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Pınar Santemiz, Aycan Yüksel, Oya Aran and all other friends and colleagues who

have collaborated with me in my studies.
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ABSTRACT

COMPUTER VISION BASED MULTI-LINGUAL

FINGERSPELLING RECOGNITION

In this thesis, we focus on the problem of computer vision based automatic sign-

language recognition and its related subtasks. The study focuses on the recognition of

fingerspelling gestures, which are a subset of sign languages that provide manual repre-

sentation for spoken alphabet letters. Fingerspelling gestures make use of hand shapes,

orientation, location and movements. We perform the task of fingerspelling recogni-

tion of Turkish, Czech and Russian manual alphabets with the purpose of integrating

these sign alphabets to multi-modal and multilingual deployable applications. In the

thesis, we divide the automatic fingerspelling recognition task into sub-challenges and

design methodologies to improve overall sign recognition performance. We describe an

approach to tracking of hands and a face in an image sequence containing the frontal

pose of a signing person. A classical Camshift algorithm is extended in this study

to contain automatic skin color model initialization, hand re-detection and collision

handling. The algorithm performs robust, close to real-time hand tracking. Secondly,

we focus on hand gesture representation. We evaluate the usage of appearance based

features for describing the manual component of Sign Languages; in particular El-

liptic Fourier Descriptors, Hu Moments, Radial Distance Function and Local Binary

Patterns. We test the recognition performance of individual features and their com-

binations. Local Binary Patterns show the best recognition performance on isolated

gestures with a recognition rate of up to 92 per cent. We explore the usage of features

such as hand motion and motion blur in the problem of temporal segmentation to

separate gesture start and end locations in continuous gesture videos. We investigate

the fusion of temporal and appearance features using sequence voting, discrete HMMs

and continuous HMMs. We test the fingerspelling recognition accuracy of our system

on a self collected multilingual fingerspelling dataset consisting of Turkish, Czech and
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Russian manual alphabets from multiple signers with multiple repetitions. Finally,

we have demonstrated the applicability of our system in a prototype application that

functions as a multi-lingual fingerspelling to speech translator.
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ÖZET

BİLGİSAYARLA GÖRME TABANLI ÇOK DİLLİ PARMAK

ALFABESİ TANIMA

Bu tezde bilgisayarla görme tabanlı otomatik işaret dili tanıma ve ilgili alt konular

üzerine yoğunlaşmış çalışmalar yaptık. Çalışmada üzerinde yoğunlaşılan el alfabeleri,

işaret dillerinin, işaret dilinde karşılığı olmayan kelimelerin sadece parmak hareket-

lerini kullanarak temsilini sağlayan bir alt kümesidir. El alfabeleri, kavramları ellerin

şekillerini, yönelimlerini, konumlandırmasını ve hareketlerini kullanarak temsil eder.

Bu çalışmada, çok kipli ve çok dilli sistemlerde kullanılabilecek, Türk, Çek ve Rus

el alfabelerinde yarı gerçek zamanlı el alfabesi tanıma yapan bir sistem geliştirdik.

Otomatik işaret dili tanıma problemi üzerine yaptığımız çalışmalarda, el izleme ve

bölütleme, el özniteliklerinin temsili, sınıflandırılması ve zamansal bölütlenmesi gibi

alt konularda yoğunlaşarak geliştirdiğimiz ve kullandığımız metotların karşılaştırmalı

analizlerini yaptık. Geliştirdiğimiz el ve yüz izleme yöntemiyle kamera karşısında işaret

dili icra eden bir kullanıcının ellerini dayanıklı ve verimli bir şekilde takip edebiliyoruz.

Klasik Camshift algoritmasına yaptığımız çoklu obje izleme, otomatik renk modeli

oluşturma, otomatik el bulma ve kesişip ayrışan objeleri işaretleme yöntemleriyle kesin-

tisiz videolarda dayanıklı el işareti tanıması yapılmasına olanak sağladık. El hareketi

temsil metotlarımızda Eliptik Fourier betimleyicileri, Hu momentleri, ışınsal uzaklık

fonksiyonu, yerel ikili örüntüler gibi iki boyutlu imgelerden elde edilen görüntü kipli

özniteliklere ağırlık verdik. Bu özniteliklerin tanıma performanslarını tek tek ve birlikte

inceleyerek sistemin detaylı bir analizini gerçekleştirdik. İmge dizileriyle yaptığımız

testlerde, izole el hareketleri için en iyi tanıma başarımını yüzde 92 ile yerel ikili örüntü

betimleyicileri verdi. Kesintisiz el işareti dizilerinde, işaretlerin başlama ve bitiş zaman-

larını bulmak için hareket ve harekete bağlı bulanıklığı bir öznitelik olarak kullandık.

Son olarak zamansal ve görsel özniteliklerin, el işareti dizilerini tanıma için kaynaşımını

gerçekleştirerek dizilerde ağırlıklı oylama, ayrık Saklı Markov Modelleri ve kesintisiz
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Saklı Markov Modelleriyle el hareketlerini modelledik. İşaret dili tanıma başarımını

ölçmek için yaptığımız testlerde, kendi topladığımız Türk, Çek ve Rus el alfabelerinden

oluşan çok dilli veritabanını kullandık. Bu tez kapsamında, çalışmalarda geliştirilen

yöntemleri kullanan bir parmak alfabesinden sese tercüme uygulaması geliştirdik.
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1. INTRODUCTION

1.1. Motivation

In todays computers, keyboards, mice and touchpads are still the most popular

and dominant Human Computer Interaction devices. However, they are inconvenient

and unnatural. In recent years, the use of new modalities such as speech and human

movements, especially hand gestures, has become an important part of Human Com-

puter Interactions. Compared to speech commands, hand gestures are advantageous in

noisy environments, in situations where speech commands would be disturbing, as well

as for communicating quantitative information and spatial relationships. This serves

as a motivating force for research in modeling, analyzing and recognition of hand ges-

tures. Many techniques developed in HCI can be extended to other areas such as sign

language recognition, surveillance, gaming, robot control and teleconferencing. Recog-

nizing gestures is a complex task which involves many aspects such as motion modeling,

shape analysis, pattern recognition, natural language processing and machine learning.

Sign Languages are a form of manual communication, which have developed as an

alternative to speech among the deaf and speaking impaired. Sign languages make use

of different modalities such as hand shape, movement, gestures and facial expressions to

convey meaning. A gesture is a form of non-verbal communication made with a part of

the body and used instead of verbal communication. Although sign languages are the

universal communication medium of deaf people, languages of different communities

show a large amount of variance. As sign languages emerged and developed locally

within hearing communities, the content of each sign language differs from each other

[1]. In addition, as sign languages aim to convey meaning clearly and rapidly with

as few signs as possible they also syntactically and grammatically differ from spoken

languages.

Sign languages contain unique gestures or signs for every different concept. There-

fore most sign language corpora do not contain a sign for every possible word in the
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spoken languages. For this purpose sign languages make use of fingerspelling gestures,

which they use to directly represent a word in the spoken languages. Fingerspelling is

a subset of sign languages that is used mainly for representing out of vocabulary words.

It uses static and dynamic gestures composed of differing hand and finger combinations.

For example, to sign the word Alp, the signer performs the gestures corresponding to

‘a’,’l’ and ‘p’ sequentially. In terms of grammar, fingerspelling preserves the grammar

properties of written languages instead of the properties of sign languages. While fin-

gerspelling signs vary from language to language like sign languages, they all share the

common communication medium of being performed by one or two hands.

Developing sign language applications for deaf people can be very important,

as many of them are also not able to read or write a spoken language. The aim

of automatic sign language recognition is to make the life of deaf people easier. In

daily life situations where a deaf person tries to communicate with a hearing person

signers either need their correspondent to understand sign language or use a hearing

interpreter to help him communicate. If they are successfully employed, by providing an

easy, efficient and accurate mechanism to transform sign language into text or speech;

sign language recognition systems will enhance the capabilities of the hearing impaired

by reducing their dependence on interpreters. Sign language does not have a general

written form and documents are therefore produced using live video and video-tapes.

For instance, deaf students and instructors make their exams, tests and homeworks

on videos. The flexibility of this medium is much smaller than that of paper as only

sequential access to the material is possible. In order to access a certain part of a sign

language video recording, one must traverse the video manually trying to interpret

signs until he can find what he is looking for.

With the improvements of image processing, machine learning and natural lan-

guage processing techniques in the last 20 years, research on SLR systems have become

an active topic. Although most sign languages contain similar modalities and signs,

due to the sheer number of different sign languages in the field, research efforts in the

field mostly converge on the sign languages of researchers such as American or British

sign languages. While performing SLR with different sign languages, the difficulty
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does not lie with methodologies and algorithms as they do not need to change. The

main problem is the lack of training data, which needs to be recorded under certain

restrictions to train different systems.

1.2. Research Methodology and Contributions

This thesis presents a computer vision based, close to real-time fingerspelling

recognition system. The system is trained to perform recognition in three sign al-

phabets: the Turkish Sign Alphabet, the Czech Sign Alphabet and the Russian Sign

Alphabet. The overall aim of the study is the establishment of a fingerspelling input

modality, that can later be used in various interactive modules such as ”finger-sign to

word” or ”finger-sign to speech” translators, interactive environments and information

systems.

In sign language recognition, researchers tend to distinguish the task of recogni-

tion with regard to the systems purpose as isolated and continuous SLR. In isolated

sign language recognition systems the user performs signs one by one clearly indicating

the beginning and end of each sign. A large amount of research on sign language recog-

nition is done on isolated gestures, as it simplifies the task of SLR to differentiating

different hand poses. However, in online systems where the user performs gestures one

after another, continuous SLR is required to segment isolated signs from continuous se-

quences of signs. Thus, we have chosen to perform our research on SLR methodologies

using isolated sign gestures, while exploring the usage of continuous gestures through

temporal segmentation methodologies in our deployable applications.

In this thesis we have preferred to perform fingerspelling recognition over sign

language recognition as a modality for the hearing impaired. Although the usage of

fingerspelling is not as popular as sign languages among deaf communities, its usage

in our system simplifies our task and improves system usability. Using fingerspelling,

it is possible to represent the entire spoken language lexicon using a small, limited

number of signs. In addition, as fingerspelled words directly correspond to words of

spoken languages, the semantic gap between spoken and sign languages can be ignored;
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removing the need for the application of natural language processing methods. In a

context where interpreted signs are translated from one spoken language to another;

(for example from Turkish to Russian) usage of fingerspelling allows the use of simple

word level dictionaries for translations. Although the focus of this study is on the

methodologies of sign language recognition, the techniques developed are being applied

to different problems.

The main contributions of this thesis can be summarized as follows:

• Joint Cam-shift based tracking of hands and face: Accurate tracking of signing

hands and faces are a necessity for sign language recognition applications. The

accuracy of hand descriptor representation and modeling depends on hands being

localized and perfectly segmented. We describe an approach to tracking of hands

and a face in an image sequence containing the frontal pose of a signing human.

A classical Camshift algorithm is expanded in this study to contain automatic

skin color model initialization, hand re-detection and collision handling. The

algorithm performs robust, close to real-time hand tracking.

• Multilingual fingerspelling recognition method: We have designed, analyzed and

realized a fingerspelling recognition methodology for interpreting isolated and

continuous hand gesture videos. Using a two tiered classification method, we

attempt to recognize the meaning that sequences of images containing hand ges-

tures try to convey. We make use of appearance based methods to extract features

of a hand shape by analyzing 2D hand images. We prefer the usage of these fea-

tures due to their simplicity, effectiveness and low computation times, as we aim

to generate real time applications. Through detection of motion blur and hand

displacement, we separate frames that contain hand gestures with meaning from

those that are not. Finally we combine these features using classifiers in different

combinations to model hand gestures and fuse the results to make sequence level

final decisions.

• Usage of motion blur as a keyframe selection method: An important challenge in

continuous fingerspelling recognition is the problem of designating which frames
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the signer actually performs a gesture(keyframes) and which frames the signer

does not(transition frames). Through detecting motion blur on segmented hand

images, we attempt to use motion blur as a feature in keyframe detection. Since

the presence of motion blur prevents accurate segmentation in a sequence of

gestures, it is desirable to choose the frame with the least blur to maximize seg-

mentation performance and therefore recognition accuracy. For detecting motion

blur, we employ a method that makes use of the gradient strengths of hand edges.

Compared to unblurred images, a major characteristic of blurred images is that

edges tend to be smoother and contain smaller gradient values. By focusing on

the distribution of gradient values in certain image patches, we can obtain an

idea on the presence of partial motion blur.

