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OZET
Yiiksek Lisans Tezi

HIPERSPEKTRAL GORUNTU SINIFLANDIRMA UYGULAMALARINDA
MAKINE ve DERIN OGRENME KULLANIMI

Eren Can SEYREK
Afyon Kocatepe Universitesi
Fen Bilimleri Enstitiisii
Harita Miihendisligi Anabilim Dali
Damisman: Dog. Dr. Murat UYSAL

Uzaktan algilama (UA) ile elde edilen goriintiiler diinya ylizeyindeki nesneler hakkinda
detayli bilgi toplanmasini miimkiin kilmaktadir. Elde edilen goriintiilerin
siiflandirilmasiyla olusturulan arazi ortiisii haritalar1 kaynaklarin izlenmesi, ¢evresel
degisimin tespiti ve planlama gibi birgok alanda genis bir kullanim alanina sahiptir.
Dolayisiyla harita kullanicilari dogru ve giivenilir arazi Ortiisii haritalarina ihtiyag
duymaktadir. Temel smiflardan olusan haritalarin iiretilmesi i¢in multispektral
sensorlerden elde edilmis veriler yeterli olurken, 6zellikle tiir i¢i farklilar iceren siiflar
da dahil olmak tizere detayli siniflarin bulunmasi bu verilerin siniflandirma igin yeterli
spektral bilgiyi saglayamamasina yol agmaktadir. Bu durumda yiizlerce dar aralikta
banda sahip olan hiperspektral goriintiilerin, nesneler hakkinda daha detayli spektral
yansitim bilgisini sunmaktadir.  Hiperspektral goriintiilerin geleneksel yontemlerle
siniflandirilmasi hesaplama zorlugu sebebiyle yetersiz kalmaktadir. Bu durumda Makine
Ogrenme (MO) ve Derin Ogrenme (DO) gibi yontemler kullanicilara bu tarz verilerde

birgok avantaj sunmaktadir.

Bu tez kapsaminda MO yontemlerinden Destek Vektdr Makineleri, Rastgele Orman,
DO’de 6zellikle goriintii siniflandirma alaninda yaygin olarak kullanilan Evrigimli Sinir
Ag1 (ESA) kullanilmistir. Calismada kullanilan ESA mimarileri yapisal 6zelliklerine gore
2B ESA ve 3B+2B ESA olarak isimlendirilmistir. Yontemlerin karsilastirilmasi 176 bant
spektral ve 30 metre konumsal ¢oziiniirliikliit HYRANK, 144 bant ve 2,5 metre konumsal

¢ozintrlikli DFC13 ile 202 bant ve 3,7 metre konumsal ¢6ziiniirliikkli Salinas Scene veri



setleri ile gergeklestirilmistir. Modellerde egitim veri setinin etkisini arastirmak amaciyla
her veri seti i¢in 30%, 50% ve 70% egitim veri kiimesi oranlari test edilmistir. Calisma
sonucunda ESA  modellerinin  hiperspektral  goriintiilerin ~ siniflandirilmasinda
kullaniminin yiiksek dogruluk sagladiklart gériilmiistiir. Egitim veri kiimesi boyutunun
arastirilmasi asamasinda ise beklendigi tizere 70% egitim verisi kullaniminin en yiiksek
dogrulugu sagladigi, bunun yaninda 30% veri seti kullaniminin da tatmin edici bir

siniflandirma dogrulugu sagladig sdylenebilir.

2021, xiv + 137 sayfa

Anahtar Kelimeler: Hiperspektral goriintii, Goriintii siniflandirma, Makine 6grenme,
Destek vektor makineleri, Rastgele orman, Derin 6grenme,

Evrisimli sinir agt.



ABSTRACT
M.Sc. Thesis

THE USE OF MACHINE AND DEEP LEARNING ON
HYPERSPECTRAL IMAGE CLASSIFICATION APPLICATIONS

Eren Can SEYREK
Afyon Kocatepe University
Graduate School of Natural and Applied Sciences
Department of Geomatics Engineering
Supervisor: Assoc. Prof. Murat UYSAL

Remotely sensed images enable to collect detailed information about objects on the earth's
surface. Land cover maps created by classifying the remotely sensed images have a wide
range of uses in many areas such as monitoring resources, detecting environmental
change and planning. Therefore, map users need accurate and reliable land cover maps.
Images which obtained from multispectral sensors is sufficient to produce maps
consisting of basic classes. However, the existence of detailed classes that including
classes with intra-species differences causes these data to not provide sufficient spectral
information for classification. In this case, hyperspectral images with hundreds of narrow
bands offer more detailed spectral reflection information about objects. Classification of
hyperspectral images by traditional methods is insufficient due to calculation difficulties.
In this case, methods such as Machine Learning and Deep Learning offer many

advantages to users in such data.

In this thesis, Support Vector Machines, Random Forest, and Convolutional Neural
Network (CNN), which are widely used in the field of image classification in Deep
Learning were used for classifying hyperspectral images. The CNN architectures used in
the study are named as 2D CNN and 3D + 2D CNN according to their structural features.
Comparison of the methods was performed with HYyRANK (176 band spectral and 30
meter spatial resolution), DFC13 (144 band and 2,5 meter spatial resolution), Salinas
Scene (202 band and 3,7 meter spatial resolution) data sets. In order to investigate the

effect of training data set on models, 30%, 50% and 70% training data set ratios were



tested for each data set. As a result of the study, it was seen that the use of CNN models
for classification of hyperspectral images provided high accuracy. When investigating the
size of the training dataset, it can be said that the use of 70% training data provides the
highest accuracy as expected, while the use of 30% data set provides a satisfactory

classification accuracy.

2021, xiv + 137 pages

Keywords: Hyperspectral image, Image classification, Machine learning, Support VVector
Machines, Random forest, Deep learning, Convolutional neural network.
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1. GIRIS

Arazi Ortiisii insanlar ile fiziksel ¢evreyi birbirine baglayan kritik degiskenlerden birisidir.
Kaynak planlamasi, ¢evresel degisimin tespit edilmesi ve biyolojik ¢esitliligin korunmasi
gibi konular basta olmak tizere bir¢ok uygulama i¢in giincel ve yiiksek dogruluga sahip
bilgiye ihtiya¢ vardir. Diinya {izerinde insanlarin ulagmasinin ¢ok gii¢ oldugu bolgeler de
dahil olmak {izere arazi oOrtiisii hakkinda bahsi gecen uygulama alanlar1 i¢in gerekli
bilginin diizenli olarak elde edilmesi Uzaktan Algilama (UA) ile saglanabilmektedir. UA
ile elde edilen goriintiilerin siiflandirilmasiyla kisa siirede diger yontemlere gore daha
diisiik maliyetle iiretilebilmektedir. Uretilmek istenen arazi Ortiisii haritasinin detay
seviyesi siniflandirmada kullanilacak goriintiiniin 6zelliklerini de belirlemektedir.
Haritada orman, sehir, su ve toprak gibi siniflarin belirlenmesi multispektral goriintiilerle
belirlenebilmektedir. Ancak bu siniflar tiir i¢i farkli siniflar gibi giderek detaylanmaya
basladiginda multispektral goriintiiler yerine spektral ¢oziiniirligii ¢ok daha yiiksek olan
hiperspektral goriintiilerin kullanimi daha uygun olacaktir. Yaklasik olarak son otuz yillik
stirecte kullanim1 giderek artan hiperspektral goriintiiler diger sensorlerden elde edilen
goriintiilere gore igerdigi dar aralikli yiizlerce spektral bant sayesinde ¢ok daha yiiksek
spektral ¢oziniirliik saglamaktadir. Ancak bu durum bantlar arasinda korelasyonun
yiiksek olmas1 ve gériintiiniin boyutunun yiiksek olmasina sebep olmaktadir. Ozellikle
kisitli egitim verisi bulunmasi durumunda bant sayisinin fazla olmas1 Hughes fenomenini
ortaya ¢ikararak siniflandirma dogrulugunun diismesine neden olarak “cok boyutlulugun
laneti” seklinde de anilan durumu ortaya ¢ikarmaktadir. Sagladigi yararlar ve asilmasi
gereken giicliikleri sebebiyle hiperspektral goriintiiler {izerine yapilan ¢aligsmalar giderek
artmaktadir. Ozellikle smiflandirma problemlerinde geleneksel metotlarin yetersiz
kalmas1, son zamanlarda kullanimi giderek artan Makine Ogrenme (MO) ve 6zellikle son
on yillik siiregte bircok alanda kullanimi giderek yayginlasan ve MO’niin alt dallarindan
birisi olan Derin Ogrenme (DO) metotlarmin hiperspektral goriintiiler iizerindeki
kullanim1 popiiler arastirma konularindandir.UA alaninda siklikla kullanilan goriintii
isleme yontemlerinden birisi olan goriintii siniflandirma, mevcut spektral veriler ile
spektral smifin pargasi olan piksellerin etiketlenmesi islemidir (Richards 2013). Diger bir

deyisle goriintii siniflandirma goriintiideki pikselleri istatistiksel karar kurallar1 veya



mantiksal karar kurallar ile arazi siniflarina atama islemidir (Gao 2009). Smiflandirma
siireci iki asamadan olusur. ilk asamada gercek diinyadaki nesnelerin smiflarmin
tanimlanmasidir. Bu siiflar ¢alismanin cografi Olg¢egine ve yapisina bagl olarak
belirlenir. Bu siniflara 6rnek olarak ormanlik alanlar, su kiitleleri, otlaklar ve diger arazi
ortiisii tiirleri verilebilir. Ikinci asamada, simiflandirilacak pikseller etiketlenir. Goriintii
siiflandirmasinda bu etiketler sayisaldir, dolayisiyla piksellerin siniflar1 sayilarla temsil
edilmektedir (Mather ve Koch 2011). Boylelikle UA verilerinden bilgi elde edilerek

anlamlandirilmis olur.

Piksel tabanli siniflandirma yontemleri kontrolsiiz ve kontrollii siniflandirma olarak iki
baslikta incelenebilir. Kiimeleme olarak da bilinen kontrolsiiz siniflandirma, tematik arazi
siiflar1 hakkinda 6nciil bilgi bulunmamasi durumunda goriintiideki dogal siniflar1 ortaya
cikarmaktadir. Smiflandirma sonucunda ortaya ¢ikan kiimelerin hangi arazi sinifina ait
oldugu hava fotograflar1 ve diger haritalardan tespit edilebilir. K-Ortalamalar (K-Means)
ve ISODATA (lterative Self Organizing Data Analysis Technique) algoritmalari en
bilinen kontrolsiiz smiflandirma algoritmalarindandir. Kontrollii siiflandirmada
gorlintiideki arazi smiflarin1 tanimlayan egitim verileri bulunmaktadir. Kontrollii
siiflandirma algoritmalar1 parametrik ve parametrik olmayan siniflandirma algoritmalari
olarak ayrilmaktadir. Parametrik algoritmalar egitim verisinden hesaplanan varyans,
kovaryans ve ortalama gibi ¢esitli istatistiksel parametreleri kullanmaktadir. Parametrik
algoritmalar verilerin normal dagilimda oldugu varsayimini yapmaktadir (Sunar vd.
2011). En Kiigiik Mesafe, En Cok Benzerlik (ECB) ve Fisher Dogrusal Diskriminant
yontemleri yaygin parametrik siniflandirma algoritmalarindandir. Parametrik olmayan
algoritmalar verilerin dagilimina dair herhangi bir varsayim yapmamaktadir. En Yakin
Komsuluk (EYK), Rastgele Orman (RO), Torbalama (Bagging), Hizlandirma (Boosting),
Destek Vektor Makineleri (DVM) ve Yapay Sinir Aglar1 (YSA) parametrik olmayan
algoritmalara 6rnek verilebilir. Bu algoritmalar Makine Ogrenme (MO) metotlar1 olarak

da bilinir. MO metotlar1 3.5 numaral1 baslik altinda daha detayli sekilde agiklanmustir.

Kontrollii siniflandirmada egitim verisi ilgili siniflara ait o6zelliklerin algoritmalar
tarafindan Ogrenilmesini saglar. Goriintiideki bantlar, ilgili dalga boyunda nesnelerin
ozelliklerini temsil ettiginden dolayi, 6zelliklerin en 1yi sekilde ¢ikarilmasi bant sayisina
da baghdir. Dolayisiyla hiperspektral goriintiilerde yer alan ¢ok sayida bant, sinifa ait

nesneyi spektral imzasina en yakin sekilde temsil edeceginden dolayi, hiperspektral



goriintiilerle yapilan smiflandirma islemlerinde siniflandirma performansinin daha
yiiksek olmasi, bitki iizerinden 6rnek verilirse tiirlerin daha kolay ayrilmasini, hatta ayni

tiirdeki bitkilerin saglikli ve sagliksiz olanlarinin dahi ayirt edilebilecegi sdylenebilir.

Son yillarda, teknolojideki gelismeler sayesinde hiperspektral uzaktan algilama sistemleri
diinya yiizeyinin izlenmesinde 6nemli bir ara¢ haline gelmistir (Chang 2003, Grahn ve
Geladi 2007). Hiperspektral goriintiiler elektromanyetik spektrumun goriiniir, yakin
kizil6tesi, orta kizilotesi ve termal kizilotesi bolgeleri boyunca genellikle 100°den fazla
sayida, dar aralikta, bitisik spektral bantlara sahip goriintiilerdir. Hiperspektral sensor
teknolojisindeki son gelismeler, sagladigi yiiksek spektral, zamansal ve konumsal
¢Oziiniirliige sahip bilgiler yardimiyla yeryiiziiniin genis alanlarinin ¢esitli analizleri i¢in
birgok uygulamay1 uygulanabilir hale getirmistir. Fakat hiperspektral verilerin yiiksek
boyutu, egitim Orneklerinin bulunmamasi, goriintiiniin elde edilmesi siirecindeki 1s1k
sacilim mekanizmalari, farkli atmosferik ve geometrik bozulmalar gibi faktorler bu tiir
verileri daha karmasik hale dogrusal olmayan bir hale donistiirmektedir (Ghamisi vd.
2017). Hiperspektral goriintiilerin bahsedilen avantajlarinin yaninda ¢éziim aranmasi
gereken dezavantajlar1 da géz 6niinde tutuldugunda, lizerine daha fazla ¢alisma yapilmasi
gereken bir alan oldugu aciktir. Literatiirdeki c¢aligmalar da incelendiginde basta
siniflandirma olmak iizere hiperspektral goriintiiler {izerine birgok c¢alisma yapildig
goriilmektedir (Melgani ve Bruzzone 2004, Camps-Valls ve Bruzzone 2005, Fauvel vd.
2012, Chen vd. 2014, Roy vd. 2019, Hang vd. 2020). Bu ¢alismalarda genellikle MO ve
son yillarda giderek popiilerlesen Derin Ogrenme (DO) algoritmalar1 kiyaslama veri
setleri ile egitilip performanslar1 kendi aralarinda ve diger temel yontemlerle

kiyaslanmistir.

Bilgisayar teknolojilerinin son yillarda 6nemli 6lgiide gelismesi ve buna paralel olarak
yeni algoritmalarin nerilmesi, yapay zekanin alt dallarindan olan MO kavraminin énemli
dl¢iide popiilerlesmesini saglamistir. MO algoritmalari temel istatistiksel hesaplamalar ve
deneyim yoluyla kendilerini otomatik olarak gelistirmektedir. Klasik programlamada
program girdisi veriler ve kurallar iken program ¢iktis1 sonuglardir. MO’de ise veri ve
istenen sonuclar program girdisini olustururken program c¢iktisinda kurallar elde
edilmektedir. Boylece MO insanlarmn &grenme davramislarini ve karar verme
yeteneklerini taklit eder (Jordan ve Mitchell 2015, Nassif vd. 2019). MO algoritmalari

bilgisayarli gorii, konusma tanima, dogal dil isleme, robotik kontrol ve diger



uygulamalarda karsimiza siklikla ¢ikmaktadir (Jordan ve Mitchell 2015). EYK, RO,
Torbalama, Hizlandirma, DVM ve YSA gibi yontemler geleneksel MO
algoritmalarindandir. Insan beyninin 6grenme siirecinden etkilenerek McCulloch ve Pitts
(1943) tarafindan gelistirilen YSA, ilerleyen yillarda birden fazla gizli katmana sahip
olacak sekilde &zellestirilmistir ve DO kavrami ortaya ¢ikmustir. DO modellerinin
geleneksel MO yéntemlerine gore avantajlar1 6znitelik secimi gerektirmemeleri ve veri
sayis1 arttik¢a algoritmanin performansinin artmaya devam etmesidir. Temel DO cesitleri
Evrisimli Sinir Aglar1 (ESA), Tekrarlayan Sinir Aglari, Uzun Kisa Siireli Hafiza Aglari,
Sinirli Boltzman Makineleri ve Derin Oto-Kodlayicilardir. Ozellikle gériintii tabanl
uygulamalarda siklikla kullanilan ESA’larin temeli Fukushima (1980) tarafindan
atilmistir. Bir diger 6nemli ¢alisma ise LeCun vd. (1989) tarafindan gelistirilen LeNet5
ESA mimarisidir. Buna ragmen ESA 2012’de diizenlenen ImageNet yarismasina kadar
popiiler olamamistir. Bu yarigmada Krizhevsky vd. (2017)’nin olusturdugu AlexNet
modeli yiiksek bagar1 gdstermistir ve bu ¢alismadan sonra ESA giderek popiilerlesmistir.
Hiperspektral goriintiilerin siniflandirilmasinda ESA mimarilerinin kullanilmasi da son 5
yildir giderek yayginlasmaktadir (Chen vd. 2016, Zhao W ve Du 2016, Mou vd. 2017,
Paoletti vd. 2018, Cihan ve Ceylan 2020, Hong vd. 2020). Bahsi gecen galismalar ve

diger caligmalara dair detaylara literatiir 6zetinde deginilmistir.

Hiperspektral verilerin giincel en biiyiikk dezavantajlarin birisi de sensorlerin ¢ok kisith
sekilde bulunmasidir. Sistemlerin genellikle hava araci tabanli olmasi ve yiiksek maliyet
sebebiyle verilere ulasmak ¢ok pahali ve zahmetlidir. insansiz hava araglarina monte
edilen hiperspektral sensorler ise uydu ve hava araci platformlarindaki hiperspektral
goriintiileme sistemleri kadar yiiksek spektral ¢oziiniirliik saglayamamaktadir. Bilinen
yaygin uydu tabanli goriintiileme sistemlerinden EO-1 Hyperion ise gorev Omriinii Subat
2017°de tamamladig1 i¢in bu sensérden giincel veri saglanamamaktadir (Int.Kyn.1).
Ancak gelisen teknoloji ve cesitli uzay ajanslari tarafindan gonderilmesi planlanan
hiperspektral goriintiileme uydular1 yiiksek potansiyele sahip bu veriler igin giizel bir
gelecek vaat etmektedir. Giincel durumda verilere ulagsmanin giicliigii ve yer dogrulama
verilerinin hazirlanmasi zor ve pahali oldugu i¢in arastirmacilar ¢esitli kurumlar ve kisiler
tarafindan hazirlanmis  karsilastirma verileri iizerinde akademik c¢alismalarini
stirdiirmektedir. En yaygin kullanilanlar1 Indian Pines, Salinas Scene, University of Pavia

ve Kennedy Space Center olmak iizere Pavia Centre, Cuprite ve Botswana gibi



karsilastirma veri setleri mevcuttur (Int.Kyn.2). Ayrica diger komiteler tarafindan
yayinlanan ancak ¢ok yaygin olarak kullanilmayan HyRANK, Data Fusion Contest 2013
(DFC13) ve Data Fusion Contest 2018 gibi hiperspektral veri setleri de bulunmaktadir.
Hiperspektral goriintiilerin siniflandirilmasi konusu Elektrik ve Elektronik Miihendisligi,
Bilgisayar Miihendisligi ve Harita (Geomatik) Miihendisligi disiplinlerinin ortak ¢alisma
konularindandir. Literatiirde yukarida bahsi gecen karsilastirma veri setleri ile yapilan
caligmalarda dikkat ¢eken detaylardan birisi de veri setlerinin yer dogrulama verilerinin
egitim ve test veri seti olarak ayrildigi, ardindan algoritma egitildikten sonra yine yalnizca
yer dogrulama piksellerinin smiflandirildigir  goriilmiistir. Daha objektif  bir
degerlendirme i¢in goriintillerin  tamaminin  siiflandirilmast  ve  siniflandirma

haritalarinin da gorsel olarak yorumlanmasi 6nemli unsurlardan birisidir.

Bu tez caligmasmin amaci gesitli egitim veri kiimesi boyutlarinda geleneksel MO
algoritmalarmin ve DO tabanli ESA modellerinin hiperspektral goriintiilerin
siiflandirilmasinda kullanilabilirliginin incelenmesidir. Bu dogrultuda DVM, RO, 2B
ESA ve 3B ESA algoritmalarmin hiperspektral goriintiilerin siniflandirilmasinda
kullanilmast amaglanmistir. Bunun yaninda algoritmalarin egitim veri kiimesi boyutlarina
gore performanslarinin 6nemli dl¢iide degisip degismeyecegini test etmek i¢in sirasiyla
30%, 50% ve 70% egitim veri kiimesi boyutu uygulanmasi amaglanmigtir. Algoritmalarin
egitiminde literatiirde siklikla kullanimi tekrar eden karsilastirma veri setleri yerine
HYRANK ve DFC13 veri setleri de kullanilacak; bunun yaninda yaygin kullanilan veri
setlerinden Salinas Scene kullanilacaktir. Bdylelikle ¢esitli konumsal ¢oziiniirliik,
spektral ¢oziiniirliik ve arazi siniflar1 saglayan goriintiilerin tek bir calismada incelenmesi
saglanacaktir. Algoritmalarin performanslar literatiirde de siklikla kullanilan genel
dogruluk, tretici ve kullanici dogruluklar1 ve Kappa katsayisi metriklerine gore
degerlendirilecek ve aralarindaki farklarin anlamli olup olmadiklart McNemar’s testi ile
belirlenecektir. Son olarak ise tiim pikselleri siiflandirilan hiperspektral goriintiilerin

smiflandirma haritalart gérsel yorumlama ile incelenecektir.



2. LITERATUR BIiLGILERI

UA’da hiperspektral goriintiilerin sagladiklar1 yiiksek spektral ¢oziintirliik sayesinde bu
konu tlizerinde ortaya koyulan c¢alismalar giderek yaygmlasmaktadir. Yapilan
caligmalarda yaygin konulardan birisi de hiperspektral goriintiilerin siniflandirilmasidir.
Son yillarda MO algoritmalarinin sagladigi avantajlar ve gosterdikleri yiiksek basari
hiperspektral goriintiilerin ~ siniflandirilmasinda  bu  algoritmalarin ~ kullaniminin
yayginlasmasina sebep olmustur. Insan beyninin dgrenme, muhakeme ve karar verme
yeteneklerini taklit eden MO algoritmalari, istatistiksel yontemlerle smiflandirma
kurallarii kendileri iiretmektedir. Ayrica MO algoritmalarinda kullanic1 miidahalesi de
diisiik seviyededir. Kullanici tanimli parametreler gerektiren MO algoritmalarinda soz
konusu parametreler optimum sekilde belirlendiginde yiiksek siniflandirma dogruluklari
elde edilmektedir. Son yillarda giderek popiilerlesen DO algoritmalarindan olan ESA
algoritmasi ise geleneksel MO algoritmalarina gore basari seviyesini daha da ileriye
tasimistir. Cesitli disiplinlerden bircok arastirmaci, en iyi siniflandirma performansini
saglamak amaciyla farkli ESA mimarileri tasarlayarak bu alandaki c¢aligmalarini
siirdiirmektedir. Asagida kronolojik siralamaya gore, yontemler ve kullanilan veri setleri

ile birlikte literatiirde yer alan bazi ¢alismalar agiklanmuistir.

Melgani ve Bruzzone (2004) hiperspektral goriintiilerin siniflandirmasinda DVM’nin
performansini aragtirmistir. Veri seti olarak Indian Pines veri seti kullanilmis; ilk asamada
DVM Lineer Kernel, DVM Radyal Tabanli Fonksiyon (RTF) Kernel, K-En Yakin
Komguluk (K-EYK) ve RTF YSA yontemlerini kiyaslamislardir. Ikinci asamada ise gok
siifli yaklagimlar olarak DVM i¢in paralel yaklasimlardan Teke Tek (TT-DVM) (One
against one) ve Teke Karsi Tiimii (TKT-DVM) (One against all) stratejileri, Ikili
Hiyerarsik Agac (IHA) yaklasimlarindan ise Dengeli Subeler (IHA-DS) (Balanced
branches) ve Teke Karsi Tiimii (IHA-TKT) stratejileri karsilastirilmistir. Calisma
sonucunda DVM'lerin siniflandirma dogrulugu, hesaplama siiresi ve parametre ayarinda
kararlilik agisindan diger geleneksel parametrik olmayan K-EYK ve RTF YSA
smiflandiricilardan ¢ok daha etkildir (94,38% dogrulukla DVM-RTF). DVM’ler
calismada uygulandigi gibi, bir 6znitelik ¢ikarma veya se¢imi prosediirii ile geleneksel

bir siniflandiricinin kombinasyonuna dayanan geleneksel oOriintii tanima yaklagimindan



daha etkili goriinmektedir. Ayrica DVM’ler Hughes fenomenine kars1 diisiik hassasiyet
gostermektedir. Cok sinifli yaklagimlar i¢in yapilan deneyde de 93,96%’lik dogrulukla
TKT-DVM en yiiksek dogrulugu vermistir.

Chan ve Paelinckx (2008) HyMap sensorii ile elde edilmis hiperspektral goriintiiniin
simiflandirilmasinda AdaBoost ve RO algoritmalarinin kullanimini incelemislerdir.
Siniflandirma performansi agisindan neredeyse birbirine esit olan AdaBoost ve RO
algoritmalarinin  YSA’dan daha yliksek basariya sahip oldugu gorilmiistir. RO
algoritmasiin her bélme i¢in rastgele alt kiimeler kullanmas1 ve budama yapmamasi
sebebiyle egitim siiresi bakimindan daha hizli oldugu, buna karsin AdaBoost’un biraz

daha yiiksek dogruluk sagladig1 sonucuna ulagmiglardir.

Waske vd. (2009) DVM ve RO algoritmalarinin hiperspektral goriintiilerin
simiflandirmasinda  kullanilmasint  arastirmislardir. Calismada kullanilan goriintii
Izlanda’daki Hekla Volkani ve ¢evresini kapsamakta olup AVIRIS sensorii tarafindan 17
Haziran 1991 tarihinde elde edilmistir. Yer dogrulama verisinde 22 arazi sinifi mevcuttur.
Her smiftan 100, 200 ve 400 egitim verisiyle algoritmalarin egitimi gerceklestirilmis ve
siiflandirma sonucglart ECB ve SAH algoritmalarinin sonuglariyla kiyaslanmistir.
Calisma sonucunda DVM’nin tiim egitim veri kiime boyutlarinda diger algoritmalardan
daha yiiksek dogruluk verdigini ve RO’ya gore daha dengeli iiretici-kullanici
dogruluklaria sahip oldugu goriilmiistiir. Yapilan McNemar’s Testi ve Spearman’in
Sirali Korelasyon Katsayilariyla DVM ile RO’nun siniflandirma haritalart arasinda
anlamli bir farklilik tespit edilmistir. Calisma sonucunda, her iki algoritmanin da
Izlanda'daki farkli volkanik birimleri hiperspektral veri setleriyle ayirt etmek igin

kullanish oldugu sonucuna varmislardir.

Mou vd. (2017) hiperspektral goriintilerin siniflandirilmasinda Tekrarlayan Sinir
Aglarimin (TSA) kullanilmasini énermislerdir. Bu modelin hiperspektral goriintiiler i¢in
kullanilmasinda hiperspektral piksellerin sirali veri olarak kabul edilebilecegi seklinde
gerceklestirdikleri  gozlemlerinden esinlenmislerdir. Ayrica ¢alismada PRetanh
aktivasyon fonksiyonunu da 6nermistir. University of Pavia, Indian Pines ve DFC13 veri
setleriyle gerceklestirilen deneyde onerdikleri metot DVM-RTF ve Hu vd. (2015)’nin

ESA modelinden daha yiiksek siniflandirma performansi géstermistir.

Luo vd. (2018) HSI-CNN ismini verdikleri bir yeni bir siniflandirma modeli



onermislerdir. Modelin ana fikri ag yapisini derinlestirmek ve agin 6zellikleri daha iyi
cikarmasini ve ayirt etmesini saglamak icin evrisim sonuglar1 arasindaki korelasyonu
kullanarak verileri yeniden diizenlemek ve tek boyutlu verileri iki boyutlu veriler gibi
goriintiiye eklemektir. Onerilen agin asir1 dgrenme durumunu dnermek igin siniflandirma
asamasinda karar agaci tabanli yeni algoritmalardan olan XGBoost (Extreme Gradient
Boosting) algoritmasint HSI-CNN+XGBoost isimli bir model de kurmuslardir. Indian
Pines, Kennedy Space Center, Pavia University ve Salinas Scene karsilastirma seti ile
yapilan smiflandirmalarda onerilen HSI-CNN mimarisi >99% genel dogruluk ile en iyi

siiflandirma performansini gostermistir.

