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ÖZETDoktora TeziYANIT YÜZEY� MODELLER�NE MARS YAKLA�IMIBetül KANAnadolu ÜniversitesiFen Bilimleri Enstitüsü�statistik Anabilim Dal�Dan�³man: Doç. Dr. Berna YAZICI2010, 129 sayfaBu tez çal�³mas�nda, yan�t yüzeyi metodolojisinde ikin
i dere
eden tasar�m-larda modelleme a³amas�nda MARS (Çok De§i³kenli Uyarlamal� RegresyonSplaynlar�) yakla³�m� önerilmi³tir. Bu yakla³�m�n, hangi faktöriyel tasar�m-lara ve hangi veri yap�lar�na uygulanabile
e§i üzerinde durulmu³, modellemea³amas�n�n nas�l yap�la
a§� aç�klanm�³t�r. Çal�³man�n uygulama k�sm�nda 32deneysel düzenden gelen toprak ve toz örneklerinden yararlanarak Eski³ehirmerkezli yap�lan saha çal�³mas�nda a§�r metal kirlilikleri regresyon a§açlar�ylas�n��and�r�lm�³, yan�t yüzeyi modelleri ve MARS ile modellenmeye çal�³�lm�³t�r.Sonuçlar istatistiksel testlerle ve kriterlerle de§erlendirilmi³tir. R Yaz�l�m� kul-lan�larak tek ve iki de§i³kenli durum için regresyon a§a
�na dayal� iki ayr�program yaz�lm�³t�r. MARS yöntemi kullan�larak a§�r metal kirlilik verisinimodellemek için R Yaz�l�m� ile tek ve iki de§i³kenli durum için iki ayr� prog-ram yaz�lm�³t�r.Anahtar Kelimeler : Yan�t Yüzeyi Metodolojisi, Çok De§i³kenli Uyarlamal�Regresyon Splaynlar� (MARS), Regresyon A§a
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ABSTRACTPhD DissertationMARS APPROACH TO RESPONSE SURFACE MODELSBetül KANAnadolu UniversityGraduate S
hool of S
ien
esStatisti
s ProgramSupervisor: Asso
. Prof. Berna YAZICI2010, 129 pagesIn this study, the approximation of the multivariate adaptive regressionsplines (MARS) is proposed at the stage of modeling in se
ond order designin response surfa
e methodology. It is mentioned that what kind of fa
torialdesigns and datasets 
an be used for this approximation and also how themodeling stage 
an be made is explained. In the appli
ation part of the study,the pollution of heavy metals 
oming from 32 design for both soil and roaddust datasets whi
h are 
olle
ted from a spe
i�
 area in Eskisehir are 
lassi�edby the means of regression trees and is modeled by the use of response surfa
emethodology and MARS. The results are evaluated by statisti
al tests andby some 
riteria. Two programs, based on regression trees for a univarite 
aseand a bivariate 
ase, are generated using R Software. Two di�erent programsfor a univarite 
ase and a bivariate 
ase to model the pollution of heavy metaldata by MARS are generated in R Software.
Key Words : Response Surfa
e Methodology, Multivariate Adaptive Reg-ression Splines, Regression Treeii



TE�EKKÜRBu çal�³man�n her ad�m�nda sonsuz özverisini, sabr�n�, güvenini ve her an-lamda deste§ini hiç esirgemeyen, ge
e gündüz benimle beraber çal�³an sevgilidan�³man�m Doç.Dr. Berna YAZICI' ya akademik anlamdaki çal�³malar�mayön vermesi, doktora e§itimim için beni yurtd�³�na gitmem konusunda 
esaret-lendirmesi ve bu anlamda bu tez konusunun olu³mas�nda en büyük katk�y�sa§lamas� aç�s�ndan binler
e te³ekkür ederim.Yükseklisans ve doktora çal�³malar�m boyun
a, de§erli �kirlerine son dere
eönem verdi§im ve manevi deste§ini benden hiç esirgemeyen Bölüm Ba³kan�m�zSay�n Prof.Dr. Embiya A�AO�LU' na te³ekkürlerimi sunar�m.De§erli ho
alar�m Prof.Dr. Ali Fuat YÜZER'e ve Prof.Dr. Aladdin �AM�-LOV'a lisans, yükseklisans ve doktora e§itimim boyun
a verdikleri destek vebana duyduklar� güven için en içten te³ekkürlerimi sunar�m.Çal�³malar�m boyun
a, tezin de§erlendirilmesi konusundaki katk�lar�ndandolay� Say�n jüri üyeleri ho
alar�ma ve programlama a³amas�nda beni sab�rladinleyen, �kirlerinden ilham ald�§�m de§erli ho
am Dr. Muza�er DO�AN' açok te³ekkür ederim.Uygulama a³amas�nda kullan�lan verilerle ilgili olarak yard�mlar�ndan dola-y� Yard.Doç.Dr. Semra MALKOÇ' a ve haritalama konusundaki yard�mlar�n-dan dolay� Yard.Doç.Dr. Metin ALTAN' a en derin te³ekkürlerimi sunar�m.Her zaman benimle olan çok sevgili aileme ve dostlar�ma gösterdikleri sab�rve destek için ayr�
a te³ekkür ederim. Betül KANAral�k 2010

iii



�Ç�NDEK�LER SayfaÖZET iABSTRACT iiTE�EKKÜR iii�Ç�NDEK�LER iv�EK�LLER D�Z�N� viiÇ�ZELGELER D�Z�N� viii1. G�R�� 12. GENEL B�LG�LER 72.1. Temel Kavramlar . . . . . . . . . . . . . . . . . . . . . . . . 72.1.1. Vektörler ve Vektör Uzaylar� . . . . . . . . . . . . . . . 72.1.2. Do§rusal Toplam ve Germe . . . . . . . . . . . . . . . 72.1.3. Do§rusal Ba§�ml�l�k ve Do§rusal Ba§�ms�zl�k . . . . . . 82.1.4. Tabanlar . . . . . . . . . . . . . . . . . . . . . . . . . . 82.1.5. Parçal� Do§rusal Regresyon Modeli . . . . . . . . . . . 142.1.6. Splaynlar ve Matematiksel Gösterimi . . . . . . . . . . 162.2. Yan�t Yüzeyi Modellerinin Yap�s� . . . . . . . . . . . . . . . . 192.2.1. 2k Faktöriyel Tasar�mlar� . . . . . . . . . . . . . . . . . 232.2.2. 3k Faktöriyel Tasar�mlar� . . . . . . . . . . . . . . . . . 272.2.3. Merkezi Bile³ik Tasar�m . . . . . . . . . . . . . . . . . 282.3. Bir Yan�t Yüzeyinin Analizi için Temel Metotlar . . . . . . . . 302.3.1. En H�zl� T�rman�³ Metodu (Steepest As
ent Method) . 322.3.2. Kanonik Analiz . . . . . . . . . . . . . . . . . . . . . . 332.4. Model Seçim Kriterleri . . . . . . . . . . . . . . . . . . . . . 352.4.1. Çapraz Geçerlilik Kriteri . . . . . . . . . . . . . . . . . 352.4.2. Genelle³tirilmi³ Çapraz Geçerlilik Kriteri . . . . . . . . 36iv



2.4.3. Cp Kriteri . . . . . . . . . . . . . . . . . . . . . . . . . 362.4.4. Akaike Bilgi Kriteri . . . . . . . . . . . . . . . . . . . . 373. MARS 383.1. Yinelemeli Bölüntüleme (Re
ursive Partitioning) . . . . . . . . 383.1.1. Altbölgelerin Yinelemeli Bölünmesi (Re
ursive Splitting) 383.1.2. Yinelemeli Bölüntülemenin Olumsuzluklar� . . . . . . . 433.2. Regresyon Splaynlar� . . . . . . . . . . . . . . . . . . . . . . 473.3. Uyarlamal� Regresyon Splaynlar� . . . . . . . . . . . . . . . . 543.3.1. Model Seçimi . . . . . . . . . . . . . . . . . . . . . . . 563.3.2. De§i³ken Önemlili§i . . . . . . . . . . . . . . . . . . . 583.4. MARS-�leriye Dönük Algoritma. . . . . . . . . . . . . . . . . 583.5. MARS-Geriye Dönük Algoritma. . . . . . . . . . . . . . . . . 614. UYGULAMA 634.1. Analizde Kullan�lan Verilerin Yap�s�. . . . . . . . . . . . . . . 634.2. YYM ve Regresyon A§açlar� . . . . . . . . . . . . . . . . . . 634.2.1. Toprak Verisi Regresyon A§a
� Analizi . . . . . . . . . 644.2.2. Toz Verisi Regresyon A§a
� Analizi . . . . . . . . . . . 654.3. YYM ve MARS Analizi . . . . . . . . . . . . . . . . . . . . . 674.3.1. Toprak Verisi Cd Kirlili§i için MARS Analizi . . . . . . 694.3.2. Toprak Verisi Zn Kirlili§i için MARS Analizi . . . . . . 754.3.3. Toprak Verisi Pb Kirlili§i için MARS Analizi . . . . . . 805. SONUÇLAR 86KAYNAKLAR 91Ek-1 Yan�t de§i³keninin, tek de§i³ken kullanarak regresyon a§a
�n�nolu³turmas�nda kullan�lan R kodlar� 96Ek-2 Yan�t de§i³keninin, iki de§i³ken kullanarak regresyon a§a
�n�nolu³turmas�nda kullan�lan R kodlar� 101v



Ek-3 Cd yan�t de§i³keninin, tek de§i³ken kullanarak MARS mo-delinin olu³turmas�nda kullan�lan R kodlar� 115Ek-4 Cd yan�t de§i³keninin, iki de§i³ken kullanarak MARS mo-delinin olu³turmas�nda kullan�lan R kodlar� 117Ek-5 MARS Modelleri- ANOVA 120Ek-6 Veri seti 123

vi



�EK�LLER D�Z�N�2.1. Do§rusal model ve uygun taban . . . . . . . . . . . . . . . . . 92.2. Su,M([u0,uK)) uzay�nda bir fonksiyon, M = 0 . . . . . . . . . . . 102.3. Su,M([u0,uK)) uzay�nda bir fonksiyon, M = 1 . . . . . . . . . . . 112.4. Parçal� do§rusal regresyon modeli ve uygun taban . . . . . . . 142.5. Çok parçal� regresyon modeli ve uygun taban . . . . . . . . . 162.6. a-Budanm�³ do§ru, b-B-splayn taban, 
-Radyal Taban, d-Demmler-Reins
h taban . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.7. x0 ile xn−1 aras� dü§ümler ve splayn fonksiyonu . . . . . . . . 192.8. k = 2 ve k = 3 için merkezi bile³ik tasar�m . . . . . . . . . . . 292.9. �kin
i dere
eden modeller için yüzeyler . . . . . . . . . . . . . 313.1. Karesel regresyon spline fonksiyonlar� . . . . . . . . . . . . . . 494.1. Toprak örne§i- Cd için regresyon a§a
� . . . . . . . . . . . . . 644.2. Toz örne§i- Zn için regresyon a§a
� . . . . . . . . . . . . . . . 654.3. Regresyon a§a
� ile istasyonlara göre kirlilik haritas� . . . . . . 674.4. Cd için yan�t yüzeyi ve kontör gra�kleri . . . . . . . . . . . . . 714.5. Cd için ikin
i ve üçün
ü MARS modelleri gra�kleri . . . . . . 744.6. Zn için yan�t yüzeyi ve kontör gra�kleri . . . . . . . . . . . . . 774.7. Zn için MARS gra�§i . . . . . . . . . . . . . . . . . . . . . . . 804.8. Pb için yan�t yüzeyi ve kontör gra�kleri . . . . . . . . . . . . . 834.9. Pb için MARS gra�§i . . . . . . . . . . . . . . . . . . . . . . . 84

vii



Ç�ZELGELER D�Z�N�4.1. 32 Faktöriyel tasar�m� . . . . . . . . . . . . . . . . . . . . . . . 684.2. Cd yan�t yüzeyi modeli için etkilerin parçalanmas� . . . . . . . 694.3. Cd yan�t yüzeyi için ANOVA . . . . . . . . . . . . . . . . . . 704.4. Cd için MARS modelleri . . . . . . . . . . . . . . . . . . . . . 724.5. Cd MARS modeli için de§i³ken önemlili§i . . . . . . . . . . . . 754.6. Zn yan�t yüzeyi modeli için etkilerin parçalanmas� . . . . . . 764.7. Zn yan�t yüzeyi için ANOVA . . . . . . . . . . . . . . . . . . 774.8. Zn için MARS modelleri . . . . . . . . . . . . . . . . . . . . . 784.9. Zn MARS modeli için de§i³ken önemlili§i . . . . . . . . . . . . 804.10. Pb yan�t yüzeyi modeli için etkilerin parçalanmas� . . . . . . . 814.11. Pb yan�t yüzeyi için ANOVA . . . . . . . . . . . . . . . . . . 824.12. Pb için MARS modelleri . . . . . . . . . . . . . . . . . . . . . 834.13. Pb MARS modeli için de§i³ken önemlili§i . . . . . . . . . . . . 855.1. Kirlilik modelleri için kar³�la³t�rma . . . . . . . . . . . . . . . 88

viii



1 G�R��1980' lerde Avrupa'daki endüstriyel çal�³malar do§rultusunda yo§un bir ³e-kilde kalite iyile³tirmeleriyle ilgilenilmeye ba³lanm�³t�r. Özellikle deney tasar�m-lar� ve istatistiksel kalite kontrol çal�³malar� h�z kazanm�³t�r. Deney tasar�mlar�yöntemleriyle daha yüksek güvenirli§e sahip olan ve mü³teri gereksinimlerinikar³�layan ürünlerin ortaya ç�kt�§� görülmü³tür. Bu anlamda yan�t yüzeyimetodu (YYM) için, deney tasar�m�n�n özel bir dal� olarak, tar�msal, kimyasal,endüstriyel ve biyolojik ara³t�rmalarda, süreçlerin iyile³tirilmesinde, geli³ti-rilmesinde veya optimizasyonunda kullan�lan istatistiksel bir tekniktir denilebi-lir. �lk olarak YYM alan�nda çal�³maya Box ve Draper' �n 1951 y�l�nda ba³lad�k-lar� bilinir. Sonraki y�llarda yan�t yüzeylerinin ara³t�r�lmas�nda ilgili desenseçiminde etken olabile
ek farkl� nedenler üzerinde çal�³m�³lard�r [1℄. Box veDraper, YYM'da yanl�³ model tan�mlanm�³ olsa bile YYM' nin etkinli§i üze-rinde durmu³lard�r. Hill ve Hunter [2℄, yan�t yüzeyi metodu ile ilgili olarakkimya endüstrisindeki çal�³malara ön
ülük etmi³lerdir. Yan�t yüzeyi çal�³mala-r�n� biyometri aç�s�ndan in
eleyen Mead ve Pike [3℄ ise, bu metodun ba³lang�
�-n�n 1930' larda kullan�lan yan�t e§rilerine dayand�§�n� ileri sürmü³tür. Myers,Carter ve Khuri [4℄ �zik, mühendislik, g�da bilimindeki uygulamalar�n� ortayakoymu³tur. Jensen ve Myers [5℄, tahminlemedeki do§rulu§a ili³kin ölçüleribelirlemek üzere yüzeydeki noktalar�n tespitini yapm�³t�r. Hardy ve Ny
hka[6℄ çal�³malar�nda, in
e tabakal� splaynlar�n yan�t yüzeyleri uyumu için non-parametrik bir metot oldu§undan bahsetmi³tir. Burada, in
e tabakal� splayn-lar� R- splaynlar�n özel bir durumu olarak in
elemi³lerdir. R-splaynlar biryokluk uzay� (null spa
e) polinomu ve radyal (radial) tabanl� fonksiyonlar�nsplayn uyumu olarak öne sürülmü³tür. Bu makalelerinde, pürüzlülük 
ezamodi�kasyonunu tart�³m�³lard�r.Hardy, ve ark. [7℄ çal�³malar�nda, in
e tabakal� splaynlar�n geni³lemesiolarak bilinen R-splaynlarla yan�t yüzey uyumunda nonparametrik bir metotüzerine odaklan�r. Bu ara³t�rmalar�nda, 12 potansiyel ba§�ms�z de§i³kenleçal�³�lm�³ özel bir uygulama yapm�³lard�r. De§i³kenlerin fonksiyonel form-1



lar�n�n, bu fonksiyonel formlar aras�ndaki etkile³imler ile beraber düzenlendik-lerinde, uyumu yap�labile
ek modellerin say�s�n�n o andaki standartlara ba§l�olan küçük veri setlerini bile etkiledi§ini dü³ünmü³lerdir. Pek çok model seçimtekni§i önerilmesine ra§men, hangisinin daha üstün oldu§una dair bir �kirbirli§i yoktur. Bu çal�³malar�nda, model ve de§i³ken seçimini yapmak için, ikiçe³it simulasyon yap�lm�³t�r. �lkinin ama
�, bütün mümkün alt kümeler aras�n-dan R-splaynlar� kullanarak de§i³ken seti seçiminde dört strateji aras�ndakifarklar� test etmektir. �kin
isinin ama
� ise üç modelleme tekni§ini kar³�la³-t�rmakt�r. Bunlar, tüm altküme de§i³ken seçimi metodolojisini kullanarak ikia³amal� bir R-splayn yakla³�m�, standart tüm altküme do§rusal regresyonlar�ve s�n��ama regresyon a§açlar�d�r. Özetle, R-splaynlar� kullanarak model vede§i³ken seçimlerini in
elemi³lerdir. Ön
elikle önemli aç�klay�
� de§i³kenler R-splaynlar�n özel bir tipi kullan�larak belirlenmi³tir. Daha sonra, bu seçilmi³de§i³kenler uygun R-splayn modellerinin uyumu için kullan�lm�³t�r. Ren [8℄,yan�t yüzeyi metodolojisini do§rusal olmayan metotlar üzerinden in
elemi³tir.Buna göre, çoklu do§rusal regresyona dayal� yan�t yüzeyi modellerini aromatikkimyasallar�n toksitlikleri için geli³tirmi³lerdir. Bu çal�³malar�nda, aromatikkimyasallar�n�n yan�t yüzeyi modellerini do§rusal olmayan alt� tane modellememetodu kullanarak olu³turmu³lard�r. Bütün modellerin çapraz geçerlilik (CV)kriteri ile geçerlili§i s�nanm�³ ve d�³ar�da b�rak�lan veri seti için tahminindo§rulu§u (predi
tion a

ura
y) test edilmi³tir. Sonuçlar, LOESS (lo
ally we-ighted regression s
atter plot smoothing), MARS (multivariate adaptive reg-ression splines), NN (Neural Networks), PPR (proje
tion pursuit regression)metotlar�yla belirlenmi³ ve model uyumlar� kar³�la³t�r�lm�³t�r. Sonuçlar�n ben-zer uygulanabilirlikleri bulunmaktad�r. O' Connell ve Wol�nger [9℄ çal�³mala-r�nda, spatial regresyon modelleri, ikin
i dere
eden polinomiyal yan�t yüzey-lerine bir tamamlay�
� alternatif olarak geli³tirilmi³tir. Bu modeller, tasar�muzay�nda bilinmeyen yan�t de§i³keni tahminlerini ve tasar�m de§i³kenlerininetkilerini do§ru ve düzgün (smooth) veri yakla³�mlar�yla sa§lar. Tahminlen-mi³ yan�t yüzeyleri, modellerin kovaryans yap�lar�yla elde edilir. Heiligers [10℄çal�³mas�nda, taban fonksiyonlar�yla parametrelendirilmi³ d. dere
eden poli-2



nomiyal regresyon için E-optimal tasar�m problemine çözüm elde edilmi³tir.Buna göre bir kapal� aral�kta sonlu ta³�y�
�l�§� olan bir olas�l�k ölçümü olaraktan�mlanan tahmini bütün tasar�mlar aras�nda katsay�s� matrisinin sade
e vesade
e en küçük özde§erini maksimize eden bu tasar�m E-optimaldir denir.Butler [11℄, çal�³mas�nda G-optimal tasar�mlar�n özelliklerini düzeltme splayn-lar�yla in
eler. G-optimallik, parametre tahmin
isinin varyans�n� maksimumyapan tasar�m�n minimumunu seçen performans kriteridir.Tarpey ve Hol
omb [12℄, çal�³malar�nda polinomiyal regresyon ile splaynmodellerin uyumu aras�ndaki ili³kiyi in
elemi³lerdir.Bir ba³ka çal�³mada Craven [13℄, splayn tabanl� yakla³�mla yan�t yüzeyininçok boyutlu kesikli bir gruptan çok boyutlu sürekli bir gruba nas�l yap�-land�r�la
abile
e§i üzerinde durulmu³ ve bu durum çok kriterli Bayes kararproblemi olarak yorumlanm�³t�r.Chen [14℄, çok boyutlu dinamik stokastik programlamada bir deneysel tasa-r�m ve regresyon splaynlar� uygulamas� yapm�³t�r.Crino [15℄, simulasyona dayal� tasar�m optimizasyon problemlerinde yan�tyüzeyi metodolojisini çok de§i³kenli uyarlamal� splayn regresyonu ile beraberkullanm�³t�r.YYM özellikle ürün geli³tirilmesinde önemli bir araçt�r. Üç faktörün üçfarkl� dozu denildi§inde, bütün kombinasyonlar�n olu³turdu§u deneme say�s�
33 = 27 ' dir. An
ak bu durum bazen maliyet ve zaman aç�s�ndan bütünkombinasyonlar�n denenmesine izin vermeyebilir. Böyle bir durumda YYMkullan�larak, deneme say�s� 15'e indirilip sonuçlar test edilebilir [16℄. YYM'de denemeye al�nmayan faktör kombinasyonlar� için yan�t� tahmin ede
ek uy-gun bir fonksiyonun olu³turulmas� ve yan�t (ba§�ml�) de§i³ken fonksiyonunumaksimum veya minimum yapa
ak ba§�ms�z de§i³ken kombinasyonlar�n�n bu-lunmas� üzerinde durulur. Yan�t yüzeyini olu³turma ama
�, tüm faktör uza-y�nda belirli özellikleri sa§layan bir bölgeyi ve bu bölgeye ait optimum noktay�tahmin etmektedir.Çok boyutlu veri setleriyle u§ra³mada yeni bir metot olarak " Çok De§i³ken-li Uyarlanabilir Regresyon Splaynlar� (MARS)" kar³�m�za ç�kar. Buradaki yak-3



la³�m, bilinmeyen modelin splayn taban fonksiyonlar� çarp�m� olarak ifadeedilebilmesidir. Splayn taban fonksiyonlar�n�n say�s� ve parametre say�s� otoma-tik olarak veri taraf�ndan belirlenir. Bu süreçte temel olarak, ard�³�k bölün-tüleme yakla³�m�ndan faydalan�l�r. An
ak ard�³�k bölüntülemeden farkl� olarakbu metot sürekli modeller ve sürekli türevler üretir. Bu yakla³�m, etkile³imleride içerir veya toplamsal ili³kilerin modellendi§i durumlarda daha esnektir.Az say�da gözlemin in
elendi§i YYM' de polinomiyal modellemeye ve bun-lar�n çok de§i³kenli durumlar�na ihtiyaç duyulabilir. Bu çal�³mada YYM' deMARS kullan�lmas�na dayal� bir yakla³�m üzerinde durulmu³tur.Bu çal�³man�n ikin
i bölümünde, konuya ili³kin temel kavramlara yer veril-mi³tir. Buna göre, ilk olarak vektörler ve vektör uzaylar� tan�mlar� üzerindedurulmu³, sonras�nda do§rusal ba§�ml�l�k ve do§rusal germe tan�mlar� in
e-lenmi³tir. Ard�ndan, tabanlar ve bunun yard�m�yla olu³turulan özel regresyonmodelleri tan�t�lm�³t�r. Son olarak splayn�n matematiksel terim olarak ifade-sine yer verilmi³tir.Daha sonra, yan�t yüzeyi metodolojisinin yap�s� ve yan�t yüzeyi model-lerinin parametrelerinin tahminlenmesinde kullan�lan yan�t yüzeyi tasar�m-lar�ndan baz�lar� verilmi³tir. YYM' nin birin
i dere
eden tasar�mlar�ndan " 2kFaktör Tasar�m�" ve "3k Faktör Tasar�m� " ile ikin
i dere
eden tasar�mlar�n-dan "Merkezi Bile³ik Tasar�m" aç�klanm�³t�r. Sözü geçen tasar�mlar�n aç�klan-mas�ndan sonra, bu modellerin analizi için kullan�lan tekniklere de§inilmi³tir.Bu amaçla, gradyant artma ve kanonik analiz yöntemleri üzerinde durulmu³-tur. Bu bölümün sonunda, model seçimi için kullan�lan önemli baz� kriterlerin
elenmi³tir.Üçün
ü bölümde, yinelemeli bölüntüleme ve regresyon splaynlar� üzerindedurulmu³tur. Ard�ndan MARS detayl� bir ³ekilde in
elenmi³tir. MARS algo-ritmas�n�n model seçim a³amas� aç�klanm�³t�r ve son k�s�mda MARS' �n ileriyeve geriye dönük algoritmas� in
elenmi³tir.Bu ba§lamda ilk olarak, MARS deneysel verinin koordinatlar�n�n belir-lenmesinde kullan�lm�³t�r [17℄. Bu çal�³mada, "3k Faktöriyel Tasar�m" a al-ternatif olarak geli³tirilen "Merkezi Birle³ik Tasar�m" üzerinde durulmu³tur.4



Bu tasar�m matrisi kullan�larak elde edilen MARS modelinin üretti§i ta-ban fonksiyonlar� in
elenmi³tir. MARS' �n bu taban fonksiyonlar� için üret-ti§i dü§üm noktalar�, de§i³ken önemlili§i gibi ekstra bilgiler, modeli yorum-lamada kullan�lmaya çal�³�lm�³t�r. "25 Faktöriyel Tasar�m" �n faktörleri vedüzeyleri ile, MARS modelinin üretti§i taban fonksiyonlar� ve dü§üm nok-talar� in
elenmi³tir [18℄. Çal�³mada regresyon a§açlar� (CART) olarak da bili-nen yinelemeli bölüntüleme yöntemi ile tüm faktörler ve bunlar�n birbirleriyleetkile³imleri ortaya konmu³tur. MARS modeli ile 25 faktöriyel tasar�ma aitetkilerin (ikili, üçlü, dörtlü ve be³li terimler dahil) oldu§u birin
i dere
edenyan�t yüzeyi modeli üzerinde durulmu³tur. Bu çal�³ma do§rultusunda, MARSmodeli, birin
i dere
eden yan�t yüzeyi modelindeki faktör say�s�n� azaltt�§�için ara³t�rma
�lara bir ter
ih nedeni olarak önerilmi³tir. Ba³ka bir çal�³mada,in
e tabakal� splaynlar, kübik splaynlar ve MARS ile olu³turulan 
oklu re-gresyon modellerinin, baz� kriterlerle kar³�la³t�r�lmas� R yaz�l�m�nda haz�r-lanan bir programla yap�lm�³, modellerin serbestlik dere
eleri üzerinde durul-mu³tur [19℄. Ayr�
a bir ba³ka çal�³mada, 32 faktöriyel deney verisi kullan�larakregresyon a§açlar� olu³turulmu³tur [20℄. Bu çal�³mada, sekiz a§�r metalin ikin
iderede
en yan�t yüzeyleri ve regresyon a§açlar� in
elenmi³tir. Toz ve toprakkirlilik ara³t�rmas� için tasarlanan deneysel düzenden hareketle elde edilenonalt� modele ili³kin sonuçlar yorumlanm�³t�r.Tezin uygulama bölümünde, önerilen yakla³�m�n kullan�labilmesi ve istatis-tiksel aç�dan klasik yöntemle kar³�la³t�r�labilmesi için söz konusu a§�r metalverileri kullan�lm�³t�r. Bunlar�n sebep oldu§u kirlilik ara³t�rmas� için verilere,ikin
i dere
eden yan�t yüzeyi ve MARS modelleri uydurulmu³tur. Her ikiyöntemle elde edilen modellerin kar³�la³t�r�lmas�, modeldeki faktör say�lar�,modellerin standart hatalar�, düzeltilmi³ belirlilik say�lar� (R2
adj) ve genel-le³tirilmi³ çapraz geçerlilik (GCV) kriteri ile yap�lm�³t�r. Bunlara ek olarak Cd,Zn ve Pb için olu³turulan yan�t yüzeylerinin gra�kleri ve kontür haritalar� ver-ilmi³tir. Bu gra�kler MARS'�n üretti§i etkile³im gra�kleriyle kar³�la³t�r�lm�³ vesonuçlar yorumlanm�³t�r. MARS' �n üretti§i de§i³ken önemlilikleri verilmi³tir.Her iki yöntemle kurulan modeller ile toprak verisi kullan�larak yap�lan a§�r5



metal kirlili§i ara³t�rmas�nda, MARS modellerinin daha detayl� bilgiler ver-mesi ve modele etkile³im terimlerini de katarak yan�t yüzeyleri analizine katk�sa§lam�³, gerçek yap�y� daha iyi yans�tm�³, deneysel düzenden gelen verinin ge-leneksel yolla modellenmesi yerine temsili bir model olarak kullan�lmas� öneril-mi³tir.Süre
e ili³kin algoritma, iki parçal� halde, hem tek de§i³ken hem de ikide§i³ken olmas� durumu için geli³tirilmi³ ve Ek-1-4 aras�nda verilmi³tir. Ek-1-2' de yer alan algoritmalar bir ba§�ml� de§i³kenin tek ve iki ba§�ms�z de§i³kenleolan ili³kisinin yinelemeli bölüntüleme algoritmas�yla olu³turulmas�na yöne-liktir. Ek-3-4' de Cd yan�t de§i³keninin tek ve iki de§i³kenle kurulabile
ekMARS modelleri olu³turulmaya çal�³�lm�³t�r. Ek-5' te Cd, Zn ve Pb için ku-rulan MARS modellerine ili³kin ANOVA sonuçlar� verilmi³tir. Ek-6' da uygu-lamada kullan�lan veri setleri verilmi³tir.Bu tez çal�³mas�nda önerilen yakla³�m, az say�da gözlemin in
elendi§i YYM'de polinomiyal modellemeye ve bu çal�³malar�n çok de§i³kenli durumlar�naihtiyaç duyulabile
e§i varsay�m�yla, YYM' de MARS kullan�lmas�na ili³kindir.Buna göre:
• 32 faktöriyel tasar�m gibi az veri noktas�yla çal�³�lan düzenlerde mo-delleme a³amas�ndaki yetersizlik giderilmi³tir.
• Bu anlamda MARS modeli, YYM' de temsili bir model olarak öneril-mi³tir.
• MARS analizine taban olu³turmas� aç�s�ndan, R Yaz�l�m� kullanarakyinelemeli bölüntüme algoritmas�na dayal� iki program yaz�lm�³t�r.
• Uygulamada kullan�lan Cd yan�t de§i³keni i
in R Yaz�l�m� kullan�larak,MARS modellemesi yapan iki program yaz�lm�³t�r.
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2 GENEL B�LG�LER2.1 Temel KavramlarBu bölümde konuyla ilgili bilinmesi gereken kavramlara k�sa
a de§inilmi³tir.2.1.1 Vektörler ve Vektör Uzaylar�Tan�m 2.1.1 Bir vektör uzay�, üzerinde iki i³lem tan�mlanm�³
x + y ∈ V, e§er x,y ∈ V

x ∈ V, α ∈ R e§er αx ∈ V
(2.1)ve a³a§�daki aksiyomlar� sa§layan kümedir:Aksiyom 1. Her bir x,y vektör çifti için x+ y = y + x kural� sa§lan�r.Aksiyom 2. x,y ve z gibi herhangi üç vektör için (x+ y) + z = x+ (y + z)Aksiyom 3. S�f�r vektörünü içerir ve x+ 0 = x' d�r.Aksiyom 4. Her bir x vektörüne kar³�l�k x+(−x) = 0 ola
ak biçimde bir tek

−x vektörü vard�r.Aksiyom 5. Her bir gerçel say�s� ve x ve y gibi her vektör çifti için r(x+y) =

rx+ ry' dir.Aksiyom 6. Her bir x vektörü ve r ve s gibi her gerçel say� çifti için (r+s)x =

rx+ sx' dir.Aksiyom 7. Her bir x vektörü ve r ve s gibi her gerçel say� çifti için (rs)x =

r(sx)' d�r.Aksiyom 8. Her x vektörü için 1x = x' dir.Bunun d�³�nda, vektör uzay�n�n s�f�r vektörünü içermesi gerekir. Bir vektöruzay�n�n elemanlar�na vektörler denir.2.1.2 Do§rusal Toplam ve GermeTan�m 2.1.2 V vektör uzay�n�n x1,x2, ...,xn vektörleri verilsin. α1, α2, ..., αngerçel say�lar olmak üzere, α1x1 + ... + αnxn toplam� bir vektördür ve buna
x1, ...,xn nin do§rusal toplam�(bile³kesi) denir.7



Tan�m 2.1.3 x1,x2, ...,xn vektörleri sabit seçilmi³ olsun. x1,x2, ...,xn n�n bü-tün do§rusal toplamlar�ndan olu³an vektörlerin x = α1x1+ ...+αkxn kümesine
x1,x2, ...,xn vektörlerin do§rusal toplamlar kümesi veya do§rusal span� denir.Genellikle span(x) ile gösterilir [21℄.2.1.3 Do§rusal Ba§�ml�l�k ve Do§rusal Ba§�ms�zl�kTan�m 2.1.4 E, bir vektörler kümesi, x1, ...,xk de E de farkl� vektörler ve
α1, ..., αk hepsi ayn� anda s�f�r olmayan say�lar olmak üzere e§er

α1x1 + ...+ αkxk = 0 (2.2)ko³ulu sa§lan�yorsa, E kümesine do§rusal ba§�ml�d�r denir.E kümesine x1, ...,xk do§rusal ba§�ml� vektörlerinden olu³an bir kümedirdenir. Bir E kümesi do§rusal ba§�ml� de§ilse do§rusal ba§�ms�zd�r. E§er bir Evektör kümesi s�f�r vektörünü içeriyorsa do§rusal ba§�ml�d�r [21℄.2.1.4 TabanlarTan�m 2.1.5 V , bir vektör uzay� ve E de bu uzayda bir vektör kümesi olsun.E§er E do§rusal ba§�ms�z ise ve V ' yi geriyorsa, E' ye V 'nin bir taban� denir.Yukar�daki tan�m dahilinde bir basit do§rusal regresyon modelini göz önüneal�nd�§�nda,
yi = β0 + β1xi + ei (2.3)denklemi bir do§ruyu temsil eder. Bu model için uygun taban 1 ve x fonksi-yonlar� ile temsil edilebilir. Bir ba³ka deyi³le β0 + β1x ifadesi 1 ve x tabanfonksiyonlar�n�n do§rusal bir kombinasyonudur.
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Buna ili³kin gra�k �ekil 2.1 ile verilmi³tir.