• Establishing a multi-lingual fingerspelling dataset: Training sign language recog-

nition systems requires large datasets containing multiple examples of each ges-

ture to be recognized. Although various datasets belonging to each of our target

fingerspelling alphabets exist in different sources, they all seem to vary in dif-

ferent critical aspects such as lighting, background constrictions or body pose.

Therefore, in order to train a compatible multilingual system, we have collected

a video database of fingerspelling sings. The dataset contains the fingerspelling

alphabets of the Czech, Russian and Turkish sign languages and is approximately

400 minutes in length.

• FingerSign to Speech translator: Being the first prototype multimodal applica-

tion of this study, the FingerSign to Speech translator translates fingerspelling

gestures to speech and vice versa. It was developed in the eNTERFACE’10 Sum-

mer Workshop on Multimodal Interfaces in Amsterdam with the contributions of

our Czech and Russian research partners. It provides a communication modality,

where people with hearing and visual disabilities from different nationalities can

communicate with each other. In addition to our fingerspelling recognition mod-

ule, it includes a fingerspelling synthesis, speech recognition and a text to speech

module.

• Information Kiosk For the Disabled: This information terminal, which aims to

serve people with different disabilities, is being developed as a part of the bilateral
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Tubitak project with the same name. It aims to service people with different

disabilities in a multimodal fashion.

1.3. Literature Review

Since the beginning of 1990’s hand gesture recognition has become an active re-

search topic. In[2, 3] reviews on recent research in sign language and gesture recognition

are presented. Most studies on sign language recognition can be grouped into three

subcategories as the studies on hand tracking and segmentation, the studies on hand

gesture representation and the studies on gesture modeling and recognition. In section

1.3.1, we give a biref overview of hand gestures and present the challenges in recogni-

tion. Then in sections 1.3.2 to 1.3.4, we present a review on different methodologies

used in various sign language recognition themed studies.

1.3.1. Hand Gestures

Hands are the chief physical organs of humans for manipulating the environment.

Using hands, humans can both perform tasks that either require gross motor skills such

as weight lifting or require fine motor skills such as writing. As can be seen in Figure

1.3.1, the human hand has 27 bones and roughly 30 degreed of freedom.

In the literature, there have been numerous studies on the linguistic usage of the

human hand. [3] categorizes hand gestures according to their purpose as conversational

gestures, controlling gestures, manipulative gestures and communicative gestures. In

this study, we are interested in the communicative gestures, which include pantomimes

and sign languages as their most common examples.

In sign languages, each represented concept needs to have a separate sign that

differentiates it from other gestures. For that reason sign languages fully exploit the

highly flexible nature of the human hand by trying to generate numerous different ges-

tures using modalities like hand finger combinations, hand position, hand orientation
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Figure 1.1. Hand Skeleton and associated Degrees of Freedom [4]

and hand movement. Therefore, when dealing with the academic problem of hand

gesture recognition, sign languages constitute an excellent test case. In addition, deal-

ing with sign language recognition also addresses the communication problems of the

hearing impaired with their environment.

Fingerspelling, which is a subset of sign languages makes use of only manual hand

gestures to represent out of vocabulary sign language words. Automatic fingerspelling

recognition is a task that differs from sign language recognition in certain aspects.

While fingersigns contain fewer signs and arm movements than sign languages, the

meaning presented by them is conveyed through combinations of fingers and hands;

thus, negating possible features like relative displacement of hands. In addition, the

rapid movement of fingers and hands causes automatic FSR systems to require a higher

amount of precision than automatic SLR systems.



Table 1.1. Survey of computer vision based sign language recognition Studies

Year Detection Method Segmentation Method Features Classification Continious Gesture # Accuracy

[5] 1995 Colored glove Color segmentation Geometric moments HMM no 31 83 per cent

[6] 1997 Skin color PCA Template Matching yes 25 99 per cent

[7] 1997 Active shape models Shape cues Hand contour Gaussian no 5

[8] 1998 7 markers on hand 3D model fitting Model Parameters yes

[9] 1999 Skin color Moment and edges Neural Network no 25 96 per cent

[10] 2000 Skin color Color and edge cues Shape cues and keyframes dHMM yes

[11] 2002 Skin color and bracelet Color segmentation Clustered pixel values NN boosting yes 46 99 per cent

[12] 2002 Background subtraction Skin color Shape cues HMM no 65

[13] 2002 Bird-eye skin color Color,motion,shape cues Geometric cues Template Matching no 8 83 per cent

[14] 2002 Motion based Region matching Color, shape , motion cues Template Matching no 25 98 per cent

[15] 2004 Multiflash camera Meanshift and edges LBP Template Matching yes 25 96 per cent

[16] 2005 Skin color Skin color Motion, moments HMM yes 20 93 per cent

[17] 2006 Skin color Skin color Moments, RDF kNN,SVM no 29 99 per cent

[18] 2006 Skin color and motion Camshift Moments, image difference HMM yes 24 97 per cent

[19] 2007 Stereo images 2D model fitting Model Parameters Template Matching no 23 87 per cent

[1] 2008 Colored glove Particle filter Shape,motion,position HMM yes 29 79 per cent

[20] 2008 Segmented images DCT HMM no 23 94 per cent

[21] 2009 Skin color Skin color based Hog HMM no 26 98 per cent

[22] 2010 Skin color Region growing Hog,dct,lbp,moments HMM yes 40 98 per cent
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Table 1.1 presents an overview of the fingerspelling and sign language recognition

systems according to their methods of detection, segmentation, representation and

classification. Each system is evaluated according to its input type, dataset diversity

and recognition accuracy.

1.3.2. Hand Tracking and Segmentation

Accurate tracking of signing hands and faces is a necessity for sign language

recognition applications. The accuracy of hand descriptor representation and modeling

depends on hands being localized and accurately segmented. Although hand tracking

and segmentation has been an active research topic for many years, challenges of the

human hand such as its highly deformable and self occluding nature; has not yet

enabled the development of methods that can robustly and swiftly segment all hands in

unconstrained environmental conditions. For this reason, in order to recognize human

hands, researchers have made use of specially customized glove devices or computer

vision techniques. Some earlier studies on hand gesture and sign language detection

have focused on the usage of customized data collection gloves [23–27]. Although

these methods provided highly accurate data that allowed the reconstruction of three

dimensional hand models, the high degree of freedoms of the hand caused the data

gloves to contain between 30 to 80 degree of freedoms. Likewise, using the customized

data collection gloves is a cumbersome task for the user that affects his/her natural

behaviour. In addition, the high dimensionality of the input data on top of the change

in the size and shape of user hand limbs prevents researchers from developing cheap

plug and play systems capable of universal usage with this method.

On the other hand, hand tracking and segmentation with computer vision tech-

niques promise more robust and less intrusive methods. In computer vision based hand

recognition systems, the hand is recorded using a camera or a set of cameras. The task

of hand segmentation can then be divided into two separate parts as the segmentation

of hands from images and the tracking of hands in continuous image sequences by

making use of prior knowledge on hand locations. Some studies that focus on single

image based hand recognition focus on hand segmentation[17, 28], while others making
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use of image sequences make use of tracking techniques[7, 1, 29, 30, 6, 31]. In continu-

ous image sequences, the most commonly used methods for hand segmentation can be

generalized as color (skin or glove color), motion, depth, edge and shape cues. Among

these methods, skin color based hand extraction seems to be the most focused and

common method [11, 16, 17, 21, 33–35]. Skin-color information as a cue has gained

much attention as skin-color provides computationally effective yet, robust information

against rotations, scaling and partial occlusions. Skin detection using color information

can be a challenging task as the skin appearance in images is affected by various factors

such as illumination, background, camera characteristics, and ethnicity. A good survey

paper that presents the recent trends in skin color based segmentation is [36]. A viable

alternative to the usage of skin color is to use skin colored gloves, removing the need

for skin color training [37, 1].

Due to technical considerations, most recording equipments use RGB representa-

tion. However, previous studies such as [36] show that this is not necessarily the best

color representation for characterizing skin-color. The human eye can adapt to different

illumination conditions. Likewise, by using illumination preserving color spaces such

as Hue and Saturation of HSV or normalized RG, it is possible to remove brightness

from skin-color representation without losing descriptive color information.

In performing skin color segmentation, some methods prefer the usage of Gaus-

sian skin color models[22], while others, using Gaussian Mixture Models with multiple

mixture components obtain better segmentation results[38]. As predictions with Gaus-

sian Mixtures are computationally more expensive than histogram lookup operations,

the use of color histograms as our skin color models is widely preferred in real-time

applications [39, 40]. Using these models, segmentation approaches like histogram-

backpropogation [39, 40] or region growing algorithms are employed[22, 41]. In addition

to these methodologies, [42] makes use of graph-cutting algorithms to aid segmentation

without previously training a skin color model. Some studies make use of motion cues

to improve skin color based segmentation results[21, 35, 43].
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Although several studies with different color spaces such as infrared cameras tend

to yield better results [18], they too bring additional constraints such as a dark recording

environment. In addition to color based segmentation strategies, the constant motion of

hands around the body and the self occlusion caused by their high degree of freedom in

3D space makes the use of depth information a viable method for segmentation[44, 19].

While using stereo cameras to capture depth was considered to be too expensive until

recently, Microsoft’s Xbox Kinect gaming console presented a very cheap and usable

depth capture hardware [45]. Therefore, we expect a rapid increase in hand gesture

detection studies using depth cues in the close feature.

Furthermore, the studies on the usage of Haar like shape based hand recognition

methods, although not as successful as their application in face recognition, have also

produced promising results [46]. To incorporate the information of segmentation results

of past images in image sequences, various tracking approaches have been applied in

hand tracking. The Camshift algorithm tracks hands by climbing the peaks of the skin

color probability distribution image [39–41]. Particle filters have also been applied in

numerous studies, by selecting particle parameters such as the width, the height and

the angle of an ellipse surrounding the hand. Particle filters provide robust tracking,

labeling and occlusion handling[22, 1].

1.3.3. Feature Extraction

Following the removal of the hands from the non-hand background information,

each frame in the image sequence is converted into a feature space where the features

can be used to mathematically distinguish gestures in a generalizable fashion. In the

literature, numerous feature descriptors with different characteristics have been applied

to describe hand gestures. These descriptors can be classified based on their acquisition

method, their invariancies or what they represent. In order to distinguish fingerspelling

signs shape and motion of hand gestures must be uniquely represented. The ultimate

aim of a fingerspelling recognition system is to distinguish hand gestures in a sequence of

images. Therefore, factors such as varying signer hand shapes, signer performances and

camera conditions should have a minimal effect on hand gesture descriptors. In hand
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gesture recognition with sensory input gloves, the data is generally directly used with

a nearest neighbor classifier [23–27]. These approaches also make use of dimensionality

reduction techniques to improve the recognition accuracy of their data. In [27] a

heuristic called Range of Motion is used to calculate the amount of variance each hand

joint angle can tolerate to make the hand glove data more user independent.

Popular color based descriptors such as color histograms and correlelograms are

not directly applicable as human hands with differing shapes cannot be distinguished

from one another using color cues. Instead, many hand gesture recognition methods

make excessive use of two dimensional appearance based features to represent signer

hands. In [47], an excellent survey on shape based descriptors is presented. In the

studies [6, 48], normalized hand images are directly used with PCA to use them as

hand features. Likewise [18] used normalized integral hand images. However, since the

normalization of hands with numerous possible shapes is not a feasible task, the usage

of these kinds of wholistic features are not widespread.

There are numerous studies that make use of hand gradients and oriented gradient

histograms[22, 21]. Other methods make use of local descriptors such as local binary

patterns[49] and discrete cosine transform [22, 50]. In [51] Elliptic Fourier descriptors

are employed to represent object outer contour, while [50] makes use of the radial

distance function to calculate distance of the seedpoints to hand contours. Studies like

[52] make use of local Surf descriptors with keypoints using the bag of visual words

method.As motion descriptors, the studies in [20, 43] make use of hand displacement

along with dynamic time warping as features.

There are also 3D recognition approaches that attempt to fit 3D hand models

to stereo 2D pairs[44, 19]. These features employ depth information to fit models to

images.
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1.3.4. Classification and Temporal Segmentation

In sign language recognition, the aim is to classify gestures into different classes

using the descriptors described in Section 1.3.3. In order to perform the classification of

continuous image sequences, three tasks must be handled. These tasks are classification

of hand features, temporal segmentation and alignment.

The first of these tasks is the task of classification which compares hand descrip-

tors obtained from single frames containing hand images. In the literature, numerous

classifiers for classifying samples with identical feature descriptors exist. Studies such

as [53, 54, 17] make use of parametric Naive Bayes and non parametric KNN classifiers

to classify hand images. [55] makes use of support vector machines to classify iso-

lated hand gesture images. Similarly, [11, 15, 48, 19] makes use of template matching

approaches to compare hand gesture images. Earlier studies in the field also contain

examples of Neural Network classifications[6, 23].

