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ABSTRACT

MSc THESIS

MULTI-OBJECTIVE BEE COLONY OPTIMIZATION TO TUNING PID
CONTROLLER

Ozden ERCIN

CUKUROVA UNIVERSITY
INSTITUTE OF NATURAL AND APPLIED SCIENCES
DEPARTMENT OF COMPUTER ENGINEERING

Supervisor :Asst.Prof.Dr. Ramazan COBAN
Yil: 2011, Sayfa: 91

Jury :Asst.Prof.Dr. Ramazan COBAN
:Assoc.Prof.Dr. ilyas EKER
:Assoc.Prof.Dr. Zekeriya TUFEKCI

In this study, a novel intelligent design method for closed-loop auto-tuning of
a proportional-integral-derivative (PID) controller based on Bee Inspired Swarm
Algorithms is proposed, in which PID controller parameters can be tuned
concurrently. The set of trade-off optimal solutions, called Pareto-set optimization
solutions, of the conflicting objective functions are able to be found. Moreover the
research presents an investigation for the development of system identification using
Artificial Bee Colony (ABC).

Bees Algorithm (BA), developed by D.T. Pham (2006) and Artificial Bee
Colony, developed by Dervis Karaboga (2005) are a subfield of Swarm Intelligence
and was inspired by swarming patterns occurring in nature such as the food foraging
behavior of honeybees. In the present study, the problem of identifying the PID
controller parameters is considered as an optimization problem. The Multi-Objective
Bees Algorithm (MOBA) and the Multi-Objective Artificial Bee Colony (MOABC)
algorithm have been employed to determine the PID parameters. The PID controller
is designed using the MOBA and the MOABC algorithms. The results of all designs
are compared and analyzed. Simulation results demonstrate that the proposed method
using the MOBA and the MOABC has a better control system performance. The
results obtained show good stability, set-point tracking performance and robustness
against disturbance.

Key Words: Multi-objective optimization, Artificial Bee Colony, Bees Algorithm,
PID tuning, System Identification
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YUK SEK LiSANSTEZi

COK AMACLI ARl KOLONISI OPTiMiZASYONU KULLANARAK PID
KONTROLORUN AYARLANMASI

Ozden ERCIN

CUKUROVA UNIVERSITESI
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BiLGISAYAR MUHENDISLiGI ANABILiM DALI

Damigman :Yrd.Dog.Dr. Ramazan COBAN
Yil: 2011, Sayfa: 91

Jari :Yrd.Dog.Dr. Ramazan COBAN
:Doc.Dr. ilyas EKER
:Dog.Dr. Zekeriya TUFEKCI

Bu calismada, PID kontroloriin parametrelerinin ayarlanmast igin, ari
algoritmalarina dayalt bir method Onerilmistir. D.T. Pham (2006) tarafindan
gelistirilen ar1 algoritmasi ve Dervis Karaboga (2005) tarafindan gelistirilen yapay
art kolonisi, bal arilarimin yiyecek arama davramslart gibi dogada olusan surt
modellerinden esinlenmis algoritmalaridir. Bu calismada, PID kontrol6r
parametrelerinin  belirlenmesi problemi bir optimizasyon problemi olarak kabul
edilmektedir. Cok-amacl: ar1 algoritmast (MOBA) ve ¢ok-amagli yapay ar1 kolonisi
(MOABC) algoritmalar1 PID kontrol6r parametrelerini belirlemek icin kullanmlmstir.
Farkli derecelerdeki sistemler icin sonuclar karsilastirilmustir ve analiz edilmistir.
Similasyon sonuglar: ¢ok-amagli ar1 algoritmas: ve gok-amagli yapay ari kolonisi
yontemleri kullanilarak, parametre ayarlama problemlerinde daha iyi performas
Ozelliklerine sahip oldugunu gostermektedir. Elde edilen sonuglar, gurtlttye kars iyi
bir kararlilik ve dayanmiklilik gostermistir.

Ayrica, bu calismada yapay ar1 kolonisinin (ABC), sistem tamlama
problemlerinde basar1 Glgutleri incelenmistir. Elde edilen sonuglar, sistem tamma
problemlerinde ar1 algoritmasinin basariyla kullanabilecegini gbstermistir.

Anahtar Kelimeler: Cok Amagli Optimizasyon, Yapay Ari Kolonisi, Ari
Algoritmas;, PID Parametrelerinin Ayarlamasi, Sistem
Tamlama
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1. INTRODUCTION

After the Industrial Revolution, when people have kept on inventing all kinds
of new machines to relieve his daily work, the importance of ways to control these
technical processes increased. First, people were the overal controllers of the
processes in for example a factory, but with the increasing complexity and increasing
pays this was no longer possible. People started a search for technical expedient
resources to ease their controlling job. During the mechanization period,
development of ways was mainly involved to measure things in processes. People
could use this information for better control of the process. When the Automation
started, people gave away a part of his most easy controlling tasks to technical
expedient resources, which were often electrical circuits. Nowadays processes are
controlled by electronics and computers at much higher levels and this development
still goes on. Some information is required about the process in order to develop
controllers for a process. That is to say, the system has to be identified and has to be
put in some kind of model. The kind of model relies on the kind of controller which
one wants to implement. Process analysis is another application of models. try to
predict the behaviour of a process in certain circumstances.

Using the physical equations which belong to the components of the process
is one way to construct a model. After determining the equations, the system can be
represented by several interconnected boxes with equations in it. The transfer is
described by these equations from an input of the box to the output. This model is
called “White Box Modelling” (Eykhoff, 1974). It does not mean that this model
never describes the system exactly. The physical equations describe a simplified
situation and only hold under certain conditions and assumptions. White Box
Modelling is very time-consuming or even impossible for more complex systems.
During the last few decades a new way of system identification called as “Black Box
|dentification” has been developed (Ljung, 1999). The different inputs of the process
are excited with some kind of (time) signal and the outputs are measured. These

measured data are put into a computer algorithm that calculates a certain type of
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model. There is no direct relation between the resulting model and the physical
reality, therefore the name “Black Box Modelling”. Also these models do not
entirely describe a process and have limited validity. For instance although nearly all
processes are nonlinear and of high order, the resulting models are usually linear and
of afinite (small) order. Since a system is only identified for certain frequencies or
range of frequencies, the model isonly valid for or near these working points. During
measurement and identification all kinds of noise appear which deteriorate the
identification appear, such as noise in the sensors, quantization errors in the
computer algorithms etc.

The primary role of system identification in control system design is
reduction in uncertainty. This can be performed by using more accurate modelling
techniques (such as non-linear models), or by determination of the quality of the
limited model. To develop controllers, especially modern / robust controllers, this
information can be used. So by underlying modern robust control design techniques
(control oriented system identification methods) the framework and assumptions are
matched by this idea. Robust controllers have a better performance than more
classical controllers by making explicit use of prior information about the model
error. It is useful if, in addition to verification of the model with the true system,
mathematical methods for the determination of model errors and uncertainties are

available.

Black Box identification has two approaches that can be distinguished. In the
“traditional” approach the system can be described by one single model, so the
system is in the set of models which is considered. Although the noise is not fixed, it
is described as a stochastic quantity. Therefore, thisis called a stochastic approach of
system identification (Van den Bosch and Van der Klauw, 1994). All other
identification methods in which the stochastic setting is not used are called
deterministic. The resulting models are generally non-parametric and often of high
order. Mogt recent developments in system identification methods focus on
deterministic approaches which are strongly related to robust control in the way that
these algorithms yield models with an upperbound for the model error.
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A mathematical model of the plant must be obtained in the initial phase of
design process. Using a numerical process known as system identification is one way
to obtain a model. This process involves acquiring data from a plant and then
numerically analyzing stimulus and response data to estimate the parameters of the
plant.

These models can be used for control system design, fault detection or
adaptive guidance (Ogata, 1995). In turn system identification parameter estimation
is a common criterion for control system, especially for sensitive or adaptive control
system design. In fact, if the estimated parameters used in the system model for
controller design do not coincide with the actual process parameters, a closed loop
control system may be unstable or exhibit unacceptable transient response
characteristics. So, parameters estimation technique that is accurate and reliable is
critical for the design and development of high-performance control systems in
which the estimated parameters are often used in the self-sensing, field orientation,
motion control and other advanced algorithms.

The conventional system identification schemes are actually local search
techniques. If the search space is not differentiable or linear in the parameters, these
techniques do not often achieve in the search for the global optimum. On the other
hand, these techniques can iterate only once on each datum received. Using artificial
intelligence algorithm, a better solution could be provided as an alternative strategies.
To achieve this aim most commonly used intelligence algorithms are used to point
out the capabilities.

Over the past decade, honey bees algorithms and their other variants have
been atopic of research. Inspired by the foraging behavior of honeybees, honey bees
algorithms have proven to be an effective and useful stochastic search technique
(Krusienski and Jenkins, 2005). Therefore, it has been applied to a wide variety of
problems related to search optimization, routing, clustering, scheduling. Honey bees
algorithms have gone through various changes and different variants have been
introduced to solve the problems more effectively. It has also been combined with
other different artificial intelligence algorithms to create hybrid optimization
algorithms (Moore and Venayagamoorthy, 2006). These algorithms have been
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published in different literature and applied to different practical applications. In this
thesis, two problems have been studied: (1) system identification and (2) PID
controller design.

The conventional PID controllers are extensively used in industry because of
their simple operating algorithm, ease of using, good robustness, high reliability,
stabilization and zero steady state error (Lu et a., 2007). It is widespread in use and
universally accepted because of its simple operating algorithm, the relative ease with
which the controller effects can be adjusted, the broad range of applications where it
has reliably produced excellent control performances, and the familiarity with which
it is perceived amongst researchers and practitioners within the process control
community. Industrial PID control schemes based on the classical control theory
have been widely used for miscellaneous process control systems for many years.
They have been preferred for their functional simplicity, good robust performance
and easy implementation in a wide range of operating conditions; furthermore, PID
controller principle is easier to understand than other traditional controllers for the
majority of industrial processes. In PID tuning rules, there are a number of objectives
such as stability, regulating performance, tracking performance, robustness and noise
attenuation. It does not mean that objectives are consistent or commensurable.
However, since the performance of a PID controller completely depends on the
tuning of its parameters many industrial plants are often confronted with many
problems such as higher order, time delays and nonlinearities (Kwok et al., 1993).

Designing and tuning a Proportional Integral Derivative (PID) controller
seems to be conceptually intuitive. However, if there are multiple (and often
conflicting) objectives which have to be achieved such as transient behaviour and
high stability have to be achieved, it can be hard to tune in practice. Generally, initial
designs obtained by all means need to be adjusted repeatedly through computer
simulations until the closed-loop system performs or compromises as desired. The
development of intelligent software tools provide that engineers can achieve the best
overall PID control for the entire operating envelope. Since the invention of PID,
numerous tuning rules which differ in flexibility, complexity and amount of process
knowledge have been developed. During the development of the tuning rule, an
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important point that seems to miss out is in practical process control industrial
environments. It is obvious that there is a need to achieve satisfactory control
performances without adopting complex control architectures, to guarantee the best
cost/benefit ratio.

Many tuning rules accepted by industry are now incorporated into the
hardware modules. However, due to the fact that modelling errors, process variations
and human errors exist, user can intervent in tuning of PID controllers. So, a tuning
rule which is simple to understand and quick to apply is needed by user. Needless to
say, it cannot be assumed that all users are highly educated in control theory. That is
why the classical Ziegler-Nichols tuning rule (Ziegler and Nichols, 1942) is till
commonly used.

There have been several tuning methods proposed for the tuning of process
control loops, with the most popular method being that of Ziegler and Nichols
(1942). Other methods are the methods of Cohen and Coon (1953), Astrém and
Héagglund (1984), De Paor and O'Malley (1989), Zhuang and Atherton (1993),
Venkatashankar and Chidambaram (1994), Poulin and Pomerleau (1996) and Haung
and Chen (1996). Despite this large range of tuning techniques, to date there till
seems to be no general consensus as to which tuning method works best for most
applications (Lipték, 1995). Some methods are based heavily on experience, while
others are based more on mathematical considerations.