�ekil 2.1: Do§rusal model ve uygun tabanE³itlik 2.3'de e³itli§in sa§ taraf� bu fonksiyonlar�n bir do§rusal kombinas-yonudur. Regresyon için kurula
ak X matrisinin sütunlar�, uygun olan tabanfonksiyonlar� 1,x kullan�larak (2.4) ile elde edilir.
X =

















1 x1

1 x2

... ...

1 xn

















(2.4)
Benzer ³ekilde, {1,x,x2, ...,xn} kümesi çoklu polinomiyal regresyon içinal�nabile
ek bir taband�r. Buna ili³kin X matrisi (2.5) ile verilir.

X =

















1 x1 ... xn
1

1 x2 ... xn
2

... ... ... ...

1 xn ... xn
n

















(2.5)
Burada, β0, β1, ..., βn katsay�lar�Xmodel matrisinde s�ras�yla {1,x,x2, ...,xn}taban fonksiyonlar� ile temsil edilirler. Çoklu model, basit do§rusal modelindo§rusal olmayan (de§i³kenlerde) duruma geni³letilmesidir [21℄.9



Tan�m 2.1.6 M ∈ N0 ve u0 < u1 < ... < uK olsun. u = {uj}j=0,...,K. Splaynuzay� Su,M([u0, uK))' yi a³a§�daki gibi ifade ederiz:
Su,M([u0, uK)) = {f : [u0, uK)→ ℜ}olmak üzere p0, ..., pK−1, M. ya da daha küçük dere
eden polinomlar olsun-lar; öyle ki f(x) = pi(x), x ∈ [ui, ui+1)(i = 0, ..., K− 1). E§er M − 1 >= 0 iseo zaman f , [u0, uK) üzerinde M-1 kere sürekli diferensiyellenebilirdir. Burada

u dü§üm vektörü ve M de, Su,M([u0, uK)) splayn uzay�n�n dere
esidir.
Su,0([u0, uK)) parçal� sabit fonksiyonlard�r. Buna ili³kin gra�k �ekil 2.2ile verilmi³tir. Burada her bir [ui, ui+1) aral�§�nda çizilmi³ sabit fonksiyonlargösterilmi³tir.

�ekil 2.2: Su,M([u0,uK)) uzay�nda bir fonksiyon, M = 0

Su,1([u0, uK)) içindeki fonksiyonlar, [u0, uK) üzerinde parçal� ve süreklidir.Buna ili³kin gra�k �ekil 2.3 ile verilmi³tir.
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�ekil 2.3: Su,M([u0,uK)) uzay�nda bir fonksiyon, M = 1Aç�kça görülüyor ki, Su,M([u0, uK)) bir do§rusal vektör uzay�d�r. Bir son-raki teoremde bu do§rusal vektör uzay�n�n bir taban�ndan bahsedile
ektir.Teorem 2.1.7 M ∈ N0 ve u0 < u1 < ... < uK olsun. Fonksiyonlar kümesi,
{1, x, ..., xM} ∪ {(x− uj)

M
+ : j = 1, ..., K − 1} (2.6)

Su,M([u0, uK)) ' nin bir taban�d�r. Her f ∈ Su,M([u0, uK)) için
a0, a1, ..., aM , b1, ..., bK−1 ∈ ℜ vard�r; öyle ki,

f(x) =
M
∑

i=0

aix
i +

K−1
∑

j=1

bj(x− uj)
M
+ (2.7)

x ∈ [u0, uK) 'de, do§rusal toplamlar ³eklinde yaz�labilir.Kan�tGörülüyor ki, Su,M([u0,uK)) vektör uzay�n�n boyutu (M+1)+(K-1)=M+K'd�r. E³itlik 2.6' deki fonksiyonlar�n Su,M([u0, uK)) taraf�ndan kapsand�§�n�gösterelim. k = 0, ...,M − 1 için,
∂k

∂xk
|x=uj

= M · (M − 1) · · · (M − k + 1)((x− uj)
M−k) |x=uj

= 0 (2.8)(j=1,...,K-1)yaz�labilir. Bir sonraki ad�mda, (2.6)' daki fonksiyonlar�n do§rusal ba§�ms�z11



olduklar�n� gösterelim. Varsayal�m ki, a0, a1, ..., b1, ..., bK−1 ∈ ℜ key� olsun ve
(x ∈ [u0, uK)) için,

M
∑

i=0

aix
i +

K−1
∑

j=1

(x− uj)
M
+ = 0 (2.9)olur.

x ∈ [u0, u1) için (x − uj)
M
+ = 0,(j = 1, ..., K − 1) olur. Dolay�s�yla (2.9)ifadesinden (x ∈ [u0, u1)) için

M
∑

i=0

aix
i = 0 (2.10)elde edilir. Çünkü 1, x, x2, ..., xM ifadeleri, a0 = a1 = ... = aM = 0 ola
ak³ekilde en azM+1 tane farkl� noktay� içeren her küme de do§rusal ba§�ms�zd�r.Buradan, (2.9) dü³ünüldü§ünde x ∈ [u0, uK) için,

K−1
∑

j=1

(x− uj)
M
+ = 0 (2.11)yaz�l�r. E§er x =

uj+uj+1

2
, (j = 1, ..., K−1) al�n�r ve (2.11)' de yerine yaz�l�rsa,

bj = 0 elde edilir (j = 1, ..., K − 1). Çünkü
(
uj + uj+1

2
− uK)

M
+ = 0 (2.12)d�r (k > j). O halde gösterilmesi gereken f ∈ Su,M([u0, uK)) için, (2.7)' de

a0, a1, ..., b1, ..., bK−1 ∈ ℜ oldu§udur. Burdan matematiksel indüksiyon ile, herbir k ∈ {0, ..., K − 1} için , x ∈ [u0, uK+1) aral�§�nda ,
f(x) =

M
∑

i=0

aix
i +

K−1
∑

j=1

bj(x− uj)
M
+ (2.13)ola
ak ³ekilde a0, a1, ..., b1, ..., bK−1 ∈ ℜ oldu§unu göstermek gerekir. Bu du-rum, k = 0 için sa§lan�r; çünkü f , [u0, u1) aral�§�nda M. ya da daha küçükdere
eden bir polinomdur. Varsayal�m ki, (2.14) ifadesi, k < K−1 için sa§lan-s�n. O zaman, g gibi bir fonksiyon tan�mlans�n:12



g(x) = f(x)−
M
∑

i=0

aix
i −

K−1
∑

j=1

bj(x− uj)
M
+ (2.14)ve x ∈ [u0, uk+1) için,

g(x) = 0 (2.15)sa§lan�r. f ∈ Su,M([u0,uK)) oldu§undan, bu fonksiyon, uk+1 noktas�nda M-1kere sürekli diferensiyellenebilir. Bundan dolay�, i = 0, ...,M − 1 için,
∂ig(uk+1)

∂xi
= 0 (2.16)d�r. Çünkü f ∈ Su,M([u0, uK)) oldu§undan, g, M. ya da daha küçük dere
edenbir polinomdur. Dolay�s�yla, x ∈ [uk+1, uk+2) için öyle c0, ..., cM ∈ ℜ say�lar�bulunur ki,

g(x) =
M
∑

i=0

ci(x− uk+1)
iolur. Çünkü, ∂jg(uk+1)

∂xj =
∑M

i=j ci ·i ·(i−1) · · ·(i−j+1) ·(x−ui−j
k+1)|x=uk+1

= j!cj 'dir. E³itlik 2.16 ifadesinden c0 = ... = cM−1 = 0 olur. Burada x ∈ [uk+1, uk+2)oldu§u için,
g(x)− cM(x− uk+1)

M = 0olur. Bu durum (2.22) ile beraber kullan�ld�§�nda, k + 1 için (2.14) ifadesinde
bk+1 = CM olarak bulunur [22℄.
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2.1.5 Parçal� Do§rusal Regresyon ModeliBu k�s�m MARS' �n alt yap�s�nda kullan�lan taban fonksiyonlar�n�n reg-resyon analizinde nas�l kullan�la
a§�n� daha iyi kavramak aç�s�ndan verilmi³tir.Bu bölümde özel taban fonksiyonlar� kullan�ld�§�nda tasar�m matrisinin nas�ldüzenlendi§ine ve ilgili taban fonksiyonlar�n nas�l çizildi§ine ili³kin bilgi ve-rilmi³tir.Parçal� do§rusal regresyon modeli (Broken sti
k regression model), farkl�e§imli iki do§runun bir t dü§üm noktas�nda birle³mesiyle olu³ur. Bu du-rumda olu³turulabile
ek taban fonksiyonlar� kümesi, t noktas�n�n solunda s�f�rde§erini alan bir fonksiyon an
ak sa§ taraf�nda pozitif e§imli ba³ka bir fonksiyonolabilir. Bu taban fonksiyonu olu³turman�n matematiksel ifadesi a³a§�da ver-ilmi³tir.
(x− t)+Bu ifade ile verilen fonksiyon, ayr�
a, "budanm�³ bir do§ru" veya "a trun-
ated line" olarak da bilinir. Buna ili³kin gra�k seçilmi³ t de§erleri için �ekil2.4b ile verilmi³tir.

�ekil 2.4: Parçal� do§rusal regresyon modeli ve uygun tabanBurada her u için u+, e§er u pozitifse u, de§ilse 0 de§erini al�r. Bu durumaili³kin parçal� do§rusal regresyon modeli (2.17) ile ilgili gra�k �ekil 2.4a ileverilmi³tir. 14



yi = β0 + β1xi + β11(xi − t)+ei (2.17)E³itlik 2.17 ile verilen modele ili³kin X matrisi (2.18) ile verilmi³tir.
X =

















1 x1 (x1 − t)+

1 x2 (x2 − t)+

... ... ...

1 xn (xn − t)+

















(2.18)
Buraya kadar aç�klanan model yap�lar� daha kar�³�k olarak dü³ünülebilir.Buna ili³kin regresyon modeli için kurula
ak X matrisi (2.19) ile verilir:

X =

















1 x1 (x1 − t1)+ (x1 − t2)+ ... (x1 − tn)+

1 x2 (x2 − t1)+ (x2 − t2)+ ... (x2 − tn)+

... ... ... ... ... ...

1 xn (xn − t1)+ (xn − t2)+ ... (xn − tn)+

















(2.19)
Bu regresyon modeli, çok parçal� regresyon modeli (Whip regression model)olarak bilinir [21℄. (x−t)+ yap�s�ndaki fonksiyonlar�n tabana eklenmesi,Xma-trisine (xi−t)+ yap�s�ndaki sütun vektörü de§erleri olarak yans�r. E³itlik 2.19'da seçilen ti, i = 1, ..., n de§erleri ile regresyon fonksiyonunun tahmininde kul-lan�labilir. Uygun (x − t)+ fonksiyonuna ili³kin t de§eri genellikle "dü§üm"olarak bilinir. "Dü§üm" kelimesi burada iki do§rusal fonksiyonu birle³tirmesianlam�nda kullan�lm�³t�r. �lgili modelin gra�§i ve uygun taban gra�§i �ekil2.5a ve b ile verilmi³tir.Do§rusal splayn taban fonksiyonu (x− t)+ olarak da bilinir. Bu tür fonksi-yonlar�n bir kümesi "Do§rusal Splayn Taban" olarak adland�r�l�r. Bu türdo§rusal splayn taban fonksiyonlar�n�n, 1, x, (x−t1)+, ..., (x−tK)+ herhangi birdo§rusal kombinasyonu, t1, ...tK dü§ümleri ile bir parçal� do§rusal fonksiyon-dur. 15



�ekil 2.5: Çok parçal� regresyon modeli ve uygun tabanBu ³ekilde olu³turulan fonksiyonun splayn olarak adland�r�ld�§� daha ön
ekibölümde ifade edilmi³tir ve ilgili splayn modeli (2.20) ile verilmi³tir:
f(x) = β0 + β1x+

K
∑

k=1

bk(x− tk)+ (2.20)S�kça kullan�lan tabanlar�n gra�kleri �ekil 2.6 ile gösterilmi³tir [21℄.

�ekil 2.6: a-Budanm�³ do§ru, b-B-splayn taban, 
-Radyal Taban, d-Demmler-Reins
h taban2.1.6 Splaynlar ve Matematiksel GösterimiSplaynlar genellikle nümerik analizde, interpolasyonda, düzeltme (smooth-ing) veya geometrik tasar�mlarda kullan�lan fonksiyonlard�r. Bir grup veriyepolinomiyal bir e§ri uydurma veya pek çok parçadan olu³an polinomlar�n bile-³imden olu³an temel bir fonksiyon olarak tan�mlanabilir. Ama
�, tan�mlanan16



bir aral�kta, ba§�ms�z de§i³kenlerle yan�t de§i³keni aras�ndaki ili³kiyi, gözlemde§erlerinden yararlanarak, alt aral�klar ve her alt aral�kta tan�mlanan poli-nomlar yard�m�yla modellemek ve pürüzsüz bir e§ri elde etmektir.Tan�m 2.1.8 [a, b] üzerinde tan�ml�, k. veya büyük dere
eden, k > 0, λi artanreel say� dizisine sahip, i = 0, 1, 2, ..., g + 1, (λ0 = a, λg+1 = b), ve a³a§�dakiko³ullar� sa§layan s(x) fonksiyonuna splayn denir.(i) ∀ s(x), [λi, λi+1] aral�§�nda dere
esi en çok k veya k′ ya e³it olan bir poli-nomdur.
s[λi,λi+1] ∈ Pk i = 0, 1, 2, ..., g ; Pk:k'�n
� dere
eden polinomlarailesi(ii) s(x) fonksiyonu ve onun k − 1'in
i mertebeye kadar olan türevleri [a, b]üzerinde süreklidir.
s(x) ∈ Ck−1[a, b]Özellik 1 [a, b] üzerindeki alt aral�klarda dere
esi k ve/veya daha küçük herpolinom, [a, b] üzerinde bir splayn fonksiyonudur. Genellikle, k'�n
� dere
edensplayn, [a, b] aral�§�nda farkl� polinomlarla verilir.Özellik 2 k' �n
� dere
eden splayn fonksiyonun k' �n
� dere
eden türevi basa-mak fonksiyonudur. k− 1 ve daha dü³ük dere
eden türevleri ise süreklidir. Butan�mlamaya göre k' �n
� dere
eden bir polinom k' �n
� dere
eden bir splayn�nözel bir durumudur.Özellik 3 λ0, λ1, ..., λg+1 artan ve s�rayla dizilmi³ noktalard�r.

s(x), k'�n
� dere
eden bir splayn fonksiyonu olsun. λi dü§üm noktalar�nda s(x)fonksiyonunun k − 1'in
i dere
eden türevi süreklidir. Pki, [λi, λi+1] aral�§�nda
k'�n
� dere
eden polinom olsun. Öyleyse (2.21) elde edilir.

P r
k,i(λi) = P r

k,i+1(λi) (2.21)Buradan, k' �n
� dere
eden g(x) polinomu için (2.22) yaz�l�r:
g(x) = Pk,i+1(x)− Pk,i(x) (2.22)

g(x)' in k − 1' in
i dere
eden türevlerinin x = λi de kökleri oldu§undan(2.23) elde edilir:
g(x) = Pk,i+1(x)− Pk,i(x) = ci(x− λi)

k (2.23)17



Burada, ci sabittir. Bu denklem yeniden, (2.24) ³eklinde yaz�labilir:
Pk,i+1(x) = Pk,i(x) + ci(x− λi)

k (2.24)
k. dere
eden Pk,0(x) polinomu (λ−1, λ0) aral�§�nda verildi§i zaman Pk,i(x),

(λ0, λ1) aral�§�nda (2.25) ba§�nt�s�n� gerçekler:
Pk,1(x) = Pk,0(x) + c0(x− λ0)

k (2.25)Buradan, Pk,2(x) polinomu, (λ1, λ2) aral�§�nda (2.26)³eklini al�r:
Pk,2(x) = Pk,0(x) + c0(x− λ0)

k + c1(x− λ1)
k (2.26)Benzer olarak Pk,i+1(x), (λi, λi+1) aral�§�nda (2.27)³eklinde yaz�l�r:

Pk,i+1(x) = Pk,0(x) +
i
∑

j=0

cj(x− λj)
k λi ≤ x ≤ λi+1 (2.27)

Pk,i+1(x)' i s(x) splayn gösteriminde yeniden yazarsak (2.28) olarak eldeedilir:
s(x) = Pk,0(x) +

i
∑

j=0

cj(x− λj)
k λi ≤ x ≤ λi+1 (2.28)Parçal� kuvvet fonksiyonu kullanarak (2.29) ile, x 'in tüm noktalar� üze-rinde (2.29) ifadesi bulunur:

s(x) = Pk,0(x) +

n
∑

i=0

ci(x− λi)
k
+ (2.29)E³itlik 2.29' un ci katsay�lar� bilinmemektedir. Dolay�s�yla bulunmas� gerek-mektedir. k' �n
� dere
eden bir splayn fonksiyonunun k' �n
� dere
eden türevibir basamak fonksiyon oldu§undan, sk(x) dü§üm noktalar�nda süreksiz olur.

λi dü§üm noktalar�n�n iki taraf�nda splayn fonksiyonlar�n�n k' �n
� dere
e-den türevlerinin farklar�na bakal�m. E³itlik 2.28' yi kullanarak ve türev alarak(2.30) olarak elde edilir:
sk(λi + 0)− sk(λi − 0) = k!ci (2.30)Buradan ci leri çözersek (2.31) elde edilir [23℄.
ci =

1

k!
[sk(λi + 0)− sk(λi − 0)] (2.31)�ekil 2.7' de splayn fonksiyonu ve dü§ümler aras� ili³kileri verilmi³tir.18



�ekil 2.7: x0 ile xn−1 aras� dü§ümler ve splayn fonksiyonu2.2 Yan�t Yüzeyi Modellerinin Yap�s�Bir süreçte ba§�ms�z de§i³kenlerle yan�t de§i³keni aras�ndaki ili³ki, yan�t�en büyükleyen veya en küçükleyen ba§�ms�z de§i³kenlerin düzeylerine bakarakbulunabilir. Yan�t de§i³keni Y ile k tane ba§�ms�z de§i³ken aras�ndaki ili³ki(2.32) ifadesiyle verilir:
Y = f(ξ1, ξ2, ..., ξk) + ǫ (2.32)Burada, ξ1, ξ2, ..., ξk ba§�ms�z de§i³kenler ve ǫ deneysel hata olarak for-mülde yer almaktad�r. Gerçek yan�t fonksiyonu f bilinmedi§i durumlarda buyap�n�n, bir polinomial model vas�tas�yla ba§�ms�z de§i³kenlerin olu³turdu§ubir bölgenin içerisinde oldu§u kabul edilir.Yan�t yüzeyi modelleri için, y yan�t(ba§�ml�) de§i³keninin, ba§�ms�z de§i³ken-lerin bir fonksiyonu oldu§u ve deneysel hatan�n s�f�r ortalamal� ve σ2 sabitvaryansl� oldu§u varsay�lmaktad�r. Bir ba³ka varsay�m, modelde bulunan ba§�m-s�z de§i³kenlerin aras�nda ili³ki olmamas�d�r. Yan�t de§i³keninin ortalamas�(2.33) ile verilmi³tir:
E[Y ] = f(ξ1, ξ2, ..., ξk) (2.33)Buna ortalama tepki fonksiyonu da denir. X ' ler için deney tekrarland�kçaölçülen tepki ölçüm hatalar�ndan dolay� de§i³im göstere
ektir. Yan�t yüzeyimodelleri iki veya daha fazla de§i³kenin ba§�ml� de§i³ken üzerindeki etkilerinin19



ortaya konuldu§u çal�³malard�r. YYM deneysel hatadan etkilenen tepki fonksi-yonunun özelliklerini in
eler. Birin
i dere
eden (do§rusal) bir model (2.34) ile,
Y = β0 + β1ξ1 + β2ξ2 + ... + βkξk + ǫ (2.34)ve ikin
i dere
eden bir model (2.35) ile yaz�labilir:

Y = β0 +

k
∑

i=1

βiξi +

k
∑

i=1

βiiξ
2
i +

∑

i<j

n
∑

j=1

βijξiξj + ǫ (2.35)�statistiksel analiz a³amas�na geçilmeden ön
e ba§�ms�z de§i³kenlerin mate-matiksel i³lemleri kolayla³t�rmak için "kodlanm�³ de§i³kenler" olan x1, x2, ..., xk' ya dönü³türülmesi gerekebilir. Buna göre (2.32) ile verilen ili³ki (2.36) ile gös-terilebilir:
E[Y ] = f(x1, x2, ..., xk) (2.36)Bu e³itlik ba§�ms�z de§i³ken say�s� k=1 oldu§unda bir e§ri, k>1 oldu§undaise bir hiper yüzeyi temsil eder. Kodlanm�³ de§i³kenler (2.37) ifadesiyle belir-tilmi³tir:

ξi =
1

N

N
∑

u=1

ξui (2.37)
xui =

ξui − ξi
Si

Si =

{

N
∑

u=1

(ξui − ξi)
2

N

}1/2

Buradaki Si tasar�m noktalar�n�n yay�l�³�n�n bir ölçüsüdür. Bu e³itliklerde,parametreler deneme kombinasyonlar�yla tahmin edilmektedir. Parametrelerinifade ettikleri a³a§�da belirtilmi³tir: 20



β0 : Ba§�ms�z de§i³kenlerin s�f�r oldu§u durumda yan�t de§i³kenininald�§� de§er(inter
ept).
βi : i. ba§�ms�z de§i³kenin do§rusal etkisi.
βii : i. ba§�ms�z de§i³kenin karesel etkisi.
βij : i. ve j. ba§�ms�z de§i³kenlerinin etkile³im etkisi (i<j).dir. Uygulamalarda ço§u zaman, gerçek yan�t de§i³keninin temsil edildi§ibu e³itli§in yap�s� bilinmedi§inden, çe³itli yakla³�mlarla bu fonksiyon temsiledilmeye çal�³�l�r. Ba³ka bir deyi³le, bu e³itli§in hangi dere
edeki faktör kom-binasyonlar�n�n modele dahil edile
e§i bilinemez. An
ak do§rusal veya kareselyakla³�mlarla gerçek fonksiyonun tahmin edilmesi gerekir. Bunun için, i) Bi-rin
i dere
eden yan�t yüzeyleri tasar�mlar� ve ii) �kin
i dere
eden baz� yan�tyüzeyleri tasar�mlar� a³a§�da aç�klanmaya çal�³�la
akt�r:i. Birin
i Dere
eden Yan�t Yüzeyi Tasar�mlar�n�n Yap�s�Birin
i dere
eden yan�t yüzeyi k tane ba§�ms�z de§i³keni içeren model for-muyla a³a§�da verilmi³tir:

Y = β0 +

k
∑

i=1

βiXi + ǫBu formu matris ve vektörlerle ifade etmek için (2.38) kullan�l�r:
Y = Xβ + ǫ (2.38)E³itlik 2.38 de Y yan�t de§i³keni N denemeden olu³an bir vektör, β bilin-meyen parametreler vektörünü β=(β0, β1, ..., βk)

′

(k+1)×1 , ǫ = (ǫ0, ǫ1, ..., ǫk)
′

N×1hata vektörünü ve XN×(k+1) ba§�ms�z de§i³kenlerinin düzey kombinasyon-lar�n�n olu³turdu§u matrisi temsil etmektedir.Xmatrisinin ilk sütunu 1 de§er-lerinden olu³an N × 1 boyutlu bir vektördür. Kalan sütunlar ise, u 'in
i dene-mede (experimental run), i'in
i de§i³kenin ui'in
i eleman� olan ǫui de§eridir.Dolay�s�yla kalan sütunlar için olu³an N×k boyutlu matris D-tasar�m matrisiolarak bilinir. O halde X matrisini X=[1,D℄ olarak yazabiliriz. X, tam rank-21



l� bir matris olmak üzere, β bilinmeyen parametreler vektörünün en küçükkareler tahmin edi
isi β̂ olarak gösterilir.Ba§�ms�z de§i³kenler kodlanm�³ de§i³kenler olarakXmatrisinde yer al�rlar.Modelin gerçek ortalamay� veren k�sm�, (2.38) formülünden yola ç�karak (2.39)ile elde edilir:
Ŷ = [1,X′]β̂ (2.39)E³itlik 2.39'deki model yan�t de§i³kenini temsil etmeye yeterli ise, birx = (x1, x2, ..., xk)

′ noktas�ndaki kestirilmi³ yan�t de§i³keni de§eri Ŷ(x), (2.40)ifadesiyle hesaplanabilir:
Ŷ(x) = [1,x′]β̂ (2.40)Birin
i dere
eden modeller aras�ndan en iyi modeli seçerken seçim kriteriolarak yan�t de§i³keninin varyans�n�n minimum olan� benimsenir [24℄. Bununiçin (2.41) ifadesine dikkat edilmelidir;

0 ≤ x′(D′D)
−1x ≤ ‖x‖2 . ∥∥(D′D)−1

∥

∥ (2.41)Burada,
‖x‖ = (x′x)1/2

∥

∥(D′D)−1
∥

∥ =
∥

∥

∥

∑k
i=1

∑k
j=1(d

ij)2
∥

∥

∥

1/2ifadeleri Öklid ve Frobenius normlar�n� göstermektedir. Burada, ∥∥(D′D)−1
∥

∥ifadesi (D′D)−1 matrisinin Frobenius normunu göstermektedir. dij, ifadesi
i, j = 1, 2, ..., k, (D′D)−1 matrisinin {ij}' in
i eleman�d�r. E³itsizlik in
elen-di§inde x′(D′D)−1

x ifadesini minimize etmek için (D′D)−1 normunu en küçükyapan, 1 ≤ u ≤ N için xu1, xu2, ..., xuk koordinatlar�nda D tasar�m matrisininseçilmesi gerekmektedir.
D matrisinin N×k boyutlu oldu§u bilinmektedir. Bu matrisin i. sütununubelirtmek için di ifadesini kullanal�m. O halde, D = [d1; d2; ...; dk] yaz�labilir.Ayr�
a R bölgesinde, xi de§erleri üzerinde, (2.42) ile verilen k�s�t�n�n oldu§uvarsay�ls�n.

d
′

idi ≤ c2i (2.42)22



Buradaki, ci, (i = 1, 2, ..., k) sabit bir de§erdir. E³itsizlik 2.42 ile verilen birk�s�t, tasar�m�n i. koordinat ekseni do§rultusundaki yay�l�³�n�n c2i ile s�n�rlad�§�anlam�na gelmektedir. Bu durum (2.43) olarak gösterilebilir:
dii ≤ c2i (2.43)Burada, dii ifadesi D′D matrisinin i. kö³egen eleman�d�r. Ayr�
a
dii ≥

1

dii
(2.44)oldu§u gösterilmi³tir [24℄. Bir ba³ka deyi³le dii, (D′D)−1 matrisinin kö³egeneleman� iken, dii ifadesi D′D matrisinin kö³egen eleman�d�r (i = 1, 2, ..., k).Böyle
e (2.43) ve (2.44) ifadelerinden, R bölgesideki Xi de§erleri için

dii ≥
1

c2i
(2.45)oldu§u görülebilir. var(bi) = σ2dii oldu§u için, var(bi) ≥ σ2/c2i yaz�labilir.E³itlik 2.44' deki durum, dij = 0 oldu§unda, di§er bir deyi³le, (i 6= j) için

d
′

idj = 0 oldu§unda sa§lan�r. Bu durumda, dii, dii = c2i , (i = 1, 2, ..., k)oldu§unda (2.45)'deki 1/c2i de§erini al�r. Dolay�s�yla tasar�m, (2.46) ve (2.47)ile verilen ko³ullar� sa§lar:
d

′

idj = 0 , i 6= j (2.46)
d

′

idi = c2i , i = 1, 2, ..., k (2.47)Görülüyor ki, dii minimumde§er olarak, 1/c2i ' ifadesini almaktad�r. E§er buko³ullar sa§lan�yorsa, R bölgesinde, ∥∥(D′D)−1
∥

∥' in minimum de§erine ula³�la-bilir.2.2.1 2k Faktöriyel Tasar�mlar�
2k faktöriyel tasar�mlar�nda, her bir faktörün 2 düzeyi vard�r. Bu tasar�m-larda, k faktörün düzeylerinin bütün mümkün kombinasyonlar� dikkate al�-narak bir tasar�m matrisi D elde edilir. Bu tasar�mda her bir faktör en dü³ük23



düzeyindeyken −1, en yüksek düzeyindeyken +1 de§eriyle kodlanabilen ikidüzeyde ölçülür. Tasar�m matrisi kodlama de§i³kenleri ile 2k sat�r ve k sütun-dan olu³ur. Bu matrisin her bir sat�r� faktör düzeylerinin bir kombinasyonunugösterir. 2k düzeni için istatistiksel model k ana etki, (k
2

) iki faktör etkile³im-lerini, (k
3

) üç faktör etkile³imlerini ve bir k faktör etkile³imlerini içerir. Böyle
ebir 2k düzen için tam model 2k − 1 etkiden olu³ur.Kodlanm�³ de§i³kenlerin kullan�ld�§� bir tasar�m matrisi için 23 tasar�m�Dmatrisi a³a§�daki gibi olu³turulur:
D =









































−1 −1 −1

1 −1 −1

−1 1 −1

1 1 −1

−1 −1 1

1 −1 1

−1 1 1

1 1 1









































= [d1 : d2 : d3]

i 6= j için D matrisinin di ve dj sütunlar� için didj = 0' d�r. Bu nedenle 23tasar�m� diktir. i = j için ise didj = 8' dir (i=1,2,3). Bu durumda,
D′D =











8 0 0

0 8 0

0 0 8











(D′D)
−1

=











1/8 0 0

0 1/8 0

0 0 1/8









elde edilir. Bu durumu 2k için genelle³tirirsek,
24



D′D =

















2k 0 ... 0

0 2k ... 0

... ... ... ...

0 0 ... 2k

















(D′D)−1 =

















2−k 0 ... 0

0 2−k ... 0

... ... ...

