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ABSTRACT

OPTIMIZATION AND DEEP LEARNING BASED MULTI MODEL
ABUNDANCE ESTIMATION AND UNMIXING ALGORITHMS FOR
HYPERSPECTRAL IMAGES

Ozdemir, Okan Bilge
Ph.D., Department of Information Systems
Supervisor: Prof. Dr. Yasemin Yardimei Cetin
Co-Supervisor: Assoc. Prof. Dr. Alper Koz

December 2020, 96 pages

Hyperspectral unmixing aims to identify the materials within the pixels of an image
and estimate the corresponding abundance values of these materials. This thesis
proposes an optimization based abundance estimation method for the case where the
spectral signatures of the materials are available, and a deep learning based
hyperspectral unmixing method for the case where the spectral signatures of the
materials are unavailable. The proposed abundance estimation algorithm assumes
that real data can contain complex interactions that cannot be modeled with a single
model, and therefore, use multiple mixing models for determining the abundance of
real data. The proposed optimization-based coarse-to-fine estimation algorithm first
adopts a linear mixing model for the tested pixel until the error between the
reconstructed and original pixel is smaller than a threshold. The algorithm then
proceeds by integrating the other nonlinear mixing models to the cost function.
Among various utilized optimization algorithms and metrics, the proposed solution
with the sequential quadratic programming and spectral angle mapper combination is
found more successful than other search methods and baseline algorithms. As the
second contribution of this thesis, a new 3D convolutional encoder based deep
learning method is proposed for hyperspectral unmixing by observing that the local
neighborhood information is not sufficiently used for the unmixing problem in
hyperspectral images. Given that nonlinear mixing has not been adequately covered
in deep learning based hyperspectral unmixing literature, the proposed method is
especially designed to solve the nonlinear mixture models with the 3D convolutional
encoder structure. The proposed method gives better performance than the well-
known pure material extraction and abundance detection algorithms on synthetic and
real data.

Keywords: Hyperspectral Unmixing, Deep Learning, Abundance Estimation, 3D
Convolutional Encoder, Nonlinear Mixtures
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HiP]glRSPEKTRAL GORUNTULERDE OPTIiMiZASYON VE DERIN
OGRENME TABANLI COK MODELLI BOLLUK TAHMINi VE
AYRISTIRMA ALGORITMALARI

Ozdemir, Okan Bilge
Doktora, Biligim Sistemleri Boliimii
Tez Yoneticisi: Prof. Dr. Yasemin Yardime1 Cetin

Ortak Tez Yoneticisi : Dog. Dr. Alper Koz

Aralik 2020, 96 sayfa

Hiperspektral ayristirma, goriintiiniin igindeki malzemeleri tanimlamayir ve bu
malzemelere karsilik gelen bolluk degerlerini tahmin etmeyi amaglamaktadir. Bu tez,
malzemelerin spektral imzalarmin mevcut oldugu durum i¢in optimizasyona dayali
bir bolluk tahmin yontemi ve malzemelerin spektral imzalarinin olmadig1r durumlar
icin derin dfrenme tabanli bir hiperspektral ayristrma yontemi dnermektedir. Ilk
calisgmada sunulan bolluk tespit algoritmasi gergek verilerin tek bir modelle ifade
edilemeyecek kadar karmasik etkilesimler icerebilmesi varsayimina dayanmaktadir.
Bu nedenle, gercek verilerde bolluk tespiti yapilirken ¢oklu model kullanilmasi
hedeflenmistir. Onerilen optimizasyon tabanli bolluk tespit algoritmasi, hedef piksele
yakin bir hata oranina ulasilana kadar dogrusal karigim modelini varsayan bir
yaklasimi benimser. Optimizasyon algoritmasi daha sonra maliyet fonksiyonunu,
olas1 karigim modelleri i¢in yeniden tanimlayarak isleme devam eder. Kullanilan
cesitli optimizasyon algoritmalar1 ve uzaklik metrikleri arasinda, sirali ikinci
dereceden programlama ve spektral a¢1 haritalama kombinasyonu ile dnerilen ¢6ziim,
diger arama yontemleri ve temel algoritmalardan daha basarili bulunmustur. Bu tezin
ikinci katkis1 olarak, hiperspektral goriintiilerde komsuluk bilgisinin ayristirma
problemi i¢in yeterince kullanilmadigi gézlemlenerek hiperspektral ayristirma igin
yeni bir 3 boyutlu evrisimli kodlayici tabanli derin 6grenme yontemi Onerilmistir.
Dogrusal olmayan karistrmanin daha o6nce sunulmus derin 6grenme tabanli
hiperspektral ayristrma ¢alismalarinda yeterince ele alimmadigi gbéz Oniine
alindiginda, onerilen yontem dogrusal olmayan karisim modellerini 3D evrigimli
kodlayic yapisiyla ¢dzmek igin tasarlanmustir. Onerilen yontem, sentetik ve gergek
veriler iizerinde iyi bilinen saf malzeme ¢ikarma ve bolluk tahmini algoritmalarindan
daha iyi performans gostermistir.

Anahtar Sozciikler: Hiperspektral Ayristirma, Derin Ogrenme, Bolluk Tahmini, 3D
Evrisimli Kodlayici, Lineer Olmayan Karigimlar
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CHAPTER 1

INTRODUCTION

Remote sensing is defined as any method of image and spatial data acquisition,
including aerial measurement and photogrammetry, independent of being satellite-
based, airborne-based based, or ground-based environments [1]. Yet, in a more
general sense, remote sensing refers to the evaluation of information obtained by
various sensors from a distant object without direct intervention. Today's remote
sensing technologies have a wide variety of applications in many military and civil
areas, such as defense, environment, agriculture, atmosphere, urbanism, and health.
For example, remote sensing is used in forest fire control, land use and land cover
classification in environmental applications, and drought monitoring, crop
production forecasting, and crop recognition in agriculture.

In a remote sensing scenario, the sensor collects the signals originating from a light
source after reflected from an object. If this light source is a natural source such as
the sun, it is called passive sources. In the case of an energy-dependent source such
as laser or radar, they are named as active sources. Provided that an energy source is
available, almost any wavelength can be used to display the desired scene's
properties. However, this situation may have some limitations. For example, when
imaging from satellite sensors, there are wavelengths absorbed by the molecular
components of the atmosphere. Figure 1 shows the transmittance of the earth's
atmosphere on a path between space and earth over a wide range of electromagnetic
spectrums. As can be seen in the figure, the transmittance decreases at certain
wavelengths absorbed by the atmosphere, water vapor, and carbon dioxide, and even
there are bands with no transmittance.
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Figure 1 The electromagnetic spectrum and the transmittance of the earth's atmosphere [2]



Depending on the platform used, remote sensing techniques can be examined under
two main headings, as ground and airborne platforms [3]. Remote sensing is usually
applied when high detail is needed or when the working area is small, with sensors
mounted on platforms close to the ground. Camera and radar are examples of sensors
used on the ground platform. The second platform type, i.e., the airborne platform,
can be classified as aircraft platforms and spacecraft platforms. Image resolution may
vary depending on the platform and sensor used. Therefore, the platform should be
selected according to the desired application.

Another way to classify remote sensing systems is with respect to the number of
spectral bands they use. According to this classification, the first class is the
panchromatic imaging system that has only one band image sensor. There are many
panchromatic imaging systems, such as QuickBird-PAN and IKONOS-PAN. The
second remote sensing systems, namely multispectral systems, there are several
spectral bands. These systems, which have been used since the 1970s, have a very
important place in remote sensing [4]. Advanced Land Imager, ASTER, MODIS,
SPOT, and SENTINEL imaging systems can be given as examples for multispectral
imaging systems. Satellite sensors such as Quickbird and Commercial Remote
Sensing Satellite can capture both multispectral and panchromatic images.

Hyperspectral imaging has been enhanced with the use of high spectral resolution in
multispectral imaging. Hyperspectral sensors can acquire very narrow, contiguous
spectral information in many consecutive bands (nominally> 50), from visible to
thermal infrared wavelengths. These sensors enable continuous reflection or
emissivity information to be acquired. While multispectral images have low spectral
resolution and high spatial resolution, hyperspectral images have high spectral
resolution with low spatial resolution. Material characterization and recognition are
possible with this high spectral resolution. Thus, it has been possible to use
hyperspectral images in many areas, such as urban and regional planning,
agriculture, mining, and military decision support.

Hyperspectral imaging has been utilized until now for various applications with
different requirements. The first task is hyperspectral classification, defined as
assigning a unique tag to each pixel. The classification is divided into two main
classes as unsupervised or supervised. Unsupervised classification is based on the
automatic clustering of pixels by algorithms without user intervention. The properties
of the classes resulting from the unsupervised classification are initially unknown.
The analyst must compare the classified image with other reference information to
obtain more detailed information. In the supervised classification, it is already known
which classes the image will be divided into or which classes are desired to be
obtained from the image. For this process, learning data belonging to determined
classes from the image is given as input to the algorithm. The algorithm then
determines the classes of input data using this learning data. The second application
is dimensionality reduction, mainly to reduce the data load while avoiding data
analysis results. Since hyperspectral images have more than a hundred bands,
dimensionality reduction is required to remove redundant information and speed up
the process. Target detection is another major application in hyperspectral images,
which often employs spectral signatures of materials. In addition to hyperspectral
applications, there is change detection task, which is the process of detecting changes



in two different hyperspectral images. For example, it can be used to view the change
in time of a region taken at two different times. Besides, change detection is common
in areas such as natural disasters, agricultural product management, or tracking water
resources.

Finally, hyperspectral unmixing is one of the fundamental operations for
hyperspectral image processing. Since hyperspectral cameras contain too many
bands, they generally have high spectral resolutions and low spatial resolutions. For
this reason, there is usually more than one material in the area covered by a pixel.
Applications such as classification, target detection, or segmentation generally
require knowing what the materials in this pixel are and how much they are.
Hyperspectral unmixing includes applications related to both the materials contained
in the data and the determination of these materials' abundance values in each pixel.

1.1. Motivation

The importance of hyperspectral image processing techniques has increased with the
widespread use of hyperspectral images. Figure 2 emphasizes this fact by giving the
number of publications in recent years. The main reason for such a popularity of
hyperspectral imaging is both related to the decrease in the costs and the increase in
the quality of the sensors with the progress of the technology.
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Figure 2 Number of publication of hyperspectral imaging per year (Source: Google Scholar)

One of the biggest problems of hyperspectral sensors stands out as low resolution. As
a result, the subpixel detection methods have formed one of the main branches in
hyperspectral image processing to detect low-resolution images' targets. The
hyperspectral unmixing mainly developed for subpixel detection consists of the
determination of the number of endmembers on the data, the extraction of the
members, and the estimation of corresponding abundances for the endmembers, in
which the amount of products in the pixel is determined. It has been observed that
the solutions in the literature have reached a certain maturity for the estimation of the
number of endmembers and for the estimation of the endmembers. The most obvious
problem in detecting abundance values for endmembers is to model the interactions



of spectral signatures caused by the reflection of light rays during the capturing of
hyperspectral data from real scenes. Due to their structure, hyperspectral images can
not be modeled with a single model. Therefore, more than one model is required to
solve this problem. The models in existing solutions try to include as many scenarios
as possible, but their performance on real data is often unsatisfactory. The main
reason for this is that the presented mixture models are difficult to model the
interactions of the materials and the distance units used in the algorithms indicate
low performances in real hyperspectral data. In order to solve these problems, a
multi-model optimization-based coarse to fine approach to work on real data is
utilized in this thesis. The performances of different distance metrics are also
investigated in such a framework.

On the other hand, deep learning methods have recently been used for hyperspectral
unmixing. However, the studies on hyperspectral unmixing are usually performed
independently of pixel neighborhood information, which is referred as blind
unmixing. In blind unmixing problems, each pixel is given as separate input, and the
result of the unmixing is obtained. This causes the reflection of materials to be
modeled without using spatial knowledge. Therefore, the integration of the local
neighborhood knowledge to the unmixing process is considered as an underlying
idea to increase the unmixing performances. To this end, convolutional networks,
which significantly increase the performances in image processing applications, are
proposed for hyperspectral unmixing in order to include the spatial information in the
unmixing process. Furthermore, the design is specially tailored by adding specific
layers to represent nonlinear mixtures. The performance of the proposed deep
learning algorithm based on 3D convolutional autoencoder has been tested on real
data with different optimization methods and distance metrics.

1.2. The Purpose of the Study

The algorithms proposed for hyperspectral unmixing are known to perform
successfully with synthetic data generated by using the presumed mixing model.
However, this may not always be the case for real data as the real data can be too
complex to be modeled using a single mixing model. For example, an image taken
from a flat surface can be modeled with a single mixing model, while there may also
be data from mountainous, high-rise, or wooded areas that can be modeled better
with multiple mixing models. Given this observation, this study has two objectives
regarding hyperspectral unmixing.

The first objective of this study is to determine the abundance rates for the cases
where there is endmember information on real data that cannot be modeled with a
single mixture model. Therefore, in the first part of the study, an optimization-based
coarse to fine abundance estimation method is proposed. The proposed method
performs hyperspectral abundance estimation by using more than one mixing model
in a single optimization process. Experiments are carried out to examine the
performance variation of the method with different optimization algorithms and
different distance metrics. Optimization algorithms used in this study are determined
as genetic algorithms, simulated annealing, sequential quadratic programming, and
pattern search, while distance metrics are determined as spectral angle mapper, L1-
norm, and L2-norm. The performance of these optimization algorithms and distance



metrics for both direct search and coarse to fine approach has been examined. The
proposed coarse-to-fine approach continues the optimization process with the linear
mixing model (LMM) up to a certain threshold, then the cost of the minimization
process is determined as the minimum of the multiple models. The effects of the
parameters of optimization algorithms on performance are investigated in
experiments with synthetic data. In order to speed up the optimization process, the
difference between the coarse-to-fine approach and direct search approaches is
analyzed, and their performance is compared. A comparison of the proposed method
with other algorithms in the literature has been made in the experiments performed
with the highly mixed synthetic data and two different real data.

The second objective is to use deep learning algorithms, which have been widely
used in hyperspectral unmixing in recent years and stand out with their high
performance. The purpose of this study is to perform hyperspectral unmixing in cases
where the endmember information is not available. In the study, three-dimensional
convolution networks are used to benefit from the use of spatial information. The
output of the three-dimensional convolution networks used as a predecessor is then
given as input to the automatic encoder based neural networks. In this method, the
performances of different distance units and optimization algorithms are tested for
both synthetic and real data. Stochastic gradient descent, adaptive gradients, and
adaptive moment estimation algorithms, which are widely used in the literature, are
used for the experimental comparisons. Spectral angle mapper, mean square error,
L1-norm, and spectral information divergence methods are utilized to choose the best
distance metric in terms of abundance and endmember estimation performances.
More specifically, the performances are evaluated by using the root mean squared
error between the original and reconstructed abundances.

1.3. Contribution of the Thesis

As the first contribution of this study, an optimization based coarse to fine abundance
estimation method is proposed by using multi mixing models to cover the complex
interactions in real hyperspectral data. The proposed approach, which combines
different mixture models in a single framework, which has various experimental
aspects, which involve the selection of design parameters, determination of best
optimization method and distance metric, and the comparison of the coarse to fine
approach with the direct search. Given these aspects, the main contributions for this
part of the thesis can be summarized as follows.

e Different optimization algorithms such as Genetic Algorithm (GA),
Simulated Annealing (SA), Sequential Quadratic Programming (SQP) and
Pattern Search (PS) are adapted to the proposed coarse to fine abundance
estimation framework for hyperspectral unmixing and compare with each
other by properly selecting design parameters for each optimization method.
The best optimization algorithm with the proposed model is revealed with
respect to the abundance estimation performance for highly mixed
hyperspectral data.



The effect of distance metrics such as L1-Norm, L2-Norm and Spectral
Angle Mapper (SAM) on optimization performance is examined and
compared with the proposed method.

The performances of the proposed coarse to fine method and the direct search
method are compared. Experiments indicate that the coarse-to-fine based
multi-model approach provides similar performances as the direct search
approach but the convergence time for optimization algorithm is lower.

