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Head of Department,Cryptography

Prof. Dr. FerruhÖzbudak
Supervisor,Department of Mathematics, METU

Examining Committee Members:

Prof. Dr. Ersan Akyıldız
Department of Mathematics, METU

Prof. Dr. FerruhÖzbudak
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ABSTRACT

ON THE REPRESENTATION OF FINITE FIELDS

Akleylek, Sedat

Ph.D., Department of Cryptography

Supervisor : Prof. Dr. FerruḧOzbudak

December 2010, 66 pages

The representation of field elements has a great impact on the performance of the finite field

arithmetic. In this thesis, we give a modified version of redundant representation which works

for any finite fields of arbitrary characteristics to design arithmetic circuits withsmall com-

plexity. Using our modified redundant representation, we improve many of the complexity

values. We then propose new representations as an alternative way to represent finite fields of

characteristic two by using Charlier and Hermite polynomials. We show that multiplication

in these representations can be achieved with subquadratic space complexity. Charlier and

Hermite representations enable us to find binomial, trinomial or quadranomial irreducible

polynomials which allows us faster modular reduction over binary fields whenthere is no

desirable such low weight irreducible polynomial in other representations.These represen-

tations are very interesting for the NIST and SEC recommended binary fieldsGF(2283) and

GF(2571) since there is no optimal normal basis (ONB) for the corresponding extensions. It

is also shown that in some cases the proposed representations have betterspace complexity

even if there exists an ONB for the corresponding extension.
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ÖZ

SONLU ĊISİMLERİN GÖSTEṘIMİ ÜZEṘINE

Akleylek, Sedat

Doktora, Kriptografi B̈olümü

Tez Yöneticisi : Prof. Dr. FerruḧOzbudak

Aralık 2010, 66 sayfa

Cisim elemanlarının g̈osterimi sonlu cisim aritmetik uygulamalarının performansıüzerinde

büyük öneme sahiptir. Bu tezde, herhangi bir karakteristiğe sahip sonlu cisimlerde düş̈uk

çarpımsal karmaşıklığa sahip devre ihtiyacı için tasarlanan, gerekenden fazla eleman kul-

lanan g̈osterimin dĕgiştirilmiş versiyonu veriliyor. Bu g̈osterimi kullanarak bir çok dĕgerin

karmaşıklı̆gını azaltıyoruz. Sonra, karakteristiği 2 olan sonlu cisimlerin g̈osterimlerine al-

ternatif bir yol olması için Charlier ve Hermite polinomların kullanılmasınıöneriyoruz. Bu

gösterimlerde çarpma işleminin logaritmik alan karmaşıklığı ile yapılabildĭgini gösteriyoruz.

Charlier ve Hermite g̈osterimleri, hızlı mod̈uler aritmetik yapmamıza ve başka gösterimler

kullanılarak istenilen d̈uzeyde az terimli indirgenemez polinom elde edilemediği durumlarda,

iki, üç ve d̈ort terimli indirgenemez polinomları bulabilmemize olanak sağlamaktadır. Bu

gösterimler, NIST ve SEC standartlarında karakteristiği 2 olan cisimlerde kullanılmasıönerilen

GF(2283) ve GF(2571) cisim genişlemeleri için optimal normal gösterim bulunmadığından

oldukça ilginç sonuçlar vermektedir. Bunlara ek olarak, bazı cisim genişlemeleri için optimal

normal g̈osterim olsa bilëonerilen bu yeni g̈osterimlerin daha iyi alan karmaşıklığına sahip

olduğunu g̈osteriyoruz.
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CHAPTER 1

INTRODUCTION

Finite fields have many applications in coding theory, digital signal processing and cryptogra-

phy ( [12], [17], [26], [27], [28], [29], [31] ). Efficient arithmetic of finite field is an important

factor for cryptographic applications. Finite field multiplication is the main operation for

most of the cryptographic applications. The measure of efficiency in hardware implementa-

tions is the number of AND gates and XOR gates. An improvement in complexity refers to

a decrease in the number of AND gates and XOR gates simultaneously in hardware imple-

mentations. Its complexity depends on the representation of the field elements and choice

of reduction polynomial [18]. From the implementation point of view, polynomialbasis and

normal basis representations are mostly recommended to represent finite field elements [22].

It is well-known that normal basis, especially optimal normal basis (ONB) has great advan-

tegous on squaring. With an optimal choice of field, the space complexity of multiplication

is about the same as for a polynomial representation. However, ONB doesnot exist for all

extensions. Therefore, there is a big demand to represent finite fields in adifferent way for

the extension degrees recommended in NIST and SEC standards ( [32], [36] ). In this thesis,

we focus on the representation of elements of finite fields and multiplication of elements in a

finite field of characteristicp, wherep ≥ 2.

The representation of field elements has a great impact on the performance of the finite field

arithmetic [26]. There are mainly three types of representation of finite fields of characteristic

p, namely canonical (polynomial) basis, normal basis and redundant representation. Recently,

Dickson polynomial representation has been proposed to obtain efficient binary field multipli-

cation using low weight irreducible polynomial in [20] and [21]. Hasan andNegre formulate

the multiplication of two elements in the field as a product of Toeplitz or Hankel matrix. Dick-

son polynomials seem interesting when no optimal normal basis (ONB) in any type exists for
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the field. This is the case for NIST recommended binary fieldsGF(2163) andGF(2283). By

using Dickson polynomial representation, one can obtain irreducible Dickson binomials or

trinomials. Depending on the choice of basis, binary field multiplication can be performed in

different ways.

The extension field multiplication can be performed in two steps: polynomial multiplication

overGF(p) and modular reduction overGF(pn). As the complexity of finite field multipli-

cation depends on the number of non-zero terms in the reduction polynomials,it is desirable

to use the reduction polynomials with as few non-zero terms as possible. Overbinary fields,

the use of trinomial or when trinomial does not exist for the correspondingextension, pen-

tanomial is preferred since there is no irreducible binomial or quadranomialexcept forx+ 1

in GF(2)[x].

It is well-known that two parameters for hardware implementations are of vitalimportance:

space complexity and time complexity. In this thesis, the complexity of the algorithms for

arithmetic operations in finite fields are given by the number of operations in theground

field. For example, an addition and a multiplication inGF(2) can be defined by a two-input

XOR gate and a two-input AND gate, respectively. The space complexity ofan algorithm

for a given input is the number of AND gates and XOR gates that the algorithmneeds to

store during its execution. To find the space complexity of the algorithm is veryhelpful to

obtain compact VLSI implementations. The time complexity i.e. the total gate delay of the

circuit of an algorithm for a given input is the number of AND gates and XORgates that the

algorithm executes. This number is computed with respect to size of the input. Areduced

space complexity is one of the crucial point for the applications based on smart cards and

mobile phones. Similarly, if the performance is the most critical parameter, a greater space

complexity is acceptable while there is an improvement in the total gate delay.

We classify our contributions in three parts. In Chapter 2, we give a modified redundant repre-

sentation. Using our modified redundant representation, we improve many of the complexity

values significantly. Our method works for any finite field. We give more emphasis for finite

fields of characteristic 2. We also give some applications in cryptography.

In Chapter 3, we give a new way to represent certain finite fieldsGF(2n). This representation

is based on Charlier polynomials. We show that multiplication in Charlier polynomialrep-

resentation can be performed with subquadratic space complexity. One canobtain binomial

2



or trinomial irreducible polynomials in Charlier polynomial representation whichallows us

faster modular reduction over binary fields when there is no desirable such low weight irre-

ducible polynomial in other representations. This representation is very interesting for NIST

recommended binary fieldGF(2283) since there is no ONB for the corresponding extension.

We also note that recommended NIST and SEC binary fields can be constructed with low

weight Charlier polynomials such asGF(2113), GF(2131) andGF(2233).

In Chapter 4, Hermite polynomial representation is proposed as an alternative way to repre-

sent finite fields of characteristic two. We show that multiplication in Hermite polynomial

representation can be achieved with subquadratic space complexity. This representation en-

ables us to find binomial, trinomial or quadranomial irreducible polynomials which allows us

faster modular reduction over binary fields when there is no desirable such low weight irre-

ducible polynomial in other representations. We then show that the productof two elements in

Hermite polynomial representation can be performed as Toeplitz matrix-vectorproduct. This

representation is very interesting for NIST recommended binary fieldGF(2571) since there is

no ONB for the corresponding extension. We note that an advantage of this representation is

that it can be used to obtain more efficient finite field arithmetic.

A summary of the thesis is presented in Chapter 5.
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CHAPTER 2

MODIFIED REDUNDANT REPRESENTATION FOR

DESIGNING ARITHMETIC CIRCUITS WITH SMALL

COMPLEXITY

Efficient hardware implementations of the arithmetic operations in the finite field have been

widely studied in coding theory, computer algebra and cryptographic applications. Itoh and

Tsujii [23] first gave a method to construct a multiplier for a class of fields represented by

irreducible all-one-polynomials and equally-spaced-polynomials. A redundant representation

of field elements is proposed in [23] as well as later in [10], [37], [38] and [41]. Redun-

dant representation allows multiplication and squaring to be achieved more simplythan other

representations. In cryptographic applications, finite fields, represented by low weight poly-

nomials, are desired due to the efficiency of finite field operations.

The main idea in the redundant representation is to represent the finite fieldGF(2m) as a

subring of the quotient polynomial ringGF(2n)/(xn − 1), provided thatn > m and there is a

subring ofGF(2n)[x]/(xn − 1) which is isomorphic toGF(2m) as a ring. This representation

allows a kind of parallel multiplier design yielding small complexity for multiplication in

GF(2m) for somem. For a better complexity, it is necessary to choose the smallestn satisfying

the condition above.

Geiselmann, Quade and Steinwandt gave a characterization of the smallest valuen ∈ N with

GF(2)[x]/(xn − 1) containing an isomorphic copy ofGF(2m) in [14]. They showed that the

values found in [10] are not optimal in many cases. Similarly, Wu, Hasan, Blake and Gao

proved in [42] that some values found in [10] can be reduced significantly when there exists a

type II optimal normal basis inGF(2m). Then, Geiselmann and Steinwandt generalized their
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idea to finite fields of arbitrary characteristic in [15].

In this chapter, we give a modified redundant representation which can be considered as a

generalization of [10], [14] and [15]. Using our modified redundant representation, we im-

prove many of the complexity values in [10], [14] and [15] significantly. Our method works

for any finite field. We give more emphasis for finite fields of characteristic 2. We also give

some applications in cryptography.

This chapter is organized as follows: Section 2.1 describes a modified redundant representa-

tion. In Section 2.2, we illustrate our method with an explicit example and we recallsome

facts which we need in order to compare our method with previous ones. In Section 2.3, we

demonstrate our improvements in tables and give an analysis of the reasons of the improve-

ments. We give certain applications in cryptography in Section 2.4.

The material presented in this chapter is partially included in [4].

2.1 A Modified Redundant Representation

In this section, we recall previous works and describe our method.

2.1.1 The Redundant Representation

Let p be an arbitrary prime number andm ≥ 2 be a positive integer. Note that the finite field

GF(pm) can be considered as a ring as well. Letn > m be an integer and consider the finite

quotient ringGF(p)[x]/(xn−1). If there exists a subring of the quotient ringGF(p)[x]/(xn−1)

which is isomorphic toGF(pm) as a ring, then it is well-known that we can representGF(pm)

using the ring representation of the quotient ringGF(p)[x]/(xn − 1). Such a representation of

GF(pm) is called aredundant representation( [14], [37], [41] ) or apolynomial ring repre-

sentation( [10] ).

Let the canonical factorization of (xn − 1) ∈ GF(p)[x] be given as

xn − 1 = f1(x) f2(x) · · · ft(x), (2.1)

where f1(x), f2(x), · · · , ft(x) are monic (not necessarily distinct) irreducible polynomials in

GF(p)[x].
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In order to design arithmetic circuits with small complexity using redundant representation

of GF(pm) in GF(p)[x]/(xn − 1), it is important to choosen as small as possible ( [10], [14],

[15], [41] ).

Let S1(p,m) be the set of integers consisting ofn such thatn > mand there exists at least one

irreducible factor of degreem in (2.1).

Let S2(p,m) be the set of integers consisting ofn such thatn > m and there exists at least

one irreducible factor of degreeℓ · m, whereℓ is a positive integer, in (2.1). It is clear that

S1(p,m) ⊆ S2(p,m). Note that ifℓ = 1, thenS1(p,m) = S2(p,m)

In [10], using

n = min{S1(p,m)}, (2.2)

arithmetic circuits with small complexity via redundant representation ofGF(pm) in the quo-

tient ringGF(p)[x]/(xn − 1) are obtained. Remember that the main idea in [10] is to find the

smallestn such thatxn − 1 has an irreducible polynomial factor of degreem.

In [14], using

n = min{S2(p,m)}, (2.3)

arithmetic circuits with small complexity via redundant representation ofGF(pm) in the quo-

tient ringGF(p)[x]/(xn−1) are obtained. Remember that the main idea in [14] is to determine

the smallestn such thatxn− 1 has an irreducible polynomial divisor of degreeℓ ·mwherel is

a positive integer.

It is shown that usingS2(p,m) instead ofS1(p,m) improves the complexity of various arith-

metic operations for many values ofp andm ( [14] ).

Now we explain the main idea of our contribution.