Christovam vd. (2019) HYRANK veri seti ile arazi kullanimi ve arazi ortiisii siniflandirma
uygulamasinda Spektral Ac¢i Haritalama (SAH), DVM ve RO yontemlerini
kullanmislardir. SAH ve RO algoritmalarinda egitim i¢in 176 banth yiizey reflektans
verisini girdi olarak segmislerdir. DVM ve ikinci bir RO modeli igin ise Temel Bilesenler
Analizi (TBA) uygulayip 14 temel bileseni kullanmiglardir. Calisma sonucunda RO-TBA
modelinin 92% genel dogruluk ile en yiiksek dogruluga sahip oldugunu, SAH modelinin
ise 48% genel dogrulukla en diisiik genel dogruluga sahip oldugunu tespit etmislerdir.
TBA uygulanmayan RO modeli ise 91% dogruluk vermistir. Buradan da anlasilacagi

tizere TBA modelde 1%’lik bir 1yilesme saglamistir.

Roy vd. (2019) ¢alismasinda {i¢ tane 3B evrisim katmani1 ve bir tane 2B evrisim katmanina
sahip olan; bu melez yapiya atifta bulunarak HybridSN olarak isimlendirdikleri bir
3B+2B ESA modelini 6nermislerdir. 3B evrisim katmanlarinda konumsal-spektral
ogrenme islemi gerceklestiren bu yapi, girdi seklini degistirerek son katmandaki 2B
evrisim iglemi ile sadece konumsal 6grenme islemi gergeklestirmektedir. Indian Pines,
University of Pavia ve Salinas Scene karsilastirma veri setleri ile gergeklestirilen
deneylerde onerilen ESA mimarisiyle sirasiyla 99,75%, 99,98% ve 100% genel dogruluk
degerlerine ulastiklar1 goriilmektedir. Test ettikleri modeller arasinda en yiiksek
dogruluga sahip olan HybridSN modeli 10% gibi kisith egitim veri kiime boyutunda da

yiiksek basar1 gostermistir.

Berave Shrivastava (2020) hiperspektral verilerin ESA modelleriyle siniflandirilmasinda
optimizasyon fonksiyonlarmin  model dogruluguna etkisini arasgtirmiglardir.

Calismalarinda TBA ile verinin boyutunu diisiiren ve ii¢ tane 2B evrigim katmanindan



olusan bir ESA mimarisi kullanmislardir. Kennedy Space Center, Indian Pines,
University of Pavia ve Salinas Scene karsilastirma veri setleri kullanilarak SGD,
Adagrad, Adadelta, RMSprop, Adam, Adamax ve Nadam optimizasyon fonksiyonlarini
genel dogruluk ve islem stiresine etkisi agisindan karsilastirmislardir. Calisma sonucunda
Adam optimizasyon fonksiyonunun digerlerinden daha fazla dogruluk sagladigi ve daha

kisa islem siiresi gerektirdigi sonucuna ulagmiglardir.

Cihan ve Ceylan (2020) hiperspektral verilerin siniflandirilmasinda komsuluk ¢ikarimi
islemiyle 6rnek sayisinin arttirildigi, 3 tane evrisim katmanindan olusan KC3B-ESA
mimarisini 0nermislerdir. Indian Pines, Salinas Scene ve Pavia University veri setleri ile
20% egitim verisi ile yaptiklar1 karsilastirmada 6nerilen KC3B-ESA, DVM (Melgani ve
Bruzzone 2004), 2B-ESA (Makantasis vd. 2015), 3B-ESA (Hamida vd. 2018) ve M3B-
ESA (He vd. 2017) modellerine gore daha yiiksek performans gostermistir.

Paoletti, Haut, Tao, vd. (2020) DVM algoritmasiyla hiperspektral goriintiilerin
siiflandirilmasinda islem stiresini kisaltmak ve bellek gecikmelerini gidermek i¢in
yaygin kullanilan DVM algoritmasini grafik islem birimiyle (GIB) calisir bir sekle
getirmiglerdir. Indian Pines, University of Pavia ve DFCI13 veri setleri kullanilarak
yapilan karsilastirmada egitim veri kiimesi boyutu ve farkl iki GIB ile yapilan deneylerde
GIB-DVM klasik DVM ile benzer dogruluk degerlerini daha kisa siirede saglamaktadir.

Paoletti, Haut, Roy, vd. (2020) geleneksel evrisim kernellerinin dairesel harmonik
filtrelerle degistirilmesi ile olusturulan yonelim-esdegiskenli re2DCNN modelini
onermislerdir. Indian Pines, University of Pavia ve Salinas Scene karsilastirma veri setleri
kullanilarak ¢ok kisitli egitim kiimesi (1%-15%) ile gergeklestirilen deneylerde onerilen
model diger yontemlerden daha yiiksek basar1 gostermistir. Ayrica yeni yaklasimin veri
yonelimsel varyansina kars1 daha iyi bir saglamlik (robustness) sergiledigi ve veri artirma

teknikleri gerektirmeden daha iyi bir genelleme sagladig1 sonucuna varmiglardir.

Incelenen ¢alismalarda goriilen eksikliklerden bazilar1 sunlardir: Bazi ¢alismalarda
stirekli olarak ayni karsilastirma veri setleri kullanilmistir. Dolayisiyla algoritmalarin
farkli 6zellikteki veri setleriyle karsilastirilmasi konusunda eksiklikler bulunmaktadir.
Calismalarin bir kisminda siniflandirma haritalar1 verilmezken bazi ¢alismalarda daha
once bahsedildigi gibi yalnizca etiketli verilerin bulundugu alanlarin smiflandirma

sonuglari verilip diger alanlar siyah renk ile siniflandirilmamis olarak gosterilmistir. Bu



durumda goriintiilerdeki detaylarin sekilsel olarak dogrulugu hakkinda yorum yapilmasi
miimkiin olmamaktadir. Diger bir eksiklik ise modellerin performans kiyaslamasi yapilan
caligmalarda genel dogruluk ve iiretici-kullanic1 dogruluklar1 disinda istatistiksel testler
uygulanmamistir. Tez ¢alismasinda bu eksilikler g6z oniinde bulundurularak analizler

gercgeklestirilmis ve literatiirde bu konudaki agik giderilmistir.
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3. MATERYAL ve METOT

Bu bolimde ilk olarak hiperspektral goriintiilerin = siniflandirma asamalarinin
gergeklestirildigi is istasyonunun donanim ve yazilim 6zellikleri ile tezde kullanilan veri
setlerinden bahsedilmistir. Ardindan hiperspektral goriintiilerin 6n islemesinde boyut
indirgeme amaciyla kullanilan TBA, MO kavrami, tez kapsaminda kullanilan geleneksel
MO yontemleri ile DO kavrami ve ESA mimarileri agiklanmistir. Son olarak tez
calismasinda kullanilan ESA mimarileri ve modellerin siniflandirma performansinin

belirlenme yontemleri olan dogruluk analizi agiklanmustir.

3.1 Donanim ve Yazilim

Tez c¢alismasi kapsaminda olusturulan smiflandirma modelleri igin Asus marka is

istasyonu kullanilmistir. Is istasyonunun donanim bilesenleri Cizelge 3.1‘de verilmistir.

Cizelge 3.1 Kullanilan is istasyonunun donanim bilesenleri.

Donanim Donanim Modeli
Islemci Intel® Xeon® E-2136 @3.30 GHz
Grafik Islemci Birimi ASUS ROG STRIX GeForce RTX-2070 SUPER 8GB
Bellek 64 GB DDR-4
Depolama TOSHIBA RC500 NVME SSD 500 GB

[s istasyonunda Windows 10 Pro for Workstations Version 1909 isletim sistemi yiikliidiir.
Modellerin gelistirilmesinde Python 3.7.9 programlama dili kullanilmistir. Kodlar
Anaconda Navigator’in gelistirdigi Spyder 4.1.5 ortaminda gelistirilmistir. ESA
modellerinin olusturulmasinda Keras kiitiiphanesinin 2.3.1 stirimii kullanilmistir.
Keras’1in arka planinda hesaplamalarin gerceklestirilmesi i¢in Tensorflow ve Tensorflow-
GPU Kkiitiiphanelerinin 2.1.0 siirimleri kullanilmistir. Tensorflow kiitiiphanesi Nvidia
ekran kartlarinin sagladigit CUDA (Compute Unified Device Architecture) Toolkit 10.2

hizmetini de desteklemektedir. Bdylece is istasyonunun grafik islem birimi de ESA’larin
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egitiminde rol oynamakta olup egitim siirecini hizlandirmaktadir. TBA doniisiimii, SVM
ve RO modellerinin kurulmasinda Scikit-Learn 0.23.2 kullanilmistir. Bu kiitiiphanelere
ek olarak ise gesitli islem adimlarinda Numpy, Pandas, Time, Tifffile, Plotly, Matplotlib

gibi diger yardimci kiitiiphaneler de kullanilmistir.

3.2 Hiperspektral Goriintii

UA, yeryiizii ve yeryiiziindeki kaynaklara temas etmeden s6z konusu nesnelerin
incelenmesini saglayan sistemlerdir. UA’da algilayici sistemleri aktif ve pasif
algilayicilar olarak incelenebilir. Aktif algilayicilar kendi {izerinde bulunan yapay enerji
kaynaklarindan {irettigi elektromanyetik dalga sinyallerini hedefe yollayip hedeften
sagilan enerjiyi algilayan sistemlerdir. RADAR (Radio Detection and Ranging) ve
LiDAR (Light Detection and Ranging) sistemleri aktif algilayicilara 6rnek gosterilebilir.
Pasif algilayicilar ise gilines veya diger kaynaklarin yeryiiziine gonderdigi isinlar
araciligiyla yeryiiziinden yansiyan veya yayilan enerjiyi algilayan optik, 1si1l ve
mikrodalga algilayici sistemlerdir. Pasif algilayici sistemlerde cisimlerden yansiyan veya
yayilan enerji genellikle elektromanyetik spektrumda ilgili kisimlara karsilik gelen birgcok
banda kaydedilmektedir. Goriintiideki bant sayisina gore goriintiiler multispektral ve
hiperspektral olarak tanimlanabilir. Multispektral goriintiiler genellikle ticten fazla banda
sahip olan goriintiilerdir. Hiperspektral goriintiiler ise ¢ok daha fazla sayida (genellikle

100’den fazla) dar spektral aralikta alinmis bantlara sahiptir.

Hiperspektral sensorler elektromanyetik spektrumun goriiniir, yakin kizilotesi, orta
kizil6tesi ve termal kizil6tesi bolgeleri boyunca gok sayida, dar aralikta, bitisik spektral
bantlarda goriintii alan cihazlardir. Bu sistemler genellikle 100°den fazla bantta veri
toplayip goriintiideki her bir piksel i¢in yansitim (termal kizilotesi bolgede yayim)
spektrumunun olugmasini saglamaktadir (Grahn ve Geladi 2007, Lillesand vd. 2015).
Hiperspektral siniflandirma yontemlerinin gida, medikal, tarim, askeri ve savunma,

madencilik gibi degisik alanlarinda uygulamalar1 bulunmaktadir (Demir 2010).

UA sistemleri yeryiiziindeki kentlesme, kiy1 kesimlerindeki degisimler, erozyon, orman
yayginlar1 ve iklim degisikligi gibi olaylarin goézlenmesi ve yasanan olumsuzluklar

karsisinda tedbirler alinmasi konusunda bir¢ok analiz yapilmasina imkan saglamaktadir.
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Elektromanyetik spektrumda c¢ok genis bir aralikta yiiksek ¢oziiniirlikte veri
kaydedebilen hiperspektral sistemler ile elde edilen verilerin simiflandirilmast veya
siniflarin belirlenmesi, bahsi gecen problemlerin ¢éziimiinde yiiksek basar1 saglamaktadir
(Landgrebe 2005). Cizelge 3.2’te baslica hava aract ve uydu platformundaki
hiperspektral sensorler verilmistir (Dalponte vd. 2009, int. Kyn.3) .

Cizelge 3.2 Baslica hiperspektral sensorler ve 6zellikleri.

Max Max
Sensor Ad1 Uretici Platform Bant Cffﬁ:::;?lllk Afsl?ll:t(frln)
Sayisi (nm)

Hyperion NASA Goddard Space F. C. Uydu 220 10 0.4-25
MODIS NASA Uydu 36 40 0.4-14.3
CHRIS Proba ESA Uydu 63'e kadar 1.25 0.415-1.05
PRISMA OHB ltalia Uydu ~250 12 0.4-25
HySIS ISRO Uydu 60+256 10 0.4-2.4
AVIRIS NASA Jet Propulsion Lab ~ Hava Araci 224 10 0.4-2.5
HYDICE Naval Research Lab Hava Araci 210 7.6 0.4-2.5
PROBE-1 Earth Search Sciences Inc.  Hava Araci 128 12 0.4-2.45
CASI 550 ITRES Research Limited Hava Araci 288 1.9 0.4-1
CASI 1500 ITRES Research Limited Hava Aract 288 2.5 0.4-1.05
SASI 600 ITRES Research Limited Hava Aract 100 15 0.95-2.45
TASI 600 ITRES Research Limited Hava Aract 64 250 8-11.5
HyMap Integrated Spectronics Hava Araci 125 17 0.4-2.5
ROSIS DLR Hava Araci 84 7.6 0.43-0.85
EPS-H GER Corporation Hava Araci 133 0.67 0.43-12.5
EPS-A GER Corporation Hava Araci 31 23 0.43-125
DAIS 7915 GER Corporation Hava Araci 79 15 0.43-12.3
AISA Eagle Spectral Imaging Hava Araci 244 2.3 0.4-0.97
AISA Eaglet  Spectral Imaging Hava Araci 200 - 0.4-1
AISA Hawk  Spectral Imaging Hava Araci 320 8.5 0.97-2.45
AISA Dual Spectral Imaging Hava Araci 500 2.9 0.4-2.5
MIVIS Daedolus Hava Araci 102 20 0.43-12.7
AVNIR OKSI Hava Aract 60 10 0.43-1.03
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3.3 Veri Setleri

Bu ¢alismada uydu ve hava platformlarindan farkli sensorler araciligiyla elde edilmis 5
farkli hiperspektral veri seti kullanilmigtir. Kullanilan veri setleri farkli konumsal,
spektral ve radyometrik ¢Oziiniirliklere sahiptir. Dolayisiyla bu veri setlerinin
siiflandirilmasinda goriintiilerin elde edilmesinden kaynaklanan bu farkliliklarin da
siniflandirma performansina etkilerinin incelenmesi amaglanmistir. Boliimiin alt

basliklarinda veri setlerinin 6zelliklerine dair bilgiler verilmistir.

3.3.1 HYRANK Veri Seti

HyRANK Benchmark veri seti ISPRS’in (International Society for Photogrammetry and
Remote Sensing) Komisyon III Calisma Grubu III/4 tarafindan yeni smiflandirma
algoritmalariin bilinen en iyi siniflandirma algoritmalartyla kiyaslanmasi ve kisith
sayida olan hiperspektral veri setlerine alternatif veri seti kazandirilmasi amaciyla
olusturulmus bir karsilastirma veri setidir (Karantzalos vd. 2018). Veriler 2006 yilinin
mayis ay1 sonu ile temmuz ayi1 basi arasinda NASA’nin (National Aeronautics and Space
Administration) EO-1 (Earth Observing-1) uydu platformu iizerinde yer alan Hyperion
sensoriinden elde edilmistir. EO-1 Hyperion platformu goriiniir yakin kizilotesi dalga
boylar1 aralig1 ile kisa dalga kizilétesi (357-2576 nanometre) spektral bolgelerinde
goriintii alabilen ilk uydu sistemidir. Hyperion goriintiileri 10 nanometre spektral aralikla
alinmis ve 30 metre konumsal ¢oziiniirliige sahip 220 banttan olusmaktadir (Int.Kyn.4).
HyRANK veri setindeki verilerde goriintiilerin 6n isleme islemleri gerceklestirilmis olup
su buhart emme bantlar1 ve diger bozuk bantlar temizlenerek bant sayisi 176’ya
disiiriilmiistiir. HyRANK veri seti Dioni, Loukia, Erato, Kirki ve Nefeli olarak
isimlendirilmis 5 goriintliiyli icermektedir. Bu veri setlerinden Dioni ve Loukia,
algoritmalarin egitimi i¢cin yer dogrulama verisine sahiptir. Diger goriintiiler ise
dogrulama i¢in ayrilmistir. Yer dogrulama verileri CORINE (Coordination of
Information on the Environment) 2006 arazi kullanimi / arazi ortiisti haritasi, Google
Earth ve diger yiiksek ¢oziiniirliiklii uydu goriintiileri tizerinden hassasca se¢ilmis 14 arazi

kullanimi / arazi Ortiisii sinifina sahiptir (Karantzalos vd. 2018).
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3.3.1.1 Dioni Veri Seti

Dioni veri seti HyRANK veri seti icerisinde yer dogrulama verisine sahip iki goriintiiden
birisidir. Goriintii 250%1376%176 boyutundadir. Goriintii Loukia goriintiisii ile ayni
siiflara gore tanimlanmasina ragmen Genis Yaprakli Ormanlar (Sinif No: 6) ve Karigik
Ormanlar (Sinif No: 8) siniflart yer dogrulama verisinde mevcut degildir. Dolayisiyla
goriintii 12 farkli sinifa sahiptir. Veri setinin (Kirmizi: 23, Yesil: 11, Mavi: 07) bant
kombinasyonuna gore renklendirilmis sekli, renklendirilmis hali {izerinde yer dogrulama
verisinin goriiniimii ve yalnizca yer dogrulama verisinin gosterildigi hali Sekil 3.1°de

gosterilmistir.

- Siniflandirilmamig |: Meyve Bahgeleri |:| Karisik Ormanlar l:l Kayalar ve Kumluklar
- Stirekli Sehir Yapist :l Zeytinlikler - Yogun Sklerofil Bitki Ortiisii - Su

- Mineral Cikarim Sahalari :l Genis Yaprakli Ormanlar l:l Seyrek Sklerofil Bitki Ortiisii \:' Kiy1 Sulari

l:l Sulanmayan Ekilebilir Alanlar - Igne Yaprakli Ormanlar - Seyrek Bitki Alanlart

Sekil 3.1 Dioni veri setinin (a) Gergek Renk, (b) Ger¢ek Renk + yer dogrulama ve (c) yer
dogrulama goriintileri.

Goriintiiniin sag kisminda goriilen bulutlar ve bulut gélgeleri goriintiiniin orijinal halinde

maskeleme gibi herhangi bir 6n islemeye tabii tutulmadigi i¢in dogrudan kullanilmigtir.
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3.3.1.2 Loukia Veri Seti

Loukia veri seti HyRANK veri setinde yer alan ve yer dogrulama verisine sahip olan diger
veri setidir. Goriintii 249%945x176 boyutundadir. Veri setinin (Kirmizi: 23, Yesil: 11,
Mavi: 07) bant kombinasyonuna gore renklendirilmis sekli, renklendirilmis hali tizerinde
yer dogrulama verisinin goriiniimii ve yalnizca yer dogrulama verisinin gosterildigi hali

Sekil 3.2’de gosterilmistir (Karantzalos vd. 2018).

- Simiflandirilmannsg D Meyve Bahgeleri :l Karigik Ormanlar :] Kayalar ve Kumluklar
- Siirekli Sehir Yapist I:I Zeytinlikler - Yogun Sklerofil Bitki Ortiisii - Su
- Mineral Cikarim Sahalar :l Genis Yaprakli Ormanlar I:l Seyrek Sklerofil Bitki Ortiisii [:] Kiyt Sulart

:l Sulanmayan Ekilebilir Alanlar - Igne Yaprakli Ormanlar - Seyrek Bitki Alanlar

Sekil 3.2 Loukia veri setinin (a) Gergek Renk, (b) Gergek Renk + yer dogrulama ve (c) yer
dogrulama goriintiileri.

Sekil incelendiginde siiflar1 tanimlayan yer dogrulama verilerinin se¢imlerinin goriintii

tizerinde olabildigince homojen dagilimda yapildigi acik¢a goriilmektedir.
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3.3.2 DFC13 Veri Seti

DFC13 (Data Fusion Contest 2013) veri seti 23 Haziran 2012 tarihinde 17:37:10 ile
17:39:50 saatleri arasinda elde edilmis hiperspektral goriintiidiir. Goriintii Houston
Universitesi Kampiisii ve ¢evresindeki sehir alanin1 kapsamaktadir. NCALM (National
for Airborne Laser Mapping) tarafindan elde edilen goriintii 2,5 metre konumsal
¢oziiniirliige sahiptir ve 5500 feet (1676,4 metre) yiikseklikten cekilmistir (Int.Kyn.5).
Goriintii 380 ile 1050 nanometre arasinda 144 spektral banda sahiptir. GOriinti
349x1905x144 boyutundadir. Veri seti hiperspektral goriintii, egitim verisi ve dogrulama
verisi icermektedir. Tez c¢alismasinda s6z konusu iki dogrulama birlestirilerek
kullanilmigtir. Veri setinin (Kirmizi: 62, Yesil: 42, Mavi: 20) bant kombinasyonuna gore
renklendirilmis sekli, renklendirilmis hali lizerinde yer dogrulama verisinin goriiniimii ve

yalnizca yer dogrulama verisinin gosterildigi hali Sekil 3.3’te gosterilmistir.

. Smiflandirtlmamis i Sentetik Cimen . Su I:l Yol D Park Alani 1 . Kosu Pisti
D Saglikli Cimen . Agag |:| Ticari Yap1 D Otoyol D Park Alani 2

D Yipranmig Cimen . Toprak |:| Konut . Tren Yolu D Tenis Kortu

Sekil 3.3 DFC13 veri setinin (a) Ger¢ek Renk, (b) Ger¢ek Renk + yer dogrulama ve (c) yer
dogrulama goriintiileri.
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Sekil 3.3’te yer alan lejantta da goriilebilecegi tizere DFC13 veri seti 15 sinifa sahiptir.
Siniflarin tespiti ve gorlintii iizerinde isaretlenmesi, IEEE GRSS (Institute of Electrical
and Electronics Engineers Geoscience and Remote Sensing Society) toplulugu tarafindan
Goriintii Analizi ve Veri Fiizyonu Teknik Komitesi tarafindan diizenlenen 2013 Veri
Fiizyonu Yarigmasi (IEEE GRSS Data Fusion Contest) icin gerceklestirilmistir (Debes
vd. 2014). Siniflar 2,5 metre konumsal ¢oziiniirliige sahip bir goriintii i¢in ayirt edilebilir

sekildedir.

3.3.3 Salinas Scene Veri Seti

Hiperspektral goriintiiler lizerine yapilan calismalarda literatiirde siklikla karsilasilan
Salinas veri seti Amerika Birlesik Devletleri’'nin Kaliforniya eyaletindeki Salinas
Vadisinde AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) hiperspektral
algilayicisiyla 9 Ekim 1998 tarihinde elde edilmistir. Goriintiiniin konumsal ¢oziintirligi
3,7 metre; spektral ¢oziintirliigii ise 224 banttir. Goriintiiniin su buhar1 emme bantlar1 olan
(108-112, 154-167 ve 224) araligindaki 20 bandi silinerek 204 banda indirilmistir. Bu
islemlerin ardindan ortaya ¢ikan goriintii 512x217x204 boyutundadir. Veri setinin
(Kirmizi: 50, Yesil: 20, Mavi: 10) bant kombinasyonuna gore renklendirilmis sekli,
renklendirilmis hali iizerinde yer dogrulama verisinin goriinimii ve yalmizca yer

dogrulama verisinin gosterildigi hali Sekil 3.4’te gosterilmistir.
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. Swmiflandirilmamis

. Aniz |:| Roman marulu 5 hafta

D Brokoli_yesil otlar 1 I:l Kereviz . Roman_marulu 6 hafta

. Brokoli yesil otlar 2 . Uziimler_terbiyelenmemis I. Roman marulu 7 hafta

|:| Nadas_toprak D Toprak tiziim bagi yetisen . Uziim_bag1_terbiyelenmemis
. Nadas_toprak kaba_ saban . Misir_yaslanmig . Uziim bag1 diisey it
. Nadas_toprak diiz . Roman_marulu 4 hafta

Sekil 3.4 Salinas Scene veri setinin (a) Ger¢ek Renk, (b) Gergek Renk + yer dogrulama ve (¢) yer
dogrulama goriintiileri.

Salinas Scene veri setinin yer dogrulama verisi temelde sebzeler, yer ve toprak, iiziim
baglar1 olmak tizere 3 ana sinif altinda incelenebilir (Gualtieri vd. 1999). Veri setinin yer
dogrulama verisi toplamda 16 siniftan olusmaktadir. Siniflarin belirlenmesi goriintiiniin

¢ekim tarihinde ilgili parsellerde yapilan yersel gozlemler ile saglanmistir.
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3.4 Temel Bilesenler Analizi

Hiperspektral algilayicilar ¢cok biiylik miktarda veri sunmalarina ragmen daha diisiik
spektral ¢oziiniirliiklii goriintiilerden farkli birtakim dezavantajlara sahiptir. Hiperspektral
goriintiiler dar spektral araliklarla yiizlerce bant igerdigi ig¢in spektral bilgilerin tekrar
edilmesinden dolay1 birbirleri arasindaki korelasyon yiiksektir (Li W vd. 2011). Verinin
istatistiksel olarak daha anlamli hale getirilebilmesi, veri setinin daha az depolama alani
gerektirmesi ve islem siiresinin kisaltilmasi i¢in boyut indirgeme ydntemleri
kullanilmalidir. Boyut indirgeme, smiflandirma uygulamalarinda smiflandirma
performansin1 potansiyel olarak bozabilecek gereksiz Ozellikleri atarak hesaplama
karmagikligin1  azaltmayr ve istatistiksel kotli kosullandirmayir iyilestirmeyi
amaclamaktadir (Lee ve Landgrebe 1993). Boyut indirgeme yontemleri egitimli, yari
egitimli ve egitimsiz algoritmalar olarak ii¢ ana baslikta incelenmektedir (Ghamisi vd.
2017). Lineer Diskriminant Analizi, Nonparametrik Agirlikli Oznitelik Cikartma,
Jeffries—Matsushita mesafesini kullanan bant se¢imi ve karsilikli bilgiyi kullanan bant
secimi yontemleri siklikla kullanilan egitimli boyut indirgeme yontemleridir. Bu
yontemler smiflarin ayrilabilirliginin arttirilmasi igin etiketli verileri kullanmaktadir.
Uygulamada etiketli verilerin elde edilmesi zordur ve bu veriler oldukga kisithidir. Diger
taraftan etiketlenmemis veriler ¢ok diisitk maliyetle biiyiik miktarlarda mevcuttur. Bu
sebeple hem etiketlenmemis hem de smirh etiketli verileri kullanarak siniflandirmay1
lyilestirmeyi amacglayan yar1 egitimli yontemler gelistirilmeye baglanmigtir. Bu
yontemlerden bazilar birlikte egitim, dontstiiriici DVM ve grafik tabanli yar1 egitimli
ogrenme yontemleridir. Etiketli verinin miimkiin olmadig1 durumlarda egitimsiz boyut
indirgeme yontemleri ile bazi kriterler saglanarak daha az sayida bant kiimesinin elde
edilmesi amaglanmaktadir. Egitimsiz boyut indirgeme algoritmalarma ise TBA,
Bagimsiz Bilesen Analizi ve En Az Giiriilti Giderme DOniistimii yontemleri 6rnek
gosterilebilir. Bu tez calismasinda ise literatiirde yaygin olarak kullanilan ve en bilinen
yontemlerden olan TBA yoOntemi ile hiperspektral goriintiilerin bant sayilarinin

azaltilmas1 amaclanmustir.

TBA, Pearson (1901) tarafindan tanitilmis ve Hotelling (1933) tarafindan gelistirilmis bir

yontemdir. TBA verileri varyanslarinin en yiiksek olduklar1 degerlere gore birbirleri ile
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kolerasyonsuz daha az boyuttaki dogrusal bir alt uzaya yerlestiren dogrusal bir boyut
indirgeme yontemidir (Hotelling 1933). TBA temelde bantlarin kovaryans matrisinin
0zdeger ayrismasina dayanir. TBA’nin hesaplanmasinda ilk olarak 3B hiperspektral
gortinti (X) denklem (3.1)de gosterildigi sekilde 2B matrise (Xm) doniistiiriiliir:

XeR"™™P 5 x R (3.1)

Burada W, X’teki toplam piksel sayisini (M xN=W) ifade etmektedir. Bu islemin ardindan
bir piksel vektorii esitlik (3.2) seklinde yazilabilir:

pi:[pl,pz,...,pp]r, i=1,2,....W (3.2

Piksel vektorlerinin boyutlar1 D’ye esittir. Tiim piksellerin ortalamasi m hesaplanir (3.3)

ve ardindan ortalama merkezli veri matrisi U esitlik (3.4)’e gore hesaplanir:

1 w
m=W;p, (33)
U:[pl—m p,—m ... pi—m]eRDXW (3.4

Ortalama merkezleme, ortalamasi sifira esit bir veri matrisi olusturmak i¢in kovaryans
matrisinin hesaplanmasindan Once yapilmasi gerekli olan bir iglemdir. Bantlarin

arasindaki korelasyonlarin analizi i¢in kovaryans matrisi Cov hesaplanir (3.5):

Cov=UU" (3.5)

Boyutu (D xD) olan kovaryans matrisinde kosegen elemanlart her bir bandin varyansint,
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kosegen disindaki elemanlar ise bantlar arasindaki kovaryansi ifade etmektedir.
Kovaryans matrisinin bulunmasinin ardindan 6zdeger ayrisimi bulunur ve esitlik (3.6)

seklini alir.

