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Cox regresyon modeli, ölçüm hatalı açıklayıcı değişken içermesi durumunda bilinen 

kısmi olabilirlik fonksiyonunun maksimizasyonu ile çözümlendiğinde, katsayı 

kestirimlerinde önemli bir yana neden olabilir. Bu durumda kısmi olabilirlik yaklaşımına 

alternatif yeni tahmin yöntemleri önerilmiş ve bu yöntemlerin etkinliği tartışılmıştır. 

Ölçüm hatası, sürekli ölçekle ölçülmüş açıklayıcı değişkenlerin gerçek değerlerinin elde 

edilemediği durumlarda ortaya çıkar. Yaşam çözümlemesi çalışmalarında da sıklıkla 

kullanılan sistolik kan basıncı, CD4 sayısı gibi sürekli ölçekle ölçülmüş biyolojik 

ölçümler çoğunlukla ölçüm hatası içeren değişkenlerdir. Bayesci yaklaşım, ölçüm hatalı 

Cox regresyon modelinde yanı azaltmak için kullanılan yöntemlerden biridir. Bu tez 

çalışmasında ölçüm hatası için düzeltilmiş poligonal önselli Bayesci Cox regresyon 

modeli, literatürde yer alan kısmi olabilirlik fonksiyonuna, Bayesci çözümlemesine ve 

ölçüm hatası için düzeltilmiş Gamma önselli Bayesci Cox regresyon modeline alternatif 

olarak önerilmiş ve etkinliği incelenmiştir. 
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Kısmi olabilirlik fonksiyonundan elde edilen Cox regresyon modeli, Bayesci 

çözümlemesi, ölçüm hatası için düzeltilmiş Gamma önselli Bayesci Cox regresyon 

modeli ve ölçüm hatası için düzeltilmiş poligonal önselli Bayesci Cox regresyon modeli 

sonuçları karşılaştırılmıştır. Bu yöntemlerle elde edilen tahmin edicilerin performansını 

değerlendirmek için farklı senaryolar ile benzetim çalışmaları yapılmıştır. Analizler 

sonucunda riskin yüksek olduğu durumlarda ölçüm hatası için düzeltilmiş Gamma önselli 

Bayesci Cox regresyon modelinin tüm senaryolarda en iyi sonucu verdiği, riskin düşük 

olduğu durumda ise ölçüm hatası için düzeltilmiş Gamma önselli Bayesci Cox regresyon 

modelinin neredeyse tüm senaryolarda uygun bir alternatif olmadığı sonucuna 

ulaşılmıştır. Ölçüm hatası için düzeltilmiş poligonal önselli Bayesci Cox regresyon 

modelinin düşük riskte, düşük ve orta güvenirlik durumlarında, büyük örneklem ve düşük 

durdurma hariç daha iyi sonuç verdiği, yüksek güvenirlikteki senaryolarda ise Cox 

regresyon modeline ve Bayesci çözümlemesine düzeltilmiş yöntemlerden en az birinin 

alternatif bir yöntem olduğu sonucuna ulaşılmıştır. Ancak ölçüm hatalı açıklayıcı 

değişken olması durumunda örneklem büyüklüğü arttıkça klasik yöntem ve Bayesci 

çözümlemesi ile elde edilen katsayılar için kapsama olasılıkları özellikle düşük ve orta 

güvenirlik durumlarında normal düzeyinin oldukça altına düşmektedir. 

 

Yöntemlerin gerçek verilerde uygulanabilirliğini göstermek amacıyla R programında yer 

alan Mayo Klinik çalışmasından elde edilen primer biliyer sirozu verisinde sonuçlar elde 

edilmiş, karşılaştırılmış ve yorumlanmıştır. İkinci bir uygulama olarak R programında yer 

alan Goldman ve ark.’nın (1996) kullanmış oldukları AIDS verisinden rastgele seçilen 

farklı örneklemler için model sonuçları elde edilmiştir. Benzetim çalışması sonucunda 

ulaşılan bilgiye dayanarak ölçüm hatalı açıklayıcı değişken olması durumunda Cox ve 

Bayesci Cox çözümlemelerinin uygun olmadığı düşünüldüğünde her iki uygulama için 

en iyi model poligonal önselli Bayesci Cox regresyon modeli sonucunda elde edilmiştir. 

 

 

Anahtar Kelimeler: Cox regresyon modeli, orantılı tehlikeler modeli, Bayesci yaklaşım, 

poligonal fonksiyon önseli, ölçüm hatası. 
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The Cox regression model with the measurement error covariate can cause an important 

bias when estimating coefficients by maximizing the known partial likelihood function. 

In this case, alternative estimation methods have been proposed and the effectiveness of 

these methods has been discussed. The measurement error occurs when the actual values 

of the covariates measured on a continuous scale cannot be obtained. Biological 

measurements such as systolic blood pressure and CD4 count, which are frequently used 

in survival analysis, are mostly variables with measurement error. The Bayesian approach 

is one of the methods used to reduce the bias arising from measurement error in the Cox 

regression model. In this thesis, the corrected Bayesian Cox regression model with 

polygonal prior to measurement error was proposed as an alternative to the partial 

likelihood function method, its Bayesian approach and the corrected Bayesian Cox 

regression model with Gamma prior to measurement error and its effectiveness was 

investigated. 
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The results of the Cox regression model obtained from the partial likelihood function, its 

Bayesian analysis, the corrected Bayesian Cox regression model with Gamma prior to 

measurement error, and the corrected Bayesian Cox regression model with polygonal 

prior to measurement error were compared. Simulation studies were performed with 

different scenarios to evaluate the performance of the estimators obtained with these 

methods. It is concluded that as a result of the analysis, in cases where the risk is high, 

the corrected Bayesian Cox regression model with Gamma prior to measurement error 

gives the best results in all scenarios, and in the case of low risk, not a suitable alternative 

in almost all scenarios. It is also shown that if the risk is low, the corrected Bayesian Cox 

regression model with polygonal prior to measurement error gives better results in low 

and medium reliability situations except for low censoring and large sample size, and at 

least one of the corrected models is an alternative method to Cox regression model and 

its Bayesian analysis in high reliability scenarios. However, if the model has the 

explanatory variable subject to measurement error, as the sample size increases, the 

coverage possibilities for the coefficients obtained by the classical method and its 

Bayesian analysis decrease well below the normal level especially in low and medium 

reliability cases. 

 

To demonstrate the applicability of the methods in real data, the results of the primary 

biliary cirrhosis data from the Mayo Clinic study in R were obtained, compared, and 

interpreted. As a second application, model results were obtained for different samples 

randomly selected from AIDS data used by Goldman et al. (1996) in R. Based on the 

information obtained as a result of the simulation study, considering that the Cox and 

Bayesian Cox regression models are not suitable in the  presence of measurement error 

covariate, the best model for both applications was obtained with the corrected Bayesian 

Cox regression model with polygonal prior to measurement error. 

 

 

Keywords: Cox regression model, proportional hazards model, Bayesian inference, 

polygonal function prior, measurement error.  
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1. GİRİŞ 

Yaşam çözümlemesinde en çok kullanılan model Cox (1972) tarafından önerilen Cox 

regresyon modeli (CRM) ya da diğer adıyla orantılı tehlikeler modelidir. Model kolay 

anlaşılabilir, herhangi bir dağılıma bağlı olmayan ve uygulanması kolay bir regresyon 

modelidir.  Modelin temel varsayımı, yaşam süresi üzerinde etkili olduğu düşünülen 

değişkenlere ait tehlike oranının zaman boyunca sabit olmasıdır.  

 

Birçok alanda, gelecek zamana ait verileri kestirmek/öngörmek büyük önem taşır çünkü 

öngörü, gelecekteki olası olaylar ve onların sonuçları hakkında belli bilgiler ortaya 

koymaktadır. Açıklayıcı değişkenlerin alacağı değerlere göre tehlike fonksiyonunun 

bilinmeyen değerlerinin kestirimi ile ilgilendiğimizde CRM’nin uygun bir kestirim 

denklemi üretebilmesi öncelikli gereksinimdir. Bu nedenle, regresyon katsayılarının 

tahmininde farklı yöntemler önerilmiştir. Literatürde CRM’de regresyon katsayılarının 

tahmininde en çok karşımıza çıkan yaklaşım kısmi olabilirlik yaklaşımıdır. 

 

Açıklayıcı değişkenlerin gerçek değerlerinin elde edilemediği durumlarda ölçüm hatası 

ortaya çıkar. Ölçüm hatası, laboratuvar hatası, ölçüm cihazlarındaki kalibrasyon hatası ya 

da örneklemeden kaynaklı meydana gelebilir (Keogh ve White, 2014). Yaşam 

çözümlemesi çalışmalarında da sıklıkla kullanılan kan basıncı, CD4 sayısı gibi sürekli 

ölçekle ölçülmüş biyolojik ölçümler çoğunlukla ölçüm hatası içeren değişkenlerdir.  

Açıklayıcı değişkenlerde sıklıkla görülebilen ölçüm hatası sorununun çözümü yaşam 

çözümlemesinde de karşılaşılan zorluklardandır. Açıklayıcı değişkenlerin ölçüm hatası 

içeren değerleri klasik çözümlemelerde kullanıldığında yanıltıcı sonuçlara neden 

olacaktır (Nakamura, 1992). Ölçüm hatası dikkate alınmazsa CRM’de kısmi olabilirlik 

yöntemi ile elde edilen sonuçlarda ciddi bir yana neden olacaktır (Yi ve Lawless, 2007). 

 

Ölçüm hatası probleminin çözümü için birçok yöntem önerilmiştir. Bunlar temel olarak 

olabilirlik temelli yöntemler, skor fonksiyonu, yarı parametrik ve parametrik olmayan 

yöntemler ile  Bayesci çözümlemelerdir. 

 

İlk olarak Prentice (1982) CRM’de ölçüm hatalı açıklayıcı değişkenin etkisini düzeltmek 

için regresyon kalibrasyonu yöntemini önermiştir. Clayton (1992), her bir risk kümesiyle 
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regresyon kalibrasyon yöntemini kullanarak Prentice’ın (1982) yöntemini güncellemiştir. 

Nakamura (1992), ölçüm hatalı açıklayıcı değişken içeren CRM’de β katsayılarının 

kestirimi için yaklaşık kısmi olabilirlik skor fonksiyonu önermiştir. Buzas (1998), benzer 

şekilde β için yansız skor fonksiyonu önermiştir. Wang ve ark. (1997), test (validation) 

verisi olduğu durum için regresyon kalibrasyon yöntemini önermişlerdir. Hu, Tsiatis ve 

Davidian (1998) tek açıklayıcı değişken için tam olabilirlik fonksiyonu yöntemini 

önermişlerdir. Zhou ve Wang (2000) parametrik olmayan bir yaklaşım önermişler ancak 

bu yöntem ölçüm hatası içeren açıklayıcı değişkenler için tekrarlı ölçümler 

gerektirmektedir. Xie, Wang ve Prentice (2001) yine tekrarlı ölçümleri elde edilebilen 

açıklayıcı değişkenlerin var olması durumunda en küçük kareler yöntemi ile tehlike 

fonksiyonu kalibrasyonunu uygulamışlardır. Hu ve Lin (2002), Nakamura (1992) ve 

Buzas’ın (1998)  çalışmalarını genelleştirerek CRM’de regresyon parametresi β ve 

birikimli tehlike fonksiyonu H0(t) için tutarlı tahmin ediciler elde etmişlerdir. Augustin 

(2004) çalışmasında Nakumara’nın (1992) elde ettiği yaklaşımın yanlılığını giderecek 

yansız tahmin edicilerin elde edildiği düzeltilmiş tam olabilirlik fonksiyonunu önermiş 

ve farklı durumlar için genişletmiştir. Song ve Huang (2005), β’yı elde etmek için koşullu 

skor yöntemi önermişlerdir. Yi ve Lawless (2007), Nakumara’nın (1992) düzeltilmiş skor 

yöntemini kullanarak β ve birikimli tehlike fonksiyonunu birlikte çıkarsamışlardır. Grace 

ve Lawless (2007) çalışmalarında yine düzeltilmiş bir olabilirlik fonksiyonu önermişler 

ve “soldan kesilmiş” ve “tekrarlı durumlar” için yaklaşımlarını genişletmişlerdir. Bartllett 

ve Keogh (2018) ölçüm hatalı CRM’de Bayesci yaklaşımı ele almışlardır. 

 

Bayesci yöntemler CRM’de ölçüm hatası sorununun çözümü için son yıllarda önerilen 

yöntemlerden biridir. CRM’de yaşam süresi üzerinde etkisi olan değişkenlerin ve bu 

değişkenlerin etkilerinin büyüklüğünün doğru olarak belirlenmesi çok önemlidir. Veri 

setinin büyüklüğü, içerdiği durdurma oranı ve güvenirlik düzeyine göre kullanılan 

çözümleme ölçüm hatasının yarattığı yanlılığı etkileyebilir. Bayesci düzeltme ve kısmi 

olabilirlik fonksiyonu ile elde edilen sonuçlarda ölçüm hatasının tüm bu parametrelere 

göre ne kadar yanlılık yarattığı literatürde karşılaştırlmamıştır. Bu nedenle doktora tez 

çalışmasında CRM’de regresyon katsayılarının tahmininde kullanılan, ölçüm hatasını 

dikkate almayan klasik yöntemler ile ölçüm hatası için kullanılan Bayesci düzeltmenin 

hangi örneklem büyüklüğünde, hangi durdurma oranında ve hangi güvenirlikte daha iyi 

sonuç verdiğinin incelenmesi ve önerilecek yeni yöntem ile daha iyi katsayı 
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kestirimlerinin elde edilmesi hedeflenmektedir. Yöntemlerin farklı yapıda veri 

setlerindeki işlevselliği için incelemeler yapılacak ve daha doğru kestirimler için katkıda 

bulunulacaktır. 

 

Çalışmanın izleyen ikinci bölümünde yaşam çözümlemesi ve CRM için temel tanım ve 

kavramlar verilmiştir. 

 

Çalışmanın üçüncü bölümünde ölçüm hatası hakkında bilgi verildikten sonra ölçüm 

hatası modelleri tanıtılmıştır. 

 

Çalışmanın dördüncü bölümünde ölçüm hatalı açıklayıcı değişkenli CRM’de Bayesci 

çözümlemenin uygulama adımları için öncelikle CRM’de Bayesci çözümleme 

tanımlanmıştır.  İkinci aşamada ölçüm hatası için Bayesci çözümlemenin nasıl 

uygulandığı, üçüncü aşamada CRM’de ölçüm hatasının düzeltilmesinde gamma önselli 

modelin tanımlanması ve son olarak tez kapsamında önerilen ölçüm hatasının 

düzeltilmesinde poligonal önselli modelin tanımlanması sunulmuştur. 

 

Çalışmanın beşinci bölümünde benzetim çalışması ve gerçek veri uygulaması yapılmıştır.  

Çalışma kapsamında tanımlanan farklı regresyon katsayısına, örneklem büyüklüğüne, 

durdurma oranına ve güvenirlik düzeyine göre veri setleri üretilmiştir. CRM’nin kısmi 

olabilirlik fonksiyonu ile elde edilen sonuçları, ölçüm hatasını göz ardı eden Bayesci 

çözümlemesi sonuçları, ölçüm hatası için düzeltilmiş gamma önselli ve tez kapsamında 

önerilen ölçüm hatası için düzeltilmiş poligonal önselli model sonuçları 

karşılaştırılmıştır. Sonrasında çalışmaya uygun gerçek veri setlerinde model sonuçları 

elde edilmiş ve önerilen modelin uygulanabilirliği gösterilmiştir. 

 

Son bölümde ise sonuçlar hakkında genel değerlendirme yapılmıştır. 
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2. YAŞAM ÇÖZÜMLEMESİ 

Yaşam çözümlemesi, ilgilenilen olay ile karşılaşıncaya kadar geçen sürenin çözümlemesi için 

istatistiksel yöntemlerin gelişimini inceleyen bir alandır (Lawless, 2003). Yaşam çözümlemesi 

sağlık bilimleri, biyoloji, mühendislik, ekonomi gibi birçok alanda kullanılan önemli bir 

çözümlemedir. Yaşam çözümlemesindeki önemli farklılık ilgilenilen sürenin sonunda 

tanımlanan olay dışında ortaya çıkabilecek durdurulmuş gözlemleri de çözümlemeye dahil 

etmesidir.  

 

Ti yaşam süresini ve Ci durdurma süresini göstermek üzere gözlenen minimum süre (Ti, Ci) için 

yaşam süresi ve durdurma süresinin bağımsızlığı varsayımı altında durdurma göstergesi  

δi = I (Ti  ≤ Ci) ile gösterilir ve i. gözlem durdurulmuş ise 0, olay gözlemlenmiş ise 1 değerini 

alır. 