However, unlike the studies shown above, most hand gesture recognition systems

contain sequences of images which needs alignment and temporal segmentation over

time. For that reason, numerous studies have made use of Hidden Markov Models for

the alignment and classification of hand gestures [18, 16, 20, 35, 21, 33, 22, 1]. Likewise

[56] explores fusion of generative classifier approaches with weighted voting to obtain

combined decisions.

1.4. Thesis Outline

This chapter has made an introduction by describing the problem of recognizing

fingerspelling gestures in multiple languages. The contributions and outline of this

thesis along with a review of state-of-the-art hand gesture and sign language recog-

nition systems are also presented in this chapter. Chapter 2 presents the Camshift

based joint hand and face tracking algorithm. In this chapter, methods we employed

to track and segment hand images from background pixels are detailed. In Chapter 3,

appearance based feature descriptors that we employ to represent hands are detailed.
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In chapter, Chapter 4 we present our methodologies for hand gesture and fingerspelling

classification using generative models. Chapter 5 introduces the fingersign to speech

application that was developed in conjunction with this thesis and presents the experi-

mental results of our integrated system. In Chapter 6, we present an overall conclusion

and discussion of the contributions of the thesis.
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2. HAND TRACKING AND SEGMENTATION

Hand gestures are the primary component of sign language communication .

Therefore, in order to distinguish, recognize and understand fingerspelling gestures,

accurate extraction and representation of hand gestures is a necessity. Being an active

research topic in Human Computer interaction, tracking and segmentation of human

hands is still considered as a challenging problem. Due to the high degree of free-

doms and self occluding nature of human hands; an unconstrained, fast and accurate

hand gesture recognition system is still far from being realized. Many of the pro-

posed solutions addressing this issue constrain the users actions one way or the other.

These restrictions vary from making the user wear markers or position his hands be-

tween the camera and his body to preventing hand and face interactions. However,

while performing sign language gestures, most of these restrictions violate the users

sign space, causing him to perform gestures differently than he would in his natural

signing environment. Therefore, sign language recognition systems that constrain the

hand movements of signers are undesirable as they reduce the systems overall universal

usability.

In this chapter, we focus on the continuous tracking of hands and face of sign

language performers from a frontal pose. Our system tries to achieve a balance be-

tween three primary concerns: robustness, speed and reliability. The presence of highly

mobile gestures requires the hand gesture recognition to operate at a close to real-time

speed. Therefore, in the task of online SLR, appearance based simplistic approaches

may be preferred over complex 3-D modeling of hands. However, aside from runtime

speed, the diversity of possible hand gestures in sign and fingerspelling languages im-

poses tough to achieve robustness and reliability requirements. In order to handle issues

like hand-hand, hand-face and hand-self occlusions using appearance based methods,

simple constraints on the user are deemed necessary.
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2.1. Joint Hand and Face Tracking

Accurate tracking of hands and face of a natural signer is a challenging task that

is crucial for a FSR applications. The accuracy of hand descriptor representation and

modeling depends on hands being localized and perfectly segmented. As the signing

human hand often tends to make fast and non-linear movements, modeling and tracking

the hand becomes a greater challenge. Likewise, the occlusions of the hands with each

other and with the face is very frequent. To handle this task of hand tracking we

have explored the usage of different algorithms. In the end we have decided to use a

customized Camshift algorithm that would be equipped with the necessary capabilities

to handle the tracking of signing hands. The tracking of hands and face with our

methodology can be broken down to three seperate subtasks, which are visualized in

Figure 2.1.

Figure 2.1. Flowchart of joint hand and face tracking

The continuously adaptive Mean Shift Algorithm, also known as Camshift is a

moving object tracking algorithm. It is an extension over the Mean-shift[57] tracking

algorithm and performs tracking function over continuous sequences of images. It is

a non parametric method that makes use of a color probability distribution image to

track hands.

2.1.1. Initailzation of Adaptive Skin Color Histograms

Camshift is a semi-automatic tracking algorithm that requires user to define the

tracked object prior to execution. Common implementations of the algorithm [40, 39]

request the user to manually designate the object that is to be tracked. The first frame
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of the video sequence is displayed and the user is asked to draw a box around the object

to be tracked. This box is then used for two separate purposes. Color information,

obtained from the box is used to create a color histogram that is later used to create

probability maps to identify the possible locations of the tracked object. In addition,

the box is used by the Camshift algorithm as an initial region of interest to estimate

of the location of the object.

Our tracking method accomplishes tracking by using the color properties of

tracked objects. Therefore the accuracy of the algorithm in distinguishing tracked

objects solely depends on the accuracy of the histogram built during initialization.

For accurate initialization, the users’ hand needs to be flawlessly segmented from the

background. In common implementations of the algorithm, the initialization process

is implemented in a manual fashion, asking the user to draw a box on the object to

track. While this type of a training method is satisfactory for experimental studies, it

is an undesirable burden for an interactive system. For that reason, we have explored

several techniques to automatically train skin color models to make a system that is

adaptive to user and environmental illumination changes.

One method we have considered for this task is to display the live feed, draw

two boxes on the screen and ask the user to move his/her hands inside these boxes

to commence recognition. This method makes use of motion detection to understand

when a foreground object is moving into the box and when it is waiting stably inside the

boundaries of the box. Color histograms are then calculated from the image segments

inside the patches. Although this method was theoretically simple, practice showed

that the accuracy of the skin color model greatly depended on the success of the user

in orienting his hand and finding the box. From a HCI point of view, the task of trying

to find an inexistent box in three dimensional space while looking at a two dimensional

mirror image is not an easy task. For that reason we resumed our search for alternative,

more reliable hand detection methods.

Another method we employed in training skin color histograms was the use of

face detection. Since the human face contains more easily distinguishable features from
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the human hand, generic detection tools for frontal face detection are widely available.

Using shape cues through the Viola-Jones face detection algorithm [58], we detect the

boundaries of the signers’ face. A skin-color model is then extracted from the face

of the signer. Although more reliable than using static hand boxes for initialization,

this method fails detection in two exceptional cases. Self occluded hand parts such

as finger edges often do not receive direct illumination from point light sources and

appear darker than other skin colored pixels. Therefore a skin color model trained

from relatively flat faces fails to detect parts of hand images. In addition, while the

Viola-Jones algorithm has a high detection rate, it also seldomly mistakes background

shapes for faces due to its high false positive detection rate, resulting in the generation

of erroneous skin color models.

Finally we have used a skin color initialization method that makes use of motion

cues to distinguish hands from the background. By asking the user to stand still while

waving his/her hands at the camera, an easy to perform skin color model initialization

can be achieved [37].

In order to perform hand detection using motion cues, we make use of the frame

differencing technique. The absolute value of the difference of pixel values between

two successive image sequence frames are used to obtain the frame difference image.

Although the obtained image marks all moving objects, the amount of background

noise still prevents us from extracting any viable foreground object information. A

solution to this problem is the Double Differencing method proposed by Xia [59].

By calculating the absolute differences of three successive frames, the displace-

ment of moving objects from times t-1 to t and t to t+1 are captured (Figure 2.1.1).

Pixel displacements caused by the slow movement of smaller background objects and

minor illumination changes hardly repeat themselves in successive images. Therefore,

the combination of successive frame difference images are usually much more tolerant

to noise. After combining the two successive frame difference images with a pixel-

wise logical AND operation, we obtain a binary image that only contains movements

that were sustained over time. After a Morphological opening operation to remove
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Figure 2.2. Detection of waving hand using double differencing method

any remaining background noise, the resulting mask can be used to detect the largest

groups of movement in the image. Due to the irregular nature of hand movement and

extensive noise reduction, the double-difference image usually consists of smaller blobs

rather than complete hand images. For this reason, the location of the hand is usually

occupied by a multiple number of blobs that are in close proximity to one another.

Starting from the largest blob in the image-mask, all blobs within an expanding radius

proportional to total blob area are used to establish a hand location estimate. After

estimating the region radius, all the blob pixels falling in this estimated region are used

to build a skin color histogram.

2.1.2. Tracking in continuous sign language videos

The Camshift algorithm makes use of color information to track objects. As

long as the object sustains its color, it is resilient against deformations in size and

shape. It is highly sensitive towards changes in environmental illumination. Thus
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many common implementations [39] perform the tracking task in HSV color-space

with a heavy emphasis on hue and saturation channels.

To commence tracking on a sequence of images, the Camshift algorithm first needs

the input of a region of interest containing the approximate coordinates of the object

to be tracked. Since we chose to automate this step instead of demanding manual user

input, details of our initialization and skin color histogram generation can be found in

Section 5.2. After converting each incoming image to HSV color space, we obtain a

16x8 Hue-Saturation histogram representing the skin color of the user to be tracked.

Using the Histogram Back-projection Method explained in Section 2.1.3.1, we obtain

a color probability distribution image. Each pixel in the color probability distribution

image is assigned the probability value that the pixel belongs to the target object.

Tracking with the Camshift algorithm can be summarized as in Figure 2.3 [39]:

1. Given a region of interest for the object calculate the probability distribution

image around the target region.

2. Iterate Meanshift Algorithm on the expanded region of interest in the prob-

ability distribution image. Calculate the new centroid of the region using

equations 2.1 and 2.2.

3. Move the region centroid to the new centroid. If movement is larger than a

threshold or maximum iteration count has not yet been reached, jump to step

2.

4. Calculate the size of the tracking box using the zeroth moment (distribution

area) using equations 2.1 and 2.2. Set the tracking box as the region of interest

for the next frame and jump to step 1.

Figure 2.3. Camshift Algorithm
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The algorithm described in Figure 2.3, performs object tracking using a single

tracking box and it is only capable of tracking at most one object of the same color

any given time. As our task of fingerspelling tracking involves tracking a head and two

hands(figure 2.4), the increased number of object brings new challenges.Thus we extend

the Camshift algorithm presented above to detect, track and handle three targets with

similar color distributions. The algorithm assumes that a signer comes in front of the

camera and starts signing with one or two of his hands. Cases such as hands leaving

and entering the sign space, hands merging with each other, hands merging with the

face and hands seperating are handled using a heuristic algorithm described in Figure

2.1.2.

Figure 2.4. Multi-Object Head and Hand Tracking
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1. If an adaptive color histogram for the object to be tracked is not present, run

Automatic Adaptive Color Histogram Generator.

2. Using the Viola-Jones head detection algorithm try to detect a head. If detec-

tion is not successful go to Step 2.

3. If the right hand is not being tracked, run Hierarchical Redetection algorithm

on the right side of face.

4. If the left hand is not being tracked, run Hierarchical Redetection algorithm

on the left side of face.

5. If tracking boxes centroids are closer than a third of the sum of their radii,

remove one of the boxes preventing convergence.

6. If the right hand is not being tracked and the left hand is, designate the tracked

hand as right hand.

7. If the hands are being tracked and the face is lost, remove all boxes and go to

step 2.

Figure 2.5. Hand Labeling Algorithm
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The method involves the use of a hierarchical re-detection module, which hierar-

chically divides the probability distribution image into smaller sub-images. The largest

object whose center is closer than a certain threshold on two consecutive image levels

is chosen as the found object. The algorithm is described in Figure 2.6

HierarchicalRedetect(I[m,n], Box[x, y, w, h], Pthresh,Wthresh)

Require: I[m,n] <- Grayscale m x n color probablity distribution image)

Require: Box[x,y,w,h] <- Rectangle containing possible tracking box of object

1. If(w < Wthresh||h < Wthresh)

return empty tracking box

2. If(ZerothImageMoment(I, Box) < Pthresh)

return empty tracking box

3. Divide Box into 4 equal subregions BoxSub

4. BoxSub = Meanshift(BoxSub) localize objects in boxes

5. for all BoxSub, call HierarchicalRedetect(I(m,n),BoxSub)

6. for all BoxSub starting from the largest

7. If (center of BoxSub is closer to center of Box then Wthresh)

return BoxSub as object tracking box

Figure 2.6. Hierarchical Redetection Algorithm

2.1.3. Skin Color Segmentation

While the Camshift algorithm described in Section 2.1 is useful for locating the

hands and its approximate borders, it does not segment the hands from the background.

The task of hand segmentation therefore needs to be performed on the tracked hand

images.

As the human hand has many degrees of freedom, it has no definite shape or

movement patterns which can be used to stably recognize it. Therefore, color cues

remain the most frequently applied feature for hand segmentation. In color based
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segmentation, usage of different color-spaces and modeling methods makes optimizing

skin color segmentation possible. While we know that there can be no magical skin

color model to differentiate the skin color of all humans from that of every possible

background; the usage of effective models with some minor background restrictions

allows for successful segmentation. Using illumination preserving color spaces such as

Hue and Saturation channels of HSV or normalized RG, the effect of brightness in

skin-color representation can be reduced without losing descriptive color information.

