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A NOVEL APPROACH IN 3D RECONSTRUCTION OF 

CORONARY ARTERY TREE FROM 2D X-RAY ANGIOGRAMS 

ABSTRACT 

Cardiovascular diseases are common health problems in both developing and 

developed countries and responsible for one-third of all deaths around the globe. 

Therefore, accurate diagnosis of vascular diseases plays a critical role in decreasing 

the rate of deaths and improving the quality of life of the whole world. Although there 

are many imaging modalities used to diagnose coronary diseases such as DSA, MRA, 

CTA, etc., X-Ray angiography is used as a gold standard technique among them in 

clinics. However; it is limited by inherent two-dimensional (2D) representation of 

three-dimensional (3D) structures and the diagnosis relies heavily on the experience 

of cardiologists. In this manner, 3D imaging technologies provide an objective, 

operator-independent tool for an accurate assessment, especially in visualization and 

quantification of blood vessels. In addition, this technology has the potential to guide 

clinical decisions. Therefore, the development of an automated and accurate vessel-

tree reconstruction from angiograms is highly desirable. In literature, several methods 

exist for 3D reconstruction of coronary artery trees, but they propose analytical 

methods that require camera calibration or feature extraction to match correspondences 

in images for the utilization of epipolar geometry properties. Some of these methods 

require manual assistance. However; recent developments in technology and 

tremendous effort drawn in learning-based 3D reconstruction methods enable objects 

to be reconstructed without any camera calibration or feature extraction steps. In this 

thesis, we develop an end-to-end fully automated pipeline using deep learning 

architectures for 3D reconstruction of coronary artery tree from X-Ray angiograms. 

The pipeline contains mainly 2 steps: (1) blood vessel segmentation and (2) 3D 

reconstruction of vessels segmented in the first part. We propose a novel fully 

convolutional deep learning architecture, called Sine-Net, for blood vessel 

segmentation and multiple deep learning architectures for 3D reconstruction. The input 

to 3D reconstruction networks is the segmented image extracted in the first part, and 

the output is a well-defined 3D representation of connected cylinders. This structured 
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definition for 3D tubular shapes is novel to the literature. As deep learning 

architectures need plenty of training data with ground-truth, we populate 3D coronary 

arterial trees synthetically from real data of 9 subjects. After generating relatively 

enough data for training, we propose multi-view CNN, LSTM and GRU based 

architectures to predict 3D model of given multiple segmented vessel images. We have 

validated our method and the data structures defined for 3D tubular shapes in the 3D 

reconstruction of coronary arteries.  

 

Keywords: Blood Vessel Segmentation; 3D Reconstruction; X-Ray Angiography; 

Deep Learning; Fully Convolutional Neural Networks 
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2D X-RAY ANJİYOGRAMLARDAN KORONER ARTER 

AĞACININ 3D YENİDEN YAPILANDIRMASINDA YENİ BİR 

YAKLAŞIM 

ÖZ 

Kardiyovasküler hastalıklar gelişmiş ve gelişmekte olan ülkelerde yaygın olup, 

dünyadaki tüm ölümlerin üçte birinden sorumludur. Bu yüzden vasküler hastalıkların 

doğru teşhisi, ölüm oranını azaltmada ve tüm dünyanın yaşam kalitesini artırmada 

kritik bir rol oynamaktadır. Koroner hastalıkların teşhisi için MRA, CTA, DSA gibi 

birçok görüntüleme yöntemi olmasına rağmen, X-Ray anjiyografi görüntüleme tekniği 

kliniklerde en çok kullanılan (altın standart) yöntem olarak karşımıza çıkmaktadır. 

Ancak, bu görüntüleme tekniği üç boyutlu (3B) yapıların iki boyutlu (2B) temsili ile 

sınırlı kalmakta ve doğru tanı büyük ölçüde kardiyologların tecrübesine 

dayanmaktadır. Bu bağlamda 3D görüntüleme teknolojileri, özellikle kan damarlarının 

görüntülenmesi ve nicelendirilmesinde doğru bir değerlendirme için objektif, 

operatörden bağımsız bir araç sunabilmektedir. Ayrıca bu teknoloji klinik kararlara 

rehberlik edebilme potansiyeline sahiptir. Bu nedenle, anjiyogramlardan otomatik ve 

doğru bir damar ağacı geriçatımının geliştirilmesi oldukça gereklidir. Literatürde, 

koroner arter ağaçlarının 3B geriçatımı için çeşitli yöntemler mevcuttur, ancak bu 

yöntemler analitik çözümler sunmakta ve epipolar geometri özelliklerinin 

kullanılabilmesi için kamera kalibrasyonuna veya öznitelik çıkarımlarına ihtiyaç 

duymaktadır. Bu yöntemlerden bazıları manuel yardım gerektirmektedir. 

Teknolojideki son gelişmeler ve öğrenmeye dayalı 3B geriçatım yöntemlerinde 

gösterilen büyük efor, nesnelerin herhangi bir kamera kalibrasyonuna veya öznitelik 

çıkarma adımlarına ihtiyaç duymadan da 3B modelinin oluşturulmasını sağlamaktadır. 

Bu tezde, X-Ray anjiyogramlarından koroner arter ağacının 3B geriçatımı için derin 

öğrenme mimarileri kullanarak uçtan uca tam otomatik bir yöntem geliştirilmiştir. Bu 

yöntem temelde 2 adım içermektedir: (1) kan damarı bölütlemesi ve (2) birinci 

bölümde bölütlenmiş damarların 3B geriçatımı. Kan damarı bölütlemesi için Sine-Net 

adlı yeni ve tamamen evrişimsel derin öğrenme mimarisi ve 3B geriçatım işlemi için 
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birden fazla derin öğrenme mimarisi önerilmiştir. 3B geriçatım ağlarına giriş sinyali 

olarak ilk bölümde çıkarılan bölütlenmiş kan damarı görüntüleri verilmekte olup ve 

çıktı olarak 3B silindirik yapıları tutabilen bizim tanımladığımız bir veri yapısı 

bulunmaktadır. 3B tübüler şekillerin tutulmasını sağlayan veri yapısı literatürde 

yenidir. Derin öğrenme mimarilerinin eğitimi gerçekleştirilirken çok sayıda 

etiketlenmiş eğitim verisine ihtiyaç duyduklarından, 9 hastaya gerçek verilerden 

sentetik olarak çok sayıda 3B koroner damar ağacı ürettik. Daha sonra, bölütlenmiş 

damar görüntülerinin 3B modelini tahmin etmek için CNN, LSTM ve GRU tabanlı 

derin öğrenme mimarileri geliştirdik. Koroner arterlerin 3B geriçatımında 3B tübüler 

şekiller için tanımladığımız veri yapısının geçerliliğini ve önerdiğimiz yöntemi 

deneysel olarak doğruladık. 

 

Anahtar Kelimeler: Kan Damarı Bölütlemesi; 3B Yeniden Geriçatım; X-Ray 

Anjiyogram; Derin Öğrenme; Tamamen Evrişimsel Sinir Ağları 
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CHAPTER 1  

INTRODUCTION 

Cardiovascular diseases (CVDs) are serious health problems that lead to death if not 

treated. According to the research conducted by World Health Organization (WHO), 

it is reported that an estimated 17.9 million people die (31% of all deaths worldwide) 

each year from CVDs [1]. There exist many imaging methods utilized for the diagnosis 

of CVDs such as Magnetic Resonance Imaging (MRI), Digital Subtraction 

Angiography (DSA), Computed Tomography Angiography (CTA) and X-Ray 

Angiography (XRA). Among them, XRA imaging modality is one of the most 

widespread techniques used in clinics [2]. It is a technique to visualize blockages, 

aneurysms, narrowing, malformations and other blood vessel problems in veins, 

arteries and organs. Through this procedure, a hollow thin tube, known as catheter, is 

placed into an artery from somewhere in the arm or the groin and directed toward to 

the desired position. When it reaches the area to be examined, the contrast matter is 

injected to make blood vessels visible in X-Ray machine [3]. The machine provides 2-

Dimensional (2D) images to monitor vessels in screens as seen in Figure 1.1. 

Interventional cardiologists capture images from different views of angle [4] and 

examine these images to make a diagnosis. They decide on treatment planning by 

investigating the anatomical features of arteries. At this point, a 3D reconstruction 

system integrated to X-Ray device that enables 3D visualization of arteries in real-time 

would be beneficial in order to provide clinical assistance to operators.  

In some cases, it is possible to treat blocked vessels during the angiogram, but further 

examination is recommended after surgery to diagnose a variety of vascular problems 

including aneurysm, vascular malformations, deep vein thrombosis, aortic arc 

(problems in the arteries that branch off the aorta), peripheral artery disease and 

renovascular conditions [3]. Since X-Ray angiography is an invasive operation and it 

is not feasible to repeat the procedure, a tool that allows us to reproduce 3D model of 

arteries becomes valuable. 
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Figure 1.1 X-Ray Angiogram image of cardiac veins from [3]. 

1.1 Motivation 

CVD is a common health problem in both developed and developing countries. In 

Europe 1 of every 5 deaths [5], in the USA 1 of every 7 deaths [6] are caused by this 

disease. It is responsible for one-third of all deaths around the globe [1]. X-Ray 

coronary angiography is utilized as a gold standard technique for its diagnosis and 

treatment [7]. Cardiologists examine multiple 2D images (20-30 images) produced 

from XRA to reach a decision about the treatment of patients. However, it is not a 

trivial task due to the following factors: (1) The images are generally in low quality 

and contrast; (2) X-Ray angiography imaging is limited by an inherent 2D 

representation of 3D structures. It creates 2D projection images and the projection 

operation causes a substantial amount of 3D/4D anatomy of the coronary artery 

information to be lost. (3) Cardiologists need to combine all images mentally in their 

mind to resolve the problem and its location; (4) The accurate diagnosis heavily relies 

on the experience of cardiologists, and (5) this creates a subjective evaluation; (6) 

Finally, the procedure of X-Ray imaging is not convenient to be repeated multiple 

times because it needs surgical intervention and injection of contrast (radioactive) 

material directly to arteries. Although tackling these problems is possible manually, it 

takes hours of processing and evaluation for each patient. It is a cumbersome, 

repetitive and operator dependent task. Decreasing intra or inter-operator variability 
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and improving the quality of diagnosis in terms of time and accuracy is possible with 

an automated tool. In this manner, a system generating a 3D model of heart vessels 

can provide an objective, reproducible and relatively easier evaluation. Such a system 

offers a new and accurate approach in diagnosis and has the potential to guide clinical 

decisions. Therefore, the development of automatic and accurate vessel-tree 

reconstruction from angiograms is highly desirable. The aim of this study is to develop 

fast, robust and automated tool for 3D reconstruction of coronary artery tree from X-

Ray angiograms to provide clinical assistance. 

1.2 The Contribution of the Thesis 

The pipeline of the overall system is given in Figure 1.2. Since angiogram images are 

in low quality and poor contrast with noisy background, the first step in this study is 

to segment vessels from the background. The second step is to use these segmented 

images in the 3D reconstruction network for generating the corresponding 3D 

representation of vessels given in XRA images. We have novelties in both 

segmentation and 3D reconstruction phases. In order to present them clearly, we divide 

this section into two parts: Section 1.2.1 introduces novelty in the segmentation of 

blood vessels and section 1.2.2 introduces novelty in 3D reconstruction. To the best of 

our knowledge, the overall system proposed in this study is novel to the 3D 

reconstruction literature specifically in XRA. 

 

Figure 1.2 Overall pipeline for 3D reconstruction of coronary arteries 

1.2.1 Segmentation of Blood Vessels 

Blood vessel segmentation plays a critical role in medical imaging because it is a key 

item for the diagnosis of many diseases in a variety of fields including ophthalmology, 

neurosurgery, oncology, cardiology and laryngology [8, 9, 10, 11]. A remarkable effort 
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has been shown to improve the segmentation performance of blood vessels from hand-

designed filters to supervised methods. Among all of them, deep network architectures 

typically achieve the-state-of-the-art performances. We have proposed two deep 

learning (DL) architectures for the segmentation of coronary arteries. The first 

architecture is derived from U-Net [12] and presented in our previous study [13]. The 

second architecture, presented in this thesis, is Sine-Net. It is novel to the literature in 

its construction style. Although DL based methods perform well on raw input data, 

appropriate preprocessing operations may improve the segmentation performance. 

Thus, we conduct additional tests on our networks in order to show their robustness 

and the effect of preprocessing clearly.  

Another contribution of the proposed method is the selection of input size for 

networks. Since DL methods need plenty of data during training, patch-wise solutions 

are typically preferred in the related literature. In this solution, full resolution image is 

divided into smaller pieces, called patches, of definite sizes (i.e. 27x27, 50x50). 

However, we choose a larger patch size (448x448) to increase local connectivity and 

reduce computation for overlapping regions. Correspondingly, we present a data 

augmentation technique for the generation of the training set. Section 4.1 discusses the 

selection of a larger input size and data augmentation method utilized in the thesis. 

1.2.2 3D Reconstruction 

3D reconstruction is a topic of high interest in computer vision, robotics, autonomous 

vehicles and medical fields. Many methods based on analytical calculations are 

proposed in the literature for obtaining a 3D model of environments, scenes and 

objects. However, analytical solutions have limitations depending on the method they 

use such as images should be in color and textural quality should be decent, camera 

parameters should be known, camera calibration should be handled, a number of 

images needed to obtain relations and features, etc. Recently, DL based methods have 

been proposed for 3D reconstruction of objects. DL has shown superior performance 

on the generation of 3D model of objects; even single image is supplied, but the quality 

of reconstruction varies depending on the representation of the 3D model. More 

information related to 3D representations can be found in Section 4.2.1. We have 
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proposed a novel 3D representation for tubular shapes (Section 4.2.1) and validated 

the method on coronary vessel trees in this study. The other contribution we have made 

is the data augmentation procedure (Section 4.2.2) for 3D coronary vessel model 

generation. We can produce synthetically left and right coronary arteries with the 

software we developed. Another contribution is that the system we proposed is 

applicable to use in practice due to its decent running time, fully-automated pipeline 

and quality of reconstruction. 

1.3 Outline of the Thesis 

This thesis is organized in 6 chapters. Chapter 1 presents the problem and motivation. 

The contribution of the thesis is also introduced in this chapter. Chapter 2 presents 

background knowledge about cardiovascular anatomy, related diseases, imaging 

modalities, convolutional and recurrent neural networks to warm-up readers and 

increase understanding of the work presented here. In the next following  

(CHAPTER 3), a literature review is presented separately for the segmentation of 

blood vessels and 3D reconstruction. Chapter 4 describes the proposed methods and 

introduces the implementation details. In Chapter 5, the experimental results of the 

proposed method are demonstrated and compared with other state-of-the-art works 

presented in the related literature. Finally, in Chapter 6, a conclusion is drawn that is 

reached from the results of this study.  
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CHAPTER 2  

BACKGROUND  

This thesis is an interdisciplinary study that includes medical and computer science 

concepts and terminologies. In order to provide a better understanding for readers, this 

chapter presents medical background along with theoretical information about neural 

networks in computer engineering.  

2.1. Medical Background for Coronary Artery 

2.1.1. Anatomy of Coronary Arteries (Heart Vessel Anatomy) 

Coronary arteries supply blood that contains necessary nutrients and oxygen to the 

heart muscle. Also, oxygen-depleted blood is carried away through coronaries. The 

coronaries have two branches mainly: (1) Right Coronary Artery (RCA) and (2) Left 

Coronary Artery (LCA). These two main branches exit from aorta and continue to 

divaricate for covering the surface of the heart. Branches of RCA and LCA are 

demonstrated from an anterior projection view in Figure 2.1a and 3D volume in Figure 

2.1b. 

  

(a) (b) 

Figure 2.1 Coronary vessel anatomy in the anterior projection on the left [14] and 

3D volume rendered from CT angiogram on the right [15]. 
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LCA, alternatively called as left main artery (LMA), originates from the left coronary 

cusp. At the very beginning, LCA branches into the Left Circumflex Artery (LCX) and 

the Left Anterior Descending (LAD) artery [14]. Typically, the length up to the first 

bifurcation point is between 10 and 25 mm. Sometimes (15% of subjects) an external 

artery occurs at the first bifurcation point and creates a trifurcation; this additional 

artery is called intermediary artery (IMA) [14, 16]. The LCX artery, which is branched 

from LMA, supplies blood to the lateral and posterior wall of the left ventricle [17] 

with obtuse marginals (see M1, M2 in Figure 2.1 or OM1, OM2 in Figure 2.2) vessels. 

