MULTI-RESOLUTION MODEL PLUS CORRECTION PARADIGM FOR TASK
AND SKILL REFINEMENT ON AUTONOMOUS ROBOTS

by
Cetin Merigli
B.S. in Computer Engineering, Marmara University, 2002
M.S. in Computer Engineering, Bogazici University, 2005

Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

Graduate Program in Computer Engineering
Bogazic¢i University
2011

1

MULTI-RESOLUTION MODEL PLUS CORRECTION PARADIGM FOR TASK
AND SKILL REFINEMENT ON AUTONOMOUS ROBOTS

APPROVED BY:

Prof. H. Levent Akim

(Thesis Co-supervisor)

Prof. Manuela Veloso

(Thesis Co-supervisor)

Prof. Ethem Alpaydino

Asst. Prof. Hatice Kose Bager

Assoc. Prof. Yagmur Denizhan

DATE OF APPROVAL: 15.06.2011

11

ACKNOWLEDGEMENTS

I would like to thank many people who have supported me along the way and

who have helped facilitate this work in different ways.

First and foremost, I would like to thank my advisors. I would like to thank H.
Levent Akin for his way of broad thinking, and for always encouraging me to dare
to think different. He has played a key role in my transition from a fresh graduate
into a scientist over the past years. I would like to thank Manuela Veloso for her
guidance and passion. This thesis would not have been possible without Manuela
being a constant source of inspiration. Her supernatural ability to say “No” has
helped enormously to keep me focused and on track through the inevitable research

setbacks.

My sincere thanks go to my thesis committee: Ethem Alpaydin, Yagmur Deniz-
han, and Hatice Kose Bagci. I have learned almost all I know about machine learning
and experiment design from Prof. Alpaydin. Our conversations with Prof. Denizhan
had always been very inspiring and sparkling with her broad knowledge, and her
unconventional way of tackling research problems. Starting from the beginning of my
graduate life, Prof. Bagc1 had always been a good role model, and had influenced

me in many ways along the prickly path of becoming a researcher.

Parts of this thesis study were supported by The Scientific and Technologi-
cal Research Council of Turkey Programme 2214 and the Turkish State Planning
Organization (DPT) under the TAM Project, number 2007K120610.

I am deeply grateful to the entire CmpE family for their support, friendship,
camaraderie, and their unique notion of having fun. In particular, I would like to
thank Itir Karag, Ashh Uyar, Derya Cavdar, Gaye Geng, Yunus Emre Kara, Barig
Kurt, Suzan Bayhan, Didem Goziipek, and Giil Calikli for their invaluable support
throughout the years.

v

I would like to thank the members of COT! (a.k.a the Artistic Breakfast Club):
Tekin Mericli, Onur Dikmen, Yunus Durmus, Ahmet Yildirim, and Ismail A1 for
the best times of my short-lived musical career, and for the best artistic breakfast

sessions on the planet.

I would like to thank all the members of AlLab, particularly to Serhan Danig,
Akin Giinay, Abuzer Yakaryilmaz, Reyhan Aydogan, and Bagak Aydemir for their
invaluable support. Extra credit goes to Bagak for her enormous help with the for-

matting issues of the manuscript.

I would like to thank the members of the Cerberus team: Tekin Merigli, Kemal
Kaplan, Bulu¢ Celik, Can Kavakloglu, Barig Gokce, and Ergin Ozkucur for their
friendship and for collectively contributing to the Cerberus code base that enabled

the experiments of this thesis.

A big thank you goes to all the members of CORAL group for their invalu-
able support and constructive criticism throughout my thesis study. Somchaya
Liemhetcharat, Junyun Tay, and Brian Coltin receive special thanks for their contri-
butions to the CMurfs code base that played a key role in most of the experiments
in this thesis, their friendship, and the constant mental pressure they put on me that

kept me on track towards the end.

I would like to thank Joydeep Biswas for the mind-sizzling conversations and
for his good musical taste, and Stephanie Rosenthal for her support, friendship, and
proof-reading my manuscripts without a single complaint. I am grateful to Prof.
Changjiu Zhou and Prof. Rodrigo Ventura for all their support and constructive

feedback on my thesis defense presentation. Thank you all very much.

I would not be at where I am today if it was not for my family. I want to
thank my mom Birgiil and my dad Ismet for their endless love, and for having always
supported all my decisions in life without questioning me. My brother Tekin Merigli

receives my heartful thanks for being my oldest collaborator on many subjects and

for his endless support. His frightful but constructive criticism has set the bar very

high for me to meet his expectations.

Finally, my deepest thanks go to Bahar Karaoglu for bearing with me all these
years, and for her constant care and support that kept me sane throughout all the

ups and downs of graduate school. Words cannot capture my gratitude.

vi

ABSTRACT

MULTI-RESOLUTION MODEL PLUS CORRECTION
PARADIGM FOR TASK AND SKILL REFINEMENT ON
AUTONOMOUS ROBOTS

Robots need to be taught what type of tasks or skills they are expected to
perform, and how to perform those particular tasks or skills. However, there is no
universally accepted single approach for transferring the task and skill knowledge to
a robot. Among several popular approaches, the most widely adopted method for
transferring the task or skill knowledge to the robot is to develop an algorithm for
performing the task or skill in question. Such a development requires a model of
the system to be available. Moreover, despite that it usually is easier to develop a
simple algorithm to handle trivial cases, it becomes a time consuming process to keep
refining the algorithm by modifying the underlying model to handle more complex

situations.

Learning from Demonstration (LfD) is another popular approach for transfer-
ring the task and skill knowledge to the robot. Instead of explicit programming, a
teacher demonstrates the robot how to perform the task or skill and the robot records
the demonstrated action together with the perceived state of the system at the time
of demonstration. An execution policy is then derived out of the recorded demonstra-
tion data for reproducing the task or skill. Depending on the complexity of the task
or skill in question and the robotic platform to be used, providing sufficient number
of examples in order to be able to extract a generalized execution policy can be a

very time consuming process.

Vil

This thesis contributes a novel complementary corrective demonstration pa-
radigm called Model Plus Correction (M+C) for task and skill refinement on au-
tonomous robots. The M+C approach strikes a balance between model-based and
data-driven methods by combining them in a complementary manner. We assume
the availability of an algorithm capable of performing the task or skill in question
with limited success in terms of performance. Our approach utilizes a human teacher
who observes the partially successful execution of the task, and corrects the action of
the robot when the default algorithm is unable to select an appropriate action to be
executed. The collected demonstration data stamped with the state of the system at
the time of demonstration is then used to augment the default algorithm by modify-
ing the action computed by the algorithm according to a correction reuse function,

and the state of the system.

This thesis also introduces an algorithm for using the same complementary cor-
rective demonstration approach at multiple detail resolutions. The Multi-Resolution
Model Plus Correction (MRM+C) algorithm assumes that a set of detail levels are de-
fined with different state and action representations together with a different model-
based controller for each detail level are available at hand. The teacher provides
demonstration for which detail resolution to use at a particular state of the system in
addition to delivering corrective demonstration for the controller associated with the
current detail resolution. Having multiple detail resolutions with different complexi-
ties allows the system to use more detailed state and action representations and more
complex model-based controllers only when needed. Using a less detailed state and
action representation with a simpler controller makes it possible to cover the solution
space at a lower computational cost and using fewer number of demonstrations. The
learned detail resolution selection policy favors the least detailed resolution by default
and switches to a more detailed resolution if commanded to do so in a similar state

before.

We present experiment results where the M+C approach is first applied to a

complex biped walk stability improvement problem as an example to the skill refine-

viil

ment, and to a ball dribbling problem in a robot soccer environment as an example
to the task refinement. We also present experiment results where the MRM+-C ap-
proach is applied to a humanoid obstacle avoidance task on a robot soccer field.
Finally, we present an experimental analysis of the proposed algorithms in terms of
their robustness against uncertainty and the cost analysis of using multiple detail
resolutions over using a single detail resolution in a simulated version of the obstacle

avoidance task.

1X

OZET

OZERK ROBOTLAR UZERINDE GOREV VE BECERI
IYILESTIRME ICIN COKLU-COZUNURLUKLU MODEL
ARTI DUZELTME PARADIGMASI

Robotlar kendilerinden hangi gorev ve becerileri icra etmeleri beklendigi ve bu
gorev ve becerileri nasil gergeklestirecekleri konusunda bilgilendirmeye ihtiya¢ du-
yarlar. Bu bilgilendirmenin nasil yapilacagi konusunda iizerinde anlagilmig evrensel
bir metod hentiz bulunmamakla birlikte popiiler olarak kullanilan metodlar arasinda
en yaygin olani ilgili gorev ya da beceriyi gergeklestirebilecek bir algoritmanin gelistiril-
mesidir. Boyle bir algoritma gelistirmek, sistemin bir modelinin bulunmasini gerek-
tirir. Dahasi, basit durumlar i¢in gorevi yerine getirecek bir algoritma geligtirmek
kolay olsa da, algoritmanin varsaydigi modeli daha karmasik durumlar1 da kapsaya-
bilecek sekilde giincellemeye devam etmek giderek daha cok zaman alan bir siirece

dontigmektedir.

Gosterimden 6grenme (G(j), robotu programlamadan gorev ve beceri bilgisini
aktarmak icin kullanilan bir yontemdir. Bu yontemde robotu programlamak yerine
bir 6gretmen gorev ya da becerinin nasil icra edilecegini robota gosterir ve robot
bu gosterim-leri sistemin o anki durumu ile birlikte kaydeder. Bu iglemi takiben
gosterilen gorev ya da beceriyi tekrarlayabilmek icin kaydedilen veri tlizerinden bir
icra politikas1 olugturulur. So6z konusu gorev ya da becerinin karmagikhigina bagh
olarak diizgiin genellestirilmig bir icra politikast olusturabilmek i¢in gereken sayida

gosterimi robota sunmak cok zaman alici bir siireg¢ olabilir.

Bu tez, yeni bir tamamlayici diizeltici gosterim anlayigi olan Model Art1 Diizelt-
me (M+D) paradigmasimi bir gérev ve beceri bagarim iyilegtirme yontemi olarak
sunmaktadir. M+D yontemi model-tabanli ve veri-giidiimli yaklagimlar arasinda bir
denge kurarak bu yontemleri birbirlerini tamamlayacak sekilde birlestirmektedir. Bu
yontemde, s6z konusu gorev ya da beceriyi sinirhi bir bagarim ile gerceklestirebilen
bir algoritmanin var oldugunu varsayiyoruz. Yaklagimimiz, soz konusu gorevi mevcut
algoritma ile icra eden robotun eylemini algoritmanin yanlig bir karar almasi halinde
devreye girerek diizeltecek bir insan 6gretmen kullanmaktadir. Sistemin o anki du-
rumu ile damgalanarak saklanan gosterim bilgisi daha sonra bir diizeltim kullanimi
fonksiyonu ve sistem durumuna gore varsayilan algoritmanin hesapladigi eylemin uy-

gun bir sekilde degistirilmesinde kullanilir.

Bu tez ayrica ayni tamamlayic1 diizeltici gosterim yaklagiminin birden fazla
detay coziiniirliiginde kullanilabilmesi i¢in de bir algoritma sunmaktadir. Coklu-
Cozitniirlikli Model Art1 Diizeltme (CCM+D) algoritmasi her biri ayr1 detayda du-
rum ve eylem tanimlarina ve degisik karmagiklikta varsayilan algoritmalara sahip bir
dizi detay ¢oziintr-ligi tanimlanmig oldugunu varsayar. Daha az detayli bir durum
ve eylem tanimi ve daha az karmasik bir algoritmanin kullanilmasi, durum uzayinin
daha biiytik bir kisminin daha az hesaplama maliyeti ile kapsanmasini saglar. Gos-
terim sirasinda 6gretmen robota o anki detay ¢oziintirliigiinde diizeltici gosterim yap-
masinin yaninda hangi durumda hangi detay ¢oziintirliiginiin kullanilmasi gerektigi
konusunda da gosterimde bulunur. Farkli karmagiklik seviyelerine sahip birden ¢ok
detay coziintrliiginiin bulunmasi, sistemin daha detayli durum ve eylem tanimlar:
ve daha karmagik algoritmalar ancak gerektiginde kullanabilmesini saglar. Ogrenilen
detay sec¢im politikas1 on tanimli olarak en diigiik detay ¢oziintirliigiinii kullanmaya
caligir ve daha yiiksek bir detay ¢oziiniirliigiine ancak daha 6nce benzer bir durumda

ogretmen tarafindan detay ¢ozlintirliiglinti arttirma komutu verilmigse gecer.

x1

Sundugumuz deney sonuglart M+D yonteminin 6nce beceri iyilegtirmeye bir
ornek olarak karmagik bir iki ayakli yiirime eyleminin dengesini iyilestirme prob-
lemine uygulanmasiin, sonra da gorev iyilestirmeye bir ¢rnek olarak robot fut-
bolu ortaminda tanimlan-mig bir top stirme problemine uygulanmasinin sonuclarini
igeriyor. Bunlara ek olarak, CCM+D yonteminin bir insansi robotun bir robot fut-
bolu sahasinda engel savusturmasi problemine uygulanmasi ile ilgili deney sonuclar:
da sunuyoruz. Son olarak, onerilen algoritmalarin ortamdaki belirsizlikten ne kadar
etkilendikleri ve birden ¢ok detay ¢oziiniirliigii kullanmanin tek bir ¢oztiniirliik kullan-
maya gore hesaplamasal maliyet karsilastirmalar: tizerine bir deneysel analizi insansi
robot engel savusturmasi probleminin benzetim ortaminda modellenmig bir halini

kullanarak sunuyoruz.

pall

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iii
ABSTRACT vi
OZET ix
LIST OF FIGURES e xvi
LIST OF TABLES o xxi
LIST OF ABBREVIATIONS xxii
1. INTRODUCTION 1

1.1. Approach 4
1.1.1. Augmenting an Algorithm with Corrective Human Demonstration 4
1.1.1.1. How Can We Collect Corrective Human Demonstration? 4

1.1.1.2. How Can the Robot Reuse the Corrections Together

with the Algorithm? 5
1.1.2. Multi-Resolution Complementary Corrective Demonstration . 6
1.1.2.1. How Can We Reduce the Task Execution Cost? . . . 6

1.1.2.2. How Can We Provide Demonstration at Different De-

1.1.2.3. How Can the Robot Reuse the Multi-Resolution Cor-

rective Demonstration?o 7

1.1.3. Evaluation 8

1.2. Contributions 8
1.3. Reader’s Guide to the Thesis 9

2. BACKGROUND 11
2.1. Learning from Demonstration 11
2.2. Corrective Demonstration 12
2.3. Advice Operators 13
2.4. Related Worko 14
2.4.1. Task Learning 14

2.4.2. Skill Learning oL 15

xiil

2.4.3. Case-Based Reasoning 19

3. MODEL PLUS CORRECTION (M+C) PARADIGM 21
3.1. Model Plus Correction, 21
3.2. The Model 22
3.3. The Correction 23
3.4. Correction Reuse 23
3.5. Multi-Resolution Model Plus Correction Approach 24
3.5.1. State Definition oo 25
3.5.2. Action Definitiono 26
3.5.3. Default Controller 26
3.5.4. Correction Reuse Algorithm 27
3.5.5. The Detail Resolution Arbitrator 28
3.5.6. Correction Delivery: Training the System 28
3.5.7. Correction Reuse: Autonomous Execution 30

3.6. Discussion 33
4. SKILL REFINEMENT USING M+C 34
4.1. Modeling as a M+C Instance 36
4.1.1. State and Action Definitions 36
4.1.2. The Model 36
4.1.3. The Correction 36
4.1.4. Correction Reuse oL 37

4.2. Open-loop Biped Walking 38
4.2.1. Obtaining an Open-loop Walk 41

4.2.2. Corrective Demonstration Using Advice Operators for Offline

Improvement 42

4.3. Real-Time Corrective Demonstration 44
4.3.1. Corrective Demonstration Setup 46
4.3.2. Applying Correction in the Joint Space 49
4.3.3. Applying Correction in the Task Space 50

4.4. Closed-Loop Walking Using Playback And Corrective Demonstration 53
4.4.1. Associating a Single Sensor with Joint Space Correction . . . 54

Xiv

4.4.2. Associating Multiple Sensors with Task Space Correction . . . 57

4.5. Experimental Evaluation 58
4.6. Discussiono 62

. TASK REFINEMENT USING M+C 63
5.1. Problem Definition oo 63
5.2. Modeling as a M+C Instance 64
5.2.1. State and Action Definitions 64

5.2.2. The Model 65

5.2.3. The Correction 65

5.2.4. Correction Reuse L. 66

5.3. Free Space Modeling using Vision 66
5.4. Ball Dribbling Behavior 67
5.5. Action and Dribble Direction Selection 69
5.6. Corrective Demonstration 71
5.6.1. Correction Delivery 71

5.6.2. Correction Reuse 72

5.7. Experimental Evaluation 74

. TASK REFINEMENT USING MRM+C 80
6.1. Humanoid Obstacle Avoidance using MRM+C 80
6.1.1. Low Detail Resolution Case 82

6.1.2. Medium Detail Resolution Case 83

6.1.3. High Detail Resolution Case 84

6.1.4. Corrective Demonstration Setup 85

6.2. Experimental Evaluation 87

. EXPERIMENTAL ANALYSIS 91
7.1. Simulation Environment 000 91
7.2. Robustness Against Uncertainty 92
7.2.1. Uncertainty in Perception 92
7.2.1.1. Uncertainty in Free-space Detection 94

7.2.1.2. Uncertainty in Self-localization 95

7.2.2. Uncertainty in Action 96

XV

7.3. Experiment Results 96

8. CONCLUSION AND FUTURE WORK 101
8.1. Contributions 101
8.2. Future Directions 102
APPENDIX A: ROBOT SOCCER DOMAIN 104
A.1. Hardware Platform 105
A.2. Software Overview 106
A.2.1. Image Processing 106

A.2.2. Self Localization and World Modeling 107

A.2.3. Planning and Behavior Control 108

A.2.4. Motion Generation 108

REFERENCES o 109

Figure 2.1.

Figure 3.1.

Figure 3.2.

Figure 3.3.

Figure 3.4.

Figure 4.1.

Figure 4.2.

Figure 4.3.

Figure 4.4.

Figure 4.5.

Figure 4.6.

Figure 4.7.

XVl

LIST OF FIGURES

The schematic representation of the generic LfD system. 12
The schematic representation of the M+C system. 22
The schematic representation of the MRM+C framework. 25
The algorithm for training the MRM+C system. 30

The algorithm for the autonomous MRM+C execution. 32
Walk cycle phases: a) first single support, b) first double support,
¢) second single support, and d) second double support. 38
An example to the actuation error. L. 40
Distribution of the sensor values over the complete walk cycle for
a stable walk sequence. 41
Advice Operator Improvement (A-OPI) algorithm. 43
Initial and improved joint commands for hip roll joints generating
swinging motion while walking. 43
Sample torso orientation and accelerometer readings: a) a stable
walk sequence, and b) an unstable walk sequence. 44

Results of applying various smoothers on an example accelerom-

eter data. 45

Figure 4.8.

Figure 4.9.

Figure 4.10.

Figure 4.11.

Figure 4.12.

Figure 4.13.

Figure 4.14.

Figure 4.15.

Figure 4.16.

Figure 4.17.

Figure 5.1.

xXvil

The diagram for the real-time demonstration framework for policy

extraction. L 46

A snapshot from the software developed for delivering real-time

corrective demonstration to the robot. 48
A snapshot from a demonstration session. 49
Applying correction in the joint space. 50

Applying correction in the task space as feet position displace-

ment. ... 51
Kinematic configurations for the legs of the Nao robot. 52
The normal distributions fit on the received correction data ver-
sus the accelerometer readings for the single sensor - joint space

correction association.o 55

Algorithm for closed-loop walking using single sensor-joint space

correction association.o 56

Algorithm for closed-loop walking using multiple sensors-task space

correction association. 58

Performance evaluation results for the biped walk improvement

problem. 60

An example scenario for the dribbling challenge. 64

Figure 5.2.

Figure 5.3.

Figure 5.4.

Figure 5.5.

Figure 5.6.

Figure 5.7.

Figure 5.8.

Figure 5.9.

Figure 6.1.

Figure 6.2.

xviil

The environment as perceived by the robot: a) the color seg-

mented image, b) the computed perceived free space segments,

and c) the resulting free space model. 68
The state diagram of the ball dribbling behavior. 69
Action selection algorithm for the ball dribbling task. 70

Dribble direction selection algorithm for the ball dribbling task. 71

The algorithm for computing the similarity of two given state

VECHOTS. . . o o o 73

The algorithm for autonomous task execution using corrective

demonstration. 74

Three different configurations used in the experimental evaluation
of the M+C system on the ball dribbling task. a) Case 1, b) Case
2;andc) Case 3.. 75

The illustrations of the performance evaluation runs for the ball

dribbling task using M+C approach. 78

An example instance of the humanoid obstacle avoidance task
with an example solution in a configuration where two box-shaped

obstacles and another humanoid robot placed on the field. 81

The coordinate system used in representing destination point on

the field. 82

Figure 6.3.

Figure 6.4.

Figure 6.5.

Figure 6.6.

Figure 6.7.

Figure 6.8.

Figure 6.9.

Figure 7.1.

Figure 7.2.

The example visualizations of the state representations. a) low
detail resolution, b) medium detail resolution, and c) high detail

resolution.

Destination point selection algorithm for the low detail resolution.

Destination point selection algorithm for the medium detail res-

olution.

Destination point selection algorithm for the high detail resolution.

The user interface for delivering corrective demonstration to the

The corrective demonstration setup for the obstacle avoidance task.

The obstacle configurations used in the experimental evaluation.
a) empty field, b) a single obstacle placed on the center of the

field, and c) three obstacles placed around the center circle.