Process control practitioners mostly preferred the Ziegler-Nichols method.
Since control personnel are reluctant to learn new techniques which they perceive as
being complicated, time consuming and laborious to implement, alternative methods
are often not applied in practice. Also, there is no sufficient performance of some
commonly used techniques in the presence of strong nonlinear characteristics within
the control channel (Astrém and Hagglund, 2004).

In many papers, different PID control methods have been applied to
determine three parameters of PID controller for the given processes (Bagis, 2007).
Several algorithms such as manual tuning, Ziegler-Nichols, Cohen-Coon, etc. have
their own advantages and disadvantages. The major drawback of the manual tuning
method is that it requires experienced personnel. Some shortcomings of the Ziegler-
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Nichols method are the resulting in large overshoot and oscillatory responses.
Besides, controller settings necessitate very aggressive tuning and also further fine
tuning. This method has also poor performance for processes with a dominant delay
and closed loop system is very sensitive to parameter variations, so parameters of the
step response may be hard to determine due to measurement noise. A common
disadvantage of the Cohen-Coon method is that it can only be used for first order
models including large process delays. It is almost not possible to achieve optimal
performance by using classical search and optimisation methods.

In the last decades, design engineers have focused on evolutionary based
approaches to improve the existing design theories and find the best design results to
tune the parameters of PID controllers. The main weakness of Genetic Algorithm
(GA) among evolutionary based approaches is a lack of guarantee that global
optimum is found within limited period of time and slower speed of convergence
(Bagis, 2007). A disadvantage of Ant Colony Optimization (ACO) which is another
evolutionary based approach is difficulty of theoretical analysis, sequences of
random decisions and probability distribution changes by iteration (Hsiao et al.,
2004). In addition, a long convergence time is a significant drawback of it but
convergence is guaranteed. The properly selection of the PID parameters is so
important that the closed loop system must meets design specifications. The design
specifications can include minimum or no overshoot, minimal rise time, minimal
steady state error and settling time in the step response of the closed loop system.
Multi-Objective Bees Algorithm (MOBA) has been used successfully to solve many
problems and applied to constrained and unconstrained single objective function
optimizations (Pham and Ghanbarzadeh, 2007). In this work, the MOBA was applied
to optimize the parameters of PID controllers. To indicate the effectiveness and
efficiency of the proposed optimization method, the step responses of closed loop
systems were compared with those of the existing methods in the literature such as
Ziegler—Nichols, genetic algorithm and ant colony optimization.

This study proposes the development of a tuning technique that would be
suitable for optimizing the control of processes operating in a single input single
output (SISO) process control loop. The SISO topology has been selected for this
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study because it is the most fundamental of control loops and the theory developed
for this type of loop can be easily extended to more complex loops.

The thesis has been divided into 6 chapters. Chapter 1 introduces to the topic
and outlines the objectives of the research work carried out. In Chapter 2, honey bee
algorithms have been covered. This chapter explains the basics of the algorithm and
how it has been applied to the numerical function optimization problem. In Chapter
3, system identification has been explained. This chapter introduces to the problem
of system identification and traditional and modern techniques used to solve it. In
Chapter 4, PID controller design is explained. This chapter introduces to the problem
and traditional and modern techniques used in PID controller design.

In the next two chapters, case studies carried out during the research and the
results obtained from them have been presented. In Chapter 5, studies and results of
system identification have been presented. This chapter shows the comparison of
results obtained from system identification, and is presented as figures and tabulated
data. Additionally, results obtained for PID controller design are presented. These
results are also presented as figures and tabulated data and show a comparison of
different algorithms as applied to the examples.

Conclusion of the thesis and future work is presented in Chapter 6.
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2. HONEY BEE ALGORITHMS

Instinctive ability that colonies of social insects such as ants and bees have is
called as swarm intelligence (Nakrani and Tovey, 2004). By functioning collectively
and interacting primitively amongst members of the group, the colonies of insects are
able to solve problems beyond capability of individual members by means of this
highly organized behavior. In a honey bee colony, for example, environment in
search of flower patches (food sources) is explored honey bees and then the food
source is indicated to the other bees of the colony when they return to the hive. Such
a colony is described by self-organization, adaptiveness and robustness (Teodorovic
and Dell’ orco, 2005).

A behavioral model of self-organization is proposed for a colony of honey
bees by Seeley (1995). Foraging bees visiting flower patches return to the hive with
nectar as well as a profitability rating of respective patches in the behavioral model.
The nectar collected by foraging bees provides feedback on the current status of
nectar flow into the hive (Camazine and Sneyd, 1991). The profitability rating is a
function of nectar bounty, nectar quality and distance from the hive. A response
threshold is set by the feedback for an enlisting signal which is known as waggle
dance, the length of which is dependent on both the profitability rating and the
response threshold. On the dance floor where can be observed by individual foragers
the waggle dance is performed. The forager bees can randomly select a dance to
observe and follow from which they can learn the location of the flower patch and
leave the hive to forage.

Honey bees live in a colony in the nature and they forage and store honey in
their constructed colony. Pheromone and “waggle dance” are communication of
honey bees (Bastirk and Karaboga, 2006). For example, a chemical message
(pheromone) may be released by an alarming bee to stimulate attack response in
other bees. Furthermore, bees will communicate the location of the food source by
performing the so called waggle dances as a signal system when they find a good
food source and bring some nectar back to the hive. Such signaling dances differ



2. HONEY BEE ALGORITHMS Ozden ERCIN

from species to species, however, using directional dancing with varying strength,
more bees will be recruited so as to communicate the direction and distance of the
found food resource.

For multiple food sources such as flower patches, in studies it is shown that
forager bees are able to be allocated among different flower patches so as to
maximize their total nectar intake. A bee colony typically has to collect and store
extra nectar, about 15 to 50 kg in order to survive the winter. From the evolution
point of view, the efficiency of nectar collection is consequently very important.
Experimental studies which include the important work have also been carried out by
Camazine and Sneyd (1991) and lately by Quijano and Passino (2007a). If the
natural behaviour of bee colonies is learnt, various algorithms can be designed
(Quijano and Passino, 2007a, 2007b).

Over the last decade or so, nature-inspired bee algorithms have started to
emerge as a promising and powerful optimization tool.The exact dates are difficult to
pinpoint when the bee algorithms were first formulated. Several groups of
researchers developed them over afew years independently.

From the literature survey, in around 2004 Nakrani and Tovey (2004) first
formulated the Honey Bee Algorithm (HBA) to study a method to allocate computers
among different clients and web-hosting servers. Later in 2004 and earlier 2005, by
Yang (2005) a Virtual Bee Algorithm (VBA) was developed to solve numerical
optimization problems. Although only functions with two parameters were given as
examples, VBA can optimize both functions and discrete problems. Slightly later in
2005, a Honey-Bee Mating Optimization (HBMO) algorithm which was
subsequently applied to reservoir modelling and clustering was presented by Afshar
et al. (2007). Around the same time, an Artificial Bee Colony (ABC) algorithm was
developed by Karaboga (2007) in Turkey for numerical function optimization and a
comparison study was carried in 2007. These bee algorithms are nowadays becoming
more and more popular (Kang et a., 2011).

The communication or broadcasting ability of a bee to some neighbourhood
bees shows the essence of the bee algorithms so a bee can be known and followed to
the best source, locations or routes to complete the optimization task. The detailed

10
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implementation will depend on the actual algorithms, and they may differ slightly
and vary with different variants. However, the pseudo code in Figure 2.1 can
summarize the essence of all the bee algorithms.

Objective function f(x), X=(X4, ... X,)' & constraints
Encode f(x) into virtual nectar levels
Define dance routine (strength, direction) or protocol
while (criterion)

for loop over all n dimensions

Generate new solutions

Evaluate the new solutions

end for

Communicate and update the optimal solution set
end while
Decode and output the best results

Figure 2.1. Pseudo code of the bee algorithms

2.1 Artificial Bee Colony Algorithm

A minimal model of foraging behavior of a honeybee colony was developed
based on the reaction-diffusion equations by Tereshko (2000). This model provides
the emergence of collective intelligence of honey bee swarms. There are three
essential  components of this model: food sources, employed foragers and
unemployed foragers and two leading modes of the honey bee colony behavior are
defined by this model: recruitment to a food source and abandonment of a source. A
forager bee evaluates a number of properties related with the food source such asits
taste of its nectar, closeness to the hive, richness of the energy and the ease or
difficulty of extracting this energy in order to choose a food source. An employed
forager isemployed at a specific food source in order to carry information about this
specific source and share it with other bees waiting in the hive. The information
contains the distance between hive and food source, the direction and the profitability
of the food source. Unemployed forager is a forager bee looking for a food source to
exploit. It can be a scout who looks for the environment arbitrarily or an onlooker

who attempts to find a food source through the information given by employed bee

11



2. HONEY BEE ALGORITHMS Ozden ERCIN

(Tereshko, 2000). The main steps of the ABC algorithm are given below (Basturk
and Karaboga, 2009a):

Step 1. Generate the population of solutions (positions of food sources)
randomly x;, i = 1. . .SN

Step 2. Evaluate the generated population

Step 3. Cycle=1

Step 4. Repeat

Step 5. Produce new solutions v; for the employed bees by using Equation
(2.2) and evaluate them

Step 6. Apply the greedy selection process

Step 7. Calculate the probability values p; for the solutions x; by Equation
(2.2)

Step 8. Produce the new solutions v; for the onlookers from the solutions Xx;
selected depending on p; and evaluates them

Step 9. Apply the greedy selection process

Step 10. Determine the abandoned solution for the scout and replace it with a
new randomly produced solution x; by Equation (2.3).

Step 11. Record the best solution achieved so far

Step 12. Cycle=Cycle+ 1

Step 13. Until Cycle = Maximum cycle number

In the ABC algorithm, there are three flocks of bees: onlooker, employed, and
scout. A colony consists of the onlooker bees plus employed bees. If an employed
bee abandons its food source, it becomes a scout bee. The number of solutions
(population) to problem is equal to the number of the onlooker bees or the employed
bees. A possible solution to the optimization problem is presented by the position of
a food source and the quality (fitness) is measured with the amount of nectar of the
associated food source. The number of food source equals the number of employed
bees. At the first step, initial population P(G = 0) of SN solutions (food source
positions) is generated randomly by the ABC. SN denotes the size of population.
Each solution x; (i = 1, 2, ..., SN) is presented by using a D-dimensional vector. Here,

12
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D denotes the number of optimization parameters. After initialization, the employed
bees, the onlooker bees and the scout bees repeatedly search for all food sources until
a predetermined number of iterations (Cycle=1, 2, ..., MCN). An employed bee starts
neighborhood search firstly depending on the local information (visual information)
and tests the nectar amount (fitness value) of the new source (new solution), the
position of new sources replace the previous one if better than previous position,
otherwise keep the position of previous one. After the search process is completed by
all employed bees, the nectar information of the food sources and their position
information are shared with the onlooker bees on the dance area. An onlooker bee
evaluates the nectar information taken from all employed bees and then it chooses a
food source by using a selection probability related to its nectar amount.

An artificial onlooker bee selects a food source depending on the selection
probability value associated with that food source, p;, calculated by the following
expression (Basturk and Karaboga, 2009a, 2009b):

_ fit,
R
a fit

i=1

(2.1)

where fit; is the fitness value of the ith solution which is proportional to the nectar
amount of the food source in the position i. SN is the number of solutions which is
equal to the number of employed bees (BN).

S0 as to produce an applicant food position from the old one in memory, the
ABC usesthe following expression (Basturk and Karaboga, 2009a, 2009b):

Vi =% +Fij(Xij - ij) (2.2)

where k € {1, 2,..., N} and j € {1, 2,..., D} are randomly selected indexes. The
index k is determined randomly but it has to be different from i. @;; is a random
number and chosen between [-1, 1]. A bee compares two food locations visually by

using this parameter. As seen from Equation (2.2), as long as the change between the

13
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positions of x; and xg diminishes, the perturbation on the position x; decreases.
Therefore, the search comes close to optimum solution in the search space.