 

T rastlantı değişeninin t’den büyük olma olasılığı yaşam fonksiyonu olarak tanımlanır ve  

t

S(t) P(T t) f (x) dx,  0 t



       

biçiminde gösterilir. Yaşam fonksiyonu için F(t), t’nin dağılım fonksiyonu, f(t) olasılık 

yoğunluk fonksiyonunu göstermek üzere, 

 
t

0

F t P(T t) f (u) du     

eşitliği ile yaşam süresinin t’den küçük olma olasılığı elde edilir. Buradan, 

   S t   1  F t   

eşitliği de yazılabilir. Monoton azalan soldan sürekli bir fonksiyon olan yaşam fonksiyonunun 

t = 0 için S(0) = 1 ve t =  için S(∞) = 0 değerini alır. Tehlike fonksiyonu ise t zamanına kadar 

tanımlanan olay ile karşılaşmamış birimin t zamanında başarısız olma riskidir ve h(t) ile 

gösterilir (Collett, 1994). h(t), yaşam fonksiyonunun aksine başarısızlığa odaklanır. Tehlike 

fonksiyonu için yaşam fonksiyonunun verdiği bilginin tam tersi olarak düşünülebilir. Tehlike 

fonksiyonu, 
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Δt 0

P(t T t Δt | T t)
h(t) lim

Δt

   


 

biçimindedir (Kleinbaum ve Klein, 2010). Buradan tehlike fonksiyonundaki paydaki olasılık, 

koşullu olasılığın tanımından aşağıdaki gibi de ifade edilebilir: 

P(t T t Δt) F(t Δt) F(t)

P(T t) P(T t)

    


 
 

Bu durumda tehlike fonksiyonu, 

Δt 0

F(t Δt) F(t) 1
h(t) lim

Δt S(t)

  
  

 
 

biçiminde de yazılabilir. Burada F(t)’nin t’ye göre türev tanımının f(t)’ye eşit olduğu 

bilinmektedir. Bu durumda  

Δt 0

F(t Δt) F(t)
lim f (t)

Δt

  
 

   

eşitliği yazıldığında tehlike fonksiyonu, 

f (t)
h(t)

S(t)


 

elde edilir. Ayrıca tehlike fonksiyonu ve yaşam fonksiyonu arasındaki fonksiyonel ilişkiyi ifade 

eden diğer bir eşitlik, 

 
d

h(t) log(S(t)
dt


 

biçimindedir. Buradan,  

 S(t) exp H(t) 
 

yazılabilir. H(t) birikimli tehlike fonksiyonunu göstermek üzere, 

t

0

H(t) h(u)du logS(t)  
 

eşitliği ile elde edilir (Collet, 1994). 
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2.1. Cox Regresyon Modeli 

Literatürde yaygın olarak kullanılan ve orantılı tehlikeler modeli olarak da adlandırılan CRM 

yarı parametrik bir modeldir ve aşağıdaki biçimde ifade edilebilir (Cox, 1972): 

p

0 i i

i 1

h(t, ) h (t)exp( β x )


 X          (2.1) 

Burada modelin ilk çarpanı temel tehlike fonksiyonunu, X açıklayıcı değişkenler vektörünü, β 

regresyon katsayılar vektörünü gösterir. CRM, tanımlanan açıklayıcı değişkenler vektörüne 

sahip bir birimin t zamanındaki riskini modeller. 

 

CRM’deki katsayıların tahmininde sıklıkla kullanılan yaklaşım kısmi olabilirlik fonksiyonu 

yaklaşımıdır. CRM’de çıktı değişkeninin dağılımı için her hangi bir biçim tanımlanmadığı için 

tam olabilirlik fonksiyonu kullanılamaz. Kısmi olabilirlik yaklaşımında olabilirlik fonksiyonuna 

durdurulmuş gözlemler hesaba katılmayıp yalnızca başarısız olan gözlemler için olasılıklar 

dahil edilir. Olabilirlik fonksiyonu için tüm birimler düşünülmediği için kısmi olabilirlik olarak 

adlandırılır (Kleinbaum ve Klein, 2010).  

 

δi başarısızlık için 1, durdurma için 0 değerini alan durdurma göstergesi, (1) (2) (k)t ,  t  ...,  t  k tane 

başarısızlık için sıralı başarısızlık süreleri, ti durdurma sürelerini gösteren rastgele değişken 

olsun.  iR(t) i : t t   t zamanında riskte olan birimlerin kümesini göstersin. Kısmi olabilirlik 

fonksiyonu, 

 
 

 
j

j
k

j 1 R(t )

exp β X
L β

exp β X 








 

biçimindedir. Burada paydadaki toplam, ti zamanda riskte olan birimler üzerinden exp (β′xi) 

değerlerinin toplamıdır (Cox, 1972). CRM’de, β parametrelerinin en çok olabilirlik tahminleri 

Newton-Raphson tekniği gibi yöntemler kullanılarak log-olabilirlik fonksiyonunun maksimize 

edilmesiyle bulunmaktadır (Collett, 1994).   
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2.2. Cox Regresyon Modeli İçin Sayma Süreci 

Yaşam modellerinin çözümlemesinde kullanılan pratik ve alternatif yollardan biri sayma 

sürecidir (counting process). Daha karmaşık yaşam çözümlemesi modelleri için kullanılan bir 

yöntemdir (Kleinbaum ve Klein, 2010). Sayma süreci yaklaşımı ilk defa Aalen (1975) 

tarafından stokastik integrasyonun bileşenlerini, sürekli zaman martingale teoremini ve sayma 

sürecini birleştiren bir yöntem olarak geliştirilmiştir.  Sayma süreci Poisson sürecinin 

genelleştirilmiş halidir. CRM ise Poisson regresyon modelinin oranlar için genişletilmiş 

durumudur. 

 

CRM sıralı başarısızlık sürelerinin sayısını sayan sayma sürecinin özel bir durumu olarak 

tanımlanabilir. Sayma süreci formülasyonu ve güçlü martingale teorisi göz önüne alındığında, 

CRM ve asimptotik stokastiğini belirlemek için sayma süreci işlemleri kolayca kullanılabilir. 

Örneğin, log olabilirlik fonksiyonunun kısmi türevleri olan skor fonksiyonu 
0U(β ,  .) , temelde 

martingale merkezi limit teoreminin uygulandığı yerel bir martingaledir (Liu, 2012). 

 

Sayma süreci verisinin analizi genellikle yoğunluğun modellenmesine bağlıdır. T ilgilenilen 

olayın gerçekleştiği ana kadar geçen süre olsun, S(t) = P(T > t) yaşam fonksiyonunu versin. t 

küçük olmak üzere yaşam süresinin t uzunluğundaki birçok küçük eşit aralığa bölündüğünü 

düşünelim. T sürekli olsun. t süresine kadar olayın gerçekleşmediği ancak sonlu [t, t+t] zaman 

aralığında olayın gerçekleşme olasılığı hesapladığında tüm birimler için ortak olan temel tehlike 

fonksiyonu; 

0
Δt 0

P(t T t Δt)
h (t) lim

Δt

  
  

ile tanımlanabilir. h0(t),t süresine kadar olay ile karşılaşmamış birimin olay ile karşılaşmasının 

anlık riski olarak yorumlanabilir.  

 

Eşitlik (2.1)’ de verilen modelde, modelin parametrik olmayan kısmı h0(t), parametrik kısmı 

ise 
j ij

j

β X β X   ile ifade edilir. Burada β ve X’in t zamanı ile sabit olduğu ve p boyutlu 
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regresyon parametresi β ve temel tehlike fonksiyonu h0(t)’nin yerel olarak integrallenebilir 

olduğu varsayılır. Yani, 

maxT

0

0

h (t)dt    

sağlanmalıdır.  

 

Anderson ve Gill (1982), yaşam süresi verileri için sayma sürecinin kullanımını 

genişletmişlerdir. n birim için, Ii(t), sayma sürecinde verilen açıklayıcı değişkenler vektörü 

i i1 ipX (X ,  ...,  X )  ve Yi(t) risk göstergesi için yoğunluk sürecini göstersin. Burada Y i(t), T i 

zamanında hala riskte olan, t zamanından hemen önce olay gözlemlenmemiş ya da 

durdurulmamış gözlemler içindir. Ni(t) süreci  [0, t] aralığında gerçekleşen olayları sayar. Bu 

süreç sabittir ve olaylar arası 0 değerini alır, her bir olay zamanında bir birim artar. Burada 

stokastik süreç  iN (t),  t 0 ile gösterilir ve aşağıdaki koşulları sağlar: 

i. iN (t) 0 , 

ii. iN (t)  tam sayı değeri alır, 

iii. s<t ise i iN (s) N (t) , [s, t] zaman aralığında meydana gelen olay sayısını gösterir. 

 

Yeni bir olay oranı i i iI (t) Y (t) h(t | X )  ile ifade edilir. iI (t) , [t, t+t) gibi bir zaman aralığında 

daha önce gerçekleşmeyen ilgilenilen olay ile karşılaşma olasılığını göstermektedir. Bu da 

yaklaşık olarak aşağıdaki eşitlik ile ifade edilebilir: 

i i 0 i idN (t) h(t | X )dt h (t)exp[β X ] I (t)    

Burada dNi(t), [t, t+t) kadar bir zaman aralığında Ni(t)′deki artışı gösterir, yani bu aralıktaki 

olay sayısını verir. Bu durumda çarpımsal yoğunluk, 

i i i i 0 iI (t) Y (t)h(t | X ) Y (t)h (t)exp[β X ]         (2.2) 

biçiminde ifade edilebilir. Bu durumda yoğunluk süreci gözlenen süreç ile gözlenmeyen 

fonksiyonun çarpımıdır. Cox model altında iN (t)  için yoğunluk süreci, 
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i i i 0I (t)dt Y (t)exp[β X ]dH (t)  

biçimindedir. Burada dH0(t), t zamanında riskte olan birimin hemen sonraki [t, t+t) aralığında 

olayla karşılaşmasının anlık riskini gösterir.  

 

Yoğunluk sürecinin diğer bir tanımı aşağıdaki gibi ifade edilebilir: 

      i i i i iI (t)dt P dN (t) 1| geçmiş P N (t Δ ) N (t) 1| geçmiş E dN (t)t 1| geçmiş         

Buradan da, 

 i iE dN (t) I (t)dt | geçmiş 0   

yazılabilir. idN (t) ’nin yaklaşık eşitliği dikkate alındığında, 

t

i i i

0

M (t) N (t) I (s)ds    

biçiminde yazılabilir. Bu da “hata = (gözlenen – model)” olarak düşünülebilir. Buradan da 

E(dM i(t) |geçmiş)=0 eşitliği yazılabilir. Sayma süreci ve integrallenmiş yoğunluk süreci 

arasındaki farkın verilen yoğunluk süreci Ii(t)’ye eşitliği bir martingaledir.  Yaşam fonksiyonu 

için Gill (2005) tarafından verilen, 

 
(0,t ]

S(t) 1 dH(s)   

eşitliği düşünülsün. Birikimli yoğunluk,  

t

i i

0

dH (s) I (s)ds    

biçiminde ifade edilebildiği için, 

 
t

i i

(0,t ] 0

1 dH (s) exp I (s)ds
 

   
 

   

olur. Elde edilen veri  i i iD N (t),Y (t),X ,i 1,  ...,  n   ile gösterilsin, β ve 0H (t)  bilinmeyen 

parametreler olmak üzere bilgi içermeyen durdurma altında olabilirlik fonksiyonu, 
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  idN (t)

i i i i

t 0t 0

L (D | β,H (t)) exp I (t)dt I (t) ,i 1,  ...,  n


 
   

 
  

biçimindedir. Bu durumda bileşik dağılım (joint distribution) aşağıdaki gibi elde edilir (Mostafa 

ve Ghorbal, 2011):  

n

i i

i 1

L(D | β,H(t)) L (D | β,H (t))


         (2.3) 
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3. ÖLÇÜM HATASI MODELLERİ 

Modele girecek bir ya da birden çok açıklayıcı değişkenin gerçek değerinin elde edilemediği 

durumlarda ölçüm hatası meydana gelir. Ölçüm hatasının birçok nedeni olabilir ancak en çok 

karşılaşılanı araç-gereç hatası ve örnekleme hatasıdır (Buonaccorsi, 2010). Ölçüm hatası 

rastgele hata ve sistematik hata olmak üzere iki bileşenden oluşur. İlk bileşen olan rastgele hata 

ölçümü rastgele etkileyen laboratuvar ölçümü yapan araç gerecin yanlış ölçüm yapmasından ya 

da çevresel koşullardaki rastgele değişimlerden kaynaklanabilir. İkinci bileşen olan sistematik 

hata ise yanlış kalibrasyon ya da hatalı cihaz kullanımı gibi rastgele olmayan problemlerden 

kaynaklı olarak tüm ölçümleri etkileyebilir (Espino-Hernandez, Gustafson, Burstyn, 2011). 

 

Rastgele ve sistematik hatanın dağılım üzerindeki etkisi Şekil 3.1’de verilmiştir. Rastgele hata 

değişkenin yalnızca yayılımı üzerinde fark yaratırken, sistematik hata değişkenin konumunu 

etkileyerek yan yaratmaktadır. 

 

  

Şekil 3.1. Rastgele ve Sistematik Hata 

 

Bir modelde ölçüm hatalı açıklayıcı değişken olmasının üç etkisi vardır. Bunlar, 

 İstatistiksel modelde parametre tahminlerinin yanlı olması,  

 Değişkenler arası ilişkilerin ortaya çıkarılmasında gücün düşmesi, 

F
re

k
an

s 

Rastgele Hata Sistematik Hata 

F
re

k
an

s 

Rastgele hatalı 

X’in dağılımı 

Rastgele hata 

içermeyen X’in 

dağılımı 

Sistematik hatalı 

X’in dağılımı Sistematik hata 

içermeyen X’in dağılımı 
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 Verilerin özelliklerini gizlemesi ve grafiksel modellemenin zorlaşmasıdır (Carroll ve 

ark., 2006). 

 

Ölçüm hatası, ekonomik, sosyal, tıbbi ve epidemiyolojik araştırmalar dahil olmak üzere pek çok 

araştırma alanında tahmin sürecinde önemli bir zorluktur (Gray, 2018). Klasik çözümlemelerde 

ölçüm hatasının neden olduğu yanı gidermek ya da azaltmak için literatürde birçok yöntem 

önerilmiştir. Bunlar temel olarak olabilirlik temelli yöntemler, fonksiyonel tahmin yöntemleri 

(düzeltilmiş skor gibi) ve Bayesci çözümlemelerdir (Schneeweiss ve Augustin, 2006). 

 

Ölçüm hatasından kaynaklı yanlılığın miktarı ve yapısı ölçüm hatasının tipine bağlıdır. 

Literatürde ölçüm hatası modellemeleri klasik ölçüm hatası, sistematik ölçüm hatası, değişen 

varyanslı ölçüm hatası ve differansiyel ölçüm hatası modelleri olarak verilir. 

 

3.1. Klasik Ölçüm Hatası Modeli 

Toplamsal ölçüm hatası olarak da adlandırılan klasik ölçüm hatası modelinde yanın sistematik 

olmadığı, hatanın kaynağının rastgele olduğu varsayılır (Gray, 2018). Klasik ölçüm hatası 

modeli, 

ij i ijW X ε ,    j 1,  2    

biçimindedir. Burada X i, ölçüm hatalı açıklayıcı değişkenin gerçek, gözlemlenemeyen değeri; 

Wi, ölçüm hatalı açıklayıcı değişkenin hata içeren gözlemlenen değeridir. Burada hata terimi 

εij, 0 ortalama ve 2

εσ  varyansa sahiptir. i1ε ve i2ε  sıfır korelasyona sahiptir. ε; X i, Z i  (ölçüm 

hatası içermeyen açıklayıcı değişken) ve Y i’ den (ilgilenilen çıktı değişkeni) bağımsızdır 

(Keogh ve White, 2014). 

 

Klasik ölçüm hatası modeline uyumu test etmek için bazı görsel yöntemler kullanılabilir. 

Tekrarlı ölçümleri elde edilebilen W için her bir birey için elde edilen standart sapmasının, 

ortalamalarıyla ilişkisiz ve ölçüm hatası içermeyen Z değişkeninden bağımsız olduğu varsayılır. 

Bu amaçla ortalamalara karşı standart sapmaların çizimi arasında belirgin bir eğilim yoksa 

ölçüm hatası varyansının X’den bağımsız olduğu söylenebilir. Her bir birey için W’nin tekrarlı 
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ölçümleri için elde edilen standart sapmanın, o bireye karşılık gelen ölçüm hatası içermeyen Z 

açıklayıcı değişkenine karşı çiziminde yine belirgin bir eğilim yoksa Z’nin ölçüm hatası 

varyansına bağımlı olmadığı söylenebilir. Her bir gözlem için W’nin tekrarları arasındaki farkın 

normal QQ grafiği çiziminde normal dağılımdan belirgin bir fark yoksa ölçüm hatalarının 

normal dağılım gösterdiği söylenebilir (Carroll ve ark., 2006). 

