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Mining, Industrial and ICT Engineering,
Universitat Politècnica de Catalunya

Assist. Prof. Dr. Hande Alemdar
Computer Engineering, METU

Date:



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Alperen Eroğlu
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ABSTRACT

NETWORK DENSITY ESTIMATORS AND DENSITY-AWARE WIRELESS
NETWORKS

Eroğlu, Alperen

Ph.D., Department of Computer Engineering

Supervisor: Prof. Dr. Ertan Onur

October 2020, 176 pages

New network architectures and communication technologies continue to emerge to

meet rapidly increasing and changing user demands requiring continuous connec-

tivity and high data rate transmissions. These ubiquitous infrastructures result in a

paradigm shift in mobile communications with the advent of mobile robots equipped

with sensors, unmanned aerial vehicles, and mobile small-cells, which makes the fu-

ture networks highly dynamic. This dynamism poses unpredictable variations in the

network density causing many run-time problems such as disrupted coverage, un-

desirable quality of service, and inefficient resource usage. Pre-configurations are

no longer suitable because of the network topology variations, which prompts us to

develop density-adaptive protocols and self-configured system designs. Therefore,

the most crucial objective of this thesis is to make future wireless networks density-

aware and -adaptive. We propose novel network density estimators using received

signal strength and density-aware networking applications. We introduce a distance

matrix-based density estimator, multi-access edge cloud-based density estimator, and

interference-based density estimator for wireless networks. We also develop density-

aware network outage, transmit power adaptation, and channel utilization approaches
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by considering the effective network density as an optimization parameter for clus-

tered ad hoc networks, mobile cellular networks, and flying ad hoc networks. We

validate the results by implementing Monte-Carlo simulations on MATLAB. Outputs

of this thesis may help network operators enhance service quality, create the best de-

ployment strategies, reduce operational expenditures, and meet increasing user expec-

tations without wasting network resources. Density-aware and -adaptive applications

make wireless networks self-organized and run-time adaptable.

Keywords: Wireless networks, Ad hoc networks, Flying Ad hoc networks, Cellu-

lar networks, Moving base stations, Base station density estimation, Density-adaptive

networking, Network coverage, Network outage, Density-aware transmit power adap-

tation.
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ÖZ

AĞ YOĞUNLUĞU KESTİRİCİLERİ VE YOĞUNLUK-UYARLI TELSİZ
AĞLAR

Eroğlu, Alperen

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Ertan Onur

Ekim 2020 , 176 sayfa

Sürekli bağlantı ve yüksek veri hızı iletimi gerektiren, hızla artan ve değişen kullanıcı

taleplerini karşılamak için yeni ağ mimarileri ve iletişim teknolojileri ortaya çıkmaya

devam ediyor. Bu yaygın altyapılar, algılayıcılarla donatılmış hareketli robotların, in-

sansız hava araçlarının ve hareketli küçük hücrelerin ortaya çıkmasıyla mobil ileti-

şimde bir paradigma değişikliğine neden olur ve bu da gelecekteki ağları oldukça

dinamik hale getirir. Bu dinamizm, kesintili kapsama alanı, istenmeyen hizmet kali-

tesi ve verimsiz kaynak kullanımı gibi birçok çalışma zamanı sorununa neden olan ağ

yoğunluğunda tahmin edilemeyen değişimler ortaya çıkarır. Statik yapılandırmaların

ağ topolojisinde değişimler nedeniyle uygun olmaması bizi yoğunluk-uyarlı proto-

koller ve kendi kendine yapılandırılmış sistem tasarımları geliştirmeye yöneltmiştir.

Bu nedenle, bu çalışmanın en önemli amacı, gelecekteki kablosuz ağları yoğunluk

farkında ve uyarlı hale getirmektir. Bu tezde, alınan sinyal gücünü kullanan yeni ağ

yoğunluğu kestiricileri ve yoğunluk-uyarlı ağ uygulamaları sunuyoruz. Kablosuz ağ-

lar için mesafe matrisi tabanlı yoğunluk kestiricisi, çoklu erişimli uç bulut tabanlı

yoğunluk kestiricisi ve girişim tabanlı yoğunluk kestiricisi öneriyoruz. Kümelenmiş
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tasarsız ağlar, mobil hücresel ağlar ve uçan tasarsız ağlarda, etkili ağ yoğunluğunu

optimizasyon parametresi olarak dikkate alan yoğunluk-farkında ağ kesintisi, iletim

gücü uyarlaması ve kanal kullanımı yaklaşımları geliştiriyoruz. MATLAB üzerinde

Monte-Carlo benzetimlerle beklenen sonuçları doğruluyoruz. Bu tezin çıktıları, ağ

operatörlerinin hizmet kalitesini artırmasına, en iyi dağıtım stratejilerini oluşturma-

sına, operasyonel harcamaları azaltmasına ve ağ kaynaklarını boşa harcamadan artan

kullanıcı beklentilerini karşılamasına yardımcı olabilir. Yoğunluk uyarlı ve uyumlu

uygulamalar, kablosuz ağları kendi kendine organize eder ve çalışma zamanında uyar-

lanabilir hale getirir.

Anahtar Kelimeler: Telsiz ağlar, Tasarsız ağlar, Uçan tasarsız ağlar, Hücresel ağlar,

Hareketli Baz İstasyonları, Baz İstasyonu Yoğunluk Tahmini, Yoğunluk-uyarlıklı ağ

oluşturma, Ağ kapsamı, Ağ kesintisi, Yoğunluk farkında iletim gücü uyarlama.
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CHAPTER 1

INTRODUCTION

As wireless technologies continue to enter users’ lives rapidly, it is also clear that

there will be an increasing demand for wireless data services when this trend is com-

bined with the massive growth of the Internet. Next-generation wireless networks are

expected to be a mixture of data traffic such as messaging, web browsing, and file

operations, as well as traffic that requires real-time and high data rates such as voice,

multimedia content, and games [1]. All of these applications will require increased

quality of service (QoS) and better coverage. Various wireless network architectures

have been designed to support data traffic over wireless media. A wireless network

is able to connect two or more nodes via radio waves. There are various types of

wireless network architectures, such as ad hoc networks, mobile cellular networks,

and flying ad hoc networks that we address in this thesis. The characteristics and

definition of a network node change depending on the network type. For instance,

the nodes can be called sensors for ad hoc networks, small base stations and user

equipment for mobile cellular networks, drones, or unmanned aerial vehicles for fly-

ing ad hoc networks. The distribution and deployment of these nodes, depending

on the requirements, present a critical parameter, the density of nodes. Density im-

plicitly incorporates the number of nodes. Density correlates the number of nodes

in a spatial manner and adds the location information and distance implicitly in the

model. In self-organizing networks, it should be known how the distribution of the

nodes change, in which part of the topology the nodes come together, or which part

of the topology is sparse. The effective area of the topology is crucial to understand

the resolution of the distribution of the nodes so that changing the network functions

based on run-time variations. To do so, we need to know both the number of nodes

and the location information at the same time. In this thesis, we concentrate on the
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network density that is defined as the number of nodes per unit area or volume.

In ad hoc networks many challenging aspects such as mobility management, lo-

calization, sleep scheduling, energy-aware applications for efficient consumption,

clustering, interference management, capacity and coverage require dynamic, self-

configurable and reliable distributed solutions to make network performance bet-

ter [2, 3, 4]. Mobile ad hoc networks (MANETs) draw considerable attention with

respect to their intrinsic characteristics such as dynamically changing network topol-

ogy, limited resources, and multi-hop communication. Therefore, MANETs neces-

sitate self-configurable, self-organizing, energy-aware and density-adaptive solutions

[5, 6, 7]. Clustering is a promising solution for ad hoc networks in terms of network

performance, resource and topology management [7]. In addition, since MANETs

have a dynamic topology because of nomadic nodes or node failures, the density

of nodes in such dynamic networks always changes. The network density should

be considered while performing clustering since it significantly impacts the network

performance and network operations [8].

A new trend for future networks is emerging along with the recent applications, in-

novations, and technologies in cellular networking. In order to meet the requirements

of emerging applications for a larger capacity, cellular networks morph away from

inflexible and centrally-managed infrastructures to large-scale collectives of small

and mobile cells. Cellular networks equipped with mobile and nomadic base sta-

tions present a change in the characteristics of networks toward densified deployments

of mobile base stations (BSs), incessantly changing topologies and dynamic infras-

tructures [9, 10]. The dynamism in the infrastructure reflects itself as unpredictably

base station density introducing some new challenges that have to be managed at

run-time [11]. Most of the changes in the topology are not predictable in advance

[12]. Hence, applications such as capacity planning, coverage control, interference

management, energy conservation and quality of service provisioning have to be criti-

cally modified for efficient and proper operation by taking into consideration of future

trends [9, 10, 13].

Density of base stations in future cellular networks, e.g., 5G networks, will vary in

time and space because of mobile base stations (e.g., cell on wheels and unmanned
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aerial vehicles (UAVs) [9, 14], user-controlled base stations [15] (e.g., femtocells

bought and controlled by end users), green operation (e.g., sleep scheduling of base

stations), and gradual deployment of base stations [16, 17]. Resources in radio access,

transport, and core networks will be wasted if related parameters are not adapted to

the network density [18]. For instance, in Section 6.2.2.1, it is illustrated that any

changes in the base station density affect the network parameters such as transmit

power and network outage [19, 20]. A decrease in the network density increases the

outage probability. If the network is dense, the outage probability will then decrease

with the same transmit power. For adapting the network to the changes in the density

of base stations, robust network density estimators in a three-dimensional field are

required [20, 21]. We assert the third dimension considering drone base stations

(cells on wings).

The need for energy-efficient dynamic networks presents the concept of cell zooming

[22]. Cell zooming concept may include different schemes such as controlling the

physical layer parameters like changing transmit power of the base stations, relying

on relaying, sleep scheduling of base stations, or employing multiple base stations

[23, 22]. Algorithms for cell zooming can be classified into: static and dynamic algo-

rithms. Considering the network density together with the transmit power is presented

as a solution in the scope of cell zooming [20]. Adapting and optimizing the transmit

power with the help of user equipment, reducing energy consumption without switch-

ing off base stations, determining the optimal height of the antenna of base stations,

considering received signal strength (RSS) with a propagation model are presented as

self-healing approaches under the concept of cell zooming [24, 25]. In this thesis, we

control the cell size dynamically with the help of an density-adaptive transmit power

mechanism considering outage probability and effective density of moving base sta-

tions.

Unmanned aerial vehicles (UAVs) have been increasingly used in many aspects of

life, especially in civilian and military applications under the favor of advances in

communication, avionic, and sensor technologies in the last decades [26]. Thanks

to their flexible and capable structures, UAVs can easily be deployed by control-

ling remotely or autonomously [27]. They can be utilized in different applications

such as disaster management, search and rescue operations, smart agriculture oper-
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ations, traffic monitoring, relaying for ad hoc networks [28, 29, 30]. All of these

applications require low-cost, scalable, survivable, faster, and reliable protocols to

provide an efficient data delivery and channel utilization [31]. Instead of a single

UAV, multiple UAVs can come together and communicate with each other to meet

these requirements. Many of the unmanned aerial vehicles construct a typical ad hoc

network, which is called flying ad hoc networks (FANETs) [32, 33]. A FANET is

a special kind of vehicular ad hoc networks (VANET) and mobile ad hoc networks,

but there are some critical differences such as higher mobility degree, more frequent

topology changes, larger distances between nodes (UAVs), and the dimension of the

network [34, 35].

In this thesis, we propose a dynamic slotted-ALOHA-based medium-access control

approach for FANETs. Our dynamic random access approach is composed of two

substantial steps: one of them is the estimating the UAV density, and the second step

is the adaptation of the channel access probabilities of UAVs based on the estimated

UAV density. We claim that by considering the density of UAV whether sparse or

dense we can find an optimum channel access probability of each UAV in addition to

maximize the channel utilization. Our approach guarantees that the density of UAVs

can be known by each UAV or infrastructure. In that sense, we need to answer the

following questions.

What does UAV density mean? In FANETs, the number of UAVs per unit volume

is defined as the density of UAVs measured in nodes/m3 [36, 37]. Why is the UAV

density ever-changing parameter in FANETs? In a FANET, UAV density may con-

tinuously experience temporal and spatial changes due to high degree of mobility in

addition to other factors such as failures of UAVs and instant deployments [38, 39].

Bearing this fact in mind, if the network functions and parameters are adapted to

UAV density, then valuable resources such as communication channel will be uti-

lized efficiently, otherwise the wasting resources will be inevitable. Towards this aim,

FANETs require accurate, fast and simple estimators. Since FANETs have an ag-

ile and highly mobile technology which provides a flexible and fast deployment, in

addition they are battery-powered devices and requires efficient energy consumption

instead of complex computational power. It is important to propose fast, simple and

accurate solutions for FANETs. Since receive signal strength is prone to network
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conditions the accuracy is also significantly important [40]. How can we estimate

UAV density of a FANET requiring three dimensional solutions? Flying nodes have

also a key difference which is the dimension of the network [41]. FANETs require

three dimensional solutions since we need to consider the height of a UAV which is

a special characteristic element of a FANET. We also fill this gap in this thesis. We

propose a three dimensional interference-based density estimator (IDE) for cellular

communication in [42]. We also utilize and improve IDE to perform in FANETs to

enhance channel utilization.

Figure 1.1: An illustration of a FANET scenario where UAVs can communicate by

using a single channel, and the density of UAVs is always changing which constructs

a typical ad hoc network.

Why is the random channel access scheme such as slotted ALOHA protocol (SAP)

important for UAVs’ communication in FANETs? A FANET requires an efficient

collaboration and coordination among UAVs [43]. UAV-to-UAV links can be used in

FANETs instead of UAV-to-infrastructure links as shown in Figure 1.1 [44]. Multiple

UAVs may share the same medium to communicate with each other. We need efficient

protocols to manage the shared medium by preventing the collisions and providing a

fair transmission channel [44, 32]. However, the coordination of all UAVs before the

transmission is inapplicable. Simple random access techniques promise effective and

applicable solution to this problem. However, the random access protocols require
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Figure 1.2: How network performance measures change while the network density is

getting increasing when the slotted ALOHA protocol is employed, where the number

of slots is equal to 1000, and p = 1/63, which is ideal for λ = 4.5× 10−9.

an adaptive scheme to manage resources and control protocol against ever-changing

UAV density in FANETs [45]. The random access approaches can be roughly cate-

gorized into two parts: the methods are based on the dynamic frame length, and the

second one is on the basis of the dynamic random access probability [46]. Random

access schemes such as slotted ALOHA is utilized in many technologies including

Radio Frequency Identification (RFID), Random Access Channel (RACH) of Long

Term Evolution (LTE), Narrow Band Internet of Things (NB-IoT), Weightless, and

satellite communication systems [45, 47, 48]. In RFID technologies a slotted ALOHA

based contention-free channel access mechanism is used. In cellular networks, user

equipments (UEs) utilize contention free or contention-based procedure leveraging

slotted ALOHA protocol to carry out initial network association, make a request for

transmission resources, and perform a connection re-establishment to the base station

(eNodeB) in LTE technology. NB-IoT and Weightless systems utilize also a slotted

ALOHA scheme [47]. In this thesis, we chose a slotted ALOHA scheme by consid-

ering the following reasons: First of all the slotted ALOHA protocol based models

have an analytic simplicity [39]. Moreover, it is implemented and performed eas-
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ily as MAC protocol. SAP also is still utilized for the initial access in both satellite

communication and cellular terrestrial networks as stated in [48].

How can we enhance the slotted ALOHA protocol using with UAV density? In our

thesis, the proposed scheme leverages the estimation of UAV density based on re-

ceived signal strength, which uses the aggregate interference power on a channel.

Since FANET topologies always change, estimating the density of UAVs provides

the effective number of active UAVs information in a frame. By using the density

information which should be as accurate as possible, we can update the access prob-

ability of active UAVs in a slotted ALOHA scheme [49]. In that sense, we can divide

the channel into time slots [50]. The slotted ALOHA protocol has the same be-

haviour [51, 52]. However, the slotted ALOHA protocol has some deficiencies such

as its utilization is not always close to 37% and the nodes do not know how they

should update channel access probability since the number of nodes is always chang-

ing at run-time [33]. Moreover, SAP gives fluctuated utilization results instead of

maximum stabilized results as demonstrated in Figure 1.2 when UAV density is get-

ting denser or sparse. Why and how can UAV density be used as an optimization pa-

rameter for network communication? We claim that each node can independently set

its own channel access probability by estimating the effective number of active nodes

per unit volume. The fact that centralized configuration or real-time centralized mon-

itoring are not applicable due to the difficulties in acquiring global information about

the network and computational complexity of the management and optimization tasks

require solving NP-hard problems [53]. In this thesis, considering the dynamic topol-

ogy of the network, with the possibility of UAV-to-UAV communication, a dynamic

and distributed channel access scheme based on density-awareness is proposed.

All in all, dynamic networks require self-organized solutions to make the network

performance better and provide efficient resource usage. It is clearly seen that there

is a great expectation for the adaptive solutions to control the dynamic topology. We

fill this gap in this thesis by proposing density-aware and -adaptive network protocols

and applications.
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1.1 Problem Definition

Next-generation networks, including mobile ad hoc networks, flying ad hoc networks,

and cellular networks, are dynamic networks since node density, which is defined as

the number of nodes per unit area or volume, always changes due to the human-made

and environmental factors. In order to provide increasing user demands, the network

performance should consider this dynamism at run-time. However, static configu-

rations before and after deployment are not practicable since some problems such

as unsteady coverage, higher interference, and more energy consumption may arise.

To make a network self-organized requires flexible run-time configurations such that

nodes in a network can adapt their parameters such as their transmit power to the

density variations. We need to know the effective density of a network to tackle these

problems caused by dynamic topology. We have to develop robust network density

estimators. By using the density estimators, for instance, network coverage can be

adapted to the network density changes. Since future networks resemble ad hoc net-

works, the topology always changes. Therefore, this thesis addresses adaptation to

these variations by proposing novel network density estimators that can easily be im-

plemented in any wireless communication stack, and new density-aware and -adaptive

protocols leveraging the density as a network optimization parameter.

One of the most important contributions of this thesis is the interference-based density

estimator (IDE), which benefits from received signal strength measurements within

each node’s communication range. Assume that we have a meeting. Participants can

communicate with each other. While the number of participants is increasing, if we

want further participants to hear us, we should raise our voice or vice versa. This case

is similar to a cellular network scenario. Assume that there are mobile base stations

called small-cells in a specified volume. If the number of small cells increases in this

environment, the aggregate interference in the environment increases. One of the out-

comes of this thesis reveals this relationship between the network density and the ag-

gregate interference power, which results in a novel density estimator design for mo-

bile networks. Let us consider a wireless network for a three-dimensional Euclidean

space where there is uniform randomly deployed nodes with a density (nodes/m3).

Assume that a node is selected as a reference node in this network and receives power
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signals from its kth nearest neighbor. Each node can measure received signal strength

(RSS), which is a function of the distance between two nodes. The simple path-loss

model that we choose as the channel model provides received signal strength calcu-

lation between two nodes by considering the estimated distances. We assume that

each node has the ability to measure the aggregate interference power with the sum-

mation of received signal strengths from the closest k neighbors and calculate the

density. Obtaining effective density measurement facilitates optimizing the network

performance parameters and adapting the communication protocols.

In this thesis, we present novel techniques for estimating nodes’ density in a multi-

dimensional Euclidean space. The estimators are based on received signal strength.

The proposed analytic models follow a Poisson distribution, and the simple path-loss

model is used as the propagation model. Then, we present the density-aware outage

model. On top of the network outage and node density, we propose a density-aware

transmit power adaptation technique for coverage control and a density-adaptive chan-

nel utilization protocol in wireless networks where the number of nodes varies in time

and space.

1.2 Motivation

Growing communication technologies and heterogeneous networking architectures

such as multi-access edge computing, cloud computing, cells on wings and wheels,

mobile ad hoc networks add a new dimension to the existing network characteris-

tics. With the arrival of the last developments, the next-generation networks have to

be self-configurable instead of steady configurations in order to meet rapidly rising

users’ expectations, and provide the required services for many applications requiring

fast deployments and real-time data such as smart city applications, smart agriculture,

military services, rescue operations, and disaster management. There is a great ex-

pectation for self-organization and adaptation to run-rime variations in the upcoming

network management solutions. Research on new network management approaches

is widespread in recent years. This trend motivates us to study on this research.

Future wireless networks have a dynamic topology since the number of nodes always

changes because of high mobility, instant deployments, sleep scheduling, green oper-
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ations, and node failures due to natural disasters or human-made factors. To increase

the network capacity and quality of service, the network’s density and the protocols

have to be adaptive to these changes. Otherwise, the resources may not be used effi-

ciently, and problems such as high interference, network congestion, patchy coverage

will increase. If the network performance parameters and protocols in the communi-

cation stack are designed dynamically, network coverage and capacity problems will

lessen. Moreover, we can gain energy efficiency by providing density-adaptive pro-

tocols such as using the adaptive transmit powers. Therefore, making the networks

self-organized and -healed motivates us to research on this topic.

1.3 Methodology

In this thesis, the most important expected result is to make the future wireless net-

work density-adaptive and -aware. In that sense, our methodology is progressed by

answering and analyzing the following open research questions:

• Why do the next-generation networks vary the existing architectures?

• Why are the static and human-made configurations not suitable for the new

network paradigms?

• Why we need self-organized and run-time adaptable network functions?

• Which developments make wireless networks dynamic?

• What is a density-aware dynamic mobile network?

• How does network density change?

• Why is the density of nodes critically important?

• Why must network operators consider the network density as an optimization

parameter?

• Why may the proposed solutions without considering network density fail?

• How can we accurately estimate the effective network density?
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• Which spatial distribution can be used for modeling the network density?

• How can we utilize the network density in networking applications and network

communication stack?

In this regard, our solution method includes the following steps: firstly, we present a

comprehensive analysis to exhibit the opportunities and challenges in density-aware

mobile networks. Secondly, we propose novel RSS-based density estimator models

following Poisson distribution and validate them using Monte Carlo simulations. The

distance matrix-based density estimator is proposed by considering the clustered ad

hoc networks. We also introduce interference-based density estimator, and multi-

access edge-cloud based density estimator for mobile cellular networks. We then im-

prove interference-based density estimator for flying ad hoc networks. As the second

part of our solution, we present the relationship between the network density and net-

work performance parameters. Herein, we also suggest density-adaptive networking

protocols regarding network outage, transmit power adaptation, and channel utiliza-

tion. The density-aware and -adaptive models are also validated by leveraging the

Monte Carlo simulations. Finally, we observe and present the simulation outcomes.

We manifest the relationship between the nodes’ density and network performance

parameters by conducting different analysis results examining the impact of param-

eters on network density and the impact of the network density on other network

performance parameters.

1.4 Contributions

In this section, we summarize the contributions as follows:

• The first contribution is that we present a new paradigm, which is density-aware

dynamic mobile networks, into the forefront by exhibiting dynamic infrastruc-

ture with moving base stations in addition to stating the inadequacy of present

architectures in Chapter 3.

• As the second contribution, a qualitative and novel analysis of network density

is presented. Section 3.2.4 claims that the network density is a crucial param-
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eter since it substantially influences the dynamic network performance. We

classified and explained the density estimators in dynamic networks in Section

3.2.5.

• Challenges and enablers in density-aware mobile networks are extensively ex-

posed by considering the dynamic topology in a mobile network as the third

contribution. In Section 3.3, the opportunities that can be achieved by adapting

the BS density in the current mobile and wireless networks are investigated in a

comprehensive manner. We present an extensive list of research challenges in

Section 3.3 by discussing them in detail.

• We reveal how the density of base stations can be leveraged, and we illustrate

the idea behind this thesis, which is the density-adaptive solutions in Section

3.3. For example a novel aggregate-interference technique is presented to con-

trol the interference based on the density changes. Finally, the most prominent

ideas are summarized and concluded in Section 3.4.

• We propose a simple, fast and accurate density estimator based on distance

matrix in clustered ad hoc networks exhibited in Chapter 4.

• We also present a density-aware and -adaptive transmit power adaptation tech-

nique that considers outage probability in two-dimensional fields. In contrast

to the related work, we focus on proposing a simple, fast and distributed tech-

nique.

In this thesis, we also have contributions for future cellular networks includ-

ing novel density estimators and network outage in order to adapt the transmit

power of base stations for cell zooming in three-dimensional networks.

• The most prominent contribution of this thesis is the interference-based den-

sity estimator presented in Section 4.2. Using an aggregate interference model,

we propose a system design for density estimation of moving base stations

in mobile networks in Section 4.2.2.1. Moreover, we propose multi-access

edge cloud-based network density estimator in a three-dimension field in Sec-

tion 4.2.2.2 following the same approach employed in [54, 55] which was de-

veloped for two-dimensional ad hoc networks. Most of the existing density es-

timators are operational only in two-dimensional Euclidean space. Satisfying
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the requirements for having a three-dimensional estimator in mobile networks

is the gap this thesis fills in. The interference-based density estimator (IDE) is

modeled considering uniform randomly deployed a network of base stations.

We validate the proposed estimator by Monte-Carlo simulations. The simula-

tion results validate the model and show the accuracy of the proposed estimator

is at an acceptable level.

• A novel outage model based on the density is introduced in Section 5.1.2. We

analyze the impact of network density on outage probability in cellular net-

works by employing a simple analytic model validated by simulation results in

Section 6.2.2.1. A concise and simple analysis is the main difference of this

contribution from other studies. We propose an analytic model for comput-

ing the outage probability based on base station density and validate it using

Monte-Carlo simulations. Outage probability analysis in three dimensions is

the novelty of the work. The results of this thesis assert that density-awareness

in cellular networks is required to increase capacity and provide an efficient

network.

