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Abstract

In this study, we work on the degree of manipulabilities of some social choice
correspondences (SCC) by using computational methods. We consider four
SCCs; the Borda rule, the Uncovered set, the Top Set and the Copeland rule,
under three extension rules; the Lexicographic extension rule, the Max-Min or-
dering and the Expected-Ranking. We use three different approaches to measure
the manipulabilities of SCCs; the computational cost of manipulation, the gains
from manipulation and the efficiency of manipulation. Since we work on full
domain and SCCs under no restriction, we use computers for this huge work.
We design a special software in JAVA to handle this job.



Ozet

Bu calismada, hesaplama yontemleri kullanilarak, bazi sosyal se¢im kural-
larinin manipiile edilebilirlik dereceleri iizerinde ¢aligilmaktadir. Lexicographic,
Max-Min ve Expected-Ranking olmak iizere ii¢ tane genigleme kurali altinda,
Borda kurali, Uncovered Set, Top-Set ve Copeland kurali olmak iizere dort
tane sosyal se¢im kural incelenmektedir. Sosyal se¢im kurallarimin manipiile
edilebilirlik derecesi ii¢ farkli yaklagimla hesaplanmaktadir; manipiilasyon maliyeti,
manipiilasyon getirisi ve manipiilasyon verimliligi. Tam deger kiimesi ve hic¢bir
sekilde sinirlandirilmamig sosyal se¢gim kurallar: tizerine ¢aligildigindan, bu biiyiik-
liikkte ki hesaplarin yapilabilmesi i¢in bilgisayarlar kullanilmigtir. Bu amag icin
de, JAVA programlama dilinde 6zel yazilimlar geligtirilmigtir.
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1 INTRODUCTION

In Social Choice Theory, manipulation is a phenomenon occured in the col-
lective decision making processes. It considers the agents’ intentional behaviors
of mispresenting their true preference orderings over the alternative sets to be
better paid off in the vote aggregation processes.

We know from Gibbard-Satterthwaite Theorem (1973,1975) that any social
choice rule is either dictatorial or manipulable. The extents of manipulabilities
of social choice rules have been studied by Kelly (1993), Smith (1999) and
Aleskerov and Kurbanov (1997); many criterias have been proposed.

We will contribute to this literature by proposing our criterias and corre-
sponding results.



2 PRELIMINARY NOTES

Social Choice Theory is a theoritical approach to investigate the aggregation
of individuals’ interests in a collective decision making frame. Starting with
Arrow(1951), one of the biggest problems of working on SCT are the negative
results, one of which is known as Gibbard-Satterthwaite Theorem (1973,1975)
which states that any social choice rule is either dictatorial or manipulable.
Although all social choice rules are manipulable, except dictatoriality, their
manipulabilities are different and many studies have been done to distinguish
them. Before we give our criterias on the degree of manipulation, we will give
some preliminary notes including definitions and notation.

Definition 1 Let A # () be any set of alternatives. A preference of an indi-
vidual over A is a binary relation R C A x A.

Interpretation: Given any x,y € A, (x,y) € R means "z is at least as good
as y in view of the individual". We will write xRy instead of (z,y) € R. If zRy
and not yRz, then we write z Ry which means "x is better than y in view of
the individual"; namely, R™ is the strict part of R. If zRy and yRz, then we
write x/y which means "the idividual is indifferent between z and y".

Definition 2 We say that R is complete if and only if xRy or yRx Vx,y € A.
So, if R is complete, one of these holds: xRTy, yRtx, vy Vx,y € A.

Definition 3 We say that R is transitive if and only if t Ry and yRz = xRz,
Vr,y,z € A.

Definition 4 We say that R is rational if and only if R is complete and tran-
sitive.

Note: In this study, we deal with Linear Orders, L(A); complete, transitive
and antisymmetric binary relations, namely strict preferences. Hence, Vi € N,
Vax,y € A, either Ry or yR™ .

PREFERENCE AGGREGATION

When there is more than one single person, to reach a final decision, we
aggregate the preferences of all individuals.

Let A # () be the set of alternatives with Card(A) > 2. Let N = {1,...,n}
be the society or a group of people or the set of agents with Card(N) > 2.

Let R be the set of all strict rational preferences over A. We write R € R
stands for the preference of the agent i € N. We write RT = (R} ,..., R}) € R
for a preference profile.



Definition 5 A Social Choice Correspondence (SCC) is a mapping o : RN —
24/0. For any R € RN, we interpret a(R*) € R as the social choice.

In this study, we will compare the degree of manupulabilities of several so-
cial choice correspondences. Now, we will give the definitions of social choice
correspondences that we will work on.

SOCIAL CHOICE RULES

Let A be the set of alternatives with Card(A) = m and N be the set of
agents with Card(N) = n. Let r(i,2) be the rank of the alternative x for the
agent i and z(,7) be the alternative r*"* ranked by the agent i.

1) The Borda Rule In a profile, the Borda Score BS(x) of an alternative

zis BS(z) = > [(m+1) —r(i,z)]. In a voting system, the Borda Rule selects
iEN
the alternative(s) with the highest Borda Score.

2) The Copeland Rule The Copeland Score C'S(x) of an alternative z in
a tournament T'; complete and asymmetric binary relation over A, is C'S(x) =
#{y € A: 2Ty}. The Copeland Rule picks the alternative(s) with the highest
Copeland Score.

3) The Uncovered Set In a tournament, Vz,y € A, it is said that x covers
y iff 2Ty and Vz € A such that yTz, Tz. The Uncovered Set of a tournament
Tis UC(T) = {x : Py € A that covers z}.

4) The Top Set The Top Set of a tournament T is the set of alternative(s)
which weakly defeat any other alternative through a path, that is T.S(T) = {z :
Ty or Ty T ys..yp Ty}

Note: In a tournament T, Vo,y € A if #{i € N : xR?'y} > #{jeN:
yR;rx}, then xT%y.

In this study, we are treating the outcomes of above SCCs as Resolute
Outcomes.

Definition 6 A Resolute Choice Function is a mapping C : 24/ — A such
that C(X) € X, VX € 24/0.

Roughly speaking, we say that a social choice correspondence is resolute
when its set valued outcomes are interpreted as mutually compatible alternatives
which are altogether chosen.

Since the outcomes of SCCs are any subsets X of 24/(), we need to define
a preference extension rule from the preferences over alternatives to the prefer-
ences over subsets of the alternatives.



Definition 7 An Extension Aziom is a mapping € which assigns to each R €
RN a transitive and asymmetric binary relation e(R) over 24 /(). Roughly speak-
ing, given any preference over alternatives, an extension rule determines the
preferences over sets.

In this project, we used three different extension axioms.

1) The Lexicographic Extension Rule Let X and Y be any subsets of
A. Forre{l,..,m},Vie N, Vo € A, if Ir" such that Vr < »’ x(i,r) € X and
z(i,r) € Y orz(i,r) ¢ X and x(i,r) ¢ Y, and for r', x(i,r) € X and z(i,r) ¢ Y,
then Xe(R;)Y if Card(Y) > 7 or Ye(Ry)X if Card(Y) =1,

2) The Max-Min Ordering Carmelo Rodriguez-Alvarez (2007) defined
the following criteria to rank the sets as objects. Let X,Y € 24/0. Let max(X, R;)
be the maximum (best) alternative and min(X, R;) be the minimum (worst) al-
ternative of the set X in view of the agent 7. To decide which set is better in
view of the agent i, we first compare r(i, maz (X, R;)) and r(i, maz(Y, R;)).If
one of them is a higher rank than the other, then the relevant set is better
for the agent i. If equal, then we check r(i, min(X, R;)) and r(i, min(Y, R;)).
Again, if one of them is a higher rank than the other, then the corresponding
set is better for the agent i. If they are equal too, then the sets X and Y are
equal in view of the agent 3.

3) The Expected-Rank Rule Let V(X,i) = > % be the value of
zeX

the set X in view of the agent i. Let X, Y € 24/0. If V(X,i) < V(Y,4), then
Xe(R;)Y. If the values are the same, then the agent 7 is indifferent between the
sets X and Y.

MANIPULATION

In a voting system, if the preferences are private, the agents may prefer to
mispresent them, which is called manipulation.

Definition 8 A Social Choice Correpondence (SCC) o : RN — 24/() is ma-
nipulable at R € RN by any agent i € N iff IR € RN such that Rf = Rj
Vj € N\{i} while o(R™ )e(R] )a(RT).

Definition 9 A Social Choice Correpondence (SCC) o : RN — 24 /() is strategy-
proof iff a is manipulable at no Rt € RY by no i € N.

If there is no restriction in voting, the only social choice rule which is
strategy-proof is the dictatoriality.

Definition 10 A Social Choice Correpondence (SCC) a: RN — 24/0) is dic-
tatorial iff 3d € N such that a(R*) = R} VRt € RV.

