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DOLANIKLI FOTON KAYNAKLI KUANTUM 

GİRİŞİMÖLÇERLER 

ÖZET 

Girişimölçerler, ışığın girişim özelliğinden yararlanılarak çeşitli fiziksel niceliklerin 

ölçülmesini sağlayan araçlardır. Michelson ve Morley’in yaptığı deneyden günümüze 

kadar çok çeşitli girişimölçer sistemleri geliştirilmiş ve birçok deneyde bu sistemler 

kendilerine yer bulmuşlardır. En güncel örnek olarak kütle çekim dalgalarının varlığını 

ispatlayan LIGO (Laser Interferometer Gravitational-Wave Observatory) verilebilir. 

Kuantum fiziğinin keşfedilmesiyle birlikte ışığın kuantum davranışının anlaşılması, 

girişimölçer alanının hızlı bir biçimde gelişmesine olanak sağlamıştır. Öyle ki bu 

yöntemler sayesinde attometre mertebesindeki uzunluklar girişimölçerler yardımıyla 

ölçülebilmektedir. Bu tezde girişimölçer girişinde farklı foton sayıları ve  dolanıklı 

fotonlar kullanılarak, girişimölçer çıkışında fotonların bulunma olasılıkları teorik 

olarak hesaplanmıştır, N00N durumlu fotonların fidelitylerinin N foton sayısına bağlı 

olarak nasıl değiştiği gösterilmiştir. Girişimölçerin girişinde N00N durumlar 

kullanılarak süper çözünürlüğün ve süper hassasiyetin arttırılması hedeflenmiştir. 

 

 

Anahtar Kelimeler: Kuantum Girişimölçer, Dolanıklı Işık, Heisenberg Ölçüm 

Sınırlaması 
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QUANTUM INTERFEROMETRY USING ENTANGLED 

PHOTONS 

ABSTRACT 

The interferometers are tools that allow the measurement of various physical quantities 

by using the interference characteristic of light. Since the experiment realized by 

Michelson and Morley, a wide variety of interferometer systems have been developed 

and these systems have found their place in many experiments. LIGO (Laser 

Interferometer Gravitational-Wave Observatory) can be given as the most recent 

example, which proves the existence of gravitational waves.Due to the discovery of 

quantum physics, understanding the quantum behavior of light allowed to develop of 

the interferometer field rapidly. Such that, thanks to these methods, lengths at the level 

of attometers can be measured with the help of interferometers. In this thesis, different 

photon numbers and entangled photons were used as input states in the interferometer 

and the probability of the presence of photons in the interferometer output has been 

theoretically calculated. Also it was shown that how the fidelity of N00N states of 

photons change due to the N photon number. It is aimed to increase the super resolution 

and super sensitivity by using N00N states in the input of the interferometer. 

 

Keywords: Quantum Interferometry, Entangled States of Light, Heisenberg Limited 

Measurements 
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1. KUANTUM METROLOJİ 

 Kuantum metrolojisi, fiziksel sistemleri tanımlamak için kuantum teorisini 

kullanarak fiziksel parametrelerin yüksek çözünürlüklü ve son derece hassas 

ölçümlerini yapma çalışmasıdır.[1] Bu alan aynı teknikle klasik fizikte yapılan bir 

ölçümü kuantum teorisi kullanılarak yapıldığında daha iyi hassasiyet veren ölçüm 

teknikleri geliştirmektedir.  Sıkıştırılmış durumlar, dolanık durumlar gibi ışığın 

kuantum durumları kullanılarak ölçüm yapmak ve nesneleri klasik olarak mümkün 

olanı aşacak bir hassasiyetle algılamak için kuantum metroloji kullanılmaktadır.[2] 

Burada ki temel fikir , metrolojide atış gürültüsü sınırını (ATG) (Shot Noise Limit), 

görüntüleme ve algılamada Rayleigh kırınım sınırını aşmak için kuantum etkilerinden 

yararlanmaktır.  
Bu bölümde kuantum metrolojisinde sık sık karşımıza çıkan standart kuantum 

limit, Heisenberg limit, Eşevreli durumlar, Sıkıştırılmış durumlar ve dolanık durumlar 

gibi kavramların fiziksel anlamları ve matematiksel eldelerinden bahsedilecektir.  

1.1 Standart Kuantum Limit  

Genellikle yapılan bir ölçümde ölçülen parametre üzerindeki hatayı istatistiksel 

olarak düşürmek için ölçüm işlemi N defa tekrarlanır ve bulunan sonuçların ortalaması 

alınır. Ancak hatadaki indirgenme miktarının da bir limiti vardır. Ölçülen parametre j 

ise merkezi limit teoremine göre bu parametrenin ölçümündeki hata  

∆𝜑 >
1
√𝑁

			 

(1.1) denklemiyle verilir. Bu aynı zamanda standart kuantum limit (SKL) olarak 

adlandırılır. Ayrıca merkezi limit teoremi bağımsız ve özdeş dağılmış rastgele 

parametreler için Poisson dağılımını vermektedir. Optik bir ölçümde çeşitli gürültü 

(1.1) 
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kaynakları bulunmaktadır. Standart kuantum limit açısından ele alındığında bu gürültü 

kaynakları atış gürültüsü ve ışık basıncı gürültüsüdür. Atış gürültüsü temel olarak 

foton sayısında ki dalgalanmalardan kaynaklanmaktadır. Işığın yoğunluğu arttıkça atış 

gürültüsü azalır ve tersi de geçerlidir. Işık basıncı gürültüsü ise ışığın bir momentum 

taşıdığı ve yansıma sırasında bu momentumu aynaya aktardığı gerçeğine dayanır. Bu 

momentum aktarımı sırasında aynanın hareketinden dolayı örneğin; girişimölçerin 

kolları arasında bir faz farkı meydana gelmektedir.[3] Aynanın ve girişimölçerin 

kütlelerinin büyüklüğü düşünüldüğünde ışık basıncı gürültüsünün etkisi atış 

gürültüsüne göre daha küçük olmaktadır. Bu sebeple atış gürültüsünün daha detaylı 

incelenmesinde yarar vardır.  

Bunun için öncelikle ilk olarak P. A. M. Dirac tarafından sunulan foton sayısı ve faz 

arasındaki belirsizliğin elde edilmesiyle başlayacağız.[4] Heissenberg’in enerji-zaman 

belirsizlik ifadesi  ∆𝐸∆𝑡 ≥ ℏ ‘dir. Duran tek renkli, elektromanyetik dalga için enerji 

eşitliği, 𝜔 frekans olmak üzere 𝐸 = ℏ𝑛𝜔’dır. Bu eşitlik foton başına düşen enerjinin 

foton sayısıyla çarpımına eşittir. Böylece 𝜑 herhangi bir noktadaki faz ise,  ∆𝐸 yerine 

ℏ∆𝑛𝜔, ∆𝑡 yerine de ∆𝜑/𝜔 yazılırsa ∆𝑛∆𝜑 ≥ 1	eşitliğine ulaşılır. Böylece enerji-

zaman belirsizliği foton sayısı-faz belirsizliğine indirgenmiş olur. 

 Daha fazla devam etmeden önce kuantum optiğinde sıklıkla kullanılan işe 

yarar bir araçtan bahsetmek gerekiyor. Bu Şekil 1.1 ’de verilen ışığın fazör 

diyagramıdır.[2] 

Klasik 

Durum 

Eşevreli Durum 

Sıkıştırılmış durum 

Şekil 1.1. Işığın Fazör Diyagramı. 
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Bu diyagramlar herhangi iki sıra değiştirmeyen (non commutative) fiziksel 

niceliğin birbirlerine göre belirsizlik durumlarını görselleştirmeye yarayan araçlardır. 

Işık söz konusu olduğunda bunlar ∆𝑛 ve ∆𝜑 olarak seçilebilir. Işık klasik fizik 

bağlamında ele alındığında ∆𝑛 ve ∆𝜑 ölçümünde herhangi bir belirsizlik söz konusu 

değildir. Bu nedenle ışığın klasik durumu fazör diyagramında bir nokta olarak temsil 

edilmektedir. Kuantum mekaniksel olarak incelendiğinde  ise ışığın klasik duruma en 

yakın durumu gelecek bölümde daha ayrıntılı incelenecek olan eşevreli durum olarak 

adlandırılmaktadır.  

Işık eşevreli durumdayken ∆𝑛 ve ∆𝜑 belirsizlikleri eşit büyüklüktedir ve 

belirsizlik minimumdur. Bu nedenle eşevreli durum fazör diyagramında bir daire ile 

temsil edilmektedir.  Eşevreli durum |𝛼⟩ ile temsil edilir ve 𝛼 = |𝛼|𝑒!" elektrik alan 

şiddetiyle orantılı kompleks bir sayıdır. Buradan yola çıkarak daha sonra boyutsuz alan 

yoğunluğu olarak adlandırılan |𝛼|# = 𝑛 eşitliğine ulaşılır. 

 Fazör diyagramında orijinden dairenin merkezine olan uzaklık 𝑅 = |𝛼|# = 𝑛 

‘dir. Dairenin yarı çapı ise 𝑑 = ∆𝑛 = √𝑛 olarak alınırsa, basit geometrik bir 

yaklaşımla 𝑅 = 𝑑∆𝜑 eşitliğine ulaşılır.  Bu eşitlikte R ve d değerleri yerine 

konulduğunda atış gürültüsü sınırında ışığın fazı ve foton sayısı arasındaki ilişki 

∆𝜑$%& =
1
√𝑛

 

şeklinde elde edilmiş olur. Böylece Işığın eşevreli durumundan ve Poisson 

dağılımından yola çıkılarak atış gürültüsü limitine ulaşılmıştır. [5] 

 1.2 Heisenberg Limit 

1981 yılında Carlton Caves ışığın klasik olmayan durumlarını kullanarak 

girişim ölçerlerin hassasiyetinin arttırılabileceği fikrini ortaya koymuştur.[6] 

Heisenberg belirsizlik ilkesi bize aynı anda fazın ve foton sayısının (dolayısıyla 

yoğunluğun) sonsuz hassasiyetle ölçülemeyeceğini göstermektedir.  

Ancak minimum belirsizliğe sahip tek durum eşevreli durum değildir. Şekil 1.1 

yeniden incelenecek olursa ışığın herhangi bir durum için fazör diyagramındaki diskin 

alanı, eşevreli  durumu temsil eden diskin alanından büyük eşit olmak durumundadır. 

(1.2) 



 
 

16 

Ancak Caves’in işaret ettiği gibi eğer  ∆𝑛 belirsizliği arttırılırsa  ∆𝜑 belirsizliği 

azaltılabilir ve  ∆𝑛∆𝜑 ≥ 1 şartı korunmuş olur. Işığın bu yeni durumu sıkıştırılmış 

durum olarak adlandırılır ve Şekil.1.1’deki elipsle temsil edilir. 

Şimdi bu yeni durum için ∆𝑛’in alacağı maksimum değer sorgulanabilir. Bu 

basitçe görülebileceği üzere örneğin herhangi bir lazer ışığı için toplam foton sayısı 

olan 𝑛 kadar olabilir. Başka bir deyişle ∆𝑛 = 𝑛 olarak alınabilir. Bu eşitlik ∆𝑛∆𝜑 ≥ 1 

denkleminde yerine konulursa Heisenberg Limit (HL) olarak adlandırılan limite 

ulaşılır. 

	

∆𝜑'( =
1
𝑛 

 

Bu eşitlikten de görülebileceği gibi girişim ölçerde kullanılan ışığın foton 

sayısı yani ışığın yoğunluğu artırıldıkça ∆𝜑 belirsizliği azalmaktadır.  

Bu limitte standart kuantum limit ile karşılaştırıldığında √𝑁 in geliştirilmesi 

söz konusudur. Ancak buna ulaşabilmek için ışığın sıkıştırılmış durumları yada 

dolanık durumları gibi kuantum durumlarının kullanılmasına ihtiyaç vardır.  

1.3 Işığın Eşevreli Durumları 

Eşevreli durumlar kuadratürlerin örneğin ∆𝑛	𝑣𝑒	∆𝜑	belirsizliklerinin eşit 

büyüklükte olduğu durumlara karşılık gelmektedir. Eşevreli durumlar faz-stabilize 

edilmiş herhangi bir lazer tarafından üretilebildikleri için birçok kuantum optiği 

deneyinin teorik betimlenmesinde kullanılan temel araçlardır. 

Eşevreli durumlar fazın tamamen rastgele olduğu sayı durumundan daha 

hassas tanımlanmış faza ve iyi tanımlanmamış foton sayısına sahip olan durumlardır. 

Genlik ve fazdaki belirsizliğin çarpımındaki belirsizlik, eşevreli durumlar için 

belirsizlik ilkesinin izin verdiği derecede minimumdur. Bu açıdan eşevreli durumlar 

ışığın klasik durumuna en yakın olan kuantum durumları olarak düşünülebilir. Eşevreli 

durumlar üniter öteleme operatörü ile kolaylıkla üretilebilirler. [7] 

Öteleme operatörü denklem 1.4 ile verilmektedir. 

(1.3) 
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𝐷;(𝛼) = 𝑒𝑥𝑝(𝛼𝒶A) − 𝛼∗𝒶A) 

Eşevreli durum |𝛼⟩ vakum durumuna etki eden öteleme operatörü ile türetilir. 

