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ÖZET 

Yüksek Lisans Tezi 

 

HİPERSPEKTRAL GÖRÜNTÜ SINIFLANDIRMA UYGULAMALARINDA  

MAKİNE ve DERİN ÖĞRENME KULLANIMI 

 

Eren Can SEYREK 

Afyon Kocatepe Üniversitesi  

Fen Bilimleri Enstitüsü  

Harita Mühendisliği Anabilim Dalı 

Danışman: Doç. Dr. Murat UYSAL 

 

Uzaktan algılama (UA) ile elde edilen görüntüler dünya yüzeyindeki nesneler hakkında 

detaylı bilgi toplanmasını mümkün kılmaktadır. Elde edilen görüntülerin 

sınıflandırılmasıyla oluşturulan arazi örtüsü haritaları kaynakların izlenmesi, çevresel 

değişimin tespiti ve planlama gibi birçok alanda geniş bir kullanım alanına sahiptir. 

Dolayısıyla harita kullanıcıları doğru ve güvenilir arazi örtüsü haritalarına ihtiyaç 

duymaktadır. Temel sınıflardan oluşan haritaların üretilmesi için multispektral 

sensörlerden elde edilmiş veriler yeterli olurken, özellikle tür içi farklılar içeren sınıflar 

da dahil olmak üzere detaylı sınıfların bulunması bu verilerin sınıflandırma için yeterli 

spektral bilgiyi sağlayamamasına yol açmaktadır. Bu durumda yüzlerce dar aralıkta 

banda sahip olan hiperspektral görüntülerin, nesneler hakkında daha detaylı spektral 

yansıtım bilgisini sunmaktadır.  Hiperspektral görüntülerin geleneksel yöntemlerle 

sınıflandırılması hesaplama zorluğu sebebiyle yetersiz kalmaktadır. Bu durumda Makine 

Öğrenme (MÖ) ve Derin Öğrenme (DÖ) gibi yöntemler kullanıcılara bu tarz verilerde 

birçok avantaj sunmaktadır.    

Bu tez kapsamında MÖ yöntemlerinden Destek Vektör Makineleri, Rastgele Orman, 

DÖ’de özellikle görüntü sınıflandırma alanında yaygın olarak kullanılan Evrişimli Sinir 

Ağı (ESA) kullanılmıştır. Çalışmada kullanılan ESA mimarileri yapısal özelliklerine göre 

2B ESA ve 3B+2B ESA olarak isimlendirilmiştir. Yöntemlerin karşılaştırılması 176 bant 

spektral ve 30 metre konumsal çözünürlüklü HyRANK, 144 bant ve 2,5 metre konumsal 

çözünürlüklü DFC13 ile 202 bant ve 3,7 metre konumsal çözünürlüklü Salinas Scene veri 



ii 

setleri ile gerçekleştirilmiştir. Modellerde eğitim veri setinin etkisini araştırmak amacıyla 

her veri seti için 30%, 50% ve 70% eğitim veri kümesi oranları test edilmiştir. Çalışma 

sonucunda ESA modellerinin hiperspektral görüntülerin sınıflandırılmasında 

kullanımının yüksek doğruluk sağladıkları görülmüştür. Eğitim veri kümesi boyutunun 

araştırılması aşamasında ise beklendiği üzere 70% eğitim verisi kullanımının en yüksek 

doğruluğu sağladığı, bunun yanında 30% veri seti kullanımının da tatmin edici bir 

sınıflandırma doğruluğu sağladığı söylenebilir. 

 

2021, xiv + 137 sayfa 

 

Anahtar Kelimeler: Hiperspektral görüntü, Görüntü sınıflandırma, Makine öğrenme, 

Destek vektör makineleri, Rastgele orman, Derin öğrenme, 

Evrişimli sinir ağı.  
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ABSTRACT 

M.Sc. Thesis 

 

THE USE OF MACHINE AND DEEP LEARNING ON 

HYPERSPECTRAL IMAGE CLASSIFICATION APPLICATIONS 

 

Eren Can SEYREK 

Afyon Kocatepe University 

Graduate School of Natural and Applied Sciences 

Department of Geomatics Engineering 

Supervisor: Assoc. Prof. Murat UYSAL 

 

Remotely sensed images enable to collect detailed information about objects on the earth's 

surface. Land cover maps created by classifying the remotely sensed images have a wide 

range of uses in many areas such as monitoring resources, detecting environmental 

change and planning. Therefore, map users need accurate and reliable land cover maps. 

Images which obtained from multispectral sensors is sufficient to produce maps 

consisting of basic classes. However, the existence of detailed classes that including 

classes with intra-species differences causes these data to not provide sufficient spectral 

information for classification. In this case, hyperspectral images with hundreds of narrow 

bands offer more detailed spectral reflection information about objects. Classification of 

hyperspectral images by traditional methods is insufficient due to calculation difficulties. 

In this case, methods such as Machine Learning and Deep Learning offer many 

advantages to users in such data. 

In this thesis, Support Vector Machines, Random Forest, and Convolutional Neural 

Network (CNN), which are widely used in the field of image classification in Deep 

Learning were used for classifying hyperspectral images. The CNN architectures used in 

the study are named as 2D CNN and 3D + 2D CNN according to their structural features. 

Comparison of the methods was performed with HyRANK (176 band spectral and 30 

meter spatial resolution), DFC13 (144 band and 2,5 meter spatial resolution), Salinas 

Scene (202 band and 3,7 meter spatial resolution) data sets. In order to investigate the 

effect of training data set on models, 30%, 50% and 70% training data set ratios were 
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tested for each data set. As a result of the study, it was seen that the use of CNN models 

for classification of hyperspectral images provided high accuracy. When investigating the 

size of the training dataset, it can be said that the use of 70% training data provides the 

highest accuracy as expected, while the use of 30% data set provides a satisfactory 

classification accuracy. 

 

2021, xiv + 137 pages 

 

Keywords: Hyperspectral image, Image classification, Machine learning, Support Vector 

Machines, Random forest, Deep learning, Convolutional neural network.  
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1. GİRİŞ 

 

Arazi örtüsü insanlar ile fiziksel çevreyi birbirine bağlayan kritik değişkenlerden birisidir. 

Kaynak planlaması, çevresel değişimin tespit edilmesi ve biyolojik çeşitliliğin korunması 

gibi konular başta olmak üzere birçok uygulama için güncel ve yüksek doğruluğa sahip 

bilgiye ihtiyaç vardır. Dünya üzerinde insanların ulaşmasının çok güç olduğu bölgeler de 

dahil olmak üzere arazi örtüsü hakkında bahsi geçen uygulama alanları için gerekli 

bilginin düzenli olarak elde edilmesi Uzaktan Algılama (UA) ile sağlanabilmektedir. UA 

ile elde edilen görüntülerin sınıflandırılmasıyla kısa sürede diğer yöntemlere göre daha 

düşük maliyetle üretilebilmektedir. Üretilmek istenen arazi örtüsü haritasının detay 

seviyesi sınıflandırmada kullanılacak görüntünün özelliklerini de belirlemektedir. 

Haritada orman, şehir, su ve toprak gibi sınıfların belirlenmesi multispektral görüntülerle 

belirlenebilmektedir. Ancak bu sınıflar tür içi farklı sınıflar gibi giderek detaylanmaya 

başladığında multispektral görüntüler yerine spektral çözünürlüğü çok daha yüksek olan 

hiperspektral görüntülerin kullanımı daha uygun olacaktır. Yaklaşık olarak son otuz yıllık 

süreçte kullanımı giderek artan hiperspektral görüntüler diğer sensörlerden elde edilen 

görüntülere göre içerdiği dar aralıklı yüzlerce spektral bant sayesinde çok daha yüksek 

spektral çözünürlük sağlamaktadır. Ancak bu durum bantlar arasında korelasyonun 

yüksek olması ve görüntünün boyutunun yüksek olmasına sebep olmaktadır. Özellikle 

kısıtlı eğitim verisi bulunması durumunda bant sayısının fazla olması Hughes fenomenini 

ortaya çıkararak sınıflandırma doğruluğunun düşmesine neden olarak “çok boyutluluğun 

laneti” şeklinde de anılan durumu ortaya çıkarmaktadır. Sağladığı yararlar ve aşılması 

gereken güçlükleri sebebiyle hiperspektral görüntüler üzerine yapılan çalışmalar giderek 

artmaktadır. Özellikle sınıflandırma problemlerinde geleneksel metotların yetersiz 

kalması, son zamanlarda kullanımı giderek artan Makine Öğrenme (MÖ) ve özellikle son 

on yıllık süreçte birçok alanda kullanımı giderek yaygınlaşan ve MÖ’nün alt dallarından 

birisi olan Derin Öğrenme (DÖ) metotlarının hiperspektral görüntüler üzerindeki 

kullanımı popüler araştırma konularındandır.UA alanında sıklıkla kullanılan görüntü 

işleme yöntemlerinden birisi olan görüntü sınıflandırma, mevcut spektral veriler ile 

spektral sınıfın parçası olan piksellerin etiketlenmesi işlemidir (Richards 2013). Diğer bir 

deyişle görüntü sınıflandırma görüntüdeki pikselleri istatistiksel karar kuralları veya 
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mantıksal karar kuralları ile arazi sınıflarına atama işlemidir (Gao 2009). Sınıflandırma 

süreci iki aşamadan oluşur. İlk aşamada gerçek dünyadaki nesnelerin sınıflarının 

tanımlanmasıdır. Bu sınıflar çalışmanın coğrafi ölçeğine ve yapısına bağlı olarak 

belirlenir. Bu sınıflara örnek olarak ormanlık alanlar, su kütleleri, otlaklar ve diğer arazi 

örtüsü türleri verilebilir. İkinci aşamada, sınıflandırılacak pikseller etiketlenir. Görüntü 

sınıflandırmasında bu etiketler sayısaldır, dolayısıyla piksellerin sınıfları sayılarla temsil 

edilmektedir (Mather ve Koch 2011). Böylelikle UA verilerinden bilgi elde edilerek 

anlamlandırılmış olur. 

Piksel tabanlı sınıflandırma yöntemleri kontrolsüz ve kontrollü sınıflandırma olarak iki 

başlıkta incelenebilir. Kümeleme olarak da bilinen kontrolsüz sınıflandırma, tematik arazi 

sınıfları hakkında öncül bilgi bulunmaması durumunda görüntüdeki doğal sınıfları ortaya 

çıkarmaktadır. Sınıflandırma sonucunda ortaya çıkan kümelerin hangi arazi sınıfına ait 

olduğu hava fotoğrafları ve diğer haritalardan tespit edilebilir. K-Ortalamalar (K-Means) 

ve ISODATA (Iterative Self Organizing Data Analysis Technique) algoritmaları en 

bilinen kontrolsüz sınıflandırma algoritmalarındandır. Kontrollü sınıflandırmada 

görüntüdeki arazi sınıflarını tanımlayan eğitim verileri bulunmaktadır. Kontrollü 

sınıflandırma algoritmaları parametrik ve parametrik olmayan sınıflandırma algoritmaları 

olarak ayrılmaktadır. Parametrik algoritmalar eğitim verisinden hesaplanan varyans, 

kovaryans ve ortalama gibi çeşitli istatistiksel parametreleri kullanmaktadır. Parametrik 

algoritmalar verilerin normal dağılımda olduğu varsayımını yapmaktadır (Sunar vd. 

2011). En Küçük Mesafe, En Çok Benzerlik (EÇB) ve Fisher Doğrusal Diskriminant 

yöntemleri yaygın parametrik sınıflandırma algoritmalarındandır. Parametrik olmayan 

algoritmalar verilerin dağılımına dair herhangi bir varsayım yapmamaktadır. En Yakın 

Komşuluk (EYK), Rastgele Orman (RO), Torbalama (Bagging), Hızlandırma (Boosting), 

Destek Vektör Makineleri (DVM) ve Yapay Sinir Ağları (YSA) parametrik olmayan 

algoritmalara örnek verilebilir. Bu algoritmalar Makine Öğrenme (MÖ) metotları olarak 

da bilinir. MÖ metotları 3.5 numaralı başlık altında daha detaylı şekilde açıklanmıştır. 

Kontrollü sınıflandırmada eğitim verisi ilgili sınıflara ait özelliklerin algoritmalar 

tarafından öğrenilmesini sağlar. Görüntüdeki bantlar, ilgili dalga boyunda nesnelerin 

özelliklerini temsil ettiğinden dolayı, özelliklerin en iyi şekilde çıkarılması bant sayısına 

da bağlıdır. Dolayısıyla hiperspektral görüntülerde yer alan çok sayıda bant, sınıfa ait 

nesneyi spektral imzasına en yakın şekilde temsil edeceğinden dolayı, hiperspektral 
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görüntülerle yapılan sınıflandırma işlemlerinde sınıflandırma performansının daha 

yüksek olması, bitki üzerinden örnek verilirse türlerin daha kolay ayrılmasını, hatta aynı 

türdeki bitkilerin sağlıklı ve sağlıksız olanlarının dahi ayırt edilebileceği söylenebilir. 

Son yıllarda, teknolojideki gelişmeler sayesinde hiperspektral uzaktan algılama sistemleri 

dünya yüzeyinin izlenmesinde önemli bir araç haline gelmiştir (Chang 2003, Grahn ve 

Geladi 2007). Hiperspektral görüntüler elektromanyetik spektrumun görünür, yakın 

kızılötesi, orta kızılötesi ve termal kızılötesi bölgeleri boyunca genellikle 100’den fazla 

sayıda, dar aralıkta, bitişik spektral bantlara sahip görüntülerdir. Hiperspektral sensör 

teknolojisindeki son gelişmeler, sağladığı yüksek spektral, zamansal ve konumsal 

çözünürlüğe sahip bilgiler yardımıyla yeryüzünün geniş alanlarının çeşitli analizleri için 

birçok uygulamayı uygulanabilir hale getirmiştir. Fakat hiperspektral verilerin yüksek 

boyutu, eğitim örneklerinin bulunmaması, görüntünün elde edilmesi sürecindeki ışık 

saçılım mekanizmaları, farklı atmosferik ve geometrik bozulmalar gibi faktörler bu tür 

verileri daha karmaşık hale doğrusal olmayan bir hale dönüştürmektedir (Ghamisi vd. 

2017).  Hiperspektral görüntülerin bahsedilen avantajlarının yanında çözüm aranması 

gereken dezavantajları da göz önünde tutulduğunda, üzerine daha fazla çalışma yapılması 

gereken bir alan olduğu açıktır. Literatürdeki çalışmalar da incelendiğinde başta 

sınıflandırma olmak üzere hiperspektral görüntüler üzerine birçok çalışma yapıldığı 

görülmektedir (Melgani ve Bruzzone 2004, Camps-Valls ve Bruzzone 2005, Fauvel vd. 

2012, Chen vd. 2014, Roy vd. 2019, Hang vd. 2020). Bu çalışmalarda genellikle MÖ ve 

son yıllarda giderek popülerleşen Derin Öğrenme (DÖ) algoritmaları kıyaslama veri 

setleri ile eğitilip performansları kendi aralarında ve diğer temel yöntemlerle 

kıyaslanmıştır. 

Bilgisayar teknolojilerinin son yıllarda önemli ölçüde gelişmesi ve buna paralel olarak 

yeni algoritmaların önerilmesi, yapay zekanın alt dallarından olan MÖ kavramının önemli 

ölçüde popülerleşmesini sağlamıştır. MÖ algoritmaları temel istatistiksel hesaplamalar ve 

deneyim yoluyla kendilerini otomatik olarak geliştirmektedir. Klasik programlamada 

program girdisi veriler ve kurallar iken program çıktısı sonuçlardır. MÖ’de ise veri ve 

istenen sonuçlar program girdisini oluştururken program çıktısında kurallar elde 

edilmektedir. Böylece MÖ insanların öğrenme davranışlarını ve karar verme 

yeteneklerini taklit eder (Jordan ve Mitchell 2015, Nassif vd. 2019). MÖ algoritmaları 

bilgisayarlı görü, konuşma tanıma, doğal dil işleme, robotik kontrol ve diğer 
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uygulamalarda karşımıza sıklıkla çıkmaktadır (Jordan ve Mitchell 2015). EYK, RO, 

Torbalama, Hızlandırma, DVM ve YSA gibi yöntemler geleneksel MÖ 

algoritmalarındandır. İnsan beyninin öğrenme sürecinden etkilenerek McCulloch ve  Pitts 

(1943) tarafından geliştirilen YSA, ilerleyen yıllarda birden fazla gizli katmana sahip 

olacak şekilde özelleştirilmiştir ve DÖ kavramı ortaya çıkmıştır. DÖ modellerinin 

geleneksel MÖ yöntemlerine göre avantajları öznitelik seçimi gerektirmemeleri ve veri 

sayısı arttıkça algoritmanın performansının artmaya devam etmesidir. Temel DÖ çeşitleri 

Evrişimli Sinir Ağları (ESA), Tekrarlayan Sinir Ağları, Uzun Kısa Süreli Hafıza Ağları, 

Sınırlı Boltzman Makineleri ve Derin Oto-Kodlayıcılardır. Özellikle görüntü tabanlı 

uygulamalarda sıklıkla kullanılan ESA’ların temeli Fukushima (1980) tarafından 

atılmıştır. Bir diğer önemli çalışma ise LeCun vd. (1989) tarafından geliştirilen LeNet5 

ESA mimarisidir. Buna rağmen ESA 2012’de düzenlenen ImageNet yarışmasına kadar 

popüler olamamıştır. Bu yarışmada Krizhevsky vd. (2017)’nin oluşturduğu AlexNet 

modeli yüksek başarı göstermiştir ve bu çalışmadan sonra ESA giderek popülerleşmiştir. 

Hiperspektral görüntülerin sınıflandırılmasında ESA mimarilerinin kullanılması da son 5 

yıldır giderek yaygınlaşmaktadır (Chen vd. 2016, Zhao W ve Du 2016, Mou vd. 2017, 

Paoletti vd. 2018, Cihan ve Ceylan 2020, Hong vd. 2020). Bahsi geçen çalışmalar ve 

diğer çalışmalara dair detaylara literatür özetinde değinilmiştir. 

Hiperspektral verilerin güncel en büyük dezavantajların birisi de sensörlerin çok kısıtlı 

şekilde bulunmasıdır. Sistemlerin genellikle hava aracı tabanlı olması ve yüksek maliyet 

sebebiyle verilere ulaşmak çok pahalı ve zahmetlidir. İnsansız hava araçlarına monte 

edilen hiperspektral sensörler ise uydu ve hava aracı platformlarındaki hiperspektral 

görüntüleme sistemleri kadar yüksek spektral çözünürlük sağlayamamaktadır. Bilinen 

yaygın uydu tabanlı görüntüleme sistemlerinden EO-1 Hyperion ise görev ömrünü Şubat 

2017’de tamamladığı için bu sensörden güncel veri sağlanamamaktadır (İnt.Kyn.1). 

Ancak gelişen teknoloji ve çeşitli uzay ajansları tarafından gönderilmesi planlanan 

hiperspektral görüntüleme uyduları yüksek potansiyele sahip bu veriler için güzel bir 

gelecek vaat etmektedir. Güncel durumda verilere ulaşmanın güçlüğü ve yer doğrulama 

verilerinin hazırlanması zor ve pahalı olduğu için araştırmacılar çeşitli kurumlar ve kişiler 

tarafından hazırlanmış karşılaştırma verileri üzerinde akademik çalışmalarını 

sürdürmektedir. En yaygın kullanılanları Indian Pines, Salinas Scene, University of Pavia 

ve Kennedy Space Center olmak üzere Pavia Centre, Cuprite ve Botswana gibi 
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karşılaştırma veri setleri mevcuttur (İnt.Kyn.2). Ayrıca diğer komiteler tarafından 

yayınlanan ancak çok yaygın olarak kullanılmayan HyRANK, Data Fusion Contest 2013 

(DFC13) ve Data Fusion Contest 2018 gibi hiperspektral veri setleri de bulunmaktadır. 

Hiperspektral görüntülerin sınıflandırılması konusu Elektrik ve Elektronik Mühendisliği, 

Bilgisayar Mühendisliği ve Harita (Geomatik) Mühendisliği disiplinlerinin ortak çalışma 

konularındandır. Literatürde yukarıda bahsi geçen karşılaştırma veri setleri ile yapılan 

çalışmalarda dikkat çeken detaylardan birisi de veri setlerinin yer doğrulama verilerinin 

eğitim ve test veri seti olarak ayrıldığı, ardından algoritma eğitildikten sonra yine yalnızca 

yer doğrulama piksellerinin sınıflandırıldığı görülmüştür. Daha objektif bir 

değerlendirme için görüntülerin tamamının sınıflandırılması ve sınıflandırma 

haritalarının da görsel olarak yorumlanması önemli unsurlardan birisidir. 

Bu tez çalışmasının amacı çeşitli eğitim veri kümesi boyutlarında geleneksel MÖ 

algoritmalarının ve DÖ tabanlı ESA modellerinin hiperspektral görüntülerin 

sınıflandırılmasında kullanılabilirliğinin incelenmesidir. Bu doğrultuda DVM, RO, 2B 

ESA ve 3B ESA algoritmalarının hiperspektral görüntülerin sınıflandırılmasında 

kullanılması amaçlanmıştır. Bunun yanında algoritmaların eğitim veri kümesi boyutlarına 

göre performanslarının önemli ölçüde değişip değişmeyeceğini test etmek için sırasıyla 

30%, 50% ve 70% eğitim veri kümesi boyutu uygulanması amaçlanmıştır. Algoritmaların 

eğitiminde literatürde sıklıkla kullanımı tekrar eden karşılaştırma veri setleri yerine 

HyRANK ve DFC13 veri setleri de kullanılacak; bunun yanında yaygın kullanılan veri 

setlerinden Salinas Scene kullanılacaktır. Böylelikle çeşitli konumsal çözünürlük, 

spektral çözünürlük ve arazi sınıfları sağlayan görüntülerin tek bir çalışmada incelenmesi 

sağlanacaktır. Algoritmaların performansları literatürde de sıklıkla kullanılan genel 

doğruluk, üretici ve kullanıcı doğrulukları ve Kappa katsayısı metriklerine göre 

değerlendirilecek ve aralarındaki farkların anlamlı olup olmadıkları McNemar’s testi ile 

belirlenecektir. Son olarak ise tüm pikselleri sınıflandırılan hiperspektral görüntülerin 

sınıflandırma haritaları görsel yorumlama ile incelenecektir. 
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2. LİTERATÜR BİLGİLERİ 

 

UA’da hiperspektral görüntülerin sağladıkları yüksek spektral çözünürlük sayesinde bu 

konu üzerinde ortaya koyulan çalışmalar giderek yaygınlaşmaktadır. Yapılan 

çalışmalarda yaygın konulardan birisi de hiperspektral görüntülerin sınıflandırılmasıdır. 

Son yıllarda MÖ algoritmalarının sağladığı avantajlar ve gösterdikleri yüksek başarı 

hiperspektral görüntülerin sınıflandırılmasında bu algoritmaların kullanımının 

yaygınlaşmasına sebep olmuştur. İnsan beyninin öğrenme, muhakeme ve karar verme 

yeteneklerini taklit eden MÖ algoritmaları, istatistiksel yöntemlerle sınıflandırma 

kurallarını kendileri üretmektedir. Ayrıca MÖ algoritmalarında kullanıcı müdahalesi de 

düşük seviyededir. Kullanıcı tanımlı parametreler gerektiren MÖ algoritmalarında söz 

konusu parametreler optimum şekilde belirlendiğinde yüksek sınıflandırma doğrulukları 

elde edilmektedir. Son yıllarda giderek popülerleşen DÖ algoritmalarından olan ESA 

algoritması ise geleneksel MÖ algoritmalarına göre başarı seviyesini daha da ileriye 

taşımıştır. Çeşitli disiplinlerden birçok araştırmacı, en iyi sınıflandırma performansını 

sağlamak amacıyla farklı ESA mimarileri tasarlayarak bu alandaki çalışmalarını 

sürdürmektedir. Aşağıda kronolojik sıralamaya göre, yöntemler ve kullanılan veri setleri 

ile birlikte literatürde yer alan bazı çalışmalar açıklanmıştır. 

Melgani ve  Bruzzone (2004) hiperspektral görüntülerin sınıflandırmasında DVM’nin 

performansını araştırmıştır. Veri seti olarak Indian Pines veri seti kullanılmış; ilk aşamada 

DVM Lineer Kernel, DVM Radyal Tabanlı Fonksiyon (RTF) Kernel, K-En Yakın 

Komşuluk (K-EYK) ve RTF YSA yöntemlerini kıyaslamışlardır. İkinci aşamada ise çok 

sınıflı yaklaşımlar olarak DVM için paralel yaklaşımlardan Teke Tek (TT-DVM) (One 

against one) ve Teke Karşı Tümü (TKT-DVM) (One against all) stratejileri, İkili 

Hiyerarşik Ağaç (İHA) yaklaşımlarından ise Dengeli Şubeler (İHA-DŞ) (Balanced 

branches) ve Teke Karşı Tümü (İHA-TKT) stratejileri karşılaştırılmıştır. Çalışma 

sonucunda DVM'lerin sınıflandırma doğruluğu, hesaplama süresi ve parametre ayarında 

kararlılık açısından diğer geleneksel parametrik olmayan K-EYK ve RTF YSA 

sınıflandırıcılardan çok daha etkildir (94,38% doğrulukla DVM-RTF). DVM’ler 

çalışmada uygulandığı gibi, bir öznitelik çıkarma veya seçimi prosedürü ile geleneksel 

bir sınıflandırıcının kombinasyonuna dayanan geleneksel örüntü tanıma yaklaşımından 
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daha etkili görünmektedir. Ayrıca DVM’ler Hughes fenomenine karşı düşük hassasiyet 

göstermektedir. Çok sınıflı yaklaşımlar için yapılan deneyde de 93,96%’lık doğrulukla 

TKT-DVM en yüksek doğruluğu vermiştir. 

Chan ve  Paelinckx (2008) HyMap sensörü ile elde edilmiş hiperspektral görüntünün 

sınıflandırılmasında AdaBoost ve RO algoritmalarının kullanımını incelemişlerdir. 

Sınıflandırma performansı açısından neredeyse birbirine eşit olan AdaBoost ve RO 

algoritmalarının YSA’dan daha yüksek başarıya sahip olduğu görülmüştür. RO 

algoritmasının her bölme için rastgele alt kümeler kullanması ve budama yapmaması 

sebebiyle eğitim süresi bakımından daha hızlı olduğu, buna karşın AdaBoost’un biraz 

daha yüksek doğruluk sağladığı sonucuna ulaşmışlardır. 

Waske vd. (2009) DVM ve RO algoritmalarının hiperspektral görüntülerin 

sınıflandırmasında kullanılmasını araştırmışlardır. Çalışmada kullanılan görüntü 

İzlanda’daki Hekla Volkanı ve çevresini kapsamakta olup AVIRIS sensörü tarafından 17 

Haziran 1991 tarihinde elde edilmiştir. Yer doğrulama verisinde 22 arazi sınıfı mevcuttur. 

Her sınıftan 100, 200 ve 400 eğitim verisiyle algoritmaların eğitimi gerçekleştirilmiş ve 

sınıflandırma sonuçları EÇB ve SAH algoritmalarının sonuçlarıyla kıyaslanmıştır. 

Çalışma sonucunda DVM’nin tüm eğitim veri küme boyutlarında diğer algoritmalardan 

daha yüksek doğruluk verdiğini ve RO’ya göre daha dengeli üretici-kullanıcı 

doğruluklarına sahip olduğu görülmüştür. Yapılan McNemar’s Testi ve Spearman’in 

Sıralı Korelasyon Katsayılarıyla DVM ile RO’nun sınıflandırma haritaları arasında 

anlamlı bir farklılık tespit edilmiştir. Çalışma sonucunda, her iki algoritmanın da 

İzlanda'daki farklı volkanik birimleri hiperspektral veri setleriyle ayırt etmek için 

kullanışlı olduğu sonucuna varmışlardır. 

Mou vd. (2017) hiperspektral görüntülerin sınıflandırılmasında Tekrarlayan Sinir 

Ağlarının (TSA) kullanılmasını önermişlerdir. Bu modelin hiperspektral görüntüler için 

kullanılmasında hiperspektral piksellerin sıralı veri olarak kabul edilebileceği şeklinde 

gerçekleştirdikleri gözlemlerinden esinlenmişlerdir. Ayrıca çalışmada PRetanh 

aktivasyon fonksiyonunu da önermiştir. University of Pavia, Indian Pines ve DFC13 veri 

setleriyle gerçekleştirilen deneyde önerdikleri metot DVM-RTF ve Hu vd. (2015)’nin 

ESA modelinden daha yüksek sınıflandırma performansı göstermiştir. 

Luo vd. (2018) HSI-CNN ismini verdikleri bir yeni bir sınıflandırma modeli 
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önermişlerdir. Modelin ana fikri ağ yapısını derinleştirmek ve ağın özellikleri daha iyi 

çıkarmasını ve ayırt etmesini sağlamak için evrişim sonuçları arasındaki korelasyonu 

kullanarak verileri yeniden düzenlemek ve tek boyutlu verileri iki boyutlu veriler gibi 

görüntüye eklemektir. Önerilen ağın aşırı öğrenme durumunu önermek için sınıflandırma 

aşamasında karar ağacı tabanlı yeni algoritmalardan olan XGBoost (Extreme Gradient 

Boosting) algoritmasını HSI-CNN+XGBoost isimli bir model de kurmuşlardır. Indian 

Pines, Kennedy Space Center, Pavia University ve Salinas Scene karşılaştırma seti ile 

yapılan sınıflandırmalarda önerilen HSI-CNN mimarisi >99% genel doğruluk ile en iyi 

sınıflandırma performansını göstermiştir. 

Christovam vd. (2019) HyRANK veri seti ile arazi kullanımı ve arazi örtüsü sınıflandırma 

uygulamasında Spektral Açı Haritalama (SAH), DVM ve RO yöntemlerini 

kullanmışlardır. SAH ve RO algoritmalarında eğitim için 176 bantlı yüzey reflektans 

verisini girdi olarak seçmişlerdir. DVM ve ikinci bir RO modeli için ise Temel Bileşenler 

Analizi (TBA) uygulayıp 14 temel bileşeni kullanmışlardır. Çalışma sonucunda RO-TBA 

modelinin 92% genel doğruluk ile en yüksek doğruluğa sahip olduğunu, SAH modelinin 

ise 48% genel doğrulukla en düşük genel doğruluğa sahip olduğunu tespit etmişlerdir. 

TBA uygulanmayan RO modeli ise 91% doğruluk vermiştir. Buradan da anlaşılacağı 

üzere TBA modelde 1%’lik bir iyileşme sağlamıştır. 

Roy vd. (2019) çalışmasında üç tane 3B evrişim katmanı ve bir tane 2B evrişim katmanına 

sahip olan; bu melez yapıya atıfta bulunarak HybridSN olarak isimlendirdikleri bir 

3B+2B ESA modelini önermişlerdir. 3B evrişim katmanlarında konumsal-spektral 

öğrenme işlemi gerçekleştiren bu yapı, girdi şeklini değiştirerek son katmandaki 2B 

evrişim işlemi ile sadece konumsal öğrenme işlemi gerçekleştirmektedir. Indian Pines, 

University of Pavia ve Salinas Scene karşılaştırma veri setleri ile gerçekleştirilen 

deneylerde önerilen ESA mimarisiyle sırasıyla 99,75%, 99,98% ve 100% genel doğruluk 

değerlerine ulaştıkları görülmektedir. Test ettikleri modeller arasında en yüksek 

doğruluğa sahip olan HybridSN modeli 10% gibi kısıtlı eğitim veri küme boyutunda da 

yüksek başarı göstermiştir. 

Bera ve  Shrivastava (2020) hiperspektral verilerin ESA modelleriyle sınıflandırılmasında 

optimizasyon fonksiyonlarının model doğruluğuna etkisini araştırmışlardır. 

