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ABSTRACT 
 

MSc THESIS 
 

MULTI-OBJECTIVE BEE COLONY OPTIMIZATION TO TUNING PID 
CONTROLLER 

 
Özden ERÇİN 

 
ÇUKUROVA UNIVERSITY  

INSTITUTE OF NATURAL AND APPLIED SCIENCES 
DEPARTMENT OF COMPUTER ENGINEERING 

 
 Supervisor :Asst.Prof.Dr. Ramazan ÇOBAN    
  Yıl: 2011, Sayfa: 91 
 Jury :Asst.Prof.Dr. Ramazan ÇOBAN 
  :Assoc.Prof.Dr. İlyas EKER              
  :Assoc.Prof.Dr. Zekeriya TÜFEKÇİ 
  

In this study, a novel intelligent design method for closed-loop auto-tuning of 
a proportional-integral-derivative (PID) controller based on Bee Inspired Swarm 
Algorithms is proposed, in which PID controller parameters can be tuned 
concurrently. The set of trade-off optimal solutions, called Pareto-set optimization 
solutions, of the conflicting objective functions are able to be found. Moreover the 
research presents an investigation for the development of system identification using 
Artificial Bee Colony (ABC).  

Bees Algorithm (BA), developed by D.T. Pham (2006) and Artificial Bee 
Colony, developed by Dervis Karaboga (2005) are a subfield of Swarm Intelligence 
and was inspired by swarming patterns occurring in nature such as the food foraging 
behavior of honeybees. In the present study, the problem of identifying the PID 
controller parameters is considered as an optimization problem. The Multi-Objective 
Bees Algorithm (MOBA) and the Multi-Objective Artificial Bee Colony (MOABC) 
algorithm have been employed to determine the PID parameters. The PID controller 
is designed using the MOBA and the MOABC algorithms. The results of all designs 
are compared and analyzed. Simulation results demonstrate that the proposed method 
using the MOBA and the MOABC has a better control system performance. The 
results obtained show good stability, set-point tracking performance and robustness 
against disturbance.  
 
Key Words: Multi-objective optimization, Artificial Bee Colony, Bees Algorithm, 

PID tuning, System Identification 
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ÖZ 
 

YÜKSEK LİSANS TEZİ 
 

ÇOK AMAÇLI ARI KOLONİSİ OPTİMİZASYONU KULLANARAK PID 
KONTROLÖRÜN AYARLANMASI 

 
Özden ERÇİN 

 
ÇUKUROVA ÜNİVERSİTESİ 
FEN BİLİMLERİ ENSTİTÜSÜ 

BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİM DALI 
 

 Danışman :Yrd.Doç.Dr. Ramazan ÇOBAN    
  Yıl: 2011, Sayfa: 91 
 Jüri :Yrd.Doç.Dr. Ramazan ÇOBAN 
  :Doç.Dr. İlyas EKER               
  :Doç.Dr. Zekeriya TÜFEKÇİ 
  

Bu çalışmada, PID kontrolörün parametrelerinin ayarlanması için, arı 
algoritmalarına dayalı bir method önerilmiştir. D.T. Pham (2006) tarafından 
geliştirilen arı algoritması ve Derviş Karaboğa (2005) tarafından geliştirilen yapay 
arı kolonisi, bal arılarının yiyecek arama davranışları gibi doğada oluşan sürü 
modellerinden esinlenmiş algoritmalarıdır. Bu çalışmada, PID kontrolör 
parametrelerinin belirlenmesi problemi bir optimizasyon problemi olarak kabul 
edilmektedir. Çok-amaçlı arı algoritması (MOBA) ve çok-amaçlı yapay arı kolonisi 
(MOABC) algoritmaları PID kontrolör parametrelerini belirlemek için kullanılmıştır. 
Farklı derecelerdeki sistemler için sonuçlar karşılaştırılmıştır ve analiz edilmiştir. 
Simülasyon sonuçları çok-amaçlı arı algoritması ve çok-amaçlı yapay arı kolonisi 
yöntemleri kullanılarak, parametre ayarlama problemlerinde daha iyi performas 
özelliklerine sahip olduğunu göstermektedir. Elde edilen sonuçlar, gürültüye karşı iyi 
bir kararlılık ve dayanıklılık göstermiştir.   

Ayrıca, bu çalışmada yapay arı kolonisinin (ABC), sistem tanılama 
problemlerinde başarı ölçütleri incelenmiştir. Elde edilen sonuçlar, sistem tanıma 
problemlerinde arı algoritmasının başarıyla kullanabileceğini göstermiştir. 
 
Anahtar Kelimeler: Çok Amaçlı Optimizasyon, Yapay Arı Kolonisi, Arı 

Algoritması, PID Parametrelerinin Ayarlaması, Sistem 
Tanılama 
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1. INTRODUCTION 

 

After the Industrial Revolution, when people have kept on inventing all kinds 

of new machines to relieve his daily work, the importance of ways to control these 

technical processes increased. First, people were the overall controllers of the 

processes in for example a factory, but with the increasing complexity and increasing 

pays this was no longer possible. People started a search for technical expedient 

resources to ease their controlling job. During the mechanization period, 

development of ways was mainly involved to measure things in processes. People 

could use this information for better control of the process. When the Automation 

started, people gave away a part of his most easy controlling tasks to technical 

expedient resources, which were often electrical circuits. Nowadays processes are 

controlled by electronics and computers at much higher levels and this development 

still goes on. Some information is required about the process in order to develop 

controllers for a process. That is to say, the system has to be identified and has to be 

put in some kind of model. The kind of model relies on the kind of controller which 

one wants to implement. Process analysis is another application of models: try to 

predict the behaviour of a process in certain circumstances.  

Using the physical equations which belong to the components of the process 

is one way to construct a model. After determining the equations, the system can be 

represented by several interconnected boxes with equations in it. The transfer is 

described by these equations from an input of the box to the output. This model is 

called “White Box Modelling” (Eykhoff, 1974). It does not mean that this model 

never describes the system exactly. The physical equations describe a simplified 

situation and only hold under certain conditions and assumptions. White Box 

Modelling is very time-consuming or even impossible for more complex systems. 

During the last few decades a new way of system identification called as “Black Box 

Identification” has been developed (Ljung, 1999). The different inputs of the process 

are excited with some kind of (time) signal and the outputs are measured. These 

measured data are put into a computer algorithm that calculates a certain type of 
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model. There is no direct relation between the resulting model and the physical 

reality, therefore the name “Black Box Modelling”. Also these models do not 

entirely describe a process and have limited validity. For instance although nearly all 

processes are nonlinear and of high order, the resulting models are usually linear and 

of a finite (small) order. Since a system is only identified for certain frequencies or 

range of frequencies, the model is only valid for or near these working points. During 

measurement and identification all kinds of noise appear which deteriorate the 

identification appear, such as noise in the sensors, quantization errors in the 

computer algorithms etc. 

The primary role of system identification in control system design is 

reduction in uncertainty. This can be performed by using more accurate modelling 

techniques (such as non-linear models), or by determination of the quality of the 

limited model. To develop controllers, especially modern / robust controllers, this 

information can be used. So by underlying modern robust control design techniques 

(control oriented system identification methods) the framework and assumptions are 

matched by this idea. Robust controllers have a better performance than more 

classical controllers by making explicit use of prior information about the model 

error. It is useful if, in addition to verification of the model with the true system, 

mathematical methods for the determination of model errors and uncertainties are 

available.  

Black Box identification has two approaches that can be distinguished. In  the 

“traditional” approach the system can be described by one single model, so the 

system is in the set of models which is considered. Although the noise is not fixed, it 

is described as a stochastic quantity. Therefore, this is called a stochastic approach of 

system identification (Van den Bosch and Van der Klauw, 1994). All other 

identification methods in which the stochastic setting is not used are called 

deterministic. The resulting models are generally non-parametric and often of high 

order. Most recent developments in system identification methods focus on 

deterministic approaches which are strongly related to robust control in the way that 

these algorithms yield models with an upperbound for the model error.  
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A mathematical model of the plant must be obtained in the initial phase of 

design process. Using a numerical process known as system identification is one way 

to obtain a model. This process involves acquiring data from a plant and then 

numerically analyzing stimulus and response data to estimate the parameters of the 

plant. 

These models can be used for control system design, fault detection or 

adaptive guidance (Ogata, 1995). In turn system identification parameter estimation 

is a common criterion for control system, especially for sensitive or adaptive control 

system design. In fact, if the estimated parameters used in the system model for 

controller design do not coincide with the actual process parameters, a closed loop 

control system may be unstable or exhibit unacceptable transient response 

characteristics. So, parameters estimation technique that is accurate and reliable is 

critical for the design and development of high-performance control systems in 

which the estimated parameters are often used in the self-sensing, field orientation, 

motion control and other advanced algorithms.  

The conventional system identification schemes are actually local search 

techniques. If the search space is not differentiable or linear in the parameters, these 

techniques do not often achieve in the search for the global optimum. On the other 

hand, these techniques can iterate only once on each datum received. Using artificial 

intelligence algorithm, a better solution could be provided as an alternative strategies. 

To achieve this aim most commonly used intelligence algorithms are used to point 

out the capabilities.  

Over the past decade, honey bees algorithms and their other variants have 

been a topic of research. Inspired by the foraging behavior of honeybees, honey bees 

algorithms have proven to be an effective and useful stochastic search technique 

(Krusienski and Jenkins, 2005). Therefore, it has been applied to a wide variety of 

problems related to search optimization, routing, clustering, scheduling. Honey bees 

algorithms have gone through various changes and different variants have been 

introduced to solve the problems more effectively. It has also been combined with 

other different artificial intelligence algorithms to create hybrid optimization 

algorithms (Moore and Venayagamoorthy, 2006). These algorithms have been 
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published in different literature and applied to different practical applications. In this 

thesis, two problems have been studied: (1) system identification and (2) PID 

controller design. 

The conventional PID controllers are extensively used in industry because of 

their simple operating algorithm, ease of using, good robustness, high reliability, 

stabilization and zero steady state error (Lu et al., 2007). It is widespread in use and 

universally accepted because of its simple operating algorithm, the relative ease with 

which the controller effects can be adjusted, the broad range of applications where it 

has reliably produced excellent control performances, and the familiarity with which 

it is perceived amongst researchers and practitioners within the process control 

community. Industrial PID control schemes based on the classical control theory 

have been widely used for miscellaneous process control systems for many years. 

They have been preferred for their functional simplicity, good robust performance 

and easy implementation in a wide range of operating conditions; furthermore, PID 

controller principle is easier to understand than other traditional controllers for the 

majority of industrial processes. In PID tuning rules, there are a number of objectives 

such as stability, regulating performance, tracking performance, robustness and noise 

attenuation. It does not mean that objectives are consistent or commensurable. 

However, since the performance of a PID controller completely depends on the 

tuning of its parameters many industrial plants are often confronted with many 

problems such as higher order, time delays and nonlinearities (Kwok et al., 1993).  

Designing and tuning a Proportional Integral Derivative (PID) controller 

seems to be conceptually intuitive. However, if there are multiple (and often 

conflicting) objectives which have to be achieved such as transient behaviour and 

high stability have to be achieved, it can be hard to tune in practice. Generally, initial 

designs obtained by all means need to be adjusted repeatedly through computer 

simulations until the closed-loop system performs or compromises as desired. The 

development of intelligent software tools provide that engineers can achieve the best 

overall PID control for the entire operating envelope. Since the invention of PID, 

numerous tuning rules which differ in flexibility, complexity and amount of process 

knowledge have been developed. During the development of the tuning rule, an 
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important point that seems to miss out is in practical process control industrial 

environments. It is obvious that there is a need to achieve satisfactory control 

performances without adopting complex control architectures, to guarantee the best 

cost/benefit ratio. 