The experiments are further detailed by the comparisons with the algorithms
in the literature using noiseless and noisy synthetic and real data. The better
performance of the proposed abundance estimation method with respect to
the state of the art algorithms is validated.

As a second contribution of this study, an unsupervised hyperspectral unmixing
algorithm is presented by integrating 3-dimensional convolutional networks to
frequently used autoencoder structure. In addition, nonlinear part is included to
model for unmixing nonlinear mixing models. The main contribution in this part of
the thesis are given as follows:

The experimental comparisons with respect to the traditional autoencoder
based unmixing methods have revealed the superiority of the proposed
method for abundance estimation. It has been observed that the spatial
information to unmixing process with 3D convolutional encoders
significantly improve the hyperspectral unmixing performance.

The performance of the endmember and abundance estimation with the
proposed method are found better than the conventional endmember
estimation methods in the literature such as Vertex Component Analysis,
Simplex Augmented Langrangian and abundance estimation methods such as
Linear Mixing Model, Multi Linear Mixing model and Polynomial Post
Nonlinear Mixing model.

Finally, the addition of nonlinear part for nonlinear mixing models indicate
promising performances for nonlinear mixtures compared to the proposed
structure without nonlinear part. The suitability of the proposed structure with
nonlinear layer to real data which can involve nonlinear interactions is
verified with the experiments.

1.4. Thesis Outline
The outline of the thesis is as follows:

Chapter 2 provides an introduction to the hyperspectral unmixing problem. A
comprehensive literature review on the main stages of the hyperspectral unmixing
problem, hyperspectral mixing models, and optimization algorithms are presented.



Chapter 3 includes the main layers and components used in deep learning algorithms
and an examination of previous hyperspectral unmixing studies for hyperspectral
unmixing.

In Chapter 4, the procedure for the generation of synthetic data is given along with
the real data set utilized in the experiments. This section also describes the distance
metrics used for both abundance estimation and deep learning methods.

Chapter 5 includes a description of the proposed optimization based coarse to fine
abundance estimation method. This chapter includes the experiments performed for
the parameter selection of the algorithms used for the presented abundance
estimation model. Different distance metrics and experiments for coarse to fine
search and direct search are also included in this section. Additionally, the
comparisons of the presented algorithm with the abundance estimation methods
commonly used in the literature are included.

In Chapter 6, the proposed 3D convolution and autoencoder based method for
hyperspectral mixing is given. The model elements and parameters are explained in
this section. In addition, experimental comparisons between the proposed method
and baseline methods in the literature for endmember estimation and abundance
estimation are performed and discussed.

In Chapter 7, the main conclusions of the thesis are given.






CHAPTER 2

HYPERSPECTRAL UNMIXING

In hyperspectral imaging, the spatial resolution of the utilized sensors is generally
high due to the speed and hardware requirements brought by the excessive
wavelengths. This situation causes many different materials to enter into the area
covered by a pixel on the earth. In each pixel of the obtained image, the mixture of
the spectrum of the materials physically present in that pixel is observed. In Figure 3-
a, the mixture spectra obtained for a pixel with 50% grass and 50% soil in a pixel are
given as an example in addition to the grass and soil signatures. Detecting the
substances in the spectral mixture and determining the proportion of this substance in
each pixel is a problem that has been frequently mentioned in the literature and still
maintains its importance today. Especially in applications such as target detection, a
process is required to detect targets smaller than pixel size in the low spatial
resolution image. Hyperspectral unmixing is presented for the solution of such
problems, which aims to determine how many materials are in the given
hyperspectral data cube, what these materials are and where these materials are
located in the data.
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Figure 3 (a) Sample scene and (b) spectral signatures for grass, soil and mixture (50% grass and 50%
soil)
The process of hyperspectral unmixing [5-8], which is illustrated in Figure 4, mainly
consists of three stages, which are the estimation of the number of endmembers,
extraction of endmembers with respect to this estimated number, and the estimation
of the abundances for each endmember after the endmember extraction. In this
chapter, the existing solutions in the literature for these three problems are presented.
To extract the endmember from the data, the endmember number must first be
known. For example, in Figure 3, the number of endmembers is determined by
running the endmember number extraction algorithm. With this result, which is
output as 2 in this example, the endmember extraction algorithm is then run, and
again for this example, the grass and soil signatures are detected in Figure 3 (b). In



the abundance estimation stage, which is the final stage of hyperspectral mixing, the
amount of each pixel from each end member is determined using the output of the
endmember extraction algorithm. For example, as a result of abundance estimation in
the example above, it will be determined that some pixels are 100% grass or soil, and
some pixels contain both grass and soil.
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Figure 4 The Flowchart of the Hyperspectral Unmixing Process
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In this chapter, detailed information about the main steps of the hyperspectral
unmixing process is given. The main steps include the number of endmember
estimation methodologies, endmember extraction methodologies, abundance
estimation methodologies. This chapter also includes detailed information about
mixing models.

2.1. Number of Endmember Estimation Methodologies

The process of determining the number of endmembers is very important for
obtaining the preliminary information necessary for the realization of the second and
third stages of hyperspectral unmixing, endmember determination, and abundance
estimation. The main purpose of this stage is to determine how many different
materials are in the given hyperspectral data cube.

One of the well-known methods proposed for estimation of the number of
endmembers is the Virtual Dimensionality (VD) proposed by Chang and Du [9]. VD
method assumes that the eigenvalues of correlation and covariance matrices for a
particular component are close to each other. The equality of correlation and
covariance eigenvalues in each specific component was tested by the Neyman-
Pearson method, and the number of components containing the signal was
determined as VD. The Harsanyi—Farrand—Chang (HFC) method, which is an
improved version of [10], estimates the number of endmembers with the VD term
using the Neyman-Pearson method. The HFC method uses eigenvalues of sample
correlation and covariance matrices with automatic thresholding for the number of
endmember estimation.

As another example, hyperspectral signal identification by minimum error (HySime)
applies the singular value decomposition technique to hyperspectral data [11]. The
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eigenvectors which best represent data in the root-mean-square error sense are
determined along with the number of endmembers. Markov Chain Monte Carlo
(MCMC)-based method for estimation of the number of endmembers is proposed by
Tourneret [12]. The method is however, only applicable for a small number of
endmembers due to its high computational cost.

2.2. Endmember Estimation Algorithms
2.2.1. Methods with Pure Pixel Assumption

N-FINDR, one of the most widely used methods for endmember extraction presented
by Winter [13], selects the purest pixel in the hyperspectral image. The N-FINDR
algorithm works on the principle that the volume of pure pixels in the data will be
larger than the volume created by different combinations of other pixels. This
volume calculation is done by the Minimum Noise Fractions (MNF) algorithm [14].
MNF is used to reduce the data to p-1 size as a preprocessing stage, where p is the
number of endmembers. The algorithm calculates volume by starting with the
random pixel selection and checks whether the new pixels selected in each iteration
are larger than this volume. If the volume is larger than the volume found in the
previous iterations, new endmember candidates are selected. The algorithm is
terminated after testing all pixels. The simplex growing algorithm (SGA) [15] is very
similar to N-FINDR. The algorithm grows simplexes at each iteration. Each new
corner that defines the maximum simplex volume is considered a new endmember.
As the initial conditions are assigned randomly, the algorithm can indicate
inconsistency in finding the correct endmembers.

Another well-known study on this subject is the Pixel Purity Index (PPI) algorithm
[14]. PPI algorithm uses MNF for dimensionality reduction. After this step, the
algorithm creates a large set of random vectors called skewers. Extreme values are
calculated for each projection. A pixel purity image is formed where each pixel is
scored with the number of times the pixel is recorded as an extreme point. Pixels
with the highest score are determined as the purest signals and returned as the
endmembers. Many variations of the PPI algorithm are presented, such as random
PPI, parallel PPI, iterative PPI, or graphical processing unit (GPU) implemented PPI
[16-20].

The vertex component analysis (VCA) algorithm is presented by Nascimento and
Dias [21]. Its performance is reported as better than N-FINDR and PPI algorithms.
The algorithm firstly reduces the data to the p-1 dimensional Euclidean space using
Singular Value Decomposition (SVD), where p is the number of endmembers,
allowing each vector on the hyperspectral data to appear in this space. Then, extreme
points in each band of the projected space are selected as endmembers. VCA works
with very low computational cost and high accuracy compared to other algorithms.
Because of this performance, it is also generally used as the starting point in the
methods without a pure pixel assumption [22-24].

Iterative error analysis (IEA), as the last example in this group, has a high
computation cost [25]. The algorithm extracts the endmember and calculates the
error between the generated and real data for each iteration. The average spectrum of
the data is selected to start the process. The constrained linear unmixing process is
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performed with this mean vector, and the error caused by the errors remaining in
each pixel after the unmixing is calculated. The spectral signal corresponding to the
pixel with the largest single error is selected as the second endmember, and the
hyperspectral unmixing process is performed again. This process continues until the
error falls below a certain threshold value or until the desired endmember number is
reached.

With the development of hyperspectral sensors, the resolution in hyperspectral
images is increasing. Therefore, algorithms working with these pure pixel-based
assumptions that select pixels from within the image are considered to be important.
Among these algorithms, VCA is thought to work more successfully than other
algorithms.

2.2.2. Methods Without Pure Pixel Assumption

Minimum volume-based endmember extraction methods assume that there are no
pure pixels in the data. In these methods, the pure pixels from which the data is
formed are determined by different minimum volume detection methods. Among the
algorithms presented with the principle of minimum volume, the Minimum Volume
Simplex Analysis (MVSA) algorithm [23] uses the endmembers from the above-
mentioned VCA algorithm as the seed point. Then, in each iteration, the volume of
these points was expanded, and the endmember extraction was carried out with the
SQP method.

Figure 5 shows a convergence example for three endmembers with Simplex
Identification via Split Augmented Lagrangian (SISAL) algorithm [24]-another
algorithm that uses the VCA algorithm as its seed point. SISAL regards the
minimum volume definition as a non-convex optimization problem with convex
constraints. It performs endmember extraction by determining the minimum volume
from the starting points obtained using the VCA algorithm with quadratic
approaches. The use of the augmented Lagrange multipliers has made the algorithm
computationally efficient. Unlike MVSA, SISAL is more resistant to noise and
strong against errors in initial values. In the figure, M(0) is the seed point assigned
using VCA. M(Kk) is the new point assigned by the algorithm at each iteration. M
(final) is given as the last point reached by the algorithm.

Another algorithm in this group, Minimum Volume Enclosing Simplex (MVES)
algorithm integrates the concepts of convex analysis and volume minimization using
linear programming and cyclic minimization [26]. This method is also based on the
assumption that the simplex surrounding the minimum volume must coincide with
the true endmember simplex using rigid positivity constraints. Later, a robust MVES
(RMVES) algorithm is presented to reduce the sensitivity of the MVES algorithm to
noise [27]. In this algorithm, positivity constraints of abundance rates are used as soft
constraints. Additionally, quadratic solvers are used in the RMVES algorithm.
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Figure 5 SISAL Convergence Example

Finally, the Iterative constrained endmembers (ICE) algorithm replaces the volume
simplex with the squared distances between all the simplex vertices [28]. Sparsity
Promoted Iterative Constrained Endmember (SPICE) is an extension of the ICE
algorithm that incorporates sparsity-promoting priors to estimate also the number of
endmembers [29]. These two algorithms, which make the endmember estimation
with pseudoinverse, do not impose any restrictions when predicting endmembers as
in the SISAL algorithm. As a result, output endmembers can take values less than 0
and greater than 1. In order to solve this problem, the extension of the SPICE
(SPICEE) algorithm is recommended [30].

2.3. Abundance Estimation Methodologies

In the abundance estimation stage, which is the last step of the hyperspectral
unmixing process, the percentage of endmembers in each pixel is determined. One of
the most important problems of this stage is determining the mixing model of the
data. These mixing models can be categorized as Linear Mixing Model (LMM),
Non-Linear Mixing Model (NMM), and Intimate Mixing Model (IMM), which are
created by taking into account the different interactions of the light in or between the
materials in the scene [31-33].

Light Source Light Source

2 4

Light Source

Figure 6 (a) Linear Mixing Model, (b) Non-Linear Mixing Model (c) Intimate Mixing Model

13



Figure 6 shows the light interactions between objects before they reach the sensor for
the main categories of mixing models. The most common mixing model is LMM,
which assumes that the incident light reflected from the surface comes directly to the
sensor without any further interference [34-38]. Another mixing model NMM
assumes that the light interacts with another material before reaching the sensor.
Although there are different approaches in this model, the most common approach is
the bilinear mixing model, which assumes that the light consecutively hits two
materials before reaching the sensor [39-42]. The radiance value obtained in the
sensor as a result of this interaction is considered to be a non-linear mixture of light
reflected directly and light interacting with the material.

This nonlinearity is modeled in [40] and [41], by adding an extra interaction term to
the LMM, described as the Hadamard products of the endmembers and multiplied by
a certain coefficient. While this coefficient is introduced as a product of abundances
by Fan et al. [40], Nascimento introduced the coefficient as an independent
parameter in [41]. Unlike the bilinear mixing models presented as NML, multi linear
mixing model (MLM) offered by Heylen and Scheunders was created with the
assumption that there might be multiple and complex interactions between materials.
Finally, the IMM assumes that the signal interacts with multiple materials at
microscopic levels. Therefore, the radiance in the sensor consists of lights scattered
from more than one material. Such interactions are originally modeled by Hapke in
his seminal paper [43], and various researchers such as Nascimento and Bioucas-
Dias [44] and Rand et al. utilize that model to unmix the hyperspectral data with
IMM [45].

2.3.1. Linear Mixing Model

Figure 6 (a) illustrates the interactions in LMM, which is one of the most commonly
used mixing models in hyperspectral unmixing. Due to its simplicity, LMM is one
of the highly preferred mixing models in literature [46]. The formulation of LMM is
given as,

P
s= Zaiei+n, €Y

i=1

where s and e; are the L-dimensional spectral signatures of pixel and the ith
endmember vector respectively, a; is the fractional abundance corresponding to
endmember e;, p corresponds to the number of endmembers, and n denotes the
noise.

The given LMM formulation is subject to two constraints, which are described as

a; = 0, Vi
P
i=1

The non-negativity constraint, the first of these two constraints, states that the
abundance values must be greater than zero [47]. In the second constraint, i.e., the
sum to one, the sum of the abundance values of the endmembers in each pixel must
be one [36].
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2.3.2. Non-linear Mixing Model (NMM)

Figure 6 (b) illustrates the interactions between the objects in the case of the
Nonlinear Mixing Model. Bilinear models commonly used in NMM literature
assume that the interaction between materials occurs only once. One of the first
bilinear models is Nascimento Model (NM) [41], which is given as,

P p-1 p
s = Zarer+z Z Bijei © e +n. (3)
r=1 i=1 j=l+1

The given formulation describes the interaction as a sum of two terms and noise,
where the first term stands for linear relation of the endmembers and the second term
refers to the non-linear interaction, which is represented by the Hadamard product of

the endmembers,
€1,i €1,j €1,i€1,j
eQei= | O (= ) €))
eL,i eL,j €L,ieL,j

In (3), B;; determines the effect of the interaction between the endmembers, i, and j.
This model also has the sum to one and positivity constraints, which are given as

a; = 0 Vi
{ Bij 20 Vi . (5)
P p=1yp -
i=1 @i + iy z:j=i+1 Bij=1

As another example of bilinear models, Fan et al. [40] proposed a model which
modifies the nonlinearity coefficient, g;;,as a function of abundance coefficients,

a; and a;,

P p-1 p
s = z a,e, + z z a;aje; © ej +n. (6)
=1 i=1 j=i+1

The basic approach in this model is that the endmembers in each pixel affect each
other with respect to their abundances. The contribution of the endmember
abundances outside the present pixels is assumed zero. The Fan Model (FM) cannot
be generalized to LMM as the coefficient of the Hadamard product is directly
dependent on the abundances. In order to solve this problem, Halimi et al. [39]
proposed to change the coefficients, g; ;,as y;;a;a;,

p p-1 p
s = Z a,e, + Z Z yijaiajei O ej + n. (7)
r=1 i=1 j=i+1

In this the so-called the Generalized Bilinear Model (GBM), y;; accounts for the
non-linear interactions between materials. When y;; are set to zero, the model

generalizes to LMM, and alternatively, when they are set to 1, the model converts to
the FM.
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In the previously described models of expressions (3), (6), and (7), the terms e; ©
e; are excluded since the iteration of endmembers indexes are from 1 to (p-1) and
from (i+1) to p. So, possible interactions inside an endmember can not be included.
On the other hand, the Polynomial-Post Nonlinear Multivariate (PPNM) model
extends the index to all endmember combinations to include those interactions
[42],[48] with expression,

D P D
s = Zarer+b22aiajei0ej+n (8)
r=1

i=1j=1
where b is a scalar coefficient utilized for the adjustment of non-linear part.

