intelligence,

Master’s Thesis, Institute for Knowledge and Agent Technology, Maastricht ICT

Competence Centre, Maastricht University, Maastricht, Netherlands, 2006.

17. Adams, J., Rothman, E.D., Kerr, W.E., Paulino, Z.L., Estimation of the Number of

Sex Alleles and Queen Matings from Diploid Male Frequencies in a Population of

Apis Mellifera, Genetics, 86(3), 583–596, 1977.

18. Page, R.E., Kimsey, R.B., Laidlaw, H.H., Migration and Dispersal of Spermatozoa

in Spermathecae of Queen Honey Bees: Apis Mellifera, Experientia, 40, 182–184,

1984.

19. Dietz, A., Evolution, In: Rinderer, T.E. (eds.), Bee Genetics and Breeding,

Academic Press, Inc, 3-22, 1986.

20. Laidlaw, H.H., Page, R.E., Mating Designs, In: Rinderer, T.E., (eds.), Bee Genetics

and Breeding, Academic Press, Inc, 323-341, 1986.

21. Rinderer, T.E., Collins, A.M., Behavioral Genetics, In: Rinderer, T.E., (eds.), Bee

Genetics and Breeding, Academic Press, Inc, 155-176, 1986.

22. Sato, T., Hagiwara, M., Bee System: Finding Solution by a Concentrated Search, In

Proceedings of IEEE International Conference on Systems, Man, and Cybernetics,

4(C), 3954-3959, 1997.

140

23. Yang, X.S., Engineering Optimizations via Nature-Inspired Virtual Bee

Algorithms, Lecture Notes in Computer Science, 3562, 317-323, 2005.

24. Abbass, H.A., A Single Queen Single Worker Honey-Bees Approach to 3-SAT, In

Proceedings of Genetic and Evolutionary Computation Conference, San Francisco,

USA, 2001a.

25. Abbass, H.A., A Monogenous MBO Approach to Satisfiability, In Proceedings of

International Conference on Computational Intelligence for Modeling, Control and

Automation, Las Vegas, USA, 2001b.

26. Abbass, H.A., MBO: Marriage in Honey Bees Optimization A Haplometrosis

Polygynous Swarming Approach, In Proceedings of Congress of Evolutionary

Computation, Seoul, Korea, 207-214, 2001c.

27. Teo, J., Abbass, H.A., An Annealing Approach to the Mating-Flight Trajectories in

the Marriage in Honey Bees Optimization Algorithm, Technical Report CS04/01,

School of Computer Science, University of New South Wales at ADFA, 2001.

28. Teo, J., Abbass, H.A., A True Annealing Approach to the Marriage in Honey-Bees

Optimization Algorithm, International Journal of Computational Intelligence and

Applications, 3(2), 199-211, 2003.

29. Chang, H.S., Converging Marriage in Honey-Bees Optimization and Application to

Stochastic Dynamic Programming, Journal of Global Optimization, 35, 423-441,

2006.

30. Bozorg Haddad, O., Afshar, A., Mariano, M.A., Honey-Bees Mating Optimization

(HBMO) Algorithm: A New Heuristic Approach for Water Resources

Optimization, Water Resources Management, 20, 661-680, 2006.

31. Afshar, A., Bozorg Haddad, O., Marino, M.A., Adams, B.J., Honey-Bee Mating

Optimization (HBMO) Algorithm for Optimal Reservoir Operation, Journal of the

Franklin Institute, 344(5), 452-462, 2007.

32. Arefi, A., Haghifam, M.R., Fathi, S.H., Nikham, T., Olamaei, J., A Novel

Algorithm Based on Honey Bee Mating Optimization for Distribution Harmonic

State Estimation Including Distributed Generators, In Proceedings of Power Tech

Conference, Bucharest, Romania, 2009.

141

33. Marinakis, Y., Marinaki, M., A Hybrid Honey Bees Mating Optimization

Algorithm for the Probabilistic Traveling Salesman Problem, In Proceedings of

IEEE Congress on Evolutionay Computation, 1762-1769, 2009.

34. Bozorg Haddad, O., Afshar, A., MBO Algorithm, A New Heuristic Approach in

Hydrosystems Design and Operation, In Proceedings of International Conference

on Managing Rivers in the 21st Century, 499-504, 2004.

35. Fathian, M., Amiri, B., Maroosi, A., Application of Honey-Bee Mating

Optimization Algorithm on Clustering, Applied Mathematics and Computation,

190(2), 1502-1513, 2007.

36. Horng, M.H., A Multilevel Image Thresholding Using the Honey Bee Mating

Optimization, Applied Mathematics and Computation, 215, 3302-3310, 2009.

37. Jung, S.H., Queen-Bee Evolution for Genetic Algorithms, Electronic Letters, 39(6),

575-576, 2003.

38. Azeem, M.F., Saad, A.M., Modified Queen Bee Evolution Based Genetic

Algorithm for Tuning of Scaling Factors of Fuzzy Knowledge Base Controller, In

Proceedings of India Annual Conference, 299-303, 2004.

39. Qin, L.D., Jiang, Q.Y., Zou, Z.Y., Cao, Y.J., A Queen-Bee Evolution Based on

Genetic Algorithm for Economic Power Dispatch, In Proceedings of 39th

Internatinoal Conference of Universities Power Engineering, Bristol, UK, 453-456,

2004.

40. Karcı, A., Imitation of Bee Reproduction as a Crossover Operator in Genetic

Algorithms, In Proceedings of 8th Pacific Rim International Conference on

Artificial Intelligence, Auckland, New Zeland, LNAI, 3157, 1015-1016, 2004.