2.1.2 Our Contribution

Let k be a positive integer such that

k|m and k < m (2.4)

6



Let mk be the positive integer such thatm = k ·mk. Note that 1< mk ≤ m. Let the canonical

factorization of (xn − 1) ∈ GF(pk)[x] be given as

xn − 1 = g1(x)g2(x) · · ·gs(x), (2.5)

whereg1(x),g2(x), · · · ,gs(x) are monic (not necessarily distinct) irreducible polynomials in

GF(pk)[x].

Let Tk(p,mk) be the set of integers consisting ofn such thatn > mk and there exists at least

one irreducible factor of degreeℓ · mk, whereℓ is a positive integer, in (2.5). Note that if

k = 1, thenmk = m andTk(p,mk) = S2(p,m). However ifk > 1 andk satisfies (2.4), then we

observe that

min{Tk(p,mk)} << min{S2(p,m)} (2.6)

for many values ofp andm (see Table 2.1 and Table 2.2 in Section 2.3).

In this paper, we use redundant representation in the following form: Foran arithmetic oper-

ation, assume that we know an arithmetic circuit design forGF(pk). For p = 2, this means,

in particular, we know the number of AND gates, XOR gates of the design forGF(pk). Then

using

nk = min{Tk(p,mk)} (2.7)

via redundant representation ofGF(pm) in GF(pk)[x]/(xnk−1) and the design of the arithmetic

operation forGF(pk), we get an arithmetic circuit for the corresponding arithmetic operation

in GF(pm). Moreover, we optimize the complexity of the arithmetic operation considering all

divisorsk of msatisfying (2.4).

Our method depends on the following fact, which is a simple generalization of Proposition 1

in [14]. We call our method as modified redundant representation.

Proposition 2.1.1 Let p be a prime number. Let m≥ 2 be a positive integer. Let k be a

positive integer with k|m and k< m. Let mk = m/k. Then, the smallest positive integer nk,

such that there exists a subring of the quotient ring GF(pk)[x]/(xnk − 1) which is isomorphic

to GF(pm) as a ring, ismin{n : n is a positive integer and the canonical factorization of

(xn − 1) ∈ GF(pk)[x] has an irreducible factor of degreeℓ ·mk whereℓ is a positive integer}.

Moreover, nk is not divisible by p.
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Proof. Assume thatnk is divisible byp. In this structure, one can findn′k such that (xnk − 1) =

(xn′k − 1)p. Then, (xn′k − 1) contains an irreducible divisor of degreeℓ ·mk with ℓ ≥ 1 and this

contradicts with the minimality ofnk. Therefore,nk is not divisible byp.

The observation in the paragraph above implies that (xnk − 1) has no multiple roots since

gcd((xnk − 1), ∂
∂x(xnk − 1)) = 1.

Let gi(x) be the factor of (xnk − 1) with degreemki . Canonical factorization of (xnk − 1) ∈

GF(pk)[x] is given as

(xnk − 1) = g1(x)g2(x) · · ·gs(x), (2.8)

whereg1(x),g2(x), · · · ,gs(x) are distinct and monic irreducible polynomials inGF(pk)[x].

Then, by using Chinese Remainder Theorem, the ring is isomorphic to product of fields.

GF(pk)[x]/(xnk − 1) � GF(pk)[x]/g1(x) × ... ×GF(pk)[x]/gs(x) (2.9)

It is well-known thatGF(pk·mk) is a subfield ofGF(pk)[x]/gi(x) if and only if mk|mki for some

i ∈ {1,2, ..., s}. This completes the proof. �

Now we consider Proposition 2.1.1 with an algorithmic approach. To find the smallest nk, it

is important to obtain an algorithm. Theorem 2.1.2, a modification of Theorem 1 in [42] to

our structure, characterizes the relationship betweennk andmk.

Theorem 2.1.2 Let m= k ·mk and q= pk, where p is a prime number and k> 0 is a positive

integer. There exists a subring of the quotient ring GF(q)[x]/(xnk − 1) isomorphic to GF(qmk)

as a ring with nk > mk is and only if mk divides the multiplicative order of q(mod nk).

Algorithm 1 gives the smallestnk such that there exists a subring ofGF(q)[x]/(xnk − 1) iso-

morphic toGF(qmk) as a ring withnk > mk. Algorithm 1 is a consequence of Theorem 2.1.2.

Note that Algorithm 1 is a simple generalization of the idea given in [41].
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Algorithm 1 Computing the smallestnk such that there exists a subring of the quotient ring

GF(q)[x]/(xnk−1) isomorphic toGF(qmk) as a ring withnk > mk

Input: q = pk, m= k ·mk

Output: nk

1: Find all the factors,di ≥ (mk + 1) of 2mk − 1 and list them in an increasing order:d1 · d2 ·

· · · · dc = 2mk − 1

2: while i ≤ c do

3: if mk|ϕ(di) and the multiplicative order ofq in Zd∗i
is mk then

4: t ← di and BREAK

5: else

6: i ← i + 1

7: end if

8: end while

9: Let h be the largest positive integer such thatt > hm

10: if h ≥ 2 then

11: for i = 2 toh do

12: Find all the factors,di > i · mk of 2i·mk − 1 and list them in an increasing order:

d1 · d2 · · · · · dci = 2i·mk − 1

13: while i ≤ ci do

14: if i ·mk|ϕ(di) and the multiplicative order ofq in Zd∗i
is i ·mk then

15: n← min{t,di} and BREAK

16: else

17: i ← i + 1

18: end if

19: end while

20: end for

21: end if

9



2.2 Multiplication Using Modified Redundant Representation and Complexity

In this section, we keep the notation of Section 2. Recall that in the modified redundant

representation method, we assume that we know an arithmetic circuit design for the inter-

mediate fieldsGF(pk). In our examples, we use intermediate fields withk = 2,3 and 5. In

this section, we explain various finite field multiplication circuit designs for the intermediate

field GF(pk). We now summarize the schoolbook method, Karatsuba method and Tom-Cook

method in view of required multiplications and additions. These methods can be used for the

corresponding arithmetic circuits design in the intermediate fields.

2.2.1 Overview of Multiplication Methods

Let f (x) be an irreducible polynomial of degreek in GF(p)[x]. Multiplication in

GF(pk) = GF(p)[x]/ < f (x) >

is computed as a multiplication of polynomials with modulof (x) reduction. A simple and

generic design for finite field multiplication inGF(pk) is the schoolbook method. Consider

two k−term polynomials

a(x) =
k−1
∑

i=0

ai x
i ,b(x) =

k−1
∑

j=0

b j x
j (2.10)

By using the schoolbook multiplication method, one can computec(x) = a(x) · b(x) as

c(x) =
k−1
∑

i=0

k−1
∑

j=0

aib j x
i+ j (2.11)

Assume that reduction polynomial,f (x), is binomial. Then,

xi+ j =

{ xi+ j
if i + j < k

xi+ j−k
if i + j ≥ k

(2.12)

Then, for binomials, schoolbook multiplication method can be performed at mostk2 multipli-

cations andk(k− 1) additions inGF(p). By using the same idea, if the reduction polynomial,

f (x), is trinomial or pentanomial, then the number of additions is (k+1)(k−1) or (k+3)(k−1),

respectively [25].

Karatsuba method splits elements into 2 parts [24]. We show this technique with anexample.

Let GF(22) = GF(2)[x]/ < (x2 + x+ 1) >, a(x) = a0 + a1x andb(x) = b0 + b1x. Karatsuba

10



method computesa(x) · b(x) as

c(x) = c0 + c1x, (2.13)

where

c0 = a0b0 + a1b1

c1 = (a0 + a1)(b0 + b1) + a0b0 + a1b1.

Multiplication in GF(p2) can be computed with three multiplications and four additions in

GF(p) by using Karatsuba method.

Tom-Cook method is based on interpolation and uses 2k − 2 distinct elements of finite field

with point at∞ [8]. This method works in the following order: Letxi be the interpolation

points. Choose a family{xi} for 0 ≤ i < 2k − 1 of distinct points inGF(p). Evaluate

the producta(xi)b(xi) ∈ GF(p) for eachi. Then, interpolate the evaluation points to obtain

a(x) · b(x) ∈ GF(p)[x].

One multiplication inGF(p3) theoretically costs 5 multiplication and 33 additions inGF(p)

by using Tom-Cook multiplication method. In this structure, Tom-Cook method cannot be

used for allGF(p). For example, letk = 3. We need 2·3−2 = 4 elements inGF(p). If p ≤ 3,

then, there is not enough points to apply Tom-Cook method for cubic extension (4> p). For

this reason, Karatsuba method is one of the best choice forGF(23) andGF(33) [30]. One

multiplication in GF(p3) theoretically costs 6 multiplication and 13 additions inGF(p) by

using Karatsuba method.

Montgomery gave explicit formula for the extension degree 5 in [30]. One multiplication in

GF(p5) theoretically costs 13 multiplication and 22 additions inGF(p).

2.2.2 Multiplication Using Modified Method

In this part, we explain how we obtain an arithmetic design for finite field multiplication in

GF(pm) assuming an arithmetic design for finite field multiplication in the intermediate field

GF(pk) in the case thatp = 2. The same method works for the general characteristicp.

The multiplication inGF(pk)[x]/(xnk−1) can be performed with a linear feedback shift regis-

ter with feedback polynomial (xnk − 1). Leta(x) =
∑nk−1

i=0 ai · xi andb(x) =
∑nk−1

i=0 bi · xi where

11



ai ,bi ∈ GF(pk). Then,

c(x) = a(x) · b(x) =
nk−1
∑

j=0

















nk−1
∑

i=0

ai · b( j−i) (mod nk)

















· x j (2.14)

Multiplier structure of redundant basis is given in Figure 2.1.

Figure 2.1: Bit Serial Multiplier for Redundant Basis

Figure 2.2 shows a parallel version of the multiplier using redundant basis.Note that in Figure

2.2, B refers to Figure 2.1.

Figure 2.2: Parallelization of the Bit Serial Multiplier for Redundant Basis
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In the following example, we give an illustration of our method and we show howto calculate

the cost of multiplication.

Example 2.2.1 Let p= 2 and m= 12. Let k= 3. Then, mk = 4. This means that we need to

find the smallest nk ∈ N with GF(2k)[x]/(xnk − 1) containing an isomorphic copy of GF(8mk).

We build GF(212) as

GF(8)[x]/(x5 − 1) � GF(8)[x]/g1(x) ×GF(8)[x]/g2(x), (2.15)

with GF(8) = GF(2)[y]/(y3 + y+ 1) since

(x5 − 1) = g1(x)g2(x) = (x− 1)(x4 + x3 + x2 + x+ 1) (2.16)

over GF(8). An element a(x) ∈ GF(212) is represented as a0 + a1x + a2x2 + a3x3, where

ai ∈ GF(8).

Let a(x),b(x) ∈ GF(8)[x]/(x5 − 1) and

c(x) = a(x) · b(x) =
4

∑

i=0

ci · x
i , (2.17)

where ci ∈ GF(8). Then, one can compute ci ’s by using the formula defined below. This

is a parallel-in-parallel-out multiplier [10]. The multiplication of two elements in the ring

GF(8)[x]/(x5 − 1) can be performed by a matrix multiplication.
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

(2.18)

If one uses the schoolbook method for intermediate field multiplication, this matrix multi-

plication needs32 · 52 AND gates since it requires52 multiplications in GF(23) and one

multiplication in GF(23) requires32 multiplications in GF(2). The number of XOR gates is

8 · 52 + 3 · 4 · 5 since one needs32 − 1 additions in GF(2) for one multiplication in GF(23)

and3 additions in GF(2) for one addition in GF(23). Note that one requires5 · 4 additions in

GF(23) to perform one multiplication in GF(212). If one uses Karatsuba-like method defined

above for intermediate field multiplication, then the cost of multiplication in GF(8)[x]/(x5−1)

is 6 · 52 AND gates and13 · 52 + 3 · 4 · 5 XOR gates.
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One can determine the number of AND gates and XOR gates for the extension degree multiple

of k by using the following formulas for binary fields. These are the upper bounds for the

multiplication. ANDk or XORk refers to the number of multiplications or additions inGF(2)

to perform a multiplication inGF(2k), respectively.

#ANDs = ANDk · n
2
k

#XORs = XORk · n
2
k + k · nk · (nk − 1)

Now, we explain how to compute the number of AND gates and XOR gates for any k and

nk. Assume that one needs to work in a fieldGF(2m) with m = k ·mk. Let (xnk − 1) have an

irreducible factor with degreeℓ ·mk whereℓ is a positive integer. To perform a multiplication

in GF(2m) n2
k multiplications inGF(2k) and nk(nk − 1) additions inGF(2k) are required.

One multiplication inGF(2k) requiresANDk multiplications inGF(2) andXORk additions in

GF(2), with ANDk = k2 by using the schoolbook multiplication for any extension,ANDk = 3,

XORk = 5 for quadratic extension,ANDk = 6, XORk = 13 for cubic extension andANDk =

13, XORk = 22 for quintic extension by using Karatsuba-like method. If one uses trinomial

or pentanomial as a reduction polynomial while performing the schoolbook multiplication,

thenXORk = (k+ 1)(k− 1) or (k+ 3)(k− 1), respectively. One addition inGF(2k) requiresk

additions inGF(2).

These formulae are used to construct Table 2.1 in Section 4. Note that we prefer to use the

schoolbook multiplication method for intermediate field arithmetic.