0 0 ... 2−k















elde edilir. Buradan 2kIk = D′D yaz�labilir. Bu durumda 2k faktöriyel tasar�m-dan elde edile
ek bilinmeyen model katsay�lar� (2.48) ile bulunur:
β =

1

2k
X′Y (2.48)Buna göre β̂0, ..., β̂k katsay�lar� 2k uygulama kombinasyonlar� alt�nda eldeedilmi³ sabitlerdir.Bunun yan�nda kesikli fraksiyonel tasar�mlar da bu ba³l�k alt�nda in
e-lenebilir, an
ak bu tezin konusu d�³�nda kald�§�ndan bahsedilmeye
ektir. Ara³-t�rma
�lar genellikle yan�t yüzeyinin ³ekli hakk�nda bilgiye sahip olmad�klar�n-dan ilk a³amada yan�t yüzeyine birin
i dere
eden bir model uyarlarlar, an
akyüzeyde e§risellik durumunda veya uyum eksikli§i bulunmas� nedeniyle mode-le yüksek dere
eli terimler eklenir ve model ikin
i dere
eye ç�kart�l�r.ii. �kin
i Dere
eden Yan�t Yüzeyi Tasar�mlar�n�n Yap�s��kin
i dere
e yan�t yüzeyi modelleri faktörlerin karesel etkilerinin de mo-delde yer ald�§� tasar�mlard�r. E³itlik 2.49 ile, 2 faktörlü 3 düzeyli bir ikin
idere
eden yan�t yüzeyi modeli verilmi³tir:25



Y = β0 +

k
∑

i=1

βiXi +

k
∑

i=1

βiiX
2
i +

k
∑

i=1

k−1
∑

j=2

βijXiXj + ǫ (2.49)Burada, X1, X2, ..., Xk ba§�ms�z de§i³kenler olmak üzere, Y bu de§i³kenler-den etkilenen yan�t de§i³keni, β0, ..., βk, i, j = 1, 2, ..., k bilinmeyen parametrekestirimleri ve ǫ rasgele hata terimine kar³�l�k gelir. �kin
i dere
eden bir yan�tyüzeyi modelini tahmin etmek için deney tasar�mlar� en az�ndan her bir fak-törün 3 düzeyini içermelidir. Bu durum 3k faktör tasar�mlar�n�n kullan�m�n�gerektirir. Box ve Wilson [25℄ taraf�ndan, ikin
i dere
eden modelleri tahminetmek için 3k faktör tasar�mlar�na bir alternatif olarak merkezi bile³ik tasar�m-lar (
omposite 
entral design) önerilmi³tir. �kin
i dere
eden bir yan�t yüzeyimodelinin elde edilmesi ve bu modelin in
elenmesi için gerekli ad�mlar ³u³ekildedir:1. Tahminlenmi³ ikin
i dere
eden yan�t yüzeyini, yeterli bir model ile temsiletmek.2. Dura§an nokta koordinatlar�n� belirlerken (2.49) ile elde edilen modelikullanmak. Bu noktada kestirilmi³ yan�t yüzeyinin e§imi s�f�rd�r. Dura-§an (stationary) nokta deney bölgesinin içinde bulunursa, a³ama 3'egeçilir. E§er dura§an nokta deney bölgesi d�³�nda ise, dura§an noktan�nbulundu§u yönde ba³ka deneylerin uygulanmas� gerekmektedir.3. Dura§an noktan�n bir maksimum, minimum veya eyer (saddle) noktas�olup olmad�§�n� belirlemek.4. Dura§an nokta 
ivar�ndaki, yan�t yüzeyinin ³eklini belirlemek. Buradaki,dura§an nokta bir maksimum (veya minimum) veya bir eyer noktas� ola-bilir. Eyer noktas�n�n varl�§� durumunda, tahminlenmi³ yüzeyin yüksek-li§i, dura§an noktadan belli yönlere hareket edildi§inde artar. Genelliklebir eyer noktas�n�n varl�§�, maksimum içeren iki ayr� bölgenin varl�§�n�göstermektedir.
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�kin
i dere
eden tasar�mlar 3k faktöriyel tasar�m, Box and Behnken tasar�m-lar, Merkezi bile³ik tasar�mlar, Silindirik döndürülebilir tasar�mlar, Simetrikolmayan döndürülebilir tasar�mlar, Hake tasar�mlar, Kar�³�k tasar�mlar, vs...gibi s�n��and�r�labilir. Bir sonraki bölümde 3k tasar�mlar ve merkezi bile³iktasar�mlar detaylar�yla anlat�la
akt�r. 2k Faktöriyel Tasar�mlar ve Merkezibile³ik tasar�mlar için MARS yakla³�m� ön
eki çal�³malar�m�zda ba³ar�yla uygu-lanm�³t�r [17,18℄. Bu tezin kapsam�nda, ön
eki çal�³ma sonuçlar� da dikkate al�-narak ikin
i dere
eden yan�t yüzeyi modellerine MARS yakla³�m� önerilmi³tir.2.2.2 3k Faktöriyel Tasar�mlar�
3k faktöriyel tasar�mlar� her bir faktörün 3 düzeyinin oldu§u deneyseldüzenlerdir. Bu tasar�mlarda faktörün dü³ük, orta ve yüksek düzeyleri olarakkar³�la³�l�r. Bu düzeyler kodlanarak dü³ük= −1, orta= 0 ve yüksek= 1 gibisay�sal de§erler olarak hesaplamalara kat�l�rlar. Bu düzey kodlamalar� her birfaktör için yap�l�r. Burada, k de§eri analizi yap�la
ak faktör say�s�n� göstermek-tedir. Faktör düzeylerinden yararlanarak yan�t de§i³keni üzerinde bir model-leme yap�lmaya çal�³�l�r. 2k faktöriyel tasar�mlar�ndan farkl� olarak regresyonmodelinde fazladan bir faktörün olmas�, tasar�m faktörlerinin karesel etki-lerinin de modelde bulunmas�na sebep olur. Buna göre elde edilen ikin
i dere
e-den model E³itlik 2.49 ile ön
eki bölümde gösterilmi³tir. Kodlanm�³ de§i³ken-lerle 32 faktöriyel tasar�m matrisi a³a§�da verilmi³tir:

D =















































−1 −1

−1 0

−1 1

0 −1

0 0

0 1

1 −1

1 0

1 1













































Bunlara ek olarak 33 faktöriyel tasar�m�n�n da polinomiyal regresyona27



uyumu in
elenebilir. Benzer ³ekilde de§i³kenler tasar�m matrisinin sütunlar�nayerle³tirilir. An
ak bu tez kapsam�nda daha detayl� in
elenmeye
ektir.2.2.3 Merkezi Bile³ik Tasar�mBu tasar�m, ikin
i dere
eden yüzeylerin katsay�lar�n� tahmin etmek içinilave noktalarla büyütülmü³tür; 3k faktöriyel tasar�mlara alternatif bir tasar�molarak geli³tirilmi³tir ve a³a§�daki k�s�mlardan olu³maktad�r:1. Her bir nokta (x1, x2, ..., xk) = (±1,±1, ...,±1) biçiminde düzenlenir.2. Merkez noktalar� (x1, x2, ..., xk) = (0, 0, ..., 0) olarak tan�mlan�r.3. Eksen noktalar�, her bir de§i³kenin tasar�m merkezinden α uzakl�§�ndatan�mlan�r.
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Eksen k�sm�ndaki noktalar a³a§�daki gibi gösterilir:
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Bu tasar�m N = 2k+2k+n0 noktaya sahiptir [24℄. Burada n0 merkez nok-tas� say�s�d�r. Faktör noktalar� etkile³im terimlerinin tahminine, eksen nokta-lar� ikin
i dere
eden terimlerin tahminine yard�m
� olur. Merkez noktalar� da,hatan�n bir tahminine olanak sa§lar. Merkezi bile³ik tasar�ma ait gra�kler,k=2 ve k=3 için �ekil 2.8a-b ile verilmi³tir [26℄.

�ekil 2.8: k = 2 ve k = 3 için merkezi bile³ik tasar�m�ekil 2.8 ile verilen tasar�mlardan sol paneldeki, k=2 için çizilen merkezibile³ik tasar�md�r. Burada, tasar�m�n faktör noktalar� eksenler ve dikdörtgeninkö³eleri üzerinde yer al�r. Merkez noktas� eksenlerin kesi³im noktas�nda bu-lunur. k=3 için çizilen merkezi bile³ik tasar�ma ait gra�k ise sa§ panelde yer29



alm�³t�r. Buna göre faktör noktalar� (±1,±1,±1) kübün kö³eleri üzerinde veeksen noktalar� (α uzakl�§�nda) ise eksenler üzerinde yer al�rlar. Merkez nok-tas� ise kübün merkezinde yer al�r.2.3 Bir Yan�t Yüzeyinin Analizi için Temel MetotlarMatris notasyonuyla bir yan�t de§i³keninin dura§an noktalar�n�n belirlen-mesinde k de§i³kenli kestirilmi³ yan�t yüzeyi üzerinden gidilir. Dura§an nok-talar�n bulunmas� için (2.50) göz önüne al�n�r:
Ŷ (x) = b0 + x′b+ x′Bx (2.50)Burada b0 sabit terimi göstermek üzere, di§er terimler (2.51) ile verilir:
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(2.51)
B, simetrik matrisi elemanlar� denklemdeki ikin
i dere
eden terimlerinintahminlerinin bulundu§u bir matristir. b vektörü ise denklemdeki birin
i dere
e-den terimlerin tahminleridir. Ŷ (x)' nin s�ras�yla x1, x2, ..., xk' ya göre parçal�(k�smi) türevleri, (2.52) ile verilir:

∂Ŷ (x)
∂x1

= b1 + 2b11x1 +
∑k

j=2 b1jxj

∂Ŷ (x)
∂x2

= b2 + 2b22x2 +
∑k

j 6=2 b2jxj

...

...

...

∂Ŷ (x)
∂xk

= bk + 2bkkxk +
∑k−1

j=1 bkjxj

(2.52)
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Bütün k�smi türevler, b+2Bx ³eklinde de ifade edebilir. K�smi türevlerinher biri s�f�ra e³itlenerek ve xi de§erlerine göre çözülerek, k × 1 boyutlu x0vektörünün elemanlar� yani bu dura§an noktalar�n koordinatlar�; ba³ka birdeyi³le (2.53) bulunmu³ olur:
x0 =

−B−1b

2
(2.53)Burada B, k × k boyutlu matrisin tersiyle i³lem yap�lmaktad�r.Dura§an noktan�n, maksimum, minimum veya eyer noktas� m� oldu§ununara³t�r�lmas� gerekir. Bütün bu durumlar �ekil 2.9 üzerinde in
elenebilir:a) Yan�t de§erinde maksimumu söz konudur.b) Yan�t de§erinde eyer noktas� söz konusudur.
) Yan�t de§eri için bir ³ey söylenemez.

�ekil 2.9: �kin
i dere
eden modeller için yüzeyler�kin
i dere
eden iki de§i³kenli yan�t fonksiyonunun kestirimi (2.54) ile veril-mi³tir:
Ŷ (x) = b0 + b1x1 + b2x2 + b11x

2
1 + b22x

2
2 + b12x

2
1x

2
2 (2.54)
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Burada, b0, b1, b2, b11, b22, b12 katsay�lar� modeldeki bilinmeyen parametretahminleridir ve k�smi regresyon katsay�lar� olarak bilinirler. �lgilenilen yan�tyüzeyinin ³ekli bu parametrelere ba§l� olarak, parabol, daire veya bir hi-per düzlem olu³turabilir. Bununla beraber ikin
i dere
eden modellerde yan�tfonksiyonunun maksimumunun ve minimumunun ara³t�r�lmas� önemlidir. Bunagöre (2.54) ifadesinin de§i³kenlere göre k�smi türevleri al�n�p, s�f�ra e³itlenirse(2.55) elde edilir:
dŶ

dx1
= b1 + 2b11 + b12x2 = 0

dŶ

dx2
= b2 + 2b22 + b12x1 = 0 (2.55)Bu denklemlerin çözümünden x1,0 ve x2,0 noktalar� elde edilir. Bu noktalarmodelde yerine konursa Ŷ0 yan�t de§erinin maksimum veya minimum de§eri-ne ula³�labilir.2.3.1 En H�zl� T�rman�³ Metodu (Steepest As
ent Method)Tan�m 2.3.1 En h�zl� ç�k�³ yöntemi olarak da bilinir. En h�zl� ç�k�³do§rultusu, Ŷ ' nin en h�zl� ³ekilde artt�§� do§rultu olup, bu do§rultukestirilmi³ yan�t yüzeyinin normaline paraleldir. �lgili bölgenin merkeziboyun
a kestirilmi³ yüzeyin normali olan do§ru, en h�zl� ç�k�³ yolu olarakbilinir. Deneyler en h�zl� ç�k�³ yolu boyun
a yan�t de§erinde art�³ duranakadar devam edilir. Daha sonra yeni bir ç�k�³ yoluyla yöntem devam et-tirildi§inde yan�t de§erinin optimum kom³ulu§una gelinir. Ba³ka bir dey-i³le, verilen bir fonksiyonun belirlenmi³ bir noktadaki art�³�n�n(azal�³)en yüksek oran�n�n yönüdür. Gradyant yönünde amaç fonksiyonunun enbüyük de§erini veren noktaya hareket ederken en iyi ad�m büyüklü§ünüsa§lamaya çal�³�lmas� da denilebilir.Varsayal�m ki f , P noktas�nda türevlenebilir olsun ve f 'in Pnoktas�ndakigradyant� ∇fp 6= 0'd�r.Önerme 1 i. Duf yönlü türevinin P 'deki en büyük de§eri ‖∇fP‖' dirve u birim vektörü ∇fP 'nin yönünde oldu§unda ortaya ç�kar.ii. Duf yönlü türevinin P 'deki en küçük de§eri ‖−∇fP‖' dir ve u birimvektörü −∇fP 'nin yönünde oldu§unda ortaya ç�kar.32



E§er u herhangi bir birim vektör ise, o zaman Kan�t. Duf = ∇fP .u =

‖∇fP‖ ‖u‖ cosθ = ‖∇fP‖ cosθ d�r. Burada, θ, ∇fP ve u aras�ndakiaç�d�r. An
ak θ = 0 iken cosθ = 1' dir öyle ki u ∇fP yönünü gös-terir. Sonuç olarak, Duf ' nin olas� en büyük de§eri Duf = ‖∇fP‖ (1) =

‖∇fP‖'dir. Ayr�
a cosθ' n�n en küçük de§eri θ = π iken, −1 ' dir. Bude§er birim vektör u −∇fP 'e i³aret eder ve
Duf = ‖∇fP‖ (−1) = −‖∇fP‖yönlü türevini verir [27℄.2.3.2 Kanonik AnalizBu analizin ama
� asl�nda uyumu yap�lm�³ bir ikin
i dere
eden e³itli§inyeniden ifade edilmesidir. Yan�t de§i³keninin dura§an nokta x0 orijinli yeni birkoordinat sistemine dönü³ümü ve bu sistemin eksenlerinin döndürülmesindenolu³ur. Bu eksenlerin tüm çapraz terimlerini yok ede
ek ³ekilde döndürülmesiile elde edilir. Bu yakla³�m Box ve Draper taraf�ndan A kanonik formu olarakadland�r�lm�³t�r [1℄. E§er istenirse, orijinin de§i³tirilmesiyle birin
i dere
e te-rimlerin elde edilmesi mümkün olabilir. Bu yakla³�m� da benzer ³ekilde Bkanonik formu olarak adland�rm�³lard�r.Varsayal�m ki uyumu yap�lm�³ model ikin
i dere
eden bir model olsun.B, k × k boyutlu matrisi elemanlar� denklemdeki ikin
i dere
eden terim-lerin tahminlerinin bulundu§u simetrik bir matristir. Bu matrisin özde§erleri,

λ1, λ2, ...λk ve bu özde§erlere kar³�l�k gelen özvektörler de m1,m2,...,mk olsun.Buradan (2.56), (mi 6= 0), yaz�labilir:
Bmi = miλi i = 1, 2, ..., k (2.56)B matrisi (2.57) ile temsil edilir:
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(2.57)
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Her bir özvektör m′

i
mi = 1 ola
ak ³ekilde ve mi , k × k boyutlu M mat-risinin i' in
i sütunu iken, M ortonormal bir matris olur. Dolay�s�yla k tane(2.56) ifadesi, (2.58) gibi benzer formda yaz�labilir:

BM = MΛ (2.58)E³itlik 2.58' de Λ, i' in
i kö³egen eleman� λi olan kö³egen bir matristir.E³itli§in sol taraftan M
′

(= M−1) ile çarp�m�yla (2.59) elde edilir:
M

′

BM = Λ (2.59)
MM

′

= I oldu§u dikkate al�n�rsa, o zaman genel model olarak (2.60) eldeedilir.
ŷ = b0 + x

′

b+ x
′

Bx = b0 + (x′M)(M′b) + (x′M)M′BM(M′x) (2.60)Buradan, X = M′x ve Θ = M′b(x = MX veya b = MΘ) olarak al�n�rsa,(2.61) yaz�labilir:
ŷ = b0 +X′Θ+X ′ΛX (2.61)E³itlik 2.61'i aç�k formuyla yeniden yazarsak,

ŷ = b0 +Θ1X1 + ... +ΘkXk + λ1X
2
1 + ...+ λkX

2
k (2.62)elde edilir. Görüldü§ü gibi A kanonik form ile çapraz terimler yok edilmi³tir.E³itlik 2.62'nin X1, X2, ..., Xk' ya göre k�smi türevleri al�nd�§�nda dura§annokta (2.63) ile bulunur:

Xis =
−Θi

2λi
(2.63)

λi özde§erinin büyüklü§ü ve i³areti uyumu yap�lm�³ olan ikin
i dere
e yüzeyin34



tipini belirlemektedir. Θi de§eri döndürülmü³ koordinat eksenleri yönünde,orijinal orijin olan x = 0 noktas�ndaki yüzeyin e§imini vermektedir. Xis de§er-leri, kanonik eksenler boyun
a dura§an nokta S' ye olan uzakl�§� ölçer.2.4 Model Seçim KriterleriÇoklu do§rusal regresyonda model seçimi için belirlenmi³ pek çok kritervard�r. Bunlardan baz�lar� "Çapraz Geçerlilik Kriteri (Cross Validation)","Genelle³tirilmi³ Çapraz Geçerlilik Kriteri (Generalized Cross Validation)",AIC (Akaike Information Criteria) ve "Cp Kriteri (Mallow's Cp)" olarak s�rala-nabilir [21℄. Bir sonraki alt bölümde bunlar�n tan�mlar�na ili³kin bilgiler veri-le
ektir.2.4.1 Çapraz Geçerlilik KriteriRegresyon e§risinin uyumu konusunda en çok kullan�lan kriterlerden biri"Art�k Kareler Toplam� (AKT)"olarak bilinir. Parametrik regresyonda gözlemde§eri yi tahmin
isinin bir parças� olarak kullan�ld�§�ndan bu durum, AKT'n�nmodel seçimi için uygun olmad�§� sonu
unu ç�kar�r. An
ak çapraz geçerlilikkriteri bu problemin üstesinden gelir. λ düzeltme parametresiyle x noktas�n-daki nonparametrik regresyon tahmini f̂(x;λ) olsun. Buna göre, AKT (2.64)ile elde edilir:
AKT (λ) =

n
∑

i=1

{

yi − f̂(xi;λ)
}2 (2.64)Çapraz geçerlilik (CV) kriteri ise (2.65) ile verilir:

CV (λ) =

n
∑

i=1

{

yi − f̂−i(xi;λ)
}2 (2.65)Burada f̂−i veri setinden (xi, yi) gözlem çiftinin ç�kart�lmas�yla elde edilen non-parametrik regresyon tahmin
isidir. Birini d�³arda b�rakma stratejisi AKT(λ)kriterinin yetersizli§ini ortadan kald�r�r. λ' n�n belirledi§i CV, λ > 0 oldu§u35



süre
e CV(λ) de§erini minimum yapand�r.2.4.2 Genelle³tirilmi³ Çapraz Geçerlilik KriteriCV(λ) için yaz�lan algoritmalar 1980' lerin ortalar�nda geli³tirilmi³tir. An-
ak, çapraz geçerlilik formülünün hesab�ndaki zorluk nedeniyle, genelle³tir-ilmi³ çapraz geçerlilik (GCV) kriteri daha çok kullan�lmaya ba³lanm�³t�r. Bukriter, (2.66) ile verilmi³tir:
GCV (λ) =

n
∑

i=1

(

{(I− Sλ)y}i
1− n−1tr(Sλ)

)2

=
AKT (λ)

{1− n−1tr(Sλ)}
2 (2.66)Burada Sλ düzle³tirme matrisi olarak yer al�r. Genelle³tirilmi³ çapraz geçerlilikhem hata terimini hem de model karma³as�n� hesaba katar. GCV, düzeltmesplaynlar� kapsam�nda ilk olarak Craven ve Wahba taraf�ndan önerilmi³tir[13℄. MARS algoritmas�, Craven ve Wahba taraf�ndan önerilen bu kriterdenyararlanarak model seçiminde modi�ye edilmi³ bir GCV hesab� yapar.2.4.3 Cp KriteriÇoklu regresyon modelleri seçiminde kullan�lan bir ba³ka kriter Cp de§eriolarak kar³�m�za ç�kar. Bu kriter (2.67) ile verilmi³tir:

Cp = AKT (p) + 2σ̂2
ǫp (2.67)Burada σ̂2

ǫ , (2.68) ile verilir:
σ̂2
ǫ =

AKT (λ)

dfartk(λ)
(2.68)dir. Burada dfartk, bu terime ait serbestlik dere
esidir. Cp(λ) yakla³�k olarakGCV(λ)' ya e³ittir. Bu durum (2.69) ile verilmi³tir:

GCV (λ) ≃ AKT (λ) + 2σ̂2
ǫ (λ)dfit(λ) (2.69)36



Burada dfit = iz(Sλ)' d�r. Bu iki kriter aras�ndaki temel fark, GCV, σ2
ǫ ' yiAKT(λ)' yi kullanarak tahminlerken, Cp(λ), σ2

ǫ ' n�n bir tahminine ihtiyaçduyar.2.4.4 Akaike Bilgi KriteriGCV ve Cp' den farkl� olarak Akaike Bilgi Kriteri (AIC) kriteri, AKT ve
dfartk(λ) aras�nda dengeyi sa§lamaya çal�³�r [28℄. Bu durum (2.70) ile ifadeedilir:

AIC(λ) ≡ log(AKT (λ)) + 2dffit(λ)/n (2.70)Literatürde modi�ye edilmi³ AIC kriterlerine rastlamak mümkündür.
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3 MARS3.1 Yinelemeli Bölüntüleme (Re
ursive Partitioning)Yinelemeli bölüntüleme regresyon modelleme metodolojisinin as�l kayna§�1960' larda Morgan ve Sonquist taraf�ndan geli³tirilen AID(Automati
 Inter-a
tion Dete
tion) ad�nda bir programa dayan�r [29℄. Bunun üzerine yap�lançal�³malar Breiman taraf�ndan 1984' te geli³tirilmi³tir [30℄. Bir sonraki altbölümde yinelemeli bölüntüleme konusu ikiye ayr�larak aç�klanmaya çal�³�la-
akt�r. Yinelemeli bölüntüleme, altbölgelerin yinelemeli olarak bölünmesiyleaç�klan�r [31℄.3.1.1 Altbölgelerin Yinelemeli Bölünmesi (Re
ursive Splitting)
y yan�t de§i³keninin x = (x1, ..., xk), k adet tahminleyi
i de§i³kenin vek-törü ile bilinmeyen ili³kisi (3.1) ile verilsin:

y = f(x1, ..., xk) + ǫ (3.1)Varsayal�m ki, N tane {yj, xj}
N
j=1 örne§i olsun. {Ri}

S
i=1, D ⊂ ℜk nin S taneayr�k altbölgelerin bir kümesi olsun. Yinelemeli bölüntüleme, verilen {Ri}

S
i=1altbölgeleriyle, bilinmeyen f(x ) fonksiyonunu, x de§erinde (3.2) ile tahmineder:

f̂(x) = f̂i(x) (3.2)Burada, x∈ Ri için, f̂i(x) fonksiyonu, D' nin Ri altbölgesi üzerindeki bi-linmeyen f(x) fonksiyonunu tahmin eder. Yinelemeli bölüntülemede, f̂i(x)sabit bir fonksiyon olarak al�n�r ve bu durum (3.3) ile gösterilir [29, 30℄.
f̂i(x) = ci ∀ x ∈ Ri (3.3)Burada, her ci hata kareler toplam�n� minimum (La
k of �t ) yapan i.n
ibile³en olarak dü³ünülür. Buna göre,

Lof
[

f̂i(x)] = minci

∑

x1∈Ri

(yi − ci)
2 (3.4)38



D tan�m bölgesinin altbölgeleri ayr�k olduklar�ndan her bir ci, {xi}
N
i=1'ye ait olan yi' lerin örnek ortalamas� ola
akt�r. Yinelemeli bölüntülemede ilkolarak tan�m bölgesi D tek bir altbölge olarak kabul edilir. Buna göre R1 = Dyaz�labilir. �leriye dönük algoritman�n ilk ad�m�, altbölge say�s� M kullan�
�taraf�ndan seçilen, çok say�da M ≥ S için {Ri}

M
i=2 ayr�k altbölgelere ay�r-makt�r. Burada i = 2, ...,M oldu§una dikkat edilmelidir. �kin
i olarak, geriyedönük algoritma ilk ad�m� geriye çevirir; modeldeki altbölge say�s�n� ve modeluygunlu§unu hesaplayan bir ölçüt kullanarak modelden M − S kadar fazlaaltbölgeyi budar. �ki algoritma kullanman�n ama
� veriyi ci sabit fonksiyon-lar� ile beraber en iyi {Ri}

S
i=1 altbölgeler kümesi elde ede
ek ³ekilde, tan�mbölgesinin herbir altbölgesi üzerinde tahmin eden f(x) fonksiyonunu seçmek-tir. Varsayal�m ki, k = 3 tane aç�klay�
� de§i³ken ve ileriye dönük ad�m alt-bölge say�s� maksimum M = 5 olsun. v = 1, ..., k aç�klay�
� de§i³kenleri indek-sleyen ve p = 1, ..., n de Ri altbölgesindeki bir aç�klay�
� de§i³ken olan xv' nins�ral� de§erlerini indeksleyen simge olsun. Bu durumda m altbölgeli yinelemelibölüntüleme modeli için ileriye dönük ad�m ölçütü olarak (3.5) ile verilir:
Lofm =

m
∑

i=1

Lof [f̂i(x)] (3.5)Burada dikkat edilmelidir ki, xv,p ile belirtilmek istenen v. aç�klay�
� de§i³ke-nin p. s�ral� örnek de§eridir. Tek ba³�na xv ifadesi ise v. aç�klay�
� de§i³keninsabit de§erleridir. �leriye dönük ad�m yinelemeli bölüntüleme algoritmas�n�nba³�nda R1 tan�m bölgesi D' nin kendisidir ve f(x) için tek altbölge tahmini(3.6) ile verilir:
f̂(x) = f̂1(x) = c1 =

1

N

N
∑

j=1

yj (3.6)Tek altbölge yinelemeli bölüntüleme modelinin ileriye dönük ad�m uyumölçütü (3.7) ile verilir:
Lof1 =

N
∑

j=1

(yj − c1)
2 (3.7)Ba³lang�ç bölüntüsü, m = 2, ileriye dönük ad�m algoritmas� için, R1 alt-bölgesini en iyi iki ayr�k bölgeye ay�ran t∗ bölüntü noktas�n� seçer. t∗ de§erinin39



bulunmas� için metot ³u ³ekilde ilerler:Her örnek de§eri xv,p' yi (v = 1, ..., k, ; p = 1, ..., n) potansiyel bir bölüntünoktas� olarak al�r ve bunlar�n aras�ndan m = 2 altbölge modeli için Lofde§erini minimum yapan� hesaplar. Ba³ka bir deyi³le, t = x1,15 de§eri x1 aç�k-lay�
� de§i³keni için potansiyel bir bölüntü noktas� olsun. Bu durumda, anaaltbölge olan R1, t' nin solundaki alanda, x1 < t, R1,sol altbölgesini olu³turur.
t' nin sa§�ndaki alan ise, x1 ≥ t, R1,sag altbölgesini olu³turur. R1' in t = x1,15boyun
a uygun ³ekilde bölünmesinden sonra, model m = 2 altbölge için Lofmde§eri hesaplan�r. Buna göre,

Lof2 = min
csol

∑

xj∈R1,sol

(yj − csol)
2 +min

csag

∑

xj∈R1,sag

(yj − csag)
2 (3.8)elde edilir. v ve p indeksleri kullan�larak R1 dahilinde olan her aç�klay�
�de§i³ken için s�ras�yla bütün mümkün bölüntü noktalar�n� ara³t�r�r(Burada

R1, D tan�m bölgesine e³ittir).Bölüntü noktas� t∗ = x2,25, R1 altbölgesini ay�ran nokta oldu§unda, m = 2altbölge için ileriye dönük ad�m Lofm ölçütünü minimum yapan nokta an-la³�l�r. x2,25 noktas� ön
eki ana bölgeyi iki yeni ayr�k altbölgeye bölmek veeskisini ortadan kald�rma i³lemi boyun
a kullan�l�r. Bu eski bölge R1∗ olarakadland�r�l�r. �lk olarak, ana altbölge R1∗' daki alan, t∗' �n solunda, x2 < t∗,ola
ak ³ekilde olu³turulur ve buna e³ altbölge R2 denir. Buna kar³�n t∗' �nsa§�ndaki alan tekrar R1 olarak kal�r. R1 ve R2 ayr�k yeni bölgelerin yarat�l-mas� ve eski ana bölge olan R1∗'i n ortadan kald�r�lmas�, D tan�m bölgesinin,bir bir alt bölgelere bölünmesiyle, ileriye dönük ad�m süre
i tamamlananakadar sürer gider. Dolay�s�yla, f(x) 'in iki altbölge yinelemeli bölüntüsününtahmini (3.9) ile verilir:̂
f(x) = ci x ∈ Ri, i = 1, 2 (3.9)x ∈ 





R1 , x2 ≥ x2,25

R2 , x2 < xx2,25

(3.10)
40



Burada belirtilmelidir ki, (3.2) ifadesi bölüntüleme boyun
a bozulmam�³t�r.Sade
e D' yi bölen ayr�k altbölgelerin say�s� de§i³mi³tir.�leriye dönük ad�m algoritman�n yinelemeleri, m = 3, ...,M = 5 'e kadaryinelemeyi tekrar eder. Bundan sonra ara³t�rma, mev
ut m−1 altbölge mode-linden altbölgelerin sade
e ve sade
e biri için en iyi bölüntüleme (Lofm de§eri-nin en küçüklenmesi) olu³turur. Ön
eki gibi, her yinelemenin bölüntü noktas�olan t∗ benzer ³ekilde seçilir. Sonra her bir aç�klay�
� de§i³ken için mode-lin varolan {Ri}
m−1
i=1 altbölgeleri içinde bütün mümkün potansiyel noktalar�nhesab� yap�l�r. Yinelemeli bölüntüleme, tan�m bölgesi olan D, M = 5 parçayaayr�lana kadar devam eder. Bu durumda {Ri}

5
i=1 altbölgeleri olu³mu³ olur.�leriye dönük ad�m algoritman�n tamamlanmas� ile geriye dönük ad�m algorit-mas� hem modelin uygunlu§unu hem de altbölge say�s�n� hesaplayan bir kriterkullanarak düzeltme yapar. Geriye dönük ad�m algoritman�n da tamamlan-mas�yla yinemelemeli bölüntüleme sonuçlan�r.Her bir Ri altbölgelerinin ara³t�r�lmas�nda taban fonksiyonlar� kümesininbir aç�l�m� kullan�l�r. Aday bölüntüleme noktas�n�n seçimi, f̂(x) için özel birfonksiyonel form yarat�r. Bunun için algoritmada g fonksiyonu kullan�lm�³t�r.Algoritmada görülen basamak fonksiyonlar� önemlidir. H basamak fonksi-yonu (3.11) ile gösterilir:

H(η) =











1 , η ≥ 0

0 , dd (3.11)Friedman 1988' de yinelemeli bölüntüleme için, taban fonksiyonlar� kümesinikullanan ileriye dönük-ad�msal bir algoritma geli³tirmi³tir [32℄. Buna göre:(1) R1 = V, B1(x) = 1(2) For Rm, m = 2 to M do (Her altbölge için )(3) lof∗ =∞, i∗ = 0, v∗ = 0, t∗ = 0(4) For Ri , i = 1 to m− 1 (Herbir kurulmu³ altbölge için)(5) For v = 1 to p do (Herbir tahminleyi
i için)(6) For t = xv,k=1 to xv,k=n (Her bir de§er için)(7) g =
∑

d6=j cdBd(x) + cmBi(x)H[t− xv] + ciBi(x)H[xv − t]41



(8) lof = Lofm(9) If lof < lof∗thenlof∗ = lof ; i∗ = i; v∗ = v; t∗ = t end if(10) end for(11) end for(12) end for(13) Rm ← {Ri∗ : (t∗ − xv∗) > 0}(14) Ri∗ ← {Ri∗ : (xv∗ − t∗) ≥ 0}(15) end for(16) end for�leriye dönük ad�m yineleme bölüntüleme algoritmas� ilk olarak R1 altböl-gesinin D tan�m bölgesine e³itlenmesiyle ba³lat�l�r(1). Bir sonraki döngüde(2)
{Rm}

M
m=2 altbölgeleri iteratif olarak olu³turulur. Daha sonra, yapay de§i³ken-ler lof ∗ süre
ini, j∗ altbölgesini, v∗ aç�klay�
� de§i³keninin ve t∗ bölüntülemenoktas�n�n hesab� için ba³lang�ç de§erleri belirlenir ve bu de§erler kurulmu³olan bir {Ri}

m−1
i=1 altbölgesinin bir sonraki altbölüntüsünü tayin etmede kul-lan�l�r(3). Bundan sonraki iç üç döngü (4-5-6) bir sonraki bölüntüleme nok-tas�n�n bulunmas�n�, iteratif olarak bütün kurulan altbölgeler(4), bütün aç�k-lay�
� de§i³kenler(5) ve j. n
i altbölgede(6) olan aç�klay�
� de§i³kenlerin bütünde§erleri aras�ndan seçerek yapar. Verilen bir Ri altbölgesi içindeki xv aç�k-lay�
� de§i³keni için bir bölüntüleme noktas� t, g fonksiyonu (7) parametre vek-törü 
 = (c1, c2, ..., cm) ile, f(x) 'in ileriye dönük ad�m m. n
i iterasyonundabir yinelemeli bölüntüleme model tahmini için adayd�r. (7) ifadesindeki ilkterim Ri altbölgesi hariç bütün altbölgeleri içine al�r. Sonraki iki terim ise (7)ifadesiyle

cmBi(x)H [t− xv] + ciBi(x)H [xv − t]olarak kar³�m�za ç�kar. Burada yap�lan asl�nda Ri ana bölgesinin iki ayr�k e³altbölgeye, basamak fonksiyonlar� olan H [t− xv] ve H [xv − t] leri kullanarakher bir x in yerinin t bölüntüleme noktas�na göre ayr�lmas�d�r. Daha sonra,
Lofm (8) de§eri, veriye göre g fonksiyonunun ileriye dönük ad�m ölçüsünühesaplayan bir de§erdir. En iyi bölüntüleme, aç�klay�
� de§i³ken ve altbölge42



ara³t�rmas�(9), m. n
i iterasyonda kurulan bir {Ri}
m−1
i=1 altbölgesinin en iyibölüntülemesini elde edene kadar devam eder. m. n
i iterasyonun bitmesiyle,yani Ri ana bölgesinin iki e³ altbölgeye xv' nin bölüntü noktas� t' ye ba§l�olarak ayr�lmas�yla(13-14)(ve ortadan kald�r�lmas�yla) biter. (�terasyonlar ta-n�m bölgesi D' nin M tane ayr�k {Ri}

M
i=1 altbölgeye bölüntülenmesiyle devameder).Her bir taban fonksiyon Bi(x), D' nin Ri. n
i altbölgesiyle olan ili³kisinitan�mlar ve bu bölüntü noktalar� Ri. n
i altbölgeyi tan�mlayan taban fonk-siyonlar� çarp�m�n�n bir sonu
udur. Bunu bir örnekle aç�klamak gerekirse, D ∈

