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ABSTRACT 

 

OPTIMIZATION AND DEEP LEARNING BASED MULTI MODEL 

ABUNDANCE ESTIMATION AND UNMIXING ALGORITHMS FOR 

HYPERSPECTRAL IMAGES 

 

Özdemir, Okan Bilge 

Ph.D., Department of Information Systems 

Supervisor: Prof. Dr. Yasemin Yardımcı Çetin 

Co-Supervisor: Assoc. Prof. Dr. Alper Koz 

 

December 2020, 96 pages 

 

Hyperspectral unmixing aims to identify the materials within the pixels of an image 

and estimate the corresponding abundance values of these materials. This thesis 

proposes an optimization based abundance estimation method for the case where the 

spectral signatures of the materials are available, and a deep learning based 

hyperspectral unmixing method for the case where the spectral signatures of the 

materials are unavailable. The proposed abundance estimation algorithm assumes 

that real data can contain complex interactions that cannot be modeled with a single 

model, and therefore, use multiple mixing models for determining the abundance of 

real data. The proposed optimization-based coarse-to-fine estimation algorithm first 

adopts a linear mixing model for the tested pixel until the error between the 

reconstructed and original pixel is smaller than a threshold. The algorithm then 

proceeds by integrating the other nonlinear mixing models to the cost function. 

Among various utilized optimization algorithms and metrics, the proposed solution 

with the sequential quadratic programming and spectral angle mapper combination is 

found more successful than other search methods and baseline algorithms. As the 

second contribution of this thesis, a new 3D convolutional encoder based deep 

learning method is proposed for hyperspectral unmixing by observing that the local 

neighborhood information is not sufficiently used for the unmixing problem in 

hyperspectral images. Given that nonlinear mixing has not been adequately covered 

in deep learning based hyperspectral unmixing literature, the proposed method is 

especially designed to solve the nonlinear mixture models with the 3D convolutional 

encoder structure. The proposed method gives better performance than the well-

known pure material extraction and abundance detection algorithms on synthetic and 

real data. 

Keywords: Hyperspectral Unmixing, Deep Learning, Abundance Estimation, 3D 

Convolutional Encoder, Nonlinear Mixtures  
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ÖZ 

 

 

 

HİPERSPEKTRAL GÖRÜNTÜLERDE OPTİMİZASYON VE DERİN 

ÖĞRENME TABANLI ÇOK MODELLİ BOLLUK TAHMİNİ VE 

AYRIŞTIRMA ALGORİTMALARI 

 

Özdemir, Okan Bilge 

Doktora, Bilişim Sistemleri Bölümü 

Tez Yöneticisi: Prof. Dr. Yasemin Yardımcı Çetin 

Ortak Tez Yöneticisi : Doç. Dr. Alper Koz 

 

Aralık 2020, 96 sayfa 

 

Hiperspektral ayrıştırma, görüntünün içindeki malzemeleri tanımlamayı ve bu 

malzemelere karşılık gelen bolluk değerlerini tahmin etmeyi amaçlamaktadır. Bu tez, 

malzemelerin spektral imzalarının mevcut olduğu durum için optimizasyona dayalı 

bir bolluk tahmin yöntemi ve malzemelerin spektral imzalarının olmadığı durumlar 

için derin öğrenme tabanlı bir hiperspektral ayrıştırma yöntemi önermektedir. İlk 

çalışmada sunulan bolluk tespit algoritması gerçek verilerin tek bir modelle ifade 

edilemeyecek kadar karmaşık etkileşimler içerebilmesi varsayımına dayanmaktadır. 

Bu nedenle, gerçek verilerde bolluk tespiti yapılırken çoklu model kullanılması 

hedeflenmiştir. Önerilen optimizasyon tabanlı bolluk tespit algoritması, hedef piksele 

yakın bir hata oranına ulaşılana kadar doğrusal karışım modelini varsayan bir 

yaklaşımı benimser. Optimizasyon algoritması daha sonra maliyet fonksiyonunu, 

olası karışım modelleri için yeniden tanımlayarak işleme devam eder.  Kullanılan 

çeşitli optimizasyon algoritmaları ve uzaklık metrikleri arasında, sıralı ikinci 

dereceden programlama ve spektral açı haritalama kombinasyonu ile önerilen çözüm, 

diğer arama yöntemleri ve temel algoritmalardan daha başarılı bulunmuştur. Bu tezin 

ikinci katkısı olarak, hiperspektral görüntülerde komşuluk bilgisinin ayrıştırma 

problemi için yeterince kullanılmadığı gözlemlenerek hiperspektral ayrıştırma için 

yeni bir 3 boyutlu evrişimli kodlayıcı tabanlı derin öğrenme yöntemi önerilmiştir. 

Doğrusal olmayan karıştırmanın daha önce sunulmuş derin öğrenme tabanlı 

hiperspektral ayrıştırma çalışmalarında yeterince ele alınmadığı göz önüne 

alındığında, önerilen yöntem doğrusal olmayan karışım modellerini 3D evrişimli 

kodlayıcı yapısıyla çözmek için tasarlanmıştır. Önerilen yöntem, sentetik ve gerçek 

veriler üzerinde iyi bilinen saf malzeme çıkarma ve bolluk tahmini algoritmalarından 

daha iyi performans göstermiştir. 

Anahtar Sözcükler: Hiperspektral Ayrıştırma, Derin Öğrenme, Bolluk Tahmini, 3D 

Evrişimli Kodlayıcı, Lineer Olmayan Karışımlar   
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CHAPTER 1 

 

1. INTRODUCTION 

 

Remote sensing is defined as any method of image and spatial data acquisition, 

including aerial measurement and photogrammetry, independent of being satellite-

based, airborne-based based, or ground-based environments [1].  Yet, in a more 

general sense, remote sensing refers to the evaluation of information obtained by 

various sensors from a distant object without direct intervention.  Today's remote 

sensing technologies have a wide variety of applications in many military and civil 

areas, such as defense, environment, agriculture, atmosphere, urbanism, and health. 

For example, remote sensing is used in forest fire control, land use and land cover 

classification in environmental applications, and drought monitoring, crop 

production forecasting, and crop recognition in agriculture.  

In a remote sensing scenario, the sensor collects the signals originating from a light 

source after reflected from an object. If this light source is a natural source such as 

the sun, it is called passive sources.  In the case of an energy-dependent source such 

as laser or radar, they are named as active sources. Provided that an energy source is 

available, almost any wavelength can be used to display the desired scene's 

properties. However, this situation may have some limitations. For example, when 

imaging from satellite sensors, there are wavelengths absorbed by the molecular 

components of the atmosphere. Figure 1 shows the transmittance of the earth's 

atmosphere on a path between space and earth over a wide range of electromagnetic 

spectrums. As can be seen in the figure, the transmittance decreases at certain 

wavelengths absorbed by the atmosphere, water vapor, and carbon dioxide, and even 

there are bands with no transmittance. 

 

Figure 1 The electromagnetic spectrum and the transmittance of the earth's atmosphere [2] 
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Depending on the platform used, remote sensing techniques can be examined under 

two main headings, as ground and airborne platforms [3]. Remote sensing is usually 

applied when high detail is needed or when the working area is small, with sensors 

mounted on platforms close to the ground. Camera and radar are examples of sensors 

used on the ground platform. The second platform type, i.e., the airborne platform, 

can be classified as aircraft platforms and spacecraft platforms. Image resolution may 

vary depending on the platform and sensor used. Therefore, the platform should be 

selected according to the desired application. 

Another way to classify remote sensing systems is with respect to the number of 

spectral bands they use. According to this classification, the first class is the 

panchromatic imaging system that has only one band image sensor. There are many 

panchromatic imaging systems, such as QuickBird-PAN and IKONOS-PAN. The 

second remote sensing systems, namely multispectral systems, there are several 

spectral bands. These systems, which have been used since the 1970s, have a very 

important place in remote sensing [4]. Advanced Land Imager, ASTER, MODIS, 

SPOT, and SENTINEL imaging systems can be given as examples for multispectral 

imaging systems. Satellite sensors such as Quickbird and Commercial Remote 

Sensing Satellite can capture both multispectral and panchromatic images.  

Hyperspectral imaging has been enhanced with the use of high spectral resolution in 

multispectral imaging. Hyperspectral sensors can acquire very narrow, contiguous 

spectral information in many consecutive bands (nominally> 50), from visible to 

thermal infrared wavelengths. These sensors enable continuous reflection or 

emissivity information to be acquired. While multispectral images have low spectral 

resolution and high spatial resolution, hyperspectral images have high spectral 

resolution with low spatial resolution. Material characterization and recognition are 

possible with this high spectral resolution. Thus, it has been possible to use 

hyperspectral images in many areas, such as urban and regional planning, 

agriculture, mining, and military decision support. 

Hyperspectral imaging has been utilized until now for various applications with 

different requirements. The first task is hyperspectral classification, defined as 

assigning a unique tag to each pixel. The classification is divided into two main 

classes as unsupervised or supervised. Unsupervised classification is based on the 

automatic clustering of pixels by algorithms without user intervention. The properties 

of the classes resulting from the unsupervised classification are initially unknown. 

The analyst must compare the classified image with other reference information to 

obtain more detailed information. In the supervised classification, it is already known 

which classes the image will be divided into or which classes are desired to be 

obtained from the image. For this process, learning data belonging to determined 

classes from the image is given as input to the algorithm. The algorithm then 

determines the classes of input data using this learning data. The second application 

is dimensionality reduction, mainly to reduce the data load while avoiding data 

analysis results. Since hyperspectral images have more than a hundred bands, 

dimensionality reduction is required to remove redundant information and speed up 

the process. Target detection is another major application in hyperspectral images, 

which often employs spectral signatures of materials. In addition to hyperspectral 

applications, there is change detection task, which is the process of detecting changes 
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in two different hyperspectral images. For example, it can be used to view the change 

in time of a region taken at two different times. Besides, change detection is common 

in areas such as natural disasters, agricultural product management, or tracking water 

resources.  

Finally, hyperspectral unmixing is one of the fundamental operations for 

hyperspectral image processing. Since hyperspectral cameras contain too many 

bands, they generally have high spectral resolutions and low spatial resolutions. For 

this reason, there is usually more than one material in the area covered by a pixel. 

Applications such as classification, target detection, or segmentation generally 

require knowing what the materials in this pixel are and how much they are. 

Hyperspectral unmixing includes applications related to both the materials contained 

in the data and the determination of these materials' abundance values in each pixel. 

 Motivation  

The importance of hyperspectral image processing techniques has increased with the 

widespread use of hyperspectral images. Figure 2 emphasizes this fact by giving the 

number of publications in recent years. The main reason for such a popularity of 

hyperspectral imaging is both related to the decrease in the costs and the increase in 

the quality of the sensors with the progress of the technology.  

 

Figure 2 Number of publication of hyperspectral imaging per year (Source: Google Scholar) 

One of the biggest problems of hyperspectral sensors stands out as low resolution. As 

a result, the subpixel detection methods have formed one of the main branches in 

hyperspectral image processing to detect low-resolution images' targets. The 

hyperspectral unmixing mainly developed for subpixel detection consists of the 

determination of the number of endmembers on the data, the extraction of the 

members, and the estimation of corresponding abundances for the endmembers, in 

which the amount of products in the pixel is determined. It has been observed that 

the solutions in the literature have reached a certain maturity for the estimation of the 

number of endmembers and for the estimation of the endmembers. The most obvious 

problem in detecting abundance values for endmembers is to model the interactions 
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of spectral signatures caused by the reflection of light rays during the capturing of 

hyperspectral data from real scenes. Due to their structure, hyperspectral images can 

not be modeled with a single model. Therefore, more than one model is required to 

solve this problem. The models in existing solutions try to include as many scenarios 

as possible, but their performance on real data is often unsatisfactory. The main 

reason for this is that the presented mixture models are difficult to model the 

interactions of the materials and the distance units used in the algorithms indicate 

low performances in real hyperspectral data. In order to solve these problems, a 

multi-model optimization-based coarse to fine approach to work on real data is 

utilized in this thesis. The performances of different distance metrics are also 

investigated in such a framework.  

On the other hand, deep learning methods have recently been used for hyperspectral 

unmixing. However, the studies on hyperspectral unmixing are usually performed 

independently of pixel neighborhood information, which is referred as blind 

unmixing. In blind unmixing problems, each pixel is given as separate input, and the 

result of the unmixing is obtained. This causes the reflection of materials to be 

modeled without using spatial knowledge. Therefore, the integration of the local 

neighborhood knowledge to the unmixing process is considered as an underlying 

idea to increase the unmixing performances. To this end, convolutional networks, 

which significantly increase the performances in image processing applications, are 

proposed for hyperspectral unmixing in order to include the spatial information in the 

unmixing process. Furthermore, the design is specially tailored by adding specific 

layers to represent nonlinear mixtures. The performance of the proposed deep 

learning algorithm based on 3D convolutional autoencoder has been tested on real 

data with different optimization methods and distance metrics. 

  The Purpose of the Study 

The algorithms proposed for hyperspectral unmixing are known to perform 

successfully with synthetic data generated by using the presumed mixing model. 

However, this may not always be the case for real data as the real data can be too 

complex to be modeled using a single mixing model. For example, an image taken 

from a flat surface can be modeled with a single mixing model, while there may also 

be data from mountainous, high-rise, or wooded areas that can be modeled better 

with multiple mixing models. Given this observation, this study has two objectives 

regarding hyperspectral unmixing. 

The first objective of this study is to determine the abundance rates for the cases 

where there is endmember information on real data that cannot be modeled with a 

single mixture model. Therefore, in the first part of the study, an optimization-based 

coarse to fine abundance estimation method is proposed. The proposed method 

performs hyperspectral abundance estimation by using more than one mixing model 

in a single optimization process. Experiments are carried out to examine the 

performance variation of the method with different optimization algorithms and 

different distance metrics. Optimization algorithms used in this study are determined 

as genetic algorithms, simulated annealing, sequential quadratic programming, and 

pattern search, while distance metrics are determined as spectral angle mapper, L1-

norm, and L2-norm. The performance of these optimization algorithms and distance 
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metrics for both direct search and coarse to fine approach has been examined. The 

proposed coarse-to-fine approach continues the optimization process with the linear 

mixing model (LMM) up to a certain threshold, then the cost of the minimization 

process is determined as the minimum of the multiple models. The effects of the 

parameters of optimization algorithms on performance are investigated in 

experiments with synthetic data. In order to speed up the optimization process, the 

difference between the coarse-to-fine approach and direct search approaches is 

analyzed, and their performance is compared. A comparison of the proposed method 

with other algorithms in the literature has been made in the experiments performed 

with the highly mixed synthetic data and two different real data. 

The second objective is to use deep learning algorithms, which have been widely 

used in hyperspectral unmixing in recent years and stand out with their high 

performance. The purpose of this study is to perform hyperspectral unmixing in cases 

where the endmember information is not available. In the study, three-dimensional 

convolution networks are used to benefit from the use of spatial information.  The 

output of the three-dimensional convolution networks used as a predecessor is then 

given as input to the automatic encoder based neural networks. In this method, the 

performances of different distance units and optimization algorithms are tested for 

both synthetic and real data. Stochastic gradient descent, adaptive gradients, and 

adaptive moment estimation algorithms, which are widely used in the literature, are 

used for the experimental comparisons. Spectral angle mapper, mean square error, 

L1-norm, and spectral information divergence methods are utilized to choose the best 

distance metric in terms of abundance and endmember estimation performances. 

More specifically, the performances are evaluated by using the root mean squared 

error between the original and reconstructed abundances.  

 Contribution of the Thesis 

As the first contribution of this study, an optimization based coarse to fine abundance 

estimation method is proposed by using multi mixing models to cover the complex 

interactions in real hyperspectral data. The proposed approach, which combines 

different mixture models in a single framework, which has various experimental 

aspects, which involve the selection of design parameters, determination of best 

optimization method and distance metric, and the comparison of the coarse to fine 

approach with the direct search. Given these aspects, the main contributions for this 

part of the thesis can be summarized as follows.  

 Different optimization algorithms such as Genetic Algorithm (GA), 

Simulated Annealing (SA), Sequential Quadratic Programming (SQP) and 

Pattern Search (PS) are adapted to the proposed coarse to fine abundance 

estimation framework for hyperspectral unmixing and compare with each 

other by properly selecting design parameters for each optimization method. 

The best optimization algorithm with the proposed model is revealed with 

respect to the abundance estimation performance for highly mixed 

hyperspectral data.  
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 The effect of distance metrics such as L1-Norm, L2-Norm and Spectral 

Angle Mapper (SAM) on optimization performance is examined and 

compared with the proposed method.  

 The performances of the proposed coarse to fine method and the direct search 

method are compared. Experiments indicate that the coarse-to-fine based 

multi-model approach provides similar performances as the direct search 

approach but the convergence time for optimization algorithm is lower. 

 The experiments are further detailed by the comparisons with the algorithms 

in the literature using noiseless and noisy synthetic and real data. The better 

performance of the proposed abundance estimation method with respect to 

the state of the art algorithms is validated. 

As a second contribution of this study, an unsupervised hyperspectral unmixing 

algorithm is presented by integrating 3-dimensional convolutional networks to 

frequently used autoencoder structure. In addition, nonlinear part is included to 

model for unmixing nonlinear mixing models. The main contribution in this part of 

the thesis are given as follows: 

 

 The experimental comparisons with respect to the traditional autoencoder 

based unmixing methods have revealed the superiority of the proposed 

method for abundance estimation. It has been observed that the spatial 

information to unmixing process with 3D convolutional encoders 

significantly improve the hyperspectral unmixing performance.  