Many tuning rules accepted by industry are now incorporated into the 

hardware modules. However, due to the fact that modelling errors, process variations 

and human errors exist, user can intervent in tuning of PID controllers. So, a tuning 

rule which is simple to understand and quick to apply is needed by user. Needless to 

say, it cannot be assumed that all users are highly educated in control theory. That is 

why the classical Ziegler-Nichols tuning rule (Ziegler and Nichols, 1942) is still 

commonly used. 

There have been several tuning methods proposed for the tuning of process 

control loops, with the most popular method being that of Ziegler and Nichols 

(1942). Other methods are the methods of Cohen and Coon (1953), Åström and 

Hägglund (1984), De Paor and O’Malley (1989), Zhuang and Atherton (1993), 

Venkatashankar and Chidambaram (1994), Poulin and Pomerleau (1996) and Haung 

and Chen (1996). Despite this large range of tuning techniques, to date there still 

seems to be no general consensus as to which tuning method works best for most 

applications (Lipták, 1995). Some methods are based heavily on experience, while 

others are based more on mathematical considerations. 

Process control practitioners mostly preferred the Ziegler-Nichols method. 

Since  control personnel are reluctant to learn new techniques which they perceive as 

being complicated, time consuming and laborious to implement, alternative methods 

are often not applied in practice. Also, there is no sufficient performance of some 

commonly used techniques in the presence of strong nonlinear characteristics within 

the control channel (Åström and Hägglund, 2004). 

In many papers, different PID control methods have been applied to 

determine three parameters of PID controller for the given processes (Bagis, 2007). 

Several algorithms such as manual tuning, Ziegler-Nichols, Cohen-Coon, etc. have 

their own advantages and disadvantages. The major drawback of the manual tuning 

method is that it requires experienced personnel. Some shortcomings of the Ziegler-
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Nichols method are the resulting in large overshoot and oscillatory responses. 

Besides, controller settings necessitate very aggressive tuning and also further fine 

tuning. This method has also poor performance for processes with a dominant delay 

and closed loop system is very sensitive to parameter variations, so parameters of the 

step response may be hard to determine due to measurement noise. A common 

disadvantage of the Cohen-Coon method is that it can only be used for first order 

models including large process delays. It is almost not possible to achieve optimal 

performance by using classical search and optimisation methods. 

In the last decades, design engineers have focused on evolutionary based 

approaches to improve the existing design theories and find the best design results to 

tune the parameters of PID controllers. The main weakness of Genetic Algorithm 

(GA) among evolutionary based approaches is a lack of guarantee that global 

optimum is found within limited period of time and slower speed of convergence 

(Bagis, 2007). A disadvantage of Ant Colony Optimization (ACO) which is another 

evolutionary based approach is difficulty of theoretical analysis, sequences of 

random decisions and probability distribution changes by iteration (Hsiao et al., 

2004). In addition, a long convergence time is a significant drawback of it but 

convergence is guaranteed. The properly selection of the PID parameters is so 

important that the closed loop system must meets design specifications. The design 

specifications can include minimum or no overshoot, minimal rise time, minimal 

steady state error and settling time in the step response of the closed loop system. 

Multi-Objective Bees Algorithm (MOBA) has been used successfully to solve many 

problems and applied to constrained and unconstrained single objective function 

optimizations (Pham and Ghanbarzadeh, 2007). In this work, the MOBA was applied 

to optimize the parameters of PID controllers. To indicate the effectiveness and 

efficiency of the proposed optimization method, the step responses of closed loop 

systems were compared with those of the existing methods in the literature such as 

Ziegler–Nichols, genetic algorithm and ant colony optimization. 

This study proposes the development of a tuning technique that would be 

suitable for optimizing the control of processes operating in a single input single 

output (SISO) process control loop. The SISO topology has been selected for this 
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study because it is the most fundamental of control loops and the theory developed 

for this type of loop can be easily extended to more complex loops.  

The thesis has been divided into 6 chapters. Chapter 1 introduces to the topic 

and outlines the objectives of the research work carried out. In Chapter 2, honey bee 

algorithms have been covered. This chapter explains the basics of the algorithm and 

how it has been applied to the numerical function optimization problem. In Chapter 

3, system identification has been explained. This chapter introduces to the problem 

of system identification and traditional and modern techniques used to solve it. In 

Chapter 4, PID controller design is explained. This chapter introduces to the problem 

and traditional and modern techniques used in PID controller design. 

In the next two chapters, case studies carried out during the research and the 

results obtained from them have been presented. In Chapter 5, studies and results of 

system identification have been presented. This chapter shows the comparison of 

results obtained from system identification, and is presented as figures and tabulated 

data. Additionally, results obtained for PID controller design are presented. These 

results are also presented as figures and tabulated data and show a comparison of 

different algorithms as applied to the examples. 

Conclusion of the thesis and future work is presented in Chapter 6.  
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2. HONEY BEE ALGORITHMS 

 

Instinctive ability that colonies of social insects such as ants and bees have is 

called as swarm intelligence (Nakrani and Tovey, 2004). By functioning collectively 

and interacting primitively amongst members of the group, the colonies of insects are 

able to solve problems beyond capability of individual members by means of this 

highly organized behavior. In a honey bee colony, for example, environment in 

search of flower patches (food sources) is explored honey bees and then the food 

source is indicated to the other bees of the colony when they return to the hive. Such 

a colony is described by self-organization, adaptiveness and robustness (Teodorovic 

and Dell’orco, 2005). 

A behavioral model of self-organization is proposed for a colony of honey 

bees by Seeley (1995). Foraging bees visiting flower patches return to the hive with 

nectar as well as a profitability rating of respective patches in the behavioral model. 

The nectar collected by foraging bees provides feedback on the current status of 

nectar flow into the hive (Camazine and Sneyd, 1991). The profitability rating is a 

function of nectar bounty, nectar quality and distance from the hive. A response 

threshold is set by the feedback for an enlisting signal which is known as waggle 

dance, the length of which is dependent on both the profitability rating and the 

response threshold. On the dance floor where can be observed by individual foragers 

the waggle dance is performed. The forager bees can randomly select a dance to 

observe and follow from which they can learn the location of the flower patch and 

leave the hive to forage. 

Honey bees live in a colony in the nature and they forage and store honey in 

their constructed colony. Pheromone and “waggle dance” are communication of 

honey bees (Bastürk and Karaboga, 2006). For example, a chemical message 

(pheromone) may be released by an alarming bee to stimulate attack response in 

other bees. Furthermore, bees will communicate the location of the food source by 

performing the so called waggle dances as a signal system when they find a good 

food source and bring some nectar back to the hive. Such signaling dances differ 
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from species to species, however, using directional dancing with varying strength, 

more bees will be recruited so as to communicate the direction and distance of the 

found food resource. 

For multiple food sources such as flower patches, in studies it is shown that 

forager bees are able to be allocated among different flower patches so as to 

maximize their total nectar intake. A bee colony typically has to collect and store 

extra nectar, about 15 to 50 kg in order to survive the winter. From the evolution 

point of view, the efficiency of nectar collection is consequently very important. 

Experimental studies which include the important work have also been carried out by 

Camazine and Sneyd (1991) and lately by Quijano and Passino (2007a). If the 

natural behaviour of bee colonies is learnt, various algorithms can be designed 

(Quijano and Passino, 2007a, 2007b). 

Over the last decade or so, nature-inspired bee algorithms have started to 

emerge as a promising and powerful optimization tool.The exact dates are difficult to 

pinpoint when the bee algorithms were first formulated. Several groups of 

researchers developed them over a few years independently.  

From the literature survey, in around 2004 Nakrani and Tovey (2004) first 

formulated the Honey Bee Algorithm (HBA) to study a method to allocate computers 

among different clients and web-hosting servers. Later in 2004 and earlier 2005, by 

Yang (2005)  a Virtual Bee Algorithm (VBA) was developed to solve numerical 

optimization problems. Although only functions with two parameters were given as 

examples, VBA can optimize both functions and discrete problems. Slightly later in 

2005, a Honey-Bee Mating Optimization (HBMO) algorithm which was 

subsequently applied to reservoir modelling and clustering was presented by Afshar 

et al. (2007). Around the same time, an Artificial Bee Colony (ABC) algorithm was 

developed by Karaboga (2007) in Turkey for numerical function optimization and a 

comparison study was carried in 2007. These bee algorithms are nowadays becoming 

more and more popular (Kang et al., 2011). 

The communication or broadcasting ability of a bee to some neighbourhood 

bees shows  the essence of the bee algorithms so a bee can be known and followed to 

the best source, locations or routes to complete the optimization task. The detailed 
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implementation will depend on the actual algorithms, and they may differ slightly 

and vary with different variants. However, the pseudo code in Figure 2.1 can 

summarize  the essence of all the bee algorithms.  

 

 
Figure 2.1. Pseudo code of the bee algorithms 

 

2.1 Artificial Bee Colony Algorithm 

 

A minimal model of foraging behavior of a honeybee colony was developed 

based on the reaction-diffusion equations by Tereshko (2000). This model provides 

the emergence of collective intelligence of honey bee swarms. There are three 

essential components of this model: food sources, employed foragers and 

unemployed foragers and two leading modes of the honey bee colony behavior are 

defined by this model: recruitment to a food source and abandonment of a source. A 

forager bee evaluates a number of properties related with the food source such as its 

taste of its nectar, closeness to the hive, richness of the energy and the ease or 

difficulty of extracting this energy in order to choose a food source. An employed 

forager is employed at a specific food source in order to carry information about this 

specific source and share it with other bees waiting in the hive. The information 

contains the distance between hive and food source, the direction and the profitability 

of the food source. Unemployed forager is a forager bee looking for a food source to 

exploit. It can be a scout who looks for the environment arbitrarily or an onlooker 

who attempts to find a food source through the information given by employed bee 

Objective function f(x), x=(x1, .... xn)T & constraints 
Encode f(x) into virtual nectar levels 
Define dance routine (strength, direction) or protocol 
while (criterion) 
     for loop over all n dimensions 
     Generate new solutions 
     Evaluate the new solutions 
     end for 
     Communicate and update the optimal solution set 
end while 
Decode and output the best results 
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(Tereshko, 2000). The main steps of the ABC algorithm are given below (Basturk 

and Karaboga, 2009a): 

Step 1. Generate the population of solutions (positions of food sources) 

randomly xi, i = 1. . .SN 

Step 2. Evaluate the generated population 

Step 3. Cycle = 1 

Step 4. Repeat 

Step 5. Produce new solutions υi for the employed bees by using Equation 

(2.2) and evaluate them 

Step 6. Apply the greedy selection process 

Step 7. Calculate the probability values pi for the solutions xi by Equation 

(2.1) 

Step 8. Produce the new solutions υi for the onlookers from the solutions xi 

selected depending on pi and evaluates them 

Step 9. Apply the greedy selection process 

Step 10. Determine the abandoned solution for the scout and replace it with a 

new randomly produced solution xi by Equation (2.3).  

Step 11. Record the best solution achieved so far 

Step 12. Cycle = Cycle + 1 

Step 13. Until Cycle = Maximum cycle number 

 

In the ABC algorithm, there are three flocks of bees: onlooker, employed, and 

scout. A colony consists of the onlooker bees plus employed bees. If an employed 

bee abandons its food source, it becomes a scout bee. The number of solutions 

(population) to problem is equal to the number of the onlooker bees or the employed 

bees. A possible solution to the optimization problem is presented by the position of 

a food source and the quality (fitness) is measured with the amount of nectar of the 

associated food source. The number of food source equals the number of employed 

bees. At the first step, initial population P(G = 0) of SN solutions (food source 

positions) is generated randomly by the ABC. SN denotes the size of population.  

