YANIT YUZEYI MODELLERINE
MARS YAKLASIMI

Betiil KAN
Doktora Tezi

Istatistik Anabilim Dal

Ocak - 2011



JURI VE ENSTITU ONAYI

Betiill KAN’ nin "Yanit Yiizeyi Modellerine MARS Yaklagimi1"
baglikli Istatistik Anabilim Dalndaki Doktora Tezi 24.12.2010 tarihinde,
agagidaki jiiri tarafindan Anadolu Universitesi Lisansiistii BEgitim-Ogretim

ve Sinav Yonetmeliginin ilgili maddeleri uyarinca degerlendirilerek kabul

edilmistir.
Adi Soyadi Imza
Uye (Tez Damismani) : Dog. Dr. Berna YAZICI  ..........
Uye : Prof. Dr. Aydin ERAR ...l
Uye : Dog. Dr. ilker ERCAN ...
Uye : Dog. Dr. Meral CETiN ..........
Uye :  Yard. Dog. Dr. Atilla ASLANARGUN ..........

Anadolu Universitesi Fen Bilimleri Enstitiisii Y6netim Kuru-

lv'nun ..... tarih ve ..... sayili karariyla onaylanmigtir.

Enstiti Midiirii



OZET

Doktora Tezi

YANIT YUZEYI MODELLERINE MARS YAKLASIMI

Betiil KAN

Anadolu Universitesi
Fen Bilimleri Enstitiisii

Istatistik Anabilim Dali

Danigsman: Dog. Dr. Berna YAZICI
2010, 129 sayfa

Bu tez caligmasinda, yanit yiizeyi metodolojisinde ikinci dereceden tasarim-
larda modelleme agamasinda MARS (Cok Degigkenli Uyarlamali Regresyon
Splaynlar1) yaklagimi 6nerilmigtir. Bu yaklagimin, hangi faktoriyel tasarim-
lara ve hangi veri yapilarina uygulanabilecegi iizerinde durulmus, modelleme
asamasinin nasil yapilacagl aciklanmistir. Calismanin uygulama kisminda, 32
deneysel diizenden gelen toprak ve toz orneklerinden yararlanarak Eskigehir
merkezli yapilan saha calismasinda agir metal kirlilikleri regresyon agaglariyla
siniflandirilmig, yanit yiizeyi modelleri ve MARS ile modellenmeye calisilmigtir.
Sonuclar istatistiksel testlerle ve kriterlerle degerlendirilmigtir. R Yazilimi kul-
lamlarak tek ve iki degiskenli durum igin regresyon agacina dayali iki ayr1
program yazilmigtir. MARS yontemi kullanilarak agir metal kirlilik verisini
modellemek icin R Yazilimi ile tek ve iki degiskenli durum igin iki ayr1 prog-

ram yazilmigtir.

Anahtar Kelimeler: Yanit Yiizeyi Metodolojisi, Cok Degiskenli Uyarlamal
Regresyon Splaynlari (MARS), Regresyon Agaci



ABSTRACT

PhD Dissertation

MARS APPROACH TO RESPONSE SURFACE MODELS

Betiil KAN

Anadolu University
Graduate School of Sciences

Statistics Program

Supervisor: Assoc. Prof. Berna YAZICI
2010, 129 pages

In this study, the approximation of the multivariate adaptive regression
splines (MARS) is proposed at the stage of modeling in second order design
in response surface methodology. It is mentioned that what kind of factorial
designs and datasets can be used for this approximation and also how the
modeling stage can be made is explained. In the application part of the study,
the pollution of heavy metals coming from 32 design for both soil and road
dust datasets which are collected from a specific area in Eskisehir are classified
by the means of regression trees and is modeled by the use of response surface
methodology and MARS. The results are evaluated by statistical tests and
by some criteria. Two programs, based on regression trees for a univarite case
and a bivariate case, are generated using R Software. Two different programs
for a univarite case and a bivariate case to model the pollution of heavy metal

data by MARS are generated in R Software.

Key Words: Response Surface Methodology, Multivariate Adaptive Reg-

ression Splines, Regression Tree
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1 GiRiS
1980’ lerde Avrupa’daki endiistriyel caligmalar dogrultusunda yogun bir ge-

kilde kalite iyilestirmeleriyle ilgilenilmeye baglanmistir. Ozellikle deney tasarim

lar1 ve istatistiksel kalite kontrol ¢aligmalar: hiz kazanmigtir. Deney tasarimlar:
yontemleriyle daha yiiksek giivenirlige sahip olan ve miisteri gereksinimlerini
kargilayan {triinlerin ortaya ciktigr goriilmiigtiir. Bu anlamda yanit yiizeyi
metodu (YYM) igin, deney tasariminin 6zel bir dali olarak, tarimsal, kimyasal,
endiistriyel ve biyolojik aragtirmalarda, siireclerin iyilestirilmesinde, geligti-
rilmesinde veya optimizasyonunda kullanilan istatistiksel bir tekniktir denilebi-
lir. Ilk olarak YYM alaninda calismaya Box ve Draper’ n 1951 yilinda basladik-
lar1 bilinir. Sonraki yillarda yanit yiizeylerinin aragtirilmasinda ilgili desen
se¢iminde etken olabilecek farkli nedenler iizerinde ¢aligmiglardir [1]. Box ve
Draper, YYM’da yanhis model tanimlanmig olsa bile YYM’ nin etkinligi {ize-
rinde durmuglardir. Hill ve Hunter [2|, yanit yiizeyi metodu ile ilgili olarak
kimya endiistrisindeki caligmalara onciiliik etmislerdir. Yanit yiizeyi calismala-
rin1 biyometri agisindan inceleyen Mead ve Pike [3] ise, bu metodun baglangici-
nin 1930’ larda kullamilan yanit egrilerine dayandigini ileri stirmiigtiir. Myers,
Carter ve Khuri [4] fizik, miithendislik, gida bilimindeki uygulamalarini ortaya
koymugtur. Jensen ve Myers [5|, tahminlemedeki dogruluga iligkin olgiileri
belirlemek iizere yiizeydeki noktalarin tespitini yapmisgtir. Hardy ve Nychka
[6] caligmalarinda, ince tabakali splaynlarin yamt yiizeyleri uyumu igin non-
parametrik bir metot oldugundan bahsetmigtir. Burada, ince tabakali splayn-
lar1 R~ splaynlarin 6zel bir durumu olarak incelemislerdir. R-splaynlar bir
yokluk uzayi (null space) polinomu ve radyal (radial) tabanh fonksiyonlarin
splayn uyumu olarak one siiriilmiistiir. Bu makalelerinde, piiriizliiliik ceza
modifikasyonunu tartigmiglardir.

Hardy, ve ark. [7] ¢ahgmalarinda, ince tabakal splaynlarin geniglemesi
olarak bilinen R-splaynlarla yanit yiizey uyumunda nonparametrik bir metot
izerine odaklanir. Bu aragtirmalarinda, 12 potansiyel bagimsiz degiskenle

caligilmig 6zel bir uygulama yapmiglardir. Degiskenlerin fonksiyonel form-



larinin, bu fonksiyonel formlar arasindaki etkilesimler ile beraber diizenlendik-
lerinde, uyumu yapilabilecek modellerin sayisinin o andaki standartlara bagh
olan kiiciik veri setlerini bile etkiledigini diigiinmiiglerdir. Pek ¢cok model secim
teknigi onerilmesine ragmen, hangisinin daha {istiin olduguna dair bir fikir
birligi yoktur. Bu calismalarinda, model ve degisken secimini yapmak i¢in, iki
cesit simulasyon yapilmugtir. Ilkinin amaci, biitiin miimkiin alt kiimeler arasin-
dan R-splaynlar kullanarak degisken seti se¢iminde dort strateji arasindaki
farklar1 test etmektir. Ikincisinin amaci ise ii¢ modelleme teknigini kargilas-
tirmaktir. Bunlar, tiim altkiime degisken se¢imi metodolojisini kullanarak iki
agamali bir R-splayn yaklagimi, standart tiim altkiime dogrusal regresyonlari
ve siflama regresyon agaclaridir. Ozetle, R-splaynlar1 kullanarak model ve
degisken secimlerini incelemislerdir. Oncelikle 6nemli aciklayici degiskenler R-
splaynlarin 6zel bir tipi kullanilarak belirlenmigtir. Daha sonra, bu sec¢ilmig
degiskenler uygun R-splayn modellerinin uyumu igin kullanilmigtir. Ren [§],
yanit yiizeyi metodolojisini dogrusal olmayan metotlar {izerinden incelemigtir.
Buna gore, ¢oklu dogrusal regresyona dayali yanit yiizeyi modellerini aromatik
kimyasallarin toksitlikleri icin geligtirmiglerdir. Bu calismalarinda, aromatik
kimyasallarinin yanit yiizeyi modellerini dogrusal olmayan alti tane modelleme
metodu kullanarak olugturmuglardir. Biitiin modellerin ¢apraz gegerlilik (CV)
kriteri ile gecerliligi sinanmig ve digarida birakilan veri seti icin tahminin
dogrulugu (prediction accuracy) test edilmigtir. Sonuglar, LOESS (locally we-
ighted regression scatter plot smoothing), MARS (multivariate adaptive reg-
ression splines), NN (Neural Networks), PPR (projection pursuit regression)
metotlariyla belirlenmis ve model uyumlar: kargilagtirilmigtir. Sonuclarin ben-
zer uygulanabilirlikleri bulunmaktadir. O’ Connell ve Wolfinger [9] ¢aligmala-
rinda, spatial regresyon modelleri, ikinci dereceden polinomiyal yanit ylizey-
lerine bir tamamlayici alternatif olarak geligtirilmigtir. Bu modeller, tasarim
uzayinda bilinmeyen yanit degiskeni tahminlerini ve tasarim degigkenlerinin
etkilerini dogru ve diizgiin (smooth) veri yaklagimlariyla saglar. Tahminlen-
mis yanit yiizeyleri, modellerin kovaryans yapilariyla elde edilir. Heiligers [10]

caligmasinda, taban fonksiyonlariyla parametrelendirilmis d. dereceden poli-



nomiyal regresyon i¢in E-optimal tasarim problemine ¢6ziim elde edilmistir.
Buna gore bir kapali aralikta sonlu tasiyiciligi olan bir olasilik 6l¢iimi olarak
tanimlanan tahmini biitiin tasarimlar arasinda katsayisi matrisinin sadece ve
sadece en kiiciik 6zdegerini maksimize eden bu tasarim E-optimaldir denir.
Butler [11], calismasinda G-optimal tasarimlarin 6zelliklerini diizeltme splayn-
lariyla inceler. G-optimallik, parametre tahmincisinin varyansini maksimum
yapan tasarimin minimumunu se¢en performans kriteridir.

Tarpey ve Holcomb [12], ¢aligmalarinda polinomiyal regresyon ile splayn
modellerin uyumu arasindaki iligkiyi incelemiglerdir.

Bir bagka ¢aligmada Craven [13], splayn tabanlh yaklagimla yanit yiizeyinin
cok boyutlu kesikli bir gruptan cok boyutlu siirekli bir gruba nasil yapi-
landirilacabilecegi iizerinde durulmus ve bu durum cok kriterli Bayes karar
problemi olarak yorumlanmigtir.

Chen [14], ¢cok boyutlu dinamik stokastik programlamada bir deneysel tasa-
rim ve regresyon splaynlari uygulamasi yapmigtir.

Crino [15], simulasyona dayali tasarim optimizasyon problemlerinde yanit
yiizeyi metodolojisini ¢ok degigkenli uyarlamali splayn regresyonu ile beraber
kullanmuigtir.

YYM ozellikle iiriin gelistirilmesinde 6nemli bir aractir. Uc faktoriin iic
farkli dozu denildiginde, biitiin kombinasyonlarin olusturdugu deneme sayisi
3% = 27 ' dir. Ancak bu durum bazen maliyet ve zaman acisindan biitiin
kombinasyonlarin denenmesine izin vermeyebilir. Boyle bir durumda YYM
kullanilarak, deneme sayist 15’ indirilip sonuclar test edilebilir [16]. YYM’
de denemeye alinmayan faktor kombinasyonlar: i¢in yaniti tahmin edecek uy-
gun bir fonksiyonun olugturulmasi ve yanit (bagimh) degisken fonksiyonunu
maksimum veya minimum yapacak bagimsiz degisken kombinasyonlarinin bu-
lunmasi ilizerinde durulur. Yanit yilizeyini olusturma amaci, tiim faktor uza-
yinda belirli 6zellikleri saglayan bir bélgeyi ve bu bolgeye ait optimum noktay1
tahmin etmektedir.

Gok boyutlu veri setleriyle ugragsmada yeni bir metot olarak " Cok Degigken-
li Uyarlanabilir Regresyon Splaynlari (MARS)" kargimiza gikar. Buradaki yak-



lagim, bilinmeyen modelin splayn taban fonksiyonlari ¢arpimi olarak ifade
edilebilmesidir. Splayn taban fonksiyonlarinin sayisi ve parametre sayisi otoma-
tik olarak veri tarafindan belirlenir. Bu siirecte temel olarak, ardigik boliin-
tiileme yaklagimindan faydalanilir. Ancak ardigik boliintiilemeden farkli olarak
bu metot siirekli modeller ve siirekli tiirevler iiretir. Bu yaklagim, etkilesimleri
de icerir veya toplamsal iligkilerin modellendigi durumlarda daha esnektir.

Az sayida gozlemin incelendigi YYM’ de polinomiyal modellemeye ve bun-
larin ¢ok degiskenli durumlarina ihtiya¢ duyulabilir. Bu ¢aligmada YYM’ de
MARS kullanilmasina dayali bir yaklagim {izerinde durulmustur.

Bu calismanin ikinci boliimiinde, konuya iligkin temel kavramlara yer veril-
migtir. Buna gore, ilk olarak vektorler ve vektor uzaylar: tanimlar: iizerinde
durulmus, sonrasinda dogrusal bagimhlik ve dogrusal germe tanimlari ince-
lenmigtir. Ardindan, tabanlar ve bunun yardimiyla olusturulan 6zel regresyon
modelleri tamitilmigtir. Son olarak splaynin matematiksel terim olarak ifade-
sine yer verilmigtir.

Daha sonra, yanit yiizeyi metodolojisinin yapisi ve yanit yilizeyi model-
lerinin parametrelerinin tahminlenmesinde kullanilan yamt yiizeyi tasarim-
larindan bazilar1 verilmistir. YYM’ nin birinci dereceden tasarimlarindan " 2%

" ile ikinci dereceden tasarimlarin-

Faktor Tasarimi" ve "3% Faktor Tasarimi
dan "Merkezi Bilegik Tasarim" agiklanmigtir. S6zii gegen tasarimlarin agiklan-
masindan sonra, bu modellerin analizi i¢in kullanilan tekniklere deginilmigtir.
Bu amagla, gradyant artma ve kanonik analiz yontemleri iizerinde durulmus-
tur. Bu boliimiin sonunda, model secimi i¢in kullanilan énemli baz1 kriterler
incelenmistir.

Uciincii béliimde, yinelemeli béliintiileme ve regresyon splaynlari iizerinde
durulmustur. Ardindan MARS detayh bir gekilde incelenmigtir. MARS algo-
ritmasinin model se¢im agamasi aciklanmigtir ve son kisstmda MARS’ 1n ileriye
ve geriye doniik algoritmasi incelenmigtir.

Bu baglamda ilk olarak, MARS deneysel verinin koordinatlarinin belir-

lenmesinde kullanilmigtir [17|. Bu galismada, "3 Faktoriyel Tasarim" a al-

ternatif olarak gelistirilen "Merkezi Birlesik Tasarim" iizerinde durulmustur.



Bu tasarim matrisi kullanilarak elde edilen MARS modelinin iirettigi ta-
ban fonksiyonlar: incelenmigtir. MARS’ 1n bu taban fonksiyonlar: i¢in iiret-
tigi diigiim noktalari, degisken 6nemliligi gibi ekstra bilgiler, modeli yorum-
lamada kullanilmaya calisilmistir. "2° Faktoriyel Tasarim" in faktorleri ve
diizeyleri ile, MARS modelinin iirettigi taban fonksiyonlar1 ve diigiim nok-
talar1 incelenmistir [18]. Caligmada regresyon agaglar:i (CART) olarak da bili-
nen yinelemeli boliintiileme yontemi ile tiim faktorler ve bunlarin birbirleriyle
etkilesimleri ortaya konmustur. MARS modeli ile 2° faktoriyel tasarima ait
etkilerin (ikili, ti¢lii, dortlii ve besli terimler dahil) oldugu birinci dereceden
yanit yiizeyi modeli iizerinde durulmugtur. Bu ¢aligma dogrultusunda, MARS
modeli, birinci dereceden yamt yiizeyi modelindeki faktor sayisini azalttig
icin aragtirmacilara bir tercih nedeni olarak onerilmistir. Bagka bir calismada,
ince tabakali splaynlar, kiibik splaynlar ve MARS ile olusturulan coklu re-
gresyon modellerinin, bazi kriterlerle kargilagtirilmasi R yaziliminda hazir-
lanan bir programla yapilmig, modellerin serbestlik dereceleri iizerinde durul-
mugtur |19]. Ayrica bir bagka ¢aligmada, 3% faktoriyel deney verisi kullamlarak
regresyon agaglari olugturulmustur [20]. Bu ¢aligmada, sekiz agir metalin ikinci
deredecen yamt yiizeyleri ve regresyon agaclari incelenmistir. Toz ve toprak
kirlilik aragtirmasi i¢in tasarlanan deneysel diizenden hareketle elde edilen
onalt1 modele iligkin sonuclar yorumlanmigtir.

Tezin uygulama boliimiinde, 6nerilen yaklagimin kullanilabilmesi ve istatis-
tiksel acidan klasik yontemle karsilagtirilabilmesi i¢in s6z konusu agir metal
verileri kullanilmigtir. Bunlarin sebep oldugu kirlilik aragtirmasi icin verilere,
ikinci dereceden yamt yiizeyi ve  MARS modelleri uydurulmugtur. Her iki

yontemle elde edilen modellerin karsilagtirilmasi, modeldeki faktor sayilari,

2
adj

modellerin standart hatalari, diizeltilmig belirlilik sayilar1 (RZ,) ve genel-
legtirilmig capraz gegerlilik (GCV) kriteri ile yapilmigtir. Bunlara ek olarak Cd,
Zn ve Pb i¢in olusturulan yanit yiizeylerinin grafikleri ve kontiir haritalar: ver-
ilmigtir. Bu grafikler MARS 1n iirettigi etkilesim grafikleriyle kargilagtirilmig ve
sonuglar yorumlanmigtir. MARS’ 1n iirettigi degisken onemlilikleri verilmigtir.

Her iki yontemle kurulan modeller ile toprak verisi kullanilarak yapilan agir



metal kirliligi aragtirmasinda, MARS modellerinin daha detayl bilgiler ver-
mesi ve modele etkilesim terimlerini de katarak yanit yiizeyleri analizine katk:
saglamig, gercek yapiy1 daha iyi yansitmig, deneysel diizenden gelen verinin ge-
leneksel yolla modellenmesi yerine temsili bir model olarak kullanilmasi éneril-
migtir.

Stirece iligkin algoritma, iki parcali halde, hem tek degisken hem de iki
degigken olmasi durumu icin gelistirilmis ve Ek-1-4 arasinda verilmigtir. Ek-1-
2’ de yer alan algoritmalar bir bagimli degiskenin tek ve iki bagimsiz degiskenle
olan iligkisinin yinelemeli boliintiileme algoritmasiyla olusturulmasina yone-
liktir. Ek-3-4" de Cd yanit degiskeninin tek ve iki degiskenle kurulabilecek
MARS modelleri olugturulmaya ¢aligilmigtir. Ek-5" te Cd, Zn ve Pb icin ku-
rulan MARS modellerine iligkin ANOVA sonuglar1 verilmigtir. Ek-6" da uygu-
lamada kullanilan veri setleri verilmigtir.

Bu tez caligmasinda onerilen yaklagim, az sayida gézlemin incelendigi YYM’
de polinomiyal modellemeye ve bu ¢aligmalarin ¢cok degiskenli durumlarina
ihtiyac duyulabilecegi varsayimiyla, YYM’ de MARS kullanilmasina iligkindir.

Buna gore:

e 3?2 faktoriyel tasarim gibi az veri noktasiyla calisilan diizenlerde mo-

delleme agamasindaki yetersizlik giderilmigtir.

e Bu anlamda MARS modeli, YYM’ de temsili bir model olarak oneril-

migtir.

e MARS analizine taban olugturmasi agisindan, R Yazilimi kullanarak

yinelemeli boliintiime algoritmasina dayali iki program yazilmistir.

e Uygulamada kullanilan Cd yanit degigkeni icin R Yazilimi kullanilarak,
MARS modellemesi yapan iki program yazilmigtir.



2 GENEL BILGILER

2.1 Temel Kavramlar

Bu boliimde konuyla ilgili bilinmesi gereken kavramlara kisaca deginilmistir.

2.1.1 Vektorler ve Vektor Uzaylari

Tanim 2.1.1 Bir vektor uzay, tzerinde iki islem tanimlanmas

x+yeV, ejer x,yeV
xeV,ae R ejer axeV

(2.1)
ve asagqidaki aksiyomlary saglayan kiumedir:

Aksiyom 1. Her bir x,y vektor ¢ifti icin x +y =y + x kuraly saglanar.

Aksiyom 2. x,y ve z gibi herhangi i¢ vektor i¢in (x+y)+z=x+ (y + 2)

Aksiyom 3. Sifir vektorini igcerir ve x +0 = x 7 dur.

Aksiyom 4. Her bir x vektorine karsilik x + (—x) = 0 olacak bi¢imde bir tek

—x vektord vardur.

Aksiyom 5. Her bir gercel sayist ve x ve'y gibi her vektor ¢ifti i¢in r(x+y) =
rx +ry’ dir.

Aksiyom 6. Her bir x vektori ve r ve s gibi her gergel sayu ¢ifti icin (r+s)x =

rx + sx’ dir.

Aksiyom 7. Her bir x vektdori ve r ve s gibi her gercel sayu ¢ifti i¢in (rs)x =

r(sx)’ dr.

Aksiyom 8. Her x vektiri i¢in 1x = x’ dir.

Bunun diginda, vektor uzayinin sifir vektoriinii igermesi gerekir. Bir vektor

uzayinin elemanlarina vektorler denir.

2.1.2 Dogrusal Toplam ve Germe

1. vektor uzayinin Xq, Xa, ..., X, vektorlert verilsin. aq, o, ..., o,
Tanim 2.1.2 V vekto X1, X9, ..., X, vektor] l , Qlg, ey
gercel sayilar olmak tzere, ayxy + ... + o, X, toplama bir vektordir ve buna

X1, ..y X, NiN dogrusal toplama(bileskesi) denir.



Tanim 2.1.3 x1,Xo, ..., X, vektorleri sabit segcilmis olsun. X1, Xa, ..., X,, nin bii-
tin dogrusal toplamlarindan olusan vektorlerin x = a1 Xy + ...+ X, kimesine

X1,Xg, ..., Xp vektorlerin dogrusal toplamlar kiimest veya dogrusal spans denir.
Genellikle span(x) ile gosterilir [21].

2.1.3 Dogrusal Bagimhilik ve Dogrusal Bagimsizlik

Tanim 2.1.4 E, bir vektiorler kiimesi, Xq,...,X; de FE de farkl vektorler ve

a1, ..., hepsi ayni anda sifir olmayan sayilar olmak tizere eger
oxX;+ ... +ax =0 (2.2)

kosulu saglanwyorsa, E kimesine dogrusal bagimlidir denir.

E kiimesine xy, ..., X; dogrusal bagimli vektorlerinden olusan bir kiimedir
denir. Bir E kiimesi dogrusal bagiml degilse dogrusal bagimsizdir. Eger bir E

vektor kiimesi sifir vektoriinii igeriyorsa dogrusal bagimhdir [21].

2.1.4 Tabanlar

Tanim 2.1.5 V, bir vektor uzay: ve E de bu uzayda bir vektér kiimesi olsun.

Eger E dogrusal bagimsiz ise ve V'’ yi geriyorsa, £ ye V ’'nin bir tabans denir.

Yukaridaki tanim dahilinde bir basit dogrusal regresyon modelini goz oniine

alindiginda,

Yi = Po + bixi + & (2.3)

denklemi bir dogruyu temsil eder. Bu model i¢in uygun taban 1 ve x fonksi-
yonlar1 ile temsil edilebilir. Bir baska deyisle £y + 81x ifadesi 1 ve x taban

fonksiyonlarimin dogrusal bir kombinasyonudur.



Buna iligkin grafik Sekil 2.1 ile verilmigtir.

0.2 04 06 08

0.0 0.2 0.4 0.6 0.B 1.0

0.0 0.2 0.4 0.6 0.8 1.0

Sekil 2.1: Dogrusal model ve uygun taban

Esitlik 2.3’de esitligin sag tarafi bu fonksiyonlarin bir dogrusal kombinas-
yonudur. Regresyon i¢in kurulacak X matrisinin stitunlari, uygun olan taban

fonksiyonlar: 1,x kullanilarak (2.4) ile elde edilir.

1 T
1 T2

X = (2.4)
1 =z,

Benzer sekilde, {1,x,x?,...,x"} kiimesi ¢oklu polinomiyal regresyon igin

alinabilecek bir tabandir. Buna iligkin X matrisi (2.5) ile verilir.

1 oz ..o af
1z ... 2y

X = ? 2 (2.5)
1 =z, Ty

Burada, 3y, f1, --., 8, katsayilart X model matrisinde sirasiyla {1, x, x?, ..., x"}
taban fonksiyonlar ile temsil edilirler. Coklu model, basit dogrusal modelin

dogrusal olmayan (degiskenlerde) duruma genisletilmesidir |21].
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Tamim 2.1.6 M € Ny ve ug < g < ... < ug olsun. v = {u;}jo,. k. Splayn
uzayr Sy ([uo, uK))’ yi asagidaki gibi ifade ederiz:

Sum ([0, ux)) = {f : [uo, ur) — RN}

olmak tzere pg,...,px—1, M. ya da daha kiciik dereceden polinomlar olsun-
lar; oyle ki f(x) = pi(x), © € [uj,uip1)(i =0,..., K —1). Ejer M —1 >=0 ise
0 zaman f, [ug, ug) tzerinde M-1 kere siirekli diferensiyellenebilirdir. Burada

u dugim vektori ve M de, Sy n([uwo, uk)) splayn uzayimin derecesidir.

Suo0([uo, uk)) parcall sabit fonksiyonlardir. Buna iliskin grafik Sekil 2.2
ile verilmigtir. Burada her bir [u;, u;+1) arahiginda ¢izilmis sabit fonksiyonlar

gosterilmistir.

f(x)

—0
*—0
*—0
.-—
| l | | | |
| [ ! I | [ X
Ug Uy Uz Uz Ug  Ug

Sekil 2.2: Sy a1 (juo,ux)) uzaymda bir fonksiyon, M =0

Su1([uo, uk)) icindeki fonksiyonlar, [ug, ux) tizerinde pargal ve siireklidir.

Buna iligkin grafik Sekil 2.3 ile verilmigtir.

10



f(x)

Sekil 2.3: Sy a1 (juo,ux)) Uzaymda bir fonksiyon, M = 1

Acikca goriiliiyor ki, Sy ar([uo, uk)) bir dogrusal vektor uzayidir. Bir son-

raki teoremde bu dogrusal vektor uzayinin bir tabanindan bahsedilecektir.

Teorem 2.1.7 M € Ny ve ug < uy < ... < ug olsun. Fonksiyonlar kimest,

{La, .2 u{(z—u)¥ :j=1,..,K -1} (2.6)

Sunt([wo, ug)) " min bir tabansdur. Her f € Sy n([ug, uk)) igin

ag, a1, ..., an, by, ..., b1 € R varder; oyle ki,

flx) = Zai:vi + Z_ bj(z — uj)f (2.7)

x € |ug, ug) ‘de, dogrusal toplamlar seklinde yazilabilir.
Kanit

Gortiliiyor ki, Sy a(juoux)) vektor uzayimin boyutu (M+1)+(K-1)=M+K’
dir. Esitlik 2.6” deki fonksiyonlarin S, p([ug, ugk)) tarafindan kapsandigim
gosterelim. £k =0, ..., M — 1 igin,

ak

ok == M (M —=1) - (M —k+1)((z - up) ") ey =0 (2.8)

(i=1,....K-1)

yazilabilir. Bir sonraki adimda, (2.6)’ daki fonksiyonlarin dogrusal bagimsiz

11



olduklarini gosterelim. Varsayalim ki, ag, aq, ..., b1, ...,bx 1 € R keyfi olsun ve

(z € [uo, ux)) icin,

=

-1

Z (z —u;)M =0 (2.9)

1

<.
Il

olur.
z € [ug,ur) igin (z — u;)f = 0,(j = 1,..., K — 1) olur. Dolayisiyla (2.9)

ifadesinden (x € [ug, 1)) i¢in

M
> aa' =0 (2.10)
i=0

elde edilir. Ciinkii 1, z,2?,...,2M ifadeleri, ap = a1 = ... = ay = 0 olacak

sekilde en az M +1 tane farkl noktay1 iceren her kiime de dogrusal bagimsizdir.

Buradan, (2.9) diisiiniildiigiinde = € [ug, ug) igin,

K-1

d (x—up)¥ = (2.11)

J=1

yazilir. Eger z = “C074 | (j =1, ..., K —1) almur ve (2.11)’ de yerine yazilusa,

b = 0 elde edilir (j = 1,..., K — 1). Ciinkii

Uj + Uj+1

3

—ug)y =0 (2.12)

dir (k > j). O halde gosterilmesi gereken f € S, ar([uo, uk)) icin, (2.7)" de
ag, @i, ..., b1, ..., b1 € R oldugudur. Burdan matematiksel indiiksiyon ile, her

bir k € {0,..., K — 1} i¢in , x € [ug, ux 1) araliginda ,

M K-1
fl@) = aw' + ) bj(z —uy)Y (2.13)
i=0 j=1

olacak sekilde ag,ay,...,b1,...,bx_1 € R oldugunu gostermek gerekir. Bu du-
rum, k = 0 i¢in saglamr; ¢iinkii f, [ug, u;) araliginda M. ya da daha kiigiik
dereceden bir polinomdur. Varsayalim ki, (2.14) ifadesi, k¥ < K —1 i¢in saglan-

sin. O zaman, g gibi bir fonksiyon tanimlansin:

192



g(z) = f(z) — Z a;zt — bj(z — u])f (2.14)

g(x) =0 (2.15)

saglanir. f € Sy M([uo,ux)) ©ldugundan, bu fonksiyon, uii; noktasinda M-1

kere siirekli diferensiyellenebilir. Bundan dolay1, ¢ =0, ..., M — 1 igin,

aig(uk—i-l)

S =0 (2.16)

dir. Giinkii f € Sy a([uwo, uk)) oldugundan, g, M. ya da daha kiigiik dereceden
bir polinomdur. Dolaysiyla, € [ug41, ukt2) icin Oyle co, ..., cpr € R sayilan

bulunur ki,

g(x) = ZCz‘(l’ — 1)’

1=0

. . 83 u M . . . . i—1q . ,
olur. Ciinkii, % = Zizj civi-(i—=1)--(i—j+1)- (z—u ) amupy = 7
dir. Egitlik 2.16 ifadesinden c¢q = ... = ¢py—1 = 0 olur. Burada = € [uj1, tugy2)
oldugu igin,

9(x) — e — uk—i-l)M =0

olur. Bu durum (2.22) ile beraber kullamldiginda, k£ + 1 i¢in (2.14) ifadesinde

bp+1 = Cyr olarak bulunur [22].
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2.1.5 Parcali Dogrusal Regresyon Modeli

Bu kisim MARS’ 1 alt yapisinda kullanilan taban fonksiyonlarimin reg-
resyon analizinde nasil kullanilacagini daha iyi kavramak agisindan verilmistir.
Bu boéliimde 6zel taban fonksiyonlar: kullanildiginda tasarim matrisinin nasil
diizenlendigine ve ilgili taban fonksiyonlarin nasil ¢izildigine iligkin bilgi ve-
rilmigtir.