 The performance of the endmember and abundance estimation with the 

proposed method are found better than the conventional endmember 

estimation methods in the literature such as Vertex Component Analysis, 

Simplex Augmented Langrangian and abundance estimation methods such as 

Linear Mixing Model, Multi Linear Mixing model and Polynomial Post 

Nonlinear Mixing model.  

 Finally, the addition of nonlinear part for nonlinear mixing models indicate 

promising performances for nonlinear mixtures compared to the proposed 

structure without nonlinear part. The suitability of the proposed structure with 

nonlinear layer to real data which can involve nonlinear interactions is 

verified with the experiments. 

 Thesis Outline 

The outline of the thesis is as follows: 

Chapter 2 provides an introduction to the hyperspectral unmixing problem. A 

comprehensive literature review on the main stages of the hyperspectral unmixing 

problem, hyperspectral mixing models, and optimization algorithms are presented. 
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Chapter 3 includes the main layers and components used in deep learning algorithms 

and an examination of previous hyperspectral unmixing studies for hyperspectral 

unmixing.  

In Chapter 4, the procedure for the generation of synthetic data is given along with 

the real data set utilized in the experiments. This section also describes the distance 

metrics used for both abundance estimation and deep learning methods. 

Chapter 5 includes a description of the proposed optimization based coarse to fine 

abundance estimation method. This chapter includes the experiments performed for 

the parameter selection of the algorithms used for the presented abundance 

estimation model. Different distance metrics and experiments for coarse to fine 

search and direct search are also included in this section. Additionally, the 

comparisons of the presented algorithm with the abundance estimation methods 

commonly used in the literature are included. 

In Chapter 6, the proposed 3D convolution and autoencoder based method for 

hyperspectral mixing is given. The model elements and parameters are explained in 

this section. In addition, experimental comparisons between the proposed method 

and baseline methods in the literature for endmember estimation and abundance 

estimation are performed and discussed. 

In Chapter 7, the main conclusions of the thesis are given.   
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CHAPTER 2 

 

2. HYPERSPECTRAL UNMIXING 

 

In hyperspectral imaging, the spatial resolution of the utilized sensors is generally 

high due to the speed and hardware requirements brought by the excessive 

wavelengths. This situation causes many different materials to enter into the area 

covered by a pixel on the earth. In each pixel of the obtained image, the mixture of 

the spectrum of the materials physically present in that pixel is observed. In Figure 3-

a, the mixture spectra obtained for a pixel with 50% grass and 50% soil in a pixel are 

given as an example in addition to the grass and soil signatures. Detecting the 

substances in the spectral mixture and determining the proportion of this substance in 

each pixel is a problem that has been frequently mentioned in the literature and still 

maintains its importance today. Especially in applications such as target detection, a 

process is required to detect targets smaller than pixel size in the low spatial 

resolution image. Hyperspectral unmixing is presented for the solution of such 

problems, which aims to determine how many materials are in the given 

hyperspectral data cube, what these materials are and where these materials are 

located in the data. 

 

       (a)                                                           (b) 

Figure 3 (a) Sample scene and (b) spectral signatures for grass, soil and mixture (50% grass and 50% 

soil) 

The process of hyperspectral unmixing [5-8], which is illustrated in Figure 4, mainly 

consists of three stages, which are the estimation of the number of endmembers, 

extraction of endmembers with respect to this estimated number, and the estimation 

of the abundances for each endmember after the endmember extraction. In this 

chapter, the existing solutions in the literature for these three problems are presented. 

To extract the endmember from the data, the endmember number must first be 

known. For example, in Figure 3, the number of endmembers is determined by 

running the endmember number extraction algorithm. With this result, which is 

output as 2 in this example, the endmember extraction algorithm is then run, and 

again for this example, the grass and soil signatures are detected in Figure 3 (b). In 
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the abundance estimation stage, which is the final stage of hyperspectral mixing, the 

amount of each pixel from each end member is determined using the output of the 

endmember extraction algorithm. For example, as a result of abundance estimation in 

the example above, it will be determined that some pixels are 100% grass or soil, and 

some pixels contain both grass and soil.  

Hyperspectral 
Data Cube

Endmember 
Extraction/
Estimation

Abundance 
Estimation

Spectral 
Signatures of 
Endmembers

Number of 
Endmember 
Estimation

Number of 
Endmembers

Pixel 
Abundances

The Process of Hyperspectral Unmixing

 

Figure 4 The Flowchart of the Hyperspectral Unmixing Process 

In this chapter, detailed information about the main steps of the hyperspectral 

unmixing process is given. The main steps include the number of endmember 

estimation methodologies, endmember extraction methodologies, abundance 

estimation methodologies. This chapter also includes detailed information about 

mixing models.  

 Number of Endmember Estimation Methodologies 

The process of determining the number of endmembers is very important for 

obtaining the preliminary information necessary for the realization of the second and 

third stages of hyperspectral unmixing, endmember determination, and abundance 

estimation. The main purpose of this stage is to determine how many different 

materials are in the given hyperspectral data cube. 

One of the well-known methods proposed for estimation of the number of 

endmembers is the Virtual Dimensionality (VD) proposed by Chang and Du [9]. VD 

method assumes that the eigenvalues of correlation and covariance matrices for a 

particular component are close to each other. The equality of correlation and 

covariance eigenvalues in each specific component was tested by the Neyman-

Pearson method, and the number of components containing the signal was 

determined as VD. The Harsanyi–Farrand–Chang (HFC) method, which is an 

improved version of [10], estimates the number of endmembers with the VD term 

using the Neyman-Pearson method. The HFC method uses eigenvalues of sample 

correlation and covariance matrices with automatic thresholding for the number of 

endmember estimation.  

As another example, hyperspectral signal identification by minimum error (HySime) 

applies the singular value decomposition technique to hyperspectral data [11]. The 
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eigenvectors which best represent data in the root-mean-square error sense are 

determined along with the number of endmembers. Markov Chain Monte Carlo 

(MCMC)-based method for estimation of the number of endmembers is proposed by 

Tourneret [12]. The method is however, only applicable for a small number of 

endmembers due to its high computational cost.  

 Endmember Estimation Algorithms  

2.2.1. Methods with Pure Pixel Assumption 

N-FINDR, one of the most widely used methods for endmember extraction presented 

by Winter [13], selects the purest pixel in the hyperspectral image. The N-FINDR 

algorithm works on the principle that the volume of pure pixels in the data will be 

larger than the volume created by different combinations of other pixels. This 

volume calculation is done by the Minimum Noise Fractions (MNF) algorithm [14]. 

MNF is used to reduce the data to p-1 size as a preprocessing stage, where p is the 

number of endmembers. The algorithm calculates volume by starting with the 

random pixel selection and checks whether the new pixels selected in each iteration 

are larger than this volume. If the volume is larger than the volume found in the 

previous iterations, new endmember candidates are selected. The algorithm is 

terminated after testing all pixels. The simplex growing algorithm (SGA) [15] is very 

similar to N-FINDR. The algorithm grows simplexes at each iteration. Each new 

corner that defines the maximum simplex volume is considered a new endmember. 

As the initial conditions are assigned randomly, the algorithm can indicate 

inconsistency in finding the correct endmembers.  

Another well-known study on this subject is the Pixel Purity Index (PPI) algorithm 

[14]. PPI algorithm uses MNF for dimensionality reduction. After this step, the 

algorithm creates a large set of random vectors called skewers. Extreme values are 

calculated for each projection. A pixel purity image is formed where each pixel is 

scored with the number of times the pixel is recorded as an extreme point. Pixels 

with the highest score are determined as the purest signals and returned as the 

endmembers. Many variations of the PPI algorithm are presented, such as random 

PPI, parallel PPI, iterative PPI, or graphical processing unit (GPU) implemented PPI 

[16-20].  

The vertex component analysis (VCA) algorithm is presented by Nascimento and 

Dias [21]. Its performance is reported as better than N-FINDR and PPI algorithms. 

The algorithm firstly reduces the data to the p-1 dimensional Euclidean space using 

Singular Value Decomposition (SVD), where p is the number of endmembers, 

allowing each vector on the hyperspectral data to appear in this space. Then, extreme 

points in each band of the projected space are selected as endmembers. VCA works 

with very low computational cost and high accuracy compared to other algorithms. 

Because of this performance, it is also generally used as the starting point in the 

methods without a pure pixel assumption [22–24].  

Iterative error analysis (IEA), as the last example in this group,  has a high 

computation cost [25]. The algorithm extracts the endmember and calculates the 

error between the generated and real data for each iteration. The average spectrum of 

the data is selected to start the process. The constrained linear unmixing process is 
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performed with this mean vector, and the error caused by the errors remaining in 

each pixel after the unmixing is calculated. The spectral signal corresponding to the 

pixel with the largest single error is selected as the second endmember, and the 

hyperspectral unmixing process is performed again. This process continues until the 

error falls below a certain threshold value or until the desired endmember number is 

reached.  

With the development of hyperspectral sensors, the resolution in hyperspectral 

images is increasing. Therefore, algorithms working with these pure pixel-based 

assumptions that select pixels from within the image are considered to be important. 

Among these algorithms, VCA is thought to work more successfully than other 

algorithms. 

2.2.2. Methods Without Pure Pixel Assumption 

Minimum volume-based endmember extraction methods assume that there are no 

pure pixels in the data. In these methods, the pure pixels from which the data is 

formed are determined by different minimum volume detection methods. Among the 

algorithms presented with the principle of minimum volume, the Minimum Volume 

Simplex Analysis (MVSA) algorithm [23] uses the endmembers from the above-

mentioned VCA algorithm as the seed point. Then, in each iteration, the volume of 

these points was expanded, and the endmember extraction was carried out with the 

SQP method.  

Figure 5 shows a convergence example for three endmembers with Simplex 

Identification via Split Augmented Lagrangian (SISAL) algorithm [24]-another 

algorithm that uses the VCA algorithm as its seed point. SISAL regards the 

minimum volume definition as a non-convex optimization problem with convex 

constraints. It performs endmember extraction by determining the minimum volume 

from the starting points obtained using the VCA algorithm with quadratic 

approaches. The use of the augmented Lagrange multipliers has made the algorithm 

computationally efficient. Unlike MVSA, SISAL is more resistant to noise and 

strong against errors in initial values. In the figure, M(0) is the seed point assigned 

using VCA. M(k) is the new point assigned by the algorithm at each iteration. M 

(final) is given as the last point reached by the algorithm.  

Another algorithm in this group, Minimum Volume Enclosing Simplex (MVES) 

algorithm integrates the concepts of convex analysis and volume minimization using 

linear programming and cyclic minimization [26]. This method is also based on the 

assumption that the simplex surrounding the minimum volume must coincide with 

the true endmember simplex using rigid positivity constraints. Later, a robust MVES 

(RMVES) algorithm is presented to reduce the sensitivity of the MVES algorithm to 

noise [27]. In this algorithm, positivity constraints of abundance rates are used as soft 

constraints. Additionally, quadratic solvers are used in the RMVES algorithm. 
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Figure 6  (a) Linear Mixing Model, (b) Non-Linear Mixing Model (c) Intimate Mixing Model 

 

Figure 5 SISAL Convergence Example 

Finally, the Iterative constrained endmembers (ICE) algorithm replaces the volume 

simplex with the squared distances between all the simplex vertices [28]. Sparsity 

Promoted Iterative Constrained Endmember (SPICE)  is an extension of the ICE 

algorithm that incorporates sparsity-promoting priors to estimate also the number of 

endmembers [29]. These two algorithms, which make the endmember estimation 

with pseudoinverse, do not impose any restrictions when predicting endmembers as 

in the SISAL algorithm. As a result, output endmembers can take values less than 0 

and greater than 1. In order to solve this problem, the extension of the SPICE 

(SPICEE) algorithm is recommended [30]. 

 Abundance Estimation Methodologies 

In the abundance estimation stage, which is the last step of the hyperspectral 

unmixing process, the percentage of endmembers in each pixel is determined. One of 

the most important problems of this stage is determining the mixing model of the 

data. These mixing models can be categorized as Linear Mixing Model (LMM), 

Non-Linear Mixing Model (NMM), and Intimate Mixing Model (IMM), which are 

created by taking into account the different interactions of the light in or between the 

materials in the scene [31-33]. 
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Figure 6 shows the light interactions between objects before they reach the sensor for 

the main categories of mixing models. The most common mixing model is LMM, 

which assumes that the incident light reflected from the surface comes directly to the 

sensor without any further interference [34-38]. Another mixing model NMM 

assumes that the light interacts with another material before reaching the sensor. 

Although there are different approaches in this model, the most common approach is 

the bilinear mixing model, which assumes that the light consecutively hits two 

materials before reaching the sensor [39-42]. The radiance value obtained in the 

sensor as a result of this interaction is considered to be a non-linear mixture of light 

reflected directly and light interacting with the material. 

This nonlinearity is modeled in  [40] and [41], by adding an extra interaction term to 

the LMM, described as the Hadamard products of the endmembers and multiplied by 

a certain coefficient. While this coefficient is introduced as a product of abundances 

by Fan et al. [40], Nascimento introduced the coefficient as an independent 

parameter in [41].  Unlike the bilinear mixing models presented as NML, multi linear 

mixing model (MLM) offered by Heylen and Scheunders was created with the 

assumption that there might be multiple and complex interactions between materials. 

Finally, the IMM assumes that the signal interacts with multiple materials at 

microscopic levels. Therefore, the radiance in the sensor consists of lights scattered 

from more than one material. Such interactions are originally modeled by Hapke in 

his seminal paper [43], and various researchers such as Nascimento and Bioucas-

Dias [44] and Rand et al. utilize that model to unmix the hyperspectral data with 

IMM [45].  

2.3.1. Linear Mixing Model 

Figure 6 (a) illustrates the interactions in LMM, which is one of the most commonly 

used mixing models in hyperspectral unmixing. Due to its simplicity,  LMM is one 

of the highly preferred mixing models in literature [46]. The formulation of LMM is 

given as,  

𝒔 =  ∑𝑎𝑖𝒆𝑖

𝑝

𝑖=1

+ 𝒏 ,                                                           (1) 

where s and 𝒆𝑖 are the L-dimensional spectral signatures of pixel and the ith 

endmember vector respectively, ai is the fractional abundance corresponding to 

endmember 𝒆𝑖, p corresponds to the number of endmembers, and n denotes the 

noise.  

The given LMM formulation is subject to two constraints, which are described as  

{

𝑎𝑖 ≥ 0,               ∀𝑖

∑ 𝑎𝑖
𝑝

𝑖=1
= 1  

 .                                                           (2) 

The non-negativity constraint, the first of these two constraints, states that the 

abundance values must be greater than zero [47]. In the second constraint, i.e., the 

sum to one, the sum of the abundance values of the endmembers in each pixel must 

be one [36].   
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2.3.2. Non-linear Mixing Model (NMM)                                                                      

Figure 6 (b) illustrates the interactions between the objects in the case of the 

Nonlinear Mixing Model. Bilinear models commonly used in NMM literature 

assume that the interaction between materials occurs only once. One of the first 

bilinear models is Nascimento Model (NM) [41], which is given as, 

𝒔 = ∑𝑎𝑟𝒆𝑟

𝑝

𝑟=1

+∑ ∑ 𝛽𝑖,𝑗𝒆𝑖⊙𝒆𝑗

𝑝

𝑗=𝑖+1

𝑝−1

𝑖=1

+ 𝒏.                                   (3) 

The given formulation describes the interaction as a sum of two terms and noise, 

where the first term stands for linear relation of the endmembers and the second term 

refers to the non-linear interaction, which is represented by the Hadamard product of 

the endmembers, 

𝒆𝒊⊙𝒆𝒋 = (
𝑒1,𝑖
……
……
𝑒𝐿,𝑖

)⊙ (
𝑒1,𝑗
……
……
𝑒𝐿,𝑗

) = (
𝑒1,𝑖𝑒1,𝑗
……
……

𝑒𝐿,𝑖𝑒𝐿,𝑗

).                                    (4) 

In (3), 𝛽𝑖,𝑗 determines the effect of the interaction between the endmembers, i, and j.  

This model also has the sum to one and positivity constraints, which are  given as 

{

𝑎𝑖 ≥ 0 ∀𝑖
𝛽𝑖,𝑗 ≥ 0 ∀𝑖≠𝑗

∑ 𝑎𝑖
𝑝
𝑖=1 + ∑ ∑ 𝛽𝑖,𝑗 = 1

𝑝
𝑗=𝑖+1

𝑝−1
𝑖=1

.                                              (5) 

As another example of bilinear models, Fan et al. [40] proposed a model which 

modifies the nonlinearity coefficient,  𝛽𝑖,𝑗  , as a function of abundance coefficients, 

𝑎𝑖  and 𝑎𝑗,  

𝒔 =  ∑𝑎𝑟𝒆𝑟

𝑝

𝑟=1

+∑ ∑ 𝑎𝑖𝑎𝑗𝒆𝑖⊙𝒆𝑗

𝑝

𝑗=𝑖+1

𝑝−1

𝑖=1

+ 𝒏.                                  (6) 

The basic approach in this model is that the endmembers in each pixel affect each 

other with respect to their abundances. The contribution of the endmember 

abundances outside the present pixels is assumed zero. The Fan Model (FM) cannot 

be generalized to LMM as the coefficient of the Hadamard product is directly 

dependent on the abundances. In order to solve this problem, Halimi et al. [39] 

proposed to change the coefficients,  𝛽𝑖,𝑗,as 𝛾𝑖𝑗𝑎𝑖𝑎𝑗, 

𝒔 = ∑𝑎𝑟𝒆𝑟

𝑝

𝑟=1

+∑ ∑ 𝛾𝑖𝑗𝑎𝑖𝑎𝑗𝒆𝑖⊙𝒆𝑗

𝑝

𝑗=𝑖+1

𝑝−1

𝑖=1

+ 𝒏.                              (7) 

In this the so-called the Generalized Bilinear Model (GBM), 𝛾𝑖𝑗  accounts for the 

non-linear interactions between materials. When 𝛾𝑖𝑗  are set to zero, the model 

generalizes to LMM, and alternatively, when they are set to 1, the model converts to 

the FM. 
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In the previously described models of expressions (3), (6), and (7), the terms  𝒆𝑖 ⊙
𝒆𝑖 are excluded since the iteration of endmembers indexes are from 1 to (p-1) and 

from (i+1) to p. So, possible interactions inside an endmember can not be included. 