• We propose a density-aware transmit power adaptation technique which makes

a relation between the density of base stations, network outage, and transmit

power presented in Chapter 5. By using the proposed density estimator, moving

or stationary base stations will be capable of adapting their transmit power in

a distributed fashion. The results of this thesis assert that density awareness in

cellular networks is required to increase the capacity and provide an efficient

network.

• As a contribution for FANETs, a new density estimator design is the enhanced

aggregate interference based density estimator with a dynamic access probabil-

ity mechanism presented in Section 5.3.

• We also propose a novel probabilistic density-aware channel utilization proto-

col which is called Density-adaptive Slotted ALOHA Protocol (DASAP) ex-

plained in Section 5.3.1. Since a FANET has a three dimensional architecture,

our model provides a three dimensional approach which is also different from

the existing solutions by considering the slotted ALOHA solutions in the liter-
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ature. Compared to the existing alternatives in the literature which are slotted

ALOHA protocol, and stabilized slotted ALOHA protocol (STAP), the pro-

posed design is more stabilized, and can be easily implemented in any wireless

communication stack.

1.5 Structure of the Thesis

In this section, we present the structure of this thesis.

• Chapter 2 summarizes the related work in comparison to our proposals, and

provides important background information regarding the existing solutions.

This chapter reviews the existing studies that show the importance of base sta-

tion density, network outage and transmit power as run-time adaptable and self-

optimized parameters for self-organized future networks.

• In Chapter 3, we present the density-aware mobile networks in addition to op-

portunities and challenges by considering the recent networks’ key paradigms.

This chapter manifests the importance of the network density and how it is

utilized as a network optimization parameter.

• In Chapter 4, we explain our proposed density estimation models for different

types of network such as ad hoc networks, cellular networks, and flying ad

hoc networks. Our proposed models are easily can be implemented for any

wireless network communication stack. We present the density estimators with

the detailed analysis of each of these three network architecture.

• Chapter 5 presents proposed density-adaptive and -aware applications. Density-

aware network outage model for two-dimensional and three-dimensional wire-

less networks, the density-aware transmit power adaptation (DTPA), and density-

aware channel utilization techniques are explained in this chapter.

• In Chapter 6, validation of the analytic models of density estimators and ap-

proaches for density-adaptive and -aware protocols and network parameters in

the communication stack are demonstrated. We use Monte Carlo simulations

and MATLAB environment for this thesis.

14



• Chapter 7 concludes this thesis by bringing important results and discussions

into the forefront in addition to making a summarize of the thesis.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter presents the state of the art about the network density estimators and

approaches using network density as an optimization parameter by discussing the

literature regarding ad hoc networks, cellular networks, and flying ad hoc networks,

respectively.

2.1 Ad Hoc Networks

In ad hoc networks the variations in density impact performance, and introduce many

challenges. Take slotted Aloha, the simplest random access protocol, as an exam-

ple. In dense networks, collisions will considerably degrade the performance of the

network. Whereas, slots will not be utilized if the channel access probability is not

adapted to the density in sparse networks. Density-awareness is required in commu-

nications stacks for resource-efficient operation. Therefore, we need fast and robust

density estimators. We fill this gap in this thesis for clustered ad hoc networks. We

also demonstrate how to apply the proposed estimator by developing a density-aware

transmit power adaptation technique.

Density estimation is easy if nodes are equipped with auxiliary positioning systems

such as GPS. An example application of such location-based proposal is node census

(NC) [54]. Auxiliary systems consume extra energy that may not be adequate for

ad hoc networks where devices are battery-driven. Furthermore, auxiliary systems

may not be reliable because of their intolerance to jamming. For density estimation,

some parameters that are correlated with density have to measured. For instance, the

amount of traffic flowing over a node may be indicative of density of other nodes
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in vicinity. NEST [54] is an example of such neighbor discovery based approaches.

Their accuracy may be low and very much dependent on the measured parameter.

When density estimation is based on the forwarded number of packets as an exam-

ple, the accuracy of the estimator is prone to variations of traffic generation rate of

neighbors.

Another way to estimate density is to employ some parameter that is closely cor-

related with distances among nodes such as the received signal strength (RSS). Re-

ceived signal strengths of packets from neighbors of a node indicate the proxim-

ity among nodes. However, wireless signals are prone to many uncontrollable fac-

tors such as fading or shadowing. These types of estimators that are based on sig-

nal strength may be fast but their accuracy depends on the environmental factors.

Whether or not line-of-sight exists impacts the quality of the estimators. An example

of signal strength based estimator is presented in [54] for ad hoc networks. To com-

pute that estimator in a cooperative fashion may take a long period of time making it

inapplicable in highly-mobile ad hoc networks.

2.2 Cellular Networks

In this section, we present the state of the art by asking the critical questions regarding

the distribution of base stations, the impact of the base station density on network per-

formance parameters such as network coverage and capacity, existing density estima-

tion approaches, the relation between the channel conditions, aggregate interference,

and base station density.

2.2.1 Distribution of Base Stations

In cellular networks, the spatial distribution of base stations in order to obtain opti-

mal deployments has been coming into prominence. The stochastic models including

optimum base station density have paramount importance to analyze the network per-

formance in terms of coverage, energy efficiency and quality of service [56, 57]. With

the improvement of the network, to provide higher capacity and coverage to users, in-

creasing the number of base stations is considered as a handy solution which is called
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densification. Moreover, with the proliferation of base stations on wheels and wings,

small cells, and the user-controlled base stations always result in topology changes in

the network. In that sense, analyzing the spatial distribution of base stations by using

the theoretical models is always a principal topic in wireless networks and still an

open research question for next-generation networks [58]. Although there are differ-

ent statistical distributions models such as Poisson, lognormal, Weibull, generalized

Pareto and alpha-stable in order to model the base station spatial density, most of the

studies leverage Poisson due to tractability as stated in [58]. In addition to the base

station density, the recent studies reveal that the stochastic models including PPP pro-

vide tractable models to control the cell size by considering the coverage probability

and adaption of transmit power [56, 59, 60]. To provide an enhanced quality of ser-

vice, mobile base stations and drone base stations can be used as fast deployments,

however, these networks require to transmit power adaption in terms of energy ef-

ficiency, trajectory plans, and user connectivity [61, 62, 63]. Transmit power can

be minimized by increasing the number of base stations until the network density

reaches a threshold value. The optimal network density provides an optimum power

consumption and enhanced coverage as stated in [64].

2.2.2 Existing Density Estimation Methods

Since future cellular networks has a dynamic topology, the need for the existence of

robust density estimators is an open issue. Existing density estimators can be clas-

sified as (1) location-based; (2) neighbor discovery based, and (3) received signal

strength (RSS) based methods. Location-based methods rely on GPS; e.g., node cen-

sus (NC) [65]. Auxiliary systems consume extra energy, and the density estimate is

subject to localization errors. Neighborhood discovery based methods estimate den-

sity based on inferences drawn from in-network communication; e.g., NEST [66].

The accuracy depends on the traffic amount. The RSS-based density estimators are

proposed in [54, 55] for two-dimensional ad-hoc networks. This type combines the

merits of location-based and neighbor discovery based estimation and overcomes

their drawbacks. However, the time required to compute the estimator may be long.
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2.2.3 How Density of Base Stations affects Network Coverage and Capacity

Ultra-dense networks (UDN) are expected to provide high capacity. The potential of

higher frequency bands is analyzed in [67]. In that work, UE and BS density, UE dis-

tribution and energy efficiency in a network are used to calculate transmit power by

considering signal-to-interference-plus-noise ratio (SINR) for providing better cover-

age. In a mobile network consisting of a large number of uniform randomly deployed

BSs, the outage probability decreases with an increasing ratio of mobile-to-BS den-

sity [68]. An interference model for wireless networks consisting of uniform ran-

domly distributed nodes is combined with different types of popular fading models

in [69]. This model considers the interference power by using a partial cancellation

method and outage probability calculated by using the nearest interferer instead of the

total interference power since the nearest interferer dominates the total interference.

A stationary receiver is considered as a base station for a given user and the same

transmit power is considered for mobile units.

In the case of 5G networks, connectivity and coverage are two important optimiza-

tion parameters related to each other, and designers should consider them jointly as

in ad hoc networks [70, 71]. It is underlined that the connectivity problem may not be

handled without adapting the transmit power to the network via presenting the results

with two-dimensional simulations and models applying the connectivity of nodes,

transmit power and density for an ad hoc network. As the dynamic and distributed

nature of the future networks’ architecture, mobile ad hoc networks have a distributed

and self-organized structure [72]. One of the sample applications of MANETs is the

vehicular ad hoc networks. [73] states that such networks have a dynamic structure

that necessitates adapting the transmit power to some parameters network such as dis-

tance between mobile nodes, density, the antenna type and type of broadcasting for

enhancing network performance. Density and distance are the selected parameters

for adapting transmit power in [73]. Density refers to the number of nodes in a net-

work per unit area. In dense networks, the distance among nodes will be shorter. On

the other hand, the distances among nodes will be larger when the network is sparse.

Hence, if the network is sparse, the transmit power should be increased based on the

distance between the nodes, but if the network is dense then we need less transmit

20



power since the distance between nodes will be smaller. However, we should con-

sider the outage and the interference in the network [13, 74]. When the network is

sparse, the probability of outage will be higher and when the network is dense then

the interference between nodes will be higher if the transmit power is not adapted to

these changes.

2.2.4 Relation between Aggregate Interference, Path-loss and BS Density

Understanding the characterization of aggregate interference power in terms of the

base station deployment and interference management can provide better performance

for homogeneous and heterogeneous networks [75]. Joint power control and user

scheduling are proposed for ultra-dense networks by considering dynamic channel

conditions and unknown traffic demands in [76]. The aim of this model is to ensure

energy efficiency while supplying the quality of service and reducing the number of

UEs in outage depending on queue capacities of BSs. The network outage is consid-

ered the fraction of undesired UEs whose handovers cannot be admitted because of

the queue capacity limitations, and the density is determined as the average inter-site

distance (ISD) for a large homogeneous UDN deployment. In addition to homoge-

neous cellular networks, a heterogeneous network is considered, and a model con-

sisting of optimal BS density by conceiving the QoS limitations is analyzed in [77].

The proposed model aims at making the network energy efficient and analyzes the

effect of network density on cost. A threshold value obtained by using path-loss and

transmit power of the relevant BS is used to define outage probability.

With the proliferation of small cells, the fractal characteristic of the coverage for cel-

lular networks is more prone to the path-loss effects [78, 79, 80]. In small cells, the

characterization of wireless propagation environment is volatile and complicated as

stated in [78] on the occasion of not only regular but also non-uniform obstructions

arising from buildings, infrastructures, tress, and erratic weather conditions. Both the

line-of-sight and non-line-of-sight signals affect the path-loss exponent value or path-

loss coefficient. Two different path-loss models are introduced, which are isotropic

and anisotropic by considering propagation directions. Isotropic models are com-

monly used in the literature to make models simple as much as possible. However,

21



due to the fractal characteristics of cellular networks, the anisotropic models can be

leveraged to make network models more realistic [79]. In this thesis, we exploit a

simple path-loss model which is simplified from Winner II channel models to pro-

pose simple and easily tractable models [81]. This model has already been analyzed

in [54], and it is illustrated that the RSS-based approaches including simple path-loss

model may be used for real-life experiments with 10 percent error rate.

In this thesis, unlike the existing works firstly we propose novel base station density

estimators, the interference-based density estimation and multi-access edge cloud-

based estimation based on received signal strength, which are operational in a three-

dimensional environment. Secondly, two proposed models to control the network out-

age and cell size are simple and compact solutions. Finally, we present a qualitative

and elaborated analysis of different network parameters at the same time depends on

the network density. The proposed approaches leverage a three-dimensional Poisson

Point Process distribution which provides easily understandable and tractable models.

2.3 Flying Ad Hoc Networks (FANET)

Although the use of unmanned aerial vehicles has been increasing due to their flexi-

ble and easily deployable structures, the nature of the flying ad hoc networks where

each of UAVs have a data to send and all communication is performed in one wireless

shared medium brings up a question [51]: How we can prevent collisions due to the

same transmission attempts at the same time and each node can access the channel to

make communication with other nodes or a sink point such as a base station in a fair

way? The random access schemes are a handy solution to these questions. At this

point, the authors in [82] point out the importance of the random access approaches

and develop an efficient random access graph-based protocol by utilizing the succes-

sive interference cancellation method in which the collision slots are transformed into

a transmission recovery slots.

The pure ALOHA approach allows the UAVs to make a transmission whenever they

have a packet to send. However, in slotted ALOHA, each UAV’s transmission is based

on a random access scheme where time slots are created for each UAV can send their
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packets depending on an access probability at the beginning of the time slots [46].

The random access approaches such as slotted ALOHA as a medium access control

provide an independent but an access probability-based transmission medium without

the coordination between the nodes [83]. With such protocols, while some nodes

make a transmission, the others become listeners by considering the probability of

access. They reveal how the importance of the accurate estimation of the number of

active nodes/users is, and their dynamic access probability scheme can provide an

efficient approach.

In FANETs, the number of UAVs may not be known certainly. Hence, random access

protocols can be developed for these scenarios. In this case, the protocols need an

accurate estimation of the number of active users to better network performance [84].

If the number of active users is obtained, then there are different types of random

access schemes that consider the estimation result [85]. Estimating the number of

active transmitters during the current frame, then tunning the access probability in the

next frame approaches is proposed in [46]. To optimize the channel access probability

and make it dynamic, the density of nodes is leveraged as presented in [86].

In random access techniques, each node’s transmission probability can be different,

and these probabilities can be determined based on the number of nodes. In that sense,

[49] proves a strong relationship between a dynamic transmission probability, channel

utilization, and the number of nodes. In a slotted ALOHA-based ad hoc network with

a multi-hop architecture, each node can transmit their packets based on a different

transmission probability, and these probabilities can be updated by using the num-

ber of each node’s neighbors. A flying ad hoc network is a special kind of vehicular

ad hoc network. Hence, the solutions for such an ad hoc network can be consid-

ered candidate approaches for FANETs, although there is room for improvement if

we consider the differences between these two network architecture and features. In

VANETs, the mobility factor affects the network’s capacity and connectivity due to

the ever-changing density of vehicular. To optimize a vehicular ad hoc network chan-

nel throughput and transmission probability of vehicular, the density of vehicles and

slotted ALOHA protocol, which is analytically simple, is proposed and the dynamic

access probability for a vehicular ad hoc network [39].
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All in all, since slotted ALOHA is easily implemented in the network stack, and

the impact on the UAVs’ or nodes’ density is presented, a dynamic access scheme

implementing the slotted ALOHA as the communication protocol based on the ef-

fective density is proposed in three-dimensional for FANETs in comparison to other

researches.
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CHAPTER 3

DENSITY-AWARE MOBILE NETWORKS : OPPORTUNITIES AND

CHALLENGES

We experience a major paradigm shift in mobile networks. The infrastructure of cel-

lular networks is becoming mobile since it is being densified also by using mobile

and nomadic small cells to increase coverage and capacity. Furthermore, the inno-

vative approaches such as green operation through sleep scheduling, user-controlled

small cells, and dynamic end-to-end slicing will make the network topology and avail-

able resources highly dynamic. Therefore, the density of dynamic networks may

vary in time and space from sparse to dense or vice versa. This thesis advocates

that density-awareness is critical for dynamic mobile networks. Mobile cells, while

bringing many benefits, introduce many unconventional challenges that we present in

this thesis. Novel techniques are needed for adapting network functions, communi-

cation protocols, and their parameters to the network density. Especially when cells

on wheels or wings are considered, static and man-made configurations will waste

valuable resources such as spectrum or energy if the density is not considered as an

optimization parameter. In this thesis, we evaluate the dynamicity of nomadic cells

in density-aware mobile networks in a comprehensive and articulable way. The main

challenges we may face by employing dynamic networks and how we can tackle these

problems by using a density-oriented approach are discussed in detail. As a key con-

cern in dynamic mobile networks, we treat the density of base stations, which is an

indispensable performance parameter. For the applicability of such a parameter we

present several potential density estimators. We epochally discuss the impact of den-

sity on coverage, interference, mobility management, scalability, capacity, caching,

routing protocols, and energy consumption. Our findings illustrate that mobile cells

bring more opportunities in addition to some challenges which can be solved, such as
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adapting mobile networks to base station density in this chapter.

3.1 Introduction

The latest technology in a mobile cellular network has been the stationary, relatively

inflexible, and centrally-managed architecture which is not scalable. The recent net-

works have already encountered the spectrum restrictions. To cope with coverage and

capacity problems, we have to make cellular networks dense by employing mobile or

nomadic cells. However, deploying more mobile base stations (BSs) may result in

huge interference and redundant coverage causing wasted energy [87]. In such cases

centralized solutions are not operable because of computational complexity of the

jobs and the challenges in globally obtaining dynamic network information. For in-

stance, optimization of network coordination and management require overcoming

NP-hard problems in general.

The evolution and proliferation of the technologies bring along rapidly increasing

users demands such as more bandwidth, a higher speed of the services with lower la-

tency, and the Internet anywhere [88]. To meet these requirements and to enhance the

quality of service (QoS), 5G networks are introduced with a new network architecture

and novel technologies to ensure low latency, higher bandwidth, and to support higher

mobility rates. In order to increase the network capacity, the cell densification is pre-

sented as a promising solution. Densification, which is increasing the number of base

stations, brings up the small cell paradigm. Moreover, future network architecture in-

troduces novelties compared to the present network architecture such as cloud-based

core network, virtualization, slicing, user-controlled or user-dependent base stations

(such as Wi-Fi routers in homes or offices), moving base stations (drones, base sta-

tions on wings or wheels), and self-organization. Accomplishing all these enablers

also poses many challenges in the dynamicity of the network [88, 89]. Specifically,

due to the high flexibility of 5G networks’ topology, the number of base stations may

change the topology by either reducing or sometimes by increasing in a specific area

of the network. All these aspects lead to a dynamic infrastructure that is not pre-

dictable in advance [90, 91]. Herein, it should not be overlooked that the density of

base stations is ever-changing. If this erratic parameter is not handled as an optimiza-
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tion parameter, it will negatively affect the network performance. For instance, in dy-

namic networks due to higher interference, insufficient coverage, massive power con-

sumption, and higher mobility ratio, the limited network resources may not be used

very efficiently [89]. Therefore, new solutions should consider the effective density

of base stations to adapt the network performance to the highly dynamic structure.

As the network enlarges and becomes dynamic, its management and control become a

symptomatic issue. Operator intervention requirements have to be drastically reduced

by employing self-organization. There is a research gap between the state of the art

and the ambition of achieving a self-organized, adaptive, and flexible networking

architecture [92].

In this thesis, we claim and illustrate that we need to answer the following open

research questions arising from the dynamism of the future networks: How do the

existing architectures differ from the future networks? What does a density-aware

dynamic mobile network express? Why is the network density an erratic parameter?

Why is the density of BSs crucially important? Why will the solutions fail if the BS

density is not considered as an optimization parameter? How can the density of BSs

be measured at run-time? How can the BS density be utilized in network applications

and communication stack? Answering all of these questions is the aim of this thesis.

3.2 Why is Density-awareness Important?

In this section, we bring to the light future paradigm changes in mobile networks. We

clearly explain what the definition of a density-aware mobile network is, and what

its differences from the present networks are. We claim that the present architectures

are inadequate. In these discussions, we encounter that the network infrastructure

changes, which cause variations in the number of base stations in a specified area.

Therefore, in density-aware dynamic networks, network density will change inces-

santly. This section qualitatively analyzes the impact of BSs density on the perfor-

mance of dynamic networks, and discusses density estimator algorithms and catego-

rize them based on their features.
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3.2.1 Paradigm Changes in Mobile Communications

The control domain of operators has notable paradigm shifts. Formerly, network

operators used to manage and install BSs. Before and after the deployments of the

BSs, optimization was applicable. Failure mitigation, performance monitoring, and

corrections were performed by the network operator throughout the lifetime of a BS.

However, this paradigm will diverge greatly in future mobile networks, and network

operators’ control over cell deployment will be partially lost. We will clarify in this

chapter.

The infrastructure of mobile networks has also paradigm change. In the past, stochas-

tic positions of the user equipment (UE), and stationary network infrastructure were

assumed. In the future, mobile base stations may cause a dynamic infrastructure. For

example, drones may be leveraged for providing service to handle the coverage prob-

lems [93, 94, 95]. Assume some sample scenarios where the density of BSs and UEs

may dynamically change. In these scenarios, mobile cells may change the topology

of mobile networks. Due to the mobility in addition to many other factors explained

in this chapter, the infrastructure of ad hoc networks and mobile networks have simi-

lar dynamism. As a result, the density of base stations vary unpredictably. Assume a

scenario where some emergency situation such as a sports event or a car accident, the

density of UEs may increase unexpectedly. The event area is initially sparse. How-

ever, right after the traffic accident, the UE density increases significantly. Therefore,

to provide the quality of service for capacity and coverage, mobile BSs are located in

the environment. In emergency cases, pre-deployment solutions may not be feasible

[95]. Communication services have giant importance for disaster management. Natu-

ral or man-made disasters such as earthquakes may damage communication services

with stationary infrastructures. Leveraging drone BSs may provide a handy solution

for establishing a communication infrastructure in these areas and for overcoming

coverage problems in blind spots. Drone BSs can also be utilized for acquiring data

from rural areas which does not have a communication infrastructure. For example,

drone cells may be considered as mobile sinks in massive machine type communica-

tion and in applications of the Internet of Things scenarios [96].

Variations in the number of user equipment and base stations in a specified area result

28



in dynamic topology. This variation is not foreseeable in advance since it changes at

run-time. If the user demands increase, the number of associated base stations should

be increased to meet the requirements caused by raising user demands. However, in

such cases, the density of base stations which is dynamically increased, some prob-

lems may occur such as unnecessary energy consumption and high interference[97].

Therefore, network density should be taken into consideration as a network optimiza-

tion parameter to promote dynamic network solutions. If the critical level of base

stations density are considered, the shared resources will be used more effectively,

and the quality of service can be improved.

Assume a different scenario which is a derby football match. During this derby, flying

base stations are utilized for providing coverage and improving the quality of service.

Before and after the derby match, in the stadium the number of user will be low.

However, during the footbal match it will be considerable higher. Instead of deploying

stationary cells, flying base stations may be located on the stadium to provide the QoS

needs of users via getting closer to them. More BSs can be additionally deployed in a

dynamic fashion Depending on the density of users, which in turn varies the density

of base stations.

3.2.2 Why Does Infrastructure Become Dynamic?

In the next generation networks mobile cells have a enormous potential to be utilized.

In addition to cells’ mobility [98] [99], other dynamism factors are as follows:

• User-controlled BSs such as controlled femtocells by users: When base stations

are leveraged in customer places like homes, users may make base stations

active or passive based on their requirements [100].

• Green operation such as sleep scheduling of BSs: Base stations may perform

duty-cycling to provide energy conservation. In such schemes, the density of

base stations will change over this period [101].

• Incremental deployment: When base stations are gradually deployed, then the

network density will change during the deployment process [102].
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• Failures in the topology and Loss of control: Since the distribution of base

stations is stochastic, Deterministic deployments are not suitable anymore [15].

If we consider scenarios above, we can make a list for the major advantages of utiliz-

ing nomadic or mobile cells as follows:

• Mobile cells may be instantly deployed to remove coverage holes [103].

• In rural areas drone cells may provide ubiquitous coverage [104].

• Mobility of drones cells can facilitate the group mobility by in-lining with

the mobility of users, decreasing the costs of mobility management operations

[105].

• Mobile cells amplified with fog/edge computing, may promote a closer pro-

cessing power for the end-users with less power consumption and higher data

rates[106].

• Data rates for broadcasting can be enhanced especially for the UEs positioned

at cell edges [107].

3.2.3 Why Will The Present Architectures Fail?

It is not applicable today for current mobile communication networks to handle these

paradigm variations due to their restrictions [108, 109, 110]:

• Manual and static configurations, inflexible architecture, : In case of a dynamic

infrastructure, it is obvious that the static or manual configurations will waste

resources. Manual configurations are more prone to human errors result in

inflexible network if the network topology is dynamic. Softwarized networks

can be handy solutions to these problems.

• Deprivation of common interfaces and control functions: Real-time manage-

ment is not possible due to vendor-dedicated and vendor lock-in software and

hardware components requiring expert system managers. Network virtualiza-

tion and softwarization may facilitate to handle this problem.
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• Restricted backhauling capacity: In the network architecture when we consider

the capacity of existing fronthaul, backhaul, and backbone, it can be said that

among network entities, a small amount of data can be transferred. To meet the

requirements of the mentioned paradigm variations by coping with the above

restrictions, mobile, nomadic, or stationary small cells which are heterogeneous

networks can be a suitable approach. Integrated access backhaul may let us

overcome this problem via using relays that allow to deploy nodes flexibly for

coverage and capacity enhancement.

• Not context-aware network, but connection-centric: Since traffic requirements

have a significant change in time and space, content-delivery services are re-

quired for the future mobile networks. However, the existing connection-based

networks are not suitable to overcome such a high traffic load. To control the

context information for obtaining more knowledge about network conditions,

including the density of nodes, mobility of network items, and traffic is not

accessible within existing networks.

• High latency: In the existing network architecture, user applications such as

websites and video streaming, can generally tackle the latency by using caching

techniques in the network model. However, since remotely-controlled robots,

autonomous cars, health monitoring tools, automation systems, and drone cells

require real-time data, high latency is undesirable problem in such systems

throughout their communications.