Çalışmalarında TBA ile verinin boyutunu düşüren ve üç tane 2B evrişim katmanından 
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oluşan bir ESA mimarisi kullanmışlardır. Kennedy Space Center, Indian Pines, 

University of Pavia ve Salinas Scene karşılaştırma veri setleri kullanılarak SGD, 

Adagrad, Adadelta, RMSprop, Adam, Adamax ve Nadam optimizasyon fonksiyonlarını 

genel doğruluk ve işlem süresine etkisi açısından karşılaştırmışlardır. Çalışma sonucunda 

Adam optimizasyon fonksiyonunun diğerlerinden daha fazla doğruluk sağladığı ve daha 

kısa işlem süresi gerektirdiği sonucuna ulaşmışlardır. 

Cihan ve  Ceylan (2020) hiperspektral verilerin sınıflandırılmasında komşuluk çıkarımı 

işlemiyle örnek sayısının arttırıldığı, 3 tane evrişim katmanından oluşan KÇ3B-ESA 

mimarisini önermişlerdir. Indian Pines, Salinas Scene ve Pavia University veri setleri ile 

20% eğitim verisi ile yaptıkları karşılaştırmada önerilen KÇ3B-ESA, DVM (Melgani ve 

Bruzzone 2004), 2B-ESA (Makantasis vd. 2015), 3B-ESA (Hamida vd. 2018) ve M3B-

ESA (He vd. 2017) modellerine göre daha yüksek performans göstermiştir. 

Paoletti, Haut, Tao, vd. (2020) DVM algoritmasıyla hiperspektral görüntülerin 

sınıflandırılmasında işlem süresini kısaltmak ve bellek gecikmelerini gidermek için 

yaygın kullanılan DVM algoritmasını grafik işlem birimiyle (GİB) çalışır bir şekle 

getirmişlerdir. Indian Pines, University of Pavia ve DFC13 veri setleri kullanılarak 

yapılan karşılaştırmada eğitim veri kümesi boyutu ve farklı iki GİB ile yapılan deneylerde 

GİB-DVM klasik DVM ile benzer doğruluk değerlerini daha kısa sürede sağlamaktadır.  

Paoletti, Haut, Roy, vd. (2020) geleneksel evrişim kernellerinin dairesel harmonik 

filtrelerle değiştirilmesi ile oluşturulan yönelim-eşdeğişkenli re2DCNN modelini 

önermişlerdir. Indian Pines, University of Pavia ve Salinas Scene karşılaştırma veri setleri 

kullanılarak çok kısıtlı eğitim kümesi (1%-15%) ile gerçekleştirilen deneylerde önerilen 

model diğer yöntemlerden daha yüksek başarı göstermiştir. Ayrıca yeni yaklaşımın veri 

yönelimsel varyansına karşı daha iyi bir sağlamlık (robustness) sergilediği ve veri artırma 

teknikleri gerektirmeden daha iyi bir genelleme sağladığı sonucuna varmışlardır. 

İncelenen çalışmalarda görülen eksikliklerden bazıları şunlardır: Bazı çalışmalarda 

sürekli olarak aynı karşılaştırma veri setleri kullanılmıştır. Dolayısıyla algoritmaların 

farklı özellikteki veri setleriyle karşılaştırılması konusunda eksiklikler bulunmaktadır. 

Çalışmaların bir kısmında sınıflandırma haritaları verilmezken bazı çalışmalarda daha 

önce bahsedildiği gibi yalnızca etiketli verilerin bulunduğu alanların sınıflandırma 

sonuçları verilip diğer alanlar siyah renk ile sınıflandırılmamış olarak gösterilmiştir. Bu 
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durumda görüntülerdeki detayların şekilsel olarak doğruluğu hakkında yorum yapılması 

mümkün olmamaktadır. Diğer bir eksiklik ise modellerin performans kıyaslaması yapılan 

çalışmalarda genel doğruluk ve üretici-kullanıcı doğrulukları dışında istatistiksel testler 

uygulanmamıştır. Tez çalışmasında bu eksilikler göz önünde bulundurularak analizler 

gerçekleştirilmiş ve literatürde bu konudaki açık giderilmiştir.  
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3. MATERYAL ve METOT 

 

Bu bölümde ilk olarak hiperspektral görüntülerin sınıflandırma aşamalarının 

gerçekleştirildiği iş istasyonunun donanım ve yazılım özellikleri ile tezde kullanılan veri 

setlerinden bahsedilmiştir. Ardından hiperspektral görüntülerin ön işlemesinde boyut 

indirgeme amacıyla kullanılan TBA, MÖ kavramı, tez kapsamında kullanılan geleneksel 

MÖ yöntemleri ile DÖ kavramı ve ESA mimarileri açıklanmıştır. Son olarak tez 

çalışmasında kullanılan ESA mimarileri ve modellerin sınıflandırma performansının 

belirlenme yöntemleri olan doğruluk analizi açıklanmıştır. 

 

3.1 Donanım ve Yazılım 

 

Tez çalışması kapsamında oluşturulan sınıflandırma modelleri için Asus marka iş 

istasyonu kullanılmıştır. İş istasyonunun donanım bileşenleri Çizelge 3.1‘de verilmiştir. 

 

Çizelge 3.1 Kullanılan iş istasyonunun donanım bileşenleri. 

Donanım Donanım Modeli 

İşlemci Intel® Xeon® E-2136 @3.30 GHz 

Grafik İşlemci Birimi  ASUS ROG STRIX GeForce RTX-2070 SUPER 8GB 

Bellek 64 GB DDR-4 

Depolama TOSHIBA RC500 NVME SSD 500 GB 

 

İş istasyonunda Windows 10 Pro for Workstations Version 1909 işletim sistemi yüklüdür. 

Modellerin geliştirilmesinde Python 3.7.9 programlama dili kullanılmıştır. Kodlar 

Anaconda Navigator’ın geliştirdiği Spyder 4.1.5 ortamında geliştirilmiştir. ESA 

modellerinin oluşturulmasında Keras kütüphanesinin 2.3.1 sürümü kullanılmıştır. 

Keras’ın arka planında hesaplamaların gerçekleştirilmesi için Tensorflow ve Tensorflow-

GPU kütüphanelerinin 2.1.0 sürümleri kullanılmıştır. Tensorflow kütüphanesi Nvidia 

ekran kartlarının sağladığı CUDA (Compute Unified Device Architecture) Toolkit 10.2 

hizmetini de desteklemektedir. Böylece iş istasyonunun grafik işlem birimi de ESA’ların 
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eğitiminde rol oynamakta olup eğitim sürecini hızlandırmaktadır. TBA dönüşümü, SVM 

ve RO modellerinin kurulmasında Scikit-Learn 0.23.2 kullanılmıştır. Bu kütüphanelere 

ek olarak ise çeşitli işlem adımlarında Numpy, Pandas, Time, Tifffile, Plotly, Matplotlib 

gibi diğer yardımcı kütüphaneler de kullanılmıştır. 

 

3.2 Hiperspektral Görüntü 

 

UA, yeryüzü ve yeryüzündeki kaynaklara temas etmeden söz konusu nesnelerin 

incelenmesini sağlayan sistemlerdir. UA’da algılayıcı sistemleri aktif ve pasif 

algılayıcılar olarak incelenebilir. Aktif algılayıcılar kendi üzerinde bulunan yapay enerji 

kaynaklarından ürettiği elektromanyetik dalga sinyallerini hedefe yollayıp hedeften 

saçılan enerjiyi algılayan sistemlerdir. RADAR (Radio Detection and Ranging) ve 

LiDAR (Light Detection and Ranging) sistemleri aktif algılayıcılara örnek gösterilebilir. 

Pasif algılayıcılar ise güneş veya diğer kaynakların yeryüzüne gönderdiği ışınlar 

aracılığıyla yeryüzünden yansıyan veya yayılan enerjiyi algılayan optik, ısıl ve 

mikrodalga algılayıcı sistemlerdir. Pasif algılayıcı sistemlerde cisimlerden yansıyan veya 

yayılan enerji genellikle elektromanyetik spektrumda ilgili kısımlara karşılık gelen birçok 

banda kaydedilmektedir. Görüntüdeki bant sayısına göre görüntüler multispektral ve 

hiperspektral olarak tanımlanabilir. Multispektral görüntüler genellikle üçten fazla banda 

sahip olan görüntülerdir. Hiperspektral görüntüler ise çok daha fazla sayıda (genellikle 

100’den fazla) dar spektral aralıkta alınmış bantlara sahiptir. 

Hiperspektral sensörler elektromanyetik spektrumun görünür, yakın kızılötesi, orta 

kızılötesi ve termal kızılötesi bölgeleri boyunca çok sayıda, dar aralıkta, bitişik spektral 

bantlarda görüntü alan cihazlardır. Bu sistemler genellikle 100’den fazla bantta veri 

toplayıp görüntüdeki her bir piksel için yansıtım (termal kızılötesi bölgede yayım) 

spektrumunun oluşmasını sağlamaktadır (Grahn ve Geladi 2007, Lillesand vd. 2015).  

Hiperspektral sınıflandırma yöntemlerinin gıda, medikal, tarım, askeri ve savunma, 

madencilik gibi değişik alanlarında uygulamaları bulunmaktadır (Demir 2010). 

UA sistemleri yeryüzündeki kentleşme, kıyı kesimlerindeki değişimler, erozyon, orman 

yaygınları ve iklim değişikliği gibi olayların gözlenmesi ve yaşanan olumsuzluklar 

karşısında tedbirler alınması konusunda birçok analiz yapılmasına imkân sağlamaktadır. 
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Elektromanyetik spektrumda çok geniş bir aralıkta yüksek çözünürlükte veri 

kaydedebilen hiperspektral sistemler ile elde edilen verilerin sınıflandırılması veya 

sınıfların belirlenmesi, bahsi geçen problemlerin çözümünde yüksek başarı sağlamaktadır 

(Landgrebe 2005).  Çizelge 3.2’te başlıca hava aracı ve uydu platformundaki 

hiperspektral sensörler verilmiştir (Dalponte vd. 2009, İnt.Kyn.3) . 

 

Çizelge 3.2 Başlıca hiperspektral sensörler ve özellikleri. 

Sensör Adı Üretici Platform 

Max 

Bant 

Sayısı 

Max 

Spektral 

Çözünürlük 

(nm) 

Spektral 

Aralık (µm) 

Hyperion  NASA Goddard Space F. C. Uydu 220 10 0.4-2.5 

MODIS NASA Uydu 36 40 0.4-14.3 

CHRIS Proba  ESA Uydu 63'e kadar 1.25 0.415-1.05 

PRISMA OHB Italia Uydu ~250 12 0.4-2.5 

HySIS ISRO  Uydu 60+256 10 0.4-2.4 

AVIRIS NASA Jet Propulsion Lab  Hava Aracı 224 10 0.4-2.5 

HYDICE  Naval Research Lab Hava Aracı 210 7.6 0.4-2.5 

PROBE-1  Earth Search Sciences Inc. Hava Aracı 128 12 0.4-2.45 

CASI 550  ITRES Research Limited  Hava Aracı 288 1.9 0.4-1 

CASI 1500  ITRES Research Limited  Hava Aracı 288 2.5 0.4-1.05 

SASI 600  ITRES Research Limited  Hava Aracı 100 15 0.95-2.45 

TASI 600 ITRES Research Limited  Hava Aracı 64 250 8-11.5 

HyMap Integrated Spectronics  Hava Aracı 125 17 0.4-2.5 

ROSIS DLR Hava Aracı 84 7.6 0.43-0.85 

EPS-H  GER Corporation Hava Aracı 133 0.67 0.43-12.5 

EPS-A GER Corporation Hava Aracı 31 23 0.43-12.5 

DAIS 7915  GER Corporation Hava Aracı 79 15 0.43-12.3 

AISA Eagle  Spectral Imaging Hava Aracı 244 2.3 0.4-0.97 

AISA Eaglet Spectral Imaging Hava Aracı 200 - 0.4-1 

AISA Hawk  Spectral Imaging Hava Aracı 320 8.5 0.97-2.45 

AISA Dual Spectral Imaging Hava Aracı 500 2.9 0.4-2.5 

MIVIS Daedolus Hava Aracı 102 20 0.43-12.7 

AVNIR OKSI Hava Aracı 60 10 0.43-1.03 
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3.3 Veri Setleri 

 

Bu çalışmada uydu ve hava platformlarından farklı sensörler aracılığıyla elde edilmiş 5 

farklı hiperspektral veri seti kullanılmıştır. Kullanılan veri setleri farklı konumsal, 

spektral ve radyometrik çözünürlüklere sahiptir. Dolayısıyla bu veri setlerinin 

sınıflandırılmasında görüntülerin elde edilmesinden kaynaklanan bu farklılıkların da 

sınıflandırma performansına etkilerinin incelenmesi amaçlanmıştır. Bölümün alt 

başlıklarında veri setlerinin özelliklerine dair bilgiler verilmiştir. 

 

3.3.1 HyRANK Veri Seti 

 

HyRANK Benchmark veri seti ISPRS’in (International Society for Photogrammetry and 

Remote Sensing) Komisyon III Çalışma Grubu III/4 tarafından yeni sınıflandırma 

algoritmalarının bilinen en iyi sınıflandırma algoritmalarıyla kıyaslanması ve kısıtlı 

sayıda olan hiperspektral veri setlerine alternatif veri seti kazandırılması amacıyla 

oluşturulmuş bir karşılaştırma veri setidir (Karantzalos vd. 2018). Veriler 2006 yılının 

mayıs ayı sonu ile temmuz ayı başı arasında NASA’nın (National Aeronautics and Space 

Administration) EO-1 (Earth Observing-1) uydu platformu üzerinde yer alan Hyperion 

sensöründen elde edilmiştir. EO-1 Hyperion platformu görünür yakın kızılötesi dalga 

boyları aralığı ile kısa dalga kızılötesi (357-2576 nanometre) spektral bölgelerinde 

görüntü alabilen ilk uydu sistemidir. Hyperion görüntüleri 10 nanometre spektral aralıkla 

alınmış ve 30 metre konumsal çözünürlüğe sahip 220 banttan oluşmaktadır (İnt.Kyn.4). 

HyRANK veri setindeki verilerde görüntülerin ön işleme işlemleri gerçekleştirilmiş olup 

su buharı emme bantları ve diğer bozuk bantlar temizlenerek bant sayısı 176’ya 

düşürülmüştür. HyRANK veri seti Dioni, Loukia, Erato, Kirki ve Nefeli olarak 

isimlendirilmiş 5 görüntüyü içermektedir. Bu veri setlerinden Dioni ve Loukia, 

algoritmaların eğitimi için yer doğrulama verisine sahiptir. Diğer görüntüler ise 

doğrulama için ayrılmıştır. Yer doğrulama verileri CORINE (Coordination of 

Information on the Environment) 2006 arazi kullanımı / arazi örtüsü haritası, Google 

Earth ve diğer yüksek çözünürlüklü uydu görüntüleri üzerinden hassasça seçilmiş 14 arazi 

kullanımı / arazi örtüsü sınıfına sahiptir (Karantzalos vd. 2018).  
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3.3.1.1 Dioni Veri Seti 

 

Dioni veri seti HyRANK veri seti içerisinde yer doğrulama verisine sahip iki görüntüden 

birisidir. Görüntü 250×1376×176 boyutundadır. Görüntü Loukia görüntüsü ile aynı 

sınıflara göre tanımlanmasına rağmen Geniş Yapraklı Ormanlar (Sınıf No: 6) ve Karışık 

Ormanlar (Sınıf No: 8) sınıfları yer doğrulama verisinde mevcut değildir. Dolayısıyla 

görüntü 12 farklı sınıfa sahiptir. Veri setinin (Kırmızı: 23, Yeşil: 11, Mavi: 07) bant 

kombinasyonuna göre renklendirilmiş şekli, renklendirilmiş hali üzerinde yer doğrulama 

verisinin görünümü ve yalnızca yer doğrulama verisinin gösterildiği hali Şekil 3.1’de 

gösterilmiştir.  

 

 

Şekil 3.1 Dioni veri setinin (a) Gerçek Renk, (b) Gerçek Renk + yer doğrulama ve (c) yer 

doğrulama görüntüleri. 

 

Görüntünün sağ kısmında görülen bulutlar ve bulut gölgeleri görüntünün orijinal halinde 

maskeleme gibi herhangi bir ön işlemeye tabii tutulmadığı için doğrudan kullanılmıştır.  
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3.3.1.2 Loukia Veri Seti 

 

Loukia veri seti HyRANK veri setinde yer alan ve yer doğrulama verisine sahip olan diğer 

veri setidir. Görüntü 249×945×176 boyutundadır. Veri setinin (Kırmızı: 23, Yeşil: 11, 

Mavi: 07) bant kombinasyonuna göre renklendirilmiş şekli, renklendirilmiş hali üzerinde 

yer doğrulama verisinin görünümü ve yalnızca yer doğrulama verisinin gösterildiği hali 

Şekil 3.2’de gösterilmiştir (Karantzalos vd. 2018).  

 

 

Şekil 3.2 Loukia veri setinin (a) Gerçek Renk, (b) Gerçek Renk + yer doğrulama ve (c) yer 

doğrulama görüntüleri. 

 

Şekil incelendiğinde sınıfları tanımlayan yer doğrulama verilerinin seçimlerinin görüntü 

üzerinde olabildiğince homojen dağılımda yapıldığı açıkça görülmektedir.   
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3.3.2 DFC13 Veri Seti 

 

DFC13 (Data Fusion Contest 2013) veri seti 23 Haziran 2012 tarihinde 17:37:10 ile 

17:39:50 saatleri arasında elde edilmiş hiperspektral görüntüdür. Görüntü Houston 

Üniversitesi Kampüsü ve çevresindeki şehir alanını kapsamaktadır. NCALM (National 

for Airborne Laser Mapping) tarafından elde edilen görüntü 2,5 metre konumsal 

çözünürlüğe sahiptir ve 5500 feet (1676,4 metre) yükseklikten çekilmiştir (İnt.Kyn.5). 

Görüntü 380 ile 1050 nanometre arasında 144 spektral banda sahiptir.  Görüntü 

349×1905×144 boyutundadır. Veri seti hiperspektral görüntü, eğitim verisi ve doğrulama 

verisi içermektedir. Tez çalışmasında söz konusu iki doğrulama birleştirilerek 

kullanılmıştır. Veri setinin (Kırmızı: 62, Yeşil: 42, Mavi: 20) bant kombinasyonuna göre 

renklendirilmiş şekli, renklendirilmiş hali üzerinde yer doğrulama verisinin görünümü ve 

yalnızca yer doğrulama verisinin gösterildiği hali Şekil 3.3’te gösterilmiştir. 

 

 

Şekil 3.3 DFC13 veri setinin (a) Gerçek Renk, (b) Gerçek Renk + yer doğrulama ve (c) yer 

doğrulama görüntüleri. 



18 

Şekil 3.3’te yer alan lejantta da görülebileceği üzere DFC13 veri seti 15 sınıfa sahiptir. 

Sınıfların tespiti ve görüntü üzerinde işaretlenmesi, IEEE GRSS (Institute of Electrical 

and Electronics Engineers Geoscience and Remote Sensing Society) topluluğu tarafından 

Görüntü Analizi ve Veri Füzyonu Teknik Komitesi tarafından düzenlenen 2013 Veri 

Füzyonu Yarışması (IEEE GRSS Data Fusion Contest) için gerçekleştirilmiştir (Debes 

vd. 2014). Sınıflar 2,5 metre konumsal çözünürlüğe sahip bir görüntü için ayırt edilebilir 

şekildedir. 

 

3.3.3 Salinas Scene Veri Seti 

 

Hiperspektral görüntüler üzerine yapılan çalışmalarda literatürde sıklıkla karşılaşılan 

Salinas veri seti Amerika Birleşik Devletleri’nin Kaliforniya eyaletindeki Salinas 

Vadisinde AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) hiperspektral 

algılayıcısıyla 9 Ekim 1998 tarihinde elde edilmiştir. Görüntünün konumsal çözünürlüğü 

3,7 metre; spektral çözünürlüğü ise 224 banttır. Görüntünün su buharı emme bantları olan 

(108–112, 154–167 ve 224) aralığındaki 20 bandı silinerek 204 banda indirilmiştir. Bu 

işlemlerin ardından ortaya çıkan görüntü 512×217×204 boyutundadır. Veri setinin 

(Kırmızı: 50, Yeşil: 20, Mavi: 10) bant kombinasyonuna göre renklendirilmiş şekli, 

renklendirilmiş hali üzerinde yer doğrulama verisinin görünümü ve yalnızca yer 

doğrulama verisinin gösterildiği hali Şekil 3.4’te gösterilmiştir.  
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Şekil 3.4 Salinas Scene veri setinin (a) Gerçek Renk, (b) Gerçek Renk + yer doğrulama ve (c) yer 

doğrulama görüntüleri. 

 

Salinas Scene veri setinin yer doğrulama verisi temelde sebzeler, yer ve toprak, üzüm 

bağları olmak üzere 3 ana sınıf altında incelenebilir (Gualtieri vd. 1999).  Veri setinin yer 

doğrulama verisi toplamda 16 sınıftan oluşmaktadır. Sınıfların belirlenmesi görüntünün 

çekim tarihinde ilgili parsellerde yapılan yersel gözlemler ile sağlanmıştır. 
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3.4 Temel Bileşenler Analizi 

 

Hiperspektral algılayıcılar çok büyük miktarda veri sunmalarına rağmen daha düşük 

spektral çözünürlüklü görüntülerden farklı birtakım dezavantajlara sahiptir. Hiperspektral 

görüntüler dar spektral aralıklarla yüzlerce bant içerdiği için spektral bilgilerin tekrar 

edilmesinden dolayı birbirleri arasındaki korelasyon yüksektir (Li W vd. 2011). Verinin 

istatistiksel olarak daha anlamlı hale getirilebilmesi, veri setinin daha az depolama alanı 

gerektirmesi ve işlem süresinin kısaltılması için boyut indirgeme yöntemleri 

kullanılmalıdır. Boyut indirgeme, sınıflandırma uygulamalarında sınıflandırma 

performansını potansiyel olarak bozabilecek gereksiz özellikleri atarak hesaplama 

karmaşıklığını azaltmayı ve istatistiksel kötü koşullandırmayı iyileştirmeyi 

amaçlamaktadır (Lee ve Landgrebe 1993). Boyut indirgeme yöntemleri eğitimli, yarı 

eğitimli ve eğitimsiz algoritmalar olarak üç ana başlıkta incelenmektedir (Ghamisi vd. 

2017). Lineer Diskriminant Analizi, Nonparametrik Ağırlıklı Öznitelik Çıkartma, 

Jeffries–Matsushita mesafesini kullanan bant seçimi ve karşılıklı bilgiyi kullanan bant 

seçimi yöntemleri sıklıkla kullanılan eğitimli boyut indirgeme yöntemleridir. Bu 

yöntemler sınıfların ayrılabilirliğinin arttırılması için etiketli verileri kullanmaktadır. 

Uygulamada etiketli verilerin elde edilmesi zordur ve bu veriler oldukça kısıtlıdır. Diğer 

taraftan etiketlenmemiş veriler çok düşük maliyetle büyük miktarlarda mevcuttur. Bu 

sebeple hem etiketlenmemiş hem de sınırlı etiketli verileri kullanarak sınıflandırmayı 

iyileştirmeyi amaçlayan yarı eğitimli yöntemler geliştirilmeye başlanmıştır. Bu 

yöntemlerden bazıları birlikte eğitim, dönüştürücü DVM ve grafik tabanlı yarı eğitimli 

öğrenme yöntemleridir. Etiketli verinin mümkün olmadığı durumlarda eğitimsiz boyut 

indirgeme yöntemleri ile bazı kriterler sağlanarak daha az sayıda bant kümesinin elde 

edilmesi amaçlanmaktadır. Eğitimsiz boyut indirgeme algoritmalarına ise TBA, 

Bağımsız Bileşen Analizi ve En Az Gürültü Giderme Dönüşümü yöntemleri örnek 

gösterilebilir. Bu tez çalışmasında ise literatürde yaygın olarak kullanılan ve en bilinen 

yöntemlerden olan TBA yöntemi ile hiperspektral görüntülerin bant sayılarının 

azaltılması amaçlanmıştır. 

TBA, Pearson (1901) tarafından tanıtılmış ve Hotelling (1933) tarafından geliştirilmiş bir 

yöntemdir. TBA verileri varyanslarının en yüksek oldukları değerlere göre birbirleri ile 
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kolerasyonsuz daha az boyuttaki doğrusal bir alt uzaya yerleştiren doğrusal bir boyut 

indirgeme yöntemidir (Hotelling 1933). TBA temelde bantların kovaryans matrisinin 

özdeğer ayrışmasına dayanır. TBA’nın hesaplanmasında ilk olarak 3B hiperspektral 

görüntü (X) denklem (3.1)‘de gösterildiği şekilde 2B matrise (Xm) dönüştürülür: 

 

   → M N D D W

m
X R X R         (3.1) 

 

Burada W, X’teki toplam piksel sayısını (M×N=W) ifade etmektedir. Bu işlemin ardından 

bir piksel vektörü eşitlik (3.2) şeklinde yazılabilir: 

 

 = = 1 2
, , , ,      1,2, ,

T

i D
p p p p i W        (3.2) 

 

Piksel vektörlerinin boyutları D’ye eşittir. Tüm piksellerin ortalaması m hesaplanır (3.3) 

ve ardından ortalama merkezli veri matrisi U eşitlik (3.4)’e göre hesaplanır: 

 

=

= 
1

1 W

i
i

m p
W

        (3.3) 

 = − − −  1 2
          D W

i
U p m p m p m R       (3.4) 

 

Ortalama merkezleme, ortalaması sıfıra eşit bir veri matrisi oluşturmak için kovaryans 

matrisinin hesaplanmasından önce yapılması gerekli olan bir işlemdir. Bantların 

arasındaki korelasyonların analizi için kovaryans matrisi Cov hesaplanır (3.5): 

 

= TCov UU          (3.5) 

 

Boyutu (D×D) olan kovaryans matrisinde köşegen elemanları her bir bandın varyansını; 
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köşegen dışındaki elemanlar ise bantlar arasındaki kovaryansı ifade etmektedir. 

Kovaryans matrisinin bulunmasının ardından özdeğer ayrışımı bulunur ve eşitlik (3.6) 

şeklini alır. 

 

= TCov VDV         (3.6) 

 

Burada V kovaryans matrisinin özvektörlerini, D ise kovaryans matrisinin köşegeni olan 

özdeğerleri ifade etmektedir. Bir sonraki adımda özdeğerler ve özvektörleri azalan bir 

sırada sıralanır. Daha sonra, ilk K (K ≤ D) tane özvektör farklı boyuttaki bir uzayda ifade 

edilen dönüştürülmüş yaklaşık görüntüyü hesaplamak için kullanılabilir. Özvektörler 

azalan şekilde sıralandığından ilk özvektörler yüksek varyansa sahiptir ve görüntüye dair 

bilginin büyük bir kısmını içermektedir. Dönüştürülmüş yaklaşık görüntüdeki pikseller 

eşitlik (3.7)’deki şekilde gösterilebilir: 

 

 = = = 1 2
, , , ,     1,2, ,

T T

i D i
z z z z V p i W       (3.7) 

 

Yalnızca ilk K temel bileşenini seçmek için (3.8) eşitliği hesaplanmalıdır: 

 

1

1 11 12 1 1 2

2 21 22 2 2

1 2

K B

K B

i

K

K K K KK KBi

B

p

z V V V V p

z V V V V
z

p

z V V V V

p

 
 

     
     
   = =  
     
        

 
  

      (3.8) 

 

Bu adım görüntüdeki tüm pikseller için uygulanır. Ardından yeni görüntü yalnızca ilk K 

temel bileşenler seçilerek oluşturulur. Son olarak elde edilen dönüştürülmüş görüntü Xk 

eşitlik (3.9)’daki üç boyutlu görüntü (Xyeni) şekline dönüştürülür ve TBA ile boyut 
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indirgeme işlemi tamamlanmış olur. 

 

   → K W M N K

k yeni
X R X R        (3.9) 

 

3.5 Makine Öğrenme Algoritmaları 

 

MÖ yapay zekanın alt dallarından birisidir. Temelde MÖ iki tane birbiriyle ilişkili soruya 

odaklanmaktadır; Deneyim yoluyla otomatik olarak gelişen bilgisayar sistemleri nasıl 

inşa edilebilir? Bilgisayarlar, insanlar ve organizasyonlar dahil tüm öğrenme sistemlerini 

yöneten temel istatistiksel hesaplama-bilgi-kuramsal yasalar nelerdir? MÖ hem bu temel 

bilimsel ve mühendislik sorularını ele almak için hem de ürettiği ve birçok uygulamada 

yer aldığı son derece pratik bilgisayar yazılımı için önemlidir (Jordan ve Mitchell 2015). 

Veri madenciliği ve istatistiksel analize dayalı teknikleri kullanan MÖ, bilgisayarların 

insan öğrenme davranışını, muhakemeyi ve karar vermeyi taklit etmesini sağlar (Nassif 

vd. 2019). Yaklaşık son otuz yılda popüler olan MÖ algoritmaları kurallarla 

programlanmaktan ziyade birçok örnekten istatistiksel yapıyla kuralları ortaya çıkarmayı 

amaçlamaktadır (Şekil 3.5). MÖ algoritmaları bilgisayarlı görü, konuşma tanıma, robotik, 

doğal dil işleme, web arama, fiyat tahmini, reklam yerleştirme, dolandırıcılık tahmini, 

taşınmaz değerleme gibi alanlarda çözüm sunmaktadır (Alpaydın 2004, Jordan ve 

Mitchell 2015, Nassif vd. 2019, Seyrek vd. 2019).  

 

 

Şekil 3.5 Klasik programlama ile MÖ'nün farkı.  
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Şekil 3.6’dan da görüleceği MÖ algoritmaları kontrollü öğrenme (supervised learning), 

kontrolsüz öğrenme (unsupervised learning), yarı kontrollü öğrenme (semi-supervised 

learning), takviyeli öğrenme (reinforcement learning) ve derin öğrenme (deep learning) 

5 başlık altında incelenebilir (Nassif vd. 2019). 

 

 

Şekil 3.6 MÖ türleri (Nassif vd. 2019). 

 

Kontrollü öğrenmede MÖ algoritmasının eğitimi için etiketli veriler kullanılmaktadır. 

Veriler bir vektörle temsil edilebilen bir girdi ve istenen bir çıktıdan oluştuğu için 

etiketlenmiş veri olarak adlandırılmaktadır. Kontrollü öğrenmede eğitim kümesinin 

analizi sonucu çıktı ayrık (discrete) veri ise oluşturulan fonksiyon sınıflandırma; sürekli 

(continuous) veri ise regresyon olarak adlandırılmaktadır. Kontrollü MÖ algoritmalarının 

UA görüntülerinin sınıflandırılmasında kullanımı açısından düşünüldüğünde girdi n tane 

banttan oluşan bir piksel için öznitelik vektörü (n×1) boyutundadır. Çıktıyı oluşturan 

etiket ise (1×1) boyutunda bir değerdir. Yer sınıfı bilindiği için ve kontrollü MÖ 

algoritması özniteliklere göre yinelemeli olarak bu yer sınıfını tahmin etmeye çalıştığı 

için, MÖ modeli tahmin edilen ile gerçek sınıf arasındaki varyasyon boşluğunu azaltmak 

amacıyla düzeltilir. Bu öğrenme mekanizması kontrollü öğrenme olarak 
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tanımlanmaktadır. Kontrollü öğrenme işleminde çok sayıda etiketli veri kullanılmaktadır. 

Tez çalışması kapsamında kontrollü öğrenme algoritmalarından DVM, toplu öğrenme 

algoritmalarından RO ve DÖ algoritmalarından ESA kullanılmıştır. İlerleyen başlıklarda 

bahsi geçen algoritmalardan detaylı olarak bahsedilmiştir. 