Cov =VDV" (3.6)

Burada V kovaryans matrisinin 6zvektorlerini, D ise kovaryans matrisinin kdsegeni olan
Ozdegerleri ifade etmektedir. Bir sonraki adimda 6zdegerler ve 6zvektorleri azalan bir
sirada siralanir. Daha sonra, ilk K (K < D) tane 6zvektor farkli boyuttaki bir uzayda ifade
edilen déniistiiriilmiis yaklasik goriintiiyli hesaplamak i¢in kullanilabilir. Ozvektorler
azalan sekilde siralandigindan ilk 6zvektorler yiiksek varyansa sahiptir ve goriintiiye dair
bilginin biiyiik bir kismini igermektedir. Doniistiiriilmiis yaklasik goriintiideki pikseller
esitlik (3.7)’deki sekilde gosterilebilir:

Zi:[Zyer--'ZD]T:VTpi' i=12,...W (3'7)

Yalnizca ilk K temel bilesenini se¢gmek igin (3.8) esitligi hesaplanmalidir:

_pl_
Z V11 V12 VlK VlB P
o| | Ve Ve Ve Ve @9)
. : : . . pK
Zy i VKl VK2 ' VKK VKB :
L Pe |

Bu adim goriintiideki tiim pikseller i¢in uygulanir. Ardindan yeni goriintii yalnizca ilk K
temel bilesenler segilerek olusturulur. Son olarak elde edilen doniistiirtilmiis goriintii Xk

esitlik (3.9)’daki ti¢ boyutlu goriintii (Xyeni) sekline doniistirilir ve TBA ile boyut
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indirgeme islemi tamamlanmis olur.

X, eRY > x  eR"WMH (3.9

yeni

3.5 Makine Ogrenme Algoritmalari

MO yapay zekanin alt dallarindan birisidir. Temelde MO iki tane birbiriyle iliskili soruya
odaklanmaktadir; Deneyim yoluyla otomatik olarak gelisen bilgisayar sistemleri nasil
insa edilebilir? Bilgisayarlar, insanlar ve organizasyonlar dahil tiim 6grenme sistemlerini
yoneten temel istatistiksel hesaplama-bilgi-kuramsal yasalar nelerdir? MO hem bu temel
bilimsel ve miihendislik sorularini ele almak i¢in hem de {iirettigi ve birgok uygulamada
yer aldig1 son derece pratik bilgisayar yazilimi igin dnemlidir (Jordan ve Mitchell 2015).
Veri madenciligi ve istatistiksel analize dayal: teknikleri kullanan MO, bilgisayarlarin
insan 6grenme davranigini, muhakemeyi ve karar vermeyi taklit etmesini saglar (Nassif
vd. 2019). Yaklasik son otuz yilda popiiler olan MO algoritmalar1 kurallarla
programlanmaktan ziyade bir¢cok drnekten istatistiksel yapiyla kurallart ortaya ¢ikarmay1
amaglamaktadir (Sekil 3.5). MO algoritmalar1 bilgisayarli gorii, konusma tanima, robotik,
dogal dil isleme, web arama, fiyat tahmini, reklam yerlestirme, dolandiricilik tahmini,
tasinmaz degerleme gibi alanlarda ¢6ziim sunmaktadir (Alpaydin 2004, Jordan ve

Mitchell 2015, Nassif vd. 2019, Seyrek vd. 2019).

Veri
S
Klasik |
Kurallar >
Programlama
Vert
Kurall
: . Makine e
Istenen Sonug o >
Ogrenme

Sekil 3.5 Klasik programlama ile MO'niin farki.
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Sekil 3.6’dan da goriilecegi MO algoritmalar1 kontrollii grenme (supervised learning),
kontrolsiiz 6grenme (unsupervised learning), yari kontrollii 6grenme (Semi-supervised
learning), takviyeli 6grenme (reinforcement learning) ve derin 6grenme (deep learning)
5 baslik altinda incelenebilir (Nassif vd. 2019).

Makine Ogrenme
1. Kontrollii Oérenme 2. [(?ntrolsuz 3. ‘i?-rl Kontrolli 4. Takviyeli Ogrenme 5. Derin 6§renme
i Ogrenme Ogrenme d :
N e ) N
Regresyon Kiimeleme Kendi Kendine Egitim | | Dinamik Programlama Evrisimli Sinir Aglar
. v . J J AN J
e N N (7 N (© N (7 N
Simiflandirma Boyut indirme D YOgImIUkh,l Monte Carlo Metotlar | [Tekrarlayan Sinir Aglart
y Ayirma Modelleri
. IV AEANE VNG N VNG _/
-~ N 7 ™
Graf Tabanh L
P Bulgusal Yontemler
/N

Sekil 3.6 MO tiirleri (Nassif vd. 2019).

Kontrollii 6grenmede MO algoritmasmin egitimi i¢in etiketli veriler kullanilmaktadir.
Veriler bir vektorle temsil edilebilen bir girdi ve istenen bir ¢iktidan olustugu igin
etiketlenmis veri olarak adlandirilmaktadir. Kontrollii 6grenmede egitim kiimesinin
analizi sonucu ¢ikt1 ayrik (discrete) veri ise olusturulan fonksiyon simiflandirma; siirekli
(continuous) veri ise regresyon olarak adlandirilmaktadir. Kontrollii MO algoritmalariin
UA gorintiilerinin siniflandirilmasinda kullanimi agisindan diistiniildiigiinde girdi n tane
banttan olusan bir piksel i¢in 6znitelik vektorii (nx7) boyutundadir. Ciktiyr olusturan
etiket ise (/x7) boyutunda bir degerdir. Yer smifi bilindigi igin ve kontrollii MO
algoritmas1 Ozniteliklere gore yinelemeli olarak bu yer sinifin1 tahmin etmeye calistigi
i¢in, MO modeli tahmin edilen ile gergek sinif arasindaki varyasyon boslugunu azaltmak

amaciyla diizeltili. Bu 0grenme mekanizmast kontrolli Ogrenme olarak
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tanimlanmaktadir. Kontrollii 6grenme isleminde ¢ok sayida etiketli veri kullanilmaktadir.

Tez calismast kapsaminda kontrollii 6grenme algoritmalarindan DVM, toplu 6grenme
algoritmalarindan RO ve DO algoritmalarindan ESA kullanilmistir. lerleyen basliklarda

bahsi gecen algoritmalardan detayli olarak bahsedilmistir.

3.5.1 Destek Vektor Makineleri Algoritmasi

DVM, temelde iki sinifi birbirinden optimum olarak ayirabilen hiper diizlemi belirleme
prensibiyle calisan, verinin dagilimma iliskin herhangi bir varsayim yapmayan bir
algoritmadir. DVM parametrik olmayan bir algoritmadir ve istatistiksel Ogrenme
teorisine dayanmaktadir (Vapnik 1995). DVM algoritmasinin temel mantig1 Sekil 3.7°de

gosterildigi gibi iki sinifli dogrusal verinin siniflandirilmasinin ¢éziimiidiir.
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Sekil 3.7 Iki sinifi en optimum sekilde ayiran hiperdiizlem (int.Kyn.6).

Sekilde gosterilen mavi noktalarin A siifini; yesil noktalarin da B sinifin1 temsil ettigi
varsayilsin. Bu iki smif bir diizlem ile ayrilmak istendiginde ¢esitli konumlarda ve
doniikliiklerde diizlemler tanimlanmas1 miimkiindiir. Ancak siniflar arasindaki uzaklig

maksimum yapan; yani sekilde kesikli siyah ¢izgiler ile gosterilen durumu saglayabilen
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yalnizca bir smir pozisyonu bulunur. DVM algoritmasi, A ve B smifina esit uzakliga
sahip olan, maksimum marjinli ve siniflandirma hatasinit minimuma indirecek hiper
diizlemi (sekilde kirmizi ile gosterilen diizlem) se¢meyi amagclar. Bahsi gecen en genis
sinir pozisyonunu saglayan; yani sekildeki kesikli siyah ¢izgilerle temsil edilen sinirlar

tanimlayan sinif elemanlari ise destek vektorleri olarak adlandirilmaktadir.

Bir DVM siniflandirma problemi tanimlanirken egitim veri setinin simiflarinin {+1, -1}

seklinde oldugu varsayilirsa asagidaki (3.10), (3.11) ve (3.12) esitlikleriyle

tanimlanabilir;

H :w-x +b=0 (3.10)
H :w-x +b=+1 (3.11)
H,:w-x +b=-1 (3.12)

Sekil 3.7°de de goriilen diizlemlerden Ho optimum hiper diizlemi, +1 (mavi renkli)
siifindaki destek vektorlerinden gegen Hi hiper diizlemi ve -1 (yesil renkli) sinifindaki
destek vektoriinden gecen diizlem olan Hy hiper diizlemi sirastyla (3.10), (3.11) ve (3.12)
esitlikleriyle ifade edilebilir. Burada w agirlik vektoriinii, X hiper diizlem iizerindeki
noktayi, b ise vektoriin uzayda yonelimini ifade eden sabit bir sayiy1 temsil eder. S6z

konusu hiperdiizlem (3.13) ve (3.14) esitlikleriyle hesaplanmaktadir.

w-x,+b>+1, her y =+1i¢in (3.13)

w-x, +b>-1, her y =-1i¢in (3.14)

(3.13) ve (3.14) esitsizlikleri tek bir esitsizlik olarak esitlik (3.15) seklinde ifade edilir.

y,w-x,+b)-120, y, e{+1,—1} (3.15)
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Bir x; destek vektorii ile Ho optimum diizlemi arasindaki dik mesafe d esitlik (3.16)’da yer

alan formiile gére hesaplanir.

‘W-Xiib‘

|

(3.16)

Destek vektorleri arasindaki mesafe (d) maksimum olmasi i¢in agirlik vektoriiniin (w)
minimum olmas: sarttir. Bu durumda optimizasyon problemi esitlik (3.17)’deki sekilde

ifade edilir.
Ly g2
mln{EHWH } (3.17)

Esitlik (3.17)’de gosterilen ifade dogrusal olmayan bir optimizasyon problemidir. Bu
problem Langrange denklemleri kullanilarak ¢6ziilebilmektedir. Langrange denklemleri
ile ¢oziilen bu problemde (3.18)’de gosterilen fonksiyon elde edilir. (i, i=1, 2, ..., r) ise

Langrange ¢arpanlarini ifade etmektedir.

f(X):SIgn(Zr:li -yl.(X.XI.)-i-bj (3.18)

i=1

Uzaktan algilanmis goriintiilerindeki piksellerin siniflandirilmasi gibi gercek hayatta
karsilagilan bazi smiflandirma problemlerinde siniflar dogrusal olarak ayrilamazlar
(Kavzoglu ve Colkesen 2009). Egitim verilerinde dogrusal denklemlerle tanimlanan bir
hiper diizlemin miimkiin olmadig1 durumlarda, DVM algoritmas1 dogrusal olmayan karar
yiizeylerine izin verecek sekilde genisletilebilir (Cortes ve Vapnik 1995). Pozitif deger
alan bu gevsek degisken (£) ile formiiliin yeniden diizenlenip amag fonksiyonu halini

almus sekli (3.19) ve (3.20) esitliklerinde gosterilmistir.

27



ol s 019

yw-x, +b)>21-¢, &£20, i=1,...,.N (3.20)

(3.19) esitligindeki C parametresi, hiper diizlemin yanlis tarafinda siniflandirilan egitim
pikselleriyle iliskili cezanin biiylikligiinii kontrol eden bir ceza terimidir. C parametresi
kenar boslugu maksimizasyonu ve hata minimizasyonu arasindaki dengenin kurulmasina

izin verir (Foody ve Mathur 2004, Oommen vd. 2008).

DVM algoritmasinda smiflarin ayrimindaki hiper diizlemin dogrusal esitliklerle
belirlenememesi durumunda veri dagilimi dogrusal olmayan fonksiyonlar kullanarak
daha yiiksek boyutlu bir uzaya taginarak dogrusal olarak boliinmesi saglanir (Mathur ve
Foody 2008). Bu islem i¢in kullanilan fonksiyonlara kernel (¢ekirdek) fonksiyonu ismi

verilmektedir. Kernel fonksiyonlarinin genel ifadesi esitlik (3.21)’de verilmistir.
K(Xi'Xj):¢(Xf)'¢(Xf) (3.21)

Kernel fonksiyonu kullanilarak elde edilen karar fonksiyonu esitlik (3.22)’de verilmistir.

f(x)= szgn[iﬂ.i. v K(x.x)) +bj (3.22)

i=1

Verinin yiiksek boyutlu bir uzaya tasinmasi siirecinde siklikla kullanilan dort adet Kernel
fonksiyonundan s6z edilebilir. Bunlar Dogrusal (Lineer), Sigmoid, Radyal Tabanh
Fonksiyon (RTF) ve Polinom kernel fonksiyonlaridir (Kavzoglu ve Colkesen 2009).
Literatiirdeki caligmalar incelendiginde RTF’nin yiiksek dogruluk vermesi sebebiyle

daha fazla tercih edildigi goriillmektedir (Melgani ve Bruzzone 2004, Pal ve Mather 2005,
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Kavzoglu ve Colkesen 2009, Mountrakis vd. 2011). RTF kernel fonksiyonunun formiilii
(3.23)’te verilmistir.

—7l(x

=) , >0 (3.23)

K(Xl.,X/.)ZE

RTF fonksiyonunun diizenleme parametresi (C) ve kernel genisligi parametresi (y) olmak
tizere iki tane kullanici tanimli parametresi bulunmaktadir. Bu parametreler modelin
dogrulugunu dogrudan etkilemektedir (Kavzoglu ve Colkesen 2010). Bu sebeple veri

setine gore optimum kernel parametreleri optimizasyon ile belirlenmelidir.
3.5.2 Rastgele Orman Algoritmasi

Rastgele Orman (RO) algoritmasi, temelde karar agaclarini kullanan popiiler bir toplu
ogrenme algoritmasidir. Breiman (2001) bir smiflandirici kiimesinin tek bir
siniflandirictdan  daha iyt bir smiflandirma performansi gosterecegi felsefesiyle
Torbalama algoritmasini gelistirerek, her biri farkli egitim kiimesi ile egitilmis ve ¢ok
degiskenli bir¢ok karar agacinin birlestirilmesini 6ngéren RO algoritmasini One
stirmiistiir (Breiman 2001, Rodriguez-Galiano vd. 2012). RO algoritmasinda karar
agaclart CART (Classification and Regression Trees) algoritmasina gore yapilir. Ancak
CART algoritmasinda oldugu gibi budama islemi gergeklestirilmez (Breiman 2001). RO
algoritmasinda karar agaclar1 olusturulurken simiflara gore bir Ozniteligin safsizligini

dlgen bir 6znitelik secim olgiisii olarak Gini indeksi kullanilir (Pal 2005).

RO algoritmasinin egitilmesi asamasinda orijinal egitim veri setinin 2/3’lik kismi
igerisinden torbalama kullanilarak alt egitim kiimeleri (in-bag) olusturulur. S6z konusu
alt kiimeler karar agaclarinin olusturulmasinda kullanilir. Orijinal egitim verisinin geriye
kalan 1/3’liikk kism1 OOB (out-0f-bag) olarak adlandirilir. OOB kiimesi de algoritmanin
agac yapisinin gegerliligini test etmek i¢in kullanilir. RO algoritmasinin ¢alisma prensibi

Sekil 3.8’de gdsterilmistir.
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Sekil 3.8 RO algoritmasinin ¢aligma prensibi.

RO algoritmast igin kullanici tarafindan tanimlanan iki parametre bulunmaktadir. Bu
parametrelerden ilki, karar agaci olusturulurken en iyi bdliinmeyi belirlemek icin her
diiglimdeki degisken sayisidir ve (m) ile gosterilir. Diiglimlerde sadece belirlenen
ozellikler arastirilir. Ikinci parametre ise olusturulacak agag sayisidir ve (N) ile gosterilir.
Bir piksel RO algoritmasi ile simiflandirilirken N tane karar agacindan siniflandirilir.
Agaclardan ¢ikan N tane siiflandirma sonucu degerlendirilir ve piksel en fazla oya sahip
olan sinifa atanir (Pal 2005). RO algoritmasi kullanici tarafindan belirlenen parametrelere
kars1 duyarli degildir. Siiflandirma uygulamalarinda algoritma egitilirken genellikle m
parametresi 0zellik sayisinin karekokii olarak alinmaktadir. Diiglimdeki 6zellik sayisinin
sinirlandirilmas1  agaclar arasindaki  korelasyonu ve modelin karmagikligini
azaltmaktadir. Boylece RO algoritmasi biiylik boyutlu verileri isleyebilir ve toplulukta
cok sayida karar agaci olusturabilir (Gislason vd. 2006).
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3.5.3 Derin Ogrenme

DO; kontrollii veya kontrolsiiz 6zellik ¢ikarma, doniistirme, desen analizi ve
siniflandirma i¢in birgok dogrusal olmayan gizli katmandan yararlanan bir MO teknigidir
(Deng ve Yu 2014). Baska bir tanima gore ise DO, insan beyninin karmasik problemler
karsisindaki gozlem, analiz, 6grenme ve karar verme yeteneklerini taklit eden, kontrollii
veya kontrolsiiz olarak 6zellik ¢ikarimi, doniisiim, siniflandirma gibi uygulamalari biiyiik
miktardaki verilerden yararlanmak suretiyle gerceklestirebilen bir MO teknigidir
(Kayaalp ve Siizen 2018). Sekil 3.9’da yapay zeka, MO, Yapay Sinir Aglar1 (YSA) ve
DO arasindaki kavramsal iliski gosterilmistir. Buradan da anlasilacag iizere DO yapisi

bir MO algoritmasidir.

Yapay zeka

Sekil 3.9 Yapay zeka, MO, YSA ve DO arasindaki iligki.

MO  algoritmalar1  kontrolli ~ ve  kontrolsiiz  siiflandirma  uygulamalarini
gerceklestirebilmektedir. Geleneksel MO teknikleri, karmasik konumsal veya sira
bagimliliklari olan ve bilgisayarli gorii ve konugma tanima gibi biiyiik miktarda 6znitelik
miihendisligi gerektiren verileri analiz etmekte zorlanir (Ghatak 2019). Geleneksel MO
tekniklerinden farkli olarak karmasik verilerin hizlica 6grenilmesi ve uygulanmasinda

insan faktorii devre digi birakilarak DO yontemleri kullanilmaktadir (LeCun vd. 2015).
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Cok kisa bir zamanda gelisen ve yayginlasan DO’niin saglik bilisimi, ekonomi, enerji,
kentsel bilisim, giivenlik, hidrolojik sistem modelleme, biyoenformatik ve hesaplamali
mekanik gibi alanlarda kullanimi giderek yayginlagsmaktadir. ESA, TSA, Girilti
Giderici Otomatik Kodlayic1 (Denoising Autoencoder), Derin Inang Aglari (Deep Belief
Networks), Uzun Kisa Siireli Bellek (Long Short Term Memory) en popiiler derin
ogrenme yontemleridir (Mosavi vd. 2019). Ilerleyen baslikta tez ¢alismasinda kullanilan
ESA hakkinda detayl1 bilgiler verilmistir.

3.5.4 Evrisimli Sinir Aglar1 (Convolutional Neural Networks)

Evrisimli aglar veya Evrisimli Sinir Aglar1 (ESA) grid benzeri topolojiye sahip verileri
islemek icin kullanilan, yapisinda bulunan en az bir katmaninda genel matris ¢arpimi

yerine evrisim islemi kullanilan 6zel bir tiir sinir agidir (LeCun 1989, LeCun vd. 1998).

Hubel ve Wiesel (1962) kedilerin gorsel korteksinde iki tane ana hiicre tipi
kesfetmislerdir. Ilk hiicre tipi basit hiicrelerdir ve belirli konumlara yerlestirilen acik veya
koyu cubuklara tepki gosterir. ikinci tip olan daha karmasik hiicreler, birinci tip
hiicrelerden daha az kat1 yanit profillerine sahiptir. Bu hiicreler hala tercih edilen yonlere
sahiptir, ancak birka¢ farkli konumdaki bir cubuga aym giiclii sekilde yanit
verebilmektedir. Bu karmasik hiicrelerin biiyiik olasilikla, tercihen ayni yonelimde ve

konumlar1 farkli olan birkag basit hiicreden girdi aldig1 sonucuna varilmistir.

Fukushima (1980), Hubel ve Wiesel (1962)’in kedilerin gorsel korteksleri hakkindaki
bulgularini gorsel sistemin isleyen bir modeline doniistiirmiistiir. Neocognitron olarak
isimlendirilen bu model modern evrisimli sinir aglarinin habercisidir. Modelin sematik
gosterimi Sekil 3.10°da verilmistir. Sekilden de goriilecegi iizere iki ana hiicre tipi
icermektedir. S-hiicreleri ismini kedi goziindeki birinci tip basit hiicrelerden almaktadir
ve bu hiicrelerin temel &zelliklerini kopyalar. Ozellikle, S-hiicresi yanitlarimni olusturmak
igin giris goriintiisiindeki her konuma 2 boyutlu agirlik gridi uygulanir. C hiicreleri ise
iIsmini kedi goziindeki ikinci tip olan karmasik hiicrelerden almaktadir ve bu hiicrenin
tepkisi ayn1 diizlemden ancak farkli konumlardan gelen birka¢ S hiicresinin dogrusal

olmayan bir fonksiyonudur.
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Sekil 3.10 Neocognitron aginin sematik gosterimi (Fukushima 1980).

ESA’larm giiciiniin ilk biiyikk gosterimi LeCun vd. (1989) tarafindan geri yayilim
algoritmas1 kullanilarak siipervizyonla egitilmis kiiclik bir ESA'nin el yazisiyla yazilan
rakamlarin siniflandirmasini gergeklestirebildigi ile gosterilmistir. Béylece LeNet modeli
gelistirilmeye baslanmistir. 1998 yilinda LeCun ESA’nin el yazisi tanima konusunda
diger modellerden daha yiiksek basar1 gosterdigi sonucuna ulasmislardir (LeCun vd.
1998). Ancak bu aglar 2012 yilindaki ImageNet yarismasinda en yiiksek basartya sahip
olan AlexNet aginin tanitimma kadar popiiler olamamiglardir (Lindsay 2020). Sekil

3.11°de LeCun’un LeNet5 mimarisi sematik olarak gosterilmistir.

C3:6z. har. 16@10x10
C1: 6zellik haritalari S4: 6z. har. 16@5x5

GIRDI
6@28x28
32x32 S2: 6z. har.

I Tam Bagli Katman ’ Gauss Baglantilar
Evrisim Islemleri Alt Ornekleme Evrigim Iglemleri  Alt Ornekleme Tam Bagl Katman

Sekil 3.11 LeNet5 ESA mimarisinin sematik gosterimi (LeCun vd. 1998).
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Krizhevsky vd. (2017) ImageNet yarismasinda tasarladiklari AlexNet mimarisiyle
bilgisayarli nesne tanimlama hata oranini %26,2’den %15,4’e disiirmiislerdir. Bu
calisma itibariyle ESA giderek popiilerlesmeye baslamistir. Literatiirde en bilinen ESA
mimarileri AlexNet, VGG ve GoogLeNet, Microsoft ResNet, ZF Net, R-CNN, Fast R-
CNN ve Faster R-CNN’dir (Inik ve Ulker 2017).

ESA, birden ¢ok dizi bigiminde gelen verileri islemek i¢in tasarlanmistir. Bu yapilara
ornek olarak; sinyaller ve diziler olmak tlizere 1 boyutlu veriler, goriintiiler ve ses
spektrogramlar1 olmak iizere 2 boyutlu veriler, video ve hacimsel goriintiiler olmak iizere
3 boyutlu veriler gosterilebilir (LeCun vd. 2015). Ayrica DO kavramina dair temel
mimari de ESA olarak kabul edilmektedir (Inik ve Ulker 2017). Genellikle ESA, evrisim
katmanlar1 (convolution layers), havuzlama katmanlar1 (pooling layers) ve tam bagl
katmanlar (fully connected layers) olmak tiizere li¢ temel bilesenden olusmaktadir. Her
bilesenin farkli bir rolii vardir (Li Y vd. 2018). Art arda siralanan bu katmanlar ile, ilk
giris katmanindan son simiflandirma katmanina kadar sonuca etki eden c¢esitli 6zellikler
elde edilmekte ve son katman ile de siniflandirma islemi yapilmaktadir. Agin egitiminde
iki temel asamadan bahsedilebilir. Bu asamalar ileri yayilim (forward propagation) ve
geriye dogru yayilim (backpropagation) asamalaridir. ileri yayillmda amag giris
goriintlisiinii her katmandaki gecerli agirlik (weight) ve yanlilik (bias) parametreleriyle
temsil etmektir. Test icin etiketlenmis pikseller ile modelin tahminleri arasinda zarar
maliyeti hesaplanir. Daha sonra zarar maliyetine dayanarak, geriye dogru yayilim
algoritmasi her parametrenin egimini zincir kurallari ile hesaplar. Tim parametreler
gradyanlara gore giincellenir ve model bir sonraki iterasyon i¢in hazirlanir. Bu asamalar
yeterli sayida tekrarlandiktan sonra agin 6grenme islemi tamamlanir (Inik ve Ulker 2017,
Bayati 2019). Ilerleyen basliklarda ESA’nin temel katmanlari olan giris katmani, evrisim

katmani, havuzlama katmani ve tam bagli katman anlatilmistir.

3.5.4.1 Giris Katmam (Input Layer)

ESA’nm ilk katmani giris katmanidir. Giris katmaninda giris verisi aga ham olarak
verilmektedir. ESA ile siniflandirilacak hiperspektral goriintiiniin boyutu X olarak

diisiiniiliirse X € RM*N*P olarak ifade edilir. Burada M satir sayis1, N siitun sayis1 ve D
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bant sayisidir. X goriintiisiiniin yaninda yer smif etiketlerini igeren goriintii y olarak
isimlendirilirse y € RM*N*1 bpoyutundadir. GT goriintiisiindeki piksel etiketleri ¥ =
(0, ¥4, ¥2, .., ¥.) olarak ifade edilebilir. Bu kiimedeki 0 ifadesi, y verisinde o pikselin
sinifinin belli olmadigini; Y. ifadesi ise bir sayiya gore kodlanmis sinif numarasini ifade
etmektedir. Hiperspektral goriintiilerdeki pikseller, yiiksek sinifi¢i degiskenlik ve siniflar
arasi benzerlige sahip karma arazi Ortiisii siniflar1 tarafindan temsil edilmektedir. Bu
problemin tistesinden gelmek siniflandirma modelleri i¢in biiyiik bir zorluktur. Birbirleri
arasinda yiiksek korelasyona sahip olan bu spektral fazlaligi ortadan kaldirmak ig¢in
orijinal goriintiye TBA uygulanir (Roy vd. 2019). Boylelikle goriintiiniin spektral
ozellikleri biiyiik dl¢lide korunarak daha az sayida bant igermek suretiyle goriintii X, €

RM*NXB hoyutuna doniistiiriiliir.

Xm verisinin ESA modellerinin egitiminde kullanilmasi i¢in goriintii iist iiste binen ve
merkez pikselin sinifina gore etiketlenmis 3 boyutlu goriintii kiipleri olusturulmalidir.
Goriintii kiiplerinin pencere boyutu S X S olmasi varsayilirsa ilk asamada Xm goriintiisiine
(8§ —1)/2 sayisinda sifir dolgu (zero padding) uygulanarak goriinti boyutu X, €
RM+(S—I)X(N+(S=1)XB gekline doniistiiriiliir. Daha sonra Xm goriintiisii tizerinde operator
gezdirilerek P € RS*S*B  gseklinde goriintii kiipleri ve yp € RV1 simif etiketi
olusturulur. Goriintiiden olusan goriintii kiiplerinin sayist (M =S+ 1) X (N =S+ 1)
formiilityle bulunur. Sinif etiketi 0 olan; yani ait oldugu bilinmeyen goriintii kiipleri
algoritmanin egitiminde kullanilamayacagindan bu goriintii kiipleri silinmelidir. Kalan
goriintii kiipleri ESA modelinin egitimi ve model dogrulugunun tespiti i¢in egitim ve test
kiimesi olarak ayrilir. Ayrilan Xegiim €gitim kiimesi Ve Yegiim stnif etiketi matrist ESA’nin

giris katmanidir.