Figure 2.7. Skin-Color Sample Image

In performing skin color segmentation, one common method is to generate skin

color models from sample images and use them to calculate probability distribution

images. Figure 2.7 shows a sample skin color sample we collected from one of our

dataset subjects. In our experiments with various models, we saw that single Gaussian

distributions were usually insufficient to represent the skin color of more than one user.

On the other hand, using Gaussian Mixture Models with as many mixtures as users

provided good segmentation results. However, as predictions with Gaussian Mixtures

were computationally more expensive than histogram lookup operations, we preferred

the use of color histograms as our skin color models.
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In our online fingerspelling recognition system, we have used two segmentation

methods with different methods. In the first method, we used a 32x8 hue-saturation

skin color histogram to threshold hand shapes. In the second method, we segment

hand shapes using region growing. We then perform a logical and operation on the

resulting images to obtain the fused segmentation image.

2.1.3.1. Histogram Back-propagation. Color histograms are used to represent images

by grouping the number of pixels which fall in fixed color ranges. By quantizing sim-

ilar colors into the same histogram bins reduces computational and space complexity.

In the Histogram Back-propagation method [39], a histogram representing the color

distribution of an object is used to create a color probability image. Then, each pixel

in the image is associated with the probability value in the corresponding histogram

bin. Equation 2.3 demonstrates the calculation of the probability distribution Image

PI(x, y), using the histogram H(hue, sat) and image I(x, y).

PI(x,y) = H(I(x,y).hue, I(x,y).sat); (2.3)

Normalizing the histogram using Equation 2.4 makes sure that the image is in

the scale [0-255], yielding a gray-scale probability image. After obtaining a probability

distribution image, we threshold it with a fixed threshold of 30 to segment foreground

and background pixels.

PInormalized(x,y) = min(
PI(x,y)

max(PI)
∗ 3, 255); (2.4)

2.1.3.2. Region Growing. The region growing algorithm is a skin color based seg-

mentation algorithm that attempts to detect the binary shape masks of connected

components.As the histogram back-propagation method is greatly dependent on the
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skin color model, a failure in histogram generation directly affects segmentation accu-

racy. Therefore, to improve our shape probability images, we have made use of region

growing segmentation.

In this method, given a bounding box and a probability image containing prob-

able hand locations and some seed points, we attempt to segment hand images from

background pixels. The region growing operation, like the skin color model, is per-

formed in the Hue and Saturation channels of the HSV color-space. The seed locations

are chosen using the probability image. Since all seed-points are not guaranteed to be

ideal, we attempt to eliminate background seed-points. By comparing the HS color

values of seed-points to the mean HS, we decide if a seed point should be used in

expanding the shape mask.

Then, having selected our initial key-points, we start expanding the shape masks.

From each seed point, we attempt to expand the shape mask in the direction of its

eight neighbors. If a neighbor of the seed-point has closer Hue and Saturation values

to the center, we accept the neighbor as a foreground pixel. Although the threshold

that is used to compare the neighboring pixels to grow the foreground region depends

on the distribution of skin color pixels, we have chosen to assign a static value and

present it to the user as a parameter to allow the fine tuning of segmentation quality.

One drawback of Region Growing is that it often tends to fail when hands occlude

other skin colored objects. Therefore, to prevent the shape-masks from expanding too

much, we have added a control condition. We have added a cutoff threshold that stops

growing the region when the search area grows to %60 of the entire tracking box.



27

3. FEATURE EXTRACTION

In this chapter, we describe the feature extraction methods we have employed

to mathematically represent hand gestures. In order to distinguish fingerspelling signs

shape and motion of hand gestures must be uniquely represented. The ultimate aim

of a fingerspelling recognition system is to distinguish hand gestures in a sequence of

images. Therefore, factors such as varying signer hand shapes, signer performances

and camera conditions should have a minimal effect on hand gesture descriptors.

As our fingerspelling recognition systems aim to be realtime, we did not employ

accurate 3D hand model fitting techniques. Instead we have focused on the usage of

different appearance based features, that can be acquired from 2D frontal images. We

chose our appearance based features based on their strengths on representing different

properties of hand shapes, such as shape, texture and external contours. In this study,

we used Shape based features such as image moments, texture representation based

features such as Local Binary Patterns and external contour based features such as

Elliptic Fourier Descriptors and Radial Distance function.

3.1. Image Moments

Used in numerous computer vision applications as shape descriptors, the invari-

ant moments of Hu are computed out of binary shape masks belonging to segmented

shapes[60]. They are derived from Central Image Moments, which can be derived from

raw image moments. For a two dimensional function f(x, y) the moment of order (p+q)

can be calculated using equation 3.1.

Mpq =

∫ ∞
−∞

∫ ∞
−∞

xpyqf(x, y)dxdy (3.1)
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In a two dimensional grayscale image I(x, y) these raw moments can be calculated as

in equation 3.2:

Mij =
∑
x

∑
y

xiyjI(x, y) (3.2)

Using these moments, central moments for an image can be calculated using Equation3.3.

These moments provide the raw moments translation invariance[22].

µpq =
∑
x

∑
y

(x− x̂)p(y − ŷ)qf(x, y) (3.3)

To ensure scale invariance the centralized moments can be normalized by dividing each

by a factor of the zeroth moment as seen in Equation 3.4:

µij =
µij

µ
1+ i+j

2
00

(3.4)

From the central normalized moments, Hu derived seven invariant moments. The first

six of Hu’s Moments are rotation, scale and translation invariant, whereas the seventh

moment is skew orthogonal invariant, a rather desired attribute to distinguish mirror

images of identical objects. Hu’s Moments are calculated in Equations 3.5-3.11:

Hu1 = µ20 + µ02 (3.5)

Hu2 = (µ20 − µ02)
2 + (2µ11)

2 (3.6)

Hu3 = (µ30 − 3µ12)
2 + (3µ21 − µ03)

2 (3.7)
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Hu4 = (µ30 + µ12)
2 + (µ21 + µ03)

2 (3.8)

Hu5 = (µ30 − 3µ12)(µ30 + µ12)[(µ30 + µ12)
2 − 3(µ21 + µ03)

2]+

(3µ21 − µ03)(µ21 + µ03)[3(µ30 + µ12)
2 − (µ21 + µ03)

2]
(3.9)

Hu6 = (µ20 − µ02)[(µ30 + µ12)
2 − (µ21 + µ03)

2] + 4µ11(µ30 + µ12)(µ21 + µ03) (3.10)

Hu7 = (3µ21 − µ03)(µ30 + µ12)[(µ30 + µ12)
2 − 3(µ21 + µ03)

2]−

(µ30 − 3µ12)(µ21 + µ03)[3(µ30 + µ12)
2 − (µ21 + µ03)

2]
(3.11)

In addition to these descriptors, we have experimented adding two more features

to this feature vector as hand orientations relative to each other and the face. However,

due to the unique properties of fingerspelling gestures allowing the user to perform the

same gesture on different parts of the sign space, a consistency of hand orientations was

not observed even during the performance of a single user, thus leaving us no option

but to omit this feature.

3.2. Elliptic Fourier Descriptors

Calculated from the external shape contour of an object, these descriptors are

used to represent an object in the frequency domain. Using a set of ellipses, the closed

external outline of a shape can be transformed to yield a shape spectrum [61, 51].

The lower frequency descriptors contain information about the general features of the

shape, and the higher frequency descriptors contain information about finer details of

the shape. Although the number of coefficients generated from the transform is usually

large, a subset of the coefficients is enough to capture the overall features of the shape.
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For an n-harmonic elliptic Fourier descriptor representation of a 2-D closed shape

is given in Equation 3.12. In the equation, the center of the curve is (a0, c0). (ak, bk, ck, dk)

for k=1....n are elliptic Fourier coefficients of the curve up to n Fourier harmonics. T

is the perimeter of the closed curve.

x(t)

y(t)

 =

a0
c0

 +
N∑
k=1

ak cos(2kπt
T

) + bk sin(2kπt
T

)

ck cos(2kπt
T

) + dk sin(2kπt
T

)

 (3.12)

The elliptic fourier descriptors (ak, bk, ck, dk) are calculcated for each point k of

the curve as seen in the Equations 3.13 - 3.16.

ak =
1

2k2π2

n∑
i=1

∆xi
∆ti

[
cos(2kπti

T
)− cos(2kπti−1

T
)
]

(3.13)

bk =
1

2k2π2

n∑
i=1

∆xi
∆ti

[
sin(2kπti

T
)− sin(2kπti−1

T
)
]

(3.14)

ck =
1

2k2π2

n∑
i=1

∆yi
∆ti

[
cos(2kπti

T
)− cos(2kπti−1

T
)
]

(3.15)

dk =
1

2k2π2

n∑
i=1

∆yi
∆ti

[
sin(2kπti

T
)− sin(2kπti−1

T
)
]

(3.16)

For each Fourier harmonic calculated, we obtain an ellipse that yields four invari-

ant features [62]. The first two features are the major and minor axis lengths of the
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calculated ellipses. The latter two features can be derived from the first two features

and vice versa. In our experiments with hand contours, we found ten harmonics suf-

ficient to represent hand gestures, yielding 40 sized feature vectors. The formulas for

the features are given in Equations 3.17- 3.20

A2
k =

Ik +
√
I2k − 4J2

k

2
(3.17)

B2
k =

J2
k

A2
k

(3.18)

Ik = a2k + b2k + c2k + d2k (3.19)

Jk = (akdk)− (bkck) (3.20)

3.3. Local Binary Patterns

Local Binary Patterns (LBP) were introduced by Ojala [49] for texture represen-

tation. The LBP is used across various computer vision fields (e.g. image synthesis,

light normalization, face detection, face/expression recognition). It has been success-

fully used for hand detection in cluttered images [2]. We use LBP for hand shape

description.

First a LBP image is computed. The algorithm moves a defined patch along all

the pixels in an image. For each pixel, a unique value depending on its neighbours

illumination is calculated. The LBP image can be calculated for different patch size

and distributions. We use a circular 8-neighbourhood patch with radius one and two
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Figure 3.1. Local Binary Pattern Calculation

pixels. An overview of LBP calculation and the choice of neighboring pixels for a LBP

radius of 2 can be seen in 3.1. If the brightness of a pixel in the patch is greater than or

equal to the evaluated pixel’s brightness we assign a binary label 1 to the corresponding

location in the patch. If the patch brightness is lower than the evaluated brightness,

we assign label 0 to it.

In each patch, we evaluate eight locations which yields us eight binary numbers.

Writing these numbers side by side in order, we obtain an 8-bit number. This number

converted to octal mod and is assigned to the location of the evaluated pixel. Then

the patch moves to the next pixel and calculates a value for the entire image. Next, we

compute a histogram of the LBP image, which we use as a descriptor vector. In regular

LBPs there are 256 histogram bins, each bin representing one pattern. In practice it

has been shown that all the patterns are not important for recognition. By removing

these low frequency patterns, we can reduce the dimensionality of the feature vector.

Most of the information is clustered in patterns that have two or fewer changes between

0 and 1s in binary form. Such LBPs are called uniform LBP’s [49] and they can be

seen in figure 3.2. There exist 58 such patterns and all the other patterns are moved to

the 59th bin of the histogram. This means that for a uniform LBP, the feature vector

is of size 59 .We implemented both uniform and non-uniform LBPs with patch radii of

one and two.
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Figure 3.2. Uniform and non-uniform LBP descriptors

Being a local shape descriptor, LBP descriptors are often calculated in one of two

ways. In the first method, LBP features are calculated for an equally spaced grid. As

this method will generate multiple descriptors for a single object, a single feature can

be obtained to represent the image using bag of visual words histograms. In the second

method, whole hand histograms can be calculated from scale normalized hand images.

Since the former method requires much more space to cluster each grid point to a visual

word, we have opted to use the latter method in our studies. In our representation of

hand shapes, we chose to resample our hand images to a fixed width, thus yielding us

58 sized uniform LBP features to represent each normalized hand image.