Each solution xi (i = 1, 2, ..., SN) is presented by using a D-dimensional vector. Here, 
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D denotes the number of optimization parameters. After initialization, the employed 

bees, the onlooker bees and the scout bees repeatedly search for all food sources until 

a predetermined number of iterations (Cycle=1, 2, ..., MCN). An employed bee starts 

neighborhood search firstly depending on the local information (visual information) 

and tests the nectar amount (fitness value) of the new source (new solution), the 

position of new sources replace the previous one if better than previous position, 

otherwise keep the position of previous one. After the search process is completed by 

all employed bees, the nectar information of the food sources and their position 

information are shared with the onlooker bees on the dance area. An onlooker bee 

evaluates the nectar information taken from all employed bees and then it chooses a 

food source by using a selection probability related to its nectar amount.  

An artificial onlooker bee selects a food source depending on the selection 

probability value associated with that food source, pi, calculated by the following 

expression (Basturk and Karaboga, 2009a, 2009b): 

 

∑
=

= SN

i
i

i
i
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                    (2.1) 

 

where fiti is the fitness value of the ith solution which is proportional to the nectar 

amount of the food source in the position i. SN is the number of solutions which is 

equal to the number of employed bees (BN).  

So as to produce an applicant food position from the old one in memory, the 

ABC uses the following expression (Basturk and Karaboga, 2009a, 2009b): 

 

)( kjijijijij xxxv −Φ+=                    (2.2) 

 

where k Є {1, 2,..., SN} and j Є {1, 2,..., D} are randomly selected indexes. The 

index k is determined randomly but it has to be different from i. Фij is a random 

number and chosen between [-1, 1]. A bee compares two food locations visually by 

using this parameter. As seen from Equation (2.2), as long as the change between the 
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positions of xij and xkj diminishes, the perturbation on the position xij decreases. 

Therefore, the search comes close to optimum solution in the search space. 

The scout bees replace new food sources, which are produced randomly in 

their dynamic ranges, with the ones which the employed bees abandon. In ABC, 

during a predetermined number of cycles if a position cannot be improved further 

then that food source is thought to be abandoned. Here, since the only one source is 

abandoned in each cycle, one employed bee becomes a scout bee. The parameter so-

called “limit” is an important one for abandonment which is the value of 

predetermined number of cycles [3]. If the abandoned source is xi and j Є {1, 2,..., 

D}, then a new food source is discovered by the scout to be replaced with xi. The 

description of this operation is given as (Basturk and Karaboga, 2009a, 2009b) 

 

))(1,0( minmaxmin
jjjj

i xxrandxx −+=                  (2.3) 

 

After the artificial bee produces and then evaluates each candidate source 

position vij, its performance is compared with that of its old one. If the nectar of the 

new food source is equal to or better than the old one, it replaces with the old one in 

the memory. Otherwise, the old one in the memory is retained. In other words, a 

greedy selection mechanism is engaged as the selection operation between the old 

and the candidate one. In the ABC, there are three control parameters such as the 

number of food sources which is equal to the number of employed or onlooker bees 

(SN), the value of limit, the maximum cycle number (MCN). In a robust search 

process, exploration and exploitation processes have to be performed together. In the 

ABC algorithm, the scout bees control the exploration process while onlookers and 

employed bees carry out the exploitation process in the search space. The detailed 

flow chart of the artificial bee colony algorithm is shown in Figure 2.2. 
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Figure 2.2. Detailed flow chart of the artificial bee colony algorithm 
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2.2 Bees Algorithm 

 

The main steps of the bees algorithm are summarized in this section. A 

number of parameters in the algorithm need to be set in advance: n denotes number 

of scout bees, m denotes number of sites selected for neighborhood search (out of n 

visited sites), e denotes number of top-rated (elite) sites among m selected sites, nep 

denotes number of bees recruited for the selected sites, nsp denotes number of bees 

recruited for the other (m-e) selected sites, ngh denotes the initial size of each patch 

(a patch is a site in the search space that includes the visited site and its 

neighborhood), sc denotes shrinking constant, a denotes abandonment threshold 

(Pham et al, 2006a). 

 

Step 1. Initialise the bee population with n random solutions 

Step 2. Evaluate the fitness of the bee population 

Step 3. While (stopping criterion not met) 

Step 4. Select sites (m) for neighbourhood search 

Step 5. Recruit bees for selected sites (more bees for best e sites), evaluate 

fitnesses, select the fittest bee from each site and shrink patches 

For (k = 1; k <= e; k++) // Elite sites 

    For (Bee = 1; Bee <= nep; Bee++) // More bees for e elite sites 

BeesPositionInNgh( ) = GenerateRandomValueInNgh(from x + ngh 

to x - ngh); 

     Evaluate fitness = Bee(i); 

         // Evaluate the fitness of recruited Bee(i) 

     If (Bee(i) is better than Bee(i - 1)) 

RepresentativeBee = Bee(i); 

For (k = e+1; k <= m; k++) // Other selected sites (m - e) 

    For (Bee = 1; Bee <= nsp; Bee++) 

         // Fewer bees for other selected sites (m - e)  

BeesPositionInNgh( ) = GenerateRandomValueInNgh(from x + ngh 

to x - ngh); 
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            Evaluate fitness = Bee(i); 

                 // Evaluate the fitness of recruited Bee(i) 

            If (Bee(i) is better than Bee(i - 1)) 

    RepresentativeBee = Bee(i); 

// Shrink all patches 

For (patch = 1; patch <= m; patch++) 

ngh(patch) = ngh(patch)/sc; 

Step 6. If no improvement exists on a site k after a given number of 

iterations, then save the fitness of k, abandon the site and assign the bee to random 

search. 

// Site abandonment procedure 

If (Iteration > a) 

If (No improvement on the site) 

        Save the fitness of site k; 

        Abandon the site; 

        Bee(k) = GenerateRandomValue(All search space); 

Step 7. Remaining bees are assigned to search randomly and their fitnesses 

are evaluated.  

// (n-m) bees assigned randomly to search the all solution space. 

Step 8. End while  

 

At the beginning of the algorithm n scout bees are randomly distributed in the 

search space. The evaluation of the sites visited by the scout bees using the fitness 

function (i.e. the performance of the candidate solutions) is in step 2. 

The m non-dominated sites are assigned as “selected sites” and preferred for 

neighborhood search in step 4. If there exist more than m non-dominated sites in the 

population, the first m will be chosen as it is impossible to tell the difference between 

them. If there are less than m non-dominated sites, from the dominated sites that have 

been dominated just once, the rest will be chosen and this subroutine is continued 

until an adequate number of sites have been chosen. The algorithm enforces searches 

in the neighbourhood of the selected sites, assigning more bees to the best e sites in 
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Steps 5. Selection of the best sites can be made directly according to the fitnesses 

associated with the neighbourhood of the selected sites. Alternatively, fitness values 

can be used in order to determine the probability of sites being selected. Searches in 

the neighborhood of the best e sites that represent the most promising solutions are 

made more detailed by recruiting more bees for them than for the other selected sites. 

This differential recruitment is a key operation of the bees algorithm together with 

scouting. For each patch, only the one bee which has found the site with the highest 

fitness (the fittest bee) will be selected to form part of the next bee population. When 

there does not exist any progress in the neighborhood search, the patch size is 

diminished. The purpose of this strategy is to make the local search more 

exploitative, to search more intensely the surrounding of the local optimum. 

Therefore this step is named as the “shrinking method” (Pham et al., 2007). 

In Step 6, if the points visited near a selected site k are all inferior in quality 

to that site, after the number of iterations has reached the abandonment threshold a, 

then the location of the site is memorized and the site abandoned. The bee that found 

the site is then assigned to random search namely, made to scout for new potential 

solutions (Pham et al, 2006b). 

In Step 7, the rest of the bees in the population are also sent randomly around 

the search space in order to look for new potential solutions. At the end of each 

iteration, there are two parts of colony to its new population. These are representative 

bees from the selected patches and scout bees appointed to attitude random searches. 

These steps are repeated till a stopping criterion is satisfied (Pham et al, 2006c). 

The researchers believe that the algorithm presented here more closely 

mimics the foraging behaviour of honey bees than other similarly named 

optimisation algorithms. The detailed flow chart of the bees algorithm is shown in 

Figure 2.3. 
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Figure 2.3. Detailed flow chart of the bees algorithm 

 

2.3 Comparison of Honey Bee Algorithms for Numerical Function 

Optimization 

 

In the experiments, results of the basic BA and ABC algorithms are compared 

to each other on unimodal Rosenbrock function with different dimensions. For the 

BA, n=40, e=1, m=3, nep=50, nsp=10, maximum iteration number was 500, initial 

ngh was 6, and shrinking constant (sc) was 1.05. For the ABC algorithm, number of 

food sources was 20 and maximum cycle number was 2500. Limit control parameter 

was 100 for all problems. Each of the experiments was repeated 30 times with 
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different random seeds, and the mean function values of the best solutions and the 

standard deviations throughout the optimization runs was recorded under different 

dimensions. In the experiments, mean and standard deviations of 30 runs with 

different random seeds for 3, 5, 7 and 10 dimensions were reported on Table 2.1 for 

Rosenbrock function. The test function is Rosenbrock function whose value is 0 at its 

global minimum (1,1,…,1) in Equation (2.4) (Karaboga and Basturk, 2009).  

Initialization range for the function is [−30,30] (Karaboga, 2007). The global 

optimum is inside a long, narrow, parabolic shaped flat valley. Since it is difficult to 

converge the global optimum, the variables are strongly dependent, and the gradients 

generally do not point towards the optimum, this problem is repeatedly used to test 

the performance of the optimization algorithms (Karaboga and Basturk, 2007).  
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Table 2.1. Mean and standard deviations of the results obtained by the ABC and the 
BA algorithms for Rosenbrock function 

Algorithm 
Type 

Dimension (D) 
 3 5 7 10 

ABC Mean 2.9905 e-2 9.6872 e-2 1.1202 e-1 1.7071 e-1 
Std 5.4600 e-3 1.7686 e-2 2.0452 e-2 3.1168 e-2 

BA Mean 1.6846 e-3 7.6970 e-1 2.1588 19.3714 
Std 3.0756 e-4 1.4052 e-1 3.9414 e-1 3.5367 

 
 

From the test results, the ABC is superior over the BA. The ABC algorithm 

preserves producing reasonable results even for high dimensions. The ABC employs 

less control parameter to be tuned with respect to the BA. 
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3. SYSTEM IDENTIFICATION 

 

The system identification problem deals with the determination of a 

mathematical model for a system or a process by observing the input-output data. 

Historically, system identification has been needed in designing a suitable control 

process for an unknown system (black box problem) or an incompletely known 

system (gray box problem). In most practical systems, such as industrial processes, 

the actual parameter values within a known model structure are unknown. This type 

of problems, which axe examples of the gray box variety, are more accurately called 

as system parameter identification problems. System model and parameter 

identification are applicated not only in engineering but also in other fields like 

economics, medicine, biology and chemistry (Hsia, 1977). The need for more 

accurate knowledge of system parameters has increased with recent advances in 

adaptive and optimal control. The system parameters are updated periodically 

according to the control system requirement in adaptive control. On the contrary, 

many recently developed methods of system identification make use of such fields as 

optimal control theory.  

Least squares, the maximum Ukelihood, and the minimum variance methods 

are available parameter estimation techniques which are more widely used in 

literature . Researchers and control engineers were interested in the results obtained 

by their fellows in the computer science field (Astrom and Wittenmark, 1997). They 

were scrutinizing the artificial intelligence models developed by their fellows 

because of complex problems unyielding to traditional mathematical techniques. The 

system identification problem is one of these problems. The problem of system 

identification with its hard multimodality, nonlinearity and constraints is especially 

unsuitable for traditional mathematical techniques, and the results obtained using 

these techniques are deficient for most real life applications. Henceforth, the models 

developed by their fellows were used by control engineers to solve system 

identification problems. As the results obtained were encouraging, many artificial 

intelligence models became the method of choice for many control engineers. 
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A new wave of artificial intelligence models is the computational intelligence 

techniques that are biologically inspired or nature inspired techniques. Recent 

research have shown promising results in their applications in many control 

engineering problems, and specifically, system identification problems (Liu et al., 

2003). 