On the other hand, the Polynomial-Post Nonlinear Multivariate (PPNM) model 

extends the index to all endmember combinations to include those interactions 

[42],[48] with expression,  

𝒔 = ∑𝑎𝑟𝒆𝑟

𝑝

𝑟=1

+ 𝑏∑∑𝑎𝑖𝑎𝑗𝒆𝑖⊙𝒆𝑗

𝑝

𝑗=1

𝑝

𝑖=1

+ 𝑛                                     (8) 

where b is a scalar coefficient utilized for the adjustment of non-linear part.  

2.3.3. Intimate Mixing Model (IMM) 

As the last mixing model, the intimate mixing model (IMM), which assumes that 

photons interact with each other many times, is shown in Figure 6 (c). One important 

model in defining IMM is the Hapke model [43] that is based on bidirectional 

reflectance theory. In this model, the interactions were formulated with the average 

scattering of photons in materials, the incident and emergence angles of scattering, 

and a simplified form of  Chandrasekhar’s function [49], which describes the 

multiple scattering as a function of incident and emergence angles. IMM models are 

excluded from this research due to their complexity in applications. 

 Optimization Methodologies 

The optimization methods used in this study can be examined under two main 

headings as convex optimization methods and stochastic optimization methods. 

While the purpose of both kinds of methods is to minimize the cost function with a 

set of parameters, their main difference is the way they reach the minimum point. 

While convex optimization algorithms usually try to reach the minimum by using the 

gradient direction of the cost function, stochastic optimization algorithms try to 

minimize the given cost function by randomly generating alternative candidate 

solutions.   

The optimization problem for the abundance estimation can be described as finding 

the abundance values for endmembers, which minimizes a distance metric D 

between the estimated pixel and the target pixel. Such an optimization problem is 

given as, 

𝒂∗ = arg min 
          𝒂

(𝐷(𝒔, 𝒕))     (9) 

where  𝒂∗ , element of Rp , is an abundance vector, t is the actual spectral signature of 

the target pixel, and s is the estimated spectral signature of the target pixel. Given a 

mixture model M as described with one of the models in (1), (3), (6), (7) or (8), the 

optimization problem can be further expressed as,  

𝒂∗ = arg min 
          𝒂

(𝐷( 𝑀(𝒂, 𝑬), 𝒕))    (10)   

where a is the abundance matrix and E is a matrix of size Lxp, which is composed of 

corresponding endmembers, E=[e1,e2,…., ep].  
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In the literature, different algorithms have been offered for both convex optimization 

and stochastic optimization methods as a solution to this problem. This section firstly 

examines sequential quadratic programming [50–52], and pattern search  [53], [54] 

algorithms in convex optimization methods. Then, frequently used genetic 

algorithms [55–58] and simulated annealing [59–61] in stochastic methods are 

examined.  

2.4.1. Convex Optimization Methods 

If the constraints of a given minimization problem are convex, the problem is 

expressed as a convex optimization problem [62]. The most significant advantage of 

recognizing or formulating a problem as a convex optimization problem is that the 

convex optimization methods converge to the global minimum value. This section 

explains the sequential quadratic programming method and pattern search method, as 

commonly used convex optimization methods for nonlinear optimization. 

2.4.1.1. Sequential Quadratic Programming (SQP) 

Different mixture models such as LMM, FM, and GBM can be formulated as 

constrained non-linear multivariable optimization problem. Sequential Quadratic 

Programming is one of the main algorithms proposed for non-linear optimization 

problems, which is based on the active set method [63] to determine the initial 

guesses, and the quasi-Newton line search [64] algorithm to update these guesses 

[51]. 

Given the abundance vector as a, the constraints can be further expressed as,  

arg min 
       𝒂

(𝐷( 𝑀(𝒂,𝑬), 𝒕)) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 {

𝑎 ≤ 𝑢𝑏
𝑙𝑏 ≤ 𝑎

 𝑐𝑒𝑞(𝑎) = 1
                                    (11)                     

where ceq(a) corresponds to the sum to one constraint, a is the abundance vector, and 

lb and ub are lower and upper bounds for the abundances, which are selected as 0 and 

1, respectively. The model M is selected as the linear mixture model given in (2) 

[34–38]. 

2.4.1.2. Pattern Search (PS) 

Pattern search algorithm is a direct search numerical optimization method proposed 

by Hooke and Jeeves [65]. Later, a method considering the lower and upper 

boundary constraints was also developed by Findler et al. [53]. As the main 

difference compared to other algorithms such as gradient-based algorithms, the 

objective function in PS is not required to be continuous or differentiable. Further 

details of convergence analysis of PS, and optimality conditions, and the gradient 

search relation can be found in [54].  

As in SQP, the PS algorithm also defines the cost function for the abundance 

estimation as a constrained non-linear optimization problem. However, rather than 

using gradient-based search methods to find the optimal point, the PS algorithm 

recursively tries to find an improving direction to determine the optimal point. This 
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improving direction should not necessarily be the best direction, which in turn makes 

the algorithm operate on discontinuous cost functions.  

2.4.2. Stochastic Optimization Methods (SQP) 

This section provides a summary of leading algorithms with remarks on the critical 

issues related to stochastic optimization, whose popularity has grown rapidly in 

recent years. Stochastic optimization methods are used in nonlinear, high 

dimensional problems where classical deterministic optimization methods cannot be 

used [66]. Genetic algorithms and simulated annealing algorithms are commonly 

used stochastic optimization methods [67], which have been selected in this thesis for 

abundance estimation. The performances of such methods are compared with respect 

to different parameters such as complexity, endmember number and abundance 

estimation performances. 

2.4.2.1. Genetic Algorithms (GA) 

Genetic algorithms are one of the most popular stochastic optimization techniques 

inspired by genetic biology [68]. Given a random gene pool for a population, the 

algorithm iteratively finds the optimum solutions by generating new genes with 

mutations and crossover operations and selects the best survivals in the population 

with respect to a cost function. The crossover operator mixes the two selected 

chromosomes to generate better genes. The mutation is produced by creating a 

change in some genes in a chromosome. It prevents convergence to a population with 

a homogeneous gene pool, thus guarantees chromosome diversity.  

GA algorithm is adapted to an abundance estimation problem in [57] by defining the 

cost function as the spectral angle [69] between the target pixel and its estimation 

with sum to one and positivity constraints. The authors also performed various 

experiments to determine the best population size. 

 In another study, Tong et al. utilized a GA-based approach to improve the 

abundance estimation to locate the materials determined in pixels, where the cost 

function is defined as Spectral Dependence Index [70]. Finally, Farzam et al. [55] 

propose a GA-based endmember and abundance estimation algorithm by assuming 

the data is formed by LMM. The authors define the cost function as a mean square 

error between the target pixel spectra and its estimation with GA and show the effect 

of population size on the abundance estimation.  

While these previous studies mainly focus on one mixing model to define the 

abundance estimation, the proposed approach given in the next section will define 

the abundance estimation as an optimization problem with respect to more than one 

mixing model. 

2.4.2.2. Simulated Annealing (SA) 

Simulated Annealing (SA) is a stochastic based general search technique, which can 

deal with highly non-linear models, noisy data, and many constraints. The simulated 

annealing method first proposed by Metropolis et al. [71] is based on the similarity 

between the annealing process in physical systems and the solution process in 

optimization problems [72]. Annealing is the process of slowly cooling the solids 
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after they are heated to the annealing temperature. The annealing process is called as 

the general heat treatments performed to relax, soften the material, and make the 

inner structure more usable.  

The SA algorithm determines an initial candidate solution and accepts this solution 

as the best solution in the beginning. It then randomly chooses a valid solution at 

each step and measures the quality of that point. In the next steps, the first candidate 

solution considered as the best solution is compared with the newly produced 

solution. If the new result is better, the new solution is appointed as the best solution. 

The temperature parameter is a value initially determined in the annealing method. 

This value is reduced by the temperature lowering parameter at the end of the cycle 

created. These processes can be continued until the best solution is found, or until a 

specified time to run the algorithm, or until the temperature parameter is zero or less 

than zero. The advantage of the SA algorithm is that it can overcome local minima, 

unlike gradient-based optimization algorithms. 

SA algorithm is used by Penn for the estimation of abundance values for LMM [59]. 

The author uses L2-Norm as a loss function to calculate the difference between the 

target pixel and the estimated pixel spectra by assuming sum to one and positivity 

constraints for the abundance values. Rather than using L2-norm, Debba et al. [73] 

also employs the SA algorithm by defining the cost function as the error of the first 

and second derivatives of different sets of target spectral signature and their 

estimations. The proposed algorithm [73] calculates the difference value by 

subtracting the derivative of the estimated pixel spectrum from the derivative of the 

target pixel. In their later studies [61], the same researchers also investigate the effect 

of noise on the estimation performance.  

The algorithms mentioned in this section are implemented in a single optimization 

process to make abundance estimation with the multi-mix model. Then, the 

experiments performed for abundance estimation are evaluated in both synthetic and 

real data. 
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CHAPTER 3 

 

3. DEEP LEARNING AND ITS APPLICATIONS ON HYPERSPECTRAL 

UNMIXING 

 

Artificial neural networks are computer systems that are formed by modeling the 

neural network in the brain and accordingly consist of interconnected nodes called 

artificial neurons. Artificial neural networks have been in use since the 1950s and 

have gained popularity several times. However, each time there appeared 

computational difficulties that could not be overcome and resulted in the loss of 

popularity. The main reason for this was seen as the lack of processing power of the 

computers at that time. However, especially after the study of Hinton et al. in 2006, it 

regained its popularity [74].  

One of the first studies on this subject, conducted by McCulloch and Pitts, can be 

seen in Figure 7 of the binary threshold unit created using virtual neurons [75]. The 

activation output of a single virtual neuron, i.e., h, is produced by taking the 

weighted sums of the n-dimensional input, and the final binary output is obtained by 

testing the activation output h against a threshold value, i.e., u.  
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Figure 7 Model of a neuron 

 

This process can be specified mathematically as: 

𝒚𝑖 =  𝑓𝑖  (∑𝒘𝑗𝒙𝑗 + 𝒃𝑖

𝑛

𝑗=1

)                                     (12) 

Where, 𝒙𝑗 is the jth component of the n-dimensional input signal, 𝒘𝑗 is the jth 

component of the weight vector, 𝒃𝑖  is the bias of the node and 𝒚𝑖 is the output of the 

function. 𝑓𝑖 is the activation function, which is usually nonlinear [76]. Detailed 

information about these functions will be given in Chapter 3.1.6.  
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Deep learning takes its name due to its deep layers and hierarchical structure. Two 

factors that make deep learning techniques popular today, which has a deeper 

structure than other artificial neural networks, are that the data reaches very large 

dimensions and the development of processors that will process this data by training. 

In addition, parallel processing of this huge data available in current graphical 

processing units (GPU) has made a significant contribution to the development of 

deep learning. This chapter explains the general components of convolutional neural 

networks and autoencoders which are widely used in deep learning applications [77–

86]. The hyperspectral applications of these structures are also included in Section 

3.4.  

 Convolutional Neural Networks (CNN) 

Convolutional neural networks have a special place in image analysis because they 

seamlessly combine the convolution-based feature extraction stage with the 

following pattern recognition part. In visual object recognition, CNNs generally 

provide high performance as a result of their high capability to represent the 

neighborhood relations of the image. In their seminal article that laid the foundation 

of the CNN framework, LeCun et al. published a multi-layered artificial neural 

network called LeNet-5 for handwritten digit identification where CNN structure is 

used to enable direct recognition of visual patterns from raw pixels [87].  

Figure 8 shows the general architecture of CNNs. CNN's generally consist of the 

convolution layer, where convolution is applied with different filters to extract 

features from the image, the pooling layer where the resolution on these filters is 

reduced, and fully connected layers for high-level reasoning [88], [89]. 

Figure 8 General architecture of CNNs 

This section introduces the main CNN components. The most commonly used layers 

in CNN networks are the convolutional layer, pooling layer, dropout, and fully 

connected layer. Detailed information about batch normalization and activation 

functions are also presented in this section. 
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3.1.1. Convolution Layer 

The convolution layer, which is the characteristic component of a CNN, reveals the 

neighborhood relations and spatial locality features on the image using different 

filters. While the filters slide along the image, the image pixel values that lie under 

the filter masks are multiplied with the values in the filter, and the resulting values 

are added to yield the convolution.  

The sample drawing for this process is given in Figure 9. A new image called 

convolution attribute is obtained from the image on which the convolution layer is 

applied. The method used to calculate the K value in the figure is given in the 

expression (13). In the expression, K is the filter output, M is the location of the 

coordinates of the filter on the image, and F is the filter. 
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Figure 9 Convolution layer example 

                        𝐾 = (𝑀(1,1) ∗ 𝐹(1,1)) + (𝑀(1,2) ∗ 𝐹(1,2)) + (𝑀(1,3) ∗ 𝐹(1,3))                             

+ (𝑀(2,1) ∗ 𝐹(2,1)) + (𝑀(2,2) ∗ 𝐹(2,2)) + (𝑀(2,3) ∗ 𝐹(2,3))                        (13)

+ (𝑀(3,1) ∗ 𝐹(1,1))  + (𝑀(3,2) ∗ 𝐹(3,2)) + (𝑀(3,3) ∗ 𝐹(3,3))  

In addition to the filter size, there are stride and padding parameters used in 

convolution operation. The stride parameter specifies how often the filter is shifted 

while sliding over the image. The padding parameter expresses how and to what 

extent the edge pixels will be extended. Each filter focuses on a different feature in 

the image. By the use of filters, different versions of an image emphasizing different 

aspects are obtained.  

3.1.2. Fully Connected Layer 

A fully connected network example is shown in Figure 10. The fully connected layer 

is usually located after the feature extraction stage in convolutional neural networks. 

This layer works on an input where each input is connected to all neurons. The fully 

connected layer takes the feature maps as input and prepares them as the algorithm 

output as a 1D array. 



24 
 
 

 

Figure 10 Sample fully connected network 

3.1.3. Pooling Layer 

The pooling layer often follows the convolution layer on CNNs. Its purpose is to sub-

sample the image given as input to invariance to local translation in order to reduce 

the number of parameters and to make feature extractions with fewer parameters. 

Processing speed can also be increased by reducing the size of the image. This 

reduction is usually performed by processing the image with a square filter. There 

are two main filters commonly used for these processes. One of them takes the 

biggest value in the filter (Max Pooling), and the other takes its average value 

(Average Pooling). With this process, the sub-sample of the image is obtained.  

Figure 11 shows 2x2 max pooling applied to a 4x4 image. In this example, the stride 

is selected as 2, and padding is not applied. The resulting image is shown in Figure 

11 (b).  
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(a)                                                                  (b) 

Figure 11 Sample max-pooling process 

3.1.4. Batch Normalization 

Batch normalization (BN) is the normalization of deep neural network activation 

function inputs in fully connected or evolutionary layers during training [90]. BN 

allows higher learning rates to be used in training and more tolerance for random 

initiation of network parameters. Experiments have been conducted to examine the 
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effect of batch normalization on the learning rate by comparing gradients between 

collectively normalized and non-normalized networks [91]. The gradients with 

respect to comparable parameters turned out to be often larger in normalized 

networks, and this difference is more significant at the lower layers of the network. It 

has been reported that this increase in indifference allows for high learning rates. 

BN is applied as a layer in the deep neural networks and normalizes the activations 

of the previous layer. The mathematical formulation of BN is given in (14).  

Expectation and variance are computed for (pre)activation vector x, where x is a n-

dimensional vector.   

BN(x;  γ, β) = β + γ ʘ
𝑥𝑖−𝐸[𝑥𝑖]

√𝑣𝑎𝑟[𝑥𝑖]+ 𝜀
    (14) 

where 𝛾, β, and 𝜀 are model parameters that determine the mean, standard deviation, 

and the regularization parameters respectively [92].  

3.1.5. Dropout Layer 

The dropout layer changes the structure of the network. It has been proposed to 

remedy the problem of memorizing data called overfitting. Different techniques, 

such as regularization, try to overcome this problem by imposing restrictions on 

parameters and/or changing the cost function. 

Sample dropout usage is given in Figure 12. In Figure 12 (a) the dropout is not 

applied to the network. The state after dropout is applied, as seen in Figure 12 (b). 

An excessive number of neurons or connections often slows the process down and 

may result in over-sensitivity to initial conditions. For example, a network with 50 

hidden layers may have hundreds of thousands of weights. Such a large network 

requires both a lot of learning data and memory [93]. The dropout function enables 

the removal of unnecessary connections by randomly dropping units in the training 

phase. 

Standard Neural Network After Dropout  

       (a)                                                             (b) 

Figure 12 Sample dropout effect on feed-forward network 
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3.1.6. Activation Functions 

The activation functions are often used to convert input signals to nonlinear output 

signals to assist in learning higher-order polynomials for deep networks. 

Differentiability is often a desirable property of nonlinear activation functions.  

