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ÖZET 

MAKİNE ÖĞRENMESİ VE GÖRÜNTÜ İŞLEME YÖNTEMLERİNİ 

KULLANARAK ET SIĞIRLARINDA CANLI AĞIRLIK TAHMİNİ 

KARAHAN, Ahmet Erhan 

Doktora Tezi, Zootekni Anabilim Dalı 

Tez Danışmanı: Prof. Dr. Hülya ATIL 

Eylül 2020, 171 sayfa 

Çiftlik hayvanlarında canlı ağırlığın belirlenmesi ve düzenli olarak takip 

edilmesi, hastalıkların erken tesbiti, ilaç miktarlarından tasarruf ve dolayısıyla 

işletme karlılığı açısından büyük önem arz etmektedir. Ancak işletmelerin büyük 

çoğunluğunda kantar bulunmadığından, ya da varsa bile tartım işinin zaman alıcı, 

zahmetli oluşu ve hayvanlarda stres oluşturmasından dolayı işletmelerin 

çoğunluğunda tartım yapılmamaktadır. Günümüzde klasik tartım yöntemlerinden 

kaynaklı olumsuzlukların önüne geçmek amacıyla, hayvanların vücut ölçümleri 

kullanılarak canlı ağırlıklarının belirlenebileceği çeşitli tahmin yöntemleri 

geliştirilmiştir. Bu yöntemler tartım işlemine kıyasla daha az zaman almaktadır 

ancak hayvanlarda stres oluşumunun ve insan yaralanmalarının önüne 

geçilememektedir. Tez çalışmasında bu geleneksel yöntemlere alternatif olarak canlı 

ağırlık tahmini gerçekleştirmek amacıyla makine öğrenmesi ve görüntü işleme 

tekniklerine dayalı bir yöntem önerilmiştir. Bu amaçla, hayvanları rahatsız etmeden, 

yerden 2.65m yükseklikte konumlandırılmış üç boyutlu sabit bir kamera ile alınan 

derinlik görüntülerinden sığırların canlı ağırlıkları tahmin edilmiştir. Sığırların 

tamamı aynı kamera çekim açısında olmadığından canlı ağırlık otomatik olarak 

tahmin edilememiş ancak her bir sığırdan alınan yaklaşık 10’ar görüntüden uygun 

olanlar seçilerek klasörlendikten sonra bu klasördeki görüntülerinden sığırların 

üstten sırt (dorsal) alanları otomatik olarak hesaplanmıştır. Ayrıca derinlik 

görüntüsünden yararlanılarak sığır yükseklikleri de tahmin edilmiş ve elde edilen bu 

yükseklik değerleri yöntemlerde girdi (bağımsız değişken) olarak kullanılmıştır. 

Derinlik görüntüsü kullanılarak sığır yükseklerinin tahmin edildiği görüntü işleme 

yöntemiyle literatüre yeni bir bakış açısı kazandırılması hedeflenmiştir. Çalışmada 

makine öğrenmesinde kullanılan yapay sinir ağları yaklaşımı detaylı bir şekilde 
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incelenmiş, çok sayıda eğitim kombinasyonu denenmiştir. YSA’nın yanı sıra 

hayvancılık alanında kullanımı yeni olan MARS ve CHAID yöntemleri ile de sığır 

canlı ağırlıkları tahmin edilmiş ve elde edilen bulgular bir fikir vermesi açısından tez 

kapsamında sunulmuştur. Yapay sinir ağları (YSA), Çok değişkenli uyarlanabilir 

regresyon eğrileri (MARS), ve Ki kare otomatik etkileşim belirleme (CHAID) 

yöntemleri ile yapılan canlı ağırlık tahminlerinde ortalama mutlak hata yüzdesi 

(MAPE) değerleri sırasıyla %4.15, %4.75 ve %5.36 olarak tespit edilmiştir. Her bir 

yaklaşımla yapılan tahminlerin R2 değerleri aynı sırayla 0.9467, 0.9334 ve 0.9211 

olarak, hata kareler ortalamasının karekökü (RMSE) değerleri sırasıyla 31.63kg, 

32.95kg ve 38.42kg olarak belirlenmiştir. Hayvancılıkta daha sık kullanılan çoklu 

doğrusal regresyon (ÇDR) yöntemiyle ise MAPE, R2 ve RMSE değerleri sırasıyla 

%5.02, 0.9266 ve 37.06kg olarak tespit edilmiştir. Yapay sinir ağlarında deneysel 

çalışmalar sırasında farklı parametre değerleri kullanılarak 972 yapay sinir ağı 

eğitimi yapılmıştır. Ayrıca YSA’da kullanılan öğrenme algoritmalarından 

Levenberg&Marquardt (LM), Bayesian regularization (BR) ve uyarlanabilir 

öğrenme oranlı gradyan yöntemi (GDX), hatayı azaltma bakımından karşılaştırılmış 

ve ortalama olarak en düşük MAPE değeri (%4.56), LM algoritması kullanılarak iki 

katmanda sekiz nöron bulunan (2-8-8-1) ağ mimarisiyle yapılan eğitimden elde 

edilmiştir. Çalışma sonuçları, sığırlarda canlı ağırlığın makine öğrenmesi ve görüntü 

işleme yöntemleriyle başarılı bir şekilde tahmin edilebileceğini göstermektedir.  

Anahtar sözcükler: Canlı ağırlık, CHAID, çoklu doğrusal regresyon, makine 

öğrenmesi,  MARS, et sığırı, tahmin, yapay sinir ağları,   
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ABSTRACT 

LIVE WEIGHT ESTIMATION IN BEEF CATTLE USING IMAGE 

PROCESSING AND MACHINE LEARNING METHODS 

KARAHAN, Ahmet Erhan 

PhD in Department of Animal Science 

Supervisor: Prof. Dr. Hülya ATIL 

September 2020, 171 pages 

Determination and monitoring of body weight in animal husbandry are of 

great importance in terms of profitability, early diagnosis of diseases, saving the 

amount of drugs used. However, the majority of farms do not weigh livestock for 

reasons most farms do not have a scale or, even if they do, the weighing is time 

consuming, laborious, and can cause stress on animals. In recent years, various 

estimation methods have been developed to determine the live weights of animals 

by using body measurements in order to prevent negativity from classical weighing 

methods. Although these methods take less time compared to weighing, stress 

formation in animals and injuring human cannot be prevented. In this study, an 

image processing and machine learning-based method is proposed to estimate body 

weight as an alternative to these traditional methods. For this purpose, the body 

weights of cattle were estimated by using their three-dimensional depth view taken 

with a fixed camera positioned at a height of 2.65m from the ground without 

disturbing the animals. Since all cattle were not at the same camera shooting angle, 

their body weight could not be predicted automatically, but approximately 10 

images were taken from each cattle and after the appropriate ones were selected and 

filed, the dorsal areas of the cattle were automatically calculated from the images 

in this folder. In addition, cattle heights values were also estimated using the depth 

image were used as inputs (independent variables) in the methods. It is aimed to 

gain a new perspective to the literature by image processing method in which cattle 

heights are estimated using depth view. In the study, the artificial neural networks 

approach used in machine learning was examined in detail, and many training 

combinations were tried in ANN. In addition to ANN, live weights of cattle were 

estimated with MARS and CHAID methods, which are new to used in animal 
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husbandry, and the findings are presented to the reader within the scope of the thesis 

to give an idea. Mean Absolute Percentage Error (MAPE) values of approach were 

defined as 4.15, 4.75, and 5.36% in the body weight estimations by using Artificial 

Neural Network (ANN), Multivariate Adaptive Regression Splines (MARS) and 

Chi-Square Automatic Interaction Detection (CHAID) methods, respectively. The 

R2 values of the estimates by each approach were 0.9467, 0.9334, and 0.9211, and 

the Root Mean Square Error (RMSE) values were 31.63, 32.95, and 38.42kg 

respectively. MAPE, R2 and RMSE values were found to be 5.02%, 0.9266 and 

37.06 kg, respectively, with the multiple linear regression (MLR) method, which is 

more frequently used in animal husbandry. During the experimental studies in 

artificial neural networks, 972 artificial neural network trainings were carried out 

using different parameter values. In addition to Levenberg-Marquardt (LM), 

Bayesian Regularization (BR) and Gradient Descent with Adaptive Learning Rate 

(GDX) algorithms which are among the learning algorithms used in ANN were 

compared in terms of error reduction and the lowest MAPE value (4.56%) on 

average was obtained from LM algorithm with 2-8-8-1 network architecture 

training. The results of the study show that body weight of cattle can be predicted 

successfully by machine learning and image processing methods 

Keywords: Body weight, CHAID, multiple linear regression, beef cattle, machine 

learning, MARS, prediction, artificial neural network,  
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ÖNSÖZ 

Çiftlik hayvanlarının canlı ağırlıklarının tahmin edilmesi, işletme karlılığı 

açısından oldukça önemli olduğundan, uzun yıllar bilim insanları tarafından 

üzerinde durulan bir konu olmuştur. Bu tez çalışmasının yürütülmesindeki amaç 

et sığırlarının canlı ağırlıklarını onlara rahatsızlık vermeden ve stres oluşturmadan 

tahmin etmektir. Önerilen yöntemi kullanarak sığırların canlı ağırlığını tahmin 

edecek yazılıma sahip, otomatik cihazların geliştirilmesi memnuniyet verici 

olacaktır. Görüntü işleme ve YSA için ekler kısmında verilen komutların ve metot 

kısmında anlatılan sığır vücut alanının hesaplandığı yöntemin gelecekte 

hayvancılıkta ya da farklı alanlarda yapılacak çalışmalara ışık tutmasını ve 

kolaylık sağlamasını diliyorum. Benzer çalışmaların yapılmasıyla canlı ağırlığın 

tahminleme başarısının artmasını ve devamında geliştirilecek ağırlık tahmin 

cihazlarını kullanan işletmelerde daha efektif bir üretim yapılmasını ümit 

etmekteyim. Umarım yaptığım bu çalışma ile Türk tarımına ve yetiştiricilerimize 

ufak da olsa bir katkım olmuştur.  

 

Bornova/İZMİR 

  23/09/2020 

Ahmet Erhan KARAHAN  
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1. GİRİŞ 

İnsanoğlu için tarihin ilk dönemlerinde “tek, çift ve çok” terimleri, nesneleri 

saymak için yeterli olmuştur. İnsanlar ticaretle tanıştıklarında, takas için çentikler 

atmayı öğrenmişlerdir. Tarımla uğraşmaya başladıklarında ise koyunlarının sayısını 

kil madalyonlara çeşitli semboller çizerek belirlemişlerdir. Ancak her koyun için 

bir madalyonu işaretlemek ya da çentik atmak zor olduğundan bundan yaklaşık beş 

bin yıl önce Sümerler, kil tabletlere not edebildikleri 60’lık sayı sistemini bularak 

ilk rakamların mucidi olmuşlardır (Şeker, 2019). Kısacası tarihin ilk zamanlarından 

beri insanlar hayatlarını kolaylaştırmak için sayılara, dolayısıyla matematiğe ihtiyaç 

duymuşlardır.  

Medeniyetler geliştikçe insanlar yaşadığı gezegeni tanımlamaya çalışmış, 

evrende bir düzenin ve çeşitli yasaların varlığını keşfetmişlerdir. Bunları 

anlamlandırmak için yıllar boyunca birçok bilim insanı daha gelişmiş matematiksel 

yöntemler bulmak üzere birbirleri ile yarışmıştır. Bu yöntemler karmaşık 

hesaplamalar içerdiğinden abaküsle yetinmeyerek çeşitli hesaplama araçları 

geliştirmişlerdir. Geçtiğimiz asırda insanoğlu hesaplamanın çok zor hatta bazı 

durumlarda imkânsız olduğu bazı problemlere saniyenin onda biri gibi çok kısa 

zamanlarda çözümler üretecek güçlü bir makine geliştirmiş ve adına da hesaplayıcı 

anlamında bilgisayar (“Computer”) ismini vermiştir. Ancak bu güçlü hesaplama 

araçlarına öğrenme becerisinin kazandırılması yıllar süren çalışmalar neticesinde 

gerçekleşmiştir. Öğrenme insana özgü bir olay olduğundan bu becerinin 

bilgisayarlara ya da makinalara kazandırılması için insan beyninin çalışma şeklinin 

bilinmesine ihtiyaç duyulmuştur. 

İnsan beyni üzerinde binlerce yıldır araştırmalar yapılmasına rağmen henüz 

tam anlamıyla çalışma prensibi ve yapısı çözülememiş, dünya üzerindeki en 

karmaşık yapıya sahip, öyle ki anlaşılabilmesinin tek yolu yine kendisi olan 

dünyanın en esrarengiz nesnesidir (Winston, 2011). Bu kadar karmaşık bir organın 

çalışma prensibi taklit edilerek makinelerin insanlara benzer işler yapabilmesi bilim 

insanlarınca uzun yıllar arzu edilmiş, sinema tarihinde de bilim kurgu filmlerinin 

vazgeçilmez konuları arasında yer almıştır. İnsan beyninin çalışma prensibi ile ilgili 

atılan ilk bilimsel adım bir nörofizyolog olan Warren McCulloch ve genç 
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matematikçi Walter Pitts tarafından 1943 yılında basit bir sinir ağının modellenmesi 

olmuştur. Bu tarihten sonra yapay zeka alanındaki çalışmalar hız kazanmıştır. 

Karmaşık algoritmalara sahip olan yapay zeka yöntemleri yirminci yüzyılın 

ortalarında hayatımıza girmiştir ve bilgisayar biliminin son on yılda daha da 

gelişmesi ve yaygınlaşması ile kullanılabilirliği giderek artmıştır. Bu yöntemler 

günümüzde savunma, bankacılık, otomotiv, uzay araştırmaları, ekonomi, tıp ve 

elektronik gibi birçok alanda yaygın bir şekilde kullanılmaktadır (Öztemel, 2003). 

Her geçen gün gelişmekte olan yapay zeka teknolojileri, en uygun uçuş rotalarının 

hesaplanmasından, akıllı arabaların trafikte kaza yapmadan ilerleyebilmelerine 

imkan veren yazılımlarına, betonun basınç dayanımımın tahmin edilmesinden, yüz 

tanıma sistemlerine, klasik müzikte makam tanımadan parmak izinden yüz 

tanımaya kadar çok geniş bir yelpazede çalışılan popüler bir konudur ve hayvancılık 

alanında da kullanımı giderek yaygınlaşmaktadır.  

Yapay zekanın bir alt dalı olan yapay sinir ağları (YSA), çoklu doğrusal 

regresyon ve lojistik regresyon gibi klasik istatistiksel yöntemlerden daha yüksek 

doğrulukla sonuçlar vermesi ve parametrik testlerin varsayımlarını gerektirmemesi 

nedeniyle birçok alanda olduğu gibi biyometri ve genetik alanında da kullanılan 

önemli bir araçtır. Çalışmada YSA’nın yanı sıra çoklu doğrusal regresyon, 

kümeleme analizi ve ayırma analizi gibi klasik yöntemlerden daha iyi sonuçlar 

üreten çok değişkenli uyarlanabilir regresyon eğrileri (Multivariate Adaptive 

Regression Splines-MARS) ve Ki-kare otomotik etkileşim belirleme (Chi-Square 

Automatic Interaction Detection-CHAID) analizleri ile de sığır canlı ağırlıkları 

tahmin edilmiştir. Bu kapsamda YSA, MARS ve CHAID analizleri görüntü işleme 

yöntemleriyle birlikte canlı ağırlık tahmininde kullanılarak klasik yöntemlere göre 

zaman, iş gücü ve tahmin doğruluğu bakımından daha üstün sonuçlara ulaşılması 

hedeflenmiştir. 

Hayvancılık, insanlık tarihinde çok eski ve önemli bir yere sahiptir. Öyle ki 

yakın tarihe kadar insanlık medeniyetine ait temellerin tarımla atıldığı 

düşünülüyordu. İnsanların tarım için yerleşik hayata geçtiği, bundan sonraki 

süreçlerde hayatlarında dinin etkili olduğu ve tapınaklar inşa ettikleri kabul 

ediliyordu. Ancak 1995 yılında Şanlıurfa’da gün yüzüne çıkarılan ve Mısır 
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piramitlerinden 7500 yıl önce, M.Ö. 10000 yılında inşa edilmiş, 2018 yılında 

UNESCO tarafından Dünya Mirası kalıcı listesine alınan Göbeklitepe tapınağı, 

tarım, yerleşik hayat, din sıralamasını değiştirmiştir (Özkan, 2016). İnsanların tarım 

yaptığına dair hiçbir tarihsel bulgunun olmadığı bir dönemde bu tapınağın yapılmış 

olması ve kazılar esnasında bulunan, tapınak duvarlarına işlenmiş yabani hayvan 

figürleri bu tapınağı inşa eden insanların avcı-toplayıcı olduğunu göstermektedir. 

Sıralaması değişmiş olsa bile tarım ve dolayısıyla hayvancılık, insanoğlu için 

tarihin her döneminde önemli bir yere sahip olmuştur. İnsanoğlunun kırmızı et elde 

etmek için geliştirdiği ve Afrika’da bulunan taş araç gereçlerin ilk örneklerinin 3-4 

milyon yıl öncesine ait olduğu düşünülmektedir.  Önceleri avlanarak beslenen 

insanlar daha sonra evcil hayvanlar yetiştirmeyi öğrenmiş ve bunlardan kırmızı et 

elde etmişlerdir. İnsanlığın her döneminde et önemli bir rol oynamış, öyle ki 

hayvanlar için otlak bulunmadığı durumlarda insanlar göç etmiş, yurtlarını terk 

etmiştir. Kırmızı et aynı zamanda insan sağlığı açısından en önemli besinlerden 

biridir. İçerdiği yüksek protein, vitamin, antioksidan ve diğer besin elementleri 

nedeniyle özellikle gelişmekte olan çocuklar, yaşlılar ve hamileler tarafından 

tüketilmesi elzemdir. Araştırmalar bu gruptaki insanların kırmızı et tüketmediğinde 

beyin işlevlerinde bazı problemlerin ortaya çıktığını göstermektedir (Mann, 2018). 

Ayrıca kişi başına kırmızı et tüketimi ülkelerin gelişmişlik seviyelerinin bir 

göstergesi olarak kabul görmektedir.  

Ülkemizde kırmızı et temininde kullanılan kaynakların başında şüphesiz 

sığır gelmektedir. Sığır yetiştirilen işletmelerde canlı ağırlığın takibi bazı 

hastalıkların erken tanısı, kullanılacak ilaç miktarının belirlenmesi ve işletme 

karlılığı açısından önemli konular arasındadır. Ancak ülkemizde sığır işletmelerinin 

çoğunda canlı ağırlık düzenli olarak takip edilmemektedir. Bunun en önemli nedeni 

ise işletmelerde kantar bulunmamasıdır. Kantar bulunan işletmelerde dahi tartım 

süreci zahmetli ve hayvanlarda strese sebebiyet veren bir süreç olduğundan canlı 

ağırlık takibi yapılmamaktadır.  

Bu çalışmanın amacı; bilgisayar bilimindeki gelişmeler ışığında et sığırı 

işletmeleri için büyük öneme sahip olan canlı ağırlık takibinin kolaylaştırılmasını 

sağlamak üzere sığırlarda strese neden olmadan, uzaktan alınan üç boyutlu 

görüntülerinden onların canlı ağırlıklarını tahmin etmektir. Bu amaç doğrultusunda 
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canlı ağırlık tahmininde kullanılan makine öğrenmesi yaklaşımlarından yapay sinir 

ağları, çok değişkenli uyarlanabilir regresyon eğrileri, çoklu doğrusal regresyon ve 

Ki-kare otomatik etkileşim belirleme yöntemleri incelenmiştir. Bu bağlamda, yapay 

sinir ağlarında kullanılan öğrenme algoritmalarından Levenberg-Marquardt (LM), 

Bayes düzenlemesi (Bayesian regularization-BR) ve uyarlanabilir öğrenme oranlı 

gradyan yöntemi (Gradient Descent with Momentum and Adaptive Learning Rate-

GDX) algoritmalarının tahmin başarıları irdelenmiştir. Ayrıca yapay sinir ağlarında 

kullanılan momentum güncelleme katsayısı (Momentum Update-MU), en küçük 

gradyan (Minimum Gradient-GD), döngü sayısı (Number of iteration) ve öğrenme 

oranı (Learning Rate-LR, λ) ile katman ve nöron sayılarının hatayı azaltmadaki 

etkileri belirlenmeye çalışılmıştır. 
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2. GENEL BİLGİLER 

Yapay zekanın bir alt dalı olan makine öğrenmesi, çeşitli matematiksel ve 

istatistiksel yöntemleri kullanarak bilgisayarların insan zekasına benzer şekilde 

öğrenebilmesine ve daha önce görmediği bir problemle karşılaştığında çeşitli 

tahminler ve sınıflandırmalar yapabilmesine imkan veren sistemler olarak 

tanımlanabilir.  

Makine öğrenmesinde kullanılan yapay sinir ağları ve görüntü işleme gibi 

yöntemlerin tarım alanında özellikle doğrusal olmayan veri yapılarının 

modellenmesinde iyi birer araç olduğu ve çoklu doğrusal regresyon, lojistik 

regresyon gibi klasik istatistiksel yöntemlerden daha iyi sonuçlar verdiği birçok 

araştırmada (Bahreini and Aslaminejad, 2010; Takma vd., 2012; Atıl ve Akıllı, 

2015; Sapmaz ve Yercan, 2017) belirtilmiştir.  

Bu bölümde öncelikle hayvancılıkta klasik yöntemler kullanılarak canlı 

ağırlığın tahmin edildiği çalışmalar, daha sonra YSA kullanılarak hayvancılıkta 

yapılmış çalışmalar, bundan sonra hayvancılıkta canlı ağırlığın YSA ve GİY ile 

tahmin edildiği çalışmalar ve tarımsal alandaki diğer çalışmalardan bir literatür 

özeti derlenerek okuyucuya sunulmuştur. 