We observe that multiplication byxi and squaring are also as efficient as given in [15]. This

observation is stated as a remark.

Remark 2.2.2 Let a= (ank−1,ank−2, · · · ,a1,a0), where ai ∈ GF(pk). Multiplication by xi for

0 < i < nk is i times cyclic shift. Then,

xi · a = (ank−1−i ,ank−2−i , · · · ,a1,a0, · · · ,ank−i+1,ank−i).

Remark 2.2.3 Similarly, squaring is a permutation of the element’s coordinates. Let a=

(ank−1,ank−2, · · · ,a1,a0), where ai ∈ GF(pk).

a2 = (a2
nk−1

2

,a2
nk−1, · · · ,a

2
1,a

2
nk+1

2

,a2
0).
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2.3 Improved Results

In this section, we obtainnk’s by using modified redundant representaion. Then, we compute

the number of AND gates and XOR gates according to the derived formulas inSection 2.2.2.

Remember that, in this paper, we use the complexity to compute the required numberof AND

gates and XOR gates for multiplication of two elements.

All values listed in the tables are found by using Magma Computational Algebra System [6].

we obtainnk’s by using Algorithm 1. Then, we check these results by factorizing all binomials

with an odd extension degreenk into irreducible polynomials over corresponding finite field.

We demonstrate some of our improvements in complexities, i.e. the number of AND gates

and XOR gates, according to [14] in Table 2.1. These are computed by usingschoolbook

multiplication method. The complexity of all values listed in Table 2.1 of our method is much

better than the one given in [14] in view of the number of AND gates and XOR gates. In Table

2.1, we give the respective change in percentage of AND gates and XORgates. Table 2.1 also

shows the smallestn andnk with GF(2)[x]/(xn − 1) andGF(2k)[x]/(xnk − 1) an isomorphic

copy ofGF(2k·mk). According to Table 2.1, all values ofnk is much more smaller than the

correspondingn given in [14]. Note that if one uses Karatsuba-like method for intermediate

field arithmetic, the complexity of all values listed in Table 2.1 of our method is also much

better than the one given in [14] in view of the number of AND gates and XOR gates.

Now we give an example to show how the smallestn andnk are computed.

Example 2.3.1 Let us consider GF(2262). Then, mk = 131and k= 2. By using the method

given in [14], one computes the smallest value n= 789with GF(2)[x]/(x789−1) containing an

isomorphic copy of GF(2262). To illustrate our modified method, we need to build GF(2262)

as

GF(4)[x]/(xnk − 1) � GF(4)[x]/g1(x) × · · · ×GF(4)[x]/gs(x)

with GF(4) = GF(2)[y]/(y2 + y+ 1). Then, by using our modified method the smallest nk is

263 such that(xnk − 1) over GF(4) has an irreducible factor of degreeℓ · mk, whereℓ is a

positive integer. Note that deg(g1(x)) = 1 and deg(g2(x)) = deg(g3(x)) = 131.

Some observations for the Table 2.1 can be listed as remarks. Remark 2.3.2 shows how to

find better values than given in [14].
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Table 2.1: The Smallestnandnk with GF(2)[x]/(xn−1) andGF(2k)[x]/(xnk−1) an Isomorphic
Copy ofGF(2k·mk) and Complexities

Our Results Redundant Representation [14]Improvements in Gates

m k nk #ANDs #XORs n #ANDs #XORs ANDs XORs

15 3 11 1089 1298 61 3721 3660 %70.7 %64.5

22 2 23 2116 2599 67 4489 4422 %52.8 %41.2

30 3 11 1089 1298 61 3721 3660 %70.7 %64.5

46 2 47 8836 10951 139 19321 19182 %54.2 %42.9

84∗ 3 29 7569 9164 203 41209 41006 %81.6 %77.6

102 2 103 42436 52839 307 94249 93942 %54.9 %43.7

140∗ 5 29 21025 24244 319 101761 101442 %79.3 %76.1

174 3 59 31329 38114 349 121801 121452 %74.2 %68.6

190 2 191 145924 182023 573 328329 327756 %55.5 %44.4

246∗ 3 83 62001 75530 581 337561 336980 %81.6 %77.5

249 3 167 251001 306278 1169 1366561 1365392 %81.6 %77.5

260∗ 5 53 70225 81196 521 271441 270920 %74.1 %70.0

262 2 263 276676 345319 789 622521 621732 %55.5 %44.4

270 2 271 293764 366663 811 657721 656910 %55.3 %44.1

290∗ 5 59 87025 100654 649 421201 420552 %79.3 %76.0

300∗ 3 101 91809 111908 707 499849 499142 %81.6 %77.5

310 2 311 386884 482983 933 870489 869556 %55.5 %44.4

318∗ 3 107 103041 125618 729 531441 530712 %80.6 %76.3

330 5 67 112225 129846 661 436921 436260 %74.3 %70.2

358 2 359 515524 643687 1077 1159929 1158852 %55.5 %44.4

390∗ 3 131 154449 188378 869 755161 754292 %79.5 %75.0

410 5 83 172225 199366 821 674041 673220 %74.4 %70.3

444∗ 3 149 199809 243764 1043 1087849 10868067 %81.6 %77.5

478 2 479 917764 1146247 1437 2064969 2063532 %55.5 %44.4

502 2 503 1012036 1264039 1509 2277081 2275572 %55.5 %44.4

516∗ 3 173 269361 328700 1211 1466521 1465310 %81.6 %77.5

530 5 107 286225 331486 1061 11257721 1124660 %74.5 %70.5

534∗ 3 179 288369 351914 1253 1570009 1568756 %81.6 %77.5

588∗ 3 197 349281 426308 1379 1901641 1900262 %81.6 %77.5

598 2 599 1435204 1792807 1797 3229209 3227412 %55.5 %44.4

646 2 647 1674436 2091751 1941 3767481 3765540 %55.5 %44.4

678∗ 3 227 463761 566138 1589 2524921 2523332 %81.6 %77.5

718 2 719 2067844 2583367 2157 4652649 4650492 %55.5 %44.4

804∗ 3 269 651249 795164 1883 3545689 3543806 %81.6 %77.5

1380 3 461 19412689 2336348 5699 32478601 32472902 %94.1 %92.8

1380 5 611 9333025 10823254 5699 32478601 32472902 %71.2 %66.6
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Remark 2.3.2 Let m= k · mk where k> 2 is a prime number. If mk + 1 is prime and2 is

a primitive element of GF(2k), then the smallest nk = mk + 1. This ensures that(xmk+1 − 1)

has an irreducible factor with degree mk over GF(2k). In this setting, GF(q)[x]/(xnk − 1) is

isomorphic to GF(qmk) ×GF(q), where q= 2k.

Note that Remark 2.3.2 is a simple generalization of the idea given in [42].

Remark 2.3.3 Let m= k ·mk where k> 2 is a prime number. Then, for nk ≥ 2 ·mk + 1, the

cost of multiplication in generalized redundant representation increases.

Remark 2.3.2 and Remark 2.3.3 explain in which cases arithmetic circuits with small com-

plexity can be obtained by using generalized redundant representation.Now we compare

the modified redundant representation with the polynomial basis and optimal normal basis

(ONB).

Although the modified redundant representation offers almost free squaring as normal basis

does, the number of required AND gates and XOR gates in the modified redundant repre-

sentation is not as small as that of polynomial basis representation to multiply two elements

in GF(2m) since one needsk · nk bits to represent each element in the modified redundant

representation, wherem= k ·mk with nk > mk and this causes a modest increase in the space

complexity (see Example 2.3.4). Thus, the polynomial basis multiplier is much superior com-

pared to the modified redundant representation in view of the number of ANDgates and XOR

gates. However, the modified redundant representation yields a very modular architecture.

As a consequence, the modified redundant representation leads to much more efficient design

than polynomial basis in some applications having many repeated squarings and very few

multiplications.

Although the number of required AND gates in the modified redundant representation is much

more than ONB to multiply two elements inGF(2m), the modified redundant representation

gives better addition complexity i.e. the number of required XOR gates compared to type II

ONB for values ofm ∈ {30,174,330,410,530,690,810,1398,1758}. We use the complexity

formulae defined for ONB multipliers in composite fields in [34] to give comparison. We

give an illustrating example to compare the multipliers in view of the number of required

AND gates and XOR gates.
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Example 2.3.4 Let us consider m= 174. Then, mk = 58and k= 3. By using the modified re-

dundant representation, the smallest nk is 59 such that(xnk−1) over GF(8) has an irreducible

factor of degree mk. Then, one needs 31329 AND gates and 38114 XOR gates to perform the

multiplication in GF(2k)[x]/(xnk − 1). If one uses polynomial basis or type II ONB, then the

cost of multiplication in GF(2m) is 30276 AND gates and 36830 XOR gates or 30276 AND

gates and 50457 XOR gates, respectively. Note that we build GF(2m) as GF((2k)mk).

Similarly, one reduces the addition complexity form = 1380 where type I ONB exists. Fur-

thermore, for values ofm marked with an asteriks in Table 2.1 in which there is no ONB, the

modified redundant representation can be used to reduce the number of required XOR gates.

As a result, in some applications needing small space complexity the modified redundant

representation is advantageous over ONB.

Table 2.2 compares the selectedm for the corresponding smallestnk for the method in [15] and

given in this study for the finite fields of characteristic 3. Since the complexity computation is

similar to binary fields given in Section 3, we focus on the smallestnk for this case. For values

of m marked with asterisk, the listed value ofnk is smaller than given in [15]. According to

Table 2.2, in many cases, the method given in this thesis gives better results.

Table 2.2: The Smallestnandnk with GF(3)[x]/(xn−1) andGF(3k)[x]/(xnk−1) an Isomorphic
Copy ofGF(3k·mk)

Our Results [15]

m k nk n

12 2 35 35

12∗ 3 5 35

3 · 97∗ 3 389 1747

5 · 97∗ 5 389 971

6 · 97∗ 3 389 1747

6 · 97∗ 6 389 1747

3 · 193∗ 3 773 6949

6 · 193∗ 3 773 6949

6 · 193∗ 6 773 6949

2 · 239∗ 2 479 958

3 · 239∗ 3 479 6227

5 · 239∗ 5 479 5269
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2.4 Inversion in the Redundant Basis

In this section we briefly describe inversion operation inGF(2k)[x]/(xnk − 1). Inversion

in GF(2k)[x]/(xnk − 1) can be achieved with different methods. Since not all elements of

GF(2k·nk) is invertible, we only consider the elements ofGF(2m). Let a(x) =
∑nk−1

i=0 ai · xi and

b(x) =
∑nk−1

i=0 bi · xi whereai ,bi ∈ GF(2k). Then, froma(x) · b(x) = 1 we have a set of linear

equations

a(x) · b(x) =
nk−1
∑

j=0

















nk−1
∑

i=0

ai · b( j−i) (mod nk)

















· x j = 1 (2.19)

We can write the set of equations in matrix form. Note that this matrix is always singular and

is a special case of Toeplitz matrix. Any algorithm for solving Toeplitz system can also be

used to solve this matrix.
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2.5 Some Applications of The Modified Method

In this section, we show that our modified representation can be used securely and efficiently

in elliptic curve cryptographic applications.

If one needs to work in a fieldGF(2k·mk) with a very fast multiplication and squaring opera-

tions for elliptic curve cryptographic applications, then the values specifiedin Table 2.3 can

be used. The values ofm marked with an asterisk are stated to be secure for elliptic curve

cryptography in [7]. For example,GF(2226) offers the same security level against Gaudry,

Hess and Smart attack [13] as the recommended fieldGF(2233) in elliptic curve digital signa-

ture algorithm standards. The values ofm ∈ {502,718,862} give better complexity than the

ones in [14].

Special attention to the finite fields of characteristic three has been given in cryptographic
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Table 2.3: Some Values of the Smallestnk with GF(2k)[x]/(xnk − 1) for Elliptic Curve Cryp-
tographic Applications

m k mk nk

174 3 58 59

226∗ 2 113 227

410 5 82 83

502∗ 2 251 503

718∗ 2 359 719

862∗ 2 431 863

applications since there are useful properties in pairing-based cryptography [19]. In charac-

teristic three, most commonly used extensions are of the form 3· m, 5 · m and 6· m, where

m ∈ {97,193,239}. The modified method in this thesis leads to much more efficient designs

than the ones in [15] (See Table 2.2).
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CHAPTER 3

POLYNOMIAL MULTIPLICATION OVER BINARY FIELDS

USING CHARLIER POLYNOMIAL REPRESENTATION

WITH LOW SPACE COMPLEXITY

In this chapter, we give a new way to represent certain finite fieldsGF(2n). This represen-

tation is based on Charlier polynomials. We show that multiplication in Charlier polynomial

representation can be performed with subquadratic space complexity. Onecan obtain bino-

mial or trinomial irreducible polynomials in Charlier polynomial representation which allows

us faster modular reduction over binary fields when there is no desirable such low weight irre-

ducible polynomial in other representations. This representation is very interesting for NIST

recommended binary fieldGF(2283) since there is no ONB for the corresponding extension.

We also note that recommended NIST and SEC binary fields can be constructed with low

weight Charlier polynomials such asGF(2113), GF(2131) andGF(2233).