10



3 DEGREE OF MANIPULATION

Under those three different extension rules mentioned above, we worked
on manipulation for our SCCs; the Borda Rule, the Top-Set, the Uncovered
Set and the Copeland Rule. We follow three different methods to compare the
manipulabilities of SCCs; the cost of manipulation, the gains from manipulation
and the efficiency of manipulation.

In all three methods mentioned above, we used computations instead of
theoritical approaches. If we had worked on the degree of manipulation in a
theoretical way, we might have got the boundaries in which any agents can ma-
nipulate the voting system, but in this case we might have got indistinguishable
manipulabilities of SCCs. To get exact and strict results, we needed to find the
exact sets/profiles in which manipulations occur. By a computational method,
not only we can get the exact differences in degree of manipulation, but also we
can get the percentage differences between SCCs.

3.1 COMPUTATIONAL COST OF MANIPULATION

The manipulation is the behaviour of mispresenting the true preference to
be better paid off in a voting system. In this method, we measured the cost of
manipulation for an agent and compared the costs of manipulabilities of SCCs
under a fixed extension rule.

We describe the cost of manipulation by measuring the distance between the
true preference and the mispresented preference of the agent manipulating. We
use the Kemeny Distance function as the distance function.

Kemeny Distance Function

Kemeny Distance Function measures the distance between two preference
orderings over any set of alternatives A.

Let R,Q € R* be linear orders defined over A. Let rr(%,x) be the rank of
the alternative = in the linear order R in view of the agent i. Let v, : R?> — R,
be a function defined for all ¢ € N, for all pairs of alternatives (s,t) of A and
all pairs of linear orders (R, Q) by:

[ 1, ifrr(.,s) <rr(.,t) and ro(.,s) > ro(.,t)
Vot (R, Q) = { 0, otherwise

Hence, the Kemeny Distance Function, d¥, is defined as d = 3> Y v, (R, Q).
SEALEA
Briefly, Kemeny function measures the distance between orderings R and @ by

calculating the number of adjacent pairwise switches needed to reach @ from R.

For all profiles of linear orders, we find all the manipulation moves of all
agents under three extension rules. And, then, we compute the distances be-
tween true and announced preferences of the agents by Kemeny distance func-
tion in all moves in all profiles. After then, we follow two different protocols:

11



Protocol 1: In the first one, we take the average distance of all moves in
all profiles.

Protocol 2: In the second one, we identify the moves with the minimum
distance of all moves in each profile, and, then, we take the average distance of
those moves.

We do all computations in two protocols for four SCCs under three extension
rules.

Note: As an example, the codes of the program for (m,n)=(7,4), the Lexi-
cographic extension rule, the Uncovered set, protocol 2 are given in Appendix.

3.2 INDIVIDUAL GAINS FROM MANIPULATION

Campbell and Kelly (2009) defined the following criteria on gains from
manipulating social choice rules:

"Let A be the set of alternatives with Card(A) = m and N be the set of
agents with Card(N) = n. For any subset X of A, »(X) is the set of all strong
orderings on X. A profile is a function from N into »(X) and »(X)N is the
set of all profiles. We denote p(i) as the ordering of the agent i in the profile
p. Two profiles are i-variants, where i € N, if q(§) = p(j) for all j # .

For a social choice rule f and non-negative integer t, we say f allows a gain
of t if there exist two profiles p and q and an individual © such that:

(1) p and q are i-variants;

(2) f(q) ranks t positions higher in p(i) than f(p).

A rule f has a gain of k, written G(f) =k, if k is the maximum t such that
f allows a gain of t. G(f) is bounded above by (m —1); with no restrictions on
the rule f, the gain G(f) can be as large as (m —1)."

They also characterizes the lower bounds of G(f) in terms of m for some
social choice rules.

Briefly, Campbell and Kelly determined the upper and the lower bounds of
gains from manipulating the social choice rules with singleton outcomes and
under unrestricted domains. They measured the increase in rank for an agent
when (s)he manipulates and defined the gain intervals for some social choice
rules.

In this project, we extend Campbell-Kelly’s work into SCCs. Since we do
not deal with any restrictions on SCCs or domains, any subset of the alternative
set A could be the outcome of our SCCs. Hence, as mentioned above, we used
three extension rule to rank the sets.

We do our computations for the pairs (m,n) from (3,4) to (8,4) and from
(3,5) to (5,5). The number of non-empty subsets of the alternative set A is
24 — 1 =15 for m = 4 and 2° — 1 = 31 for m = 5. In two of those extension
rules, some sets are indifferent to each other for a fixed agent. Hence, we have
the table below which gives the total ranks for each extension rule.

12



Lexicographic Max-Min Expected-Rank
4 15 10 9
5 31 15 15

m
m=

As an example, let A = {a,b,c,d} and N = {1,2,3,4}. Let say agent
2’s preference ordering over A is aRy bRy cRjd. We shall give his preference
ordering over the subsets of the alternative set A under the Max-Min ordering

extension rule.
Agent 2

a
ab
ac,abc
ad,abd,acd,abcd
b
be
bd,bed
c
cd
d

Like Campbell-Kelly, we determine the increases in rank for the agents from
manipulating the SCCs.

As in the cost of manipulation, for all profiles of linear orders, we find all the
manipulation moves of all agents under three extension rules. And, then, we
compute the gains in agents’ rankings over the sets for all moves in all profiles.
After then, we follow two different protocols:

Protocol 1: In the first one, we take the average gain of all moves in all
profiles.

Protocol 2: In the second one, we identify the moves with the maximum
gain of all moves in each profile, and, then, we take the average gain of those
moves.

We do all computations in two protocols for four SCCs under three extension
rules.

We also find the possible maximum gains on full domain of all SCCs under
three extension rules.

3.3 EFFICIENCY OF MANIPULATION

In previous sections, we discussed the individual cost and benefit of manip-
ulation. When working on the cost part, we did not care about the gain from
manipulation on the same move. Vice versa, we did not consider the cost of
manipulation when computing the gain. In this section, we will introduce the
efficiency of manipulation.

To compute the efficiency of manipulation, for all profiles of linear orders,
we determine all the manipulation moves of all agents under three extension

13



rules. And, then, we compute the gains in agents’ rankings over the sets and the
distances between true and announced preferences by Kemeny distance function
for all moves in all profiles. We calculate g?s? for each manipulation move, and
then, take the average of all those ratios for all moves.

We do all computations for four SCCs under three extension rules.

3.4 COMPUTATIONS

In this study, as mentioned before, we calculate the degree of manipulation
of several SCCs for the pairs (n,m) from (3,4) to (8,4) and from (3,5) to (5,5).
The table below shows the number of profiles for each pair (n,m):

13.824

331.776
7.962.624
191.102.976
4.586.471.424
110.075.314.176
1.728.000
207.360.000
24.883.200.000

NN N N S N S
U W 0 N O ot = W
U U O i i B
NS NN NGNS AN

While executing the computations, we considere each agent’s each move in
each profile; namely, we compute every move, exhaustively. As seen from the
table, it is extremely difficult to do such huge calculations manually. For this
reason, we use programming.

For each computation, we design different softwares in JAVA. We use several
computers to execute the programs. Some computations are estimated to be
so long that we do not try to execute them; for example we cannot make the
computations for the pair (5,5), the Cost of Manipulation, Protocol 2, because
executing each program for each SCC is estimated to take more than 700 days
with a single computer.

The software used in our computations have been very carefully tested and is
working correctly. The codes are totally open and any requests for the software
to test new criterias are welcome.

14



4 RESULTS AND COMMENTS

In this section, we will give the results of computations through tables and
graphs.
4.1 COST OF MANIPULATION
4.1.1 PROTOCOL 1

The table and the corresponding graph shown below shows the results of
the cost of manipulation of four SCCs under the Lexicographic extension rule.

Cost of Manipulation, Protocol 1, Lexicographic Extension rule

As we see from the graph, the Borda rule is less costly to manipulate com-
pared to the others. For the four alternative case, m = 4, the Uncovered set
and the Top Set are almost same. The Copeland Rule is slowly increasing as
the number of agents increases. And, it could be estimated that if we increase
the number of alternatives m, the Top Set becomes much more costly than the
other SCCs to manipulate.

15

COST, LEXICOGRAPHIC, PROTOCOL 1
RULES | (34) | (44) | (5:4) | (6,4) | (7,4) | (84) | (3,5) | (4,5) | (5,5)
BORDA | 2,1447 | 2,2022 | 2,2053 | 2,2286 | 2,2293 | 2,2436 | 2,1775 | 2,2266 | 3,9903
UNCOVERED | 2,2608 | 3,2512 | 2,7588 | 3,3184 2,94 | 3,3601 | 2,2008 | 3,1523 | 4,5837
COPELAND | 2,2971 | 2,4264 | 2,7139 | 2,5814 | 2,8849 | 2,6838 | 4,0368 | 4,2185 | 4,4945
TOP SET | 2,4142 | 3,0826 | 2,8564 | 3,1417 | 3,023 | 3,1844 | 4,363 | 5,204 | 4,8403
6
5 //\__\
A "_,.4
// ——BORDA
L/ ———COPELAND
2
——TOPSET
1
0 T T T T T T T T T 1
(3,4) (4,4) (5,4) (6,4) (7,4) (8,4) (3,5) (4,5) (5,5)




Next table and the corresponding graph shows the results of the cost of
manipulation of four SCCs under the Max-Min ordering extension rule.