A snapshot from the Stage simulator for the humanoid obstacle
avoidance task: a) 2D view, and b) 3D view. The leftmost rectan-
gular prism represents the Nao robot where the small cube on top
of the robot is the laser range finder imitating the visual system

of the robot.

The modified user interface for delivering corrective demonstra-

tion to the simulated robot and managing the simulation

Xix

83

84

84

85

86

87

88

92

93

Figure 7.3.

Figure 7.4.

Figure 7.5.

Figure A.1.

Figure A.2.

The obstacle configurations used in the performance evaluation
experiments of the simulated obstacle avoidance system under

uncertainty. Lo

The overall performance results for the individual algorithms and
M+C instances for each detail resolution, along with the multi
resolution performances without (MRTE) and with (MRM+-C)

corrective demonstration.

The average number of actions executed per individual algorithms,

M+C instances, MRTE system, and MRM+-C system.
a) The field setup for the RoboCup Standard Platform League
(SPL), and b) a snapshot from an SPL game showing the Nao

robots playing soccer. L

a) The Nao robot. b) The frame of reference for sensors.

XX

106

poel

LIST OF TABLES

Table 5.1. Elapsed times during trials for the Ball Dribbling Task. 7

Table 6.1. Performance evaluation results for the MRM+C approach in Hu-

manoid Obstacle Avoidance domain. 90

Table 7.1. The average number of actions executed in the succeeded runs. . 99

xxil

LIST OF ABBREVIATIONS

CBA Confidence Based Autonomy
CBR Case-Based Reasoning

CD Corrective Demonstration

CPG Central Pattern Generator

LfD Learning from Demonstration
LWR Locally Weighted Regression
M+C Model Plus Correction

MDP Markov Decision Process

MoG Mixture of Gaussians

MRM+C Multi-Resolution Model Plus Correction
MRTE Multi-Resolution Task Execution

RL Reinforcement Learning

1. INTRODUCTION

Transferring the knowledge of how to perform a certain task or skill to a robotic
platform remains a challenging problem in robotics research with an increasing im-
portance as robots start emerging from research laboratories into everyday life and
interacting with ordinary people who are not robotics experts. Robots observe their
environments through a set of sensors, and perform actions using their actuators.
Performing a task or skill requires a mapping function from the observed state of the
robot to the proper actions according to the task or skill definition. This mapping is

called a policy.

A widely adopted method for transferring task knowledge to a robot for obtain-
ing a policy is to develop an algorithm using a model (a set of assumptions about the
system) for performing the task or skill, when such a model is available. Although
it is usually relatively easier to develop an algorithm that can handle the trivial
cases, handling more complex situations often requires substantial modifications on
the algorithm and these modifications require the credit for erroneous execution to
be assigned properly to the underlying model. Therefore, it becomes a tedious and
time consuming process to ameliorate the controller and the underlying model as
the complexity of the cases the robot is facing increases. Moreover, for some prob-
lems, the refined algorithm might still fail to cover all the cases no matter how many

refinement iterations have been performed.

The Learning from Demonstration (LfD) paradigm is a data-driven approach
that utilizes supervised learning for transferring task or skill knowledge to an au-
tonomous robot without explicitly programming it. Instead of developing an al-
gorithm for performing a task or skill, LfD methods make use of a teacher who
demonstrates the robot how to perform the task or skill while the robot observes the
demonstrations and synchronously records the demonstrated actions along with the

perceived state of the system. The robot then uses the stored state-action pairs to

derive an execution policy for reproducing the demonstrated task or skill. Moreover,
since the LfD approaches do not require the robot to be programmed explicitly, they
are very suitable for cases where the task knowledge is available through a user who

is an expert in the task domain but not in robotics.

Providing a way for humans to transfer task and skill knowledge to robots
via natural interactions, the LfD approaches are also suitable for problems, where a
complete analytical model for the task or skill is not available but a human teacher
can tell which action to take in a particular situation. It is impractical to expect
the teacher to give demonstrations for each and every possible case; therefore, the
policy percolated from the gathered demonstration data should be able to generalize
the received demonstrations to cover the states of which an implicit demonstration
example has not been provided by the teacher. However, providing sufficient number
of examples for good generalization is a very time consuming process when working
with robots with highly complex body configurations; such as humanoids, and for

sophisticated tasks with very high dimensional state and action spaces.

This thesis presents a novel paradigm for task and skill performance improve-
ment by combining the algorithm-based methods and the learning from demonstra-
tion approach in a complementary manner to take advantage of the strong parts of
both sides. We assume an algorithm for performing the task or skill in question is
available but has limited success rate in terms of some domain dependent performance
metrics. The human demonstrator observes the robot as it performs the task or skill
using the available algorithm, and provides corrective feedback only when the robot
makes a mistake. The received feedback data are stored by the robot along with the
observed state of the system. During autonomous execution, the robot executes the
action computed by the default algorithm unless there is a corrective demonstration
example in the database which is given by the teacher in a similar situation. This
idea of keeping the default algorithm as the primary source of the action and using
the demonstration data only to make exceptions as needed reduces the number of

demonstration examples required, and leads to a rapid performance improvement.

This thesis also introduces the concept of multiple detail resolutions for giving
demonstrations at different detail levels, depending on the complexity of the situation

the robot is facing. Assuming that:

e the underlying algorithms become more expensive in terms of computational
power as their complexity increases,

e the more detailed the state and action representations get, the more demonstra-
tion examples it requires to have a good generalization in covering the state-
action space, and

e not all of the cases for a task or skill require state and action representations
of the same detail resolution, and algorithms to perform the task of equal com-

plexities

our algorithm builds upon the complementary corrective demonstration approach
combining an available algorithm with human demonstration and uses multiple in-
stances of the complementary corrective demonstration system running at different
detail resolutions in terms of state representation, action definition, and the complex-
ity of the default controller. We introduce the concept of an arbitrator component to
select which detail level to use in a particular situation using a selection function that
maps the current observed state of the system to a certain detail resolution. In this
multi-resolution scenario, the teacher provides corrective demonstration examples for
the different detail resolutions, and he or she also provides demonstration for which

detail level to use in a particular state.

Finally, this thesis contributes a formalization for the introduced platform-
independent and domain-independent task and skill refinement frameworks for single
and multiple detail resolutions. We present detailed experiment results for all al-
gorithms. We present results from the application of the complementary corrective
demonstration approach to a complex biped walk stability improvement problem,
as an example to the skill refinement, application to a ball dribbling problem in a

robot soccer environment as an example to the task refinement, and application of

the multi-resolution complementary corrective demonstration to a humanoid obsta-
cle avoidance task. We also present a thorough analysis of both the single-resolution
and multi-resolution complementary corrective demonstration approaches in terms
of their robustness against the uncertainty in perception and action, and in terms of

the execution cost.

1.1. Approach

This thesis seeks to answer the following questions:

e How can an existing algorithm for performing a task or a skill be augmented
with corrective human demonstration to improve the system performance?

e How can the combination of the algorithm and human demonstration be ex-
tended in such a way to allow the demonstrator to correct the actions of the
robot at multiple detail resolutions with different state and action representa-

tions and default algorithms or varying complexity?

We present our approach in answering the thesis questions by breaking them

into several sub-questions.

1.1.1. Augmenting an Algorithm with Corrective Human Demonstration

1.1.1.1. How Can We Collect Corrective Human Demonstration?. Differing from the

classical LfD methods, in our approach, the demonstrator does not start teaching the
task or skill from scratch. The demonstration process comprises of the robot per-
forming the task or skill using the default algorithm and the teacher observing the
execution and stepping in to correct the robot only when the default algorithm takes
a wrong action. We utilize the Learning from Ezperience method, where the teacher
makes the robot perform an action by providing a demonstration using the action
definitions of the robot via a custom interface. By doing so, it is guaranteed that

all demonstration data coming from the teacher maps properly to the action capa-

bilities of the robot. Therefore, the so called correspondence problem does not hold
for our approach. The corrective demonstration can be in the form of modifications
over the action computed by the default algorithm, or substitutions for replacing the
computed action with the demonstrated action. A distinguishing property of our
approach over traditional LfD methods is interleaving execution and demonstration.
Instead of waiting the robot to perform a complete execution of the task, the teacher
gets involved at any time during the execution to correct the robot. We present exam-
ples for this execution-demonstration interleaving at its extreme in Chapter 4, where
the demonstration occurs in real-time while the robot is performing a very complex
biped walk motion, and in Chapter 5, where the demonstration is still interleaved
with the execution, but is required only when the robot is in a state where it needs

to compute the next action to be executed.

1.1.1.2. How Can the Robot Reuse the Corrections Together with the Algorithm?.

The demonstration process in our approach builds a demonstration database as in
most other LfD approaches. The database consists of demonstration examples in the
form of < state, action > pairs where the action is the corrective demonstration given
by the teacher, and state is the observed state of the system at the time of demonstra-
tion. The reuse of the collected demonstration data takes place during autonomous
execution and according to a correction reuse function. The correction reuse function
computes the final action to be executed by the robot using the actions coming from
the default algorithm and the correction database, and the current observed state of
the system. We present two types of correction reuse methods: modifying the default
action with using the corrective demonstration action (Chapter 4), and replacing the
default action with the demonstrated action (Chapter 5, Chapter 6). One of the
important properties of the general complementary corrective demonstration idea is
to use the action computed by the default algorithm as much as possible. Therefore,
the collected demonstration data is very sparse and does not extend to cover the
entire state-action space. In order to compute an action using the demonstration
database, one needs a generalization feature. The proposed framework does not im-

pose a constraint on the generalization method to be used. We present three different

generalization methods: fitting multiple normal distributions on the demonstration
data and using the mean value of the distribution associated with the current state
as the correction value (Chapter 4), using Locally Weighted Regression (Chapter 4),
and through a domain dependent state similarity function to find the demonstration
example received in the most similar state to the current observed state, and then
using the found demonstration sample as the correction sample, is the similarity value

is above a certain threshold (Chapter 5, Chapter 6).

1.1.2. Multi-Resolution Complementary Corrective Demonstration

1.1.2.1. How Can We Reduce the Task Execution Cost?. Handling complex cases for

complicated tasks require sophisticated algorithms with complex underlying models
and very detailed state and action representations. Using the most detailed state and
action representations result in very high dimensional state-action spaces and run-
ning sophisticated algorithms for acting properly could be very expensive in terms
of required computational power. However, not all of the cases for a task or skill
require such detailed representation and complex algorithms. Moreover, it requires
the teacher to provide demonstration at this highest detail level, covering a small part
of the state-action space, and results in substantial increase in the required number
of demonstrations to cover the state-action space, hence the demand for teacher at-
tention. We introduce the concept of multiple detail resolutions in Chapter 6 for
tackling this problem by allowing multiple instantiations of the complementary cor-
rective demonstration system with state and action definitions at different detail
resolutions, and with default algorithms of varying complexity. Using the proposed
approach, the robot uses a less detailed state and action representation and simpler
default algorithms as much of the time as possible, and the teacher gets to provide
detailed demonstrations only when the lower detail resolutions fall short to compute

a proper action.

1.1.2.2. How Can We Provide Demonstration at Different Detail Resolutions?. Ob-

taining the demonstration data for multiple detail resolutions is done in the same way

we collect the demonstration data for the single resolution since the multi-resolution
system is a combination of several single-resolution systems and only one of those sys-
tems can be active at a time. Therefore, practically the teacher interacts with only
a single detail resolution at a time. During the demonstration, the teacher either
provides a corrective action, or makes the robot switch to a higher detail resolution if
he or she thinks the current situation can not be handled at the current detail reso-
lution. The received correction actions for each detail resolution are stored in a sepa-
rate demonstration database, and the received detail resolution change commands so
called elaborate commands are also stored in a separate elaboration database. Each
detail resolution uses its own state representation for storing the received demonstra-
tion examples while the most detailed state representation is used for the elaboration
database. Chapter 6 covers the collection of demonstration data for multiple detail

resolutions in depth.

1.1.2.3. How Can the Robot Reuse the Multi-Resolution Corrective Demonstration?.

The reuse of the collected demonstration data at different detail resolutions, and the
demonstration data for changing the detail levels are reused in a similar manner with
the reuse presented in Chapter 5. During the autonomous execution of the robot,
each time the robot needs to compute an action, it first looks for a demonstration
example for the current detail resolution. The robot always starts looking from the
lowest detail resolution with the least amount of detail. If a demonstration example
received in a state that has a similarity value between that state and the current state
of the system larger than a certain threshold, the corrective demonstration action is
executed by the robot. If no such demonstrations are found, the robot looks for a
demonstration example in the elaboration database for changing the detail level into
a higher resolution. A separate state similarity function is used for different state
representations of each detail resolution while the elaboration demonstration sharing
the same state similarity function with the highest detail resolution. We thoroughly
describe the reuse process in the multi-resolution corrective demonstration system in

Chapter 6.

1.1.3. Evaluation

We used several real world and simulated domains for the experimental evalua-
tion of the algorithms presented in this thesis. The robot soccer domain, which is the
main application area that the evaluation domains have stemmed from is described
and an overview of the software components for playing soccer in Appendix A. We

give complete detailed definition of each evaluation domain in the relevant chapters.

1.2. Contributions

This thesis makes several major contributions to task and skill knowledge trans-

fer through human demonstration. The contributions of this thesis are as follows:

e Model Plus Correction (M+C), a platform and domain independent hybrid
paradigm combining an existing algorithm for performing a task or skill with
corrective human demonstration. The M+C paradigm has three components.
The Model component is an algorithm for performing the task or skill which is
developed based on a model, or a set of assumptions about the system. The
Correction component consists of corrective demonstration examples provided
by a teacher when the robot computes an erroneous action using the Model
component and the observed state of the system at demonstration time. The
Correction component also features a generalization method, usually a classi-
fier or a regressor trained on the collected demonstration data. The Correction
Reuse component (the “Plus” part) decides how to combine the actions com-
puted by the Model and the Correction components, or how to decide which
one of the actions to execute based on the similarity of the current state of the
system and the states associated with the received demonstration examples.

e Multi-Resolution Model Plus Correction (MRM+-C), an extension to the M+C
paradigm comprising multiple M+C instances and an arbitrator for selecting
among those instances to become active. MRM+C paradigm that allows the

teacher to correct the actions of the robot at different detail resolutions and to

teach the robot which detail resolution to use in a particular state.

A formalization of the M+C and MRM+C approaches, describing how they
extend the traditional LfD approach.

A thorough experimental analysis of both the M+C and MRM+C approaches
to evaluate their robustness against the uncertainty in the environment and
utility analysis of using multiple detail resolutions instead of using the highest

available detail resolution all the time.

1.3. Reader’s Guide to the Thesis

The thesis is organized as follows:

Chapter 1 - Introduction: We provide an introduction to the thesis. We outline
the research questions that this thesis study seeks to answer. We summarize
our major contributions, and we provide a document outline for the thesis.
Chapter 2 - Background: We present a description of the LfD approach along
with a formal model, and we outline some relevant work in the literature while
pointing out the similarities and differences of our approach with respect to the
existing work.

Chapter 3 - Model Plus Correction (M+C) Paradigm: We introduce the key
contributions of the thesis: Model Plus Correction (M+C) and Multi-resolution
M+C (MRM+C) complementary corrective demonstration paradigms. We
present formal models for both the M+C and MRM+C paradigms, and we
describe each component of the M+C and MRM+-C paradigms in detail.
Chapter 4 - Skill Refinement Using M+C: We present a real world application
of the M+C on a complex biped walking domain to improve the stability of an
existing walk algorithm. We present a novel interface for providing real-time
corrective demonstration feedback to the robot without physical contact.
Chapter 5 - Task Refinement Using M+C: We present an application of the
M+C to a complex ball dribbling task in robot soccer environment. We evaluate

the performance of the proposed approach using official RoboCup Standard

10

Platform League rules.

Chapter 6 - Task Refinement Using MRM+C: We present Multi-Resolution
Model Plus Correction (MRM+C), an extension over the M+C approach by
introducing the concept of multiple instances of M+C running at different de-
tail resolutions. We evaluate the performance of the MRM+C approach in a
humanoid obstacle avoidance domain and we demonstrate the effectiveness of
the MRM+C algorithm against the single detail resolution approach.

Chapter 7 - Experimental Analysis: We present extensive experimental eval-
uation of the M+C and MRM+C algorithms in a simulated version of the
humanoid obstacle avoidance domain. We evaluate the robustness of both the
M+C and MRM+C approaches against the level of uncertainty in the envi-
ronment and we demonstrate the effectiveness of the MRM+C algorithm over
M+C algorithm in terms of execution cost.

Chapter 8 - Conclusion and Future Work: We conclude the thesis with a sum-
mary of the major contributions and with a discussion of the possible promising

directions for future work.

11

2. BACKGROUND

In this chapter, we first present a description of the Learning from Demonstra-
tion approach along with a formal model. We then describe Corrective Demonstra-
tion, a form of LfD that the contributions of this thesis are based on. We present
a brief description of the Advice Operators Policy Improvement (A-OPI) approach
that is used in some of the applications of the methods this thesis introduces. In the
last section of the chapter, we outline some relevant work in the literature, comparing

our approach to the existing work.

2.1. Learning from Demonstration

As briefly introduced in Chapter 1, the Learning from Demonstration (LfD)
paradigm is a supervised learning approach for transferring task or skill knowledge to
an autonomous robot by means of the demonstrations of the task or skill execution.
A human teacher provides the demonstrations for the task or skill. Depending on the

implementation, the demonstrations can occur in two main categories:

o Learning from observation: In this category, the teacher performs the task
or skill and the robot acquires the demonstration examples passively through
observing the teacher. This type of demonstration requires the robot to be able
to identify and map the teacher’s actions to its own action set. This problem
is also known as the correspondence problem.

e Learning from experience: In this category, the teacher makes the robot execute
the task or skill by means of either manipulating the body parts of the robot

or through instructing the robot using its own action set.

We define the learning from demonstration problem formally as a tuple <
S, A, Tgemo >. The world consists of states S, and A is the set of actions the robot

can take. Transitions between states are defined with a probabilistic transition func-

12

tion T'(s'|s,a) : S x A x S — [0,1]. The state is not fully observable; instead, the
robot has access to an observed state Z with the mapping M : S — Z. A policy
Tdemo - 4 — A is extracted from the demonstration dataset D consisting of teacher
demonstrations d € D which are of the form d =< z,a >,z € Z,a € A. When
executing the task autonomously, the robot uses 7., for selecting the next action a
based on the current observed state z. The execution model of generic learning from

demonstration system is given in Figure 2.1.

. =
sensory input =
L
=
=z
@)
0
, >
a demo actuation =
> LL
Teacher
4 demonstration Qeacher

data

Figure 2.1. The schematic representation of the generic LfD system.

2.2. Corrective Demonstration

Corrective demonstration is a form of teacher demonstration focusing on cor-
recting an action selected by the robot to be performed by proposing one of the

following types of feedback:

e An alternative action to be executed in that state

e A modification to the selected action

13

The usual form of employing corrective demonstration is either through adding the
corrective demonstration example to the demonstration dataset or replacing an ex-
ample in the dataset with the corrective example, and re-deriving the action policy

using the updated demonstration dataset.

However, re-deriving the execution policy each time a correction is received can
be cumbersome if the total number of state-action pairs in the demonstration database
is large. On the other hand, accumulating a number of corrective demonstration
points and then re-deriving the execution policy may be misleading or inefficient
since the demonstrator will not be able to see the effect of the provided corrective

feedback immediately.

2.3. Advice Operators

Advice Operators Policy Improvement (A-OPI) is a corrective demonstration
method for improving the execution performance of the robot in a human-robot
learning from demonstration (LfD) setup [1]. Advice operators provide a language
between the human teacher and the robot student, allowing the teacher to give advice
as a mathematical function to be applied on the actions in the demonstration database
and/or the observations corresponding to those actions. The resulting data is then

used to re-derive the execution policy. More formally, for the defined advice operators

O ={01,09,...,0n}, there is a set of corresponding mathematical functions
F={fi(Xy), fo(Xs),..., fn(Xn)} (2.1)
where X, =< x1,%o,...,xx > is the parameter vector for the advice operator o.

For each received advice o along with its parameter vector X,, the corresponding

mathematical function f,(X,) is applied on the observations Z and/or actions A

14

such that 7" «— f,(X,,Z) and/or A" «— f,(X,, A). Advice operators are especially
useful in domains with continuous state/action spaces where the correction must be

provided in continuous values.

2.4. Related Work

LfD based methods have been applied to many learning scenarios involving
high level task and low level skill learning on different robotic platforms varying from
wheeled and legged robots to autonomous helicopters. Here we present a few repre-
sentative studies and strongly encourage the reader to resort to [2] for a comprehensive

survey on LfD.

2.4.1. Task Learning

While learning to perform high level tasks, it is a common practice to assume
that the low level skills required to perform the task are available to the robot. Task

learning from demonstration have been studied in many different contexts.

Thomaz and Breazeal have proposed a method for utilizing human feedback
as the reward signal for the Reinforcement Learning (RL) system [3]. They used a
simulated kitchen environment modeled as a Markov Decision Process (MDP) where
a robot tries to learn how to bake a cake. The human teacher observes the robot
operating and provides a reward signal at any time without interrupting the opera-
tion. The authors have presented a user study. The notion of observing the robot
executing the task and intervening to provide feedback bears a resemblance with our
approach. However, they utilize the feedback as a reward signal to an action selected
by the robot whereas in our approach the teacher provides actions and/or action
corrections instead of quantitative evaluation of the action outcomes. The second
main difference is that our approach makes use of the received feedback to improve
the performance of an existing algorithm while their approach utilizes the received

feedback for training a RL system.

15

Cakmak et al. investigated the issues arose when using active learning to speed
up the learning and to improve the learning accuracy [4]. They evaluated three
different ways of making queries where each of the methods differ in the conditions
of when to ask teacher for a demonstration using an upper-torso humanoid robot
in a concept learning task. They presented a user study where they evaluate the
performance of the different ways of asking for feedback against each other and against

a baseline supervised learning method.