This chapter is organized as follows: Section 3.1 describes Charlier polynomial and gives

some general results on Charlier polynomials inGF(2)[x]. In Section 3.2, we present the

general method to multiply two polynomials in Charlier polynomial representation and give

the total arithmetic complexity. We compare complexity of multipliers in view of #AND and

#XORgates in Section 3.3. We give an idea about other arithmetic operations in Section 3.4.

This chapter was presented in [2].
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3.1 Charlier Polynomials

In this section, we give preliminaries and describe a new representation ofbinary fields. Char-

lier polynomials are the monic orthogonal polynomials associated with the inner product [16].

Definition 3.1.1 The Charlier polynomials are C0(x) = 1, C1(x) = x with the recursion

Cn(x) = (x− n+ 1) ·Cn−1(x)

for n ≥ 2.

Since we work in binary fields, we give the Charlier polynomials inGF(2)[x] for n ≤ 10 in

Table 3.1. All values in Table 3.1 are computed by using Software for Algebra and Geometry

Experimentation (Sage) [35].

Table 3.1: Charlier Polynomials inGF(2)[x]

C0(x) 1

C1(x) x

C2(x) x2 + x

C3(x) x3 + x2

C4(x) x4 + x2

C5(x) x5 + x3

C6(x) x6 + x5 + x4 + x3

C7(x) x7 + x6 + x5 + x4

C8(x) x8 + x4

C9(x) x9 + x5

C10(x) x10+ x9 + x6 + x5

3.1.1 Conversion of Coefficients From Polynomial Representation to Charlier Polyno-

mial Representation

The polynomial basis{1, x, x2, · · · , xn−1}, wherex is a root of an irreducible polynomial of

degreen overGF(2) is usually preferred to represent the elements ofGF(2)[x]. Let a(x) =

a′n−1xn−1 + · · · + a′1x + a′0, wherea′i ∈ GF(2) be a polynomial with the standard (canonical)

representation. LetCn(x) = βn be then-th Charlier polynomial inGF(2)[x], wheren ≥ 0.
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Algorithm 2 Conversion of Coefficients From Polynomial Representation to Charlier Poly-

nomial Representation

Input: a(x) =
∑n−1

i=0 a′i x
i

Output: (a0,a1, · · · ,an−1), wherea =
∑n−1

i=0 aiβi

1: T ← a

2: for i = n downto 1do

3: if deg(T) = i then

4: ai ← 1

5: T ← T + βi

6: else

7: ai ← 0

8: end if

9: end for

10: a0← T

a(x) can be represented by using Charlier polynomials asa = an−1βn−1 + · · · + a1β1 + a0β0,

whereai ∈ GF(2) by using Algorithm 2.

Note that since we are working in characteristic two, Algorithm 2 is self-inverse. That is

in Algorithm 2, if the input is a polynomial representation, then the output is the Hermite

representation, and conversely if the input is an Hermite representation, then the output is the

polynomial representation.

3.1.2 Charlier Basis

A basis for the finite fieldGF(2n) is a set ofn elements{β0, β1, · · · , βn−1} ∈ GF(2n) such that

every element of the binary field can be represented uniquely as a linear combination of basis

elements. For a givena ∈ GF(2n), we can write

a =
n−1
∑

i=0

ai · βi

whereai ∈ GF(2) for 0≤ i ≤ n− 1.

Theorem 3.1.2 Let f =
∑n

i=0 fi · βi be an irreducible polynomial of degree n in GF(2)[x].

The set{β0, β1, · · · , βn−1} forms a basis of GF(2n) � GF(2)[x]/( f ).
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Proof. Consequences of Algorithm 2 show that the set{β0, β1, · · · , βn−1} is linearly indepen-

dent and each element inGF(2n) is uniquely expressed by using the set{β0, β1, · · · , βn−1}.

Then, the set{β0, β1, · · · , βn−1} forms a basis ofGF(2n) � GF(2)[x]/( f ). �

Theorem 3.1.3 Let Cn(x) = βn be the n-th Charlier polynomial in GF(2)[x], where n≥ 0.

Then, for all i, j ≥ 0 Charlier basis satisfies the following equation

βi · β j = βi+ j + ℓ · βi+ j−1

whereℓ ∈ GF(2). If i and j are both odd number, thenℓ = 1. If i or j is an even number, then

ℓ = 0.

Proof. We will prove the theorem by induction oni and j. By using Table 3.1, the theorem is

true for few terms. Assume that theorem is true fori = n− 1. Then we need to show that it is

true for i = n. We have four cases:

i. n is even andj is odd

ii. n is even andj is even

iii. n is odd andj is odd

iv. n is odd andj is even

Let j < n− 1.

i. Let n be even andj be odd. Note thatβ1 = x

βnβ j = (β1βn−1 + βn−1)β j

= βn−1(β j(β1 + 1))

= βn−1(β j+1 + β j + β j)

= βn+ j
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ii. Let n and j be even.

βnβ j = (β1βn−1 + βn−1)β j

= βn−1(β j(β1 + 1))

= βn−1(β j+1 + β j)

= βn+ j + βn+ j−1 + βn+ j−1

= βn+ j

iii. Let n and j be odd. Remember that addition of two odd integers is even.

βnβ j = (β1βn−1)β j

= βn−1(β j+1 + β j)

= βn+ j + βn+ j−1

iv. Let n be odd andj be even.

βnβ j = (β1βn−1)β j

= βn−1β j+1

= βn+ j

Note that if j = n− 1 or j = n, then this case can be proved by considering the factors ofβ j

or β j+1 as shown above. �

3.2 Polynomial Multiplication Using Charlier Polynomials Over Binary Fields

In this section, we describe polynomial multiplication in Charlier polynomial representation

for binary fields and give the total arithmetic complexity. Remember that multiplicationin

finite fields can be performed in two steps: multiplication overGF(2) and modular reduc-

tion overGF(2n). Therefore, we divide this section into multiplication and reduction parts.

Throughout this section,M(n) andA(n) denote the minimum number of multiplications and

the minimum number of additions for corresponding algorithm for twon-term polynomials
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multiplication, respectively. The upper bounds of the required number of multiplications and

additions to multiply polynomials in Charlier basis is given in the following theorem.

Theorem 3.2.1 Let a= an−1βn−1 + · · · + a0β0 and b= bn−1βn−1 + · · · + b0β0 be n-term poly-

nomials over GF(2) and a· b = c = c2n−2β2n−2 + · · · + c0β0. Then, the coefficients of the

polynomial, c are computed with

M(n) + M(
⌊n
2

⌋

) multiplications and

A(n) + A(
⌊n
2

⌋

) + 2
⌊n
2

⌋

− 1 additions

by using any multiplication method.

Proof.

c0 = a0b0

c1 = a0b1 + a1b0 + a1b1

c2 = a0b2 + a2b0 + a1b1

c3 = a0b3 + a3b0 + a1b2 + a2b1 + a1b3 + a3b1

...

c2n−3 = an−2bn−1 + an−1bn−2 + ℓ · an−1bn−1

c2n−2 = an−1bn−1

whereℓ = 1 if n − 1 is odd, otherwise,ℓ = 0. There are extra terms when we compare this

multiplication with ordinary multiplication. The extra terms can be expressed witha2i+b2 j+1,

where 0 ≤ i, j ≤
⌊

n
2 − 1

⌋

− 1. These elements correspond to multiplication of two
⌊

n
2

⌋

-

term polynomials. Therefore, the total multiplication complexity isM(n) + M(
⌊

n
2

⌋

). We

need 2
⌊

n
2

⌋

− 1 extra additions to combine these. Similarly, the total addition complexity is

A(n) + A(
⌊

n
2

⌋

) + 2
⌊

n
2

⌋

− 1. �

Example 3.2.2 Let n = p j , where p is a prime number and j is a positive integer. Let

a = an−1βn−1 + · · · + a0β0 and b= bn−1βn−1 + · · · + b0β0 be n-term polynomials over GF(2)

and a·b = c = c2n−2β2n−2+ · · ·+ c0β0. Then, by using Karatsuba multiplication method [39],

1. If p = 2, the required number of multiplications is nlog23 +
⌊

n
2

⌋log23
and the required

number of additions is8nlog23 − 11n+ 3.
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2. If p = 3, the required number of multiplications is nlog36 +
⌊

n
2

⌋log36
and the required

number of additions is116
15 nlog36 − 29

5 n+ 7
5.

We give an example to show that Theorem 3.2.1 is working.

Example 3.2.3 Let a= a3β3+a2β2+a1β1+a0β0 and b= b3β3+b2β2+b1β1+b0β0 be4-term

polynomials over GF(2) in Charlier polynomial representation. Let a·b = c = c6β6+· · ·+c0β0.

Then,

c0 = a0b0

c1 = a0b1 + a1b0 + a1b1

c2 = a0b2 + a2b0 + a1b1

c3 = a0b3 + a3b0 + a1b2 + a2b1 + a1b3 + a3b1

c4 = a1b3 + a3b1 + a2b2

c5 = a2b3 + a3b2 + a3b3

c6 = a3b3

a1b1, (a1b3 + a3b1) and a3b3 are the extra terms when we compare this multiplication with

ordinary multiplication. The computation of these extra terms can be achieved by the follow-

ing method:

Let x0 = a1, y0 = b1, x1 = a3 and y1 = b3. Then, the extra terms can be computed as follows:

m′1 = x0y0,

m′2 = (x0 + x1)(y0 + y1) −m′1 −m′3,

m′3 = x1y1

The computation of extra terms requires 3 multiplications and 4 additions. Oneneeds at most

9 + 3 = 12 multiplications and24+ 4 + 3 = 31 additions by using Karatsuba method to

compute a· b = c = c6β6 + · · · + c0β0.

Remark 3.2.4 Note that some or all elements of extra terms may be obtained without any

cost, i.e. these are computed in n-term polynomials product. This, of course, depends your

choice on multiplication method. Therefore, this reduces multiplication and addition com-

plexity. However, in this chapter, we give upper bounds.
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Example 3.2.5 Let us consider Example 3.2.3. Consider two4-term polynomials in standard

representation a(x) =
∑3

i=0 ai xi and b(x) =
∑3

i=0 bi xi . Karatsuba algorithm computes the

product c(x) = a(x)b(x) =
∑6

i=0 ci xi with the following 9 multiplications:

m0 = a0b0

m1 = a1b1

m2 = a2b2

m3 = a3b3

m4 = (a0 + a1)(b0 + b1)

m5 = (a0 + a2)(b0 + b2)

m6 = (a1 + a3)(b1 + b3)

m7 = (a2 + a3)(b2 + b3)

m8 = (a0 + a1 + a2 + a3)(b0 + b1 + b2 + b3)

The extra terms in Charlier polynomial representation, i.e. a1b1, (a1b3 + a3b1) and a3b3, are

obtained without any cost:

m′1 = m0,m
′
2 = m6 +m0 +m3,m

′
3 = m3

Thus, one needs 9 multiplications and 24+3=27 additions by using Karatsuba method to

compute c= a · b = c6β6 + · · · + c0β0

Now, we show how modular reduction process can be performed for irreducible Charlier

polynomials.

3.2.1 Irreducible Charlier Binomials

Selected irreducible Charlier binomials are given in Table 3.2.

3.2.1.1 Reduction

By using irreducible Charlier binomial, one can perform reduction operation as follows:

Let f = βn+β0 be an irreducible polynomial of degreen overGF(2). Letn ≤ i ≤ 2n−2. Then,
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Table 3.2: Irreducible Charlier Binomials

β2 + β0 β3 + β0

β5 + β0 β7 + β0

β9 + β0 β41+ β0

β63+ β0 β71+ β0

β105+ β0 β127+ β0

β169+ β0 β177+ β0

βnβi−n = βi + βi−1 · ℓ

β0βi−n = βi + βi−1 · ℓ

βi = βi−n + βi−1 · ℓ

βi = βi−n + (βi−n−1βn + βi−2 · ℓ1) · ℓ

βi = βi−n + βi−n−1 · ℓ

If i − n andn or i − n− 1 andn are both odd, thenℓ = 1 or ℓ1 = 1, respectively. Otherwise,

ℓ = 0 or ℓ1 = 0. Note thatβn = 1. ℓ · ℓ1 = 0 since ifi − n is odd, then,i − n− 1 is even. Same

trick is applicable for trinomial case.

3.2.2 Irreducible Charlier Trinomials

Table 3.3 tabulates selected irreducible Charlier trinomials. According to Table3.3, it should

be noted that recommended NIST or SEC binary fields such asGF(2113), GF(2131), GF(2233)

andGF(2283) can be constructed with irreducible Charlier trinomials [32] and [36].

3.2.2.1 Reduction

By using irreducible Charlier trinomial, one can perform reduction operation as follows:

Let f = βn + βk + β0 be an irreducible polynomial of degreen overGF(2) andk be even. Let
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Table 3.3: Irreducible Charlier Trinomials

β113+ β10+ β0 β131+ β29+ β0

β167+ β2 + β0 β169+ β3 + β0

β171+ β4 + β0 β187+ β3 + β0

β211+ β10+ β0 β221+ β2 + β0

β227+ β3 + β0 β231+ β13+ β0

β233+ β11+ β0 β233+ β17+ β0

β283+ β3 + β0 β283+ β14+ β0

β291+ β21+ β0 β311+ β3 + β0

β323+ β22+ β0 β331+ β21+ β0

β347+ β28+ β0 β359+ β24+ β0

β401+ β13+ β0 β403+ β26+ β0

β419+ β14+ β0 β443+ β9 + β0

β463+ β11+ β0 β469+ β23+ β0

β511+ β11+ β0 β541+ β3 + β0

β551+ β18+ β0 β557+ β11+ β0

n ≤ i ≤ 2n− 2. Then,

βnβi−n = βi + βi−1 · ℓ

(βk + β0)βi−n = βi + βi−1 · ℓ

βi = βi−n+k + βi−n + βi−1 · ℓ

βi = βi−n+k + βi−n + (βi−n+k−1 + βi−n−1) · ℓ

If i − n andn are odd, thenℓ = 1. Otherwise,ℓ = 0.