Bu işlem Şekil 1.2 deki gibi görselleştirilebilir. [5] 

Işık alanının genliği ve fazı kuadratür diyagramında polar koordinatlarla temsil 

edilmektedir. 

|𝛼⟩ 	= 	𝐷;(𝛼)|0⟩	 

Eşevreli durumlar yaratma operatörü 𝒶’nın özdurumlarıdır. Denklem 1.6 gibi 

gösterilebilir.  

𝐷;)(𝛼)𝒶A|𝛼⟩ = 𝐷;)(𝛼)𝒶A𝐷;(𝛼)|0⟩ = (𝒶A + 𝛼)|0⟩ = 𝛼|0⟩ 

Her iki tarafı 𝐷;(𝛼) ile çarparsak aşağıdaki özdeğer eşitliğine ulaşırız.  

𝑎A|𝛼⟩ = 𝛼|𝛼⟩ 

Aynı zamanda bu |𝛼⟩ durum vektörü belirli bir sabitle çarpılmış durumların 

toplamı olarak yazılabilmektedir. 

|𝛼⟩ = F𝐶+|𝑛⟩
,

+-.

 

 

 

(1.8) 

(1.7) 

(1.4) 

(1.5) 

(1.6) 

Şekil 1.2.Vakum durumundan öteleme operatörü ile türetilen eşevreli durum. 
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(1.7) ve (1.8) denklemlerinin birleştirilmesiyle 

𝑎A|𝛼⟩ = F𝐶+√𝑛|𝑛 − 1⟩
,

+-/

= 𝛼F𝐶+|𝑛⟩
,

+-.

 

eşitliğine ulaşılır. (1.9) denkleminden katsayılar arasındaki yineleme bağıntısı olan 

𝐶+√𝑛 = 𝛼𝐶+0/ 

ifadesi elde edilir. Bu eşitlik yardımıyla 𝐶.	taban durumunun katsayısı olmak üzere  

𝐶+ =
𝛼+

√𝑛!
𝐶. 

ve |𝛼⟩ özdurumu da  

|𝛼⟩ = 𝐶.F
𝛼+

√𝑛!
|𝑛⟩

,

+-.

 

şeklinde ifade edilebilir. Bu noktadan sonra normalizasyon kat sayısının bulunması 

oldukça kolaydır. 

1 = ⟨𝛼|𝛼⟩ = |𝐶.|#F F
𝛼∗+𝛼1

√𝑛!𝑚!
⟨𝑛|𝑚⟩

,

1-.

,

+-.

= |𝐶.|#F
|𝛼|#+

𝑛!

,

+-.

= |𝐶.|#𝑒|3|
! 

Artık genel bir |𝛼⟩ durumu için iyi tanımlanmış normalize edilebilir denklemi elde 

etmiş bulunuyoruz. 

|𝛼⟩ = 𝑒0
/
#|3|

!
F

𝛼+

√𝑛!
|𝑛⟩

,

+-.

 

Bu eşitlik eşevreli durumu sayı durumu ile  tanımlamaktadır. Yaratma ve yok etme 

operatörleri kullanılarak 

⟨𝛼|𝑛A|𝛼⟩ = J𝛼K𝑎)𝑎AK𝛼L = |𝛼|# 

(1.9) 

(1.12) 

(1.13) 

(1.14) 

(1.15) 

(1.10) 

(1.11)  
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olarak bulunur. |𝛼|# ortalama foton sayıdır. Eşevreli durumun kullanışlı bir özelliği 

operatörlerin çok karmaşık fonksiyonlar için beklenen değerlerinin bulunması oldukça 

kolaydır. Ayrıca rastgele eşevreli durumlar birbirleriyle orthogonal değildir. Bu |𝛼⟩ ve 

|𝛽⟩ iki durumun skaler çarpımından gözlemlenebilir. İki eşevreli durumun skaler 

çarpımı denklem 1.16 deki gibidir.    	

⟨𝛽|𝛼⟩ = J0K𝐷;)(𝛽)𝐷;(𝛼)K0L 

 Denklem 1.16’yı kullanarak  

⟨𝛽|𝛼⟩ = 𝑒𝑥𝑝[−
1
2 (
|𝛼|# + |𝛽|#) + 𝛼𝛽∗] 

 skaler çarpım 1.17 deki şekliyle de yazılabilir bu sebeple eşevreli durumlar  

ortogonal değildirler ve tamlık üstü olarak tanımlanırlar. Tamlık ilişkisi eşevreli bazlar 

için  

/
4 ∫ |𝛼⟩ ⟨𝛼|𝑑

#𝛼= 1 

olarak yazılır.   

 Eşevreli durumlar fiziksel öneme sahiptir. Eşik değerinin üzerinde yüksek 

stabilize edilmiş lazer kullanımıyla elde edilen alan eşevreli bir durumdur. Lazer 

fiziğinde ve lineer olmayan optik problemlerinde optik alanı genişletmek için yararlı 

bir temel oluştururlar. [7] 

 1.4 Işığın Sıkıştırılmış Durumları 

 Bir önceki bölümde eşevreli durumların en az belirsizliğe sahip durumlar 

olduğundan bahsetmiştik. Ancak minimum belirsizliğe sahip tek durum eşevreli 

durumlar değildir. Bu aşamada sıkıştırılmış durumlardan bahsetmek gerekmektedir. 

Şekil 1.1. de bir fazör diyagramı tanıtmıştık. Bu fazör diyagramında eşevreli durumlar 

disk ile temsil edilmişti. Burada  disk ile tanımlanması dalgalanmanın tüm yönlerde 

eşit, diskin alanı sabit ve A kadar olduğunu göstermektedir. Şekil 1.1. ve Heisenberg 

belirsizlik ilkesinden herhangi bir kuantum durumunun A dan büyük yada A ya eşit 

alana sahip bir diskle temsil edilebileceği sonucuna varılır. Ancak kuantum mekaniği 

(1.17) 

(1.18) 

(1.16) 
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diskin şeklinin nasıl olacağı ile ilgili bir sınırlama getirmemektedir. [2] Buradan yola 

çıkarak sıkıştırılmış durumlar olarak adlandırılan durumlar türetilebilmektedir.  

 Sıkıştırılmış durumlar minimum belirsizliğe sahip durumların genel bir sınıfını 

temsil etmektedir. Sıkıştırılmış bir durumda çoğunlukla bir kuadratürdeki gürültü eş 

evreli durumdakine göre daha düşüktür. Ancak bunun karşılığında Heissenberg 

belirsizlik ilkesi gereği diğer kuadratürdeki gürültü eş evreli duruma göre daha fazla 

olmaktadır. Tekrar Şekil 1.1 dönecek olursak sıkıştırılmış durumların adının nereden 

geldiği ve özellikleri daha iyi anlaşılır. Daha önce bahsedildiği gibi eş evreli 

durumlarda her iki kuadratürdeki belirsizlik eşittir. Ancak ∆𝑛	deki belirsizlik arttırlır 

buna karşılık ∆𝜑 belirsizliği azaltılırsa eşevreli durumu temsil eden diskin sıkışarak 

bir elipse dönüştüğünü görürüz. Böylece belirsizlik ilkesi ihlal edilmeden ∆𝜑’nin eş 

evreli duruma göre daha hassas ölçülmesi sağlanabilir.  

 Sıkıştırılmış durumlar vakum durumuna etki eden bir sıkıştırma operatörü ile 

matematiksel olarak elde edilir. Bu operatör  denklem 1.19’ da verilmektedir. [7]  

𝑆S(𝜉) = 𝑒𝑥𝑝 U
1
2 (𝜉

∗𝑎A# − 𝜉𝑎A)#)V 

 Burada 𝜉 = 𝑟𝑒!5 sıkıştırma parametresi olarak adlandırılır. Sıkıştırma 
operatörü aşağıdaki bağıntıları sağlamaktadır.  

𝑆S)(𝜉) = 𝑆S0/(𝜉) = 𝑆S(𝜉) 

𝑆S)(𝜉)𝑎A𝑆S(𝜉) = 𝑎A cosh(𝑟) − 𝑎A)𝑒!5 sinh(𝑟) 

𝑆S)(𝜉)𝑎A)𝑆S(𝜉) = 𝑎A) cosh(𝑟) −𝑎A𝑒0!5 sinh(𝑟) 

 Sıkıştırma operatörü vakum durumuna uygulanırsa  

𝑆S(𝜉)|0⟩ ≡ |𝜉⟩ =
1

_cosh(𝑟)
F(−1)+
,

+-.

_(2𝑛)!
2+𝑛! 𝑒

!+5[tanh(𝑟)]+|2𝑛⟩ 

1.23 denklemi elde edilir. Burada görüldüğü gibi sıkıştırılmış vakum durumları 

sadece çift sayıda foton içermektedir. Şekil 1.3 Kuadratür uzayında sıkıştırılmış 

vakum durumudur. [8] Bu diyagram belirli bir r ve 𝜃’ a sahip sıkıştırma operatörünün  

sıkıştırılmış vakum durumuna nasıl etki ettiğini gösterir. Dairesel vakum durumu ana 

(1.19) 

(1.20) 

(1.21) 

(1.22) 

(1.23) 
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ekseni 𝜃 kadar dönmüş bir elipse dönüşmüştür. Sıradan vakum durumlarının aksine 

sıkıştırılmış vakum durumları belirli bir faza sahiptir. Kuadratürlerdeki belirsizlik ise 

göreli olarak er ve e-r ile orantılı değişmiştir.  

 

 

Şekil 1.3.Kuadratür uzayında sıkıştırılmış vakum durumu diyagramı. 

Işığın sıkıştırılmış durumları ölçümlerin hassaslığını arttırmada kullanılabilir. 

Örneğin faz sıkıştırılmış ışık girişimölçer deneylerindeki (kütle çekim dalgalarının 

algılanması) fazın belirlenmesini arttırırken genlik sıkıştırılmış ışık çok zayıf 

spektroskopik sinyallerin okunmasını geliştirmektedir. [9] 

 1.5 Işığın Dolanık Durumları  

 Dolanıklık kuantum dünyasının en ilginç konularından biridir. Bu kavram iki 

ünlü makalede ilk olarak karşımıza çıkmaktadır. Bunlardan biri 1935 de Einstein, 

Podolsky ve Rosen‘ın yayınladığı bir radyoaktif kaynağın bozunmasıyla şekillenen 

dolanık iki parçacık sisteminin özellikleri üzerine olan  EPR[10] makalesi diğeri ise 

ondan kısa süre sonra yayınlanan Schrödinger’in dolanıklık terimini ortaya attığı ünlü 

kedi paradoksu makalesidir.[11] 

David Bohm’un 1951 de ortaya attığı EPRB (Einstein, Podolsky,Rosen,Bohm) 

[12] deneyini incelemekle başlarsak (Şekil 1.4) S kaynağından yayınlanan foton çifti  

PIB1 (Polarize ışın bölücü) ve PIB2 ye ulaşır ve fotonların polarizasyon durumları 
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dedektörler yardımıyla belirlenir. Burada dikey polarizasyon (|↕⟩) |1⟩ ile , yatay 

polarizasyon (|↔⟩) |0⟩ ile temsil edilir. [13] 

Deneydeki incelik kullanılan kaynağın ilişkili foton çiftleri ürettiğini 

varsaymaktır. İlişkili foton çiftleri aşağıdaki özellikleri taşır.  

1. Kaynaktan çıkan foton 1 yada 2 nin polarizasyonları bağımsız olarak 

rastgele ölçülür. 

2. Foton çiftinin polarizasyonları mükemmel ilişkili ise;  D1(0)’dan sinyal 

alındığında D2(0)’dan, D1(1)’den sinyal alındığında  D2(1)’den sinyal 

alınır. Bunlara alternatif olarak  D1(0)’dan sinyal alındığında D2(1)’den  ya 

da  D1(1)’den sinyal alındığında D2(0)’dan sinyal alınabilir.  

Çok parçacıklı bir sistemin dalga fonksiyonu tek tek parçacıkların dalga 

fonksiyonlarının çarpımı olarak yazılamıyorsa çok parçacıklı sistem dolanık durum 

olarak adlandırılır. Yukarıdaki foton çiftlerinin dalga fonksiyonu yazılırsa bunun 

dolanık bir duruma karşılık geldiği açıkça görülebilir. Eğer kaynaktan çıkan fotonların 

polarizasyonları mükemmel pozitif korelasyona sahipse sistemin dalga fonkisyonu  

|Ψ⟩ =
1
√2

(|0/0#⟩ + |1/1#⟩) 

eğer mükemmel negatif korelasyona sahipse sistemin dalga fonksiyonu  

|Ψ⟩ =
1
√2

(|0/1#⟩ + |1/0#⟩) 

şeklinde yazılır. 

(1.24) 

(1.25) 

PIB2 PIB1 

Şekil 1.4. EPRB Deneyi Düzeneği 
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Bu denklemlerden (denklemler aynı zamanda Bell durumları olarak 

adlandırılır) bir fotonun polarizasyon durumu üzerinde yapılan ölçüm direkt olarak 

diğer fotonun polarizasyonun ölçümünün sonucunu belirlemektedir. Denklem 1.24 

deki dalga fonksiyonu ile gözlemlenecek sonuçlar %50 olasılıkla (0,0) yada (1,1) dir. 

Benzer şekilde denklem 1.25 den de %50 ihtimalle (1,0) yada (0,1) ölçümü 

gözlemlenir. Ancak her durumda da bir foton üzerinde yapılan ölçüm diğer fotonun 

ölçüm sonucunu %100 kesinlikle belirlememize izin verir. 