 

3.2. Gerçek Etkiye Bağlı Sistematik Ölçüm Hatası Modeli 

Çok sayıda tekrarlı ölçümün ortalaması X i’nin tahminini sağladığı için klasik ölçüm hatası 

modeli ile elde edilen W i j, X i’nin yansız ölçümleri olarak tanımlanır. Ancak bazı durumlarda 

klasik ölçüm hatası modeli uygun olmayabilir. Beslenme epidemiyolojisinde gıda kayıt 

ölçümleri gerçek değerin yanlı tahminleridir. Hem X i’nin gerçek ölçümleri için hem de 

bireylere özgü hatalar içermektedir. Bu durumda bir birey üzerinden tekrarlı ölçümler arasında 

ilişki ortaya çıkmaktadır. Bu durumda gerçek etkiye bağlı sistematik hata için ölçüm hatası 

modeli, 

ij i ijW ψ θX ε ,    j 1,  2      

biçimindedir. Burada ψ, sabit değişim (constant shift), θ≠1 gerçek etkiye bağlı hata ve hatalar 

arası ilişki genel olarak 0 olmayabilir. i1 i2corr(ε ,  ε ) ρ hata korelasyonunu göstersin. 
ijε hata 

terimi yine 0 ortalamaya, sabit varyansa sahiptir ve X i, Z i ve Y i’den bağımsızdır. ψ = 0, θ = 1 

ve ρ = 0 olduğunda gerçek etkiye bağlı sistematik hata modeli klasik ölçüm hatası modeline eşit 

olacaktır (Keogh ve White, 2014). 

 

3.3. Değişen Varyanslı Ölçüm Hatası Modeli 

Diğer ölçüm hatası modellerinde hata terimi sabit varyanslı tanımlanmıştır. Değişen varyanslı 

hata (heteroscedastic error) modeli hataların X i’ye göre değiştiği modeldir. Genellikle de X i’nin 

artışıyla artan, gerçek etki daha büyük olduğunda hatanın da büyüdüğü durumlarda değişen 

varyanslı hata ortaya çıkar. Bu durumda ölçüm hatası modeli,

2

ij i ij i ε iE(ε | X ) 0,   V(ε | X ) σ (X )   
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biçimindedir. Gerçek X i gözlemlerinin bir alt grubu varsa X’in değişimi ile W i1’in değişip 

değişmediği grafiksel olarak ortaya koyulabilir. X i gözlemlenemiyorsa W i1 etkisinin tekrarlı 

ölçümü varsa her bir birim için  i1 i2W , W  ortalamasına karşılık i1 i2W , W ’nin standart sapması 

çizilerek klasik hata ölçümü için kısmi test yapılabilir. Bu hata varyansının gerçek etkiye bağlı 

olup olmadığını gösterir. Sabit hata varyansının istenen özelliklere sahip değerlerini elde etmek 

için orijinal W i j değişkenine dönüşüm uygulamak mümkündür. Uygun olan en basit dönüşüm 

log dönüşümüdür. Daha genel olarak Box-Cox dönüşümü uygulanabilir (Keogh ve White, 

2014). 

 

3.4. Diferansiyel Ölçüm Hatası Modeli 

Daha önceki hata modellerinde hata çıktıdan bağımsızdır. Diferansiyel (differential) hata 

modelinde çıktıya bağımlıdır ve Y i’nin iki düzeyli (binary) değişken olduğu durumda karşımıza 

çıkar. Örneğin klasik hata modeli altında Y i  = 0, 1 değerleri için 
ijε  hatalarının değişimi 

değişebilir. Sistematik hata modeli Yi’nin değerlerine bağlı olarak sistematik yana izin veren bir 

model olarak aşağıdaki gibi genişletilebilir: 

i iij Y Y i ij iW ψ θ X ε ,    j 1,  2;  Y 0,  1      

Ayrıca hata varyansı Y’ye bağlı olarak 

y

2

ij ε ivar(ε ) σ ,Y y   

biçiminde, buna ek olarak hata ilişkileri Y’ye bağlı olarak  

ij ik y icorr(ε ,ε ) ρ ,Y y,  j k    

biçiminde ifade edilebilir. Farklı diferansiyel hata modelleri de yazılabilir. Basit olarak Y i  = 1 

olan birimler Y i  = 0 olan birimlere göre W i j’de ortalama değişime sahipse aşağıdaki model ile 

ifade edilebilir (Keogh ve White, 2014): 

ij i i ij iW ψ θX λY ε ,    j 1,  2;  Y 0,  1        
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4. ÖLÇÜM HATALI AÇIKLAYICI DEĞİŞKENLİ COX REGRESYON 

MODELİ İÇİN BAYESCİ YAKLAŞIM 

Bayesci çıkarsama, bir veri kümesine bir olasılık modelinin uyarlanması ve model 

parametrelerinin bir olasılık dağılımı ile sonuçlarının özetlenmesi sürecidir. Bayesci 

yöntemlerin temel özelliği, istatistiksel veri analizine dayanan çıkarsamalardaki belirsizliğin 

ölçülmesi için olasılığın kullanımıdır (Gelman ve ark., 2013). 

 

Bayesci yöntemleri kullananların artışı ve hesaplamaları kolaylaştıran teknolojik gelişmelerin 

artışıyla Bayesci yaklaşım, epidemolojik ve klinik çalışmaların da dahil olduğu bir çok farklı 

alanda artarak kullanılmaya başlanmıştır (Lesaffre ve Lawson, 2012).  

 

Bayesci çözümleme üç temel adımda tanımlanabilir. İlk adım tam olasılık dağılımının 

belirlenmesi, gözlenebilen ve gözlemlenemeyen tüm bilgiden birleşik bir olasılık dağılımının 

oluşturulmasıdır. Burada model, temelde yatan bilimsel sorundan ve veri toplama sürecinden 

gelen bilgi ile tutarlı olmalıdır. İkinci adım, uygun sonsal dağılımın hesaplanması ve 

yorumlanmasıdır. Sonsal dağılım, verilen gözlemlenen veriye bakıldığında gözlemlenememiş 

nihai bilginin koşullu olasılık dağılımıdır. Üçüncü adım ise modelin uygunluğunun ve elde 

edilen sonsal dağılımın etkilerinin değerlendirilmesidir. Modelin verilere ne kadar uyduğu, 

sonuçların mantıklı olup olmadığı ve birinci adımdaki model varsayımlarına sonuçların ne kadar 

hassas olduğu kontrol edilir. Bu soruların cevaplarına göre model değiştirilebilir ya da 

genişletilebilir ve bu üç adım tekrar uygulanabilir (Gelman ve ark., 2013). 

 

Bayesci çözümlemede veri ve parametre vektörü θ rastgele değişkenlermiş gibi düşünülür. 

Verinin ürettiği olasılıksal modelin yanında önsel bilgiyi ifade eden p(θ) önsel dağılımı 

tanımlanır. Önsel dağılım, D toplanan veriyi göstermek üzere L(θ) = L(θ|D) olan olabilirlik 

fonksiyonu ile birleştirilir. Parametrelerin sonsal dağılımı olan p(θ |D), Bayes kuralına göre, 

Θ

L(θ)p(θ)
p(θ | D) L(θ)p(θ)

L(θ)p(θ)dθ
 


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biçimindedir. 

 

Bayesci çözümleme sonsal dağılım olarak ortaya çıkan olasılık dağılımlarının bir ölçümünü ya 

da beklenen değerinin hesaplanmasını gerektirir. Sonsal ortalama ya da sonsal varyans olarak 

hesaplanan standart Bayes tahminleri birer beklenen değerdir. Ancak sonsal dağılımlar her 

zaman bilinen bir olasılık dağılımı olarak elde edilemediğinden Bayesci çözümlemeler için özel 

teknikler gerekir. İstatistiksel örnekleme, kapalı formda elde edilemeyen bir beklenen değerin 

sayısal integrasyonu ya da analitik çözümü için alternatif bir yöntemdir. Kitle ortalamasının ya 

da kitle oranının tahmini için bu kitleden çekilen büyük bir örneklemden elde edilen örnekleme 

ortalaması ya da örnekleme oranının kullanılması istatistiksel yaklaşımlardan biridir. Büyük 

sayılar kanunu, yeterli büyüklükte alınan örneklemler için bu şekilde elde edilen tahminlerin 

uygun olacağını garanti eder (Ghosh, Delampady ve Samanta, 2007). Bu amaçla Monte Carlo 

Markov Zinciri (MCMC) teknikleri analitik çözümü olmayan istatistiksel modelleme 

problemlerinin üstesinden gelmek için örnekleme algoritmalarının bir sınıfı olarak ortaya 

çıkmıştır. Gibbs örneklemesi ve Metropolis-Hastings algoritması iki önemli MCMC tekniğidir 

(Lesaffre ve Lawson, 2012). 

 

Birçok çok boyutlu problemde kullanışlı bir MCMC algoritması Gibbs örneklemesidir. θ 

parametre vektörü θ = (θ1, … ,  θd) olacak şekilde d bileşene bölünür. Verilen başlangıç noktası 

θ0 = (θ1
0, … , θd

0)
T

  olan Gibbs örneklemesi aşağıdaki iteratif şemaya sahiptir ve (k+1) 

iterasyonunda aşağıdaki d adım gerçekleşir. 

1. 
k k k

1 2 (d 1) dp(θ | θ ,...,θ ,θ , y)  koşullu dağılımından (k 1)

1θ   örneklenir. 

2. (k 1) k k

2 1 3 dp(θ | θ ,θ ,...,θ , y) koşullu dağılımından (k 1)

2θ   örneklenir. 

 

d.
(k 1) (k 1)

d 1 (d 1)p(θ | θ ,...,θ , y) 

 koşullu dağılımından (k 1)

dθ   örneklenir. 

Burada θj diğer tüm parametrelere bağlı koşullu olarak elde edildiği için 

k k k k k k

j 1 2 ( j 1) ( j 1) (d 1) dp(θ | θ ,θ ,...,θ ,θ ,...,θ θ , y)    koşullu dağılımı,  tam koşullu dağılım olarak 

adlandırılır. Üretilen θk, θk+1, … sonsal dağılımdan elde edilen gözlemler olarak kabul edilebilir. 
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Gibbs örneklemesinde tam koşullu dağılımlar birleşik dağılımı oluşturur (Lesaffre ve Lawson, 

2012). 

 

MCMC sonsal dağılımdan örneklemler üretir. Burada üretilen örneklemler ile istenen sonsal 

dağılıma ulaşılıp ulaşılmadığını belirlemek için yakınsama ölçütleri kullanılır. Yakınsama 

ölçütleri durağan bir dağılımdan tahminleri elde edebilmek için MCMC’nin ne kadar uzunlukta 

çalışacağını ve oluşturulan zincirlerin yeteri kadar karışıp karışmadığını değerlendiren 

yöntemlerdir. Bu amaçla birçok istatistiksel yöntem önerilmiştir. İz Grafiği (trace plot), 

otokorelasyon grafiği gibi grafik yöntemlerinin yanında, Gelman-Rubin, Geweke, 

Heidelberger-Welch, Raftery-Lewis testleri gibi test yöntemleri yakınsamanın sağlanıp 

sağlanmadığının kontrolünde kullanılan yöntemlerdir (Lesaffre ve Lawson, 2012).  

 

4.1. Cox Regresyon Modelinde Bayesci Çözümleme 

Esnek model yapısının ve Bayesci hesaplamalarda mevcut yazılım programlarının artan 

avantajıyla, Bayesci yöntemler son zamanlarda yaşam verilerinin çözümlenmesinde de tercih 

edilmeye başlamıştır. CRM için kullanılan başlıca Bayesci süreçler Gamma süreci, Beta süreci, 

İlişkili Gamma süreci ve Dirichlet sürecidir. Süreç genel olarak regresyon katsayıları ve temel 

tehlike fonksiyonu ya da birikimli temel tehlike fonksiyonu için önsel dağılımın belirlenmesi, 

olabilirlik fonksiyonunun oluşturulması, sonsal dağılımın elde edilmesi ve çıkarımların 

yapılması şeklindedir  (İbrahim, Chen ve Sinha, 2001).  

 

CRM için sıklıkla kullanılan süreçlerden biri Gamma sürecidir. G (α, λ), α > 0 şekil parametresi 

ve λ > 0 ölçek parametresi ile Gamma dağılımını göstersin. α (t), t ≥ 0 α (0) = 0 olan soldan 

artan sürekli fonksiyon, Z(t), t ≥ 0 aşağıdaki özelliklerle stokastik bir süreç olsun. 

(i) Z (0) = 0, 

(ii) Z (t) ayrık aralılarda bağımsız, 

(iii) t > s için Z(t) − Z(s)~G(c(α(t) − α(s)), c). 

 

Gamma süreci Z(t)~GP(cα(t), c) ile gösterilir. Burada c, ortalama için ağırlık ya da güven 

parametresini göstermektedir. 
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CRM için X açıklayıcı değişkenler vektörüne sahip n birimin yaşamlarına ait birleşik olasılık, 

n
'

0 j 0 j

j 1

P(T t | X,β,H ) exp exp(x β)H (t )


 
   

 
       (4.1) 

biçiminde verilsin.  

 

İlk yaklaşım olarak Gamma süreci birikimli temel tehlike fonksiyonu H0(t) için önsel dağılım 

olarak kullanılır. H0(t)~GP(c0H∗, c0)  sürecine sahiptir ve H*(t), H*(0)=0 olan artan bir 

fonksiyondur. 

 

H* hiperparametre vektörü γ0 ile bilinen parametrik bir fonksiyon olduğu varsayılır. H* üstel 

dağılım gösteriyorsa 0H*(t) γ t  ile ifade edilir ve γ0 belirlenmiş bir hiperparametredir. H* 

Weibull dağılımlı alınırsa, 0k

0H*(t) η  t  olur ve burada hiperparametrelerin belirlenen vektörü 

0 0 0γ (η ,k )  biçimindedir. 
j

'

j R
A exp(x β)


  olmak üzere marjinal yaşam fonksiyonu, 

n

0 0

j 1

j

c (H*(t ) H*(t ))
0 ( j) ( j 1)

P( (iT t | β,X A ), γ ,c )





      

biçimindedir.  

 

İkinci yaklaşımda ise tehlike oranı üzerinden gamma süreci önsel dağılım olarak kullanılır. Bu 

yaklaşımda genişletilmiş gamma sürecinin kesikli yaklaşımı düşünülür. Burada parçalı sabit 

tehlike fonksiyonunun olabilirlik fonksiyonu kullanılarak çözümleme geliştirilmiş ve yalnızca 

başarısızlık süresinin hangi aralığa düştüğü bilgisi kullanılır.  0 =s0< s1<…<sj sonlu olmak 

üzere, 

j 0 j 0 j 1δ h (s ) h (s )   

 olsun ve ( j 1s  -
js ] ( j =1 , 2, …, J) aralığında temel tehlikedeki artışı göstersin. 

Kitledeki bir birim için t zamanındaki yaşam fonksiyonu, 
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y J

0 i i 1

i 10

S(t | x) exp η h (u)du exp η δ (t s )



     
       

     
  

biçimindedir. Burada h0(0) =0 , η exp(x β)  ve (u)+=u u>0 ise, aksi takdirde 0’dır.  

 

pj, ( j 1s 
-

js ] aralığında başarısızlık olasılığını göstermek üzere, 

 
j 1 J

j j 1 j j 1 1 j j 1

1 1

p S(s ) S(s ) exp η δ (s s 1 exp η(s s ) δ


   

 

  
         

  
   

eşitliği ile elde edilir. j. aralık (
j 1s 

-
js ]’de bir başarısızlığın olabilirlik fonksiyonuna katkısı, pj 

ve S( sj )’dir. dj  başarısızlık sayısı, D j başarısız birimlerin kümesi, cj  sağdan durdurulmuş 

gözlemlerin sayısı, C j  durdurulmuş birimlerin kümesi olsun. D = (n, t, X ,δ) veriyi göstersin.  

 

0 0 0 0 0D (n , t ,X , ν )  daha önceki çalışmalardan elde edilen yaşam verisini göstersin. 0π (β,  δ) , 

(β,δ)  için başlangıç önselini göstersin. (β,δ)  için önsel dağılım,  

  0a

0 0 0 0π(β,δ | D ,a )  L(β,δ | D ) π (β,δ)  

biçimindedir. Burada 0L(β,  δ | D )  geçmiş veriye bağlı olabilirlik fonksiyonunu göstermektedir.  