The scout bees replace new food sources, which are produced randomly in
their dynamic ranges, with the ones which the employed bees abandon. In ABC,
during a predetermined number of cycles if a position cannot be improved further
then that food source is thought to be abandoned. Here, since the only one source is
abandoned in each cycle, one employed bee becomes a scout bee. The parameter so-
caled “limit” is an important one for abandonment which is the value of
predetermined number of cycles [3]. If the abandoned source isx; and j € {1, 2,...,
D}, then a new food source is discovered by the scout to be replaced with x. The
description of this operation is given as (Basturk and Karaboga, 20093, 2009b)

Xij = XrLin + ra‘nd(oil)(xr!nax - Xr!nin) (23)

After the artificial bee produces and then evaluates each candidate source
position v, its performance is compared with that of its old one. If the nectar of the
new food source is equal to or better than the old one, it replaces with the old one in
the memory. Otherwise, the old one in the memory is retained. In other words, a
greedy selection mechanism is engaged as the selection operation between the old
and the candidate one. In the ABC, there are three control parameters such as the
number of food sources which is equal to the number of employed or onlooker bees
(SN), the value of limit, the maximum cycle number (MCN). In a robust search
process, exploration and exploitation processes have to be performed together. In the
ABC algorithm, the scout bees control the exploration process while onlookers and
employed bees carry out the exploitation process in the search space. The detailed
flow chart of the artificial bee colony algorithm is shown in Figure 2.2.

14
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Figure 2.2. Detailed flow chart of the artificial bee colony algorithm

15



2. HONEY BEE ALGORITHMS Ozden ERCIN

2.2 BeesAlgorithm

The main steps of the bees algorithm are summarized in this section. A
number of parameters in the algorithm need to be set in advance: n denotes number
of scout bees, m denotes number of sites selected for neighborhood search (out of n
visited sites), e denotes number of top-rated (elite) sites among m selected sites, nep
denotes number of bees recruited for the selected sites, nsp denotes number of bees
recruited for the other (m-€) selected sites, ngh denotes the initial size of each patch
(a patch is a site in the search space that includes the visited site and its
neighborhood), sc denotes shrinking constant, a denotes abandonment threshold
(Pham et al, 2006a).

Step 1. Initialise the bee population with n random solutions
Step 2. Evaluate the fitness of the bee population
Step 3. While (stopping criterion not met)
Step 4. Select sites (m) for neighbourhood search
Step 5. Recruit bees for selected sites (more bees for best e sites), evaluate
fitnesses, select the fittest bee from each site and shrink patches
For (k= 1, k<= e k++) /] Elite sites
For (Bee = 1; Bee <= nep; Beet+) // More bees for e elite sites
BeesPositioninNgh( ) = GenerateRandomV aluelnNgh(from x + ngh
to x - ngh);
Evaluate fitness = Bee(i);
// Evaluate the fitness of recruited Bee(i)
If (Bee(i) is better than Bee(i - 1))
RepresentativeBee = Bee(i);
For (k= etl; k<= m; k++) // Other selected sites (m- €)
For (Bee = 1; Bee <= ngp; Beet+)
Il Fewer bees for other selected sites(m- €)
BeesPositioninNgh( ) = GenerateRandomV aluelnNgh(from x + ngh
to x - ngh);

16
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Evaluate fitness = Bee(i);
// Evaluate the fitness of recruited Bee(i)
If (Bee(i) is better than Bee(i - 1))
RepresentativeBee = Bee(i);
I/ Shrink all patches
For (patch = 1; patch <= m; patch++)

ngh(patch) = ngh(patch)/sc;

Step 6. If no improvement exists on a site k after a given number of
iterations, then save the fitness of k, abandon the site and assign the bee to random
search.

/I Site abandonment procedure

If (Iteration > a)

If (No improvement on the site)

Save the fitness of site k;
Abandon the site;
Bee(k) = GenerateRandomV alue(All search space);

Step 7. Remaining bees are assigned to search randomly and their fitnesses
are evaluated.

/I (n-m) bees assigned randomly to search the all solution space.

Step 8. End while

At the beginning of the algorithm n scout bees are randomly distributed in the
search space. The evaluation of the sites visited by the scout bees using the fitness
function (i.e. the performance of the candidate solutions) isin step 2.

The m non-dominated sites are assigned as “selected sites’ and preferred for
neighborhood search in step 4. If there exist more than m non-dominated sites in the
population, the first mwill be chosen as it isimpossible to tell the difference between
them. If there are less than m non-dominated sites, from the dominated sites that have
been dominated just once, the rest will be chosen and this subroutine is continued
until an adequate number of sites have been chosen. The algorithm enforces searches
in the neighbourhood of the selected sites, assigning more bees to the best e sites in

17
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Steps 5. Selection of the best sites can be made directly according to the fitnesses
associated with the neighbourhood of the selected sites. Alternatively, fitness values
can be used in order to determine the probability of sites being selected. Searches in
the neighborhood of the best e sites that represent the most promising solutions are
made more detailed by recruiting more bees for them than for the other selected sites.
This differential recruitment is a key operation of the bees algorithm together with
scouting. For each patch, only the one bee which has found the site with the highest
fitness (the fittest bee) will be selected to form part of the next bee population. When
there does not exist any progress in the neighborhood search, the patch size is
diminished. The purpose of this strategy is to make the local search more
exploitative, to search more intensely the surrounding of the local optimum.
Therefore this step is named as the “shrinking method” (Pham et al., 2007).

In Step 6, if the points visited near a selected site k are all inferior in quality
to that Site, after the number of iterations has reached the abandonment threshold a,
then the location of the site is memorized and the site abandoned. The bee that found
the site is then assigned to random search namely, made to scout for new potential
solutions (Pham et al, 2006Db).

In Step 7, the rest of the bees in the population are also sent randomly around
the search space in order to look for new potential solutions. At the end of each
iteration, there are two parts of colony to its new population. These are representative
bees from the selected patches and scout bees appointed to attitude random searches.
These steps are repeated till a stopping criterion is satisfied (Pham et al, 2006c).

The researchers believe that the algorithm presented here more closely
mimics the foraging behaviour of honey bees than other similarly named
optimisation algorithms. The detailed flow chart of the bees algorithm is shown in
Figure 2.3.

18
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Figure 2.3. Detailed flow chart of the bees algorithm
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2.3 Comparison of Honey Bee Algorithms for Numerical Function
Optimization

In the experiments, results of the basic BA and ABC algorithms are compared
to each other on unimodal Rosenbrock function with different dimensions. For the
BA, n=40, e=1, m=3, nep=50, nsp=10, maximum iteration number was 500, initial
ngh was 6, and shrinking constant (sc) was 1.05. For the ABC algorithm, number of
food sources was 20 and maximum cycle number was 2500. Limit control parameter
was 100 for all problems. Each of the experiments was repeated 30 times with
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different random seeds, and the mean function values of the best solutions and the
standard deviations throughout the optimization runs was recorded under different
dimensions. In the experiments, mean and standard deviations of 30 runs with
different random seeds for 3, 5, 7 and 10 dimensions were reported on Table 2.1 for
Rosenbrock function. The test function is Rosenbrock function whose value is O at its
global minimum (1,1,...,1) in Equation (2.4) (Karaboga and Basturk, 2009).
Initialization range for the function is [-30,30] (Karaboga, 2007). The global
optimum is inside a long, narrow, parabolic shaped flat valley. Since it is difficult to
converge the global optimum, the variables are strongly dependent, and the gradients
generally do not point towards the optimum, this problem is repeatedly used to test
the performance of the optimization algorithms (Karaboga and Basturk, 2007).

F(X) = & 1000¢ - X..)>+(1- X)? (2.4)

i=1

Table 2.1. Mean and standard deviations of the results obtained by the ABC and the
BA algorithms for Rosenbrock function

Algorithm Dimension (D)
Type 3 5 7 10
ABC Mean | 29905e2 | 9.6872e2 | 1.1202e1 | 1.7071e-1
Std 54600e-3 | 1.7686e-2 | 2.0452e2 | 3.1168e2
BA Mean | 1.6846e-3 | 7.6970e-1 2.1588 19.3714
Std 3.0756e-4 | 1.4052e1 | 3.9414e1 3.5367

From the test results, the ABC is superior over the BA. The ABC algorithm

preserves producing reasonable results even for high dimensions. The ABC employs

less control parameter to be tuned with respect to the BA.
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3. SYSTEM IDENTIFICATION

The system identification problem deals with the determination of a
mathematical model for a system or a process by observing the input-output data.
Historically, system identification has been needed in designing a suitable control
process for an unknown system (black box problem) or an incompletely known
system (gray box problem). In most practical systems, such as industrial processes,
the actual parameter values within a known model structure are unknown. This type
of problems, which axe examples of the gray box variety, are more accurately called
as system parameter identification problems. System model and parameter
identification are applicated not only in engineering but also in other fields like
economics, medicine, biology and chemistry (Hsia, 1977). The need for more
accurate knowledge of system parameters has increased with recent advances in
adaptive and optimal control. The system parameters are updated periodically
according to the control system requirement in adaptive control. On the contrary,
many recently developed methods of system identification make use of such fields as
optimal control theory.

Least squares, the maximum Ukelihood, and the minimum variance methods
are available parameter estimation techniques which are more widely used in
literature . Researchers and control engineers were interested in the results obtained
by their fellows in the computer science field (Astrom and Wittenmark, 1997). They
were scrutinizing the artificial intelligence models developed by their fellows
because of complex problems unyielding to traditional mathematical techniques. The
system identification problem is one of these problems. The problem of system
identification with its hard multimodality, nonlinearity and constraints is especially
unsuitable for traditional mathematical techniques, and the results obtained using
these techniques are deficient for most real life applications. Henceforth, the models
developed by their fellows were used by control engineers to solve system
identification problems. As the results obtained were encouraging, many artificial
intelligence models became the method of choice for many control engineers.
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A new wave of artificial intelligence models is the computational intelligence
techniques that are biologically inspired or nature inspired techniques. Recent
research have shown promising results in their applications in many control
engineering problems, and specifically, system identification problems (Liu et al.,
2003).

3.1 Linear System Identification

A linear time-invariant discrete-time system is defined using the following

linear equations in vector-matrix form:
X (k+1)= AX (k) + BU (k) (3.1)
Y(k)=cx(k)+ DU (k) (3.2)

where the coefficients A, B, C and D are properly dimensioned matrices. The

notation k represents time index. U (k) is the input vector, Y(k) is the output vector,

and X (k) isthe state vector:
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In system identification, the main task is to find a suitable model structure of
a system with unknown parameters, given some prior knowledge about the system
and input-output observations. Employing the artificial bee colony algorithm for
identification, one can exploit their ability to learn the system behavior and requires a
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reduced amount of knowledge such as observed input-output data and order of the
system. The proposed method approximates the system using the observed input-
output data pairs and order of the system. In its estimating process, since the
identification model is parallel to the system being identified, both of them get the
same external input U(K). For the same input, the output of the model Y(k) is
compared with the output of the system Y(k). Therefore, the error signal eK) is
produced by the difference between the output of the identification model and the
output of the system in the following way:

(k) =(K)- Y(K) @4
3.2 Applying Artificial Bee Colony Algorithm in System Identification

A discrete time signal is a sequence

u={u(0).u®).K,u(k) and y ={y(0) y(1). K, y(k). K} (35)

For a single-input, single-output system of order n, causal LTI systems

difference equation can be written as follows:

ylk]=- byylk- 1]- b,ylk- 2]- L- b,ylk- n]

+a ulk]+aulk - 1+a,ulk - 2]+L +a,ulk- n] (30

where f1, B2, ... Pn, 0o, 01, ... on &€ the system parameters. Applying the Z-transform
to Equation (3.6), we can obtain the following:

[+bz*+L+b,z"V(2)=(a,+a,z* +L+a,z"U(z) mEn  (37)

Hence, the transfer function, G(z), can be defined as
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G(z):%, (3.8)
or
G(2)=la,+a,z*+L+a,z")/[t+b,z +L+b,z")  m£n (3.9

where ao#0. The concept of a transfer function can be extended to a linear system
having p inputs and r outputs, in which case a transfer function matrix, G(2), is
defined. It has a dimension r x p. In the identification problem, the parameters in
each element of the matrix G(z) need to be found. The signal y(k) can be constructed
by iterative computation, given the input signal and initial conditions. After discrete
system transfer function has been formed, linear system equation is written as input
and output form. The initial conditions are set to zero. Measured input-output data is
used for parameter estimation. At the beginning of parameter estimation, input and
output data is known and real system parameters are assumed as unknown. Using
initial conditions and obtained real system data, system parameters are estimated
with the ABC Algorithm. An error between real system output and estimated system
output is defined as error function. The estimation of the system parameters is
achieved as aresult of minimizing the error function by the ABC algorithm. The sum

sguared error function is used here as an error criterion:
1o 2
J.=Za ek (3.10)
k

where Je is the measure of the error. For one training epoch the root-mean-square
error (RMSE) is represented as follows:

(3.11)
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where r represents the number of data.