ℜ2 ve R5 bölgesi s�ras�ylaH [x1−t
∗
1],H [t∗2−x2],H [x2−t

∗
3] veH [t∗4−x1] basamakfonksiyonlar�ndan olu³an bir altbölge olsun. Burada {t∗i }4i=1 de§erleri s�ras�yla

0, 1, 0, 1' dir. O halde taban fonksiyonu olan B5(x) (3.12) ile gösterilir:
B5(x) = H [x1 − 0]×H [1− x2]×H [x2 − 0]×H [1− x1] (3.12)E³itlik 3.12 ifadesi ℜ2' de bir birim kareyi temsil eder. Taban fonksiyon B5,(3.13) ile yeniden düzenlenebilir:

B5(x) = 




1 , 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1

0 ,di§er durumlarda (3.13)Yinelemeli bölüntülemede, {Ri}
S
i=1 altbölgeleri ayr�kt�r. Her bir veri noktas�x sade
e tek bir Ri altbölgesine aittir.Yinelemeli bölüntüleme, regresyon modellemede oldukça h�zl� hesaplamayapabilen kullan�³l� bir metotdur. Özellikle f̂i(x) bir sabit fonksiyon ci olarakal�nd�§�nda h�zl� sonuç verir [31℄.3.1.2 Yinelemeli Bölüntülemenin Olumsuzluklar�Yinelemeli bölüntülemenin dezavantajlar�, süreksizlik durumu, de§i³kenetkile³imleri ve model yorumlar�ndaki eksiklikleridir.43



Yinelemeli bölüntüleme algoritmas�n�n çok boyutlu durumlar için uygu-lama zorluklar� bulunmaktad�r. �teratif bölünme ve ana bölgeyi e³ altböl-gelere ay�r�rken ortadan kald�rma durumlar�, do§rusal ve toplamsal fonksiyonutahminlemede zorluklar ç�kart�r. H [η] Basamak fonksiyonlar�n�n süreksizli§i,ileriye dönük ad�m algoritma(sat�r 7)' deki her do§rusal regresyon için uygu-land�§�nda süreklilikten kayba sebep olmaktad�r.Friedman [32℄, yinelemeli bölüntülemenin do§rusal ve toplamsal fonksi-yonun tahmininde yaratt�§� zorluklar nedeniyle baz� önerilerde bulunmu³tur.Buna göre e³ bölgeler olu³turulurken ana bölge ortadan kald�r�lmamal�d�r.Dolay�s�yla, gele
ek iterasyonlarda hem ana bölge hem de e³ bölgeler dahasonraki bölüntülemeler için kullan�labilir. Bunun do§al bir sonu
u olarak,kalan ana bölgeler tan�m�n altbölgeleriyle örtü³ür. Ayr�
a, her bir ana bölgepek çok e³ altbölgenin kümelerinden olu³abilir. Bu modi�kasyonla, yinelemelibölüntüleme, ba³lang�ç bölgesi R1' in farkl� aç�klay�
� de§i³kenler taraf�ndantekrarl� bölüntülemelerle do§rusal modeller üretebilir. Birden fazla aç�klay�
�de§i³kenli toplamsal modellerin elde edilmesi yinelemeli bölüntülemenin farkl�aç�klay�
� de§i³kenler kullanmas�ndan kaynaklanmaktad�r.Bu ³ekilde çal�³an yinelemeli bölüntüleme algoritmas� esnekli§i daha faz-la olan modeller s�n�f� olu³turur. An
ak bu modi�kasyon hala H [η] basamakfonksiyonunun süreksizli§i durumunu de§i³tirmemektedir. Bunun için Fried-man, algoritmadaki(sat�r 7) basamak fonksiyonunu H [η], do§rusal regresyonsplaynlar�yla (q=1 dere
eden) de§i³tirmeyi önermi³tir. An
ak bu regresyonsplaynlar� soldan(-) ve sa§dan(+) budanm�³ splayn formlar� kullan�r. rm bile³en-leri do§rultunun yönünü (sola veya sa§a) gösteren Rm. altbölgeyle birle³mi³ 2boyutu ifade etsin. Öyle ki, bunlardan ilki özel bir aç�klay�
� de§i³keni di§eriise kendi ana bölgesinden altbölge olu³turmak için kullan�lan bölüntülemenoktas�n� göstersin. Sa§ ve sol budanm�³ splaynlar Rm ve Rm+1 altbölgeleriniolu³turur. Bu altbölgeler Ri ana bölgesinden xv' nin içinde bir bölüntülemenoktas� olan t ile elde edilmi³ Rm. ve Rm+1. altbölgelerdir. Buna göre, bualtbölgeler (3.14) ile tan�mlan�r:
Ti,rm(x) = [(t− xv)+]

q=1 = (t− xv)+ (3.14)44



Ti,rm+1
(x) = [(xv − t)+]

q=1 = (xv − t)+

rm = (−v, t) ve rm+1 = (+v, t) ve m > i' dir. Fazladan yaz�lan alt indisler i,mveya i,m+1 çoklu aç�klay�
� de§i³ken içerisindeki etkile³im terimlerine müsadeedildi§inde budanm�³ splayn fonksiyonlar�n çarp�mlar�n� ortaya koymak içinkullan�l�r. Budanm�³ splayn fonksiyonlar argümanlar� aç�klay�
� de§i³kenlerinbir vektörüdür.E³itlik 3.14' te kullan�lan ifadelerdeki modelleme yakla³�m� sürekli bir f̂(x)yakla³�m� verir, öyle ki, f̂(x)' in modeldeki her aç�klay�
� de§i³kenin bölün-tüleme noktalar�nda ilk k�smi türevi süreksizdir. Do§rusal budanm�³ splayn(3.14) için kullan�lan ifade esneklikten yana çok az bir kazanç ve hesaplamaolarak fazla
a bir i³ yükü gerektigini gösterir. Do§rusal splayn fonksiyonlar�regresyon modelinin h�zl� gün
ellemesine müsade eder.Yinelemeli bölüntülemedeki bu zorluklar, yap�lan modi�kasyonlarlaMARSalgoritmas�n�n olu³turulmas�na yaram�³t�r.MARS algoritmas�,D tan�m bölgesi üzerinde {Ri}
S
i=1 altbölgeleriyle örtü³endo§rusal q = 1 budanm�³ splayn modelleri olu³turur. Bir MARS modelininherbir örtü³en altbölgesi do§rusal budanm�³ splaynlar�n s�ral� bir dizisindengelen tahminleyi
i de§i³kenlerin bölüntüleme noktas�yla tan�mlan�r.Taban fonksiyonun çarp�m�Km(x),Rm altbölgesi ile ili³kili budanm�³ splayn-lar�n bir s�ral� dizisi olarak tan�mlans�n. Her taban fonksiyonu çarp�m�n�n ilkterimi T0,r1(x) = 1' dir. Buna R1 ile ili³kili ba³lang�ç fonksiyonu denir. Her bireklenen budanm�³ splayn bir ana bölgenin bir e³ altbölgeye iteratif bölüntülen-mesidir. Varsayal�m ki, RT ana bölgesi için s�ral� budanm�³ splaynlar dizisi

(1, 3, 7) olsun. Buna göre, Rm altbölgesi yaratmak için ana bölge TT,rm(x)kullan�larak (3.15) elde edilir:
Km(x) = T0,r1(x)× T1,r3(x)× T3,r7(x)× T7,rm(x) (3.15)Burada m > 7' dir. E³itlik 3.15 ifadesindeki ilk üç terimin çarp�m� K7(x)olarak hesaplan�r. Km(x)' i hesaplamak için çarp�m taban fonksiyonu içindeki45



herbir budanm�³ splayn�n x' deki de§erinin hesaplanmas�n� gerektirir. E§erherhangi bir budanm�³ splayn hesab�n�n x' deki de§eri s�f�r ise o zamanKm(x)'in de x' deki de§eri s�f�rd�r. Ba³ka bir deyi³le, Km(x)' nin x' deki de§eri,budanm�³ splaynlar�n çarp�m�n�n x' deki de§eridir. Varsayal�m ki, R5 ∈ ℜ
3için s�ralanm�³ budanm�³ splaynlar (1, 2, 5) olsun. Buna göre r2 = (2, 3) ve

r5 = (−3, 1) olarak belirlensin. R5 ile ilgili çarp�m taban fonksiyonu (3.16) ileverilir:
K5(x) = T0,r1(x)× T1,r2(x)× T2,r5(x) (3.16)

= 1× (x2 − 3)+ × (1− x3) (3.17)
=











(x2 − 3)(1− x3) x2 > 3, x3 < 1

0 di§er durumlarda (3.18)E§er, x={5, 4, .5} ∈ R5 ise o zaman K5(x) = 0.5 ve e§er x = {4, 3.5, 6} 6= R5ise ve K5(x) = 0' d�r.Tahminleyi
i de§i³kenlerin etkile³iminin düzeyi ili³kili oldu§u Ri içinde,
Ki(x) çarp�m taban fonksiyonu içindeki budanm�³ splaynlar�n (T0,r1(x) hariç)say�s�d�r. Tek terimli çarp�m taban fonksiyonu, kendi tahminleyi
i de§i³keniylebudanm�³ olan bir do§rusal ili³kiyi temsil ederken, iki terimli çarp�m taban� iki-li etkile³imleri temsil etmektedir. Bir MARS modelinde etkile³im terimlerininsay�s� ve dere
esi MARS algoritmas�ndaki etkile³im terimleri için belirlenenmaksimum say�ya ve veri setine ba§l�d�r. MARS bilinmeyen f(x) fonksiyo-nunu, (3.19) ile tahmin eder:

f̂(x) = S
∑

i=1

ciKi(x) (3.19)Burada f̂(x) ilgili {Ri}
S
i=1 altbölgelerindeki çarp�m taban fonksiyonlar�olan {Ki(x)}Si=1' lerin toplamsal bir fonksiyonudur. Bir çarp�m taban fonksiyo-nu verildi§inde, bölüntüleme noktalar�, ayr�
a modelin parametreleri de olmaküzere, sabittirler. E³itlik 3.19 ile verilen MARS modelinin katsay�lar� {ci}Si=1en küçük kareler regresyonu ile bulunur.Yinelemeli bölüntülemedeki gibi, MARS'daki ileriye dönük algoritman�n46



ama
�, iteratif olarak katsay� de§erleri vektörünü, altbölgeleri {Ri}
M
i=1 (M ≥

S) belirlemeye çal�³�rken düzeltmek, ve bu bölgelerdeki çarp�m taban fonksiy-onlar� f(x)'i veriye yakla³t�rmakt�r. Yine yinelemeli bölüntülemedeki gibi ileri-ye dönük ad�m prosedürünü geriye dönük bir düzeltme süre
iyle dengelemekgerekir. Böylelikle modeldeki fazladan (M − S) tane altbölge ç�kart�l�r [31℄.3.2 Regresyon Splaynlar�Regresyon splayn modelinin geli³tirilmesi, MARS' � aç�klamada yeni birmetot olarak ortaya ç�km�³t�r. Silverman [33℄ splayn fonksiyonlar�n� parametrikve nonparametrik regresyon metodolojisi aras�nda etkili bir yakla³�m olarakkabul etmi³tir. Buna göre, x ∈ D ⊂ ℜ1 tan�m bölgesi üzerinde, bilinmeyen clsabitleriyle tan�mlanan q. dere
eden(order) polinomiyal bir fonksiyon (3.20)ile verilmi³tir:
pq(x) = q

∑

l=0

clxl x ∈ D (3.20)E³itlik 3.20' teki polinomlar pürüzsüzdür. An
ak, veriye polinomlarla globalolarak bir model uydurmada yüksek dere
eden terimler yüzünden etkilerinikaybedebilirler. Bu durumda, D tan�m bölgesini daha küçük Ri altbölgelerinefarkl� polinomlar kullanarak bölmek, her bir altbölgede daha dü³ük dere
edenterimlerin olmas�n� sa§lar ve yüksek dere
eli terim s�k�nt�s�ndan kurtulmusolunur.Varsayal�m ki [a, b] = D ⊂ ℜ1 ve △S = {t1, ..., tS−1} kümesi [a, b]' de s�ral�bir bölüntü olsun. Bu bölüntü S tane ayr�k altbölgeye a = t0 < t1 < ... <

tS = b ayr�ls�n. Her bir altbölge Ri = [ti−1, ti] , i = 1, ..., S ile gösterilsin.Varsayal�m ki Cq[D] kümesi D içindeki q − 1. türevleri de sürekli olan bütünsürekli fonksiyonlar�n kümesi olsun.
sq△s

(x) fonksiyonu, S parçal� q. dere
eden polinomiyal fonksiyonlar küme-sinin, öyle ki q. dere
eden fonksiyonunun ve ilk q− 1 türevleri bölüntü nokta-lar�nda çak�³an, bir splayn fonksiyonu (3.21) olarak tan�mlans�n:47



sq△s
(x) = S

∑

i=1

pq,i(x)I[x ∈ Ri] (3.21)Burada, sq△s
(x) ∈ Cq[D] k�s�t olarak verilmi³tir.Splaynlar� regresyon içine koymak için pek çok yakla³�m önerilmi³tir [34℄.Bunlardan bir tanesi E³itlik 3.1 modelini parçal� splaynlarla yazmakt�r. Budurumda (3.22) ile verilen parçal� regresyon splayn modeli elde edilir.

y = sq△s
(x) + ǫ (3.22)Burada ǫ' nun ortalamas�n�n s�f�r, varyans�n�n σ2

ǫ ve sq△s
(x) den ba§�m-s�z oldu§u varsay�l�r. Bu durumda gerçek f(x) 'in tahmin
isi olarak sq△s

(x)kullan�l�r.Smith [35℄, △S bölüntü noktalar� kümesi verildi§inde, daha faydal� birregresyon splayn modeli için (+) fonksiyonlar� kullan�lmas�n� önermi³tir. (+)fonksiyonu (3.23) ile verilir:
v+ =











v eger v > 0

0 eger v ≤ 0

(3.23)
Varsayal�m ki yine [a, b] = D ⊂ ℜl olsun. An
ak, △S0

= {t1, ..., tS−1}bölüntüsü, [a, b] nin s�ral� bir bölüntüsü olsun ve S içindeki altbölgeleri Ri =

[ti−1, tS], i = 1, ..., S olarak tan�mlans�n. Tan�m bölgesinin her altbölgesindekipolinomiyal terimlerinin dere
esi l ve bir splayn modelindeki (i + 1).n
i alt-bölgedeki l. polinomiyal terim için ilgili katsay� cil ile gösterilsin. (+) fonksiy-onunun kullan�m� sonu
u, bir budanm�³ regresyon splayn� parçal� regresyonsplayn modeline e³it olur. Bu durumda, (3.24) yaz�labilir:
y =

q
∑

l=0

clxl + S−1
∑

i=1

ciq[(x− ti)+]
q + ǫ q ≥ 1 (3.24)
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Burada, ǫ' nun ortalamas�n�n s�f�r, varyans�n�n σ2
ǫ , sq△s

(x)' den ba§�ms�z ve
q' nun 1'e e³it veya daha büyük oldu§u varsay�l�r. Bölüntü noktalar� kümesi
△S0

s�ral� oldu§undan, s�f�rdan farkl� de§er alan budanm�³ splayn fonksiyonlar�say�s� her ti bölüntü noktas� boyun
a sa§a gittikçe bir artar.Bu durumu �ekil 3.1 ile in
elemek mümkündür.

�ekil 3.1: Karesel regresyon spline fonksiyonlar��ekil 3.1' de q = 2 dere
eden bir tane parçal� (üstteki) ve bir tane budan-m�³ splayn (alttaki) fonksiyonlar� verilmi³tir. Bunlar x = 1 bölüntü noktas�ylaikiye ayr�l�rlar. Üstteki çizimde y e§risi 0 ≤ x ≤ 2 aral�§�nda iki ayr� ikin
idere
eden polinomiyal fonksiyonla gösterilmi³tir. Di§er çizimde ise bir k�sm�
∇∇ ile [0, 1) bölgesinde ikin
i dere
eden polinomiyal bir fonksiyon ve di§erk�sm� da △△ sembolüyle [1, 2] bölgesinde ba³ka bir ikin
i dere
eden poli-nomla ifade edilen bir e§ri vard�r. Alt gra�kteki y e§risi de [0, 1) bölgesindeikin
i dere
eden bir polinomiyal fonksiyon olarak,∇∇ ile gösterilmi³tir. An
akikin
i k�s�mda y e§risi, [1, 2] bölgesinde iki tane ikin
i dere
eden polinomiyalfonksiyonun örtü³mesi ile olu³turulmu³tur: ∇∇ ile gösterilen ikin
i dere
e-den polinomiyal bir fonksiyon ve △△ ile gösterilen budanm�³ ikin
i dere
eden49



polinomiyal bir fonksiyon. Her iki parçal� ve budanm�³ splayn fonksiyonlar�,s�ras�yla (3.21) ve (3.24), y e§risini tan�mlar.Buradaki önemli nokta, daha ön
e de belirtildi§i gibi bölüntü noktalar�n�
{ti}

S−1
i=1 yerlerinin ve de§erlerinin belirlenmesidir. Bu belirlendikten sonra q.dere
eden budanm�³ regresyon splayn modeli, (3.24), bu bölüntü noktalar�ylakatsay�lar� s�radan en küçük kareler yöntemiyle bulunan do§rusal bir modeldir.Buradaki en büyük zorluk q. dere
eden regresyon splayn� modelini olu³tura
akbölüntü noktalar�n�n say�s� ve yeridir.�u ana kadar regresyon splayn� modeli ℜ1' de tan�mland�. k, adet aç�klay�
�de§i³ken için bu durum tek de§i³kenli splayn fonksiyonlar�n çarp�mlar�yla eldeedilebilir (k>1). An
ak bunu yapmak boyut s�k�nt�s� getire
e§inden, MARS budurumdan kurtulmak için modi�ye edilmi³ bir yinelemeli bölüntüleme yöntemikullanarak tan�m bölgesi için bölüntüler elde etmeye çal�³�r [31℄.Uygulamalarda amaç bir yan�t de§i³keninin bir veya daha fazla tahmin-leyi
i de§i³kenin x1, ..., xn verilen de§erlerine, {yi, x1i, ..., xni}

N
1 olan ba§�m-l�l�§�n� modellemektir [36℄. Veriyi üreten sistemin yap�s� (3.25) ile verilmi³tir:

y = f(x1, ..., xn) + ǫ (3.25)Burada (x1, ..., xn) ∈ D ⊂ Rn tan�m bölgesi üzerinde gösterilebilir. Bu-radaki ǫ ortalamas� s�f�r olan stokastik bir bile³en ve modelde y'ye ili³kin gö-zlenemeyen veya kontrol edilemeyen nitelikleri temsil eder. Regresyon anali-zinin ama
� veriyi bir f̂(x1, ..., xn) fonksiyonu ile temsil edebilmektir öyle ki;tan�m bölgesi D üzerindeki f(x1, ..., xn) için uygun bir yakla³�k olarak dakullan�labilsin. Buradaki uygun ifadesiyle farkl� yakla³�mlar kullan�labile
e§ianlat�lmak istenmektedir. Bu anlamda uygulamalarda yakla³�m�n do§rulu§uifadesi önem kazanmaktad�r. Do§ruluk yetersizli§i (La
k of A

ura
y) olarakifade edilebile
ek bu tan�m (3.26) ve (3.27) ile verilmi³tir:
I =

∫

D

w(x)∆
[

f̂(x), f(x)
]

dx (3.26)
E =

1

N

N
∑

i=1

w(xi)∆
[

f̂(x), f(x)
]

dx (3.27)50



Burada, x = (x1, ..., xn), ∆ bir fark ölçüsü ve w(x) ise bir a§�rl�k fonksiyo-nudur. E³itlik 3.26 ile verilen tan�m bölgesi üzerinde do§rulu§un ortalamabir yakla³�m� (the average a

ura
y of the approximation ) iken, E beklenende§er ile ifade edilen tasar�m noktalar� x1, ...,xN üzerinde do§rulu§un orta-lama(average a

ura
y) bir ölçüsüdür.Bunun yan�nda regresyon modellemede parametrik ve nonparametrik meto-dolojilerden bahsedilmesi de gerekmektedir. Buna göre global parametrik mo-delleme ve nonparametrik modellemeden bahsedilebilinir. Global parametrikmodelleme ço§unlukla en küçük kareler metoduyla parametrik bir g(x| {âj}p1)fonksiyonu kullan�larak (3.28) ve (3.29) elde edilir:
f̂ = g(x| {âj}

p
1) (3.28)

{âj}
p
1 = argmin{aj}

p
1

N
∑

i=1

[

yi − g(x| {aj}
p
1)
]2 (3.29)Ço§unlukla kullan�lan do§rusal parametrik fonksiyon, p ≤ n, (3.30) ilegösterilir.

g(x| {âj}
p
0) = a0 +

p
∑

i=1

aixi (3.30)Bu parametrik yakla³�m esnekli§e izin vermez ve bu yöntemle do§ru tah-minler yapmak an
ak tahminleyi
i fonksiyon gerçek fonksiyona yak�n oldu§un-da mümkün olur. Bunun yan�nda parametrik modellerin yorumlamas� ve hesap-lamas� kolayd�r.Küçük boyutlu çal�³malarda (n ≤ 3), parametrik modelleme üç ³ekildegenelle³tirilebilir: parçal� ve lokal uyum (�tting) ve pürüzlülük 
eza yakla³�m�metotlar�. Parçal� parametrik uyumdaki temel �kir, bilinmeyen f fonksiy-onuna her biri D tan�m bölgesinin farkl� bir alt bölgesinde tan�ml� pek çok ba-sit fonksiyonla (genellikle dü³ük dere
eli polinomlar olmak üzere) yakla³�md�r.Bu yakla³�mdaki k�s�t her yerde süreklilik ³eklinde ve bazen de dü³ük dere
eli51



türevlerde de süreklilik ³eklindedir. Düzgünlük (smoothness) ve yakla³�m�n es-nekli§i aras�ndaki denge veya uyum iki ³eyle kontrol edilir. Bunlardan biri altbölgelerin say�s� ve dü³ük dere
eli türevlerin getirdi§i alt bölge s�n�rlar�ndakisüreksizliktir. En çok ter
ih edilen parçal� polinomiyal uyum ³ekli splaynlard�r.Parametrik fonksiyonlar�n q dere
eli (degree) ve bunlar�n q−1 dere
eli türev-lerinin sürekli oldu§u (q = 3 durumu) polinomlar en çok ter
ih edilenlerdir.Bu süreç, q. mertebeden (order) splayn yakla³�mlar�n�n gerdi§i(olu³turdu§u)uzay� olu³turan taban fonksiyonlar� olu³turmak ve verinin taban fonksiyon-lar�yla olan aç�l�m�n�n katsay�lar�n� s�radan en küçük karelerle tahminlemektir.Örne§in; do§ru parças� üzerindeki K tane dü§üm(knots) ile betimlenen K+1tane bölgeye sahip tek de§i³kenli durumda (n = 1), tek taban (3.31)' dekifonksiyonlarla gösterilir. [36℄
1,
{

xj
}q

1
, {(x− tk)

q
+}

K
1 (3.31)Burada {tk}K1 lar dü§üm yerlerini göstermektedir(+: bir ifadenin negatifde§erleri için s�f�r de§erini temsil etmektedir). Bu ifade budanm�³ kuvvet ta-ban�n� temsil eder ve K+ q+1 boyutta q dere
eli splayn fonksiyonlar� uzay�n�geren(olu³turan) tabanlardan biri olarak bilinir. Splaynlar�n detayl� bir aç�k-lamas� Boor 1978' de verilmi³tir [37℄.Parçal� parametrik modellemenin büyük boyutlardaki uzant�s� pratikte zorama teoride ayn�d�r (n > 2). Bu zorluklar boyut sorunuyla ilgilidir. Splaynyakla³�m� durumunda, alt bölgeler genellikle n tane de§i³ken üzerindeki K +

1 aral�§�n (K tane dü§ümün) tensör çarp�mlar� olarak olu³turulur. Uygunglobal taban, (3.31) ifadesindeki gibi her de§i³kenle birle³tirilmi³ K + q + 1tane olan taban fonksiyonlar� üzerinde bir tensör çarp�m�d�r. Bu da, (K +

q + 1) n tane katsay�n�n veriden tahminlenmesi demektir. Lokal parametrikyakla³�mlar (smoothers) (3.32) ile gösterilen bir form al�rlar:
ˆf(x) = g(x|âj(x)

p
1) (3.32)Burada, g parametrik basit bir fonksiyondur. Global parametrik yakla³�mlardan farkl� olarak, burada parametrelerin de§erleri genellikle hesaplanan her52



bir x noktas�nda farkl�l�k gösterir ve lokal olarak a§�rl�kl� en küçük karelerleuyum (3.33) ile yap�l�r.
{âj(x)}

p
1 = argmin

N
∑

i=1

w(x,xi)[yi − g(xi| {aj}
p
1)]

2 (3.33)Burada a§�rl�k fonksiyonu w(x,x′), x′ noktalar� üzerindeki a§�rl�§� x′ eyak�n ola
ak ³ekilde yerle³tiren bir fonksiyondur. Bu yakla³�mlarda en önemliproblem a§�rl�k fonksiyonunun ve parametrik fonksiyon g'nin belirlenmesidir.Bu aç�dan en çok g(x|a) = a üzerinde çal�³�lm�³t�r [38�40℄. Lokal parametrikmetotlar� uygulanman�n çok boyutlu durumlardaki zorlu§u E³itlik 3.33 ileverilen uygun a§�rl�k fonksiyonunun seçiminde yatar. Bu da (3.25) ile verilenbilinmeyen f fonksiyonuna ba§l�d�r.Pürüzlülük 
eza yakla³�m� (3.34) ile tan�mlan�r [36℄.
ˆf(x) = argming

{

N
∑

i=1

[yi − g(xi)]
2 + λR(g)

} (3.34)BuradaR(g), g(x) fonksiyonundaki pürüzlülü§ün büyümesiyle artan bir fonksi-yoneldir. Minimizasyon R(g) n�n tan�mland�§� bütün g' ler üzerinden yap�l�r.
λ parametresi, g'nin pürüzlü§ü ile veriye uyumu aras�ndaki dengeyi temsileder. En çok kullan�lan pürüzlülük 
ezas�, karesel Lapla
e integrali, (3.35) ileverilmi³tir:

R(g) =
n
∑

k=1

n
∑

l=1

∫

|
∂2g

∂xk∂xl

|2dx (3.35)Bu ifade Lapla
e düzeltme(in
e tabakal�) splayn yakla³�mlar�na n ≤ 3 içinbir gösterimdir. n > 3 için genel in
e tabakal� splayn 
ezas�n�n 2' den dahabüyük mertebeden türevleri içeren daha karma³�k bir yap�s� vard�r [41℄.Bunlar�n d�³�nda az boyuttaki nonparametrik modelleme yakla³�mlar�, çokboyuttaki modellemenin yetersizli§ini giderebilmektedir [36℄. Bu durum (3.36)ile ifade edilebilir.
f̂(x) =

J
∑

j=1

ĝj(zj) (3.36)
53



Burada her bir zj, {x1, ..., xn} den olu³an ön
eden seçilmi³ küçük birkümeyi temsil etmektedir. {zj}J1 de§i³ken kümesi seçildikten sonra, uygun
{ĝj(zj)}

J
1 fonksiyon tahminleri nonparametrik metotlarla elde edilir. Bu du-rum (3.37) ile verilir:

{ĝj(zj)}
J
1 = argmin{gj}

N
∑

i=1

[

yi −

J
∑

j=1

gj(zij)

]2 (3.37)Burada pürüzsüzlük k�s�tlar� ĝj fonksiyonlar� üzerinden kurulur. Parçal� poli-nomiyaller (splaynlar) durumunda, uygun bir taban her bir zj için olu³turulurve çözüm tüm taban fonksiyonlar�n�n bir birle³imi üzerinden en küçük karelermetoduyla elde edilir [42℄. Ceza terimlerinin eklenmesiyle (3.36) yeniden eldeedilir ve (3.38) gösterilebilir:
f̂(x) = argmin{gj}







N
∑

i=1

[

yi −

J
∑

j=1

gj(zij)

]2

+

J
∑

j=1

λjR(gj)







(3.38)Herhangi bir az boyutlu nonparametrik fonksiyon kestiri
isi ba
k�tting al-goritmas�yla ba§lant�l� olarak (3.38)' daki ifadeyi çözmek için kullan�labilir[30, 43, 44℄. Bu süreç iteratif olarak ĝj(zj)' leri yeniden tahminler.
ĝj(zj)← argmingj

N
∑

i=1

[(

yi −
∑

k 6=j

gk(zik)

)

− gj(zij)

]2 (3.39)Bu tahminleme (3.39)' da verildi§i gibi yak�nsakl�k sa§lanana kadar devameder.3.3 Uyarlamal� Regresyon Splaynlar�Çok boyutlu çal�³malarda, fonksiyonlar�n tahminleri uyarlamal� bir hesaplayap�l�r. �statistikte kullan�lan uyarlamal� algoritmalar iki konuda yap�lm�³t�r.Bunlardan ilki yinelemeli bölüntüleme [29, 30℄ ve "proje
t pursuit" algorit-mas�d�r [43℄. MARS yakla³�m�n�n kolay anla³�lmas� aç�s�ndan yinelemeli bölün-tüleme regresyonun (Re
ursive Partitioning Regression) bilinmesi önerilir.54



Asl�nda RPR ad�msal regresyon (stepwise regression) süre
i gibi görülebilir.Yinelemeli bölüntüleme regresyon modeli (3.40) ile verilebilir [36℄.E§er, x ∈ Rm ise,
f̂ = gm(x| {aj}

p
1) (3.40)olur. Burada, {Rm}

M
1 ler D tan�m bölgesinin bir bölüntüsünü (partition) tem-sil eden ayr�k alt bölgelerdir. gm fonksiyonlar� basit parametrik fonksiyonlarolarak al�n�r. En çok kullan�lan�, (3.41) ile verilen sabit fonksiyondur [29, 30℄.

gm(x|am) = am (3.41)Temel olarak, bölgelerin geometrik kavram�n� (3.40) ve (3.41)' deki ifadeleree³it ola
ak ³ekilde yer de§i³tirerek, bölgeleri toplama ve çarpma i³lemleriyleay�rarak bir model olu³turmakt�r. Buna göre, (3.40) ve (3.41)' deki modeleyakla³�k yap�da bir model uydurmak için (3.42)' deki taban fonksiyonlar�kümesi kullan�l�r.
f̂ =

M
∑

m=1

amBm(x) (3.42)
Bm taban fonksiyonlar� E³itlik 3.43 ile gösterilen yap�dad�r.

Bm(x) = I[x ∈ Rm] (3.43)Burada, I gösterge fonksiyonu olarak bilinir. Buna göre, I, belirtti§i argü-man do§rultusunda do§ruysa 1 de§ilse 0 de§erini alan fonksiyondur. {am}M1ler veriye en iyi uyumu sa§layan de§erlerdir. {Rm}
M
1 'ler (3.40) ve (3.41)' deverilen de§i³ken uzay�n�n olu³turdu§u ayn� alt bölgelerdir. Bu bölgeler ayr�koldu§undan, (3.42) ve (3.43) ifadeleri (3.40) ve (3.41)'ye e³ittir. Yinelemelibölüntülemedeki amaç sade
e, veriye en iyi uya
ak katsay� de§erlerini bulmakde§ildir, ayr�
a taban fonksiyonlar�n�n(subregion) da iyi bir kümesini ürete-bilmektir. Bilinmeyen f fonksiyonu taban fonksiyonlar� Bk(x) lerin do§rusalbir bile³kesi olarak (3.44) gibi yaz�labilir.

f̂(x) = a0 +

M
∑

m=1

amBm(x) (3.44)55



Burada, a0, a1, ..., ak lar modelin katsay�lard�r. Her bir taban fonksiyon,budanm�³(trun
ated) kuvvet splayn fonksiyonu olarak (3.45)' deki gibi yaz�la-bilir.
Bm(x) =

Km
∏

k=1

H [skm(xvk,m − tk,m)] (3.45)Burada,Km; etkile³imin dere
esini, skm; (+1) veya (-1) de§erlerini al�r(Dal-lar�n sa§a veya sola aç�l�m�n�), xvk,m ; ba§�ms�z de§i³kenin de§erini, tk,m; dü§ümde§erini temsil eder. E³itlik 3.45 ifadesindeki basamak fonksiyonlar� (3.14)'deki gibi splaynlarla yer de§i³tirerek süreksizlik durumu ortadan kalkar.3.3.1 Model Seçimi�leriye dönük ad�mMARS algoritmas�maksimum taban fonksiyonlar� say�s�-na, Mmax, ula³ana kadar devam eder. Burada önemli olan bu say�y� opti-mal olandan yeterin
e daha büyük seçmek ve fazlal�k olan taban fonksiyon-lar�n� silmektir. Bu süreçte Mmax potansiyel olarak seçilebile
ek/silinebile
ekbütün de§i³kenlerin say�s�n� temsil etmektedir. Bu stratejinin olmas�n�n ne-deni asl�nda ileriye dönük ad�m algoritmas�ndan gelmektedir. Her iterasyondayeni iki taban fonksiyonu üretir ve bunu bir ön
eki iterasyonlarda olu³tu-rulan fonksiyonlar� kullanarak yapar. Sonuçta, ön
eki taban fonksiyonlar�n�nkatk�s� çok önemli olmayabilir. Bunlar�n as�l katk�s� di§er taban fonksiyon-lar�n� üretmeye yard�m
� olmalar�d�r. Mümkün olan daha yüksek dere
edentaban fonksiyonlar� çarp�mlar�n� elde etmek için yeterli durum ileriye dönükad�m algoritmas�ndaki müsade edilen taban fonksiyonu say�s�na ba§l�d�r.Bu model seçimini yapabilmek için bir kritere ihtiyaç duyulur. Geriyedönük ad�m algoritmada kullan�lan bu kriteri minimum yapan model, sonmodel olarak belirlenir. MARS süre
inde çapraz geçerlilik kriteri, (3.46) ileverilir:
CV (M) =

1

N

N
∑

i=1

[yi − f̂M/i(xi)]
2 (3.46)56



Burada kriter, taban fonksiyonlar� say�s�na M ' ye ba§l�d�r. Bu e³itlikteki
f̂M/i ifadesi geriye dönük ad�m algoritmadaki silme süresinde göz önüne al�nanve i.n
i gözlem silindikten sonra hesaplanan M tane taban fonksiyonu mode-lidir. Genelle³tirilmi³ çapraz geçerlilik kriteri ilk olarak Craven ve Wahba [13℄taraf�ndan önerilmi³tir. E³itlik 3.47, MARS' da kullan�lan bu kriterin modi�yeedilmi³ halini gösterir [36℄.