2.3.3. Intimate Mixing Model (IMM)

As the last mixing model, the intimate mixing model (IMM), which assumes that
photons interact with each other many times, is shown in Figure 6 (c). One important
model in defining IMM is the Hapke model [43] that is based on bidirectional
reflectance theory. In this model, the interactions were formulated with the average
scattering of photons in materials, the incident and emergence angles of scattering,
and a simplified form of Chandrasekhar’s function [49], which describes the
multiple scattering as a function of incident and emergence angles. IMM models are
excluded from this research due to their complexity in applications.

2.4. Optimization Methodologies

The optimization methods used in this study can be examined under two main
headings as convex optimization methods and stochastic optimization methods.
While the purpose of both kinds of methods is to minimize the cost function with a
set of parameters, their main difference is the way they reach the minimum point.
While convex optimization algorithms usually try to reach the minimum by using the
gradient direction of the cost function, stochastic optimization algorithms try to
minimize the given cost function by randomly generating alternative candidate
solutions.

The optimization problem for the abundance estimation can be described as finding
the abundance values for endmembers, which minimizes a distance metric D
between the estimated pixel and the target pixel. Such an optimization problem is
given as,

a, = arg min (D(s,t)) 9

where a, , element of R, is an abundance vector, t is the actual spectral signature of
the target pixel, and s is the estimated spectral signature of the target pixel. Given a
mixture model M as described with one of the models in (1), (3), (6), (7) or (8), the
optimization problem can be further expressed as,

a, = argmin (D( M(a, E), t)) (10)

where a is the abundance matrix and E is a matrix of size Lxp, which is composed of
corresponding endmembers, E=[ez,e>, ...., ep].
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In the literature, different algorithms have been offered for both convex optimization
and stochastic optimization methods as a solution to this problem. This section firstly
examines sequential quadratic programming [50-52], and pattern search [53], [54]
algorithms in convex optimization methods. Then, frequently used genetic
algorithms [55-58] and simulated annealing [59-61] in stochastic methods are
examined.

2.4.1. Convex Optimization Methods

If the constraints of a given minimization problem are convex, the problem is
expressed as a convex optimization problem [62]. The most significant advantage of
recognizing or formulating a problem as a convex optimization problem is that the
convex optimization methods converge to the global minimum value. This section
explains the sequential quadratic programming method and pattern search method, as
commonly used convex optimization methods for nonlinear optimization.

2.4.1.1. Sequential Quadratic Programming (SQP)

Different mixture models such as LMM, FM, and GBM can be formulated as
constrained non-linear multivariable optimization problem. Sequential Quadratic
Programming is one of the main algorithms proposed for non-linear optimization
problems, which is based on the active set method [63] to determine the initial
guesses, and the quasi-Newton line search [64] algorithm to update these guesses
[51].

Given the abundance vector as a, the constraints can be further expressed as,

a <u
arg min (D( M(a, E), t)) such that lp<a (11)
“ Ceq (@)=1

where ceq(a) corresponds to the sum to one constraint, a is the abundance vector, and
I, and up are lower and upper bounds for the abundances, which are selected as 0 and
1, respectively. The model M is selected as the linear mixture model given in (2)
[34-38].

2.4.1.2. Pattern Search (PS)

Pattern search algorithm is a direct search numerical optimization method proposed
by Hooke and Jeeves [65]. Later, a method considering the lower and upper
boundary constraints was also developed by Findler et al. [53]. As the main
difference compared to other algorithms such as gradient-based algorithms, the
objective function in PS is not required to be continuous or differentiable. Further
details of convergence analysis of PS, and optimality conditions, and the gradient
search relation can be found in [54].

As in SQP, the PS algorithm also defines the cost function for the abundance
estimation as a constrained non-linear optimization problem. However, rather than
using gradient-based search methods to find the optimal point, the PS algorithm
recursively tries to find an improving direction to determine the optimal point. This
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improving direction should not necessarily be the best direction, which in turn makes
the algorithm operate on discontinuous cost functions.

2.4.2. Stochastic Optimization Methods (SQP)

This section provides a summary of leading algorithms with remarks on the critical
issues related to stochastic optimization, whose popularity has grown rapidly in
recent years. Stochastic optimization methods are used in nonlinear, high
dimensional problems where classical deterministic optimization methods cannot be
used [66]. Genetic algorithms and simulated annealing algorithms are commonly
used stochastic optimization methods [67], which have been selected in this thesis for
abundance estimation. The performances of such methods are compared with respect
to different parameters such as complexity, endmember number and abundance
estimation performances.

2.4.2.1. Genetic Algorithms (GA)

Genetic algorithms are one of the most popular stochastic optimization techniques
inspired by genetic biology [68]. Given a random gene pool for a population, the
algorithm iteratively finds the optimum solutions by generating new genes with
mutations and crossover operations and selects the best survivals in the population
with respect to a cost function. The crossover operator mixes the two selected
chromosomes to generate better genes. The mutation is produced by creating a
change in some genes in a chromosome. It prevents convergence to a population with
a homogeneous gene pool, thus guarantees chromosome diversity.

GA algorithm is adapted to an abundance estimation problem in [57] by defining the
cost function as the spectral angle [69] between the target pixel and its estimation
with sum to one and positivity constraints. The authors also performed various
experiments to determine the best population size.

In another study, Tong et al. utilized a GA-based approach to improve the
abundance estimation to locate the materials determined in pixels, where the cost
function is defined as Spectral Dependence Index [70]. Finally, Farzam et al. [55]
propose a GA-based endmember and abundance estimation algorithm by assuming
the data is formed by LMM. The authors define the cost function as a mean square
error between the target pixel spectra and its estimation with GA and show the effect
of population size on the abundance estimation.

While these previous studies mainly focus on one mixing model to define the
abundance estimation, the proposed approach given in the next section will define
the abundance estimation as an optimization problem with respect to more than one
mixing model.

2.4.2.2. Simulated Annealing (SA)

Simulated Annealing (SA) is a stochastic based general search technique, which can
deal with highly non-linear models, noisy data, and many constraints. The simulated
annealing method first proposed by Metropolis et al. [71] is based on the similarity
between the annealing process in physical systems and the solution process in
optimization problems [72]. Annealing is the process of slowly cooling the solids
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after they are heated to the annealing temperature. The annealing process is called as
the general heat treatments performed to relax, soften the material, and make the
inner structure more usable.

The SA algorithm determines an initial candidate solution and accepts this solution
as the best solution in the beginning. It then randomly chooses a valid solution at
each step and measures the quality of that point. In the next steps, the first candidate
solution considered as the best solution is compared with the newly produced
solution. If the new result is better, the new solution is appointed as the best solution.
The temperature parameter is a value initially determined in the annealing method.
This value is reduced by the temperature lowering parameter at the end of the cycle
created. These processes can be continued until the best solution is found, or until a
specified time to run the algorithm, or until the temperature parameter is zero or less
than zero. The advantage of the SA algorithm is that it can overcome local minima,
unlike gradient-based optimization algorithms.

SA algorithm is used by Penn for the estimation of abundance values for LMM [59].
The author uses L2-Norm as a loss function to calculate the difference between the
target pixel and the estimated pixel spectra by assuming sum to one and positivity
constraints for the abundance values. Rather than using L2-norm, Debba et al. [73]
also employs the SA algorithm by defining the cost function as the error of the first
and second derivatives of different sets of target spectral signature and their
estimations. The proposed algorithm [73] calculates the difference value by
subtracting the derivative of the estimated pixel spectrum from the derivative of the
target pixel. In their later studies [61], the same researchers also investigate the effect
of noise on the estimation performance.

The algorithms mentioned in this section are implemented in a single optimization
process to make abundance estimation with the multi-mix model. Then, the
experiments performed for abundance estimation are evaluated in both synthetic and
real data.
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CHAPTER 3

DEEP LEARNING AND ITS APPLICATIONS ON HYPERSPECTRAL
UNMIXING

Artificial neural networks are computer systems that are formed by modeling the
neural network in the brain and accordingly consist of interconnected nodes called
artificial neurons. Artificial neural networks have been in use since the 1950s and
have gained popularity several times. However, each time there appeared
computational difficulties that could not be overcome and resulted in the loss of
popularity. The main reason for this was seen as the lack of processing power of the
computers at that time. However, especially after the study of Hinton et al. in 2006, it
regained its popularity [74].

One of the first studies on this subject, conducted by McCulloch and Pitts, can be
seen in Figure 7 of the binary threshold unit created using virtual neurons [75]. The
activation output of a single virtual neuron, i.e., h, is produced by taking the
weighted sums of the n-dimensional input, and the final binary output is obtained by
testing the activation output h against a threshold value, i.e., u.
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This process can be specified mathematically as:

Figure 7 Model of a neuron

n
j=1

Where, x; is the jth component of the n-dimensional input signal, w; is the jth
component of the weight vector, b; is the bias of the node and y; is the output of the
function. f; is the activation function, which is usually nonlinear [76]. Detailed
information about these functions will be given in Chapter 3.1.6.
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Deep learning takes its name due to its deep layers and hierarchical structure. Two
factors that make deep learning techniques popular today, which has a deeper
structure than other artificial neural networks, are that the data reaches very large
dimensions and the development of processors that will process this data by training.
In addition, parallel processing of this huge data available in current graphical
processing units (GPU) has made a significant contribution to the development of
deep learning. This chapter explains the general components of convolutional neural
networks and autoencoders which are widely used in deep learning applications [77—
86]. The hyperspectral applications of these structures are also included in Section
3.4.

3.1. Convolutional Neural Networks (CNN)

Convolutional neural networks have a special place in image analysis because they
seamlessly combine the convolution-based feature extraction stage with the
following pattern recognition part. In visual object recognition, CNNs generally
provide high performance as a result of their high capability to represent the
neighborhood relations of the image. In their seminal article that laid the foundation
of the CNN framework, LeCun et al. published a multi-layered artificial neural
network called LeNet-5 for handwritten digit identification where CNN structure is
used to enable direct recognition of visual patterns from raw pixels [87].

Figure 8 shows the general architecture of CNNs. CNN's generally consist of the
convolution layer, where convolution is applied with different filters to extract
features from the image, the pooling layer where the resolution on these filters is
reduced, and fully connected layers for high-level reasoning [88], [89].

Convolution Layer Autoencoder Layer

o N ¥F I

Figure 8 General architecture of CNNs

This section introduces the main CNN components. The most commonly used layers
in CNN networks are the convolutional layer, pooling layer, dropout, and fully
connected layer. Detailed information about batch normalization and activation
functions are also presented in this section.
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3.1.1. Convolution Layer

The convolution layer, which is the characteristic component of a CNN, reveals the
neighborhood relations and spatial locality features on the image using different
filters. While the filters slide along the image, the image pixel values that lie under
the filter masks are multiplied with the values in the filter, and the resulting values
are added to yield the convolution.

The sample drawing for this process is given in Figure 9. A new image called
convolution attribute is obtained from the image on which the convolution layer is
applied. The method used to calculate the K value in the figure is given in the
expression (13). In the expression, K is the filter output, M is the location of the
coordinates of the filter on the image, and F is the filter.

—_ —
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Figure 9 Convolution layer example

K=Muy*Fan)+ Maz*Faz)+ (Mas *Fas)
+ (M) * Fon) + (M2 * Fo2) + (Mz3) * Fa,3)) (13)
+ (M) * Fany) + M@z * Faz) + (M@a) * Fas)

In addition to the filter size, there are stride and padding parameters used in
convolution operation. The stride parameter specifies how often the filter is shifted
while sliding over the image. The padding parameter expresses how and to what
extent the edge pixels will be extended. Each filter focuses on a different feature in
the image. By the use of filters, different versions of an image emphasizing different
aspects are obtained.

3.1.2. Fully Connected Layer

A fully connected network example is shown in Figure 10. The fully connected layer
is usually located after the feature extraction stage in convolutional neural networks.
This layer works on an input where each input is connected to all neurons. The fully
connected layer takes the feature maps as input and prepares them as the algorithm
output as a 1D array.
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Figure 10 Sample fully connected network
3.1.3. Pooling Layer

The pooling layer often follows the convolution layer on CNNSs. Its purpose is to sub-
sample the image given as input to invariance to local translation in order to reduce
the number of parameters and to make feature extractions with fewer parameters.
Processing speed can also be increased by reducing the size of the image. This
reduction is usually performed by processing the image with a square filter. There
are two main filters commonly used for these processes. One of them takes the
biggest value in the filter (Max Pooling), and the other takes its average value
(Average Pooling). With this process, the sub-sample of the image is obtained.

Figure 11 shows 2x2 max pooling applied to a 4x4 image. In this example, the stride
is selected as 2, and padding is not applied. The resulting image is shown in Figure
11 (b).

Max Pool with 2x2 filter

4 4 4 2

(a) (b)
Figure 11 Sample max-pooling process

3.1.4. Batch Normalization

Batch normalization (BN) is the normalization of deep neural network activation
function inputs in fully connected or evolutionary layers during training [90]. BN
allows higher learning rates to be used in training and more tolerance for random
initiation of network parameters. Experiments have been conducted to examine the
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effect of batch normalization on the learning rate by comparing gradients between
collectively normalized and non-normalized networks [91]. The gradients with
respect to comparable parameters turned out to be often larger in normalized
networks, and this difference is more significant at the lower layers of the network. It
has been reported that this increase in indifference allows for high learning rates.

BN is applied as a layer in the deep neural networks and normalizes the activations
of the previous layer. The mathematical formulation of BN is given in (14).
Expectation and variance are computed for (pre)activation vector X, where X is a n-
dimensional vector.

xi—E[xi]

BN(x; v,B) =B+ Om (14)

where y, f, and e are model parameters that determine the mean, standard deviation,
and the regularization parameters respectively [92].

3.1.5. Dropout Layer

The dropout layer changes the structure of the network. It has been proposed to
remedy the problem of memorizing data called overfitting. Different techniques,
such as regularization, try to overcome this problem by imposing restrictions on
parameters and/or changing the cost function.

Sample dropout usage is given in Figure 12. In Figure 12 (a) the dropout is not
applied to the network. The state after dropout is applied, as seen in Figure 12 (b).
An excessive number of neurons or connections often slows the process down and
may result in over-sensitivity to initial conditions. For example, a network with 50
hidden layers may have hundreds of thousands of weights. Such a large network
requires both a lot of learning data and memory [93]. The dropout function enables

the removal of unnecessary connections by randomly dropping units in the training
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Figure 12 Sample dropout effect on feed-forward network
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3.1.6. Activation Functions

The activation functions are often used to convert input signals to nonlinear output
signals to assist in learning higher-order polynomials for deep networks.
Differentiability is often a desirable property of nonlinear activation functions.

By taking the information coming to the layer, a linear activation determines the
output by computing the weighted sum of inputs and biases. The formulation for
linear activation function is

n
Vi = Z W]X] + bi (15)
j=1

where y; is the output of the ith node [94]. For nonlinear activation functions, the
formulation is

n
Vi = fl Z W]X] + bi (16)
j=1

where f;is the activation function.

There have been quite a few studies on activation functions. Commonly used
functions such as sigmoid, tanh, softmax, rectified linear unit will be examined in the
following section.