By taking the information coming to the layer, a linear activation determines the 

output by computing the weighted sum of inputs and biases. The formulation for 

linear activation function is  

𝑦𝑖 = ∑𝑤𝑗𝑥𝑗 + 𝑏𝑖

𝑛

𝑗=1

                                                   (15) 

where 𝑦𝑖 is the output of the ith node [94]. For nonlinear activation functions, the 

formulation is  

𝑦𝑖 = 𝑓𝑖  (∑𝑤𝑗𝑥𝑗 + 𝑏𝑖

𝑛

𝑗=1

)                                             (16) 

where 𝑓𝑖is the activation function.  

There have been quite a few studies on activation functions. Commonly used 

functions such as sigmoid, tanh, softmax, rectified linear unit will be examined in the 

following section.  

3.1.6.1. Sigmoid and Tanh 

The sigmoid activation function, which is sometimes called the logistic function in 

the literature, is a nonlinear activation function mostly used in feedforward neural 

networks [94], [95]. The tanh function is more preferred in multi-layer neural 

networks as it provides higher accuracy compared to the sigmoid function [96]. The 

formulation for sigmoid and tanh activation functions [94] is given in (17). 

𝑓𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥𝑖) =  
1

(1 + 𝑒−𝑥𝑖)
 

           (17) 

𝑓𝑡𝑎𝑛ℎ(𝑥𝑖) =  
𝑒𝑥𝑖 − 𝑒−𝑥𝑖

𝑒𝑥𝑖+ 𝑒−𝑥𝑖
 

Figure 13 shows the responses for the Sigmoid and tanh activation functions. The 

sigmoid function applies to each value of the vector given as input separately and 

pulls them to a value between 0 and 1, while the hyperbolic tangent function (tanh) 

maps the input between -1 and +1. 
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(a)                                                                      (b) 

Figure 13 Response for (a) Sigmoid Activation Function, (b) Tanh Activation Function  

Logistics functions are used especially in problems involving more than one tag for 

an input. This function allows the inputs to be expressed as a discrete probability 

distribution. Softmax function, which is the generalized form of the logistics 

function, is used in multi-class but single-label data sets. The limitations are that for 

tanh and sigmoid, they are saturated because large values are assigned to 1, and small 

values are assigned to -1 or 0, respectively.  

3.1.6.2. Rectified Linear Unit (ReLU) 

To solve the limitation of tanh and sigmoid functions, a corrected linear unit (ReLU) 

activation function is proposed by Nair and Hinton [97]. ReLU is reported as a 

commonly used successful activation function [98].  By applying the Rectified 

Linear Unit function to the output of the feature map, a non-linear feature is added to 

the result. Although there are several functions occasionally offered to be used 

instead of ReLU in the literature, ReLU remains as the most commonly used one 

since the performance of other functions severely decreases when the dataset is 

changed. 

Figure 14 shows the response for ReLU activation function. The ReLU function 𝐹 

(𝑥) = max (0, 𝑥) returns 0 for values with 𝑥 ≤ 0 on each attribute value, and 𝑥 for 

values with x> 0.  

 

Figure 14 ReLU response 

3.1.6.3. Softmax 

Softmax, which is the last activation function examined in this section, is used to 

obtain the posterior probabilities corresponding to the input [99]. To create these 
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probabilities, it maps input values to the probabilities between 0 and 1, where the 

sum of outputs of the softmax function is 1, in the output layer of the data. The 

formulation of softmax function is given in (18). 

𝑓(𝑥𝑖) =  
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗

𝑗
     (18) 

Sigmoid and tanh functions are used for binary classification, where the softmax 

function is used for multiclass classification.  

 Autoencoders 

Autoencoders are commonly used in deep learning applications and play an 

important role in unsupervised learning [77]. There are different variations of 

autoencoders in the literature, such as variational autoencoders(VAE), stacked 

autoencoders, denoising autoencoders [100–103]. Figure 15 shows the basic 

autoencoder architecture. Autoencoder is an unsupervised machine learning method 

that learns to copy its input into its output. Autoencoders are one of the most popular 

models in the deep learning area, usually consisting of two parts: Encoder and 

Decoder. These two parts are trained together as if they are a single model during the 

training phase. The difference between the input signal and the output signal is 

calculated as the error. The generated code is obtained by taking the output of the 

middle layer. This layer is called the bottleneck layer and is used to determine 

abundance values when used for hyperspectral unmixing. 

Bottleneck

Encoder Decoder

Input Layer Output Layer
 

Figure 15 Basic autoencoder architecture 

Stacked autoencoders are used in areas such as feature extraction, dimensionality 

reduction, denoising, image coloring, new data generation. However, traditional 

applications of autoencoders are dimensionality reduction or feature extraction. 

Autoencoders have recently been used mainly to learn the structure of the data. The 

input layer and the output layer have the same number of neurons, and the hidden 
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layer has fewer neurons. It attempts to minimize the difference between input and 

output. Therefore, autoencoders are unsupervised learning models.  

  Descent Based Optimization Methods  

Gradient descent is a first-order iterative optimization method to find the minimum 

of a function. To approach the minimum point, steps proportional to the negative of 

the gradient of the function at the current point are taken. Although there are various 

descent-based methods used for deep learning, only the widely used stochastic 

gradient descent, adaptive gradient, and adaptive movement estimation methods are 

explained in this section.   

Learning rate or step size is a positive scalar value that multiplies the gradient during 

the iterations. The effect of the learning rate on the search for the optimum point is 

shown in Figure 16. The case where the learning rate is selected small is shown in 

Figure 16 (a), and the case where the learning rate is selected large in Figure 16 (b). 

The learning rate is a critical parameter of the gradient descent methods. A low 

learning rate may result in slow convergence, whereas too high learning rate may 

delay convergence due to oscillations around the optimum. Techniques for optimal 

learning rate selection have been proposed to remedy this problem [104–107]. 
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Figure 16 Learning rate effect (a) low learning rate, (b) high learning rate 

3.2.1. Stochastic Gradient Descent (SGD) 

There are quite different variations of the Stochastic Gradient Descent(SGD) 

algorithm, which has a significant impact on deep learning studies [108]. The 

formulation of the SGD is given in (19), 

𝐰𝑡+1 = 𝐰𝑡 − α . ∇w 𝐷(𝐳𝑡,𝐰𝑡)    (19) 

where D is cost function, α is step size ∇w is gradient of the cost function D in each 

iteration t, 𝑧𝑡 is randomly picked example and w is the weights. Although SGD 

works faster than the previous gradient-based approaches, it is relatively slow 

compared to the methods suggested after it, and it may converge to a local minimum.  
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3.2.2. Adaptive Gradients (Adagrad) 

Adagrad is a method that eliminates the problems arising from the constant learning 

coefficient, one of the biggest problems in gradient descent methods, by updating the 

learning rate at each step. Formulation of Adagrad is given as,  

𝑔t ,𝑖𝑗 = 
𝜕𝐷

𝜕 w𝑡,𝑖𝑗 
 

𝐺𝑖𝑗 =  ∑ (𝑔𝑡,𝑖𝑗)
2                                                        𝑇

𝑡=1 (20)  

w𝑡+1,𝑖𝑗 = w𝑡,𝑖𝑗 −
𝑛

√ 𝐺𝑖𝑗 +  𝜀 
  ∇w 𝐷(w𝑡,𝑖𝑗) 

where D is cost function, α is step size ∇w is gradient of the cost function D in 

iteration t, 𝑛 is learning rate, 𝐺𝑡 is the sum of the squares of the gradients with respect 

to w𝑡 , 𝜀 is a small positive number to avoid division by zero and w𝑡,𝑖𝑗  comprises the 

ij’ths weights. Adagrad provides faster convergence by using a different learning rate 

for each parameter. 

3.2.3. Adaptive Moment Estimation (Adam) 

Adam is proposed for the first-order gradient-based optimization of stochastic 

objective functions. It is based on adaptive estimates of low-order moments [109].  

This method also changes the learning rate in every iteration, like Adagrad.  

𝒎𝑡 = 𝛽1𝒎𝑡−1 + (1 − 𝛽1)𝑔𝑡  

𝒗𝑡 = 𝛽2𝒗𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 

𝒎́𝑡 =
𝒎𝑡

1−𝛽1
𝑡         (21) 

𝒗̃𝑡 =
𝒗𝑡

1 − 𝛽2
𝑡  

w𝑡+1 = w𝑡 −
α

√𝑣̃𝑡 + 𝜀 
 . 𝑚́𝑡 

where 𝑚𝑡 is estimate of the first moment and 𝑣𝑡  is estimate of the second moment of 

the gradients. 𝛽1 is first momentum term and 𝛽2 is second momentum term, generally 

set to 0.9 and 0.999 respectively. 𝛽 values are used to calculate 𝑚́𝑡 and 𝑣̃𝑡which are 

bias-corrected first and second moment, respectively. 

 Hyperspectral Unmixing with Deep Learning 

Deep learning uses multilevel neural networks to achieve advances in various 

applications, including image classification, video analysis, speech recognition, and 

natural language learning. In recent years, studies have been carried out using deep 

learning for hyperspectral unmixing.  

Although the autoencoder was not used in the first studies [110–112] for 

hyperspectral unmixing, the majority of the later studies [113-119] work with the 

encoder structure. One of the first works that did not use encoder structure is A GPU-
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based algorithm presented by Jiménez et al. as a spatial-spectral preprocessing 

method for hyperspectral unmixing [110]. In this study, the CPU-GPU differences 

are examined, and the changes in basic algorithms in terms of time are shown. A 

later algorithm that does not use the encoder structure and makes an abundance 

estimation in a supervised manner is presented by Xu et al. [112]. The abundance 

map was created using given spectral signatures using support vector regression 

(SVR) [120], recurrent neural networks (RNN) [121], principal component analysis 

network (PCANet) [122], and stacked autoencoders (SAEs) [123]. Another method 

that uses a convolutional network instead of encoder infrastructure and performs 

abundance estimation in a supervised manner is presented by Ozkan and Akar [111]. 

Although the layers used may differ in both encoder and decoder layers, the mainline 

of networks used for hyperspectral unmixing is as in Figure 17. Methods for 

hyperspectral unmixing have gained momentum with the success of the methods 

using this structure. The input parts of the models may have convolutional or fully 

connected layers, but the last layers of the algorithms that assume the data with 

LMM generally have this structure for the last parts.  One of the first studies for 

endmember extraction and abundance estimation is proposed by Yuanchao et al.  

[114]. Their algorithm has two main steps. In the first stage, a non-negative sparse 

autoencoder is used to detect endmembers, and then abundance is determined by 

taking input from an endmember extraction method. Later, similar to a simple 

autoencoder structure, a 3-layer network using denoising autoencoder for the solution 

of endmember and abundance estimation problem was presented by Qu, Guo, and Qi 

[117].  

Encoder Decoder

Decoder 
Weights 

(Endmembers)

Encoder 
Outputs 

(Abundances)
 

Figure 17 Simple autoencoder based hyperspectral unmixing scheme 

More than one non-negative sparse autoencoder is used by Su et al. [113]. This study 

uses a very similar structure to the encoder-decoder structure given in Figure 17. The 

main reason for using more than one autoencoder is given as outlier detection. The 
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algorithm performs outlier detection by applying a threshold with the mean and 

standard deviations of the spectral signals reconstructed in the last two autoencoders. 

Pallson et al. has made performance comparisons of autoencoders with different cost 

functions [124]. In this study, detailed information about autoencoder structure and 

parameters is given, and it is assumed that the hyperspectral data follows the linear 

mixing model. Another hyperspectral unmixing method presented for linear mixing 

is the sparsity-constrained deep NMF with total variation (SDNMF-TV) algorithm 

[125], which uses the Nonnegative Matrix Factorization (NMF) [126]. 

As mentioned before, different structures can take place in front of the encoder 

structure. Similarly, a convolutional-based structure has been presented by Zhang et 

al. [118]. Both pixel-based and cube-based convolutional neural networks are used in 

this method. The root-mean-square of the abundance angle distance (rmsAAD) is 

used as the cost function. Stacked nonnegative sparse autoencoders (NNSAEs) 

offered by Su et al. use more than one NNSAE to eliminate outliers in the data and 

then estimate abundance [113]. Root mean squared error (RMSE), root error (RE), 

and spectral angle distance (SAD) are used as cost functions in the algorithm. 

Another algorithm using both SAE and VAE is the deep autoencoder network 

(DAEN) [115]. This algorithm was also created with the assumption of LMM. First, 

spectral signatures are learned using SAEs, and endmember estimation is performed. 

Later, with VAE-NMF, these signatures are used for abundance estimation. Unlike 

other algorithms, the unmixing algorithm presented by Yan et al. first moved the data 

to the wavelet domain and then used an autoencoder for endmember extraction and 

abundance estimation [119]. Other methods using convolutional neural networks are 

Deep Convolutional Autoencoder Network (DCAE) [127] and the convolutional 

neural network autoencoder unmixing (CNNAEU) algorithm [128]. DCAE and 

CNNAEU methods perform hyperspectral unmixing using 1D convolutional neural 

networks on the spectral axis. The deep spectral convolution network (DSCN ++) 

algorithm [129] presented by Ozkan and Akar also uses 1D convolutional neural 

networks. In the study, spectral diversity, which is the case of different spectral 

signatures of pure pixels belonging to the same material in the data, is mentioned and 

the problems that may occur on the real data are given. 

Deep learning methods, which have been widely used in recent years, stand out 

successfully. Although there are models using convolution, we have not encountered 

any publication that performs hyperspectral decomposition with 3D convolutional 

encoder structure. In addition, although there are methods recommended for 

nonlinear approaches, a model using endmember information has not been 

encountered. Therefore, a model that performs nonlinear hyperspectral unmixing 

with 3D convolutional encoder structure is proposed.  
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CHAPTER 4 

 

4. EXPERIMENTAL SETUP AND DATASET 

 

In this section, the data sets used to test the performance of the proposed methods are 

explained. Jasper Ridge and Samson Ridge data sets, which are frequently used for 

algorithms in hyperspectral unmixing in the literature, are used for experiments with 

real data. Detailed explanations are found by creating synthetic data that is as diverse 

as possible for hyperspectral abundance estimation and data created by taking into 

account the spatial information in order to test the model created with a 3D 

convolutional network. In addition, detailed information is given about the distance 

metrics used in the algorithm and used in performance comparisons. 

 Datasets Used in Experiment 

Experiments are performed on both the synthetic data and the real data to evaluate 

the proposed approaches. Among the proposed methods, the pixel-based abundance 

estimation method does not use spatial information. It is thought that it would be 

better to include as many abundance values as possible by using various endmembers 

in this synthetic data created without using spatial information. On the other hand, 

the hyperspectral unmixing model using a 3D convolutional neural network involves 

the use of spatial information. For this reason, synthetic data created to test the 

performance of the deep learning method should be produced by taking the spatial 

information into consideration. For these reasons, two different synthetic data sets 

are created for two different methods. In order to make synthetic hyperspectral data 

realistic, it is planned to create synthetic data as close to real data as possible by 

using spectral signals from hyperspectral libraries. 

Therefore, in this study, spectral signatures are randomly selected from the spectral 

library provided by the U.S. Geological Survey (USGS) [130]. These spectral 

signatures are in the range of 400-2400nm and include 224 bands.  

4.1.1. Synthetic data generation for abundance estimation 

Figure 18 shows randomly selected endmembers for the three endmembers from the 

USGS database. The first synthetic data is created for the abundance estimation 

algorithm and consists of 50x150 pixels. The experiments are performed using 

different endmembers between three and six. Three different frames are created with 

three different mixing models with dimensions of 50x50. The first of these frames is 

generated with LMM, the second with FM, and the last one with PPNM. For 

example, equation (T) shows an example for the synthetic data generation with 3 

endmembers.  

𝒔 =  ∑𝑎𝑟𝒆𝑟

𝑝

𝑟=1

+ 𝑏∑∑𝑎𝑖𝑎𝑗𝒆𝑖⊙𝒆𝑗

𝑝

𝑗=1

𝑝

𝑖=1

+ 𝑛    
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Figure 18 Examples for the selected spectral signatures from the hyperspectral library 

A sample ground truth is shown in Figure 19 (a), (b), and (c) for the abundance 

maps, where the number of endmembers is selected as 3.  

 
(a) 

 
(b) 

 
(c) 

Figure 19 A sample Ground Truth for synthetic data for the abundances of three different endmembers 

utilized for synthetic data generation (a) abundance map for the first endmember, (b) abundance map 

for the second endmember, and (c) abundance map for the third endmember 

Signal to noise ratio (SNR) is used to determine the given noise levels.  The 

formulation of noise is given as 

𝑃𝑜𝑤𝑒𝑟𝑠𝑖𝑔𝑛𝑎𝑙,𝑑𝐵 = 10 𝑙𝑜𝑔10 (𝑃𝑜𝑤𝑒𝑟𝑠𝑖𝑔𝑛𝑎𝑙) 

𝑃𝑜𝑤𝑒𝑟𝑛𝑜𝑖𝑠𝑒,𝑑𝐵 = 𝑃𝑜𝑤𝑒𝑟𝑠𝑖𝑔𝑛𝑎𝑙  /  10
𝑆𝑁𝑅/10   (22) 

𝑆𝑁𝑅𝑑𝐵 = 10 𝑙𝑜𝑔10  (
𝑃𝑜𝑤𝑒𝑟𝑠𝑖𝑔𝑛𝑎𝑙,𝑑𝐵

𝑃𝑜𝑤𝑒𝑟𝑛𝑜𝑖𝑠𝑒,𝑑𝐵
). 
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Experiments are conducted with three different cases as a noiseless, medium, and 

high noise levels, which can be seen in Figure 19. Noise added to a sample spectral 

signature is shown in Figure 20. The noise levels in the studies are determined as 

40db for medium noise and 10db for high-level noise. It is thought that testing the 

experiments in high and low noise is important to see the effect of the algorithm on 

noise performance. Therefore, SNR values are chosen as these values. 