2.1 Klasik Yöntemlerle Sığırların Canlı Ağırlığının Tahmin Edilmesi 

Amacıyla Yapılan Çalışmalar 

Canlı ağırlığın bilinmesi hayvancılık işletmelerinde çeşitli hastalıkların erken 

tespiti ve işletme karlılığı açısından büyük önem taşımaktadır. Hayvanların 

tartılarak ağırlıklarının belirlenmesi işlemi zahmetli olmasının yanı sıra 

hayvanlarda strese sebep vermesi nedeniyle tercih edilmemektedir. Ayrıca 

işletmelerin büyük çoğunluğunda tartım için kantar bulunmamaktadır. Bu 

nedenlerle bilim insanları 1900’lü yılların başından beri göğüs çevresi, sağrı 

yüksekliği, cidago yüksekliği, vücut uzunluğu, göğüs derinliği, kalça genişliği, 

karın çevresi ve vücut derinliği gibi çeşitli vücut ölçümlerini kullanarak hayvanların 

canlı ağırlıklarını tahmin etmeye çalışmışlardır. Canlı ağırlıkla en yüksek ilişkili 

olan göğüs çevresi geleneksel olarak hayvanların canlı ağırlıklarının tahmin 

edilmesinde en yaygın kullanılan vücut ölçümüdür. Aşağıda bu alanda Çoklu 

Doğrusal Regresyon Analizi kullanılarak yapılmış bazı çalışmalara yer verilmiştir. 
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Branton and Salisbury (1946) 25 baş siyah alaca ve 25 baş esmer olmak üzere 

toplam 50 sığırın vücut ölçümlerini kullandıkları araştırmada, göğüs çevresi ile 

canlı ağırlık arasındaki belirleme katsayısını R2=0.953 olarak tespit etmişlerdir. 

Araştırmacılar sadece siyah alacalarda bu değerin R2=0.910 ve sadece esmer 

sığırlarda R2=0.918 olarak tespit edildiğini bildirmişlerdir.  

Tüzemen et al. (1995) 310 baş siyah alaca buzağının canlı ağırlığını tahmin 

etmek için çeşitli vücut ölçümlerini (göğüs çevresi, vücut uzunluğu, göğüs derinliği, 

cidago yüksekliği) kullanmışlardır. Çalışmada canlı ağırlıkla en yüksek ilişkili 

(R2=0.812) vücut ölçümünün göğüs çevresi olduğunu tespit etmişlerdir. 

Buzağıların doğum ağırlığı ile göğüs çevresi arasındaki belirleme katsayısını dişi 

buzağılarda R2=0.638, erkek buzağılarda R2=0.743 olarak belirlemişlerdir. 

Araştırmada sütten kesim ağırlığı ile göğüs çevresi arasında dişi buzağılarda 

R2=0.643, erkek buzağılarda R2=0.812 olarak verilmiştir. Altı aylık ağırlık ile 

göğüs çevresi arasında ise dişilerde R2=0.569, erkek buzağılarda R2=0.731 olarak 

tespit etmişlerdir. Çalışma sonunda araştırıcılar sadece göğüs çevresi kullanılarak 

doğum, sütten kesim ve altı aylık canlı ağırlığın siyah alaca buzağılarda doğru bir 

şekilde tahmin edilebileceğini bildirmişlerdir. 

Bozkurt (2006), Süleyman Demirel Üniversitesi Tarım İşletmesinde bulunan 

292 baş esmer sığıra ait çeşitli vücut ölçümlerini (göğüs çevresi, vücut uzunluğu, 

vücut derinliği, kalça genişliği, sağrı yüksekliği) canlı ağırlığı tahmin etmek için 

kullanmıştır. Araştırmada, canlı ağırlığı tahmin etmek için tüm vücut özelliklerinin 

kullanıldığı modelde R2=0.941, göğüs çevresi, kalça genişliği ve vücut derinliği 

kullanılan modelde R2=0.94, göğüs çevresi ve vücut uzunluğunun kullanıldığı 

modelde ise R2=0.932 olarak belirlemiştir. Sadece göğüs çevresi kullanıldığı 

durumda ise R2=0.899 olarak belirlendiğini bildirmiştir. 

Özlütürk vd. (2006) Doğu Anadolu Kırmızısı sığırlarda göğüs çevresi ile 

canlı ağırlığın tahmin edilmesi üzerine yürüttükleri araştırmalarında, doğum ağırlığı 

3-24 aylık ve ergin sığırlar olmak üzere farklı yaşlardaki buzağıların canlı 

ağırlıklarını tahmin etmişlerdir. Çalışma sonunda göğüs çevresi ile doğum ağırlığı 

arasındaki belirleme katsayısını R2=0.576 olarak tespit etmişlerdir. Araştırmada 3, 

6, 9, 12, 15, 18 ve 24 ay olmak üzere yedi dönemde erkek esmer sığırlarda canlı 
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ağırlık ile göğüs çevresi arasındaki belirleme katsayısını sırasıyla 0.446, 0.839, 

0.797, 0.891, 0.941, 0.924 ve 0.924 olarak tespit etmişlerdir. Son olarak ergin 

sığırlarda bu değerin 0.815 olarak belirlendiğini ve göğüs çevresinin canlı ağırlığı 

tahmin etmede tek başına yeterli bir vücut ölçümü olduğunu bildirmişlerdir.  

Koç ve Akman (2007), 1-1.5 yaşlı 18 baş siyah alaca tosunun çeşitli vücut 

ölçümlerini (göğüs çevresi, sağrı yüksekliği, cidago yüksekliği vs.) kullanarak canlı 

ağırlıklarını tahmin etmişlerdir. Çalışmada göğüs çevresi, cidago yüksekliği ve 

sağrı yüksekliği ile canlı ağırlık arasındaki belirleme katsayılarını sıyasıyla 0.848, 

0.629 ve 0.77 olarak belirlemişlerdir. Araştırmacılar göğüs çevresinin canlı ağırlığı 

tahmin etmede tek başına yeterli olacağını, cidago yüksekliği ve sağrı yüksekliğinin 

kullanılması ile canlı ağırlığın tahmin edilmesinde doğruluğun artacağını 

bildirmişlerdir. 

Gruber et al. (2018), Avusturya’daki 167 süt işletmesinden alınan 3750 baş 

simental, 1056 baş siyah alaca ve 1500 baş esmer sığırın canlı ağırlıklarını tahmin 

etmek için 11 vücut ölçümünü (göğüs çevresi, karın çevresi, kalça genişliği vs.) 

kullanmışlardır. Araştırıcılar, göğüs çevresi ve karın çevresi kullanılarak elde edilen 

model ile yapılan tahminde en yüksek belirleme katsayısını laktasyon döneminde 

R2=0.82, kuru dönemde R2=0.80 olarak tespit etmişlerdir. Bunun dışında göğüs 

çevresi ve karın çevresi kullanılarak elde edilen modelde RMSE değerinin 32.5kg, 

göğüs çevresi, karın çevresi ve kalça genişliğinin kullanıldığı modelde RMSE 

değerinin 30.4kg olarak tespit edildiğini bildirmişlerdir. 

2.2 Yapay Sinir Ağları Kullanılarak Hayvancılıkta Yapılan Çalışmalar 

Adamczyk et al. (2005) yaptıkları çalışmada besi sığırlarının büyüme 

verilerinden onların karkas performans özelliklerini yapay sinir ağları ile tahmin 

etmeye çalışmışlardır. Çalışmada 120 günlük beside 500 kg ağırlığa kadar ulaşan 

104 baş et sığırının ırk, yaş, kesim ve besi dönemindeki canlı ağırlığı yapay sinir 

ağlarında girdi değişkenleri, sıcak karkas ağırlığı, soğuk karkas ağırlığı gibi 23 

karkas performans özelliğini çıktı değişkenleri olarak tanımlamışlardır. 

Araştırmacılar yapay sinir ağlarında ileri beslemeli geri yayılım algoritması, bir 

gizli katmanda 30 nöron ve lojistik aktivasyon fonksiyonunu kullanmışlar ve döngü 
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sayısını 10000 ile sınırlandırmışlardır. Çalışma sonunda araştırmacılar et 

sığırlarının sıcak karkas ağırlığının yapay sinir ağları ile başarılı bir şekilde 

(R2=0.941) tahmin edilebildiğini belirtmişlerdir. Ayrıca araştırmacılar soğuk 

karkas ağırlığı, etin kuru madde ve protein içeriği, etin su tutma kapasitesi gibi diğer 

karkas performans özelliklerinin de (R2=0.656-0.792) tahmin edilebileceğini 

bildirmişlerdir. 

Fernandez et al. (2007) süt keçilerinde süt verimini tahmin etmek amacıyla 

300 baş süt keçisi sürüsüne sahip bir işletmeden homojen yapıya sahip bir grup 

oluşturmak amacıyla 35 baş süt keçisine ait verileri kullanmışlardır. Araştırıcılar 

beslenme, süt üretimi, laktasyon süresi, ilk kontrol ile doğum sonrasına kadar geçen 

sürelerden oluşan verileri kullandıkları çalışmada yapay sinir ağlarının tahminleme 

başarısını incelemişlerdir. Çalışma sonunda performans kriteri olarak aldıkları hata 

kareler ortalaması (MSE) değerinin 0.36 olarak belirlendiğini, yapay sinir ağlarının 

süt verimini tahminlemede uygun bir yöntem olduğunu bununla birlikte bu fikrin 

güçlendirilmesi için bu konuda daha fazla çalışma yapılmasının gerektiğini 

bildirmişlerdir. 

Hassan et al. (2009) yapay sinir ağlarının süt parametrelerindeki 

değişikliklere dayanarak majör ve minör mastitis patojenlerini saptama 

potansiyelini araştırmak amacıyla yürüttükleri araştırmada, 4852 süt örneğinden 

oluşan bir veri setini kullanarak iki farklı öğrenme modeli (eğitimli ve eğitimsiz) 

ile yapay sinir ağlarının başarısını test etmişlerdir. Çalışma sonunda iki modelin de 

enfeksiyon etkeninin bulaştığı örneklerle bulaşmayanlar arasındaki ayrımı etkili bir 

şekilde yapabildiği, eğitimsiz öğrenme modeline sahip yapay sinir ağlarının 

geleneksel mikrobiyolojik yöntemlerden elde edilen sonuçlarla daha iyi bir uyum 

sağladığı sonucuna vardıklarını bildirmişlerdir. 

“Yapay sinir ağları ve tarımda bir uygulama” isimli doktora çalışmasında 

Küçükönder (2011), Kahramanmaraş ili Dere köy bölgesinde bulunan 30 başlık 

kapalı duraklı süt sığırı ahırında ölçülen barınak içi sıcaklık nem indeksi değerleri, 

kuru termometre sıcaklığı ve çiğlenme noktası sıcaklığı değişkenlerinden oluşan 

veri setini değerlendirmiştir. Sıcaklık ve nem indeksi değerlerini literatürde Frank 

Wierama tarafından önerilen formüller aracılığıyla hesapladıktan sonra yapay sinir 
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ağlarını da kullanarak yaptığı tahminin sonuçlarını karşılaştırmalı olarak 

incelemiştir. Araştırıcı YSA’da farklı modeller kullanıldığında tahminin gücü 

değişse de klasik yöntemle elde edilen değerlerle yüksek oranda tutarlı olduğunu 

bildirmiştir. Ek olarak çalışmasında ağ tasarımı, ara katman sayısı, katmanlarda 

bulunacak nöron sayısı, aktivasyon fonksiyonu seçimi, mimari yapının 

oluşturulması ve ağın eğitiminde kullanılacak olan öğrenme algoritmalarının seçimi 

gibi işlem adımlarını detaylı olarak incelemiştir. Çalışma sonunda 13 farklı eğitim 

algoritmasını inceleyen araştırıcı en az hata (MAPE değeri % 0.0061) ile yapılan 

tahmini Bayesian Regularization algoritmasını kullandıkları durumda elde 

ettiklerini bildirmiştir. 

Akıllı ve Atıl (2014) süt sığırcılığında yapay zekânın kullanımını tanıttıkları 

çalışmada, tarımsal alanda bulanık mantık ve yapay sinir ağları ile yapılmış 

çalışmalara yer vermişlerdir. Yapay zekâ yöntemlerinin süt sığırcılığı alanında 

yetiştirme ve besleme ile ilgili araştırmalarda kullanılan bazı istatistiksel analiz 

yöntemlerine alternatif yöntemler olabileceğini, bulanık mantığın karar destek 

sistemlerinde, yapay sinir ağlarının ise tahminleme amacıyla kullanılabileceğini 

bildirmişlerdir. 

Ali et al. (2015) çeşitli vücut özelliklerinden yararlanarak Harnai 

koyunlarında canlı ağırlığı tahmin etmek amacıyla yapay sinir ağları ve karar ağacı 

yöntemlerinden Sınıflandırma ve regresyon ağacı (Classification And Regression 

Tree-CART), CHAID ve Exhaustive CHAID analizlerinin etkinliğini, 

karşılaştırmalı olarak incelemişlerdir. Çalışmada 161 baş Harnai koyunundan 

alınan vücut uzunluğu, göğüs çevresi gibi dokuz farklı parametreyi girdi 

değişkenleri olarak, canlı ağırlığı ise çıktı değişkeni olarak kullanmışlardır. Veri 

setini %70 eğitim, %20 doğrulama ve %10 test seti olacak şekilde ayıran 

araştırmacılar yöntemlerin tahmin performansını değerlendirmede RMSE, mutlak 

bağıl hata (Relative Absolute Error-RAE), R2 ve düzeltilmiş R2 değerlerini 

kullanmışlardır. Çalışma sonunda bu değerleri CHAID için sırasıyla 1.509, 0.0564, 

0.8377 ve 0.8335 olarak, Exhaustive CHAID için sırasıyla 1.488, 0.0556, 0.8421 

ve 0.8381 olarak, CART için 1.560, 0.0583, 0.8264 ve 0.8220 olarak ve yapay sinir 

ağları için bu değerleri sırasıyla 1.589, 0.0594, 0.8199 ve 0.8154 olarak 

hesaplamışlardır. Araştırıcılar tahmin başarısına göre yöntemlerin Exhaustive 
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CHAID, CHAID, CART ve YSA şeklinde sıralanabileceğini, karar ağacı 

yöntemlerinin canlı ağırlığı tahmin etmedeki başarısının YSA’dan daha yüksek 

olduğunu bildirmişlerdir.  

Eyduran et al. (2017) Pakistanda Yerli Beetal ırkı keçilerin canlı ağırlıklarını 

tahmin etmek için Radyal Temelli Fonksiyonlu (Radial Bases Function-RBF) 

yapay sinir ağları, çoklu doğrusal regresyon, CHAID,  CART, çok katmanlı 

algılayıcı modeli 1 (Multilayer Perceptron-MLP1) ve çok katmanlı algılayıcı 

modeli 2 (Multilayer Perceptron-MLP2) olmak üzere altı farklı yöntem ve modelin 

etkinliğini incelemişlerdir. Çalışmada 205 baş keçiye ait canlı ağırlık verisi 

kullanan araştırıcılar göğüs çevresi, boyun uzunluğu ve vücut uzunluğu gibi altı 

farklı parametre kullanarak canlı ağırlığı tahmin etmeyi hedeflemişlerdir. Çalışma 

sonunda araştırıcılar en yüksek R2 değerinin radyal temelli fonksiyon 

kullanıldığında 0.7470 olarak hesaplandığını, çoklu doğrusal regresyonda bu 

değerin 0.7430 olduğunu, CHAID, MLP2, CART ve MLP1 modellerinde bu 

değerin sırasıyla 0.7183, 0.6954, 0.6743 ve 0.6722 olarak tespit edildiğini 

bildirmişlerdir. Çalışmada elde edilen en düşük MAPE değerinin (%6.8779) çoklu 

doğrusal regresyon yöntemi kullanıldığında, en yüksek MAPE değerinin ise 

(%8.1208) CART yöntemi kullanıldığında tespit edildiğini bildirmişlerdir. 

Pakistanda yetiştirilen 107 baş Mangali koçuna ait altı vücut özelliğini 

kullanarak (vücut uzunluğu, göğüs çevresi, testis ölçümleri vb.) koçların canlı 

ağırlıklarını tahmin etmek amacıyla Çelik vd. (2017) altı farklı yöntemi (CART, 

CHAID, Exhaustive CHAID, MARS, MLP) karşılaştırmışlardır. Çalışma sonunda 

tahmin hatasını azaltma bakımından yöntemleri en iyiden kötüye doğru CART, 

CHAID ve Exhaustive CHAID, MARS_2, MARS_1, RBF, MLP şeklinde tespit 

ettiklerini bildirmişlerdir. Araştırıcılar bu yöntemlerle yapılan tahminlerden MAPE 

değerlerini sırasıyla %5.797, %6.471, %6.486, %7.145, %7.142, %7.572 ve 

%7.856 olarak belirlemişlerdir. Ayrıca araştırmacılar bu yöntemler arasından 

yalnızca MARS yönteminde bir tahmin modeli bulunduğunu bildirmişlerdir. 

Karadaş et al. (2017) yerli Akkaraman koyunlarının laktasyon süt 

verimlerinin tahminlenmesi amacıyla YSA ve veri madenciliği algoritmalarını 

karşılaştırmalı olarak incelemişlerdir. Bu amaçla 250 Akkaraman işletmesinden 



11 

 

 

 

elde edilen veterinerlik giderleri, sağım sayısı, laktasyon süresi gibi 10 farklı girdi 

parametresini kullanarak elde ettikleri verileri %80 eğitim %20 test seti olacak 

şekilde ayırmışlardır. Çalışma sonunda laktasyon süt verimini tahmin etmedeki 

başarılarına göre algoritmaların Exhaustive CHAID, CHAID, YSA, GLM ve 

CART şeklinde sıralanabileceğini, elde edilen RMSE değerlerinin aynı sırayla 

18.41kg, 18.41kg, 18.78kg, 19.21kg, 23.08kg olarak tespit edildiğini ve bu sebeple 

karar ağacı algoritmaları kullanıldığında yapay sinir ağlarına göre daha düşük 

hatayla tahmin yapılabildiğini bildirmişlerdir.   

Takma ve Gevrekçi (2018) yumurta verimini tahmin etmek amacıyla 1955 

yumurtacı tavuktan alınan verilerin %75’ini eğitim %25’ini test setine 

ayırmışlardır. Kuluçka dönemi, canlı ağırlık, eşeysel olgunluğa ulaşma, sıra ve 

eşeysel olgunluk ağırlığının girdi olarak kullanıldığı çalışmada çıktı olarak yumurta 

üretimi tahmin edilmiştir. Araştırmacılar YSA’nın performansını değerlendirmede 

R2, RMSE ve MAD değerlerini kullanmış, test setinde bu değerleri sırasıyla 0.82, 

0.447 ve 3.353 olarak tespit etmişlerdir. Çalışma sonunda YSA’nın yumurta 

verimini tahmin etmede güçlü araçlardan biri olduğunu bildirmişlerdir. 

2.3 Görüntü İşleme Yöntemleri Kullanılarak Hayvancılıkta Yapılan 

Çalışmalar 

Kmet et al. (2000) boğaların karkas performansını tahmin etmek için video 

görüntü analizinden yararlandıkları çalışmada, görüntülerin alınmasında Cannon 

SVC ION RC-260 kamera kullanmışlardır. Çalışmada 63 baş Simental boğaya ait 

görüntülerden boğaların canlı ağırlıklarını doğrusal regresyon modeli ile yüksek bir 

doğrulukla (R2=0.94) tahmin etmişlerdir. Ayrıca kullandıkları yöntemin boğaların 

performans testinde bir seleksiyon kriteri olarak kullanılabileceğini ve bu yöntemin 

düşük maliyetli olmasının yanı sıra pratik olduğunu bildirmişlerdir.  

Lines et al. (2001), yüzmekte olan somon balıklarının ağırlığını tahmin etmek 

için görüntü işleme yöntemlerini kullanmışlardır. Bu amaçla ağırlıkları 0.7 ile 5.7 

kg aralığında değişen 17 somon balığından 60 görüntüyü çeşitli uç çıkarma ve 

bölütleme gibi görüntü işleme yöntemlerine tabi tutarak görüntülerin arka planını 

ve görüntülerdeki diğer balıkları elemine etmişlerdir. Araştırmacılar balıkların 
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bulunduğu kafes ortamının değişkenliğinin ve karmaşık doğasının görüntüleme 

esnasında zorluk çıkardığını bildirmişlerdir. Çalışma sonunda görüntü işleme 

yöntemleriyle otomatik olarak hesaplanabilen doğrusal boyutlar kullanıldığında 

somon balığının ağırlığının %0.5’ten daha düşük bir hata ile tahmin edilebileceğini 

belirtmişlerdir. 

Goyache et al. (2001) makine öğrenmesinde kullanılan algoritmalardan üç 

tanesini (Cubist, SAFE ve M5) kullanarak bir çalışma yürütmüşlerdir. Çalışmada 

Asturiana de los Valles et sığırlarını önden, yan ve arkadan olmak üzere üç açıdan 

görüntülemiş ve bu dijital görüntülerden 63 ana nokta belirleyerek çeşitli vücut 

özelliklerinin (0.325-0.810) aralığında değişen belirleme katsayıları ile tahmin 

edilebildiğini bildirmişlerdir. Araştırmacılar çalışma sonunda makine öğrenmesi ve 

görüntü işleme yöntemlerinin sığırlarda konformasyon değerlendirmesinde 

kullanışlı bir araç olduğunu belirtmişlerdir. 