Chernova and Veloso introduced an approach for learning behavior policies from
human demonstration called “Confidence Based Autonomy (CBA)” [5]. The CBA
approach utilizes a confidence calculation mechanism for assessing how confident the
robot is about the action selected by its execution policy. If the confidence value is
above a certain threshold, the robot proceeds with the execution of the selected action.
Otherwise, it asks for teacher demonstration. The system builds a statistical model of
the received demonstration examples and becomes more confident in situations where
it has received a higher number of demonstrations. The CBA approach reduces the
need for teacher attendance, hence it makes the teaching process less tedious and
time consuming for the teacher. The goal of reducing the need for teacher attention
is also shared by our approach in this thesis. However, instead of starting from
scratch, our approach utilizes an existing algorithm as the baseline controller and
needs teacher feedback only when the algorithm fails to compute a proper action
to execute. The CBA approach is applied to a set of behavior learning problems
for single robot such as humanoid obstacle avoidance [6], simulated car driving [7],
and for multi-robot systems such as a simulated furniture-moving problem [8], and a

humanoid ball sorting task [9].

2.4.2. Skill Learning

Several approaches to low level skill learning in the literature utilize LfD meth-
ods with different foci. Unlike task learning, most skill learning approaches deal with

continuous domains where the robot learns to execute a sequence of low level actions

16

properly.

A recently populerized method for teaching low level skills that utilizes the
“Learning from Experience” approach is named “Kinesthetic Teaching”. In kines-
thetic teaching methods, the teacher makes the robot perform the skill through tac-
tile interaction. Hersch et al. proposed a method utilizing dynamic system control
and statistical learning theory for acquiring goal-directed gestures. The authors have
evaluated their approach using a humanoid robot in a reaching and grasping skill,

and a skill for putting an object in a box [10].

Tactile interaction has also been utilized for skill refinement through tactile
correction. Argall et al. have proposed a method for refining a demonstrated
skill execution policy using kinesthetic feedback from the teacher during the execu-
tion of the skill using the execution policy extracted from the demonstration exam-
ples [11, 12, 13, 14]. In the “Tactile Policy Correction” approach, if tactile feedback is
detected, the policy is modified according to the received corrective tactile feedback.
This approach shares a similarity with our approach as both systems utilize teacher
feedback interleaved with the skill execution. The main difference with the TPC
method and our approach is that while the TPC method uses the received tactile
feedback to modify the execution policy learned from demonstration, our approach
keeps the received feedback commands separately and learns a correction policy out
of the feedback commands to correct the actions of the underlying controller. A sim-
ilar incremental skill refinement method is proposed by Calinon and Billard where
they utilized different modalities like using motion sensors in addition to tactile cor-
rection for teaching a humanoid robot how to perform a bimanual grasping skill and

for learning the affordances and effectivities of objects [15].

Nakanishi et al. have proposed a method for learning biped walking from hu-
man demonstration using motion primitives [16]. Their method utilizes dynamical
motion primitives as a Central Pattern Generator (CPG) for generating cyclic walk-

ing patterns for a biped robot. The trajectories demonstrated by a human are learned

17

through motion primitives using Locally Weighted Regression (LWR). Motion prim-
itives have also been utilized for skill learning by Bentivegna and Atkeson where the
robot learns how to play air hockey [17]. In their approach, the robot learns the
parameters of the motion primitives through the observation of other parties per-
forming the same skill. Similarly, Bentivegna et al. have proposed an approach for
learning how to select behavioral primitives and how to generate subgoals for the big
task at hand. They evaluated the proposed approach on a robotic platform playing

marble maze game as well as a simulated version of the system [18].

Several regression based approaches have been proposed for skill learning from
demonstration. Grollman and Jenkins have proposed a learning framework named
“Dogged Learning” to learn several low level skills for playing soccer [19, 20]. They
evaluated the efficiency of their problem and platform independent framework on
Sony AIBO robotic dogs and in robot soccer domain where the robot learns how to
seek for the ball and how to mirror the movement of its tail with its head. Calinon
et al. have proposed a probabilistic approach that utilizes Hidden Markov Mod-
els (HMM) along with regression for learning several low level skills with different
characteristics. They evaluated the generalization ability of the proposed approach
on several different skills to be learned such as a cyclic bimanual dancing motion
on a highly articulated iCub humanoid robotic platform, a spoon-feeding skill with
multiple simultaneous constraints on a HOAP-3 humanoid robot, and a ball hitting
skill that can be performed in multiple ways on a Barrett WAM redundant robotic
arm [21]. Gribovskaya et al. have proposed a method for being able to general-
ize non-linear multivariate motion dynamics of a certain low level skill from human
demonstrations of the skill. Their approach utilizes Mixture of Gaussians (MoG) to

estimate multivariate robot motions [22].

Interacting with the learner using high level abstract methods in low level skill
learning problems has been proposed in different forms. Breazeal et al. have proposed
a theoretical framework for human-robot collaboration using joint intention theory.

In their approach, the teacher can interact with a highly expressive learner robot

18

using natural language and the robot communicates its inner state through a set of
gestures and expressions [23]. Rybski et al. have proposed a method for interactive
robot training through dialog using natural language. A set of behavior networks
are learned from verbal teacher feedback where a rule-based behavior specification is

dictated to the robot [24].

Another method for learning low level skills from human demonstration through
high level communication methods is the Advice Operator Policy Improvement (A-
OPI) approach proposed by Argall et al. [25, 1]. A set of defined verbal operators are
associated with functional transformations for low level robot motion. The teacher
provides feedback in the form of defined verbal operators and the corresponding
transformations are applied on the specified portion of the demonstration database.
A new execution policy is then re-derived out of the modified demonstration database.
The A-OPI approach is evaluated on a trajectory learning task using a Segway RMP

robot platform.

Several examples of learning from demonstration utilizing reinforcement learn-
ing methods have been proposed. Abbeel and Ng have proposed an inverse reinforce-
ment learning method for teaching a robotic helicopter to perform several complex low
level skills [26]. They assume a domain expert to be available for providing good ex-
amples of the skill execution. A proper reward function is then learned as to maximize
the reward signal for the action sequence provided by the human teacher. In another
reinforcement learning based approach, Atkeson and Schaal have proposed a method
for learning how to perform a complex skill from a single demonsration [27, 28].
They applied their proposed approach to a pole balancing skill performed by a SAR-
COS robotic arm. Guenter et al. have presented a system for imitating constrained
reaching tasks using reinforcement learning [29]. The proposed system is based on
a dynamical system generator in combination with a reinforcement learning compo-
nent for allowing the robot to adapt the trajectory learned through demonstration
to novel situations such as avoiding obstacles along the way which were not present

during the initial training [29]. Kolter et al. have proposed a hierarchical appren-

19

ticeship learning approach for learning complex skills which are non-trivial even for
the domain experts [30]. They propose a method that allows the teacher to pro-
vide advice at different hierarchical levels as providing isolated advice for a smaller
part of the skill is often easier for the teacher. This approach shares similarities
with our multi-resolution task and skill refinement approach since one of the two
key advantages of our multi-resolution approach is the ability to cover a larger por-
tion of the state-action space with demonstration provided at a low detail resolution.
Our approach differs from the hierarchical apprenticeship learning approach with its
utilization of multiple algorithms having different computational complexities and

running at different detail levels.

2.4.3. Case-Based Reasoning

Case-Based Reasoning (CBR) is a method for solving problems based on the
solution of the similar problems encountered in the past [31]. CBR consists of four

steps:

e Retrieve: In this step, similar cases are retrieved from the memory for a given
case.

e Reuse: In this step, the retrieved solution for the most similar case is adapted
for the new case at hand.

e Revise: In an iterative process between the Reuse and this steps, the adapted
solution is tested against the new case and further revised as needed.

e Retain: Once the performance of the adapted solution to the new case is satis-
factory, the new solution is added to the database of solutions along with the

description of the new case.

The method of generalizing the received corrections over novel and unforeseen
situations in our approach is similar to the retrieve and reuse steps of CBR-based
systems. Using a domain-specific similarity measure, our approach also scans its

database of corrections and fetches the correction that is received in a state most

20

similar to the current state of the system, if the similarity value is over a certain
threshold. The main difference between our approach and CBR-based systems is
that in CBR-based systems, it is not possible to employ a case-independent generic
algorithmic solution to the problem for covering for handling most simple cases.
Therefore, for non-trivial tasks of certain complexity performed by highly articulated
robotic platforms, CBR-based systems require a high number of different cases in
order to be able to find similar cases for a given new case. From this perspective, CBR-

based systems suffer from the same scaling problem with the general LfD systems.

21

3. MODEL PLUS CORRECTION (M+C) PARADIGM

This chapter introduces the two complementary corrective demonstration para-
digms which are the main contributions of this thesis. We start with our key contri-
bution, the Model Plus Correction (M+C) paradigm. We first present a formal model
of the M+C paradigm and then describe each of its components in detail. We then
present the generalized version of M+C with multiple detail resolutions called Multi
Resolution M+C (MRM+C). We present a formal model to the MRM+C paradigm
as an extension over M+C, and then we describe the components of MRM+-C. In the
last part of this chapter, we describe how a system utilizing M+C and MRM+C is
trained and how a trained system executes the task or skill in question along with

algorithms for both training and autonomous execution.
3.1. Model Plus Correction

We define our complementary corrective demonstration approach by extending
the LfD model given in Chapter 2. Since the distinguishing property of comple-
mentary corrective demonstration approach is that it uses an available model-based
algorithm as the default controller and utilizes corrective human demonstration not to
learn the task or the skill from scratch, but to refine the performance of the available

controller algorithm, we name the approach as Model Plus Correction (M+C).

We define the M+C system as a tuple < S, A, Tgemo, Tmodels freuse >- The LD
definition given in Chapter 2 is extended with a model-based controller, which can
be considered as a hand-coded action policy 040 @ Z — A, and a correction reuse
function freuse(2; Gdemo, @modet) © Z X A X A — A, where agem, is the action computed
by Taemo, and @poder is the action computed by 7,,04e:. The correction reuse function
computes the final action to be executed by the robot as a function of the current
observed state, and the actions computed by the model-based and the corrective

demonstration policies. The schematic representation of the M+C system is given in

22

Figure 3.1.
- =
Z sensory Input =
LL
=
Z
5
amodel — 3 actuation S
—> =
S—
. Teacher
ademo
- ateacher
demonstration

data

Figure 3.1. The schematic representation of the M+C system.

In the remainder of this chapter, we will rephrase the individual components of

the M+C paradigm, and its generalized form, the MRM+C model.

3.2. The Model

The model part of the M+C paradigm aims to cover as much of the state space
as possible with a model as simple as possible, either a mathematical model or a
model derived out of some available data. More formally, the model is an action
policy Teder @ 4 — A. Another strong motivation behind the model component
besides simplicity is to be able to use an available algorithm for the task or the
skill as black-box. The model-based algorithm is able to perform the task for some
simple cases; therefore, this makes it easier for the demonstrator and will require less

attention as the teacher would only need to get involved when the algorithm fails.

23

3.3. The Correction

The correction part of the paradigm augments the model part with corrective
human demonstration to improve the performance of the system by providing substi-
tute actions for the states where the model is unable to compute a good action for that
state. Just like the model, the correction is also an action policy Teorrection : 4 — A
which uses the collected corrective demonstration database D. Depending on the
application domain and the type of the task or skill, the policy can be extracted from
the demonstration data and represented with a model, or, the demonstration data
can be kept and used by the correction policy during the autonomous execution of

the task or the skill.

3.4. Correction Reuse

The correction reuse component constitutes the “plus” part of the M+C pa-
radigm. It functions as a glue between the model and the correction parts, and is
responsible from delivering the final action to be executed by the robot. The final
action is computed as a function of the actions provided by the model and the correc-
tion components, and the observed state of the system. Depending on the approach
and whether the actions are discrete or not, the correction reuse part does one of the

following:

(i) Decide which one of the model action and the correction action to be executed
as the next action.
(ii) Combine the model and correction actions together by considering the correc-

tion action as a modification on the model action

In (i), a binary classifier that takes the current state of the system as input,
and outputs a class label ¢ € {model, correction} is employed. The final action to be
executed is selected according to the output of the classified for the observed state of

the system. In (ii), a function that takes the current state, the model action, and the

24

correction action as its input and outputs a corresponding action is employed. All
the applications in this thesis assume a fixed correction reuse policy. However, since
the correction reuse policy itself is also a function, how to select an action in case (i),
and how to combine the actions in case (ii) can be learned either autonomously, or

again from a human teacher through demonstration.

3.5. Multi-Resolution Model Plus Correction Approach

Most LfD approaches use a single fixed state and action representation and a
single action policy extracted from the demonstration data. Finding efficient state
representation and action definitions for complex tasks is considered a difficult prob-
lem without a widely accepted general solution. For complex tasks, using the most
detailed state representation and action definitions available often requires a large
number of demonstrations to be provided in order to be able to extract a sufficiently
generalized policy. Similarly, a hand-coded algorithm using the most detailed state
and action definitions might be computationally expensive and infeasible for being
used as the sole action policy. On the other hand, using a very abstract state and
action definition might fail to capture the complexity of the task. Depending on the
nature of the task, different portions of the state-action space can be covered at lower
detail resolutions, hence saving both computational power and space. A hand-coded
algorithm running at a lower detail resolution would also be easier to implement and

less demanding in terms of computational power requirements.

We use the introduced M+C model in the previous section and present a new
model to include multiple instances of M+C operating at a set of different detail
resolutions R. We define Multi-Resolution Model Plus Correction (MRM+C) as a
tuple < frefine, {71, 72,....,'N} >, where r;, € R is an instance of a modified version
of the M+C model defined for the detail resolution 7y, and Tarpitrator(2) : Z — R
is the detail resolution arbitration policy. The extended M+C model is a tuple
< Sy, Ar, fstates Jaction, Tdemo, Tmodels freuse > where foare : S — S, is the function

for mapping the global state to the state definition at the detail resolution r, and

25

faction : A, — A is the function for mapping the action computed at the detail
resolution 7 into an action representation at the finest detail level. The arbitrator
component decides which detail resolution to use for computing the next action to

be executed based on a the observed state of the system.

In addition to the M+C definitions for each detail resolution, there is also a
function for mapping the most detailed state definition to the state definition of each
detail resolution and a function for mapping the actions given at that detail resolution
to actions represented in most detailed action definition. A schematic diagram of the

Multi-Resolution M+C framework is given in Figure 3.2.

z sensory input

T model
~
Level 1

N A

L XX

L Level N)
a

teacher

state

faction
)

actuation

bitrator

ENVIRONMENT

Teacher

ar

T

Figure 3.2. The schematic representation of the MRM+C framework.

3.5.1. State Definition

The state definition is a represented as a feature vector computed using the
most detailed sensory and proprioceptive information available. A separate state
mapping function is defined for each detail resolution to map the available sensory
information at the finest detail resolution to the state representation defined for the
current detail resolution. Defining a state representation at a lower detail level than
the state representation for the finest detail resolution helps keeping the state space
smaller. Having a smaller state space reduces the complexity of the computations

needed to select an action to be performed for a given state vector in case of the

26

execution of the default algorithm, or leads the robot requiring smaller number of
demonstrations to learn the exceptions, or “patches” to the default algorithm. The
obvious downside of having a coarse state representation is the possibility of missing
an important detail that could be caught with a more detailed state definition, and

as a result, failing to take the proper action for that state of the system.

3.5.2. Action Definition

The action definition contains a set of actions that can be taken at that detail
resolution. As in the state definition case, a mapping function should be provided to
convert the actions expressed at a particular detail resolution to actions at the finest
detail resolution. Having a smaller set of less detailed actions leads to a smaller action
space. A natural result of this is in case of the demonstration, it becomes easier for
the teacher to provide demonstration examples as using the more abstract actions.
For the autonomous execution, similar to the state definition case, the actions can be
computed by less complex and therefore computationally inexpensive algorithms. The
possible major disadvantage of using more abstract action definitions is in a certain
state a complex instance of the task which requires delicate and accurate actuation,

the abstract action model might fail to match the required level of accuracy,

3.5.3. Default Controller

We use the default controller as the primary action policy to compute which
action to take in a particular state expressed in the state definition for the current de-
tail resolution of the system unless a demonstrated correction action states otherwise.
The default controller can be implemented as a hand-coded algorithm employing a
mathematical model for performing the task, or it can be in the form of an action
policy learned using a machine learning method, such as reinforcement learning or
genetic algorithm. Although there is not a restriction on the complexity of a default
algorithm, it is expected that the default algorithm for a coarse detail resolution to

be a simpler algorithm than the algorithm for a finer detail resolution. Similar to the

27

state and action definition cases, simpler algorithms are easier to develop or obtain
and are often computationally inexpensive compared to their more complex counter-
parts. However, they share the same trade off with the state and action definition
resolutions: simpler algorithms carry the risk of falling short on making complex
decisions as needed in a particular state of the system. An unnecessarily complex al-
gorithm, on the other hand, consumes the processing power without producing added

value.

As we stated in the introduction part of this chapter, it is a non-trivial problem
to strike a good balance in computational burden and functional efficiency by choos-
ing the right complexity level for the algorithm. In fact, this is the very rationale
behind this multi-resolution approach, that is to have different controllers and human
correction databases for covering different parts of the state-action space for the task

with different complexities.

3.5.4. Correction Reuse Algorithm

For each defined detail resolution, we build a separate corrective demonstra-
tion database consisting of the correction actions delivered by the teacher at this
detail resolution of the system. We store the received demonstration actions in the
form of state-action pairs without extracting an action policy out of the demonstra-
tions. During the autonomous task execution, for a given state of the system repre-
sented at the current detail resolution, both the default algorithm and the corrective
demonstration parts can compute an action. Therefore, the complementary correc-
tive demonstration instance needs a mechanism to populate a single action out of
two actions generated by the default algorithm, and by the corrective demonstration
component. The mechanism can be a simple selection algorithm based on a criteria,
e.g., selecting the demonstration action if the state similarity computed for the state
that the system was in when the selected demonstration action was delivered by the
teacher, or the correction reuse algorithm can combine the two actions to compute

a third action (using demonstration action to modify the computed action by the

28

default algorithm). Since the correction reuse algorithm is in fact, another action
selection policy which maps the current state of the system to an appropriate correc-
tion reuse action, it is possible to also learn this correction reuse policy either using
self-exploratory methods like reinforcement learning, or again from human demon-
stration. In this chapter, we assume hand-coded fixed correction reuse algorithms

and we leave the investigation of learning such reuse policy as a future work.

3.5.5. The Detail Resolution Arbitrator

The detail resolution arbitrator, or the arbitrator in short, is the outermost
component of the MRM+C algorithm and its main duty is to select the appropriate
detail resolution for a given state and executes the action computed by the M+C
instance associated with that particular detail resolution. Similar to the model and
the controller components, the arbitrator is also an action policy Tarpitrator : £ — R
and can be implemented as a hand-coded algorithm, or can be learned. The detail
resolution arbitrator acts as an active proxy during the task execution and activates
the appropriate detail resolution depending on its policy and the current state of
the system. As with the correction reuse algorithm, it is possible to use a fixed
hand-coded policy or a learned policy for the detail resolution arbitrator component.
The employed policy can decide to switch the system into a finer detail level when
the system is at a more abstract detail resolution, or the policy can also decides
to switch to a more abstract detail resolution for the sake of using a simpler and
computationally inexpensive compared to the default algorithm defined at the current
detail resolution. In our application problem using MRM+C, we used an arbitrator

policy learned from human demonstration.

3.5.6. Correction Delivery: Training the System

The instantiated MRM+-C system for performing a certain task is ready to per-

form the task but usually the task execution performance is sub-optimal. Various

components of the MRM+C system, namely, the individual corrective demonstration

29

components for each of the defined state resolutions, and the detail resolution arbitra-
tor component need to be trained through a set of corrective human demonstration
sessions. The correction delivery and correction reuse stages can be configured to
work in an interleaved manner. In other words, since we keep the received correc-
tion actions as raw data without generalizing a policy, the robot can start using the
demonstration actions immediately. However, for the sake of simplicity, we explain
the training procedure assuming the correction reuse is disabled. In the real world ex-
perimentation, the correction reuse is used in conjunction with the correction delivery

to avoid redundant teacher corrections.

Along the course of a demonstration, the robot starts executing the task until it
reaches a decision state where an action needs to be computed to be able to proceed
with the task execution. At the beginning of each decision process, the MRM+C
system switches to the most abstract detail resolution. The state vector according to
the state definition for the most abstract detail resolution is computed and an action
is selected by the default algorithm associated with that detail resolution. The robot
then proceeds with the execution of the selected action. The teacher observes the
robot as it executes the task, and intervenes by providing a feedback to the robot, if

the action selected by the default algorithm is erroneous.

The teacher gives two types of feedback:

e The elaborate command to take the system to the next detail level with finer
resolution. A new action is computed using the specified hand-coded controller
associated with the new detail level.

e The correct command, issued with the specified replacement action to substitute

the current action with another action defined for the same detail resolution.

If an elaborate command is received, the system checks if there is a finer detail
resolution available. If such a resolution is found, the received elaborate command

is stored with the current state of the system represented with the state definition

30

for the finest detail resolution available. The system then switches to that detail
resolution and goes back to the action computation step. If a correct command is
received, the provided substitute action is stored with the current state of the system
represented with the state definition for the current detail resolution and the action
to be executed by the robot is replaced with the received corrected action. The

algorithm for MRM+C training is given in Figure 3.3.

1: resolution «— LOW EST

2: state < computeState(resolution)

3: action «— computeAction(state)

4: executeAction(action)

5: if feedbackReceived() then

6: feedback «— readFeedback()

7. if feedback == ELABORATE then
8: if resolution < HIGHEST then
9: saveDetail Demonstration()
10: increaseResolution()
11: goto 2
12: end if
13: else if feedback == CORRECT then
14: action «— readCorrection()
15: saveCorrectionDemonstration()
16: execute Action(action)
17: end if
18: end if

Figure 3.3. The algorithm for training the MRM+C system.