3.5.4.2 Evrisim Katmam (Convolutional Layer)

Evrisim katmani ESA’da en az bir tane bulunan ve ESA’nin temelini olusturan 6znitelik
cikarma katmamidir. Evrisim katmaninda cesitli cekirdekler tiim goriintii lizerinde
gezdirilir ve 6zellik haritalart olusturulur (Guo vd. 2016). Goriintiilerde komsu pikseller

arasinda, goriintii igindeki konumlarindan bagimsiz olarak birgok konumsal iliski
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bulunmaktadir (Fukushima 1980). Evrisim islemi ile gesitli filtreler bu konumsal iligkileri
ortaya c¢ikarmaktadir. Evrisim katmaninin bazi avantajlar saglamaktadir. Goriintliniin
tamamu lizerinden agirlik paylagimi, yanit basina parametre sayisini azaltmaktadir. Yerel
baglanti komsu pikseller arasindaki korelasyonu 6grenmektedir. Giris goriintiisiinde
kaydirilan bir nesne, karsilik gelen yanitlar1 benzer sekilde basitce degistirir, bu durum
esdegerlilik (equivariance) olarak adlandirilir (Zeiler 2013). Evrisim isleminde girdi
goriintii izerinde gesitli kenar ¢ikarma filtreleri uygulanir. Sekil 3.12°de evrisim islemi

i¢in bir 6rnek gosterilmistir.

1 3 6§ 2 6 1

7T 0 2 4 1 3 3 RSN 1
1 0 -1

5§ 1 3 6 2 7 6 =5 &5 -1

* 1 0 -1 =

2 4 3 0 0 1 -1 /-3 & |6
1 0 -1

N N 3 RON 28 -2 4 5 11

3 6 2 4 1 0

Sekil 3.12 Evrigim islemi (Ghatak 2019).

Yukaridaki sekilde goriilecegi tizere girdi goriintii 6x6, evrisim filtresi 3x3 boyutundadir.
Evrisim filtresinin merkez pikseli (2, 2)’dir. Girdi goriintiide bu merkez piksele denk
gelen matris eleman1 merkeze alinacak sekilde, girdi goriintiistiniin (1:3, 1:3) kismi1 isleme

alinir ve evrisim filtresiyle elemanlar birebir ¢arpilarak toplanir.

1 3 5 1 0 -1
7 0 2|1 0 -1| =
5 1 3 1 0 -1

1x14+3x0+5x—1+7%x1+0x0+2x—1+5x1+1x0+3x—-1=3

Evrisim islemi uygulandiktan sonra ¢iktt matrisinin ilk pikselinin degeri 3 olacaktir. Bu
islem sirasiyla belirlenen kaydirma adimi kadar kaydirilarak tiim piksellere uygulanir ve

sonug goriintiisii elde edilir. Islem girdi matrisinin (2, 2) elemanindan baslatildig1 i¢in
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girdi ve ¢ikt1 matrisinin boyutlart ayni olmayacaktir. Evrisim islemi gerceklestirilirken 1
boyutlu evrisim igin esitlik (3.24), 2 boyutlu evrisim igin esitlik (3.25) ve 3 boyutlu
evrisim i¢in esitlik (3.26) kullanilmaktadir.

P-15,-1
v’ =f(b.. + we y#) ] (3.24)
i i ip” (i-1)p
p=0 s=0
P-1Q,-1R,-1
vY =f [b.. + W?rV(qu)(yw)] (3.25)
i i gp” (i-1)p
p=0 g=0 r=0
P-15,-1Q,~1R—1 (xsa)y+r)(z+s)
XyVZ rs x+tg)\y+r)\z+s
vy =f [b// + Z Z Wi, Vii)p J (3.26)
p=0 s=0 g=0 r=0

Bu formiillerde, v 6zellik haritalarinin ¢iktisini, S, Q, R sirasiyla spektral ve konumsal
¢ekirdek boyutlarini, (s, g, r) ¢ekirdek indekslerini ve (x, y, z) sirasiyla 2 konumsal ve 1
spektral olmak {izere 6zellik haritalar1 indekslerini ifade eder. Cekirdek parametreleri w
sembolii belirtirken (i, j, p) sembolleri de sirasiyla girdi katmani, ¢ikti katmani ve 6zellik
haritalar1 indekslerini tanimlar. P 6zellik haritalari sayisini, Pi de i. katmandaki 6zellik
haritalarmi temsil eder. Yanlilik terimi b ile gosterilirken f modelde kullanilan

aktivasyon fonksiyonunu gosterir.

Evrigim isleminin ardindan uygulanan aktivasyon fonksiyonu, 6nceki katmandan gelen
girdi verilerini beklenen ¢iktiya daha yakin olan anlamli bir gésterime doniistiiren
matematiksel bir islevdir (Ghatak 2019). Aktivasyon fonksiyonu geriye yayilim
algoritmasimin uygulanmasi asamasinda tlirevlenebilir ve dogrusal bir fonksiyon
olusturdugu i¢in modelin 6grenme islevinde 6nemli bir rol oynamaktadir. Genellikle
evrisimli yanitlar esitlik (3.27)’de verilen sigmoid, esitlik (3.28)’de verilen tanh veya
esitlik (3.29)’da verilen diizeltilmis dogrusal birimler (Rectified Linear Unit - ReLU) gibi

dogrusal olmayan bir aktivasyon fonksiyonundan gegirilmektedir.

o(Z) _ (3.27)
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zZ -7
exp’ —exp
Z)=—F7—— 3.28
g( ) exp” +exp” (3.28)

g(Z):max(Z, 0) (3.29)

Nair ve Hinton (2010) tarafindan 6nerilen ReLU fonksiyonu (Sekil 3.13) sigmoid ve tanh
fonksiyonlar1 ile kiyaslandiginda {istel islemler icermemesi ve dogrudan O degerinde
esiklenmesi sayesinde hesaplanmasi ¢ok daha basittir. Sigmoid ve tanh fonksiyonlarinda
kaybolan gradyan problemi goriildiigiinden ve ¢ok yavas bir sekilde yakinsadiklarindan
dolay1 derin O0grenme problemlerinin ¢oziimiinde genellikle tercih edilmemektedir

(Bhardwaj vd. 2018).

Sekil 3.13 ReL U aktivasyon fonksiyonunun grafigi (Agarap 2018).

3.5.4.3 Havuzlama Katmani (Pooling Layer)

ESA mimarisinde evrisim katmanlarinin ardindan genellikle havuzlama katmanlar

bulunmaktadir. Havuzlama ile konumsal bilgi kayb1 olmaksizin aktivasyon haritalarinin
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konumsal boyutunu ve agdaki parametre sayisini azaltmak amaclanir. Boylece genel
hesaplama karmasikligi azaltilir ve asirt uyum (overfitting) sorununu kontrol almay1
hedefler (Aloysius ve Geetha 2017). Bir havuzlama katmani, bir evrisimli katmanin
ciktisini girdi olarak alir ve alt 6rnekleme (subsampling) islemi gergeklestirir (Hinton vd.
2012). Cok bantli goriintiilerde havuzlama her banda ayr1 ayr1 uygulanir. Havuzlama
isleminde havuz boyutu (pooling window size) ve kaydirma adimi (stride) olmak {izere
iki parametre mevcuttur. Ayrica havuzlama fonksiyonlarinin da baz cesitleri
bulunmaktadir. Bunlar maksimum havuzlama, ortalama havuzlama, stokastik havuzlama
(Zeiler ve Fergus 2013), spektral havuzlama (Rippel vd. 2015), uzamsal piramit
havuzlama ve ¢ok 6l¢ekli sirasiz havuzlama operasyonlaridir (Aloysius ve Geetha 2017).
Genellikle maksimum havuzlama ve ortalama havuzlama yontemleri kullanilmaktadir.
Maksimum havuzlamada alt 6rnekleme yapilacak matris alt kiimesindeki elemanlarin en
yiiksek degeri alinir. Ortalama havuzlamada ise alt ornekleme yapilacak matris alt
kiimesindeki elemanlarin aritmetik ortalamalar1 alinir. Sekil 3.14’te 5x5 boyutundaki
girdi matrise 1x1 kaydirma adimi ile 3x3 boyutunda havuzlama operasyonu uygulanmasi

gosterilmistir.

Sekil 3.14 5x5 boyutundaki girdi matrise 1x1 kaydirma adimi ile 3x3 boyutunda havuzlama
operasyonu uygulanmasi (Dumoulin ve Visin 2018).
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3.5.4.4 Tam Bagh Katman (Fully Connected Layer)

Bir ESA mimarisinde evrisim, aktivasyon ve havuzlama katmanlarinin ardindan tam
baglantili katman gelmektedir. Temelde geleneksel YSA’daki ile tamamen ayni olan tam
baglantili katman kendisinden onceki katmanlarin 6grendigi matris formundaki
parametreleri girdi olarak alir ve bu veriyi vektér formuna doniistiiriir (Li Y vd. 2018).
Yani bir dnceki katmandaki tiim ndronlar1 kendisinde bulunan baska ndronlara baglar.
Bu islem diizlestirme (flattening) olarak adlandirilir. Birden fazla tam baglantili katman
kullanilabilir ve nihai ¢ikt1 sinif sayisi kadardir. Tam baglantili katmanin ¢iktis1 Softmax
gibi bir siniflandiriciya baglanarak siniflandirma islemi gergeklestirilebilir (Krizhevsky
vd. 2017).

3.5.4.5 2B ESA Mimarisi

Onerilen 2B ESA mimarisi olusturulurken Fokeas’in (Int.Kyn.7) Github sayfasinda
paylastig1 ESA modeli 6rnek alinmistir. Sematik gosterimi Sekil 3.15°te verilen modelde
orijinal hiperspektral goriintii kiipii X € RM*N*D olarak ifade edildigi diisiiniilsiin.
Burada M satir sayisi, N siitun sayisi ve D bant sayisidir. X goriintiisiiniin yaninda yer
sinif etiketlerini igeren goriintii y olarak isimlendirilirse y € RM*N*1 boyutundadir. GT
gortintiisiindeki piksel etiketleri Y = (0, y;, ¥,,...,Y.) olarak ifade edilebilir. Egitim
kiimesi olusturulmadan 6nce X goriintiisii boyut indirgenmesi amaciyla TBA islemine
tabi tutulur ve ilk B tane temel bilesen ile goriintii kiipii yeniden olusturulur. Boylelikle
orijinal goriintiiniin spektral 6zelliklerini biiyiik 6l¢lide koruyan ve daha az sayida bant
iceren X,, € RM*N*B boyutuna déniistiiriiliir. Agin egitilmesi icin komsuluk cikarimi
islemiyle Xm verisi P € RS*5*B boyutlarinda (M — S + 1) x (N — S + 1) sayida goriintii
kiipleri olusturulur. Bu goriintii kiiplerinin karsilik gelen merkez piksellerine karsilik

€ RY1X1 seklinde bir vektdr olusturulur. Biitiin veri

gelen sinif etiketleri ile yp
kiiplerinin ait oldugu smif bilinmediginden bu goriintii kiipleri ayiklanir. Kalan goriintii
kiipleri ESA modelinin egitimi ve model dogrulugunun tespiti igin egitim ve test kiimesi

olarak ayrilir. Ayrilan Xegiim €gitim kiimesi Ve Yegiim stnif etiketi matrisi ESA’nin giris
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katmanidir. 2B ESA’nin ilk evrisim katmaninda egitim kiimesindeki goriintii kiiplerine
3x%3 boyutunda 45 filtre uygulanir ve bu katman sonucundaki ¢ikan 6zelliklere dolgulama
islemi uygulanir. Ardindan uygulanan ikinci evrisim katmaninda 3x3 boyutunda 135
filtre uygulanir. Olusan sinir ag1 diigiimlerinde 25% seyreltme islemi uygulandiktan sonra
diizlestirme islemi uygulanir. Boylece iki evrisim katmaniyla konumsal Oznitelik
o6grenme islemi tamamlanir. Ardindan 50% seyreltme ile tam bagl katman uygulanir.
Son olarak 1x1xC olmak iizere Softmax siniflandirma islemi uygulanir. Burada C

hiperspektral goriintiideki sinif sayisini ifade etmektedir.

Tam Bagh
Katman
%350 Seyrelt
2B Evrigim 2B Evrigim v ~ereling
45w 3x3 135@3x3 Diizlegtirme O
Komguluk Dolgulama %25 Seyreltme

Cikarmu

Softmax
Simiflandirma

O
[}
O
* * O
> 4 =) =
DD (1x1xC)
(SxSxB) O
O
Ozellik 1 Ozellik 2 DD
O
(MxNxD) (MxNxB) Ozellik 3

Sekil 3.15 Onerilen 2B ESA modelinin sematik gdsterimi.

Model kurulurken evrisim katmanlarindaki aktivasyon fonsiyonlar1 ReLU secilmistir.
Modelin optimizasyon fonksiyonu SGD (Stochastic Gradient Descent) (Zinkevich vd.
2010) kullanilmigtir. Yigin boyutu 256 ve epok sayisit 500 olarak uygulanmistir. Salinas
Scene veri seti i¢in ¢ikt1 seklini ve 6grenilen parametre sayilarini gosteren model 6zeti

Cizelge 3.3°te verilmistir.
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Cizelge 3.3 Onerilen 2B ESA modelinin Salinas Scene veri seti igin 6zeti.

Katman Cikt1 Sekli Ogrenilen Parametre Sayis

conv2d 1 (2B Evrigim) (7,7, 45) 6120

conv2d_2 (2B Evrisim) (5, 5, 135) 54 810

dropout_1 (Seyreltme) (5, 5, 135) 0

flatten_1 (Diizlestirme) (3375) 0

dense_1 (Yogun) (90) 303 840
dropout_2 (Seyreltme) (90) 0

dense_2 (Yogun) (16) 1456

Egitilebilir parametre sayisi: 366 226

3.5.4.6 3B+2B ESA Mimarisi

Bir dnceki boliimde anlatilan 2B ESA mimarisinin olusturulmasinda egitim ve test veri
kiimelerinin ayrilmasina kadar olan siire¢ 3B+2B ESA mimarisi i¢in de aymi sekilde
uygulanmaktadir. Bu ESA mimarisinin olusturulmasinda ise Roy vd. (2019)’un
olusturdugu HybridSN ESA modeli 6rnek alinmistir. Bu agda egitim kiimesine ii¢ tane
3B evrisim katmani sirasiyla uygulanir. Evrisim islemlerindeki filtre boyutlart 3x3x7,
3x3x5 ve 3x3x3 olup filtre sayilar1 ise sirasiyla 8, 16 ve 32 seklindedir. Her katmanda
dolgulama islemi de uygulanir. 3B evrisim katmanlarinda gergeklestirilen konumsal-
spektral Oznitelik ¢ikariminin ardindan uygulanan 3%3 boyutunda 64 filtre igeren 2B
evrisim katmani ile konumsal oznitelik ¢ikarimi islemi gergeklestirilir. Diizlestirme
isleminin ardindan 40% oraninda diiglim seyreltme ile tam baglh katmanlar olusturulur.
Son olarak 1x1xC olmak tizere Softmax siniflandirma iglemi uygulanir. Detaylar1 verilen

3B+2B ESA mimarisinin sematik gosterimi Sekil 3.16°da verilmistir.

Tam Bagh
Katman
Y%df) Seyreltine Tam Bagh
3B Fvrisim 3B Fvrigi 3B Fvrigi _— Diizle o Katman
lestirme
H i 3x3xT lbfu Jx3\ Jlfa 3x3n3 b4 3:3 ] 24 Sevreltine
L kz
1karimu 0 Sofunax
Simflandirma
- a
B )
DI:I O
-> - O up L
= =
(]
O (1x1xQ)
- |
(Sx8xB) (] O
O
O Ozellik6
Ozellik | Ozellik 2 Ozellik 3 Ozellik 4 |
[}
(MxNxD) (MxNxB) Ozellik 5

Sekil 3.16 Onerilen 3B+2B ESA mimarisinin sematik gdsterimi.
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3B+2B ESA modeli kurulurken evrisim katmanlarindaki aktivasyon fonsiyonlart ReLU
secilmistir. Modelin optimizasyon fonksiyonu olarak Adam (Kingma ve Ba 2014)
optimizasyon algoritmasi kullanilmistir. Yigin boyutu 256 ve epok sayist 500 olarak
uygulanmustir. Salinas Scene veri seti igin ¢ikt1 seklini ve 6grenilen parametre sayilarini

gosteren 3B+2B ESA modeli 6zeti Cizelge 3.4 te verilmistir.

Cizelge 3.4 Onerilen 3B+2B ESA modelinin Salinas Scene veri seti i¢in 6zeti.

Katman Cikt1 Sekli Ogrenilen Parametre Sayisi
input_1 (Girdi Katman) (7,7,15,1) 0
conv3d 1 (3B Evrisim) (7, 7,15, 8) 512
conv3d 2 (3B Evrisim) (7, 7,15, 16) 5776
conv3d_3 (3B Evrigim) (7,7,15,32) 13 856
reshape_1 (Yeniden Sekillendirme) (7,7, 480) 0
conv2d_1 (2B Evrisim) (5, 5, 64) 276 544
flatten_1 (Diizlestirme) (1600) 0
dense 1 (Yogun) (256) 409 856
dropout_1 (Seyreltme) (256) 0
dense 2 (Yogun) (128) 32 896
dropout_2 (Seyreltme) (128) 0
dense 3 (Yogun) (16) 2 064

Egitilebilir parametre sayist: 741 504

3.6 Dogruluk Analizi

UA’da goriintiilerin siniflandirilmast sitirecinde yer dogrulama Orneklerinin seg¢imi,
kullanilan siniflandirma modeli ve mevcutsa siniflandirma modelinin kullanici tarafindan
belirlenen parametreleri haritalarin dogrulugunu olumsuz yonde etkileyebilmektedir. Bu
sebeple harita dogrulugunun belirlenmesi dnem arz etmektedir. Uretilen tematik haritanin
kullanicilar1 haritanin kalitesinin belirlenmesi i¢in, haritanin iireticisi de harita {iretim
stirecini degerlendirmek ve dogrulugu iyilestirmek i¢in haritalarin dogruluklarina ihtiyag
duymaktadir. Tematik haritalarin dogrulugunun arastirllmasinda ¢esitli yontemler
mevcut olmasina ragmen en yaygin kullanilan yontemlerden birisi, belirli bir alan kiimesi
i¢cin tahmin edilen ve gergek simif etiketlerinin karsilastirilmasidir (Foody 2004). Bu
karsilastirmadan yararlanilarak hata matrisi olusturulur ve bu matris {izerinden

siiflandirma haritasinin  dogrulugunu  belirlemek i¢in g¢esitli hata metrikleri
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hesaplanmaktadir.

Calismada gerceklestirilen siniflandirma islemlerinin dogruluklarinin analizi igin genel
dogruluk, iiretici dogrulugu, kullanici dogrulugu ve Kappa katsayisi degerleri
hesaplanmistir. Bunun yaninda ayni egitim verisi ile egitilen modellerin siniflandirma
performanslari arasinda istatistiksel olarak anlamli bir fark olup olmadigi McNemar’s

Testi ile incelenmistir.

Dogruluk analizinin gerceklestirilebilmesi i¢in yer sinifin1 dogru temsil ettigi kabul edilen
bir test veri setinin ayrilmis olmasi gerekmektedir. Bunun igin ilk basta goriintii tizerinde
smiflar1 temsil eden bolgeler yersel ¢alismalar, dnceden tiretilmis haritalar veya yiiksek
cozlinlirliiklii gortintliler kullanilarak belirlenir. Bu veriye yer dogrulama verisi ismi
verilmektedir. Tez kapsaminda kullanilan veri setlerinin yer dogrulama verilerinin bir
kism1 algoritmalarin egitimi i¢in; geriye kalan kismi ise algoritmalarin basarisinin testi

icin dogruluk analizinde referans veri olarak kullanilmasi i¢in ayrilmistir.

Dogruluk analizinin ilk adiminda test piksellerinin gergek siniflar1 ile model tarafindan
atandiklar1 siiflar karsilastirilarak hata matrisi olusturulmaktadir. Hata matrisinin

sematik gosterimi Sekil 3.17°de verilmistir.

Referans (Test)
1 2 k n
I nii ni2 nik ni+
= 2
g n21 n22 n2k n2+
5
.S
g
EE k Nkl nk2 Nkk Nk+
)
n n
+1 n+ n+k n

Sekil 3.17 Hata matrisinin sematik gosterimi.
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Kontrollii siiflandirmada egitim verisiyle siniflandirma modeli olusturulur. Ardindan
test i¢in ayrilan veri seti s6z konusu model kullanilarak siniflandirilir. Smiflandirma
islemi sonucunda test piksellerinin gergek siniflar1 ile model tarafindan atandiklari
siniflar1 karsilastirilarak hata matrisi olusturulur. Siniflandirilan goériintii verisinde sinif
sayisinin K oldugu varsayilirsa hata matrisi K % k boyutundadir. Test piksellerinden gergek
smifi i olup siniflandirma modeli tarafindan 1 sinifina atanan piksellerin sayisi
belirlenerek hata matrisinin njjelemanina yazilir. Gergek sinifi i olup siniflandirma modeli
tarafindan x sinifina atanarak yanlis siniflandirilan piksellerin sayisi ise Ny elemanina
yazilir. Bu iglem tiim siniflar i¢in tekrarlanip matrisin tim elemanlar1 bulunarak hata

matrisinin olugturulmasi saglanir.

Olusturulan hata matrisinden genel dogruluk, iiretici dogrulugu, kullanic1 dogrulugu ve

Kappa katsayis1 hesaplanmasi ilerleyen basliklarda detayli olarak anlatilmistir.

3.6.1 Genel Dogruluk

Kontrollii siniflandirmada en yaygin kullanilan dogruluk kriteri olan genel dogrulugun

hesaplanmasi esitlik (3.30)’da gosterilmistir.

1;1 — i=1 (330)
2

Genel dogruluk, kullanimi kolay bir performans metrigidir. Ancak her bir sinifa ait
simiflandirma performansi hakkinda bilgi vermemektedir. Ayrica bazi siniflarin diistik
dogrulukta simiflandirma performans: gostermesi, yiiksek dogruluga sahip siniflar
tarafindan maskelenebilmektedir (Sunar vd. 2011). Bu durumlarda her bir sinifa ait tiretici
ve kullanict dogruluklarinin hesaplanmasi smiflandirma performans: hakkinda daha

detayl1 bilgi verecektir.
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3.6.2 Uretici ve Kullanic1 Dogruluklar:

Hata matrisi {izerinden tiretici dogrulugunun hesaplanmasi esitlik (3.31)’de, kullanici

dogrulugunun hesaplanmasi ise esitlik (3.32)’de goésterilmistir.

. n.
[]Dj S (3.31)

+/

n.
KD =—1 (3.32)
n

Uretici dogrulugu modelin siniflandirma performansmin gostergesidir. Kullanict
dogrulugu ise siniflandirilmis haritanin gercek yeryliziinii ne kadar iyi temsil ettiginin
gostergesidir (Congalton ve Green 2019). Sekil 3.17’deki hata matrisinde 1 numarali sinif
icin diigtiniiliirse; smiflandirma sonucu firetilen tematik haritanin  kullanicisi,
siiflandirma algoritmasi tarafindan 1 olarak etiketlenen bir pikselin gercekte (arazide) 1
olma olasiligiyla daha ¢ok ilgilenir. Bu durum harita dogrulugunun gostergesidir ve
kullanic1 dogrulugu olarak adlandirilir (Richards 2013). Yani UD: degeri, 1 sinifinin

yalmzca UD1 kadarlik kismimin harita iizerinde dogru etiketlendigini gostermektedir.
3.6.3 Kappa Istatistigi

Kappa istatistigi, ikili ¢esitlilik 6l¢limii i¢in kullanilir ve siniflandirma algoritmalarinin
kararlarmin anlasmasini ortaya ¢ikarmak igin onerilir (Viera ve Garrett 2005). Kappa,
anlagsma (agreement) (¢#1) ve anlagsmazlik (disagreement) (62) olgiimleri iizerinden
hesaplanir. Anlagma ve anlagsmazlik Ol¢iimleri iizerinden tiiretilmis Kappa istatistigi

formiili esitlik (3.33)’te verilmistir.
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(3.33)

Kappa istatistigi degeri tek basina kullanildiginda siniflandirma performansi hakkinda
yeterli bilgi veremeyebilir. Bazi analistler hala Kappa kullanmak yerine genel dogruluk
kullanmay1 veya tam hata matrisi sunumunu tercih etmektedir (Richards 2013). Kappa
degeri 0 ile 1 arasinda deger almaktadir. Kappa degerinin yorumlanmasina iliskin

Olceklendirme ise Cizelge 3.5°te verilmistir.

Cizelge 3.5 Kappa Istatistigi degerinin yorumlanmasi (Viera ve Garrett 2005).

Kappa Deger Arahgi Siniflandirma Yorumu
<0.40 Zayif
0.41-0.60 Orta
0.61-0.75 Iyi
0.76-0.80 Cok lyi
>0.81 Neredeyse Miikemmel

3.6.4 McNemar’s Testi

McNemar’s Testi, smiflandirma sonuglarini en gelismis yontemlerle elde edilen
smiflandirma sonuclariyla karsilastirmak icin kullanilan nesnel ve istatistiksel bir
kriterdir. Bu test siniflandiricilarin sonuglarinin istatistiksel olarak farkli olup olmadigini
anlamanin yaygin bir yoludur. Parametrik olmayan McNemar’s Testi de tematik harita
karsilastirmasi i¢in de uygundur (Foody 2004). McNemar’s Testi i¢in 2x2 boyutunda
olumsallik tablosu olusturulur (Sekil 3.18). Test veri setindeki her pikselin yer dogrulama
siifi ile Model 1 ve Model 2 tarafindan etiketlendigi siniflart karsilastirilir. Her iki
algoritma tarafindan dogru siiflandirilan piksellerin sayis1 matrisin nji elemanina; her iki
algoritma tarafindan yanlis siniflandirilan piksellerin sayisi matrisin njj elemanina; Model

I’in dogru smiflandirip Model 2’nin yanlis siniflandirdig piksellerin sayis1 matrisin njj
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elemanina ve Model 2’nin dogru siniflandirip Model 1’in yanlis siniflandirdigi piksellerin

Sayis1 matrisin Nji elemanina yazilir.

Model Model
2 2
Dogru  Yanlis
3 E
3 1000 Hii nijj
S A
ig E Rji 1y
S

Sekil 3.18 McNemar’s Testi olumsallik tablosu.

Olusturulan McNemar’s olumsallik matrisindeki degerler kullanilarak esitlik (3.34)’a

gore bir istatistiksel deger hesaplanir (Japkowicz ve Shah 2011).

(3.34)

Hesaplanan istatistiksel deger %95 giiven araliginda Ki-Kare tablo degeri olan Xio.os =

3,841 degeriyle kiyaslanir. McNemar’s testinde sifir hipotezi Model 1 ve Model 2’nin

aynm1 performansa sahip oldugunu; dolayisiyla ayni1 hata oranina sahip oldugunu

varsaymaktadir (Japkowicz ve Shah 2011). Degerin x7 05 = 3,841°den biiyiik ¢ikmast

durumunda sifir hipotezi reddedilir. Baska bir deyisle Model 1 ile Model 2 arasindaki

siniflandirma dogrulugu arasinda istatistiksel olarak anlamli bir fark oldugu kanisina

varilir.
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4. UYGULAMA

Tez ¢alismasinda hiperspektral goriintiilerin siniflandirma islemi i¢in yapilmasi gereken

on iglemler ENVI 5.3 ve MATLAB R2019a yazilimlarinda gergeklestirilmistir.

Siiflandirma modellerinin gelistirilmesinde Python 3.7.9 tabanli Spyder gelistirme
ortam1 kullanilmistir. Kullanilan Python kiitiiphanelerine dair detaylar 0. numarali baslik
altinda detaylandirilmistir. Goriintiilere TBA uygulanarak boyut indirgemesi
gergeklestirilmistir. Gorilintiilere TBA uygulanmasi agsamasindaki analizler 4.1. numarali

baslik altinda detayl1 olarak verilmistir.

TBA uygulanarak boyutu indirgenmis veri setlerine komsuluk ¢ikarimi uygulanarak 3B
goriintli kiipleri elde edilmistir. Egitim ve test amaciyla kullanilamayacak 3b goriintii
kiiplerinin veri setinden ¢ikartilmasinin ardindan kalan yer dogrulama verileri egitim ve
test veri seti olmak iizere belirlenen oranda ayrilmistir. Ardindan veriler siniflandirma

modellerinin egitimi i¢in uygun bir bi¢cimde sekillendirilmistir.

Modellerin egitimi asamasinda DVM algoritmasi i¢in 5 katli capraz dogrulama islemi ile
optimum parametreler tespit edilmistir. Modeller egitilirken iglem siireleri tespit
edilmistir. DVM algoritmasinin egitim islem siiresinde optimum parametrelerin
belirlendigi siire de dahildir. Modeller kurulduktan sonra ayrilan test veri setleri ile
dogruluklar1 test edilmistir. Smiflandirma haritalar1 ArcMap 10.8 yaziliminda

hazirlanmistir. McNemar’s testi ise RStudio yaziliminda gergeklestirilmistir.