Kuantum dolanıklığı burada anlatıldığı gibi sadece iki fotonun dolanıklığı ile 

sınırlı değildir. İkiden fazla parçacığın momentum yada spin durumlarının dolanık 

olduğu sistemler oluşturulabilmektedir. Ancak konunun temelini anlamak ve basitlik 

için bu örnekler üzerinde durulmamıştır. 

1.5.1 Dolanık foton çiftleri nasıl elde edilir? 

 Dolanık durumlar hakkında yapılan ilk deneylerin çoğunda  kalsiyum 

atomunun enerji seviyeleri kullanılarak ilişkili foton çiftleri üretilmiştir. Şekil 1.5 ve 

1.6 yapılan deneyin şemasını göstermektedir. Bu deneyde kalsiyum atomunun 

uyarılmış enerji seviyesi 4p2 1S0 dan yayımlanan fotonları yakalayacak iki adet 

dedektörden oluşmaktadır. Şekil 1.6 de enerji seviyeleri arası geçişin şeması 

verilmiştir. Şekil 1.5 de foto çoğaltıcı tüpün (FÇT) önünde bulunan F1 ve F2 filtreleri 

yardımıyla alternatif geçişlerde üretilebilecek diğer dalga boylarındaki fotonların 

dedekte edilmesinden kaçınılmış olur. Yapılan ilk deney Kocher ve Commins 

tarafından 1967 de gerçekleştirilmiştir.[14] 
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Şekil 1.5.Kalsiyumda atomik geçiş ile ilişkili foton çifti üretimi. İki doğrusal 
polarizör (P) ve foto-çoğaltıcı tüp (FÇT) dedektörleri kullanan deneysel düzenleme 

 

Şekil 1.6. Kalsiyumda Atomik Seviye Şeması. 

           Kalsiyum atomunun bu geçişi için ilk ve son enerji seviyelerinin açısal 

momentumları birbirine eşit ve J=0 dır. Bu nedenle çıkan foton çiftlerinin de toplam 

açısal momentumu sıfır olmalıdır. Ek olarak ilk ve son enerji seviyeleri aynı pariteye 

sahiptir. Bu özellikler nedeniyle kalsiyum atomunun bu enerji seviyeleri arasındaki 

geçişler sonucunda üretilen foton çiftleri EPRB deneyi için gerekli olan polarizasyon 

korelasyon özelliklerine sahiptirler.  

 80 li ve 90 lı yıllarda lineer olmayan optik yöntemler ile birlikte yüksek akı 

oranına sahip korale foton kaynakları geliştirilmiştir. Şekil 1.7 de aşağı dönüştürme 

(Down Conversion) yoluyla tek foton 𝜔. açısal frekansına sahip tek bir fotonun nasıl 

𝜔/		𝑣𝑒	𝜔#	açısal frekansına sahip iki fotona dönüştüğü şemetik olarak 

gösterilmektedir. Enerjinin ve momentumun korunumu gereği aşağıdaki eşitlikler 

sağlanmalıdır.  

Optik 

uyarma Ca Hüzmesi 

FÇT FÇT 
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Şekil 1.7.Doğrusal olmayan kristal içindeki aşağı dönüştürme işleminin şematik 
temsili 

Yukarıdaki şekilde 𝜔. açısal frekansına sahip tek foton 𝜔/𝑣𝑒	𝜔# açısal 

frekanslarına sahip foton çiftini üretir. 

𝜔. = 𝜔/+𝜔#  

𝑘. = 𝑘/+𝑘# 

 

𝑘! kristaldeki fotonun dalga vektörüdür. Bu koşullardan ikincisi, doğrusal olmayan 

dalgaların ve gelen ışının tümünün doğrusal olmayan ortam boyunca aynı fazda 

kalmasını gerektirmeye eşdeğerdir. Bu nedenle eşitlik 1.26 ve 1.27 nin aynı anda 

sağlandığı durumlar faz uyumlu durumlardır. Aşağı dönüştürme işlemi 𝜔/ =

𝜔# = 𝜔./2 olduğunda dejenere, değilse dejenere olmayan olarak adlandırılır.  

 İlk bakışta, faz eşleştirmesi yapılabilen birçok frekans ve dalga vektörü 

kombinasyonu varmış gibi görünebilir. Ancak, doğrusal olmayan kristaldeki 

dispersiyon nedeniyle durum böyle değildir. Dispersiyon, tüm optik materyallerin 

genel bir özelliğidir ve kırılma indisinin frekansla değişimini ifade eder. Bu, üç farklı 

frekanstaki kırılma indislerinin genel olarak farklı olduğu ve normal koşullar altında 

faz eşleştirme koşullarının karşılanmasını imkansız hale getirdiği anlamına gelir. 

Neyse ki, doğrusal olmayan kristaller de çift kırıcıdır, bu da kırılma indisinin kristal 

eksenlere göre ışığın polarizasyon yönüne bağlı olduğu anlamına gelir. Bu, çift 

(1.26) 

(1.27) 

Doğrusal 

olmayan kristal 
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kırılmayı dispersiyona karşı dengelememize ve iki farklı tipte faz eşlemesi elde 

etmemize olanak tanır. Tip-I faz eşleşmesinde, aşağı dönüştürülmüş fotonların 

polarizasyonları birbirine paralel ve pompa fotonuna ortogonal iken, tip-II faz 

eşleşmesinde aşağı dönüştürülmüş fotonlar ortogonal polarizasyonlara sahiptir. 

 Şekil 1.8 tip-II faz eşleştirmesi ile dejenere aşağı dönüştürme yoluyla dolanık 

foton çiftlerinin oluşumunu gösterilmektedir. Tekniğin prensibi 1.8 da verilmiştir. 

Pompalanmış lazerden gelen ultraviyole fotonlar bir β-baryum borat (BBO) kristaline 

odaklanır ve gelen fotonun frekansının yarı frekansına sahip iki kırmızı fotona 

dönüşür. Faz eşleştirme şartları gereği, aşağı dönüştürülmüş fotonlar, Şekil 1.9 'da 

gösterildiği gibi, iki adet kesişim noktası olan halka deseni oluşturacak şekilde, zıt 

polarizasyona sahip koni biçiminde açığa çıkarlar.[15] 

 Denklem 1.27 kesişim noktalarından birinde dikey polarizasyona sahip bir 

foton bulursak, diğer kesişme noktasındaki fotonun yatay polarizasyona sahip olması 

gerektiğini veya bunun tersi olacağını söyler. Ancak, her kesişme noktasındaki foton, 

iki zıt polarize halkadan birinden kaynaklanmış olabilir ve bu nedenle, eşit olasılıkla 

yatay veya dikey polarizasyona sahip olabilir. Bu fotonların durum denklemi 1.28’deki 

gibidir. Bu denklemde 𝜙 optik fazı temsil etmektedir. 

|Ψ⟩ =
1
√2

(|↔/↕#⟩ + 𝑒!7|↕/↔#⟩) 

𝜙’nin 0 dan 𝜋’ye ayarlanmasıyla denklem 1.24 ve 1.25’deki Bell durumları elde 

edilebilir.  

(1.28) 
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Şekil 1.8. Tip-II faz uyumu ile dejenere aşağı dönüştürülme ile polarize dolanık foton 
çiftlerinin oluşturulması. 

Şekil 1.8 de bir ultraviyole pompası lazer ve bir BBO kristali kullanan deneysel 

şema gösterilmiştir. Faz eşleştirme koşulları, ışınların zıt polarizasyon konilerinde 

ortaya çıkmasını gerektirir. Şekil 1.9 da iki dolanık foton, halkaların kesişme 

noktalarına karşılık gelir. 

 

Şekil 1.9. Dar bandlı filtreden tip II dejenere aşağı dönüştürülmüş fotonlar. 

Kuantum metrolojisinin ana vaadi fazdaki belirsizliği azaltmaktır. 2000 li 

yıllarda yapılan bir çok kuantum metrolojisi uygulaması bu motivasyon ile 

yapılmıştır.[16][17][18] Girişimölçer uygulamaları da bu belirsizliği azaltmada büyük 

rol oynamıştır.[19] Bu yüzden ikinci bölümün içeriğini girişimölçerler ve ışığın 

kuantum durumlarının girişimölçerlerde kaynak olarak kullanılarak fazdaki 

belirsizliğin nasıl azaltılacağı oluşturacaktır.  

UV pompa 

Dikey Polarize 

Koni 

Yatay Polarize 

Koni 
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2. OPTİK GİRİŞİMÖLÇERLER 

1887'de Albert Michelson ve Edward Morley, ışığın hızını doğru bir şekilde 

ölçmek için optik bir girişimölçerin hassas kullanımına öncülük ettiler ve eter 

ortamının (ışık dalgalarının yayıldığı ortam olduğu düşünülüyordu) varlığını çürüttüler 

[20]. Bu olay Einstein’ın başlattığı görelilik devriminin önünü açtı [21]. Bu deneyden 

129 yıl sonra yine temelde büyük ölçekli bir Michelson Girişimölçeri (MG) olan LIGO 

(The Laser Interferometer Gravitational-Wave Observatory-Laser Interferometre 

Kütle Çekim-Dalgası Rasathanesi) ile elde edilen ölçümler sonucunda genel görelilik 

teorisinin ön gördüğü kütle çekim dalgalarının varlığı doğrulanarak [22], 

girişimölçerin fizik dünyası için ne kadar önemli bir deney düzeneği olduğu bir kez 

daha gösterildi.  
Bütün girişimölçerler temelde aynı prensip ile çalışırlar. Aralarında faz farkı 

olan iki ışık demeti bir girişim deseni oluşturur bu girişim deseninin incelenmesiyle 

de bir fiziksel nicelik ölçülür. Çoğu girşimölçer için faz farkını oluşturan  değişken iki 

ışık demeti arasındaki yol farkıdır. Bu yol farkının oluşmasına neden olan fiziksel 

nicelik ise değişkenlik gösterir. Örneğin; LIGO da oluşan yol farkı kütle çekim 

dalgalarının uzay zaman dokusunu bükmesinden kaynaklanmaktadır. [23] 

Her ne kadar girişimölçerler fizik için vazgeçilmez ölçüm araçları olsa da 

onların işleyiş mekanizmasını tam olarak anlamadan yukarıda verilen sonuçlardan hiç 

birine ulaşılması mümkün değildir. Bu da bizi ışığın klasik ve kuantum davranışı 

arasındaki önemli yol ayrımına getirmektedir. Işığın kuantum doğası bilinmeseydi 

LIGO’nun işlevsel olarak tasarlanması mümkün olamazdı. Dolayısıyla bu bölümün 

içeriğini girşimölçerlerlerin klasik ve kuantum yaklaşımlar ile ele alınması 

oluşturacaktır.    

2.1 Işın Bölücü 

 Girişimölçerlerde kullanımıyla karşımıza çıkan ışın bölücüler üzerine düşen 

ışığın ikiye ayrılmasını sağlayan optik araçlardır. Örneğin yarı geçirgen bir aynaya 

düşen ışığın bir kısmı yansırken bir kısmı aynanın arka tarafına geçmektedir. Böylece 

yarı geçirgen malzemeler en basit ışın bölücüler olarak düşünülebilir. Genellikle bir 
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ışın bölücünün iki adet giriş portu ve iki adet çıkış portu bulunmaktadır. Teorik 

analizlerinin kolaylığı bakımından verilen örneklerde genellikle 50:50 ışın bölücüler 

tercih edilmektedir. Bu ışın bölücüler giriş portlarından birine ulaşan ışığın gücünün 

yarısını bir çıkış portundan diğer yarısını öteki çıkış portundan verecek şekilde 

çalışırlar. Aynı zamanda bu ışın bölücülerde yansıyan ışın için p kadarlık faz farkı elde 

edilirken geçen ışın için elde edilen faz farkı 0 a eşittir. [24] 

 

Kuantum Işığı Teorisi'nde Loudon tarafından sunulan analiz tarzında , herhangi 

bir kaybı olmayan bir ışın bölücü Şekil 2.1 deki gibidir.[25] E1 ve E2 elektrik alanları 

sırasıyla 1 ve 2 giriş portlarını girer. E3 → T31E1 +R32E2 olarak gelişir, burada T, R 

ışın ayırıcı için iletim ve yansıma katsayılarıdır. | T |2 iletilenin yoğunluğudur. Benzer 

şekilde E4 →R41E1 + T42 E2 olarak gelişir. Bu durumda ışın bölücü dönüşüm matrisi:  

i𝐸8𝐸9
j = i𝑇8/ 𝑅8#

𝑅9/ 𝑇9#
j i𝐸/𝐸#

j 

Işın bölücü matrisi B’nin kayıpsız olduğunu varsayalım. Bir ışın bölücü asla 

kayıpsız olamaz fakat bir çok uygulama için iyi bir yaklaşımdır.( Kayıpsız bir ışın 

bölücü için B dönüşüm matrisi üniterdir. Bu da B matrisi için B-1B=B†B=1=> B-1= B† 
anlamına gelmektedir.) 

Enerji korunumdan yola çıkarak : 

|𝐸8|# + |𝐸9|# = |𝐸/|# + |𝐸#|# 

(2.1) 

(2.2) 

Şekil 2.1 Işın Bölücü Diyagramı 

B 
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 Eğer denklem (2.3), (2.4) ve (2.5) sağlanırsa tüm E1 ve E2 giriş alanları için 

(2.2) denklemi geçerlidir. 

|𝑅8/|# + |𝑇9/|# = 1= 	|𝑇8#|# +	|𝑅9#|#		 

R31T*32+ T41R*42 = 0 

R*31T32+ T*41R42 = 0 

R ve T katsayıları genlik ve faz faktörlerine ayrılarak aşağıdaki gibi yazılabilir. 

