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ÖZET 

Birçok gerçek hayat probleminin kombinatoryal optimizasyon problemi olarak 

modellenebilmesi ve klâsik optimizasyon tekniklerinin bu tür problemleri çözmedeki çeşitli 

yetersizlikleri, kombinatoryal optimizasyon problemlerinin çözümünde hızlı ve etkin olarak 

kullanılacak araçların geliştirilmesi ihtiyacını doğurmuştur. Bu amaçla problemden ve 

modelden bağımsız bir yapıya sahip olan doğadan esinlenmiş sezgisel optimizasyon 

algoritmaları, son yıllarda artan bir hızla zor kombinatoryal optimizasyon problemlerinin 

çözümünde kullanılmaktadır. Bu tekniklerin bir dalı olan sürü zekâsı algoritmaları ise 

böceklerin problem çözme becerilerini taklit eden metasezgisel yöntemler geliştirebilmek için 

böcek davranışlarına odaklanmıştır.  

Arıların yiyecek arama davranışları, öğrenme, hatırlama ve bilgi paylaşma özellikleri sürü 

zekâsının en ilgi çekici araştırma alanlarından birisidir. Birbiriyle etkileşen bireyler sistemi 

olarak ele alınan arı kolonisinde kolektif zekâ, sinerjik bilgi değişimine dayanmaktadır. Temel 

olarak, bulunan yiyecek kaynaklarının kalitesi hakkında bilgi paylaşımının gerçekleştirildiği arı 

kolonisinde amaç, farklı ve kaliteli yiyecek kaynaklarına ulaşabilmek için kolonideki diğer 

arıların da iyi bölgelere çekilmesine dayanmaktadır. Arılar arasındaki bu etkileşim, zor 

kombinatoryal optimizasyon problemlerine kaliteli ve uygun çözümlerin daha hızlı bulunmasını 

sağlamaktadır.  

Bu tez çalışmasının amacı zor kombinatoryal optimizasyon problemlerine iyi çözümler üreten 

ve arı davranışlarını modelleyen yapay sistemler geliştirmektir. Bu doğrultuda zor 

kombinatoryal optimizasyon problemleri sınıfında yer alan Genelleştirilmiş Atama Problemi ve 

Çift Taraflı Montaj Hattı Dengeleme Problemi’ne etkin bir çözüm yaklaşımı geliştirmek 

amacıyla son yıllarda önerilen Arı Algoritması ve Yapay Arı Kolonisi Algoritması’ndan 

faydalanılmış ve oldukça başarılı sonuçlar elde edilmiştir.  

Anahtar Kelimeler: Arı Sistemi, Arı Algoritması, Yapay Arı Kolonisi Algoritması, 

Genelleştirilmiş Atama Problemi, Çift Taraflı Montaj Hattı Dengeleme Problemi. 
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ABSTRACT 

Due to the fact that most of real life problems can be modelled as a combinatorial optimization 

problem and presence of various insufficiencies on solving these problems by classical 

optimization techniques, it has required developing rapid and effective tools to solve 

combinatorial optimization problems. For this purpose, problem and model independent nature 

inspired heuristic optimization algorithms have been utilized for solving hard combinatorial 

optimization problems with an increasing trend. Such a branch of nature inspired algorithms 

which are known as swarm intelligence focuses on insect behavior in order to develop some 

meta-heuristics which can mimic insect’s problem solution abilities. 

The foraging behaviour, learning, memorizing and information sharing characteristics of bees 

have recently been one of the most interesting research areas in swarm intelligence. The 

collective intelligence of interacting bee colony is based on synergic information exchange. 

Basically, the aim of the bee colony depends on attracting other bees to productive locations to 

collect different and qualified food sources by sharing information about quality of food 

sources. This interaction among bees provides finding qualified and feasible solutions to hard 

combinatorial optimization problems much more quickly. 

This thesis is focused on developing artificial systems that generate good solutions to hard 

combinatorial optimization problems by utilizing bee behaviours. Accordingly, with the aim of 

developing an effective solution approach for Generalized Assignment Problem and Two-Sided 

Assembly Line Balancing Problem that can be classified as hard combinatorial optimization 

problems, recently proposed Bees Algorithm and Artificial Bee Colony Algorithm are utilized 

and considerably effective results are obtained. 

Keywords: Bee System, Bees Algorithm, Artificial Bee Colony Algorithm, Generalized 

Assignment Problem, Two-Sided Assembly Line Balancing Problem. 
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1. BÖLÜM 

                                                      GİRİŞ 

Matematiksel model, bir süreci ya da sistem davranışını matematiksel olarak temsil 

eden denklemler takımıdır. Matematiksel modeller çeşitli özelliklerine göre farklı 

sınıflara ayrılabilirler. Bu sınıflandırmalardan biri de karar değişkenlerinin pozitif reel 

değerler alması ya da tamsayı değerler alması şeklinde ikiye ayrılan sürekli 

optimizasyon problemi ve kesikli optimizasyon problemidir. Sürekli optimizasyon 

problemleri tüm fonksiyonların doğrusal olması durumunda doğrusal programlama, en 

az bir fonksiyonun doğrusal olmaması durumunda ise doğrusal olmayan programlama 

yöntemi ile çözülmektedir. Diğer taraftan kesikli optimizasyon problemleri ise karar 

değişkenlerinin tamsayı değerler alması durumunda tamsayılı programlama, karar 

değişkenlerinin kombinatoryal seçenekleri söz konusu olduğunda ise kombinatoryal 

optimizasyon yöntemleri ile çözülmektedir. 

Tez çalışmasının temelini oluşturan kombinatoryal optimizasyon problemleri, dikkate 

alınan amaç fonksiyonunu en iyileyen kesikli karar değişkenlerinin değerlerinin 

bulunması ile ilgilenir. Diğer bir deyişle kombinatoryal optimizasyon, belirli kısıtlardan 

oluşmuş, sayılabilir sonlu bir uygun çözüm uzayında, en küçükleme ya da en 

büyükleme ölçütüyle, matematiksel olarak modellenmiş problemlerin incelenmesi ve en 

iyi çözümün bulunmasını içerir. Teorik ve pratik önemi olan çoğu optimizasyon 

problemi kombinatoryal yapıdadır; bu tür problemlere örnek olarak en kısa yol 

problemi, gezgin satıcı problemi, atama problemi, atölye çizelgeleme problemi ve araç 

rotalama problemi verilebilir. Kombinatoryal optimizasyon problemleri çözüm 

açısından hem kolay hem de zor problemleri bünyesinde barındırmakta ve bu bağlamda 

P ve NP-zor olmak üzere iki sınıfa ayrılmaktadır. Bir problem P sınıfında ise erişilebilir, 

kolay ve optimum çözümü elde edilebilir nitelikte; NP-zor sınıfında ise erişilemez, zor 

ve optimum çözümü makul zamanlarda elde edilemez niteliktedir. P sınıfındaki bir 

problem, çözüm zamanı problem boyutunun polinom fonksiyonu olarak artan bir 
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algoritma ile çözülebilir. Örneğin atama, minimum kapsayan ağaç ve şebeke akış 

problemleri P sınıfında yer alan kombinatoryal optimizasyon problemlerindendir. NP-

zor sınıfındaki problemlerin çözümü için ise polinom zamanlı bir algoritma yoktur; 

çünkü optimum çözümü bulmak için gerekli süre, problem boyutuna bağlı olarak üstel 

artış göstermektedir. 0 ya da 1 değerini alan n değişkene sahip bir problem için tüm 

çözümlerin birerleme zamanı O(2n)’dir. Küçük boyutlu problemler birerleme ile 

çözülebilmesine rağmen, büyük boyutlu problemler için bu yöntem ile çözüme ulaşmak 

mümkün değildir. NP-zor sınıfındaki problemler için dal-sınır ya da kesme düzlemi gibi 

etkin yöntemlerin başarısız olmasının nedeni, bu yöntemlerin de üstel sınırlara sahip 

olmasıdır. NP-zor yapıya sahip kombinatoryal optimizasyon problemlerine örnek olarak 

ise karesel atama problemi, gezgin satıcı problemi, montaj hattı dengeleme problemi, 

araç rotalama problemi, çizelgeleme problemi ve yer seçimi problemi verilebilir. 

Kombinatoryal optimizasyon problemlerinin çözümünde kullanılan algoritmalar kesin 

algoritmalar ve sezgisel algoritmalar olmak üzere ikiye ayrılır. Doğrusal programlama, 

dinamik programlama, dal-sınır algoritması, kesme düzlem yöntemi gibi kesin 

algoritmalar optimum çözümü garanti eden algoritmalardır. Sezgisel algoritmalar ise 

optimum çözümü garanti etmeksizin daha az çözüm zamanı ile optimuma yakın iyi bir 

çözümü elde etmeyi hedefler. Optimum olmayan çözümler üretebilen bu tekniklerin 

geliştirilmesinin sebebi, problem boyutunun çok büyük olması ya da problemin küçük 

alt problemlere ayrılmasının zor olduğu durumlarda kesin yöntemlerle probleme çözüm 

bulmanın mümkün olmamasıdır.  

Bahsedildiği gibi geleneksel matematiksel yöntemlerle sezgisel algoritmalar arasındaki 

en önemli ayrım çözümün optimalliği ve hesaplama süresidir. Geleneksel matematiksel 

yöntemler optimum çözümü verebilmekte ancak büyük boyutlu örnekler 

düşünüldüğünde hesaplama süresi bir dezavantaj haline gelmektedir. Ayrıca geleneksel 

yaklaşımlar orijinal problem üzerinde bazı varsayımlar ve basitleştirmeler gerektirmekte 

ve bulunan çözüm orijinal problemin temsili için yeterli olmayabilmektedir. 

Araştırmacılar çeşitli optimizasyon problemlerini klasik optimizasyon prosedürlerine 

uyarlamak için oldukça çaba göstermişlerdir. Ancak bir gerçek hayat problemini belli 

bir çözüm prosedürüne uyacak şekilde modellemek genellikle pek kolay değildir. Klasik 

optimizasyon algoritmaları farklı tipte değişkenler, amaç fonksiyonu ve kısıtlar içeren 
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problem formülasyonlarına uygulanabilecek genel bir çözüm stratejisi sunmamaktadır. 

Örneğin simpleks algoritması, doğrusal amaç fonksiyonu ve kısıtlara sahip modellerin 

çözümünde; geometrik programlama ise pozitif katsayılı polinom ya da işaretçe sınırlı 

olması gerekmeyen polinom yapıda amaç fonksiyonuna sahip doğrusal olmayan 

modellerin çözümünde kullanılabilmektedir. Ancak birçok optimizasyon problemi aynı 

formülasyon içinde farklı tipte değişkenler, amaç fonksiyonları ve kısıtlar içermektedir. 

Bu zorluğu aşabilmek için orijinal problemin parametreleri üzerinde bazı değişiklikler 

ya da varsayımlar yapmak gerekmekte (değişkenlerin yuvarlanması, kısıtların 

gevşetilmesi gibi) ancak bu da çözümün kalitesini etkilemektedir. Dolayısıyla klasik 

optimizasyon teknikleri bu tür problemlerin çözümü için yeterli olmamaktadır. İşte 

klasik optimizasyon tekniklerinin bu yetersizliklerini aşabilmek için problemden ve 

modelden bağımsız olan doğadan esinlenmiş sezgisel optimizasyon algoritmaları 

önerilmektedir. Bu teknikler hem etkin hem de daha esnek olup belirli problem 

gereksinimlerine göre uyarlanabilmektedir [1]. 

Birçok gerçek hayat probleminin kombinatoryal optimizasyon problemi olarak 

modellenebilmesi, bu tür problemlerin çözümünde hızlı ve etkin olarak kullanılacak 

araçların geliştirilmesi ihtiyacını doğurmuştur. Son yıllarda metasezgisel algoritmalar 

artan bir hızla zor kombinatoryal optimizasyon problemlerinin çözümünde 

kullanılmaktadır. Çünkü gerçek hayatta genellikle sadece iyi çözümlere ihtiyaç 

duyulmakta yani karar vericiler için alt optimum bir çözüm de yeterli olabilmektedir. 

Başlangıçta metasezgisel algoritmalar benzetimli tavlama, genetik algoritma ve tabu 

aramadan oluşurken, daha iyi çözümler üretebilmek için son yıllarda birçok farklı teknik 

geliştirilmiştir. Bu tekniklerin bir dalı olan sürü zekâsına dayalı algoritmalar ise 

böceklerin problem çözme becerilerini taklit eden metasezgisel yöntemler 

geliştirebilmek için böcek davranışlarına odaklanmıştır. Sosyal böcek kolonileri 

çevreden bilgi toplayan ve bu bilgiye göre davranışlarını uyarlayan dinamik bir sistem 

olarak düşünülebilir. Böcekler arasındaki etkileşimin bir sonucu olan kolektif zekânın 

en önemli parçalarından biri ise bireysel böcekler arasındaki bilgi paylaşımıdır. 

Diğer taraftan arıların yiyecek arama davranışları, öğrenme, hatırlama ve bilgi paylaşma 

özellikleri sürü zekâsının en ilgi çekici araştırma alanlarından birisidir. Bir arı kolonisi 

birbiriyle etkileşen bireyler sistemi olarak düşünülebilir. Bu tür etkileşimli davranış 

örneklerinden biri de bal arılarının buldukları yiyecek kaynağı hakkındaki bilgiyi 
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paylaştıkları salınım dansıdır. Bu dans aracılığıyla kaliteli bir yiyecek kaynağı bulan 

arılar, yiyecek kaynağı hakkındaki yön, uzaklık ve nektar miktarı bilgilerini diğer 

arılarla paylaşırlar. Böylece farklı yiyecek kaynakları bulabilmek için, kolonideki diğer 

arılar da iyi bölgelere çekilmektedir. Arıların dans davranışlarıyla ilgili yapılmış 

çalışmalar, arının dans esnasındaki yönünün yiyecek kaynağı ile güneş arasındaki 

ilişkiyi, dansın yoğunluğunun yiyecek kaynağının uzaklığını ve dansın süresinin ise 

nektar miktarını gösterdiğini ortaya çıkarmıştır. Yani arıların kolektif zekâsı sinerjik 

bilgi değişimine dayanmaktadır [2, 3].  

Bal arılarının davranışlarına yönelik yapılan araştırmalar yeni optimizasyon 

algoritmalarının geliştirilmesini sağlamıştır. Bal arılarında yiyecek toplama ölçütü yeni 

yiyecek kaynaklarının ne kadar hızlı bulunup tüketildiğiyle; yapay yiyecek toplama ise 

benzer olarak uygun ya da iyi kalitedeki çözümlerin bulunma hızıyla ilişkilidir. Yeni 

yiyecek kaynaklarının bulunma maliyeti ise arılar arasındaki etkileşime bağlı olarak 

azalmaktadır. Yani yapay arılar arasındaki etkileşim uygun çözümlerin daha hızlı 

bulunmasını sağlamakta ve bulunan yiyecek kaynaklarının kalitesi de artmaktadır. 

Arılar arasındaki bu etkileşim zor kombinatoryal optimizasyon problemlerine iyi 

çözümler bulmaya yardımcı olmaktadır. 

Bu tez çalışmasının amacı da zor kombinatoryal optimizasyon problemlerine iyi 

çözümler üreten ve arı davranışlarını modelleyen yapay sistemler geliştirmektir. Bu 

doğrultuda sırasıyla Fisher ve ark. [4]  ve Bartholdi [5] tarafından NP-zor yapıya sahip 

olduğu ispatlanan Genelleştirilmiş Atama Problemi (GAP) ve Çift Taraflı Montaj Hattı 

Dengeleme Problemi’ne (ÇTMHDP), Arı Algoritması (AA) [6] ve Yapay Arı Kolonisi 

(YAK) algoritması [7] temel alınarak çözüm aranmış ve ilgili algoritmaların bu zor 

kombinatoryal optimizasyon problemleri üzerindeki performansı incelenmiştir. Her iki 

problem için de bilimsel yazındaki kesin ve sezgisel çözüm yöntemleriyle yapılan 

karşılaştırmalar, önerilen algoritmaların etkin bir performansa sahip olduğunu 

göstermiştir.  

Tez çalışmasının ikinci bölümü, sürü zekâsı optimizasyon tekniklerinden biri olan arı 

sisteminin kombinatoryal optimizasyon problemlerinin çözümünde kullanımına temel 

oluşturması için sürü zekâsı ve arı sistemine ayrılmıştır. İlk olarak sürü zekâsından ve 

bu kavrama dayalı optimizasyon algoritmalarından bahsedildikten sonra doğadaki 
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gerçek arı davranışları detaylandırılarak bilimsel yazında arı sistemi ile bağlantılı 

mühendislik çalışmaları incelenmiştir. Ardından özellikle kombinatoryal optimizasyon 

problemlerinin çözümünde kullanılan arı sistemi uygulamalarına değinilmiştir. Ayrıca 

bu bölümde arıların yiyecek arama davranışları hakkında detaylar verilerek tez 

çalışmasında temel alınan AA ve YAK algoritması açıklanmıştır. 

Üçüncü bölümde genellikle sürekli optimizasyon problemlerine uygulanmış olan AA ve 

YAK algoritmasının karmaşık tamsayılı optimizasyon problemlerindeki performansını 

inceleyebilmek için NP-zor bir problem olan GAP’nin çözümünde kullanılmasına yer 

verilmiştir. Ayrıca GAP’nin AA ile çözümünde kullanılan komşuluk yapılarının 

algoritma üzerindeki etkisi incelenmiştir.  

Dördüncü bölümde yine zor bir kombinatoryal optimizasyon problemi olan 

ÇTMHDP’nin genel yapısı ve bilimsel yazındaki çözüm yaklaşımları incelendikten 

sonra probleme ait farklı kısıtlar altında ilgili algoritmalarla elde edilen geniş deneysel 

çalışma sonuçları sunulmuştur. Diğer taraftan AA, bulanık çok amaçlı ÇTMHDP’nin 

çözümü için de kullanılmış ve bulanık amaçlar farklı teknikler altında incelenerek bu 

tekniklerin algoritma performansı üzerindeki etkisi incelenmiştir. 

Son olarak sonuç ve öneriler bölümünde, tez çalışmasından elde edilen sonuçlar ve 

öneriler tartışılmıştır.  



2. BÖLÜM 

 SÜRÜ ZEKÂSINA DAYALI OPTİMİZASYON ALGORİTMALARI 

2.1.  Giriş 

Bu bölüm, sürü zekâsı optimizasyon tekniklerinden biri olan arı sisteminin 

kombinatoryal optimizasyon problemlerinin çözümünde kullanımına temel oluşturması 

için sürü zekâsı ve arı sistemine ayrılmıştır. İlk olarak sürü zekâsından ve bu kavrama 

dayalı optimizasyon algoritmalarından bahsedildikten sonra doğadaki gerçek arı 

davranışları detaylandırılarak bilimsel yazında arı sistemi ile bağlantılı mühendislik 

çalışmaları incelenecektir. Ardından özellikle kombinatoryal optimizasyon 

problemlerinin çözümünde kullanılan arı sistemi uygulamalarına değinilecektir. Ayrıca 

bu bölümde arıların yiyecek arama davranışları hakkında detaylar verilerek tez 

çalışmasında temel alınan AA ve YAK algoritması açıklanacaktır. 

2.2.  Sürü Zekâsına Dayalı Optimizasyon Algoritmaları 

Bilimsel yazında kombinatoryal ve sayısal optimizasyon problemlerinin çözümü için 

geliştirilen birçok modern sezgisel algoritma bulunmaktadır. Bu algoritmalar ele alınan 

kritere bağlı olarak popülasyon tabanlı, tekrarlı, stokastik ve deterministik gibi farklı 

gruplara ayrılabilir. Popülasyon tabanlı algoritmalar, tek bir çözüm yerine bir çözümler 

kümesini temel almakta; tekrarlamalı algoritmalar ise çözüme çoklu iterasyonlar 

kullanarak yaklaşmaktadır. Eğer kullanılan algoritma bir çözümü geliştirmek için 

olasılık tabanlı bir kural kullanıyorsa stokastik, kesin bir kural kullanıyorsa 

deterministik olarak adlandırılmaktadır. Diğer taraftan popülasyon tabanlı algoritmalar 

evrimsel algoritmalar ve sürü zekâsına dayalı algoritmalar olmak üzere iki önemli sınıfa 

ayrılmaktadır [8]. Evrimsel algoritmalar, organizma popülasyonlarının genetik kalıtım 

ve en iyinin yaşaması gibi biyolojik işlemlerden esinlendiği stokastik optimizasyon 

algoritmalarını içerir. Genetik algoritma, genetik programlama, evrimsel strateji, 
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evrimsel programlama ve diferansiyel gelişim algoritmaları popüler evrimsel 

algoritmalardandır. 

Tez çalışmasında temel alının sürü zekâsı ise son yıllarda birçok araştırmacı bilim 

adamı için bir ilgi alanı haline gelmiştir. Sürü zekâsı, yetenekleri kısıtlı canlıların bir 

takım haline geldiklerinde üstün yetenek ve yönetim gerektiren davranışlar sergilemesi 

olarak açıklanabilir. Bonabeau ve ark. [9] ise sürü zekâsını “sosyal böcek kolonilerinin 

ya da diğer hayvan topluluklarının kolektif davranışlarından esinlenen herhangi bir 

algoritma ya da dağıtımlı problem çözme mekanizması tasarlama girişimi” olarak 

tanımlamaktadır. Bonabeau ve ark. [9] bakış açılarını sadece termit, arı, yaban arısı ve 

diğer karınca türleri gibi sosyal böceklere yoğunlaştırmışlardır. Ancak sürü kelimesi 

genel olarak birbiriyle ilişkili ajan ya da bireyler topluluğu şeklinde kullanılmaktadır. 

Ajanlar arasındaki bu ilişkiler doğal ortamda yiyecek bulma, yuva inşa etme ya da 

genişletme, ajanlar arasındaki etkili işbölümü, yavru besleme ve dış etkenlere cevap 

verebilme şeklinde ortaya çıkmaktadır [9]. Sürü yapısına örnek olarak, kovanları 

etrafında hareket halinde olan arılar, bireysel ajanları karıncalar olan karınca kolonisi, 

kuş sürüleri, hücre ve molekül sürüsü olarak düşünülebilen bağışıklık sistemi verilebilir. 

Doğadan esinlenen sezgisel yöntemlerin temel özellikleri, doğada bulunan bir olguyu 

modellemeleri, stokastik bir yapıya sahip olmaları, çok ajanlı sistemlerde genellikle 

paralel bir yapı bulunması ve geri besleme bilgisinin kullanılmasıdır [10]. Kendi 

kendine örgütlenen ve içinde bulunduğu çevreye uyum sağlayabilen dağıtımlı problem 

çözme sistemleri gibi zeki sürü davranışları edinebilmek için kendi kendine örgütlenme 

ve iş bölümü olmak üzere iki temel özellik gerekli ve yeterlidir [9]. 

• Kendi kendine örgütlenme, sistemin düşük seviye bileşenleri arasındaki 

etkileşim sayesinde global seviyede yapılar olarak karşımıza çıkan dinamik 

mekanizmalar kümesi olarak tanımlanabilir. Bu mekanizmalar sistemin 

bileşenleri arasındaki etkileşim için temel kuralları oluşturur. Bu kurallar ise 

etkileşimin global örüntüyle hiçbir ilişkisi olmadan tamamen yerel bilgiye 

dayanarak gerçekleştirilmesini sağlar. Diğer bir deyişle, sürüyü oluşturan ajanlar 

değişen şartlara göre kendilerini örgütleyebilirler,  yaptıkları işin cinsini 

değiştirme ve duruma göre kendilerine uygun işi tayin edebilme yeteneklerine 

sahiptirler. Bonabeau ve ark. [9] kendi kendine örgütlenmenin 4 temel özelliğini 
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pozitif geri besleme, negatif geri besleme, sürekli değişim ve çoklu etkileşim 

şeklinde belirlemişlerdir. 

 Pozitif geri besleme, uygun yapıların yaratılmasını sağlayan basit bir 

ampirik davranıştır. Bazı karınca türlerinde iz bırakma ve iz takip etme 

ya da arılarda dans etme gibi iyileştirme ve güçlendirme davranışları 

pozitif geri beslemeye örnek olarak verilebilir. 

 Negatif geri besleme ise kolektif örüntüyü dengede tutmaya yardım 

etmektedir. Yiyecek kaynağının tükenmesi, kalabalıklaşması ya da 

yiyecek kaynağında rekabet şeklinde ortaya çıkabilen doygunluğu 

engelleyebilmek için negatif geri besleme mekanizmasına ihtiyaç 

duyulmaktadır.  

 Rastgele yürüyüşler, hatalar, sürü bireyleri arasında rastgele iş değişimi 

gibi sürekli değişimler, yaratıcılık ve yenilik için çok önemlidir. Gelişen 

yapılarda rastgelelik, yeni çözümlerin keşfini sağladığı için büyük öneme 

sahiptir.  

 Kendi kendine örgütlenme genel olarak hem kendi hareketlerinin hem de 

diğer bireylerin hareketlerinin sonuçlarını düşük seviyede kullanabilen 

karşılıklı etkileşime sahip bireyler gerektirir.  

• Zeki sürü davranışlarının diğer bir özelliği olan işbölümü, belirli özelliklere 

sahip bireyler tarafından aynı anda gerçekleştirilen farklı işlerin varlığı şeklinde 

tanımlanmaktadır. İşbirliği içindeki bu uzmanlaşmış bireylerin aynı andaki iş 

performansının, uzmanlaşmamış bireylerin sıralı iş performansından daha etkin 

olduğuna inanılmaktadır. İş bölümü aynı zamanda sürünün araştırma uzayındaki 

değişen şartlara cevap verebilmesini de sağlamaktadır. 

Sürü zekâsı temel olarak basit ajanlar arasındaki dolaylı ve dolaysız etkileşimi, değişen 

çevre şartlarına uyumu gösteren esnekliği ve bazı bireylerin görevlerini 

gerçekleştirememeleri durumunda kolonideki işlerin devam edebilmesi kabiliyetini 

temsil eden sağlamlığı vurgulamaktadır. Koloniyi oluşturan ajanlar çok basit kuralları 

takip etmekte ve bireysel ajanların nasıl hareket edeceklerini belirleyen merkezi bir 

kontrol yapısı olmamasına rağmen ajanlar arasındaki yerel ve belli bir seviyedeki 

rastgele etkileşim, zeki global davranışın oluşumuna liderlik etmektedir. Sürü zekâsı 

algoritmalarının kombinatoryal optimizasyon, iletişim ağları ve robotikteki başarılı 
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uygulama sayısı üssel olarak artmaktadır [11].  Sürü zekâsına dayalı algoritmalardan en 

yaygın olarak kullanılan Parçacık Sürü Optimizasyonu (PSO) ve Karınca Koloni 

Optimizasyonu (KKO) algoritması izleyen bölümlerde daha detaylı olarak verilmiştir. 

2.2.1. Parçacık Sürü Optimizasyonu Algoritması 

PSO algoritması kuş sürülerinin davranışlarından esinlenerek Kennedy ve Eberhart [12] 

tarafından geliştirilmiş popülasyon tabanlı stokastik bir optimizasyon tekniğidir. PSO 

algoritmasının klasik optimizasyon tekniklerinden en önemli farkı türev bilgisine ihtiyaç 

duymamasıdır. Bu özellik birçok problemin çözümü için gerekli olan karmaşık işlem 

yükünün hafifletilmesini sağlamaktadır. Algoritma özellikle çok boyutlu uzayda 

doğrusal olmayan fonksiyonların optimizasyonunda üstün performans göstermekte ve 

fonksiyon optimizasyonu, bulanık sistem kontrolü, yapay sinir ağı eğitimi gibi birçok 

alanda başarıyla uygulanabilmektedir.  

PSO algoritması temelde kuş sürülerinin yiyecek aramaları ve yiyecek bulduktan sonra 

birbirlerinden faydalanarak sürü halinde yiyeceğe doğru yönelmelerini 

modellemektedir. Bu modeldeki en önemli nokta yiyeceği ilk bulan kuşun diğerlerine 

rehberlik etmesi ve bireyler arasında sosyal bilgi paylaşımının var olmasıdır. Kuşların 

yerini bilmedikleri bir yiyeceği aramaları, bir probleme çözüm aramaya; parçacık olarak 

adlandırılan her bireyin pozisyonu, bir çözüme; bireyin hızı, değişime ve popülasyon ise 

kuş sürüsüne benzetilmektedir.  

PSO algoritması rastgele çözümler içeren bir popülasyonla başlatılmakta ve bu 

çözümler güncellenerek optimum çözüm araştırılmaktadır. Parçacık olarak adlandırılan 

aday çözümler, kuşların yiyecek ararken yiyeceğe en yakın kuşu takip etmeleri gibi, o 

andaki optimum parçacığı izleyerek problem uzayında dolaşmaktadırlar. Parçacık 

hareket ettiğinde, kendi koordinatlarını bir fonksiyona göndermekte, böylece parçacığın 

uygunluk değeri yani yiyeceğe ne kadar uzaklıkta olduğu ölçülmektedir. Bir parçacığa 

ait hız ve yön bilgisinin her seferinde nasıl değişeceği, kendi koordinatları ile komşu 

parçacıkların en iyi koordinatlarının birleşimi ile belirlenmektedir. Ajanların kendi 

tecrübelerine ve komşu ajanların tecrübelerine göre hareket etmeleriyle ajanlar arasında 

bilgi paylaşımı sağlanmaktadır [11]. 
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2.2.2. Karınca Koloni Optimizasyonu Algoritması 

KKO algoritması, yapay karınca adı verilen her bir ajan davranışının gerçek karınca 

davranışlarına benzetildiği çok ajanlı bir sistemdir. Sürü zekâsına dayalı algoritmaların 

en başarılı örneklerinden biri olan KKO algoritması klasik Gezgin Satıcı Problemi, 

Karesel Atama Problemi, Genelleştirilmiş Atama Problemi, Araç Rotalama Problemi, 

Çoklu Sırt Çantası Problemi gibi çok çeşitli problemlerde uygulama alanı bulmuştur.  

KKO algoritması, karıncaların yiyecek arama davranışından esinlenerek Dorigo [13] 

tarafından önerilmiş, özellikle kesikli optimizasyon problemlerinde başarılı 

uygulamaları olan bir yöntemdir. Birçok karınca kolonisinde karıncalar yiyecek ararken, 

öncelikle yuvalarının etrafında rastgele dolaşarak keşfe başlarlar. Yiyecek kaynaklarını 

bulduklarında, yiyeceğin kalitesi ve miktarını değerlendirdikten sonra bir kısmını 

yuvaya taşırlar. Bu dönüş sırasında diğer karıncaların da aynı kaynağı bulabilmeleri için 

yiyeceğin kalitesine ve miktarına bağlı olarak kimyasal feremon maddesini geçtikleri 

yolun üzerine bırakırlar. Bırakılan bu izler, diğer karıncalara rehberlik ederek belirli bir 

olasılıkla o yolu takip etmelerine ve kaynağı bulmalarına yardım eder. Feremon 

vasıtasıyla yapılan bu dolaylı iletişim, karıncaların yiyecek kaynağı ile yuva arasında en 

kısa yolu bulmalarını sağlar. İşte karıncaların bu davranışları KKO algoritmasının 

geliştirilmesinde ilham kaynağı olmuştur.  

Diğer taraftan KKO algoritmasının başarılı uygulamaları arıların kombinatoryal 

optimizasyon problemlerinin çözümünde kullanılmasına bir basamak oluşturmuş ve son 

yıllarda arıların doğal davranış özellikleri çeşitli metasezgisel algoritmaların 

geliştirilmesine olanak sağlamıştır.  

2.3.  Doğadaki Gerçek Arı Davranışları 

Böcekler dünyasındaki en çarpıcı mühendislik ve mimarlık bilgisine sahip olan arılar, 

sosyal hayatları ve aralarındaki iletişim ile diğer pek çok canlıdan ayrılmaktadır. Bir arı 

kolonisi, bir kraliçe, birkaç yüz erkek ve 10.000-80.000 işçi arıdan oluşur.  Kraliçe 

arının temel görevi yumurtlamak olup üreme sadece kraliçe arı vasıtasıyla gerçekleşir. 

Kraliçe arı yumurtlamadan başka, koloninin bütünlüğünü ve kovandaki sistemin 

işleyişini sağlayan önemli maddeler de salgılar. Erkek arıların tek fonksiyonu ise 

kraliçeyi döllemektir; yiyecek toplama, temizlik, yavruların bakımı gibi işlevlerle 
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ilgilenmezler. Kovanda petek örme, yiyecek toplama, arı sütü üretme, kovan ısısını 

düzenleme, temizlik, savunma gibi diğer tüm işleri ise işçi arılar yapar. 

Mühendislik çalışmalarında ele alınan arı davranışlarının en önemlileri yiyecek arama 

ve çiftleşmedir. Arı sistemi içerisinde bu tür davranışların nasıl gerçekleştiği aşağıda 

kısaca özetlenmiştir. 

Arıların Yiyecek Arama Davranışı: Arılar çoğu zaman yiyecek bulmak için kovandan 

ayrılarak geniş alanları taramak zorunda kalırlar. Yeni bir yiyecek kaynağı bulan arılar, 

koloninin diğer üyelerine haber vermek üzere kovana geri dönerler. Arılar sağır 

olmalarına rağmen yiyecek kaynağının yerini, koloninin diğer üyelerine dans ederek 

tarif edebilirler. Yiyecek kaynağının bulunabilmesi için kaynağın kovana uzaklığı, 

doğrultusu, zenginliği gibi gerekli olabilecek her türlü bilgi bu dansta gizlidir. Yiyecek 

kaynağını keşfeden arı kovana döner ve diğer arıların dikkatini çekecek şekilde sürekli 

olarak belirli hareketleri tekrarlamaya başlar. Arının genel davranışlarından yiyecek 

kaynağı ile ilgili tüm bilgiler elde edilebilir. Örneğin nektar toplamış bir arı kovana 

döndüğünde sadece nektarı boşaltıp geri uçarsa bu, arının faydalandığı kaynak bilinen 

bir kaynaktır veya verimsizdir anlamına gelmektedir. Yiyecek kaynağı bulan arılardan 

elde edilen bu bilgiler doğrultusunda diğer arılar kolaylıkla yiyecek kaynağının yerini 

bulurlar. Yiyecek kaynağına çok fazla arı toplanması, kovanda dans eden arıların sayısı 

ile doğrudan bağlantılıdır. Tek bir arının dansı ile tüm kovan harekete geçmez. 

Öncelikle koloniden bir grup arı öncü olarak gider. Bu öncü grup uçuştan döndüğünde 

onlar da dans ediyorsa daha fazla arı hedefe doğru yönelir. Buldukları kaynak ne kadar 

iyi ise, o kadar uzun süre dans ederler ve daha fazla arı toplarlar. Böylece arıların 

dikkati daima en verimli yiyecek kaynağına yönelmiş olur. Diğer taraftan yiyecek 

kaynağını bulan arı kovana geri dönmeden önce yiyecek kaynağına özel bir koku 

bulaştırır. Arıların çiçekleri işaretlemeleri sayesinde, diğer arılar bu çiçeğin nektarının 

daha önce başka arılarca tüketildiğini anlar ve o çiçeği terk ederler. Böylece hem vakit 

hem de enerji kaybından kurtulurlar. 

Bilimsel yazında arıların yiyecek arama davranışına dayalı biyolojik çalışmalara 

bakıldığında, Yonezawa ve Kikuchi [14] arıların yiyecek arama davranışını inceleyerek 

grup zekâsının önemini gösteren bir algoritma geliştirmişlerdir. Geliştirilen 

algoritmanın kolonide bir ve üç arı olduğu varsayımıyla simülasyonu yapılmıştır. Karar 
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verme sürecinde üç arıya sahip sistemin bir arıya sahip sisteme göre daha hızlı çalıştığı 

gösterilmiştir. Diğer taraftan arıların değişen çevre şartlarına kolaylıkla adapte olabilen 

bir yiyecek arama davranışına sahip olduğu belirtilmiştir. Schmickl ve ark. [15] ise çok 

ajanlı bir simülasyon platformu üzerinde arıların yiyecek arama davranışının 

sağlamlığını incelemişlerdir. Çevresel değişikliklerin yiyecek arama stratejisini ve 

etkinliğini nasıl etkilediğini araştırarak, arı kolonisinin bu konuda sağlam ve iyi bir 

adaptasyona sahip olduğunu belirtmişlerdir. Yiyecek arama davranışı konusunda, 

karınca kolonisi davranışlarına dayalı feremon tabanlı algoritmalar ile arı kolonisi 

davranışlarına dayalı feremon tabanlı olmayan algoritmalar arasında bir karşılaştırma 

çalışması gerçekleştiren Lemmens [16], elde ettiği deney sonuçlarına göre (i) feremon 

tabanlı olmayan algoritmaların genel anlamda daha az süre gerektirdiğini ve daha hızlı 

olduğunu, (ii) feremon tabanlı algoritmaların küçük boyutlu problemler için iterasyon 

başına daha az süre gerektirdiğini, (iii) boyut arttıkça feremon tabanlı olmayan 

algoritmaların feremon tabanlı algoritmalara göre daha iyi performansa sahip olduğunu 

belirtmiştir. 

Arıların Çiftleşme Davranışı: Kraliçe arı çiftleşmek için kovandan bir grup arıyla 

birlikte yola çıkar. Bir süre sonra beraberindeki arılardan ayrılır ve erkek arıların 

toplandığı alanlara doğru tek başına uçar. Bu alana belirli bir oranda yaklaştığında erkek 

arıların kendisini bulmalarını sağlayan bir tür feremon salgılamaya başlar. Çiftleşme 

uçuşu adı verilen bu uçuş sırasında erkek arıların kraliçeyi fark etmeleri ile çiftleşme 

gerçekleşir. Döllenmeden sonra kraliçe arı kovana geri dönerken erkek arılar genellikle 

hayatlarını kaybederler. Tek bir erkek arının spermleri kraliçe arının üreme kesesini 

doldurmaya yetmediğinden kraliçe birden fazla erkek arıdan sperm alır. Döllenmeden 

sonra erkek arılardan gelen bütün spermler üreme kesesinde biriktirilir. Kraliçe, 4-5 

senelik ömrü boyunca çiftleşme uçuşu sırasında edindiği bu spermleri kullanacaktır. 

Diğer pek çok canlıdaki üreme hücrelerinin aksine erkek arıların spermleri kraliçenin 

vücudunda bozulmadan senelerce muhafaza edilebilecek bir yapıya sahiptir. Kraliçe arı 

bu keseden kendi isteğine göre sperm bırakarak döllenmeyi düzenler. Adams ve ark. 

[17], Page ve ark. [18], Dietz [19], Laidlaw ve Page [20], Rinderer ve Collins [21] 

arıların çiftleşme davranışını biyolojik olarak inceleyen çeşitli çalışmalar sunmuşlardır. 
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2.4.  Arı Sistemi ile Bağlantılı Mühendislik Çalışmaları 

Arı davranışlarıyla ilgili biyolojik araştırmalar uzun yıllardır devam etse de bilgisayar 

bilimleri ile ilgili çalışmalar pek yaygın değildir. Günümüze kadar yapılmış çalışmalar; 

yiyecek arama davranışına dayalı, çiftleşme davranışına dayalı ve kombinatoryal 

optimizasyon problemleri uygulamaları olmak üzere 3 grup altında incelenmiştir. 

2.4.1. Yiyecek Arama Davranışına Dayalı Çalışmalar 

Sato ve Hagiwara [22] genetik algoritma üzerinde arıların yiyecek arama davranışına 

dayalı değişiklikler yaparak Arı Sistemi algoritmasını oluşturmuşlardır. Bir arı 

kolonisinde her arı bireysel olarak yiyecek aramakta, yiyecek kaynağını bulduktan sonra 

salınım dansıyla bilgi paylaşımında bulunmakta ve yine bireysel olarak yeni bir yiyecek 

kaynağı aramaya devam etmektedir. Benzer olarak önerilen algoritmada da önce global 

arama yapılmaktadır. Bu amaçla basit genetik algoritma ile daha yüksek uygunluk 

değerine sahip süper kromozomlar elde edilmektedir. Daha sonra kromozomların çoğu 

yoğunlaştırılmış çaprazlama ile süper kromozomların bilgilerini elde etmekte ve çoklu 

popülasyon kullanılarak daha yoğun arama yapılabilmektedir. Geleneksel çaprazlamada 

her çift rastgele seçilmekte iken, yoğunlaştırılmış çaprazlamada bütün kromozomlar 

süper kromozomla bir çift oluşturmaktadır. Ayrıca Arı Sistemi algoritmasının yerel 

arama kabiliyetini artırmak için sözde-simpleks yöntemi de algoritmaya dâhil edilmiştir. 

Eğer bir döngü boyunca elde edilen çözüm tatmin edici değilse global arama 

tekrarlanmaktadır. Bilindiği gibi genetik algoritma iyi bir global arama kabiliyetine 

sahip olsa da yerel arama kabiliyeti yeterli değildir. Ancak Arı Sistemi ile yerel 

minimuma düşme olasılığı azalmaktadır. Çünkü algoritmanın amacı genetik 

algoritmanın global arama kabiliyetini azaltmadan yerel arama kabiliyetini 

geliştirmektir. Yapılan testlerde Arı Sistemi algoritması geleneksel genetik algoritma ile 

karşılaştırılmış ve özellikle yüksek derecede karmaşık, çok değişkenli fonksiyonlarda 

önerilen algoritmanın daha iyi performans gösterdiği görülmüştür. 

Sürekli fonksiyon uygulamaları açısından arıların yiyecek arama davranışını temel alan 

çalışmalara bakıldığında, Yang [23] özellikle fonksiyon optimizasyonu problemlerinde 

etkin olan Sanal Arı algoritmasını geliştirmiştir. Önerilen algoritma genetik algoritmaya 

benzese de bağımsız çok sayıda arının paralel çalışmasından dolayı daha etkindir. 

Deneysel çalışma sonuçları, önerilen algoritmanın genetik algoritmadan daha etkin 
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olduğunu göstermiştir. Diğer taraftan tez çalışmasında temel alınan YAK algoritması ve 

AA sırasıyla Karaboğa [7] ve Pham ve ark. [6] tarafından önerilmiş olup arıların 

yiyecek arama davranışını modelleyen sürü zekâsına dayalı metasezgisel 

algoritmalardır. YAK algoritması ve AA özellikle sayısal optimizasyon problemlerinin 

çözümü için geliştirilse de sonraki yıllarda hem fonksiyonel hem de kombinatoryal 

optimizasyon problemlerinin çözümünde kullanılmıştır. YAK algoritması ve AA’nın ve 

bilimsel yazındaki bu algoritmalara dayalı çalışmaların detayları sırasıyla 2.6 ve 2.7 

bölümlerinde verilecektir. 