Pargali dogrusal regresyon modeli (Broken stick regression model), farkli
egimli iki dogrunun bir ¢ diigiim noktasinda birlesmesiyle olusur. Bu du-
rumda olugturulabilecek taban fonksiyonlar: kiimesi, ¢ noktasinin solunda sifir
degerini alan bir fonksiyon ancak sag tarafinda pozitif egimli bagka bir fonksiyon
olabilir. Bu taban fonksiyonu olusturmanin matematiksel ifadesi agagida ver-
ilmigtir.

(@ —1)+

Bu ifade ile verilen fonksiyon, ayrica, "budanmig bir dogru" veya "a trun-

cated line" olarak da bilinir. Buna iligkin grafik secilmis ¢ degerleri i¢in Sekil

2.4b ile verilmigtir.

2} Parcah Dogrusal Model

0.203040506

0.0 0.2 0.4 0.6 08 1.0

b} Uygun Tahan

000204060810

0.0 0.2 0.4 0.6 0.8 10

Sekil 2.4: Parcali dogrusal regresyon modeli ve uygun taban

Burada her w i¢in u,, eger u pozitifse u, degilse 0 degerini alir. Bu duruma
iligkin parcali dogrusal regresyon modeli (2.17) ile ilgili grafik Sekil 2.4a ile

verilmigtir.
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yi = Bo + Brws + Pu(xi — 1) e (2.17)
Esitlik 2.17 ile verilen modele iligkin X matrisi (2.18) ile verilmigtir.

1 T (1’1 - t)+

X — Loz (22— 1) (2.18)

Buraya kadar aciklanan model yapilar1 daha karigik olarak diigiiniilebilir.

Buna iligkin regresyon modeli i¢in kurulacak X matrisi (2.19) ile verilir:

[ 1 T (1’1 — t1>+ (1’1 — t2)+ (1’1 — tn)+ |
X — 1 i) (ZL’Q — t1)+ (ZL’Q — t2)+ (ZL’Q — tn)+ (219)
I 1 oz, (zp—t)y (xp—ta)r o (zp—tn)s |

Bu regresyon modeli, ¢ok parcali regresyon modeli (Whip regression model)
olarak bilinir [21|. (x—t), yapisindaki fonksiyonlarin tabana eklenmesi, X ma-
trisine (x; —t), yapisindaki siitun vektorii degerleri olarak yansir. Esitlik 2.19
da segilen ¢;, 1 = 1, ..., n degerleri ile regresyon fonksiyonunun tahmininde kul-
lanilabilir. Uygun (x — t), fonksiyonuna iligkin ¢ degeri genellikle "diigiim"
olarak bilinir. "Diigiim" kelimesi burada iki dogrusal fonksiyonu birlegtirmesi
anlaminda kullanilmigtir. Ilgili modelin grafigi ve uygun taban grafigi Sekil
2.5a ve b ile verilmigtir.

Dogrusal splayn taban fonksiyonu (z —t), olarak da bilinir. Bu tiir fonksi-
yonlarin bir kiimesi "Dogrusal Splayn Taban" olarak adlandirilir. Bu tiir
dogrusal splayn taban fonksiyonlarinn, 1, z, (z—t1)4, ..., (t—tx)+ herhangi bir
dogrusal kombinasyonu, t,...tx diigiimleri ile bir parcali dogrusal fonksiyon-

dur.
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(a) (b)

0.002 040608 1.0

0:20406081.01.2

==

0.0 0z 4 0.8 0.8 1.0

Sekil 2.5: Cok parcali regresyon modeli ve uygun taban

Bu sekilde olugturulan fonksiyonun splayn olarak adlandirildigi daha 6nceki

boliimde ifade edilmistir ve ilgili splayn modeli (2.20) ile verilmigtir:

f(x) = Bo + Bix + Z be(z — tr) (2.20)

k=1

Sik¢a kullanilan tabanlarin grafikleri Sekil 2.6 ile gosterilmigtir [21].

(@) (b)

g =

;. ; ;'”‘. jl\
E=] [=] 'f LS ’.‘-
-] w [
o = \< :’Lj
-+ =+
= o 3 I y
3 o ANANAAN
= 2l = ARVARYER
o =1

00 02 04 06 08 1.0 00 02 04 D6 08 10

(c) (d)

(=]
s o
= = ————, /
< I\ FINE
=3 = 3 i
-+ e £
o . e N
= b e
=) = \\
L= B &

00 02 04 068 0B 1.0 00 02 04 0B 08 10

Sekil 2.6: a-Budanmig dogru, b-B-splayn taban, c-Radyal Taban, d-Demmler-Reinsch taban

2.1.6 Splaynlar ve Matematiksel Gosterimi

Splaynlar genellikle niimerik analizde, interpolasyonda, diizeltme (smooth-
ing) veya geometrik tasarimlarda kullamlan fonksiyonlardir. Bir grup veriye
polinomiyal bir egri uydurma veya pek cok parcadan olusan polinomlarin bile-

simden olugan temel bir fonksiyon olarak tanimlanabilir. Amaci, tanimlanan
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bir aralikta, bagimsiz degiskenlerle yanit degiskeni arasindaki iligkiyi, gdzlem
degerlerinden yararlanarak, alt araliklar ve her alt aralikta tanimlanan poli-
nomlar yardimiyla modellemek ve piiriizsiiz bir egri elde etmektir.

Tanim 2.1.8 [a,b] tzerinde tanvml, k. veya biyik dereceden, k > 0, \; artan

reel sayr dizisine sahip, i = 0,1,2,...,g+ 1, (Ao = a, \gs1 = b), ve asagidaki

kosullary saglayan s(x) fonksiyonuna splayn denir.

(i) ¥V s(z), [Ni, Miz1] araliginda derecesi en ¢ok k veya k' ya egit olan bir poli-
nomdur.
Shris] € Dr 1 =0,1,2,...,9 ; Py:kwner dereceden polinomlar

atlest

(i1) s(z) fonksiyonu ve onun k — 1’inci mertebeye kadar olan tirevleri [a, b]

tzerinde stureklidir.
s(z) € C*a, b]

Ozellik 1 [a,b] dizerindeki alt araliklarda derecesi k ve/veya daha kiiciik her
polinom, [a, b] tzerinde bir splayn fonksiyonudur. Genellikle, k inci dereceden

splayn, [a,b] araliginda farkly polinomlarla verilir.

Ozellik 2 k’ wnce dereceden splayn fonksiyonun k’ wince dereceden tirevi basa-
mak fonksiyonudur. k — 1 ve daha disik dereceden tirevler: ise sureklidir. Bu
tanimlamaya gore k’ wnci dereceden bir polinom k’ wnci dereceden bir splaynin

ozel bir durumudur.

Ozellik 3 X\, \1, ..., Ag+1 artan ve sirayla dizilmis noktalardur.

s(x), k'inc1 dereceden bir splayn fonksiyonu olsun. \; diigiim noktalarinda s(x)
fonksiyonunun k& — 1’inci dereceden tiirevi siireklidir. Pg;, [A;, A\iy1] araliginda

k'mcr dereceden polinom olsun. Oyleyse (2.21) elde edilir.
Plgz()‘l) = Pg,i+1(Ai) (2-21)
Buradan, &’ inc1 dereceden g(x) polinomu i¢in (2.22) yazilir:
9(x) = Prit1(x) — Preg(x) (2.22)

g(x) in k — 1’ inci dereceden tiirevlerinin x = \; de kokleri oldugundan

(2.23) elde edilir:
9(x) = Pyiv1(x) — Py i(x) = ¢;(z — )\i)k (2.23)
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Burada, ¢; sabittir. Bu denklem yeniden, (2.24) seklinde yazilabilir:
Pk7i+1(flf) = Pk’z(flf) + Ci(l’ — )\Z)k (224)

k. dereceden Py o(z) polinomu (A_1, Ag) arahiginda verildigi zaman Py ;(x),

(Ao, A1) arahiginda (2.25) bagintisini gergekler:
Pyi(x) = Pyo(x) + co(z — Ao)F (2.25)
Buradan, Py s(x) polinomu, (Aj, Ay) arahiginda (2.26)seklini alir:
Pro(1) = Ppo(x) 4+ co(z — Xo)* + c1(z — Ap)F (2.26)

Benzer olarak Py ;i1(x), (A, A\iy1) arahginda (2.27)seklinde yazilir:
P]m+1(l’) = Pk70(ZL') + Cj(ZL' - )\])k )\Z S i S )\i-i-l (227)
=0

Pyiv1(x) 1 s(x) splayn gosteriminde yeniden yazarsak (2.28) olarak elde
edilir:

s(z) = Ppo(x —I—Zc]x— AP N <2< i (2.28)

Pargali kuvvet fonksiyonu kullanarak (2.29) ile, x ’in tiim noktalar iize-

rinde (2.29) ifadesi bulunur:

s(x) = Ppo(z) + ZCZ r — (2.29)

Esitlik 2.29” un ¢; katsayilar: bilinmemektedir. Dolayisiyla bulunmasi gerek-
mektedir. £’ inc1 dereceden bir splayn fonksiyonunun £’ inc1 dereceden tiirevi
bir basamak fonksiyon oldugundan, s*(z) diigiim noktalarinda siireksiz olur.
A; diiglim noktalarinin iki tarafinda splayn fonksiyonlarinin k&’ inc1 derece-
den tiirevlerinin farklarina bakalim. Esitlik 2.28” yi kullanarak ve tiirev alarak

(2.30) olarak elde edilir:
s"(\ +0) — s"(\; — 0) = kle; (2.30)

Buradan ¢; leri ¢ozersek (2.31) elde edilir [23].

1

ci = N +0) = s*(\ — 0)] (2.31)
Sekil 2.7" de splayn fonksiyonu ve diigiimler aras iligkileri verilmigtir.
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y=fx

Sekil 2.7: xg ile z,,_1 aras1 diigiimler ve splayn fonksiyonu

2.2 Yamt Yiizeyi Modellerinin Yapisi

Bir siirecte bagimsiz degigkenlerle yanit degiskeni arasindaki iligki, yanit1
en biiyiikleyen veya en kiiclikleyen bagimsiz degiskenlerin diizeylerine bakarak
bulunabilir. Yanit degiskeni Y ile k tane bagimsiz degisken arasindaki iligki
(2.32) ifadesiyle verilir:

Y:f(€1>€2>"'a§k)+€ (232)

Burada, &1, &, ..., & bagimsiz degiskenler ve e deneysel hata olarak for-
miilde yer almaktadir. Gergek yanit fonksiyonu f bilinmedigi durumlarda bu
yapinin, bir polinomial model vasitasiyla bagimsiz degiskenlerin olugturdugu
bir bélgenin icerisinde oldugu kabul edilir.

Yanit yiizeyi modelleri igin, y yanit(bagimli) degiskeninin, bagimsiz degigken-
lerin bir fonksiyonu oldugu ve deneysel hatanin sifir ortalamal ve o2 sabit
varyansl oldugu varsayilmaktadir. Bir bagka varsayim, modelde bulunan bagim-
siz degigkenlerin arasinda iligki olmamasidir. Yanit degiskeninin ortalamasi

(2.33) ile verilmigtir:

ElY] = [f(&, &, 6) (2.33)

Buna ortalama tepki fonksiyonu da denir. X’ ler i¢in deney tekrarlandik¢a
olciilen tepki Olciim hatalarindan dolay1 degisim gosterecektir. Yamt yiizeyi

modelleri iki veya daha fazla degiskenin bagiml degisken iizerindeki etkilerinin
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ortaya konuldugu caligmalardir. YYM deneysel hatadan etkilenen tepki fonksi-

yonunun Ozelliklerini inceler. Birinci dereceden (dogrusal) bir model (2.34) ile,

Y = By + Bi&i + Bl + ... + B + € (2.34)

ve ikinci dereceden bir model (2.35) ile yazilabilir:

Y = 50 + Z 62& + Z 5u§2 + Z Z 62]525] +e€ (235)

i<j j=1
Istatistiksel analiz asamasina gecilmeden 6nce bagimsiz degiskenlerin mate-
matiksel iglemleri kolaylagtirmak i¢in "kodlanmig degiskenler" olan x1, xs, ..., %
" ya doniistiiriilmesi gerekebilir. Buna gore (2.32) ile verilen iligki (2.36) ile gos-
terilebilir:

ElY] = f(z1, 22, ..., 21) (2.36)

Bu esitlik bagimsiz degisken sayis1 k=1 oldugunda bir egri, £>1 oldugunda
ise bir hiper yiizeyi temsil eder. Kodlanmig degiskenler (2.37) ifadesiyle belir-

tilmigtir:

1 N
=5 > u (2.37)
u=1

Lyi =

u=1

e

Buradaki S; tasarim noktalarinin yayiliginin bir dlgiisiidiir. Bu esitliklerde,
parametreler deneme kombinasyonlariyla tahmin edilmektedir. Parametrelerin

ifade ettikleri agagida belirtilmigtir:
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Bo : Bagimsiz degiskenlerin sifir oldugu durumda yanit degiskeninin

aldig1 deger(intercept).

Bi; : 1. bagimsiz degiskenin dogrusal etkisi.
Bii 1. bagimsiz degigkenin karesel etkisi.
Bij ¢ . ve j. bagimsiz degiskenlerinin etkilegim etkisi (i<j).

dir. Uygulamalarda ¢ogu zaman, gercek yanit degiskeninin temsil edildigi
bu esitligin yapis1 bilinmediginden, cesitli yaklasimlarla bu fonksiyon temsil
edilmeye caligilir. Bagka bir deyisle, bu esitligin hangi derecedeki faktor kom-
binasyonlarinin modele dahil edilecegi bilinemez. Ancak dogrusal veya karesel
yaklagimlarla gergek fonksiyonun tahmin edilmesi gerekir. Bunun igin, i) Bi-
rinci dereceden yamit yiizeyleri tasarimlar ve ii) Ikinci dereceden bazi yamt

yiizeyleri tasarimlar: agagida aciklanmaya ¢aligilacaktir:
i. Birinci Dereceden Yanit Yiizeyi Tasarimlarinin Yapisi

Birinci dereceden yanit yiizeyi k tane bagimsiz degiskeni iceren model for-

muyla asagida verilmigtir:
k
Y=50+ZﬁiXi+€
i=1
Bu formu matris ve vektorlerle ifade etmek icin (2.38) kullanilir:
Y = XB+e (2.38)

Esitlik 2.38 de Y yanit degiskeni N denemeden olusan bir vektor, £ bilin-
meyen parametreler vektoriini 5=(5, f1, ...,ﬁk)/(kﬂ)xl , €= (€0, €1, oy ek)lel
hata vektoriini ve Xy +1) bagimsiz degiskenlerinin diizey kombinasyon-
larinin olugturdugu matrisi temsil etmektedir. X matrisinin ilk stitunu 1 deger-
lerinden olugsan N x 1 boyutlu bir vektordiir. Kalan siitunlar ise, « ’inci dene-
mede (experimental run), i’inci degigkenin w;’'inci elemam olan ¢,; degeridir.

Dolayisiyla kalan siitunlar icin olusan N x k boyutlu matris D-tasarim matrisi

olarak bilinir. O halde X matrisini X=|1,D] olarak yazabiliriz. X, tam rank-
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1 bir matris olmak iizere, § bilinmeyen parametreler vektoriiniin en kiiciik
kareler tahmin edicisi 3 olarak gosterilir.

Bagimsiz degigskenler kodlanmig degiskenler olarak X matrisinde yer alirlar.
Modelin gergek ortalamayi veren kismi, (2.38) formiiliinden yola gikarak (2.39)
ile elde edilir:

A ~

Y =[1,X'|p (2.39)
Esitlik 2.39’deki model yanit degiskenini temsil etmeye yeterli ise, bir

X = (1, T3, ..., 2;) noktasindaki kestirilmis yamt degiskeni degeri Y (z), (2.40)

ifadesiyle hesaplanabilir:

A

Y(z) =[1,x]3 (2.40)

Birinci dereceden modeller arasindan en iyi modeli secerken secim kriteri
olarak yanit degigkeninin varyansinin minimum olani benimsenir [24]. Bunun

i¢in (2.41) ifadesine dikkat edilmelidir;
0 <x(D'D)"'x < |x|*. [(D'D)7Y| (2.41)

Burada,

|| = (x'x)"/

oDy = £, s @

ifadeleri Oklid ve Frobenius normlarini géstermektedir. Burada, (D’D)_lH

ifadesi (D’D)~" matrisinin Frobenius normunu géstermektedir. d”, ifadesi
1, =1,2,...,k, (D’D)_1 matrisinin {ij}” inci elemamdir. Esitsizlik incelen-
diginde x'(D'D) ™ 'x ifadesini minimize etmek icin (D’D) ™" normunu en kiiciik
yapan, 1 < u < N igin Xy, Ty9, ..., Ty koordinatlarinda D tasarim matrisinin
secilmesi gerekmektedir.

D matrisinin N x k£ boyutlu oldugu bilinmektedir. Bu matrisin 7. siitununu
belirtmek i¢in d; ifadesini kullanalim. O halde, D = [d;; dy; ...; di]| yazilabilir.

Ayrica R bolgesinde, x; degerleri iizerinde, (2.42) ile verilen kisitinin oldugu

varsayilsin.

dd; < ¢ (2.42)
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Buradaki, ¢;, (1 = 1,2, ..., k) sabit bir degerdir. Egitsizlik 2.42 ile verilen bir
kisit, tasarimin 4. koordinat ekseni dogrultusundaki yayihginin ¢ ile sinirladig

anlamina gelmektedir. Bu durum (2.43) olarak gosterilebilir:

Burada, d;; ifadesi D’D matrisinin 4. kosegen elemamdir. Ayrica
di > (2.44)
~ dii '

oldugu gosterilmigtir |24|. Bir bagka deyisle d*, (D’D)_1 matrisinin kdgegen
elemani iken, d; ifadesi D'D matrisinin kogegen elemamidir (i = 1,2, ..., k).
Boylece (2.43) ve (2.44) ifadelerinden, R bolgesideki X; degerleri igin

1

d" > = (2.45)

C

oldugu goriilebilir. var(b;) = o2d” oldugu igin, var(b;) > o*/c? yazlabilir.
Esitlik 2.44" deki durum, d;; = 0 oldugunda, diger bir deyisle, (i # j) icin
d;d; = 0 oldugunda saglamr. Bu durumda, d*, d; = ¢, (i = 1,2,...,k)

oldugunda (2.45)’deki 1/c? degerini alir. Dolayisiyla tasarim, (2.46) ve (2.47)

ile verilen kogullar saglar:

dd; =0 | i (2.46)

i=1,2,..k (2.47)

Géoriiliiyor ki, d minimum deger olarak, 1/c¢?’ ifadesini almaktadir. Eger bu
kosullar saglaniyorsa, R bolgesinde, H (D'D)™" H’ in minimum degerine ulagila-

bilir.
2.2.1 2% Faktoriyel Tasarimlari

2F faktoriyel tasarimlarinda, her bir faktoriin 2 diizeyi vardir. Bu tasarim-
larda, k£ faktoriin diizeylerinin biitiin miimkiin kombinasyonlar: dikkate ali-

narak bir tasarim matrisi D elde edilir. Bu tasarimda her bir faktor en diigiik
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diizeyindeyken —1, en yiiksek diizeyindeyken +1 degeriyle kodlanabilen iki
diizeyde &lciiliir. Tasarim matrisi kodlama degiskenleri ile 2% satir ve & siitun-

dan olugur. Bu matrisin her bir satir1 faktor diizeylerinin bir kombinasyonunu

k

gosterir. 2F diizeni icin istatistiksel model k ana etki, (2

) iki faktor etkilegim-
lerini, (];) ti¢ faktor etkilesimlerini ve bir k faktor etkilesimlerini icerir. Boylece
bir 2% diizen icin tam model 2¥ — 1 etkiden olusur.

Kodlanmis degiskenlerin kullanildig bir tasarim matrisi icin 23 tasarimi D

matrisi agagidaki gibi olugturulur:

1 -1 -1
1 -1 -1
11 -1

p-| * ' = [d; : dy : dy)
1 -1 1
1 -1 1
11 1
11 1

i # j i¢in D matrisinin d; ve d; siitunlarn igin d'd; = 0’ dir. Bu nedenle 2°

tasarimu diktir. i = j i¢in ise d'd; = 8 dir (i=1,2,3). Bu durumda,

8 0 0
DD=| 0 8 0
00 8

1/8 0 0

OD)"'=| 0 1/8 0

0 0 1/8

elde edilir. Bu durumu 2* icin genellestirirsek,
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28 0 ... 0

op_ | 02 0

0 0 . 2
2k 0 0
oo | 2 0
0 0 2

elde edilir. Buradan 2¢1, = D’D yazilabilir. Bu durumda 2* faktériyel tasarim-

dan elde edilecek bilinmeyen model katsayilar: (2.48) ile bulunur:

1
B =5 XY (2.48)

Buna gore BO, e Bk katsayilar1 2% uygulama kombinasyonlar: altinda elde
edilmis sabitlerdir.

Bunun yaninda kesikli fraksiyonel tasarimlar da bu baglk altinda ince-
lenebilir, ancak bu tezin konusu diginda kaldigindan bahsedilmeyecektir. Arag-
tirmacilar genellikle yamt yiizeyinin sekli hakkinda bilgiye sahip olmadiklarin-
dan ilk asamada yanit yiizeyine birinci dereceden bir model uyarlarlar, ancak
yiizeyde egrisellik durumunda veya uyum eksikligi bulunmasi nedeniyle mode-

le yiiksek dereceli terimler eklenir ve model ikinci dereceye cikartilir.
ii. Ikinci Dereceden Yamit Yiizeyi Tasarimlarimin Yapisi
Ikinci derece yanit yiizeyi modelleri faktorlerin karesel etkilerinin de mo-

delde yer aldig1 tasarimlardir. Esitlik 2.49 ile, 2 faktorlii 3 diizeyli bir ikinci

dereceden yanit yilizeyi modeli verilmigtir:
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k k-1

k k
=1 i=1

i=1 j=2

Burada, Xi, Xo, ..., X} bagimsiz degigkenler olmak iizere, Y bu degigkenler-
den etkilenen yanit degiskeni, Sy, ..., Bk, ¢, 7 = 1,2, ..., k bilinmeyen parametre
kestirimleri ve € rasgele hata terimine karsilik gelir. Ikinci dereceden bir yanit
yiizeyi modelini tahmin etmek i¢in deney tasarimlar: en azindan her bir fak-
toriin 3 diizeyini icermelidir. Bu durum 3* faktor tasarimlarinin kullanimini
gerektirir. Box ve Wilson [25] tarafindan, ikinci dereceden modelleri tahmin
etmek icin 3* faktor tasarimlarina bir alternatif olarak merkezi bilesik tasarim-
lar (composite central design) dnerilmistir. Ikinci dereceden bir yanit yiizeyi
modelinin elde edilmesi ve bu modelin incelenmesi i¢in gerekli adimlar su

sekildedir:

1. Tahminlenmis ikinci dereceden yanit yiizeyini, yeterli bir model ile temsil

etmek.

2. Duragan nokta koordinatlarim belirlerken (2.49) ile elde edilen modeli
kullanmak. Bu noktada kestirilmis yanit yiizeyinin egimi sifirdir. Dura-
gan (stationary) nokta deney bolgesinin i¢inde bulunursa, agama 3’e
gecilir. Eger duragan nokta deney bolgesi diginda ise, duragan noktanin

bulundugu yénde bagka deneylerin uygulanmasi gerekmektedir.

3. Duragan noktanin bir maksimum, minimum veya eyer (saddle) noktasi

olup olmadigini belirlemek.

4. Duragan nokta civarindaki, yanit yiizeyinin seklini belirlemek. Buradaki,
duragan nokta bir maksimum (veya minimum) veya bir eyer noktasi ola-
bilir. Eyer noktasinin varligi durumunda, tahminlenmis yiizeyin yiiksek-
ligi, duragan noktadan belli yonlere hareket edildiginde artar. Genellikle
bir eyer noktasinin varligi, maksimum iceren iki ayri bolgenin varhgini

gostermektedir.
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Ikinci dereceden tasarimlar 3* faktoriyel tasarim, Box and Behnken tasarim-
lar, Merkezi bilegik tasarimlar, Silindirik dondiiriilebilir tasarimlar, Simetrik
olmayan dondiiriilebilir tasarimlar, Hake tasarimlar, Karisik tasarimlar, vs...
gibi simflandinlabilir. Bir sonraki béliimde 3% tasarimlar ve merkezi bilesik
tasarimlar detaylariyla anlatilacaktir. 2% Faktoriyel Tasarimlar ve Merkezi
bilegik tasarimlar icin MARS yaklagimi 6nceki ¢aligmalarimizda basariyla uygu-
lanmigtir [17,18]. Bu tezin kapsaminda, 6nceki ¢caligma sonuglari da dikkate ali-

narak ikinci dereceden yanit yiizeyi modellerine MARS yaklagimi onerilmigtir.

2.2.2 3% Fakt6riyel Tasarimlari

3% faktoriyel tasarimlar her bir faktoriin 3 diizeyinin oldugu deneysel
diizenlerdir. Bu tasarimlarda faktoriin diisiik, orta ve yiiksek diizeyleri olarak
kargilagilir. Bu diizeyler kodlanarak diigiik= —1, orta= 0 ve yiiksek= 1 gibi
sayisal degerler olarak hesaplamalara katilirlar. Bu diizey kodlamalar: her bir
faktor icin yapilir. Burada, k degeri analizi yapilacak faktor sayisini gostermek-
tedir. Faktor diizeylerinden yararlanarak yanit degiskeni iizerinde bir model-
leme yapilmaya calisilir. 2% faktoriyel tasarimlarindan farkh olarak regresyon
modelinde fazladan bir faktoriin olmasi, tasarum faktorlerinin karesel etki-
lerinin de modelde bulunmasina sebep olur. Buna gore elde edilen ikinci derece-
den model Egitlik 2.49 ile 6nceki boliimde gosterilmigtir. Kodlanmig degisken-

lerle 32 faktoriyel tasarim matrisi asagida verilmistir:

—_ = = O O O
[

Bunlara ek olarak 3® faktoriyel tasariminin da polinomiyal regresyona
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uyumu incelenebilir. Benzer gekilde degiskenler tasarim matrisinin siitunlarina

yerlegtirilir. Ancak bu tez kapsaminda daha detayli incelenmeyecektir.

2.2.3 Merkezi Bilegik Tasarim

Bu tasarim, ikinci dereceden yiizeylerin katsayilarini tahmin etmek icin
ilave noktalarla biiyiitiilmiistiir; 3* faktoriyel tasarimlara alternatif bir tasarim

olarak geligtirilmigtir ve asagidaki kisstmlardan olugmaktadir:
1. Her bir nokta (z1,z, ..., x;) = (£1, %1, ..., £1) bi¢iminde diizenlenir.
2. Merkez noktalari (21, zg, ..., x;) = (0,0, ...,0) olarak tanimlanir.

3. Eksen noktalari, her bir degiskenin tasarim merkezinden « uzakliginda

tanmimlanir.
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Eksen kismindaki noktalar agagidaki gibi gosterilir:

T

Ty .. Tg
0 0
0 0

-« 0
! 0
0 —Q
0 . o

Bu tasarim N = 2% + 2k +ng noktaya sahiptir [24]. Burada ng merkez nok-

tast sayisidir. Faktor noktalar: etkilesim terimlerinin tahminine, eksen nokta-

lar1 ikinci dereceden terimlerin tahminine yardimer olur. Merkez noktalar: da,

hatanin bir tahminine olanak saglar. Merkezi bilesik tasarima ait grafikler,

k=2 ve k=3 icin Sekil 2.8a-b ile verilmigtir [26].

a) k=2

(-1|+1kf.

(0, n)

{+1,+1)

y T

—
(- iF) ‘

{0- mye

{1 -nu—;l[n_-n

)

bil=3 @
¥ ;
e
-]
o "y
i} o _.i._._..!_.. -
L
& b
4
L

Sekil 2.8: k = 2 ve k = 3 i¢in merkezi bilesik tasarim

Sekil 2.8 ile verilen tasarimlardan sol paneldeki, k=2 i¢in ¢izilen merkezi

bilesik tasarimdir. Burada, tasarimin faktor noktalar: eksenler ve dikdortgenin

kogeleri iizerinde yer alir. Merkez noktasi eksenlerin kesisim noktasinda bu-

lunur. k=3 i¢in c¢izilen merkezi bilegik tasarima ait grafik ise sag panelde yer
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almigtir. Buna gore faktor noktalart (£1,+1,£1) kiibiin koseleri iizerinde ve
eksen noktalar1 (o uzakhginda) ise eksenler {izerinde yer alirlar. Merkez nok-

tast ise kiibiin merkezinde yer alir.

2.3 Bir Yamt Yiizeyinin Analizi i¢cin Temel Metotlar

Matris notasyonuyla bir yanit degiskeninin duragan noktalarinin belirlen-
mesinde k£ degiskenli kestirilmis yanit yiizeyi iizerinden gidilir. Duragan nok-

talarin bulunmasi icin (2.50) g6z oniine alinir:

A

Y (x) = by + x'b + x'Bx (2.50)

Burada by sabit terimi gostermek iizere, diger terimler (2.51) ile verilir:

T bl b
bgg %
) bg
X = b= B = (2.51)
br_1.k
T bk ) 2
- - - - stm bkk

B, simetrik matrisi elemanlar1 denklemdeki ikinci dereceden terimlerinin

tahminlerinin bulundugu bir matristir. b vektorii ise denklemdeki birinci derece-

Y

den terimlerin tahminleridir. Y (x)’ nin sirasiyla 21, 2o, ..., ), ya gore parcal

(kismi) tiirevleri, (2.52) ile verilir:

8;—551)() = bl + 2b11£L’1 + Z§:2 bljl’j

Bgm(;c) = b2 + 2b22£13’2 + Z?;Q bgjl’j

(2.52)

%YT(:) = by + 2bppxr + Zf;ll bkjl’j
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Biitiin kismi tiirevler, b + 2Bx seklinde de ifade edebilir. Kismi tiirevlerin
her biri sifira egitlenerek ve x; degerlerine gore ¢oziilerek, k£ x 1 boyutlu xq
vektoriiniin elemanlar1 yani bu duragan noktalarin koordinatlari; bagka bir
deyigle (2.53) bulunmug olur:

-B~'b

. (2.53)

X0 =

Burada B, k x k boyutlu matrisin tersiyle islem yapilmaktadir.
Duragan noktanin, maksimum, minimum veya eyer noktasi mi oldugunun

aragtirilmasi gerekir. Biitlin bu durumlar Sekil 2.9 iizerinde incelenebilir:

a) Yanit degerinde maksimumu s6z konudur.
b) Yanit degerinde eyer noktasi stz konusudur.