GCV (M) =
1

N

N
∑

i=1

[yi − f̂M(xi)]
2/[1−

C(M)

N
]2 (3.47)Olu³turulan maksimummodelin budanmas�ndan sonra hata kareler toplam�-n�n en küçükleyen model ara³t�r�l�r. Budama algoritmas� genelle³tirilmi³ çaprazgeçerlilik algoritmas� ile yap�l�r. Burada paydaki ifade uyum eksikli§ini ve pay-dadaki ise model karma³�kl�§�na kar³�l�k gelen bir 
eza ifadesini temsil eder.veriye uygun modelleme yap�ld�§�nda, aç�l�m�n katsay� say�s�n� içerir.

C(M) ifadesi gerçekte modeldeki efektif parametrelerin say�s�d�r. Bu para-metre, uydurulan modeldeki terim say�s�yla dü§üm noktalar�n�n optimal pozis-yonlar�n�n seçiminde kullan�lan parametre say�s�n�n toplam�d�r. Baz� simulas-yonlar göstermi³tir ki; parçal� do§rusal regresyonda bir dü§üm noktas� seç-menin 3 serbestlik dere
esi ile 
ezaland�r�lmas� gerekir [45℄. Friedman' n�nburada yapt�§� katk� (3.48) ile verilir:
C̃(M) = M.(d/2 + 1) + 1 (3.48)E³itlik 3.48 ile tahminlenmi³ modelin do§rusal serbestlik dere
esi hesa-planmaktad�r. Buradaki M , f̂M(x) modelindeki sabit olmayan taban fonksiy-onu say�s�d�r. d ifadesi ise her iterasyonda olu³turulan modelin karma³�kl�§�nagetirilen 
ezad�r ve düzeltme parametresi gibi dü³ünülebilir. Her bir tabanfonksiyonu için katk�s� d/2' dir. Simulasyon çal�³malar� göstermi³tir ki, modi-�ye edilmi³ GCVm kriteri için d de§eri 3 olarak kabul edilmi³tir [46℄.Bir ba³ka önemli nokta, dü§ümler aras�nda kala
ak gözlem de§erleri say�s�na57



karar vermektir. Friedman, bunun için (3.49)' u önermi³tir [36℄.
L∗ = −log2(

−1

nNm
ln(1− α)) (3.49)Burada Nm, taban fonksiyonu Bm içindeki s�f�rdan farkl� gözlemlerin say�s�d�r(Bm > 0 ). n, ba§�ms�z de§i³ken say�s� ve nNm ise, bu ³ekildeki gözlemlerinuygun say�d�r, çünkü döngü içerisinde de§i³mektedir (α = 0.05).3.3.2 De§i³ken Önemlili§iBu bölümde, kavram olarak yeni an
ak MARS algoritmas�n�n üretti§i"De§i³ken Önemlilik" tan�mlamas�ndan bahsedile
ektir. De§i³ken önemlilik-leri hesaplan�rken MARS, önemlili§i ara³t�r�lan de§i³ken d�³�ndaki bütün de§i³-kenleri d�³arda tutar ve tekrar uyum iyili§ini ara³t�r�r ve buna göre her birde§i³ken için skor de§erleri belirler. Bu de§erler modelde yer alan de§i³kenlerindi§erlerine göre göre
eli katk�lar�d�r.3.4 MARS-�leriye Dönük AlgoritmaAlgoritmada R1 = V ba³lang�ç olarak belirlenir. An
ak, MARS Rm ve

Rm+1 olmak üzere iki tane yeni altbölge olu³turmaya çal�³�rken ana bölge Ri∗'� her bölüntülemede dikkate al�r. Ayr�
a, MARS herbir tahminleyi
i de§i³keniçin, her s�ral� budanm�³ splayn�n birden fazla bölüntüye sahip olmas�n� en-geller. Çünkü bu durum do§rusal olmayan splayn fonksiyonu yarat�r. MARS,bir sonraki altbölge Ri nin en iyi bölüntülenmesi için bu k�s�ttan yararlan�r veçarp�m taban fonksiyonu Ki(x) içinde herhangi bir tahminleyi
i de§i³ken içinzaten var olan bir bölüntüleme noktas�n� d�³arda b�rak�r.Yinelemeli bölüntüleme ve MARS aras�ndaki en dikkat çeki
i fark, MARSalgoritmas�n�n modeli olu³turmas�ndaki farkl�l�ktan ileri gelir. Friedman [32℄'de verildi§i gibi, (3.15) ile verilen çarp�m taban fonksiyonu {Ki(x)}mi=1 ve(3.14) ile verilen budanm�³ splaynlar Ti,rm(x) ve Ti,rm+1
(x)' i taban fonksi-yonlar� {Bi(x)}mi=1 ve basamak fonksiyonlar� H [t − xv] ve H [xv − t] ile yerde§i³tirir. 58



Bu basamak fonksiyonlar�ndan daha ön
e (3.11)' de oldu§u gibi ileriyedönük ad�m yinelemeli bölüntüleme algoritmas�nda bahsedilmi³tir (Sat�r 7);(1) R1 = V, T0,r1(x) = 1(2) For Rm i
in, m = 2 to M do(3) lof ∗ =∞, i∗ = 0, v∗ = 0, t∗ = 0(4) For Ri için, i = 1 to m− 1(5) For xv ∈ Ri için v = 1 to p do (öyle ki, v 6= Ki(x))(6) For xv,k ∈ Ri için t = xv,k=1 to xv,k=n (Her veri noktas�)(7) g = (
∑

d cdKd(x))+cmKi(x)Ti,rm(x)+cm+1Ki(x)Ti,rm+1
(x)(8) lof = Lofm(9) If lof < lof ∗thenlof ∗ = lof ; i∗ = i; v∗ = v; t∗ = t end if(10) end for(11) end for(12) end for(13) Rm ← {Ri∗ : (t

∗ − xv∗) > 0}(14) Ri∗ ← {Ri∗ : (xv∗ − t∗) ≥ 0}(15) m← m+ 2(16) end for(17) end�leriye dönük algoritmay� daha iyi anlamak için, tahminleyi
i de§i³kensay�s�n�n 3 ve ileriye dönük maksimum bölüntü say�s�n�n M = 5 oldu§unuvarsayal�m. MARS algoritmas� yinelemeli bölüntüleme algoritmas�na dahaön
e bahsedilen modi�kasyonlar hari
inde benzer bir i³leyi³tedir. MARS algo-ritmas�n�n ba³lamas� için tan�m bölgesinin ilk altbölge olarak V = R1 atamas�gerekir. f(x)' in tek bölgeli MARS tahmini, yinemeli bölüntülemedeki gibi
f̂(x) = c1K1(x) = c1T0,r1(x) = c1 =

1

N

N
∑

i=1

yi (3.50)ile gösterilir. Yine varsayal�m ki ilk iterasyondaki ara³t�rma R1' in t∗ = x2,25noktas�nda bölüntülenmesine karar versin. Bu ³ekilde devam ederek f(x)' inüç altbölgeli MARS tahmini ikin
i ad�mda (ilk bölüntüleme t∗ = x2,25 nok-59



tas�nda), T0,r1(x) = 1 iken (3.51), (3.52) ve (3.53) ile
f̂(x) = c1K1(x) + c2K2(x) + c3K3(x) (3.51)

= c1T0,r1(x) + c2T0,r1(x)T0,r2(x) + c3T0,r1(x)T0,r3(x) (3.52)
= c1 + c2(t

∗ − x2)+ + c3(x2 − t∗)+ (3.53)verilir. Burada,x ∈ 












R1 e§er x ∈ V

R2 e§er x2 < x2,25 ve x ∈ R1

R3 e§er x2 ≥ x2,25 ve x ∈ R1olur. MARS ileriye dönük ad�m algoritmas�n�n bir sonraki iterasyonunda,
R1, R2 ve R3 altbölgelerindeki en iyi bölüntüleme noktas�n� ara³t�r�r ve yinelemelibölüntülemede oldu§u gibi, tek bir istisna ile, üç altbölge içindeki herbir tah-minleyi
i de§i³ken için bütün potansiyel bölüntüleme noktalar�n�n hesab�ndansonra bunu yapar. Farkl� olarak, x2 üzerindeki bir ba³ka bölüntünün R2 veya
R3 içinde olmas� engellenir. Çünkü bu durumda dere
esi q > 1 olan budanm�³splayn fonksiyonu üretilmi³ olur.

M = 5 iken, MARS ileriye dönük ad�m algoritmas� tan�m bölgesi V içindeikin
i bir bölüntülemeden sonra tamamlanm�³ ola
akt�r. f(x)' in son MARStahmini (3.51) ile verilen bütün terimleri ve ek olarak ikin
i bölüntülemeyle ge-len iki terimi daha kapsaya
akt�r. Bu durumda model e§er ikin
i bölüntüleme
R1' in içinde olursa 5 tane tekli çarp�m taban splayn fonksiyonlar�n� (T0,r1(x)hariç) içere
ektir. E§er ikin
i bölüntüleme R2 veya R3 de olursa model, üçtane tek terimli çarp�m splayn fonksiyonu ve 2 tane çift çarp�m taban splaynfonksiyonlar� içere
ektir.Geriye dönük düzeltme süre
inden sonra MARS modeli (3.19) ile verildi§igibi K1(x) çarp�m taban splayn fonksiyonunun katsay�s� olan c1 ve MARS'�n60



geriye dönük ad�m altbölge eleme süre
inden gelen çarp�m taban fonksiyon-lar� ve katsay�lar� kalan terimlerinden olu³ur. Friedman(1988), tahminleyi
ide§i³kenlerin ve onlar�n ili³kilerini ayr� ayr� görebilmek için f(x)' in MARStahmininin varyans analizi parçalanmas�n� (3.54) ile göstermi³tir.
f̂(x) = c1 +

∑

Z=1

ciKi(x) +∑
Z=2

ciKi(x) + ... (3.54)Burada Z çarp�m taban fonksiyonu, T0,r1(x) d�³�nda kalan {Ki(x))}Si=1' dekibudanm�³ splaynlar�n say�s�n� gösterir. Bu metot ilgilenilen de§i³kenler taraf�n-dan f̂(x)' e olan bütün ve her türlü katk�lar� içine al�r. Z = 1 indeksli çarp�mtaban fonksiyonlar� budanm�³ do§rusal etkileri ve Z = 2 indeksli çarp�m tabanfonksiyonlar� ise budanm�³ çift etkile³imleri gösterir [31℄.Buraya kadar anlat�lanlar� k�sa
a özetlemek gerekirse, ileriye dönük algo-ritma ile mümkün olan tüm temel fonksiyonlar olu³turulur. Modelin karma³�k-l�§� maksimum seviyeye ula³�n
aya kadar bu i³lem devam eder.3.5 MARS-Geriye Dönük Algoritma�leriye dönük algoritma ile elde edilen modelin budanmas� i³lemi geriyedönük algoritma ile yap�l�r. Buna göre algoritman�n ad�mlar� a³a§�da s�ralan-m�³t�r:(1) J∗ = {1, 2, ...,Mmax} ; K∗ ← J∗(2) Lof ∗ ← min{aj |j∈J∗} LOF (∑j∈J∗ ajBj(x))(3) For M = Mmax to 2 do : b ←∞ ; L ← K∗(4) For m = 2 to M do : K ← −{m}(5) Lof ← min{ak|k∈K} LOF (
∑

k∈K akBk(x))(6) if Lof<b, then b ← Lof ; K∗ ← K end if(7) if Lof <Lof ∗, then lof ∗ ← ; J∗ ← K end if(8) end for(9) end for(10) endBurada ilk sat�rda döngü, ileriye dönük algoritmada olu³turulan taban61



fonksiyon kümesiyle olu³turulmu³ modelle ba³lan�r. En d�³taki For döngüsüyle,döngünün her tekrar�nda her bir taban fonksiyon silinmektedir. �çerdeki Fordöngüsü ise bunun hangisi oldu§unu seçmektedir. Bu taban fonksiyonun silin-mesiyle model uyumunda en az etkili olan taban fonksiyonu ortadan kalkar vemodelin uyumu artar. Burada dikkat edilmesi gereken ba³ka bir nokta B(x) =
1 sabit fonksiyonunun silinme durumu yoktur. Bu algoritma ile Mmax−1 tanemodel olu³turulur. Her bir modelin taban fonksiyon say�s� bir ön
eki mod-eldekinden bir tane daha azd�r. En iyi modele bu ³ekilde ilerleyen bir algoritmaile ula³�l�r.
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4 UYGULAMA4.1 Analizde Kullan�lan Verilerin Yap�s�Uygulamada kullan�lan veriler Eski³ehir'deki tramvay hatlar�ndan eldeedilmi³tir. Çal�³mada, Anadolu Üniversitesi Çevre Sorunlar� Uygulama veAra³t�rma Merkezi' n
e tramvay ve araçlar�n çevreye katt�§� kirlilik miktarlar�ara³t�r�lmak üzere toplanan toz ve toprak verilerinden yararlan�lm�³t�r. Tozve topraktan elde edilen a§�r metal ölçümleri; Cd (Kadmiyum), Cr (Krom),Cu (Bak�r), Fe (Demir), Mn (Manganez), Ni (Nikel), Pb (Kur³un) ve Zn(Çinko) olmak üzere s�n��and�r�lm�³t�r. Toprak parçalar� örnekleri yakla³�kolarak 25gr kadar toplanm�³, bunlar mekanik bir akik tezgah�nda 200µ m'den küçük parçalar kal�n
aya dek tutulmu³tur. Örnek noktalar�n�n koordinat-lar� GPS 
ihaz�yla kaydedilmi³tir. Bu toprak örnekleri ³ehir içi yoldan, üsttopraktaki 0-10
m' lik katmanlardan toplanm�³t�r. Bütün toprak örnekleri 3saat boyun
a 105 dere
ede kurutulmu³, 0.5mm kal�nl�kta naylon bir elektengeçirilmi³ ve reaksiyon teknelerine gönderilmi³tir. Bir sonraki bölümde bu veriseti kullan�larak yap�lan regresyona dayal� s�n��and�rma anlat�la
akt�r.4.2 YYM ve Regresyon A§açlar�A§�r metallerin tümü toz ve toprak kirleti
ileri olarak dü³ünülmü³, ba§�ml�de§i³kenler olarak al�nm�³ ve tramvay ve araçlar�n belirtilen hatlarda yapt�§�kirlenme sonuçlar� kaydedilmi³tir. Bu amaçla ilk olarak, belirlenmi³ tramvayve araç güzergahlar�ndan; Opera, Çar³�, OGÜ, Atatürk Lisesi, Atatürk Cad-desi, Ba§lar, Alanönü, Vi³nelik ve Doktorlar 
addesinden elde edilen toz vetoprak örneklerinden a§�r metal ölçümleri al�nm�³t�r. Toz ve toprak örnek-lerinden elde edilen a§�r metallerin hepsi kullan�lmak üzere, toplam 16 adetregresyon a§a
� olu³turulmu³tur. Analizlerde kullan�lan veri say�s� her bir a§�rmetal in
elemesi için 162 adettir. Burada amaçlanan hedef, toz ve toprakkirlili§ine en çok katk�s� olan hatlar� ortaya ç�karmakt�r. Bu çal�³mada toprakverisi kullan�larak yap�lan regresyon a§açlar� analizi Bölüm 4.2.1 ile toz verisikullan�larak yap�lan regresyon a§açlar� analizi ise Bölüm 4.2.2' de verilmi³tir.63



Bölüm 4.2' de olu³turulan tüm regresyon a§açlar� modelleri R Yaz�l�m� kul-lan�larak elde edilmi³tir [20℄.4.2.1 Toprak Verisi Regresyon A§a
� AnaliziBu bölümde regresyon agaçlar�, toprak kirlili§inden etkilenen hatlar� or-taya ç�karmak için kullan�lm�³t�r. Toprak kirlili§ini modellemek için Bölüm4.1'de ad� geçen sekiz a§�r metal kullan�lm�³t�r. Her bir a§�r metalin, tramvayve araç sürekli de§i³kenleri ile istasyon kategorik de§i³keni aras�ndaki ili³kisiyinelemeli bölüntüleme algoritmas� ile in
elenmi³tir. Bu algoritman�n bölün-tüleme için kulland�§� ölçüt veri setindeki her bir de§erin olas� bölüntü nok-tas� olmas� dü³ün
esiyle, her bir model için hesaplanan sapma miktar�yla,
∑

(y − ȳ)2, ölçülmü³tür. Buna göre, Cd için elde edilen regresyon a§a
� �ekil4.1 ile verilmi³tir.

�ekil 4.1: Toprak örne§i- Cd için regresyon a§a
�Burada, regresyon a§a
� en yukar�dan en a³a§�ya do§ru aç�klan�r. En te-pedeki de§i³ken algoritman�n buldu§u en önemli de§i³ken olarak dü³ünülür,bu yüzden ilk bölüntüleme bu de§i³kenden ba³lam�³t�r. Buna göre, istasyonde§i³keni 162 birimi, 126 ve 36 olmak üzere iki parçaya ay�rm�³t�r. Sa§dakiparçaya ait sapma de§eri, D = 2.82 olarak bulunmu³tur. Soldaki parçan�n64



sapma de§eri, D = 9.73 olarak bulunmu³tur. �lk bölüntüleme sol parçan�ntekrar bölünmesiyle devam etmi³tir. �kin
i bölüntümede araç de§i³keni 651dü§üm noktas�ndan ikiye ayr�lm�³t�r. Ba³ka bir deyi³le araç de§i³keni için 651de§eri önemli bulunmu³tur. Bu durum araç say�s�n�n 651' den fazla oldu§udurumlarda Cd kirlili§inin daha çok ortaya ç�kt�§� yönünde yorumlan�r. Sonbölüntüleme de ise araç de§i³keninin 651'den fazla oldu§u istasyonlar aras�ndayeniden bölüntüleme yap�lm�³t�r. Buna göre, Atatürk Lisesi, Doktorlar 
ad-desi, Opera, Uluönder ve Vi³nelik istasyonlar� Cd kirlili§ine maruz kalmak-tad�r [20℄.4.2.2 Toz Verisi Regresyon A§a
� AnaliziBenzer ³ekilde, toz örneklerinden elde edilen a§�r metaller regresyon a§açla-r�yla modellenmi³tir. Çal�³mada toz kirlili§ini modellemek için Bölüm 4.1' debelirtilen sekiz a§�r metal kullan�lm�³t�r. Her bir a§�r metalin tramvay ve araçsürekli de§i³kenleri ile istasyon kategorik de§i³keni aras�ndaki ili³kisi yinele-meli bölüntüleme algoritmas� ile in
elenmi³tir. Buna göre, Zn kirlili§ine ili³kinyinelemeli bölüntüleme sonuçlar� �ekil 4.2 ile verilmi³tir.

�ekil 4.2: Toz örne§i- Zn için regresyon a§a
�Benzer ³ekilde, a§a
�n tepesinde bulunan de§i³kenin en önemli de§i³ken65



olarak kabul edildi§inden bahsedilmi³ti. �stasyon de§i³keni, tramvay ve araçde§i³kenlerinden daha fazla de§i³kenlik gösterdi§i için ilk bölüntülemede yeralm�³t�r. Buna göre, sol parçan�n ortaya ç�kard�§� sonuç oldukça az say�da veriiçermektedir. Burada, OGÜ ve Opera istasyonlar�na ili³kin Zn kirlili§i orta-lama de§eri, ȳ = 35 olarak hesaplanm�³t�r. Sa§ parçadaki ortalama de§er,
ȳ = 112 soldakine göre daha yüksektir. Bu durumda bu parçan�n yenidenbölünmesi gerekti§i dü³ünülebilir. An
ak daha ön
e de belirtildi§i gibi bölün-tümenin, her bir veri noktas�n�n olas� dü§üm noktas� gibi varsay�ld�§� ve bunagöre modelin sapmas�ndan yola ç�k�larak dü§üm noktas�na karar verilen biryap�da oldu§u unutulmamal�d�r. Dolay�s�yla, bölüntüler yan�t de§i³keninin or-talama de§erinin büyük olmas�yla ilgili olarak de§il modelin sapmas�yla il-gili olarak yap�lmaktad�r. An
ak burada, sapma de§erlerinin çok büyük ol-malar� yüzünden ilgili ³ekilde bunlara yer verilmemi³tir. �lk bölüntülemedekisa§ parçan�n tekrar ikiye bölünmesi durumu gözlenmi³tir. Buna göre, AtatürkLisesi ve Doktorlar istasyonlar�ndaki ortalama Zn kirlili§i, ȳ = 145 olarak bu-lunmu³tur. An
ak di§er taraftan ikin
i bölüntüdeki sol parçan�n yeniden ikiyebölündü§ü gözlenmi³tir. Bu durum, bölüntü de§i³kenin tramvay olmas� aç�s�n-dan önemlidir. Buna göre, tramvay say�s�n�n 15 den az oldu§u istasyonlardabile Zn kirlili§ine ait ortalama olarak ȳ = 106 olarak bulunmu³tur.Bu çal�³malar�n sonunda elde edilen sonuçlar �ekil 4.3' teki gibi harita-land�r�lm�³t�r.�ekil 4.3 ile toprak ve toz örneklerinden elde edilen a§�r metallerin, reg-resyon a§açlar� yard�m�yla yap�lan modellemeler sonu
unda hangi istasyonlarüzerinde kirlilik yaratt�klar� gösterilmi³tir.Bölüm 4.2.1' de verilen toprak çal�³mas�na ve Bölüm 4.2.2' de verilen tozçal�³mas�na ili³kin Cr, Cu, Fe, Mn, Ni, Pb ve Zn de§i³kenlerinin regresyona§açlar� da olu³turulmu³tur. Benzer aç�klamalar�n yer ala
a§� dü³ünülerek,di§er a§�r metallere ili³kin regresyon a§açlar� sonuçlar� bu tezin kapsam�ndaverilmemi³tir.
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Burada yinelemeli bölüntüleme, buna ili³kin algoritman�n nas�l çal�³t�§�ve modelin nas�l yorumlanabile
e§i, birer örnek ile aç�klanmaya çal�³�l-m�³,MARS algoritmas�na alt yap� olu³turmas� aç�s�ndan önemli bulunmu³tur [20℄.

�ekil 4.3: Regresyon a§a
� ile istasyonlara göre kirlilik haritas�
4.3 YYM ve MARS AnaliziYYM ile iki veya daha fazla faktörün, yan�t de§i³keni üzerindeki birey-sel ve birlikte etkilerini, belirlenen kalite kriterlerini göz önüne alarak yan�tde§i³keninin optimum de§erlerini veren gruplar bulunabilir. Ba³ka bir deyi³-le ba§�ms�z de§i³kenler ile ba§�ml� de§i³ken aras�ndaki e§ri veya yüzey be-lirtebilen ili³kiyi veren, genellikle polinomiyal olan modelin bulunmas� sözkonusudur. Bu yöntemde, seçilen model ile ba§�ms�z de§i³kenler uzay�ndaki birbölgede asl�nda bilinmeyen bu ili³kiye yakla³�labile
e§i varsay�l�r. Bu modellerise genellikle, birin
i veya ikin
i dere
eden polinomlard�r.Bu bölümde tüm a§�r metaller için modellemeler hem klasik yan�t yüzey-leri metotlar�yla hem de çok de§i³kenli uyarlamal� regresyon splaynlar�yla in-
elenmi³ an
ak tekrar yapmamas� aç�s�ndan, bunlardan sade
e Cd, Zn ve Pba§�r metallerine ili³kin yan�t yüzeyleri modelleri ve MARS modellerine ili³kinsonuçlar verilmi³tir. 67



Modelleme için ba§�ml� de§i³ken olarak a§�r metallerden Cd, Zn ve Pbtoprak kirleti
ileri olarak dü³ünülmü³, tramvay ve araçlar�n belirtilen hatlardayapt�§� kirlenme sonuçlar� kaydedilmi³tir. Di§er a§�r metallerin in
elemeyedahil edilmemesinin sebebi örne§in, Fe (Demir) için, Eski³ehir'in bölge olarakbu a§�r metal kirlili§ine maruz kald�§�n�n zaten bilinmesidir. Buna göre, Cd,Zn ve Pb a§�r metalleri üzerinde, tramvay ve araç de§i³kenlerinin etkisiniara³t�rmak için, 32 faktöriyel tasar�m olu³turulmu³tur.Bu deneysel tasar�m için kullan�lan veriler Çizelge 4.1' de verilmi³tir.Çizelge 4.1: 32 Faktöriyel tasar�m�Faktör x1-Tramvay Faktör x2-Araç12 17418 85224 1530
Çizelge 4.1' de görüldü§ü gibi, iki faktörün üç düzeyli kombinasyonuyla eldeedilen tasar�m matrisinde, x1; tramvay için kodlanan, x2; araç için kodlananterimlerdir. Burada, ilk sütunda tramvaya ait düzeyler 12, 18 ve 24 olarak ve-rilmi³tir. Burada ilgili istasyonlardan geçen tramvay say�lar� verilmi³tir. Ben-zer ³ekilde araç de§i³kenine ait say�sal de§erler ikin
i sütunda verilmi³tir.Ara³t�rmada 2 faktör, bunlar�n 3' er düzeyi ve her biri düzeyin 5 tekrar�oldu§undan, her bir a§�r metal için toplam 45' ³er veri kullan�lm�³t�r.Her bir a§�r metal için 32 deneysel düzenden veriler toplanm�³t�r. Dahasonra tramvay ve araç de§i³kenlerin, Cd, Zn ve Pb ba§�ml� de§i³kenleri üze-rindeki etkileri, birin
i ve ikin
i dere
eden yan�t yüzeyi modelleriyle in
elen-mi³tir. Ard�ndan kurulan MARS modellerinin üretti§i taban fonksiyonlar� ilemodellemeler yeniden yap�lm�³t�r. ANOVA sonuçlar� ve yan�t yüzeyleri model-leri MARS modelleriyle kar³�la³t�r�lm�³t�r. Esas olarak elde edilen modelleriniçerdi§i faktör say�s�, modellere ili³kin düzeltilmi³ belirlilik katsay�s� R2

adj vemodelin standart hatas� hesaplanm�³t�r. Bunlara ek olarak etkile³im terimlerinyüzey gra�kleri ve kontör gra�kleri olu³turulmu³tur. Çizilen gra�kler MARS68



modelleriyle olu³turulan gra�klerle kar³�la³t�r�lm�³t�r ve sonuçlar yorumlan-m�³t�r. Bu bölümde R Yaz�l�m� 2.10, SAS 9.0, MINITAB 14 ve MARS 2.0programlar� birlikte kullan�lm�³t�r.4.3.1 Toprak Verisi Cd Kirlili§i için MARS AnaliziÇal�³madaki ama
�m�z Cd kirlili§ine ili³kin yan�t yüzeylerini, klasik yollave MARS ile olu³turabilmektir. �lk olarak Cd kirlili§i için toplanan verilerher biri be³ tekrarl� olmak üzere 32 deneysel düzenden elde edilmi³tir. 32deneysel tasar�mdan gelen 9 gözlem, hepsi be³ tekrarl� olmak üzere toplam45 gözlem bu analiz için kullan�lm�³t�r. x1 ve x2 olarak kodlanm�³ tramvay vearaç faktörleri için varyans analizi, etkileri birbirinden ay�rarak detayl� olarakin
elenmi³; istatistiksel aç�dan anlaml� olan faktörler, etkile³im terimleri vebunlar�n do§rusal, karesel ve kar³�l�kl� ayr� ayr� bile³enlerinin anlaml�l�klar�nabak�lm�³t�r. Bulunan sonuçlar R Yaz�l�m� kullan�larak haz�rlanm�³ ve Çizelge4.2' de verilmi³tir.Çizelge 4.2: Cd yan�t yüzeyi modeli için etkilerin parçalanmas�Faktör Sd KT Ortalama Kareler F P
x1 2 0.04773 0.02387 3.8792 0.02981 *
x1 1 0.03713 0.03713 6.0349 0.01898 *
x
2

1
1 0.0106 0.0106 1.7235 0.19756

x2 2 0.48709 0.24355 39.5863 8.11E-10 ***
x2 1 0.48503 0.48503 78.8367 1.34E-10 ***
x
2

2
1 0.00207 0.00207 0.3359 0.5658

x1x2 4 1.59105 0.39776 64.6525 6.19E-16 ***
x1 x2 1 0.12002 0.12002 19.5084 8.78E-05 ***
x
2

1
x2 1 1.18105 1.18105 191.9681 5.34E-16 ***

x1 x
2

2
1 0.0015 0.0015 0.2438 0.62447

x
2

1
x
2

2
1 0.28848 0.28848 46.8898 5.20E-08 ***Art�klar 36 0.22148 0.00615Anlaml�l�k Düzeyleri:0 '***' 0.001 '**' 0.01 '*' 0.05 '.'Çizelge 4.2'de etkilerin ve etkile³im teriminin do§rusal ve karesel bile³en-69



leri tek tek in
elenmi³ ve MARS modeli ile kar³�la³t�rma yapmak için kul-lan�lm�³t�r. �lk sütununda 32 faktöriyel deneyde kullan�lan faktörler, bun-lar�n do§rusal etkileri (x1, x2), karesel etkileri (x2
1, x

2
2) ve etkile³im terimlerininkar³�l�kl� bile³enleri (x1x

2
2, x

2
1x2, x

2
1x

2
2) bile³enlerine ayr�larak verilmi³tir. Sat�r-larda faktörlerin etkileri, s�ras�yla bunlar�n do§rusal ve karesel bile³enlerininetkileri alt sat�t�nda italik olarak verilmi³tir. Buna göre, ilk sat�rda x1 fak-törü, onun alt�ndaki sat�rda x1 faktörünün do§rusal etkisi ve x1 faktörününkaresel etkisi italik olarak verilmi³ ve ayr� ayr� in
elenmi³tir. Benzer ³ekilde,

x2 faktörü ve onun alt�ndaki sat�rlarda, bu faktöre ait do§rusal ve karesel etk-iler italik olarak verilmi³tir. Bu in
eleme ayn� ³ekilde etkile³im terimi x1x2için de yap�lm�³, tüm bile³enleri alt sat�rlarda italik olarak verilmi³tir. �kin
isütunda, bu terimlere ili³kin serbestlik dere
eleri (Sd) verilmi³tir. �lerleyen sü-tunlarda s�ras�yla ortalama kareler, F de§erleri, ve bunlara ili³kin olas�l�klaryer alm�³t�r. Aç�kça görülmektedir ki, x1 ve x2 faktörleri aras�ndaki etkile³imterimi (x1x2), anlaml� bulunmu³tur. Bunlar�n aras�ndan etkile³im terimininbile³enlerinden, do§rusal ile do§rusal etkisi (x1x2), karesel ile do§rusal etk-isi (x2
1x2) ve karesel ile karesel etkisi, (x2

1x
2
2), anlaml� bulunmu³tur, an
ak

(x1x
2
2) teriminin do§rusal ile karesel etkisi anlaml� bulunmam�³t�r. SAS 9.0kullan�larak elde edilen ANOVA sonuçlar� Çizelge 4.3 ile verilmi³tir.Çizelge 4.3: Cd yan�t yüzeyi için ANOVADe§i³im Kayna§� Sd KT F Pr>FDo§rusal 2 0.012670 0.16 0.8509Karesel 2 0.522156 6.68 0.0032Etkile³im 1 0.288480 7.38 0.0098Regresyon Toplam 5 0.823306 4.21 0.0037Uyum Eksikli§i 3 1.302567 70.57 <0.0001Saf Hata 36 0.221483Hata Toplam 39 1.524050Toplam 44 2.34736
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Çizelge 4.3' de karesel ve etkile³im terimlerinin istatistiksel olarak anlaml�olduklar� görülmü³tür.Elde edilen ikin
i dere
eden yan�t yüzeyi E³itlik 4.1 ile verilmi³tir:
Ecd(y) = 0.887 + 0.018x1 + 0.008x2 + 0.06x2

1 + 0.22x2
2 + 0.120x1x2 (4.1)E³itlik 4.1 ile verilen ikin
i dere
eden yan�t yüzeyi modeline ait standarthata S2=0.18 olarak bulunmu³tur. Elde edilen Fhesap = 4.21 > F0.05,5,39 =

2.455 oldu§undan model anlaml�d�r. Art�klar�n ço§unun mühendislik uygu-lamalar�nda pratik olarak önemli olmad�§� ifade edilmi³tir. �kin
i dere
edenyan�t yüzeyine ili³kin dura§an nokta ara³t�rmas� Bölüm 2.3.2' de anlat�ld�§�gibi kanonik analiz ile in
elenmi³tir. Buna göre, x1 ve x2' nin bir fonksiyonuolarak ŷ' nin k�smi türevleri al�narak dura§an nokta xs = (−0.186, 0.032) bu-lunur. E³itlik 4.1 ile verilen modele ait özde§erler, (λ1, λ2) = (0.24, 0.04) olarakbulunmu³tur. Her iki özde§er s�f�rdan büyük oldu§undan dura§an nokta birminimum noktas�d�r. Burada dikkat edilmesi gereken β11 ve β22 toplam�n�n
λ1 ve λ2' ye e³it olmas�d�r. Dura§an noktaya kar³�l�k gelen tahminlenmi³ Cdde§eri ise ŷcd = 0.886 olarak bulunmu³tur.�kin
i dere
eden modele ili³kin yan�t yüzeyi gra�§i ve buna ili³kin kontörharitas� �ekil 4.4 ile verilmi³tir.