2.4.2. Çiftleşme Davranışına Dayalı Çalışmalar 

Abbass [24] arıların çiftleşme davranışından esinlenerek Arıların Çiftleşme 

Optimizasyonu (AÇO) adı verilen yeni bir arama algoritması geliştirmiştir. Gerçek 

hayatta bir çiftleşme uçuşu kraliçenin dansıyla başlamakta ve erkek arılar çiftleşmek 

için kraliçe arıyı takip etmektedir. Her çiftleşmede spermler koloninin genetik havuzunu 

oluşturmak için kraliçe arının üreme kesesine alınarak birleştirilmektedir. Kraliçe arı ise 

bu spermlerin rastgele bir karışımını seçerek yumurtaları döllemektedir. Benzer olarak 

AÇO algoritmasındaki çiftleşme uçuşu, durum uzayındaki bir geçiş kümesi olarak 

düşünülebilir ve kraliçe arı farklı durumlar arasında hareket ederek her bir durumda 

olasılıklı olarak erkek arıyla çiftleşir. Kraliçe çiftleşme uçuşunun başındaysa yani hızı 

yüksekse ya da erkek arının uygunluk değeri kraliçeninki kadar iyiyse çiftleşme olasılığı 

daha yüksek olacaktır. 

AÇO algoritması kraliçeye ait çözümün rastgele oluşturulmasıyla başlar, bu çözüm işçi 

arılar tarafından sezgisel bir yöntemle geliştirilir ve çiftleşme uçuşları gerçekleştirilir. 

Her bir çiftleşme uçuşunda kraliçenin enerjisi ve hızı başlangıç durumuna 

getirilmektedir. Daha sonra kraliçe arı kendi hızına bağlı olarak farklı çözümler arasında 

hareket ederek erkek arılarla çiftleşmektedir. Eğer bir erkek arı kraliçe arıyla çiftleşirse 

(erkek arı olasılıklı karar kuralını geçerse), erkek arının spermi kraliçe arının üreme 

kesesine alınır (kısmî çözümler listesi) ve kraliçe arının hızı ve enerjisi azaltılır. Kraliçe 

arı çiftleşme uçuşunu tamamladıktan sonra kovana döner ve spermlerden birini rastgele 

seçerek çaprazlama ve mutasyon işlemlerini gerçekleştirir. İşçi arı ise yavru arının 

geliştirilmesinden sorumludur ve işçi arı sayısı algoritmada kullanılan sezgisel yöntem 

sayısını göstermektedir. Eğer uygunluk değeri en iyi olan yavru arının çözümü kraliçe 
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arınınkinden daha iyiyse, kraliçe arı çözümü bu çözümle değiştirilir. Kalan yavru arılar 

ise öldürülür ve yeni çiftleşme uçuşu başlar. 

Sonraki birçok çalışmaya temel oluşturan AÇO algoritmasının bu hâlinde, koloninin bir 

kraliçe ve bir işçi arıdan oluştuğu varsayılmaktadır. Önerilen algoritma, tek bir çiftleşme 

uçuşunda gerçekleştirilebilecek maksimum çiftleşme sayısını gösteren kraliçe arının 

üreme kesesi büyüklüğü, kraliçe tarafından üretilecek yavru arı sayısı ve yerel aramanın 

derinliğini belirleyen yavru arının geliştirilmesi için harcanacak süre olmak üzere üç 

parametreye sahiptir. 

Önerilen algoritmanın geniş uygulama alanı bulduğu Genel Kısıt Sağlanabilirlik 

Problemi, değişkenlerin alanları dâhilinde bir kısıtlar kümesini sağlayacak değişkenler 

kümesinin belirlenmesidir. Sağlanabilirlik Problemi (SP) ise Genel Kısıt Sağlanabilirlik 

Problemi’nin özel bir türü olup, bu problemde her bir değişkenin alanı doğru ya da 

yanlış olarak nitelendirilmektedir. 3-SP ise Sağlanabilirlik Problemi’nin özel bir türü 

olup bu problem çeşidinde her kısıt üç değişken içermektedir. AÇO algoritmasının 

performansı 3-SP üzerinde test edilmiş ve sonuçlar algoritmanın oldukça başarılı 

olduğunu göstermiştir. Abbass [25] arı kolonisinin bir kraliçe arı ve birden fazla işçi 

arıya, Abbass [26] ise birden fazla kraliçe arı ve bir grup işçi arıya sahip olduğu 

varsayımıyla AÇO algoritmasını güncellemiştir. Geliştirilen algoritmalar 3-SP üzerinde 

test edilmiş ve en iyi sonuçların düşük koloni boyutu ve ortalama üreme kesesi boyutu 

ile elde edildiği görülmüştür. 

Teo ve Abbass [27] çözüm uzayını daha iyi bölgelere taşıyacak geleneksel tavlama 

yaklaşımını kullanarak AÇO algoritmasını değiştirmişlerdir. Orijinal AÇO 

algoritmasındaki gibi bütün yörüngelerin kabulünün aksine, ancak daha iyi bir çözüm 

uzayına hareket gerçekleştirilebiliyorsa kabul kararı alınmakta, daha kötü bir çözüm 

uzayına ancak kraliçe arının uygunluk değerine bağlı bir fonksiyonla olasılıklı olarak 

geçilmektedir. 3-SP üzerinde yapılan deneysel çalışmalar sonucunda yeni tavlama 

fonksiyonuyla daha fazla iyileşme sağlandığı görülmüştür. 

AÇO algoritmasındaki karar verme sürecine biyolojik açıdan bakıldığında erkek arılar 

genellikle başka kolonilerden geldikleri için kraliçe arıdan bağımsız oldukları 

görülmektedir. Bu sebeple çözümler arasındaki geçişlerin erkek arının uygunluk 

değerine bağlı olması şeklinde tekrar düzenlenen AÇO algoritması Teo ve Abbass [28] 
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tarafından önerilmiş olup 3-SP üzerinde önceki AÇO algoritmalarıyla karşılaştırılmıştır. 

Yeni AÇO algoritması ile daha iyi sonuçlar elde edildiği hatta algoritmanın önceki 

hâlleriyle çözüm bulunamayan problemlere çözümler bulunabildiği tespit edilmiştir. 

Chang [29] AÇO algoritmasının kombinatoryal optimizasyon problemlerinin 

çözümündeki etkinliğini teorik açıdan ortaya koyarak algoritmanın global optimuma 

yakınsadığını ispatlamıştır. Ayrıca AÇO algoritmasının benzetimli tavlama ile genetik 

algoritmanın melez bir birleşimi olarak düşünülebileceğini belirtmiştir. Benzetimli 

tavlama kraliçe arının çiftleşme uçuşundaki erkek arı spermlerinin üreme kesesine 

alınmasına karşılık gelirken, genetik algoritma bazı farklarla yavru arı üretimi ve 

gelişimi adımlarına karşılık gelmektedir. Ayrıca bu çalışmada AÇO algoritması, 

Stokastik Dinamik Programlama Problemleri’nin çözümü için de kullanılmıştır. 

Bozorg Haddad ve ark. [30] AÇO algoritmasına dayanarak yüksek derecede doğrusal 

olmayan, kısıtlı ve kısıtsız matematiksel modellerin çözümü için Bal Arılarının 

Çiftleşme Optimizasyonu (BAÇO) algoritmasını geliştirmişlerdir. BAÇO algoritmasının 

performansı birçok kısıtlı ve kısıtsız matematiksel optimizasyon fonksiyonunda test 

edilerek elde edilen sonuçlar genetik algoritma ile karşılaştırılmıştır. Sonuçlar BAÇO 

algoritmasının az bir farkla daha üstün performans sağladığını göstermiştir. Ayrıca 

geliştirilen algoritma, tek su deposunda optimum operasyon politikasını geliştirmek için 

de kullanılmış ve yine oldukça iyi sonuçlar elde edilmiştir. Afshar ve ark. [31] ise 

BAÇO algoritmasını sürekli optimizasyon problemleri için güncelleyerek doğrusal 

olmayan, sürekli ve kısıtlı Tek Su Deposu Problemi için bir uygulama 

gerçekleştirmişlerdir. LINGO 8.0 NLP ile elde edilen global optimum değerlerle 

yapılan karşılaştırmada algoritmanın optimum değere oldukça hızlı yakınsadığı 

görülmüştür. Arefi ve ark. [32] dağıtım ağlarındaki harmonik durum değişkenlerini 

tahmin edebilmek için BAÇO algoritmasına dayalı bir algoritma önermişlerdir. 

Simülasyon sonuçları önerilen algoritmanın hız ve doğruluk açısından ağırlıklı en küçük 

kareler yöntemi, genetik algoritma ve tabu arama algoritmalarına göre çok daha etkin 

olduğunu göstermiştir. Marinakis ve Marinaki [33] Olasılıklı Gezgin Satıcı Problemi 

için Açgözlü Rastgele Uyarlanır Arama Prosedürü (ARUAP), genişletilmiş komşuluk 

arama stratejisi ve BAÇO algoritmasına dayalı melez bir yapı önermişlerdir. Parçacık 

sürü optimizasyonu, klasik ARUAP algoritması, tabu arama ve karınca koloni 
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optimizasyonu algoritmaları ile yapılan karşılaştırmalar, önerilen algoritmanın iyi bir 

performansa sahip olduğunu göstermiştir. 

AÇO ve BAÇO algoritmalarının uygulama çalışmalarına bakıldığında ise Bozorg 

Haddad ve Afshar [34] AÇO algoritmasını Su Kaynakları Yönetimi Problemi’ne; 

Fathian ve ark. [35] BAÇO algoritmasını bir veri madenciliği tekniği olan kümelemeye 

ve Horng [36] BAÇO algoritmasını dijital görüntü sıkıştırma uygulamalarında güçlü bir 

teknik olan vektör nicelemeye uygulamışlardır. 

Diğer taraftan bilimsel yazında, arıların çiftleşme davranışını genetik algoritmanın 

performansını iyileştirme amaçlı olarak kullanan çalışmalar da mevcuttur. Jung [37] 

genetik algoritmanın performansını iyileştirebilmek için Kraliçe Arı Evrim (KAE) 

algoritmasını geliştirmiştir. KAE algoritmasında kraliçe arı, rulet tekerleği seçme 

yöntemi dışında bir seçme algoritmasıyla belirlenen arılar tarafından melezlenmektedir. 

Ancak bu yaklaşımla erken yakınsama olasılığı artmaktadır. Bu olasılığı azaltmak için 

bütün bireylerin düşük bir oranla mutasyona uğraması yerine bazı bireyler yüksek 

derecelerde mutasyona uğratılmıştır. Önerilen algoritma, bir kombinatoryal ve iki 

fonksiyon optimizasyon problemi üzerinde test edilmiş ve yapılan deneyler önerilen 

algoritmanın genetik algoritmayı daha hızlı global optimuma götürdüğünü göstermiştir. 

Azeem ve Saad [38] KAE algoritması üzerinde bazı değişiklikler yapmışlardır. 

Geliştirilen algoritmaya göre eğer kraliçe arının uygunluk değerine çok yakın ya da 

daha iyi uygunluk değerine sahip bir çözüm elde edilmişse, bu çözüm başka bir havuza 

alınmakta ve o havuzun kraliçe arısı olmaktadır. Diğer bir fark ise çaprazlama operatörü 

olup orijinal algoritma her bir genin belli bir olasılık dâhilinde çaprazlandığı bir-biçimli 

çaprazlama kullanırken geliştirilen algoritmada, ağırlıkların her bir genin 

popülasyondaki diğer bireylere olan benzerliğine göre belirlendiği ağırlıklandırılmış bir-

biçimli çaprazlama kullanılmaktadır. Bu tip çaprazlama ile genetik algoritma daha fazla 

yeni durum uzayını araştırabilmektedir. Önerilen algoritma Bulanık Bilgi Kontrolü’nde 

ölçeklendirme faktörünün ayarlanması için doğrusal olmayan iki örnek üzerinde test 

edilmiştir. Sonuçlar geliştirilen algoritmanın geleneksel kontrol algoritmalarından çok 

daha iyi sonuçlar verdiğini göstermiştir. Qin ve ark. [39] ise KAE algoritmasını 

Ekonomik Güç Gönderme Problemi’ne uygulamışlar ve KAE algoritmasının geleneksel 

genetik algoritmadan daha hızlı ve sağlam olduğunu belirtmişlerdir. 
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Karcı [40] ise genetik algoritmanın performansını artırmak için ‘Arı Çaprazlaması’ adı 

verilen 3 yeni çaprazlama yaklaşımı önermiştir. Kraliçe arı diğer arılarla bir birleşme 

gerçekleştirdiğinden çaprazlama yapılacak ilk kromozom kraliçe arıya aittir. Birinci 

çaprazlama yaklaşımında en iyi uygunluk değerine sahip birey sabitlenmekte ve kalan 

kromozomlar her nesilde en az bir kere bu kromozomla çaprazlanmaktadır. İkinci 

yaklaşımda en kötü uygunluk değerine sahip birey sabitlenmekte ve yine kalan 

kromozomlar her nesilde en az bir kere bu kromozomla çaprazlanmaktadır. Üçüncü 

yaklaşımda ise popülasyondaki bireyler uygunluk değerine göre sıralanmakta ve ilk 

nesilde sabitlenen birey, bu sıradaki ilk kromozom, ikinci nesilde ikinci kromozom vb. 

olmaktadır. Önerilen kromozom tipleri bir-biçimli çaprazlama ile karşılaştırılmıştır. 

Yapılan testlerin çoğunda arı çaprazlamasının daha az iterasyon sayısına sahip olduğu 

görülmüş ve en kötü çözümlerin bir-biçimli çaprazlama ile elde edildiği belirtilmiştir. 

Diğer taraftan bir-biçimli çaprazlama ile popülasyondaki farklılık kısa bir süre içinde 

kaybedilmiş, arı çaprazlamasıyla ise farklılık daha uzun süre korunabilmiştir. 

2.4.3. Kombinatoryal Optimizasyon Problemlerinde Arı Sistemi Uygulamaları 

Tez çalışmasının temel konusu olan kombinatoryal optimizasyon problemlerinde arı 

sistemi uygulamaları bu bölümde incelenmiştir. Günümüze kadar yapılan uygulama 

çalışmaları ulaştırma problemleri, telekomünikasyon uygulamaları, çizelgeleme 

problemi, ekonomik güç gönderme problemi, navigasyon problemi, sağlanabilirlik 

problemi, veri madenciliği, kaynak paylaştırma problemi ve dalga boyu atama ve 

rotalama problemi şeklinde karşımıza çıkmaktadır. Belirtilen problemlerin çözümü için 

önerilen arı sistemine dayalı çözüm yaklaşımları detaylı bir şekilde izleyen bölümlerde 

verilmiştir. 

2.4.3.1. Ulaştırma Problemleri 

Lucic [41] ulaştırma problemlerinin çözümü için Arı Sistemi (AS) algoritmasını 

önererek Gezgin Satıcı Problemi (GSP) ve Stokastik Araç Rotalama Problemi (SARP) 

üzerinde çalışmıştır. 

GSP her noktadan sadece bir kere geçecek minimum uzunluğa sahip turu bulmayı 

amaçlayan NP-zor bir problemdir. Önerilen algoritma, arıların nektar topladığı grafik 

üzerindeki noktalardan birine, kovanın yerleştirilmesiyle başlar. Yapay arılar belli bir 
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süre boyunca nektar toplarlar ve kovanın pozisyonu rastgele değiştirilir. Arılar yeni 

pozisyondan tekrar nektar toplamaya başlarlar ve kovanın yeri tekrar değiştirilir. 

Araştırma prosesindeki her bir iterasyon, kovanın değişen bir pozisyonunu göstermekte 

ve bir ya da daha fazla uygun çözüm bulunduğunda iterasyon sona ermektedir.  

Yapay arılar kesikli zamana sahip bir çevrede yaşamakta, dolayısıyla her bir iterasyon 

belli sayıda aşamalardan oluşmaktadır. Arılar herhangi bir aşamada ziyaret edecekleri 

noktaları rastgele seçmektedirler. İki nokta arasındaki uzaklık arttıkça bu bağlantının bir 

arı tarafından seçilme olasılığı da azalmaktadır. Araştırma prosesinin başında uzaklığın 

etkisi az iken iterasyon sayısı arttıkça uzaklığın etkisi de artırılmaktadır. Diğer taraftan 

belli bir bağlantıyı ziyaret etmiş arıların toplam sayısı ne kadar büyükse o bağlantının 

gelecekte de seçilme olasılığı o kadar yüksek olmaktadır. Bu da kolonideki bireysel 

arılar arasındaki etkileşimi göstermektedir. 

Bir aşama süresince arılar belli sayıda noktayı ziyaret ederek kısmî bir gezgin satıcı turu 

oluşturmakta ve kovana dönmektedir. Daha sonra kovanda bir karar verme prosesine 

katılarak, yiyecek kaynağına dönmeden önce dans ederek kovandaki diğer arıları 

yönlendirme, diğer arıları yönlendirmeden yiyecek kaynağına geri dönme ya da yiyecek 

kaynağını terk etme kararlarından birini vermektedirler. Diğer arıları yönlendirmeden 

yiyecek kaynağına geri dönme alternatifi, arıların sosyal böcekler olup aralarında bir 

etkileşim olması sebebiyle çok düşük bir olasılığa sahiptir. Bir arının aynı kısmî turu 

kullanması ya da onu terk etmesi ise kısmî turun uzunluğuna bağlıdır. Arının bulduğu 

tur ne kadar uzunsa, sonraki aşamada aynı turu kullanma olasılığı o kadar azdır. Belli 

bir bağlantı üzerindeki nektar miktarı, bağlantının uzunluğuyla ters orantılıdır. Herhangi 

bir aşamanın başında eğer bir arı aynı kısmî turu kullanmamaya karar verirse dans 

alanına gider ve bir olasılık fonksiyonuna göre başka bir arıyı takip eder. Bu fonksiyon 

kısmî turun toplam uzunluğuna ve o turu kaç arının önerdiğine bağlıdır. 

Diğer taraftan gerçek hayatta bütün arılar eş zamanlı olarak yiyecek aramaya 

çıkmamaktadırlar. Algoritmada da her iterasyonun başında bütün arıların kovanda 

olduğu varsayılarak her aşamada yiyecek aramaya çıkan arı sayısı artırılmıştır. Bunlara 

ek olarak kovanı tekrar yerleştirmeden önce mevcut iterasyonda elde edilen çözümü 

geliştirmek amacıyla 2-opt ve 3-opt sezgisel algoritmaları uygulanmıştır. 
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AS algoritmasının performansı çeşitli GSP’leri üzerinde test edilmiş, sonuçlar 100 

noktadan daha az boyuta sahip test problemlerinde AS algoritmasının optimum çözümü 

bulabildiğini ve hesaplama süresinin yeterince düşük olduğunu göstermiştir.  

Lucic ve Teodorovic [42], Lucic ve Teodorovic [43], Lucic ve Teodorovic [44] 

çalışmalarında, test problemleri açısından Lucic [41] çalışmasının çeşitli uzantılarını 

sunmuşlardır.  

Diğer taraftan SARP ise depoların ve hizmet edilecek noktaların yerleri, araç 

kapasiteleri kesin olarak ve hizmet edilecek noktaların talepleri yaklaşık olarak 

biliniyorken ulaştırma maliyetini minimize edecek rotanın bulunması olarak 

tanımlanmaktadır. Noktalardaki taleplerin belirsiz olması sebebiyle araçlar belli bir 

noktaya gidip yetersiz kapasiteden dolayı hizmet veremeyebilmektedir. Bu durumda 

aracın depoya geri döndüğü, yükünü boşalttığı, başarısız olduğu noktaya geri döndüğü 

ve planlanan tura devam ettiği varsayılmaktadır. Dolayısıyla noktalardaki talepler 

rastgele bir değişken olarak düşünülmekte ve gerçek talep değerleri ancak noktalara 

gidildiğinde bilinebilmektedir. Lucic [41] SARP’ne iyi çözümler üretebilmek için AS 

algoritması ile bulanık mantık yaklaşımını birleştirmiştir. Önerilen yaklaşımın temel iki 

adımı vardır. İlk adımda Araç Rotalama Problemi, AS algoritması kullanılarak ilk 

noktanın depo olarak düşünüldüğü bir GSP gibi çözülür ve genellikle orijinal problem 

için uygun olmayan bir çözüm elde edilir. İkinci adımda ise bir aracın rotasının ne 

zaman bitirileceğine ve önceki adımda bulunan çözümü ve bulanık kuralları kullanarak 

sıradaki aracın rotasının ne zaman başlatılacağına karar verilir.  Geliştirilen model 

çeşitli GSP örnekleri üzerinde test edilmiş, elde edilen sonuçlar AS algoritmasıyla elde 

edilen en iyi çözümle karşılaştırılmış ve en iyi çözüme çok yakın sonuçlar bulunduğu 

görülmüştür. Lucic ve Teodorovic [45] çalışması ise Lucic [41] çalışmasında SARP için 

önerilen çözüm yaklaşımını içermektedir. 

Teodorovic ve Dell’Orco [46] deterministik kombinatoryal problemlerin yanında 

belirsizlik altındaki kombinatoryal problemlerin de çözümü için AS algoritmasının daha 

genel bir hâli olan Arı Kolonisi Optimizasyonu (AKO) metasezgiselini önermişlerdir. 

Arılar arasındaki iletişimde, yaklaşık sebeplendirme ve bulanık mantık kurallarının 

kullanıldığı algoritmanın performansı, Tur Eşleştirme Problemi üzerinde analiz 

edilmiştir. Tur Eşleştirme Problemi, araç ve yolcuların toplam hareket uzunluğunun ya 
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da toplam gecikmenin minimize edildiği ya da araç kullanımının dengelendiği, araç ve 

yolcuların rota ve çizelgelerinin belirlenmesi problemidir. Önerilen yaklaşımı 

destekleyecek teorik sonuçlar olmasa da başlangıç sonuçları umut vericidir. Son olarak 

Wong ve ark. [47] ise GSP’nin çözümü için AKO algoritması ile 2-opt yerel arama 

sezgiselini birleştirmişlerdir. 

2.4.3.2. Telekomünikasyon Uygulamaları 

Nakrani ve Tovey [48] internet hizmetlerine dinamik olarak Yer Paylaştırma Problemi 

için Bal Arısı algoritmasını önermiştir. Önerilen algoritmada bir internet hizmet 

sağlayıcısındaki hizmet sağlayıcı ve HTTP istek kuyrukları, sırasıyla yiyecek arayan 

arılar ve yiyecek kaynakları olarak modellenmiştir. Önerilen algoritmanın sonuçları 

optimum yer ayırma politikasını hesaplayan bir algoritma, yer ayırma politikasını 

hesaplamada önceki bilgileri kullanan açgözlü bir algoritma ve mümkün bütün statik 

yer ayırma politikaları arasında en iyiyi bulan optimum-statik algoritmayla 

karşılaştırılmıştır. Sonuçlar önerilen algoritmanın statik ya da açgözlü algoritmalardan 

daha iyi olduğunu göstermiştir. Wedde ve ark. [49] ise arıların dans dili ve yiyecek 

arama davranışlarından etkilenerek Arı Kovanı adı verilen, telekomünikasyon ağında 

rotalama için hata toleranslı, uyarlanır ve sağlam bir rotalama protokolü sunmuşlardır. 

2.4.3.3. Çizelgeleme Problemi 

Chong ve ark. [50], Nakrani ve Tovey [48] çalışmasından etkilenerek NP-zor bir 

problem olan Atölye Tipi Çizelgeleme Problemi’nin çözümü için arıların yiyecek arama 

davranışını kullanan yeni bir yaklaşım önermişlerdir. Algoritmanın performansı çeşitli 

test problemleri üzerinde karınca koloni optimizasyonu ve tabu arama algoritmalarıyla 

karşılaştırılmıştır. Test sonuçları, çözüm kalitesi ve hesaplama süresi açısından tabu 

aramanın diğer iki sezgiselden daha iyi performans gösterdiğini ortaya koymuştur. 

Diğer taraftan arı algoritması, karınca koloni optimizasyonu algoritmasından daha 

başarılı olup her iki yöntemin hesaplama süreleri yaklaşık olarak eşittir. Koudil ve ark. 

[51] ise AÇO algoritmasını Bölüntüleme ve Çizelgeleme Problemleri’nin 

entegrasyonuna uyarlamışlardır. Önerilen yaklaşımın test sonuçları genetik algoritmayla 

karşılaştırılmış ve AÇO algoritmasının çözüm kalitesi açısından iyi çözümler ürettiği ve 

hesaplama süresi açısından genetik algoritmadan daha iyi olduğu gösterilmiştir.  
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2.4.3.4. Ekonomik Güç Gönderme Problemi 

Ekonomik Güç Gönderme Problemi doğrusal olmayan, kısıtlı ve karmaşık bir 

optimizasyon problemi olup aynı anda hem maliyeti minimize etmeyi hem de güç 

sistemindeki talepleri karşılamayı amaçlamış bir problemdir.  

Kumar ve ark. [52] Ekonomik Güç Gönderme Problemi’nin çözümü için Arı 

Optimizasyon algoritmasını önermişlerdir. Önerilen yaklaşım ile umut verici sonuçlar 

elde edilmiş olup algoritmanın sağlamlığı ve etkinliği ispatlanmıştır. Chokpanyasuwan 

ve ark. [53] ise jeneratör kısıtlarına sahip Ekonomik Güç Gönderme Problemi’nin 

çözümü için AKO algoritmasını kullanmışlardır. Elde edilen simülasyon sonuçları 

benzetimli tavlama, genetik algoritma, tabu arama, parçacık sürü optimizasyonu ile 

karşılaştırılmış ve sonuçlar önerilen yaklaşımın daha yüksek kalitede sonuçları daha 

hızlı bir şekilde elde ettiğini göstermiştir.  

2.4.3.5. Diğer Uygulamalar 

Bilimsel yazındaki diğer kombinatoryal optimizasyon problemi uygulamaları 

incelendiğinde, Bianco [54] arıların navigasyon davranışından hareketle büyük boyutlu 

navigasyon için bir eşlemleme modeli önermektedir. Arılar yiyecek ararken 

kilometrelerce yol kat etmekte ve mükemmel bir hassasiyette arama yapabilmektedirler. 

Arıların bu davranışından etkilenerek geliştirilen modelle elde edilen test sonuçları 

hassas ve doğru arama yapılabildiğini göstermiştir. Drias ve ark. [55] arıların en kolay 

ulaşılabilir ve en zengin kaynağı bulabildikleri yiyecek arama davranışlarından 

esinlenerek Arı Sürüsü Optimizasyonu algoritmasını geliştirmişler ve NP-tam bir yapıya 

sahip Maksimum Ağırlıklandırılmış Sağlanabilirlik Problemi’ne uygulamışlardır. 

Benatchba ve ark. [56] ise AÇO algoritmasını bir Veri Madenciliği Problemi’ni 

Maksimum Sağlanabilirlik Problemi olarak ifade ederek çözmede kullanmış ve %96 

sağlanabilirlik elde etmişlerdir. 

Quijano ve Passino [57] Kaynak Paylaştırma Problemi için arıların yiyecek arama 

davranışları üzerine kurulu Arılarda Yiyecek Arama algoritmasını geliştirerek çok 

bölgeli sıcaklık kontrolü için dinamik kaynak paylaştırma üzerine bir mühendislik 

uygulaması gerçekleştirmişlerdir. Markovic ve ark. [58] ise optik ağlarda Maksimum 

Rotalama ve Dalga Boyu Atama Problemi’ni çözmek için Teodorovic ve Dell’Orco [46] 
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çalışmasında önerilen AKO algoritmasını kullanmışlardır. Maksimum Rotalama ve 

Dalga Boyu Atama Problemi, verilen bir optik ağda talep matrisi ve dalga boyu sayısı 

biliniyorken kurulacak ışık yolu sayısını maksimize etmekle ilgilenmektedir. Önerilen 

algoritma Avrupa Optik Ağı üzerinde test edilmiş ve sonuçlar doğrusal programlama 

gevşetme ve tabu arama algoritması ile karşılaştırılmıştır. Deneysel sonuçlar önerilen 

algoritmanın makul bir sürede karşılaştırma yapılan algoritmalardan daha iyi sonuçlar 

elde etmiştir. 

YAK ve AA algoritmalarına ait bilimsel yazın taraması, algoritmaların detaylarının 

verildiği 2.6 ve 2.7 bölümlerinde yer almakta olup, bu bölümde yapılan bilimsel yazın 

taraması sonucu oluşturulan özet, araştırmacılar, geliştirilen algoritma ve uygulama 

alanları açısından Tablo 2.1’de verilmiştir. 
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Tablo 2.1. Arı sistemi ve uygulama alanları konusundaki çalışmaların sınıflandırılması. 
  Araştırmacılar Algoritma Uygulama Alanı 

Y
iy

ec
ek

 a
ra

m
a 

da
vr

an
ış
ı 

Genetik 
algoritmaya dayalı Sato ve Hagiwara [22] Arı Sistemi algoritması Fonksiyon optimizasyon problemleri 

Sürekli fonksiyon 
uygulamaları 

Yang [23] Sanal Arı algoritması Fonksiyon optimizasyon problemleri 
Karaboğa [7] YAK algoritması Fonksiyon optimizasyon problemleri 
Pham ve ark. [6] AA Fonksiyon optimizasyon problemleri 

Ç
ift

le
şm

e 
da

vr
an
ış
ı 

Çiftleşme davranışı

Abbass [24] AÇO 3-SP 
Abbass [25] AÇO algoritmasında değişiklik 3-SP 
Abbass [26] AÇO algoritmasında değişiklik 3-SP 
Teo ve Abbass [27] AÇO algoritmasında değişiklik 3-SP 
Teo ve Abbass [28] AÇO algoritmasında değişiklik 3-SP 
Chang [29] AÇO algoritması uygulaması Stokastik dinamik programlama problemi 
Bozorg Haddad ve ark. [30] BAÇO Su kaynakları yönetimi problemi 
Afshar ve ark. [31] BAÇO algoritmasında değişiklik Su kaynakları yönetimi problemi 
Arefi ve ark. [32] BAÇO algoritmasında değişiklik Dağıtım ağlarındaki harmonik durum değişkenlerinin tahmini 
Marinakis ve Marinaki [33] BAÇO algoritmasında değişiklik Olasılıklı gezgin satıcı problemi 
Bozorg Haddad ve Afshar [34] AÇO algoritması uygulaması Su kaynakları yönetimi problemi 
Fathian ve ark. [35] BAÇO algoritması uygulaması Veri madenciliği 
Horng [36] BAÇO algoritması uygulaması Dijital görüntü sıkıştırmada vektör niceleme 

Genetik 
algoritmaya dayalı 

Jung [37] KAE Kombinatoryal ve fonksiyon optimizasyon problemleri 
Azeem ve Saad [38] KAE algoritmasında değişiklik Bulanık bilgi kontrolünde ölçeklendirme faktörünün ayarlanması 
Qin ve ark. [39] KAE algoritması uygulaması Ekonomik güç gönderme problemi 
Karcı [40] Arı Çaprazlaması   
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K
om

bi
na

to
ry

al
 o

pt
im

iz
as

yo
n 

uy
gu

la
m

al
ar
ı Ulaştırma problemi

Lucic [41] AS algoritması GSP ve SARP 
Lucic ve Teodorovic [42] AS algoritması GSP 
Lucic ve Teodorovic [43] AS algoritması GSP 
Lucic ve Teodorovic [44] AS algoritması GSP 
Lucic ve Teodorovic [45] AS algoritması+Bulanık Mantık SARP 
Teodorovic ve Dell'Orco [46] AKO algoritması Tur eşleştirme problemi 
Wong ve ark. [47] AKO algoritması uygulaması GSP 

Telekomünikasyon
Nakrani ve Tovey [48] BA algoritması Dinamik yer paylaştırma problemi 
Wedde ve ark. [49] Arı Kovanı algoritması Telekomünikasyon ağında rotalama 

Çizelgeleme 
Chong ve ark. [50] BA algoritmasında değişiklik Atölye tipi çizelgeleme problemi 
Koudil ve ark. [51] AÇO algoritması uygulaması Bölüntüleme ve çizelgeleme problemi 

Ekonomik güç 
gönderme problemi

Kumar ve ark. [52] Arı Optimizasyon algoritması EGG problemi 
Chokpanyasuwan ve ark. [53] AKO algoritması uygulaması EGG problemi 

Diğer uygulamalar 

Bianco [54] Eşlemleme modeli Navigasyon problemi 
Drias ve ark. [55] Arı Sürüsü Optimizasyonu algoritması Maksimum ağırlıklandırılmış SP 
Benatchba ve ark. [56] AÇO algoritması uygulaması Veri madenciliği problemi 
Quijano ve Passino [57] Arılarda Yiyecek Arama algoritması Kaynak paylaştırma problemi 
Markovic ve ark. [58] AKO algoritması uygulaması Dalga boyu atama ve rotalama problemi 
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2.5.  Arıların Yiyecek Arama Davranışları 

Arıların yiyecek arama davranışları, öğrenme, hatırlama ve bilgi paylaşma özellikleri 

sürü zekâsında en çok ilgi çeken alanlardan biridir. Arıların yiyecek arama davranışına 

dayalı olarak Tereshko [59] tarafından geliştirilen modele göre arı sürülerinde kolektif 

zekâ, 3 temel bileşen (yiyecek kaynakları, görevli arılar ve görevli olmayan arılar) ve 2 

davranış türü (nektar kaynaklarından yiyecek toplama ve yiyecek kaynağını terk etme) 

içerir. 

1. Yiyecek kaynakları: Yiyecek kaynağının kalitesi; kovana olan uzaklık, nektar 

zenginliği, enerji yoğunluğu ve bu enerjinin çıkarım kolaylığı gibi birçok etkene 

bağlıdır. Ancak basitlik açısından bir yiyecek kaynağının kalitesi tek bir 

nicelikle ifade edilmektedir. 

2. Görevli arılar: Tüketmekte oldukları ya da görevlendirildikleri yiyecek 

kaynağıyla ilişkilendirilmişlerdir. İlgili yiyecek kaynağının kalitesi, kovana olan 

uzaklık ve yön bilgilerini kendileriyle birlikte taşıyarak bu bilgileri belirli bir 

olasılık dâhilinde diğer arılarla paylaşırlar.  

3. Görevli olmayan arılar: Sürekli olarak tüketmek için yiyecek kaynağı arayan 

görevli olmayan arılar, kâşif ve izci arılar olmak üzere iki türdür. Kâşif arılar arı 

sistemi içerisinde tamamen bağımsız davranarak herhangi bir önbilgi 

kullanmadan yiyecek kaynağı ararken, izci arılar kovanda bekleyerek görevli 

arılarca paylaşılan bilgiler doğrultusunda yeni bir yiyecek kaynağı bulan 

arılardır. Yapılan biyolojik çalışmalara göre kovandaki kâşif arı sayısı %5-10 

arasında değişmektedir [60]. 

Arılar arasındaki bilgi değişimi kolektif bilginin en önemli göstergesidir. Kovanın 

tamamı ele alındığında bütün kovanlarda genel olarak bulunan belirli bölümler 

mevcuttur. Bunlardan en önemlisi bilgi değişiminin gerçekleştirildiği dans alanıdır. 

Arılar arasında yiyecek kaynağının kalitesi hakkındaki iletişim, dans alanında 

gerçekleştirilmekte ve bu dansa salınım dansı adı verilmektedir. Salınım dansının 

uzunluğu, yiyecek kaynağının kârlılığını; güneşe olan açısı, yiyecek kaynağının yerini; 

dans esnasında yapılan zig-zag hareketlerinin sayısı, yiyecek kaynağına olan uzaklığı 

göstermektedir. Mevcut tüm zengin yiyecek kaynakları hakkındaki bu bilgi, dans 

alanında izci arılara sunulmakta ve izci arılar en kârlı kaynağı seçmektedirler. Daha 
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kârlı kaynaklar hakkında daha fazla bilgi paylaşımı olacağından izci arıların kârlı 

yiyecek kaynaklarını seçme olasılığı da daha yüksek olmaktadır. Arı sisteminde kendi 

kendine örgütlenme aşağıdaki gibi gerçekleşmektedir [7]. 

• Pozitif geri besleme: Yiyecek kaynaklarındaki nektar miktarı arttıkça o yiyecek 

kaynaklarını ziyaret eden izci arı sayısı da artar.  

• Negatif geri besleme: Terk edilen yiyecek kaynaklarındaki araştırma prosesi 

sonlandırılır. 

• Sürekli değişim: Kâşif arılar yeni yiyecek kaynakları keşfetmek için rastgele 

arama yaparlar. 

• Çoklu etkileşim: Arılar yiyecek kaynağının pozisyonu hakkında edindikleri 

bilgileri dans alanında kovandaki diğer arılarla paylaşırlar.  

Yiyecek toplayan arıların temel davranış özellikleri görsel olarak Şekil 2.1’de 

sunulmaktadır. 
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Şekil 2.1. Arıların yiyecek arama davranışı [41]. 

Şekil 2.1’de gösterildiği gibi bir arı başlangıçta kovan etrafındaki yiyecek kaynakları 

hakkında herhangi bir bilgisi olmadan yiyecek aramaya başlar ve görevli olmayan arı 

olarak adlandırılır. Bu tür bir arı için iki alternatif vardır: 

• Kâşif arılar: İçsel güdüler sebebiyle, herhangi bir önbilgi olmaksızın, kovan 

etrafında kendiliğinden yiyecek aramaya başlayan arılardır (S). 
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• İzci arılar: Başka arılarca yapılan salınım dansını izleyerek yiyecek kaynakları 

hakkında bilgi edinen ve daha sonra bu bilgiye göre hareket ederek yiyecek 

kaynaklarına ulaşan arılardır (R). 

Görevli olmayan arı yiyecek kaynağını bulduktan sonra yiyecek kaynağının yerini 

hafızasında tutarak o kaynağı tüketmeye başlar. Dolayısıyla görevli olmayan arı, bir 

görevli arı haline gelir. Yiyecek kaynağından bir miktar nektar alarak kovana dönüp 

yiyecek depolama alanına nektarı boşaltan bir arı için 4 alternatif vardır ve bu 

alternatiflerin gerçekleşme olasılığı yüksek oranda yiyecek kaynağının kalitesine 

bağlıdır. 

• Nektar miktarı düşük seviyelere inmişse ya da tükenmişse, arı bu yiyecek 

kaynağını terk eder ve görevli olmayan bir arıya dönüşür (ES).  

• Aynı yiyecek kaynağına dönmeden önce dans ederek kovandaki diğer arıları 

bilgilendirir (RF). 

• Eğer yiyecek kaynağında yeterli miktarda nektar varsa, bilgi paylaşımında 

bulunmadan yiyecek kaynağını tüketmeye devam edebilir (EF). 

• Tüketmekte olduğu yiyecek kaynağının kalitesinden tatmin olmayan arı, dans 

alanında önerilen yeni bir yiyecek kaynağını aramaya başlar (ER). 

2.6.  Yapay Arı Kolonisi Algoritması 

YAK algoritması arıların yiyecek arama davranışından esinlenen, çok boyutlu ve çok 

doruklu optimizasyon problemlerinin çözümü için geliştirilmiş, popülasyon tabanlı bir 

algoritmadır. Algoritmada bir yiyecek kaynağı pozisyonu, optimizasyon probleminin 

olası bir çözümünü temsil ederken yiyecek kaynağındaki nektar miktarı ise ilgili 

çözümün kalitesi yani uygunluk değeri ile ilişkilidir. Bir yapay arı kolonisi görevli, izci 

ve kâşif arılar olmak üzere 3 grup arı içermektedir. Koloninin ilk yarısı görevli 

arılardan, ikinci yarısı ise izci arılardan oluşmaktadır. Diğer taraftan görevli arı sayısı, 

kovan etrafındaki yiyecek kaynağı sayısına yani popülasyondaki çözüm sayısına eşittir. 

Kâşif arılar ise bir yiyecek kaynağındaki nektar miktarı tükendiğinde ortaya çıkmakta 

ve yiyecek ararken herhangi bir önbilgiye sahip olmadıklarından buldukları yiyecek 

kaynağı, düşük arama maliyetine ve ortalama bir kaliteye sahip olmaktadır. Ancak kâşif 
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arılar bazen hiç bilinmeyen zengin bir yiyecek kaynağı da keşfedebilirler. Algoritmanın 

temel adımları Tablo 2.2’de verilmektedir. 

Tablo 2.2. YAK algoritmasının temel adımları. 

1. Görevli arı sayısı kadar yiyecek kaynağını rastgele oluştur 

2. Repeat 

3. Görevli arıları yiyecek kaynaklarına yerleştir 

4. Nektar miktarlarına bağlı olarak izci arıları yiyecek kaynaklarına yerleştir 

5. Arılarca terk edilen yiyecek kaynaklarının tüketim prosesini sonlandır 

6. Yeni yiyecek kaynaklarının keşfi için kâşif arıları yiyecek kaynaklarına gönder 

7. O ana kadar bulunan en iyi yiyecek kaynağını hafızada tut 

8. Until (istenen şartlar sağlanana kadar) 

YAK algoritmasında her araştırma döngüsü, görevli arıları yiyecek kaynaklarına 

göndererek nektar miktarlarının değerlendirilmesi, yiyecek kaynakları hakkındaki 

nektar bilgisi paylaşımından sonra izci arılarca yiyecek kaynağı bölgelerinin seçimi ve 

nektar miktarlarının değerlendirilmesi, kâşif arıların yeni yiyecek kaynaklarına rastgele 

gönderilmesi olmak üzere 3 temel adımdan oluşur. YAK algoritmasına ait akış 

diyagramı Şekil 2.2’de sunulmaktadır. 
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Şekil 2.2. YAK algoritması akış diyagramı [61]. 

YAK algoritmasına ilişkin detaylı adımlar Tablo 2.3’te yer almakta olup kullanılan 

notasyonlar aşağıdaki gibi tanımlanmıştır. 

P: Görevli arı sayısı (p=1,…,P) 

σp: Görevli arı çözümü 

pp: İzci arı ataması için p. görevli arıya ait olasılık değeri 

MaksIter: Maksimum iterasyon sayısı (durdurma kriteri) 

fit(σp): Görevli arı çözümünün uygunluk fonksiyonu değeri 

limit: Gelişme olmaksızın geçirilebilecek maksimum iterasyon sayısı 
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Tablo 2.3. YAK algoritmasının detaylı adımları. 

1. Başlangıç popülasyonunu oluştur (σp, p=1,…,P) 

2. Popülasyonu değerlendir 

3. k=1 

4. Repeat 

5. Görevli arılar için yeni çözümler üret ve değerlendir 

6. Görevli arılar için açgözlü seçim prosesini uygula 

7. σp çözümleri için olasılık değerlerini (pp) hesapla 

8. pp değerlerine bağlı olarak seçilen σp çözümlerini kullanarak, izci arılar için yeni 

çözümler üret ve bu çözümleri değerlendir 

9. İzci arılar için açgözlü seçim prosesini uygula 

10. Kâşif arılar için, varsa, terk edilen çözümleri belirle ve rastgele yeni üretilen 

çözümle değiştir 

11. O ana kadar elde edilen en iyi çözümü hafızada tut 

12. k=k+1 

13. Until (k=MaksIter) 

Başlangıç aşamasında arılar tarafından bir yiyecek kaynağı kümesi rastgele seçilir ve 

nektar miktarları belirlenir. Bir yiyecek kaynağı bulmuş olan görevli arılar kovana 

dönerek dans alanında bekleyen arılarla, ilişkili oldukları yiyecek kaynağı hakkındaki 

nektar bilgisini paylaşırlar. İzci arılarla bilgi paylaşımından sonra bütün görevli arılar, 

ilişkili oldukları yiyecek kaynağına geri dönerek hafızalarındaki bu kaynağın 

komşuluğunda yeni bir yiyecek kaynağını görsel bilgi yardımıyla seçerler ve nektar 

miktarını değerlendirirler. Eğer komşu çözümün nektar miktarı hafızadaki çözümden 

daha iyiyse, hafızadaki çözüm güncellenir; aksi takdirde hafızadaki çözüm 

değiştirilmez. İzci arılar ise dans alanında görevli arılarca verilen nektar miktarı 

bilgisine bağlı bir olasılıkla (pp) bir yiyecek kaynağı alanı seçerler. Bir yiyecek 

kaynağının seçilme olasılığı aşağıdaki gibi hesaplanmaktadır. 