COST, MAX-MIN ORDERING, PROTOCOL 1

RULES | (34) | (44) | (54) | (6,4) | (7.4) | (84) | (3,5) | (45) | (5,5)
BORDA | 2,1533 | 2,2053 | 2,2118 | 2,2313 | 2,2345 | 2,2461 | 3,9066 | 3,9692 | 3,9961
UNCOVERED | 2,2719 | 3,151 | 2,776 | 3,3146 | 2,9581 41,0442 | 5,1428 | 4,644
COPELAND | 2,3125 | 2,4445 | 2,7263 | 2,6038 | 2,894 1,059 | 4,2308 | 4,508
TOP SET | 2,4538 | 3,1053 | 2,9018 | 3,2082 | 3,0651 41,4391 | 5,1153 | 4,9201

6

——BORDA
3 —w ——— UNCOVERED
——— COPELAND

=—TOP SET

0 T T T T T T T T T 1
(3,4) (4,4) (5,4) (6,4) (7,4) (8,4) (3,5) (4,5) (5,5)

Cost of Manipulation, Protocol 1, Max-Min Ordering

Again, the Borda rule is less costly than the other rules. The Uncovered set
and the the Top Set have same level costs for both m = 4 and m = 5. Again,
the Copeland rule is increasing smoothly as n increases. We can estimate that
the positions of the SCCs to each other do not change a lot if we increase m.

Next ones show the results of the cost of manipulation of four SCCs under
the Expected-Ranking extension rule.

COST, EXPECTED-RANKING, PROTOCOL 1
RULES | (3,4) | (4,4) | (5,4) | (6,4) | (7,4) | (8,4) | (3,5) | (4,5) | (5,5)
BORDA | 2,0571 | 2,0599 | 2,0053 | 2,1138 | 2,1229 3,7926 | 3,8206 | 3,8654
UNCOVERED 2 | 2,9411 | 2,5579 | 3,179 | 2,7744 3,6259 | 4,8983 | 4,2347
COPELAND | 2,0714 | 2,3488 | 2,5281 | 2,5346 | 2,7255 3,898 | 4,0997 | 4,343
TOP SET | 2,074 | 2,0589 | 2,6318 | 3,0287 | 2,8374 3,8499 | 4,1629 | 4,334
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5
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— BORDA

3 = UNCOVERED
e COPELAND
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—TOP SET

1

0 T T T T T T T T T 1

(3,4) (4,4) (5,4) (6,4) (7,4) (8,4) (3,5) (4,5) (5,5)

Cost of Manipulation, Protocol 1, Expected-Ranking
Behaviour of the Borda rule and the Copeland rule is like in the Lexico-
graphic extension and the Max-Min ordering. Except the wavings of two SCCs,
the Uncovered set and the Top Set, all rules, except the Borda rule which is the
lowest one, have same level of costs.

COMPARISON OF THE EXTENSION RULES

The following graphs show the behaviours of all SCCs under three extension
rules.

17
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Uncovered, Cost of Manipulation, Protocol 1
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Top Set, Cost of Manipulation, Protocol 1

As we see from four graphs, the costs of each SCC are same for m = 4 under
three extension rules. This is probably from the reason that all three extension
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rules almost have same number of ranking for m = 4. For the case of m = 5,
the Lexicographic extension rule provides much more ranking than the others.
But, some properties of the Copeland rule and the Top Set must rule out this
difference of the Lexicographic rule. For the Borda rule and the Uncovered
set, since the Lexicographic extension rule provides middle ranks with a wider
range of rankings, the cost levels are less than the Max-Min ordering and the
Expected-Ranking on the average. Hence, we can say that for a fixed SCC, the
cost of manipulating this SCC does not change under different extension rules
for Protocol 1.

4.1.2 PROTOCOL 2

The table and the corresponding graph shown below shows the results of
the cost of manipulation of four SCCs under the Lexicographic extension rule.

Cost of Manipulation, Protocol 2, Lexicographic Extension rule

Except the Uncovered Set’s waving, which stem from outcomes being odd
numbers, all rules almost have same cost levels; namely their minimal distances

to manipulate are almost same.
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COST, LEXICOGRAPHIC, PROTOCOL 2
RULES | (3,4) | (44) [ (54) [ (6,4 [ (7.4) [ (8,4) | (3,5) | (4,5) | (55
BORDA | 1,2755 | 1,2856 | 1,2946 | 1,3138 | 1,3161 3,7293 | 3,5795
UNCOVERED | 1,247 | 1,884 | 1,2402 | 1,5808 | 1,2159 3,9974 | 4,4191
COPELAND | 1,1935 | 1,1695 | 1,202 | 1,1591 | 1,1928 42971 | 4,1794
TOP SET | 1,2168 | 1,1476 | 1,2523 | 1,1827 | 1,2457 43329 | 4,6967
5
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Next table and the corresponding graph shown below shows the results of
the cost of manipulation of four SCCs under the Max-Min ordering extension
rule.

COST, MAX-MIN ORDERING, PROTOCOL 2

RULES | (3,4) | (4,4) | (5:4) | (6:4) | (74) | (8,4) | (3,5) | (4,5) | (5,5)
BORDA | 1,2755 | 1,2856 | 1,2946 | 1,3138 | 1,3161 | 1,3333 | 1,5181 | 1,564
UNCOVERED | 1,247 | 2,0014 | 1,2501 | 1,7457 | 1,2291 1,4687 | 2,623
COPELAND | 1,1935 | 1,1695 | 1,2058 | 1,1586 | 1,1962 1,3952 | 1,3388
TOP SET | 1,2368 | 1,1317 | 1,2648 | 1,1823 | 1,2565 1,4456 | 1,3465
3
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(3,4) (4,4) (5,4) (6,4) (7,4) (8,4) (3,5) (4,5) (5,5)
Cost of Manipulation, Protocol 2, Max-Min ordering
Again, like under the Lexicographic extension rule, except the Uncovered
set’s wavings when the number of agents is even, all SCCs have same level of
costs.
Next ones show the results of the cost of manipulation of four SCCs under
the Expected-Ranking extension rule.
COST, EXPECTED-RANKING, PROTOCOL 2
RULES | (34) | (44) | (5:4) | (6,4) | (7,4) | (84) | (3,5) | (4,5) | (5,5)
BORDA | 1,2965 | 1,2878 | 1,3094 | 1,3197 | 1,3268 1,5674 | 1,6075
UNCOVERED | 1,1428 | 1,4766 | 1,1048 | 1,3857 | 1,0915 1,2544 | 2,1415
COPELAND | 1,5555 | 1,2381 | 1,4572 | 1,187 | 1,3897 1,7085 | 1,4236
TOP SET 1 1 1 1 1 1,1816 | 1,0875
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Cost of Manipulation, Protocol 2, Expected-Ranking

Like in the previous ones, the Borda rule and the Top Set are smooth and
the Uncovered set is waving. Differently, the Copeland rule is waving compared
to previous ones. This is probably because, in this situation, same thing the
Uncovered set happens to the Copeland rule; there must be thresholds to ma-
nipulate the Copeland rule which depends on the number of alternatives of the
outcome of voting.

COMPARISON OF THE EXTENSION RULES

The following graphs show the behaviours of all SCCs under three extension
rules.
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Top Set, Cost of Manipulation, Protocol 2

Since for m = 5, the lexicographic extension rule has more ranking; especially
it includes middle ranks, for those number of alternatives, SCCs are more costly
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to be manipulated with the smallest Kemeny distance under the lexicographic
extension rule. For m = 4, all extension rules give same level of manipulabilities.

4.2 GAIN FROM MANIPULATION
4.2.1 PROTOCOL 1

The table and the corresponding graph shown below shows the results of
the gains from manipulation of four SCCs under the Lexicographic extension

rule.