3.4. Radial Distance Function

The radial distance function method, presented in [50] is another external contour

based method. Using the distance of a seed-point to the closest background pixel in

all directions, a description of the image is given. The ideal choice of seed-points can

vary depending on the context of the shape. For hand recognition, centers of mass or

elbow hand intersections are commonly used seed-points. The calculation of feature

vectors for a hand shape can be seen in Figure 3.3

The calculated image descriptors are invariant to translation and they can be

made invariant to size and rotation. Scale invariance is achieved by dividing each
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Figure 3.3. Radial Distance Function Calculation

distance feature to the sum of all distance features in the vector. Rotation invariance

can be achieved by choosing the angle with the smallest radial distance as the origin

point for each seed point. While describing an isolated hand, the radial distance

function is an efficient measure as it is possible to represent finger locations and notable

extensions of the hand. However, when describing blobs consisting of not completely

overlapping, but touching hands, obtaining a point which has a straight line distance

to both hands may not be possible. For this reason, we attempt to find the centers of

gravity belonging to both hands. Using image moments, we calculate the parameters

of the smallest ellipse that covers both hands using the formulas 3.21-3.23.

a =
M20

M00

− x2; b = 2(
M11

M00

− xcyc); c =
M02

M00

− y2 (3.21)

l1 =
(a+ c) +

√
b2 + (a− c)

2
; l2 =

(a+ c)−
√
b2 + (a− c)

2
(3.22)

φ =
1

2
∗ tan−1(

b2

a− c
) (3.23)

In the calculations, l1 and l2 are the principal axes of the bounding ellipse centered

on the centroid of the image and φ is their rotation angle. By dividing the image using

the minor axis l2 as a separator, we effectively divide the blob into two approximately
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equal parts belonging to different hands. After calculating the centroid of each part

using image moments, we obtain seed locations for two radial distance functions that

are sufficient to describe a hand blob consisting of two hands. The calculation of radial

distance function for 2 hands can be seen in Figure 3.4.

Figure 3.4. Radial Distance Function Calculation For Two Hands

In our experiments, we have modeled our hand shapes using 72(360/5) distance

calculations from two seed points. Thus, for each image, we obtained descriptors of

size 144. The extracted feature sets are used in the subsequent classification stage.



36

4. TEMPORAL SEGMENTATION AND

CLASSIFICATION

In this chapter, we discuss our fingerspelling recognition methodologies. In chap-

ter 3, we elaborated on the spatial modeling of hand gestures to represent sign language

gestures by obtaining individual descriptors for each frame containing a gesture. How-

ever, for the task of online sign language recognition, the time component of gestures

also needs to be taken into account. As the overall success of the fingerspelling recog-

nition task depens on the systems ability to distinguish gesture sequences correctly,

classification models that take both shape based and temporal sign language features

are necessary.

In our continuous fingerspelling recognition scenario, we attempt to resolve two

separate tasks using temporal segmentation. First, given a continuous sequence of

images containing hand gestures, we try to designate when a sign starts and finishes.

Secondly, having split sequences into chunks of images containing a single gesture, we

try to decide on the letter, which is best suited to represent the entire sequence. To

solve these issues, we have experimented with two tiered classification approaches to

handle continuous sign language recognition.

4.1. Keyframe Detection

An important challenge in continuous fingerspelling recognition is the problem

of designating which frames the signer actually performs a gesture and which frames

the signer does not. We use a keyframe based system, where hand motion and motion

blur are utilized to automatically separate keyframes from transition frames. In a

given sequence of images, we classify the images into two categories depending on its

semantic content. If the frame contains a snapshot of a hand gesture which can be used

to represent a concept, we call the frame a keyframe. However, if the frame does not

contain any hand gestures or is a transition between two gestures, we call the frame
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a transition frame. This information is crucial to temporally segmenting the frames

containing semantic meaning.

Figure 4.1. Hand gesture performance split into keyframes (green) and transition

frames (red)

4.1.0.3. Hand Movement. An effective measure for keyframe detection is the motion

of signer hands. In static gestures where the signer displays image snapshots, begining

and end of gesture performances can easily be inferred from the motion of signer hands.

In dynamic gestures, although differentiating between transition frames and movement

between the phases of the same gestures can be difficult, the presence of momentary

stops like changing hand movement detection still makes it possible.

While signing, the overall motion of the human hands can be classified into two

categories. The first is the global motion of the hands which is its relative position

with respect to the camera. The global motion is obtained through keeping track of

the tracking boxes in the camshift algorithm. The second kind of motion is the local

hand motion, which can be summarized as the change in the shape of the hand. We

keep track of the change in the hands external contour.
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For the classification of movement features, we use two methods, one gaussian

and one heuristic based. In the gaussian method, we train the system with positive

and negative keyframe examples. However, in the online system, the heurisitic method

where the user can manipulate the thresholds to adjust sytem performance to his speed

was deemed more usable, as it was easier to calibrate for different users.

4.1.0.4. Motion Blur. In a video or image capture device, the captured frame does

not always represent a single instant. To capture a single frame, the camera cap-

tures the scene over a certain period of time designated by its shutter speed. Thus,

any object that is displaced relative to the camera during the frame capture interval

appears to look blurred along its direction of relative motion. In our sign language

recognition setup, the user constantly moves his/her hands to perform certain hand

gestures. Therefore, depending on the capture hardware there usually is some motion

blur present due to the mobility of hands.

In sign language recognition systems, a major problem that hampers the systems

accuracy is motion blur, which is caused by the rapid movement of hands while moving

from one gesture to another. Since the presence of motion blur prevents accurate

segmentation in a sequence of gestures, it is desirable to choose the frame with the

minimal blur to maximize segmentation and therefore recognition accuracy.

In addition, in a hand gesture recognition setup where the signer performs con-

tinuous gestures, motion blur becomes a possible feature in keyframe selection. In

keyframe selection, the goal is to distinguish probable sign language hand gestures

from transition gestures that occur while moving hands from one gesture to another.

Although the motion of hands seems to be the key distinguishing feature for such a

case, individual usage of such a feature does not produce extremely accurate results as

the motion of hands varies with the signer, with the accuracy of hand tracking, with

the current sign and with the co articulation of previous and following signs. There-

fore, supplementing hand motion with a feature that is less dependent on the above
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conditions and more dependent on the quality of captured images becomes useful in

the selection of meaningful and accurate key frames.

In this study, exploring the features presented in [55], we attempted to solve

a more constrained and focused problem. Although partial blur detection is a com-

plicated problem that needs to take into account global changes in saturation and

illumination in an image, our task in hand gesture keyframe selection is relatively more

constrained. As our objective is determining the presence of blur in the signers hands,

we are only interested in detecting blur in a constrained area. In addition, since we are

given the possible contours of the hands from the previous hand tracking stage, the

amount of useless background information can be severely reduced.

For detecting motion blur, we employ a method that makes use of the gradient

strengths of hand edges. Compared to unblurred images, a major characteristic of

blurred images is that edges tend to be smoother and contain smaller gradient values.

Therefore, focusing on the distribution of gradient values in a certain image patch can

give us an idea about the presence of partial motion blur.

Figure 4.2. Motion blur detection in hand images

Firstly, we obtain hand images as seen in Figure 4.2 and use the image derivative

masks in Equation 4.1 to obtain the derivative images Ix and Iy.
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Dx =


−1 0 1

−1 0 1

−1 0 1

 ;Dy =


−1 −1 −1

0 0 0

1 1 1

 (4.1)

Then we convolve the images to obtain the derivative images Ix and Iy. From those

images, using a Gaussian window, we obtain the smoothed squared image derivatives

I2x and I2y . The corresponding images can be seen in Figure 4.3.

Then we obtain the trace of the image(4.4) with the Equation 4.2.

A = k ∗ (I2x + I2y )2 (4.2)

Figure 4.3. From left to right : I, Ix, Iy, I
2
x, I2y

Figure 4.4. Trace Image

As the trace image yields the most significant results in the edge areas that sep-

arate the hands from the background, we compute the trace image for small windows

around the hand contour. We capture nxn sized small images around the hand contours
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that are at least
√

(n2)/4 apart from each other. After obtaining the gradient trace

values from these boxes, we extract two different features for blur detection. The first

feature is the span of the gradient distribution histogram. Since unblurred edges tend

to be sharper and contain relatively small gradients, they tend to have a distribution

with a smaller variance. On the other hand, blurred edges tend to have a larger vari-

ance as they consist of more zero and large valued gradients. As suggested by Liu, we

use Gaussian mixture models to fit a two component gaussian model to the gradient

distribution. In Figure 4.5, the distribution with the smaller variance represents the

background pixels while the edges (both blurred and unblurred) tend to have a distri-

bution with smaller peak and a larger variance. Thus, we make use of the variance of

the smaller peak as a feature to classify image patches as blurred and unblurred.

Figure 4.5. The distributions of Gradient Magnitudes

In addition, we also make use of the local difference in gradient vectors to classify

blurred and unblurred images. In our sign language recognition scenario, hands are

often partially blurred instead of being totally distorted. Therefore, although the

difference between the maximum and minimum gradient values seem to be meaningless

when the entire patch is blurred and unblurred, it becomes a distinguishing element

when half of the image is blurry and the other half is unblurred.
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4.2. Hand Gesture Classifiers

In this section, we describe the base classifiers which we have chosen to use with

our hand gesture features. The hand descriptors which we use to model 88 classes

consist of 14 to 144 length vectors.

In our dataset, for some classes, the ratio of (number of samples) / (feature vector

size) is smaller than 1. As we do not have enough data to generate additional validation

sets, we perform validation on our training sets using k-fold cross validation(k=10). In

10-fold cross validation, the training set is divided into k random subsets. For each

subset, we construct a classification model using the data belonging to the remaining

k-1 subsets. We report the average of these k-folds as our training accuracy. The cross

validation method only inputs the training set. The test images are only used with the

model whose parameters are optimized by cross validation.

Using cross validation benefits the process of model construction in two different

ways. Using cross validation, adaptive comparison of model parameters improves the

robustness of the model towards new data. In addition, through cross validation, it

becomes possible to see if training a model with some of the sub-training sets actually

performs better than using the entire training set.

4.2.1. Gaussian Classifier

The first classifier we have employed is the linear classifier known as the Gaussian

(minimum-error) classifier. For this classifier, we have assumed that the data is nor-

mally distributed and used equal covariance matrices. The reason for our covariance

matrix choice is the fact that for some classes and features, our feature vector sizes

greatly outnumbers our sample size. The equation for calculating the log likelihood

gi(x) is given in Equation 4.3. While calculating likelihoods for each class we assume

all covariane matrices are the same (Σi = Σ)
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gi(x) = −1

2
(x− µi)TΣ−1i (x− µi) (4.3)

While training the classifier, we perform a 10-fold cross-validation. Since we want

to estimate and minimize test error without using the test set in system training, we

split the training set into 10 folds and take the one with the best performance. If

the classifier with the best performance performs much better than the average result

of cross validation, that subset of the training set is preferred over using the entire

training set.

4.2.2. K-Nearest Neighbour Classifier

The k-Nearest Neighbour method is a non-parametric robust classification algo-

rithm. This method assigns the input data x to the class which has the most number of

elements among the k-closest neighbors of x. In kNN classification, a distance metric

needs to be chosen to represent the distance between two samples. In this study, we

have opted to use Euclidean Distance as it did not provide a significant performance

decrease over Chi-square distance. Using this metric, an input test samples distance

to all training samples are calculated. Then, this input sample is assigned to the class

having the most examples among the k closest neighbors. In kNN classification, all

neighbors are given equal priorities in voting. Thus the number k needs to be an odd

number in order to avoid ties while voting.

4.2.3. Support Vector Machines

Support Vector Machines(SVM) are robust, non-probabilistic classifiers. Given a

data that belongs to multiple classes, the SVM classifier tries to find optimal separating

hyperplanes between class pairs one by one. SVM tries to find the optimal hyperplane

that separates the data while trying to maximize its distance to the closest data point

on either class.
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While training the SVM’s we aim to calculate a discriminant for a set of points

represented as x belonging to the class ki ∈ {+1,−1}. Using kernel functions, the SVM

maps x to a higher dimensional feature space. The decision function for the kernel can

be written as seen in equation 4.4 as described in[63].

gi(x) = (
∑
i

αikiK(xi.x) + b) (4.4)

Support vector machines are two class classifiers, which are not directly capable

of handling multi-class classification problems. To use this method with multi class

datasets, two approaches known as one-vs-rest and one-vs-one classifiers with voting

are widely used. The implementation of LibSVM [64], which we use in this study makes

use of the one-vs-one approach, where SVM’s between each class are calculated for a

given training sample. Then by using voting among all the results, the system decides

on the class that includes the given sample in the largest number of iterations.

4.3. Temporal Segmentation

In temporal segmentation of hand gestures, the system integrates two different

types of information. Spatial and appearance information contains descriptive infor-

mation on the shape and possible meaning of individual frames. Temporal information,

on the other hand, can be used to ascertain which frame follows which in a sequence

and which of these are actually meaningful keyframes. By incorporating these two

types of information with different inputs, the system performs several different tasks.

In isolated fingerspelling gesture videos, the system starts performing a single

gesture from a start pose and ends the gesture by returning to the start pose. The

beginning and end of hand gestures are manually annotated to indicate when a ges-

ture starts and ends. On the other hand, continuous videos do not contain manual

annotation. In these videos, a signer begins signing by performing letter after letter
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and only returns to the start pose when he finishes signing a word. Thus, to perform

fingerspelling recognition with continuous videos, identifying the start and end of each

gesture is necessary.