¢) Yanit degeri i¢in bir sey sOylenemez.

{a)

b}

fc]

Sekil 2.9: Ikinci dereceden modeller icin yiizeyler

Ikinci dereceden iki degiskenli yamt fonksiyonunun kestirimi (2.54) ile veril-
migtir:

Y(ZL’) = bo + bll’l + bgl’g + blllﬁ% + bggl’g + blgl’%l’g (254)
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Burada, by, b1, ba, b11, bao, b1o katsayilari modeldeki bilinmeyen parametre
tahminleridir ve kismi regresyon katsayilar1 olarak bilinirler. Ilgilenilen yanit
yiizeyinin gekli bu parametrelere bagh olarak, parabol, daire veya bir hi-
per diizlem olugturabilir. Bununla beraber ikinci dereceden modellerde yanit
fonksiyonunun maksimumunun ve minimumunun aragtirilmasi 6nemlidir. Buna
gore (2.54) ifadesinin degigkenlere gore kismi tiirevleri alinip, sifira esitlenirse

(2.55) elde edilir:

dy
- = bl + 2b11 + b12$2 =0

Y
d:L’l d—l’g = bg + 2b22 + blgl’l =0 (255)

Bu denklemlerin ¢oziimiinden z; ve z0 noktalar elde edilir. Bu noktalar
modelde yerine konursa Yo yanit degerinin maksimum veya minimum degeri-

ne ulagilabilir.

2.3.1 En Hizli Tirmanms Metodu (Steepest Ascent Method)

Tanim 2.3.1 En hizly ¢ikis yontem: olarak da bilinir. En hizlv ¢ikis

)

dogrultusu, Y 7 nin en hizl sekilde arttigr dogrultu olup, bu dogrultu
kestirilmis yanat yiizeyinin normaline paraleldir. Ilgili bolgenin merkezi
boyunca kestirilmis yizeyin normali olan dogru, en hizly ¢ikis yolu olarak
bilinir. Deneyler en hizlv ¢ikis yolu boyunca yanit degerinde artis durana
kadar devam edilir. Daha sonra yent bir ¢ikis yoluyla yontem devam et-
tirildiginde yanit degerinin optimum komsuluguna gelinir. Baska bir dey-
igle, verilen bir fonksiyonun belirlenmis bir noktadaki artisinin(azalis)
en yiksek oraninin yonidir. Gradyant yoninde amag fonksiyonunun en
biyik degerini veren noktaya hareket ederken en iyi adim biyukligint

saglamaya calisiimast da denilebilir.

Varsayalim ki f, P noktasinda tirevlenebilir olsun ve f’in Pnoktasindaki
gradyanty NV f,, # 0 dur.

Onerme 1 i. D,f yonli tirevinin P deki en biiyik degeri |V fp|’ dir

ve u birim vektori V fp ‘nin yoninde oldugunda ortaya ¢ikar.

ii. Dy f yonli tirevinin P’deki en kii¢ik degeri | —V fp||” dir ve u birim

vektori —V fp ‘nin yoninde oldugunda ortaya ¢ikar.
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Eger u herhangi bir birim vektor ise, o zaman Kanat. D, f =V fp.u =
IV fpll llal| cos® = ||V fp|| cosd m dir. Burada, 8, V fp ve u arasindaki
agidir. Ancak 0 = 0 iken cosd = 17 dir oyle ki u V fp yonini gos-
terir. Sonug olarak, D, f’ nin olasy en biyik degeri D, f = ||V fp|| (1) =
IV fp||’dir. Ayrica cosf’ nin en kiicik degeri 0 = 7 iken, —1 ’ dir. Bu

deger birim vektor u —V fp e isaret eder ve

D, f = |IVfpl (1) = =V fp]

yonli tireving verir [27].

2.3.2 Kanonik Analiz

Bu analizin amaci aslinda uyumu yapilmig bir ikinci dereceden esitligin
yeniden ifade edilmesidir. Yanit degigkeninin duragan nokta z( orijinli yeni bir
koordinat sistemine doniigiimii ve bu sistemin eksenlerinin dondiiriilmesinden
olusur. Bu eksenlerin tiim ¢apraz terimlerini yok edecek sekilde dondiiriilmesi
ile elde edilir. Bu yaklagim Box ve Draper tarafindan A kanonik formu olarak
adlandirilmigtir [1|. Eger istenirse, orijinin degistirilmesiyle birinci derece te-
rimlerin elde edilmesi miimkiin olabilir. Bu yaklagimi1 da benzer sekilde B
kanonik formu olarak adlandirmiglardir.

Varsayalim ki uyumu yapilmig model ikinci dereceden bir model olsun.
B, k£ x k boyutlu matrisi elemanlar1 denklemdeki ikinci dereceden terim-
lerin tahminlerinin bulundugu simetrik bir matristir. Bu matrisin 6zdegerleri,
A1, Ao, ... A\ ve bu 6zdegerlere karsilik gelen 6zvektorler de my,ms,...,my olsun.

Buradan (2.56), (m; # 0), yazilabilir:

B matrisi (2.57) ile temsil edilir:

by 2oL bk
b22 lth
B = (2.57)
br—1,k
2
sim bkk
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Her bir 6zvektor m’imi = 1 olacak gekilde ve m; , k£ X k boyutlu M mat-
risinin ¢’ inci siitunu iken, M ortonormal bir matris olur. Dolayisiyla k£ tane

(2.56) ifadesi, (2.58) gibi benzer formda yazilabilir:
BM = MA (2.58)

Esitlik 2.58” de A, ¢’ inci kogegen elemani \; olan kdsegen bir matristir.

Esitligin sol taraftan M (= M) ile carpimiyla (2.59) elde edilir:
M'BM = A (2.59)

MM’ = I oldugu dikkate alimirsa, o zaman genel model olarak (2.60) elde

edilir.

J=by+xb+xBx=b+ (xXM)(Mb) + (x*M)MBMM'x) (2.60)

Buradan, X = M'x ve ® = M'b(x = MX veya b = M) olarak alinirsa,
(2.61) yazilabilir:
§=0bo+X'©+ X'AX (2.61)

Esitlik 2.61°1 acik formuyla yeniden yazarsak,

@:bo+@1X1+...+@ka+A1X12+...+)\kX,f (2.62)

elde edilir. Goriildiigii gibi A kanonik form ile ¢apraz terimler yok edilmigtir.
Esitlik 2.62’nin X5, Xo, ..., X}’ ya gore kismi tiirevleri alindiginda duragan

nokta (2.63) ile bulunur:
ey

Xi ==
2\

(2.63)

A; 0zdegerinin biiyiikliigii ve isareti uyumu yapilmis olan ikinci derece yiizeyin
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tipini belirlemektedir. ©; degeri dondiiriilmiis koordinat eksenleri yoniinde,
orijinal orijin olan x = 0 noktasindaki yiizeyin egimini vermektedir. X, deger-

leri, kanonik eksenler boyunca duragan nokta S’ ye olan uzaklig: dlger.

2.4 Model Secim Kriterleri

Coklu dogrusal regresyonda model secimi i¢in belirlenmig pek ¢ok kriter
vardir. Bunlardan bazilarnn "Capraz Gegerlilik Kriteri (Cross Validation)",
"Genellegtirilmis Capraz Gegerlilik Kriteri (Generalized Cross Validation)",
AIC (Akaike Information Criteria) ve "C), Kriteri (Mallow’s C,)" olarak sirala-
nabilir [21]. Bir sonraki alt boliimde bunlarin tanimlarina iligkin bilgiler veri-

lecektir.

2.4.1 Capraz Gegerlilik Kriteri

Regresyon egrisinin uyumu konusunda en c¢ok kullanilan kriterlerden biri
"Artik Kareler Toplam (AKT)"olarak bilinir. Parametrik regresyonda gozlem
degeri y; tahmincisinin bir parcasi olarak kullanildigindan bu durum, AKT nin
model se¢imi icin uygun olmadigi sonucunu ¢ikarir. Ancak ¢apraz gecerlilik
kriteri bu problemin iistesinden gelir. A diizeltme parametresiyle = noktasin-
daki nonparametrik regresyon tahmini f(z; A) olsun. Buna gore, AKT (2.64)

ile elde edilir:

AKT(O) = " {y— flea )} (2.64

CV(A) = Z {Z/z — foilws; )\)}2 (2.65)

Burada f_; veri setinden (z;, ;) gozlem ciftinin ¢cikartilmasiyla elde edilen non-
parametrik regresyon tahmincisidir. Birini digarda birakma stratejisi AKT(\)

kriterinin yetersizligini ortadan kaldirir. A’ nin belirledigi CV, A > 0 oldugu
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stirece CV(A) degerini minimum yapandir.

2.4.2 Genellestirilmis Capraz Gegerlilik Kriteri

CV()) igin yazilan algoritmalar 1980’ lerin ortalarinda geligtirilmigtir. An-
cak, capraz gecerlilik formiiliiniin hesabindaki zorluk nedeniyle, genellegtir-
ilmig ¢apraz gecerlilik (GCV) kriteri daha ¢ok kullamilmaya baglanmigtir. Bu
kriter, (2.66) ile verilmigtir:

N ({A=Suvh L AKT()
GCV(A) = (1 ~ n_ltr(sk)) TN (2.66)

1=

Burada S), diizlegtirme matrisi olarak yer alir. Genellegtirilmis capraz gecerlilik
hem hata terimini hem de model karmagasini hesaba katar. GCV, diizeltme
splaynlar1 kapsaminda ilk olarak Craven ve Wahba tarafindan onerilmistir
[13]. MARS algoritmasi, Craven ve Wahba tarafindan 6nerilen bu kriterden

yararlanarak model seciminde modifiye edilmig bir GCV hesab1 yapar.

2.4.3 (), Kriteri

Coklu regresyon modelleri seciminde kullanilan bir baska kriter C), degeri

olarak karsimiza ¢ikar. Bu kriter (2.67) ile verilmistir:
C, = AKT(p) + 26%p (2.67)
Burada 62, (2.68) ile verilir:

o AKT())
62 = Tom V) (2.68)

dir. Burada dfu,.«, bu terime ait serbestlik derecesidir. C,(\) yaklagik olarak
GCV(A)’ ya esittir. Bu durum (2.69) ile verilmigtir:

GOV(\) ~ AKT(N) + 262(\)d (M) (2.69)
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Burada dy; = iz(S))’ dir. Bu iki kriter arasindaki temel fark, GCV, o2’ yi
AKT(A) yi kullanarak tahminlerken, C,()\), ¢ nimn bir tahminine ihtiyag

€

duyar.

2.4.4 Akaike Bilgi Kriteri

GCV ve C,’ den farkh olarak Akaike Bilgi Kriteri (AIC) kriteri, AKT ve
df ik (A) arasmnda dengeyi saglamaya caligir [28]. Bu durum (2.70) ile ifade
edilir:

AIC(N) = log(AKT(N)) + 2df () /n (2.70)

Literatiirde modifiye edilmis AIC kriterlerine rastlamak miimkiindiir.
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3 MARS

3.1 Yinelemeli Boliintiileme (Recursive Partitioning)

Yinelemeli boliintiileme regresyon modelleme metodolojisinin asil kaynagi
1960’ larda Morgan ve Sonquist tarafindan geligtirilen AID(Automatic Inter-
action Detection) adinda bir programa dayanir [29|. Bunun iizerine yapilan
caligmalar Breiman tarafindan 1984’ te geligtirilmigtir [30]. Bir sonraki alt
boliimde yinelemeli boliintiileme konusu ikiye ayrilarak aciklanmaya caligila-
caktir. Yinelemeli boliintiileme, altbolgelerin yinelemeli olarak boliinmesiyle

aciklanir [31].

3.1.1 Altbdlgelerin Yinelemeli Boliinmesi (Recursive Splitting)

y yanit degiskeninin & = (x1, ..., zx), k adet tahminleyici degiskenin vek-

torii ile bilinmeyen iligkisi (3.1) ile verilsin:
y=f(x1,....,x%) + € (3.1)

Varsayalim ki, NV tane {y;, z; }jvzl ornegi olsun. {R;}> |, D C ®* nin S tane
ayrik altbolgelerin bir kiimesi olsun. Yinelemeli boliintiileme, verilen {Ri}le
altbolgeleriyle, bilinmeyen f(x) fonksiyonunu, & degerinde (3.2) ile tahmin

eder:
f@) = fi(=) (3.2)
Burada, z€ R; icin, f;(x) fonksiyonu, D’ nin R; altbolgesi iizerindeki bi-
linmeyen f(z) fonksiyonunu tahmin eder. Yinelemeli béliintiilemede, fz(:c)

sabit bir fonksiyon olarak alinir ve bu durum (3.3) ile gosterilir [29, 30].

~

file)=c¢ V zeR, (3.3)

Burada, her ¢; hata kareler toplamini minimum (Lack of fit ) yapan i.nci

bilesen olarak diigiiniiliir. Buna gore,

Lof [fl(a:)] = min,, Z (y; — ¢;)? (3.4)

T1€ER;
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D tamm bélgesinin altbélgeleri ayrik olduklarindan her bir ¢;, {x;}Y

ye ait olan y;’ lerin 6rnek ortalamasi olacaktir. Yinelemeli boliintiilemede ilk
olarak tanim bolgesi D tek bir altbélge olarak kabul edilir. Buna gore Ry = D
yazilabilir. Ileriye doniik algoritmanin ilk adimi, altbolge sayist M kullanica
tarafindan secilen, ¢ok sayida M > S icin {R;}M, ayrik altbolgelere ayir-
maktir. Burada ¢ = 2, ..., M olduguna dikkat edilmelidir. Ikinci olarak, geriye
doniik algoritma ilk adimi geriye ¢evirir; modeldeki altbdlge sayisini ve model
uygunlugunu hesaplayan bir 6l¢iit kullanarak modelden M — S kadar fazla
altbolgeyi budar. ki algoritma kullanmanin amaci veriyi ¢; sabit fonksiyon-
lar1 ile beraber en iyi {R;}7, altbolgeler kiimesi elde edecek sekilde, tanim
bolgesinin herbir altbolgesi iizerinde tahmin eden f(x) fonksiyonunu segmek-
tir. Varsayalim ki, £ = 3 tane agiklayici degisken ve ileriye doniik adim alt-
bolge sayist maksimum M = 5 olsun. v = 1, ..., k aciklayic1 degigkenleri indek-
sleyen ve p =1, ...,n de R; altbolgesindeki bir agiklayici degisken olan z,” nin
sirali degerlerini indeksleyen simge olsun. Bu durumda m altboélgeli yinelemeli

boliintiileme modeli i¢in ileriye déniik adim 6lgiitii olarak (3.5) ile verilir:

Lof, = Z Lof|fi(z)] (3.5)

Burada dikkat edilmelidir ki, x,, ,, ile belirtilmek istenen v. aciklayic1 degiske-
nin p. sirali 6rnek degeridir. Tek bagina z, ifadesi ise v. agiklayic1 degiskenin
sabit degerleridir. Ileriye doniik adim yinelemeli béliintiileme algoritmasinin
baginda R; tamm bolgesi D’ nin kendisidir ve f(z) i¢in tek altbolge tahmini
(3.6) ile verilir:

N
5 A 1
f(m>:f1(m)zclzﬁzyj (3.6)
j=1
Tek altbolge yinelemeli boliintiileme modelinin ileriye doniik adim uyum
ol¢iitii (3.7) ile verilir:

N

Lofi =) (y;— 1)’ (3.7)

j=1
Baglangi¢ boliintiisii, m = 2, ileriye doniik adim algoritmas igin, Ry alt-

bolgesini en iyi iki ayrik bolgeye ayiran t* boliintii noktasini seger. t* degerinin
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bulunmasi i¢in metot su sekilde ilerler:

Her ornek degeri z,,,’ yi (v =1,....k,;p = 1,...,n) potansiyel bir boliintii
noktasi olarak alir ve bunlarin arasindan m = 2 altbolge modeli icin Lof
degerini minimum yapamn hesaplar. Bagka bir deyisle, ¢t = x; 15 degeri z; acik-
layict degiskeni i¢in potansiyel bir boliintii noktasi olsun. Bu durumda, ana
altbolge olan Ry, ¢’ nin solundaki alanda, z1 < t, Ry s, altbolgesini olugturur.
t’ nin sagindaki alan ise, 1 > t, Ry 544 altbolgesini olusturur. R’ in t = xy 15
boyunca uygun gekilde boliinmesinden sonra, model m = 2 altbolge i¢in Lof,,

degeri hesaplanir. Buna gore,

Lof, = min Z (y; — Cso1)? + min Z (y; — cmg)2 (3.8)

ol i ERy ol 9 € Ry vag
elde edilir. v ve p indeksleri kullanilarak R; dahilinde olan her agciklayici
degigken igin sirasiyla biitiin miimkiin boliintii noktalarini aragtirir(Burada
Ry, D tamim bolgesine esittir).

Boliintli noktasi t* = x5 95, R altbolgesini ayiran nokta oldugunda, m = 2
altbolge icin ileriye doniik adim Lof,, ol¢iitiinii minimum yapan nokta an-
lagilir. 595 noktasi 6nceki ana bolgeyi iki yeni ayrik altbolgeye bolmek ve
eskisini ortadan kaldirma iglemi boyunca kullanilir. Bu eski bolge Ry, olarak
adlandirilir. Ik olarak, ana altbdlge Ry, daki alan, t*’ m solunda, o < t*,
olacak sekilde olugturulur ve buna eg altbolge Ry denir. Buna karsin t*’ in
sagindaki alan tekrar R; olarak kalir. R; ve Ry ayrik yeni bolgelerin yaratil-
mas1 ve eski ana bolge olan R;,’i n ortadan kaldirilmasi, D tanim bdlgesinin,
bir bir alt bolgelere boliinmesiyle, ileriye doniik adim siireci tamamlanana
kadar siirer gider. Dolayisiyla, f(x) ’in iki altbolge yinelemeli boliintiisiiniin

tahmini (3.9) ile verilir:

fle=¢ xeR, i=1,2 (3.9)

x € (3.10)
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Burada belirtilmelidir ki, (3.2) ifadesi boliintiileme boyunca bozulmamigtir.
Sadece D’ yi bolen ayrik altbolgelerin sayist degismistir.

Ileriye doniik adim algoritmanin yinelemeleri, m = 3,..., M = 5 ’e kadar
yinelemeyi tekrar eder. Bundan sonra arastirma, mevcut m—1 altbélge mode-
linden altbolgelerin sadece ve sadece biri i¢in en iyi boliintiileme (Lof,, degeri-
nin en kiiciiklenmesi) olusturur. Onceki gibi, her yinelemenin béliintii noktas
olan t* benzer gekilde secilir. Sonra her bir agiklayici degigsken icin mode-
lin varolan {R;}7," altbélgeleri icinde biitiin miimkiin potansiyel noktalarin
hesab1 yapilir. Yinelemeli boliintiileme, tanim boélgesi olan D, M = 5 parcaya
ayrilana kadar devam eder. Bu durumda {R;}}_; altbolgeleri olugmus olur.
Ileriye déniik adim algoritmanin tamamlanmast ile geriye dénitk adun algorit-
masi hem modelin uygunlugunu hem de altbolge sayisini hesaplayan bir kriter
kullanarak diizeltme yapar. Geriye doniik adim algoritmanin da tamamlan-
masiyla yinemelemeli béliintiilleme sonuclanir.

Her bir R; altbolgelerinin aragtirilmasinda taban fonksiyonlar: kiimesinin
bir acilimi kullanilir. Aday bdliintiileme noktasinin se¢imi, f(m) i¢in Ozel bir
fonksiyonel form yaratir. Bunun igin algoritmada ¢ fonksiyonu kullanilmigtir.

Algoritmada goriilen basamak fonksiyonlar: 6nemlidir. H basamak fonksi-

yonu (3.11) ile gosterilir:

H(n) = (3.11)

Friedman 1988’ de yinelemeli boliintiileme i¢in, taban fonksiyonlar1 kiimesini

kullanan ileriye doniik-adimsal bir algoritma geligtirmistir [32]. Buna gore:

(1) Ry =V, Bi(z) =1

(2) For R,,, m =2 to M do (Her altbélge igin )

(3) loff =00,i*=0,v"=0,t*=0

(4) For R, ,i=1tom—1 (Herbir kurulmus altbélge icin)
(5) For v =1 to p do (Herbir tahminleyici i¢in)
(6) For t = @y p=1 t0 Ty k=n (Her bir deger i¢in)
(7) 9= azjcaBa(@) + cnBi(x)H[t — x0] + ¢; Bi(z)H [z, — 1]
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(8) lof = Lofm

(9) If lof <lof*thenlof* =lof;i* = i;v* =v;t* =t end if
(10) end for

(11) end for

(12) end for

(13) Ry < {Rjx : (t* — xy+) > 0}

(14) R ¢ {Ri= : (xpr —t*) > 0}

(15) end for

(16) end for

Ileriye doniik adim yineleme boliintiileme algoritmasi ilk olarak R; altbol-
gesinin D tanim bolgesine esitlenmesiyle baglatilir(1). Bir sonraki dongiide(2)
{R,,}M_, altbolgeleri iteratif olarak olugturulur. Daha sonra, yapay degigken-
ler lof* siirecini, j* altbolgesini, v* aciklayict degiskeninin ve ¢t* boliintiileme
noktasinin hesabi i¢in baglangic degerleri belirlenir ve bu degerler kurulmus
olan bir {R;}7," altbélgesinin bir sonraki altbéliintiisiinii tayin etmede kul-
lanilir(3). Bundan sonraki i¢ {i¢ dongii (4-5-6) bir sonraki boliintiileme nok-
tasinin bulunmasini, iteratif olarak biitiin kurulan altbolgeler(4), biitiin acik-
layic1 degigkenler(5) ve j. nci altbolgede(6) olan aciklayici degiskenlerin biitiin
degerleri arasindan secerek yapar. Verilen bir R; altboélgesi icindeki x, acik-
layict degiskeni i¢in bir boliintiileme noktasi ¢, g fonksiyonu (7) parametre vek-
torii ¢ = (c1, ¢a, ..., Cy) ile, f(z) ’in ileriye doniik adim m. nci iterasyonunda
bir yinelemeli boliintiileme model tahmini i¢in adaydir. (7) ifadesindeki ilk
terim R; altbolgesi hari¢ biitiin altbolgeleri igine alir. Sonraki iki terim ise (7)
ifadesiyle

cmBi()H[t — x]) + ¢;Bi(2)H [z, — 1]

olarak kargimiza c¢ikar. Burada yapilan aslinda R; ana bolgesinin iki ayrik eg
altbolgeye, basamak fonksiyonlar: olan H[t — z,] ve H[z, — t] leri kullanarak
her bir  in yerinin ¢ bdéliintiileme noktasina gore ayrilmasidir. Daha sonra,
Lof,, (8) degeri, veriye gore g fonksiyonunun ileriye doniik adun 6l¢iisiini

hesaplayan bir degerdir. En iyi boliintiileme, agiklayict degisken ve altbolge
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aragtirmasi(9), m. nci iterasyonda kurulan bir {R;}7,' altbdlgesinin en iyi

boliintiilemesini elde edene kadar devam eder. m. nci iterasyonun bitmesiyle,
yani R; ana bolgesinin iki eg altbolgeye x,” nin boliintii noktasi ¢’ ye bagh
olarak ayrilmasiyla(13-14)(ve ortadan kaldirilmasiyla) biter. (Iterasyonlar ta-
nim bolgesi D’ nin M tane ayrik {R;}, altbolgeye boliintiilenmesiyle devam
eder).

Her bir taban fonksiyon B;(x), D’ nin R;. nci altbolgesiyle olan iligkisini
tanimlar ve bu boliintii noktalar1 R;. nci altbolgeyi tanimlayan taban fonk-
siyonlar1 ¢arpiminin bir sonucudur. Bunu bir 6rnekle agiklamak gerekirse, D €
R? ve Rs bolgesi sirasiyla H vy —t3], H[t3—xo], H[xo—1t}] ve H|[t;—x1] basamak
fonksiyonlarindan olugan bir altbélge olsun. Burada {t;}}_, degerleri sirasiyla

0,1,0, 1" dir. O halde taban fonksiyonu olan Bj(x) (3.12) ile gosterilir:

Bs(z) = Hlz1 — 0] x H[1 — 5] x Hlws — 0] x H[1 — 2] (3.12)

Esitlik 3.12 ifadesi 2’ de bir birim kareyi temsil eder. Taban fonksiyon Bs,

(3.13) ile yeniden diizenlenebilir:

1 0<2;<1,0<a<1
Bs(z) = (3.13)

0 ,diger durumlarda

Yinelemeli béliintiilemede, {R;}5, altbélgeleri ayriktir. Her bir veri noktas
x sadece tek bir R; altbolgesine aittir.

Yinelemeli béliintiileme, regresyon modellemede olduk¢a hizli hesaplama
yapabilen kullamsh bir metotdur. Ozellikle f;(z) bir sabit fonksiyon ¢; olarak

alindiginda hizli sonug verir [31].

3.1.2 Yinelemeli Boliintiilemenin Olumsuzluklar:

Yinelemeli boliintiilemenin dezavantajlari, siireksizlik durumu, degisken

etkilesimleri ve model yorumlarindaki eksiklikleridir.

43



Yinelemeli boliintiileme algoritmasinin ¢ok boyutlu durumlar i¢in uygu-
lama zorluklar1 bulunmaktadir. Iteratif béliinme ve ana bolgeyi es altbol-
gelere ayirirken ortadan kaldirma durumlari, dogrusal ve toplamsal fonksiyonu
tahminlemede zorluklar ¢ikartir. H[n| Basamak fonksiyonlarmin siireksizligi,
ileriye doniik adim algoritma(satir 7)” deki her dogrusal regresyon icin uygu-
landiginda siireklilikten kayba sebep olmaktadir.

Friedman [32|, yinelemeli boliintiilemenin dogrusal ve toplamsal fonksi-
yonun tahmininde yarattig1 zorluklar nedeniyle baz1 6nerilerde bulunmustur.
Buna gore es bolgeler olusturulurken ana bolge ortadan kaldirilmamalidir.
Dolayisiyla, gelecek iterasyonlarda hem ana bolge hem de eg bolgeler daha
sonraki boliintiilemeler igin kullanilabilir. Bunun dogal bir sonucu olarak,
kalan ana bolgeler tanimin altbolgeleriyle ortiiglir. Ayrica, her bir ana bolge
pek ¢ok eg altbdlgenin kiimelerinden olusabilir. Bu modifikasyonla, yinelemeli
boliintiileme, baglangic bolgesi R;’ in farkli aciklayici degiskenler tarafindan
tekrarli boliintiilemelerle dogrusal modeller iiretebilir. Birden fazla aciklayici
degiskenli toplamsal modellerin elde edilmesi yinelemeli béliintiilemenin farklh
aciklayici degiskenler kullanmasindan kaynaklanmaktadir.

Bu gekilde calisan yinelemeli boliintiileme algoritmasi esnekligi daha faz-
la olan modeller simifi olugturur. Ancak bu modifikasyon hala H|[n| basamak
fonksiyonunun siireksizligi durumunu degigtirmemektedir. Bunun icin Fried-
man, algoritmadaki(satir 7) basamak fonksiyonunu H[n], dogrusal regresyon
splaynlariyla (q=1 dereceden) degistirmeyi 6nermistir. Ancak bu regresyon
splaynlari soldan(-) ve sagdan(+) budanmig splayn formlari kullanir. 7, bilegen-
leri dogrultunun yoniinii (sola veya saga) gosteren R,,. altbolgeyle birlegmig 2
boyutu ifade etsin. Oyle ki, bunlardan ilki ézel bir aciklayici degiskeni digeri
ise kendi ana bolgesinden altbolge olugturmak i¢in kullanilan boliintiileme
noktasini gostersin. Sag ve sol budanmig splaynlar R, ve R, altbolgelerini

Y

olugturur. Bu altbdlgeler R; ana bolgesinden x,” nin ic¢inde bir boliintiileme

noktasi olan ¢ ile elde edilmis R,,. ve R,,y1. altbolgelerdir. Buna gore, bu

altbolgeler (3.14) ile tanimlanir:

T (@) = [(E = 2,)4]7" = (= 2,)4 (3.14)
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T (@) = [0y — )41 = (20— 1);

Tm = (—=v,t) ve 11 = (40, t) ve m > ¢’ dir. Fazladan yazilan alt indisler i, m
veya 7, m+1 ¢oklu acgiklayici degisken igerisindeki etkilesim terimlerine miisade
edildiginde budanmig splayn fonksiyonlarin carpimlarini ortaya koymak igin
kullanilir. Budanmig splayn fonksiyonlar argiimanlar: agiklayicit degiskenlerin
bir vektoriidiir.

~

Esitlik 3.14” te kullamlan ifadelerdeki modelleme yaklagim siirekli bir f(x)
yaklagimi verir, yle ki, f(2)’ in modeldeki her aciklayici degiskenin boliin-
tiilleme noktalarinda ilk kismi tiirevi siireksizdir. Dogrusal budanmig splayn
(3.14) icin kullanilan ifade esneklikten yana ok az bir kazang ve hesaplama
olarak fazlaca bir ig yiikii gerektigini gosterir. Dogrusal splayn fonksiyonlari
regresyon modelinin hizli giincellemesine miisade eder.

Yinelemeli boliintiilemedeki bu zorluklar, yapilan modifikasyonlarla MARS
algoritmasinin olusturulmasina yaramaigtir.

MARS algoritmasi, D tamim bolgesi tizerinde { R;}5_, altbolgeleriyle értiigen
dogrusal ¢ = 1 budanmig splayn modelleri olusturur. Bir MARS modelinin
herbir Ortiigsen altbolgesi dogrusal budanmig splaynlarin sirali bir dizisinden
gelen tahminleyici degigkenlerin boliintiileme noktasiyla tanimlanir.

Taban fonksiyonun ¢arpim K,,(z), R,, altbolgesi ile iligkili budanmig splayn-
larin bir sirali dizisi olarak tanimlansin. Her taban fonksiyonu ¢arpiminin ilk
terimi Ty, (z) = 1 dir. Buna R ile iligkili baglangi¢ fonksiyonu denir. Her bir
eklenen budanmig splayn bir ana bolgenin bir eg altbolgeye iteratif boliintiilen-
mesidir. Varsayalim ki, Rp ana bolgesi icin sirali budanmig splaynlar dizisi
(1,3,7) olsun. Buna gore, R,, altbolgesi yaratmak i¢in ana bolge T, ()
kullanilarak (3.15) elde edilir:

Ky () = To () X Th () X T30 () X 17,4, () (3.15)

Burada m > 7 dir. Esitlik 3.15 ifadesindeki ilk {i¢ terimin ¢arpimi K7 (x)

olarak hesaplanir. K,,(z)’ i hesaplamak i¢in ¢arpim taban fonksiyonu i¢indeki

45



herbir budanmig splaynin ' deki degerinin hesaplanmasini gerektirir. Eger
herhangi bir budanmig splayn hesabinin &’ deki degeri sifir ise o zaman K,,(x)’
in de @’ deki degeri sifirdir. Bagka bir deyigle, K,,(x)’ nin &’ deki degeri,
budanmis splaynlarin ¢arpiminin x’ deki degeridir. Varsayalim ki, Rs € R3
i¢in siralanmig budanmig splaynlar (1,2,5) olsun. Buna gore 7o = (2,3) ve
r5 = (=3, 1) olarak belirlensin. Rj ile ilgili ¢arpim taban fonksiyonu (3.16) ile

verilir:

Ks(x) = Ty () X T1py(2) X To s () (3.16)
=1x (22 —3); X (1 —ux3) (3.17)

o —3)(1—x To > 3,03 <1
_ (2 )( 3) 2 3 (318)

0 diger durumlarda

Eger, x—{5,4,.5} € R5 ise o zaman K;(z) = 0.5 ve eger x = {4,3.5,6} # Rs
ise ve K5(z) =0 dur.