41. Lucic, P., Modeling Transportation Problems Using Concepts of Swarm

Intelligence and Soft Computing, Ph.D. Dissertation, Civil Engineering, Faculty of

the Virginia Polytechnic Institute and State University, 2002.

42. Lucic, P., Teodorovic, D., Bee System: Modeling Combinatorial Optimization

Transportation Engineering Problems by Swarm Intelligence, In Proceedings of

Triennial Symposium on Transportation Analysis, Sao Miguel, Azores Islands,

441-445, 2001.

142

43. Lucic, P., Teodorovic, D., Transportation Modeling: An Artificial Life Approach,

In Proceedings of the 14th International Conference on Tools with Artificial

Intelligence, Washington DC, USA, 216-223, 2002.

44. Lucic, P., Teodorovic, D., Computing with Bees: Attacking Complex

Transportation Engineering Problems, International Journal on Artificial

Intelligence Tools, 12(3), 375-394, 2003a.

45. Lucic, P., Teodorovic, D., Vehicle Routing Problem with Uncertain Demand at

Nodes: The Bee System and Fuzzy Logic Approach. In: Verdegay J.L. (eds.),

Fuzzy Sets in Optimization, Springer-Verlag, Berlin Heidelbelg, 67-82, 2003b.

46. Teodorovic, D., Dell’Orco, M., Bee Colony Optimization - A Cooperative

Learning Approach to Complex Transportation Problems, In: Jaszkiewicz, A. et al.

(eds.), Advanced OR and AI Methods in Transportation, 51-60, 2005.

47. Wong, L.P., Low, M.Y.H., Chong, C.S., A Bee Colony Optimization Algorithm for

Traveling Salesman Problem, In Proceedings of the 2nd Asia International

Conference on Modelling & Simulation, 818-823, 2008.

48. Nakrani, S., Tovey, C., On Honey Bees and Dynamic Allocation in an Internet

Server Colony, In Proceedings of 2nd International Workshop Mathematics and

Algorithms of Social Insects, Atlanta, Georgia, USA, 2003.

49. Wedde, H.F., Farooq, M., Zhang, Y., BeeHive: An Efficient Fault-Tolerant

Routing Algorithm Inspired by Honey Bee Behavior, Lecture Notes in Computer

Science, 3172, 83-94, 2004.

50. Chong, C.S., Low, M.Y.H., Sivakumar, A.I., Gay, K.Y., A Bee Colony

Optimization Algorithm to Job Shop Scheduling, In Proceedings of the 37th

Conference on Winter Simulation, Monterey, California,1954-1961, 2006.

51. Koudil, M., Benatchba, K., Tarabet, A., Sahraoui, E.B., Using Artificial Bees to

Solve Partitioning and Scheduling Problems in Codesign, Applied Mathematics

and Computation, 186(2), 1710-1722, 2007.

52. Kumar, R., Sharma, D., Kumar, A., Economic Power Dispatch with Valve Point

Effects Using Bee Optimization Algorithm, Journal of Electrical Engineering &

Technology, 4(1), 19-27, 2009.

143

53. Chokpanyasuwan, C., Pothiya, S., Bhasaputra, P., Honey Bee Colony

Optimization to Solve Economic Dispatch Problem with Generator Constraints, In

Proceedings of 6th International Conference of Electrical Engineering /

Electronics, Computer, Telecommunications and Information Technology, Pattaya,

Thailand, 2009.

54. Bianco, G.M., Getting Inspired from Bees to Perform Large Scale Visual Precise

Navigation, In Proceedings of International Conference on Intelligent Robots and

Systems, Sendai, Japan, 619-624, 2004.

55. Drias, H., Sadeg, S., Yahi, S., Cooperative Bees Swarm for Solving the Maximum

Weighted Satisfiability Problem, Lecture Notes in Computer Science, 3512, 318-

325, 2005.

56. Benatchba, K., Admane, L., Koudil, M., Using Bees to Solve a Data Mining

Problem Expressed as a Max-Sat One, In Proceedings of International Conference

on Interplay between Natural and Artificial Computation, Canary Islands, Spain,

212-220, 2005.

57. Quijano, N., Passino, K.M., 2007, Honey Bee Social Foraging Algorithms for

Resource Allocation Theory and Application, Submitted for journal publication,

Engineering Applications of Artificial Intelligence, 2008.

58. Markovic, G.Z., Teodorovic, D., Acimovic-Raspopovic. V.S., Routing and

Wavelength Assignment in All-Optical Networks Based on the Bee Colony

Optimization, AI Communications, 20(4), 273-285, 2007.

59. Tereshko, V., Reaction–Diffusion Model of a Honeybee Colony’s Foraging

Behaviour, In: Schoenauer M. (eds.), Parallel Problem Solving from Nature VI,

Lecture Notes in Computer Science, 1917, Springer–Verlag, Berlin, 807-816, 2000.

60. Seeley, T.D., The Wisdom of the Hive, Harvard University Press, Cambridge,

1995.

61. Pham, D.T., Castellani, M., The Bees Algorithm: Modelling Foraging Behaviour to

Solve Continuous Optimization Problems, In Proceedings of the Institution of

Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,

223(12), 2919-2938, 2009.

144

62. Basturk, B., Karaboga, D., An Artificial Bee Colony (ABC) Algorithm for

Numeric Function Optimization, In Proceedings of IEEE Swarm Intelligence

Symposium, Indianapolis, Indiana, USA, 2006.

63. Karaboga, D., Basturk, B., On the Performance of Artificial Bee Colony (ABC)

Algorithm, Applied Soft Computing, 8(1), 687-697, 2008.

64. Karaboga, D., Akay, B., Artificial Bee Colony (ABC), Harmony Search and Bees

Algorithms on Numerical Optimization, In Proceedings of Innovative Production

Machines and Systems Virtual Conference, Cardiff, UK, 2009b.