3.2.4 Impact Analysis of Base Station Density

A qualitative analysis of the impact of BS density on various mobile network param-

eters and performance measures is shown in Table 3.1. The analysis is based on the

following simple scenario. Assume a set of homogeneous BSs are incrementally and

randomly deployed in a field-of-interest. Suppose BSs are initially deployed sparsely,

and service can only be given in a cluster of isolated coverage areas. As the density of

BSs (λ) gradually increases (e.g., more and more BSs are deployed), isolated clusters

merge and produce a huge cluster at a critical density (λc). At this stage, the global

topology (macroscopic properties) of the network changes, and this phenomenon is
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Table 3.1: The qualitative discussion of the impact of the density regime on network

performance.

Sparse (λ

<λc)

Phase Tran-

sition

Dense (λ

>λc)
References

Network capacity low maximum
below maxi-

mum

[111, 112,

113, 114]

Inter-cell Interfer-

ence
low to be managed high [115, 116]

End-to-end

throughput
low maximum

below maxi-

mum

[117, 118,

119]

Coverage patchy
resource-

efficient
redundant

[118, 120,

121]

Mobility manage-

ment
disruptive optimal high cost

[118, 120,

121]

Number of relay

base stations
few minimal large

[122, 123,

124]

Possibility of multi-

path routing
none very low high

[122, 123,

124]

Redundancy as-

sisted topology

control

N/A possible possible [125, 126]

Resilience to fail-

ures
N/A low high [127, 128]

Energy consump-

tion
low optimum high [129, 130]

Spectral efficiency low maximum
below maxi-

mum
[131, 132]

CAPEX and OPEX low optimal high [133, 134]

called phase transition.

The macro-behavior of the system below and above the critical density λc is consider-

ably different. The coverage area as an important component in the network consists
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of active BSs in the dense networking regime where λ > λc. Whereas, the network

is partitioned, and there exist coverage holes in the sparse networking regime where

λ < λc. The macroscopic behavior of the network changes from disrupted network-

ing (i.e., isolated coverage areas having large capacity) to degraded performance (full

coverage with high interference) as the density increases. In this transition, at some

density slightly larger than λc, resource-efficient operation of the network is possible.

Therefore, the performance of the network is largely dependent on its topology that

can be represented as a graph.

In graphs, a phase transition is a concept where the probability of the presence of a

feature in a graph jumps from zero to one rapidly at a threshold value of the control-

lable parameter. The left- and right-hand sides of the threshold can be considered as

static and chaotic regions. The region around the threshold is referred to as the phase

transition region where innovations occur in a resource-efficient fashion.

Take transmit power adaptation as an example. At a critical threshold of the transmit

power, the connectivity of the network jumps from disconnected to highly-connected

state [135]. A level of transmit power less than the threshold causes a disconnected

network, and the network is dysfunctional. Whereas, increasing the transmit power

beyond the threshold causes a fully-connected network while increasing the interfer-

ence and wasting resources. Operating at the critical threshold facilitates resource-

efficient networking.

Similar phase transitions can be observed in many network design problems that are

NP-hard such as drone cell placement [136]. The complexity of such problems in

the phase transition region surges. The centralized solutions of such problems do

not scale in large networks. The network has to configure itself locally for using

resources efficiently through cell selection [137], service time maximization [138], or

bandwidth allocation [139].

The macro-behavior of the system at different density levels (below and above the

critical density λc) is described in Table 3.1. As the density of small cells increases,

the coverage and capacity will grow due to a high level of spatial multiplexing. On

the other hand, as the density of a network increases, the capacity will eventually

converge due to interference in dense networks [111, 112, 113, 114]. Although, the
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total network capacity will be low in sparse networks due to the coverage holes and

partitioning, the received inter-cell interference will be reduced due to the low amount

of interference. On the other hand, in dense networks where the cells are located

very close to each other, the amount of inter-cell interference is high. This can be

managed by optimizing the density of active BSs [115, 116]. The densification of

networks in fact can provide more available channels and increase throughput [117,

118, 119]. Moreover, the cost of mobility management escalates in dense networks

due to the very high number of handovers. Whereas, in sparse networks, the mobility

support would be disruptive due to patchy coverage [118, 120, 121]. Concurrent

multi-path transfer, multi-homing and utilization of relay BSs also become infeasible

in sparse networks due to possible coverage holes in the network [122, 123, 124].

Topology control by exploiting redundancy in dense networks is possible, which can

be useful in flexible networks [125, 126]. For instance, sleep scheduling of BSs can

be employed considering the load in the network. The same fact also increases the

resilience of the network to failures in dense networks [127, 128]. The amount of

energy consumption will increase by deploying more BSs. Therefore, the optimal

density of BSs (λc) is vital for enhancing energy efficiency in networks [129, 130].

Spectral efficiency (SE) will improve until the density of BSs reaches to its critical

level (λc) and will dramatically degrade by over-deployment of BSs, due to the growth

of the overall received interference in the network [131, 132]. Moreover, although

when density of BSs is below λc, the capital expenditure (CAPEX) and operational

expenditure (OPEX) can be low due to the sparsity of BSs, it can not satisfy the

minimum QoS requirement in the network. However, when the number of BSs per

unit area is around λc, although the cost of implementation and maintenance may

increase, we can satisfy all UEs QoS requirements with the minimum cost [133, 134].

In dynamic dense networks, collisions over random access channels, high congestion

levels, and inconstant capacities may be the significant challenges [140]; whereas in

sparse networks, partitioning is the key challenge [141]. Dynamic networks have

to collaborate locally for coverage preservation, mobility management, interference

control, and efficient resource allocation. However, the state-of-the-art architectures

do not rely on localized cooperation. For carrying out those tasks in a density-adaptive

fashion, BSs have to discover their neighborhood or estimate the density in an inces-
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santly changing topology. Edge computing can be a valuable technology towards this

aim by providing a higher-level perspective and having more processing power with

respect to BSs; it can collect and evaluate the required data for density measurements

from BSs (such as received signal strength (RSS), channel quality indicator (CQI),

SINR, etc.) and provide more accurate results [42, 142].

As the cells become sporadic and their size changes, the mobility management will

be more cumbersome. When large cells are employed, paging costs are lower since

the destination terminal is searched in fewer cells. When the cell sizes become small,

paging consumes valuable in-band resources since a large number of cells are paged,

considering a constant location area mapping. Therefore, real-time decentralized

management of cell sizes and coverage may have an adverse impact on mobility man-

agement [143].

3.2.5 How Can the BS Density be Estimated?

As explained in the previous sections, the control of the BS density is important

for an efficient network operation. An important question is then how to estimate

the BS density. The network density is highly correlated with the location of BSs,

the neighborhood structure, the quality of received signals from other BSs or user

equipment, and population data [144]. We can roughly categorize the network den-

sity estimation approaches as shown in Table 3.2. Location-based estimators employ

auxiliary positioning systems such as global positioning system (GPS) that consume

extra energy [65, 145, 146, 147]. Neighborhood-based estimators, which are not

scalable and suffer from inaccurate results, infer density from a census on packet

traffic [91, 148, 149, 150, 151, 152]. Power-based estimators combine the merits

of location- and neighborhood-based estimators [42, 55, 153, 154], although RSS is

not a robust distance estimator. While some of these approaches are designed for ad

hoc networks, they can generally be employed in any wireless network with minor

modifications.

In cellular networks, the spatial distribution of BSs is vital for the analysis of connec-

tivity, coverage, and performance [152]. The proper adjustment of spatial distribution

and configuration of cells in simulators produce credible models which are important
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Table 3.2: Approaches for estimating density of nodes in a network.

Category Requirement Advantages Disadvantages References

Location-

based

The coor-

dinates of

devices,

location pre-

awareness

(e.g., GPS)

Ease of inte-

gration

Extra energy

consumption,

errors in GPS

measurement

[65, 145, 146,

147]

Neighborhood-

based

Monitoring

and analyz-

ing traffic,

beaconing

and neighbor

discovery

Existing func-

tions in a

stack can be

employed

Not scalable,

limited to

transmission

range, accu-

racy depends

on traffic

[91, 148, 149,

150, 151, 152]

Power-based

Received sig-

nal strength

or SINR

measurements

Ease of in-

tegration, no

other auxil-

iary function,

or monitoring

traffic of

network

Sensitive to

channel char-

acteristics that

may not be

uniform in a

field

[42, 55, 153,

154]

for capacity planning. In [152], the information of BS location obtained from differ-

ent operators in Germany is used to find out the utility and restrictions of population

data as a base for similar cellular deployments, and it is shown that the density of the

network is highly correlated to population data. They also figure out that relatively

populated areas can be considered as a reasonable co-variate to model large-scale de-

ployments. This study validates that predicting the number of BSs per unit area based

on the population density is sensible only for the small areas with partially populated

areas. Proposing accurate density estimators is an open research challenge with huge

potential in stochastic geometry, especially for non-uniform deployments [58].

To summarize, current mobile networks, due to their limited backhauling capacity,
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static and manual configurations, have a limited flexibility to cope with the dynamic-

ity in future networks. However, the density-awareness in future network architecture

is essential because BSs may also be mobile, such as the drone cells, yielding a ran-

dom infrastructure. Therefore, dynamic network solutions should consider the net-

work density as a performance optimization parameter for enhancing the utilization in

the resources, and for improving the network QoS. To do so, we need an appropriate

density estimator for adapting network parameters such as the modulation techniques,

antenna types, and transmit power to the estimated BS density in a dynamic fashion.

In the following, we evaluate the potential difficulties we may encounter in dynamic

mobile networks in addition to potential solutions to mitigate these difficulties.

3.3 Challenges and Opportunities

Various opportunities and challenges are accompanied by the future 5G networks

[155, 156]. Table 3.3 and Table 3.4 categorize and summarize these challenges by

featuring the enabler technologies or solutions. Since a feature of dynamic mobile

networks may provide an opportunity together with some research challenges, we

analyze research challenges and its possible solutions by discussing benefits and en-

ablers specifically. In this section, by considering the density-awareness perspective,

we introduce possible solutions for specified challenges, which we will face in the

next generations of networks.

3.3.1 Densification

In order to satisfy 5G networks requirements, including higher data rate for a massive

number of network entities, densification is introduced as a key feature to enhance

the system capacity requirements as stated in [157, 158, 159, 160]. By densifying the

mobile networks through employing small cells, higher SINR can be achieved, which

can provide a higher data rate for individual UEs and reduce the latency in the network

[203]. One of the major drawbacks of small cells is limited coverage area they provide

due to their low power functionalities. Moreover, small cells can also provide service

for a low number of UEs due to their limited resources [89, 160]. Therefore, we

37



Table 3.3: The challenges-I of dynamic mobile networks and some of the existing

enabling technologies that can be employed to address these challenges.

Challenges Solutions References

Densification
Small cells, density-adaptive algorithms,

coverage preservation techniques

[88, 89, 157,

158, 159, 160]

Quality of ser-

vice and experi-

ence

Small cells, multi-homing in user plane,

MEC, mu-MIMO,
[58, 161, 162]

Modulation

techniques

Density aware small cells, cyclic-prefix in-

sertion, adaptive MCS

[163, 164, 165,

166]

Ubiquitous cov-

erage and con-

nectivity

Cells on wings or wheels, network densifi-

cation, D2D, relaying, ad hoc networks of

BSs (MANET, FANET), NTN

[167, 168, 169]

Mobility man-

agement

Multi-homing, group mobility support,

MEC, lightweight-EPC, motion and de-

ployment planning, DTN, virtual cell

[133, 170, 171,

172, 173]

Reliable com-

munication

Multi-homed protocols, dual-connectivity,

fault tolerance techniques, MEC

[174, 175, 176,

177, 178, 179]

Scalability

Distributing management and resource

allocation, inter-numerology interference

management NFV, SDN, C-RAN, NTN

[180, 181]

Antenna Type

Selection
Directional, Omnidirectional, MIMO [182, 183]

Dynamic (in-

band) backhaul-

ing

Mobile or nomadic cells, mu-MIMO, IAB [184, 185]

Low latency
Distributed and collaborative caching,

D2D, mobile cells

[186, 36, 187,

188, 189, 190]

Energy effi-

ciency and green

operations

Small cells, MEC, sleep scheduling, cell

zooming
[142, 160]
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Table 3.4: The challenges-II of dynamic mobile networks and some of the existing

enabling technologies that can be employed to address these challenges.

Challenges Solutions References

Management

of dynamic

architecture

SDN and NFV, slicing, orchestration,

self-organizing and self-healing functions,

density- and dynamics-aware protocols,

antenna directivity, tilt or antenna count,

MEC

[130, 131, 191,

192, 193, 194,

195]

Transmit power

adaptation
MEC, cell-zooming techniques [130, 196]

Interference

management

MEC, density- and interference-aware

protocols, e-ICIC

[148, 197, 198,

199, 200, 201,

202]

need to tackle these problems by employing density-adaptive algorithms, which can

optimize the density of BSs in order to prevent coverage holes in the network while

UEs can achieve higher throughput by connecting to BSs with higher capacity and

lower load. Many research studies consider and manifest that small cells resemble

random ad hoc networks, which is a well-known observation [88]. In such dense

networks the area spectral efficiency is directly susceptible to base station density, as

stated in [88].

3.3.2 Quality of Service and Experience

Channel quality may vary in time and frequency. In milli- meter-wave (mmWave)

band small cells, gNBs are equipped with multi-user, multiple input, multiple output

(mu-MIMO) antennas, and user mobility is low, one may assume dynamic channels

(due to the high attenuation level in mmWave band) while the channel quality does

not vary considerably in time [161]. In this case, user multiplexing over different

carriers is a smarter option compared to time-domain channel scheduling. Depending

on the physical layer dynamics, the radio link control has to support segmentation

and concatenation of the frames. This is a clear requirement for a cross-layer design.
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Moreover, multi-homing techniques can also be employed for enhancing QoS [162],

hence schedulers also have to deal with the reliability of connections and cross-link

interference management, which can increase the processing load in the network.

Wireless signals are considerably attenuated while penetrating inside the buildings

(a) Initially, the femto BS is operational on the first floor and users,

instead of using outdoor BS, connect to the mobile network through the

femto BS that can enhance QoS and conserve energy.

(b) The household decides to move the access point to the ground floor

which causes an uncontrolled BS failure for some time.

Figure 3.1: A scenario where the household is able to change the location of a femto-

cell deployed inside the house.
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in mobile networks. The attenuation substantially decreases the SINR, and conse-

quently, the achievable data rates. Instead of outdoor deployments, indoor small cells

may employ lower power levels and provide higher data rates compared to outdoor

BSs. This scheme reduces energy consumption, improves the quality of experience

(QoE), employs the spectrum efficiently, facilitates the use of licensed bands for home

networking, lowers the level of electromagnetic radiations, minimizes the costs for the

mobile operator and provides true ubiquity and coverage for subscribers. However,

operators lose their control over BS deployment. As an example, there is an indoor

Femto BS deployed in a house, as shown in Figure 3.1a, the location of the Femto

BS which is changed based on user decision. Furthermore, this deployment change

causes uncontrollable interference to neighboring houses after the BS becomes oper-

ational at its new location. Therefore, by implementing adaptive density algorithms,

the density of active BSs can be estimated frequently by leveraging multi-access edge

computing (MEC) utility in order to maintain and enhance QoS (higher throughput,

lower delay, interference, outage and etc.) in future networks. In [58], the BS dis-

tribution for different cities are modeled, and they claim the proposed model can be

used to prevent coverage holes and interference in the network.

3.3.3 Modulation Techniques

In the next generation of mobile networks, by employing multi-carrier modulation,

we can immune our system to fading due to the simultaneous transmission of data

over multiple paths (multipath fading), which can also prevent cross-link interfer-

ence during communication among cells. However, when multi-carrier modulation

is employed, simultaneous transmission over sub-carriers may lead to greater devia-

tions in instantaneous signal power and push amplifiers into the non-linear regions.

This phenomenon leads to a larger amount of power consumption and dramatically

increases the costs of amplifiers. Moreover, frequency selectivity fading will lead

to higher bit error rates and degrade the quality of the channel [163]. In order to

cope with these problems, density aware small cells are adequate candidates since the

terminal-to-base distances in small cells are shorter, which can reduce the average

transmit power and cost of amplifiers. Typically, less frequency selectivity is expe-

rienced in small cells [164]. Additionally, to combat frequency selectivity, cyclic-
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prefix insertion can be employed in multi-carrier modulation, and the length of the

prefix depends on the channel delay spread, which can be affected by BSs density

variations. Therefore, cyclic-prefix can be adapted to the network density to prevent

inter-symbol interference in the network [204]. Moreover, choosing an appropriate

modulation coding scheme (MCS) is vital for satisfying 5G networks’ requirements,

such as ultra-reliable low-latency communications (URLLC) and enhanced mobile

broadband (eMBB). Because, in URLLC communication signals need to be inter-

pretable quickly, which require lower MCS, while in eMMB communications, a high

number of bits need to be coded for each transmission to achieve high throughput in

the network. Therefore, MCS in the future networks needs to be tuned not only by

considering the received SINR value (like LTE) but also it needs to be adapted to the

BSs density [165, 166].

3.3.4 Ubiquitous Coverage and Connectivity

In future networks, UEs have different requirements and expect to receive service

everywhere. Therefore, future networks need to be equipped with a flexible network

coverage and topology. The topology and coverage of the dynamic networks must be

controlled since it significantly impacts the performance in terms of capacity, delay,

and resilience of the network under node and link failures. The topology depends on

many controllable parameters and uncontrollable factors. Interference, attenuation,

environmental parameters such as obstructions, especially for mmWaves, multipath

propagation effects, fading, and noise, can be considered as uncontrollable factors

which impact the link quality, and consequently the topology. These uncontrollable

factors produce time- and space-variant links that are not predictable in advance. Cell

mobility or presence may or may not be a controllable parameter that may sporadi-

cally cause blind spots or redundant coverage. The transmit power, antenna directiv-

ity, tilt, or antennae count are the controllable parameters that can be used to change

the network topology as required to make the network adaptive to density changes.

Topology and coverage control decisions should be given autonomously based on the

estimated density by BSs or by a MEC entity. MEC entities have a broader perspec-

tive over network topology in comparison to BSs facilitating decentralized optimiza-

tions. For instance, in [42, 142], authors by adapting the transmit power of BSs to the
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network density, managed to enhance the network capacity and increase the through-

put while coverage holes are prevented. Future networks guarantee the ubiquitous

connectivity in case of a disaster, which causes a dysfunction of the network infras-

tructure [167]. At this point, with the help of device-to-device communication (D2D)

and integrated access-backhaul (IAB) opportunity, BSs can form an ad hoc network.

They establish a dynamic infrastructure to backhaul traffic to the core of the network

as we show in Figure 3.2 in case of a network failure to sustain communication and

enhance reliability through mobile BSs in the network [167, 168]. As claimed in

[168, 169], in D2D communications, an optimal threshold value for density of BSs is

required to enhance the network performance.

Figure 3.2: Mobile or stationary BSs may form an ad hoc infrastructure to backhaul

traffic to the core network; for example, when a stationary BS fails as we exemplify

here.
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3.3.5 Mobility Management of Cells

In stationary networks, coverage is restricted to the range of BSs. However, by em-

ploying mobile BSs, network infrastructure will also be dynamic, which can enhance

the network capacity, throughput, and coverage in future networks [118, 205]. For in-

stance, flying BSs can form an ad hoc network and establish a dynamic infrastructure

to backhaul traffic to the core network, as we show in Figure 3.2 in case of a net-

work failure to sustain communication and enhance reliability through mobile BSs

in the network. Although the implementation costs, maintenance, and the battery re-

quirements of drone networks currently are a considerable challenge, the availability

of cheap commodity hardware in the future presents a new avenue for provisioning

such networks [134]. In particular, with the advent of Google’s Sky Bender1 and

Facebook’s Internet drone2, drone empowered small cell networks (DSCNs) can be

considered as a solution in future networks. Due to lower computational requirements

and light payload, implementing drone cells can provide a lower CAPEX (in compar-

ison with stationary BSs) and OPEX (with respect to energy consumption and main-

tenance) for network operators [133]. Due to the BSs’ mobility, not only the users

but also the BSs have to be tracked, and their locations have to be registered. Motion

and deployment planning, handover management, and new (dynamic) location area

concepts are required and can be considered as open research challenges. Even when

the users are stationary, handovers may be necessary when the BSs move. One of the

promising solutions for maintaining QoS in dynamic mobile networks and reducing

handovers is employing a user-centric mechanism such as virtual cells where UEs can

be connected to more than one BS [170]. In dense deployments, UEs may camp on

multiple base stations simultaneously, and dual-connectivity, concurrent multi-path

transfer or multi-homing may be possible. At this point, accurate estimation of lo-

cation plays a vital role in cooperative mobile BSs. In current networks, location

estimation methods such as the GPS are mainly used to calculate the coordinates of

nomadic communication terminals and usually is sufficient to determine nodes’ loca-

tions. In case GPS is not available, by employing proximity-based techniques or bea-

con nodes, we can estimate the nodes’ coordination. Due to various mobility models

1 https://www.theguardian.com/technology/2016/jan/29/project-skybender-google-drone-tests-internet-
spaceport-virgin-galactic

2 https://www.theguardian.com/technology/2017/jul/02/facebook-drone-aquila-internet-test-flight-arizona
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of cells on wings or wheels, we need a highly accurate location estimator with a small

delay. GPS has 10 to 15 m error in location estimation. The location information can

be received with one second, which may not be applicable when multiple mobile BSs

is emloyed, since it can cause a collision among them under fast mobility or affect the

channel conditions among them. To reduce the estimation error, assisted or differen-

tial GPS (AGPS or DGPS) can be used that can enhance the accuracy of estimation

for about 10 cm by employing ground-based reference points [171, 172]. To estimate

location faster by equipping UAVs with an inertial measurement unit (IMU), which

can be calibrated by the help of GPS, the location of mobile BSs can be retrieved

faster and with higher accuracy [173].

3.3.6 Reliable Communication

Requirements for reliable end-to-end communication, availability of resources, last-

ing connectivity, and seamless handover can be addressed by employing multi-homed

transport protocols and dual-connectivity not only in the control plane but also in the

user/data plane. Multi-homing and dual-connectivity in the user plane ease the mobil-

ity management burden [174, 175]. In dense deployments, UEs may camp on multi-

ple BSs at the same time. Reliable end-to-end communication requirements can then

be addressed by employing multi-homed transport protocols not only in the control

plane but also in the user/data plane. Cell discovery, security, access scenarios have

to be tackled in dynamic networks when multi-homing is employed. Future dense

networks have various types of wireless technologies such as LTE-Advanced, LTE,

3G, WiMAX, Satellite, WiFi, ZigBee, and Bluetooth. In these networks, tablets, IP-

Cameras, laptops, sensors, smartphones, game devices, wearable devices, and other

IP-enabled devices located on buses, aircraft, trains, satellites, etc. define a differ-

ent application and user requirements. With the evolution of densification and mo-

bility, which is the binding nature of the future networks, in addition to dynamically

changing user preferences and QoS requirements, some challenges may arise, such as

availability of resources, fault tolerance, lasting connectivity, and seamless handover

[176, 177]. These developments in wireless communication systems equip users to

concurrently receive content through multiple radio access technologies (RAT) for

homogeneous or heterogeneous network environments. To do so, having a power-
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ful and fast (low delay) processing unit such as MEC close to BSs can enhance the

interface selection accuracy within a short time. Multi-homed protocols meet these

requirements that can be implemented in the network communication stack. Multi-

homing can use multiple network paths simultaneously to provide the lasting connec-

tivity and the reliability of user requirements [178]. As demonstrated in [177], the

transport layer multi-homed protocol has a better solution in order to provide reliable

handover and connectivity. However, as we presented in Figure 3.1 and Figure 3.2,

the density of BSs may fluctuate during each time slot. Therefore, future multi-homed

algorithms need to consider the density of active BSs into their models to provide a

reliable communication path in the network [179].

3.3.7 Scalability

In one-cell frequency reuse, the same time-frequency resources can be reused in

neighboring cells. To increase the network capacity, operators can employ IAB,

where the same radio technology standard is used for backhaul and access commu-

nications [180]. Although this approach eases network deployment and increases

spectral efficiency, it may also cause significant variations in SINR due to a high

amount of interference. Enhanced inter-cell interference control (e-ICIC) is a solu-

tion to this problem that has to be density-adaptive since BS topology changes in

dynamic networks and the type received interference will be dynamically changed as

it is shown in Figure 3.3. In the next generations of mobile networks, to fulfill the

UEs requirement, different numerologies need to be employed [206]. However, by

using mobile BSs, cells with different numerologies can travel in the network, which

can cause Inter-Numerology Interference (INI) among cells [181]. Therefore, future

interference cancellation models need to consider the variation of BSs numerologies

with respect to the density of active BSs in time and space. In non-terrestrial net-

works (NTN), airborne or space-borne BSs are used for transmission. NTN may

require delay-tolerant networking (DTN) protocols. When backhauling is not possi-

ble, mobile BSs may have to manage the functions of the core network themselves.

Lightweight evolving packet core (lightweight-EPC) and DTN may have to be con-

sidered for BSs on wheels or wings. Furthermore, location area planning cannot be

stationary anymore since the infrastructure becomes dynamic. Interference manage-
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ment models will be affected by mobile BSs since the cell layout will dynamically

change by the movement of BSs. In such networks, the dynamicity of frequency reuse

is high and cannot be handled by current interference management models. There-

fore, adaptive interference management and resource allocation models for dynamic

networks with mobile BSs are needed.

Figure 3.3: Different interference sources [foreseen] in dynamic networks.