Özkaya (2006) tez çalışmasında besi sığırlarında çeşitli vücut özelliklerini 

kullanarak canlı ağırlık ve karkas parametrelerini görüntü işleme yöntemleriyle 

tahmin etmeye çalışmıştır. Çalışmada öncelikle vücut ölçümleri alınan 

hayvanlardan daha sonra 155 görüntü elde eden araştırıcı, görüntü kalitesi 

bakımından uygun olan 50 görüntü ile çalışmayı yürütmüştür.  Araştırıcı her biri 

1.56cm2 olan ve 270 adet kareden oluşan asetat planimetreyi kullanarak karkas 

alanını hesapladıktan sonra ayrıca bu alanı sayısal kamera ile de görüntülemiş ve 

elde ettiği verileri çalışmada kullanmıştır. Araştırıcı klasik yöntemlerle yaptığı 

tahminde sadece göğüs çevresi ile elde edilen R2 değerinin 0.81 olduğunu, bütün 

ölçümler (vücut alanı, sağrı yüksekliği, vücut uzunluğu, cidago yüksekliği, sağrı 

genişliği ve beden derinliği) kullanıldığında ise bu değerin 0.86 olarak tespit 

edildiğini bildirmiştir. Besi sığırlarının canlı ağırlıklarının tespitinde klasik 

yöntemde sadece göğüs çevresinin yeterli bir parametre olabileceğini ifade eden 

araştırmacı, görüntü işleme yönteminin canlı ağırlığı ve vücut ölçülerini tahmin 

gücünün düşük olduğunu bildirmiştir. 

Bewley et al. (2008) görüntü işleme yöntemini kullanarak süt sığırlarının deri 

altı yağının dolaylı olarak ölçümünde hem saha araştırmalarında hem de 

yetiştiriciler tarafından çiftliklerde yaygın olarak kullanılan bir yöntem olan vücut 
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kondisyon puanının tahmin potansiyelini araştırmışlardır. Çalışmada 0.5 puan 

aralıkla belirlenen puanlama sisteminde tahmin başarısının %100, 0.25 puan aralıklı 

yapıldığı yöntemde ise bu başarının %92.79 olduğunu ve bu değerin daha fazla sığır 

kullanılarak çalışma yapılması durumunda yükselebileceğini bildirmişlerdir. 

Stajnko et al. (2008) et sığırlarının yan tarafından AGEMA 570 termal 

kamera kullanarak termografik olarak elde ettikleri görüntülerden sığırların vücut 

ölçülerini ve canlı ağırlıklarını tahmin etmeyi amaçlamışlardır. Çeşitli vücut 

özelliklerinin elle ölçülmesi ve termal görüntüler yardımıyla yapılan tahminler 

arasında yüksek düzeyde ve anlamlı korelasyon (r=0.74) bulunduğunu, özellikle 

döl kontrolü boyunca boğaların ağırlıklarının takip edildiği dönemde, bu yöntemle 

tahmin yapmanın hayvanlarda stresi de azaltabileceğini bildirmişlerdir. 

Krukowski (2009), tez çalışmasında ineklerin vücut kondisyon puanlarını 

onların görüntülerinden otomatik olarak tespit edebilecek bir yöntem önermiştir. 

Araştırıcı SR-3000 marka kamera ile elde ettiği üç boyutlu görüntülere filtreleme, 

bölümleme, normalleştirme ve figür çıkarma gibi çeşitli görüntü ön işlemeleri 

yapmıştır. Bu işlemlerden sonra vücut kondisyon puanlamasının 0.5 puan aralıkla 

yapıldığı durumda, tahminin başarısının %100, 0.25 aralıkla yapıldığı durumda ise 

%79 olduğunu ve üç boyutlu görüntülerinden sığırların vücut kondisyon 

puanlamasının başarılı bir şekilde tahmin edilebileceğini bildirmiştir. İkinci 

durumda başarının düşük çıkmasının nedenleri arasında tahminde kullanılan 

yöntemlerin yetersiz olabileceğini ve yapay sinir ağları gibi yöntemler 

kullanıldığında %79 olan bu başarının daha da yükseleceğini düşündüklerini 

bildirmiş, gelecek çalışmalar için yapay sinir ağlarını önermişlerdir. 

Mollah et al. (2010) etlik piliçlerde bilgisayar destekli dijital görüntü analizi 

ile canlı ağırlığı tahmin etme olanaklarını araştırmıştır. Araştırmacılar, 7-42 günlük 

büyüme sürecindeki rastgele 20 civcive ait 1200 görüntüyü kullanarak piliçlerin 

vücut yüzey alanlarını hesaplayıp onların canlı ağırlıklarını, çoklu doğrusal 

regresyon yardımıyla 0.999’luk bir uyumla tahmin edebildiklerini bildirmişlerdir. 

Yöntemin en büyük avantajını ise uzaktan ağırlık belirleme yöntemi olması 

nedeniyle strese sebebiyet vermemesi olarak tanımlamışlardır.  
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Taşdemir (2010), sığırlarda çeşitli vücut özelliklerini ve canlı ağırlığı tahmin 

etmek amacıyla yaptığı doktora araştırmasında, ağırlıkları bilinen 220 baş siyah 

alaca ineği, sağımhane çıkışına kurulan ve hayvanın geçişinin bir sensör yardımıyla 

otomatik olarak tespit edildiği özel olarak tasarlanmış bir fotoğraf stüdyosunda, 

yandan ve üstten ikişer açıdan görüntülemiştir. Araştırıcı görüntülerin otomatik 

olarak alınmasında Delphi programlama dilinde geliştirilen görüntü analizi 

yazılımını, vücut özelliklerinin görüntüden hesaplanmasında MATLAB paket 

programını kullanmıştır. Buradan elde edilen veriler yardımıyla bulanık mantıktan 

yararlanarak geliştirdiği bulanık kural tabanlı sistem ve regresyon analizini 

kullanarak siyah alaca ineklerin canlı ağırlığını tahmin etmiştir. Çalışma sonunda 

regresyonla tahmin edilen sonuçlar ile canlı ağırlık arasında R2=0.96 ve bulanık 

kural tabanlı sistem ile canlı ağırlık arasında R2=0.98 değerini elde ettiğini ve 

görüntü işleme yöntemleriyle canlı ağırlığın güvenilir bir şekilde tahmin 

edilebileceğini bildirmiştir. 

Görüntü işleme yöntemleri ile sığır ve mandalarda çeşitli vücut 

parametrelerini (sağrı yüksekliği, vücut uzunluğu vs.) tahmin etmek için Önal 

(2011) 82 baş boz ırkı sığırı ve 98 baş Anadolu mandasına ait görüntüleri kullandığı 

bir doktora araştırması yapmıştır. Çalışma için bir platform hazırlamış ve bu 

platform üzerinde çeşitli referans noktaları belirleyerek hayvanlarda görüntüleme 

yapmıştır. Bu referans noktalarını Image-Pro Plus 4.5 yazılımına tanıtmış ve 

programda “measure, measurement” sekmesini kullanarak vücut özelliklerine ait 

ölçümler yapmıştır. Araştırmacı vücut alanı kullanılarak canlı ağırlığın tahmin 

edilebileceğini (en yüksek R2=0.92), vücut uzunluğu kullanıldığında ise tahmin 

gücünün düşük olduğunu bildirmiştir. Yine her bir türe ait cidago yüksekliği, sağrı 

yüksekliği, sırt yüksekliği ve oturak yumru yüksekliğinin tahmininde görüntü 

işleme yöntemlerinin ölçü bastonu ve ölçü şeridi gibi araçlarla yapılan klasik 

ölçümlere alternatif olarak kullanılabileceğini, vücut uzunluğu ve gövde 

uzunluğunu belirlemede ise görüntü işleme yöntemlerinin tahmin gücünün düşük 

olduğunu bildirmiştir. 

Kongsro (2014) domuzlarda görüntüden canlı ağırlığı tahmin etmek için üç 

boyutlu Microsoft Kinect kamera kullanmıştır. Çalışmada 50 adet domuzun baş, 

kulak ve kuyruk kısmını çıkardıktan sonra domuzlara ait görüntülerin haritalarını 
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elde etmiştir. Araştırmacı domuzun gerçek ağırlığı ile tahmin edilen ağırlığı 

arasındaki R2 değerinin 0.99 olduğunu ve %4-%5 ortalama mutlak hata yüzdesi 

(MAPE) ile domuzların canlı ağırlıklarının tahmin edebildiğini bildirmiştir. 

Kashiha et al. (2014), her birinde 10 domuz bulunan dört kafese, yerden 2.20 

m yükseklikte bir kamera yerleştirerek domuzların canlı ağırlığını tahmin etmeyi 

amaçlamışlardır. Araştırmacılar elde ettikleri görüntülerdeki piksellerden 

hesapladıkları domuz alanını kullanarak çeşitli matematiksel modeller yardımıyla 

domuzlarda canlı ağırlığı %97.5’luk duyarlılıkla tahmin edebildiklerini 

bildirmişlerdir. 

Alikhanov et al. (2015), yumurta ağırlığını dolaylı olarak ölçmek için görüntü 

işleme yöntemlerinden yararlanmışlardır. Bu amaçla 26 yumurtadan elde edilen 

görüntüleri öncelikle gri resme sonra siyah beyaz resme dönüştürmüşler ve buradan 

çevre, alan, majör ve yan eksen, şekil katsayıları ve yumurta hacmi gibi geometrik 

değişkenleri hesaplayarak regresyon analizi yardımıyla yumurta ağırlığını tahmin 

etmişlerdir. Bu değişkenlerden en önemli olanların yumurta alanı ve hacmi 

olduğunu, tahmin edilen model için R2=0.9439 olarak tespit edildiğini 

bildirmişlerdir. 

Görüntü işleme yöntemlerini kullanarak et sığırlarının canlı ağırlığının 

belirlenmesi isimli çalışmalarında Pradana et al. (2016), et sığırlarının yan 

tarafından ve önünden aldıkları görüntülere çeşitli görüntü segmentasyon ve uç 

çıkarma yöntemlerini uygulamışlardır.  Araştırıcılar görüntüledikleri hayvanların 

kafa ve ayak kısımları dışında kalan bölgeyi siyah beyaz resme dönüştürmüşler ve 

doğrusal regresyon eşitlikleri yardımıyla canlı ağırlığı tahmin etmeye 

çalışmışlardır. Çalışma sonunda %73.21’lik duyarlılıkla sığırların canlı ağırlığını 

tahmin edebildiklerini bildirmişlerdir.  

Bektaş (2016), yüksek lisans tez çalışmasında sığırlarda sağrı, sırt ve cidago 

yüksekliği ile vücut uzunluğu gibi çeşitli morfolojik özellikleri görüntü işleme 

yöntemleri yardımıyla tahmin etmeye çalışmıştır. Çalışmada elle yapılan ölçüm ve 

görüntü işleme yöntemleri ile yapılan tahminler arasındaki farkın istatistiksel olarak 

önemliliğini test etmek amacıyla bağımlı iki grup için t testini kullanmıştır. Çalışma 
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sonunda araştırmacı oturak yumru genişliği (p=0.085), cidago yüksekliği 

(p=0.887), sırt yüksekliği (p=0.214), vücut uzunluğu (p=0.307) ve gövde 

uzunluğunun (p=0.084) elle yapılan ölçümleri ve görüntü işleme yöntemleri 

yardımıyla tahmin edilen değerleri arasında istatistiksel olarak bir farklılık 

olmadığını belirtmiştir. Söz konusu vücut özelliklerinin görüntü işleme 

yöntemleriyle başarılı bir şekilde tahmin edileceğini belirten araştırmacı sağrı 

yüksekliği (p=0.010), oturak yumru yüksekliği (p=0.049) ve göğüs derinliğinin 

(p=0.007) tahmin edilmesinde yöntemin başarısının düşük olduğunu bildirmiştir. 

Shi et al. (2016) binoküler görüntüleme sistemleri ile LabVIEW platformunu 

birlikte kullanarak domuzların otomatik olarak görüntülenmesi ve canlı 

ağırlıklarının tahmin edilmesi amacıyla bir çalışma yürütmüşlerdir. Çalışmada 80 

günde 10 domuzdan elde edilen 1460 derinlik görüntüsünü ve basit doğrusal 

regresyon analizini kullanılarak domuzların vücut uzunluğu (R2=0.94), cidago 

yüksekliği (R2=0.99) ve canlı ağırlığını (R2=0.9931) yüksek belirleme katsayıları 

ile tahmin etmişlerdir. Çalışma sonunda araştırıcılar çalışmada kullandıkları 

yöntemle domuzlarda vücut uzunluğunu 1.88cm, cidago yüksekliğini 0.81cm ve 

canlı ağırlığı 1.759kg hata ile tahmin edebildiklerini bildirmişlerdir. 

Amraei et al. (2018) etlik piliçlerin canlı ağırlıklarını görüntü işleme 

yöntemleriyle tahmin etmek amacıyla yürüttükleri araştırmada yerden 2m 

yükseklikte konumlandırılmış SAMSUNG SM-N9005 dijital kamerayı kullanarak 

30 etlik piliçten 2440 görüntü elde etmişlerdir. Alınan görüntülerde pilicin 

bulunduğu alanın arka plandan ayıklanması için görüntü işleme yöntemlerinden 

görüntü bölütleme ve adaptif eşiklemenin kullanıldığı araştırmada pilicin 

bulunduğu alan beyaz, kalan kısım siyah olacak şekilde görüntü ikili yapıya 

dönüştürülmüştür. Pilicin baş ve kuyruk kısmının kaldırılmasında Chan-Vase 

yöntemini kullanan araştırıcılar daha sonra bu görüntüden alan, çevre ve eksen 

uzunlukları gibi çeşitli parametreleri hesaplamışlardır. Elde edilen ölçüm değerleri, 

dinamik veri tabanlı bir modelleme yaklaşımı olan Transfer Fonksiyon modeli 

kullanılarak etlik piliçlerde canlı ağırlığı tahmin etmişlerdir. Çalışma sonunda 

araştırıcılar etlik piliçlerin canlı ağırlıkları ile yapılan tahmin arasındaki belirleme 

katsayısının R2=0.98 olduğunu bildirmişlerdir.  
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Huang et al. (2018) Çin’in yerli sığır ırklarından olan Qinchuan ırkı sığırlarda 

çeşitli vücut özelliklerini (cidago yüksekliği, sağrı yüksekliği, sırt yüksekliği, göğüs 

derinliği ve vücut uzunluğu) tahmin etmek amacıyla bir çalışma yürütmüşlerdir. 

Araştırıcılar üç boyutlu bir görüntüleme aracı olan LIDAR sensör aygıtını 

kullanarak, ilki 157cm, ikincisi 179cm ve sonuncusu 155cm uzaklıktan üç adet 

sığırı yan kısmından görüntülemişlerdir. Bundan sonra çeşitli görüntü işleme 

yöntemlerini (görüntü bölütleme vs.) kullanarak sığırların olduğu kısmı arka 

plandan ayıklamışlardır. Bu aşamadan sonra çeşitli filtreleme yöntemleri, K-means 

kümeleme analizi gibi bir dizi işlemden geçirdikleri görüntüden vücut ölçümlerini 

tespit etmişlerdir. Çalışma sonunda araştırıcılar belirlenen vücut özellikleri için elle 

yapılan ölçüm ile görüntü işleme yöntemleri yardımıyla hesaplanan değerleri 

kullanarak en düşük hata ile (%0.2)  sırt yüksekliğini ve en yüksek hata (%2) ile 

sağrı yüksekliğini yüksek bir doğrulukla tahmin ettiklerini belirtmişlerdir. Ayrıca 

elle yapılan ölçümün 30-70 dakika arasında sürdüğünü oysa belirtilen görüntü 

işleme yöntemleri yardımıyla bu ölçümün yaklaşık beş dakikalık bir sürede 

tamamlanabildiğini belirtmişlerdir. 

Cozler et al. (2019) Fransa’nın Le Rheu eyaletinde bulunan Mejusseaume 

deneysel süt istasyonunda ineklerin üç boyutlu vücut şekillerini kaydedip analiz 

edebilen bir aracı test etmek amacıyla çalışma yürütmüşlerdir. Çalışmada göğüs 

çevresi, göğüs derinliği ve sağrı yüksekliği gibi vücut özelliklerini tahmin etmek 

amacıyla 30 baş Siyah Alaca inek, deney istasyonuna yerleştirilen her biri bir lazer 

projektör ile desteklenmiş beş kamera bulunan hareketli bir düzenekle taranmıştır. 

Araştırıcılar kameralardan dördü portalın her iki tarafında yerden 0.40m ve 1.77m 

yükseklikte biri ise tepe noktasında yerden 3m yükseklikte olacak şekilde düzenek 

üzerinde kameraları konumlandırmışlardır.   Çalışma sonunda elle ölçülen çeşitli 

vücut özelliklerine ait ölçümler ile otomatik olarak tahmin edilen ölçümler arasında 

en düşüğü R2=0.38 ve en yükseği R2=0.79 olan belirleme katsayıları 

hesaplamışlardır. Araştırıcılar elle ölçümün 2.5 dakikada, otomatik ölçümün 15 

dakikada yapıldığını ancak burada görüntünün alınmasının hızlı olmasına rağmen 

görüntü işlemenin uzun zaman almasından dolayı sürenin uzadığını, görüntü işleme 

süreleri kısaltılabilirse daha hızlı bir tahmin yapılabileceğini belirtmişlerdir.   
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Shi et al. (2019) domuzların vücut uzunluğu, vücut genişliği, vücut 

yüksekliği, kalça genişliği ve kalça yüksekliği gibi vücut özelliklerini tahmin etmek 

amacıyla Çin’in Tianjin şehrinde bulunan Hui Kang domuz çiftliğinde mobil bir 

görüntüleme sistemi kullanarak bir araştırma yürütmüşlerdir. Bu amaçla 70, 100 ve 

130 günlük dönemde 200 domuzu kullandıkları araştırmada, su içme alanında radyo 

frekanslı kimlik tanılama (RFID) cihazı ile domuzları tespit ederek otomatik olarak 

görüntüleme yapmışlardır. Daha sonra uç ve figür çıkarma gibi çeşitli görüntü 

işleme yöntemlerini kullanarak domuz görüntüsünün arka plandan ayıklanmasını 

sağlamışlardır. Araştırıcılar çalışma sonunda elle yapılan ölçümlerle mobil 

görüntüleme sistemi kullanılarak yapılan tahminden elde ettikleri vücut ölçümleri 

arasında 70 günlük dönemde (0.82-0.93) aralığında, 100 günlük dönemde (0.92-

0.94) aralığında ve 130 günlük dönemde tüm vücut özellikleri için 0.93’lük 

belirleme katsayıları hesaplandığını bildirmişlerdir. Araştırıcılar kullandıkları 

mobil görüntüleme sisteminin donanım ve yazılımı birlikte kullanabilen zeki ve 

otomatik bir ölçüm sistemi olduğunu ve geleneksel ölçüm yöntemlerinin yerine 

başarılı bir şekilde kullanılabileceğini bildirmişlerdir. 

Yan et al. (2019), Yak (Tibet) sığırlarının iki boyutlu görüntülerinden 

Photoshop (version CS5, PS) programı aracılığıyla elde ettikleri çeşitli vücut ölçüm 

parametrelerini kullanarak canlı ağırlıklarını tahmin etmeye çalışmışlardır. Bu 

amaçla yerden 75cm yükseklikte konumlandırdıkları Canon 400D kamera ile 

sığırlara yaklaşık 5m mesafeden görüntüleme yapmışlardır. Araştırıcılar 55 Yak 

sığırına ait ilkbahar, yaz ve kış mevsiminde görüntüler almışlardır. Çalışmada en 

yüksek belirleme katsayısının yaz mevsiminde elde edildiğini, bu mevsime ait 

verilerle ve çoklu doğrusal regresyonda vücut diyagonal uzunluğu, cidago 

yüksekliği ve vücut alanının bulunduğu modelde R2 değerini 0.972 olarak tespit 

ettiklerini bildirmişlerdir. En düşük MAPE değerini bahar mevsiminde %3.19 

olarak ve en düşük RMSE değerini yaz mevsiminde 7.52kg olarak tespit 

etmişlerdir. 
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2.4 Görüntü İşleme Yöntemleri ve Yapay Sinir Ağları Kullanılarak Yapılan 

Çalışmalar 

Babalık ve Botsalı (2010) araştırmalarında Çeşit-1252 türü durum buğdayını, 

camsı ve camsı olmayan daneler bakımından sınıflandırmaya çalışmışlardır. Bu 

amaçla bir masaüstü tarayıcı yardımı ile elde ettikleri buğday daneleri 

görüntülerinden, görüntü işleme yöntemleriyle elde ettikleri histogram bilgilerini 

kullanarak, yapay sinir ağı modellerinin sınıflandırma başarılarını incelemişlerdir. 

İlk yöntem olarak eğitimsiz öğrenme modeli olan “Öz Düzenlemeli Harita” 

modelinin, daha sonra ise eğitimli öğrenme modeli olan “Çok Katmanlı Algılayıcı 

(ÇKA)” modelinin sınıflandırma başarısını test etmişlerdir. Çalışma sonunda öz 

düzenlemeli harita modelinin ortalama test başarısını %97.5 olarak tespit 

etmişlerdir. ÇKA ile yapılan sınıflandırmada ise bu başarının, gizli katmanda 10 

nöronun kullanıldığı yapıda %100 olduğunu belirten araştırıcılar durum buğdayının 

sınıflandırılmasında görüntü işleme ve yapay sinir ağlarının başarılı bir şekilde 

kullanılabileceğini bildirmişlerdir. 

Taşova (2011) yüz tanıma için görüntü işleme ve yapay sinir ağlarını 

kullanmıştır. Bu amaçla kişilerin yüz fotoğraflarından belirli sayıda öznitelik 

vektörleri üretmiş, bunları kullanarak eğittiği yapay sinir ağlarının yüz tanımada 

başarılı olduğunu, hatalı işlemlerin ise görüntü alınırken yerle yüz arasındaki açının 

tam 90 derece olmaması, çekim hatası, poz değişkenliği ve dış etmenler gibi 

sebeplerden meydana geldiğini bildirmiştir. 