The LAD, which is another branch of LMA, passes through the anterior 

interventricular groove and proceeds to the apex of the heart. It branches diagonals 

(D1, D2) and supplies blood to the greater part of left ventricle [14]. 

  

Figure 2.2 LCA labels from the right anterior oblique view in detail [18]. 

RCA originates from the aorta at the right sinus and travels through the right 

atrioventricular (AV). It rounds the acute margin of the heart toward crux. RCA can 

have the first branch, called conus and continues to give off a variable number of 

branches towards the right atrium and ventricle. The acute marginal branches (M1, 

M2) emerges with an acute angle to provide blood to the right ventricle. RCA supplies 

blood to the left ventricle besides providing blood to the right ventricle. For the right 

dominant circulation, posterior descending artery (PDA) comes off to supply inferior 
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part of the septum and left ventricle [14]. Detailed labeling belongs to RCA is 

delineated in Figure 2.3. 

 

Figure 2.3 RCA labels from the right anterior oblique view in detail [18]. 

We follow branches in the coronaries to produce 3D synthetic data. Left and right 

coronaries are examined separately. Section 4.2.2 introduces details about how we 

generate random synthetic 3D coronary artery models. 

2.1.2. Coronary Artery Diseases 

Coronary artery diseases (CADs) occur when major blood vessels flowing through the 

heart muscles (myocardium) is reduced or blocked due to the existence of plaques (fat 

or cholesterol) or clots in the arteries [19, 20]. This disease can cause a heart to fail 

because coronary arteries carry fewer nutrients and oxygen to the myocardium. It is 

one of the most common types of CVDs [21]. Discomfort or pain that may progress 

towards arms, shoulders, back, neck or chin is widespread symptoms of CADs. While 

some people have severe symptoms, others may not experience these symptoms at all 

until they have a complication or a heart attack [22]. CADs have different types that 

occur in various ways and influence different parts of the organ. Types of CADs can 

be listed according to [20] as follows: 

• Dilated cardiomyopathy: The heart cannot effectively pump blood because 

chambers are dilated (enlarged) as a result of the weakness developed in 



9 

 

 

myocardium. There are many reasons behind it, but the most common one is 

that myocardial ischemia (lack of oxygen supply) caused by CADs. It usually 

influences the left ventricle.  

• Myocardial infarction: This type can alternatively be called heart attack, 

coronary thrombosis or cardiac infarction. The spasms, partly or complete 

blockages of coronary arteries by clots or plaques are usually underlying 

mechanisms of myocardial infarction. These reasons result in abnormal or 

absence blood flow through myocardium and cause irreversible damage to the 

part of heart muscle, which weakens the heart. Discomfort or the pain in chest 

is a widespread symptom of myocardial infarction.  

• Heart failure: Congestive heart failure or heart failure occurs when the heart is 

incapable of pushing blood into the body effectively due to damage caused by 

the weakness of the heart or other conditions like viruses. High blood pressure, 

obesity, diabetes or CADs are the main causes of heart failure. The left, right 

or rarely both ventricle of the heart is affected. The heart becomes too stiff and 

not fill properly between beats and over time, it cannot respond to blood 

demands of the body [23].  

• Hypertrophic cardiomyopathy: This disease is caused by the thickness of left 

ventricle and mostly inherited from a person’s parents (genetic disorder) by a 

chance of 50%. The thickness of the wall makes it hard to pump blood vessels 

out of the heart. Friedreich's ataxia, Fabry disease, and certain medications 

such as tacrolimus are other causes of hypertrophic cardiomyopathy [24]. 

• Mitral regurgitation: It is also known as mitral failure, mitral incompetence, 

mitral insufficiency, or mitral valve regurgitation. As names infer, the mitral 

valve does not close firmly, and it causes an irregular blood flow from the left 

atrium to the left ventricle. It is the opposite direction for regular blood flow. 

As a result of the reverse blood flow caused by the mitral valve, blood cannot 

leave the heart and be pumped efficiently to the body. Patients with this form 

of heart disease frequently feel exhausted and breathless. 
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• Mitral valve prolapse: It occurs when mitral valve between left ventricle and 

left atrium does not close completely. In many cases of patients, this disorder 

does not need to be treated if it is not diagnosed as mitral regurgitation. 

• Pulmonary stenosis (Pulmonic stenosis): The valve between the right 

pulmonary artery and right ventricle is called pulmonary valve. Pulmonary 

stenosis occurs when this valve is tight or stiff which makes blood flow through 

right ventricle to pulmonary artery hard. To overcome this problem, the right 

ventricle of the heart must work harder. If the pressure becomes too high in the 

right ventricle, a procedure is needed to treat pulmonary valve.  

2.1.3. Imaging Modalities for Coronary Artery Disease 

There are many imaging modalities used in both diagnosis and treatment of CADs. 

Some studies categorize imaging modalities as invasive/non-invasive [25, 26], while 

some studies categorize them as anatomical and functional imaging [27, 28]. In our 

case, we classify imaging modalities as invasive and non-invasive because X-Ray 

angiogram can be examined both functionally and anatomically which is not 

convenient to the latter categorization. Table 2.1 summarizes imaging modalities, their 

corresponding categories and working principles of the modality.  

Table 2.1 The classification of imaging modalities used in the diagnosis of coronary 

artery diseases 

Test Category Working Principle 

Electrocardiogram Non-invasive Measures the electrical activity of the heart 

using electrodes placed on the skin and 

provide information about the rate, and the 

regularity of heartbeats [29]. 

Echocardiogram Non-invasive It produces images of the heart using sound 

waves. This test usually enables doctors to 

gather information about heartbeats and 

pumping blood [30]. 
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Cardiac Magnetic 

resonance imaging 

(Cardiac MRI) 

Non-invasive Cardiac MRI utilizes magnetic field and 

radio waves to produce images of the 

structure within and around the heart. It can 

be used to evaluate the effect of CAD such 

as myocardium damages caused by limited 

blood flow [29]. 

Computed 

tomography 

coronary 

angiography 

(CTCA) 

Non-invasive It is used to visualize coronary arteries for 

plaque and calcium buildup [30] and 

determine whether the coronaries are 

narrowed by the injection of contrast 

material containing iodine [29]. CTCA 

produces multiple cross-sectional images 

that can be utilized for 3D transformation. 

Unlike X-Ray coronary angiography, CTCA 

is an only diagnostic test, treatment cannot be 

applied concurrently. 

Intravascular 

ultrasound 

Invasive It produces images of vessels utilizing sound 

waves for the evaluation of plaque and its 

composition. It provides significant 

information about the type of plaque and its 

amount.  

X-Ray coronary 

angiography 

(XRA) / Catheter 

angiography  

Invasive A thin, flexible tube called catheter, is 

inserted into vein or artery to reach coronary 

arteries. When it arrives, contrast material is 

injected to monitor blood vessels by using X-

ray beams. The advantage of this modality is 

that it is possible to diagnose and treat 

problems in a single procedure. This 

technique is used as gold standard due to its 

very detailed, accurate pictures of coronaries 

[29]. 
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Among imaging modalities explained in Table 2.1, X-Ray coronary angiography is 

used as gold standard in clinics [7] due to the following advantages: 

• The technique may eliminate the need for surgery, 

• It presents accurate, clear and detailed coronary artery pictures,  

• Non-invasive methods may not produce as much detail as this technique,  

• In contrast to CTCA or MRI, it is possible to combine diagnosis and treatment 

[29]. 

Since this study aims to reconstruct 3D anatomy of coronary arteries from 2D XRA 

images, we provide additional information about the types of X-Ray angiography 

systems. The systems for X-Ray coronary imaging are typically the same and based 

on C-arm machines. These machines can be in type of single-plane, bi-plane, rotational 

and dual-axis rotational coronary angiography (DARCA) according to the movement 

ability of X-Ray source and flat-detector [7] as shown in Figure 2.4. This movement 

ability in different directions makes the assessment of coronary artery diseases easier. 

In single-plane angiography, several images are collected from a few fixed views. 

Choosing the views is up to the operator, therefore; the success rate depends on 

operator skills. In bi-plane angiography, the system has two C-arms. The position of 

C-arm is generally adjusted orthogonal and the operator collects images from 2 X-ray 

sources. In rotational angiography, capturing images are standardized and automated 

with pre-defined C-arm rotations. It provides panoramic views of coronary arteries 

independently from operators. Finally, DARCA is an enhanced version of rotational 

angiography. Rotations of C-arm are optimized to minimize occlusions and 

foreshortening of coronary vessels. No matter the types of C-arm machines, they 

produce 2D projection of coronary arteries on an image plane (flat-detector) as shown 

in Figure 1.1.  



13 

 

 

 

Figure 2.4 Different types of C-arm systems for X-Ray coronary imaging from [7]. 

Green and blue curves show the movement ability of rotational angiography while 

red curve shows DARCA systems. 

2.2. Theoretical Background for Deep Networks 

2.2.1. Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are a special type of Neural Networks (NN) 

and still contains cells, called neurons, that have learnable weights and biases. CNN 

can produce features automatically to create complex relations between input and 

output. The architectures in CNN mostly assume that the inputs are images so that we 

see neurons are arranged in a 3-dimensional grid (height, width, depth/channels) as 

seen in Figure 2.5. However, this does not mean CNN only accepts images, it has also 

applicable to 1-dimensional, 2-dimensional or 3-dimensional data. Basically, there are 

five types of layer exist in current CNN architectures: Convolutional layer, de-

convolutional (transpose convolution) layer, pooling layer (max-pool, average pool 

etc.), sampling layer (up-sampling and down-sampling), and fully connected layer. 
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CNN architectures are made up of stacking these layers. Each layer of CNNs receive 

3D volumes and apply convolutional dot product with each learned filter and produce 

3D output volumes. In deep learning, many combinations of the CNN layers are 

stacked to obtain deep network architecture for extracting important features from the 

input. These features may also be supplied to NN as an input. 

 

Figure 2.5 Traditional 3-layer neural network structure (left) and 3D CNN structure 

(right). 

Convolution operation, in image processing field, is defined differently what it applied 

in signals and systems. It is defined as dot product (element by element) of mxn matrix 

by kxf filter. There is no flipping operation on filter or matrix. In deep learning 

architectures, nonlinear transformation is achieved by the convolution operation as in 

(2.1). 

𝑦𝑖
𝑙 = 𝑔𝑖

𝑙(𝑊𝑖
𝑙 ∗ 𝑔𝑙−1) (2.1) 

where * denotes convolution operation. 𝑊𝑖
𝑙 denotes the weights of 𝑖𝑡ℎ filter of 𝑙𝑡ℎ 

convolution layer, 𝑔𝑙−1 denotes the input comes from layer (𝑙 − 1), and finally 𝑔𝑖
𝑙 and 

𝑦𝑖
𝑙 are non-linear activation function and output of the 𝑙𝑡ℎ layer for the 𝑖𝑡ℎ filter, 

respectively. 

Input 
Hidden Layers 

Output 

width 

height depth 
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2.2.2. Recurrent Neural Networks 

Recurrent Neural Networks (RNN) are significantly preferred in processing of 

sequential data because it keeps an internal state within cells. It is a common method 

used in natural language processing such as text-generation. It has the potential to be 

applied in many fields especially if you need to keep a hidden state for the solution via 

its internal memory. Very popular examples that utilize this method behind are Apple 

Siri and Google Voice Search. RNNs can be formed in many types according to data, 

but the principles are the same for all. In RNN, the information is sequentially 

processed though the network occurring a loop for the data as shown in Figure 2.6. 

Unlike feed-forward networks, it takes both the current input and what it has learned 

from the previous inputs into consideration while it is producing an output. RNNs have 

short term-memory and apply recurrence formula at every step given as: 

ℎ𝑡 = 𝑓𝑊(ℎ𝑡−1,  𝑥𝑡) (2.2) 

where ht is the new state, fW is some function with parameters W, ht-1 is the old state 

and finally, xt is the current input vector at time step t. The same function and the same 

set of parameters are used at every time step as delineated in Figure 2.6. 

If an input has a large number of sequences, there are two major problems most likely 

to encounter with RNNs such as exploding and vanishing gradients. Exploding 

gradients occur when the algorithm repeatedly assigns a higher number to the weights 

while in backpropagation due to chain rule (multiplication of partial derivatives 

through a network). Fortunately, defining a clip limit or truncate gradients can 

overcome this problem. On the other hand, multiplication of weights due to chain rule 

causes gradients to vanish when partial derivates are too small and this problem is 

harder to solve than exploding gradients. Long Short Term Memory (LSTM) [31] 

proposed by Sepp Hochreiter and Juergen Schmidhuber solves this issue using gates. 

Details are discussed in Section 2.2.2.1 for LSTM. 
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Figure 2.6 RNN sequence process illustration. Top figure [32] shows in every time 

step t, it applies the same function fW with its internal state ht-1 and the input xt. The 

bottom figure [33] demonstrates black box representation of RNN. 

2.2.2.1. Long Term Short Memory Network 

LSTM [31] is an expanded version of RNNs by extending its memory, meaning that 

LSTMs have larger memory than RNNs. It becomes a good fit method if very long 

sequences exist and expect networks to remember previous information for a long 

period of time. LSTMs resemble a memory in a computer because it can handle read, 

write and delete operations with the use of gates. LSTM network learns whether to 

store or delete information by the weights at each gate. Typically, four gates are 

defined in LSTM as demonstrated in Figure 2.7. RNNs recurrence formula turns into 

(2.3) for LSTM. 
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𝑖
𝑓
𝑜
𝑔

) = (

𝜎
𝜎
𝜎

𝑡𝑎𝑛ℎ

)𝑊 (
ℎ𝑡−1

𝑥𝑡
) (2.3) 

𝑐𝑡 = 𝑓 ⊙ 𝑐𝑡−1 + 𝑖 ⊙  𝑔 (2.4) 

where ct represents the cell state, f is forget gate that helps networks to decide whether 

cell to be erased, i is the input gate decides whether to write information to the cell, g 

is the gate gate decides how much information write to cell and o is output gate that 

decides how much information to be revealed from the cell. The gates in LSTM are in 

the form of sigmoid (𝜎) which makes the output of gates in the range between 0 to 1. 

LSTM architectures cope with the vanishing gradient problem presents in RNNs. 

 

Figure 2.7 Internal gate structure of a typical LSTM [32]. 

It is noted that the activation function is modified and tested for a variety of problems 

in the literature. Meaning that there is no exact LSTM recurrence formula for gate 

activations, but the structure is almost the same as in Figure 2.7. What differs in 

LSTMs are generally the activation functions. 

2.2.2.2. Gated Recurrent Neural Network 

Gated recurrent unit (GRU) is introduced by Cho et al. [34], and it is very similar to 

LSTM architecture with fewer parameters. The main differences between GRUs and 
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LSTMs are the number of gates and maintenance of cell states. It captures adaptively 

dependencies of different time scales. It controls the flow of information with gating 

mechanism like LSTM, but without having to use a memory unit [35]. Due to lower 

number of gating, GRU is computationally more efficient. Typical GRU unit at time 

instance t can be examined in Figure 2.8. The gating mechanism in Figure 2.8 is a 

commonly used version and can be varied/changed for different applications. 

 

Figure 2.8 Internal gate structure of a typical GRU. Zt and rt denote update gate and 

reset gate, respectively. The current memory content is held in h’t. 

The update gate (zt) decides how much of preceding information to be moved on to the 

future and it is calculated using (2.5). This equation can eliminate the problem of 

vanishing gradients.  

𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑊ℎℎ𝑡−1) (2.5) 

The reset gate (rt) determines how much of the preceding information to be forgotten 

by using: 

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑊𝑓ℎ𝑡−1) (2.6) 
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The content of current memory is updated using reset gate and current input xt as 

following: 

ℎ𝑡
′ = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑡 + 𝑊(𝑟𝑡 ⊙ ℎ𝑡−1)) (2.7) 

Finally, the current output of GRU or the current hidden state ht in Figure 2.8 is 

calculated as: 

ℎ𝑡 = 𝑊((1 − 𝑧𝑡) ⊙ ℎ′𝑡) + 𝑊𝑢(𝑧𝑡 ⊙ ℎ𝑡−1) (2.8) 

2.3. Theoretical Background for 3D Reconstruction from Images 

3D reconstruction can be achieved either by active or passive methods. Active 

methods, which actively interfere with objects and acquire depth maps info with 

sensors, are beyond the scope of this study. On the other hand, passive methods do not 

interfere with objects, it only uses reflected or emitted light from the surface of objects 

with the help of sensors. We present passive methods in two main categories; (1) 

Analytical methods and (2) Learning-based methods. Coronary artery tree 

reconstruction is achieved using the first method in the literature. The latter is a 

relatively new field that emerged with object reconstruction and extended to many 

areas such as robotics, autonomous driving, augmented reality applications, etc. To the 

best of our knowledge, currently, there is no learning-based 3D reconstruction method 

for coronaries. This section introduces analytical and learning-based 3D reconstruction 

approaches briefly. 