 

3.1 Linear System Identification 

 

A linear time-invariant discrete-time system is defined using the following 

linear equations in vector-matrix form: 

 

( ) ( ) ( )kBUkAXkX +=+1                                            (3.1) 

 

( ) ( ) ( )kDUkCXkY +=                                                                        (3.2) 

 

where the coefficients A, B, C and D are properly dimensioned matrices. The 

notation k represents time index. ( )kU  is the input vector, ( )kY  is the output vector, 

and ( )kX  is the state vector: 
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In system identification, the main task is to find a suitable model structure of 

a system with unknown parameters, given some prior knowledge about the system 

and input-output observations. Employing the artificial bee colony algorithm for 

identification, one can exploit their ability to learn the system behavior and requires a 



3. SYSTEM IDENTIFICATION  Özden ERÇİN 

23 

reduced amount of knowledge such as observed input-output data and order of the 

system. The proposed method approximates the system using the observed input-

output data pairs and order of the system. In its estimating process, since the 

identification model is parallel to the system being identified, both of them get the 

same external input U(k). For the same input, the output of the model Ŷ(k) is 

compared with the output of the system Y(k). Therefore, the error signal e(k) is 

produced by the difference between the output of the identification model and the 

output of the system in the following way: 

 

   ( ) ( ) ( )kYkYke
∧

−=                                                                                   (3.4) 

 

3.2 Applying Artificial Bee Colony Algorithm in System Identification  

 

A discrete time signal is a sequence 
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For a single-input, single-output system of order n, causal LTI systems 

difference equation can be written as follows: 
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where β1, β2, ... βn,  α0, α1, ... αn are the system parameters. Applying the Z-transform 

to Equation (3.6), we can obtain the following:  
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Hence, the transfer function, G(z), can be defined as 
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zYzG = ,                         (3.8) 

 

or  
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n
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where α0≠0. The concept of a transfer function can be extended to a linear system 

having p inputs and r outputs, in which case a transfer function matrix, G(z), is 

defined. It has a dimension r x p. In the identification problem, the parameters in 

each element of the matrix G(z) need to be found. The signal y(k) can be constructed 

by iterative computation, given the input signal and initial conditions. After discrete 

system transfer function has been formed, linear system equation is written as input 

and output form. The initial conditions are set to zero. Measured input-output data is 

used for parameter estimation. At the beginning of parameter estimation, input and 

output data is known and real system parameters are assumed as unknown. Using 

initial conditions and obtained real system data, system parameters are estimated 

with the ABC Algorithm. An error between real system output and estimated system 

output is defined as error function. The estimation of the system parameters is 

achieved as a result of minimizing the error function by the ABC algorithm. The sum 

squared error function is used here as an error criterion: 
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where Je is the measure of the error. For one training epoch the root-mean-square 

error (RMSE) is represented as follows: 
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where r represents the number of data.  

 

On the other hand, the ABC algorithm searched based on the well-known 

Jury stability criterion within the stability boundary for parameters estimation (Jury 

and Blanchard, 1961). Roots of a transfer function in the z-plane must be located to 

inside the unit circle |z|≤1 for stability. A zero order hold element for discretization is 

used. 
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4. PID CONTROLLER DESIGN 

 

In process control a dominant role is played by PID-controllers and simple 

and transparent design procedures are demanded by industrial application. PID 

controller design is based on a direct relationship between the parameters of the 

controller and the process model. Simple test results like step or pulse response of the 

plant should be used to ensure a common acceptance for the controller design even 

for staff with lower theoretical background and knowledge (Ang et al, 2005). 

Several approaches have been applied in the past to evaluate design 

procedures for an optimal frequency response using the conception of unity gain 

approach and gain adjustment. But universally valid design equations were not found 

until now. Thus one of the most challenging issues in control engineering education 

and application is still controller design (Nise, 2004).  

It is considered that PID controller is the most common control technique that 

is extensively used in control applications. The PID controller have been used in 

daily life by a huge number of applications and control engineers. On the other hand, 

many research papers, number of master and doctoral theses and books have been 

written on PID controller design subject. PID control offers an easy method of 

controlling a process by varying its parameters. PID works well in industrial 

applications such as slow industrial manipulators were large components of joint 

inertia added by actuators. Since the invention of PID control in 1910, and Ziegler-

Nichols (ZN) tuning method in 1942, PID controllers became dominant and popular 

issues in control theory because of simplicity of implementation, simplicity of 

design, and the ability to be used in a widespread range of applications. Moreover, 

PID controllers are available at low cost. Consequently, if the parameters are tuned 

properly, it provides robust and reliable performance for most systems. PID 

variations (P, PD, and PI) are widely used in more than 90% to 95% of industrial 

control applications. However, there is own limitation of the PID controller; if the 

requirement is reasonable and the process parameters variation are limited, the PID 

performances can give only satisfactory performance (Seborg et al, 2004). 
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Setting the PID parameters is called tuning in literature. Several methods 

have been proposed for determining the PID controller gains during the last six 

decades. The information concerning the open loop characteristics such as Cohen-

Coon method is used by some of those methods. The Nyquist curve plotting of the 

plant such as Ziegler-Nichols tuning method is used by other methods. A prior 

knowledge about the system is needed to be known by all of these tuning formulas. 

PID control technique is applied to control and enhance the system characteristics 

such as reducing the overshoot, speed up rising time, and eliminating the steady state 

error. There is specific criteria for each one of the PID parameters to enhance the 

characteristics of the controlled system (Lin et al, 2008).  

 

4.1 Controller Design Methods 

 

There are not only many different architectures or configurations for control 

systems but also many different general approaches to expressing the design goals 

and objectives for controller design. One example is the optimal controller paradigm: 

the goal is to determine a controller that minimizes a single cost function or 

objective. Other approaches such as multicriterion optimization, several different 

cost functions are specified and the goal is to identify controllers that perform 

mutually well on these goals. The purpose of this chapter is to develop tuning 

method for describing design specifications, and to explain how these various 

approaches can be described using tuning methods.  

 

4.1.1 Iterative or Manual Tuning Method 

 

It is considered that iterative or manual tuning is an experimental method and 

it is used to determine the PID controller parameters. An experimental procedure 

using tuning can be outlined as follows: 

1. Integral and derivative gains equal zero. 

2. Proportional gain is tuned to give the desired response, neglect the steady 

state error. 
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3. Increase KP gain by small increment and adjust the derivative gain KD to 

decrease the damping. 

4. Adjust the integral gain KI to remove the steady state error. 

5. Replicate the previous steps until acquiring the desired response. 

This method concerned as a time consuming method because it depends on 

trial and error approach.  

 

4.1.2 Ziegler–Nichols Frequency Domain Method 

 

This method is based on the closed loop system response. Initially KI and KD 

gains are set to zero. The proportional gain is increased until the process oscillation 

occurs. It reaches the critical gain value KCR at which the output of the loop starts to 

oscillate. Using the value of a critical or ultimate gain KCR and the oscillation or 

ultimate period PCR, the value of PID parameter KP, KI and KD are given in terms of 

the ultimate gain and ultimate period (Ziegler and Nichols, 1942): 
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4.1.3 Ziegler–Nichols Time Domain Method 

 

The Ziegler-Nichols step response and frequency response methods are the 

classical tuning methods for PID controllers. They were presented already in 1942, 

but they are still widely used in the process industry as the basis for controller tuning. 

The step response method is based on an open-loop step response test of the process, 

hence requiring the process to be stable. It depends on the characteristic of the open 

loop step response of the system. Two parameters are determined: the maximum 

point of the slop of the step response, and the intersection between the tangent and 



4. PID CONTROLLER DESIGN  Özden ERÇİN 

 30

the time-axis. Four steps to determine a, Td, and PID parameters are described as 

follows (Hang et al, 1991): 

1. Design the control system at the open loop state. 

2. Plot the step response as shown in Figure 4.1. 

3. Draw tangent line crossing the middle point of the slop of the step 

response. 

4. Determine the PID parameters according to the following relations: 
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                     (4.2) 

 
Figure 4.1. Plant step response in Z-N method 

 

where time constant a = t2 - t1 and the dead time Td is defined as t1 - t0. 
 

4.1.4 Cohen-Coon Method 

 

The procedure to find the PID parameters in this method is the same as 

Ziegler-Nichols time domain method. The Cohen-Coon method’s main objective is 

load disturbance rejection. The PID parameters are calculated according to the 

following formulas (Cohen and Coon, 1953): 
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Td and a are defined as the same in the Z-N, based on the dead time and the 

time constant respectively. K is a process gain. 

 

4.1.5 Root Locus Method 

 

Root locus method is a good technique to design the PID parameters. It’s a 

graphical technique that gives a description of the control system as various 

parameters change, such as overshoot and rising time (Shamsuzzoha and Skogestad, 

2010). This method is used to analyze the relationship between the poles, gains, and 

stability of the system. 

Root locus means in control theory, the location of the poles and zeros of 

transfer function. Pole location determines system stability. If the roots of transfer 

function in the right half plan of the continuous system or inside the circle of discrete 

systems, it indicates that the system is unstable, where if these roots in the left half 

plan this means the system is stable. In addition, when root location on jw axis, the 

system is considered marginal stable. 

 

4.2 PID Characteristic Parameters 

 

PID controller widely used in industrial control systems is composed of 

proportional control action, integral control action and derivative control action. 

There are many forms of PID controller implementations such as a stand-alone 

controller or Distributed Control System (DCS). Figure 4.2 is a simple diagram 

showing the schematic of the PID controller and it is known as non-interacting form 

or parallel form.  
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Figure 4.2. Block diagram of a PID controller 

 

The parallel controllers are mostly preferred for higher order systems. The 

transfer function of PID controller in Laplace transform is defined for a continuous 

system as 

 

( ) sK
s

KKsG D
I

Pc ++=                   (4.4) 

 

The proportional controller response is proportional to the control error. The 

controller error is defined as the difference between the set point and the process 

output. The proportional controller output is the multiplication of the system error 

signal and the proportional gain. Proportional term can be mathematically expressed 

as  

 

ErrorKP pterm ×=                    (4.5) 

 

The integral control applies a control signal to the system which is 

proportional to the integral of the error. The offset introduced by the proportional 

control is removed by the integral action but a phase lag is added into the system. 

Integral term can be mathematically expressed as 

 

∫×= dtErrorKI Iterm                   (4.6) 
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There is a proportion between the derivative controller output and the rate of 

change of the error. Derivative control is used to decrease and eliminate overshoot of 

system response and introduce a phase lead action that removes the phase lag 

introduced by the integral action.  

 

dt
ErrordKD Dterm

)(
×=                    (4.7) 

 

Combining these three types of control together, transfer function of 

continuous PID controller is formed as 
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where KP, KI and KD are the proportional, integral and derivative gains, respectively. 

The control signal to the plant is given by  

 

( ) ∫ ++=
t

DIP dt
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)()()( ττ                 (4.9) 

 

Proportional action KP improves the system rising time, and reduces the 

steady state error. This means the larger proportional gain, the larger control signal 

become to correct the error. However, the higher value of KP produces large 

overshoot and the system may be oscillating; therefore, integral action KI is used to 

eliminate the steady state error. Despite the integral control, reducing the steady state 

error, it may make the transient response worse. Therefore, derivative gain KD will 

have the effect of increasing the damping in system, reducing the overshoot, and 

improving the transient response. 

 

 



4. PID CONTROLLER DESIGN  Özden ERÇİN 

 34

As discussed previously, each one of the three gains of the classical PID 

control has an effect of the response of the closed loop system. Table (4.1) 

summarizes the effects of each of PID control parameters. It will be known that any 

changing of one of the three gains will affect the characteristic of the system 

response. 