 

3.5.1 Destek Vektör Makineleri Algoritması 

 

DVM, temelde iki sınıfı birbirinden optimum olarak ayırabilen hiper düzlemi belirleme 

prensibiyle çalışan, verinin dağılımına ilişkin herhangi bir varsayım yapmayan bir 

algoritmadır. DVM parametrik olmayan bir algoritmadır ve istatistiksel öğrenme 

teorisine dayanmaktadır (Vapnik 1995). DVM algoritmasının temel mantığı Şekil 3.7’de 

gösterildiği gibi iki sınıflı doğrusal verinin sınıflandırılmasının çözümüdür. 

 

 

Şekil 3.7 İki sınıfı en optimum şekilde ayıran hiperdüzlem (İnt.Kyn.6).  

 

Şekilde gösterilen mavi noktaların A sınıfını; yeşil noktaların da B sınıfını temsil ettiği 

varsayılsın. Bu iki sınıf bir düzlem ile ayrılmak istendiğinde çeşitli konumlarda ve 

dönüklüklerde düzlemler tanımlanması mümkündür. Ancak sınıflar arasındaki uzaklığı 

maksimum yapan; yani şekilde kesikli siyah çizgiler ile gösterilen durumu sağlayabilen 
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yalnızca bir sınır pozisyonu bulunur. DVM algoritması, A ve B sınıfına eşit uzaklığa 

sahip olan, maksimum marjinli ve sınıflandırma hatasını minimuma indirecek hiper 

düzlemi (şekilde kırmızı ile gösterilen düzlem) seçmeyi amaçlar. Bahsi geçen en geniş 

sınır pozisyonunu sağlayan; yani şekildeki kesikli siyah çizgilerle temsil edilen sınırları 

tanımlayan sınıf elemanları ise destek vektörleri olarak adlandırılmaktadır. 

Bir DVM sınıflandırma problemi tanımlanırken eğitim veri setinin sınıflarının  1, 1+ −  

şeklinde olduğu varsayılırsa aşağıdaki (3.10), (3.11) ve (3.12) eşitlikleriyle 

tanımlanabilir: 

  

 + =
0

: 0
i

H w x b       (3.10) 

 + = +
1

: 1
i

H w x b       (3.11) 

 + = −
2

: 1
i

H w x b       (3.12) 

 

Şekil 3.7’de de görülen düzlemlerden H0 optimum hiper düzlemi, +1 (mavi renkli) 

sınıfındaki destek vektörlerinden geçen H1 hiper düzlemi ve -1 (yeşil renkli) sınıfındaki 

destek vektöründen geçen düzlem olan H2 hiper düzlemi sırasıyla (3.10), (3.11) ve (3.12) 

eşitlikleriyle ifade edilebilir. Burada w ağırlık vektörünü, x hiper düzlem üzerindeki 

noktayı, b ise vektörün uzayda yönelimini ifade eden sabit bir sayıyı temsil eder. Söz 

konusu hiperdüzlem (3.13) ve (3.14) eşitlikleriyle hesaplanmaktadır. 

 

 +  + = +1,  her 1 için
i

w x b y      (3.13) 

 +  − = −1,  her 1 için
i

w x b y      (3.14) 

 

(3.13) ve (3.14) eşitsizlikleri tek bir eşitsizlik olarak eşitlik (3.15) şeklinde ifade edilir. 

 

  + −   + −( ) 1 0,      1, 1
i i i

y w x b y      (3.15) 
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Bir xi destek vektörü ile H0 optimum düzlemi arasındaki dik mesafe d eşitlik (3.16)’da yer 

alan formüle göre hesaplanır. 

 

 
=

i
w x b

d
w

      (3.16) 

 

Destek vektörleri arasındaki mesafe (d) maksimum olması için ağırlık vektörünün (w) 

minimum olması şarttır. Bu durumda optimizasyon problemi eşitlik (3.17)’deki şekilde 

ifade edilir. 

 

 
 
 

21
min

2
w       (3.17) 

 

Eşitlik (3.17)’de gösterilen ifade doğrusal olmayan bir optimizasyon problemidir. Bu 

problem Langrange denklemleri kullanılarak çözülebilmektedir. Langrange denklemleri 

ile çözülen bu problemde (3.18)’de gösterilen fonksiyon elde edilir. (λi, i=1, 2, …, r) ise 

Langrange çarpanlarını ifade etmektedir. 

 

( )
=

 
=  + 

 


1

( ) .
r

i i i
i

f x sign y x x b      (3.18) 

 

Uzaktan algılanmış görüntülerindeki piksellerin sınıflandırılması gibi gerçek hayatta 

karşılaşılan bazı sınıflandırma problemlerinde sınıflar doğrusal olarak ayrılamazlar 

(Kavzoğlu ve Çölkesen 2009).  Eğitim verilerinde doğrusal denklemlerle tanımlanan bir 

hiper düzlemin mümkün olmadığı durumlarda, DVM algoritması doğrusal olmayan karar 

yüzeylerine izin verecek şekilde genişletilebilir (Cortes ve Vapnik 1995). Pozitif değer 

alan bu gevşek değişken (𝜉) ile formülün yeniden düzenlenip amaç fonksiyonu halini 

almış şekli (3.19) ve (3.20) eşitliklerinde gösterilmiştir. 
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
=

 
 +
 
 



2

1

min
2

r

i
i

w
C       (3.19) 

  +  −  =( ) 1 ,     0,    1, ,
i i i i

y w x b i N     (3.20) 

 

(3.19) eşitliğindeki C parametresi, hiper düzlemin yanlış tarafında sınıflandırılan eğitim 

pikselleriyle ilişkili cezanın büyüklüğünü kontrol eden bir ceza terimidir. C parametresi 

kenar boşluğu maksimizasyonu ve hata minimizasyonu arasındaki dengenin kurulmasına 

izin verir (Foody ve Mathur 2004, Oommen vd. 2008). 

DVM algoritmasında sınıfların ayrımındaki hiper düzlemin doğrusal eşitliklerle 

belirlenememesi durumunda veri dağılımı doğrusal olmayan fonksiyonlar kullanarak 

daha yüksek boyutlu bir uzaya taşınarak doğrusal olarak bölünmesi sağlanır (Mathur ve 

Foody 2008). Bu işlem için kullanılan fonksiyonlara kernel (çekirdek) fonksiyonu ismi 

verilmektedir. Kernel fonksiyonlarının genel ifadesi eşitlik (3.21)’de verilmiştir. 

 

( ) ( ) ( ) =. .
i j i j

K x x x x       (3.21) 

 

Kernel fonksiyonu kullanılarak elde edilen karar fonksiyonu eşitlik (3.22)’de verilmiştir. 
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=

 
= + 

 


1

( ) . . .
r

i i i j
i

f x sign y K x x b      (3.22) 

 

Verinin yüksek boyutlu bir uzaya taşınması sürecinde sıklıkla kullanılan dört adet Kernel 

fonksiyonundan söz edilebilir. Bunlar Doğrusal (Lineer), Sigmoid, Radyal Tabanlı 

Fonksiyon (RTF) ve Polinom kernel fonksiyonlarıdır (Kavzoğlu ve Çölkesen 2009). 

Literatürdeki çalışmalar incelendiğinde RTF’nin yüksek doğruluk vermesi sebebiyle 

daha fazla tercih edildiği görülmektedir (Melgani ve Bruzzone 2004, Pal ve Mather 2005, 
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Kavzoğlu ve Çölkesen 2009, Mountrakis vd. 2011). RTF kernel fonksiyonunun formülü 

(3.23)’te verilmiştir. 

 

( ) ( )


− −

= 

2

, ,     0i jx x

i j
K x x e      (3.23) 

 

RTF fonksiyonunun düzenleme parametresi (C) ve kernel genişliği parametresi (γ) olmak 

üzere iki tane kullanıcı tanımlı parametresi bulunmaktadır. Bu parametreler modelin 

doğruluğunu doğrudan etkilemektedir (Kavzoğlu ve Çölkesen 2010). Bu sebeple veri 

setine göre optimum kernel parametreleri optimizasyon ile belirlenmelidir. 

 

3.5.2 Rastgele Orman Algoritması 

 

Rastgele Orman (RO) algoritması, temelde karar ağaçlarını kullanan popüler bir toplu 

öğrenme algoritmasıdır. Breiman (2001) bir sınıflandırıcı kümesinin tek bir 

sınıflandırıcıdan daha iyi bir sınıflandırma performansı göstereceği felsefesiyle 

Torbalama algoritmasını geliştirerek, her biri farklı eğitim kümesi ile eğitilmiş ve çok 

değişkenli birçok karar ağacının birleştirilmesini öngören RO algoritmasını öne 

sürmüştür (Breiman 2001, Rodriguez-Galiano vd. 2012). RO algoritmasında karar 

ağaçları CART (Classification and Regression Trees) algoritmasına göre yapılır. Ancak 

CART algoritmasında olduğu gibi budama işlemi gerçekleştirilmez (Breiman 2001). RO 

algoritmasında karar ağaçları oluşturulurken sınıflara göre bir özniteliğin safsızlığını 

ölçen bir öznitelik seçim ölçüsü olarak Gini İndeksi kullanılır (Pal 2005). 

RO algoritmasının eğitilmesi aşamasında orijinal eğitim veri setinin 2/3’lük kısmı 

içerisinden torbalama kullanılarak alt eğitim kümeleri (in-bag) oluşturulur. Söz konusu 

alt kümeler karar ağaçlarının oluşturulmasında kullanılır. Orijinal eğitim verisinin geriye 

kalan 1/3’lük kısmı OOB (out-of-bag) olarak adlandırılır. OOB kümesi de algoritmanın 

ağaç yapısının geçerliliğini test etmek için kullanılır. RO algoritmasının çalışma prensibi 

Şekil 3.8’de gösterilmiştir.  
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Şekil 3.8 RO algoritmasının çalışma prensibi. 

 

RO algoritması için kullanıcı tarafından tanımlanan iki parametre bulunmaktadır. Bu 

parametrelerden ilki, karar ağacı oluşturulurken en iyi bölünmeyi belirlemek için her 

düğümdeki değişken sayısıdır ve (m) ile gösterilir. Düğümlerde sadece belirlenen 

özellikler araştırılır. İkinci parametre ise oluşturulacak ağaç sayısıdır ve (N) ile gösterilir. 

Bir piksel RO algoritması ile sınıflandırılırken N tane karar ağacından sınıflandırılır. 

Ağaçlardan çıkan N tane sınıflandırma sonucu değerlendirilir ve piksel en fazla oya sahip 

olan sınıfa atanır (Pal 2005). RO algoritması kullanıcı tarafından belirlenen parametrelere 

karşı duyarlı değildir. Sınıflandırma uygulamalarında algoritma eğitilirken genellikle m 

parametresi özellik sayısının karekökü olarak alınmaktadır. Düğümdeki özellik sayısının 

sınırlandırılması ağaçlar arasındaki korelasyonu ve modelin karmaşıklığını 

azaltmaktadır. Böylece RO algoritması büyük boyutlu verileri işleyebilir ve toplulukta 

çok sayıda karar ağacı oluşturabilir (Gislason vd. 2006). 
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3.5.3 Derin Öğrenme 

 

DÖ; kontrollü veya kontrolsüz özellik çıkarma, dönüştürme, desen analizi ve 

sınıflandırma için birçok doğrusal olmayan gizli katmandan yararlanan bir MÖ tekniğidir 

(Deng ve Yu 2014). Başka bir tanıma göre ise DÖ, insan beyninin karmaşık problemler 

karşısındaki gözlem, analiz, öğrenme ve karar verme yeteneklerini taklit eden, kontrollü 

veya kontrolsüz olarak özellik çıkarımı, dönüşüm, sınıflandırma gibi uygulamaları büyük 

miktardaki verilerden yararlanmak suretiyle gerçekleştirebilen bir MÖ tekniğidir 

(Kayaalp ve Süzen 2018). Şekil 3.9’da yapay zekâ, MÖ, Yapay Sinir Ağları (YSA) ve 

DÖ arasındaki kavramsal ilişki gösterilmiştir. Buradan da anlaşılacağı üzere DÖ yapısı 

bir MÖ algoritmasıdır. 

 

 

Şekil 3.9 Yapay zekâ, MÖ, YSA ve DÖ arasındaki ilişki. 

 

MÖ algoritmaları kontrollü ve kontrolsüz sınıflandırma uygulamalarını 

gerçekleştirebilmektedir. Geleneksel MÖ teknikleri, karmaşık konumsal veya sıra 

bağımlılıkları olan ve bilgisayarlı görü ve konuşma tanıma gibi büyük miktarda öznitelik  

mühendisliği gerektiren verileri analiz etmekte zorlanır (Ghatak 2019). Geleneksel MÖ 

tekniklerinden farklı olarak karmaşık verilerin hızlıca öğrenilmesi ve uygulanmasında 

insan faktörü devre dışı bırakılarak DÖ yöntemleri kullanılmaktadır (LeCun vd. 2015). 
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Çok kısa bir zamanda gelişen ve yaygınlaşan DÖ’nün sağlık bilişimi, ekonomi, enerji, 

kentsel bilişim, güvenlik, hidrolojik sistem modelleme, biyoenformatik ve hesaplamalı 

mekanik gibi alanlarda kullanımı giderek yaygınlaşmaktadır. ESA, TSA, Gürültü 

Giderici Otomatik Kodlayıcı (Denoising Autoencoder), Derin İnanç Ağları (Deep Belief 

Networks), Uzun Kısa Süreli Bellek (Long Short Term Memory) en popüler derin 

öğrenme yöntemleridir (Mosavi vd. 2019). İlerleyen başlıkta tez çalışmasında kullanılan 

ESA hakkında detaylı bilgiler verilmiştir. 

 

3.5.4 Evrişimli Sinir Ağları (Convolutional Neural Networks) 

 

Evrişimli ağlar veya Evrişimli Sinir Ağları (ESA) grid benzeri topolojiye sahip verileri 

işlemek için kullanılan, yapısında bulunan en az bir katmanında genel matris çarpımı 

yerine evrişim işlemi kullanılan özel bir tür sinir ağıdır (LeCun 1989, LeCun vd. 1998).  

Hubel ve  Wiesel (1962) kedilerin görsel korteksinde iki tane ana hücre tipi 

keşfetmişlerdir. İlk hücre tipi basit hücrelerdir ve belirli konumlara yerleştirilen açık veya 

koyu çubuklara tepki gösterir. İkinci tip olan daha karmaşık hücreler, birinci tip 

hücrelerden daha az katı yanıt profillerine sahiptir. Bu hücreler hala tercih edilen yönlere 

sahiptir, ancak birkaç farklı konumdaki bir çubuğa aynı güçlü şekilde yanıt 

verebilmektedir. Bu karmaşık hücrelerin büyük olasılıkla, tercihen aynı yönelimde ve 

konumları farklı olan birkaç basit hücreden girdi aldığı sonucuna varılmıştır. 

Fukushima (1980), Hubel ve  Wiesel (1962)’ın kedilerin görsel korteksleri hakkındaki 

bulgularını görsel sistemin işleyen bir modeline dönüştürmüştür. Neocognitron olarak 

isimlendirilen bu model modern evrişimli sinir ağlarının habercisidir. Modelin şematik 

gösterimi Şekil 3.10‘da verilmiştir. Şekilden de görüleceği üzere iki ana hücre tipi 

içermektedir. S-hücreleri ismini kedi gözündeki birinci tip basit hücrelerden almaktadır 

ve bu hücrelerin temel özelliklerini kopyalar. Özellikle, S-hücresi yanıtlarını oluşturmak 

için giriş görüntüsündeki her konuma 2 boyutlu ağırlık gridi uygulanır. C hücreleri ise 

ismini kedi gözündeki ikinci tip olan karmaşık hücrelerden almaktadır ve bu hücrenin 

tepkisi aynı düzlemden ancak farklı konumlardan gelen birkaç S hücresinin doğrusal 

olmayan bir fonksiyonudur.  
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Şekil 3.10 Neocognitron ağının şematik gösterimi (Fukushima 1980). 

 

ESA’ların gücünün ilk büyük gösterimi LeCun vd. (1989) tarafından geri yayılım 

algoritması kullanılarak süpervizyonla eğitilmiş küçük bir ESA'nın el yazısıyla yazılan 

rakamların sınıflandırmasını gerçekleştirebildiği ile gösterilmiştir. Böylece LeNet modeli 

geliştirilmeye başlanmıştır. 1998 yılında LeCun ESA’nın el yazısı tanıma konusunda 

diğer modellerden daha yüksek başarı gösterdiği sonucuna ulaşmışlardır (LeCun vd. 

1998). Ancak bu ağlar 2012 yılındaki ImageNet yarışmasında en yüksek başarıya sahip 

olan AlexNet ağının tanıtımına kadar popüler olamamışlardır (Lindsay 2020).  Şekil 

3.11’de LeCun’un LeNet5 mimarisi şematik olarak gösterilmiştir.  

 

 

Şekil 3.11 LeNet5 ESA mimarisinin şematik gösterimi (LeCun vd. 1998).  



34 

Krizhevsky vd. (2017) ImageNet yarışmasında tasarladıkları AlexNet mimarisiyle 

bilgisayarlı nesne tanımlama hata oranını %26,2’den %15,4’e düşürmüşlerdir. Bu 

çalışma itibariyle ESA giderek popülerleşmeye başlamıştır.  Literatürde en bilinen ESA 

mimarileri AlexNet, VGG ve GoogLeNet, Microsoft ResNet, ZF Net, R-CNN, Fast R-

CNN ve Faster R-CNN’dir (İnik ve Ülker 2017). 

ESA, birden çok dizi biçiminde gelen verileri işlemek için tasarlanmıştır. Bu yapılara 

örnek olarak; sinyaller ve diziler olmak üzere 1 boyutlu veriler, görüntüler ve ses 

spektrogramları olmak üzere 2 boyutlu veriler, video ve hacimsel görüntüler olmak üzere 

3 boyutlu veriler gösterilebilir (LeCun vd. 2015). Ayrıca DÖ kavramına dair temel 

mimari de ESA olarak kabul edilmektedir (İnik ve Ülker 2017). Genellikle ESA, evrişim 

katmanları (convolution layers), havuzlama katmanları (pooling layers) ve tam bağlı 

katmanlar (fully connected layers) olmak üzere üç temel bileşenden oluşmaktadır. Her 

bileşenin farklı bir rolü vardır (Li Y vd. 2018). Art arda sıralanan bu katmanlar ile, ilk 

giriş katmanından son sınıflandırma katmanına kadar sonuca etki eden çeşitli özellikler 

elde edilmekte ve son katman ile de sınıflandırma işlemi yapılmaktadır. Ağın eğitiminde 

iki temel aşamadan bahsedilebilir. Bu aşamalar ileri yayılım (forward propagation) ve 

geriye doğru yayılım (backpropagation) aşamalarıdır. İleri yayılımda amaç giriş 

görüntüsünü her katmandaki geçerli ağırlık (weight) ve yanlılık (bias) parametreleriyle 

temsil etmektir. Test için etiketlenmiş pikseller ile modelin tahminleri arasında zarar 

maliyeti hesaplanır. Daha sonra zarar maliyetine dayanarak, geriye doğru yayılım 

algoritması her parametrenin eğimini zincir kuralları ile hesaplar. Tüm parametreler 

gradyanlara göre güncellenir ve model bir sonraki iterasyon için hazırlanır. Bu aşamalar 

yeterli sayıda tekrarlandıktan sonra ağın öğrenme işlemi tamamlanır (İnik ve Ülker 2017, 

Bayati 2019). İlerleyen başlıklarda ESA’nın temel katmanları olan giriş katmanı, evrişim 

katmanı, havuzlama katmanı ve tam bağlı katman anlatılmıştır. 

 

3.5.4.1 Giriş Katmanı (Input Layer) 

 

ESA’nın ilk katmanı giriş katmanıdır. Giriş katmanında giriş verisi ağa ham olarak 

verilmektedir. ESA ile sınıflandırılacak hiperspektral görüntünün boyutu X olarak 

düşünülürse 𝑋 ∈ 𝑅𝑀×𝑁×𝐷 olarak ifade edilir. Burada M satır sayısı, N sütun sayısı ve D 
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bant sayısıdır. X görüntüsünün yanında yer sınıf etiketlerini içeren görüntü y olarak 

isimlendirilirse 𝑦 ∈ 𝑅𝑀×𝑁×1 boyutundadır. GT görüntüsündeki piksel etiketleri 𝑌 =

(0, 𝑦1, 𝑦2, … , 𝑦𝑐) olarak ifade edilebilir. Bu kümedeki 0 ifadesi, y verisinde o pikselin 

sınıfının belli olmadığını; yc ifadesi ise bir sayıya göre kodlanmış sınıf numarasını ifade 

etmektedir. Hiperspektral görüntülerdeki pikseller, yüksek sınıf içi değişkenlik ve sınıflar 

arası benzerliğe sahip karma arazi örtüsü sınıfları tarafından temsil edilmektedir. Bu 

problemin üstesinden gelmek sınıflandırma modelleri için büyük bir zorluktur. Birbirleri 

arasında yüksek korelasyona sahip olan bu spektral fazlalığı ortadan kaldırmak için 

orijinal görüntüye TBA uygulanır (Roy vd. 2019). Böylelikle görüntünün spektral 

özellikleri büyük ölçüde korunarak daha az sayıda bant içermek suretiyle görüntü 𝑋𝑚 ∈

𝑅𝑀×𝑁×𝐵 boyutuna dönüştürülür. 

Xm verisinin ESA modellerinin eğitiminde kullanılması için görüntü üst üste binen ve 

merkez pikselin sınıfına göre etiketlenmiş 3 boyutlu görüntü küpleri oluşturulmalıdır. 

Görüntü küplerinin pencere boyutu 𝑆 × 𝑆 olması varsayılırsa ilk aşamada Xm görüntüsüne 

(𝑆 − 1)/2 sayısında sıfır dolgu (zero padding) uygulanarak görüntü boyutu 𝑋𝑚 ∈

𝑅(𝑀+(𝑆−1))×(𝑁+(𝑆−1))×𝐵 şekline dönüştürülür. Daha sonra Xm görüntüsü üzerinde operatör 

gezdirilerek 𝑃 ∈ 𝑅𝑆×𝑆×𝐵 şeklinde görüntü küpleri ve 𝑦𝑃 ∈ 𝑅1×1×1 sınıf etiketi 

oluşturulur. Görüntüden oluşan görüntü küplerinin sayısı (𝑀 − 𝑆 + 1) × (𝑁 − 𝑆 + 1) 

formülüyle bulunur. Sınıf etiketi 0 olan; yani ait olduğu bilinmeyen görüntü küpleri 

algoritmanın eğitiminde kullanılamayacağından bu görüntü küpleri silinmelidir. Kalan 

görüntü küpleri ESA modelinin eğitimi ve model doğruluğunun tespiti için eğitim ve test 

kümesi olarak ayrılır. Ayrılan Xeğitim eğitim kümesi ve yeğitim sınıf etiketi matrisi ESA’nın 

giriş katmanıdır. 

 

3.5.4.2 Evrişim Katmanı (Convolutional Layer) 

 

Evrişim katmanı ESA’da en az bir tane bulunan ve ESA’nın temelini oluşturan öznitelik 

çıkarma katmanıdır. Evrişim katmanında çeşitli çekirdekler tüm görüntü üzerinde 

gezdirilir ve özellik haritaları oluşturulur (Guo vd. 2016). Görüntülerde komşu pikseller 

arasında, görüntü içindeki konumlarından bağımsız olarak birçok konumsal ilişki 
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bulunmaktadır (Fukushima 1980). Evrişim işlemi ile çeşitli filtreler bu konumsal ilişkileri 

ortaya çıkarmaktadır. Evrişim katmanının bazı avantajlar sağlamaktadır. Görüntünün 

tamamı üzerinden ağırlık paylaşımı, yanıt başına parametre sayısını azaltmaktadır. Yerel 

bağlantı komşu pikseller arasındaki korelasyonu öğrenmektedir. Giriş görüntüsünde 

kaydırılan bir nesne, karşılık gelen yanıtları benzer şekilde basitçe değiştirir, bu durum 

eşdeğerlilik (equivariance) olarak adlandırılır (Zeiler 2013). Evrişim işleminde girdi 

görüntü üzerinde çeşitli kenar çıkarma filtreleri uygulanır. Şekil 3.12’de evrişim işlemi 

için bir örnek gösterilmiştir. 

 

 

Şekil 3.12 Evrişim işlemi (Ghatak 2019). 

 

Yukarıdaki şekilde görüleceği üzere girdi görüntü 6×6, evrişim filtresi 3×3 boyutundadır. 

Evrişim filtresinin merkez pikseli (2, 2)’dir. Girdi görüntüde bu merkez piksele denk 

gelen matris elemanı merkeze alınacak şekilde, girdi görüntüsünün (1:3, 1:3) kısmı işleme 

alınır ve evrişim filtresiyle elemanlar birebir çarpılarak toplanır. 
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7 0 2   1 0 1  

5 1 3 1 0 1
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 − =
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 +  + − +  +  + − +  +  + − =1 1 3 0 5 1 7 1 0 0 2 1 5 1 1 0 3 1 3  

 

Evrişim işlemi uygulandıktan sonra çıktı matrisinin ilk pikselinin değeri 3 olacaktır. Bu 

işlem sırasıyla belirlenen kaydırma adımı kadar kaydırılarak tüm piksellere uygulanır ve 

sonuç görüntüsü elde edilir. İşlem girdi matrisinin (2, 2) elemanından başlatıldığı için 
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girdi ve çıktı matrisinin boyutları aynı olmayacaktır. Evrişim işlemi gerçekleştirilirken 1 

boyutlu evrişim için eşitlik (3.24), 2 boyutlu evrişim için eşitlik (3.25) ve 3 boyutlu 

evrişim için eşitlik (3.26) kullanılmaktadır. 
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Bu formüllerde, 𝑣 özellik haritalarının çıktısını, S, Q, R sırasıyla spektral ve konumsal 

çekirdek boyutlarını, (𝑠, 𝑞, 𝑟) çekirdek indekslerini ve (𝑥, 𝑦, z) sırasıyla 2 konumsal ve 1 

spektral olmak üzere özellik haritaları indekslerini ifade eder. Çekirdek parametreleri w 

sembolü belirtirken (𝑖, 𝑗, 𝑝) sembolleri de sırasıyla girdi katmanı, çıktı katmanı ve özellik 

haritaları indekslerini tanımlar. 𝑃 özellik haritaları sayısını, 𝑃𝑖 de i. katmandaki özellik 

haritalarını temsil eder. Yanlılık terimi 𝑏 ile gösterilirken 𝑓 modelde kullanılan 

aktivasyon fonksiyonunu gösterir. 

Evrişim işleminin ardından uygulanan aktivasyon fonksiyonu, önceki katmandan gelen 

girdi verilerini beklenen çıktıya daha yakın olan anlamlı bir gösterime dönüştüren 

matematiksel bir işlevdir (Ghatak 2019).  Aktivasyon fonksiyonu geriye yayılım 

algoritmasının uygulanması aşamasında türevlenebilir ve doğrusal bir fonksiyon 

oluşturduğu için modelin öğrenme işlevinde önemli bir rol oynamaktadır. Genellikle 

evrişimli yanıtlar eşitlik (3.27)’de verilen sigmoid, eşitlik (3.28)’de verilen tanh veya 

eşitlik (3.29)’da verilen düzeltilmiş doğrusal birimler (Rectified Linear Unit - ReLU)  gibi 

doğrusal olmayan bir aktivasyon fonksiyonundan geçirilmektedir.  

 

( )
−

=
+

1

1 exp Z
Z       (3.27) 
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( )
−

−

−
=

+

exp exp
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Z Z

Z Z
g Z       (3.28) 

( ) ( )=max ,  0g Z Z       (3.29) 

 

Nair ve  Hinton (2010) tarafından önerilen ReLU fonksiyonu (Şekil 3.13) sigmoid ve tanh 

fonksiyonları ile kıyaslandığında üstel işlemler içermemesi ve doğrudan 0 değerinde 

eşiklenmesi sayesinde hesaplanması çok daha basittir. Sigmoid ve tanh fonksiyonlarında 

kaybolan gradyan problemi görüldüğünden ve çok yavaş bir şekilde yakınsadıklarından 

dolayı derin öğrenme problemlerinin çözümünde genellikle tercih edilmemektedir 

(Bhardwaj vd. 2018). 

 

 

Şekil 3.13 ReLU aktivasyon fonksiyonunun grafiği (Agarap 2018). 

 

3.5.4.3 Havuzlama Katmanı (Pooling Layer) 

 

ESA mimarisinde evrişim katmanlarının ardından genellikle havuzlama katmanları 

bulunmaktadır. Havuzlama ile konumsal bilgi kaybı olmaksızın aktivasyon haritalarının 
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konumsal boyutunu ve ağdaki parametre sayısını azaltmak amaçlanır. Böylece genel 

hesaplama karmaşıklığı azaltılır ve aşırı uyum (overfitting) sorununu kontrol almayı 

hedefler (Aloysius ve Geetha 2017). Bir havuzlama katmanı, bir evrişimli katmanın 

çıktısını girdi olarak alır ve alt örnekleme (subsampling) işlemi gerçekleştirir (Hinton vd. 

2012). Çok bantlı görüntülerde havuzlama her banda ayrı ayrı uygulanır. Havuzlama 

işleminde havuz boyutu (pooling window size) ve kaydırma adımı (stride) olmak üzere 

iki parametre mevcuttur. Ayrıca havuzlama fonksiyonlarının da bazı çeşitleri 

bulunmaktadır. Bunlar maksimum havuzlama, ortalama havuzlama, stokastik havuzlama 

(Zeiler ve Fergus 2013),  spektral havuzlama (Rippel vd. 2015), uzamsal piramit 

havuzlama ve çok ölçekli sırasız havuzlama operasyonlarıdır (Aloysius ve Geetha 2017). 

Genellikle maksimum havuzlama ve ortalama havuzlama yöntemleri kullanılmaktadır. 

Maksimum havuzlamada alt örnekleme yapılacak matris alt kümesindeki elemanların en 

yüksek değeri alınır. Ortalama havuzlamada ise alt örnekleme yapılacak matris alt 

kümesindeki elemanların aritmetik ortalamaları alınır. Şekil 3.14’te 5×5 boyutundaki 

girdi matrise 1×1 kaydırma adımı ile 3×3 boyutunda havuzlama operasyonu uygulanması 

gösterilmiştir. 

 

 

Şekil 3.14 5×5 boyutundaki girdi matrise 1×1 kaydırma adımı ile 3×3 boyutunda havuzlama 

operasyonu uygulanması (Dumoulin ve Visin 2018).  
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3.5.4.4 Tam Bağlı Katman (Fully Connected Layer) 

 

Bir ESA mimarisinde evrişim, aktivasyon ve havuzlama katmanlarının ardından tam 

bağlantılı katman gelmektedir. Temelde geleneksel YSA’daki ile tamamen aynı olan tam 

bağlantılı katman kendisinden önceki katmanların öğrendiği matris formundaki 

parametreleri girdi olarak alır ve bu veriyi vektör formuna dönüştürür (Li Y vd. 2018). 

Yani bir önceki katmandaki tüm nöronları kendisinde bulunan başka nöronlara bağlar. 

Bu işlem düzleştirme (flattening) olarak adlandırılır. Birden fazla tam bağlantılı katman 

kullanılabilir ve nihai çıktı sınıf sayısı kadardır. Tam bağlantılı katmanın çıktısı Softmax 

gibi bir sınıflandırıcıya bağlanarak sınıflandırma işlemi gerçekleştirilebilir (Krizhevsky 

vd. 2017). 

 

3.5.4.5 2B ESA Mimarisi 

 

Önerilen 2B ESA mimarisi oluşturulurken Fokeas’ın (İnt.Kyn.7) Github sayfasında 

paylaştığı ESA modeli örnek alınmıştır. Şematik gösterimi Şekil 3.15’te verilen modelde 

orijinal hiperspektral görüntü küpü  𝑋 ∈ 𝑅𝑀×𝑁×𝐷 olarak ifade edildiği düşünülsün. 