2.3.1. Analytical 3D Reconstruction from Images 

Various types of systems for XRA have resulted in different strategies to be developed 

for coronary artery reconstruction. However; they typically follow the same 

methodology during the reconstruction process. This methodology uses the principle 

of a finite projective camera model that is extensively covered in computer vision tasks 

[36]. X-ray angiography imaging can be adapted to this model by defining three 



20 

 

 

coordinate systems: X-ray source (camera), patient coordinate system and X-Ray 

detector (image-plane). The parameters which define the relation between camera, 

image and coordinate system form a matrix called camera calibration matrix or 

projection matrix. These matrices together with epipolar geometry properties enable 

mapping points in 3D to their 2D projections. All analytical derivations of these 

methods can be examined in [36].  

All the methods for X-ray coronary reconstruction in the literature utilize the variations 

of the methodology described in the above paragraph. Projection matrix, fundamental 

matrix or camera calibration matrix are formed or estimated from given images to 

achieve 3D reconstruction. Section 3.2 presents the methodologies followed in the 

literature in more detail.  

2.3.2. Learning-based 3D Reconstruction from Images 

3D reconstruction is extensively explored in computer vision, robotics and computer 

graphics communities. It is a longstanding problem and remains challenging due to 

some factors such as ill-posed views, occlusion, lack of textural quality or image 

quantity, etc. Camera calibration and multiple images are often required for an 

effective 3D reconstruction solution. However; the rapid development of learning-

based solutions provides a chance to overcome these problems. Although it is a 

relatively new area, it is possible to reconstruct an object from a single view [37] as 

humans do by leveraging their prior knowledge about the object. Humans can achieve 

such tasks easily because they have seen objects previously. Thus, they can recognize 

the object. In learning-based 3D reconstruction, a similar approach is followed. We 

treat the problem as a recognition task, and we introduce samples to networks for 

building prior knowledge in the training phase. The networks proposed in the literature 

demonstrated promising results in 3D object reconstruction (details can be found in 

the literature review presented in Section 3.2). We here focus on main architecture 

mechanisms proposed in learning-based 3D reconstruction of objects.  

As we dig the related literature, typically few architectures are proposed according to 

3D representations. These are auto-encoder decoder, variational auto-encoders, 
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generative adversarial networks. Among them, auto-encoder decoder architecture 

construction is mostly preferred. The auto-encoder part encodes input features into a 

latent space, and decoder decodes these embedded feature vectors into the desired 

output. There are various latent space representations and they are determined 

according to how objects are represented in 3D space. We utilize auto-encoder decoder 

architecture for 3D coronary artery reconstruction with our 3D representation of 

tubular shapes presented in Section 4.2.1.  

2.4. Challenges in 3D Reconstruction from XRA Images 

Dealing with XRA images in order to obtain corresponding 3D models is not an easy 

task due to the following factors: 

• Generally, XRA images are in low contrast and have noisy background because 

of tissues and bones (ribs) around the heart. Such cases make establishing 

feature correspondences hard for 3D reconstruction methods.  

• The heart is non-rigid, which beats 60 to 100 per minute [38]. This behavior 

causes shape differences of arteries in time and increases the complexity of 3D 

reconstruction process.  

• Coronary arteries divided into many branches and surround the surface of the 

heart. To visualize coronaries clearly, images are captured from different views 

of angles. However, this brings an occlusion problem (vessel overlapping).  

• Vessels may be visualized shorter in XRA images than they really are due to 

different viewing angles. This is called foreshortening effect and this effect is 

demonstrated in Figure 2.9.  

• X-Ray images are generally ill-posed [39]. Camera parameters are mostly 

unknown, but some X-Ray machines provide camera parameters with the help 

of external software.  
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Figure 2.9 Foreshortening effect due to different views of angle [40]. 

Learning-based 3D reconstruction has the potential to overcome these challenges and 

eliminate the number of parameters that are used in the analytical 3D reconstruction 

process.  
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CHAPTER 3  

LITERATURE REVIEW 

This chapter presents literature reviews separately for blood vessel segmentation and 

3D reconstruction. We first present literature review for the segmentation of blood 

vessels and continue with 3D reconstruction published works for both coronaries and 

objects. Finally, we present the location of our methods besides other works in the 

related literature.  

3.1 Literature Review for Vessel Segmentation 

A tremendous amount of work has been proposed for segmentation of blood vessels 

and it is still challenging task due to following factors: (1) Vessel shapes do not follow 

a simple pattern; (2) Existence of other structures (lesions and optic disk) [41] and (3) 

various imaging conditions (low image contrast, noise and pathological reasons) make 

hard to detect vessels. Since the related literature is broad, some reviews [8, 9, 42] 

categorize proposed methods according to the way they achieve the segmentation for 

a better understanding of the literature. [9] divides the methods into 4 main categories, 

[42] divides the methods into 6 main categories, and finally [8] divides the methods 

into 7 main categories. Further categorizations are provided as subcategories of the 

main categories. However, it may not be trivial to categorize some of the methods that 

combine various approaches from different categories together. Therefore, it is better 

to examine related literature broadly in two big categories: supervised and 

unsupervised solutions as provided in a recent review [43]. Firstly, we present 

unsupervised methods literature which mostly covers hand-designed filters. Then, we 

provide supervised methods of literature which exploits prior labeling information. 

3.1.1. Unsupervised Methods 

In this category, handcrafted filters that rely on some assumptions have been proposed 

for the extraction of blood vessels. These filters are mostly based on second-order local 

structures (Hessian) of an image. Frangi et al. [44], the most cited paper in the 
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literature, define multiscale vesselness measure using eigenvalues of the Hessian 

matrix. The weakness of the Hessian-based approaches is to find the right scale 

(Gaussian blur) for vessels especially when they are thick. For example, if the scale is 

big, thick vessels may disappear or be affected by other adjacent structures. If the scale 

is small, Hessian-based approaches may fail this time due to second derivative at that 

point [44]. Another problem with Frangi filter is that it does not produce satisfactory 

results for images with low contrast. Optimally Oriented Flux (OOF) [45] is proposed 

to decrease the effect of adjacent objects and detect curvilinear structures. It depends 

on localized boundary of the local spherical region. The difference between OOF and 

Hessian matrix is that OOF does not consider closely located objects. However; it is 

sensitive to edges and performance drops when the structures become very irregular 

[46].  

Several pipelines have been proposed in the literature for the segmentation of blood 

vessels. Multiscale and region growing approaches are combined in [47]. The first step 

in the proposed algorithm is to set the initial seed and sigma for Gaussian blur. In each 

step, Hessian features (Frangi vesselness filter and direction information) are 

calculated and added to the region if that pixel labeled as a vessel. In the next iteration, 

the pixel found in the previous step is considered as the seed point for the following 

step. The algorithm runs for each sigma value in the range 𝜎𝑚𝑖𝑛 ≤  𝜎 ≤  𝜎𝑚𝑎𝑥. In this 

way, proposed method produces a continuous vessel tree. In [48], multiscale graph cut 

algorithm is used to segment coronary tree. The proposed method introduces direction 

information into energy function with the combination of Frangi vesselness measure. 

As it can clearly be seen from literature review, many feature detection algorithms rely 

on scale selection of Gaussian blur (sigma). To enhance vessels, multi-scale based 

approaches have been proposed including the evaluation of orientation of eigenvalue 

of Hessian matrix [49] and filters [50]. The proposed method in [51] adapts Markov 

Random Field (MRF) multi-label optimization for scale-selection by formulating it as 

a graph labeling problem. It improves Firangi’s scale selection and reduces scale 

selection error by 15% on average in the Digital Retinal Images for Vessel Extraction 

(DRIVE) dataset [52]. 
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There are also active contour models addressed in the literature for image segmentation 

[53]. They find the boundary of an object with different forces defined: external forces, 

model-based forces, internal and constraining the contour geometry. Active contour 

models can be examined in two main classes [54]: parametric [55, 56, 57] and implicit 

active contours [58, 59]. Parametric active contours known as snakes rely on 

Lagrangian formulation. On the other hand, implicit active contours rely on partial 

derivatives of contours. [55] proposes a deformable tubular model with the 

optimization of surface mesh (B-spline to control points) with respect to centerline 

curve. [56] proposes a parametric deformable model evolved from [55] with defining 

a changing radius for centerline curve. [57] proposes a method to detect, track and 

match deformable contours using non-iterative dynamic programming and guarantees 

the finding of global minimum. Brieva et al. [58] use deformable model as B-spline 

snakes which are special forms of snakes. They are located at vessel boundaries by 

minimizing the energy produced from S-Gabor filters. [59] introduces a vessel 

dedicated two level-set scheme (implicit active contour) which iteratively minimizes 

energy criterion. This criterion is based both on intensity values in the image and on 

local smoothness properties of the vessel’s boundary [59].  

Using the statistical distribution of input images, it is possible to develop unsupervised 

learning-based method in vessel segmentation [9]. Hassouna et al. [60] present an 

automated method for the segmentation of 3D blood vessels from MRA. The method 

classifies vessel pixels using one Gaussian and background pixels using mixture of 

one Rayleigh and two normal distributions. The parameters of the distributions are 

predicted automatically using the expectation-maximization algorithm [61]. K-means 

method is employed in [62] for the segmentation of liver vessels roughly from MRI. 

In [63] and [64], lung and liver vessels from CT images are segmented using 

metaheuristic optimization algorithm, called Ant Colony Optimization. A cost path is 

defined for all possible paths that connects bifurcation points to obtain optimal vessel 

tree from physiological model and it is optimized using Ant Colony algorithm. A 

similar method is followed in [65] for retinal blood vessel segmentation. In [66], retinal 

blood vessels are segmented using Fuzzy C-means. In [67], the parameters of the 
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matched filter for the segmentation of retinal vessels are predicted iteratively using 

Particle Swarm Optimization.  

3.1.2. Supervised Methods 

Labeled data, called ground-truth (GT), is exploited in supervised methods. A model 

is created, or the parameters/weights of the model are estimated with the training 

process using these GTs. A set of rules is learned through this process to create a 

relation between input (feature vector) and output. This complex relation can be 

achieved using various methods such as Support Vector Machine (SVM) [68, 69, 70], 

AdaBoost [71], k-Nearest Neighbor [52], Bayesian Classifier [72], Artificial Neural 

Network (ANN) [73, 74, 75, 76], or CNN-based [11, 75-87] methods. Here, we present 

the most popular and best-performing approaches for blood vessel segmentation 

literature. The methods in related literature mainly use retinal blood vessels because 

there are different fundus databases with GTs publicly available for training models.  

Retinal blood vessels are considered into two parts: large and thin vessels in [68]. 

Large vessels are detected by adaptive local thresholding in normalized images and 

thin vessels are classified and segmented with SVM. Wavelet and curvelet multiscale 

transforms are used as features in SVM. Ricci and Perfetti [69] present two methods 

for segmentation in fundus images. The first method is based on line-detector at 12 

different orientations to obtain unsupervised pixel classification and the second 

method is based on SVM as supervised vessel classification. The pixel values of two 

orthogonal line detectors are supplied to SVM for the construction of a feature vector. 

The work of [70] utilizes SVM and learns configurations of the method proposed in 

[77] in a supervised way. The method adapted fully-connected Conditional Random 

Fields (CRFs) for the segmentation of blood vessels.  

ANN is a popular method used in many studies for segmentation in blood vessels [73, 

74, 75, 76]. ANN scheme is proposed in [73] for pixel classification. The method used 

in [73] computes 7-D vector composed of gray-level and moment invariants-based 

features. In [74], the network is trained using backpropagation learning algorithm with 

200 features. The features include first principal component values in a 10x10 window 



27 

 

 

centered on the pixel being classified and the corresponding edge strength values in 

the same window. In [75], a neural-network classifier for detecting vascular structures 

in angiograms is trained backpropagation algorithm with the momentum term. It 

classifies the center pixel using gray-scale information within a window. The work of 

[76] presents an ANN architecture to find a mapping function to obtain retinal vessel 

map of a patch of fundus images. The proposed architecture has 5 layers to obtain the 

complex relationship between input and output.  

The improvements in technology and development of powerful hardware enable CNN 

architectures to evolve faster. In [78], Wang et al. propose an algorithm which 

combines CNN and Random Forest (RF) classifiers for retinal blood vessel 

segmentation. CNN is used as a hierarchical feature extractor, and then RF exploits 

these learned features. Finally, ensemble learning is achieved for segmentation from 

the output of multiple RFs. Khalaf et al. [79] propose a modification of the output of 

CNN as a 3-class problem to reduce intra-class variance. The classes defined in the 

study are background, small vessels, and large vessels. Validation of this network is 

accomplished on only DRIVE database. The CNN architecture in [80] is derived from 

holistically-nested edge detection (HED) CNN structure [81] and has 4 layers instead 

of 5 as in the original work. The HED architecture composes the output from 

intermediate layers with conditional random field (CRF) algorithm. A similar 

approach is followed in multi-scale CNN architectures proposed in [82] and [83] at 

different scales. In recent years, researchers create deeper architectures by stacking 

multiple CNN layers in various ways to obtain more and more complex relations. Such 

configurations of CNNs are called deep learning (DL) architectures in literature. 

Although they are initially utilized in object recognition tasks [84], they can be adapted 

successfully in medical image processing field and achieve the-state-of-the-art 

performance. Guo et al. [85] propose a shallow DL architecture consisting of 3 

convolutional layers and cascade this network multiple times (n=5) to classify pixels 

in a patch size of 64x64 for retinal vessel segmentation. Liskowski et al. in [86] 

propose a DL architecture for the segmentation of blood vessels in fundus images. The 

architecture classifies the center pixel of a patch. They further improve the 

segmentation process with structured-prediction (SP) definition. In this definition, the 
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architecture produces predictions for all pixels within a window centered in the patch 

with the size s instead of predicting only center pixel at a time. Similarly, Dasgupta 

and Singh [87] utilize fully convolutional architecture for SP to segment retinal blood 

vessels on DRIVE database. The method in [88] balances the number of negative and 

positive classes using local entropy sampling for training 6 layer network inspired by 

[89]. CNN architectures are often called fully convolutional if fully connected layers 

are removed at the end as in [87, 88, 11, 90]. However, they use max-pooling and up-

sampling layers inside their DL architectures, which are not convolutional layers. We 

utilize strided and transpose convolution instead of max-pooling and up-sampling 

layers, respectively to make fully convolutional network. In this way, networks 

continue to learn while down and up-sampling operations. 

Some of the networks in the literature also carry hierarchical features between layers 

to enrich feature representations. For instance, Huang et al. [91] introduce densely 

connected CNN architecture which carries features from corresponding layer to other 

layers in a feed-forward fashion. Feng et al. [92] propose a cross-connected 

convolutional neural network (CcNet) architecture that merges some of the layer 

features in intermediate locations. U-Net [12] and its derived architectures proposed 

in [93] and [94] follow a similar approach that combines prior layer features with next 

layers to boost the learning ability of the network.  

It is also possible to utilize DL architectures proposed for a specific application in 

another problem if they are appropriately modified. Furthermore, the weights from 

pre-trained network can be transferred to the new architecture, and fine-tuning process 

can be applied to adapt the network to the new task. This is called transfer learning in 

the literature. The work by Jiang et al [11] uses transfer learning method to employ 

already trained network weights from fully convolutional AlexNet architecture in [90]. 

They resize regional patches to 500x500 from 50x50 for enlarging details in a fundus 

image. In this way, the architecture can catch thin vessels. The work of [95] utilizes 

four different networks working on retinal image patches and uses the knowledge of 

these networks to train the final network at the image-level. 
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Learned features with supervised methods reach more discriminative characteristics, 

which are difficult to describe analytically [41], and tend to perform better 

segmentation performance. Among supervised methods, deep network architectures 

are typically competing among themselves and achieve the-state-of-the-art 

performances [96]. This thesis presents fully-convolutional deep learning architecture 

for vessel segmentation with competitive results as its first part. Details are found in 

Section 4.1. 