3.3.8 Antenna Type Selection

The antenna structure is another vital constraint for an efficient dynamic network. In

a dynamic network, in case of using a more powerful radio signal to transmit data to

longer destinations, although the coverage range is expanded, the link variation and

loss can also increase too. Choosing an appropriate antenna type is another parameter

that can affect the QoS in the dynamic networks. On the one hand, because BSs’

locations can change frequently, by choosing omnidirectional antennas, there is no

need to access nodes’ locations, which can ease the communication in the network

[182]. On the other hand, directional antennas can transmit signals to a more consid-

erable distance in comparison with omnidirectional antennas, which can reduce hope

count and latency in the network. The capacity of the network can also be enhanced

by using directional antennas, which have higher spatial reusability with respect to
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the omnidirectional antennas. However, for moving topologies using directional an-

tennas can be challenging [183]. Therefore, choosing an appropriate antenna in the

dynamic networks is another important constraint which is needed to be evaluated for

the future networks. By employing density-adaptive algorithms, the number of anten-

nas by considering density of active BSs can be optimized. By using beam-forming

techniques, density of BSs can be optimized in a way that interference is reduced, and

overall system throughput is enhanced.

3.3.9 Dynamic (in-band) Backhauling

By introducing mobile BSs for future networks, channel models have to be revised.

For cells on wings, air-to-ground, ground-to-air and air-to-air, channels have to be

studied and modeled accordingly. The mobility of BSs can cause new challenges

such as reflections from the ground (for drone cells), variations of drone attitude,

considering changes in weather conditions for different altitude, environmental clut-

ter, interference from other BSs in three dimensions (possibly four including time),

and jamming by hostiles. All these additional constraints have to be evaluated in

the channel modeling of BSs [207, 208, 209]. With the help of mobile BSs, there

is a considerable potential for relay BS where nomadic nodes can be used to reduce

the congestion in backhaul-links and provide higher capacity and faster communica-

tion in the network. Moreover, in-band (converged access/backhaul) or out-of-band

relaying can be employed. The trade-offs between these approaches need to be eval-

uated [210]. Additionally, in 5G networks for increasing the network capacity, and

provide reliable, secure, and lasting services, mmWave and massive multiple-input

multiple-output (MIMO) can be considered as a solution [184]. This paradigm shift

is analyzed in [185], in terms of network secrecy and network connection outage by

demonstrating how base station density, mmWave small cells, and mu-MIMO affect

each other through analytic models considering the base station density. They prove

that if base station density is higher, then mu-MIMO-enabled networks along with

mmWave small cells, dramatically decreases the network outage probability. There-

fore, due to dynamicity of mobile BSs, employing the density of BSs in channels’

models play a vital role for achieving accurate and adaptive models in the next gen-

eration mobile networks.
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3.3.10 Low Latency

Due to the tremendous pace of increasing multimedia services, current network link

capacity and bandwidth cannot satisfy the growth of users’ demands. As it is men-

tioned previously, one of the main concerns in the dynamic networks is reducing the

delay and response time in the network [186]. For instance, in delay-sensitive appli-

cations such as reconnaissance, packets need to be delivered within a specific delay

bound. When multiple mobile BSs (such as drone BSs) are deployed together to

provide coverage, communication delay among those BSs needs to be low to avoid

any collisions among them. However, current protocols that are developed for mo-

bile ad-hoc networks may not be applicable to flying ad-hoc networks of BSs [36].

To achieve this goal, network operators, by applying mobile content caching in the

intermediate network infrastructures, reduce duplicate data and response time in the

network [187, 188]. However, one of the main issues of caching in the dynamic net-

work is to decide where the appropriate place for caching is [189]. In the current

networks, by implementing caching toward the network edge, the amount of redun-

dant data and delay can be reduced significantly. However, due to the mobility of

infrastructures in the dynamic network, future networks need to be equipped with

content-centric networking (CCN) architecture [190]. The main concern in CCN is

to distribute caching in every network infrastructure, even to UEs, which can ease the

data access and reduce the response time in the dynamic networks. When UEs request

particular data in CCN, an interest packet will be transmitted to its neighbors, and the

requested data can be delivered from the caching store of any node in the network.

If the requested data is not available at neighbors, routers propagate interest packet

in the network and push the cached data toward the requester. However, due to the

universal distribution of caches in the network, cooperative policies need to consider

diversity, freshness, number of replications, and their locations in the network topol-

ogy. Moreover, by employing density of BSs as an optimization parameter in routing

and caching techniques, the amount of time required for transmitting the cached data

to the destination can be reduced by optimizing number of active BSs. The size of

required cached dataset in the network can also be optimized which can decrease the

transmission load and bandwidth needed in the network.
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3.3.11 Energy Efficiency and Green Operations

Small cells may reduce CO2-equivalent gas emissions per second. However, in ultra-

dense networks, the total sum may not be negligible. Furthermore, the new dimension

of energy efficiency research will be trying to reduce the power consumed for the mo-

bility of BSs. Energy consumption, CO2-equivalent gas emissions, and the impact of

the battery-driven operation of mobile BSs have to be carefully investigated. By in-

creasing the density of small cells, and maximizing the energy efficiency, BS density

needs to be adapted and optimized by considering the overall network condition. On

the other hand, the network needs to be smart enough to maintain QoS when the

density of base stations dynamically changes [160]. For instance, by turning off a

BS in a heterogeneous network, its traffic load needs to be adaptively handled by its

neighbor cells to prevent coverage holes in the network. In [142], authors introduced

a density-adaptive algorithm which can jointly enhance energy efficiency by adapting

the density of BSs to network condition while coverage and throughput are enhanced

by adapting BSs’ transmit power to the effective density of BSs.

3.3.12 Management of Dynamic Architecture

Software-defined networking (SDN) and network function virtualization (NFV) are

two distinct concepts that may help implement dynamic networks [191]. The in-

tegration of SDN and NFV can be used to optimize resource allocation in the net-

work, while centralized and stationary resource allocation may waste valuable re-

sources [192]. Through mobile edge computing, hybrid approaches may be devel-

oped. End-to-end slicing will significantly be more complicated than the present

approaches since to-be-solved optimization problems morph with a higher frequency

[193, 194, 211]. One should also not forget the scalability requirements. End-to-end

slicing and limited computation resources’ sharing are important challenges of the

future networks. Cloud radio access network (C-RAN) is a novel mobile network

architecture with joining the processing resources of the base-band unit in a pool,

and virtualizing base-band units with the help of SDN and NFV [193]. C-RAN en-

ables the aliasing of the limited computation resources, and can not be used from the

other nodes in traditional radio access network (RAN) architecture on demand. For
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enhancing interference management and reduce the power consumption, C-RAN can

dynamically allocate radio resource heads (RRHs) by considering the network con-

dition. In future networks, the enabling of such a feature introduces the concept of

cloudification. Techniques such as coordinated multipoint (CoMP), carrier aggrega-

tion, and MEC, and their hybrid approaches may be developed for the enhancement

of the joint resource usage at centralized baseband units.

Self-organizing networks (SONs) have many functions (such as energy efficiency

(EE), coverage and capacity optimization (CCO), mobility load balancing (MLB),

etc.), which can enable BSs to adapt themselves automatically to the network condi-

tion. However, these functions may conflict with each other if the density of BSs is not

considered. For instance, by increasing EE without considering BSs’ density, CCO

functionality may negatively be affected due to the reduction of SE in the network. In

order to increase SE to its maximum level, BSs’ density needs to be optimized [131].

Moreover, SE will be increased when the density of BSs is optimized, and in case

of over-deployment SE will be degraded drastically [131]. Therefore, by optimizing

the density of BSs, EE and CCO can be enhanced simultaneously. In [195], authors

present an energy-efficient mechanism by considering the density of BSs and control-

ling the transmit powers for a dynamic SON. As it is shown in [130], by evaluating

the density of BSs, a threshold value for the minimum received SINR in each cell can

be obtained, which is used for optimizing coverage, energy consumption and SE in

the network. Thus, by employing the density of BSs in SON, the possible conflicts

among SONs’ functions will be prevented.

3.3.13 Transmit Power Adaptation

Optimizing downlink power allocation is another critical parameter that plays a vi-

tal role in enhancing throughput and user satisfaction in the network. On the one

hand, if the power is excessively allocated in BSs’ downlink channel, it can cause

interference among neighboring cell, which can reduce the QoS and throughput in

the network. On the other hand, degrading too much the downlink power can cause

coverage holes and reduce the throughput in the network. Therefore, the downlink

transmission power needs to be chosen wisely, and it needs to be adapted to the
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density of BSs in dynamic networks. In [130], by employing MEC in the network

architecture, the minimum required received SINR for maintaining QoS in the net-

work with respect to the density of active BSs is calculated. The obtained value will

be transferred to BSs, and BSs adapt their transmit power in a distributed manner to

reduce the interference in the network while the overall throughput is enhanced. For

density-aware mobile networks, cell zooming is a key concept regarding with pre-

serving coverage, controlling network outage, and improving the energy efficiency

[196]. Adapting transmit power based on the effective density of base stations is one

of the dynamic solutions for cell zooming. To control the network coverage and out-

age, changing the transmit power of each base station depending on the base station

density can be a handy solution as clearly illustrated in [196]. We conduct Monte

Carlo simulations by leveraging the outage and transmit power models proposed in

[196] to clearly observe the impact of the network density on the network outage

and the transmit power of base stations. The simulation parameters are presented in

Table 3.5. In our simulations, we randomly deployed a set of base stations and user

equipment as a three-dimensional network. In each run, a UE is randomly selected as

a reference point, and received signal strength values are collected by this UE from

its closest base station. If the collected RSS value is less than a threshold value, this

run is considered as an outage. We compute the ratio of simulation runs that yields

outage to the total number of runs as the outage probability. The simulation results

are compared with the provided analytic model for the network outage based on the

actual density. As can be seen in Figure 3.4, the density of BSs needs to be higher for

the network with lower transmit power to achieve the same outage probability in two

networks equipped with BSs that have different transmit power levels (10 mW and

20 mW ). Additionally, as we explained in Table 3.1, when BS density reaches the

transition phase, increasing the density of BSs will not enhance the outage probability

anymore, and it can increase the interference and the energy consumption in the net-

work. As can be seen in Figure 3.4, to achieve the same outage probability in case of

different transmit power levels, the density of BSs in the network with lower transmit

power needs to be higher. Therefore, by considering density-aware approaches, we

can reach an adaptive and flexible model for dynamic networks where BS density and

BS transmit power can be varied in each time slot.
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Figure 3.4: Impact of BSs density (λ) (nodes/m3) on the probability of network out-

age (PO) when the transmit power of base stations (Pt) is changing.

3.3.14 Interference Management

In future networks, high-speed and ubiquitous connectivity will be a leading demand

that can be satisfied by densification. Network densification provides higher capacity

by performing spatial reuse and less congestion with offloading. However, inter-

ference, depending on the spatial distribution of base stations, will be a significant

problem to be tackled [199]. Density-aware interference management will increase

link capacity and spectral efficiency in dynamic networks [200].

In 4G mobile networks, if a UE is located at cell edges, it can receive signals from

multiple contiguous cells. Inter-cell interference may originate from various types

of BSs. Different UEs can also interfere with each other, as shown in Figure 3.3.

What will be of notable importance is the interference from nomadic or mobile cells

in future networks. In Figure 3.3, we present a scenario where a cell on wheels

(mobile BS) interferes with a UE. This type of interference is the most challenging if

centralized solutions are to be employed [200, 201, 202].

Mobile operators may control interference at three levels: at the RAN, between RAN
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Table 3.5: The nomenclature for symbols, notations, values and units of the simula-

tions’ parameters.

Parameter Default Value Units Ref

Actual density, λ [0.001,0.003] nodes/m3 [196]

Path-loss exp. γ 1.5 6 γ 6 2 [81]

Reference distance, r0, 1 m [55]

Transmit power, Pt [10,100] mW [142]

Simulated outage probability, PO [0,1] [196]

Nearest neighbor index, k.n 6 [196]

radius, R 300 m [196]

K −40.046 dB [196]

and UE, and within UE.

In coordinated multi-point operation, BSs have to synchronize with each other over

the X2 interface (the signaling interface which is used between eNodeBs) to transmit

the same information to edge terminals. In this case, inter-cell interference becomes

a constructive phenomenon which is regarded and processed by the terminals using

techniques to combat multipath fading [198]. With this approach, the broadcast is

increased more in small cells in comparison to macro cells.

Network density is used as an optimization parameter in [148] to enhance network

capacity. Authors consider the expected link rate, which depends on both user as-

sociation and interference distribution, as a function of network density. Interference

and network throughput models based on BSs’ density are also presented to clarify the

trade-off between the density of BSs and network throughput or interference. By den-

sification, network throughput will increase until the BSs’ density reaches a threshold.

Crossing the threshold degrades throughput because of the high acceleration of inter-

ference and increases service disruption due to large numbers of handovers. High

link capacities or high SINRs do not always guarantee high throughput in a network.

Under congestion, the performance can become low. That is why a UE may not con-

nect to a BS even when it provides the highest RSS. It is shown that a robust and

optimized network density estimator is an essential requirement for maximizing the

54



network capacity [148].

Different or the same frequency bands can be used by femtocells as macro cells do.

However, employing co-channel femtocells results in inter-cell interference with their

adjacent macro cells, which can reduce the performance of cell-edge UEs. An adap-

tive solution is presented in [197] for reducing the downlink interference caused by

femtocells. That solution exploits the orthogonal fractional frequency reuse (FFR) for

radio resource allocation and FFR resource hopping based on the femto-BS density

and locations. If the density of femto-BSs near the macro BS is high, then femto-BSs

should use orthogonal sub-channels based on the FFR method proposed. If the den-

sity of femto-BSs is low, they should choose a sub-channel randomly for a while and

then hop to other sub-channels. However, such an approach is not sufficient to avoid

inter-macro-cell interference in the case of high femto-BS density. The analysis of

the impact of the femto-BS density shows that the density of femto-BSs should be

considered to successfully combat interference [197].

Figure 3.5: A cellular network scenario including a set of base stations, user equip-

ment and a macro-cell for backhauling.

As a simple back-of-the-envelop calculation, we consider a network where the base

stations are randomly deployed with an effective density of λ nodes/m2 in a two-
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(a) Aggregate interference (mW)

(b) AAPD (%)

Figure 3.6: Impact of path loss exponent γ and density λ on aggregate interference

from all nodes.
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dimensional Euclidean space as illustrated in Figure 3.5. This corresponds to the

2-D Poisson point process. The joint probability density function (PDF) of random

distances from a randomly selected reference point up to the nth nearest neighbor is

given in [212] as fRn(r1, r2, . . . , rn) = e−λπr
2
n(2πλ)n

∏n
i=1 ri.We consider the simple

path-loss model; the received signal power by a randomly positioned user equipment

from the kth nearest base station that is rk meters away is xk = K (r0/rk)
γ , where

γ is the path-loss exponent, K accounts for the attenuation factor at r0, the impact

of non-distance-related factors and the transmission power. The mean of the received

interference power from the closest n base stations to a randomly located UE is then

µn =
2K(πλ)γ/2Γ(n+ 1− γ

2
)

(2− γ)Γ(n)
, (3.1)

where Γ(.) is the Euler gamma function and γ < 2. Unfortunately, we could not

derive a closed-form formula for the PDF of the aggregate interference in this for-

mulation. In large scale networks, the aggregate interference from a huge number of

interferers approaches to

µn =
2Kn(πλ/n)γ/2

(2− γ)
, (3.2)

by using Stirling’s approximation of the quotient of gamma functions. We present

aggregate interference in Figure 3.6 that are validated by Monte-Carlo simulations

implemented in Matlab. In the simulations, a set of base stations are uniform ran-

domly deployed in a circular field with the chosen density. As shown in Figure 3.5,

the processing power of BSs can be enhanced by equipping the network with MECs.

For instance, in this scenario the density of BSs can also be obtained by a density

estimator model deployed in MEC [42]. The simulation parameters are presented in

Table 3.5. The downlink received signal strength for a randomly located UE is com-

puted following the simple-path loss model. We fix K = −40.046 dB including the

transmit power. Figure 3.6a depicts that for the same path-loss exponent, when the

density of BSs decreases, aggregated interference also diminishes because of lower

received power. When the network conditions such as channel quality are harsh, we

can deploy more base stations to enhance the QoS. Aggregate interference grows up

by increasing the density, as shown in Figure 3.6a. The convergence is only possible

when γ < 2.As the path-loss exponent increases, the aggregate interference will drop

as expected. The average absolute percentage deviation (AAPD %) of the analytic ag-

gregate interference results from those of the simulations are shown in Figure 3.6b.
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As the path loss exponent goes to 2, the AAPD values increases and gets closer to

10%-15% range. Since this model leverages the average received signal strength, the

accuracy of the results is subject to the positions of the nodes, and the topology. If the

user is near to the middle, then the accuracy of the results will be higher. However,

if the user or the nodes at the corner of the topology, then the accuracy of the results

will degrade. These results provide us an intuition about how UE’s downlink capacity

changes as the density of the network increases. Practical issues such as shadowing,

fading, transmit power adaptation have to be addressed for dense networks to draw

adequate conclusions.

All in all, one size protocols that are statically configured will not fit all scenarios

in dynamic networks. Robust interference management, coverage control and SON

techniques that take mobile cells into account have to be developed. Such approaches

may increase the cost of control. Backhauling from cells on wheels or wings to the

infrastructure may increase the load on and the cost of transport networks. Traffic

from mobile cells may overload the whole system if not controlled. Topology con-

trol and resource allocation become a very important challenge that cannot be easily

addressed with the present inflexible management planes.

3.4 Conclusion

With the invent of mobile BSs such as drone cells, not only the user’s devices but

also the elements in the infrastructure of the network has also become mobile, in-

troducing many novel and not-addressed challenges. A flexible and density-adaptive

mobile communications architecture is required. However, there is a significant re-

search gap between state of the art and the ambition of achieving a self-organized,

adaptive, and flexible networking architecture. In this thesis, we present this gap by

presenting the paradigm changes in mobile communications and the consequences

thereof. The existing architectures have severe limitations and shortages to be able to

address the introduced paradigm changes. We stress in this thesis that density-aware

and -adaptive networking is crucial in future networks by presenting a qualitative

and quantitative analysis of the impact of density on network performance. We also

categorized different density estimators to illustrate how the density of BSs can be
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obtained in dynamic networks. We investigate opportunities can be achieved, and

challenges can be faced by adapting the density of BSs in the current mobile and

wireless networks to maintaining and improving quality of service and experience,

latency, energy efficiency, resource management, interference management, mobility

management, etc. in a comprehensive manner. We also evaluate how the density of

BSs can be leveraged in the density adaptive solutions by providing a novel aggregate

interference technique that can control the interference based on the density changes

in dynamic networks. With the light of the comprehensive analysis and results for

the density-aware and -adaptive solutions, the density can be as an opportune and a

practical solution which should be considered in network communication stack to in-

crease the network performance in addition to reducing the energy consumption and

resource wastage at run-time.
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CHAPTER 4

NETWORK DENSITY ESTIMATORS

In this chapter, we present the system design of our proposed network density es-

timation methods for different case studies of wireless networks including ad hoc

networks, cellular networks, and flying ad-hoc networks. We propose three network

density estimators, which are applicable in any wireless network. However, there are

some constraints which are related to the dimension and structure of the network:

The distance matrix-based density estimator is operational for two-dimensional net-

works, and the network should be organized in a clustered manner. Therefore, we

design a case study including clustered ad hoc network for the implementation of this

density estimator. Any kind of wireless network containing these features can utilize

this network density estimator. Other density estimators which are interference-based

density estimator and multi-access edge cloud-based density estimator are operational

in three-dimensional wireless networks. Therefore, we apply this density estimators

by designing cellular network and flying ad hoc network case studies.

4.1 Density Estimation in Ad Hoc Networks

In this thesis, we propose a novel cluster density estimator in random ad hoc networks

by employing distance matrix. We assume a scenario based on a clustered ad hoc

network where the leader of a cluster can perform the estimator.

4.1.1 Distance Matrix-based Density Estimator

Assume N nodes move freely in a mobile ad hoc network and the mobility models

(directions, speed, acceleration) of nodes are not known in advance. By exchanging
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Figure 4.1: The illustration of the proposed density estimator. Three nodes in a ran-

domly deployed ad hoc network, namely, the leader node L, the most distant node to

the leaderB andB’s most distant nodeC are shown. We use the distances to compute

the effective area and assume that the leader knows the total number of nodes in the

cluster.

some control packets, nodes are able to measure the received signal strengths (RSS)

or propagation delay that can be used to estimate the transmitter-to-receiver distances.

Let DN×N represent the distance matrix where its element dij is the distance between

node i = 1, 2, . . . , N and node j = 1, 2, . . . , N . A node in the set of N nodes, say

node L in Figure 4.1 is designated as the leader. We aim at quantifying the density of

the cluster, λ̂ nodes/m2.

We assume the leader is able to construct DN×N using some method as discussed in

Section 4.1.1. In fact, we do not require the whole matrix, we will be using only two

rows of it. Let dij and d̃ij be the actual and estimated distances between node i and

j. We assume normally distributed measurement errors (or noise, εij) with zero mean

and standard deviation σ; therefore, d̃ij = dij + εij .

As an example, we present three out ofN nodes in Figure 4.1 in a randomly deployed

ad hoc network, namely, L,B and C. The density estimator works as follows. The

leader L determines the distance to its distant neighbor using the distance matrix, let

its node identifier be B, and the distance be dLB. This means that all the nodes reside

in the circle centered at L’s position with radius dLB as shown in Figure 4.1. Then,
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B determines its most distant neighbor, say C where the distance between B and

C is dBC . Notice that, all other nodes have to be in the intersection area of circles

centered at L and at B with radii dLB and dBC since these are the most distant nodes.

The measurement errors may impact this argument; we will analyze the effect in

the sequel. After these two steps of computations, we have computed the effective

area in which all the nodes reside and we assume the leader can estimate the cluster

density since it knows the total number of nodes in the cluster. Nodes may be mobile.

However, we assume the relative positions of nodes to each other does not change

throughout the period of computation.

Algorithm 1 Density estimator
Let L represent the node index of the leader

[dLB, B] = max(D(L, :)) . max function returns the distance to the farthest node

and its index

[dBC , C] = max(D(B, :))

D(i, i) =∞, for i = 1, 2, . . . , N . Distance of nodes to themselves are set to

infinity to compute min next

[dLU , U ] = min(D(L, :)) . min function returns the distance to the closest node

and its index

[dBV , V ] = min(D(B, :))

if dLB + dLU > dBC then

Compute AT = A(dLB, dLB, dBC)−A(dLB, dLU , dBC)−A(dLB, dLB, dBV ) .

where A(., ., .) is as defined in (4.1).

else

Compute AT = A(dLB, dLB, dBC)− πd2LU − A(dLB, dLB, dBV )

end if

Compute λ̂ = N−2
AT

nodes/m2

The area A(d, r, R) of the intersection of two circles, where the distance between the

centers, the radii of the two circles are represented with d, r and R respectively, can

be computed as [213]:

A(d,r,R)=r2cos−1
(
d2+r2−R2

2dr

)
+R2cos−1

(
d2−r2+R2

2dR

)
−1

2

√
(d+r−R)(d−r+R)(−d+r+R)(d+r+R)

. (4.1)
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We may exploit two other facts in this model. L and B may compute the distance to

their closest neighbors, say U, and V . Computing the distance to the closest nodes

indicate that there are no other nodes within the circles centered at L and B with radii

dLU and dBV . We may enhance the resolution of the effective area and consequently

the accuracy of the estimator by subtracting the areas of these circles from the above

explained intersection area. In the last step of the algorithm, we subtract 2 from the

total number of nodes in the cluster since the areas where these two nodes (L, and B)

reside are not included in the effective area computation. The overall procedure for

the proposed density estimator is presented in Algorithm 1. We will show in the next

section that this estimator is not only simple but also very accurate.

Distance Estimation and Errors

The estimation of distances in wireless networks can be carried out in various ways.

Existing approaches are to use the received signal strength (RSS), signal-delays such

as time-of-arrival (ToA), or hop count. Most of the methods rely on some anchor

nodes that know their coordinates or able to determine them by GPS [2] [214]. RSS

is a function of the transmitter-to-receiver distance. Therefore, RSS can be employed

to estimate the distances in wireless networks, albeit it is a mediocre estimator. Shad-

owing, multipath fading and many other environmental factors affect the quality of

signals. As a consequence, spatio-temporal changes in link quality have a huge im-

pact on the distance estimation. The impact of shadowing on distance estimation is

presented in [215]. Chitte et al. conclude that the maximum likelihood estimation

of distance is an inefficient problem and there is a unique unbiased estimator whose

variance increases exponentially with noise power. When orthogonal frequency di-

vision multiplexing is employed, channel state information (CSI) provides a larger

amount of information than RSS. Applications of CSI to localization and ranging is

reviewed by Yang et al. in [216]. A thorough survey of distance estimation based

on ToA of signals is presented in [217]. The measurement errors are mostly due to

obstructions on the transmitter-to-receiver path that generates non-line-of-sight con-

ditions. Interference and imperfections of the equipment are the additional sources of

errors in general.
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Complexity of the Algorithm

Firstly, the algorithm requires the distance from the leader L to the most distant node

B and its index. Secondly, the distance to C (the most distant node to B) is required.

We need not compute the whole distance matrix D. At the link layer of communica-

tion stack of any ad hoc network, nodes employ some neighbor discovery technique

to determine their local topology. We assume at this phase, nodes are able to com-

pute the distances to their neighbors as well. The estimated distance vectors are to be

conveyed to the leader in the sequel. Then, the leader is able to estimate the cluster

density with simple mathematical operations in constant time, O(1). To reduce the

messaging complexity, leader may determine the identity of node B first and then

send a unicast message to acquire its distance vector.