 
          Table 4.1. PID characteristic parameters 

Closed-Loop 
Response Rise Time Overshoot Settling 

Time 
Steady State 

Error 
Increasing 

Kp 
Fast Increase Small / No 

effect Decrease 

Increasing  
Ki 

Fast Increase Increase Decrease 

Increasing 
Kd 

Small / No 
effect Decrease Decrease Small / No 

effect 
 

To design the proposed controller, four important characteristics of the output 

of the system are used. These four characteristics are briefly defined below and 

illustrated in Figure 4.3. In addition, it will be defined as: 

Rise time (tr) is defined as the time required for the step response to rise from 

10% to 90% of the set point. 

Settling time (ts) is defined as the time required for the step response to stay 

within 2% of the set point. 

Maximum overshoot (Mp) characterizes what maximum peak value will be 

reached over the set point. If ymax designate the maximum value of y and yss show the 

steady-state value of it, the maximum overshoot will be expressed as: 

 

  ssp yyM −= max                    (4.10) 

 

Steady state error (SSE): it expresses the final difference between the 

process variable and the set point. IAE, MSE, ISE, ITAE, and ITSE are typically and 

popular integral error criteria. Some error criteria usually have to be minimized to get 

the PID tuning parameters optimal or near optimal. The Integral Absolute Error 

(IAE) in the controlled variable is formulated by (Seborg et al, 2004) 
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Now that large errors penalized by the ISE criterion results in the most-

aggressive settings and persistent errors penalized by the ITAE criterion results in the 

most-conservative settings, moderate settings are produced between ISE and ITAE 

criteria by the IAE criterion. The Mean of the Squared Error (MSE), Integral Square 

Error (ISE), Integral Time Absolute Error (ITAE), and Integral Time Square Error 

(ITSE) are also given as follows (Seborg et al, 2004): 
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Figure 4.3. Rise time, Settling time, Maximum overshoot 

 

4.3 Principle of Multi-objective Optimization (Pareto Optimality) 

 

The multi-objective optimization is used to minimize all the objective design 

criteria functions simultaneously. The general multi-objective optimization requiring 

the optimization of j objectives can be written as follows (Ngatchou et al, 2005): 

 

  ( ) ( ) ( ) },....,,{ 2211 jjDx
yxfyxfyxfMin ===

∈
                                          (4.16) 

 

In Equation (4.16), fj(x) are the j th objective design criteria functions and x 

indicates the design parameters chosen and D indicates the set of possible design 

parameters. There are response surface functions fj(x)=yj of each response. When 

there exists a vector of non negative weights Ф=[λ1…..λj]T, an efficient solution is 

supported. Unique global optimum x is expressed in the following formula 

(Ngatchou et al, 2005):  
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If there does not exist a conflict between the objective functions in Equation 

(4.16), then a solution x, called an ideal solution, can be found where every objective 

function obtains its minimum. Generally, there is not an ideal single solution which 

is optimal with respect to each objective function. The objective functions are mostly 

in conflict, that’s why the reduction of one objective function usually causes to 

increase another objective functions. Consequently, Pareto optimal solution is the 

result of the multi-objective optimization and this solution is possible to improve any 

of the objective function by increasing at least one of the other objective functions. 

Pareto optimality cannot improve any criterion without deteriorating a value of at 

least one other criterion. There are generally a lot of Pareto optimal solutions. There 

is an equally acceptable solution of the problem for every Pareto optimal point. 

Nevertheless, the aim is generally desirable to obtain one point as a solution. 

A solution vector x* Є X is called Pareto optimal when there does not exist 

another solution which dominates it in Equation (4.18). That is to say, solution can 

improve in one of the objectives if it affects at least one other objective. 

 

  ( ) },...,2,1{;)()()(: pixfxfxfxfXx ii =∀≠∧≤∈∃ ∗∗             (4.18) 

 

The corresponding objective vector f(x*) is said to be a Pareto dominant 

vector. A solution vector x1 dominates another feasible solution x2, (x1>x2) such as  

 

  },....,2,1{,);()(:)()( 21211 pjixfxfjxfxf jji =∀≤∃∧≤          (4.19) 

 

If there doesn’t exist any solution that dominates x1, then x1 is non-

dominated. A set of non-dominated feasible solutions }:|{ ∗∗ >¬∃ xxxx  is called the 

Pareto optimal set. The set of objective vectors which are image of a Pareto set 

}:|)({ ∗∗ >¬∃ xxxxF  is said to be on the Pareto front (Ngatchou et al, 2005). A 

Pareto front for a bi-objective optimization problem is illustrated in Figure 4.4. 
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Figure 4.4. Illustration of Pareto front for a bi-objective optimization problem 

 

4.3.1 Weighted Sum Method 

 

The weighted sum method is a traditional, popular method that parametrically 

changes the weights among objective functions to obtain the Pareto front. Let us 

consider we have the objective functions f1, f2, ..., fN. This method takes each 

objective function and multiplies it by a fraction of one, the “weighting coefficient” 

which is represented by λN. The modified functions are then added together to obtain 

a single cost function, which can easily be solved using any method. Mathematically, 

the new function is written as 

 

  )()()()( 2211 xfxfxfxF NNλλλ +++= L                 (4.20) 

 

The method is easy to implement and guarantees finding the Pareto optimal 

set, provided the objective function space is convex. However, a uniformly 

distributed set of weights does not necessarily find a uniformly distributed Pareto 

optimal set, which makes it difficult to obtain a Pareto solution in a desired region of 

the objective space. The important issue arises in assigning the weighting 

coefficients (λ1, λ2, … λ3) because the solution is strongly dependent on the chosen 

weighting coefficients. 
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4.3.2 Applying Artificial Bee Colony and Bees Algorithm in PID Controller 

Design 

 

Tuning the parameters of the PID controllers using the multi-objective 

artificial bee colony and bees algorithm is an optimization problem which needs to 

be solved in such a way that output of the system attains the desired level in the 

shortest time as far as possible preventing a high overshoot at the same time. In 

feedback control loop denoted by Figure 4.5 and Figure 4.6, Gc presents the PID 

controller that is governed by Equation (4.21), and Gp presents the system to be 

controlled. In Figure 4.5 and Figure 4.6, r denotes the reference input signal, e 

denotes the error signal, u denotes the control signal, y denotes the output signal, Gp 

denotes a Linear Time-Invariant (LTI) system, Gc denotes the PID Controller. Using 

the reference signal r(t) and system output y(t) the error signal are defined as e(t) = 

r(t) − y(t). 
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Figure 4.5. Block diagram of a MOABC-PID controller 
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Figure 4.6. Block diagram of a MOBA-PID controller 

 

Optimization criteria which are used to evaluate fitness are to be chosen in 

applying optimization method. Many indexes of PID controller affecting 

performance of the transient response can be combined into one objective function 

composed of the weighted sum of objectives. The set of objective function is 

represented by Equation (4.22): 

 

  )min( FJ B Φ=                     (4.22) 

 

where JB denotes the value of the objective function found by the bees, F = [f1 f2 f3 f4 

f5 f6 f7]T  denotes vector of objective functions, f1 denotes the first objective function 

including the settling time (ts), f2 denotes the second objective function including rise 

time (tr), f3 denotes the third objective function including maximum overshoot (Mp), 

f4 denotes the fourth objective function including Integral Absolute Error (IAE), f5 

denotes the fifth objective function including Integral Time Absolute Error (ITAE), f6 

denotes the sixth objective function including Integral Square Error (ISE), f7 denotes 

the seventh objective function including Integral Time Square Error (ITSE), Ф = [λ1 

λ2 λ3 λ4 λ5 λ6 λ7] denotes vector of non negative weights. The important issue arises in 

assigning the weighting coefficients (λ1, λ2, … λ7) because the solution is strongly 

dependent on the chosen weighting coefficients. 
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5. DISCUSSION OF SIMULATION RESULTS 

 

5.1 Results for System Identification 

 

In this subsection, two main examples are utilized in order to illustrate the 

efficiency of the proposed algorithm: (i) the ABC algorithm in system identification 

for comparing different linear SISO plants with different order, (ii) the ABC 

algorithm in system identification for a DC motor. Here, there are four control 

parameters in the ABC algorithm: The first parameter is the number of food sources 

which is equal to the number of employed and also onlooker bees (NP), the second 

one is the number of parameters of the problem to be estimated (D), the third one is 

the value of limit parameter (limit), and the fourth one is the maximum cycle number 

(MCN). The value of limit is generally chosen as NP/2×D (Basturk and Karaboga, 

2010). 

 

5.1.1 Example 1: First Order SISO Linear System Indentification  

 

In the ABC algorithm, the values of the control parameters are chosen as 

D=2, NP=20, limit=20, MCN=500 for the first order plant. The transfer function of 

the 1st-order plant is given in the s-domain as 

 

130
3)(1 +

=
s

sG                        (5.1) 

 
The transfer function of the 1st-order plant (sampling time = 1.0 second) is 

given in the z-domain as 

 

     
0.967216-

0.098352)(1 z
zG =                     (5.2) 
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The difference equation of the G1 plant is as follows: 

 

[ ] [ ] [ ]1098352.01967216.0 −+−= kukyky                     (5.3) 

 

A training set consisting of 400 data for the first order plant is obtained by 

using a random input whose amplitude is uniformly distributed in the interval [-2.0, 

2.0] for zero initial conditions. For avoiding a similar particular solution, all 

parameters to be estimated are initialized randomly over the range [-10.0, 10.0]. The 

proposed algorithm is run 10 times for G1 plant. For G1 plant, each parameter is 

calculated and the simulation results are presented in Table 5.1. The results in Table 

5.1 are found by using 20 bees for first order plant.  

 

Table 5.1. Simulation results of the estimated G1(s) linear plant 

Plant Parameters 
Real 

System 

Estimated System 

(ABC Algorithm) 

G1(s) β1 0.967216 0.967216 

α0 0.098352 0.098352 

 

The performance of the ABC algorithm is tested with the unit step input and 

also the following input sequence consisting of mixtures of sinusoids and constant 

signals: 
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The step response of G1(s) plotted with the best values of the parameters 

estimated by the ABC in 10 runs is shown in Figures 5.1. Also the sinusoidal input 

response of G1(s) plotted with the best values of the parameters estimated by the 

ABC in 10 runs is shown in Figures 5.2. 

 

 
Figure 5.1. Step responses of the plant G1(s) 

 

 
Figure 5.2. Sinusoidal responses of the plant G1(s) 

 

The RMS errors for unit step input and sinusoidal input are presented in 

Table 5.2. The results show that the value of the RMS error is quite smaller. The 

ABC algorithm shows satisfactorily performance.  
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Table 5.2. RMS errors for G1(s) linear plant 

Plant 
RMS Error For 

Step Response Input  

RMS Error For 

Sine wave Input  

G1(s) (First Order) 0.0 0.0 

 

5.1.2 Example 2: Third Order SISO Linear System Indentification  

 

In the ABC algorithm, the values of the control parameters are chosen as 

D=6, NP=50, limit=150, MCN=2000 for the third order plant. The transfer function 

of the 3rd-order plant is given in the s-domain as 

 

75020536
750)( 232 +++

=
sss

sG                     (5.5) 

 
The transfer function of the 3rd-order plant (sampling time = 0.1 second) is 

given in the z-domain as 
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The difference equation of the G2 plant is as follows: 
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          (5.7) 

 
A training set consisting of 2000 data for the third order plant is obtained by 

using a random input whose amplitude is uniformly distributed in the interval [-2.0, 

2.0] for zero initial conditions. For avoiding a similar particular solution, all 

parameters to be estimated are initialized randomly over the range [-10.0, 10.0]. The 

proposed algorithm is run 10 times for G2 plant. For G2 plant, each parameter is 
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calculated and the simulation results are presented in Table 5.3. The results in Table 

5.3 are found by using 50 bees for third order plant.  