GAIN, LEXICOGRAPHIC, PROTOCOL 1

0 | T

(3,4) (4,4) (5,4) (6,4) (7.,4) (8,4)

(3,5) (4,5) (5,5)

Gain from Manipulation, Lexicographic Extension rule, Protocol 1

As we see from the graph, like in cost of manipulation, the Borda rule is
almost smooth. The other three SCCs are waving, but all SCCs are almost
same and their gain levels of each SCCs compared to each other do not change
between m = 4 and m = 5, this is because of the averaging property of the
Lexicographic extension rule and Protocol 1.
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RULES [ 34) | (44 [ (5A4) | 64 [ (74) [ B4 | (3.5) | (45) | (5,5)
BORDA | 36184 | 3293 | 3,343 | 3,2871 | 3,278 7,3844 | 6,7343 | 6,7767
UNCOVERED | 44173 | 2,8223 | 4,336 | 3,1744 | 4,3127 8,7972 | 4,8341 | 8,4731
COPELAND | 3,4202 | 2,7955 | 3,4431 | 2,8012 | 3,4492 6,2163 | 5,6759 | 6,1691
TOP SET | 4,9428 | 3,8925 | 4,9279 | 4,0643 | 4,9112 11,032 | 8,5266 | 10,964
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Next table and the corresponding graph shown below shows the results of the
gains from manipulation of four SCCs under the Max-Min ordering extension

rule.

GAIN, MAX-MIN ORDERING, PROTOCOL 1

RULES | (34) | (44) | (5:4) | (6,4) | (7,4) | (84) | (3,5) | (4,5) | (5,5)
BORDA | 2,0666 | 1,9108 | 1,9815 | 1,9587 | 1,9741 3,0063 | 2,8269 | 2,8871
UNCOVERED | 1,8421 | 2,0928 | 1,8554 | 2,2629 | 1,8734 2,8703 | 2,3239 | 2,8797
COPELAND | 1,8593 | 1,7064 | 1,8914 | 1,7382 | 1,9144 2,7486 | 2,5007 | 2,7562
TOP SET | 1,7538 | 1,5615 | 1,7941 | 1,665 | 1,8236 2,7242 | 2,2552 | 2,8301
3,5
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Gain from Manipulation, Max-Min ordering, Protocol 1
The Copeland rule and the Top Set wave at same degree. The Borda rule
is smooth as usual. The positions of all SCCs compared to each other does not
change between m =4 and m = 5.
Next ones show the results of the gains from manipulation of four SCCs
under the Expected-Ranking extension rule.
GAIN, EXPECTED-RANKING, PROTOCOL 1
RULES | (34) | (44) | (5:4) | (6,4) | (7,4) | (84) | (3,5) | (4,5) | (5,5)
BORDA | 1,7832 | 1,7211 | 1,7584 | 1,7516 | 1,7633 2,8741 | 2,8027 | 2,8731
UNCOVERED | 1,0329 | 1,7588 | 1,0855 | 1,8795 | 1,1115 2,0175 | 2,2706 | 2,0811
COPELAND | 1,4952 | 1,6648 | 1,4599 | 1,6885 | 1,4645 2,7311 | 2,6834 | 2,7003
TOP SET | 1,5517 | 1,5996 | 1,5378 | 1,5689 | 1,5311 2,979 | 3,0191 | 2,9297
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Gain from Manipulation, Expected-Ranking, Protocol 1
Since Expected-Ranking takes the average values, all SCCs, except the Un-

covered set, are smooth. Wavings of the Uncovered set again must be due to
the odd numbered outcomes.

COMPARISON OF THE EXTENSION RULES

The following graphs show the behaviours of all SCCs under three extension
rules.
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Top Set, Gain from Manipulation, Protocol 1

As mentioned previously, we also calculated the possible maximum gain on
the full domain for all SCCs and extension rules. The following tables show the
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maximum gains.

LEXICOGRAPHIC, MAXIMUM GAIN ON FULL DOMAIN
RULES | (3,4) | (4,4) | (5,4) | (6:4) [ (7,4) | (8,4) | (3,5) | (4:5) | (5,5)
BORDA | 10/15 | 10/15 | 10/15 | 10/15 | 10/15 25/31 | 25/31 | 25/31
UNCOVERED | 6/15 | 11/15 | 6/15 | 11/15 | 6/15 24/31 | 26/31 | 24/31
COPELAND | 7/15 | 10/15 | 7/15 | 10/15 | 7/15 24/31 | 25/31 | 24/31
TOP SET | 9/15 | 9/15 | 9/15 | 9/15 | 9/15 24/31 | 24/31 | 24/31
MAX-MIN ORDERING, MAXIMUM GAIN ON FULL DOMAIN
RULES | (3.4) | (4.4) | (5,4) | (6:4) | (7:4) | (8,4) | (3:5) | (4,5) | (5.,5)
BORDA | 5/10 | 5/10 | 5/10 | 5/10 | 5/10 9/15 | 9/15 | 9/15
UNCOVERED | 4/10 | 6/10 | 4/10 | 6/10 | 4/10 8/15 | 10/15 | 8/15
COPELAND | 5/10 | 5/10 | 5/10 | 5/10 | 5/10 9/15 | 9/15 | 9/15
TOP SET | 4/10 | 4/10 | 4/10 | 4/10 | 4/10 8/15 | 8/15 | 8/15
EXPECTED-RANKING, MAXIMUM GAIN ON FULL DOMAIN
RULES | (3,4) | (4,4) | (5,4) | (6,4) [ (7:4) | (8,4) | (3,5) | (4:5) | (5,5)
BORDA | 4/9 4/9 4/9 4/9 4/9 10/15 | 10/15 | 10/15
UNCOVERED | 3/9 5/9 3/9 5/9 3/9 6/15 | 10/15 | 6/15
COPELAND | 4/9 4/9 4/9 4/9 4/9 10/15 | 10/15 | 10/15
TOP SET | 2/9 2/9 2/9 2/9 2/9 5/15 | 5/15 | 5/15
As seen from the graphs and the tables, the Max-Min ordering and the
Expected-Ranking extension rules provide the same level of gains for each SCC,
but the Lexicographic extension rule provides much more gains to the SCCs.
This is because the range of Lexicographic rule is almost double of the other
two. Hence, whatever SCC in our list we use, the Lexicographic extension rule
is almost two times beneficial than the Max-Min ordering and the Expected-
Ranking extension rules for the agents manipulating.
4.2.2 PROTOCOL 2
The table and the corresponding graph shown below shows the results of
the gains from manipulation of four SCCs under the Lexicographic extension
rule.
GAIN, LEXICOGRAPHIC, PROTOCOL 2
RULES | (3.4) | (44) | () | (6,4) | (74) [ (84) | _(35) | (45) | (55
BORDA | 5,2908 | 5,7263 | 5,8446 | 6,0196 | 6,1203 13,1481 | 14,1196 | 14,5542
UNCOVERED | 5,2235 | 3,062 | 5,0011 | 3,8116 | 5,0179 11,6709 | 4,6002 | 11,5469
COPELAND | 4,7096 | 5,237 | 4,7027 | 5,1964 | 4,7306 10,8298 | 13,1162 | 10,988
TOP SET | 5,9277 | 4,8956 | 5,7991 | 5,0711 | 5,8034 14,4584 | 11,7018 | 14,3531
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Gain from Manipulation, Lexicographic Extension rule, Protocol 2

Except the Uncovered set’s wavings, all SCCs are closed to each other which
means their maximum gains they can provide are averagely almost same.

Next table and the corresponding graph shown below shows the results of the
gains from manipulation of four SCCs under the Max-Min ordering extension

rule.
GAIN, MAX-MIN ORDERING, PROTOCOL 2
RULES | (3.4) | (4,4) | (54) | (6,4) | (7,4) | (3.4) | (3:5) | (45) | (5.5)
BORDA | 2,8418 2,844 | 3,0465 | 3,0467 | 3,1737 4,9218 | 5,1288 | 5,3489
UNCOVERED | 2,1411 | 2,0266 | 2,1451 | 2,3701 | 2,2295 3,5617 | 2,4146 | 3,5891
COPELAND | 2,3548 | 2,5984 | 2,3777 2,659 | 2,4295 3,9233 | 4,4884 | 3,9828
TOP SET | 2,1842 1,958 | 2,1905 | 2,1163 | 2,2746 3,8399 | 2,7771 | 3,8661
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Gain from Manipulation, Max-Min ordering, Protocol 2

For m = 4, even there are little differences, all SCCs are smooth and closed
to each other. The waves of the Uncovered set and the Top Set are probably
due to the differences of number of the alternatives in outcomes of votings.

Next ones show the results of the gains from manipulation of four SCCs
under the Expected-Ranking extension rule.

GAIN, EXPECTED-RANKING, PROTOCOL 2
RULES | (3,4) | (4,4) | (5:4) | (6,4) | (7,4) | (84) | (3,5) | (4,5) | (5,5)
BORDA | 2,3463 | 2,4791 | 2,5898 | 2,6869 | 2,7638 1,4524 | 4,8667 | 5,1374
UNCOVERED | 1,1395 | 2,6845 | 1,2464 | 2,8063 | 1,2801 2,602 | 4,8221 | 2,7597
COPELAND | 1,6575 | 2,192 | 1,6886 | 2,282 | 1,745 3,3153 | 4,2424 | 3,4702
TOP SET | 1,7173 | 1,66 | 1,678 | 1,636 | 1,6594 3,2576 | 3,3371 | 3,3656
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Gain from Manipulation, Expected-Ranking, Protocol 2
The Borda rule is smooth and the Uncovered set is waving as usual. The
smoothness of the Top Set probably comes from the averageness property of
the Expected-Ranking rule, as previously seen. The reason of waving of the
Copeland rule must be the thresholds to manipulate it for some pairs (n,m).