3.2 Literature Review for 3D Reconstruction 

There are various 3D coronary reconstruction methods applied on data from various 

types of coronary imaging systems. The studies presented in [97, 98, 99, 100, 101, 

102, 103, 104] utilize traditional (single-plane) XRA and [105, 106, 107, 108, 109] 

utilize bi-plane XRA. We focus on these XRA methods and examine them into 2 main 

categories as the way the technique they follow: (1) Calibrated and (2) non-calibrated 

(calibration-free) reconstruction. Then, we continue to present learning-based 

methods, but only 3D object reconstruction since there is no machine learning-based 

method for 3D reconstruction of coronary arteries. 

In calibrated methods, camera calibration matrix is formed to map points in 3D to their 

corresponding 2D projection. Calibration parameters are estimated by optimizers [97, 

100, 101, 102] or using the phantom object on which metal balls are attached [110]. 

Centerlines [100, 111, 112, 105, 98, 99] or corresponding 2D points [97, 102] are used 

in determining calibration parameters and estimating 3D model of coronary artery tree. 

[97] and [100] follow the same approach in finding external parameters of the camera 

(R: rotation, t: translation) using constrained nonlinear optimization algorithm given 

five or more correspondence points. The works [107, 101, 100, 102] use epipolar 

matching and triangulation methods during 3D reconstruction of coronaries after 

calibration. Apart from these studies, [109] utilizes bundle adjustment method and 

[104, 113] utilize graph-cut based sparse stereo method for 3D reconstruction. The 

works of [98, 99] use deformable model and update contours using active contour 

algorithms with back-projection external energy. Similarly, [97] proposes active 

contour model and [105] uses Fourier deformable model with projective external 
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energy. Although most of the studies assume heart as rigid during 3D reconstruction, 

[108, 114, 104, 97, 105] include motion caused by respiration and heartbeat into their 

method and obtain 4D model of coronary artery tree. In [115, 106, 101, 102, 104, 99], 

X-ray images are synchronized using ECG recording to ease 3D reconstruction 

process. 

Calibration-free solution of [109] utilizes Random Sample Consensus (RANSAC) 

[116] method and eight-point algorithm to estimate the fundamental matrix for 3D 

reconstruction. In this way, the method internally achieves self-calibration in XRA 

image sequences. RANSAC method produces reliable correspondences during 

matching centerline points. The work of [103] does not require calibration and uses a 

non-linear optimization algorithm to estimate projection matrix directly by making 

some assumptions on the rotation of C-arm. The method tries to minimize the error 

between centerline points and back-projection of 3D reconstructed points. 

As it is clearly seen that 3D reconstruction methods depend on mathematical derivation 

between 2D and 3D geometry by making some assumptions (pin-hole camera model). 

This process requires camera parameters to be known or estimated. For the ill-posed 

situations where camera parameters are not known, feature correspondences are 

utilized to achieve self-calibration [109]. However, objects can be reconstructed 

without a calibration step by the utilization of deep learning methods. A tremendous 

amount of progress has been drawn in the last 5 years in learning-based 3D 

reconstruction. The problem remains challenging because there is not enough 3D data 

for training and there are many ways to represent 3D models such as point clouds, 

meshes, volumetric grids (voxels), etc. The algorithm changes according to 

representations of 3D model. Thus, we divide 3D reconstruction literature into 4 main 

categories based on their 3D representations of objects as following: (1) point-cloud 

[117, 118, 119, 120, 121, 122], (2) volumetric grids [37, 123, 124, 125, 126, 127, 128, 

129], (3) polygonal mesh [130, 131], (4) other specific data structures [132, 121, 133]. 

Point cloud representation is one of the most popular object representation techniques 

in computer graphics and computer vision. The data is simple to read, write and 

interpret in this format. However, the number of points should be limited if this format 



31 

 

 

is used in deep learning architectures due to pre-determined output size. CAPNet is 

introduced in [117] and [120] and the method uses an encoder-decoder architecture to 

obtain point cloud reconstructions from 2D image(s). Arbitrary views of reconstructed 

point clouds are projected onto 2D plane to refine point clouds with known camera 

parameters. Fan et al. [118] proposed a network, PointOutNet, for generating 3D 

object from a single image by obtaining its conditional shape sampler. The output 

shape is 1024x3 in PointOutNet. Zamorski et al. [119] proposed adversarial 

autoencoders to learn 3D latent space of compact representation of 3D point clouds 

and generate 3D shape out of it. In [121], a deep learning method is proposed for 

reconstructing 3D shapes from 2D sketches in the form of line drawings. The network 

produces depth and normal map of input sketches and these outputs are transformed 

into a dense point cloud representing a 3D reconstruction of the input sketch. In [122], 

neural networks are trained to produce corresponding depth maps and silhouettes from 

input images. From these silhouettes or depth maps 3D point cloud is generated and 

refined. 

Volumetric grid representation is generally preferred in the related literature because 

the output of deep learning architectures is definite in terms of size. In this method, 

objects are placed into a 3D grid and grid size is constant. In [37], recurrent network-

based solution is proposed for 3D object reconstruction from a single or multi-view 

image. The architecture, called 3D-R2N2, takes 127x127 input image and generates 

features from that image using auto-encoder network. The output of auto-encoder 

network is fed into GRU based recurrent network to hold necessary features in its 

internal memory. Finally, 3D reconstruction of arbitrary viewpoints of images is 

achieved in 3D occupancy grid (32x32x32 voxel grid) with a decoder network. 

Training and testing are achieved using ShapeNet [134], PASCAL VOC 2012 [135] 

and online 3D databases. In [127], an enhanced version of 3D-R2N2 is proposed by 

changing regular voxel values into weighted representation. In weighted 

representation, voxels are defined as integers in the range of (-53, +53) instead of 0 

and 1. Neighbor voxels are taken into account with 3x3x3 kernel filter in their 

representation. It is claimed that training time is also improved in this way [127]. [123] 

and [124] proposed deep learning architecture using Octree [136] structure for 
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obtaining a higher resolution of a 3D model in grid voxel representation. By using 

Octree, 3D models can be generated efficiently in terms of memory and calculation 

because the architecture does not have cubic complexity for 3D objects (for instance: 

512*512*512 or 256*256*256). The neural network learns Octree structure in [124]. 

Wang et al. [126] designed O-CNN, a novel octree data structure, to efficiently store 

the octant information occupied by 3D surfaces. The surface of objects is predicted at 

different scales of voxel blocks with octrees in [128] by using an encoder-decoder 

network. In order to incorporate the physics formations such as perspective geometry 

and occlusion, Markov Random Fields with ray-potentials explicitly modeled with 

CNN in [129]. Yan et al. propose an encoder-decoder network for 3D object 

reconstruction (output size 32*32*32) without 3D supervision by including 

perspective projection in the loss function [125]. In this study, the intrinsic and 

extrinsic parameters are known for the camera. 

Polygonal mesh representation another format used mostly in computer graphics, 

games and animations. Wang et al. [130] propose to use meshes generated by 

deforming an ellipsoid into the desired shape from a single-color image using CNN. 

Distance between camera and objects are assumed to be fixed. Pontes et al. [131] 

deform mesh model by selecting a similar object from a database from a single image. 

Neural network is used to create latent space from this single image and output 

parameters are utilized in deformation to obtain 3D representation of the object in the 

image. A similar shape is retrieved by the classification index from 3D database, and 

it is deformed by a graph which is embedded to represent the final 3D object in [131]. 

We include other 3D representations into problem-specific part because these are 

mostly data-specific formats. For instance, [132] utilizes encoder decoder architecture 

of CNN for constructing RGB+D of a given single image view of a car or a chair. Point 

cloud and mesh are generated from multi-view RGB+D output of the network. They 

train their network with ShapeNet [134]. Lun et al. [121] propose a deep learning 

method for automatically translating hand-drawn sketches into 2D images representing 

surface depth and normal across several output views. Encoder-decoder network is 

utilized for the generation of 12 normal maps and corresponding depths. 3D point 
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cloud and polygonal mesh of the object are obtained fusing these depth and normal 

predictions later. A relatively new study presented in [133], introduces 3D 

representation of an object with defining 64-D vector. The vector allows objects to be 

predictable directly from 2D images. 

3.3 The Position of Proposed Methods in the Related Literature 

The overall pipeline proposed in this study contains two major steps: (1) segmentation 

of blood vessels and (2) reconstruction of the vessel tree from segmented images. For 

the first phase, we propose fully automated supervised method for blood vessel 

segmentation. The method utilizes a novel fully convolutional deep network 

architecture trained on retinal images. We follow an untraditional way while 

construction of the network. We first apply up-sampling and then down-sampling 

operations. Besides that, the network we propose has some advantages. The first 

advantage is that it does not include fully connected layers at the end for vessel 

classification. This property improves training and response time of prediction because 

an intensive multiplication generally exists in fully connected layers. The second 

advantage is that the local connectivity substantially reduced due to a larger patch size 

of 448x448 as input. This improves prediction time for images in contrast to smaller 

patch sizes. The works proposed in the literature mainly utilize patch-wise approach 

to train networks. Typically, smaller patches are utilized such as 27x27, 32x32 or 

50x50. Our method uses a larger patch size that fit DRIVE, STARE, and CHASE_DB1 

images. The third advantage is that our network continues to learn features during 

down-sampling and up-sampling operations in progress due to convolutions. In this 

way, the learning ability of the network is increased. 

Most of the solutions proposed in the literature for 3D reconstruction pipeline include 

camera calibration process. With the development of learning-based methods, this step 

can be eliminated. In literature review provided in Section 3.2, there is no learning-

based method for 3D reconstruction of coronary arteries. There are several ways to 

include 3D reconstruction process in deep learning architectures due to the variation 

of 3D representation of objects. The methods mostly used in the literature are based 

on point cloud, voxel grid solutions and mesh generation with deformation parameters. 
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Since our data relatively have a definite shape, we define our structure to represent 3D 

coronary vessels. We use consecutive points to represent a continuous segment of 

cylindrical shapes and construct multiple segments to form vessels. Therefore, our 

method falls into problem-specific 3D reconstruction of objects.  
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CHAPTER 4  

MATERIALS AND METHODS  

We first segment blood vessels in angiogram images. However, public data-set for 

XRA is not available. Thus, we adapted retinal images for training of our network. 

Next, we use the segmented images in a 3D reconstruction network to produce 3D 

model of the coronary tree. In this section, we present proposed methods for blood 

vessel segmentation and 3D reconstruction, respectively. 

4.1 Blood Vessel Segmentation  

Deep learning architectures proposed in literature has demonstrated their superiority 

in automatically learning of rich hierarchical representations. The main disadvantage 

of utilizing deep learning architecture is that a large number of labeled training data 

and computational power is needed to achieve the-state-of-the-art performance. For 

our case, we do not have any labeled data for X-Ray angiogram images. Instead of 

creating labeled data from scratch, we adapted publicly available datasets containing 

other forms of vessels, namely retinal blood vessels. We propose a novel fully CNN 

architecture achieving the-state-of-the-art segmentation performance and introduce 

publicly available retina databases, the core components of the method, preprocessing 

and data augmentation techniques, loss function, training procedure, and finally 

performance comparison measures in this section. 

4.1.1. Retinal Blood Vessel Databases 

To the best of our knowledge 9 publicly available ophthalmological databases exist. 

However; only 4 of them provide ground-truth images which are annotated by experts, 

namely DRIVE (Digital Retinal Images for Vessel Extraction) [52], STARE 

(STructured Analysis of the Retina) [137], CHASE_DB1 (Child Heart and Health 

Study) [138] and HRF (High-Resolution Fundus) [139] as listed in Table 4.1. DRIVE, 

STARE and CHASE_DB1 databases are commonly preferred in the literature because 

they are all decent in quality. HRF database is mostly ignored in vessel segmentation 
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literature because it is relatively new, and the resolution of images is approximately 4 

times higher than DRIVE and STARE databases. 

Table 4.1 Summary of publicly available retina databases. 

Database 

Name 

# of Labeled 

Images 

Additional Information 

DRIVE 40 

(20 Training + 

20 Test) 

Digital Retinal Images for Vessel Extraction. 

Consists of 40 color retinal images. Test-set 

images are labeled by 2 experts. 

STARE 20 Structured Analysis of the Retina. 

Consists of 400 retinal color images, 20 

images have ground-truth labels from 2 

experts. 9 images belong to healthy, 11 

images show diseases. 

CHASE_DB1 28 Child Heart and Health Study in England. 14 

children (left and right eye) total images of 28. 

Good quality and good contrast. 

HRF 45 High-Resolution Fundus. Total number of 

images: 45 (15 healthy subjects, 15 images of 

diabetic retinopathy and 15 images of 

glaucomatous.).  

DIARETDB1 - Standard Diabetic Retinopathy Database. 

Total number of images: 89. 

REVIEW - Retinal Vessel Image set for Estimation of 

Widths, Total number of images: 16 

ROC - Retinopathy Online Challenge. Total number 

of images: 100. 

VICAVR - The VICAVR database. Total number of 

images: 58 

MESSIDOR - The Messidor DB. Total number of 

images:1200. 
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The DRIVE database [52] is obtained from a diabetic retinopathy screening program 

in Netherlands and contains 40 labeled retinal images of size 565x584. 33 images 

belong to healthy subjects while 7 images have pathology (early mild disease). The 

labeled images are randomly selected from 400 diabetic subjects between 25 and 90 

years of age. The data-set is already divided into test and training set consisting of 20 

images each. All images are colorful and 8-bit resolution per channel. Test set is 

annotated by 2 experts. An image randomly selected from DRIVE test set is presented 

in Figure 4.1. 

   
(a) (b) (c) 

Figure 4.1 (a) An image from DRIVE database (05_test.tif), (b) shows annotation 

from expert #1 and (c) shows annotation from expert #2. 

The STARE database [137] is the part of the project named STARE (STructured 

Analysis of the Retina) at the University of California funded by the U.S. National 

Institutes of Health. STARE data-set contains 400 images with size of 700x605 and 

only 20 images have been manually labeled by 2 experts. 11 images show pathology, 

9 images belong to healthy subjects. The labels marked by the second expert show 

thinner vessels than the first experts. STARE database is the most challenging database 

among all the others because some of those pathological images also suffer from 

decreased sharpness and deterioration due to eye illnesses (see Figure 4.2). 
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(a) (b) (c) 

Figure 4.2 (a) An image from STARE database (im#0044) containing pathology. (b) 

and (c) show corresponding labeled images of (a) from experts “ah” and “vk”, 

respectively. 

The CHASE_DB1 database [138] is part of CHASE (Child Heart and Health Study 

in England) project and contains 28 images which are collected from left and right 

eyes of 14 international children. The images are of size 999x960 and all in good 

quality and contrast with no symptoms. All the images are captured using a fixation 

target and focused on optic disc to be centered. Manual segmentation for each image 

is achieved by 2 experts. This database is important because it contains retinal images 

of multi-ethnic children. An example image from CHASE_DB1 is demonstrated in 

Figure 4.3. 

   
(a) (b) (c) 

Figure 4.3 (a) delineates retinal image from CHASE_DB1 (Image_03R). (b) and (c) 

are labeled images of expert #1 and expert #2, respectively. 

The statistical details of the retina databases used in this thesis are summarized in Table 

4.2. We train our network using DRIVE, STARE and CHASE_DB1 individually. To 
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generalize blood vessel segmentation further, we also train the model with a 

combination of all, called Hybrid-DB. In all databases, we utilize labeling from expert 

#1 as the gold standard (ground-truth).  

Table 4.2 The statistical properties of DRIVE, STARE and CHASE_DB1 databases. 

There is no field of view (FOV) distinction, all pixels in images are considered in 

calculations. 

 DRIVE STARE CHASE_DB1 

Properties of 

databases 
Train Test   

Number of 

images 
20 20 20 28 

Image 

dimensions 
565x584x3 565x584x3 700x600x3 999x960x3 

Number of 

positive pixels 
569615 577945 644053 1861974 

Number of 

negative pixels 
6029585 6021255 7825947 24991146 

Positive pixel in 

percentage ≈ 
0.0863 0.0876 0.0760 0.0693 

Negative pixel 

in percentage ≈ 
0.9137 0.9124 0.9240 0.9307 

 

4.1.2. Data Augmentation Technique 

The DRIVE database is already divided into training and test sets which include 20 

images each as seen in Table 4.2. The STARE database has 20 labeled images and we 

divide the first 70% and last 30% of images for training and test sets, respectively. 

Finally, CHASE_DB1 has 28 labeled images and we follow the same division 

procedure as in the STARE database. 