Görüntü işlemenin tarımsal alanda uygulanabilirliğini test etmek amacıyla 

Sabancı vd. (2012) araştırmalarında, patatesleri boyut olarak sınıflandırmaya 

çalışmışlardır. Bu amaçla öncelikle değişik ebatlardaki patatesler 1.3 mega-piksel 

CCD sensörlü bir web-cam kullanılarak fotoğraflamışlardır. Daha sonra bunlar gri 

seviye resimlere dönüştürülmüş ve program yardımıyla değişik ebattaki patateslere 

ait histogram bilgilerini elde etmişlerdir. Histogram, görüntü üzerindeki piksellerin 

değerlerinin grafiksel ifadesidir. Elde edilen histogram yardımıyla ve görüntü 

işleme yöntemlerinden “otsu metodu” kullanarak eşikleme yapan araştırmacılar 

böylece görüntü üzerindeki nesnelerin arka planı ile nesne hatlarının çıkartılmasını 

sağlamışlardır. Son olarak elde ettikleri ikili resim bilgilerinin boyutlarını eşitlemiş 
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ve resimleri sütun matrise dönüştürmüşlerdir. Patateslerin ikili resim bilgileri, 

logaritmik sigmoid aktivasyon fonksiyonu kullanılan çok katmanlı ileri beslemeli 

geri yayılım sinir ağı ile eğitilmiş ve çalışma sonunda patateslerin başarılı bir 

şekilde büyük, orta ve küçük boy patatesler şeklinde üç grupta sınıflandırıldığını 

bildirilmişlerdir. 

Betonun basınç dayanımını belirlemek amacıyla, Çankaya vd. (2013) görüntü 

üzerinde analitik bir model oluşturmuştur. Araştırıcılar modellemenin başarısını 

test etmek için fotoğraflama işleminden sonra aldıkları numuneleri pres 

makinasında kırmış ve dayanım değerlerini not etmişlerdir. Çalışma sonunda 

görüntü işleme ve yapay sinir ağlarını beraber kullanarak önerdikleri metodun, 

numunelerin pres makinasında kırıldığı tahribatlı deney metodu ile uyumunun 

yaklaşık %98.88 olduğunu bildirmişlerdir. 

Sabancı (2013) doktora çalışmasında, üzerinde ilaçlama ünitesi, kontrol 

ünitesi, bilgisayar ve kameraların olduğu bir ilaçlama robotu geliştirmiştir. 

Araştırıcı robot yardımıyla sıra arasındaki yabancı otları görüntü işleme tekniklerini 

kullanarak, renk bilgisine göre, sıra üzerindeki otları ise görüntü işleme teknikleri 

ve yapay sinir ağlarını kullanarak, şekil ve renk bilgisine göre tespit etmiş ve 

ilaçlama sıvısı (mürekkepli su) uygulamıştır. Araştırıcı çalışma sonunda geliştirilen 

robotun geleneksel ilaç uygulamasına göre yaklaşık %54 daha az ilaç kullandığını, 

bununda insan, hayvan ve çevre sağlığının korunmasının yanı sıra ilaçlama 

maliyetlerini de düşürdüğünü bildirmiştir. 

2.5 Görüntü İşleme Yöntemleri ve Yapay Sinir Ağları Kullanılarak 

Hayvancılıkta Yapılan Çalışmalar 

Yeni doğan kuzuları post desenine göre sınıflandırmayı amaçlayan 

Khojastehkey et al. (2015) 300 kuzuyu dijital kamera ile 40cm mesafeden 

4320x3240 piksel boyutunda fotoğraflamışlardır. Daha sonra çekilen fotoğraflar iki 

farklı senaryo için görüntü işleme teknikleriyle incelenmiştir. İlk senaryoda 

fotoğraflardan alan, çevre, çap, yatay eksen uzunluğu, dikey eksen uzunluğu gibi 

çok sayıda morfolojik ve yapısal figürler çıkarmışlardır. İkinci senaryoda ise yeni 

geliştirilen bir yöntemi kullanmışlardır. Araştırıcılar bu yöntemde orijinal resmi 4 
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eşit alt resme ayırarak daha önce klasik senaryoda çıkardıkları figürlere, orijinal 

resmin parçaları arasındaki varyans ve korelasyonları da ekleyerek, ilk senaryoda 

21 olan figür sayısını 44’ e çıkarmışlardır. Çalışma sonunda araştırıcılar ilk senaryo 

ile yapılan sınıflandırmada yapay sinir ağlarının sınıflama başarısının %92, ikinci 

senaryoda ise bu başarının %100 olduğunu bildirmişlerdir. 

Wongsriworaphon et al. (2015) araştırmalarında çiftlik şartlarında 

domuzların canlı ağırlıklarını, onları rahatsız etmeksizin tahmin etmeye yarayan 

görüntü işlemeye dayalı bir yaklaşım önermişlerdir. Çalışmada bilgisayar destekli 

görüntü yakalama ve Vektör Quantize Zamansal Çağrışımlı Bellek (Vector-

Quantized Temporal Associative Memory-VQTAM) olarak bilinen denetimli 

öğrenme algoritmasına sahip bir yapay sinir ağı modeli kullanmışlardır. 

Araştırıcılar çiftlik tabanının 2.80m üstüne bekleme alanına dik olacak şekilde 

monte ettikleri 640x480 piksel çözünürlükteki bir dijital kamera ile 90x160cm’lik 

bir alanda bekleyen domuzların üzerinden görüntü almışlardır. Elde edilen 

görüntülerden ilk olarak domuzun ağırlık merkezinden sınır noktalarına olan 

uzaklıkları, sonra domuzun çevre uzunluğu için figür çıkarımları yapılmış ve 

buradan hesaplanan değerler 25, 49, 100 ve 169 nöronun kullanıldığı yapay sinir 

ağlarıyla analiz edilmiştir. Çalışma sonunda araştırıcılar 169 nöronun kullanıldığı 

durumda ortalama olarak %2.94’lük bir hata ile domuz canlı ağırlıklarının tahmin 

edilebildiğini bildirmişlerdir. 

Amraei et al. (2017) etlik piliçlerin canlı ağırlıklarının Makine Görmesi 

(Machine Vision) ve yapay sinir ağları kullanılarak tahmin etmek için yürüttükleri 

araştırmada 1 günlük yaşta 30 etlik pilici 42 günlük büyüme dönemi boyunca sabah 

ve akşam olmak üzere günde iki kez görüntülemişlerdir. Araştırmacılar çeşitli 

görüntü işleme yöntemlerini kullanarak pilicin görüntüde bulunan kısmı dışındaki 

gürültü ve arka planı kaldırmış, görüntüden altı farklı vücut parametresi 

hesaplamışlardır. Çalışmada yapay sinir ağlarında kullanılan Bayesian 

Regularization, Levenberg-Marquardt, Scaled Conjugate Gradient ve Gradient 

Descent algoritmaları tahmin başarısı açısından karşılaştırılmıştır. Veri setinin test 

ve eğitim seti olarak ayrıldığı çalışmada araştırıcılar etlik piliçlerin canlı ağırlıkları 

ile tahmin edilen ağırlıkları arasındaki R2 değerlerini sırasıyla 0.984, 0.98, 0.967 ve 

0.946 olarak belirlemişlerdir. Araştırıcılar makine görmesi ve yapay sinir ağlarını 
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kullanarak yürüttükleri araştırmada tespit edilen en yüksek hatanın 50 gramdan 

daha az olduğunu belirtmişlerdir. 

Bhatt et al. (2018) koyunların görüntülerinden canlı ağırlıklarını tahmin 

etmek amacıyla bir çalışma yürütmüşlerdir. Çalışmada 52 koyun görüntüsünü 

öncelikle program yardımıyla manuel olarak kırpan araştırıcılar hayvan görüntüsü 

dışındaki kısımları elemine edecek şekilde hayvanın olduğu kısmı turuncu renkle 

işaretlemişlerdir. Daha sonra araştırıcılar işaretlenen alanı piksel alan hesaplama 

tekniği ile hesaplamışlar ve elde ettikleri verilerin %80’ini eğitim %20’si test seti 

olacak şekilde çapraz doğrulama ile setlere ayırmışlardır. Yapay sinir ağlarında iki 

gizli katman, 5 ve 10 nöron kullanılan çalışma sonunda araştırıcılar, tahmin edilen 

canlı ağırlık değeri ile gerçek ağırlık değeri arasındaki R2 değerini en yüksek 0.81 

olarak belirlemişlerdir.  

2.6 Yapay Sinir Ağları ve Diğer İstatistiksel Yöntemlerin Karşılaştırıldığı 

Çalışmalar 

Grzesiak et al. (2003) 902 baş siyah alaca ineğe ait kısmi laktasyon kayıtlarını 

kullanarak 305 günlük laktasyon süt verimini tahminlemek amacıyla YSA ve ÇDR 

yöntemlerini karşılaştırmalı olarak incelemişlerdir. Veri setininin %50 eğitim, %25 

test ve %25 doğrulama setine ayrıldığı çalışmada, YSA ile tahminde RMSE 

değerinin 485.67kg, ÇDR ile tahminde RMSE değerini 517.31kg olarak 

belirlemişlerdir. Sonuç olarak araştırıcılar YSA’nın diğer biyometrik yöntemlere 

alternatif olarak kullanılabileceğini bildirmişlerdir. 

Perai et al. (2010) kanatlı beslenmesinde kullanılan et ve kemik ununun 

gerçek metabolizma edilebilir enerjisini tahmin etmek için bir araştırma 

yürütmüşlerdir. Çalışmada YSA, parçalı regresyon ve ÇDR analizlerini 

karşılaştırmalı olarak incelemişlerdir. Çalışma sonunda gerçek metabolizma 

edilebilir enerjinin YSA (R2=0.94) kullanıldığında, ÇDR (R2=0.38) ve parçalı 

regresyondan (R2=0.36) daha yüksek doğrulukla tahmin edilebileceğini 

bildirmişlerdir.  
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Takma vd. (2012) siyah alaca ineklerin süt verimi üzerine laktasyon süresi, 

servis periyodu ve buzağılama yılının etkisini araştırdıkları çalışmada ÇDR ve YSA 

yöntemlerinin tahmin başarısını karşılaştırmışlardır. Çalışmada beş laktasyon 

dönemindeki toplam 305 baş sığıra ait veriler kullanılmış, YSA ile elde edilen 

tahminin başarısının (en yüksek R2=0.85 ve en düşük MAPE=%6.1), ÇDR’den (en 

yüksek R2=0.75 ve en düşük MAPE=%24.7) daha yüksek olduğunu bildirmişlerdir. 

Araştırıcılar ileri beslemeli geri yayılımlı YSA’nın süt verimini tahmin etmede 

tercih edilebileceğini bildirmişlerdir. 

Dongre et al. (2012) Sahiwal sığırlarında ilk laktasyon süt veriminin 

tahmininde ÇDR ve YSA’nın tahmin etkinliğini karşılaştırdıkları çalışmada 49 yıl 

boyunca 51 boğadan yavrulatılan 643 Sahiwal ineğine ait 12854 test günü verisini 

kullanmışlardır. Araştırıcılar veri setinin alt setlere ayrılmasında eğitim ve test seti 

için %66.67- %33.33, %75-%25, %80-%20 ve %90-%10 olacak şekilde dört farklı 

veri ayırma durumunu incelemişlerdir. Çalışmada ayrıca LM, BR ve SCG 

algoritmalarının etkinliği de incelemişlerdir. Veri setinin %90 eğitim ve %10 test 

setine ayrıldığı durumda en iyi tahmin sonucunun elde edildiğini belirten 

araştırmacılar, iki gizli katmanda üç ve beş nöron olması durumunda bütün 

algoritmalarda en iyi tahmin sonucuna ulaşmışlardır. Çalışma sonunda SCG 

(R2=0.8608) algoritmasının, BR (R2=0.8587) ve LM (R2=0.8575) 

algoritmalarından daha yüksek belirleme katsayısı ile tahmin yaptığını 

bildirmişlerdir. Ayrıca tüm YSA algoritmaları ile elde edilen sonuçların ÇDR 

(R2=0.8516) analizinden daha yüksek belirleme katsayısı ile tahmin ürettiğini bu 

nedenle YSA’nın 305 günlük ilk laktasyon süt verimini tahmin etmede kullanışlı 

bir alternatif araç olduğunu belirtmişlerdir. 

Atıl ve Akıllı (2015), 1000 baş siyah alaca sığıra ait süt, yağ ve protein verimi 

ile ilkine buzağılama yaşı, sağım günü ve mevsimi, buzağılama aralığı kayıtlarını 

kullanarak YSA ve Kümeleme analizinin sınıflandırma başarılarını 

karşılaştırmışlardır. Çalışmada YSA’nın (R2=0.999, MAPE=%1.77 ve 

RMSE=1.7599) Kümeleme analizinden (R2=0.949, MAPE=%10.48 ve 

RMSE=1.7758) daha yüksek doğrulukla sınıflandırma yapabildiğini 

bildirmişlerdir. 
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Atıl ve Akıllı (2016), süt sığırlarının sınıflandırılmasında YSA ve K-means 

Kümeleme analizini karşılaştırmalı olarak incelemişlerdir. Araştırıcılar çalışmada 

hayvancılık alanında verim özellikleri ve sınıflandırma, örüntü tanıma, 

optimizasyon ve ileri dönük tahminlerin yapıldığı çalışmalara da değinmiş ve 

çalışma sonunda süt sığırlarının sınıflandırılmasında Yapay sinir ağlarının 

Kümeleme analizinden daha iyi sonuç verdiğini bildirmişlerdir. 

Zhag and Goh (2016), inşaat mühendisliğinde sıklıkla kullanılan kazık 

temeller için üretilen kazıkların çakılabilirliğini tahmin etmek için 4072 kazık 

kullanarak yürüttükleri araştırmada YSA ve MARS analizlerinin tahmin 

perormanslarını karşılaştırmışlardır. Araştırıcılar, maksimum basınç gerilmeleri 

için geri yayılımlı YSA kullanıldığında R2=0.970 ve MARS kullanıldığında 

R2=0.957 olarak hesaplamışlardır. Çalışma sonunda iki yöntemin yakın sonuçlar 

ürettiğini, MARS yönteminin esnek modeller oluşturabildiği için YSA’dan daha 

verimli olarak düşünülebileceğini bildirmişilerdir. 

2.7 Yapay Sinir Ağlarında Kullanılan Öğrenme Algoritmalarının 

Karşılaştırıldığı Çalışmalar 

Moosavizadeh et al. (2011) toprak su tutma eğrisini tahminlemek için yapay 

sinir ağlarını kullanmışlardır. Çalışma verisini 59 toprak tekstürü örneğinde 11 

farklı basınçta elde edilmiş toplam 659 hacimsel su içeriği verisi oluşturmaktadır. 

Veri setinin %70 eğitim, %30 test seti olarak ayrıldığı çalışmada beş girdi değişkeni 

ile iki gizli katman ve bir çıktı katmanı olması durumunda LM ve BR 

algoritmalarının etkinliği incelenmiştir. Çalışma sonunda araştırmacılar toprak su 

tutma eğrisinin YSA kullanılarak başarılı bir şekilde tahmin edilebileceğini, LM 

algoritması kullanıldığında elde edilen belirleme katsayısının (R2=0.9645),  BR 

algoritmasından (R2=0.9361) daha yüksek bulunduğunu bildirmişlerdir.  

Bui et al. (2012) heyelan duyarlılık haritalarında YSA’nın uygulanma 

potansiyelini araştırmışlardır. Çalışmada eğim, görünüş, arazi kullanımı, toprak 

tipi, yağış, yollara ve nehirlere olan mesafe gibi 10 farklı parametre girdi olarak, 

heyelanın var olup olmaması çıktı katmanı olarak kullanılmıştır. Araştırıcılar YSA 

ile elde edilen sonuçları daha sonra bir coğrafi bilgi sistemine aktarmış ve heyelan 
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duyarlılık haritası oluşturmuşlardır. Algoritmaların başarılarını değerlendirmede 

uzaktan algılamada kullanılan başarı oranını dikkate aldıklarını belirten 

araştırıcılar, bu oranın LM algoritmasında (%86.1) iken BR algoritmasında (%90.3) 

olduğunu dolayısıyla BR algoritmasının LM algoritmasından daha iyi sonuçlar 

ürettiğini bildirmişlerdir. Ayrıca araştırıcılar literatürde LM algoritmasının en hızlı 

algoritmalardan biri olarak bilindiğini ancak bu algoritma ile eğitimde aşırı uyum 

problemi gözlemlediklerini belirtmişlerdir. 

Akkol vd. (2017) yapay sinir ağları ve çoklu doğrusal regresyon yöntemlerini 

karşılaştırmak amacıyla 475 baş kıl keçisine ait morfolojik özellikleri 

kullanmışlardır. Araştırıcılar ağırlık tahmini bakımından yapay sinir ağlarında 

MAPE değerinin (%4.7957) çoklu doğrusal regresyon analizine göre (%4.8706) 

daha düşük olduğunu ve bu nedenle son yıllarda YSA’nın ÇDR’ye alternatif olarak 

sıklıkla kullanıldığını bildirmişlerdir. Yapay sinir ağlarında üç farklı geri yayılım 

algoritmasının başarısını da test eden araştırıcılar, ortalama mutlak hata yüzdesi 

(MAPE) bakımından Bayesian Regularization algoritmasının tahmin başarısının 

(%4.7957) araştırmada test edilen Scale Conjugate (%4.8248) ve Levenberg 

Marquardt (%4.8975) algoritmalarından daha düşük olduğunu bildirmişlerdir. 

Eren vd. (2016) su kaynaklarına bulaştığında kanserojen etki yaratabilen Cr 

(VI) (Krom-6) ağır metalinin giderilmesinde kullanılan polimer içerikli 

membranların (PIMs) etkinliğini araştırmışlardır. Bu amaçla geliştirilecek YSA’da 

üç farklı algoritmanın (BR, LM ve SCG) tahmin hatasını azaltmadaki etkisini 

karşılaştırmalı olarak incelemişlerdir. Çalışmada 460 veri noktasından sağlanan 

veriler kullanan araştırıcılar zaman, özüt miktarı, özüt tipi, film kalınlığı, 

plastikleştiricinin tipi ve miktarı gibi faktörleri girdi değişkenleri olarak, elimine 

etme miktarını ise çıktı değişkeni olarak ele almışlardır. Araştırıcılar veri setini alt 

setlere ayırırken BR algoritması için verinin %30’u test %70’ini eğitim setine, LM 

ve SCG algoritmaları için %70 eğitim, %15 test ve %15 doğrulama setine 

ayırmıştır. Performans değerlendirme ölçütü olarak belirleme katsayısının (R2) 

kullanıldığı çalışmada araştırmacılar, LM algoritmasının (R2=0.97), BR (R2=0.95) 

ve SCG (R2=0.72) algoritmalarından daha iyi sonuç verdiğini bildirmişlerdir.  
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Kayri (2016), LM ve BR algoritmalarının tahmin başarısını incelediği 

çalışmada 2247 öğrenciden alınan 25 değişkenden oluşan veri setini %70 eğitim, 

%30 test setine ayırmıştır. Araştırmacı aşırı uyum probleminin üstesinden gelmek 

amacıyla geliştirilen BR ve LM algoritmalarının diğer düzenleme tekniklerine göre 

hatayı azaltmada daha etkin olduğunu bildirmiştir. Araştırmacı bu iki algoritmayı 

kullanarak yaptığı denemelerde BR algoritmasını (R2=0.3044) kullandığında, LM 

algoritmasından (R2=0.2789) daha yüksek belirleme katsayısı elde ettiğini 

bildirmiştir. 

Rahimi et al. (2018) yağış tahmini amacıyla zaman serileri için Doğrusal 

Olmayan Dışsal Girdili Otoregresif Ağ  (The Nonlinear Autoregressive Network 

With Exogenous Inputs-NARX) modelinde kullanılan LM ve BR algoritmalarının 

etkinliğini doğrusal regresyon analiziyle karşılaştırmalı olarak incelemişlerdir. 

Çalışmada Malezya’da bulunan Küresel Navigasyon Uydu Sistemleri (Global 

Navigation Satellite Systems-GNSS) istasyonundan alınan sıcaklık, basınç ve nem 

verilerini kullanmışlardır. Araştırıcılar çalışma verisini rastgele %70 eğitim, %15 

test ve %15 doğrulama setine ayırmışlardır. Araştırıcılar yapay sinir ağlarında LM 

ile eğitimde, 25 döngüde RMSE=0.0266, R2=0.5972, BR ile eğitimde 347 döngüde 

RMSE=0.0308, R2=0.5699 olarak tespit etmiş, iki algoritma karşılaştırıldığında LM 

algoritmasının daha iyi sonuçlar ürettiğini bildirmişlerdir. Doğrusal regresyon ve 

yapay sinir ağları karşılaştırıldığında ise doğrusal regresyonla yapılan tahminin 

(RMSE=7.611ve R2=0.01326) performans değerlendirme ölçütleri bakımından 

YSA’dan çok geride kaldığını, YSA’nın yağış tahmininde klasik yönteme göre 

daha başarılı olduğunu bildirmişlerdir. 

Mukherjee and Rajanikanth (2019) hava kirliliği için önemli bir bileşen olan 

nitrik oksidin üzerinde bulunan plazma etkisini simüle etmek amacıyla bir çalışma 

yürütmüşlerdir. Bu amaçla 5 KW gücünde dizel bir jeneratörü laboratuvar 

ortamında çalıştırarak gaz emisyon kaynağı olarak kullanmış, voltaj, frekans, akış 

hızı ve motor yükü verilerini YSA’da girdi değişkenleri olarak tanımlamışlardır. 