�ekil 4.4: Cd için yan�t yüzeyi ve kontör gra�kleriKontör gra�§ine göre yan�t yüzeyi bir çukur göstermektedir. Buna göreörne§in, ŷ = 0.967 ve x1 = 0 iken, yüzey için elde edilen model 0.967 =71



0.887+0.0084x2+0.22x2
2 ' dir. Buradan x2 için denklemin kökleri elde edilirse,iki kök bulunur. Bunlar x21 = 0.586 ve x22 = −0.622' dir. Bu koordinatlar�veren iki nokta (0, 0.586) ve (0,−0.622) ise, y = 0.967 için çizilen yan�t kontörüüzerindedir. Her bir kontör çizgisinin tahmin edilmi³ yan�t de§erinin yüksek-li§ini gösterdi§i kontör gra�§i �ekil 4.4' te verilmi³tir.Benzer ³ekilde, ŷ = 1.099 ve x1 = 0 için yan�t yüzeyi modeli 1.099 =

0.887 + 0.008x2 + 0.22x2
2 olarak elde edilir. Buradan denklemin kökleri x21 =

0.96 ve x22 = −1.00 olarak bulunur. Bu koordinatlar� veren iki nokta (0, 0.96)ve (0,−1.00) ise , ŷ = 1.099 için çizilen kontör üzerindedir.MARS analizi için de§i³kenler ortogonal hale getirildikten sonra, tasar�mmatrisi olu³turulur. Bunun için (x1) = (−1, 0,+1) kodlamas�n�n karesel haliolan (x2
1) = (+1,−2,+1) kullan�lm�³t�r. Modele s�ras�yla, x1, x2, x2

1 ve x2
2terimleri al�nm�³t�r. Etkile³im terimi için belirlenen maksimum dere
e 2 olarakverilmi³tir. MARS modelleri Çizelge 4.4 ile verilmi³tir.Çizelge 4.4: Cd için MARS modelleriTaban Fonksiyonlar� Model BirimSay�s�** Etkile³im R2

adj GCVY=1.075 1 0 Hay�r 0.00 0.055TF1=max(0,x2-0) 2 0 Evet 0.817 0.051TF2=max(0,0-x2)TF3=max(0,x1+1)*TF2TF4=max(0,x1+1)TF5=max(0,x1+1)*TF1Y=0.62+0.52*TBF1+0.75*TF2-0.54*TF3+0.29*TF4-0.30*TF5TF1=max(0,x2-0) 3 1 Evet 0.802 0.027*TF2=max(0,0-x2)TF3=max(0,x1+1)*TF2TF4=max(0,x1+1)TF6=max(0,0-x1)*TF1Y=0.675+0.70*TF2-0.52*TF3+0.280*TF4+0.52*TF6

**:

Dü§ümler aras� minimum birim say�s�; *: En uygun model72



Çizelge 4.4' ün ilk sütununda MARS ile kurulan modellerin say�s�, son-raki sütunda her bir model için belirlenen dü§üm say�s�, daha sonra modeldeetkile³im teriminin olup olmad�§�, MARS modelin üretti§i taban fonksiyon-lar� (TF), düzeltilmi³ belirlilik katsay�s� R2
adj ve GCV de§eri yer almaktad�r.Modelde etkile³im terimleri yer almad�§�nda buna toplamsal model denilmek-tedir [36℄. Taban fonksiyonlar� ve bunlar�n yans�malar� s�ras�yla (X-dü§üm)veya (dü§üm-X) olarak tan�mlanm�³t�r. �lk model, ba³ka bir deyi³le toplamsalmodel R2

adj ve GCV de§erlerine göre iyi sonuçlar vermemi³tir. Birin
i modeldesade
e sabit katsay�n�n modelde olmas�, di§er de§i³kenlerin modelde yer alma-mas� modelin geli³tirilmesi gerekti§ini ortaya koyar. Modele etkile³im terimlerieklenin
e, ba³ka bir deyi³le ikin
i modelde, R2
adj ve GCV de§erleri s�ras�yla0.817 ve 0.051 olarak bulunmu³tur. Modelde bulunan bütün taban fonksiy-onlar� anlaml� ç�km�³t�r. Model için hesaplanan F0.05,5,39 de§eri 40.36 (p=0)olarak bulunmu³tur. Modeldeki de§i³kenlerin anlaml�l�klar� detayl� bir ³ekildeEk-5' te verilmi³tir. Ayn� modelde, ilk taban fonksiyonu TF1 ve ikin
i tabanfonksiyonu TF2, x2 de§i³keni kullan�larak hesaplanm�³ birbirinin yans�mas�olan fonksiyonlard�r. MARS, TF1 ve TF2' nin yan�t de§i³keni üzerindeki et-kisini modelde birle³tirmi³tir. x2 de§i³keninin (0) oldu§u nokta bu de§i³kenindü§üm noktas�d�r. MARS, TF1 ve TF2' nin yan�t de§i³keni üzerindeki etki-sini (+0.529∗TF1+0.753∗TF2) ifadesiyle modele dahil etmi³tir. TF4 tabanfonksiyonu, x1 de§i³kenini kullanarak (+1) dü§üm noktas�yla modelde yeralm�³t�r. Bu modelde, standart taban fonksiyonlar� yan�t de§i³kenini pozitifyönde (0.52, 0.75, 0.29) etkilemi³tir. Modelde, TF3 ve TF5 taban fonksiyon-lar� s�ras�yla TF2 ve TF1 taban fonksiyonlar�yla çarp�m� olarak yer alm�³lard�r.Bunlar�n yan�t de§i³keni üzerindeki etkisi ise negatif yönlü (-0.54, -0.30) olmu³-tur. Üçün
ü modelde de etkile³im terimlerinin modelde bulunmas�na izin veril-mi³tir. Buna göre TF1 ve TF2 taban fonksiyonlar�, x2 de§i³kenini kullanarakolu³turulmu³ yans�ma fonksiyonlar�d�r. Bu taban fonksiyonlar� için (0) dü§ümnoktas� olarak seçilmi³tir. Benzer ³ekilde TF3 ve TF4 taban fonksiyonlar�,ikin
i modeldeki gibi davranm�³lar�d�r. Ayr�
a TF3 ve TF6 taban fonksiyonlar�etkile³im terimleri olarak üçün
ü modelde yer alm�³lard�r. Üçün
ü modeldeki73



TF6'n�n modelde bulunmas� modeli GCV anlam�nda geli³tirmi³tir.Kurulan MARS modelleri aras�nda gözlemler aras� birim say�s� s�f�rdanbire yükselirken ve etkile³im terimlerinin modelde olmas� veya tersi durumunagöre bir kar³�la³t�rma yap�ld�§�nda, üçün
ü model en küçük GCV de§eri ile0.027 ve R2
adj de§eri 0.802 ile en uygun model olarak bulunmu³tur. Bu modelile E³itlik 4.1 ile verilen ikin
i dere
eden yan�t yüzeyi, içerdikleri de§i³kensay�s�, R2

adj de§eri ve modelin standart hatas� anlam�nda kar³�la³t�r�lm�³t�r.MARS modeline göre hesaplanan F de§eri, F0.05,4,40 = 45.53(p = 0) olarakbulunmu³tur. Bu de§er oldukça yüksek oldu§u için kurulan model anlaml�d�r.Cd kirlili§i üzerine elde edilen MARS modeline ili³kin yüzey gra�kleri �ekil4.5 (a-b) ile gösterilmi³tir.�ekil 4.5' de ikin
i model ve üçün
ü model için etkile³im halinde olanfaktörler çizilmi³tir. �ekil 4.5a' da, ikin
i MARS modeli için maksimum yan�tde§eri (x1, x2) = (−1,−1) koordinat�nda gözlenirken, �ekil 4.5b' de verilenüçün
ü model için maksimum yan�t de§eri (x1, x2) = (−1,−1) koordinat�ndaelde edilmi³tir.

�ekil 4.5: Cd için ikin
i ve üçün
ü MARS modelleri gra�kleri�ekil 4.5b ile verilen gra�kte, di§erinden farkl� olarak, x1 de§i³kenin (0, 1)noktas�nda Cd yan�t de§i³keni üzerindeki etkisi azalm�³t�r.MARS ile olu³turulan en iyi modele ili³kin de§i³kenlerin göreli önem-lilikleri en yüksekten en dü³ü§e göre Çizelge 4.5' de düzenlenmi³tir. De§i³kenönemlilikleri hesaplan�rken, önemlili§i ara³t�r�lan de§i³ken d�³�ndaki bütünde§i³kenleri d�³arda tutup tekrar uyum iyili§i ara³t�r�l�r ve buna göre skor74



de§erleri belirlenir. Bu de§erler modelde yer alan de§i³kenlerin di§erlerine göregöre
eli katk�lar�d�r. Cd kirlili§i için MARS modelinin olu³turdu§u de§i³kenönemlili§i Çizelge 4.5 ile verilmi³tir. Buna göre, x2 de§i³keninin önem düzeyi%100 ç�km�³t�r. Bir ba³ka ifadeyle Cd kirlili§ine en çok katk�s� olan de§i³ken,MARS analizi sonu
u x2, araç olarak bulunmu³tur.Çizelge 4.5: Cd MARS modeli için de§i³ken önemlili§iDe§i³ken Önemlilik
x2 100.000
x1 96.906Bunun yan�nda x1 de§i³keninin yan�t de§i³kenine olan katk�s� %96.9 se-viyesinde önemli ç�km�³t�r. MARS analizi sonu
unda, de§i³kenler aras�ndaönemlilik skorlar�n�n hesaplanmas� bu anlamda çal�³maya yenilik getirmi³tir.Bir ba³ka deyi³le, Cd kirlili§i üzerinde araç de§i³keninin daha önemli bulun-mas�, bunun yan�t yüzeyleri modelleri ile ara³t�r�labile
ek bir durum olmamas�an
ak MARS ile mümkün olmas�, çal�³maya sonuçlar� yorumlama anlam�ndakatk� sa§lam�³t�r.4.3.2 Toprak Verisi Zn Kirlili§i için MARS AnaliziZn kirlili§i için yine her biri 5 tekrarl� bir 32 deneysel tasar�mdan gelen 9gözlem her biri be³ tekrarl� olmak üzere toplam 45 gözlemle çal�³�lm�³t�r. Yan�tde§erine etkisi istatistiksel olarak anlaml� olan faktörler, etkile³im terimi vebunlar�n kar³�l�kl� bile³enlerinin ayr� ayr� etkileri in
elenmi³, sonuçlar Çizelge4.6' da verilmi³tir.Burada faktörler, faktörlerin do§rusal ve karesel etkileri ile etkile³im ter-imi ve etkile³im teriminin do§rusal ve karesel etkileri her biri bile³enlerineayr�larak italik olarak verilerek s�ras�yla hesaplanm�³t�r. Buna göre tüm faktör-ler, etkile³im terimi ve bunlar�n do§rusal ve karesel etkilerinin bütün bile³enleriistatistiksel olarak anlaml� bulunmu³tur.
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Çizelge 4.6: Zn yan�t yüzeyi modeli için etkilerin parçalanmas�Faktör Sd KT Ortalama Kareler F P
x1 2 42554 21277 3024.42 2.20E-16 ***
x1 1 33285 33285 4731.31 2.20E-16 ***
x
2

1
1 9269 9269 1317.53 2.20E-16 ***

x2 2 18368 9184 1305.43 2.20E-16 ***
x2 1 1879 1879 267.13 2.20E-16 ***
x
2

2
1 16488 16488 2343.73 2.20E-16 ***

x1x2 4 11758 2939 417.82 2.20E-16 ***
x1x2 1 2926 2926 415.86 2.20E-16 ***
x
2

1
x2 1 1635 1635 232.37 2.20E-16 ***

x1x
2

2
1 5965 5965 847.84 2.20E-16 ***

x
2

1
x
2

2
1 1233 1233 175.23 2.12E-15 ***Art�klar 36 253 7Anlaml�l�k Düzeyleri:0 '***' 0.001 '**' 0.01 '*' 0.05 '.'SAS 9.0 kullan�larak elde edilen ANOVA sonuçlar� Çizelge 4.7 ile veril-mi³tir. Çizelge 4.7' de yan�t yüzeyi modelindeki karesel ve etkile³im terim-lerinin istatistiksel olarak anlaml� olduklar� görülmü³tür.Elde edilen ikin
i dere
eden yan�t yüzeyi E³itlik 4.2 ile verilmi³tir:

Ezn(y) = 112.69 + 17.58x1 − 23.44x2 − 57.69x2
1 − 13.71x2

2 + 7.85x1x2 (4.2)E³itlik 4.2 ile verilen ikin
i dere
eden yan�t yüzeyi modeline ait standarthata S2=33.51 olarak bulunmu³tur. Elde edilen Fhesap = 44.98 > F0.05,5,39 =

2.455 oldu§undan model anlaml�d�r.�kin
i dere
eden yan�t yüzeyine ili³kin dura§an nokta ara³t�rmas� Bölüm2.3.2' de anlat�ld�§� gibi kanonik analiz ile in
elenmi³tir. Buna göre, E³itlik4.2 ile verilen modele ait özde§erler, (λ1, λ2) = (−13.36,−58.04) ve her ikiside s�f�rdan küçük oldu§undan dura§an nokta bir maksimum noktas�d�r, xs =

(0.096,−0.827). Dura§an noktaya kar³�l�k gelen tahminlenmi³ Zn de§eri ise
ŷ = 123.235 olarak bulunmu³tur.Zn kirlili§i yan�t yüzeyi modeline ait yan�t de§erleri e§rileri �ekil 4.6 ile gös-76



Çizelge 4.7: Zn yan�t yüzeyi için ANOVADe§i³im Kayna§� Sd KT F Pr>FDo§rusal 2 25757 46.6 0.0001Karesel 2 35164 63.62 0.0001Etkile³im 1 1232.73 4.46 0.0411Regresyon Toplam 5 62154.1 44.98 0.0001Uyum Eksikli§i 3 10525 498.69 <0.0001Saf Hata 36 253.26Hata Toplam 39 10778Toplam 44 72932.3
terilmi³tir. Kontör çizgilerinden, yüzeye ili³kin ³eklin tepe
ik oldu§u söylenebilir.Buna göre örne§in, ŷ = 122.426 ve x1 = 0 için yan�t yüzeyi modeli 122.42 =

112.69− 23.44x2 − 13.71x2
2 olarak elde edilir. Buradan denklemin kökleri bu-lunursa, x21 = −0.71 ve x22 = 0.99 elde edilir. Bu koordinatlar� veren ikinokta (0,−0.71) ve (0, 0.99) ise, ŷ = 122.42 için çizilen kontör üzerindedir.

�ekil 4.6: Zn için yan�t yüzeyi ve kontör gra�kleriÇizelge 4.8' da üç MARS modeli kurulmu³tur. Bunlardan ilki toplamsalmodel olarak in
elenmi³tir.
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Çizelge 4.8: Zn için MARS modelleriTaban Fonksiyonlar� Model BirimSay�s�** Etkile³im R2
adj GCVTF1=max(0,x1-0) 1 0 Hay�r 0.813 680.710TF2=max(0,0-x1)TF3=max(0,x2-0)Y=117.55-40.11*TF1-75.27*TF2-42.02*TF3TF1=max(0,x1-0) 2 0 Evet 0.994 94.720TF2=max(0,0-x1)TF3=max(0,x2-0)TF5=max(0,x2

1+2)*TF3TF6=max(0,x1 + 1)*TF3TF7=max(0,x2
2-0)*TF1Y=131.56-77.48*TF1-89.73*TF2-98.71*TF3+19.36*TF5+14.68*TF6+6.55*TF7TF1=max(0,x1-0) 3 1 Evet 0.994 41.573*TF2=max(0,0-x1)TF3=max(0,x2-0)TF4=max(0,0-x2)TF5=max(0,x1-0)*TF3TF6=max(0,0-x1)*TF3BF7=max(0,x1-0)*TF4Y=131.56-77.48*TF1-89.73*TF2-84.02*TF3+92.44*TF5+43.40*TF6+19.66*TF7**: Dü§ümler aras� minimum birim say�s�;*: En uygun modelToplamsal modelin R2

adj de§eri 0.813 ve GCV de§eri 680.710 olarak bu-lunmu³tur. Toplamsal modelde, Zn yan�t de§i³keni TF1, TF2 ve TF3 tabanfonksiyonlar�n�n bir do§rusal bile³kesi olarak ortaya ç�km�³t�r. Burada TF1 veTF2 taban fonksiyonlar� için, x1 de§i³keni kullan�lm�³ ve en iyi dü§üm noktas�olarak (0) olarak seçilmi³tir. Buradaki TF1 ve TF2 taban fonksiyonlar� bir-birinin yans�mas� olan fonksiyonlard�r. Ayn� modelde TF3 taban fonksiyonu,
x2 de§i³keni ile hesaplanm�³ ve en iyi dü§üm noktas� (0) olarak seçilmi³tir.Modeldeki tüm taban fonksiyonlar� istatistiksel olarak anlaml� bulunmu³tur.78



Modele taban fonksiyonlar�n�n ve modelin anlaml�l�§� Ek-5' de detayl� in
e-lenmi³tir. Etkile³im terimleri modele dahil edildi§inde, ba³ka bir deyi³le ikin
imodelde, TF1 ve TF2 taban fonksiyonlar� x1 de§i³keni ve buna kar³�l�k ge-len en iyi dü§üm noktas�n� (0) olarak seçmi³tir. Ayn� modelde TF3 tabanfonksiyonu, x2 de§i³kenini ve (0) dü§üm noktas�n� seçmi³tir. Bunlar�n d�³�ndamodeldeki etkile³im terimleri TF5, TF6 ve TF7 olarak görülmektedir. Bun-lardan TF5 ve TF6 taban fonksiyonlar� TF3 ile, TF7 taban fonksiyonu TF1fonksiyonlar�n�n çarp�m�yla elde edilmi³tir.Bunlara ek olarak ve daha ön
e de belirtildi§i gibi yine TF1 ve TF2 tabanfonksiyonlar� üçün
ü modelde birbirinin yans�mas� olan fonksiyonlar olarakgözlenmi³tir. TF5, TF6 ve TF7 terimleri modelde etkile³im terimleri olaraküçün
ü modelde yer al�rlar. Benzer ³ekilde TF1 ile TF2 ve TF3 ile TF4 ta-ban fonksiyonlar� da birbirinin yans�mas� olan fonksiyonlar olarak modelde yeral�rlar. TF5, TF6 ve TF7 taban fonksiyonlar� da x1 ve x2 de§i³kenlerinin mod-i�ye edilmi³ halleri olarak modelde yer al�rlar. Çizelge 4.8' de üçün
ü mod-elde TF4 taban fonksiyonunun TF3 taban fonksiyonunun yans�mas� olarakmodelde bulunmas�, modeli GCV anlam�nda geli³tirmi³tir. GCV de§eri ilekar³�la³t�rma yap�ld�§�nda en iyi model GCV de§eri 41.573 olan üçün
ü modelolarak elde edilmi³tir. Üçün
ü modelde alt� tane taban fonksiyonu olup bunlaryan�t de§i³kenini do§rusal olmayan bir yap�da etkilemi³tir.Zn kirlili§ini modellemek üzere MARS' �n üretti§i üçün
ü modele ili³kingra�kler �ekil 4.7 ile verilmi³ ve yan�t de§i³kenine olan katk�lar� gösterilmi³tir.�ekil 4.7 de x1 ile x2 de§i³kenlerinin yan�t de§eri ile ili³kisi gösterilmi³tir.Buna göre, yan�t de§i³keni maksimum de§erini (x1, x2) = (0, 0) ve (x1, x2) =

(0,−1) koordinatlar�nda almaktad�r.
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�ekil 4.7: Zn için MARS gra�§iMARS ile olu³turulan en iyi modele ili³kin de§i³kenlerin göreli önem-lilikleri en yüksekten en dü³ü§e göre Çizelge 4.9' da düzenlenmi³tir. Bu de§er-ler modelde yer alan de§i³kenlerin di§erlerine göre göre
eli katk�lar�d�r. Znkirlili§i için MARS modelinin olu³turdu§u de§i³ken önemlili§i Çizelge 4.9 ileverilmi³tir. Çizelge 4.9: Zn MARS modeli için de§i³ken önemlili§iDe§i³ken Önemlilik
x1 100.00
x2 81.83Buna göre, x1 de§i³keninin önem düzeyi %100 ç�km�³t�r. Bir ba³ka ifadeyleZn kirlili§ine en çok katk�s� olan de§i³ken, MARS analizi sonu
u x1, tramvayolarak bulunmu³tur. Bunun yan�nda x2 de§i³keninin yan�t de§i³kenine olankatk�s� %81.83 seviyesinde önemli ç�km�³t�r.4.3.3 Toprak Verisi Pb Kirlili§i için MARS AnaliziPb kirlili§ine ili³kin toplanan verilerden her biri be³ tekrarl� 32 deney-sel düzeni olu³turulmu³tur. 32 deneysel düzenden gelen 9 gözlem, her biri 5tekrarl� olmak üzere toplam 45 gözlemle çal�³�lm�³t�r. Yan�t de§i³kenine etk-isi olan faktörler, etkile³im terimleri ve bunlar�n kar³�l�kl� bile³enleri ayr� ayr�in
elenmi³, sonuçlar varyans analizi tablosunda Çizelge 4.10 ile verilmi³tir.Çizelge 4.10' de görüldü§ü gibi faktörlerin ve etkile³im terimlerinin do§rusal80



ve karesel etkileri bile³enlerine göre ayr� ayr� hesaplanm�³t�r. An
ak bunlararas�nda sade
e x1x2 etkile³im terimi istatistiksel olarak anlaml� bulunmam�³,di§er bütün etkiler istatistiksel olarak anlaml� bulunmu³tur.Çizelge 4.10: Pb yan�t yüzeyi modeli için etkilerin parçalanmas�Faktör Sd KarelerToplam� Ortalama Kareler F P(>F)
x1 2 9899.3 4949.6 295.727 <2.2e-16 ***
x1 1 681.6 681.6 40.727 2.15E-07 ***
x
2

1
1 9217.6 9217.6 550.728 <2.2e-16 ***

x2 2 8880.6 4440.3 265.297 <2.2e-16 ***
x2 1 6841.3 6841.3 408.747 <2.2e-16 ***
x
2

2
1 2039.4 2039.4 121.847 4.15E-13 ***

x1x2 4 5789.1 1447.3 86.471 <2.2e-16 ***
x1 x2 1 477.9 477.9 28.552 5.24E-06 ***
x
2

1
x2 1 4166.7 4166.7 248.949 <2.2e-16 ***

x1 x
2

2
1 1144.6 1144.6 68.385 7.66E-10 ***

x
2

1
x
2

2
1 0 0 5.85E-07 0.999 ***Art�klar 36 602.5 16.7Anlaml�l�k Düzeyleri:0 '***' 0.001 '**' 0.01 '*' 0.05 '.'SAS program� kullan�larak elde edilen ANOVA sonuçlar� Çizelge 4.11 ileverilmi³tir.
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Çizelge 4.11: Pb yan�t yüzeyi için ANOVADe§i³im Kayna§� Sd Kareler Toplam� F Pr>FDo§rusal 2 11257 34.34 0.0001Karesel 2 7522.90 22.95 0.0001Etkile³im 1 0.00 0.00 0.9998Regresyon Toplam 5 18780 22.92 0.0001Uyum Eksikli§i 3 5789.14 115.30 <0.0001Saf Hata 36 602.537Hata Toplam 39 6391.68Toplam 44 25171.6
Elde edilen ikin
i dere
eden yan�t yüzeyi E³itlik 4.3 ile verilmi³tir:

Epb(y) = 50.313 + 17.528x1 − 8.244x2 − 8.256x2
1 − 26.155x2

2 (4.3)E³itlik 4.3 ile verilen ikin
i dere
eden yan�t yüzeyi modeline ait standarthata S2=12.80 olarak bulunmu³tur. Elde edilen Fhesap = 22.92 > F0.05,5,39 =

2.455 oldu§undan model anlaml�d�r. �kin
i dere
eden yan�t yüzeyine ili³kin du-ra§an nokta ara³t�rmas� Bölüm 2.3.2' de anlat�ld�§� gibi kanonik analiz ile in-
elenmi³tir. Buna göre, E³itlik 4.3 ile verilen modele ait özde§erler, (λ1, λ2) =

(−8.25,−26.15) ve her ikisi de s�f�rdan küçük oldu§undan dura§an nokta birmaksimum noktas�d�r, xs = (1.06,−0.15). Dura§an noktaya kar³�l�k gelen tah-minlenmi³ Pb de§eri ise ŷ = 60.26 olarak bulunmu³tur.Burada, Pb yan�t de§i³kenini etkileyen x1 ve x2 de§i³kenlerinin olu³tur-du§u yüzey gösterilmi³tir. Buna göre örne§in, ŷ = 41.67 ve x1 = 0 için eldeedilen yan�t yüzeyi modeli 41.67 = 50.313 − 8.24x2 − 26.15x2
2 olarak bulun-mu³tur. Bu denklem çözülürse, kökler x21 = 0.43 ve x22 = −0.75 olarak eldeedilir.
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Bu koordinatlar� veren iki nokta (0, 0.43) ve (0,−0.75) ise, ŷ = 41.67 içinçizilen kontör üzerindedir. Bu modele ili³kin yan�t yüzeyi gra�§i �ekil 4.8 ileverilmi³tir.

�ekil 4.8: Pb için yan�t yüzeyi ve kontör gra�kleriPb yan�t de§i³kenini modellemek üzere kurulan MARS modelleri Çizelge4.12 ile verilmi³tir. �lk olarak toplamsal model in
elenmi³, daha sonra modeleetkile³im terimleri eklenerek ikin
i bir model olu³turulmu³tur. �kin
i modeligeli³tirme ad�na bir katk�s� olmad�§�ndan Çizelge 4.12' ye üçün
ü bir modelkonulmam�³t�r. Çizelge 4.12: Pb için MARS modelleriTaban Fonksiyonlar� Model BirimSay�s�**Etkile³im R2
adj GCVTF1=max(0,x1+1) 1 0 Hay�r 0.605 369.005TF2=max(0,x2-0)Y=18.326+17.52*TF1-25.44*TF2TF1=max(0,x1+1) 2 0 Evet 0.841 211.806*TF2=max(0,x2-0)*TF1TF3=max(0,0-x2)*TF1Y=9.84+34.65*TF1-30.64*TF2-20.74*TF3**: Dü§ümler aras� minimum birim say�s�;*: En uygun modelBirin
i modelde etkile³im terimi bulunmamaktad�r ve bu modelde düzeltil-mi³ belirlilik katsay�s� R2

adj= 0.605 olarak bulunmu³tur. Bununla beraber ikin-
i modelde R2
adj katsay�s� 0.841 olarak bulunmu³tur. Dü§üm say�s� art�r�larak83



üçün
ü model daha in
elenmi³tir an
ak katk� sa§lamad�§�ndan bu çizelgedeyer almam�³t�r. Etkile³im terimlerinin ilavesi bu anlamda modeli geli³tirmi³tir.MARS' �n üretti§i en iyi model en küçük GCV de§eri 211.806 olan ikin
i modelolarak seçilir. Birin
i modelde TF1 ve TF2 taban fonksiyonlar� hem x1 hemde x2 faktörlerini içerir. Bu taban fonksiyonlar� için bulunan dü§üm noktalar�s�ras�yla (+1) ve (0) olarak bulunmu³tur. �kin
i modelde ise TF1 tek ba³�nabir taban fonksiyonu iken TF2 ve TF3 etkile³imi ifade eden taban fonksi-yonlar� olarak modelde yer alm�³t�r. GCV de§erinin en küçük oldu§u model,ikin
i modeldir. An
ak dikkat edilmesi gereken nokta, burada ikin
i modeldenba³ka bir etkile³im modelinin olmamas�, durumu toplamsal model ile etki-le³imli model aras�nda seçim yapma a³amas�na getirir. Böyle bir durumdaFriedman [36℄, etkile³imli modelin sade
e, modelin R2
adj de§erinin di§erindenoldukça büyük ise kabul edile
e§ini ileri sürmü³tür. Buna göre, etkile³imlimodel ile toplamsal modelin R2

adj de§erleri aras�ndaki fark 0.841-0.605=0.236'd�r. Bu de§erin yeterin
e büyük oldu§u varsay�m�yla etkile³imli model toplam-sal modele ter
ih edilmi³tir.�ekil 4.9' de Pb kirlili§i yan�t yüzeyini en iyi modelleyen ikin
i MARSmodelinin gra�§i çizilmi³tir. Burada, yan�t de§i³keninin, x1 ve x2 de§i³ken-leriyle olan ili³kisi gösterilmi³tir.