3.1.6.1. Sigmoid and Tanh

The sigmoid activation function, which is sometimes called the logistic function in
the literature, is a nonlinear activation function mostly used in feedforward neural
networks [94], [95]. The tanh function is more preferred in multi-layer neural
networks as it provides higher accuracy compared to the sigmoid function [96]. The
formulation for sigmoid and tanh activation functions [94] is given in (17).

1
fsigmoia(xi) = m
a7
e*i—e™¥i
frann (x;) = P

Figure 13 shows the responses for the Sigmoid and tanh activation functions. The
sigmoid function applies to each value of the vector given as input separately and
pulls them to a value between 0 and 1, while the hyperbolic tangent function (tanh)
maps the input between -1 and +1.
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Figure 13 Response for (a) Sigmoid Activation Function, (b) Tanh Activation Function

Logistics functions are used especially in problems involving more than one tag for
an input. This function allows the inputs to be expressed as a discrete probability
distribution. Softmax function, which is the generalized form of the logistics
function, is used in multi-class but single-label data sets. The limitations are that for
tanh and sigmoid, they are saturated because large values are assigned to 1, and small
values are assigned to -1 or O, respectively.

3.1.6.2. Rectified Linear Unit (ReLU)

To solve the limitation of tanh and sigmoid functions, a corrected linear unit (ReLU)
activation function is proposed by Nair and Hinton [97]. ReLU is reported as a
commonly used successful activation function [98]. By applying the Rectified
Linear Unit function to the output of the feature map, a non-linear feature is added to
the result. Although there are several functions occasionally offered to be used
instead of ReLU in the literature, ReLU remains as the most commonly used one
since the performance of other functions severely decreases when the dataset is
changed.

Figure 14 shows the response for ReLU activation function. The ReLU function F

(x) = max (0, x) returns O for values with x < 0 on each attribute value, and x for
values with x> 0.

RelU

-10 5 0 5 10

Figure 14 ReLU response
3.1.6.3. Softmax

Softmax, which is the last activation function examined in this section, is used to
obtain the posterior probabilities corresponding to the input [99]. To create these
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probabilities, it maps input values to the probabilities between 0 and 1, where the
sum of outputs of the softmax function is 1, in the output layer of the data. The
formulation of softmax function is given in (18).

flx) = 5.7 (18)

Sigmoid and tanh functions are used for binary classification, where the softmax
function is used for multiclass classification.

3.1. Autoencoders

Autoencoders are commonly used in deep learning applications and play an
important role in unsupervised learning [77]. There are different variations of
autoencoders in the literature, such as variational autoencoders(VAE), stacked
autoencoders, denoising autoencoders [100-103]. Figure 15 shows the basic
autoencoder architecture. Autoencoder is an unsupervised machine learning method
that learns to copy its input into its output. Autoencoders are one of the most popular
models in the deep learning area, usually consisting of two parts: Encoder and
Decoder. These two parts are trained together as if they are a single model during the
training phase. The difference between the input signal and the output signal is
calculated as the error. The generated code is obtained by taking the output of the
middle layer. This layer is called the bottleneck layer and is used to determine
abundance values when used for hyperspectral unmixing.
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Figure 15 Basic autoencoder architecture

Stacked autoencoders are used in areas such as feature extraction, dimensionality
reduction, denoising, image coloring, new data generation. However, traditional
applications of autoencoders are dimensionality reduction or feature extraction.
Autoencoders have recently been used mainly to learn the structure of the data. The
input layer and the output layer have the same number of neurons, and the hidden
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layer has fewer neurons. It attempts to minimize the difference between input and
output. Therefore, autoencoders are unsupervised learning models.

3.2. Descent Based Optimization Methods

Gradient descent is a first-order iterative optimization method to find the minimum
of a function. To approach the minimum point, steps proportional to the negative of
the gradient of the function at the current point are taken. Although there are various
descent-based methods used for deep learning, only the widely used stochastic
gradient descent, adaptive gradient, and adaptive movement estimation methods are
explained in this section.

Learning rate or step size is a positive scalar value that multiplies the gradient during
the iterations. The effect of the learning rate on the search for the optimum point is
shown in Figure 16. The case where the learning rate is selected small is shown in
Figure 16 (a), and the case where the learning rate is selected large in Figure 16 (b).
The learning rate is a critical parameter of the gradient descent methods. A low
learning rate may result in slow convergence, whereas too high learning rate may
delay convergence due to oscillations around the optimum. Techniques for optimal
learning rate selection have been proposed to remedy this problem [104-107].
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(a) (b)
Figure 16 Learning rate effect (a) low learning rate, (b) high learning rate
3.2.1. Stochastic Gradient Descent (SGD)

There are quite different variations of the Stochastic Gradient Descent(SGD)
algorithm, which has a significant impact on deep learning studies [108]. The
formulation of the SGD is given in (19),

Wiy = we — a.Vy, D(z, W) (19)

where D is cost function, a is step size V,, is gradient of the cost function D in each
iteration t, z, is randomly picked example and w is the weights. Although SGD
works faster than the previous gradient-based approaches, it is relatively slow
compared to the methods suggested after it, and it may converge to a local minimum.
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3.2.2. Adaptive Gradients (Adagrad)

Adagrad is a method that eliminates the problems arising from the constant learning
coefficient, one of the biggest problems in gradient descent methods, by updating the
learning rate at each step. Formulation of Adagrad is given as,

B oD
gt,l] - a Wt,ij
Gij = Xi=1(gei))? (20)
n
Wernij = Weij — e *Vy D(wy;))
ij

where D is cost function, o is step size V,, is gradient of the cost function D in
iteration t, n is learning rate, G is the sum of the squares of the gradients with respect
to w, , € is a small positive number to avoid division by zero and w;; comprises the
ij’ths weights. Adagrad provides faster convergence by using a different learning rate

for each parameter.
3.2.3. Adaptive Moment Estimation (Adam)

Adam is proposed for the first-order gradient-based optimization of stochastic
objective functions. It is based on adaptive estimates of low-order moments [109].
This method also changes the learning rate in every iteration, like Adagrad.

m;= fim_ +(1—B1)g:
v = v + (1= Br)gf

~ L
v, =
fT1-p
o
Wiy1 = We — me

where m, is estimate of the first moment and v, is estimate of the second moment of
the gradients. (3, is first momentum term and £, is second momentum term, generally
set to 0.9 and 0.999 respectively. g values are used to calculate h, and ©,which are
bias-corrected first and second moment, respectively.

3.3. Hyperspectral Unmixing with Deep Learning

Deep learning uses multilevel neural networks to achieve advances in various
applications, including image classification, video analysis, speech recognition, and
natural language learning. In recent years, studies have been carried out using deep
learning for hyperspectral unmixing.

Although the autoencoder was not used in the first studies [110-112] for
hyperspectral unmixing, the majority of the later studies [113-119] work with the
encoder structure. One of the first works that did not use encoder structure is A GPU-
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based algorithm presented by Jiménez et al. as a spatial-spectral preprocessing
method for hyperspectral unmixing [110]. In this study, the CPU-GPU differences
are examined, and the changes in basic algorithms in terms of time are shown. A
later algorithm that does not use the encoder structure and makes an abundance
estimation in a supervised manner is presented by Xu et al. [112]. The abundance
map was created using given spectral signatures using support vector regression
(SVR) [120], recurrent neural networks (RNN) [121], principal component analysis
network (PCANet) [122], and stacked autoencoders (SAEs) [123]. Another method
that uses a convolutional network instead of encoder infrastructure and performs
abundance estimation in a supervised manner is presented by Ozkan and Akar [111].

Although the layers used may differ in both encoder and decoder layers, the mainline
of networks used for hyperspectral unmixing is as in Figure 17. Methods for
hyperspectral unmixing have gained momentum with the success of the methods
using this structure. The input parts of the models may have convolutional or fully
connected layers, but the last layers of the algorithms that assume the data with
LMM generally have this structure for the last parts. One of the first studies for
endmember extraction and abundance estimation is proposed by Yuanchao et al.
[114]. Their algorithm has two main steps. In the first stage, a non-negative sparse
autoencoder is used to detect endmembers, and then abundance is determined by
taking input from an endmember extraction method. Later, similar to a simple
autoencoder structure, a 3-layer network using denoising autoencoder for the solution
of endmember and abundance estimation problem was presented by Qu, Guo, and Qi
[117].

Decoder
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(Endmembers)

Enc?der \\\ Decoder
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Encoder

Outputs
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Figure 17 Simple autoencoder based hyperspectral unmixing scheme

More than one non-negative sparse autoencoder is used by Su et al. [113]. This study
uses a very similar structure to the encoder-decoder structure given in Figure 17. The
main reason for using more than one autoencoder is given as outlier detection. The
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algorithm performs outlier detection by applying a threshold with the mean and
standard deviations of the spectral signals reconstructed in the last two autoencoders.
Pallson et al. has made performance comparisons of autoencoders with different cost
functions [124]. In this study, detailed information about autoencoder structure and
parameters is given, and it is assumed that the hyperspectral data follows the linear
mixing model. Another hyperspectral unmixing method presented for linear mixing
is the sparsity-constrained deep NMF with total variation (SDNMF-TV) algorithm
[125], which uses the Nonnegative Matrix Factorization (NMF) [126].

As mentioned before, different structures can take place in front of the encoder
structure. Similarly, a convolutional-based structure has been presented by Zhang et
al. [118]. Both pixel-based and cube-based convolutional neural networks are used in
this method. The root-mean-square of the abundance angle distance (rmsAAD) is
used as the cost function. Stacked nonnegative sparse autoencoders (NNSAEs)
offered by Su et al. use more than one NNSAE to eliminate outliers in the data and
then estimate abundance [113]. Root mean squared error (RMSE), root error (RE),
and spectral angle distance (SAD) are used as cost functions in the algorithm.
Another algorithm using both SAE and VAE is the deep autoencoder network
(DAEN) [115]. This algorithm was also created with the assumption of LMM. First,
spectral signatures are learned using SAEs, and endmember estimation is performed.
Later, with VAE-NMF, these signatures are used for abundance estimation. Unlike
other algorithms, the unmixing algorithm presented by Yan et al. first moved the data
to the wavelet domain and then used an autoencoder for endmember extraction and
abundance estimation [119]. Other methods using convolutional neural networks are
Deep Convolutional Autoencoder Network (DCAE) [127] and the convolutional
neural network autoencoder unmixing (CNNAEU) algorithm [128]. DCAE and
CNNAEU methods perform hyperspectral unmixing using 1D convolutional neural
networks on the spectral axis. The deep spectral convolution network (DSCN ++)
algorithm [129] presented by Ozkan and Akar also uses 1D convolutional neural
networks. In the study, spectral diversity, which is the case of different spectral
signatures of pure pixels belonging to the same material in the data, is mentioned and
the problems that may occur on the real data are given.

Deep learning methods, which have been widely used in recent years, stand out
successfully. Although there are models using convolution, we have not encountered
any publication that performs hyperspectral decomposition with 3D convolutional
encoder structure. In addition, although there are methods recommended for
nonlinear approaches, a model using endmember information has not been
encountered. Therefore, a model that performs nonlinear hyperspectral unmixing
with 3D convolutional encoder structure is proposed.
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CHAPTER 4

EXPERIMENTAL SETUP AND DATASET

In this section, the data sets used to test the performance of the proposed methods are
explained. Jasper Ridge and Samson Ridge data sets, which are frequently used for
algorithms in hyperspectral unmixing in the literature, are used for experiments with
real data. Detailed explanations are found by creating synthetic data that is as diverse
as possible for hyperspectral abundance estimation and data created by taking into
account the spatial information in order to test the model created with a 3D
convolutional network. In addition, detailed information is given about the distance
metrics used in the algorithm and used in performance comparisons.

4.1. Datasets Used in Experiment

Experiments are performed on both the synthetic data and the real data to evaluate
the proposed approaches. Among the proposed methods, the pixel-based abundance
estimation method does not use spatial information. It is thought that it would be
better to include as many abundance values as possible by using various endmembers
in this synthetic data created without using spatial information. On the other hand,
the hyperspectral unmixing model using a 3D convolutional neural network involves
the use of spatial information. For this reason, synthetic data created to test the
performance of the deep learning method should be produced by taking the spatial
information into consideration. For these reasons, two different synthetic data sets
are created for two different methods. In order to make synthetic hyperspectral data
realistic, it is planned to create synthetic data as close to real data as possible by
using spectral signals from hyperspectral libraries.

Therefore, in this study, spectral signatures are randomly selected from the spectral
library provided by the U.S. Geological Survey (USGS) [130]. These spectral
signatures are in the range of 400-2400nm and include 224 bands.

4.1.1. Synthetic data generation for abundance estimation

Figure 18 shows randomly selected endmembers for the three endmembers from the
USGS database. The first synthetic data is created for the abundance estimation
algorithm and consists of 50x150 pixels. The experiments are performed using
different endmembers between three and six. Three different frames are created with
three different mixing models with dimensions of 50x50. The first of these frames is
generated with LMM, the second with FM, and the last one with PPNM. For
example, equation (T) shows an example for the synthetic data generation with 3
endmembers.

14 p p
s = Zarer+b22aiajei6ej+n
r=1

i=1 j=1
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Figure 18 Examples for the selected spectral signatures from the hyperspectral library

A sample ground truth is shown in Figure 19 (a), (b), and (c) for the abundance
maps, where the number of endmembers is selected as 3.
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Figure 19 A sample Ground Truth for synthetic data for the abundances of three different endmembers
utilized for synthetic data generation (a) abundance map for the first endmember, (b) abundance map
for the second endmember, and (c) abundance map for the third endmember

Signal to noise ratio (SNR) is used to determine the given noise levels. The
formulation of noise is given as

Powersignal,dB =10 log1o (Powersignal)

Powernoise,dB = Powersignal/ 105NR/10 (22)

SNRdB =10 loglo (

Powersignal,dB)
Powernoise,dB
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Experiments are conducted with three different cases as a noiseless, medium, and
high noise levels, which can be seen in Figure 19. Noise added to a sample spectral
signature is shown in Figure 20. The noise levels in the studies are determined as
40db for medium noise and 10db for high-level noise. It is thought that testing the
experiments in high and low noise is important to see the effect of the algorithm on
noise performance. Therefore, SNR values are chosen as these values.

| 5

(@) (b)
Figure 20 Noise levels on spectral signature (a) 40db Noise (b) 10db Noise

4.1.2. Synthetic data generation for deep learning

The deep learning model also benefits from the information brought by the spatial
information, unlike models that make blind unmix, using 3D convolutional filters.
Therefore, in order to test this model, it is necessary to generate the abundance
values by using spatial information instead of generating with random abundance
values as in the abundance method. Four different endmembers are used for synthetic
data generated using spatial information.
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Figure 21 Spectral signature of the selected endmembers for deep learning method
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The selected endmembers for these experiments are shown in Figure 21. With these
endmembers, 16 frames consisting of 25x25 pixels are created. Random mixing
model are chosen for each frame. The mixing models chosen for this data are
determined as LMM, FM and PPNM with random b values for one frame. The main
reason for this is the assumption that reflections within a segment can be varied, as
can be in real data. The abundance maps consisting of these 25 pieces combined are
shown in Figure 22. Different abundance values are used for each material in each
frame to increase diversity.

(@) (b) |
Figure 22 Abundance maps for synthetic data. (a) Abundance map for endmember 1, (b)

Abundance map for endmember 2, (c) Abundance map for endmember 3 and (d)
Abundance map for endmember 4

4.1.3. Utilized real data for experiments

Two different hyperspectral datasets, which are widely used in the literature to
measure hyperspectral unmixing and abundance estimation performance, are used in
this study. RGB images and ground truth information of these data are shown in
Figure 23. The first set, Samson Ridge, consists of 156 bands covering 400 nm to
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900 nm. There are three kinds of materials in the data, namely soil, tree, and water,
shown in Figure 23 (b), Figure 23 (c), Figure 23 (d). The second set, Jasper Ridge,
consists of 224 bands covering 380 nm to 2400 nm. Due to dense water vapor and
atmospheric effects, the channels with the number from 1-5, 108-112,154-166, and
220-224 are removed, and the remaining 196 bands are used. This data includes four
different materials, which are Tree (Figure 23-f), Water (Figure 23-g), Soil (Figure
23-h), and Road (Figure 23-i). A more detailed description of these datasets can be
found in [131].