Ilerleyen basliklarda dncelikle tiim veri setlerinin TBA ile boyut indirgemesi siirecine
dair analizler verilmis, ardindan veri seti bazinda elde edilen siniflandirma sonuglari
sistematik olarak incelenmistir. Her veri seti igin yer smniflari, egitim ve test verilerinin
ayrimina dair detaylar verilmis, modellerin kurulmasi ile alakali bilgilerin ardindan
sirastyla 30%, 50% ve 70% egitim veri seti oranmna goére kurulan siniflandirma

modellerinin performanslar ve siniflandirma haritalar1 sunulmustur.
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4.1 TBA ile Veri Setlerinin Boyutlarimin indirgenmesi

TBA yonteminde temel bilesenlerin bulunmasi asamasinda 6zdegerler biiyiikten kiiciige
dogru siralanip bu dzdegerlere karsilik gelen Ozvektorler segilmektedir. Ozdegerin
yiiksek olmasi ilgili 6zvektoriin veri hakkinda daha yiiksek bilgi igerdigini; baska bir
deyisle aciklanabilir varyansin yiiksek oldugunu gostermektedir. Tez kapsaminda
kullanilan veriler ic¢in hesaplanan agiklanabilir varyanslarin grafikleri Sekil 4.1°de
verilmistir. Grafikler incelendiginde tiim veri setleri i¢in dordiincii temel bilesenden

itibaren aciklanabilir varyanslarin sifira yakinsadiklar1 goriilmektedir.

Temel Bilesenlerin Aiklanabilir Varyanslar Temel Bilesenlerin Agiklanabilir Varyanslari

@] (b)

°

Y
°
£y

Agiklanabilir Varyans
°
=

= 0.0
0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15
Temel Bilesen Numarasi Temel Bilesen Numaras

Temel Bilesenlerin Aciklanabilir Varyanslari Temel Bilesenlerin Aciklanabilir Varyanslari

(©) (d)

0.8

°
>

Agiklanabilir Varyans
°
a

Aciklanabilir Varyans

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Temel Bilesen Numarasi Temel Bilesen Numaras

Sekil 4.1 Dioni (a), Loukia (b), DFC13 (c¢) ve Salinas Scene (d) veri setleri i¢in temel bilegsenlerin
aciklanabilir varyanslari.

Goriintiilerin boyutlarinin indirgenmesi asamasinda 6ne ¢ikan bir yontem ya da kural
bulunmamaktadir. Ancak 06zdegerlerin kiimiilatif varyanslarmin 95%’ini saglayan

ozvektorlerin se¢ilmesi uygun goriilmektedir (Catalbas 2014). Hiperspektral goriintiilerin
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TBA donilisimiinde hesaplanan temel bilesenler genellikle ilk iki bandinda 95%
aciklanabilir varyansi saglamaktadir. Ancak iki temel bilesen ile algoritmalarin 6znitelik
cikarimlar1 zorlasacagindan tez galismasinda s6z konusu Kriter 99,5%’e c¢ikartilarak
orijinal goriintllye en yakin miktarda 0Ozelligi saglayabilecek temel bilesenler
incelenmistir. Tezde kullanilan veri setleri i¢in hesaplanan kiimiilatif varyans grafikleri
Sekil 4.2°de goriilmektedir. Sekil 4.2a, Sekil 4.2b ve Sekil 4.2d incelendiginde sirasiyla
Dioni, Loukia ve Salinas Scene veri setleri i¢in ilk dort temel bilesen 99,5% aciklanabilir
varyans kriterini saglarken Sekil 4.2c’de DFC13 veri setinde bu kriterin ilk {i¢ temel
bilesenin kullanimiyla saglandig1 agik¢a goriilmektedir. Kullanilan temel bilesen sayisi
arttikca kiimiilatif varyans degeri 100%’e (1.00) yakinsamaktadir. Siniflandirma
modelleri i¢in uygulanacak TBA isleminin standartlagtirilmasi i¢in kiimiilatif varyansin
farkli sayida bant kullaniminda belirlenen esige ulagmasi ve her model i¢in ayn1 sayida
temel bilesen kullanilmasi1 maksadiyla biitiin veri setleri i¢in en yiiksek aciklanabilir

varyansa sahip ilk 15 temel bilesenin kullanilmasi uygun goriilmiistiir.

1.00 1.00
L= /’__H—*—V_'
99,5%
99,5% 0.99
0.98
0.98
0.96 0.97
o 2
5 H
z 2096
S 2
< 0.94 <
k] &
5 3
2 2 095
g g
092 0.94
0.93
0.90
@) o= (b)
0.88 091
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Temel Bilesen Sayisi Temel Bilesen Sayisi
1.000 ——— 1.00 S
99/5% 99,5%
0975
0.95
0.950
o 0925 2 090
s ES
3 g
< 0.900 b
3 3
3 H
0.85
5 S
* 0875 =
0.850
0.80
0825 d
( ) 075 ( )
o0 +—— +r —+—+—+— 1 Lo .
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Temel Bilesen Sayisi Temel Bilesen Sayisi

Sekil 4.2 Dioni (a), Loukia (b), DFC13 (c) ve Salinas Scene (d) veri setleri i¢in temel bilesenlerin
kiimiilatif varyanslart.
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4.2 Dioni Veri Seti Siniflandirma Sonuclari

Dioni veri setinin geleneksel MO ve DO algoritmalar1 ile siiflandiriimasinda yer

dogrulama verilerinin egitim ve test verisi olarak ayrilmasinda Python: Scikit-Learn

kiitliphanesinin train_test split fonksiyonu kullanilmistir. Egitim kiime boyutunun

arastirilmasi amaciyla egitim veri kiimesinin boyutu sirastyla 30%, 50% ve 70% olarak

secilmistir. Cizelge 4.1’de Dioni veri setinin siniflara gore yer dogrulama verilerinin

igerdigi etiketli veri sayisi, bunun yaninda egitim veri setinin boyutuna gore egitim ve test

icin ayrilan etiketli verilerin dagilimlari gosterilmistir.

Cizelge 4.1 Dioni veri setinde siniflar ve 30%-50%-70% egitim veri kiimesi oranlarina gore
egitim ve test icin ayrilan etiketli veri sayilari.

Oran  30% Egitim  50% Egitim  70% Egitim
Simf Simif Adi Toplam M Veri Seti Veri Seti Veri Seti

No (ni) xn Egitim Test Egitim Test Egitim Test
(%) 30% 70% 50% 50% 70% 30%

1 Siirekli sehir yapisi 1262 6,3 379 883 631 631 883 379

2 Mineral gikarim sahalari 204 1,0 61 143 102 102 143 61
3 Sulanmayan ekilebilir alanlar 614 3,1 184 430 307 307 430 184

4 Meyve bahgeleri 150 0,7 45 105 75 75 105 45
5 Zeytinlikler 1768 8,8 530 1238 884 884 1237 531
7 igne yaprakli ormanlar 361 1,8 108 253 180 181 253 108
9 Yogun sklerofil bitki ortiisii 5035 251 1511 3524 2518 2517 3524 1511
10 Seyrek sklerofil bitki ortiisii 6374 31,8 1912 4462 3187 3187 4462 1912
11 Seyrek bitki alanlart 1754 8,8 526 1228 877 877 1228 526
12 Kayalar ve kumluklar 492 2,5 148 344 246 246 344 148
13 Su 1612 8,1 484 1128 806 806 1128 484
14 Kiy1 sular 398 2,0 119 279 199 199 279 119

Rastgele olarak ayrimi gergeklestirilen egitim ve test kiimelerinin dagilimlar Sekil 4.3’te

gosterilmistir.
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Sekil 4.3 Dioni veri seti (a) i¢in egitim-test piksellerinin sirasiyla 30%(b)-70%(c), 50%(d)-
50%(e) ve 70%(f)-30%(g) dagilimlari.

Dioni veri seti icin DVM modelleri olusturulurken literatiirde de siklikla kullanilan RTF
kernel fonksiyonu temsil edilmistir. Yer dogrulama verisinin sirasiyla 30%, 50% ve 70%
egitim verisi olarak ayrildigi durumlar i¢in optimum parametrelerin tespiti 5 katlamali
capraz dogrulama islemi ile gergeklestirilmistir. Biitiin veri kiime boyutlar1 i¢gin optimum
parametreler C=10 ve y=0,1 olarak belirlenmistir. RO algoritmasinda m=4 olarak
belirlenirken N parametresi i¢in her ii¢ egitim kiimesi i¢in 6nciil olarak 1000 karar agaci
ile modeller olusturulmustur. Onciil modellerin OOB hatalarin1 gdsteren grafikler Sekil
4.4’te verilmistir. OOB hatasinin grafikleri incelendiginde 30% (Sekil 4.4aSekil 4.3),
50% (Sekil 4.4b) ve 70% (Sekil 4.4c) egitim veri kiime boyutlar i¢in yaklasik 150 karar
agacindan sonra hata stabil olarak ilerledigi goriilmiistiir ve bu veri kiimeleri ile asil

modeller kurulurken her tic RO modeli i¢in de N=150 olarak se¢ilmistir.

06 (a) 06 (b) 06 (C)
_0s _os _os
z z z
(-4 -4 2
©o0a ©oa Soa
8 g 8
] ] 203
Zo3 fo3 Zo.
Qo Qo Qo
<) 3 )

0.2 02 0.2

o 01 0.1

0 200 400 600 800 1000 o 200 400 1000 1000
Agag Sayist Agag Sayisi

Sekil 4.4 Dioni veri seti i¢in sirasiyla 30% (a), 50% (b) ve 70% (c) egitim kiimesi boyutlarina
gore RO algoritmasmin OOB hatalari.
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ESA modellerinin egitimi asamasinda her iki ESA modeli ve biitiin egitim veri kiimesi
boyutlari i¢in y1gin boyutu 256 ve epok sayis1 500 olarak belirlenmistir. Sekil 4.5’te her
iki ESA modelinin farkli egitim veri kiimesi boyutlarina gore kayip fonksiyonu ve model
dogrulugu grafikleri verilmistir. 2B ESA modellerinin tiim veri kiimesi boyutlar1 igin
kay1p fonksiyonu grafikleri incelendiginde (Sekil 4.5a, Sekil 4.5e ve Sekil 4.51) hatalarin
diizenli olarak diistiigii ve ilerleyen epoklarda sifira yaklagtigi goriilmektedir. 3B+2B
ESA modellerinin kayip fonksiyonu grafiklerinin (Sekil 4.5¢, Sekil 4.5g ve Sekil 4.5j)
birkag epok sonunda hizlica diistiikleri, ilerleyen epoklarin bazilarinda anlik sigramalar

ile hatalarin maksimum 0,15 civarina yiikselip geri diistiikleri goriilmektedir.

Model Kayip Fonksiyonu Grafigi Model Dogrulugu Grafigi Model Kayip Fonksiyonu Grafigi Model Dogrulugu Grafigi
53
(a) (c) ()
20 2B ESA 08 3B+2B ESA 09 3B+2B ESA
30% 30% 30%
&
5
&
s
Model Kayip Fonksiyonu Grafigi Model Dogrulugu Grafigi Model Kayip Fonksiyonu Grafigi Model Dogrulugu Grafigi
2
d "
s
" (e) o ® (®)
2B ESA 2B ESA 3B+2B ESA 3B+2B ESA

50% 50% 50% 50%

[} 100 200 300 400 500 [ 100 200 300 a00 500 0 100 200 300 400 500 0 100 200 300 400 500
Epok Says Epok Says Epok Sayss: Epok Sayis:

Model Kayip Fonksiyonu Grafigi Model Dogruluu Grafigi Model Kayip Fonksiyonu Grafigi Model Dogrulugu Grafigi
10 100
20 (1) o 08 (J) .
2B ESA 3B+2B ESA o 3B+2B ESA
15 70% 98 06 70% 70%

[} 100 200 300 400 500 [ 100 200 300 400 500
Epok Saysi Epok Sayisi

Sekil 4.5 Dioni veri setinin siniflandirilmasi i¢in 30%, 50% ve 70% egitim verisi ile olusturulan
ESA modellerinin kayip fonksiyonu ve model dogrulugu grafikleri.

Veri seti igin ilk asamada algoritmalar 30% egitim verisi ile egitildikten sonra yer
dogrulama verisinin egitim verisinden arta kalan 70%’lik test veri seti ile hata matrisleri

olusturulmustur (Ek 1, Ek 2,
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Ek 3 ve Ek 4). Bu hata matrislerinden hesaplanan genel dogruluk, kappa, liretici ve
kullanict dogruluklar1 ek olarak islem siireleri Cizelge 4.2°de verilmistir. Tablodaki
degerler incelendiginde 98,60% genel dogruluk ile en basarili algoritmanin 3B+2B ESA
oldugu goriilmektedir. Siif bazindaki dogruluklar incelendiginde ise 3B+2B ESA’nin
birka¢ smif haricinde en yliksek tiretici ve kullanici dogruluklarina sahip oldugu, 2B
ESA’nin ise sinif bazindaki dogruluk olgiitlerine ve genel dogruluga gore ikinci en
basarili algoritma oldugu goriilmektedir. islem siireleri acisindan incelendiginde RO
algoritmasinin egitiminin ve tim goriintiinliin smiflandirilmas1 asamasinda en hizlh

algoritma oldugu acikg¢a goriilmektedir.

izelge 4.2 Dioni 30% veri seti i¢in algoritmalarin performanslari.
g g p

DVM RO 2B ESA 3B+2B ESA

Smif Adi g g g g g g g g

o e a e o e o e

5 2 £ 2 &5 2 &5 2
Siirekli sehir yapist 86,99 86,30 91,99 78,03 97,87 93,66 98,59 94,90
Mineral ¢ikarim sahalari 94,53 84,62 94,96 79,02 100,00 95,80 99,31 100,00
Sulanmayan ekilebilir alanlar 92,33 89,53 93,06 90,47 96,06 96,28 95,24 97,67
Meyve bahgeleri 86,32 78,10 90,70 74,29 94,74 85,71 97,65 79,05
Zeytinlikler 90,97 92,73 89,75 94,02 97,52 98,63 97,08 99,19
igne yaprakli ormanlar 100,00 98,81 100,00 100,00 100,00 100,00 99,22 100,00

Yogun sklerofil bitki ortiisii 96,16 93,90 96,57 91,94 98,27 98,52 98,01 99,29
Seyrek sklerofil bitki ortiisii. =~ 93,85 96,39 90,62 97,22 97,82 98,50 98,94 98,30

Seyrek bitki alanlar 95,27 95,03 93,30 91,86 99,27 99,27 99,84 99,43
Kayalar ve kumluklar 99,41 97,38 98,22 96,22 99,71 99,42 99,71 99,71
Su 99,82 100,00 99,82 100,00 100,00 100,00 100,00 100,00
Kiy1 sulari 100,00 97,85 100,00 99,28 100,00 100,00 100,00 100,00
Genel Dogruluk 94,61% 93,66% 98,29% 98,60%
Kappa 0,933 0,921 0,979 0,983
islem Egitim 185,49 0,11 80,29 215,25
Siireleri
(saniye): Siiflandirma 23,39 7,21 390,17 479,12

Dioni 30% verisi i¢in egitilen algoritmalar tarafindan olusturulan siniflandirma haritalar
Sekil 4.6’da verilmistir. Siniflandirma sonuglari incelendiginde goriintiiniin sag tarafinda

yer alan bulut 2B ESA ve 3B+2B ESA ile spektral imza agisindan en benzer oldugu

55



kayalar ve kumluklar sinifina atanirken s6z konusu bulutun RO tarafindan kayalar ve
kumluklar yogun sklerofil bitki ortiisii ve seyrek sklerofil bitki Ortiisii olmak tizere ii¢
farkli sinifa atama yaptig1 goriilmektedir. DVM algoritmasi ise ayni alan1 sulanmayan
ekilebilir alan, yogun sklerofil bitki Ortiisii ve seyrek sklerofil bitki Ortiisii olarak
siiflandirmistir. Bulutun golgesi ise RO ve 2B ESA algoritmalar: tarafindan su ve kiy1

sular1 olarak etiketlenmistir.
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Siirekli Sehir Yapisi - Meyve Bahgeleri - Yogun Sklerofil Bitki Ortiisii |:] Kayalar ve Kumluklar

- Mineral Cikarim Sahalari - Zeytinlikler - Seyrek Sklerofil Bitki Ortiisii - Su

D Sulanmayan Ekilebilir Alanlar - igne Yaprakli Ormanlar - Seyrek Bitki Alanlar - Kiy1 Sulart

Sekil 4.6 Dioni 30% veri seti (a) icin DVM (b), RO (c), 2B ESA (d) ve 3B+2B ESA (e)
algoritmalari ile olusturulan siniflandirma haritalar1 ve lejant1 (f).

Dioni veri seti i¢in ikinci asamada algoritmalar 50% egitim verisi ile egitildikten sonra
yer dogrulama verisinin egitim verisinden arta kalan 50%’lik test veri seti ile hata
matrisleri olusturulmustur (EK 5, EK 6, Ek 7 ve Ek 8). Bu hata matrislerinden hesaplanan
genel dogruluk, kappa, iiretici ve kullanict dogruluklar1 ek olarak islem siireleri Cizelge

4.3’te verilmistir. Tablodaki degerler incelendiginde 99,17% genel dogruluk ile en
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basarili algoritmanin 2B ESA oldugu goriilmektedir. Smif bazindaki dogruluklar
incelendiginde ise 2B ESA’nin birkag sinif haricinde en yiiksek iiretici ve kullanict
dogruluklaria sahip oldugu, 3B+2B ESA’nin ise sinif bazindaki dogruluk 6lgiitlerine ve
genel dogruluga gore ikinci en basarili algoritma oldugu goriilmektedir. Ancak 3B+2B
ESA modeli mineral ¢ikarim sahalar1 ve meyve bahgeleri smiflarinda kullanict
dogruluklari agisindan diger modellere gore oldukga diisiik ¢iktig1 goriilmektedir. EK 8’de
s0z konusu model i¢in olusturulan hata matrisi incelendiginde s6z konusu siniflarin diger
siniflara oranla daha az sayida test pikseline sahip oldugu goriiliirken mineral ¢ikarim
sahalar1 sinifinin seyrek bitki alanlar1 sinifiyla; meyve bahgeleri sinifinin ise zeytinlikler
siniflart ile karistifi  goriilmiistiir. Islem siireleri acisindan incelendiginde RO
algoritmasinin egitiminin ve tiim gorilintliniin siniflandirilmas: asamasinda en hizlh

algoritma oldugu acik¢a goriilmektedir.
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Cizelge 4.3 Dioni 50% veri seti i¢in algoritmalarin performanslari.

DVM RO 2B ESA 3B+2B ESA
Smif Adi g g g g g g g g
a e a e a e a e
5 2 5 2 5 2 &5 2
Siirekli sehir yapisi 91,50 88,75 91,89 80,82 99,20 97,78 98,52 94,77
Mineral ¢ikarim sahalari 98,94 91,18 95,60 85,29 100,00 99,02 100,00 53,92
Sulanmayan ekilebilir alanlar 94,24 90,55 96,79 88,27 98,36 97,39 98,69 98,37
Meyve bahgeleri 91,78 89,33 90,91 80,00 98,48 86,67 100,00 42,67
Zeytinlikler 93,27 95,59 90,53 95,14 97,67 99,43 93,20 99,21
Igne yaprakli ormanlar 100,00 99,45 100,00 100,00 99,45 100,00 99,45 100,00
Yogun sklerofil bitki ortiisii 96,64 94,91 96,40 93,52 99,01 99,36 97,74 99,76
Seyrek sklerofil bitki ortisi 95,03 97,14 92,20 97,11 99,34 99,15 99,24 98,02
Seyrek bitki alanlart 97,02 96,47 94,12 93,16 99,55 99,89 94,81 100,00
Kayalar ve kumluklar 100,00 99,59 99,58 96,34 100,00 99,59 100,00 98,37
Su 100,00 100,00 99,88 100,00 100,00 100,00 100,00 100,00
Kiy1 sulart 100,00 100,00 100,00 99,50 100,00 100,00 100,00 100,00
Genel Dogruluk 95,92% 94,46% 99,17% 97,92%
Kappa 0,949 0,931 0,990 0,974
Islem Egitim 496,57 0,15 106,98 295,71
Siireleri
32,60 7,24 404,67 499,71

(saniye): Simiflandirma

Dioni 50% verisi i¢in egitilen algoritmalar tarafindan olusturulan siniflandirma haritalar
Sekil 4.7°de verilmistir.
sonuglariin 30% egitim verisi ile kurulan modellerin siiflandirma sonuglarina yakin
olduklar1 goriilmektedir. Goriintiiniin saginda yer alan bulut ve gélgesinin ESA modelleri

ile olusturulan siniflandirma haritalarinda (Sekil 4.7d ve Sekil 4.7¢) sirasiyla kayalar ve

Smiflandirma

sonuglar1

kumluklar ile su siiflarina atandiklar1 goriilmektedir.
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((3) Siirekli Sehir Yapist - Meyve Bahgeleri - Yogun Sklerofil Bitki Ortiisii |:| Kayalar ve Kumluklar

- Mineral Cikarim Sahalar |:| Zeytinlikler - Seyrek Sklerofil Bitki Ortiisii - Su
I:l Sulanmayan Ekilebilir Alanlar - igne Yaprakli Ormanlar - Seyrek Bitki Alanlart D Kiyi Sulari

Sekil 4.7 Dioni 50% veri seti (a) icin DVM (b), RO (c), 2B ESA (d) ve 3B+2B ESA (e)
algoritmalari ile olusturul9an siniflandirma haritalari ve lejanti (f).

Dioni veri seti i¢in liglincli asamada algoritmalar 70% egitim verisi ile egitildikten sonra
yer dogrulama verisinin egitim verisinden arta kalan 30%’lik test veri seti
siiflandirilarak hata matrisleri olusturulmustur (Ek 9, Ek 10, Ek 11 ve Ek 12). Bu hata
matrislerinden hesaplanan genel dogruluk, kappa, iiretici ve kullanici dogruluklar ek

olarak islem siireleri Cizelge 4.4’te verilmistir. Tablodaki degerler incelendiginde

60



99,48% genel dogruluk ile en bagarili algoritmanin 3B+2B ESA oldugu goriilmektedir.
Sinif bazindaki dogruluklar incelendiginde ise 3B+2B ESA’nin birkag sinif haricinde en
yluksek tiretici ve kullanici dogruluklarina sahip oldugu, igne yaprakli ormanlar siifinin
tim algoritmalar tarafindan 100% dogrulukla siniflandirildigi ve su ile kiyr sular
simiflarina sahip test piksellerinin tamaminin ESA modellerinde 100% dogrulukla
siniflandirildiklar:  goriilmektedir. Islem siireleri acisindan incelendiginde RO
algoritmasimin egitiminin ve tiim goriintiinlin smiflandirilmas1 asamasinda en hizl

algoritma oldugu agikga goriilmektedir.

Cizelge 4.4 Dioni 70% veri seti i¢in algoritmalarin performanslari.

DVM RO 2B ESA 3B+2B ESA

Siif Adi g g g g g g g g

a - o e a e a e

5 2 5 2 5 2 &5 2
Stirekli sehir yapisi 93,58 88,39 91,35 83,64 99,74 99,47 99,73 98,68
Mineral ¢ikarim sahalari 98,31 95,08 100,00 85,25 100,00 98,36 100,00 100,00
Sulanmayan ekilebilir alanlar 91,21 90,22 95,93 89,67 98,91 98,37 98,90 97,28
Meyve bahgeleri 93,02 88,89 89,47 75,56 100,00 88,89 100,00 86,67
Zeytinlikler 93,25 96,23 90,81 94,92 98,69 99,62 97,60 99,62
Igne yaprakli ormanlar 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00

Yogun sklerofil bitki ortiisii 96,63 94,84 97,33 93,91 99,08 99,60 99,41 99,80
Seyrek sklerofil bitki ortlisiic. 95,27 97,02 92,84 97,70 99,53 99,22 99,69 99,53

Seyrek bitki alanlart 97,16 97,72 95,74 94,11 99,62 100,00 100,00 99,81
Kayalar ve kumluklar 100,00 100,00 99,32 97,97 100,00 99,32 100,00 100,00
Su 99,79 100,00 99,79 100,00 100,00 100,00 100,00 100,00
Kiy1 sulari 100,00 99,16 100,00 99,16 100,00 100,00 100,00 100,00
Genel Dogruluk 96,04% 95,02% 99,42% 99,48%
Kappa 0,951 0,938 0,993 0,994
Islem Egitim 956,67 0,19 133,54 405,49
Siireleri
(saniye): ~ Smmflandirma 41,40 7,74 406,90 506,72

Dioni 70% verisi i¢in egitilen algoritmalar tarafindan olusturulan siniflandirma haritalar
Sekil 4.8’de verilmistir. Siniflandirma sonuglar1 incelendiginde smiflandirma

sonuclarinin 30% ve 50% egitim verisi ile kurulan modellerin siiflandirma sonuglarina

yakin olduklar1 goriilmektedir.

61



- W33 L5 g

Stirekli Sehir Yapis - Meyve Bahgeleri - Yogun Sklerofil Bitki Ortiisii |:| Kayalar ve Kumluklar
- Mineral Cikarim Sahalari Ij Zeytinlikler - Seyrek Sklerofil Bitki Ortiisii - Su
l: Sulanmayan Fkilebilir Alanlar - igne Yaprakh Ormanlar - Seyrek Bitki Alanlari E Kiy1 Sulari

Sekil 4.8 Dioni 70% veri seti (a) icin DVM (b), RO (c), 2B ESA (d) ve 3B+2B ESA (e)
algoritmalari ile olusturulan siniflandirma haritalar1 ve lejant1 (f).

Her veri kiimesi boyutu i¢in algoritmalarin arasindaki genel dogruluk farklarinin anlamli
olup olmadiklarinin test edilmesi i¢in uygulanan McNemar’s testi sonuclar1 Cizelge
4.5’te verilmistir. Hesaplanan test sonuglart 95% giiven araliginda ¥?=3,841 degeriyle
karsilagtirildiginda 70% veri kiimesi ile egitilen 2B ESA ile 3B+2B ESA arasindaki farkin
2 tablo degerinden diisiik oldugu goriilebilir. Dolayisiyla bu iki ESA modelinin 70% veri
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seti ile egitildiginde siniflandirma performanslari arasinda anlamli bir farklilik olmadigini

sOylemek miimkiindiir.

Cizelge 4.5 Dioni veri seti i¢in hesaplanan McNemar’s testi sonuglari.

30% Veri Kiimesi

50% Veri Kiimesi

70% Veri Kiimesi

Model 1 - Model 2 Boyutu Boyutu Boyutu
he et G atome W

DVM - RO 23,642 Evet 44,688 Evet 13,688 Evet
DVM - 2B ESA 366,330 Evet 255,420 Evet 170,730 Evet
DVM - 3B+2B ESA 414,430 Evet 75,002 Evet 177,560 Evet
RO - 2B ESA 499,290 Evet 401,890 Evet 241,850 Evet
RO - 3B+2B ESA 524,500 Evet 191,550 Evet 245,820 Evet
2B ESA - 3B+2B ESA 8,329 Evet 71,516 Evet 0,214 Hayir

4.3 Loukia Veri Seti Sitmflandirma Sonuglari

Loukia veri setinin geleneksel MO ve DO algoritmalari ile simiflandiriimasinda egitim

veri kiimesinin boyutu sirasiyla 30%, 50% ve 70% olarak secilmistir. Cizelge 4.6’da

Loukia veri setinin siniflara gore yer dogrulama verilerinin igerdigi etiketli veri sayisi,

bunun yaninda egitim veri setinin boyutuna gore egitim ve test icin ayrilan etiketli

verilerin dagilimlar1 gosterilmistir.
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Cizelge 4.6 Loukia veri setinde siniflar ve 30%-50%-70% egitim veri kiimesi oranlarina goére
egitim ve test i¢in ayrilan etiketli veri sayilart.

Oran 30% Egitim 50% Egitim 70% Egitim
Simf n; Veri Seti Veri Seti Veri Seti

No Simf Adu Toplam 5 “Fgitim Test Egitim Test Egitim Test
(%)  30% 70% 50% 50% 70% 30%
1 Siirekli sehir yapist 288 2,1 86 202 144 144 202 86
2 Mineral ¢gikarim sahalari 67 0,5 20 47 34 33 47 20
3 Sulanmayan ekilebilir alanlar 542 4,0 163 379 271 271 379 163
4 Meyve bahgeleri 79 0,6 24 55 40 39 55 24
5 Zeytinlikler 1401 10,4 420 981 700 701 981 420
6 Genis yaprakli ormanlar 223 1,7 67 156 112 111 156 67
7 Igne yaprakli ormanlar 500 3,7 150 350 250 250 350 150
8 Karigik ormanlar 1072 79 321 751 536 536 750 322
9 Yogun sklerofil bitki ortiisii 3793 28,1 1138 2655 1896 1897 2655 1138
10 Seyrek sklerofil bitki ortiisii 2803 20,8 841 1962 1401 1402 1962 841
11 Seyrek bitki alanlart 404 3,0 121 283 202 202 283 121
12 Kayalar ve kumluklar 487 3,6 146 341 243 244 341 146
13 Su 1393 10,3 418 975 696 697 975 418
14 Kiy1 sular 451 3,3 135 316 226 225 316 135

Rastgele olarak ayrimi gerceklestirilen egitim ve test kiimelerinin dagilimlart Sekil 4.9°da

gosterilmistir.