R31 = |𝑅8/|𝑒!7"# 

R42 = |𝑅9#|𝑒!7$! 

T32 = |𝑇8#|𝑒!7"! 

T41 = |𝑇9/|𝑒!7$#    

Denklem (2.4) ve (2.5) de (2.6), (2.7) ,(2.8), (2.9) denklemleri yerine konularak (2.10) 

elde edilir. 

|𝑅8/|𝑒!7"# |𝑇8#|𝑒0!7"!+ |𝑇9/|𝑒!7$#|𝑅9#|𝑒0!7$! = 0 

|𝑅8/| |𝑇8#|𝑒!(7"#07"!)=-|𝑇9/||𝑅9#|𝑒!(!7$#07$!) 

|𝑅8/| |𝑇8#|𝑒!(7"#;7$!07"!07$#)   =|𝑇9/||𝑅9#| 

(2.10) denkleminin sanal kısımları eşitlenirse ;   

|𝑅8/| |𝑇8#| sin(𝜙8/ + 𝜙9# − ∅8#−∅9/) = 	0 

⟹ Sin(𝜙8/ + 𝜙9# − ∅8#−∅9/) = 	−𝜋, 0, 𝜋 

Cos(𝜙8/ + 𝜙9# − ∅8#−∅9/) = ±1   ⟹	𝜙8/ + 𝜙9# − ∅8#−∅9/ = ±𝜋 

 

 

(2.3) 

(2.4) 

(2.5) 

(2.10) 

(2.11) 

(2.12) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
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faz açıları arasındaki ilişki ve 2.10 denkleminin gerçel kısımları eşitlenirse ; 

 

|𝑅8/| |𝑇8#| > 0 

|𝑇9/||𝑅9#| > 0 

Cos(𝜙8/ + 𝜙9# − ∅8#−∅9/) < 0 

genlikler arasındaki ilişki (2.16) denklemindeki gibi elde edilir. 

|𝑅8/|
|𝑇9/|

=
|𝑅9#|
|𝑇8#|

 

(2.3) denklemindeki yansıma ve geçme katsayıları kendi aralarında birbirine eşit 

olmalıdır. 

|𝑅8/| = |𝑅9#| ≡ |𝑅| 

|𝑇8#| =	|𝑇9/| ≡ |𝑇| 

(2.12), (2.17) ve (2.18) denklemleri ışın bölücünün yansıma ve geçme katsayılarının 

genel sınırlarını vermektedir Bu sınırlamalar ışın bölücü matrisinin üniterliğini garanti 

altına almaktadır. Bu nedenle giriş ve çıkış alanları arasındaki ilişki (2.1)’in tersi 

şeklinde ifade edilir. 

i𝐸/𝐸#
j = i𝑇8/

∗ 𝑅9/∗
𝑅8#∗ 𝑇9#∗

j i𝐸8𝐸9
j 

Işın bölücü matrisinin üniter olmasının sebebi tamamen giriş ve çıkış kolları 

arasındaki enerji korunumunun bir sonucudur. [26] 

Işın bölücü matrisinin genel yapısı bazen yansıma ve geçme katsayıları için 

yapılan bazı kabuller yoluyla daha da basitleştirilebilir. Katsayılar gerçel olarak kabul 

edilebildiği için 𝜙8/ = 𝜙8# = 𝜙9/ = 0	 ve ∅9# = 𝜋 faz açıları bu şekilde olduğunda  

R31 = -R42 = |𝑅| ve T32 = T41 = |𝑇| 

katsayılar (2.20) deki gibi yazılabilir. 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 
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Altermatif olarak katsayılar simetrik alındığında 𝜙8/ = 𝜙9# = 𝜙< 					ve  

∅8# = ∅9/ = 𝜙= olduğu zaman  

R31 = R42 ≡ 𝑅 = |𝑅|𝑒!7&  , T32 = T41 ≡ 𝑇 = |𝑇|𝑒!7' 

Denklem (2.3), (2.4) ve (2.5) bu durumda (2.22) ye indirgenir. 

|𝑅|#+|𝑇|#= 1, RT*+R*T=0 ya da da 			𝜙< − 𝜙= =	±
4
#
 

Ek olarak bazı durumlarda 50:50 ışın bölücü için yansıma ve geçme katsayılarının 

eşit büyüklükte olduğu kabul edilir. 

𝑅 = 𝑇 = /
√#			

    ve  𝜙< − 𝜙= =	
4
#
 

Son olarak denklem (2.4) ve (2.5) de (2.6), (2.7) ,(2.8), (2.9) denklemleri yerine 

konulur ve üstel terimler Euler eşitliğinden yararlanılarak sin ve cos fonksiyonları 

cinsinden ifade edilirse (2.4) ve(2.5) denklemleri 𝜙 = 𝜋 2⁄  olduğunda 2𝑇𝑅𝐶𝑜𝑠𝜙 = 0 

şeklinde yazılabilir. Bu durumda 50:50 ışın bölücü matrisi (2.24)’deki gibi verilir.[27] 

B= /
√#
v1 𝑖
𝑖 1x 

2.2 Michelson Girişimölçeri  

 1851'de Fransız fizikçi Hippolyte Fizeau, iki ışık demetinin hareketli suda 

yayıldığı bir girişim deneyi gerçekleştirdi. Su akışına karşı hareket eden ışığın, akışla 

hareket eden ışığa göre daha düşük bir hızla yayıldığını ölçtü [28] Bu deney Albert 

Michelson’ın  Eter'in varlığını tespit etme fikri için bir ilham kaynağı oldu. İhtiyacı 

olan şey hassas  bir girişimölçerdi ve tasarladığı araç bu gün Michelson Girişimölçeri 

olarak bilinmektedir.[20] Bu cihaz ışığı alır, kısmen sırlanmış aynada ışını ikiye böler. 

İletilen ışık onu yansıtan aynaya (tamamen sırlanmış) gelmeden önce biraz mesafe 

kaydeder, bu durum yansıyan ışın içinde geçerlidir. Başlangıçta yansıyan ışının iletilen 

kısmı ile başlangıçta iletilen ışığın yansıyan kısmı üst üste gelecek biçimde aynalar ve 

ışın bölücüler dikkatlice ayarlanmıştır. İki kez iletilen ışık iki kez yansıyan ışıkla 

birlikte dışarı çıkar . Bu düzenek şekil 2.2 de verilmiştir.  

(2.21) 

(2.22) 

(2.23) 

(2.24) 
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Şekil 2.2.Michelson Girişimölçeri 

Analizörde dedektasyon dışarı çıkan ışın üzerinden yapılır. Girişim desenini 

gözlemlemek için Michelson basit bir göz merceği kullanmıştır. Michelson’ın bu 

deneydeki planı girişimölçeri belirli açılarda döndürerek, girişim ölçerin kollarında 

hareket eden ışınlardan birinin eter rüzgarına karşı hareket ederken diğerinin eter 

rüzgarıyla dik hareket etmesini saptamaktı. İlk denemesinde başarısız olan Michelson 

bunun sebebini kullandığı cihazın hassasiyetinin teorik olarak beklenen sonuçları 

karşılamakta yetersiz olmasına bağladı. Edward Morley ile birlikte 1887 de daha 

büyük ve hassasiyeti yüksek bir girişimölçer inşa ettiler. Ancak tüm bu çabalarına 

rağmen eterin varlığına dair herhangi bir kanıt gözlemleyemediler. Buna rağmen bu 

deney belki de fizik tarihindeki en ünlü başarısız deneydir. Fakat Michelson 

Girişimölçeri günümüzde girişimölçerler ile yapılan bir çok araştırmanın alt yapısını 

oluşturmaktadır.  
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Şekil 2.3. Mach-Zehnder Girişimölçeri 

2.3 Mach-Zehnder Girişimölçeri 

1891-1892'de cihazın kullanımına öncülük eden Alman fizikçiler Ernst Mach 

ve Ludwig Zehnder'den adını alır.[29] Kuantum mekaniğinin optik girişimölçerlerdeki 

önemini anlamak için Şekil 2.3 de gösterilen Mach-Zehnder girişimölçerini (MZG)  

ele alalım. Mach Zehnder Girişimölçeri Michelson Girişimölçerinin (MG) açılmış hali 

olarak düşünülebilir. MG de ışık bir ışın bölücüden iki kere geçerken MZG de iki ışın 

bölücüden bir defa geçmektedir. Bu iki interferometre matematiksel olarak eşittir. MG 

i lazer kullanılan büyük deney düzenekleri için daha uygunken MZG teorik çalışmalar 

için  tercih edilir.  Fakat MZG de bulunan sonuçlar MG içinde geçerlidir.[2] 

 

 

 

 

 

 

 

 

 

 

Şekil 2.3 de görüldüğü gibi MZG iki IB, iki ayna, iki dedektör ve bir 

analizörden oluşmaktadır. Analizörün görevi dedektörlerden gelen veriyi işlemektir. 

Dedektörler ise ikinci IB den kendilerine ulaşan ışık ışınlarının şiddetini ölçerler. 

Standart yaklaşımda her iki ışın bölücü de 50:50’dir. Lazerden gelen ışın IB1 e 

ulaştığında ışığın %50 si geçer %50 si yansır. [30] IB1 den geçen ışın faz farkına 

uğramazken yansıyan ışın p/2 kadar faz farkına uğrar. Aynı durum aynadan yansıyan 

ışın için de geçerlidir. IB1 den yansıyan ve geçen ışınlar aynalarda yansıdıktan sonra 

IB2  yeniden birleşerek dedektörler tarafından algılanır. Dedektörlerin ölçtüğü ışık 

şiddeti IC ve ID  olmak üzere analizörde alınan sonuç bunların farkıdır. (I= ID- IC) Bu 

da girişimölçerden alınan sinyal olarak isimlendirilir.  
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2.3.1 Mach-Zehnder girişimölçerinde klasik yaklaşım 

Girişimölçerde kollar arasında yol farkı (x) yok ise elimizde dengelenmiş bir 

girişimölçer vardır. Eğer faz farkı var ise bu j=kx ile tanımlanabilir. k burada dalga 

sayısıdır. (k=2p/l) Lazerden gelen ışık şiddeti IA olmak üzere algılanan ışık şiddetleri 

şu şekilde yazılabilir. [5] 

𝐼? = 𝐼$𝑆𝑖𝑛#(j/2) = 	
@(
#
(1 + cos𝜑) 

𝐼A = 𝐼$𝐶𝑜𝑠#(j/2)=		
@(
#
(1 − cos𝜑) 

M(j) ≡ 𝐼A − 𝐼? = 𝐼$𝐶𝑜𝑠(j) 

2.25.a ve 2.25.b denklemlerinden enerjinin korunumu gözlenmektedir. 

Analizörde ışık şiddetleri farkı okunur. 2.26 denkleminin periyodik davranışı Şekil 2.4 

deki grafikte de görülmektedir. Bu grafikten yola çıkılarak ve  2.26 denkleminde 

j/2=kx/2=px/l dönüşümü yapılırsa x/l=0,1,2,3… için C dedektöründe de ışık şiddeti 

algılanmadığı, başka bir deyişle IC=0 yani bu dedektörde yıkıcı bir girişim olduğu, D 

dedektöründe  de maximum ışık şiddeti algılandığı , başka bir deyişle ID=IA yani bu 

dedektörde yapıcı bir girişim olduğu,  gözlemlenir. Girişimölçerdeki aynalardan biri  

ilk bulundukları konumlardan uzaklaştırılarak yol farklı elde edildiğinde C’de de ışık 

şiddeti okunmaya başlanır. Faz farkının j=p/2 olduğu durumda dedektörlerde okunan 

ışık şiddetleri eşittir, dolayısıyla M(j) = 0’dır. Ayna hareket ettirilmeye devam 

edilirse önce C dedektöründen maksimum sinyal, alınır ardından tekrar C 

dedektöründen alınan sinyal 0 olur. Yol farkının dalga boyunun tam katına eşit olduğu 

durumlarda D dedektöründen sinyal alınırken C den sinyal alınmayacağı bilindiği için; 

ayna hareket ettirilmeye başlandığında D den ilk defa maximum sinyal alındığında 

aynanın ışığın dalga boyu l kadar hareket ettiği anlaşılır.  

(2.25.a) 

(2.25.b) 

(2.26) 
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Şekil 2.4.Dedektörlerden okunan sinyal farkının faz açısına bağlı değişim grafiği 

 MZG’nin klasik yaklaşımının sonucunda MZG’nin kullanılan ışığın dalga 

boyu hassasiyetinde ölçüm yapabileceği görülmektedir. Ancak klasik yaklaşımın 

sonucunda elde edilen Şekil 2.4’deki grafiğin eğimi incelenirse ilginç bir sonuçla 

karşılaşılır. Bu grafiğin eğimi 2.27 denklemindeki gibidir.  

∆𝑀
∆𝜑 =

𝜕𝑀
𝜕𝜑 = 𝐼$sin	(𝜑) 

Bu denklem düzenlenirse  

∆𝜑 =
∆𝑀

𝜕𝑀 𝜕𝜑⁄ =
∆𝑀

𝐼$sin	(𝜑)
 

 2.28 denklemine ulaşılır. j=p/2 şartı sağlandığında fark edileceği üzere 2.28 

denklemi 2.29 denklemine indirgenir.  