Araştırmacılar veri ayırmada altı katmanlı çapraz doğrulama yapmışlar, verinin 

%83’ünü eğitim ve %17’sini test setine ayırmışlardır. Çalışma sonunda BR 

algoritmasının hem eğitim (R2=0.9980) hem de test setinde (R2=0.9506) LM 



27 

 

 

 

algoritmasından (eğitim setinde R2=0.8742, test setinde R2=0.7903) daha iyi 

sonuçlar ürettiğini bildirmişlerdir.
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3. GEREÇ VE YÖNTEM 

Bu bölümde öncelikle hayvan materyalinin nasıl temin edildiği, daha sonra 

makine öğrenmesinde kullanılmak üzere üç boyutlu kamera ile elde edilen hayvan 

görüntülerinden görüntü işleme yöntemleri yardımıyla verilerin nasıl elde edildiği 

hakkında bilgi verilmiş, ayrıca MATLAB komutları kullanılarak görüntülerin 

sayısallaştırılması bir örnekle anlatılmaya çalışılmıştır. MATrix ve LABoratory 

kelimelerinin kısaltması olan MATLAB, teknik bilimler ve mühendislik alanındaki 

hesaplamaların yapılması için geliştirilmiş bir yazılım ve programlama dilidir. Bu 

çalışmada GİY ve YSA analizleri MATLAB R2013a paket programı, ÇDR ve 

CHAID analizleri SPSS v25 paket programı ve MARS analizi Salford Predictive 

Modeler 8 programı deneme sürümü ile yapılmıştır.  

Çalışmanın yöntem kısmında öncelikle makine öğrenmesinin genel bir 

tanıtımı yapılmış ve makine öğrenmesinde kullanılan yaklaşımlardan YSA detaylı 

bir şekilde anlatılmış, daha sonra MARS, ÇDR ve CHAID analizleri hakkında bilgi 

verilmiştir. Yapay sinir ağlarında, ağ topolojisinin oluşturulmasında kullanılan 

parametrelerden bu çalışmada etkisi incelenen Momentum Güncelleme Katsayısı 

(Momentum Update- MU), Öğrenme Oranı (Learning Rate- LR, λ), En Çok 

Başarısız Döngü Sayısı (max fail) ve Döngü Sayısının (Iteration Number) tanıtımı 

yapılmıştır. Bundan sonra verilerin setlere ayrılmasında kullanılan Rastgele Ayırma 

ve Çapraz Doğrulama (Cross Validation-CV) yöntemleri ele alınmıştır. Ayrıca ağın 

performansını etkileyen bir başka faktör olan öğrenme algoritmalarından bu 

çalışmada etkisi araştırılan Levenberg ve Marquardt (Levenberg-Marquardt-LM), 

Bayes düzenlemesi (Bayesian Regularization-BR) ve Adaptif Öğrenme Oranlı 

Gradyan (Gradient Descent with Momentum and Adaptive Learning Rate- GDX) 

algoritmaları hakkında bilgi verilmiştir. 

3.1 Gereç 

Çalışmada sığırların üç boyutlu görüntülerinden yola çıkılarak canlı 

ağırlıklarının tahmin edilmesi amaçlanmış ve hayvan materyali arayışına 

girilmiştir. Öncelikle sağımhane, duraklar ve yürüyüş yolları gibi görüntülemenin 

daha hassas yapılabileceği alanlara sahip süt sığır işletmeleri araştırılmıştır. Ancak 
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İzmir ilinde görüşülen süt sığırı işletmelerinde sığırların canlı ağırlıklarının kayıt 

altına alınmadığı bilgisine ulaşılmıştır. Besi işletmelerinde ise durumun farklı 

olmadığı ve sığırların ağırlıklarının sadece kesime giderken kamyon üzerinde 

topluca tartıldığı bilgisi alınmıştır.  

Sığırlarının ağırlıklarını kayıt altına alan işletme bulmak amacıyla modern 

hayvancılık işletmelerini destekleyen Erzurum Tarım ve Kırsal Kalkınmayı 

Destekleme Kurumu Koordinatörlüğü ile görüşülmüştür. Kurum personelinden 

alınan bilgide destekledikleri altı çiftliğe tartım için kantar verildiği ancak bu 

işletmelerden dördünün faaliyete geçmediği, bir işletmede tartımın altı ayda bir 

yapıldığı ve bu işletmede ise son tartımın bir ay önce gerçekleştiği, kalan son 

işletmede henüz hiç tartım yapılmadığı bilgisine ulaşılmıştır. 

Şekil 3.1. Erzurum İli Damızlık Koyun Keçi Yetiştiricileri Birliği büyükbaş hayvan tartım kantarı 

İstenilen özellikte işletme bulunamadığından canlı hayvan tartımının 

yapıldığı Erzurum İli Damızlık Koyun Keçi Yetiştiricileri Birliği hayvan pazarında 

bulunan Şekil 3.1’de görülen kantara, kurbanlık satışı için getirilen hayvanlardan 

görüntü alınması kararlaştırılmış, birlik başkanından izin alınmasını müteakip 

sığırların tartımı sırasında görüntüleme yapılmıştır. Kantarın tonajının fazla olması 

nedeniyle sığırları kantarda kamera altında sabitlemek, bütün sığırları aynı 
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pozisyonda tutmak, tartım sonucunu merak eden yetiştiricilerin kantarın etrafında 

toplanması ve buna bağlı olarak hayvanların stresli oluşu gibi birçok olumsuzlukla 

karşılaşılmıştır. Bu olumsuzluklara rağmen Apple Ipad Pro tablet bilgisayara bağlı 

Şekil 3.2’de görülen, Tablo 3.1’de teknik özellikleri verilen Structure Sensor üç 

boyutlu kamera ile 573 baş sığıra ait Şekil 3.3’teki gibi 6246 kare görüntü elde 

edilmiştir. 

Şekil 3.2. Structure sensor kamera 

Tablo 3.1. Structure sensor kamera özellikleri 

TEKNİK ÖZELLİKLER 

Boyutlar 119.2mm-29mm-28mm 

Ağırlık 95gr 

Tavsiye edilen menzil 40cm-350cm 

Hassasiyet 40cm’de 0.5mm(%0.15)-3m’de 30mm(%1) 

Çözünürlük VGA(640X480)-QVGA(320X240) 

Kare hızı Saniye başına 30/60 kare 

Batarya ömrü 3-4 Saat aktif kullanım, 1000 saat bekleme 

Görüntüleme alanı Yatay 58°-Dikey 45° 
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Şekil 3.3. Üç boyutlu kamera ile elde edilen sığır görüntüleri 

Kamera Şekil 3.4’te görüleceği üzere 265cm yükseklikte ve 5m2 çekim 

alanıyla konumlandırılmıştır. 

Şekil 3.4. Kameranın kantar üzerinde konumlandırılması 

3.1.1 Hayvan materyali 

Çalışmanın hayvan materyalini Erzurum İli Damızlık Koyun Keçi 

Yetiştiricileri Birliği canlı hayvan pazarına kurbanlık satışı için getirilen, Tablo 

3.2’de ırk ve cinsiyete göre dağılımı verilen 573 baş sığırdan sadece erkek 
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hayvanlardan oluşan ve uygun konum ve kamera açısında görüntü elde edilmiş 244 

baş sığır oluşturmaktadır.  

Kantarın tartım platformunun büyük olması, bütün hayvanlardan aynı 

pozisyonda görüntü elde edilememesine neden olmuştur. Özellikle büyük 

hayvanların vücudunun tamamının kameranın çekim alanına sığmaması ve 

yetiştiriciler tarafından hayvanların ürkmesini önlemek amacıyla başlarına çuval 

geçirilmesi gibi nedenlerle görüntüler kaydedilirken, hayvanın boyun kısmından 

itibaren kalça kısmını da kapsayacak şekilde uygun görüntü açısı yakalandığında 

ekran görüntüsü alınmıştır. Dişi sığırlara ait görüntüler sayıca az olması ve erkek 

sığırlardan morfolojik olarak farklılık gösterebileceği düşünülerek elimine edilmiş 

ve analize dâhil edilmemiştir.  

Tablo 3.2. Hayvan materyalinin ırk ve cinsiyete göre dağılımı 

Sığırın Irkı Dişi Erkek Toplam 

Boz 1 2 3 

Esmer  22 22 

Esmer Melezi 1 97 98 

Doğu Anadolu Kırmızısı  7 7 

Siyah Alaca  3 3 

Siyah Alaca Melezi  16 16 

Simental  18 18 

Simental Melezi 2 261 263 

Şerole Melezi  33 33 

Yerli Kara 5 2 7 

Tespit edilemeyen 20 83 103 

Toplam 29 544 573 

Görüntüler Ipad’in Air Play özelliği ile kablosuz olarak bir dizüstü bilgisayara 

aktarılmıştır. Bu bilgisayarda üstten gözlemlenen hayvan uygun pozisyona 

geldiğinde Ipad’a bluetooth aracılığı ile bağlanan ve kendi klavyesi olan Magic 

Keyboard adlı klavye yardımıyla, ekran görüntüsü kaydedilmiştir. Görüntüleri 

alınan hayvanlara ait ırk, küpe, cinsiyet, ağırlık ve görüntünün alındığı saatler not 

edilmiştir. Görüntülemenin yapılış şeması Şekil 3.5’te verilmiş, tartım sonuçları her 

hayvan için fotoğraflanarak kayıt alına alınmıştır. 
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Şekil 3.5. Görüntülemenin yapılış şeması. 

Çalışmada ağırlıkları 255 kg ile 1000 kg arasında değişen Tablo 3.3’te bazı 

tanımlayıcı istatistikleri verilen 244 erkek et sığırına ait görüntü kullanılmıştır. 

Tablo 3.3. Hayvan materyaline ait bazı tanımlayıcı istatistikler. 

Sığırın Irkı 
Gözlem 

sayısı 

Ortalama 

ağırlık (kg) 

Standart 

hata (kg) 

Şarole Melezi 2 635 70 

Doğu Anadolu Kırmızısı 6 477 41.37 

Esmer Melezi 70 579 16.83 

Siyah Alaca Melezi 12 495 24.9 

Simental Melezi 134 652 9.47 

Yerli Kara 20 421 16.13 

Genel 244 600 8.68 

3.1.2 Görüntü materyali 

Çalışma kapsamında görüntülenen 573 baş sığırın her birinden yaklaşık 11 

kare görüntü alınmış, ancak Şekil 3.6’daki gibi analiz için uygun konum veya kamera 

açısında olmayan hayvanlar analize dâhil edilmemiştir.  
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Şekil 3.6. Çalışmaya dâhil edilmeyen bir sığırın görüntüleri. 

3.2 Yöntem 

Bu kısımda öncelikle tez çalışmasında kullanılan görüntü işleme yöntemleri 

hakkında bilgi verilmiş, MATLAB komutlarıyla alan ve yükseklik 

hesaplamalarının nasıl yapıldığı anlatılmıştır. Daha sonra makine öğrenmesi ve 

makine öğrenmesinde kullanılan yaklaşımlardan yapay sinir ağları, çok değişkenli 

uyarlanabilir regresyon eğrileri, çoklu doğrusal regresyon ve Ki-kare otomatik 

etkileşim belirleme analizi hakkında bilgi verilmiştir. 

3.2.1 Görüntü işleme 

Dijital bir görüntü, en küçük parçası piksel adı verilen parçalardan oluşur ve 

her pikselin sayısal bir değeri vardır. Örneğin ikili (siyah-beyaz) bir resmin piksel 

değerleri 0 ve 1 rakamlarından oluşan bir matristir ve görüntünün dijital olarak 

gösterimi Şekil 3.7’deki gibidir.  
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Şekil 3.7. İkili (binary) bir görüntünün piksel değerleri 

Gri tonlamalı bir resim ise 0 ile 255 arasında değişen rakamlardan oluşur ve 

bu rakamlar Şekil 3.7’dekine benzer bir görüntü matrisi içerisinde tutulur (Şahin, 

2006). RGB görüntüde ise Red (Kırmızı), Green (Yeşil) ve Blue (Mavi) 

bileşenlerinin üç ayrı matrisi vardır ve görüntünün bilgisi bu üç ayrı matriste 0 ile 

255 arasında rakamlardan oluşacak şekilde tutulur. Kırmızı bir pikselin  RGB 

değeri 255-0-0, yeşil bir pikselin  0-255-0 ve mavi bir pikselin 0-0-255 olmaktadır 

(Subaşı, 2011).  

Görüntü işleme, dijital görüntüleme yapan araçlardan elde edilen sayısal 

bilginin çeşitli figür çıkarma yöntemleri veya istatistik tekniklerle işlenerek 

görüntünün özelliklerinin iyileştirilmesi ya da görüntüdeki nesnelerin tanılanması 

olarak tarif edilebilir.  

Tez çalışması kapsamında sığırın üç boyutlu bir kamera aracılığı ile alınan 

derinlik görüntüsünden sığırın üstten sırt (dorsal) alanı hesaplanmak istendiği için 

resmin önce mavi bileşeni elde edilerek hayvanın olduğu bölge diğer alandan 

ayıklanmıştır. Daha sonra bu bileşen siyah-beyaz resme dönüştürülmüş, 1 ve 

0’lardan oluşan matris elde edilerek MATLAB’da otomatik olarak hayvanın 

görüntüde bulunduğu alanın toplam görüntüdeki yüzdesi hesaplanmıştır. İşlemlerin 

basamakları aşağıda ayrıntılı bir şekilde anlatılmıştır. 
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Canlı ağırlık tahmini için elde edilen görüntüler, aşağıdaki komutlar 

kullanılarak işlenmiş ve makine öğrenmesi yaklaşımlarında kullanılmak üzere 

rakamsal veriler elde edilmiştir. Komutların anlatılabilmesi için, görüntü numarası 

28 ve 115, ağırlıkları sırasıyla 740 ve 310 kg olan Şekil 3.8’deki iki hayvana ait 

görüntüler örnek olarak kullanılmıştır. Görüntüler incelendiğinde hayvanın gerçek 

görüntüsü (a), derinlik bilgisinin olduğu görüntü (b) ve yüzey (c) görüntülerinden 

oluşan üç kare mevcuttur. 

Şekil 3.8. Örnek hesaplamanın yapıldığı farklı ağırlıklardaki iki sığırın görüntüsü: Sığırın gerçek 

görüntüsü (a), derinlik bilgisinin olduğu görüntü (b) ve yüzey görüntüsü (c).   

Öncelikle görüntünün uzantısı MATLAB’a tanıtılarak görüntü bir a 

değişkeninin içerisine aşağıdaki komut yardımıyla atanmıştır.  

a=imread('C:\Users\user\Desktop\IHG\28.PNG'); 

Bu görüntüden hayvanın kapladığı alanın yüzdesinin ve hayvanın 

yüksekliğinin hesaplanması için kullanılacak olan Şekil 3.8’de “b” harfiyle 

gösterilen sol alt kısımdaki derinlik bilgisinin olduğu görüntü; 

a=imcrop(a,[0 768 1010 768]); 
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komutuyla kırpılmış ve imshow(a) komutuyla Şekil 3.9’da görüldüğü gibi ekranda 

gösterilmiştir. 

Şekil 3.9. Numarası 28 olan hayvana ait kırpılan görüntü. 

Daha sonra görüntüden zemini ayıklamak için görüntünün Red, Green ve 

Blue (RGB) bileşenlerinden Blue (mavi) bileşeni,  

a=a(:,:,3);  

komutu kullanılarak, görüntü yeniden imshow(a) komutu ile Şekil 3.10’daki gibi 

görüntülenmiştir. 

Şekil 3.10. Numarası 28 olan hayvana ait görüntünün mavi bileşeni 

Bundan sonra aşağıdaki komut yardımıyla resim siyah beyaza dönüştürülerek 

Şekil 3.11’deki gibi görüntülenmiştir; 
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BW=im2bw(a); Imshow(a) 

Şekil 3.11. Numarası 28 olan hayvana ait siyah beyaza dönüştürülen görüntü. 

Hayvanın alanının toplam görüntü alanı içindeki payını hesaplamak için önce, 

» Alan=bwarea(BW); 

komutu kullanılmış ve Alan = 345340 sonucu elde edilmiştir. Bu sonuç aşağıdaki 

komutla piksel değerlerine bölünerek 1’den çıkarılmış ve siyah bölgenin yani 

hayvanın görüntüde kapladığı alanın yüzdesi 0.5548 (%55.48) olarak belirlenmiştir. 

» Alan=1-[Alan/(768*1010)]; 

115 görüntü nolu hayvan için aşağıdaki komutların tamamı tek seferde 

çalıştırılarak, 

a=imread('C:\Users\user\Desktop\IHG\115.PNG'); 

a=imcrop(a,[0 768 1010 768]); 

a=a(:,:,3); 

BW=im2bw(a); 

imshow(BW) 
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t=bwarea(BW); 

Alan=1-[t/(768*1010)]; 

115 görüntü numaralı hayvana ait alan 0.2228 yani % 22.28 ve görüntüsü Şekil 

3.12’deki gibi elde edilmiştir. 

Şekil 3.12. Numarası 115 olan hayvana ait siyah-beyaza dönüştürülmüş görüntü. 

Daha sonra bu hesaplamaların IHG isimli klasörde bulunan bütün hayvanlar 

için otomatik olarak yapılmasını sağlayan aşağıdaki komutlar yardımıyla bütün 

hayvanların alan değerleri hesaplanmış ve bir A değişkenine kaydedilmiştir. 

dosyayeri='C:\Users\user\Desktop\IHG\'; 

dosyaturu='.png'; 

icerik= dir ([dosyayeri,'*',dosyaturu]); 

Rsayisi=size(icerik,1); 

A=zeros(1,Rsayisi); 

for k=1:Rsayisi 

string=[dosyayeri,icerik(k,1).name]; 
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Resim=imread(string); 

Resim=imcrop(Resim,[0 768 1010 768]); 

Resim=Resim(:,:,3); 

BW=im2bw(Resim); 

d=imadjust(Resim,[0 1],[1 0]); 

Alan=bwarea(d); 

Alan=Alan/(768*1010); 

A(k,:)=Alan; 

End 

Sığırların alanları hesaplandıktan sonra elde edilen üç boyutlu görüntüler, 

sığırlarının yüksekliklerini tahmin etmek için de kullanılmıştır. Üç boyutlu kamera 

ile görüntü elde edilirken görüntünün iki boyutu için Ipad’in kendi kamerası 

kullanılırken, üçüncü boyut için gönderilen bir lazer ışığının geri dönüş hızı 

hesaplanarak mesafeyi tanımlayan bir renk değeri atanmaktadır.  

Şekil 3.13. Yükseklik tahmini için kalibrasyon görüntüleri ve renk skalası. 
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Tez çalışması kapsamında, structure sensor kameradaki bu renk ve mesafe 

ilişkisini belirlemek maksadıyla 266cm mesafeden başlanarak 50cm’ye kadar 2’şer 

cm aralıklarla görüntüleme yapılmış ve Şekil 3.13’te görülen renk skalası elde 

edilmiştir. Renk skalasındaki uzak mesafe (mavi renkli) ile yakın mesafelerin 

(kırmızı renkli) renk bilgilerini göstermek amacıyla iki resim Şekil 3.14’te 

verilmiştir.  

Şekil 3.14. Uzak ve yakın mesafede renk değişimi 

Her bir mesafe ile görüntünün RGB değerleri arasındaki ilişkiye ait belirleme 

katsayısı R2=0.9966 olarak hesaplanmıştır. Belirleme katsayısı iki değişkenin 

arasındaki pearson korelasyon katsayısının karesi olup bağımlı değişkendeki 

değişimin yüzde kaçının bağımsız değişken(ler) tarafından açıklandığını gösterir. 

Belirleme katsayısının yüksek bir değer olması nedeniyle, et sığırlarının 

görüntülerinden yüksekliklerini düşük bir hata ile tahmin etmek mümkün 

olmaktadır. Dolayısıyla, gerçek değerlerine çok yakın olan bu yükseklik verileri de 

yapay sinir ağlarında girdi değişkeni olarak kullanılmıştır. Şekil 3.14’te mavi renkte 

görülen ve 266 cm’den alınan klasördeki ilk görüntü MATLAB’de önce bir A 

değişkenine atanmış ve imtool(a) komutu ile resim araçlarında açılmıştır. Daha 

sonra “pixel region” komutu ile her bir pixel’e ait RGB değerlerine ulaşılmıştır. 

Örneğin 266 cm mesafeden alınan görüntünün RGB değerleri Şekil 3.15’te 

görüldüğü gibi R:0, G:145, B:255 olarak belirlenmiştir. Benzer şekilde 60.1cm’den 

alınan görüntü için RGB değerleri sırasıyla 255, 20, 0 olarak tespit edilmiştir. 
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Şekil 3.15. MATLAB pixel region komutu ile piksel değerlerinin görüntülenmesi  

Mesafesi belli olan 244 görüntünün tümü için bu RGB değerleri alınarak 

kaydedilmiş daha sonra Red, Green ve Blue değerleri için Şekil 3.16’daki grafikler 

elde edilmiştir. Mesafe ve renk değerleri arasındaki belirleme katsayısının %100’e 

yakın bir değer olduğu görülmüştür. Hayvanların görüntüsünde sağrı yüksekliğine 

denk gelecek şekilde kuyruk kısmındaki RGB değerleri yardımıyla, daha önce 

anlatıldığı şekilde MATLAB’de imtool komutu kullanılarak, bu değerlere karşılık 

gelen hayvan yükseklikleri tahmin edilmiştir.  

Şekil 3.16. Mesafe ve renk değerleri arasındaki ilişkiyi gösteren grafikler 
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Hayvanların görüntüleri kaydedilirken duruş pozisyonları aynı olmadığı için 

bu işlem otomatik olarak yapılamamış, bu nedenle bütün görüntüler tek tek 

incelenerek sığırların sağrı yükseklikleri hesaplanmıştır. 

3.2.2 Yapay sinir ağları 

Yapay zekanın bir alt dalı olan makine öğrenmesi, istatistik ve bilgisayar 

biliminin hesaplama gücünden yararlanarak makinelerin insanlara benzer şekilde 

bir olayı öğrenebilmesini, bir konu hakkında tahminde bulunmasını ve karar 

verebilmesini sağlayan tekniklerdir. Bu amaçla makine öğrenmesinde birçok 

istatistiksel yöntem ve matematiksel modelden yararlanılmaktadır. Bu tez 

kapsamında YSA, MARS, ÇDR ve CHAID analizleri kullanılarak makine 

öğrenmesi gerçekleştirilmiştir.  

Günümüz dünyasında bilgisayarlar yaşantımızın vazgeçilmez bir parçası 

olmuştur. Çalışma prensipleri her geçen gün geliştirilen bu makineler, bazı 

durumlarda konunun uzmanlarından daha iyi karar verebilecek aygıtlar haline 

gelmiştir. Öyle ki cebimizdeki telefonlar dahi akıllı olarak nitelendirilmektedir. 