The demonstration continues as long as the teacher observes a room for improve-
ment in the system. Once the demonstration session is over, the MRM+C system
has the learned individual correction policies as well as a detail resolution policy. We
now present the algorithm for the autonomous task execution case where the robot
performs the task using the hand-coded algorithms at different detail resolutions and

augmented with complementary corrective demonstration.

3.5.7. Correction Reuse: Autonomous Execution

During the autonomous task execution using the MRM+-C system, each time the

robot reaches a decision point during the autonomous task execution, the MRM+-C al-

gorithm sets the system resolution to the most abstract detail resolution available and

31

computes an action using the algorithm associated with that detail resolution. Then,
the system starts searching the correction and elaboration demonstration databases
for correction actions and detail resolution change commands, in that particular or-

der. In other words, the system tries to find:

e A correction sample in the corrective demonstration database for the current
detail resolution
e An elaborate command in the elaboration demonstration database for switching

to the next detail level with finer resolution.

If a correction sample is found in the corrective demonstration database for
the current detail resolution which is received when the robot was in a state that is
similar enough to the current state of the system, the action is selected as the next
action and the execution continues with the announcement of the selected action. If
no correction samples can be found in the corrective demonstration database for the
current level but an elaborate command received in a state similar to the current
state of the robot is found, the system changes its detail level to the level specified in
the elaborate command and recomputes an action using the hand-coded algorithm
specified for the new detail level. In both cases, a domain specific state similarity
measure is employed and during the search, the entry with the highest similarity
value for the current state of the system is found. If the similarity value for the
located demonstration point is higher than a specified threshold, the demonstration
point is executed instead of the default action. If the demonstration point is a correct
action, the next action to be executed by the robot is replaced with the demonstration
action. If the demonstration point is an elaborate action, the system switches to the
next detail level and goes back to the action selection step. The algorithm for the

autonomous MRM+C execution is given in Algorithm 3.4.

— =
w N

=
ot

NN N

YN

_ =
= O

_.
=

e S

oM N

W W W w
w2

34:
35:
36:
37:

resolution «— LOW EST
currentState «— computeState(resolution)
mostSimilar < ()
maxSimilarity < 0
for each demonstration € correctionDatabase,¢soiution dO
similarity <« getSimilarity(currentState, demonstration(state)
if similarity > mazxSimilarity then
mazSimilarity «— similarity
mostSimilar < demonstration
end if
end for

: threshold «— getCorrectionT hreshold(resolution)
. if maxSimilarity > threshold then

action < demonstration(action)

: else

mostSimilar «— ()
maxSimilarity < 0
for each demonstration € elaborationDatabase do
similarity «— getSimilarity(currentState, demonstration(state)
if similarity > maxSimilarity then
mazSimilarity «— similarity
mostSimilar «— demonstration
end if
end for
threshold «— get ElaborationT hreshold()
if maxSimilarity > threshold then
if resolution < HIGHEST then
increaseResolution()
goto 2
else
action < computeAction(currentState)
end if
else
action «— compute Action(currentState)
end if
end if
executeAction(action)

Figure 3.4. The algorithm for the autonomous MRM+C execution.

32

33

3.6. Discussion

In this chapter, we presented a unified view on the complementary corrective
demonstration approach. We introduced Model plus Correction (M+C) and Multi-
Resolution Model plus Correction (MRM+C) algorithms as parts of a general-purpose

paradigm for task and skill refinement using complementary corrective demonstration.

The M+C paradigm, and its generalized extension, the MRM+C algorithm
are both provide a solid framework for task and skill refinement by having compo-
nents with well defined input, output, and functionalities, hence making it easy to
model complex tasks and skills to be refined in terms of execution performance. It
is possible to use a plethora of learning algorithms of choice seamlessly within the
individual components that involve learning, since no part of the proposed algorithms
depend on any specific algorithm, hardware, application domain, or state and action

representations.

34

4. SKILL REFINEMENT USING M+C

In this chapter, we present a multi-phase corrective demonstration approach for
improving the biped walk stability on the Aldebaran Nao humanoid robot platform
as an example application of the M+4-C paradigm. Being actively studied in humanoid
robot research, biped walking is a challenging problem due to the high dimensional
state and action space and the complex dynamics of the walking process. In our ap-
proach, we make use of an existing walk algorithm to obtain an initial open-loop walk
cycle, and then we improve the stability of the walk in two corrective demonstration

phases.

The phases of learning in our approach are as follows:

e An initial modeling of the walk motion by using the output of an existing walk
algorithm

e Offline improvement of the obtained walk model via high level human advice

e Acquisition of a closed-loop gait via real time corrective human demonstration
while the robot is walking using the open-loop walk obtained in the previous

phases

The demonstration signals given using a comercially available wireless game
controller are transmitted to the robot over a host computer via wireless network.
This setup allows the demonstrator to closely follow the robot and deliver the cor-
rective demonstration without tactilely interacting with it. The received correction
signals are recorded together with the state of the robot in the form of sensory read-
ings. A correction policy is then derived out of the recorded state-action pairs using
a learning algorithm of choice. Finally, the learned correction policy is used to mod-
ify the open loop walk cycle in such a way to keep the robot balanced as it walks

autonomously.

35

We present different types of correction and different methods for state-action
association, policy derivation, and the application of the correction with different
complexities. In particular, we present two different correction types (applying cor-
rection in the joint space or in the task space), two different state-action association
methods (associating a single sensor to a correction value without taking the cur-
rent position in the walk cycle into account or associating multiple sensors with a
correction value while taking the current position in the walk cycle into account),
two different policy extraction methods (fitting normal distributions on the received
correction values in the discretized sensory reading space or using locally weighted
regression with Gaussian kernel), and two methods for deciding when to apply correc-
tion to the system (applying the correction at each N timestep within the walk cycle
or applying the correction only if the sensory readings go beyond the normal values
according to a certain statistical definition of the normal). We present experiment
results evaluating the performances of the different combinations of the aforemen-
tioned methods compared to each other and compared to the initial open-loop walk.
Experiment results demonstrate an improvement in walk stability in all of the pre-
sented methods with an increase in the overall performance as the used method gets

more complex.

The organization of the rest of the chapter is as follows. Section 4.2 presents a
formal definition of biped walking, and covers how an open-loop walking behavior can
be acquired from an existing walk algorithm and how the acquired walking behavior
can be improved using human advice. We explain our real-time corrective demonstra-
tion approach thoroughly in Section 4.3. Section 4.4 describes how we combine the
corrective demonstration with the state of the robot to obtain a closed-loop walk. We
present experiment results and evaluate the performances of the proposed methods

in Section 4.5.

36

4.1. Modeling as a M+C Instance
4.1.1. State and Action Definitions
For the biped walk problem we use two different correction methods:

e Applying the correction in the joint space

e Applying the correction in the task space

In the joint space case, we represent the state of the system as a vector contain-
ing the accelerometer readings: ? =< Accy,Accy > where Accxy and Accy are the
accelerometer readings along the X axis and the Y axis, respectively. We define the
action as a vector of real numbers, each member representing the target angle for a

joint of the robot. More formally, A = {a1, as,...} and @ =< j1, ja, ...5Jix >.

In the task space case, we represent the state of the system as a vector containing
the current position in the walk cycle in additon to the accelerometer readings: ? =<
t, Accx, Accy >. We define the action for the task space correction as a vector
containing relative offsets of the feet on ground plane and with respect to the hip of

the robot. Formally, A = {a1, as,....} and @ =< g'eft yleft pright yright -
4.1.2. The Model

As the underlying algorithm, we use an open-loop walk algorithm which obtains
a walk behavior through playing back a single walk cycle extracted out of a ZMP-
based walk algorithm in a loop. The walk cycle is defined as we;(t) = ,u(lj;), j €
Joints,t € [0,T).

4.1.3. The Correction

In the joint space correction case, we use corrections for four hip joints (pitch

and roll joints for left and right legs) therefore the action definition for the joint

37

space correction is @ = {Cii{lt, Czl)jﬁh, C:i?lht, C’;ffgf}. Even though the original walk
cycle we contains joint commands for all the joints of the robot, the correction action
addresses only a subset of those joints. For the correction policy, we associate a single
sensor with a single joint. In other words, we learn multiple correction policies for
each joint to be corrected, and we use a single sensor reading, either the accelerometer

reading along the X axis or the reading along the Y axis as the state representation

for that correction policy.

In the task space correction case, the corrections are delivered in the same
form with the actions. For this case, we define the correction action as 8 =<
C’é?f t,(]éff t,C';ght,C’;ight >. Similar to the joint space correction case, we learn
multiple correction policies for the correction offsets along each direction and for
both feet. The state representation, however, remains the same and defined as

H
S =<t, Accy, Accy >.
4.1.4. Correction Reuse

For the joint space correction case, we apply the correction at fixed frequency
(at each N'™ timestep) regardless of the system state so the state representation for

. . . H
the correction policy is S = 0.

For the task space correction case, we use a sensor model obtained by fitting a
normal distribution over the recorded sensory data gathered from many examples of
the robot walking without any balance loss. We fit a separate distribution for each
timestep within the walk cycle over all sensory readings recorded at that particular
timestep. During the autonomous execution, we apply the computed correction values
whenever the current sensor values are not in the range u; £ Ko, for the current
timestep t in the walk cycle. We define the state representation for the correction

ﬁ
reuse policy of the task space correction as S =< t, Accyx, Accy >.

38

In both correction cases, we compute the final action to be executed by the
robot through adding the actions computed by the model and the correction parts

as ?final = E)model + ﬁcorrection
4.2. Open-loop Biped Walking
Biped walking is a periodic phenomenon consisting of consecutive walk cycles. A

walk cycle (we) is a motion segment that starts and ends with the same configuration

of the joints. Each walk cycle consists of four phases:

First single support phase (left)

First double support phase

Second single support phase (right)

Second double support phase

Figure 4.1. Walk cycle phases: a) first single support, b) first double support, ¢)

second single support, and d) second double support.

During the first single support phase, the robot stands on its left foot, and
swings the right leg forward. During the double support phases, both feet are on the
ground, differing in the offsets along the X axis from the first double support phase
to the second. During the second single support phase, the robot stands on its right
foot to lift and swing the left leg forward as shown in Figure 4.1. The walk cycle has

a duration of T' timesteps, where wc;(t),t € [0,T),7 € Joints is the command to the

39

joint j provided at timestep t.

In principle, if we could generate the correct joint command sequence for a walk
cycle, it would then be possible to make the robot walk indefinitely by executing this
cycle repeatedly in an open loop fashion. However, in reality, various sources of

uncertainty associated with sensing, planning, and actuation affect biped walking.

e In sensing, the main source of uncertainty is the noise in the sensor readings
due to the lack of precision/accuracy (e.g., high noise rate on the gyroscopes
and the accelerometers and imprecise position sensing on the joints), or the
environmental effects (e.g., electromagnetic fields affect compasses negatively).
The Nao robot does not have a compass, therefore the environmental effects do
not constitute a problem for us.

e In planning, the simplifications and assumptions that have been made while
building the mathematical model of the system prevent the developed model
from capturing all physical aspects of the real world.

e In actuation, several factors such as friction inside the gearboxes, the backlash
in the gears, and unmodeled payload effects constitute the main sources of

uncertainty.

As a result, the actual movement of the robot differs from the desired one as
seen in Figure 4.2. Here, the plot with circles illustrates the joint commands, i.e., the
desired trajectory, and the plot with triangles shows the actual trajectory followed by
the joint. The section towards the end where the actual joint position significantly
diverges from the desired trajectory corresponds to a moment where the robot is
standing on its left foot in the first single support phase and the movement of the

ankle joint is affected by the weight of the whole body.

Failing to follow the desired trajectory of the joint causes the robot to act
differently than expected and this difference affects the balance negatively. This kind

of unforeseen or poorly modeled sources of uncertainty are the typical drawback of

40

Left Ankle Roll Joint Cammands and Positions

—=— Joint Command

Actual Position

Joint Angle (radians)

-0.25

] 10 15 20 25 30 35 40 45 a0
Time (steps)

Figure 4.2. An example to the actuation error.

an open-loop controller, which is a type of controller that solely uses its model of
the system to compute the next action and does not take any feedback from the
environment into account to determine whether the desired state is achieved. A
closed-loop controller, on the other hand, uses both its model of the system and
the feedback received from the system to determine the next action. Similarly, an
open-loop walk algorithm generates a set of joint angle commands at each execution
timestep to form a walk pattern without taking the actual state of the robot (i.e.,
sensory readings) into account while a closed-loop walk algorithm incorporates the
sensory feedback into the joint command generation process in such a way that the

resulting walk motion keeps the robot balanced.

In the remainder of this section, we first present how an open-loop walk cycle can
be captured by observing the output of an existing walk algorithm. We then present
how the obtained open-loop walk can be further improved offline using the Advice
Operators Policy Improvement method [1]. In the following sections, we present how

a closed-loop walk can be built on top of the obtained open-loop walk.

41

4.2.1. Obtaining an Open-loop Walk

If a walk algorithm is readily available at hand, one way of obtaining a walking
behavior without directly employing the algorithm is to observe the output of the
algorithm and generate a single walk cycle out of those observations to be played
back in a loop. To accomplish this, we use the existing walk algorithm as a black-box
and record a number of walk sequences where the robot walks forwards for a fixed
distance at a constant speed using the selected algorithm. We record the sequences
in which the robot was able to travel the predetermined distance while maintaining

its balance.

A set of examples of the robot walking without falling provide data D for each
t,t € [0,7), in the form of the commands received by each joint 17;(25) and the
corresponding sensory readings S(t) provided by the set of sensors Sensors. We
obtain a single walk cycle we using D as wc;(t) = u(ﬁ;-),j € Joints,t € [0,7). In
addition, we fit a normal distribution N (/_Xt_)), &?t_))) to the readings of each sensor at
each t, where p(t) is the mean, and o4(t) is the standard deviation for the readings
of the sensor s € Sensors at time t in the walk cycle (Figure 4.3). In the figure, the

middle line denotes the mean and the vertical lines denote +/- 30 variance. The X

axis is timesteps, and the Y axis is the sensor value.

Lo K ACo Y
alr alr

z A
o o
=3 =
o o
] s}
= =
= =

-a0 ' ' ; ' ' -a0 ' ; ' ' '

10 20 an 40 al 10 20 a0 40 Al

Time (timesteps) Time (timesteps)

Figure 4.3. Distribution of the sensor values over the complete walk cycle for a

stable walk sequence.

Sending the joint commands in the obtained walk cycle to the robot repetitively,

hence playing back the captured walk cycle in a loop yields an open-loop walk be-

42

havior that performs similar to the original walking algorithm without employing the
algorithm itself. Although the Nao robot has a total of 21 joints, for our experiments
we utilize only 12 of them, which are all the leg joints except the shared hip yaw-pitch

joint and the shoulder roll joints for the arms, constituting the set Joints.

4.2.2. Corrective Demonstration Using Advice Operators for Offline Im-

provement

We use A-OPI for correcting the obtained walk cycle in its open-loop form
based on human observations of the executed walk behavior. We define three advice
operators O = {ScaleSwing, ChangeFeet Distance, Change Arms} that are applied

on the walk cycle:

e ScaleSwing(k): Scales the joint commands of the hip roll joints (along the X
axis) in the walk cycle by a factor of k where k € [0,1]. The hip roll joints
generate the lateral swinging motion while walking.

e ChangeFeetDistance(d): Applies an offset of d millimeters to the distance be-
tween the feet along the Y axis.

e ChangeArms(angle): Raises or lowers the arms by angle radians along the

Y — Z plane.

The algorithm for A-OPI is given in Figure 4.4. After a set of iterations con-
sisting of the execution of the walk behavior, receiving advice from the teacher, and
revising the walk cycle accordingly, an improvement is achieved. The initial and im-
proved versions of hip roll joint values to generate lateral swinging motion are shown
in Figure 4.5 as an example. Here, decreasing the amplitude of the hip roll joint
signal causes the robot to swing less, which contributes to preservation of balance

positively.

1: while the teacher sees room for improvement do
2: executeWalk(we)

3 0,X, « getAdviceFromTeacher()

4 wc' fo(meC)

5: end while

Figure 4.4. Advice Operator Improvement (A-OPI) algorithm.

Initial and Improved Signals for Hip Roll Joint
0.5 T T T T T

0zr + b

015 o o .

01r * < b

angle (radians)
=
=
o
T
*
&
1

-0.05 Y Y -

oI e o + Iritial]

& o
o o
t, TeedY e ¢ Impraved using A-OPI
1 1 1 1
10 20 30 40 a0 [<1n]
time

-0.15
i

Figure 4.5. Initial and improved joint commands for hip roll joints generating

swinging motion while walking.

44

4.3. Real-Time Corrective Demonstration

Without any corrections, an open-loop playback mechanism by itself is usually
not enough to maintain the robot’s balance while walking. Therefore, the next step
after obtaining an open-loop playback walk and improving it offline using A-OPI
method is to close the loop by adding a mechanism to modify the open-loop walk cycle
during autonomous execution according to the feedback received from the system.
The changes in sensor readings when the robot is about to lose its balance (Figure 4.6)
are used to derive a correction policy by mapping these changes to corrective feedback
signals. The right plot in the figure depicts an unstable walk sequence where the
robot starts losing its balance after around 200" timestep. We use real-time human
corrective demonstration to learn a correction policy, which is a function that maps
the sensory readings of the robot to the proper correction signals as it walks using

the initial or the improved open-loop walk cycle.

o

]

\\i_!‘ 0.5 T T T T T T T T

E U i —_— . . amplilige e -

8 _0.5 1 1 1 1 1 1 1 1

5 0 L] 100 150 200 250 00 50 400 450

= Time a)
20 T T T T T T T T

o

5 ’
_20 1 1 1 1 1 1 1 1

[<tu] 100 150 200 250 200 350 400 450
Time

=3
Py
(22}

Torso Roll (rad)
f)
= " L)
‘I

_0.5 | 1 | 1 1 | | 1
L] 100 150 200 250 00 00 400 450
Time b)
o0 . : . : : . - :
=
g 0 MMW‘VNW M
& N
_20 1 1 1 1 1 1 1 1
0 L] 100 150 200 250 00 300 400 450

Time
Figure 4.6. Sample torso orientation and accelerometer readings: a) a stable walk

sequence, and b) an unstable walk sequence.

Due to the noisy nature of the sensors, fluctuations may occur in the sensor
readings and that may result in jerky motions that lead to loss of balance when the

correction values calculated as a function of the sensor readings are applied to the

45

joints directly. Therefore, the readings need to be filtered. Running mean and median
smoothers are widely used methods for filtering noisy data. In running smoothers,
the data point in the middle of a running window of size N is replaced with the mean
or the median of the data points lying within that window. The filtered signal gets
smoother as the window size increases. The delicate trade-off in filtering lies in the
selection of an appropriate window size for smoothing the data just enough to filter

out the noise without rendering the patterns in the data hard to detect.

We evaluated the running mean and median smoothers with window sizes 5
and 10 (Figure 4.7), and decided to use a running mean filter with window size 5
since it filters out the noise reasonably well and is computationally cheaper than the
running median filter. Also, considering our sensor sampling rate is 50 Hz, we can still
detect a significant change in the sensor readings in at most 1/10™ of a second. In the
figure, a), b), ¢), d), and e) are the raw data, the output of the median smoother with
window size 5, the output of the median smoother with window size 10, the output
of the mean smoother with window size 5, and the output of the mean smoother with

window size 10.

20 T T T T T
0~ " . ¥
. s 1 i . e
BTN . I N T~ W A ST Y
Iy CEL PR T AU I N M ORI
p 7 A
|

i " y
RS B td ;
o I | | | | | | |
f] 100 150 20 %0 EQ E w0 450 500

2 T T T T
10~ ~ ~ F

- K N AR ., 3
o p M’”‘“»,;\-f""“'../ P N N NI ,;“"“‘.«_,‘J G 1 b)
e fad (¥ W NS i

» | | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500

20 T T

T T
w0~ Y -~
(. M@\//\w/\’f\uﬁ\i; ‘\»/\\\/ N ..n 4 c)
1 1

1 1 1 1 1 1 |
-20
0 50 100 150 200 250 300 350 400 450 500

20 T T

N W"Wf\\/ﬂ\\/ \1‘\‘;/\\\/;\\;,\ 1d)

0 50 100 150 200 250 300 3650 400 450 500

2 T T T
10~

e e N A Y A VAV VAVARE

1 1 1 1 1 1 |
-20
0 50 100 150 200 250 200 260 400 450 500

Figure 4.7. Results of applying various smoothers on an example accelerometer

data.

46

In the remainder of this section, we first present our corrective demonstration
setup, elaborating on the implementation details. We then present two different
correction methods for forward walking along with a simplified inverse kinematics

model for the Nao.

Demonstration Interface

V\I[::l r F Demonstrations
> »f%

Correction
Policy

T,

Sensor Readings

Nintendo Wiimote

A
Walk Cycle Extraction
Advice
Operator
Improvement
Walk Improved
Walk Algorlthm Walk
Cycle
Cycle

Figure 4.8. The diagram for the real-time demonstration framework for policy

extraction.

4.3.1. Corrective Demonstration Setup

A major challenge in providing corrective demonstration for the biped walking
process is to find a proper way of delivering the demonstration as fast as possible
without physically contacting the robot. Fast delivery is needed because biped walk
is such a delicate dynamic process that it might be too late to recover from a balance
loss if the robot receives the provided correction signal with a significant delay. An-
other problem with late delivery is that in such a case the received demonstration is
associated with the wrong set of sensory data; hence, it results in an erroneous associ-
ation of the demonstration points with the state information in the policy generation
process. The necessity of delivering the demonstration without touching the robot
also stems from the delicate dynamics of the biped walking process since interfering

with those dynamics of the robot affects the learned policy negatively.