  

(a)                                                                           (b) 

Figure 20 Noise levels on spectral signature (a) 40db Noise (b) 10db Noise 

4.1.2. Synthetic data generation for deep learning 

The deep learning model also benefits from the information brought by the spatial 

information, unlike models that make blind unmix, using 3D convolutional filters. 

Therefore, in order to test this model, it is necessary to generate the abundance 

values by using spatial information instead of generating with random abundance 

values as in the abundance method. Four different endmembers are used for synthetic 

data generated using spatial information. 

 

Figure 21 Spectral signature of the selected endmembers for deep learning method 
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The selected endmembers for these experiments are shown in Figure 21. With these 

endmembers, 16 frames consisting of 25x25 pixels are created. Random mixing 

model are chosen for each frame. The mixing models chosen for this data are 

determined as LMM, FM and PPNM with random b values for one frame . The main 

reason for this is the assumption that reflections within a segment can be varied, as 

can be in real data. The abundance maps consisting of these 25 pieces combined are 

shown in Figure 22. Different abundance values are used for each material in each 

frame to increase diversity.  

  

 

(a) (b) 

  
(c) 

 
(d) 

 
Figure 22 Abundance maps for synthetic data. (a) Abundance map for endmember 1, (b) 

Abundance map for endmember 2, (c) Abundance map for endmember 3 and (d) 
Abundance map for endmember 4 

4.1.3. Utilized real data for experiments 

Two different hyperspectral datasets, which are widely used in the literature to 

measure hyperspectral unmixing and abundance estimation performance, are used in 

this study. RGB images and ground truth information of these data are shown in 

Figure 23. The first set, Samson Ridge, consists of 156 bands covering 400 nm to 
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900 nm. There are three kinds of materials in the data, namely soil, tree, and water, 

shown in Figure 23 (b), Figure 23 (c), Figure 23 (d). The second set, Jasper Ridge, 

consists of 224 bands covering 380 nm to 2400 nm.  Due to dense water vapor and 

atmospheric effects, the channels with the number from 1-5, 108-112,154-166, and 

220-224 are removed, and the remaining 196 bands are used. This data includes four 

different materials, which are Tree (Figure 23-f), Water (Figure 23-g), Soil (Figure 

23-h), and Road (Figure 23-i).  A more detailed description of these datasets can be 

found in [131]. 

 
    (a)        (b)           (c)               (d)

 
              (e)     (f)       (g)        h)           (i)  

Figure 23  RGB image of Samson Ridge (a), Ground truth classes (b) Soil, (c) Tree and (d) Water and 

RGB image of Jasper Ridge (e) and Ground Truth Classes (f) Tree, (g) Water, (h) Soil and (i) Road 

 Distance Metrics 

This section describes the distance metrics widely used in the literature and used in 

the later parts of the study. These metrics are mean absolute error, mean square error, 

root mean square error, spectral angle mapper, and spectral information divergence. 

The expressions of these methods are given as follows. In these expressions, 𝒙̂𝒑 is 

calculated value, 𝒙𝒑 is the target value, and P is the number of bands.  

L1-Norm 

L1-norm, also known as the Manhattan distance, is calculated as the absolute 

difference of two vectors. L1-Norm is given in the expression (23).  

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐿1(𝒙̂𝑝, 𝒙𝑝) = ∑| (𝒙̂𝑖 − 𝒙𝑖) |

𝑃

𝑖=1

                                            (23) 

L1-Norm has been used both to determine the error value in the optimization process 

in detecting the abundance and as a cost function in the deep learning algorithm. 

L2-Norm 

The L2 norm, also known as the Euclidian norm, is given as the square root of the 

sum of squares error between two vectors. L2-norm is used to determine the error 

value in the optimization process. The expression for L2-norm is given in (24).  
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𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐿2(𝒙̂𝑝, 𝒙𝑝) = √∑(𝒙̂𝑖 − 𝒙𝑖)2
𝑃

𝑖=1

                                    (24) 

 

Mean Absolute Error (MAE) 

The expression of mean absolute error (MAE) is given in (25). MAE is used as a cost 

function in deep learning. 

Mean Absolute Error(MAE) =
1

𝑃
∑||𝒙̂𝑖 − 𝒙𝑖||

𝑃

𝑖=1

                  (25)   

Mean Squared Error (MSE) 

The expression of mean squared error (MSE) is given in (26). MSE is used as a cost 

function in deep learning. It is also used to measure the difference between the 

abundance values predicted in performance evaluation and the ground truth values. 

Mean Squared Error =
1

𝑃
∑(𝒙̂𝑖 − 𝒙𝑖)

2

𝑃

𝑖=1

                                   (26) 

 

Root Mean Square Error (RMSE) 

The expression of root means squared error is given in (27). RMSE is used to 

measure the difference between the abundance values predicted in performance 

evaluation and the ground truth values. 

Root Mean Square Error = √
1

𝑃
∑(𝒙̂𝑖 − 𝒙𝑖)2
𝑃

𝑖=1

                            (27) 

Spectral Angle Mapper (SAM) 

Spectral angle mapper (SAM), presented by Kruse et al. [132], obtains the angle 

between two different spectrums in terms of radians. Its formulation is given as 

𝑆𝐴𝑀 = 
1

𝑁
∑arccos(

〈𝒙𝑖  , 𝒙̂𝑖〉

||𝒙𝑖||2||𝒙̂𝑖||2
) .

𝑁

𝑖=1

                                   (28) 

In the expression N is the number of the pixels. SAM is a widely used distance 

measurement method in hyperspectral image processing. It is a very common 

problem that the spectral signatures of the same material are at different levels due to 

the light differences. Even if SAM spectral signatures have different reflectance 
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values, they are quite successful in determining the similarities compared to other 

distance measurement methods. 

Spectral Information Divergence (SID) 

The SID algorithm was presented by Chang to measure the spectral similarity 

between two spectra of pixels [133]. The formulation of SID is given as  

𝑆𝐼𝐷 =  
1

𝑁
∑∑𝑝𝑛 log (

𝑝𝑛
𝑞𝑛
) +

𝐵

𝑛=1

∑𝑞𝑛 log (
𝑞

𝑝𝑛
)

𝐵

𝑛=1

𝑁

𝑖=1

 

           (29) 

where,       𝑝𝑛 =  
𝒙𝑖,𝑛

∑ 𝑥𝑖,𝑘
𝑀
𝑘=1

  and 𝑞𝑛 =  
𝒙̂𝑖,𝑛

∑ 𝒙̂𝑖,𝑘
𝑀
𝑘=1

. 

In these equations, N equals the number of pixels in the data. SID also works 

successfully in determining the similarities of spectral signatures such as SAM from 

methods that are calculated directly with the difference between spectral signatures 

such as MSE, L1-Norm, and L2-Norm. Therefore, these methods are expected to be 

less affected by spectral signature changes due to light changes on real data. 
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CHAPTER 5 

 

5. PROPOSED COARSE TO FINE ABUNDANCE ESTIMATION FOR 

HIGHLY MIXED HYPERSPECTRAL DATA 

 

Hyperspectral data can be formed with more than one mixing model due to its nature.  

While the incident light from some pixels can be directly reflected in the scene, the 

reflected light from some other pixels can be formed with the interactions between 

different layers and materials. Mixing models presented as a solution for such 

problems in the literature are generally based on a single model assumption. 

Although these algorithms provide high performance in synthetic data created with 

their own assumptions, they cannot provide the same performance in real data. 

Therefore, it is necessary to use more than one model mixing to unmix real data.  

In this section, an optimization-based algorithm has been developed that can be used 

in the case of multiple mixing scenarios. Multi-model minimization methods can be 

implemented in two different ways. The first way is to minimize each model 

separately and then choose the minimum among the models. The second is to define 

the cost function to take the minimum of all models in each iteration. The model 

presented in this section determines the abundance with the multi-mixing model in a 

single optimization process. The application of multiple models in a single 

optimization process can cause high costs due to parameter redundancy. With the 

coarse to fine approach, this cost is reduced as much as possible, at least until a 

certain convergence. 

 Proposed Method 

The optimization problem for the abundance estimation can be described as finding 

the abundance values for endmembers, which minimizes a distance metric D 

between the estimated pixel and the target pixel. Such an optimization problem is 

given as,  

𝒂∗ = arg min 
          𝒂

(𝐷(𝒔, 𝒕))     (30)    

where  𝒂∗ is an element of Rp is the optimal abundance vector, t is the actual spectral 

signature of the target pixel, and s is the estimated spectral signature of the target 

pixel. Given a mixture model M as described with one of the models in (1), (3), (6), 

(7) or (8), the optimization problem can be further expressed as,  

𝒂∗ = arg min 
          𝒂

(𝐷( 𝑀(𝒂, 𝑬), 𝒕))    (31)   

where a are the abundances and E is a matrix of size Lxp, which is composed of 

corresponding endmembers, E=[e1,e2,….,ep].  

Such a problem is solved with different algorithms in the unmixing literature. In this 
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section, these algorithms, namely sequential quadratic programming [50–52], pattern 

search [53], [54], genetic algorithms [55–58] and simulated annealing [59–61], are 

briefly described.  While SQP, GA, and SA are previously used in existing studies, 

PS is newly adapted to the abundance estimation problem.  

Hyperspectral data can be formed with more than one mixing model due to its nature. 

While the incident light from some pixels can be directly reflected in the scene, the 

reflected light from some other pixels can be formed with the interactions between 

different layers and materials. Therefore, for each pixel, an optimization-based 

algorithm, which can be used in the case of a multi-mixing scenario, has been 

developed in this section. The main underlying idea for such a solution is the blind 

abundance estimation according to the multiple mixture models with the assumption 

that there might be pixels with more than one mixture model within the image. In 

such a multi mixture model, the problem of abundance estimation can be redefined 

as the minimization of the cost function,  

𝒂∗ = argmin 
       𝒂

{
 
 

 
 

min

(

 
 

𝐷(𝑀1(𝒂, 𝑬), 𝒕),

𝐷(𝑀2(𝒂, 𝑬), 𝒕),.
.

𝐷(𝑀𝑛(𝒂, 𝑬), 𝒕))

 
 
 

}
 
 

 
 

                  (32) 

where M1, M2, and Mn represent different mixing models to sufficiently address 

different interactions inside and between the materials in the investigated scene.  

The first analysis in such a redefined optimization problem is to investigate the 

behavior of the cost function for each mixing model as a function of abundances. 

Figure 24 illustrates a simple example for this purpose over two endmembers. The 

SAM metric is utilized as the distance between the generated pixel spectrum with 

two endmembers by using a selected mixing model and the reconstructed pixel with 

respect to the different abundances by using one of the three mentioned models.  The 

cost function defined as the minimum of the three costs for three mixing models in 

(12) is also plotted with a dashed line in the figure as a function of abundance, a. 

Note that the abundance for the other endmember is (1-a) for the case of two 

endmembers, and therefore, the graphs are one-dimensional. 

 

Figure 24 An example for the change of SAM distance as a function of abundance value for two 

different endmembers 
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Figure 25 Flowchart of the proposed coarse to fine methodology for abundance estimation 

As the first observation in Figure 24, the minima for all the mixing models are at 

different locations. Second, the cost function, defined as the minimum of the three 

mixing models and shown with the dashed line, indicates three local minima with 

convex characteristics, which makes the gradient descent based global search 

algorithms infeasible for such a problem. As the final observation, the minima for all 

the mixing models occur in the vicinity of each other. This implies that the search 

can be done for one model until the abundance estimate reaches a predefined vicinity 

and then continues to the minimum of all mixture models. Considering that the LMM 

model is the baseline coarse component in the given mixing models in Section II.A, 

the threshold to define such a vicinity is experimentally selected as 0.1 in terms of 

the SAM distance and the cost function is redefined as, 

𝒂∗ =

{
 
 
 

 
 
 
arg min 

       𝒂
(𝐷( 𝑀1(𝒂,𝑬), 𝒕)) ,          𝐷( 𝑀1(𝒂,𝑬), 𝑡) ≥ 𝑡ℎ

argmin 
      𝒂

(

 
 
 

𝐷( 𝑀1(𝒂,𝑬), 𝒕),

𝐷( 𝑀2(𝒂,𝑬), 𝒕),
.
.
.

𝐷( 𝑀𝑛(𝒂,𝑬), 𝒕))

 
 
 
,      𝐷( 𝑀1(𝒂,𝑬), 𝒕) < 𝑡ℎ

    (33) 

Instead of updating all models simultaneously, it is also possible to run minimization 

for every model individually. We observed the proposed approach in (13) provides 

advantages in terms of complexity. In this study, we selected the number of mixing 

models as three and determined these models as FM, LMM, and PPNM, as we found 

these models sufficient to describe possible reflections in real data. More 

specifically, the three models are defined as in (1), (6), and (8), respectively.  

Given these observations, the proposed coarse to fine abundance estimation method 

first takes the target pixel spectra and the endmembers in the scene as inputs and 

continues with the following main stages in accordance with Figure 25:  
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 For a given hyperspectral pixel, the abundance values are initialized and 

updated with respect to the given cost function in (33) with the selected 

optimization algorithm. 

 For each iteration of the optimization algorithm, the spectrum for the given 

pixel is reconstructed according to LMM with the estimated abundance values 

and the given endmembers, and the distance between the pixel spectrum and 

the reconstructed spectrum is computed.  

 If the computed distance is higher than the threshold, the optimization 

algorithm continues to the next iteration.  

 If the distance is smaller than the threshold, then the algorithm also computes 

the distances for FM and PPNM and selects the minimum distance from all 

mixture models, and then continues to the next iteration with the new 

abundance values.  

 The algorithm terminates when the distance is sufficiently small or the 

maximum number of iterations is reached.  

The distance, D, between the pixel spectrum and the reconstructed spectrum is 

selected as L1-Norm, L2-Norm, and SAM distance for the experiments. The L1-

Norm, L2-Norm, and SAM distances. The effect of the thresholding is particularly 

investigated for the SAM distance by both implementing the proposed method with 

the given cost functions in (32) and (33).  The thresholding in the cost function is not 

applied for L1-Norm, and L2-Norm distances as the threshold indicate high 

variability in these distances. In Section V, the results of the experiments with 

different optimization algorithms are presented and compared both for synthetic and 

real data. 

 Experimental Results and Discussion 

Considering the different aspects of the proposed abundance estimation method, such 

as the utilized mixing model, optimization algorithm, distance metrics and design 

parameters in all the mentioned cases, the experiments are organized as follows for a 

more compact presentation:  

 First, the effects of the design parameters in the utilized optimization algorithms, 

namely, SA, PS, SQP, and GA, to the estimation performances are analyzed in 

Section V. B. Based on this analysis, the design parameters for a practical 

implementation and a fair comparison are selected in this subsection.  

 Afterward, the effect of distance metrics, namely L2-norm, L1-norm, and SAM 

on the algorithm performances for abundance estimation are examined in 

Section V. B. 

 As the baseline comparison, the proposed coarse to fine approach based on multi 

mixture model is compared with the direct search in Section V. C. 

 In the next subsection, the performances of the proposed coarse to fine approach 

with different optimization algorithms are investigated. The ultimate method 

with the selected optimization algorithm is revealed.   

 In Section V. E, the comparison of the proposed coarse to fine approach is 

compared with the baseline methods in the literature.   

 Finally, in Section V. F, the performance of the proposed method on real data is 

presented. 
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The experiments in all the sections are performed over five realizations by randomly 

generating five different hyperspectral data cubes with different endmember sets and 

estimation is presented as the average performance of all pixels over five different 

realizations. 

5.2.1. Selection of Design Parameters 

As the performance of the algorithms varies considerably with the design parameters, 

the first tests are performed to determine the optimized parameters for different 

optimization methods. In particular, while the tests on SQP, SA, and PS are 

conducted by changing the number of iterations, the design parameters for the GA 

are selected as generation and population size.  

 

(a)                                                                             

 

(b) 

Figure 26  (a) Change of error rates of SA, PS and SQP algorithms for different iteration numbers (b) 

Average abundance estimation time per pixel changes of SA, PS and SQP algorithms for three 

different endmembers with respect to iteration number  

 

Figure 26 (a) illustrates the performances in terms of RMSE with respect to the 

number of iterations for the proposed SA, PS, and SQP based coarse to fine 

algorithms. It should be noted that the duration in Figure 26 is given for three 

endmembers and can vary with the number of endmembers and noise. PS and SQP 
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algorithms are observed to converge to the best RMSE after 100 iterations. On the 

other hand, the SA algorithm does not indicate any significant improvement after 

1000 iterations. Figure 26 gives the duration of the algorithms with respect to the 

number of iterations. SA algorithm, which continues its performance improvement 

up to 1000 iterations as observed in Figure 26, shifts to the fine search by decreasing 

the damping coefficient after 1000 iterations. Then, it continues to fine search up to 

5000 iterations and terminates the algorithm as there is no improvement afterward. 

Accordingly, the duration of the SA algorithm significantly increases after 500 

iterations as it shifts to the fine search at those levels, as observed in Figure 26 (b).  

As a result of the experiments, the number of iterations is selected as 10.000 for fair 

performance evaluation. The performance differences observed in Figure 26 will be 

interpreted in the following sections with respect to the optimization algorithm.  

 
(a) 

 
(b) 

Figure 27 (a) RMSE of  GA with respect to population and generation size (b) Detection time per 

pixel change with respect to population and generation size for GA 

Figure 27 (a) illustrates the changes in RMSE values for the genetic algorithm 

concerning the population and generation size. As the population size increases, there 

is a significant decrease in the RMSE values until the population size of 500. 
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However, the performance for the population size of 1000 is approximately in the 

same range as the case of 500. On the other hand, the performance for the generation 

size of 10 is significantly different than the other sizes of 50, 100, 500, and 1000.   