4.3.1. Keyframe Based Gesture Detection

In order to segment gesture sequences from a continuous sequence of frames, we

try to exploit the uniform performance characteristics of fingerspelling signs. From a

temporal point of view, gestures can be classified into two different categories as static

and dynamic. In static gestures, the user only moves his/her hands when starting and

finishing the gesture. As can be seen in figure 4.6, the hands are static only during

keyframes.

Figure 4.6. Continious Performance of Static Gestures

Unfortunate from a recognition point of view,some fingerspelling gestures are dy-

namic. Detecting the start and end positions of dynamic gestures is a more challenging

task then annotating static gestures. As can be seen from figure 4.7, dynamic gestures

include movement both between and during gestures. Therefore, a necessity of distin-

guishing gesture movements from transition movements during temporal segmentation

arises.
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The dynamic gestures, present in our multilingual dataset, contain movements in

one or more segments. Thus, motion based keyframe detection yields positive results

either when the hands make a complete stop at a static pose or when hands change

direction between two dynamic poses. As a result of coarticulation caused from moving

hands to the pose start and end positions, hands change direction at least two times

while performing a gesture. Those hesitance points of time are actually candidates to

serve as keyframes, since the hands move relatively slower and much less numbers of

pixels are smeared into background.

Figure 4.7. Continious Performance of Dynamic Gestures

The model displayed in figure 4.8 attempts to segment gesture start and end

positions in a continuous image sequence. In a continuous sequence of images marked

as keyframes and transition frames, the first encountered keyframe is designated as

the sequence start frame. Then, each new frame is added to the sequence until a

continuous transition frame of certain length arrives. In this method, we make use of

two thresholds to optimize segmentation. First, by making sure that the recognized

sequence is at least of length (0.30seconds/systemfps) frames, we attempt to prevent

short noise from being recognized as a sequence. Secondly, we set the minimum length

of continious transition frames used to determine the end of a sequence to a fixes

threshold of (0.20seconds/systemfps). This way, movements of dynamic gestures are

segmented from transitions between gestures.
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Figure 4.8. Keyframe based gesture start and end point detection

The thresholds setting minimum transition and minimum sequence length were

chosen based on the fingerspelling performance of our native signer subjects performing

approximately 3 signs per second. Choosing higher thresholds for slower, non-native

signers prevents signer movement noise from being recognized as a gesture or a single

gesture from being interpreted as two or three gestures.

4.3.2. Fusion Techniques

In our study, we describe fingerspelling hand gestures using different appearance

based models over time. Both the appearance features and the time dimension effect

the meaning conveyed by the gesture. So the combination and synchronization method

of these information among and with each other affects overall system performance.

In our system we make use of four different appearance based classifiers with

different strengths. Therefore in our search to obtain the highest appearance based

fingerspelling recognition accuracy, we have attempted to compare the fusion of these

features on isolated hand gesture keyframe classification.

As a first attempt, we applied feature level fusion by normalizing feature vectors,

concatenating them and performing PCA on the results. There were certain challenges

at this stage mostly due to feature incomparability. We had four features of lengths

14,80,96 and 144 of different scales. While some of these features benefited from tech-
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niques like z-normalization, others such as EFD whose internal feature weights needed

preservation performed worse in a combined setting.

In another method, we applied score level fusion on our appearance based classi-

fiers by handling each feature separately. As discussed in section 4.2 we have used kNN

and linear discriminant classifiers to classify each feature separately. Then, according

to the training/cross-validation accuracy of each set, we performed score level weighted

majority voting to reach a final decision.

To fuse appearance based results with the time knowledge, which consists of

sequence and keyframe information, we have made use of three methods. The first two

methods involve classifying each frame separately and reaching a decision by modeling

the frame-wise results of a sequence.

In the first method, we make a sequence-wise decision using a majority voting

approach. In this method we only take into account the frames that are designated as

keyframes. By looking at a sequence of classified pixel-wise class labels, the decision

on the sequence is made using the most numerous class its frames belong to.

A second approach we have used is the modeling of pixel-wise classification results

using discrete HMM’s. With this approach, we classify the frames belonging to each

gesture using a pixel-wise classifier and obtain output label sequences. Then, inputting

these discrete sequences into HMM’s we decide on the class which the sequence is more

likely to belong to.

Lastly, we make use of continuous HMM’s to perform sequence level classification

directly. Using Gaussian Mixture Models, we model each feature of appearance based

feature vectors and construct hidden Markov models from these features. Then, a

decision on a given input sequence is made by finding which class the best fitting

model belongs to.
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Figure 4.9. Keyframe based gesture start and end point detection

4.3.3. Hidden Markov Models

Hidden Markov Models(HMM)’s are probabilistic models that are frequently used

to model time series. They are widely used in many speech and gesture recognition

applications. Likewise, we make use of HMM’s in modeling sequences of fingerspelling

gestures. HMM’s can have two types of input as discrete and continious inputs. In

the task of fingerspelling recognition, we have used HMM’s with both discrete and

continious observations. In the former case, for each sequence of continuous features

describing hand gesture images frame by frame, we perform frame-wise classification

to obtain a discrete class information. Each of these labels are considered as the

observations O = {O1, O2, .....Ot} of our HMM. In the model, each hidden state of an

output produces a likelihood value of an output belonging to the observation, O. The

discrete hidden markov model can be parameterized as seen in Equation 4.5.

λ = (A,B, π) (4.5)

In our system each image sequence containing a single hand gesture is represented

by an HMM (Figure 4.10). We have used a seven state model to represent our hand

gestures. The usage of HMM’s can be broken down into three operations[65].
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Figure 4.10. The seven state Hidden Markov Model

(i) Given an observation sequenceO(O1, O2, ....Ot) for testing and a model λ(A,B, π),

find the likelihood P (O | λ) of the observation sequence.

(ii) Given an observation sequence O(O1, O2, ....Ot) and a model λ(A,B, π); find the

state sequence Q(Q1, Q2, ....Qt) that has the highest probablity of generating O.

(iii) Given training observation sequences X = {Ok}k and a model λ(A,B, π), find

the parameters of a model λ that maximizes P (X | λ).

In order to train a hidden Markov model, given training observation sequences

X = {Ok}k, we use a maximum likelihood approach. Our goal in this method is to find

the model λ that maximizes the likelihood of our training observations. The maximum

likelihood algorithm we use is called the Baum-Welch algorithm.

We begin iterating the Baum-Welch algorithm by first calculating alpha and beta

using the forward variable α in equation 4.6 and the backward variable β in equation

4.7.
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Initialization : α1(i) = πibi(O1)

Recursion : αt+1(j) = [
N∑
i=1

αt(i)aij]bj(Ot+1)
(4.6)

Initialization : βT (i) = 1

Recursion : βt(i) =
N∑
j=1

aijbj(Ot+1)βt+1(j)
(4.7)

After calculating alpha and beta, these are used in the calculation of γ and ξ. γ

(equation 4.8) is the probability of being in a state at a given time given the observation

and model parameters. ξ(i, j) (equation 4.9) is the probability of being in state i at

time t and in state j at time t+ 1, given O and λ.

γt(i) =
αt(i)βt(i)∑N
j=1 αt(j)βt(j)

(4.8)

ξ(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)∑

k

∑
l αt(k)aklbl(Ot+1)βt+1(l)

(4.9)

Finally, using γ and ξ, we estimate the updated transition, observation and prior

probabilities, that form our Hidden Markov model.

πi =

∑K
k=1 γ

k
1 (i)

K
(4.10)
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â(i, j) =

∑K
k=1

∑Tk−1
t=1 ξkt (i, j)∑K

k=1

∑Tk−1
t=1 γkt (i)

(4.11)

b̂j(m) =

∑K
k=1

∑Tk−1
t=1 γkt (j)l(Ok

t = vm)∑K
k=1

∑Tk−1
t=1 γkt (i)

(4.12)

The update of the parameters are executed until the difference in A, B and

π becomes negligible. At that point the model is considered to be converged, thus

yielding the optimal model.

Next, to achieve prediction with the optimized models, we solve the evaluation

problem. Given an observation and k models belonging to k different classes, we find

the probablity that the observed sequence can be generated by each model P(O| λ).

By evaluating the observation sequence against each model, we designate the model

with the highest probability as the recognized sign.

To calculate the probability of an observation sequence being generated by a

model P (O |, λ), we need to calculate likelihoods for all possible Q = (Q1, Q2.....Qt),

which is impractical[65]. For that reason we use a procedure called the forward-

backward procedure. It effectively divides a sequence into two parts one from time

1 to t and the other from t+1 to T. The forward variable αi was descirbed in equation

4.6. and the backward variable β was described in equation 4.7. Then, to find the

state sequence Q = (Q1, Q2.....Qt), we can calculate γt(i) (equation 4.8), which gives

us the probability of being in state i at time t.

For each iteration, using the γt(i) variable with the Viterbi algorithm, the like-

lihood of the model for a given observation can be calculated. The Viterbi algorithm

produces an efficient means of evaluating a set of HMMs by taking only the maximum-

likelihood path at each time step instead of all paths. It is a form of dynamic program-

ming which finds the HMM states that maximizes the probability of the observations

given the model.
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Another method of Hidden Markov Models that does not use discretized feature

vectors is continious HMM’s. If the inputs of HMM’s are continious, we make use of

gaussian mixtures to model each feature. In a case, where we use J gaussians to model

our each feature, our observations in state Sj are drawn from normal distributions with

mean µj and variance σj. In the maximization step of the baum welch algorithm the

new mean and variance values are calculated as in Equation 4.13 and 4.14.

M̂uj =

∑
t λt(j)Ot∑
t λt(j)

(4.13)

σ̂2
j =

∑
t λt(j)(Ot − µ̂j)2∑

t λt(j)
(4.14)
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5. EXPERIMENTAL RESULTS

In this chapter, we present recognition results on our self collected Multi-lingual

Fingerspelling datasets. In section 5.1, we present applications, which use the methods

presented. In section 5.2, we describe the collection, contents and challenges of the

dataset. In section 5.3, we present and discuss our recognition results on fingerspelling

keyframes and sequences.

5.1. Multi-Lingual Fingerspelling to Speech Translator

Being the first prototype application stemming from the work in this thesis, this

application helps the communication of two people, one hearing impaired and one

visually impaired by converting speech to fingerspelling and fingerspelling to speech.

In the system, different spoken languages and sign languages such as English, Russian,

Turkish and Czech are considered. By using recognition and synthesis techniques for

speech and fingerspelling modalities the system enables the communication of the deaf

and the blind, who have no other natural shared medium to communicate with each

other. A screen shot from the system demo presentation can be seen in Figure 5.1.

Figure 5.1. FingerSign to Speech translator system flowchart
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Figure 5.2. FingerSign to Speech translator system flowchart

The overall system is implemented in client-server architecture. The system con-

tains four standalone modules as fingerspelling synthesis, fingerspelling recognition,

speech synthesis and speech recognition. The modules are the client applications and

they communicate through the server. The system is operating in close to real time.

It takes the fingerspelling input from the camera, or the speech input from the micro-

phone and converts it to synthesized speech or fingerspelling. The input and output

can be selected among the supported languages for each module. The translation be-

tween different languages is handled via Google translate APIs. The system flowchart

can be seen in Figure 5.2.

In this system, the fingerspelling recognition module is presented a continuous

gesture input and the system provides word output. For word level recognition, the

motion modeling algorithm with weighted voting of hand gesture sequences described

in Section 4.3.1 are used. An additional ”End of Word” sign is performed after each

word to separate different words. This approach yields a sequence of letters that are

assumed to belong to the same word. However, due to possible errors in the recognition

of individual letters, the letter sequences that form up words tend to contain one or

more errors. To reduce the word error, we make use of a language model, which contains

2000 words per different language. Using Levenshtein distance [66] we compare the

recognized letter sequence with the entire language model to find the best matching

word. The word with the closest score is returned as the final result of the fingerspelling

recognition module.
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5.2. Database

The aim of this thesis is to realize and evaluate a fingerspelling recognition system

in a multi-lingual setting. For this purpose, video inputs consisting of all the signs to

be recognized were deemed necessary. Although various datasets belonging to each of

these gesture sets exist in different sources, they all seem to vary in different critical

aspects such as lighting, background constrictions or body pose. Therefore, in order to

train a compatible multilingual system, we have collected a video database of finger-

spelling sings. The dataset contains the fingerspelling alphabets of the Czech, Russian

and Turkish sign languages. Gestures of the Turkish fingerspelling alphabet can be

seen in Figure 5.3, the Czech fingerspelling alphabet in Figure 5.4 and the Russian

fingerspelling alphabet in Figure 5.5

Figure 5.3. The Fingerspelling Turkish Alphabet

Currently, the database contains videos of five subjects performing the Turkish

sign alphabet, three subjects performing the Czech sign alphabet and three subjects

performing the Russian sign alphabet. Of these subjects, one is a natural signer and a
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Figure 5.4. The Czech Fingerspelling Alphabet

Figure 5.5. The Russian Fingerspelling Alphabetl
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signing instructor. The rest of the subjects are university students who have performed

fingerspelling gestures through visual guidance. The gestures of the Czech and Russian

alphabets were taught to the performers by our study partners from those respective

countries during the eNTERFACE’10 workshop[67]. Sample Images of the dataset can

be seen in Figure 5.6.