Sekil 4.9 Loukia veri seti (a) i¢in egitim-test piksellerinin sirasiyla 30%(b)-70%(c), 50%(d)-
50%(e) ve 70%(f)-30%(g) dagilimlari.
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Loukia veri seti igin DVM modelleri olusturulurken RTF kernel fonksiyonu ile 30%, 50%
ve 70% egitim verisi kiime boyutlar1 i¢in 5 katlamali ¢apraz dogrulama islemi ile
optimum parametreler arastirilmistir. Biitiin veri kiime boyutlar1 i¢in optimum
parametreler C=10 ve y=0,1 olarak belirlenmistir. RO algoritmasinda m=4 olarak
belirlenirken N parametresi i¢in her {i¢ egitim kiimesi i¢in Onciil olarak 1000 karar agaci
ile modeller olusturulmustur. Onciil modellerin OOB hatalarii gosteren grafikler Sekil
4.10’da verilmistir. OOB hatasinin grafikleri incelendiginde 30% (Sekil 4.10a, Sekil 4.3),
50% (Sekil 4.10b) ve 70% (Sekil 4.10c) egitim veri kiime boyutlar1 i¢in  yaklasik 150
karar agacindan sonra hata stabil olarak ilerledigi goriilmiistiir ve bu veri kiimeleri ile asil

modeller kurulurken her ti¢ RO modeli i¢in de N=150 olarak se¢ilmistir.
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Sekil 4.10 Loukia veri seti i¢in sirasiyla 30% (a), 50% (b) ve 70% (c) egitim kiimesi boyutlarina
gore RO algoritmasimin OOB hatalari.

ESA modellerinin egitimi asamasinda her iki ESA modeli ve biitiin egitim veri kiimesi
boyutlari i¢in y18in boyutu 256 ve epok sayis1 500 olarak belirlenmistir. Sekil 4.11°de her
iki ESA modelinin farkli egitim veri kiimesi boyutlarina gore kayip fonksiyonu ve model
dogrulugu grafikleri verilmistir. 2B ESA modellerinin tiim veri kiimesi boyutlar1 i¢in
kayip fonksiyonu grafikleri incelendiginde (Sekil 4.11a, Sekil 4.11e ve Sekil 4.111)
hatalarin diizenli olarak azaldigi ancak 400’lerden sonraki epoklarda sifira yaklastigi
goriilmektedir. 3B+2B ESA modellerinin kayip fonksiyonu grafiklerinin (Sekil 4.11c,
Sekil 4.11g ve Sekil 4.11j) birkac on epok sonunda hizlica diistiikleri goriilmektedir.
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Sekil 4.11 Loukia veri setinin siniflandirilmasi i¢in 30%, 50% ve 70% egitim verisi ile olusturulan
ESA modellerinin kayip fonksiyonu ve model dogrulugu grafikleri.

Veri seti i¢in ilk agamada algoritmalar 30% egitim verisi ile egitildikten sonra yer
dogrulama verisinin egitim verisinden arta kalan 70%’lik test veri seti ile hata matrisleri
olusturulmustur (Ek 13, Ek 14, Ek 15 ve Ek 16). Bu hata matrislerinden hesaplanan genel
dogruluk, kappa, iiretici ve kullanict dogruluklar ek olarak islem siireleri Cizelge 4.7°de
verilmistir. Tablodaki degerler incelendiginde 93,97% genel dogruluk ile en basarili
algoritmanin 3B+2B ESA oldugu goriilmektedir. Simif bazindaki dogruluklar
incelendiginde ise 3B+2B ESA’nin {i¢ sinif i¢in 100% dogruluga sahip oldugu ve diger
sekiz sinif i¢in algoritmalar arasindaki en ytiksek iiretici ve kullanici dogruluklarina sahip
oldugu goriilmiistiir. 2B ESA’nin ise smif bazindaki dogruluk olgiitlerine ve genel
dogruluga gore ikinci en basarili algoritma oldugu goriilmektedir. Uretici ve kullanict
dogruluklar birlikte incelendiginde DVM ve RO modelleri genis yaprakli ormanlar ve
karigik ormanlar siniflart i¢in diger modellerden diisiik dogruluga sahiptir. Kullanici
dogruluklar1 incelendiginde ise RO modelinde meyve bahgeleri ve genis yaprakli
ormanlar siniflari i¢in {iretici dogruluguna gore ¢cok daha diisiik dogruluga sahip oldugu

goriilmiistiir. Islem siireleri acisindan incelendiginde RO algoritmasinin egitiminin ve
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tim gorlntiiniin  siniflandirilmas1 asamasinda en hizli algoritma oldugu agikca

goriilmektedir.

Cizelge 4.7 Loukia 30% veri seti igin algoritmalarin performanslari.

DVM RO 2B ESA 3B+2B ESA

Smif Adi g g’ g g g g_’ g g

a - a e a e a 2

5 g 5 2 B 2 B F,
Siirekli gehir yapisi 86,44 7574 90,21 63,86 92,55 86,14 94,30 90,10
Mineral ¢ikarim sahalari 100,00 70,21 100,00 85,11 100,00 97,87 100,00 100,00
Sulanmayan ekilebilir alanlar 88,92 91,03 90,98 87,86 92,13 95,78 98,58 91,56
Meyve bahgeleri 86,49 58,18 96,30 47,27 77,55 69,09 90,20 83,64
Zeytinlikler 94,09 92,56 90,86 90,21 95,04 95,72 95,86 96,74
Genis yaprakli ormanlar 75,00 57,69 90,43 54,49 92,11 67,31 93,08 77,56
Igne yaprakli ormanlar 84,01 70,57 87,50 64,00 91,33 78,29 97,29 82,00
Karisik ormanlar 72,87 67,24 73,81 66,05 88,04 89,21 89,94 94,01

Yogun sklerofil bitki ortiisii 79,48 86,37 78,36 87,27 89,02 92,54 91,28 93,79
Seyrek sklerofil bitki ortiisii 85,79 85,88 82,50 87,92 91,39 90,93 92,17 92,35

Seyrek bitki alanlari 87,77 8622 9310 66,78 94,35 9435 9450 97,17
Kayalar ve kumluklar 96,04 9238 90,86 90,32 99,39 9531 98,80 96,77
Su 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00
Kiy1 sulart 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00
Genel Dogruluk 86.12% 85,14% 92,38% 93,97%
Kappa 0,834 0,822 0,909 0,928
Islem Egitim 94,37 0,09 65,04 172,13
Siireleri
(saniye):  Simflandirma 18,01 5,39 268,04 341,95

Loukia 30% wverisi igin egitilen algoritmalar tarafindan olusturulan smiflandirma
haritalart Sekil 4.12’de verilmistir. Siniflandirma sonuglar1 incelendiginde DVM
modelinin simiflandirma haritasi i¢in goriintiiniin sol tarafinda yer alan denizde kiy1 sular1
ile su sinmiflarinin kesistigi bolgede hatali siniflandirilan piksellerin oldugu goriilmektedir.
Ayrica DVM ve RO modellerin smiflandirma haritalarinda ESA modellerinin
simiflandirma haritalarina gore daha yogun miktarda tuz-biber etkisi goriilmektedir.
Bunun yaninda mineral ¢ikarim sahalariin sekilsel olarak ¢ikarimi diger modellere gore

daha yetersizdir.
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S wd

Stirekli Sehir Yapist :l Zeytinlikler

- Yogun Sklerofil Bitki Ortiisii - Su
- Mineral Cikarm Sahalar Genis Yaprakh Ormanlar I:I Seyrek Sklerofil Bitki Ortiisit |:] Kiy1 Sulan
I:l Sulanmayan Ekilebilir Alanlar - igne Yaprakli Ormanlar - Seyrek Bitki Alanlart

- Meyve Bahgeleri - Karigik Ormanlar |:| Kayalar ve Kumluklar

Sekil 4.12 Loukia 30% veri seti (a) igin DVM (b), RO (c), 2B ESA (d) ve 3B+2B ESA (e)
algoritmalar ile olusturulan siniflandirma haritalar1 ve lejant1 (f).
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Veri seti icin ikinci asamada algoritmalar 50% egitim verisi ile egitildikten sonra yer
dogrulama verisinin egitim verisinden arta kalan 50%’lik test veri seti ile hata matrisleri
olusturulmustur (Ek 17, Ek 18, Ek 19 ve Ek 20). Bu hata matrislerinden hesaplanan genel
dogruluk, kappa, iiretici ve kullanict dogruluklar ek olarak islem siireleri Cizelge 4.8’de
verilmigtir. Tablodaki degerler incelendiginde 96,73% genel dogruluk ile en basaril
algoritmanin 3B+2B ESA oldugu goriilmektedir. Simif bazindaki dogruluklar
incelendiginde 30% veri seti ile egitilen 3B+2B ESA modelinde oldugu gibi mineral
cikarim sahalari, su ve kiy1 sular1 siniflarinin 100% dogruluga sahip olduklar1 goriiliirken
alt1 smifta 3B+2B ESA ile siniflandirmadaki iiretici ve kullanici dogruluklarinin en
yiiksek oldugu gorlismiistiir. 2B ESA ise sinif bazindaki dogruluk olgiitlerine ve genel
dogruluga gore ikinci en basarili algoritmadir. Meyve bahgeleri simifi i¢in kullanici
dogrulugunun diisiik olmast durumu DVM ve RO modellerinin yaninda 2B ESA i¢in de
gecerlidir. Islem siireleri agisindan incelendiginde RO algoritmasinin egitiminin ve tiim

goriintiiniin siniflandirilmasi asamasinda en hizl algoritma oldugu agik¢a goriilmektedir.
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Cizelge 4.8 Loukia 50% veri seti i¢in algoritmalarin performanslari.

DVM RO 2B ESA 3B+2B ESA
Simf Adi g g g g g g g g
a - a e a e a e
5 g 5 2 B g B F,
Siirekli sehir yapist 86,03 81,25 92,16 65,28 98,44 87,50 97,79 92,36
Mineral ¢ikarim sahalari 100,00 84,85 96,67 87,88 100,00 96,97 100,00 100,00
Sulanmayan ekilebilir alanlar 94,81 94,46 92,42 90,04 94,22 96,31 98,14 97,42
Meyve bahgeleri 96,30 66,67 94,74 46,15 93,10 69,23 88,57 79,49
Zeytinlikler 93,35 96,15 90,15 92,72 95,51 97,00 97,05 98,43
Genis yaprakli ormanlar 80,20 72,97 87,65 63,96 93,94 83,78 97,14 91,89
Igne yaprakli ormanlar 87,96 76,00 86,93 69,20 97,74 86,40 92,83 93,20
Karisik ormanlar 75,67 73,69 77,63 66,04 92,07 93,10 96,79 95,71
Yogun sklerofil bitki ortiisii 82,13 86,24 79,36 89,40 92,67 94,57 95,14 97,05
Seyrek sklerofil bitki ortiisii 8791 86,59 86,44 87,73 94,00 94,94 96,72 94,72
Seyrek bitki alanlar 91,84 89,11 92,07 74,75 96,06 96,53 96,62 99,01
Kayalar ve kumluklar 97,07 95,08 94,02 90,16 99,57 95,90 98,37 98,77
Su 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00
Kiyi sulart 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00
Genel Dogruluk 88,13% 86,67% 94,93% 96,73%
Kappa 0,859 0,840 0,940 0,961
Islem Egitim 254,88 0,11 85,33 231,78
Siireleri
(saniye): Siiflandirma 26,41 5,53 288,92 352,57

Loukia 50% wverisi igin egitilen algoritmalar tarafindan olusturulan smiflandirma

haritalar1 Sekil 4.13’te verilmistir. Siniflandirma sonuglari incelendiginde 30% veri

kiimesiyle egitilen RO modelinin smiflandirma haritasinda oldugu gibi 50% egitim

verisiyle egitilen RO modelinin simiflandirma haritasinda da denizdeki kiy1 sulart ile su

simiflarinin kesistigi bolgede hatali siniflandirilan piksellerin oldugu gortilmektedir.
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Siirekli Sehir Yapisi D Zeytinlikler - Yogun Sklerofil Bitki Ortiisii - Su
- Mineral Cikarim Sahalar Genis Yaprakh Ormanlar |:| Seyrek Sklerofil Bitki Ortiisii E Kiy1 Sular
:] Sulanmayan Ckilebilir Alanlar - Igne Yaprakli Ormanlar - Seyrek Bitki Alanlar

- Meyve Bahgeleri - Karisik Ormanlar D Kayalar ve Kumluklar

Sekil 4.13 Loukia 50% veri seti (a) igin DVM (b), RO (c), 2B ESA (d) ve 3B+2B ESA (e)
algoritmalar ile olusturulan siniflandirma haritalar1 ve lejanti (f).
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Veri seti i¢in ligiincii asamada algoritmalar 70% egitim verisi ile egitildikten sonra yer
dogrulama verisinin egitim verisinden arta kalan 30%’luk test veri seti ile hata matrisleri
olusturulmustur (Ek 21, Ek 22, Ek 23 ve Ek 24). Bu hata matrislerinden hesaplanan genel
dogruluk, kappa, iiretici ve kullanict dogruluklar ek olarak islem siireleri Cizelge 4.9°da
verilmigtir. Tablodaki degerler incelendiginde 97,40% genel dogruluk ile en basarili
algoritmanin 3B+2B ESA oldugu goriilmektedir. Simif bazindaki dogruluklar
incelendiginde ise 3B+2B ESA’nin igne yaprakli ormanlar sinifi haricinde en yiiksek
tiretici ve kullanict dogruluklarina sahip oldugu, 2B ESA’nin ise sinif bazindaki dogruluk
Olciitlerine ve genel dogruluga gore ikinci en bagarili algoritma oldugu goriillmektedir.
Meyve bahgeleri sinifinin kullanict dogrulugunun en diisitk RO modeli i¢in olmak tizere
tiim modellerde diger siniflardan diisiik oldugu goriilmiistiir. Bunun yaninda genis ve igne
yaprakli ormanlar siniflar1 igin MO modelleri ESA modellerinden daha diisiik
siniflandirma performansina sahiptir. Islem siireleri agisindan incelendiginde RO
algoritmasinin egitiminin ve tiim gorlintliiniin siniflandirilmas: asamasinda en hizli

algoritma oldugu acik¢a goriilmektedir.
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Cizelge 4.9 Loukia 70% veri seti i¢in algoritmalarin performanslari.

DVM RO 2B ESA 3B+2B ESA

Simf Adi g g g g g g g g

a - a e a e a e

5 g 5 2 B g B F,
Siirekli sehir yapist 95,00 88,37 88,24 69,77 96,55 97,67 98,80 95,35
Mineral ¢ikarim sahalari 100,00 95,00 100,00 95,00 100,00 100,00 100,00 100,00
Sulanmayan ekilebilir alanlar 96,27 95,09 93,46 87,73 98,76 97,55 95,86 99,39
Meyve bahgeleri 100,00 75,00 100,00 54,17 100,00 79,17 100,00 79,17
Zeytinlikler 9469 97,62 91,71 94,76 97,87 98,33 98,35 99,05
Genis yaprakli ormanlar 86,89 79,10 89,13 61,19 91,18 92,54 95,38 92,54
Igne yaprakli ormanlar 84,03 80,67 88,14 69,33 97,86 91,33 97,84 90,67
Karisik ormanlar 77,88 79,81 81,63 71,74 95,41 96,89 98,11 96,89

Yogun sklerofil bitki ortiisii 84,29 86,29 80,17 89,19 94,79 95,96 96,24 96,75
Seyrek sklerofil bitki ortiisii 88,94 87,04 86,02 87,04 95,58 95,12 96,24 97,27

Seyrek bitki alanlar1 95,80 94,21 98,04 82,64 99,17 98,35 99,17 98,35
Kayalar ve kumluklar 98,62 97,95 97,24 96,58 100,00 99,32 98,65 100,00
Su 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00
Kiy1 sulart 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00
Genel Dogruluk 89,68% 87,63% 96,64% 97,40%
Kappa 0,887 0,852 0,960 0,969
Islem Egitim 484,65 0,14 98,92 283,21
Siireleri
(saniye): Siiflandirma 34,16 5,71 287,25 347,44

Loukia 70% verisi i¢in egitilen algoritmalar tarafindan olusturulan siniflandirma
haritalar1 Sekil 4.14’te verilmistir. Siniflandirma sonuglar1 incelendiginde RO modeli i¢in
su ve kiy1 sulart smiflarindaki yanlis simiflandirmalar gozle goriiliir sekilde devam
etmistir. Ancak 3B+2B ESA modelinde s6z konusu siiflar igin iretici ve kullanici
dogruluklar1 100% ¢ikmasina ragmen gozle fark edilir sekilde hatali siiflandirmalar

meydana gelmistir (Sekil 4.14e).
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Siirekli Sehir Yapisi I:l Zeytinlikler - Yogun Sklerofil Bitki Ortiisii - Su
- Mincral Cikarim Sahalari Genis Yaprakli Ormanlar I:] Seyrek Sklerofil Bitki Ortiisti I:I Kiy1 Sulari
:] Sulanmayan Ekilebilir Alanlar - igne Yaprakl Ormanlar - Seyrek Bitki Alanlart

- Mecyve Bahgeleri - Karisik Ormanlar |:] Kayalar ve Kumluklar

Sekil 4.14 Loukia 70% veri seti (a) igin DVM (b), RO (c), 2B ESA (d) ve 3B+2B ESA (e)
algoritmalari ile olusturulan siniflandirma haritalar1 ve lejant1 (f).
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Her veri kiimesi boyutu i¢in algoritmalarin arasindaki genel dogruluk farklarinin anlaml
olup olmadiklarin test edilmesi i¢in uygulanan McNemar’s testi sonuglari Cizelge
4.10’da verilmistir. Hesaplanan test sonuclar1 95% giiven araliginda ¥>=3,841 degeriyle
karsilastirildiginda biitiin veri kiimesi boyutlarinda algoritmalarin = siniflandirma

performanslar1 aralarindaki farklarin anlamli oldugu goriilmektedir.

Cizelge 4.10 Loukia veri seti i¢in hesaplanan McNemar’s testi sonuglari.

30% Veri Kiimesi 50% Veri Kiimesi 70% Veri Kiimesi
Model 1 - Model 2 Boyutu Boyutu Boyutu

R -
DVM - RO 7,094 Evet 12,721 Evet 15,821 Evet
DVM - 2B ESA 282,133 Evet 277,833 Evet 192,588 Evet
DVM - 3B+2B ESA 420,430 Evet 426,515 Evet 239,174 Evet
RO - 2B ESA 365,227 Evet 381,141 Evet 277,769 Evet
RO - 3B+2B ESA 497,892 Evet 531,427 Evet 326,412 Evet
2B ESA - 3B+2B ESA 36,158 Evet 47,841 Evet 8,108 Evet

4.4 DFC13 Veri Seti Simiflandirma Sonuclari

DFC13 veri setinin geleneksel MO ve DO algoritmalari ile simiflandiriimasinda egitim
veri kiimesinin boyutu sirasiyla 30%, 50% ve 70% olarak secilmistir. Cizelge 4.11°de
DFC13 veri setinin igerdigi 15 yer sinifina gore yer dogrulama verilerinin igerdigi etiketli
veri sayilari, bunun yaninda egitim veri setinin boyutuna gore egitim ve test i¢in ayrilan

etiketli verilerin dagilimlari gosterilmistir.
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Cizelge 4.11 DFC13 veri setinde siniflar ve 30%-50%-70% egitim veri kiimesi oranlarina gore
egitim ve test i¢in ayrilan etiketli veri sayilart.

Oran 30% Egitim 50% Egitim 70% Egitim
Simif n; Veri Seti Veri Seti Veri Seti

No Smif Ads Toplam 5o “Fgitim Test Egifim Test Egitim Test
(%)  30% 70% 50% 50% 70%  30%

1 Saglikli ¢imen 1374 8,0 412 962 687 687 962 412
2 Yipranmig ¢imen 1454 8,4 436 1018 727 727 1018 436
3 Sentetik ¢imen 795 4,6 239 556 398 397 556 239
4 Agag 1264 7,3 379 885 632 632 885 379
5 Toprak 1298 75 389 909 649 649 909 389
6 Su 339 2,0 102 237 169 170 237 102
7 Ticari Yap1 1476 8,5 443 1033 738 738 1033 443
8 Konut 1354 7,8 406 948 677 677 948 406
9 Yol 1554 9,0 466 1088 777 777 1088 466
10 Otoyol 1424 8,2 427 997 712 712 997 427
11 Tren yolu 1566 9,1 470 1096 783 783 1096 470
12 Park alani 1 1429 8,3 429 1000 714 715 1000 429
13 Park alan1 2 635 3,7 191 444 318 317 444 191
14 Tenis Kortu 510 3,0 153 357 255 255 357 153
15 Kosu Pisti 798 4,6 239 559 399 399 559 239

Rastgele olarak ayrimi gergeklestirilen egitim ve test kiimelerinin dagilimlart Sekil

4.15’te gosterilmistir.

w : - . , (9)-

Pl

Sekil 4.15 DFC13 veri seti (a) i¢in egitim-test piksellerinin sirasiyla 30%(b)-70%(c), 50%(d)-
50%(e) ve 70%(f)-30%(g) dagilimlari.

DFC13 veri seti igin DVM modelleri olusturulurken RTF kernel fonksiyonu ile 30%, 50%

ve 70% egitim verisi kiime boyutlart icin 5 katlamali ¢apraz dogrulama islemi ile
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optimum parametreler arastirtlmistir. Biitiin veri kiime boyutlar1 i¢in optimum
parametreler C=100 ve y=0,1 olarak belirlenmistir. RO algoritmasinda m=4 olarak
belirlenirken N parametresi i¢in her {i¢ egitim kiimesi i¢in 6nciil olarak 1000 karar agac1
ile modeller olusturulmustur. Onciil modellerin OOB hatalarin1 gosteren grafikler Sekil
4.16Sekil 4.10’da verilmistir. OOB hatasinin grafikleri incelendiginde 30% (Sekil 4.16a),
50% (Sekil 4.16b) ve 70% (Sekil 4.16¢) egitim veri kiime boyutlar1 i¢in  yaklasik 150
karar agacindan sonra hata stabil olarak ilerledigi goriilmiistiir ve bu veri kiimeleri ile asil

modeller kurulurken her ii¢ RO modeli i¢in de N=150 olarak se¢ilmistir.

o8 @ - (b), (©)

) .0
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Agag Sayist Agag Sayisi Agag Sayisi

Sekil 4.16 DFC13 veri seti icin sirasiyla 30% (a), 50% (b) ve 70% (c) egitim kiimesi boyutlarina
gore RO algoritmasmin OOB hatalari.

ESA modellerinin egitimi agamasinda her iki ESA modeli ve biitiin egitim veri kiimesi
boyutlar1 i¢in y18in boyutu 256 ve epok sayis1 500 olarak belirlenmistir. Sekil 4.17°de her
iki ESA modelinin farkli egitim veri kiimesi boyutlarina gore kayip fonksiyonu ve model
dogrulugu grafikleri verilmistir. 2B ESA modellerinin tiim veri kiimesi boyutlar1 i¢in
kayip fonksiyonu grafikleri incelendiginde (Sekil 4.17a, Sekil 4.17e ve Sekil 4.171)
hatalarin diizenli olarak diistigii ve Loukia veri setine gore (Sekil 4.11) daha az epok
tekrarinda sifira yaklastigi goriilmektedir. 3B+2B ESA modellerinin kayip fonksiyonu
grafiklerinin (Sekil 4.17c, Sekil 4.17g ve Sekil 4.17j) birka¢ epok sonunda hizlica
diistiikleri, ilerleyen epoklarin bazilarinda anlik sigramalar ile hatalarin maksimum 0,1

civarina ylkselip geri diistiikleri goriilmektedir.

77



Model Kayip Fonksiyonu Grafigi Model Dogrulugu Grafigi Model Kayip Fonksiyonu Grafigi Model Dogrulugu Grafigi
10 2N 10
25 175
() (c) 00 (d)
08 1.50
20 2B ESA 3B+2B ESA 3B+2B ESA
08
30% 125 30% 30%
@ 05
15 100 07
10 % 075 s
050
05 05
02 025
04
00 0.00
[ 100 200 300 00 500 [ 100 200 300 00 500 13 100 200 300 00 500 o 100 200 300 a0 500
Epok Saysi Epok Saytst Epok Sayist Epok Says:
Model Kayip Fonksiyonu Grafigi Model Dogrulugu Grafigi Model Kayip Fonksiyonu Grafigi Model Dogrulugu Grafigi
10 16 10
25
(e a (e | ()
09
20 2B ESA oa 2B ESA 12 3B+2B ESA | 3B+2B ESA
30% 50% 10 50% 50%
15 s
06
o8
10 06 %7
04
04
os 06
02 |
02
00 00 | os
[ 100 200 300 400 500 [ 100 200 300 400 500 [ 100 200 300 400 500 0 100 200 300 400 500
Epok Saysi Epok Sayist Epok Saysi Epok Says
Model Kayip Fonksiyonu Grafigi Model Dogrulugu Grafigi Mode! Kayip Fonksiyonu Grafigi Model Dogrulugu Grafigi
25 10 10
12
o ®)
20 |
08 9 3B+2B ESA 09 3B+2B ESA
0, o,
e - 5 70% 70%
08
06 06
10 i@
04
o 07
05
02 |
03
\ [T 06
00 02 00 |
0 100 200 300 00 500 13 100 200 360 430 500 [ 1% 200 300 400 500
Epok Sayisi Epok Sayist Epok Sayms:

Sekil 4.17 DFC13 veri setinin siniflandirilmast i¢in 30%, 50% ve 70% egitim verisi ile
olusturulan ESA modellerinin kayip fonksiyonu ve model dogrulugu grafikleri.

Veri seti i¢in ilk agamada algoritmalar 30% egitim verisi ile egitildikten sonra yer
dogrulama verisinin egitim verisinden arta kalan 70%’lik test veri seti ile hata matrisleri
olusturulmustur (Ek 25, Ek 26, Ek 27 ve Ek 28). Bu hata matrislerinden hesaplanan genel
dogruluk, kappa, tiretici ve kullanici dogruluklari ek olarak islem siireleri Cizelge 4.12°de
verilmistir. Tablodaki degerler incelendiginde 99,67% genel dogruluk ile en basarili
algoritmanin 3B+2B ESA oldugu gorilmektedir. Smif bazindaki dogruluklar
incelendiginde ise 3B+2B ESA’nin dort sinif i¢in 100% dogruluga sahip oldugu ve diger
dort sinif i¢in algoritmalar arasindaki en yiiksek {iiretici ve kullanic1 dogruluklarina sahip
oldugu goriilmiistiir. 2B ESA’nin ise smif bazindaki dogruluk olgiitlerine ve genel
dogruluga gére ikinci en basarili algoritma oldugu gériilmektedir. islem siireleri agisindan

incelendiginde RO algoritmasinin egitiminin ve tiim gorlintiiniin smiflandirilmasi

asamasinda en hizli algoritmadir.
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Cizelge 4.12 DFC13 30% veri seti i¢in algoritmalarin performanslari.

DVM RO 2B ESA 3B+2B ESA
Simf Adi g g g g g g g g
a - a e a e a e
5 2 05 2 B g B F,
Saglikli ¢imen 98,36 99,79 98,16 99,79 99,48 100,00 99,59 100,00
Yipranmis ¢imen 99,70 99,12 98,82 98,82 99,90 99,51 99,90 99,61
Sentetik ¢imen 100,00 100,00 100,00 99,46 100,00 100,00 100,00 100,00
Agag 99,55 99,21 99,66 98,42 100,00 100,00 99,44 100,00
Toprak 99,67 99,56 97,93 99,12 99,89 100,00 100,00 100,00
Su 100,00 99,58 100,00 99,58 100,00 100,00 100,00 100,00
Ticari Yapt 96,26 97,19 94,48 97,68 98,38 99,81 99,13 98,84
Konut 95,55 97,47 97,97 96,52 100,00 99,05 100,00 100,00
Yol 9489 97,33 92,82 93,84 99,45 99,08 99,72 99,54
Otoyol 96,19 96,29 94,58 94,58 99,01 100,00 99,70 100,00
Tren yolu 97,21 95,53 94,73 95,07 99,91 99,27 100,00 99,91
Park alani 1 94,38 95,80 89,90 94,30 99,30 99,80 99,10 99,60
Park alan1 2 8750 77,25 91,33 71,17 99,07 95,95 99,54 97,07
Tenis Kortu 99,17 100,00 97,01 100,00 99,17 100,00 99,16 99,72
Kosu Pisti 100,00 98,57 100,00 98,03 100,00 99,82 99,82 100,00
Genel Dogruluk 97,17% 96,13% 99,55% 99,67%
Kappa 0,969 0,958 0,995 0,996
Islem Egitim 125,68 0,26 75,04 197,23
Siireleri
(saniye): Siiflandirma 26,60 14,79 784,37 951,52

DFCI13 30% verisi igin egitilen algoritmalar tarafindan olusturulan smiflandirma
haritalart Sekil 4.18’de verilmistir. Siniflandirma sonuglari incelendiginde RO ve DVM
modellerinin smiflandirma haritalarinda nesnelerin ¢ikariminda daha fazla tuz-biber
etkisi gortilmektedir. Tiim modelleri i¢in degerlendirme yapilacak olursa golge etkisinde
olmayan alanlarda iyi bir siiflandirma performans: yakalanmistir. Bulut golgesinde
kalan alanda biitiin modellerin bina ¢ikarimlarin1 daha belirgin sekilde dogru yaptig
goriiliirken bulut binalarin arasinda kalan bdlgenin otoyol ve tren yolu olarak yanlis

siiflandirildigi goriilmektedir.
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_ Saglikli Cimen - Agag - Ticari Yapi - Otoyol I ParkAli;mZ
l:l Yipranmis Cimen - Toprak - Konut
- Sentetik Cimen - Su - Yol - Park Alani 1 - Kosu Pisti

Sekil 4.18 DFC13 30% veri seti (a) icin DVM (b), RO (c), 2B ESA (d) ve 3B+2B ESA (e)
algoritmalari ile olusturulan siniflandirma haritalari ve lejanti (f).