 

Table 5.3. Simulation results of the estimated G2(s) linear plant 

Plant Parameters 
Real 

System  

Estimated System 

(ABC Algorithm)  

 

 

 

G2(s) 

β1 1.414464 1.114346 

β2 -0.616755 -0.188177 

β3 0.027324 -0.151084 

α0 0.057176 0.057323 

α1 0.107891 0.124714 

α2 0.009899 0.042447 

 

The performance of the ABC algorithm is tested with the unit step input and 

also the following input sequence consisting of mixtures of sinusoids and constant 

signals: 
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(5.8) 

 

The step response of G2(s) plotted with the best values of the parameters 

estimated by the ABC algorithm in 10 runs is shown in Figures 5.3. Also the 

sinusoidal input response of G2(s) plotted with the best values of the parameters 

estimated by the ABC algorithm in 10 runs is shown in Figures 5.4. 
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Figure 5.3. Step responses of the plant G2(s) 

 

 
Figure 5.4. Sinusoidal responses of the plant G2(s) 

 

The RMS errors for unit step input and sinusoidal input are presented in 

Table 5.4. The simulation results show that the value of the RMS error is quite 

smaller and the simulation results have demonstrated the effectiveness of the 

proposed algorithm. 

 

Table 5.4. RMS errors for G2(s) linear plant 

Plant 
RMS Error For 

Step Response Input  

RMS Error For 

Sine wave Input  

G2(s) (Third Order) 0.0019 0.0027 
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5.1.3 Example 3: Fifth Order SISO Linear System Indentification  

 

In the ABC algorithm, the values of the control parameters are chosen D=10, 

NP=50, limit=250, MCN=2000 for the fifth order plant. The transfer function of the 

5th-order plant is given in the s-domain as 

 

442345

4423546

3 10914.110422.136254755.32
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×+×++++
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=
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sssss
sssssG       (5.9) 

 
 

The transfer function of the 5th-order (sampling time = 0.1 second) is given 

in the z-domain as 
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The difference equation of the G3 plant is as follows: 
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         (5.11) 

 
A training set consisting of 2000 data for the fifth order plant is obtained by 

using a random input whose amplitude is uniformly distributed in the interval [-2.0, 

2.0] for zero initial conditions. For avoiding a similar particular solution, all 

parameters to be estimated are initialized randomly over the range [-10.0, 10.0]. The 

proposed algorithm is run 10 times for G3 plant. For G3 plant, each parameter is 

calculated and the simulation results are presented in Table 5.5. The results in Table 

5.5 are found by using 50 bees for fifth order plant. 
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Table 5.5. Simulation results of the estimated G3(s) linear plant 

Plant Parameters 
Real 

System  

Estimated System 

(ABC Algorithm)  

G3(s) 

β1 2.380647 1.305520 

β2 -2.335256 -0.984349 

β3 1.204551 0.283957 

β4 -0.328146 -0.043367 

β5 0.038774 -0.034219 

α0 0.225545 0.225264 

α1 0.071233 0.313395 

α2 -0.490390 -0.140650 

α3 0.197875 0.047479 

α4 0.035971 0.033275 

 

The performance of the ABC algorithm is tested with the unit step input and 

also the following input sequence consisting of mixtures of sinusoids and constant 

signals: 
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The step response of G3(s) plotted with the best values of the parameters 

estimated by the ABC algorithm in 10 runs is shown in Figures 5.5. Also the 

sinusoidal input response of G3(s) plotted with the best values of the parameters 

estimated by the ABC algorithm in 10 runs is shown in Figures 5.6. 
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Figure 5.5. Step responses of the plant G3(s) 

 

 
Figure 5.6. Sinusoidal responses of the plant G3(s) 

 

The RMS errors for unit step input and sinusoidal input are presented in 

Table 5.6. The simulation results show that the value of the RMS error is quite 

smaller for G3(s) linear plant.  

 

Table 5.6. RMS errors for G3(s) linear plant 

Plant 
RMS Error For 

Step Response Input  

RMS Error For 

Sine wave Input  

G3(s) (Fifth Order) 0.0104 0.0345 
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5.1.4 Example 4: Seventh Order SISO Linear System Indentification  

 

In the ABC algorithm, the values of the control parameters are chosen as 

D=14, NP=50, limit=350, MCN=2000 for the seventh order plant. The transfer 

function of the 7th-order plant is given in the s-domain as 

 

)(
)()(

4

4
4 sU

sYsG =                           (5.13) 

 
where 
 

98.1711.5709.84
52.7692.457.19234.5)(

98.1798.1710671.110699.1
10882.810232.610435.1)(

2

34567
4

2435

455665
4

++

++++=

−+×+×−

×+×+×=
−−

−−−

ss
ssssssU

sss
ssssY

  

 
 

The transfer function of the 7th-order plant (sampling time = 1.0 second) is 

given in the z-domain as 
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The difference equation of the G4 plant is as follows: 
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        (5.15) 

 
A training set consisting of 2000 data for the seventh order plant is obtained 

by using a random input whose amplitude is uniformly distributed in the interval [-

2.0, 2.0] for zero initial conditions. For avoiding a similar particular solution, all 

parameters to be estimated are initialized randomly over the range [-10.0, 10.0]. The 

proposed algorithm is run 10 times for G4 plant. For G4 plant, each parameter is 

calculated and the simulation results are presented in Table 5.7. The results in Table 

5.7 are found by using 50 bees for seventh order plant. 

 

The performance of the ABC algorithm is tested with the unit step input and 

also the following input sequence consisting of mixtures of sinusoids and constant 

signals: 
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Table 5.7. Simulation results of the estimated G4(s) linear plant 

Plant Parameters 
Real 

System 

Estimated System 

(ABC Algorithm) 

G4(s) 

β1 0.363682 0.260398 

β2 -0.257812 -0.497459 

β3 0.166412 0.169752 

β4 -0.096288 -0.060764 

β5 0.047987 0.012406 

β6 -0.019244 0.004800 

β7 0.005333 -0.005562 

α0 0.008550 0.008500 

α1 0.102751 0.103899 

α2 -0.123576 -0.110693 

α3 -0.502080 -0.485597 

α4 -0.248905 -0.327795 

α5 -0.026393 -0.207619 

α6 -0.000277 -0.094800 

 

The step response of G4(s) plotted with the best values of the parameters 

estimated by the ABC algorithm in 10 runs is shown in Figures 5.7. Also the 

sinusoidal input response of G4(s) plotted with the best values of the parameters 

estimated by the ABC algorithm in 10 runs is shown in Figures 5.8. 
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Figure 5.7. Step responses of the plant G4(s) 

 

 
Figure 5.8. Sinusoidal responses of the plant G4(s) 

 

The RMS errors for unit step input and sinusoidal input are presented in 

Table 5.8. The simulation results show that the value of the RMS error is quite 

smaller for G4(s) linear plant. 

 

Table 5.8. RMS errors for G4(s) linear plant 

Plant 
RMS Error For 

Step Response Input  

RMS Error For 

Sine wave Input  

G4(s) (seventh Order) 0.0021 0.0017 
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5.1.5 Example 5: DC Motor Indentification  

 

An identification design method is presented for a permanent magnet DC 

motor. Simplified mathematical model of DC motor has been used in order to build 

the DC motor's transfer function. There are differential equations of the electrical 

part and mechanical part in DC motor model and also it consists in the 

interconnection between them. 

Using simplified equivalent electromechanical diagram of the DC motor, 

illustrated in Figure 5.9, the mathematical model is written as (Ong, 1998). 
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where Cm denotes motor torque (Nm), Ia denotes rotor circuit current (A), Ke 

denotes electrical constant, Km denotes mechanical constant, La denotes rotor circuit 

inductance (H), Ra denotes rotor circuit resistance (Ohm), Ua denotes input voltage 

(V), B denotes damping ratio (Nms), ev denotes electromotive voltage (V), J denotes 

rotor moment of inertia (kgm2), Ω denotes rotor speed (rad/s). 

The transfer function of the motor model is obtained to allow the control of 

speed by the voltage input from the characteristic equations of the DC motor. It is 

given by 
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Figure 5.9. A DC Motor equivalent circuit 

 

This transfer function makes possible to simulate motor behavior to various 

inputs. The specifications of the motor used for simulation are given in Table 5.9. 

 

Table 5.9. Parameters of the Motor (Ong, 1998) 

Parameters Value 

Armature circuit Resistance  (Ra) 21.2 ohm 

Armature circuit Inductance (La) 0.052 H 

Back-Emf constant (Km) 0.1433 Kg-m/A 

Coefficient of friction (B) 1x10-4 Nms 

Moment of Inertia (J) 1x10-5 kgm2 

Torque constant (Ke) 0.1433 V/rad/s 

 

A training set consisting of 400 data is obtained using a random input whose 

amplitude is uniformly distributed in the interval [-2.0, 2.0] for zero initial 

conditions. Simulations are carried out by using employed and onlooker bees NP=20, 

the maximum cycle number MCN=500 for the DC motor. For avoiding a similar 

particular solution, all parameters are initialized randomly over the range [-10.0, 
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10.0]. The proposed algorithm is run 10 times for the DC motor parameter 

estimation. The DC motor transfer function in s domain is given by 

 

0227.0102.172s105.2
0.1443)( 4-27-_ +×+×

=
s

sG MOTORDC                  (5.22) 

 

The discrete time transfer function of the 2nd-order DC motor model 

(sampling time 0.001 second) is given by 
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Its difference equation is given by 

 

[ ] [ ] [ ] [ ] [ ]21044.0112.026586.01623.1 −+−+−−−= kukukykyky           (5.24) 

 

The plant given in Equation (5.22) is tested with a unit step input and also the 

input sequence consisting of mixtures of sinusoids and constant signals given in 

Equation (5.16) to show the effectiveness and performance of the proposed method. 

Comparative graph of the actual and the simulated dynamic response with the 

identified parameters is illustrated in Figure 5.10 and Figure 5.11. Figure 5.10 and 

5.11 show a considerable agreement between the actual plant response and identified 

plant response using the estimated parameters. The real parameters and estimated 

parameters of the DC motor are given in Table 5.10. The RMS errors for step and 

sinusoidal inputs are given in Table 5.11. 
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Figure 5.10. Step response of the DC motor 

 

 
Figure 5.11. Sinusoidal response of the DC motor 

 

Table 5.10. The real and estimated parameters of the DC motor 

Plant Parameters Real 
System 

Estimated System 
(ABC Algorithm) 

GDC_MOTOR(s) 

β1 1.6230 1.5940 
β2 -0.6586 -0.6332     
α0 0.1200 0.0101     
α1 0.1044 0.2343 

 

Table 5.11. RMS errors for DC Motor 

Plant 
RMS Error For 

Unit Step Input 

RMS Error For 

Sine wave Input 

GDC_MOTOR(s) (Second Order) 0.0722 0.0844 
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5.2 Results for PID Controller Tuning 

 

The performance of the MOBA and the MOABC were tested with two plants 

with different order. The objective function which should be minimized was 

composed of the objective functions f1, f2, f3, and f6 which include the settling time, 

the rise time, the maximum overshoot and the integral square error, respectively. The 

vector of weights is defined as Ф = [0.000001   0.0001   1   0   0   0.0001   0]. 

Throughout the optimization process, the MOBA and the MOABC use the step 

reference input and closed loop step response of the process.  

The tuning algorithm looks for the optimal parameters for the PID controller 

to satisfy the desired system specifications by using the changed closed loop control 

performance according to the adjusted controller parameters at the each iteration. 

The closed loop response was compared with a step change of a number of simulated 

systems in order to demonstrate the effectiveness of the presented method. For PID 

controller tuning, two various processes with different order are used. 

In control system applications, a weighted combination of different 

performance characteristics such as rise time, settling time, maximum overshoot and 

integral of the square of the error is the chosen performance criterion. The desired 

system response needs minimal rise time, minimal settling time with a small or no 

overshoot in the step response of the closed loop system. Hence, the objective 

function F is defined using the performance indices consisting of integral of the 

square of the error (ISE), rise time (tr), settling time (ts) and percentage overshoot 

(Mp). 