Burada M satır sayısı, N sütun sayısı ve D bant sayısıdır. X görüntüsünün yanında yer 

sınıf etiketlerini içeren görüntü y olarak isimlendirilirse 𝑦 ∈ 𝑅𝑀×𝑁×1 boyutundadır. GT 

görüntüsündeki piksel etiketleri 𝑌 = (0, 𝑦1, 𝑦2, … , 𝑦𝑐) olarak ifade edilebilir. Eğitim 

kümesi oluşturulmadan önce X görüntüsü boyut indirgenmesi amacıyla TBA işlemine 

tabi tutulur ve ilk B tane temel bileşen ile görüntü küpü yeniden oluşturulur. Böylelikle 

orijinal görüntünün spektral özelliklerini büyük ölçüde koruyan ve daha az sayıda bant 

içeren 𝑋𝑚 ∈ 𝑅𝑀×𝑁×𝐵 boyutuna dönüştürülür. Ağın eğitilmesi için komşuluk çıkarımı 

işlemiyle Xm verisi 𝑃 ∈ 𝑅𝑆×𝑆×𝐵 boyutlarında (𝑀 − 𝑆 + 1) × (𝑁 − 𝑆 + 1) sayıda görüntü 

küpleri oluşturulur. Bu görüntü küplerinin karşılık gelen merkez piksellerine karşılık 

gelen sınıf etiketleri ile 𝑦𝑃 ∈ 𝑅1×1×1 şeklinde bir vektör oluşturulur. Bütün veri 

küplerinin ait olduğu sınıf bilinmediğinden bu görüntü küpleri ayıklanır. Kalan görüntü 

küpleri ESA modelinin eğitimi ve model doğruluğunun tespiti için eğitim ve test kümesi 

olarak ayrılır. Ayrılan Xeğitim eğitim kümesi ve yeğitim sınıf etiketi matrisi ESA’nın giriş 
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katmanıdır. 2B ESA’nın ilk evrişim katmanında eğitim kümesindeki görüntü küplerine 

3×3 boyutunda 45 filtre uygulanır ve bu katman sonucundaki çıkan özelliklere dolgulama 

işlemi uygulanır. Ardından uygulanan ikinci evrişim katmanında 3×3 boyutunda 135 

filtre uygulanır. Oluşan sinir ağı düğümlerinde 25% seyreltme işlemi uygulandıktan sonra 

düzleştirme işlemi uygulanır. Böylece iki evrişim katmanıyla konumsal öznitelik 

öğrenme işlemi tamamlanır. Ardından 50% seyreltme ile tam bağlı katman uygulanır. 

Son olarak 1×1×C olmak üzere Softmax sınıflandırma işlemi uygulanır. Burada C 

hiperspektral görüntüdeki sınıf sayısını ifade etmektedir. 

 

 

Şekil 3.15 Önerilen 2B ESA modelinin şematik gösterimi. 

 

Model kurulurken evrişim katmanlarındaki aktivasyon fonsiyonları ReLU seçilmiştir. 

Modelin optimizasyon fonksiyonu SGD (Stochastic Gradient Descent) (Zinkevich vd. 

2010) kullanılmıştır. Yığın boyutu 256 ve epok sayısı 500 olarak uygulanmıştır. Salinas 

Scene veri seti için çıktı şeklini ve öğrenilen parametre sayılarını gösteren model özeti 

Çizelge 3.3‘te verilmiştir. 
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Çizelge 3.3 Önerilen 2B ESA modelinin Salinas Scene veri seti için özeti. 

Katman Çıktı Şekli Öğrenilen Parametre Sayısı 

conv2d_1 (2B Evrişim) (7, 7, 45) 6 120 

conv2d_2 (2B Evrişim) (5, 5, 135) 54 810 

dropout_1 (Seyreltme) (5, 5, 135) 0 

flatten_1 (Düzleştirme) (3375) 0 

dense_1 (Yoğun) (90) 303 840 

dropout_2 (Seyreltme) (90) 0 

dense_2 (Yoğun) (16) 1456 

Eğitilebilir parametre sayısı: 366 226 

 

3.5.4.6 3B+2B ESA Mimarisi 

 

Bir önceki bölümde anlatılan 2B ESA mimarisinin oluşturulmasında eğitim ve test veri 

kümelerinin ayrılmasına kadar olan süreç 3B+2B ESA mimarisi için de aynı şekilde 

uygulanmaktadır. Bu ESA mimarisinin oluşturulmasında ise Roy vd. (2019)’un 

oluşturduğu HybridSN ESA modeli örnek alınmıştır. Bu ağda eğitim kümesine üç tane 

3B evrişim katmanı sırasıyla uygulanır. Evrişim işlemlerindeki filtre boyutları 3×3×7, 

3×3×5 ve 3×3×3 olup filtre sayıları ise sırasıyla 8, 16 ve 32 şeklindedir. Her katmanda 

dolgulama işlemi de uygulanır. 3B evrişim katmanlarında gerçekleştirilen konumsal-

spektral öznitelik çıkarımının ardından uygulanan 3×3 boyutunda 64 filtre içeren 2B 

evrişim katmanı ile konumsal öznitelik çıkarımı işlemi gerçekleştirilir. Düzleştirme 

işleminin ardından 40% oranında düğüm seyreltme ile tam bağlı katmanlar oluşturulur. 

Son olarak 1×1×C olmak üzere Softmax sınıflandırma işlemi uygulanır. Detayları verilen 

3B+2B ESA mimarisinin şematik gösterimi Şekil 3.16‘da verilmiştir. 

 

Şekil 3.16 Önerilen 3B+2B ESA mimarisinin şematik gösterimi.  
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3B+2B ESA modeli kurulurken evrişim katmanlarındaki aktivasyon fonsiyonları ReLU 

seçilmiştir. Modelin optimizasyon fonksiyonu olarak Adam (Kingma ve Ba 2014) 

optimizasyon algoritması kullanılmıştır. Yığın boyutu 256 ve epok sayısı 500 olarak 

uygulanmıştır. Salinas Scene veri seti için çıktı şeklini ve öğrenilen parametre sayılarını 

gösteren 3B+2B ESA modeli özeti Çizelge 3.4‘te verilmiştir. 

 

Çizelge 3.4 Önerilen 3B+2B ESA modelinin Salinas Scene veri seti için özeti. 

Katman Çıktı Şekli Öğrenilen Parametre Sayısı 

input_1 (Girdi Katman) (7, 7, 15, 1) 0 

conv3d_1 (3B Evrişim) (7, 7, 15, 8) 512 

conv3d_2 (3B Evrişim) (7, 7, 15, 16) 5 776 

conv3d_3 (3B Evrişim) (7, 7, 15, 32) 13 856 

reshape_1 (Yeniden Şekillendirme) (7, 7, 480) 0 

conv2d_1 (2B Evrişim) (5, 5, 64) 276 544 

flatten_1 (Düzleştirme) (1600) 0 

dense_1 (Yoğun) (256) 409 856 

dropout_1 (Seyreltme) (256) 0 

dense_2 (Yoğun) (128) 32 896 

dropout_2 (Seyreltme) (128) 0 

dense_3 (Yoğun) (16) 2 064 

Eğitilebilir parametre sayısı: 741 504 

 

3.6 Doğruluk Analizi 

 

UA’da görüntülerin sınıflandırılması sürecinde yer doğrulama örneklerinin seçimi, 

kullanılan sınıflandırma modeli ve mevcutsa sınıflandırma modelinin kullanıcı tarafından 

belirlenen parametreleri haritaların doğruluğunu olumsuz yönde etkileyebilmektedir. Bu 

sebeple harita doğruluğunun belirlenmesi önem arz etmektedir. Üretilen tematik haritanın 

kullanıcıları haritanın kalitesinin belirlenmesi için, haritanın üreticisi de harita üretim 

sürecini değerlendirmek ve doğruluğu iyileştirmek için haritaların doğruluklarına ihtiyaç 

duymaktadır. Tematik haritaların doğruluğunun araştırılmasında çeşitli yöntemler 

mevcut olmasına rağmen en yaygın kullanılan yöntemlerden birisi, belirli bir alan kümesi 

için tahmin edilen ve gerçek sınıf etiketlerinin karşılaştırılmasıdır (Foody 2004). Bu 

karşılaştırmadan yararlanılarak hata matrisi oluşturulur ve bu matris üzerinden 

sınıflandırma haritasının doğruluğunu belirlemek için çeşitli hata metrikleri 
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hesaplanmaktadır.  

Çalışmada gerçekleştirilen sınıflandırma işlemlerinin doğruluklarının analizi için genel 

doğruluk, üretici doğruluğu, kullanıcı doğruluğu ve Kappa katsayısı değerleri 

hesaplanmıştır. Bunun yanında aynı eğitim verisi ile eğitilen modellerin sınıflandırma 

performansları arasında istatistiksel olarak anlamlı bir fark olup olmadığı McNemar’s 

Testi ile incelenmiştir. 

Doğruluk analizinin gerçekleştirilebilmesi için yer sınıfını doğru temsil ettiği kabul edilen 

bir test veri setinin ayrılmış olması gerekmektedir. Bunun için ilk başta görüntü üzerinde 

sınıfları temsil eden bölgeler yersel çalışmalar, önceden üretilmiş haritalar veya yüksek 

çözünürlüklü görüntüler kullanılarak belirlenir. Bu veriye yer doğrulama verisi ismi 

verilmektedir. Tez kapsamında kullanılan veri setlerinin yer doğrulama verilerinin bir 

kısmı algoritmaların eğitimi için; geriye kalan kısmı ise algoritmaların başarısının testi 

için doğruluk analizinde referans veri olarak kullanılması için ayrılmıştır.  

Doğruluk analizinin ilk adımında test piksellerinin gerçek sınıfları ile model tarafından 

atandıkları sınıflar karşılaştırılarak hata matrisi oluşturulmaktadır. Hata matrisinin 

şematik gösterimi Şekil 3.17’de verilmiştir.  

 

 

Şekil 3.17 Hata matrisinin şematik gösterimi.  
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Kontrollü sınıflandırmada eğitim verisiyle sınıflandırma modeli oluşturulur. Ardından 

test için ayrılan veri seti söz konusu model kullanılarak sınıflandırılır. Sınıflandırma 

işlemi sonucunda test piksellerinin gerçek sınıfları ile model tarafından atandıkları 

sınıfları karşılaştırılarak hata matrisi oluşturulur. Sınıflandırılan görüntü verisinde sınıf 

sayısının k olduğu varsayılırsa hata matrisi  k × k boyutundadır. Test piksellerinden gerçek 

sınıfı i olup sınıflandırma modeli tarafından i sınıfına atanan piksellerin sayısı 

belirlenerek hata matrisinin nii elemanına yazılır. Gerçek sınıfı i olup sınıflandırma modeli 

tarafından x sınıfına atanarak yanlış sınıflandırılan piksellerin sayısı ise nxi elemanına 

yazılır. Bu işlem tüm sınıflar için tekrarlanıp matrisin tüm elemanları bulunarak hata 

matrisinin oluşturulması sağlanır. 

Oluşturulan hata matrisinden genel doğruluk, üretici doğruluğu, kullanıcı doğruluğu ve 

Kappa katsayısı hesaplanması ilerleyen başlıklarda detaylı olarak anlatılmıştır. 

 

3.6.1 Genel Doğruluk 

 

Kontrollü sınıflandırmada en yaygın kullanılan doğruluk kriteri olan genel doğruluğun 

hesaplanması eşitlik (3.30)’da gösterilmiştir. 
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Genel doğruluk, kullanımı kolay bir performans metriğidir. Ancak her bir sınıfa ait 

sınıflandırma performansı hakkında bilgi vermemektedir. Ayrıca bazı sınıfların düşük 

doğrulukta sınıflandırma performansı göstermesi, yüksek doğruluğa sahip sınıflar 

tarafından maskelenebilmektedir (Sunar vd. 2011). Bu durumlarda her bir sınıfa ait üretici 

ve kullanıcı doğruluklarının hesaplanması sınıflandırma performansı hakkında daha 

detaylı bilgi verecektir.  
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3.6.2 Üretici ve Kullanıcı Doğrulukları 

 

Hata matrisi üzerinden üretici doğruluğunun hesaplanması eşitlik (3.31)’de, kullanıcı 

doğruluğunun hesaplanması ise eşitlik (3.32)’de gösterilmiştir. 
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Üretici doğruluğu modelin sınıflandırma performansının göstergesidir. Kullanıcı 

doğruluğu ise sınıflandırılmış haritanın gerçek yeryüzünü ne kadar iyi temsil ettiğinin 

göstergesidir (Congalton ve Green 2019). Şekil 3.17’deki hata matrisinde 1 numaralı sınıf 

için düşünülürse; sınıflandırma sonucu üretilen tematik haritanın kullanıcısı, 

sınıflandırma algoritması tarafından 1 olarak etiketlenen bir pikselin gerçekte (arazide) 1 

olma olasılığıyla daha çok ilgilenir. Bu durum harita doğruluğunun göstergesidir ve 

kullanıcı doğruluğu olarak adlandırılır (Richards 2013). Yani ÜD1 değeri, 1 sınıfının 

yalnızca ÜD1 kadarlık kısmının harita üzerinde doğru etiketlendiğini göstermektedir. 

 

3.6.3 Kappa İstatistiği 

 

Kappa istatistiği, ikili çeşitlilik ölçümü için kullanılır ve sınıflandırma algoritmalarının 

kararlarının anlaşmasını ortaya çıkarmak için önerilir (Viera ve Garrett 2005). Kappa, 

anlaşma (agreement) (θ1) ve anlaşmazlık (disagreement) (θ2) ölçümleri üzerinden 

hesaplanır. Anlaşma ve anlaşmazlık ölçümleri üzerinden türetilmiş Kappa istatistiği 

formülü eşitlik (3.33)’te verilmiştir. 
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Kappa istatistiği değeri tek başına kullanıldığında sınıflandırma performansı hakkında 

yeterli bilgi veremeyebilir. Bazı analistler hala Kappa kullanmak yerine genel doğruluk 

kullanmayı veya tam hata matrisi sunumunu tercih etmektedir (Richards 2013). Kappa 

değeri 0 ile 1 arasında değer almaktadır. Kappa değerinin yorumlanmasına ilişkin 

ölçeklendirme ise Çizelge 3.5’te verilmiştir. 

 

Çizelge 3.5 Kappa İstatistiği değerinin yorumlanması (Viera ve Garrett 2005). 

Kappa Değer Aralığı Sınıflandırma Yorumu 

< 0.40 Zayıf 

0.41-0.60 Orta 

0.61-0.75 İyi 

0.76-0.80 Çok İyi 

> 0.81 Neredeyse Mükemmel 

 

3.6.4 McNemar’s Testi 

 

McNemar’s Testi, sınıflandırma sonuçlarını en gelişmiş yöntemlerle elde edilen 

sınıflandırma sonuçlarıyla karşılaştırmak için kullanılan nesnel ve istatistiksel bir 

kriterdir. Bu test sınıflandırıcıların sonuçlarının istatistiksel olarak farklı olup olmadığını 

anlamanın yaygın bir yoludur. Parametrik olmayan McNemar’s Testi de tematik harita 

karşılaştırması için de uygundur (Foody 2004). McNemar’s Testi için 2×2 boyutunda 

olumsallık tablosu oluşturulur (Şekil 3.18).  Test veri setindeki her pikselin yer doğrulama 

sınıfı ile Model 1 ve Model 2 tarafından etiketlendiği sınıfları karşılaştırılır. Her iki 

algoritma tarafından doğru sınıflandırılan piksellerin sayısı matrisin nii elemanına; her iki 

algoritma tarafından yanlış sınıflandırılan piksellerin sayısı matrisin njj elemanına; Model 

1’in doğru sınıflandırıp Model 2’nin yanlış sınıflandırdığı piksellerin sayısı matrisin nij 
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elemanına ve Model 2’nin doğru sınıflandırıp Model 1’in yanlış sınıflandırdığı piksellerin 

sayısı matrisin nji elemanına yazılır. 

 

 

Şekil 3.18 McNemar’s Testi olumsallık tablosu. 

 

Oluşturulan McNemar’s olumsallık matrisindeki değerler kullanılarak eşitlik (3.34)’a 

göre bir istatistiksel değer hesaplanır (Japkowicz ve Shah 2011).  

 

( )


− −
=

+

2

2
1

ij ji

Mc

ij ji

n n

n n
      (3.34) 

 

Hesaplanan istatistiksel değer %95 güven aralığında Ki-Kare tablo değeri olan χ1,0.05
2 =

3,841 değeriyle kıyaslanır. McNemar’s testinde sıfır hipotezi Model 1 ve Model 2’nin 

aynı performansa sahip olduğunu; dolayısıyla aynı hata oranına sahip olduğunu 

varsaymaktadır (Japkowicz ve Shah 2011). Değerin χ1,0.05
2 = 3,841’den büyük çıkması 

durumunda sıfır hipotezi reddedilir. Başka bir deyişle Model 1 ile Model 2 arasındaki 

sınıflandırma doğruluğu arasında istatistiksel olarak anlamlı bir fark olduğu kanısına 

varılır. 
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4. UYGULAMA 

 

Tez çalışmasında hiperspektral görüntülerin sınıflandırma işlemi için yapılması gereken 

ön işlemler ENVI 5.3 ve MATLAB R2019a yazılımlarında gerçekleştirilmiştir.  

Sınıflandırma modellerinin geliştirilmesinde Python 3.7.9 tabanlı Spyder geliştirme 

ortamı kullanılmıştır. Kullanılan Python kütüphanelerine dair detaylar 0. numaralı başlık 

altında detaylandırılmıştır. Görüntülere TBA uygulanarak boyut indirgemesi 

gerçekleştirilmiştir. Görüntülere TBA uygulanması aşamasındaki analizler 4.1. numaralı 

başlık altında detaylı olarak verilmiştir.  

TBA uygulanarak boyutu indirgenmiş veri setlerine komşuluk çıkarımı uygulanarak 3B 

görüntü küpleri elde edilmiştir. Eğitim ve test amacıyla kullanılamayacak 3b görüntü 

küplerinin veri setinden çıkartılmasının ardından kalan yer doğrulama verileri eğitim ve 

test veri seti olmak üzere belirlenen oranda ayrılmıştır. Ardından veriler sınıflandırma 

modellerinin eğitimi için uygun bir biçimde şekillendirilmiştir. 

Modellerin eğitimi aşamasında DVM algoritması için 5 katlı çapraz doğrulama işlemi ile 

optimum parametreler tespit edilmiştir. Modeller eğitilirken işlem süreleri tespit 

edilmiştir. DVM algoritmasının eğitim işlem süresinde optimum parametrelerin 

belirlendiği süre de dahildir. Modeller kurulduktan sonra ayrılan test veri setleri ile 

doğrulukları test edilmiştir. Sınıflandırma haritaları ArcMap 10.8 yazılımında 

hazırlanmıştır. McNemar’s testi ise RStudio yazılımında gerçekleştirilmiştir. 

İlerleyen başlıklarda öncelikle tüm veri setlerinin TBA ile boyut indirgemesi sürecine 

dair analizler verilmiş, ardından veri seti bazında elde edilen sınıflandırma sonuçları 

sistematik olarak incelenmiştir. Her veri seti için yer sınıfları, eğitim ve test verilerinin 

ayrımına dair detaylar verilmiş, modellerin kurulması ile alakalı bilgilerin ardından 

sırasıyla 30%, 50% ve 70% eğitim veri seti oranına göre kurulan sınıflandırma 

modellerinin performansları ve sınıflandırma haritaları sunulmuştur. 
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4.1 TBA ile Veri Setlerinin Boyutlarının İndirgenmesi 

 

TBA yönteminde temel bileşenlerin bulunması aşamasında özdeğerler büyükten küçüğe 

doğru sıralanıp bu özdeğerlere karşılık gelen özvektörler seçilmektedir. Özdeğerin 

yüksek olması ilgili özvektörün veri hakkında daha yüksek bilgi içerdiğini; başka bir 

deyişle açıklanabilir varyansın yüksek olduğunu göstermektedir. Tez kapsamında 

kullanılan veriler için hesaplanan açıklanabilir varyansların grafikleri Şekil 4.1’de 

verilmiştir. Grafikler incelendiğinde tüm veri setleri için dördüncü temel bileşenden 

itibaren açıklanabilir varyansların sıfıra yakınsadıkları görülmektedir.  

 

 

Şekil 4.1 Dioni (a), Loukia (b), DFC13 (c) ve Salinas Scene (d) veri setleri için temel bileşenlerin 

açıklanabilir varyansları. 

 

Görüntülerin boyutlarının indirgenmesi aşamasında öne çıkan bir yöntem ya da kural 

bulunmamaktadır. Ancak özdeğerlerin kümülatif varyanslarının 95%’ini sağlayan 

özvektörlerin seçilmesi uygun görülmektedir (Çatalbaş 2014). Hiperspektral görüntülerin 
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TBA dönüşümünde hesaplanan temel bileşenler genellikle ilk iki bandında 95% 

açıklanabilir varyansı sağlamaktadır. Ancak iki temel bileşen ile algoritmaların öznitelik 

çıkarımları zorlaşacağından tez çalışmasında söz konusu kriter 99,5%’e çıkartılarak 

orijinal görüntüye en yakın miktarda özelliği sağlayabilecek temel bileşenler 

incelenmiştir. Tezde kullanılan veri setleri için hesaplanan kümülatif varyans grafikleri 

Şekil 4.2’de görülmektedir. Şekil 4.2a, Şekil 4.2b ve Şekil 4.2d incelendiğinde sırasıyla 

Dioni, Loukia ve Salinas Scene veri setleri için ilk dört temel bileşen 99,5% açıklanabilir 

varyans kriterini sağlarken Şekil 4.2c’de DFC13 veri setinde bu kriterin ilk üç temel 

bileşenin kullanımıyla sağlandığı açıkça görülmektedir. Kullanılan temel bileşen sayısı 

arttıkça kümülatif varyans değeri 100%’e (1.00) yakınsamaktadır. Sınıflandırma 

modelleri için uygulanacak TBA işleminin standartlaştırılması için kümülatif varyansın 

farklı sayıda bant kullanımında belirlenen eşiğe ulaşması ve her model için aynı sayıda 

temel bileşen kullanılması maksadıyla bütün veri setleri için en yüksek açıklanabilir 

varyansa sahip ilk 15 temel bileşenin kullanılması uygun görülmüştür.   

 

 

Şekil 4.2 Dioni (a), Loukia (b), DFC13 (c) ve Salinas Scene (d) veri setleri için temel bileşenlerin 

kümülatif varyansları.  
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4.2 Dioni Veri Seti Sınıflandırma Sonuçları 

 

Dioni veri setinin geleneksel MÖ ve DÖ algoritmaları ile sınıflandırılmasında yer 

doğrulama verilerinin eğitim ve test verisi olarak ayrılmasında Python: Scikit-Learn 

kütüphanesinin train_test_split fonksiyonu kullanılmıştır. Eğitim küme boyutunun 

araştırılması amacıyla eğitim veri kümesinin boyutu sırasıyla 30%, 50% ve 70% olarak 

seçilmiştir. Çizelge 4.1’de Dioni veri setinin sınıflara göre yer doğrulama verilerinin 

içerdiği etiketli veri sayısı, bunun yanında eğitim veri setinin boyutuna göre eğitim ve test 

için ayrılan etiketli verilerin dağılımları gösterilmiştir. 

 

Çizelge 4.1 Dioni veri setinde sınıflar ve 30%-50%-70% eğitim veri kümesi oranlarına göre 

eğitim ve test için ayrılan etiketli veri sayıları. 

Sınıf 

No 
Sınıf Adı 

Toplam 

(ni) 

Oran 
𝒏𝒊
∑𝒏

 

(%) 

30% Eğitim 

Veri Seti 

50% Eğitim 

Veri Seti 

70% Eğitim 

Veri Seti 

Eğitim 

30% 

Test 

70% 

Eğitim 

50% 

Test 

50% 

Eğitim 

70% 

Test 

30% 

1 Sürekli şehir yapısı 1262 6,3 379 883 631 631 883 379 

2 Mineral çıkarım sahaları 204 1,0 61 143 102 102 143 61 

3 Sulanmayan ekilebilir alanlar 614 3,1 184 430 307 307 430 184 

4 Meyve bahçeleri 150 0,7 45 105 75 75 105 45 

5 Zeytinlikler 1768 8,8 530 1238 884 884 1237 531 

7 İğne yapraklı ormanlar 361 1,8 108 253 180 181 253 108 

9 Yoğun sklerofil bitki örtüsü 5035 25,1 1511 3524 2518 2517 3524 1511 

10 Seyrek sklerofil bitki örtüsü 6374 31,8 1912 4462 3187 3187 4462 1912 

11 Seyrek bitki alanları 1754 8,8 526 1228 877 877 1228 526 

12 Kayalar ve kumluklar 492 2,5 148 344 246 246 344 148 

13 Su 1612 8,1 484 1128 806 806 1128 484 

14 Kıyı suları 398 2,0 119 279 199 199 279 119 

Rastgele olarak ayrımı gerçekleştirilen eğitim ve test kümelerinin dağılımları Şekil 4.3’te 

gösterilmiştir.  
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Şekil 4.3 Dioni veri seti (a) için eğitim-test piksellerinin sırasıyla 30%(b)-70%(c), 50%(d)-

50%(e) ve 70%(f)-30%(g) dağılımları. 

 

Dioni veri seti için DVM modelleri oluşturulurken literatürde de sıklıkla kullanılan RTF 

kernel fonksiyonu temsil edilmiştir. Yer doğrulama verisinin sırasıyla 30%, 50% ve 70% 

eğitim verisi olarak ayrıldığı durumlar için optimum parametrelerin tespiti 5 katlamalı 

çapraz doğrulama işlemi ile gerçekleştirilmiştir. Bütün veri küme boyutları için optimum 

parametreler C=10 ve γ=0,1 olarak belirlenmiştir. RO algoritmasında m=4 olarak 

belirlenirken N parametresi için her üç eğitim kümesi için öncül olarak 1000 karar ağacı 

ile modeller oluşturulmuştur. Öncül modellerin OOB hatalarını gösteren grafikler Şekil 

4.4’te verilmiştir. OOB hatasının grafikleri incelendiğinde 30% (Şekil 4.4aŞekil 4.3), 

50% (Şekil 4.4b) ve 70% (Şekil 4.4c) eğitim veri küme boyutları için   yaklaşık 150 karar 

ağacından sonra hata stabil olarak ilerlediği görülmüştür ve bu veri kümeleri ile asıl 

modeller kurulurken her üç RO modeli için de N=150 olarak seçilmiştir. 

 

 

Şekil 4.4 Dioni veri seti için sırasıyla 30% (a), 50% (b) ve 70% (c) eğitim kümesi boyutlarına 

göre RO algoritmasının OOB hataları. 
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ESA modellerinin eğitimi aşamasında her iki ESA modeli ve bütün eğitim veri kümesi 

boyutları için yığın boyutu 256 ve epok sayısı 500 olarak belirlenmiştir. Şekil 4.5’te her 

iki ESA modelinin farklı eğitim veri kümesi boyutlarına göre kayıp fonksiyonu ve model 

doğruluğu grafikleri verilmiştir. 2B ESA modellerinin tüm veri kümesi boyutları için 

kayıp fonksiyonu grafikleri incelendiğinde (Şekil 4.5a, Şekil 4.5e ve Şekil 4.5ı) hataların 

düzenli olarak düştüğü ve ilerleyen epoklarda sıfıra yaklaştığı görülmektedir. 3B+2B 

ESA modellerinin kayıp fonksiyonu grafiklerinin (Şekil 4.5c, Şekil 4.5g ve Şekil 4.5j) 

birkaç epok sonunda hızlıca düştükleri, ilerleyen epokların bazılarında anlık sıçramalar 

ile hataların maksimum 0,15 civarına yükselip geri düştükleri görülmektedir. 

 

 

Şekil 4.5 Dioni veri setinin sınıflandırılması için 30%, 50% ve 70% eğitim verisi ile oluşturulan 

ESA modellerinin kayıp fonksiyonu ve model doğruluğu grafikleri. 

 

Veri seti için ilk aşamada algoritmalar 30% eğitim verisi ile eğitildikten sonra yer 

doğrulama verisinin eğitim verisinden arta kalan 70%’lik test veri seti ile hata matrisleri 

oluşturulmuştur (Ek 1, Ek 2,   
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Ek 3 ve Ek 4). Bu hata matrislerinden hesaplanan genel doğruluk, kappa, üretici ve 

kullanıcı doğrulukları ek olarak işlem süreleri Çizelge 4.2’de verilmiştir. Tablodaki 

değerler incelendiğinde 98,60% genel doğruluk ile en başarılı algoritmanın 3B+2B ESA 

olduğu görülmektedir. Sınıf bazındaki doğruluklar incelendiğinde ise 3B+2B ESA’nın 

birkaç sınıf haricinde en yüksek üretici ve kullanıcı doğruluklarına sahip olduğu, 2B 

ESA’nın ise sınıf bazındaki doğruluk ölçütlerine ve genel doğruluğa göre ikinci en 

başarılı algoritma olduğu görülmektedir. İşlem süreleri açısından incelendiğinde RO 

algoritmasının eğitiminin ve tüm görüntünün sınıflandırılması aşamasında en hızlı 

algoritma olduğu açıkça görülmektedir. 

 

Çizelge 4.2 Dioni 30% veri seti için algoritmaların performansları. 

Sınıf Adı 

DVM  RO  2B ESA  3B+2B ESA 

Ü
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Ü
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Ü
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Sürekli şehir yapısı 86,99 86,30 91,99 78,03 97,87 93,66 98,59 94,90 

Mineral çıkarım sahaları 94,53 84,62 94,96 79,02 100,00 95,80 99,31 100,00 

Sulanmayan ekilebilir alanlar 92,33 89,53 93,06 90,47 96,06 96,28 95,24 97,67 

Meyve bahçeleri 86,32 78,10 90,70 74,29 94,74 85,71 97,65 79,05 

Zeytinlikler 90,97 92,73 89,75 94,02 97,52 98,63 97,08 99,19 

İğne yapraklı ormanlar 100,00 98,81 100,00 100,00 100,00 100,00 99,22 100,00 

Yoğun sklerofil bitki örtüsü 96,16 93,90 96,57 91,94 98,27 98,52 98,01 99,29 

Seyrek sklerofil bitki örtüsü 93,85 96,39 90,62 97,22 97,82 98,50 98,94 98,30 

Seyrek bitki alanları 95,27 95,03 93,30 91,86 99,27 99,27 99,84 99,43 

Kayalar ve kumluklar 99,41 97,38 98,22 96,22 99,71 99,42 99,71 99,71 

Su 99,82 100,00 99,82 100,00 100,00 100,00 100,00 100,00 

Kıyı suları 100,00 97,85 100,00 99,28 100,00 100,00 100,00 100,00 

Genel Doğruluk 94,61% 93,66% 98,29% 98,60% 

Kappa 0,933 0,921 0,979 0,983 

İşlem 

Süreleri 

(saniye): 

Eğitim 185,49 0,11 80,29 215,25 

Sınıflandırma 23,39 7,21 390,17 479,12 

 

Dioni 30% verisi için eğitilen algoritmalar tarafından oluşturulan sınıflandırma haritaları 

Şekil 4.6’da verilmiştir. Sınıflandırma sonuçları incelendiğinde görüntünün sağ tarafında 

yer alan bulut 2B ESA ve 3B+2B ESA ile spektral imza açısından en benzer olduğu 
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kayalar ve kumluklar sınıfına atanırken söz konusu bulutun RO tarafından kayalar ve 

kumluklar yoğun sklerofil bitki örtüsü ve seyrek sklerofil bitki örtüsü olmak üzere üç 

farklı sınıfa atama yaptığı görülmektedir. DVM algoritması ise aynı alanı sulanmayan 

ekilebilir alan, yoğun sklerofil bitki örtüsü ve seyrek sklerofil bitki örtüsü olarak 

sınıflandırmıştır. Bulutun gölgesi ise RO ve 2B ESA algoritmaları tarafından su ve kıyı 

suları olarak etiketlenmiştir.  
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Şekil 4.6 Dioni 30% veri seti (a) için DVM (b), RO (c), 2B ESA (d) ve 3B+2B ESA (e) 

algoritmaları ile oluşturulan sınıflandırma haritaları ve lejantı (f). 