Let f = βn + βk + β0 be an irreducible polynomial of degreen overGF(2) andk be odd. Let

n ≤ i ≤ 2n− 2. Then,

βnβi−n = βi + βi−1 · ℓ

(βk + β0)βi−n = βi + βi−1 · ℓ

βi = βi−n+k + βi−n + (βi+k−n−1 + βi−1) · ℓ

βi = βi−n+k + βi−n + βi−n−1 · ℓ

If i − n andn are odd, thenℓ = 1. Otherwise,ℓ = 0.
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3.2.3 Reduction Complexity

Table 3.4 shows reduction complexity for irreducible Charlier binomials and trinomials.

Table 3.4: Reduction Complexity

Form #XOR

Charlier Binomial βn + β0
3n
2

Charlier Trinomial βn + βk + β0 3n

Remember that the cost of reduction process in polynomial basis representation strictly de-

pends on the choice of reduction polynomial. Then, if one uses trinomial or pentanomial,

reduction process requires 2n or 4n XOR gates, respectively.

3.3 Multiplication Complexity

In this section, we give modular multiplication complexity of multipliers in view of #AND

and #XORgates. Letn = p j . Table 3.5 compares the space complexity and time complex-

ity of selected multipliers. Note that this table is prepared by using Karatsuba multiplication

method for Charlier basis [39]. According to Table 3.5, Charlier polynomialrepresentation

has better complexity than Dickson polynomial representation and ONB II. Therefore, binary

fields can be constructed with low weight Charlier polynomials efficiently when there does

not exist ONB for the corresponding extension. Remember that we give upper bounds for

Charlier binomials and trinomials. The complexity of the field multiplication for Charlier

polynomials can be further reduced by cleverly combining computed values (see Example

3.2.5). Therefore, for some cases, multiplication complexity for Charlier polynomial repre-

sentation is also comparable with ONB I.

Remark 3.3.1 NIST recommended binary field GF(2283) can be constructed efficiently by

using Charlier polynomials since there is no ONB for the corresponding extension.
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Table 3.5: Space Complexity Comparison of Selected Multipliers

p #AND #XOR Critical Delay

Charlier Binomial 2 nlog23 +
⌊

n
2

⌋log23
8nlog23 − 10n+ 3 3log2(n)TX + TA

Charlier Binomial 3 nlog36 +
⌊

n
2

⌋log36 116
15 nlog36 − 29

5 n+ 7
5 4log3(n)TX + TA

Charlier Trinomial 2 nlog23 +
⌊

n
2

⌋log23
8nlog23 − 8n+ 3 3log2(n)TX + TA

Charlier Trinomial 3 nlog36 +
⌊

n
2

⌋log36 116
15 nlog36 − 14

5 n+ 7
5 4log3(n)TX + TA

Polynomial Basis [39] 2 nlog23 6nlog23 − 8n+ 2 (3log2(n) − 1)TX + TA

Polynomial Basis [39] 3 nlog36 29
5 nlog36 − 8n+ 11

5 (4log3(n) − 1)TX + TA

Dickson Binomial [20] 2 2nlog23 11nlog23 − 11n (2log2(n) + 1)TX + TA

Dickson Binomial [20] 3 2nlog36 48
5 nlog36 − 11n+ 3

5 (3log3(n) + 1)TX + TA

Dickson Trinomial [20] 2 2nlog23 11nlog23 − 4n+ 1 (2log2(n) + 6)TX + TA

Dickson Trinomial [20] 3 2nlog36 48
5 nlog36 − 2n+ 1

5 (3log3(n) + 6)TX + TA

ONB I [11] 2 nlog23 + n 11
2 nlog23 − 4n− 1

2 (2log2(n) + 1)TX + TA

ONB I [11] 3 nlog36 + n 24
5 nlog36 − 3n− 4

5 (3log3(n) + 1)TX + TA

ONB II [11] 2 2nlog23 11nlog23 − 12n+ 1 (2log2(n) + 1)TX + TA

ONB II [11] 3 2nlog36 48
5 nlog36 − 10n− 2

5 (3log3(n) + 1)TX + TA

3.4 Other Arithmetic Operations

3.4.1 Squaring

Let a = an−1βn−1 + · · · + a0β0 ben-term polynomial overGF(2) anda2 = c = c2n−2β2n−2 +

· · · + c0β0. Then,

c = an−1β2n−2 + an−1 · ℓβ2n−3 + · · · + 0β3 + a1β2 + a1β1 + a0β0,

whereℓ = 1 if n− 1 is odd. Otherwise,ℓ = 0. Proof of squaring is very similar to Theorem

3.2.1. Note that the cost of squaring in Charlier polynomial representation isjust reduction.

3.4.2 Inversion

Let a and b be the polynomials in Charlier representation overGF(2) of degree (m − 1)

and (k − 1), respectively andm > k > 0. Then, there exist polynomialsq (quotient) andr

(remainder) inGF(2)[x] such that

a = q · b+ r with 0 ≤ r < b.
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Note that deg(r) < deg(b). The idea of the division algorithm is the consequence of the

multiplication ofβi andβ j which is more complicated compared to the usual multiplication

in GF(2)[x] (see Theorem 3.1.3). By using division algorithm recursively, one easily obtains

the Euclidean algorithm forF to find the greatest common divisors ofa andb. Therefore,

Euclidean algorithm can be used efficiently to find an inversion of an element. Moreover, one

can use the following two well-known methods.

Problem 3.4.1 Let a= an−1βn−1 + · · · + a0β0. Find a−1 such that a· a−1 = 1.

• Computea2n−2 equal toa−1. This method is based on Fermat theorem.

• Use extended Euclidean algorithm in polynomial representation. By using Algorithm

2, conversion between polynomial representation and Charlier representation can be

achieved very efficiently. Inversion of an elementa can be computed as follows:

1. Converta given in Charlier representation to polynomial representation.

2. Compute the inversea−1 of amodulo f (x) by using extended Euclidean algorithm.

3. Converta−1 expressed in polynomial representation to Charlier representation.
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CHAPTER 4

A NEW REPRESENTATION OF ELEMENTS OF BINARY

FIELDS WITH SUBQUADRATIC SPACE COMPLEXITY

In this chapter, Hermite polynomial representation is proposed as an alternative way to rep-

resent finite fields of characteristic two. We show that multiplication in Hermite polynomial

representation can be achieved with subquadratic space complexity. This representation en-

ables us to find binomial, trinomial or quadranomial irreducible polynomials which allows us

faster modular reduction over binary fields when there is no desirable such low weight irre-

ducible polynomial in other representations. We then show that the productof two elements in

Hermite polynomial representation can be performed as Toeplitz matrix-vectorproduct. This

representation is very interesting for NIST recommended binary fieldGF(2571) since there is

no ONB for the corresponding extension. We note that an advantage of this representation is

that it can be used to obtain more efficient finite field arithmetic.

This chapter is organized as follows: Section 4.1 describes Hermite polynomial and gives

some general results on Hermite polynomials inGF(2)[x]. In Section 4.2, we present the

general method to multiply two polynomials in Hermite polynomial representation and give

the total arithmetic complexity. In Section 4.3, we give polynomial multiplication in Hermite

basis with Toeplitz matrix-vector multiplication design. We compare multipliers in view of

#AND and #XORgates and the complexity of the multiplication of two basis elements in

Section 4.4.

The material presented in this chapter is partially included in [3].
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4.1 Hermite Polynomials

In this section, we give preliminaries and describe a new representation ofbinary fields. Her-

mite polynomials are in the class of orthogonal polynomials. Hermite polynomials have sev-

eral applications in quantum mechanics, numerical computation, algorithms [1], [5]. There

are two kinds of Hermite polynomials: probabilists and physicists. In this chapter, we are

interested in probabilists Hermite polynomials [1].

Definition 4.1.1 [9] The Hermite polynomials are H0(x) = 1, H1(x) = x with the recursion

Hn(x) = x · Hn−1(x) − (n− 1) · Hn−2(x)

for n ≥ 2.

It should be noted thatdeg(Hn) = n. We give the Hermite polynomials inGF(2)[x] for n ≤ 10

in Table 4.1.

Table 4.1: Hermite Polynomials inGF(2)[x]

H0(x) 1

H1(x) x

H2(x) x2 + 1

H3(x) x3 + x

H4(x) x4 + 1

H5(x) x5 + x

H6(x) x6 + x4 + x2 + 1

H7(x) x7 + x5 + x3 + x

H8(x) x8 + 1

H9(x) x9 + x

H10(x) x10+ x8 + x2 + 1

4.1.1 Conversion of Coefficients From Polynomial Representation to Hermite Polyno-

mial Representation

The polynomial basis{1, x, x2, · · · , xn−1} is usually preferred to represent the elements of

GF(2)[x], where x is a root of an irreducible polynomial of degreen over GF(2). Let
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a(x) = a′n−1xn−1+· · ·+a′1x+a′0, wherea′i ∈ GF(2) be a polynomial with the standard represen-

tation. LetHn(x) = βn be then-th Hermite polynomial inGF(2)[x], wheren ≥ 0. The polyno-

mial a(x) can be represented by using Hermite polynomials asa = an−1βn−1+· · ·+a1β1+a0β0,

whereai ∈ GF(2). Algorithm 3 shows how conversion of coefficients from polynomial rep-

resentation to Hermite polynomial representation can be performed.

Algorithm 3 Conversion of Coefficients From Polynomial Representation to Hermite Poly-

nomial Representation

Input: a(x) =
∑n−1

i=0 a′i x
i

Output: (a0,a1, · · · ,an−1), wherea =
∑n−1

i=0 aiβi

1: T ← a

2: for i = n downto 1do

3: if deg(T) = i then

4: ai ← 1

5: T ← T + βi

6: else

7: ai ← 0

8: end if

9: end for

10: a0← T

Note that Algorithm 3 is self-inverse. That is in Algorithm 3, if the input is a polynomial

representation, then the output is the Hermite representation, and conversely if the input is an

Hermite representation, then the output is the polynomial representation.

4.1.2 Hermite Basis

A basis for the finite fieldGF(2n) is a set ofn elements{β0, β1, · · · , βn−1} ∈ GF(2n) such that

every element of the binary field can be represented uniquely as a linear combination of basis

elements. For a givena ∈ GF(2n), we can write

a =
n−1
∑

i=0

ai · βi

whereai ∈ GF(2) for 0≤ i ≤ n− 1.

Note thatGF(2)[x] is a free vector space overGF(2) with the free basis{1, x, x2, · · · , xn−1, · · · }.
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Moreover,GF(2)[x] is a commutative algebra overGF(2). In particular for arbitrary poly-

nomials f1(x), f2(x) ∈ GF(2)[x], the productf1(x) · f2(x) is defined inGF(2)[x]. Next using

another free basis we obtain another commutative algebra onGF(2)[x] overGF(2). Assume

that {β0 = I , β1, · · · , βn−1, · · · } is the Hermite basis. Let (F,+) be the free vector space over

GF(2) generated byB. We explain this in detail in Theorem 4.1.8. We put a commutative

algebra onF over GF(2) by introducing the multiplication· on F. Proof of the following

theorem is given after defining the algebra (see 4.1.3).

Theorem 4.1.2 Let Hn(x) = βn be the n-th Hermite polynomial in GF(2)[x], where n≥ 0.

Then, for all i, j ≥ 0 the Hermite basis{β0, β1, · · · , βn−1, · · · } satisfies the following equation

βi · β j = βi+ j + ℓ · βi+ j−2

whereℓ ∈ GF(2) is defined as

ℓ =



















1 if i and j are both odd number

0 otherwise

4.1.3 The Algebra

Let B = {β0 = I , β1, · · · , βn−1, · · · } be the Hermite basis. Let (F,+) be the free vector space

overGF(2) generated byB. The multiplication· on F has the following properties:

i. For the zero element 0 ofGF(2) we have

βi · 0 = 0 · βi = 0

for all i = 0,1, · · · .

ii. The identity element ofF is the elementβ0 = I that is

βi · I = I · βi = βi

for all i = 0,1, · · · .

iii. For all c ∈ GF(2) andβi , β j ∈ B we have

c(βi · β j) = (cβi) · βi = β1 · (cβ2).
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Note that it is enough to define and check the properties of the multiplication onlyon the

Hermite basis, as the multiplication is extended toF via linearity.

Remark 4.1.3 The multiplication· is associative, that is, for anyβi , β j , βk ∈ B we have

βi · (β j · βk) = (βi · β j) · βk.