�ekil 4.9: Pb için MARS gra�§iBuna göre, yan�t de§i³keninin maksimum de§er ald�§� nokta, (x1, x2) =

(+1, 0) koordinat� olarak bulunmu³tur.MARS ile olu³turulan en iyi modele ili³kin de§i³kenlerin göreli önemlilik-84



leri en yüksekten en dü³ü§e göre Çizelge 4.13' te düzenlenmi³tir. Bu de§er-ler modelde yer alan de§i³kenlerin di§erlerine göre göre
eli katk�lar�d�r. Pbkirlili§i için MARS modelinin olu³turdu§u de§i³ken önemlili§i Çizelge 4.13 ileverilmi³tir.Buna göre, x1 de§i³keninin önem düzeyi %100 ç�km�³t�r. Bir ba³ka ifadeylePb kirlili§ine en çok katk�s� olan de§i³ken, MARS analizi sonu
u x1, tramvayde§i³keni olarak bulunmu³tur.Çizelge 4.13: Pb MARS modeli için de§i³ken önemlili§iDe§i³ken Önemlilik
x1 100.00
x2 84.61Bunun yan�nda x2 de§i³keninin yan�t de§i³kenine olan katk�s� %84.61 se-viyesinde önemli ç�km�³t�r. Pb kirlili§ine en çok katk�s� olan faktör tramvayolarak kaydedilmi³tir.
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5 SONUÇLARBu çal�³mada yan�t yüzeyi metodolojisinde, birin
i ve ikin
i dere
edenpolinomiyal modeller üzerinde durulmu³tur. Uygulamada, ikin
i dere
edentasar�mlar aras�ndan 32 faktöriyel tasar�m için MARS yakla³�m� önerilmi³tir.Sürekli ba§�ms�z de§i³kenler kullan�larak yan�t de§i³kenine olan etkiler ikiyakla³�mla in
elenmi³tir. Klasik yolla elde edilen yan�t yüzeyleri modellerininyetersiz kalmas� problemi vurgulanm�³, yeni bir yakla³�m olarak Friedman' �n[36℄ 1991' de ortaya koydu§u MARS algoritmas�n�n üretti§i taban fonksiyon-lar�ndan olu³an modellerle bu problem ba³ar�yla ortadan kald�r�lm�³t�r.MARSile model olu³turmada, ikin
i dere
eden klasik yan�t yüzeyi modelinin tümterimlerini elde edilebile
ek ³ekilde, terimler yeniden düzenlenmi³tir. Bu an-lamda, karesel ve etkile³im terimlerinin modele dahil edilmesi, terimler aras�n-daki ortogonal ili³ki göz önüne al�narak yap�lm�³t�r. Terimlerin do§rusal, kare-sel ve ikili ili³kileri ve önemlilikleri ayr� ayr� in
elenmi³tir. Bu yüzden, MARSanalizine dahil edilmesi gereken terimler üzerinde durulmu³ ve MARS mod-eliyle elde terimlerin anlaml�klar� kar³�la³t�r�lm�³t�r. MARS' �n getirdi§i de§i³-ken önemlili§i in
elemesi, klasik yan�t yüzeyi modeli analizinde yeni bir kavramolarak önerilmi³tir.Bunlara ek olarak, yinelemeli bölüntüleme algoritmas�na dayal� iki prog-ram yaz�lm�³t�r. Bunlar�n ilki, tek ba§�ms�z de§i³kenin ba§�ml� de§i³ken üze-rindeki etkisini ara³t�rmak üzere yap�lm�³t�r. �kin
isi iki ba§�ms�z de§i³keninba§�ml� de§i³ken üzerindeki etkisini ara³t�rmak üzere yap�lm�³t�r. Uygula-mada kullan�lan Cd a§�r metal verisi üzerinden x1 de§i³keninin bu de§i³kenüzerindeki etkisini ara³t�rmak üzere MARS modellemesi yapan bir programyaz�lm�³t�r. Benzer ³ekilde, Cd verisi üzerinden, x1 ve x2 de§i³kenlerinin etki-sini ara³t�rmak üzere MARS modellemesi yapan bir program yaz�lm�³t�r. Buprogramlar R Yaz�l�m�nda haz�rlanm�³t�r.
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Elde edilen sonuçlar maddeler halinde aç�klanm�³t�r:i. Bilinmeyen fonksiyonun tahminiii. Uyum �yili§iiii. Gra�k Uyumuiv. Algoritmalari. Bilinmeyen fonksiyonun tahminiBilinmeyen fonksiyonal yap� iki tip yakla³�mla aç�klanmaya çal�³�lm�³t�r:Bunlardan ilki polinomiyal yan�t yüzeyleri modeleri, ikin
isi MARS yakla³�m�-d�r. Klasik yan�t yüzeyi metodolojisi bilinmeyen yan�t yüzeyinin ³eklini tahminetmek için kullan�lm�³t�r. Cd, Zn ve Pb kirlilikleri için ikin
i dere
eden yan�tmodelleri ba³ar�yla uygulanm�³t�r (E³. 4.1, 4.2, 4.3). Bunlar Çizelge 4.4, 4.8ve 4.12' da verilen MARS modelleriyle kar³�la³t�r�ld�§�nda ise, etkile³im terim-leriyle ortaya ç�kan MARS modellerinin yan�t de§i³kenini nas�l etkiledi§i vehangi faktörlerin önemli oldu§u sorular� 
evapland�r�lm�³t�r. MARS modelleribilinmeyen yan�t yüzeyleri modellerini taban fonksiyonlar� kullanarak ba³ar�l�bir ³ekilde tahminlemi³tir.ii. Uyum �yili§iMARS in
elenen Cd, Zn ve Pb kirlilik modellerini ikin
i dere
eden yan�tyüzeyi modellerine göre daha iyi analiz etmi³tir. Çizelge 5.1' deki R2
adj de§erleriin
elendi§inde MARS modellerinin daha iyi sonuçlar verdi§i Çizelge 5.1' degörülür. Çizelge 4.4, 4.8 ve 4.12' da verilen MARS modelerinin ikin
i dere
edenyan�t yüzeyi modellerine göre daha karma³�k görünmelerine kar³�n, MARS' �nkulland�§� de§i³ken say�s� in
elendi§inde bu durum hâlâ uygun kabul edilebilir.Bununla beraber RMSE (Root Mean Square Error) de§eri her bir kirlilik mod-eli için bu iki tür yakla³�mla hesaplanm�³ ve Çizelge 5.1' de özetlenmi³tir.Çizelge 5.1' de verilen kar³�la³t�rma tablosu dikkatle in
elenirse, ilk sat�rdakirlilik de§i³kenleri Cd, Zn ve Pb s�ralanm�³t�r. Bir sonraki sat�rda her bir87



a§�r metal için s�ras�yla; R2
adj , modeldeki parametre say�s� ve RMSE de§eri yeral�r. Buna göre, Cd için olu³turulan klasik yan�t yüzeyi modelinin düzeltilmi³belirlik katsay�s� R2

adj = 0.267 iken MARS ile bulunan model için ayn� de§er
R2

adj = 0.802 olarak hesaplanm�³t�r. Cd yan�t yüzeyi modelinde do§rusal etki-lerin %0.05 düzeyinde anlaml� bulunmas�na ra§men modelden ç�kart�lmas�uygun de§ildir. Bu durumda ikin
i dere
eden tüm etkiler anlaml� kabul edilirve modelde kullan�lan de§i³en say�s� 5 olarak kal�r. Ayn� a§�r metal için üretilenMARS modeli ise 4 taban fonksiyon kullanm�³t�r.Çizelge 5.1: Kirlilik modelleri için kar³�la³t�rmaKirlilik Cd Zn Pb
R2

adj Ts RMSE R2
adj Ts RMSE R2

adj Ts RMSEYYM 0.267 5 0.197 0.714 5 12.80 0.833 5 33.51MARS 0.802 4 0.103 0.994 3 3.118 0.841 6 9.535Ts:Terim say�s�Benzer ³ekildeki yorumlar� s�ras�yla Zn ve Pb kirlilik modelleri için deyapmak mümkündür. Buna göre, Zn yan�t yüzeyi modeli için hesaplanan R2
adjde§eri 0.714 olarak bulunurken, ayn� yan�t de§i³kenine ait MARS modelinindüzeltilmi³ belirlilik katsay�s� 0.994 ç�km�³t�r. Zn yan�t yüzeyi modeli için tümetkiler anlaml� ç�km�³t�r, dolay�s�yla modelde kullan�lan de§i³ken say�s� 5' dir.Ayn� yan�t de§i³kenine ait MARS modeli ise 3 tane taban fonksiyonu üret-mi³tir. Her iki yakla³�m için modellerin hesaplanan RMSE de§erleri s�ras�yla12.80 ve 3.12 olarak bulunmu³tur. Pb yan�t de§i³kenine ait yan�t yüzeyi mode-linin düzeltilmi³ belirlilik katsay�s� 0.833 olarak bulunurken, MARS ayn� kri-teri 0.841 olarak bulmu³tur. Ayn� de§i³kene ait yan�t yüzeyi modelindekitüm etkiler anlaml� oldu§undan modelde 5 de§i³ken vard�r. MARS ise bude§i³kene ait model üretirken 6 tane taban fonksiyonu kullanm�³t�r. Buna ra§-men, RMSE de§erleri in
elendi§inde MARS modelinin daha iyi sonuç verdi§igörülmü³tür.
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iii. Gra�k UyumuGra�klerle kirlilik modellemesinde yan�t de§i³keniyle tahmin
ilerin ili³-kisini göstermek üzere �ekil 4.4-5 çizilmi³tir. Cd kirlilik modeli için verilenyüzey gra�§i �ekil 4.4 ile verilirken uygun MARS gra�§i �ekil 4.5 ile veril-mi³tir. Her iki gra�kte de tramvay ve araç de§i³kenlerinin Cd kirlilik tahmin-leri gösterilmi³tir. Tramvay�n ve ara
�n OGÜ ve Atatürk Lisesi 
ivar�nda hemdü³ük de§erlerinde (−1,−1) hem de yüksek de§erlerinde (+1,+1), Cd kirli-li§inde etkili bölgeler olarak tespit edilmi³tir. Zn kirlili§ine ili³kin yan�t yüzeyigra�§i ise �ekil 4.6 ile verilirken uygun MARS modeli gra�§i �ekil 4.7 ile ve-rilmi³tir. Burada Zn kirlili§ine en çok katk�s� olan noktalar (0, 0) ve (0,−1)ba³ka bir deyi³le Alanönü ve Vi³nelik olarak tespit edilmi³tir. Pb kirlili§i içinyan�t yüzeyi gra�§i �ekil 4.8 ile verilirken uygun MARS gra�§i �ekil 4.9 ileverilmi³tir. Pb kirlili§ine en çok katk�s� olan nokta (+1, 0) ba³ka bir deyi³-le Atatürk Bulvar� olarak tespit edilmi³tir. Gra�k in
elemesinde kar³�m�zaç�kan ortak de§erler MARS ve yan�t yüzeyi gra�klerinin birbirini dengeledi§inigöstermi³tir. Bununla beraber MARS yakla³�m�n�n yan�t yüzeyi modellerianalizine olan katk�s�, analizde önemli olan de§i³kenlerin üretilmesidir.iv. AlgoritmaTek ve iki ba§�ms�z de§i³kenin ba§�ml� de§i³ken üzerindeki etkisini ara³t�r-mak üzere yinelemeli bölüntüleme algoritmas�na dayal� iki program yaz�l-m�³t�r. Bunlar s�ras�yla Ek-1 ve Ek-2' de verilmi³tir. Bununla beraber, Cdyan�t de§i³kenine ili³kin tek ve iki de§i³kenli MARS modelleri olu³turmadaiki ayr� program yaz�lm�³ ve ilgili R kodlar� s�ras�yla Ek-3 ve Ek-4' te veril-mi³tir. Bu programlar�n yaz�m�nda R.2.10.0 sürümü kullan�lm�³t�r. Ek-6' dakullan�lan ham verilere yer verilmi³tir. Programda kullan�lan formüller Fried-man' n�n 1991' deki makalesinden al�nm�³t�r [36℄.Her iki yöntemle kurulan modeller ile toprak verisi kullan�larak yap�lana§�r metal kirlili§i ara³t�rmas�nda, MARS modellerinin daha detayl� bilgiler89



vermesi ve modele etkile³im terimlerini de katarak yan�t yüzeyleri analizinekatk� sa§lamas�, gerçek yap�y� daha iyi yans�tmas� ve modelin aç�klay�
�l�kgü
ünü art�rmas� aç�s�ndan, deneysel düzenden gelen verinin geleneksel yollamodellenmesi yerine temsili bir model olarak kullan�lmas� önerilmi³tir.
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Ek-1 Yan�t de§i³keninin, tek de§i³ken kullanarak regresyon a§a
�n�nolu³turmas�nda kullan�lan R kodlar�y=
d ; x=A ;n=length(y); reps=length(y) ;library(rpart)left.ort=rep(0,reps);bof=rep(0,reps);right.ort=rep(0,reps);left.sum=rep(0,reps); right.sum=rep(0,reps);total.sum=rep(0,reps);left.dev=rep(0,reps);right.dev=rep(0,reps) ;imp=rep(0,reps) ;
p=rep(0,reps);BOF= sum( (y- mean(y)) ^2 ) ;BOF ;mse=sum(lm(y~x)$residuals^2)/n ;dev= devian
e(lm(y~x) ) ; summary(rpart(y~x))G=fun
tion(x,y) {# s�ral� x,y lileri için döngüye girer.left.x=matrix(0, reps, reps) ; left.y=matrix(0, reps, reps)right.x=matrix(0, reps, reps) ; right.y=matrix(0, reps, reps)# Her bir x de§eri 
andidate partition de§eri olarak dü³ünülür.#Olas� bölünmelerin matrisleri sol/sa§ olarak ayr�l�r.for(t in 1:reps ){len= length(x[x < x[t℄℄)if (len==0) left.x[t,1:reps℄= xelse {left.x[t,1:len℄=x[ x<x[t℄ ℄left.y[t,1:len℄= y[x<x[t℄ ℄left.ort[t℄= sum( (y[x<x[t℄℄-mean(y[x<x[t℄℄) )^2)left.sum=rowSums(left.y)}}for(t in 1:reps ){len= length(x[x>=x[t℄℄)if (len==0)right.x[t,1:reps℄= xelse{right.x[t,1:len℄=x[x>=x[t℄℄right.y[t,1:len℄=y[x>=x[t℄℄ 96



right.ort[t℄= sum( (y[x>=x[t℄℄-mean(y[x>=x[t℄℄) )^2)right.sum=rowSums(right.y)}}return(list(left.x=left.x, left.y=left.y,right.x=right.x, right.y=right.y , left.dev=left.ort,right.dev=right.ort, left.sum=left.sum, right.sum=right.sum)) }G=G(x,y)## F fonksiyonu NODE 2 ve NODE3 ç�kart�r.F=fun
tion(left.x,left.y,right.x,right.y){ for (i in 1:reps){left.x=G$left.x ; left.y=G$left.y ;right.x=G$right.x ; right.y=G$right.yleft.dev=G$left.dev; right.dev=G$right.devleft.sum=rowSums(left.y)right.sum=rowSums(right.y)total.dev=left.dev[1:length(left.sum)℄ + right.dev[1:length(right.sum)℄total.ss=sum((y-mean(y))^2)
p=round((total.ss-(total.dev)) / BOF , 6)imp=round( (total.ss-(total.dev)) / total.ss ,6)bof.result=data.frame(left.dev,right.dev,imp,
p,total.dev,total.ss) }# �lk partition için seçilen noktan�n x vektöründeki s�ras�n� verirsira.0=whi
h.min(bof.result[,5℄)# �lk partition point olarak seçilen knotp.point.1=x[order(bof.result[,5℄)[1℄ ℄ ;sira.1=whi
h(sort(x)==p.point.1)sira.2=sira.1-1
andi=(sort(x)[sira.1℄+sort(x)[sira.2℄)/2xx=x[x<
andi℄ ## NODE 3yy=y[x<
andi℄ ## NODE 3left.mean=mean(y[x<
andi℄) ;left.mse=bof.result[sira.0,℄[1℄/length(yy)97



right.mean=mean(y[x>=
andi℄);right.mse=bof.result[sira.0,℄[2℄/length(y[x>=
andi℄)xx.r=x[x>=
andi℄ ## NODE 2yy.r=y[x>=
andi℄ ## NODE 2reps=length(yy)leaves23=rbind(bof.result[sira.0,℄)leaves23[,9:12℄=
bind(left.mean, right.mean, left.mse, right.mse)
olnames(leaves23)[9:12℄=
("left.mean", "right.mean","left.mse", "right.mse")# Kaç�n
� s�radaki x de§erlerinin en küçük# bof de§erini verdi§ini gösterir.# En küçük bof de§erini veren x lerin, vektördeki s�ras�order ((bof.result[,5℄))i=1while(order(bof.result[,5℄)[i℄<6 | order(bof.result[,5℄)[i℄>n-5)i=i+1x[order(bof.result[,5℄)[i℄℄knot= x[order(bof.result[,5℄)[i℄℄return(list(bof.result=bof.result, sira.0=sira.0,sira.1=sira.1,sira.2=sira.2, p.point.1=p.point.1,i=i ,knot=knot, 
andi=
andi, xx=xx, yy=yy, xx.r=xx.r,yy.r=yy.r, 
p=
p,leaves23=leaves23)) }F=F(left.x,left.y,right.x,right.y) ;Frpart(y~x)tree=F$leaves23de
ide=fun
tion(F){if(dim(data.frame(F$xx.r, F$yy.r))[1℄ > dim(data.frame(F$xx,F$yy))[1℄){d=data.frame(F$xx.r,F$yy.r) ; d} else{d=data.frame(F$xx,F$yy) ;d}return(list(d=d))} ; R=de
ide (F) ;R ; dim(R$d)x=as.data.frame(R$d)[,1℄ ; y=as.data.frame(R$d)[,2℄98



n=length(y) ;reps=length(y)left.ort=rep(0,reps) ; bof=rep(0, reps );right.ort=rep(0,reps) ; left.sum=rep(0,reps) ;right.sum=rep(0,reps) ;total.sum=rep(0,reps) ;left.dev=rep(0,reps); right.dev=rep(0,reps) ;imp=rep(0,reps) ; 
p=rep(0,reps);G=fun
tion(x,y) {# s�ral� x,y lileri için döngüye girer.left.x=matrix(0, reps, reps) ; left.y=matrix(0, reps, reps)right.x=matrix(0, reps, reps) ; right.y=matrix(0, reps, reps)# Her bir x de§eri 
andidate partition de§eri olarak dü³ünülür.# Olas� bölünmelerin matrisleri sol/sa§ olarak ayr�l�r.for(t in 1:reps ){len= length(x[x < x[t℄℄)if (len==0) left.x[t,1:reps℄= xelse {left.x[t,1:len℄=x[ x<x[t℄ ℄left.y[t,1:len℄= y[x<x[t℄ ℄left.ort[t℄= sum( (y[x<x[t℄℄-mean(y[x<x[t℄℄) )^2)left.sum=rowSums(left.y)}}for(t in 1:reps ){len= length(x[x>=x[t℄℄)if (len==0)right.x[t,1:reps℄= xelse{right.x[t,1:len℄=x[x>=x[t℄℄right.y[t,1:len℄=y[x>=x[t℄℄right.ort[t℄= sum( (y[x>=x[t℄℄-mean(y[x>=x[t℄℄) )^2)right.sum=rowSums(right.y)}}return(list(left.x=left.x, left.y=left.y,99



right.x=right.x, right.y=right.y , left.dev=left.ort,right.dev=right.ort, left.sum=left.sum, right.sum=right.sum)) }G=G(x,y)F=fun
tion(left.x,left.y,right.x,right.y){ for (i in 1:reps){left.x=G$left.x ; left.y=G$left.y ;right.x=G$right.x ; right.y=G$right.yleft.dev=G$left.dev; right.dev=G$right.devleft.sum=rowSums(left.y)right.sum=rowSums(right.y)total.dev=left.dev[1:length(left.sum)℄ + right.dev[1:length(right.sum)℄total.ss=sum((y-mean(y))^2)
p=round((total.ss-(total.dev)) / BOF , 6)imp=round( (total.ss-(total.dev)) / total.ss ,6)bof.result=data.frame(left.dev,right.dev,imp,
p,total.dev,total.ss) }#�kin
i partition için seçilen noktan�n x vektöründeki s�ras�n� verir")sira.0=whi
h.min(bof.result[,5℄)# �kin
i partition point olarak seçilen knotp.point.1=x[order(bof.result[,5℄)[1℄ ℄ ;sira.1=whi
h(sort(x)==p.point.1)sira.2=sira.1-1
andi=(sort(x)[sira.1℄+sort(x)[sira.2℄)/2xx=x[x<
andi℄ ## NODE 5yy=y[x<
andi℄ ## NODE 5left.mean=mean(y[x<
andi℄) ;left.mse=bof.result[sira.0,℄[1℄/length(yy)right.mean=mean(y[x>=
andi℄);right.mse=bof.result[sira.0,℄[2℄/length(y[x>=
andi℄)xx.r=x[x>=
andi℄ ## NODE 4yy.r=y[x>=
andi℄ ## NODE 4reps=length(yy) 100



leaves23=rbind(bof.result[sira.0,℄)leaves23[,9:12℄=
bind(left.mean, right.mean,left.mse, right.mse)
olnames(leaves23)[9:12℄=
("left.mean", "right.mean","left.mse", "right.mse")# Kaç�n
� s�radaki x de§erlerinin en küçük bof de§erini verdi§ini gösterir.# En küçük bof de§erini veren x lerin, vektördeki s�ras�order ((bof.result[,5℄))i=1while(order(bof.result[,5℄)[i℄<6 | order(bof.result[,5℄)[i℄>n-5)i=i+1x[order(bof.result[,5℄)[i℄℄knot= x[order(bof.result[,5℄)[i℄℄return(list(bof.result=bof.result, sira.0=sira.0, sira.1=sira.1,sira.2=sira.2, p.point.1=p.point.1,i=i , knot=knot, 
andi=
andi,xx=xx, yy=yy, xx.r=xx.r, yy.r=yy.r, 
p=
p,leaves23=leaves23)) }F=F(left.x,left.y,right.x,right.y) ;Ftree=rbind(tree,F$leaves23); treefor(i in 1:dim(tree)[1℄ )if (tree[i,8℄<0.01) aga
=tree[-i,℄ ; aga
#SONUCleft.dev right.dev imp 
p total.dev total.ss1 1.9957 0.3171 0.0146 0.0146 2.3129 2.3473left.mean right.mean left.mse right.mse1.0554 1.11406 0.06652 0.02114#Che
k if 
orre
trpart(
d~x) ; summary(rpart(
d~x))Ek-2 Yan�t de§i³keninin, iki de§i³ken kullanarak regresyon a§a
�n�nolu³turmas�nda kullan�lan R kodlar�
101



y=
d ; x=A ;z=B; reps=length(y);n=length(y);library(rpart)bof=rep(0, reps );x.left.ort=rep(0,reps) ; x.right.ort=rep(0,reps)x.left.sum=rep(0,reps) ; x.right.sum=rep(0,reps)z.left.ort=rep(0,reps) ; z.right.ort=rep(0,reps)z.left.sum=rep(0,reps) ; z.right.sum=rep(0,reps)total.sum=rep(0,reps) ;left.dev=rep(0,reps);right.dev=rep(0,reps) ;ximp=rep(0,reps) ; x
p=rep(0,reps);zimp=rep(0,reps) ; z
p=rep(0,reps);BOF= sum( (y- mean(y)) ^2 ) ;BOF ;mse=sum(lm(y~x+z)$residuals^2)/n ;dev= devian
e(lm(y~x+z) ) ; summary(rpart(y~x+z))G=fun
tion(x,y,z) {left.x=matrix(0, reps, reps) ; left.y=matrix(0, reps, reps)right.x=matrix(0, reps, reps) ; right.y=matrix(0, reps, reps)left.z=matrix(0,reps,reps) ; zleft.y=matrix(0, reps, reps)right.z=matrix(0,reps,reps) ; zright.y=matrix(0, reps, reps)# Her bir x de§eri 
andidate partition de§eri olarak dü³ünülür.# Olas� bölünmelerin matrisleri sol/sa§ olarak ayr�l�r.for(t in 1:reps ){len= length(x[x < x[t℄℄)if (len==0) left.x[t,1:reps℄= xelse {left.x[t,1:len℄=x[ x<x[t℄ ℄left.y[t,1:len℄= y[x<x[t℄ ℄x.left.ort[t℄= sum( (y[x<x[t℄℄-mean(y[x<x[t℄℄) )^2)x.left.sum=rowSums(left.y)}}for(t in 1:reps ){len= length(x[x>=x[t℄℄) 102



if (len==0)right.x[t,1:reps℄= xelse{right.x[t,1:len℄=x[x>=x[t℄℄right.y[t,1:len℄=y[x>=x[t℄℄x.right.ort[t℄= sum( (y[x>=x[t℄℄-mean(y[x>=x[t℄℄) )^2)x.right.sum=rowSums(right.y)}}# x lerin ay�rd�g� y de§erleri kümesi, solxsum.left=x.left.sum# x lerin ay�rd�g� y de§erleri kümesi, sa§xsum.right=x.right.sumfor(t in 1:reps ){len= length(z[z < z[t℄℄)if (len==0) left.z[t,1:reps℄= zelse {left.z[t,1:len℄=z[ z<z[t℄ ℄zleft.y[t,1:len℄= y[z<z[t℄ ℄z.left.ort[t℄= sum( (y[z<z[t℄℄-mean(y[z<z[t℄℄) )^2)# z lerin ay�rd�g� y de§erlernin kümesi, solz.left.sum=rowSums(zleft.y)}}for(t in 1:reps ){len= length(z[z>=z[t℄℄)if (len==0)right.z[t,1:reps℄= zelse{right.z[t,1:len℄=z[z>=z[t℄℄zright.y[t,1:len℄=y[z>=z[t℄℄z.right.ort[t℄= sum( (y[z>=z[t℄℄-mean(y[z>=z[t℄℄) )^2)# z lerin ay�rd�g� y de§erlernin kümesi, sa§z.right.sum=rowSums(zright.y)}} 103



return(list(left.x=left.x,left.y=left.y,right.x=right.x,right.y=right.y,left.z=left.z,right.z=right.z, zleft.y=zleft.y,zright.y=zright.y,xdev.left=x.left.ort,xdev.right= x.right.ort,zdev.left=z.left.ort,zdev.right=z.right.ort,zsum.left=z.left.sum,zsum.right=z.right.sum,xsum.left=xsum.left,xsum.right=xsum.right))}G=G(x,y,z)## F fonksiyonu NODE 2 ve NODE3 ç�kart�r.F=fun
tion(left.x,left.y,right.x,right.y,left.z,zleft.y,right.z,zright.y){ for (i in 1:reps){left.x=G$left.x ; left.y=G$left.y ;right.x=G$right.x ; right.y=G$right.yxdev.left=G$xdev.left; xdev.right=G$xdev.rightleft.z=G$left.z ; right.z=G$right.z ;zleft.y=G$zleft.y; zright.y=G$zright.yzdev.left=G$zdev.left; zdev.right=G$zdev.rightxsum.left=rowSums(left.y) ;xsum.right=rowSums(right.y)zsum.left=rowSums(zleft.y) ; zsum.right=rowSums(zright.y)xtotal.dev=xdev.left[1:length(xsum.left)℄ +xdev.right[1:length(xsum.right)℄xtotal.ss=sum((y-mean(y))^2)ztotal.dev=zdev.left[1:length(zsum.left)℄ +zdev.right[1:length(zsum.right)℄#ztotal.ss=sum((y-mean(y))^2)x
p=round((xtotal.ss-(xtotal.dev)) / BOF , 6);ximp=round( (xtotal.ss-(xtotal.dev)) / xtotal.ss ,6)z
p=round((xtotal.ss-(ztotal.dev)) / BOF , 6);zimp=round( (xtotal.ss-(ztotal.dev)) / xtotal.ss ,6)bof.result=data.frame(xdev.left,xdev.right,ximp,x
p,xtotal.dev,xtotal.ss);gof.result=data.frame(zdev.left,zdev.right,104



zimp,z
p,ztotal.dev,xtotal.ss)}# �lk partition için seçilen noktan�n# x vektöründeki s�ras�n� verirsira.0=whi
h.min(bof.result[,5℄)z.sira.0=whi
h.min(gof.result[,5℄)# �lk partition point olarak seçilen knotp.point.1=x[order(bof.result[,5℄)[1℄ ℄ ;sira.1=whi
h(sort(x)==p.point.1)sira.2=sira.1-1z.point.1=z[order(gof.result[,5℄)[1℄℄z.sira.1=whi
h(sort(z)==z.point.1)z.sira.2=z.sira.1-1
andi=((sort(x)[sira.1℄+sort(x)[sira.2℄)/2)[1℄z.
andi=((sort(z)[z.sira.1℄+sort(z)[z.sira.2℄)/2)[1℄if (min(gof.result[,5℄) <min(bof.result[,5℄)) {
andi=z.
andibak=2leaves23=rbind(gof.result[z.sira.0,℄)zz=z[z<
andi℄ ## NODE 3yz=y[z<
andi℄ ## NODE 3zleft.mean=mean(y[z<
andi℄) ;zleft.mse=gof.result[z.sira.0,℄[1℄/length(yz)zz.r=z[z>=
andi℄ ## NODE 2yz.r=y[z>=
andi℄ ## NODE 2zright.mean=mean(y[z>=
andi℄);zright.mse=gof.result[z.sira.0,℄[2℄/length(y[z>=
andi℄)reps=length(yz.r)leaves23[,7:10℄=
bind(zleft.mean,zright.mean,zleft.mse,zright.mse)
olnames(leaves23)[7:10℄=
("left.mean","right.mean","left.mse","right.mse")print(gof.result) ;print( data.frame(zz.r , yz.r)) ;105



print(data.frame( sira.0,sira.1,sira.2, p.point.1)) ;print(leaves23) }else{
andi=
andibak=1leaves23=rbind(bof.result[sira.0,℄)xx=x[x<
andi℄ ## NODE 3yx=y[x<
andi℄ ## NODE 3xleft.mean=mean(y[x<
andi℄) ;xleft.mse=bof.result[sira.0,℄[1℄/length(yx)xx.r=x[x>=
andi℄ ## NODE 2yx.r=y[x>=
andi℄ ## NODE 2xright.mean=mean(y[x>=
andi℄);xright.mse=bof.result[sira.0,℄[2℄/length(y[x>=
andi℄)reps=length(yx.r)leaves23[,7:10℄=
bind(xleft.mean,xright.mean,xleft.mse,xright.mse)
olnames(leaves23)[7:10℄=
("left.mean","right.mean","left.mse","right.mse")print(bof.result) ; print(data.frame( xx.r,yx.r));print( data.frame(sira.0,sira.1,sira.2,p.point.1));print(leaves23) }# Kaç�n
� s�radaki x de§erlerinin en küçük bof# de§erini verdi§ini gösterir.# En küçük bof de§erini veren x lerin, vektördeki s�ras�order ((bof.result[,5℄))i=1while(order(bof.result[,5℄)[i℄<6 | order(bof.result[,5℄)[i℄>n-5)i=i+1x[order(bof.result[,5℄)[i℄℄ ; knot= x[order(bof.result[,5℄)[i℄℄zz=z[z<
andi℄ ## NODE 3yz=y[z<
andi℄ ## NODE 3zz.r=z[z>=
andi℄ ## NODE 2 106



yz.r=y[z>=
andi℄ ## NODE 2xx=x[x<
andi℄ ## NODE 3yx=y[x<
andi℄ ## NODE 3xx.r=x[x>=
andi℄ ## NODE 2yx.r=y[x>=
andi℄ ## NODE 2
riteria1=data.frame( imp.z=zimp[z.sira.0℄ , imp.x=ximp[z.sira.0℄,
p.z=z
p[z.sira.0℄ , 
p.x=x
p[z.sira.0℄)return(list(leaves23=leaves23,zz=zz, zz.r= zz.r,yz=yz,yz.r=yz.r,xx=xx,yx=yx,xx.r=xx.r,yx.r=yx.r, 
andi=
andi ,bak=bak , 
riteria1=
riteria1))}F=F(left.x,left.y,right.x,right.y,left.z,right.z,zleft.y,zright.y);Ftree=F$leaves23de
ide=fun
tion(F){if(F$bak==1){ if(F$bak==1 &dim(data.frame(F$xx.r, F$yx.r))[1℄ > dim(data.frame(F$xx,F$yx))[1℄){d=data.frame(F$xx.r,F$yx.r, F$zz.r) ; d} else{d=data.frame(F$xx,F$yx, F$zz) ;d}} else{if (F$bak==2){if( dim(data.frame(F$zz.r,F$yz.r))[1℄>dim(data.frame(F$zz, F$yz)) [1℄){d=data.frame(F$zz.r,F$yz.r,F$xx.r);d}else{d=data.frame(F$zz,F$yz,F$xx);d}}}return(list(d=d))} ; R=de
ide (F) ;R ; dim(R$d)# NODE 4 ve NODE 5 olu³turulur.z=as.data.frame(R$d)[,1℄ ; y=as.data.frame(R$d)[,2℄ ;x=as.data.frame(R$d)[,3℄ ; n=length(y) ;reps=length(y)
riteria1=F$
riteria1 ;rpart(y~x+z)reps=length(y) ;library(rpart) 107



bof=rep(0, reps );x.left.ort=rep(0,reps) ; x.right.ort=rep(0,reps) ;x.left.sum=rep(0,reps) ; x.right.sum=rep(0,reps)z.left.ort=rep(0,reps) ; z.right.ort=rep(0,reps) ;z.left.sum=rep(0,reps) ; z.right.sum=rep(0,reps)total.sum=rep(0,reps) ;left.dev=rep(0,reps);right.dev=rep(0,reps);ximp=rep(0,reps) ; x
p=rep(0,reps);zimp=rep(0,reps) ; z
p=rep(0,reps);G=fun
tion(x,y,z) {left.x=matrix(0, reps, reps) ; left.y=matrix(0, reps, reps)right.x=matrix(0, reps, reps) ; right.y=matrix(0, reps, reps)left.z=matrix(0,reps,reps) ; zleft.y=matrix(0, reps, reps)right.z=matrix(0,reps,reps) ; zright.y=matrix(0, reps, reps)# Her bir x de§eri 
andidate partition de§eri olarak dü³ünülür.# Olas� bölünmelerin matrisleri sol/sa§ olarak ayr�l�r.for(t in 1:reps ){len= length(x[x < x[t℄℄)if (len==0) left.x[t,1:reps℄= xelse {left.x[t,1:len℄=x[ x<x[t℄ ℄left.y[t,1:len℄= y[x<x[t℄ ℄x.left.ort[t℄= sum( (y[x<x[t℄℄-mean(y[x<x[t℄℄) )^2)x.left.sum=rowSums(left.y)}}for(t in 1:reps ){len= length(x[x>=x[t℄℄)if (len==0)right.x[t,1:reps℄= xelse{right.x[t,1:len℄=x[x>=x[t℄℄right.y[t,1:len℄=y[x>=x[t℄℄x.right.ort[t℄= sum( (y[x>=x[t℄℄-mean(y[x>=x[t℄℄) )^2)108



x.right.sum=rowSums(right.y)}}# x lerin ay�rd�g� y de§erleri kümesi, solxsum.left=x.left.sum# x lerin ay�rd�g� y de§erleri kümesi, sa§xsum.right=x.right.sumfor(t in 1:reps ){len= length(z[z < z[t℄℄)if (len==0) left.z[t,1:reps℄= zelse {left.z[t,1:len℄=z[ z<z[t℄ ℄zleft.y[t,1:len℄= y[z<z[t℄ ℄z.left.ort[t℄= sum( (y[z<z[t℄℄-mean(y[z<z[t℄℄) )^2)# z lerin ay�rd�g� y de§erlernin kümesi, solz.left.sum=rowSums(zleft.y)}}for(t in 1:reps ){len= length(z[z>=z[t℄℄)if (len==0)right.z[t,1:reps℄= zelse{right.z[t,1:len℄=z[z>=z[t℄℄zright.y[t,1:len℄=y[z>=z[t℄℄z.right.ort[t℄= sum( (y[z>=z[t℄℄-mean(y[z>=z[t℄℄) )^2)# z lerin ay�rd�g� y de§erlernin kümesi, sa§z.right.sum=rowSums(zright.y)}}return(list(left.x=left.x, left.y=left.y , right.x=right.x,right.y=right.y , left.z=left.z, right.z=right.z, zleft.y=zleft.y,zright.y=zright.y, xdev.left=x.left.ort, xdev.right= x.right.ort,zdev.left=z.left.ort, zdev.right=z.right.ort,zsum.left=z.left.sum,zsum.right=z.right.sum,xsum.left=xsum.left,xsum.right=xsum.right))109