 

Dioni veri seti için ikinci aşamada algoritmalar 50% eğitim verisi ile eğitildikten sonra 

yer doğrulama verisinin eğitim verisinden arta kalan 50%’lik test veri seti ile hata 

matrisleri oluşturulmuştur (Ek 5, Ek 6, Ek 7 ve Ek 8). Bu hata matrislerinden hesaplanan 

genel doğruluk, kappa, üretici ve kullanıcı doğrulukları ek olarak işlem süreleri Çizelge 

4.3’te verilmiştir. Tablodaki değerler incelendiğinde 99,17% genel doğruluk ile en 
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başarılı algoritmanın 2B ESA olduğu görülmektedir. Sınıf bazındaki doğruluklar 

incelendiğinde ise 2B ESA’nın birkaç sınıf haricinde en yüksek üretici ve kullanıcı 

doğruluklarına sahip olduğu, 3B+2B ESA’nın ise sınıf bazındaki doğruluk ölçütlerine ve 

genel doğruluğa göre ikinci en başarılı algoritma olduğu görülmektedir. Ancak 3B+2B 

ESA modeli mineral çıkarım sahaları ve meyve bahçeleri sınıflarında kullanıcı 

doğrulukları açısından diğer modellere göre oldukça düşük çıktığı görülmektedir. Ek 8’de 

söz konusu model için oluşturulan hata matrisi incelendiğinde söz konusu sınıfların diğer 

sınıflara oranla daha az sayıda test pikseline sahip olduğu görülürken mineral çıkarım 

sahaları sınıfının seyrek bitki alanları sınıfıyla; meyve bahçeleri sınıfının ise zeytinlikler 

sınıfları ile karıştığı görülmüştür. İşlem süreleri açısından incelendiğinde RO 

algoritmasının eğitiminin ve tüm görüntünün sınıflandırılması aşamasında en hızlı 

algoritma olduğu açıkça görülmektedir. 
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Çizelge 4.3 Dioni 50% veri seti için algoritmaların performansları. 

Sınıf Adı 

DVM  RO  2B ESA  3B+2B ESA 

Ü
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Sürekli şehir yapısı 91,50 88,75 91,89 80,82 99,20 97,78 98,52 94,77 

Mineral çıkarım sahaları 98,94 91,18 95,60 85,29 100,00 99,02 100,00 53,92 

Sulanmayan ekilebilir alanlar 94,24 90,55 96,79 88,27 98,36 97,39 98,69 98,37 

Meyve bahçeleri 91,78 89,33 90,91 80,00 98,48 86,67 100,00 42,67 

Zeytinlikler 93,27 95,59 90,53 95,14 97,67 99,43 93,20 99,21 

İğne yapraklı ormanlar 100,00 99,45 100,00 100,00 99,45 100,00 99,45 100,00 

Yoğun sklerofil bitki örtüsü 96,64 94,91 96,40 93,52 99,01 99,36 97,74 99,76 

Seyrek sklerofil bitki örtüsü 95,03 97,14 92,20 97,11 99,34 99,15 99,24 98,02 

Seyrek bitki alanları 97,02 96,47 94,12 93,16 99,55 99,89 94,81 100,00 

Kayalar ve kumluklar 100,00 99,59 99,58 96,34 100,00 99,59 100,00 98,37 

Su 100,00 100,00 99,88 100,00 100,00 100,00 100,00 100,00 

Kıyı suları 100,00 100,00 100,00 99,50 100,00 100,00 100,00 100,00 

Genel Doğruluk 95,92% 94,46% 99,17% 97,92% 

Kappa 0,949 0,931 0,990 0,974 

İşlem 

Süreleri 

(saniye): 

Eğitim 496,57 0,15 106,98 295,71 

Sınıflandırma 32,60 7,24 404,67 499,71 

 

Dioni 50% verisi için eğitilen algoritmalar tarafından oluşturulan sınıflandırma haritaları 

Şekil 4.7’de verilmiştir. Sınıflandırma sonuçları incelendiğinde sınıflandırma 

sonuçlarının 30% eğitim verisi ile kurulan modellerin sınıflandırma sonuçlarına yakın 

oldukları görülmektedir. Görüntünün sağında yer alan bulut ve gölgesinin ESA modelleri 

ile oluşturulan sınıflandırma haritalarında (Şekil 4.7d ve Şekil 4.7e) sırasıyla kayalar ve 

kumluklar ile su sınıflarına atandıkları görülmektedir.  
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Şekil 4.7 Dioni 50% veri seti (a) için DVM (b), RO (c), 2B ESA (d) ve 3B+2B ESA (e) 

algoritmaları ile oluşturul9an sınıflandırma haritaları ve lejantı (f). 

 

Dioni veri seti için üçüncü aşamada algoritmalar 70% eğitim verisi ile eğitildikten sonra 

yer doğrulama verisinin eğitim verisinden arta kalan 30%’lik test veri seti 

sınıflandırılarak hata matrisleri oluşturulmuştur (Ek 9, Ek 10, Ek 11 ve Ek 12). Bu hata 

matrislerinden hesaplanan genel doğruluk, kappa, üretici ve kullanıcı doğrulukları ek 

olarak işlem süreleri Çizelge 4.4’te verilmiştir. Tablodaki değerler incelendiğinde 
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99,48% genel doğruluk ile en başarılı algoritmanın 3B+2B ESA olduğu görülmektedir. 

Sınıf bazındaki doğruluklar incelendiğinde ise 3B+2B ESA’nın birkaç sınıf haricinde en 

yüksek üretici ve kullanıcı doğruluklarına sahip olduğu, iğne yapraklı ormanlar sınıfının 

tüm algoritmalar tarafından 100% doğrulukla sınıflandırıldığı ve su ile kıyı suları 

sınıflarına sahip test piksellerinin tamamının ESA modellerinde 100% doğrulukla 

sınıflandırıldıkları görülmektedir. İşlem süreleri açısından incelendiğinde RO 

algoritmasının eğitiminin ve tüm görüntünün sınıflandırılması aşamasında en hızlı 

algoritma olduğu açıkça görülmektedir. 

 

Çizelge 4.4 Dioni 70% veri seti için algoritmaların performansları. 

Sınıf Adı 

DVM  RO  2B ESA  3B+2B ESA 

Ü
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Sürekli şehir yapısı 93,58 88,39 91,35 83,64 99,74 99,47 99,73 98,68 

Mineral çıkarım sahaları 98,31 95,08 100,00 85,25 100,00 98,36 100,00 100,00 

Sulanmayan ekilebilir alanlar 91,21 90,22 95,93 89,67 98,91 98,37 98,90 97,28 

Meyve bahçeleri 93,02 88,89 89,47 75,56 100,00 88,89 100,00 86,67 

Zeytinlikler 93,25 96,23 90,81 94,92 98,69 99,62 97,60 99,62 

İğne yapraklı ormanlar 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 

Yoğun sklerofil bitki örtüsü 96,63 94,84 97,33 93,91 99,08 99,60 99,41 99,80 

Seyrek sklerofil bitki örtüsü 95,27 97,02 92,84 97,70 99,53 99,22 99,69 99,53 

Seyrek bitki alanları 97,16 97,72 95,74 94,11 99,62 100,00 100,00 99,81 

Kayalar ve kumluklar 100,00 100,00 99,32 97,97 100,00 99,32 100,00 100,00 

Su 99,79 100,00 99,79 100,00 100,00 100,00 100,00 100,00 

Kıyı suları 100,00 99,16 100,00 99,16 100,00 100,00 100,00 100,00 

Genel Doğruluk 96,04% 95,02% 99,42% 99,48% 

Kappa 0,951 0,938 0,993 0,994 

İşlem 

Süreleri 

(saniye): 

Eğitim 956,67 0,19 133,54 405,49 

Sınıflandırma 41,40 7,74 406,90 506,72 

 

Dioni 70% verisi için eğitilen algoritmalar tarafından oluşturulan sınıflandırma haritaları 

Şekil 4.8’de verilmiştir. Sınıflandırma sonuçları incelendiğinde sınıflandırma 

sonuçlarının 30% ve 50% eğitim verisi ile kurulan modellerin sınıflandırma sonuçlarına 

yakın oldukları görülmektedir.   
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Şekil 4.8 Dioni 70% veri seti (a) için DVM (b), RO (c), 2B ESA (d) ve 3B+2B ESA (e) 

algoritmaları ile oluşturulan sınıflandırma haritaları ve lejantı (f). 

 

Her veri kümesi boyutu için algoritmaların arasındaki genel doğruluk farklarının anlamlı 

olup olmadıklarının test edilmesi için uygulanan McNemar’s testi sonuçları Çizelge 

4.5’te verilmiştir. Hesaplanan test sonuçları 95% güven aralığında χ2=3,841 değeriyle 

karşılaştırıldığında 70% veri kümesi ile eğitilen 2B ESA ile 3B+2B ESA arasındaki farkın 

χ2 tablo değerinden düşük olduğu görülebilir. Dolayısıyla bu iki ESA modelinin 70% veri 
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seti ile eğitildiğinde sınıflandırma performansları arasında anlamlı bir farklılık olmadığını 

söylemek mümkündür. 

 

Çizelge 4.5 Dioni veri seti için hesaplanan McNemar’s testi sonuçları. 

Model 1 - Model 2 

  

30% Veri Kümesi 

Boyutu 

50% Veri Kümesi 

Boyutu 

70% Veri Kümesi 

Boyutu 

𝛘
𝒎𝒄
𝟐  

Anlamlı 

mı? 
𝛘
𝒎𝒄
𝟐  

Anlamlı 

mı? 
𝛘
𝒎𝒄
𝟐  

Anlamlı 

mı? 

DVM - RO 23,642 Evet 44,688 Evet 13,688 Evet 

DVM - 2B ESA 366,330 Evet 255,420 Evet 170,730 Evet 

DVM - 3B+2B ESA 414,430 Evet 75,002 Evet 177,560 Evet 

RO - 2B ESA 499,290 Evet 401,890 Evet 241,850 Evet 

RO - 3B+2B ESA 524,500 Evet 191,550 Evet 245,820 Evet 

2B ESA - 3B+2B ESA 8,329 Evet 71,516 Evet 0,214 Hayır 

 

4.3 Loukia Veri Seti Sınıflandırma Sonuçları 

 

Loukia veri setinin geleneksel MÖ ve DÖ algoritmaları ile sınıflandırılmasında eğitim 

veri kümesinin boyutu sırasıyla 30%, 50% ve 70% olarak seçilmiştir. Çizelge 4.6’da 

Loukia veri setinin sınıflara göre yer doğrulama verilerinin içerdiği etiketli veri sayısı, 

bunun yanında eğitim veri setinin boyutuna göre eğitim ve test için ayrılan etiketli 

verilerin dağılımları gösterilmiştir. 
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Çizelge 4.6 Loukia veri setinde sınıflar ve 30%-50%-70% eğitim veri kümesi oranlarına göre 

eğitim ve test için ayrılan etiketli veri sayıları. 

Sınıf 

No 
Sınıf Adı Toplam 

Oran 
𝒏𝒊
∑𝒏

 

(%) 

30% Eğitim 

Veri Seti 

50% Eğitim 

Veri Seti 

70% Eğitim 

Veri Seti 

Eğitim 

30% 

Test 

70% 

Eğitim 

50% 

Test 

50% 

Eğitim 

70% 

Test 

30% 

1 Sürekli şehir yapısı 288 2,1 86 202 144 144 202 86 

2 Mineral çıkarım sahaları 67 0,5 20 47 34 33 47 20 

3 Sulanmayan ekilebilir alanlar 542 4,0 163 379 271 271 379 163 

4 Meyve bahçeleri 79 0,6 24 55 40 39 55 24 

5 Zeytinlikler 1401 10,4 420 981 700 701 981 420 

6 Geniş yapraklı ormanlar 223 1,7 67 156 112 111 156 67 

7 İğne yapraklı ormanlar 500 3,7 150 350 250 250 350 150 

8 Karışık ormanlar 1072 7,9 321 751 536 536 750 322 

9 Yoğun sklerofil bitki örtüsü 3793 28,1 1138 2655 1896 1897 2655 1138 

10 Seyrek sklerofil bitki örtüsü 2803 20,8 841 1962 1401 1402 1962 841 

11 Seyrek bitki alanları 404 3,0 121 283 202 202 283 121 

12 Kayalar ve kumluklar 487 3,6 146 341 243 244 341 146 

13 Su 1393 10,3 418 975 696 697 975 418 

14 Kıyı suları 451 3,3 135 316 226 225 316 135 

 

Rastgele olarak ayrımı gerçekleştirilen eğitim ve test kümelerinin dağılımları Şekil 4.9’da 

gösterilmiştir. 

 

 

Şekil 4.9 Loukia veri seti (a) için eğitim-test piksellerinin sırasıyla 30%(b)-70%(c), 50%(d)-

50%(e) ve 70%(f)-30%(g) dağılımları. 

  



65 

Loukia veri seti için DVM modelleri oluşturulurken RTF kernel fonksiyonu ile 30%, 50% 

ve 70% eğitim verisi küme boyutları için 5 katlamalı çapraz doğrulama işlemi ile 

optimum parametreler araştırılmıştır. Bütün veri küme boyutları için optimum 

parametreler C=10 ve γ=0,1 olarak belirlenmiştir. RO algoritmasında m=4 olarak 

belirlenirken N parametresi için her üç eğitim kümesi için öncül olarak 1000 karar ağacı 

ile modeller oluşturulmuştur. Öncül modellerin OOB hatalarını gösteren grafikler Şekil 

4.10’da verilmiştir. OOB hatasının grafikleri incelendiğinde 30% (Şekil 4.10a, Şekil 4.3), 

50% (Şekil 4.10b) ve 70% (Şekil 4.10c) eğitim veri küme boyutları için   yaklaşık 150 

karar ağacından sonra hata stabil olarak ilerlediği görülmüştür ve bu veri kümeleri ile asıl 

modeller kurulurken her üç RO modeli için de N=150 olarak seçilmiştir. 

 

 

Şekil 4.10 Loukia veri seti için sırasıyla 30% (a), 50% (b) ve 70% (c) eğitim kümesi boyutlarına 

göre RO algoritmasının OOB hataları. 

 

ESA modellerinin eğitimi aşamasında her iki ESA modeli ve bütün eğitim veri kümesi 

boyutları için yığın boyutu 256 ve epok sayısı 500 olarak belirlenmiştir. Şekil 4.11’de her 

iki ESA modelinin farklı eğitim veri kümesi boyutlarına göre kayıp fonksiyonu ve model 

doğruluğu grafikleri verilmiştir. 2B ESA modellerinin tüm veri kümesi boyutları için 

kayıp fonksiyonu grafikleri incelendiğinde (Şekil 4.11a, Şekil 4.11e ve Şekil 4.11ı) 

hataların düzenli olarak azaldığı ancak 400’lerden sonraki epoklarda sıfıra yaklaştığı 

görülmektedir. 3B+2B ESA modellerinin kayıp fonksiyonu grafiklerinin (Şekil 4.11c, 

Şekil 4.11g ve Şekil 4.11j) birkaç on epok sonunda hızlıca düştükleri görülmektedir.  
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Şekil 4.11 Loukia veri setinin sınıflandırılması için 30%, 50% ve 70% eğitim verisi ile oluşturulan 

ESA modellerinin kayıp fonksiyonu ve model doğruluğu grafikleri. 

 

Veri seti için ilk aşamada algoritmalar 30% eğitim verisi ile eğitildikten sonra yer 

doğrulama verisinin eğitim verisinden arta kalan 70%’lik test veri seti ile hata matrisleri 

oluşturulmuştur (Ek 13, Ek 14, Ek 15 ve Ek 16). Bu hata matrislerinden hesaplanan genel 

doğruluk, kappa, üretici ve kullanıcı doğrulukları ek olarak işlem süreleri Çizelge 4.7’de 

verilmiştir. Tablodaki değerler incelendiğinde 93,97% genel doğruluk ile en başarılı 

algoritmanın 3B+2B ESA olduğu görülmektedir. Sınıf bazındaki doğruluklar 

incelendiğinde ise 3B+2B ESA’nın üç sınıf için 100% doğruluğa sahip olduğu ve diğer 

sekiz sınıf için algoritmalar arasındaki en yüksek üretici ve kullanıcı doğruluklarına sahip 

olduğu görülmüştür. 2B ESA’nın ise sınıf bazındaki doğruluk ölçütlerine ve genel 

doğruluğa göre ikinci en başarılı algoritma olduğu görülmektedir. Üretici ve kullanıcı 

doğrulukları birlikte incelendiğinde DVM ve RO modelleri geniş yapraklı ormanlar ve 

karışık ormanlar sınıfları için diğer modellerden düşük doğruluğa sahiptir. Kullanıcı 

doğrulukları incelendiğinde ise RO modelinde meyve bahçeleri ve geniş yapraklı 

ormanlar sınıfları için üretici doğruluğuna göre çok daha düşük doğruluğa sahip olduğu 

görülmüştür. İşlem süreleri açısından incelendiğinde RO algoritmasının eğitiminin ve 
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tüm görüntünün sınıflandırılması aşamasında en hızlı algoritma olduğu açıkça 

görülmektedir. 

 

Çizelge 4.7 Loukia 30% veri seti için algoritmaların performansları. 

Sınıf Adı 

DVM  RO  2B ESA  3B+2B ESA 

Ü
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Sürekli şehir yapısı 86,44 75,74 90,21 63,86 92,55 86,14 94,30 90,10 

Mineral çıkarım sahaları 100,00 70,21 100,00 85,11 100,00 97,87 100,00 100,00 

Sulanmayan ekilebilir alanlar 88,92 91,03 90,98 87,86 92,13 95,78 98,58 91,56 

Meyve bahçeleri 86,49 58,18 96,30 47,27 77,55 69,09 90,20 83,64 

Zeytinlikler 94,09 92,56 90,86 90,21 95,04 95,72 95,86 96,74 

Geniş yapraklı ormanlar 75,00 57,69 90,43 54,49 92,11 67,31 93,08 77,56 

İğne yapraklı ormanlar 84,01 70,57 87,50 64,00 91,33 78,29 97,29 82,00 

Karışık ormanlar 72,87 67,24 73,81 66,05 88,04 89,21 89,94 94,01 

Yoğun sklerofil bitki örtüsü 79,48 86,37 78,36 87,27 89,02 92,54 91,28 93,79 

Seyrek sklerofil bitki örtüsü 85,79 85,88 82,50 87,92 91,39 90,93 92,17 92,35 

Seyrek bitki alanları 87,77 86,22 93,10 66,78 94,35 94,35 94,50 97,17 

Kayalar ve kumluklar 96,04 92,38 90,86 90,32 99,39 95,31 98,80 96,77 

Su 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 

Kıyı suları 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 

Genel Doğruluk 86.12% 85,14% 92,38% 93,97% 

Kappa 0,834 0,822 0,909 0,928 

İşlem 

Süreleri 

(saniye): 

Eğitim 94,37 0,09 65,04 172,13 

Sınıflandırma 18,01 5,39 268,04 341,95 

 

Loukia 30% verisi için eğitilen algoritmalar tarafından oluşturulan sınıflandırma 

haritaları Şekil 4.12’de verilmiştir. Sınıflandırma sonuçları incelendiğinde DVM 

modelinin sınıflandırma haritası için görüntünün sol tarafında yer alan denizde kıyı suları 

ile su sınıflarının kesiştiği bölgede hatalı sınıflandırılan piksellerin olduğu görülmektedir. 

Ayrıca DVM ve RO modellerin sınıflandırma haritalarında ESA modellerinin 

sınıflandırma haritalarına göre daha yoğun miktarda tuz-biber etkisi görülmektedir. 

Bunun yanında mineral çıkarım sahalarının şekilsel olarak çıkarımı diğer modellere göre 

daha yetersizdir.  
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Şekil 4.12 Loukia 30% veri seti (a) için DVM (b), RO (c), 2B ESA (d) ve 3B+2B ESA (e) 

algoritmaları ile oluşturulan sınıflandırma haritaları ve lejantı (f).  
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Veri seti için ikinci aşamada algoritmalar 50% eğitim verisi ile eğitildikten sonra yer 

doğrulama verisinin eğitim verisinden arta kalan 50%’lik test veri seti ile hata matrisleri 

oluşturulmuştur (Ek 17, Ek 18, Ek 19 ve Ek 20). Bu hata matrislerinden hesaplanan genel 

doğruluk, kappa, üretici ve kullanıcı doğrulukları ek olarak işlem süreleri Çizelge 4.8’de 

verilmiştir. Tablodaki değerler incelendiğinde 96,73% genel doğruluk ile en başarılı 

algoritmanın 3B+2B ESA olduğu görülmektedir. Sınıf bazındaki doğruluklar 

incelendiğinde 30% veri seti ile eğitilen 3B+2B ESA modelinde olduğu gibi mineral 

çıkarım sahaları, su ve kıyı suları sınıflarının 100% doğruluğa sahip oldukları görülürken 

altı sınıfta 3B+2B ESA ile sınıflandırmadaki üretici ve kullanıcı doğruluklarının en 

yüksek olduğu görüşmüştür. 2B ESA ise sınıf bazındaki doğruluk ölçütlerine ve genel 

doğruluğa göre ikinci en başarılı algoritmadır. Meyve bahçeleri sınıfı için kullanıcı 

doğruluğunun düşük olması durumu DVM ve RO modellerinin yanında 2B ESA için de 

geçerlidir. İşlem süreleri açısından incelendiğinde RO algoritmasının eğitiminin ve tüm 

görüntünün sınıflandırılması aşamasında en hızlı algoritma olduğu açıkça görülmektedir. 
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Çizelge 4.8 Loukia 50% veri seti için algoritmaların performansları. 

Sınıf Adı 

DVM  RO  2B ESA  3B+2B ESA 

Ü
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Sürekli şehir yapısı 86,03 81,25 92,16 65,28 98,44 87,50 97,79 92,36 

Mineral çıkarım sahaları 100,00 84,85 96,67 87,88 100,00 96,97 100,00 100,00 

Sulanmayan ekilebilir alanlar 94,81 94,46 92,42 90,04 94,22 96,31 98,14 97,42 

Meyve bahçeleri 96,30 66,67 94,74 46,15 93,10 69,23 88,57 79,49 

Zeytinlikler 93,35 96,15 90,15 92,72 95,51 97,00 97,05 98,43 

Geniş yapraklı ormanlar 80,20 72,97 87,65 63,96 93,94 83,78 97,14 91,89 

İğne yapraklı ormanlar 87,96 76,00 86,93 69,20 97,74 86,40 92,83 93,20 

Karışık ormanlar 75,67 73,69 77,63 66,04 92,07 93,10 96,79 95,71 

Yoğun sklerofil bitki örtüsü 82,13 86,24 79,36 89,40 92,67 94,57 95,14 97,05 

Seyrek sklerofil bitki örtüsü 87,91 86,59 86,44 87,73 94,00 94,94 96,72 94,72 

Seyrek bitki alanları 91,84 89,11 92,07 74,75 96,06 96,53 96,62 99,01 

Kayalar ve kumluklar 97,07 95,08 94,02 90,16 99,57 95,90 98,37 98,77 

Su 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 

Kıyı suları 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 

Genel Doğruluk 88,13% 86,67% 94,93% 96,73% 

Kappa 0,859 0,840 0,940 0,961 

İşlem 

Süreleri 

(saniye): 

Eğitim 254,88 0,11 85,33 231,78 

Sınıflandırma 26,41 5,53 288,92 352,57 

 

Loukia 50% verisi için eğitilen algoritmalar tarafından oluşturulan sınıflandırma 

haritaları Şekil 4.13’te verilmiştir. Sınıflandırma sonuçları incelendiğinde 30% veri 

kümesiyle eğitilen RO modelinin sınıflandırma haritasında olduğu gibi 50% eğitim 

verisiyle eğitilen RO modelinin sınıflandırma haritasında da denizdeki kıyı suları ile su 

sınıflarının kesiştiği bölgede hatalı sınıflandırılan piksellerin olduğu görülmektedir.  
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Şekil 4.13 Loukia 50% veri seti (a) için DVM (b), RO (c), 2B ESA (d) ve 3B+2B ESA (e) 

algoritmaları ile oluşturulan sınıflandırma haritaları ve lejantı (f).  
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Veri seti için üçüncü aşamada algoritmalar 70% eğitim verisi ile eğitildikten sonra yer 

doğrulama verisinin eğitim verisinden arta kalan 30%’luk test veri seti ile hata matrisleri 

oluşturulmuştur (Ek 21, Ek 22, Ek 23 ve Ek 24). Bu hata matrislerinden hesaplanan genel 

doğruluk, kappa, üretici ve kullanıcı doğrulukları ek olarak işlem süreleri Çizelge 4.9’da 

verilmiştir. Tablodaki değerler incelendiğinde 97,40% genel doğruluk ile en başarılı 

algoritmanın 3B+2B ESA olduğu görülmektedir. Sınıf bazındaki doğruluklar 

incelendiğinde ise 3B+2B ESA’nın iğne yapraklı ormanlar sınıfı haricinde en yüksek 

üretici ve kullanıcı doğruluklarına sahip olduğu, 2B ESA’nın ise sınıf bazındaki doğruluk 

ölçütlerine ve genel doğruluğa göre ikinci en başarılı algoritma olduğu görülmektedir. 

Meyve bahçeleri sınıfının kullanıcı doğruluğunun en düşük RO modeli için olmak üzere 

tüm modellerde diğer sınıflardan düşük olduğu görülmüştür. Bunun yanında geniş ve iğne 

yapraklı ormanlar sınıfları için MÖ modelleri ESA modellerinden daha düşük 

sınıflandırma performansına sahiptir. İşlem süreleri açısından incelendiğinde RO 

algoritmasının eğitiminin ve tüm görüntünün sınıflandırılması aşamasında en hızlı 

algoritma olduğu açıkça görülmektedir. 
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Çizelge 4.9 Loukia 70% veri seti için algoritmaların performansları. 

Sınıf Adı 

DVM  RO  2B ESA  3B+2B ESA 

Ü
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Ü
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Sürekli şehir yapısı 95,00 88,37 88,24 69,77 96,55 97,67 98,80 95,35 

Mineral çıkarım sahaları 100,00 95,00 100,00 95,00 100,00 100,00 100,00 100,00 

Sulanmayan ekilebilir alanlar 96,27 95,09 93,46 87,73 98,76 97,55 95,86 99,39 

Meyve bahçeleri 100,00 75,00 100,00 54,17 100,00 79,17 100,00 79,17 

Zeytinlikler 94,69 97,62 91,71 94,76 97,87 98,33 98,35 99,05 

Geniş yapraklı ormanlar 86,89 79,10 89,13 61,19 91,18 92,54 95,38 92,54 

İğne yapraklı ormanlar 84,03 80,67 88,14 69,33 97,86 91,33 97,84 90,67 

Karışık ormanlar 77,88 79,81 81,63 71,74 95,41 96,89 98,11 96,89 

Yoğun sklerofil bitki örtüsü 84,29 86,29 80,17 89,19 94,79 95,96 96,24 96,75 

Seyrek sklerofil bitki örtüsü 88,94 87,04 86,02 87,04 95,58 95,12 96,24 97,27 

Seyrek bitki alanları 95,80 94,21 98,04 82,64 99,17 98,35 99,17 98,35 

Kayalar ve kumluklar 98,62 97,95 97,24 96,58 100,00 99,32 98,65 100,00 

Su 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 

Kıyı suları 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 

Genel Doğruluk 89,68% 87,63% 96,64% 97,40% 

Kappa 0,887 0,852 0,960 0,969 

İşlem 

Süreleri 

(saniye): 

Eğitim 484,65 0,14 98,92 283,21 

Sınıflandırma 34,16 5,71 287,25 347,44 

 

Loukia 70% verisi için eğitilen algoritmalar tarafından oluşturulan sınıflandırma 

haritaları Şekil 4.14’te verilmiştir. Sınıflandırma sonuçları incelendiğinde RO modeli için 

su ve kıyı suları sınıflarındaki yanlış sınıflandırmalar gözle görülür şekilde devam 

etmiştir. Ancak 3B+2B ESA modelinde söz konusu sınıflar için üretici ve kullanıcı 

doğrulukları 100% çıkmasına rağmen gözle fark edilir şekilde hatalı sınıflandırmalar 

meydana gelmiştir (Şekil 4.14e).  
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Şekil 4.14 Loukia 70% veri seti (a) için DVM (b), RO (c), 2B ESA (d) ve 3B+2B ESA (e) 

algoritmaları ile oluşturulan sınıflandırma haritaları ve lejantı (f).  
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Her veri kümesi boyutu için algoritmaların arasındaki genel doğruluk farklarının anlamlı 

olup olmadıklarının test edilmesi için uygulanan McNemar’s testi sonuçları Çizelge 

4.10’da verilmiştir. Hesaplanan test sonuçları 95% güven aralığında χ2=3,841 değeriyle 

karşılaştırıldığında bütün veri kümesi boyutlarında algoritmaların sınıflandırma 

performansları aralarındaki farkların anlamlı olduğu görülmektedir. 

 

Çizelge 4.10 Loukia veri seti için hesaplanan McNemar’s testi sonuçları. 

Model 1 - Model 2 

  

30% Veri Kümesi 

Boyutu 

50% Veri Kümesi 

Boyutu 

70% Veri Kümesi 

Boyutu 

𝛘
𝒎𝒄
𝟐  

Anlamlı 

mı? 
𝛘
𝒎𝒄
𝟐  

Anlamlı 

mı? 
𝛘
𝒎𝒄
𝟐  

Anlamlı 

mı? 

DVM - RO 7,094 Evet 12,721 Evet 15,821 Evet 

DVM - 2B ESA 282,133 Evet 277,833 Evet 192,588 Evet 

DVM - 3B+2B ESA 420,430 Evet 426,515 Evet 239,174 Evet 

RO - 2B ESA 365,227 Evet 381,141 Evet 277,769 Evet 

RO - 3B+2B ESA 497,892 Evet 531,427 Evet 326,412 Evet 

2B ESA - 3B+2B ESA 36,158 Evet 47,841 Evet 8,108 Evet 

 

4.4 DFC13 Veri Seti Sınıflandırma Sonuçları 

 

DFC13 veri setinin geleneksel MÖ ve DÖ algoritmaları ile sınıflandırılmasında eğitim 

veri kümesinin boyutu sırasıyla 30%, 50% ve 70% olarak seçilmiştir. Çizelge 4.11’de 

DFC13 veri setinin içerdiği 15 yer sınıfına göre yer doğrulama verilerinin içerdiği etiketli 

veri sayıları, bunun yanında eğitim veri setinin boyutuna göre eğitim ve test için ayrılan 

etiketli verilerin dağılımları gösterilmiştir. 
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Çizelge 4.11 DFC13 veri setinde sınıflar ve 30%-50%-70% eğitim veri kümesi oranlarına göre 

eğitim ve test için ayrılan etiketli veri sayıları. 

Sınıf 

No 
Sınıf Adı Toplam 

Oran 
𝒏𝒊
∑𝒏

 

(%) 

30% Eğitim 

Veri Seti 

50% Eğitim 

Veri Seti 

70% Eğitim 

Veri Seti 

Eğitim 

30% 

Test 

70% 

Eğitim 

50% 

Test 

50% 

Eğitim 

70% 

Test 

30% 

1 Sağlıklı çimen 1374 8,0 412 962 687 687 962 412 

2 Yıpranmış çimen 1454 8,4 436 1018 727 727 1018 436 

3 Sentetik çimen 795 4,6 239 556 398 397 556 239 

4 Ağaç 1264 7,3 379 885 632 632 885 379 

5 Toprak 1298 7,5 389 909 649 649 909 389 

6 Su 339 2,0 102 237 169 170 237 102 

7 Ticari Yapı 1476 8,5 443 1033 738 738 1033 443 

8 Konut 1354 7,8 406 948 677 677 948 406 

9 Yol 1554 9,0 466 1088 777 777 1088 466 

10 Otoyol 1424 8,2 427 997 712 712 997 427 

11 Tren yolu 1566 9,1 470 1096 783 783 1096 470 

12 Park alanı 1 1429 8,3 429 1000 714 715 1000 429 

13 Park alanı 2 635 3,7 191 444 318 317 444 191 

14 Tenis Kortu 510 3,0 153 357 255 255 357 153 

15 Koşu Pisti 798 4,6 239 559 399 399 559 239 

 

Rastgele olarak ayrımı gerçekleştirilen eğitim ve test kümelerinin dağılımları Şekil 

4.15’te gösterilmiştir. 