Proof. Using Theorem 4.1.2 we obtain that

βi · (β j · βk) = βi+ j+k + βi+ j+k−2(ℓ1 + ℓ2) + βi+ j+k−4(ℓ1 · ℓ2), (4.1)

and

(βi · β j) · βk) = βi+ j+k + βi+ j+k−2(ℓ′1 + ℓ
′
2) + βi+ j+k−4(ℓ′1 · ℓ

′
2) (4.2)

whereℓ1, ℓ2, ℓ′1, ℓ
′
2 ∈ GF(2). If j andk are both odd numbers, thenℓ1 = 1. If i and j + k are

both odd numbers, thenℓ2 = 0. If i and j are both odd numbers, thenℓ′1 = 1. If i + j andk are

both odd numbers, thenℓ2 = 0. For the other casesℓ1 = 0, ℓ2 = 0, ℓ′1 = 0, ℓ′2 = 0. Note thatℓ1

andℓ2 cannot be equal to 1 at the same time since the addition of two odd integers is an even

integer. This case is also applicable forℓ′1 andℓ′2. Therefore, using 4.1 and 4.2 we conclude

that

βi · (β j · βk) = (βi · β j) · βk).

�

Remark 4.1.4 The distributive law holds; that is, for allβi , β j , βk ∈ B

βi · (β j + βk) = βi · β j + βi · βk,

(β j + βk) · βi = β j · βi + βk · βi .

Let a = a0 · β0 +
∑n−1

i=1 ai · βi be an element ofF whereai ∈ GF(2) for i = 0,1, · · · , (n − 1)

andm−1 is the largest positive integer such thatan−1 = 1. We define the degree deg(a) of the

elementa ∈ F as follows:

deg(a) =



































−∞ if a = 0,

0 if a = I ,

n− 1 otherwise.
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Note thata = 0 means all coefficients ofa i.e. ai for i = 0,1, · · · , (n − 1) are equal to 0.

Similarly, a = I if and only if a0 = 1 anda1 = a2 = · · · = an−1 = 0.

We define the division algorithm onF as follows: Leta andb be elements ofF overGF(2)

of degree (m− 1) and (k − 1), respectively andm > k > 0. Then, there exist polynomialsq

(quotient) andr (remainder) inF such that

a = q · b+ r with 0 ≤ r < b.

Note that deg(r) < deg(b). The idea of the division algorithm is the consequence of the

multiplication ofβi andβ j which is more complicated compared to the usual multiplication

in GF(2)[x] (see Theorem 4.1.2). By using division algorithm recursively, one easily obtains

the Euclidean algorithm forF to find the greatest common divisors ofa andb.

Remark 4.1.5 Division algorithm for F allows a suitable generalization of the Euclidean

algorithm. Thus, F is a Euclidean domain and also a principal ideal domain.

Let f =
∑n−1

i=0 fi · βi , a =
∑m−1

i=0 ai · βi andb =
∑k−1

i=0 bi · βi be arbitrary elements ofF with

fi ,ai ,bi ∈ GF(2). We define an equivalence relation onF using f as follows: we calla ≡ b

(mod f ) if and only if f |(a−b). This relation is reflexive, symmetric and transitive. Recall that

f ∈ F, non-constant, is irreducible if it cannot be written as the product of two non-constant

elements inF.

Remark 4.1.6 Let f be an irreducible polynomial over GF(2) of degree n. Then, K= F/( f )

is a finite field of dimension n over GF(2).

In Proposition 4.1.7 we show that anyβi cannot be obtained by linear combination ofβ j ’s

with i , j.

Proposition 4.1.7 The set{β0, β1, · · · , βn−1} ∈ GF(2n) is linearly independent.

Proof. We prove the proposition by using induction. Leta0β0 = 0. Then, it is clear that

a0 = 0 sinceβ0 = 1. This corresponds tok = 1 case. Assume that the set{β0, β1, · · · , βn−2} is

linearly independent, i.e. proposition is true fork = n− 1.

a0β0 + a1β1 + · · · + an−2βn−2 = 0⇔ a0 = a1 = · · · = an−2
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Now, we need to show that the theorem is true fork = n.

a0β0 + a1β1 + · · · + an−1βn−1 = 0

Then, we obtain

an−1βn−1 = 0

Remember thatdeg(βn−1) > 0 for n > 1 andβn−1 cannot be expressed as a linear combi-

nation of{β0, β1, · · · , βn−2}. Therefore,an−1 = 0. Thus, the set{β0, β1, · · · , βn−1} is linearly

independent. �

The following theorem shows thatB = {β0, β1, · · · , βn−1} is a basis ofGF(2n) � GF(2)[x]/( f )

for an irreducible polynomialf .

Theorem 4.1.8 Let f =
∑n

i=0 fi · βi be an irreducible polynomial of degree n in GF(2)[x].

The set{β0, β1, · · · , βn−1} forms a basis of GF(2n) � GF(2)[x]/( f ).

Proof. SinceGF(2n) is a vector space, the set{β0, β1, · · · , βn−1} is linearly independent

by Proposition 4.1.7 and each element inGF(2n) is uniquely expressed by using the set

{β0, β1, · · · , βn−1} by using Algorithm 3, the set{β0, β1, · · · , βn−1} spansGF(2n). Then, the

set{β0, β1, · · · , βn−1} forms a basis ofGF(2n) � GF(2)[x]/( f ). �

Note that the set{β0, β1, · · · , βn} is linearly dependent since deg(f ) = n andβn =
∑n−1

i=0 fiβi .

Theorem 4.1.9 F is isomorphic to GF(2)[x].

Now we give proof of Theorem 4.1.2

Proof. We will prove the theorem by induction oni and j. By using Table 4.1, the theorem is

true for few terms. Assume that theorem is true fori = n− 1. Then we need to show that it is

true for i = n. Let j < n− 1. We have four cases:

i. n is even andj is odd

ii. n is even andj is even

iii. n is odd andj is odd

iv. n is odd andj is even
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i. Let n be even andj be odd. Note thatβ1 = x

βnβ j = (β1βn−1 + βn−2)β j

= βn−1(β jβ1) + βn−2β j

= βn−1(β j+1 + β j−1) + βn+ j−2

= βn− j + βn+ j−2 + βn+ j−2

= βn+ j

ii. Let n and j be even.

βnβ j = (β1βn−1 + βn−2)β j

= βn−1(β jβ1) + βn−2β j

= βn−1β j+1 + βn+ j−2

= βn− j + βn+ j−2 + βn+ j−2

= βn+ j

iii. Let n and j be odd. Remember that addition of two odd integers is even.

βnβ j = (β1βn−1)β j

= βn−1(β j+1 + β j−1)

= βn+ j + βn+ j−2

iv. Let n be odd andj be even.

βnβ j = (β1βn−1)β j

= βn−1β j+1

= βn+ j

Note that if j = n− 1 or j = n, then this case can be proved by considering the factors ofβ j

or β j+1 as shown above. �

Note that addition of two elements in Hermite basis representation is just coefficient-wise.
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Remark 4.1.10 The set B= {β0, β1, β2, · · · } is multiplicatively closed since it satisfies the

following properties: i) I= β0 ∈ B ii) if βi , β j ∈ B, thenβi · β j ∈ B.

4.2 Polynomial Multiplication Using Hermite Polynomials Over Binary Fields

In this section, we describe polynomial multiplication in Hermite polynomial representation

for binary fields and give the total arithmetic complexity. Remember that multiplicationin

finite fields can be performed in two steps: multiplication of polynomials overGF(2) and

modular reduction overGF(2n). Therefore, we divide this section into multiplication and

reduction parts. Throughout this section,M(n) and A(n) denote the minimum number of

multiplications and the minimum number of additions for corresponding algorithm fortwo

n-term polynomials multiplication, respectively. The required number of multiplications and

additions to multiply polynomials in Hermite basis is given in the following theorem.

Theorem 4.2.1 Let a = an−1βn−1 + · · · + a0β0 and b = bn−1βn−1 + · · · + b0β0 be n-term

polynomials over GF(2) and a· b = c = c2n−2β2n−2 + · · · + c0β0. Then, the coefficients of the

polynomial c are computed with

M(n) + M(
⌊n
2

⌋

) multiplications and

A(n) + A(
⌊n
2

⌋

) + 2
⌊n
2

⌋

− 1 additions

by using any multiplication method.

Proof. By using Theorem 4.1.2, we write explicitly,

c0 = a0b0 + a1b1

c1 = a0b1 + a1b0

c2 = a0b2 + a2b0 + a1b1 + a1b3 + a3b1

...

c2n−3 = an−2bn−1 + an−1bn−2

c2n−2 = an−1bn−1

There are extra terms when we compare this multiplication with ordinary multiplication.The

extra terms can be expressed witha2i+1b2 j+1, where 0≤ i, j ≤
⌊

n
2

⌋

− 1. These elements
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correspond to multiplication of two
⌊

n
2

⌋

-term polynomials. Therefore, the total multiplication

complexity isM(n) + M(
⌊

n
2

⌋

). We need 2
⌊

n
2

⌋

− 1 extra additions to combine these. Similarly,

the total addition complexity isA(n) + A(
⌊

n
2

⌋

) + 2
⌊

n
2

⌋

− 1. �

Example 4.2.2 Let n = p j , where p is a prime number and j is a positive integer. Let

a = an−1βn−1 + · · · + a0β0 and b= bn−1βn−1 + · · · + b0β0 be n-term polynomials over GF(2)

and a·b = c = c2n−2β2n−2+ · · ·+ c0β0. Then, by using Karatsuba multiplication method [39],

1. If p = 2, the required number of multiplications is nlog23 +
⌊

n
2

⌋log23
and the required

number of additions is8nlog23 − 11n+ 3.

2. If p = 3, the required number of multiplications is nlog36 +
⌊

n
2

⌋log36
and the required

number of additions is116
15 nlog36 − 29

5 n+ 7
5.

Remark 4.2.3 Let a= an−1βn−1 + · · · + a0β0 be n-term polynomial over GF(2) and a2 = c =

c2n−2β2n−2 + · · · + c0β0. Then,

c = an−1β2n−2 + (an−1 · ℓ + an−2)β2n−3 + · · · + (a3 + a2)β4 + a1β2 + a1β1 + (a1 + a0)β0

Proof of this remark is very similar to Theorem 4.2.1. Note that the cost of squaring in Hermite

polynomial representation is just reduction and
⌊

n
2

⌋

additions.

We give an example to show that Theorem 4.2.1 is working.

Example 4.2.4 Let a = a3β3 + a2β2 + a1β1 + a0β0 and b= b3β3 + b2β2 + b1β1 + b0β0 be

4-term polynomials over GF(2). Let a· b = c = c6β6 + · · · + c0β0. Then,

c0 = a0b0 + a1b1

c1 = a0b1 + a1b0

c2 = a0b2 + a2b0 + a1b1 + a1b3 + a3b1

c3 = a0b3 + a3b0 + a1b2 + a2b1

c4 = a1b3 + a3b1 + a2b2 + a3b3

c5 = a2b3 + a3b2

c6 = a3b3
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a1b1, (a1b3 + a3b1) and a3b3 are the extra terms when we compare this multiplication with

polynomial basis representation. The computation of these extra terms can be achieved by the

following method:

Let x0 = a1, y0 = b1, x1 = a3 and y1 = b3. Then, the extra terms can be computed as follows:

m1 = x0y0,

m2 = (x0 + x1)(y0 + y1) −m1 −m3,

m3 = x1y1

The computation of extra terms requires 3 multiplications and 4 additions. Oneneeds9+3 =

12 multiplications and24+ 4 + 3 = 31 additions by using Karatsuba method to compute

a · b = c = c6β6 + · · · + c0β0.

Remark 4.2.5 Note that some or all elements of extra terms may be obtained without any

cost, i.e. these are computed in n-term polynomials product. This, of course, depends your

choice on multiplication method. Therefore, this reduces multiplication and addition com-

plexity.

To obtain better multiplication complexity, we recall Karatsuba multiplication method over

GF(2) and then we present our observation.

Let a andb be polynomials of degreen− 1 overGF(2) wheren is a power of 2. By splitting

a andb into two blocks of sizen
2, one obtains

a = aLx
n
2 + aR

b = bLx
n
2 + bR

Then, multiplication ofa andb, i.e., c = a · b by using Karatsuba multiplication method is

computed as follows:

c = a · b

= (aLx
n
2 + aR)(bLx

n
2 + bR)

= aLbLxn + (aLbR+ aRbL)x
n
2 + aRbR

= aLbLxn + ((aL + aR)(bL + bR) − aLbL − aRbR)x
n
2 + aRbR

Karatsuba multiplication method uses divide-conquer idea recursively to obtain better multi-

plication complexity. Therefore, the complexity of this idea can be viewed as

M(n) = 3M(
n
2

)
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Remark 4.2.6 Let a= an−1xn−1 + · · · + a1x+ a0 and b= bn−1xn−1 + · · · + b1x+ b0 be n-term

polynomials over GF(2) where n is a power of 2. Let d and e be(n
2)-term polynomials over

GF(2) with the coefficients a1+2i and b1+2i , where0 ≤ i ≤ n
2, respectively. Let c= a · b and

f = d · e. Assume that we have all required multiplications to compute the coefficients of c by

using Karatsuba multiplication method. Then, the coefficients of f are obtained with at most
( n

2 )log23

3 = nlog23

9 multiplications. Similarly, for n= 3k, where k is a positive integer, the required

number of multiplications is
( n

2 )log36

3 .

Remark 4.2.6 is the consequence of recursive structure of Karatsuba multiplication method.