௣݌ ൌ
௙௜௧ሺఙ೛ሻ

∑ ௙௜௧ሺఙ೙ሻು
೙సభ

                                                                                                          (2.1.) 

Yukarıdaki formülasyonda fit(σp), p. pozisyondaki yiyecek kaynağının nektar miktarı ile 

orantılı olup p. çözümün uygunluk değerini göstermektedir. Dolayısıyla p. kaynağın 
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seçilme olasılığı, p. kaynağın nektar miktarının bütün kaynakların nektar miktarları 

toplamına oranlanması ile bulunur. Görüldüğü gibi bir yiyecek kaynağındaki nektar 

miktarı arttıkça o yiyecek kaynağının izci arılar tarafından tercih edilme olasılığı da 

artmaktadır. İzci arılar seçilen alana geldiklerinde, görevli arılarda olduğu gibi görsel 

bilgi ile hafızalarındaki kaynağın komşuluğunda yeni bir yiyecek kaynağı seçer ve 

nektar miktarını değerlendirirler. Diğer taraftan bir yiyecek kaynağındaki nektar miktarı 

tüketildiğinde, kâşif bir arı tarafından rastgele yeni bir yiyecek kaynağı belirlenir ve 

önceki çözümle değiştirilir. Başka bir deyişle, YAK algoritmasında yiyecek kaynağını 

temsil eden bir çözüm önceden belirlenmiş iterasyon sayısınca (limit) geliştirilememişse 

o yiyecek kaynağının tükendiği varsayılır ve ilgili yiyecek kaynağı görevli arı tarafından 

terk edilerek, görevli arı bir kâşif arıya dönüştürülür. Belirtmek gerekir ki, YAK 

algoritması her iterasyonda en fazla bir kâşif arı çözümüne izin vermektedir. Bahsedilen 

bu adımlar önceden belirlenmiş sayıda iterasyon boyunca (MaksIter) tekrarlanır. Sonuç 

olarak YAK algoritması P, limit ve MaksIter olmak üzere 3 kontrol parametresine 

sahiptir.  

Algoritmanın detaylı adımlarından da anlaşıldığı gibi YAK algoritması 4 farklı seçim 

prosesi kullanır.  

• Dans alanında verilen bilgilere göre umut verici bölgeleri keşfetmek için izci 

arıların kullandığı global seçim prosesi 

• Hafızadaki yiyecek kaynağının komşuluğunda yeni bir yiyecek kaynağı 

belirlemek için görevli arılar ve izci arıların görsel bilgiye dayanarak 

gerçekleştirdiği yerel seçim prosesi 

• Bütün arılar tarafından gerçekleştirilen, aday yiyecek kaynağının nektar miktarı 

mevcut kaynağın nektar miktarından daha iyiyse, arının mevcut kaynak yerine 

aday kaynağı hafızasına almasına dayanan açgözlü seçim prosesi 

• Kâşif arılarca gerçekleştirilen rastgele seçim prosesi 

Bir yapay arı kolonisinde var olan görevli, izci ve kâşif arıların algoritmadaki görevleri 

şu şekilde özetlenebilir. 

• Görevli arılar: Problemin farklı çözümlerini oluşturan ve bu çözümlerin 

kalitesine ilişkin bilgi sahibi olan yapılar 
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• İzci arılar: Görevli arıları takip ederek komşu çözümleri oluşturup yerel aramayı 

gerçekleştiren yapılar 

• Kâşif arılar: Yerel optimuma yakalanmayı engellemek amacıyla, görevli ve izci 

arılardan bağımsız yeni çözüm alanları arayan yapılar  

YAK algoritmasının çalışma prensibi ve temel yapısı ilk kez Karaboğa [7] tarafından 

önerilmiş olup tek doruklu (tek yerel optimuma sahip) ve çok doruklu (iki ya da daha 

fazla yerel optimuma sahip) sayısal optimizasyon problemlerinin çözümü için 

kullanılmıştır. Karaboğa [7] çalışmasının bir uzantısı olarak, elde edilen deneysel 

çalışma sonuçları Baştürk ve Karaboğa [62] tarafından genetik algoritma ile; Karaboğa 

ve Baştürk [8] tarafından genetik algoritma, parçacık sürü optimizasyonu ve parçacık 

sürüden esinlenen evrimsel algoritma ile; Karaboğa ve Baştürk [63] tarafından 

diferansiyel gelişim, parçacık sürü optimizasyonu ve evrimsel algoritma ile; Karaboğa 

ve Akay [64] tarafından Harmoni Arama algoritması, AA ve Geliştirilmiş AA ile 

karşılaştırılmıştır. Bu çalışmalar neticesinde YAK algoritmasının çok boyutlu ve çok 

doruklu fonksiyonlarda oldukça etkin ve karşılaştırma yapılan algoritmalardan daha iyi 

performansa sahip olduğu görülmüştür. Diğer taraftan Karaboğa ve Baştürk [63] 

çalışmalarında, farklı kontrol parametresi değerleri altında YAK algoritmasının 

performansını incelenmişlerdir. Popülasyon büyüklüğü arttıkça algoritmanın daha iyi 

sonuçlar verdiği ancak belirli bir değerden sonra popülasyon büyüklüğü artırılsa da 

algoritmanın performansının geliştirilemediği görülmüştür. Limit değerinin ise tek 

doruklu fonksiyonlarda algoritmaya bir etkisi yokken çok doruklu fonksiyonlarda limit 

değeri yükseldikçe algoritma performansının düştüğü gözlenmiştir. Tüm bu çalışmalar 

sonucunda Karaboğa ve Akay [65] YAK algoritmasının performansını 

değerlendirebilmek için çok boyutlu, tek doruklu-çok doruklu, düzenli-düzensiz, ayrışır-

ayrışamaz özelliklere sahip test problemleri üzerinde geniş bir deneysel çalışma 

sunmuşlardır. Elde edilen sonuçları genetik algoritma, parçacık sürü optimizasyonu 

algoritması, diferansiyel gelişim algoritması ve evrimsel stratejiler ile karşılaştırmışlar 

ve YAK algoritmasının diğer algoritmalara göre daha iyi ya da benzer sonuçlara 

ulaştığını belirtmişlerdir. Diğer taraftan bir optimizasyon algoritmasıyla bir problemi 

çözerken algoritma parametrelerinin ayarlanmasının algoritma performansı üzerinde 

çok önemli bir etkisi olduğu gerçeğiyle Akay ve Karaboğa [66] kontrol parametrelerinin 

YAK algoritmasının performansı üzerindeki etkisini araştırmışlardır. Ayrıca YAK 
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algoritması ile diferansiyel gelişim ve parçacık sürü optimizasyonu algoritmaları da 

karşılaştırılarak hangi algoritmanın parametre değerlerine karşı daha duyarlı olduğu 

incelenmiştir.  

YAK algoritmasının kısıtsız optimizasyon problemlerindeki başarısından sonra 

Karaboğa ve Baştürk [67] kısıtlı optimizasyon problemlerinin çözümü için YAK 

algoritmasında çeşitli değişiklikler yapmışlardır.  Bu değişiklikler temelde seçim 

mekanizmasına bağlı olup orijinal YAK algoritmasında kullanılan açgözlü seçim 

mekanizması yerine kısıt elde tutma mekanizması adı da verilen Deb seçim 

mekanizması [68] kullanılmıştır. Deb seçim mekanizmasına göre iki çözüm şu üç 

kritere göre karşılaştırılmaktadır: 1) Uygun bir çözüm, uygun olmayan bir çözüme göre 

tercih sebebidir, 2) İki uygun çözüm arasından amaç fonksiyonu değeri daha iyi olan 

tercih edilir, 3) İki uygun olmayan çözüm arasından kısıt ihlâli en az olan seçilir. 

Popülasyonu uygun çözümlerle başlatmak zaman kaybettirici bir proses olup uygun 

çözümler üretmek her zaman mümkün olmayabildiğinden, önerilen YAK 

algoritmasında başlangıç popülasyonunda uygunluk şartı yer almamaktadır. Ancak Deb 

kuralı sayesinde çözümler uygun alanlara yönlendirilmekte, diğer taraftan da kâşif arılar 

ile yeni ve uygun olmayabilen çözümler elde edilerek çeşitlilik sağlanmaktadır. Orijinal 

YAK algoritması ile kısıtlandırılmış problemler için geliştirilen YAK algoritmasındaki 

diğer bir farklılık ise kâşif arıların terk edilen yiyecek kaynaklarının yerine hemen yeni 

bir çözüm üretmesi yerine kâşif arıların yeni yiyecek kaynağı aramaya önceden 

belirlenmiş periyotlarda gönderilmesidir. Bu periyot YAK algoritmasının diğer bir 

kontrol parametresi olup kâşif üretme periyotu olarak adlandırılmıştır. Her bir kâşif 

üretme periyotunda terk edilmiş bir yiyecek kaynağı olup olmadığı kontrol edilmekte, 

eğer varsa kâşif arı yeni yiyecek kaynakları bulmak için gönderilmektedir. 

Kısıtlandırılmış optimizasyon problemleri için tekrar düzenlenen YAK algoritması 

doğrusal, doğrusal olmayan ve karesel amaçlara sahip çeşitli kısıtlandırılmış 

optimizasyon problemleri üzerinde test edilerek parçacık sürü optimizasyonu ve 

diferansiyel gelişim algoritması ile karşılaştırılmış ve YAK algoritmasının ortalama 

değerler açısından karşılaştırma yapılan algoritmalara göre daha etkin olduğu 

belirtilmiştir. Diğer taraftan Akay ve Karaboğa [69] tamsayılı programlama 

problemlerine YAK algoritmasını uygulayarak algoritmanın performansını çeşitli 

parçacık sürü optimizasyonu algoritmaları ve dal-sınır algoritması ile 
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karşılaştırmışlardır. Algoritmanın tamsayılı programlama problemleri üzerindeki 

performansını görebilmek için elde edilen çözümler en yakın tamsayı değerine 

yuvarlanmıştır. Deneysel çalışma sonuçları YAK algoritmasının tamsayılı programlama 

problemlerinde sağlam bir yapıya ve diğer algoritmalara göre karşılaştırılabilir ya da 

daha iyi performansa sahip olduğu belirtilmiştir.  

YAK algoritmasının farklı uyarlamaları incelenecek olursa Quan ve Shi [70] YAK 

algoritmasına anlaşmalı eşlemedeki sabit nokta teoremine dayalı yeni bir arama 

operatörü eklemiş ve geliştirilen YAK algoritmasını çeşitli doğrusal, doğrusal olmayan 

ve karesel çok değişkenli test fonksiyonlarının çözümünde kullanmışlardır. Tsai ve ark. 

[71] ise izci arıların rulet tekerleği yöntemine göre seçildiği orijinal YAK 

algoritmasındaki izci arıların seçim aşamasını Newton’un evrensel çekim yasasına göre 

tekrar düzenlemişlerdir. Kang ve ark. [72] Ters Analiz Problemi’nin çözümü için, 

kısıtlandırılmamış problemlere özel olarak tasarlanmış ve gradyan bilgisi kullanmayan 

Nelder-Mead simpleks yöntemi [73] ile YAK algoritmasını birleştiren melez bir 

algoritma önermişlerdir. Deneysel sonuçlar önerilen algoritmanın ters analiz için etkin 

bir araç olduğunu göstermiştir. Bao ve Zeng [74] orijinal YAK algoritmasındaki izci 

arıların erken yakınsamaya sebep olabilen orantısal seçim stratejisi yerine popülasyonun 

çeşitliliğini artırabilmek ve erken yakınsamayı engelleyebilmek için sıraya bağlı seçim 

stratejisi, bölücü seçim stratejisi [75] ve turnuva seçim stratejilerini [76] algoritmaya 

uyarlamışlardır. Elde edilen simülasyon sonuçları geliştirilen YAK algoritmasının 

orijinal YAK algoritmasına göre daha iyi sonuçlar verdiğini göstermiştir. Mezura-

Montes ve Cetina-Dominguez [77] kısıtlandırılmış sayısal optimizasyon problemlerinin 

çözümü için temel YAK algoritması üzerinde çeşitli değişiklikler yapmışlardır. 

Bunlardan ilki kâşif arı davranışlarıyla ilgili olup rastgele çözümler üretmek yerine 

mevcut en iyi çözümün komşuluğundaki çözümlerden faydalanmaya dayanmaktadır. 

Çünkü kısıtlandırılmış alanlarda çalışılırken, temel YAK algoritmasındaki kâşif arı 

davranışları yerel optimum çözümlerden kaçınmaya yardımcı olamamakta ve genellikle 

uygun olmayan çözümler üreterek araştırmayı tetikleyici özelliğe sahip olamamaktadır. 

YAK algoritmasına ikinci bir katkı ise Hamida ve Schoenauer [78] tarafından önerilen 

ve tolerans değerine bağlı dinamik bir mekanizmayı eşitlik kısıtlarına uygulamaktır. 

Böylece araştırmanın başlarında eşitlik kısıtları kolaylıkla sağlanabilecek, araştırmanın 

ileriki iterasyonlarında ise tolerans değeri azaltılarak algoritmanın uygun çözümler 
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bulması sağlanacaktır. Geliştirilen yöntem ile orijinal YAK algoritmasının 

performansının iyileştiği belirtilmiştir. Duan ve ark. [79] doğada yaşayan canlı 

organizmaların evrim prensibinden esinlenen ve kombinatoryal optimizasyon 

problemlerinin yaklaşık çözümleri için kullanılan, kuantum hesaplama prensiplerine 

dayalı Kuantum Evrimsel algoritması ile YAK algoritmasını birleştirilerek melez bir 

algoritma önermişlerdir. Deneysel çalışma sonuçları önerilen algoritmanın karmaşık 

optimizasyon problemlerinin çözümü için uygun ve etkin olduğunu göstermiştir. Tsai ve 

ark. [80] orijinal YAK algoritmasındaki izci hareketlerini evrensel yerçekimi yasasına 

dayandırarak interaktif YAK algoritmasını önermişlerdir. Geliştirilen algoritma, orijinal 

YAK ve parçacık sürü optimizasyonu algoritmaları ile karşılaştırılmış ve interaktif 

YAK algoritmasının diğerlerine göre daha üstün performansa sahip olduğu 

belirtilmiştir. 

YAK algoritması, geliştiricileri tarafından yapay sinir ağlarının eğitiminde de 

kullanılmıştır. Karaboğa ve Öztürk [81] ileri bildirimli sinir ağlarının eğitiminde, 

makine öğrenmede sıkça kullanılan farklı veri kümelerinin sınıflandırılması için YAK 

algoritmasından faydalanmışlardır. Algoritmanın performansı gradyan tabanlı 

algoritmalar olan geri yayılım ve Levenberg-Marquardt algoritmaları ile popülasyon 

tabanlı algoritmalar olan parçacık sürü optimizasyonu, diferansiyel gelişim ve genetik 

algoritma ile karşılaştırılmıştır. Deneysel çalışma sonuçları YAK algoritmasının 

sınıflandırma problemlerinde ileri bildirimli sinir ağlarının eğitimine başarıyla 

uygulanabildiğini göstermiştir. YAK algoritmasının diğer uygulama alanları, radyal 

dağıtım sistemlerinde güç kaybının en küçüklenmesini amaçlayan ağ yapılandırması 

[82], dolaysız doğrusal transformasyon yöntemi [83], dijital IIR filtre tasarımı [84], 

yaprak-kısıtlı minimum kapsayan ağaç problemi [85], maksimum mekanik işleme 

hızına erişme amacına sahip optimum proses parametreleri kombinasyonunu bulma 

problemi [86], radyal tabanlı fonksiyon ağlarının eğitimi [87], gömülü riske sahip 

tedarik zinciri maliyetinin en küçüklenmesi [88], özdeş olmayan iş büyüklüklerine sahip 

tek toplu işleme makinesinde çizelgeleme [89], en düşük serbest enerjiye sahip protein 

yapısını bulma problemi [90], NP-Tam bir problem olan sudoku bulmacalarının çözümü 

[91], çok katmanlı algılayıcı yapay sinir ağının eğitimi [92] olarak karşımıza 

çıkmaktadır. Son olarak ise Karaboğa ve Akay [93] arı sürüsü davranışları ve bu 
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davranışlara dayalı geliştirilen algoritmaları içeren bir sınıflandırma ve inceleme 

çalışması sunmuşlardır.  

2.7.  Arı Algoritması 

AA popülasyon tabanlı bir arama algoritması olup sürü zekâsına dayalı meta sezgisel 

yöntemlerden birisidir. Algoritma gerçek arıların yiyecek arama davranışlarını 

modellemeye dayanmakta olup literatürde kombinatoryal ve genellikle sürekli 

optimizasyon problemlerinin çözümünde kullanılmıştır.  

AA’nın genel yapısı Tablo 2.4’te detaylı olarak verilmiştir.  

Tablo 2.4. AA’nın temel adımları. 
1. Rastgele çözümlerle başlangıç arı popülasyonunu oluştur 

2. Popülasyonun uygunluğunu değerlendir 

3. While (durdurma kriteri sağlanana kadar) 

// Yeni arı popülasyonunun oluşturulması 

4. Komşuluk araması için bölgeleri seç 

5. Arıları seçilen bölgelere gönder ve uygunluklarını değerlendir 

6. Her bir bölgedeki en iyi uygunluk değerine sahip arıyı seç 

7. Kalan arıları rastgele arama için ata ve uygunluklarını değerlendir 

8. End While 

Doğadaki arılarda yiyecek arama işlemini önce kâşif arılar başlatır ve rastgele yiyecek 

kaynakları seçerler. Ayrıca yiyecek toplama süreci boyunca popülasyonun belli bir 

yüzdesi kâşif arılar olarak kalır. Benzer olarak AA da n adet kâşif arının araştırma 

uzayına rastgele yerleştirilmesi ile başlar. Kâşif arılarca ziyaret edilen noktaların 

uygunlukları 2. adımda değerlendirilir. Doğadaki arılara bakıldığında, bir arı kolonisi 

çok sayıda yiyecek kaynağını tüketmek için birçok yönde ve büyük uzaklıklar boyunca 

arama yapabilmektedir. Prensipte nektar miktarı fazla olan ve düşük bir çabayla 

tüketilebilen yiyecek kaynakları daha fazla arı tarafından, az miktarda nektara sahip 

yiyecek kaynakları ise daha az arı tarafından ziyaret edilecektir. Bu gerçekten hareketle 

4. adımda en iyi uygunluk değerine sahip arılar (m) komşuluk araması için seçilir. 5. 

adımda seçilen arıların komşuluğunda araştırma başlar ve daha umut verici çözümleri 

temsil eden en iyi e bölgeye, seçilen diğer bölgelere (m-e) göre daha fazla arı 
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gönderilerek daha detaylı arama yapılır. Yeni popülasyonun oluşturulması için her 

bölgedeki en iyi uygunluk değerine sahip arı 6. adımda seçilir. 7. adımda 

popülasyondaki diğer arılar (n-m) yeni potansiyel çözümler elde etmek için rastgele 

olarak araştırma uzayına atanırlar. Böylece her iterasyonun sonunda yeni popülasyon, 

seçilen her bölgenin temsilcileri ve rastgele arama yapan kâşif arılar olmak üzere iki 

parçadan oluşacaktır. Diğer taraftan AA kâşif arı sayısı ile temsil edilen popülasyon 

boyutu (n), ziyaret edilen n bölge içinden seçilen bölge sayısı (m), seçilen m bölge 

içindeki en iyi bölge sayısı (e), en iyi e bölgeye gönderilen izci arı sayısı (nep), seçilen 

diğer bölgelere (m-e) gönderilen izci arı sayısı (nsp), komşuluk arama boyutu (ngh) ve 

durdurma kriteri olmak üzere birçok parametre içermektedir. AA’na ait akış diyagramı 

Şekil 2.3’te sunulmaktadır. 

Şekil 2.3. AA akış diyagramı [61]. 

AA’nın çalışma prensibi ve temel yapısı ilk kez Pham ve ark. [6] tarafından önerilmiş 

olup çok boyutlu ve çok doruklu sayısal test fonksiyonları üzerinde algoritmanın 

etkinliği ve sağlamlığı gösterilmiştir. Elde edilen sonuçlar deterministik simpleks 

yöntemi, stokastik benzetimli tavlama, genetik algoritma ve karınca koloni 
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optimizasyonu algoritmaları ile karşılaştırılmıştır. Önerilen algoritma, karşılaştırma 

yapılan optimizasyon algoritmalarına göre gradyan bilgisini çok az kullandığından yerel 

optimumdan kolayca kurtulabilmektedir. Dolayısıyla AA genel olarak optimizasyon 

hızı ve sonuçların doğruluğu açısından diğer tekniklerden daha üstün performans 

göstermiştir. 

AA geliştiricileri tarafından birçok alana uygulanmış olup bu çalışmalardan bazıları 

izleyen şekilde özetlenmiştir. İlk olarak Pham ve ark. [94] ahşap kaplama levhalarındaki 

kusurların belirlenmesinde AA ile yapay sinir ağlarını optimize etmişlerdir. Bu 

çalışmada arılar nöronlar arasındaki bağlantılara yerleştirilmiş olup ağırlıkların optimum 

değerini aramaktadır. Yapay sinir ağındaki ağırlıkların optimizasyonu için geri yayılım 

algoritması yerine kullanılan AA’nın amacı en küçük hata fonksiyonu değerine sahip 

arıyı bulmaktır. Elde edilen deneysel çalışma sonuçları geri yayılım ve minimum 

uzaklık sınıflandırıcı [95] algoritmaları ile karşılaştırılmış ve AA’nın doğru sonuçlara 

daha hızlı ulaştığı belirtilmiştir. Benzer şekilde Pham ve ark. [96] çok katmanlı 

algılayıcı ağlarının eğitiminde, Pham ve ark. [97] istatistiksel proses kontrolünde 

kullanılan kontrol grafiklerinde örüntü tanıma için radyal temel fonksiyon ağının 

eğitiminde, Pham ve ark. [98] ise yine kontrol grafiklerinde örüntü tanıma için öğrenen 

vektör nicelendirme ağının eğitiminde AA algoritmasını kullanmış ve geri yayılım 

algoritmasına göre daha iyi sonuçlar elde edilmiştir.  

AA’nın diğer uygulama alanları ise hücresel imalat sistemlerinde parça aileleri ve 

makine hücrelerinin eş zamanlı belirlenmesine dayanan hücre oluşturma problemi [99], 

tek makinede çizelgeleme problemi [100], bulanık mantık kontrolörlerinin ayarlanması 

[101], veri sınıflandırma [102], çok boyutlu optimizasyon problemlerinden standart bir 

mekanik tasarım problemi olan kaynaklı kiriş yapısının tasarımı [103],  ahşap 

kusurlarının sınıflandırılmasında özellik belirleme ve parametre optimizasyonu [104], 

bir veri kümesini farklı gruplara ayırabilmek için belirlenmesi gereken niteliklerin 

sayısını azaltmaya yönelik nitelik seçimi problemi [105], baskı devre kartı montaj 

planlama problemi [106], bulanık kümeleme [107], Coca Cola için şişe şekli tasarımı 

[108], bir robot kolunun ters kinematiğinin modellenmesi için çok katmanlı algılayıcı 

yapay sinir ağının eğitimi [109], mekanik tasarım optimizasyonu [110, 111] ve çok 

amaçlı ekonomik güç gönderme problemi [112, 113] olarak karşımıza çıkmaktadır. 
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AA’nın farklı uyarlamalarına bakacak olursak Pham ve Haj Darwish [114] orijinal 

AA’ndaki kontrol parametresi sayısını indirgemeye yönelik olarak bulanık açgözlü 

seçim mekanizmasını kullanmışlardır. Geliştirilen algoritma ile m, e, nep ve nsp 

parametrelerinin kullanıcı tarafından belirlenmesi yerine önerilen mekanizma ile bu 

parametre değerleri otomatik olarak seçilmektedir. Pham ve ark. [115] ise kimya 

mühendisliği alanında dinamik optimizasyon problemlerinin çözümü için orijinal 

AA’ndaki rastgele aramayı tamamlayacak şekilde mutasyon, sünme, çaprazlama, ara 

değerleme ve dış değerleme operatörlerini algoritmaya dâhil etmişlerdir. Önerilen 

algoritma karınca koloni optimizasyonu algoritması ile karşılaştırılmış ve önerilen 

algoritmanın daha üstün performans gösterdiği belirtilmiştir. Pham ve Sholedolu [116] 

parçacık sürü optimizasyonu algoritmasının erken yakınsama problemini çözebilmek 

için ilgili algoritmaya AA’nı da dâhil ederek melez bir yapı geliştirmişler ve önerilen 

algoritmayı çok katmanlı yapay sinir ağlarının eğitiminde kullanmışlardır. Deterministik 

problemlerin AA ile çözümde tek değerlendirme ve sabit uygunluk değeri yeterli iken, 

stokastik optimizasyon problemlerinde aynı noktada çok sayıda deneme ve ortalama bir 

uygunluk değeri hesaplaması gerekmektedir. Bu bilgiden hareketle Pham ve ark. [117] 

stokastik optimizasyon problemlerinin çözümü için AA’na yeni bir uygunluk 

değerlendirme mekanizması eklemişlerdir. Bu mekanizma ile her arı için tek bir 

denemedeki uygunluk değeri yerine birçok deneme sonucunda elde edilen uygunluk 

değerlerinin ortalaması kullanılmıştır. Pham ve Castellani [61] AA’na araştırma hızını 

ve doğruluğu artıracak iki prosedür eklemişlerdir. Bunlardan ilki komşuluk arama 

boyutunun uyarlanır hâle getirilmesidir. Bu mekanizma, yerel arama ile daha iyi 

uygunluk değerleri elde edildiğinde komşuluk boyutunun sabit tutulmasına, uygunluk 

değerlerinde bir gelişme olmadığında ise komşuluk boyutunun azaltılmasına 

dayanmaktadır. AA’nda ikinci iyileştirme ise YAK algoritmasında olduğu gibi bir 

çözüm belirli bir iterasyon boyunca geliştirilemediğinde rastgele oluşturulan yeni bir 

çözümle değiştirilmesini içermektedir. Önerilen algoritmanın etkinliği farklı 

karmaşıklık derecelerine sahip fonksiyon optimizasyon problemleri üzerinde evrimsel 

algoritma, parçacık sürü optimizasyonu ve YAK algoritması ile karşılaştırılmıştır. AA 

neredeyse bütün test problemlerinde optimum ya da optimuma yakın sonuçlar elde 

etmiş ve deneysel sonuçlar AA’nın doğruluk, öğrenme hızı ve sağlamlıktaki gücünü 

ispatlamıştır. 



3. BÖLÜM 

 GENELLEŞTİRİLMİŞ ATAMA PROBLEMİ ÇÖZÜM YAKLAŞIMLARI 

3.1. Giriş 

Çalışmanın bu bölümünde genellikle sürekli optimizasyon problemlerine uygulanmış 

olan AA ve YAK algoritmasının karmaşık tamsayılı optimizasyon problemlerindeki 

performansını inceleyebilmek için NP-zor bir problem olan GAP’nin çözümünde 

kullanılmasına yer verilmiştir. Ayrıca GAP’nin AA ile çözümünde kullanılan komşuluk 

yapılarının algoritma üzerindeki etkisi incelenmiştir. 

3.2. Genelleştirilmiş Atama Problemi 

GAP’nin amacı minimum toplam maliyetle belirli bir iş kümesini belirli ajanlar 

kümesine atamayı içermektedir. Her ajan sınırlı kapasiteye sahip tek bir kaynağı temsil 

etmekte olup her iş mutlaka tek bir ajana atanmalıdır. Bu atama esnasında ajan 

kapasitesinden belirli bir miktar kullanılmaktadır. GAP bilgisayar ve iletişim ağları, 

yerleştirme problemleri, araç rotalama, grup teknolojisi ve çizelgeleme gibi birçok 

uygulama alanına sahiptir. GAP’ne ait geniş inceleme çalışmaları ve uygulama alanları 

Martello ve Toth [118, 119], Cattrysse [120], Cattrysse ve ark. [121] ve Öncan [122] 

çalışmalarında sunulmaktadır. Bilimsel yazında GAP’nin çözümü için Ross ve Soland 

[123], Fisher ve ark. [4], Martello ve Toth [119], Savelsbergh [124], Nauss [125] 

tarafından çeşitli kesin çözüm algoritmaları önerilmiştir. Diğer taraftan GAP’nin 

çözümü için birçok sezgisel yöntem de geliştirilmiştir. Martello ve Toth [118, 119] 

yerel arama ve açgözlü yöntemin birleşiminden oluşan bir algoritma sunarken, Osman 

[126] GAP’nin çözümü için benzetimli tavlama ve tabu arama algoritmalarını 

geliştirmiştir. Chu ve Beasley [127] eniyilik ve uygunluğu aynı anda iyileştirmeye 

çalışan bir genetik algoritma yaklaşımı önermişlerdir. Farklı değişken 
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derinlik arama algoritmaları [128-130], çıkarım zinciri tabanlı tabu arama algoritmaları 

[131-133], açgözlü rastgele uyarlanır sezgiseline dayalı maks-min karınca sistemi [134], 

yol birleştirme yaklaşımları [135-140], karınca koloni optimizasyonu [141], kısıt-oran 

sezgiseli ile birleştirilmiş genetik algoritma [142], diferansiyel gelişim algoritması [143] 

son yıllarda GAP için önerilmiş diğer meta-sezgisel yaklaşımlar olarak verilebilir. 

AA ve YAK algoritmasının uygulama alanı olarak GAP’nin seçilmesi ise Fisher ve ark. 

[4] tarafından ispatlandığı gibi problemin NP-zor yapısından kaynaklanmaktadır. Diğer 

taraftan Martello ve Toth [119] GAP’nin NP-tam bir yapıya sahip olduğunu da 

ispatlamıştır. Bu çalışmada geliştirilen arı algoritmalarının GAP üzerindeki 

performansı, algoritmaların karmaşık kısıtlandırılmış kombinatoryal optimizasyon 

problemlerindeki becerisi için iyi bir gösterge olacaktır. 

GAP tamsayılı programlama modeli, kullanılan notasyonlarla birlikte aşağıdaki şekilde 

formüle edilmektedir.  

I: İşler kümesi (i=1,…,n) 

J: Ajanlar kümesi (j=1,…,m) 

bj: j ajanının kaynak kapasitesi (bj≥0)  

aij: i işi j ajanına atandığında ihtiyaç duyulan kaynak miktarı (aij≥0) 

cij: i işini j ajanına atama maliyeti (cij≥0) 

xij: Karar değişkeni (xij=1, i işi j ajanına atanırsa; 0, diğer durumlarda) 

min  ෍ ෍ ܿ௜௝ݔ௜௝

௠

௝ୀଵ

௡

௜ୀଵ

 

 ݎ݈ܽݐıݏıܭ

෍ ܽ௜௝ݔ௜௝

௡

௜ୀଵ

൑ ௝ܾ                       1 ൑ ݆ ൑ .ሺ3.1                                                                       ݆׊   ݉ ሻ 

෍ ௜௝ݔ

௠

௝ୀଵ

ൌ 1                             1 ൑ ݅ ൑ .ሺ3.2                                                                         ݅׊   ݊ ሻ 
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௜௝ݔ א ሼ0,1ሽ                              1 ൑ ݅ ൑ 1      ,݅׊   ݊ ൑ ݆ ൑  ݆׊   ݉

Yukarıdaki formülasyonda amaç fonksiyonu toplam atama maliyetini temsil ederken 

birinci kısıt kümesi ajanlara ait kaynak kapasitesiyle ilişkili olup ikinci kısıtlar kümesi 

her bir işin tek bir ajana atanmasını sağlamaktadır. 

3.3. Genelleştirilmiş Atama Problemi için Geliştirilmiş Arı Algoritması 

GAP’nin çözümü için çıkarım zinciri komşuluk mekanizmasına sahip AA geliştirilmiş, 

geniş bir deneysel çalışma neticesinde önerilen algoritma sonuçları bilimsel yazında 

sunulan meta-sezgisel algoritma sonuçları ile karşılaştırılmış ve önerilen algoritmanın 

iyi sonuçlar verdiği tespit edilmiştir. Geliştirilmiş AA’nın detaylı adımları Tablo 3.1’de 

yer almakta olup kullanılan notasyonlar aşağıdaki gibi tanımlanmıştır. 

S:   Kâşif arı sayısı (s=1,…,S) 

σs:   Kâşif arı çözümü 

fit(σs):   Kâşif arı çözümünün uygunluk fonksiyonu değeri 

αj:   j. ajanın kapasitesinden 1 birim fazla kullanma maliyeti 

e:   En iyi görevli arı sayısı 

nep:   e adet görevli arının her birine gönderilecek izci arı sayısı 

nsp: P-e adet görevli arının her birine gönderilecek izci arı 
sayısı (nsp<nep) 

σls: Yerel arama ile bulunan komşu çözüm, ls={kaydırma, 
çiftkaydırma, çıkarımzinciri, eniyiizci} 

fit(σls): Yerel arama ile bulunan komşu çözümün uygunluk 
fonksiyonu değeri, ls={kaydırma, çiftkaydırma, 
çıkarımzinciri, eniyiizci} 

LimitSayacı(σp): σp çözümü için gelişme olmaksızın geçirilen iterasyon 
sayısı 

σeniyi:   En iyi çözüm 

fit(σeniyi):  En iyi çözümün uygunluk fonksiyonu değeri 
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Tablo 3.1. GAP için geliştirilmiş AA adımları. 
1. Parametreleri başlangıç durumuna getir 
2. ARUAP algoritması ile S adet kâşif arı çözümü oluştur 
3. Kâşif arı çözümlerinin uygunluk fonksiyonlarını değerlendir 

௦ሻߪሺݐ݂݅ ൌ ෍ ෍ ܿ௜௝ݔ௜௝ ൅ ቌ෍ ݏ௝݉ܽ݇ߙ ൝0, ෍ ܽ௜௝ݔ௜௝ െ ௝ܾ

௡

௜ୀଵ

ൡ
௠

௝ୀଵ

ቍ
௡

௜ୀଵ

௠

௝ୀଵ

 

4. I=0 
5. Do  

         Artan şekilde sıralas=1….Sfit(σs) ve en iyi P adet çözümü görevli arı olarak 
         belirle 
         En iyi e adet görevli arıyı seç 
         En iyi e adet görevli arının her birine nep adet izci arı ata 
         Kalan P-e adet görevli arının her birine nsp adet izci arı ata 
         k=0 
         Do 
              Kaydırma 
                   Eğer fit(σkaydırma) < fit(σp) ise σp = σkaydırma 
              Çift Kaydırma 
                   Eğer fit(σçiftkaydırma) < fit(σp) ise σp = σçiftkaydırma 
              Görevli arılara atanmış her bir izci arı için 
              { 
                   Çıkarım Zinciri 
                        Eğer fit(σçıkarımzinciri) < fit(σp) ise σeniyiizci = σçıkarımzinciri 
              } 
              Eğer fit(σeniyiizci) < fit(σp) ise σp =σeniyiizci ve LimitSayacı(σp)=0,  
              Aksi takdirde LimitSayacı(σp)=LimitSayacı(σp)+1  
              En iyi çözümü güncelle 
                   Eğer (σp uygun ve fit(σp) < fit(σeniyi) ise σeniyi =σp 
              Eğer (LimitSayacı(σp)>limit) ise ARUAP algoritması ile yeni bir kâşif 
              arı çözümü oluştur 
              αj değerlerini güncelle, fit(σp) değerlendir 
              k=k+1    
         While (k<P) 

                     ARUAP algoritması ile S-P adet yeni kâşif arı çözümleri oluştur. 
                     I=I+1          
            While (I=MaksIter) 

Geliştirilmiş AA, parametrelerin başlangıç değerlerine atanması ile başlar (S, P, e, nep, 

nsp, ÇZ-Uzunluğu, MaksIter, limit, αj) ve genellikle uygun çözümler üreten ve Bölüm 

3.3.1’de detayları verilecek olan ARUAP algoritması ile S adet başlangıç kâşif arı 

çözümü oluşturulması ile devam eder. Oluşturulan çözümler kümesinden P adet iyi 

çözüm görevli arı çözümleri olarak belirlenir. P adet iyi çözüm arasından seçilen e adet 

çözüm, en iyi çözümler olarak belirlenir. Daha detaylı bir komşuluk araması için bu en 

iyi çözümlere nep adet izci arı gönderilir. Daha az sayıda izci arı ise kalan P-e adet 
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çözüme gönderilir. Yerel arama için her görevli arıya sırasıyla kaydırma (Bölüm 

3.3.2.1) ve çift kaydırma (Bölüm 3.3.2.2) komşuluk mekanizmaları uygulanır. Daha iyi 

bir çözüm bulunmuşsa görevli arı çözümü güncellenir. Her bir görevli arıya atanan izci 

arılar, çıkarım zinciri komşuluk yapısı (Bölüm 3.3.2.3) ile komşu çözümler oluşturur. 

En iyi izci arı orijinal görevli arı ile karşılaştırılır, eğer daha iyiyse görevli arı çözümü 

güncellenir. Diğer taraftan görevli arı çözümleri, o ana kadar bulunan en iyi çözümle 

karşılaştırılır ve gerekli şartlar sağlanmışsa (uygun ve bir önceki en iyi çözümden daha 

iyi bir çözüm elde edilmişse) en iyi çözüm güncellenir. Görevli arı çözümü limit adet 

iterasyon boyunca geliştirilememişse ARUAP algoritması kullanılarak yeni bir kâşif arı 

çözümü oluşturulur. Bütün bu işlemler sonucunda uygun bir çözüm bulunamamışsa 

Tablo 3.5’te verilen algoritma kullanılarak αj değerleri artırılır; en az bir uygun çözüm 

bulunmuşsa αj değerleri aynı algoritma kullanılarak azaltılır. Böylece uygun bir çözüm 

bulunamamışsa araştırma bölgesi farklılaştırılmaya, en az bir uygun çözüm 

bulunduğunda ise bu çözüm etrafında daha detaylı bir arama yapılabilmesi sağlanmaya 

çalışılmıştır. Komşuluk araması tamamlandıktan sonra S-P adet yeni çözüm 

oluşturularak başlangıç popülasyon sayısının tamamlanması sağlanır. Böylece bir 

sonraki iterasyona ait popülasyon, güncellenen P adet görevli arı çözümü ile S-P adet 

yeni kâşif arı çözümünden oluşmaktadır.  

Bu çalışmada orijinal AA’nın bazı adımları GAP’nin çözümü için farklılaştırılmıştır. Bu 

farklılıklardan ilki sürekli optimizasyon problemlerinin çözümü için önerilen orijinal 

AA’na ait komşuluk boyutu parametresi yerine GAP için tasarlanmış çıkarım zinciri 

komşuluk mekanizmasına ait ÇZ-Uzunluğu parametresinin kullanılmasıdır. Çıkarım 

zinciri komşuluğunda gerçekleştirilecek kaydırma hareketi sayısını gösteren ÇZ-

Uzunluğu komşuluk boyutunu belirlemektedir. Diğer bir farklılık ise kâşif arılarla ilgili 

olup orijinal AA’nda kâşif arılar algoritma sonlandırılana kadar çözüm uzayında arama 

yapmaya devam ederken Geliştirilmiş AA’nda buna ek olarak bir araştırma 

bölgesindeki nektar miktarı yeterince azaldığında yeni kâşif arıların algoritmaya dâhil 

edilmesine karar verilmiştir. Diğer bir deyişle belirli bir iterasyon ya da süre sonunda 

geliştirilemeyen bir çözüm varsa o çözüm tekrar oluşturulmaktadır. Geliştirilmiş 

AA’nın önemli adımlarının detayları sonraki bölümlerde verilmiştir. 
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3.3.1. Arı Kolonisinin Oluşturulması 

Başlangıç arı kolonisi, rastgele çözümler yerine genellikle uygun çözümler üreten 

Açgözlü Rastgele Uyarlanır Arama Prosedürü (ARUAP, [134]) kullanılarak 

oluşturulmuştur. ARUAP algoritmasında gerçekleştirilen seçim işlemi bir olasılık 

fonksiyonuna bağlı olarak yapılmakta ve bu fonksiyon her iterasyon sonunda iyi 

çözümlere göre güncellenmektedir. İlgili algoritmanın adımları Tablo 3.2’de yer 

almakta olup algoritmanın kısaca işleyişi ve kullanılan notasyonlar aşağıdaki gibidir. 

• Her bir adımda atanacak bir sonraki iş seçilir. 

• Seçilen işin atanacağı ajan belirlenir. 

• Bütün işler bir ajana atanana kadar bu iki adım tekrarlanır. 

Sj: j ajanına atanan işler kümesi 

Li: i işinin atanabileceği ajanlar kümesi 

pij: i işinin j ajanına atanma olasılığı 

σ(i): i işinin atanmış olduğu ajan 

Tablo 3.2. Açgözlü rastgele uyarlanır arama prosedürü adımları. 
1. Sj =Ø, ׊j=1,…,m olsun 
2. Her iş için bütün ajanları içeren bir Li ajanlar listesi oluştur, 

başlangıçta Li ={1,…,m} ∀i olsun 
3. İşlerin herhangi bir sırasını ele al, i=1 
4. While (bütün işler atanana kadar) Repeat 

      Li listesindeki bütün ajanlar için aşağıdaki olasılık fonksiyonunu hesapla 
      (minimum maliyete sahip ajanın seçilme olasılığı daha yüksek olacaktır)

௜௝݌ ൌ ௝ܾ ܽ௜௝⁄
∑ ܾ௟ ܽ௜௟⁄௟א௅೔

,          ݆ א  ௜ܮ

      i işinin atanacağı ajanı bu olasılık değerine göre rastgele seç 
     (seçilen ajan j* olsun) 
      i işini j* ajanına ata,  ௝ܵכ ൌ ௝ܵכ ׫ ሼ݅ሽ 
      Eğer ∑ ܽ௜௝כ ൐ ௝ܾכ௜אௌೕכ   ise j* ajanını bütün listelerden sil. 4 nolu adımı  
      tekrarla (kapasite kısıtı sağlanmayabilir) 
      i=i+1 

5. i∈Sj ise σ(i)=j 

3.3.2. Komşuluk Yapıları 

GAP’nin AA ile çözümünde kullanılan kaydırma, çift kaydırma ve çıkarım zinciri 

komşuluk yapıları aşağıdaki bölümlerde detaylı olarak açıklanmıştır. 
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3.3.2.1. Kaydırma Komşuluk Yapısı 

Kaydırma komşuluk yapısında komşu çözümler, orijinal çözümdeki bir işin ajan 

atamasının değiştirilmesi sonucu elde edilir (i işi j ajanından çıkarılarak w ajanına atanır 

w≠j). İlgili komşuluğun işleyişi Tablo 3.3’te özetlenmiş ve Şekil 3.1’de örnek bir 

uygulama verilmiştir. 