 

 

Şekil 4.15 DFC13 veri seti (a) için eğitim-test piksellerinin sırasıyla 30%(b)-70%(c), 50%(d)-

50%(e) ve 70%(f)-30%(g) dağılımları. 

 

DFC13 veri seti için DVM modelleri oluşturulurken RTF kernel fonksiyonu ile 30%, 50% 

ve 70% eğitim verisi küme boyutları için 5 katlamalı çapraz doğrulama işlemi ile 
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optimum parametreler araştırılmıştır. Bütün veri küme boyutları için optimum 

parametreler C=100 ve γ=0,1 olarak belirlenmiştir. RO algoritmasında m=4 olarak 

belirlenirken N parametresi için her üç eğitim kümesi için öncül olarak 1000 karar ağacı 

ile modeller oluşturulmuştur. Öncül modellerin OOB hatalarını gösteren grafikler Şekil 

4.16Şekil 4.10’da verilmiştir. OOB hatasının grafikleri incelendiğinde 30% (Şekil 4.16a), 

50% (Şekil 4.16b) ve 70% (Şekil 4.16c) eğitim veri küme boyutları için   yaklaşık 150 

karar ağacından sonra hata stabil olarak ilerlediği görülmüştür ve bu veri kümeleri ile asıl 

modeller kurulurken her üç RO modeli için de N=150 olarak seçilmiştir. 

 

 

Şekil 4.16 DFC13 veri seti için sırasıyla 30% (a), 50% (b) ve 70% (c) eğitim kümesi boyutlarına 

göre RO algoritmasının OOB hataları. 

 

ESA modellerinin eğitimi aşamasında her iki ESA modeli ve bütün eğitim veri kümesi 

boyutları için yığın boyutu 256 ve epok sayısı 500 olarak belirlenmiştir. Şekil 4.17’de her 

iki ESA modelinin farklı eğitim veri kümesi boyutlarına göre kayıp fonksiyonu ve model 

doğruluğu grafikleri verilmiştir. 2B ESA modellerinin tüm veri kümesi boyutları için 

kayıp fonksiyonu grafikleri incelendiğinde (Şekil 4.17a, Şekil 4.17e ve Şekil 4.17ı) 

hataların düzenli olarak düştüğü ve Loukia veri setine göre (Şekil 4.11) daha az epok 

tekrarında sıfıra yaklaştığı görülmektedir. 3B+2B ESA modellerinin kayıp fonksiyonu 

grafiklerinin (Şekil 4.17c, Şekil 4.17g ve Şekil 4.17j) birkaç epok sonunda hızlıca 

düştükleri, ilerleyen epokların bazılarında anlık sıçramalar ile hataların maksimum 0,1 

civarına yükselip geri düştükleri görülmektedir.  
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Şekil 4.17 DFC13 veri setinin sınıflandırılması için 30%, 50% ve 70% eğitim verisi ile 

oluşturulan ESA modellerinin kayıp fonksiyonu ve model doğruluğu grafikleri. 

 

Veri seti için ilk aşamada algoritmalar 30% eğitim verisi ile eğitildikten sonra yer 

doğrulama verisinin eğitim verisinden arta kalan 70%’lik test veri seti ile hata matrisleri 

oluşturulmuştur (Ek 25, Ek 26, Ek 27 ve Ek 28). Bu hata matrislerinden hesaplanan genel 

doğruluk, kappa, üretici ve kullanıcı doğrulukları ek olarak işlem süreleri Çizelge 4.12’de 

verilmiştir. Tablodaki değerler incelendiğinde 99,67% genel doğruluk ile en başarılı 

algoritmanın 3B+2B ESA olduğu görülmektedir. Sınıf bazındaki doğruluklar 

incelendiğinde ise 3B+2B ESA’nın dört sınıf için 100% doğruluğa sahip olduğu ve diğer 

dört sınıf için algoritmalar arasındaki en yüksek üretici ve kullanıcı doğruluklarına sahip 

olduğu görülmüştür. 2B ESA’nın ise sınıf bazındaki doğruluk ölçütlerine ve genel 

doğruluğa göre ikinci en başarılı algoritma olduğu görülmektedir. İşlem süreleri açısından 

incelendiğinde RO algoritmasının eğitiminin ve tüm görüntünün sınıflandırılması 

aşamasında en hızlı algoritmadır.  
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Çizelge 4.12 DFC13 30% veri seti için algoritmaların performansları. 

Sınıf Adı 

DVM  RO  2B ESA  3B+2B ESA 

Ü
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Sağlıklı çimen 98,36 99,79 98,16 99,79 99,48 100,00 99,59 100,00 

Yıpranmış çimen 99,70 99,12 98,82 98,82 99,90 99,51 99,90 99,61 

Sentetik çimen 100,00 100,00 100,00 99,46 100,00 100,00 100,00 100,00 

Ağaç 99,55 99,21 99,66 98,42 100,00 100,00 99,44 100,00 

Toprak 99,67 99,56 97,93 99,12 99,89 100,00 100,00 100,00 

Su 100,00 99,58 100,00 99,58 100,00 100,00 100,00 100,00 

Ticari Yapı 96,26 97,19 94,48 97,68 98,38 99,81 99,13 98,84 

Konut 95,55 97,47 97,97 96,52 100,00 99,05 100,00 100,00 

Yol 94,89 97,33 92,82 93,84 99,45 99,08 99,72 99,54 

Otoyol 96,19 96,29 94,58 94,58 99,01 100,00 99,70 100,00 

Tren yolu 97,21 95,53 94,73 95,07 99,91 99,27 100,00 99,91 

Park alanı 1 94,38 95,80 89,90 94,30 99,30 99,80 99,10 99,60 

Park alanı 2 87,50 77,25 91,33 71,17 99,07 95,95 99,54 97,07 

Tenis Kortu 99,17 100,00 97,01 100,00 99,17 100,00 99,16 99,72 

Koşu Pisti 100,00 98,57 100,00 98,03 100,00 99,82 99,82 100,00 

Genel Doğruluk 97,17% 96,13% 99,55% 99,67% 

Kappa 0,969 0,958 0,995 0,996 

İşlem 

Süreleri 

(saniye): 

Eğitim 125,68 0,26 75,04 197,23 

Sınıflandırma 26,60 14,79 784,37 951,52 

 

DFC13 30% verisi için eğitilen algoritmalar tarafından oluşturulan sınıflandırma 

haritaları Şekil 4.18’de verilmiştir. Sınıflandırma sonuçları incelendiğinde RO ve DVM 

modellerinin sınıflandırma haritalarında nesnelerin çıkarımında daha fazla tuz-biber 

etkisi görülmektedir. Tüm modelleri için değerlendirme yapılacak olursa gölge etkisinde 

olmayan alanlarda iyi bir sınıflandırma performansı yakalanmıştır. Bulut gölgesinde 

kalan alanda bütün modellerin bina çıkarımlarını daha belirgin şekilde doğru  yaptığı 

görülürken bulut binaların arasında kalan bölgenin otoyol ve tren yolu olarak yanlış 

sınıflandırıldığı görülmektedir.  
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Şekil 4.18 DFC13 30% veri seti (a) için DVM (b), RO (c), 2B ESA (d) ve 3B+2B ESA (e) 

algoritmaları ile oluşturulan sınıflandırma haritaları ve lejantı (f). 

 

Veri seti için ikinci aşamada algoritmalar 50% eğitim verisi ile eğitildikten sonra yer 

doğrulama verisinin eğitim verisinden arta kalan 50%’lik test veri seti ile hata matrisleri 

oluşturulmuştur (Ek 29, Ek 30, Ek 31 ve Ek 32). Bu hata matrislerinden hesaplanan genel 

doğruluk, kappa, üretici ve kullanıcı doğrulukları ek olarak işlem süreleri Çizelge 4.13’te 

verilmiştir. Tablodaki değerler incelendiğinde 99,86% genel doğruluk ile en başarılı 

algoritmanın 3B+2B ESA olduğu görülmektedir. Sınıf bazındaki doğruluklar 

incelendiğinde ise 3B+2B ESA’nın altı sınıf için 100% doğruluğa sahip olduğu ve diğer 

iki sınıf için algoritmalar arasındaki en yüksek üretici ve kullanıcı doğruluklarına sahip 
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olduğu görülmüştür. 2B ESA’nın ise sınıf bazındaki doğruluk ölçütlerine ve genel 

doğruluğa göre ikinci en başarılı algoritma olduğu görülmektedir. İşlem süreleri açısından 

incelendiğinde RO algoritmasının eğitiminin ve tüm görüntünün sınıflandırılması 

aşamasında en hızlı algoritma olduğu açıkça görülmektedir. 

 

Çizelge 4.13 DFC13 50% veri seti için algoritmaların performansları. 

Sınıf Adı 

DVM  RO  2B ESA  3B+2B ESA 

Ü
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Sağlıklı çimen 98,71 99,85 97,31 100,00 99,28 100,00 99,85 100,00 

Yıpranmış çimen 99,59 99,04 99,03 98,35 99,86 99,31 100,00 99,86 

Sentetik çimen 100,00 100,00 100,00 99,50 100,00 100,00 100,00 100,00 

Ağaç 99,68 99,53 100,00 98,26 100,00 100,00 99,53 100,00 

Toprak 99,85 99,38 99,08 99,23 100,00 100,00 100,00 100,00 

Su 100,00 99,41 100,00 99,41 100,00 100,00 100,00 100,00 

Ticari Yapı 97,57 98,10 95,65 98,24 99,46 100,00 100,00 99,46 

Konut 96,92 97,49 98,05 96,60 100,00 100,00 100,00 100,00 

Yol 97,07 97,94 94,30 95,75 99,74 99,49 99,87 99,87 

Otoyol 97,50 98,46 95,79 95,79 99,44 100,00 100,00 100,00 

Tren yolu 97,83 98,08 95,81 96,42 100,00 99,74 99,87 100,00 

Park alanı 1 94,17 97,20 90,72 95,66 99,72 99,72 99,86 99,86 

Park alanı 2 92,25 78,86 93,60 73,82 100,00 98,11 99,05 99,05 

Tenis Kortu 99,22 99,61 97,33 100,00 99,22 100,00 99,22 99,22 

Koşu Pisti 100,00 99,75 99,74 97,99 100,00 99,75 100,00 100,00 

Genel Doğruluk 97,94% 96,75% 99,77% 99,86% 

Kappa 0,978 0,965 0,977 0,998 

İşlem 

Süreleri 

(saniye): 

Eğitim 335,22 0,30 95,87 271,98 

Sınıflandırma 35,24 15,05 815,61 981,09 

 

DFC13 50% verisi için eğitilen algoritmalar tarafından oluşturulan sınıflandırma 

haritaları Şekil 4.19’da verilmiştir. Sınıflandırma sonuçları incelendiğinde özellikle RO 

ve ESA modellerinin sınıflandırma haritalarında (Şekil 4.19c, Şekil 4.19d ve Şekil 4.19e) 

gölge alana denk gelen bölgede binaların aralarında kalan alanların otoyol ve tren yolu 

olarak bariz bir şekilde yanlış sınıflandırıldıkları görülmektedir.  
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Şekil 4.19 DFC13 50% veri seti (a) için DVM (b), RO (c), 2B ESA (d) ve 3B+2B ESA (e) 

algoritmaları ile oluşturulan sınıflandırma haritaları ve lejantı (f). 

 

Veri seti için üçüncü aşamada algoritmalar 70% eğitim verisi ile eğitildikten sonra yer 

doğrulama verisinin eğitim verisinden arta kalan 30%’luk test veri seti ile hata matrisleri 

oluşturulmuştur (Ek 33, Ek 34, Ek 35 ve Ek 36). Bu hata matrislerinden hesaplanan genel 

doğruluk, kappa, üretici ve kullanıcı doğrulukları ek olarak işlem süreleri Çizelge 4.14’de 

verilmiştir. Tablodaki değerler incelendiğinde 99,92% genel doğruluk ile en başarılı 

algoritmanın 3B+2B ESA olduğu görülmektedir. Sınıf bazındaki doğruluklar 

incelendiğinde ise 3B+2B ESA’nın sekiz sınıf için 100% doğruluğa sahip olduğu ve diğer 

bir tane sınıf için algoritmalar arasındaki en yüksek üretici ve kullanıcı doğruluklarına 
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sahip olduğu görülmüştür. 2B ESA’nın ise sınıf bazındaki doğruluk ölçütlerine ve genel 

doğruluğa göre 3B+2B ESA modeline çok yakın bir sınıflandırma performansına sahip 

olduğu görülmektedir. İşlem süreleri açısından incelendiğinde RO algoritması eğitim ve 

tüm görüntünün sınıflandırılması aşamasında en hızlı algoritmadır. 

 

Çizelge 4.14 DFC13 70% veri seti için algoritmaların performansları. 

Sınıf Adı 

DVM  RO  2B ESA  3B+2B ESA 

Ü
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Sağlıklı çimen 99,28 100,00 98,10 100,00 99,52 100,00 100,00 100,00 

Yıpranmış çimen 99,54 99,31 98,85 98,62 99,77 99,54 99,77 100,00 

Sentetik çimen 100,00 100,00 100,00 99,58 100,00 100,00 100,00 100,00 

Ağaç 99,74 99,74 100,00 98,94 100,00 100,00 100,00 99,74 

Toprak 99,49 99,49 99,49 99,74 100,00 100,00 100,00 100,00 

Su 100,00 99,02 100,00 99,02 100,00 100,00 100,00 100,00 

Ticari Yapı 97,33 98,65 95,64 99,10 100,00 100,00 100,00 100,00 

Konut 96,77 96,06 98,23 95,81 100,00 100,00 100,00 100,00 

Yol 97,66 98,71 96,10 95,28 100,00 99,79 100,00 100,00 

Otoyol 98,14 98,59 96,28 96,96 99,30 100,00 100,00 99,77 

Tren yolu 98,53 99,79 95,82 97,66 100,00 100,00 99,79 100,00 

Park alanı 1 95,87 97,44 92,55 95,57 100,00 100,00 100,00 99,77 

Park alanı 2 91,02 79,58 90,06 75,92 100,00 97,91 99,48 99,48 

Tenis Kortu 99,35 99,35 99,35 100,00 99,35 100,00 99,35 100,00 

Koşu Pisti 100,00 100,00 99,58 99,16 100,00 100,00 100,00 100,00 

Genel Doğruluk 98,20% 97,16% 99,86% 99,92% 

Kappa 0,980 0,969 0,998 0,999 

İşlem 

Süreleri 

(saniye): 

Eğitim 636,91 0,41 121,98 381,36 

Sınıflandırma 43,38 16,14 822,84 1004,09 

 

DFC13 70% verisi için eğitilen algoritmalar tarafından oluşturulan sınıflandırma 

haritaları Şekil 4.20’de verilmiştir. Sınıflandırma sonuçları incelendiğinde özellikle diğer 

eğitim veri kümesi boyutlarında olduğu gibi gölge alana denk gelen bölgede binaların 

aralarında kalan alanların otoyol ve tren yolu olarak bariz bir şekilde yanlış 

sınıflandırıldıkları görülmektedir.  
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Şekil 4.20 DFC13 70% veri seti (a) için DVM (b), RO (c), 2B ESA (d) ve 3B+2B ESA (e) 

algoritmaları ile oluşturulan sınıflandırma haritaları ve lejantı (f). 

 

Her veri kümesi boyutu için algoritmaların arasındaki genel doğruluk farklarının anlamlı 

olup olmadıklarının test edilmesi için uygulanan McNemar’s testi sonuçları Çizelge 

4.15’te verilmiştir. Hesaplanan test sonuçları 95% güven aralığında χ2=3,841 değeriyle 

karşılaştırıldığında her üç eğitim kümesi boyutu için 2B ESA ile 3B+2B ESA arasında 

hesaplanan McNemar’s değerleri kritik değerden küçük olduğu için bu modellerin 

sınıflandırma performanslarının aynı olduğu yorumu yapılır.  
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Çizelge 4.15 DFC13 veri seti için hesaplanan McNemar’s testi sonuçları. 

Model 1 - Model 2 

  

30% Veri Kümesi 

Boyutu 

50% Veri Kümesi 

Boyutu 

70% Veri Kümesi 

Boyutu 

𝛘
𝒎𝒄
𝟐  

Anlamlı 

mı? 
𝛘
𝒎𝒄
𝟐  

Anlamlı 

mı? 
𝛘
𝒎𝒄
𝟐  

Anlamlı 

mı? 

DVM - RO 38,675 Evet 39,848 Evet 23,024 Evet 

DVM - 2B ESA 242,718 Evet 143,308 Evet 82,102 Evet 

DVM - 3B+2B ESA 263,375 Evet 149,588 Evet 81,515 Evet 

RO - 2B ESA 378,049 Evet 250,302 Evet 136,063 Evet 

RO - 3B+2B ESA 391,263 Evet 254,603 Evet 137,170 Evet 

2B ESA - 3B+2B ESA 3,015 Hayır 1,885 Hayır 0,444 Hayır 

 

4.5 Salinas Scene Veri Seti Sınıflandırma Sonuçları 

 

Salinas Scene veri setinin geleneksel MÖ ve DÖ algoritmaları ile sınıflandırılmasında 

eğitim veri kümesinin boyutu sırasıyla 30%, 50% ve 70% olarak seçilmiştir. Çizelge 

4.16’da Salinas Scene veri setinin sınıflara göre yer doğrulama veri sayısı, eğitim veri 

boyutuna göre eğitim ve test için ayrılan etiketli verilerin dağılımları gösterilmiştir. 

 

Çizelge 4.16 Salinas Scene veri setinde sınıflar ve 30%-50%-70% eğitim veri kümesi oranlarına 

göre eğitim ve test için ayrılan etiketli veri sayıları. 

Sınıf 

No 
Sınıf Adı Toplam 

Oran 
𝒏𝒊
∑𝒏

 

(%) 

30% Eğitim 

Veri Seti 

50% Eğitim 

Veri Seti 

70% Eğitim 

Veri Seti 

Eğitim 

30% 

Test 

70% 

Eğitim 

50% 

Test 

50% 

Eğitim 

70% 

Test 

30% 

1 Brokoli_yeşil_otlar_1 2009 3,7 603 1406 1005 1004 1406 603 

2 Brokoli_yeşil_otlar_2 3726 6,9 1118 2608 1863 1863 2608 1118 

3 Nadas_toprak 1976 3,7 593 1383 988 988 1383 593 

4 Nadas_toprak_kaba_saban 1394 2,6 418 976 697 697 976 418 

5 Nadas_toprak_düz 2678 4,9 803 1875 1339 1339 1875 803 

6 Anız 3959 7,3 1188 2771 1979 1980 2771 1188 

7 Kereviz 3579 6,6 1074 2505 1789 1790 2505 1074 

8 Üzümler_terbiyelenmemiş 11271 20,8 3381 7890 5635 5636 7890 3381 

9 Toprak_üzüm_bağı_yetişen 6203 11,5 1861 4342 3101 3102 4342 1861 

10 Mısır_yaşlanmış 3278 6,0 983 2295 1639 1639 2295 983 

11 Roman_marulu_4_hafta 1068 2,0 320 748 534 534 748 320 

12 Roman_marulu_5_hafta 1927 3,6 578 1349 964 963 1349 578 

13 Roman_marulu_6_hafta 916 1,7 275 641 458 458 641 275 

14 Roman_marulu_7_hafta 1070 2,0 321 749 535 535 749 321 

15 Üzüm_bağı_terbiyelenmemiş 7268 13,4 2180 5088 3634 3634 5087 2181 

16 Üzüm_bağı_düşey_çit 1807 3,3 542 1265 904 903 1265 542 
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Rastgele olarak ayrımı gerçekleştirilen eğitim ve test kümelerinin dağılımları Şekil 

4.21’de gösterilmiştir. 

 

 

Şekil 4.21 Salinas Scene veri seti (a) için eğitim-test piksellerinin sırasıyla 30%(b)-70%(c), 

50%(d)-50%(e) ve 70%(f)-30%(g) dağılımları. 

 

DFC13 veri seti için DVM modelleri oluşturulurken RTF kernel fonksiyonu ile 30%, 50% 

ve 70% eğitim verisi küme boyutları için 5 katlamalı çapraz doğrulama işlemi ile 

optimum parametreler araştırılmıştır. Bütün veri küme boyutları için γ=0,1 olarak 

belirlenirken 30% v e 50% eğitim küme boyutu için C=1000; 70% eğitim veri küme 

boyutu için de C=100 olarak belirlenmiştir. RO algoritmasında m=4 olarak belirlenirken 

N parametresi için her üç eğitim kümesi için öncül olarak 1000 karar ağacı ile modeller 

oluşturulmuştur. Öncül modellerin OOB hatalarını gösteren grafikler Şekil 4.22’de 

verilmiştir. OOB hatasının grafikleri incelendiğinde 30% (Şekil 4.22a), 50% (Şekil 4.22b) 

ve 70% (Şekil 4.22c) eğitim veri küme boyutları için   yaklaşık 150 karar ağacından sonra 

hata stabil olarak ilerlediği görülmüştür ve bu veri kümeleri ile asıl modeller kurulurken 

her üç RO modeli için de N=150 olarak seçilmiştir. 

 

 

Şekil 4.22 Salinas Scene veri seti için sırasıyla 30% (a), 50% (b) ve 70% (c) eğitim kümesi 

boyutlarına göre RO algoritmasının OOB hataları.  
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ESA modellerinin eğitimi aşamasında her iki ESA modeli ve bütün eğitim veri kümesi 

boyutları için yığın boyutu 256 ve epok sayısı 500 olarak belirlenmiştir. Şekil 4.23’te her 

iki ESA modelinin farklı eğitim veri kümesi boyutlarına göre kayıp fonksiyonu ve model 

doğruluğu grafikleri verilmiştir. 2B ESA modellerinin tüm veri kümesi boyutları için 

kayıp fonksiyonu grafikleri incelendiğinde (Şekil 4.23a, Şekil 4.23e ve Şekil 4.23ı) 

hataların üç modelde de yaklaşık 150. epok tekrarına kadar hızlıca düştükleri ve sıfıra 

yakınsayarak ilerledikleri görülmektedir. 3B+2B ESA modellerinin kayıp fonksiyonu 

grafiklerinin (Şekil 4.23c, Şekil 4.23g ve Şekil 4.23j) birkaç epok sonunda hızlıca 

düştükleri, ilerleyen epokların bazılarında anlık sıçramalar ile hataların maksimum 0,175 

civarına yükselip geri düştükleri görülmektedir. Bu sıçramalar modellerin doğruluk 

grafiklerine (Şekil 4.23d, Şekil 4.23h ve Şekil 4.23k) ciddi bir şekilde yansımamıştır. 

 

 

Şekil 4.23 Salinas Scene veri setinin sınıflandırılması için 30%, 50% ve 70% eğitim verisi ile 

oluşturulan ESA modellerinin kayıp fonksiyonu ve model doğruluğu grafikleri. 

 

Veri seti için ilk aşamada algoritmalar 30% eğitim verisi ile eğitildikten sonra yer 

doğrulama verisinin eğitim verisinden arta kalan 70%’lik test veri seti ile hata matrisleri 
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oluşturulmuştur (Ek 37, Ek 38, Ek 39 ve Ek 40). Bu hata matrislerinden hesaplanan genel 

doğruluk, kappa, üretici ve kullanıcı doğrulukları ek olarak işlem süreleri Çizelge 4.17’de 

verilmiştir. Tablodaki değerler incelendiğinde 99,64% genel doğruluk ile en başarılı 

algoritmanın 2B ESA olduğu görülmektedir. Sınıf bazındaki doğruluklar incelendiğinde 

ise 2B ESA modelinin sekiz sınıf için 100% doğruluğa sahip olduğu ve diğer beş sınıf 

için algoritmalar arasındaki en yüksek üretici ve kullanıcı doğruluklarına sahip olduğu 

görülmüştür. 3B+2B ESA modelinin ise sınıf bazındaki doğruluk ölçütlerine ve genel 

doğruluğa göre 2B ESA modeline çok yakın bir sınıflandırma performansı ile ikinci en 

başarılı algoritma olduğu görülmektedir. İşlem süreleri açısından incelendiğinde RO 

modeli eğitiminin ve tüm görüntünün sınıflandırılması aşamasında en hızlı algoritmadır. 

 

Çizelge 4.17 Salinas Scene 30% veri seti için algoritmaların performansları. 

Sınıf Adı 

DVM  RO  2B ESA  3B+2B ESA 

Ü
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Ü
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Brokoli_yeşil_otlar_1 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 

Brokoli_yeşil_otlar_2 100,00 99,92 100,00 99,88 100,00 100,00 100,00 100,00 

Nadas_toprak 98,70 98,99 97,39 99,78 100,00 100,00 99,93 100,00 

Nadas_toprak_kaba_saban 99,38 98,98 99,28 99,59 100,00 99,80 100,00 96,21 

Nadas_toprak_düz 98,61 98,72 99,57 98,88 99,89 100,00 98,22 99,95 

Anız 99,96 99,96 99,93 99,93 100,00 100,00 100,00 100,00 

Kereviz 100,00 99,96 100,00 99,76 100,00 100,00 100,00 100,00 

Üzümler_terbiyelenmemiş 86,74 90,71 84,43 92,61 98,84 99,51 98,11 99,35 

Toprak_üzüm_bağı_yetişen 99,47 100,00 99,24 99,79 99,98 100,00 100,00 100,00 

Mısır_yaşlanmış 98,38 97,73 98,71 96,43 99,87 99,96 99,65 100,00 

Roman_marulu_4_hafta 98,14 98,66 97,58 97,06 100,00 99,87 99,60 99,87 

Roman_marulu_5_hafta 99,63 99,93 98,90 100,00 99,93 100,00 100,00 100,00 

Roman_marulu_6_hafta 99,84 99,69 99,07 99,22 100,00 100,00 100,00 100,00 

Roman_marulu_7_hafta 99,60 99,33 98,40 98,53 100,00 100,00 100,00 100,00 

Üzüm_bağı_terbiyelenmemiş 84,81 78,58 86,79 73,84 99,28 98,19 99,12 97,03 

Üzüm_bağı_düşey_çit 99,76 99,84 99,76 99,37 100,00 100,00 100,00 100,00 

Genel Doğruluk 94,86% 94,48% 99,64% 99,36% 

Kappa 0,943 0,938 0,996 0,993 

İşlem 

Süreleri 

(saniye): 

Eğitim 1143,49 0,08 145,81 433,33 

Sınıflandırma 10,11 2,22 133,22 160,40 
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Salinas Scene 30% verisi için eğitilen algoritmalar tarafından oluşturulan sınıflandırma 

haritaları Şekil 4.24’te verilmiştir. Sınıflandırma sonuçları incelendiğinde özellikle DVM 

ve RO modellerinin sınıflandırma haritalarında yüksek oranda tuz-biber etkisi 

gözlenmiştir. Görüntünün alt kısmında yer alan tarla bütünlük açısından en doğru olarak 

2B ESA tarafından sınıflandırılmıştır. 

 

 

Şekil 4.24 Salinas Scene 30% veri seti (a) için DVM (b), RO (c), 2B ESA (d) ve 3B+2B ESA (e) 

algoritmaları ile oluşturulan sınıflandırma haritaları ve lejantı (f). 

 

Veri seti için ikinci aşamada algoritmalar 50% eğitim verisi ile eğitildikten sonra yer 

doğrulama verisinin eğitim verisinden arta kalan 50%’lik test veri seti ile hata matrisleri 

oluşturulmuştur (Ek 41, Ek 42, Ek 43 ve Ek 44). Bu hata matrislerinden hesaplanan genel 

doğruluk, kappa, üretici ve kullanıcı doğrulukları ek olarak işlem süreleri Çizelge 4.18’de 

verilmiştir. Tablodaki değerler incelendiğinde 99,92% genel doğruluk ile en başarılı 

algoritmanın 2B ESA olduğu görülmektedir. Sınıf bazındaki doğruluklar incelendiğinde 

ise 2B ESA modelinin on sınıf için 100% doğruluğa sahip olduğu ve diğer iki sınıf için 
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algoritmalar arasındaki en yüksek üretici ve kullanıcı doğruluklarına sahip olduğu 

görülmüştür. 3B+2B ESA modelinin ise sınıf bazındaki doğruluk ölçütlerine ve genel 

doğruluğa göre 2B ESA modeline çok yakın bir sınıflandırma performansı ile ikinci en 

başarılı algoritma olduğu görülmektedir. İşlem süreleri açısından incelendiğinde RO 

modeli eğitiminin ve tüm görüntünün sınıflandırılması aşamasında en hızlı algoritmadır. 

 

Çizelge 4.18 Salinas Scene 50% veri seti için algoritmaların performansları. 

Sınıf Adı 

DVM  RO  2B ESA  3B+2B ESA 

Ü
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Brokoli_yeşil_otlar_1 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 

Brokoli_yeşil_otlar_2 100,00 100,00 100,00 99,95 100,00 100,00 100,00 100,00 

Nadas_toprak 99,49 99,49 99,30 99,90 100,00 100,00 100,00 100,00 

Nadas_toprak_kaba_saban 99,57 99,28 99,42 99,00 100,00 99,86 100,00 99,57 

Nadas_toprak_düz 99,25 99,40 99,25 99,25 99,93 100,00 99,78 100,00 

Anız 100,00 99,95 100,00 99,95 100,00 100,00 100,00 100,00 

Kereviz 100,00 99,94 100,00 99,89 100,00 100,00 100,00 100,00 

Üzümler_terbiyelenmemiş 86,79 91,52 86,54 92,94 99,91 99,75 99,72 99,72 

Toprak_üzüm_bağı_yetişen 99,52 99,97 99,36 99,97 100,00 100,00 100,00 100,00 

Mısır_yaşlanmış 98,78 98,54 99,13 97,86 99,88 100,00 99,94 100,00 

Roman_marulu_4_hafta 99,44 99,25 98,87 98,13 100,00 100,00 100,00 100,00 

Roman_marulu_5_hafta 99,90 100,00 99,18 100,00 100,00 100,00 100,00 100,00 

Roman_marulu_6_hafta 100,00 99,78 99,13 99,34 100,00 100,00 100,00 100,00 

Roman_marulu_7_hafta 99,44 99,63 98,69 98,69 100,00 99,81 100,00 100,00 

Üzüm_bağı_terbiyelenmemiş 85,93 78,48 87,84 77,74 99,64 99,86 99,59 99,56 

Üzüm_bağı_düşey_çit 99,89 99,89 99,78 99,67 100,00 100,00 100,00 100,00 

Genel Doğruluk 95,15% 95,24% 99,92% 99,87% 

Kappa 0,946 0,947 0,999 0,999 

İşlem 

Süreleri 

(saniye): 

Eğitim 2972,73 0,11 211,55 655,03 

Sınıflandırma 15,29 2,29 130,84 163,41 

 

Salinas Scene 50% verisi için eğitilen algoritmalar tarafından oluşturulan sınıflandırma 

haritaları Şekil 4.25’te verilmiştir. Sınıflandırma sonuçları incelendiğinde 50% veri 

kümesi boyutu kullanımında da DVM ve RO modelleri için tuz-biber etkisinin devam 

ettiği görülmüştür. Özellikle yer doğrulama örneklerinin mevcut olduğu bölgelerle 



91 

kıyaslandığında (Şekil 3.4) 2B ESA’nın sınıflandırma sonucuyla büyük benzerlik 

göstermektedir. 