On the other hand, the ABC algorithm searched based on the well-known
Jury stability criterion within the stability boundary for parameters estimation (Jury
and Blanchard, 1961). Roots of a transfer function in the z-plane must be located to
inside the unit circle |z|<1 for stability. A zero order hold element for discretization is
used.
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4. PID CONTROLLER DESIGN

In process control a dominant role is played by PID-controllers and simple
and transparent design procedures are demanded by industrial application. PID
controller design is based on a direct relationship between the parameters of the
controller and the process model. Simple test results like step or pulse response of the
plant should be used to ensure a common acceptance for the controller design even
for staff with lower theoretical background and knowledge (Ang et al, 2005).

Several approaches have been applied in the past to evaluate design
procedures for an optimal frequency response using the conception of unity gain
approach and gain adjustment. But universally valid design equations were not found
until now. Thus one of the most challenging issues in control engineering education
and application is still controller design (Nise, 2004).

It is considered that PID controller isthe most common control technique that
is extensively used in control applications. The PID controller have been used in
daily life by a huge number of applications and control engineers. On the other hand,
many research papers, number of master and doctoral theses and books have been
written on PID controller design subject. PID control offers an easy method of
controlling a process by varying its parameters. PID works well in industrial
applications such as slow industrial manipulators were large components of joint
inertia added by actuators. Since the invention of PID control in 1910, and Ziegler-
Nichols (ZN) tuning method in 1942, PID controllers became dominant and popular
issues in control theory because of simplicity of implementation, simplicity of
design, and the ability to be used in a widespread range of applications. Moreover,
PID controllers are available at low cost. Consequently, if the parameters are tuned
properly, it provides robust and reliable performance for most systems. PID
variations (P, PD, and PI) are widely used in more than 90% to 95% of industrial
control applications. However, there is own limitation of the PID controller; if the
requirement is reasonable and the process parameters variation are limited, the PID
performances can give only satisfactory performance (Seborg et al, 2004).
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Setting the PID parameters is called tuning in literature. Several methods
have been proposed for determining the PID controller gains during the last six
decades. The information concerning the open loop characteristics such as Cohen-
Coon method is used by some of those methods. The Nyquist curve plotting of the
plant such as Ziegler-Nichols tuning method is used by other methods. A prior
knowledge about the system is needed to be known by all of these tuning formulas.
PID control technique is applied to control and enhance the system characteristics
such as reducing the overshoot, speed up rising time, and eliminating the steady state
error. There is specific criteria for each one of the PID parameters to enhance the
characteristics of the controlled system (Lin et al, 2008).

4.1 Controller Design Methods

There are not only many different architectures or configurations for control
systems but also many different general approaches to expressing the design goals
and objectives for controller design. One example is the optimal controller paradigm:
the goal is to determine a controller that minimizes a single cost function or
objective. Other approaches such as multicriterion optimization, several different
cost functions are specified and the goa is to identify controllers that perform
mutually well on these goals. The purpose of this chapter is to develop tuning
method for describing design specifications, and to explain how these various

approaches can be described using tuning methods.

4.1.1 Iterativeor Manual Tuning M ethod

It is considered that iterative or manual tuning is an experimental method and
it is used to determine the PID controller parameters. An experimental procedure
using tuning can be outlined as follows:

1. Integral and derivative gains equal zero.

2. Proportional gain is tuned to give the desired response, neglect the steady
state error.

28



4. PID CONTROLLER DESIGN Ozden ERCIN

3. Increase Kp gain by small increment and adjust the derivative gain Kp to
decrease the damping.

4. Adjust the integral gain K, to remove the steady state error.

5. Replicate the previous steps until acquiring the desired response.

This method concerned as a time consuming method because it depends on
trial and error approach.

4.1.2 Ziegler—Nichols Frequency Domain Method

This method is based on the closed loop system response. Initially K; and Kp
gains are set to zero. The proportional gain is increased until the process oscillation
occurs. It reaches the critical gain value Kcg at which the output of the loop arts to
oscillate. Using the value of a critical or ultimate gain Kcgr and the oscillation or
ultimate period Pcg, the value of PID parameter Kp, K, and Kp are given in terms of
the ultimate gain and ultimate period (Ziegler and Nichols, 1942):

K, =0.6K,

K =2Xep 1 z05p, (4.1)
CR

K,=Refer b 1 =p_/8

4.1.3 Ziegler—Nichols Time Domain M ethod

The Ziegler-Nichols step response and frequency response methods are the
classical tuning methods for PID controllers. They were presented already in 1942,
but they are still widely used in the process industry as the basis for controller tuning.
The step response method is based on an open-loop step response test of the process,
hence requiring the process to be stable. It depends on the characteristic of the open
loop step response of the system. Two parameters are determined: the maximum
point of the slop of the step response, and the intersection between the tangent and
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the time-axis. Four steps to determine a, Ty, and PID parameters are described as
follows (Hang et al, 1991):

1. Design the control system at the open loop state.

2. Plot the step response as shown in Figure 4.1.

3. Draw tangent line crossing the middle point of the slop of the step
response.

4. Determine the PID parameters according to the following relations:

Ke,=1.2/a
T, =21, (4.2
T, =0.5T,

}“]'J*.

=

| -
T {(sec.)

Figure 4.1. Plant step response in Z-N method
where time constant a = t,- t; and the dead time Ty is defined ast; - to.
4.1.4 Cohen-Coon Method
The procedure to find the PID parameters in this method is the same as
Ziegler-Nichols time domain method. The Cohen-Coon method's main objective is

load disturbance rejection. The PID parameters are calculated according to the
following formulas (Cohen and Coon, 1953):
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K, =(0.25+135T,/a)/K
T, =T, (2.5+0.46T,/a)/(1+0.61T, /a) (4.3)
T, =0.37T, /(1+0.19T, /a)

T4 and a are defined as the same in the Z-N, based on the dead time and the

time constant respectively. K isa process gain.

4.1.5 Root LocusMethod

Root locus method is a good technique to design the PID parameters. It's a
graphical technique that gives a description of the control system as various
parameters change, such as overshoot and rising time (Shamsuzzoha and Skogestad,
2010). This method is used to analyze the relationship between the poles, gains, and
stability of the system.

Root locus means in control theory, the location of the poles and zeros of
transfer function. Pole location determines system stability. If the roots of transfer
function in the right half plan of the continuous system or inside the circle of discrete
systems, it indicates that the system is unstable, where if these roots in the left half
plan this means the system is stable. In addition, when root location on jw axis, the
systemis considered marginal stable.

4.2 PID Characteristic Parameters

PID controller widely used in industrial control systems is composed of
proportional control action, integral control action and derivative control action.
There are many forms of PID controller implementations such as a stand-alone
controller or Distributed Control System (DCS). Figure 4.2 is a simple diagram
showing the schematic of the PID controller and it is known as non-interacting form

or parallel form.
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Figure 4.2. Block diagram of a PID controller

The parallel controllers are mostly preferred for higher order systems. The
transfer function of PID controller in Laplace transform is defined for a continuous

system as

G.(s)=K, +% +K,Ss (4.4)

<

The proportional controller response is proportional to the control error. The
controller error is defined as the difference between the set point and the process
output. The proportional controller output is the multiplication of the system error
signal and the proportional gain. Proportional term can be mathematically expressed

as

Pem =K, " Error (4.5)

The integral control applies a control signal to the system which is
proportional to the integral of the error. The offset introduced by the proportional
control is removed by the integral action but a phase lag is added into the system.
Integral term can be mathematically expressed as

=K, " (Error dt (4.6)

term
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There is a proportion between the derivative controller output and the rate of
change of the error. Derivative control is used to decrease and eliminate overshoot of
system response and introduce a phase lead action that removes the phase lag
introduced by the integral action.

d(Error)
dt

D

herm = Ko 4.7)

Combining these three types of control together, transfer function of
continuous PID controller is formed as

2
GC(S): KDS + KPS+ KI (48)

<

<

where Kp, K, and Kp are the proportional, integral and derivative gains, respectively.
The control signal to the plant is given by

u(t) = Kpe(® + K, oe(t )t + K, 2 (4.9)

Proportional action Kp improves the system rising time, and reduces the
steady state error. This means the larger proportional gain, the larger control signal
become to correct the error. However, the higher value of Kp produces large
overshoot and the system may be oscillating; therefore, integral action K| is used to
eliminate the steady state error. Despite the integral control, reducing the steady state
error, it may make the transient response worse. Therefore, derivative gain Kp will
have the effect of increasing the damping in system, reducing the overshoot, and
improving the transient response.
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As discussed previously, each one of the three gains of the classical PID
control has an effect of the response of the closed loop system. Table (4.1)
summarizes the effects of each of PID control parameters. It will be known that any
changing of one of the three gains will affect the characteristic of the system
response.

Table 4.1. PID characteristic parameters
Closed-Loop ;0 Time  Overshoot

Settling  Steady State

Response Time Error
Increasing Fast Incr Small / No Decr
Kp effect
| ncrﬁails n9 Fast Increase Increase Decrease
Increasing  Small / No Small / No
Kd effect Decr Decr effect

To design the proposed controller, four important characteristics of the output
of the system are used. These four characteristics are briefly defined below and
illustrated in Figure 4.3. In addition, it will be defined as:

Risetime (t,) is defined as the time required for the step response to rise from
10% to 90% of the set point.

Settling time (ts) is defined as the time required for the step response to stay
within 2% of the set point.