4.1.2 Other Estimators

We compare our proposal with the RSS-based estimator presented in [54] and the

estimator proposed in [214] that is based on the distances to the closest neighbors.

4.1.2.1 RSS-based Collective Distance Estimator

Assume each node can measure RSSs from its neighbors in a collective fashion in

a field [54]. Distance estimation is done by using these measurements including

multiple observations between two nodes. By using the simple path-loss model we

can calculate estimated distances (dj values) by using these RSSs. After (dj values)

are obtained among each pair nodes, λ̂C = T/(π
∑n

j=1 d
2
j) is performed to find the

density. T is the summation of the connectivity degrees (kj), and it can be obtained

from T =
∑n

j=1 kj .

4.1.2.2 Kendall’s Distance Estimator

In 2.26 of Kendall’s book, Geometric Probability [214], the estimator is explained as

follows. Assume that y1, y2, . . . , yn are nmeasurements of the square of the distances
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to the closest neighbors. In the implementation, we assume that all the nodes in the

network measure the square of the distances to their closest neighbors and convey

this information to the leader of the cluster. Using these measurements, the leader

can compute Y =
∑n

i=1 yi/n. It is shown that the expected value of E[Y ] = 1/(πλ).

Therefore, λ̂K = 1/(πY ).

4.2 Density Estimation in Cellular Networks

As demand for mobile communications increases, cells have to become smaller to

efficiently use the scarce spectrum and to increase capacity, and small-cell networks

will hereby emerge. They may be large in scale and highly dynamic resembling ad

hoc networks due to the moving base stations. The variations in the density of the

small cell networks impact the quality of service and introduce many novel chal-

lenges such as coverage control. We propose two novel base station density estima-

tors, the interference-based density estimator (IDE) and the multi-access edge cloud-

based density estimator (CDE) in a three-dimensional field. The estimators employ

received signal strength measurements. We validate these two density estimators by

using Monte-Carlo simulations. Furthermore, by leveraging these density estimator

results, we analyze the impact of density on network outage in cellular networks and

propose a density-aware cell zooming technique in Chapter 5. According to the obser-

vations, base station density affects network coverage significantly. Received signal

strength-based density estimators can easily be implemented and applied in the net-

work communication stack although they are more prone to the large and small scale

fading. Under favor of the density-aware cell zooming method, the network outage

can be managed dynamically by adapting the transmit power, which provides a self-

configurable and -organized network.

4.2.1 System Model

In an m-dimensional Euclidean space, we assume that a large number of nodes (base

stations and UEs) are distributed uniform randomly [218, 219]. It is assumed that the

random variables indicated the number of nodes deployed in any disjoint Borel set
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A1 and A2 are independent and follow a Poisson distribution with a mean density λ

nodes per unit m-volume. The derivation of the distance distribution to kth nearest

neighbor for any dimension in uniformly random networks is investigated clearly in

[218]. Therefore, node positions form anm-dimensional homogeneous Poisson Point

Process [218, 219, 220].

By taking one of the user equipment (UE) in the uniform randomly deployed cellular

network as the reference node (receiver), let’s denote the distance of the reference

node to its kth nearest neighbor rk with the random variable Rk. The PDF of Rk is

fRk
(rk) = e−λcmrk

mm(λcmrk
m)k

rΓ(k)
, (4.2)

where cmrkm is the volume of the m-dimensional ball with radius rk [220]. The

coefficient cm is defined as

cm =


π
m
2

(m/2)!
, for even m

π
m−1

2 2m(m−1
2

)!

(m)!
, for odd m.

(4.3)

where Γ is the gamma function interpolating the factorial function [221]. For exam-

ple, Γ(k) equals to (k − 1)!. When m = 1, 2 or 3 cm is 2, π and 4π/3, respectively.

For instance, a vehicular network on a road can be modeled in one dimensional space

where m = 1 and cmrkm = 2rk m. If it is in two dimensional, then m = 2 and

cmrk
m = πrk

2 m2 are considered. Distribution of unmanned aerial vehicles in space

may require a three dimensional model, where m = 3 and cmrkm = 4πrk
3/3 m3.

We assume that a large number of many base stations are deployed in a cellular

network and the positions of BSs follow uniform random distribution in the three-

dimensional Euclidean space with density λ (nodes/m3). We exploit the simple

path-loss model; the received signal power xk of a BS from its kth nearest neigh-

bor that is rk meters away is xk = CPt

(
r0
rk

)γ
where γ ≤ 3 is the path-loss expo-

nent, C accounts for the attenuation factor at a reference distance of r0 meters and

the impact of non-distance-related factors such as antenna gains, calculated by using

GtGr((300×106/f)/(4π))2, whereGt is the transmitter receiver antenna gain in dB,

Gr is the receiver antenna gain in dB, and (f ) is the frequency with value of 2400×106

Hz. For simplicity we set r0 = 1 m; then xk = CPtr
−γ
k . The transmit power of base
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stations is represented as Pt. The received signal strength with the random variable

Pk is a function of Rk. For the sake of generality, the probability density function of

Pk calculated using above PDF of Rk and the simple path-loss model is

FPk
(xk) =

mλkrmk−10 ckm

(
xk
CPt

)k( 1−m
γ

)

e
−λcmr0m

(
xk
CPt

)−m
γ

Γ(k)
. (4.4)

Although we assume moving base stations, we suppose that the locations of base

stations and user equipment do not change dramatically during the measurement pe-

riod. The estimator can compute the estimate over a single slot that can be very

short. Therefore, the network can be considered stationary throughout the estimation

period. This system-level model is based on a generalization of Winner II channel

models following a stochastic approach and statistical distribution, which can be used

for indoor and outdoor scenarios [81]. Moreover, we assume that a dedicated control

channel is only implemented by BSs, therefore the interference from different UE is

not considered in this work. In a coordinated fashion, we assume that UEs can receive

signals only its corresponded base stations.

4.2.2 Network Density Estimators

In this work, we concentrate only on the density of base stations that is called as net-

work density; we do not deal with the density of users. The received signal strength

(RSS) of signals transmitted by BSs and measured by user equipment (UE) is highly

correlated to the density of base stations. Therefore, we construct two techniques

for estimating the network density using the RSS measurements of UEs. Firstly, we

present a novel estimator that uses the aggregate interference from the nearest N base

stations. This estimator is called as the interference-based density estimator. Sec-

ondly, we revert an early density estimator developed for two-dimensional ad hoc

networks and adapt it to the mobile networks where multi-access edge cloud comput-

ing (MEC) is employed. Hence, we call it as the MEC-based density estimator.
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4.2.2.1 Interference-based Network Density Estimator (IDE)

By selecting a random position as the location of a reference UE, let’s denote the

distance of the UE to the kth nearest base station rk with the random variable Rk.

Based on the system model presented in Section 4.2.1, the joint probability density

function (PDF) of the distances of the randomly selected reference point to the first

N BSs, r = (r1, r2, ...rN) denoted with the random variables R = (R1, R2, . . . , RN)

as derived from [219] is

fR(r) = e−
4
3
πλr3N (4πλ)N r21 . . . r

2
N dr.

Assume that all theseN base stations transmit a signal at the same time. The expected

value of the aggregated interference measured by a UE located at a random point then

becomes

µI =

∫ ∞
0

∫ rN

0

. . .

∫ r2

0

N∑
i=1

CPtr
−γ
i fR(r)dr

=
3CPt(4/3πλ)γ/3Γ (N − γ/3 + 1)

(3− γ)Γ(N)
,

(4.5)

where Γ(.) is the gamma function, and γ < 3.

In the Interference-based Density Estimator method, each UE measures the aggregate

interference from the nearest base stations and report these measurements to their

associated base stations. In the coverage of each base station, there will usually be a

large number of UEs, sayM . The base station will average the aggregate interference

measurements of UEs and then will estimate the network density as

λ̂IDE =
1

4π

(
µI(3− γ)Γ(N)

31−γ/3CPtΓ(1 +N − γ/3)

)3/γ

, (4.6)

where µ is the average of aggregate interference measurements byM UEs. In IDE, all

base stations can estimate the network density in a local fashion with the assistance

of the UEs in their coverage areas. One can enhance the performance of λ̂IDE by

averaging the individual estimates of base stations. Although, we call it interference,

BS generates collusion of signals intentionally to let UEs take samples.
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4.2.2.2 Multi-access Edge Cloud Based Network Density Estimator (CDE)

We present the multi-access edge cloud-based density estimator (CDE) as the sec-

ond estimator model. In CDE, we assume that user equipment measure the received

signal strength (RSS) of pilot signals transmitted by base stations at various non-

overlapping time slots and send these measurements back to their associated base

stations. Then, the base stations convey these measurements to a multi-access edge

computing (MEC) entity. Afterwards, the MEC employs these measurements to es-

timate the network density. We modify the two-dimensional model proposed in [55]

to fit it into the three-dimensional Euclidean space. In this section, we present the

theoretic basis of the maximum likelihood density estimator λ̂CDE where the actual

density is λ in nodes/m3.

By selecting a random position as the location of a reference UE let’s denote the

distance of the UE to the kth nearest base station rk with the random variable Rk.

The PDF of Rk [55] is

fRk
(rk) = e−

4
3
πλr3k

3(4
3
πλr3k)

k

rkΓ(k)
. (4.7)

We represent the received signal power from the kth base station xk with the random

variable Pk which is a function of Rk considering the system model presented in

Section 4.2.1. Then, the cumulative distribution function (CDF) of Pk [55] becomes

FPk
(xk) =

Γ
(
k, 4

3
πλx

−3/γ
k

(
1

CPt

)
−3/γ

)
Γ(k)

, (4.8)

where Γ(a, z) =
∫∞
z
ta−1e−t dt is the incomplete gamma function [55], when we

consider the model for three-dimensional deployment of base stations and user equip-

ment.

Let xi denotes the RSS of a pilot signal transmitted to a UE by its kthi nearest base

station, and (4.8) is the CDF of xi. After n RSS samples x1, x2, . . . , xn and the

corresponding neighbor proximity indexes k1, k2, . . . , kn are collected by UEs col-

lectively from non-overlapping regions, UEs convey these measurements to the MEC

over base stations. Then, the MEC can compute the maximum likelihood estimator,

λ̂. We assume the node distribution of base stations in the m−dimensional space

follows a homogeneous Poisson point process (PPP); and the RSS measurements are

70



independent since they are collected from non-overlapping regions. As in [20, 55],

the maximum likelihood density estimator becomes

λ̂CDE =
K − 1

4
3
π
∑n

j=1(
xj
PtC

)−3/γ
, (4.9)

where K =
∑n

j=1 kj . The unit of density is nodes/m3. λ̂CDE is an unbiased estimator

and its variance goes to zero as more and more samples are collected from the field.

Therefore, the number of collected samples impact K which in turn significantly im-

pacts the accuracy of the estimator λ̂. It can be seen that the different dimensions have

different cm andm values [55, 218]. Then, we can generalize the estimator as follows:

λ̂CDE =
K − 1

cm
∑n

j=1(
xj
PtC

)−m/γ
.

4.3 Density Estimation in FANETs

The variations in the density of the flying ad hoc networks impact the quality of

service, and introduce many challenges. In this thesis, we present a novel density-

aware technique to increase and stabilize channel utilization for flying ad hoc net-

works (FANET).

Assuming that a FANET consists of a number of UAVs as uniform randomly de-

ployed with a density of λ (nodes/m3). DASAP is used as a communication protocol

between UAVs by taking advantage of the slotted ALOHA protocol just with a dy-

namic channel access probability. It is assumed that time is divided into a number of

slots. The channel access probability of each UAV may initially be set randomly. We

may assume that each UAV can make this initialization by itself or a base station in

this FANET may distribute the initial parameters of DASAP via broadcasting. In this

network, since at the beginning of each time slots, two kinds of UAVs which may be

determined in a probabilistic manner, the transmitting UAVs generates random sig-

nal, and then each of estimating UAVs can measure the noise power on the channel.

The estimating UAVs can estimate the density of UAVs by measuring the channel

power. In order to determine the network density, UAV executes interference-based

network density estimator as explained in Section 4.2.2.1. The estimating UAVs can

now update their channel access probability based on the effective density value.
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One of the design questions in this analysis is that should we estimate the UAV den-

sity at the beginning of each time slot? In other words, what should be the number of

optimal Estimation mini-slots? By considering DASAP, we can claim that we need

to reserve a portion of each time slot for the estimation, since we need to update

the channel access probabilities depending upon the effective network density. Ac-

cording to the system design, at each time some of the UAVs are selected estimating

UAVs and some of them are chosen as transmitter UAVs. Only the subset of estimat-

ing UAVs can update their channel access probability according the their estimated

density value. Therefore, we observe that for a stabilized channel access probability,

we divide the required number of time slots to be sure that each of UAV change its

access probability by determining according to its effective density measurement. In

addition, at each time slot, the network topology is changed. Since we are proposing

an approach for FANETs, we should consider a highly dynamic network topology.

This perspective also encourages to make estimation at the beginning of each time

slot.
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CHAPTER 5

DENSITY-AWARE NETWORKING APPLICATIONS

This chapter discuss the density-aware and -adaptive protocols and network parame-

ters proposed in this thesis. There are three categories for density-adaptive models.

The first one is called density-aware network outage for two-dimensional and three-

dimensional networks. The second one is the density-aware transmit power adaption

method which is designed as different dimensions. Finally, we discuss the density-

adaptive dynamic channel utilization method for flying ad hoc networks.

5.1 Density-aware Network Outage

We propose network outage models which utilizes the network density as an opti-

mization parameter.

5.1.1 Network Outage in Two-Dimensional Wireless Networks

Assume a two-dimensional clustered ad hoc network where nodes are uniform ran-

domly deployed with an effective density of λ nodes/m2. Let xk refer to the RSS of a

packet measured by a randomly located reference node from the kth closest neighbor

that is rk meters away. By considering the simple path-loss model, the RSS will be

xk = KPt

(
r0
rk

)γ
where K is the fading factor at r0 = 1 m that accounts for the

effect of non-distance-related aspects, Pt is the transmit power and 2 ≤ γ ≤ 7 is the

path-loss exponent.

Consider a random node as the reference node in a clustered ad hoc network, and

let rk represent the distance of that node to the kth closest node that is represented
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with the random variable Rk. The RSS of a packet sent from the kth closest node to

the reference node, xk is represented with the random variable PIk that is a function

of Rk. This channel model considers only path loss; shadowing or fading are not

considered. Then, the CDF (Cumulative Distibution Function) of PIk [55] is defined

as

FPIk
(xk) = Γ

(
k, πλ

(
KPt
xk

)2/γ
)
/Γ(k).

In this thesis, we consider outage probability as the probability (PO) of the strength

of the signals transmitted by the closest neighbor of the reference node (i.e., k = 1)

being smaller than a threshold, T . Based on this definition, the outage probability can

be calculated as

PO(λ) = FPI1
(T ) = e−πλ(KPt/T )

2/γ

. (5.1)

5.1.2 Network Outage in Three-Dimensional Wireless Networks

By considering the PDF of Rk (4.7) and the CDF of Pk (4.8), we present the outage

probability as the probability (PO) of the received power of the signals transmitted by

the closest base station (i.e., k = 1) and measured by the randomly located reference

user being below the receiver sensitivity, T . Based on this definition, the outage

probability becomes

PO(λ) = FPI1
(T ) = e−4/3πλ(CPt/T )

3/γ

, (5.2)

where T is the receiver sensitivity (threshold) that is the minimum required received

signal strength to intelligibly decode the signals [222]. (5.2) is different from its

two-dimensional representation proposed in [144]. The dimension of the solution

changes the network outage model. This network outage model analytically indicates

that the outage probability and the base station density are two important interactive

parameters. The network outage is also influenced by the path-loss exponent, transmit

power of base stations and the minimum power requirement which is the threshold

value as experimentally demonstrated in Section 6.2.2.1. The PDF decreases with

e−(CPt/T )
3/γ

when Pt increases, the outage probability becomes zero. When T in-

creases the expected value will be 1. The PDF of received signal strength (4.4) will

affect the outage probability. If Pt increases the received signal strength will be in-

creases, which means more and more UE can receive the message with a higher RSS.
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In this formulation, we suppose that there is a robust interference cancellation tech-

nique implemented in the system. That is why we consider only the received signal

strength instead ofsignal-to-interference-plus-noise ratio (SINR) [20].

5.2 Density-aware Transmit Power Adaptation (DTPA)

We suggest cell-zooming methods based on the network density and transmit power

adaptation for different dimensional networks.

5.2.1 Transmit Power Adaptation in Two-Dimensional Wireless Networks

Let network designer designate the required outage probability, P ∗O as a design pa-

rameter. Assume that each node can distributively estimate the density of the cluster

it belongs to for computing outage as in (5.1). Nodes can adapt their transmit power

to the estimated density λ̂ in a dynamic fashion for overcoming energy consumption

and coverage problems by

P ∗t >
T

K

(
− log (P ∗O)

πλ̂

)γ/2
. (5.3)

During the estimation of density Pt will be considered as fixed.

5.2.2 Transmit Power Adaptation in Three-Dimensional Wireless Networks

Let’s assume that the base stations located in a cellular network has an ability to

estimate the network density. Then the adaptation of their transmit power levels using

(5.2) would be possible in order to satisfy a provided outage probability level in a

decentralized or distributed fashion [20]. Using (5.2), the transmit power has to be

adapted to its minimized value

P ∗t >
T

C

(
−3 log (P ∗O)

4πλ̂

)γ/3
, (5.4)

where the required outage probability P ∗O is a network design parameter set by the

network operator and λ̂ is either IDE or CDE. We assume that using some technique,
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IDE or CDE, base stations estimate the density of the network. Then, they employ

the estimated density λ̂ to set their transmit power using (5.4).

With the help of the transmit power adaptation technique, we can choose the min-

imum required power instead of a constant or pre-configured value to manage the

coverage area of the network. After, updating the value of minimum required power,

namely receiver sensitivity, transmit power of base stations can be updated based on

the effective network density measurements and the required outage probability pro-

vided by network operators. This adaptation provides us energy efficient network

configuration.

Although many phenomena and impairments that affect the received signal strength

are not included, this model is very practical as a result of its simplicity. Many users in

a cell may independently measure the received signal strength. These measurements

may be transmitted to a mobile edge computing (MEC) entity, and fusion of the re-

sults may be exploited by the MEC and base stations to decrease the impact of fading

and shadowing. By means of the user equipment signal strength measurements, base

stations will be able to arrange their transmit powers immediately bounded with the

time period of the density estimation. A simple and fast density estimator will be very

rewarding for this matter. Hence, we suggest two novel three-dimensional density es-

timators.

All these models need to be validated. In Chapter 6, we validate these models by

using Monte Carlo simulations and leverage them to demonstrate their applications

and analyze the outcomes for different scenarios.

5.3 Density-aware Channel Utilization in FANETs

In this section, we introduce density-aware slotted ALOHA protocol which provides

a dynamic random access and optimized channel utilization. To perform the proposed

technique, we assume a scenario based on flying ad hoc networks. This protocol takes

advantage of interference-based density estimator.
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5.3.1 System Model

In this thesis, we propose a novel density-aware MAC protocol design based on slot-

ted ALOHA with a dynamic channel access probability which is called Density-aware

Slotted ALOHA Protocol (DASAP). Consider a random flying ad hoc network that

employs slotted ALOHA over a single channel. We divide the time into a number

of slots. The structure of a time slot is illustrated in Figure 5.1 which includes two

mini-slots: The first mini-slot denominated as Estimation mini-slot for estimation

procedure which starts from the beginning of the corresponding time slot, and in the

second mini-slot UAVs can make packet transmission based on a dynamic channel

access probability, p. A sample link layer frame divided into n time slots is displayed

in 5.2. We assume that each of the time slots are equal in length. At the beginning of

each time slot UAVs randomly determine whether or not to transmit a pseudo-random

signal in the Estimation mini-slot with a predetermined constant transmission power

level. With considering the Poisson point-process assumption, the transmitting UAVs

are randomly determined with probability, ps. That we call as the selection proba-

bility. Those UAVs that do not generate noise signal power on channel and estimate

the density of UAVs, determine their individual channel access probabilities with the

estimated density and in the data transmission slot transmit their packets according to

the computed channel access probabilities. In other words, by obeying the selection

probability ps, UAVs are selected as transmitting or estimating UAVs in a proba-

bilistic manner. Figure 5.3 shows the generated signals from transmitting nodes, and

estimating nodes in these time slots. In Figure 5.3, two different Estimation mini-

slots are displayed. In these two of mini-slots, the changing distribution of UAVs are

also illustrated.

We assume that the UAVs are randomly deployed with a density of Λ nodes/m3 in a

three-dimensional volume. The effective density of the transmitting (active) UAVs at

the designated control slot becomes λ = psΛ, where ps is the selection probability

mentioned in Section 5.3.1.

We assume that the locations of the UAVs do not change significantly throughout the

Estimation mini-slot of a time slot and the network can be considered stationary dur-

ing the estimation process. Since the estimator does not require any communication,
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and it can compute the estimation result over a single slot that can be very short, i.e,

stationary assumption is valid. A subset of the UAVs randomly access the channel at

Estimation mini-slot, therefore the uniform randomness assumption is not violated.

Figure 5.1: The first mini-time slot called estimation mini-slot to perform the es-

timation of the UAV density (nodes/m3). Some of the UAVs are selected based on

a selection probability as estimating UAVs, and others will be assigned as transmit-

ting UAVs. The estimating UAVs can determine the effective UAV density by total

signal strength on the estimation mini-slot from the transmitter UAVs in its commu-

nication range. Then, estimating UAVs use the estimated density by the selection

probability to obtain the whole network density. The second mini-time slot named

as communication mini-slot where UAVs can transmit their packets based on the

dynamic channel access.

Figure 5.2: A MAC frame example with three UAVs and n time slots. Each of the

UAVs send several packet replicas. Slots t, and t + 2 are successful transmissions.

Slots t+ 3, and t+ n are collided on the other hand slots t+ 1 is a wasted slot.

The inactive UAVs (i.e, those that do not generate a signal) only measure the signal

power on the channel in the Estimation mini-slot without trying to decode the signals

intelligibly. Let us represent the accumulated power of the signals sampled by a

78



Figure 5.3: Two sample scenarios in two estimation mini-slots. For the sake of sim-

plicity, we present estimating and transmitting UAVs as different view-design. In the

fact that, UAVs designates themselves independently and randomly with probabil-

ity ps as transmitting or estimating nodes locally. Communication between UAVs is

performed with in the boundaries of corresponding UAV communication range.

node using received signal strength, which is not active in that slot, with the random

variable PI =
∑∞

k=z PIk . The expected value of PI is represented as µI as explained

in Section 4.2.2.1.

5.3.2 Further Assumptions

We present the measurement of aggregate power using RSSs in Section 4.2. Our

further assumptions:

Assumption 1: All nodes have a packet to send, and all packets have the same prior-

ity. The frame size is fixed.

Assumption 2: The distribution of nodes is following the three-dimensional homo-

geneous Poisson point process with a deployment spatial density λ (nodes/m3).
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Assumption 3: The simple path-loss model is leveraged; the received signal power

xk of a UAV from its kth nearest neighbor that is rk meters away is xk = KPt

(
r0
rk

)γ
where γ ≤ 3 is the path-loss exponent, C accounts for the attenuation factor at a

reference distance of r0 meters and the impact of non-distance-related factors such as

antenna gains [223].

Assumption 5: Each of UAVs can send their packets at the beginning of the Com-

munication mini-slot. Moreover, a packet fits in a single Communication mini-slot.

Assumption 6: UAVs can measure the channel energy caused by the UAVs trying

to generate a noise, and have some computational power to perform the estimation

process.

Assumption 7: Each UAV has a synchronized time and knows at the beginning of

the time slot.

5.3.3 Updating The Channel Access Probability

In DASAP, all UAVs can estimate the network density in a local fashion and can

change its access probability based on this measurement. Since our proposed method

is based on slotted ALOHA protocol, and our aim is to obtain a channel access proba-

bility and maximize the channel utilization of slotted ALOHA, we need the number of

UAVs (N ) within the communication range. Slotted ALOHA protocol achieves max-

imum channel utilization if channel access probability is selected as p = 1/N . Hence,

we need Estimation mini-slot to determine this parameter and adapt the channel ac-

cess probability p. To update the probability of channel access, we utilize a moving

average approach as presented in (5.5) to take advantage of the previous values of the

access probabilities. The channel access probability (pt+1) of a UAV at time slot t+ 1

is exponential moving average which provides the usage of the trending values and

the current values of p in a weighted approach:

pt+1 = (α)
1

λ̂(4/3)πr3c
+ (1− α)pt, (5.5)

where α is a smoothing factor with a range between 0 and 1, and rc is the maximum

communication range of a node. Our aim is to reach the maximum utilization in
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slotted ALOHA protocol. In SAP, the value of N , number of UAVs, can not know.

However, with this approach we can obtain the number of UAVs in a volume and use

this information to provide the new channel access probabilities (pt+1) of each node.

5.3.4 Other Proposals

There exist two approaches that we compare them with our proposals. One of them

is the theoretic slotted ALOHA protocol, and the other one is the stabilized slotted

ALOHA protocol.

5.3.4.1 Slotted ALOHA Protocol (SAP)

SAP can be utilized as a communication protocol in a FANET. Assume that the chan-

nel access probability for UAVs are initialized with a constant and fixed probability

value randomly. It is also assume that time is divided into slots. At the beginning

of each time slot, backlogged UAVs try to transmit their packets on the channel. If

there are more than one or none packets transmitted, then UAVs should wait a time

slot to make a re-transmission based on the channel access probability or if there is

only one packet on the channel during the slot, then this means that the packet is

successfully delivered to the destination by using the same shared medium. Slotted

ALOHA protocol has a constant channel access probability which is a disadvantage

of this protocol.