 

 

Şekil 4.25 Salinas Scene 50% veri seti (a) için DVM (b), RO (c), 2B ESA (d) ve 3B+2B ESA (e) 

algoritmaları ile oluşturulan sınıflandırma haritaları ve lejantı (f). 

 

Veri seti için üçüncü aşamada algoritmalar 70% eğitim verisi ile eğitildikten sonra yer 

doğrulama verisinin eğitim verisinden arta kalan 30%’luk test veri seti ile hata matrisleri 

oluşturulmuştur (Ek 45, Ek 46, Ek 47 ve Ek 48). Bu hata matrislerinden hesaplanan genel 

doğruluk, kappa, üretici ve kullanıcı doğrulukları ek olarak işlem süreleri Çizelge 4.19’de 

verilmiştir. Tablodaki değerler incelendiğinde 99,98% genel doğruluk ile en başarılı 

algoritmanın 2B ESA olduğu görülmektedir. Sınıf bazındaki doğruluklar incelendiğinde 

ise 2B ESA modelinin on dört sınıf için 100% doğruluğa sahip olduğu ve diğer iki sınıf 

için algoritmalar arasındaki en yüksek üretici ve kullanıcı doğruluklarına sahip olduğu 

görülmüştür. 3B+2B ESA modelinin ise sınıf bazındaki doğruluk ölçütlerine ve genel 

doğruluğa göre on dört sınıfta 100%’lük üretici ve kullanıcı doğruluğuna sahip olduğu ve 

2B ESA modeline çok yakın bir sınıflandırma performansı ile ikinci en başarılı algoritma 
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olduğu görülmektedir. İşlem süreleri açısından incelendiğinde RO modeli eğitiminin ve 

tüm görüntünün sınıflandırılması aşamasında en hızlı algoritmadır. 

 

Çizelge 4.19 Salinas Scene 70% veri seti için algoritmaların performansları. 

Sınıf Adı 
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Brokoli_yeşil_otlar_1 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 

Brokoli_yeşil_otlar_2 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 

Nadas_toprak 99,33 99,66 99,50 99,83 100,00 100,00 100,00 100,00 

Nadas_toprak_kaba_saban 99,76 99,04 99,28 99,52 100,00 100,00 100,00 100,00 

Nadas_toprak_düz 99,01 99,38 99,38 99,25 100,00 100,00 100,00 100,00 

Anız 100,00 100,00 99,92 99,92 100,00 100,00 100,00 100,00 

Kereviz 100,00 99,91 100,00 99,91 100,00 100,00 100,00 100,00 

Üzümler_terbiyelenmemiş 88,79 91,10 87,86 93,94 99,91 100,00 99,82 99,91 

Toprak_üzüm_bağı_yetişen 99,57 99,95 99,36 100,00 100,00 100,00 100,00 100,00 

Mısır_yaşlanmış 98,58 98,78 98,88 98,47 100,00 100,00 100,00 100,00 

Roman_marulu_4_hafta 99,07 99,69 99,37 97,81 100,00 100,00 100,00 100,00 

Roman_marulu_5_hafta 100,00 100,00 99,83 100,00 100,00 100,00 100,00 100,00 

Roman_marulu_6_hafta 100,00 100,00 99,28 99,64 100,00 100,00 100,00 100,00 

Roman_marulu_7_hafta 99,69 99,38 99,37 98,75 100,00 100,00 100,00 100,00 

Üzüm_bağı_terbiyelenmemiş 85,89 82,07 89,72 80,01 100,00 99,86 99,86 99,72 

Üzüm_bağı_düşey_çit 100,00 99,63 100,00 99,63 100,00 100,00 100,00 100,00 

Genel Doğruluk 95,55% 95,81% 99,98% 99,94% 

Kappa 0,950 0,953 0,999 0,999 

İşlem 

Süreleri 

(saniye): 

Eğitim 5720,01 0,17 317,99 909,17 

Sınıflandırma 22,58 2,37 133,52 163,74 

 

Salinas Scene 70% verisi için eğitilen algoritmalar tarafından oluşturulan sınıflandırma 

haritaları Şekil 4.26’da verilmiştir. Sınıflandırma sonuçları incelendiğinde görüntünün 

yukarı bölgesinde yer alan tarla DVM, 2B ESA ve 3B+2B ESA tarafından 

Üzüm_bağı_düşey_çit olarak sınıflandırılırken RO tarafından Brokoli_yeşil_otlar_2 

olarak sınıflandırılmıştır.  
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Şekil 4.26 Salinas Scene 70% veri seti (a) için DVM (b), RO (c), 2B ESA (d) ve 3B+2B ESA (e) 

algoritmaları ile oluşturulan sınıflandırma haritaları ve lejantı (f). 

 

Her veri kümesi boyutu için algoritmaların arasındaki genel doğruluk farklarının anlamlı 

olup olmadıklarının test edilmesi için uygulanan McNemar’s’s testi sonuçları Çizelge 

4.20’de verilmiştir. Hesaplanan test sonuçları 95% güven aralığında χ2=3,841 değeriyle 

karşılaştırıldığında her üç eğitim kümesi boyutu için DVM ile RO arasında hesaplanan 

McNemar’s değerleri ve 50% ve 70% eğitim veri kümesi boyutları için 2B ESA ile 

3B+2B ESA modelleri arasında hesaplanan McNemar’s değerleri kritik değerden 

küçüktür. Dolayısıyla bahsedilen model çiftlerinin kendi aralarında sınıflandırma 

performanslarının aynı olduğu yorumu yapılır. 
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Çizelge 4.20 Salinas Scene veri seti için hesaplanan McNemar’s testi sonuçları. 

Model 1 - Model 2 

  

30% Veri Kümesi 

Boyutu 

50% Veri Kümesi 

Boyutu 

70% Veri Kümesi 

Boyutu 

𝛘
𝒎𝒄
𝟐  

Anlamlı 

mı? 
𝛘
𝒎𝒄
𝟐  

Anlamlı 

mı? 
𝛘
𝒎𝒄
𝟐  

Anlamlı 

mı? 

DVM - RO 12,868 Evet 0,570 Hayır 2,443 Hayır 

DVM - 2B ESA 1722,543 Evet 1278,130 Evet 715,012 Evet 

DVM - 3B+2B ESA 1498,467 Evet 1241,042 Evet 701,167 Evet 

RO - 2B ESA 1867,049 Evet 1251,176 Evet 672,037 Evet 

RO - 3B+2B ESA 1655,407 Evet 1221,749 Evet 658,247 Evet 

2B ESA - 3B+2B ESA 43,75 Evet 3,521 Hayır 3,125 Hayır 
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5. SONUÇLAR ve TARTIŞMA 

 

Bu tez çalışmasında hiperspektral görüntülerin sınıflandırılmasında geleneksel MÖ 

yöntemlerinden olan DVM ve RO algoritmaları ile popüler görüntü sınıflandırma 

yöntemlerden olan ESA tabanlı olan 2B ESA ve 3B+2B ESA modelleri kıyaslanmıştır. 

Görüntülerin ulaşılabilir olmaması ve yer doğrulama verilerinin oluşturulması zor ve 

yüksek maliyetli olduğundan, literatürde de sıklıkla kullanılan karşılaştırma veri 

setlerinden yararlanılmıştır. Literatürdeki birçok çalışmada genellikle birkaç veri setinin 

kullanılması ve diğer veri setleri üzerinde algoritmaların performanslarının araştırılması 

konusunda bir açık olması sebebiyle tez çalışmasında yaygın kullanılan Salinas Scene 

veri setinin yanında güncel karşılaştırma veri setlerinden olan HyRANK ve DFC13 veri 

setleri de kullanılmıştır. Bu veri setlerinden HyRANK veri seti EO-1 Hyperion uydu 

platformundan elde edilmiş olup 30 metre konumsal çözünürlüğe sahiptir ve yer sınıfları 

CORINE kriterlerine göre belirlenmiştir. DFC13 veri seti hava aracıyla elde edildiğinden 

2,5 metre konumsal çözünürlüğe sahiptir ve yer sınıfları bu çözünürlükteki bir verinin 

rahatlıkla sağlayacağı daha özel ölçekte detaylandırılmış sınıflara sahiptir. Salinas Scene 

veri seti 3,7 metre konumsal çözünürlüğe sahiptir ve aynı türler içinde zamansal ve 

şekilsel farklılıklara sahip zirai sınıflardan oluşmaktadır. Üç veri setinin konumsal ve 

spektral çözünürlükleri ile içerdiği yer sınıfları birlikte değerlendirildiğinde, bu verilerin 

aynı tez çalışması kapsamında değerlendirilmesi tez çalışmasının geniş bir perspektif göz 

önünde bulundurularak gerçekleştirildiğinin de göstergesidir. Diğer bir durum ise Dioni 

ve DFC13 verilerinde bulunan gölge alanlardır. Bu alanların da doğrudan sınıflandırma 

işlemine tabi tutulmasıyla bu gibi durumlarda sınıflandırma modellerinin testi de 

gerçekleştirmiştir. 

Hiperspektral görüntülerde bantlar arasında yüksek korelasyon bulunması durumu MÖ 

algoritmaları açısından istenen bir durum değildir. Bu problemle başa çıkılması için 

literatürdeki birçok çalışmada olduğu gibi TBA kullanılarak veri boyutu indirgenmiştir. 

Temel bileşenlerin seçimine dair literatürde önerilen 95% açıklanabilir varyans şartı tezde 

kullanılan verilerde 1-2 temel bileşenle sağlanmaktadır. Açıklanabilir varyansın 99,5% 

olma şartı ise genellikle 4-5 bantta sağlanmaktadır. Yapılan değerlendirmeler ve 

kullanılan modellerin gereklilikleri değerlendirildiğinde tüm veri setleri için 15 temel 
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bileşen kullanılması uygun görülmüştür. Böylelikle veri seti açısından evrensel bir 

sınıflandırma modellemesi sağlanacaktır. 

Tez kapsamında kullanılan MÖ algoritmaları kullanıcı tarafından tanımlanan bazı 

parametrelere sahiptir. Bu parametrelerin seçimi modelin sınıflandırma doğruluğunu 

önemli ölçüde etkilemekle beraber veri setine göre de kullanılacak parametreler 

değişiklik göstermektedir. Dolayısıyla ortaya bir optimizasyon problemi çıkmaktadır. 

DVM algoritmasında C parametresi, çekirdek fonksiyonu ve bu fonksiyonun gerektirdiği 

parametreler mevcuttur. Tez çalışmasında DVM için literatürdeki yapılan çalışmalarda 

da başarısını kanıtlamış RTF çekirdek fonksiyonu kullanılmıştır ve eğitim veri setlerine 

göre 5 katlı çapraz doğrulama ile optimum parametreler tespit edilmiştir. RO 

algoritmasının kullanıcı tanımlı m ve N parametrelerinin duyarlığı DVM’ye göre daha 

düşüktür. RO algoritmasında m parametresi için yapılan çalışmalarda önerilen, bant 

sayısının karekökünün tam sayıya yuvarlanmış şekli kullanılmıştır. Bütün veri setleri için 

15 temel bileşen kullanıldığından dolayı m değeri de tüm RO modelleri için 4 olarak 

kullanılmıştır. N parametresinin belirlenmesi için ise OOB hataları incelenmiştir ve yine 

bütün verilerde N parametresi 150 olarak belirlenmiştir.  

ESA mimarileri uygulanırken hiperspektral verilerin sınıflandırılmasında yüksek 

performans gösteren modeller tespit edilip bu mimariler üzerinde geliştirmeler 

yapılmıştır. Özellikle 3B+2B ESA modelinde konumsal-spektral öğrenme işlemi 

gerçekleştirilmesi hiperspektral verilerin sınıflandırılmasında önem arz etmektedir. 

Modellerin sınıflandırma performanslarını bu bölümde daha kolay incelemek için genel 

doğruluklar Çizelge 5.1’de verilmiştir. Tabloda sonuçlar veri setlerine göre, veri 

setlerinin altında ise eğitim veri kümesi oranlarına göre gösterilmiştir. 
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Çizelge 5.1 Modellerin veri setleri ve eğitim veri küme oranlarına göre genel doğrulukları. 

Veri Seti 

Eğitim 

Veri 

Oranı 

DVM RO 2B ESA 3B+2B ESA 

D
io

n
i 

(3
0
m

) 

30% 94,61% 93,66% 98,29% 98,60% 

50% 95,92% 94,46% 99,17% 97,92% 

70% 96,04% 95,02% 99,42% 99,48% 

L
o
u

k
ia

 

(3
0
 m

) 

30% 86.12% 85,14% 92,38% 93,97% 

50% 88,13% 86,67% 94,93% 96,73% 

70% 89,68% 87,63% 96,64% 97,40% 

D
F

C
1
3

 

(2
,5

 m
) 

30% 97,17% 96,13% 99,55% 99,67% 

50% 97,94% 96,75% 99,77% 99,86% 

70% 98,20% 97,16% 99,86% 99,92% 

S
a
li

n
a
s 

S
ce

n
e 

(3
,7

 m
) 

30% 94,86% 94,48% 99,64% 99,36% 

50% 95,15% 95,24% 99,92% 99,87% 

70% 95,55% 95,81% 99,98% 99,94% 

 

MÖ ve ESA modellerinin eğitilmesi aşamasında veri setlerinin yer doğrulama verilerinin 

30%, 50% ve 70%’lik kısımlarının eğitimde kullanılmasının etkisi de incelenmiştir. Dioni 

veri setinde 30% eğitim verisi kullanıldığında en yüksek doğruluk 98,60% ile 3B+2B 

ESA modeliyle elde edilirken en düşük doğruluğa 93,66% ile RO  modeli sahiptir. 50% 

eğitim verisi kullanılarak gerçekleştirilen sınıflandırma işleminde 99,17% doğrulukla 2B 

ESA en iyi sınıflandırma performansında sahipken 94,46% doğrulukla en düşük doğruluk 

RO algoritmasında gözlenmiştir. Bu veri seti ve eğitim verisi oranında meyve bahçeleri 

ve zeytinlikler sınıflarında 3B+2B ESA modelinin 100% üretici doğruluğuna sahipken 

kullanıcı doğruluğu tarafında çok düşük doğruluk gösterdiği görülmektedir. Bu da bazı 

durumlarda modelin kompleksliğinin bazı sınıflarda gözle görülür şekilde aşırı uyum 

sorununa yol açtığını göstermektedir. 70% eğitim verisi kullanılması durumunda da 

3B+2B ESA modeli 99,48% ile en iyi genel doğruluğa sahipken RO modeli 95,02% ile 

en düşük doğruluğu vermiştir. Görüntüde bulut ve gölge alanlardaki piksellerin 

sınıflandırılmasında ESA modelleri beklendiği üzere sırasıyla kayalıklar ve kumluklar ve 

su olarak sınıflandırırken DVM ve kısmen RO bu alanları diğer arazi sınıflarına göre 
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etiketlemiştir. Alana dair gerçek arazi sınıfları tam olarak bilinmediğinden DVM’nin 

sınıflandırma sonuçları hakkında bir yorumlama yapılması mümkün değildir. 

Loukia veri setinin 30% eğitim verisi ile sınıflandırılmasında 3B+2B ESA modeli 93,97% 

ile en iyi sınıflandırma sonucuna sahipken 85,14% doğruluk sergilemiştir. Eğitim 

verisinin 50% ve 70% kullanımında sırasıyla 96,73% ve 97,40% genel doğruluk ile 

3B+2B ESA modeli en iyi performansı gösterirken sırasıyla 86,67% ve 87,63% ile en 

düşük doğruluğu RO modeli göstermiştir. Eğitim verisindeki 40%’lık artış miktarı 

3B+2B ESA modelinde ~3,5%’lik genel doğruluk artışı sağlamıştır. Loukia veri setinin 

sınıflandırma haritaları incelendiğinde bütün eğitim veri boyutları için denizde su ve kıyı 

sularının birleştiği bölgede DVM’nin hatalı sınıflandırmalar gerçekleştirdiği 

görülmüştür. Modellerde genellikle meyve bahçeleri sınıfı için sınıflandırma performansı 

kötüdür. Bu durumun oluşmasında söz konusu sınıfta yer doğrulama için ayrılan 

piksellerin diğer sınıflara göre çok daha düşük miktarda olmasının (< 0,1%) etkisi de göz 

ardı edilmemelidir. 

Kullanılan veriler arasında en yüksek konumsal çözünürlüğe sahip olan DFC13 verisinin 

sınıflandırılmasında 30%, 50% ve 70% eğitim verisi kullanılması durumunda sırasıyla 

99,67%, 99,86% ve 99,92%’lik genel doğrulukla en iyi sınıflandırma performansını 

3B+2B ESA modeli gösterirken yine sırasıyla 96,13%, 96,75% ve 97,16%’lık genel 

doğrulukla RO modeli en düşük sınıflandırma performansına sahiptir. Düşük miktarda 

eğitim verisi kullanımında dahi tüm algoritmaların bu veri setindeki başarısı oldukça 

yüksektir. Bunun olası sebeplerinden birisi görüntünün konumsal çözünürlüğün yüksek 

olması, böylece daha az miktarda katışımlı piksele sahip olmasıdır. Ancak görüntüdeki 

gölge alanda hatalı sınıflandırmalar olduğu da görülmektedir. 

Temelde sebze, toprak ve üzüm bağları sınıfları olmak üzere çeşitli zamansal ve şekilsel 

farklılıklar gösteren 16 sınıftan oluşan Salinas Scene verisinin sınıflandırılmasında ise 

30%, 50% ve 70% eğitim verisi kullanılması durumunda sırasıyla 99,64%, 99,92% ve 

99,98%’lik genel doğrulukla en iyi sınıflandırma performansını 2B ESA modeli 

gösterirken yine sırasıyla 94,48%, 95,24% ve 95,81%’lik genel doğrulukla RO modeli en 

düşük sınıflandırma performansına sahiptir. DVM ile RO modellerinin arasında bütün 

eğitim küme boyutlarında McNemar’s test sonuçlarına dayanarak sınıflandırma 

performansı açısından anlamlı bir farklılık tespit edilememiştir. Ayrıca söz konusu 



99 

modellerin sınıflandırma haritalarında yer doğrulama verisine göre çok miktarda tuz-

biber etkisi ve hatalı sınıflandırma olduğu göze çarpmaktadır. Bunun yanı sıra 50% ve 

70% eğitim küme boyutları için 2B ESA ve 3B+2B ESA modellerinin sınıflandırma 

performansları arasında anlamlı bir farklılık bulunamamıştır. 

Kullanılan veri setleri ve veri boyutları için elde edilen sınıflandırma doğrulukları göz 

önünde bulundurulduğunda Salinas Scene veri seti haricinde konumsal-spektral öğrenme 

gerçekleştirmesi sayesinde 3B+2B ESA modelinin diğer modellere göre daha yüksek 

başarı gösterdiği görülmüştür. Salinas Scene veri setinde ise 2B ESA modeli yüksek 

başarı göstermiştir. Buradan yola çıkarak hiperspektral görüntülerin sınıflandırılmasında 

ESA modellerinin kullanımının MÖ modellerine göre daha avantajlı olduğunu söylemek 

mümkündür. Eğitim veri kümesi açısından değerlendirildiğinde beklendiği üzere 70% 

eğitim veri kümesi ile eğitilen modeller daha az miktardaki eğitim veri kümesi 

boyutlarına göre daha yüksek genel doğruluk vermektedir. Veri setlerinde en yüksek 

doğruluk veren algoritmalar üzerinden bir değerlendirme yapıldığında 30% ile 70% 

eğitim veri kullanılması durumunda minimum 0,25% ile maksimum 3,43%’lük bir artış 

gözlenmiştir.  

Literatürde HyRANK veri seti ile sadece birkaç çalışma yapıldığı görülmüştür. Hang vd. 

(2020) Dioni veri seti ile eğitip Loukia ile test ettikleri SSAtt modeliyle 58,55% genel 

doğruluk elde etmiştir. Çalışmada özellikle az sayıda yer doğrulama verisi barındıran 

sınıfların elimine edilip sadece yedi tane yer doğrulama sınıfı kullanıldığı göz ardı 

edilmemelidir. Christovam vd. (2019) 85% eğitim veri kümesiyle gerçekleştirdikleri 

çalışmada 91% genel doğrulukla RO-TBA yöntemini başarılı bulmuşlardır. Sonuçlar 

incelendiğinde meyve bahçeleri sınıfı için düşük sınıflandırma doğruluğu elde 

etmişlerdir. Tez çalışmasında Dioni ve Loukia 30% eğitim veri seti için 3B+2B ESA 

modeliyle elde edilen genel doğruluk sırasıyla 98,6% ve 93,97%’dir. Souçlar 

incelendiğinde deneyler birebir aynı şartlarda gerçekleştirilmemesine rağmen tez 

çalışmasında daha iyi sınıflandırma performansı elde edildiği söylenebilir. 

Hang vd. (2020) DFC13 veri seti ile SSAtt isimli DÖ modeli 90,38% genel doğruluk elde 

etmiştir. Çalışmada her sınıftan 181-198 arasında eğitim pikseli kullanılırken görüntüdeki 

gölge alan kesilmiştir. Hong vd. (2020) FuNet-M mimarisiyle DFC13 veri seti için 

88,62% doğruluk elde etmiştir. Bu çalışmada görüntüdeki bulut gölgesi giderildikten 
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sonra kullanılmıştır. Zhao X vd. (2020) bölgenin LiDAR verisiyle birlikte kullandığı 

DFC13 verisiyle HRWN ismini verdiği ESA modeliyle 93,61% genel doğruluk elde 

etmiştir.  Bu çalışmalarla kıyaslandığında 30% eğitim verisiyle ve söz konusu veri setiyle 

3B+2B ESA modeliyle 99,67% doğruluk elde edilmiştir. Ancak çalışmalar arasında gölge 

giderimi, LiDAR kullanımı ve tez çalışmasında olduğu gibi eğitim ve validasyon 

verisinin birleştirilerek kullanımı gibi temel farklılıklar da mevcuttur. 

Literatürde birçok çalışmada kullanılan Salinas Scene veri seti için genellikle yüksek 

genel doğruluk değerleri hesaplanmaktadır. Gualtieri vd. (1999) çalışmasında Salinas 98 

C ismiyle anılan Salinas Scene verisiyle DVM yöntemiyle 1% eğitim verisi kullanarak 

89% genel doğruluğa ulaşmıştır. Hu vd. (2015) önerdikleri ESA modeliyle Salinas Scene 

verisini kullanarak 92,60% genel doğruluk elde etmişlerdir. Çalışmada her sınıftan 200’er 

tane eğitim pikseli kullanıp geriye kalan kısmı test için kullanmışlardır. Roy vd. (2019) 

HybridSN ESA modeliyle, KÇ3B-ESA modeliyle Salinas Scene veri seti için 100% genel 

doğruluk elde etmişlerdir. Tez çalışmasında söz konusu veri seti için 30% eğitim 2B ESA 

modeliyle 99,64% genel doğruluk elde edilmiştir. Elde edilen sonuçlar 

karşılaştırıldığında güncel çalışmalara yakın genel doğruluklara ulaşıldığı söylenebilir. 

Tez çalışmasında 30% eğitim verisi ile eğitilen verilerde de yüksek doğruluk elde edildiği 

göz önünde bulundurulursa yer doğrulama verilerinin seçiminde maliyet de dikkate 

alınarak az sayıda yer örneği ile de yüksek sınıflandırma doğruluğu sağlanması mümkün 

olabilir. RO algoritması tez kapsamında yapılan deneylerde her ne kadar diğer modellere 

göre düşük performans gösterse de modelin basitliği, işlem süresi ve kullanıcı tanımlı 

parametrelere karşı aşırı duyarlı olmaması gibi olumlu yönleriyle hız gerektiren 

çalışmalarda kullanılabilir. ESA modelleri yüksek işlem sürelerine rağmen en iyi 

sınıflandırma sonuçlarını vermişlerdir. DVM algoritması zaman yönünden hızlı 

olmaması, kullanıcı tanımlı parametrelere karşı yüksek hassasiyette olması ve ESA 

modelleri kadar yüksek doğruluk sağlamaması sebepleriyle karşılaştıran modeller 

arasında en son tercih edilmesi gereken modeldir. 
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EKLER 

 

Ek 1 Dioni 30% veri seti için DVM modelinin hata matrisi. 

Sın.No 1 2 3 4 5 7 9 10 11 12 13 14 

1 762 5 17 0 59 0 1 23 16 0 0 0 

2 8 121 0 0 0 0 0 4 10 0 0 0 

3 16 1 385 0 24 0 0 0 4 0 0 0 

4 0 0 0 82 23 0 0 0 0 0 0 0 

5 59 0 12 13 1148 0 1 3 2 0 0 0 

7 0 0 0 0 0 250 3 0 0 0 0 0 

9 1 0 0 0 3 0 3309 211 0 0 0 0 

10 12 0 2 0 3 0 126 4301 18 0 0 0 

11 17 0 0 0 2 0 1 39 1167 2 0 0 

12 1 0 0 0 0 0 0 0 8 335 0 0 

13 0 0 0 0 0 0 0 0 0 0 1128 0 

14 0 1 1 0 0 0 0 2 0 0 2 273 

 

 

Ek 2 Dioni 30% veri seti için RO modelinin hata matrisi. 

Sın.No 1 2 3 4 5 7 9 10 11 12 13 14 

1 689 5 13 0 80 0 0 55 41 0 0 0 

2 15 113 0 0 0 0 0 3 12 0 0 0 

3 15 1 389 0 17 0 0 3 5 0 0 0 

4 0 0 0 78 25 0 1 1 0 0 0 0 

5 24 0 15 8 1164 0 3 23 1 0 0 0 

7 0 0 0 0 0 253 0 0 0 0 0 0 

9 0 0 0 0 5 0 3240 279 0 0 0 0 

10 0 0 0 0 6 0 109 4338 9 0 0 0 

11 6 0 1 0 0 0 2 85 1128 6 0 0 

12 0 0 0 0 0 0 0 0 13 331 0 0 

13 0 0 0 0 0 0 0 0 0 0 1128 0 

14 0 0 0 0 0 0 0 0 0 0 2 277 
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Ek 3 Dioni 30% veri seti için 2B ESA modelinin hata matrisi. 

Sın.No 1 2 3 4 5 7 9 10 11 12 13 14 

1 827 0 10 0 12 0 0 33 0 1 0 0 

2 0 137 0 0 0 0 0 5 1 0 0 0 

3 5 0 414 0 8 0 0 0 3 0 0 0 

4 3 0 0 90 11 0 0 0 1 0 0 0 

5 10 0 2 5 1221 0 0 0 0 0 0 0 

7 0 0 0 0 0 253 0 0 0 0 0 0 

9 0 0 0 0 0 0 3472 52 0 0 0 0 

10 0 0 4 0 0 0 61 4395 2 0 0 0 

11 0 0 1 0 0 0 0 8 1219 0 0 0 

12 0 0 0 0 0 0 0 0 2 342 0 0 

13 0 0 0 0 0 0 0 0 0 0 1128 0 

14 0 0 0 0 0 0 0 0 0 0 0 279 

 

 

Ek 4 Dioni 30% veri seti için 3B+2B ESA modelinin hata matrisi. 

Sın.No 1 2 3 4 5 7 9 10 11 12 13 14 

1 838 0 14 0 10 2 0 18 0 1 0 0 

2 0 143 0 0 0 0 0 0 0 0 0 0 

3 0 0 420 0 3 0 0 6 1 0 0 0 

4 1 0 0 83 21 0 0 0 0 0 0 0 

5 5 0 3 2 1228 0 0 0 0 0 0 0 

7 0 0 0 0 0 253 0 0 0 0 0 0 

9 0 0 0 0 3 0 3499 22 0 0 0 0 

10 1 0 3 0 0 0 71 4386 1 0 0 0 

11 4 1 1 0 0 0 0 1 1221 0 0 0 

12 1 0 0 0 0 0 0 0 0 343 0 0 

13 0 0 0 0 0 0 0 0 0 0 1128 0 

14 0 0 0 0 0 0 0 0 0 0 0 279 
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Ek 5 Dioni 50% veri seti için DVM modelinin hata matrisi. 

Sın.No 1 2 3 4 5 7 9 10 11 12 13 14 

1 560 1 13 0 34 0 0 10 13 0 0 0 

2 2 93 0 0 0 0 0 3 4 0 0 0 

3 9 0 278 0 18 0 0 0 2 0 0 0 

4 1 0 0 67 7 0 0 0 0 0 0 0 

5 26 0 4 6 845 0 0 1 2 0 0 0 

7 0 0 0 0 0 180 1 0 0 0 0 0 

9 0 0 0 0 1 0 2389 127 0 0 0 0 

10 5 0 0 0 1 0 81 3096 4 0 0 0 

11 9 0 0 0 0 0 1 21 846 0 0 0 

12 0 0 0 0 0 0 0 0 1 245 0 0 

13 0 0 0 0 0 0 0 0 0 0 806 0 

14 0 0 0 0 0 0 0 0 0 0 0 199 

 

 

Ek 6 Dioni 50% veri seti için RO modelinin hata matrisi. 

Sın.No 1 2 3 4 5 7 9 10 11 12 13 14 

1 510 4 4 0 54 0 0 30 29 0 0 0 

2 6 87 0 0 0 0 0 3 6 0 0 0 

3 16 0 271 0 16 0 0 2 2 0 0 0 

4 0 0 0 60 14 0 1 0 0 0 0 0 

5 19 0 4 6 841 0 3 11 0 0 0 0 

7 0 0 0 0 0 181 0 0 0 0 0 0 

9 0 0 0 0 0 0 2354 163 0 0 0 0 

10 0 0 0 0 4 0 83 3095 5 0 0 0 

11 4 0 1 0 0 0 1 53 817 1 0 0 

12 0 0 0 0 0 0 0 0 9 237 0 0 

13 0 0 0 0 0 0 0 0 0 0 806 0 

14 0 0 0 0 0 0 0 0 0 0 1 198 

  



117 

Ek 7 Dioni 50% veri seti için 2B ESA modelinin hata matrisi. 

Sın.No 1 2 3 4 5 7 9 10 11 12 13 14 

1 617 0 1 0 8 1 0 3 1 0 0 0 

2 0 101 0 0 0 0 0 0 1 0 0 0 

3 3 0 299 0 3 0 0 2 0 0 0 0 

4 0 0 0 65 10 0 0 0 0 0 0 0 

5 1 0 3 1 879 0 0 0 0 0 0 0 

7 0 0 0 0 0 181 0 0 0 0 0 0 

9 0 0 0 0 0 0 2501 16 0 0 0 0 

10 1 0 0 0 0 0 25 3160 1 0 0 0 

11 0 0 1 0 0 0 0 0 876 0 0 0 

12 0 0 0 0 0 0 0 0 1 245 0 0 

13 0 0 0 0 0 0 0 0 0 0 806 0 

14 0 0 0 0 0 0 0 0 0 0 0 199 

 

 

Ek 8 Dioni 50% veri seti için 3B+2B ESA modelinin hata matrisi. 

Sın.No 1 2 3 4 5 7 9 10 11 12 13 14 

1 598 0 0 0 20 0 2 8 3 0 0 0 

2 3 55 0 0 0 0 0 9 35 0 0 0 

3 1 0 302 0 2 0 0 0 2 0 0 0 

4 0 0 0 32 42 1 0 0 0 0 0 0 

5 5 0 1 0 877 0 0 1 0 0 0 0 

7 0 0 0 0 0 181 0 0 0 0 0 0 

9 0 0 0 0 0 0 2511 6 0 0 0 0 

10 0 0 3 0 0 0 56 3124 4 0 0 0 

11 0 0 0 0 0 0 0 0 877 0 0 0 

12 0 0 0 0 0 0 0 0 4 242 0 0 

13 0 0 0 0 0 0 0 0 0 0 806 0 

14 0 0 0 0 0 0 0 0 0 0 0 199 
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Ek 9 Dioni 70% veri seti için DVM modelinin hata matrisi. 