 

)()()()()()()( 7654321 ITSEISEITAEIAEMttF prs λλλλλλλ ++++++=  (5.25) 

 

In Equation (5.25), the weighting factors are the variables of λ1, λ2, λ3, λ4, λ5, 

λ6 and λ7. By adjusting these factors, the most convenient PID controller parameters 

can be provided in order to achieve the desirable closed loop characteristics of the 

system. For the predetermined control objectives the performance of the PID 

controller can be significantly improved. To obtain better solution, weighting factors 
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are defined as λ1=0.000001, λ2=0.0001, λ3=1, λ4=0, λ5=0, λ6=0.0001, λ7=0 and the 

best results obtained for the parameters of the PID controlled systems optimized by 

ISE error criteria. Weighting factor variables depends on being chosen error criteria 

such as λ4=0.0001 for IAE error criteria, λ5=0.0001 for ITAE error criteria, 

λ6=0.0001 for ISE error criteria, λ7=0.0001 for ITSE error criteria. The closed loop 

PID controller was tuned for the values KP, KI and KD first by using Ziegler-Nichols 

method, genetic algorithm and ant colony algorithm. In addition, the closed loop PID 

controller was tuned by using the MOBA and the MOABC. 

  

5.2.1 Example 1: PID Controller Tuning for Third Order Linear Plant  

 

For PID controller tuning, third order plant are used as follows (Bagis, 2007): 
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The results were found by using 200 scout bees. For avoiding a similar 

particular solution, the initial populations were generated at random within the range 

0.0 ≤ KP ≤ 3.0, 0.0 ≤ KI ≤ 3.0, 0.0 ≤ KD ≤ 3.0. The results in Table 5.12 show that the 

value of the maximum overshoot is quite smaller, nearly zero percent and the values 

of the rise time, the settling time for ISE error criteria obtained by the MOABC and 

the MOBA are much less than the values of the other methods. The results of the 

other methods in Table 5.12 were taken from existing literature (Bagis, 2007). 

Furthermore, the step responses of G1(s) tested with the optimum values of 

the parameters KP, KI and KD which are obtained by the MOABC and the MOBA are 

presented in Table 5.13 according to some error criteria. Table 5.13 shows the values 

of the parameters adopted for the ABC and the BA. The values were decided 

empirically for the ABC and the BA. 
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Table 5.12. Comparison of simulation results of the PID controlled systems  
                   (Hsiao et al., 2004) 

G1(s) Algorithm 
Parameters 

PID 
Parameters 

Ziegler 
Nichols 

Genetic 
Algorithm 

Ant  Colony 
Optimization 

Proposed 
Algorithms 

BA 

n=200; e=20; 
m=80 

nep=60; nsp=40 
ngh=6.0 
sc=2.0 

iter=2000 
runtime=30 

KP 2.19 1.637 2.517 2.784 
KI 2.126 0.964 2.219 1.001 
KD 0.565 0.387 1.151 2.087 
f1:ts 6.6 5.97 6.51 6.4691 
f2:tr 0.8 2.45 0.627 0.4959 
f3:Mp %16.46 %3 %16 %0.1676 
f6:ISE 0.785 0.588 0.684 0.508 

ABC 

n=200 
limit=100 
iter=2000 

runtime=30 

KP 2.19 1.637 2.517 2.6213 
KI 2.126 0.964 2.219 0.8719 
KD 0.565 0.387 1.151 2.4816 
f1:ts 6.6 5.97 6.51 6.5249 
f2:tr 0.8 2.45 0.627 0.4553 
f3:Mp %16.46 %3 %16 %0.0513 
f6:ISE 0.785 0.588 0.684 0.400 

 

Table 5.13. Simulation results of the proposed algorithms for different error criteria 

G1(s) Algorithm 
Parameters 

PID 
Parameters 

For  
ISE  

For  
IAE  

For 
ITAE  

For 
ITSE  

For 
MSE  

BA 

n=200; e=20; 
m=80 

nep=60; nsp=40 
ngh=6.0 
sc=2.0 

iter=2000 
runtime=30 

KP 2.7844 2.5783 2.5562 2.9078 2.7418 
KI 1.0012 0.9380 0.7160 0.9959 0.9171 
KD 2.0873 1.6281 0.5932 1.7206 2.3044 
f1:ts 6.4691 6.8121 10.3541 6.8534 6.5094 
f2:tr 0.4959 0.6026 0.7980 0.5384 0.4701 
f3:Mp %0.1676 %0.0644 %0.0032 %0.0279 %0.0185 

ABC 

n=200 
limit=100 
iter=2000 

runtime=30 

KP 2.6213 2.4046 2.7860 2.7193 2.7895 
KI 0.8719 0.8973 0.9345 0.9745 0.9425 
KD 2.4816 1.3700 2.2043 1.8512 2.2173 
f1:ts 6.5249 5.7213 6.5438 6.6587 6.5190 
f2:tr 0.4553 0.7335 0.4804 0.5366 0.4782 
f3:Mp %0.0513 %0.0564 %0.0026 %0.0891 %0.0245 

 

The step responses of G1(s) plotted with the optimum values of the 

parameters KP, KI and KD which are obtained by the MOBA are shown in Figures 

5.12. Furthermore, the step responses of G1(s) plotted with the optimum values of the 

parameters KP, KI and KD which are obtained by the MOABC are shown in Figures 

5.13. Step response results of G1(s) process obtained by using Ziegler Nichols, 

genetic algorithm and ant colony optimization algorithm are represented for 

comparison purposes. 
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Figure 5.12. Comparison of step responses of the plant G1(s) for the MOBA 

 
Figure 5.13. Comparison of step responses of the plant G1(s) for the MOABC 

 

Figures 5.14 and Figures 5.15 illustrate the graphs of the obtained three-

dimensional Pareto optimal fronts consisting of the settling time, overshoot and ISE 

error criteria for the step response of G1(s) process related with each transfer 

function. Thus, a well distributed set of non-dominated solutions along the Pareto-

optimal front can be found. The MOABC gives better responses than those produced 
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by using the other methods. Thus, it can be considered that the MOABC improves 

the optimal system performance of the PID controllers satisfactorily. Evaluation of 

the objective function on the above mentioned G1(s) plant is presented in Figures 

5.16 and Figures 5.17. It is also observed that the objective function value decreases 

substantially and smoothly. 

 
Figure 5.14. Multi-objective optimization Pareto-sets of the plant G1(s) for the 

MOBA 

 
Figure 5.15. Multi-objective optimization Pareto-sets of the plant G1(s) for the 

MOABC 
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Figure 5.16. Convergence graph of the plant G1(s) in the MOBA method 

 
Figure 5.17. Convergence graph of the plant G1(s) in the MOABC method 

 

As seen in Figures 5.12 and 5.13, the controlled systems show oscillations, 

especially much more in the plant G1(s). Sometimes oscillation effects stability of the 

controlled plants. It also causes undesirable situations. In order to cope with this 

problem generally some of the design specifications are modified in control system 

design. The smoother responses were achieved with slight concessions to the rise 

time. This time the vector of weights was defined as Ф = [0.000001   0.000001   1   0   
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0   0.0001   0]. Increasing the rise time caused longer settling time for the plant G1(s). 

Nevertheless, the controlled systems gave fast response without overshoot and 

oscillation as seen in Figure 5.18 and Figure 5.19. The obtained results are presented 

in Table 5.14. 

 
Figure 5.18. Step responses of the plant G1(s) with increasing rise time for the 

MOBA 

 
Figure 5.19. Step responses of the plant G1(s) with increasing rise time for the 

MOABC 
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Table 5.14. Simulation results of the proposed algorithm with increasing rise time 

G1(s) Algorithm 
Parameters 

PID 
Parameters 

For  
ISE  

BA 

n=200; e=20; 
m=80; nep=60; 

nsp=40; 
ngh=6.0; sc=2.0 

iter=2000 
runtime=30 

KP 1.3104 
KI 0.5825 
KD 0.4597 
f1:ts 6.9200 
f2:tr 4.1637 
f3:Mp %0.0254 

ABC 

n=200 
limit=100 
iter=2000 

runtime=30 

KP 0.6138 
KI 0.3521 
KD 0.1120 
f1:ts 9.4256 
f2:tr 5.6385 
f3:Mp %0.0887 

 

5.2.2 Example 2: PID Controller Tuning for Fourth Order Linear Plant  

 

For PID controller tuning, a fourth order plant is used as follows (Bagis, 

2007): 

 

32 )3)(1(
27)(

++
=

ss
sG                    (5.27) 

 

The results were found by using 200 scout bees. For avoiding a similar 

particular solution, the initial populations were generated at random within the range 

0.0 ≤ KP ≤ 4.0, 0.0 ≤ KI ≤ 4.0, 0.0 ≤ KD ≤ 4.0. The results in Table 5.15 show that the 

value of the maximum overshoot is quite smaller, nearly zero percent and the values 

of the rise time, the settling time for ISE error criteria obtained by the MOABC and 

the MOBA are much less than the values of the other methods. The results of the 

other methods in Table 5.15 were taken from existing literature (Bagis, 2007). 

Furthermore, the step responses of G2(s) tested with the optimum values of 

the parameters KP, KI and KD which are obtained by the MOABC and the MOBA are 

presented in Table 5.16 according to some error criteria. Table 5.16 shows the values 

of the parameters adopted for the ABC and the BA. The values were decided 

empirically for the ABC and the BA. 
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Table 5.15. Comparison of simulation results of the PID controlled systems 
                   (Hsiao et al., 2004) 

G2(s) Algorithm 
Parameters 

PID 
Parameters 

Ziegler 
Nichols 

Genetic 
Algorithm 

Ant  Colony 
Optimization 

Proposed 
Algorithms 

BA 

n=200; e=20; 
m=80 

nep=60; nsp=40 
ngh=6.0 
sc=2.0 

iter=2000 
runtime=30 

KP 3.072 1.772 2.058 2.2103 
KI 2.272 1.061 1.137 1.1038 
KD 1.038 0.772 0.746 1.2640 
f1:ts 5.1 2.91 4.34 3.8226 
f2:tr 0.7 1.2 0.971 0.8730 
f3:Mp %32.53 %1.17 %6.62 %0.0069 
f6:ISE 0.66 0.7311 0.708 0.618 

ABC 

n=200 
limit=100 
iter=2000 

runtime=30 

KP 3.072 1.772 2.058 2.2974 
KI 2.272 1.061 1.137 1.1017 
KD 1.038 0.772 0.746 1.2176 
f1:ts 5.1 2.91 4.34 3.9734 
f2:tr 0.7 1.2 0.971 0.8547 
f3:Mp %32.53 %1.17 %6.62 %0 
f6:ISE 0.66 0.7311 0.708 0.514 

 

Table 5.16. Simulation results of the proposed algorithms for different error criteria 

G2(s) Algorithm 
Parameters 

PID 
Parameters 

For  
ISE  

For  
IAE  

For   
ITAE  

For    
ITSE  

For 
MSE  

BA 

n=200 
 e=20 
 m=80 
nep=60 
nsp=40 
ngh=6.0 
sc=2.0 

iter=2000 
runtime=30 

KP 2.2103 2.3414 2.0473 1.6778 2.4385 
KI 1.1038 1.1708 1.0933 0.9626 1.1429 
KD 1.2640 1.3930 0.9872 0.7340 1.5330 
f1:ts 3.8226 3.5923 3.8710 3.9130 4.7147 
f2:tr 0.8730 0.8027 0.9763 1.2478 0.7533 

f3:Mp %0.0069 %0.0326 %0 %0.000063 %0.0071 

ABC 

n=200 
limit=100 
iter=2000 

runtime=30 

KP 2.2974 2.1449 2.0105 1.6602 2.4195 
KI 1.1017 1.0811 1.0578 0.9633 1.1206 
KD 1.2176 1.1892 1.0262 0.6928 1.4801 
f1:ts 3.9734 3.8912 3.9170 3.8488 4.8280 
f2:tr 0.8547 0.9111 1.0026 1.2461 0.77 
f3:Mp %0 %0.0031 %0.000051 %0 %0 

 

The step responses of G2(s) plotted with the optimum values of the 

parameters KP, KI and KD which are obtained by the MOBA are shown in Figures 

5.20. Furthermore, The step responses of G2(s) plotted with the optimum values of 

the parameters KP, KI and KD which are obtained by the MOABC are shown in 

Figures 5.21. Step response results of G2(s) process obtained by using Ziegler 

Nichols, genetic algorithm and ant colony optimization algorithm are represented for 

comparison purposes. 
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Figure 5.20. Comparison of step responses of the plant G2(s) for the MOBA 

 
Figure 5.21. Comparison of step responses of the plant G2(s) for the MOABC 

 

Figures 5.22 and Figures 5.23 illustrate the graphs of the obtained three-

dimensional Pareto optimal fronts consisting of the settling time, overshoot and ISE 

error criteria for the step response of G2(s) process related with each transfer 

function. Thus, a well distributed set of non-dominated solutions along the Pareto-

optimal front can be found. The MOABC gives better responses than those produced 
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by using the other methods. Thus, it can be considered that the MOABC improves 

the optimal system performance of the PID controllers satisfactorily. Evaluation of 

the objective function on the above mentioned G2(s) plant is presented in Figures 

5.24 and Figures 5.25. It is also observed that the objective function value decreases 

substantially and smoothly. 