∆𝜑 =
∆𝑀
𝐼$

 

 Şimdi IA sadece bir sabit olduğundan, 2.29 denkleminden çıkarılacak anlam 

şudur. Eğer ∆𝑀 = 0 olacak şekilde sonsuz hassasiyette bir ölçüm gerçekleştirilirse bu 

durumda ∆𝜑 dolayısıyla ∆𝑥’te sonsuz hassasiyetle ölçülebilir. Bu durumda MZG’nin 

klasik yaklaşımla ele alınması bize aynalar arasındaki yol farkının ölçüm hassasiyeti 

(2.27) 

(2.28) 

(2.29) 
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için 0 ve l olmak üzere iki farklı sonuç vermektedir. Bu noktada bilinmesi gereken 

şey ışığın kuantum doğası gereği ∆𝜑’nin sonsuz hassasiyetle değil ancak standart 

kuantum limiti (SKL) sınırları içinde  1 √𝑁⁄  hassasiyetle ölçülebileceğidir. Bu durum 

ilk bölümde açıklanmıştır. 

2.3.2 Mach Zehnder girişimölçerinde tek foton girişimi 

 Bu noktaya kadar Mach Zehnder Girişimölçerinde ışığın klasik davranışı 

içerisinde inceleme yaptık. Bu noktadan sonra giriş portunda tek fotonla başlayarak 

kuantum mekaniksel olarak incelemeye başlayacağız. 

 Giriş portunda |01⟩ olan durum için MZG nin bir portuna tek foton durumu 

gönderilirken diğer portu vakum durumundadır. Bu durum Şekil 2.5 de temsil 

edilmiştir. 

 

 

Şekil 2.5. Mach Zehnder Girişimölçerinde Tek Foton Durum Temsili 

 Giriş portundaki bu durum için ilk ışın bölücüden geçtikten sonraki durum 

hesaplanırsa (𝑖|10⟩ + |01⟩)/√2 olarak çıkar. Burada i yansıyan fotondan kazanılan 

fazla ilişkili sanal birimdir. Bu aynı zamanda dolanık NOON durumu temsil 

etmektedir. Foton her iki kolda da bulunabilir ancak gerçekte nerede olduğunu 

bilemeyiz.[31] Aynalardan yansıma sonrasında faz değiştirici sebebiyle üst taraftaki 

foton için e!" teriminin eklenmesi gerekmektedir. İkinci ışın bölücüden geçtikten 

sonra dolanık durum için ışın bölücü dönüşümü yapıldığında aşağıdaki duruma evrilir. 
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|𝜓B!C!şL =
1
2 (|01

⟩(1 − e!") + 𝑖|10⟩(1 + e!") 

Buradan da C ve D çıkışlarında foton dedekte etme olasılığı (2.31.a) ve (2.31.b) 

da verilmektedir. 

𝑃? = KJ10K𝜓B!C!şLK
# =

1
2 (1 − cos𝜑) 

			𝑃A = KJ01K𝜓B!C!şLK
# =

1
2 (1 + cos𝜑) 

Bu olasılıklar klasik çözümdeki olasılıklarla aynıdır. Aslında görülmektedir ki 

tek fotonla da girişim elde edilebilmektedir. Bunun sebebi fotonun hangi yolu 

izlediğinin bilinmemesinden dolayı tek bir foton için gerçek durumun her iki yolun bir 

süperpozisyonu olmasıdır. Sonuç olarak N=1 için NOON durumu kullanıldığında 

standart kuantum limit ile Heisenberg limit birbirinin eşdeğeridir.  

2.3.3 Hong Ou Mandel etkisi 

 Bu kısımda MZG de giriş portlarından ayrı ayrı tek fotonlar gönderilen durum 

analiz edilecektir. Bu durum 1987 ilk olarak Hong, Ou ve Mandel tarafından 

gösterilen, kuantum optiğinde iki fotonlu bir girişim etkisidir.[32] Etki her iki giriş 

portundan tek foton gönderilip ışın bölücüye (IB1) girdiğinde gerçekleşmektedir. 

Gönderilen fotonların fiziksel özellikleri bakımından özdeş olduğu göz önünde 

bulundurulduğunda; her iki fotonun ışın bölücüden geçtiği yada her ikisinin yansıdığı 

durumlar birbirinden ayırt edilemez. Ancak ışın bölücü yansıyan fotonları p/2 kadar 

faz farkına uğrattığından iki durumun olasılık genlikleri birbirini yok eder. Bu nedenle 

ışın bölücünün çıkışında denklem 2.33 de verilen durum elde edilir. Denklem 2.33 de 

verilen durum bir dolanık durumu temsil eder çünkü iki yolun kuantum durumları 

matematiksel ve kavramsal olarak birbirinden ayrılamaz.[33] 

 

 

 

 

(2.30) 

(2.31a) 

(2.31b) 
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|1⟩|1⟩ = â)B𝑏�)B|00⟩ = 	
1
√2

�â)ç+𝑖𝑏�)ç�
1
√2

�𝑏�)ç+𝑖â)ç�|00⟩	 

     = /
#
�𝑖â)#ç+	𝑎A)ç𝑏�ç

) − 	𝑏�)ç𝑎Aç
) + 𝑖𝑏�)#ç� |00⟩ 

     = !
√#
(|20⟩ + |02⟩) 

     

 

Şekil 2.6. Hong-Ou-Mandel İnterferometrenin şematik temsili. 

Bu noktaya kadar gördüğümüz uygulamalar kuantum metrolojisindeki ana 

motivasyonun yani fazdaki belirsizliğin azaltılmasının kaynağını oluşturmuştur. 

NOON durumlarını girişimölçerin giriş portlarında kullanarak fazdaki belirsizliğin 

azatılması [34][35][36] başka bir deyişle standart kuantum limitin heisenberg limite 

nasıl yükseldiği yani süper hassasiyet kavramına nasıl ulaşıldığı ve Rayleigh kırınım 

sınırının nasıl aşılıp süper çözünürlük kavramına nasıl ulaşıldığı ile ilgileneceğiz. 

 

2.3.4 Işığın durumlarının faz duyarlılığına etkisi 

NOON durumların faz duyarlılığındaki etkisini anlayabilmek için öncelikle 

eşevreli ışığın ve sayı durumlarının girişimölçerdeki faz değiştiriciyle nasıl etkileştiği 

arasındaki farka bakalım. Faz dönüşüm operatörü denklem 2.34 deki gibi olmak üzere, 

eşevreli ışık faz değiştiriciden geçtikten sonra aşağıdaki gibi dönüşüme uğrar. 

|1⟩ 

(2.32) 

(2.33) 
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𝑈;(𝜑) = 𝑒!"+F 	 

𝑈;"|𝛼⟩ = 𝑒!"	|𝛼⟩ 

Denklem 2.34 𝑛A foton sayı operatörüdür. Denklem 2.35 de de görüleceği gibi 

eşevreli durumun faz değişimi herhangi bir şekilde foton sayısından 

etkilenmemektedir. Ancak faz dönüşümüne sayı durumu uğrarsa sonuç bunun tersidir. 

Sayı durumları faz dönüştürücüden geçtikten sonra denklem 2.36 daki şekle dönüşür. 

 	

𝑈;"|𝑁⟩ = 𝑒!G"		|𝑁⟩ 

Denklem 2.36 daki faz denklem 2.35 deki faza göre N defa daha hızlı 

salınmaktadır. Buradan yola çıkarak bir NOON durumun faz değiştiriciden geçtikten 

sonra nasıl evrileceği de denklem 2.37 deki gibi hesaplanabilir. Bu durum şekil 2.7 de 

temsil edilmiştir.[17]  

 

|𝑁⟩$K0⟩H + |0⟩$|𝑁⟩H = |𝑁⟩$|0⟩H + 𝑒!G"K0⟩$|𝑁⟩H 

  

 

 
Şekil 2.7.Dolanık Fotonların Faz Değiştiriciden Geçisi. 

Eğer dolanık foton dedektöründe bir ölçüm işlemi yapılırsa elde edilen sonuç 

denklem 2.38 deki gibidir. Bu sonuçlar şekil 2.8 deki grafikte görülebilir. Yeşille 

gösterilen dolanık duruma ait sinyal, kırmızıyla gösterilen eşevreli duruma ait sinyale 

göre N kere daha fazla salındığı için grafikteki tepe noktaları arasındaki uzaklık 

𝜆	𝑑𝑎𝑛	𝜆/𝑁 e indirgenir. Dolasıyla Rayleigh kırınım sınırı N kat geliştirilmiş olur. Bu 

etki süper çözünürlük olarak adlandırılır. Ayrıca grafiğin yatay ekseni kestiği noktanın 

(2.34) 

(2.35) 

(2.36) 

Dolanıklı 

Foton 

 Kaynağı 

Dolanıklı 

Foton 

 Dedektörü 

Faz Değiştirici 

(2.37) 
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Şekil 2.8.Eşevreli ve Dolanık Durumların Faz Değiştiriciyle Etkileşimi Sonucu 
Dedektör Sinyalleri. 

eğimi de N kat daha büyüktür. Bu sonuç denklem 2.28 ile karşılaştırıldığında faz 

duyarlılığı denklem 2.38 ile temsil edilir ki bu daha önceden de üzerinden durulan 

Heisenberg limittir.  

𝑀GIIG(𝜑) = 𝐼$ cos(𝑁𝜑) 

 

 

 

 

 

 

 

 

 

 

 

 

   

Bu limit çoğunlukla süper hassasiyet olarak adlandırılmaktadır. 

Dolanık durumların neden bu özelliğe sahip olduğu basit bir analiz ile anlaşılabilir. 

Tekrar şekil 2.7 incelendiğinde fotonların A kolunda mı yoksa B kolunda mı olduğu 

bilinemez. Bu nedenle foton sayısındaki belirsizlik foton sayısının kendisine eşittir. 

Yani ∆𝑛 = 𝑛. Eğer bu ifade ∆𝑛∆𝜑 = 1 de yerine konulursa Heisenberg limite 

ulaşılacağı aşikardır. Fakat daha önce Heisenberg limite ulaşabilmek için sıkıştırılmış 

durumlardaki sıkıştırma miktarının sonsuz olduğunu kabul etmiştik. Ancak dolanık 

durumlar için böyle bir ön kabule ihtiyaç duymadan Heisenberg limite fiziksel 

gerçekten ulaşılabileceği görülmektedir. Günümüzdeki deneyler N=4’e kadar olan 

durumlar için bu sonuçları doğrulamaktadır. [37][38][39][40] 

Bu tezde de gelecek bölümde N foton sayısının farklı değerleri için  elde edilen 

sonuçların analizi yapılacaktır.  

 

(2.38) 
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Şekil 3.1.Sagnac Girişimölçerinin Eşdeğer Optik Diyagramı 

3. HESAPLAMALAR VE BULGULAR 

Yapılan çalışmada N foton sayısı arttıkça Rayleigh kırınım sınırının ve 

Standart kuantum limitinin aşıldığı deneylerden yola çıkılarak |𝑛𝑚⟩ gibi farklı n,m 

değerleri için sayı durumlarının ve |𝑁0⟩ + |0𝑁⟩ gibi farklı N değerleri için N00N 

durumlarının girişimölçerlerin kollarında giriş modları olarak kullanarak çıkışta 

dedektörlerde okunabilecek farklı durumların olasılık grafikleri çizilmiştir. Foton 

sayısına bağlı olarak değerlendirmeleri yapılmıştır. Kollar arasında faz farkı (𝜓) 

varken ve yokken çıkış genliği grafikleri incelenmiş, kullanılan ışın bölücüler 50/50 

den farklı seçildiğinde sistem üzerine etkisi araştırılmıştır. Son olarak da giriş 

modunda N00N durumlar kullanıldığında çıkışta gözlemlenebilecek N00N durumların 

fidelity değerleri girişimölçer fazına ve giriş kolları arasındaki faz farkına bağlı olarak 

hesaplanmıştır.  

Teorik olarak yaptığımız hesaplamalar için kullanılan girişimölçer şeması 

olarak klasik bir Mach Zehnder girişimölçeri ele aldık. Farklı faz değerleri için 

durumları tekrar edebilmek adına girişim ölçerde Sagnac etkisinden yararlanılmıştır. 

Sagnac girişimölçerinin eşdeğer optik diyagramı şekil 3.1 de temsil edilmektedir.  

 

 

 

 

 

 

 

 

 

  

Burada 𝜙 (girişimölçer fazı) faz değiştirici Sagnac etkisini temsil etmektedir. 

Işığın dönerek yol kat etmesi yardımıyla girişimölçer kolları arasında yol farkı 
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dolayısıyla faz farkı oluşmaktadır. Şekil 3.2 de Sagnac girişimölçeri temsil 

edilmiştir.[19] 

 

 

 

 

 

 

 

Şekil 3.2.Sagnac Girişimölçeri 

Şekil 3.1 de iki adet 50/50 ışın bölücü n ve m giriş modları C ve D de çıkış 

modlarıdır. Işın bölücü matrisi bu sistem için yazılırsa; iki adet 50/50 ışın bölücü 

kaynaklı 1 ve 3 matrisleri, Sagnac etksinden dolayı da 2 matrisi dönüşüm matrisinde 

bulunmalıdır.  

v𝐶𝐷x =
1
√2

v1 𝑖
𝑖 1x v

1 0
0 𝑒!7x

1
√2

v1 𝑖
𝑖 1x v

𝑛
𝑚x 

 

Denklem 3.1 düzenlenirse  

v𝐶𝐷x = 𝑒!
7
#J �−

sin𝜙 2� cos𝜙 2�

cos𝜙 2� sin𝜙 2�
�v𝑛𝑚x 

elde edilir.  