Tablo 3.3. Kaydırma komşuluk yapısının işleyişi. 
1. S={i|i∈{1,…,n}}, i=1, σkaydırma =σp olsun 
2. Eğer S=Ø ise dur; aksi takdirde σ’ =σp, i işi σ’ den çıkarılır, S=S-{i} 
3. j* ajanı j∈J/{σ(i)} kümesi içinden ܿ௜௝ ൅ ,൛0ݏ௝݉ܽ݇ߙ ൫∑ ܽ௜௝௜אூ,ఙሺ௜ሻୀ௝ ൯ ൅ ܽ௜௝ െ ௝ܾൟ  
     fonksiyonunu minimize eden ajan olsun 

i işini  j* ajanına ata, σ’ çözümünü al ve  fit(σ') hesapla 
4. Eğer fit(σ')< fit(σkaydırma) ise σkaydırma  = σ’ 
5.  i = i+1, 2 nolu adıma dön 
6. σkaydırma çözümünü al 

Şekil 3.1. Kaydırma komşuluk yapısı örneği. 

Yukarıdaki örnekte 2 nolu ajana atanmış olan 5. iş, kaydırma hareketinden sonra 1 nolu 

ajana atanmıştır.  

3.3.2.2. Çift Kaydırma Komşuluk Yapısı 

Bu komşuluk yapısı çıkarım zinciri komşuluğunun özel bir biçimi olup iki kaydırma 

hareketi gerçekleştirildiğinden çıkarım zinciri uzunluğunun 2 olduğu durumdur (i işi j 

ajanından çıkarılarak w ajanına atanır w≠j, w ajanından k işi çıkarılır ve q ajanına atanır 

q≠w). Çift kaydırma komşuluğu kendi içinde, iki farklı işin ajan atamalarının kendi 

arasında yer değiştirilmesine dayanan, değiştirme komşuluk yapısını da içerir (orijinal 

çözümde i işi j ajanına, k işi w ajanına atanmış iken, i işinin ataması w ajanına, k işinin 

ataması da j ajanına olacak şekilde değiştirilir). Çift kaydırma ve çıkarım zinciri 

komşuluk yapıları arasındaki temel fark, çıkarım zinciri komşuluğunda her kaydırma 
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hareketi için işler B listesinden seçilirken çift kaydırma komşuluğunda yeni bir 

kaydırma hareketinin bütün işler listesi kullanılarak belirlenmesidir. Bu komşuluk 

yapısı Yagiura ve ark. [133] çalışmasında önerilen çift kaydırma mekanizmasının 

basitleştirilmiş hâlidir. Şekil 3.2’de çift kaydırma komşuluk yapısına ait bir örnek 

verilmiş olup 5 nolu ajana atanmış olan 13. iş 2 nolu ajana, 2 nolu ajana atanmış olan 5. 

iş 1 nolu ajana kaydırılarak iki kaydırma hareketi gerçekleştirilmiştir.  

Şekil 3.2. Çift kaydırma komşuluk yapısı örneği. 

3.3.2.3. Çıkarım Zinciri Komşuluk Yapısı 

Diğer komşuluk yapılarına göre daha güçlü ancak daha karmaşık olan çıkarım zinciri 

komşuluk yapısında bir komşu çözüm, sayısı zincir uzunluğu ile belirlenen çoklu 

kaydırma hareketlerinin gerçekleştirilmesi ile elde edilir. i0 işinin atanmış olduğu σ(i0) 

ajanından çıkarılıp serbest bir iş haline getirildiğini varsayalım. Bu çıkarım hareketi 

sonucunda σ(i0) ajanının kullanılabilir kaynak miktarı artmıştır. Mevcut(i0), i0 işinin 

çıktığı ajanda kalan kaynak miktarı olup aşağıdaki gibi tanımlanmıştır. 

ሺ݅଴ሻݐݑܿݒ݁ܯ ൌ ቊ
ܽ௜బ,ఙሺ௜బሻ െ ௜బ,ఙሺ௜బሻܽ ݎሻ           ݁ğ݁ߪఙሺ௜బሻሺ݌ ൐ ሻߪఙሺ௜బሻሺ݌
ܽ௜బ,ఙሺ௜బሻ                                           ݀݅ğ݁ܽ݀ݎ݈ܽ݉ݑݎݑ݀ ݎ                         ሺ3.3. ሻ 
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ሻߪ௝ሺ݌ ൌ ݏ݇ܽ݉ ቐ0, ቌ ෍ ܽ௜௝
௜אூ,ఙሺ௜ሻୀ௝

ቍ െ ௝ܾቑ                                                                         ሺ3.4. ሻ 

ܽ௞,ఙሺ௜బሻ ൑  ሺ݅଴ሻ eşitsizliğini sağlayan işler içinden σ(i0) ajanına kaydırılması enݐݑܿݒ݁ܯ

kârlı olan işin i1 olduğu varsayımıyla i1 işi σ(i0)  ajanına kaydırılır ve bu çözüme 

referans yapısı adı verilir. Bu çıkarım hareketinden sonra serbest iş i0 Tablo 3.4’te 

(Adım-3) verilen uygunluk fonksiyonuna olan etkisine göre başka bir ajana atanmaya 

çalışılacaktır. Bu aşamaya da deneme hareketi adı verilir. Bir sonraki çıkarım hareketi 

deneme hareketleri sonucu elde edilen çözümlere değil, bir önceki referans yapısına 

uygulanmaktadır. Çıkarım zinciri komşuluğunun genel işleyişi Tablo 3.4’te, örnek bir 

uygulama ise Şekil 3.3’te verilmiştir.  

Tablo 3.4. Çıkarım zinciri komşuluk yapısının işleyişi. 
1. S=Ø olsun 
2. Eğer S=I'

 ya da l=ÇZ-Uzunluğu ise dur; aksi takdirde rastgele bir i0∈I'\S seç, 
S=SU{i0} ve σ'=σ olsun (i0 işi σ(i0) ajanından çıkarılır) 

3. j* ajanı j∈J\{σ(i0)} kümesi içinden  

ܿ௜బ௝ ൅ ݏ௝݉ܽ݇ߙ ቐ0, ቌ ෍ ܽ௜௝
௜אூ,ఙሺ௜ሻୀ௝

ቍ ൅ ܽ௜బ௝ െ ௝ܾቑ 

fonksiyonunu minimize eden ajan ve l=0 olsun  
4. Eğer B(il)\{ik|k≤l}=Ø ise 2 nolu adıma dön, aksi takdirde l=l+1 olsun ve 5 nolu 

adıma geç. 
5. il∈B(il-1)\{ik|k≤l-1} listesinden rastgele bir iş seç ve σ'(il)=σ(il-1) (il işinin çıkarım 

hareketi)  
            σ'(i0)=σ(il)   (i0, σ(il) ajanına eklenir - deneme hareketi)  
            σ'(i0)=j*   (i0, j* ajanına eklenir - deneme hareketi)  

6. 4 nolu adıma dön. 

Tablo 3.4’te kullanılan çeşitli fonksiyon ve kümeler aşağıdaki gibi tanımlanmıştır. 

′ܫ ൌ ൛݇ א ݄׌หܫ א .ݏ ܫ .ݐ ܽ௛,ఙሺ௞ሻ ൑ ሺ݄ሻߪ ݁ݒ ሺ݇ሻݐݑܿݒ݁ܯ ് .ሺ݇ሻൟ                                  ሺ3.5ߪ ሻ 

,ሺ݅ݎ݋݇ݏ ݆ሻ ൌ ܿ௜௝                                                                                                                        ሺ3.6. ሻ 

ሺ݅ሻݎ݋݇ݏ݅ݕ݅݊݁ ൌ ݉݅݊൛ݎ݋݇ݏሺ݇, ሺ݅ሻሻห݇ߪ א ,′ܫ ሺ݇ሻߪ ് ௞,ఙሺ௜ሻܽ݁ݒሺ݅ሻߪ ൑ .ሺ݅ሻൟ                ሺ3.7ݐݑܿݒ݁ܯ ሻ 

ሺ݅ሻܤ ൌ ൛݇ א ,൫݇ݎ݋݇ݏห′ܫ ሺ݅ሻ൯ߪ ൌ ,ሺ݅ሻݎ݋݇ݏ݅ݕ݅݊݁ ሺ݇ሻߪ ് ௞,ఙሺ௜ሻܽ݁ݒሺ݅ሻߪ ൑ .ሺ݅ሻൟ         ሺ3.8ݐݑܿݒ݁ܯ ሻ 
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 başka bir ajandan σ(i) ajanına kaydırılması mümkün işler kümesini; skor(i,j), i işini j ,′ࡵ

ajanına kaydırma maliyetini; ݁݊݅ݎ݋݇ݏ݅ݕሺ݅ሻ, ࡵ′kümesindeki kaynak gereksinimi 

Mevcut(i)’den az olan işler içinden en düşük skor değerine sahip işin skor değerini; B(i), 

ise en iyi skor değerine sahip işler kümesini temsil etmektedir. 

Şekil 3.3. Çıkarım zinciri komşuluk yapısı örneği. 

Yukarıdaki şekilde 5. iş 2 nolu ajandan çıkarılarak serbest iş haline getirilmiştir. Kaynak 

kullanım miktarı Mevcut(5) değerinden az olan işler arasında en iyi skor değerine sahip 

olan 13. iş kaydırma hareketi için seçilir. 13. iş 5 nolu ajandan çıkarılarak 2 nolu ajana 

atanır ve bu çözüme referans yapısı adı verilir. Sonraki adımda uygunluk fonksiyonuna 

olan etkisine göre, serbest olan 5. iş 1 nolu ajana atanır ve deneme hareketi 

gerçekleştirilmiş olur. Elde edilen bu çözüm ÇZ-Uzunluğu=2 için oluşturulmuştur ve 

çift kaydırma hareketi olarak adlandırılır.  

ÇZ-Uzunluğu>2 ise aynı adımlar önceki referans yapısı üzerinde tekrarlanır. Örneğe 

dönecek olursak, Mevcut(13) değeri güncellenerek bir sonraki kaydırma hareketi için 2. 

iş seçilir. 2. iş 5 nolu ajana atandıktan sonra yine uygunluk fonksiyonuna olan etkisine 

göre serbest olan 5. iş 2 nolu ajana atanır. Elde edilen bu çözüm ise ÇZ-Uzunluğu=3 için 

oluşturulmuş durumdur ve önceden belirlenen zincir uzunluğunca aynı adımlar 

tekrarlanarak tam bir komşu çözüme ulaşılır.  



52 
 

Yagiura ve ark. [133] tabu arama algoritması ile birlikte kaydırma, çift kaydırma ve 

çıkarım zinciri komşuluk yapılarını kullanmıştır. Bu tez çalışmasında ise yerel arama 

stratejileri daha farklı bir şekilde uygulanmıştır. 

• Mevcut çalışmada skor fonksiyonu olarak maliyetler (cij) tercih edilmiştir. 

Yagiura ve ark. [133] çalışmasında verilen diğer skor fonksiyonlarının 

kullanımıyla bazı problemlerde daha iyi çözümler ya da daha düşük CPU 

süreleri elde edilebilmektedir. Ancak bütünlük açısından tüm problemler için 

minimum maliyet değeri kullanılmıştır. 

• Kaydırma komşuluk yapısı her iş için tekrarlanmakta ve en iyi gelişme, yeni 

çözüm olarak kabul edilmektedir. 

• Çift kaydırma mekanizması, çıkarım zinciri uzunluğunun 2 olduğu durum 

şeklinde basitleştirilmiş ve aynı zamanda değiştirme deneme hareketine de izin 

verilmiştir. En iyi gelişmeyi veren çift kaydırma hareketini belirleyebilmek için 

I'  kümesindeki her iş için ilgili mekanizma çalıştırılmıştır. 

• Çıkarım zinciri komşuluk yapısının karmaşıklığı ve uzun işlem süresi sebebiyle 

ilk gelişme, yeni çözüm olarak kabul edilmiştir. Aynı çözüm üzerinde çıkarım 

zinciri komşuluğuyla farklı çözümler elde eden izci arıların her birinin farklı bir 

işten başlayarak kaydırma hareketlerini gerçekleştirmesi sağlanmıştır. 

• Tablo 3.5’te detayları verilen ceza katsayısının (αj) uyarlanır kontrolü 

mekanizması, önerilen algoritmada da kullanılmıştır. Ancak αj başlangıç 

değerleri, algoritmanın yakınsama yeteneğini görebilmek için 1 olarak 

belirlenmiştir. 

• AA popülasyon tabanlı bir arama stratejisi kullanmakta ve arama stratejisinin bu 

özelliğinin problem karmaşıklığı arttıkça daha faydalı olması beklenmektedir. 

3.3.3. Uygunluk Fonksiyonu 

GAP’nde optimum çözümlerin uygun olmayan çözümlere çok yakın olduğu tespit 

edildiği için [133] araştırma alanında uygun olmayan çözümlerin de yer almasına izin 

verilmiştir. Böylece uygun çözümlere sahip bölgelerin dar olduğu ya da ayrı ayrı birkaç 
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dar bölgeden oluştuğu durumlarda fayda sağlanmıştır. Bu doğrultuda başlangıç ve 

komşu çözümlerin oluşturulması aşamasında, uygun olmayan çözümlerin üretilmesine 

izin verilmiştir. Dolayısıyla uygunluk fonksiyonu olarak, GAP’ne ait amaç 

fonksiyonuna uygun olmayan çözümlerin cezalandırılmasını amaçlayan bir ceza terimi 

eklenmiştir. Böylece GAP üzerine yapılan çalışmaların çoğunda olduğu gibi uygun 

olmayan alanlarda da çalışmaya izin verilmiş, ancak uygun olmayan çözümler uygun 

olmama derecesine göre cezalandırılmıştır.  

௦ሻߪሺݐ݂݅ ൌ ෍ ෍ ܿ௜௝ݔ௜௝ ൅ ቌ෍ ݏ௝݉ܽ݇ߙ ൝0, ෍ ܽ௜௝ݔ௜௝ െ ௝ܾ

௡

௜ୀଵ

ൡ
௠

௝ୀଵ

ቍ
௡

௜ୀଵ

௠

௝ୀଵ

                                   ሺ3.9. ሻ 

Uygunluk fonksiyonundaki ilk terim toplam atama maliyetini, ikinci terim ise ceza 

fonksiyonunu temsil etmektedir. Eğer bir çözüm uygun değilse o çözüme ait uygunluk 

fonksiyonunun ikinci terimi pozitif değer alacak, dolayısıyla araştırma uygun bir 

çözüme doğru yönlendirilecektir. Diğer taraftan eğer kapasite aşılmamışsa ikinci terim 0 

değerini alacaktır. αj parametresinin değeri, uygun olmayan çözümlerin cezalandırılması 

ve araştırmayı uygun çözümlere yönlendirebilmek amacıyla programın çalıştırılması 

süresince değiştirilmekte yani ceza maliyeti uyarlanır olarak kontrol edilmektedir.  

3.3.4. Ceza Katsayısının Uyarlanır Kontrolü 

Ceza katsayısının uyarlanır kontrolü Yagiura ve ark. [133] çalışması esas alınarak 

gerçekleştirilmiş olup detaylı adımlar Tablo 3.5’te verilmiştir. Komşuluk yapıları için 

bir iterasyonun tamamlanmasından sonra αj değerleri güncellenmektedir. Böylece 

uygun bir çözüm bulunduğunda bu çözüm etrafında daha detaylı bir arama 

yapılabilmesi sağlanmaktadır.  
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Tablo 3.5. αj parametresinin uyarlanır kontrolü. 
1. İzci arı komşuluklarında uygun bir çözüm bulunamamışsa aşağıdaki 

formülasyonla bütün j∈J için αj değerlerini artır 
 

௝ߙ ൌ

ە
۔

௝ߙۓ ቀ1 ൅ ∆. ௝ݍ
௔௥௧ışሺߪሻቁ,                                                            ߙ௝ ൐ 0

∆.
௝ݍ

௔௥௧ışሺߪሻ݉݅݊௛א௃ሼܾ௛ߙ௛|ܾ௛ߙ௛ ൐ 0ሽ

௝ܾ
,       ݀݅ğ݁ܽ݀ݎ݈ܽ݉ݑݎݑ݀ ݎ

 

 

∆ൌ ൞

ܽ݀ıܾ݉üݕü݈݇üğüܽݐݎışı

௃א௝ݏ݇ܽ݉ ቚݍ௝
௔௥௧ışሺߪሻቚ

,                    ݁ğ݁ݏ݇ܽ݉ ݎ௝א௃หݍ௝
௔௥௧ışሺߪሻห ൐ 0

0,                                                                            ݀݅ğ݁ܽ݀ݎ݈ܽ݉ݑݎݑ݀ ݎ
 

 
௝ݍ

௔௥௧ışሺߪሻ ൌ /ሻߪ௝ሺ݌ ௝ܾ 
 

2. İzci arı komşuluklarında en az bir uygun çözüm bulunmuşsa bütün αj 
değerlerini, qartış(σ) değeri qazalış(σ) ve adımbüyüklüğüartışı değeri 
adımbüyüklüğüazalışı olacak şekilde yukarıdaki formülasyonları kullanılarak 
azalt. 

,     

௝ݍ
௔௭௔௟ışሺߪሻ ൌ ൜

െ1,                     ݁ğ݁݌ ݎ௝ሺߪሻ ൌ 0
0, ݀݅ğ݁ݎ  ܽ݀ݎ݈ܽ݉ݑݎݑ݀

 

3.4. Genelleştirilmiş Atama Problemi için Geliştirilmiş Yapay Arı Kolonisi 
Algoritması 

GAP’nin çözümü için çıkarım zinciri komşuluk mekanizmasına sahip YAK algoritması 

geliştirilmiştir. Tablo 3.6’da Geliştirilmiş YAK algoritmasının detaylı adımları 

verilmiştir. 
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Tablo 3.6. GAP için geliştirilmiş YAK algoritması adımları. 
1. Parametreleri başlangıç değerlerine ata 
2. ARUAP algoritması ile P adet başlangıç görevli arı çözümü oluştur (σp) 
3. Görevli arı çözümlerinin uygunluk fonksiyonlarını değerlendir 

௣ሻߪሺݐ݂݅ ൌ ෍ ෍ ܿ௜௝ݔ௜௝ ൅ ቌ෍ ݏ௝݉ܽ݇ߙ ൝0, ෍ ܽ௜௝ݔ௜௝ െ ௝ܾ

௡

௜ୀଵ

ൡ
௠

௝ୀଵ

ቍ
௡

௜ୀଵ

௠

௝ୀଵ

 

4. I=0 
5. Do 

          Uygunluk değerleriyle ilişkili olasılıkları hesapla (en küçükleme için) 

௣݌ ൌ
ቀ∑ 1

௣ሻൗߪሺݐ݂݅ ቁ
ିଵ

௣ሻߪሺݐ݂݅  

                      Hesaplanan olasılıklara göre, görevli arıların yiyecek kaynaklarına  
                      gönderilecek izci arı sayısını belirle, pp*P 

          k=0 
          Do 
                Kaydırma 
                       Eğer fit(σkaydırma)<fit(σp) ise σp=σkaydırma 
                Çift Kaydırma 
                       Eğer fit(σçiftkaydırma)<fit(σp) ise σp=σçiftkaydırma 
                Görevli arılara atanmış her bir izci arı için 
                { 
                       Çıkarım Zinciri 
                             Eğer fit(σçıkarımzinciri)<fit(σp) ise σeniyiizci=σçıkarımzinciri 
                } 
                Eğer fit(σeniyiizci)<fit(σp) ise σp=σeniyiizci ve LimitSayacı(σp)=0,  
                Aksi takdirde LimitSayacı(σp)=LimitSayacı(σp)+1  
                En iyi çözümü güncelle 
                       Eğer (σp uygun ve fit(σp) < fit(σeniyi) ise σeniyi =σp 
                Eğer (LimitSayacı(σp)>limit) ise ARUAP algoritması ile yeni bir kâşif 
                arı çözümü oluştur 
                αj değerlerini güncelle, fit(σp) değerlendir 
                k=k+1    
          While (k<P) 
          Kâşif arı çözümleri ile görevli arı çözümlerini karşılaştır 
                ARUAP algoritması ile S adet kâşif arı çözümü oluştur (ߪ௦) 
                Artan şekilde sıralas=1…Sfit(σs) 
                Azalan şekilde sıralap=1…Pfit(σp) 
                r=0 
                Repeat 
                       Eğer fit(ߪௌି௥) < fit(σP-r) ise σP-r = ߪௌି௥ 
                       r=r+1 

                            Until (r=S)                       
                      I=I+1 
            While (I=MaksIter) 
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Geliştirilmiş YAK algoritması, parametrelerin başlangıç değerlerine atanması başlar ve 

ARUAP algoritması ile P adet başlangıç görevli arı çözümü oluşturulması ile devam 

eder. Görevli arı çözümlerine, çözümün kalitesi ile orantılı sayıda izci arı atanır. Yerel 

arama için her görevli arıya sırasıyla kaydırma ve çift kaydırma komşuluk 

mekanizmaları uygulanır. Daha iyi bir çözüm bulunmuşsa görevli arı çözümü 

güncellenir. Her bir görevli arıya atanan izci arılar, çıkarım zinciri komşuluk yapısı ile 

komşu çözümler oluşturur. En iyi izci arı orijinal görevli arı ile karşılaştırılır, eğer daha 

iyiyse görevli arı çözümü güncellenir. Diğer taraftan görevli arı çözümleri o ana kadar 

bulunan en iyi çözümle karşılaştırılır ve gerekli şartlar sağlanmışsa (uygun ve bir önceki 

en iyi çözümden daha iyi bir çözüm elde edilmişse) en iyi çözüm güncellenir. Görevli 

arı çözümü limit adet iterasyon boyunca geliştirilememişse ARUAP algoritması 

kullanılarak yeni bir kâşif arı çözümü oluşturulur. Bütün bu işlemler sonucunda uygun 

bir çözüm bulunamamışsa Tablo 3.5’te verilen algoritma kullanılarak αj değerleri 

artırılır; en az bir uygun çözüm bulunmuşsa αj değerleri aynı algoritma kullanılarak 

azaltılır. İzci arılar tarafından gerçekleştirilen yerel aramaya paralel olarak, kâşif arılar 

da yeni çözümler araştırmaktadırlar. Elde edilen kâşif arı çözümleri en düşük uygunluk 

değerine sahip görevli arı çözümleri ile karşılaştırılır ve kâşif arılarla daha iyi bir çözüm 

elde edilmişse görevli arı çözümleri güncellenir. Son olarak algoritma adımları önceden 

belirlenmiş iterasyon sayısı kadar tekrarlanır. 

Geliştirilmiş YAK algoritmasında başlangıç çözümlerinin oluşturulması, kullanılan 

komşuluk yapıları, uygunluk fonksiyonu ve ceza katsayısının uyarlanır kontrolü 

aşamaları Geliştirilmiş AA’ndakiler ile aynıdır.  

3.5. Deneysel Çalışma  

3.5.1. Problem Tipleri 

Test problemleri gap1-gap12 (gap1-gap6/kolay, gap7-gap12/zor) ve gapa-gapd (gapa-

gapb/kolay, gapc-gapd/zor) problemlerini içermektedir. Diğer taraftan gap1-12 

problemleri, gapa-gapd problemlerine göre daha kolay problemlerdir. gap1-12 

problemleri 5 ajan-15 iş ile 10 ajan-60 iş arasında değişen problemler kümesine sahip 

olup her problem kümesi 5 farklı problem içermekte; dolayısıyla çözülmesi gereken 60 

problem bulunmaktadır. Bu problem kümeleri en büyükleme formunda olup optimum 
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değerleri bilinmektedir. gapa-gapd problemleri ise 5 ajan-100 iş ile 20 ajan-200 iş 

arasında değişen daha zor problemler olup her problem kümesi 6 farklı problem 

içermektedir. Dolayısıyla çözülmesi gereken 24 problem vardır. Bu gruptaki problemler 

en küçükleme formunda olup sadece en iyi değerleri bilinmektedir. Bütün test 

problemleri OR-Kütüphanesinden (http://mscmga.ms.ic.ac.uk/jeb/orlib/gapinfo.html) 

temin edilmiştir. gapa-gapd test problemlerinin detayları aşağıda verilmiştir. 

gapa: aij∈U(5,25) ve tamsayı, cij∈U(10,50) ve tamsayı, bj=0.6(n/m)15+0.4R şeklinde 

hesaplanmaktadır.  

ܴ ൌ ௃א௝ݏ݇ܽ݉ ∑ ܽ௜௝   ve  ܬ௜ ൌ ݉݅݊൫݆หܿ௜௝ ൑ ܿ௞௝,     ݇׊ א ூ,௃೔సೕא൯௜ܬ                                ሺ3.10. ሻ 

gapb: aij ve cij gapa’daki gibi hesaplanırken bj gapa problemlerinde verilen değerlerin 

%70’i şeklinde hesaplanmaktadır. 

gapc: aij ve cij gapa’daki gibi hesaplanırken ௝ܾ ൌ 0.8 ∑ ܽ௜௝ ݉⁄௜ୀூ  şeklinde 

hesaplanmaktadır.
 
 

gapd: aij∈U(1,100) ve tamsayı, cij = 111-aij+e, e∈U(-10,10) ve tamsayı, ௝ܾ ൌ

0.8 ∑ ܽ௜௝ ݉⁄௜ୀூ  

3.5.2. Geliştirilmiş Arı Algoritması Sonuçları 

Geliştirilmiş AA, C# programlama dilinde kodlanmış ve 1.6 GHz CPU ve 512 MB 

RAM özelliklere sahip Intel Pentium CoreDuo PC kullanılarak gap1-12 ve gapa-d 

problemleri üzerinde analiz edilmiştir. 

Geliştirilmiş AA parametreleri aşağıdaki gibi tanımlanmıştır: 

• Kâşif arı sayısı (S) 

• Görevli arı sayısı (P) 

• En iyi görevli arı sayısı (e) 

• Her bir e adet görevli arıya gönderilecek izci arı sayısı (nep) 

• Her bir P-e adet görevli arıya gönderilecek izci arı sayısı (nsp) 

• Çıkarım zinciri komşuluk yapısının uzunluğu (ÇZ-Uzunluğu) 

• Maksimum iterasyon sayısı (MaksIter) 
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• Gelişme olmaksızın geçirilebilecek maksimum iterasyon sayısı (limit) 

• Ceza katsayısının başlangıç değeri (αjb) 

• adımbüyüklüğüazalışı > 0 

• 0 < adımbüyüklüğüartışı < 1  

Test problemlerinin yapısı gereği Tablo 3.7’de gösterildiği gibi üç farklı parametre 

kümesi belirlenmiştir. Bu parametreler bilimsel yazında verilen genel öneriler ve 

deneyimlere göre belirlenmiştir.  

Tablo 3.7. GAP için geliştirilmiş AA parametrelerinin değerleri. 
Parametreler gap1-12 gapa, gapb gapc, gapd 
S 50 100 200 
P 20 40 80 
e  10 20 40 
nep 5 5 5 
nsp 2 2 2 
ÇZ-Uzunluğu 25 50 75 
MaksIter 250 500 1000 
limit 25 50 100 
αjb 1 1 1 
adımbüyüklüğüazalışı 0.1 0.1 0.1 
adımbüyüklüğüartışı 0.01 0.01 0.01 

Bilimsel yazındaki en iyi sonuçlar genellikle algoritmanın 5 kez çalıştırılması sonucu 

elde edildiğinden, daha âdil bir karşılaştırma için Geliştirilmiş AA da her test problemi 

için 5 kez çalıştırılmış ve elde edilen minimum, ortalama, maksimum ve standart sapma 

değerleri ile 5 koşma sonucu elde edilen en iyi çözüm sayısı Tablo 3.8’de verilmiştir. 

Tablo 3.8’deki sonuçlar gapa-d problemlerini içermekte olup, gap1-12 problemlerine ait 

sonuçlar karşılaştırma bölümünde verilecektir.  
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Tablo 3.8. GAP için geliştirilmiş AA ile elde edilen gapa-d sonuçları. 
Problem Minimum Ortalama Maksimum Standart sapma En iyi çözüm sayısı 
gapa1 1698 1698 1698 0.00 5/5 
gapa2 3235 3235 3235 0.00 5/5 
gapa3 1360 1360 1360 0.00 5/5 
gapa4 2623 2623 2623 0.00 5/5 
gapa5 1158 1158 1158 0.00 5/5 
gapa6 2339 2339 2339 0.00 5/5 
gapb1 1843 1843 1843 0.00 5/5 
gapb2 3552 3552 3552 0.00 5/5 
gapb3 1407 1407 1407 0.00 5/5 
gapb4 2827 2827 2827 0.00 5/5 
gapb5 1166 1166 1166 0.00 5/5 
gapb6 2339 2339 2339 0.00 5/5 
gapc1 1931 1931 1931 0.00 5/5 
gapc2 3456 3456.60 3457 0.54 2/5 
gapc3 1402 1402 1402 0.00 5/5 
gapc4 2806 2806.60 2807 0.54 2/5 
gapc5 1243 1243.60 1244 0.54 2/5 
gapc6 2392 2392.60 2393 0.54 2/5 
gapd1 6353 6354.40 6356 1.34 2/5 
gapd2 12744 12746.20 12748 1.78 1/5 
gapd3 6356 6358.80 6362 2.58 1/5 
gapd4 12442 12445.20 12447 2.04 1/5 
gapd5 6221 6226.60 6232 4.61 1/5 
gapd6 12276 12280 12284 2.91 1/5 

3.5.3. Geliştirilmiş Yapay Arı Kolonisi Algoritması Sonuçları 

Önerilen YAK algoritmasının performans analizi için C# programlama dili ve aynı 

özelliklere sahip PC kullanılarak gap1-12 ve gapa-gapd problem grupları 

değerlendirilmiştir. 

Geliştirilmiş YAK algoritmasının parametreleri aşağıdaki gibi tanımlanmıştır. 

• Görevli arı sayısı (P) 

• Kâşif arı sayısı (S) 

• Çıkarım zinciri komşuluk yapısının uzunluğu (ÇZ-Uzunluğu) 

• Gelişme olmaksızın geçirilebilecek maksimum iterasyon sayısı (limit) 

• Maksimum iterasyon sayısı (MaksIter)  

• Ceza katsayısının başlangıç değeri (αjb) 

• adımbüyüklüğüazalışı > 0 

• 0 < adımbüyüklüğüartışı < 1  

Test problemlerinin yapısı, bilimsel yazında belirtilen ilkeler ve deneyimlere göre 3 

farklı parametre kümesi tanımlanmıştır (Tablo 3.9). Diğer taraftan kolonideki kâşif arı 
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sayısı, biyolojik araştırmalar baz alınarak [60] görevli arı sayısının %10’u şeklinde 

belirlenmiştir. 

Tablo 3.9. GAP için geliştirilmiş YAK algoritması parametrelerinin değerleri. 
Parametreler gap1-gap12 gapa, gapb gapc, gapd 
P 50 100 250 
S 5 10 25 
ÇZ-Uzunluğu 25 50 75 
limit 25 50 100 
MaksIter 250 500 1000 
αjb 1 1 1 
adımbüyüklüğüazalışı 0.1 0.1 0.1 
adımbüyüklüğüartışı 0.01 0.01 0.01 

Önerilen YAK algoritması, gapa-gapd problemleri için yine 5 kez çalıştırılarak elde 

edilen minimum, ortalama, maksimum ve standart sapma değerleri Tablo 3.10’da 

verilmiştir.  

Tablo 3.10. GAP için geliştirilmiş YAK algoritması ile elde edilen gapa-gapd sonuçları. 
Problem Minimum Ortalama Maksimum Standart sapma En iyi çözüm sayısı 
gapa1 1698 1698 1698 0 5/5 
gapa2 3235 3235 3235 0 5/5 
gapa3 1360 1360 1360 0 5/5 
gapa4 2623 2623 2623 0 5/5 
gapa5 1158 1158 1158 0 5/5 
gapa6 2339 2339 2339 0 5/5 
gapb1 1843 1843 1843 0 5/5 
gapb2 3552 3552 3552 0 5/5 
gapb3 1407 1407 1407 0 5/5 
gapb4 2828 2828.40 2829 0.54 3/5 
gapb5 1166 1166 1166 0 5/5 
gapb6 2339 2339 2339 0 5/5 
gapc1 1931 1931 1931 0 5/5 
gapc2 3456 3457 3458 0.70 1/5 
gapc3 1402 1402 1402 0 5/5 
gapc4 2806 2806.40 2807 0.54 3/5 
gapc5 1243 1243 1243 0 5/5 
gapc6 2392  2392.80 2394 1.09 3/5 
gapd1 6357 6358.40 6360 1.34 2/5 
gapd2 12750 12750.60 12751 0.54 2/5 
gapd3 6362 6362.40 6363 0.54 3/5 
gapd4 12454 12455.80 12460 2.38 1/5 
gapd5 6235 6237 6239 1.87 1/5 
gapd6 12293 12297.40 12299 2.60 1/5 

3.5.4. Geliştirilmiş Arı Algoritması ve Yapay Arı Kolonisi Algoritmalarının 

Bilimsel Yazındaki Algoritmalarla Karşılaştırılması 

Tez çalışmasının bu bölümünde öncelikle gap1-12 daha sonra da gapa-d problem 

kümesi için karşılaştırma sonuçlarına yer verilmiştir. Tablo 3.11 bilimsel yazındaki 
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farklı algoritmalar ve önerilen AA ve YAK algoritmalarına ait gap1-12 sonuçlarının 

optimum değerden ortalama sapmalarını vermektedir. En düşük ortalama sapma 

değerleri koyu renklendirilmiş ve görüldüğü gibi her iki algoritma da bütün problem 

kümeleri için algoritmanın her çalışmasında optimum değere ulaşmıştır. Bilimsel 

yazındaki diğer 12 algoritmayla karşılaştırıldığında önerilen algoritmaların daha iyi 

performans gösterdiği aşağıdaki tabloda açıkça görülmektedir.  
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Tablo 3.11. Geliştirilmiş AA ve YAK algoritması ile elde edilen gap1-gap12 sonuçlarının karşılaştırılması. 
 AA YAK MTH FJVBB FSA MTBB SPH LT1FA RSSA TS6 TS1 GAb GAa ASH+LS+TS 
gap1 0.00 0.00 5.43 0.00 0.00 0.00 0.08 1.74 0.00 0.00 0.00 0.00 0.00 - 
gap2 0.00 0.00 5.02 0.00 0.19 0.00 0.11 0.89 0.00 0.24 0.10 0.00 0.01 - 
gap3 0.00 0.00 2.14 0.00 0.00 0.00 0.09 1.26 0.00 0.03 0.00 0.00 0.01 - 
gap4 0.00 0.00 2.35 0.83 0.06 0.18 0.04 0.72 0.00 0.03 0.03 0.00 0.03 - 
gap5 0.00 0.00 2.63 0.07 0.11 0.00 0.35 1.42 0.00 0.04 0.00 0.00 0.10 - 
gap6 0.00 0.00 1.67 0.58 0.85 0.52 0.15 0.82 0.05 0.00 0.03 0.01 0.08 - 
gap7 0.00 0.00 2.02 1.58 0.99 1.32 0.00 1.22 0.02 0.02 0.00 0.00 0.08 0.00 
gap8 0.00 0.00 2.45 2.48 0.41 1.32 0.23 1.13 0.10 0.14 0.09 0.05 0.33 0.04 
gap9 0.00 0.00 2.18 0.61 1.46 1.06 0.12 1.48 0.08 0.06 0.06 0.00 0.17 0.00 
gap10 0.00 0.00 1.75 1.29 1.72 1.15 0.25 1.19 0.14 0.15 0.08 0.04 0.27 0.01 
gap11 0.00 0.00 1.78 1.32 1.10 2.01 0.00 1.17 0.05 0.02 0.02 0.00 0.20 0.00 
gap12 0.00 0.00 1.37 1.37 1.68 1.55 0.10 0.81 0.11 0.07 0.04 0.01 0.17 0.00 
AA: Geliştirilmiş Arı Algoritması, YAK: Geliştirilmiş Yapay Arı Kolonisi Algoritması, MTH: yapısal sezgisel [118], FJVBB: 
bir üst CPU limiti dâhilinde dal-sınır yöntemi [4], FSA: benzetimli tavlama algoritmasında sabitleme [120], MTBB: bir üst CPU 
limiti dâhilinde dal-sınır yöntemi [119], SPH: küme bölüntüleme [121], LT1FA: ilk en iyiyi seçme stratejisiyle uzun dönem iniş 
algoritması [126], RSSA: melez benzetimli tavlama ve tabu arama [126], TS6: ilk en iyiyi seçme stratejisiyle uzun dönem tabu 
arama [126], TS1: en iyiyi seçme stratejisiyle uzun dönem tabu arama [126], GAb: sezgisel operatörlerle genetik algoritma [127], 
GAa: sezgisel operatör olmadan genetik algoritma [127], ASH+LS+TS: yerel arama ve tabu arama ile birleştirilmiş maks-min 
karınca sistemi [134]. 
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Daha büyük boyutlu gapa-d problem kümeleri için geliştirilmiş AA ve YAK 

algoritmalarıyla elde edilen sonuçlar ise bilimsel yazındaki 2000 yılından sonra yapılan 

çalışmalarla karşılaştırılmıştır. Karşılaştırma çalışmasının yayınların basım yılı esas 

alınarak gerçekleştirilmesinin sebebi 2000 yılından önce geliştirilen algoritma 

sonuçlarının kötü performansa sahip olmasıdır. gapa-gapd problemleri için bilimsel 

yazındaki 10 farklı algoritmayla yapılan karşılaştırma sonuçları hesaplama süreleri 

(saniye) ile birlikte Tablo 3.12’de verilmiştir. Ayrıca önerilen algoritmalarla elde edilen 

çözümlerin kalitesinin karşılaştırılabilmesi için kesin bir çözüm yöntemi olan CPLEX 

6.5 sonuçları da Tablo 3.12’de yer almaktadır. Ancak verilen CPLEX 6.5 sonuçları, 100 

iş için 150 saniye, 200 iş için de 300 saniyelik bir süre kısıtına sahiptir. 
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Tablo 3.12. Geliştirilmiş AA ve YAK algoritması ile elde edilen gapa-gapd sonuçlarının karşılaştırılması. 