Figure 23 RGB image of Samson Ridge (a), Ground truth classes (b) Soil, (c) Tree and (d) Water and
RGB image of Jasper Ridge (e) and Ground Truth Classes (f) Tree, (g) Water, (h) Soil and (i) Road

4.2. Distance Metrics

This section describes the distance metrics widely used in the literature and used in
the later parts of the study. These metrics are mean absolute error, mean square error,
root mean square error, spectral angle mapper, and spectral information divergence.
The expressions of these methods are given as follows. In these expressions, X, is

calculated value, x,, is the target value, and P is the number of bands.

L1-Norm

L1-norm, also known as the Manhattan distance, is calculated as the absolute
difference of two vectors. L1-Norm is given in the expression (23).

P
Distance,,(%,, x,) = Z | (% —x) | (23)
i=1

L1-Norm has been used both to determine the error value in the optimization process
in detecting the abundance and as a cost function in the deep learning algorithm.

L2-Norm

The L2 norm, also known as the Euclidian norm, is given as the square root of the
sum of squares error between two vectors. L2-norm is used to determine the error
value in the optimization process. The expression for L2-norm is given in (24).
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Distance,, (?cp, xp) = (24)

P
Z(i'i - x;)?
=1

Mean Absolute Error (MAE)

The expression of mean absolute error (MAE) is given in (25). MAE is used as a cost
function in deep learning.

P
1
Mean Absolute Error(MAE) = FZH’J@- — x| (25)

i=1
Mean Squared Error (MSE)
The expression of mean squared error (MSE) is given in (26). MSE is used as a cost

function in deep learning. It is also used to measure the difference between the
abundance values predicted in performance evaluation and the ground truth values.

P
1
Mean Squared Error = FZ(&- —x;)? (26)
i=1

Root Mean Square Error (RMSE)

The expression of root means squared error is given in (27). RMSE is used to
measure the difference between the abundance values predicted in performance
evaluation and the ground truth values.

P
1
Root Mean Square Error = FZ(QL- — x;)? (27)
i=1

Spectral Angle Mapper (SAM)

Spectral angle mapper (SAM), presented by Kruse et al. [132], obtains the angle
between two different spectrums in terms of radians. Its formulation is given as

N —~
SAM = lz arccos <M> (28)
N L EAREA

In the expression N is the number of the pixels. SAM is a widely used distance
measurement method in hyperspectral image processing. It is a very common
problem that the spectral signatures of the same material are at different levels due to
the light differences. Even if SAM spectral signatures have different reflectance
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values, they are quite successful in determining the similarities compared to other
distance measurement methods.

Spectral Information Divergence (SID)

The SID algorithm was presented by Chang to measure the spectral similarity
between two spectra of pixels [133]. The formulation of SID is given as

zz () 3 anos ;)

Xin
M = °
Yr=1%ik

(29)

where, p, = and q, =

Zk 1Xik
In these equations, N equals the number of pixels in the data. SID also works
successfully in determining the similarities of spectral signatures such as SAM from
methods that are calculated directly with the difference between spectral signatures
such as MSE, L1-Norm, and L2-Norm. Therefore, these methods are expected to be
less affected by spectral signature changes due to light changes on real data.
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CHAPTER 5

PROPOSED COARSE TO FINE ABUNDANCE ESTIMATION FOR
HIGHLY MIXED HYPERSPECTRAL DATA

Hyperspectral data can be formed with more than one mixing model due to its nature.
While the incident light from some pixels can be directly reflected in the scene, the
reflected light from some other pixels can be formed with the interactions between
different layers and materials. Mixing models presented as a solution for such
problems in the literature are generally based on a single model assumption.
Although these algorithms provide high performance in synthetic data created with
their own assumptions, they cannot provide the same performance in real data.
Therefore, it is necessary to use more than one model mixing to unmix real data.

In this section, an optimization-based algorithm has been developed that can be used
in the case of multiple mixing scenarios. Multi-model minimization methods can be
implemented in two different ways. The first way is to minimize each model
separately and then choose the minimum among the models. The second is to define
the cost function to take the minimum of all models in each iteration. The model
presented in this section determines the abundance with the multi-mixing model in a
single optimization process. The application of multiple models in a single
optimization process can cause high costs due to parameter redundancy. With the
coarse to fine approach, this cost is reduced as much as possible, at least until a
certain convergence.

5.1. Proposed Method

The optimization problem for the abundance estimation can be described as finding
the abundance values for endmembers, which minimizes a distance metric D
between the estimated pixel and the target pixel. Such an optimization problem is
given as,

a, = arg min (D(s, t)) (30)

where a, is an element of RP is the optimal abundance vector, t is the actual spectral
signature of the target pixel, and s is the estimated spectral signature of the target
pixel. Given a mixture model M as described with one of the models in (1), (3), (6),
(7) or (8), the optimization problem can be further expressed as,

a, = argmin (D(M(a,E),t)) (€}))

where a are the abundances and E is a matrix of size Lxp, which is composed of
corresponding endmembers, E=[ey,e>, ....,ep].

Such a problem is solved with different algorithms in the unmixing literature. In this

41



section, these algorithms, namely sequential quadratic programming [50-52], pattern
search [53], [54], genetic algorithms [55-58] and simulated annealing [59-61], are
briefly described. While SQP, GA, and SA are previously used in existing studies,
PS is newly adapted to the abundance estimation problem.

Hyperspectral data can be formed with more than one mixing model due to its nature.
While the incident light from some pixels can be directly reflected in the scene, the
reflected light from some other pixels can be formed with the interactions between
different layers and materials. Therefore, for each pixel, an optimization-based
algorithm, which can be used in the case of a multi-mixing scenario, has been
developed in this section. The main underlying idea for such a solution is the blind
abundance estimation according to the multiple mixture models with the assumption
that there might be pixels with more than one mixture model within the image. In
such a multi mixture model, the problem of abundance estimation can be redefined
as the minimization of the cost function,

/D(Ml(a, E),b),\ )
D(M,(a,E),t), | ¥

(
|

a, = argmin 4min| (32)
|

' \D(Mn(éz, E),©) / J

where M1, M2, and M, represent different mixing models to sufficiently address
different interactions inside and between the materials in the investigated scene.

The first analysis in such a redefined optimization problem is to investigate the
behavior of the cost function for each mixing model as a function of abundances.
Figure 24 illustrates a simple example for this purpose over two endmembers. The
SAM metric is utilized as the distance between the generated pixel spectrum with
two endmembers by using a selected mixing model and the reconstructed pixel with
respect to the different abundances by using one of the three mentioned models. The
cost function defined as the minimum of the three costs for three mixing models in
(12) is also plotted with a dashed line in the figure as a function of abundance, a.
Note that the abundance for the other endmember is (1-a) for the case of two
endmembers, and therefore, the graphs are one-dimensional.

0.12

SAM Distance

bundance of First Endmember

LMM e\ PPNM  ssesas Minimum

Figure 24 An example for the change of SAM distance as a function of abundance value for two
different endmembers
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Figure 25 Flowchart of the proposed coarse to fine methodology for abundance estimation

As the first observation in Figure 24, the minima for all the mixing models are at
different locations. Second, the cost function, defined as the minimum of the three
mixing models and shown with the dashed line, indicates three local minima with
convex characteristics, which makes the gradient descent based global search
algorithms infeasible for such a problem. As the final observation, the minima for all
the mixing models occur in the vicinity of each other. This implies that the search
can be done for one model until the abundance estimate reaches a predefined vicinity
and then continues to the minimum of all mixture models. Considering that the LMM
model is the baseline coarse component in the given mixing models in Section II.A,
the threshold to define such a vicinity is experimentally selected as 0.1 in terms of
the SAM distance and the cost function is redefined as,

arg min (D( M,(a,E),t)), D(M,(a,E),t) > th

D( Ml(ai E), t):
/D(Mz(a,E), t):

| | (33)
argmin | ' | D(M,(a,E),t) <th
a .

\D(Mn(.a, E), t)/

Instead of updating all models simultaneously, it is also possible to run minimization
for every model individually. We observed the proposed approach in (13) provides
advantages in terms of complexity. In this study, we selected the number of mixing
models as three and determined these models as FM, LMM, and PPNM, as we found
these models sufficient to describe possible reflections in real data. More
specifically, the three models are defined as in (1), (6), and (8), respectively.

Given these observations, the proposed coarse to fine abundance estimation method
first takes the target pixel spectra and the endmembers in the scene as inputs and
continues with the following main stages in accordance with Figure 25:
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e For a given hyperspectral pixel, the abundance values are initialized and
updated with respect to the given cost function in (33) with the selected
optimization algorithm.

e For each iteration of the optimization algorithm, the spectrum for the given
pixel is reconstructed according to LMM with the estimated abundance values
and the given endmembers, and the distance between the pixel spectrum and
the reconstructed spectrum is computed.

e |If the computed distance is higher than the threshold, the optimization
algorithm continues to the next iteration.

e If the distance is smaller than the threshold, then the algorithm also computes
the distances for FM and PPNM and selects the minimum distance from all
mixture models, and then continues to the next iteration with the new
abundance values.

e The algorithm terminates when the distance is sufficiently small or the
maximum number of iterations is reached.

The distance, D, between the pixel spectrum and the reconstructed spectrum is
selected as L1-Norm, L2-Norm, and SAM distance for the experiments. The L1-
Norm, L2-Norm, and SAM distances. The effect of the thresholding is particularly
investigated for the SAM distance by both implementing the proposed method with
the given cost functions in (32) and (33). The thresholding in the cost function is not
applied for L1-Norm, and L2-Norm distances as the threshold indicate high
variability in these distances. In Section V, the results of the experiments with
different optimization algorithms are presented and compared both for synthetic and
real data.

5.2. Experimental Results and Discussion

Considering the different aspects of the proposed abundance estimation method, such
as the utilized mixing model, optimization algorithm, distance metrics and design
parameters in all the mentioned cases, the experiments are organized as follows for a
more compact presentation:

e First, the effects of the design parameters in the utilized optimization algorithms,
namely, SA, PS, SQP, and GA, to the estimation performances are analyzed in
Section V. B. Based on this analysis, the design parameters for a practical
implementation and a fair comparison are selected in this subsection.

e Afterward, the effect of distance metrics, namely L2-norm, L1-norm, and SAM
on the algorithm performances for abundance estimation are examined in
Section V. B.

e As the baseline comparison, the proposed coarse to fine approach based on multi
mixture model is compared with the direct search in Section V. C.

e In the next subsection, the performances of the proposed coarse to fine approach
with different optimization algorithms are investigated. The ultimate method
with the selected optimization algorithm is revealed.

e In Section V. E, the comparison of the proposed coarse to fine approach is
compared with the baseline methods in the literature.

e Finally, in Section V. F, the performance of the proposed method on real data is
presented.
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The experiments in all the sections are performed over five realizations by randomly
generating five different hyperspectral data cubes with different endmember sets and
estimation is presented as the average performance of all pixels over five different
realizations.

5.2.1. Selection of Design Parameters

As the performance of the algorithms varies considerably with the design parameters,
the first tests are performed to determine the optimized parameters for different
optimization methods. In particular, while the tests on SQP, SA, and PS are
conducted by changing the number of iterations, the design parameters for the GA
are selected as generation and population size.
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Figure 26 (a) Change of error rates of SA, PS and SQP algorithms for different iteration numbers (b)
Average abundance estimation time per pixel changes of SA, PS and SQP algorithms for three
different endmembers with respect to iteration number

Figure 26 (a) illustrates the performances in terms of RMSE with respect to the
number of iterations for the proposed SA, PS, and SQP based coarse to fine
algorithms. It should be noted that the duration in Figure 26 is given for three
endmembers and can vary with the number of endmembers and noise. PS and SQP
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algorithms are observed to converge to the best RMSE after 100 iterations. On the
other hand, the SA algorithm does not indicate any significant improvement after
1000 iterations. Figure 26 gives the duration of the algorithms with respect to the
number of iterations. SA algorithm, which continues its performance improvement
up to 1000 iterations as observed in Figure 26, shifts to the fine search by decreasing
the damping coefficient after 1000 iterations. Then, it continues to fine search up to
5000 iterations and terminates the algorithm as there is no improvement afterward.
Accordingly, the duration of the SA algorithm significantly increases after 500
iterations as it shifts to the fine search at those levels, as observed in Figure 26 (b).
As a result of the experiments, the number of iterations is selected as 10.000 for fair
performance evaluation. The performance differences observed in Figure 26 will be
interpreted in the following sections with respect to the optimization algorithm.
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Figure 27 (a) RMSE of GA with respect to population and generation size (b) Detection time per
pixel change with respect to population and generation size for GA

Figure 27 () illustrates the changes in RMSE values for the genetic algorithm
concerning the population and generation size. As the population size increases, there
is a significant decrease in the RMSE values until the population size of 500.
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However, the performance for the population size of 1000 is approximately in the
same range as the case of 500. On the other hand, the performance for the generation
size of 10 is significantly different than the other sizes of 50, 100, 500, and 1000.

Figure 27 (b) gives the durations for GA according to population and generation
sizes. The duration of the algorithm has been observed to increase geometrically
depending on both the population and generation sizes. As the duration of the
average population can take up to 15 seconds per pixel, the usage of the GA seems
not very tolerable for practical applications. However, the performance of the GA is
also compared with the other algorithms for the sake of completeness. Given the
performances in Figure 27, both the population and generation sizes are selected as
500 in the experiments.
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Figure 28 Comparison of GA, SA, PS, and SQP algorithms with SAM, L1 and L2-Norm as RMSE
5.2.2. Selection of Distance Metric

The distance metrics utilized as the cost function in the proposed optimization
algorithms are the other aspect of the comparisons in the experiments. In accordance
with the common literature, these metrics are selected as L1-Norm, L2-Norm, and
SAM in the experiments, while fixing the parameters for each optimization method
as given in the previous section.

Table 1 Durations of distance metrics for GA, SA, PS, and SQP algorithms
SAM L1-Norm L2-Norm

GA | 1587 20,46 20,86
SA | 06l 0,68 0,72
PS | 003 0,04 0,05
sap | 001 0,02 0,01

Figure 28 indicates the performances in terms of the RMSE between the estimated
and original abundances for each of the metric and optimization methods. While L1-
Norm reveals better performances for the PS algorithm, the superiority of SAM is
quite distinguishable for the other optimization methods, including GA and SQP. The
reason that the SAM metric works well in other optimization algorithms can be
explained by the fact that SAM shows an observable change in small abundance
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changes. However, due to the algorithm structure, a different result is obtained
because GA approaches all possibilities equally in the early stages. Because of its
better performance, the SAM metric is selected as the distance metric of the
proposed optimization algorithms in the rest of the experiments. As also illustrated in
Table 1, SAM also provides shorter durations for the implementation among three
distance metrics.
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Figure 29 Comparison of coarse to fine and direct searches
5.2.3. Comparison of the Coarse to Fine and Direct Searches

The third experiment is the validation of the proposed coarse to fine search with the
direct search, where the minimum is defined as the minimum of all models described
in (12). Figure 29 illustrates the performances of both approaches for different
optimization methods. The coarse to fine method improves the performances with
the same parameters compared to the direct approach for the GA algorithm. On the
other hand, the performances of the two approaches are almost at the same level for
SA, PS, and SQP algorithms.

The use of coarse to fine method, on the other hand, provides significant advantages
compared to the direct search in terms of complexity. Table 2 gives the average time
for the estimation of abundances for one pixel for the compared four methods. While
the time reduction is about 10 % for SA, it is about 28 %, 40 %, and 50 % for SA,
PS, and SQP, respectively. While the GA gives the minimum results in the
experiments, as indicated Table 2, its duration is quite high, which makes its
practical usage infeasible.