65. Karaboga, D., Akay, B., A Comparative Study of Artificial Bee Colony

Algorithm, Applied Mathematics and Computation, 214, 108-132, 2009a.

66. Akay, B., Karaboga, D., Parameter Tuning for the Artificial Bee Colony

Algorithm, In Proceedings of 1st International Conference on Computational

Collective Intelligence - Semantic Web, Social Networks & Multiagent Systems,

Wroclaw, Poland, 2009a.

67. Karaboga, D., Basturk, B., Artificial Bee Colony (ABC) Optimization Algorithm

for Solving Constrained Optimization Problems, LNCS: Advances in Soft

Computing: Foundations of Fuzzy Logic and Soft Computing, Springer- Verlag,

4529, 789-798, 2007b.

68. Goldberg, D.E., Deb, K., A Comparison of Selection Schemes Used in Genetic

Algorithms, Rawlins, G.J.E. (eds.), Foundations of Genetic Algorithms, 69-93,

1991.

69. Akay, B., Karaboga, D., Solving Integer Programming Problems by Using

Artificial Bee Colony Algorithm, In Proceedings of XI. Conferences on Advances

in Artificial Intelligence by the Italian Association for Artificial Intelligence,

Reggio Emilia, 2009b.

70. Quan, H., Shi, X., On the Analysis of Performance of the Improved Artificial-Bee-

Colony Algorithm, In Proceedings of 4th International Conference on Natural

Computation, 654-658, 2008.

145

71. Tsai, P.W., Pan, J.S., Liao, B.Y., Chu, S.C., Interactive Artificial Bee Colony

(IABC) Optimization, In Proceedings of Intelligence and Security Informatics,

Taiwan, 2008.

72. Kang, F., Li, J., Xu, Q., Structural Inverse Analysis by Hybrid Simplex Artificial

Bee Colony Algorithms, Computers & Structures, 87(13-14), 861-870, 2009.

73. Nelder, J.A., Mead, R., A Simplex Method for Function Minimization, Computer

Journal, 7, 308-313, 1965.

74. Bao, L., Zeng, J.C., Comparison and Analysis of the Selection Mechanism in the

Artificial Bee Colony Algorithm, In Proceedings of 9th International Conference

on Hybrid Intelligent Systems, 2009.

75. Kuo, T., Huang, S.Y., Using Disruptive Selection to Maintain Diversity in Genetic

Algorithms, Applied Intelligence, 7(3), 257-267, 1997.

76. Blickle, T., Thiele, L., A Mathematical Analysis of Tournament Selection, In

Proceedings of the 6th International Conference on Genetic Algorithms, San

Francisco, California, 9-16, 1995.

77. Mezura-Montes, E., Cetina-Domínguez, O., Exploring Promising Regions of the

Search Space with the Scout Bee in the Artificial Bee Colony for Constrained

Optimization, In Proceedings of the Artificial Neural Networks in Engineering

Conference, 2009.

78. Hamida, S.B., Schoenauer, M., ASCHEA: New Results Using Adaptive

Segregational Constraint Handling, In Proceedings of the Congress on

Evolutionary Computation, Piscataway, New Jersey, 1, 884-889, 2002.

79. Duan, H.B., Xu, C.F., Xing, Z.H., A Hybrid Artificial Bee Colony Optimization

and Quantum Evolutionary Algorithm for Continuous Optimization Problems,

International Journal of Neural Systems, 20(1), 39-50, 2010.

80. Tsai, P.W., Pan, J.S., Liao, B.Y., Chu, S.C., Enhanced Artificial Bee Colony

Optimization, International Journal of Innovative Computing, Information and

Control, 5(12), 2009.

81. Karaboga, D., Ozturk, C., Neural Networks Training by Artificial Bee Colony

Algorithm on Pattern Classification, Neural Network World, 19(3), 279-292, 2009.

146

82. Srinivasa Rao, R., Narasimham, S.V.L., Ramalingaraju, M., Optimization of

Distribution Network Configuration for Loss Reduction Using Artificial Bee

Colony Algorithm, International Journal of Electrical Power and Energy Systems

Engineering, 1(2), 2008.

83. Bendeş, E., Özkan, C., Direk Lineer Trasformasyon Yönteminde Yapay Zeka

Tekniklerinin Uygulanması, 2. Uzaktan Algılama ve Coğrafi Bilgi Sistemleri

Sempozyumu, Kayseri, Türkiye, 2008.

84. Karaboga, N., A New Design Method Based on Artificial Bee Colony Algorithm

for Digital IIR Filters, Journal of the Franklin Institute, 346(4), 328-348, 2009.

85. Singh, A., An Artificial Bee Colony Algorithm for the Leaf-Constrained Minimum

Spanning Tree Problem, Applied Soft Computing, 9(2), 625-631, 2009.

86. Rao, R.V., Pawar, P.J., Modelling and Optimization of Process Parameters of Wire

Electrical Discharge Machining, In Proceedings of the Institution of Mechanical

Engineers, Part B: Journal of Engineering Manufacture, 223, 1431-1440, 2009.

87. Kurban, T., Beşdok, E., A Comparison of RBF Neural Network Training

Algorithms for Inertial Sensor Based Terrain Classification, Sensors, 9, 6312-

6329, 2009.

88. Kumar, S.K., Tiwari, M.K., Babiceanu, R.F., Minimisation of Supply Chain Cost

with Embedded Risk Using Computational Intelligence Approaches, International

Journal of Production Research, 48(13), 3717-3739, 2009.