Tahminleyici degigkenlerin etkilegsiminin diizeyi iligkili oldugu R; i¢inde,
K;(z) carpim taban fonksiyonu i¢indeki budanmig splaynlarin (7 ., () harig)
sayisidir. Tek terimli garpim taban fonksiyonu, kendi tahminleyici degiskeniyle
budanmig olan bir dogrusal iligkiyi temsil ederken, iki terimli carpim tabani iki-
li etkilegimleri temsil etmektedir. Bir MARS modelinde etkilesim terimlerinin
sayis1 ve derecesi MARS algoritmasindaki etkilegim terimleri icin belirlenen
maksimum sayiya ve veri setine baghdir. MARS bilinmeyen f(x) fonksiyo-

nunu, (3.19) ile tahmin eder:

flz) = Z ¢ K;(z) (3.19)

Burada f(x) ilgili {R;}2, altbolgelerindeki carpim taban fonksiyonlar:
olan { K;(z)}7_,” lerin toplamsal bir fonksiyonudur. Bir carpim taban fonksiyo-
nu verildiginde, boliintiileme noktalari, ayrica modelin parametreleri de olmak
iizere, sabittirler. Egitlik 3.19 ile verilen MARS modelinin katsayilari {c;}2,
en kiiciik kareler regresyonu ile bulunur.

Yinelemeli boliintiilemedeki gibi, MARS’daki ileriye doniik algoritmanin
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amaci, iteratif olarak katsay1 degerleri vektoriinii, altbolgeleri {R;}M, (M >
S) belirlemeye ¢alisirken diizeltmek, ve bu bolgelerdeki ¢arpim taban fonksiy-
onlar1 f(x)’i veriye yaklagtirmaktir. Yine yinelemeli boliintiilemedeki gibi ileri-
ye doniik adim prosediiriinii geriye doniik bir diizeltme siireciyle dengelemek

gerekir. Boylelikle modeldeki fazladan (M — S) tane altbolge ¢ikartilir [31].

3.2 Regresyon Splaynlari

Regresyon splayn modelinin geligtirilmesi, MARS’ 1 aciklamada yeni bir
metot olarak ortaya ¢ikmgtir. Silverman [33] splayn fonksiyonlarim parametrik
ve nonparametrik regresyon metodolojisi arasinda etkili bir yaklagim olarak
kabul etmistir. Buna gore, £ € D C R! tanim bolgesi iizerinde, bilinmeyen ¢
sabitleriyle tanimlanan ¢. dereceden(order) polinomiyal bir fonksiyon (3.20)

ile verilmigtir:
q
pe(x) = ch:cl zeD (3.20)
1=0

Esitlik 3.20° teki polinomlar piiriizsiizdiir. Ancak, veriye polinomlarla global
olarak bir model uydurmada yiiksek dereceden terimler yiiziinden etkilerini
kaybedebilirler. Bu durumda, D tanim bdlgesini daha kiiciik R; altbolgelerine
farkli polinomlar kullanarak bolmek, her bir altbolgede daha diigiik dereceden
terimlerin olmasini saglar ve yiiksek dereceli terim sikintisindan kurtulmus
olunur.

Varsayalm ki [a,b] = D C R! ve Ag = {t1,...,t5_1} kiimesi [a, ]’ de sirah
bir boliintii olsun. Bu béliintii S tane ayrik altbolgeye a = t) < t; < ... <
ts = b ayrisin. Her bir altbolge R; = [t;—1,t;] , i = 1,...,5 ile gosterilsin.
Varsayaliun ki C?[D] kiimesi D igindeki ¢ — 1. tiirevleri de siirekli olan biitiin
siirekli fonksiyonlarin kiimesi olsun.

s (z) fonksiyonu, S parcali ¢q. dereceden polinomiyal fonksiyonlar kiime-
sinin, Oyle ki ¢. dereceden fonksiyonunun ve ilk ¢ — 1 tiirevleri boliintii nokta-

larinda gakigan, bir splayn fonksiyonu (3.21) olarak tanimlansin:
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S
s (z) = Z pei(®) [z € R)] (3.21)

Burada, s} _(z) € C7D] kisit olarak verilmistir.
Splaynlar regresyon i¢ine koymak i¢in pek ¢ok yaklagim 6nerilmistir [34].
Bunlardan bir tanesi Egitlik 3.1 modelini parcal splaynlarla yazmaktir. Bu

durumda (3.22) ile verilen parcal regresyon splayn modeli elde edilir.

y=sh (x) +e (3.22)

2

€

Burada ¢ nun ortalamasmin sifir, varyansinn o7 ve s% (x) den bagim-
siz oldugu varsayihr. Bu durumda gercek f(z) 'in tahmincisi olarak s ()
kullanilir.

Smith [35], Ag boliintii noktalar: kiimesi verildiginde, daha faydal bir

regresyon splayn modeli i¢in (4) fonksiyonlar1 kullanilmasini 6nermistir. ()

fonksiyonu (3.23) ile verilir:

v egerv >0
VUV = (323)

0 egerv<0

Varsayalim ki yine [a,b] = D C R olsun. Ancak, Ag, = {t1,...,t5_1}
boliintiisi, [a,b] nin sirali bir boliintiisii olsun ve S icindeki altbolgeleri R; =
[ti_1,ts], i =1, ..., S olarak tanimlansi. Tanim bolgesinin her altbolgesindeki
polinomiyal terimlerinin derecesi [ ve bir splayn modelindeki (i + 1).nci alt-
boélgedeki [. polinomiyal terim igin ilgili katsay1 ¢;; ile gosterilsin. (+) fonksiy-
onunun kullanimi sonucu, bir budanmig regresyon splayni parcali regresyon

splayn modeline egit olur. Bu durumda, (3.24) yazlabilir:

q S—1
y=> ad +> cgllz—t))7+e q>1 (3.24)
=0 =1
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2

€

Burada, €’ nun ortalamasinin sifir, varyansinin o qus(w)’ den bagimsiz ve
¢’ nun 1’e esit veya daha biiylik oldugu varsayilir. Boliintii noktalar1 kiimesi
Ag, sirali oldugundan, sifirdan farkl deger alan budanmig splayn fonksiyonlar:
sayis1 her ¢; boliintii noktas: boyunca saga gittikce bir artar.

Bu durumu Sekil 3.1 ile incelemek miimkiindiir.

Karezel REegresyon Splayn Fonkriyonlarm

{x=1) noltasinda Parcals Splayn
Y m B+ 7%+ 12X HDE£ X < 1)
2 " w—2dk o+ TN - 20X WV ERE D
5 e & = TH 4 170 e el
LA =24 + TIH — 20T P il

3 . . =
o x
(=1} noltarimda Budanmiy Splayn
i T om @ TA O+ 1267 =320 - 10,7 -t
" v o o¥T
B L
s} 7 8+ Txoeamd T % b
- s -3A(x - 1P | et
18 M
= mﬂ-“-‘-ﬂ .
F s i ‘_"""“un.u
qt ".‘-l.
X

Sekil 3.1: Karesel regresyon spline fonksiyonlar:

Sekil 3.17 de ¢ = 2 dereceden bir tane parcali (iistteki) ve bir tane budan-
mug splayn (alttaki) fonksiyonlar: verilmigtir. Bunlar = 1 boliintii noktasiyla
ikiye ayrilirlar. Ustteki cizimde y egrisi 0 < 2 < 2 araliginda iki ayr ikinci
dereceden polinomiyal fonksiyonla gosterilmigtir. Diger cizimde ise bir kismi
VV ile [0,1) bélgesinde ikinci dereceden polinomiyal bir fonksiyon ve diger
kismi da AA semboliiyle [1,2] bolgesinde bagka bir ikinci dereceden poli-
nomla ifade edilen bir egri vardir. Alt grafikteki y egrisi de [0, 1) bolgesinde
ikinci dereceden bir polinomiyal fonksiyon olarak, VV ile gosterilmigtir. Ancak
ikinci kisimda y egrisi, [1, 2] bolgesinde iki tane ikinci dereceden polinomiyal
fonksiyonun oOrtiigsmesi ile olusturulmusgtur: VV ile gosterilen ikinci derece-

den polinomiyal bir fonksiyon ve AA ile gosterilen budanmisg ikinci dereceden
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polinomiyal bir fonksiyon. Her iki parcali ve budanmig splayn fonksiyonlari,
sirastyla (3.21) ve (3.24), y egrisini tanimlar.

Buradaki 6nemli nokta, daha once de belirtildigi gibi boliintii noktalarini
{t;}77! yerlerinin ve degerlerinin belirlenmesidir. Bu belirlendikten sonra g.
dereceden budanmig regresyon splayn modeli, (3.24), bu béliintii noktalariyla
katsayilari siradan en kiigiik kareler yontemiyle bulunan dogrusal bir modeldir.
Buradaki en biiyiik zorluk ¢. dereceden regresyon splayni modelini olugturacak
boliintii noktalarinin sayisi ve yeridir.

Su ana kadar regresyon splayni modeli i1’ de tanimlandi. k, adet aciklayica
degigken icin bu durum tek degiskenli splayn fonksiyonlarin carpimlariyla elde
edilebilir (k>1). Ancak bunu yapmak boyut sikintisi getireceginden, MARS bu
durumdan kurtulmak i¢in modifiye edilmis bir yinelemeli boliintiileme yontemi
kullanarak tanim bolgesi i¢in boliintiiler elde etmeye ¢aligir [31].

Uygulamalarda amag bir yanit degigkeninin bir veya daha fazla tahmin-
leyici degiskenin zy, ..., 2, verilen degerlerine, {y;, z1;, ,:Bm}iv olan bagim-

liligin1 modellemektir |36]. Veriyi iireten sistemin yapist (3.25) ile verilmigtir:

y=f(r1,...,m,) +€ (3.25)

Burada (zi,...,x,) € D C R, tamim bdlgesi iizerinde gosterilebilir. Bu-
radaki € ortalamasi sifir olan stokastik bir bilegsen ve modelde y’ye iligkin go-
zlenemeyen veya kontrol edilemeyen nitelikleri temsil eder. Regresyon anali-
zinin amaci veriyi bir f(a:l, ..., T,,) fonksiyonu ile temsil edebilmektir dyle ki;
tamim bolgesi D iizerindeki f(z1,...,x,) i¢in uygun bir yaklagik olarak da
kullanilabilsin. Buradaki uygun ifadesiyle farkli yaklagimlar kullanilabilecegi
anlatilmak istenmektedir. Bu anlamda uygulamalarda yaklagimin dogrulugu
ifadesi 6nem kazanmaktadir. Dogruluk yetersizligi (Lack of Accuracy) olarak

ifade edilebilecek bu tanim (3.26) ve (3.27) ile verilmistir:

I:/Dw(x)A [f(x),f(x)} dx (3.26)

E= % ;w(xi)A [f(x), f(x)} dx (3.27)
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Burada, x = (z1,...,7,), A bir fark olgiisii ve w(x) ise bir agirhik fonksiyo-
nudur. Egitlik 3.26 ile verilen tanim bolgesi iizerinde dogrulugun ortalama
bir yaklagimi (the average accuracy of the approximation ) iken, E beklenen
deger ile ifade edilen tasarim noktalar1 xq,...,xN iizerinde dogrulugun orta-
lama(average accuracy) bir ol¢iisiidiir.

Bunun yaninda regresyon modellemede parametrik ve nonparametrik meto-
dolojilerden bahsedilmesi de gerekmektedir. Buna gore global parametrik mo-
delleme ve nonparametrik modellemeden bahsedilebilinir. Global parametrik
modelleme ¢ogunlukla en kiigiik kareler metoduyla parametrik bir g(x| {a;}")

fonksiyonu kullanilarak (3.28) ve (3.29) elde edilir:

f = g(x|{a;}?) (3.28)
{a, ] = argming,y1 Y [ — 9(x] {a,37)] (3.29)

Cogunlukla kullamlan dogrusal parametrik fonksiyon, p < n, (3.30) ile

gosterilir.

g9(x[{a;}g) = ao + Z a;T; (3.30)

Bu parametrik yaklagim esneklige izin vermez ve bu yontemle dogru tah-
minler yapmak ancak tahminleyici fonksiyon gergek fonksiyona yakin oldugun-
da miimkiin olur. Bunun yaninda parametrik modellerin yorumlamasi ve hesap-
lamasi kolaydir.

Kiigiik boyutlu ¢aligmalarda (n < 3), parametrik modelleme ii¢ gekilde
genellegtirilebilir: parcali ve lokal uyum (fitting) ve piiriizliiliik ceza yaklagimi
metotlarl. Parcali parametrik uyumdaki temel fikir, bilinmeyen f fonksiy-
onuna her biri D tanim bolgesinin farkli bir alt bolgesinde tanimli pek ¢ok ba-
sit fonksiyonla (genellikle diigiik dereceli polinomlar olmak iizere) yaklagimdir.

Bu yaklasimdaki kisit her yerde siireklilik seklinde ve bazen de diisiik dereceli
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tiirevlerde de siireklilik seklindedir. Diizgiinliik (smoothness) ve yaklagimin es-
nekligi arasindaki denge veya uyum iki seyle kontrol edilir. Bunlardan biri alt
bolgelerin sayisi ve diigiik dereceli tiirevlerin getirdigi alt bolge sinirlarindaki
siireksizliktir. En ¢ok tercih edilen parcali polinomiyal uyum sekli splaynlardir.
Parametrik fonksiyonlarin g dereceli (degree) ve bunlarin ¢ — 1 dereceli tiirev-
lerinin siirekli oldugu (¢ = 3 durumu) polinomlar en ¢ok tercih edilenlerdir.
Bu siireg, ¢g. mertebeden (order) splayn yaklagimlarinin gerdigi(olugturdugu)
uzay1 olusturan taban fonksiyonlar1 olusturmak ve verinin taban fonksiyon-
lariyla olan aciliminin katsayilarini siradan en kiiciik karelerle tahminlemektir.
Ornegin; dogru parcasi iizerindeki K tane diigiim(knots) ile betimlenen K + 1
tane bolgeye sahip tek degigkenli durumda (n = 1), tek taban (3.31)" deki

fonksiyonlarla gosterilir. [36]

LA} A = t)4 (3.31)

Burada {tk}f lar diigim yerlerini gostermektedir(-+: bir ifadenin negatif
degerleri icin sifir degerini temsil etmektedir). Bu ifade budanmig kuvvet ta-
banini temsil eder ve K 4+ g+ 1 boyutta ¢ dereceli splayn fonksiyonlar: uzayini
geren(olugturan) tabanlardan biri olarak bilinir. Splaynlarin detayh bir agik-
lamas1 Boor 1978’ de verilmigtir [37].

Parcali parametrik modellemenin biiyiik boyutlardaki uzantis1 pratikte zor
ama teoride aynidir (n > 2). Bu zorluklar boyut sorunuyla ilgilidir. Splayn
yaklagimi durumunda, alt bolgeler genellikle n tane degisken iizerindeki K +
1 araligin (K tane diigiimiin) tensor garpimlari olarak olugturulur. Uygun
global taban, (3.31) ifadesindeki gibi her degiskenle birlegtirilmiy K + ¢ + 1
tane olan taban fonksiyonlar {izerinde bir tensor ¢arpimidir. Bu da, (K +
¢ + 1) n tane katsaymin veriden tahminlenmesi demektir. Lokal parametrik

yaklagunlar (smoothers) (3.32) ile gosterilen bir form alirlar:

f(x) = g(xla;(x)}) (3.32)

Burada, g parametrik basit bir fonksiyondur. Global parametrik yaklagim

lardan farkl olarak, burada parametrelerin degerleri genellikle hesaplanan her
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bir x noktasinda farklilik gosterir ve lokal olarak agirlikli en kiiciik karelerle

uyum (3.33) ile yapilir.

{d;(x)}] = argmin Z w(x,xi)[y; — g(xil {a;}7))” (3.33)

Burada agirhik fonksiyonu w(x,x’), X’ noktalar1 iizerindeki agirhgi x' e
yakin olacak gekilde yerlegtiren bir fonksiyondur. Bu yaklagimlarda en énemli
problem agirlik fonksiyonunun ve parametrik fonksiyon g’nin belirlenmesidir.
Bu agidan en ¢ok g(x|a) = a iizerinde ¢aligilmigtir [38—40]. Lokal parametrik
metotlar:t uygulanmanin ¢ok boyutlu durumlardaki zorlugu Esitlik 3.33 ile
verilen uygun agirlik fonksiyonunun se¢iminde yatar. Bu da (3.25) ile verilen
bilinmeyen f fonksiyonuna baglidir.

Piiriizliiliik ceza yaklagimi (3.34) ile tanimlanir [36].

N

f(x) = argmin, {Z[yi —g(x)]* + AR(Q)} (3.34)

1=1

Burada R(g), g(x) fonksiyonundaki piiriizliiliigiin biiyiimesiyle artan bir fonksi-
yoneldir. Minimizasyon R(g) nin tanimlandig1 biitiin ¢’ ler iizerinden yapilr.
A parametresi, ¢g'nin piiriizliigii ile veriye uyumu arasindaki dengeyi temsil
eder. En ¢ok kullanilan piiriizliiliik cezasi, karesel Laplace integrali, (3.35) ile

verilmistir:

ZZ / . 01'1 2d (3.35)

k=1 1=1

Bu ifade Laplace diizeltme(ince tabakali) splayn yaklagimlarina n < 3 igin
bir gosterimdir. n > 3 icin genel ince tabakali splayn cezasinin 2’ den daha
biiyiik mertebeden tiirevleri iceren daha karmagik bir yapisi vardir [41].

Bunlarin disinda az boyuttaki nonparametrik modelleme yaklagimlari, cok
boyuttaki modellemenin yetersizligini giderebilmektedir [36]. Bu durum (3.36)
ile ifade edilebilir.

Z@ z;) (3.36)
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Burada her bir z;, {zi,...,2,} den olugsan onceden secilmiy kiiciik bir
kiimeyi temsil etmektedir. {zj}f degisken kiimesi secildikten sonra, uygun
{gj(zj)}{ fonksiyon tahminleri nonparametrik metotlarla elde edilir. Bu du-

rum (3.37) ile verilir:

i=1

{9(z))}] = argmingg, [yi - Zgj(zij>] (3.37)

Burada piiriizsiizliik kisitlar1 g; fonksiyonlar iizerinden kurulur. Parcali poli-
nomiyaller (splaynlar) durumunda, uygun bir taban her bir z; i¢in olusturulur
ve ¢Oziim tiim taban fonksiyonlarinin bir birlesimi iizerinden en kiiciik kareler
metoduyla elde edilir [42]|. Ceza terimlerinin eklenmesiyle (3.36) yeniden elde
edilir ve (3.38) gosterilebilir:

2

~

N
f(x) = argmingg,

[yi - Z 95(245)

j=1

(2

+Y " N\R(g) (3.38)

1

Herhangi bir az boyutlu nonparametrik fonksiyon kestiricisi backfitting al-
goritmasiyla baglantili olarak (3.38)” daki ifadeyi ¢ozmek i¢in kullamlabilir
[30,43, 44|. Bu siireg iteratif olarak g;(z;)’ leri yeniden tahminler.

9;(z;) < argming, Z [(yZ — ng(zzk)) - gj(Zij)] (3.39)

i=1 k]

Bu tahminleme (3.39)" da verildigi gibi yakinsaklik saglanana kadar devam

eder.

3.3 Uyarlamali Regresyon Splaynlari

(ok boyutlu ¢aligmalarda, fonksiyonlarin tahminleri uyarlamali bir hesapla
yapilir. Istatistikte kullanilan uyarlamali algoritmalar iki konuda yapilmistir.
Bunlardan ilki yinelemeli béliintiileme [29, 30| ve "project pursuit" algorit-
masidir [43]. MARS yaklagiminin kolay anlagilmasi agisindan yinelemeli boliin-

tiileme regresyonun (Recursive Partitioning Regression) bilinmesi 6nerilir.
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Aslinda RPR adimsal regresyon (stepwise regression) siireci gibi goriilebilir.
Yinelemeli boliintiileme regresyon modeli (3.40) ile verilebilir |36].
Eger, x € R, ise,
f = gm(al{a;}}) (3.40)

olur. Burada, {R,,}!" ler D tanim bolgesinin bir béliintiisiinii (partition) tem-
sil eden ayrik alt bolgelerdir. g, fonksiyonlar1 basit parametrik fonksiyonlar

olarak alinir. En ¢ok kullamlani, (3.41) ile verilen sabit fonksiyondur [29, 30].

Im(x|am) = ap, (3.41)

Temel olarak, bolgelerin geometrik kavramini (3.40) ve (3.41)" deki ifadelere
esit olacak sekilde yer degistirerek, bolgeleri toplama ve carpma iglemleriyle
ayirarak bir model olugturmaktir. Buna gore, (3.40) ve (3.41)" deki modele
yaklagik yapida bir model uydurmak igin (3.42)" deki taban fonksiyonlar:

kiimesi kullanilir.

f=> anBu(x) (3.42)

B,, taban fonksiyonlar1 Egitlik 3.43 ile gosterilen yapidadir.
B, (z) = I[z € R,)] (3.43)

Burada, I gosterge fonksiyonu olarak bilinir. Buna gore, I, belirttigi argii-
man dogrultusunda dogruysa 1 degilse 0 degerini alan fonksiyondur. {am}i\/[
ler veriye en iyi uyumu saglayan degerlerdir. {R,,}]"ler (3.40) ve (3.41)’ de
verilen degigken uzayinin olusturdugu ayni alt bolgelerdir. Bu bolgeler ayrik
oldugundan, (3.42) ve (3.43) ifadeleri (3.40) ve (3.41)'ye esittir. Yinelemeli
boliintiillemedeki amag sadece, veriye en iyi uyacak katsay1 degerlerini bulmak
degildir, ayrica taban fonksiyonlariin(subregion) da iyi bir kiimesini iirete-
bilmektir. Bilinmeyen f fonksiyonu taban fonksiyonlar1 By(x) lerin dogrusal

bir bilegkesi olarak (3.44) gibi yazilabilir.
A M

f@) = a0+ amBu(z) (3.44)
m=1

55



Burada, ag,aq, ..., a;r lar modelin katsayilardir. Her bir taban fonksiyon,
budanmig(truncated) kuvvet splayn fonksiyonu olarak (3.45)" deki gibi yazila-
bilir.

Km

Bu(z) = [ [ Hlskm(xo,.,, = trm)] (3.45)

Burada, K,,; etkilesimin derecesini, Sg,,; (+1) veya (-1) degerlerini alir(Dal-
larn saga veya sola agihmim), z,,  ; bagimsiz degiskenin degerini, t,,; diigiim
degerini temsil eder. Esitlik 3.45 ifadesindeki basamak fonksiyonlari (3.14)

deki gibi splaynlarla yer degistirerek siireksizlik durumu ortadan kalkar.

3.3.1 Model Se¢imi

Ileriye doniik adim MARS algoritmasi maksimum taban fonksiyonlar: sayisi-
na, M,.., ulasana kadar devam eder. Burada onemli olan bu sayiy1 opti-
mal olandan yeterince daha biiyiik secmek ve fazlalik olan taban fonksiyon-
larini silmektir. Bu siiregte M., potansiyel olarak secilebilecek /silinebilecek
biitiin degiskenlerin sayisini temsil etmektedir. Bu stratejinin olmasinin ne-
deni aslinda ileriye doniik adim algoritmasindan gelmektedir. Her iterasyonda
yeni iki taban fonksiyonu iiretir ve bunu bir onceki iterasyonlarda olustu-
rulan fonksiyonlar1 kullanarak yapar. Sonucta, 6nceki taban fonksiyonlarinin
katkisi ¢ok 6nemli olmayabilir. Bunlarin asil katkisi diger taban fonksiyon-
larini {iretmeye yardimeci olmalaridir. Miimkiin olan daha yiiksek dereceden
taban fonksiyonlar1 carpimlarini elde etmek icin yeterli durum ileriye déniik
adim algoritmasindaki miisade edilen taban fonksiyonu sayisina baghdir.

Bu model se¢imini yapabilmek icin bir kritere ihtiya¢ duyulur. Geriye
doniik adim algoritmada kullanilan bu kriteri minimum yapan model, son
model olarak belirlenir. MARS siirecinde ¢apraz gecerlilik kriteri, (3.46) ile
verilir:

CV(M) = % Z[?Jz - JEM/i(xi)]z (3.46)

1=1
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Burada kriter, taban fonksiyonlar: sayisina M’ ye baghdir. Bu esitlikteki
fM/i ifadesi geriye doniik adim algoritmadaki silme siiresinde goz 6niine alinan
ve 7.nci gozlem silindikten sonra hesaplanan M tane taban fonksiyonu mode-
lidir. Genellestirilmis capraz gecerlilik kriteri ilk olarak Craven ve Wahba [13]
tarafindan onerilmigtir. Egitlik 3.47, MARS’ da kullanilan bu kriterin modifiye
edilmig halini gosterir [36].

C(M)

GOV (M — far(x)]?/[1 - N )2 (3.47)

||Mz

Olusturulan maksimum modelin budanmasindan sonra hata kareler toplami-
nin en kii¢iikleyen model aragtirilir. Budama algoritmasi genellegtirilmis capraz
gecerlilik algoritmasi ile yapilir. Burada paydaki ifade uyum eksikligini ve pay-
dadaki ise model karmagikligina kargilik gelen bir ceza ifadesini temsil eder.
veriye uygun modelleme yapildiginda, a¢ilimin katsay1 sayisini icerir.

C(M) ifadesi gergekte modeldeki efektif parametrelerin sayisidir. Bu para-
metre, uydurulan modeldeki terim sayisiyla diigiim noktalarinin optimal pozis-
yonlarinin se¢iminde kullanilan parametre sayisinin toplamidir. Baz1 simulas-
yonlar gostermistir ki; parcali dogrusal regresyonda bir diigiim noktasi1 sec-
menin 3 serbestlik derecesi ile cezalandirilmasi gerekir [45]. Friedman’ nin

burada yaptig: katk: (3.48) ile verilir:

C(M)=M.(d/2+1)+1 (3.48)

Esitlik 3.48 ile tahminlenmis modelin dogrusal serbestlik derecesi hesa-
planmaktadir. Buradaki M, fM(x) modelindeki sabit olmayan taban fonksiy-
onu sayisidir. d ifadesi ise her iterasyonda olusturulan modelin karmagikligina
getirilen cezadir ve diizeltme parametresi gibi diisiiniilebilir. Her bir taban
fonksiyonu igin katkisi d/2’ dir. Simulasyon ¢alismalar1 gostermigtir ki, modi-
fiye edilmis GC'V,, kriteri i¢in d degeri 3 olarak kabul edilmistir [46].

Bir bagka 6nemli nokta, diigiimler arasinda kalacak gézlem degerleri sayisina
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karar vermektir. Friedman, bunun i¢in (3.49)’ u 6nermistir [36].

L*=-]
0g2(nN

m

In(1 - a)) (3.49)

Burada N,,, taban fonksiyonu B,, i¢indeki sifirdan farkli gézlemlerin sayisidir
(B > 0). n, bagimsiz degigken sayisi1 ve nlN,, ise, bu sekildeki gozlemlerin

uygun sayidir, ¢iinkii dongii igerisinde degigmektedir (o = 0.05).

3.3.2 Degisken Onemliligi

Bu boliimde, kavram olarak yeni ancak MARS algoritmasinin iirettigi
"Degisken Onemlilik" tanimlamasindan bahsedilecektir. Degisken 6nemlilik-
leri hesaplanirken MARS, 6nemliligi aragtirilan degisken digindaki biitiin degig-
kenleri digsarda tutar ve tekrar uyum iyiligini arastirir ve buna gore her bir
degigken i¢in skor degerleri belirler. Bu degerler modelde yer alan degiskenlerin

digerlerine gore goreceli katkilaridir.

3.4 MARS-Ileriye Déniik Algoritma

Algoritmada R; = V baglangi¢ olarak belirlenir. Ancak, MARS R,, ve
R,,+1 olmak iizere iki tane yeni altbolge olusturmaya calisirken ana bolge R;,’
1 her boliintiilemede dikkate alir. Ayrica, MARS herbir tahminleyici degigken
icin, her sirali budanmig splaynin birden fazla béliintiiye sahip olmasini en-
geller. Ciinkii bu durum dogrusal olmayan splayn fonksiyonu yaratir. MARS,
bir sonraki altbolge R; nin en iyi boliintiilenmesi i¢in bu kisittan yararlanir ve
carpim taban fonksiyonu K;(x) i¢inde herhangi bir tahminleyici degisken i¢in
zaten var olan bir béliintiileme noktasini digarda birakir.

Yinelemeli boliintiilleme ve MARS arasindaki en dikkat cekici fark, MARS
algoritmasinin modeli olugturmasindaki farkliliktan ileri gelir. Friedman [32]’
de verildigi gibi, (3.15) ile verilen c¢arpim taban fonksiyonu {K;(x)}!, ve

1 taban fonksi-

(3.14) ile verilen budanmig splaynlar T;, (x) ve T;,, .. ()
yonlar1 {B;(z)}", ve basamak fonksiyonlarn H[t — x,| ve Hl[z, — t] ile yer

degigtirir.
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Bu basamak fonksiyonlarindan daha 6nce (3.11)" de oldugu gibi ileriye
doniik adim yinelemeli boliintiileme algoritmasinda bahsedilmistir (Satir 7);
1) Ry =V, Ty, (z) =1
For R,, icin, m = 2 to M do

lof* =00,i"=0,v"=0,t"=0

- W N

ot
—_ — ~— — — ~— — ~—

For R; i¢in,2=1tom — 1

For z, € R; icin v = 1 to p do (&yle ki, v # K;(z))

6 For x, 1 € R; i¢in t = x,, =1 tO Ty p=p (Her veri noktasi)
7 9= (D_gcalla(@)+enKi(@) T, () + 01 Ki() T 0, ()
8 lof = Lofy,

If lof <lof*thenlof* =lof;i* =i;v* = v;t* =t end if

e N T e e e e e e e e T e e T e

10) end for

11) end for

12) end for

13) Ry < {Rpe : (t* — 2,0) > 0}
14) Ry + {Ryjs : (xye — t*) > 0}
15) m<—m+ 2

16) end for

17) end

Ileriye doniik algoritmay: daha iyi anlamak icin, tahminleyici degigken
saywisinin 3 ve ileriye doniik maksimum bdliintii sayisinin M = 5 oldugunu
varsayalim. MARS algoritmast yinelemeli boliintiileme algoritmasina daha
once bahsedilen modifikasyonlar haricinde benzer bir igleyistedir. MARS algo-
ritmasinin baglamasi i¢in tanim boélgesinin ilk altbolge olarak V' = Ry atamasi

gerekir. f(z)’ in tek bolgeli MARS tahmini, yinemeli boliintiilemedeki gibi

N
f(x) = a1 K (x) = 1Ty () = 1 = %Zy, (3.50)
=1

ile gosterilir. Yine varsayalim ki ilk iterasyondaki aragtirma R’ in t* = 2395
noktasinda boliintiilenmesine karar versin. Bu gekilde devam ederek f(z)’ in

ti¢ altbolgeli MARS tahmini ikinci adimda (ilk béliintiileme t* = x5 nok-
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tasinda), Tp,, (x) = 1 iken (3.51), (3.52) ve (3.53) ile

~

f(x) = a1 Ki(z) + co Ko () + c3 K3() (3.51)
= Cliro,r1 (l’) + CQZT()J»1 (l’)Tgmz (l’) + ngT‘()ﬂn1 (l’)TQm(:B) (352)
= + Cg(t* - 1’2)+ + Cg(!L’Q — t*)+ (353)

verilir. Burada,

/

Ry eger zeV
TC Ry eger To < To95 ve T € Ry

Rs eger To > T295 ve T e Ry

\

olur. MARS ileriye doniik adim algoritmasinin bir sonraki iterasyonunda,
Ry, Ry ve R3 altbolgelerindeki en iyi boliintiileme noktasini aragtirir ve yinelemeli
boliintiillemede oldugu gibi, tek bir istisna ile, ii¢ altbolge icindeki herbir tah-
minleyici degigken icin biitiin potansiyel béliintiileme noktalarinin hesabindan
sonra bunu yapar. Farkl olarak, x5 iizerindeki bir bagka bdliintiiniin Ry veya
R3 icinde olmasi engellenir. Ciinkii bu durumda derecesi ¢ > 1 olan budanmig
splayn fonksiyonu iiretilmis olur.