Problem 
Geliştirilmiş AA Geliştirilmiş YAK DF CGA RLS APT 

CPU Maliyet CPU Maliyet CPU Maliyet CPU Maliyet CPU Maliyet CPU Maliyet 

gapa1 0.18 1698(1) 0.16 1698(1) - - 253 1698(1) - - - - 
gapa2 0.95 3235(1) 0.86 3235(1) - - 502 3235(1) - - - - 
gapa3 0.27 1360(1) 0.33 1360(1) - - 308 1360(1) - - - - 
gapa4 1.31 2623(1) 0.92 2623(1) - - 930 2623(1) - - - - 
gapa5 0.41 1158(1) 0.56 1158(1) - - 350 1158(1) - - - - 
gapa6 1.81 2339(1) 1.27 2339(1) - - 860 2339(1) - - - - 
gapb1 5.97 1843(1) 4.81 1843(1) - 1843(1) 302 1843(1) - - 10.0 1843(1) 
gapb2 45.99 3552(1) 29.67 3552(1) - 3552(1) 432 3601(4) - - 121.9 3553(2) 
gapb3 0.36 1407(1) 0.54 1407(1) - 1407(1) 165 1410(2) - - 7.3 1407(1) 
gapb4 315.04 2827(1) 402.35 2828(2) - 2828(2) 949 2831(4) - - 37.6 2829(3) 
gapb5 1.12 1166(1) 1.67 1166(1) - 1166(1) 474 1166(1) - - 11.4 1166(1) 
gapb6 28.65 2339(1) 17.83 2339(1) - 2340(2) 683 2347(3) - - 132.7 2340(2) 
gapc1 3.61 1931(1) 3.93 1931(1) 0.6 1931(1) 195 1941(2) 137.1 1942(3) 6.6 1931(1) 
gapc2 18.09 3456(1) 15.82 3456(1) 3.7 3457(2) 405 3460(4) 1693.8 3467(6) 146.1 3458(3) 
gapc3 5.81 1402(1) 7.35 1402(1) 3.0 1402(1) 203 1423(5) 178.3 1407(4) 31.5 1402(1) 
gapc4 488.89 2806(1) 368.34 2806(1) 100.5 2807(2) 498 2815(4) 1086.0 2818(5) 104.3 2810(3) 
gapc5 23.16 1243(1) 24.12 1243(1) 21.6 1243(1) 479 1244(2) 309.6 1247(5) 47.5 1244(2) 
gapc6 646.18 2392(2) 562.86 2392(2) 137.4 2391(1) 1059 2397(5) 2694.8 2405(6) 146.4 2396(4) 
gapd1 916.03 6353(1) 828.24 6357(3) 62.6 6357(3) 259 6479(7) 2459.2 6476(6) 71.5 6365(5) 
gapd2 122.41 12744(3) 92.65 12750(6) 95.5 12747(5) 1253 12823(8) 11106.9 12923(9) 318.1 12747(5) 
gapd3 538.29 6356(4) 416.43 6362(4) 107.2 6355(3) 497 6390(9) 5587.3 6469(10) 77.3 6372(5) 
gapd4 743.95 12442(3) 527.92 12454(5) 129.2 12457(6) 1321 12634(9) 47538.7 12746(10) 105.2 12457(6) 
gapd5 1704.46 6221(5) 860.43 6235(6) 111.0 6220(4) 974 6280(9) 13656.8 6358(10) 108.8 6267(8) 
gapd6 922.94 12276(3) 526.02 12293(5) 120.7 12351(8) 2158 12471(11) 116969.0 12617(12) 308.7 12333(6) 
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Problem 
ACO CRH-GA TSEC PREC PRSS NBB CPLEX 6.5 

CPU Maliyet CPU Maliyet CPU Maliyet CPU Maliyet CPU Maliyet CPU Maliyet CPU Maliyet 
gapa1 0.17 1698(1) 1.0 1698(1) -- - - - - - 0.12 1698(1) - 1698(1) 
gapa2 0.61 3235(1) 25.9 3235(1) - - - - - - 0.06 3235(1) - 3235(1) 
gapa3 0.69 1360(1) 97.1 1360(1) - - - - - - 0.05 1360(1) - 1360(1) 
gapa4 126.58 2623(1) 10.2 2623(1) - - - - - - 0.16 2623(1) - 2623(1) 
gapa5 6.71 1158(1) 22.2 1158(1) - - - - - - 0.16 1158(1) - 1158(1) 
gapa6 158.5 2341(2) 24.2 2339(1) - - - - - - 0.28 2339(1) - 2339(1) 
gapb1 191.25 1846(2) 51.2 1843(1) 0.81 1843(1) 0.95 1843(1) 1.41 1843(1) 4.18 1843(1) - 1843(1) 
gapb2 2605.55 3561(3) 165.4 3553(2) 3.13 3552(1) 2.35 3552(1) 2.59 3552(1) 14.66 3552(1) - 3552(1) 
gapb3 115.78 1407(1) 30.9 1407(1) 0.22 1407(1) 0.33 1407(1) 0.18 1407(1) 0.11 1407(1) - 1407(1) 
gapb4 5482.81 2849(5) 381.8 2829(3) 16.00 2827(1) 18.97 2827(1) 91.64 2827(1) 235.85 2827(1) - 2827(1) 
gapb5 613.28 1166(1) 189.3 1166(1) 9.00 1166(1) 3.64 1166(1) 7.24 1166(1) 0.17 1166(1) - 1166(1) 
gapb6 2865.04 2350(4) 378.5 2340(2) 5.19 2339(1) 11.53 2339(1) 18.21 2339(1) 88.98 2340(2) - 2339(1) 
gapc1 192.13 1931(1) 39.2 1931(1) 0.6 1931(1) 0.52 1931(1) 1.34 1931(1) 0.05 1931(1) 2 1931(1) 
gapc2 429.09 3464(5) 320.0 3457(2) 3.7 3456(1) 12.09 3456(1) 2.12 3456(1) 30.43 3456(1) 35 3456(1) 
gapc3 122.43 1406(3) 54.1 1403(2) 3.0 1402(1) 3.20 1402(1) 1.86 1402(1) 7.25 1402(1) 9 1402(1) 
gapc4 1112.31 2825(6) 304.6 2807(2) 403.8 2806(1) 2710.87 2806(1) 48.47 2807(2) 312.64 2806(1) 249 2806(1) 
gapc5 193.85 1246(4) 289.6 1243(1) 22.5 1243(1) 35.83 1243(1) 17.99 1245(3) 90.19 1243(1) 8 1243(1) 
gapc6 1119.25 2411(7) 1140.1 2396(4) 301.8 2391(1) 1268.83 2391(1) 191.32 2394(3) 968.66 2391(1) 296 2391(1) 
gapd1 1.81 6625(8) 327.4 6365(5) 649.2 6353(1) 83.62 6353(1) 14.24 6356(2) 349.93 6353(1) 43 6358(4) 
gapd2 3.31 13197(10) 814.7 12767(7) 3564.8 12743(2) 5712.49 12742(1) 249.89 12745(4) 2937.03 12745(4) 62 12750(6) 
gapd3 174.46 6613(11) 472.6 6373(6) 2440.7 6349(2) 988.07 6348(1) 74.12 6373(6) 2831.47 6349(2) 132 6381(8) 
gapd4 1155.21 13024(11) 1909.7 12536(8) 5829.9 12440(2) 5520.51 12433(1) 246.32 12468(7) 1896.80 12447(4) 27 12457(6) 
gapd5 189.92 6484(11) 902.3 6259(7) 1591.9 6206(3) 2254.88 6192(1) 129.33 6235(6) 2829.38 6200(2) 60 6280(9) 
gapd6 1270.43 12951(13) 3825.7 12386(9) 1757.7 12277(4) 5777.10 12245(1) 518.30 12334(7) 2375.42 12263(2) 297 12393(10) 
DF: tabu arama [132], CGA: yapısal genetik algoritma [144], RLS: yerel arama ve tabu arama ile birleştirilmiş maks-min karınca sistemi [134], APT: yol 
birleştirme algoritması [136], ACO: karınca koloni optimizasyonu [141], CRH-GA: kısıt-oran sezgiseline dayalı genetik algoritma [142], TSEC: çıkarım 
zincirine dayalı tabu arama [133], PREC: çıkarım zincirine dayalı yol birleştirme yaklaşımı [140], PRSS: kaydırma ve çift kaydırma komşuluklarına dayalı yol 
birleştirme yaklaşımı [140], NBB: uygun çözüm üreten dal-sınır algoritması [125], CPLEX 6.5: [133]. 
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de içermektedir. Dolayısıyla PREC ve TSEC algoritmalarının CPU süresi 

gereksiniminin Geliştirilmiş AA’ndan çok daha yüksek olduğunu söyleyebiliriz.  

 

 

Şekil 3.5. En iyi performansa sahip algoritmaların işlem süresi performansı. 

Deneysel çalışmalar sonucunda önerilen algoritmaların gapa, gapb ve gapc (gapc6 

hariç) problem kümelerinin çözümünde oldukça etkin olduğu ve koşmaların neredeyse 

tamamında en iyi çözüme ulaşılabildiği görülmektedir. Diğer taraftan önerilen 

algoritmalar gapd problem kümesinin çözümünde de diğer birçok algoritmaya göre 

oldukça başarılı sonuçlar elde etmiştir. Sonuç olarak yapılan geniş deneysel çalışmalar, 

Geliştirilmiş AA ve YAK algoritmasının karmaşık atama problemlerinin çözümünde 

büyük bir potansiyele sahip olduğunu göstermektedir. 

3.6.  Genelleştirilmiş Atama Problemi’nin Arı Algoritması ile Çözümünde 

Farklı Komşuluk Yapılarının Karşılaştırılması 

Bu bölümde GAP için geliştirilmiş olan AA dört farklı komşuluk yapısı kullanılarak test 

edilmiş ve bu komşuluk yapılarının AA‘nın performansı üzerindeki etkileri 

incelenmiştir. 
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Yapılan bilimsel yazın araştırması neticesinde kaydırma, çift kaydırma, değiştirme ve 

çıkarım zinciri komşulukları olmak üzere GAP’ne özel dört tip komşuluk yapısı 

belirlenmiştir. İlgili komşuluk yapılarının algoritmaya tek tek dâhil edilmesiyle 

algoritma çalıştırılmış ve her bir komşuluk yapısının bireysel performansı incelenmiştir.  

3.6.1. Deneysel Çalışma 

Geliştirilmiş AA C# dilinde kodlanarak 2.20 GHz CPU, 2.00 GB RAM özelliklere sahip 

Intel Pentium CoreDuo PC kullanılarak gapa, gapb test problemlerine uygulanmıştır. 

Algoritma parametreleri bilimsel yazında verilen genel öneriler ve deneyimlere göre 

belirlenmiş olup Tablo 3.14’te verildiği gibidir.  

Tablo 3.13. GAP’nde komşuluk yapısı karşılaştırması için geliştirilmiş AA 
                              parametrelerinin değerleri. 

Parametre Değer 
S 500 
P 50 
e 10 
nep 10 
nsp 5 
ÇZ-Uzunluğu 70 
MaksIter 1000 
limit 50 
αjb 1 
adımbüyüklüğüazalışı 0.1 
adımbüyüklüğüartışı 0.01 

Her komşuluk yapısı için test problemlerinin 10 kez çalıştırılması sonucunda elde edilen 

minimum, ortalama, maksimum ve standart sapma değerleri, optimum CPLEX 6.5 

sonuçları ile birlikte Tablo 3.15’te; bu verilere ait CPU sürelerinin (sn.) minimum, 

ortalama, maksimum ve standart sapma değerleri ise Tablo 3.16’da verilmiştir.  
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Tablo 3.14. Farklı komşuluk yapılarının karşılaştırılması. 

 
Kaydırma Çift kaydırma 

CPLEX 6.5 
min() ort maks ss min() ort maks ss 

gapa1 1698 (10) 1698.0 1698 0.0 1698 (10) 1698.0 1698 0.0 1698 
gapa2 3235 (10) 3235.0 3235 0.0 3235 (9) 3235.1 3236 0.3 3235 
gapa3 1360 (10) 1360.0 1360 0.0 1360 (10) 1360.0 1360 0.0 1360 
gapa4 2623 (10) 2623.0 2623 0.0 2623 (10) 2623.0 2623 0.0 2623 
gapa5 1158 (10) 1158.0 1158 0.0 1158 (10) 1158.0 1158 0.0 1158 
gapa6 2339 (10) 2339.0 2339 0.0 2339 (10) 2339.0 2339 0.0 2339 
gapb1 1855 (1) 1866.2 1879 7.8 1843 (2) 1857.7 1881 12.1 1843 
gapb2 3590 (1) 3610.8 3673 24.8 3557 (1) 3565.4 3571 4.4 3552 
gapb3 1407 (2) 1409.6 1413 2.3 1407 (3) 1409.6 1412 2.0 1407 
gapb4 2859 (1) 2886.2 2919 18.3 2842 (1) 2853.5 2865 6.4 2827 
gapb5 1167 (2) 1170.1 1174 2.4 1166 (1) 1169.5 1171 1.7 1166 
gapb6 2345 (1) 2349.8 2355 3.4 2343 (2) 2345.4 2348 1.7 2339 

 
Değiştirme Çıkarım zinciri  

min() ort maks ss min() ort maks ss 
gapa1 1703 (1) 1711.6 1721 5.1 1698 (4) 1699.4 1702 1.4 
gapa2 3252 (1) 3264.3 3285 10.0 3235 (7) 3235.5 3237 0.8 
gapa3 1394 (1) 1406.0 1421 9.2 1360 (8) 1360.2 1361 0.4 
gapa4 2710 (1) 2728.3 2753 16.0 2635 (1) 2665.7 2698 23.4 
gapa5 1247 (1) 1264.9 1290 12.8 1158 (10) 1158.0 1158 0.0 
gapa6 2511 (1) 2559.3 2613 32.9 2400 (1) 2442.0 2485 26.7 
gapb1 1874 (1) 1889.8 1906 10.0 1857 (1) 1888.5 1915 17.4 
gapb2 3588 (1) 3604.0 3616 9.7 3628 (1) 3648.5 3677 14.4 
gapb3 1438 (1) 1470.0 1504 20.5 1407 (6) 1407.8 1411 1.3 
gapb4 2988 (1) 3010.2 3070 24.1 2846 (1) 2865.2 2881 12.2  
gapb5 1249 (1) 1275.4 1307 19.4 1167 (2) 1168.9 1172 1.5 
gapb6 2586 (1) 2653.1 2698 37.8 2346 (1) 2352.5 2357 3.5 

* min() sütunundaki parantez içindeki değerler algoritmanın 10 kez çalıştırılması 
sonucunda ilgili minimum değerin kaç kez bulunduğunu ifade etmektedir.  
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Tablo 3.15. Farklı komşuluk yapılarının işlem süresi bakımından karşılaştırılması. 

 
Kaydırma Çift kaydırma 

min ort maks ss min ort maks ss 
gapa1 3.23 4.08 4.59 0.48 6.65 96.04 231.81 71.19 
gapa2 8.21 12.69 16.67 2.67 44.81 286.03 923.00 279.89 
gapa3 4.07 5.61 8.95 1.48 5.31 25.56 90.10 32.42 
gapa4 11.71 54.30 141.85 41.46 37.84 168.02 341.89 114.71 
gapa5 5.53 8.13 10.34 1.56 5.42 7.58 10.25 1.26 
gapa6 14.76 31.57 52.23 11.27 54.84 87.68 156.37 31.56 
gapb1 19.21 60.07 103.95 26.48 23.75 111.69 202.09 63.62 
gapb2 6.46 81.50 193.12 61.33 113.59 592.79 1036.93 324.82 
gapb3 12.40 387.89 1106.04 333.10 11.90 123.87 333.17 95.78 
gapb4 17.68 351.59 805.62 289.03 92.25 399.81 904.64 242.25 
gapb5 71.87 421.04 799.14 236.44 17.89 107.01 209.89 82.32 
gapb6 204.12 676.22 1577.96 455.78 103.92 694.48 1162.64 322.97 

 
Değiştirme Çıkarım zinciri 

min ort maks ss min ort maks ss 
gapa1 32.37 148.41 534.67 146.31 60.59 273.52 436.43 129.78 
gapa2 53.98 166.86 328.20 88.12 180.54 628.99 1119.48 307.40 
gapa3 34.37 164.77 357.71 88.45 73.12 237.13 498.65 131.99 
gapa4 83.40 139.95 214.64 45.53 268.53 653.85 1159.01 322.72 
gapa5 60.00 102.31 170.65 33.69 14.78 68.00 160.04 42.60 
gapa6 101.53 211.02 406.03 93.70 260.25 642.56 1174.50 303.52 
gapb1 40.32 101.61 191.20 45.09 54.85 668.43 1576.18 396.06 
gapb2 66.00 235.14 448.14 108.23 446.62 838.03 1591.14 359.32 
gapb3 49.65 193.90 468.75 123.50 98.53 352.28 683.46 210.83 
gapb4 89.70 155.79 237.20 49.10 934.93 1847.56 2925.28 731.27 
gapb5 53.75 144.96 248.07 58.23 183.31 564.74 929.70 232.63 
gapb6 67.06 161.28 216.82 45.72 452.45 1299.56 2919.26 841.56 

Elde edilen sonuçların anlamlı bir şekilde karşılaştırılabilmesi için öncelikle uygun bir 

hipotez testinin seçilmesi gerekmektedir. Uygun hipotez testinin seçimi aşağıdaki 

durumlara bağlıdır (Öztuna ve Elhan): 

• Verilerin ölçüm biçimi: Hipotez testinin seçimini etkileyen en önemli 

faktörlerden biri olan ölçüm biçimi, nitel (sayımla) ya da nicel (ölçümle) olarak 

ikiye ayrılmaktadır. 

• İncelenen grupların bağımlı ya da bağımsız olması: İncelenen grupların 

bağımsız olması, grupların ayrı bireylerden oluşması, diğer bir deyişle bir grupta 

bulunan bir bireyin diğer grupta bulunmaması demektir. Bir birey üzerinde 

birden çok gözlem yapıldığında gruplar bağımlı olmaktadır. 
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• Verilerin dağılımı: İstatistiksel analiz yapılırken dağılımın özelliği çok 

önemlidir. Çünkü parametrik testlerin uygulanabilmesi için dağılımın normal ya 

da normale yakın olması gerekmektedir. 

• Örneklem büyüklüğü: Gruplardaki birey sayısı arttıkça kullanılan testin gücü ve 

güvenilirliği de artar. Gruplardaki birey sayısı fazla ise verilerin normal dağılıma 

uyma ihtimali artar, dolayısıyla parametrik test kullanma şansı artmış olur. 

Gruplardaki birey sayısı az olduğunda ise (30’un altında) genellikle parametrik 

olmayan testler tercih edilir. 

Bilimsel yazında iki bağımsız örnek grubunun karşılaştırılması için farklı yöntemler 

geliştirilmiştir. Bu yöntemler parametrik ve parametrik olmayan yöntemler olmak üzere 

iki gruba ayrılmaktadır. Veri dağılımının normal, varyansların eşit, birbirinden bağımsız 

ve rastgele seçilmiş olan örnek grubu sayısının 30’dan fazla olduğu durumlarda 

parametrik testler (t-testi, varyans analizi gibi), veri dağılımının normal olmadığı ve veri 

sayısının 30’dan az olduğu nicel verilerin varlığında ise parametrik olmayan testler 

(Wilcoxon sıralı toplam testi, Mann-Whitney U testi, Kruskal-Wallis varyans analizi 

gibi) kullanılmaktadır. 

Yukarıda verilen bilgiler ışığında, komşuluk karşılaştırması için elde edilen sonuçların 

nicel ve bağımlı bir yapıya sahip olması, verilerin normal dağılıma uymaması ve 

örneklem büyüklüğünün 30’un altında olması sebebiyle komşuluk yapılarının 

karşılaştırılmasında Wilcoxon sıralı toplam testinin kullanılmasına karar verilmiştir. 

Wilcoxon sıralı toplam testi Wilcoxon [146] tarafından geliştirilmiş olup iki grubun 

ortanca değerleri arasında fark olup olmadığını araştırmaktadır. Ancak ortanca değerler 

arasındaki farkın istatistiksel olarak anlamlı olup olmadığını söyleyebilmek için p 

değerlerine bakmak gerekir. Eğer p değeri α=0,05 önemlilik değerinden küçükse, 

karşılaştırılan ortanca değerler arasında istatistiksel olarak anlamlı bir farklılık var 

demektir.  

Her problem tipi için komşuluk yapıları çiftler halinde ele alınarak elde edilen eşitsizlik 

ilişkisine dayalı Wilcoxon sıralı toplam testi sonuçları Tablo 3.17’de verilmiştir.  
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Tablo 3.16. Wilcoxon sıralı toplam testi ile komşuluk yapılarının değerlendirilmesi. 

 
Kaydırma, 
Çift 
kaydırma 

Kaydırma, 
Değiştirme 

Kaydırma, 
Çıkarım 
zinciri 

Çift 
kaydırma, 
Değiştirme 

Çift 
kaydırma, 
Çıkarım 
zinciri 

Değiştirme, 
Çıkarım zinciri 

ga
pa

1 ortanca-1 - - - - - 1711.5 
ortanca-2 - - - - - 1699.5 
p - - - - - 0.0002 

ga
pa

2 ortanca-1 - - - 3235 3235 3263 
ortanca-2 - - - 3263 3235 3235 
p - - - 0.0002 0.4274 0.0002 

ga
pa

3 ortanca-1 - - - - - 1406 
ortanca-2 - - - - - 1360 
p - - - - - 0.0002 

ga
pa

4 ortanca-1 - - - - - 2722.5 
ortanca-2 - - - - - 2664.5 
p - - - - - 0.0002 

ga
pa

5 ortanca-1 - - - - - - 
ortanca-2 - - - - - - 
p - - - - - - 

ga
pa

6 ortanca-1 - - - - - 2554.5 
ortanca-2 - - - - - 2445 
p - - - - - 0.0002 

ga
pb

1 ortanca-1 1864.5 1864.5 1864.5 1859 1859 1890.5 
ortanca-2 1859 1890.5 1890 1890.5 1890 1890 
p 0.0963 0.0006 0.0052 0.0003 0.0017 0.9097 

ga
pb

2 ortanca-1 3603.5 3603.5 3603.5 3565.5 3565.5 3605 
ortanca-2 3565.5 3605 3646 3605 3646 3646 
p 0.0002 0.7913 0.0022 0.0002 0.0002 0.0002 

ga
pb

3 ortanca-1 1409 1409 1409 1410 1410 1471.5 
ortanca-2 1410 1471.5 1407 1471.5 1407 1407 
p 0.9698 0.0002 0.0539 0.0002 0.0696 0.0002 

ga
pb

4 ortanca-1 2881 2881 2881 2854.5 2854.5 3005.5 
ortanca-2 2854.5 3005.5 2867.5 3005.5 2867.5 2867.5 
p 0.0003 0.0002 0.0073 0.0002 0.0588 0.0002 

ga
pb

5 ortanca-1 1170 1170 1170 1170 1170 1275 
ortanca-2 1170 1275 1169 1275 1169 1169 
p 0.6232 0.0002 0.3258 0.0002 0.3075 0.0002 

ga
pb

6 ortanca-1 2350 2350 2350 2345.5 2345.5 2658.5 
ortanca-2 2345.5 2658.5 2353 2658.5 2353 2353 
p 0.0082 0.0002 0.1212 0.0002 0.0006 0.0002 

* ‘-’ komşuluk yapıları ile elde edilen değerlerin kendi içinde farklılık göstermemesi nedeniyle Wilcoxon 
sıralı toplam testinin gerçekleştirilemediğini göstermektedir. 

* α=0.05 

Yapılan analizler neticesinde gapa1, gapa3, gapa4, gapa6 problemleri için çıkarım 

zinciri komşuluk yapısının değiştirmeye göre daha üstün olduğu belirlenmiştir. gapa2 
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problemi için önceki problemler için yapılan tespitin yanı sıra çift kaydırma komşuluk 

yapısının değiştirmeye göre daha iyi performans gösterdiği belirlenmiştir. gapa5 

problem tipi için kaydırma, çift kaydırma ve çıkarım zinciri komşuluklarıyla elde edilen 

çözümlerin kendi içinde farklılık göstermemesi sebebiyle Wilcoxon sıralı toplam testi 

gerçekleştirilememiştir. Wilcoxon sıralı toplam testinin yapılamadığı ikili 

karşılaştırmalar için grup ortalamalarına bakıldığında ise gapa1, gapa3, gapa4 ve gapa6 

problemleri için en iyi performans gösteren komşuluk yapısının kaydırma ve çift 

kaydırma, ikinci en iyi performansa sahip yapının ise çıkarım zinciri olduğu 

görülmektedir. gapa2 problemi için kaydırma komşuluk yapısın en iyi, çift kaydırma 

komşuluğunun ikinci en iyi ve son olarak çıkarım zinciri komşuluk yapısının üçüncü en 

iyi performansa sahip olduğu görülmüştür. Hiçbir ikili karşılaştırmada Wilcoxon sıralı 

toplam testinin gerçekleştirilemediği gapa5 problemi için ise kaydırma, çift kaydırma ve 

çıkarım zinciri komşuluk yapılarının eşit performansa sahip olup değiştirme komşuluk 

yapısından daha üstün olduğu gözlemlenmiştir. 

Gapb problemlerini tek tek ele alacak olursak; gapb1 problem tipi için kaydırma 

komşuluk yapısının değiştirme ve çıkarım zinciri komşuluk yapılarına göre daha üstün; 

çift kaydırma komşuluk yapısının ise yine değiştirme ve çıkarım zinciri komşuluk 

yapılarına göre daha üstün olduğu belirlenmiş; ancak kaydırma ve çift kaydırma 

komşuluk yapıları arasında ve değiştirme ve çıkarım zinciri komşuluk yapıları arasında 

anlamlı bir farklılık tespit edilememiştir. gapb2 problemleri için çift kaydırma komşuluk 

yapısının diğer komşuluk yapılarına göre daha iyi performans gösterdiği belirlenmiştir. 

gapb3 ve gapb5 problemleri için bütün komşuluk yapılarının değiştirme komşuluk 

yapısından daha üstün olduğu tespit edilmiş ancak bu komşuluklar arasında anlamlı bir 

farklılık belirlenememiştir. gapb4 problemleri için çift kaydırma ve çıkarım zinciri 

komşuluk yapılarının kaydırma ve değiştirme komşuluk yapılarından daha iyi olduğu 

belirlenmiş ancak çift kaydırma ve çıkarım zinciri komşuluk yapıları arasında anlamlı 

bir fark tespit edilememiştir. gapb6 problemi için bütün komşuluk yapılarının 

değiştirme komşuluk yapısından daha üstün olduğu tespit edilmiş, diğer taraftan çift 

kaydırma komşuluk yapısının kaydırma ve çıkarım zincirine göre daha iyi performans 

gösterdiği belirlenmiştir.  

Sonuç olarak ele alınan test problemleri için çift kaydırma komşuluk yapısının en iyi 

performansa, kaydırma ve çıkarım zinciri komşuluk yapılarının ikinci en iyi 
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performansa, değiştirme komşuluk yapısının ise en düşük performansa sahip olduğu 

tespit edilmiştir.  



4. BÖLÜM 

ÇİFT TARAFLI MONTAJ HATTI DENGELEME PROBLEMİ ÇÖZÜM 

YAKLAŞIMLARI 

4.1.  Giriş 

Tez çalışmasının bu bölümünde ÇTMHDP’nin çözümü için YAK ve AA 

algoritmalarından faydalanılacaktır. ÇTMHDP’nin detayları ve bilimsel yazındaki 

çözüm yaklaşımları verildikten sonra probleme ait farklı kısıtlar altında ilgili 

algoritmalarla elde edilen geniş deneysel çalışma sonuçları sunulacaktır.  

Diğer taraftan AA, bulanık çok amaçlı ÇTMHDP’nin çözümü için kullanılacak ve 

bulanık amaçlar farklı teknikler altında incelenerek bu tekniklerin algoritma 

performansı üzerindeki etkisi incelenecektir. 

4.2.  Montaj Hattı Dengeleme Problemi 

İşletmelerin temel amaçları verimlilik düzeyini yükseltmek, kapasite ve kaliteyi 

artırmak, maliyetleri düşürmek ve çalışma ortamını insancıllaştırmaktır. Bu amaçlara 

ulaşmak için ise kullanılan işgücü, makine, malzeme ve teçhizattan oluşan iş 

yöntemlerinin yeniden tasarlanması gerekmektedir. Sürekli üretim sistemlerinde, 

üretimin birimler halinde gerçekleştirildiği ve kitle talebin olduğu durumlarda, yüksek 

üretim hızıyla talebi karşılamanın en makul yolu montaj hatlarının yapılandırılmasıdır. 

Montaj hattı tasarımındaki ana amaçlardan biri, her iş istasyonuna eşit miktarda iş 

dağıtımını yapabilmektir. Bu amaç doğrultusunda işler, istasyon süreleri birbirine eşit 

ya da çok yakın olacak şekilde istasyonlar arasında paylaştırılır. Montaj hattı dengeleme 

ile işler gruplandırılarak istasyonlar kurulur, istasyonların işlem süreleri birbirine yakın 

hale getirilir ve bu şartlar altında montaj hattının aksamadan çalışması sağlanarak 

kaynaklardan maksimum fayda elde edilir. Dengenin sağlanamadığı durumda ise bazı 
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istasyonlarda diğerlerinden daha fazla iş yükü olacağı için, verimlilikte düşüşlerin 

olması ve bir takım kayıpların ortaya çıkması kaçınılmazdır. 

Montaj Hattı Dengeleme Problemi (MHDP) çevrim süresi ve iş sayısının verildiği 

varsayımı altında öncelik ilişkileri ve çevrim süresi kısıtlarına uyarak bir veya daha 

fazla amacı eniyileyecek şekilde, işlerin istasyonlara atanması problemidir. Öncelik 

ilişkisi, montaj prosesindeki işlerin hangi sıra ile gerçekleştirileceğini gösterirken; 

çevrim süresi, bir istasyonda yapılması gereken işlerin tamamlanabilmesi için ürünün o 

istasyonda kalabileceği en uzun süreyi temsil etmektedir. MHDP, Karp [147] tarafından 

ispatlandığı üzere NP-zor yapıya sahip kombinatoryal bir problemdir. 

MHDP çeşitli kriterlere göre aşağıdaki gibi sınıflandırılabilir: 

• Amaç fonksiyonuna göre [148] 

 Tip-1: Belirli bir çevrim süresi dâhilinde istasyon sayısını minimize 

etmeyi amaçlar. 

 Tip-2: Belirli bir istasyon sayısı dâhilinde çevrim süresini minimize 

etmeyi amaçlar. 

 Tip-3: İşyükleri arasındaki dengeyi maksimize etmeyi amaçlar. 

 Tip-4: İşler arasındaki öncelik ilişkilerini dikkate alarak birbiriyle ilişkili 

işlerin aynı istasyonda yer almasını sağlamayı amaçlar. 

 Tip-5: Tip-3 ve tip-4’te kullanılan amaçları aynı zamanda maksimize 

etmeyi amaçlar. 

 Tip-E: Çevrim süresi ve istasyon sayısını aynı zamanda minimize ederek 

hattın verimliliğini maksimize etmeyi amaçlar. 

 Tip-F: Belirli bir iş sayısı ve çevrim süresi için uygun bir hat 

dengelemesi olup olmadığını bulmayı amaçlar. 

• Problemin yapısına göre 

 Scholl [149] ve Becker ve Scholl [150]’e göre 

⎯ Tek modelli montaj hattı dengeleme: Tek tip ürün ya da modelin 

üretildiği hatlardır. 

⎯ Karma modelli montaj hattı dengeleme: Aynı anda birden fazla 

benzer tipteki modelin karma olarak üretildiği hatlardır. Karma 
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modelli üretimin en önemli faydası, müşteri isteklerini 

karşılamak üzere değişik modellerin sürekli olarak üretilmesi ve 

büyük bitmiş ürün stoklarını gerektirmemesidir. 

⎯ Çok modelli montaj hattı dengeleme: Değişik model veya 

ürünlerin üretildiği hatlardır. Belirli bir zamanda bir model parti 

halinde üretilir ve arkadan diğer modellerin üretimine geçilir. 

 Baybars [151]’a göre 

⎯ Basit montaj hattı dengeleme: Kesin ve birbirinden bağımsız 

işlem sürelerine, seri yerleşime, tek yönlü ve özdeş istasyonlara 

sahip tek bir ürünün üretildiği hatlardır. 

⎯ Genel montaj hattı dengeleme: Basit montaj hattı dengelemeye 

göre daha gerçekçi olup paralel, U tipi ve çift taraflı montaj hattı 

dengeleme gibi basit montaj hattı dengelemeye girmeyen bütün 

problemleri içerir. 

Diğer taraftan bilimsel yazında MHDP üzerine yapılan bazı çalışmalar şu şekilde 

özetlenebilir. Salveson [152] doğrusal programlama, Jackson [153] dal ve sınır 

yaklaşımı, Bowman [154] tam sayılı programlama, Held ve ark. [155] dinamik 

programlama üzerinde çalışırken Dar-El [156], Dar-El ve Rubinovitch [157], Baybars 

[158] çeşitli sezgisel yöntemler geliştirmişlerdir. Literatürdeki meta-sezgisel tekniklere 

bakıldığında ise benzetimli tavlama [159], tabu arama [160, 161], genetik algoritma 

[162-166] yaklaşımlarını kullanarak montaj hattı dengeleme problemini çözmüşlerdir. 

Montaj hattı problemlerinin sınıflandırılması ise Baybars [151], Ghosh ve Gagnon 

[167], Kim ve ark. [148], Erel ve Sarin [168], Scholl [149], Becker ve Scholl [150], 

Boysen ve ark. [169] çalışmalarının konusu olmuştur. 

4.3.  Çift Taraflı Montaj Hattı Dengeleme Problemi 

Montaj hatları üzerindeki diğer bir sınıflandırma ise hattın tek ya da çift yönünün 

kullanılmasına bağlı olarak tek ve çift taraflı hatlar olarak karşımıza çıkmaktadır. Tek 

taraflı montaj hattı, montaj hattının sadece bir yönünün kullanıldığı, hat dengeleme 

probleminin temel ve basit hali olup en yaygın incelenen tipidir. Çift taraflı montaj 

hattında ise aynı ürün üzerindeki farklı montaj işleri hattın sağ ve sol yönünde paralel 

olarak gerçekleştirilmektedir. Bu tip montaj hatları genel olarak otobüs ve kamyon gibi 
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büyük boyutlu ürünlerin üretildiği işletmelerde görülmektedir. Tek Taraflı Montaj Hattı 

Dengeleme Problemi’nin (TTMHDP) çözümü için birçok algoritma ve sezgisel yöntem 

önerilmiştir, fakat ÇTMHDP’nin çözümüne yönelik çalışmalar oldukça azdır. Bunun 

nedeninin ÇTMHDP’nin, tek taraflı olana göre çok daha zor olmasından kaynaklandığı 

düşünülmektedir [170]. Nitekim TTMHDP’nde önemli olan hangi işin hangi istasyonda 

işleneceği iken ÇTMHDP’nde hem hangi işin hangi istasyonda işleneceği hem de hangi 

sırayla işleneceği belirlenmelidir. Diğer bir deyişle ÇTMHDP’nde aralarında yakın 

öncelik ilişkisi olan iki iş karşılıklı istasyonlara atandığında biri tamamlanmadan diğeri 

başlayamayacağından boş zaman ortaya çıkabilecektir. Dolayısıyla hattı dengelerken 

işlerin sırasına bağlı tamamlanma zamanları dikkate alınmalıdır. Böylece problem daha 

karmaşık ve çözülmesi zor bir hâl almaktadır. Bartholdi [5] çalışmasında da belirtildiği 

gibi ÇTMHDP NP-Tam bir yapıya sahiptir. Diğer taraftan çift taraflı hatların kullanımı, 

tek taraflı hatlara göre hat uzunluğunun kısalması, üretim süresinin kısalması, araçların 

her iki yönden paylaşılması sebebiyle daha az araç maliyeti, elde bulundurma 

maliyetinin, işçi hareketlerinin ve kurulum süresinin kısalması gibi birçok avantaja 

sahiptir [5]. Şekil 4.1’de bir çift taraflı montaj hattı şematik olarak gösterilmiştir. 

 

 

 

 

Şekil 4.1. Çift taraflı montaj hattı. 

4.3.1. Çift Taraflı Montaj Hattı Dengeleme Problemi Kısıtları 

Çift taraflı montaj hattının tek taraflı montaj hattından temel farkı işlerin operasyon 

yönü kısıtı olmasıdır. Bazı montaj işleri iki yönden birini tercih ederken bazıları ise 

herhangi bir yönde yapılabilmektedir. Bu durumda işler üç şekilde sınıflandırılır: 

sağ(R), sol(L) ve herhangi biri (E). Örneğin bir kamyon montaj hattında benzin deposu 

ve hava filtresinin montajı sadece sol yönde; akü, hava tankı ve egzoz montajı sadece 

sağ yönde yapılabilecek işler iken aks, pervane ve radyatör montajı hattın herhangi bir 

yönünde yapılabilmektedir [170]. 
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TTMHDP sadece öncelik ilişkileri ve çevrim süresi kısıtı olmak üzere iki temel kısıt 

içerirken ÇTMHDP için yalnızca bu kısıtları ele almak yeterli değildir. Çift taraflı 

montaj hattında kullanılan diğer kısıtlar şöyle sıralanabilir: 

• Konumsal kısıtlar: Belirli bir işin işletmenin yerleşiminden dolayı önceden 

belirlenmiş bir istasyona atanması gerektiğini belirtir. Kamyon ve otobüs gibi 

büyük boyutlu ürünlerin üretildiği montaj hatlarında, bazı istasyonlar ağır 

makineler içerebilir ve tasarım aşamasında kurulduktan sonra yerinin 

değiştirilmesi çok zordur. Bundan dolayı bu makinelerde yapılacak işler mutlaka 

bu istasyonlara atanmalıdır.  

• Bölgesel kısıtlar: Hangi işlerin aynı istasyona atanması (pozitif bölgesel) ve 

hangi işlerin aynı istasyona atanmaması (negatif bölgesel) gerektiğini gösterir. 

Pozitif bölgesel kısıta sahip işler ortak bir teçhizat ya da beceri gerektirirken, 

negatif bölgesel kısıta sahip işler aynı istasyona atandığında istasyon alanı 

yetersizliği ortaya çıkabilir. Pozitif bölgesel kısıta sahip işler karşılıklı iki 

istasyona da atanabilirken, negatif bölgesel kısıtlar karşılıklı iki istasyona da 

atanmamalıdır. 

• Senkronizasyon kısıtları: Hattın her iki yönünde aynı anda gerçekleştirilmesi 

gereken, aynı süreye sahip işleri tanımlar. Bu kısıt türüne örnek olarak kamyon 

kabinine ait üst panelin aynı anda her iki yönden yerleştirilmesi verilebilir. 

4.4.  Çift Taraflı Montaj Hattı Dengeleme Problemi Çözüm Yaklaşımları 

Çift taraflı montaj hatlarının tasarımı ve hattın dengelenmesi ilk olarak Bartholdi [5] 

tarafından incelenerek İlk Uygun Kural adı verilen basit bir atama kuralı önerilmiş ve 

temel olarak interaktif bir program üzerine yoğunlaşılmıştır. Kim ve ark. [171] ise 

ÇTMHDP’ne ait ilk matematiksel modelleri sunarak hat uzunluğunun, istasyon 

sayısının ve iş yükü sapmalarının en küçüklenmesi gibi farklı amaçları 

değerlendirmişlerdir. 

Kim ve ark. [170] verilen bir çevrim süresi dâhilinde istasyon sayısını minimize etmeyi 

amaçlayan konumsal kısıtlara sahip ÇTMHDP’nin çözümü için genetik algoritmayı 

kullanmışlardır. Uygun olmayan çözümlere izin veren algoritmada genetik algoritma 

operatörleri olarak ÇTMHDP’ne özel olarak geliştirilmiş, yapılandırılmış tek nokta 

çaprazlama ve mutasyon kullanılmıştır. Önerilen algoritma otomotiv sektöründe faaliyet 
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gösteren bir firmaya uygulanmış, diğer taraftan algoritmanın performansı bilimsel 

yazındaki çeşitli test problemleri üzerinde de denenmiştir. Küçük boyutlu problemler 

için, Kim ve ark. [172] çalışmasındaki tamsayılı programlama yaklaşımı ile elde edilen 

optimum çözümlerle karşılaştırma yapılmış ve önerilen yaklaşımla optimum çözümlerin 

daha kısa sürede bulunduğu belirtilmiştir. Büyük boyutlu problemler için ise tamsayılı 

programlama yaklaşımıyla optimum çözümler bulunamadığından Bartholdi [5] 

çalışmasında verilen İlk Uygun Kural sezgiseli ile karşılaştırma yapılmış ve yine 

önerilen algoritmanın daha iyi performans gösterdiği belirtilmiştir. 

Lee ve ark. [173] geliştirdikleri, tek bir işi atamak yerine işleri gruplar halinde atamaya 

dayanan, grup atama prosedürü ile aynı kurulum ya da teçhizat gerektiren birbiriyle 

ilişkili işlerin aynı istasyona atanmasını sağlamaya çalışırken aynı zamanda da bu işler 

arasındaki boş zamanı minimize etmeyi amaçlamaktadırlar. TTMHDP için geliştirilen 

en uzun işlem süresine sahip işin, kendinden sonra gelen iş sayısı en fazla olan işin, 

kendinden hemen sonra gelen iş sayısı en fazla olan işin ve maksimum sıralı konumsal 

ağırlık değerine sahip işin seçimi şeklinde belirlenen atama kuralları ÇTMHDP için 

güncellenerek büyük boyutlu test problemleri üzerinde önerilen yöntemle 

karşılaştırılmıştır. Karşılaştırma sonucunda geliştirilen yöntem birbiriyle ilişkili işlerin 

aynı istasyona atanması ve bu işler arasındaki boş zamanın minimize edilmesi amacına 

göre bütün problem örneklerinde diğer sezgisel kurallardan daha iyi; istasyon sayısı, 

çevrim süresi ve hattın verimliliği açısından ise bazı problemler için daha iyi 

performans göstermiştir. 

Lapierre ve Ruiz [174] çift taraflı montaj hatlarının yönetimi ve dengelenmesi için 

öncelik tabanlı bir sezgisel yöntem geliştirerek endüstriyel bir uygulama 

gerçekleştirmişlerdir. Firmaya özel olarak oluşturulan ÇTMHDP’nin bilimsel yazındaki 

problemlerden farkı, iki farklı yükseklik ve alt montaj hatlarına sahip olmasıdır. Bu 

özelliklere uygun 248 işe sahip yeni bir veri kümesi oluşturulmuş ve yapılan deneysel 

çalışmada, geliştirilen yöntemle elde edilen çözümler firmanın deneyimlerine dayanarak 

oluşturduğu çözümle karşılaştırılmıştır. İstasyon sayısı açısından önerilen yöntemin 

daha iyi sonuçlar verdiği ancak firmaya ait çözümde daha iyi bir işyükü dağılımının söz 

konusu olduğu görülmüştür. 
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Simaria ve Vilarinho [175] karınca koloni optimizasyonu algoritmasını kullanarak 

bölgesel ve senkronizasyon kısıtlarına sahip Çift Taraflı Karma Model Montaj Hattı 

Dengeleme Problemi’ni (ÇTKMMHDP) çözen ilk çalışmayı gerçekleştirmişlerdir. 

Problemin amacı istasyon sayısını minimize etmek olup, ek amaçlar istasyonlar 

arasındaki işyükünü dengelemek, farklı modeller için istasyonlardaki işyükünü 

dengelemek ve montaj planlayıcısının gruplama tercihlerini sağlamaktır. Gruplama 

tercihleri, montaj hattını planlayan kişinin tercihleri doğrultusunda bazı işlerin aynı 

istasyonda gruplandırılması şeklinde tanımlanmış olup pozitif bölgesel kısıtlarda olduğu 

gibi bir zorunluluk söz konusu değildir. Simaria ve Vilarinho [176] bölgesel ve 

senkronizasyon kısıtlarına sahip ÇTKMMHDP’nin yapısına uygun bir matematiksel 

model sunarak önceki çalışmalarında önerdikleri karınca koloni optimizasyonu 

algoritması üzerinde geniş bir deneysel çalışma gerçekleştirmişlerdir. Aynı hat üzerinde 

eşzamanlı olarak montajı yapılacak iki modele ve 14 işe sahip sayısal bir örnek 

oluşturularak algoritmanın performansı incelenmiştir. Ayrıca büyük boyutlu test 

problemleri için tek modelli, bölgesel ve senkronizasyon kısıtları içermeyen ÇTMHDP 

çözülmüş, elde edilen sonuçlar grup atama prosedürü [173] ile karşılaştırılmış ve çok 

daha iyi sonuçlar elde edilmiştir. 

Hu ve ark. [177] ÇTMHDP’nin çözümü için, geliştirdikleri istasyon tabanlı atama 

prosedürü ile Hoffmann sezgiselinin [178] kombinasyonunu önermişlerdir. Küçük 

boyutlu problemlerle gerçekleştirilen deneysel çalışmada 13 problemin 10’unda alt sınır 

değerine ulaşılmıştır. 

Baykasoglu ve Dereli [179] çalışmalarında bölgesel kısıtlara sahip ÇTMHDP’nin 

çözümü için karınca koloni optimizasyonu algoritmasını kullanmışlardır. Problemin 

amacı verilen çevrim süresi dâhilinde istasyon sayısını minimize etmek ve mümkünse 

birbiriyle ilişkili işlerin aynı istasyona atanmasını sağlamaktır. Genetik algoritma [170] 

ve grup atama prosedürü [173] ile küçük ve büyük boyutlu test problemleri üzerinde 

bölgesel kısıtlar olmadan yapılan karşılaştırmalar önerilen yöntemin daha iyi sonuçlar 

elde ettiğini göstermiştir. 

Wu ve ark. [180] ÇTMHDP’nde istasyon sayısının en küçüklenmesini amaçlayan bir 

matematiksel model önererek dal-sınır algoritmasıyla çözüm yoluna gitmişlerdir. 

TTMHDP için geliştirilen iş-tabanlı dal sınır algoritması ÇTMHDP’ne uyarlanmış, 
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ancak ağaç yapısının aynı boyuttaki bir TTMHDP’ndeki yapıya göre çok büyük olması 

sebebiyle iş atama kuralları ile ağacın boyutu küçültülmüştür.  Küçük ve büyük boyutlu 

bazı test problemleri üzerinde algoritmanın etkinliği test edilmiş ve problemlerin 

tamamında optimum çözüm elde edilmiştir. 

Kim ve ark. [181] verilen istasyon sayısı dâhilinde çevrim süresini minimize edecek bir 

matematiksel model geliştirerek genetik algoritmaya dayalı bir çözüm yöntemi 

önermişlerdir. Geliştirilen matematiksel model ile küçük boyutlu test problemlerinin 

optimum çözümleri elde edilmiş, ancak daha büyük boyutlu problemlerin matematiksel 

modelle çözümü mümkün olmadığından genetik algoritma kullanılmıştır. Büyük 

boyutlu problemler için genetik algoritma ile elde edilen sonuçlar Bartholdi [5] 

tarafından geliştirilen İlk Uygun Kural ve Kim ve ark. [170] çalışmasında önerilen 

genetik algoritmanın performansıyla karşılaştırılmıştır. Çözüm kalitesi ve yakınsama 

hızı açısından önerilen algoritmanın daha iyi performans gösterdiği belirtilmiştir. 