Maximum overshoot (Mp) characterizes what maximum peak value will be
reached over the set point. If ymax designate the maximum value of y and ys show the
steady-state value of it, the maximum overshoot will be expressed as:

M p = Yiex = Yss (410)

Steady state error (SSE): it expresses the final difference between the
process variable and the set point. IAE, MSE, ISE, ITAE, and ITSE are typically and
popular integral error criteria. Some error criteria usually have to be minimized to get
the PID tuning parameters optimal or near optimal. The Integral Absolute Error
(IAE) in the controlled variable is formulated by (Seborg et al, 2004)
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|AE = t(‘be(t)|dt = tdr (t)- y(t)dt (4.11)

Now that large errors penalized by the ISE criterion results in the most-
aggressive settings and persistent errors penalized by the ITAE criterion results in the
most-conservative settings, moderate settings are produced between ISE and ITAE
criteria by the 1AE criterion. The Mean of the Squared Error (MSE), Integral Square
Error (1SE), Integral Time Absolute Error (ITAE), and Integral Time Square Error
(ITSE) areaso given as follows (Seborg et al, 2004):

MSE = %;(‘)e(t)zdt = %tg‘jr(t) - y(t))%dt (4.12)
ISE = ;(‘ja(t)zdt = toc‘jr(t) - y(t))?dt (4.13)
I TAE = tg‘j|e(t)|dt = tg‘j|r (t)- y()[dt (4.14)
ITSE = toc‘je(t)zdt :toc‘;(r(t) - y(t))?dt (4.15)
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Figure 4.3. Rise time, Settling time, Maximum overshoot
4.3 Principle of Multi-objective Optimization (Pareto Optimality)

The multi-objective optimization is used to minimize all the objective design
criteria functions simultaneously. The general multi-objective optimization requiring

the optimization of j objectives can be written as follows (Ngatchou et al, 2005):
Min{ f,(x)= i, £,(x) = Youeee £ (x) = v} (4.16)

In Equation (4.16), fj(xX) are the j th objective design criteria functions and x
indicates the design parameters chosen and D indicates the set of possible design
parameters. There are response surface functions fj(x)=y; of each response. When
there exists a vector of non negative weights @=[1;.....4]", an efficient solution is
supported. Unique global optimum x is expressed in the following formula
(Ngatchou et al, 2005):

N
MiDné | f,(%) (4.17)
X j=1
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If there does not exist a conflict between the objective functions in Equation
(4.16), then a solution x, called an ideal solution, can be found where every objective
function obtains its minimum. Generally, there is not an ideal single solution which
is optimal with respect to each objective function. The objective functions are mostly
in conflict, that’s why the reduction of one objective function usually causes to
increase another objective functions. Consequently, Pareto optimal solution is the
result of the multi-objective optimization and this solution is possible to improve any
of the objective function by increasing at least one of the other objective functions.
Pareto optimality cannot improve any criterion without deteriorating a value of at
least one other criterion. There are generally a lot of Pareto optimal solutions. There
is an equally acceptable solution of the problem for every Pareto optimal point.
Nevertheless, the aim is generally desirable to obtain one point as a solution.

A solution vector x* € X is called Pareto optimal when there does not exist
another solution which dominates it in Equation (4.18). That is to say, solution can
improve in one of the objectivesif it affects at least one other objective.

$xi X:f(X)EF(X)UF(X)T F(X); "i={12..,p} (4.18)

The corresponding objective vector f(X) is said to be a Pareto dominant

vector. A solution vector x; dominates another feasible solution x;, (Xx1>x2) such as
L) E () US| f00)E fi(%); "i,i={12....p} (4.19)

If there doesn't exist any solution that dominates x;, then x; is non-
dominated. A set of non-dominated feasible solutions { X |@$x: x> X'} is called the
Pareto optimal set. The set of objective vectors which are image of a Pareto set
{F(X)|@%x:x>X} is said to be on the Pareto front (Ngatchou et al, 2005). A

Pareto front for a bi-objective optimization problem isillustrated in Figure 4.4.
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Pareto Front
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Figure 4.4. lllustration of Pareto front for a bi-objective optimization problem
4.3.1 Weighted Sum Method

The weighted sum method is a traditional, popular method that parametrically
changes the weights among objective functions to obtain the Pareto front. Let us
consider we have the objective functions fi, fp, ..., fy. This method takes each
objective function and multiplies it by a fraction of one, the “weighting coefficient”
which is represented by /n. The modified functions are then added together to obtain
asingle cost function, which can easily be solved using any method. Mathematically,

the new function is written as
FO) =1, 500 +1,£,(x)+L+1 i (X) (4.20)

The method is easy to implement and guarantees finding the Pareto optimal
set, provided the objective function space is convex. However, a uniformly
distributed set of weights does not necessarily find a uniformly distributed Pareto
optimal set, which makes it difficult to obtain a Pareto solution in a desired region of
the objective space. The important issue arises in assigning the weighting
coefficients (11, 42, ... A3) because the solution is strongly dependent on the chosen

weighting coefficients.
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4.3.2 Applying Artificial Bee Colony and Bees Algorithm in PID Controller

Design

Tuning the parameters of the PID controllers using the multi-objective
artificial bee colony and bees algorithm is an optimization problem which needs to
be solved in such a way that output of the system attains the desired level in the
shortest time as far as possible preventing a high overshoot a the same time. In
feedback control loop denoted by Figure 4.5 and Figure 4.6, G. presents the PID
controller that is governed by Equation (4.21), and Gy, presents the system to be
controlled. In Figure 4.5 and Figure 4.6, r denotes the reference input signal, e
denotes the error signal, u denotes the control signal, y denotes the output signal, G
denotes aLinear Time-Invariant (LTI) system, G, denotes the PID Controller. Using
the reference signal r(t) and system output y(t) the error signal are defined as e(t) =

r(t) — y(.

(4.21)

"y

L_)% Hﬂ PID G (s) Yy Plant G (s) Y

b

b

Figure 4.5. Block diagram of a MOABC-PID controller
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"y

Lw Y lPlant G (s)}—

b

Figure 4.6. Block diagram of a MOBA-PID controller

Optimization criteria which are used to evaluate fitness are to be chosen in
applying optimization method. Many indexes of PID controller affecting
performance of the transient response can be combined into one objective function
composed of the weighted sum of objectives. The set of objective function is
represented by Equation (4.22):

JB =min(FF) (4.22)

where J° denotes the value of the objective function found by the bees, F = [f1 f, f3 4
fs fs 7]’ denotes vector of objective functions, f; denotes the first objective function
including the settling time (ts), f, denotes the second objective function including rise
time (t), f3 denotes the third objective function including maximum overshoot (Mp),
f4 denotes the fourth objective function including Integral Absolute Error (I1AE), fs
denotes the fifth objective function including Integral Time Absolute Error (ITAE), fs
denotes the sixth objective function including Integral Square Error (1SE), f; denotes
the seventh objective function including Integral Time Square Error (ITSE), @ = [A41
A2 Az A4 25 A6 A7] denotes vector of non negative weights. The important issue arises in
assigning the weighting coefficients (11, A2, ... A7) because the solution is strongly
dependent on the chosen weighting coefficients.
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5. DISCUSSION OF SIMULATION RESULTS

5.1 Resultsfor System Identification

In this subsection, two main examples are utilized in order to illustrate the
efficiency of the proposed algorithm: (i) the ABC algorithm in system identification
for comparing different linear SISO plants with different order, (ii) the ABC
algorithm in system identification for a DC motor. Here, there are four control
parameters in the ABC algorithm: The first parameter is the number of food sources
which is equal to the number of employed and also onlooker bees (NP), the second
one is the number of parameters of the problem to be estimated (D), the third one is
the value of limit parameter (limit), and the fourth one is the maximum cycle number
(MCN). The value of limit is generally chosen as NP/2xD (Basturk and Karaboga,
2010).

5.1.1 Examplel: First Order SISO Linear System Indentification

In the ABC algorithm, the values of the control parameters are chosen as
D=2, NP=20, limit=20, MCN=500 for the first order plant. The transfer function of

the 1st-order plant is given in the s-domain as

3
30s+1

Gy(9)= (5.1)

The transfer function of the 1st-order plant (sampling time = 1.0 second) is

given in the z-domain as

0.098352
Z)=— 7" 5.2
&2 2-0.967216 (52
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The difference eguation of the G; plant is as follows:

y[k] =0.967216y][k - 1] +0.098352u[k - 1] (5.3)

A training set consisting of 400 data for the first order plant is obtained by
using a random input whose amplitude is uniformly distributed in the interval [-2.0,
2.0] for zero initial conditions. For avoiding a similar particular solution, all
parameters to be estimated are initialized randomly over the range [-10.0, 10.0]. The
proposed agorithm is run 10 times for G; plant. For G; plant, each parameter is
calculated and the simulation results are presented in Table 5.1. The results in Table

5.1 are found by using 20 bees for first order plant.

Table 5.1. Simulation results of the estimated G;(9) linear plant
Real Estimated System

Plant Parameters _
System (ABC Algorithm)
Gi(s) B1 0.967216 0.967216
a0 0.098352 0.098352

The performance of the ABC algorithm is tested with the unit step input and
also the following input sequence consisting of mixtures of sinusoids and constant
signals:

u(k)=sin(pk/25), k<250

u(k)=1.0,  250£k <500

u(k)=-1.0, 500£k <750

u(k) = 0.3sin(pk/25) + 0.1sin(pk/32) + 0.6sin(pk/10), 750 £ k <1000

(5.4)
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The step response of Gy(s) plotted with the best values of the parameters
estimated by the ABC in 10 runs is shown in Figures 5.1. Also the sinusoidal input

response of G(s) plotted with the best values of the parameters estimated by the
ABC in 10 runsis shown in Figures 5.2.

3F = S —
E
s 2F 4
)
1=
A=
o1 %  Estimated plant response 7

2 Real plant response
D | | | 1
a 50 100 150 200 250
Time step
Figure 5.1. Step responses of the plant Ga(s)
2

Flant output
-

+  Estimated plant response
2 Heal plant response F
I I I I |

1 1 |
a 100 200 300 400 A0O0 BOO OO 800 =00 1000
Time step

Figure 5.2. Sinusoidal responses of the plant G;(s)

The RMS errors for unit step input and sinusoidal input are presented in
Table 5.2. The results show that the value of the RMS error is quite smaller. The
ABC algorithm shows satisfactorily performance.
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Table 5.2. RMS errors for G(s) linear plant

RMSError For RMSError For
Step Response Input  Sine wave I nput

Ga(s) (First Order) 0.0 0.0

Plant

5.1.2 Example2: Third Order SISO Linear System Indentification

In the ABC algorithm, the values of the control parameters are chosen as
D=6, NP=50, limit=150, MCN=2000 for the third order plant. The transfer function
of the 3rd-order plant is given in the s=domain as

750
s +36<% + 2055 + 750

G,(9) = (5.5)

The transfer function of the 3rd-order plant (sampling time = 0.1 second) is

given in the z-domain as

0.057176z° + 0.107891z + 0.009899

G, (2= 5.6
2(2) 2° -1.4144647° + 0.6167552 - 0.027324 (50

The difference eguation of the G, plant is as follows:

ylk]=1.414464yk - 1]- 0.616755y[k - 2|+0.027324y[k - 3] 57

+0.057176uk - 1]+0.107891u[k - 2]+0.009899ulk - 3]

A training set consisting of 2000 data for the third order plant is obtained by
using a random input whose amplitude is uniformly distributed in the interval [-2.0,
2.0] for zero initial conditions. For avoiding a similar particular solution, all
parameters to be estimated are initialized randomly over the range [-10.0, 10.0]. The
proposed agorithm is run 10 times for G, plant. For G, plant, each parameter is
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calculated and the simulation results are presented in Table 5.3. The results in Table
5.3 are found by using 50 bees for third order plant.

Table 5.3. Simulation results of the estimated Gy(s) linear plant

Real Estimated System

Plant Parameters ]
System (ABC Algorithm)
B1 1.414464 1.114346
B2 -0.616755 -0.188177
B3 0.027324 -0.151084
Ga(s) 0o 0.057176 0.057323
o 0.107891 0.124714
a 0.009899 0.042447

The performance of the ABC algorithm is tested with the unit step input and
also the following input sequence consisting of mixtures of sinusoids and constant
signals:

u(k)=sin(pk/25), k<250

u(k)=1.0,  250£ k <500

u(k)=-1.0, 500£k <750

u(k) = 0.3sin(pk/25) + 0.1sin(pk/32) + 0.6sin(pk/10), 750 £ k <1000

(5.8)

The step response of Gy(s) plotted with the best values of the parameters
estimated by the ABC algorithm in 10 runs is shown in Figures 5.3. Also the
sinusoidal input response of Gy(s) plotted with the best values of the parameters
estimated by the ABC algorithm in 10 runsis shown in Figures 5.4.
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Figure 5.3. Step responses of the plant Gy(s)
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Figure 5.4. Sinusoidal responses of the plant Gx(s)

The RMS errors for unit step input and sinusoidal input are presented in
Table 5.4. The simulation results show that the value of the RMS error is quite
smaller and the simulation results have demonstrated the effectiveness of the
proposed algorithm.