M =5 iken, MARS ileriye doniik adim algoritmasi tanim bolgesi V' iginde
ikinci bir boliintiilemeden sonra tamamlanmig olacaktir. f(x)’ in son MARS
tahmini (3.51) ile verilen biitiin terimleri ve ek olarak ikinci boliintiilemeyle ge-
len iki terimi daha kapsayacaktir. Bu durumda model eger ikinci boliintiileme
Ry’ in icinde olursa 5 tane tekli ¢arpim taban splayn fonksiyonlarim (75, (z)
harig) icerecektir. Eger ikinci boliintiileme Ry veya Rs de olursa model, iig
tane tek terimli carpim splayn fonksiyonu ve 2 tane ¢ift carpim taban splayn
fonksiyonlari igerecektir.

Geriye doniik diizeltme siirecinden sonra MARS modeli (3.19) ile verildigi
gibi Ki(z) ¢arpim taban splayn fonksiyonunun katsayisi olan ¢; ve MARS n
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geriye doniik adim altbolge eleme siirecinden gelen ¢arpim taban fonksiyon-
lar1 ve katsayilar1 kalan terimlerinden olusur. Friedman(1988), tahminleyici
degiskenlerin ve onlarn iligkilerini ayr1 ayri gorebilmek igin f(z)" in MARS

tahmininin varyans analizi par¢alanmasim (3.54) ile gostermistir.
fl@)=c + ZciKi(m) + ZciKi(m) + ... (3.54)
Z=1 Z=2

Burada Z garpim taban fonksiyonu, Ty, (z) diginda kalan {K;(z))}:,” deki
budanmig splaynlarin sayisini gosterir. Bu metot ilgilenilen degigkenler tarafin-
dan f(z) e olan biitiin ve her tiirlii katkilar i¢ine alr. Z = 1 indeksli carpim
taban fonksiyonlar: budanmig dogrusal etkileri ve Z = 2 indeksli ¢arpim taban
fonksiyonlari ise budanmig ¢ift etkilegimleri gosterir [31].

Buraya kadar anlatilanlar1 kisaca 6zetlemek gerekirse, ileriye doniik algo-
ritma ile miimkiin olan tiim temel fonksiyonlar olusturulur. Modelin karmagik-

lig1 maksimum seviyeye ulagincaya kadar bu islem devam eder.

3.5 MARS-Geriye Doniik Algoritma

Ileriye doniik algoritma ile elde edilen modelin budanmasi islemi geriye
doniik algoritma ile yapilir. Buna gore algoritmanin adimlar agagida siralan-
migtir:

1) J*={1,2,..., My} ; K*« J*

Lof* « MAN{q;|jes*} LOF (3 a;Bj(z))

) jeg
) For M = M4, to 2do: b < o0 ; L «+ K*
) For m =2 to M do: K < —{m}
5) Lof < minga, kexy LOF (3, cx arBr(x))
) if Lof<b, then b <— Lof ; K* < K end if
) if Lof <Lof*, then lof* < ; J* + K end if
) end for
)

end for

10) end

Burada ilk satirda dongii, ileriye doniik algoritmada olusturulan taban
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fonksiyon kiimesiyle olugturulmus modelle baglanir. En digtaki For dongiisiiyle,
dongiiniin her tekrarinda her bir taban fonksiyon silinmektedir. Icerdeki For
dongiisii ise bunun hangisi oldugunu se¢mektedir. Bu taban fonksiyonun silin-
mesiyle model uyumunda en az etkili olan taban fonksiyonu ortadan kalkar ve
modelin uyumu artar. Burada dikkat edilmesi gereken bagka bir nokta B(x) =
1 sabit fonksiyonunun silinme durumu yoktur. Bu algoritma ile M,,,, —1 tane
model olugturulur. Her bir modelin taban fonksiyon sayisi bir 6nceki mod-
eldekinden bir tane daha azdir. En iyi modele bu sekilde ilerleyen bir algoritma

ile ulagilir.
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4 UYGULAMA

4.1 Analizde Kullanilan Verilerin Yapisi

Uygulamada kullamlan veriler Eskigehir’deki tramvay hatlarindan elde
edilmistir. Calismada, Anadolu Universitesi Cevre Sorunlar1 Uygulama ve
Aragtirma Merkezi’ nce tramvay ve araglarin ¢evreye kattigi kirlilik miktarlar:
aragtirilmak {izere toplanan toz ve toprak verilerinden yararlanilmigtir. Toz
ve topraktan elde edilen agir metal ol¢iimleri; Cd (Kadmiyum), Cr (Krom),
Cu (Bakir), Fe (Demir), Mn (Manganez), Ni (Nikel), Pb (Kursun) ve Zn
(Cinko) olmak iizere simiflandirilmigtir. Toprak parcalari ornekleri yaklagik
olarak 25gr kadar toplanmig, bunlar mekanik bir akik tezgahinda 200p m’
den kiiciik parcalar kalincaya dek tutulmustur. Ornek noktalarimin koordinat-
lart GPS cihaziyla kaydedilmistir. Bu toprak ornekleri gehir i¢i yoldan, iist
topraktaki 0-10cm’ lik katmanlardan toplanmigtir. Biitiin toprak érnekleri 3
saat boyunca 105 derecede kurutulmus, 0.5mm kalinlikta naylon bir elekten
gecirilmig ve reaksiyon teknelerine gonderilmigtir. Bir sonraki boliimde bu veri

seti kullanilarak yapilan regresyona dayali siniflandirma anlatilacaktir.

4.2 YYM ve Regresyon Agaglari

Agir metallerin tiimii toz ve toprak kirleticileri olarak diigiiniilmiig, bagimh
degigkenler olarak alinmig ve tramvay ve araclarin belirtilen hatlarda yaptig:
kirlenme sonucglar1 kaydedilmigtir. Bu amacgla ilk olarak, belirlenmig tramvay
ve ara¢ giizergahlarindan; Opera, Carst, OGU, Atatiirk Lisesi, Atatiirk Cad-
desi, Baglar, Alanonii, Visnelik ve Doktorlar caddesinden elde edilen toz ve
toprak orneklerinden agir metal 6l¢iimleri alinmigtir. Toz ve toprak Ornek-
lerinden elde edilen agir metallerin hepsi kullanilmak iizere, toplam 16 adet
regresyon agaci olusturulmustur. Analizlerde kullanilan veri sayisi her bir agir
metal incelemesi i¢in 162 adettir. Burada amaclanan hedef, toz ve toprak
kirliligine en ¢ok katkis1 olan hatlar1 ortaya ¢ikarmaktir. Bu caligmada toprak
verisi kullamilarak yapilan regresyon agaglari analizi Boliim 4.2.1 ile toz verisi

kullanmilarak yapilan regresyon agaclar: analizi ise Boliim 4.2.2” de verilmistir.
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Boliim 4.2” de olusturulan tiim regresyon agaclari modelleri R Yazilimi kul-

lanilarak elde edilmistir [20].

4.2.1 Toprak Verisi Regresyon Agaci Analizi

Bu béliimde regresyon agaclari, toprak kirliliginden etkilenen hatlar1 or-
taya cikarmak i¢in kullanilmigtir. Toprak kirliligini modellemek i¢in Boliim
4.1’de ad1 gegen sekiz agir metal kullanilmigtir. Her bir agir metalin, tramvay
ve arag siirekli degiskenleri ile istasyon kategorik degiskeni arasindaki iligkisi
yinelemeli béliintiileme algoritmasi ile incelenmistir. Bu algoritmanin boliin-
tiilleme icin kullandig: 6l¢iit veri setindeki her bir degerin olast boliintii nok-
tast olmasi diisiincesiyle, her bir model i¢in hesaplanan sapma miktariyla,
S (y — 9)?, olgiilmiigtiir. Buna gore, Cd igin elde edilen regresyon agaci Sekil

4.1 ile verilmigtir.

Istasyon
Ort=1.20, 0=0.32
N=162, D=16.72

Alancni, Atattrk Lisesi, .
Baglar, Doktorlar, Opera, Atatark Cad., OGLU
Ulutnder, Visnelik Ort=1.50, 0=0.28
Ort=1.11, o=0.28 N=36, D=2.82
M=1286, D=98.73
Car<=651 é‘gzbf;
Ort=0.79, o=0.29 o=0 '24 !
B B=tod N=108, D=8.03

Alanénii Baglar Atatiirk Lises|, Doktordar,

Ort=1.08 o=0.09 Opera, _U|u'5ndﬂ£1 V'Ilﬁneﬁk
gy Ort=1.18, 0=0.25
' : N=80, D=5.68

Sekil 4.1: Toprak 6rnegi- Cd icin regresyon agaci

Burada, regresyon agaci en yukaridan en asagiya dogru aciklanir. En te-
pedeki degisken algoritmanin buldugu en 6nemli degisken olarak diigiiniiliir,
bu yiizden ilk boliintiileme bu degiskenden baglamigtir. Buna gore, istasyon
degiskeni 162 birimi, 126 ve 36 olmak {izere iki parcaya ayiwrmigtir. Sagdaki

parcaya ait sapma degeri, D = 2.82 olarak bulunmustur. Soldaki parganin
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sapma degeri, D = 9.73 olarak bulunmustur. Ilk béliintiileme sol parcanin
tekrar boliinmesiyle devam etmistir. Tkinci béliintiimede arac degiskeni 651
diigiim noktasindan ikiye ayrilmigtir. Bagka bir deyisle arag degigkeni igin 651
degeri 6nemli bulunmugtur. Bu durum arag sayisinin 651’ den fazla oldugu
durumlarda Cd kirliliginin daha c¢ok ortaya ¢iktigr yoniinde yorumlanir. Son
boliintiileme de ise arag degiskeninin 651’den fazla oldugu istasyonlar arasinda
yeniden boliintiilleme yapilmigtir. Buna gore, Atatiirk Lisesi, Doktorlar cad-
desi, Opera, Uluonder ve Vignelik istasyonlar1 Cd kirliligine maruz kalmak-

tadir [20].

4.2.2 Toz Verisi Regresyon Agaci Analizi

Benzer gekilde, toz 6rneklerinden elde edilen agir metaller regresyon agacla-
riyla modellenmigtir. Caligmada toz kirliligini modellemek i¢in Boliim 4.1 de
belirtilen sekiz agir metal kullanilmigtir. Her bir agir metalin tramvay ve arag
siirekli degigkenleri ile istasyon kategorik degiskeni arasindaki iligkisi yinele-
meli béliintiileme algoritmasi ile incelenmigtir. Buna gore, Zn kirliligine iligkin

yinelemeli boliintiileme sonuglar: Sekil 4.2 ile verilmigtir.

istasyon
Ort=85, g=39
N=162
" Alanand, Atatirk
0OGU, Opera Caddesl, Atatiirk Lisesi,
ont=35, o=3 Baglar, Doktorlar, Ulugnder,
N=36 Wigrelik
Ort=112, =25
MN=126
Alananu, Alaturk Alalirk Lisesi,
Caddesi, Badlar, Doktorlar
Uludinder, Vignelik Ont=145 o=12
Ort=99, o=14 N=3§
N=80
Tramvay<=15 Tramvay =15
Ort=106, =12 Ort=£8, 0=8.8
N=54 N=36

Sekil 4.2: Toz 6rnegi- Zn i¢in regresyon agact

Benzer sekilde, agacin tepesinde bulunan degiskenin en énemli degigken
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olarak kabul edildiginden bahsedilmisti. Istasyon degiskeni, tramvay ve arac
degiskenlerinden daha fazla degiskenlik gosterdigi i¢in ilk boliintiilemede yer
almigtir. Buna gore, sol parcanin ortaya cikardigi sonug oldukca az sayida veri
icermektedir. Burada, OGU ve Opera istasyonlarna iligkin Zn kirliligi orta-
lama degeri, §y = 35 olarak hesaplanmigtir. Sag parcadaki ortalama deger,
y = 112 soldakine gore daha yiiksektir. Bu durumda bu parcanin yeniden
boliinmesi gerektigi diigiiniilebilir. Ancak daha 6nce de belirtildigi gibi boliin-
tiimenin, her bir veri noktasinin olast diigiim noktasi gibi varsayildigi ve buna
gore modelin sapmasindan yola ¢ikilarak diigiim noktasina karar verilen bir
yapida oldugu unutulmamalidir. Dolayisiyla, boliintiiler yamt degiskeninin or-
talama degerinin biiyiik olmasiyla ilgili olarak degil modelin sapmasiyla il-
gili olarak yapilmaktadir. Ancak burada, sapma degerlerinin ¢ok biiyiik ol-
malari yiiziinden ilgili sekilde bunlara yer verilmemistir. Ilk boliintiilemedeki
sag parcanin tekrar ikiye boliinmesi durumu gozlenmistir. Buna gore, Atatiirk
Lisesi ve Doktorlar istasyonlarindaki ortalama Zn kirliligi, y = 145 olarak bu-
lunmustur. Ancak diger taraftan ikinci boliintiideki sol parcanin yeniden ikiye
boliindiigii gézlenmistir. Bu durum, boliintii degiskenin tramvay olmasi agisin-
dan 6nemlidir. Buna gore, tramvay sayisinin 15 den az oldugu istasyonlarda
bile Zn kirliligine ait ortalama olarak y = 106 olarak bulunmustur.

Bu galigmalarin sonunda elde edilen sonuglar Sekil 4.3 teki gibi harita-
landirilmagtir.

Sekil 4.3 ile toprak ve toz orneklerinden elde edilen agir metallerin, reg-
resyon agaclar1 yardimiyla yapilan modellemeler sonucunda hangi istasyonlar
tizerinde kirlilik yarattiklar: gosterilmigtir.

Béliim 4.2.1° de verilen toprak ¢aligmasina ve Boliim 4.2.2° de verilen toz
caligmasina iligkin Cr, Cu, Fe, Mn, Ni, Pb ve Zn degigkenlerinin regresyon
agaclart da olugturulmustur. Benzer agiklamalarin yer alacagi diisiiniilerek,
diger agir metallere iligkin regresyon agaglari sonuglar1 bu tezin kapsaminda

verilmemigtir.
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Burada yinelemeli boliintiileme, buna iligkin algoritmanin nasil caligtigi
ve modelin nasil yorumlanabilecegi, birer 6rnek ile agiklanmaya c¢aligil-misg,

MARS algoritmasina alt yapi olugturmasi agisindan 6nemli bulunmustur [20].

=
“eCr, Mn
Cd, Mn, Zn~._
=

Ll

[ Orneknokstalar
FToprak sonuglar
|Cadde Tozu sonuglar:
[ Tepchasabelediresi
[ '0dugazan beledigesi
E Caligma bislgesi
[] Dpiger nokialar

[] Tramvay giizergahe

Ni
Cd, Cr, Cu, Fe, Mn, Ni

Sekil 4.3: Regresyon agaci ile istasyonlara gore kirlilik haritasi

4.3 YYM ve MARS Analizi

YYM ile iki veya daha fazla faktoriin, yanit degiskeni iizerindeki birey-
sel ve birlikte etkilerini, belirlenen kalite kriterlerini géz Oniine alarak yanit
degigkeninin optimum degerlerini veren gruplar bulunabilir. Bagka bir deyig-
le bagimsiz degiskenler ile bagimh degisken arasindaki egri veya yiizey be-
lirtebilen iligkiyi veren, genellikle polinomiyal olan modelin bulunmasi s6z
konusudur. Bu yontemde, se¢ilen model ile bagimsiz degiskenler uzayindaki bir
bolgede aslinda bilinmeyen bu iligkiye yaklagilabilecegi varsayilir. Bu modeller
ise genellikle, birinci veya ikinci dereceden polinomlardir.

Bu boéliimde tiim agir metaller i¢cin modellemeler hem klasik yanit yiizey-
leri metotlariyla hem de ¢ok degiskenli uyarlamali regresyon splaynlariyla in-
celenmis ancak tekrar yapmamasi acisindan, bunlardan sadece Cd, Zn ve Pb
agir metallerine iligkin yanit yiizeyleri modelleri ve MARS modellerine iligkin

sonuclar verilmigtir.
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Modelleme i¢in bagimh degisken olarak agir metallerden Cd, Zn ve Pb
toprak kirleticileri olarak diigiiniilmiig, tramvay ve araglarin belirtilen hatlarda
yaptigl kirlenme sonuclari kaydedilmigtir. Diger agir metallerin incelemeye
dahil edilmemesinin sebebi 6rnegin, Fe (Demir) i¢in, Eskigehir’in bolge olarak
bu agir metal kirliligine maruz kaldiginin zaten bilinmesidir. Buna gore, Cd,
Zn ve Pb agir metalleri iizerinde, tramvay ve ara¢ degiskenlerinin etkisini
aragtirmak icin, 3% faktoriyel tasarim olusturulmustur.

Bu deneysel tasarim i¢in kullanilan veriler Cizelge 4.1° de verilmigtir.

Cizelge 4.1: 3% Faktoriyel tasarimi

Faktor xi-Tramvay Faktor xo-Arag

12 174
18 852
24 1530

(Qizelge 4.17 de goriildiigii gibi, iki faktoriin {i¢ diizeyli kombinasyonuyla elde
edilen tasarim matrisinde, x1; tramvay i¢in kodlanan, x,; arag i¢in kodlanan
terimlerdir. Burada, ilk siitunda tramvaya ait diizeyler 12, 18 ve 24 olarak ve-
rilmigtir. Burada ilgili istasyonlardan gecen tramvay sayilari verilmigtir. Ben-
zer sekilde arac¢ degiskenine ait sayisal degerler ikinci siitunda verilmistir.
Aragtirmada 2 faktor, bunlarin 3’ er diizeyi ve her biri diizeyin 5 tekrar
oldugundan, her bir agir metal i¢in toplam 45’ ger veri kullanilmigtir.

Her bir agir metal i¢in 32 deneysel diizenden veriler toplanmistir. Daha
sonra tramvay ve arag degiskenlerin, Cd, Zn ve Pb bagimh degiskenleri iize-
rindeki etkileri, birinci ve ikinci dereceden yanit yiizeyi modelleriyle incelen-
migtir. Ardindan kurulan MARS modellerinin iirettigi taban fonksiyonlari ile
modellemeler yeniden yapilmigtir. ANOVA sonuglar: ve yanit yiizeyleri model-

leri MARS modelleriyle kargilagtirilmigtir. Esas olarak elde edilen modellerin

2

igerdigi faktor sayisi, modellere iligkin diizeltilmis belirlilik katsayis1 R,

ve
modelin standart hatasi hesaplanmigtir. Bunlara ek olarak etkilesim terimlerin

ylizey grafikleri ve kontor grafikleri olugturulmustur. Cizilen grafikler MARS
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modelleriyle olugturulan grafiklerle kargilagtirilmigtir ve sonuclar yorumlan-
migtir. Bu bolimde R Yazilimi 2.10, SAS 9.0, MINITAB 14 ve MARS 2.0

programlari birlikte kullanilmigtar.

4.3.1 Toprak Verisi Cd Kirliligi icin MARS Analizi

(ahgmadaki amacimiz Cd kirliligine iligkin yanit yiizeylerini, klasik yolla
ve MARS ile olusturabilmektir. Ilk olarak Cd kirliligi icin toplanan veriler
her biri besg tekrarli olmak iizere 3? deneysel diizenden elde edilmistir. 32
deneysel tasarimdan gelen 9 gozlem, hepsi beg tekrarli olmak tizere toplam
45 gozlem bu analiz i¢in kullanilmigtir. z; ve z5 olarak kodlanmig tramvay ve
arag faktorleri icin varyans analizi, etkileri birbirinden ayirarak detayl olarak
incelenmis; istatistiksel acidan anlaml olan faktorler, etkilesim terimleri ve
bunlarin dogrusal, karesel ve karsilikli ayr1 ayr1 bilesenlerinin anlamhiliklarina
bakilmigtir. Bulunan sonuclar R Yazilimi kullanilarak hazirlanmig ve Cizelge

4.2" de verilmigtir.

Cizelge 4.2: Cd yanit yiizeyi modeli i¢in etkilerin pargalanmasi

Faktor  Sd KT Ortalama Kareler F P

T 2 0.04773 0.02387 3.8792 0.02981 *
T 1 0.03713 0.03713 6.0349 0.01898  *
z7 1 0.0106 0.0106 1.7235 0.19756

To 2 0.48709 0.24355 39.5863  8.11E-10 ***
To 1 0.48503 0.48503 78.8367  1.34E-10 ¥
x5 1 0.00207 0.00207 0.3359 0.5658

122 4 1.59105 0.39776 64.6525  6.19E-16 ***
T1To 1 0.12002 0.12002 19.5084  8.78E-05 ***
T7 To 1 1.18105 1.18105 191.9681 5.34E-16 ***
T, x5 1 0.0015 0.0015 0.2438 0.62447

zizy 1 0.28848 0.28848 46.8898  5.20E-08 ***
Artiklar 36 0.22148 0.00615

Anlamlilik Diizeyleri:0 ****> 0.001 ***> 0.01 "*’ 0.05 *.’

Cizelge 4.2°de etkilerin ve etkilesim teriminin dogrusal ve karesel bilegen-
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leri tek tek incelenmis ve MARS modeli ile kargilagtirma yapmak i¢in kul-
lanilmistir. 1k siitununda 32 faktoriyel deneyde kullanilan faktorler, bun-

larin dogrusal etkileri (z1, zo), karesel etkileri (2%, 23) ve etkilesim terimlerinin

kargilikh bilegenleri (z,23, x2x,, z3x3) bilegenlerine ayrilarak verilmigtir. Satir-
larda faktorlerin etkileri, sirasiyla bunlarin dogrusal ve karesel bilegenlerinin
etkileri alt satitinda italik olarak verilmigtir. Buna gore, ilk satirda x; fak-
torii, onun altindaki satirda x; faktoriiniin dogrusal etkisi ve xy faktoriiniin
karesel etkisi italik olarak verilmis ve ayri ayri incelenmigtir. Benzer gekilde,
x9 faktorii ve onun altindaki satirlarda, bu faktore ait dogrusal ve karesel etk-
iler italik olarak verilmigtir. Bu inceleme ayni gekilde etkilegim terimi x;xo
icin de yapilmus, tiim bilesenleri alt satirlarda italik olarak verilmistir. Ikinci
siitunda, bu terimlere iligkin serbestlik dereceleri (Sd) verilmistir. Ilerleyen sii-
tunlarda sirasiyla ortalama kareler, F degerleri, ve bunlara iligkin olasiliklar
yer almigtir. Acikca goriillmektedir ki, x; ve x5 faktorleri arasindaki etkilegim
terimi (x173), anlamh bulunmugtur. Bunlarin arasindan etkilegim teriminin
bilegenlerinden, dogrusal ile dogrusal etkisi (xix2), karesel ile dogrusal etk-
isi (z2wy) ve karesel ile karesel etkisi, (zx3), anlaml bulunmusgtur, ancak

(z123) teriminin dogrusal ile karesel etkisi anlamli bulunmamigtir. SAS 9.0

kullanilarak elde edilen ANOVA sonuclar Cizelge 4.3 ile verilmigtir.

Cizelge 4.3: Cd yanit yiizeyi icin ANOVA

Degisim Kaynagi Sd KT F Pr>F
Dogrusal 2 0.012670 0.16 0.8509
Karesel 2 0522156 6.68  0.0032
Etkilegim 1 0.288480 7.38  0.0098

Regresyon Toplam 5  0.823306 4.21  0.0037
Uyum Eksikligi 3 1.302567 70.57 <0.0001

Saf Hata 36 0.221483
Hata Toplam 39  1.524050
Toplam 44 2.34736
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Cizelge 4.3" de karesel ve etkilegim terimlerinin istatistiksel olarak anlamli
olduklar1 goriilmiigtiir.

Elde edilen ikinci dereceden yamt yiizeyi Esitlik 4.1 ile verilmigtir:
E.q(y) = 0.887 + 0.018z; + 0.00875 + 0.06x7 + 0.2275 + 0.120717  (4.1)

Esitlik 4.1 ile verilen ikinci dereceden yanit ylizeyi modeline ait standart
hata S5=0.18 olarak bulunmustur. Elde edilen Fjesop = 4.21 > Fyos539 =
2.455 oldugundan model anlamhdir. Artiklarin gogunun miihendislik uygu-
lamalarinda pratik olarak énemli olmadig ifade edilmistir. Ikinci dereceden
yanit yilizeyine iligkin duragan nokta arastirmasi Bolim 2.3.2" de anlatildig:
gibi kanonik analiz ile incelenmistir. Buna gore, xy ve x5’ nin bir fonksiyonu
olarak ¢’ nin kismi tiirevleri alinarak duragan nokta x; = (—0.186, 0.032) bu-
lunur. Egitlik 4.1 ile verilen modele ait 6zdegerler, (A1, A2) = (0.24, 0.04) olarak
bulunmugtur. Her iki 6zdeger sifirdan biiyiik oldugundan duragan nokta bir
minimum noktasidir. Burada dikkat edilmesi gereken (317 ve [ toplaminin
A1 ve Ao’ ye esit olmasidir. Duragan noktaya kargilik gelen tahminlenmis Cd
degeri ise .4 = 0.886 olarak bulunmustur.

Ikinci dereceden modele iliskin yanit yiizeyi grafigi ve buna iligkin kontor

haritas: Sekil 4.4 ile verilmigtir.

Cd

135

1.20
cd
1.05

0.0

Sekil 4.4: Cd icin yamit yiizeyi ve kontor grafikleri

Kontor grafigine gore yamt yiizeyi bir cukur gostermektedir. Buna gore

ornegin, y = 0.967 ve z; = 0 iken, ylizey icin elde edilen model 0.967 =
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0.887+40.00845+0.2222 > dir. Buradan x5 i¢in denklemin kokleri elde edilirse,
iki kok bulunur. Bunlar x5, = 0.586 ve x99 = —0.622’ dir. Bu koordinatlar:
veren iki nokta (0, 0.586) ve (0, —0.622) ise, y = 0.967 i¢in ¢izilen yanit kontorii
tizerindedir. Her bir kontor ¢izgisinin tahmin edilmis yanit degerinin yiiksek-
ligini gosterdigi kontor grafigi Sekil 4.47 te verilmigtir.

Benzer sekilde, § = 1.099 ve z; = 0 icin yanit yiizeyi modeli 1.099 =
0.887 4+ 0.008z9 + 0.22x% olarak elde edilir. Buradan denklemin kokleri x9; =
0.96 ve x99 = —1.00 olarak bulunur. Bu koordinatlar: veren iki nokta (0, 0.96)
ve (0,—1.00) ise , g = 1.099 ic¢in ¢izilen kontor iizerindedir.

MARS analizi i¢in degigkenler ortogonal hale getirildikten sonra, tasarim
matrisi olugturulur. Bunun i¢in (z;) = (—1,0,41) kodlamasinin karesel hali
olan (z%) = (+1,-2,+1) kullanilmigtir. Modele sirasiyla, =y, o, 2% ve x3
terimleri alinmigtir. Etkilesim terimi i¢in belirlenen maksimum derece 2 olarak

verilmigtir. MARS modelleri Cizelge 4.4 ile verilmigtir.

Cizelge 4.4: Cd i¢cin MARS modelleri

Taban Fonksiyonlar: Model Birim  Etkilesim R2, GCV
Sayisr**

Y=1.075 1 0 Hay1r 0.00 0.055

TF1=max(0,2,-0) 2 0 Evet 0.817 0.051

(
TF2—max(0,0-z2)

TF3—max(0,x,+1)*TF2

TF4=max(0,2x1+1)

TF5—max(0,x;+1)*TF1 *k,
Y=0.62-+0.52*TBF1+0.75*TF2-0.54*TF3+0.29*TF4-0.30*TF5

TF1-—max(0,2-0) 3 1 Evet 0.802 0.027*
TF2=max(0,0-z2)

TEF3=max(0,2,+1)*TF2

TF4=max(0,z1+1)

TF6—max(0,0-z1)*TF1
Y=0.675-+0.70*TF2-0.52*TF3-+0.280*TF4+0.52*TF6

Diiglimler arast minimum birim say1si; *: En uygun model
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Cizelge 4.4 {in ilk siitununda MARS ile kurulan modellerin sayisi, son-
raki stitunda her bir model i¢in belirlenen diigiim sayisi, daha sonra modelde
etkilegim teriminin olup olmadigi, MARS modelin iirettigi taban fonksiyon-
lar1 (TF), diizeltilmig belirlilik katsayis1 Rz, ve GCV degeri yer almaktadr.
Modelde etkilesim terimleri yer almadiginda buna toplamsal model denilmek-
tedir |36]. Taban fonksiyonlar: ve bunlarin yansimalar: sirasiyla (X-diigiim)
veya (diigiim-X) olarak tanimlanmistir. Ilk model, bagka bir deyisle toplamsal

model R?

aqj ve GOV degerlerine gore iyl sonuglar vermemistir. Birinci modelde

sadece sabit katsayinin modelde olmasi, diger degiskenlerin modelde yer alma-

mas1 modelin geligtirilmesi gerektigini ortaya koyar. Modele etkilegim terimleri

2

eklenince, bagka bir deyisle ikinci modelde, R,

ve GCV degerleri sirasiyla
0.817 ve 0.051 olarak bulunmustur. Modelde bulunan biitiin taban fonksiy-
onlart anlamh ¢ikmigtir. Model i¢in hesaplanan Fy 5539 degeri 40.36 (p=0)
olarak bulunmustur. Modeldeki degigkenlerin anlamliliklar: detayli bir gekilde
Ek-5" te verilmigtir. Ayn1 modelde, ilk taban fonksiyonu TF1 ve ikinci taban
fonksiyonu TF2, z5 degiskeni kullanilarak hesaplanmig birbirinin yansimasi
olan fonksiyonlardir. MARS, TF1 ve TF2’ nin yant degigkeni iizerindeki et-
kisini modelde birlegtirmigtir. x5 degigkeninin (0) oldugu nokta bu degiskenin
digiim noktasidir. MARS, TF1 ve TF2’ nin yanit degiskeni iizerindeki etki-
sini (+0.529 % T F1+0.753 T F2) ifadesiyle modele dahil etmigtir. TF4 taban
fonksiyonu, z; degiskenini kullanarak (+1) diigiim noktasiyla modelde yer
almigtir. Bu modelde, standart taban fonksiyonlar1 yanit degiskenini pozitif
yonde (0.52, 0.75, 0.29) etkilemigtir. Modelde, TF3 ve TF5 taban fonksiyon-
lar sirasiyla TF2 ve TF1 taban fonksiyonlariyla ¢arpimi olarak yer almiglardir.
Bunlarin yanit degiskeni iizerindeki etkisi ise negatif yonlii (-0.54,-0.30) olmusg-
tur. Uciincii modelde de etkilesim terimlerinin modelde bulunmasina izin veril-
migtir. Buna gore TF1 ve TF2 taban fonksiyonlari, o degiskenini kullanarak
olugturulmug yansima fonksiyonlaridir. Bu taban fonksiyonlar: i¢in (0) diigiim
noktasi olarak secilmigtir. Benzer gekilde TF3 ve TF4 taban fonksiyonlari,
ikinci modeldeki gibi davranmiglaridir. Ayrica TF3 ve TF6 taban fonksiyonlar:

etkilesim terimleri olarak iiciincii modelde yer almislardir. Ugiincii modeldeki

73



TF6’nin modelde bulunmasi modeli GCV anlaminda geligtirmigtir.