89. Li, D.M., Cheng, B.Y., Artificial bee colony algorithm for scheduling a single

batch processing machine with non-identical job sizes, Journal of Sichuan

University (Natural Science Edition), 46(3), 2009.

90. Bahamish, H.A.A., Abdullah, R., Salam, R.A., Protein Tertiary Structure

Prediction Using Artificial Bee Colony Algorithm, In Proceedings of 3rd Asia

International Conference on Modelling & Simulation, 258-263, 2009.

91. Pacurib, J., Seno, G.M., Yusiong, J.P., Solving Sudoku Puzzles Using Improved

Artificial Bee Colony Algorithm, In Proceedings of 4th International Conference

on Innovative Computing, Information and Control, Kaohsiung, Taiwan, 2009.

147

92. Omkar, S.N., Senthilnath, J., Artificial Bee Colony for Classification of Acoustic

Emission Signal, International Journal of Aerospace Innovations, 1(3), 129-143,

2009.

93. Karaboga, D., Akay, B., A Survey: Algorithms Simulating Bee Swarm

Intelligence, Artificial Intelligence Review, 31(1), 68-85, 2009c.

94. Pham, D.T., Soroka, A.J., Ghanbarzadeh, A., Koc, E., Otri, S., Packianather, M.,

Optimising Neural Networks for Identification of Wood Defects Using the Bees

Algorithm, In Proceedings of IEEE International Conference on Industrial

Informatics, Singapore, 2006b.

95. Packianather, M.S., Drake, P.R., Identifying Defects on Plywood Using a

Minimum Distance Classifier and A Neural Network. In: Pham D.T., Eldukhri E.,

Soroka A. (eds.), In Proceedings of 1st Virtual International Conference on

Intelligent Production Machines and Systems, Elsevier, Oxford, 543-548, 2005.

96. Pham, D.T., Koç, E., Ghanbarzadeh, A., Otri, S., Optimisation of the Weights of

Multi-Layered Perceptrons Using the Bees Algorithm, In Proceedings of 5th

International Symposium on Intelligent Manufacturing Systems, Turkey, 2006c.

97. Pham, D.T., Ghanbarzadeh, A., Koç, E., Otri, S., Application of the Bees

Algorithm to the Training of Radial Basis Function Networks for Control Chart

Pattern Recognition, In Proceedings of 5th CIRP International Seminar on

Intelligent Computation in Manufacturing Engineering, Ischia, Italy, 2006d.

98. Pham, D.T., Otri, S., Ghanbarzadeh, A., Koc, E., Application of the Bees

Algorithm to the Training of Learning Vector Quantisation Networks for Control

Chart Pattern Recognition, In Proceedings of Information and Communication

Technologies, Syria, 1624-1629, 2006e.

99. Pham, D.T., Afify, A., Koç, E., Manufacturing Cell Formation Using the Bees

Algorithm, In Proceedings of Innovative Production Machines and Systems Virtual

Conference, Cardiff, UK, 2007a.

100. Pham, D.T., Koç, E., Lee, J.Y., Phrueksanant, J., Using the Bees Algorithm to

Schedule Jobs for a Machine, In Proceedings of 8th International Conference on

Laser Metrology, CMM and Machine Tool Performance, Euspen, UK, Cardiff,

430-439, 2007b.

148

101. Pham, D.T., Haj Darwish, A., Eldukhri, E.E., Otri, S., Using the Bees Algorithm to

Tune a Fuzzy Logic Controller for a Robot Gymnast, In Proceedings of 3rd

International Virtual Conference on Intelligent Production Machines and Systems,

Whittles, Dunbeath, Scotland, 546-551, 2007c.

102. Pham, D.T., Otri, S., Afify, A.A., Mahmuddin, M., Al-Jabbouli, H., Data

Clustering Using the Bees Algorithm, In Proceedings of 40th CIRP Intelligent

Manufacturing Systems Seminar, Liverpool, 2007d.

103. Pham, D.T., Ghanbarzadeh, A., Multi-Objective Optimisation Using the Bees

Algorithm, In Proceedings of 3rd IPROMS International Virtual Conference on

Intelligent Production Machines and Systems, Whittles, Dunbeath, Scotland, 2007.

104. Pham, D.T., Muhamad, Z., Mahmuddin, M., Ghanbarzadeh, A., Koç, E., Otri, S.,

Using the Bees Algorithm to Optimise a Support Vector Machine for Wood Defect

Classification. In Proceedings of Innovative Production Machines and Systems

Virtual Conference, Cardiff, UK, 2007e.

105. Pham, D.T., Mahmuddin, M., Otri, S., Al-Jabbouli, H., Application of the Bees

Algorithm to the Selection Features for Manufacturing Data, In Proceedings of 3rd

International Virtual Conference on Intelligent Production Machines and Systems,

Whittles, Dunbeath, Scotland, 2007f.

106. Pham, D.T., Otri, S., Haj Darwish, A., Application of the Bees Algorithm to PCB

Assembly Optimisation, In Proceedings of 3rd International Virtual Conference on

Intelligent Production Machines and Systems, Whittles, Dunbeath, Scotland, 511-

516, 2007g.

107. Pham, D.T., Al-Jabbouli, H., Mahmuddin, M., Otri, S., Haj Darwish, A.,

Application of the Bees Algorithm to Fuzzy Clustering, In Proceedings of 4th

International Virtual Conference on Intelligent Production Machines and Systems,

Whittles, Dunbeath, Scotland, 2008a.

108. Pham, D.T., Ang, M.C., Ng, K.W., Otri, S., Haj Darwish, A., Generating Branded

Product Concepts: Comparing the Bees Algorithm and an Evolutionary Algorithm,

In Proceedings of 4th International Virtual Conference on Intelligent Production

Machines and Systems, Whittles, Dunbeath, Scotland, 2008b.