Deep learning architectures need plenty of data during training process for a better 

generalization, but available public retina databases do not have sufficient training 

images, therefore the network over-fits training data-sets in such cases. In order to 

overcome over-fitting, we apply rotation, translation and mirroring operations to 
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images for data augmentation. Rotation is applied according to the center of an image 

in the range of −45° < 𝜃 < 45°. Then translation is applied randomly in the interval 

defined in (4.1) and (4.2). 

𝑡𝑥 < 𝑤 − 448,  (4.1) 

 𝑡𝑦 < ℎ − 448  (4.2) 

where 𝑡𝑥 and 𝑡𝑦 represent translation in x and y directions, respectively. w and h are 

the image width and height. 448 is the input size of the proposed network in this study. 

After one random image is generated using this procedure, we augment it to 8 with 

definite rotations (-90°, 90°) with respect to image center and flipping operations as 

demonstrated in Figure 4.4. We randomly generate 10000 images using train-set for 

each database using this technique. For databases which do not include training-set, 

we apply the division procedure mentioned at the beginning of this section.  

In data augmentation technique shown in Figure 4.4, we contribute to network 

generalization in blood vessel segmentation with random rotations and flipping 

operations. In this technique, we increase the possibility of seeing different vessel 

forms that may be encountered in other imaging modalities as well. Namely, the 

network can be trained for every direction of vessels and increases the capability to 

distinguish vessel-like structures for different orientations. This approach makes the 

network to generalize on blood vessel segmentation. 
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Figure 4.4 The illustration of data augmentation algorithm. By using this method, 8 

images are generated from a single random image. The first row delineates how 

original image is turned into a random image using random rotation and translation 

within the ranges defined in section 4.1.2. Last two rows show how the random 

image is augmented using clock-wise-rotation (CWR) and flipping in X-axis 

technique to generate different shapes of vessels. 

4.1.3. Preprocessing of Images 

Although deep learning architectures perform well on raw input data, appropriate 

preprocessing operations may improve segmentation performance [86]. Thus, we 

conduct tests with and without preprocessing to clarify the effect of preprocessing. 

Since some images have illumination problems such as darker or lighter background, 

we exploit contrast limited adaptive histogram equalization (CLAHE) algorithm [140] 

to improve contrast in images. We also employ multi-scale top hat transform (MTHT) 

[141] to enhance image contrast and details further. The preprocessing effect is 

visualized for one of DRIVE database images in Figure 4.5. The disk size range for 

MTHT is (3, 19), and CLAHE clip limit is 2.0. 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 4.5 The effect of pre-processing on DRIVE image #21. (a) shows original 

image, (b) shows grayscale of (a), and (c) and (d) show CLAHE and MTHT pre-

processed images of (b), respectively. (e) is MTHT followed by CLAHE, (f) is 

CLAHE followed by MTHT. We used (e) due to high contrast in the training of the 

network. CLAHE clip-limit is set to 2.0, and the range for MTHT disk size is (3, 19). 

The order of preprocessing is determined by looking at multiple images in a window 

like Figure 4.5. We try to observe the enhancements visually in all images and 

conclude that the preprocessing operation of MTHT followed by CLAHE makes 

vessels more distinguishable from its background. We follow this order in our 

experiments for training with pre-processed. 

We visualize the effect of pre-processing on angiogram images as well in Figure 4.6. 

We use XRA images from [142]. The same parameters are utilized in pre-processing 

as in Figure 4.5. 
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(a) (b) (c) (d) 

Figure 4.6 The effect of pre-processing on X-Ray angiograms. (a) shows original X-

Ray image, (b) and (c) show CLAHE and MTHT pre-processed images of (a). (d) is 

MTHT followed by CLAHE. 

Retinal images are colored, but XRA images are in grayscale. The main goal of the 

first part of this thesis is to segment coronary arteries in XRA images to feed them into 

3D reconstruction network to obtain corresponding 3D model. Therefore, we convert 

retinal images into grayscale. Using grayscale image at the input provides 2 

advantages. The first advantage is that our network can generalize blood vessel 

segmentation so that it can alternatively be applied to other medical image modalities 

which are in grayscale. The other advantage is that the complexity of the network is 

decreased by using a single channel at the input. Correspondingly, less computation is 

achieved for each segmentation.  

Normalizing input values minimizes bias within neural network and speed-up neural 

network training [143]. It becomes useful, especially when data is of different scales 

[143]. Therefore, we normalize input images using (4.3) and scale between 0 and 1 

just before feeding them to the proposed architecture in both with and without 

preprocessing tests. 
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𝑛𝑖 =
𝑥 − 𝜇𝑖

𝜎𝑖
  (4.3) 

where 𝑛𝑖 is normalized image at 𝑖, 𝜇𝑖 is mean and 𝜎𝑖 is standard deviation of image at 

𝑖 in the training set. 

4.1.4. Deep Learning Architecture 

We propose a novel FCNN architecture and name the architecture as Sine-Net because 

in an abstract view from the top, it resembles a sine-wave as illustrated in Figure 4.7. 

We prefer the architecture to be fully convolutional because this structure shows 

superior performance for natural image segmentation [90]. We also want the learning 

process to be continued during up and down-sampling operations are in progress and 

prefer to place layers involving convolution operation instead of max-pooling and up-

convolution layers. The architecture is novel since we first apply up-sampling and then 

down-sampling layers for catching thin and thick vessel features, respectively. 

However; the trend for creating a CNN model is just the opposite, i.e. down-sampling 

operation comes first. We also include residuals to pass mores features to the deeper 

level of the architecture from lower levels. In this way, the network can recover 

features which may be lost in up-sampling or down-sampling process. 

The Sine-Net depicted in Figure 4.7 contains 15 convolutional layers with filter size 

of 3x3 for each. Rectified Linear Unit (ReLU) is used as an activation function after 

each convolution except the final layer. Final layer activation is tanh because 

predictions should be in the range between 0 and 1 (non-linear). Since the previous 

layer of final activation is ReLU, the input to tanh is either zero or some positive value 

which makes the output in range 0 and 1. Black arrows in Figure 4.7 indicate 

transferring feature maps from intermediate layers to the deeper layers of the 

architecture. Green arrows show up-sampling operation with transpose convolution 

and red arrows show down-sampling with convolution of a stride of 2. In this way, the 

network continues to learn hierarchical representations by updating weights which do 
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not exist in max-pooling or up-sampling layers. The number of channels is doubled 

and halved after each down-sampling and up-sampling operation, respectively. 

Sine-Net provides some advantages due to its construction style. The first advantage 

is that the architecture produces the final prediction using only convolutional layers. It 

does not contain a dense layer (fully connected layer) as many classification 

architectures typically have. This construction style decreases the size of the network, 

improves training and prediction time because an intensive computation generally 

exists in dense layers. The second advantage is that Sine-Net accepts larger input size 

in contrast to many architectures proposed in the literature. They use smaller patches 

for increasing the number of training data. However, the selection of larger patch sizes 

(448x448) reduces local connectivity substantially and speeds up training and 

prediction. Increasing patch size continuously is not feasible because networks tend to 

decrease its segmentation performance and need more memory. In [11], the patch size 

of 500x500 has performed better results than 400x400 and 600x600 in the training 

phase. The third advantage is that our network uses convolutional operations in down-

sampling and up-sampling. Normally, down-sampling is achieved using max-pooling 

and up-sampling is achieved using copy of the same data. We prefer strided 

convolution for down-sampling and transpose-convolution for up-sampling 

operations. In this way, the learning ability of the network is boosted because the 

network continues to learn features (updates weights) during these operations.  
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4.1.5. Loss Function 

Loss function represents the cost for inaccurate predictions made in 

classification/regression problems. There are many loss functions defined in machine 

learning to train networks such as mean squared error (MSE), categorical cross-

entropy, binary cross-entropy, cosine proximity, log-cosh, etc. The output of the 

proposed network is a binary classifier, indicating 0 as background pixel and 1 as the 

vessel. For training of our network, we use binary cross-entropy defined as:  

𝐿𝐶𝐸(�̂�, 𝑦) =  −∑[𝑦𝑘 𝑙𝑜𝑔 �̂�𝑘 + (1 − 𝑦𝑘) 𝑙𝑜𝑔(1 − �̂�𝑘)]

𝑘

  (4.4) 

where �̂� and 𝑦 corresponds to predicted and ground-truth values respectively. 𝑘 

represents 𝑘𝑡ℎ sample in the training set.  

4.1.6. Training 

Several trainings with different parameters and datasets are performed on the proposed 

network and we have created a table in order to clearly show and easily understand the 

training details. We utilized Keras [144] library running on top of TensorFlow for 

training each data-set given in Table 4.3. 

There are eight training processes in total for the first part. Each training contains 50 

epochs with Stochastic Gradient Descent (SGD) followed by 20 epochs with Adam 

[145] optimizer. This kind of approach improves generalization performance in 

training process as presented in [146]. In each epoch, training set is shuffled and 10% 

is used for validation. The learning rate for SGD optimizer is 10−4. The batch size is 

set to 10. All training processes are conducted on a Linux server with Xeon(R) CPU 

E5-2667v4 (3.20GHz) CPU, 128 GB of RAM and NVIDIA Tesla P100 Graphics 

Processing Unit (GPU). The training time for each data-set is noted in Table 4.3. 
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Table 4.3 The details of the training for data-sets used in this study. Training time 

corresponds to overall training time for 70 epochs (20 Adam + 50 SGD). 

Training 

name 

Dataset included Number 

of 

images 

Preprocessing 

(CLAHE+MTHT) 

Training 

Time 

DRIVE DRIVE 10000 NO 13 hours 

CHASE CHASE_DB1 10000 NO 13 hours 

STARE STARE 10000 NO 13 hours 

HYBRID DRIVE+STARE+CHASE_DB1 30000 NO 41 hours 

DRIVEPP DRIVE 10000 YES 13 hours 

CHASEPP CHASE_DB1 10000 YES 13 hours 

STAREPP STARE 10000 YES 13 hours 

HYBRIDPP DRIVE+STARE+CHASE_DB1 30000 YES 41 hours 

 

4.1.7. Performance Measure for Segmentation 

Accuracy is defined as the ratio of correctly classified pixels to all pixels’ predictions. 

It is alone not enough for fair performance comparison due to unbalanced classes. 

Hence, studies include sensitivity and specificity measures. Sensitivity and specificity 

are statistical measures of how a model is successful in detecting true and false cases. 

Specifically, sensitivity is a measure of correctly classified vessel pixels, and 

specificity is a measure of correctly classified non-vessel pixels for our case. In 

addition to these metrics, AUC is a powerful measure in machine learning to test binary 

classifiers by indicating how much a model is capable of distinguishing between 

classes. The higher the AUC, the better the model is at predicting 0’s and 1’s correctly. 

Accuracy, sensitivity and specificity are calculated using (4.5-4.7), and AUC is the 

area under Receiver Operating Characteristic (ROC) curve.  

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4.5) 
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𝑆𝑒𝑛𝑠.=
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  (4.6) 

𝑆𝑝𝑒𝑐. =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (4.7) 

The performance comparison of each training is accomplished with four metrics as 

described here; namely, sensitivity, accuracy, specificity and AUC. The metrics are 

evaluated for every single image in each database’s test-set. Instead of giving 

individual results, we prefer to share all results in terms of mean (�̅�) and standard 

deviation (σ) for interpreting them clearly and effectively. Section 5.1 presents all 

results for our network and compares them with the-state-of-art methods proposed in 

the related literature. 

4.2 3D Reconstruction 

Three-dimensional reconstruction itself is a challenging problem due to various 

requirements and constraints. The algorithms proposed in the literature follow similar 

analytical methods like finding correspondences between images, estimating camera 

parameters, using epipolar constraints, etc. There are so many parameters if we dive 

into the problem. Deep learning architectures with appropriate data structures are now 

emerged and becomes trending. As the availability of 3D model of objects increases, 

DL architectures can reconstruct the object even a single image is introduced. It 

eliminates parameters that analytical methods use. We have provided details of 

methods covered in the related literature in section 3.2. In this section, we present our 

3D reconstruction methods along with the proposed data structure for tubular shapes. 

We also introduce the generation of our synthetic coronary artery tree database and 

corresponding multi-view images here.  

4.2.1. Tubular Shape Representation 

There are various ways to represent objects in 3D and 3D representation matters in 3D 

machine learning. A data structure compatible with machine learning can improve 
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reconstruction performance of networks. Thus, we define a new data structure for 

holding tubular shapes specifically. The center of circles and its radiuses are used to 

represent tubular shapes. In this structure, center points must come sequentially to 

obtain the path for a continuous tubular shape. In this way, we can find the direction 

of each consecutive circle using (4.8).  

�⃗� =
𝐶𝑖𝐶𝑖+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

‖𝐶𝑖𝐶𝑖+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖

  =
(𝐶𝑖+1 − 𝐶𝑖)

‖(𝐶𝑖+1 − 𝐶𝑖)‖
   (4.8) 

where Ci is the ith center point, �⃗�  is unit normal showing the direction Ci to Ci+1. The 

illustration given in Figure 4.9 delineates how we define data structure. Tubular shaped 

objects can have many continuous segments. Thus, we ended each segment with a 

negative radius value to indicate this point is the last center point for the corresponding 

tubular segment. Bifurcation points for branching can start anywhere from one of the 

continuous segments. Each segment forms a continuous vessel on its own. An example 

representation of one segment is as follows: 

  

Figure 4.8 Tubular shape representation for one segment. Cx, Cy, Cz are the 

coordinates of center points in 3D space and r is the radius of a tubular object at that 

point. 

Cx0, Cy0, Cz0, r0 

… 

Cxi, Cyi, Czi, ri 

… 

Cxn, Cyn, Czn, rn 

?, ?, ?, -1 
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The current segment shown in Figure 4.8 starts with its center point (C0) in 3D space 

and ends with the corresponding radius of the circle centered at C0. We assume that 

this segment is continuous until the end of the segment sign (?, ?, ?, -1) appears. We 

represent the end of the segment with ?, ?, ? for indicating any value for center point 

and a negative value (it is -1 in the example) for radius. The direction of tubular 

segments can easily be derived from the continuity assumption in which center points 

must come in order. Figure 4.9 illustrates how direction (unit normal vector) is derived 

from consecutive center points. 

 

Figure 4.9 Tubular shapes are represented with circles coming in order. The center 

point (X, Y, Z) of each circle and its radius is written sequentially. The unit normal 

vector to the circle surface can be obtained using (4.8). 

In order to recover tubular shape, we need to sample points around centers with a given 

radius as in Figure 4.10. �⃗�  and 𝑣  can be derived with a little effort using (4.9), (4.10), 

(4.11) and (4.12) together.  

�⃗� =  〈𝑥, 𝑦, 𝑧〉  (4.9) 

𝑡 = 〈𝑛𝑦, −𝑛𝑥, 0〉 (4.10) 
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�⃗�  =   �⃗�  𝑥 𝑡    (4.11) 

𝑣  =   �⃗�  𝑥 �⃗�   (4.12) 

where 𝑛𝑥 and  𝑛𝑦 are unit normal values in X and Y coordinates, respectively. The last 

step for sampling is to parametrize the circle using vectors around each center point 

Ci. In our test, we sampled each circle with 20 points. If desired, this can be increased 

for a better resolution of tubular shapes. Parametrization over angle 𝜃 can be achieved 

as: 

𝑝𝑠𝑖
= (𝑟 ∗ cos 𝜃) �⃗� + (𝑟 ∗ sin 𝜃)𝑣 + 𝐶𝑖  (4.13) 

where 𝑝𝑠𝑖
 is an array of sampled points for 0 ≤ 𝜃 ≤ 2𝜋 with a step of 2𝜋/20 and 𝐶𝑖 

is ith center point. 

 

Figure 4.10 Sampling points around centers with a given radius of r. n is the unit 

normal to the surface, u and v are perpendicular unit vectors lie on the surface of the 

circle. 

4.2.2. 3D Data Augmentation 

Deep network architectures need plenty of labeled data for training in order to create 

input and output relations. If the number of elements in the training set is lower, the 
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network memorizes input-output relation, called overfitting. In this case, the network 

performance (the quality of output) degrades in tests. To generalize network such that 

it produces better results, training should be done using a relatively large data-set. 

Thus, we generate 10000 3D models randomly from real coronary data from [147]. 

Only centerlines and corresponding radiuses are shared with us. Two of them are 

visualized using ParaView1 tool in Figure 4.11.  

  

(a) (b) 

  

(c) (d) 

Figure 4.11 Coronary tree visualization of two subjects in [147]. (a) and (b) show 

centerlines and their labels including branches, (c) and (d) are the radius of each 

point of (a) and (b), respectively. The units are in millimeters. 