Kurulan MARS modelleri arasinda gozlemler arasi birim sayist sifirdan
bire yiikselirken ve etkilegim terimlerinin modelde olmasi veya tersi durumuna
gore bir kargilagtirma yapildiginda, ii¢iincii model en kiiciik GCV degeri ile
0.027 ve Ridj degeri 0.802 ile en uygun model olarak bulunmustur. Bu model
ile Esitlik 4.1 ile verilen ikinci dereceden yanit yiizeyi, igerdikleri degisken
sayisi, Rgdj degeri ve modelin standart hatasi anlaminda kargilagtirilmigtir.
MARS modeline gore hesaplanan F degeri, Fo 5440 = 45.53(p = 0) olarak
bulunmustur. Bu deger oldukca yiiksek oldugu i¢in kurulan model anlamlidir.

Cd kirliligi iizerine elde edilen MARS modeline iligkin yiizey grafikleri Sekil
4.5 (a-b) ile gosterilmigtir.

Sekil 4.5 de ikinci model ve iigiincli model igin etkilesim halinde olan
faktorler cizilmigtir. Sekil 4.5a’ da, ikinci MARS modeli i¢in maksimum yanit
degeri (z1,x9) = (—1,—1) koordinatinda gozlenirken, Sekil 4.5b de verilen
tigiincii model i¢in maksimum yanit degeri (z1,z2) = (—1, —1) koordinatinda

elde edilmigtir.

a)

i
“\“:’
&\'.‘:; 0
AR

W X
!

Sekil 4.5: Cd i¢in ikinci ve tiglincii MARS modelleri grafikleri

Sekil 4.5b ile verilen grafikte, digerinden farkli olarak, z; degiskenin (0, 1)
noktasinda Cd yanit degiskeni iizerindeki etkisi azalmigtir.

MARS ile olusturulan en iyi modele iligkin degiskenlerin goreli 6nem-
lilikleri en yiiksekten en diiglige gore (izelge 4.5’ de diizenlenmigtir. Degigken
onemlilikleri hesaplamirken, 6nemliligi aragtirilan degisken digindaki biitiin

degiskenleri disarda tutup tekrar uyum iyiligi aragtirilir ve buna gore skor
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degerleri belirlenir. Bu degerler modelde yer alan degigkenlerin digerlerine gore
goreceli katkilaridir. Cd kirliligi icin MARS modelinin olusturdugu degigken
onemliligi Cizelge 4.5 ile verilmigtir. Buna gore, x5 degiskeninin 6nem diizeyi
%100 gikmugtir. Bir bagka ifadeyle Cd kirliligine en ¢ok katkis1 olan degisken,

MARS analizi sonucu w9, ara¢ olarak bulunmustur.

Cizelge 4.5: Cd MARS modeli icin degisken 6nemliligi

Degisken Onemlilik

T 100.000
T 96.906

Bunun yanminda z; degiskeninin yamit degiskenine olan katkisi %96.9 se-
viyesinde 6nemli ¢ikmigtir. MARS analizi sonucunda, degigkenler arasinda
onemlilik skorlarinin hesaplanmasi bu anlamda ¢aligmaya yenilik getirmistir.
Bir bagka deyisle, Cd kirliligi iizerinde ara¢ degigskeninin daha 6nemli bulun-
masi, bunun yanit yiizeyleri modelleri ile aragtirilabilecek bir durum olmamasi
ancak MARS ile miimkiin olmasi, ¢aligmaya sonuclar1 yorumlama anlaminda

katki saglamigtir.

4.3.2 Toprak Verisi Zn Kirliligi icin MARS Analizi

Zn kirliligi icin yine her biri 5 tekrarli bir 32 deneysel tasarundan gelen 9
gozlem her biri beg tekrarl olmak tizere toplam 45 gézlemle calisilmigtir. Yanit
degerine etkisi istatistiksel olarak anlamli olan faktorler, etkilegsim terimi ve
bunlarin karsilikli bilegenlerinin ayr1 ayri etkileri incelenmis, sonuglar Cizelge
4.6" da verilmigtir.

Burada faktorler, faktorlerin dogrusal ve karesel etkileri ile etkilegim ter-
imi ve etkilesim teriminin dogrusal ve karesel etkileri her biri bilegenlerine
ayrilarak italik olarak verilerek sirasiyla hesaplanmigtir. Buna gore tiim faktor-
ler, etkilegim terimi ve bunlarin dogrusal ve karesel etkilerinin biitiin bilegenleri

istatistiksel olarak anlamli bulunmusgtur.
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Cizelge 4.6: Zn yanit yiizeyi modeli i¢in etkilerin parcalanmasi

Faktor Sd KT Ortalama Kareler F P

T 2 42554 21277 3024.42 2.20E-16 ***
T 1 33285 33285 4731.31 2.20E-16 ***
z? 1 9269 9269 1317.53 2.20E-16 ***
Ty 2 18368 9184 1305.43 2.20E-16 ***
T 1 1879 1879 267.13  2.20E-16 ***
x5 1 16488 16488 2343.73 2.20E-16 ***
T2y 4 11758 2939 417.82  2.20E-16 ***
T T 1 2926 2926 415.86  2.20E-16 ***
227, 1 1635 1635 232.37  2.20E-16 ***
7178 1 5965 5965 847.84  2.20E-16 ***
ziTs 1 1233 1233 175.23  2.12E-15 ***
Artiklar 36 253 7

Anlamlilik Diizeyleri:0 "***? 0.001 *** 0.01 **’ 0.05 *.’

SAS 9.0 kullanilarak elde edilen ANOVA sonuclar1 Cizelge 4.7 ile veril-
migtir. Cizelge 4.7’ de yanit yiizeyi modelindeki karesel ve etkilesim terim-
lerinin istatistiksel olarak anlamli olduklar1 goriilmiigtiir.

Elde edilen ikinci dereceden yanmit yiizeyi Esitlik 4.2 ile verilmigtir:
E..(y) = 112.69 + 17.581; — 23.44x5 — 57.692% — 13.7125 + 7.85x,75 (4.2)

Esitlik 4.2 ile verilen ikinci dereceden yanit ylizeyi modeline ait standart
hata S3=33.51 olarak bulunmustur. Elde edilen Fjesqp = 44.98 > Fi 5530 =
2.455 oldugundan model anlamhdir.

Ikinci dereceden yamit yiizeyine iliskin duragan nokta arastirmasi Boliim
2.3.2" de anlatildigr gibi kanonik analiz ile incelenmigtir. Buna goére, Esitlik
4.2 ile verilen modele ait 6zdegerler, (A1, A2) = (—13.36, —58.04) ve her ikisi
de sifirdan kii¢lik oldugundan duragan nokta bir maksimum noktasidir, zs =
(0.096, —0.827). Duragan noktaya karsilik gelen tahminlenmis Zn degeri ise
y = 123.235 olarak bulunmusgtur.

Zn kirliligi yanit yiizeyi modeline ait yanit degerleri egrileri Sekil 4.6 ile gos-
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Cizelge 4.7: Zn yamt ylizeyi igin ANOVA

Degisim Kaynagi Sd KT F Pr>F
Dogrusal 2 25757  46.6 0.0001
Karesel 2 35164  63.62 0.0001
Etkilesim 1 123273 4.46 0.0411

Regresyon Toplam 5  62154.1 44.98  0.0001

Uyum Eksikligi 3 10525 498.69 <0.0001

Saf Hata 36  253.26
Hata Toplam 39 10778
Toplam 44 72932.3

terilmigtir. Kontor cizgilerinden, yiizeye iligkin seklin tepecik oldugu séylenebilir.
Buna gore ornegin, y = 122.426 ve z; = 0 i¢in yanit yiizeyi modeli 122.42 =
112.69 — 23.44x5 — 13.7123 olarak elde edilir. Buradan denklemin kékleri bu-
lunursa, x9; = —0.71 ve 9 = 0.99 elde edilir. Bu koordinatlar1 veren iki

nokta (0, —0.71) ve (0,0.99) ise, y = 122.42 i¢in ¢izilen kontor iizerindedir.

Sekil 4.6: Zn i¢in yanit yiizeyi ve kontor grafikleri

Cizelge 4.8" da ii¢c MARS modeli kurulmugtur. Bunlardan ilki toplamsal

model olarak incelenmigtir.
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Cizelge 4.8: Zn i¢cin MARS modelleri

Taban Fonksiyonlar: Model Birim Etkilegim R?ldj GCV
Sayis1**
TF1=max(0,z;-0) 1 0 Hayir 0.813 680.710

TF2=max(0,0-z1)
TF3—max(0,22-0)
Y=117.55-40.11*TF1-75.27*TF2-42.02*TF3

TF1-—max(0,a:-0) 2 0 Evet  0.994 94.720
TF2=max(0,0-z1)

TFEF3=max(0,22-0)

TF5—max(0,23+2)*TF3

TF6=max(0,2; + 1)*TF3

TF7=max(0,23-0)*TF1
Y=131.56-77.48*TF1-89.73*TF2-98.71*TF3+19.36*TF5+14.68*TF6+6.55*TF7

TF1-max(0,2:-0) 3 1 Evet  0.994 41.573*
TF2—max(0,0-z1)
TFEF3=max(0,22-0)
TF4=max(0,0-z2)
TF5—max(0,,-0)*TF3
TF6=max(0,0-z1)*TF3
BF7=max(0,2,-0)*TF4
Y=131.56-77.48*TF1-89.73*TF2-84.02*TF3+92.44*TF5+43.40*TF6-+19.66*TF7

**: Diiglimler arast minimum birim sayis;;*: En uygun model

Toplamsal modelin R2 degeri 0.813 ve GCV degeri 680.710 olarak bu-
lunmusgtur. Toplamsal modelde, Zn yanit degigskeni TF1, TF2 ve TF3 taban
fonksiyonlarinin bir dogrusal bilegkesi olarak ortaya ¢ikmigtir. Burada TF1 ve
TFE2 taban fonksiyonlari i¢in, x; degiskeni kullanilmig ve en iyi diigiim noktasi
olarak (0) olarak segilmigtir. Buradaki TF1 ve TF2 taban fonksiyonlar1 bir-
birinin yansimasi olan fonksiyonlardir. Ayn1 modelde TF3 taban fonksiyonu,
x9 degigkeni ile hesaplanmig ve en iyi diigiim noktasi (0) olarak secilmigtir.

Modeldeki tiim taban fonksiyonlar istatistiksel olarak anlamli bulunmustur.
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Modele taban fonksiyonlarinin ve modelin anlamliligi Ek-5" de detayli ince-
lenmigtir. Etkilesim terimleri modele dahil edildiginde, bagka bir deyisle ikinci
modelde, TF1 ve TF2 taban fonksiyonlar1 z; degiskeni ve buna karsihik ge-
len en iyi diigiim noktasini (0) olarak se¢migtir. Ayni modelde TF3 taban
fonksiyonu, x5 degiskenini ve (0) diigiim noktasini se¢gmistir. Bunlarin diginda
modeldeki etkilegim terimleri TES, TF6 ve TE7 olarak goriilmektedir. Bun-
lardan TF5 ve TF6 taban fonksiyonlar1 TF3 ile, TF7 taban fonksiyonu TF1
fonksiyonlarinin carpimiyla elde edilmigtir.

Bunlara ek olarak ve daha once de belirtildigi gibi yine TF1 ve TF2 taban
fonksiyonlar1 {i¢lincii modelde birbirinin yansimasi olan fonksiyonlar olarak
gozlenmigtir. TF5, TF6 ve TEF7 terimleri modelde etkilegim terimleri olarak
ticlincii modelde yer alirlar. Benzer sekilde TF1 ile TF2 ve TF3 ile TF4 ta-
ban fonksiyonlari da birbirinin yansimasi olan fonksiyonlar olarak modelde yer
alirlar. TES, TF6 ve TF7 taban fonksiyonlar: da z; ve x5 degigkenlerinin mod-
ifiye edilmig halleri olarak modelde yer alirlar. Cizelge 4.8” de ii¢iincii mod-
elde TF4 taban fonksiyonunun TF3 taban fonksiyonunun yansimasi olarak
modelde bulunmasi, modeli GCV anlaminda geligtirmigtir. GCV degeri ile
kargilagtirma yapildiginda en iyi model GCV degeri 41.573 olan ii¢iincli model
olarak elde edilmistir. Uciincii modelde alt1 tane taban fonksiyonu olup bunlar
yanit degiskenini dogrusal olmayan bir yapida etkilemigtir.

Zn kirliligini modellemek iizere MARS’ 1n iirettigi {i¢iincii modele iligkin
grafikler Sekil 4.7 ile verilmig ve yanit degiskenine olan katkilar: gdsterilmigtir.

Sekil 4.7 de z; ile x5 degiskenlerinin yanit degeri ile iligkisi gosterilmigtir.
Buna gore, yanit degiskeni maksimum degerini (z1,x2) = (0,0) ve (z1,x9) =

(0, —1) koordinatlarinda almaktadir.
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Sekil 4.7: Zn i¢in MARS grafigi

MARS ile olusturulan en iyi modele iligkin degiskenlerin goreli 6nem-
lilikleri en yiiksekten en diisiige gore Cizelge 4.9’ da diizenlenmistir. Bu deger-
ler modelde yer alan degiskenlerin digerlerine gore goreceli katkilaridir. Zn
kirliligi icin MARS modelinin olugturdugu degigsken 6nemliligi Cizelge 4.9 ile

verilmigtir.

Cizelge 4.9: Zn MARS modeli i¢in degisken 6nemliligi

Degisken Onemlilik

T 100.00
T 81.83

Buna gore, x1 degigkeninin 6nem diizeyi %100 ¢ikmistir. Bir bagka ifadeyle
Zn kirliligine en ¢ok katkisi olan degisken, MARS analizi sonucu z;, tramvay
olarak bulunmustur. Bunun yaninda z, degiskeninin yanit degiskenine olan

katkis1 %81.83 seviyesinde 6nemli ¢ikmigtir.

4.3.3 Toprak Verisi Pb Kirliligi icin MARS Analizi

Pb kirliligine iliskin toplanan verilerden her biri bes tekrarli 32 deney-
sel diizeni olusturulmustur. 32 deneysel diizenden gelen 9 gozlem, her biri 5
tekrarli olmak tizere toplam 45 gozlemle caligilmigtir. Yanit degiskenine etk-
isi olan faktorler, etkilesim terimleri ve bunlarin karsilikli bilegenleri ayr1 ayri
incelenmis, sonuclar varyans analizi tablosunda Cizelge 4.10 ile verilmigtir.

Cizelge 4.10" de goriildiigii gibi faktorlerin ve etkilesim terimlerinin dogrusal
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ve karesel etkileri bilegenlerine gore ayri ayri hesaplanmigtir. Ancak bunlar
arasinda sadece x175 etkilesim terimi istatistiksel olarak anlamli bulunmamusg,

diger biitiin etkiler istatistiksel olarak anlamli bulunmugtur.

Cizelge 4.10: Pb yanit yiizeyi modeli i¢in etkilerin pargalanmasi

Faktor =~ Sd Kareler Ortalama Kareler F P(>F)
Toplami

T 2 9899.3 4949.6 295.727  <2.2e-16 X
T 1 681.6 681.6 40.727 2.15E-07 ek
z? 1 9217.6 9217.6 550.728  <2.2e-16 ***
To 2 8880.6 4440.3 265.297  <2.2e-16 ***
To 1 6841.3 6841.3 408.747  <2.2e-16 ***
zs 1 2039.4 2039.4 121.847  4.15E-13  ***
T1T2 4 5789.1 1447.3 86.471 <2.2e-16 ***
Ty Lo 1 4779 477.9 28.552 5.24E-06 FF*
7 T 1 4166.7 4166.7 248.949  <2.2e-16 ¥
T, T8 1 11446 1144.6 68.385 7.66E-10 ok
zixg 1 0 0 5.85E-07 0.999 otk
Artiklar 36 602.5 16.7

Anlamlilik Diizeyleri:0 ****> 0.001 ***> 0.01 "*’ 0.05 *.’

SAS programi kullanilarak elde edilen ANOVA sonuclar1 Cizelge 4.11 ile

verilmigtir.
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Cizelge 4.11: Pb yamt ylizeyi igcin ANOVA

Degisim Kaynagi Sd Kareler Toplam1 F Pr>F
Dogrusal 2 11257 34.34  0.0001
Karesel 2 7522.90 22.95  0.0001
Etkilegim 1 0.00 0.00 0.9998
Regresyon Toplam 5 18780 22.92  0.0001
Uyum Eksikligi 3  5789.14 115.30  <0.0001
Saf Hata 36 602.537

Hata Toplam 39 6391.68

Toplam 44 25171.6

Elde edilen ikinci dereceden yanit yiizeyi Esitlik 4.3 ile verilmigtir:

E(y) = 50.313 4 17.528z; — 8.244x5 — 8.25627 — 26.15573 (4.3)

Esitlik 4.3 ile verilen ikinci dereceden yanit yilizeyi modeline ait standart
hata S3=12.80 olarak bulunmustur. Elde edilen Fjesqp = 22.92 > Fj 5530 =
2.455 oldugundan model anlamhdir. Ikinci dereceden yanit yiizeyine iligkin du-
ragan nokta aragtirmasi Boliim 2.3.2” de anlatildig: gibi kanonik analiz ile in-
celenmigtir. Buna gore, Esitlik 4.3 ile verilen modele ait 6zdegerler, (A1, Ay) =
(—8.25,—26.15) ve her ikisi de sifirdan kii¢iik oldugundan duragan nokta bir
maksimum noktasidir, z; = (1.06, —0.15). Duragan noktaya karsilik gelen tah-
minlenmis Pb degeri ise y = 60.26 olarak bulunmugtur.

Burada, Pb yamt degiskenini etkileyen z; ve x5 degiskenlerinin olustur-
dugu ylizey gosterilmigtir. Buna gore 6rnegin, y = 41.67 ve x; = 0 i¢in elde
edilen yamt yiizeyi modeli 41.67 = 50.313 — 8.24z5 — 26.1522 olarak bulun-
mustur. Bu denklem c¢oziiliirse, kokler zo; = 0.43 ve x99 = —0.75 olarak elde

edilir.

9



Bu koordinatlar: veren iki nokta (0,0.43) ve (0, —0.75) ise, y = 41.67 igin
¢izilen kontor iizerindedir. Bu modele iligkin yanit yiizeyi grafigi Sekil 4.8 ile

verilmistir.

Sekil 4.8: Pb i¢in yanit yiizeyi ve kontor grafikleri

Pb yanit degiskenini modellemek iizere kurulan MARS modelleri Cizelge
4.12 ile verilmistir. Ilk olarak toplamsal model incelenmis, daha sonra modele
etkilesim terimleri eklenerek ikinci bir model olusturulmustur. Ikinci modeli

geligtirme adina bir katkisi olmadigindan Cizelge 4.12° ye iigiincii bir model

konulmamuigtar.
Cizelge 4.12: Pb icin MARS modelleri
Taban Fonksiyonlar Model Birim Etkilegim dej GCV
Sayis1**
TF1=max(0,z,+1) 1 0 Hayir 0.605 369.005

TF2=max(0,22-0)
Y=18.326+17.52*TF1-25.44*TF2

TF1—max (0,21 +1) 2 0 Evet  0.841 211.806*
TF2—max(0,29-0)*TF1

TF3=max(0,0-z2)*TF1

Y=9.84+434.65*TF1-30.64*TF2-20.74*TF3

**: Diiglimler arast minimum birim sayis;;*: En uygun model

Birinci modelde etkilesim terimi bulunmamaktadir ve bu modelde diizeltil-

2

mis belirlilik katsayis1 R,

= 0.605 olarak bulunmustur. Bununla beraber ikin-

ci modelde dej katsayist 0.841 olarak bulunmugtur. Diigiim sayisi artirilarak
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ticlincii model daha incelenmigtir ancak katki saglamadigindan bu cizelgede
yer almamigtir. Etkilesim terimlerinin ilavesi bu anlamda modeli geligtirmigtir.
MARS’ n iirettigi en iyi model en kii¢iik GCV degeri 211.806 olan ikinci model
olarak secilir. Birinci modelde TF1 ve TF2 taban fonksiyonlar:i hem x; hem
de x4 faktorlerini icerir. Bu taban fonksiyonlar: i¢in bulunan diigiim noktalar
sirastyla (+1) ve (0) olarak bulunmustur. Ikinci modelde ise TF1 tek basina
bir taban fonksiyonu iken TF2 ve TF3 etkilegimi ifade eden taban fonksi-
yonlari olarak modelde yer almigtir. GCV degerinin en kiiciik oldugu model,
ikinci modeldir. Ancak dikkat edilmesi gereken nokta, burada ikinci modelden
bagka bir etkilesim modelinin olmamasi, durumu toplamsal model ile etki-
lesimli model arasinda se¢im yapma agamasina getirir. Béyle bir durumda
Friedman [36], etkilegimli modelin sadece, modelin Rfldj degerinin digerinden
olduk¢a biiyiik ise kabul edilecegini ileri siirmiigtiir. Buna gore, etkilegimli
model ile toplamsal modelin R’ degerleri arasindaki fark 0.841-0.605—0.236’
dir. Bu degerin yeterince biiyiik oldugu varsayimiyla etkilesimli model toplam-
sal modele tercih edilmigtir.

Sekil 4.9’ de Pb kirliligi yamt yiizeyini en iyi modelleyen ikinci MARS
modelinin grafigi cizilmistir. Burada, yanit degigkeninin, x; ve xy degigken-

leriyle olan iligkisi gosterilmigtir.

Sekil 4.9: Pb i¢in MARS grafigi

Buna gore, yamt degigskeninin maksimum deger aldigi nokta, (z1,zs) =
(+1,0) koordinati olarak bulunmugtur.

MARS ile olugturulan en iyi modele iligkin degiskenlerin goreli 6nemlilik-
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leri en yiiksekten en diiglige gore Cizelge 4.13 te diizenlenmigtir. Bu deger-
ler modelde yer alan degiskenlerin digerlerine gore goreceli katkilaridir. Pb
kirliligi icin MARS modelinin olugturdugu degigsken 6nemliligi Cizelge 4.13 ile
verilmistir.

Buna gore, x; degiskeninin 6nem diizeyi %100 ¢ikmigtir. Bir bagka ifadeyle
Pb kirliligine en ¢ok katkisi olan degisken, MARS analizi sonucu x, tramvay

degigkeni olarak bulunmustur.

Cizelge 4.13: Pb MARS modeli i¢in degisken 6nemliligi

Degisken Onemlilik

T 100.00
T2 84.61

Bunun yaninda xs degiskeninin yamt degiskenine olan katkis1 %84.61 se-
viyesinde 6nemli cikmigtir. Pb kirliligine en ¢ok katkisi olan faktor tramvay

olarak kaydedilmigtir.
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5 SONUCLAR

Bu calismada yanit yiizeyi metodolojisinde, birinci ve ikinci dereceden
polinomiyal modeller iizerinde durulmustur. Uygulamada, ikinci dereceden
tasarimlar arasindan 3% faktoriyel tasarim icin MARS yaklasimi dnerilmistir.
Stirekli bagimsiz degiskenler kullanilarak yamit degigkenine olan etkiler iki
yaklagimla incelenmigtir. Klasik yolla elde edilen yanit yiizeyleri modellerinin
yetersiz kalmasi problemi vurgulanmig, yeni bir yaklagim olarak Friedman’ in
[36] 1991" de ortaya koydugu MARS algoritmasinin iirettigi taban fonksiyon-
larindan olugan modellerle bu problem bagariyla ortadan kaldirilmigtir. MARS
ile model olugturmada, ikinci dereceden klasik yanit yiizeyi modelinin tiim
terimlerini elde edilebilecek gekilde, terimler yeniden diizenlenmigtir. Bu an-
lamda, karesel ve etkilesim terimlerinin modele dahil edilmesi, terimler arasin-
daki ortogonal iligki goz oniine alinarak yapilmigtir. Terimlerin dogrusal, kare-
analizine dahil edilmesi gereken terimler iizerinde durulmus ve MARS mod-
eliyle elde terimlerin anlamliklar kargilagtirilmigtir. MARS’ 1n getirdigi degis-
ken 6nemliligi incelemesi, klasik yanit yiizeyi modeli analizinde yeni bir kavram
olarak Onerilmigtir.

Bunlara ek olarak, yinelemeli béliintiileme algoritmasina dayal iki prog-
ram yazilmigtir. Bunlarin ilki, tek bagimsiz degiskenin bagimli degisken {ize-
rindeki etkisini arastirmak iizere yapilmigstir. Ikincisi iki bagimsiz degiskenin
bagimlh degisken fiizerindeki etkisini aragtirmak {izere yapilmigtir. Uygula-
mada kullanilan Cd agir metal verisi iizerinden z; degigkeninin bu degigken
tizerindeki etkisini aragtirmak iizere MARS modellemesi yapan bir program
yazilmigtir. Benzer gekilde, Cd verisi lizerinden, x; ve x5 degigkenlerinin etki-
sini aragtirmak tizere MARS modellemesi yapan bir program yazilmigtir. Bu

programlar R Yaziliminda hazirlanmigtir.
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Elde edilen sonuclar maddeler halinde agiklanmigtir:
i. Bilinmeyen fonksiyonun tahmini
ii. Uyum Iyiligi
iii. Grafik Uyumu

iv. Algoritmalar

i. Bilinmeyen fonksiyonun tahmini

Bilinmeyen fonksiyonal yap1 iki tip yaklagimla agiklanmaya caligilmigtir:
Bunlardan ilki polinomiyal yanit yiizeyleri modeleri, ikincisi MARS yaklagimi-
dir. Klasik yanit yiizeyi metodolojisi bilinmeyen yanit yiizeyinin geklini tahmin
etmek i¢in kullanilmigtir. Cd, Zn ve Pb kirlilikleri i¢in ikinci dereceden yanit
modelleri bagariyla uygulanmigtir (Es. 4.1, 4.2, 4.3). Bunlar Cizelge 4.4, 4.8
ve 4.12’ da verilen MARS modelleriyle kargilagtirildiginda ise, etkilegim terim-
leriyle ortaya ¢ikan MARS modellerinin yanit degiskenini nasil etkiledigi ve
hangi faktorlerin 6nemli oldugu sorular1 cevaplandirilmigtir. MARS modelleri
bilinmeyen yanit yiizeyleri modellerini taban fonksiyonlar1 kullanarak bagarili

bir gekilde tahminlemigtir.

ii. Uyum Iyiligi

MARS incelenen Cd, Zn ve Pb kirlilik modellerini ikinci dereceden yanit

2

ylizeyl modellerine gore daha iyi analiz etmistir. Gizelge 5.1” deki Rg,;

degerleri
incelendiginde MARS modellerinin daha iyi sonuglar verdigi Cizelge 5.1" de
goriiliir. Cizelge 4.4, 4.8 ve 4.12’ da verilen MARS modelerinin ikinci dereceden
yanit yiizeyi modellerine gore daha karmagik goriinmelerine karsin, MARS’ in
kullandig1 degigken sayisi incelendiginde bu durum hala uygun kabul edilebilir.
Bununla beraber RMSE (Root Mean Square Error) degeri her bir kirlilik mod-
eli icin bu iki tiir yaklagimla hesaplanmig ve Cizelge 5.1° de Ozetlenmigtir.

Cizelge 5.17 de verilen kargilagtirma tablosu dikkatle incelenirse, ilk satirda

kirlilik degigkenleri Cd, Zn ve Pb siralanmigtir. Bir sonraki satirda her bir
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2
adj?

agir metal icin sirasiyla; RZ ., modeldeki parametre sayis1i ve RMSE degeri yer
alir. Buna gore, Cd i¢in olusturulan klasik yanit yiizeyi modelinin diizeltilmig
belirlik katsayisi Rgdj = 0.267 iken MARS ile bulunan model igin ayn1 deger
Rﬁdj = 0.802 olarak hesaplanmigtir. Cd yanit yiizeyi modelinde dogrusal etki-
lerin %0.05 diizeyinde anlamli bulunmasina ragmen modelden g¢ikartilmasi
uygun degildir. Bu durumda ikinci dereceden tiim etkiler anlamh kabul edilir
ve modelde kullanilan degigen sayisi 5 olarak kalir. Ayni agir metal igin iiretilen

MARS modeli ise 4 taban fonksiyon kullanmigtir.