47

We utilize a wireless control interface using the commercially available Nin-
tendo Wiimote game controller (http://www.nintendo.com/wii/what/controllers) to
deliver corrective demonstration to the robot. Both the Wiimote controller and its
Nunchuk extension are equipped with accelerometers measuring the acceleration of
the controllers as well as allowing their absolute roll and pitch orientations to be com-
puted. Therefore, the Wiimote with its extension has four measurable axes allowing
four different correction signals to be delivered simultaneously. The computed roll

and the pitch angles are in radians and they use the right-hand frame of reference.

We use a custom developed software framework for delivering the correction
signal received from the Wiimote by the host computer to the robot over wireless
Ethernet connection as fast as possible (Figure 4.8). The custom software also pro-
vides the demonstrator an interface to define scaling and shifting operators on the
received signals from the Wiimote before transmission to the robot, allowing the
demonstration signal to be scaled up or down. By scaling down the demonstration
signals, it is possible to reduce the undesirable noise factors like trembling hands
of the demonstrator. The position of the Wiimote which is connected to the host
computer over a Bluetooth connection is sampled and the processed demonstration
signals are transmitted to the robot over a UDP connection via wireless network at
a frequency of 1KHz; therefore, even if some of the UDP packets are dropped due
to the network conditions, we can still deliver the demonstration signal packets at
around 50Hz, which is the update frequency for the sensors and the actuators of the

robot. A snapshot of the custom software is given in Figure 4.9.

The custom user interface allows a joint-wise or the defined correction signal
wise definition of scaling coefficients and fixed offsets to make the demonstration
process easier for the teacher. The teacher can associate a correction source for
each correction signal. In this study, we only used Wiimote signals as the correction
sources but the interface supports all generic joysticks and game pads to be used as
the correction source. Defining a scaling coefficient smaller than 1.0 allows the user to

reduce the noise injected by the shaking hands or the changes in the Wiimote handles

48

i X & Remote Control vl a) X |
LHipYawPitch Gain [0.0000 <Offset [0.0000 ¢ None v | |None v G
LHipRoll Gain [0.1500 <¢Offset [0.0000 ¢ Direct Modification v | | Nunchuk Roll
LHipPitch Gain [-0.1500 <¢Offset [0.0000 ¢ Direct Modification v | | Nunchuk Pitch
LKneePitch Gain [-0.1500 <Offset [0.0000 ¢ Direct Modification ~ | Munchuk Pitch
LAnklePitch Gain [0.1500 <Offset [0.0000 ¢ Direct Modification ~ | Munchuk Pitch |
LAnkleRoll Gain [-0.1500 <Offset [0.0000 ¢ Direct Modification ~ | Munchuk Roll
RHipYawPitch Gain [0.0000 <Offset [0.0000 ¢ None v | |None v
RHipRoll Gain [0.1500 <¢Offset [0.0000 ¢ Direct Modification v | | Wiimote Roll v
RHipPitch Gain [-0.1500 <¢Offset [0.0000 ¢ Direct Modification v | | Wiimote Pitch
RKneePitch Gain [-0.1500 <Offset [0.0000 ¢ Direct Modification ~ | | Wiimote Pitch
RAnklePitch Gain [0.1500 <Offset [0.0000 ¢ Direct Modification ~ | Wiimote Pitch 1
RAnkleRoll Gain [-0.1500 <Offset [0.0000 ¢ Direct Modification ~ | Wiimote Roll ~
RShoulderPitch ~ Gain [0.0000 <Offset (0.0000 ¢ None v | |None v n
E— e = - T b

Save Config Open Config Refresh

Figure 4.9. A snapshot from the software developed for delivering real-time

corrective demonstration to the robot.

due to the teacher walking while chasing the robot. All coefficient and correction
source associations are stored in a config file and the software supports multiple
config files to make it possible for the teacher to try and evaluate different correction

configurations easily.

We define two different methods for converting the Wiimote signals into the

correction signals to be applied on the robot:

e Applying correction signals in the joint space by means of direct modifications
to the joint commands.
e Applying correction signals in the task space by means of feet position displace-

ments.

The demonstrator delivers the corrective demonstration signals to the robot by
changing the orientations of the Wiimote and the Nunchuk controllers in real time
while the robot is walking using the open-loop walk cycle. We record the received
correction signals during the demonstrations synchronously with the rest of the sensor

readings at 50Hz. The Nunchuk extension and the Wiimote control the left and the

49

right side corrections on the robot, respectively (Figure 4.10). A loose baby harness
is used to prevent possible hardware damage in case of a fall. The harness neither
affects the motions of the robot nor lifts it as long as the robot is in an upright

position.

Figure 4.10. A snapshot from a demonstration session.

4.3.2. Applying Correction in the Joint Space

In this correction method, we associate the four correction signals received from
the demonstrator to the four individual joints on the hip. Namely, we use the hip roll
and the hip pitch joints to apply the correction signals. To provide a finer control
ability to the demonstrator, a scaling factor v is applied on the Wiimote readings
using the interface described above for scaling the demonstration signals before they
are transmitted to the robot. We used v = 0.1 in our implementation. The received
roll corrections are applied on the hip roll joints and the received pitch corrections are
applied on the hip pitch joints. To keep the feet parallel to the ground, the following

correction values are applied on the ankle roll and the ankle pitch joints:

C’AnkleRoll = _CH'ipRoll (4 1)

CAnklePitch = _CHipPitch (42)

50

At each timestep, we compute the correction values for all joints 7 € Joints
using the defined correction functions. We then add the calculated values to the
joint command values in the walk cycle for that timestep before sending the joint
commands to the robot. The correction is applied to the system at each m* timestep

where 1 < m < T where T is the length of the walk cycle in timesteps.

Figure 4.11. Applying correction in the joint space.

In Figure 4.11, rolling the Wiimote to the right transitions the robot from its
neutral posture (1) to a posture bent along the Y axis (2). Similarly, tilting the
Wiimote forward transitions the robot from its neutral posture (3) to a posture bent

along the X axis (4).

4.3.3. Applying Correction in the Task Space

In this correction method, we modify the feet positions in the 3D space with
respect to the torso center by mapping the received correction values to the offsets
along the X-Y plane instead of applying the correction signals directly to the joints.
At each timestep of playback, the vector of joint command angles for that timestep
is used to calculate relative positions of the feet in 3D task space with respect to
the torso using forward kinematics. The calculated corrections (in the autonomous
mode), or the received corrections (during the demonstration) are applied on the feet
positions in 3D space and the resulting feet positions are converted back into a vector
of joint command angles using inverse kinematics and sent to the robot (Figure 4.12).
Here, rolling the Wiimote to the right takes the right leg of the robot from its neutral
posture (a) to a modified posture along the Y axis (b). Similarly, tilting the Wiimote

51

forward brings the right leg of the robot from its neutral posture (c) to a modified
posture along the X axis (d).

Figure 4.12. Applying correction in the task space as feet position displacement.

Due to the physically coupled hip-yaw joints of the Nao, inverse kinematics for
feet positions cannot be calculated independently for each foot. Graf et al. propose an
analytical solution to inverse kinematics of the Nao, presenting a practical workaround
for the coupled hip-yaw pitch joints constraint [32]. We used a simplified version of
this approach by assuming the hip-yaw joints to be fixed at 0 degrees for the straight
walk. The desired position Pos of the foot with respect to the hip joints is given in

the form of a homogeneous transformation matrix.

We assume a stick figure model for the feet as shown in Figure 4.13. The thigh
and the tibia (upper and lower leg parts) form a triangle with the imaginary edge
d o0t Which represents the distance of the foot from the hip. This distance equals the
magnitude of translation vector t and can easily be calculated as df,; = |t|. The
angle 0 between the upper and lower leg parts can be calculated using the law of

cosines.

d?oot = lthzgh + ltzbza + 2lthighltibia COS ﬁ (43)

Boion+ B — &3
ﬁ — arccos thigh tibia foot (44)

2Unighltivia

52

Thigh
Length

v
A

Tibia
Length

Y
b Foot

y Height

Figure 4.13. Kinematic configurations for the legs of the Nao robot.

where lipign, and Iy, are the length of the thigh and the tibia, respectively. When
the leg is fully extended, the knee pitch joint angle agpeepiten = 0; therefore, the
resulting angle for knee pitch is calculated as agpeepiten = ™ — 3. The angle between
lower leg and foot plane constitutes the first part of the final ankle pitch angle and

can be computed by the law of cosines.

— arccos lt2ibia + d?‘oot - lt2high (4 5)
7 2ltibiadfoot .

The second part of the ankle pitch angle is calculated using the components of the

translation vector

0 = atan2(t,, \/t2 + t2) (4.6)

where, atan2(y, x) calculates the angle between the X axis, and the point (z,y).

93

The final ankle pitch angle value is the sum of its two components; that is,
Qankiepiten = Y + 0. The hip roll angle value is also calculated using the translation
vector. Similar to the hip pitch joint, its final angle value is equal to the exterior
angle value; that is, agiprou = ™ — atan2(t,,t,). The value of the ankle roll angle is
the difference between the desired absolute orientation of the foot along the X axis
(calculated using the rotation matrix part of Pos), and the calculated hip roll joint

angle value

QAnkleRoll = ATCSIN(P32) — QripRoll (4.7)

where p3, is the third row and the second column of Pos. Finally, the hip pitch angle

value is calculated as

O HipPitch = _(aKneePitch + aAnklePitch) (48)

Any given valid joint command vector satisfying the assumptions stated at the
beginning of this subsection can be converted into the relative positions of the feet

in the 3D task space using the method described above.

4.4. Closed-Loop Walking Using Playback And Corrective

Demonstration

With the correction methods described in the previous section, we can col-
lect demonstration data consisting of the sensory readings representing the state of

the system as it is perceived by the robot, and the correction values provided by

o4

the demonstrator based on his/her observation of the state of the robot. To ob-
tain a closed-loop gait, we need a function that maps the sensory readings to the
corresponding demonstration values so that we can use that mapping to infer the
appropriate correction values to be applied for a given sensory reading. We present

two different association methods:

e Associating a single sensor with joint space correction

e Associating multiple sensors with task space correction

4.4.1. Associating a Single Sensor with Joint Space Correction

In this method, we apply the correction on individual joints, and we define
the correction value for a joint as a function of a single sensor reading. We use the
accelerometer readings along the X and Y axes as the sensory input. Each point in the
resulting demonstration dataset is a tuple < g), C > where § = {Accx, Accy } is the
vector of accelerometer readings, and C = {cte, Czl;;{ L et C;ffgf} is the vector of
received correction values for the left hip roll, the left hip pitch, the right hip roll, and
the right hip pitch joints, respectively. The accelerometers on the Nao can measure
accelerations in the range [—2g¢, 2g] where ¢ is the standard gravity and their readings
are integer values in the interval [—128,127]. To model the noise associated with
the demonstration data, we fit a normal distribution on the correction data points
received for all 256 values of the accelerometer. The resulting distributions versus the
accelerometer readings populated using approximately 6000 correction points out of
about 30000 points recorded in a single demonstration session of roughly 10 minutes
are given in Figure 4.14. In the figure, a), b), ¢), and d) shows Acc. X vs. left side
roll, Acc. X vs. right side roll, Acc. Y vs. left side pitch, and Acc. Y vs. right side
pitch, respectively. In each subfigure, the bold points in the middle denote the mean,
and vertical lines denote the variance of the normal distribution fit on that sensor

value interval.

55

ol 0.
0,08 - 0,08 .
0,06 0,06 |-
£ 004 5 0.4
8 2
£ oozt £oonzf
= 5
() ‘ o
= (3 3 3
4 b *
002t & -0nzh
£ %
& 004t Z 0041
0,06 0,06 -
-0,08 008
o L L L L L L L L L | S04 L L L L L L L L L |
Ho -40 -0 20 -10 0 10 20 30 40 50 50 40 -30 -20 10 0 10 20 30 40 50
Accelerometer X Accelerometer X
(a) (b)
ol 0.
0,08 - 0,08
0,06 0,06 |-
5 o041 B o}
o2t g oonzh
S)
= *
i or T ol .
- o
”; ¢ s
£ ooy ® ¢ 5002
o 2
5 -0,04F 50,04
~ (=34
0,06 0,06 -
-0,08 008
o L L L L L L L L L | S04 L L L L L L L L L |
Ho -40 -0 20 -10 0 10 20 30 40 50 50 40 -30 -20 10 0 10 20 30 40 50

Aoceleroneter Y

()

fAccelerometer

(d)

Figure 4.14. The normal distributions fit on the received correction data versus the

accelerometer readings for the single sensor - joint space correction association.

96

Any discontinuity or a sudden change in the correction signal causes a jerky
movement of the robot and further contributes to the loss of balance. To deal with
it, the correction is modified to be a mapping from the sensory reading to the mean
of each joint command to be corrected, namely, the left hip roll, the left hip pitch, the
right pitch, and the right hip roll. During autonomous execution, given the perceived
sensory data, the corresponding mean value is added to the walk cycle commands.
The computed correction values are applied to the walk cycle commands at each N*"
timestep, where N is a predefined value that does not change during the execution.

The pseudo-code of that process is given in Figure 4.15.

3 S readSensors()

4§ — smoothen(S)

5. for all j € Joints do

6: if timestep MOD correctioninterval = 0 then
7 C; = Correction(S, j)

8 else

9: Cj =0

10: end if

11: NextAction; — wc;(t) + C;
12: end for

132 t—t+1 (modT)

14: end loop

Figure 4.15. Algorithm for closed-loop walking using single sensor-joint space

correction association.

In addition, we defined a hand-tuned simple linear function to be used as a
benchmark closed-loop gait in our experiments. We use the roll and the pitch angles
of the torso, calculated by the inertial measurement unit as the sensor readings and
associate them with the hip roll and the hip pitch joints. The inertial measurement
unit returns the roll and pitch orientations of the torso in radians with respect to the
ground. The used linear coupling functions are of the form C' = AX + B where A
is a gain value, B is an offset value, X is the sensor reading, and C is the calculated
correction value. For the four hip joints to be corrected, we have four functions
with individually set A and B values. We hand-tuned the parameters of these four
functions using expert knowledge and visual observation of the robot walking. The

resulting hand-tuned policy provided an improvement over the initial open-loop walk.

o7

Details of the results are given in Section 4.5.
4.4.2. Associating Multiple Sensors with Task Space Correction

In this method, the correction values received during the demonstration are
recorded synchronously with the sensory readings, tagged with the current position

in the walk cycle. FEach point in the resulting demonstration dataset is a tuple

— =
< S, C >, where
H
S =<t, Accy, Acey >

is the state vector of consisting of the position in the walk cycle at the time when

this correction is received, and accelerometer readings, and
8 - Cleft Cleft Cm'ght Cright
=< X »YY »¥X sy Y'Y >

is the vector of received correction values for the left foot along the X axis, the left
foot along the Y axis, the right foot along the X axis, and the right foot along the

Y axis, respectively.

We utilize locally weighted regression with a Gaussian kernel [33] for generaliz-
ing a policy using the recorded correction and sensor values. For each received sensor

— —
reading vector S, we calculate the correction vector C as follows:

4 = ¢ VE-S@TE1(E-50) (4.9)

3 diCit)
- (4.10)

%0

7

Ql
|

o8

where ¥ is the covariance matrix of the sensory readings in the demonstration set,
a(t) is the i*" received correction signal for the walk cycle position ¢, i(t) is the i
sensory reading for the walk cycle position t, ?(t) is the current sensory reading, 8
is the calculated correction value to be applied, and ¢ is the current position in the

walk cycle.

The calculated correction values are applied only if any of the sensor values
are not in the range yu; + Ko, (i.e., if an abnormal value is read from that sensor,
meaning that the robot is losing its balance) where K is a coefficient, and ¢ is the
current position in the walk cycle. In our implementation, we chose K = 3 so the
correction values are applied only if the current sensory readings are outside the
range pus(t) F 30s(t), corresponding to the %99 of the variance of the initial sensory
model given in Section 4.2.1. The pseudo-code for multiple sensors - feet position
displacement association is given in Figure 4.16. Here, Posj.s; and Pos,;g are the

positions of the feet in 3D space.

1: t+—0
2: loop
—_—
3: S(t) « readSensors()
— —
S(t) « smoothen(S(t))
Posie i, Posright — forwardKine(wc(t))
if (us(t) — Kos(t) < Ss(t) < ps(t) + Kos(t)) then
Cleft7 C’r‘ight —0
else
—_—
Clest, Cright < correction(S(t))
10 end if
11: POSleft “— POSleft + Cleft
12: Posright — Posright + Cm'ght
13: NextAction «— inverseKine(Posicfi, POsyight)
14: t—t+1 (modT)
15: end loop

© P NS T e

Figure 4.16. Algorithm for closed-loop walking using multiple sensors-task space

correction association.

4.5. Experimental Evaluation

To evaluate the performance of the proposed methods, we conducted a set of

walking experiments on a flat surface covered with carpet. We used the walking

99

algorithm proposed by Liu and Veloso as the black-box algorithm [34]. The duration
of the extracted walk cycle is 52 individual timesteps, approximately corresponding

to one second.

We evaluated different combinations of the proposed correction, sensory asso-

ciation, and policy derivation methods as follows:

e Case (a) : Initial open-loop playback walk (OL).

e Case (b) : Closed-loop playback walk with the joint space correction policy
(JS) using hand-tuned (HT) single sensor-correction association (SS) on top of
the original open loop walk cycle (OL), and the fixed frequency application of
the correction (FC) twice a walk cycle (N = 26).

e Case (c) : Closed-loop playback walk with the joint space correction policy (JS)
using single sensor-correction association (SS), normal distribution fit (NF) on
top of the original open loop walk cycle (OL), and the fixed frequency applica-
tion of the correction (FC) twice a walk cycle (N = 26).

e Case (d) : Open-loop playback walk cycle (OL) after offline improvement using
advice operators (AO).

e Case (e) : Closed-loop playback walk with the task space correction policy (TS)
using multiple sensors - correction association (MS), locally weighted regression
(LWR) as the policy extraction method on top of the advice improved walk
cycle (OL+AO), and the application of the correction under state anomaly
(AC), in other words, when the sensory readings go beyond the +3c of the

normal sensory readings (Figure 4.3).

We used two benchmark combinations (Case (a) and Case (b)), the former
being the base case and the latter being a simple closed-loop method with hand
tuned parameters as described in Section 4.4.1. For each combination, we performed
10 runs and measured the distance traveled before falling. The results are given in
Figure 4.17 as boxplots, where the lines within the boxes mark the mean, the marks

at both ends of boxes indicate minimum and maximum distances, and the left and

60

right edges of boxes mark 25" and 75" percentiles, respectively.

al F |

100 200 300 400 500 600 700 800 900 1000 1100

Figure 4.17. Performance evaluation results for the biped walk improvement

problem.

During three demonstration sessions of 28 minutes, a total of about 83000
demonstration points are recorded for both joint space and task space corrections,
and 25428 of them corresponding to about 489 walk cycles are selected as good exam-
ples of corrective demonstration by visually inspecting the demonstration data based

on the changes in the sensory readings towards the recovery of balance.

The mean and maximum distances that the robot could travel using the initial
open loop benchmark walk (Case (a)) were 203 and 327 centimeters, respectively,
while the mean and the maximum distances the robot was able to travel using the
closed loop benchmark walk (Case (b)) were 432 and 689 centimeters, respectively.
The performance difference between the two benchmark cases stems from the funda-
mental difference between the open-loop and the closed-loop control paradigms under

the presence of uncertainty and noise in the environment.

61

All of the combinations involving proposed methods outperformed the bench-
mark cases Case (a) and Case (b). Case (c), which is directly comparable to Case (b)
demonstrated considerable improvement over the latter, reaching a maximum trav-
eled distance of 956 centimeters with a mean traveled distance of 539 centimeters' .
The improvement in the performance could be accounted for the non-linear relation-
ship between the computed means for the received correction and the accelerometer
readings (as seen in Figure 4.14) of which the assumed linear relation function in the

hand tuned case was unable to capture appropriately.

The open-loop walk improved with advice operators (Case (d)) performed sur-
prisingly well and outperformed the closed-loop Case (¢), reaching a maximum trav-
eled distance of 1127 centimeters with a mean traveled distance of 692 centimeters.
During the advice operator improvement, the teacher continuously observes the robot
and gives high level advice which corresponds to a systematic correction to the walk
cycle. Taking a closer look at the mean correction values in Figure 4.14, we see that
the mean values are off from the zero position by a fixed offset in addition to the
nonlinear relation of the sensory readings to the received correction value. These
offsets are results of the implicit high level correction of the same systematic error by
the demonstrator. An explanation for why the improved open loop walk did better
compared to Case (c) could be that it is easier to focus on the “big picture” and
hence to spot the systematic error when the teacher is solely observing the robot

rather than being actively involved in delivering real-time correction to the robot.

Despite the fact that the application of the advice operators on the walk cy-
cle resulted in a considerably improved walk performance with the maximum and
mean traveled distances of 1137 and 834 centimeters, respectively, the last case (Case
(e)) shows that there is still room for improvement with the real-time corrective
demonstration over the improved open-loop walk. The maximum distance of 1137
centimeters was the length of the available experimentation area and the Case (d)

combination was able to reach this limit three times out of 10 runs.

IThe open-loop walk performance was comparable to the performance of the original ZMP-based
walk, which was not available to be accounted for in this empirical comparison.

62

4.6. Discussion

In this chapter, we presented an approach for learning a correction policy for
improving the walk stability of the Nao humanoid robot using corrective human
demonstration. We analyzed the Nao robot in terms of the variations of joint com-
mands and sensor readings. The key question we tried to answer was whether it
would be possible to improve the performance of an existing controller for perform-
ing a complex skill on a complex robotic platform without knowing the underlying
technical details of the existing controller. We tackled the problem by making use
of a human teacher who is able to externally observe the robot performing the skill
using the existing controller. We utilized corrective human demonstration given in
two phases (first offline and then in real-time) to learn a policy for modifying the joint
commands in the open-loop walk cycle during the autonomous execution in such a

way to keep the robot balanced.