149

109. Pham, D.T., Castellani, M., Fahmy, A.A., Learning the Inverse Kinematics of a

Robot Manipulator Using the Bees Algorithm, In Proceedings of 17th IFAC World

Congress, South Korea, 493-498, 2008c.

110. Pham, D.T., Castellani, M., Sholedol, M., Ghanbarzadeh, A., The Bees Algorithm

and Mechanical Design Optimisation, In Proceedings of 5th International

Conference on Informatics in Control, Automation and Robotics, 2008d.

111. Pham, D.T., Ghanbarzadeh, A., Otri, S., Koç, E., Optimal Design of Mechanical

Components Using the Bees Algorithm, In Proceedings of the Institution of

Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2009a.

112. Pham, D.T., Lee, J.Y., Haj Darwish, A., Soroka, A.J., Multi-Objective

Environmental/Economic Power Dispatch Using the Bees Algorithm with Pareto

Optimality, In Proceedings of 4th International Virtual Conference on Intelligent

Production Machines and Systems, Whittles, Dunbeath, Scotland, 2008e.

113. Lee, J.Y., Haj Darwish, A., Multi-Objective Environmental/Economic Dispatch

Using the Bees Algorithm with Weighted Sum, In Proceedings of EU-Korea

Conference on Science and Technology, Germany, 267-274, 2008.

114. Pham, D.T., Haj Darwish, A., Fuzzy Selection of Local Search Sites in the Bees

Algorithm, In Proceedings of 4th International Virtual Conference on Intelligent

Production Machines and Systems, Whittles, Dunbeath, Scotland, 2008.

115. Pham, D.T., Pham, Q.T., Ghanbarzadeh, A., Castellani, M., Dynamic Optimisation

of Chemical Engineering Processes Using the Bees Algorithm, In Proceedings of

17th IFAC World Congress, South Korea, 6100-6105, 2008f.

116. Pham, D.T., Sholedolu, M., Using a Hybrid PSO-Bees Algorithm to Train Neural

Networks for Wood Defect Classification, In Proceedings of 4th International

Virtual Conference on Intelligent Production Machines and Systems, Whittles,

Dunbeath, Scotland, 2008.

117. Pham, D.T., Negm, M.A., Otri, S., Using the Bees Algorithm to Solve a Stochastic

Optimisation Problem, In Proceedings of 4th International Virtual Conference on

Intelligent Production Machines and Systems, Whittles, Dunbeath, Scotland,

2008g.

150

118. Martello, S., Toth, P., An Algorithm for the Generalized Assignment Problems. In:

Brans J.P. (eds.), Operational Research, North-Holland, 589-603, 1981.

119. Martello, S., Toth, P., Knapsack Problems: Algorithms and Computer

Implementations, Wiley, New York, 1990.

120. Cattrysse, D., Set Partitioning Approaches to Combinatorial Optimization

Problems, Ph.D. Dissertation, Katholieke Universiteit Leuven, Centrum Industrieel

Beleid, Belgium, 1990.

121. Cattrysse, D., Salomon, M., Van Wassenhove, L.N., A Set Partitioning Heuristic

for the Generalized Assignment Problem, European Journal of Operational

Research, 72, 167-174, 1994.

122. Öncan, T., A Survey of the Generalized Assignment Problem and Its Applications,

Information Systems and Operational Research, 45(3), 123-141, 2007.

123. Ross, G.T., Soland, P.M., A Branch and Bound Based Algorithm for the

Generalized Assignment Problem, Mathematical Programming, 8, 91-103, 1975.

124. Savelsbergh, M., A Branch-and-Price Algorithm for the Generalized Assignment

Problem, Operations Research, 45, 831-841, 1997.

125. Nauss, R.M., Solving the Generalized Assignment Problem: An Optimizing and

Heuristic Approach, Informs Journal of Computing, 15(3), 249-266, 2003.

126. Osman, I.H., Heuristics for the Generalized Assignment Problem: Simulated

Annealing and Tabu Search Approaches, OR Spektrum, 17, 211-225, 1995.

127. Chu, P.C., Beasley, J.E., A Genetic Algorithm for the Generalized Assignment

Problem, Computers and Operations Research, 24, 17-23, 1997.

128. Racer, M., Amini, M.M., A Robust Heuristic for the Generalized Assignment

Problem, Annals of Operations Research, 50, 487-503, 1994.

129. Yagiura, M., Yamaguchi, T., Ibaraki, T., A Variable-Depth Search Algorithm with

Branching Search for the Generalized Assignment Problem, Optimization Methods

and Software, 10, 419-441, 1998.

130. Yagiura, M., Yamaguchi, T., Ibaraki, T., A Variable-Depth Search Algorithm for

the Generalized Assignment Problem. In: Vob, S., Martello, S., Osman, I.H.,

Roucairol, C., (eds.), Meta-Heuristics: Advances and Trends in Local Search

Paradigms for Optimization, Kluwer Academic Publishers, Boston, 459-471, 1999.

151

131. Laguna, M., Kelly, J.P., Gonzalez-Velarde, J.L., Glover F., Tabu Search for the

Multilevel Generalized Assignment Problem, European Journal of Operational

Research, 82, 176-189, 1995.

132. Diaz, J.A., Fernandez, E., A Tabu Search Heuristic for the Generalized Assignment

Problem, European Journal Operational Research, 132, 22-38, 2001.

133. Yagiura, M., Ibaraki, T., Glover, F., An Ejection Chain Approach for the

Generalized Assignment Problem, Informs Journal of Computing, 16(2), 131-151,

2004.