Cizelge 5.1: Kirlilik modelleri i¢in karsilagtirma

Kirlilik Cd Zn Pb

R?, Ts RMSE R, Ts RMSE R, Ts RMSE
YYM 0267 5 0197 0714 5 1280 0833 5 3351
MARS 0802 4 0.103 0994 3 3118 0841 6 9.535

Ts:Terim sayis1

Benzer gekildeki yorumlar sirasiyla Zn ve Pb Kkirlilik modelleri igin de

2

yapmak miimkiindiir. Buna gore, Zn yanit yiizeyi modeli i¢in hesaplanan R,

degeri 0.714 olarak bulunurken, ayni yanit degiskenine ait MARS modelinin
diizeltilmig belirlilik katsayis1 0.994 ¢ikmigtir. Zn yamt yiizeyi modeli i¢in tiim
etkiler anlamli gitkmigtir, dolayisiyla modelde kullanilan degigken sayisi 5’ dir.
Ayni yanit degigkenine ait MARS modeli ise 3 tane taban fonksiyonu iiret-
migtir. Her iki yaklagim i¢in modellerin hesaplanan RMSE degerleri sirasiyla
12.80 ve 3.12 olarak bulunmugtur. Pb yanit degigkenine ait yanit yiizeyi mode-
linin diizeltilmig belirlilik katsayis1 0.833 olarak bulunurken, MARS aym kri-
teri 0.841 olarak bulmustur. Ayni degigskene ait yanit yiizeyi modelindeki
tiim etkiler anlamli oldugundan modelde 5 degisken vardir. MARS ise bu
degigkene ait model iiretirken 6 tane taban fonksiyonu kullanmigtir. Buna rag-
men, RMSE degerleri incelendiginde MARS modelinin daha iyi sonug verdigi

goriilmiigtiir.
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iii. Grafik Uyumu

Grafiklerle kirlilik modellemesinde yanit degiskeniyle tahmincilerin ilig-
kisini gostermek iizere Sekil 4.4-5 cizilmigtir. Cd kirlilik modeli icin verilen
ylizey grafigi Sekil 4.4 ile verilirken uygun MARS grafigi Sekil 4.5 ile veril-
migtir. Her iki grafikte de tramvay ve arag¢ degiskenlerinin Cd kirlilik tahmin-
leri gosterilmistir. Tramvayin ve aracin OGU ve Atatiirk Lisesi civarinda hem
diisiik degerlerinde (—1,—1) hem de yiiksek degerlerinde (+1,+1), Cd kirli-
liginde etkili bolgeler olarak tespit edilmigtir. Zn kirliligine iligkin yanit yiizeyi
grafigi ise Sekil 4.6 ile verilirken uygun MARS modeli grafigi Sekil 4.7 ile ve-
rilmistir. Burada Zn kirliligine en ¢ok katkisi olan noktalar (0,0) ve (0, —1)
bagka bir deyigle Alanonii ve Vignelik olarak tespit edilmigtir. Pb kirliligi i¢in
yanit yiizeyi grafigi Sekil 4.8 ile verilirken uygun MARS grafigi Sekil 4.9 ile
verilmigtir. Pb kirliligine en ¢ok katkisi olan nokta (+1,0) bagka bir deyig-
le Atatiirk Bulvar1 olarak tespit edilmigtir. Grafik incelemesinde kargimiza
¢ikan ortak degerler MARS ve yanit yiizeyi grafiklerinin birbirini dengeledigini
gostermigtir. Bununla beraber MARS yaklagiminin yamt yiizeyi modelleri

analizine olan katkisi, analizde énemli olan degigkenlerin iiretilmesidir.

iv. Algoritma

Tek ve iki bagimsiz degigskenin bagimlh degisken iizerindeki etkisini aragtir-
mak iizere yinelemeli béliintiileme algoritmasina dayali iki program yazil-
migtir. Bunlar sirasiyla Ek-1 ve Ek-2" de verilmigtir. Bununla beraber, Cd
yamt degigkenine iligkin tek ve iki degigskenli MARS modelleri olugturmada
iki ayr1 program yazilmig ve ilgili R kodlar sirasiyla Ek-3 ve Ek-4’ te veril-
migtir. Bu programlarin yaziminda R.2.10.0 siiriimii kullamilmigtir. Ek-6" da
kullanilan ham verilere yer verilmigtir. Programda kullanilan formiiller Fried-
man’ nin 1991” deki makalesinden alinmigtir [36].

Her iki yontemle kurulan modeller ile toprak verisi kullanilarak yapilan

agir metal kirliligi aragtirmasinda, MARS modellerinin daha detayli bilgiler

0



vermesi ve modele etkilesim terimlerini de katarak yanit yiizeyleri analizine
katki saglamasi, gercek yapiyr daha iyi yansitmasi ve modelin aciklayicilik
giiciinii artirmasi acisindan, deneysel diizenden gelen verinin geleneksel yolla

modellenmesi yerine temsili bir model olarak kullanilmasi énerilmigtir.
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Ek-1 Yanit degiskeninin, tek degisken kullanarak regresyon agacinin

olusturmasinda kullanilan R kodlari

y=cd ; x=A ;n=length(y); reps=length(y) ;library(rpart)
left.ort=rep(0,reps) ;bof=rep(0,reps) ;right.ort=rep(0,reps);
left.sum=rep(0,reps); right.sum=rep(0,reps);total.sum=rep(0,reps);
left.dev=rep(0,reps) ;right.dev=rep(0,reps) ;imp=rep(0,reps) ;
cp=rep(0,reps) ;BOF= sum( (y- mean(y)) ~2 ) ;BOF ;
mse=sum(lm(y~x)$residuals~2)/n ;
dev= deviance(1lm(y~x) ) ; summary(rpart(y~x))
G=function(x,y) {
# sirali x,y lileri igin dongiiye girer.

left.x=matrix(0, reps, reps) ; left.y=matrix(0, reps, reps)
right.x=matrix(0, reps, reps) ; right.y=matrix(0, reps, reps)
# Her bir x degeri candidate partition degeri olarak diigiinilir.
#0las1 boliinmelerin matrisleri sol/sag olarak ayrilir.
for(t in 1:reps ){

len= length(x[x < x[t]1])

if (len==0) left.x[t,l:repsl= x

else {

left.x[t,1:1len]l=x[ x<x[t] ]

left.yl[t,1:1len]= y[x<x[t] ]

left.ort[t]= sum( (y[x<x[t]]-mean(y[x<x[t]l]) )~2)
left.sum=rowSums (left.y)

+}r

for(t in 1:reps ){

len= length(x[x>=x[t]])

if (len==0)right.x[t,1l:reps]= x

else{

right.x[t,1:1len]=x[x>=x[t]]

right.y[t,1:len]l=y[x>=x[t]]

06



right.ort[t]l= sum( (y[x>=x[t]]-mean(y[x>=x[t]]) )~2)
right.sum=rowSums(right.y)
1}
return(list(left.x=left.x, left.y=left.y,
right.x=right.x, right.y=right.y , left.dev=left.ort,
right.dev=right.ort, left.sum=left.sum, right.sum=right.sum)) }

G=G(x,y)
## F fonksiyonu NODE 2 ve NODE3 c¢ikartar.
F=function(left.x,left.y,right.x,right.y)
{ for (i in 1:reps){
left.x=G$left.x ; left.y=G$left.y ;

right.x=G$right.x ; right.y=G$right.y
left.dev=G$left.dev; right.dev=G$right.dev
left.sum=rowSums (left.y)
right.sum=rowSums(right.y)
total.dev=left.dev[l:length(left.sum)] + right.dev[l:length(right.sum)]
total.ss=sum((y-mean(y))"~2)
cp=round ((total.ss-(total.dev)) / BOF , 6)
imp=round( (total.ss-(total.dev)) / total.ss ,6)
bof.result=data.frame(left.dev,right.dev,imp,cp,total.dev,total.ss) }
# Ilk partition igin segilen noktanin x vektdriindeki sirasini verir
sira.0=which.min(bof.result[,5])
# I1k partition point olarak segilen knot
p.point.1=x[order(bof.result[,5])[1] ] ;
sira.l=which(sort(x)==p.point.1)
sira.2=sira.1-1
candi=(sort(x) [sira.1]+sort(x) [sira.2])/2
xx=x [x<candi] ## NODE 3
yy=y [x<candi] ## NODE 3
left.mean=mean(y[x<candi]) ;

left.mse=bof.result[sira.0,][1]/length(yy)
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right.mean=mean(y[x>=candil) ;
right.mse=bof.result[sira.0,][2]/length(y[x>=candi])
xx.r=x[x>=candi] ## NODE 2

yy.r=y[x>=candi] ## NODE 2

reps=length(yy)

leaves23=rbind (bof.result[sira.0,])
leaves23[,9:12]=cbind(left.mean, right.mean, left.mse, right.mse)
colnames (leaves23) [9:12]=c("left.mean", "right.mean",
"left.mse", "right.mse")

# Kaginci siradaki x degerlerinin en kiigik

# bof degerini verdigini gosterir.

# En kiigiik bof degerini veren x lerin, vektordeki sirasi

order ((bof.result[,5]))

i=1

while (order (bof.result[,5]) [1]<6 | order(bof.result[,5])[i]>n-5)
i=i+1

x[order (bof.result[,5]) [i]]

knot= x[order(bof.result[,5]) [i]]
return(list(bof.result=bof.result, sira.0O=sira.o,
sira.l=sira.l,sira.2=sira.2, p.point.l1=p.point.1,i=i ,
knot=knot, candi=candi, xx=xx, yy=yy, XX.r=XX.r,

yy.r=yy.r, cp=cp,leaves23=leaves23)) }
F=F(left.x,left.y,right.x,right.y) ;F

rpart(y~x)

tree=F$leaves23

decide=function(F){

if(dim(data.frame(F$xx.r, F$yy.r))[1] > dim(data.frame(F$xx,F$yy)) [1])
{d=data.frame(F$xx.r,F$yy.r) ; d} else{d=data.frame(F$xx,F$yy) ;d}
return(list(d=d))

} ; R=decide (F) ;R ; dim(R$d)

x=as.data.frame(R$d) [,1] ; y=as.data.frame(R$d) [,2]
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n=length(y) ;reps=length(y)

left.ort=rep(0,reps) ; bof=rep(0, reps );

right.ort=rep(0,reps) ; left.sum=rep(0,reps) ;
right.sum=rep(0,reps) ;total.sum=rep(0,reps) ;
left.dev=rep(0,reps); right.dev=rep(0,reps) ;
imp=rep(0,reps) ; cp=rep(0,reps);

G=function(x,y) {

# sirali x,y lileri igin dongiiye girer.

left.x=matrix(0, reps, reps) ; left.y=matrix(0, reps, reps)

right.x=matrix (0, reps, reps) ; right.y=matrix(0, reps, reps)

# Her bir x degeri candidate partition degeri olarak diigiinilir.

# Olasi boliinmelerin matrisleri sol/sag olarak ayrilir.

for(t in 1:reps ){

len= length(x[x < x[t]])

if (len==0) left.x[t,l:repsl= x

else {

left.x[t,1:1len]=x[ x<x[t] ]

left.y[t,1:1len]= y[x<x[t] ]

left.ort[t]= sum( (y[x<x[t]]-mean(y[x<x[t]]) )~2)
left.sum=rowSums (left.y)

1}

for(t in 1:reps ){

len= length(x[x>=x[t]])

if (len==0)right.x[t,l:reps]= x

else{

right.x[t,1:1len]=x[x>=x[t]]

right.y[t,1:1len]l=y[x>=x[t]]

right.ort[t]= sum( (y[x>=x[t]]-mean(y[x>=x[t]]) )~2)
right.sum=rowSums(right.y)

T}

return(list(left.x=left.x, left.y=left.y,
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right.x=right.x, right.y=right.y , left.dev=left.ort,
right.dev=right.ort, left.sum=left.sum, right.sum=right.sum)) }
G=G(x,y)
F=function(left.x,left.y,right.x,right.y)
{ for (i in 1:reps){
left.x=G$left.x ; left.y=G$left.y ;
right.x=G$right.x ; right.y=G¥right.y
left.dev=G$left.dev; right.dev=G$right.dev
left.sum=rowSums (left.y)
right.sum=rowSums(right.y)
total.dev=left.dev[l:length(left.sum)] + right.dev[l:length(right.sum)]
total.ss=sum((y-mean(y))~2)
cp=round ((total.ss-(total.dev)) / BOF , 6)
imp=round( (total.ss-(total.dev)) / total.ss ,6)
bof.result=data.frame(left.dev,right.dev,imp,cp,total.dev,total.ss) 7}
#Ikinci partition igin segilen noktanin x vektdriindeki sirasini verir")
sira.O=which.min(bof.result[,5])
# Ikinci partition point olarak segilen knot
p.point.1=x[order(bof.result[,5]1)[1] 1 ;
sira.l=which(sort(x)==p.point.1)
sira.2=sira.1-1
candi=(sort(x) [sira.1]l+sort(x) [sira.2])/2
xx=x [x<candi] ## NODE 5
yy=y[x<candi] ## NODE 5
left.mean=mean(y[x<candi]) ;
left.mse=bof .result[sira.0,] [1]/1length(yy)
right .mean=mean(y[x>=candil) ;
right .mse=bof.result[sira.0,][2]/length(y[x>=candi])
xx.r=x[x>=candi] ## NODE 4
yy.r=y[x>=candi] ## NODE 4

reps=length(yy)
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leaves23=rbind (bof.result[sira.0,])
leaves23[,9:12]=cbind(left.mean, right.mean,
left.mse, right.mse)
colnames (leaves23) [9:12]=c("left.mean", "right.mean",
"left.mse", "right.mse")
# Kaginci siradaki x degerlerinin en kiiglik bof degerini verdigini gosterir.
# En kiigik bof degerini veren x lerin, vektordeki sirasi
order ((bof.result[,5]))
i=1
while (order (bof.result[,5])[i]<6 | order(bof.result[,5]) [i]>n-5)
i=i+1
x[order (bof.result[,5]) [i]]
knot= x[order(bof.result[,5]) [i]]
return(list(bof.result=bof.result, sira.0O=sira.0, sira.l=sira.1l,
sira.2=sira.2, p.point.l=p.point.1,i=i , knot=knot, candi=candi,
XX=XX, yy=yy, XX.Ir=XX.r, yy.r=yy.r, cp=cp,leaves23=leaves23)) }
F=F(left.x,left.y,right.x,right.y) ;F
tree=rbind (tree,F$leaves23); tree
for(i in 1:dim(tree) [1] )
if (tree[i,8]<0.01) agac=tree[-i,] ; agac
#SONUC
left.dev right.dev imp cp total.dev total.ss
1 1.9957 0.3171 0.0146 0.0146 2.3129 2.3473
left.mean right.mean left.mse right.mse
1.0554 1.11406 0.06652 0.02114
#Check if correct

rpart(cd™x) ; summary(rpart(cd~x))

Ek-2 Yanit degiskeninin, iki degisken kullanarak regresyon agacinin

olusturmasinda kullanilan R kodlari
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y=cd ; x=A ;z=B; reps=length(y);n=length(y);library(rpart)
bof=rep(0, reps );

x.left.ort=rep(0,reps) ; x.right.ort=rep(0,reps)
x.left.sum=rep(0,reps) ; x.right.sum=rep(0,reps)
z.left.ort=rep(0,reps) ; z.right.ort=rep(0,reps)
z.left.sum=rep(0,reps) ; z.right.sum=rep(0,reps)
total.sum=rep(0,reps) ;left.dev=rep(0,reps);
right.dev=rep(0,reps) ;

ximp=rep(0,reps) ; xcp=rep(0,reps);

zimp=rep(0,reps) ; zcp=rep(0,reps);

BOF= sum( (y- mean(y)) ~2 ) ;BOF ;
mse=sum(lm(y~x+z)$residuals~2)/n ;

dev= deviance(Ilm(y~“x+z) ) ; summary(rpart(y~x+z))
G=function(x,y,z) {

left.x=matrix(0, reps, reps) ; left.y=matrix(0, reps, reps)
right.x=matrix(0, reps, reps) ; right.y=matrix(0, reps, reps)
left.z=matrix(0,reps,reps) ; zleft.y=matrix(0, reps, reps)
right.z=matrix(0,reps,reps) ; zright.y=matrix(0, reps, reps)
# Her bir x degeri candidate partition degeri olarak diigiinilir.
# Olasi boliinmelerin matrisleri sol/sag olarak ayrilar.
for(t in 1:reps ){

len= length(x[x < x[t]1])

if (len==0) left.x[t,l:repsl= x

else {

left.x[t,1:1len]=x[ x<x[t] ]

left.y[t,1:1len]l= y[x<x[t] ]

x.left.ort[t]l= sum( (y[x<x[t]]-mean(y[x<x[t]]) )~2)
x.left.sum=rowSums (left.y)

1}

for(t in 1:reps ){

len= length(x[x>=x[t]])
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if (len==0)right.x[t,1l:reps]= x

else{

right.x[t,1:1len]=x[x>=x[t]]
right.y[t,1:1len]=y[x>=x[t]]

x.right.ort[t]= sum( (y[x>=x[t]]-mean(y[x>=x[t1]) )~2)
x.right.sum=rowSums (right.y)

1}

# x lerin ayirdigi y degerleri kiimesi, sol
xsum.left=x.left.sum

# x lerin ayirdigi y degerleri kiimesi, sag
xsum.right=x.right.sum

for(t in 1:reps ){

len= length(z[z < z[t]l])

if (len==0) left.z[t,l:reps]l= z

else {

left.z[t,1:1len]l=z[ z<z[t] ]

zleft.y[t,1:1len]l= y[z<z[t] ]

z.left.ort[t]l= sum( (y[z<z[t]]-mean(y[z<z[t]]l) )~2)
# z lerin ayirdigi y degerlernin kiimesi, sol
z.left.sum=rowSums (zleft.y)

1}

for(t in 1:reps ){

len= length(z[z>=z[t]])

if (len==0)right.z[t,l:reps]l= z

elseq{

right.z[t,1:1len]l=z[z>=z[t]]
zright.y[t,1:1len]=y[z>=z[t]]

z.right.ort[t]= sum( (y[z>=z[t]]-mean(y[z>=z[t]l]) )~2)
# z lerin ayirdigi y degerlernin kiimesi, sag
z.right.sum=rowSums (zright.y)

3}

103



return(list(left.x=left.x,left.y=left.y,right.x=right.x,
right.y=right.y,left.z=left.z,right.z=right.z, zleft.y=zleft.y,
zright.y=zright.y,xdev.left=x.left.ort,xdev.right= x.right.ort,
zdev.left=z.left.ort,zdev.right=z.right.ort,zsum.left=z.left.sum,
zsum.right=z.right.sum,xsum.left=xsum.left,xsum.right=xsum.right))}
G=G(x,y,2)
## F fonksiyonu NODE 2 ve NODE3 c¢ikartir.
F=function(
left.x,left.y,right.x,right.y,left.z,zleft.y,right.z,zright.y)
{ for (i in 1:reps){
left.x=G$left.x ; left.y=G$left.y ;
right.x=G$right.x ; right.y=G$right.y
xdev.left=G$xdev.left; xdev.right=G$xdev.right
left.z=G$left.z ; right.z=G$right.z ;
zleft.y=G$zleft.y; zright.y=G$zright.y
zdev.left=G$zdev.left; zdev.right=G$zdev.right
xsum.left=rowSums(left.y) ;xsum.right=rowSums(right.y)
zsum.left=rowSums(zleft.y) ; zsum.right=rowSums(zright.y)
xtotal.dev=xdev.left[1:length(xsum.left)] +
xdev.right[1:length(xsum.right)]
xtotal.ss=sum((y-mean(y))"~2)
ztotal.dev=zdev.left[1:length(zsum.left)] +
zdev.right[1:1length(zsum.right)]
#ztotal.ss=sum((y-mean(y))~2)
xcp=round((xtotal.ss-(xtotal.dev)) / BOF , 6);
ximp=round( (xtotal.ss-(xtotal.dev)) / xtotal.ss ,6)
zcp=round ((xtotal.ss-(ztotal.dev)) / BOF , 6);
zimp=round( (xtotal.ss-(ztotal.dev)) / xtotal.ss ,6)
bof .result=data.frame(xdev.left,xdev.right,
ximp,xcp,xtotal.dev,xtotal.ss);

gof .result=data.frame(zdev.left,zdev.right,
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zimp,zcp,ztotal.dev,xtotal.ss)

}

# Ilk partition igin segilen noktanin

# x vektoriindeki sirasini verir
sira.0=which.min(bof.result[,5])
z.sira.0=which.min(gof.result[,5])

# Ilk partition point olarak segilen knot
p.point.1=x[order(bof.result[,5]1)[1] 1 ;
sira.l=which(sort(x)==p.point.1)

sira.2=sira.1-1

z.point.1=z[order(gof.result[,5]) [1]]
z.sira.1=which(sort(z)==z.point.1)

z.sira.2=z.sira.1-1

candi=((sort(x) [sira.1]+sort(x) [sira.2])/2) [1]
z.candi=((sort(z) [z.sira.1]+sort(z) [z.sira.2])/2) [1]

if (min(gof.result[,5]) <min(bof.result[,5])) {candi=z.candi
bak=2

leaves23=rbind(gof.result[z.sira.0,])

zz=z[z<candi] ## NODE 3

yz=y[z<candi] ## NODE 3

zleft.mean=mean(y[z<candi]) ;

zleft.mse=gof .result[z.sira.0,][1]/length(yz)
zz.r=z[z>=candi] ## NODE 2

yz.r=y[z>=candi] ## NODE 2

zright .mean=mean(y[z>=candil]) ;

zright .mse=gof .result[z.sira.0,][2]/length(y[z>=candi])
reps=length(yz.r)
leaves23[,7:10]=cbind(zleft.mean,zright.mean,zleft .mse,zright.mse)
colnames (leaves23) [7:10]=c("left.mean","right.mean",
"left.mse","right.mse")

print (gof .result) ;print( data.frame(zz.r , yz.r)) ;
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print(data.frame( sira.0,sira.l,sira.2, p.point.1)) ;
print (leaves23)
else{candi=candi
bak=1
leaves23=rbind (bof.result[sira.0,])
xx=x[x<candi] ## NODE 3
yx=y[x<candi] ## NODE 3
xleft.mean=mean(y[x<candil) ;
xleft.mse=bof.result[sira.0,][1]/length(yx)
xx.r=x[x>=candi] ## NODE 2
yx.r=y[x>=candi] ## NODE 2
xright.mean=mean(y[x>=candi]);
xright .mse=bof.result[sira.0,][2]/length(y[x>=candi])
reps=length(yx.r)
leaves23[,7:10]=cbind(xleft.mean,xright.mean,xleft.mse,xright.mse)
colnames (leaves23) [7:10]=c("left.mean","right.mean",
"left.mse","right .mse")
print(bof.result) ; print(data.frame( xx.r,yx.r));
print( data.frame(sira.0,sira.1l,sira.2,p.point.1));
print (leaves23) }
# Kaginci siradaki x degerlerinin en kiigiik bof
# degerini verdigini gosterir.
# En kiigiik bof degerini veren x lerin, vektordeki sirasi
order ((bof.result[,5]))
i=1

while (order (bof.result[,5]) [i]1<6 | order(bof.result[,5])[i]l>n-5)
i=i+1
x[order (bof.result[,5]) [i]] ; knot= x[order(bof.result[,5]) [i]]
zz=z[z<candi] ## NODE 3
yz=yl[z<candi] ## NODE 3
zz.r=z[z>=candi] ## NODE 2
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yz.r=y[z>=candi] ## NODE 2
xx=x[x<candi] ## NODE 3
yx=y[x<candi] ## NODE 3
xx.r=x[x>=candi] ## NODE 2
yx.r=y[x>=candi] ## NODE 2
criterial=data.frame( imp.z=zimp[z.sira.0] , imp.x=ximp[z.sira.0],
cp.z=zcplz.sira.0] , cp.x=xcplz.sira.0])
return(list(leaves23=1leaves23,zz=zz, zz.r= zz.r,yz=yz,yz.r=yz.r,
XX=XX,yX=yX,XX.r=XX.Ir,yX.r=yx.r, candi=candi ,
bak=bak , criterial=criterial))
}
F=F(left.x,left.y,right.x,right.y,left.z,right.z,zleft.y,zright.y);F
tree=F$leaves23
decide=function(F){
if (F$bak==1){ if (F$bak==1 &
dim(data.frame (F$xx.r, F$yx.r))[1] > dim(data.frame(F$xx,F$yx)) [1])
{d=data.frame(F$xx.r,F$yx.r, F$zz.r) ; d
} else{d=data.frame(F$xx,F$yx, F$zz) ;d}
} elseq{
if (F$bak==2){
if( dim(data.frame(F$zz.r,F$yz.r)) [1]>dim(data.frame(F$zz, F$yz)) [1])
{d=data.frame(F$zz.r ,F$yz.r ,F$xx.r) ;d
telse{d=data.frame (F$zz,F$yz,F$xx) ;d}
1}
return(list(d=d))
} ; R=decide (F) ;R ; dim(R$d)
# NODE 4 ve NODE 5 olugturulur.
z=as.data.frame(R$d) [,1] ; y=as.data.frame(R$d)[,2] ;
x=as.data.frame(R$d) [,3] ; n=length(y) ;reps=length(y)
criterial=F$criterial ;rpart(y~x+z)

reps=length(y) ;library(rpart)
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bof=rep(0, reps );

x.left.ort=rep(0,reps) ; x.right.ort=rep(0,reps) ;
x.left.sum=rep(0,reps) ; x.right.sum=rep(0,reps)
z.left.ort=rep(0,reps) ; z.right.ort=rep(0,reps) ;
z.left.sum=rep(0,reps) ; z.right.sum=rep(0,reps)
total.sum=rep(0,reps) ;left.dev=rep(0,reps);right.dev=rep(0,reps);
ximp=rep(0,reps) ; xcp=rep(0,reps);

zimp=rep(0,reps) ; zcp=rep(0,reps);

G=function(x,y,z) {

left.x=matrix(0, reps, reps) ; left.y=matrix(0, reps, reps)
right.x=matrix (0, reps, reps) ; right.y=matrix(0, reps, reps)
left.z=matrix(0,reps,reps) ; zleft.y=matrix(0, reps, reps)
right.z=matrix(0,reps,reps) ; zright.y=matrix(0, reps, reps)
# Her bir x degeri candidate partition degeri olarak diigiinilir.
# Olasi boliinmelerin matrisleri sol/sag olarak ayrilar.

for(t in 1:reps ){

len= length(x[x < x[t]])

if (len==0) left.x[t,l:repsl= x

else {

left.x[t,1:1len]=x[ x<x[t] ]

left.y[t,1:1lenl= y[x<x[t] ]

x.left.ort[t]= sum( (y[x<x[t]]-mean(y[x<x[t]]) )~2)
x.left.sum=rowSums (left.y)

1}

for(t in 1:reps ){

len= length(x[x>=x[t]])

if (len==0)right.x[t,l:reps]= x

else{

right.x[t,1:1len]=x[x>=x[t]]

right.y[t,1:len]l=y[x>=x[t]]

x.right.ort[t]= sum( (y[x>=x[t]]-mean(y[x>=x[t]1]) )~2)
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x.right.sum=rowSums(right.y)

1}

# x lerin ayirdigi y degerleri kiimesi, sol

xsum.left=x.left.sum

# x lerin ayirdigi y degerleri kiimesi, sag

xsum.right=x.right.sum

for(t in 1:reps ){

len= length(z[z < z[t]l])

if (len==0) left.z[t,l:reps]l= z

else {

left.z[t,1:1len]l=z[ z<z[t] ]

zleft.y[t,1:1len]= y[z<z[t] ]

z.left.ort[t]= sum( (y[z<z[t]]-mean(y[z<z[t]]) )~2)

# z lerin ayirdigi y degerlernin kiimesi, sol

z.left.sum=rowSums (zleft.y)

1}

for(t in 1:reps ){

len= length(z[z>=z[t]])

if (len==0)right.z[t,1l:reps]l= z

elseq{

right.z[t,1:1len]=z[z>=z[t]]

zright.y[t,1:1len]l=y[z>=z[t]]

z.right.ort[t]l= sum( (y[z>=z[t]]-mean(y[z>=z[t1]) )~2)

# z lerin ayirdigi y degerlernin kiimesi, sag

z.right.sum=rowSums(zright.y)

1}

return(list(left.x=left.x, left.y=left.y , right.x=right.x,

right.y=right.y , left.z=left.z, right.z=right.z, zleft.y=zleft.y,
zright.y=zright.y, xdev.left=x.left.ort, xdev.right= x.right.ort,
zdev.left=z.left.ort, zdev.right=z.right.ort,zsum.left=z.left.sum,

zsum.right=z.right.sum,xsum.left=xsum.left,xsum.right=xsum.right))
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}
G=G(x,y,2)
## F fonksiyonu NODE 4 ve NODE 5 c¢ikartir.
F=function(
left.x,left.y,right.x,right.y,left.z,zleft.y,right.z,zright.y)
{ for (i in 1:reps){
left.x=G$left.x ; left.y=G$left.y ;
right.x=G$right.x ; right.y=G$right.y
xdev.left=G$xdev.left; xdev.right=G$xdev.right
left.z=G$left.z ; right.z=G$right.z ;
zleft.y=G$zleft.y; zright.y=G$zright.y
zdev.left=G$zdev.left; zdev.right=G$zdev.right
xsum.left=rowSums(left.y) ;xsum.right=rowSums(right.y)
zsum.left=rowSums(zleft.y) ; zsum.right=rowSums(zright.y)
xtotal.dev=xdev.left[1:length(xsum.left)] +
xdev.right[1:1length(xsum.right)]
xtotal.ss=sum((y-mean(y))~2)
ztotal.dev=zdev.left[1:1length(zsum.left)] +
zdev.right[1:1length(zsum.right)]
#ztotal.ss=sum((y-mean(y))~2)
xcp=round ((xtotal.ss-(xtotal.dev)) / BOF , 6);
ximp=round( (xtotal.ss-(xtotal.dev)) / xtotal.ss ,6)
zcp=round ((xtotal.ss-(ztotal.dev)) / BOF , 6);
zimp=round( (xtotal.ss-(ztotal.dev)) / xtotal.ss ,6)
bof.result=data.frame(xdev.left, xdev.right ,
ximp, xcp , xtotal.dev, xtotal.ss);
gof .result=data.frame(zdev.left, zdev.right ,
zimp, zcp , ztotal.dev, xtotal.ss )
}
# Ikinci partition igin segilen noktanin

# x vektoriindeki sirasini verir
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sira.0=which.min(bof.result[,5])
z.sira.0=which.min(gof.result[,5])