Table 5.4. RMS errors for Gy(s) linear plant
RMSError For RMSError For

Plant .
Step Response Input  Sinewave I nput

G2(s) (Third Order) 0.0019 0.0027
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5.1.3 Example 3: Fifth Order SISO Linear System Indentification

In the ABC algorithm, the values of the control parameters are chosen D=10,
NP=50, limit=250, MCN=2000 for the fifth order plant. The transfer function of the
5th-order plant is given in the ss<domain as

Gy(s) =" 6.35 10 °s* +4.933" 10°°s® +2812s° +1.172" 10*s+1.953" 10*
3 <® +32.5¢" + 475<% + 362552 +1.422° 10°s+1.914" 10*

(5.9)

The transfer function of the 5th-order (sampling time = 0.1 second) is given

in the z-domain as

0.225545z* +0.071233Z° - 0.490390z° + 0.197875z + 0.035971

Gy(2) = 7 - ) (5.10)
2° - 2.3806472" + 2.3352562° - 1.2045512% + 0.3281467 - 0.038774
The difference eguation of the G; plant is as follows:
ylk]=2.380647y]k - 1]- 2.335256y[k - 2]+1.204551y[k - 3]
- 0.328146yk - 4]+0.038774y[k - 5]+0.225545u[k - 1] (5.11)

+0.071233u[k - 2]- 0.490390u[k - 3]+ 0.197875u[k - 4]
+0.035971ulk - 5]

A training set consisting of 2000 data for the fifth order plant is obtained by
using a random input whose amplitude is uniformly distributed in the interval [-2.0,
2.0] for zero initial conditions. For avoiding a similar particular solution, all
parameters to be estimated are initialized randomly over the range [-10.0, 10.0]. The
proposed agorithm is run 10 times for Gs plant. For Gz plant, each parameter is
calculated and the simulation results are presented in Table 5.5. The results in Table
5.5 are found by using 50 bees for fifth order plant.
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Table 5.5. Simulation results of the estimated Gs(s) linear plant

Real Estimated System

Plant Parameters ]
System (ABC Algorithm)

B1 2.380647 1.305520
B2 -2.335256 -0.984349
B3 1.204551 0.283957
Ba -0.328146 -0.043367
Bs 0.038774 -0.034219

Ga(9)
a0 0.225545 0.225264
a1 0.071233 0.313395
a -0.490390 -0.140650
a3 0.197875 0.047479
o4 0.035971 0.033275

The performance of the ABC algorithm is tested with the unit step input and

also the following input sequence consisting of mixtures of sinusoids and constant
signals:

k <250
250 £ k <500
500 £ k <750
0.3sin(pk/25) + 0.1sin(pk/32) + 0.6sin(pk/10),

ulk :sm(pk/25)
ulk

(k)
(k)=1
u(k) -10
(k)=

(5.12)

ulk 750 £ k <1000

The step response of Gz(s) plotted with the best values of the parameters
estimated by the ABC algorithm in 10 runs is shown in Figures 5.5. Also the
sinusoidal input response of Gz(s) plotted with the best values of the parameters
estimated by the ABC algorithm in 10 runsis shown in Figures 5.6.
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Figure 5.6. Sinusoidal responses of the plant Gs(s)
The RMS errors for unit step input and sinusoidal input are presented in
Table 5.6. The simulation results show that the value of the RMS error is quite

smaller for Gs(s) linear plant.

Table 5.6. RMS errors for Gs(s) linear plant

RMSError For RMSError For
Plant

Step Response Input ~ Sine wave Input
Ga(9) (Fifth Order) 0.0104 0.0345
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5.1.4 Example4: Seventh Order SISO Linear System Indentification

In the ABC algorithm, the values of the control parameters are chosen as
D=14, NP=50, limit=350, MCN=2000 for the seventh order plant. The transfer

function of the 7th-order plant is given in the s-domain as

Y. (s)
U.(9)

G,(s) = (5.13)

where

Y,(s)=1.435" 10°s° +6.232" 10°s° +8.882" 10°°s’
-1.699° 10°s* +1.671° 10" *s? +17.98s- 17.98

U,(s) =s’ +5.234s° +19.7s° + 45.92s" + 76.52s°
84.09s* +57.11s+17.98

The transfer function of the 7th-order plant (sampling time = 1.0 second) is

given in the z-domain as

Y.(2)

e (5.14)

G,(9 =

where

Y,(2) =0.0085502° +0.1027512° - 0.1235762* - 0.5020802°
- 0.2489057% - 0.026393z- 0.000277

U,(2) =z’ - 0.3636822° +0.2578127° - 0.1664127* +0.0962887°
- 0.0479877° +0.019244z - 0.005333
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The difference eguation of the G4 plant is as follows:

y[k] = 0.363682y[k - 1]- 0.257812y[k - 2]+0.166412y[k - 3]
- 0.096288y[k - 4]+0.047987y[k - 5]- 0.019244y[k - 6]
+0.005333y[k - 7]+0.008550u[k - 1] +0.102751ulk - 2] (5.15)
- 0.123576ulk - 3]- 0.502080ufk - 4]- 0.248905u[k - 5]
- 0.026393u[k - 6]- 0.000277ulk - 7]

A training set consisting of 2000 data for the seventh order plant is obtained
by using a random input whose amplitude is uniformly distributed in the interval [-
2.0, 2.0] for zero initial conditions. For avoiding a similar particular solution, all
parameters to be estimated are initialized randomly over the range [-10.0, 10.0]. The
proposed agorithm is run 10 times for G4 plant. For G, plant, each parameter is
calculated and the simulation results are presented in Table 5.7. The results in Table

5.7 are found by using 50 bees for seventh order plant.

The performance of the ABC algorithm is tested with the unit step input and
also the following input sequence consisting of mixtures of sinusoids and constant

signals:

u(k) = sm(pk/25) k < 250

u(k)=1 250 £ k <500

u(k)=-1. 0 500 £ k < 750

u(k) = 0.3sin(pk/25) + 0.1sin(pk/32) + 0.6sin(pk/10), 750 £ k <1000

(5.16)
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Table 5.7. Simulation results of the estimated G4(s) linear plant

Plant Parameters Real Estimated S\-/stem
System (ABC Algorithm)
B1 0.363682 0.260398
B2 -0.257812 -0.497459
B3 0.166412 0.169752
Ba -0.096288 -0.060764
Bs 0.047987 0.012406
Be -0.019244 0.004800
B 0.005333 -0.005562
Gu(s)
ao 0.008550 0.008500
a 0.102751 0.103899
a -0.123576 -0.110693
a3 -0.502080 -0.485597
o -0.248905 -0.327795
as -0.026393 -0.207619
as -0.000277 -0.094800

The step response of Gy(s) plotted with the best values of the parameters
estimated by the ABC algorithm in 10 runs is shown in Figures 5.7. Also the
sinusoidal input response of Gu(s) plotted with the best values of the parameters
estimated by the ABC algorithm in 10 runsis shown in Figures 5.8.
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Figure 5.8. Sinusoidal responses of the plant G4(s)

The RMS errors for unit step input and sinusoidal input are presented in
Table 5.8. The simulation results show that the value of the RMS error is quite

smaller for G4(s) linear plant.

Table 5.8. RMS errors for G4(s) linear plant

RMSError
Plant

Step Response | nput

For

RMSError For

Sine wave | nput

Ga(s) (seventh Order)

0.0021

0.0017
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5.1.5 Example5: DC Motor Indentification

An identification design method is presented for a permanent magnet DC
motor. Simplified mathematical model of DC motor has been used in order to build
the DC motor's transfer function. There are differential equations of the electrical
part and mechanical part in DC motor model and also it consists in the
interconnection between them.

Using simplified equivalent electromechanical diagram of the DC motor,
illustrated in Figure 5.9, the mathematical model is written as (Ong, 1998).

U.0=Ri,0+L, 2D e (5.17)
() = KWMt) (5.18)
Con(t) = K, () (5.19)
C (t)=J d\gt(t) + BW() (5.20)

where C,, denotes motor torque (Nm), |, denotes rotor circuit current (A), Ke
denotes electrical constant, K, denotes mechanical constant, L, denotes rotor circuit
inductance (H), R, denotes rotor circuit resistance (Ohm), U, denotes input voltage
(V), B denotes damping ratio (Nms), e, denotes electromotive voltage (V), J denotes
rotor moment of inertia (kgm?), £ denotes rotor speed (rad/s).

The transfer function of the motor model is obtained to allow the control of
speed by the voltage input from the characteristic equations of the DC motor. It is
given by

WS o Ky (5.21)
U.(s) LJIs"+(RJ+L,B)s+(RB+KK,)
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Figure 5.9. A DC Motor equivalent circuit

This transfer function makes possible to simulate motor behavior to various

inputs. The specifications of the motor used for simulation are given in Table 5.9.

Table 5.9. Parameters of the Motor (Ong, 1998)

Parameters Value

Armature circuit Resistance (R;) 21.2 ohm

Armature circuit Inductance (Ly) 0.052 H

Back-Emf constant (Kr) 0.1433 Kg-m/A
Coefficient of friction (B) 1x10* Nms
Moment of Inertia (J) 1x10° kgm?
Torque constant (Ke) 0.1433 V/radls

A training set consisting of 400 data is obtained using a random input whose
amplitude is uniformly distributed in the interval [-2.0, 2.0] for zero initial
conditions. Simulations are carried out by using employed and onlooker bees NP=20,
the maximum cycle number MCN=500 for the DC motor. For avoiding a similar

particular solution, all parameters are initialized randomly over the range [-10.0,
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10.0]. The proposed algorithm is run 10 times for the DC motor parameter

estimation. The DC motor transfer function in s domain is given by

(9 = 0.1443
DC_MOTOR 5.2° 1072 +2.172° 10%s+0.0227

G (5.22)

The discrete time transfer function of the 2nd-order DC motor model

(sampling time 0.001 second) is given by

0.12z+0.1044
z% - 1.623z+0.6586

Goc_woror(2) = (5.23

Its difference equation is given by
ylk]=1.623y[k - 1]- 0.6586y[k - 2]+0.12u[k - 1]+0.1044u[k- 2]  (5.24)

The plant given in Equation (5.22) istested with a unit step input and also the
input sequence consisting of mixtures of sinusoids and constant signals given in
Equation (5.16) to show the effectiveness and performance of the proposed method.
Comparative graph of the actual and the simulated dynamic response with the
identified parameters is illustrated in Figure 5.10 and Figure 5.11. Figure 5.10 and
5.11 show a considerable agreement between the actua plant response and identified
plant response using the estimated parameters. The real parameters and estimated
parameters of the DC motor are given in Table 5.10. The RMS errors for step and

sinusoidal inputs are given in Table 5.11.
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Figure 5.11. Sinusoidal response of the DC motor

Table 5.10. Thereal and estimated parameters of the DC motor
Real Estimated System

Plant Parameters o gem  (ABC Algorithm)
B 16230 15940
B> -0.6586 20.6332
Goc motor(9) oo 0.1200 0.0101
o 0.1044 0.2343

Table 5.11. RMSerrors for DC Motor

RMSError For RMSError For
Plant ) ]
Unit Step Input Sine wave | nput

Gbc_motor(S) (Second Order) 0.0722 0.0844
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5.2 Resultsfor PID Controller Tuning

The performance of the MOBA and the MOABC were tested with two plants
with different order. The objective function which should be minimized was
composed of the objective functions fy, fo, f3, and fs which include the settling time,
the rise time, the maximum overshoot and the integral square error, respectively. The
vector of weights is defined as ® = [0.000001 0.0001 1 O 0O 0.0001 Q.
Throughout the optimization process, the MOBA and the MOABC use the step
reference input and closed loop step response of the process.

The tuning algorithm looks for the optimal parameters for the PID controller
to satisfy the desired system specifications by using the changed closed loop control
performance according to the adjusted controller parameters at the each iteration.
The closed loop response was compared with a step change of a number of simulated
systems in order to demonstrate the effectiveness of the presented method. For PID
controller tuning, two various processes with different order are used.