 

Önsel belirlemeyi basitleştirmek için c0 ve θ0 sabit hiperparametreler olmak üzere, 

0 0 0 0 0π (β,δ) π (β | c )π (δ | θ )  

alınır. Burada 0 0π (β | c )  p boyutlu, 0 ortalama ve c0W0 varyans-kovaryans matrisine sahip çok 

değişkenli normal dağılım Np(0, c0 W0) alınır. 0 0π (δ | θ ) ise f 0 i / g 0 i  ortalamalı, 2

0i 0if / g  

varyanslı M bağımsız gamma yoğunluğunun çarpımına eşittir ve aşağıdaki gibi gösterilir: 

0i

M
f 1

0 0 i i 0i

i 1

π (δ | θ ) δ exp( δ g )




   

Burada 0 01 01 0M 0Mθ (f ,  g ,  ...,  f ,  g ) biçimindedir. Önsel belirleme işlemi a0  için önselin 

belirlenmesi ile son bulur. 0 0a  (0 a 1)   için Beta önseli, 
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0 0α 1 λ 1

0 0 0 0 0π(a | α ,λ ) a (1 a )
 

   

biçiminde tanımlanır. 

Son olarak birleşik önsel aşağıdaki gibi yazılabilir: 

  0a

0 0 0 0 0 0 0 0 0 0π(β,δ,a | D )  L(β,δ | D ) π (β | c )π (δ | θ )π(a | α ,λ )  

Birleşik önselin kapalı bir formda elde edilmesi ya da hesaplanabilmesi mümkün olmayabilir. 

Bunun yerine temel tehlike oranı ve regresyon katsayıları arasında bağımsızlık varsayılır. Bu 

durumda (β, δ) için birleşik olasılık yoğunluk fonksiyonu, 

0 0 0π(β,δ | D ) π(β | D )π(δ | D )  

ile elde edilir. β için çok boyutlu normal dağılım önseli, 

 1 1

0 0 0 0 0 0p
π(β | a ,μ , I )  N μ ,a I   

biçimindedir. Burada 0μ , önsel ortalamayı göstermektedir. 0μ , D0 veri seti kullanılarak β için 

kısmi olabilirlikten elde edilen çözümdür. I0 ise kısmi olabilirlik fonksiyonuna bağlı bilgi 

matrisidir ve aşağıdaki gibi elde edilir: 

0

2

0 0

β μ

I log(PL(β | D ))  
β β



 
    

 

 

Süreç boyunca temel amaç, β için çıkarımlar yapmaktır. δ parametresi için bilgi içermeyen önsel 

dağılım kullanılması uygun olabilmektedir. İkinci bir yaklaşım da 0 0π(δ | a ,D )  ortalaması ϕive 

varyansı 1

0 ia γ  olan M bağımsız gamma yoğunluğunun çarpımı olarak belirlenebilir. 0iδ̂ , D0 

verisinden elde edilen en çok olabilirlik tahmin edicisi olmak üzere 0i iδ̂  ve 0i iγ Var δ( )  

olarak alınabilir (İbrahim, Chen ve Sinha, 2001). 
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Bayesci çözümlemenin olabilirlik fonksiyonuyla olan ilişkisine bakıldığında (0, s1], (s1, s2], …, 

(sj−1, sj] ayrık zaman aralıkları, t(1), t(2), … , t(n) sıralı başarısızlık ya da durdurulmuş süreler 

olmak üzere H0(t)~GP(c0H*, c0) sürecine sahip olsun. hj= H0(t (j ))-H0(t (j -1 )) olduğundan, 

j 0 0 j 0h G(c h ,  c )  

olur. Burada 
0 jh = H*(t(j))-H

*(t(j-1))’dir.
j

j

R

A exp(x β)


   ve EGP; gamma süreci önseline göre 

beklenen değeri göstersin.  Eşitlik (4.1) aynı zamanda  

j

n
'

0 j

j 1 R

P(T t | X,β,H ) exp h exp(x β)
 

  
   

  
 

 

biçiminde yazılabilir. Bu durumda, 

0 0 jc h
'n n
j* *0

GP 0 0 ( j)

j 1 j 10 j 0 j

exp(x β)c
E [P(T t | X,β,H ) | H ] exp c H (t ) log(1 )

c A c A 

    
            

 
 

eşitliğindeki gibi elde edilir. Temel tehlike fonksiyonu, 

*

0

d
h (t) H (t)

dt


 

olmak üzere, θ = (β′, h0, c0)′ olsun.  

Olabilirlik fonksiyonu; 

iδ
' * 'n
j ( j) j*

0 ( j) 0

j 1 0 j ( j) 0 j

exp(x β) dH (t ) exp(x β)
L(θ | D) exp c H (t ) log(1 ) c log(1 )

c A dt c A

      
       

       
  

0 ic δ
' 'n
j j*

( j) 0 0 ( j)

j 1 0 j 0 j

exp(x β) exp(x β)
exp H (t ) log 1 c h (t ) log(1 )

c A c A

       
                

  

biçimindedir.  

 

Bu durumda aşağıdaki limit durumu elde edilir: 
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0

0

c
'

j

0 ( j)
c 0

0 j

exp(x β)
lim exp H (t ) log 1 0       j 1,  2,  ,  n

c A

  
         

               (4.2) 

Burada, 

0

' ' '

j j j

c 0
0 j j j

exp(x β) exp(x β) exp(x β)
lim  log 1 log 1  -      j 1,  2,  ,  n -1

c A A A

   
              

  (4.3) 

yazılabilir. Eşitlik (4.2) ve Eşitlik (4.3)’ten 

i

0

δ
'n
j

d *c 0
j 10 0 j

exp(x β)L(θ | D)
lim

c log(c )h A


 
   

 
         (4.4) 

yazılabilir. Burada  

n

i

i 1

d δ


  

durdurma sayısını,  

 
iδn

*

0 ( j)

j 1

h h (t )



 

eşitliğini göstermektedir. 

 

Eşitlik (4.4)’ün sağ yanına bakıldığında Cox kısmi olabilirlik fonksiyonu görülebilir. c0∞ 

durumunda (β,h0)’a bağlı olabilirlik fonksiyonu; 

0 i

0

c δ
' '

j j*

( j) 0 0 ( j)
c

0 j 0 j

exp(x β) exp(x β)
lim exp H (t ) log 1- -c h (t ) log(1- )

c A c A

                       

 

   iδ
* ' '

( j) j 0 ( j) jexp -H (t )exp(x β) h (t )exp(x β)  

biçimdedir. Buradan, 

    i

0

n
δ

* ' '

0 0 ( j) j 0 ( j) j
c

j 1

lim  L(β,c ,h | D) exp H (t )exp(x β) h (t )exp(x β)




                                 (4.5) 
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yazılabilir. Eşitlik (4.5)’in orantılı tehlikeler için (β, h0)’ın olabilirlik fonksiyonuna eşit olduğu 

görülmektedir. 

 

CRM’de sayma süreci, t zamanına kadar gerçekleşen olay sayısını sayar, dN i(t), [t, t+t) 

aralığında N i(t)’deki küçük bir artışı göstermektedir. N i(t) ve dN i(t) [0, t) aralığında olay 

gerçekleşmişse 1, gerçekleşmemişse 0 değerini almaktadır. dN i(t) tüm i ve t’ler için en az 1 

değerini alıyor olsa da, dN i(t), [t, t+t) aralığında olabilirlik fonksiyonuna katkısı Ii(t)dt 

ortalamalı bağımsız Poisson rastgele değişkeni olarak düşünülür. Modeli bu şekilde 

tanımlamak, bu aralıkta yoğunluğun sabit olmasını sağlar (Clayton, 1991). CRM’de Bayesci 

çözümlemede etkili sonsal hesaplamalar için Eşitlik (2.3)’de verilen olabilirlik fonksiyonu 

altında dN i(t), 

dNi(t)~Poisson(Ii(t)dt) 

biçimindedir. Veri (D) elde edildikten sonra, sonsal dağılım olan  0P β,H (t) | D  olasılığının 

elde edilmesine geçilir. Bayes teoreminden, 

   0 0P β,H (t) | D P D,β,H (t)
 

yazılabilir. Bayesci yaklaşım ile bileşik sonsal dağılım aşağıdaki gibi yazılabilir: 

   0 0 0P β,H (t) | D L D | β,H (t) P(β)P(H (t))       (4.6) 

Burada öncelikli olarak ilgilenilen parametre β’dır. Diğer bir parametre ise 0H (t) ’dir.  

 

4.2. Ölçüm Hatası Modellerinde Bayesci Çözümleme 

Bayesci yaklaşımlar, önsel dağılım ve uzman bilgisini de dahil ederek gerçek değerleri 

gözlenemeyen açıklayıcı değişkenlerin ölçüm hatasını hesaba katarak çözümlemeye esnek bir 

çerçeve sağlamaktadır (Muff ve ark., 2015). Son yıllarda MCMC yöntemlerindeki gelişmeyle 

birlikte ölçüm hatası problemlerinde de Bayesci yaklaşımın kullanımı artış göstermiştir. 

 

Ölçüm hatası modellerinde Bayesci çözümlemelerde ilk adım olabilirlik yaklaşımında olduğu 

gibi verinin her bir bileşeni için parametrik bir model belirlenir ve olabilirlik çözümlemesi 
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gerçek X i değerleri gözlenebilirmiş gibi modelde kullanılır. İkinci adımda ise ölçüm hatası 

modelinin belirlenmesi yer alır. Klasik ölçüm hatası modeli mi, Berkson hata modeli mi yoksa 

her ikisinin kombinasyonu olan bir model mi kullanılacağına karar verilir ve gözlenen 

modeldeki diğer Z açıklayıcı değişkenler koşulunda gözlemlenemeyen X açıklayıcı değişkenleri 

için bir dağılım belirlenir. Üçüncü adımda klasik Bayesci çözümlemede X kayıp gözlem gibi 

alınır ve diğer tüm değişkenler göz önüne alındığında X’in koşullu dağılımından yararlanılarak 

birden çok kez yerine koyularak işlem yapılır. W’yi içeren tüm verinin olabilirliği X 

ulaşılabilirmiş gibi elde edilir. Dördüncü adımda, Bayesci yaklaşımda klasik olabilirlik 

yöntemlerinden temel farklılık olarak parametreler rastgeleymiş gibi ele alınır. Bu da modelde 

önsel dağılım olarak adlandırılır. Son adımda ise gözlenen tüm verilerden parametrelerin sonsal 

dağılımları elde edilerek Bayesci sonuçlar yorumlanır (Carroll ve ark., 2006). 

 

Ölçüm hatası modeli verilen gerçek değişkenin yanlış ölçümü için bir modeldir ve aşağıdaki 

gibi üretilir: 

2

i i i εW | X N(X ,σ )
 

Bu klasik ölçüm hatası modelinin bir sonucudur. Açıklayıcı değişken ölçüm hatası içeriyorsa 

E(Wi│xi  ) = xi olur. Ölçüm hatalı değişken W i, gerçek ölçüm değişkeni olan X i’nin yansız bir 

tahmin edicisidir (Weeding, 2016). Ölçüm hatası modellerinde en büyük zorluk ölçüm hatası 

varyansının tahminidir (Muff ve ark., 2015). Ölçüm hatalı değişken için tekrarlı gözlem varsa 

bu bilgi modelden tahmin edilebilen ölçüm hatası varyansı için önsel bir dağılım üretmekte 

kullanılabilir. Ancak bu yalnızca Bayesci çözümleme için geçerlidir. Diğer düzeltme yöntemleri 

ölçüm hatası varyansının bilinmesini ya da tekrarlı gözlemlerden tahmin edilmesini gerektirir. 

Gözlenen bir birim için olabilirlik, 

1 2Y|Z,X w|Z,X X|Zf (Y,W,X | Z,Ω) f (Y | Z,X,β) f (W | Z,X,α )f (X | Z,α ) 
 

biçiminde gösterilebilir ve burada Ω bütün bilinmeyen parametreleri göstermektedir. Ölçüm 

hatası modellerinin Bayesci çözümlemesi için dördüncü adım buradaki Ω için π(Ω) biçiminde 

gösterilen önsel bir dağılım tanımlanır. Sonrasında tüm verinin olabilirliği, 
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n

i i i i

i 1

π(Ω) f (Y , W ,X | Z ,Ω)


  

biçiminde ifade edilebilir. 
n

i i i i

i 1

f (Y, W,X | Z,Ω) f (Y , W ,X | Z ,Ω)


  olmak üzere Ω’nın sonsal 

dağılımı ise, 

π(Ω)f (Y, W, x | Z,Ω)dx
f (Ω | Y, W, Z)

π(ω)f (Y, W, x | Z,ω)dxdω



      (4.7) 

biçimindedir. 

 

Ancak Eşitlik (4.7)’nin integrasyonu Ω az sayıda bilinmeyen parametre içeriyor dahi olsa 

analitik olarak mümkün değildir. Gibbs örneklemesi bu sorun için kullanılan çözümlerden 

biridir. Gibbs örneklemesi Ω’nın başlangıç değerleri ile başlayan, aşağıdaki adımlardan oluşan 

yinelemeli MCMC yöntemidir. İlk adım olarak gözlemlenmemiş X değerlerinin bir 

örneklemesi, şu anki değeri verilen Ω’nın sonsal dağılımlarından örnekleyerek oluşturulur ve 

Xi’nin sonsal dağılımı,  

i i i i
i i i i

i i i

f (Y , W ,X | Z ,Ω)
f (X | Y , W , Z ,Ω)

f (Y , W , x | Z ,Ω)dx



 

biçimindedir. İkinci adımda, sonsal dağılımından Ω’nın yeni bir değeri üretilir ve üretilen X 

değeri aşağıdaki gibidir: 

π(Ω)f (Y, W,X | Z,Ω)
f (Ω | Y, W, Z,X)

π(ω)f (Y, W,X | Z,ω)dω



 

Genellikle bir kerede diğerleri sabit tutularak Ω’nın içerdiği yalnız bir parametre için bu işlemler 

yapılır. Ω’nın j. değeri 
jω  olsun, Ω’nın diğer bileşenleri Ω(-j) ile gösterilsin. Bu durumda sonsal 

dağılım, 

j ( j) j ( j)

j ( j) * * *

j ( j) j ( j) j

π(ω ,Ω )f (Y, W,X | Z,ω ,Ω )
f (ω | Y, W, Z,X, Ω )

π(ω ,Ω )f (Y, W,X | Z,ω ,Ω )dω

 



 




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biçimindedir. Üçüncü adımda bu işlem ilk üretilen bir kısım örneklem yakılmak (burn in) üzere 

yakınsama sağlanana kadar birçok kez tekrarlanır. Son adımda ise sonsal ortalamadan tahmin 

edilmek istenen parametre değeri elde edilir (Carroll ve ark., 2006). 

 

4.3. Ölçüm Hatalı Açıklayıcı Değişkenli Cox Regresyon Modelinin Düzeltilmiş Gamma 

Önselli Bayesci Çözümlemesi 

X i ölçüm hatası içeren açıklayıcı değişken, Z i ölçüm hatası içermeyen açıklayıcı değişken, T i 

gözlenen yaşam süresi, δ i  durum göstergesi, Y i=(T i, δ i) bileşenlerini içeren çıktı değişkeni, β 

regresyon katsayıları ve H0(t) birikimli temel tehlike fonksiyonu olmak üzere 

i i i1 i2 i(Y ,X ,W ,W | Z )  için birleşik parametrik model, 

2

i i i 0 i i ε i if (Y | X ,Z ,β,H (t)) f (W | X ,σ ) f (X | Z ,γ)
 

olarak ifade edilebilir. Burada ilk bileşen öncelikli amaç olan β=(βx, βz) regresyon 

parametrelerini ve birikimli temel tehlike fonksiyonunu içerir. İkinci bileşen klasik (toplamsal) 

hata modeline sahip ve hataların 0 ortalama, 2

εσ varyansı ile normal dağılım gösterdiği, ölçüm 

hatası için yazılan kısmı ifade eder. Son bileşen ise Z i koşulu altında gözlemlenemeyen X i 

açıklayıcı değişkeni için tanımlanan kısımdır. Üç alt model parametreleri için önsellerin 

bağımsızlığı varsayılır. Burada, Z i’nin dağılımını modellemekten kaçınmak için tüm Zi  

gözlemlerinin elde edildiği, hatanın Y i ve Z i’ye göre türevlenemediği varsayılır (Bartlett ve 

Keogh, 2018). 

 

Burada ilk kısım için Eşitlik (4.6)’da  öncelikli olarak ilgilenilen parametre β, diğer bir 

parametre ise 0H (t) ’dir. β için  0P β | H (t),D , H0(t) için  0P H (t) | D,β  tam koşullu sonsal 

dağılımların elde edilmesi için Gibbs örneklemesi uygulanması gerekir. Winbugs, R gibi 

programlar otomatik olarak bu dağılımların elde edilmesini sağlamaktadır. Eşitlik (4.6)’nın 

farklı Bayesci çözümlemelerinde H0(t)’nin parametrik olmayan tanımlaması farklılık gösterir. 