Figure 27 (b) gives the durations for GA according to population and generation 

sizes. The duration of the algorithm has been observed to increase geometrically 

depending on both the population and generation sizes. As the duration of the 

average population can take up to 15 seconds per pixel, the usage of the GA seems 

not very tolerable for practical applications. However, the performance of the GA is 

also compared with the other algorithms for the sake of completeness. Given the 

performances in Figure 27, both the population and generation sizes are selected as 

500 in the experiments. 

 

Figure 28 Comparison of GA, SA, PS, and SQP algorithms with SAM, L1 and L2-Norm as RMSE 

5.2.2. Selection of Distance Metric 

The distance metrics utilized as the cost function in the proposed optimization 

algorithms are the other aspect of the comparisons in the experiments. In accordance 

with the common literature, these metrics are selected as L1-Norm, L2-Norm, and 

SAM in the experiments, while fixing the parameters for each optimization method 

as given in the previous section.  

Table 1 Durations of distance metrics for GA, SA, PS, and SQP algorithms 

 
SAM L1-Norm L2-Norm 

GA 15,87 20,46 20,86 

SA 0,61 0,68 0,72 

PS 0,03 0,04 0,05 

SQP 0,01 0,02 0,01 

Figure 28 indicates the performances in terms of the RMSE between the estimated 

and original abundances for each of the metric and optimization methods. While L1-

Norm reveals better performances for the PS algorithm, the superiority of SAM is 

quite distinguishable for the other optimization methods, including GA and SQP. The 

reason that the SAM metric works well in other optimization algorithms can be 

explained by the fact that SAM shows an observable change in small abundance 
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changes. However, due to the algorithm structure, a different result is obtained 

because GA approaches all possibilities equally in the early stages. Because of its 

better performance, the SAM metric is selected as the distance metric of the 

proposed optimization algorithms in the rest of the experiments. As also illustrated in 

Table 1, SAM also provides shorter durations for the implementation among three 

distance metrics. 

 

Figure 29 Comparison of coarse to fine and direct searches 

5.2.3. Comparison of the Coarse to Fine and Direct Searches 

The third experiment is the validation of the proposed coarse to fine search with the 

direct search, where the minimum is defined as the minimum of all models described 

in (12). Figure 29 illustrates the performances of both approaches for different 

optimization methods. The coarse to fine method improves the performances with 

the same parameters compared to the direct approach for the GA algorithm. On the 

other hand, the performances of the two approaches are almost at the same level for 

SA, PS, and SQP algorithms.  

The use of coarse to fine method, on the other hand, provides significant advantages 

compared to the direct search in terms of complexity. Table 2 gives the average time 

for the estimation of abundances for one pixel for the compared four methods.  While 

the time reduction is about 10 % for SA, it is about 28 %, 40 %, and 50 % for SA, 

PS, and SQP, respectively. While the GA gives the minimum results in the 

experiments, as indicated Table 2, its duration is quite high, which makes its 

practical usage infeasible.  

Table 2 Duration of the optimization algorithms per pixel (in seconds) for coarse to fine and direct 

searches 

  COARSE TO FINE 

APPROACH 

DIRECT SEARCH 

APPROACH 

GA 15,87 21,62 

SA 0,61 0,68 

PS 0,03 0,05 

SQP 0,01 0,02 
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5.2.4. Coarse to Fine Approaches with Different Number of 

Endmembers 

Given the distance metric of SAM and the selected coarse to fine approach, the 

fourth aspect of the experiments is to compare the performances with respect to 

different optimization algorithms. Figure 30 gives the results of the optimization 

algorithm for different numbers of endmembers. It can be seen that the SQP 

algorithm is least affected by the number of endmembers, and its performance is 

comparable to that of the GA algorithm with three endmembers.   

a  

Figure 30 Comparison of optimization algorithms for different numbers of endmembers  

It is observed that the algorithm, which indicates the most decreasing performance 

according to the number of the endmembers, is GA in the performed algorithms. This 

performance can still be improved by accordingly increasing the population and 

generation sizes in the GA algorithm. However, this increase comes with the expense 

of impractical implementation durations, as discussed in Section C. On the other 

hand, SQP is found to be quite successful in all number of endmembers among all 

the optimization methods. While the performances of the SA and PS algorithms for 

unconstrained optimization problems are quite validated in the literature [134], their 

performance for the case of constrained optimization for the handled abundance 

estimation problem is not as good as the SQP, which is specially tailored as a 

constrained optimization problem. Due to the mentioned performances, the SQP 

algorithm is further selected in the rest of the experiments.  

Figure 33 illustrates an example over synthetic data for the estimated abundances 

along with the ground truths for the ultimate coarse to fine algorithm with SQP. Note 

that the synthetic data is generated as explained in Section IV, where the number of 

endmembers is selected as 3. The estimated abundances compared with the ground 

truth are quite similar for all of the endmembers, resulting in average error, which is 

smaller than 0.02 per pixel. 
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(a) (b) 

  
(c) (d) 

  

(e) (f) 

Figure 31 Sample ground truth and results for SQP for synthetic data (a-c-e the ground truths for 

endmember1, endmember2 and endmember3 respectively, b-d-f the results for corresponding 

endmembers ) 

5.2.5. Comparison of the Proposed Method with the Baseline Methods 

in the Literature 

The methods of LMM, GBM, MLM, and PPNM are widely used in the literature for 

abundance estimation. Note that the mentioned abbreviations correspond to the 

proposed solutions in the mentioned references [17], [20], [23], [24] rather than the 

mixture model in this section in accordance with the convention in the literature.  

 

Figure 32 The comparison of the proposed method with the state of the art algorithms for different 

endmembers 



51 
 
 

The comparisons of these methods with the proposed approach are illustrated in 

Figure 32 for the generated synthetic data with a different number of endmembers. 

The most successful algorithm among the compared methods is found as PPNM. 

However, the proposed SAM and SQP based coarse to fine approach gives 

significantly smaller RMSE values for all the endmembers compared to the PPNM.  

The given results are extended for the case of additive noise in Figure 33. The noise 

is added to the pixel spectra for two different levels of 10 dB and 40 dB, representing 

an average and extreme case. As expected, the increase in noise inversely affects the 

performance of the algorithms. It has been observed that the performance of the 

MLM algorithm is more affected by noise than other algorithms. As in the noiseless 

situation given in Figure 33, the increase in the number of endmembers negatively 

affects the performance. On the other hand, the method which is least affected by the 

noise is observed to be the FM. The proposed algorithm shows the best performance 

among the compared methods for both noise levels. 

 

Figure 33 Noise effects on the algorithms. Results for 40db and 10db noisy data with 

different endmembers 

As an example, Figure 33 indicates the spectra of a sample pixel, its noisy versions, 

and the constructed pixel spectra with the proposed approach. The reconstructed 

signal depicted in gray almost completely overlaps with the original signal in orange, 

even at high noise levels. 
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Figure 33 Sample signature with and without 10db noise and estimated signature 

While previous results are cumulatively given over highly mixed data containing 

three different models, Table 3 shows the results separately generated with only one 

model, as another aspect of the comparison. For instance, the presented results on the 

left side of the table show the performance of the proposed and baseline methods for 

the data generated with only LMM. It has been observed that LMM and GBM 

algorithms are very successful in synthetic data created with LMM. Although PPNM 

and the proposed algorithm also give low error rates, LMM and GBM are observed 

to be more successful in the data created with LMM.  

As a second case where the data is generated with the Fan model, the performance of 

other algorithms is decreased, and the FM has outperformed. It is also observed that 

GBM has also achieved successful results on this data. Finally, PPNM and the 

proposed algorithm have been observed to outperform the other algorithms on 

synthetic data created with PPNM, as expected. However, the performances of the 

algorithms decrease when pixels with different mixing models exist in the utilized 

data. In addition, it is observed that the performances of the algorithms generally 

decrease with the increase in the number of endmembers. 

 

3 EMs 4 EMs 5 EMs 6 EMs 3 EMs 4 EMs 5 EMs 6 EMs 3 EMs 4 EMs 5 EMs 6 EMs 

LMM 0,000 0,000 0,000 0,000 0,116 0,121 0,177 0,200 0,235 0,240 0,262 0,299

MLM 0,000 0,000 0,000 0,000 0,065 0,079 0,121 0,132 0,145 0,155 0,215 0,249

GBM 0,000 0,000 0,000 0,000 0,009 0,007 0,008 0,006 0,187 0,145 0,191 0,222

FM 0,098 0,100 0,135 0,144 0,002 0,000 0,000 0,002 0,139 0,137 0,149 0,159

PPNM 0,011 0,012 0,015 0,023 0,033 0,043 0,045 0,067 0,001 0,007 0,017 0,032

Proposed SQP 0,002 0,004 0,009 0,016 0,021 0,021 0,025 0,029 0,005 0,009 0,011 0,017

Data with PPNMData with LMM Data with Fan Model

Table 3 Performance of the algorithms for the data with different mixing models (LMM, FM and 

PPNM) 
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Figure 34 Abundance estimation error for Samson Ridge and Jasper Ridge data sets 

As expected, the overall results reveal better performances when the utilized 

algorithm have the same mixing model with the generated data or covers the mixing 

model that can be obtained with parameter changes. For instance, the performance of 

GBM is satisfactory for data generated with LMM, as GBM turns into LMM when 

the coefficient for the inner product is set to 0 in (7). The experiments highlight that 

an algorithm based only one mixing model can fail when the actual mixing model of 

the data is different.  

5.2.6. Comparisons with the Baseline Literature on Real Data 

As the final experiment, Figure 34 shows the performance of the algorithms on the 

real data: Samson Ridge, and Jasper Ridge. All algorithms, which are operating quite 

smoothly on synthetic data, reveal decreased performances on real data. The MLM 

algorithm’s performance, on the other hand, is relatively better on real data compared 

to other algorithms in the literature. The performance of the proposed algorithm is 

found to be quite successful among all the algorithms due to its searching 

methodology for all the possible mixing models and the utilized distance metric.  

Figure 35 and Figure 36 shows the output of the SQP algorithm for Jasper Ridge and 

Samson Ridge data. It is seen that the obtained results are quite similar to the ground 

truths for both images. When the results are analyzed in detail, it is also observed 

that, in addition to the use of multiple mixing models, selecting the distance unit as 

SAM significantly increases the performance. Note that the pixels with LMM, FM, 

and PPNM are coded with black, gray, and white colors, respectively. In comparison 

with the presented RGB images, the PPNM model is more common in trees and 

water regions, where the incident light is more likely to be reflected after the 

interactions with different layers. The LMM model is mostly seen in soil, rocks, and 

asphalt regions where the materials are mostly uniform and not expected to reflect 

with each other.  

Finally, the FM model is seen more frequently in sloping areas or inclined regions 

conforming to the assumption that the material does not interact on its own. The 

proposed method in fact achieves to catch the variations in real scenes with its mult i 
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mixture model based coarse to fine approach. In addition, the use of the SAM metric 

could successfully compensate for the light changes, which can frequently occur in 

real scenes.   

   

 

(a) (b) (c) 

   
(d) (e) (f) 

    

 

 (g)  (h) (i) (j) 

    

(k) (l) (m) (n) 

Figure 35 The results for Jasper Ridge and Samson Ridge. (a), (b) and (c) are the ground truths for the 

abundances for soil, tree and water, respectively and (d), (e) and (f) are the estimated abundances with 

the proposed algorithm for Samson Ridge data. (g),(h),(i) and (j) are the ground truths for the 

abundances for tree, water, soil and road, respectively, and (k), (l),(m) and (n) are the estimated 

abundances with the proposed algorithm for Jasper Ridge data 
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(a) (b) 

  
(c) (d) 

 PPNM Model  Fan Model  Linear Mixing Model 
                                        

Figure 36 Displaying the models of the results obtained with the proposed algorithm on the basis of 

pixels LMM(Black), FM(Grey), PPNM(White) (a-Model estimation results for Samson Ridge, b- 

RGB image of Samson Ridge, c- Model estimation results of Jasper Ridge and d-RGB image of 

Jasper Ridge data 
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CHAPTER 6 

 

6. PROPOSED NONLINEAR UNMIXING WITH 3D CONVOLUTIONAL 

ENCODER (3DCE) 

 

This chapter presents a 3D convolutional encoder (3DCE) based hyperspectral 

unmixing algorithm. The use of the autoencoder structure has been observed in the 

deep learning-based unmixing algorithms that are widely used recently. Although 

this structure is successful in extracting the features in the data, it does not contain 

spatial information. Accordingly, 3D convolutional networks using neighborhood 

information together with spectral information is considered as an effective means to 

improve unmixing performance. In addition, observing that the related algorithms in 

the literature are generally tailored for LMM without taking more complex 

interactions in real data that can be modeled with nonlinear mixtures, a nonlinear part 

is integrated to 3D convolutional encoder structure to include such interactions in 

real data.  

The chapter first examines the effect of optimization algorithms on the proposed 3D 

convolutional encoder based hyperspectral unmixing model. The parameters of the 

optimization algorithms are decided with respect to the performance changes of the 

examined model. The optimization algorithms are chosen as Adam, SGD, and 

Adagrad due to their high acceptance in the literature [116-124]. The performances 

of different distance units with these optimization algorithms are also investigated. 

Moreover, the experiments are conducted with different learning rates and batch 

sizes with different optimization methods and distance units. The comparisons of the 

presented model with the baseline algorithms in the literature are also given in this 

chapter.  

 Proposed 3D Convolutional Encoder Based Hyperspectral Unmixing  

Conventional hyperspectral unmixing methods generally focus on a single problem, 

such as endmember estimation or abundance estimation. The performance of the 

algorithms for abundance estimation generally varies according to the endmember 

estimation performance. Deep learning-based hyperspectral unmixing methods have 

been proposed as an alternative to endmember estimation and abundance estimation 

methods [107-116],[121-124]. These methods can solve these two problems 

simultaneously. However, it has been observed that existing methods especially 

neglect spatial neighboring. In this context, a 3D convolutional encoder based 

method has been proposed for the use of spectral information together with spatial 

information. In addition, a nonlinear part has been added for the unmixing of 

nonlinear mixtures with better performance, which has an important place in the 

hyperspectral unmixing with real data. 

The proposed model consists of three main parts. The first part illustrated in Figure 

37 is the convolution part. This layer consists of three different 3D convolution 

layers and a flatten layer. 3D convolutional filters are used in 3 dimensions to contain 
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both spectral and spatial information in the process. In the figure, P is the input 

channel of the hyperspectral data, which corresponds to the number of spectral bands 

in the hyperspectral image. L1, L2, and L3 are the spectral dimensions of 3D 

convolution filters. The output of this part is a flatten layer formed of 1D vectors,  

which has been converted from 3D inputs. These 1D vectors enter the next part as 

input.  

 

Figure 37 The convolution part of the proposed 3DCE model 

The x, y, z parameters in the descrıption of the filters correspond to the spatial 

coordinates in x and y directions and the spectral coordinate in the third z dimension. 

For a data with 220 spectral bands, an example for the application of a 3D 

convolution is given in  Figure 38. The first filter set of size 2x2x21 is applied to the 

first patch of size 3x3x220 with different weights as the number of filters. The filter 

size is defined as 21 for this filter. As a result, a 2x2x200x21 size feature map is 

obtained. Then a second filter set of 2x2x11 size is applied on this feature map. The 

number of filters for this filter set is set to 11. As a result, after this filter, another 

1x1x190x11 size feature map is obtained. The last filter is 1x1x7 in size and consists 

of 7 filters. As a result of this process, a 1x1x183x7 feature map is obtained. The 

flatten layer returns the last feature map into a one-dimensional vector. As a result, 

an output of 1288x1 for this example is obtained. This output is given as input to the 

autoencoder part. Convolution filters are used to extract low and high level features 

in the image in each layer. 
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Figure 38 An example for the application of filtering for 3D convolutional part 

The second part of the proposed model, namely the autoencoder part, illustrated in  

Figure 39, consists of two main stages, which are encoder and decoder. 

Autoencoders are generally used to reduce the data size they receive as input to a 

smaller size and learn the data structures by bringing them back to the input size. 

This structure is used in hyperspectral unmixing by reducing the received spectral 

signal to the number of endmember size and generating a signal again. With the 

restrictions provided in this layer, restrictions such as sum to one and positivity in 

hyperspectral unmixing can be enforced. This layer output is then transformed into 

the input signal again in the decoder layer, and both abundance estimation and 

endmember estimation operations are performed. In the proposed model, the 3D 

convolution part's output is given as an input to the encoder section. Then, the 

encoder-decoder structure, which provides the abundance estimation and endmember 

estimation processes, is established. For this process, the widely accepted encoder-

decoder structures in the literature are used [124], [135].  

In the autoencoder part, the most important factor affecting the performance stands 

out as the normalization layer applied before the output of the encoder. This layer 

enables the application of the two most important constraints in hyperspectral 

unmixing. These are the constraint of positivity, which is the positive encoder output 

provided by ReLU, and the constraint of sum to one.  This layer is applied as, 

𝑾𝑜𝑢𝑡𝑝𝑢𝑡,𝑖 = 
𝒘𝑖𝑛𝑝𝑢𝑡,𝑖

∑ 𝒘𝑖𝑛𝑝𝑢𝑡,𝑗
𝑇
𝑗=1

                                               (34) 

where i is the index of the node, w is the weight matrix, and T is the length of the 

node. 
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Figure 39 The autoencoder part of the proposed 3DCE model 

The given autoencoder structure is made for the hyperspectral unmixing process for 

linear mixing models, but it cannot unmix nonlinear mixtures. Figure 40 shows the 

nonlinear part of the presented 3DCE model, which enables hyperspectral unmixing 

for nonlinear mixing models. This model has a single external node as input. The 

model can adjust the nonlinearity coefficients by optimizing the weights connected to 

this node. In the output layer, the summation of the output of the autoencoder part 

and the output of the nonlinear part is provided. 