 Tüm hesaplamalar bu matris dönüşümü yardımıyla yapılmıştır. Çıkış 

portlarında gözlemlenebilecek olan durumların 𝜙 fazına bağlı olasılık genlikleri 

denklem 3.3 e göre hesaplanmıştır. 

𝑃? = KJ𝑛𝑚K𝜓B!C!şLK
# 

(3.1) 

(3.2) 

1 2 3 

(3.3) 
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3.1 |𝐧𝐦⟩ Sayı Durumlarının Girişimölçerin Giriş Modunda 

Kullanılması 

n=1 den n=8 e kadar olabilecek maksimum foton sayısı 8 olacak şekilde n ve 

m in farklı varyasyonları hesaplamada giriş modunda kullanılmış ve Tablo 3.1 de 

grafikler halinde sunulmuştur. 

En basit olarak  |10⟩ durumu kullanıldığında çıkış portunda gözlemlenebilecek 

durumların olasılık genliğinin 𝜋 kadarlık faz farklarına duyarlı olduğu görülmektedir. 

Bu çıkarıma şu şekilde ulaşılabilir: Tablo 3.1 incelenirse |10⟩ durumunu ilk olarak 

𝜙 = 𝜋 daha sonrada 𝜙 = 3𝜋 faz farkları için kendini maksimum olasılıkla tekrar ettiği 

görülmektedir. Bunun anlamı eğer çıkışta |10⟩ durumunu algılayabilen bir dedektör 

kullanılsaydı, her 2𝜋 lik faz farklarında alınan sinyal maksimum olurdu ki, bu da 

kullanılan sistemin faz duyarlılığını verirdi. 

İki foton kullanılan giriş durumları incelendiğinde |11⟩ giriş durumu için faz 

duyarlılığının her iki çıkış durumunda da tek fotonlu giriş durumuna göre iki kat artığı 

görülmektedir. Ancak |20⟩ giriş durumu için bu artış sadece |11⟩ çıkış durumunda 

gözlemlenmektedir.  

Üç foton kullanılan giriş durumları incelendiğinde faz duyarlılığında iki 

fotonlu sisteme göre bir artış söz konusu değildir. Hatta giriş modu |21⟩ iken çıkışta 

okunabilecek olan |21⟩ durumuna bakıldığında faz duyarlılığı artmış gibi gözükse de 

faza bağlı olasılık genliklerinin maksimumları eşit olmadığı için çıkışta da anlamlı 

çözümlenebilir bir sinyal okunamamaktadır.  

Dört foton kullanılan giriş durumları incelendiğinde ise faz duyarlılığının giriş 

portunda tek foton kullanılan sisteme göre dört kat arttığı görülmektedir. Bu artış |31⟩ 

giriş durumu için |22⟩ de, |22⟩ giriş durumu için |31⟩ elde edilmiştir. |40⟩ giriş 

durumunun faz duyarlılığına iki foton kullanılan giriş durumlarından daha fazla bir 

katkısı yoktur. 

Beş, altı, yedi ve sekiz fotonlu giriş durumları için hesaplamalar tekrar edilmiş 

ve sonuçlar tablo 3.1 de sunulmuştur. Dört fotonlu sistemden sonra faz duyarlılığında 

anlamlı artışla karşılaşılmamıştır.  
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Tablo 3.1. |𝑛𝑚⟩  Giriş durumları ve çıkışta okunan olasılık genlikleri. 

 

 

Giriş Durumları               Çıkışta Okunan Durumların Olasılık Genlikleri   

 

 

 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Grafiklerdeki tepe noktaları maksimum genliğe karşılık gelmektedir.  
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Olasılık Genlikleri 

Tablo 3.1.(devamı) |nm⟩ giriş durumları ve çıkışta okunan durum olasılık genlikleri  

Giriş Durumları               Çıkışta Okunan Durumların Olasılık Genlikleri   
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Tablo 3.1.(devamı) |nm⟩ giriş durumları ve çıkışta okunan durum olasılık genlikleri 

Giriş Durumları                Çıkışta Okunan Durumların Olasılık Genlikleri   
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Tablo 3.1.(devamı) |nm⟩ giriş durumları ve çıkışta okunan durum olasılık genlikleri 

Giriş Durumları      Çıkışta Okunan Durumların Olasılık Genlikleri   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

49 

Tablo 3.1.(devamı) |nm⟩ giriş durumları ve çıkışta okunan durum olasılık genlikleri 

Giriş Durumları                    Çıkışta Okunan Durumların Olasılık Genlikleri   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 |𝐍𝟎⟩ + |𝟎𝐍⟩ Durumların  Girişimölçerin Giriş Modunda 

Kullanılması 

N=1 den N=8 e kadar |N0⟩ + |0N⟩  dolanık durumları hesaplamada giriş 

modunda kullanılmış ve Tablo 3.2 de grafikler halinde sunulmuştur. Buna ek olarak 

giriş portları arasında 𝜓 faz farkı varken ve yokken çıkış olasılık genlikleri de 

hesaplanmıştır.  

Sonuçlar incelendiğinde ilk göze çarpan kullanılan dolanık durumların foton 

sayısının |nm⟩ durumlarına eşit olduğu hallerde elde edilen sonuçların farklılık 

gösterdiğidir. Örneğin giriş portunda |40⟩ durumu ile |40⟩ + |04⟩ durumu 

karşılaştırıldığında |40⟩  durumunda  tek foton durumuna göre dört kat faz duyarlılığı 

gözlemlenmezken, |40⟩ + |04⟩ giriş durumunda çıkışta okunabilecek |31⟩  

durumunda tek foton durumuna göre 4 kat artış gözlemlenmektedir. İkinci olarak tek 
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sayılı fotona sahip N00N durumlarda anlamlı faz duyarlılıkları elde edilememiştir. 

Ayrıca giriş portları arasında	𝜓 faz farkı olması, faz duyarlılığını bozmaktadır. Kollar 

arası faz farkı varken ve yokkenki olan durumlara bakıldığında |20⟩ + |02⟩ de 𝜓 faz 

farkı yokken |11⟩  durumu çıkışta gözlemlenmemiştir. |40⟩ + |04⟩ de 𝜓 faz farkı 

varken farklılık sadece |31⟩  durumunda, diğer durumlar aynı şekilde çıkışta 

okunmuştur. |60⟩ + |06⟩ da 𝜓 faz farkı yokken çıkışta |33⟩  gözlemlenmemiş ve son 

olarak |80⟩ + |08⟩ 𝜓 faz farkı varken çıkışta |44⟩ durumu gözlemlenmemektedir. 

İlk aşamada yapılan hesaplamalar gibi bu aşamada da dört fotona kadar 

kullanılarak yapılan hesaplamalarda faz duyarlılığında anlamlı artış gözlemlenirken 

daha büyük N durumları için faz duyarlılıklarında farklı bir değişim söz konusu 

değildir.  

Son olarak |20⟩ + |02⟩ giriş durumu için giriş kolları arası faz farkı sıfır ise 

çıkış durumunun faza bağlı olmadığı görülmektedir. Bu sebeple |20⟩ + |02⟩ 

durumunun kullanılmasının faz duyarlılığına katkısı yoktur. 

50/50 ışın bölücüler kullanıldığında faz duyarlılığı artışı görülen durumlar 

25/75 ışın bölücüler kullanılarak tekrar edilmiştir. Sonuçlar tablo 3.3 de sunulmuştur. 

Faz duyarlılığında anlamlı artışlar bulunamamıştır.  
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Tablo 3.2. N00N giriş durumları ve çıkışta okunan durum olasılık genlikleri. 
  

Giriş Durumları                     Çıkışta Okunan Durumların Olasılık Genlikleri   
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Tablo 3.2.(devamı) N00N giriş durumları ve çıkışta okunan durum olasılık 

genlikleri 

Giriş Durumları                     Çıkışta Okunan Durumların Olasılık Genlikleri   
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Tablo 3.3. 25/75 IB de N00N giriş durumları ve çıkışta okunan durum  

olasılık genlikleri 

  

 

Giriş Durumları                  Çıkışta Okunan Durumların Olasılık Genlikleri 

 

 

  

 

 

 

 

 

 

3.2.1 Girişte N00N durum varken çıkışta okunan olasılık 

genliklerinin 𝝍 ve 𝝓 ya bağlı yoğunluk grafikleri 

Bu grafikler genel olarak iki farklı değişkene bağlı bir fonksiyonun aldığı 

değerlerin görselleştirilmesi için kullanılırlar.  Tablo 3.4 deki grafiklerin skalası 

incelendiğinde koyu renkli bölgeler incelenen çıkış durumunun elde edilme 

olasılığının sıfıra yakın olduğu olasılık yoğunluklarını, parlak renkli bölgelerse 

maksimuma yakın olduğu olasılık yoğunluklarını temsil etmektedir. Böylece hem 

girişimölçer fazının hem de giriş kolları arası faz farkının çıkış durumlarına etkisi 

incelenebilmektedir. Buna göre örneğin; 2002 giriş durumuna sahip konfigürasyonun 

|20⟩  çıkış durumuna bakıldığında belli bir 𝜓 değerinin altında bu durumun gelme 

ihtimali 𝜙 den bağımsız olarak maksimumdur. Başka bir deyişle girişimölçerin 

girişinde 2002 durumu kullanılır ve |20⟩  durumu dedekte edilerek bir faz farkı ölçümü 
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Tablo 3.4.Olasılık genliklerinin ψ ve ϕ ya bağlı yoğunluk grafikleri. 

yapılmak istenirse giriş durumları arasında mutlaka bir faz farkı olması gerekmektedir. 

Öte yandan 4004 giriş durumlu konfigürasyona bakarsak, çıkışta |40⟩ durumu için 

giriş kolları arasındaki fazdan bağımsız olarak belirli bir girişimölçer faz duyarlılığına 

sahip olduğu görülmektedir.  Son olarak daha önceki hesaplar ile uyumlu bir şekilde 

N=4 durumunun sağladığı, faz duyarlılığının yine N=4 de maksimum olduğu 

gözlemlenmektedir.  

   

Giriş Durumları                     𝜓 ve 𝜙 ya bağlı yoğunluk grafikleri 
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Tablo 3.4.(devamı) Olasılık genliklerinin 𝜓 ve 𝜙 ya bağlı yoğunluk grafikleri 

      Giriş Durumları                𝜓 ve 𝜙 ya bağlı yoğunluk grafikleri 
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3.3 Bağlılık (Fidelity) Hesaplamaları 

İletişimden kuantum bilgisayarlara kadar bir çok alanda karşımıza çıkan 

fidelity kavramı temelde iki kuantum durumunun birbiri ile olan ilişiklik miktarının 

yada başka bir değişle bu iki durumun birbirinden ne kadar farklı veya ayrılabilir 

olduğunun bir ölçüsüdür. Kuantum mekaniğinde eğer iki durum saf kuantum 

durumlarına karşılık geliyorsa (yani farklı durumların kombinasyonu olarak 

yazılamıyorsa) durumların bağlılığı [41] 

𝐹(|Ψ/⟩	⟨Ψ/|, |Ψ#⟩⟨Ψ#|) = |⟨Ψ/||Ψ#⟩|#			 

Denklemiyle verilir. Tanımı gereği iki durumun fidelity değeri aşağıdaki 

eşitliğe uyar. [42] 

0 ≤ 𝐹(Ψ/Ψ#) ≤ 1 

Eğer fidelity değeri sıfır ise bahsi geçen iki durum birbirinden tamamen farklı,  

bir ise birbiri ile tamamen aynıdır.  

Aşağıdaki sonuçlar da girişimölçerin girişinde kullanılan N00N durumlar ile 

çıkışta gözlemlenen durumların fidelitylerinin 𝜓 ve 𝜙 değerlerine karşı nasıl 

değiştiğini göstermektedir.   

N00N durumlar için bu aşamada da N=1 den N=8 e kadar hesaplamalar 

yapılmıştır. N=3,5,7 için grafikler aynı ve N=4,6,8 için grafikler aynıdır. Tablo 3.5 

incelendiğinde fidelitynin hem girişimölçer fazına hem de giriş durumları arasındaki 

faz farkına bağlı olduğu görülmektedir. İncelenen tüm durumlar için her iki faz da sıfır 

olduğunda çıkış durumlarının fidelity maksimum değer olan F=1  olmaktadır. Ayrıca 

𝜓 ve 𝜙 ye bağlı olarak maksimum fidelity değerleri her N00N durum için değişkenlik 

göstermektedir. Örneğin |10⟩ + |01⟩ için 𝜓 =𝜋/2 değerinde fidelity girişimölçer 

fazından bağımsız olarak  F=1 maksimum  değeri alırken|40⟩ + |04⟩ durumu için aynı 

𝜓 değerinde minimum fidelitye F=3,75X10-33≅ 0 sahip olmaktadır. Buda bir 

girişimölçer şeması üzerinden dolanık durum üretilmek istendiğinde hem girişimölçer 

fazının hem de giriş durumları arasında ki fazın göz önünde bulundurulması 

gerekliliğini göstermektedir. Diğer değerleri incelediğimizde |20⟩ + |02⟩ durumunda 

(3.4) 

(3.5) 
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Tablo 3.5. Bağlılık (Fidelity) Hesaplamaları 

𝜙 =	𝜋,	𝜓=	𝜋 /2 iken fidelity minumum F=3,75X10-33≅ 0 değerini almaktadır. |30⟩ +

|03⟩ da ise 𝜙 =	𝜋,	𝜓 =	𝜋/2 iken fidelity maksimum F=1 , |40⟩ + |04⟩ de ise  𝜓 

=0,	𝜓=	𝜋 değerlerinde		𝜙=	𝜋 olduğunda fidelity maksimum F=1 dir.  