Although the results suggest that more complex options for the correction type
(task space correction instead of joint space correction), sensor-correction association
(multiple sensors - task space correction association instead of single sensor - joint
space correction association), policy derivation method (locally weighted regression
for the individual timesteps within the walk cycle instead of fitting normal distri-
butions for the whole walk cycle), and the application of the correction (applying
correction only if the current perceived state differs from the normal values instead of
applying correction at each N** timestep regardless of the sensory readings) yielded
better performance, we do not possess enough experimental evidence to claim such

superiority.

63

5. TASK REFINEMENT USING M+C

In this chapter, we present an application of the M+4-C approach for task execu-
tion refinement where a hand-coded algorithm for performing the task exists but is
inadequate in handling complex cases. The human demonstrator observes the robot
carry out the task by executing the hand-coded algorithm and provides corrective
feedback when the hand-coded controller computes a wrong action. The received
demonstration actions are stored along with the state of the robot at the time of
correction as complements (or “patches”) to the base hand-coded algorithm. Dur-
ing autonomous execution, the robot substitutes the action computed by the hand-
coded algorithm with the demonstrated action if the corrective demonstration history
database contains a demonstration provided in a similar state. The key idea is to
keep the base controller algorithm as the primary source of the action policy, and
use the demonstration data as exceptions only when needed instead of deriving the
entire policy out of the demonstrations and the output of the controller algorithm.
We applied this approach to a complex ball dribbling task in the humanoid robot

soccer domain.

5.1. Problem Definition

Technical challenges are held as a complementary part of the RoboCup SPL
competitions with the aim of creating a research incentive on complex soccer playing
skills that will help leverage the quality of the games and enable the league to grad-
ually approach the level of real soccer games both in terms of the field setup and the
game rules. Each year, the technical challenges are determined accordingly by the

Technical Committee of RoboCup SPL.

Our application and evaluation domain, the “Dribbling Challenge”, was one of
the three technical challenges of the 2010 SPL competitions. In that challenge, an

attacker robot is expected to score a goal in three minutes without having itself or the

64

ball touching any of the three stationary defender robots that are placed on the field
in such a way to block the direct shot paths. The positions of the obstacle robots are
not known beforehand; therefore, the robot has to detect the opponent robots, model
the free space on the field, and plan its actions accordingly. An sample scenario is

illustrated in Figure 5.1.

Figure 5.1. An example scenario for the dribbling challenge.

5.2. Modeling as a M+ C Instance
5.2.1. State and Action Definitions

In the ball dribbling task, we use the free-space model built by processing a
number of consecutive camera images taken during the robot scanning the field with
a pan motion. We condense the perceived free-space information about the immediate
surroundings of the 180° area in front of the robot into 15 slots, each covering 12°.
We represent the state as a vector of 15 integers, each representing the distance
to the nearest obstacle detected along that free-space slot, or the maximum free
distance if no obstacle is detected. We also keep a boolean flag indicating whether it
is facing towards the opponent goal or not. As a result, we define the state vector as

ﬁ
S =< disty, dists, ..., disti5, goaly, goals, ..., goalis >.

65

The action definition has two stages. First, we define the first level actions as
Atirst = {Shoot, Dribble}. For the dribble action, we have a second set of actions for
representing the dribble direction. We define the second level actions as Ageconda =

{diry, diry, ..., dir15}. We assume a fixed dribble distance of 100 cm.

5.2.2. The Model

For the model component, we employ two simple algorithms. The first algorithm
is for deciding whether to take a direct shot on goal, or to dribble the ball to a
location on the field more suitable for a direct shot. This algorithm simply calculates
the differences between the distances of the slots facing towards the opponent goal
and that of the robot to the goal. If the average distance is below a certain threshold,
A = Shoot is selected. If the distance is above that threshold, or none of the free-space

slots face the opponent goal, A = Dribble is selected.

The second algorithm is utilized whenever A = Dribble is selected. For dribble
direction selection, we go over each slot and we compute a weighted average distance
for each. If none of the free-space slots face towards the goal, the slot with the closest
direction difference from the goal is selected regardless of the occupancy status of

that slot.

5.2.3. The Correction

During the demonstration session, corrective demonstration examples in the
form of state-action pairs are collected and stored in a database individually. We do
not learn a model for the gathered demonstration data. The teacher can correct the
actions at both the first level and the second level. In case of correcting an erroneous
Shoot action with a Dribble action, the teacher can either provide a dribble direction
as well, or can leave it to the dribble direction selection algorithm in the model

component.

66

5.2.4. Correction Reuse

The correction reuse component determines the next action to be performed
by selecting an action among the actions computed by the model and the correction
components. During the autonomous execution of the task, the robot looks for a
replacement action whenever it reaches a decision state and computes an action using
the algorithms of the model component. To find a proper replacement action, we
search through the demonstration database to see if there is a demonstration in the
database that is received when the system was in a state similar to the current state
of the system. We use a domain specific, hand-coded state similarity measure that
computes the similarity by overlapping the goal slots and then computes an average of
absolute distances. We then apply a Gaussian kernel to the computed raw distance
measure to compute the state similarity value. The state representation for the
correction reuse component is the same representation used in the other components

of the system.

5.3. Free Space Modeling using Vision

Instead of trying to detect the defender robots and avoid them, our attacker
robot detects the free space in front of it and builds a free space model of its sur-
roundings to decide which direction is the best to dribble the ball towards. The soccer
field is a green carpet with white field lines on it. The robots are also white and gray,
and they wear pink or blue waist bands as uniforms (Figure A.1(b), Figure 5.1).
Therefore, anything that is non-green and lying on the field can be considered as an
obstacle, except for the detected field lines. We utilize a simplified version of the
Visual Sonar algorithm by Lenser and Veloso [35] and the algorithm by Hoffmann
et al. [36]. We scan the pixels on the image along evenly spaced vertical lines called
scanlines, starting from the bottom end and continue until we encounter a certain
number of non-green pixels. Although the exact distance of a certain pixel from the
robot is a function of the position of the camera, in general the distance to a pixel in-

creases as we ascend from the bottom of the image to the top, assuming all the pixels

67

lie on the ground plane. If we do not encounter any green pixels along a scanline, we
consider that scanline as fully occupied. Otherwise, the point where the non-green
block starts is marked as the end of the free space towards that direction. To further
save some computation time, we do not process every vertical line on the image.
Instead, we process the lines along every fifth pixel and every other pixel along those
lines. As a result, we effectively process only 1/10" of the image (Figure 5.2(b)).
The pixels denoting the end of the free space are then projected onto the ground to
have a rough estimate of the distance of the corresponding obstacle in the direction
of the scanned line. In order to cover the entire 180° space in front of it, the robot
pans its head from side to side. As the head moves, the computed free space end
points are combined and divided into 15 slots, each covering an arc of 12° in front
of the robot. In the mean time, each free space slot is tagged with a flag indicating
whether that slot points towards the opponent goal or not based on the location of
the opponent goal in the world model, or the estimated location and orientation of
the robot on the field (Figure 5.2(c)). Here, the dark triangles indicate the free space

slots pointing towards the opponent goal.

5.4. Ball Dribbling Behavior

We use a Finite State Machine (FSM) based behavior system for developing the
ball dribbling behavior. The FSM structure of the ball dribbling behavior is depicted
in Figure 5.3. The robot starts with “searching for the ball” by panning its head from
side to side several times using both cameras. If it cannot find the ball at the end
of this initial scan, it starts turning in place while tilting its head up and down, and
this cycle continues until the ball is detected. Once the ball is located on the field,
“approach the ball” behavior gets activated and the robot starts walking towards the
ball. Utilizing the omni-directional walk, it is guaranteed that the robot faces the ball
when the “approach the ball” behavior is executed and completed successfully. After
reaching the ball, the robot pans its head one more time to gather information about
the free space around it, calculates its current state, selects an action that matches

its state, and finally kicks the ball towards a target point computed according to the

68

Figure 5.2. The environment as perceived by the robot: a) the color segmented
image, b) the computed perceived free space segments, and c¢) the resulting free

space model.

selected action. If the robot loses the ball at any instant of this process, it goes back

to the “search for the ball” state.

Except for the lightly colored select action and select dribble direction states
shown on the state diagram in Figure 5.3, each state in the given FSM corresponds
to a low level skill. We use the existing low level skills in our robot soccer system
without any modifications; namely, looking for the ball, approaching the ball, lining
up for a kick, and kicking the ball to a specified point relative to the robot by selecting

an appropriate kick from the portfolio of available kicks.

69

ball is known Ball is near

approach

search for ball

select dribble direction

direction selected

ball is lost

Figure 5.3. The state diagram of the ball dribbling behavior.

5.5. Action and Dribble Direction Selection

The select action and the select dribble direction states constitute the main
decision points of the system we aim to improve using corrective demonstrations.
The hand-coded algorithms for both the action and the dribble direction selection
parts utilize the free space model in front of the robot. After lining up with the ball

properly, the robot selects one of the following two actions:

e The shoot action corresponds to kicking the ball directly towards the opponent
goal using a powerful and long range kick.
e The dribble corresponds to dribbling the ball towards a more convenient location

on the field using a weaker and shorter range kick.

When the robot reaches the decision point; that is, after it aligns itself with
the ball and scans the environment for free space modeling, the action selection
algorithm checks if any of the free space slots pointing towards the opponent goal
has a distance less than a certain fraction of the distance to the goal. If so, the
path to the opponent goal is considered “occupied” and the dribble action is selected
in that situation. Otherwise, the path is considered “clear” and the shoot action
targeting the center of the opponent goal is selected. The pseudo-code of the action

selection algorithm is given in Figure 5.4. In the algorithm, I" € [0, 1] is a coefficient

70

for specifying the maximum distance to be considered as free space in terms of the

distance of the goal. In our implementation, we use I' = 0.5.

goalDist — getGoalDist()
goal Angle — getGoal Angle()
if goalAngle < —% or goalAngle > 5 then
return dribble
else
for all i € getGoalSlots() do
distDif [«— |goalDist — dist;|
if distDif f > I'goal Dist then
return dribble
end if
end for
: end if
: return shoot

e e

Figure 5.4. Action selection algorithm for the ball dribbling task.

If the action selection algorithm deduces that the path to the opponent goal
is blocked and subsequently selects the dribbling action, a second algorithm steps
in to determine the best way to dribble the ball. All slots in the free space model
are examined and assigned a score computed as the weighted sum of the distance
values of the slot itself and its left and right neighbors. The free space slot with
the maximum score is selected as the dribble direction. The algorithm for dribble
direction selection is given in Figure 5.5. In the algorithm, N denotes the number of

free space slots.

Using the two algorithms explained above for the two action selection states in
the behavior FSM, the robot is able to perform the ball dribbling task and score a
goal with limited success. We define the success metric for this task to be the time
it takes for the robot to score a goal. The performance evaluation results for the
hand-coded action selection algorithms are provided in Section 5.7. In the following
section, we present the corrective demonstration system developed as a complement

to the hand-coded action selection algorithms for refining the task performance.

71

1: goalAngle — getGoal Angle()

2: if goalAngle < —3 or goalAngle > 3 then

3: if |angleg — goal Angle| < |anglen_1 — goal Angle| then
4 dribble Angle «— angleg

5 else

6: dribbleAngle «— anglen_1

7 end if

8: else

9 maxDist <+ 0

10: for slot < 1;slot < N — 1;slot « slot + 1 do

11: distance «— 0.25distsjot—1 + 0.5distsior + 0.25dist si0t11
12: if distance > maxDist then

13: maxDist < distance

14: mazxSlot — slot

15: end if

16: end for

17: dribbleAngle «— anglemazSiot
18: end if

19: return dribble Angle

Figure 5.5. Dribble direction selection algorithm for the ball dribbling task.

5.6. Corrective Demonstration

In our approach, we store the collected corrective demonstration points sepa-
rately from the hand-coded controller, and utilize a reuse algorithm to decide when
to use correction. In the following subsections, we first describe how the corrective
demonstration is delivered to the robot, and then we explain how the stored correc-

tions are used during autonomous execution.

5.6.1. Correction Delivery

The teacher uses a custom developed software to provide corrective feedback
to the robot. The user interface visualizes the state of the system as it is observed
through the sensors of the robot. The teacher observes the robot both physically
and on the visualized state observation while executing the task, and intervenes the
execution if the robot miscalculates the next action to be executed. The teacher
generates a corrective feedback signal by pressing appropriate buttons on the user
interface. The generated feedback signal is then transmitted to the robot over wireless

Ethernet connection. The robot replaces the next action to be executed with the

72

corrected action received from the demonstration interface and stores the corrective

feedback signal stamped with the observed state of the system.

5.6.2. Correction Reuse

By the end of the demonstration session, the robot has built a demonstration
database of state-action pairs denoting what action is provided by the teacher as a
replacement of the action computed by the hand-coded algorithms and what was the
robot’s state when that correction is received. During autonomous execution, the
decision of when to execute the action selected by the hand-coded algorithms and
when to use corrective demonstration samples is made by a correction reuse system
based on the similarity of the current state of the robot to the states in which the

demonstration samples were collected.

We define the observed state of the robot as

7 =< slotDuisty, ..., slot Dist y_1, goaly, ..., goaly_1 >

where slotDist; is the distance to the nearest obstacle inside slot ¢, and goal;, €
{true, false} is a Boolean flag which is set to true if the slot i intersects with the

goal, and set to false otherwise.

Since the robot is expected to kick/dribble the ball into the opponent goal,
rather than only the position of the robot on the field, the distribution of the free
space with respect to the direction towards the goal needs to be taken into account.
Therefore, we calculate the sum of the absolute differences of the free space slots
using the slot pointing towards the center of the goal as the origin if the goal is in
sight. If the goal is not somewhere within the 180° in front of the robot, we calculate
the sum of absolute differences of the free space slots using the rightmost slot as the

origin. The similarity value in the range [0, 1] is then calculated as

NPT _Kdiff?
similarity = e K4

73

(5.1)

where K is a coefficient for shaping the similarity function, and diff is the calculated

sum of absolute differences of the slot distances. In our implementation, we selected

K =5. The algorithm for similarity calculation is given in Figure 5.6.

N
—

[e e e e o

¥
»

23:
24:
25:
26:

disteyrr «— getSlotDist(Zeyrr)

distgemo — getSlotDist(Zaemo)

diff <0

if goalAngle < —F or goalAngle > 5 then
for slot < 0;slot < N;slot «+ slot + 1 do

diff — diff + |disteyrr(slot) — distgemo(slot)]

end for
diff — diff /N
else
goal Slot cyrr — getGoalSlot(Zeyrr)
goalSlotgemo — getGoal Slot(Zgemo)
num «— 0
s1 < goalSlot ey, S2 — goalSlot gemo
while s; < N and s3 < N do
diff — diff + |disteurr(s1) — distgemo(s2)|

num «—num + 1,81 «— 51+ 1,50 < 59+ 1

end while
s1 < goalSlotcyrr, S2 — goalSlotgemo
while s; >=0 and s; >= 0 do

diff — diff + |disteyrr(s1) — distgemo(s2)]

num «—num+ 1,81 «— 51 — 1,50 < 59 — 1

end while

diff — diff /num
end if
similarity «— e
return similarity

— K diff?

Figure 5.6. The algorithm for computing the similarity of two given state vectors.

During autonomous execution, when the robot reaches the action selection or

dribble direction selection states, it first checks its demonstration database and fetches

the demonstration sample with the highest similarity to the current state. If the sim-

ilarity value is higher than a threshold value 7, the robot executes the demonstrated

action instead of the action computed by the hand-coded algorithm. In our imple-

mentation, we use 7 = 0.9. The algorithm for autonomous execution using corrective

74

demonstration is given in Figure 5.7.

currentState <+ computeState(resolution)
mostSimilar < ()
mazSimilarity «— 0
for each demonstration € correctionDatabase,¢soiution AO
similarity «— getSimilarity(currentState, demonstration(state)
if similarity > mazxSimilarity then
mazSimilarity «— similarity
mostSimilar < demonstration
end if
end for
: threshold < getCorrectionT hreshold(resolution)
. if maxSimilarity > threshold then
action < demonstration(action)
. else
action < computeAction(currentState)
: end if
. execute Action(action)

e e e e e e e

Figure 5.7. The algorithm for autonomous task execution using corrective

demonstration.

5.7. Experimental Evaluation

We evaluated the efficiency of the complementary corrective demonstration us-
ing three instances of the ball dribbling task with different opponent robot placements
in each of them. The test cases were designed in such a way that the robot using the
hand-coded action selection algorithm would be able to complete the task, but not
through following an optimal sequence of actions (Figure 5.8). The following criteria

were kept in mind while designing the test cases:

e (Case 1: In this scenario, we place two robots on the periphery of the center circle,
leaving a narrow, but passable corridor. The third robot is placed on the virtual
intersection of the opponent penalty mark and the left corner of the opponent
penalty box. The hand-coded behavior computes the corridor between the two
center robots to be too narrow to pass. Therefore, the robot tries to avoid the
two robots at the center and mostly chooses a right dribbling direction to avoid
the third robot as well. During the demonstration, we advised the robot to take

a direct shot between the two robots at the center (Figure 5.9(b)). This scenario

75

()

Figure 5.8. Three different configurations used in the experimental evaluation of the

M+C system on the ball dribbling task. a) Case 1, b) Case 2, and c¢) Case 3.

was a good showcase for illustrating how to refine the otherwise imprecise output
of a very simple algorithm; no additional complexity were introduced to the
algorithm and a limited number of demonstrations were provided only when
the robot tried dribbling the ball whereas it could take a direct shot.

e Case 2: In this case, a direct shot is not possible from the initial position, and
the robots are placed asymmetrically on the field in such a way that dribbling

the ball towards the robot placed further away is advantageous. During the

76

demonstration, the given advice was to first dribble the ball to the left, and then
take a direct shot towards the goal (Figure 5.9(e)). The hand-coded algorithms
tend to choose the right action by dribbling the ball to the left, but then the
robot decides to advance the ball through a series of dribbles before kicking it
into the goal instead of taking a direct shot.

e Case 3: This case was also designed to emphasize the ability of the proposed
algorithm to reshape the behavioral response in addition to correcting mistakes.
Similar to Case 2, a direct shot is not possible from the initial position, and the
robots are placed symmetrically so no clear advantage of choosing one initial
dribbling direction over another exists. During the demonstration, we gave a
very similar advice to the one we gave in Case 2 to investigate whether we can

create a bias towards a specific action in certain cases (Figure 5.9(h)).

We gathered corrective demonstration data from all three cases and formed a
common database. A total of 42 action selection and 21 dribble direction selection
demonstration points were collected in a roughly 30 minutes long demonstration
session. The time required to score a goal being the success measurement metric,
we then evaluated the performance of the system with and without the use of the

corrective demonstration database.

We ran 10 trials for each case, 5 with the hand-coded action and dribble direc-
tion selection algorithms (Model), and another 5 trials with the corrective demon-
stration data (Correction) in addition to the Model (M+C). The sequence of actions
taken by the robot at each trial are depicted in Figure 5.9, and the timing information
is presented in Table 5.1. In the figures, a dashed line indicates dribble action, a solid
line indicates a shoot action, and a thin line indicates the replacement of the ball to
the initial position after committing a foul. In the table, “out” means that the robot
kicked the ball out of bounds from the sides, “missed” means that the robot chose
the right actions but the ball did not roll into the goal due to imperfect actuation,
and “own goal” means that the robot accidentally kicked the ball into its own goal.

The failed attempts are excluded from the given mean and standard deviation values.

7

The failures were mostly due to the imperfection of the lower level skills like aligning
with the ball, and the high variance in both the kick distance and the kick direction.
In the figure, the rows represents (from top) Case 1, Case 2, and Case 3, respec-
tively. The columns represent the Model, the Correction, and the Model+Correction,
respectively, where Model stands for hand-coded algorithm and Correction stands for
corrective demonstration. Model+Correction shows the cases where the robot is in
autonomous mode using both hand-coded algorithm and the corrective demonstra-
tion database. In each subfigure, different colors denote different runs. For each run,

a dashed line represents a dribble and a solid line represents a kick.

Table 5.1. Elapsed times during trials for the Ball Dribbling Task.

Case 1 Case 2 Case 3
Trial | M | M+C M M+C M M+4C
1 158 95 Ball Out 102 130 Ball Out
2 147 | 109 211 107 151 117
3 108 92 122 128 144 63
4 156 87 232 Ball Out Own Goal 113
) 237 91 176 Missed Goal 114 172
mean | 161 94 185 112 134 116

The decrease in the timings in all three test cases when using (M+C) compared
to the system using the hand coded action selection algorithms (Model) alone shows
an improvement in the overall performance since according to the problem definition,
the shorter completion times are considered more successful. In Case 1, where the
average completion time is reduced by around one minute, the improvement in the
task performance was mostly due to the bias created by the corrective demonstration
which favors taking direct shots as opposed to the dribbling action computed by
the hand-coded algorithm as given in Figure 5.9(c). In Case 2, the complementary
corrective demonstration was able to correct the wrong decision made by the hand-
coded algorithm on taking a second dribble action instead of a direct shot after

dribbling the ball to the left. As a result, the average task completion time was

(2)

Figure 5.9. The illustrations of the performance evaluation runs for the ball

dribbling task using M+C approach.

78

79

reduced almost to the half of the time it took on average when only the hand-coded
algorithm (Model) was used. The effectiveness of corrective demonstration in Case 2 is
presented in Figure 5.9(f). In Case 3, the corrective demonstration was again proven
to be effective in creating a bias in situations where it is not analytically possible
to prefer an action over another. Presenting a preference for dribbling to the left
(Figure 5.9(h)), the corrective demonstration was able to change the initial response
of the hand-coded algorithm from dribbling the ball to the right (Figure 5.9(g)) to
dribbling the ball to the left (Figure 5.9(i)).