 

Figure 40 Nonlinear part of the Proposed 3DCE Model 

The whole structure of the proposed 3DCE model with the autoencoder and 

nonlinear parts for nonlinear hyperspectral unmixing is presented in Figure 41. As 

mentioned, P is the input channel of the hyperspectral data. L1, L2, and L3 are the 

spectral dimensions of 3D convolution filters.  
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Figure 41 Proposed 3D convolutional autoencoder based deep learning model (3DCE) structure 

The detailed structure of the proposed model is shown in Table 4, for each part of the 

model, including layer type, input, filter type, output, and activation functions. The 

convolution part has three filters, and a flatten layer. This layer, which is the input of 

the network, receives a 3-dimensional matrix, including neighbor pixels as input. The 

encoder layer behind the convolution layer consists of 4 fully connected layers and a 

normalization layer. The connection with the section where nonlinearity is defined is 

made in the decoder layer, which is the model's output section. The presented 

network's activation function is chosen as ReLU, whose details are given in Chapter 

3.1.6.2. 

In the table, P is the input channel of the network, and R is the number of 

endmembers. While F1, F2, and F3 are the number of filters applied at each layer. 

Note that these filters are applied separately for each patch during the realization of 

the network. L1, L2, and L3 are given as the filter size applied to the spectral band. 

The parameters F1, F2, F3 and L1, L2, L3, are both determined as 21,11,7 in the 

experiments conducted in this study. The initial network values are determined with 

the kaiming initializer provided by He et al. [136], which is widely used in the 

literature [87], [99]. Besides, the endmembers in the encoder-decoder structure are 

initialized with the VCA output.  The proposed method is implemented by using the 

python programming language and PyTorch [137]. The main steps of the 

implementation can be summarized as follows:    

 Each pixel on the image is given as a block of 3x3xP with its 3x3 neighbors 

as input to the convolution layer. 

 The convolution output is then given as input to the encoder decoder 

structure. 
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 The difference (error) between the estimated pixel spectra at the output of the 

autoencoder and original pixel spectra is calculated with respect to a distance 

metric. 

 The total number of the pixel determines the number of updates in each 

iteration. When batch is used, the number of updates is equal to the total 

number / batch size. In this case the error is determined as the average 

distance for each batch. 

 Learning process is completed after the last iteration. 

 After the last iteration, the ultimate weights between the encoder-decoder 

structure and the encoder output are determined as endmembers and 

abundance values. 

Table 4 Main structure and parameters of 3DCE 
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 Experimental Results and Discussion 

The experiments for the proposed 3DCE model are divided into three main groups as 

the experiments to evaluate the utilized optimization method, observe the effect of 

different cost functions, and understand the effect of the learning rate and batch size. 

The experimental comparisons on the utilized optimization methods for the proposed 

3DCE include Adam, SGD, and Adagrad optimizers. The cost functions for the 

comparisons are selected as MSE, L1-norm, SAM, and SID. In addition, the 

experiments with different learning rates and batch sizes are performed, and their 

effects on the endmember and abundance estimation are investigated. Finally, the 

proposed 3DCE method based hyperspectral unmixing method is compared with the 

baseline endmember estimation and abundance estimation algorithms in the 

literature. VCA and SISAL algorithms, which are found successful from the 

endmember estimation algorithms, are chosen for comparisons. Similarly, LMM, 

MLM, and PPNM algorithms among the abundance estimation algorithms are chosen 

for comparisons. Furthermore, the proposed 3DCE based hyperspectral unmixing 

algorithm is also compared with the proposed optimization-based coarse to fine 

abundance estimation algorithm in Chapter 5. In this section, the performance of 

abundance estimation is evaluated in terms of the RMSE between the estimated 

abundance values and the ground truth abundance values. 

6.2.1. Experiments for the Utilized Optimization Method and Cost 

Function  

The performances of optimization algorithms such as Adam, SGD, and Adagrad with 

different learning rates and different distance metrics such as SAM, SID, MSE, and 

L1-norm are examined. Detailed information on these optimization algorithms and 

distance metrics is given in Chapter 3.2 and Chapter 4.2. The experiments are 

conducted with different batch sizes for each algorithm and different learning rates. 

The range of the learning rate for the experiments is chosen from 0.1 to 0.0000001. 

The error in the experiments in this section is reported as RMSE between the original 

and estimated abundance values and the spectral angle between the original 

endmember and estimated endmembers. The number of iterations is determined as 

50 for the experiments. 

Table 5 3DCE with Adam optimizer abundance estimation performance for synthetic data with batch 

size 1 in terms of RMSE 

Learning Rate Adam-SAM Adam-MSE Adam-L1 Norm Adam-SID 

0.1 0.27 0.23 0.23 0.23 

0.01 0.21 0.24 0.17 0.20 

0.001 0.18 0.13 0.11 0.12 

0.0001 0.13 0.09 0.10 0.11 

0.00001 0.07 0.08 0.08 0.09 

0.000001 0.07 0.08 0.09 0.07 

0.0000001 0.13 0.15 0.15 0.13 

Table 5 shows the results for Adam optimizer results with different learning rate and 

distance metrics as the first experiment. Adam optimizer is more successful at low 
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learning rates. Moreover, the algorithm performs better with 0.00001 and 0.000001 

learning rates. This is because the change in reconstruction error between iterations 

for each distance unit has a different effect on the cost function. It has been observed 

that higher performance is obtained at low learning rates for Adam optimizer. It is 

also seen that the performance drops considerably when a very high learning rate, 

such as 0.1, is selected. The performance of Adam optimizer with SAM is higher 

than with MSE and L1-Norm in the experiments.   

Table 6 shows the results for SGD, which is tested as the second optimizer. Similar 

to the Adam algorithm, the learning rate for the SGD algorithm has a great impact on 

performance. While MSE and L1-Norm give a minimum value for 0.1 learning rate, 

SID give a minimum at 0.01 learning rate and SAM at 0.0001 learning rate. It is also 

observed that SGD-MSE and SGD-L1 reach their minimum values for 0.1 learning 

rate. Since this value is the final value in the selected range, SGD-MSE and SGD-L1 

experiments are also repeated for 0.2 learning rate. The resulting values are obtained 

as 0.09 and 0.13. These different learning rates with minimum values also indicate 

that the performance of SGD is more affected by cost functions. Also, the SGD 

optimization algorithm works successfully with a higher learning rate than Adam 

optimizer. The main reason for such a behavior is that the algorithm iterates in 

random searches initially. The experiments have reveals that SGD has higher 

performance with SAM and SID. 

Table 6 3DCE with SGD optimizer abundance estimation performance for synthetic data with batch 

size 1 in terms of RMSE 

Learning Rate SGD-SAM SGD-MSE SGD-L1 Norm SGD-SID 

0.1 0.12 0.08 0.07 0.16 

0.01 0.15 0.09 0.08 0.07 

0.001 0.08 0.11 0.08 0.08 

0.0001 0.07 0.15 0.11 0.10 

0.00001 0.15 0.17 0.16 0.16 

0.000001 0.15 0.25 0.23 0.21 

0.0000001 0.25 0.25 0.25 0.25 

The results for the Adagrad algorithm can be seen in Table 7. Similar to the SGD 

algorithm, the Adagrad algorithm reaches minimum error rates at different learning 

rates with different distance metrics. It achieves a minimum error rate with a learning 

rate of 0.0001 in SID and SAM and 0.01 in L1-Norm and MSE distance metrics. It 

has been observed that Adagrad gives more successful results with MSE. Adagrad 

algorithm also achieves higher performance with a low learning rate like Adam 

algorithm. The minimum value in MSE has been observed to be lower than other 

distance measures with the Adagrad algorithm. It has also been observed that, unlike 

other algorithms, the Adagrad algorithm achieves higher performance with MSE.  
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Table 7 3DCE with Adagrad optimizer abundance estimation performance for synthetic data with 
batch size 1 in terms of RMSE 

Learning Rate Adagrad-SAM Adagrad-MSE Adagrad-L1 Norm Adagrad-SID 

0.1 0.15 0.10 0.16 0.15 

0.01 0.10 0.06 0.11 0.16 

0.001 0.10 0.10 0.11 0.09 

0.0001 0.08 0.12 0.11 0.08 

0.00001 0.15 0.16 0.17 0.15 

0.000001 0.24 0.24 0.25 0.25 

0.0000001 0.25 0.25 0.25 0.25 

The minimum error rates obtained by the algorithms in the case of batch size 1 shows 

that SAM for Adam, SID for SGD, and MSE for Adagrad are the distance metrics 

with the lowest error. The main reason for this is that the effect of the difference 

between spectral signatures in the endmember learning process on the abundance 

value is less affected by distance metrics such as SAM and SID than distance 

measurement units such as MSE and L1 norm. When SAM is used as a distance 

metric, it is possible to estimate with the same abundance value in cases where 

spectral signatures have altitude difference, but this is not possible for other distance 

metrics. 

6.2.2. Batch Size Experiments 

The experiments are conducted to examine the effect of changing batch size on 

algorithm performance. The effect of batch size on algorithm performance has been 

included in several studies. There are studies indicating that the algorithms with 

larger batch size might achieve better performance with deep learning models [138–

140]. Table 8 shows the best results of the Adam algorithm obtained for different 

batch sizes. Although the results are obtained with different learning rates, it is 

observed that the increase in batch size affects the performance positively when the 

distance unit is SAM. When the results obtained for the Adam algorithm are 

examined, it is observed that using the learning rate of 0.001 or 0.0001 achieves the 

best results. Although there are minor changes in other algorithms, the obtained 

values are very close to each other. 

Table 8 3DCE with Adams algorithm abundance estimation performance change on the batch size in 
terms of RMSE 

Batch Size Adam-SAM Adam-MSE Adam-L1 Norm Adam-SID 

1 0.065 0.075 0.075 0.065 

50 0.055 0.080 0.080 0.065 

100 0.045 0.080 0.070 0.065 

250 0.045 0.085 0.070 0.070 

The results for the SGD algorithm can be seen in Table 9. Considering the batch size 

results for the SGD algorithm, the use of low batch positively affects the 

performance in the table. As a result of these experiments, the SGD algorithm 

achieves the best results when SID is used as the distance metric. SGD algorithm 

converges with more iterations than other algorithms due to its structure. Therefore, 



66 
 
 

when high batch is used, network renewal decreases significantly between each 

iteration. Performance decreases in high batches due to the choice of constant 

iteration and high learning rate in these experiments. However, when the number of 

epochs is increased, more successful results are obtained in high batches. In the 

experiments repeated for 100 batches, it is observed that when the iteration number is 

set to 250, the performance increases to 0.50 on average for SGD-SAM.  

Table 9 3DCE with SGD algorithm abundance estimation performance change on the batch size in 
terms of RMSE 

Batch Size SGD-SAM SGD-MSE SGD-L1 Norm SGD-SID 

1 0.070 0.075 0.070 0.065 

50 0.075 0.080 0.065 0.070 

100 0.090 0.090 0.075 0.075 

250 0.115 0.130 0.150 0.105 

Table 10 shows the results of the Adagrad algorithm. Unlike other algorithms, batch 

size change in the Adagrad algorithm does not cause an evident change in the results, 

but it has been observed that the best results are obtained using one batch and MSE. 

Adagrad indicates higher performance with MSE, which shows more variation 

between iterations. 

Table 10 3DCE with Adagrad algorithm abundance estimation performance change on the batch size 

in terms of RMSE 

Batch Size Adagrad-SAM Adagrad-MSE Adagrad-L1 Norm Adagrad-SID 

1 0.075 0.055 0.105 0.075 

50 0.080 0.070 0.075 0.110 

100 0.065 0.060 0.080 0.055 

250 0.095 0.055 0.105 0.100 

6.2.3. Endmember Extraction Performance  

In the proposed network structure, the weights between the encoder and decoder 

layer correspond to the endmembers, as explained in Section 6.1. Experiments have 

been carried out for endmember estimation, which is an essential step in 

hyperspectral unmixing. First of all, endmember extraction experiments for 

optimization algorithms with synthetic data are performed. The endmembers 

extracted from the results are compared with the original endmembers used in 

creating synthetic data. Error rates for endmember estimation are given as the SAM 

result in radians. The endmembers extracted by the Adam algorithm are shown in 

Figure 42. The average SAM error between estimated endmembers and the ground 

truth for this result is 0.04 radians.  
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Figure 42 The endmembers extracted with 3DCE using Adams algorithm 

It has been observed that the difference between extracted endmembers and ground 

truth is low for all algorithms. The endmembers extracted by the SGD algorithm are 

shown in Figure 43. The average SAM error between estimated endmembers and 

ground truth for the SGD algorithm is 0.04 radians.   

 

Figure 43  The endmembers extracted with 3DCE using SGD algorithm 

The endmembers extracted by the Adagrad algorithm are shown in Figure 44. The 

average SAM error between estimated endmembers and ground truth for the Adagrad 

algorithm is 0.03 radians.  
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Figure 44  The endmembers extracted with 3DCE using Adagrad algorithm 

When the results are examined, it is seen that the error is lower when SAM and SID 

are used as distance metrics. The main difference between these metrics compared to 

the others is that they are less affected by noise when calculating errors. The 

extracted endmembers with these metrics have also been observed more successfully. 

Therefore, it is decided to use the Adam algorithm with SAM in the proposed 3DCE 

method.  

 Comparison of abundances with baseline methods in the literature 

In the experiments performed in this section, different comparisons are made for 

endmember extraction and abundance estimation. While the distance unit used for 

endmember comparisons is SAM, the distance unit used for abundance estimation is 

given as RMSE. The experiments are performed 10 times, and the averages of these 

experiments are given in the final tables. The images show the best results obtained 

in these experiments. 

The previous experiments show that 3DCE with Adam as an optimizer and SAM as a 

distance metric achieves better results. Therefore, synthetic and real data 

comparisons are made with these methods. VCA and SISAL algorithms are used for 

endmember estimation as the well-known standard methods for hyperspectral 

unmixing. LMM, MLM, and PPNM algorithms, which are successful in previous 

experiments, are used for abundance estimation. Endmember estimation and 

abundance estimation performance are evaluated separately for both real and 

synthetic data.  

For synthetic data, the estimated endmembers by VCA and SISAL algorithms are 

given in Figure 45. The average error between estimated endmembers and ground 

truth for VCA is 0.070, and for SISAL 0.035 in radians. The abundance estimation 

processes are performed with these endmembers. Since there is no pure pixel in the 

synthetic data, the SISAL algorithm is expected to perform better. Figure 42 
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illustrates the endmember obtained with the proposed 3DCE algorithm. The average 

estimation error between estimated endmembers and ground truth for the proposed 

3DCE algorithm is 0.038 radians. As can be seen, the proposed method and SISAL 

yield similar results for synthetic data. The formed endmembers are characteristically 

observed very close to each other. 

 
(a) 

 
(b) 

Figure 45 Extracted endmember with VCA (a) and SISAL(b) with synthetic data 

The second aspect of the comparisons is determined as the comparison of abundance 

estimation performances. In Table 11, the average errors of the LMM, MLM, and 

PPNM algorithms are given for synthetic data with the extracted endmembers with 

VCA and SISAL. The abundance estimation performances are given as RMSE.  
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Table 11 Abundance Estimation Performance with the Extracted Endmembers in terms of RMSE 

  LMM MLM PPNM 

Proposed 

Abundance 

Estimation 

Algorithm 

3DCE 

Endmembers 

with VCA 
0.1595 0.1438 0.1336 0.1413 

0.0498 
Endmembers 

with SISAL 
0.0600 0.0600 0.0550 0.0533 

 

 
(a)         (b) 

 
(c)                 (d) 

Figure 46 (a) Ground Truth and the results for (b) VCA+PPNM, (c) SISAL+PPNM and (d) Proposed 

3DCE Method 

Similar to the experiments in Chapter 5, the PPNM algorithm's performance with 

synthetic data is observed more successfully than other algorithms in these 

experiments. When used with the SISAL algorithm, the proposed algorithm has been 

observed that the proposed algorithm performs with an error rate of 0.055. However, 

when analyzed for this data, LMM and MLM algorithm performances are also at a 

rate close to 0.06. Considering the analyzes in Chapter 5, these experiments' 

performance is highly dependent on the performance of the endmember extraction 

algorithm. In the experiments performed with the algorithm presented in Chapter 5, 

successful results are obtained in synthetic data when using endmember extracted 

with SISAL. However, as in other algorithms, the performance is relatively low 
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when using VCA. The performance of the proposed 3DCE for abundance estimation 

is 0.049. Compared to other results, an improvement of 10% has been achieved. 

Considering that it does not contain any pure pixels on the synthetic data and is 

created with a non-linear mixing model, the abundance estimation result obtained is 

considered quite successful. 

In Figure 46 (a), the ground truth for the abundance of endmembers in synthetic data, 

in Figure 46 (b), Figure 46 (c) and Figure 46 (d),  the VCA + PPNM result, the 

SISAL + PPNM result, and the proposed 3DCE method result are given, 

respectively. The differences that occur due to the endmember estimation are 

noticeable, even if the differences are small. When the errors in the presented 

algorithm are examined in detail, it is observed that the errors are generally located in 

the border regions. Also, in cases where the endmember estimation error is high, the 

error rate is higher than the average in regions where the endmember's abundance 

value is high.  

 Real Data Experiments 

Similar to the analysis in Chapter 5, two different real data sets are used for real data 

experiments. For Jasper Ridge and Samson Ridge datasets, the results of VCA and 

SISAL algorithms combined with LMM, MLM, and PPNM algorithms are obtained. 