Table 2 Duration of the optimization algorithms per pixel (in seconds) for coarse to fine and direct

searches
COARSE TO FINE DIRECT SEARCH
APPROACH APPROACH
GA \ 15,87 21,62
SA \ 0,61 0,68
PS \ 0,03 0,05
SQP \ 0,01 0,02

48



5.24. Coarse to Fine Approaches with Different Number of
Endmembers

Given the distance metric of SAM and the selected coarse to fine approach, the
fourth aspect of the experiments is to compare the performances with respect to
different optimization algorithms. Figure 30 gives the results of the optimization
algorithm for different numbers of endmembers. It can be seen that the SQP
algorithm is least affected by the number of endmembers, and its performance is
comparable to that of the GA algorithm with three endmembers.
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SQP mGA mSA mPS

Figure 30 Comparison of optimization algorithms for different numbers of endmembers

It is observed that the algorithm, which indicates the most decreasing performance
according to the number of the endmembers, is GA in the performed algorithms. This
performance can still be improved by accordingly increasing the population and
generation sizes in the GA algorithm. However, this increase comes with the expense
of impractical implementation durations, as discussed in Section C. On the other
hand, SQP is found to be quite successful in all number of endmembers among all
the optimization methods. While the performances of the SA and PS algorithms for
unconstrained optimization problems are quite validated in the literature [134], their
performance for the case of constrained optimization for the handled abundance
estimation problem is not as good as the SQP, which is specially tailored as a
constrained optimization problem. Due to the mentioned performances, the SQP
algorithm is further selected in the rest of the experiments.

Figure 33 illustrates an example over synthetic data for the estimated abundances
along with the ground truths for the ultimate coarse to fine algorithm with SQP. Note
that the synthetic data is generated as explained in Section IV, where the number of
endmembers is selected as 3. The estimated abundances compared with the ground
truth are quite similar for all of the endmembers, resulting in average error, which is
smaller than 0.02 per pixel.
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Figure 31 Sample ground truth and results for SQP for synthetic data (a-c-e the ground truths for

endmemberl, endmember2 and endmember3 respectively, b-d-f the results for corresponding
endmembers )

5.2.5. Comparison of the Proposed Method with the Baseline Methods
in the Literature

The methods of LMM, GBM, MLM, and PPNM are widely used in the literature for
abundance estimation. Note that the mentioned abbreviations correspond to the
proposed solutions in the mentioned references [17], [20], [23], [24] rather than the
mixture model in this section in accordance with the convention in the literature.
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Figure 32 The comparison of the proposed method with the state of the art algorithms for different
endmembers
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The comparisons of these methods with the proposed approach are illustrated in
Figure 32 for the generated synthetic data with a different number of endmembers.
The most successful algorithm among the compared methods is found as PPNM.
However, the proposed SAM and SQP based coarse to fine approach gives
significantly smaller RMSE values for all the endmembers compared to the PPNM.

The given results are extended for the case of additive noise in Figure 33. The noise
is added to the pixel spectra for two different levels of 10 dB and 40 dB, representing
an average and extreme case. As expected, the increase in noise inversely affects the
performance of the algorithms. It has been observed that the performance of the
MLM algorithm is more affected by noise than other algorithms. As in the noiseless
situation given in Figure 33, the increase in the number of endmembers negatively
affects the performance. On the other hand, the method which is least affected by the
noise is observed to be the FM. The proposed algorithm shows the best performance
among the compared methods for both noise levels.
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Figure 33 Noise effects on the algorithms. Results for 40db and 10db noisy data with
different endmembers

As an example, Figure 33 indicates the spectra of a sample pixel, its noisy versions,
and the constructed pixel spectra with the proposed approach. The reconstructed
signal depicted in gray almost completely overlaps with the original signal in orange,
even at high noise levels.
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Table 3 Performance of the algorithms for the data with different mixing models (LMM, FM and
PPNM)

Data with LMM Data with Fan Model Data with PPNM
3EMs 4EMs 5EMs 6 EMs 3EMs 4EMs 5EMs 6 EMs 3EMs 4EMs 5EMs 6 EMs
LMM 0,000 0,000 0,000 0,000 0,116 0,121 0,177 0,200 0,235 0,240 0,262 0,299
MLM 0,000 0,000 0,000 0,000 0,065 0,079 0,121 0,132 0,145 0,155 0,215 0,249
GBM 0,000 0,000 0,000 0,000 0,009 0,007 0,008 0,006 0,187 0,145 0,191 0,222
M 0,098 0,100 0,135 0,144 0,002 0,000 0,000 0,002 0,139 0,137 0,149 0,159
PPNM 0,011 0,012 0,015 0,023 0,033 0,043 0,045 0,067 0,001 0,007 0,017 0,032
Proposed SQP| 0,002 0,004 0,009 0,016 0,021 0,021 0,025 0,029 0,005 0,009 0,011 0,017

While previous results are cumulatively given over highly mixed data containing
three different models, Table 3 shows the results separately generated with only one
model, as another aspect of the comparison. For instance, the presented results on the
left side of the table show the performance of the proposed and baseline methods for
the data generated with only LMM. It has been observed that LMM and GBM
algorithms are very successful in synthetic data created with LMM. Although PPNM
and the proposed algorithm also give low error rates, LMM and GBM are observed
to be more successful in the data created with LMM.

As a second case where the data is generated with the Fan model, the performance of
other algorithms is decreased, and the FM has outperformed. It is also observed that
GBM has also achieved successful results on this data. Finally, PPNM and the
proposed algorithm have been observed to outperform the other algorithms on
synthetic data created with PPNM, as expected. However, the performances of the
algorithms decrease when pixels with different mixing models exist in the utilized
data. In addition, it is observed that the performances of the algorithms generally
decrease with the increase in the number of endmembers.
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Real Data Results
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Figure 34 Abundance estimation error for Samson Ridge and Jasper Ridge data sets

As expected, the overall results reveal better performances when the utilized
algorithm have the same mixing model with the generated data or covers the mixing
model that can be obtained with parameter changes. For instance, the performance of
GBM s satisfactory for data generated with LMM, as GBM turns into LMM when
the coefficient for the inner product is set to 0 in (7). The experiments highlight that
an algorithm based only one mixing model can fail when the actual mixing model of
the data is different.

5.2.6. Comparisons with the Baseline Literature on Real Data

As the final experiment, Figure 34 shows the performance of the algorithms on the
real data: Samson Ridge, and Jasper Ridge. All algorithms, which are operating quite
smoothly on synthetic data, reveal decreased performances on real data. The MLM
algorithm’s performance, on the other hand, is relatively better on real data compared
to other algorithms in the literature. The performance of the proposed algorithm is
found to be quite successful among all the algorithms due to its searching
methodology for all the possible mixing models and the utilized distance metric.

Figure 35 and Figure 36 shows the output of the SQP algorithm for Jasper Ridge and
Samson Ridge data. It is seen that the obtained results are quite similar to the ground
truths for both images. When the results are analyzed in detail, it is also observed
that, in addition to the use of multiple mixing models, selecting the distance unit as
SAM significantly increases the performance. Note that the pixels with LMM, FM,
and PPNM are coded with black, gray, and white colors, respectively. In comparison
with the presented RGB images, the PPNM model is more common in trees and
water regions, where the incident light is more likely to be reflected after the
interactions with different layers. The LMM model is mostly seen in soil, rocks, and
asphalt regions where the materials are mostly uniform and not expected to reflect
with each other.

Finally, the FM model is seen more frequently in sloping areas or inclined regions

conforming to the assumption that the material does not interact on its own. The
proposed method in fact achieves to catch the variations in real scenes with its multi
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mixture model based coarse to fine approach. In addition, the use of the SAM metric
could successfully compensate for the light changes, which can frequently occur in
real scenes.
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Figure 35 The results for Jasper Ridge and Samson Ridge. (a), (b) and (c) are the ground truths for the
abundances for soil, tree and water, respectively and (d), (e) and (f) are the estimated abundances with
the proposed algorithm for Samson Ridge data. (g),(h),(i) and (j) are the ground truths for the
abundances for tree, water, soil and road, respectively, and (k), (I),(m) and (n) are the estimated
abundances with the proposed algorithm for Jasper Ridge data

(n)
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Figure 36 Displaying the models of the results obtained with the proposed algorithm on the basis of
pixels LMM(Black), FM(Grey), PPNM(White) (a-Model estimation results for Samson Ridge, b-
RGB image of Samson Ridge, c- Model estimation results of Jasper Ridge and d-RGB image of
Jasper Ridge data
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CHAPTER 6

PROPOSED NONLINEAR UNMIXING WITH 3D CONVOLUTIONAL
ENCODER (3DCE)

This chapter presents a 3D convolutional encoder (3DCE) based hyperspectral
unmixing algorithm. The use of the autoencoder structure has been observed in the
deep learning-based unmixing algorithms that are widely used recently. Although
this structure is successful in extracting the features in the data, it does not contain
spatial information. Accordingly, 3D convolutional networks using neighborhood
information together with spectral information is considered as an effective means to
improve unmixing performance. In addition, observing that the related algorithms in
the literature are generally tailored for LMM without taking more complex
interactions in real data that can be modeled with nonlinear mixtures, a nonlinear part
is integrated to 3D convolutional encoder structure to include such interactions in
real data.

The chapter first examines the effect of optimization algorithms on the proposed 3D
convolutional encoder based hyperspectral unmixing model. The parameters of the
optimization algorithms are decided with respect to the performance changes of the
examined model. The optimization algorithms are chosen as Adam, SGD, and
Adagrad due to their high acceptance in the literature [116-124]. The performances
of different distance units with these optimization algorithms are also investigated.
Moreover, the experiments are conducted with different learning rates and batch
sizes with different optimization methods and distance units. The comparisons of the
presented model with the baseline algorithms in the literature are also given in this
chapter.

6.1. Proposed 3D Convolutional Encoder Based Hyperspectral Unmixing

Conventional hyperspectral unmixing methods generally focus on a single problem,
such as endmember estimation or abundance estimation. The performance of the
algorithms for abundance estimation generally varies according to the endmember
estimation performance. Deep learning-based hyperspectral unmixing methods have
been proposed as an alternative to endmember estimation and abundance estimation
methods [107-116],[121-124]. These methods can solve these two problems
simultaneously. However, it has been observed that existing methods especially
neglect spatial neighboring. In this context, a 3D convolutional encoder based
method has been proposed for the use of spectral information together with spatial
information. In addition, a nonlinear part has been added for the unmixing of
nonlinear mixtures with better performance, which has an important place in the
hyperspectral unmixing with real data.

The proposed model consists of three main parts. The first part illustrated in Figure
37 is the convolution part. This layer consists of three different 3D convolution
layers and a flatten layer. 3D convolutional filters are used in 3 dimensions to contain
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both spectral and spatial information in the process. In the figure, P is the input
channel of the hyperspectral data, which corresponds to the number of spectral bands
in the hyperspectral image. L1, L2, and L3 are the spectral dimensions of 3D
convolution filters. The output of this part is a flatten layer formed of 1D vectors,

which has been converted from 3D inputs. These 1D vectors enter the next part as
input.
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Figure 37 The convolution part of the proposed 3DCE model

The X, y, z parameters in the description of the filters correspond to the spatial
coordinates in x and y directions and the spectral coordinate in the third z dimension.
For a data with 220 spectral bands, an example for the application of a 3D
convolution is given in Figure 38. The first filter set of size 2x2x21 is applied to the
first patch of size 3x3x220 with different weights as the number of filters. The filter
size is defined as 21 for this filter. As a result, a 2x2x200x21 size feature map is
obtained. Then a second filter set of 2x2x11 size is applied on this feature map. The
number of filters for this filter set is set to 11. As a result, after this filter, another
1x1x190x11 size feature map is obtained. The last filter is 1x1X7 in size and consists
of 7 filters. As a result of this process, a 1x1x183x7 feature map is obtained. The
flatten layer returns the last feature map into a one-dimensional vector. As a result,
an output of 1288x1 for this example is obtained. This output is given as input to the
autoencoder part. Convolution filters are used to extract low and high level features
in the image in each layer.
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Conv Feature Conv Feature Conv Feature
Filter 1 Map 1 Filter 2 Map 2 Filter 3 Map 3
2X2x21  2x2x200x21 2x2x11 1x1x190x11 1x1x7 1x1x183x7

Input 3x3x220

Figure 38 An example for the application of filtering for 3D convolutional part

The second part of the proposed model, namely the autoencoder part, illustrated in
Figure 39, consists of two main stages, which are encoder and decoder.
Autoencoders are generally used to reduce the data size they receive as input to a
smaller size and learn the data structures by bringing them back to the input size.
This structure is used in hyperspectral unmixing by reducing the received spectral
signal to the number of endmember size and generating a signal again. With the
restrictions provided in this layer, restrictions such as sum to one and positivity in
hyperspectral unmixing can be enforced. This layer output is then transformed into
the input signal again in the decoder layer, and both abundance estimation and
endmember estimation operations are performed. In the proposed model, the 3D
convolution part's output is given as an input to the encoder section. Then, the
encoder-decoder structure, which provides the abundance estimation and endmember
estimation processes, is established. For this process, the widely accepted encoder-
decoder structures in the literature are used [124], [135].

In the autoencoder part, the most important factor affecting the performance stands
out as the normalization layer applied before the output of the encoder. This layer
enables the application of the two most important constraints in hyperspectral
unmixing. These are the constraint of positivity, which is the positive encoder output
provided by ReLU, and the constraint of sum to one. This layer is applied as,

Winput,i

Woutput,i = (34)

T
Zj: 1 Winput,j

where i is the index of the node, w is the weight matrix, and T is the length of the
node.
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Figure 39 The autoencoder part of the proposed 3DCE model

The given autoencoder structure is made for the hyperspectral unmixing process for
linear mixing models, but it cannot unmix nonlinear mixtures. Figure 40 shows the
nonlinear part of the presented 3DCE model, which enables hyperspectral unmixing
for nonlinear mixing models. This model has a single external node as input. The
model can adjust the nonlinearity coefficients by optimizing the weights connected to
this node. In the output layer, the summation of the output of the autoencoder part
and the output of the nonlinear part is provided.

Nonlinear
Part

Figure 40 Nonlinear part of the Proposed 3DCE Model

The whole structure of the proposed 3DCE model with the autoencoder and
nonlinear parts for nonlinear hyperspectral unmixing is presented in Figure 41. As
mentioned, P is the input channel of the hyperspectral data. L1, L2, and L3 are the
spectral dimensions of 3D convolution filters.
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Figure 41 Proposed 3D convolutional autoencoder based deep learning model (3DCE) structure

The detailed structure of the proposed model is shown in Table 4, for each part of the
model, including layer type, input, filter type, output, and activation functions. The
convolution part has three filters, and a flatten layer. This layer, which is the input of
the network, receives a 3-dimensional matrix, including neighbor pixels as input. The
encoder layer behind the convolution layer consists of 4 fully connected layers and a
normalization layer. The connection with the section where nonlinearity is defined is
made in the decoder layer, which is the model's output section. The presented
network's activation function is chosen as ReLU, whose details are given in Chapter
3.1.6.2.

In the table, P is the input channel of the network, and R is the number of
endmembers. While F1, F2, and F3 are the number of filters applied at each layer.
Note that these filters are applied separately for each patch during the realization of
the network. L1, L2, and L3 are given as the filter size applied to the spectral band.
The parameters F1, F2, F3 and L1, L2, L3, are both determined as 21,11,7 in the
experiments conducted in this study. The initial network values are determined with
the kaiming initializer provided by He et al. [136], which is widely used in the
literature [87], [99]. Besides, the endmembers in the encoder-decoder structure are
initialized with the VCA output. The proposed method is implemented by using the
python programming language and PyTorch [137]. The main steps of the
implementation can be summarized as follows:

e Each pixel on the image is given as a block of 3x3xP with its 3x3 neighbors
as input to the convolution layer.

e The convolution output is then given as input to the encoder decoder
structure.
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e The difference (error) between the estimated pixel spectra at the output of the
autoencoder and original pixel spectra is calculated with respect to a distance
metric.

e The total number of the pixel determines the number of updates in each
iteration. When batch is used, the number of updates is equal to the total
number / batch size. In this case the error is determined as the average
distance for each batch.

e Learning process is completed after the last iteration.

e After the last iteration, the ultimate weights between the encoder-decoder
structure and the encoder output are determined as endmembers and
abundance values.