Bilgisayar ve telefonların öğrenebilmelerini sağlayan sistemler, genel olarak yapay 

zeka olarak adlandırılmaktadır. Bu sistemlerin çok hızlı gelişmesi bazı bilim 

adamlarını tedirgin etmiştir. Bu konuda dünyanın önde gelen bilim adamlarından 

Stephen Hawking “Yapay zeka, kendisini geliştirmeyi sürdürebilir ve hatta 

kendisini yeniden biçimlendirebilir. Son derece yavaş bir biyolojik evrimle sınırlı 

olan insanlar, bu tür bir güçle yarışamaz” şeklindeki endişesini dile getirmiştir. 

Gelecek için endişe etmeli miyiz? Tartışılabilir ancak bugün, bu sistemler insanoğlu 

için hayatı azami derecede kolaylaştırmaktadır. 

Yapay sinir ağları, insan beyninin belirli bir öğrenme görevini yerine getirme 

prensibini esas alan bir makine öğrenmesi yaklaşımıdır. YSA ile tahmin, 

sınıflandırma, kümeleme kontrol ve karar verme gibi problemlere hızlı çözümler 

üretilebilir (Uğur, 2010).  

İnsan beyninde yaklaşık 100 milyar sinir hücresi bulunur. İnsan düşünüp 

karar verirken ya da bir uyarana tepki verirken bu sinir hücrelerinden bazıları 

elektriksel olarak bilgi alışverişinde bulunur. Biyolojik bir sinir hücresi Şekil 
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3.17’de görüleceği üzere hücre gövdesi, dentrit ve axon adında üç önemli kısımdan 

oluşmaktadır.  

 

Şekil 3.17. Biyolojik sinir hücreleri (Akıllı ve Atıl, 2014’ten). 

Biyolojik bir sinir hücresinde axonlar aracılığıyla hücre gövdesine gelen bilgi, 

işlendikten sonra gerek görülmesi durumunda (sinir hücresinin görevine bağlı 

olarak belirli bir eşik değerin üzerinde ise) dentritler aracılığıyla axon uçlarında 

bulunan ve fiziksel olarak var olmayan sinaps adı verilen boşluklara iletilir ve 

elektriksel olarak diğer sinir hücrelerine sinyal gönderilir. Bu şekilde iki sinir 

hücresi bilgi alışverişinde bulunur. 

Nöron (yapay sinir hücresi) ise biyolojik bir sinir hücresinin fonksiyonlarının 

mantıksal-matematiksel olarak taklit etmeye çalışan yapay sinir ağlarının en temel 

elemanıdır. Şekil 3.18’de bir nöronun yapısı gösterilmiştir.  

 

Şekil 3.18. Bir nöronun yapısının şematik gösterimi 
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Bir nöron; girdi, ağırlıklar, toplama ve aktivasyon fonksiyonları ile çıktı 

elemanlarından oluşur. Nöronlar bir araya gelerek sinir ağlarını oluştururlar. 

Nöronun elemanları aşağıda açıklanmıştır; 

 Girdiler 

Şekil 3.18’de X harfi ile gösterilen elemanlar bir nörona gelen bilgilerdir ve 

girdi olarak adlandırılmaktadır. Ağın öğrenmesi istenilen örneklerden gelen bilgiler 

girdi olabileceği gibi hatanın geri yayılması esnasında hücrenin kendisinden gelen 

bilgiler de girdi olarak adlandırılmaktadır.  

 Ağırlıklar  

Nörona gelen girdiler rastgele olarak atanan başlangıç ağırlık değerleri ile 

çarpılarak toplama fonksiyonuna gönderilir. Daha sonra bu ağırlıkların değerleri 

güncellenmek suretiyle ağın tahmin hatası azaltılmaya çalışılmaktadır. Öğrenme 

gerçekleştiğinde, ağın bilgileri ağırlıklarda saklanmakta, bir tahmin yapılmak 

istendiğinde bu ağırlık değerleri kullanılarak tahmin yapılmaktadır.  

Tablo 3.4. Bazı toplama fonksiyonları (Çayıroğlu, 2019’dan) 

Toplam      

Net= ∑ Xi*Wi
N
i=1   

Ağırlık değerleri girdiler ile çarpılır ve bulunan değerler 

birbirleriyle toplanarak Net girdi hesaplanır. 

Çarpım 

Net= ∏ Xi*Wi
N
i=1   

Ağırlık değerleri girdiler ile çarpılır ve daha sonra 

bulunan değerler birbirleriyle çarpılarak Net Girdi 

hesaplanır. 

Maksimum 

Net=Max(Xi*Wi) 

n adet girdi içinden ağırlıklar girdilerle çarpıldıktan 

sonra içlerinden en büyüğü Net girdi olarak kabul edilir. 

Minimum 

Net=Min(Xi*Wi) 

n adet girdi içinden ağırlıklar girdilerle çarpıldıktan 

sonra içlerinden en küçüğü Net girdi olarak kabul edilir. 

Çoğunluk 

Net= ∑ sgn(Xi*Wi)
N
i=1   

n adet girdi içinden girdilerle ağırlıklar çarpıldıktan 

sonra pozitif ile negatif olanların sayısı bulunur. Büyük 

olan sayı hücrenin Net girdisi olarak kabul edilir. 

Kümülatif toplam 

Net=Net(eski)+ ∑ Xi*Wi
N
i=1   

Hücreye gelen bilgiler ağırlıklı olarak toplanır. Daha 

önce hücreye gelen bilgilere yeni hesaplanan girdi 

değerleri eklenerek hücrenin Net girdisi hesaplanır. 
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 Toplama fonksiyonu  

Girdi bilgileri, Tablo 3.4’te görülen ve YSA’nın öğrenmesi istenilen olaya 

göre seçilmesi gereken toplama fonksiyonlarından birinden geçirilerek Net girdi 

hesaplanır. 

 Aktivasyon fonksiyonu  

YSA’da toplama fonksiyonundan gelen bilgiler Tablo 3.5’te görülen 

aktivasyon fonksiyonları arasından tercih edilen birinden geçirilerek girdi değerine 

karşılık üretilecek çıktı değeri hesaplanır. ÇKA modelinde bu fonksiyonun türevi 

alınabilir bir fonksiyon olması gerekir. Tez çalışması kapsamında bu 

fonksiyonlardan sigmoid fonksiyonu kullanılmıştır. 

Tablo 3.5. Bazı aktivasyon fonksiyonları (Çayıroğlu, 2019) 

Doğrusal 

(Lineer) 

Aktivasyon 

Fonksiyonu  

F(NET) = A* NET 

(A sabit bir sayı) 

Doğrusal problemleri çözmek için 

kullanılır. Toplama fonksiyonundan 

çıkan sonuç, belli bir katsayı ile 

çarpılarak hücrenin çıktısı olarak 

hesaplanır. 

Adım (Step) 

Aktivasyon 

Fonksiyonu 
 

F(NET)= {
1 Eğer NEt>Eşik değer

0 Eğer Net≤Eşik değer
  

Gelen Net girdinin belirlenen bir eşik 

değerin altında veya üstünde 

olmasına göre hücrenin çıktısı 1 veya 

0 değerini alır. 

Sigmoid 

Aktivasyon 

Fonksiyonu 

 

F(NET)=
1

1+e-Net
 

Sigmoid aktivasyon fonksiyonu 

sürekli ve türevi alınabilir bir 

fonksiyondur. Doğrusal olmayışı 

dolayısıyla yapay sinir ağı 

uygulamalarında en sık kullanılan 

fonksiyondur. Bu fonksiyon girdi 

değerlerinin her biri için 0 ile 1 

arasında bir değer üretir 

Tanjant 

Hiperbolik 

Aktivasyon 

Fonksiyonu  

F(NET)=
eNet+e-Net

eNet-e-Net
 

Sigmoid fonksiyonuna benzer. 

Sigmoid fonksiyonunda çıktı 

değerleri 0 ile 1 arasında değişirken 

bu fonksiyonunun çıkış değerleri -1 

ile 1 arasında değişmektedir. 

Eşik Değer 

Fonksiyonu 
 F(NET)= {

0 Eğer Net≤0

Net Eğer 0<Net<1

1 Eğer Net≥1

 

Gelen bilgiler 0’dan küçük ya da eşit 

olduğunda 0 çıktısı,  

1’ den büyük ya da eşit olduğunda 1 

çıktısı, 0 ile 1 arasında olduğunda ise 

yine kendisini veren çıktılar üretir. 

Sinüs 

Aktivasyon 

Fonksiyonu 

 F(NET)=Sin(NET) 

Öğrenilmesi düşünülen olayların 

sinüs fonksiyonuna uygun dağılım 

gösterdiği durumlarda kullanılır 
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 Çıktı  

Şekil 3.18’de Y harfi ile gösterilen eleman, bir nörona gelen girdi bilgilerinin 

çeşitli hesaplamalar ve fonsiyonlardan geçirildikten sonra elde edilen çıktı 

bilgileridir. Bu bir tek çıktı olabileceği gibi birden fazla çıktı da olabilmektedir. 

Geri yayılımlı ağda, ağın ürettiği çıktı bilgileri, ağın öğrenmesi beklenen çıktı 

bilgileri ile karşılaştırılarak elde edilen hatanın minimize edilmesi amaçlanır.  

3.2.2.1 Yapay sinir ağlarında kullanılan öğrenme kuralları  

Yapay sinir ağlarında çoğu öğrenme kuralı Hebb öğrenme kuralına 

dayanmaktadır. Bilinen en eski öğrenme kuralı olan Hebb kuralı bir hücrenin 

kendisi aktif ise bağlı bulunduğu hücreyi aktif yapmaya, pasif ise pasif yapmaya 

çalışır. YSA’da en sık kullanılan öğrenme kuralları Kohonen, Hopfield ve Delta 

öğrenme kurallarıdır. Delta öğrenme kuralı, Hebb kuralının biraz daha geliştirilmiş 

halidir. Bu kurala göre beklenen çıktı ile gerçekleşen çıktı arasındaki farkın 

azaltılması için ağırlıkların sürekli değiştirilmesi gerekir ve ağın ürettiği çıktı ile 

beklenen çıktı arasındaki farkın yani hatanın kareler ortalamasının en az olması 

hedeflenmektedir (Öztemel, 2003). Delta kuralı için örnek bir hesaplama Tablo 

3.6’da verilmiştir. 

Tablo 3.6. Delta öğrenme kuralıyla örnek bir hesaplama 

X Y Ç  Ç ∆  Ç 

0 0 0 0x1+0x1=0<5 0 0 0x3+0x3=0<5 0 

0 1 0 0x1+1x1=1<5 0 0 0x3+1x3=3<5 0 

1 0 0 1x1+0x1=1<5 0 0 1x3+0x3=3<5 0 

1 1 1 1x1+1x1=2<5 0 1 1x3+1x3=6>5 1 

Tablo 3.6’da görülen X ve Y değişkenleri girdi değerleridir. Çıktı değeri Ç, 

eşik değeri b, gözlenen değerler ile beklenen değerler arasındaki fark yani delta ∆ 

simgesiyle ve ağırlıklar W harfleriyle gösterilir. Delta öğrenme kuralı anlatılırken 

mühendislik çalışmalarında sıklıkla kullanılan mantıksal AND operatörü değerleri 

kullanılmıştır. Mantıksal AND operatörüne göre X=0 ve Y=0 iken Ç= 0; X=0 ve 

Y=1 iken aynı zamanda X=1, Y=0 iken Ç=0; X=1 ve Y=1 iken ise Ç=1 değerini 

almaktadır. Ağırlık değerleri (W1, W2), öğrenme oranı (λ) ve eşik değeri (b) 

başlangıçta rastgele olarak seçilir ve küçük değerler alınması durumunda ağın 
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eğitiminin uzaması, büyük değerler alınması durumunda ise ağın lokal minimuma 

takılması söz konusu olabilir. En iyi değerlerin seçimi için geliştirilmiş herhangi bir 

yöntem yoktur (Öztemel, 2003).  

Örnek uygulamada hesaplamaların kısa sürmesi ve konunun anlaşılmasını 

kolaylaştırmak amacıyla ağırlıklar 1, öğrenme oranı 2 ve eşik değer 5 olarak 

alınmıştır. Toplama fonksiyonu olarak Tablo 3.4’te formülü gösterilen 

fonksiyonlardan toplam fonksiyonu, aktivasyon fonksiyonu olarak ise Tablo 3.5’te 

formülü gösterilen adım fonksiyonu kullanılmıştır. Hesaplamalar Eşitlik 3.1-3.7’de 

verilen denklemler yardımıyla aşağıdaki gibi olacaktır; 

Toplama fonksiyonu; 

Σ=X1*W1+Y1*W2                             (3.1) 

Σ=0*1+0*1 = 0 olarak hesaplanmıştır. 

Aktivasyon fonksiyonu eşik değer 5 olarak alındığından; 

Eğer Σ>5 => Ç=1, Σ<5=> Ç=0 ise 

Σ<5 olduğundan örneğimiz için Ç=0 olacaktır. 

Beklenen çıktı değeri de 0 olduğundan beklenen değer ile gözlenen değer 

arasındaki fark yani ∆=0 olacaktır. Bu durumda ağırlıklarda bir güncelleme 

yapılmaksızın bir sonraki örnek veri girdi olarak ağa sunulur. Hesaplamalar 

aşağıdaki gibidir; 

Toplama fonksiyonu Eşitlik 3.2 yardımıyla; 

Σ=X2*W1+Y2*W2                               (3.2) 

Σ=0*1+1*1 = 1 olarak hesaplanacaktır. 

Aktivasyon fonksiyonu ise eşik değer 5 olarak alındığından; 
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Eğer Σ>5 => Ç=1, Σ<5=> Ç=0 ise; 

Σ<5 olduğundan örneğimiz için yine Ç=0 olacaktır. 

Yine ağırlıklarda bir güncelleme yapılmayarak bir sonraki girdi değerleri ağa 

gösterilir. Bir sonraki girdi değerleri aynı olduğundan ağın çıktı olarak 0 değerini 

üreteceği açıktır. Bu nedenle işlem tekrar edilmeyecek bir sonraki veri ile işlemler 

yapılacaktır. Son veride hem X değişkeni hem de Y değişkeni 1 değerlerini almıştır. 

O halde hesaplamalar aşağıdaki gibi olacaktır. 

Toplama fonksiyonu Eşitlik 3.3 yardımıyla; 

Σ=X4*W1+Y4*W2                         (3.3) 

Σ=1*1+1*1 = 2 olarak hesaplanmıştır. 

Aktivasyon fonksiyonu ise eşik değer 5 olarak alındığından 

Eğer Σ>5 => Ç=1, Σ<5=> Ç=0 ise; 

Σ<5 olduğundan örneğimiz için yine Ç=0 olacaktır. 

Ağ yine çıktı olarak sıfır değerini üretmektedir. Ancak beklenen değer bu 

aşamada 1 olduğundan gözlenen değerle 1 birimlik fark oluşacaktır. Yani ∆=1 

olmaktadır. Bu aşamada 1 birimlik farkın ağın elemanlarına dağıtılması yani 

ağırlıkların güncellenmesi gerekmektedir. Bu noktada bir diğer etken ise öğrenme 

oranıdır. Ağırlıklar güncellenirken öğrenme oranı dikkate alınır. Yeni ağırlıklar 

Eşitlik 3.4 ve 3.5 yardımyla; 

W3= W1+ λ *X4                       (3.4) 

W4= W2+ λ *Y4                       (3.5) 

W3= 1+2*1 = 3 olarak ve 
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W4= 1+2*1 = 3 olarak hesaplanmıştır. 

Güncellenen yeni ağırlıklar ile hesaplamalar yeniden yapılacak olursa; 

Toplama fonksiyonu Eşitlik 3.6 yardımıyla; 

Σ=X1*W3+Y1*W4                      (3.6) 

Σ=0*3+0*3 = 0 olarak hesaplanmıştır. 

Aktivasyon fonksiyonu ise eşik değer 5 olarak alındığından; 

Eğer Σ>5 => Ç=1, Σ<5=> Ç=0 ise 

Σ<5 olduğundan örneğimiz için Ç=0 olacaktır. 

Diğer iki girdi değerleri için de bu hesaplamalar yapılacak olursa çıktı 

değerinin 0 olduğu görülecektir. Yine beklenen değerle bir fark oluşmadığı için 

ağırlıklarda herhangi bir güncelleme yapılmaz. Son girdi değerleri için işlem 

aşağıdaki gibi olacaktır.   

Toplama fonksiyonu Eşitlik 3.7 yardımıyla; 

Σ=X4*W3+Y4*W4                         (3.7) 

Σ=1*3+1*3 = 6 olarak hesaplanmıştır. 

Aktivasyon fonksiyonu ise eşik değer 5 olarak alındığından; 

Eğer Σ>5 => Ç=1, Σ<5=> Ç=0 ise 

Σ>5 olduğundan Ç=1 olacaktır. 

Son aşamada beklenen değer 1 olduğundan ağın ürettiği çıktı değeri ile bir 

fark oluşmamıştır. Diğer üç girdi değişkeni içinde beklenen ve gözlenen arasında 
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fark olmadığından güncellenen yeni ağırlıklarla ağın eğitimi tamamlanmış olur. 

Yani mantıksal AND operatörü öğrenilmiştir denilir. 

Ağın öğrenmesi, böyle basit bir örnekte tek bir nöron ve tek katmanlı 

algılayıcı ile mümkün olabilir. Ancak sinir ağları genellikle daha karmaşık 

problemlerin çözümlerinde ve doğrusal olmayan ilişkiler incelendiğinde tercih 

edilmektedir. Doğrusal olmayan veri yapılarından en bilineni XOR problemidir ve 

bu problem yapay sinir ağları çalışmalarının durma noktasına gelmesine neden 

olmuştur. Öyle ki Minsky and Papert (1969) tarafından yazılan “Perceptron” isimli 

kitapta algılayıcıların XOR problemini çözemediği ispatlanınca, YSA için yaklaşık 

20 sene süren bir duraklama devrine girilmiştir. YSA çalışmalarının yeniden hız 

kazanması çok katmanlı algılayıcı modelinin bulunması ile olmuştur. 

3.2.2.2 Yapay sinir ağlarında öğrenme stratejileri  

Genel olarak YSA’da üç farklı öğrenme stratejisi kullanılmaktadır. Bunlar 

eğitimli öğrenme, destekleyici öğrenme ve eğitimsiz öğrenme stratejileridir. 

 Eğitimli öğrenme  

Ağın öğrenmesi istenilen çıktılar ve bu çıktıların öğrenilmesi için gereken 

girdilerin ağa gösterildiği strateji, eğitmenli öğrenme stratejisi olarak 

adlandırılmaktadır (Haykin, 2009). Çok katmanlı algılayıcı modeli bu stratejiyle 

geliştirilmiştir. Çalışmamız kapsamında ağa canlı ağırlık çıktısı ve bu çıktıyı 

öğrenebilmesi için alan ve yükseklik girdileri verilmiştir. Bu nedenle çalışmamızda 

kullandığımız strateji, eğitimli öğrenme stratejisidir.  

 Destekleyici öğrenme  

Ağa girdi değişkenlerinin sunulduğu ancak çıktı değişkenlerinin verilmediği 

bunun yerine üretilen çıktıların doğru veya yanlış olduğu ile ilgili bir sinyal 

verildiği ağ stratejisidir (Öztemel, 2003). 
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 Eğitimsiz öğrenme  

 

Ağa bir çıktı ya da sinyal verilmeyip ağın çıktıları kendisinin ürettiği ağ 

stratejisidir. Çıktıların ne anlama geldiği kullanıcı tarafından yorumlanmaktadır. 

Genellikle kümeleme problemlerinin çözümünde kullanılmaktadır (Öztemel, 

2003). 

3.2.2.3 Yapay sinir ağı modelleri 

YSA fikri ortaya atıldığı günden günümüze kadar farklı problemlere çözüm 

bulmak amacıyla yeni modeller geliştirilmeye devam edilmiştir. Bu modellerden 

bazıları (Öztemel, 2003; Ghosh-Dastidar and Adeli 2009; Haykin, 2009) aşağıda 

verilmiştir; 

- Tek katmanlı algılayıcı 

- Basit algılayıcı modeli (perceptron) 

- Adaline/Madaline 

- Çok katmanlı algılayıcı (eğitimli öğrenme) 

- LVQ modeli (destekleyici öğrenme) 

- ART ağları (eğitimsiz öğrenme)  

- SOM ağları 

- Evrişimsel yapay sinir ağları ve 

- İğnecikli yapay sinir ağlarıdır. 

Çok katmanlı algılayıcı modeli, YSA çalışmalarının durma noktasına geldiği 

bir dönemde geliştirilmiş ve YSA tarihinde yeni bir dönemin başlamasına neden 

olmuştur. Bu model mühendislik problemlerinin hemen hemen hepsine çözümler 

üretebilecek güçtedir (Öztemel, 2003). Özellikle sınıflama, tanıma ve tahmin 

problemleri için çok önemli bir çözüm aracı olması nedeniyle çalışmamızda bu 

model kullanılmıştır. Bu nedenlerle bu bölümde YSA modellerinden sadece ÇKA 

modelinin tanıtımı yapılacaktır.  
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 Çok Katmanlı Algılayıcı (ÇKA)  

YSA’da girdi katmanı ile çıktı katmanı arasına gizli katman ya da katmanlar 

eklendiğinde doğrusal olmayan veri yapılarının öğrenilmesinde başarı 

sağlanmaktadır. Şekil 3.19’da görülen Mantıksal AND operatörü ve XOR 

operatörünün karşılaştırılması incelenecek olursa, mantıksal AND operatöründe 

değişkenler arasında doğrusal bir ilişki olduğundan tek bir doğru çizerek sınıflara 

ayrılabilmektedir. Ancak XOR operatöründe ise tek bir eşik değerinin üzerinde 

kalan kısım ele alındığında yani X=0 ve Y=0 iken çıktı değerinin 0 olması 

sağlanabilirken X=1 ve Y=1 iken çıktı değerinin 0 olması sağlanamamaktadır. 