Özcan ve Toklu [182] istasyon sayısının en küçüklenmesini ve iş yükünün istasyonlar 

arasında mümkün olduğunca eşit paylaştırılmasını amaçlayan ÇTMHDP’nin çözümü 

için tabu arama algoritmasını kullanmışlardır. Önerilen algoritma küçük ve büyük 

boyutlu test problemleri üzerinde çalıştırılmış ve sonuçlar genetik algoritma [170], grup 

atama prosedürü [173], karınca koloni optimizasyonu algoritması [179] ve istasyon 

tabanlı atama prosedürü [177] ile karşılaştırılmıştır. Karşılaştırma sonucunda önerilen 

algoritmanın p205 problem kümesi dışında diğer test problemlerinin hepsinde 

karşılaştırılan sonuçlara göre daha iyi ya da aynı sonuçlara ulaşıldığı ancak diğer 

algoritmalara göre daha çok hesaplama süresi gerektirdiği belirtilmiştir. 

Özcan ve Toklu [183] öncelikle Kim ve ark. [181] çalışmasında verilen karma tamsayılı 

programlama modelini istasyon sayısının en küçüklenmesi amacına uygun olarak 

düzenlemiş ve modele bölgesel kısıtları eklemişlerdir. Önerilen model ile küçük boyutlu 

test problemleri çözülerek optimum çözümler elde edilmiştir. Diğer taraftan 

ÇTMHDP’nin çözümü için ilk kez çok-kriterli karar-verme yaklaşımı kullanılmış; 

deterministik ve bulanık olmak üzere iki karma tamsayılı amaç programlama modeli 

önerilmiştir. Bahsedilen modellere ait amaçlar karşılıklı istasyon sayısı, çevrim süresi 

ve her istasyona atanan iş sayısı olarak belirlenmiştir. Amaç programlama modellerinin 
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deneysel sonuçları önerilen modellerin geçerli olduğunu ve karar vericinin çeşitli şartlar 

altında birçok senaryoyu değerlendirebileceğini göstermiştir. 

Özcan ve Toklu [184] ÇTKMMHD probleminin çözümü için bir matematiksel model 

ve benzetimli tavlama yaklaşımı önermişlerdir. Önerilen matematiksel model istasyon 

sayısının en küçüklenmesini amaçlarken, benzetimli tavlama yaklaşımı ise 

ağırlıklandırılmış hat etkinliğinin en büyüklenmesi ve birbiriyle ilişkili işler arasındaki 

boş zamanın en küçüklenmesi ile ilgilenmektedir. 

Tablo 4.1’de bilimsel yazında ÇTMHDP ile ilgili yapılmış çalışmalar problemin yapısı, 

kullanılan amaç, yöntem ve kısıtlara göre özetlenmiştir. Görüldüğü gibi çalışmaların 

çoğu belirli bir çevrim süresi dâhilinde istasyon sayısını minimize etmeyi 

amaçlamaktadır.  Her ne kadar probleme ait matematiksel modeller önerilse de 

problemin NP-zor yapısı sebebiyle birçok metasezgisel yöntem de önerilmiştir. Diğer 

taraftan ÇTMHDP’ne özel kısıtlar çözüm yaklaşımına dâhil edildikçe problem daha 

karmaşıklaşmaktadır. Tablo 4.1’de belirtildiği gibi bir çalışmada sadece konumsal 

kısıtlara sahip ÇTMHDP, iki çalışmada sadece bölgesel kısıtlara sahip ÇTMHDP, iki 

çalışmada ise bölgesel ve senkronizasyon kısıtlarına sahip ÇTKMMHDP ele alınmıştır. 

Tablo 4.1’den görüldüğü gibi bilimsel yazında konumsal, bölgesel ve senkronizasyon 

kısıtlarının tamamının aynı anda probleme dahil edildiği bir çalışma yoktur. 
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Tablo 4.1. ÇTMHDP çalışmalarının sınıflandırılması. 
Araştırmacılar Problem Amaç Kullanılan Yöntem Kullanılan Kısıtlar 

Konumsal Bölgesel Senkronizasyon 
Kim ve ark. [170] ÇTMHDP Tip-1 Genetik algoritma √ - - 
Lee ve ark. [173] ÇTMHDP Tip-5 Grup atama prosedürü - - - 
Lapierre ve Ruiz [174] ÇTMHDP Tip-1 Öncelik tabanlı bir sezgisel yöntem - - - 
Simaria ve Vilarinho [175] ÇTKMMHDP Tip-1 Karınca koloni optimizasyonu algoritması - √ √ 

Simaria ve Vilarinho [176] ÇTKMMHDP ve 
ÇTMHDP Tip-1 Matematiksel model ve karınca koloni optimizasyonu algoritması - √ √ 

Hu ve ark. [177] ÇTMHDP Tip-1 İstasyon tabanlı atama prosedürü - - - 
Baykasoğlu ve Dereli [179] ÇTMHDP Tip-1 Karınca koloni optimizasyonu algoritması - √ - 
Wu ve ark. [180] ÇTMHDP Tip-1 Matematiksel model ve dal-sınır algoritması - - - 
Kim ve ark. [181] ÇTMHDP Tip-2 Matematiksel model ve genetik algoritma - - - 
Özcan ve Toklu [182] ÇTMHDP Tip-1 Tabu arama - - - 
Özcan ve Toklu [183] ÇTMHDP Tip-1 Matematiksel model, deterministik ve bulanık amaç programlama - √ - 
Özcan ve Toklu [184] ÇTKMMHDP Tip-1 Matematiksel model ve benzetimli tavlama - - - 
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4.5. Çift Taraflı Montaj Hattı Dengeleme Problemi için Önerilen Matematiksel 

Model 

Bu bölümde sunulan matematiksel model Simaria ve Vilarinho (2007) çalışmasında 

önerilen matematiksel modele dayanmaktadır. Simaria ve Vilarinho (2007) 

çalışmasında sunulan matematiksel model, bölgesel ve senkronizasyon kısıtlarına sahip 

karma model ÇTMHDP için geliştirilmiş iken, bu çalışmada ilgili matematiksel model 

tek modele indirgenmiş, amaç fonksiyonu farklılaştırılarak herhangi bir özel kısıta sahip 

olmayan ÇTMHDP, bölgesel kısıta sahip ÇTMHDP ve konumsal, bölgesel ve 

senkronizasyon kısıtlarına sahip ÇTMHDP için güncellenmiştir. 

4.5.1. Özel Kısıt İçermeyen Çift Taraflı Montaj Hattı Dengeleme Problemi için 

Önerilen Matematiksel Model ve Sonuçları 

Önerilen karma tamsayılı doğrusal olmayan programlama modeline ait parametreler, 

tamsayılı ve ikili değişkenler, kısıtlar ve amaç fonksiyonu aşağıdaki gibi tanımlanmıştır. 

Parametreler: 

N = işler kümesi (i = 1,…,N) 

K = istasyonlar kümesi (k = 1,…,N) 

B = yönler kümesi (b = 1,2) 

ti = i işinin işlem süresi  

ct = çevrim süresi 

M = büyük bir sayı 

SL= sol yönde yapılacak işler kümesi 

SR= sağ yönde yapılacak işler kümesi 

Sucij = i işinden sonra gelen j işleri kümesi 

Tamsayılı değişkenler: 

di = i işinin başlangıç zamanı 

skb = k. istasyonun b. yönünde kullanılan toplam süre 

istsay = istasyon sayısı 
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İkili değişkenler: 

௜௞௕ݔ ൌ ൜1,   ݅. ݅ş ݇.  ݅݊ݑ݊݋ݕݏܽݐݏ ܾ. ܽݏݎı݊ܽݐܽ ö݊ü݊݁ݕ
0,                                         ݀݅ğ݁ܽ݀ݎ݈ܽ݉ݑݎݑ݀ ݎ 

௞௕ݕ ൌ ൜1,      ݇. .ܾ ݊ݑ݊݋ݕݏܽݐݏ݅ ܽݏݎ݋ݕı݈ı݈݈݊ܽݑ݇ ö݊üݕ
0,                                         ݀݅ğ݁ܽ݀ݎ݈ܽ݉ݑݎݑ݀ ݎ 

௜௝ݑ ൌ ൜1,                   ݅ ݅ş݅ ݆ ݅ş݅݊݀݁݊ ݉݊ܽݐܽ ܽݎ݊݋ݏışܽݏ
0,                                           ݀݅ğ݁ܽ݀ݎ݈ܽ݉ݑݎݑ݀ ݎ 

Kısıtlar: 

 ∑ ௜௞௕ݔ ൌ ௄.஻݅׊                            1  

Bir işin sadece bir istasyona atanmasını sağlar. 

 ∑ ௜௞ଵݔ ൌ ݅׊                    1 א ௜௄ܮܵ  

Sol yönde yapılması gereken işleri sol yöne atamayı sağlar. 

 ∑ ௜௞ଶݔ ൌ ݅׊                    1 א ܴܵ௜௄  

Sağ yönde yapılması gereken işleri sağ yöne atamayı sağlar. 

௜௞௕ሺ݀௜ݔ  ൅ ௜ሻݐ ൑ ,݅׊           ݐܿ ݇, ܾ 

Bir istasyona atanmış işlerin toplam sürelerinin çevrim süresini aşmasını sağlar. 

Diğer bir deyişle işin başlangıç zamanı ve süresinin toplamı çevrim süresini 

geçmemelidir. 

 ∑ ௜௞௕ሺ݀௜ݔ ൅ ሺ݇ െ 1ሻܿݐሻ ൅ ௜ݐ െ ∑ ௝௞௕൫ݔ ௝݀ ൅ ሺ݇ െ 1ሻܿݐ൯ ൑ 0௄,஻௄,஻ ,݅׊               ݆ א

 ௜௝ܿݑܵ

Öncelik ilişkilerini sağlar (i işinden sonra j işinin geldiğini varsayalım; j işinin 

başlangıç zamanı, i işinin başlangıç zamanı ile süresinin toplamından küçük 

olmamalıdır). 

 ∑ ௜௞௕ሺ݀௜ݔ ൅ ሺ݇ െ 1ሻܿݐሻ ൅ ௜ݐ െ ∑ ௝௞௕൫ݔ ௝݀ ൅ ሺ݇ െ 1ሻܿݐ൯ ൑ ௜௝௄,஻௄,஻ݑܯ ,݅׊                             ݆ ב

,௜௝ܿݑܵ ݅ ് ݆ 

 ∑ ௝௞௕൫ݔ ௝݀ ൅ ሺ݇ െ 1ሻܿݐ൯ ൅ ௝ݐ െ ∑ ௜௞௕ሺ݀௜ݔ ൅ ሺ݇ െ 1ሻܿݐሻ ൑ ሺ1ܯ െ ௜௝ሻ௄,஻௄,஻ݑ ,݅׊                 ݆ ב

,௜௝ܿݑܵ ݅ ് ݆ 

Arasında öncelik ilişkisi olmayan işler için çakışmayı önler. i ve j olmak üzere 

iki iş için ya i işi j işinden sonra ya da j işi i işinden sonra atanmıştır. Yukarıdaki 

kısıt kümesindeki ilk kısıt j işinin i işinden sonra, ikinci kısıt ise i işinin j işinden 

sonra atanmış olması durumları için geçerlidir. 
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௞௕ݏ  ൌ ∑ ,݇׊                 ௜ݐ௜௞௕ݔ ܾே  

Her yöndeki toplam işlem süresini hesaplar. 

 ∑ ௜௞௕ݔ ൒ ,݇׊                   ௞௕ݕ ܾே  

 ∑ ௜௞௕ݔ ൑ ,݇׊               ௞௕ݕܯ ܾே  

Sadece açılan istasyonlara iş atanmasını sağlar. 

ݕܽݏݐݏ݅  ൌ ∑ ௞௕௄,஻ݕ  

Açılan istasyonlara göre istasyon sayısını hesaplar. 

Amaç fonksiyonu: 

 min 2ට∑ ൫௬ೖ್ሺ௖௧ି௦ೖ್ሻ൯಼,ಳ
మ

௜௦௧௦௔௬
൅ ∑ ௬ೖ್ሺ௖௧ି௦ೖ್ሻ಼,ಳ

௜௦௧௦௔௬
 

Bilimsel yazın araştırmasından görüldüğü gibi ÇTMHDP çalışmaları genellikle 

belirli bir çevrim süresi dâhilinde istasyon sayısının en küçüklenmesi (tip-1) 

amacına yöneliktir. Bu tez çalışmasında da önerilen algoritmaların performansını 

değerlendirmek açısından aynı amaç kullanılmıştır. Ancak aynı istasyon sayısına 

sahip iki çözümün biri diğerinden daha dengeli bir iş dağılımına sahip 

olabileceğinden amaç fonksiyonu iki parçaya ayrılmıştır. Amaç fonksiyonunun 

ilk parçası aynı istasyon sayısına sahip çözümler arasında en iyi dengeye sahip 

olanı bulmayı amaçlarken ikinci kısım çözümdeki istasyon sayısını minimize 

etmektedir. İlk amacın diğerine göre daha önemli olduğu düşünüldüğünden 2 ile 

çarpılmıştır [185]. 
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Önerilen matematiksel model GAMS 22.7.2 optimizasyon paket programı ile küçük 

boyutlu test problemlerinin bir kısmı için sonuçlar elde edebilmiş, ancak daha büyük 

boyutlu test problemleri için hesaplama süresi çok uzun sürdüğünden sonuç 

alınamamıştır. Herhangi bir özel kısıt içermeyen p9 ve p12 test problemlerine ait 

optimum sonuçlar hesaplama süreleri ile birlikte Tablo 4.2’de verilmiştir. 

min 2ඨ∑ ൫ݕ௞௕ሺܿݐ െ ௞௕ሻ൯௄,஻ݏ
ଶ

ݕܽݏݐݏ݅ ൅
∑ ݐ௞௕ሺܿݕ െ ௞௕ሻ௄,஻ݏ

ݕܽݏݐݏ݅  

෍ ௜௞௕ݔ ൌ ݅׊                                                                                                                                                1
௄.஻

     ሺ1ሻ 

෍ ௜௞ଵݔ ൌ ݅׊                                                                                                                                      1 א ௜     ሺ2ሻܮܵ
௄

 

෍ ௜௞ଶݔ ൌ ݅׊                                                                                                                                     1 א ܴܵ௜     ሺ3ሻ
௄

 

௜௞௕ሺ݀௜ݔ ൅ ௜ሻݐ ൑ ,݅׊                                                                                                                              ݐܿ ݇, ܾ     ሺ4ሻ 

෍ ௜௞௕ሺ݀௜ݔ ൅ ሺ݇ െ 1ሻܿݐሻ ൅ ௜ݐ െ ෍ ௝௞௕൫ݔ ௝݀ ൅ ሺ݇ െ 1ሻܿݐ൯ ൑ 0
௄,஻௄,஻

,ሼ݅׊                                 ݆ሽ א  ௜௝    ሺ5ሻܿݑܵ

෍ ௜௞௕ሺ݀௜ݔ ൅ ሺ݇ െ 1ሻܿݐሻ ൅ ௜ݐ െ ෍ ௝௞௕൫ݔ ௝݀ ൅ ሺ݇ െ 1ሻܿݐ൯ ൑ ௜௝ݑܯ
௄,஻௄,஻

,ሼ݅׊               ݆ሽ ב ݅  ௜௝ܿݑܵ ് ݆   ሺ6ሻ 

෍ ௝௞௕൫ݔ ௝݀ ൅ ሺ݇ െ 1ሻܿݐ൯ ൅ ௝ݐ െ ෍ ௜௞௕ሺ݀௜ݔ ൅ ሺ݇ െ 1ሻܿݐሻ ൑ ሺ1ܯ െ ௜௝ሻݑ
௄,஻௄,஻

,ሼ݅׊     ݆ሽ ב ݅  ௜௝ܿݑܵ

് ݆  ሺ7ሻ 

௞௕ݏ ൌ ෍ ,݇׊                                                                                                                                    ௜ݐ௜௞௕ݔ ܾ
ே

     ሺ8ሻ 

෍ ௜௞௕ݔ ൒ ,݇׊                                                                                                                                       ௞௕ݕ ܾ
ே

     ሺ9ሻ 

෍ ௜௞௕ݔ ൑ ,݇׊                                                                                                                                 ௞௕ݕܯ ܾ     ሺ10ሻ
ே

 

݀௜ ൒  ሺ12ሻ     ݅׊                                                                                                                                                         0

௞௕ݏ ൒ ,݇׊                                                                                                                                                  0 ܾ     ሺ13ሻ 

ݕܽݏݐݏ݅ ൒  ı     ሺ14ሻݕܽݏ݉ܽݐ                                                                                                                                    0

௜௞௕ݔ א ሼ0,1ሽ                                                   ݅׊, ݇, ܾ ሺ15ሻ 

௞௕ݕ א ሼ0,1ሽ                                                        ݇׊, ܾ ሺ16ሻ 

Kısıtlar 

ݕܽݏݐݏ݅ ൌ ∑ ௞௕௄,஻ݕ                                                                                                                              (11) 
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Tablo 4.2. Özel kısıt içermeyen ÇTMHDP için önerilen karma tamsayılı doğrusal 
                       olmayan matematiksel model sonuçları. 

Problem Çevrim süresi İstasyon sayısı CPU (sn.) 

p9 

3 6 28588.61 
4 5 10456.81 
5 4 2549.20 
6 3 799.31 

p12 

4 - 7200 
5 - 7200 
6 - 7200 
7 - 7200 
8 7 7200 

* p12 problem kümesine ait istasyon sayısı değerleri, 
programın 7200 saniye çalıştırılması sonucu elde 
edilen uygun çözüme ait istasyon sayısını vermektedir. 
‘-’ 7200 saniye içerisinde uygun bir çözüm 
bulunamadığını göstermektedir. 

4.5.2. Bölgesel Kısıta Sahip Çift Taraflı Montaj Hattı Dengeleme Problemi için 

Önerilen Matematiksel Model ve Sonuçları 

Bölgesel kısıta sahip ÇTMHDP’nin çözümü için önerilen matematiksel modele iki 

parametre ve iki kısıt eklenmiştir. 

Eklenen Parametreler: 

ZPij=aynı istasyona atanması gereken işler kümesi 

ZNij=aynı istasyona atanmaması gereken işler kümesi 

Eklenen Kısıtlar: 

 ∑ ݇ሺݔ௜௞ଵ ൅ ௜௞ଶሻݔ െ ∑ ݇൫ݔ௝௞ଵ ൅ ௝௞ଶ൯௄ݔ ൌ 0௄ ,݅׊                                   ݆ א ܼ ௜ܲ௝ 

Pozitif bölgesel kısıta sahip işlerin aynı istasyona atanmasını sağlar. 

 ∑ ݇ሺݔ௜௞ଵ ൅ ௜௞ଶሻݔ െ ∑ ݇൫ݔ௝௞ଵ ൅ ௝௞ଶ൯௄ݔ ് 0௄ ,݅׊                                   ݆ א ܼ ௜ܰ௝ 

Negatif bölgesel kısıta sahip işlerin aynı istasyona atanmamasını sağlar. 
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Önerilen matematiksel model GAMS 22.7.2 optimizasyon paket programı ile küçük 

boyutlu test problemlerinin bir kısmı için sonuçlar elde edebilmiş, ancak daha büyük 

boyutlu test problemleri için hesaplama süresi çok uzun sürdüğünden sonuç 

alınamamıştır. Bölgesel kısıta sahip p9 ve p12 test problemlerine ait optimum sonuçlar 

hesaplama süreleri ile birlikte aşağıdaki tabloda (Tablo 4.3) verilmiştir. 

Tablo 4.3. Bölgesel kısıta sahip ÇTMHDP için önerilen karma tamsayılı doğrusal 
                       olmayan matematiksel model sonuçları. 

Problem Çevrim süresi İstasyon sayısı CPU (sn.) 

p9 

3 6 15225.09 
4 5 6399.62 
5 4 3806.94 
6 3 3109.53 

p12 

5 - 7200 
6 - 7200 
7 - 7200 
8 7 7200 

* p12 problem kümesine ait istasyon sayısı değerleri, 
programın 7200 saniye çalıştırılması sonucu elde 
edilen uygun çözüme ait istasyon sayısını vermektedir. 
‘-’ 7200 saniye içerisinde uygun bir çözüm 
bulunamadığını göstermektedir. 

4.5.3. Konumsal, Bölgesel ve Senkronizasyon Kısıtlarına Sahip Çift Taraflı 

Montaj Hattı Dengeleme Problemi için Önerilen Matematiksel Model ve 

Sonuçları 

Konumsal, bölgesel ve senkronizasyon kısıtlarına sahip ÇTMHDP’nin çözümü için 

önerilen matematiksel modele aşağıdaki parametre ve kısıtlar eklenmiştir. 

 

min 2ඨ∑ ൫ݕ௞௕ሺܿݐ െ ௞௕ሻ൯௄,஻ݏ
ଶ

ݕܽݏݐݏ݅ ൅
∑ ݐ௞௕ሺܿݕ െ ௞௕ሻ௄,஻ݏ

ݕܽݏݐݏ݅  

෍ ݇ሺݔ௜௞ଵ ൅ ௜௞ଶሻݔ െ ෍ ݇൫ݔ௝௞ଵ ൅ ௝௞ଶ൯ݔ
௄

ൌ 0
௄

,ሼ݅׊                                                                 ݆ሽ א ܼ ௜ܲ௝    ሺ18ሻ 

෍ ݇ሺݔ௜௞ଵ ൅ ௜௞ଶሻݔ െ ෍ ݇൫ݔ௝௞ଵ ൅ ௝௞ଶ൯ݔ
௄

് 0
௄

,ሼ݅׊                                                                ݆ሽ א ܼ ௜ܰ௝    ሺ19ሻ 

Kısıtlar 

(1)-(17) 



91 
 

Eklenen Parametreler: 

Posik=konumsal kısıta sahip işler kümesi 

ZPij=aynı istasyona atanması gereken işler kümesi 

ZNij=aynı istasyona atanmaması gereken işler kümesi  

SCij= hattın her iki yönünde aynı anda yapılması gereken işler kümesi 

Eklenen Kısıtlar: 

 ∑ ௜௞௕ሺ݀௜ݔ ൅ ሺ݇ െ 1ሻܿݐሻ ൅ ௜ݐ െ௄,஻

∑ ௝௞௕൫ݔ ௝݀ ൅ ሺ݇ െ 1ሻܿݐ൯ ൑ ௜௝௄,஻ݑܯ ,݅׊                   ݆ ב ,௜௝ܿݑܵ ,௜௝ܥܵ ݅ ് ݆ 

 ∑ ௝௞௕൫ݔ ௝݀ ൅ ሺ݇ െ 1ሻܿݐ൯ ൅ ௝ݐ െ ∑ ௜௞௕ሺ݀௜ݔ ൅ ሺ݇ െ 1ሻܿݐሻ ൑ ሺ1ܯ െ௄,஻௄,஻

,݅׊       ௜௝ሻݑ ݆ ב ,௜௝ܿݑܵ ,௜௝ܥܵ ݅ ് ݆ 

Arasında öncelik ilişkisi ve senkronizasyon kısıtı olmayan işler için çakışmayı 

önler. 

 ∑ ௜௞௕ݔ ൌ ,݅׊           1 ݇ א ௜௞஻ݏ݋ܲ  

Konumsal kısıta sahip işlerin belirlenen istasyonlara atanmasını sağlar. 

 ∑ ݇ሺݔ௜௞ଵ ൅ ௜௞ଶሻݔ െ ∑ ݇൫ݔ௝௞ଵ ൅ ௝௞ଶ൯௄ݔ ൌ 0௄ ,݅׊                                   ݆ א ܼ ௜ܲ௝ 

Pozitif bölgesel kısıta sahip işlerin aynı istasyona atanmasını sağlar. 

 ∑ ݇ሺݔ௜௞ଵ ൅ ௜௞ଶሻݔ െ ∑ ݇൫ݔ௝௞ଵ ൅ ௝௞ଶ൯௄ݔ ് 0௄ ,݅׊                                   ݆ א ܼ ௜ܰ௝ 

Negatif bölgesel kısıta sahip işlerin aynı istasyona atanmamasını sağlar. 

 ∑ ௜௞ଵሺ݀௜ݔ ൅ ሺ݇ െ 1ሻܿݐሻ െ ∑ ௝௞ଶሺݔ ௝݀ ൅ ሺ݇ െ 1ሻܿݐሻ௄ ൌ ,݅׊           0 ݆ א ௜௝௄ܥܵ  

Senkronizasyon kısıtına sahip işlerin aynı başlangıç zamanıyla aynı istasyonun 

karşılıklı yönlerine atanmasını sağlar. 
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Önerilen matematiksel model GAMS 22.7.2 optimizasyon paket programı ile küçük 

boyutlu test problemlerinin bir kısmı için sonuçlar elde edebilmiş, ancak daha büyük 

boyutlu test problemleri için hesaplama süresi çok uzun sürdüğünden sonuç 

alınamamıştır. Konumsal, bölgesel ve senkronizasyon kısıtlarına sahip p9 ve p12 test 

problemlerine ait optimum sonuçlar hesaplama süreleri ile birlikte aşağıdaki tabloda 

(Tablo 4.4) verilmiştir. 

Tablo 4.4. Konumsal, bölgesel ve senkronizasyon kısıtlarına sahip ÇTMHDP için 
                      önerilen karma tamsayılı doğrusal olmayan matematiksel model sonuçları. 

Problem Çevrim süresi İstasyon sayısı CPU (sn.) 

p9 
4 5 421.09 
5 4 200.09 
6 4 292.77 

p12 

5 6 53173.70 
6 5 17337.06 
7 5 46576.48 
8 4 11225.56 

4.6.  Çift Taraflı Montaj Hattı Dengeleme Problemi için Arı Algoritması 

ÇTMHDP’nin çözümünde kullanılan AA’nın detaylı adımları Tablo 4.5’te 

verilmektedir. 

 

min 2ඨ∑ ൫ݕ௞௕ሺܿݐ െ ௞௕ሻ൯௄,஻ݏ
ଶ

ݕܽݏݐݏ݅ ൅
∑ ݐ௞௕ሺܿݕ െ ௞௕ሻ௄,஻ݏ

ݕܽݏݐݏ݅  

෍ ݇ሺݔ௜௞ଵ ൅ ௜௞ଶሻݔ െ ෍ ݇൫ݔ௝௞ଵ ൅ ௝௞ଶ൯ݔ
௄

ൌ 0
௄

,ሼ݅׊                                                            ݆ሽ א ܼ ௜ܲ௝    ሺ18ሻ 

෍ ݇ሺݔ௜௞ଵ ൅ ௜௞ଶሻݔ െ ෍ ݇൫ݔ௝௞ଵ ൅ ௝௞ଶ൯ݔ
௄

് 0
௄

,ሼ݅׊                                                            ݆ሽ א ܼ ௜ܰ௝    ሺ19ሻ 

෍ ௜௞௕ݔ ൌ ,ሼ݅׊                                                                                                                 1 ݇ሽ א ௜௞ݏ݋ܲ
஻

     ሺ20ሻ 

෍ ௜௞ଵሺ݀௜ݔ ൅ ሺ݇ െ 1ሻܿݐሻ െ ෍ ௝௞ଶሺݔ ௝݀ ൅ ሺ݇ െ 1ሻܿݐሻ
௄

ൌ ,ሼ݅׊                                  0 ݆ሽ א ௜௝ܥܵ
௄

     ሺ21ሻ 

෍ ௜௞௕ሺ݀௜ݔ ൅ ሺ݇ െ 1ሻܿݐሻ ൅ ௜ݐ െ ෍ ௝௞௕൫ݔ ௝݀ ൅ ሺ݇ െ 1ሻܿݐ൯ ൑ ௜௝ݑܯ
௄,஻௄,஻

,ሼ݅׊             ݆ሽ ב ,௜௝ܿݑܵ ݅    ௜௝ܥܵ ് ݆     ሺ22ሻ 

෍ ௝௞௕൫ݔ ௝݀ ൅ ሺ݇ െ 1ሻܿݐ൯ ൅ ௝ݐ െ ෍ ௜௞௕ሺ݀௜ݔ ൅ ሺ݇ െ 1ሻܿݐሻ ൑ ሺ1ܯ െ ௜௝ሻݑ
௄,஻௄,஻

,ሼ݅׊ ݆ሽ ב ,௜௝ܿݑܵ ݅    ௜௝ܥܵ ് ݆ ሺ23ሻ 

Kısıtlar 

(1)-(5), (8)-(17) 



93 
 

Tablo 4.5. ÇTMHDP’nin çözümü için AA adımları. 
1. Parametreleri başlangıç durumuna getir 
2. Sezgisel kurallarla kâşif arı çözümlerini oluştur 
3. Kâşif arı çözümlerinin uygunluk fonksiyonlarını değerlendir 

௦ሻߪሺݐ݂݅                     ൌ 2ට∑ ሺ௖௧ିௌೖሻమ೙
ೖసభ

௡
൅ ∑ ሺ௖௧ିௌೖሻ೙

ೖసభ
௡

 
4. I=0 
5. Do 
                 Artan şekilde sıralas=1….S fit(σs) ve en iyi P adet çözümü görevli arı 
                 olarak belirle 
                 En iyi e adet görevli arıyı seç 
                 En iyi e adet görevli arının her birine nep adet izci arı ata 
                 Kalan P-e adet görevli arının her birine nsp adet izci arı ata 
                 k=0 
                 Do 
                       Her izci arıya komşuluk yapılarından birini %50 olasılıkla uygula      
                             Eğer fit(σkaydırma) < fit(σp) ise σp = σkaydırma 
                             Eğer fit(σdeğiştirme) < fit(σp) ise σp = σdeğiştirme  
                                 En iyi çözümü güncelle 
                             Eğer minp=1,…,Pfit(σp)<fit(σeniyi) ise σeniyi=σp 
                       k=k+1 
                 While (k<P) 
                 Sezgisel kurallar ile S-P adet yeni kâşif arı çözümleri oluştur 
                 I=I+1  
         While (I<MaksIter) 

ÇTMHDP için AA, parametrelerin başlangıç değerlerine atanması ile başlar (S, P, e, 

nep, nsp, MaksIter) ve 4.6.1 bölümünde detayları verilecek olan sezgisel kurallarla S 

adet başlangıç kâşif arı çözümü oluşturulması ile devam eder. Oluşturulan çözümler 

kümesinden P adet iyi çözüm görevli arı çözümleri olarak; P adet iyi çözüm arasından 

seçilen e adet çözüm ise en iyi çözümler olarak belirlenir. Daha detaylı bir komşuluk 

araması için en iyi çözümlere nep adet izci arı gönderilir. Daha az sayıda izci arı ise 

kalan P-e adet çözüme gönderilir. Yerel arama için her görevli arıya kaydırma ve 

değiştirme komşuluk mekanizmalarından biri uygulanır. Daha iyi bir çözüm 

bulunmuşsa görevli arı çözümü güncellenir. Diğer taraftan en iyi görevli arı çözümü o 

ana kadar bulunan en iyi çözümle karşılaştırılır ve daha iyi bir çözüm bulunmuşsa en iyi 

çözüm güncellenir. Global arama için sezgisel kurallarla S-P adet kâşif arı çözümü 

oluşturularak bir sonraki iterasyona geçecek popülasyon sayısı tamamlanır. Bahsedilen 

adımlar MaxIter sayısınca tekrarlanır. ÇTMHDP’nin çözümünde kullanılan AA’nın 

önemli adımlarının detayları sonraki bölümlerde verilmiştir. 
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4.6.1. Arı Kolonisinin Oluşturulması 

ÇTMHDP’nin çözümü için önerilen AA’nda çözüm dizilerinin gösterim şekli olarak 

sezgisel tabanlı gösterim kullanılmıştır. Bu gösterim şeklinde çözümler dolaylı bir yolla 

temsil edilmekte yani çözüm dizisinin her değeri bir sezgisel kuralı ifade etmektedir. 

Şekil 4.2’de 9 işe sahip bir veri kümesi için örnek bir çözüm dizisi gösterilmiştir. 

Verilen örnekte 2. sırada atanacak işin en kısa işlem süresine sahip iş kuralına göre, 5. 

sırada atanacak işin konumsal kısıta sahip bir işin önceki işine öncelik verme kuralına 

göre ve 7. sırada atanacak işin en uzun işlem süresine sahip iş kuralına göre seçileceği 

ifade edilmektedir. Yani çözüm dizisinin i. elemanı i. sırada atanacak işi atamak için 

kullanılacak sezgisel kuralı temsil etmektedir. 

 

Şekil 4.2. Çözüm dizisi örneği. 

Algoritmaya dâhil edilen sezgisel kurallar aşağıdaki gibidir: 

1) En kısa işlem süresi (EKİS): Minimum işlem süresine sahip işi seçer. 

2) En uzun işlem süresi (EUİS): Maksimum işlem süresine sahip işi seçer. 

3) Kendinden sonraki iş sayısı toplamının minimumu (MiİSa):  Kendinden sonra 

gelen iş sayısı en az olan işi seçer. 

4) Kendinden sonraki iş sayısı toplamının maksimumu (MaİSa): Kendinden sonra 

gelen iş sayısı en çok olan işi seçer. 

5) Kendinden sonraki işlerin toplam işlem süresinin minimumu (MiİSü): 

Kendinden sonra gelen işlerin işlem süresi toplamı en az olan işi seçer. 

6) Kendinden sonraki işlerin toplam işlem süresinin maksimumu (MaİSü): 

Kendinden sonra gelen işlerin işlem süresi toplamı en çok olan işi seçer. 

7) Maksimum sıralı konumsal ağırlık (MaSKA): Sıralı konumsal ağırlık değeri en 

büyük olan işi seçer. Bir işe ait sıralı konumsal ağırlık değeri ise o işin işlem 

süresi ile kendinden sonra gelen işlerin işlem sürelerinin toplamı ile elde edilir.  
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8) Maksimum ortalama sıralı konumsal ağırlık (MaOSKA): Ortalama sıralı 

konumsal ağırlık değeri en büyük olan işi seçer. Bir işe ait ortalama sıralı 

konumsal ağırlık değeri ise o işin işlem süresi ile kendinden sonra gelen işlerin 

işlem sürelerinin toplamının iş sayısına bölünmesi ile elde edilir. 

9) Pozitif bölgesel kısıt önceliği (PBÖ): Pozitif bölgesel kısıta sahip bir işin önceki 

işini seçer. Eğer atanabilir işler listesinde bu özelliğe sahip bir iş yoksa rastgele 

seçim yapılır. 

10) Konumsal kısıt önceliği (KÖ): Konumsal kısıta sahip bir işin önceki işini seçer. 

Eğer atanabilir işler listesinde bu özelliğe sahip bir iş yoksa rastgele seçim 

yapılır. 

11) Senkronizasyon kısıtı önceliği (SÖ): Senkronizasyon kısıtına sahip bir işin 

önceki işini seçer. Eğer atanabilir işler listesinde bu özelliğe sahip bir iş yoksa 

rastgele seçim yapılır. 

Herhangi bir özel kısıta sahip olmayan ÇTMHDP için çözüm dizilerinin oluşturulması 

esnasında (1)-(8) kuralları kullanılır ve çözüm dizisi uzunluğu iş sayısına eşittir. 

Bahsedilen problem için başlangıç çözümlerinin oluşturulması aşaması Şekil 4.3’te 

açıklanmaktadır. Öncelikle ilgili istasyonun kapasitesini aşmayan ve  varsa önceki işleri 

bir istasyona atanmış işlerden (Predi, i işinden hemen önceki işler kümesini göstermek 

üzere) atanabilir işler listesi oluşturulur. Eğer atanabilir işler listesi boş ise yeni bir 

istasyon açılır, aksi takdirde verilen çözüm dizisinde sıradaki kural kullanılarak bir iş 

seçilir ve ataması gerçekleştirilir. Atanan iş, atanabilir işler listesinden çıkarılır. Bu 

adımlar bütün işler bir istasyona atanana kadar tekrarlanır. 
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Şekil 4.3. Özel kısıta sahip olmayan ÇTMHDP için başlangıç çözümlerinin 

oluşturulması. 
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Bölgesel kısıta sahip ÇTMHDP için çözüm dizilerinin oluşturulması esnasında ise (1)-

(9) kuralları kullanılır ve çözüm dizisi uzunluğu, iş sayısından pozitif bölgesel kısıt 

sayısının çıkarılması ile hesaplanır. Çünkü pozitif bölgesel kısıta sahip bir iş 

atandığında karşılık işin de aynı istasyona atanması gerekir ve bu atama esnasında 

atama kurallarından biri kullanılmaz. Bahsedilen problem için başlangıç çözümlerinin 

oluşturulması aşaması Şekil 4.4’te açıklanmaktadır. Öncelikle ilgili istasyonun 

kapasitesini aşmayan, varsa önceki işleri bir istasyona atanmış ve atama yapılacak 

istasyonda negatif bölgesel kısıt karşılığı olmayan işlerden atanabilir işler listesi 

oluşturulur. Eğer atanabilir işler listesi boş ise yeni bir istasyon açılır, aksi takdirde 

verilen çözüm dizisinde sıradaki kural kullanılarak bir iş seçilir. Seçilen işin ataması 

gerçekleştirilmeden önce bu işe ait bir pozitif bölgesel kısıt olup olmadığı kontrol edilir. 

Eğer varsa ve her iki iş de aynı istasyona atanabiliyorsa (öncelik, çevrim süresi ve ilgili 

istasyonda negatif bölgesel kısıt karşılığı olmama şartları sağlanıyorsa) atama 

gerçekleştirilir ve karşılık iş de aynı istasyona atanır, eğer atama gerçekleştirilemiyorsa 

seçilen iş atanabilir işler listesinden çıkarılır. Bu adımlar bütün işler atanana kadar 

tekrarlanır. 
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Şekil 4.4. Bölgesel kısıta sahip ÇTMHDP için başlangıç çözümlerinin oluşturulması. 
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Konumsal, bölgesel ve senkronizasyon kısıtlarına sahip ÇTMHDP için çözüm 

dizilerinin oluşturulması esnasında (1)-(11) kuralları kullanılmakta ve çözüm dizisi 

uzunluğu, iş sayısından konumsal kısıt, pozitif bölgesel kısıt ve senkronizasyon kısıtı 

sayısı çıkarılarak hesaplanmaktadır. Bahsedilen problem için başlangıç çözümlerinin 

oluşturulması aşaması Şekil 4.5’te açıklanmaktadır. Diğer modellerden farklı olarak 

öncelik konumsal kısıta sahip işlere verilmektedir. Konumsal kısıta sahip iş, belirlenen 

istasyona atandıktan sonra bu işe ait bir pozitif bölgesel kısıt olup olmadığı kontrol 

edilerek eğer varsa karşılık iş de aynı istasyona atanır. Diğer taraftan yine konumsal 

kısıta sahip işe ait bir senkronizasyon kısıtı olup olmadığı kontrol edilir ve karşılık iş de 

aynı başlangıç süresiyle karşılık istasyona atanır. Daha sonra başlangıç istasyonuna 

dönülerek ilgili istasyonun kapasitesini aşmayan, varsa önceki işleri bir istasyona 

atanmış ve atama yapılacak istasyonda negatif bölgesel kısıt karşılığı olmayan işlerden 

atanabilir işler listesi oluşturulur. Eğer atanabilir işler listesi boş ise yeni bir istasyon 

açılır, aksi takdirde verilen çözüm dizisinde sıradaki kural kullanılarak bir iş seçilir. 

Seçilen işin ataması gerçekleştirilmeden önce bu işe ait bir pozitif bölgesel kısıt olup 

olmadığı kontrol edilir. Eğer varsa ve her iki iş de aynı istasyona atanabiliyorsa 

(öncelik, çevrim süresi ve ilgili istasyonda negatif bölgesel kısıt karşılığı olmama 

şartları sağlanıyorsa)  atama gerçekleştirilir ve karşılık iş de aynı istasyona atanır, eğer 

atama gerçekleştirilemiyorsa seçilen iş atanabilir işler listesinden çıkarılır. Aynı şekilde 

seçilen işin ataması gerçekleştirilmeden önce bu işe ait bir senkronizasyon kısıtı olup 

olmadığı kontrol edilir ve eğer varsa karşılık iş de aynı başlangıç süresiyle karşılık 

istasyona atanır. Eğer atama gerçekleştirilemiyorsa (öncelik, çevrim süresi ve ilgili 

istasyonda negatif bölgesel kısıt karşılığı olmama şartları sağlanamıyorsa) seçilen iş 

atanabilir işler listesinden çıkarılır. Bu adımlar bütün işler atanana kadar tekrarlanır. 
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Şekil 4.5. Konumsal, bölgesel ve senkronizasyon kısıtlarına sahip ÇTMHDP için 

başlangıç çözümlerinin oluşturulması. 
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4.6.2. Uygunluk Fonksiyonu ve Komşuluk Yapıları 

Uygunluk fonksiyonu, ÇTMHDP için önerilen matematiksel modeldeki gibi ele alınmış 

olup n istasyon sayısını, sk k. istasyondaki toplam işlem süresini göstermek üzere 

aşağıdaki gibi hesaplanmaktadır. 

௦ሻߪሺݐ݂݅ ൌ 2ඨ∑ ሺܿݐ െ ܵ௞ሻଶ௡
௞ୀଵ

݊ ൅
∑ ሺܿݐ െ ܵ௞ሻ௡

௞ୀଵ

݊                                                             ሺ4.1. ሻ 

Komşuluk yapısı olarak ise algoritmanın performansını öne çıkarabilmek için basit 

yapılar kullanılmıştır. Bu amaçla kaydırma ve değiştirme komşuluk yapıları %50 

olasılıkla değişimli olarak kullanılmıştır. Diğer taraftan her bir komşuluk aramasında 

dizi uzunluğunun %10’u kadar kaydırma ya da değiştirme yapılmıştır. 

4.7.  Çift Taraflı Montaj Hattı Dengeleme Problemi için Yapay Arı Kolonisi 

Algoritması 

ÇTMHDP’nin çözümünde kullanılan YAK algoritmasının detaylı adımları Tablo 4.6’da 

verilmektedir.  

YAK algoritması, parametrelerin başlangıç değerlerine atanması ile başlar ve sezgisel 

kurallarla P adet başlangıç görevli arı çözümü oluşturulması ile devam eder. Görevli arı 

çözümlerine, çözümün kalitesi ile orantılı sayıda izci arı atanır. Yerel arama için her 

görevli arıya kaydırma ve çift kaydırma komşuluk mekanizmalarından biri uygulanır. 

Daha iyi bir çözüm bulunmuşsa görevli arı çözümü güncellenir. Diğer taraftan görevli 

arı çözümleri o ana kadar bulunan en iyi çözümle karşılaştırılır ve daha iyi bir çözüm 

bulunmuşsa en iyi çözüm güncellenir. Görevli arı çözümü limit parametresi ile 

belirlenen sayıda iterasyon boyunca geliştirilememişse sezgisel kurallarla yeni bir kâşif 

arı çözümü oluşturulur. Son olarak algoritma adımları önceden belirlenmiş iterasyon 

sayısı kadar tekrarlanır. 