134. Lourenço, H.R., Serra, D., Adaptive Search Heuristics for the Generalized

Assignment Problem, Mathware and Soft Computing, 9, 209-234, 2002.

135. Alfandari, L., Plateau, A., Tolla, P., A Two-Phase Path Relinking Algorithm for the

Generalized Assignment Problem, In Proceedings of the 4th Metaheuristic

International Conference, Porto, Portugal, 175-179, 2001.

136. Alfandari, L., Plateau, A., Tolla, P., A Two-Phase Path Relinking Algorithm for the

Generalized Assignment Problem, Technical Report No: 378, CEDRIC, CNAM,

2002.

137. Alfandari, L., Plateau, A., Tolla, P., A Path Relinking Algorithm for the

Generalized Assignment Problem. In: Resende, M.G.C., Sousa, J.D. (eds.),

Metaheuristics: Computer Decision-Making, Kluwer Academic Publishers,

Boston, 1-17, 2004.

138. Yagiura, M., Ibaraki, T., Glover, F., An Effective Metaheuristic Algorithm for the

Generalized Assignment Problem, In Proceedings of IEEE International

Conference on Systems, Man, and Cybernetics, Tucson, Arizona, USA, 2001.

139. Yagiura, M., Ibaraki, T., Glover, F., A Path Relinking Approach for the

Generalized Assignment Problem, In Proceedings of International Symposium on

Scheduling, Hamamatsu, Japan, 105-108, 2002.

140. Yagiura, M., Ibaraki, T., Glover, F., A Path Relinking Approach with Ejection

Chains for the Generalized Assignment Problem, European Journal of Operational

Research, 169, 548-569, 2006.

141. Randall, M., Heuristics for Ant Colony Optimisation Using the Generalised

Assignment Problem, In Proceedings of IEEE Congress on Evolutionary

Computation, Portland, Oregon, USA, 1916-1923, 2004.

152

142. Feltl, H., Raidl, G.R., An Improved Hybrid Genetic Algorithm for the Generalized

Assignment Problem, In Proceedings of the Symposium on Applied Computing,

Nicosia, Cyprus, 990-995, 2004.

143. Taşgetiren, M.F., Suganthan, P.N., Chua, T.J., Al-Hajri, A., Differential Evolution

Algorithms for the Generalized Assignment Problem, In Proceedings of the 11th

Congress on Evolutionary Computation, 2009.

144. Lorena, L.A.N., Narciso, M.G., Beasley, J.E., A Constructive Genetic Algorithm

for the Generalized Assignment Problem, Submitted to Evolutionary Optimization,

2002.

145. Öztuna, D., Elhan, A.H., Gruplararası ve Grupiçi Karşılaştırma Yöntemleri,

http://www.toraks.org.tr/mse-ppt-pdf/D_OZTUNA_H_ELHAN.pdf.

146. Wilcoxon, F., Individual Comparisons by Ranking Methods, Biometrics, 1, 80-83,

1945.

147. Karp, R.M., Reducibility Among Combinatorial Problems. In: Miller, R.E.,

Thatcher, J.W. (eds.), Complexity of Computer Computation, Plenum Press, New

York, 85–103, 1972.

148. Kim, Y.K., Kim, Y.J., Kim, Y.H., Genetic Algorithms for Assembly Line

Balancing with Various Objectives, Computers & Industrial Engineering, 30(3),

397–409, 1996.

149. Scholl, A.,Balancing and Sequencing of Assembly Lines, Heidelberg, Physica-

Verlag, 1999.

150. Becker, C., Scholl, A., A Survey on Problems and Methods in Generalized

Assembly Line Balancing, European Journal of Operational Research, 168, 694–

715, 2006.

151. Baybars, I., A Survey of Exact Algorithms for the Simple Assembly Line

Balancing Problem, Management Science, 32, 909–932, 1986a.

152. Salveson, M.E., The Assembly Line Balancing Problem, Journal of Industrial

Engineering, 6, 18–25, 1955.

153. Jackson, J.R., A Computing Procedure for a Line Balancing Problem, Management

Science, 2, 261–272, 1956.

153

154. Bowman, E.H., Assembly Line Balancing by Linear Programming, Operations

Research, 8(3), 385–389, 1960.

155. Held, M., Karp, R.M., Shareshian, R., Assembly Line Balancing-Dynamic

Programming with Precedence Constraints, Operations Research, 11, 442–459,

1963.

156. Dar-El, E.M., MALB-A Heuristic Technique for Balancing Large Single-Model

Assembly Lines, AIIE Transactions, 5(4), 343–356, 1973.

157. Dar-El, E.M., Rubinovitch, Y., MUST-A Multiple Solutions Technique for

Balancing Single Model Assembly Lines, Management Science, 25, 1105–1114,

1979.

158. Baybars, I., An Efficient Heuristic Method for the Simple Assembly Line

Balancing Problem, International Journal of Production Research, 24(1), 149–166,

1986b.

159. Suresh, G., Sahu, S., Stochastic Assembly Line Balancing Using Simulated

Annealing, International Journal of Production Research, 32(8), 1801–1810, 1994.

160. Peterson, C., A Tabu Search Procedure for the Simple Assembly Line Balancing

Problem, In Proceedings of the Decision Science Institute Conference,

Washington DC, 1502-1504, 1993.

161. Lapierre, S.D., Ruiz, A., Soriano, P., Balancing Assembly Lines with Tabu Search,

European Journal of Operational Research, 168, 826-837, 2006.

162. Falkenauer, E., Delchambre, A., A Genetic Algorithm for Bin Packing and Line

Balancing, In Proceedings of IEEE International Conference on Robotics and

Automation, Nice, France, 1189–1192, 1992.