5.3.4.2 Stabilized Slotted ALOHA Protocol (STSAP)

There is a need to avoid the weaknesses of the slotted ALOHA protocol by changing

the channel access probability in a dynamic fashion. One of the possible solutions is

changing the access probability by observing the result of the attempt at the beginning

of a time slot. If the attempt is successful then the channel access probability is

increased. However, if the transmission is collided then the access probability can

decrease. UAVs need to stabilize the change of the channel access probability. Thus,

STAP is defined as stated in Algorithm 5 [224, 225, 226].
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CHAPTER 6

VALIDATION AND EXPERIMENTAL RESULTS

This chapter is to validate both density estimators and density-aware and -adaptive

analytic models. Different types of simulations are conducted based on Monte-Carlo

simulations to verify the models and to show the significant importance of density in

case of network performance.

6.1 Validation of Density Estimators

In this section, we present the simulation details for the validation of the distance

matrix-based density estimator, interference-based density estimator, multi-access

edge cloud-based density estimator.

6.1.1 Validation of Density Estimator for Ad Hoc Networks

We validated the proposed estimator using Monte-Carlo simulations. In a circular

field of interest a set of points following the deployment density λ nodes/m2 are se-

lected uniform randomly; i.e., spatial Poisson point process with intensity λ. Algo-

rithm 1 is applied and λ̂ is computed. The simulations are repeated 50 times and the

averages are presented.

Performance of the Estimator

The relative standard deviation (RSD=100σλ̂/|µλ̂|) of the estimator for various de-

ployment densities is shown in Figure 6.1 when we assume no errors in the mea-
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Figure 6.1: The relative standard deviation (%) of the estimator for various cluster

densities where σ = 0; i.e., no error in the measurements.

surements (σ = 0). In dense clusters, a larger number of nodes are considered for

the computation which reduces the variation in the estimator. Therefore, as density

increases the RSD of the estimator drops as can be seen in Figure 6.1.

There will always be distance measurement errors because of multi-path fading, shad-

owing, and obstructions in the environment [215]. In this work we assume normally

distributed error with zero mean and standard deviation σ. The impact of σ on the

average absolute percentage deviation, AAPD=(100λ̂ − λ)/λ), is presented in Fig-

ure 6.2. An accurate method for distance estimation will enhance the quality and ac-

curacy of the proposed density estimator as can be seen in this figure. As the errors in

the distance measurements increase, the AAPD of the proposed estimator increases.

We compare our proposal λ̂, Kendall’s λ̂K , and the cooperative λ̂C estimator based

on the AAPD from the actual density as shown in Figure 6.2. The AAPD increases

as the measurement errors increase for all estimators. However, the deviation of λ̂K

is larger than that of λ̂ always and the AAPD of λ̂K explodes while the AAPD of

λ̂ increases steadily. The proposed method provide more and more accurate results

although the errors are increasing. λ̂C may not provide distinctly accurate results

because of uncertainties of RSS, the Kendall’s AAPD results are always soaring while
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Figure 6.2: The comparison of the estimators based on average absolute percentage

deviation (AAPD) where λ = 0.05 nodes/m2.

the measurement errors are increasing.

6.1.2 Validation of Density Estimator for Cellular Networks

In this section, we present the simulation results for validating IDE and CDE.

6.1.2.1 Simulator Design

These network density estimators are validated by Monte-Carlo simulations imple-

mented using Matlab. In the simulations, a number of base stations and UEs are

uniform randomly deployed in a three-dimensional Poisson process in Matlab. For

each run of the simulator, the locations of BSs and UEs change randomly. We assume

that UEs can measure the RSS from their closest base stations. Table 6.1 presents a

summary of symbols and the parameters which are considered during the validations

of two estimators. Actual density, λ, is the deployment density, which is the number
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Table 6.1: The symbols, notations, values and units of the 3-D simulation parameters

for cellular networks.

Parameter Default Value Units Ref

Actual density, λ [0.0001,0.003] nodes/m3 [20]

Estimated (effective) density, λ̂ (4.6) or (4.9) nodes/m3

Sparse deployment, λS 0.0005 nodes/m3 [20]

Dense deployment, λD 0.0015 nodes/m3 [20]

Ultra-dense deployment, λU 0.003 nodes/m3 [20]

Path-loss exp. γ 0 6 γ 6 6 [81]

Reference distance, r0, 1 m [55]

Transmit power, Pt [10,100] mW [142]

Adapted transmit power, P ∗t (5.4) mW

Threshold (Receiver sensitivity), T 5× 10−13 mW [20]

Required outage probability, P ∗O [0,1] [20]

Simulated outage probability, PO [0,1] [20]

Analytic outage probability, POA [0,1] [20]

Nearest neighbor index, k [1,∞) [20]

Max. nearest neighbor index, N [1,∞) [20]

C 10−5 [20]

of UEs and BSs divided by the volume (m3). The estimated (effective) density, λ̂,

is the computed density value after applying one of the density estimators in a net-

work. Sparse deployment, λS , dense deployment, λD, ultra-dense deployment, λU

show different deployment density for different network scenarios [20]. Path-loss

exponent, γ, is the coefficient for the path-loss model in the range between 0 and

7, which is already determined as empirical values for different indoor and outdoor

scenarios [54]. r0 is the reference distance in the far-field of the antenna, which is

selected as 1 m for simplicity. We assume that the random distances in the network

are generally larger than the reference distance. Pt is the transmit power for base sta-

tions which is selected up to the 20 dbm considering the small cell requirements [20].

P ∗t is the transmit power for base stations adapted by the proposed model (5.4). T

is calculated by T = CPtrc
γ , where rc is the maximum communication range. This
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threshold value for the network outage model, which is the receiver sensitivity, and it

provides the minimum power requirement to receive a signal [20]. P ∗O is the required

outage probability which is provided by the network operator. PO is simulated and

calculated by performing the proposed model (5.2). POA is calculated by using the

CDF of the network outage model (4.8). The nearest base station neighbor for a UE is

represented as k which is in range of [1,∞) for a model based on Poisson Point Pro-

cess. N is the selected maximum value of the nearest base station index. Moreover,

C is a constant originated from non-distance-based factors and antenna gain, which

is calculated as explained in Section 4.2.1. The results are the averages of 104 runs.

6.1.2.2 Validation of the Interference-based Network Density Estimator (IDE)

To validate the IDE, base stations are assumed to be randomly deployed with various

densities from sparse networks to dense networks in a spherical simulation environ-

ment with a radius of 250 meters. A randomly selected point designates the location

of a UE. We assume that this UE measures the aggregate signal power from the first

six base stations closest to it; N = 6. The averages of 104 simulation runs are com-

pared to the results of the analytic model (4.5) presented in Section 4.2.2.1 under the

same set of parameter values.

Figure 6.3 show the simulation and analytic results based on different path-loss ex-

ponent (γ) values and various densities. As can be seen in Figure 6.3, the simulation

results validate µI in (4.5). The accuracy of the results decreases as the environment

gets harsher, i.e., when path-loss exponent becomes larger. In harsh environments

with a large γ, only the overall strength of the signals become smaller. The errors in

the channel model such as deviations in the γ estimates will significantly impact the

density estimators.

We define the average absolute percentage deviation as AAPD = 100|λ̂− λ|/λ. We

present the AAPD results for the IDE (λ̂IDE) in Table 6.2. For various deployments

with different densities, the AAPD results show that the estimation results are at an

acceptable level; the AAPD values are generally less than 3. The IDE considers only

path loss and non-distance related fading in signal measurements. Over channels that

are prone to different types of fading, the deviations will be larger.
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Figure 6.3: Mean aggregate interference power (mW) for various deployment densi-

ties when γ = 1, 1.5 and 2, respectively, and Pt = 100 mW .

Table 6.2: The AAPD and 99% confidence limits in the estimators for various de-

ployments (λ) (nodes/m3) where γ = 1.5 and N = 6.

λ

(×10−6)

λ̂IDE

(×10−6)

AAPD

(%)

99% confidence

limits of λ̂IDE ×(10−8)

0.2 0.21 3.08 +− 0.24

0.4 0.41 2.30 +− 0.46

0.6 0.60 0.66 +− 0.59

0.8 0.81 1.29 +− 0.78

1 0.99 0.61 +− 0.84

1.2 1.22 2.06 +− 1.31

1.4 1.42 1.24 +− 1.38

1.6 1.64 2.23 +− 2.33
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6.1.2.3 Validation of the Multi-access Edge Cloud-based Network Density Es-

timator (CDE)

In the simulations for validating the Multi-acces Edge Cloud-based Network Density

Estimator (CDE), a set of user equipment and base stations are assumed to be uniform

randomly deployed in a field of interest following 3-D Poisson process in Matlab. At

each run of the simulator, the locations change randomly. UEs measure the RSS

from their either first closest base stations by using the channel model described in

Section 4.2.1 and these measurements are assumed to be collected at a mobile edge

computing (MEC) entity. Therefore, kj = 1 and K =
∑n

j=1 kj = n, for λ̂1 where n

is the number of samples collated at the MEC. Then, (4.9) is employed to compute

the estimator in nodes/m3. The results are the averages of 104 runs. The values of the

parameters employed in the simulations are shown in Table 6.1.

We present how accurate the CDE performs in Table 6.3 for various actual deploy-

ment densities λ. The first column of this table is the actual density and the second

column is the result of the estimator λ̂. The CDE works with acceptable accuracy and

the AAPD is always less than 3%.

Table 6.3: The AAPD in the CDE for various actual deployment densities λ

(nodes/m3) where γ = 3, and λ̂CDE1 (nodes/m3).

λ

(×10−3)

λ̂CDE1

(×10−3)

AAPD

(%)

99% confidence

limits of λ̂CDE1

(×10−5)

1 0.98 2.50 +− 0.80

2 1.96 2.09 +− 1.54

3 2.92 2.66 +− 2.37

4 3.91 2.16 +− 3.18

5 4.93 1.44 +− 4.06

6 5.93 1.16 +− 4.73

7 6.85 2.11 +− 5.66

8 7.91 1.12 +− 6.49

The CDE results when λ = 5 × 10−4 nodes/m3 for different path-loss exponent γ
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values are shown in Table 6.4. The AAPD values are considerably small for any

channel model with various path-loss exponent values. The effect of the path-loss

exponent on the accuracy of the CDE is not dramatic.

Table 6.4: The impact of the path-loss exponent (γ) on the CDE and the AAPD in

the estimators where the actual deployment density is λ = 5× 10−3 (nodes/m3), and

λ̂CDE1 (nodes/m3) .

γ
λ̂CDE1

(×10−3)
AAPD (%)

99% confidence

limits of λ̂CDE1

×(10−5)

2 4.91 1.71 +− 3.54

2.5 4.90 1.94 +− 3.46

3 4.93 1.32 +− 3.55

3.5 4.91 1.87 +− 3.54

4 4.92 1.52 +− 3.54

4.5 4.94 1.29 +− 3.57

5 4.90 1.98 +− 3.54

5.5 4.91 1.75 +− 3.44

6 4.93 1.45 +− 3.50

Unfortunately, the CDE has some deficiencies. Firstly, similar to the IDE it only

considers the path-loss and the non-distance related fading. Secondly, the time to

compute the CDE can be long. UEs collect measurements and send them back to the

base stations. Base stations convey these measurements to the mobile edge comput-

ing (MEC) entity in the network and the MEC estimates the density and informs the

base stations about the result. As the third deficiency, we can partially say that the

CDE may yield biased results when the measurements are collected from overlap-

ping regions. Since we employ likelihood estimation, the CDE depends on the strict

assumption of independence among measurements. When the measurements are col-

lected from overlapping regions, there will be a large amount of correlation among

measurement samples that will create a bias in the estimates.
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Table 6.5: The accuracy of different estimation AAPD results of λ̂IDE (nodes/m3),

and λ̂CDE (nodes/m3), respectively when γ = 1.5.

λ̂IDE λ̂CDE

λ (×10−3) λ̂IDE , (×10−3) AAPD,%
99% confidence

limits, (×10−5)
λ̂CDE , (×10−3) AAPD,%

99% confidence

limits, (×10−5)

1 0.95 4.92 +− 0.23 0.94 6.45 +− 0.20

2 1.92 4.16 +− 0.46 1.90 5.13 +− 0.39

3 2.88 3.95 +− 0.69 2.86 4.57 +− 0.57

4 3.85 3.66 +− 0.94 3.83 4.17 +− 0.74

5 4.83 3.35 +− 1.13 4.81 3.89 +− 0.94

6 5.80 3.28 +− 1.42 5.78 3.62 +− 1.15

7 6.79 2.99 +− 1.59 6.76 3.38 +− 1.29

8 7.75 3.17 +− 1.87 7.73 3.34 +− 1.45

6.1.2.4 Discussions About Density Estimators

With the help of the Monte Carlo simulations, two different approaches are performed

by using both 3-D edge cloud-based density estimator and the newly proposed 3-D

aggregate interference based density estimator. In these experiments, we assume that

UEs are able to collect RSS measurements from their first six (k = 1, 2, 3, 4, 5, 6)

and (N = 6) closest BSs. As it can be seen in Figure 6.4 and Table 6.5, aggregate

interference method provides more accurate results in comparison to collaborative

estimator. In these simulations at each run nodes positions are changed randomly.

When both of two estimators use the first kth closest BS measurements, the results

are really prone to the accuracy of the RSS measurements. In addition to the number

of proximity indexes, the location of base stations and UEs that RSS values collected

also affect the accuracy of the estimators. In interference-based density estimator, if

the RSS measurements are collected from large distant base stations, the estimations

provide more accurate results. Aggregate interference estimator can be performed by

an individual node, however CDE requires the other nodes’ contributions to provide

more accuracy. MEC-based density estimator can be performed even when the chan-

nel conditions is very harsh such as when the path-loss exponent is greater than the

value of three.
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Figure 6.4: The accuracy of different estimation, average absolute percentage devia-

tion (AAPD) results of λ̂IDE and λ̂CDE , respectively (nodes/m3) when γ = 1.5.

6.1.2.5 Impact of Neighbor Proximity Indices

We simulate an environment which is a spherical volume as it can be seen in Fig-

ure 6.5. In this volume, we distribute the base stations and user equipment uniform

randomly. In this case, as a different application scenario from Section 6.1.2.3, all

of the user equipment is involved in the estimation process in a fixed topology. At

each step, UEs collect RSS measurements from their first closest BS for computing

λ̂CDE1 in the first variant of the CDE. In the second variant of the CDE, UEs col-

lect RSS measurements from the first six closest base stations for computing λ̂CDE6 .

We assume that each UE sends these measurements to MEC over the associated BS.

Then, MEC performs (4.9) by using these measurements. The results are presented

in Table 6.6.

According to the results, the CDE has accurate outcomes. However, if we increase the

number of closest neighbor BSs to get RSS measurements, it increases the sampling

from overlapping regions, which results in less accurate outcomes than the estima-

tion results including RSS measurements from the first closest BS. An increase in

the number of the nodes near the network edge effects the results negatively since
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Figure 6.5: Collecting RSS measurements from the kth nearest BS.

Table 6.6: The actual densities (λ) (nodes/m3) versus the estimated densities (λ̂)

(nodes/m3) for λ̂CDE1 and λ̂CDE6 . The AAPD (%) results are also presented.

λ̂CDE1 λ̂CDE6

λ (×10−3) λ̂CDE1 , (×10−3) AAPD,%
99% confidence

limits, (×10−6)
λ̂CDE6 , (×10−3) AAPD,%

99% confidence

limits, (×10−6)

1 0.94 6.43 +− 1.84 0.91 9.18 +− 0.89

2 1.89 5.28 +− 2.73 1.85 7.41 +− 1.33

3 2.86 4.59 +− 3.16 2.81 6.48 +− 1.69

4 3.83 4.21 +− 3.76 3.76 5.88 +− 1.82

5 4.80 3.96 +− 4.31 4.72 5.51 +− 2.12

6 5.78 3.59 +− 4.67 5.69 5.15 +− 2.32

7 6.76 3.46 +− 5.09 6.66 4.91 +− 2.40

8 7.73 3.34 +− 5.44 7.62 4.73 +− 2.59

measurements are exposed to the shadowing and the multi-path fading more than the

nodes near the middle of the network. Moreover, Table 6.6 shows that when the

number of closest neighbors increases the variance of the estimator results.

The neighbor proximity has also impact on the estimator IDE, which is presented in

Figure 6.6. It can be seen that when the proximity index increases, the accuracy of

the estimator increases, and the variance of the results decreases.
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Figure 6.6: The estimator λ̂IDE results along with different proximity indexes k where

γ = 3, and λ = 0.005 (nodes/m3).

6.1.2.6 Impact of Log-normal Shadowing

In order to derive our proposed density estimators, we exploit the deterministic simple

path-loss model as presented in Section 4.2.1. However, due to the obstructions such

as buildings, walls, or trees received signal strength measurements are subject to a

stochastic channel impediment which is called shadowing. These stochastic external

factors give rise to log-normally distributed (or normally distributed in the dB scale)

received signal strength results. Although two proposed estimators consider small-

scale fading effects within the coefficient C as expressed in Section4.2.1, shadowing

is not incorporated in these models. For the very reason, a set of simulation is made

by using (6.1) to analyze the shadowing effects:

Pk(rk) = 10(log10(C) + log10(Pt) + γ log10(
r0
rk

)) + ψσψ, (6.1)

where ψ is based on zero-mean Gaussian distribution with a standard deviation of

σψ. We analyze the impact of log-normal shadowing characterized by the standard

deviation of 2 6 σψ 6 12 dB on both proposed estimators [227]. From the light

of the results, we observe that while the shadowing effect increases, the accuracy of

the results significantly decreases. Thus, the proposed estimators can be enhanced by

incorporating shadowing models. To remove shadowing, a different path-loss model
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which is already presented in [228] is used as follows:

Pk(rk) = CPt

(
r0
rk

)γ
e
− σ2

2( 10
log(10))

2
γ2

, (6.2)

where σ represents the standard deviation of the log-normally distributed shadowing

and can be computed by collecting multiple xi values between the same pair of nodes.

When the standard deviation is 2 dB, 3 dB, and 4 dB, AADP results of estimations

obtained from IDE are 3.27%, 24.75%, and 62.26%, respectively. However, if we in-

corporate the shadowing model, and leverage (6.2) instead of simple path-loss model,

AAPD results became 0.76% and 13.93%, and 38.07% respectively. Since the cooper-

ative density estimator has cooperation among the nodes, the results of this estimator

may be less prone to shadowing effects than the interference-based density estima-

tor. By considering our observations and another analysis for RSS-based distance

estimation under log-normal shadowing [229], it can be concluded that RSS-based

estimators are highly susceptible to log-normal shadowing even when a shadowing

model is applied. The main observation from the impact of shadowing analysis is

that log-normal shadowing corrupts estimations and causes exponentially growing

errors over the measurements.

6.1.2.7 Impact of Path-loss Model

Choosing a path-loss model in wireless networks is critical if an RSS-based method

is using. For the sake of simplicity, the simple path-loss model which is considered

as an isotropic model can be chosen while deriving the analytic models as we do in

this thesis. However, we can enhance our models to overcome the line-of-sight and

non-line-of-sight effects at the same time in a wireless network.

We leverage an anisotropic path-loss exponent which is already introduced in [78],

and demonstrate the results by comparing these two different approaches. β =

−
log

Pmin
Pt

log(Rmax)
is the anisotropic path-loss coefficient [78], where Rmax is the distance

between a BS and the farthest position of the coverage area, Pmin is minimum thresh-

old power in this coverage boundary. Figures 6.7 and 6.8 presents the results form

IDE and CDE when different coverage areas (R) are considered. Since CDE has
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Figure 6.7: The comparison of isotropic and anisotropic path-loss model for different

estimations, and average absolute percentage deviation (AAPD) results of λ̂IDE when

isotropic γ = 2.
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collaboration between the nodes, and take samples from different sides of the net-

work, CDE has more accurate results than IDE. While the size of the network area

is changing, the accuracy of the anisotropic model is more higher than the isotropic

one. If we use the isotropic path-loss coefficient, since it is a constant value which we

choose at the beginning, it does not change during the estimation process. However,

anisotropic model can adapt itself to these changes at run-time, and provide more

convenient values to the estimators.

6.1.2.8 Impact of Non-uniform Distributions

Since cellular networks have a stochastic nature in real-life, the distribution of base

stations and users may be non-uniform. In this thesis, although we assume that distri-

butions of BSs and UEs are uniform to propose a tractable and easily understandable

analytic model, we also analyze some non-uniform deployments to show how this

phenomenon affects our proposed estimators. To create non-uniform scenarios, we

exploit Beta (B) distribution which is an asymmetrical two-parametric distribution

close to the log-normal distribution [230]. (6.3) represents the PDF of Beta distribu-

tion [231]. Based on different shape tendencies provided byB distribution, we deploy

BSs and UEs in a 3-D simulation environment. Table 6.7 roughly categorizes all these

different deployments into six scenarios entitling different tendencies. In the first four

scenarios, we deploy BSs and UEs based on B distribution by using the values of a

and b for each of BS and UE distributions. In the last two remaining scenarios, firstly

we uniformly deploy BSs, but we apply a and b values in Table 6.7 for the distri-

bution of UE, which are following the three non-uniform tendencies. Secondly, we

just use these two parameters for the BS distribution, but the deployment of UEs are

selected uniformly. In Figure 6.9, all these tendencies employing different values of

a and b are demonstrated. In Table 6.7, the first scenario is called Uniform since the

parameters a and b of B distribution are equal to 1, where BSs and UEs are located

uniformly in the environment. The second one is called Central Tendency provid-

ing a centralized distribution so that BSs and UEs are gathered at the center of the

spherical network area as indicated in Figure 6.9. Centrifugal Tendency is the third

scenario where the distributions of BSs and UEs are off-centered. This tendency lo-

cates BSs and UEs close to the boundaries of the network. The tendency of Skewness
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has a skewed shape, in which UEs and BSs are located at a particular region of the

network. The last scenarios include Non-uniform distribution for UEs, and Uniform

distribution for BSs, Uniform distribution for UEs, and Non-uniform distribution for

BSs. The PDF of B distribution is

f(x|a, b) =
1

B(a, b)
xa−1(1− x)b−1I[0,1](x), (6.3)

where B() is the Beta function, a and b are two different shape parameters which

change the shape of the distribution, and I[0,1] is to ensure that the values of the vari-

able x is in the range of between 0 and 1.

Table 6.7: When λ equals to 1(×10−4) (λ) (nodes/m3), (λ̂) (nodes/m3) of λ̂IDE and

λ̂CDE for different distributions are presented. AAPD (%) results are presented with

their 99% confidence interval (CI99%).

Distributions Shape Parameters λ̂IDE λ̂CDE

BS UE a b
λ̂IDE

(×10−4)

AAPD

%

CI99%

(×10−6)

λ̂CDE

(×10−4)

AAPD

%

CI99%

(×10−6)

Uniform Uniform 1 1 0.98 1.24 +− 0.33 0.99 0.32 +− 0.40

Central

Tendency

Central

Tendency

3 3 0.65 34.84 +− 1.91 0.85 15.32 +− 0.74

5 5 0.85 14.86 +− 3.65 1.13 13.03 +− 1.43

7 7 1.08 7.58 +− 3.08 1.50 49.58 +− 2.23

Centrifugal

Tendency

Centrifugal

Tendency

0.1 0.1 0.75 25.46 +− 2.35 1.74 74.00 +− 3.87

0.5 0.5 0.56 44.46 +− 2.24 0.63 37.30 +− 0.57

0.7 0.7 0.48 52.45 +−1.64 0.59 41.50 +− 0.43

Skewness Skewness
1 3 1.11 10.70 +− 4.10 1.84 83.56 +− 2.38

4 1 0.77 22.78 +− 2.80 0.79 21.13 +− 1.09

Uniform Non-uniform

10 10 0.71 29.01 +− 5.84 0.72 27.85 +− 0.26

0.3 0.3 0.71 28.93 +− 8.43 0.53 46.89 +− 0.19

0.5 0.5 0.73 26.86 +− 7.55 0.61 39.44 +− 0.22

0.7 0.7 0.73 27.16 +− 7.03 0.65 34.94 +− 0.21

1 4 0.94 6.26 +− 6.10 0.60 40.43 +− 0.32

1 5 0.90 10.24 +− 5.77 0.56 44.35 +− 0.30

4 1 0.51 48.77 +− 6.91 0.49 50.97 +− 0.21

20 1 0.47 53.43 +− 4.23 0.38 61.62 +− 0.21

20 10 0.61 38.90 +− 5.49 0.58 42.45 +− 0.26

10 20 0.88 12.12 +− 6.11 0.81 19.06 +− 0.31

100 20 0.55 45.40 +− 6.21 0.45 55.13 +− 0.23

Non-uniform Uniform
1 20 0.52 47.86 +− 1.60 0.29 70.73 +− 0.28

20 1 0.09 91.30 +− 1.86 0.32 67.65 +− 0.18

According to our observations, we can remark that the Uniform Tendency scenario
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where both BSs and UEs are deployed uniformly, the accuracy of the estimators are

the best in comparison to the other cases as expected since we create our models based

on the 3-D Poisson Point Process with an assumption including a uniform deployment

of BSs and UEs.

In Central Tendency, while the level of the centrality is soaring the estimator IDE

provides resilient results. The reason for this case is that when nodes (UEs and BSs)

are close to each other near to the center of the environment, the amount of the path-

loss, shadowing, the nodes causing non-negative effects at the corner of the network

decrease. However, since the estimator CDE take samples from different UEs collab-

oratively, the closest nodes at the center cause an increase of overlapping measure-

ments, and some sparse nodes near to the boundary of the network may not provide

good measurements that are why the estimator CDE gives worsening outcomes as the

central tendency is rising.