 
Figure 5.22. Multi-objective optimization Pareto-sets of the plant G2(s) for the 

MOBA 

 
Figure 5.23. Multi-objective optimization Pareto-sets of the plant G2(s) for the 

MOABC 
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Figure 5.24. Convergence graph of the plant G2(s) in the MOBA method 

 
Figure 5.25. Convergence graph of the plant G2(s) in the MOABC method 

 

As seen in Figures 5.20 and 5.21, the controlled systems show oscillations, 

especially much more in the plant G2(s). The smoother responses were achieved with 

slight concessions to the rise time. This time the vector of weights was defined as Ф 

= [0.000001   0.000001   1   0   0   0.0001   0]. Increasing the rise time caused shorter 

settling time for the plant G2(s). Nevertheless, the controlled systems gave fast 
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response without overshoot and oscillation as seen in Figure 5.26 and Figure 5.27. 

The obtained results are presented in Table 5.17. 

 
Figure 5.26. Step responses of the plant G2(s) with increasing rise time for the 

MOBA 

 
Figure 5.27. Step responses of the plant G2(s) with increasing rise time for the 

MOABC 
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Table 5.17. Simulation results of the proposed algorithm with increasing rise time 

G2(s) Algorithm 
Parameters 

PID 
Parameters 

For  
ISE 

BA 

n=200; e=20; 
m=80; nep=60; 

nsp=40; 
ngh=6.0; sc=2.0 

iter=2000 
runtime=30 

KP 1.2835 
KI 0.7422 
KD 0.5432 
f1:ts 4.7018 
f2:tr 1.9513 
f3:Mp %0 

ABC 

n=200 
limit=100 
iter=2000 

runtime=30 

KP 1.3927 
KI 0.8561 
KD 0.5236 
f1:ts 2.5920 
f2:tr 1.4961 
f3:Mp %0 

 

5.2.3 Example 3: PID Controller Tuning for DC Motor Plant 

 

For PID controller tuning, a DC motor plant is used as follows (Nasri et al., 

2007): 

 

0227.010172.2102.5
1433.0
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          (5.28) 

 

In this example, the objective function was composed of f1, f2, f3, and f6 which 

include the settling time, rise time, maximum overshoot and integral square error, 

respectively. The vector of weights was defined as Ф = [0.000001   0.0001   1   0   0   

0.0001   0]. Simulations were carried out by using 200 scout bees and the initial 

populations were generated at random within the range 0.0 ≤ KP ≤ 100.0, 0.0 ≤ KI ≤ 

100.0, 0.0 ≤ KD ≤ 0.05. Also, the initial populations were calculated between these 

ranges for genetic algorithm. 

The plant given in Equation (5.28) was tested with a unit step input to show 

the effectiveness and performance of the proposed method. Three other approaches 

such as Ziegler-Nichols, genetic algorithm and ant colony algorithm were applied in 

order to make comparison and show the performance of the MOABC and the 

MOBA. The step response of the DC motor is depicted in Figure 5.28 and Figure 

5.29. The obtained simulation results are given in Table 5. 
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Figure 5.28. Comparison of step responses of the DC motor for the MOBA 

 

 
Figure 5.29. Comparison of step responses of the DC motor for the MOABC 
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Table 5.18. Simulation results of Motor Speed PID control (Nasri et al., 2007) 

G3(s) Algorithm 
Parameters 

PID 
Parameters 

Ziegler 
Nichols 

Genetic 
Algorithm 

Proposed 
Algorithms 

BA 

n=200; e=20; m=80 
nep=60; nsp=40 

ngh=6.0 
sc=2.0 

iter=2000 
runtime=30 

KP 70.556 93.1622 19.5190 
KI 50 38.6225 52.9022 
KD 0.039567 0.027836 0.04944 
f1:ts 11x10-4 9.83x10-4 2.94x10-4 
f2:tr 1.57x10-4 1.71x10-4 1.62x10-4 
f3:Mp %7.166 %15.609 %0 

ABC 

n=200 
limit=100 
iter=2000 

runtime=30 

KP 70.556 93.1622 21.8463 
KI 50 38.6225 48.4252 
KD 0.039567 0.027836 0.0492 
f1:ts 11x10-4 9.83x10-4 2.84x10-4 
f2:tr 1.57x10-4 1.71x10-4 1.61x10-4 
f3:Mp %7.166 %15.609 %0 

 

The simulation results on the plant and the average values of standard 

performance measures where the objective function depends on the standard 

performance measures such as rise time, settling time and maximum overshoot are 

summarized in Table 5.18. Figure 5.30 and Figure 5.31 presents the distribution of 

the non-dominated solutions in Pareto-optimal front. The convergence of the 

objective function is depicted in Figure 5.32 and Figure 5.33. It can be seen from the 

figure that the objective function value decreases considerably. 

 

 

 
Figure 5.30. Multi-objective optimization Pareto-sets of the DC motor for the MOBA 



5. DISCUSSION OF SIMULATION RESULTS Özden ERÇİN 

74 

 
Figure 5.31. Multi-objective optimization Pareto-sets of the DC motor for the 

MOABC 
 

 
Figure 5.32. Convergence graph of the DC motor by using the MOBA method 
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Figure 5.33. Convergence graph of the DC motor by using the MOABC method 

 

5.2.4 PID Controller Design with Gaussian White Noise  

 

In order to evaluate the effect of a noise disturbance, we have performed 

simulations where the PID controller parameters have been tested in the presence of 

Gaussian noise acting on the output of the system in Figure 5.34. The above PID 

controller design examples are tested for two different variances σ2=0.0025 and 

σ2=0.025. 

 
Figure 5.34. The PID controller in the closed-loop with Gaussian White Noise 
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The closed loop responses of the third order linear plant in the Example 1 for 

different variances of gaussian white noise are illustrated in Figure 5.35, 5.36 for the 

MOBA and in Figure 5.37, 5.38 for the MOABC.  

 

 
Figure 5.35. Comparison of Gaussian white noise step responses of the plant G1(s) 

for the MOBA for σ2=0.0025 

 
Figure 5.36. Comparison of Gaussian white noise step responses of the plant G1(s) 

for the MOBA for σ2=0.025 
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Figure 5.37. Comparison of Gaussian white noise step responses of the plant G1(s) 

for the MOABC for σ2=0.0025 

 
Figure 5.38. Comparison of Gaussian white noise step responses of the plant G1(s) 

for the MOABC for σ2=0.025 
 

The closed loop responses of fourth order linear plant in Example 2 for 

different variances of gaussian white noise are illustrated in Figure 5.39, 5.40 for the 

MOBA and in Figure 5.41, 5.42 for the MOABC.  
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Figure 5.39. Comparison of Gaussian white noise step responses of the plant G2(s) 

for the MOBA for σ2=0.0025 
 

 
Figure 5.40. Comparison of Gaussian white noise step responses of the plant G2(s) 

for the MOBA for σ2=0.025 
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Figure 5.41. Comparison of Gaussian white noise step responses of the plant G2(s) 

for the MOABC for σ2=0.0025 

 
Figure 5.42. Comparison of Gaussian white noise step responses of the plant G2(s) 

for the MOABC for σ2=0.025 
 

The closed loop responses of second order linear DC Motor plant in Example 

3 for different variances of gaussian white noise are illustrated in Figure 5.43, 5.44 

for the MOBA and in Figure 5.45, 5.46 for the MOABC. 
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Figure 5.43. Comparison of Gaussian white noise step responses of the plant G3(s) 

for the MOBA for σ2=0.0025 
 

 
Figure 5.44. Comparison of Gaussian white noise step responses of the plant G3(s) 

for the MOBA for σ2=0.025 
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Figure 5.45. Comparison of Gaussian white noise step responses of the plant G3(s) 

for the MOABC for σ2=0.0025 

 
Figure 5.46. Comparison of Gaussian white noise step responses of the plant G3(s) 

for the MOABC for σ2=0.025 
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6. CONCLUSION AND FUTURE WORK 

 

6.1 Conclusion 

 

In this paper, a novel intelligent tuning design method for determining the 

PID controller parameters based on Multi-Objective Bees Algorithm (MOBA) and 

Multi-Objective Artificial Bee Colony (MOABC) optimization is developed for 

getting good performances and tuning the Pareto-optimal PID parameters. The step 

response performance of the MOBA and the MOABC were tested with different 

order linear plants. It is well known that the MOBA and the MOABC have good 

results in solving numerical optimization problems. Thus, the effectiveness of the 

PID controller design using the MOBA and the MOABC were researched and was 

obtained a satisfactory performance. Although the ABC consists of less control 

parameters, it has a better tuning performance than the BA which consists of many 

control parameters. Also, the ABC is faster than the other. This study was also 

applied to tune PID controller parameters of the permanent magnet DC motors 

commonly used in industry and compared with some existing methods. The 

simulation results show that the new PID control tuning method using the MOBA 

and the MOABC achieve minimum overshoot and optimal or near optimal system 

performance. Due to the fact that some stability criteria are taken into account in the 

control system design, the proposed method thus can be regarded as a general 

controller design method that can be applied to a wide class of linear plants. 

The ABC algorithm has shown to be versatile when applied to parameter 

estimation without requiring a detailed mathematical representation of the 

identification problem. The unit step and sinusoidal response performance of the 

ABC algorithm is tested with several order linear plants for system identification. 

The proposed method is also applied to estimate parameters of the permanent magnet 

DC motors commonly used in industry. The proposed method is flexible and 

applicable in a wide range of optimization and identification problems. The 

simulation results show that the proposed method achieve minimum tracking error 

and estimate the parameters values with a high accuracy.  
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Research was conducted to study the effects of using the honey bee algorithm 

as a tool for PID tuning and system identification. From the results presented in the 

study it was shown that the honey bee tuning yielded improved responses and can be 

applied to different process models encountered in the process control industry. 

 

6.2 Future Work 

 

Proposed method would be beneficial to discuss some alternative ways that 

could further improve the work with reference to the methodologies applied in this 

research. The work done in this thesis was based on having PID control structure. 

Since the real system is nonlinear in industrial control system applications, it would 

be interesting to apply nonlinear controllers such as sliding mode control algorithms. 

In the proposed design, off-line simulation was completely used. Our proposed 

method can be extended to an on-line controlling for any industrial control system 

applications. 

Proposed method would be useful to use a more complex plant to prove the 

effectiveness of the methods under more general conditions. Testing the application 

for high order linear plants, plants that can be unstable for certain values of 

parameters, intrinsic nonlinear unstable plants would be certainly interesting for 

future work.  
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