163. Dimopoulos, C., Zalzala, A.M.S., Recent Developments in Evolutionary

Computation for Manufacturing Optimisation: Problems, Solutions and

Comparisons, IEEE Transactions on Evolutionary Computation, 4(2), 93–113,

2000.

164. Sabuncuoğlu, I., Erel, E., Tanyer, M., Assembly Line Balancing Using Genetic

Algorithms, Journal of Intelligent Manufacturing, 11, 295-310, 2000.

154

165. Aytug, H., Khouja, M., Vergara, F.E., Use of Genetic Algorithms to Solve

Production and Operations Management Problems: A Review, International

Journal of Production Research, 41(17), 3955–4009, 2003.

166. Scholl, A., Becker, C., State-of-the-art Exact and Heuristic Solution Procedures for

Simple Assembly Line Balancing, European Journal of Operational Research, 168,

666–693, 2006.

167. Ghosh, S., Gagnon, R.J., A Comprehensive Literature Review and Analysis of the

Design, Balancing and Scheduling of Assembly Systems, International Journal of

Production Research, 27(4), 637–670, 1989.

168. Erel, E., Sarin, S.C., A Survey of the Assembly Line Balancing Procedures,

Production Planning and Control, 9, 414–434, 1998.

169. Boysen, N., Fliedner, M., Scholl, A., A Classification of Assembly Line Balancing

Problems, European Journal of Operational Research, 183, 674-693, 2007.

170. Kim, Y.K., Kim, Y., Kim, Y.J., Two-Sided Assembly Line Balancing: A Genetic

Algorithm Approach, Production Planning & Control, 11, 44-53, 2000.

171. Kim, Y.K., Kim, Y., Lee, T.O. (1999), Two-Sided Assembly Line Balancing

Models, Technical Report, Chonnam National University, Kwangju, 1999.

172. Kim, Y.K., Kim, Y., Lee, T.O., Two-Sided Assembly Line Balancing Models,

Working paper, Department of Industrial Engineering, Chonnam National

University, Korea, 1998b.

173. Lee, T.O., Kim, Y., Kim, Y.K., Two-Sided Assembly Line Balancing to Maximize

Work Relatedness and Slackness, Computers & Industrial Engineering, 40, 273-

292, 2001.

174. Lapierre, S.D., Ruiz, A.B., Balancing Assembly Lines: An Industrial Case Study,

Journal of Operational Research Society, 55(6), 589-597, 2004.

175. Simaria, A.S., Vilarinho, P.M., 2-ANTBAL: An Ant Colony Optimization

Algorithm for Balancing Two-Sided Assembly Lines, In Proceedings of the 35th

International Conference on Computers and Industrial Engineering, İstanbul,

Türkiye, 2005.

155

176. Simaria, A.S., Vilarinho, P.M., 2-ANTBAL: An Ant Colony Optimization

Algorithm for Balancing Two-Sided Assembly Lines, Computers & Industrial

Engineering, 56(2), 489-506, 2009.

177. Hu, X., Wu, E., Jin, Y., A Station-Oriented Enumerative Algorithm for Two-Sided

Assembly Line Balancing, European Journal of Operational Research, 186(1), 435-

440, 2008.

178. Fleszar, K., Hindi, K.S., An Enumerative Heuristic and Reduction Methods for the

Assembly Line Balancing Problem, European Journal of Operational Research,

145, 606–620, 2003.

179. Baykasoglu, A., Dereli, T., Two-Sided Assembly Line Balancing Using an Ant

Colony Based Heuristics, International Journal of Advanced Manufacturing

Technology, 36, 582-588, 2008.

180. Wu, E.F., Jin, Y., Bao, J.S., Hu, X.F., A Branch-and-Bound Algorithm for Two-

Sided Assembly Line Balancing, International Journal of Advanced Manufacturing

Technology, 39(9-10), 1009-1015, 2008.

181. Kim, Y.K., Song W.S., Kim J.H., A Mathematical Model and A Genetic Algorithm

for Two-Sided Assembly Line Balancing, Computers & Operations Research, 36,

853-865, 2009.

182. Özcan, U., Toklu, B., A Tabu Search Algorithm for Two-Sided Assembly Line

Balancing, International Journal of Advanced Manufacturing Technology, 43(7-8),

822, 2009a.

183. Özcan, U., Toklu, B., Multiple-Criteria Decision-Making in Two-Sided Assembly

Line Balancing: A Goal Programming and a Fuzzy Goal Programming Models,

Computers & Operations Research, 36, 1955-1965, 2009b.

184. Özcan, U., Toklu, B., Balancing of Mixed-Model Two-Sided Assembly Lines,

Computers & Industrial Engineering, 57, 217-227, 2009c.

185. Leu, Y.Y., Matheson, L.A., Rees, L.P., Assembly Line Balancing Using Genetic

Algorithms with Heuristic-Generated Initial Populations and Multiple Evaluation

Criteria, Decision Sciences, 25, 581-606, 1994.

156

186. Baykasoğlu, A., Göçken, T., A Review and Classification of Fuzzy Mathematical

Programs, Journal of Intelligent and Fuzzy Systems, 19(3), 205-229, 2008.

187. Zimmermann, H.J., Description and Optimization of Fuzzy Systems, International

Journal of General Systems, 2, 209-215, 1976.

188. Bellman, R.E., Zadeh, L.A., Decision-Making in a Fuzzy Environment,

Management Science, 17, 141-164, 1970.

189. Sinha, S., Fuzzy Mathematical Programming Applied to Multi-Level Programming

Problems, Computers and Operations Research, 30, 1259-1268, 2003.

190. Chakraborty, M., Gupta, S., Fuzzy Mathematical Programming for Multi Objective

Linear Fractional Programming Problem, Fuzzy Sets and Systems, 125, 335-342,

2002.