Bayesci çözümlemelerin birçoğunda H0(t) için Gamma süreci önsel dağılım olarak 

tanımlanmıştır (Bartlett ve Keogh, 2018).  
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Bu tez çalışmasında, ölçüm hatası için düzeltilmiş CRM’de H0(t) için Bayesci çözümlemede 

kullanılan gamma önsel dağılımı yerine poligonal fonksiyonun kullanımı alternatif bir yöntem 

olarak düşünülmüştür. 

 

4.4. Ölçüm Hatalı Açıklayıcı Değişkenli Cox Regresyon Modelinin Düzeltilmiş Poligonal 

Önselli Bayesci Çözümlemesi 

Beamonte ve Bermúdez (2003), CRM’nin parametrik olmayan kısmı olan temel tehlike 

fonksiyonu h0(t) için köşe noktaları 
Max0 1 T T 1a 0 a ... a a       zaman noktalarında olacak 

şekilde negatif olmayan poligonal fonksiyonu kullanmışlardır. Burada poligonal 

Max0 1 T T 1τ 0 τ ... τ τ       değerlerini almaktadır ve 
maxT 1a 

zaman noktasından sonra sabit 

olacak biçimde ele alındığında temel tehlike fonksiyonu aşağıdaki gibi yazılabilir: 

max

j 1 j j

j j j 1 max

j 1 j0

T 1     max

(τ τ )(t a )
τ   if  a t a , j 1,...,T

a ah (t)                                                    (4.8)

                  τ      if  t T +1     









 
   

 
 

 

Temel tehlike fonksiyonu için Eşitlik (4.8)’in kullanılması ile Eşitlik (2.2)’deki Ii(t) sürekli 

olacaktır.  

 

Gamma sürecinde birikimli tehlike artışlarının bağımsız olduğu varsayılır. Ancak bu birçok 

uygulamada gerçekçi olmayabilir.  Ayrıca bitişik aralıklar arası etkinliği yansıtmaya izin 

vermez. Birinci dereceden otokorelasyon süreci olarak tanımlanabilen τ vektörü için önsel 

belirlenerek düzleştirme fikri Gamerman (1991) tarafından benzer bir çalışmada önerilmiştir.  

Gamerman’nın (1991) çalışmasında τ vektörü, 

j 1 j j maxτ τ exp(e ),     j 1,  ...,  T    

biçiminde tanımlanır. Burada,  

1 1τ Gamma(τ | a , b )τ τ  

dağılımına sahiptir. 
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τ vektöründeki 
max1 T(e ,...,e ) ,   sıfır ortalama ve 2

eσ  varyansı ile bağımsız, log-normal dağılıma 

sahip olduğu varsayılır. Burada varyans terimi, 

2

e e eσ Gamma(tau.e | a ,b )  

dağılımı göstermektedir ve 

2

etau.e 1/ σ  

olarak tanımlanır.  

 

Burada e ea b 0.001   ve τ τa b 0.01   alınması 1τ  parametresi için önselin 1 ortalama ve 

500 varyansa sahip olmasını gösterir (Mostafa ve Ghorbal, 2011).  

 

İlk olarak Gamerman (1991) tarafından önerilen τ vektörü için önsel belirlenerek düzleştirme 

fikri, Beamonte ve Bermúdez (2003) tarafından geliştirilerek temel tehlike fonksiyonu için 

tanımlanan poligonal fonksiyonun,  birikimli tehlike artışlarının bağımsızlığını varsayan gamma 

süreci yerine kullanılması, ölçüm hatası içeren CRM’de kullanılarak ölçüm hatası 

düzeltilmesinde kullanılan Bayesci yaklaşımlara alternatif bir yöntem olarak önerilmiştir. 

Önerilen yeni yöntem ile ölçüm hatalı açıklayıcı değişken içeren CRM’de beta için daha az yanlı 

katsayı kestirimlerinin elde edilmesi hedeflenmektedir.   
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5. BENZETİM ÇALIŞMASI VE UYGULAMA 

Bu bölümde ölçüm hatalı açıklayıcı değişkenli CRM’de literatürde verilen ve önerilen 

yöntemlerin karşılaştırılması için uygulanan benzetim süreci hakkında bilgi verilmiş ve 

sonuçları sunulmuştur. Ardından literatürde yer alan  1974 ve 1984 yılları arasında yapılan 

Mayo klinik çalışmasına ait verilerle ve Goldman ve ark.’nın (1996) çalıştığı AIDS veri setinde 

modellerin sonuçları elde edilerek karşılaştırılmış ve yorumlanmıştır. 

 

5.1. Benzetim Çalışması 

T i, yaşam süresi, orantılı tehlikeler varsayımını sağlama koşulu altında CRM’den, belirlenen 

kitle parametrelerine göre Bender, Augustin ve Bettner (2005) tarafından önerilen fonksiyon 

yardımı ile üretilmiştir.  X i  ölçüm hatası içeren açıklayıcı değişkenin gerçek değeri ve Z i  ölçüm 

hatası içermeyen açıklayıcı değişken olmak üzere ortalaması 0, varyansı 1 olan çok değişkenli 

normal dağılımdan, aralarındaki kovaryansları 0.25 olacak şekilde üretilmiştir. Örneklem 

büyüklüğü (n) 30, 50 ve 100 için senaryolar oluşturulmuştur. βX, βZ = 0.5, 1.0, 1.5 ve 0.10 

(düşük), 0.30 (orta) ve 0.60 (yüksek) durdurma oranları için senaryolar üretilmiştir. 

 

Ölçüm hatalı değişken W i1 = X i + ε i1 eşitliğinden elde edilmiştir. Burada ε i1 ~ N(0,σε
2) 

dağılımından üretilmiştir. Ölçümlerden rastgele %20’si, aynı hata varyansına sahip olacak 

şekilde ölçüm hatalı değişkenin ikinci tekrarlı ölçümü olarak elde edilmiştir. Bu hata varyansı 

koşullu olmayan güvenilirlik r = σX
2/(σX

2 + σε
2) olacak biçimde seçilmiş ve sırasıyla düşük, orta 

ve yüksek güvenirliği göstermek üzere 0.5, 0.7 ve 0.9 için sonuçlar elde edilmiştir. 

 

CRM’nin Bayesci çözümlemesinde regresyon parametreleri ve bazı alt model parametreleri için 

önsel dağılım belirlenmesine ek olarak birikimli temel tehlike fonksiyonu H0(t) için önsel 

dağılım belirlemeyi gerektirir. H0(t) için belirlenen önsel dağılımın β dahil diğer önsel 

dağılımlardan bağımsız olduğu varsayılır. Burada daha önce önerilen ölçüm hatası için 

düzeltilmiş Bayesci CRM ve Bayesci CRM’de H0(t) için Gamma önseli kullanılmıştır. Tez 

kapsamında önerilen model için ölçüm hatası için düzeltilmiş Bayesci modelde H0(t) için 

poligonal önseli kullanılmıştır.  
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Benzetim sürecinde bütün model parametreleri için Gustafson (2003) tarafından önerilen bilgi 

içermeyen önseller tanımlanmıştır.  

 

βX ve βZ için 0 ortalama ve 1.38 varyansı ile bağımsız normal dağılım önseli tanımlanmıştır. 

Bu şekilde belirlenmesi parametre tahmininin sabitlenmesine (stabilizing) yardımcı olmaktadır 

(Hamra, MacLehose ve Cole, 2013). Bu önselin kullanımı %95 olasılıkla exp(βX) ve 

exp(βZ)’nin 0.1 ile 10 arasında olduğunu var sayar. γZ için ise 0 ortalamalı 10000 varyanslı 

normal dağılım önseli tanımlanmıştır. Tüm varyans parametreleri için ters Gamma dağılımı 

IG(0.5, 0.5) önseli kullanılmıştır. Bu önsel dağılım ile varyans için en iyi tahmin elde edilebilir 

(Gustafson, 2003). 

 

Tüm modeller beş paralel zincir ile çalıştırılmıştır. Gelman-Rubin yakınsama testi yakınsama 

ölçütü olarak kullanılmış ve 1.01 ve daha küçük değeri için zincirlerin yeteri kadar karıştığı 

varsayılmıştır. Bütün senaryolar için yakınsamanın sağlandığı iterasyon sayısı ile çalışılmıştır.  

Her bir senaryo için 500 tekrar alınmıştır. Bayesci çıkarsamalar için R paket programında Just 

Another Gibbs Sampler (JAGS) programı kullanılmıştır.  

 

Kısmi olabilirlik fonksiyonundan elde edilen CRM, Bayesci çözümlemesi (B_CRM), ölçüm 

hatası için düzeltilmiş Gamma önselli Bayesci CRM (DGB_CRM) ve ölçüm hatası için 

düzeltilmiş poligonal önselli Bayesci CRM (DPB_CRM) sonuçları karşılaştırılmıştır. Bu 

yöntemler için tahmin edicilerin performansını karşılaştırmak amacı ile hata kareler ortalaması 

(HKO) ve kapsama olasılığı (KO) hesaplanmıştır. KO Bayesci yöntemler için üretilen 500 

benzetim senaryosunda %95 Sonsal Bayes güven aralıklarının (posterior credible intervals) 

parametrenin gerçek değerini içerme oranı olarak elde edilmiştir. Burada %95 Sonsal Bayes 

güven aralıkları 0.025 ve 0.975 sonsal yüzdeliklerinden hesaplanmıştır. Klasik model için ise 

benzetim ile üretilen 500 senaryoda parametre için tahmin edilen katsayının güven aralığının 

gerçek değeri içerme oranı olarak elde edilmiştir. 
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5.1.1. Benzetim Çalışması Sonuçları 

Benzetim çalışmalarının HKO ve KO değerleri β = 0.5 için Çizelge 5.1’de ve Şekil 5.1’de, 

β = 1.0 için Çizelge 5.2’de ve Şekil 5.2’de ve β = 1.5 için Çizelge 5.3’te ve Şekil 5.3’te yer 

almaktadır.  
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Çizelge 5.1. β = 0.5 için HKO ve KO sonuçları 

n beta durdurma güvenirlik DGB_CRM KO_DGB DPB_CRM KO_DPB B_CRM KO_B    CRM KO_CRM 

30 0.5 0.60 0.5 0.25186 0.970 0.16695 0.988 0.14471 0.778 0.15089 0.788 

30 0.5 0.60 0.7 0.24814 0.960 0.15581 0.982 0.13046 0.900 0.14405 0.908 

30 0.5 0.60 0.9 0.24009 0.964 0.14659 0.974 0.13233 0.938 0.16037 0.938 

30 0.5 0.30 0.5 0.19528 0.992 0.09228 0.990 0.10439 0.676 0.10661 0.668 

30 0.5 0.30 0.7 0.19388 0.978 0.07532 0.990 0.07564 0.896 0.07858 0.896 

30 0.5 0.30 0.9 0.17812 0.970 0.06752 0.988 0.06675 0.956 0.07388 0.95 

30 0.5 0.10 0.5 0.21152 0.976 0.08345 0.986 0.09988 0.646 0.10154 0.648 

30 0.5 0.10 0.7 0.20869 0.964 0.06895 0.990 0.07176 0.856 0.07430 0.854 

30 0.5 0.10 0.9 0.18572 0.946 0.06030 0.996 0.06296 0.950 0.06899 0.948 

50 0.5 0.60 0.5 0.21029 0.960 0.11604 0.964 0.10856 0.672 0.10959 0.670 

50 0.5 0.60 0.7 0.19221 0.956 0.10406 0.966 0.07794 0.878 0.08005 0.876 

50 0.5 0.60 0.9 0.14790 0.946 0.09268 0.960 0.07277 0.940 0.07878 0.942 

50 0.5 0.30 0.5 0.19361 0.974 0.07111 0.982 0.09110 0.512 0.09140 0.514 

50 0.5 0.30 0.7 0.16969 0.960 0.06021 0.980 0.05465 0.816 0.05505 0.82 

50 0.5 0.30 0.9 0.11245 0.938 0.05001 0.982 0.04181 0.946 0.04374 0.946 

50 0.5 0.10 0.5 0.16228 0.976 0.05104 0.992 0.08291 0.430 0.08303 0.43 

50 0.5 0.10 0.7 0.14346 0.948 0.04320 0.988 0.04657 0.812 0.04650 0.804 

50 0.5 0.10 0.9 0.09786 0.924 0.03954 0.978 0.03362 0.926 0.03468 0.926 

100 0.5 0.60 0.5 0.17351 0.960 0.07939 0.974 0.09127 0.388 0.09113 0.386 

100 0.5 0.60 0.7 0.11334 0.950 0.06271 0.972 0.05175 0.768 0.05144 0.776 

100 0.5 0.60 0.9 0.05609 0.946 0.04431 0.960 0.03376 0.938 0.03440 0.942 

100 0.5 0.30 0.5 0.14535 0.960 0.10543 0.990 0.08156 0.208 0.08145 0.198 

100 0.5 0.30 0.7 0.08670 0.950 0.09014 0.986 0.04036 0.656 0.04005 0.664 

100 0.5 0.30 0.9 0.03491 0.956 0.07775 0.974 0.02005 0.922 0.02021 0.932 

100 0.5 0.10 0.5 0.13403 0.964 0.17616 0.974 0.08177 0.130 0.08160 0.130 

100 0.5 0.10 0.7 0.07528 0.960 0.02944 0.986 0.03627 0.600 0.03601 0.610 

100 0.5 0.10 0.9 0.03060 0.940 0.12817 0.970 0.01780 0.920 0.01784 0.920 

DGB_CRM: Ölçüm hatası için düzeltilmiş Gamma önselli Bayesci Cox regresyon modeli, DPB_CRM: Ölçüm hatası için düzeltilmiş Poligonal önselli Bayesci Cox regresyon 

modeli, B_CRM: Bayesci Cox regresyon modeli, CRM: Cox regresyon modeli, KO: Kapsama Olasılığı.
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(a) r = 0.5 için HKO  (b) r = 0.5 için KO 

  

(c) r = 0.7 için HKO  (d) r = 0.7 için KO 

  

(e) r = 0.9 için HKO (f) r = 0.9 için KO 

Şekil 5.1. β = 0.5 için HKO ve KO sonuçlarının grafiği 
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Bilgi içermeyen önsel durumunda B_CRM ile CRM’nin sonuçlarının yakın olduğu literatürde 

gösterilmiştir (Omurlu, Ozdamar ve Ture, 2009). Ölçüm hatalı açıklayıcı değişken bulunması 

durumunda da ele alınan tüm senaryolarda B_CRM ile CRM sonuçları yakın elde edilmiştir. 

 

Regresyon katsaysı β=0.5 için Çizelge 5.1'de verilen sonuçlar yorum kolaylığı için Şekil 5.1'de 

sunulmuş ve yorumlar Şekil 5.1 üzerinden verilmiştir. DGB_CRM’ye ait HKO değerlerine 

bakıldığında tüm senaryolarda diğer modellere göre daha büyük HKO değeri elde edilmiştir. 

Şekil 5.1 (a)’da HKO değerlerine bakıldığında örneklem büyüklüğünün 100, durdurmanın 0.10 

olduğu durum hariç DPB_CRM, B_CRM ve CRM yaklaşık olarak benzer sonuçlar vermiştir. 