Veri seti icin ikinci asamada algoritmalar 50% egitim verisi ile egitildikten sonra yer
dogrulama verisinin egitim verisinden arta kalan 50%’lik test veri seti ile hata matrisleri
olusturulmustur (Ek 29, Ek 30, Ek 31 ve Ek 32). Bu hata matrislerinden hesaplanan genel
dogruluk, kappa, iiretici ve kullanict dogruluklari ek olarak islem siireleri Cizelge 4.13’te
verilmistir. Tablodaki degerler incelendiginde 99,86% genel dogruluk ile en basarili
algoritmanin 3B+2B ESA oldugu goriilmektedir. Simmif bazindaki dogruluklar
incelendiginde ise 3B+2B ESA’nin alt1 sinif i¢in 100% dogruluga sahip oldugu ve diger

iki sinif i¢in algoritmalar arasindaki en yiiksek {iiretici ve kullanici dogruluklarina sahip
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oldugu goriilmiistiir. 2B ESA’nin ise sinif bazindaki dogruluk olgiitlerine ve genel
dogruluga gore ikinci en basarili algoritma oldugu goriilmektedir. Islem siireleri agisindan
incelendiginde RO algoritmasmin egitiminin ve tiim goriintiiniin  smiflandirilmasi

asamasinda en hizli algoritma oldugu agikca goriilmektedir.

Cizelge 4.13 DFC13 50% veri seti i¢in algoritmalarin performanslari.

DVM RO 2B ESA 3B+2B ESA
Simf Adi g g g g g g g g
a - a e a e a e
5 g 05 2 B 2 B F,
Saglikli ¢gimen 98,71 99,85 97,31 100,00 99,28 100,00 99,85 100,00
Yipranmis ¢imen 99,59 99,04 99,03 98,35 99,86 99,31 100,00 99,86
Sentetik ¢imen 100,00 100,00 100,00 99,50 100,00 100,00 100,00 100,00
Agag 99,68 99,53 100,00 98,26 100,00 100,00 99,53 100,00
Toprak 99,85 99,38 99,08 99,23 100,00 100,00 100,00 100,00
Su 100,00 99,41 100,00 99,41 100,00 100,00 100,00 100,00
Ticari Yap1 97,57 98,10 95,65 98,24 99,46 100,00 100,00 99,46
Konut 96,92 97,49 98,05 96,60 100,00 100,00 100,00 100,00
Yol 97,07 97,94 94,30 95,75 99,74 99,49 99,87 99,87
Otoyol 97,50 98,46 95,79 95,79 99,44 100,00 100,00 100,00
Tren yolu 97,83 98,08 95,81 96,42 100,00 99,74 99,87 100,00
Park alani 1 94,17 97,20 90,72 95,66 99,72 99,72 99,86 99,86
Park alan1 2 92,25 78,86 93,60 73,82 100,00 98,11 99,05 99,05
Tenis Kortu 99,22 99,61 97,33 100,00 99,22 100,00 99,22 99,22
Kosu Pisti 100,00 99,75 99,74 97,99 100,00 99,75 100,00 100,00
Genel Dogruluk 97,94% 96,75% 99,77% 99,86%
Kappa 0,978 0,965 0,977 0,998
islem Egitim 335,22 0,30 95,87 271,98
Siireleri
(saniye): Siiflandirma 35,24 15,05 815,61 981,09

DFCI13 50% verisi igin egitilen algoritmalar tarafindan olusturulan simiflandirma
haritalart Sekil 4.19°da verilmistir. Siniflandirma sonuglari incelendiginde 6zellikle RO
ve ESA modellerinin siiflandirma haritalarinda (Sekil 4.19c, Sekil 4.19d ve Sekil 4.19¢)
gdlge alana denk gelen bolgede binalarin aralarinda kalan alanlarin otoyol ve tren yolu

olarak bariz bir sekilde yanlis siniflandirildiklart goriilmektedir.
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Sekil 4.19 DFC13 50% veri seti (a) igin DVM (b), RO (c), 2B ESA (d) ve 3B+2B ESA (e)
algoritmalari ile olusturulan siniflandirma haritalari ve lejanti (f).

Veri seti icin {iglincli asamada algoritmalar 70% egitim verisi ile egitildikten sonra yer
dogrulama verisinin egitim verisinden arta kalan 30%’luk test veri seti ile hata matrisleri
olusturulmustur (Ek 33, Ek 34, Ek 35 ve Ek 36). Bu hata matrislerinden hesaplanan genel
dogruluk, kappa, iiretici ve kullanict dogruluklar1 ek olarak islem stireleri Cizelge 4.14°de
verilmistir. Tablodaki degerler incelendiginde 99,92% genel dogruluk ile en basarili
algoritmanin 3B+2B ESA oldugu goriilmektedir. Simmif bazindaki dogruluklar
incelendiginde ise 3B+2B ESA’nin sekiz sinif igin 100% dogruluga sahip oldugu ve diger

bir tane sinif i¢in algoritmalar arasindaki en yiiksek iiretici ve kullanict dogruluklarina
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sahip oldugu goriilmiistiir. 2B ESA’nin ise sinif bazindaki dogruluk 6l¢iitlerine ve genel
dogruluga gore 3B+2B ESA modeline ¢ok yakin bir siniflandirma performansina sahip
oldugu gériilmektedir. islem siireleri agisindan incelendiginde RO algoritmas1 egitim ve

tiim gorilintiiniin siniflandirilmasi asamasinda en hizli algoritmadir.

Cizelge 4.14 DFC13 70% veri seti i¢in algoritmalarin performanslari.

DVM RO 2B ESA 3B+2B ESA
Simf Adi g g g g g g g g
a - a e a e a e
5 g 05 2 B 2 B F,
Saglikli ¢gimen 99,28 100,00 98,10 100,00 99,52 100,00 100,00 100,00
Yipranmis ¢imen 99,54 99,31 98,85 98,62 99,77 99,54 99,77 100,00
Sentetik ¢imen 100,00 100,00 100,00 99,58 100,00 100,00 100,00 100,00
Agag 99,74 99,74 100,00 98,94 100,00 100,00 100,00 99,74
Toprak 99,49 99,49 99,49 99,74 100,00 100,00 100,00 100,00
Su 100,00 99,02 100,00 99,02 100,00 100,00 100,00 100,00
Ticari Yap1 97,33 98,65 95,64 99,10 100,00 100,00 100,00 100,00
Konut 96,77 96,06 98,23 95,81 100,00 100,00 100,00 100,00
Yol 97,66 98,71 96,10 95,28 100,00 99,79 100,00 100,00
Otoyol 98,14 98,59 96,28 96,96 99,30 100,00 100,00 99,77
Tren yolu 98,53 99,79 95,82 97,66 100,00 100,00 99,79 100,00
Park alani 1 95,87 97,44 92,55 95,57 100,00 100,00 100,00 99,77
Park alan1 2 91,02 79,58 90,06 75,92 100,00 97,91 99,48 99,48
Tenis Kortu 99,35 99,35 99,35 100,00 99,35 100,00 99,35 100,00
Kosu Pisti 100,00 100,00 99,58 99,16 100,00 100,00 100,00 100,00
Genel Dogruluk 98,20% 97,16% 99,86% 99,92%
Kappa 0,980 0,969 0,998 0,999
islem Egitim 636,91 0,41 121,98 381,36
Siireleri
(saniye): Siiflandirma 43,38 16,14 822,84 1004,09

DFCI13 70% verisi igin egitilen algoritmalar tarafindan olusturulan simiflandirma
haritalar1 Sekil 4.20°de verilmistir. Siniflandirma sonuglari incelendiginde 6zellikle diger
egitim veri kiimesi boyutlarinda oldugu gibi goélge alana denk gelen bolgede binalarin
aralarinda kalan alanlarin otoyol ve tren yolu olarak bariz bir sekilde yanlis

siniflandirildiklar goriilmektedir.
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Sekil 4.20 DFC13 70% veri seti (a) icin DVM (b), RO (c), 2B ESA (d) ve 3B+2B ESA (e)
algoritmalari ile olusturulan siniflandirma haritalari ve lejanti (f).

Her veri kiimesi boyutu i¢in algoritmalarin arasindaki genel dogruluk farklarinin anlaml
olup olmadiklarinin test edilmesi i¢in uygulanan McNemar’s testi sonuclar1 Cizelge
4.15te verilmistir. Hesaplanan test sonuglar1 95% giiven araliginda y>=3,841 degeriyle
karsilastirildiginda her ii¢ egitim kiimesi boyutu i¢cin 2B ESA ile 3B+2B ESA arasinda
hesaplanan McNemar’s degerleri kritik degerden kiigiik oldugu i¢in bu modellerin

siiflandirma performanslarinin ayni oldugu yorumu yapilir.
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Cizelge 4.15 DFC13 veri seti i¢in hesaplanan McNemar’s testi sonuglari.

30% Veri Kiimesi 50% Veri Kiimesi 70% Veri Kiimesi
Model 1 - Model 2 Boyutu Boyutu Boyutu
DVM - RO 38,675 Evet 39,848 Evet 23,024 Evet
DVM - 2B ESA 242,718 Evet 143,308 Evet 82,102 Evet
DVM - 3B+2B ESA 263,375 Evet 149,588 Evet 81,515 Evet
RO - 2B ESA 378,049 Evet 250,302 Evet 136,063 Evet
RO - 3B+2B ESA 391,263 Evet 254,603 Evet 137,170 Evet
2B ESA - 3B+2B ESA 3,015 Hayir 1,885 Haywr 0,444 Hayr

4.5 Salinas Scene Veri Seti Siniflandirma Sonuclar

Salinas Scene veri setinin geleneksel MO ve DO algoritmalari ile siniflandiriimasinda

egitim veri kiimesinin boyutu sirastyla 30%, 50% ve 70% olarak se¢ilmistir. Cizelge

4.16°da Salinas Scene veri setinin siniflara gore yer dogrulama veri sayisi, egitim veri

boyutuna gore egitim ve test i¢in ayrilan etiketli verilerin dagilimlari gosterilmistir.

Cizelge 4.16 Salinas Scene veri setinde siniflar ve 30%-50%-70% egitim veri kiimesi oranlarina
gore egitim ve test i¢in ayrilan etiketli veri sayilari.

Oran 30% Egitim 50% Egitim  70% Egitim
Smif Sumf Ady Toplam n; wV.eri Seti wV.eri Seti v\'/'eri Seti

No Yn  Egitim Test Egitim Test Egitim Test
(%)  30% 70% 50% 50% 70% 30%

1 Brokoli_yesil otlar_1 2009 3,7 603 1406 1005 1004 1406 603
2 Brokoli_yesil otlar 2 3726 6,9 1118 2608 1863 1863 2608 1118
3 Nadas_toprak 1976 3,7 593 1383 988 988 1383 593
4 Nadas_toprak_kaba_saban 1394 2,6 418 976 697 697 976 418
5 Nadas_toprak _diiz 2678 4,9 803 1875 1339 1339 1875 803
6 Aniz 3959 7,3 1188 2771 1979 1980 2771 1188
7 Kereviz 3579 6,6 1074 2505 1789 1790 2505 1074
8 Uziimler_terbiyelenmemis 11271 20,8 3381 7890 5635 5636 7890 3381
9 Toprak liziim bag1 yetisen 6203 115 1861 4342 3101 3102 4342 1861
10 Misir_yaglanmig 3278 6,0 983 2295 1639 1639 2295 983
11 Roman_marulu_4 hafta 1068 2,0 320 748 534 534 748 320
12 Roman_marulu_5_hafta 1927 3,6 578 1349 964 963 1349 578
13 Roman_marulu_6_hafta 916 1,7 275 641 458 458 641 275
14 Roman_marulu_7_hafta 1070 2,0 321 749 535 535 749 321
15 Uziim_bag: _terbiyelenmemis 7268 134 2180 5088 3634 3634 5087 2181
16 Uziim_bag1_diisey git 1807 3,3 542 1265 904 903 1265 542
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Rastgele olarak ayrimi gergeklestirilen egitim ve test kiimelerinin dagilimlart Sekil

4.21°de gosterilmistir.

Sekil 4.21 Salinas Scene veri seti (a) igin egitim-test piksellerinin sirasiyla 30%(b)-70%(c),
50%(d)-50%(e) ve 70%(f)-30%(g) dagilimlar.

DFC13 veri seti icin DVM modelleri olusturulurken RTF kernel fonksiyonu ile 30%, 50%
ve 70% egitim verisi kiime boyutlar1 i¢in 5 katlamali ¢apraz dogrulama islemi ile
optimum parametreler arastirilmistir. Biitiin veri kiime boyutlar1 i¢in y=0,1 olarak
belirlenirken 30% v e 50% egitim kiime boyutu i¢in C=1000; 70% egitim veri kiime
boyutu i¢in de C=100 olarak belirlenmistir. RO algoritmasinda m=4 olarak belirlenirken
N parametresi i¢in her ii¢ egitim kiimesi i¢in Onciil olarak 1000 karar agaci ile modeller
olusturulmustur. Onciil modellerin OOB hatalarin1 gdsteren grafikler Sekil 4.22’de
verilmistir. OOB hatasinin grafikleri incelendiginde 30% (Sekil 4.22a), 50% (Sekil 4.22Db)
ve 70% (Sekil 4.22¢) egitim veri kiime boyutlari i¢in yaklasik 150 karar agacindan sonra
hata stabil olarak ilerledigi goriilmiistiir ve bu veri kiimeleri ile asil modeller kurulurken

her tic RO modeli i¢in de N=150 olarak se¢ilmistir.

06 ()| os (b) 06 ()

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Adag Sayist Agag Sayisi Adag Sayisi

Sekil 4.22 Salinas Scene veri seti igin sirasiyla 30% (a), 50% (b) ve 70% (c) egitim kiimesi
boyutlarina gére RO algoritmasinin OOB hatalari.
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ESA modellerinin egitimi asamasinda her iki ESA modeli ve biitlin egitim veri kiimesi
boyutlari igin y1gin boyutu 256 ve epok sayist 500 olarak belirlenmistir. Sekil 4.23’te her
iki ESA modelinin farkli egitim veri kiimesi boyutlarina gore kayip fonksiyonu ve model
dogrulugu grafikleri verilmistir. 2B ESA modellerinin tiim veri kiimesi boyutlar1 i¢in
kayip fonksiyonu grafikleri incelendiginde (Sekil 4.23a, Sekil 4.23e ve Sekil 4.231)
hatalarin li¢ modelde de yaklasik 150. epok tekrarina kadar hizlica diistiikleri ve sifira
yakinsayarak ilerledikleri goériilmektedir. 3B+2B ESA modellerinin kayip fonksiyonu
grafiklerinin (Sekil 4.23c, Sekil 4.23g ve Sekil 4.23j) birka¢ epok sonunda hizlica
diistiikleri, ilerleyen epoklarin bazilarinda anlik sigramalar ile hatalarin maksimum 0,175
civarina yikselip geri diistiikleri goriilmektedir. Bu si¢gramalar modellerin dogruluk

grafiklerine (Sekil 4.23d, Sekil 4.23h ve Sekil 4.23k) ciddi bir sekilde yansimamustir.

Model Kayip Fonksiyonu Grafigi

Model Dogrulugu Grafigi

Model Kayip Fonksiyonu Grafigi

Model Dogrulugu Grafigi

W

() (©) (d)
BESA | o 3B+2B ESA 3B+2B ESA
s 30% 30% 30%

o 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 o 100 200 300 400 500
Model Kayip Fonksiyonu Grafigi Model Dogrulugu Grafigi Model Kayip Fonksiyonu Grafigi Model Dogrulugu Gratigi
"
©@ | o . @ . )
2B ESA 2B ESA 3B+2B ESA 096 3B+2B ESA
125 30% | a8, 50% 03 50% 50%

;;;;;;;;;

Model Kayip Fonksiyonu Grafigi
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Model Dogrulugu Grafigi
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Model Kayip Fonksiyonu Grafigi

Model Dogrulugu Grafigi

175 100
. 035
130 (1) o5 (l) = (J) 098
i 2B ESA 2B ESA 3B+2B ESA 3B+2B ESA
70% 70% 05 70% e 70%
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Sekil 4.23 Salinas Scene veri setinin smiflandirilmasi igin 30%, 50% ve 70% egitim verisi ile
olusturulan ESA modellerinin kayip fonksiyonu ve model dogrulugu grafikleri.

Veri seti i¢in ilk asamada algoritmalar 30% egitim verisi ile egitildikten sonra yer

dogrulama verisinin egitim verisinden arta kalan 70%’lik test veri seti ile hata matrisleri
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olusturulmustur (Ek 37, Ek 38, Ek 39 ve Ek 40). Bu hata matrislerinden hesaplanan genel
dogruluk, kappa, iiretici ve kullanici dogruluklar1 ek olarak islem stireleri Cizelge 4.17°de
verilmistir. Tablodaki degerler incelendiginde 99,64% genel dogruluk ile en basarili
algoritmanin 2B ESA oldugu goriilmektedir. Sinif bazindaki dogruluklar incelendiginde
ise 2B ESA modelinin sekiz sinif i¢in 100% dogruluga sahip oldugu ve diger bes sinif
icin algoritmalar arasindaki en yiiksek tiretici ve kullanic1 dogruluklarina sahip oldugu
goriilmiistiir. 3B+2B ESA modelinin ise sinif bazindaki dogruluk olgiitlerine ve genel
dogruluga gore 2B ESA modeline ¢ok yakin bir siniflandirma performansi ile ikinci en
basarili algoritma oldugu goriilmektedir. islem siireleri acisindan incelendiginde RO

modeli egitiminin ve tiim goriintiiniin siniflandirilmasi asamasinda en hizli algoritmadir.

Cizelge 4.17 Salinas Scene 30% veri seti i¢in algoritmalarin performanslari.

DVM RO 2B ESA 3B+2B ESA
Simif Ad g g g g g g g g
o e o e o e o e
5 2 5 2 5 2 5 F
Brokoli_yesil otlar 1 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00
Brokoli_vesil otlar 2 100,00 9992 10000 99,88 100,00 100,00 100,00 100,00
Nadas_toprak 9870 9899 97,39 99,78 100,00 100,00 9993 100,00
Nadas_toprak_kaba_saban 99,38 9898 99,28 99,59 100,00 99,80 10000 96,21
Nadas_toprak_diiz 9861 9872 9957 9888 9989 10000 9822 99,95
Aniz 99,96 99,96 99,93 99,93 100,00 100,00 100,00 100,00
Kereviz 100,00 9996 10000 9976 100,00 100,00 100,00 100,00
Uziimler_terbiyelenmemis 8674 9071 8443 9261 9884 9951 9811 99,35
Toprak_iiziim bagi yetisen 99,47 100,00 9924 99,79 99,98 100,00 100,00 100,00
Mistr_yaslanmis 9838 9773 9871 9643 9987 9996 9965 100,00
Roman_marulu_4_hafta 98,14 9866 97,58 97,06 10000 99,87 9960 99,87
Roman_marulu_5_hafta 9963 9993 9890 100,00 99,93 100,00 100,00 100,00
Roman_marulu_6_hafta 99,84 9969 99,07 99,22 100,00 100,00 100,00 100,00
Roman_marulu_7_hafta 9960 9933 9840 9853 100,00 100,00 100,00 100,00
Uziim_bag_terbiyelenmemis 84,81 7858 8679 7384 9928 9819 9912 97,03
Uziim_bag_diisey_cit 9976 9984 9976 99,37 100,00 100,00 100,00 100,00
Genel Dogruluk 94,86% 94,48% 99,64% 99,36%
Kappa 0,943 0,938 0,996 0,993
Islem Egitim 1143,49 0,08 145,81 433,33
Siireleri
(saniye):  Simflandirma 10,11 2,22 133,22 160,40
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Salinas Scene 30% verisi igin egitilen algoritmalar tarafindan olusturulan siniflandirma
haritalart Sekil 4.24’te verilmistir. Siflandirma sonuglari incelendiginde 6zellikle DVM
ve RO modellerinin smiflandirma haritalarinda yiiksek oranda tuz-biber etkisi
gozlenmistir. Gorlintliniin alt kisminda yer alan tarla biitlinliik agisindan en dogru olarak

2B ESA tarafindan siniflandirilmistir.

Brokoli_yesil otlar 1 [] Kereviz Roman_marulu_6_hafta

Nadas_toprak [ ] Toprak iiziim_bag yetisen [ Uziim bagi terbiyelenmemis
Nadas toprak kaba saban [l Misir yaslanmis [ Uziim bag diisey it
Nadas_toprak_diiz I Roman_marulu 4 hafta

[]
B Brokoli yesil otlar 2 B Uzimler terbiyelenmemis [0 Roman marulu 7 hafta
]
=
.
B

Aniz [] Roman marulu 5 hafta

Sekil 4.24 Salinas Scene 30% veri seti (a) igcin DVM (b), RO (c), 2B ESA (d) ve 3B+2B ESA (e)
algoritmalari ile olusturulan siniflandirma haritalari ve lejanti (f).

Veri seti icin ikinci asamada algoritmalar 50% egitim verisi ile egitildikten sonra yer
dogrulama verisinin egitim verisinden arta kalan 50%’lik test veri seti ile hata matrisleri
olusturulmustur (Ek 41, Ek 42, Ek 43 ve Ek 44). Bu hata matrislerinden hesaplanan genel
dogruluk, kappa, iiretici ve kullanic1 dogruluklar1 ek olarak islem stireleri Cizelge 4.18’de
verilmistir. Tablodaki degerler incelendiginde 99,92% genel dogruluk ile en basarili
algoritmanin 2B ESA oldugu goriilmektedir. Sinif bazindaki dogruluklar incelendiginde
ise 2B ESA modelinin on sinif i¢in 100% dogruluga sahip oldugu ve diger iki sinif igin
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algoritmalar arasindaki en yliksek {iretici ve kullanici dogruluklarina sahip oldugu
goriilmiistiir. 3B+2B ESA modelinin ise sinif bazindaki dogruluk Slgiitlerine ve genel
dogruluga gore 2B ESA modeline ¢ok yakin bir siniflandirma performansi ile ikinci en
basarili algoritma oldugu gériilmektedir. islem siireleri acisindan incelendiginde RO

modeli egitiminin ve tiim goriintiiniin siniflandirilmast asamasinda en hizli algoritmadir.

Cizelge 4.18 Salinas Scene 50% veri seti i¢in algoritmalarin performanslari.

DVM RO 2B ESA 3B+2B ESA
Simf Adi g g g g g g g g
o e o e o e o e
5 2 & g 3 g 3 F,
Brokoli_yesil otlar 1 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00
Brokoli_yesil otlar 2 100,00 100,00 100,00 99,95 100,00 100,00 100,00 100,00
Nadas_toprak 99,49 99,49 99,30 99,90 100,00 100,00 100,00 100,00
Nadas_toprak_kaba_saban 99,57 99,28 99,42 99,00 100,00 99,86 100,00 99,57
Nadas_toprak_diiz 99,25 99,40 99,25 99,25 99,93 100,00 99,78 100,00
Aniz 100,00 99,95 100,00 99,95 100,00 100,00 100,00 100,00
Kereviz 100,00 99,94 100,00 99,89 100,00 100,00 100,00 100,00
Uziimler_terbiyelenmemis 86,79 91,52 86,54 92,94 99,91 99,75 99,72 99,72
Toprak_liziim_bag1_yetisen 99,52 99,97 99,36 99,97 100,00 100,00 100,00 100,00
Misir_yaslanmig 98,78 98,54 99,13 97,86 99,88 100,00 99,94 100,00
Roman_marulu_4_hafta 99,44 99,25 98,87 98,13 100,00 100,00 100,00 100,00
Roman_marulu_5_hafta 99,90 100,00 99,18 100,00 100,00 100,00 100,00 100,00
Roman_marulu_6_hafta 100,00 99,78 99,13 99,34 100,00 100,00 100,00 100,00
Roman_marulu_7_hafta 99,44 99,63 98,69 98,69 100,00 99,81 100,00 100,00
Uziim_bagi terbiyelenmemis 8593 78,48 87,84 77,74 99,64 99,86 99,59 99,56
Uziim_bagi_diisey_git 99,89 99,89 99,78 99,67 100,00 100,00 100,00 100,00
Genel Dogruluk 95,15% 95,24% 99,92% 99,87%
Kappa 0,946 0,947 0,999 0,999
islem Egitim 2972,73 0,11 211,55 655,03
Siireleri
(saniye): Siiflandirma 15,29 2,29 130,84 163,41

Salinas Scene 50% verisi igin egitilen algoritmalar tarafindan olusturulan siiflandirma
haritalar1 Sekil 4.25’te verilmistir. Siniflandirma sonuglar incelendiginde 50% veri
kiimesi boyutu kullaniminda da DVM ve RO modelleri i¢in tuz-biber etkisinin devam

ettigi goriilmiistiir. Ozellikle yer dogrulama o6rneklerinin mevcut oldugu bélgelerle
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kiyaslandiginda (Sekil 3.4) 2B ESA’nin smiflandirma sonucuyla biiyiikk benzerlik

gostermektedir.

[ ] Brokoli yesil otlar 1 [ ] Kereviz Roman marulu 6 hafta ®
B Brokoli yesil otlar 2 B Uzimler terbiyelenmemis [0 Roman marulu 7 hafta
[7] Nadas_toprak [ ] Toprak iiziim bag yetisen [l Uzim bagi terbiyelenmemis
B Nadas toprak_kaba saban [ Misir_yaslanmig I Uzim_bag_disey it

(] Nadas_toprak diiz ] Roman marulu 4 hafta

| N [] Roman marulu 5 hafta

Sekil 4.25 Salinas Scene 50% veri seti (a) igin DVM (b), RO (c), 2B ESA (d) ve 3B+2B ESA (e)
algoritmalari ile olusturulan siniflandirma haritalar1 ve lejant1 (f).

Veri seti i¢in {igiincii asamada algoritmalar 70% egitim verisi ile egitildikten sonra yer
dogrulama verisinin egitim verisinden arta kalan 30%’luk test veri seti ile hata matrisleri
olusturulmustur (Ek 45, Ek 46, Ek 47 ve Ek 48). Bu hata matrislerinden hesaplanan genel
dogruluk, kappa, iiretici ve kullanic1 dogruluklari ek olarak islem siireleri Cizelge 4.19’de
verilmigstir. Tablodaki degerler incelendiginde 99,98% genel dogruluk ile en basarili
algoritmanin 2B ESA oldugu goriilmektedir. Sinif bazindaki dogruluklar incelendiginde
ise 2B ESA modelinin on dort sinif icin 100% dogruluga sahip oldugu ve diger iki sinif
icin algoritmalar arasindaki en yiiksek iiretici ve kullanici dogruluklarina sahip oldugu
goriilmiistiir. 3B+2B ESA modelinin ise sinif bazindaki dogruluk olgiitlerine ve genel
dogruluga gore on dort sinifta 100%’liik tiretici ve kullanict dogruluguna sahip oldugu ve

2B ESA modeline ¢ok yakin bir siniflandirma performansi ile ikinci en bagarili algoritma
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oldugu goriilmektedir. Islem siireleri acisindan incelendiginde RO modeli egitiminin ve

tiim goriintiiniin siniflandirilmast asamasinda en hizli algoritmadir.

Cizelge 4.19 Salinas Scene 70% veri seti i¢in algoritmalarin performanslari.