COMPARISON OF THE EXTENSION RULES

The following graphs show the behaviours of all SCCs under three extension
rules.
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Top Set, Gain from Manipulation, Protocol 2

From the graphs above and the tables about the maximum gains on full
domain in previous section,the Max-Min ordering and the Expected-Ranking
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provide same level gains. On the other hand, the Lexicographic extension rule,
like in Protocol 1, provides much more gains probably due to the wide range of
the rankings.

4.3 EFFICIENCY OF MANIPULATION

The table and the corresponding graph shown below shows the results of
the efficiency of manipulation of four SCCs under the Lexicographic extension

rule.

EFFICIENCY (GAIN/COST), LEXICOGRAPHIC

Efficiency of Manipulation, Lexicographic Extension rule

Again, the Copeland and the Borda rules are almost smooth. The wavings
of the Uncovered set and the Top Set probably stem from the cardinalities of
the outcome sets.

Next table and the corresponding graph shown below shows the results of the
efficiency of manipulation of four SCCs under the Max-Min ordering extension

rule.
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RULES [ 34) | (44 [ (5A) | (6,4 [ (74) [ B4 | (3.5) | (45) | (5,5)
BORDA | 1,8355 | 1,6445 | 1,6496 | 1,6071 | 1,5942 2,1311 | 1,9072 | 1,8949
UNCOVERED | 2,3391 | 0,7533 | 1,8759 | 0,8367 | 1,7143 2,4866 | 0,7421 | 2,0026
COPELAND | 1,6811 | 1,2636 | 1,3962 | 1,1458 | 1,2825 1,6608 | 1,4664 | 1,4151
TOP SET | 2,3071 | 1,2752 | 1,9386 | 1,3171 | 1,7992 2,8521 | 1,6677 | 2,4766
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EFFICIENCY (GAIN/COST), MAX-MIN ORDERING
RULES | (3,4) | (4,4) | (5:4) | (6,4) | (74) | (8,4) | (3,5) | (45) | (5,5)
BORDA | 0,9666 | 0,8702 | 0,8965 | 0,8805 | 0,8827 0,6623 | 0,604 | 0,6119
UNCOVERED | 0,7719 | 0,5337 | 0,6046 | 0,5258 | 0,5499 0,6007 | 0,2192 | 0,4801
COPELAND | 0,789 | 0,641 | 0,6296 | 0,5811 | 0,5731 0,5348 | 0,4411 | 0,4418
TOP SET | 0,6846 | 0,3835 | 0,5617 | 0,4047 | 0,5217 0,5153 | 0,2627 | 0,4475
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Efficiency of Manipulation, Max-Min ordering
The Uncovered set, the Top Set and the Copeland rule are almost same for
both m = 4 and m = 5. The Borda rule is more smooth and higher than the
other three SCCs.
Next ones show the results of the efficiency of manipulation of four SCCs
under the Expected-Ranking extension rule.
EFFICIENCY (GAIN/COST), EXPECTED-RANKING
RULES | (3,4) | (4,4) | (5:4) | (6,4) | (74) | (8,4) | (3,5) | (45) | (5,5)
BORDA | 0,8555 | 0,802 | 0,8113 | 0,8013 | 0,8026 0,628 | 0,596 | 0,6103
UNCOVERED | 0,2307 | 0,4156 | 0,2261 | 0,416 | 0,2179 0,2795 | 0,2247 | 0,2505
COPELAND | 0,5333 | 0,6368 | 0,4217 | 0,5709 | 0,3849 0,4845 | 0,4854 | 0,4044
TOP SET | 0,5172 | 0,4649 | 0,4227 | 0,4066 | 0,3795 0,5456 | 0,5137 | 0,4543
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Efficiency of Manipulation, Expected-Ranking

For m =5, SCCs are almost smooth due to the averageness property of the
Expected-Ranking rule. The Top Set is smooth for m = 4 as previosly seen in
the Expected-Ranking rules. It can be estimated that SCCs become smoother

as the number alternatives increases.

COMPARISON OF THE EXTENSION RULES

The following graphs show the behaviours of all SCCs under three extension

rules.
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As expected, the graphs above show that the Lexicographic extension rule is
much more efficient than other extension rules for an agent who is manipulating.
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And, also, again the efficiencies of the Max-Min ordering and the Expected-
Ranking rules are almost same.
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5 GENERAL CONCLUSIONS

We worked on the degree of manipulation of four social choice correspon-
dences; the Borda rule, the Uncovered set, the Copeland rule and the Top Set,
under three extension rules; the Lexicographic, the Max-Min ordering and the
Expected-Ranking extension rules. We measured the costs, the gains and the
efficiency of manipulation for each SCCs under all three extension rules. The
general results of our computations are shown below.

COST OF MANIPULATION

Protocol 1: For all extension rules, the Borda rule has the minimal cost.
The Uncovered set, the Copeland rule and the Top Set have almost same cost
levels and higher than the Borda rule.

In view of the extension rules, all SCCs have same level of costs for m = 4.
For m = 5, the Top Set and the Copeland rule is also same for all exten-
sion rules, but the Uncovered set and the Borda rule have lower costs under
the Lexicographic extension rule; they have same and higher cost levels in the
Max-Min ordering and the Expected-Ranking extension rule compared to the
Lexicographic extension rule.

Protocol 2: Excepts the Uncovered set’s wavings, all SCCs have same level
of costs under all extension rules.

For the extension rules, all of them are same for m = 4. For m = 5, the
SCCs have higher cost levels under the Lexicographic rule, but under the Max-
Min ordering and the Expected-Ranking they have same and less cost levels
compared to the Lexicographic rule.

GAIN FROM MANIPULATION

Protocol 1: All SCCs provide same level of gains for bothm =4 and m =5
under each extension rule.

For both m = 4 and m = 5, the Max-Min ordering and the Expected-
Ranking provide same level of gains, but the Lexicographic extension rule gives
more gains than the other two extension rules for all SCCs.

Protocol 2: Under each extension rule, for m = 4, all rules can give same
amout of increase in rankings. For m = 5, there are wavings for all SCCs under
all extension rules. Hence, the comparisons of the degree of manipulabilities of
SCCs depend on the pairs (n,m).

For both m = 4 and m = 5, the Max-Min ordering and the Expected-
Ranking provide same level of gains, but the Lexicographic extension rule gives
more gains than the other two extension rules for all SCCs.
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EFFICIENCY OF MANIPULATION

Under the Lexicographic extension rule, all SCCs have same efficiency. Un-
der the Max-Min ordering and the Expected-Ranking, the Borda rule seems
more efficient than other SCCs; the Uncovered set, the Copeland rule and the
Top Set, which have equivalent efficiencies.

Again, for both m = 4 and m = 5, the Max-Min ordering and the Expected-

Ranking provide same level of gains, but the Lexicographic extension rule gives
more gains than the other two extension rules for all SCCs.

43



References

[1]

Aleskerov, F. and Kurbanov, E. (1998) "A Degree and an Efficiency of
Manipulation of known Social Choice Rules", ISS/EC-1998-01 Bogazigi
University Research Papers.

Arrow, K. (1951) Social Choice and Individual Values, New York: Wiley.

Barbera, S., Bossert, W., and Pattanaik, K. (2001) "Ranking sets of ob-
jects", Handbook of Utility Theory.

Campbell, D. and Kelly, J. (2009) "Gains from manipulating social choice
rules" Economic Theory 40: 349-371.

Gibbard, A. (1973) "Manipulation of Voting Schemes: a general result"
Econometrica v.41.

Kelly, J. (1993) "Almost all social choice rules are highly manipulable, but
few aren’t" Social Choice and Welfare 10: 161-175.

Moulin, H. (1986) "Choosing from a tournament" Social Choice and Wel-
fare 3: 271-291.

Peris, J. and Subiza, B. (1999) "Condorcet choice correpondences for weak
tournaments" Social Choice and Welfare 16: 217-231.

Rodriguez-Alvarez, C. (2007) "On the manipulation of social choice corre-
spondences" Social Choice and Welfare 29: 175-199.

Satterthwaite, M. A. (1975) "Strategy-proofness and Arrow’s conditions:
Existence and Correpondence Theorems for Voting Procedures and Social
Welfare Functions" Journal of Economic Theory 10: 187-217.

Smith, D. (1999) "Manipulability Measures of Common Social Choice Func-
tions" Social Choice and Welfare 16: 639-661.