In addition to these conventional hyperspectral endmember estimation and 

abundance estimation models, the comparisons are also performed with the 

autoencoder based deep learning method proposed by Palsson et al. [124]. The 

method uses encoder-decoder structure for hyperspectral unmixing. As the final 

investigation, the proposed method with the nonlinear layer is compared with the 

autoencoder structure without nonlinear layer to reveal the effect of the integrated 

layer to the unmixing performance. 

6.4.1. Comparisons with Literature 

Real data comparisons are performed with Jasper Ridge and Samson Ridge data 

tests. Extracted endmembers with VCA and SISAL algorithms for Jasper Ridge data 

are given in Figure 47 (a) and Figure 47 (b). Although VCA and SISAL algorithms 

work with high performance on synthetic data, their performance may change with 

real data. In the experiments, the performances of VCA and SISAL algorithms in real 

data have been observed. Although there are pure pixels in the data, the VCA 

algorithm has achieved endmember extraction performance with an average error 

rate of 0.32 radians. The SISAL algorithm, which achieved a higher performance rate 

on synthetic data, indicates deficient performance in the Jasper data set. The error 

rate for this data is determined as 0.59 radians. As can be seen from Figure 48 (b), 

since the algorithm does not enforce the exclusion of a negative value, it detects one 

endmember with a negative value for Jasper Ridge data. Algorithms have been run 

by taking the negative values of this endmember as zero due to the positivity 

assumptions of the abundance estimation algorithms. The endmembers obtained with 

the proposed 3DCE method are given in Figure 47 (c). The average error rate of 

these endmembers compared with the endmembers in the ground truth are 

determined as 0.29 radians, a value which is better than those with VCA and SISAL 
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but still considered as a high value. While the tree, water, and soil signatures are 

found to be quite successful, the road signature is obtained with lower performance.  

 
(a) 

 
(b) 

 
(c) 

Figure 47 Extracted Endmembers with (a) VCA, (b) SISAL and (c) 3DCE for Jasper Ridge dataset 
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(a) 

 
(b) 

 
(c) 

Figure 48  Extracted Endmembers with (a) VCA, (b) SISAL, and (c) proposed 3DCE for Samson 

Ridge dataset 
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Extracted endmembers with VCA and SISAL algorithms for the Samson Ridge 

dataset are given in Figure 48 (a) and Figure 48 (b). In contrast to the results obtained 

in the Jasper Ridge data set, the endmember extractions are found more successful in 

this data set for the VCA algorithm. The SISAL algorithm has extracted one 

endmember with a negative value, as in the Jasper Ridge data set. In abundance 

estimation experiments, negative values in these endmembers are also set to zero. 

The average error for endmember extraction is calculated as 0.06 radians for the 

VCA algorithm and 0.26 radians for the SISAL algorithm. The extracted 

endmembers with the proposed 3DCE method are given in Figure 48 (c). The error 

for these endmembers is calculated as 0.11 radians. Considering the endmember 

estimation experiments, the proposed algorithm performs endmember estimation 

successfully in both synthetic and real data. 

Spectral diversity explains why the performance of both the proposed algorithm and 

the algorithms, such as VCA that chooses endmember from the data differs from the 

ground truth. Ozkan and Akar revealed that the pure pixels of the endmember in 

these datasets consist of different spectral signals [129]. Therefore, it is considered to 

be acceptable if the signals found are different from the ground truth. However, it has 

been observed that the experiments performed with the method proposed in Chapter 

5, where the endmember information is available, yields better abundance estimation 

results. 

After the endmember estimations, the abundance estimation performances by using 

these endmembers are examined. Table 12 shows the abundance estimation results 

with the endmembers extracted by VCA and SISAL algorithms for the Jasper Ridge 

dataset. The best result in this section is seen with VCA + MLM as 0.17. Moreover, 

when the abundance estimation algorithm presented in Chapter 5 is used together 

with VCA, it provides a performance increase of around 10%. The performance of 

the autoencoder based deep learning model is 0.18 similar to the other algorithms in 

the literature. Palsson's model, on the other hand, showed a slightly lower 

performance in this data than conventional methods, achieving 0.18. The proposed 

3DCE algorithm provides a performance increase of around 20% compared to the 

best result for the Jasper Ridge dataset. Although it does not have a low error rate as 

in synthetic data, it has been seen to have an average error rate of 0.14.     

Table 12 The performance of the algorithms for Jasper Ridge dataset as RMSE 

  LMM MLM PPNM 
Proposed Abundance 
Estimation Algorithm 

Palsson's 
Autoencoder 

Model 

Proposed 
3DCE 

VCA 0.20 0.17 0.20 0.15 
0.18 0.14 

SISAL 0.23 0.21 0.23 0.22 

Table 13 shows the abundance estimation results with the endmembers extracted by 

VCA and SISAL algorithms for the Samson Ridge dataset. As with the Jasper Ridge 

dataset results, the combination of VCA + MLM algorithms has achieved a 

successful result for this dataset. Similarly, the abundance estimation algorithm 

presented in Chapter 5 provides a 10% performance increase when used with VCA. 

It has been observed that Palsson’s autoencoder based deep learning method 
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performs better than Jasper Ridge data in this model. For Samson Ridge data, the 

performance of Palsson’s method is observed as 0.15. The model performance 

presented for the Samson Ridge dataset, where the endmember extraction 

performance is much better than the Jasper Ridge dataset performance, is obtained as 

0.12. For this dataset, as in the other datasets, an improvement of about 20% is 

observed in the proposed 3DCE method compared to other methods in the literature. 

Table 13 The performance of the algorithms for Samson Ridge dataset as RMSE 

  LMM MLM PPNM 
Proposed Abundance 
Estimation Algorithm 

Palsson's 
Autoencoder 

Model 

Proposed 
3DCE 

VCA 0.24 0.20 0.32 0.17 
0.15 0.12 

SISAL 0.25 0.25 0.28 0.25 

Figure 49 shows the ground truth and the abundance estimation results for the Jasper 

Ridge dataset. Figure 49 (a) shows the ground truth for the Jasper Ridge dataset. In 

Figure 49 (b), the results for VCA-MLM, in Figure 49 (c), the results for SISAL-

MLM, and in Figure 49 (d), the results obtained with the proposed 3DCE method are 

given. Although the abundance estimation errors are not close to zero, when the 

results are examined visually, the main classes are predicted quite successfully with 

the proposed 3DCE method. When the results are examined for VCA + MLM 

combination, which is one of the successful methods, it is seen that the road and 

water classes are mixed, and a large part of the land is detected as soil.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 49 The abundance estimation results for Jasper Ridge dataset (a) ground truth, (b) the results 

for VCA + MLM (c) the results for SISAL+MLM and (d) the results with proposed 3DCE 

   

Figure 50 Error map showing the difference between the abundance map derived by the proposed 

3DCE method and the ground truth for Jasper Ridge dataset 

Figure 50 illustrates the error map between ground truth and the results of 3DCE 

model for Jasper Ridge dataset. Although the results are similar, it is observed that 

the rate of mixing road and soil materials with each other is higher than the other 

materials. The main reason for this is that there are very few road pixels and the 

neighborhood of the road and soil pixels is too high. Therefore, the presence of both 
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road and soil in the area calculated for the road in the 3x3 filter used for the 

neighborhood is one of the reasons for this mixture.  

 
(a) 

 
(b) 

 
(c) 

         
(d) 

Figure 51 The abundance estimation results for Samson Ridge dataset (a) ground truth, (b) the results 
for VCA + MLM (c) the results for SISAL+MLM, and (d) the results with proposed 3DCE method 

Figure 51 shows the ground truth and the abundance estimation results for the 

Samson Ridge dataset. In Figure 51 (a) ground truth of Samson Ridge dataset, in 

Figure 51 (b) VCA-MLM results, in Figure 51 (c) SISAL-MLM results, and in 

Figure 51 (d) the results obtained with the proposed 3DCE method are given. When 

these results are examined visually, it is seen that although the tree detection is quite 

successful with almost all methods, soil and water may not be detected as well. The 

abundance estimation for the proposed 3DCE algorithm is more apparent than other 

algorithms.  

Figure 52 illustrates the error map between ground truth and the results of 3DCE 

model for Samson Ridge dataset. In this data set, it is observed that the errors are 
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mostly between the tree and water pixels. The similarity of tree and water spectral 

signatures between 400-1500nm is another reason for this error. Also the abundance 

values of the other classes and the soil class have little confusion with the other 

classes.  

 

Figure 52 Error map showing the difference between the abundance map derived by the proposed 
3DCE method and the ground truth for Samson Ridge dataset 

In the experiments performed for the presented 3D encoder based hyperspectral 

unmixing algorithm, it is observed that the performance increase is achieved 

compared to the mainstream algorithms used in the literature. Experiments have been 

successfully performed on synthetic and real data for both endmember estimation 

and abundance estimation. It has been observed that the presented method works 

quite successfully for both data. 

6.4.2. Comparison with Respect to Mixing Models and Nonlinear Layer 

The pixel models in the Samson Ridge and Jasper Ridge datasets are shown in Figure 

54. Experiments have been conducted to measure the performance of the presented 

3DCE model on different mixing models. It is given as the average error over the 

previous experiments. Selected models are determined as LMM, FM and PPNM. The 

errors given in this section are given as RMSE of the pixels marked with that model. 

In the experiments made for Jasper Ridge data, it is seen that the error value of the 

pixels marked as LMM is 0.17. This value is taken as 0.15 for FM and 0.10 for 

PPNM. For Samson Ridge data, the error values are determined as 0.12, 0.10 and 

0.11 for LMM, FM and PPNM, respectively. It has been observed that the pixels 

with nonlinear mixtures are estimated more successfully than the pixels with the 

linear mixture model. Since the number of pixels modeled as the total nonlinear 

mixture model in these data is higher than the linear model, the overall performance 

has been achieved more successfully than using only the linear model. It has been 

observed that the nonlinear part positively affects the algorithm performance, since 

the complex interactions in the real data are too complex to be modeled with a single 

model. However, it is thought that the algorithm presented can work with lower 

performance on data created with only linear mixtures.  

Therefore, separate experiments are carried out to measure the effect of nonlinear 

part on performance. In this section, the nonlinear part is removed from the model 

and the encoder-decoder structure after the 3D convolution layer is included. When 
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the results are observed with this model, it is seen that the performance decreased 

from 0.14 to 0.17 for Jasper ridge and from 0.12 to 0.15 for Samson Ridge datasets. 

Although better estimation of linear models is achieved, the estimation of other 

models in the real data is more successful when nonlinear part is included to model. 

Considering that the number of pixels in different mixing models in the data are 

close to each other, the more successful separation of nonlinear mixing models, the 

better performance in predicting the vast majority of data. 

  
(a) (b) 

  
(c) (d) 

 PPNM Model  Fan Model  Linear Mixing Model 
                                        

Figure 53 Displaying the models of the Samson Ridge and Jasper Ridge Data, LMM(Black), 
FM(Grey), PPNM(White) (a-Results for Samson Ridge, b- RGB image of Samson Ridge, c- Results 

of Jasper Ridge and d-RGB image of Jasper Ridge 

6.4.3. Cross-validation of the Proposed Unmixing Model  

The presented deep learning based hyperspectral unmixing method requires a 

separate learning process for each data. The main reason for this is that the spectral 

differences in each image and the materials that can be included in each data may 

differ. In other words, unlike traditional deep learning applications, the presented 

algorithm does not use the weights of a model by training a model for the 

hyperspectral unmixing process, but uses the encoder outputs and decoder weights in 

the final iteration. 
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The algorithm presented in this section is also tested with 10-fold cross-validation in 

order to observe performance measurements similar to traditional deep learning 

algorithms of the presented method. The cross-validation process is performed by 

dividing the picture into 10 parts and performing the training process of 9 parts at 

each time and using the unused part in the test process. In other words, considering 

the size of the Jasper Ridge data, 9000 pixels in 10000 pixels in Jasper Ridge data are 

used for learning process and 1000 pixels are used for testing. In Samson Ridge data, 

8325 pixels in 9250 total pixels are used for the learning process and 925 pixels are 

used for the test process. During each training, a different section is separated as the 

test data and the average RMSE values of the operation on the whole data are given. 

Experiments are performed on Jasper Ridge and Samson Ridge datasets. 

In the experiments performed for the Jasper Ridge dataset, when all data are used, 

the average error is determined as 0.14. In cross-validation experiments, the error 

value is obtained as 0.15. It is also observed that the error value of 0.12 in Samson 

Ridge dataset is found as 0.15 in cross-validation experiments. One of the main 

reasons for this decrease in the abundance estimation performance is that the 

proposed 3D convolutional encoder based unmixing method is tested on a data that 

the model has never seen before. Another reason for this decrease is that the learning 

process takes place with only 90% of the data. It is expected that performance 

changes will be observed as the percentage of the data used for training decreases. 

As mentioned before, the presented model performs the learning process for the 

received hyperspectral data only by training. The main reason for this is that the 

weights coincide with the endmember during both endmember estimation and 

abundance estimation processes. It has been observed that the presented model works 

quite successfully in the presented cross-validation experiments to perform the 

abundance determination process on a different data by using the trained weights of 

the autoencoder. This application is valid only if it is applied for abundance detection 

for images containing the same materials.  
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CHAPTER 7 

 

7. CONCLUSIONS 

 

In this thesis, two different studies have been performed for the hyperspectral 

unmixing problem. The first study is the abundance estimation in the presence of 

endmember information, and the second study is the deep learning-based 3D 

convolutional encoder based hyperspectral unmixing method for the cases where the 

endmember information is unavailable. Comparative performance evaluations have 

been performed in both synthetic and real data for both models. 

The first study is tailored for the abundance estimation for the cases where 

endmember information is available. In the performed study, a model on abundance 

estimation using the multiple mixture model in a single optimization process is 

presented. Performance variation of the presented model is investigated with SA, PS 

SQP, and GA optimization methods. In the experiments, the number of iterations for 

SA, PS, and SQP and the population and generation sizes for GA and performance 

interactions are examined. With this experiment, the parameters are tried to be 

determined for each method for a fair comparison without explicitly biasing the 

algorithm performances. Despite the high performance of GA among the methods, it 

has been revealed that it is not a practical method due to its very high processing 

time. The SQP algorithm, which provides both high performance and short 

processing time, is chosen for the proposed model. In addition, the performances are 

examined with respect to different distance metrics, namely L1-Norm, L2-Norm, and 

SAM. The experiment has indicated that the performance of the SAM metric is better 

than the other two metrics. The main reason for this is that the same material can be 

included in different spectral signatures, which causes the performance of the 

algorithm to decrease during the abundance estimation. During the method 

development process, the time and performance change between the coarse to fine 

approach and the direct approach has been observed. It has been noticed that the 

presented coarse to fine approach has faster convergence. At the end of these 

experiments, a coarse to fine approach using SQP as the optimization algorithm and 

SAM as the distance unit is proposed.  

The performance of the method is tested and compared with different noise levels 

and a different number of endmembers. Comparisons are made with both synthetic 

and real data with algorithms such as LMM, GBM, FM, MLM, and PPNM in the 

literature. It has been observed that these models yield successful results if synthetic 

data are created with their own assumptions. However, it is noticed that the 

performance decreases in synthetic data created with another mixing model. It has 

also been observed that the proposed method is more successful than all methods in 

cases where the data is created with a multiple mixing model. Although MLM is the 

most successful method among the methods in the literature in experiments with real 

data, the performance of the proposed coarse to fine approach exceeds that. 
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In the second study, a 3D convolutional encoder based algorithm is proposed for the 

cases where endmember information is not available. Adams, SGD, and Adagrad 

algorithms are used in the experiments as the optimization algorithm for the selection 

of the presented model. The response of these algorithms to different learning rates 

and batch sizes has been examined, and the results are reported. Experiments have 

been performed on this synthetic data created at a low noise level and two different 

real data. For comparison, among the successful algorithms in the literature, pure 

pixel-based (VCA) and non-pure pixel assumption (SISAL) algorithms are selected 

for endmember estimation. Endmember extracted with the proposed 3DCE model 

has been seen as more successful than these methods. SISAL is more successful at 

endmember extraction in synthetic data without pure pixels, whereas VCA is better 

at real data containing pure pixels. In the experiments conducted for abundance 

estimation, it is observed that the MLM algorithm, among the algorithms in the 

literature, achieves more successful results on real data. When used for abundance 

estimation, the performance of the algorithm presented in Chapter 5 is higher than 

other algorithms when using the endmembers obtained with VCA in the real data. 

Nevertheless, the presented 3DCE model has achieved more successful results than 

these algorithms in both synthetic data without pure pixels and real data. In 

comparisons of abundance estimation for real data, it is seen that Palsson's method 

obtain similar performances to other methods in the literature. As a result, the 

algorithm performance is 10-20% higher in comparison with the experiments 

performed with the selected Adam optimizer. In addition, it is observed that the 

proposed 3DCE method obtain better results than the baseline autoencoder-based 

unmixing methods in the literature. It has been validated with experiments that 

especially the nonlinear layer provides good performance in data with nonlinear 

mixtures.   

As a result, it has been observed that the proposed 3DCE method is more successful 

when endmember information is not available, but the abundance estimation method 

recommended in Chapter 5 should be used when there is prior endmember signature 

information. The future studies can be focused on more sophisticated models 

including intimate mixing to better represent the interactions in complex real scenes. 

Another aspect that needs attention is the adaptation of other optimization algorithms 

to coarse to fine approach. Furthermore, although deep learning methods are used 

frequently in the literature, the most important feature of such methods is the 

performance differences with the change of the data. Besides the data change, the 

need for parameter changes is a very important factor. Future work in this direction, 

may focus on the development of nonlinear hyperspectral unmixing models that can 

adapt to data change for instance with Automatic Machine Learning (AutoML). 

Moreover, studies can also be focused into nonlinear mixing models with deep 

learning models. 
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