DVM RO 2B ESA 3B+2B ESA
Simif Adi g g g g g g_’ g g
a - a e a e a 2
5 2 08 2 B 2 B F,
Brokoli_yesil otlar 1 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00
Brokoli_yesil otlar 2 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00
Nadas_toprak 99,33 99,66 99,50 99,83 100,00 100,00 100,00 100,00
Nadas_toprak_kaba_saban 99,76 99,04 99,28 99,52 100,00 100,00 100,00 100,00
Nadas_toprak_diiz 99,01 99,38 99,38 99,25 100,00 100,00 100,00 100,00
Aniz 100,00 100,00 99,92 99,92 100,00 100,00 100,00 100,00
Kereviz 100,00 99,91 100,00 99,91 100,00 100,00 100,00 100,00
Uziimler_terbiyelenmemis 88,79 91,10 87,86 93,94 99,91 100,00 99,82 99,91
Toprak_iiziim_bag1_yetisen 99,57 99,95 99,36 100,00 100,00 100,00 100,00 100,00
Misir_yaglanmug 98,58 98,78 98,88 98,47 100,00 100,00 100,00 100,00
Roman_marulu_4_hafta 99,07 99,69 99,37 97,81 100,00 100,00 100,00 100,00
Roman_marulu_5_hafta 100,00 100,00 99,83 100,00 100,00 100,00 100,00 100,00
Roman_marulu_6_hafta 100,00 100,00 99,28 99,64 100,00 100,00 100,00 100,00
Roman_marulu_7_hafta 99,69 99,38 99,37 98,75 100,00 100,00 100,00 100,00
Uziim_bagi_terbiyelenmemis 85,89 82,07 89,72 80,01 100,00 99,86 99,86 99,72
Uziim_bagi_diisey_git 100,00 99,63 100,00 99,63 100,00 100,00 100,00 100,00
Genel Dogruluk 95,55% 95,81% 99,98% 99,94%
Kappa 0,950 0,953 0,999 0,999
Islem Egitim 5720,01 0,17 317,99 909,17
Siireleri
(saniye): Siiflandirma 22,58 2,37 133,52 163,74

Salinas Scene 70% verisi i¢in egitilen algoritmalar tarafindan olusturulan siniflandirma
haritalart Sekil 4.26°da verilmistir. Siniflandirma sonuglar1 incelendiginde goriintiiniin
yukar1 bolgesinde yer alan tarla DVM, 2B ESA ve 3B+2B ESA tarafindan
Uziim_bag1 diisey cit olarak smiflandirilirken RO tarafindan Brokoli yesil otlar 2

olarak siniflandirilmistir.
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] Brokoli_yesil otlar 1 [ ] Kereviz Roman marulu 6 hafta ®
B Brokoli yesil otlar 2 B CUziimler terbiyelenmemis Roman_marulu_7 hafta

[] Nadas_toprak [ ] Toprak iiziim bag yetisen [ Uziim bagi terbiyelenmemis
B Nadas toprak_kaba saban [l Misir_yaglanmig B Uzim bagi disey git

B Nadas toprak_diiz [ Roman marulu 4 hafta

B Aoz B Roman marulu 5 hafta

Sekil 4.26 Salinas Scene 70% veri seti (a) igin DVM (b), RO (c), 2B ESA (d) ve 3B+2B ESA (e)
algoritmalari ile olusturulan siniflandirma haritalari ve lejanti (f).

Her veri kiimesi boyutu i¢in algoritmalarin arasindaki genel dogruluk farklarinin anlaml
olup olmadiklarin test edilmesi i¢in uygulanan McNemar’s’s testi sonuglar1 Cizelge
4.20°de verilmistir. Hesaplanan test sonuglar1 95% giiven araliginda ¥?=3,841 degeriyle
karsilastirildiginda her ii¢ egitim kiimesi boyutu icin DVM ile RO arasinda hesaplanan
McNemar’s degerleri ve 50% ve 70% egitim veri kiimesi boyutlar1 i¢in 2B ESA ile
3B+2B ESA modelleri arasinda hesaplanan McNemar’s degerleri kritik degerden
kiigiiktiir. Dolayisiyla bahsedilen model ¢iftlerinin kendi aralarinda smiflandirma

performanslarinin ayni oldugu yorumu yapilir.
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Cizelge 4.20 Salinas Scene veri seti igin hesaplanan McNemar’s testi sonuglari.

30% Veri Kiimesi 50% Veri Kiimesi 70% Veri Kiimesi
Model 1 - Model 2 Boyutu Boyutu Boyutu
DVM - RO 12,868 Evet 0,570 Hayir 2,443 Hayir
DVM - 2B ESA 1722,543 Evet 1278,130 Evet 715,012 Evet
DVM - 3B+2B ESA 1498,467 Evet 1241,042 Evet 701,167 Evet
RO - 2B ESA 1867,049 Evet 1251,176 Evet 672,037 Evet
RO - 3B+2B ESA 1655,407 Evet 1221,749 Evet 658,247 Evet
2B ESA - 3B+2B ESA 43,75 Evet 3,521 Hayr 3,125 Hayr
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5. SONUCLAR ve TARTISMA

Bu tez calismasinda hiperspektral gériintiilerin siniflandirilmasinda geleneksel MO
yontemlerinden olan DVM ve RO algoritmalar1 ile popiiler goriintii siniflandirma
yontemlerden olan ESA tabanli olan 2B ESA ve 3B+2B ESA modelleri kiyaslanmstir.
Goriintiilerin ulasilabilir olmamasi ve yer dogrulama verilerinin olusturulmasi zor ve
yuksek maliyetli oldugundan, literatiirde de siklikla kullanilan karsilastirma veri
setlerinden yararlanilmistir. Literatiirdeki bir¢ok ¢alismada genellikle birkag veri setinin
kullanilmasi ve diger veri setleri lizerinde algoritmalarin performanslarinin arastiriimasi
konusunda bir agik olmasi sebebiyle tez ¢alismasinda yaygin kullanilan Salinas Scene
veri setinin yaninda giincel karsilastirma veri setlerinden olan HyRANK ve DFC13 veri
setleri de kullanilmistir. Bu veri setlerinden HyRANK veri seti EO-1 Hyperion uydu
platformundan elde edilmis olup 30 metre konumsal ¢6ziiniirlige sahiptir ve yer siiflari
CORINE kriterlerine gore belirlenmistir. DFC13 veri seti hava araciyla elde edildiginden
2,5 metre konumsal ¢o6ziiniirliige sahiptir ve yer smiflar1 bu ¢oziiniirlikkteki bir verinin
rahatlikla saglayacagi daha 6zel 6lgekte detaylandirilmis siniflara sahiptir. Salinas Scene
veri seti 3,7 metre konumsal ¢oziiniirliige sahiptir ve aym tiirler i¢inde zamansal ve
sekilsel farkliliklara sahip zirai smiflardan olusmaktadir. Ug veri setinin konumsal ve
spektral ¢oziiniirliikleri ile i¢erdigi yer siniflar birlikte degerlendirildiginde, bu verilerin
ayni tez ¢alismasi kapsaminda degerlendirilmesi tez ¢aligmasinin genis bir perspektif goz
ontlinde bulundurularak gerceklestirildiginin de gostergesidir. Diger bir durum ise Dioni
ve DFC13 verilerinde bulunan golge alanlardir. Bu alanlarin da dogrudan siniflandirma
islemine tabi tutulmasiyla bu gibi durumlarda siniflandirma modellerinin testi de

gerceklestirmistir.

Hiperspektral goriintiilerde bantlar arasinda yiiksek korelasyon bulunmasi durumu MO
algoritmalar1 agisindan istenen bir durum degildir. Bu problemle basa ¢ikilmasi i¢in
literatiirdeki birgok calismada oldugu gibi TBA kullanilarak veri boyutu indirgenmistir.
Temel bilesenlerin se¢imine dair literatiirde Onerilen 95% agiklanabilir varyans sart1 tezde
kullanilan verilerde 1-2 temel bilesenle saglanmaktadir. Ac¢iklanabilir varyansin 99,5%
olma sart1 ise genellikle 4-5 bantta saglanmaktadir. Yapilan degerlendirmeler ve

kullanilan modellerin gereklilikleri degerlendirildiginde tiim veri setleri i¢in 15 temel
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bilesen kullanilmasi uygun goriilmiistiir. Boylelikle veri seti acisindan evrensel bir

siiflandirma modellemesi saglanacaktir.

Tez kapsaminda kullanilan MO algoritmalar1 kullanici tarafindan tanimlanan bazi
parametrelere sahiptir. Bu parametrelerin se¢imi modelin smiflandirma dogrulugunu
onemli Olciide etkilemekle beraber veri setine gore de kullanilacak parametreler
degisiklik gostermektedir. Dolayisiyla ortaya bir optimizasyon problemi ¢ikmaktadir.
DVM algoritmasinda C parametresi, ¢ekirdek fonksiyonu ve bu fonksiyonun gerektirdigi
parametreler mevcuttur. Tez ¢alismasinda DVM igin literatiirdeki yapilan ¢alismalarda
da basarisint kanitlamig RTF ¢ekirdek fonksiyonu kullanilmistir ve egitim veri setlerine
gore 5 kathh capraz dogrulama ile optimum parametreler tespit edilmistir. RO
algoritmasinin kullanici tanimli m ve N parametrelerinin duyarligt DVM’ye gore daha
diisiiktiir. RO algoritmasinda m parametresi i¢in yapilan ¢aligmalarda Onerilen, bant
sayisinin karekokiiniin tam saytya yuvarlanmis sekli kullanilmistir. Biitlin veri setleri i¢in
15 temel bilesen kullanildigindan dolayr m degeri de tiim RO modelleri i¢in 4 olarak
kullanilmistir. N parametresinin belirlenmesi i¢in ise OOB hatalar1 incelenmistir ve yine

biitiin verilerde N parametresi 150 olarak belirlenmistir.

ESA mimarileri uygulanirken hiperspektral verilerin simiflandirilmasinda yiiksek
performans gosteren modeller tespit edilip bu mimariler {izerinde gelistirmeler
yapilmistir. Ozellikle 3B+2B ESA modelinde konumsal-spektral dgrenme islemi

gerceklestirilmesi hiperspektral verilerin siniflandirilmasinda 6nem arz etmektedir.

Modellerin siniflandirma performanslarini bu boliimde daha kolay incelemek i¢in genel
dogruluklar Cizelge 5.1°de verilmistir. Tabloda sonuglar veri setlerine gore, veri

setlerinin altinda ise egitim veri kiimesi oranlarina gore gosterilmistir.
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Cizelge 5.1 Modellerin veri setleri ve egitim veri kiime oranlarina gore genel dogruluklari.

Egitim
VeriSeti  Veri DVM RO JBESA  3B+2BESA
Oram
30%  94,61% 93,66% 98,29% 98,60%
SE  s0%  9592% 94,46% 99,17% 97,92%
oS 70%  96,04% 95,02% 99,42% 99,48%
o 30%  86.12% 85,14% 92,38% 93,97%
XE 50%  88,13% 86,67% 94,93% 96,73%
ae 70%  89,68% 87,63% 96,64% 97,40%
R 30%  97,17% 96,13% 99,55% 99,67%
S e 50%  97,94% 96,75% 99,77% 99,86%
o< 70%  98,20% 97,16% 99,86% 99,92%
g .o % 9480% 94,48% 99,64% 99,36%
E55  50%  9515% 95,24% 99,92% 99,87%
BPL 00 95,55% 95,81% 99,98% 99,94%

MO ve ESA modellerinin egitilmesi asamasinda veri setlerinin yer dogrulama verilerinin
30%, 50% ve 70%’lik kisimlariin egitimde kullanilmasinin etkisi de incelenmistir. Dioni
veri setinde 30% egitim verisi kullanildiginda en yiiksek dogruluk 98,60% ile 3B+2B
ESA modeliyle elde edilirken en diisiik dogruluga 93,66% ile RO modeli sahiptir. 50%
egitim verisi kullanilarak gergeklestirilen siniflandirma isleminde 99,17% dogrulukla 2B
ESA en iyi siniflandirma performansinda sahipken 94,46% dogrulukla en diisiik dogruluk
RO algoritmasinda gozlenmistir. Bu veri seti ve egitim verisi oraninda meyve bahgeleri
ve zeytinlikler simiflarinda 3B+2B ESA modelinin 100% iiretici dogruluguna sahipken
kullanic1 dogrulugu tarafinda ¢ok diisiik dogruluk gosterdigi goriilmektedir. Bu da bazi
durumlarda modelin kompleksliginin baz1 smiflarda gozle goriiliir sekilde asir1 uyum
sorununa yol actigini gostermektedir. 70% egitim verisi kullanilmasi1 durumunda da
3B+2B ESA modeli 99,48% ile en iyi genel dogruluga sahipken RO modeli 95,02% ile
en diisik dogrulugu vermistir. Gorlintiide bulut ve golge alanlardaki piksellerin
siniflandirilmasinda ESA modelleri beklendigi lizere sirasiyla kayaliklar ve kumluklar ve

su olarak smiflandirirken DVM ve kismen RO bu alanlar1 diger arazi siniflaria gore
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etiketlemistir. Alana dair gergek arazi smiflari tam olarak bilinmediginden DVM’nin

siiflandirma sonuglar1 hakkinda bir yorumlama yapilmasi miimkiin degildir.

Loukia veri setinin 30% egitim verisi ile siniflandirilmasinda 3B+2B ESA modeli 93,97%
ile en iyi smiflandirma sonucuna sahipken 85,14% dogruluk sergilemistir. Egitim
verisinin 50% ve 70% kullaniminda sirastyla 96,73% ve 97,40% genel dogruluk ile
3B+2B ESA modeli en iyi performansi gosterirken sirastyla 86,67% ve 87,63% ile en
diisiik dogrulugu RO modeli gostermistir. Egitim verisindeki 40%’lik artis miktari
3B+2B ESA modelinde ~3,5%’lik genel dogruluk artis1 saglamistir. Loukia veri setinin
siiflandirma haritalari incelendiginde biitiin egitim veri boyutlar1 i¢in denizde su ve kiy1
sularinin  birlestigi  bolgede DVM’nin hatali simiflandirmalar  gergeklestirdigi
goriilmiistiir. Modellerde genellikle meyve bahgeleri sinifi igin siniflandirma performansi
kotidir. Bu durumun olusmasinda s6z konusu smifta yer dogrulama igin ayrilan
piksellerin diger siniflara gore cok daha diisiikk miktarda olmasinin (< 0,1%) etkisi de géz

ard1 edilmemelidir.

Kullanilan veriler arasinda en yliksek konumsal ¢oziintirliige sahip olan DFC13 verisinin
siiflandirilmasinda 30%, 50% ve 70% egitim verisi kullanilmas1 durumunda sirasiyla
99,67%, 99,86% ve 99,92%’lik genel dogrulukla en iyi siiflandirma performansini
3B+2B ESA modeli gosterirken yine sirasiyla 96,13%, 96,75% ve 97,16%’lik genel
dogrulukla RO modeli en diisiik siniflandirma performansina sahiptir. Diisiik miktarda
egitim verisi kullaniminda dahi tiim algoritmalarin bu veri setindeki basaris1 oldukca
yiiksektir. Bunun olas1 sebeplerinden birisi goriintiiniin konumsal ¢6ziiniirliigiin yliksek
olmasi, bdylece daha az miktarda katisimli piksele sahip olmasidir. Ancak goriintiideki

golge alanda hatali siniflandirmalar oldugu da goriilmektedir.

Temelde sebze, toprak ve iiziim baglar1 siniflar1 olmak {izere ¢esitli zamansal ve sekilsel
farkliliklar gosteren 16 siniftan olusan Salinas Scene verisinin siiflandirilmasinda ise
30%, 50% ve 70% egitim verisi kullanilmasi durumunda sirasiyla 99,64%, 99,92% ve
99,98%’lik genel dogrulukla en 1yi smiflandirma performansimi 2B ESA modeli
gosterirken yine sirastyla 94,48%, 95,24% ve 95,81%’lik genel dogrulukla RO modeli en
diisiik siiflandirma performansina sahiptir. DVM ile RO modellerinin arasinda biitiin
egitim kiime boyutlarinda McNemar’s test sonuglarina dayanarak siniflandirma

performansi agisindan anlamli bir farklilik tespit edilememistir. Ayrica s6z konusu
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modellerin smiflandirma haritalarinda yer dogrulama verisine gore ¢ok miktarda tuz-
biber etkisi ve hatali siniflandirma oldugu géze ¢arpmaktadir. Bunun yani sira 50% ve
70% egitim kiime boyutlar i¢in 2B ESA ve 3B+2B ESA modellerinin siniflandirma

performanslari arasinda anlamli bir farklilik bulunamamustir.

Kullanilan veri setleri ve veri boyutlart icin elde edilen siniflandirma dogruluklart g6z
ontinde bulunduruldugunda Salinas Scene veri seti haricinde konumsal-spektral 6grenme
gergeklestirmesi sayesinde 3B+2B ESA modelinin diger modellere gore daha yiiksek
basar1 gosterdigi goriilmiistiir. Salinas Scene veri setinde ise 2B ESA modeli yiiksek
basar1 gostermistir. Buradan yola ¢ikarak hiperspektral goriintiilerin siniflandirilmasinda
ESA modellerinin kullanimimin MO modellerine gore daha avantajli oldugunu sdylemek
miimkiindiir. Egitim veri kiimesi a¢isindan degerlendirildiginde beklendigi lizere 70%
egitim veri kiimesi ile egitilen modeller daha az miktardaki egitim veri kiimesi
boyutlarina gore daha yiiksek genel dogruluk vermektedir. Veri setlerinde en yiiksek
dogruluk veren algoritmalar iizerinden bir degerlendirme yapildiginda 30% ile 70%
egitim veri kullanilmasi durumunda minimum 0,25% ile maksimum 3,43%’liik bir artis

gbzlenmistir.

Literatiirde HyRANK veri seti ile sadece birkag ¢alisma yapildigi goriilmiistiir. Hang vd.
(2020) Dioni veri seti ile egitip Loukia ile test ettikleri SSAtt modeliyle 58,55% genel
dogruluk elde etmistir. Calismada 6zellikle az sayida yer dogrulama verisi barindiran
simiflarin elimine edilip sadece yedi tane yer dogrulama smifi kullanildigi goz ardi
edilmemelidir. Christovam vd. (2019) 85% egitim veri kiimesiyle gerceklestirdikleri
calismada 91% genel dogrulukla RO-TBA yontemini basarili bulmuslardir. Sonuglar
incelendiginde meyve bahgeleri smifi i¢in diisiik smiflandirma dogrulugu elde
etmislerdir. Tez caligmasinda Dioni ve Loukia 30% egitim veri seti i¢in 3B+2B ESA
modeliyle elde edilen genel dogruluk sirasiyla 98,6% ve 93,97%’dir. Souglar
incelendiginde deneyler birebir ayni sartlarda gerceklestirilmemesine ragmen tez

calismasinda daha iyi siniflandirma performansi elde edildigi sdylenebilir.

Hang vd. (2020) DFC13 veri seti ile SSAtt isimli DO modeli 90,38% genel dogruluk elde
etmistir. Caligmada her siniftan 181-198 arasinda egitim pikseli kullanilirken gériintiideki
golge alan kesilmistir. Hong vd. (2020) FuNet-M mimarisiyle DFC13 veri seti igin
88,62% dogruluk elde etmistir. Bu calismada goriintiideki bulut golgesi giderildikten
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sonra kullanilmigtir. Zhao X vd. (2020) bolgenin LiDAR verisiyle birlikte kullandigi
DFC13 verisiyle HRWN ismini verdigi ESA modeliyle 93,61% genel dogruluk elde
etmistir. Bu ¢aligmalarla kiyaslandiginda 30% egitim verisiyle ve s6z konusu veri setiyle
3B+2B ESA modeliyle 99,67% dogruluk elde edilmistir. Ancak ¢aligmalar arasinda golge
giderimi, LiDAR kullanim1 ve tez c¢aligmasinda oldugu gibi egitim ve validasyon

verisinin birlestirilerek kullanim1 gibi temel farkliliklar da mevcuttur.

Literatiirde bir¢ok calismada kullanilan Salinas Scene veri seti i¢in genellikle yiiksek
genel dogruluk degerleri hesaplanmaktadir. Gualtieri vd. (1999) ¢alismasinda Salinas 98
C ismiyle anilan Salinas Scene verisiyle DVM yontemiyle 1% egitim verisi kullanarak
89% genel dogruluga ulasmistir. Hu vd. (2015) 6nerdikleri ESA modeliyle Salinas Scene
verisini kullanarak 92,60% genel dogruluk elde etmislerdir. Calismada her siniftan 200’ er
tane egitim pikseli kullanip geriye kalan kismi test i¢in kullanmiglardir. Roy vd. (2019)
HybridSN ESA modeliyle, KC3B-ESA modeliyle Salinas Scene veri seti igin 100% genel
dogruluk elde etmislerdir. Tez ¢alismasinda s6z konusu veri seti i¢in 30% egitim 2B ESA
modeliyle 99,64% genel dogruluk elde edilmistir. FElde edilen sonuglar

karsilastirildiginda giincel ¢alismalara yakin genel dogruluklara ulasildigi sdylenebilir.

Tez ¢aligmasinda 30% egitim verisi ile egitilen verilerde de yiiksek dogruluk elde edildigi
g6z Oniinde bulundurulursa yer dogrulama verilerinin se¢iminde maliyet de dikkate
alinarak az sayida yer 6rnegi ile de yiiksek siniflandirma dogrulugu saglanmasi miimkiin
olabilir. RO algoritmasi tez kapsaminda yapilan deneylerde her ne kadar diger modellere
gore diisiik performans gosterse de modelin basitligi, islem siiresi ve kullanici taniml
parametrelere karst asir1 duyarli olmamasi gibi olumlu yonleriyle hiz gerektiren
calismalarda kullanilabilir. ESA modelleri yiiksek islem siirelerine ragmen en iyi
smiflandirma sonuglarini vermislerdir. DVM algoritmast zaman yoniinden hizl
olmamasi, kullanici tanimli parametrelere karsi yiiksek hassasiyette olmasi ve ESA
modelleri kadar yiiksek dogruluk saglamamasi sebepleriyle karsilastiran modeller

arasinda en son tercih edilmesi gereken modeldir.
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EKLER

Ek 1 Dioni 30% veri seti igin DVM modelinin hata matrisi.

Sm.No | 1 2 3 4 5 7 9 10 11 12 13 14
1 762 5 17 0 59 0 1 23 16 0 0 0
2 8 121 O 0 0 0 0 4 10 0 0 0
3 16 1 38 0 24 0 0 0 4 0 0 0
4 0 0 0 82 23 0 0 0 0 0 0 0
5 59 0 12 13 1148 O 1 3 2 0 0 0
7 0 0 0 0 0 250 3 0 0 0 0 0
9 1 0 0 0 3 0 3309 211 0 0 0 0

10 12 0 2 0 3 0 126 4301 18 0 0 0
11 17 0 0 0 2 0 1 39 1167 2 0 0
12 1 0 0 0 0 0 0 0 8 335 0 0
13 0 0 0 0 0 0 0 0 0 0 1128 O
14 0 1 1 0 0 0 0 2 0 0 2 273

Ek 2 Dioni 30% veri seti igin RO modelinin hata matrisi.

Sm.No | 1 2 3 4 5 7 9 10 11 12 13 14
1 689 5 13 0 80 0 0 55 41 0 0 0
2 15 113 0 0 0 0 0 3 12 0 0 0
3 15 1 38 0 17 0 0 3 5 0 0 0
4 0 0 0 78 25 0 1 1 0 0 0 0
5 24 0 15 8 1164 O 3 23 1 0 0 0
7 0 0 0 0 0 253 0 0 0 0 0 0
9 0 0 0 0 5 0 3240 279 0 0 0 0

10 0 0 0 0 6 0 109 4338 9 0 0 0
11 6 0 1 0 0 0 2 85 1128 6 0 0
12 0 0 0 0 0 0 0 0 13 331 0 0
13 0 0 0 0 0 0 0 0 0 0 1128 O
14 0 0 0 0 0 0 0 0 0 0 2 277
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Ek 3 Dioni 30% veri seti i¢in 2B ESA modelinin hata matrisi.
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Ek 4 Dioni 30% veri seti i¢gin 3B+2B ESA modelinin hata matrisi.
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Ek 5 Dioni 50% veri seti i¢in DVM modelinin hata matrisi.
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Ek 6 Dioni 50% veri seti icin RO modelinin hata matrisi.
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Ek 7 Dioni 50% veri seti i¢in 2B ESA modelinin hata matrisi.
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Ek 8 Dioni 50% veri seti i¢cin 3B+2B ESA modelinin hata matrisi.
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Ek 9 Dioni 70% veri seti i¢in DVM modelinin hata matrisi.
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Ek 10 Dioni 70% veri seti i¢in RO modelinin hata matrisi.
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Ek 11 Dioni 70% veri seti i¢cin 2B ESA modelinin hata matrisi.
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Ek 12 Dioni 70% veri seti i¢in 3B+2B ESA modelinin hata matrisi.
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Ek 13 Loukia 30% veri seti icin SVM modelinin hata matrisi.
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Ek 14 Loukia 30% veri seti igin RO modelinin hata matrisi.
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Ek 15 Loukia 30% veri seti i¢in 2B ESA modelinin hata matrisi.
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Ek 16 Loukia 30% veri seti igin 3B+2B ESA modelinin hata matrisi.
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Ek 17 Loukia 50% veri seti igcin DVM modelinin hata matrisi.
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Ek 18 Loukia 50% veri seti igcin RO modelinin hata matrisi.
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Ek 19 Loukia 50% veri seti i¢in 2B ESA modelinin hata matrisi.
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Ek 20 Loukia 50% veri seti igin 3B+2B ESA modelinin hata matrisi.
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Ek 21 Loukia 70% veri seti i¢gin DVM modelinin hata matrisi.
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Ek 22 Loukia 70% veri seti igcin RO modelinin hata matrisi.
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Ek 23 Loukia 70% veri seti i¢in 2B ESA modelinin hata matrisi.
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Ek 24 Loukia 70% veri seti igin 3B+2B ESA modelinin hata matrisi.
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Ek 25 DFC13 30% veri seti igcin DVM modelinin hata matrisi.
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Ek 26 DFC13 30% veri seti igcin RO modelinin hata matrisi.
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Ek 27 DFC13 30% veri seti i¢gin 2B ESA modelinin hata matrisi.
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Ek 28 DFC13 30% veri seti igin 3B+2B ESA modelinin hata matrisi.
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Ek 29 DFC13 50% veri seti igcin DVM modelinin hata matrisi.
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Ek 30 DFC13 50% veri seti icin RO modelinin hata matrisi.
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Ek 31 DFC13 50% veri seti i¢in 2B ESA modelinin hata matrisi.
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Ek 32 DFC13 50% veri seti i¢in 3B+2B modelinin hata matrisi.
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Ek 33 DFC13 70% veri seti igcin DVM modelinin hata matrisi.
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Ek 34 DFC13 70% veri seti icin RO modelinin hata matrisi.
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Ek 35 DFC13 70% veri seti i¢in 2B ESA modelinin hata matrisi.
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Ek 36 DFC13 70% veri seti i¢in 3B+2B ESA modelinin hata matrisi.
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Ek 37 Salinas Scene 30% veri seti icin DVM modelinin hata matrisi.
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Ek 38 Salinas Scene 30% veri seti icin RO modelinin hata matrisi.
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Ek 39 Salinas Scene 30% veri seti i¢in 2B ESA modelinin hata matrisi.

1265

Clo oo oo oo oo o ©o o o o o
10 © 3
Lo o oo oo o § oo oo oo o
<
< o
J|©o©o 0o o0 o o0ooooooogygoo
™ —
Qo © 0o o0 o0oo0oooooogygooo
o
Nlo o o oo oo ooo <« & o o o o
—
- ~
9| © ©o 0o 0o 0o oo o ¥ o o o oo
<
S lo o o oo oo mo § oo o o o o
Y

N
oo o oo oo oo d 4 o o o o o o

<

—

o o 0o oo oo P oo oo o o § o

~

o)
~|lo o 0o o oo 8o o o oo o o o o
N
—
©lo oo ook oo oo oo o o o o
N
o
wlo o oo F o o o oo oo o o o o
—
<
Y| © o5 © 00 00 o oo oo oo
™
mlo o oo oo oo oo oo o o o
—
@
Njlo @ ©o 0o o oo oo oo o o o o o
Y

©
— |12 © ©o o o ©o ©o ©o o ©o o o o o o o
1
z
: ©O 4 N ™ < 1y ©
S0 N ® < wo~oo g 3883 88
£
7

Ek 40 Salinas Scene 30% veri seti i¢in 3B+2B ESA modelinin hata matrisi.
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Ek 41 Salinas Scene 50% veri seti icin DVM modelinin hata matrisi.
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Ek 42 Salinas Scene 50% veri seti igin RO modelinin hata matrisi.
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Ek 43 Salinas Scene 50% veri seti i¢in 2B ESA modelinin hata matrisi.
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Ek 44 Salinas Scene 50% veri seti i¢cin 3B+2B ESA modelinin hata matrisi.
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Ek 45 Salinas Scene 70% veri seti icin DVM modelinin hata matrisi.
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Ek 46 Salinas Scene 70% veri seti icin RO modelinin hata matrisi.
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Ek 47 Salinas Scene 70% veri seti i¢in 2B ESA modelinin hata matrisi.
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Ek 48 Salinas Scene 70% veri seti i¢cin 3B+2B ESA modelinin hata matrisi.
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