Note that this observation can be used in [2] since they have similar structure.

Example 4.2.7 Let us remember Example 4.2.4. Consider two4-term polynomials in stan-

dard representation a(x) =
∑3

i=0 ai xi and b(x) =
∑3

i=0 bi xi . Karatsuba algorithm computes the

product c(x) = a(x)b(x) =
∑6

i=0 ci xi with the following 9 multiplications:

m0 = a0b0

m1 = a1b1

m2 = a2b2

m3 = a3b3

m4 = (a0 + a1)(b0 + b1)

m5 = (a0 + a2)(b0 + b2)

m6 = (a1 + a3)(b1 + b3)

m7 = (a2 + a3)(b2 + b3)

m8 = (a0 + a1 + a2 + a3)(b0 + b1 + b2 + b3)

The extra terms in Hermite polynomial representation, i.e. a1b1, (a1b3 + a3b1) and a3b3, are

obtained without any cost:

m′1 = m0,m
′
2 = m6 +m0 +m3,m

′
3 = m3

Thus, one needs 9 multiplications and 24+3=27 additions by using Karatsuba method to

compute c= a · b = c6β6 + · · · + c0β0

Now, we show how reduction process is performed for irreducible Hermitepolynomials.
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4.2.1 Irreducible Hermite Binomials

Table 4.2 gives selected irreducible Hermite binomials. We have mainly two kinds of irre-

ducible Hermite binomials of the form:βn + β0 andβn + β1.

Table 4.2: Irreducible Hermite Binomials

β3 + β0 β2 + β1

β7 + β0 β4 + β1

β9 + β0 β6 + β1

β15+ β0 β22+ β1

β63+ β0 β28+ β1

β127+ β0 β46+ β1

β471+ β0 β52+ β1

4.2.1.1 Reduction

By using irreducible Hermite binomial, one can perform reduction operation as follows:

Let f = βn+β0 be an irreducible polynomial of degreen overGF(2). Letn ≤ i ≤ 2n−2. Then,

βnβi−n = βi + βi−2 · ℓ

β0βi−n = βi + βi−2 · ℓ

βi = βi−n + βi−2 · ℓ

βi = βi−n + (βi−n−2βn + βi−n−4 · ℓ) · ℓ

βi = βi−n + (βi−n−2 + βi−n−4) · ℓ

If i −n is odd, thenℓ = 1. Otherwise,ℓ = 0. Note thatβn = β0 and if i −n is odd, theni −n−2

is also odd.

Let f = βn+β1 be an irreducible polynomial of degreen overGF(2). Letn ≤ i ≤ 2n−2. Then,
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βnβi−n = βi + βi−2 · ℓ

β1βi−n = βi + βi−2 · ℓ

βi = βi−n+1 + (βi−2 + βi−n−1) · ℓ

βi = βi−n+1 + (βi−n−2βn + βi−n−4 · ℓ + βi−n−1) · ℓ

βi = βi−n+1 + (βi−n−1 + βi−n−3 · ℓ + βi−n−4 · ℓ + βi−n−1) · ℓ

βi = βi−n+1 + (βi−n−3 + βi−n−4) · ℓ

If i − n is odd, thenℓ = 1. Otherwise,ℓ = 0.

4.2.2 Irreducible Hermite Trinomials

Table 4.3 gives selected irreducible Hermite trinomials. We have mainly two kinds of irre-

ducible Hermite trinomials of the form:βn+ βk+ β0 andβn+ βk+ β1. According to Table 4.3,

it should be noted that recommended NIST or SEC binary fields such asGF(2113), GF(2233),

GF(2283) andGF(2571) can be constructed with irreducible Hermite trinomials [32], [36].

Table 4.3: Irreducible Hermite Trinomials

β137+ β17+ β0 β113+ β12+ β1

β169+ β5 + β0 β199+ β28+ β1

β223+ β17+ β0 β271+ β24+ β1

β233+ β5 + β0 β209+ β26+ β1

β271+ β7 + β0 β281+ β6 + β1

β311+ β25+ β0 β283+ β66+ β1

β383+ β21+ β0 β361+ β16+ β1

β431+ β65+ β0 β457+ β24+ β1

β497+ β3 + β0 β491+ β26+ β1

β577+ β7 + β0 β571+ β22+ β1

β641+ β11+ β0 β653+ β2 + β1
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4.2.2.1 Reduction

By using irreducible Hermite trinomial, one can perform reduction operation as follows:

Let f = βn+ βk+ β0 be an irreducible polynomial of degreen overGF(2). Letn ≤ i ≤ 2n−2.

Note thatβn = βk + β0. Then,

βi = βi−n+k + βi−n + βi−2 · ℓ

βi = βi−n+k + βi−n + (betai−n−2βn + βi−n−4 · ℓ) · ℓ

βi = βi−n+k + βi−n + (βi−n+k−2 + βi−n+k−4 · ℓ + βi−n−2 + βi−n−4 · ℓ) · ℓ

βi = βi−n+k + βi−n + (βi−n+k−2 + βi−n+k−4 + βi−n−2 + βi−n−4) · ℓ

If i − n is odd, thenℓ = 1. Otherwise,ℓ = 0. Note that ifi − n is odd,i − n− 2 is also odd.

Let f = βn+ βk+ β1 be an irreducible polynomial of degreen overGF(2). Letn ≤ i ≤ 2n−2.

Note thatβn = βk + β1. Then,

βi = βi−n+k + βi−n+1 + (βi−n−1 + βi−2) · ℓ

βi = βi−n+k + βi−n+1 + (βi−n−1 + βi−n−2βn + βi−n−4 · ℓ) · ℓ

βi = βi−n+k + βi−n+1 + (βi−n−1 + βi−n+k−2 + βi−n−1 + βi−n−2 · ℓ + βi−n−4 · ℓ) · ℓ

βi = βi−n+k + βi−n+1 + (βi−n+k−2 + βi−n−2 + βi−n−4) · ℓ

If i − n is odd, thenℓ = 1. Otherwise,ℓ = 0.

4.2.3 Reduction Complexity

Table 4.4 shows reduction complexity for irreducible Hermite binomials and trinomials.

4.3 Toeplitz Matrix Vector Product for Hermite Basis with Subquadratic Space

Complexity

In this section we recall Toeplitz matrix-vector multiplication scheme. Then, we give poly-

nomial multiplication in Hermite basis with Toeplitz matrix-vector multiplication design. Re-

member that a Toeplitz matrix is defined as
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Table 4.4: Reduction Complexity

Form #XOR

Hermite Binomial βn + β0 2n

Hermite Binomial βn + β1 2n

Hermite Trinomial βn + βk + β0 4n

Hermite Trinomial βn + βk + β1
7n
2

Definition 4.3.1 An n×n Toeplitz matrix is a matrix (Ti, j) with Ti, j = Ti−1, j−1 for 2 ≤ i, j ≤ n.

Let n = 2k wherek is a positive integer. LetA be ann× n Toeplitz matrix. LetB be ann× 1

column vector. LetC = A · B overGF(2). Then,




















A1 A0
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
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
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


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
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·
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




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
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=





















C0

C1


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















where eachA0,A1 andA2 is Toeplitz matrix in size ofn2 ×
n
2. B0, B1,C0 andC1 are n

2 × 1

column vectors. Then, by [40]

C0 = P0 + P2

C1 = P1 + P2

where

P0 = (A0 + A1)B1

P1 = (A1 + A2)B0

P2 = A1(B0 + B1)

For n = 2, the required number of multiplications and additions to computeC is 3 and 5

respectively. In [11], they give complexity results for computingC for binary fields as follows:

#AND = nlog23

#XOR = 5.5nlog23 − 6n+ 0.5

Similarly, for n = 3k wherek is a positive integer, one can use the following formula to

compute Toeplitz matrix-vector multiplication [40]
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
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whereA0,A1,A3 andA4 are individually Toeplitz matrix of sizen3 ×
n
3, andB0, B1, B2C0,C1

andC2 are n
3 × 1 column vectors. Then, by [40]

C0 = P0 + P3 + P4

C1 = P1 + P3 + P5

C2 = P2 + P4 + P5

where

P0 = (A0 + A1 + A2)B2

P1 = (A0 + A1 + A3)B1

P2 = (A2 + A3 + A4)B0

P3 = A1(B1 + B2)

P4 = A2(B0 + B2)

P5 = A3(B0 + B1)

For n = 3, the required number of multiplications and additions to computeC is 6 and 14

respectively. In [11], they give complexity results for computingC for binary fields as follows:

#AND = nlog36

#XOR =
24
5

nlog36 − 5n+
1
5

Note that it is also possible to obtain similar complexity results forn = 2i3 j by combining

the above approaches in the recursive manner. Now, we show that the multiplication of two

elements, i.e.,A andB overGF(2n) in Hermite polynomial representation can be computed

as a Toeplitz matrix-vector product.

Theorem 4.3.2 Let f = βn+β1 be an irreducible polynomial over GF(2n). Let A= an−1βn−1+

· · · + a0β0 and B = bn−1βn−1 + · · · + b0β0 be n-term polynomials over GF(2) and A · B

(mod f ) = C = cn−1βn−1+ · · ·+c0β0. Then, the coefficients of the polynomial C are computed

with
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
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Proof. We give the sketch of the proof. LetA · B = C′ = c′2n−2β2n−2 + · · · + c′0β0 andA · B

(mod f ) = C = cn−1βn−1 + · · · + c0β0. Let βn + β1 be an irreducible polynomial overGF(2n).

Then,βn = β1. By Theorem 4.1.2,

βn+1 = β2 + β0

βn+2 = β3 + β1 + βn = β3

βn+3 = β4 + β2

βn+4 = β5 + β3 + βn+2 = β5

...

β2n−3 = βn−2 + βn−4

β2n−2 = βn−1

Then,

C′ = (c′2n−2+c′n−1)βn−1+(c′2n−3+c′n−2)βn−2 · · ·+(c′n+3+c′n+1+c′2)β2+(c′n+c′1)β1+(c′n+1+c′0)β0 = C

c0 = c′n+1 + c′0

c1 = c′n + c′1

c2 = c′n+3 + c′n+1 + c′0
...

cn−2 = c′2n−3 + c′n−2

cn−2 = c′2n−2 + c′n−1

After writing these variables in the matrix-vector product form, one obtains the desired form.

�

Now, we give an example.
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Example 4.3.3 Let f = β4 + β1 be an irreducible polynomial over GF(2). Let A= a3β3 +

a2β2 + a1β1 + a0β0 and B= b3β3 + b2β2 + b1β1 + b0β0 be4-term polynomials over GF(2).

Let A· B = C′ = c′6β6 + · · · + c′0β0 and A· B (mod f ) = C = c3β3 + · · · + c0β0.

β4 = β1

β5 = β2 + β0

β6 = β3 + β1 + β4 = β3

C′ = c′6β3 + c′5(β2 + β0) + c′4β1 + c′3β3 + c′2β2 + c′1β1 + c′0β0

C′ (mod f ) = (c′6 + c′3)β3 + (c′5 + c′2)β2 + (c′4 + c′1)β1 + (c′5 + c′0)β0 = C

where

c′0 = a0b0 + a1b1

c′1 = a0b1 + a1b0

c′2 = a0b2 + a2b0 + a1b1 + a1b3 + a3b1

c′3 = a0b3 + a3b0 + a1b2 + a2b1

c′4 = a1b3 + a3b1 + a2b2 + a3b3

c′5 = a2b3 + a3b2

c′6 = a3b3

and

c0 = c′5 + c′0

c0 = a0b0 + a1b1 + a3b2 + a2b3

c1 = c′4 + c′1

c1 = a1b0 + a0b1 + a3b1 + a2b2 + a1b3 + a3b3

c2 = c′5 + c′2

c2 = a2b0 + a1b1 + a3b1 + a0b2 + a3b2 + a1b3 + a2b3

c3 = c′6 + c′3

c3 = a3b0 + a2b1 + a1b2 + a0b3 + a3b3

Then, by using above formula one can obtain the following Toeplitz matrix.
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where
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
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Then, by changing of rows we obtain,





















A1 A2

A0 A1





















·





















B0

B1





















=





















C1

C0





















Then, we compute

C0 = (A1 + A2)B1 + A1(B0 + B1)

C1 = (A0 + A1)B0 + A1(B0 + B1)

4.4 Multiplication Complexity

In this section, we give modular multiplication complexity of multipliers in view of #AND

and #XOR gates. Table 4.5 compares the complexity of selected multipliers.TX and TA

represent respectively the delay of an XOR gate and an AND gate. Note that this table is pre-

pared by using Karatsuba multiplication method for Hermite basis [39]. According to Table

4.5, Hermite polynomial representation has better complexity than Charlier polynomial rep-

resentation, Dickson polynomial representation, ONB II and in some casesONB I. Therefore,

binary fields can be constructed with low weight Hermite polynomials efficiently when there

does not exist ONB for the corresponding extension.

Remark 4.4.1 NIST recommended binary field GF(2571) can be constructed efficiently by

using Hermite polynomials since there is no ONB for the corresponding extension.