  

Giriş Durumları    𝜓, 𝜙, 𝐹 Grafikleri 
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Tablo 3.5.(devamı) Bağlılık (Fidelity) Hesaplamaları 

Giriş Durumları    𝜓, 𝜙, 𝐹 Grafikleri 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

59 

3.4 Dolanıklık Entropisi, Görünürlük ve Dedektasyon 

Etkisi 

Kuantum mekaniğinde iki sistemin birbiriyle olan korelasyonunu incelemek 

için farklı kavramlar literatürde mevcuttur. Bunlardan birisi önceki bölümde 

bahsedilen fidelitydir. Bir diğeri ise şimdi bahsedeceğimiz dolanıklık entropisi, yani 

Von Neumann entropisi olarak bilinen kavramdır.	𝜌 gibi bir durumun Von Neuman 

entropisi aşağıda ki gibi hesaplanır. 

Ε(𝜌) = −𝑇𝑟{𝜌𝑙𝑜𝑔𝜌} 

Von Neumann entropisi aracılığıyla korelasyonların iyi bir ölçüsü sunulur. 

Dolanık sistemler için bu kavram dolanıklığın seviyesini belirlemektedir. 𝜆K, 𝜌’nun 

özdeğeri ise Von Nouman etropisi tekrar ifade edersek [33];  

 

Ε(𝜌) = −F𝜆K𝑙𝑜𝑔𝜆K
K

 

Dikkat edersek, dolanıklık entropisi yalnızca saf durumlar için sıfır değerini 

alır.  

 Yapılan çalışmada sayı durumları ve dolanıklı kaynaklı (N00N) girişimölçer 

giriş modlarında ilk IB den geçtikten sonra ve girişimölçer çıkışında durumların 

entropilerine bakılmıştır. Sayı durumları ilk IB den geçtikten sonraki entropi değerleri 

foton sayısına bağlı olarak tablo 3.6 da sunulmuştur. Şekil 3.3 de ise girişimölçer çıkış 

durumları için, girişimölçer fazına bağlı olarak entropi değişimi verilmiştir. Şekil 3.4 

ve 3.5 de ise N00N giriş durumlarının ilk IB den geçtikten sonra ve girişimölçer 

çıkışında entropi değişimi sunulmuştur.  

 Tablo 3.6 ya bakılırsa sayı durumlarında N arttıkça entropinin arttığı 

görülmektedir. Şekil 3.3 e baktığımızda da N artışına bağlı olarak entropi artışı 

gözükse de örneğin girişimölçer fazı 𝜋/2 iken |11⟩, |22⟩, |31⟩ giriş durumları için 

azalma söz konusu olmaktadır. Yani faz duyarlılığı artışı gördüğümüz giriş 

(3.6) 

(3.7) 
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0.5 1.0 1.5 2.0 2.5 3.0
ϕ(rad)

0.5

1.0

1.5

Ε(ρ)

10〉

11〉

20〉

30〉

21〉

31〉

22〉

40〉

Tablo 3.6 Sayı durumları ilk ışın bölücüden geçtikten sonra durumların dolanıklık 
entropisi 

Şekil 3.3 Sayı durumlarının girişimölçer çıkışında, girişimölçer fazına bağlı entropi 
grafiği 

durumlarında entropide düşüş görülmektedir. Girişimölçer fazı sıfır olursa tüm sayı 

durumlarının çıkışı saf durumlar olarak dışarıya çıkmaktadır. 
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2 4 6 8
N. (fotonsayısı)

0.5

1.0

1.5

E. (ρ)

Şekil 3.4.N00N durumların ilk ışın bölücüden geçtikten sonra N foton sayısına 
bağlı dolanıklık entropisi grafiği 

Şekil 3.5.N00N durumların girişimölçer çıkışında, girişimölçer fazına bağlı 
dolanıklık entropisi grafiği 

0.5 1.0 1.5 2.0 2.5 3.0
ϕ(rad)

0.5

1.0

1.5

2.0

E. (ρ)

N=1
N=2
N=3
N=4
N=5
N=6
N=7
N=8
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Şekil 3.4 e baktığımızda giriş durumları N00N iken ilk ışın bölücüden geçen 

durumların dolanıklık entropisi, çift sayı durumlarında bir önceki tek sayı durumuna 

göre düşüş göstermektedir. N= 2 için entropi sıfırdır. Bu da ilk BS çıkışında N=2 için 

saf durumlar gördüğümüzü göstermektedir.   

Şekil 3.5 ise girişimölçer fazı sıfır olduğunda entropi N=2 durumu hariç tüm 

durumlar için ln2 gelmektedir. Buda çıkışta maksimum dolanıklı durumlar elde 

edebileceğimiz anlamına gelir.  

Girişim saçakları genliğinin karanlık(minimum) ve aydınlık(maksimum) 

noktaları arasındaki farkı görünürlük (visibility) olarak adlandırılır. Görünürlük (V) 

aşağıdaki 3.8 denklemi ile hesaplanabilir.  

𝑉 =
𝐼LMK − 𝐼L!+
𝐼LMK + 𝐼L!+

 

 N00N giriş durumları için çıkış genliklerinin görünürlükleri tablo 3.7 

sunulmuştur.  

Tablo 3.7 N00N giriş durumlarının, çıkış görünürlükleri 

Giriş: N00N Durum Çıkış Durumları Görünürlük 

N=1  
%100 

N=2  
%100 

N=3 ,  %33, %85 

N=4  
%100 

N=5 , ,  %77,%92,%32 

N=6 , ,  %89,%100,%100 

N=7 , , ,  %94,%29,%50,%93 

N=8  
%100 

 

Tablo 3.7 ye baktığımızda tek sayılı giriş durumlarında görünürlükte azalma 

görmemize rağmen çift foton sayılı durumlar için görünürlük çıkış modu |60⟩ olan 

durum dışında %100 dür. Bir önceki bölümde dolanıklık entropisi hesaplanan 

durumlarda (şekil 3.4)  ilk IB den geçtikten sonra tek foton sayılı durumlarda 

|30⟩|21⟩

|50⟩|32⟩|41⟩

|60⟩|51⟩|42⟩

|70⟩|61⟩|52⟩|43⟩

(3.8) 
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dolanıklık entropisi çift sayı durumlarına göre daha yüksek gelmektedir. Entropinin 

arttığı durumlarda, görünürlükte azalma görmekteyiz. Girişimölçerde giriş durumları 

arası 𝜓 = 𝜋 kadar faz farkı varken görünürlük hesaplarında N=6 da |51⟩ çıkışı için 

görünürlük %8, N=8 için |71⟩ çıkışında görünürlük %52 değerini alarak faz farkı 

olmayan durumlardan farklı sonuç vermiştir. 

Yapılan çalışmanın bu aşamasında görünürlüğün düştüğü bazı çıkış 

durumlarında eksik foton sayımı yapılarak görünürlük arttırılabilir mi  yada faz 

duyarlılığında bir değişiklik olacak mı sorularının cevapları aranmıştır. İlk olarak giriş 

durumu N00N iken N=6 da  çıkış modu |60⟩ olan durum ( yukarı kolda 6 foton aşağı 

kolda 0 olan dedektasyon yada tam tersi ) için detektörlerden biri sabit tek foton 

algılayacak şekilde sabitlenmiş ve şekil 3.6’daki algılama şeması oluşturulmuştur. Bu 

işlemi yapabilmek için ilk olarak giriş durumu denklem 3.9 ki gibi tanımlayarak, 

denklem 3.10’daki gibi giriş ışın bölücüsü ile işleme sokulmuştur. Denklem 3.11.a ve 

denklem 3.11.b ise çıkış ışın bölücülerinin ve faz değiştirici operatörlerinin 

eşdeğerlerini vermektedir. Denklem 3.12 ise altı foton yukarı kolda, aşağıda foton 

olmayan durumu temsil etmektedir.  

 

1
√2

(|60⟩ + |06⟩) =
1
√2

(
𝑎/
))

√6!
|00⟩ +

𝑎#
))

√6!
|00⟩)

→
1

√6! √2
[(
𝑖𝑢) + 𝑙)

√2
)N	|00⟩ + (

𝑢) + 𝑖𝑙)

√2
)N	|00⟩] 

𝑢) →
𝑖𝑏/
) + 𝑏#

)

√2
 

𝑙) → 𝑒!7
𝑏/
) + 𝑖𝑏#

)

√2
 

= �−
(3 cos(2ϕ) + 5)(cos(3ϕ) + 𝑖 sin(3ϕ))

96√10
𝑏/
))+. . . . . ¢ |00⟩ 

 

 

(3.9) 

(3.10) 

(3.11.a) 

(3.11.b) 

(3.12) 
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Şekil 3.6. N00N giriş durumu N=6 için çıkış modu  |60 ⟩  iken beş foton sayma 
şeması 

 

 

 

 

 

 

  

 Şekil 3.6 da tesadüfi sayım şeması (coincidence counting) verilmiş, 

D1,D2,D3,D4,D5,D6 tek foton dedektörlerini, r,t katsayıları ışın bölücü yansıtma ve 

geçme katsayılarını temsil etmektedir. Burada  D6 dedektörü sürekli sinyal verir 

durumda yada D6 dedektöründe sayım yapılmıyor olarak düşünülebilir. Bu noktada 

yukarıya giden altı fotonun sadece beşi dedekte edilecektir. Denklem 3.13’te yukarıda 

beş foton dedektasyonu için parametreler verilmiştir. Gerekli işlemler yapılıp 

düzenlendiğinde denklem 3.14’e evrilir. 

→ −
(3 cos(2ϕ) + 5)(cos(3ϕ) + 𝑖 sin(3ϕ))

96√10
{(𝑟/𝑑/ 	+ 	𝑡/	(𝑟#𝑑# +	𝑡#	(𝑟8𝑑8 	

+ 	𝑡8	(𝑟9𝑑9 +	𝑡9	(𝑟O𝑑O)))))O}|000001⟩ 

 	

= −
(3 cos(2ϕ) + 5)(cos(3ϕ) + 𝑖 sin(3ϕ))

96√10
£120𝑟/𝑟#𝑟8𝑟9𝑟O𝑡/9𝑡#8𝑡8#𝑡9𝑑/

)𝑑#
)𝑑8

)𝑑9
)𝑑O

)

+⋯¥|000001⟩ 

−120
(3 cos(2ϕ) + 5)(cos(3ϕ) + 𝑖 sin(3ϕ))

96√10
𝑟!𝑟"𝑟#𝑟$𝑟%𝑡!$𝑡"#𝑡#"𝑡$|111111⟩ 

 

Denklem 3.15 girişte N=6 olan N00N durumda beş foton dedekte etme 

olasılığını vermektedir. 

(3.13) 

(3.14) 
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StandartDedektasyon TekFotonSabitlenmiş

π
2

π 3π
2 2π 5π

2
3π 7π

2
4π

ϕ(rad)

0.2

0.4

0.6

0.8

1

OlasılıkGenliği

Şekil 3.7. N= 6 için |60⟩ çıkışının, tek foton eksik dedektasyonun 
girişimölçer fazına bağlı olasılık genliği 

𝑃&%' = |𝑟!𝑟"𝑟#𝑟$𝑟%𝑡!$𝑡"#𝑡#"𝑡$|" <
5
64
(3𝑐𝑜𝑠(2𝜙 + 5)"(2𝑠𝑖𝑛"(3𝜙) + 𝑐𝑜𝑠(6𝜙) + 1C 

Şekil 3.7 girişte N=6 olan N00N durumda beş foton dedekte etme olasılığının 

girşimölçer fazına bağlı grafiği verilmiştir. Grafikte mavi çizgi standart dedektasyon 

yani altı foton dedekte edilen durumu, turuncu çizgi tek foton sabitlenmiş dedektasyon 

yani beş foton dedekte edilen durumu temsil etmektedir.  

 

 

 

 

 

 

 

 

 

 

Şekil 3.7 ye baktığımızda eksik foton dedektasyonunda genlik azalmaktadır. 

Fakat görünürlük hesaplaması yapıldığında durumların görünürlükleri eşit V=%89 

gelmektedir. Ayrıca genlikler azalmış olsa bile faz duyarlılığında bir değişim 

olmamıştır.  

Benzer bir hesaplama giriş kolları arası faz farkı 𝜓 = 𝜋	varken giriş durumu 

N00N N=8 de çıkış modu |71	⟩	 iken  altı foton dedekte edildiği durum için yapılmıştır. 

Bu noktada altta yine tek foton üstte ise altı foton algılanacak şekilde şema 

oluşturulmuştur.  Şekil 3.8’de verilen grafikteki sonuçlar elde edilmiştir.  

 

(3.15) 
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Şekil 3.8. N= 8 için |71⟩  çıkışının, tek foton eksik dedektasyonun girişimölçer 
fazına bağlı olasılık genliği. 

 

 

 

 

 

 

 

 

 

 

Şekil 3.8 ye baktığımızda eksik foton dedektasyonunda genlik azalmaktadır. 