In scenarios built upon Centrifugal Tendency, due to BSs and UEs close to the bound-

ary of the coverage area, and the distances between the nodes are larger, the average

interference will then be decreased progressively. Thus, the accuracy of the results

provided by the estimator IDE becomes lower. However, while the centrifugal ten-

dency is diminishing, the estimator CDE yields more accurate results because BSs

and UEs close to the center become sparse nodes, which increases the error rate of

the measurements.

When the deployment of BSs and UEs tend to Skewness, they gather around a par-

ticular area of the network where BSs and UEs are too close to each other. Symmet-

rically changing the parameters a and b may not provide the same shape variation.

Thus, different observations are made for the values of these two shape parameters.

For example, when we increase b, we observe that the accuracy of the results is de-

clining further. However, the impact of changing the value of a causes smaller effects

over the results. After the value of 10 for a or b, which means higher non-uniform

deployments, outcomes of the estimators become less accurate. Especially, the dis-

tribution on BSs affects the accuracy of the results significantly in comparison to the

distribution of UEs.

With these four deployment tendencies, we also analyze each of BSs and UEs indi-
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vidually such that UEs have a non-uniform tendency, but the distribution of BSs are

uniform. In this case, the deployment of UEs follows above three non-uniform ten-

dencies. When UEs have a central tendency, the accuracy of the estimator results is

close to each other. However, in the case of centrifugal tendency, estimators IDE and

CDE have different accuracy for their outcomes depending on the positions of UEs

and BSs in the middle or at the corner, and the inter distances between BSs and UEs.

Eventually, when the deployment of BSs and UEs are uniform, if the samples are

taken from UEs which are close to the center of the network, two estimators provide

more and more accurate results. Furthermore, if the network pursuing a non-uniform

distribution, then the number of the kth nearest neighbor can be increased, and sam-

ples can be taken from UEs at anywhere of the environment randomly to get better

outcomes. Moreover, we observe that in sparse networks, the performance of IDE

is better than the estimator CDE because CDE which needs collaboration among the

UEs in the network. However, in dense networks, the estimator CDE gives more

accurate results if the samples are collected from UEs randomly for the non-uniform

deployments. The average AAPD of the proposed estimators’ results for non-uniform

deployments is approximately 27% for IDE and 40% for CDE.

Since IDE and CDE follow Poisson Point Process and based on a uniform distri-

bution assumption, which is not mostly applicable in practice that is consisting of

non-uniform deployments. However, we can utilize these network density estimators

by improving the accuracy of the results with the help of the following ways: For

instance, we can divide the network into clusters and we can manage them easily. We

can take the average of the multiple measurements with the help of multi-access edge

computing. Moreover, the fusion of IDE and CDE can be leveraged. We can improve

by adding multi-path fading models such as the Rayleigh fading model, and other

channel impairment models such as shadowing to our RSS-based density estimators.

Even if they are more complex while deriving analytic models, to create more realis-

tic models, we can change the distribution of our model depending on a log-normal

distribution or alpha-stable distribution as stated in [58].

All in all, in Section 6.1.2.4, we analyze our proposed estimators by taking into con-

sideration of neighbor proximity, the channel impediments such as shadowing, the

impact of the propagation model, and finally we examine the accuracy of the esti-
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mators under different non-uniform deployments. We can conclude that RSS-based

estimators can be derived by using simple models to ease tractability, but at the same

time, we should consider all these factors which are because of the stochastic nature

of received signal strength.

6.1.3 Validation of 3-D Density Estimator for FANETs

In this analysis, we present the impact of density estimation errors in addition to

showing the paramount importance of the UAV density in dynamic channel access

schemes, we examine the impact of the UAV density on the channel utilization and

channel access probability.
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Figure 6.10: Averages of channel access probability results with using estimated den-

sity (λ̂) and actual density (Λ) when the network density is increasing. Actual density

(Λ) is between the range in 2× 10−9 and 7.5× 10−9.

We construct a flying ad hoc network by deploying random UAVs in a spherical area.

The simulation parameters are represented in Table 6.12. In this simulation, each time

we give different deployment densities. We perform DASAP to update the channel ac-

cess probabilities with using actual density and estimated density values, respectively.

In Figure 6.10, when the density of UAVs increases, the channel access probability

of that UAVs is getting less than its previous value. Figure 6.11 exhibits that DASAP
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provides a maximum and stabilized channel utilization while density is changing.

We also present the accuracy of the results with average absolute percentage devia-

tion (AAPD) by considering the utilization rates with the estimated density (λ̂) and

the deployment density (λ). We define the average absolute percentage deviation as

AAPD = 100 |U(λ̂)−U(λ)|
U(λ)

. Two outcomes are close to each other and the error rates

between these two results are presented in Table 6.8. We demonstrate the cohesive

relation between the density of UAVs and the dynamic channel access probability in

Figure 6.10.

In DASAP, the edge UAVs may estimate the density low in comparison to the UAVs

close to the center. Then their channel access probability is higher than the other

UAVs. In other words, if a UAV has higher density then this UAV should talk less

than the other. However, if a UAV has fewer neighbors then this UAV should talk

more.
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Figure 6.11: Different deployment density values vs. channel utilization rates (%)

with estimated density (λ̂) and actual density (λ). Actual density (λ) is between the

range in 2× 10−9 and 7.5× 10−9.
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Table 6.8: The AAPD and 99% confidence limits in the estimators for various utiliza-

tion rates (%) with estimated density (λ̂) and actual density (λ). Actual density (λ) is

between the range in 2× 10−9 and 7.5× 10−9.

utilization rate

(%, λ)

utilization rate

(%, λ̂)

AAPD

(%)

99% confidence

limits of utilization rates

37.61 37.91 0.80 +− 0.04

37.29 36.96 0.89 +− 0.03

37.62 37.86 0.63 +− 0.03

38.22 38.17 0.12 +− 0.03

37.54 37.52 0.05 +− 0.03

37.08 37.31 0.63 +− 0.03

37.51 37.39 0.32 +− 0.04

36.98 37.13 0.41 +− 0.05

37.36 37.40 0.10 +− 0.03

37.18 37.26 0.21 +− 0.05

36.66 36.46 0.55 +− 0.04

6.2 Validation of Density-adaptive and -aware Applications

In this section, we present the simulation results in detail for both network outage and

transmit power adaptation techniques based on the network density, which are opera-

tional for two-dimensional and three-dimensional wireless networks. In addition, we

present the validation of density-aware channel utilization based on density-adaptive

slotted ALOHA protocol for FANETs.

6.2.1 Validation of 2-D Density-aware Network Outage and Density-aware Trans-

mit Power Adaptation (DTPA) for Wireless Networks

We simulate a circular area with a radius of 100 m consisting of uniform randomly

distributed nodes with an actual deployment density of λ nodes/m2. At each simulator

run, we select a random point to be used as the reference node. We calculate the
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RSS based on the simple path-loss model explained in Section 5.1 from the closest

neighbor of the reference node where T is 5 × 10−13 mW, K is 10−5, and γ is 3.

If the computed RSS is lower than the threshold value T , this run is classified as

outage, otherwise, it is within the coverage of the clustered network and evaluated as

successful.

Table 6.9: The validation of the transmit power adaptation technique in (5.3) for

various outage probability requirements P ∗O where λ = 0.05 nodes/m2.

Required P ∗O Achieved PO Standard deviation

0.0100 0.0099 0.0018

0.0126 0.0137 0.0030

0.0178 0.0189 0.0048

0.0204 0.0194 0.0044

0.0256 0.0261 0.0036

0.0282 0.0284 0.0046

0.0308 0.0320 0.0032

0.0360 0.0354 0.0067

0.0412 0.0449 0.0080

0.0438 0.0433 0.0066

0.0490 0.0488 0.0054

We run the simulations 104 times and the ratio of the number of outages to the to-

tal number of simulation runs is determined as outage ratio that is represented as

achieved PO in Table 6.9. The outage model (5.1) and the transmit power adapta-

tion technique in (5.3) provide us accurate results as can be seen in Table 6.9. The

achieved outage closely matches the required outage that indicates that the proposed

transmit power adaptation technique is successful.

Impact of Density on Outage Probability

Nodes in dense ad hoc networks will be more closer to each other and the attenuation

of signals measured by neighbors will be smaller (i.e., RSS of signals will be larger)

in comparison to sparse networks. As demonstrated in Figure 6.12, the densification
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of a network will make the probability of outage smaller if the other parameters such

as Pt and T are kept constant.

Figure 6.12: The impact of density on outage probability.

In Figure 6.12, we consider λ̂ computed by using our proposed estimator. At each run

of the simulator, the network density is estimated and the network outage is calculated

by using (5.1) for various Pt values. Figure 6.12 shows that the network density

affects the quality of service and coverage of the network. In dense networks, the

outage probability will lessen and the transmit power will be smaller in contrast to

sparse networks.

Impact of Density on Transmit Power Adaptation

In the validation of the proposed transmit power adaptation technique in (5.3) for ad

hoc networks, we use a similar experimentation setting to the aforementioned outage

simulator. In a simulation run, if the computed outage does not match the required

outage probability (P ∗O), we change the transmit power by performing binary search:

if the calculated outage is smaller than the given P ∗O, the transmit power is decreased,

otherwise it is increased. The adapted transmit power (Pt) values can be seen in
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Figure 6.13. In this figure, we show the simulation results by employing actual (λ)

and estimated (λ̂) densities as input to (5.3) for various outage requirements.

Figure 6.13: Transmit power adaptation based on estimated density (λ̂).

When a network designer becomes more tolerant to degraded quality of experience by

nodes due to outage, the amount of energy conservation can be increased since smaller

transmit power levels can be employed. However, nodes’ satisfaction in terms of

connectivity is significantly related to the outage probability. As the network density

becomes denser, it will be required to decrease the transmit power in a density-aware

fashion to preserve coverage, to keep the outage probability under control and to

conserve energy. The main advantage of the proposed technique is that it requires

minimal communication overhead, fast and simple to implement.

6.2.2 Validation of 3-D Density-aware Network Outage and Density-aware Trans-

mit Power Adaptation (DTPA) for Wireless Networks

This section explains the detailed simulation results for both density-aware network

outage and density-adaptive transmit power adaptation techniques, which can be ap-

plied in three-dimensional networks.
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6.2.2.1 Density-aware Outage Analysis

In this section, we demonstrate the impact of density, transmit power and path-loss

exponent on network outage [20].

Simulator Model

We uniform randomly determine locations of base stations in a field with an actual

deployment density of λ nodes/m3. A uniform randomly selected point is considered

to be the location of the reference user equipment. Using the simple path-loss model

described above, we compute the received signal strength from the closest base sta-

tion. If the signal strength is larger than the threshold value (receiver sensitivity) the

run is assumed to be successful; otherwise, an outage occurs. The ratio of outages out

of 104 runs of the simulations is recorded as the outage probability. We simulated a

500× 500× 500 m3 area, with a transmit power of 100 mW, by considering different

deployment densities such as sparse, dense and ultra-dense, and the path-loss expo-

nent is three; i.e., γ = 3. The values of the parameters employed in the simulations

are shown in Table 6.1. In the figures we present in this section, we show the results

of the simulations together with the results of the analytic model in (5.2).

Impact of Network Density on Outage

As density increases, there will be a larger number of base stations deployed in the

field. Consider a randomly selected user equipment in the field. The distance of it to

the closest BS will be smaller. Consequently, the path-loss will be smaller in dense

networks. As shown in Figures 6.14- 6.16, the outage probability in dense networks

will be smaller assuming that all other parameters are kept constant. The density of

BSs impacts the quality of service as shown in these figures. The transmit power has

a positive impact on the received signal strength. The more transmit power means

more receive signal strength as it can be understood from the propagation model and

is presented in Figure 6.14. When the network is dense, the outage probability will

decrease obviously.

108



Figure 6.14: Impact of density on outage probability for different transmit powers.

Figure 6.15: Impact of density on outage probability for various thresholds.
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For the same distance and level of noise, the crucial factor affecting the quality of

communication is the threshold level of sense; i.e., receiver sensitivity. In other

words, it is easier to communicate with a UE that has a higher level of sensitivity as

demonstrated in Figure 6.15. By increasing the complexity of receivers, the thresh-

old can be decreased. Complexity and cost of receivers introduce a trade-off with

coverage.

Figure 6.16: Impact of density on outage probability for different network conditions.

Figure 6.16 demonstrates the relation between outage PO, λ and γ. The path loss

exponent (γ) negatively affects the received signal strength. When the channel is

prone to high loss, i.e., when the environment is harsh, it is more probable for the

randomly selected reference node to be out of coverage.

Impact of Transmit Power on Outage

A large amount of transmit power is beneficial for the quality of service in a network

albeit bad for the environment. The more transmit power implies the more coverage

area when the other variables are constant. Furthermore, it implies a larger amount

of interference. However, in this thesis, we assume a robust interference management

scheme that may overcome the negative impact of interference on capacity. If the

110



threshold decreases, then the outage approaches to zero as in Figure 6.17. If the

density of the network increases, e.g., additional (mobile) base stations are deployed

or redundant base stations are turned on, the outage probability approaches to zero as

shown in Figure 6.18. The threshold has the same impact on a network similar to that

of the density.

Figure 6.17: Impact of transmit power on outage probability for particular thresholds.

Figure 6.18: Impact of transmit power on outage probability for various deployments.
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Figure 6.19: Impact of transmit power on outage probability different network condi-

tions.

Impact of Path-loss Exponent on Outage

The path loss exponent is a significant factor that characterizes the wireless channel.

When γ is extremely high, then it is more probable to be out of coverage as it can be

observed in Figure 6.19 and 6.20. Let’s consider the same transmit power, it can be

clearly seen that when the path-loss exponent is high then the network coverage will

decrease. Thus, it is more important that an estimator should determine the channel

conditions like the path-loss exponent.

Impact of Receiver Sensitivity on Outage

We consider the receiver sensitivity as a threshold value that is the minimum re-

quirement to be able to decode signals. If the threshold value increases, the outage

probability will increase as it is shown in Figure 6.21. Increasing the transmit power

leads to a declining outage ratio. As it can be seen in Figure 6.22, both the threshold

and the path-loss exponent considerably affect the network outage.
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Figure 6.20: Impact of path-loss exponent (γ) and threshold (T ) on outage probability

for various deployments.

Figure 6.21: Impact of path-loss exponent (γ) and threshold (T ) on outage probability

for particular transmit powers.
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Figure 6.22: Impact of path-loss exponent (γ) and threshold (T ) on outage probability

for different channel conditions.

6.2.2.2 Validation of Density-aware Outage Probability

In the light of the results presented in Section 6.2.2.1, we claim that in a cellular

network, base stations have to change their transmit power according to the network

density. The base stations have to be able to estimate the network density by means

of equipped with tools and techniques. Pre-configured decisions will not be sufficient

since especially when mobile base stations are considered, future cellular networks

will be highly dynamic. Steady configured parameters will decrease the quality of

service, and result in many coverage control problems.

In this work, we present a run-time adaptable density-aware and -adaptive three-

dimensional cell zooming technique using (5.2), and validate it by using Algorithm

2. For one deployment density (λ) and one transmit power (Pt) settings the time

complexity of Algorithm 2 is O(S), where S is the number of simulation runs. This

adaptation is also important for energy conservation. After determining the minimum

transmit power budget of a base station using this technique, the power can be allo-

cated to individual users or resource blocks [232] as a sequel that is out of the scope

of this work.
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Algorithm 2 Validation of Density-aware Outage Probability Model
1: Input: λ, γ, Pt, k, T , Cntr = 0

2: Output: (Analytic) POA and (Simulated) PO

3: for S=0; S<10000; S++ do

4: Select a set of UE and BSs;

5: Find (λ̂) by using CDE (4.9) or IDE (4.6);

6: Select a UE as reference (node);

7: Find rk using Euclidean distances between UE and BSs, where k = 1;

8: Calculate xk ← CPt

(
r0
rk

)γ
;

9: if If xk < T then

10: Cntr++; //This UE is in outage

11: else

12: Do nothing; //This UE is in the coverage area

13: end if

14: end for

15: Find POA by using (5.2) with λ̂

16: PO ← Cntr/S;

17: return (POA , PO);

In Algorithm 2, a set of uniform randomly distributed base stations and user equip-

ment with a density of λ (nodes/m3) is simulated using MATLAB. In a 3-dimensional

field, after selecting a set of base station and user equipment positions, the estimated

density (λ̂) is calculated. Then, a random point is picked as the position of the refer-

ence user equipment (UE). The distance between the UE and the closest base station

is found, using the channel model presented in Section 4.2.1, and we calculate the re-

ceived signal strength. If the received signal strength is less than the given threshold

(T ), this simulation run is recorded as an outage. For the same simulation environ-

ment, the simulations are repeated 104 times and the ratio of outages is computed.

According to the results, we compare the analytic outage probability (POA) by con-

sidering (5.2) and the simulated outage ratio (PO). In Figure 6.23a and 6.23b, we

show the adapted outage probability for various transmit powers as the density of the

network changes. These simulation results validate the analytic model for cell zoom-

ing presented in (5.2) and in (4.8). The results indicate that if the transmit power of
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Figure 6.23: Analytic outage values based on the estimated network density λ̂IDE

and λ̂CDE for different transmit powers (Pt) when the network density is changing.
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BSs (Pt) does not change, the outage probability (PO) of a UE decreases when the

network is getting denser. However, in sparse networks, the outage probability in-

creases if the same Pt is used. This results also claims that there is a direct relation

between the base station density and network outage. By considering the impact of

the estimators, it can be said that since CDE is based on collaboration between the

nodes, and if the kth nearest neighbor increases, the variance of the results will be

smaller than the estimator IDE. Depending on the positions of selected UEs and BSs,

the accuracy of the results is changing. For instance, UEs and BSs located close to the

center of the network increase the accuracy of results, on the other hand, UEs and BSs

near to the border of the coverage area decreases the results. When a network operator

becomes more tolerant to degraded quality of experience by users due to the outage,

the amount of energy conservation can be increased. However, customer satisfaction

is significantly related to the outage probability. As the network density increases, it

will be required to decrease the transmit power in a density-aware fashion to preserve

coverage, to keep the outage probability under control and to conserve energy. The

main advantage of the proposed cell zooming technique is that it requires minimal

communication overhead, fast and simple to implement. However, the deficiencies of

the estimator have to be enhanced. A much faster density estimator that is tolerant to

correlated samples is required.

6.2.2.3 Validation of the Density-aware Transmit Power Adaptation

In this section, we validate (5.4) by using two different schemes: one of them is based

on the global density of BSs that we used in Section 6.2.2.2, where all measurements

are collected with the help of edge computing. As the second approach, each of BSs

determines its own density result without using edge computing, in other words, we

use local densities belongs to each of BSs.

6.2.2.4 Validation of Density-aware Power Adaption Technique with Edge Com-

puting

A density-aware MEC based transmit power adaptation scheme is presented.
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To validate (5.4), we follow Algorithm 3. The algorithm has O(S) time complexity,

where (S) is the simulation count for one deployment density (λ) and one required

outage (P ∗O). We simulate a spherical volume consisting of uniform randomly dis-

tributed BSs and UEs with different actual deployment densities of λ (nodes/m3). At

each simulator run, we estimate the effective density for the whole network, then we

select a random point to be used as the reference UE. We update the transmit power of

each BS by considering the model in (5.4). Then, we calculate the RSS based on the

simple path-loss model explained in Section 5.1 from the closest BS of the reference

UE where γ is 2. If the computed RSS is lower than the given threshold value T ,

the result of this run is classified as an outage, otherwise, it is evaluated as successful

since it is within the coverage of the clustered network. We run the simulations 104

times and the ratio of the number of outages to the total number of simulation runs is

determined as outage ratio that is represented as achieved PO in Table 6.10 with using

λ̂IDE , and λ̂CDE .

Algorithm 3 Validation of Density-aware Power Adaptation Technique
1: Input: λ, γ, Pt, k, T , P ∗O, Cntr = 0

2: Output: (Simulated) PO

3: for S=0; S<10000; S++ do

4: Select a set of UE and BSs;

5: Find (λ̂) by using CDE (4.9) or IDE (4.6);

6: Set P ∗t for all BSs using (5.4) with λ̂ and P ∗O
7: Select a UE as reference (node);

8: Find rk using Euclidean distances between UE and BSs , where k = 1;

9: Calculate xk ← CPt

(
r0
rk

)γ
;

10: if If xk < T then

11: Cntr++; //This UE is in outage

12: else

13: Do nothing; //This UE is in the coverage area

14: end if

15: end for

16: PO ← Cntr/S;

17: return (PO);
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Table 6.10: Required outage probability (P ∗O) vs calculated outage probability (PO)

by using the λ̂IDE , λ̂CDE , which are the global density of base stations, and AAPD

(%) results.

λ̂IDE λ̂CDE

P ∗
O PO AAPD, %

99% confidence

limits, (×10−5)
PO AAPD, %

99% confidence

limits, (×10−5)

0.02 0.022 11.31 +− 1.12 0.022 8.81 +− 0.28

0.025 0.027 6.93 +− 1.13 0.027 7.29 +− 0.36

0.03 0.031 4.37 +− 1.35 0.031 4.71 +− 0.33

0.035 0.036 2.92 +− 0.96 0.036 4.06 +− 0.36

0.04 0.040 1.14 +− 1.38 0.041 3.60 +− 0.27

0.045 0.045 0.54 +− 1.23 0.046 2.35 +− 0.19

The outage model (5.2) and the transmit power adaptation technique in (5.4) provide

us accurate results as it can be seen in Table 6.10. For each required outage value,

we use different actual density (λ) values which are between 1 × 10−4 (nodes/m3)

and 9 × 10−4 (nodes/m3). Then the average outage results for different densities are

presented. The achieved outage closely matches the required outage which means

that the proposed transmit power adaptation technique based on the provided outage

probability is successful. Each of the estimators can be used in order to make the

network coverage dynamic. The main conclusion to be drawn is that the relation

between the density of base stations and network outage require the adaption of the

transmit power by considering this relation.

6.2.2.5 Validation of Density Estimator and Power Adaption Technique with-

out Edge Computing

A new approach as utilizing both of these estimators without using the edge com-

puting can be applied locally in the network, and the power adaption technique can

be employed with these local estimation measurements. In other words, instead of

the global density of the network, each of the base stations can use its own effective

density result.
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Figure 6.24: Collecting λ̂ measurements (nodes/m3) from the first k nearest UEs.

In these simulations, as it can be seen in Figure 6.24 each base station uses its cal-

culated density measurement by using density estimations of its connected closest

UEs. Each user equipment receives a number of RSS measurements from their first

k closest base stations and estimates the density by employing IDE or CDE methods.

Each base station collects the estimation results from their closest user equipment,

and the average of these estimations are calculated as local base station density. After

each base station determines the density result itself, (5.4) is used for adapting the

transmit power based on the required outage probability. In the simulations, the same

approach like in Section 6.2.2.3 is exploited so that every time each BS changes its

transmit power based on the estimated density and the outage probability.

Table 6.11 presents the AAPD results between the required outage and the analytic

outage values. The average outage results for different densities are presented. In

these simulations, at each run of the simulation, each BS calculates its own density

instead of using the global density, then they change their transmit powers using the

model in (5.4). For the rest of the steps, the same approach in Section 6.2.2.2 is used

for calculating the required outage and analytic outage. The results in Table 6.10 and

Table 6.11 indicate that the IDE has more accurate results so that we may employ

the IDE as a density estimator based on the measurements of its associated UEs.
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Table 6.11: Required outage probability (P ∗O) vs calculated outage probability (PO)

by using the λ̂IDE (nodes/m3), λ̂CDE (nodes/m3), which are the local density results

belong to each of BSs, and AAPD (%) results.

λ̂IDE λ̂CDE

P ∗
O PO AAPD, %

99% confidence

limits, (×10−5)
PO AAPD, %

99% confidence

limits, (×10−5)

0.02 0.022 8.46 +− 0.98 0.023 17.60 +− 0.52

0.025 0.027 7.26 +− 2.35 0.029 15.00 +− 1.68

0.03 0.031 4.69 +− 2.07 0.034 12.84 +− 1.10

0.035 0.036 2.72 +− 1.45 0.039 12.17 +− 0.95

0.04 0.041 1.38 +− 2.48 0.044 7.61 +− 1.13

0.045 0.045 0.84 +− 2.74 0.049 7.28 +− 2.93

Since the CDE needs more measurements than IDE, it provides less accurate results

in comparison to the outcomes of the IDE. In these simulations, more accurate results

are obtained while the large number of UE is considered and the network is getting

denser.

6.2.3 Validation of Density-aware Slotted ALOHA Potocol (DASAP) for FANET

In this section we explain the simulation details for DASAP, and make various analy-

sis to validate our approach by using Monte Carlo simulations implemented in MAT-

LAB. In our analyses, we compare our proposal DASAP with its opponents, analyze

the impact of parameters such as number of time slots, moving average smoothing

factors, and initial channel access probabilities. We also investigate the performance

of DASAP under different non-uniform deployments and a mobility model. All of

the simulation parameters are presented in Table 6.12.

Simulator Model

Implementation of DASAP simulation is presented in Algorithm 4. In simulations, a

number of UAVs is uniform randomly deployed with a density of λ (nodes/m3) in a
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Table 6.12: The symbols, notations, values and units of the 3-D simulation parameters

for DASAP.