# Ikinci partition point olarak segilen knot
p.point.1=x[order(bof.result[,5])[1] ] ;
sira.l=which(sort(x)==p.point.1)

sira.2=sira.1-1

z.point.1=z[order(gof.result[,5]) [1]]
z.sira.1=which(sort(z)==z.point.1)

z.sira.2=z.sira.1-1

candi=((sort(x) [sira.1]+sort(x) [sira.2])/2) [1]
z.candi=((sort(z) [z.sira.1]+sort(z) [z.sira.2])/2) [1]

if (min(gof.result[,5]) <min(bof.result[,5])){candi=z.candi
bak=2

leaves23=rbind(gof.result[z.sira.0,])

zz=z[z<candi] ## NODE 5

yz=ylz<candi] ## NODE 5

zleft.mean=mean(y[z<candi]) ;

zleft .mse=gof .result[z.sira.0,] [1]/length(yz)
zz.r=z[z>=candi] ## NODE 4

yz.r=y[z>=candi] ## NODE 4

zright .mean=mean(y[z>=candil]) ;

zright .mse=gof .result[z.sira.0,][2]/length(y[z>=candi])
reps=length(yz.r)
leaves23[,7:10]=cbind(zleft.mean,zright.mean,zleft .mse,zright.mse)
colnames (leaves23) [7:10]=c("left.mean","right.mean",
"left.mse","right.mse")

print (gof .result) ;print( data.frame(zz.r , yz.r)) ;
print(data.frame( sira.0,sira.l,sira.2, p.point.1) ) ;
print (leaves23) %}

else{candi=candi

bak=1
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leaves23=rbind (bof.result[sira.0,])
xx=x[x<candi] ## NODE 5
yx=y[x<candi] ## NODE 5
xleft.mean=mean(y[x<candil]) ;
xleft.mse=bof.result[sira.0,][1]/length(yx)
xright.mean=mean(y[x>=candi]) ;
xright .mse=bof.result[sira.0,][2]/length(y[x>=candi])
xx.r=x[x>=candi] ## NODE 4
yx.r=y[x>=candi] ## NODE 4
reps=length(yx.r)
leaves23[,7:10]=cbind(xleft.mean,xright.mean,xleft .mse,xright.mse)
colnames (leaves23) [7:10]=c("left.mean", "right.mean",
"left.mse", "right.mse")
print(bof.result) ; print(data.frame( xx.r,yx.r));
print( data.frame(sira.0,sira.1l,sira.2,p.point.1)) ;
print (leaves23) }
# Kaginci siradaki x degerlerinin en kiigik
# bof degerini verdigini gosterir.
# En kiicik bof degerini veren x lerin, vektordeki sirasi ;
order ((bof.result[,5]))
i=1
while (order (bof.result[,5]) [i]1<6 | order(bof.result[,5])[i]l>n-5)
i=i+1
x[order (bof.result[,5]) [i]] ; knot= x[order(bof.result[,5]) [i]]
zz=z[z<candi] ## NODE 5
yz=ylz<candi] ## NODE 5
zz.r=z[z>=candi] ## NODE 4
yz.r=y[z>=candi] ## NODE 4
xx=x[x<candi] ## NODE 5
yx=y[x<candi] ## NODE 5
xx.r=x[x>=candi] ## NODE 4
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yx.r=y[x>=candi] ## NODE 4
criteria2=data.frame( imp.z=zimp[z.sira.0], imp.x=ximp[z.sira.0],
cp.z=zcplz.sira.0] , cp.x=xcplz.sira.0])
return(list(leaves23=1eaves23,zz=zz, zz.r= zz.r,yz=yz,
yZ.r=yz.r,XX=XX,JX=yX,XX.Ir=XX.Tr,yX.r=yX.r,
candi=candi,bak=bak,criteria2=criteria2))
}
F=F(left.x,left.y,right.x,right.y,left.z,right.z,zleft.y,zright.y);F
decide=function(F){
if (F$bak==1){ if (F$bak==1 &
dim(data.frame (F$xx.r, F$yx.r))[1] > dim(data.frame (F$xx,F$yx)) [1])
{d=data.frame(F$xx.r,F$yx.r, F$zz.r) ; d
} else{d=data.frame(F$xx,F$yx, F$zz) ;d}
} else{
if (F$bak==2){
if( dim(data.frame(F$zz.r,F$yz.r)) [1] > dim(data.frame(F$zz,F$yz)) [1])
{d=data.frame(F$zz.r ,F$yz.r ,F$xx.r) ;d
} else{d=data.frame(F$zz,F$yz,F$xx) ;d}
1}
return(list(d=d))
} ; R=decide (F) ;R ; dim(R$d)
tree=rbind(tree, F$leaves23) ;tree
cp.change=(tree[1,6]- (tree[2,1]+tree[2,2]+treel1,2]))/(2*%treel[1,6])
agac=function(tree)q
if(dim(tree) [1]==2) {tree[l,4]=cp.change ;tree} else { tree}
return(tree)
} ; agac(tree)
#SONUC
zdev.left zdev.right zimp ZCp ztotal.dev xtotal.ss
7 2.017797 0.1793333 0.063998 0.1037537 2.197130 2.347356
2 0.755055 0.9258737 0.166948 0.1435100 1.680929 2.017797
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left.mean right.mean left.mse right.mse
1.034100 1.1566667 0.06725989 0.01195556
1.140067 0.9281333 0.05033700 0.06172492
#Check if correct

rpart (cd”A+B) ; summary (rpart (cd“A+B))

NOT: if/else komutlar1, sayfa marjinleri yiiziinden iki satira boliinerek
yazilmigtir. Bu bakimdan, programi R-Software konsoluna yazarken tek satirda

yazilmasi tavsiye edilir, aksi hali sorun ¢ikartabilmektedir.
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Ek-3 Cd yanit degiskeninin, tek degisken kullanarak M ARS mo-

delinin olusturmasinda kullanilan R kodlar:

cd—(1.195 0.990 1.195 1.395 0.597 0.990 1.399 0.597 1.395 1.199 0.996 0.597
1.195 0.999 0.996 0.598 1.200 0.990 0.996 0.999 1.198 1.199 1.395 1.200 1.200
1.198 1.198 0.990 1.192 1.395 0.988 1.192 1.192 1.199 0.790 0.990 1.198 0.990
0.996 0.992 1.584 0.993 0.992 0.598 0.996)
~=0-10-10-110-11100-1101-11-101-1111101-1-111-1
-1000-10-1100-1)
x=(111-1-111-1-110-1100-1-110011-1-1-1-1-100-1101
0101000-110-10)

single.mars=function(y,z) {
R.m<-function(z,t) ifelse(t>=z, t-z, 0)
R.j<-function(t,z) ifelse(z>=t, z-t, 0)
coef.1=1m(cd”R.m(z,0)+R.j(0,z))$coef
coef.2=1m(cd"R.m(z,-1)+R.j(-1,2)) $coef
coef.3=1m(cd”R.m(z,1)+R.j(1,z))$coef
coef.mat.z=data.frame(coef.1,coef.2,coef.3) ;coef.mat.z
for(i in 1:3) {

if (any(is.na(coef.mat.z[i,]1))){

# print(which((is.na(coef.mat.z[i,]1))))

coef .matz=coef .mat.z[which(any(!is.na(coef .mat.z[i,])))]
y.fitz= coef.matz[1l,1]+coef .matz[2,1]*R.m(z,0)+coef .matz[3,1]*R.j(0,z)
)
fit.1=1m(cd"R.m(z,0)+R.j(0,2))
fit.2=1m(cd"R.m(z,-1)+R.j(-1,2))
fit.3=1Im(cd"R.m(z,1)+R.j(1,2))
rss.l=sum((y-predict(fit.1))~2)
rss.2=sum((y-predict (fit.2))~2)
rss.3=sum((y-predict (fit.3))"2)
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rss=c(rss.1, rss.2, rss.3)

for (i in 1:3){

Penalty=2

nTerms=1length(coef.1)

nCases=length(cd)

nKnots =(nTerms-1) / 2

cost = nTerms + Penalty * nKnots

gcv=(rss/nCases)/(1-cost/nCases) **2

mygcv=min(gcv)

myrss=min(rss)

}

fit=function(mygcv,gcv){

if (mygcv==gcv[1]) { model=fit.1; r.sq=summary(fit.1)$r.sq

} else {if (mygcv==gcv[2] ) {model=fit.2; r.sq=summary(fit.2)$r.sq
} else{if (mygcv==gcv[3]) {model=fit.3; r.sq=summary(fit.1)$r.sq }}}

return(list(model=model,r.sq=r.sq))}

return(list (fit (mygcv,gcv), gcv=min(gcv), rss=min(rss)))

}

#SONUC

single.mars(cd,z)

[[1]1]

[[111$model

Call:

Im(formula = c¢d ~ R.m(z, 0) + R.j(0, z))

Coefficients:

(Intercept) R.m(z, 0) R.j(0, z)
0.9281 0.2119 0.2285

[[1]11$r.sq

[1] 0.2075075

$gcv

[1] 0.05231987
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$rss

[1] 1.860262

Ek-4 Cd yanit degiskeninin, iki degisken kullanarak MARS mo-

delinin olusturmasinda kullanilan R kodlar:

y=cd ; x=A ;z=B
multiple.mars=function(y,z,x){
R.m<-function(z,t) ifelse(t>=z, t-z, 0)
R.j<-function(t,z) ifelse(z>=t, z-t, 0)
coef.1=1m(cd"R.m(z,0)+R.j(0,z) ) $coef
coef.2=1m(cd”R.m(z,-1)+R.j(-1,z)) $coef
coef.3=1m(cd”R.m(z,1)+R.j(1,z))$coef
coef.4= 1m(cd"R.m(x,0)+R.j(0,x))$coef
coef.5= Im(cd™R.m(x,-1)+R.j(-1,x))$coef
coef.6= lm(cd™R.m(x,1)+R.j(1,x))$coef
coef .mat.z=data.frame(coef.1,coef.2,coef.3) ;coef.mat.z
coef .mat.x=data.frame(coef.4, coef.5,coef.6) ;coef.mat.x
for(i in 1:3) {

if (any(is.na(coef.mat.z[i,]))){

# print(which((is.na(coef.mat.z[i,]))))

coef .matz=coef .mat.z[which(any(!is.na(coef.mat.z[i,])))]
y.fitz= coef.matz[1l,1]+coef .matz[2,1]*R.m(z,0)+coef.matz[3,1]*R.j(0,z)
1}
for(i in 1:3) {

if (any(is.na(coef.mat.x[i,]))){

# print(which((is.na(coef.mat.x[i,]))))

coef .matx=coef .mat.x[which(any(!is.na(coef .mat.x[i,]1)))]
y.fitx=coef .matx[1,1]+coef .matx[2,1]*R.m(x,0)+coef .matx[3,1]*R.j(0,x)
I
fit.1=1m(cd"R.m(z,0)+R.j(0,2z)) ;fit.2=1Im(cd"R.m(z,-1)+R.j(-1,2))

117



fit.3=1Im(cd"R.m(z,1)+R.j(1,2z)) ;fit.4=1Im(cd"R.m(x,0)+R.j(0,x))
fit.5=1Im(cd"R.m(x,-1)+R.j(-1,x));fit.6=1Im(cd"R.m(x,1)+R.j(1,x))
rss.l=sum(fit.1%res"2) ;rss.2=sum(fit.2%res"~2)
rss.3=sum(fit.3%res"2) ;rss.4=sum(fit.4$res"~2)
rss.5=sum(fit.5%res~2) ;rss.6=sum(fit.6%res"2)
rss=c(rss.1, rss.2, rss.3, rss.4, rss.5, rss.6)
for (i in 1:6){
Penalty=2
nTerms=length(coef.1)
nCases=length(cd)
nKnots =(nTerms-1) / 2
cost = nTerms + Penalty * nKnots
gcv=(rss/nCases)/(1-cost/nCases) **2
mygcv=min(gcv)
myrss=min(rss)
}
fit=function(mygcv,gcv){
if (mygcv==gcv[1]) { model=fit.1; r.sgq=summary(fit.1)$r.sq
} else {if (mygcv==gcv[2] ) {model=fit.2; r.sq=summary(fit.2)$r.sq
} else{if (mygcv==gcv[3]) {model=fit.3; r.sgq=summary(fit.1)$r.sq
} else{ if(mygcv==gcv[4]) {model=fit.4;r.sq=summary(fit.4)$r.sq
} else{ if(mygcv==gcv[5]) {model=fit.5;r.sq=summary(fit.5)$r.sq
telse { if (mygcv==gcv[6]) {model=fit.6;r.sq=summary(fit.6)$r.sq
33}
return(list(model=model,r.sq=r.sq))}
return(list(fit (mygcv,gcv), gcv=min(gcv), rss=min(rss)))
}
#SONUC
multiple.mars(cd,z,x)
[[11]
[[1]1]$model
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Call:

Im(formula = cd ~ R.m(z, 0) + R.j(0, z))

Coefficients:

(Intercept) R.m(z, 0)
0.9281 0.2119

[[1]118r.sq

[1] 0.2075075

$gcv

[1] 0.05231987

$rss

[1] 1.860262

R.j(0, z)
0.2285
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Ek-5 MARS Modelleri- ANOVA
1- Cd- MARS Model 2 - Birim sayis1 0 - Etkilesim Var

N: 45.00 R"2: 0.83806
Ortalama= 1.07496 ADJ R~2: 0.81730

PARAMETRE TAHMIN S.H. T-ORANI  P-DEGERI
Sabit 0.62873 0.04031 15.59935 0.00000
Taban Fonksiyon 1 0.52933 0.05700 9.28655 0.00000
Taban Fonksiyon 2 0.75293 0.05700 13.20935 0.00000
Taban Fonksiyon 3 -0.54100 0.04415 -12.25312  0.00000
Taban Fonksiyon 4 0.29940 0.03122 9.58995 0.00000
Taban Fonksiyon 5 -0.30080 0.04415 -6.81282 0.00000
F-hesap = 40.36568
P-olasiligi = 0.00000 HATA K.T. = 0.38013
S.D. =[5, 391 REGRESYON K.T.= 1.96722

2- Cd-MARS Model 3 - Birim Sayisi 1 - Etkilesim Var

N: 45.00 R"2: 0.81993
Ortalama: 1.07496 ADJ R"2: 0.80192

PARAMETRE TAHMIN S.H. T-ORANI  P-Degeri
Sabit 0.67497 0.03885  17.37200 0.00000

Taban Fonksiyon 2 0.70670 0.05719 12.35664 0.00000
Taban Fonksiyon 3 -0.52166 0.04256 -12.25629 0.00000
Taban Fonksiyon 4  0.28006  0.02747 10.19356  0.00000
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Taban Fonksiyon 6  0.52423 0.06019 8.70922  0.00000
F-Degeri = 45.53282

P-0Olasiligi = 0.00000 HATA K.T. = 0.42270
S.D. = [ 4, 40 ] REGRESYON K.T. = 1.92466

3- Zn- MARS Model 1- Birim sayis1 0- Etkilesim Yok

N: 45.00 R~2: 0.82557

Ortalama: 65.08958 ADJ R~2: 0.81281
PARAMETRE TAHMIN S.H. T-ORANI  P-Degeri

Sabit 117.565832 4.91257  23.93012 0.00000

Taban Fonksiyon 1 -40.11579 6.43206 -6.23685 0.00000
Taban Fonksiyon 2 -75.27046 6.43206 -11.70239 0.00000
Taban Fonksiyon 3 -42.01996 5.57033 -7.54354 0.00000

F-Degeri = 64.68305

P-0Olasiligi = 0.00000 HATA K.T. = 12721.70416
S.D. = [ 3, 41 ] REGRESYON K.T. = 60210.63039

4- Zn- MARS Model 2 - Birim sayis1 0 -Etkilegim Var

N: 45.00 R~2: 0.99493
Ortalama: 65.08958 ADJ R™2: 0.99413
PARAMETRE TAHMIN S.H. T-ORANI P-Degeri
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Sabit 131.56030 0.98614 133.40905 0.00000

Taban Fonksiyon 1 -77.48789 1.70805 -45.36634 0.00000

Taban Fonksiyon 2 -89.73809 1.39462 -64.34611 0.00000

Taban Fonksiyon 3 -98.71499 2.14925 -45.93004 0.00000

Taban Fonksiyon 5 19.36400 0.71642 27.02900 0.00000

Taban Fonksiyon 6 14.68910 1.30454 11.25995 0.00000

Taban Fonksiyon 7 6.55587 0.65743 9.97199 0.00000

F-Degeri = 1243.60836

P-0Olasiligi = 0.00000 HATA K.T. = 369.54107

s.D. = [6, 381 REGRESYON K.T. = 72562.79349

5- Zn- MARS Model 3 - Birim sayis1 1 -Etkilesim Var

N: 45.00 R~2: 0.99493

Ortalama: 65.08958 ADJ R~2: 0.99413
PARAMETRE TAHMIN S.H. T-ORANI P-Degeri

Sabitt 131.56030 0.98614 133.40905 0.00000

Taban Fonksiyonu 1 -77.48789 1.70805 -45.36634 0.00000

Taban Fonksiyonu 2 -89.73809 1.39462 -64.34611 0.00000

Taban Fonksiyonu 3 -84.02589 1.70805 -49.19410 0.00000

Taban Fonksiyonu 5 92.44868 2.60909 35.43335 0.00000

Taban Fonksiyonu 6  43.40289 2.41554 17.96816 0.00000

Taban Fonksiyonu 7 19.66759 1.97228 9.97199 0.00000

F-Degeri = 1243.60836

P-Olasiligi = 0.00000 HATA K.T. = 369.54107

s.D. = [6, 381 REGRESYON K.T.= 72562.79349
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6- Pb- MARS Model 1 - Birim sayis1 0 -Etkilesim Yok

N: 45.00 R™2: 0.62341

Ortalama: 27.37253 ADJ R~2: 0.60548
PARAMETRE TAHMIN S.H. T-ORANI P-Degeri

Sabit 18.32663 3.87899 4.72433 0.00003

Taban Fonksiyonu 1 17.52866 2.74286 6.39066 0.00000
Taban Fonksiyonu 2 25.44530 4.75077 -5.35604 0.00000

F-Degeri = 34.76381

P-0Olasiligi = 0.00000 HATA K.T.= 9479.32335
S.D.= [ 2, 42 1] REGRESYON K.T. = 15692.25760

7- Pb- MARS Model 2 - Birim sayis1 0 -Etkilesim Var

N: 45.00 R~2: 0.85190

Ortalama: 27.37253 ADJ R~2: 0.84107
PARAMETRE TAHMIN S.H. T-RATIO P-Degeri

Sabit 9.84387 2.24751 4.37990 0.00008

Taban Fonksiyonu 1  34.65768 2.33568 14.83837 0.00000
Taban Fonksiyonu 2 -30.64019 2.69701 -11.36080 0.00000
Taban Fonksiyonu 3 -20.74683 2.69701 -7.69253 0.00000

F-Degeri = 78.61464

P-0Olasiligi = 0.00000 HATA K.T.= 3727.85808
S.D.= [ 3, 41 ] REGRESYON K.T. = 21443.72287
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Ek-6 Toz ve Toprak Veri seti

Tramvay Tagit Cd-toz Pb-toz Zn-toz Cd-toprak Pb-toprak Zn-toprak
Istasyon

12 1212 1.392 33.579 118.735 1.394 17.650 47.401 Uludnder

12 1212 1.392 35.170 120.326 1.394 17.247 47.600 Uludnder

12 1212 1.392 35.766 119.928 1.394 17.650 48.397 Uludonder

12 1212 1.077 30.946 111.287 1.376 19.657 51.711 Uludnder

12 1212 1.077 29.565 110.300 1.180 20.443 51.907 Uludnder

12 1212 1.879 30.551 108.721 1.376 21.426 52.497 Uludonder

12 1212 1.198 33.520 106.451 1.393 18.478 50.358 Uludonder

12 1212 1.398 34.119 107.250 1.393 19.274 51.354 Uludnder

12 1212 1.398 33.520 106.451 1.194 19.473 51.154 Uludnder

12 1212 0.996 25.256 91.000 0.992 16.234 44.436 Uluonder
12 1212 0.996 22.667 89.407 0.992 15.837 44.039 Uludnder
12 1212 0.996 23.862 90.601 0.992 16.234 44.436 Uludnder

12 1212

0
0
0

12 1212 0.996 22.477 111.554 0.983 14.315 42.649 Uludnder
0.996 23.473 110.558 0.983 14.315 42.256 Uludnder
0

12 1212 0.996 22.676 110.159 0.983 15.101 42.453 Uludnder
12 1212 1.000 23.557 97.161 1.000 14.167 42.000 Uludnder
12 1212 1.000 21.558 97.161 1.000 13.967 42.200 Uludnder
12 1212 1.000 22.957 97.161 1.000 13.967 42.000 Uludnder
18 420 0.995 22.191 87.744 0.995 13.099 40.191 Baglar

18 420 0.796 23.186 88.142 0.995 12.303 39.395 Baglar
18 420 0.995 25.574 88.739 0.796 13.695 39.395 Baglar
18 420 0.992 17.236 88.527 0.797 11.919 39.243 Baglar
18 420 0.992 18.228 89.321 0.598 10.724 39.641 Baglar
18 420 1.191 17.434 89.718 0.598 11.122 39.442 Baglar
18 420 0.990 20.153 88.462 1.377 12.553 37.365 Baglar
18 420 0.990 20.153 87.671 1.377 14.913 38.151 Baglar
18 420 0.990 19.559 88.264 1.377 13.340 37.955 Baglar
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18
18
18
18
18
18
18
18
18
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

420
420
420
420
420
420
420
420
420
1206
1206
1206
1206
1206
1206
1206
1206
1206
1206
1206
1206
1206
1206
1206
1206
1206
1206

O O O O O O o o o

.994

.994

.994

.T97

.T97

.T97

.799

.799

.799

1.

.198
.999
.198
.186
.186
.988
.194
.194
.194
L7197
.598
.598
.187
.989
.989
.190
.190
190

15.
15.
14.
20.
18.
20.
23.
22.
23.

30.

31

31.
25.
26.
26.
29.
32.
30.
28.
30.
27.

31

30.
30.
25.
24.
26.

079
278
483
294
301
094
548
749
747

.523
123
461
252
449
414
398
608
726
124
528
.217
426
030
562
967
753

100.616 0.595 10.278 37.874 Baglar

102.406 0.595 11.468 38.469 Baglar

101.810 0.595 11.270 37.874 Baglar

85.492 0.598 10.936
84.496 0.598 11.335
85.492 0.
94.667 0.
92.471 0.
91.472 0.

151.
151.
145.
146.
145.
146.
147.
147.
169.
170.
171.
153.
150.
151.
146.
143.
145.

923 152.586

987
588
455
245
455
041
433
035
163
162
560
481
712
503
230
849
833

598 11.534
597 10.713
597 11.509
597 10.514

41
40.
41
39.
39.
38.

.085 Baglar

088 Baglar

.284 Baglar

801 Baglar
403 Baglar
408 Baglar

1.395 9.929 45.627 Doktorlar

1.
1.

o O O

395 9.331 46.822 Doktorlar

395

.194
.194
.194
.198
.198
.198
.994
.994
.994
.192
.192
.192
.996
.996
.996

11.
11.

11

11.
10.
10.
11.
10.

11

10.
10.
10.
12.
10.

523
511

.b11

113
749
350
149
110

.303

707
301
102
288
728

45.
45.
44,
45.
50.
49.
50.
46.
45.
45.
49.
48.
49.
46.

627
780
188
780
120
720
120
142
744
943
285
490
086
433

Doktorlar
Doktorlar
Doktorlar
Doktorlar
Doktorlar
Doktorlar
Doktorlar
Doktorlar
Doktorlar
Doktorlar
Doktorlar
Doktorlar
Doktorlar

Doktorlar

9.333 47.828 Doktorlar

9.732 45.835 Doktorlar

984 0.993 38.482 101.052 1.189 64.982 120.912 Alandni

984 0.993 36.695 99.067 0.991 65.576 120.515 Alanéni

984 0.993 36.695 99.861 0.991 66.766 120.714 Alanéni

984 0.998 29.508 105.988 1.184 49.118 129.293 Alandni
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12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

984
984
984
984
984
984
984
984
984
984
984
984
984
984
1284
1284
1284
1284
1284
1284
1284
1284
1284
1284
1284
1284
1284
1284
1284
1284
1284

SO O O O O O O o o o o o o o

.998

.998

.994

.994

.994

.997

.997

.997

.793

.793

.991

.990

.990

.990

1

.183
.183
.183
.50b
.703
.50b
.182
.182
.182
.999
.999
.198
.189
.189
.189
.986
.986

30.
29.
32.
35.
35.
36.
36.
38.
37.
36.
41
50.
49.
49.

38.
38.

41

42.
43.
43.
39.
39.
39.

41
41

41.
39.
39.
39.
32.
34.

506
508
975
362
560
118
717
112
841
453

.014

838

254

650

209
012
.560
343
729
729
557
557
361
.509
.309
109
404
801
404
987
566

106.587 1.184 49.513

106.387 1.184 50.105

119.308 0.987 42.020

119.507 1.185 42.218

118.115 1.185 41.626

99.422 0.
98.425 1.
99.023 1.
93.000
91.414
93.992
98.377
96.991
98.773
138.
137.
138.
140.
139.
139.
131.
131.
129.
129.
128.
126.
157.
158.
157.
132.
133.

o O O O o o

577
197
183
594
604
802
968
968
604
619
820
623
551
740
352
945
340

988 50.
185 51.
185 51.

.992 45.
.992 47,
.992 46.
.990 41.
.990 41.
.990 42,

925
320
715
800
586
594
139
337
326

1.390 14.261

1.

390

.390
77
7T
77
.000
.000
.000
.995
.194
.995
.993
.993
.192
.199
.199

126

16.
15.
20.

21

23.
15.
14.
14.

21

20.

21

15.
16.
16.

21
21

644
055
956

.937

310
963
764
764

.862

667

.862

660
455
653

. 749
.949

132.452 Alanoni

130.478 Alanoni

129.319 Alandni

130.701 Alandni

128.332 Alanoni

134.
133.
135.
120.
122,
121.
132.
133.
134.
58.
58.
59,
60.
60.
60.
60.
61.
60.
65.
64.
65.
63.
62.
62.
62.
61.

703
518
690
437
222
230
621
610
402
368
567
162
416
220
220
188
388
188
486
490
884
369
972
773
310
711

Alanoni
Alanoni
Alanoni
Alanoni
Alanoni
Alanoni
Alanoni
Alanoni
Alanoni
Atatirk
Atatirk
Atatiirk
Atatiirk
Atatirk
Atatiirk
Atatiirk
Atatirk
Atatirk
Atatiirk
Atatiirk
Atatirk
Atatiirk
Atatiirk
Atatirk
Atatirk

Atatirk

Lisesi
Lisesi
Lisesi
Lisesi
Lisesi
Lisesi
Lisesi
Lisesi
Lisesi
Lisesi
Lisesi
Lisesi
Lisesi
Lisesi
Lisesi
Lisesi

Lisesi



12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
18
18
18
18
18
18
18
18
18
18
18
18

1284 0.986 32.987 133.340 1.399

174 0.990 54.984
174 0.792 57.557
174 0.792 57.557
174 0.828 55.582
174 0.828 47.636
174 0.828 47.636
174 0.800 35.959
174 0.800 35.360
174 0.800 35.560
174 0.793 42.623
174 0.793 42.226
174 0.793 48.857
174 0.599 40.070
174 0.798 41.068
174 0.599 40.270
174 0.797 41.011
174 0.797 41.210
174 0.797 40.413
1100 1.393 44.336
1100 1.393 42.943
1100 1.194 46.525
1100 0.994 51.448
1100 0.994 53.038
1100 0.994 49.858
1100 1.599 68.326
1100 1.599 70.125
1100 1.599 69.725
1100 0.789 54.186
1100 0.789 53.398
1100 0.789 54.778

36.
36.
35.
33.
32.
32.
28.
28.
29,
40.
40.
39.
36.
36.
36.
40.
39.
39.

810
414
820
174
7T
976
794
994
194
230
032
834
113
313
512
247
052

1

1.

1.

1.

1.

734
542
734
576
576

.b76

L7167

L7167

.71

.393

.393

.393

.386

.584

.584

1.

1.

395
395

251 1.395

76.204 2.183

74

75.
98.
98.
98.

71
71

70.
98.
98.
99.

.811
209
986
589
191
. 757
.T57
758
580
580
369

2

2.
1.

.183
183
198
.198
.397
.793
.594
.594
.194
.393
.194

7
9
8
8
8.
7
9
8
8

21.150

.484 38.
.218 37.
.447 38.
.046 43.
834 42.
.2b8 43.
.197 43.
.412 43.
.412 42,

62.710 Atatiirk Lisesi

543
965
736
744
956
350
598
401
616

0GU
0GU
0GU
0GU
0GU
0GU
0GU
0GU
0GU

10.514 42.388 0GU

9.718 42.388 0GU

9.320 42.189 0GU

8.086 46.931 0GU

6.898 47.129 0GU

9.076 46.337 0GU

10.132 42.057 0GU

9.933 41.658 0GU

8.737 42.057 0GU
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74.004 54.387

1.
4.
69.
69.
69.
70.
70.
70.
70.
73.
78.

821 54.784

600
029
428
428
897
897
499
588
574
995

55.
50.
50.
49.
64 .
64.
64.
55.
56.
55,

181
299
100
501
355
555
3556
334
728
334

Atatiirk
Atatiirk
Atatirk
Atatirk
Atatiirk
Atatiirk
Atatirk
Atatiirk
Atatiirk
Atatirk
Atatirk

Atatirk

Blv
Blv
Blv
Blv
Blv
Blv
Blv
Blv
Blv
Blv
Blv

Blv

CGilek
CGilek
Gilek
Gilek
CGilek
CGilek
Gilek
CGilek
CGilek
Gilek
Gilek
CGilek

O OO OO OO OO O O O



18
18
18
18
18
18
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

1100 0.793
1100 0.793
1100 0.793
1100 0.786
1100 0.786
1100 0.786
8562 1.993
852 1.793
852 1.793
862 1.194
862 1.194
852 1.194
852 1.193
8562 1.193
852 1.193
852 0.794
852 0.794
852 0.794
852 1.197
862 1.197
862 1.197
852 0.796
852 0.796
8562 0.796
1530 1.360
1530 1.360
1530 1.360
1530 1.946
15630 1.946
15630 1.946
1530 1.992

48.
49.
48.

71

69.
69.

26.
27.
26.
28.
28.
28.
22.
22.
21
28.
30.
28.
31
32.
29.
22.
21
21

16.
16.
16.
18.
18.
16.
13.

926
521
332
.929
767
767
703
900
703
811
015
811
233
631

.438

268
451
070

.485

083
689
255

.857
.658

571
769
966
909
712
542
313

81

82.
82.
85.
85.
84.
145.
145.
144 .

101
101

100.
103.
104.
104.

.665

061
061
726
332
742
251
650
254

.452
.850

656
579
573
374

1
1

.198
.198
.198
.195
.195
.195
.182
.182
.182
.381
.381
.381
.792
.992
.792

71.
97.
71.
76.
76.
76.
44,
46.
45.
41.
41.
43.
41.
41.
38.

185
391
384
660
062
062
790
774
584
584
387
951
194
990
605

56.498

55.300

55.500

52.789

53.187

53.586

156.
153.
154.
127.
129.
128.
127.
129.
127.

882
114
899
022
389
008
664
058
863

Atatirk Blv
Atatirk Blv
Atatirk Blv
Atatirk Blv
Atatirk Blv
Atatirk Blv
Vignelik
Vignelik
Vignelik
Vignelik
Vignelik
Vignelik
Vignelik
Vignelik

Vignelik

99.821 0.993 40.666 130.832 Vignelik

100.020 0.993 43.842 133.214 Vignelik

98.631 0.993 42.850 132.222 Vignelik

98.943 0.996 49.578 135.286 Vignelik

98.943 0.996 48.582 137.478 Vignelik

98.544 0.996 49.977 137.278 Vignelik

106.
107.
108.
36.
37.
36.
33.
33.
33.
32.

070
463
060
371
161
568
938
938
149
072

1.
0.
0.

199
999
999

.188
.188
.188
.181
.181
.181
.985

1928

40.
41.
41.
46.
48.
48.
25,
25.
24.
23.

942 133.120 Vignelik

142 130.722 Vignelik

342
437
631
232
145
740
551
384

132.920 Vignelik

71.201

71.400

71.201

81.197

79.810

78.818

68.069

Opera
Opera
Opera
Opera
Opera
Opera

Opera

Gilek
Gilek
CGilek
CGilek
Gilek
Gilek

o O O O O o



12
12
12
12
12
12
12
12
12
12
12

1530
1530
1530
1530
1530
1530
1530
1530
1530
1530
1530

o O O O O o o o o

.793
.992
.798
.798
.798
.992
.992
.992
.993
.993
.993

13.
13.
13.
13.
14.
14.
14.
14.
18.
18.
18.

313
712
928
329
127
247
049
049
711
711
115

31
31

30.

31

30.
32.
34.
33.
35.
33.
35.

.076
.673

913

.b12

714
923
113
320
508
521
905

O O O O o o

.985
.985
.000
.000
.000
.790
.790
.988
.990
.990
.990

129

24.
25.
31.
31.
31.
24.
25,
24.
28.
28.
29,

178
170
960
360
960
666
061
468
866
669
658

67.
67.
4.
75.
75.
73.
4.
72.
4.
73.
4.

871
672
973
173
773
503
096
910
228
436
030

Opera
Opera
Opera
Opera
Opera
Opera
Opera
Opera
Opera
Opera

Opera