44



Appendix

Profile (main class)

import java.util.*;
class Profile

static LinkedList<String> comb(String s)

{
LinkedList<String> retval=new LinkedList<String>();
if (s.length()==1)

retval.add(s);
return retval;

}

for (int i=0;i<s.Jength();i++)

{
String prep=s.substring(i,i+1);
String sub=s.substring(0,i)+s.substring(i41);
LinkedList<String> subcomb=comb(sub);
for (int j=0;j<subcomb.size();j++)

retval.add(prep+subcomb.get(j));

}

return retval;

}

public static void main(String|[] args)

{

LinkedList<String> combs=comb("abcd");

Uncovered winner = new Uncovered();
Kemeny measure= new Kemeny ();

String [] M = new String [7];
String x="";

String y="";

String newx=

String newy="";

double min=0;

nn.
b

double count=0;
double distance=0;

for( int i=0; i<= 23; i ++)

{
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for (int j=0; j<= 23; j ++)

{
for (int k=0; k<=23; k ++)
{
for (int 1=0; 1<=23; 1 ++)
{
for (int m=0; m<=23; m ++)
{
for (int u=0; u<=23; u ++)
{
for (int v=0; v<=23; v ++)
{
M [0]= combs.get(i);
M [1]= combs.get(j);
M [2]= combs.get(k);
M [3]= combs.get(l);
M [4]= combs.get(m);
M [5]= combs.get(u);
M [6]= combs.get(v);

x=winner.GetWinner(M);
min=1000;

for(int z=0; z<=23; z ++)

{

M [0]= combs.get(z);

M [1]= combs.get(j);

M [2]= combs.get(k);
M [3]= combs.get(1);

M [4]= combs.get(m);
M [5]= combs.get(u);
M [6]= combs.get(v);
newx="";

neWy_ nn.

if((combs.get(z)!=combs.get(i)))
{ y=winner.GetWinner(M);
for(int h=0; h<=3; h ++)
{ if((x.indexOf((combs.get(i)).charAt(h)))>=0)

newx=newx.concat(((combs.get(i)).substring(h,h+1)));
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1))==(newy.charAt(o-1))));

if((y.indexOf((combs.get(i)).charAt(h)))>=0)

newy=newy.concat(((combs.get(i)).substring(h,h+1)));

}
}
if((newx.length())==(newy.length()))
int 0=0;
do
{

if((newx.charAt(o))!=(newy.charAt(o)))

{ if(((combs.get(i)).indexOf(newx.charAt(o))) > ((combs.get (i)

if((measure.GetDistance((combs.get(i)),(combs.get(z)))) <min)

min=(measure.GetDistance((combs.get(i)),(combs.get(z))));

}
}
}

o=o0+1;

}
while((o<(newy.length()))&& ((newx.charAt(o-

}
if((newx.length())<(newy.length()))
int r=0;
do
{
if((newx.charAt(r))!=(newy.charAt(r)))
if(((combs.get(i)).indexOf(newx.charAt(r)))>((combs.get(i)).indexOf(

if(measure.GetDistance((combs.get(i)),(combs.get(z)))) <min)

min=(measure.GetDistance((combs.get(i)),(combs.get(z))));

}
}
}
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1))==(newy.charAt(r-1))));

1)==

(newy.charAt(p-1))));

SEEEEEEE
SOEEN =D

newx—

r=r+1;

}
while((r<(newx.length()))&&((newx.charAt(r-

¥
if((newx.length())>(newy.length()))
int p=0;
do
{
if((newx.charAt(p))!=(newy.charAt(p)))
i{f(((combs.get(i)).indeXOf(newx.CharAt(p)))>((combs.get(i)).indexOf(

if((measure.GetDistance((combs.get(i)),(combs.get(z)))) <min)

min=(measure.GetDistance((combs.get(i)),(combs.get(z))));

}
}
}
p=p+1;

}
while((p<(newy.length()))&& ((newx.charAt(p-

if(newy.equals(newx.substring(0,newy.length())))
if(measure.GetDistance((combs.get(i)),(combs.get(z)))) <min)

min=(measure.GetDistance((combs.get(i)),(combs.get(z))));

{
{
}
}

—

c (1);
c (
c (
combs. get(l);
c (
c (
c (

nmn.
b
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newy=

nn.
)

if((combs.get(z)!=combs.get(j)))

1))==(newy.charAt(o-1))));

y=winner.GetWinner(M);

for(int h=0; h<=3; h ++)

{ if( (x.indexOf((combs.get(j)).charAt (h))) >=0)
newx=newx.concat(((combs.get(j)).substring(h,h+1)));
if((y.indexOf((combs.get(j)).char At (h))) >=0)
newy=newy.concat(((combs.get (j)).substring(h,h+1)));
} ¥
if((newx.length())==(newy.length()))
int 0=0;
do
{

if((newx.charAt(o))!=(newy.charAt(o0)))

{

if(((combs.get(j)).indexOf(newx.charAt(0)))>((combs.get(j)).indexOf|
if(measure.GetDistance((combs.get(j)),(combs.get(z)))) <min)

min=(measure.GetDistance((combs.get(j)),(combs.get(z))));

¥
%
o=o0+1;
3vhile((o<(newy.length()))&&((newx.charAt(o—
}
if((newx.length())<(newy.length()))
int r=0;
do
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if((newx.charAt(r))!=(newy.charAt(r)))
if(((combs.get(j)).indexOf(newx.charAt(r)))>((combs.get(j)).index Of(
if((measure.GetDistance((combs.get(j)),(combs.get(z)))) <min)

min=(measure.GetDistance((combs.get(j)),(combs.get(z))));

}
}
}
r=r+1;

}
while((r<(newx.length()))&& ((newx.charAt(r-

1))==(newy.charAt(r-1)))); }

if((newx.length())>(newy.length()))
int p=0;

do
{

if((newx.charAt(p))!=(newy.charAt(p)))

{

if(((combs.get(j)).indexOf(newx.charAt(p)))>((combs.get(j)).indexOf
if(measure.GetDistance((combs.get(j)),(combs.get(z)))) <min)

min=(measure.GetDistance((combs.get(j)),(combs.get(z))));

}
}
}
p=p+1;

}
while((p<(newy.length()))&& ((newx.charAt(p-

1))==(newy.charAt(p-1))));
if(newy.equals(newx.substring(0,newy.length())))

if(measure.GetDistance((combs.get(j)),(combs.get(z)))) <min)

{
}

min=(measure.GetDistance((combs.get(j)),(combs.get(z))));
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}

}

M [0]= combs.get(i);
M [1]= combs.get(j);
M [2]= combs.get(z);
M [3]= combs.get(1);
M [4]= combs.get(m)
M [5]= combs.get(u)
M [6]= combs.get(v);
newx= n H;

newy="":

i{f( (combs.get(z)!=combs.get(k)))

y=winner.GetWinner(M);

for(int h=0; h<=3; h ++)

{
if((x.indexOf((combs.get (k)).charAt(h)))>=0)

newx=newx.concat(((combs.get(k)).substring(h,h+1)));
if((y.indexOf((combs.get (k)).charAt(h)))>=0)

newy=newy.concat(((combs.get(k)).substring(h,h+1)));

}
}

if((newx.length())==(newy.length()))
int 0=0;
do
{
if((newx.charAt(o))!=(newy.charAt(o0)))
if(((combs.get(k)).indexOf(newx.charAt(o)))>((combs.get(k)).indexO

if((measure.GetDistance((combs.get(k)),(combs.get(z))))<min)

min=(measure.GetDistance((combs.get(k)),(combs.get(z))));

}
}
}
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1))==(newy.charAt(o-1))));

1))==(newy.charAt(r-1))));

o=o0+1;

}
while((o<(newy.length()))&& ((newx.charAt(o-

}

if((newx.length())<(newy.length()))
int r=0;

do

{
if(newx.charAt(r))!=(newy.charAt(r)))

if(((combs.get(k)).indexOf(newx.charAt(r)))>((combs.get (k)).indexOf
if(measure.GetDistance((combs.get(k)),(combs.get(z))))<min)

min=(measure.GetDistance((combs.get(k)),(combs.get(z))));

}
}
}

r=r+1;

}
while((r<(newx.length()))&& ((newx.charAt(r-

}
if((newx.length())>(newy.length()))
int p=0;
do
{
if((newx.charAt(p))!=(newy.charAt(p)))
if(((combs.get(k)).indexOf(newx.charAt(p)))>((combs.get(k)).indexO

if((measure.GetDistance((combs.get(k)),(combs.get(z))))<min)

min=(measure.GetDistance((combs.get(k)),(combs.get(z))));

}
}
}
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p=p+1;

}
while((p<(newy.length()))&& ((newx.charAt(p-

1))==(newy.charAt(p-1))));
if(newy.equals(newx.substring(0,newy.length())))
if((measure.GetDistance((combs.get(k)),(combs.get(z))))<min)

min=(measure.GetDistance((combs.get(k)),(combs.get(z))));

{
{
}
}

SEEEEEEET
NN =)
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newx="";

newy="":;

if((combs.get(z)!=combs.get(1)))

{

y=winner.GetWinner(M);

for(int h=0; h<=3; h ++)