Figure 5.6. Samples images from the multi-lingual fingerspelling dataset

In total, there are 88 letters performed in the database, covering 29 Turkish, 26

Czech and 33 Russian sign alphabet letters. Some letters can be represented using

only one hand, whereas some require the use of both hands. Moreover, one keyframe

is enough to represent some letters whereas representation of some letters have a more

dynamic nature since they can be performed with a movement rather than a static
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frame, for instance X. Each subject repeats each letter in the database five to nine

times.

In the videos, certain restrictions are imposed on the signers to make skin color

based segmentation easy. The signers wear dark colored clothes with long sleeves that

leaves only hands and faces bare. The signs are performed in front of a black back-

ground using a constant camera distance and angle. Before and after each performance,

the signer brings his hands down to his sides, which is designated as the rest pose. The

videos were recorded from a frontal pose approximately one and a half meters from

the signers that captured the signers face and hands down to his/her waist. While

the usage of certain lighting conditions allowed for easier segmentation, we have used

normal room conditions in the recording of some videos to make the training set more

robust.

The signs are recorded by a mini-dv camera at 25fps on resolutions varying from

1072x768 to 640x480. The total length of the training and test videos for each subject

is between 25 and 30 minutes. Thus the length of the entire dataset borders four hours.

In the videos, the interlacing effect caused by the camera interlacing effect is removed

by applying a deinterlacing algorithm.

Figure 5.7. The Russian Fingerspelling Alphabet
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In the dataset, gestures with many differing properties are present. All of the

gestures in the database use hands as the only modality. However, the composition

of different gestures shows a lot of variance. While some gestures are represented by

static shapes others are represented by dynamic movements of hands. Likewise, while

all gestures of the Russian language make use of one handed gestures, the Czech and

Turkish alphabets contain both one and two handed gestures.

Each recorded video in the database has been preprocessed and annotated. As

the shape of the human hand is highly deformable with hard to draw features, manual

annotation of a hand is very difficult and time consuming. For that reason we developed

a semi-automatic annotation pipeline to detect and segment hand images as shown in

5.7. In the pipeline, the signspace is cropped for each image. Then the presence of

a hand in the signspace is checked using a basic global skin color model. If a hand

is present, a large approximate bounding box is drawn and the hands are segmented

using Active Contour Models[68].

5.3. Fingerspelling Recognition

In this section, we evaluate the performance of our fingerspelling representation

and recognition methodologies. For each gesture in our dataset we use appearance

based descriptors explained in Section 3 to represent hands and classifiers described in

section 4.2. Then moving one step further, sequence information is incorporated into

this classification to make a keyframe sequence-wise decision.

In our experiments we have tested several different modules of the proposed finger-

spelling system. For this purpose we have performed different tests aimed at illustrating

and analyzing recognition accuracies under differing conditions. The recognition perfor-

mance of isolated fingerspelling gestures can be compared using recognition accuracies.

Recognition accuracy is calculated by dividing the number of correctly classified sam-

ples (true positive and true negative) over all (true positive,true negative, false positive,

false negative) samples in the dataset as seen in Equation 5.1.



61

Accuracy =
TP + TN

TP + FP + TN + FN
(5.1)

5.3.1. Evaluation of Automatic Keyframe Segmentation

In both the isolated and continuous fingerspelling videos, the videos contain

frames where no signs are performed. Therefore we attempt to recognize these frames

through our automatic keyframe recognition methodology described in Section 4. To

measure the effectiveness of our keyframe segmentation methodology we performed two

separate tests.

In the first test, in a dataset of nearly 6000 frames belonging to annotated con-

tinuous hand gesture videos, we attempted to classify each frame as a keyframe or

transition frame. The videos belonging to performances from the Turkish manual al-

phabet were manually annotated as keyframe or transition frames. The hand contours

in the videos were segmented using active contour models and separated into 4 groups

as blurred, unblurred, indistinguishable and hands not available. Then, using a fusion

hand displacement and partial motion blur, each frame was classified as a keyframe or a

transition frame. In these tests performed using K-nearest neighbor classifiers, the use

of partial blur detection through the variance of the gradient disribution yields an ac-

curacy of 0.7456 per cent. On the other hand, classification with partial blur detection

using maximum gradient difference of contours yielded 0.8314 per cent accuracy.

To clearly analyze the effect of automatic keyframe recognition on fingerspelling

recognition, we performed isolated fingerspelling recognition experiments on manual

and automatically selected hand gesture keyframes. In the first group of images, snap-

shots of each sign language video were extracted from fingerspelling videos. As these

snapshots are manually extracted from image sequences to represent gestures, they

are not affected by possible propagating image segmentation or temporal segmentation

errors. Therefore, the tests with annotated snapshot images provide us information on
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feature descriptor and classifier performances free of segmentation and keyframing er-

rors. In Table 5.1 we compare the recognition accuracies for the Turkish fingerspelling

alphabet using both manually selected and automatically extracted keyframes.

Table 5.1. Turkish fingerspelling recognition accuracy with different keyframe

selection using kNN

HU EFD RDF LBP Fusion

Manual 0.5416 0.7041 0.7283 0.8662 0.8814

Automatic 0.4924 0.6465 0.7606 0.7639 0.7793

While comparing the results in Table 5.1 one must take into account that isolated

snapshots contain no temporal ordering information. Therefore, transition frames that

are selected and reduce recognition accuracy in automatic keyframe selection should

not be considered useless, as they are simply left out in this kind of modeling.

5.3.2. Effects of Feature Selection and Dimensionality Reduction

In Table 5.2, we display results on the effects of dimensionality reduction on

keyframe based recognition accuracy. For dimensionality reduction, we make use of the

principal component analysis algorithm. In these tests, the kNN algorithm is used to

classify the features belonging to the keyframes of the Turkish Fingerspelling alphabet.

In the experiment, we have chosen to preserve energy at different levels by choosing

different number of coefficients whose eigenvalues sum up to a certain percentage of the

total energy. Figure 5.8 shows that except for Elliptic Fourier Descriptors, no feature

shows performance improvement when projected onto a lower dimensional space.

We explicitly feel the need to note here that each EFD coefficient is of a dif-

ferent magnitiude giving higher weight to higher harmonic features. Performing z-

normalization on the vector actually reduces overall descriptor accuracy by negating

high level shape characteristics. Thus, the success of PCA algorithm to converge on

features with higher harmonics increases the desciptors overall efficiency.
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Table 5.2. Effects of dimensionality reduction on Turkish fingerspelling recognition

using kNN

HU EFD RDF LBP

NO PCA 0.4924 0.6465 0.7606 0.7639

PCA %95 0.4633 0.6964 0.3896 0.2343

PCA %99 0.4924 0.7704 0.6643 0.5649

PCA %100 0.4924 0.7629 0.7609 0.7636

Figure 5.8. Effects of PCA on fingerspelling recognition accuracy
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5.3.3. Performance Evaluation of Hand Gesture Features

In Tables 5.3 and 5.4, we display recognition accuracy results for Turkish, Czech

and Russian fingerspelling alphabets using different features and different classifiers.

The results presented in this section are calculated using automatically selected keyframes

on isolated fingersign videos. Best results are obtained using local binary patterns with

a recognition accuracy of 0.8013 per cent in kNN classifcation. Radial distance function

also shows good performance with especially two handed Turkish gestures, but fails to

perform well in Russian and Czech Languages. Hu Moments have the lowest classifica-

tion accuracy. Using naive bayes classification, elliptic fourier descriptors outperform

other descriptors.

Table 5.3. Fingerspelling recognition accuracy with with automatically selected

keyframes using kNN classifier

HU EFD RDF LBP Fused

Turkish 0.4924 0.6465 0.7606 0.7639 0.7793

Russian 0.3298 0.5616 0.5501 0.7764 0.7752

Czech 0.5409 0.5766 0.6773 0.7847 0.8013

Table 5.4. Fingerspelling recognition accuracy with automatically selected keyframes

using naive bayes classifier

HU EFD RDF LBP Fused

Turkish 0.3276 0.5373 0.4906 0.2936 0.5653

Russian 0.3457 0.6089 0.4586 0.3166 0.5642

Czech 0.3328 0.6434 0.5683 0.4934 0.6167
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5.3.4. Comparison of Signer Independent and Dependent FRR

In our experiments we report two sets of results as signer independent and signer

dependent recognition accuracies. In the signer dependent case, training and test

examples are chosen from the same individuals. For each subject, half of the repetitions

of each gesture are placed into the training set and the remaining half are placed into

the test set. In the signer independent recognition, a subject is chosen as test subject

and the system is trained with sample gestures belonging to the rest of the users.

Using the signer dependent and independent test sets, recognition accuracy re-

sults (fingersign recognition rate - FRR) belonging to different subjects are obtained

and shown in Tables 5.5 and 5.6. The goal of these tests is to estimate the recogni-

tion accuracy of an online system whose test videos for every possible user can not be

present in the database.The recognition accuracy difference of these two recognition

sets show us how much the systems recognition is reliable, if a signer’s articulation

deviates from the training data.
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Table 5.5. Multi-lingual user dependent fingerspelling recognition accuracy with

manually selected keyframe sequences

Language HU EFD RDF LBP Fused

Subject Turkish 0.53 0.63 0.67 0.85 0.88

Subject Turkish 0.56 0.70 0.78 0.91 0.93

Subject Turkish 0.54 0.75 0.77 0.87 0.87

Subject Turkish 0.48 0.61 0.61 0.74 0.78

Subject Turkish 0.59 0.79 0.76 0.94 0.96

Average Turkish 0.54 0.70 0.72 0.86 0.88

Subject Russian 0.64 0.61 0.72 0.69 0.75

Subject Russian 0.38 0.54 0.75 0.8 0.8

Subject Russian 0.63 0.61 0.64 0.69 0.73

Average Russian 0.55 0.59 0.7 0.73 0.76

Subject Czech 0.6 0.52 0.62 0.75 0.72

Subject Czech 0.48 0.61 0.78 0.76 0.84

Subject Czech 0.47 0.65 0.67 0.73 0.78

Average Czech 0.52 0.59 0.69 0.75 0.78
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Table 5.6. Multi-lingual user independent fingerspelling recognition accuracy with

manually selected keyframe sequences

Language HU EFD RDF LBP Fused

Subject Turkish 0.31 0.15 0.39 0.28 0.43

Subject Turkish 0.23 0.06 0.24 0.21 0.28

Subject Turkish 0.36 0.30 0.48 0.29 0.45

Subject Turkish 0.07 0.28 0.61 0.48 0.54

Subject Turkish 0.32 0.20 0.45 0.23 0.40

Average Turkish 0.26 0.20 0.43 0.30 0.42

Subject Russian 0.36 0.16 0.44 0.44 0.47

Subject Russian 0.36 0.25 0.39 0.42 0.4

Subject Russian 0.27 0.28 0.43 0.31 0.33

Average Russian 0.33 0.23 0.42 0.39 0.4

Subject Czech 0.39 0.34 0.46 0.41 0.48

Subject Czech 0.27 0.18 0.49 0.44 0.46

Subject Czech 0.22 0.18 0.37 0.37 0.38

Average Czech 0.29 0.23 0.44 0.4 0.44
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5.3.5. Comparison of Temporal Segmentation Methodologies:

As described in Section 4, we have used three different methodologies to tempo-

rally model our image sequences. In the first two methods, we attempt to quantify

features belonging to each frame to class labels and model the class labels. In the

last method, we use features of image sequences as continuous HMM observations and

model them with GMM’s.

In Tables 5.7 and 5.8, we classify features belonging to each sequence using pixel-

wise kNN or Naive Bayes classifiers. Then using majority voting, we find the class that

contains the most number of keyframes in a sequence to make a sequence-wise decision.

As this model incorporates the transition frames of dynamic gestures, it produces much

better results than pixelwise classification.