80

6. TASK REFINEMENT USING MRM+C

In this chapter, we present an application of the Multi-Resolution Model Plus
Correction (MRM+C) framework to a humanoid obstacle avoidance problem. The
MRM+C algorithm allows the teacher to deliver corrective demonstration at different
detail resolution levels with each resolution level having its own state representation,
action definition, and a default hand-coded algorithm for providing a state-action
mapping policy at that detail level. Over the course of a demonstration period, the
system builds up individual corrective demonstration databases for each detail level
in addition to a system-wide correction reuse database for deciding which resolution
level to use in a particular state. During the autonomous execution of the task, the
robot chooses the right detail resolution level and the action to be performed in a
given state of the robot at the current level. We present performance evaluation
for the proposed approach on an obstacle avoidance task performed by a humanoid
robot on a robot soccer field where the robot starts from its own goal area and tries to
reach the opponent goal area as fast as possible without bumping into the unknown

obstacles placed on the field at unknown locations.

6.1. Humanoid Obstacle Avoidance using MRM+-C

We define the obstacle avoidance task for a humanoid soccer robot as the prob-
lem of walking to a specified point on the field without bumping into the various
obstacles placed on the field. The robot starts in its own goal area and the aim of
the task is to reach within 1 meter distance of the opponent goal. The numbers,
shapes, and locations of the obstacles on the field are not known to the robot so
the robot has to detect the obstacles, position itself on the field, and follow a safe
trajectory towards the opponent goal that will both prevent the robot from hitting
the obstacles and keep the total time to reach the target as short as possible. In our
evaluation study, we use the regular field of the RoboCup Standard Platform League

as the experiment field, and Aldebaran Nao robot as the humanoid robot platform.

81

Figure 6.1 presents a sample instance of the humanoid obstacle avoidance task with
three obstacles. The dashed lines represent an example traversal of the course by the

robot with the yellow circles denoting the destination points selected by the robot.

Figure 6.1. An example instance of the humanoid obstacle avoidance task with an
example solution in a configuration where two box-shaped obstacles and another

humanoid robot placed on the field.

Following the same Visual Sonar approach explained in detail in Section 5.3,
instead of recognizing obstacles, we process the visual information gathered using the
color cameras of the robot, and we build a free-space model of the area in front of
the robot. We represent the state of the system at different detail resolutions using
variations of the free-space information, and the position of the opponent goal with

respect to the robot.

The most detailed state definition represents the free-space model as a vector
of size 15, with each member of the vector being an integer number representing the
distance in centimeters to the nearest perceived obstacle along the direction of that
free-space slot. At the highest detail resolution, the action of the robot is represented
as the (X,Y) coordinates on the field in centimeters with the center of the field being
(0,0), the positive X axis pointing towards the opponent goal from the center point,

and the positive Y axis pointing towards the left direction of the X axis (Figure 6.2).

We define three detail resolutions for the humanoid obstacle avoidance task: low,

82

Figure 6.2. The coordinate system used in representing destination point on the

field.

medium, and high. In the remainder of this section, we explain the state and action
definitions, and the destination point selection algorithms for each detail resolution
as well as the corrective demonstration setup for delivering the teacher feedback to

the robot during the training sessions.

6.1.1. Low Detail Resolution Case

In the case of low detail resolution, the 180° space in front of the robot is divided
into five equal arcs of 36° each. The existence of an obstacle along a free space slot
is represented with a boolean value in the state vector where true indicates the slot
is occupied with an obstacle. If the average distance of the most detailed free space
representation slots that falls within a free space slot at this level is less than a certain
threshold, that slot is marked as occupied. In our implementation, the threshold for
considering a free-space slot as occluded is 120 centimeters, if the slot does not point
towards the opponent goal, and is min (120, 0.7 X dist goq), if the slot is facing towards
the opponent goal. The visualization of the state for the low detail resolution case
is given in Figure 6.3(a). Here, for the low and medium level resolutions, a green
slot means no obstacle towards that direction, and a red slot means this direction is

occluded by an obstacle.

83

(a) (b) ()

Figure 6.3. The example visualizations of the state representations. a) low detail

resolution, b) medium detail resolution, and c¢) high detail resolution.

At this detail resolution, the destination point can be selected from among the
five free space slot directions with a distance of 120 centimeters. However, the hand-
coded algorithm for this resolution only selects from the three dribbling directions:
forward, left, or right. If the middle slot (slot number 2) is free, the algorithm selects
the forward direction, otherwise it checks the right and left slots to decide. The
algorithm also favors the left direction over the right direction, if the leftmost free-
space slot (the slot number 4) is free. The destination point selection algorithm for

the first detail level is given in Figure 6.4.

6.1.2. Medium Detail Resolution Case

The state representation for the medium detail resolution case uses the same
principles as the low detail resolution state representation with the exception of using
nine slots instead of five. An example visualization of a medium detail resolution state

representation is given in Figure 6.3(b).

The hand-coded algorithm for this resolution goes over each free-space slot and

selects the direction of the closest available slot to the opponent goal as the destination

84

slot — —1
booleanState «— get BooleanState(LOW')
if — booleanState(2) then
slot «— 2
else
if = booleanState(0) then
slot <0
else
slot «— 4
end if
: end if
. dest Angle < calculateDirection(slot)
. destDistance «— 120
: return calculateGlobal Point(dest Angle, dest Distance)

= = e
iV VI)

Figure 6.4. Destination point selection algorithm for the low detail resolution.

direction, again using a fixed walking distance of 120 centimeters. The destination

point selection algorithm for the medium detail resolution is given in Figure 6.5.

1: booleanState — getBooleanState(M EDIUM)

2: goal — getGoalSlot()

3: closestSlot «+— 0

4: mainDistance < 9

5: for slot «+ 0;slot < 9;i «— slot + 1 do

6: if |goal — slot| < minDistance and - booleanState(slot) then
7: minDistance «— |goal — slot|

8: closestSlot «— slot

9: end if

10: end for

11: destAngle < calculateDirection(closestSlot)

12: destDistance «— 120

13: return calculateGlobal Point(dest Angle, dest Distance)

Figure 6.5. Destination point selection algorithm for the medium detail resolution.

6.1.3. High Detail Resolution Case

At the finest detail resolution, the free space is represented with the distance
values for 15 equally divided slots in centimeters and represented as integer values.
The distance value of a slot denotes the distance of the nearest detected obstacle
lying within the coverage of that particular free-space slot. The Figure 6.3(c) shows

an example visualization of the state representation for the high detail resolution.

85

Contrary to the algorithms for the lower detail resolutions, the destination dis-
tance is also selected by the algorithm in addition to the destination direction. We
go over each free-space slot and for each slot we compute a weighted distance value
using a sliding window of size three with the weights 0.25 at both ends and 0.5 for
the center. Finally, the direction of the free-space slot with highest weighted distance
is selected as the dribble direction and the computed weighted distance is assigned
as the dribble distance. The destination point selection algorithm for the high detail

resolution is given in Figure 6.5.

1: goalAngle «— getGoal Angle()

2: if goalAngle < —3 or goalAngle > 3 then
3: if |angley — goalAngle| < |anglen_1 — goalAngle| then
4 destAngle — angleg

5. else

6: destAngle «— anglen_1

7. end if

8 destDistance «— 120

9: else

10 maxDist «+— 0

11: fori—1;i<N-—-1;i<—i+1do

12: distance «— 0.2bdist;_1 + 0.5dist; + 0.25dist; 41
13: if distance > maxDist then

14: mazxDist <+ distance

15: maxSlot «— i

16: end if

17: end for

18: destAngle < anglemazSiot

19: destDistance «— maxDist

20: end if

21: return calculateGlobal Point(dest Angle, dest Distance)

Figure 6.6. Destination point selection algorithm for the high detail resolution.

6.1.4. Corrective Demonstration Setup

During the demonstration sessions, the teacher uses a custom developed soft-
ware running on a host computer to access the current detail level as well as the in-
ternal state of the robot. The same user interface is also used for delivering the action
corrections and issuing detail resolution refinement commands. The host computer
communicates with the robot over wireless Ethernet connection. The robot broad-
casts its computed state, the current detail resolution, and the current destination

point back to the host computer at each step. The robot also uses a text-to-speech

86

software system to announce the inferred state of the system and the action selected
to be executed (Figure 6.8). The received state information of the robot is then
visualized on the display. This visualization includes the perceived free-space infor-
mation, the position of the robot on the field, and the current selected destination

point that the robot walks to. A snapshot from the developed software is given in

Figure 6.7.

MRCD Centrel Panel

Detail Level

ngh Elaborate

Correct

Figure 6.7. The user interface for delivering corrective demonstration to the robot.

The teacher uses the Elaborate button to issue a detail resolution refinement
command. The current detail resolution is also displayed on the screen. If the current
detail resolution is either Low or Medium, the teacher uses the radio buttons located
on the bottom-right part of the interface. At the High detail resolution, the user
specifies the destination point by clicking on the field visualization on the interface.
There are 9 radio buttons placed on an arc, each representing a free space slot. For
the Medium detail resolution, all radio buttons are enabled. For the Low detail
resolution, every other button is enabled, reducing the number of enabled buttons to
5. At the High detail resolution, all radio buttons are disabled as the system expects

a correction in the form of a global point on the field. Similarly, at the Medium and

87

Low detail resolutions, it is not possible to specify a destination point by clicking on

the visualized field.

» Localizing
» Scanning for obstacles

Using demonstration action
Increasing detail resolution

H.e' e Teacher

-Demonstrations t

(Robot state « Correct action
Correction * Increase detail level
Database

Figure 6.8. The corrective demonstration setup for the obstacle avoidance task.

6.2. Experimental Evaluation

We evaluated the performance of MRM+C approach against the hand-coded
controllers at the lowest and the highest detail resolutions on the obstacle avoidance
task using two different obstacle configurations, and an empty field as the base case

(Figure 6.9).

We used the task completion time as the performance measure for the cases
the robot was able to complete the task. The results are given in Table 6.1. We ran
5 trials per method for each configuration. The Rate column presents the success
rate. The Time shows the average time it took the robot to complete the task for the
successful trials. The units for the rate and the average time columns are percentages

and seconds, respectively.

An examination of the results yields that the success rate drops as the average

time increases as the number of obstacles increase which is an expected result. For the

Ars,
i.m«’“’"‘ :
- MH w‘\

'>‘\~!"..M

(c)

Figure 6.9. The obstacle configurations used in the experimental evaluation. a)
empty field, b) a single obstacle placed on the center of the field, and c¢) three

obstacles placed around the center circle.

88

89

empty field configuration, all algorithms performed well in terms of success rate, while
the hand coded algorithm for the high detail resolution outperformed the others. The
main reason behind this result is since the high resolution algorithm uses free space
slot distances to compute the destination point, it selects a destination point very
close to the opponent goal and the task ends once the robot reach the destination
so the robot does not lose any time in localizing itself and scanning the field for
free space modeling. The performance of MRM~+C was better than the low detail
resolution algorithm but was worse than high detail resolution algorithm mainly due

to the number of field scans it has executed.

For the single obstacle case, the performance of the low detail resolution algo-
rithm degraded considerably but the high detail resolution algorithm and MRM+C
were able to achieve high success rates. The high detail resolution algorithm outper-
formed the MRM+C since it uses the most detailed state representation and computes

long distance destination points, yielding a smaller number of field scans.

For the three obstacles case, the low detail resolution algorithm was too simple
to handle the case, and the high detail resolution algorithm was not able to compute
the propoer actions in most of the times. Combining the use of simpler algorithms
when the current obstacle model does not yield the need for very detailed actions,
and the corrective demonstration actions provided by the teacher, the MRM-+C algo-
rithm outperformed both hand-coded algorithms despite a considerable performance

degradation compared to the previous configurations.

In 8 out of 15 failed trials, the failure was mostly due to the poor self localization
data. The destination points computed by the algorithms are in global world coordi-
nates; therefore, the performance gets heavily affected by the error in the estimated

position.

90

Table 6.1. Performance evaluation results for the MRM+C approach in Humanoid

Obstacle Avoidance domain.

Empty Field 1 Obstacle | 3 Obstacles

Method Rate (%) | Time (sec.) | Rate | Time | Rate | Time

Low Detail Resolution 80 115 60 195 0 N/A
High Detail Resolution 100 59 80 94 40 133
MRM+C 80 96 100 103 60 182

91

7. EXPERIMENTAL ANALYSIS

In this chapter, we present an experimental analysis of the M4+C and MRM+C
algorithms in terms of robustness against uncertainty in both perception and action,
and in terms of execution cost imposed by the computational complexities of the de-
fault algorithms used. We use a simulated version of the humanoid obstacle avoidance

problem as our experimental test bed.

7.1. Simulation Environment

We modeled a simulated version of the humanoid obstacle avoidance task as the
experimental testbed. We use the Player/Stage framework [37] to model the envi-
ronment in 2D. We model the Nao humanoid robot with an omnidirectional wheeled
robot base, and we use a laser range finder to emulate the vision-based free space
perception used on the real Nao robots. The laser range finder readings are processed
and converted into the same format as the free-space detection module on the real
Nao provides. The omnidirectional walk of Nao is modeled as a holonomic motion
on 2D ground plane and the speed of the wheeled robot is limited to 10 cm/s, which
is roughly the speed of a real Nao robot. We use a Monte-Carlo Localization based
method for self-localization on the real Naos. We imitate the self-localization infor-
mation in the simulation with a global positioning system distorted with a specified
amount of white noise. By imitating the perceptual and action abilities of the robot
accordingly, we are able to run the same software for the M+C and MRM+C we used

in Chapter 6. A snapshot from the simulator is given in Figure 7.1.

Both for delivering the corrective demonstration and performing other auto-
mated experiments, the teacher uses a modified version of the user interface presented
in Chapter 6 which provides the visualization of the true positions of the obstacles
in the environment, the waypoints computed by the robot along the course of its

execution, and the final path the robot traversed. The user interface also allows the

92

(a) (b)

Figure 7.1. A snapshot from the Stage simulator for the humanoid obstacle
avoidance task: a) 2D view, and b) 3D view. The leftmost rectangular prism
represents the Nao robot where the small cube on top of the robot is the laser range

finder imitating the visual system of the robot.

teacher to modify a set of simulation parameters. A snapshot of the user interface is

given in Figure 7.2.

7.2. Robustness Against Uncertainty

7.2.1. Uncertainty in Perception

The perceptual subsystem of the robot uses color cameras to process the visual
information around the robot for inferring the system state. As in most real world
sensing devices, the cameras of the robot are error-prone due to their sensitivity to
even the slightest change in the lighting characteristics of the environment. The
cameras are mounted on the head of the robot, which is the end effector of a highly
complex manipulator chain, formed by the skeleton of the robot. The position sensing
devices on the joints of the robot are also error-prone and small errors in the position
readings of the joints accumulates through the kinematic chain of the robot. We

consider two different uncertainty problems in the perception system:

e Uncertainty in free-space detection

e Uncertainty in self-localization

MRM+C Control Panel - Player/Stage Version v oA X

Detail Level
I A

V| Get Demonstration
V| Use Demonstration
- Bidirectional Detail Refin
Batch Mode
- 0.00 £ Similarity Threhsol
Correct '0.10 £ |Sensor Noise
0.00 £ |Position Moise
Reset Start
__ Initial __ Low
__ Select Action ||| Medium
__ Awvoid -+ High
-+ ldle
auto #increase: 0 #decrease: 0 #low: 0 #med: 0 #high: 0 time: 0
demo #increase: 0 #decrease: 0 #low: 0 #med: 0 #high: 0
run 0 of O for the config 0 of 12
Source v

the simulated robot and managing the simulation

93

Figure 7.2. The modified user interface for delivering corrective demonstration to

94

7.2.1.1. Uncertainty in Free-space Detection. As we described in detail in Chapter 5,

we use our closed-world assumption about the colorized robot soccer world and we
treat any non-green object on the field as an obstacle. We use the current posture
information of the robot to calculate the position of the camera in 3D and then we
use the camera position information to project recognized obstacle regions on the
image onto the ground plane to have a relative position and distance estimation for

that obstacle.

There are two sources of uncertainty in the calculation of the free-space model

around the robot:

e Confusing the field lines with obstacles

e Erroneous ground projection due to imperfect joint position sensing

The field lines are marked with white tape and have the same shade of white
color with the robots. We use a set of sanity checks including the size constraints of
the ground-projected region but due to the changes in the lighting, the perception of
lines and obstacle information get distorted and this results in an erroneous free-space

model.

We calculate the position of the camera in 3D space using forward kinematics
and the kinematic chain information of the robot. Every link in the kinematic chain
is a servo motor with gears and both the imperfect sensing abilities of the position
sensor, and the backlash caused by the gears, each joint has a slight error in position

sensing and actuation (as previously presented in Figure 4.2).

The laser range finder readings provided by the simulation are impeccant; there-
fore, we apply an artificial noise to approximate the sensing error for the free-space
detection in the real world, which has fairly complicated characteristics. For the
sake of simplicity, we approximate the sensor noise with uniform random distribution

of varying magnitude to test the robustness of the system against various levels of

95

uncertainty in the sensing.

7.2.1.2. Uncertainty in Self-localization. Knowing its position in its environment is

of utmost importance for a mobile robot. We use a variant of Monte Carlo Localiza-
tion called Sensor Resetting Localization [38] in our robot soccer setup. We combine
the visual information extracted from camera images with the odometry estimation
of the robot to form a belief on the robot’s whereabouts. Both the visual landmark
extraction and odometry estimation parts are imperfect and constitute the main

sources of uncertainty with the position estimation.

We use the distance and orientation information of the goal posts, and line in-
tersections. The robot starts with an initial randomly distributed belief distribution,
encoded as a set of particles each representing a candidate position on the field. We
compare the actual distance and orientation information for the perceived landmarks
to the distance and orientation information for each particle that would have been
perceived if the robot was on the position represented by that particle. A weight is
calculated for each particle based on the similarity of the actual final pose estimation

is computed using this weighted particle set.

Color classification, which is the process of assigning a pixel to a small set of col-
ors (i.e., blue and yellow for goals, green and white for the field, red for the ball, etc.)
is very sensitive to the changes in the lighting conditions. Due to the misclassification
of the colors, the shapes of the lines and the goal posts might not be perceived as
accurately as needed and this leads to either a wrong set of distance and orientation
estimations, or incomplete information. In either case, the self-localization module
gets negatively affected as this erroneous/incomplete information causes inaccurate

similarity values to be computed for the particle set.

The robot uses the reported posture of the robot and a set of other pieces of
information like the number of steps executed by the walking algorithm to compute

an estimated displacement with respect to the starting position. In addition to the

96

imperfect sensing on the joint positions, external factors like a slippery floor or uneven
carpet surface have an adverse effect on the accuracy of the odometry estimation. As
a consequence, the resulting pose estimation of the robot on the field contains the

uncertainty coming both from the odometry calculation and the visual perception.

Similar to the sensing error in the free-space detection, we model the error in

the pose estimation with a uniform distribution.

7.2.2. Uncertainty in Action

Uncertainty in action is mainly due to the imperfect mechanical construction
and imprecise and erroneous position sensing. In addition to these issues, the walking
dynamics of the robot also affects the resulting motion. Although the action error
is considerably small in Aldebaran Nao robots, we ran simulated experiments with

high amount of action noise for testing purposes.

7.3. Experiment Results

We used two different obstacle configurations with three obstacles placed at
different positions in each of them. We defined five uncertainty levels with different
amounts of uniform noise applied on the free space model, the estimated position of

the robot on the field, and the motion of the robot as follows:

e No Uncertainty: No noise on the free space model, self position, or motion.

e Low Uncertainty: 10 percent noise on the free space model, 2 percent noise on
the self position, 3 percent noise on the motion.

e Medium Uncertainty: 20 percent noise on the free space model, 4 percent noise
on the self position, 6 percent noise on the motion.

e Moderate Uncertainty: 30 percent noise on the free space model, 6 percent noise
on the self position, 9 percent noise on the motion.

e Heavy Uncertainty: 40 percent noise on the free space model, 8 percent noise

97

on the self position, 12 percent noise on the motion.

The obstacle configurations used in the experiments are given in Figure 7.3.

(a) (b)

Figure 7.3. The obstacle configurations used in the performance evaluation

experiments of the simulated obstacle avoidance system under uncertainty.

98

We evaluated the following algorithms:

e Low detail resolution algorithm

e Low detail M+C

e Medium detail resolution algorithm

e Medium detail M+C

e High detail resolution algorithm

e High detail M+C

e Multi-resolution task execution (MRTE) using only the hand coded algorithms
e MRM+C

During the training session, 23 low level, 8 medium level, and 14 high level
demonstrations have been collected for the corrective demonstration part, and 22
demonstrations have been recorded for the detail resolution arbitrator component.
For each algorithm and uncertainty configuration, we performed 10 trials with each

obstacle configuration, 5 with fixed obstacles and 5 with randomly distorted obstacles.

Figure 7.4 shows the success rates of the algorithms. The blue bar in the Multi
Resolution group is the success rate for the MRTE algorithm, and the red bar in the
same group is the success rate for the MRM+C algorithm. As expected, the success
rate of the algorithms increase as the algorithm gets more complex and runs at a
higher detail resolution. In all four configurations (three detail resolutions, and the
multi-resolution execution), the M+C instances outbested the algorithms alone, and
the MRM+C algorithm outperformed the MRTE algorithm. The performances of
the multi-resolution algorithms are close to the algorithm for the high detail level
(73% vs. 72% for algorithm only, and 78% vs. 76% for M+C) despite that the robot
was not executing the high detail resolution algorithm in all cases. The composition
of executed actions per evaluated algorithm is given in Table 7.1 and visualized in
Figure 7.5. In both MRTE and MRM+C evaluations, the majority of the executed
actions were computed by the low detail resolution algorithm with and low detail

resolution demonstration database, yet, the success rates for the MRTE and MRM+C

99

algorithms are better than the low and medium level algorithms, and close to the
high level algorithm. The results show that the MRM+C approach uses less detailed
actions for most of the time yet it demonstrates a performance level comparable to

the highest detail resolution M+C instance.