Altı fotonlu sistemdekine benzer şekilde görünürlük değişmemiş ve genlikler azalmış 

olsa bile faz duyarlılığında bir değişim olmamıştır.  

Giriş kolları arası faz farkı 𝜓 = 𝜋	varken giriş durumu N00N N=6 de çıkış 

modu |33	⟩	 iken  tek foton ve üç foton eksik dedekte edildiğinde aşağıda verilen şekil 

3.9’daki sonuçlar gelmektedir. Bu aşamada tek foton eksiltme için yukarıdan bir 

dedektör, 3 foton eksiltme için yukarıdan bir aşağıdan iki dedektörün sabitlediği hesabı 

yapılarak olasılık genlikleri hesaplanmıştır. Farklı dedektör kombinasyonaları için de 

sonuçlar değişmemektedir.  

 

 

 

 

 

 

 

StandartDedektasyon TekFotonSabitlenmiş

π
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StandartDedektasyon TekFotonSabitlenmiş

Ücfotonsabitlenmiş

π
2

π 3π
2 2π 5π

2
3π 7π

2
4π

ϕ(rad)

0.2

0.4

0.6

0.8

1

OlasılıkGenliği

Şekil 3.9. N= 6 için |33 ⟩ çıkışının tek foton eksik  ve üç foton eksik 
dedektasyonun girişimölçer fazına bağlı olasılık genliği. 

 

 

 

 

 

 

 

 

 

 

Diğer durumlardakine benzer şekilde şekil 3.9’da da algılanan foton sayısı 

azaldıkça genlik azalmış fakat faz duyarlılığında değişim gerçekleşmemiştir. 

Tüm durumlarda olasılık genliği azalmıştır. Buda göstermektedir ki deneysel 

olarak bu işlemler yapıldığında çıkışta ışık gücünün eksik foton sayımında daha az 

daha düşük olacaktır. 
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4. SONUÇ VE YORUM 

Bu tez çalışmasında giriş modlarında sayı ve N00N durumlar kullanılan bir 

girişimölçerin çıkış modları teorik olarak incelenmiştir. Ayrıca girişimölçerde 

kullanılan ışın bölücülerin geçirme ve yansıtma katsayılarının, giriş modları ve 

girişimölçerin kolları arasındaki fazın çıkış durumlarına olan etkisi irdelenmiştir. 

Bulunan sonuçların girişimölçerin hassasiyetinin geliştirilmesi bağlamındaki etkileri 

değerlendirilmiştir.  

Girşimölçerin giriş modlarında, bir modda 3 diğer modda 1 foton giriş durumu 

olarak kullanıldığında faz duyarlılığın tek foton kullanılması durumuna göre dört kat 

artmıştır. Aynı etki giriş modlarında N=4 olan N00N durum kullanıldığında elde 

edilmiştir. Bu durumlar haricinde foton sayısı arttırılmasına rağmen faz duyarlılığında 

dört foton durumuna göre daha fazla olan bir artış görülmemiştir. Bunun yanında giriş 

modları arasında faz farkı olması faz duyarlılığı üzerinde olumlu bir etkiye sahip 

olmamakla birlikte çoğu durumda duyarlılığın düşmesine neden olmaktadır.  75/25 

katsayılarına sahip ışın bölücüler kullanılması da, 50/50 ışın bölücüyle yapılan 

hesaplamalara oranla faz duyarlılığında bozulmaya neden olmaktadır.  

Tablo 3.1 incelendiğinde bazı çıkış durumlarının faz duyarlılığı bozulurken, 

bazılarında arttığı, bazılarında ise azaldığı görülmektedir. Örneğin |22⟩ giriş durumu 

için incelenirse; ilk IB den  geçtikten sonra  |22⟩  aşağıdaki duruma evrilmektedir.  

 

¦3
4 (|40

⟩ + |04⟩)/√2 +
1
√4

(|22⟩)

 

Bu durumunda sadece |40⟩ + |04⟩ kısmı girişime uğrayabilme ihtimaline 

sahiptir ve uğradığında |31⟩ yada |13⟩	çıkış durumları gözlemlenir; bu da maksimum 

faz duyarlılığını verir.[43] Buradan hareketle faz duyarlılığın bozulduğu veya azaldığı 

durumlarda da ilk IB den geçtikten sonra giriş durumunun evrildiği dalga denkleminin 

içerdiği N00N ve N00N olmayan durumların ikinci IB deki girişim özelliklerinin faz 

(4.1) 
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duyarlılığını etkilediği sonucuna varılabilir. Bu sebeple yine tablo 3.1 deki giriş 

durumu olan |40⟩	durumu incelendiğinde ilk ışın bölücüden geçtikten sonra denklem 

3.10 gibidir. 

 
1
4 (|40

⟩ − 2i	|13⟩ − |22⟩ + 3i|31⟩ + |40⟩) 

 

Denklem 3.10 dan görüleceği üzere içerideki N00N olmayan durum sayısı 

arttıkça faz duyarlılığı azalmaktadır. Sayı durumlarında N>4 durumları için ilk IB den 

geçtikten sonra N00N olmayan durumların sayısı artmaktadır.  Tablo 3.2 deki giriş 

durumları N00N kaynaklar olan girişimölçer için de faz duyarlılığı artışında ilk IB den 

sonraki sonuçların sayı durumlarındaki gibi N00N ve N00N olmayan durumların 

sayısına bağlı olduğu görülmektedir. Tablo 3.3  75/25 IB kullanılan durumlar için N>1 

için ilk IB den geçtikten sonra N00N olmayan durum sayısı benzer şekilde artmaktadır. 

Bu sebeple 50/50 olmayan ışın bölücülerde Tablo 3.1 ve 3.2 de faz duyarlılığı 

gözlemlenen durumlarda bile herhangi bir faz duyarlılığı ile karşılaşılmamaktadır.  

 Dolanıklı kaynaklı girişimölçerlerin sayı durumu kaynaklı girişimölçerlere 

göre eşit sayılı foton durumları kullanıldığında faz duyarlılığına farklı bir katkısı 

olmamaktadır.   

Çıkış durumlarının girişimölçer fazına ve giriş modları arasındaki faza bağlılığı 

yoğunluk grafikleri ile incelenirse, girişte N=4 olan N00N durum kullanıldığında 

çıkışta ölçülen |40⟩	durumunun giriş kolları arasındaki fazdan minimum oranda 

etkilendiği görülmektedir.  

Giriş ve çıkış durumları arasında ki bağlılık (F) oranları da açıkça giriş kolları 

arasındaki ve girişimölçer fazından etkilenmektedir. Bu da giriş kollarında N00N 

durumlar kullanılsa bile çıkış durumunda her zaman dolanık durumların elde 

edilemeyeceğini göstermektedir.  

3.4. bölüme baktığımızda dolanıklık entropisi hesapları yapılmış, hesaplamalar 

sonucunda sayı durumunda ve N00N durumlarda N foton sayısı arttıkça  dolanıklık 

entropisı artmıştır. Sayı durumlarında N=4 iken maksimum faz duyarlılığına 

ulaştığımız giriş durumları |31⟩, |22⟩ giriş durumlarının eşit sayılı foton sayısına sahip 

(4.2) 
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|40⟩ giriş durumuna göre dolanıklık entropisi daha düşüktür. Girişimölçer çıkışında 

sayı durumları için, , girişimölçer fazına bağlı olarak entropi değişimi verilmiştir. N 

artışına bağlı olarak entropi artışı gözükse de örneğin girişimölçer fazı 𝜋/2 iken 

|11⟩, |22⟩, |31⟩ giriş durumları için azalma söz konusu olmaktadır. Yani faz duyarlılığı 

artışı gördüğümüz giriş durumlarında entropide düşüş görülmektedir. Giriş durumları 

N00N iken ilk ışın bölücüden geçen durumların dolanıklık entropisi, çift sayı 

durumlarında bir önceki tek sayı durumuna göre düşüş göstermektedir. N00N 

durumların girişimölçer çıkışında, girişimölçer fazına bağlı dolanıklık entropisine 

bakıldığında herhangi bir faz farkı yokken N=8 e kadar tüm çıkışların entropisi 

maksimum dolanıklı durumları temsil etmektedir.  

Bölüm 3.4 ayrıca N00N giriş durumlarının, girişimölçer çıkışında görünürlük 

hesapları yapılmış,  dolanıklık entropisi hesaplanan durumlarda (şekil 3.4)  ilk IB den 

geçtikten sonra tek foton sayılı durumlarda dolanıklık entropisi çift sayı durumlarına 

göre daha yüksek gelmektedir. Entropinin arttığı durumlarda, görünürlükte  azalma 

görmekteyiz. 

Bölüm 3.4’ te yapılan diğer bir kısım da ise eksik foton sayımının görünürlüğü 

ve faz duyarlılığını etkilemediği görülmüş sayılan foton sayısı azaldıkça olasılık 

genliği azalmıştır. Buda çıkışta dedekte edilen ışık gücünün azaldığının göstergesidir.  

Bu tez çalışmasında incelenen bütün durumlar kağıt üstünde idealleştirilmiş 

sistemleri temsil etmektedir. Günümüzde dolanık foton çiftlerinin üretilmesi, çıkış 

durumunda belirli bir sayıda fotonun dedekte edilmesi problemi gerek teorik gerekse 

deneysel olarak aktif çalışma alanlarını oluşturmaktadır. Kuantum metrolojinin 

teknolojik ve günlük hayatta kullanılabilirliği bu problemlerin çözülebilmesiyle 

olacaktır. Kuantum metroloji alanındaki gelişmeler günümüz bilgisi dahilinde Planck 

uzunluğuyla karşılaştırılabilir ölçeklerde ölçümler yapmamızı, bir nesneye bakmasak 

bile onu görmemizi sağlamak gibi günlük algımızı aşan pek çok  olağan üstü sonucu 

karşımıza getirmektedir. Sahip olduğumuz bugünkü teknolojinin ilerlemesi de yine 

kuantum metroloji ve ışığın doğası hakkındaki bilgimizin ilerlemesi ile mümkün 

olacaktır.   
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EKLER 

EKA: Hesaplamalarda Kullanılan Mathematica Kodu 

 

Needs["Quantum`Notation`"]; 
SetQuantumAliases[]; 
Clear[a,b,b1, b2, S, Optmat, Ipm, Opwf, norm, Sopwf, n, m, den, 
sen,W,\[Phi],\[Psi]]; 
 
(*operatörleri tanımlama*) 
 
DefineOperatorOnKets[a,{\[VerticalSeparator]Subscript[x_, Overscript[q1, 
^]],Subscript[z_, Overscript[q2, 
^]]\[RightAngleBracket]:>Sqrt[x+1]*\[VerticalSeparator]x+Subscript[1, 
Overscript[q1, ^]],Subscript[z, Overscript[q2, ^]]\[RightAngleBracket]}] ; 
DefineOperatorOnKets[b,{\[VerticalSeparator]Subscript[x_, Overscript[q1, 
^]],Subscript[z_, Overscript[q2, 
^]]\[RightAngleBracket]:>Sqrt[z+1]*\[VerticalSeparator]Subscript[x, Overscript[q1, 
^]],z+Subscript[1, Overscript[q2, ^]]\[RightAngleBracket]}]; 
 
n=Input[n]; 
m=Input[m]; 
 
 
(* BS matrisi*) 
S={{-Sin[\[Phi]/2],Cos[\[Phi]/2]},{Cos[\[Phi]/2],Sin[\[Phi]/2]}}; 
Optmat={{a},{b}}; 
Ipm=S.Optmat; 
b1=Part[Ipm,1,1]; 
b2=Part[Ipm,2,1]; 
 
(*dalga fonksiyonunun hesaplanması*) 
Opwf=1/Sqrt[2]*(((b1^n)/Sqrt[n!]\[CenterDot]\[VerticalSeparator]Subscript[0, 
Overscript[q1, ^]],Subscript[0, Overscript[q2, 
^]]\[RightAngleBracket]+Exp[I*Pi]*(b2^m)/Sqrt[m!]\[CenterDot]\[VerticalSeparato
r]Subscript[0, Overscript[q1, ^]],Subscript[0, Overscript[q2, 
^]]\[RightAngleBracket])); 
Sopwf=Simplify[ComplexExpand[Opwf]]; 
Simplify[ComplexExpand[Opwf]] 
norm=(Sopwf)^*\[CenterDot](Sopwf); 
W=Simplify[ComplexExpand[norm]](*normlizasyon kontrolü*) 
Plot[W,{\[Phi],0,4* Pi},Ticks->{{0,Pi,2Pi,3Pi,4Pi},{0,1}}] 
 
(*durumların olasılık genliklerinin çizdirilmesi*) 
Do[ 
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den[\[Phi]_]=\[LeftAngleBracket]Subscript[n1, Overscript[q1, ^]],Subscript[m1, 
Overscript[q2, ^]]\[VerticalSeparator]\[CenterDot]Sopwf; 
sen[\[Phi]_]=(den[\[Phi]])^**den[\[Phi]]; 
If[sen[Pi/6]!=0, 
Print[ComplexExpand[sen[\[Phi]]]]; 
Print[Ket[n1,m1]]; 
Print[Plot[sen[\[Phi]], {\[Phi],0,4Pi},Ticks->{{0,Pi,2Pi,3Pi,4Pi}},AxesLabel-
>\[CapitalIota](Yoğunluk), LabelStyle->Directive[Black,Medium]]]] 
 
,{n1,0,n},{m1,0,n}] 
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