191. Chanas, S., The Use of Parametric Programming in Fuzzy Linear Programming,

Fuzzy Sets and Systems, 11, 243-251, 1983.

192. Gen, M., Ida, K., Lee, J., Kim, J., Fuzzy Nonlinear Goal Programming Using

Genetic Algorithm, Computers and Industrial Engineering, 33, 39-42, 1997.

193. Baykasoğlu, A., Göçken, T., A Tabu Search Approach to Fuzzy Goal Programs

and An Application to Aggregate Production Planning, Engineering Optimization,

38(2), 155-177, 2006.

194. Narasimhan, R., Goal Programming in A Fuzzy Environment, Decision Sciences,

11, 325-336, 1980.

195. Hannan, E.L., On Fuzzy Goal Programming, Decision Sciences, 12, 522-531,

1981.

196. Lu, J., Wu, F., Zhang, G., On A Generalized Fuzzy Goal Optimization for Solving

Fuzzy Multi-Objective Linear Programming Problems, Journal of Intelligent and

Fuzzy Systems, 18(1), 83-97, 2007.

197. Tiwari, R.N., Dharmar, S., Rao, J.R., Fuzzy Goal Programming – An Additive

Model, Fuzzy Sets and Systems, 24, 27-34, 1987.

157

198. Özbakır, L., Baykasoğlu, A., Tapkan, P., Bees Algorithm for Generalized

Assignment Problem, Applied Mathematics and Computation, 215, 3782-3795,

2010.

199. Özbakır, L., Tapkan, P., Bees Algorithm for Zone Constrained Two-Sided

Assembly Line Balancing Problem, Expert Systems with Applications, (İnceleme

aşamasında).

200. Baykasoğlu, B., Özbakır, L., Tapkan, P., Balancing Fuzzy Multiple Objective Two-

Sided Assembly Lines via Bees Algorithm, Journal of Intelligent and Fuzzy

Systems, (Basım aşamasında).

201. Tapkan, P., Özbakır, L., Baykasoğlu, A., Arı Algoritması ve Genelleştirilmiş

Atama Problemi: Farklı Komşuluk Yapılarının Karşılaşıtırılması, Endüstri

Mühendisliği Dergisi, (Basım aşamasında).

202. Baykasoğlu, A., Özbakır, L., Tapkan, P., Artificial Bee Colony Algorithm and its

Application to Generalized Assignment Problem, In: Chan, F.T.S., Tiwari, M.K.

(eds.), Swarm Intelligence: Focus on Ant and Particle Swarm Optimization, I-Tech

Education and Publishing, Vienna, Austria, 113-144, 2007.

203. Tapkan, P., Özbakır, L., Baykasoğlu, A., Bees Algorithm for Two-Sided Assembly

Line Balancing Problem, In Proceedings of 23. European Conference on

Operational Research, Bonn, Germany, 2009.

204. Baykasoglu, A., Ozbakir, L., Tapkan, P., Özaslan, M., Genelleştirilmiş Atama

Problemi için Arı Kolonisi Optimizasyonu, Yöneylem Araştırması / Endüstri

Mühendisliği 27. Ulusal Kongresi, İzmir, 2007.

205. Tapkan, P., Özbakır, L., Baykasoğlu, A., Arı Algoritması ve Genelleştirilmiş

Atama Problemi: Farklı Komşuluk Yapılarının Karşılaştırılması, Yöneylem

Araştırması / Endüstri Mühendisliği 28. Ulusal Kongresi, İstanbul, 2008.

206. Tapkan, P., Özbakır, L., Baykasoğlu, A., Çift Taraflı Montaj Hattı Dengeleme

Problemi için Arı Algoritması, Yöneylem Araştırması / Endüstri Mühendisliği 29.

Ulusal Kongresi, Ankara, 2009.

158

207. Tapkan, P., Özbakır, L., Baykasoğlu, A., Arı Algoritması ile Bölgesel – Konumsal

Kısıtlı Bulanık Çok-Kriterli Çift-Taraflı Montaj Hattı Dengelenmesi, Yöneylem

Araştırması / Endüstri Mühendisliği 30. Ulusal Kongresi, İstanbul, 2010.

159

ÖZGEÇMİŞ

Pınar Zarif TAPKAN 1979 yılında Kayseri’de doğdu. İlk, orta ve lise öğrenimini

Kayseri’de tamamladı. 1996 yılında Erciyes Üniversitesi, Mühendislik Fakültesi,

Endüstri Mühendisliği bölümünü kazandı ve 2000 yılında mezun oldu. 2002 yılında

Bilkent Üniversitesi, Fen Bilimleri Enstitüsü, Endüstri Mühendisliği Anabilim Dalında

yüksek lisans eğitimini tamamladı. 2004 yılında Erciyes Üniversitesi, Fen Bilimleri

Enstitüsü, Bilgisayar Mühendisliği Anabilim Dalında doktora eğitimine başladı. 2001

yılı Aralık ayında Erciyes Üniversitesi, Mühendislik Fakültesi, Endüstri Mühendisliği

Bölümü’ne araştırma görevlisi olarak atandı ve halen aynı bölümde görevine devam

etmektedir.

İletişim Bilgileri:

Erciyes Üniversitesi, Mühendislik Fakültesi,

Endüstri Mühendisliği Bölümü,

38039 KAYSERİ

Tel: (0 352) 4374901 / 32477

e-mail: pinartan@erciyes.edu.tr.

	Kapak
	Onay
	Tskr
	Ozet
	Abstract
	Icindekiler
	B-1
	B-2
	B-3
	B-4
	B-5
	Kaynaklar
	Ozgecmis