}G=G(x,y,z)## F fonksiyonu NODE 4 ve NODE 5 ç�kart�r.F=fun
tion(left.x,left.y,right.x,right.y,left.z,zleft.y,right.z,zright.y){ for (i in 1:reps){left.x=G$left.x ; left.y=G$left.y ;right.x=G$right.x ; right.y=G$right.yxdev.left=G$xdev.left; xdev.right=G$xdev.rightleft.z=G$left.z ; right.z=G$right.z ;zleft.y=G$zleft.y; zright.y=G$zright.yzdev.left=G$zdev.left; zdev.right=G$zdev.rightxsum.left=rowSums(left.y) ;xsum.right=rowSums(right.y)zsum.left=rowSums(zleft.y) ; zsum.right=rowSums(zright.y)xtotal.dev=xdev.left[1:length(xsum.left)℄ +xdev.right[1:length(xsum.right)℄xtotal.ss=sum((y-mean(y))^2)ztotal.dev=zdev.left[1:length(zsum.left)℄ +zdev.right[1:length(zsum.right)℄#ztotal.ss=sum((y-mean(y))^2)x
p=round((xtotal.ss-(xtotal.dev)) / BOF , 6);ximp=round( (xtotal.ss-(xtotal.dev)) / xtotal.ss ,6)z
p=round((xtotal.ss-(ztotal.dev)) / BOF , 6);zimp=round( (xtotal.ss-(ztotal.dev)) / xtotal.ss ,6)bof.result=data.frame(xdev.left, xdev.right ,ximp, x
p , xtotal.dev, xtotal.ss);gof.result=data.frame(zdev.left, zdev.right ,zimp, z
p , ztotal.dev, xtotal.ss )}# �kin
i partition için seçilen noktan�n# x vektöründeki s�ras�n� verir110



sira.0=whi
h.min(bof.result[,5℄)z.sira.0=whi
h.min(gof.result[,5℄)# �kin
i partition point olarak seçilen knotp.point.1=x[order(bof.result[,5℄)[1℄ ℄ ;sira.1=whi
h(sort(x)==p.point.1)sira.2=sira.1-1z.point.1=z[order(gof.result[,5℄)[1℄℄z.sira.1=whi
h(sort(z)==z.point.1)z.sira.2=z.sira.1-1
andi=((sort(x)[sira.1℄+sort(x)[sira.2℄)/2)[1℄z.
andi=((sort(z)[z.sira.1℄+sort(z)[z.sira.2℄)/2)[1℄if(min(gof.result[,5℄) <min(bof.result[,5℄)){
andi=z.
andibak=2leaves23=rbind(gof.result[z.sira.0,℄)zz=z[z<
andi℄ ## NODE 5yz=y[z<
andi℄ ## NODE 5zleft.mean=mean(y[z<
andi℄) ;zleft.mse=gof.result[z.sira.0,℄[1℄/length(yz)zz.r=z[z>=
andi℄ ## NODE 4yz.r=y[z>=
andi℄ ## NODE 4zright.mean=mean(y[z>=
andi℄);zright.mse=gof.result[z.sira.0,℄[2℄/length(y[z>=
andi℄)reps=length(yz.r)leaves23[,7:10℄=
bind(zleft.mean,zright.mean,zleft.mse,zright.mse)
olnames(leaves23)[7:10℄=
("left.mean","right.mean","left.mse","right.mse")print(gof.result) ;print( data.frame(zz.r , yz.r)) ;print(data.frame( sira.0,sira.1,sira.2, p.point.1) ) ;print(leaves23) }else{
andi=
andibak=1 111



leaves23=rbind(bof.result[sira.0,℄)xx=x[x<
andi℄ ## NODE 5yx=y[x<
andi℄ ## NODE 5xleft.mean=mean(y[x<
andi℄) ;xleft.mse=bof.result[sira.0,℄[1℄/length(yx)xright.mean=mean(y[x>=
andi℄);xright.mse=bof.result[sira.0,℄[2℄/length(y[x>=
andi℄)xx.r=x[x>=
andi℄ ## NODE 4yx.r=y[x>=
andi℄ ## NODE 4reps=length(yx.r)leaves23[,7:10℄=
bind(xleft.mean,xright.mean,xleft.mse,xright.mse)
olnames(leaves23)[7:10℄=
("left.mean", "right.mean","left.mse", "right.mse")print(bof.result) ; print(data.frame( xx.r,yx.r));print( data.frame(sira.0,sira.1,sira.2,p.point.1)) ;print(leaves23) }# Kaç�n
� s�radaki x de§erlerinin en küçük# bof de§erini verdi§ini gösterir.# En küçük bof de§erini veren x lerin, vektördeki s�ras� ;order ((bof.result[,5℄))i=1while(order(bof.result[,5℄)[i℄<6 | order(bof.result[,5℄)[i℄>n-5)i=i+1x[order(bof.result[,5℄)[i℄℄ ; knot= x[order(bof.result[,5℄)[i℄℄zz=z[z<
andi℄ ## NODE 5yz=y[z<
andi℄ ## NODE 5zz.r=z[z>=
andi℄ ## NODE 4yz.r=y[z>=
andi℄ ## NODE 4xx=x[x<
andi℄ ## NODE 5yx=y[x<
andi℄ ## NODE 5xx.r=x[x>=
andi℄ ## NODE 4 112



yx.r=y[x>=
andi℄ ## NODE 4
riteria2=data.frame( imp.z=zimp[z.sira.0℄, imp.x=ximp[z.sira.0℄,
p.z=z
p[z.sira.0℄ , 
p.x=x
p[z.sira.0℄)return(list(leaves23=leaves23,zz=zz, zz.r= zz.r,yz=yz,yz.r=yz.r,xx=xx,yx=yx,xx.r=xx.r,yx.r=yx.r,
andi=
andi,bak=bak,
riteria2=
riteria2))}F=F(left.x,left.y,right.x,right.y,left.z,right.z,zleft.y,zright.y);Fde
ide=fun
tion(F){if(F$bak==1){ if(F$bak==1 &dim(data.frame(F$xx.r, F$yx.r))[1℄ > dim(data.frame(F$xx,F$yx))[1℄){d=data.frame(F$xx.r,F$yx.r, F$zz.r) ; d} else{d=data.frame(F$xx,F$yx, F$zz) ;d}} else{if (F$bak==2){if( dim(data.frame(F$zz.r,F$yz.r)) [1℄ > dim(data.frame(F$zz,F$yz))[1℄){d=data.frame(F$zz.r,F$yz.r,F$xx.r) ;d} else{d=data.frame(F$zz,F$yz,F$xx) ;d}}}return(list(d=d))} ; R=de
ide (F) ;R ; dim(R$d)tree=rbind(tree, F$leaves23) ;tree
p.
hange=(tree[1,6℄- (tree[2,1℄+tree[2,2℄+tree[1,2℄))/(2*tree[1,6℄)aga
=fun
tion(tree){if(dim(tree)[1℄==2) {tree[1,4℄=
p.
hange ;tree} else { tree}return(tree)} ; aga
(tree)#SONUCzdev.left zdev.right zimp z
p ztotal.dev xtotal.ss7 2.017797 0.1793333 0.063998 0.1037537 2.197130 2.3473562 0.755055 0.9258737 0.166948 0.1435100 1.680929 2.017797113



left.mean right.mean left.mse right.mse1.034100 1.1566667 0.06725989 0.011955561.140067 0.9281333 0.05033700 0.06172492#Che
k if 
orre
trpart(
d~A+B);summary(rpart(
d~A+B))NOT: if/else komutlar�, sayfa marjinleri yüzünden iki sat�ra bölünerekyaz�lm�³t�r. Bu bak�mdan, program� R-Software konsoluna yazarken tek sat�rdayaz�lmas� tavsiye edilir, aksi hali sorun ç�kartabilmektedir.
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Ek-3 Cd yan�t de§i³keninin, tek de§i³ken kullanarak MARS mo-delinin olu³turmas�nda kullan�lan R kodlar�
d=(1.195 0.990 1.195 1.395 0.597 0.990 1.399 0.597 1.395 1.199 0.996 0.5971.195 0.999 0.996 0.598 1.200 0.990 0.996 0.999 1.198 1.199 1.395 1.200 1.2001.198 1.198 0.990 1.192 1.395 0.988 1.192 1.192 1.199 0.790 0.990 1.198 0.9900.996 0.992 1.584 0.993 0.992 0.598 0.996)z=(0 -1 0 -1 0 -1 1 0 -1 1 1 0 0 -1 1 0 1 -1 1 -1 0 1 -1 1 1 1 1 0 1 -1 -1 1 1 -1-1 0 0 0 -1 0 -1 1 0 0 -1 )x= (1 1 1 -1 -1 1 1 -1 -1 1 0 -1 1 0 0 -1 -1 1 0 0 1 1 -1 -1 -1 -1 -1 0 0 -1 1 0 10 1 0 1 0 0 0 -1 1 0 -1 0)single.mars=fun
tion(y,z) {R.m<-fun
tion(z,t) ifelse(t>=z, t-z, 0)R.j<-fun
tion(t,z) ifelse(z>=t, z-t, 0)
oef.1=lm(
d~R.m(z,0)+R.j(0,z))$
oef
oef.2=lm(
d~R.m(z,-1)+R.j(-1,z))$
oef
oef.3=lm(
d~R.m(z,1)+R.j(1,z))$
oef
oef.mat.z=data.frame(
oef.1,
oef.2,
oef.3);
oef.mat.zfor(i in 1:3) {if(any(is.na(
oef.mat.z[i,℄))){# print(whi
h((is.na(
oef.mat.z[i,℄))))
oef.matz=
oef.mat.z[whi
h(any(!is.na(
oef.mat.z[i,℄)))℄y.fitz= 
oef.matz[1,1℄+
oef.matz[2,1℄*R.m(z,0)+
oef.matz[3,1℄*R.j(0,z)} }fit.1=lm(
d~R.m(z,0)+R.j(0,z))fit.2=lm(
d~R.m(z,-1)+R.j(-1,z))fit.3=lm(
d~R.m(z,1)+R.j(1,z))rss.1=sum((y-predi
t(fit.1))^2)rss.2=sum((y-predi
t(fit.2))^2)rss.3=sum((y-predi
t(fit.3))^2)115



rss=
(rss.1, rss.2, rss.3)for (i in 1:3){Penalty=2nTerms=length(
oef.1)nCases=length(
d)nKnots =(nTerms-1) / 2
ost = nTerms + Penalty * nKnotsg
v=(rss/nCases)/(1-
ost/nCases)**2myg
v=min(g
v)myrss=min(rss)}fit=fun
tion(myg
v,g
v){if (myg
v==g
v[1℄) { model=fit.1; r.sq=summary(fit.1)$r.sq} else {if (myg
v==g
v[2℄ ) {model=fit.2; r.sq=summary(fit.2)$r.sq} else{if(myg
v==g
v[3℄) {model=fit.3; r.sq=summary(fit.1)$r.sq }}}return(list(model=model,r.sq=r.sq))}return(list(fit(myg
v,g
v), g
v=min(g
v), rss=min(rss)))}#SONUCsingle.mars(
d,z)[[1℄℄[[1℄℄$modelCall:lm(formula = 
d ~ R.m(z, 0) + R.j(0, z))Coeffi
ients:(Inter
ept) R.m(z, 0) R.j(0, z)0.9281 0.2119 0.2285[[1℄℄$r.sq[1℄ 0.2075075$g
v[1℄ 0.05231987 116



$rss[1℄ 1.860262Ek-4 Cd yan�t de§i³keninin, iki de§i³ken kullanarak MARS mo-delinin olu³turmas�nda kullan�lan R kodlar�y=
d ; x=A ;z=Bmultiple.mars=fun
tion(y,z,x){R.m<-fun
tion(z,t) ifelse(t>=z, t-z, 0)R.j<-fun
tion(t,z) ifelse(z>=t, z-t, 0)
oef.1=lm(
d~R.m(z,0)+R.j(0,z))$
oef
oef.2=lm(
d~R.m(z,-1)+R.j(-1,z))$
oef
oef.3=lm(
d~R.m(z,1)+R.j(1,z))$
oef
oef.4= lm(
d~R.m(x,0)+R.j(0,x))$
oef
oef.5= lm(
d~R.m(x,-1)+R.j(-1,x))$
oef
oef.6= lm(
d~R.m(x,1)+R.j(1,x))$
oef
oef.mat.z=data.frame(
oef.1,
oef.2,
oef.3);
oef.mat.z
oef.mat.x=data.frame(
oef.4, 
oef.5,
oef.6) ;
oef.mat.xfor(i in 1:3) {if(any(is.na(
oef.mat.z[i,℄))){# print(whi
h((is.na(
oef.mat.z[i,℄))))
oef.matz=
oef.mat.z[whi
h(any(!is.na(
oef.mat.z[i,℄)))℄y.fitz= 
oef.matz[1,1℄+
oef.matz[2,1℄*R.m(z,0)+
oef.matz[3,1℄*R.j(0,z)}}for(i in 1:3) {if(any(is.na(
oef.mat.x[i,℄))){# print(whi
h((is.na(
oef.mat.x[i,℄))))
oef.matx=
oef.mat.x[whi
h(any(!is.na(
oef.mat.x[i,℄)))℄y.fitx=
oef.matx[1,1℄+
oef.matx[2,1℄*R.m(x,0)+
oef.matx[3,1℄*R.j(0,x)} }fit.1=lm(
d~R.m(z,0)+R.j(0,z));fit.2=lm(
d~R.m(z,-1)+R.j(-1,z))117



fit.3=lm(
d~R.m(z,1)+R.j(1,z));fit.4=lm(
d~R.m(x,0)+R.j(0,x))fit.5=lm(
d~R.m(x,-1)+R.j(-1,x));fit.6=lm(
d~R.m(x,1)+R.j(1,x))rss.1=sum(fit.1$res^2);rss.2=sum(fit.2$res^2)rss.3=sum(fit.3$res^2);rss.4=sum(fit.4$res^2)rss.5=sum(fit.5$res^2);rss.6=sum(fit.6$res^2)rss=
(rss.1, rss.2, rss.3, rss.4, rss.5, rss.6)for (i in 1:6){Penalty=2nTerms=length(
oef.1)nCases=length(
d)nKnots =(nTerms-1) / 2
ost = nTerms + Penalty * nKnotsg
v=(rss/nCases)/(1-
ost/nCases)**2myg
v=min(g
v)myrss=min(rss)}fit=fun
tion(myg
v,g
v){if (myg
v==g
v[1℄) { model=fit.1; r.sq=summary(fit.1)$r.sq} else {if (myg
v==g
v[2℄ ) {model=fit.2; r.sq=summary(fit.2)$r.sq} else{if(myg
v==g
v[3℄) {model=fit.3; r.sq=summary(fit.1)$r.sq} else{ if(myg
v==g
v[4℄) {model=fit.4;r.sq=summary(fit.4)$r.sq} else{ if(myg
v==g
v[5℄) {model=fit.5;r.sq=summary(fit.5)$r.sq}else { if(myg
v==g
v[6℄) {model=fit.6;r.sq=summary(fit.6)$r.sq}}}}}}return(list(model=model,r.sq=r.sq))}return(list(fit(myg
v,g
v), g
v=min(g
v), rss=min(rss)))}#SONUCmultiple.mars(
d,z,x)[[1℄℄[[1℄℄$model 118



Call:lm(formula = 
d ~ R.m(z, 0) + R.j(0, z))Coeffi
ients:(Inter
ept) R.m(z, 0) R.j(0, z)0.9281 0.2119 0.2285[[1℄℄$r.sq[1℄ 0.2075075$g
v[1℄ 0.05231987$rss[1℄ 1.860262
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Ek-5 MARS Modelleri- ANOVA1- Cd- MARS Model 2 - Birim say�s� 0 - Etkile³im VarN: 45.00 R^2: 0.83806Ortalama= 1.07496 ADJ R^2: 0.81730
PARAMETRE TAHMIN S.H. T-ORANI P-DEGERISabit 0.62873 0.04031 15.59935 0.00000Taban Fonksiyon 1 0.52933 0.05700 9.28655 0.00000Taban Fonksiyon 2 0.75293 0.05700 13.20935 0.00000Taban Fonksiyon 3 -0.54100 0.04415 -12.25312 0.00000Taban Fonksiyon 4 0.29940 0.03122 9.58995 0.00000Taban Fonksiyon 5 -0.30080 0.04415 -6.81282 0.00000F-hesap = 40.36568P-olas�l�§� = 0.00000 HATA K.T. = 0.38013S.D. = [ 5, 39 ℄ REGRESYON K.T.= 1.967222- Cd-MARS Model 3 - Birim Say�s� 1 - Etkile³im VarN: 45.00 R^2: 0.81993Ortalama: 1.07496 ADJ R^2: 0.80192PARAMETRE TAHMIN S.H. T-ORANI P-De§eriSabit 0.67497 0.03885 17.37200 0.00000Taban Fonksiyon 2 0.70670 0.05719 12.35664 0.00000Taban Fonksiyon 3 -0.52166 0.04256 -12.25629 0.00000Taban Fonksiyon 4 0.28006 0.02747 10.19356 0.00000120



Taban Fonksiyon 6 0.52423 0.06019 8.70922 0.00000F-De§eri = 45.53282P-Olas�l�§� = 0.00000 HATA K.T. = 0.42270S.D. = [ 4, 40 ℄ REGRESYON K.T. = 1.924663- Zn- MARS Model 1- Birim say�s� 0- Etkile³im YokN: 45.00 R^2: 0.82557Ortalama: 65.08958 ADJ R^2: 0.81281
PARAMETRE TAHMIN S.H. T-ORANI P-De§eriSabit 117.55832 4.91257 23.93012 0.00000Taban Fonksiyon 1 -40.11579 6.43206 -6.23685 0.00000Taban Fonksiyon 2 -75.27046 6.43206 -11.70239 0.00000Taban Fonksiyon 3 -42.01996 5.57033 -7.54354 0.00000F-De§eri = 64.68305P-Olas�l�§� = 0.00000 HATA K.T. = 12721.70416S.D. = [ 3, 41 ℄ REGRESYON K.T. = 60210.630394- Zn- MARS Model 2 - Birim say�s� 0 -Etkile³im VarN: 45.00 R^2: 0.99493Ortalama: 65.08958 ADJ R^2: 0.99413PARAMETRE TAHMIN S.H. T-ORANI P-De§eri121



Sabit 131.56030 0.98614 133.40905 0.00000Taban Fonksiyon 1 -77.48789 1.70805 -45.36634 0.00000Taban Fonksiyon 2 -89.73809 1.39462 -64.34611 0.00000Taban Fonksiyon 3 -98.71499 2.14925 -45.93004 0.00000Taban Fonksiyon 5 19.36400 0.71642 27.02900 0.00000Taban Fonksiyon 6 14.68910 1.30454 11.25995 0.00000Taban Fonksiyon 7 6.55587 0.65743 9.97199 0.00000F-De§eri = 1243.60836P-Olas�l�§� = 0.00000 HATA K.T. = 369.54107S.D. = [ 6, 38 ℄ REGRESYON K.T. = 72562.793495- Zn- MARS Model 3 - Birim say�s� 1 -Etkile³im VarN: 45.00 R^2: 0.99493Ortalama: 65.08958 ADJ R^2: 0.99413PARAMETRE TAHMIN S.H. T-ORANI P-De§eriSabitt 131.56030 0.98614 133.40905 0.00000Taban Fonksiyonu 1 -77.48789 1.70805 -45.36634 0.00000Taban Fonksiyonu 2 -89.73809 1.39462 -64.34611 0.00000Taban Fonksiyonu 3 -84.02589 1.70805 -49.19410 0.00000Taban Fonksiyonu 5 92.44868 2.60909 35.43335 0.00000Taban Fonksiyonu 6 43.40289 2.41554 17.96816 0.00000Taban Fonksiyonu 7 19.66759 1.97228 9.97199 0.00000F-De§eri = 1243.60836P-Olas�l�§� = 0.00000 HATA K.T. = 369.54107S.D. = [ 6, 38 ℄ REGRESYON K.T.= 72562.79349
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6- Pb- MARS Model 1 - Birim say�s� 0 -Etkile³im YokN: 45.00 R^2: 0.62341Ortalama: 27.37253 ADJ R^2: 0.60548PARAMETRE TAHMIN S.H. T-ORANI P-De§eriSabit 18.32563 3.87899 4.72433 0.00003Taban Fonksiyonu 1 17.52866 2.74286 6.39066 0.00000Taban Fonksiyonu 2 25.44530 4.75077 -5.35604 0.00000F-De§eri = 34.76381P-Olas�l�§� = 0.00000 HATA K.T.= 9479.32335S.D.= [ 2, 42 ℄ REGRESYON K.T. = 15692.257607- Pb- MARS Model 2 - Birim say�s� 0 -Etkile³im VarN: 45.00 R^2: 0.85190Ortalama: 27.37253 ADJ R^2: 0.84107PARAMETRE TAHMIN S.H. T-RATIO P-De§eriSabit 9.84387 2.24751 4.37990 0.00008Taban Fonksiyonu 1 34.65768 2.33568 14.83837 0.00000Taban Fonksiyonu 2 -30.64019 2.69701 -11.36080 0.00000Taban Fonksiyonu 3 -20.74683 2.69701 -7.69253 0.00000F-De§eri = 78.61464P-Olas�l�§� = 0.00000 HATA K.T.= 3727.85808S.D.= [ 3, 41 ℄ REGRESYON K.T. = 21443.72287
123



Ek-6 Toz ve Toprak Veri setiTramvay Ta³�t Cd-toz Pb-toz Zn-toz Cd-toprak Pb-toprak Zn-toprak�stasyon12 1212 1.392 33.579 118.735 1.394 17.650 47.401 Uluönder12 1212 1.392 35.170 120.326 1.394 17.247 47.600 Uluönder12 1212 1.392 35.766 119.928 1.394 17.650 48.397 Uluönder12 1212 1.077 30.946 111.287 1.376 19.657 51.711 Uluönder12 1212 1.077 29.565 110.300 1.180 20.443 51.907 Uluönder12 1212 1.879 30.551 108.721 1.376 21.426 52.497 Uluönder12 1212 1.198 33.520 106.451 1.393 18.478 50.358 Uluönder12 1212 1.398 34.119 107.250 1.393 19.274 51.354 Uluönder12 1212 1.398 33.520 106.451 1.194 19.473 51.154 Uluönder12 1212 0.996 25.256 91.000 0.992 16.234 44.436 Uluönder12 1212 0.996 22.667 89.407 0.992 15.837 44.039 Uluönder12 1212 0.996 23.862 90.601 0.992 16.234 44.436 Uluönder12 1212 0.996 22.477 111.554 0.983 14.315 42.649 Uluönder12 1212 0.996 23.473 110.558 0.983 14.315 42.256 Uluönder12 1212 0.996 22.676 110.159 0.983 15.101 42.453 Uluönder12 1212 1.000 23.557 97.161 1.000 14.167 42.000 Uluönder12 1212 1.000 21.558 97.161 1.000 13.967 42.200 Uluönder12 1212 1.000 22.957 97.161 1.000 13.967 42.000 Uluönder18 420 0.995 22.191 87.744 0.995 13.099 40.191 Ba§lar18 420 0.796 23.186 88.142 0.995 12.303 39.395 Ba§lar18 420 0.995 25.574 88.739 0.796 13.695 39.395 Ba§lar18 420 0.992 17.236 88.527 0.797 11.919 39.243 Ba§lar18 420 0.992 18.228 89.321 0.598 10.724 39.641 Ba§lar18 420 1.191 17.434 89.718 0.598 11.122 39.442 Ba§lar18 420 0.990 20.153 88.462 1.377 12.553 37.365 Ba§lar18 420 0.990 20.153 87.671 1.377 14.913 38.151 Ba§lar18 420 0.990 19.559 88.264 1.377 13.340 37.955 Ba§lar124



18 420 0.994 15.079 100.616 0.595 10.278 37.874 Ba§lar18 420 0.994 15.278 102.406 0.595 11.468 38.469 Ba§lar18 420 0.994 14.483 101.810 0.595 11.270 37.874 Ba§lar18 420 0.797 20.294 85.492 0.598 10.936 41.085 Ba§lar18 420 0.797 18.301 84.496 0.598 11.335 40.088 Ba§lar18 420 0.797 20.094 85.492 0.598 11.534 41.284 Ba§lar18 420 0.799 23.548 94.667 0.597 10.713 39.801 Ba§lar18 420 0.799 22.749 92.471 0.597 11.509 39.403 Ba§lar18 420 0.799 23.747 91.472 0.597 10.514 38.408 Ba§lar12 1206 1.198 30.923 152.586 1.395 9.929 45.627 Doktorlar12 1206 0.999 31.523 151.987 1.395 9.331 46.822 Doktorlar12 1206 1.198 31.123 151.588 1.395 11.523 45.627 Doktorlar12 1206 1.186 25.461 145.455 1.194 11.511 45.780 Doktorlar12 1206 1.186 26.252 146.245 1.194 11.511 44.188 Doktorlar12 1206 0.988 26.449 145.455 1.194 11.113 45.780 Doktorlar12 1206 1.194 29.414 146.041 1.198 10.749 50.120 Doktorlar12 1206 1.194 32.398 147.433 1.198 10.350 49.720 Doktorlar12 1206 1.194 30.608 147.035 1.198 11.149 50.120 Doktorlar12 1206 1.797 28.726 169.163 0.994 10.110 46.142 Doktorlar12 1206 1.598 30.124 170.162 0.994 11.303 45.744 Doktorlar12 1206 1.598 27.528 171.560 0.994 10.707 45.943 Doktorlar12 1206 1.187 31.217 153.481 1.192 10.301 49.285 Doktorlar12 1206 0.989 30.426 150.712 1.192 10.102 48.490 Doktorlar12 1206 0.989 30.030 151.503 1.192 12.288 49.086 Doktorlar12 1206 1.190 25.562 146.230 0.996 10.728 46.433 Doktorlar12 1206 1.190 24.967 143.849 0.996 9.333 47.828 Doktorlar12 1206 1.190 26.753 145.833 0.996 9.732 45.835 Doktorlar12 984 0.993 38.482 101.052 1.189 64.982 120.912 Alanönü12 984 0.993 36.695 99.067 0.991 65.576 120.515 Alanönü12 984 0.993 36.695 99.861 0.991 66.766 120.714 Alanönü12 984 0.998 29.508 105.988 1.184 49.118 129.293 Alanönü125



12 984 0.998 30.506 106.587 1.184 49.513 132.452 Alanönü12 984 0.998 29.508 106.387 1.184 50.105 130.478 Alanönü12 984 0.994 32.975 119.308 0.987 42.020 129.319 Alanönü12 984 0.994 35.362 119.507 1.185 42.218 130.701 Alanönü12 984 0.994 35.560 118.115 1.185 41.626 128.332 Alanönü12 984 0.997 36.118 99.422 0.988 50.925 134.703 Alanönü12 984 0.997 36.717 98.425 1.185 51.320 133.518 Alanönü12 984 0.997 38.112 99.023 1.185 51.715 135.690 Alanönü12 984 0.793 37.841 93.000 0.992 45.800 120.437 Alanönü12 984 0.793 36.453 91.414 0.992 47.586 122.222 Alanönü12 984 0.991 41.014 93.992 0.992 46.594 121.230 Alanönü12 984 0.990 50.838 98.377 0.990 41.139 132.621 Alanönü12 984 0.990 49.254 96.991 0.990 41.337 133.610 Alanönü12 984 0.990 49.650 98.773 0.990 42.326 134.402 Alanönü12 1284 1.183 38.209 138.577 1.390 14.261 58.368 Atatürk Lisesi12 1284 1.183 38.012 137.197 1.390 16.644 58.567 Atatürk Lisesi12 1284 1.183 41.560 138.183 1.390 15.055 59.162 Atatürk Lisesi12 1284 1.505 42.343 140.594 1.177 20.956 60.416 Atatürk Lisesi12 1284 1.703 43.729 139.604 1.177 21.937 60.220 Atatürk Lisesi12 1284 1.505 43.729 139.802 1.177 23.310 60.220 Atatürk Lisesi12 1284 1.182 39.557 131.968 1.000 15.963 60.188 Atatürk Lisesi12 1284 1.182 39.557 131.968 1.000 14.764 61.388 Atatürk Lisesi12 1284 1.182 39.361 129.604 1.000 14.764 60.188 Atatürk Lisesi12 1284 0.999 41.509 129.619 0.995 21.862 65.486 Atatürk Lisesi12 1284 0.999 41.309 128.820 1.194 20.667 64.490 Atatürk Lisesi12 1284 1.198 41.109 126.623 0.995 21.862 65.884 Atatürk Lisesi12 1284 1.189 39.404 157.551 0.993 15.660 63.369 Atatürk Lisesi12 1284 1.189 39.801 158.740 0.993 16.455 62.972 Atatürk Lisesi12 1284 1.189 39.404 157.352 1.192 16.653 62.773 Atatürk Lisesi12 1284 0.986 32.987 132.945 1.199 21.749 62.310 Atatürk Lisesi12 1284 0.986 34.566 133.340 1.199 21.949 61.711 Atatürk Lisesi126



12 1284 0.986 32.987 133.340 1.399 21.150 62.710 Atatürk Lisesi12 174 0.990 54.984 36.810 1.734 7.484 38.543 OGÜ12 174 0.792 57.557 36.414 1.542 9.218 37.965 OGÜ12 174 0.792 57.557 35.820 1.734 8.447 38.736 OGÜ12 174 0.828 55.582 33.174 1.576 8.046 43.744 OGÜ12 174 0.828 47.636 32.777 1.576 8.834 42.956 OGÜ12 174 0.828 47.636 32.976 1.576 7.258 43.350 OGÜ12 174 0.800 35.959 28.794 1.767 9.197 43.598 OGÜ12 174 0.800 35.360 28.994 1.767 8.412 43.401 OGÜ12 174 0.800 35.560 29.194 1.571 8.412 42.616 OGÜ12 174 0.793 42.623 40.230 1.393 10.514 42.388 OGÜ12 174 0.793 42.226 40.032 1.393 9.718 42.388 OGÜ12 174 0.793 48.857 39.834 1.393 9.320 42.189 OGÜ12 174 0.599 40.070 36.113 1.386 8.086 46.931 OGÜ12 174 0.798 41.068 36.313 1.584 6.898 47.129 OGÜ12 174 0.599 40.270 36.512 1.584 9.076 46.337 OGÜ12 174 0.797 41.011 40.247 1.395 10.132 42.057 OGÜ12 174 0.797 41.210 39.052 1.395 9.933 41.658 OGÜ12 174 0.797 40.413 39.251 1.395 8.737 42.057 OGÜ18 1100 1.393 44.336 76.204 2.183 74.004 54.387 Atatürk Blv Çilek Ö.18 1100 1.393 42.943 74.811 2.183 71.821 54.784 Atatürk Blv Çilek Ö.18 1100 1.194 46.525 75.209 2.183 74.600 55.181 Atatürk Blv Çilek Ö.18 1100 0.994 51.448 98.986 1.198 69.029 50.299 Atatürk Blv Çilek Ö.18 1100 0.994 53.038 98.589 1.198 69.428 50.100 Atatürk Blv Çilek Ö.18 1100 0.994 49.858 98.191 1.397 69.428 49.501 Atatürk Blv Çilek Ö.18 1100 1.599 68.326 71.757 1.793 70.897 64.355 Atatürk Blv Çilek Ö.18 1100 1.599 70.125 71.757 1.594 70.897 64.555 Atatürk Blv Çilek Ö.18 1100 1.599 69.725 70.758 1.594 70.499 64.355 Atatürk Blv Çilek Ö.18 1100 0.789 54.186 98.580 1.194 70.588 55.334 Atatürk Blv Çilek Ö.18 1100 0.789 53.398 98.580 1.393 73.574 56.728 Atatürk Blv Çilek Ö.18 1100 0.789 54.778 99.369 1.194 78.995 55.334 Atatürk Blv Çilek Ö.127



18 1100 0.793 48.926 81.665 1.198 71.185 56.498 Atatürk Blv Çilek Ö.18 1100 0.793 49.521 82.061 1.198 97.391 55.300 Atatürk Blv Çilek Ö.18 1100 0.793 48.332 82.061 1.198 71.384 55.500 Atatürk Blv Çilek Ö.18 1100 0.786 71.929 85.726 1.195 76.660 52.789 Atatürk Blv Çilek Ö.18 1100 0.786 69.767 85.332 1.195 76.062 53.187 Atatürk Blv Çilek Ö.18 1100 0.786 69.767 84.742 1.195 76.062 53.586 Atatürk Blv Çilek Ö.12 852 1.993 26.703 145.251 1.182 44.790 156.882 Vi³nelik12 852 1.793 27.900 145.650 1.182 46.774 153.114 Vi³nelik12 852 1.793 26.703 144.254 1.182 45.584 154.899 Vi³nelik12 852 1.194 28.811 101.452 1.381 41.584 127.022 Vi³nelik12 852 1.194 28.015 101.850 1.381 41.387 129.389 Vi³nelik12 852 1.194 28.811 100.656 1.381 43.951 128.008 Vi³nelik12 852 1.193 22.233 103.579 1.792 41.194 127.664 Vi³nelik12 852 1.193 22.631 104.573 1.992 41.990 129.058 Vi³nelik12 852 1.193 21.438 104.374 1.792 38.605 127.863 Vi³nelik12 852 0.794 28.268 99.821 0.993 40.666 130.832 Vi³nelik12 852 0.794 30.451 100.020 0.993 43.842 133.214 Vi³nelik12 852 0.794 28.070 98.631 0.993 42.850 132.222 Vi³nelik12 852 1.197 31.485 98.943 0.996 49.578 135.286 Vi³nelik12 852 1.197 32.083 98.943 0.996 48.582 137.478 Vi³nelik12 852 1.197 29.689 98.544 0.996 49.977 137.278 Vi³nelik12 852 0.796 22.255 106.070 1.199 40.942 133.120 Vi³nelik12 852 0.796 21.857 107.463 0.999 41.142 130.722 Vi³nelik12 852 0.796 21.658 108.060 0.999 41.342 132.920 Vi³nelik12 1530 1.360 16.571 36.371 1.188 46.437 71.201 Opera12 1530 1.360 16.769 37.161 1.188 48.631 71.400 Opera12 1530 1.360 16.966 36.568 1.188 48.232 71.201 Opera12 1530 1.946 18.909 33.938 1.181 25.145 81.197 Opera12 1530 1.946 18.712 33.938 1.181 25.740 79.810 Opera12 1530 1.946 16.542 33.149 1.181 24.551 78.818 Opera12 1530 1.992 13.313 32.072 1.985 23.384 68.069 Opera128



12 1530 1.793 13.313 31.076 1.985 24.178 67.871 Opera12 1530 1.992 13.712 31.673 1.985 25.170 67.672 Opera12 1530 0.798 13.928 30.913 1.000 31.960 74.973 Opera12 1530 0.798 13.329 31.512 1.000 31.360 75.173 Opera12 1530 0.798 14.127 30.714 1.000 31.960 75.773 Opera12 1530 0.992 14.247 32.923 0.790 24.666 73.503 Opera12 1530 0.992 14.049 34.113 0.790 25.061 74.096 Opera12 1530 0.992 14.049 33.320 0.988 24.468 72.910 Opera12 1530 0.993 18.711 35.508 0.990 28.866 74.228 Opera12 1530 0.993 18.711 33.521 0.990 28.669 73.436 Opera12 1530 0.993 18.115 35.905 0.990 29.658 74.030 Opera
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