Daha önce mantıksal AND operatöründe anlatılan hesaplamalar dikkate alınırsa 5 

eşik değerinin üstünde kalan kısım için 1 çıktı değeri üretilmesi sağlanmıştı. Burada 

XOR operatörünün çözümünde bir gizli katman dolayısıyla ikinci bir eşik değeri -

5 olarak alınırsa X=1 ve Y=1 iken 0 çıktısının üretilmesi sağlanabilir. Yani +5 eşik 

değerinin üstü ve -5 eşik değerinin altında 1 çıktısı üretilirken arada kalan değerler 

için 0 çıktısı üretilmekte ve ağın eğitimi bu şekilde tamamlanmaktadır. 

Şekil 3.19. Mantıksal AND operatörü ve XOR operatörünün karşılaştırılması 
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Şekil 3.20’de yapısı gösterilen ileri beslemeli, geri yayılımlı çok katmanlı 

algılayıcı (Feed forward, backpropagation multilayer perceptron) modelinde amaç 

beklenen çıktı değerleri ile gözlenen çıktı değerleri arasındaki hatanın kareler 

ortalamasının azaltılmasıdır.  

 

Şekil 3.20. Çok katmanlı ileri beslemeli geri yayılımlı yapay sinir ağlarının yapısı. 

 İleri beslemeli, geri yayılımlı ağlar  

İleri beslemeli geri yayılımlı yapay sinir ağlarında iki temel adım vardır. 

Öncelikle ileri doğru, girdi bilgileri ile ağırlıklar bir toplama fonksiyonundan 

geçirilerek bir çıktı değeri üretilir, daha sonra bu çıktı değerleri ağın öğrenmesi 

istenen çıktı değerleri ile karşılaştırılarak hata hesaplanır, hatanın azaltılması için 

geriye doğru hesaplama yapılarak ağırlıklar güncellenir. Hatanın azaltılması bir en 

iyileme problemidir ve YSA’da hatayı en aza indirmek amacıyla çeşitli 

optimizasyon tekniklerinden yararlanılmaktadır. En temel yöntem Gradyan azaltma 

(GD) yöntemi olup bu yöntemin amacı türevi alınabilir bir fonksiyon yardımıyla 

Şekil 3.21’de görülen hata uzayında global minimuma ulaşmak için eğimin 

azaltılmasıdır. Literatürde dik iniş, eğim azaltma ve gradyan iniş olarak da geçen 

bu yöntemde hata eğrisi için türevi alınabilir bir nokta seçilerek eğim hesaplanır, 

daha sonra eğimin tersi yönünde giderek eğim adım adım azaltılmak suretiyle 

minimuma ulaşılmaya çalışılır. Bu azaltma işlemi için gerçekleşen her bir adım 

iterasyon olarak adlandırılmaktadır.   
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Şekil 3.21. Hata uzayında gradyan azaltmanın gösterimi. 

Şekil 3.21’de görülen eğimin sıfır olduğu w noktası hatanın en az olduğu 

noktadır. Bu değerin sıfır olması arzu edilir ancak her zaman mümkün 

olmamaktadır. Bu nedenle belirli bir hata toleransı kabul edilerek minimum 

gradyan değeri (GD) belirlenir.  

3.2.2.4 Yapay sinir ağlarında ağ performansını etkileyen parametreler 

YSA’da ağ performansını etkileyen pek çok parametre vardır. Bunlardan tez 

çalışması kapsamında etkinliği araştırılanlar aşağıda özetlenmiştir. 

 Momentum güncelleme katsayısı (MU)  

Öğrenme algoritmasının lokal minimuma takılmaması için geliştirilmiş bir 

katsayıdır. Bu çalışmada birisi MATLAB tarafından önerilen (0.001) olmak üzere 

üç farklı momentum güncelleme (momentum update) katsayısı (0.001, 0.005 ve 

0.01) çeşitli ön denemeler sonucunda etkili olabileceği düşünülerek eğitim 

denemelerinde kullanılmıştır.  

 Öğrenme oranı (LR)  

Öğrenme oranı (learning rate) ağırlıkların ne kadar hızlı güncelleneceğini 

belirleyen bir katsayıdır. Bu çalışmada yapılan ön çalışma sonucunda üç farklı 
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öğrenme oranı (0.01, 0.05 ve 0.1) dikkate alınarak öğrenme oranının etkinliği 

incelenmiştir. 

 Döngü sayısı  

Döngü sayısı bir durdurma kriteri olarak kullanılmaktadır. Bu kriterin doğru 

seçilmediği durumda ağın fazla eğitilmesine (overtraining), bu da eğitim setinde 

çok az hata olmasına karşın test setinde yüksek hatalar oluşmasına neden 

olmaktadır. Yani ağ öğrenmesi gerekirken ezberlemektedir. Aşırı eğitimin önüne 

geçmek için döngü sayısı (epoch) sınırlandırılır. Bu çalışmada, üç farklı döngü 

sayısı (100, 500 ve 1000) çeşitli ön denemelerden sonra belirlenmiş ve bu değerler 

kullanılarak eğitilen ağların performansı değerlendirilmiştir. 

 En iyi döngü sayısı (EDS)  

Yapay sinir ağlarında durdurma kriterleri döngü sayısı ile sınırlı değildir. 

Örneğin gradyan istenilen düzeye ulaştığında da yine ağın eğitimi durmaktadır. Bu 

gibi döngü sayısı dışındaki parametrelere bağlı olarak eğitimin durması durumunda 

ağın kaç döngü yaptığı yine tez kapsamında kayıt altına alınmış ve bu açıdan da 

eğitim algoritmalarının etkinliği irdelenmiştir. 

 Gradyan (GD)  

Yapay sinir ağlarında hatalar Şekil 3.25’deki gibi bir hata uzayında dağılım 

göstermektedir. Bu hataların en azını belirlemek için bir gradyan değeri ile eğimin 

tersi yönde türev alınarak eğim azaltılır ve minimum hata değeri bulunmaya 

çalışılır. Bu çalışmada, yapılan ön denemeler sonucunda etkili olabileceği 

düşünülen üç farklı minimum gradyan değeri (10-7, 10-6 ve 10-5) kullanılarak ağların 

performansına etkisi incelenmiştir. 

 Katman sayısı (KS) 

Çok katmanlı algılayıcı modelinde girdi ve çıktı katmanının yanı sıra gizli 

katman(lar) eklenerek doğrusal olmayan veri yapılarının öğrenilmesi 

hedeflenmektedir. XOR problemi için verilen örnekte anlatıldığı gibi veriyi 
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sınıflandırabilmek için tek bir doğru yeterli olmadığından bir ara katman eklenerek 

çözüm üretilmişti. Katman sayısına bu husus dikkate alınarak verinin yapısına göre 

karar verilebilir. Tez çalışmasında katman sayısının artırılmasının ağ performansına 

etkisi de incelenmek istediğinden üç farklı katman sayısı (1-2-3) denenmiş ve elde 

edilen sonuçlar araştırma bulgularında verilmiştir. 

 Nöron sayısı (NS) 

YSA’da her bir katmanda nöronlar (sinir hücreleri) bulunmaktadır. Girdi ve 

çıktı katmanlarındaki nöronların sayısı bu katmanlardaki değişken sayısına eşittir 

(Ataseven, 2013). Gizli katmanda kaç nöron bulunması gerektiği ile ilgili herhangi 

bir kural bulunmamaktadır. Bu da bir dizi deneme yapmayı gerektirmektedir. 

Çalışmada yükseklik ve alan girdi değişkeni, ağırlık ise çıktı değişkeni olarak 

kullanıldığından girdi katmanında iki, çıktı katmanında bir nöron bulunmaktadır. 

Gizli katman nöron sayısının kaç olacağı bilinmediğinden çeşitli denemeler 

yapılması gerekebilir. Tez çalışmasında yapılan bir ön deneme sonucu ağ 

performansı için uygun olacağı düşünülen gizli katmanda üç, beş ve sekiz nöron 

bulunması durumları denenmiş, nöron sayısının hatayı azaltmadaki etkinliği 

incelenerek bulgular kısmında verilmiştir. 

 Müsaade edilen en çok başarısız döngü sayısı (Max fail) 

YSA’da eğitimin gereksiz yere devam etmesinin önlenmesi amacıyla 

uygulanan durdurma kriterlerinden birisi de doğrulama setinde hatanın artık 

azalmadığı ardışık döngü sayısının sınırlandırılmasıdır. MATLAB’te bu değer 

varsayılan olarak altı alınmıştır. Yani ağın eğitimi esnasında altı döngü boyunca 

doğrulama setinde hata art arda azalmazsa eğitim durdurulmaktadır. BR 

algoritmasında doğrulama seti olmadığından durdurma kriteri yoktur. BR 

algoritmasıyla yapılan denemelerde görüldüğü kadarıyla genellikle MU katsayısı 

belirlenen değere ulaşınca eğitim durmaktadır. Müsaade edilen en çok başarısız 

döngü sayısı, GDX ve LM algoritmalarında doğrulama seti olduğu için eğitimin 

durdurulmasında etkili bir kriter olmuştur. Tez çalışmasında bu değerin altı olarak 

alınması GDX algoritmasında yetersiz eğitimle sonuçlanmış ve hatalar yüksek 

çıkmıştır. Birkaç denemeden sonra LM ve GDX algoritmalarının 
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karşılaştırılabileceği müsaade edilen en çok başarısız döngü sayısı 250 olarak 

belirlenmiştir. Bu değerin 250 alınmasıyla GDX algoritması en çok döngü sayısı 

olan 1000 döngüye kadar eğitime devam etmiştir. LM algoritmasında Şekil 3.22’de 

görüleceği üzere 13 döngüde en düşük hatayı yakalamasına karşın 250+13=263 

döngüye kadar eğitime devam etmiştir. Çalışma bulgularımıza göre LM 

algoritmasında bu değerin 10 olarak alınması önerilmektedir. Ancak GDX 

algoritmasında bu değeri yüksek tutmakta (döngü sayısının %25’i yeterli olabilir) 

fayda görülmektedir. 

3.2.2.5 YSA’da kullanılan öğrenme algortimaları  

YSA’da kullanılan birçok öğrenme algoritması bulunmaktadır. Bunlardan 

MATLAB’de kullanabilir olanlar Tablo 3.7’de verilmiştir. Daliakopoulos et al. 

(2005) bu algoritmalardan LM, BR ve GDX algoritmalarının diğerlerinden 

performans bakımından daha etkili olduğunu bildirmiştir.  Bu nedenle çalışmada, 

LM, BR ve GDX algoritmaları, hatayı azaltmadaki başarıları ve eğitimde geçen 

süreleri bakımından karşılaştırılmıştır.  

Tablo 3.7. MATLAB’te kullanılabilir öğrenme algoritmaları.  

ÖĞRENME ALGORİTMASI 

Levenberg-Marquardt (LM) 

Bayesian Regularization (BR) 

Gradient Descent with Momentum and Adaptive Learning Rate (GDX) 

BFGS Quasi-Newton (BFG) 

Resilient Backpropagation (RP) 

Scaled Conjugate Gradient (SCG) 

Conjugate Gradient with Powell/Beale Restarts (CGB) 

Fletcher-Powell Conjugate Gradient (CGF) 

Polak-Ribiére Conjugate Gradient (CGP) 

One Step Secant (OSS) 

Gradient descent with momentum (GDM) 

Gradient descent (GD) 

 

 Levenberg-Marquardt algoritması  

LM algoritması Levenberg ve Marquardt adlı bilim insanları tarafından 

Newton’un optimizasyon metodu ile gradyan azaltma metodunun güçlü yönlerini 

bir araya getirmek için geliştirilmiştir. Newton metodunda hızlı bir şekilde lokal 
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veya global minimuma yakınsama sağlanırken, gradyan azaltma metodunda yavaş 

bir yakınsama olmasına rağmen daha az lokal minimum problemi yaşanmaktadır. 

LM iki yöntemi beraber ele alarak hem daha hızlı hem de lokal minimuma 

takılmadan bir eğitim gerçekleşmesini amaçlamaktadır (Haykin, 2009).  

LM öğrenme algoritması hata kareler ortalamalarının azaltılmasında Hessian 

matrisini kullanır. Hessian matrisi Eşitlik 3.8’de yer almaktadır; 

H=JTJ                                                     (3.8) 

Burada J Jacobian matrisidir ve ağ hatalarının ağırlıklara göre birinci türevi olup 

Eşitlik 3.9 ile hesaplanır; 

J(n)=
δe(n)

δw(n-1)
                                                                        (3.9) 

Burada; 

n: iterasyon sayısı, 

𝛿: türev sembolü, 

e: ağ hataları vektörü, 

w: bağlantı ağırlıklarıdır. 

Bu durumda gradyan denklemi; 

g = JTe                                                                (3.10) 

ve bağlantı ağırlıkları; 

wk+1=wk[JTJ+μI]
-1

JTe                                              (3.11) 

şeklinde hesaplanır. Burada; 

𝑤𝑘 : k. iterasyondaki ağırlık 

I    : birim matris 

𝜇   : Marquardt parametresidir.   
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Marquardt parametresi sıfır olduğunda Levenberg Marquardt algoritması Newton 

algoritması adını alır (Yetkin, 2015). 

Şekil 3.22’de tez çalışması kapsamında yapılan eğitimlerden birine ait LM 

algoritması performans grafiği verilmiştir. LM algoritması çalışmada kullanılan 

diğer algoritmalara göre daha az döngü sayısı ile eğitimi bitirmiştir. Ancak k-katlı 

çapraz doğrulama ile verinin ayrıldığı durumda, doğrulama (validation) setinin 

olmayışı nedeniyle eğitim durdurulmamış ve müsaade edilen son döngüye kadar 

devam etmiştir. Şekil 3.22’den anlaşılacağı gibi bu durum LM algoritmasında 

yüksek hatalara neden olmaktadır.  

Şekil 3.22. LM algoritması ile eğitimde performans grafiği 

 Bayesian Düzenleme Algoritması:  

Bu algoritma Levenberg-Marquardt algoritması esas alınarak geliştirilmiş bir 

algoritma olup (Küçükönder, 2011) amaç fonksiyonunun parametreleri için 

otomatik olarak optimum değerleri ayarlayan bir algoritmadır (Daliakopoulos et al., 

2004).  
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Şekil 3.23. BR algoritması ile eğitimde performans grafiği 

Şekil 3.23’te tez çalışması kapsamında BR algoritmasıyla yapılan bir eğitimin 

performans grafiği verilmiştir. BR algoritmasıyla eğitimde önce hatalarda büyük 

bir azalma olmuş daha sonra 274 döngüye kadar çok az azalarak devam etmiş ve 

274 döngüde eğitim sonlanmıştır. 

 

 Değişken öğrenme oranlı gradyan azaltma algoritması (GDX)  

 Bu yöntem ağın ağırlık ve eşik değerlerinin hesaplanmasında geri yayılım 

algoritmasını kullanır. Her değişken momentum ile gradyan azaltarak düzeltilir.  

Şekil 3.24. GDX algoritması ile eğitimde performans grafiği 

GDX algoritması, optimizasyonun her bir adımında performans düşerse 

öğrenme oranının artırılması ilkesine dayanır (Daliakopoulos et al., 2004). Şekil 
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3.24’te tez kapsamında yapılan eğitimlerden birine ait performans grafiği 

verilmiştir. GDX algoritmasıyla eğitimde, ağın eğitimi 1000 döngüye kadar devam 

etmekte ve hatalar giderek azalmaktadır. Grafikten de anlaşılacağı üzere döngü 

sayısının düşük tutulması GDX algoritmasında yüksek hatalarla sonuçlanabilir. 

Döngü sayısının artırılması durumunda hataların daha da azalıp azalmayacağı 

sorusu akla gelebilir. Bunu tespit etmek üzere çalışmamızda 100 bin döngüye kadar 

deneme yapılmasına rağmen hatalarda kayda değer bir azalma olmadığı 

(MAPE=%4.85) gözlemlenmiştir. 

3.2.2.6 Yapay sinir ağlarında verilerin normalizasyonu  

Yapay sinir ağlarında ağırlıklar başlangıçta genellikle küçük değerler olarak 

alındığından veri seti büyük rakamlardan oluşuyorsa döngü sayısı ve eğitim süresi 

uzamaktadır. Hatta bazı durumlarda ağın lokal bir minimuma takılıp hatalı sonuçlar 

üretmesine sebep olmaktadır. Bu problemin etkisini gidermek amacıyla verilere 

çeşitli normalizasyon yöntemleri uygulanmaktadır. Verilerin normalize 

edilmesinde genellikle aşağıda formülleri verilen lineer, min-max ve z-skor 

normalizasyon yöntemlerinden biri kullanılmaktadır. Bu çalışmada z-skor 

normalizasyonu kullanılmıştır. 

 Lineer normalizasyon  

Bir veri setindeki tüm verilerin en büyük değere (max) bölünmesi ile verilerin 

normalize edilmesi işlemidir. Veriler 0 ile 1 aralığında değerler alır (Arı ve 

Berberler, 2017). Bu normalizasyon tekniğine ilişkin matematiksel gösterim Eşitlik 

3.12’de verilmiştir; 

                    Xnori
=

xi

xmax
                    (3.12) 

 Min-Max normalizasyonu  

Veri setindeki bütün verileri 0 ile 1 aralığında olacak şekilde standartlaştıran 

bu yöntemde minimum (min) ve maksimum (max) değerler dikkate alınarak diğer 
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bütün değerler bu değerlere göre normalleştirilir (Yavuz ve Deveci, 2012). Bu 

normalizasyon tekniğine ilişkin matematiksel gösterim Eşitlik 3.13’te verilmiştir; 

                          Xnori
=

xi-xmin

xmax-xmin
                                    (3.13) 

 

 Z-Skor normalizasyonu  

Aritmetik ortalama ve standart sapma dikkate alınarak yapılan bu 

normalizasyon tekniğinde veriler normalleştirilerek, veriler arasındaki uzaklık 

ortadan kaldırılır ve verilerdeki uç noktalar azaltılır (Yavuz ve Deveci, 2012). Bu 

normalizasyon tekniğine ilişkin matematiksel gösterim Eşitlik 3.14’ te verilmiştir; 

                       Xnori
=

xi-x̅

σ
                        (3.14) 

3.2.2.7 K katlı çapraz doğrulama 

YSA’da veriler test, eğitim ve geçerlilik setlerine ayrılırken genellikle 

verilerin rastgele olarak belirli oranlarda alt setlere ayrılması tercih edilir. Bu oran 

MATLAB varsayılan ayarlarında %70 eğitim, %15 test ve %15 doğrulama seti 

şeklindedir. Veri seti rastgele olarak ayrıldığında bazı durumlarda setlere düşen 

gözlemler, şansa bağlı olarak uygun geldiğinden düşük hatalar ile eğitim 

gerçekleştirilebilmektedir. Ancak bu hatalar gelecekte yapılacak tahminler için 

tutarlılık göstermeyebilir. Özellikle çalışma kapsamında farklı algoritmaların hatayı 

azaltmadaki etkinliği de incelendiğinden bu durumun önüne geçilebilmesi adına 

veri seti yedi defa rastgele alt setlere ayrılarak eğitilen yedi ağın ortalama hataları 

dikkate alınmıştır. Bunun dışında veri setindeki her bir gözlemin hem test hem de 

eğitim setinde kullanıldığı çapraz doğrulama yöntemi ile de çalışma verisi alt setlere 

ayrılmış ve rastgele ayırma ile elde edilen hataların doğruluğu da test edilmek 

istenmiştir. Bu amaçla verinin yaklaşık olarak %15’i test seti %85’i eğitim seti 

olacak şekilde yedi parçaya ayrılmış, bir parçası test ve altı parçası eğitim verisi 

olacak şekilde eğitim gerçekleştirilmiş, bu yedi ağla yapılan tahminlerdeki MAPE, 

RMSE ve R2 değerlerinin ortalamaları alınmıştır.  
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Gerçekte biyolojik veriler için tahmin yapılmak istendiğinde rastgele ayırma 

ile eğitilen yedi ağdan en düşük hata ile sonuçlanan ağı kullanarak tahmin yapmak 

mümkündür. Ancak çapraz doğrulamada en düşük hata ile sonuç veren ağın 

kullanılması doğru olmaz, çapraz doğrulama kullanılmak üzere bir ağ eğitmek içim 

değil, genelde makine öğrenmesi modelinin başarısını tahminlemek için 

kullanılmaktadır (A. Uğur, 2019, sözlü görüşme). Çapraz doğrulamanın şematik 

gösterimi Tablo 3.8’de verilmiştir. Tablo 3.8’de görüleceği üzere veri seti öncelikle 

yedi kısma ayrılır daha sonra setin ilk bölümü (K1) test seti kalan kısım (K2’den 

K7’ye kadar) eğitim seti olacak şekilde veri seti ayarlanır. Akabinde verinin ikinci 

1/7’lik kısmı test seti kalan kısımların tamamı eğitim seti olacak şekilde ve daha 

sonra bütün veri hem test setinde hem de eğitim setinde kullanılacak şekilde 

gruplandırılarak işlem sonlandırılır. 

Tablo 3.8. Çapraz doğrulama ile verinin ayrılması. 

Kısım 1.Set 2.Set 3.Set 4.Set 5.Set 6.Set 7.Set 

K1 T E E E E E E 

K2 E T E E E E E 

K3 E E T E E E E 

K4 E E E T E E E 

K5 E E E E T E E 

K6 E E E E E T E 

K7 E E E E E E T 

E: Eğitim seti T: Test seti 

Veri sıralı olarak 7 parçaya ayrılacağı gibi rastgele olarak seçilen 7 gruba da 

ayrılmaktadır. MATLAB’te “crossval” komutu ile veri seti rastgele olarak 

ayrılabilmektedir. Bu çalışmada rastgele olarak 7 gruba ayırma tercih edilmiştir. Bu 

tercihin sebebi 244 veri olmasından dolayı test setine verinin yaklaşık olarak 

%15’inin dâhil edilmesidir. 