RCA and LCA are given and connected to aorta in each patient data as seen in Figure 

4.11. X-Ray angiogram is applied mostly one side either RCA or LCA which means 

there is one tree in X-Ray angiograms. Thus, we separate RCA and LCA in given 3D 

                                                 
https://www.paraview.org/1  
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models. In this way, our network can specifically learn branches of RCA and LCA 

separately. The other advantage of separating these main branches is that the output 

size of the network will be smaller. This makes the network simpler and leads to less 

calculation for each prediction. Later the combined version can also be developed if 

needed. 

We do not utilize the actual 3D vessel data from [147]. We create random vessels by 

selecting one of the corresponding branches from 9 subjects. Additionally, some of the 

branches follow a similar path and we add them to the same group to obtain a random 

pool. We determine similarities by looking at visually multiple samples of branches. 

Vessels with similar patterns are gathered into the same group. Example branching 

pattern for D1, D2, RPD1 and RPD2 from 9 subjects can be examined in Figure 4.12. 

  

D1 branches on LCA RPD1 branches on RCA 

  

D2 branches on LCA RPD2 branches on RCA 

Figure 4.12 Branching pattern of similar vessel parts in a coronary artery tree. 



55 

 

 

A similarity table is obtained for the construction of different coronary arterial trees. 

While generating RCA or LCA, we randomly determine the branching pattern from 

the pool we created. Table 4.4 summarizes possible alternatives to coronary branches. 

We obtain this table by creating multiple visualizations of vessel patterns as in Figure 

4.12 and group similar patterns to create a random pool for their alternatives. 

Table 4.4 Possible branches of coronary arteries that can be replaced with the actual 

branching pattern. This table is obtained experimentally by visualizing vessel patterns 

shown in Figure 4.12. 

ACTUAL 

LABEL 

POSSIBLE LABELS 

RCA Self 

CONUSA1 Self, RCA_AB1[shorter 1/3], -RPD2 [shorter 1/5] 

CONUSA1_B1 Self, RPD2_B1 

RCA_AB1 Self, ConusA1, -RPD2[shorter 1/5] 

RM1 Self, RM2, RM3 

RM1_B1 Self, D1_B1 (x, -y, -z), S3(-x, y, z), D1(x, y, -z) [shorter1/3], 

D2(x, y, -z) 

RM2 Self, RM1, RM3 

RM2_B1 Self, RM1_B1, RM_B2 

RM3 Self, RM1, RM2 

RM3_B1 Self, RM1_B1 and its following 

RPD1 Self, RPD2, RPD3(x, -y, z) 

RPD2 Self, RPD1, RPD3(x, -y, z) 

RPDN_B1 Self, RPLSA [shorter1/10] 

RPD3 Self, RPD1 (x, -y, z), RPD2(x, -y, z) 

RPLSA Self, RPD2_B1 

RPLSA_PLB1 Self 

RPLSA_PLB2 Self 

R_AVNA Self 
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We add more randomization to the vessel generating software. There is a possibility 

to deviate 3D coordinates of centerline points and their corresponding radiuses. Some 

branches are also determined to be added in the coronary tree with an 80% possibility. 

We also add the possibility to change the distance between two centerline points. In 

this way, we can generate various coronary vessel forms that may resemble real 

coronaries. It is a very low possibility to generate the same vessel tree in this 

configuration. Some example outputs of vessel generating software are illustrated in 

Figure 4.13. 

  
(a) (b) 

  
(c) (d) 

Figure 4.13 Random coronary vessel generations. The top row shows LCA, the 

bottom row shows RCA. 
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4.2.3. Multi-view Image Generation 

The main task of this study is to reconstruct 3D coronaries from 2D X-Ray angiograms. 

We have generated 3D coronaries synthetically with the method mentioned in Section 

4.2.2. The next step is to produce multi-view images of coronaries. We have created a 

tool for taking multiple images from different views of angle like in C-arm. We 

simulate 2 axis rotations as in Figure 4.14. The coordinates of the camera after 

rotations are calculated using spherical coordinates 𝑝(𝑥, 𝑦, 𝑧)  =  (𝑟, 𝜃, 𝜑).   

 

2 
 

Figure 4.14 C-Arm rotation axis simulation. Multi-view coronary artery images are 

generated using this principle. 

If camera is rotated around y-axis (𝜃 rotation), x and z coordinates will be updated. If 

camera is rotated around x-axis (𝜑 rotation), y and z coordinates will be changed. The 

new coordinates after rotation become: 

𝐶𝑥 = 𝜌𝑠𝑖𝑛(𝜃) (4.14) 

𝐶𝑦 = 𝜌𝑠𝑖𝑛(𝜃)  (4.15) 

𝐶𝑧 = ρ sin(𝜃)  ∗  𝑐𝑜𝑠(𝜑) (4.16) 

                                                 
2 https://www2.aofoundation.org/wps/portal/surgerys 
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where ρ is the distance between the camera and the geometric center of objects 

(coronaries). Figure 4.15 demonstrates multi-view images produced by the tool we 

developed using Blender software3.  

  
Theta = -30, phi = 30, r=10 Theta = -70, phi = 30, r=10 

  
Theta = 30, phi = -10, r=10 Theta = -10, phi = -30, r=10 

Figure 4.15 Multi-view image generation by imitating C-arm for some of coronary 

arteries in the data-set. Angles are in degrees. r is the distance between the camera 

and the object center. 

 

                                                 
3 www.blender.org 
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4.2.4. 3D Reconstruction Architectures 

We propose 4 deep learning-based architectures for 3D reconstruction: (1) Multi-view 

fully CNN, (2) Time distributed auto-encoder CNN and (3) Auto-encoder followed by 

LSTM and (4) GRU. The input to the networks is multi-view segmented coronary 

vessel tree (binary images) and the output is the sequential data structure defined in 

section 4.2.1. The overall system for 3D reconstruction pipeline is illustrated in Figure 

4.16. 

 

Figure 4.16 3D reconstruction pipeline for all networks proposed in this study. 

4.2.4.1. Multi-view Fully CNN 

We propose fully CNN network as shown in Figure 4.17 for the construction of 3D 

synthetic coronaries. In this architecture, multi-view images are provided to the 

network as channels. Thus, we name it as Multi-view Fully CNN (MvFCNN). We add 

residual connections to carry features from previous layers to deeper layers. This 

approach generally prevents loss of information and performs better performance on 

the given task.  
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Figure 4.17 Multi-view fully CNN 3D reconstruction network. Activation function 

followed by each 3x3 convolution layer is Leaky-ReLU. Gray and orange arrows 

show residual connections and down-sampling with strided convolution (s=2), 

respectively. 

The convolution filter size for each layer for MvFCNN architecture is 3x3. Down-

sampling is achieved using convolution operation with a stride of 2 as in Sine-Net 

presented in Section 4.1.4 for vessel segmentation. In this way, the architecture 

continues to update weights while shrinking the size of the input (or embedding 

information from inputs) in intermediate layers. We utilize residual connections to 

transfer hierarchical representations to deeper layers of the network. This kind of 

architecture has superior performance as demonstrated in many fields and in this study 

for vessel segmentation shown in Section 5.1. In the end, we utilize fully connected 

layer (dense layer) to transform embedded information into the data structure we 

defined for the tubular shapes. Finally, we convert tubular shape representation into 

3D objects using some math described in Section 4.2.1. 

4.2.4.2. Time-distributed Auto-encoder CNN 

We use the same architecture called MvFCNN in this part, but we modify input and 

output layers to build a larger network as shown in Figure 4.18. The differences are 

that (1) input images are separately supplied to the network instead of giving them as 
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channels and (2) we remove the fully-connected layer at the end. In this way, each 

image is encoded into a feature space with the same auto-encoder. The features coming 

from different images are combined and used to produce our structured output with 

fully-connected layer. Figure 4.18 visualizes this process clearly. In this figure, binary 

images of the same coronary tree are denoted as X1, X2, …, Xn. These images are 

supplied to the same network to produce corresponding embedded features E1, E2, …, 

En. Finally, embedded features are fed into a dense layer to produce our structured 

output.  

 

Figure 4.18 Time-distributed auto-encoder network for 3D reconstruction of the 

coronary tree. 

For simplicity, we abbreviate time-distributed auto-encoder network shown in Figure 

4.18 as “TDAEn-Dense”. In this naming convention, TD stands for time-distributed, 

AEn stands for auto-encoder and Dense is the final layer. 

4.2.4.3. Auto-encoder Followed by LSTM 

We use auto-encoder network to embed features into a latent-space, and pass these 

features into memory cells of LSTM to hold necessary information that is coming from 

the current input. We remove the fully connected part of the network in Figure 4.17 

and use it as auto-encoder. We place a decoder network at the end of LSTM to extract 

embedded information through auto-encoder and LSTM. In this configuration, LSTM 

learns to hold important features in its internal memory and updates its hidden state 

according to incoming inputs. The overall network diagram for auto-encoder-decoder 
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architecture is illustrated in Figure 4.19 and abbreviated as En-LSTM-Dec in this 

study. The LSTM cell size is 1500. 

 

Figure 4.19 3D reconstruction network with LSTM and decoder. 

The decoder part plays an important role in the architecture because the entire input 

sequence is now represented in LSTMs memory cells as a fixed-length vector. This 

encoded vector should be transformed into desired output sequences. The intuition 

here is that the decoder learns this complex representation and extracts the embedded 

information that LSTM holds. Thus, the output of LSTM is provided to the input of 

the decoder part in Figure 4.20 to decode the embedded information within it. The 

output is the data structure we defined previously in Section 4.2.1. 

 

Figure 4.20 The decoder part for 3D reconstruction network. 
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4.2.4.4. Auto-encoder Followed by GRU 

GRUs can work as efficiently as LSTMs [35]. Thus, we also construct the same 

architecture with GRU instead of LSTM shown in Figure 4.19 and name it as “En-

GRU-Dec”. GRU cell size is set to 1500 for a fair comparison with LSTM architecture. 

The reconstruction results shared in section 5.2. 

 

Figure 4.21 3D reconstruction network with GRU. 

4.2.5. Loss Function 

Center points and corresponding radiuses are estimated via 3D networks presented in 

Section 4.2.4. The output values are floating-point numbers rather than a binary value. 

Therefore, 3D reconstruction process in this study can be regarded as a regression 

problem. To train regression networks, we need an objective function that minimizes 

the error between target and prediction. Mean squared error (MSE, L2-Loss), mean 

absolute error (MAE, L1-Loss), Huber loss, Log cosh and Quantile loss are the top 

five commonly used loss functions in machine learning for regression problems. There 

are also variations of robust loss functions in the literature that consider the impact of 

outliers [148]. In this study, we prefer MSE because our synthetic data include 

negative values for radiuses that might be treated as outliers in such loss functions. We 

use MSE for estimating center points and radiuses of tubular shapes as follows: 

𝐿(𝑃, �̃�, 𝑟, �̃�) =
1

𝑁
∑(𝑃𝑖 − �̃�𝑖)

2

𝑖

+
1

𝑁
∑(𝑟𝑖 − �̃�𝑖)

2

𝑖

 (4.17) 
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where 𝑃𝑖 and �̃�𝑖 are ground-truth and predicted 3D central point coordinates of circles 

for our tubular data representation, respectively. 𝑟𝑖 is reference radius value and �̃�𝑖 is 

the predicted radius value for the center point at i. 

4.2.6. Training 

Keras [144] library is used for network construction and its training. There are 4 

networks for 3D reconstruction of coronary arteries. We utilized Adam optimizer [145] 

during the training of each network. The number of samples is 10000 coronary models 

produced synthetically as mentioned previously in 4.2.2. We divide the last 70% of 

data-set for training of networks and 30% for test-set. 10% of training-set is used for 

validation. The number of epochs is set to 500 and the best weights are saved through 

all training processes. The batch size is set to 10. We use Nvidia Tesla P100 graphic 

card for training. Training time is saved in Table 4.5 for each 3D network architectures 

we proposed.  

Table 4.5 Training time for 3D networks for 500 epochs. 

Network # of samples in set Training time (hours) 

MvFCNN 7000 5.952 

TDAEn-Dense 7000 18.056 

En-LSTM-Dec 7000 34.861 

En-GRU-Dec 7000 30.254 

 

4.2.7. 3D Reconstruction Performance Measures 

We evaluate 3D reconstruction predictions for 3D deep network architectures 

mentioned in Section 4.2.4 using Chamfer Distance (CD). However, this measure 

works with point cloud representation. Therefore, we use center points in our 

structured data definition of 3D tubular objects for quantitative comparisons. Chamfer 

Distance is calculated using (4.18). 
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𝐷(𝑆1, 𝑆2) =
1

|𝑆1|
∑

𝑚𝑖𝑛
𝑦 ∈ 𝑆2

𝑥∈𝑆1

‖𝑥 − 𝑦‖2
2  

+  
1

|𝑆2|
∑

𝑚𝑖𝑛
𝑥 ∈ 𝑆1

𝑦∈𝑆2

‖𝑥 − 𝑦‖2
2  

(4.18) 

where 𝑆1 and 𝑆2 are two point sets. As it can be inferred from the formula, CD finds 

the nearest point in the other point set and sums the square of distance up for each 

point in each point cloud set. It is utilized in ShapeNet’s [134] shape reconstruction 

challenge. Smaller values of CD indicate closer predictions to the corresponding 

ground-truths.  

CD is the evaluation criterion for estimating 3D points in our data representation. 

However; our networks also predict the radius of each point. To compare network 

performance quantitatively, we use mean squared error to evaluate average error on 

radiuses as follows:  

𝐸𝑅(𝑟, �̃�) =
1

𝑀

1

𝑁
∑∑(𝑟𝑠𝑖 − �̃�𝑠𝑖)

2

𝑖𝑠

 (4.19) 

where M is the number of test samples, N is the number of points in sample s, 𝑟𝑠𝑖 and 

�̃�𝑠𝑖 are the reference (ground-truth) and predicted radius values in test sample s for the 

point at i. 
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CHAPTER 5  

EXPERIMENTAL RESULTS 

This thesis proposes 2 sets of algorithms: (1) Blood vessel segmentation and (2) 3D 

reconstruction. Firstly, we demonstrate the segmentation performance on blood 

vessels for Sine-Net architecture. Secondly, we share 3D reconstruction results for 

synthetically produced coronary arteries.  

We proposed another network derived from U-Net and the results for this network can 

be examined in [13]. We include only Sine-Net results in this thesis due to better 

segmentation performance for blood vessels. 

5.1 Experimental Results for Blood Vessel Segmentation 

The segmentation performance for Sine-Net architecture is presented under this 

section. We have performed 8 different training as given in Table 4.3. Besides single 

and hybrid database tests, we also investigate the effect of preprocessing. Moreover, 

Sine-Net is compared with human segmentation performance. 

The image size is different in each data-set, so it should be noted that rotation and 

translation operations in the data augmentation technique may cause the vessel pixels 

to exceed the border of images. Thus, we determine the input size of the network as 

448x448 which is compatible with our data augmentation method presented in Section 

4.1.2. Since test images are bigger than the network input size, we divide images into 

a minimum number of patches to fit each patch into the input.  For the overlapping 

regions in the patches, we take a weighted average of predictions while producing the 

final output.  

5.1.1 Human Performance 

DRIVE (for only the test-set), STARE and CHASE_DB1 databases include annotated 

images from two different experts. In the related literature, the general trend is to select 

one expert’s labeling as the ground-truth for training a model and another is used for 
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comparing the model with an observer. We employ the first expert’s labeling as the 

gold standard and the second expert’s labeling as the human performance in this study. 

STARE database expert names are labeled as “ah” and “vk”. We follow alphabetical 

order here and accept “ah” as the first expert. The performances of the second observer 

on blood vessel segmentation are presented in Table 5.1 and compared with networks 

in Table 5.5. 

Table 5.1 The human performance on manual segmentation of retinal vessels for 

databases. The first expert labeling is accepted as ground-truth and the second expert 

is accepted as an observer. The average term shows the weighted average performance 

of the second expert for all databases. 

 Accuracy Sensitivity Specificity 

Database �̅�  𝜎  �̅�  𝜎  �̅�  𝜎  

DRIVE 0.9637 0.0033 0.7757 0.0596 0.9819 0.0055 

STARE 0.9568 0.0145 0.9182 0.0355 0.9589 0.0165 

CHASE_DB1 0.9635 0.0054 0.8339 0.0265 0.9792 0.0038 

Average 0.9635 0.0076 0.8145 0.0731 09772 0.0117 

 

5.1.2 Single Database Results 

DRIVE database is already divided into training and test set. We do not modify the 

sets and use them as they are. STARE and CHASE_DB1 databases are not initially 

configured for test and training sets. Thus, we apply the same division procedure 

mentioned in section 4.1.2.  