In control system applications, a weighted combination of different
performance characteristics such as rise time, settling time, maximum overshoot and
integral of the sguare of the error is the chosen performance criterion. The desired
system response needs minimal rise time, minimal settling time with a small or no
overshoot in the step response of the closed loop system. Hence, the objective
function F is defined using the performance indices consisting of integral of the

sguare of the error (ISE), rise time (t;), settling time (ts) and percentage overshoot
(Mp).

F=1,(t) +1,() +1,(M,) +1 ,(IAE) +1 ((ITAE) +1 ((ISE) +I ,(ITSE) (5.25)

In Equation (5.25), the weighting factors are the variables of 11, 12, A3, 14, 45,
Js and J7. By adjusting these factors, the most convenient PID controller parameters
can be provided in order to achieve the desirable closed loop characteristics of the
system. For the predetermined control objectives the performance of the PID

controller can be significantly improved. To obtain better solution, weighting factors
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are defined as 1,=0.000001, 4,=0.0001, A3=1, 14=0, 15=0, 16=0.0001, 1,=0 and the
best results obtained for the parameters of the PID controlled systems optimized by
|SE error criteria. Weighting factor variables depends on being chosen error criteria
such as 4,=0.0001 for IAE error criteria, 415=0.0001 for ITAE error criteria,
26=0.0001 for I1SE error criteria, 17=0.0001 for ITSE error criteria. The closed loop
PID controller was tuned for the values Kp, K| and Kp, first by using Ziegler-Nichols
method, genetic algorithm and ant colony algorithm. In addition, the closed loop PID
controller was tuned by using the MOBA and the MOABC.

5.2.1 Examplel: PID Controller Tuningfor Third Order Linear Plant

For PID controller tuning, third order plant are used as follows (Bagis, 2007):

~ 4.228
G(e)= (s+0.5)(s? +1.64s + 8.456) (5:26)

The results were found by using 200 scout bees. For avoiding a similar
particular solution, the initial populations were generated at random within the range
0.0<Kp<3.0,0.0<K; <3.0,0.0<Kp <3.0. Theresultsin Table 5.12 show that the
value of the maximum overshoot is quite smaller, nearly zero percent and the values
of the rise time, the settling time for |SE error criteria obtained by the MOABC and
the MOBA are much less than the values of the other methods. The results of the
other methods in Table 5.12 were taken from existing literature (Bagis, 2007).

Furthermore, the step responses of G;(s) tested with the optimum values of
the parameters Kp, K; and Kp which are obtained by the MOABC and the MOBA are
presented in Table 5.13 according to some error criteria. Table 5.13 shows the values
of the parameters adopted for the ABC and the BA. The values were decided
empirically for the ABC and the BA.
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Table 5.12. Comparison of simulation results of the PID controlled systems

(Hsizo e al., 2004)
G1(9) Algorithm PID Ziegler Gent_atic Ant Qolony Prop_osed
! Parameters | Parameters | Nichols | Algorithm | Optimization | Algorithms
n=200; e=20; | Kp 2.19 1.637 2.517 2.784
m=80 K, 2.126 0.964 2.219 1.001
nep=60; nsp=40 | Kp 0.565 0.387 1.151 2.087
BA ngh=6.0 fite 6.6 5.97 6.51 6.4691
sc=2.0 fout; 0.8 2.45 0.627 0.4959
iter=2000 faMp %16.46 %3 %16 %0.1676
runtime=30 fs:1 SE 0.785 0.588 0.684 0.508
Kp 2.19 1.637 2.517 2.6213
_ K| 2.126 0.964 2.219 0.8719
0 Ko 0565 | 0.387 1.151 2.4816
ABC iter=2000 fite 6.6 5.97 6.51 6.5249
runtime=30 fout; 0.8 2.45 0.627 0.4553
f3:Mp %16.46 %3 %16 %0.0513
fs:1SE 0.785 0.588 0.684 0.400

Table 5.13. Simulation results of the proposed algorithms for different error criteria

G1(9) Algorithm PID For For For For For
! Par ameters Par ameters ISE IAE ITAE ITSE M SE
n=200; e=20; | Kp 27844 | 25783 | 25562 | 2.9078 | 27418

m=80 K, 1.0012 | 0.9380 | 0.7160 | 0.9959 | 0.9171

nep=60; nsp=40 | K, 2.0873 | 1.6281 | 0.5932 | 1.7206 | 2.3044

BA ngh=6.0 fite 6.4691 | 6.8121 | 10.3541 | 6.8534 | 6.5094
sc=2.0 fort, 04959 | 0.6026 | 0.7980 | 0.5384 | 0.4701
r:Jtr?tri;nzg:OgO fa:M, %0.1676 | %0.0644 | %0.0032 | #00-0279 | %0.0185

Kep 26213 | 24046 | 27860 | 2.7193 | 2.7895

n=200 K, 0.8719 | 0.8973 | 0.9345 | 09745 | 0.9425

ABC limit=100 Ko 24816 | 13700 | 22043 | 1.8512 | 2.2173
iter=2000 fite 6.5249 | 5.7213 | 6.5438 | 6.6587 | 6.5190
runtime=30 | f,t, 0.4553 | 0.7335 | 0.4804 | 05366 | 0.4782
fa:M, %0.0513 | %0.0564 | 9%60.0026 | %60.0891 | %0.0245

The step responses of Gi(s) plotted with the optimum values of the
parameters Kp, K; and Kp which are obtained by the MOBA are shown in Figures
5.12. Furthermore, the step responses of Gy(s) plotted with the optimum values of the
parameters Kp, K; and Kp which are obtained by the MOABC are shown in Figures
5.13. Step response results of Gi(s) process obtained by using Ziegler Nichols,

genetic algorithm and ant colony optimization algorithm are represented for

comparison purposes.
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Figure 5.12. Comparison of step responses of the plant G;(s) for the MOBA
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Figure 5.13. Comparison of step responses of the plant G;(s) for the MOABC

Figures 5.14 and Figures 5.15 illustrate the graphs of the obtained three-
dimensional Pareto optimal fronts consisting of the settling time, overshoot and |SE
error criteria for the step response of Gi(s) process related with each transfer
function. Thus, a well distributed set of non-dominated solutions along the Pareto-
optimal front can be found. The MOABC gives better responses than those produced
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by using the other methods. Thus, it can be considered that the MOABC improves
the optimal system performance of the PID controllers satisfactorily. Evaluation of
the objective function on the above mentioned Gi(s) plant is presented in Figures
5.16 and Figures 5.17. It is also observed that the objective function value decreases

substantially and smoothly.
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Figure 5.14. Multi-objective optimization Pareto-sets of the plant Gi(s) for the
MOBA
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Figure 5.15. Multi-objective optimization Pareto-sets of the plant Gi(s) for the
MOABC

62



5. DISCUSSION OF SIMULATION RESULTS Ozden ERCIN

0.75

07

e
)
a

o
2]

Cost function

055

05 I I I I I I I I I
0 20 40 60 80 100 120 140 160 180 200

Bee generations

Figure 5.16. Convergence graph of the plant Gi(s) in the MOBA method
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Figure 5.17. Convergence graph of the plant G;(s) in the MOABC method

As seen in Figures 5.12 and 5.13, the controlled systems show oscillations,
especially much more in the plant Gi(s). Sometimes oscillation effects stability of the
controlled plants. It also causes undesirable situations. In order to cope with this
problem generally some of the design specifications are modified in control system
design. The smoother responses were achieved with slight concessions to the rise
time. This time the vector of weights was defined as ® =[0.000001 0.000001 1 O
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0 0.0001 QJ. Increasing the rise time caused longer settling time for the plant Ga(s).
Nevertheless, the controlled systems gave fast response without overshoot and
oscillation as seen in Figure 5.18 and Figure 5.19. The obtained results are presented

in Table5.14.
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Figure 5.18. Step responses of the plant Gi(s) with increasing rise time for the
MOBA
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Figure 5.19. Step responses of the plant Gi(s) with increasing rise time for the
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Table 5.14. Simulation results of the proposed algorithm with increasing rise time

G1(9) Algorithm PID For
! Parameters | Parameters| |ISE
n=200; e=20; | Kp 1.3104
m=80; nep=60; | K| 0.5825
BA nsp=40; Kp 0.4597
ngh=6.0; sc=2.0 | fi:t. 6.9200
iter=2000 fort, 4.1637
runtime=30 | f3:M, 900.0254
Kp 0.6138
n=200 K, 0.3521
limit=100 Kp 0.1120
ABC iter=0000 [ fyits 9.4256
runtime=30 fort, 5.6385
faM, %0.0887

5.2.2 Example2: PID Controller Tuning for Fourth Order Linear Plant

For PID controller tuning, a fourth order plant is used as follows (Bagis,
2007):

27

G = i3y

(5.27)

The results were found by using 200 scout bees. For avoiding a similar
particular solution, the initial populations were generated at random within the range
0.0<Kp<4.0,0.0<K; <4.0,0.0<Kp <4.0. Theresultsin Table 5.15 show that the
value of the maximum overshoot is quite smaller, nearly zero percent and the values
of the rise time, the settling time for |SE error criteria obtained by the MOABC and
the MOBA are much less than the values of the other methods. The results of the
other methods in Table 5.15 were taken from existing literature (Bagis, 2007).

Furthermore, the step responses of Gy(s) tested with the optimum values of
the parameters Kp, K; and Kp which are obtained by the MOABC and the MOBA are
presented in Table 5.16 according to some error criteria. Table 5.16 shows the values
of the parameters adopted for the ABC and the BA. The values were decided
empirically for the ABC and the BA.
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Table 5.15. Comparison of simulation results of the PID controlled systems

(Hsiao et al., 2004)
GA(9) Algorithm PID Ziegler | Genetic | Ant Colony | Proposed
Parameters | Parameters | Nichols | Algorithm | Optimization | Algorithms
n=200, e=20; | Ke 3.072 1.772 2.058 2.2103
m=80 K, 2.272 1.061 1.137 1.1038
nep=60; nsp=40 | Kp 1.038 0.772 0.746 1.2640
BA ngh=6.0 fite 5.1 291 4.34 3.8226
sc=2.0 foute 0.7 1.2 0.971 0.8730
iter=2000 faMp %632.53 %1.17 %66.62 %0.0069
runtime=30 | f4:ISE 0.66 0.7311 0.708 0.618
Kp 3.072 1.772 2.058 2.2974
_ K, 2.272 1.061 1.137 1.1017
Iirrr]1i_t2:01%0 Ko 1038 | 0.772 0.746 1.2176
ABC iter=2000 fite 5.1 291 4.34 3.9734
runtime=30 fout; 0.7 1.2 0.971 0.8547
f3:Mp %632.53 %1.17 %66.62 %0
fs:1SE 0.66 0.7311 0.708 0.514

Table 5.16. Simulation results of the proposed algorithms for different error criteria

GA(9) Algorithm PID For For For For For
2 Parameters | Parameters ISE IAE ITAE ITSE M SE
n=200 Kp 22103 | 2.3414 2.0473 1.6778 2.4385
e=20 K, 1.1038 | 1.1708 1.0933 0.9626 1.1429
m=80 Kp 1.2640 | 1.3930 0.9872 0.7340 1.5330
nep=60 | fy:t. 3.8226 | 3.5923 3.8710 3.9130 4.7147
BA nsp=40 | f,it, 0.8730 | 0.8027 0.9763 1.2478 0.7533
ngh=6.0
sc=2.0 fa:M %0.0069 | %0.0326 %0 90.000063 | %0.0071
iter=2000 3:Mp 00. oU. 0! oU. oU.
runtime=30
Kp 2.2974 | 2.1449 2.0105 1.6602 2.4195
n=200 K, 1.1017 | 1.0811 1.0578 0.9633 1.1206
ABC limit=100 | Kp 1.2176 | 1.1892 1.0262 0.6928 1.4801
iter=2000 | fy:t. 3.9734 | 3.8912 3.9170 3.8488 4.8280
runtime=30 | f,:t, 0.8547 | 0.9111 1.0026 1.2461 0.77
fa:M, %0 90.0031 | %0.000051 %0 %0