Şekil 5.1 (b) incelendiğinde güvenirliğin 0.5 olduğu durumlarda B_CRM ve CRM için KO 

değerleri 0.13 ile 0.78 arasındadır ve örneklem büyüklüğü arttıkça KO değerlerinin düştüğü 

sonucuna ulaşılmıştır. Ancak bu senaryolarda DPB_CRM’nin KO değerlerine bakıldığında 

diğer modellere göre daha iyi sonuç verdiği görülmektedir. Örneklem büyüklüğünün 100, 

durdurmanın 0.10 olduğu durumda ise DGB_CRM için uygun KO değeri ile küçük HKO değeri 

elde edilmiştir.  Şekil 5.1 (d) incelendiğinde güvenirliğin 0.7 olduğu durumlarda B_CRM ve 

CRM için KO değeri 0.60 ile 0.91 arasındadır. Güvenirliğin 0.5 olduğu durumlara göre yüksek 

olmasına rağmen diğer modellere göre yine düşüktür ve örneklem büyüklüğü arttıkça KO bu 

modellerde yine düşmektedir. Şekil 5.1 (c) incelendiğinde 0.7 güvenirlikte, 0.10 durdurma 

düzeyinde tüm örneklem büyüklüklerinde DPB_CRM diğer modellere göre daha küçük HKO 

değerine sahiptir. Örneklem büyüklüğünün 100, durdurma oranının 0.30 olduğu senaryo için 

DGB_CRM ve DPB_CRM’nin HKO değerleri yakın elde edilmiş ancak KO değerine de 

bakıldığında DGB_CRM daha iyi sonuç vermiştir. Şekil 5.1 (f) incelendiğinde güvenirliğin 0.9 

olduğu durumlarda B_CRM ve CRM için KO değeri 0.92 ile 0.96 arasındadır. Örneklem 

büyüklüğünün 30, durdurma oranının 0.10 olduğu durum dışında tüm senaryolarda en küçük 

HKO, B_CRM’de elde edilmiştir. Örneklem büyüklüğünün 30, durdurma oranının 0.10 olduğu 

durumda ise en küçük HKO, DPB_CRM için elde edilmiş olmasına rağmen B_CRM ile 

değerleri çok yakındır ve KO değeri bakımından B_CRM daha uygundur. Diğer senaryolar için 

ise DPB_CRM için HKO sonuçları B_CRM ve CRM için elde edilen HKO sonuçlarına 

yakındır. KO değerleri bakımından incelendiğinde ise DPB_CRM’nin alternatif bir model 

olabileceği söylenebilir. 
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Çizelge 5.2. β = 1 için HKO ve KO sonuçları 

n beta durdurma güvenirlik DGB_CRM KO_DGB DPB_CRM KO_DPB B_CRM KO_B CRM KO_CRM 

30 1 0.60 0.5 0.23882 0.984 0.40375 0.938 0.41435 0.420 0.41023 0.432 

30 1 0.60 0.7 0.20561 0.986 0.30457 0.950 0.26102 0.734 0.26867 0.764 

30 1 0.60 0.9 0.20247 0.986 0.23426 0.954 0.16687 0.942 0.23016 0.944 

30 1 0.30 0.5 0.14382 0.994 0.28770 0.928 0.39388 0.224 0.38956 0.236 

30 1 0.30 0.7 0.13670 0.994 0.17827 0.956 0.21270 0.616 0.20764 0.638 

30 1 0.30 0.9 0.15763 0.994 0.10842 0.980 0.09892 0.926 0.11552 0.930 

30 1 0.10 0.5 0.13284 0.986 0.26458 0.944 0.37577 0.198 0.37102 0.204 

30 1 0.10 0.7 0.13341 0.996 0.15917 0.966 0.20163 0.590 0.19718 0.610 

30 1 0.10 0.9 0.15789 0.978 0.09792 0.988 0.09988 0.900 0.11561 0.918 

50 1 0.60 0.5 0.15744 0.984 0.24733 0.944 0.38022 0.194 0.37310 0.194 

50 1 0.60 0.7 0.14078 0.978 0.16746 0.956 0.20374 0.608 0.19417 0.64 

50 1 0.60 0.9 0.13055 0.968 0.12177 0.952 0.09877 0.922 0.10737 0.926 

50 1 0.30 0.5 0.11709 0.986 0.17896 0.934 0.37169 0.052 0.36713 0.056 

50 1 0.30 0.7 0.12198 0.982 0.10703 0.958 0.18040 0.430 0.17274 0.46 

50 1 0.30 0.9 0.11932 0.968 0.07050 0.970 0.06584 0.902 0.06538 0.912 

50 1 0.10 0.5 0.10038 0.996 0.16203 0.930 0.36995 0.024 0.36587 0.024 

50 1 0.10 0.7 0.11125 0.990 0.09099 0.962 0.17515 0.380 0.16870 0.392 

50 1 0.10 0.9 0.11314 0.966 0.05416 0.980 0.05632 0.890 0.05596 0.904 

100 1 0.60 0.5 0.15078 0.978 0.15043 0.916 0.39246 0.028 0.38801 0.030 

100 1 0.60 0.7 0.13310 0.968 0.10971 0.902 0.19872 0.298 0.19197 0.322 

100 1 0.60 0.9 0.08653 0.946 0.08036 0.910 0.07274 0.828 0.07032 0.860 

100 1 0.30 0.5 0.11388 0.980 0.21527 0.928 0.37981 0.000 0.37695 0.000 

100 1 0.30 0.7 0.09226 0.972 0.13662 0.938 0.17861 0.128 0.17380 0.148 

100 1 0.30 0.9 0.05419 0.958 0.11255 0.944 0.04706 0.812 0.04432 0.826 

100 1 0.10 0.5 0.10162 0.982 0.11653 0.930 0.37770 0.000 0.37534 0.000 

100 1 0.10 0.7 0.08195 0.978 0.19606 0.944 0.17792 0.070 0.17418 0.074 

100 1 0.10 0.9 0.05213 0.944 0.04765 0.972 0.03992 0.788 0.03746 0.802 

DGB_CRM: Ölçüm hatası için düzeltilmiş Gamma önselli Bayesci Cox regresyon modeli, DPB_CRM: Ölçüm hatası için düzeltilmiş Poligonal önselli Bayesci Cox regresyon 

modeli, B_CRM: Bayesci Cox regresyon modeli, CRM: Cox regresyon modeli, KO: Kapsama Olasılığı.
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(a) r = 0.5 için HKO  (b) r = 0.5 için KO 

  

(c) r = 0.7 için HKO  (d) r = 0.7 için KO 

  

(e) r = 0.9 için HKO (f) r = 0.9 için KO 

Şekil 5.2. β = 1.0 için senaryoların HKO ve KO sonuçlarının grafiği 
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Çizelge 5.2’nin özetlendiği Şekil 5.2 incelendiğinde β=1 için güvenirliğin 0.5 olduğu durumda, 

B_CRM ve CRM için KO sıfır ile 0.43 arasında, güvenirliğin 0.7 olduğu durumda 0.07 ile 0.76 

arasında değişmekte ve örneklem büyüklüğü arttıkça KO düşmektedir. Şekil 5.2 (a) 

incelendiğinde 0.5 güvenirlikte örneklem büyüklüğünün 100, durdurma oranının 0.60 ve 0.10 

olduğu durumlar dışında tüm senaryolarda en küçük HKO, DGB_CRM için elde edilmiştir. 

Örneklem büyüklüğünün 100, durdurmanın 0.60 ve 0.30 olduğu durumlar için ise DPB_CRM 

ve DGB_CRM’nin HKO değerleri yakın elde edilmiştir. KO değerlerine bakıldığında ise iki 

model için de 0.95’e yakındır. Şekil 5.2 (c) incelendiğinde 0.7 güvenirlik düzeyinde 50 

örneklem büyüklüğü 0.30 ve 0.10 durdurma oranlarında DPB_CRM en küçük HKO değerini 

veren model olmuş ve KO değeri 0.95 civarındadır. Örneklem büyüklüğünün 100, durdurma 

oranının 0.60 olduğu durumda ise DPB_CRM en küçük HKO değerine sahip model olmasına 

rağmen KO değeri 0.90 elde edilmiştir. DGB_CRM için ise bu senaryoda yakın HKO değeri 

elde edilmiş ve KO değeri de 0.95’e yakındır. Diğer senaryolarda ise DGM_CRM en küçük 

HKO değerine sahip modeldir. Şekil 5.2 (e) incelendiğinde 0.9 güvenirlik düzeyinde ise 30 

örneklem büyüklüğü, 0.60 durdurma oranı için B_CRM’de HKO ve KO değerlerine 

bakıldığında en iyi model olarak elde edilmiştir. Ancak örneklem büyüklüğü arttıkça bu 

modeller bazı senaryolarda daha küçük HKO değeri vermesine rağmen KO değerleri hem 

B_CRM için hem de CRM için 0.80’e kadar düşmüştür. Örneklem büyüklüğünün 100 olduğu 

tüm durdurma oranlarında CRM daha küçük HKO değerine sahip olmasına rağmen KO 

değerleri 0.80 ve 0.86 arasında elde edilmiştir. Durdurma oranının 0.10 olduğu durumda diğer 

modellerin de HKO değerleri CRM’nin değerine yakın elde edilmiş ancak düzeltilmiş 

modellerin KO değeri 0.95’e yakın elde edildiği için düzeltilmiş iki modelin daha iyi olduğu 

söylenebilir. Durdurma oranının 0.30 ve 0.60 olduğu durumlarda ise hem HKO değerleri hem 

de KO değerleri değerlendirildiğinde DGB_CRM’nin daha iyi sonuç verdiği görülmüştür. 

Örneklem büyüklüğünün 50 olduğu durumda ise 0.30 ve 0.60 durdurma oranlarında CRM ve 

B_CRM küçük HKO vermesine rağmen, KO normal seviyesinden düşük sonuç vermiştir. 

DPB_CRM için bu senaryolarda CRM ve B_CRM ile yakın HKO değeri elde edilirken, KO da 

0.95 civarı elde edilmiştir. Durdurma oranının 0.10 olduğu durumda ise uygun KO ile birlikte 

en küçük HKO değerinin elde edildiği model DPB_CRM’dir. Örneklem büyüklüğünün 30, 
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durdurma oranının 0.30 ve 0.60 olduğu senaryolarda ise B_CRM iyi sonuç verirken, 0.10 

durdurma oranında DPB_CRM en iyi modeldir. 
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Çizelge 5.3. β = 1.5 için HKO ve KO sonuçları 

n beta durdurma güvenirlik DGB_CRM KO_DGB DPB_CRM KO_DPB B_CRM KO_B CRM KO_CRM 

30 1.5 0.60 0.5 0.41268 0.968 0.98420 0.756 1.00062 0.152 1.09426 0.210 

30 1.5 0.60 0.7 0.25756 0.980 0.73055 0.824 0.26374 0.446 0.55016 0.590 

30 1.5 0.60 0.9 0.17592 0.988 0.51830 0.884 0.29123 0.852 0.37833 0.890 

30 1.5 0.30 0.5 0.25948 0.972 0.80467 0.672 0.99641 0.040 0.95983 0.054 

30 1.5 0.30 0.7 0.14210 0.998 0.53196 0.800 0.55439 0.298 0.49537 0.382 

30 1.5 0.30 0.9 0.09812 0.992 0.31627 0.920 0.20681 0.840 0.19038 0.898 

30 1.5 0.10 0.5 0.25293 0.974 0.79215 0.572 1.00356 0.024 0.96974 0.040 

30 1.5 0.10 0.7 0.13339 0.986 0.50993 0.758 0.55324 0.236 0.50112 0.320 

30 1.5 0.10 0.9 0.09199 0.996 0.29215 0.898 0.20309 0.756 0.19211 0.832 

50 1.5 0.60 0.5 0.25812 0.970 0.70363 0.766 1.01566 0.020 0.98261 0.034 

50 1.5 0.60 0.7 0.16129 0.984 0.48350 0.808 0.56902 0.238 0.51320 0.294 

50 1.5 0.60 0.9 0.11476 0.986 0.31738 0.838 0.21641 0.794 0.19081 0.858 

50 1.5 0.30 0.5 0.16921 0.970 0.58102 0.670 1.00969 0.004 0.98667 0.004 

50 1.5 0.30 0.7 0.10089 0.992 0.35408 0.784 0.53608 0.094 0.49505 0.158 

50 1.5 0.30 0.9 0.08454 0.992 0.18803 0.876 0.16414 0.724 0.13724 0.808 

50 1.5 0.10 0.5 0.14608 0.984 0.56098 0.556 0.98885 0.000 0.97182 0.000 

50 1.5 0.10 0.7 0.08522 0.988 0.32578 0.746 0.51263 0.056 0.47932 0.092 

50 1.5 0.10 0.9 0.06998 0.998 0.15621 0.882 0.13834 0.684 0.11314 0.772 

100 1.5 0.60 0.5 0.16500 0.964 0.46575 0.766 1.04010 0.000 1.02290 0.000 

100 1.5 0.60 0.7 0.12501 0.954 0.31382 0.754 0.56659 0.040 0.53415 0.064 

100 1.5 0.60 0.9 0.08740 0.968 0.19414 0.758 0.17423 0.628 0.14393 0.712 

100 1.5 0.30 0.5 0.11055 0.972 0.58544 0.668 1.01643 0.000 1.00579 0.000 

100 1.5 0.30 0.7 0.07722 0.974 0.35858 0.764 0.52822 0.000 0.50707 0.000 

100 1.5 0.30 0.9 0.05295 0.986 0.20407 0.844 0.12964 0.498 0.10675 0.618 

100 1.5 0.10 0.5 0.11526 0.956 0.81564 0.616 1.03230 0.000 1.02393 0.000 

100 1.5 0.10 0.7 0.07216 0.980 0.51111 0.698 0.53771 0.000 0.51992 0.000 

100 1.5 0.10 0.9 0.03998 0.994 0.31449 0.862 0.12958 0.392 0.10926 0.480 

DGB_CRM: Ölçüm hatası için düzeltilmiş Gamma önselli Bayesci Cox regresyon modeli, DPB_CRM: Ölçüm hatası için düzeltilmiş Poligonal önselli Bayesci Cox regresyon modeli, 

B_CRM: Bayesci Cox regresyon modeli, CRM: Cox regresyon modeli, KO: Kapsama Olasılığı. 
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(a) r = 0.5 için HKO  (b) r = 0.5 için KO 

  

(c) r = 0.7 için HKO  (d) r = 0.7 için KO 

  

(e) r = 0.9 için HKO (f) r = 0.9 için KO 

Şekil 5.3. β = 1.5 için senaryoların HKO ve KO sonuçlarının grafiği
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Çizelge 5.3 ve yorumlama kolaylığı için sunulan Şekil 5.3 incelendiğinde β=1.5 için belirlenen 

tüm örneklem büyüklükleri, durdurma oranları ve güvenirlik değerleri için DGM_CRM için en 

küçük HKO değeri elde edilmiştir. Güvenirliğin 0.5 olduğu, 50 örneklem büyüklüğü, 0.10 

durdurma oranı dışında tüm olası senaryolarda bu modelin KO değeri 0.95 civarı elde edilmiştir. 

Ancak 50 örneklem büyüklüğü, 0.10 durdurma oranında KO değeri normal düzeyinden yüksek 

elde edilmiştir. Şekil 5.3 (d) incelendiğinde 0.7 güvenirlik düzeyinde, 100 örneklem 

büyüklüğünde, 0.30 ve 0.60 durdurma oranında KO yaklaşık 0.95 elde edilirken, diğer tüm 

durumlarda 0.98-0.99 arasında elde edilmiştir. Şekil 5.3 (f) incelendiğinde 0.9 güvenirlik 

düzeyinde ise 100 örneklem büyüklüğünde, 0.60 durdurma oranında KO 0.95 civarı elde 

edilirken, diğer tüm durumlarda KO yaklaşık 0.99 elde edilmiştir. 

 

5.2. Uygulama 

Önerilen modelin uygulanabilirliğini göstermek amacıyla literatürde var olan iki veri seti ele 

alınmıştır. Bu veri setleri için tez kapsamında ele alınan modeller çalıştırılmış ve 

karşılaştırılmıştır. 

 

5.2.1. Uygulama 1 

Tez çalışması kapsamında analizlerin uygulanabilirliğini göstermek amacı ile uygulamanın 

birinci kısmında 1974 ve 1984 yılları arasında yapılan karaciğerin primer biliyer sirozunda 

(Primary Biliary Cirrhosis, PBC) Mayo Klinik çalışmasından elde edilen verileri kullanılmıştır. 

Bu on yıllık aralıkta D-penisilin ilacının randomize plasebo kontrollü çalışması için kriterleri 

sağlayan Mayo Klinik' e gönderilen toplam 424 PBC hastası çalışmaya katılmış ancak takibin 

kaybedilmesi gibi nedenlerden dolayı tam veriyi içeren 312 vaka randomize araştırmaya dahil 

edilmiştir. Bu klinik çalışmanın amacı D-penisilin ilacının ölüm ya da karaciğer nakli 

gerçekleşene kadar geçen süre üzerindeki etkisini incelemektir.  

 

PBC, karaciğerin safra kanallarının tahrip olduğu ölümcül bir durumdur. Safra kanalları, 

yağların düzgün sindirimi, hasarlı veya eski kırmızı kan hücrelerinin çıkarılması ve 

detoksifikasyon için gereklidir. PBC, vücutta zararlı toksinlerin birikmesine ve ayrıca 
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karaciğere karşı geri dönüşümsüz hasar oluşumuna yol açar. Mevcut araştırmalar PBC'yi 

vücudun kendisine saldırdığı bir otoimmün hastalık olarak görmektedir (Ray, 2016). 

 

Çalışmada D-penisilin ilacının hastalık üzerinde etkisini görmek amacı ile 154 hasta plasebo 

grubu olarak alınmıştır, kalan 158 hastaya ilaç verilmiştir. Ayrıca çalışma boyunca hastaların 

serum bilirubin seviyeleri ilk 6 ay sonunda ve sonrasında yılda bir olmak üzere kaydedilmiştir. 