Table 5.2 presents the performance of the test set of single database training for Sine-

Net architecture. STARE database training with preprocessing has the highest 

accuracy and specificity but the lowest sensitivity. It means the network can identify 

non-vessel pixels better than vessel pixels. As mentioned earlier in Section 4.1.1, 

STARE database is the most challenging database among others due to poor contrast, 

and some images are complicated by a disease that causes vessel-like structures to be 

deformed. The standard deviation values also support this because 𝜎 values for 
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accuracy and AUC metrics vary 2 or nearly 3 times higher than others. It is also clearly 

seen that preprocessing affects sensitivity to be increased except CHASE_DB1 

database. It is an expected result because preprocessing operation enhances the 

contrast in images, and vessels become more distinguishable. The best sensitivity and 

AUC values are obtained in DRIVE database training with preprocessing. 

Table 5.2 Single database results for Sine-Net. The table summarizes evaluation 

metrics in terms of mean (�̅�) and standard deviation (𝜎). The highest metrics are 

highlighted in bold. PP at the end of training names indicates preprocessing operation 

applied. 

 Accuracy Sensitivity Specificity AUC 

Training �̅� 𝜎 �̅� 𝜎 �̅� 𝜎 �̅� 𝜎 

DRIVE 0.9689 0.0030 0.7987 0.0545 0.9854 0.0041 0.9851 0.0039 

DRIVEPP 0.9685 0.0024 0.8260 0.0537 0.9824 0.0049 0.9852 0.0041 

STARE 0.9682 0.0127 0.6574 0.0879 0.9933 0.0050 0.9748 0.0159 

STAREPP 0.9711 0.0108 0.6776 0.0828 0.9946 0.0018  0.9807 0.0122 

CHASE 0.9678  0.0052 0.8011 0.0476 0.9815 0.0036 0.9833 0.0045 

CHASEPP 0.9676  0.0053 0.7856 0.0519 0.9825 0.0035 0.9828 0.0050 

 

Figure 5.1 shows prediction results from single database training for DRIVE database. 

The results of the predictions with and without preprocessing operations are extremely 

close. Figure 5.1c and Figure 5.1d demonstrate that thinner vessels are estimated better 

with preprocessing than without preprocessing results. Table 5.2 support this in the 

sensitivity metric, which is the highest of all training. For the thick vessels, Sine-Net 

performs well with and without preprocessing. 

For STARE database training results shown in Figure 5.2, preprocessing effects on 

segmentation seems limited visually, but Table 5.2 demonstrates that there is 0.0202 

improvement on sensitivity metric. If we closely look at  Figure 5.2c and  Figure 5.2d, 
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we can see little differences in the vessel ends. However; we cannot state that 

preprocessing result is better than without preprocessing because in some cases 

without preprocessing training show visually better segmentations or vice versa. 

  

(a) (b) 

  

(c) (d) 

Figure 5.1 Single database training prediction of the proposed network for DRIVE 

test image #03. The original image in grayscale is shown in (a) and corresponding 

ground-truth (expert #1 labeling) image is shown in (b). The predictions of the 

network for with and without preprocessing are delineated in (d) and (c), 

respectively. 

For CHASE_DB1 training results shown in Figure 5.3, thick vessels are successfully 

detected by the network, but it fails on some of thinner vessels as compared to 

corresponding ground-truth given in Figure 5.3b. If we take a closer look inside the 

red rectangle for the same figure, it is very hard to see thin vessels in the original 

image. Moreover, this part is not labeled by the second expert as shown in Figure 5.4 
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for the same image. If we compare the effect of preprocessing of Sine-Net on training 

CHASE_DB1 database, the preprocessing training produces noisier background. This 

is also supported by the sensitivity metric presented in Table 5.2. The sensitivity is 

decreased by 0.0155 for the preprocessing training.  

 

  

(a) (b) 

  

(c) (d) 

Figure 5.2 STARE database training results for Sine-Net. (a) shows the original 

image (#0255), (b) shows (a)’s ground-truth. (c) is the prediction of the network 

without preprocessing and (d) is the prediction with preprocessing of (a). 
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(a) (b) 

  
(c) (d) 

Figure 5.3 CHASE_DB1 database training results for the proposed network. (a) is 

the original image (#11L), (b) is ground-truth of (a), (c) is the prediction without 

preprocessing and finally, (d) is the prediction of the network of (a) with 

preprocessing. 

 

  
(a) (b) 

Figure 5.4 Experts labeling comparison for the image (#11L) in CHASE_DB1 

database. (a) shows the reference image (expert #1) and (b) shows labeling from 2nd 

expert. 
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We produce some of the outputs from intermediate layers to show and understand what 

the network learned. We can see that borders are extracted in very early layers from 

Figure 5.5b, and the network carries features to a deeper level by residual connections 

as in Figure 5.5c. Up-sampling operations cause the network to produce some 

checkerboard noise (Figure 5.5d), but it is recovered with residual connections at 

down-sampling layer (Figure 5.5e). Before the final layer seen in Figure 5.5f, the 

network almost estimates each pixel location for vessels. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 5.5 Some of the outputs from intermediate layers for DRIVE training. (a) 

shows the original image, (b) shows one of the channel outputs from layer 1 which 

network learns how to extract the border around retina image. (c) is the output from 

the layer before up-sampling. Due to residual connections, an image similar to input 

is obtained at a deeper level of the architecture. (d) and (e) are middle layer output of 

up-sampling part and down-sampling part. (f) is one of the outputs from the layer 

before the final convolution. 
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Segmentation of X-Ray Angiogram Images for Single Database Training 

We perform tests on angiogram images as well to figure out Sine-Net performance on 

our actual task. We show the prediction result of each database training for one of the 

angiogram images from [142]. We visually interpret the segmentation performance for 

angiogram images in Figure 5.6 because quantitative evaluation is not possible due to 

lack of reference (ground-truth) images. We observe that DRIVE database training 

with pre-processing produces the poorest segmentation performance. Without pre- 

 

 

 

 

   

   

Figure 5.6 Sine-Net prediction results for angiogram images. Rows show results for 

with and without pre-processing the input, columns show results from DRIVE, 

STARE and CHASE_DB1 database training, respectively. 
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processing operation, the network shows better segmentation for DRIVE training. We 

consider the reason could be DRIVE database images are already in good contrast and 

quality as compared to angiogram images. Pre-processing improves the segmentation 

in STARE database training but has almost no effect on CHASE_DB1 training. 

Among single database training, CHASE_DB1 training has performed the best 

segmentation for both with and without pre-processing of the input. 

5.1.3 Hybrid Database Results 

In order to assess the generality of the proposed network, we have conducted tests on 

the network using images from DRIVE, STARE and CHASE_DB1 databases at the 

same time. Table 5.3 demonstrates the segmentation performance on blood vessels for 

hybrid training of each database test-set. The first half of Table 5.3 shows without 

preprocessing results while the latter half shows the results with preprocessing. Since 

the number of test images is different in each database, we summarize the overall 

performance of the corresponding network as a weighted average in Table 5.3. 

Table 5.3 supports that STARE database is the most challenging database among 

others in this study due to higher σ values. There are slight increases and decreases in 

metrics if we compare the results with single database tests in Table 5.2. Instead of 

comparing each metric one by one, AUC is considered as the ultimate metric for the 

comparison because it includes true-positive rate (TPR) and false-positive rate (FPR) 

at the same time in its calculation. AUC metric is increased in hybrid training in 

DRIVE and STARE databases for without preprocessing operation as compared to 

single database training. However, it is slightly decreased in DRIVE and 

CHASE_DB1 database training for with preprocessing operation (see Table 5.2 and 

Table 5.3). If we compare with and without preprocessing for the hybrid-training 

results in Table 5.3, AUC measure is slightly decreased in all database training results 

for pre-processing. Thus, we can conclude that the network can produce successful 

results even there is no pre-processing. 
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Table 5.3 The segmentation performance from hybrid database training for Sine-Net. 

The table summarizes evaluation metrics in terms of mean (�̅�) and standard deviation 

(𝜎). The highest metrics are highlighted in bold for each column. PP means 

preprocessing enabled or disabled. 

  Accuracy Sensitivity Specificity AUC 

PP Training �̅� 𝜎 �̅� 𝜎 �̅� 𝜎 �̅� 𝜎 

N 

DRIVE 0.9689  0.0031 0.7817 0.0558 0.9871 0.0039 0.9853 0.0040 

STARE 0.9702  0.0127 0.6998 0.1031 0.9920 0.0050 0.9837 0.0079 

CHASE_DB1 0.9668  0.0047 0.7804 0.0570 0.9822 0.0035 0.9816 0.0043 

Weighted avg. 0.9686s  0.0060 0.7670 0.0713 0.9868 0.0051 0.9841 0.0050 

Y 

DRIVE 0.9685  0.0028 0.7882 0.0541 0.9859 0.0041 0.9843 0.0039 

STARE 0.9712  0.0124 0.6999 0.1248 0.9928 0.0027 0.9823 0.0104 

CHASE_DB1 0.9666  0.0053 0.7668 0.0613 0.9830 0.0037 0.9810 0.0050 

Weighted avg. 0.9685  0.0060 0.7676 0.0770 0.9865 0.0049 0.9832 0.0057 

Hybrid database predictions for without and with pre-processing are given in Figure 

5.7 and Figure 5.8, respectively. In order to compare predictions of single and hybrid 

database training, we present them sside by side. Each row in Figure 5.7 and Figure 

5.8 present randomly selected test images from DRIVE, STARE and CHASE_DB1 

databases. From both figures, we can see that the network produces very close 

predictions to the corresponding ground-truths. Hybrid database training improves 

vessel segmentation, but it is not visually clear. Figure 5.7 and Figure 5.8 show that 

the difference between single and hybrid database predictions is very limited. 

However, the comparison on AUC metric in Table 5.2 and Table 5.3 supports that 

hybrid database training has improved the vessel segmentation performance 

quantitatively. 
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Figure 5.7 The prediction comparisons of Sine-Net for single and hybrid database 

training without pre-processing. Rows belong to images from DRIVE (test image 

#19), STARE (image #0291) and CHASE_DB1 (image #12R) databases, 

respectively. Columns show in order original grayscale retinal image, its ground-

truth, network prediction of single database training and network prediction of hybrid 

database training. 

If we compare the result for single and hybrid database training, the network misses 

some of thick vessels due to pathology images in STARE database. The network has 

learned some exceptional cases from these samples. For better visualization, we 

illustrate an example image containing pathology and its prediction by the network in 

Figure 5.9. 
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Figure 5.8 Hybrid database predictions of Sine-Net with pre-processing for all 

images in the same order in Figure 5.7. 

  
(a) (b) 

  
(c) (d) 

Figure 5.9 An image from STARE database (im#0044) containing pathology and its 

network prediction. (a) shows grayscale image, (b) shows its corresponding ground-
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truth labeled by 1st expert, (c) and (d) are Sine-Net predictions without preprocessing 

operation for single database and hybrid database training, respectively. 

The network is sensitive to vessel-like structures and catches some of thin vessels 

which are not labeled by experts or incorrectly predict continuous noisy background 

structures as vessels. Therefore, sensitivity and specificity values become lower than 

what we expect. We show the network capability to catch thin vessels that are not 

labeled by the experts in Figure 5.10. 

s    

   

Figure 5.10 The network capability of catching thin vessels. Top row images belong 

to DRIVE test image #01, and below row images belong to DRIVE test image #16. 

Columns show the images in order that the original, ground-truth and the prediction 

of the network without preprocessing for DRIVE database. 

Segmentation of X-Ray Angiogram Images for Hybrid Database Training 

The main task of the first part of this study is to segment X-Ray angiogram images. 

Thus, we introduce hybrid database training with an appropriate data augmentation 

method for generalization of blood vessel segmentation. Figure 5.11 shows the 

prediction results of angiogram images from [142].  
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(a) (b) (c) 

Figure 5.11 The segmentation of angiogram images for hybrid database training. (a) 

shows angiogram image, (b) and (c) show predictions with and without pre-

processing of Sine-Net for (a). 

The proposed network (Sine-Net) has learned to differentiate background and vessel 

pixels from retinal images as shown in Figure 5.11. We observe that Sine-Net performs 

better without pre-processing the input. This is because it is very hard to find an 

appropriate pre-processing method for all forms of vessels. The results demonstrate 

that deep learning architectures can adapt their input and produce satisfying 

predictions with raw data. If we compare with and without pre-processing results for 

hybrid database training, we conclude that pre-processing increases the potential to 

capture noise existing in the background due to tissues and organs in X-Ray angiogram 

images. This is expected behavior because pre-processing is achieved mainly for 

enhancing contrast in images. If we compare blood vessel training through this study 

for angiogram images, we conclude that hybrid database training visually produces 

better predictions than single database training (see Figure 5.6 and Figure 5.11).  
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5.1.4 Execution Time 

The tests are conducted on the same server as mentioned in Section 4.1.6 and a Linux 

based notebook computer with the following hardware properties: Intel(R) Core (TM) 

i7-4700HQ CPU @ 2.40GHz and 16 GB 1600 MHz DDR3 RAM. The average 

execution time for all databases is summarized in Table 5.4 for providing an idea about 

the utilization of our network in a real application. It is better to keep in mind that there 

are 4 predictions that the network produces for every single image due to the variable 

image size of databases. 

Table 5.4 Average prediction time for a single image of the proposed network. Note 

that a single image consists of at least 4 sub-images for our case due to variable image 

size.  

Tests 
Average Running Time 

(in seconds) 

Proposed (Server, GPU) 0.3501 

Proposed (Notebook, CPU) 9.3217 

Li et al. (CPU) [76] 70 

Mo et al. (GPU) [82] 92 

Hu et al. (GPU) [83] 1.1 

Liskowski et al. (GPU) [86] 0.4 

Feng et al. (GPU) [92] 0.063 

We compare the proposed network with the latest reported works in terms of average 

running time for a single image prediction. Table 5.4 shows that Sine-Net is roughly 

263 times faster than the work of Liskowski [86], 3.14 times faster than the work in 

[83] and 1.14 times faster than that in [82] for GPU implementations. Our work is 

approximately 7.5 times faster than the work published by Li et al. [76] for CPU 

implementations. [76] and [86] utilize sliding window approach to predict vessel maps 

which cause neighboring pixels to be calculated multiple times. These redundant 

computations degrade the performance of execution time. Since the number of layers 

is lower in [92], segmentation time is shorter than ours. Sine-Net is computationally 

efficient due to its fully convolutional structure and selection of bigger input patch 
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size. Contrary to work in [86], it predicts all pixels at once instead of using a patch to 

predict the central pixel alone. The network we proposed can be used with GPU in 

clinical applications which produce segmentation image in nearly one-third of a 

second. Sine-Net GPU implementation is 26.6 times faster than CPU implementation 

in our setups. 

5.1.5 Comparison 

Numerous works exist in the related literature for segmentation of retinal blood 

vessels, and we compare our results with the state-of-the-art works which are 

specifically tested on DRIVE, STARE and CHASE_DB1 databases. Since our method 

depends on supervised learning, we focus on mostly supervised solutions for a fair 

comparison. In addition, we include the segmentation performance of a human to 

compare our network segmentation capability with observers. We here present our 

results besides other works in Table 5.5 for single database tests and Table 5.6 for 

hybrid database tests.
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Table 5.5 Single database performance comparisons. Human indicates the 2nd expert 

segmentation performance with respect to 1st expert. pp and wopp denote that network 

training is achieved with and without pre-processing operations. 

Database Methods Year Accuracy Sensitivity Specificity AUC 

D
R

IV
E

 

Wang et al. 

[78]* 
2014 0.9767 0.8173 0.9733 0.9475 

Li et al. [76]* 2015 0.9527 0.7569 0.9816 0.9738 

Liskowski et al. 

[86] 
2016 0.9515 0.7520 0.9806 0.9710 

Mo et al. [82] 2017 0.9521 0.7779 0.9780 0.9782 

Jiang et al. [11] 2018 0.9624 0.7540 0.9825 0.9810 

Feng et al. [92] 2018 0.9528 0.7625 0.9809 0.9678 

Hu et al. [83] 2018 0.9533 0.7772 0.9793 0.9759 

Human - 0.9637 0.7757 0.9819 - 

Our method 

(wopp) 
2020 0.9689 0.7987 0.9854 0.9851 

Our method 

(pp) 
2020 0.9685 0.8260 0.9824 0.9852 

S
T

A
R

E
 

Wang et al. [78] 2014 0.9813★  0.8104 0.9791 0.9751 

Li et al. [76] 2015 0.9628 0.7726 0.9844 0.9879 

Liskowski et al. 