The step responses of Gy(s) plotted with the optimum values of the

parameters Kp, K; and Kp which are obtained by the MOBA are shown in Figures

5.20. Furthermore, The step responses of Gy(s) plotted with the optimum values of
the parameters Kp, K, and Kp which are obtained by the MOABC are shown in

Figures 5.21. Step response results of Gy(S) process obtained by using Ziegler

Nichols, genetic algorithm and ant colony optimization algorithm are represented for

compar

iSON PUrposes.
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Figure 5.20. Comparison of step responses of the plant Gy(s) for the MOBA
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Figure 5.21. Comparison of step responses of the plant Gx(s) for the MOABC

Figures 5.22 and Figures 5.23 illustrate the graphs of the obtained three-
dimensional Pareto optimal fronts consisting of the settling time, overshoot and |SE
error criteria for the step response of Gy(s) process related with each transfer
function. Thus, a well distributed set of non-dominated solutions along the Pareto-
optimal front can be found. The MOABC gives better responses than those produced
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by using the other methods. Thus, it can be considered that the MOABC improves
the optimal system performance of the PID controllers satisfactorily. Evaluation of
the objective function on the above mentioned Gy(s) plant is presented in Figures
5.24 and Figures 5.25. It is also observed that the objective function value decreases

substantially and smoothly.
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Figure 5.22. Multi-objective optimization Pareto-sets of the plant Gy(s) for the
MOBA
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Figure 5.23. Multi-objective optimization Pareto-sets of the plant Gy(s) for the
MOABC
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Figure 5.24. Convergence graph of the plant Gy(s) in the MOBA method
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Figure 5.25. Convergence graph of the plant Gx(s) in the MOABC method

As seen in Figures 5.20 and 5.21, the controlled systems show oscillations,
especially much more in the plant Gx(s). The smoother responses were achieved with
slight concessions to the rise time. This time the vector of weights was defined as ©
=[0.000001 0.000001 1 O O 0.0001 QJ. Increasing the risetime caused shorter
settling time for the plant Gy(s). Nevertheless, the controlled systems gave fast
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response without overshoot and oscillation as seen in Figure 5.26 and Figure 5.27.

The obtained results are presented in Table 5.17.
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Figure 5.26. Step responses of the plant Gy(s) with increasing rise time
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Figure 5.27. Step responses of the plant Gy(s) with increasing rise time for the

MOABC
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Table 5.17. Simulation results of the proposed algorithm with increasing rise time

GA(9) Algorithm PID For
2 Parameters | Parameters| |ISE
n=200; e=20; | Kp 1.2835
m=80; nep=60; | K, 0.7422
BA nsp=40; Kp 0.5432
ngh=6.0; sc=2.0 | fi:t. 4.7018
iter=2000 fo:t, 1.9513
runtime=30 | f3:M, %0
Kp 1.3927
n=200 K, 0.8561
limit=100 Kp 0.5236
ABC iter=0000 [ fyits 25920
runtime=30 fort, 1.4961
f3:Mp %0

5.2.3 Example 3: PID Controller Tuning for DC Motor Plant

For PID controller tuning, a DC motor plant is used as follows (Nasri et al.,
2007):

S 0.1433

W(s)
Gy(s) = = 5.28
() U, () 52 107 +2172" 10 *s+0.0227 (528)

In this example, the objective function was composed of f;, f2, f3, and fs which
include the settling time, rise time, maximum overshoot and integral square error,
respectively. The vector of weights was defined as ® = [0.000001 0.0001 1 0 O
0.0001 0]. Simulations were carried out by using 200 scout bees and the initial
populations were generated at random within the range 0.0 < Kp < 100.0, 0.0 <K, <
100.0, 0.0 < Kp < 0.05. Also, the initial populations were calculated between these
ranges for genetic algorithm.

The plant given in Equation (5.28) was tested with a unit step input to show
the effectiveness and performance of the proposed method. Three other approaches
such as Ziegler-Nichols, genetic algorithm and ant colony algorithm were applied in
order to make comparison and show the performance of the MOABC and the
MOBA. The step response of the DC motor is depicted in Figure 5.28 and Figure

5.29. The obtained simulation results are given in Table 5.

71



5. DISCUSSION OF SIMULATION RESULTS Ozden ERCIN

*

Step Response

Ziegler Nichols
#  Genetic Algorithm
¢  MOBA

I
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6
time (sec) <10

1.8
3

Figure 5.28. Comparison of step responses of the DC motor for the MOBA
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Figure 5.29. Comparison of step responses of the DC motor for the MOABC
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Table 5.18. Simulation results of Motor Speed PID control (Nasri et al., 2007)

G(9) Algorithm PID Ziegler Gent_atic Prop_osed
3 Parameters Parameters | Nichols | Algorithm | Algorithms
n=200; e=20; m=80 | K¢ 70.556 93.1622 19.5190
nep=60; nsp=40 | K| 50 38.6225 52.9022
BA ngh=6.0 Ko 0.039567 | 0.027836 0.04944
=2.0 fite 11x10* | 9.83x10™ 2.94x107
iter=2000 fort, 1.57x107 | 1.71x10™ 1.62x107
runtime=30 f3:Mp %7.166 %15.609 %0
Kep 70.556 93.1622 21.8463
n=200 K, 50 38.6225 48.4252
ABC limit=100 Ko 0.039567 | 0.027836 0.0492
iter=2000 fite 11x10* | 9.83x10™ 2.84x107
runtime=30 fort, 1.57x107 | 1.71x10™ 1.61x107
fa:M, %7.166 | 915.609 %0

The simulation results on the plant and the average values of standard

performance measures where

the objective function depends on the standard

performance measures such as rise time, settling time and maximum overshoot are

summarized in Table 5.18. Figure 5.30 and Figure 5.31 presents the distribution of

the non-dominated solutions in Pareto-optimal front. The convergence of the

objective function is depicted in Figure 5.32 and Figure 5.33. It can be seen from the

figure that the objective function value decreases considerably.
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Figure 5.30. Multi-objective optimization Pareto-sets of the DC motor for the MOBA
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Figure 5.31. Multi-objective optimization Pareto-sets of the DC motor for the
MOABC
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Figure 5.32. Convergence graph of the DC motor by using the MOBA method
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Figure 5.33. Convergence graph of the DC motor by using the MOABC method

5.2.4 PID Controller Design with Gaussian White Noise

In order to evaluate the effect of a noise disturbance, we have performed
simulations where the PID controller parameters have been tested in the presence of
Gaussian noise acting on the output of the system in Figure 5.34. The above PID
controller design examples are tested for two different variances 6°=0.0025 and

62=0.025.

Gaussian
White Noise
d
o+
ro — e U + ,--*-. ¥
—=L PID » —» Process —>
= L G

Figure 5.34. The PID controller in the closed-loop with Gaussian White Noise
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The closed loop responses of the third order linear plant in the Example 1 for
different variances of gaussian white noise are illustrated in Figure 5.35, 5.36 for the
MOBA and in Figure 5.37, 5.38 for the MOABC.
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Figure 5.35. Comparison of Gaussian white noise step responses of the plant G;(s)
for the MOBA for 6°=0.0025
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Figure 5.36. Comparison of Gaussian white noise step responses of the plant G;(s)
for the MOBA for 6°=0.025
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Figure 5.37. Comparison of Gaussian white noise step responses of the plant G;(s)
for the MOABC for 6°=0.0025
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Figure 5.38. Comparison of Gaussian white noise step responses of the plant G;(s)
for the MOABC for 6°=0.025

The closed loop responses of fourth order linear plant in Example 2 for
different variances of gaussian white noise are illustrated in Figure 5.39, 5.40 for the
MOBA and in Figure 5.41, 5.42 for the MOABC.
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Figure 5.39. Comparison of Gaussian white noise step responses of the plant Gx(s)
for the MOBA for 6°=0.0025
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Figure 5.40. Comparison of Gaussian white noise step responses of the plant Gx(s)
for the MOBA for 6°=0.025
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Figure 5.41. Comparison of Gaussian white noise step responses of the plant Gx(s)
for the MOABC for 6°=0.0025
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Figure 5.42. Comparison of Gaussian white noise step responses of the plant Gx(s)
for the MOABC for 6°=0.025

The closed loop responses of second order linear DC Motor plant in Example
3 for different variances of gaussian white noise are illustrated in Figure 5.43, 5.44
for the MOBA and in Figure 5.45, 5.46 for the MOABC.
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Figure 5.43. Comparison of Gaussian white noise step responses of the plant Gs(s)

for the MOBA for °=0.0025
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Figure 5.44. Comparison of Gaussian white noise step responses of the plant Gs(s)

for the MOBA for °=0.025

80



5. DISCUSSION OF SIMULATION RESULTS

Ozden ERCIN

1.2 T T T T T

0.8+

Step Response
=
=1}
T

0.4
0.2+ F
+  Plant without noise
O Plant with gaussian white noise
l] 0.5 1 1.5 2 25 3 35 4 4.5 a
time (sec) <10
Figure 5.45. Comparison of Gaussian white noise step responses of the plant Gs(s)
for the MOABC for 6°=0.0025
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Figure 5.46. Comparison of Gaussian white noise step responses of the plant Gs(s)

for the MOABC for 6°=0.025
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6. CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this paper, a novel intelligent tuning design method for determining the
PID controller parameters based on Multi-Objective Bees Algorithm (MOBA) and
Multi-Objective Artificial Bee Colony (MOABC) optimization is developed for
getting good performances and tuning the Pareto-optimal PID parameters. The step
response performance of the MOBA and the MOABC were tested with different
order linear plants. It is well known that the MOBA and the MOABC have good
results in solving numerical optimization problems. Thus, the effectiveness of the
PID controller design using the MOBA and the MOABC were researched and was
obtained a satisfactory performance. Although the ABC consists of less control
parameters, it has a better tuning performance than the BA which consists of many
control parameters. Also, the ABC is faster than the other. This study was also
applied to tune PID controller parameters of the permanent magnet DC motors
commonly used in industry and compared with some existing methods. The
simulation results show that the new PID control tuning method using the MOBA
and the MOABC achieve minimum overshoot and optimal or near optimal system
performance. Due to the fact that some stability criteria are taken into account in the
control system design, the proposed method thus can be regarded as a general
controller design method that can be applied to awide class of linear plants.

The ABC algorithm has shown to be versatile when applied to parameter
estimation without requiring a detailed mathematical representation of the
identification problem. The unit step and sinusoidal response performance of the
ABC algorithm is tested with several order linear plants for system identification.
The proposed method is also applied to estimate parameters of the permanent magnet
DC motors commonly used in industry. The proposed method is flexible and
applicable in a wide range of optimization and identification problems. The
simulation results show that the proposed method achieve minimum tracking error
and estimate the parameters values with a high accuracy.

83



6. CONCLUSION Ozden ERCIN

Research was conducted to study the effects of using the honey bee algorithm
as atool for PID tuning and system identification. From the results presented in the
study it was shown that the honey bee tuning yielded improved responses and can be
applied to different process models encountered in the process control industry.

6.2 FutureWork

Proposed method would be beneficial to discuss some alternative ways that
could further improve the work with reference to the methodologies applied in this
research. The work done in this thesis was based on having PID control structure.
Since the real system is nonlinear in industrial control system applications, it would
be interesting to apply nonlinear controllers such as sliding mode control algorithms.
In the proposed design, off-line simulation was completely used. Our proposed
method can be extended to an on-line controlling for any industrial control system
applications.

Proposed method would be useful to use a more complex plant to prove the
effectiveness of the methods under more general conditions. Testing the application
for high order linear plants, plants that can be unstable for certain values of
parameters, intrinsic nonlinear unstable plants would be certainly interesting for

future work.
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