Table 5.7. Fingerspelling recognition accuracy on keyframe sequences using majority

voting with kNN classifier

HU EFD RDF LBP Fused

Turkish 0.6919 0.7677 0.8729 0.8753 0.9218

Russian 0.5684 0.7222 0.7863 0.8889 0.9103

Czech 0.6629 0.7079 0.8652 0.9045 0.9213

Table 5.8. Fingerspelling recognition accuracy on keyframe sequences using majority

voting with naive bayes classifiers

HU EFD RDF LBP Fused

Turkish 0.3472 0.6235 0.6015 0.3276 0.6333

Russian 0.2735 0.4744 0.3205 0.3462 0.4573

Czech 0.3427 0.7584 0.7416 0.5657 0.7886
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Using the majority voting method with kNN classifiers, we achieve combined

feature recognition accuracies of approximately 92 per cent. Trained with signer de-

pendent data, this classifier yields the best overall fingerspelling gesture recognition

accuracies. Confusion matrices for the Turkish, Russian and Czech manual alphabets

are shown in Figures 5.9, 5.10 and 5.11, respectively.

Figure 5.9. Turkish fingerspelling recognition confusion matrix

Table 5.9 displays the recognition results of the combined 88 class fingerspelling

recognition rate. Pixel-wise classification results are combined with majority voting to

reach sequence level decisions. The multilingual confusion matrix is given on Figure

5.12.

Table 5.9. 88 class multilingual fingerspelling recognition on keyframe sequences

using majority voting

HU EFD RDF LBP Fused

kNN 0.5513 0.6618 0.8276 0.8316 0.8445

Gaussian 0.2263 0.5039 0.5395 0.6627 0.6427
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Figure 5.10. Russian fingerspelling recognition confusion matrix

Figure 5.11. Czech fingerspelling recognition confusion matrix
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Figure 5.12. Combined fingerspelling recognition confusion matrix

In Table 5.10, we present the results of isolated gesture recognition using discrete

Hidden Markov Models. Like the majority voting method, we classify features belong-

ing to each sequence using pixel-wise kNN classifiers. After obtaining a sequence of

class label outputs, we use them to build discrete HMM’s for each class. We decide on

the class label of a sequence depending on how well it fits models belonging to each

class.

Table 5.10. Fingerspelling recognition accuracy on keyframe sequences using discrete

HMM’s

HU EFD RDF LBP Fused

Turkish 0.4695 0.4299 0.4977 0.6051 0.5316

Russian 0.2965 0.4267 0.3785 0.5034 0.4684

Czech 0.2870 0.4122 0.5422 0.4717 0.5159
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Lastly, we present the results of our continuous HMM based classification in the

results shown in Tables 5.11 and 5.12. In this method, feature vectors belonging to

each descriptor are modeled with Gaussian Mixture models and combined in Hidden

Markov Models. Each feature vector of an individual gesture is modeled using a single

HMM with five Gaussian mixture components, which was determined through cross-

validation. While modeling gestures using HMMs, an effective parameter of the model

is the number of states used to generate a gesture. We have used two different methods

to estimate the optimal state count of our models. In the first approach we have trained

several HMMs with different number of states. Using five-fold cross validation, we have

compared system recognition accuracies of these HMMs to determine the state number

of the best fitting model for each feature (Figure 5.13). In Table 5.11, we present the

recognition of modeling with a fixed HMM with five states.

Table 5.11. Fingerspelling recognition accuracy on keyframe sequences using

continuous HMM’s

HU EFD RDF LBP Fused

Turkish 0.2714 0.6156 0.3291 0.6457 0.6407

Russian 0.2371 0.6983 0.1905 0.5086 0.6147

Czech 0.2768 0.7288 0.2373 0.6271 0.7054

Since our dataset contains hand gestures of differing lengths and shape combina-

tions, we have hypothesized that the optimal number of states necessary to represent

different gestures may be different from one gesture to another. For this reason, we

attempted to find the state count of the best model for each gesture. As seen in Figure

5.13, we obtained log likelihood values determining the fitness of each fold to HMM’s

generated with different number of states. We compared the maximum log-likelihood

values for each fold and obtained the state count of the model that the validation sam-

ples fit best as seen in Table 5.13. Using the HMMs with unique state numbers for

each different gesture, we calculated the fingerspelling recognition accuracies for the

Turkish fingerspelling alphabet seen in Table 5.12.
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Table 5.12. Turkish FRR with dynamic and static numbers of state continious

HMM’s

HU EFD RDF LBP Fused

Static Number of States 0.2714 0.6156 0.3291 0.6457 0.6407

Dynamic Number of States 0.2764 0.6256 0.3510 0.6608 0.6884

Figure 5.13. Cross-validation results of continious HMM log-likelihood values with

different number of states for Turkish fingerspelling gestures
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Table 5.13. Gesture properties of Turkish Fingerspelling Alphabet and optimal

number of HMM states

Hand Count Dynamic Optimal State Number

A 2 No 9

B 2 No 9

C 1 No 4

Ç 2 Yes 7

D 2 No 1

E 2 No 5

F 2 No 5

G 2 No 3

Ğ 2 Yes 9

H 2 No 4

I 1 No 4

İ 2 Yes 8

J 2 Yes 2

K 2 No 2

L 1 No 3

M 2 No 4

N 2 No 6

O 1 No 5

Ö 2 Yes 6

P 1 No 2

R 2 No 9

S 2 No 5

Ş 2 Yes 10

T 2 No 10

U 1 No 3

Ü 2 Yes 2

V 1 No 6

Y 2 Yes 10

Z 2 No 2
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Table 5.12 shows a four percent increase in overall system FRR from 64 to 68 per

cent. Further improvement of recognition results requires a breakdown of recognition

accuracy for different gestures. Figure 5.14 shows the confusion matrix for the fused

Turkish FRR from the experiment in Table 5.12. By closely examining the confusion

matrix, we can detect letter pairs that are most likely to be confused with one another.

It is observed that the letter pairs ”A-H”, ”E-H” and ”M-N” are often confused

with each other. The most likely reason of this confusion is the similarity in the

posture of hands which only slightly differs by the position of middle and ring fingers

of the right hand. Likewise, the letter pairs ”S-Ş” and ”K-Y” also often appear to be

confused. The interesting fact to note about these letter pairs is that, while they have

similar hand postures, ”S” and ”K” are static gestures and ”Ş” and ”Y” are dynamic.

Therefore, while recognizing these gestures, the system fails to distinguish between

letters that may contain similar gestures but contain different movements over time.

Another highly confused pair of letters is ”I-İ” which is highly unlikely and unexpected.

While ”I” is performed with one hand, the letter ”İ” is performed using two hands.

Through experimentation, this confusion was found to be a failure in tracking. During

tracking, a redetection failure of the right hand while performing the letter ”İ” caused

the system to create both one handed and two handed models for that letter. Likewise,

due to failures in the tracking of the loosely merged two handed letter ”B”, the letter

is often confused to separated two handed letters such as ”Ç” and ”J”.

Table 5.14 displays two class classification accuracy results for the letter pairs

that are most likely to be confused with each other. In these tests, we used cross

validation to train the models with the ideal state numbers to distinguish the classes

from each other. In these tests we saw that, while it was possible to distinguish all

test instances of ”A-H”, ”K-Y” and most instances of ”E-H”, it was not possible to

distinguish multiple samples of he pairs ”S-Ş”, ”I-İ” and ”M-N”.
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Figure 5.14. Confusion matrix for Turkish FRR using continuous HMM’s

Table 5.14. Two class recognition accuracy of commonly confusing letter pairs

HU EFD RDF LBP FUSED

A-H 0,8 0,7667 0,6333 1 0,9667

S-Ş 0,7241 0,7241 0,6207 0,7586 0,7241

I-İ 0,5667 0,7667 0,7667 0,8 0,8333

K-Y 0,8276 0,8276 0,8966 0,9655 1

E-H 0,8148 0,963 0,7407 0,9259 0,9259

M-N 0,5357 0,8929 0,75 0,6071 0,7857
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6. CONCLUSIONS

In this study, we investigate the extraction and recognition of fingerspelling ges-

tures from sign language videos. We work with Czech, Russian and Turkish sign

alphabets and deal with the segmentation,tracking, representation, temporal modeling

and classification of hand gestures.

We have analyzed and used several methods for each of these challenging tasks.

In hand segmentation, we used color histogram backpropagation and region growing

methods in conjunction with a camshift based multi object tracking algorithm. We

used invariant Hu moments, Elliptic Fourier Descriptors, Local Binary Patterns and

Radial Distance function to represent hand shapes. We classified these features using

kNN and Naive Bayes approaches. We extracted temporal keyframe information using

hand motion and motion blur. Finally we used these two modalities with heuristic

voting and HMM’s to perform recognition of hand gesture videos.

The contributions of this thesis include the collection of a multi-lingual finger-

spelling recognition dataset, the realization of a fingerspelling recognition system, the

analysis of different hand gesture representation and classification methodologies and

the realization of a fingersign to speech module.

The system was tested on a self collected dataset composed of 11 different sign-

ers from three different languages. A total of 88 signs are used in the fingerspelling

recognition experiments. The videos of the dataset contain hand annotations for usage

in frame based recognition tests. In addition, the start and end locations of isolated

gestures are manually annotated by signers.

We have presented a method for fast and effective skin color based tracking of

hands and the face on natural fingersign signing videos. The method is based on a

camshift approach and takes into account the expected positions of the hands and

the face. This joint modeling enables us to accurately track occluding objects and to
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maintain the correct labeling after reappearance of tracked body parts. The algorithm

is designed to be usable in applications where tracking is needed to perform for long

durations, thus minimizing tracking errors and recovering quickly from them.

The experiments performed with isolated fingerspelling gestures show that the

system is capable of recognizing isolated gestures. The KNN classification with major-

ity voting of sequences achieved approximately 92 percent recognition accuracy with

all three languages. While the results with other approaches seem comparatively lower,

they can be improved through the availability of more training data and examples for

each class. By modeling gestures with Hidden Markov Models using Gaussian Mixture

Models, we obtain a fingerspelling recognition accuracy of approximately 64 per cent.

By optimizing the number of HMM states to model each gesture using cross validation,

we obtain an accuracy increase of approximately four per cent. However, a disadvan-

tage of using cross validation to determine the number of states for an HMM is that

training multiple HMMs from scratch is computationally expensive. In addition, since

the success of training a model depends on initial parameters, it is possible to com-

pare ideal models with models that have been poorly initialized. To overcome this, a

multiple number of models with the same state number may be trained to choose the

best among them. However, this also causes an increase in computational complexity.

Therefore in order to train the system for new gestures, the usage of methods such

as State Splitting HMM’s may be preferred over cross validation for determining the

number of states[69].

Our tests with signer independent gestures shadow the acquired signer dependent

accuracy ratings. We observe that the recognition rate of fingersign keyframes drops

from 82 per cent for the signer dependent test set to 42 per cent for the signer indepen-

dent test set. This result clearly shows that as the signers articulation derivate from

the training data, the recognition accuracy decreases. We attribute this performance

decrease in signer independent recognition to several factors such as variances in signer

performances, differences in interpretation of signs, signing speed and hand shape or

sizes. Better results are obtained through the usage of language models at word level

recognition. Further improvement of these results is possible through the application
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of dedicated adaptation methods successfully applied in automatic speech and sign

language recognition.

Of our different feature representation methods, we have found Local Binary

Patterns and Radial Distance Function to provide the highest recognition accuracies.

Elliptic Fourier Descriptors also show a good performance with GMM’s modeled using

HMMs. A problem in recognizing dynamic letters becomes apparent from comparing

the recognition results of all three languages. The experiments showed that the applied

features are effective in distinguishing hand gestures, but improvements in accuracy for

dynamic hand gestures are possible. Our experiments with different temporal modeling

techniques yielded different performances. The method of sequence decision through

weighted voting outperformed the use of discrete and continuous HMM’s with an ac-

curacy of 92 per cent.

A possible weakness of our fingerspelling recognition method is that we do not

make use of spatial position of hands while describing hand gestures. Although we

make use of the location of hands and face while initializing tracking and keeping

track of keyframes, the spatial coordinates of hand gestures are not represented in

any of our features. Although this provides us with an advantage in dealing with

performance variations of different signers, it also causes the system to neglect valuable

information while dealing with two handed gestures. Therefore, a possible feature

level improvement of the system can be achieved by incorporating normalized spatial

information to our feature vectors.

Among the three fingerspelling alphabets, the Turkish fingerspelling alphabet

yields the highest accuracy rates. We can attribute this to several factors, the most

likely being the presence of a higher percentage of two handed gestures and static

gestures. In addition, the tracking, feature extraction and recognition modules were

all implemented and calibrated using the videos from Turkish fingerspelling dataset.

The Russian and Czech languages were incorporated into the system at a later point

in the development schedule, which may be a reason of their lower performance.
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