53



Table 4.5: Complexity Comparison of Selected Multipliers

p #AND #XOR Critical Delay

Hermite Binomial 2 nlog23 11
2 nlog23 − 6n+ 1

2 2log2(n)TX + TA

Hermite Binomial 3 nlog36 24
5 nlog36 − 5n+ 1

5 3log3(n)TX + TA

Hermite Trinomial 2 nlog23 + nlog23

9 8nlog23 − 7n+ 3 (2log2(n) + 1)TX + TA

Hermite Trinomial 3 nlog36 +
( n

2 )log36

3
116
15 nlog36 − 9

5n+ 7
5 (3log3(n) + 1)TX + TA

Polynomial Basis [39] 2 nlog23 6nlog23 − 8n+ 2 (3log2(n) − 1)TX + TA

Polynomial Basis [39] 3 nlog36 29
5 nlog36 − 8n+ 11

5 (4log3(n) − 1)TX + TA

Charlier Binomial [2] 2 nlog23 +
⌊

n
2

⌋log23
8nlog23 − 10n+ 3 3log2(n)TX + TA

Charlier Binomial [2] 3 nlog36 +
⌊

n
2

⌋log36 116
15 nlog36 − 29

5 n+ 7
5 4log3(n)TX + TA

Charlier Trinomial [2] 2 nlog23 +
⌊

n
2

⌋log23
8nlog23 − 8n+ 3 3log2(n)TX + TA

Charlier Trinomial [2] 3 nlog36 +
⌊

n
2

⌋log36 116
15 nlog36 − 14

5 n+ 7
5 4log3(n)TX + TA

Dickson Binomial [20] 2 2nlog23 11nlog23 − 11n (2log2(n) + 1)TX + TA

Dickson Binomial [20] 3 2nlog36 48
5 nlog36 − 11n+ 3

5 (3log3(n) + 1)TX + TA

Dickson Trinomial [20] 2 2nlog23 11nlog23 − 4n+ 1 (2log2(n) + 6)TX + TA

Dickson Trinomial [20] 3 2nlog36 48
5 nlog36 − 2n+ 1

5 (3log3(n) + 6)TX + TA

ONB I [11] 2 nlog23 + n 11
2 nlog23 − 4n− 1

2 (2log2(n) + 1)TX + TA

ONB I [11] 3 nlog36 + n 24
5 nlog36 − 3n− 4

5 (3log3(n) + 1)TX + TA

ONB II [11] 2 2nlog23 11nlog23 − 12n+ 1 (2log2(n) + 1)TX + TA

ONB II [11] 3 2nlog36 48
5 nlog36 − 10n− 2

5 (3log3(n) + 1)TX + TA

The normalized number of requiredAND gates andXOR gates to multiply two elements

in GF(2n) for p = 2 case for the selected multipliers given in Table 4.5 are depicted in

Figure 4.1. Dashed lines correspond to the normalized number of requiredXORgates. The

normalized number ofANDgates andXORgated are obtained by simply dividing the number

of requiredAND gates andXORgates by the number of requiredAND gates andXORgates

in polynomial basis, respectively. It should be noticed that the number of requiredAND

gates in Hermite polynomial representation with a binomial is as good as polynomialbasis.

Furthermore, the number of requiredXORgates in Hermite polynomial representation with a

binomial is the least one among all of those multipliers.

Figure 4.2 demonstrates the normalized number of requiredAND gates andXORgates to

multiply two elements inGF(2n) for p = 3 for the selected multipliers given in Table 4.5.

Dashed lines correspond to the normalized number of requiredXOR gates. Note that the

normalized number ofANDgates andXORgated are obtained by simply dividing the number

of requiredAND gates andXORgates by the number of requiredAND gates andXORgates
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Figure 4.1: The Normalized Number of Required AND Gates and XOR Gates for p = 2

Figure 4.2: The Normalized Number of Required AND Gates and XOR Gates for p = 3
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in polynomial basis, respectively. It should be noticed that the number of requiredAND

gates in Hermite polynomial representation with a binomial is as good as polynomialbasis.

Furthermore, the number of requiredXORgates in Hermite polynomial representation with a

binomial is the least one among all of those multipliers.

Now, we give the complexity of the multiplication of two basis elements. This idea is restated

in [38]. Let B = {β0, β1, · · · , βn−1} be a basis forGF(2n). Then, multiplication of two basis

elements, i.e. multiplication law, can be viewed as

βiβ j =

n−1
∑

k=0

λ
(k)
i j βk

whereλ(k)
i j ∈ GF(2). The complexity of the multiplication law relative to the basis is computed

by the number ofλ(k)
i j = 1.

C(B) =
1
n

n−1
∑

k=0

n−1
∑

i, j=0

λ
(k)
i j

Note thatC(B) ≥ nsince we are working inGF(2n). This complexity notion can be considered

as basis density [33]. We give some examples to compare different representations of binary

fields.

Example 4.4.2 Let R= GF(2)[x]/( f (x)), where f(x) is an irreducible polynomial of degree

n. Assume that there is an elementβ ∈ R is a primitive element of degree n over GF(2) such

that the set B= {β, β2, β22
, · · · , β2n−1

} is a basis for R. A basis of this form is called a normal

basis for R. The complexity of normal basis satisfies te following inequality

C(B) ≥ 2n− 1

A basis satisfying C(B) = 2n− 1 is called optimal normal basis.

Example 4.4.3 Let R = GF(2)[x]/(xn′ − 1) be the finite quotient ring which is isomorphic

to GF(2n) as a ring with the basis B{1, x, x2, · · · , xn′−1}. Note that n′ = n+ r, where r is the

redundancy. Then

xi · x j =



















xi+ j if i + j < n′

xi+ j−n′ if i + j ≥ n′
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λ
(k)
i j =



















1 if k = i + j or k = i + j − n′

0 otherwise

The complexity of B is

C(B) =
1
n′

(

n′(n′ + 1)
2

+
(n′ − 1)n′

2

)

= n′

since there is exactly one k withλ(k)
i j , 0 for each(i, j).

Example 4.4.4 Let R= GF(2)[x]/(xn′ − x−1) be the finite quotient ring which is isomorphic

to GF(2n) as a ring with the basis B{1, x, x2, · · · , xn′−1}. Note that n′ = n+ r, where r is the

redundancy. Then

xi · x j =



















xi+ j if i + j < n′

xi+ j−n′+1 + xi+ j−n′ if i + j ≥ n′

The complexity of B is

C(B) =
1
n′

(

n′(n′ + 1)
2

+
(n′ − 1)n′

2
· 2

)

=
3n′ − 1

2

.

Remark 4.4.5 By changing n′ to n, one obtains the complexity result for polynomial repre-

sentation with an irreducible trinomial polynomial.

Example 4.4.6 Let R = GF(2)[x]/(xn′ − x2 − x − 1) be the finite quotient ring which is

isomorphic to GF(2n) as a ring with the basis B{1, x, x2, · · · , xn′−1}. Note that n′ = n + r,

where r is the redundancy. Then

xi · x j =



































xi+ j if i + j < n′

xi+ j−n′+2 + xi+ j−n′+1 + xi+ j−n′ if n′ ≤ i + j ≥ 2n′ − 3

xi+ j−n′+1 + xi+ j−n′ + x2 + x+ 1 if i + j = 2n′ − 2
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The complexity of B is

C(B) =
1
n′

(

n′(n′ + 1)
2

+
(n′ − 1)n′ + 2n′ − 2

2
· 3+ 5

)

=
2n′2 + 2n′ + 2

n′

.

Example 4.4.7 Let B = {β0, β1, · · · , βn−1} be the Charlier basis. Let f= βn + β0 be an

irreducible polynomial of degree n over GF(2) and R= GF(2)[x]/( f ). Then

βi · β j =



















βi+ j + βi+ j−1 · ℓ if i + j < n

βi+ j−n + βi+ j−n−1 · ℓ if i + j ≥ n

If i and j are both odd, thenℓ = 1. Otherwiseℓ = 0.

The complexity of B is

C(B) =
1
n

(

n(n+ 1)
2

+
n(n+ 1)

2 · 2
+

(n− 1)n
2

+
(n− 1)n

2 · 2

)

=
3n
2

Example 4.4.8 Let B= {β0, β1, · · · , βn−1} be the Charlier basis. Let f= βn + βk + β0 be an

irreducible polynomial of degree n over GF(2) and R= GF(2)[x]/( f ). Then

βi · β j =



















βi+ j + βi+ j−1 · ℓ if i + j < n

βi+ j−n+k + βi+ j−n + (βi+ j−n+k−1 + βi+ j−n−1) · ℓ if i + j ≥ n

If i and j are both odd, thenℓ = 1. Otherwiseℓ = 0.

The complexity of B is

C(B) =
1
n

(

n(n+ 1)
2

+
n(n+ 1)

2 · 2
+

(n− 1)n
2

· 2+
(n− 1)n

2 · 2
· 2

)

=
9n− 3

4

Example 4.4.9 Let B = {β0, β1, · · · , βn−1} be the Hermite basis. Let f= βn + β0 be an

irreducible polynomial of degree n over GF(2) and R= GF(2)[x]/( f ). Then

βi · β j =



















βi+ j + βi+ j−2 · ℓ if i + j < n

βi+ j−n + (βi+ j−n−2 + βi+ j−n−4) · ℓ if i + j ≥ n

If i and j are both odd, thenℓ = 1. Otherwiseℓ = 0.

The complexity of B is

C(B) =
1
n

(

n(n+ 1)
2

+
n(n+ 1)

2 · 2
+

(n− 1)n
2

+
(n− 1)n

2 · 2
· 2

)

=
7n− 1

4
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Example 4.4.10Let B= {β0, β1, · · · , βn−1} be the Hermite basis. Let f= βn + βk + β0 be an

irreducible polynomial of degree n over GF(2) and R= GF(2)[x]/( f ). Then

βi · β j =



















βi+ j + βi+ j−2 · ℓ if i + j < n

βi+ j−n+k + βi+ j−n + (βi+ j−n+k−2 + βi+ j−n+k−4 + βi+ j−n−2 + βi+ j−n−4) · ℓ if i + j ≥ n

If i and j are both odd, thenℓ = 1. Otherwiseℓ = 0.

The complexity of B is

C(B) =
1
n

(

n(n+ 1)
2

+
n(n+ 1)

2 · 2
+

(n− 1)n
2

· 2+
(n− 1)n

2 · 2
· 4

)

=
11n− 5

4

Example 4.4.11Let B = {β0 = 1, β1, · · · , βn−1} be the Dickson basis given in [20]. Let

f = βn+ βk+ β0 be an irreducible polynomial of degree n over GF(2) and R= GF(2)[x]/( f ).

Then

βi · β j =



















βi+ j + β|i− j| if i + j < n

βi+ j−n+k + β|i+ j−n−k| + βi+ j−n + β2n−i− j if i + j ≥ n

The complexity of B is

C(B) =
1
n

(

n(n+ 1)
2

+
(n− 1)n

2
· 4

)

= 3n− 1

According to examples, in some cases especially when there is no ONB exists,Charlier rep-

resentation and Hermite representation has better multiplication complexity. Moreover, if we

have a Charlier binomial or an Hermite binomial for the corresponding extension, the multi-

plication complexity is the lowest one even if there exists an ONB for this extension. Note

that in Example 4.4.3, 4.4.4 and 4.4.6 if the redundancy,r, is very small for exampler = 1 as

explained in Chapter 2, then the (modified) redundant representation is one of the best choice

for corresponding extension for efficient implementations in hardware.
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CHAPTER 5

CONCLUSION

In Chapter 2, we give a modified redundant representation which can beconsidered as a gen-

eralization of [10], [14] and [15]. Using our modified redundant representation, we improve

many of the complexity values in [10], [14] and [15] significantly. Our methodworks for any

finite field. We give more emphasis for finite fields of characteristic 2. We alsogive some

applications in cryptography.

In Chapter 3, we give a new way to represent certain finite fieldsGF(2n). This representation

is based on Charlier polynomials. We show that multiplication in Charlier polynomialrep-

resentation can be performed with subquadratic space complexity. One canobtain binomial

or trinomial irreducible polynomials in Charlier polynomial representation whichallows us

faster modular reduction over binary fields when there is no desirable such low weight irre-

ducible polynomial in other representations. This representation is very interesting for NIST

recommended binary fieldGF(2283) since there is no ONB for the corresponding extension.

We also note that recommended NIST and SEC binary fields can be constructed with low

weight Charlier polynomials such asGF(2113), GF(2131) andGF(2233).

In Chapter 4, we propose a new representation of finite fields of characteristic two by us-

ing Hermite polynomials. After recalling well-known finite field multiplication technique,

we show that multiplication in Hermite polynomial representation can be achieved with sub-

quadratic space complexity. Then, we discuss how to implement them efficiently. This rep-

resentation enables us to find binomial, trinomial or quadranomial irreducible polynomials

which allows us faster modular reduction over binary fields when there is nodesirable such

low weight irreducible polynomial in other representations. We then show that the product

of two elements in Hermite polynomial representation can be performed as Toeplitzmatrix-
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vector product. It is shown that in some cases the proposed representation has better space

complexity even if there exists an ONB for the corresponding extension. Therefore, this rep-

resentation is very interesting for NIST and SEC recommended binary fieldssince these can

be constructed with low weight Hermite polynomials. This representation is also quite generic

in the sense that it is independent on the choice of extension degree. We also note that this

work naturally extends to other characteristics, especially characteristic 3.
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vey”, Proceedings of 3th International Information Security and Cryptography Confer-

ence, (ISCTURKEY 2008), pp. 121-125, Ankara, Turkey.

66