Parameter Default Value Units Ref

Actual density, λ N
4/3πr3

nodes/m3 [36]

Estimated (effective) density, λ̂ (4.6) nodes/m3

Channel access probability, p [0,1] [46]

UAV selection probability, ps [0,1]

Contention probability, pc [0,1]

Number of UAVs, N [10,110] [35]

Speed of UAVs,V [10,100] m/s [44]

Sparse deployment, λS 10
4/3πr3

nodes/m3 [36]

Dense deployment, λD 50
4/3πr3

nodes/m3 [36]

Ultra-dense deployment, λU 104
4/3πr3

nodes/m3 [36]

Path-loss exp. γ 2 [223]

Reference distance, r0, 1 m [223]

Transmit power, Pt 100 mW [35]

Number of time slots, nofSlots [50, 1000] mW [33]

Nearest neighbor index, k [1,∞) [42]

K 10−5 [44]

Radius, r 1500 m [36]

Max. communication range, rc, ( T
CPt

)1/γ m [42]

three dimensional spherical environment, where the radius, r is set as 1.5 km, which

is implemented with the code segment between line 1 and line 7. We divide time

into a number of slots. The number of slots are designated as S. We simulate the

communication protocol between UAVs by taking advantage of the slotted ALOHA

protocol just with a dynamic probability scheme. We initially set the probability of

channel access (p) as randomly in line 4, where N is the number of UAVs, and V

is the volume in this FANET. We consider two states for a time slot as we already

defined in Section 5.3. Each of estimating UAVs can measure the power on the chan-

nel, and measure the aggregate interference by using the summation of the received

signal strength from its neighbors using the method as presented in the line 8 and in
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Algorithm 4 Density-adaptive Slotted ALOHA Protocol (DASAP)
1: Input: λ, γ, Pt, k, K, p, alpha = [0, 1], u = 0, c = 0, w = 0, S, r = 1500.

2: Output: [U ], [W ], [C]

3: Calculate V ← 4/3πr3;

4: Initialize p← rand(N, 1);

5: Calculate N ← λV ;

6: for t=0; t < S; t++ do

7: positions← Generate 3-D positions

8: Calculate xk ← KPt

(
r0
rk

)γ
;

9: b← 0;

10: ps ← rand(N, 1);

11: for j=0; j < N ; j++ do

12: Find (λ̂) (4.6);

13: Calculate λc = λ̂/ps;

14: p(j) = α( 1

(λ̂4/3πr3c)
) + (1− α)p(j);

15: end for

16: for j=0; j < N ; j++ do

17: pc ← rand(N,1);

18: if p ≥ pc then

19: b++;

20: end if

21: end for

22: if b == 1 then

23: u++;

24: else

25: if b == 0 then

26: w++;

27: else

28: c++;

29: end if

30: end if

31: U ← (u/t)100;

32: W ← (w/t)100;

33: C ← (c/t)100;

34: end for

35: return U , W , C;
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line 12 of the Algorithm 4 and as explained in Section 5.3, where we find rk using

Euclidean distances between each of UAVs by considering k = 1. In line 9, b repre-

sents the number of UAVs which can send a packet. We have already proved that this

summation have an apparent cohesion between (µI) and the aggregate received signal

strengths in [42]. Then, we randomly select a set of UAVs with a probability ps in

order to determine some of them as estimating UAVs and some of them as transmitter

UAVs so that they can generate random signals in Estimating slots, and the remaining

UAVs can measure the total signal power by aggregating the received signal strengths

from their nearest neighbors by using the summation of xk values. The estimating

UAVs employ (4.6) to estimate the effective density of UAVs in line 13. The obtained

estimation value should be divided by the selection probability (ps) to determine the

actual density as we do in line 14. Now, we have the current UAV density of the whole

network (λ̂). The UAV can now update its channel access probability based on (5.5)

as explained in Section 5.3 which is formulated in line 15, where we set the value of

α as 0.5, meaning that we give the same chance for the effective channel access prob-

ability and the previous channel access probability value. After all estimating UAVs

completed the estimation slot process, in other words, after all estimating UAVs up-

date their channel access probability values, in the successive step, we simulate the

second mini-slot of the time slot where each of UAVs in the network can send a packet

depending on their channel access probability afterwards line 17. We consider the up-

dated UAVs’ access probability value of p for the successive mini-slots. There may

be the following scenarios for each channel slot; one UAV, or more than one UAV or

none UAVs may send a packet to the network by obeying a channel access probability

p and contention probability (pc). The contention probability pc provides simulating

a random packet transmission behaviour in this regard. At the beginning of a time

slot, if only one UAV sends packet, then this step is recorded as successful step, u,

as illustrated in the Algorithm 4 in line 24, or if more than one UAV try to send their

packets this time slot is counted as collision, c in line 29, otherwise, the time slot is

considered as wasted slot, w in line 27. The rates for utilization U in line 32, collision

C in line 34, and wasted slots W in line 33 can be obtained via dividing the values

of u, c and w by the number of time slots at each time. In this regard, we define the

channel utilization rate as the number of successful transmission per the number of

reserved time slots. The number of collided slots per the number of time slots defines
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the collision rate, and waste rate is equal to the idle slots per the number of time slots

as denoted in Algorithm 4.

Comparison between the Simple Slotted ALOHA Protocol, Stabilized Slotted

ALOHA Protocol and DASAP

In this section, we compare our proposed technique DASAP with two opponent tech-

niques. The first one is the theoretic slotted ALOHA protocol (SAP), and the other

one is the stabilized slotted ALOHA protocol utilizing a binary exponential back-off

scheme with upper and lower bounds of the channel access probability p.
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Figure 6.25: Time for different deployment densities vs. averages of channel utiliza-

tion, waste and collision rates when λt+2 > λt > λt+1, where λt+2 = 7× 10−9, λt =

4.5 × 10−9, andλt+1 = 2 × 10−9, and channel access probability (p) is fixed and

optimal for λt, p = 1/63, and the number of slots are equal to 1000.

Slotted ALOHA Protocol (SAP) and Stabilized Slotted ALOHA Protocol (STSAP)

In the simulations, SAP and STSAP are almost the same implementation as we dis-

cussed in Section 5.3.4. However, in STSAP, we should change the channel access

probability, if the transmission is successful or unsuccessful. In Figure 6.25 it can
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be seen that if we have a fixed probability and different deployments, the utiliza-

tion is only maximized when the proper channel access probability is in case for the

deployment density value. As implemented in Algorithm 5 in [224, 225, 226], the sta-

bilized slotted ALOHA protocol increases the channel access probability by setting

p = min(2p, 1) in line 13 if the current time slot is successful. If the transmission is

not successful due to a collision, the STSAP decreases p by setting p = (pmin, p/2))

in line 19, where pmin is the minimum channel access probability to avoid very low

values of channel access probability. The other variables are presented in Table 6.12

and Section 6.2.3.
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Figure 6.26: Averages of channel utilization rates from the comparison results of

DASAP with other opponents which are slotted ALOHA protocol and stabilized slot-

ted ALOHA protocol while the network density is soaring, when the number of time

slot is selected as 10000, and α = 0.9.

Analysis of The Comparison Results

In our comparison simulations, we set α = 0.9, S = 10000, and the initial channel

access probability is randomly chosen. Figure 6.26 shows the comparison results.

Our proposal has better utilization performance in comparison to other opponents

as depicted in Figure 6.26. We can see huge fluctuations in the utilization rate and

the channel access probability in Figure 6.26 and Figure 6.27 for SAP. However, the

scheme STSAP and our proposal have more and more stabilized results. In random
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Algorithm 5 Stabilized Slotted Aloha Protocol (STSAP)
1: Input: p, pmin = 0.009, u = 0, c = 0, w = 0

2: Output: [U ], [W ], [C]

3: Initialize p← 1/rand(N, 1);

4: for t=0; t < S; t++ do

5: for j=0; j < N ; j++ do

6: pc ← rand(N,1);

7: if p ≥ pc then

8: b+ +;

9: end if

10: end for

11: if b == 1 then

12: u++;

13: p = min(2p, 1);

14: else

15: if b == 0 then

16: w++;

17: else

18: c++;

19: p = max(pmin, p/2);

20: end if

21: end if

22: U ← (u/t)100;

23: W ← (w/t)100;

24: C ← (c/t)100;

25: end for

26: return U , W , C;
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Figure 6.27: Averages of channel access probability rates from the comparison results

of DASAP with slotted ALOHA protocol and stabilized slotted ALOHA protocol

while the network density is soaring, when the number of time slot is selected as

10000, and α = 0.9.

access schemes with dynamic probability, the optimization of the results should be

made by considering the stabilization and the maximization of the system like doing

so in our proposal DASAP.

Convergence Analysis

Since this study is based on dividing time into a number of mini slots, we investigate

the impact of the number of time slots on the channel performance characteristics

such as the rate of collided slots, the number of wasted slots, the percentage of uti-

lization rate, and the channel access probability. We make three different simulations

by using different number of time slots and different deployment scenarios. The

first one includes the simulation where we divide the time into different number of

time slots which are in the range of between 50 and 2000, at each step we perform

DASAP for these different number of time slots. The averages of the related results

are presented in Figure 6.28. Secondly, we make a simulation regarding with how

channel utilization rates change during subsequent time slots to observe the conver-
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gence of channel utilization rate in time. In the second simulation we divide time

into 1000 slots, and we examine the variations in the results of channel utilization

rates in time. Figure 6.29 and Figure 6.30 are the corresponding results from the

second simulation. In the third simulation, we simulate a scenario to clearly ana-

lyze the relationship between different deployment densities and channel utilization

rates in addition to access probabilities if we divide the time into various number of

time-slots. Figure 6.31, 6.32, and 6.33 are obtained from the last simulation scenario.
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Figure 6.28: Averages of channel utilization, waste and collision measurements when

different number of time slots are selected.

Figure 6.28 demonstrates the relationship between the different number of time slots

versus channel utilization. In this simulation we deploy 104 UAVs, α is selected 0.5,

and the initial access probabilities are chosen randomly between 0 and 1. According

to our observations, when we use a higher value of the number of time slots we obtain

higher channel utilization rates. While the number of time slots are getting larger, then

the increase in the channel utilization rates is getting lower and converge at a channel

utilization rate. As a matter of fact, we get more stabilized channel access probability

values in this case. Moreover, While the number of the time slots are increasing,

the collision rates are decreasing significantly, on the other hand, the wasted slots

increase slightly.

In Figure 6.29, the instantly changed channel utilization results based on the sub-
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Figure 6.29: Instant channel utilization measurements’ averages of different subse-

quent time slots are utilized when different number of initial probabilities are consid-

ered, and α is selected as 0.5. The time is divided into 1000 time-slots.
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Figure 6.30: Averages of instant channel utilization rates of different subsequent time

slots are utilized when different number of UAVs (N ) are considered, and α = 0.5.

The time is divided into 1000 time-slots.
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sequent number time slots when different initial probabilities are considered. This

figure illustrates the initial probabilities impact on the channel utilization changes

in time. Figure 6.30 shows the instant channel utilization results depending on the

subsequent number time slots when different deployment densities are considered.

According to the results, we can say that after approximately 300 time slots, channel

utilization results provided by DASAP converge a rate of utilization value.
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Figure 6.31: How channel access probabilities change in different number of time

slots. The averages of measurements are presented when different network scenarios,

namely, different number of UAVs are considered.

We also analyze the impact of the number of time slots for different deployments.

Figure 6.31 illustrates the impact of the time slots on channel access probabilities

when different deployments are in question. In Figure 6.31, for the same density,

when the number of time slots are increasing, the probability of the channel access

is stabilized during the simulation. For a different perspective, when the channel

access probability is smaller when the network is getting denser in case of the same

number of time slots. In the simulation for Figure 6.31, and Figure 6.32, 26, 62, and

104 UAVs are deployed for sparse network, dense network, and ultra-dense network,

respectively. As can be seen in Figure 6.32 that while the number of time slots are

increasing, the sparse networks have higher utilization rates in comparison to the

dense and ultra-dense networks due to an increase in the collided slots.
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Figure 6.32: Averages of channel utilization rates for different number of time slots

when different network scenarios are considered.
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Figure 6.33: Averages of channel utilization rates by considering different actual de-

ployment densities when different number of time slots are utilized.
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Figure 6.33 demonstrates the impact of the density on channel utilization when dif-

ferent number of time slots are considered. We observe that the channel utilization

results have a slight fluctuation if the number of time slots are sufficiently large. How-

ever, if the number of time slots are small than the fluctuations of the utilization results

increases.

Impact of the Initial Access Probability

In dynamic random access schemes, one of the fluctuated parameters is the chan-

nel access probability which effect the channel utilization rates as illustrated in Fig-

ure 6.25. One of the design issues in this regard is that what is the correct and practi-

cal value to initialize the channel access probability? Since we need to stabilize and

maximize the channel utilization, we need to make a fast update on the channel access

probability for each of UAVs.
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Figure 6.34: Initial channel access probabilities versus channel utilization error rates

when p is increasing by 0.1 from 0.1 to 0.9, also a different p is changed depending

on (1/N ) with different values of α. The number of time slots is 1000.

From the light of the results, we observe that if the channel access probability is

initialized as 1/N , we get the highest results for the channel utilization as illustrated

in Figure 6.35. However, when the initial access probability is increasingly selected
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Figure 6.35: Averages fo channel utilization rates for different values of moving av-

erage smoothing factor when λ = 7.5 × 10−9 and number of time slot is selected as

1000.

from the range of 0.1 and 0.9 as depicted in Figure 6.34 and Figure 6.35, the difference

between two results is too smaller, in which it is at most 1.5%. Yet, there is still the

initial probability selection is important in terms of practice, since we may not know

the number of nodes (N ) at the beginning or before any estimation process. Hence,

it is applicable to randomly select the channel access probability. In Figure 6.35,

by considering the update process (5.5) for channel access probability, the moving

average smoothing factor (α) is another parameter which can effect the utilization

results with the determination of the initial access probability. While α values are

getting larger, we get the highest results for the utilization.

Impact of Moving Average Smoothing Factor

We denote α as the moving average smoothing factor in Algorithm 4. One of the

research questions in this problem is that what is the impact of the smoothing factor on

channel utilization? Figure 6.36 demonstrates the outcomes for different smoothing

factors. In this simulation, we deploy 104 UAVs, we divide the time into 1000 equal

time slots, and we randomly select the initial access probabilities. We also compare
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two results: the first one is the outcomes for constant α, and the second one is for the

changing α within a range of between 0.1 and 0.9.
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Figure 6.36: Averages fo channel utilization rates for different values of moving av-

erage smoothing factor when λ = 7.5 × 10−9 and number of time slot is selected as

1000.

We can see that the moving average smoothing factor gives different results between

0.1 and 0.5. When the value of α is reached to 0.5, after that the results are getting

closer to each other, but the channel utilization rates significantly increase when the α

increases until it reaches to 0.5. Moreover, the collision rates decrease rapidly, on the

other hand, there is an increase in the wasted number of time slots up to the critical

point of α.

Non-uniform Topologies

In this thesis, an understandable and easily tractable model is used while proposing

and analyzing a communication protocol in addition to an estimator by assuming a

uniform deployment. However, in real life, the distribution of UAVs in FANETs may

be non-uniform because of their stochastic nature. To investigate the non-uniform

deployments, we utilize Beta (B) distribution, a two-parameter asymmetrical distri-

bution, which is similar to log normal distribution [42]. Thanks to Beta distribution
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which provides different shape tendencies, we create a 3-D network simulation en-

vironment by deploying UAVs according to Beta distribution. Various shape tenden-

cies have already explained in Section 6.1.2.8, proposed in [42]. The shape tenden-

cies are categorized into four groups which are Uniform Tendency, Central Tendency,

Centrifugal Tendency, and Skewness Tendency. Uniform Tendency defines a uniform

deployment of UAVs. In Central Tendency, the distribution of UAVs is close to the

center of the network. Centrifugal Tendency refers a deployment where each of UAVs

is near to edge of the topology, and Skewness Tendency defines that UAVs in the net-

work come together at a random position of the network. We use the values of a and

b parameters which are presented in Table 6.13 to create our scenarios. In Table 6.13,

Uniform is the first scenario in which the parameters a and b of B distribution are

set as 1 such that UAVs are located uniformly in the simulation area. Central Ten-

dency is the second scenario allowing a centralized distribution so that the positions

of UAVs are close to the center of the spherical network environment. The third sce-

nario is Centrifugal Tendency where the positions of UAVs are off-centered. UAVs

are located at close to the boundaries of the network with this tendency. Skewness is

the last case which has a skewed shape locating UAVs at a particular region of the

simulation environment.

Observations from the results in Table 6.13 show that especially in highly non-uniform

deployments, since DASAP uses the receive signal strength for the estimation pro-

cess, it is negatively effected by the positions of the UAVs. However, as stated in

the literature [58], to propose easily tractable models is commonly used. Hence, al-

though we make an assumption that UAVs’ distribution is based on a uniform Poisson

point process, we need to analyze the proposed model performance in non-uniform

deployments. In Uniform Tendency scenarios where UAVs are uniformly deployed,

the approximation of the results in two methods is the best in comparison to the other

deployments. In Central Tendency, while the centrality level is increasing the proba-

bilistic estimator IDE gives less accurate results. The reason for this case is that when

nodes are too close to each other so that an increase in overlapping measurements,

and the nodes causing non-negative effects at the corner of the network topology de-

creases the accuracy. UAVs in Centrifugal Tendency are close to the boundary of the

coverage area, and the distances between the nodes are larger. While this tendency
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Table 6.13: When the actual density value equals to 1(×10−4) (λ) (nodes/m3), util-

ity results (λ) (nodes/m3) and λ̂ (nodes/m3) for different uniform and non-uniform

distributions are presented. All AAPD (%) results are also presented with their 99%

confidence interval (CI99%) .

Distributions Shape parameters Utility rate,%

UAV a b with λ̂ CI99%

Uniform 1 1 37.25 +− 0.23

Central Tendency

3 3 39.37 +− 0.24

5 5 29.53 +− 0.25

7 7 26.32 +− 0.23

Centrifugal

Tendency

0.1 0.1 22.60 +− 0.20

0.5 0.5 37.62 +− 0.18

0.7 0.7 33.15 +− 0.23

Skewness
1 3 25.36 +− 0.31

4 1 32.20 +− 0.15

Various Non-uniform

Deployments

10 10 18.90 +− 0.37

0.3 0.3 35.66 +− 0.33

1 4 13.24 +− 0.12

1 5 12.86 +− 0.40

1 20 3.22 +− 0.36

20 1 2.28 +− 0.18

20 10 14.17 +− 0.27

100 10 1.78 +− 0.15

100 20 2.83 +− 0.31

20 100 1.60 +− 0.24

10 100 1.49 +− 0.24

is lessening, the results are getting more accurate. When the deployment of UAVs

has Skewness tendency, they gather around a particular area of the network where

UAVs are too close to each other. The same shape variation may not provided by

symmetrically changing the parameters a and b. Thus, various observations are ob-

tained from the values of these two shape parameters. We observe that the affect of
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the non-uniform deployments on probabilistic IDE is different from IDE presented

in [42]. This is because of our probabilistic IDE works different from IDE. In the

probabilistic IDE, each of UAVs receives locally and estimates its own density. All in

all, we assume a uniform tractable model in this thesis, where non-uniform deploy-

ments have a negative impact on the accuracy of the results.

Mobility

In this thesis, as a common mobility model in simulation-based studies called ran-

dom way point (RWP) is selected in order to analyze the impact of mobility on

channel utilization when a density-aware dynamic channel access scheme is em-

ployed [233, 234]. The RWP model is a simple and mostly available for simulation

studies [223]. The simulation parameters can be seen in Table 6.12. As explained

in Section 5.3, we take a screen shot of the network during the estimation process

requiring a short time-period, and we assume that UAVs are stationary. We simulate

a FANET where the speed of UAVs are changing in the range of between 10 m/s and

100m/s. For this experiment, at the beginning of each time slot, we obtain the screen

shot of the network to re-optimize the channel access probabilities while UAVs are

moving according to the RWP model [223].
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Figure 6.37: Different speeds of UAVs vs. channel access probabilities when different

deployments are considered, and number of time slot is selected as 1000.
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Figure 6.38: Different speeds of UAVs vs. channel utilization rates when different

deployments are considered, and number of time slot is selected as 1000.

We perform this analysis by using two parameters which are UAV speed and the re-

organizing interval for different network scenarios where we interpolate the UAVs’

positions, namely, the screen shot of the network topology. As can be seen in Fig-

ure 6.37, while speed of UAVs are increasing, the channel access probability does

not change significantly as expected since our proposed approach provide an optimal

channel access probability. Figure 6.38 illustrates that an increase in speed of UAVs

will not dramatically cause a change in channel utilization optimized by DASAP. Al-

though increasing the speed will result in a higher change in FANET topology, we

change the access probability based on the effective density which results in steady

outcomes in terms of channel utilization.

If we consider a mobility model, we need to answer an important design questions

which is in which frequency the network re-organization should be performed. Fig-

ures 6.39 and 6.40 demonstrate the relation between the network performance pa-

rameters and network reorganizing frequency that means how often we get the screen

shot of the topology. For instance, we get the screen shot of the network as one in

every two time slot. However, we estimate the network density at the beginning of

each time slot. From the light of the results channel access probabilities are not dra-

matically changes as we can see when the network is re-organized with in different

139



reorganizing interval. Although there are some small variations in channel access

probability, DASAP provides an optimum channel access probability close to the

maximum probability value 1/N by maximizing the channel utilization.
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Figure 6.39: Different network optimization time intervals vs. channel access prob-

abilities when different deployments are considered, and number of time slot is se-

lected as 1000.
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Figure 6.40: Different network optimization time intervals vs. channel utilization

rates when different deployments are considered, and number of time slot is selected

as 1000.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

With the invention of mobile devices, applications, and new network paradigms such

as ultra-dense networks, mobile cells, and ever-changing topologies, the need for self-

organized networking becomes more pronounced to increase the capacity, coverage,

and performance. Dense networks provide redundant coverage, whereas connectivity

is disrupted in sparse networks. Resource sharing such as channel utilization may

become inefficient. We manifest and prove that future wireless networks have to be

density-aware and -adaptive. We present a comprehensive analysis showing that re-

cent technologies and developments accompany some opportunities and challenges

in dynamic networks. These networks have to consider effective network density as

an optimization parameter to adapt the network functions to this dynamism in the net-

work topology. Therefore, we need robust and fast network density estimators. This

thesis proposes novel density estimators: the distance matrix-based density estima-

tor applied in ad hoc networks, the multi-access edge cloud-based density estimator

performed in cellular networks, and the interference-based density estimator imple-

mented in both cellular and flying ad hoc networks. We assert that density changes

have to be estimated at run time, and the protocols have to be density-aware and -

adaptive since static configurations of protocols and parameters will not be adequate

in dynamic ad hoc networks. Therefore, we suggest density-aware network outage,

density-aware transmit power adaptation techniques, which are operational for both

two-dimensional and three-dimensional wireless networks as a run-time solution. Be-

sides, we propose a density-aware channel utilization technique for flying ad hoc net-

works.

We propose the system design for density estimation in mobile networks and validate
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these proposed estimators using Monte-Carlo simulations implemented in MATLAB.

The distance matrix-based density estimator utilizes distances in clustered ad hoc

networks. The proposal is validated by Monte-Carlo simulations and compared with

other distance-based density estimators. The proposed estimator performs well with

high accuracy even under substantial errors in distance measurements. The simula-

tion results that we present for clustered ad hoc networks in this thesis indicate the

necessity of the density-aware solutions for making network performance better from

capacity, coverage, and energy conservation viewpoints. We also introduce received

signal strength-based network density estimators. One of them uses the aggregate

measurements, which is the interference-based density estimator, and the other one

exploits the collaboratively collected measurements, which is named as multi-access

edge cloud based density estimator. We also improve the interference-based density

estimator for flying ad hoc networks requiring three-dimensional solutions in a dy-

namic probabilistic manner. In case of uniform deployments, the error rate of the es-

timators are less than 5%. However, if the topology of the network has a non-uniform

deployment, then the accuracy of the estimators decreases.

We presented three density-aware and -adaptive networking applications. These ap-

plications are also validated by using Monte-Carlo simulations. Firstly, a simple,

outage probability model is proposed and validated. Secondly, we propose a density-

aware transmit power adaptation technique in a dynamic and self-configurable fash-

ion to conserve energy and enhance service quality. From a theoretic perspective, the

model considers only large-scale fading and is applicable in environments where the

impact of multi-path fading is small. Transmit power of base stations must be density-

aware to increase the capacity. We analyzed the impact of transmit power, channel

model, and density on outage probability. As expected, transmit power and network

density are quality of service-friendly parameters, unlike the rest. However, they are

not cost- or environment-friendly. We also introduce a dynamic channel utilization

technique based on a density-aware slotted ALOHA protocol. This protocol finds an

optimal channel access probability close to the maximum value 1/N and maximizes

the channel utilization. The system model with the estimator interference-based den-

sity estimator is very simple, fast, and easy to be implemented at the link layer of any

ad hoc network.
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As future work, this research can be extended by implementing the proposed pro-

tocols and estimators with using discreet event simulators such as OMNET or NS3

in order to validate the results by making experiments close to the real-life network

conditions. We will also implement the estimator in outdoor and indoor test-beds and

validate the results in practice. In addition, we will incorporate shadowing in the es-

timators. The fusion of various estimators or averaging estimators over time can also

be considered in future work. For unmanned aerial vehicle assisted networks and fly-

ing ad hoc networks which may be deployed over large volumes instead of Euclidean

distances, we may use geodesic distances in the future.
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• Shahram Mollahasani, Alperen Eroğlu, A.Ömer Yamaç, Ertan Onur, "Simula-

tors, Test Beds and Prototypes of 5G mobile Networking Architectures", Net-

work of Future, ch. 10, 2017.
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luk uyarlı gelecek nesil ağlarda fırsatlar ve zorluklar”, Türkiye Bilişim Derneği
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