 

Çalışmamızda ölçüm hatası içeren açıklayıcı değişken olarak log-serum bilirubin seviyesi ele 

alınmıştır. Ölçüm hatalı açıklayıcı değişkenin ikinci tekrarlı ölçümü olarak da altı ay sonra 

kaydedilen ölçümü alınmıştır. Çalışmamızın amacı, PBC hastalarının yaşam süresi üzerinde ilaç 

(ölçüm hatası içermeyen değişken) ve log-serum bilirubin (ölçüm hatası içeren sürekli ölçekle 

ölçülmüş değişken) değişkenlerinin etkisinin incelenmesi olarak belirlenmiştir. 

Sürekli ölçekle ölçülmüş değişkenlere ait tanımlayıcı istatistikler Çizelge 5.4’te, nitel olan 

değişkenler ise Çizelge 5.5.’te verilmiştir. 

 

Çizelge 5.4. PBC verisinde sürekli ölçekle ölçülmüş değişkenlere ait tanımlayıcı istatistikler 

Değişken n % Minimum Maksimum Ortalama Ortanca 
Standart 

sapma 

Süre 312 100 0 14 6.41 6.00 3.556 

log-serum bilirubin_0 312 100 -1 3 .55 0.00 1.116 

log-serum bilirubin_6 257 82 -2 3 .42 0.00 1.174 

log-serum bilirubin_0: Başlangıçtaki log-serum bilirubin seviyesi, log-serum bilirubin_6: Altı ay sonra elde edilen 

log-serum bilirubin seviyesi 

 

Log-serum bilirubin değişkeninin ikinci ölçümü çalışmaya dahil olan bireylerden %82'si için 

elde edilmiştir, % 18'i kayıp gözlemdir. 

 

Çizelge 5.5. PBC verisinde kullanılan nitel değişkenler 

Değişken Düzey Frekans Yüzde 

Durum 
0 (durdurma) 172 55.1 

1 (ölüm) 140 44.9 

İlaç 
D-penicil 158 50.6 

Plasebo 154 49.4 

 

PBC veri setine ilişkin durdurma oranı %55.1'dir. 

https://rstudio-pubs-static.s3.amazonaws.com/159812_042b6e22b9cf44639fb26ae8b2df0a98.html
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PBC verisi için süreye ilişkin dağılım grafiği Şekil 5.4’te verilmiştir. Sürenin dağılımı 

incelendiğinde bilinen parametrik dağılımlardan birini göstermediği, Wakeby dağılımı 

gösterdiği gözlenmiştir.  

 

 

Şekil 5.4. PBC verisi için süreye ilişkin dağılım grafiği 

 

Cox regresyon modelinin uygulanabilmesi için orantılı tehlikeler varsayımının sağlanması 

gerekir. Orantılı tehlikeler varsayımının incelenmesi için  Schoenfeld artıklarına dayanan 

orantılı tehlikeler varsayımı testi sonuçları Çizelge 5.6’da verilmiştir. 

 

Çizelge 5.6. PBC verisinde orantılı tehlikeler varsayımı test sonuçları 

Değişken rho Ki-kare p 

log-serum bilirubin -0.0661 0.5728 0.449 

İlaç -0.0121 0.0202 0.887 

Global - 0.6290 0.730 

 

Çizelge 5.6 incelendiğinde Schoenfeld artıkları ile yaşam sürelerinin rankı arasındaki ilişkinin 

istatistiksel olarak önemli olmadığı, orantılı tehlikeler varsayımının sağlandığı sonucuna 

ulaşılmıştır. 
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Çözümlemede daha hızlı yakınsama elde edilmesi amacıyla log-serum bilirubin değişkeninin 

standartlaştırılmış değerleri kullanılmıştır. 

 

Klasik ölçüm hatası modeline uyumu araştırmak için ölçüm hatalı değişkenin tekrarlı 

ölçümlerinden elde edilen ortalamalarına karşı standart sapmalarının çizimi Şekil 5.5’te 

verilmiştir. 

 

 
 

Şekil 5.5. Log-serum bilirubin tekrarlarının ortalamalarına karşı standart sapma grafiği 

 

Şekil 5.5 incelendiğinde ortalama ve standart sapma arasında belirgin bir eğilim olmadığı 

görülmektedir. Ölçüm hatası varyansının log-serum bilirubinin gerçek değerlerinden bağımsız 

olduğu söylenebilir.  

 

Yine klasik ölçüm hatası modeline uyumu araştırmak için çizdirilen ölçüm hatalı değişkenin 

tekrarlı ölçümleri arasındaki farkın normal QQ grafiği Şekil 5.6’da verilmiştir. 
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Şekil 5.6. Log-serum bilirubin değişkeninin tekrarlı gözlemleri arasındaki farkın normal QQ 

grafiği 

 

Şekil 5.6 incelendiğinde ise her bir bireye ait log-serum bilirubin değişkeninin tekrarlı 

gözlemleri arasındaki fark değişkeninin normal QQ grafiğinden normal dağılım gösterdiği 

söylenebilir. Verinin klasik ölçüm hatası modeline uygun olduğu söylenebilir. 

 

Yakınsamanın elde edilebilmesi için bayesci modellerin her biri için üç zincir çalıştırılmıştır.  

 

Bayesci çözümlemeler için yakınsamanın sağlanıp sağlanmadığının kontrolünde iz ve yoğunluk 

grafiği çizdirilmiş, Gelman-Rubin yakınsama testi ve Heidelberger-Welch testi yakınsama 

ölçütü olarak kullanılmıştır. Bütün modeller için yakınsamanın sağlandığı iterasyon sayısı ile 

çalışılmıştır. 

 

DGB_CRM için elde edilen iz ve yoğunluk grafikleri log-serum bilirubin değişkeni için elde 

edilen regresyon parametresi β1 için Şekil 5.7(a, b)’de, ilaç değişkeni için elde edilen regresyon 

parametresi β2 için Şekil 5.7(c, d)’de verilmiştir. Gelman-Rubin yakınsama testi sonucu her bir 

parametre için 1.0 elde edilmiştir. MCMC’nin durağan bir dağılımdan geldiği yokluk hipotezini 

ve ortalamanın belirlenen bir doğrulukta tahmin edilebilmesi için zincirin kabul edilebilir 
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uzunlukta olup olmadığını test eden, Heidelberger-Welch durağanlık ve yarı genişlik testleri 

sonucu Çizelge 5.7'de verilmiştir. 

 

 

Şekil 5.7. DGB_CRM için β1 ve β2  parametrelerinin iz ve yoğunluk grafikleri 

 

Şekil 5.7'de iz grafikleri incelendiğinde DGB_CRM için herhangi bir trende rastlanmadığı, 

parametreye ait zincirlerin yakınsadığı sonucuna ulaşılmaktadır. Yoğunluk grafiğinden de log-

serum bilirubin değişkeninin yaşam süresi üzerinde pozitif ve anlamlı bir etkisi olduğu ancak 

ilaç değişkeninin anlamsız etkiye sahip olduğu görülmektedir. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       (a)       (b) 

       (c)       (d) 
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Çizelge 5.7. DGB_CRM için Heidelberger-Welch yakınsaklık testi sonucu 

Zincir Parametre 

Heidelberger-Welch Testi 

Durağanlık Testi Yarı Genişlik Testi 

Başlangıç 

İterasyonu 
p- Değeri Ortalama 

Yarı Genişlik 

Testi 
Sonuç 

[1] 

β1 1 0.079 1.360 0.000500 Geçti 

β2 1 0.476 -0.214 0.001630 Geçti 

γ1 1 0.751 -0.158 0.000180 Geçti 

γ2 1 0.280 0.117 0.000113 Geçti 

taux 1 0.658 1.07 0.000093 Geçti 

tauu 1 0.384 8.14 0.001460 Geçti 

[2] 

β1 1 0.226 1.359 0.000487 Geçti 

β2 1 0.980 -0.215 0.001523 Geçti 

γ1 1 0.313 -0.158 0.000178 Geçti 

γ2 1 0.338 0.117 0.000113 Geçti 

taux 1 0.377 1.07 0.000094 Geçti 

tauu 1 0.552 8.13 0.001460 Geçti 

[3] 

β1 1 0.421 1.359 0.000499 Geçti 

β2 1 0.665 -0.215 0.001704 Geçti 

γ1 1 0.405 -0.158 0.000181 Geçti 

γ2 1 0.470 0.117 0.000114 Geçti 

taux 1 0.846 1.07 0.000038 Geçti 

tauu 1 0.282 8.13 0.001460 Geçti 

 

Çizelge 5.7  incelendiğinde Heidelberger-Welch durağanlık ve yarı genişlik testleri sonucunda 

DGB_CRM 'de tüm parametreler için çalıştırılan üç zincirin yakınsadığı sonucuna ulaşılmıştır. 

 

DPB_CRM için elde edilen iz ve yoğunluk grafikleri log-serum bilirubin değişkeni için elde 

edilen regresyon parametresi β1 için Şekil 5.8(a, b)’de, ilaç değişkeni için elde edilen regresyon 

parametresi β2 için Şekil 5.8(c, d)’de verilmiştir. Gelman-Rubin yakınsama testi sonucu her bir 

parametre için 1.0 elde edilmiştir. MCMC’nin durağan bir dağılımdan geldiği yokluk hipotezini 

ve ortalamanın belirlenen bir doğrulukta tahmin edilebilmesi için zincirin kabul edilebilir 
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uzunlukta olup olmadığını test eden, Heidelberger-Welch durağanlık ve yarı genişlik testleri 

sonucu Çizelge 5.8'de sunulmuştur. 

 

 
 

Şekil 5.8. DPB_CRM için β1 ve β2 parametrelerinin iz ve yoğunluk grafikleri 

 

Şekil 5.8'de iz grafikleri incelendiğinde DPB_CRM için herhangi bir trende rastlanmadığı, 

parametreye ait zincirlerin yakınsadığı sonucuna ulaşılmaktadır. Yoğunluk grafiğinden de log-

serum bilirubin değişkeninin yaşam süresi üzerinde pozitif ve anlamlı bir etkisi olduğu ancak 

ilaç değişkeninin anlamsız etkiye sahip olduğu görülmektedir. 

 

 

 

 

 

 

 

 

 

 

 

       (a)       (b) 

       (c)       (d) 
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Çizelge 5.8. DPB_CRM için Heidelberger-Welch yakınsaklık testi sonucu 

Zincir Parametre 

Heidelberger-Welch Testi 

Durağanlık Testi Yarı Genişlik Testi 

Başlangıç 

İterasyonu 
p- Değeri Ortalama 

Yarı Genişlik 

Testi 
Sonuç 

[1] 

β1 1 0.837 1.315 0.000374 Geçti 

β2 1 0.563 -0.185 0.001010 Geçti 

γ1 1 0.426 -0.157 0.000138 Geçti 

γ2 1 0.384 0.117 0.000088 Geçti 

taux 1 0.901 1.100 0.000078 Geçti 

tauu 1 0.551 8.41 0.0012 Geçti 

tau.e 1 0.568 89.9 0.246 Geçti 

[2] 

β1 1 0.806 1.315 0.000378 Geçti 

β2 1 0.945 -0.186 0.001003 Geçti 

γ1 1 0.460 -0.157 0.000138 Geçti 

γ2 1 0.679 0.117 0.000088 Geçti 

taux 1 0.682 1.100 0.000078 Geçti 

tauu 1 0.446 8.41 0.0012 Geçti 

tau.e 1 0.194 89.9 0.255 Geçti 

[3] 

β1 1 0.570 1.315 0.000381 Geçti 

β2 1 0.328 -0.186 0.001034 Geçti 

γ1 1 0.995 -0.157 0.000139 Geçti 

γ2 1 0.967 0.117 0.000088 Geçti 

taux 1 0.391 1.100 0.000078 Geçti 

tauu 1 0.881 8.41 0.00119 Geçti 

tau.e 1 0.227 90 0.252 Geçti 

 

Çizelge 5.8 incelendiğinde Heidelberger-Welch durağanlık ve yarı genişlik testleri sonucunda 

DPB_CRM 'de tüm parametreler için çalıştırılan üç zincirin yakınsadığı sonucuna ulaşılmıştır. 

 

B_CRM için elde edilen iz ve yoğunluk grafikleri log-serum bilirubin değişkeni için elde edilen 

regresyon parametresi β1 için Şekil 5.9(a, b)’de, ilaç değişkeni için elde edilen regresyon 

parametresi β2 için Şekil 5.9(c, d)’de verilmiştir. Gelman-Rubin yakınsama testi sonucu her bir 

parametre için 1.0 elde edilmiştir. MCMC’nin durağan bir dağılımdan geldiği yokluk hipotezini 
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ve ortalamanın belirlenen bir doğrulukta tahmin edilebilmesi için zincirin kabul edilebilir 

uzunlukta olup olmadığını test eden, Heidelberger-Welch durağanlık ve yarı genişlik testleri 

sonucu Çizelge 5.9'da sunulmuştur. 

 

 
 

Şekil 5.9.  B_CRM için β1 ve β2 parametrelerinin iz ve yoğunluk grafikleri 

 

Şekil 5.9'da iz grafikleri incelendiğinde B_CRM için herhangi bir trende rastlanmadığı, 

parametrelere ait zincirlerin yakınsadığı sonucuna ulaşılmaktadır. Yoğunluk grafiğinden de 

düzeltilmiş modellere benzer şekilde log-serum bilirubin değişkeninin yaşam süresi üzerinde 

pozitif ve anlamlı bir etkisi olduğu ancak ilaç değişkeninin anlamsız etkiye sahip olduğu 

görülmektedir. Ancak B_CRM ile elde edilen log-serum bilirubin değişkeninin yaşam süresi 

üzerindeki etkisi düzeltilmiş modellere göre daha küçük elde edilmiştir. 

 

 

 

 

 

 

 

 

 

                         (a)             (b) 

                                (c)    (d)    

           (d) 
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Çizelge 5.9. B_CRM için Heidelberger-Welch yakınsaklık testi sonucu 

Zincir Parametre 

Heidelberger-Welch Testi 

Durağanlık Testi Yarı Genişlik Testi 

Başlangıç 

İterasyonu 
p- Değeri Ortalama 

Yarı Genişlik 

Testi 
Sonuç 

[1] 
β1 1 0.787 1.090 0.000417 Geçti 

β2 1 0.510 -0.102 0.001674 Geçti 

[2] 
β1 1 0.594 1.090 0.000430 Geçti 

β2 1 0.549 -0.099 0.001560 Geçti 

[3] 
β1 1 0.441 1.090 0.000410 Geçti 

β2 1 0.783 -0.100 0.001630 Geçti 

 

Çizelge 5.9  incelendiğinde Heidelberger-Welch durağanlık ve yarı genişlik testleri sonucunda 

B_CRM 'de tüm parametreler için çalıştırılan üç zincirin yakınsadığı sonucuna ulaşılmıştır. 

 

PBC verisi için DGB_CRM, DPB_CRM, B_CRM ile elde edilen beta parametresi için Bayesci 

tahminleri, standart sapmaları ve %95 Sonsal Bayes güven aralıkları  ile kısmi olabilirlik 

fonksiyonuyla elde edilen CRM için katsayı tahmini ve %95 güven aralığı Çizelge 5.10’da yer 

almaktadır. 

 

Çizelge 5.10. PBC verisi için model sonuçları 

Model Değişken Katsayı 
Std. 

Sapma 

Alt  Sınır Üst  

Sınır 
DIC 

DGB_CRM 
Log-serum bilirubin 1.3594 0.1264 1.1191 1.6149 

2108 
İlaç -0.2147 0.1825 -0.5737 0.1415 

DPB_CRM 
Log-serum bilirubin 1.3149 0.1228 1.0807 1.5620 

1949 
İlaç -0.1857 0.1797 -0.5399 0.1650 

B_CRM 
Log-serum bilirubin 1.0901 0.0948 0.9053 1.2770 

1760 
İlaç -0.1004 0.1694 -0.4324 0.2316 

CRM 
Log-serum bilirubin 1.0966 0.0949 0.9105 1.2828 

- 
İlaç -0.1032 0.1708 -0.4380 0.2316 

 

 

Çizelge 5.10 incelendiğinde ele alınan tüm modeller için log-serum bilirubin değişkeninin ölüm 

riski üzerinde etkisinin yüksek olduğu görülmektedir. Benzetim senaryolarıyla 

karşılaştırıldığında büyük örneklemlerde, 0.60 durdurma oranında yalnızca 0.9 güvenirlik 

düzeyinde CRM için minimum HKO elde edilmiş olmasına rağmen, düzeltilmiş modellerin de 
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yakın HKO verdiği sonucu elde edilmişti. Ölçüm hatalı değişken olan log-serum bilirubin 

değişkeni için gerçek değerler elde edilemediği için güvenirliği hakkında bilgi elde edilemez. 

Bu yüzden düzeltilmiş modellerin karşılaştırılıp yorumlanması daha güvenilirdir. Düzeltilmiş 

modeller karşılaştırıldığında DPB_CRM’nin daha küçük DIC ile daha iyi bir model olduğu 

sonucuna ulaşılmıştır. Log-serum bilirubin değeri arttıkça ölüm riskinin arttığı söylenebilir. 