Table 7.1. The average number of actions executed in the succeeded runs.

Low Res. | Medium Res. | High Res.
Action M M+C| M M+C M | M+C | MRM+C
Low Model 947 | 4.33 0 0 0 0 3.37
Low Correction 0 3.44 0 0 0 0 2.32
Med. Model 0 0 6.11 4.89 0 0 0.95
Med. Correction | 0 0 0 1.26 0 0 0.16
High Model 0 0 0 0 3471 2.89 0.18
High Corrections | 0 0 0 0 0 1.58 0.04

100

80
I \odel
I \bdel + Correction
75
D
3
) 70
n
D
J
J
3
)
65
60

Low Med High Multi Res.

Figure 7.4. The overall performance results for the individual algorithms and M+C
instances for each detail resolution, along with the multi resolution performances

without (MRTE) and with (MRM+C) corrective demonstration.

I L ow Model Action
I L ow Correction Action
[1Med. Model Action
[1Med. Correction Action
I High Model Action
I High Correction Action

Avg. # or actions

LowM LowM+C MedM MedM+C HighM High M+C MRTE MRM+C

Figure 7.5. The average number of actions executed per individual algorithms,

M+C instances, MRTE system, and MRM+C system.

101

8. CONCLUSION AND FUTURE WORK

This chapter summarizes the scientific contributions of this thesis and presents

several promising future research directions that build up on this dissertation.

8.1. Contributions

This dissertation makes the following scientific contributions:

e Model Plus Correction (M+C) Paradigm: This is a hybrid approach to skill
and task refinement on autonomous robots. The M+C paradigm makes use
of the advantageous properties of the traditional algorithm-based controllers
for task and skill execution and the human demonstration to provide a rapid
performance improvement using a small number of demonstrations and hence,
demanding less attention from the demonstrator. The M+C paradigm has
three components. The Model component is an algorithm implementation for
performing the task or skill. This algorithm uses a model of the system or
a set of assumptions about the system. The Correction component contains
the corrective demonstration database consisting of corrective actions delivered
by the teacher when the Model component computes an erroneous action, and
a generalization method for being able to compute the correction action for
any given system state out of the collected sparse demonstration data. The
Correction Reuse component for using the actions computed by the Model and
the Correction components to compute the final action to be executed by the
robot.

e Multi-Resolution Model Plus Correction (MRM+C): This is a framework con-
sisting of a set of components running at different detail granularities to be
used in situations with different complexities during the execution. Founded
on M+C paradigm, the MRM+C approach extends it to allow the teacher to

deliver corrective feedback at different detail resolutions, as required by the

102

complexity of the situation the robot is facing. The MRM+-C approach consists
of multiple M+C instances, each using state and action representations at vary-
ing detail levels, and associated with default algorithms of various complexities.
The M+C approach features an arbitrator component to decide which M+C
instance becomes active at a particular state. Using the MRM+C approach,
the teacher does not have to provide corrections at the most detailed level if
the correction requirement for the current situation can be handled at a less de-
tail resolution, and the system does not have to run the most complex default
default algorithm to cope with simple situations. Assuming an algorithm gets
computationally more expensive as it gets more complex, using simpler algo-
rithms whenever possible reduces the total execution cost. Moreover, allowing
the teacher to provide corrections at lower detail resolutions reduces the number
of demonstrations needed to cover parts of the state-action space corresponding
to simpler situations, and reduces the demand for constant teacher attention.
Formal models for the M+C and MRM+C approaches: This thesis presents a
formalization for the proposed M+C and MRM+C approaches, describing each
component of the approaches, and how these two approaches are related with
each other, and with the classical learning from demonstration approach.
Experimental analysis of the M4+C and MRM+C approaches: A detailed ex-
perimental analysis of the M+C and MRM+C approaches to evaluate their
robustness against the uncertainty in the environment is presented. A util-
ity analysis of using multiple detail resolutions against using the defined detail
resolutions individually is also presented.

Extensive Evaluation of M+C and MRM+C approaches: This thesis presents
detailed evaluations of both M+C and MRM+C approaches in several real world

and simulated domains using a complex humanoid robot as the test platform.

8.2. Future Directions

Teacher and Demonstration Quality Evaluation: The real-time corrective demon-

stration in Chapter 4 showed us that especially in the skill refinement case, if the

103

execution of a complex task occurs so fast to leave little time for the teacher to
decide on a correction, the quality of the demonstration data decreases drasti-
cally. One approach to tackle this problem would be to try to develop a method
for examining the demonstration data as it is being received from the teacher
and try to identify the portions of the data not complying with the rest and
mark those portions as noise to exclude them from the correction calculations.
Adding Self-Exploration: The demonstration database collected for M+C ap-
proach is sparse, as the teacher only provides demonstration when the underly-
ing default algorithm falls short on acting properly. The sparsity of the database
necessitates a need for a good generalization in order to be able to use the cor-
rection during the autonomous execution. By adding a self-exploration feature
for the robot to experiment with self-generated corrections based on the correc-
tions given by the teacher and to evaluate the performance of the synthesized
corrections, the robot can gain the ability to grow the correction database with
the synthesized corrections.

Open-Ended Learning: The M~+C idea stores all the corrective demonstration
samples without deriving a policy and dismissing the demonstration data after-
wards. This leads to a very large amount of correction data to be accumulated
over long periods of time and hence will affect the correction reuse computa-
tions negatively as most of the correction reuse methods presented in this thesis
makes use of the demonstration data itself. One possible approach would be to
examine portions of the demonstration data continuously and replace the data
with a model if the model is able to represent the data accurately enough. This
approach would make it possible to keep the correction database small enough

to be processed efficiently during the task execution.

104

APPENDIX A: ROBOT SOCCER DOMAIN

The RoboCup Standard Platform League robot soccer is used as the appli-
cation domain for task refinement using complementary corrective demonstration
(Chapter 5) and multi-resolution complementary corrective demonstration (Chap-

ter 6) evaluations.

RoboCup is an international research initiative that aims to foster research
in the fields of artificial intelligence and robotics by providing standard problems
to be tackled from different points of view; such as, software development, hard-
ware design, and systems integration (http://www.robocup.org). Soccer was selected
by the RoboCup Federation as the primary standard problem due to its inherently
complex and dynamic nature, allowing scientists to conduct research on many dif-
ferent sub-problems ranging from multi-robot task allocation to image processing,
and from biped walking to self-localization. With its various categories focusing on
different challenges in the soccer domain; such as, playing soccer in simulated en-
vironments (the 2D and 3D Simulation Leagues) and physical environments using
wheeled platforms (the Small Size League and the Middle Size League), humanoid
robots of different sizes and capabilities (the Humanoid League), and a standard
hardware platform (the Standard Platform League), the ultimate goal of RoboCup is
to develop, by 2050, a team of 11 fully autonomous humanoid robots that can beat
the human world champion soccer team in a game that will be played on a regular

soccer field complying with the official FIFA rules.

In the Standard Platform League (SPL) of RoboCup (http://www.tzi.de/spl),
teams of 3 autonomous humanoid robots play soccer on a 6 meters by 4 meters green
carpeted field (Figure A.1(a)). The league started in 1998 as an embodied software
competition with a common and standard hardware platform, hence the name. Sony
AIBO robot dogs had been used as the standard robot platform of the league until
2008, and the Aldebaran Nao humanoid robot was decided to be the new standard

105

platform thereafter. A snapshot showing the Nao robots playing soccer is given in

Figure A.1(b).

Figure A.1. a) The field setup for the RoboCup Standard Platform League (SPL),

and b) a snapshot from an SPL game showing the Nao robots playing soccer.

A.1. Hardware Platform

The Aldebaran Nao humanoid robot is used across all real world evaluations.
The Nao (Figure A.2(a)), is a 4.5 Kg heavy, 58 c¢m tall humanoid robot with 21
degrees of freedom (http://www.aldebaran-robotics.com/). It is equipped with an
on-board processor running at 500MHz, and a variety of sensors including a 3-axis
accelerometer, a 2-axis (Roll-Pitch) gyroscope, and a special circuitry for computing
the absolute torso (upper body of the robot) orientation using the accelerometer and
gyroscope data. The torso angle estimator, the accelerometer, and the gyroscope
sensors use a right-hand frame of reference (FigureA.2(b)). As opposed to most
other humanoid robot designs, Nao does not have separate hip yaw joints for each
leg [39], instead, the two legs have mechanically coupled hip yaw-pitch joints that
are perpendicular to each other along the Y — Z plane and driven by a single motor

(Figure 4.13).

Nao runs a Linux-based operating system and has a software framework called
Nao@Qi, which allows users to develop their own controller software and access the

sensors and actuators of the robot. The internal controller software of the robot

106

\.7‘)
E 1 5 ¥ &
(a) (b)

Figure A.2. a) The Nao robot. b) The frame of reference for sensors.

.. 7
4
?

runs at b0Hz; therefore, it is possible to read new sensor values and send actuator

commands every 20ms? .
A.2. Software Overview

Being able to play soccer requires several complex software modules (i.e., image
processing, self localization, motion generation, planning, communication, etc.) to
be designed, implemented, and seamlessly integrated with each other. In this section
of the paper, we present a brief overview of the software infrastructure developed for

the RoboCup SPL competitions and also used in this study.
A.2.1. Image Processing

The Nao humanoid robots perceive their environment via their sensors, namely
the two color cameras, the ultrasound distance sensors, the gyroscope, and the ac-
celerometer. All the important objects in the game environment (i.e., the field, the
goals, the ball, and the robots) are color coded to facilitate object recognition. How-
ever, perception of the environment remains the most challenging problem primarily

due to the extremely limited on-board processing power that prevents the use of in-

2The mentioned frequency is for the Nao V2 model which was the platform used in this study.
The internal control software on the more recent V3 model runs at 100Hz.

107

tensive and sophisticated computer vision algorithms. The very narrow fields of view
(FoV) of the robot’s cameras (~ 58° diagonal) and their sensitivity to changes in
light characteristics like the temperature and luminance levels are among the other

contributing factors to the perception problem.

The job of the image processing module is to extract the relative distances and
bearings of the objects detected in the camera image. In addition to the position
information, the image processing module also reports confidence scores indicating
the likelihood of those objects being actually present in the camera image. The image
processing module consists of two main stages: the low level vision processing, and the
high level object detection. The first stage uses the CMVision [40] library to perform
color segmentation, i.e., labelling each pixel on the image with one of the following
color codes: green, white, pink, blue, yellow, orange, or none (Figure 5.2(a)). After
the color segmentation, a connected component analysis is performed on the image to
extract colored reqions in the form of the bounding box and centroid of each region.
A set of object-specific detectors are then fed with the list of extracted regions and
they report the relative position of the detected objects using the position of region

on the image, and the position of the robot’s camera.

A.2.2. Self Localization and World Modeling

These modules are responsible for determining the location of the robot as well
as the locations of the other important objects (e.g. the ball) on the field. Our
system uses a variation of Monte Carlo Localization (MCL) called Sensor Resetting
Localization [38] for estimating the position of the robot on the field. For calculating
and tracking the global positions of the other objects, we employ a modeling approach
which treats objects based on their individual motion models defined in terms of their

dynamics [41, 42].

108

A.2.3. Planning and Behavior Control

Our planning and behavior generation module is built using a hierarchical Finite
State Machine (FSM) based multi-robot control formalism called Skills, Tactics, and
Plays (STP) [43]. Plays are multi-robot formations where each robot is executing a
tactic consisting of several skills. Skills can be stand-alone or formed via a hierarchical

combination of other skills.

A.2.4. Motion Generation

The motion generation module is responsible for all types of movement on
the field including biped walking, ball manipulation (e.g., kicking), and some other
motions such as getting back upright after a fall. For the biped walking, we use the
omni-directional walk algorithm provided by Aldebaran. For kicking the ball and the
other motions, we use predefined actions in the form of sequences of keyframes, each
of which define a vector of joint angles and a duration value for the interpolation
between the previous pose and the current one. Two variations (strong and weak) of
three types of kick (side kick to the left, side kick to the right, and forward kick) are

implemented to be used in the games.

109

REFERENCES

. Argall, B., B. Browning and M. Veloso, “Learning Robot Motion Control with
Demonstration and Advice-Operators”, Proceedings of the IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, 2008.

. Argall, B. D., S. Chernova, M. Veloso and B. Browning, “A Survey of Robot
Learning from Demonstration”, Robotics and Automation Systems, Vol. 57, No. 5,

pp. 469-483, 2000.

. Thomaz, A. L. and C. Breazeal, “Reinforcement Learning with Human Teach-
ers: Evidence of Feedback and Guidance with Implications for Learning Perfor-
mance”, Proceedings of the 21st National Conference on Artificial Intelligence,

2006.

. Cakmak, M., C. Chao and A. Thomaz, “Designing Interactions for Robot Ac-
tive Learners”, Autonomous Mental Development, IEEE Transactions on, Vol. 2,

No. 2, pp. 108 118, 2010.

. Chernova, S. and M. Veloso, “Confidence-Based Policy Learning from Demonstra-
tion using Gaussian Mixture Models”, In Proceedings of the Sixth International

Joint Conference on Autonomous Agents and Multi-Agent Systems, 2007.

. Chernova, S. and M. Veloso, “Learning Equivalent Action Choices from Demon-
stration”, In Proceedings of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, 2008.

. Chernova, S. and M. Veloso, “Interactive Policy Learning through Confidence-
Based Autonomy”, Journal of Artificial Intelligence Research, Vol. 34, 2009.

. Chernova, S. and M. Veloso, “Multiagent Collaborative Task Learning through

Imitation”, In Proceedings of the 4th International Symposium on Imitation in

10.

11.

12.

13.

14.

15.

16.

110

Animals and Artifacts, 2007.

. Chernova, S. and M. Veloso, “Teaching Collaborative Multirobot Tasks through

Demonstration”, In Proceedings of the Seventh International Joint Conference

on Autonomous Agents and Multi-Agent Systems, 2008.

Hersch, M., F. Guenter, S. Calinon and A. Billard, “Dynamical System Modu-
lation for Robot Learning via Kinesthetic Demonstrations”, IEEE Transactions

on Robotics, Vol. 24, No. 6, pp. 1463-1467, 2008.

Argall, B., E. Sauser and A. Billard, “Tactile Feedback for Policy Refinement and
Reuse”, In Proceedings of the 9th IEEFE International Conference on Development
and Learning, 2010.

Argall, B., E. Sauser and A. Billard, “Policy Adaptation through Tactile Correc-
tion”, In Proceedings of the 36th Annual Convention of the Society for the Study
of Artificial Intelligence and Simulation of Behaviour, 2010.

Argall, B., E. Sauser and A. Billard, “Tactile Correction and Multiple Training
Data Sources for Robot Motion Control”, In NIPS 2009 Workshop on Learning
from Multiple Sources with Application to Robotics, 2010.

Argall, B. D., E. Sauser and A. Billard, “Tactile Guidance for Policy Adaptation”,
Foundations and Trends in Robotics, Vol. 1(2), pp. 79-133, 2010.

Calinon, S. and A. Billard, “What is the Teacher’s Role in Robot Programming
by Demonstration? - Toward Benchmarks for Improved Learning”, Interaction

Studies. Special Issue on Psychological Benchmarks in Human-Robot Interaction,

Vol. 8, No. 3, 2007.

Nakanishi, J., J. Morimoto, G. Endo, G. Cheng, S. Schaal and M. Kawato,
“Learning from Demonstration and Adaptation of Biped Locomotion”, Robotics

and Autonomous Systems, Vol. 47, No. 2-3, pp. 79 — 91, 2004.

17.

18.

19.

20.

21.

22.

23.

24.

25.

111

Bentivegna, D. and C. G. Atkeson, “Using primitives in learning from observa-

tion”, First IEEE-RAS International Conference on Humanoid Robots, 2000.

Bentivegna, D. C., C. G. Atkeson and G. Cheng, “Learning Similar Tasks from
Observation and Practice”, in Proceedings of the 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2006.

Grollman, D. and O. Jenkins, “Dogged Learning for Robots”, International Con-

ference on Robotics and Automation, 2007.

Grollman, D. and O. Jenkins, “Learning Elements of Robot Soccer from Demon-

stration”, International Conference on Development and Learning, 2007.

Calinon, S., F. D’halluin, E. Sauser, D. Caldwell and A. Billard, “Learning and
Reproduction of Gestures by Imitation: An approach based on Hidden Markov

Model and Gaussian Mixture Regression”, IEEE Robotics and Automation Mag-
azine, Vol. 17, No. 2, pp. 44-54, 2010.

Gribovskaya, E., K. Zadeh, S. Mohammad and A. Billard, “Learning Nonlin-
ear Multivariate Dynamics of Motion in Robotic Manipulators”, International

Journal of Robotics Research, 2010.

Breazeal, C., G. Hoffman and A. Lockerd, “Teaching and Working with Robots
as a Collaboration”, Proceedings of the Third International Joint Conference on

Autonomous Agents and Multiagent Systems, 2004.

Rybski, P. E.; K. Yoon, J. Stolarz and M. M. Veloso, “Interactive robot task train-
ing through dialog and demonstration”, In Proceedings of the 2007 ACM/IEEE

International Conference on Human-Robot Interaction, 2007.

Argall, B., B. Browning and M. Veloso, “Learning from Demonstration with
the Critique of a Human Teacher”, Second Annual Conference on Human-Robot

Interactions, 2007.

26.

27.

28.

29.

30.

31.

32.

33.

34.

112

Abbeel, P. and A. Y. Ng, “Apprenticeship Learning via Inverse Reinforcement
Learning”, In Proceedings of the Twenty-first International Conference on Ma-

chine Learning, 2004.

Atkeson, C. G. and S. Schaal, “Robot Learning from Demonstration”, Proceedings

of the Fourteenth International Conference on Machine Learning, 1997.

Atkeson, C. G. and S. Schaal, “Learning Tasks from a Single Demonstration”,

IEEFE International Conference on Robotics and Automation, 1997.

Guenter, F., M. Hersch, S. Calinon and A. Billard, “Reinforcement Learning for
Imitating Constrained Reaching Movements”, RSJ Advanced Robotics, Special
Issue on Imitative Robots, Vol. 21, No. 13, pp. 1521-1544, 2007.

Kolter, J. Z., P. Abbeel and A. Y. Ng, “Hierarchical Apprenticeship Learning
with Application to Quadruped Locomotion”, Advances in Neural Information
Processing Systems 20, Proceedings of the Twenty-First Annual Conference on

Neural Information Processing Systems, 2007.

Aamodt, A. and E. Plaza, “Case-Based Reasoning; Foundational Issues, Method-
ological Variations, and System Approaches”, AI Communications, Vol. 7, No. 1,

pp. 39-59, 1994.

Graf, C., A. Hartl, T. Rofer and T. Laue, “A Robust Closed-Loop Gait for the
Standard Platform League Humanoid”, Proceedings of the Fourth Workshop on
Humanoid Soccer Robots in conjunction with the 2009 IEEE-RAS International
Conference on Humanoid Robots, 2009.

Atkeson, C., A. Moore and S. Schaal, “Locally Weighted Learning”, Al Review,
Vol. 11, pp. 11-73, April 1997.

Liu, J. and M. Veloso, “Online ZMP Sampling Search for Biped Walking Plan-
ning”, Proceedings of the IEEE/RSJ International Conference on Intelligent

35.

36.

37.

38.

39.

40.

41.

42.

113

Robots and Systems, 2008.

Lenser, S. and M. Veloso, “Visual Sonar: Fast Obstacle Avoidance Using Monoc-
ular Vision”, IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pp. 886—891, 2003.

Hoffmann, J., M. Jiingel and M. Lotzsch, “A Vision Based System for Goal-
Directed Obstacle Avoidance Used in the RC’03 Obstacle Avoidance Challenge”,
In 8th International Workshop on RoboCup, 2004.

Gerkey, B. P., R. T. Vaughan and A. Howard, “The Player/Stage Project: Tools
for Multi-Robot and Distributed Sensor Systems”, In Proc. of the Intl. Conf. on
Advanced Robotics, 2003.

Lenser, S. and M. Veloso, “Sensor Resetting Localization for Poorly Modelled

Mobile Robots”, International Conference on Robotics and Automation, 2000.

Gouaillier, D., V. Hugel, P. Blazevic, C. Kilner, J. Monceaux, P. L. 0002,
B. Marnier, J. Serre and B. Maisonnier, “Mechatronic design of NAO humanoid”,

International Conference on Robotics and Automation, 2009.

Bruce, J., T. Balch and M. Veloso, “Fast and Inexpensive Color Image Segmenta-
tion for Interactive Robots”, IEEE/RSJ International Conference on Intelligent
Robots and Systems, Japan, October 2000.

Coltin, B., S. Liemhetcharat, ¢C. Mericli and M. Veloso, “Challenges of Multi-
Robot World Modelling in Dynamic and Adversarial Domains”, Workshop on
Practical Cognitive Agents and Robots, 9th International Conference on Au-

tonomous Agents and Multiagent Systems, 2010.

Coltin, B., S. Liemhetcharat, C. Mericli, J. Tay and M. Veloso, “Multi-Humanoid
World Modeling in Standard Platform Robot Soccer”, Proceedings of 2010 IEEFE-
RAS International Conference on Humanoid Robots, 2010.

114

43. Browning, B., J. Bruce, M. Bowling and M. Veloso, “STP: Skills, Tactics and
Plays for Multi-Robot Control in Adversarial Environments”, IEEE Journal of
Control and Systems Engineering, Vol. 219, pp. 33-52, 2005.