{ if( (x.indexOf((combs.get(1)).charAt(h))) >=0)
newx=newx.concat(((combs.get(1)).substring(h,h+1)));
i}f((y.indexOf((combs.get(l) ).charAt(h)))>=0)
\ newy=newy.concat (((combs.get(1)) substring(h,h-+1)));
¥

if((newx.length())==(newy.length()))

int 0=0;
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1))==(newy.charAt(o-1))));

1))==(newy.charAt(r-1))));

if((newx.charAt(o))!=(newy.charAt(0)))
if(((combs.get(l)).indexOf(newx.charAt(o))) > ((combs.get(1)).indexOf{
if(measure.GetDistance((combs.get(1)),(combs.get(z)))) <min)

min=(measure.GetDistance((combs.get(l)),(combs.get(z))));

}
}
}

0=0+1;

}
while((o<(newy.length()))&& ((newx.charAt(o-

}
if((newx.length())<(newy.length()))
int r=0;
do
{
if((newx.charAt(r))!=(newy.charAt(r)))
if(((combs.get(1)).indexOf(newx.charAt(r))) > ((combs.get(l)).indexOf(

if((measure.GetDistance((combs.get(1)),(combs.get(z)))) <min)

min=(measure.GetDistance((combs.get(1)),(combs.get(z))));

}
}
}
r=r+1;

}

while((r<(newx.length()))&& ((newx.char At(r-

}

if((newx.length())>(newy.length()))

int p=0;
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if((newx.charAt(p))!=(newy.charAt(p)))
if(((combs.get(l)).indexOf(newx.charAt(p)))>((combs.get(1)).indexOf|
if(measure.GetDistance((combs.get(1)),(combs.get(z)))) <min)

min=(measure.GetDistance((combs.get(l)),(combs.get(z))));

}
}
}
p=p+1;

}
while((p<(newy.length()))&& ((newx.charAt(p-
1))==(newy.charAt(p-1))));

if(newy.equals(newx.substring(0,newy.length())))

{
if(measure.GetDistance((combs.get(1)),(combs.get(z)))) <min)
{
min=(measure.GetDistance((combs.get(1)),(combs.get(z))));
}
}
}
}
M [0]= combs.get(i);
M [1]= combs.get(j);
M [2]= combs.get(k);
M [3]= combs.get(l);
M [4]= combs.get(z);
M [5]= combs.get(u);
M [6]= combs.get(v);
newx="";
newy="";

}f( (combs.get(z)!=combs.get(m)))

y=winner.GetWinner(M);
for(int h=0; h<=3; h ++)

{
if((x.indexOf((combs.get(m)).charAt(h)))>=0)
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1))==(newy.charAt(o-1))));

{

newx=newx.concat(((combs.get(m)).substring(h,h+1)));
if((y.indexOf((combs.get(m)).charAt(h)))>=0)

newy=newy.concat(((combs.get(m)).substring(h,h+1)));

}
}
if((newx.length())==(newy.length()))
int 0=0;
do
{

if((newx.charAt(o))!=(newy.charAt(o0)))
if(((combs.get(m)).indexOf(newx.charAt(o)))>((combs.get(m)).index
if(measure.GetDistance((combs.get(m)),(combs.get(z))))<min)

min=(measure.GetDistance((combs.get(m)),(combs.get(z))))

}
}
}

o=0+1;

}
while((o< (newy.length()))&& ((newx.charAt(o-

}
if((newx.length())<(newy.length()))
int r=0;
do
{
if((newx.charAt(r))!=(newy.charAt(r)))
if(((combs.get(m)).indexOf(newx.charAt(r)))>((combs.get(m)).index(

if((measure.GetDistance((combs.get(m)),(combs.get(z))))<min)

min=(measure.GetDistance((combs.get(m)),(combs.get(z))))

}
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}
}

r=r+1;

}
while((r<(newx.length()))&& ((newx.charAt(r-

}

if((newx.length())>(newy.length()))

1))==(newy.charAt(r-1))));

int p=0;

do

{
if((newx.charAt(p))!=(newy.charAt(p)))
if(((combs.get(m)).indexOf(newx.charAt(p)))>((combs.get(m)).index

if(measure.GetDistance((combs.get(m)),(combs.get(z))))<min)

min=(measure.GetDistance((combs.get(m)),(combs.get(z))))

}
}
}
p=p+1;

}

while((p<(newy.length()))&& ((newx.charAt(p-
1))==(newy.charAt(p-1))));

if(newy.equals(newx.substring(0,newy.length())))
if((measure.GetDistance((combs.get(m)),(combs.get(z))))<min)

min=(measure.GetDistance((combs.get(m)),(combs.get(z))));

{
{
}
}

c (1);
¢ (
combs. get(k);
¢ (
c (
c (#);
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M [6]= combs.get(v);

newx—

nmn.
b

newy="":;

if((combs.get(z)!=combs.get(u)))

1))==(newy.charAt(o-1))));

y=winner.GetWinner(M);

for(int h=0; h<=3; h ++)

{ if((x.indexOf((combs.get(u)).charAt(h)))>=0)
newx=newx.concat(((combs.get(u)).substring(h,h+1)));

if((y.indexOf((combs.get(u)).charAt(h)))>=0)

newy=newy.concat(((combs.get(u)).substring(h,h+1)));

}
}
if((newx.length())==(newy.length()))
int 0=0;
do
{

if((newx.charAt(o))!=(newy.charAt(o)))
i{f(((combs.get(u) ).indexOf(newx.charAt(o0)))>((combs.get(u)).indexO

if((measure.GetDistance((combs.get(u)),(combs.get(z)))) <min)

min=(measure.GetDistance((combs.get(u)),(combs.get(z))));

}
}
}
o=o0+1;
}
while((o<(newy.length()))&& ((newx.charAt(o-

}

if((newx.length())<(newy.length()))
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1))==(newy.charAt(r-1))));

1))==(newy.charAt(p-1))));

int r=0;

if((newx.charAt(r))!=(newy.charAt(r)))

if(((combs.get(u)).indexOf (newx.charAt(r)))>((combs.get(u)).indexO:

{

if((measure.GetDistance((combs.get(u)),(combs.get(z))))<min)

} min=(measure.GetDistance((combs.get(u)),(combs.get(z))));
}
}

r=r+1;

}

while((r<(newx.length()))&&((newx.charAt(r-
¥
if((newx.length()) > (newy.length()))

int p=0;

do

{
if((newx.charAt(p))!=(newy.charAt(p)))

i{f(((combs.get(u) ).indexOf(newx.charAt(p)))>((combs.get(u)).indexO

if(measure.GetDistance((combs.get(u)),(combs.get(z)))) <min)

min=(measure.GetDistance((combs.get(u)),(combs.get(z))));

}
}
}
p=p+1;

}

while((p<(newy.length()))&& ((newx.charAt(p-

if(newy.equals(newx.substring(0,newy.length())))

if((measure.GetDistance((combs.get(u)),(combs.get(z))))<min)
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{

min=(measure.GetDistance((combs.get(u)),(combs.get(z))));

}
}
}
}
M [0]= combs.get (i)
M [1]= combs.get(j)
M [2]= combs.get (k)
M [3]= combs.get(l);
M [4]= combs.get(m)
M [5]= combs.get(u
M [6]= combs.get(z);
newx="";
newy="";

if((combs.get(z)!=combs.get(v)))

{

y=winner.GetWinner(M);

for(int h=0; h<=3; h ++)
{

if((x.indexOf((combs.get(v)).charAt(h)))>=0)
newx=newx.concat(((combs.get(v)).substring(h,h+1)));

if((y.indexOf((combs.get(v)).charAt(h)))>=0)

newy=newy.concat(((combs.get(v)).substring(h,h+1)));
}
}

if((newx.length())==(newy.length()))
int 0=0;
do

{
if((newx.charAt(o))!=(newy.charAt(o)))

{
if(((combs.get(v)).indexOf(newx.charAt(o)))>((combs.get(v)).indexO
if((measure.GetDistance((combs.get(v)),(combs.get(z))))<min)

min=(measure.GetDistance((combs.get(v)),(combs.get(z))));
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1))==(newy.charAt(o-1))));

1))==(newy.charAt(r-1))));

}
}
}

o=o0+1;

}

while((o< (newy.length()))&& ((newx.charAt(o-

}

if(newx.length())<(newy.length()))
int r=0;

do

{
if((newx.charAt(r))!=(newy.charAt(r)))

if(((combs.get(v)).indexOf (newx.char At(r)))>((combs.get(v)).indexOf
if(measure.GetDistance((combs.get(v)),(combs.get(z))))<min)

min=(measure.GetDistance((combs.get(v)),(combs.get(z))));

}
}
}

r=r+1;