Table 4 Main structure and parameters of 3DCE

Activation
Layer Type Input Filter Output
Y e P P Function
Convolution
1xPx3x3 Fl@L1x2x2 RelLU
Layer 1
. Convolution Convolution F2@12x2x2 RelU
Convolution Layer 2 Layer 1
Part uti uti
Convolution Convolution F3@L3x1x1 RelU
Layer 3 Layer 2
Flatten Layer Convolution - RelU
Layer 3
Linear 1 Flatten Layer - 16xR RelLU
Linear 2 Linear 1 8xR RelLU
Linear 3 Linear 2 4xR RelLU
Encoder Linear 4 Linear 3 R RelU
N alizati
ormalization Linear 4 R )
Layer
Nonlinear Linear 5 1x1 Node R RelU
Part
Linear 6 Encoder Output P Linear
Linear 7 Nonlinear p RelU
Decoder Coefficient
Linear 5
Output + P
Linear 6
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6.2. Experimental Results and Discussion

The experiments for the proposed 3DCE model are divided into three main groups as
the experiments to evaluate the utilized optimization method, observe the effect of
different cost functions, and understand the effect of the learning rate and batch size.
The experimental comparisons on the utilized optimization methods for the proposed
3DCE include Adam, SGD, and Adagrad optimizers. The cost functions for the
comparisons are selected as MSE, L1-norm, SAM, and SID. In addition, the
experiments with different learning rates and batch sizes are performed, and their
effects on the endmember and abundance estimation are investigated. Finally, the
proposed 3DCE method based hyperspectral unmixing method is compared with the
baseline endmember estimation and abundance estimation algorithms in the
literature. VCA and SISAL algorithms, which are found successful from the
endmember estimation algorithms, are chosen for comparisons. Similarly, LMM,
MLM, and PPNM algorithms among the abundance estimation algorithms are chosen
for comparisons. Furthermore, the proposed 3DCE based hyperspectral unmixing
algorithm is also compared with the proposed optimization-based coarse to fine
abundance estimation algorithm in Chapter 5. In this section, the performance of
abundance estimation is evaluated in terms of the RMSE between the estimated
abundance values and the ground truth abundance values.

6.2.1. Experiments for the Utilized Optimization Method and Cost
Function

The performances of optimization algorithms such as Adam, SGD, and Adagrad with
different learning rates and different distance metrics such as SAM, SID, MSE, and
L1-norm are examined. Detailed information on these optimization algorithms and
distance metrics is given in Chapter 3.2 and Chapter 4.2. The experiments are
conducted with different batch sizes for each algorithm and different learning rates.
The range of the learning rate for the experiments is chosen from 0.1 to 0.0000001.
The error in the experiments in this section is reported as RMSE between the original
and estimated abundance values and the spectral angle between the original
endmember and estimated endmembers. The number of iterations is determined as
50 for the experiments.

Table 5 3DCE with Adam optimizer abundance estimation performance for synthetic data with batch
size 1 in terms of RMSE

Learning Rate Adam-SAM Adam-MSE | Adam-L1 Norm | Adam-SID
0.1 0.27 0.23 0.23 0.23
0.01 0.21 0.24 0.17 0.20
0.001 0.18 0.13 0.11 0.12
0.0001 0.13 0.09 0.10 0.11
0.00001 0.07 0.08 0.08 0.09
0.000001 0.07 0.08 0.09 0.07
0.0000001 0.13 0.15 0.15 0.13

Table 5 shows the results for Adam optimizer results with different learning rate and
distance metrics as the first experiment. Adam optimizer is more successful at low
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learning rates. Moreover, the algorithm performs better with 0.00001 and 0.000001
learning rates. This is because the change in reconstruction error between iterations
for each distance unit has a different effect on the cost function. It has been observed
that higher performance is obtained at low learning rates for Adam optimizer. It is
also seen that the performance drops considerably when a very high learning rate,
such as 0.1, is selected. The performance of Adam optimizer with SAM is higher
than with MSE and L1-Norm in the experiments.

Table 6 shows the results for SGD, which is tested as the second optimizer. Similar
to the Adam algorithm, the learning rate for the SGD algorithm has a great impact on
performance. While MSE and L1-Norm give a minimum value for 0.1 learning rate,
SID give a minimum at 0.01 learning rate and SAM at 0.0001 learning rate. It is also
observed that SGD-MSE and SGD-L1 reach their minimum values for 0.1 learning
rate. Since this value is the final value in the selected range, SGD-MSE and SGD-L1
experiments are also repeated for 0.2 learning rate. The resulting values are obtained
as 0.09 and 0.13. These different learning rates with minimum values also indicate
that the performance of SGD is more affected by cost functions. Also, the SGD
optimization algorithm works successfully with a higher learning rate than Adam
optimizer. The main reason for such a behavior is that the algorithm iterates in
random searches initially. The experiments have reveals that SGD has higher
performance with SAM and SID.

Table 6 3DCE with SGD optimizer abundance estimation performance for synthetic data with batch
size 1 in terms of RMSE

Learning Rate SGD-SAM SGD-MSE SGD-L1 Norm SGD-SID
0.1 0.12 0.08 0.07 0.16
0.01 0.15 0.09 0.08 0.07
0.001 0.08 0.11 0.08 0.08
0.0001 0.07 0.15 0.11 0.10
0.00001 0.15 0.17 0.16 0.16
0.000001 0.15 0.25 0.23 0.21
0.0000001 0.25 0.25 0.25 0.25

The results for the Adagrad algorithm can be seen in Table 7. Similar to the SGD
algorithm, the Adagrad algorithm reaches minimum error rates at different learning
rates with different distance metrics. It achieves a minimum error rate with a learning
rate of 0.0001 in SID and SAM and 0.01 in L1-Norm and MSE distance metrics. It
has been observed that Adagrad gives more successful results with MSE. Adagrad
algorithm also achieves higher performance with a low learning rate like Adam
algorithm. The minimum value in MSE has been observed to be lower than other
distance measures with the Adagrad algorithm. It has also been observed that, unlike
other algorithms, the Adagrad algorithm achieves higher performance with MSE.
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Table 7 3DCE with Adagrad optimizer abundance estimation performance for synthetic data with
batch size 1 in terms of RMSE

Learning Rate | Adagrad-SAM | Adagrad-MSE | Adagrad-L1 Norm | Adagrad-SID
0.1 0.15 0.10 0.16 0.15
0.01 0.10 0.06 0.11 0.16
0.001 0.10 0.10 0.11 0.09
0.0001 0.08 0.12 0.11 0.08
0.00001 0.15 0.16 0.17 0.15
0.000001 0.24 0.24 0.25 0.25
0.0000001 0.25 0.25 0.25 0.25

The minimum error rates obtained by the algorithms in the case of batch size 1 shows
that SAM for Adam, SID for SGD, and MSE for Adagrad are the distance metrics
with the lowest error. The main reason for this is that the effect of the difference
between spectral signatures in the endmember learning process on the abundance
value is less affected by distance metrics such as SAM and SID than distance
measurement units such as MSE and L1 norm. When SAM is used as a distance
metric, it is possible to estimate with the same abundance value in cases where
spectral signatures have altitude difference, but this is not possible for other distance
metrics.

6.2.2. Batch Size Experiments

The experiments are conducted to examine the effect of changing batch size on
algorithm performance. The effect of batch size on algorithm performance has been
included in several studies. There are studies indicating that the algorithms with
larger batch size might achieve better performance with deep learning models [138—
140]. Table 8 shows the best results of the Adam algorithm obtained for different
batch sizes. Although the results are obtained with different learning rates, it is
observed that the increase in batch size affects the performance positively when the
distance unit is SAM. When the results obtained for the Adam algorithm are
examined, it is observed that using the learning rate of 0.001 or 0.0001 achieves the
best results. Although there are minor changes in other algorithms, the obtained
values are very close to each other.

Table 8 3DCE with Adams algorithm abundance estimation performance change on the batch size in
terms of RMSE

Batch Size Adam-SAM Adam-MSE Adam-L1 Norm Adam-SID
1 0.065 0.075 0.075 0.065
50 0.055 0.080 0.080 0.065
100 0.045 0.080 0.070 0.065
250 0.045 0.085 0.070 0.070

The results for the SGD algorithm can be seen in Table 9. Considering the batch size
results for the SGD algorithm, the use of low batch positively affects the
performance in the table. As a result of these experiments, the SGD algorithm
achieves the best results when SID is used as the distance metric. SGD algorithm
converges with more iterations than other algorithms due to its structure. Therefore,
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when high batch is used, network renewal decreases significantly between each
iteration. Performance decreases in high batches due to the choice of constant
iteration and high learning rate in these experiments. However, when the number of
epochs is increased, more successful results are obtained in high batches. In the
experiments repeated for 100 batches, it is observed that when the iteration number is
set to 250, the performance increases to 0.50 on average for SGD-SAM.

Table 9 3DCE with SGD algorithm abundance estimation performance change on the batch size in
terms of RMSE

Batch Size SGD-SAM SGD-MSE SGD-L1 Norm SGD-SID
1 0.070 0.075 0.070 0.065
50 0.075 0.080 0.065 0.070
100 0.090 0.090 0.075 0.075
250 0.115 0.130 0.150 0.105

Table 10 shows the results of the Adagrad algorithm. Unlike other algorithms, batch
size change in the Adagrad algorithm does not cause an evident change in the results,
but it has been observed that the best results are obtained using one batch and MSE.
Adagrad indicates higher performance with MSE, which shows more variation
between iterations.

Table 10 3DCE with Adagrad algorithm abundance estimation performance change on the batch size
in terms of RMSE

Batch Size | Adagrad-SAM | Adagrad-MSE | Adagrad-L1 Norm | Adagrad-SID
1 0.075 0.055 0.105 0.075
50 0.080 0.070 0.075 0.110
100 0.065 0.060 0.080 0.055
250 0.095 0.055 0.105 0.100

6.2.3. Endmember Extraction Performance

In the proposed network structure, the weights between the encoder and decoder
layer correspond to the endmembers, as explained in Section 6.1. Experiments have
been carried out for endmember estimation, which is an essential step in
hyperspectral unmixing. First of all, endmember extraction experiments for
optimization algorithms with synthetic data are performed. The endmembers
extracted from the results are compared with the original endmembers used in
creating synthetic data. Error rates for endmember estimation are given as the SAM
result in radians. The endmembers extracted by the Adam algorithm are shown in
Figure 42. The average SAM error between estimated endmembers and the ground
truth for this result is 0.04 radians.
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Figure 42 The endmembers extracted with 3DCE using Adams algorithm

It has been observed that the difference between extracted endmembers and ground
truth is low for all algorithms. The endmembers extracted by the SGD algorithm are
shown in Figure 43. The average SAM error between estimated endmembers and

ground truth for the SGD algorithm is 0.04 radians.
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Figure 43 The endmembers extracted with 3DCE using SGD algorithm

The endmembers extracted by the Adagrad algorithm are shown in Figure 44. The
average SAM error between estimated endmembers and ground truth for the Adagrad

algorithm is 0.03 radians.
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Figure 44 The endmembers extracted with 3DCE using Adagrad algorithm

When the results are examined, it is seen that the error is lower when SAM and SID
are used as distance metrics. The main difference between these metrics compared to
the others is that they are less affected by noise when calculating errors. The
extracted endmembers with these metrics have also been observed more successfully.
Therefore, it is decided to use the Adam algorithm with SAM in the proposed 3DCE
method.

6.3. Comparison of abundances with baseline methods in the literature

In the experiments performed in this section, different comparisons are made for
endmember extraction and abundance estimation. While the distance unit used for
endmember comparisons is SAM, the distance unit used for abundance estimation is
given as RMSE. The experiments are performed 10 times, and the averages of these
experiments are given in the final tables. The images show the best results obtained
in these experiments.

The previous experiments show that 3DCE with Adam as an optimizer and SAM as a
distance metric achieves better results. Therefore, synthetic and real data
comparisons are made with these methods. VCA and SISAL algorithms are used for
endmember estimation as the well-known standard methods for hyperspectral
unmixing. LMM, MLM, and PPNM algorithms, which are successful in previous
experiments, are used for abundance estimation. Endmember estimation and
abundance estimation performance are evaluated separately for both real and
synthetic data.

For synthetic data, the estimated endmembers by VCA and SISAL algorithms are
given in Figure 45. The average error between estimated endmembers and ground
truth for VCA is 0.070, and for SISAL 0.035 in radians. The abundance estimation
processes are performed with these endmembers. Since there is no pure pixel in the
synthetic data, the SISAL algorithm is expected to perform better. Figure 42
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illustrates the endmember obtained with the proposed 3DCE algorithm. The average
estimation error between estimated endmembers and ground truth for the proposed
3DCE algorithm is 0.038 radians. As can be seen, the proposed method and SISAL
yield similar results for synthetic data. The formed endmembers are characteristically
observed very close to each other.
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Figure 45 Extracted endmember with VCA (a) and SISAL(b) with synthetic data
The second aspect of the comparisons is determined as the comparison of abundance
estimation performances. In Table 11, the average errors of the LMM, MLM, and

PPNM algorithms are given for synthetic data with the extracted endmembers with
VCA and SISAL. The abundance estimation performances are given as RMSE.

69



Table 11 Abundance Estimation Performance with the Extracted Endmembers in terms of RMSE

Proposed
LMM | MLM |ppNwm | “Abundance 3DCE
Estimation
Algorithm
Endmembers 1 1595 | 0.1438 | 0.1336 |  0.1413
with VCA
Endmembers 0.0498
e ar | 0.0600 | 0.0600 | 0.0550 |  0.0533

(b)

(d)

Figure 46 (a) Ground Truth and the results for (b) VCA+PPNM, (c) SISAL+PPNM and (d) Proposed
3DCE Method

Similar to the experiments in Chapter 5, the PPNM algorithm's performance with
synthetic data is observed more successfully than other algorithms in these
experiments. When used with the SISAL algorithm, the proposed algorithm has been
observed that the proposed algorithm performs with an error rate of 0.055. However,
when analyzed for this data, LMM and MLM algorithm performances are also at a
rate close to 0.06. Considering the analyzes in Chapter 5, these experiments'
performance is highly dependent on the performance of the endmember extraction
algorithm. In the experiments performed with the algorithm presented in Chapter 5,
successful results are obtained in synthetic data when using endmember extracted
with SISAL. However, as in other algorithms, the performance is relatively low
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when using VCA. The performance of the proposed 3DCE for abundance estimation
is 0.049. Compared to other results, an improvement of 10% has been achieved.
Considering that it does not contain any pure pixels on the synthetic data and is
created with a non-linear mixing model, the abundance estimation result obtained is
considered quite successful.

In Figure 46 (a), the ground truth for the abundance of endmembers in synthetic data,
in Figure 46 (b), Figure 46 (c) and Figure 46 (d), the VCA + PPNM result, the
SISAL + PPNM result, and the proposed 3DCE method result are given,
respectively. The differences that occur due to the endmember estimation are
noticeable, even if the differences are small. When the errors in the presented
algorithm are examined in detail, it is observed that the errors are generally located in
the border regions. Also, in cases where the endmember estimation error is high, the
error rate is higher than the average in regions where the endmember’'s abundance
value is high.

6.4. Real Data Experiments

Similar to the analysis in Chapter 5, two different real data sets are used for real data
experiments. For Jasper Ridge and Samson Ridge datasets, the results of VCA and
SISAL algorithms combined with LMM, MLM, and PPNM algorithms are obtained.
In addition to these conventional hyperspectral endmember estimation and
abundance estimation models, the comparisons are also performed with the
autoencoder based deep learning method proposed by Palsson et al. [124]. The
method uses encoder-decoder structure for hyperspectral unmixing. As the final
investigation, the proposed method with the nonlinear layer is compared with the
autoencoder structure without nonlinear layer to reveal the effect of the integrated
layer to the unmixing performance.