Sın.No 1 2 3 4 5 7 9 10 11 12 13 14 

1 335 1 10 0 20 0 0 7 6 0 0 0 

2 1 58 0 0 0 0 0 2 0 0 0 0 

3 4 0 166 0 12 0 0 0 2 0 0 0 

4 1 0 0 40 4 0 0 0 0 0 0 0 

5 12 0 4 3 511 0 0 0 1 0 0 0 

7 0 0 0 0 0 108 0 0 0 0 0 0 

9 0 0 0 0 1 0 1433 76 1 0 0 0 

10 1 0 2 0 0 0 49 1855 5 0 0 0 

11 4 0 0 0 0 0 1 7 514 0 0 0 

12 0 0 0 0 0 0 0 0 0 148 0 0 

13 0 0 0 0 0 0 0 0 0 0 484 0 

14 0 0 0 0 0 0 0 0 0 0 1 118 

 

 

Ek 10 Dioni 70% veri seti için RO modelinin hata matrisi. 

Sın.No 1 2 3 4 5 7 9 10 11 12 13 14 

1 317 0 3 0 30 0 0 17 12 0 0 0 

2 6 52 0 0 0 0 0 2 1 0 0 0 

3 6 0 165 0 9 0 0 2 2 0 0 0 

4 0 0 0 34 10 0 1 0 0 0 0 0 

5 14 0 3 4 504 0 0 6 0 0 0 0 

7 0 0 0 0 0 108 0 0 0 0 0 0 

9 0 0 0 0 1 0 1419 91 0 0 0 0 

10 0 0 1 0 1 0 38 1868 4 0 0 0 

11 4 0 0 0 0 0 0 26 495 1 0 0 

12 0 0 0 0 0 0 0 0 3 145 0 0 

13 0 0 0 0 0 0 0 0 0 0 484 0 

14 0 0 0 0 0 0 0 0 0 0 1 118 
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Ek 11 Dioni 70% veri seti için 2B ESA modelinin hata matrisi. 

Sın.No 1 2 3 4 5 7 9 10 11 12 13 14 

1 377 0 0 0 1 0 0 1 0 0 0 0 

2 0 60 0 0 0 0 0 1 0 0 0 0 

3 1 0 181 0 2 0 0 0 0 0 0 0 

4 0 0 0 40 4 0 0 1 0 0 0 0 

5 0 0 2 0 529 0 0 0 0 0 0 0 

7 0 0 0 0 0 108 0 0 0 0 0 0 

9 0 0 0 0 0 0 1505 6 0 0 0 0 

10 0 0 0 0 0 0 14 1897 1 0 0 0 

11 0 0 0 0 0 0 0 0 526 0 0 0 

12 0 0 0 0 0 0 0 0 1 147 0 0 

13 0 0 0 0 0 0 0 0 0 0 484 0 

14 0 0 0 0 0 0 0 0 0 0 0 119 

 

 

Ek 12 Dioni 70% veri seti için 3B+2B ESA modelinin hata matrisi. 

Sın.No 1 2 3 4 5 7 9 10 11 12 13 14 

1 374 0 1 0 4 0 0 0 0 0 0 0 

2 0 61 0 0 0 0 0 0 0 0 0 0 

3 1 0 179 0 3 0 0 1 0 0 0 0 

4 0 0 0 39 6 0 0 0 0 0 0 0 

5 0 0 1 0 529 0 0 1 0 0 0 0 

7 0 0 0 0 0 108 0 0 0 0 0 0 

9 0 0 0 0 0 0 1508 3 0 0 0 0 

10 0 0 0 0 0 0 9 1903 0 0 0 0 

11 0 0 0 0 0 0 0 1 525 0 0 0 

12 0 0 0 0 0 0 0 0 0 148 0 0 

13 0 0 0 0 0 0 0 0 0 0 484 0 

14 0 0 0 0 0 0 0 0 0 0 0 119 
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Ek 13 Loukia 30% veri seti için SVM modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 153 0 16 0 20 0 0 0 3 8 1 1 0 0 

2 0 33 0 0 0 0 0 0 0 7 3 4 0 0 

3 8 0 345 0 5 0 0 0 1 19 0 1 0 0 

4 3 0 0 32 12 0 0 0 3 5 0 0 0 0 

5 9 0 20 4 908 0 0 2 27 10 1 0 0 0 

6 0 0 0 0 1 90 0 13 50 2 0 0 0 0 

7 0 0 0 0 0 0 247 40 61 2 0 0 0 0 

8 0 0 0 0 4 17 21 505 204 0 0 0 0 0 

9 2 0 1 1 8 13 26 130 2293 181 0 0 0 0 

10 0 0 6 0 7 0 0 2 242 1685 18 2 0 0 

11 0 0 0 0 0 0 0 0 0 34 244 5 0 0 

12 2 0 0 0 0 0 0 1 1 11 11 315 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 975 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 316 

 

Ek 14 Loukia 30% veri seti için RO modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 129 0 23 0 39 0 0 0 0 8 0 3 0 0 

2 0 40 0 0 0 0 0 0 0 0 1 6 0 0 

3 5 0 333 0 6 0 0 0 0 31 2 2 0 0 

4 0 0 0 26 27 0 0 0 1 1 0 0 0 0 

5 6 0 7 1 885 0 0 1 44 37 0 0 0 0 

6 0 0 0 0 3 85 0 25 43 0 0 0 0 0 

7 0 0 0 0 0 0 224 41 83 2 0 0 0 0 

8 0 0 0 0 0 7 12 496 236 0 0 0 0 0 

9 0 0 0 0 7 2 20 109 2317 200 0 0 0 0 

10 1 0 1 0 7 0 0 0 225 1725 2 1 0 0 

11 0 0 2 0 0 0 0 0 0 73 189 19 0 0 

12 2 0 0 0 0 0 0 0 8 14 9 308 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 975 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 316 
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Ek 15  Loukia 30% veri seti için 2B ESA modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 174 0 7 1 20 0 0 0 0 0 0 0 0 0 

2 0 46 0 0 0 0 0 0 0 0 1 0 0 0 

3 3 0 363 0 8 0 0 0 0 5 0 0 0 0 

4 1 0 0 38 11 0 4 0 1 0 0 0 0 0 

5 6 0 18 6 939 0 0 2 7 3 0 0 0 0 

6 0 0 1 4 3 105 0 12 31 0 0 0 0 0 

7 1 0 0 0 4 0 274 41 28 2 0 0 0 0 

8 0 0 0 0 1 3 12 670 65 0 0 0 0 0 

9 1 0 0 0 2 6 9 36 2457 144 0 0 0 0 

10 0 0 3 0 0 0 1 0 165 1784 7 2 0 0 

11 0 0 2 0 0 0 0 0 0 14 267 0 0 0 

12 2 0 0 0 0 0 0 0 6 0 8 325 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 975 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 316 

 

Ek 16  Loukia 30% veri seti için 3B+2B ESA modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 182 0 3 0 12 0 0 0 0 5 0 0 0 0 

2 0 47 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 347 0 8 0 0 0 1 20 0 3 0 0 

4 2 0 0 46 7 0 0 0 0 0 0 0 0 0 

5 8 0 2 5 949 0 1 4 7 3 1 1 0 0 

6 0 0 0 0 1 121 1 8 25 0 0 0 0 0 

7 0 0 0 0 8 0 287 23 28 4 0 0 0 0 

8 0 0 0 0 3 2 1 706 39 0 0 0 0 0 

9 1 0 0 0 1 7 4 42 2490 107 3 0 0 0 

10 0 0 0 0 1 0 1 0 138 1812 10 0 0 0 

11 0 0 0 0 0 0 0 0 0 8 275 0 0 0 

12 0 0 0 0 0 0 0 2 0 7 2 330 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 975 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 316 
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Ek 17  Loukia 50% veri seti için DVM modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 117 0 7 0 14 1 0 0 2 2 0 1 0 0 

2 0 28 0 0 0 0 0 0 0 2 2 1 0 0 

3 5 0 256 0 4 0 0 0 2 4 0 0 0 0 

4 2 0 0 26 11 0 0 0 0 0 0 0 0 0 

5 9 0 5 1 674 0 0 1 9 2 0 0 0 0 

6 0 0 0 0 1 81 0 6 23 0 0 0 0 0 

7 0 0 0 0 0 0 190 23 35 2 0 0 0 0 

8 0 0 0 0 3 8 9 395 120 1 0 0 0 0 

9 1 0 0 0 8 11 17 96 1636 128 0 0 0 0 

10 1 0 2 0 7 0 0 0 164 1214 11 3 0 0 

11 0 0 0 0 0 0 0 0 0 20 180 2 0 0 

12 1 0 0 0 0 0 0 1 1 6 3 232 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 697 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 225 

 

Ek 18  Loukia 50% veri seti için RO modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 94 0 14 0 32 0 0 0 0 1 0 3 0 0 

2 0 29 0 0 0 0 0 0 0 0 2 2 0 0 

3 3 0 244 0 4 0 0 0 0 17 2 1 0 0 

4 0 0 0 18 20 0 0 0 0 1 0 0 0 0 

5 4 0 1 1 650 0 0 1 30 14 0 0 0 0 

6 0 0 0 0 1 71 0 11 28 0 0 0 0 0 

7 0 0 0 0 0 0 173 26 49 2 0 0 0 0 

8 0 0 0 0 1 6 11 354 164 0 0 0 0 0 

9 0 0 0 0 6 4 15 64 1696 112 0 0 0 0 

10 0 0 2 0 7 0 0 0 161 1230 2 0 0 0 

11 0 1 3 0 0 0 0 0 0 39 151 8 0 0 

12 1 0 0 0 0 0 0 0 9 7 7 220 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 697 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 225 
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Ek 19  Loukia 50% veri seti için 2B ESA modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 126 0 3 0 15 0 0 0 0 0 0 0 0 0 

2 0 32 0 0 0 0 0 0 0 0 1 0 0 0 

3 0 0 261 0 5 0 0 0 1 4 0 0 0 0 

4 1 0 0 27 11 0 0 0 0 0 0 0 0 0 

5 1 0 9 2 680 0 1 1 6 1 0 0 0 0 

6 0 0 0 0 0 93 0 3 15 0 0 0 0 0 

7 0 0 0 0 1 0 216 13 17 3 0 0 0 0 

8 0 0 0 0 0 0 1 499 36 0 0 0 0 0 

9 0 0 0 0 0 6 2 25 1794 69 0 1 0 0 

10 0 0 2 0 0 0 1 0 67 1331 1 0 0 0 

11 0 0 2 0 0 0 0 0 0 5 195 0 0 0 

12 0 0 0 0 0 0 0 1 0 3 6 234 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 697 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 225 

 

Ek 20  Loukia 50% veri seti için 3B+2B ESA modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 133 0 2 0 8 0 1 0 0 0 0 0 0 0 

2 0 33 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 264 2 1 0 0 0 1 2 0 1 0 0 

4 0 0 0 31 8 0 0 0 0 0 0 0 0 0 

5 3 0 3 2 690 0 0 1 1 1 0 0 0 0 

6 0 0 0 0 0 102 0 2 7 0 0 0 0 0 

7 0 0 0 0 2 0 233 5 9 1 0 0 0 0 

8 0 0 0 0 0 0 8 513 14 1 0 0 0 0 

9 0 0 0 0 1 3 6 6 1841 40 0 0 0 0 

10 0 0 0 0 1 0 3 3 59 1328 7 1 0 0 

11 0 0 0 0 0 0 0 0 0 0 200 2 0 0 

12 0 0 0 0 0 0 0 0 3 0 0 241 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 697 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 225 
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Ek 21  Loukia 70% veri seti için DVM modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 76 0 3 0 6 0 0 0 1 0 0 0 0 0 

2 0 19 0 0 0 0 0 0 0 0 0 1 0 0 

3 1 0 155 0 4 0 0 0 0 3 0 0 0 0 

4 0 0 0 18 6 0 0 0 0 0 0 0 0 0 

5 2 0 3 0 410 0 1 3 0 1 0 0 0 0 

6 0 0 0 0 0 53 0 2 12 0 0 0 0 0 

7 0 0 0 0 0 0 121 11 17 1 0 0 0 0 

8 0 0 0 0 0 3 5 257 57 0 0 0 0 0 

9 0 0 0 0 4 5 14 56 982 77 0 0 0 0 

10 0 0 0 0 3 0 3 1 96 732 5 1 0 0 

11 0 0 0 0 0 0 0 0 0 7 114 0 0 0 

12 1 0 0 0 0 0 0 0 0 2 0 143 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 418 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 135 

 

Ek 22  Loukia 70% veri seti için RO modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 60 0 7 0 14 0 0 0 0 3 0 2 0 0 

2 0 19 0 0 0 0 0 0 0 0 0 1 0 0 

3 4 0 143 0 3 0 0 0 0 11 1 1 0 0 

4 0 0 0 13 10 0 0 0 0 1 0 0 0 0 

5 3 0 1 0 398 0 0 1 12 5 0 0 0 0 

6 0 0 0 0 0 41 0 6 20 0 0 0 0 0 

7 0 0 0 0 0 0 104 14 31 1 0 0 0 0 

8 0 0 0 0 0 2 6 231 83 0 0 0 0 0 

9 0 0 0 0 5 3 8 31 1015 76 0 0 0 0 

10 0 0 1 0 4 0 0 0 104 732 0 0 0 0 

11 0 0 1 0 0 0 0 0 0 20 100 0 0 0 

12 1 0 0 0 0 0 0 0 1 2 1 141 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 418 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 135 
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Ek 23  Loukia 70% veri seti için 2B ESA modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 84 0 0 0 2 0 0 0 0 0 0 0 0 0 

2 0 20 0 0 0 0 0 0 0 0 0 0 0 0 

3 1 0 159 0 1 0 0 0 1 1 0 0 0 0 

4 0 0 0 19 5 0 0 0 0 0 0 0 0 0 

5 1 0 2 0 413 1 0 1 1 1 0 0 0 0 

6 0 0 0 0 0 62 0 0 5 0 0 0 0 0 

7 0 0 0 0 1 0 137 6 5 1 0 0 0 0 

8 0 0 0 0 0 0 1 312 9 0 0 0 0 0 

9 0 0 0 0 0 5 0 8 1092 32 1 0 0 0 

10 0 0 0 0 0 0 2 0 39 800 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 2 119 0 0 0 

12 1 0 0 0 0 0 0 0 0 0 0 145 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 418 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 135 

 

Ek 24  Loukia 70% veri seti için 3B+2B ESA modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 82 0 2 0 0 0 0 0 0 0 0 2 0 0 

2 0 20 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 162 0 1 0 0 0 0 0 0 0 0 0 

4 0 0 1 19 4 0 0 0 0 0 0 0 0 0 

5 1 0 1 0 416 0 1 0 0 1 0 0 0 0 

6 0 0 0 0 0 62 0 0 5 0 0 0 0 0 

7 0 0 0 0 1 0 136 3 9 1 0 0 0 0 

8 0 0 0 0 0 0 0 312 9 1 0 0 0 0 

9 0 0 1 0 1 3 0 3 1101 28 1 0 0 0 

10 0 0 1 0 0 0 2 0 20 818 0 0 0 0 

11 0 0 1 0 0 0 0 0 0 1 119 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 146 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 418 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 135 
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Ek 25 DFC13 30% veri seti için DVM modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 960 1 0 1 0 0 0 0 0 0 0 0 0 0 0 

2 9 1009 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 556 0 0 0 0 0 0 0 0 0 0 0 0 

4 6 1 0 878 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 905 0 0 0 1 0 0 0 3 0 0 

6 0 0 0 0 0 236 1 0 0 0 0 0 0 0 0 

7 0 0 0 2 0 0 1004 0 2 1 13 8 3 0 0 

8 0 0 0 0 0 0 6 924 4 0 0 0 14 0 0 

9 0 1 0 1 0 0 0 7 1059 8 1 8 3 0 0 

10 0 0 0 0 0 0 2 2 17 960 9 2 5 0 0 

11 0 0 0 0 1 0 15 2 11 18 1047 2 0 0 0 

12 0 0 0 0 0 0 3 8 14 3 0 958 14 0 0 

13 1 0 0 0 2 0 11 24 8 8 7 37 343 3 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 357 0 

15 0 0 0 0 0 0 1 0 0 0 0 0 7 0 551 

 

Ek 26 DFC13 30% veri seti için RO modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 960 1 0 1 0 0 0 0 0 0 0 0 0 0 0 

2 10 1006 0 2 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 553 0 0 0 1 0 0 1 0 0 0 1 0 

4 6 7 0 871 0 0 0 0 0 0 1 0 0 0 0 

5 0 0 0 0 901 0 0 0 2 2 2 1 1 0 0 

6 0 0 0 0 0 236 1 0 0 0 0 0 0 0 0 

7 0 1 0 0 1 0 1009 0 1 1 13 7 0 0 0 

8 0 0 0 0 1 0 6 915 11 1 0 5 7 2 0 

9 0 3 0 0 11 0 0 0 1021 22 14 15 2 0 0 

10 0 0 0 0 0 0 0 0 17 943 14 17 6 0 0 

11 2 0 0 0 3 0 25 1 13 4 1042 4 2 0 0 

12 0 0 0 0 0 0 5 0 25 10 6 943 11 0 0 

13 0 0 0 0 3 0 18 15 10 13 8 57 316 4 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 357 0 

15 0 0 0 0 0 0 3 3 0 0 0 0 1 4 548 
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Ek 27 DFC13 30% veri seti için 2B ESA modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 962 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 5 1013 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 556 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 885 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 909 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 237 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 1031 0 0 0 0 0 2 0 0 

8 0 0 0 0 0 0 3 939 6 0 0 0 0 0 0 

9 0 1 0 0 1 0 0 0 1078 8 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 997 0 0 0 0 0 

11 0 0 0 0 0 0 6 0 0 0 1088 0 2 0 0 

12 0 0 0 0 0 0 2 0 0 0 0 998 0 0 0 

13 0 0 0 0 0 0 5 0 0 2 1 7 426 3 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 357 0 

15 0 0 0 0 0 0 1 0 0 0 0 0 0 0 558 

 

Ek 28 DFC13 30% veri seti için 3B+2B ESA modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 962 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 4 1014 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 556 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 885 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 909 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 237 0 0 0 0 0 0 0 0 0 

7 0 0 0 1 0 0 1021 0 1 2 0 6 2 0 0 

8 0 0 0 0 0 0 0 948 0 0 0 0 0 0 0 

9 0 1 0 1 0 0 0 0 1083 0 0 3 0 0 0 

10 0 0 0 0 0 0 0 0 0 997 0 0 0 0 0 

11 0 0 0 0 0 0 1 0 0 0 1095 0 0 0 0 

12 0 0 0 0 0 0 4 0 0 0 0 996 0 0 0 

13 0 0 0 3 0 0 4 0 2 1 0 0 431 3 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 356 1 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 559 
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Ek 29 DFC13 50% veri seti için DVM modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 686 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 7 720 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 397 0 0 0 0 0 0 0 0 0 0 0 0 

4 2 1 0 629 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 645 0 0 1 1 0 1 0 1 0 0 

6 0 0 0 0 0 169 1 0 0 0 0 0 0 0 0 

7 0 0 0 2 0 0 724 0 0 1 6 4 1 0 0 

8 0 0 0 0 0 0 4 660 5 0 0 0 8 0 0 

9 0 1 0 0 0 0 0 2 761 3 0 8 2 0 0 

10 0 0 0 0 0 0 0 1 3 701 4 0 3 0 0 

11 0 0 0 0 0 0 2 0 4 6 768 2 1 0 0 

12 0 0 0 0 0 0 3 5 5 3 1 695 3 0 0 

13 0 0 0 0 1 0 8 12 5 5 5 29 250 2 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 1 254 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 1 0 398 

 

Ek 30 DFC13 50% veri seti için RO modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 687 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 12 715 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 395 0 0 0 1 0 0 0 0 0 0 1 0 

4 5 5 0 621 0 0 1 0 0 0 0 0 0 0 0 

5 0 0 0 0 644 0 0 0 1 2 2 0 0 0 0 

6 0 0 0 0 0 169 1 0 0 0 0 0 0 0 0 

7 0 1 0 0 0 0 725 0 0 1 7 4 0 0 0 

8 0 0 0 0 1 0 4 654 7 1 1 4 4 1 0 

9 0 1 0 0 2 0 0 0 744 10 7 12 1 0 0 

10 0 0 0 0 0 0 0 0 8 682 7 10 5 0 0 

11 2 0 0 0 0 0 12 0 5 4 755 4 1 0 0 

12 0 0 0 0 0 0 1 0 17 6 2 684 5 0 0 

13 0 0 0 0 3 0 10 10 7 6 7 36 234 3 1 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 255 0 

15 0 0 0 0 0 0 3 3 0 0 0 0 0 2 391 
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Ek 31 DFC13 50% veri seti için 2B ESA modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 687 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 5 722 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 397 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 632 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 649 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 170 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 738 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 677 0 0 0 0 0 0 0 

9 0 1 0 0 0 0 0 0 773 3 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 712 0 0 0 0 0 

11 0 0 0 0 0 0 2 0 0 0 781 0 0 0 0 

12 0 0 0 0 0 0 0 0 2 0 0 713 0 0 0 

13 0 0 0 0 0 0 1 0 0 1 0 2 311 2 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 255 0 

15 0 0 0 0 0 0 1 0 0 0 0 0 0 0 398 

 

Ek 32 DFC13 50% veri seti için 3B+2B modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 687 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 1 726 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 397 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 632 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 649 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 170 0 0 0 0 0 0 0 0 0 

7 0 0 0 3 0 0 734 0 0 0 0 0 1 0 0 

8 0 0 0 0 0 0 0 677 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 776 0 0 1 0 0 0 

10 0 0 0 0 0 0 0 0 0 712 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 783 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 1 714 0 0 0 

13 0 0 0 0 0 0 0 0 1 0 0 0 314 2 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 2 253 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 399 
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Ek 33 DFC13 70% veri seti için DVM modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 412 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 3 433 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 239 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 1 0 378 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 387 0 0 1 0 0 0 0 1 0 0 

6 0 0 0 0 0 101 1 0 0 0 0 0 0 0 0 

7 0 0 0 1 0 0 437 0 0 1 3 1 0 0 0 

8 0 0 0 0 2 0 4 390 2 1 0 0 7 0 0 

9 0 1 0 0 0 0 0 0 460 1 0 3 1 0 0 

10 0 0 0 0 0 0 0 0 1 421 1 0 4 0 0 

11 0 0 0 0 0 0 0 0 1 0 469 0 0 0 0 

12 0 0 0 0 0 0 1 4 3 2 0 418 1 0 0 

13 0 0 0 0 0 0 6 8 4 3 3 14 152 1 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 1 152 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 239 

 

Ek 34 DFC13 70% veri seti için RO modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 412 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 6 430 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 238 0 0 0 1 0 0 0 0 0 0 0 0 

4 1 3 0 375 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 388 0 0 0 1 0 0 0 0 0 0 

6 0 0 0 0 0 101 1 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 439 0 0 1 3 0 0 0 0 

8 0 0 0 0 1 0 5 389 4 1 0 1 5 0 0 

9 0 2 0 0 1 0 0 0 444 4 9 5 1 0 0 

10 0 0 0 0 0 0 0 0 2 414 3 3 5 0 0 

11 1 0 0 0 0 0 6 0 0 2 459 2 0 0 0 

12 0 0 0 0 0 0 1 0 8 4 1 410 5 0 0 

13 0 0 0 0 0 0 5 6 3 4 4 22 145 1 1 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 153 0 

15 0 0 0 0 0 0 1 1 0 0 0 0 0 0 237 
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Ek 35 DFC13 70% veri seti için 2B ESA modelinin hata matrisi. 

C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 412 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 2 434 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 239 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 379 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 389 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 102 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 443 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 406 0 0 0 0 0 0 0 

9 0 1 0 0 0 0 0 0 465 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 427 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 470 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 429 0 0 0 

13 0 0 0 0 0 0 0 0 0 3 0 0 187 1 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 153 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 239 

 

Ek 36 DFC13 70% veri seti için 3B+2B ESA modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 412 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 436 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 239 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 1 0 378 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 389 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 102 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 443 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 406 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 466 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 426 1 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 470 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 428 1 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 190 1 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 153 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 239 
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Ek 37 Salinas Scene 30% veri seti için DVM modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 1406 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 2606 0 0 1 1 0 0 0 0 0 0 0 0 0 0 

3 0 0 1369 0 11 0 0 0 0 3 0 0 0 0 0 0 

4 0 0 0 966 10 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 17 6 1851 0 0 0 0 1 0 0 0 0 0 0 

6 0 0 0 0 1 2770 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 1 0 2504 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 7157 0 18 0 0 0 0 715 0 

9 0 0 0 0 0 0 0 0 4342 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 7 23 2243 13 5 0 0 1 3 

11 0 0 1 0 0 0 0 0 0 9 738 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 1 1348 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 639 2 0 0 

14 0 0 0 0 0 0 0 0 0 4 0 0 1 744 0 0 

15 0 0 0 0 2 0 0 1087 0 1 0 0 0 0 3998 0 

16 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1263 

 

 

Ek 38 Salinas Scene 30% veri seti için RO modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 1406 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 2605 0 0 0 0 0 1 0 0 0 0 0 0 1 1 

3 0 0 1380 0 3 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 972 4 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 12 7 1854 1 0 0 0 0 0 1 0 0 0 0 

6 0 0 2 0 0 2769 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 1 0 2499 4 0 0 0 0 0 0 1 0 

8 0 0 0 0 0 0 0 7307 1 14 5 0 0 0 563 0 

9 0 0 0 0 0 0 0 4 4333 4 0 0 0 1 0 0 

10 0 0 20 0 0 1 0 5 23 2213 13 9 0 6 3 2 

11 0 0 3 0 0 0 0 0 9 5 726 5 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 1349 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 636 5 0 0 

14 0 0 0 0 0 0 0 2 0 2 0 0 6 738 1 0 

15 0 0 0 0 0 0 0 1331 0 0 0 0 0 0 3757 0 

16 0 0 0 0 0 0 0 1 0 4 0 0 0 0 3 1257 
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Ek 39 Salinas Scene 30% veri seti için 2B ESA modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 1406 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 2608 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 1383 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 974 2 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 1875 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 2771 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 2505 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 7851 0 3 0 0 0 0 36 0 

9 0 0 0 0 0 0 0 0 4342 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 1 2294 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 747 1 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 1349 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 641 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 749 0 0 

15 0 0 0 0 0 0 0 92 0 0 0 0 0 0 4996 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1265 

 

 

Ek 40 Salinas Scene 30% veri seti için 3B+2B ESA modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 1406 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 2608 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 1383 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 939 34 0 0 0 0 0 3 0 0 0 0 0 

5 0 0 1 0 1874 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 2771 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 2505 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 7839 0 7 0 0 0 0 44 0 

9 0 0 0 0 0 0 0 0 4342 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 2295 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 1 747 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 1349 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 641 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 749 0 0 

15 0 0 0 0 0 0 0 151 0 0 0 0 0 0 4937 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1265 
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Ek 41 Salinas Scene 50% veri seti için DVM modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 1004 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 1863 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 983 0 3 0 0 0 0 2 0 0 0 0 0 0 

4 0 0 0 692 5 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 4 3 1331 0 0 0 0 1 0 0 0 0 0 0 

6 0 0 0 0 1 1979 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 1 0 1789 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 5158 0 11 0 0 0 0 467 0 

9 0 0 0 0 0 0 0 0 3101 1 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 2 15 1615 3 1 0 2 0 1 

11 0 0 1 0 0 0 0 0 0 3 530 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 963 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 457 1 0 0 

14 0 0 0 0 0 0 0 0 0 2 0 0 0 533 0 0 

15 0 0 0 0 0 0 0 782 0 0 0 0 0 0 2852 0 

16 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 902 

 

 

Ek 42 Salinas Scene 50% veri seti için RO modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 1004 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 1862 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

3 0 0 987 0 1 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 690 7 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 4 4 1329 0 0 1 0 0 1 0 0 0 0 0 

6 0 0 1 0 0 1979 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 2 0 1788 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 5238 1 9 1 0 0 0 387 0 

9 0 0 0 0 0 0 0 0 3101 1 0 0 0 0 0 0 

10 0 0 1 0 0 0 0 4 15 1604 4 4 0 4 1 2 

11 0 0 1 0 0 0 0 0 4 1 524 4 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 963 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 455 3 0 0 

14 0 0 0 0 0 0 0 1 0 2 0 0 4 528 0 0 

15 0 0 0 0 0 0 0 809 0 0 0 0 0 0 2825 0 

16 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2 900 
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Ek 43 Salinas Scene 50% veri seti için 2B ESA modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 1004 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 1863 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 988 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 696 1 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 1339 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 1980 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 1790 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 5622 0 1 0 0 0 0 13 0 

9 0 0 0 0 0 0 0 0 3102 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 1639 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 534 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 963 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 458 0 0 0 

14 0 0 0 0 0 0 0 0 0 1 0 0 0 534 0 0 

15 0 0 0 0 0 0 0 5 0 0 0 0 0 0 3629 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 903 

 

 

Ek 44 Salinas Scene 50% veri seti için 3B+2B ESA modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 1004 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 1863 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 988 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 694 3 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 1339 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 1980 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 1790 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 5620 0 1 0 0 0 0 15 0 

9 0 0 0 0 0 0 0 0 3102 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 1639 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 534 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 963 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 458 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 535 0 0 

15 0 0 0 0 0 0 0 16 0 0 0 0 0 0 3618 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 903 

  



136 

Ek 45 Salinas Scene 70% veri seti için DVM modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 603 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 1118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 591 0 1 0 0 0 0 1 0 0 0 0 0 0 

4 0 0 0 414 4 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 3 1 798 0 0 0 0 1 0 0 0 0 0 0 

6 0 0 0 0 0 1188 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 1 0 1073 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 3080 0 7 1 0 0 0 293 0 

9 0 0 0 0 0 0 0 0 1860 1 0 0 0 0 0 0 

10 0 0 1 0 0 0 0 0 8 971 2 0 0 1 0 0 

11 0 0 0 0 0 0 0 0 0 1 319 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 578 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 275 0 0 0 

14 0 0 0 0 0 0 0 0 0 2 0 0 0 319 0 0 

15 0 0 0 0 2 0 0 389 0 0 0 0 0 0 1790 0 

16 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 540 

 

 

Ek 46 Salinas Scene 70% veri seti için RO modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 603 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 1118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 592 0 1 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 416 2 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 1 3 797 0 0 1 0 0 1 0 0 0 0 0 

6 0 0 1 0 0 1187 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 1 0 1073 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 3176 1 5 0 0 0 0 199 0 

9 0 0 0 0 0 0 0 0 1861 0 0 0 0 0 0 0 

10 0 0 1 0 0 1 0 2 8 968 1 1 0 1 0 0 

11 0 0 0 0 1 0 0 0 3 3 313 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 578 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 274 1 0 0 

14 0 0 0 0 0 0 0 0 0 2 0 0 2 317 0 0 

15 0 0 0 0 0 0 0 436 0 0 0 0 0 0 1745 0 

16 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 540 
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Ek 47 Salinas Scene 70% veri seti için 2B ESA modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 603 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 1118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 593 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 418 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 803 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 1188 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 1074 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 3381 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 1861 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 983 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 320 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 578 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 275 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 321 0 0 

15 0 0 0 0 0 0 0 3 0 0 0 0 0 0 2178 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 542 

 

 

Ek 48 Salinas Scene 70% veri seti için 3B+2B ESA modelinin hata matrisi. 

Sın.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 603 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 1118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 593 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 418 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 803 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 1188 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 1074 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 3378 0 0 0 0 0 0 3 0 

9 0 0 0 0 0 0 0 0 1861 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 983 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 320 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 578 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 275 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 321 0 0 

15 0 0 0 0 0 0 0 6 0 0 0 0 0 0 2175 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 542 
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