YAK algoritmasında başlangıç çözümlerinin oluşturulması, kullanılan komşuluk 

yapıları ve uygunluk fonksiyonu AA’ndakiler ile aynıdır.  
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Tablo 4.6. ÇTMHDP için YAK algoritması adımları. 
1. Parametreleri başlangıç değerlerine ata 
2. Sezgisel kurallarla başlangıç görevli arı çözümlerini oluştur (σp) 
3. Görevli arı çözümlerinin uygunluk fonksiyonlarını değerlendir 

௣ሻߪሺݐ݂݅ ൌ 2ඨ∑ ሺܿݐ െ ܵ௞ሻଶ௡
௞ୀଵ

݊ ൅
∑ ሺܿݐ െ ܵ௞ሻ௡

௞ୀଵ

݊  

4. I=0 
5. Do 

Uygunluk değerleriyle ilişkili olasılıkları hesapla 

௣݌ ൌ
൫∑ ௣ሻିଵ൯ߪሺݐ݂݅

ିଵ

௣ሻߪሺݐ݂݅  

 
Olasılıklara göre izci arıları görevli arılara ata 

Hesaplanan olasılıklara göre, görevli arıların yiyecek kaynaklarına 
gönderilecek izci arı sayısını belirle,  pp*P 

k=0 
Do 
            Her izci arıya komşuluk yapılarından birini %50 olasılıkla uygula 

                                     Eğer fit(σkaydırma) < fit(σp) ise σp = σkaydırma, LimitSayacı(σp)=0 
                                     Aksi takdirde LimitSayacı(σp)=LimitSayacı(σp)+1 
                                     Eğer fit(σdeğiştirme) < fit(σp) ise σp = σdeğiştirme, 
                                     LimitSayacı(σp)=0 
                                     Aksi takdirde LimitSayacı(σp)=LimitSayacı(σp)+1  
                              En iyi çözümü güncelle 

                                  Eğer minp=1,…,Pfit(σp)<fit(σeniyi) ise σeniyi=σp 
                              Eğer (LimitSayacı(σp)>limit) ise sezgisel kurallarla yeni bir               
                              kâşif arı çözümü oluştur 
                              k=k+1    
                   While (k<P) 
                  I=I+1 
        While (I=MaksIter) 

4.8. Deneysel Çalışma  

Bilimsel yazındaki çalışmaların sonuçlarıyla birebir karşılaştırma yapabilmek için AA 

ve YAK algoritmaları özel kısıt içermeyen, bölgesel kısıta sahip ve konumsal, bölgesel 

ve senkronizasyon kısıtlarına sahip ÇTMHDP için ayrı ayrı çalıştırılıp sonuçlar ilgili 

çalışmalarla karşılaştırılmıştır. 

Test problemleri küçük boyutlu (p9, p12, p16, p24) ve büyük boyutlu (p65, p148, p205) 

problemleri içermekte olup problem adlarındaki sayılar ilgili verideki iş sayısını 

göstermektedir. p9, p12 ve p24 problemleri Kim ve ark. (2000) çalışmasından, p16, 

p65, p205 problemleri Lee ve ark. (2001) çalışmasından ve son olarak p148 problemi 
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ise Bartholdi (1993) çalışmasından alınmıştır. p148 problemindeki 79 ve 108 nolu işlere 

ait işlem süreleri diğer işlem sürelerine göre çok büyük olduğundan ve çevrim süresi 

üzerinde bir kısıt oluşturduğundan karşılaştırma yapılan diğer çalışmalarda olduğu gibi 

bu işlere ait süreler sırasıyla 2.81 yerine 1.11 ve 3.83 yerine 0.43 olarak alınmıştır. p9, 

p12, p24, p65, p148 problemlerine ait konumsal kısıt verileri Kim ve ark. (2000) 

çalışmasından alınmışken, p16 ve p205 problemlerine ait konumsal kısıt verileri ise bu 

çalışmada belirlenmiştir. p9, p12, p24, p65, p148, p205 problemlerine ait bölgesel kısıt 

verileri Baykasoğlu ve Dereli (2008) çalışmasından, p16 problemine ait bölgesel kısıt 

verileri ise Özcan ve Toklu (2009b) çalışmasından alınmıştır. Bütün test problemlerine 

ait senkronizasyon kısıtları ise verinin özelliklerine bağlı olarak bu çalışmada 

belirlenmiştir. 

4.8.1. Arı Algoritması Sonuçları  

ÇTMHDP’nin çözümü için önerilen AA, C# programlama dilinde kodlanarak 2.2 GHz 

CPU ve 2GB RAM özelliklere sahip Intel Core 2 Duo PC kullanılarak test problemleri 

üzerinde analiz edilmiştir. Kullanılan kontrol parametresi değerlerinin belirlenmesi 

aşamasında {S,P,e,nep,nsp}: {20,10,5,4,2}, {15,5,3,4,2}, {10,5,3,2,1}, {5,3,2,2,1} 

olmak üzere 4 farklı parametre kombinasyonu oluşturulmuştur. Yapılan analizler 

neticesinde 3. parametre kombinasyonu en iyi performansı gösterdiğinden Tablo 4.7’de 

verildiği gibi algoritmanın parametreleri olarak bu değerler kullanılmıştır. 

Tablo 4.7. ÇTMHDP için AA parametrelerinin değerleri. 
Parametre Değer 
S 10 
P 5 
e 3 
nep 2 
nsp 1 
MaksIter 100 

AA her problem kümesinin bütün çevrim süreleri için 10’ar kez çalıştırılmıştır. 

Minimum, ortalama ve maksimum istasyon sayıları, minimum CPU süreleri ile birlikte 

ilgili tablolarda sunulmuştur. CPU süresi olarak minimum değerlerin dikkate 

alınmasının sebebi karşılaştırma yapılan çalışmalarda da minimum CPU sürelerinin 

verilmesidir. Daha önce bahsedildiği gibi deneysel çalışma 3 kategoride ele alınmıştır. 

Bunlardan ilki olan özel kısıt içermeyen ÇTMHDP sonuçları Tablo 4.8, bölgesel kısıta 
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sahip ÇTMHDP sonuçları Tablo 4.9, konumsal, bölgesel ve senkronizasyon kısıtlarına 

sahip ÇTMHDP sonuçları ise Tablo 4.10’da verilmiştir. 

Tablo 4.8. AA ile özel kısıt içermeyen ÇTMHDP sonuçları. 

p9 

Çevrim 
süresi min ort maks CPU 

(sn.) 

p65 

Çevrim 
süresi min ort maks CPU 

(sn.) 
3 6 6 6 <0.02 326 17 17 17 0.250 
4 5 5 5 <0.02 381 14 14.5 15 1.078 
5 4 4 4 <0.02 435 12 12.9 13 5.125 
6 3 3 3 <0.02 490 11 11.3 12 2.203 

p12 

4 7 7 7 <0.02 544 10 10 10 0.312 
5 6 6 6 <0.02 

p148 

204 26 26 26 0.406 
6 5 5 5 <0.02 255 21 21 21 0.375 
7 4 4 4 <0.02 306 17 17.6 18 0.390 
8 4 4 4 <0.02 357 15 15 15 0.359 

p16 

15 6 6 6 <0.02 408 13 13.3 14 0.453 
16 6 6 6 <0.02 459 12 12 12 0.171 
18 6 6 6 <0.02 510 11 11 11 0.406 
19 5 5 5 <0.02 

p205 

1133 22 23.7 24 33.390 
20 5 5 5 <0.02 1322 20 20 20 32.953 
21 5 5 5 <0.02 1510 17 17.9 18 2906.859 
22 4 4 4 <0.02 1699 16 16 16 5.578 

p24 

18 8 8 8 <0.02 1888 14 14.3 15 12.390 
20 8 8 8 <0.02 2077 12 12.8 13 149.703 
24 6 6.4 7 0.031 2266 12 12 12 7.359 
25 6 6 6 <0.02 2454 11 11.9 12 921.682 
30 5 5 5 <0.02 2643 10 10 10 21.437 
35 4 4 4 <0.02 2832 10 10 10 8.640 
40 4 4 4 <0.02  

* CPU süresi olarak bulunan <0.02 değeri, karşılık gelen istasyon sayısının bir iterasyonda bulunduğunu 
göstermektedir. 
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Tablo 4.9. AA ile bölgesel kısıta sahip ÇTMHDP sonuçları. 

p9 

Çevrim 
süresi min ort maks CPU 

(sn.) 

p65 

Çevrim 
süresi min ort maks CPU 

(sn.) 
3 7 7 7 <0.02 326 17 17.3 18 0.250 
4 5 5 5 <0.02 381 14 14.9 15 9.328 
5 4 4 4 <0.02 435 13 13 13 0.265 
6 3 3 3 <0.02 490 11 11.8 12 6.015 

p12 

5 6 6 6 <0.02 544 10 10 10 0.687 
6 5 5 5 <0.02 

p148 

204 26 26.7 27 6.421 
7 4 4 4 <0.02 255 21 21.2 22 1.218 
8 4 4 4 <0.02 306 18 18 18 2.000 

p16 

15 6 6.4 7 3.657 357 15 15.6 16 14.531 
16 6 6.3 7 2.625 408 14 14 14 0.734 
18 6 6 6 <0.02 459 12 12.4 13 2.625 
19 6 6 6 <0.02 510 11 11.4 12 4.359 
20 5 5 5 <0.02 

p205 

1133 23 23.9 24 41.593 
21 5 5 5 0.093 1322 21 21.3 22 1.843 
22 5 5.2 6 0.512 1510 18 18 18 11.609 

p24 

18 8 8 8 <0.02 1699 17 17.8 18 13.25 
20 8 8 8 <0.02 1888 16 16 16 5.015 
24 6 6.2 7 0.109 2077 14 14.9 15 260.031 
25 6 6 6 <0.02 2266 14 14 14 12.078 
30 5 5 5 <0.02 2454 14 14 14 5.843 
35 4 4 4 <0.02 2643 13 13.8 14 94.578 
40 4 4 4 <0.02 2832 12 12 12 9.692 
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Tablo 4.10. AA ile konumsal, bölgesel ve senkronizasyon kısıtlarına sahip ÇTMHDP 
                     sonuçları. 

p9 

Çevrim 
süresi min ort maks CPU 

(sn.) 

p65 

Çevrim 
süresi min ort maks CPU 

(sn.) 
4 5 5 5 <0.02 326 18 18 18 0.234 
5 4 4 4 <0.02 381 15 15.1 16 0.625 
6 4 4 4 <0.02 435 14 14 14 0.390 

p12 

5 6 6 6 <0.02 490 13 13 13 0.281 
6 5 5 5 <0.02 544 12 12 12 0.578 
7 5 5 5 <0.02 

p148 

204 26 26.9 27 19.093 
8 4 4 4 <0.02 255 23 23 23 2.421 

p16 

15 7 7 7 <0.02 306 20 20.7 21 4.359 
16 7 7 7 <0.02 357 18 18.1 19 2.015 
18 7 7 7 <0.02 408 17 18 19 13.593 
19 7 7 7 <0.02 459 17 17.6 18 2.078 
20 7 7 7 <0.02 510 17 17 17 2.468 
21 7 7 7 <0.02 

p205 

1133 25 25.7 26 51.843 
22 6 6 6 <0.02 1322 23 23 23 10.875 

p24 

18 8 8 8 <0.02 1510 21 21 21 16.984 
20 8 8 8 <0.02 1699 19 19.9 20 926.781 
24 7 7.2 8 0.062 1888 19 19.5 20 287.109 
25 7 7 7 <0.02 2077 19 19 19 34.218 
30 6 6 6 <0.02 2266 18 18.2 19 41.734 
35 6 6 6 <0.02 2454 18 18 18 48.312 
40 6 6 6 <0.02 2643 18 18 18 55.828 

 2832 18 18 18 66.093 

4.8.2. Yapay Arı Kolonisi Algoritması Sonuçları 

ÇTMHDP’nin çözümü için önerilen YAK algoritması, C# programlama dilinde 

kodlanmış ve aynı özelliklere sahip PC kullanılarak test problemleri üzerinde analiz 

edilmiştir. Parametre değerlerinin belirlenmesinde AA parametreleri temel alınarak 

algoritma içerisinde aynı sayıda arı olmasına dikkat edilmiştir. YAK algoritması 

parametrelerinin değerleri Tablo 4.11’deki gibi belirlenmiştir. 

Tablo 4.11. ÇTMHDP için YAK algoritması parametrelerinin değerleri. 
Parametre Değer 
P 10 
limit 25 
MaksIter 100 

YAK algoritması da yine AA’nda olduğu gibi her problem kümesinin bütün çevrim 

süreleri için 10’ar kez çalıştırılmıştır. Minimum, ortalama ve maksimum istasyon 

sayıları, minimum CPU süreleri ile birlikte ilgili tablolarda sunulmuştur. Bunlardan ilki 

olan özel kısıt içermeyen ÇTMHDP sonuçları Tablo 4.12, bölgesel kısıta sahip 
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ÇTMHDP sonuçları Tablo 4.13, konumsal, bölgesel ve senkronizasyon kısıtlarına sahip 

ÇTMHDP sonuçları ise Tablo 4.14’te verilmiştir. 

Tablo 4.12. YAK algoritması ile özel kısıt içermeyen ÇTMHDP sonuçları. 

p9 

Çevrim 
süresi min ort maks CPU 

(sn.) 

p65 

Çevrim 
süresi min ort maks CPU 

(sn.) 
3 6 6 6 <0.02 326 17 17 17 0.203 
4 5 5 5 <0.02 381 14 14.5 15 0.343 
5 4 4 4 <0.02 435 13 13 13 0.281 
6 3 3 3 <0.02 490 11 11.4 12 1.015 

p12 

4 7 7 7 <0.02 544 10 10 10 0.250 
5 6 6 6 <0.02 

p148 

204 26 26 26 0.343 
6 5 5 5 <0.02 255 21 21 21 0.484 
7 4 4 4 <0.02 306 17 17.9 18 14.328 
8 4 4 4 <0.02 357 15 15 15 0.156 

p16 

15 6 6 6 <0.02 408 13 13.6 14 1.359 
16 6 6 6 <0.02 459 12 12 12 5.968 
18 6 6 6 <0.02 510 11 11 11 0.343 
19 5 5 5 <0.02 

p205 

1133 22 23.3 24 71.578 
20 5 5 5 <0.02 1322 20 20 20 23.312 
21 5 5 5 <0.02 1510 18 18 18 4.375 
22 4 4 4 <0.02 1699 16 16 16 15.625 

p24 

18 8 8 8 <0.02 1888 14 14.6 15 40.031 
20 8 8 8 <0.02 2077 14 14 14 5.125 
24 6 6.3 7 0.031 2266 12 12 12 12.328 
25 6 6 6 <0.02 2454 12 12 12 60.687 
30 5 5 5 <0.02 2643 10 10.1 11 17.109 
35 4 4 4 <0.02 2832 10 10 10 7.390 
40 4 4 4 <0.02  
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Tablo 4.13. YAK algoritması ile bölgesel kısıta sahip ÇTMHDP sonuçları. 

p9 

Çevrim 
süresi min Ort maks CPU 

(sn.) 

p65 

Çevrim 
süresi min Ort maks CPU 

(sn.) 
3 7 7 7 <0.02 326 18 18 18 0.218 
4 5 5 5 <0.02 381 14 14.9 15 3.687 
5 4 4 4 <0.02 435 13 13 13 0.390 
6 3 3 3 <0.02 490 12 12 12 0.265 

p12 

5 6 6 6 <0.02 544 10 10 10 0.296 
6 5 5 5 <0.02 

p148 

204 26 26.7 27 2.203 
7 4 4 4 <0.02 255 21 21.1 22 2.125 
8 4 4 4 <0.02 306 18 18 18 0.546 

p16 

15 7 7 7 <0.02 357 15 15.7 16 0.578 
16 7 7 7 <0.02 408 14 14 14 0.703 
18 6 6 6 <0.02 459 12 12.3 13 0.265 
19 6 6 6 <0.02 510 11 11.8 12 2.406 
20 5 5 5 <0.02 

p205 

1133 24 24.2 25 8.031 
21 5 5.2 5 0.078 1322 21 21.5 22 24.187 
22 5 5 5 <0.02 1510 18 19.1 20 78.390 

p24 

18 8 8 8 <0.02 1699 18 18 18 4.390 
20 8 8 8 <0.02 1888 16 16 16 4.703 
24 6 6.2 7 <0.02 2077 14 14.8 15 83.625 
25 6 6 6 <0.02 2266 14 14 14 4.328 
30 5 5 5 <0.02 2454 14 14 14 4.750 
35 5 5 5 <0.02 2643 14 14 14 5.671 
40 4 4 4 <0.02 2832 13 13 13 12.156 
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Tablo 4.14. YAK algoritması ile konumsal, bölgesel ve senkronizasyon kısıtlarına sahip 
                    ÇTMHDP sonuçları. 

p9 

Çevrim 
süresi min ort maks CPU 

(sn.) 

p65 

Çevrim 
süresi min ort maks CPU 

(sn.) 
4 5 5 5 <0.02 326 18 18 18 0.203 
5 4 4 4 <0.02 381 15 15.1 16 1.593 
6 4 4 4 <0.02 435 14 14 14 0.437 

p12 

5 6 6 6 <0.02 490 13 13 13 0.375 
6 5 5 5 <0.02 544 12 12 12 0.296 
7 5 5 5 <0.02 

p148 

204 26 26.4 27 1.328 
8 4 4 4 <0.02 255 23 23 23 0.578 

p16 

15 7 7 7 <0.02 306 20 20.9 21 1.437 
16 7 7 7 <0.02 357 18 18.2 19 3.046 
18 7 7 7 <0.02 408 17 17.9 19 2.000 
19 7 7 7 <0.02 459 17 17.8 18 20.375 
20 7 7 7 <0.02 510 17 17 17 1.359 
21 7 7 7 <0.02 

p205 

1133 24 25.2 26 115.640 
22 6 6 6 <0.02 1322 23 23.1 24 24.937 

p24 

18 8 8 8 <0.02 1510 20 20.9 21 242.500 
20 8 8 8 <0.02 1699 20 20 20 55.296 
24 7 7 7 <0.02 1888 19 19.8 20 22.328 
25 7 7 7 <0.02 2077 18 18.9 19 960.812 
30 6 6.4 6 <0.02 2266 17 17.3 18 352.734 
35 6 6 6 <0.02 2454 17 17 17 56.937 
40 6 6 6 <0.02 2643 17 17 17 42.046 

 2832 17 17 17 55.640 

4.8.3. Arı Algoritması ve Yapay Arı Kolonisi Algoritmasının Bilimsel Yazındaki 

Algoritmalarla Karşılaştırılması  

AA ve YAK algoritmasının ÇTMHDP’nin çözümü için kullanıldığı bir uygulama 

niteliğinde olan bu bölümde, geniş bir deneysel çalışma neticesinde AA ve YAK 

algoritması sonuçları bilimsel yazında sunulan sonuçlarla karşılaştırılmıştır. 

Değerlendirmeye bilimsel yazındaki sezgisel ve matematiksel model sonuçları dâhil 

edilmiş ancak problemin karmaşıklığı sebebiyle karşılaştırma yapılan sonuçların çoğu 

sezgisel arama algoritmalarından elde edilmiştir. Karşılaştırma bölümü, deneysel 

çalışma bölümünde olduğu gibi 3 kategoride ele alınmıştır. Tablo 4.15 özel kısıta sahip 

olmayan ÇTMHDP, Tablo 4.16 bölgesel kısıta sahip ÇTMHDP, Tablo 4.17 konumsal, 

bölgesel ve senkronizasyon kısıtlarına sahip ÇTMHDP için elde edilen sonuçların 

bilimsel yazındaki sonuçlarla karşılaştırılmasını içermektedir. Tablolardaki koyu 

değerler bilinen en iyi istasyon sayısını göstermektedir. 
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Tablo 4.15. AA ve YAK algoritması ile elde edilen özel kısıta sahip olmayan ÇTMHDP sonuçlarının karşılaştırılması. 

p9
 

Çevrim 
süresi 

AA YAK Baykasoğlu ve Dereli 
(2008) 

Hu ve ark. 
(2008) 

Özcan ve Toklu 
(2009a) 

Özcan ve Toklu 
(2009b) GAMS 22.7.2 

İst. 
sayısı CPU İst. 

sayısı CPU İst. sayısı CPU İst. 
sayısı CPU İst. sayısı İst. sayısı CPU İst. 

sayısı CPU 

3 6 <0.02 6 <0.02 6 <1 - - 6 6 0.093 6 28588.61 
4 5 <0.02 5 <0.02 5 <1 5 0.047 5 5 0.296 5 10456.81 
5 4 <0.02 4 <0.02 4 <1 4 0.047 4 4 0.140 4 2549.20 
6 3 <0.02 3 <0.02 3 <1 - - 3 3 0.109 3 799.31 

 

p1
2 

Çevrim 
süresi 

AA YAK 
Baykasoğlu 

ve Dereli 
(2008) 

Hu ve ark. 
(2008) 

Wu ve ark. 
(2008) 

Özcan 
ve 

Toklu 
(2009a) 

Özcan ve 
Toklu (2009b) 

GAMS 
22.7.2 

İst. 
sayısı CPU İst. 

sayısı CPU İst. 
sayısı CPU İst. 

sayısı CPU İst. 
sayısı CPU İst. 

sayısı 
İst. 

sayısı CPU İst. 
sayısı CPU 

4 7 <0.02 7 <0.02 - - -  7 0.010 - -  - - 
5 6 <0.02 6 <0.02 6 <1 -  6 0.210 6 6 22.609 - - 
6 5 <0.02 5 <0.02 5 <1 5 0.078 5 0.010 5 5 12.042 - - 
7 4 <0.02 4 <0.02 4 <1 4 0.141 4 0.001 4 4 0.203 - - 
8 4 <0.02 4 <0.02 - - 4 0.250 - - 4 4 1.125 7 7200 
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p1
6 

Çevrim süresi 
AA YAK Hu ve ark. 

(2008) Wu ve ark. (2008) Özcan ve Toklu (2009a) Özcan ve Toklu (2009b) 

İst. sayısı CPU İst. sayısı CPU İst. 
sayısı CPU İst. sayısı CPU İst. sayısı İst. sayısı CPU 

15 6 <0.02 6 <0.02 - - 7 0.121 - 6 132.859 
16 6 <0.02 6 <0.02 6 0.204 - - 6 6 2.031 
18 6 <0.02 6 <0.02 - - 6 0.100 - 6 153.328 
19 5 <0.02 5 <0.02 6 0.219 - - 5 5 18.125 
20 5 <0.02 5 <0.02 - - 5 4.756 - 5 156.609 
21 5 <0.02 5 <0.02 5 0.094 - - 5 5 399.640 
22 4 <0.02 4 <0.02 4 0.156 4 0.161 4 4 0.671 

 

p2
4 

Çevrim 
süresi 

AA YAK 
Baykasoğlu 

ve Dereli 
(2008) 

Hu ve ark. 
(2008) 

Wu ve ark. 
(2008) 

Özcan 
ve 

Toklu 
(2009a) 

Özcan ve Toklu 
(2009b) 

İst. 
sayısı CPU İst. 

sayısı CPU İst. 
sayısı CPU İst. 

sayısı CPU İst. 
sayısı CPU İst. 

sayısı 
İst. 

sayısı CPU 

18 8 <0.02 8 <0.02 - - 8 0.828 - - 8 8 <7200 
20 8 <0.02 8 <0.02 8 <1 8 1.218 - - 8 8 <7200 
24 6 0.031 6 0.031 - - 7 5.938 - - 6 6 1621.437 
25 6 <0.02 6 <0.02 6 <1 6 8.627 6 0.130 6 6 <7200 
30 5 <0.02 5 <0.02 5 <1 - - 5 0.010 5 5 <7200 
35 4 <0.02 4 <0.02 5 <1 - - 4 21.010 4 4 259.671 
40 4 <0.02 4 <0.02 4 <1 - - 4 0.010 4 4 <7200 
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p6
5 

Çevrim 
süresi 

AA YAK Lee ve ark. 
(2001) 

Baykasoğlu ve Dereli 
(2008) 

Wu ve ark. 
(2008) 

Simaria ve Vilarinho 
(2009) 

Özcan ve Toklu 
(2009a) 

İst. 
sayısı CPU İst. 

sayısı CPU İst. 
sayısı CPU İst. sayısı CPU İst. 

sayısı CPU İst. sayısı İst. sayısı 

326 17 0.250 17 0.203 17 <3 17 <1 - - 17 17 
381 14 1.078 14 0.343 15 <3 15 <1 14 0.047 14 15 
435 12 5.125 13 0.281 13 <3 13 <1 - - 13 13 
490 11 2.203 11 1.015 12 <3 12 <1 11 2.187 12 11 
544 10 0.312 10 0.250 10 <3 10 2.48 10 5.230 10 10 

 

p1
48

 

Çevrim 
süresi 

AA YAK Lee ve ark. 
(2001) 

Baykasoğlu ve Dereli 
(2008) 

Wu ve ark. 
(2008) 

Simaria ve Vilarinho 
(2009) 

Özcan ve Toklu 
(2009a) 

İst. 
sayısı CPU İst. 

sayısı CPU İst. 
sayısı CPU İst. sayısı CPU İst. 

sayısı CPU İst. sayısı İst. sayısı 

204 26 0.406 26 0.343 27 <3 26 4.39 26 3.235 26 26 
255 21 0.375 21 0.484 21 <3 21 15.64 21 11.063 21 21 
306 17 0.390 17 14.328 18 <3 18 50.91 - - 18 18 
357 15 0.359 15 0.156 15 <3 15 3.78 15 68.152 15 15 
408 13 0.453 13 1.359 14 <3 14 2.19 13 35.014 14 13 
459 12 0.171 12 5.968 13 <3 12 180.76 12 9.703 12 12 
510 11 0.406 11 0.343 11 <3 11 15.05 11 10.657 11 11 
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p2
05

 

Çevrim 
süresi 

AA YAK Lee ve ark. 
(2001) 

Baykasoğlu ve Dereli 
(2008) 

Simaria ve Vilarinho 
(2009) 

Özcan ve Toklu 
(2009a) 

İst. 
sayısı CPU İst. 

sayısı CPU İst. sayısı CPU İst. sayısı CPU İst. sayısı İst. sayısı 

1133 22 33.390 22 71.578 23 <3 24 451.14 22 24 
1322 20 32.953 20 23.312 20 <3 22 449.27 20 21 
1510 17 2906.859 18 4.375 20 <3 18 288.20 17 18 
1699 16 5.578 16 15.625 16 <3 18 448.28 15 17 
1888 14 12.390 14 40.031 16 <3 15 177.84 13 16 
2077 12 149.703 14 5.125 14 <3 14 7.06 12 14 
2266 12 7.359 12 12.328 13 <3 12 131.30 12 13 
2454 11 921.682 12 60.687 12 <3 12 6.99 10 12 
2643 10 21.437 10 17.109 12 <3 11 68.54 10 11 
2832 10 8.640 10 7.390 10 <3 10 303.63 10 10 
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Tablo 4.15’ten görüldüğü gibi p9, p16 ve p24 problem kümelerinin bütün çevrim 

süreleri için AA ve YAK algoritmaları bilinen en iyi çözüme daha düşük CPU süresi ile 

ulaşmıştır. p12 problem kümesi için ise her iki algoritma ile de bilinen en iyi çözüm tüm 

çevrim süreleri için oldukça kısa CPU süreleri ile bulunmuştur. p65 problem kümesi 

için AA 5 çevrim süresinden 4’ünde bilinen en iyi çözüme; 1’inde ise (ct= 435) bilinen 

en iyi çözümden daha iyi bir çözüme ulaşmıştır. CPU süresi olarak ise karşılaştırma 

yapılan algoritmalarla benzer süreler elde edilmiştir. Aynı problem kümesi için YAK 

algoritması değerlendirildiğinde 4 problem için bilinen en iyi çözüme ulaşılmış ve CPU 

süresi açısından AA’na göre daha düşük değerler elde edilmiştir. p148 problem kümesi 

için AA ve YAK algoritmaları bilinen en iyi çözüme daha düşük CPU zamanları ile 

ulaşmış, diğer taraftan her iki algoritma da çevrim süresinin 306 olduğu problem için 

bilinen en iyi çözümden daha iyi bir çözüm bulmuştur. Son olarak p205 problem 

kümesi için AA 10 çevrim süresinin 7’sinde, YAK algoritması ise 5’inde bilinen en iyi 

çözüme ulaşmıştır. Bütün problem kümelerine genel olarak bakılacak olursa AA 45 

problemden 42’sinde, YAK algoritması da 39’unda bilinen en iyi çözümü bulmuştur. 

Diğer taraftan AA 2 kere, YAK algoritması da 1 kere daha önce elde edilmemiş bir 

çözüme ulaşmıştır. Her iki algoritmada da basit komşuluk yapılarının kullanıldığı göz 

önüne alınırsa AA ve YAK algoritmalarının özel kısıta sahip olmayan ÇTMHDP 

üzerinde etkin bir performansa sahip olduğu söylenebilir.  
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Tablo 4.16. AA ve YAK algoritması ile elde edilen bölgesel kısıta sahip ÇTMHDP sonuçlarının karşılaştırılması. 
p9

 

Çevrim süresi AA YAK Baykasoğlu ve Dereli (2008) Özcan ve Toklu (2009b) GAMS 22.7.2 
İst. sayısı CPU İst. sayısı CPU İst. sayısı CPU İst. sayısı CPU İst sayısı CPU 

3 7 <0.02 7 <0.02 7 <1 7* 1.421 6 15225.09 
4 5 <0.02 5 <0.02 6 <1 5 0.234 5 6399.62 
5 4 <0.02 4 <0.02 4 <1 4 0.156 4 3806.94 
6 3 <0.02 3 <0.02 3 <1 3 0.203 3 3109.53 

* Özcan ve Toklu (2009b) çalışması da matematiksel model sonuçlarını içermesine rağmen GAMS 22.7.2 sonuçları ile farklılık olmasının sebebi, pozitif bölgesel kısıta sahip iki işin 
aynı istasyonunun farklı yönlerine atanmasına izin verilmemesinden kaynaklanmaktadır.  
 
 

p1
2 

Çevrim süresi AA YAK Baykasoğlu ve Dereli (2008) Özcan ve Toklu (2009b) GAMS 22.7.2 
İst. sayısı CPU İst. sayısı CPU İst. sayısı CPU İst. sayısı CPU İst sayısı CPU 

5 6 <0.02 6 <0.02 6 <1 6 1.640 - - 
6 5 <0.02 5 <0.02 5 <1 5 4.656 - - 
7 4 <0.02 4 <0.02 5 <1 4 0.281 - - 
8 4 <0.02 4 <0.02 - - 4 2.562 7 7200 

 

p1
6 

Çevrim süresi AA YAK Özcan ve Toklu (2009b) 
İst. sayısı CPU İst. sayısı CPU İst. sayısı CPU 

15 6 3.657 7 <0.02 6 13.640 
16 6 2.625 7 <0.02 6 30.234 
18 6 <0.02 6 <0.02 6 0.296 
19 6 <0.02 6 <0.02 6 0.359 
20 5 <0.02 5 <0.02 5 0.875 
21 5 0.093 5 0.078 5 1.046 
22 5 0.512 5 <0.02 5 2.015 
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p2
4 

Çevrim süresi AA YAK Baykasoğlu ve Dereli (2008) Özcan ve Toklu (2009b) 
İst. sayısı CPU İst. sayısı CPU İst. sayısı CPU İst. sayısı CPU 

18 8 <0.02 8 <0.02 - - 8 <7200 
20 8 <0.02 8 <0.02 8 <1 8 3999.265 
24 6 0.109 6 <0.02 - - 6 6604.968 
25 6 <0.02 6 <0.02 6 <1 6 <7200 
30 5 <0.02 5 <0.02 5 <1 5 <7200 
35 4 <0.02 5 <0.02 5 <1 4 242.890 
40 4 <0.02 4 <0.02 4 <1 4 <7200 

 

p6
5 

Çevrim süresi AA YAK Baykasoğlu ve Dereli (2008) 
İst. sayısı CPU İst. sayısı CPU İst. sayısı CPU 

326 17 0.250 18 0.218 17 3.52 
381 14 9.328 14 3.687 15 <1 
435 13 0.265 13 0.390 13 2.78 
490 11 6.015 12 0.265 12 <1 
544 10 0.687 10 0.296 10 1.85 

 

p1
48

 

Çevrim süresi AA YAK Baykasoğlu ve Dereli (2008) 
İst. sayısı CPU İst. sayısı CPU İst. sayısı CPU 

204 26 6.421 26 2.203 26 10.32 
255 21 1.218 21 2.125 21 3.64 
306 18 2.000 18 0.546 18 463.39 
357 15 14.531 15 0.578 18 2.06 
408 14 0.734 14 0.703 15 2.02 
459 12 2.625 12 0.265 13 465.92 
510 11 4.359 11 2.406 11 6.76 
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p2
05

 

Çevrim süresi AA YAK Baykasoğlu ve Dereli (2008) 
İst. sayısı CPU İst. sayısı CPU İst. sayısı CPU 

1133 23 41.593 24 8.031 25 264.32 
1322 21 1.843 21 24.187 22 264.31 
1510 18 11.609 18 78.390 19 270.34 
1699 17 13.250 18 4.390 18 264.28 
1888 16 5.015 16 4.703 16 263.91 
2077 14 260.031 14 83.625 16 266.76 
2266 14 12.078 14 4.328 14 259.72 
2454 14 5.843 14 4.750 14 258.44 
2643 13 94.578 14 5.671 13 259.79 
2832 12 9.692 13 12.156 12 258.85 
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Bilimsel yazında bölgesel kısıta sahip ÇTMHDP alanında iki çalışma bulunmaktadır. 

Bunlardan ilki karınca koloni optimizasyon algoritmasını kullanan Baykasoğlu ve 

Dereli (2008) çalışması, ikincisi ise küçük boyutlu problemler üzerinde matematiksel 

modelle çözüm bulan Özcan ve Toklu (2009b) çalışmasıdır. Tablo 4.16’dan görüldüğü 

gibi p9 problem kümesinde çevrim süresinin 3 olduğu problem için, önerilen 

matematiksel modelle bulunan çözüm, karşılaştırma yapılan diğer sonuçlardan daha 

düşük istasyon sayısına sahiptir. Özcan ve Toklu (2009b) çalışması da matematiksel 

model sonuçlarını içermesine rağmen arada böyle bir fark çıkmasının nedeni, pozitif 

bölgesel kısıta sahip iki işin aynı istasyonunun farklı yönlerine atanmasına izin 

verilmemesinden kaynaklanmaktadır. Ancak tez çalışmasında temel alınan ve Simaria 

ve Vilarinho (2007) çalışmasında önerilen matematiksel modelde, bilimsel yazındaki 

ilkelere bağlı olarak pozitif bölgesel kısıta sahip iki işin aynı istasyonun farklı yönlerine 

atanmasına izin verilmiştir. AA ve YAK algoritmalarının p9 problem kümesi üzerindeki 

performansları incelendiğinde çevrim süresinin 3 olduğu problem hariç en iyi çözüme 

daha düşük CPU süreleri ile ulaşıldığı görülmektedir. p12 problem kümesi için ise 

önerilen her iki algoritma ile de en iyi çözüm, daha düşük CPU süreleri ile elde 

edilmiştir. p16 ve p24 problem kümelerinin bütün çevrim süreleri için AA en iyi 

çözüme daha düşük CPU süreleri ile ulaşmış ancak YAK algoritması p16 için 2 

problemde, p24 için ise 1 problemde daha yüksek istasyon sayısını elde etmiştir. AA 

p65 problem kümesi için oluşturulan 5 problemin 3’ünde bilinen en iyi çözüme ulaşmış, 

2’sinde ise bilinen en iyi çözümden daha iyi bir çözüm (ct=381, 490) elde etmiştir. 

YAK algoritması ise 5 problemin 3’ünde en düşük istasyon sayısını bulmuş ve 

bunlardan biri yine bilinen en iyi çözümden daha iyi bir çözüm (ct=381) olmuştur. p148 

problem kümesi için AA ve YAK algoritmaları bütün çevrim sürelerinde en düşük 

istasyon sayısına sahip çözümleri elde etmiş ve bunlardan 3’ü (ct=357, 408, 459) ilk kez 

bulunmuştur. Son olarak p205 problem kümesi için AA 10 problemin hepsinde, YAK 

algoritması ise 6’sında en düşük istasyon sayısına sahip çözümleri bulmuştur. Her iki 

algoritmanın CPU süreleri de karşılaştırma yapılan algoritmaya göre çok daha düşüktür.  

Bütün problem kümeleri genel olarak incelenecek olursa AA 44 problemden 43’ünde, 

YAK algoritması da 34’ünde bilinen en iyi çözüme ulaşmıştır. Diğer taraftan AA 10 

kere, YAK algoritması da 7 kere daha önce bilinmeyen iyi bir çözüme ulaşmıştır. Netice 
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olarak AA ve YAK algoritmaları bölgesel kısıta sahip ÇTMHDP üzerinde etkin bir 

performansa sahiptir  

Tablo 4.17. AA ve YAK algoritması ile elde edilen konumsal, bölgesel ve 
                               senkronizasyon kısıtlarına sahip ÇTMHDP sonuçlarının 
                               karşılaştırılması. 

p9
 

Çevrim süresi AA YAK GAMS 22.7.2 
İst. sayısı CPU İst. sayısı CPU İst. sayısı CPU 

4 5 <0.02 5 <0.02 5 421.09 
5 4 <0.02 4 <0.02 4 200.09 
6 4 <0.02 4 <0.02 4 292.77 

 

p1
2 

Çevrim süresi AA YAK GAMS 22.7.2 
İst. sayısı CPU İst. sayısı CPU İst. sayısı CPU 

5 6 <0.02 6 <0.02 6 53173.70 
6 5 <0.02 5 <0.02 5 17337.06 
7 5 <0.02 5 <0.02 5 46576.48 
8 4 <0.02 4 <0.02 4 11225.56 

 

p1
6 

Çevrim süresi AA YAK 
İst. sayısı CPU İst. sayısı CPU 

15 7 <0.02 7 <0.02 
16 7 <0.02 7 <0.02 
18 7 <0.02 7 <0.02 
19 7 <0.02 7 <0.02 
20 7 <0.02 7 <0.02 
21 7 <0.02 7 <0.02 
22 6 <0.02 6 <0.02 

 

p2
4 

Çevrim süresi AA YAK 
İst. sayısı CPU İst. sayısı CPU 

18 8 <0.02 8 <0.02 
20 8 <0.02 8 <0.02 
24 7 0.062 7 <0.02 
25 7 <0.02 7 <0.02 
30 6 <0.02 6 <0.02 
35 6 <0.02 6 <0.02 
40 6 <0.02 6 <0.02 

 

p6
5 

Çevrim süresi AA YAK 
İst. sayısı CPU İst. sayısı CPU 

326 18 0.234 18 0.203 
381 15 0.625 15 1.593 
435 14 0.390 14 0.437 
490 13 0.281 13 0.375 
544 12 0.578 12 0.296 
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p1
48

 

Çevrim süresi AA YAK 
İst. sayısı CPU İst. sayısı CPU 

204 26 19.093 26 1.328 
255 23 2.421 23 0.578 
306 20 4.359 20 1.437 
357 18 2.015 18 3.046 
408 17 13.593 17 2.000 
459 17 2.078 17 20.375 
510 17 2.468 17 1.359 

 

p2
05

 

Çevrim süresi AA YAK 
İst. sayısı CPU İst. sayısı CPU 

1133 25 51.843 24 115.640 
1322 23 10.875 23 24.937 
1510 21 16.984 20 242.500 
1699 19 926.781 20 55.296 
1888 19 287.109 19 22.328 
2077 19 34.218 18 960.812 
2266 18 41.734 17 352.734 
2454 18 48.312 17 56.937 
2643 18 55.828 17 42.046 
2832 18 66.093 17 55.640 

Bilimsel yazın araştırmasında da belirtildiği gibi konumsal, bölgesel ve senkronizasyon 

kısıtlarının aynı anda ele alındığı bir ÇTMHDP çözüm yaklaşımı bulunmamaktadır. 

Dolayısıyla bu bölümdeki karşılaştırmalarda AA, YAK algoritması ve 4.5.3 bölümünde 

verilen GAMS 22.7.2 optimizasyon paket programı sonuçları değerlendirilecektir. p9 ve 

p12 problem kümesi için bütün çevrim sürelerinde her iki algoritma da GAMS 22.7.2 

optimizasyon paket programı ile bulunan optimum çözümleri çok daha kısa sürede elde 

etmiştir. Ancak problemin boyutu arttıkça hesaplama süresinin de üstel olarak artması 

sebebiyle daha büyük boyutlu problemler için optimum değerler elde edilememiştir. Bu 

sebeple bu tür problemler üzerindeki etkinlik analizi için AA ve YAK algoritmaları 

kendi aralarında karşılaştırılacaktır. p16, p24, p65 ve p148 problem kümeleri için her iki 

algoritma da aynı değerlere ulaşmıştır. İki algoritma arasındaki farklılık p205 problem 

kümesinde ortaya çıkmaktadır. AA 10 problemden 3’ünde en düşük istasyon sayısına 

sahip çözümü bulurken, YAK algoritması 9 problemde en düşük istasyon sayısına sahip 

çözümü elde etmiştir. Görüldüğü gibi YAK algoritması konumsal, bölgesel ve 

senkronizasyon kısıtlarına sahip büyük boyutlu ÇTMHDP’inde AA’na göre daha iyi 

performans göstermektedir.  İki algoritma CPU süresi açısından karşılaştırıldığında ise 

genel olarak YAK algoritmasının daha az CPU süresi gerektirdiği söylenebilir.  
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ÇTMHDP bilimsel yazındaki zor problemlerden biridir. Probleme özel kısıtların da 

çözüme dâhil edilmesiyle problem daha da zorlaşmaktadır. Bilimsel yazın 

araştırmasından da görüldüğü gibi özel kısıtların dâhil olduğu çalışmalar oldukça azdır. 

AA ve YAK algoritmalarının deneysel çalışma bölümünde bahsedilen her 3 problem 

türüne de uygulanmasıyla oldukça tatmin edici sonuçlar elde edilmiştir. Algoritmaların 

ve komşuluk yapıların en basit hâllerinin kullanıldığı da göz önüne alındığında her iki 

algoritmanın da ÇTMHDP üzerinde etkin bir performansa sahip olduğu görülmektedir.  

4.9. Arı Algoritması ile Bulanık Çok Amaçlı Çift Taraflı Montaj Hattı Dengeleme 
Problemi Çözüm Yaklaşımı 

Birçok gerçek hayat problemi dilsel ve/veya kesin olmayan değişkenler, kısıtlar ve 

amaçlar içerir. Sistem çevresinin sabit olmayan bir yapıya sahip olması ve kesin veriler 

elde etmenin yüksek maliyet gerektirmesi sebebiyle kesin verileri toplamak genel olarak 

çok zordur. Gerçek hayat sistemlerindeki bu belirsizliğin aşılabilmesi için genellikle 

bulanık küme teorisine dayalı bulanık matematiksel programlama yaklaşımı kullanılır 

[186]. 