}
while((r<(newx.length()))&&((newx.charAt(r-

}
if((newx.length())>(newy.length()))
int p=0;
do

{

%{f( (newx.charAt(p))!=(newy.charAt(p)))
if(((combs.get(v)).indexOf(newx.charAt(p)))>((combs.get(v)).indexO
if(measure.GetDistance((combs.get(v)),(combs.get(z))))<min)

min=(measure.GetDistance((combs.get(v)),(combs.get(z))));
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}
}

p=p+1;
}

while((p<(newy.length()))&& ((newx.charAt(p-
1))==(newy.charAt(p-1))));

if(newy.equals(newx.substring(0,newy.length())))
if(measure.GetDistance((combs.get(v)),(combs.get(z))))<min)
min=(measure.GetDistance((combs.get(v)),(combs.get(z))));

{
{
}
}

}
if(min!=1000)

distance=distance-+min;
count=count+1;

3333399

System.out.println("The number of total manipulation is "+ count);
System.out.println("The number of total distance is "+ distance);
System.out.println("The average distance is "+ (distance)/(count));
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Kemeny (class)

public class Kemeny

{

String x="";
String y=

nn.
)

public int GetDistance(String x, String y)

{

a')
int B= x.indexOf("b")
int C= x.indexOf("c");
int D= x.indexOf("d");
int E= x.indexOf("e");

int AA= y.indexOf("a");
int BB= y.indexOf("b");
int CC= y.indexOf("c");

int DD= y.indexOf("d");
int EE= y.indexOf("e");

int distance=0;
if((A<B&&AA>BB)||(A>B&&AA<BB))

distance=distance+1;
else
distance=distance;

if((A<C&&AA>CO)||(A>C&&AA<CC))

distance=distance+1;
else
distance=distance;

if(A<D&&AA>DD)||(A>D&&AA<DD))

distance=distance+1;
else
distance=distance;

if((A<E&&AASEE)||(A>E&&AA<EE))
distance=distance+1;

else
distance=distance;
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if(B<C&&BB>CC)||(B>C&&BB<CC))

distance=distance+1;
else
distance=distance;

if(B<D&&BB>DD)||(B>D&&BB<DD))

distance=distance+1;
else
distance=distance;

if((B<E&&BB>EE)||(B>E&&BB<EE))

distance=distance+1;
else
distance=distance;

if((C<D&&CC>DD)||(C>D&&CC<DD))

distance=distance+1;
else
distance=distance;

if((C<E&&CC>EE)||(C>E&&CC<EE))

distance=distance+1;
else
distance=distance;

if(D<E&&DD>EE)||(D>E&&DD<EE))
distance=distance+1;
else

distance=distance;

return distance;

1
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Uncovered (class)

public class Uncovered

{

String [] N=new String [7];

public String GetWinner(String [ N)

{

int AB=0;
int AC=0;
int AD=0;
int BC=0;
int BD=0;
int CD=0;

for(int i=0; i<=6; 1 ++)

{

if(N[i]).indexOf("a" ) <(N[i]).indexOf("b"))
{AB=AB+1;}

if(N[i]).indexOf("a")>(N[i]).indexOf("b"))
{AB=AB-1;}

if(N[i]).indexOf("a" ) <(N[i]).indexOf("c"))
{AC=AC+1;}

if((N[i]).indexOf("a")>(N[i]).indexOf("c"))
{AC=AC-1;}

if(N[i]).indexOf("a" ) <(N[i]).indexOf("d"))
{AD=AD+1;}

if(N[i]).indexOf("a")>(N[i]).indexOf("d"))
{AD=AD-1;}

if((N[i]).indexOf("b") < (N[i]).indexOf("c"))
{BC=BC+1;}

if(N[i]).indexOf("b")>(NJi]).indexOf("c"))
{BC=BC-1;}

if((N[i]).indexOf("b") < (N[i]).indexOf("d"))
{BD=BD+1;}

if(N[i]).indexOf("b")>(N[i]).indexOf("d"))
{BD=BD-1;}
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if(N[i]).indexOf("c")< (N]i]).indexOf("d"))
{CD=CD+1;}

if(N[i]).indexOf("c")>(N[i]).indexOf("d"))
{CD=CD-1;}
}

String Winner="";

)

String Covered="";

if(AB>0)
if(AC>0&&BC>0&&BD<0)
Covered=Covered.concat("b");
i}f(AD>0&&BD>O&&BC<O)
Covered=Covered.concat("b");

if(BD<0&&BC<0)
{

Covered=Covered.concat("b");

if(AC>0&&AD>0&&BC>0&&BD>0)
{

Covered=Covered.concat("b");

}
}
if(AC>0)
{
if(AB>0&&BC<0&&CD<0)
Covered=Covered.concat("c");
if(AD>08&CD>0&&BC>0)
Covered=Covered.concat("c");
if(CD<0&&BC>0)

Covered=Covered.concat("c");
if(AB>0&&AD>0&&BC<0&&CD>0)

Covered=Covered.concat("c");
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}
}
if(AD>0)
if(AB>0&&BD<0&&CD>0)
Covered=Covered.concat("d");
}
if(AC>0&&CD<0&&BD>0)
Covered=Covered.concat("d");
}
if(CD>0&&BD>0)
Covered=Covered.concat("d");
}
if(AB>0&&AC>0&&BD<0&&CD<0)
Covered=Covered.concat("d");
}
}
if(AB<0)
if(AC>0&&BC>0&&AD<0)
Covered=Covered.concat("a");
}
if(AD>0&&BD>0&&AC<0)
Covered=Covered.concat("a");

}
if(AD<0&&AC<0)

{

Covered=Covered.concat("a");

}
if(AC>0&&AD>0&&BC>0&&BD>0)
{

}

¥
if(BC>0)

Covered=Covered.concat("a");

if(AB<0&&AC<0&&CD<0)

Covered=Covered.concat("c");
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if(BD>0&&CD>0&&AC>0)
Covered=Covered.concat("c");

i}f(CD<0&&AC>0)
Covered=Covered.concat("c");

i}f(AB<O&&BD>O&&AC<O&&CD>O)

Covered=Covered.concat("c");

}
if(BD>0)

if(AB<0&&AD<0&&CD>0)
Covered=Covered.concat("d");

if(BC>0&&CD<0&&AD>0)
Covered=Covered.concat("d");

i}f(CD>O&&AD>0)
Covered=Covered.concat("d");

i}f(AB<O&&BC>O&&AD<0&&CD<O)

Covered=Covered.concat("d");

}
}
if(AC<0)
if(AB>0&&BC<0&&AD<0)
Covered=Covered.concat("a");
if(AD>0&&CD>0&& AB<0)
Covered=Covered.concat("a");
}
if(AD<0&&AB<0)

Covered=Covered.concat("a");
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if(AB>0&&AD>0&&BC<0&&CD>0)

Covered=Covered.concat("a");

}
}
if(BC<0)
if(AB<0&&AC<0&&BD<0)
Covered=Covered.concat("b");
if(BD>0&&CD>0&&AB>0)
Covered=Covered.concat("b");
}
if(BD<0&&AB>0)
Covered=Covered.concat("b");
}
if(AB<0&&BD>0&&AC<0&&CD>0)
Covered=Covered.concat("b");
}
}
if(CD>0)
{
if(AC<0&&AD<0&&BD>0)
Covered=Covered.concat("d");
}
if(BC<0&&BD<0&&AD>0)
Covered=Covered.concat("d");
if(BD>0&&AD>0)
Covered=Covered.concat("d");

if(AC<0&&BC<0&&AD<0&&BD<0)

Covered=Covered.concat("d");

}
}
if(AD<0)

if(AC>0&&CD<0&&AB<0)
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Covered=Covered.concat("a");
i}f(AB>O&&BD<O&&:AC<0)
Covered=Covered.concat("a");
i}f(AB<O&&AC<O)
Covered=Covered.concat("a");
if(AC>0&&AB>0&&CD<0&&BD<0)
Covered=Covered.concat("a");
}
}
if(BD<0)
if(AB<0&&AD<0&&BC<0)
Covered=Covered.concat("b");
i}f(BC>O&&CD<O&&AB>O)
Covered=Covered.concat("b");
i}f(BC<O&&AB>0)
Covered=Covered.concat("b");

}
if(AB<0&&BC>0&&AD<0&&CD<0)

Covered=Covered.concat("b");

}
if(CD<0)
if(BD<0&&BC<0&&AC>0)
Covered=Covered.concat("c");
i}f(AD<0&&AC<O&&BC>O)
Covered=Covered.concat("c");

}
if(AC>0&&BC>0)
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Covered=Covered.concat("c");
}
if(BD<0&&AD<0&&BC<0&&AC<0)

Covered=Covered.concat("c");

}

if(Covered.indexOf("a")==(-1))
{Winner=Winner.concat("a");}
if(Covered.indexOf("b")==(-1)
{Winner=Winner.concat("b");
if(Covered.indexOf("c")==(-1

{Winner=Winner.concat("c");

if(Covered.indexOf("d")==(-1))
{Winner=Winner.concat("d");}

return Winner;
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