6.4.1. Comparisons with Literature

Real data comparisons are performed with Jasper Ridge and Samson Ridge data
tests. Extracted endmembers with VCA and SISAL algorithms for Jasper Ridge data
are given in Figure 47 (a) and Figure 47 (b). Although VCA and SISAL algorithms
work with high performance on synthetic data, their performance may change with
real data. In the experiments, the performances of VCA and SISAL algorithms in real
data have been observed. Although there are pure pixels in the data, the VCA
algorithm has achieved endmember extraction performance with an average error
rate of 0.32 radians. The SISAL algorithm, which achieved a higher performance rate
on synthetic data, indicates deficient performance in the Jasper data set. The error
rate for this data is determined as 0.59 radians. As can be seen from Figure 48 (b),
since the algorithm does not enforce the exclusion of a negative value, it detects one
endmember with a negative value for Jasper Ridge data. Algorithms have been run
by taking the negative values of this endmember as zero due to the positivity
assumptions of the abundance estimation algorithms. The endmembers obtained with
the proposed 3DCE method are given in Figure 47 (c). The average error rate of
these endmembers compared with the endmembers in the ground truth are
determined as 0.29 radians, a value which is better than those with VCA and SISAL
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but still considered as a high value. While the tree, water, and soil signatures are
found to be quite successful, the road signature is obtained with lower performance.
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Ridge dataset
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Extracted endmembers with VCA and SISAL algorithms for the Samson Ridge
dataset are given in Figure 48 (a) and Figure 48 (b). In contrast to the results obtained
in the Jasper Ridge data set, the endmember extractions are found more successful in
this data set for the VCA algorithm. The SISAL algorithm has extracted one
endmember with a negative value, as in the Jasper Ridge data set. In abundance
estimation experiments, negative values in these endmembers are also set to zero.
The average error for endmember extraction is calculated as 0.06 radians for the
VCA algorithm and 0.26 radians for the SISAL algorithm. The extracted
endmembers with the proposed 3DCE method are given in Figure 48 (c). The error
for these endmembers is calculated as 0.11 radians. Considering the endmember
estimation experiments, the proposed algorithm performs endmember estimation
successfully in both synthetic and real data.

Spectral diversity explains why the performance of both the proposed algorithm and
the algorithms, such as VCA that chooses endmember from the data differs from the
ground truth. Ozkan and Akar revealed that the pure pixels of the endmember in
these datasets consist of different spectral signals [129]. Therefore, it is considered to
be acceptable if the signals found are different from the ground truth. However, it has
been observed that the experiments performed with the method proposed in Chapter
5, where the endmember information is available, yields better abundance estimation
results.

After the endmember estimations, the abundance estimation performances by using
these endmembers are examined. Table 12 shows the abundance estimation results
with the endmembers extracted by VCA and SISAL algorithms for the Jasper Ridge
dataset. The best result in this section is seen with VCA + MLM as 0.17. Moreover,
when the abundance estimation algorithm presented in Chapter 5 is used together
with VCA, it provides a performance increase of around 10%. The performance of
the autoencoder based deep learning model is 0.18 similar to the other algorithms in
the literature. Palsson's model, on the other hand, showed a slightly lower
performance in this data than conventional methods, achieving 0.18. The proposed
3DCE algorithm provides a performance increase of around 20% compared to the
best result for the Jasper Ridge dataset. Although it does not have a low error rate as
in synthetic data, it has been seen to have an average error rate of 0.14.

Table 12 The performance of the algorithms for Jasper Ridge dataset as RMSE

Palsson's
LMM MLM | PPNM Pro.pose.dAbundgnce Autoencoder Proposed
Estimation Algorithm 3DCE
Model
VCA 0.20 0.17 0.20 0.15
0.18 0.14
SISAL 0.23 0.21 0.23 0.22

Table 13 shows the abundance estimation results with the endmembers extracted by
VCA and SISAL algorithms for the Samson Ridge dataset. As with the Jasper Ridge
dataset results, the combination of VCA + MLM algorithms has achieved a
successful result for this dataset. Similarly, the abundance estimation algorithm
presented in Chapter 5 provides a 10% performance increase when used with VCA.
It has been observed that Palsson’s autoencoder based deep learning method
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performs better than Jasper Ridge data in this model. For Samson Ridge data, the
performance of Palsson’s method is observed as 0.15. The model performance
presented for the Samson Ridge dataset, where the endmember extraction
performance is much better than the Jasper Ridge dataset performance, is obtained as
0.12. For this dataset, as in the other datasets, an improvement of about 20% is
observed in the proposed 3DCE method compared to other methods in the literature.

Table 13 The performance of the algorithms for Samson Ridge dataset as RMSE

Palsson's
(MM | MLm | ppnm | ProposedAbundance | oo coger | Proposed
Estimation Algorithm 3DCE
Model
VCA 0.24 0.20 0.32 0.17
0.15 0.12
SISAL 0.25 0.25 0.28 0.25

Figure 49 shows the ground truth and the abundance estimation results for the Jasper
Ridge dataset. Figure 49 (a) shows the ground truth for the Jasper Ridge dataset. In
Figure 49 (b), the results for VCA-MLM, in Figure 49 (c), the results for SISAL-
MLM, and in Figure 49 (d), the results obtained with the proposed 3DCE method are
given. Although the abundance estimation errors are not close to zero, when the
results are examined visually, the main classes are predicted quite successfully with
the proposed 3DCE method. When the results are examined for VCA + MLM
combination, which is one of the successful methods, it is seen that the road and
water classes are mixed, and a large part of the land is detected as soil.
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(d)

Figure 49 The abundance estimation results for Jasper Ridge dataset (a) ground truth, (b) the results
for VCA + MLM (c) the results for SISAL+MLM and (d) the results with proposed 3DCE

Figure 50 Error map showing the difference between the abundance map derived by the proposed
3DCE method and the ground truth for Jasper Ridge dataset

Figure 50 illustrates the error map between ground truth and the results of 3DCE
model for Jasper Ridge dataset. Although the results are similar, it is observed that
the rate of mixing road and soil materials with each other is higher than the other
materials. The main reason for this is that there are very few road pixels and the
neighborhood of the road and soil pixels is too high. Therefore, the presence of both
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road and soil in the area calculated for the road in the 3x3 filter used for the
neighborhood is one of the reasons for this mixture.

)
Figure 51 The abundance estimation results for Samson Ridge dataset (a) ground truth, (b) the results
for VCA + MLM (c) the results for SISAL+MLM, and (d) the results with proposed 3DCE method

Figure 51 shows the ground truth and the abundance estimation results for the
Samson Ridge dataset. In Figure 51 (a) ground truth of Samson Ridge dataset, in
Figure 51 (b) VCA-MLM results, in Figure 51 (c) SISAL-MLM results, and in
Figure 51 (d) the results obtained with the proposed 3DCE method are given. When
these results are examined visually, it is seen that although the tree detection is quite
successful with almost all methods, soil and water may not be detected as well. The
abundance estimation for the proposed 3DCE algorithm is more apparent than other
algorithms.

Figure 52 illustrates the error map between ground truth and the results of 3DCE
model for Samson Ridge dataset. In this data set, it is observed that the errors are

77



mostly between the tree and water pixels. The similarity of tree and water spectral
signatures between 400-1500nm is another reason for this error. Also the abundance
values of the other classes and the soil class have little confusion with the other
classes.

1
H .5
1

Figure 52 Error map showing the difference between the abundance map derived by the proposed
3DCE method and the ground truth for Samson Ridge dataset

In the experiments performed for the presented 3D encoder based hyperspectral
unmixing algorithm, it is observed that the performance increase is achieved
compared to the mainstream algorithms used in the literature. Experiments have been
successfully performed on synthetic and real data for both endmember estimation
and abundance estimation. It has been observed that the presented method works
quite successfully for both data.

6.4.2. Comparison with Respect to Mixing Models and Nonlinear Layer

The pixel models in the Samson Ridge and Jasper Ridge datasets are shown in Figure
54. Experiments have been conducted to measure the performance of the presented
3DCE model on different mixing models. It is given as the average error over the
previous experiments. Selected models are determined as LMM, FM and PPNM. The
errors given in this section are given as RMSE of the pixels marked with that model.

In the experiments made for Jasper Ridge data, it is seen that the error value of the
pixels marked as LMM is 0.17. This value is taken as 0.15 for FM and 0.10 for
PPNM. For Samson Ridge data, the error values are determined as 0.12, 0.10 and
0.11 for LMM, FM and PPNM, respectively. It has been observed that the pixels
with nonlinear mixtures are estimated more successfully than the pixels with the
linear mixture model. Since the number of pixels modeled as the total nonlinear
mixture model in these data is higher than the linear model, the overall performance
has been achieved more successfully than using only the linear model. It has been
observed that the nonlinear part positively affects the algorithm performance, since
the complex interactions in the real data are too complex to be modeled with a single
model. However, it is thought that the algorithm presented can work with lower
performance on data created with only linear mixtures.

Therefore, separate experiments are carried out to measure the effect of nonlinear
part on performance. In this section, the nonlinear part is removed from the model
and the encoder-decoder structure after the 3D convolution layer is included. When
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the results are observed with this model, it is seen that the performance decreased
from 0.14 to 0.17 for Jasper ridge and from 0.12 to 0.15 for Samson Ridge datasets.
Although better estimation of linear models is achieved, the estimation of other
models in the real data is more successful when nonlinear part is included to model.
Considering that the number of pixels in different mixing models in the data are
close to each other, the more successful separation of nonlinear mixing models, the
better performance in predicting the vast majority of data.

© B (@
[] PPNM Model Fan Model [l Linear Mixing Model

Figure 53 Displaying the models of the Samson Ridge and Jasper Ridge Data, LMM(Black),
FM(Grey), PPNM(White) (a-Results for Samson Ridge, b- RGB image of Samson Ridge, c- Results
of Jasper Ridge and d-RGB image of Jasper Ridge

6.4.3. Cross-validation of the Proposed Unmixing Model

The presented deep learning based hyperspectral unmixing method requires a
separate learning process for each data. The main reason for this is that the spectral
differences in each image and the materials that can be included in each data may
differ. In other words, unlike traditional deep learning applications, the presented
algorithm does not use the weights of a model by training a model for the
hyperspectral unmixing process, but uses the encoder outputs and decoder weights in
the final iteration.
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The algorithm presented in this section is also tested with 10-fold cross-validation in
order to observe performance measurements similar to traditional deep learning
algorithms of the presented method. The cross-validation process is performed by
dividing the picture into 10 parts and performing the training process of 9 parts at
each time and using the unused part in the test process. In other words, considering
the size of the Jasper Ridge data, 9000 pixels in 10000 pixels in Jasper Ridge data are
used for learning process and 1000 pixels are used for testing. In Samson Ridge data,
8325 pixels in 9250 total pixels are used for the learning process and 925 pixels are
used for the test process. During each training, a different section is separated as the
test data and the average RMSE values of the operation on the whole data are given.
Experiments are performed on Jasper Ridge and Samson Ridge datasets.

In the experiments performed for the Jasper Ridge dataset, when all data are used,
the average error is determined as 0.14. In cross-validation experiments, the error
value is obtained as 0.15. It is also observed that the error value of 0.12 in Samson
Ridge dataset is found as 0.15 in cross-validation experiments. One of the main
reasons for this decrease in the abundance estimation performance is that the
proposed 3D convolutional encoder based unmixing method is tested on a data that
the model has never seen before. Another reason for this decrease is that the learning
process takes place with only 90% of the data. It is expected that performance
changes will be observed as the percentage of the data used for training decreases.

As mentioned before, the presented model performs the learning process for the
received hyperspectral data only by training. The main reason for this is that the
weights coincide with the endmember during both endmember estimation and
abundance estimation processes. It has been observed that the presented model works
quite successfully in the presented cross-validation experiments to perform the
abundance determination process on a different data by using the trained weights of
the autoencoder. This application is valid only if it is applied for abundance detection
for images containing the same materials.
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CHAPTER 7

CONCLUSIONS

In this thesis, two different studies have been performed for the hyperspectral
unmixing problem. The first study is the abundance estimation in the presence of
endmember information, and the second study is the deep learning-based 3D
convolutional encoder based hyperspectral unmixing method for the cases where the
endmember information is unavailable. Comparative performance evaluations have
been performed in both synthetic and real data for both models.

The first study is tailored for the abundance estimation for the cases where
endmember information is available. In the performed study, a model on abundance
estimation using the multiple mixture model in a single optimization process is
presented. Performance variation of the presented model is investigated with SA, PS
SQP, and GA optimization methods. In the experiments, the number of iterations for
SA, PS, and SQP and the population and generation sizes for GA and performance
interactions are examined. With this experiment, the parameters are tried to be
determined for each method for a fair comparison without explicitly biasing the
algorithm performances. Despite the high performance of GA among the methods, it
has been revealed that it is not a practical method due to its very high processing
time. The SQP algorithm, which provides both high performance and short
processing time, is chosen for the proposed model. In addition, the performances are
examined with respect to different distance metrics, namely L1-Norm, L2-Norm, and
SAM. The experiment has indicated that the performance of the SAM metric is better
than the other two metrics. The main reason for this is that the same material can be
included in different spectral signatures, which causes the performance of the
algorithm to decrease during the abundance estimation. During the method
development process, the time and performance change between the coarse to fine
approach and the direct approach has been observed. It has been noticed that the
presented coarse to fine approach has faster convergence. At the end of these
experiments, a coarse to fine approach using SQP as the optimization algorithm and
SAM as the distance unit is proposed.

The performance of the method is tested and compared with different noise levels
and a different number of endmembers. Comparisons are made with both synthetic
and real data with algorithms such as LMM, GBM, FM, MLM, and PPNM in the
literature. It has been observed that these models yield successful results if synthetic
data are created with their own assumptions. However, it is noticed that the
performance decreases in synthetic data created with another mixing model. It has
also been observed that the proposed method is more successful than all methods in
cases where the data is created with a multiple mixing model. Although MLM is the
most successful method among the methods in the literature in experiments with real
data, the performance of the proposed coarse to fine approach exceeds that.
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In the second study, a 3D convolutional encoder based algorithm is proposed for the
cases where endmember information is not available. Adams, SGD, and Adagrad
algorithms are used in the experiments as the optimization algorithm for the selection
of the presented model. The response of these algorithms to different learning rates
and batch sizes has been examined, and the results are reported. Experiments have
been performed on this synthetic data created at a low noise level and two different
real data. For comparison, among the successful algorithms in the literature, pure
pixel-based (VCA) and non-pure pixel assumption (SISAL) algorithms are selected
for endmember estimation. Endmember extracted with the proposed 3DCE model
has been seen as more successful than these methods. SISAL is more successful at
endmember extraction in synthetic data without pure pixels, whereas VCA is better
at real data containing pure pixels. In the experiments conducted for abundance
estimation, it is observed that the MLM algorithm, among the algorithms in the
literature, achieves more successful results on real data. When used for abundance
estimation, the performance of the algorithm presented in Chapter 5 is higher than
other algorithms when using the endmembers obtained with VCA in the real data.
Nevertheless, the presented 3DCE model has achieved more successful results than
these algorithms in both synthetic data without pure pixels and real data. In
comparisons of abundance estimation for real data, it is seen that Palsson's method
obtain similar performances to other methods in the literature. As a result, the
algorithm performance is 10-20% higher in comparison with the experiments
performed with the selected Adam optimizer. In addition, it is observed that the
proposed 3DCE method obtain better results than the baseline autoencoder-based
unmixing methods in the literature. It has been validated with experiments that
especially the nonlinear layer provides good performance in data with nonlinear
mixtures.

As a result, it has been observed that the proposed 3DCE method is more successful
when endmember information is not available, but the abundance estimation method
recommended in Chapter 5 should be used when there is prior endmember signature
information. The future studies can be focused on more sophisticated models
including intimate mixing to better represent the interactions in complex real scenes.
Another aspect that needs attention is the adaptation of other optimization algorithms
to coarse to fine approach. Furthermore, although deep learning methods are used
frequently in the literature, the most important feature of such methods is the
performance differences with the change of the data. Besides the data change, the
need for parameter changes is a very important factor. Future work in this direction,
may focus on the development of nonlinear hyperspectral unmixing models that can
adapt to data change for instance with Automatic Machine Learning (AutoML).
Moreover, studies can also be focused into nonlinear mixing models with deep
learning models.
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