Bulanık matematiksel programlama modelleri bulanık bileşenlerine göre; bulanık 

amaçlara sahip, bulanık amaç fonksiyonu katsayılarına sahip ve bulanık sağ taraf 

sabitlerine sahip modeller olmak üzere 3 sınıfa ayrılabilir [186]. Bulanık amaçlara sahip 

ÇTMHDP ise bulanık çok amaçlı matematiksel programlama olarak adlandırılan ilk 

sınıflandırmaya dâhil olup amaçlara ait aspirasyon seviyelerinin belirlenmesine dayanan 

Bulanık Amaç Programlama (BAP) teknikleriyle çözülebilmektedir. 

Bulanık çok amaçlı matematiksel programlama problemlerinin çözümü için 

gerçekleştirilen ilk temel çalışma Zimmermann’a [187] ait olup Bellman ve Zadeh [188] 

tarafından önerilen maks-min operatörüne dayalı maks-min yöntemini içermektedir. 

Sinha [189] maks-min yöntemini çok seviyeli programlama modellerinin; Chakraborty 

ve Gupta [190] ise bulanık çok amaçlı doğrusal kesirli programlama problemlerinin 

çözümü için kullanmışlardır. Diğer taraftan Chanas [191] bulanık doğrusal 

programlama problemlerinin çözümü için parametrik programlama tekniği yaklaşımını 

önermiş; Gen ve ark. [192] bulanık doğrusal olmayan amaç programlama 

problemlerinin çözümü için genetik algoritmayı kullanmış; Baykasoğlu ve Göçken 

[193] ise bulanık amaç programlama problemlerinin çözümü için çok amaçlı bir tabu 
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arama algoritması önermişlerdir. Ayrıca Narasimhan [194] BAP probleminin çözümü 

için eşit ağırlıklara sahip çoklu amaçlar için bir çözüm yöntemi geliştirmiş, Hannan 

[195] ise aynı problem için doğrusal ve kesikli üyelik fonksiyonlarını kullanmıştır. Lu 

ve ark. [196] ise karar vericilerin bulanık amaçları herhangi bir üyelik fonksiyonuyla 

ifade etmesine izin veren ve çözüm süreci boyunca karar vericilere etkileşimli karar 

seçenekleri sunan interaktif bulanık amaç eniyileme yöntemini önermişlerdir. Son 

olarak Baykasoğlu ve Göçken [186] bulanık matematiksel programlama ve çözüm 

yaklaşımları üzerine geniş bir inceleme ve sınıflandırma çalışması gerçekleştirmişlerdir. 

BAP problemi mevcut bulanık amaçları sağlayacak en iyi D kararının bulunması 

şeklinde aşağıdaki gibi tanımlanmaktadır. 

෍ ܿ௣௝ݔ௝ ؆ ݃௣                       ݌ ൌ 1,2, … , ݇ଵ

௡

௝ୀଵ

                                                               ሺ4.2ሻ 

෍ ܿ௣௝ݔ௝ ذ ݃௣                       ݌ ൌ ݇ଵ ൅ 1, … , ݇ଶ

௡

௝ୀଵ

                                                        ሺ4.3ሻ 

෍ ܿ௣௝ݔ௝ د ݃௣                       ݌ ൌ ݇ଶ ൅ 1, … , ݇ଷ

௡

௝ୀଵ

                                                        ሺ4.4ሻ 

 ݎ݈ܽݐıݏıܭ

෍ ܽ௜௝ݔ௝ ൑ ܾ௜                        ݅ ൌ 1,2, … , ݉                                                                 ሺ4.5ሻ
௡

௝ୀଵ

 

௝ݔ ൒ 0                                      ݆ ൌ 1,2, … , ݊                                                                  ሺ4.6ሻ 

Yukarıdaki ifadede xj karar değişkenlerini, gp amaçlarla ilişkilendirilmiş aspirasyon 

seviyelerini, cpj ve aij amaçlara ve kısıtlara ait teknolojik katsayıları, bi ise mevcut 

kaynak miktarını göstermektedir. 

Bulanık amaç fonksiyonu, üyelik fonksiyonları ile belirlenmekte; üyelik fonksiyonları 

ise genellikle doğrusal, doğrusal olmayan ve üstel fonksiyonlarla ifade edilmektedir. Bu 

çalışmada doğrusal üyelik fonksiyonları kullanılmış olup minimizasyon, 

maksimizasyon ve eşitlik durumlarındaki doğrusal üyelik fonksiyonu ifadeleri aşağıdaki 

gibi tanımlanmıştır [186]. 
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′ሺ ݉ݑ݉݅݊݅݉ ı݈݇݊ܽݑܤ ௝൯ݔ൫ܿ௣௝ߤ   :ሻ′د ൌ

ە
ۖ
۔

ۖ
ۓ

1                                                                ܿ௣௝ݔ௝ ൑ ݃௣
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݀௣
ோ           ݃௣ ൑ ܿ௣௝ݔ௝ ൑ ݃௣ ൅ ݀௣

ோ

0                                                     ܿ௣௝ݔ௝ ൒ ݃௣ ൅ ݀௣
ோ

     ሺ4.7ሻ 
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ە
ۖ
۔

ۖ
ۓ

1                                                              ܿ௣௝ݔ௝ ൒ ݃௣

ܿ௣௝ݔ௝ െ ൫݃௣ െ ݀௣
௅൯

݀௣
௅         ݃௣ െ ݀௣

௅ ൑ ܿ௣௝ݔ௝ ൑ ݃௣

0                                                   ܿ௣௝ݔ௝ ൑ ݃௣ െ ݀௣
௅

    ሺ4.8ሻ 

′ሺ ݈݇݅ݐı݇ ݁ş݈݅݊ܽݑܤ ؆′ሻ:   ߤ൫ܿ௣௝ݔ௝൯ ൌ

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
௝ݔ௣௝ܿ                                                           0ۓ ൑ ݃௣ െ ݀௣

௅

ܿ௣௝ݔ௝ െ ൫݃௣ െ ݀௣
௅൯

݀௣
௅                ݃௣ െ ݀௣

௅ ൑ ܿ௣௝ݔ௝ ൑ ݃௣

1                                                                      ܿ௣௝ݔ௝ ൌ ݃௣

൫݃௣ ൅ ݀௣
ோ൯ െ ܿ௣௝ݔ௝

݀௣
ோ               ݃௣ ൑ ܿ௣௝ݔ௝ ൑ ݃௣ ൅ ݀௣

ோ

0                                                          ܿ௣௝ݔ௝ ൒ ݃௣ ൅ ݀௣
ோ

      ሺ4.9ሻ 

Yukarıdaki ifadelerde ݀௣
ோ maksimum sağ tolerans sınırını, ݀௣

௅  ise maksimum sol tolerans 

sınırını göstermektedir. 

Ulaşılan bulanık karar ise bulanık amaç fonksiyonlarının kesişimi olarak ifade 

edilmekte olup bulanık karar kümesine ait üyelik fonksiyonu ߤ஽ሺݔሻ ve maksimizasyon 

kararı aşağıdaki gibi tanımlanmaktadır [187]. 

ሻݔ஽ሺߤ ൌ ௝൯ݔଵ൫ܿଵ௝ߤ ר ௝൯ݔଶ൫ܿଶ௝ߤ ר … ר ௝൯ݔ௞య൫ܿ௞య௝ߤ ൌ min
௣

 ௝൯            ሺ4.10ሻݔ௣൫ܿ௣௝ߤ

maks
௫

ሻݔ஽ሺߤ ൌ maks
௫

min
௣

 ௝ሻ                                                                       ሺ4.11ሻݔ௣ሺܿ௣௝ߤ

Bulanık amaçların analizi için maks-min, öncelik ve toplamsal yöntemler olmak üzere 3 

teknik kullanılmıştır. Maks-min yöntemi, BAP problemlerine Narasimhan [194] 

tarafından uygulanan bir yöntem olup amaçlara ait en düşük üyelik fonksiyonu 

değerlerinin maksimizasyonunu amaçlamaktadır (݉ܽ݇ݏ െ ݉݅݊  ሻ). Öncelikݔ௚ሺߤ 

yönteminde ise bulanık amaçlara önem derecelerine göre bir öncelik verilmekte ve 

düşük önceliğe sahip amaçlar ancak yüksek önceliğe sahip amaçlar sağlandığında ele 

alınmaktadır. Dolayısıyla öncelikle yüksek önceliğe sahip amaçlara ait üyelik 

fonksiyonları maksimize edilmektedir [193]. Tiwari ve ark. [197] tarafından önerilen 

toplamsal yöntemde ise amaçlara ait üyelik fonksiyonu değerlerinin toplamı maksimize 
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edilmektedir (݉ܽݔ ∑ ௜ߤ
௠
௜ୀଵ ). Her yöntem için komşu çözümler arasından mevcut en iyi 

çözümün seçim süreci aşağıdaki gibi gerçekleşmektedir. 

Maks-min yöntemi: 

Adım 1. Her komşu çözüm için amaçlara ait üyelik fonksiyonu değerleri hesaplanır ve 

içlerinden en düşük değere sahip olan belirlenir. 

Adım 2. Minimum üyelik değerleri içinden en büyük değere sahip olan çözüm, mevcut 

en iyi çözüm olarak seçilir.  

Öncelik yöntemi: 

Adım 1. Önceden belirlenen öncelik değerlerine göre her komşu çözüm için amaçlara ait 

üyelik değerleri hesaplanır. 

Adım 2. Her çözüm için en yüksek önceliğe sahip amaca ait üyelik değeri kontrol edilir 

ve en yüksek değere sahip olan çözüm seçilir. En yüksek önceliğe sahip amaç 

için birden fazla alternatif komşu çözüm söz konusuysa sonraki önceliğe sahip 

amacın üyelik değerleri kontrol edilir. 

Toplamsal yöntem: 

Adım 1. Her komşu çözüm için amaçlara ait üyelik değerleri hesaplanarak toplanır.  

Adım 2. En yüksek toplam değere sahip komşu çözüm, mevcut en iyi çözüm olarak 

seçilir. 

4.9.1 Bulanık Çok Amaçlı Çift Taraflı Montaj Hattı Dengeleme Problemi için Arı 

Algoritması 

Çalışmanın bu aşamasında özel kısıta sahip olmayan ÇTMHDP ele alınmış olup ilgili 

problemin çözümü için Bölüm 4.6’da detayları verilmiş olan AA kullanılmıştır. 

ÇTMHDP’nin bulanık amaçlar içermesi sebebiyle algoritmada kullanılan uygunluk 

fonksiyonu farklılaştırılmıştır. Bulanık çok amaçlı ÇTMHDP 3 farklı bulanık amaca 

sahip bir BAP modeli olarak aşağıdaki gibi tanımlanmıştır.  

Amaç-1 Gevşeklik indeksinin maksimizasyonu 

Gevşeklik indeksi iki bağlantılı iş arasındaki boş zamanı ifade etmektedir. Bağlantılı 

işler ise öncelik diyagramında birbiriyle direkt bağlantılı işleri göstermektedir. Çift 

taraflı montaj hatlarında, aralarında yakın öncelik ilişkisi olan iki iş karşılıklı 
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istasyonlara atandığında, biri bitmeden diğeri başlayamayacağından iki iş arasında boş 

zaman oluşabilmekte ve bu durumda gevşeklik indeksinin dikkate alınması 

gerekmektedir. Gevşeklik indeksi [0,1] arasında değerler almakta olup indeks değeri 

arttıkça bağlantılı işler arasındaki boş zaman azalmaktadır. Gevşeklik indeksinin 

maksimizasyonunu içeren ilk amaç aşağıdaki gibi tanımlanmıştır. 

∑ ൜∑ ටݐ௜௝
௦ െݐ௜ ′௝′

௙ ൅ ∑ ொೕאூೕିொೕ௜א௜ܶܥ√ ൠ௡
௝ୀଵ

ܶܥ√݉
ذ ܽ݉ܽç௪௦                                                       ሺ4.12ሻ 

Yukarıdaki eşitsizlikte CT çevrim süresini, j ve ݆′ karşılıklı istasyonları, Ij j istasyonuna 

atanan işler kümesini, Qj hemen önceki işlerinden biri ݆′ istasyonuna atanan işler 

kümesini, ݐ௜௝
௦  ve ݐ௜௝

௙  sırasıyla j istasyonundaki i işinin başlangıç ve bitiş sürelerini temsil 

etmektedir.  

Amaç-2 Karşılıklı istasyon sayısının minimizasyonu 

݉ோ ൅ ݉௅ د ܽ݉ܽç௢௣௧                                                                                                  ሺ4.13ሻ 

mR sağ yöndeki istasyon sayısını, mL sol yöndeki istasyon sayısını göstermektedir.  

Amaç-3 Hat etkinliğinin maksimizasyonu 

ܧܮ د ܽ݉ܽç௟௘                                                                                                                ሺ4.14ሻ 

LE hat etkinliğini temsil etmekte olup aşağıdaki gibi hesaplanmaktadır. 

ܧܮ ൌ
ܤܮ

݉௥ ൅ ݉௟
                                                                                                                                           ሺ4.15ሻ 

ܤܮ ൌ 2 כ ݏ݇ܽܯ ൅ ݏ݇ܽ݉ ቊ0, ቈ
݈ܽݐ݋ܶܧ െ ሺݔܽܯ כ ܶܥ െ ሻ݈ܽݐ݋ܶܮ െ ሺݔܽܯ כ ܶܥ െ ሻ݈ܽݐ݋ܴܶ

ܶܥ ቉ቋ ሺ4.16ሻ 

ݏ݇ܽܯ ൌ ݏ݇ܽ݉ ൜൤
݈ܽݐ݋ܶܮ

ܶܥ ൨ , ൤
݈ܽݐ݋ܴܶ

ܶܥ ൨ൠ                                                                                                  ሺ4.17ሻ 

LTotal, RTotal ve ETotal sırasıyla sol, sağ ve herhangi bir yöne atanabilecek işlerin 

toplam süresini göstermektedir. Çift taraflı montaj hattı için bir alt sınır elde edebilmek 

için öncelikle sağ ve sol işlerin atanması için gerekli istasyon sayısı belirlenmektedir.  

Her istasyon karşılıklı iki istasyona sahip olduğundan Max değeri 2 ile çarpılmıştır. 

Herhangi bir yöne atabilecek işler için ise öncelikle çevrim süresini aşmayan mevcut 

istasyonlara atama yapılmakta daha sonra kalan işler için yeni istasyonlar açılmaktadır 

[177]. 
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Netice olarak AA’nda kullanılan uygunluk fonksiyonu, ele alınan yönteme göre 

aşağıdaki gibi tanımlanmıştır. 

ݏ݇ܽ݉ ௦ሻߪ஽ሺߤ  ൌ min ሺߤ௪௦, ,௢௣௧ߤ ݏ௟௘ሻ      ሺ݉ܽ݇ߤ െ  ç݅݊ሻ݅ ݅݉݁ݐö݊ݕ ݊݅݉

௦ሻߪ஽ሺߤ ݏ݇ܽ݉ ൌሺ ߤ௢௣௧ ب ௟௘ߤ  ب  ç݅݊ሻ݅ ݅݉݁ݐö݊ݕ ௪௦ ሻ    ሺö݈݊ܿ݁݅݇ߤ

ݏ݇ܽ݉ ௦ሻߪ஽ሺߤ  ൌ ௪௦ߤ ൅ ௢௣௧ߤ ൅ ௟௘ߤ             ሺݕ ݈ܽݏ݈݉ܽ݌݋ݐö݊݉݁ݐ ݅ç݅݊ሻ 

4.9.2 Deneysel Çalışma 

Bulanık çok amaçlı ÇTMHDP’nin çözümü için kullanılan AA, C# programlama dilinde 

kodlanarak 2.2 GHz CPU ve 2 GB RAM özelliklere sahip Intel Core 2 Duo PC 

kullanılarak bilimsel yazındaki test problemlerine uygulanmıştır. Algoritma 

parametrelerinin değerleri Tablo 4.18’de, amaçlara ait aspirasyon seviyeleri ve tolerans 

değerleri ise Tablo 4.19’da sunulmaktadır. 

Tablo 4.18. Bulanık çok amaçlı ÇTMHDP için AA parametrelerinin değerleri. 
Parametre Değer
S 25 
P 15 
e 5 
nep 3 
nsp 2 
MaksIter 200 

Tablo 4.19. Amaçlara ait aspirasyon seviyeleri ve tolerans değerleri. 
Amaç Aspirasyon seviyesi Tolerans  Değer 
amaçws 0.95 ݀௪௦

௅ 0.1 
amaçopt opt ݀௢௣௧

ோ 2 
amaçle ܤܮ

௟௘݀ ݐ݌݋
௅ ܤܮ 

ݐ݌݋ െ
ܤܮ

ݐ݌݋ ൅ 2 

Birinci ve üçüncü amaçlar bulanık maksimizasyon formunda iken ikinci amaç bulanık 

minimizasyon formundadır. Verilen aspirasyon seviyesi ve tolerans değerlerine göre 

ilgili üyelik fonksiyonları aşağıdaki gibi tanımlanmıştır.  
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Bulanık gevşeklik amacı için üyelik fonksiyonu,  

௪௦ߤ ൌ ൞

௪௦ݖ                                                1 ൒ 0.95
௪௦ݖ െ 0.85

0.1                     0.85 ൑ ௪௦ݖ ൑ 0.95

௪௦ݖ                                                  0 ൑ 0.85

                                            ሺ4.18ሻ 

௪௦ݖ ൌ
∑ ൜∑ ටݐ௜௝

௦ െݐ௜ ′௝′
௙ ൅ ∑ ொೕאூೕିொೕ௜א௜ܶܥ√ ൠ௡

௝ୀଵ

ܶܥ√݉
                                                    ሺ4.19ሻ 

Bulanık karşılıklı istasyon sayısı amacı için üyelik fonksiyonu, 

௢௣௧ߤ ൌ

ە
۔

ۓ
௢௣௧ݖ                                                                   1 ൑ ݐ݌݋
ݐ݌݋ ൅ 2 െ ௢௣௧ݖ

2 ݐ݌݋                     ൑ ௢௣௧ݖ ൑ ݐ݌݋ ൅ 2
௢௣௧ݖ                                                           0 ൒ ݐ݌݋ ൅ 2

                              ሺ4.20ሻ 

௢௣௧ݖ ൌ ݉ோ ൅ ݉௅                                                                                                          ሺ4.21ሻ 

Bulanık hat etkinliği amacı için üyelik fonksiyonu, 

௅ாߤ ൌ

ە
ۖۖ
ۖ
۔

ۖۖ
ۖ
ۓ ௅ாݖ                                                1 ൒

ܤܮ
ݐ݌݋

௅ாݖ െ ܤܮ
ݐ݌݋ ൅ 2

ܤܮ
ݐ݌݋ െ ܤܮ

ݐ݌݋ ൅ 2
                    

ܤܮ
ݐ݌݋ ൅ 2 ൑ ௅ாݖ ൑

ܤܮ
ݐ݌݋

௅ாݖ                                                  0 ൑
ܤܮ

ݐ݌݋ ൅ 2

                                  ሺ4.22ሻ 

௅ாݖ ൌ  ሺ4.23ሻ                                                                                                                        ܧܮ

 

(4.18)-(4.23) formülasyonlarında; zws, zopt, zLE amaç fonksiyonu değerlerini, µws, µopt, 

µLE ise ilgili amaçlara ait üyelik fonksiyonlarını temsil etmektedir. Diğer taraftan opt 

bilinen en iyi çözümü, LB ise karşılıklı istasyon sayısı için alt sınırı göstermektedir. 

AA 10 kez çalıştırılmış ve her amaç için maks-min, öncelik ve toplamsal yöntemler ile 

elde edilen ortalama amaç fonksiyonu ve ortalama üyelik fonksiyonu değerleri sırasıyla 

Tablo 4.20, Tablo 4.21 ve Tablo 4.22’de verilmiştir. 
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Tablo 4.20. Amaç-1’e ait deneysel sonuçlar. 

 Çevrim 
süresi 

Maks-min Öncelik Toplamsal 
Ort. amaç 
fonk. değeri 

Ort. üyelik 
fonk. değeri 

Ort. amaç 
fonk. değeri 

Ort. üyelik 
fonk. değeri 

Ort. amaç 
fonk. değeri 

Ort. üyelik 
fonk. değeri 

p9 

3 0.953 1 0.953 1 0.953 1 
4 1 1 1 1 1 1 
5 0.956 0.988 0.956 0.988 0.952 0.965 
6 1 1 1 1 1 1 

p12 

4 1 1 1 1 1 1 
5 0.985 1 0.995 1 0.995 1 
6 0.970 1 0.972 1 0.968 1 
7 0.994 1 0.988 1 0.991 1 
8 0.996 1 0.985 1 0.989 1 

p16 

15 0.965 1 0.961 1 0.965 1 
16 0.979 1 0.975 1 0.984 1 
18 0.992 1 0.986 1 0.981 1 
19 0.972 1 0.971 1 0.968 1 
20 0.976 1 0.973 1 0.982 1 
21 0.953 0.975 0.946 0.950 0.943 0.925 
22 0.916 0.671 0.914 0.649 0.923 0.739 

p24 

18 0.972 1 0.968 1 0.974 1 
20 0.969 1 0.962 1 0.960 1 
24 0.936 0.850 0.943 0.880 0.939 0.873 
25 0.961 1 0.966 1 0.961 1 
30 0.969 1 0.965 1 0.969 1 
35 0.970 1 0.970 1 0.972 1 
40 0.963 1 0.960 1 0.962 1 

p65 

326 0.958 1 0.959 1 0.955 1 
381 0.925 0.758 0.934 0.845 0.939 0.873 
435 0.954 1 0.953 0.994 0.953 0.998 
490 0.918 0.685 0.924 0.753 0.925 0.764 
544 0.929 0.812 0.935 0.855 0.929 0.795 

p148 

204 0.957 1 0.957 1 0.956 1 
255 0.955 1 0.955 1 0.953 1 
306 0.921 0.723 0.919 0.694 0.923 0.740 
357 0.934 0.849 0.935 0.858 0.936 0.871 
408 0.909 0.600 0.909 0.598 0.913 0.638 
459 0.929 0.794 0.928 0.783 0.928 0.787 
510 0.906 0.568 0.904 0.547 0.910 0.607 

p205 

1133 0.878 0.286 0.884 0.348 0.871 0.215 
1322 0.896 0.468 0.886 0.364 0.885 0.359 
1510 0.876 0.270 0.878 0.292 0.876 0.269 
1699 0.869 0.197 0.873 0.238 0.877 0.283 
1888 0.815 0.008 0.838 0.017 0.826 0.001 
2077 0.812 0.010 0.823 0 0.862 0.209 
2266 0.856 0.062 0.813 0.019 0.839 0.030 
2454 0.811 0 0.846 0.136 0.860 0.139 
2643 0.796 0 0.793 0 0.791 0 
2832 0.811 0.011 0.788 0 0.790 0 
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Tablo 4.21. Amaç-2’ye ait deneysel sonuçlar. 

 Çevrim 
süresi 

Maks-min Öncelik Toplamsal 
Ort. amaç 
fonk. değeri 

Ort. üyelik 
fonk. değeri 

Ort. amaç 
fonk. değeri 

Ort. üyelik 
fonk. değeri 

Ort. amaç 
fonk. değeri 

Ort. üyelik 
fonk. değeri 

p9 

3 6 1 6 1 6 1 
4 5 1 5 1 5 1 
5 4 1 4 1 4 1 
6 3 1 3 1 3 1 

p12 

4 7 1 7 1 7 1 
5 6 1 6 1 6 1 
6 5 1 5 1 5 1 
7 4 1 4 1 4 1 
8 4 1 4 1 4 1 

p16 

15 6 1 6 1 6 1 
16 6 1 6 1 6 1 
18 6 1 6 1 6 1 
19 5 1 5 1 5 1 
20 5 1 5 1 5 1 
21 5 1 5 1 5 1 
22 4 1 4 1 4 1 

p24 

18 8 1 8 1 8 1 
20 8 1 8 1 8 1 
24 6 1 6 1 6 1 
25 6 1 6 1 6 1 
30 5 1 5 1 5 1 
35 4 1 4 1 4 1 
40 4 1 4 1 4 1 

p65 

326 17 1 17 1 17 1 
381 14 1 14 1 14 1 
435 13 1 13 1 13 1 
490 11.100 0.950 11 1 11 1 
544 10 1 10 1 10 1 

p148 

204 26 1 26 1 26 1 
255 21 1 21 1 21 1 
306 17 1 17 1 17 1 
357 15 1 15 1 15 1 
408 13.200 0.900 13 1 13 1 
459 12 1 12 1 12 1 
510 11 1 11 1 11 1 

p205 

1133 23 0.500 23 0.500 22.900 0.550 
1322 20.900 0.550 20 1 20 1 
1510 18 0.500 18 0.500 17.900 0.550 
1699 16 0.500 16 0.500 16 0.500 
1888 16.200 0.100 14 0.500 14 0.500 
2077 15.500 0 13 0.500 14.800 0.200 
2266 13 0.500 12 1 12 1 
2454 12.800 0 12.600 0.100 12.900 0.050 
2643 12 0 10 1 10 1 
2832 10.600 0.700 10 1 10 1 
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 Tablo 4.22. Amaç-3’e ait deneysel sonuçlar. 

 Çevrim 
süresi 

Maks-min Öncelik Toplamsal 
Ort. amaç 
fonk. değeri 

Ort. üyelik 
fonk. değeri 

Ort. amaç 
fonk. değeri 

Ort. üyelik 
fonk. değeri 

Ort. amaç 
fonk. değeri 

Ort. üyelik 
fonk. değeri 

p9 

3 1 1 1 1 1 1 
4 1 1 1 1 1 1 
5 1 1 1 1 1 1 
6 1 1 1 1 1 1 

p12 

4 1 1 1 1 1 1 
5 0.833 1 0.833 1 0.833 1 
6 1 1 1 1 1 1 
7 1 1 1 1 1 1 
8 1 1 1 1 1 1 

p16 

15 1 1 1 1 1 1 
16 1 1 1 1 1 1 
18 0.833 1 0.833 1 0.833 1 
19 1 1 1 1 1 1 
20 1 1 1 1 1 1 
21 0.800 1 0.800 1 0.800 1 
22 1 1 1 1 1 1 

p24 

18 1 1 1 1 1 1 
20 0.875 1 0.875 1 0.875 1 
24 1 1 1 1 1 1 
25 1 1 1 1 1 1 
30 1 1 1 1 1 1 
35 1 1 1 1 1 1 
40 1 1 1 1 1 1 

p65 

326 0.941 1 0.941 1 0.941 1 
381 1 1 1 1 1 1 
435 0.923 1 0.923 1 0.923 1 
490 0.991 0.945 1 1 1 1 
544 1 1 1 1 1 1 

p148 

204 1 1 1 1 1 1 
255 1 1 1 1 1 1 
306 1 1 1 1 1 1 
357 1 1 1 1 1 1 
408 0.985 0.892 1 1 1 1 
459 1 1 1 1 1 1 
510 1 1 1 1 1 1 

p205 

1133 0.913 0.478 0.913 0.478 0.917 0.530 
1322 0.861 0.528 0.900 1 0.900 1 
1510 0.888 0.472 0.888 0.472 0.893 0.524 
1699 0.875 0.468 0.875 0.468 0.875 0.468 
1888 0.808 0.092 0.928 0.464 0.928 0.464 
2077 0.776 0 0.923 0.461 0.819 0.184 
2266 0.846 0.461 0.916 1 0.916 1 
2454 0.785 0 0.800 0.090 0.780 0.045 
2643 0.750 0 0.900 1 0.900 1 
2832 0.853 0.690 0.900 1 0.900 1 
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Deneysel çalışma sonuçlarının karşılaştırılmasında üyelik fonksiyonları kullanılmıştır. 

Bütün amaçlar için de en iyi üyelik fonksiyonu değerleri toplamsal yöntemle elde 

edilmiştir. Öncelik yönteminin performansının ise toplamsal yönteme yakın olduğu 

tespit edilmiştir. 3 yöntem içinde en kötü üyelik fonksiyonu değerleri ise maks-min 

yöntemi ile elde edilmiştir.  

AA’nın bulanık çok amaçlı ÇTMHDP üzerindeki performansının değerlendirilme 

aşamasında ise elde edilen karşılıklı istasyon sayıları, bilimsel yazındaki bilinen en iyi 

değerlerle karşılaştırılmıştır. Tablo 4.23’te her 3 yöntemle elde edilen karşılıklı istasyon 

sayıları ve bilinen en iyi istasyon sayıları; minimum, ortalama CPU süreleri ve standart 

sapma değerleri ile birlikte verilmiştir. 
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Tablo 4.23. Minimum karşılıklı istasyon sayıları ve CPU süresi sonuçları. 

 Çevrim 
süresi 

Bilinen en iyi 
karşılıklı 

istasyon sayısı 

Minimum karşılıklı istasyon 
sayısı CPU(sn) 

Maks-
min Öncelik Toplamsal

Minimum Ortalama Standart sapma 
Maks-

min Öncelik Toplamsal Maks-
min Öncelik Toplamsal Maks-

min Öncelik Toplamsal 

p9 

3 6 6 6 6 0.015 0.015 0.015 0.019 0.021 0.021 0.014 0.019 0.019 
4 5 5 5 5 0.015 0.015 0.015 0.019 0.021 0.021 0.014 0.019 0.019 
5 4 4 4 4 0.015 0.015 0.015 0.165 0.085 0.121 0.144 0.082 0.144 
6 3 3 3 3 0.015 0.015 0.015 0.019 0.019 0.022 0.014 0.014 0.024 

p12 

4 7 7 7 7 0.015 0.015 0.015 0.021 0.021 0.021 0.019 0.019 0.019 
5 6 6 6 6 0.015 0.015 0.015 0.021 0.019 0.019 0.019 0.014 0.014 
6 5 5 5 5 0.015 0.015 0.015 0.021 0.019 0.019 0.019 0.014 0.014 
7 4 4 4 4 0.015 0.015 0.015 0.030 0.032 0.026 0.029 0.029 0.029 
8 4 4 4 4 0.015 0.015 0.015 0.022 0.021 0.021 0.024 0.019 0.019 

p16 

15 6 6 6 6 0.015 0.015 0.015 0.066 0.088 0.091 0.054 0.092 0.135 
16 6 6 6 6 0.015 0.015 0.015 0.065 0.050 0.068 0.045 0.049 0.074 
18 6 6 6 6 0.015 0.015 0.015 0.051 0.040 0.043 0.041 0.039 0.057 
19 5 5 5 5 0.015 0.015 0.015 0.029 0.030 0.038 0.025 0.036 0.058 
20 5 5 5 5 0.031 0.031 0.031 0.147 0.096 0.149 0.191 0.072 0.120 
21 5 5 5 5 0.015 0.015 0.015 0.493 0.594 0.354 0.460 0.613 0.639 
22 4 4 4 4 0.062 0.046 0.015 0.321 0.151 0.476 0.361 0.117 0.529 

p24 

18 8 8 8 8 0.015 0.015 0.015 0.093 0.055 0.062 0.080 0.055 0.055 
20 8 8 8 8 0.015 0.015 0.015 0.022 0.022 0.022 0.024 0.024 0.024 
24 6 6 6 6 0.078 0.281 0.109 1.101 1.146 1.201 0.666 0.655 0.812 
25 6 6 6 6 0.015 0.015 0.015 0.132 0.055 0.105 0.155 0.044 0.081 
30 5 5 5 5 0.015 0.015 0.015 0.069 0.046 0.068 0.073 0.040 0.070 
35 4 4 4 4 0.015 0.015 0.015 0.063 0.087 0.069 0.075 0.055 0.052 
40 4 4 4 4 0.015 0.015 0.015 0.032 0.029 0.029 0.038 0.027 0.024 
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 Çevrim 
süresi 

Bilinen en 
iyi 

karşılıklı 
istasyon 

sayısı 

Minimum karşılıklı istasyon 
sayısı CPU(sn) 

Maks-
min Öncelik Toplamsal

Minimum Ortalama Standart sapma 
Maks-

min Öncelik Toplamsal Maks-
min Öncelik Toplamsal Maks-

min Öncelik Toplamsal 

p65 

326 17 17 17 17 1.203 3.609 0.750 15.421 14.580 11.316 13.566 7.920 8.202 
381 14 14 14 14 11.140 22.171 5.875 44.618 67.304 60.474 19.369 27.839 27.300 
435 13 13 13 13 7.812 5.781 13.453 50.670 31.869 39.185 27.316 20.801 24.360 
490 11 11 11 11 0.375 18.781 11.546 69.165 60.010 70.865 32.206 26.910 32.990 
544 10 10 10 10 36.703 11.250 5.109 77.083 59.130 50.237 24.129 34.090 35.700 

p148 

204 26 26 26 26 1.265 2.109 1.296 3.730 4.335 4.918 3.260 2.186 2.773 
255 21 21 21 21 1.203 10.031 1.265 51.976 34.587 47.151 42.673 21.037 40.568 
306 17 17 17 17 9.390 15.125 15.140 76.769 78.660 84.951 38.058 49.022 41.431 
357 15 15 15 15 16.343 9.796 24.515 102.558 52.302 90.351 54.871 43.833 45.926 
408 13 13 13 13 0.531 52.375 3 86.371 92.618 90.082 58.033 44.813 52.455 
459 12 12 12 12 3.296 34.531 14.734 86.340 101.451 92.963 71.960 35.413 45.129 
510 11 11 11 11 11.015 8.265 6.453 96.702 87.697 82.921 54.366 52.556 51.759 

p205 

1133 22 23 23 22 151.750 92.546 54.656 747.263 742.557 715.909 426.397 391.590 430.616 
1322 20 20 20 20 837.421 351.062 23.875 1339.126 1190.586 898.960 381.860 558.150 611.382 
1510 17 18 18 17 144.062 412.171 76.546 1121.315 1134.218 1267.214 573.696 534.308 769.849 
1699 15 16 16 16 266.453 380.531 430.265 1077.115 1033.017 1088.767 650.224 514.496 530.091 
1888 13 14 14 14 2315.218 41.421 87.515 2529.403 714.208 779.487 285.713 521.125 605.364 
2077 12 14 13 13 2357.421 102.796 112.843 2389.973 510.971 1260.771 17.491 489.187 1003.693 
2266 12 13 12 12 240.734 8.203 7.843 1184.706 434.285 709.605 827.492 886.861 836.005 
2454 10 12 11 11 2878.968 411.875 412.171 2919.115 1610.444 1561.831 26.721 859.235 752.507 
2643 10 12 10 10 2965.171 8.265 24.078 2999.575 216.743 152.904 22.610 195.708 112.440 
2832 10 10 10 10 2278.484 8.015 8.843 3204.028 8.946 9.466 347.679 0.544 0.728 
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Deneysel çalışmanın gerçekleştirildiği 45 test probleminin, toplamsal yöntemle 41’inde, 

öncelik yöntemiyle 39’unda ve maks-min yöntemiyle 37’sinde bilinen en iyi istasyon 

sayısına ulaşılmıştır. CPU süresi açısından kullanılan yöntemler değerlendirildiğinde ise 

toplamsal ve öncelik yöntemlerinin maks-min yöntemine göre daha kısa sürelere sahip 

olduğu görülmüştür. Diğer taraftan AA ile hem bilinen en iyi karşılıklı istasyon 

sayılarına büyük ölçüde ulaşılmış hem de diğer amaçlar etkin bir şekilde sağlanmıştır. 

Sonuç olarak AA bulanık çok amaçlı ÇTMHDP’ni çözmede etkin bir performansa 

sahiptir. 



5. BÖLÜM 

SONUÇ VE ÖNERİLER 

5.1.  Çalışmanın Katkıları 

Tez çalışmasının bu bölümünde çalışmanın orijinalliğinden ve bilimsel yazına olan 

katkılarından bahsedilecektir.  

Birçok gerçek hayat probleminin kombinatoryal optimizasyon problemi olarak 

modellenebilmesi, tez çalışmanın çıkış noktasını oluşturmuş olup bu tür problemlerin 

çözümünde hızlı ve etkin olarak kullanılabilecek araçların geliştirilmesi ya da mevcut 

araçların kullanılması ele alınmıştır. Zor kombinatoryal optimizasyon problemlerinin 

kesin yöntemlerle çözümünün mümkün olamayabilmesi ve problemin boyutu arttıkça 

hesaplama süresinin büyük bir sorun teşkil etmesi sebebiyle sürü zekâsına dayalı 

algoritmalardan yararlanılmıştır.  

Bu doğrultuda, bilgisayar ve iletişim ağları, yerleştirme problemleri, araç rotalama, grup 

teknolojisi ve çizelgeleme gibi gerçek hayat uygulamalarına sahip zor kombinatoryal 

optimizasyon problemlerinden GAP’nin çözümü için sürü zekâsı tabanlı 

algoritmalardan AA ve YAK algoritmasından faydalanılmıştır. İlgili algoritmalar 

GAP’nin çözümü için farklılaştırılmış ve önerilen her iki algoritmanın da GAP üzerinde 

özellikle de karşılaştırma yapılan algoritmalara göre iyi bir performansa sahip olduğu 

görülmüştür. 

Çalışmanın diğer bir uygulama alanında ise bilimsel yazında önerilen farklı komşuluk 

yapılarının GAP için geliştirilmiş olan AA’nın performansı üzerindeki etkileri 

incelenmiş ve bu komşuluk yapılarının farklılıkları ortaya konmuştur.  

Diğer taraftan otobüs ve kamyon gibi büyük boyutlu ürünlerin üretildiği işletmelerde 

ortaya çıkan ve yine NP-zor bir yapıya sahip olan ÇTMHDP ele alınmış ve özel kısıtlar 

çözüm yaklaşımına dâhil edildikçe problemin daha da zorlaştığı belirtilmiştir. Yapılan 
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bilimsel yazın taraması sonucunda özel kısıtların dâhil olduğu çözüm yaklaşımlarının 

oldukça az olduğu; özellikle konumsal, bölgesel ve senkronizasyon kısıtlarının aynı 

anda çözüm yaklaşımına dahil edildiği bir çalışmanın bulunmadığı görülmüştür. Bu 

amaçla yine AA ve YAK algoritmalarından faydalanılarak farklı kısıtlar altında 

algoritmaların performansı incelenmiştir. Her iki algoritmada da basit komşuluk 

yapılarının kullanıldığı da göz önüne alınırsa AA ve YAK algoritmasının ÇTMHDP 

üzerinde üstün bir performansa sahip olduğu görülmüştür. Ayrıca bilimsel yazında ilk 

kez konumsal, bölgesel ve senkronizasyon kısıtlarına sahip ÇTMHDP için karma 

tamsayılı doğrusal olmayan bir matematiksel model önerilmiştir.  

Diğer taraftan AA, bulanık çok amaçlı ÇTMHDP’nin çözümü için kullanılmış ve 

bulanık amaçlar farklı teknikler altında incelenerek bu tekniklerin algoritma 

performansı üzerindeki etkisi incelenmiştir. 

Sonuç olarak genellikle sürekli optimizasyon problemlerine uygulanmış olan AA ve 

YAK algoritmasının karmaşık tamsayılı optimizasyon problemleri üzerindeki 

performansı incelenmiş; geniş deneysel çalışmalar sonucunda GAP ve ÇTMHDP için 

bilimsel yazındaki kesin ve sezgisel çözüm yöntemleriyle yapılan karşılaştırmalar, 

önerilen algoritmaların etkin bir performansa sahip olduğunu göstermiştir.  

Tez çalışmasında elde edilen sonuçlardan iki SCI’e giren [198-200], bir de SCI’e 

indeksine girmeyen [201] dergilere makaleler gönderilmiş olup, bu makalelerden ilki 

basılmış diğerleri ise inceleme aşamasındadır. Ayrıca bir kitap bölümü [202] çalışması 

gerçekleştirilmiş olup, bir uluslararası kongre [203] ve üç ulusal kongre bildirisi [204-

207] sunulmuştur.  

5.2.İleriye Yönelik Öneriler 

Zor kombinatoryal optimizasyon problemlerine arıların yiyecek arama davranışına 

dayalı metasezgisel yöntemlerle çözüm aramaya dayanan bu tez çalışmasında, 

uygulama alanı olarak GAP ve ÇTMHDP seçilmiştir. Bu problemlere ek olarak atama 

esnasında kullanılan kaynak kullanım miktarlarının ve ajanlara ait kaynak 

kapasitelerinin stokastik değerlere sahip olduğu Stokastik GAP, işlem sürelerinin 

stokastik değerlere sahip olduğu Stokastik ÇTMHDP ve diğer birçok zor kombinatoryal 

optimizasyon probleminin çözümünde de arı sistemi uygulamaları gerçekleştirilebilir. 
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Bilindiği gibi parametrelerin en iyi seviyelerinin belirlenmesi, algoritma performansını 

etkileyen en önemli unsurlardan biridir. Ele alınan GAP ve ÇTMHDP’nin her ikisi için 

de gerçekleştirilecek bir parametre optimizasyonu çalışması, daha iyi çözümler 

bulunmasını sağlayabilir. Ayrıca farklı çözüm dizisi gösterimleri ve uygunluk 

fonksiyonu kullanımının algoritma performansı üzerindeki etkisi incelenebilir. 

Diğer taraftan her iki problem için de birbiriyle çelişen birden çok amaç aynı uygunluk 

fonksiyonu üzerinde değerlendirilerek farklı etkinlik ölçütleri eşzamanlı olarak en 

iyilebilir. Örneğin ÇTMHDP için hattın dengelenmesi, istasyon sayısının en 

küçüklenmesi, hat etkinliğinin en büyüklenmesi ve birbiriyle ilişkili işler arasındaki boş 

zamanın en küçüklenmesi gibi amaçlar aynı anda çözüm yaklaşımına dâhil edilebilir.  

GAP’nde kullanılan komşuluk yapılarının algoritma performansı üzerindeki etkisinin 

incelendiği bölümde ise komşuluk yapıları ikili ve üçlü olarak değerlendirilebilir ve bu 

kombinasyonların performansa etkisi analiz edilebilir. 

ÇTMHDP’nin çözümü için kullanılan AA ve YAK algoritmasında basit komşuluk 

yapıları kullanılmıştır. Deneysel çalışmalardan oldukça tatmin edici sonuçlar elde edilse 

de karmaşık komşuluk yapılarının algoritmalara dâhil edilmesiyle daha iyi çözümler 

elde edilebilecektir. Diğer taraftan çift taraflı montaj hatlarında aynı anda birden fazla 

benzer tipteki modelin karma olarak üretildiği ÇTKMMHDP de dikkate alınabilir. 

Bilimsel yazın araştırmasından da görüldüğü gibi ÇTKMMHDP üzerine yapılan 

çalışmalar oldukça az olup tek modelli hatlar üzerinde etkin bir performans gösteren AA 

ve YAK algoritmasının performansı karma modelli hatlar üzerinde de incelenebilir. 
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