[86] 
2016 0.9696 0.8145 0.9866 0.9880 

Mo et al. [82] 2017 0.9674 0.8147 0.9844 0.9885 

Jiang et al. [11] 2018 0.9734 0.8352 0.9846 0.9900★ 

Feng et al. [92] 2018 0.9633 0.7709 0.9848 0.9700 

Hu et al. [83] 2018 0.9632 0.7543 0.9814 0.9751 

Human - 0.9568 0.9182★ 0.9589 - 

Our method 

(wopp) 
2020 0.9682 0.6574 0.9933 0.9748 

Our method 

(pp) 
2020 0.9711 0.6776 0.9946★ 0.9807 

C
H

A
S

E
_
D

B
1
 

Li et al. [76] 2015 0.9581 0.7507 0.9793 0.9716 

Mo et al. [82] 2017 0.9599 0.7661 0.9816 0.9812 

Jiang et al. [11] 2018 0.9668 0.8640 0.9745 0.9810 

Human - 0.9682 0.8339 0.9792 - 

Our method 

(wopp) 
2020 0.9678 0.8011 0.9815 0.9833 

Our method 

(pp) 
2020 0.9676 0.7856 0.9825 0.9828 

* Field of view (FOV) defined for performance measurement. 
★ The best value for the corresponding metric 
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Table 5.6 Hybrid database comparisons. pp and wopp denote that network training is 

achieved with and without preprocessing operations, respectively. D: DRIVE, S: 

STARE and C: CHASE_DB1 databases.  

Train 

Set 

Test 

Set 
Methods Year Accuracy Sensitivity Specificity AUC 

D D+S Liskowski 

et al. [86]* 
2016 

0.9491 - - 0.9700 

S D+S 0.9566 - - 0.9776 

D S+C 
Jiang et al. 

[11] 
2018 

0.9593 0.7121 0.9832 0.9680 

S D+C 0.9653 0.7820 0.9798 0.9870 

C D+S 0.959s1 0.7217 0.9770 0.9580 

D, S, C D, S, C 
Our method 

(wopp)** 
2020 

0.9686 0.7670 0.9868 0.9841 

D, S, C D, S, C 
Our method 

(pp)** 
0.9685 0.7676 0.9865 0.9832 

* FOV defined for performance measurement 

** Weighted average performance of DRIVE, STARE and CHASE test data-sets 

We divide Table 5.5 into 3 parts to compare the same database results together. The 

best value for single database results are highlighted in bold, and the best values for 

each metric are marked with ★. For DRIVE database, our network outperforms human 

performance in all metrics. It also surpasses other methods proposed in the literature 

in terms of all metrics except accuracy of [78]. It is noted that this may be because 

Wang et al. [78] use FOV definition (only pixels inside eye mask). Especially, Sine-

Net achieves better sensitivity with pre-processing by approximately 0.01 better than 

the closest study proposed in [78]. For STARE database, the network achieves the best 

result in specificity and produces close values to the-state-of-the-art methods in terms 

of accuracy and AUC metrics. However, the nearest sensitivity metric to ours is 

achieved by Hu et al. in [83], it surpasses the proposed network by approximately 

0.077. This is not due to the reason that our network is less capable to detect vessels, 

but the number of training image samples with disease and poor contrast is lower in 

quantity. Some of the studies leave images out with vessels complicated by disease but 

we did not remove any of them. If the number of images with pathology and poor 

contrast is increased, the network will perform better. Our network is sensitive to 

vessel-like structures as DRIVE and CHASE_DB1 results support this in the 

sensitivity metric in Table 5.5. The network achieves the best specificity and AUC 
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metric for CHASE_DB1 database. It produces extremely close accuracy metrics to the 

second observer which has the highest score in corresponding database training. If this 

is omitted, the network outperforms other methods in terms of accuracy, specificity 

and AUC performance measures.  

For the hybrid-database test results shown in Table 5.6, the proposed network achieves 

the highest accuracy and specificity metrics without pre-processing. The work of Jiang 

et al. in [11] proves that STARE database causes a decrease in sensitivity metric 

drastically due to challenging images included in the corresponding cross-database 

setup. By the definition of Jiang et al. cross-database set, the test database is not 

included in the training set. For example, if DRIVE and STARE databases are in 

training-set, they performed test on CHASE_DB1. They compared their network with 

unsupervised methods in this way. However; we preferred combining all data-sets into 

one for obtaining a more generalized and complete model for the segmentation of 

blood vessels. We evaluated the weighted average for a fair comparison because the 

number of test images is not the same in databases. Our method with the proposed 

network achieved superior performance in terms of accuracy and specificity and stayed 

on the top in terms of AUC metric for hybrid-training with the work of [11]. 

AUC is a preferable metric for comparison because the classes are unbalanced (see 

Table 4.2), and there are annotation differences inherently among databases. For 

instance, vessel labels marked by the second expert in STARE are thinner than the first 

experts as mentioned in Section 4.1.1. If we examine our network in terms of only 

AUC metric in Table 5.5, it has superior performance on DRIVE and CHASE_DB1 

databases. For STARE and hybrid-database training, our network achieves very close 

performance on to the best AUC metric. 

5.2 Experimental Results for 3D Reconstruction 

In this section, we show the validation of our 3D reconstruction methods using 

synthetic data-set we produced from real subjects as mentioned earlier in 4.2.2. We 

share the results of several experiments performed on networks and compare their 

reconstruction performances in terms of CD and MSE quantitatively.  
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We present network comparisons under two subsections. The first section compares 

predictions quantitatively using statistical measures. The second section compares the 

average running time for each network to predict 3D model of coronary vessels.  

5.2.1 Quantitative Comparison for 3D Reconstruction 

We quantify the performance of each network in multi-view 3D reconstruction of 

coronary arteries and report the results in terms of CD and MSE. CD is used for the 

evaluation of center-line points in 3D and MSE is used for the evaluation of radius 

estimations. The lower values of both metrics indicate better 3D reconstruction that 

networks estimate.   

Table 5.7 Reconstruction performances of networks proposed in this study.  

Model Name 
Chamfer Distance Radius Error 

𝜇  𝜎  𝜇  𝜎  

MvFCNN 0.00998328 0.00299526 0.00000580 0.00000226 

TDAEn_Dense 0.03288964 0.02404985 0.00014654 0.00039439 

En_LSTM_Dec 1.54436864 0.17509677 0.29157797 0.15928418 

En_GRU_Dec 1.64607289 0.19792573 0.31827632 0.16060889 

There are 4 different 3D reconstruction networks described in Section 4.2.4. The first 

network, MvFCNN is a fully convolutional architecture that accepts inputs as 

channels. TDAEn_Dense is a variation of MvFCNN that accepts images in time-

distributed fashion. In this architecture, we encode each image using the same auto-

encoder and obtain hidden representations of input images. Next, we combine these 

feature representations using fully connected layer (dense layer) to estimate 3D shape 

of the coronary tree in tubular shape representation. The other two architectures are 

designed to have an internal memory for holding input features coming from multi-

view images as in [37]. We use the same auto-encoder as in TDAEn_Dense to generate 

latent features. Then we feed them in LSTM or GRU to keep necessary features 

between multi-view images. Finally, we use the decoder network to decode the 

information inside LSTMs or GRUs. Table 5.7 shows the results of each network. In 
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order to show network comparisons fairly and clearly, we present results with 

statistical measures; namely, mean (𝜇) and standard deviation (𝜎). 

As shown in Table 5.7, MvFCNN outperforms others. The second architecture which 

achieves relatively good performance is TDAEn_Dense. These two architectures have 

no memory structure and data is provided explicitly as part of their input. However; in 

LSTM and GRU based architectures, data is provided in series and they are expected 

to remember past observations. We observe that the architectures with internal 

memories (LSTM and GRU based networks) have the largest errors in both metrics. 

The reasons why LSTM and GRU based networks perform poorly on 3D 

reconstruction might be that (1) the number of epoch or (2) memory units are not 

enough (it was 500 epoch and 750 memory unit for LSTM and GRU in this study) for 

them to learn hidden representations or (3) they are not suited for auto-regression type 

problems as stated in [149].  

Increasing the number of training epochs or using a stack of LSTMs or GRUs may 

have improved the results but the network sizes are quite large as in the current 

configuration. Prediction time increases as the number of parameters are increased. 

Thus, we do not add more layers to memory-based networks. We perform an additional 

test by increasing the number of units in LSTMs and GRUs to 1500 and 3000, but it 

does not improve the reconstruction performance for at least learning the vessel tree 

structure. 

We depict the reconstruction performances of each network in Figure 5.12. It is clear 

from the figure that LSTM and GRU based networks produce worse predictions than 

only CNN based networks. We observe that they fail to learn to estimate 3D positions 

of centers and corresponding radiuses of coronaries. The reasons why LSTM and GRU 

based networks failed are discussed previously in the above paragraphs.  
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Figure 5.12 The prediction of proposed networks for test data 00015. The columns 

show the same object from different views. 
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We are inspired by a recently presented study [150] to improve 3D reconstruction 

performance. The authors in [150] claim that common activation functions such as 

ReLU or tanh non-linearities fail to capture high-frequency details present in natural 

signals. Instead, they propose using a periodic activation function (sine-activation). 

They show that results are improved in many tasks including 3D scene representation, 

image and sound generation, solving wave equations, etc. in a feed-forward network. 

Therefore, we train the same networks with changing Leaky-ReLU activations to sine-

activations. Table 5.8 summarizes the results produced by sine non-linearity function. 

Table 5.8 Reconstruction performances of networks with sine-activation functions 

proposed in this study.  

Model Name 
Chamfer Distance Radius Error 

𝜇  𝜎  𝜇  𝜎  

MvFCNN 5.56192181 1.803033493 27.61617898 24.45407693 

TDAEn_Dense 3.67000E-06 5.96833E-07 4.36000E-13 2.86247E-13 

En_LSTM_Dec 6.967926226 0.308885457 3.450022877 0.681069428 

En_GRU_Dec 6.696995766 0.329006134 3.565043504 0.719475302 

We observe from Table 5.8 that using sine-activation improves 3D reconstruction 

performance on TDAEn_Dense network significantly, but the results are not improved 

MvFCNN and memory-based networks. On the contrary, these networks perform 

worse.  

5.2.2 Runtime Comparison for Predictions 

The experiments for running time have been implemented on two Linux-based 

machines. The first one is a notebook computer with the specifications provided in 

Section 5.1.4. We use this machine for testing CPU-based platforms. The second one 

is a server machine where training is achieved. The hardware specifications are given 

for this machine in Section 4.1.6. We use this machine for testing GPU-based 

platforms.  



89 

 

 

We measure prediction time on test data for each network and calculate its average 

time. Table 5.9 reports the average running-time on CPU and GPU based platforms 

for a single prediction.  

Table 5.9 Run-time comparison of proposed networks on CPU and GPU based 

platforms.  

Model Name CPU (seconds) GPU (seconds) Ratio (CPU / GPU) 

MvFCNN 0.033588 0.001923 17.47 

TDAEn_Dense 0.120523 0.004286 28.12 

En_LSTM_Dec 0.243891 0.005843 41.74 

En_GRU_Dec 0.176236 0.003330 52.93 

Since memory-based (LSTM, GRU) networks are larger (more complex, more 

weights, more calculation), they produce predictions slower than the other two 

networks. We observe that GRUs are faster than LSTMs as expected because GRUs 

use less gating mechanisms as mentioned earlier in Section 4.2.4.4. If we compare run-

time for different platforms, GPU based platform produces at least 17.74 times faster 

than CPU based platform on average. This gain increases to 52.93 for larger and more 

complex deep networks. The fastest network appears to be MvFCNN with 

approximately 30 and 520 predictions per second on CPU and GPU, respectively. 
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CHAPTER 6  

CONCLUSION 

In this thesis, we have proposed a fully automated 3D reconstruction pipeline for 

coronary artery tree from 2D X-Ray angiograms. The pipeline mainly includes 2 steps. 

Namely, the segmentation of coronary vessels from their background and utilize these 

images in 3D reconstruction network to obtain an individual 3D model of these 

coronaries.  

In the first step of the pipeline, we have proposed fully convolutional deep network 

architecture, called Sine-Net, for the segmentation of blood vessels. Since there are no 

publicly available XRA images, we adapted retinal blood vessels in our work to train 

the network. Sine-Net architecture is novel to the literature in its construction style, 

which it applies down-sampling after up-sampling with strided convolution operation. 

We have evaluated the segmentation performance of this network quantitatively on 

publicly available STARE, DRIVE and CHASE_DB1 databases in terms of 

specificity, accuracy, sensitivity and AUC metrics. The proposed network shows 

superior performance on the segmentation of blood vessels and outperforms the-state-

of-the-art methods in the literature as presented in Section 5.1.5. We have also 

demonstrated the effect of preprocessing on input signals with additional tests 

performed on the network. From our tests, we conclude that the segmentation 

performance, in general, is slightly improved on the sensitivity metric for the pre-

processed input, but it shows a very limited decrease in some of the other metrics. We 

can tell that there is a trade-off. The results have been proved that the network can also 

produce predictions well without pre-processing. In addition, we introduce hybrid-

database training to generalize network performance on blood vessel segmentation 

with combining all databases and measure execution time for the segmentation. The 

network has the potential to be used in clinics thanks to its decent execution time, high 

accuracy and robustness. 
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In the second step of the pipeline, we have proposed 4 different deep network 

architectures for solving 3D reconstruction problem of coronary artery trees. 

Previously, this problem is solved using analytical methods in related literature, but 

such methods have some limitations discussed earlier in Section 2.3.1. We have solved 

the same problem with the learning-based method. In this study, we demonstrate that 

coronary arteries can be reconstructed using 3D deep network for the first time. We 

have proposed variations of 3D-R2N2 network [37] and multi-view CNN based 

networks. 3D-R2N2 network produces voxel grids and the resolution is very low and 

not appropriate for our problem. Thus, we modify object representation and present 

well-defined data-structure for 3D representation of objects in tubular/cylindrical 

shapes described in Section 4.2.1. The networks have learned this representation and 

showed promising results. Training is achieved using synthetic data we have produced 

in Section 4.1.2. We prove the validation of the data-structure and architectures 

proposed in this study for 3D reconstruction of coronaries. The input to networks is 

multi-view images of coronary vessels in black and white (segmented) format and the 

output is the data structure we have defined in Section 4.2.1.  

In this study, 3D reconstruction task is designed as a regression problem in which 

output contains continuous values. We conduct experimental tests to quantitatively 

evaluate and compare the performance of networks. We observe that only CNN-based 

networks yield better 3D reconstruction performances in terms of CD and MSE 

metrics. The results for memory-based networks (LSTMs and GRUs) worse than for 

only CNN-based networks and they fail to construct coronary tree shapes. We consider 

this is because memory-based networks must remember past observations thanks to its 

internal cells whereas CNN-based networks are provided this data explicitly. We 

conclude that LSTMs and GRUs are not appropriate for auto-regression problems as 

stated in [149]. 

We show and validate our 3D reconstruction pipeline using synthetic data-set 

produced from real subjects. We believe that 3D reconstruction with deep learning 

architecture can be improved further as with the evaluation of technologies and 
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variants of network architectures. There is no doubt that the topic becomes a trending 

problem shortly which is already started. 

6.1 Future Work 

In this study, we proposed a 3D reconstruction pipeline and proved the validation of 

our method using 3D synthetic data-set. In the future, the first plan is to implement the 

same networks on real data using transfer learning. Next, we try to optimize the 

pipeline to speed up execution time on CPU-based low-cost computers and make it 

reachable for every clinic. To realize this plan, networks can be combined and 

simplified to build in a single network. In the current configuration of the pipeline, we 

have two networks stacked together. The first one segments vessels and the second 

one uses segmented images to produce 3D model. This approach takes less than 10 

seconds (9.74s) on CPU and takes 0.355 seconds on Tesla P100 GPU. We would like 

to emphasize here that most of the time for prediction is exhausted in the segmentation 

task (9.73s on CPU, 0.353s on GPU). Thus, it would be better to remove the 

segmentation step from the method and propose a single network directly for 3D 

reconstruction. 

The third plan is that optimizing the network further using integer weights while 

preserving the accuracy of the network. This process will increase the speed and 

decrease the network size. 
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