Parametrenin 1.0807-1.5620 aralığına düşmesi olasılığı % 95’tir. 

 

5.2.2. Uygulama 2 

Gerçek veri uygulamasının ikinci kısmında Goldman ve ark. (1996) tarafından kullanılmış olan 

ve R’de yer alan veri seti kullanılmıştır.  

 

Didanosine (ddC) ve zalcitabine (ddI), zidovudin (AZT) tedavisini tolere edemeyen veya buna 

rağmen hastalık ilerlemesi olan HIV enfeksiyonu olan hastaları tedavi etmek için yaygın olarak 

kullanılan iki ilaçtır. Bu çalışma AZT terapisinde başarısız olan veya intöleransı olan hastaların 

tedavisinde bu iki antiretroviral ilacın etkinliğini ve güvenilirliğini karşılaştırmak için hem 

boylamsal hem de yaşam verilerinin toplandığı randomize bir klinik çalışmadır. Antiretroviral 

tedavi sırasında ileri HIV enfeksiyonu olan kişilerde CD4 lenfositinin değeri, bir belirteç olarak 

sayılır ve 467 HIV ile enfekte olmuş hastanın AIDS didanosine / zalcitabin klinik çalışması için 

Terry Beirn Topluluk Programlarından elde edilen veriler kullanılarak değerlendirilmiştir. Bu 

çalışmada zidovudin intoleransı veya başarısızlığı için spesifik kriterleri yerine getiren AIDS 

veya iki CD4 sayısı ≤300 olan hastalar günde 500 mg ddI veya günde 2.25 mg ddC alacak 

şekilde randomize edilmiştir. Çalışmada CD4 sayıları çalışmanın başlangıcında ve sonrasında 

yapılan dört farklı ölçüm ile kaydedilmiştir (Goldman ve ark., 1996). 

 

Tez çalışması kapsamında ölçüm hatası içeren açıklayıcı değişken olarak CD4 hücre sayısı ele 

alınmıştır. Ölçüm hatalı açıklayıcı değişkenin ikinci tekrarlı ölçümü olarak da bir yıl sonra elde 

edilen ölçümü alınmıştır. HIV ile enfekte olmuş AIDS hastalarının yaşam süresi üzerinde ilaç 

(ölçüm hatası içermeyen değişken) ve CD4 hücre sayısı (ölçüm hatası içeren sürekli ölçekle 

ölçülmüş değişken) değişkenlerinin etkisinin incelenmesi olarak belirlenmiştir. 

 



 

 53 

Sürekli ölçekle ölçülmüş değişkenlere ait tanımlayıcı istatistikler Çizelge 5.11’de, nitel olan 

değişkenler ise Çizelge 5.12’de verilmiştir. 

 

Çizelge 5.11. AIDS verisinde sürekli ölçekle ölçülmüş değişkenlere ait tanımlayıcı istatistikler 

Değişken n % Minimum Maksimum Ortalama Ortanca 
Standart 

sapma 

Süre 467 100 0.47 21.40 12.63 13.20 4.94 

CD4_0 467 100 0.00 19.24 7.13 6.08 4.71 

CD4_12 226 48.4 0.00 20.44 7.03 5.00 5.27 

  CD4_0: Başlangıçtaki CD4 ölçümü, CD4_12: Bir yıl sonra elde edilen CD4 ölçümü 

 

CD4 değişkeninin ikinci ölçümü çalışmaya dahil olan bireylerden %48.4’ü için elde edilmiştir, 

% 42.6’sı kayıp gözlemdir. 

 

Çizelge 5.12. AIDS verisinde kullanılan nitel değişkenler 

Değişken Düzey Frekans Yüzde 

Durum 
0 (durdurma) 279 59.7 

1 (ölüm) 188 40.3 

İlaç 
ddC 237 50.7 

ddI 467 49.3 

 

AIDS veri setine ilişkin durdurma oranı yaklaşık olarak %60’tır.  

 

AIDS verisi için süreye ilişkin dağılım grafiği Şekil 5.10'da verilmiştir. 

 

 
Şekil 5.10. AIDS verisinde süreye ilişkin dağılım grafiği 
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AIDS verisi için sürenin dağılımı incelendiğinde bilinen parametrik dağılımlardan birini 

göstermediği, Wakeby dağılımı gösterdiği gözlenmiştir.  

 

Cox regresyon modelinde, incelen süre için her hangi bir dağılım varsayımı yoktur. Ancak 

orantılı tehlikeler varsayımının sağlanması gerekir.  

 

Orantılı tehlikeler varsayımının kontrolü için  Schoenfeld artıklarına dayanan orantılı tehlikeler 

varsayımı testi sonuçları Çizelge 5.13’de verilmiştir. 

 

Çizelge 5.13. AIDS verisinde orantılı tehlikeler varsayımı test sonuçları 

Değişken rho Ki-kare p 

İlaç -0.004 0.003 0.954 

CD4_0 0.069 0.979 0.322 

Global - 0.989 0.610 

 

Çizelge 5.13 incelendiğinde Schoenfeld artıkları ile yaşam sürelerinin rankı arasındaki ilişkinin 

istatistiksel olarak önemli olmadığı, orantılı tehlikeler varsayımının sağlandığı sonucuna 

ulaşılmıştır. 

 

Bayesci çözümlemeler için yakınsamanın sağlanıp sağlanmadığının kontrolünde iz grafiği 

çizdirilmiş, Gelman-Rubin yakınsama testi ve Heidelberger-Welch testi yakınsama ölçütü 

olarak kullanılmıştır. Tüm veri üzerinden çözümlemeler yapıldığında DPB_CRM için 

yakınsama elde edilememiştir. 

 

Bu çalışmanın yapısına uygun, farklı örneklem büyüklüklerinde gerçek veri setlerine ulaşmak 

güçtür.  Bu yüzden AIDS verisinden benzetim senaryolarına benzer olması için 30 örneklem 

büyüklüğü ve verinin orijinal yapısına uygun olması amacı ile 0.60 durdurma oranına sahip 11 

veri seti rastgele olarak çekilmiştir. Seçilen her bir örneklem için orantılı tehlikeler varsayımı 

kontrol edilmiş ve orantılı tehlikeler varsayımının sağlandığı veri setleri için çözümlemeler 

yapılmıştır. Çözümlemelerde yakınsama ölçütlerine bakılmış, her bir veri seti için yakınsamanın 
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sağlandığı iterasyon sayısı ile 5 paralel zincir çalıştırılmıştır. Seçilen her bir örneklem için 

modelleri karşılaştırmak amacı ile DIC değeri hesaplanmıştır. 

 

Örneklem büyüklüğünün 30, durdurma oranının 0.60 olduğu durum için seçilen örneklemlere 

ilişkin elde edilen katsayı değerleri, katsayıların standart hataları ve modellerin DIC değerleri 

Çizelge 5.14’de yer almaktadır. 

 

Çizelge 5.14. AIDS verisinde örneklem büyüklüğü 30, durdurma oranı 0.60 olan örneklemlere   

ilişkin sonuçlar 

Örneklem Model CD4_0 (std. sapma) İlaç (std. sapma) DIC 

1 
DGB_CRM -0.7493 (0.7376) -0.3857 (0.5913) 173.5 

DPB_CRM -0.6680 (0.6333) -0.3913 (0.5805) 162.8 

2 
DGB_CRM -1.3817 (0.6556) 0.2504 (0.6369) 153.5 

DPB_CRM -1.1383 (0.5527) 0.3286 (0.6045) 145.5 

3 
DGB_CRM -0.8002 (0.6241) -0.5028 (0.5730) 165.9 

DPB_CRM -0.6796 (0.5490) -0.4944 (0.5646) 154.2 

4 
DGB_CRM -1.5802 (0.7527) -0.5655 (0.6475) 162.9 

DPB_CRM -1.2966 (0.6715) -0.4492 (0.6113) 156.4 

5 
DGB_CRM -0.9328 (0.6646) -0.2471 (0.5997) 176.7 

DPB_CRM -0.7649 (0.5453) -0.2117  (0.5729) 165.6 

6 
DGB_CRM -1.0990 (0.9420) -0.1592 (0.5857) 132.9 

DPB_CRM -0.9621 (0.8744) -0.1148 (0.5742) 123.3 

7 
DGB_CRM -0.5613 (0.6351) -0.0239 (0.5617) 178.6 

DPB_CRM -0.4677 (0.5558) -0.0026 (0.5534) 166.9 

8 
DGB_CRM -1.3125 (0.7468) -0.0346 (0.6158) 157.5 

DPB_CRM -1.1194 (0.6252) 0.0276 (0.5914) 148.7 

9 
DGB_CRM -0.8530 (0.5457) 0.2860 (0.5909) 185.5 

DPB_CRM -0.7423 (0.4939) 0.2429 (0.5753) 174.0 

10 
DGB_CRM -1.7932 (0.7234) -0.7618 (0.6330) 141.4 

DPB_CRM -1.4614 (0.6090) -0.7101 (0.5998) 132.7 

11 
DGB_CRM -1.2932 (0.6310) 0.1126 (0.6923) 154.9 

DPB_CRM -1.0556 (0.5421) 0.0558 (0.6689) 146.1 

 

 

Çizelge 5.14 incelendiğinde rastgele seçilerek çalıştırılan 11 veri seti için de DPB_CRM ile elde 

edilen DCI, DGB_CRM ile elde edilen DIC değerinden daha küçük elde edilmiştir. 
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6. SONUÇ VE TARTIŞMA 

Modelin ölçüm hatalı açıklayıcı değişken içermesi durumunda, parametre tahminlerinin ölçüm 

hatasının göz ardı edildiği klasik modellerle elde edilmesi, yana ve değişkenler arası ilişkilerin 

ortaya koyulması ve yorumlanmasında yanılgıya neden olmaktadır. Bu durumda ölçüm hatası 

için düzeltilmiş modellerin kullanılması daha uygundur. 

 

Son yıllarda bilgisayar sistemlerinde teknolojik ilerlemeyle birlikte, karmaşık model yapısında 

analitik olarak çözümlenmesi güç olan Bayesci çıkarsamaların kullanımı, ölçüm hatası 

probleminin çözümünde de yaygın olarak kullanılmaya başlanmıştır. Bu tez çalışması ile ölçüm 

hatalı açıklayıcı değişken varlığında CRM ile yapılacak çözümlemelerde kullanılabilecek daha 

az yanlı parametre tahminlerinin elde edilebileceği alternatif bir yöntem olan DPB_CRM 

önerilmiş, bu yöntemin literatürde var olan yöntemlerle karşılaştırılması benzetim çalışması ile 

farklı örneklem büyüklüğü, durdurma oranı, güvenirlik düzeyi ve regresyon katsayılarında ele 

alınmış ve etkin olduğu durumlar sunulmuştur. 

 

Literatürde gösterildiği üzere ölçüm hatası içermeyen durumlarda olduğu gibi ölçüm hatalı 

açıklayıcı değişken olması durumunda da verilen tüm senaryolarda B_CRM ve CRM benzer 

sonuç vermiştir. 

 

Beta katsayısının 0.5 olduğu yani riskin düşük olduğu durumlarda bir durum hariç DGB_CRM 

diğer modellerden daha düşük performans gösterdiği için uygun bir alternatif değildir. 

Güvenirliğin 0.5 ve 0.7 olduğu bazı durumlarda B_CRM için daha küçük HKO elde edilmesine 

rağmen DPB_CRM’nin hem HKO’su bu modelle yakın değer vermiş hem de KO değeri daha 

uygun bulunmuştur. Güvenirliğin 0.9 olduğu durumlarda ise klasik model ya da B_CRM daha 

iyi sonuç vermiştir. 

 

Beta katsayısının 1.0 olduğu durumda 0.5 ve 0.7 güvenirlik düzeylerinde DGB_CRM genel 

olarak daha iyi sonuç vermiş, DPB_CRM’nin daha küçük HKO elde edildiği senaryolarda ise 

DGB_CRM ile değerlerinin çok yakın olduğu, bu nedenle bu modellerin birbirlerine alternatif 

olduğu söylenebilir. Güvenirliğin 0.9 olduğu durumlarda ise B_CRM ya da CRM bir çok 

senaryoda HKO değeri bakımından daha iyi sonuç vermiş, bazı durumlarda DPB_CRM’ye ait 
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HKO daha küçük ancak B_CRM ve CRM ile HKO değerleri yakındır. Küçük örneklemde KO 

bakımından B_CRM ve CRM normal değerine yakın iken örneklem büyüklüğü arttıkça KO 

değeri kabul edilebilir sınırların altında kalmış, elde edilen HKO ve KO bakımından 

DPB_CRM’nin uygun bir alternatif olarak kullanılabileceği sonucuna ulaşılmıştır.  

 

Beta katsayısının 1.5 olduğu yani riskin yüksek olduğu durumlarda ise klasik modelin 

kullanılmasının ciddi bir yana neden olduğu, güvenirliğin 0.5 ve 0.7 olduğu durumlarda 

güvenirliğin 0.9 olduğu duruma göre daha yanlı olduğu ve örneklem büyüklüğü arttıkça 

yanlılığın arttığı benzetim çalışması sonucu ortaya koyulmuştur. Risk yüksek ise ölçüm hatası 

içeren açıklayıcı değişkenin varlığı durumunda parametre tahminleri yapılırken çok dikkat 

edilmelidir. Benzetim çalışması sonucu klasik model yerine ölçüm hatası için düzeltilmiş 

modellerin daha iyi sonuç verdiği, DGB_CRM’nin bu modeller içinde en iyi performans 

gösteren model olduğu sonucu elde edilmiştir. 

 

Genel olarak yorumlanacak olursa güvenirliğin düşük ve orta olduğu durumlarda klasik model 

ve Bayesci yaklaşımının düzeltilmiş yöntemlere göre KO bakımından performansının düşük 

olduğu söylenebilir. Güvenirliğin yüksek olduğu durumlarda ise daha küçük HKO elde 

edilmesine rağmen düzeltilmiş modellerden en az biri yakın HKO ile alternatif bir yöntem 

olmuşlardır. Gerçek veri çözümlemelerinde ölçüm hatası içeren değişkenin gerçek değeri 

çoğunlukla bilinmediği için güvenirliği elde edilemez. Benzetim çalışmasında da görüldüğü gibi 

düşük ve orta güvenirliklerde olduğu gibi yüksek güvenirliklerde de çözümlemede düzeltilmiş 

modellerin kullanılması klasik modellere göre daha güvenilir sonuçlar elde edilmesini 

sağlayacaktır. Bu nedenle modelde ölçüm hatalı açıklayıcı değişken bulunması durumunda 

klasik modeller değil, ölçüm hatası için düzeltilmiş modeller kullanılmalıdır. 

 

Özellikle büyük örneklemlerde ya da riskin yüksek olduğu durumlarda ölçüm hatalı açıklayıcı 

değişkenli modellerin çözümlemesinde klasik çözümlemelerin kullanılması araştırılan 

değişkenin çıktı üzerindeki etkisini yorumlarken araştırmacıyı yanlış sonuçlara götürecektir. 

Epidemolojik çalışmalarda da sıklıkla karşımıza çıkan ölçüm hatalı değişkenlerin, yaşam 

çözümlemesi gibi hassas yorumlama gerektiren çalışmalarda kullanılırken parametre 

tahminlerinde kullanılacak çözümlemeye dikkatle karar verilmesi gerekmektedir. 
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Bartlett ve Keogh (2018) çalışmalarında ölçüm hatası için Bayesci düzeltmeyi birikimli tehlike 

fonksiyonu için gamma önseli kullanarak uygulamışlar, regresyon kalibrasyonu yöntemi ve 

Bayesci düzeltme ile elde ettikleri sonuçları karşılaştırmışlardır. Bu çalışmada, farklı durdurma 

oranlarını ve küçük örneklem durumlarını karşılaştırmaya dahil etmemişlerdir. Büyük örneklem 

durumunda ise kullandıkları senaryolarda önerdikleri yöntemin daha iyi ya da regresyon 

kalibrasyonu yöntemi ile benzer sonuçlara ulaştıklarını belirtmişlerdir. Literatür incelendiğinde 

tüm bu değişenlere göre ölçüm hatası için Bayesci düzeltilmiş model ile klasik yöntemleri 

karşılaştıran başka çalışma yer almamaktadır. Bu tez çalışması ile ölçüm hatalı açıklayıcı 

değişkenli CRM için farklı örneklem büyüklüğü, durdurma oranı, güvenirlik ve risk düzeylerine 

sahip veri setlerinde klasik yöntemler ile ölçüm hatası için düzeltilmiş Bayesci yöntemlerin 

regresyon katsayısının kestirimlerinde oluşturdukları yanlılığın büyüklüğü detaylıca ortaya 

koyulmuştur.   
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