3.2.3 Çok değişkenli uyarlanabilir regresyon eğrileri (MARS)  

Aralarında sebep sonuç ilişkisi bulunan iki değişken arasındaki doğrusal 

ilişkiyi belirlemek ve bu ilişkiden yola çıkarak bağımlı değişkenin bilinmeyen bir 

değerini tahmin etmeye yarayan tekniğe basit doğrusal regresyon analizi 
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denmektedir. Bağımlı değişkenin tahmin doğruluğunun artırılması amacıyla birden 

çok bağımsız değişken bir arada kullanılmakta ve bu teknik çoklu doğrusal 

regresyon olarak adlandırılmaktadır. Bilgisayar biliminde geçtiğimiz on yıldaki 

gelişmeler ışığında, bu klasik regresyon yöntemlerinden ziyade karmaşık 

algoritmalar kullanan yeni regresyon yöntemleriyle bağımlı değişkenin değeri 

tahmin edilmeye çalışılmaktadır. Bu regresyon yöntemlerinden biri de yüksek 

boyutlu veri setleri için esnek bir modelleme sunan MARS yöntemidir (Friedman, 

1995). Yöntem Chicago doğumlu Amerikan fizikçi Jerome Friedman tarafından 

tanıtılmıştır.  

MARS, bağımlı değişkenin tahmin edilmesinde bir dizi doğrusal regresyon 

kullanan parametrik olmayan bir yöntemdir. Düğüm olarak adlandırılan sınırlar 

arasında regresyon hattının eğiminin değişmesine izin verilerek doğrusal regresyon 

parçaları belirlenir. Sınırlar belirlenirken doğrusal temel fonksiyonlardan 

yararlanılır (Bozağaç, 2014). Parçalı temel fonksiyonlar ve kombinasyonları 

kullanılarak regresyon yöntemlerinde kullanılan hem ileri doğru hem de geriye 

doğru ilerleme algoritmaları yardımıyla MARS modeli elde edilebilir (Temel vd., 

2010). 

 MARS işlemi ileriye gidiş (forward pass), geriye dönüş (backward pass) ve 

yumuşatma (smoothing) olmak üzere üç aşamada gerçekleştirilir. İleriye gidiş aşa-

masında, bağımsız değişkenlere ait eklem fonksiyonları ve isteniyorsa değişkenler 

arasındaki interaksiyonları kapsayan büyük bir uzayda arama yapar. Geriye dönüşte 

önceki aşamada belirlenen fonksiyonlardan modelin tahmin gücüne en az düzeyde 

katkı yapanlar temizlenir. Son aşamada bölüm sınırlarının sürekliliğini sağlamak 

için bir yumuşatma işlemi uygulanır. Bir MARS modeli tahmin eşitliği genel olarak 

matris gösterimiyle aşağıdaki gibi yazılabilir (Cebeci, 2020).  

                            y = f(X) + ε = β0 + mM1 = | βm hm (X) + ε                          3.15 

Burada:  

M: Modeldeki terimlerin sayısı  

y: Bağımlı değişken vektörü (veya çok bağımlı değişken olduğunda matris olur)  

X: Bağımsız değişkenler matrisi  
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β0: Kesme yüksekliği  

βm: m. terime ait regresyon katsayısı  

hm(X): Aday fonksiyonlar kümesi C‘de m. terime ait dayanca fonksiyon veya bu 

fonksiyonlardan iki ve daha fazlasının çarpımı şeklinde bir interaksiyon terimidir.  

MARS yönteminde bağımsız değişkenlere ait verilerin tamamı birkaç alt 

kümeye ayrılır ve her alt bölge için farklı matematiksel denklemler belirlenir. Bu 

matematiksel denklemlerle MARS, bağımsız değişkenler ve bağımlı değişkenin alt 

bölgeleri arasında bağlantılar oluşturur. Bu bağlantıların belirlenmesinde Eşitlik 

3.16 ve 3.17’de verilen fonksiyonlardan yararlanılır (Sevimli, 2009; Köksal, 2017). 

                            (𝑥 − 𝑡)+ = {
𝑥 − 𝑡     ,                    𝑒ğ𝑒𝑟 𝑥 > 𝑡
0            ,              𝑑𝑖ğ𝑒𝑟 𝑑𝑢𝑟𝑢𝑚 

                         (3.16) 

        (𝑥 − 𝑡)− = (𝑡 − 𝑥)+ = {
𝑡 − 𝑥    ,                    𝑒ğ𝑒𝑟 𝑡 > 𝑥
0            ,              𝑑𝑖ğ𝑒𝑟 𝑑𝑢𝑟𝑢𝑚 

                          (3.17) 

Bu temel fonksiyonlar bağımsız değişkenlerin gözlenen değerlerini en uygun t 

düğüm noktalarıyla aralıklara bölen parçalı doğrusal regresyonlardır ve bunlar Şekil 

3.25’te görüldüğü gibi birbirinin yansıması olan çiftlerden oluşur. MARS modeli 

oluşturulurken amaç her bağımsız değişken için xij gözlem değerlerindeki düğüm 

noktalarında bu çifti bulmaktır (Toprak, 2015). 

Şekil 3.25.  Temel fonksiyonların gösterimi (Koc ve Bozdoğan, 2015'ten). 

Yöntemin önemli avantajlarından biri parametrik testlerin gerektirdiği 

varsayımları gerektirmemesidir. Diğer önemli bir avantajı ise bağımsız değişkenin 
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bağımlı değişkenle ve bağımsız değişkenlerin birbirleri ile olan etkileşiminin 

modelle tanımlanması ve grafiksel bir gösterimle sunulmasıdır.  

Şekil 3.26’da tez çalışmasına ait sığırlarda canlı ağırlıklar ile sığırların 

yükseklikleri arasındaki ilişkinin serpilme diyagramı üzerinde MARS modelinin 

grafiksel bir gösterimi verilmiştir. 

Şekil 3.26. MARS modelinin grafiksel gösterimi 

Şekil 3.26’dan sığırların yükseklikleri ile canlı ağırlıkları arasında her ne 

kadar doğrusal bir ilişki söz konusu olsa da doğrusal regresyona ait tahmin denklem 

grafiği ile 125cm’den daha düşük ve 155cm’den daha yüksek boya sahip sığırlar 

için yapılacak tahminde hataların yüksek olacağı görülmektedir. Çoklu doğrusal 

regresyon yönteminin aksine MARS yönteminde temel fonksiyonlar yardımıyla 

125cm’den düşük ve 155cm’den daha yüksek sığırlar için de daha yüksek 

doğrulukla tahmin yapılabilmektedir. Bu da yöntemin başarısını artırmaktadır.  

Yöntemde temel fonksiyonlar kullanıldığından parçalı regresyon yöntemine 

benzemektedir. Ancak iki yöntem arasındaki en önemli fark temel fonksiyonların 

MARS yönteminde otomatik olarak hesaplanmasıdır. Parçalı regresyon 

yönteminde MARS yöntemine benzer şekilde noktasal dağılım düğümlerle 

aralıklara ayrılmakta ancak bu düğümler araştırıcı tarafından ya deneme başında ya 

da sonunda dağılım incelenerek manuel olarak yapılmaktadır (Şahin, 2009). MARS 

yönteminde temel fonksiyonlar elde edilirken regresyon doğrusunun eğiminin 
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değiştiği yani bir noktadan diğerine geçildiği yer olan düğüm noktaları kullanılır. 

Her bir düğümün belirlenmesi farklı değişken kombinasyonlarının denenmesi ile 

elde edilir (Orhan vd., 2018).  

 Bu yöntemde hesaplamalar iki temel adımda yapılmaktadır. İlk adımda ileri 

doğru bütün temel fonksiyonlar (olası bütün etkileşimler) elde edilecek şekilde 

modelin karmaşıklığı en yüksek seviyeye ulaşıncaya kadar temel fonksiyonlar 

eklenerek model büyür. Bu fonksiyonlar, olası bütün bağımsız değişkenlerle ve bu 

değişkenlerin birbirleriyle olan kombinasyonlarını kapsamaktadır. İkinci adımda 

bağımlı değişkenle en az ilişkili olan temel fonksiyonlar Eşitlik 3.18’de verilen 

genelleştirilmiş çapraz doğrulama (Generalized Cross Validation-GCV) kriteri 

kullanılarak modelden çıkarılır (Chou et al., 2004). Bu adıma budama adımı da 

denilmektedir (Temel vd., 2010).  

         𝐿𝑂𝐹(𝑓𝑀̂) = 𝐺𝐶𝑉(𝑀) =
1

𝑁
∑ |𝑦𝑖 − 𝑓𝑀̂ (𝑥𝑖)|

2
/ [1 −

𝐶(𝑀)

𝑁
]
2

𝑁
𝑖=1         (3.18) 

MARS yönteminin modeli Eşitlik 3.18’de verilmiştir (Özfalcı, 2008); 

                                      Y= β
0
+ ∑ α𝑘β

k
K
k=1 (𝑋𝑡)+Ɛ𝑖                         (3.19) 

Burada; 

k  : Düğüm sayısı, 

K  : Temel fonksiyon sayısı, 

X  : Bağımsız değişken, 

𝛼𝑘: k. temel fonksiyonun katsayısı, 

𝛽0: Modeldeki sabit terim,  

t   : Düğüm değeri, 

𝛽𝑘 (𝑋𝑡): k. Temel fonksiyondur. 

Temel fonksiyona ait matematiksel gösterim Eşitlik 3.19’da verilmiştir: 

                                        ∏ [S1,m(Xv(1,m)-t1,m]
Lm

R=1                                   (3.20) 
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Burada; 

 Lm         : Etkileşim derecesini,  

S1,m        : -1 veya +1 işaret değerini, 

Xv(1,m) : Bağımsız değişken değerini ve  

t1,m         : Düğüm değerini göstermektedir. 

3.2.4 Çoklu doğrusal regresyon analizi 

Doğrusal regresyon analizi, iki ya da daha fazla değişkenin aralarındaki 

doğrusal ilişkiyi belirlemek ve bağımlı değişkenin bilinmeyen bir noktadaki 

değerini tahmin edebilmek amacıyla geliştirilmiş bir yöntemdir. Bağımlı değişkeni 

etkileyen bağımsız değişkenin bir tane olması durumunda yöntem basit doğrusal 

regresyon, birden fazla bağımsız değişken olması durumunda çoklu doğrusal 

regresyon adını almaktadır. 

Biyolojik olayların çoğunda bağımlı değişkeni etkileyen birden fazla faktör 

olması nedeniyle basit doğrusal regresyon analizi bilimsel çalışmalar için yetersiz 

kalmaktadır. Bu nedenle araştırmalarda genellikle çoklu doğrusal regresyon analizi 

tercih edilmektedir. Çoklu doğrusal regresyon analizi, aralarında ilişki bulunan bir 

bağımlı ve birden fazla bağımsız değişkeni kullanarak gelecekle ilgili tahminde 

bulunmaya yarayan bir istatistiksel yöntemdir (Takma vd., 2012). Yöntemin amacı 

bağımsız değişkenleri kullanarak bağımlı değişkendeki toplam varyasyonu 

açıklamaktır (Kayaalp, 2015). 

Çoklu doğrusal regresyon analizi; bağımlı ve bağımsız değişkenler arasındaki 

ilişkinin matematiksel modellerle açıklanması ve değişkenler arasındaki 

bağıntıların bulunması, bağımlı değişkeni hangi bağımsız değişkenin daha çok 

etkilediğinin belirlenmesi, değişkenler arasındaki karmaşık yapının açıklanarak 

verinin özetlenmesi ve çoklu korelasyon katsayısı ile çoklu belirleme katsayısının 

hesaplanması amacıyla da kullanılır (Alpar, 2013). Yöntemin modeli Eşitlik 

3.21’de verilmiştir: 

                         Yi= β
0
+β

1
X1+β

2
X2+…+β

j
Xj+…+β

p
𝑋p+Ɛ          (3.21) 
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 Burada Yi bağımlı değişkenin i. gözlem değeri, 𝛽0, 𝛽1, 𝛽2, . . , 𝛽𝑗, … , 𝛽𝑝 ise 

regresyon katsayılarıdır. Bu regresyon katsayılarından herhangi bir 𝛽𝑗  katsayısının 

tahmini, diğer değişkenler sabit tutulduğunda 𝑋𝑗 değişkeninde meydana gelen bir 

birimlik değişime karşılık Yi değişkeninde meydana gelecek değişim miktarını 

verir.  

 Bağımsız değişken sayısı iki olarak düşünülürse model ve parametrelerinin 

tahmin edilmesinde yapılan işlem basamakları aşağıdaki gibi olacaktır (Efe vd., 

2000).  

 Öncelikle modeldeki hatanın kareler ortalamasını minimum yapmak için 

hata terimi yalnız bırakılır ve her iki tarafın kareleri alınacak olursa Eşitlik 3.22 elde 

edilir. 

                           ∑(𝑌𝑖 − 𝛽0 − 𝛽1𝑋1  − 𝛽2𝑋2)
2 = ∑Ɛ𝑖

2                           (3.22) 

 Eşitlik 3.21’de 𝛽0, 𝛽1, 𝛽2 için kısmi türev alınarak sıfıra eşitlenirse hata 

kareler ortalamasını minimum yapacak 𝛽0, 𝛽1, 𝛽2 parametrelerinin tahminleri elde 

edilmiş olur. 

𝛽0 için kısmi türev alınıp sıfıra eşitlenerek Eşitlik 3.23, 

                     ∑𝑌 = (𝑛𝛽̂0 + 𝛽̂1𝑋1 + 𝛽̂2𝑋2)
2                                (3.23) 

𝛽1 için kısmi türev alınıp sıfıra eşitlenerek Eşitlik 3.24, 

               ∑𝑋1𝑌 = 𝛽̂0 ∑𝑋1 + 𝛽̂1 ∑𝑋1
2 + 𝛽̂2 ∑𝑋1 𝑋2                             (3.24) 

𝛽2 için kısmi türev alınıp sıfıra eşitlenerek Eşitlik 3.25,  

                      ∑𝑋2𝑌 = 𝛽̂0 ∑𝑋2 + 𝛽̂1 ∑𝑋1 𝑋2 + 𝛽̂2 ∑𝑋2
2                     (3.25) 

şeklinde elde edilir. 
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Çoklu doğrusal regresyonda hesaplamalar matris notasyonlarında 

yapılmaktadır. β değerinin tahminlenmesinde genellikle en küçük kareler yöntemi 

tercih edilmektedir. Yöntemin modeli matris notasyonu ile Eşitlik 3.26’da 

verilmiştir (Çerçi 2010): 

                                           Y=Xβ+Ɛ                                                (3.26) 

Burada; 

Y: Bağımlı değişken vektörü, 

X: Bağımsız değişken matrisi, 

β: Katsayılar vektörü, 

Ɛ: Hata vektörüdür.  

Regresyon modeli ise Eşitlik 3.27’de verilmektedir: 

                    

[
 
 
 
 
 
 
𝑌1

𝑌2

𝑌3

.

.

.
𝑌𝑛]

 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
1   𝑋11  𝑋12   …   𝑋1𝑝 

1   𝑋21  𝑋22   …   𝑋2𝑝

1   𝑋31  𝑋32   …   𝑋3𝑝

.

.

.
1   𝑋𝑛1  𝑋𝑛2   …   𝑋𝑛𝑝]
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𝛽0

𝛽1

𝛽2

.

.

.
𝛽𝑝]

 
 
 
 
 
 

+

[
 
 
 
 
 
 
Ɛ 1
Ɛ 2
Ɛ 3
.
.
.

Ɛ 𝑝]
 
 
 
 
 
 

               (3.27) 

Üç bilinmeyenli bu denklemler 𝛽0, 𝛽1, 𝛽2 için çözüldüğünde çoklu doğrusal 

regresyonda modelin parametreleri Eşitlik 3.27-3.29’daki gibi olacaktır. 

                         𝛽0 = 𝑌̅ − 𝛽1𝑋̅1 − 𝛽2𝑋̅2                                                  (3.28) 

                         𝛽1 =
𝑆𝑥1𝑦∗𝑆𝑥2𝑥2−𝑆𝑥2𝑦∗𝑆𝑥1𝑥2

𝑆𝑥1𝑥1∗𝑆𝑥2𝑥2−(𝑆𝑥1𝑥2)
2                                             (3.29) 

                          𝛽2 =
𝑆𝑥2𝑦∗𝑆𝑥1𝑥1−𝑆𝑥1𝑦∗𝑆𝑥1𝑥2

𝑆𝑥1𝑥1∗𝑆𝑥2𝑥2−(𝑆𝑥1𝑥2
)
2                                       (3.30) 

 Çoklu doğrusal regresyon analizi doğrusal ve parametrik bir test olması 

nedeniyle bazı varsayımları gerektirir. Bunlar (Alpar, 2013; Osborne, 2003; 

Williams 2013); 
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1- 𝑋𝑗 değişkeni için değerler sabittir, rastlantı değişkeni değildir. 

2- Hata ortalamaları sıfırdır. 

3- Değişkenler normal dağılım göstermektedir. 

4- Değişkenler hata olmadan (güvenilir) ölçülmüş ve varyansları homojendir. 

5- Bağımlı ve bağımsız değişkenler arasında doğrusal bir ilişki vardır. 

6- Bağımsız değişkenler arasında yüksek derecede bir ilişki (otokorelasyon) 

yoktur, şeklindedir. 

Bağımsız değişkenler arasında yüksek derecede bir ilişki olup olmadığının 

saptanması için kullanılan en yaygın yöntem varyans artırıcı faktör (Variance 

Inflation Factor-VIF) kullanılmasıdır. VIF değeri, her defasında bir bağımsız 

değişkenin bağımlı değişken, diğerlerini bağımsız değişken olarak alınmasıyla 

hesaplanan belirleme katsayıları yardımıyla Eşitlik 3.31 kullanılarak hesaplanır. 

                                     𝑉𝐼𝐹(𝑋𝑖) = 1/(1 − 𝑅𝑖
2)                                           (3.31)  

Bağımlı kabul edilen bağımsız değişken ile bağımsız değişkenler arasında 

ilişki yoksa belirleme katsayısı sıfır olacağından VIF değeri 1 olacaktır. İlişki var 

ve örneğin 𝑅1
2 = 0.90 düzeyinde ise VIF değeri Eşitlik 3.31 yardımıyla, 

                                𝑉𝐼𝐹(𝑋1) =
1

1−𝑅1
2 =

1

1−0.90
= 10                                        (3.32) 

olarak hesaplanacaktır. Eğer VIF≥10 ise anlamlı çoklu bağlantı durumu söz 

konusudur (Albayrak, 2012).     

3.2.5 CHAID analizi 

Bilimsel çalışmalarda tahmin ve sınıflandırma problemlerinin çözümünde 

sıklıkla tercih edilen istatistiksel yöntemlerden biri de karar ağaçlarıdır. Karar 

ağaçları, bağımlı değişkenin bağımsız değişkenlerle ve bağımsız değişkenlerin 

kendi aralarında olan ilişkilerini dikkate alan, bir dizi karar kuralları uygulamak 

suretiyle veri setini kendi içinde mümkün olduğunca homojen, gruplar arasında 

heterojen olacak şekilde küçük gruplara bölen ağaç şeklinde diyagrama sahip bir 

makine öğrenmesi yaklaşımıdır. Karar ağaçları yönteminde ağaç diyagramının 
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oluşturulması amacıyla pek çok algoritma geliştirilmiştir. Bu algoritmalara ağaç 

büyütme algoritmaları da denilmektedir. Bilimsel çalışmalarda kullanılan karar 

ağacı algoritmalarından bazıları aşağıda verilmiştir (Yılmaz, 2012; Albayrak ve 

Yılmaz, 2009; Hssina et al, 2014). 

 

- ID3 

- C4.5  

- C5.0 

- AID (Automatic Interaction Detector) 

- CART (Classification and Regression Trees) 

- SLIQ (Supervised Learning in Quest) 

- SPRINT (Scalable Parallelizable Induction of Decision Trees) 

- QUEST (Quick, Unbiased, Efficient Statistical Tree) 

- MARS (Multivariate Adaptive Regression Splines) 

- CHAID (Chi-Squared Automatic Interaction Detector) 

- Exhaustive CHAID ( Exhaustive Chi-Squared Automatic Interaction  

 Detector) 

Karar ağacı algoritmalarının çoğunda ağaç diyagramı ikili olarak 

dallanmaktadır. Yani veri seti tekrarlamalı olarak bağımsız değişkenle en yüksek 

varyansa sahip olacak şekilde iki gruba ayrılarak analize devam edilir. Tez 

çalışmasında kullanılan CHAID analizi yöntemi, Kass (1980) tarafından bu 

algoritmaların ikiden fazla dallanmama ve eksik gözlemlerden etkilenme 

dezavantajlarını ortadan kaldırmak amacıyla geliştirilen, bilimsel araştırmalarda en 

yaygın kullanılan karar ağacı algoritmalarından biridir. Bu analizde kullanılan 

değişkenler kesikli, sürekli veya kategorik olabilmekte ve aynı anda modele dahil 

edilebilmektedir. Yöntemin önemli avantajları ağaç şeklindeki diyagram çıktısı 

sayesinde sonuçların kolayca yorumlanabilmesi ve parametrik testlerin gerektirdiği 

normallik ve doğrusallık gibi varsayımların bu yöntemde olmayışıdır.   

Ağaç diyagramı oluşturulurken bağımlı değişkenin sürekli bir değişken 

olması durumunda Eşitlik 3.33’te verilen F test istatistiği kullanılır (Ölmez, 2017):  
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                                𝐹 =
∑ ∑

𝑤𝑛𝑓𝑛𝐼(𝑥𝑛=𝑖)(𝑦𝑖̅̅̅̅ −𝑦̅)2

𝐼−1𝑛∈𝐷
𝐼
𝑖=1

∑ ∑
𝑤𝑛𝑓𝑛𝐼(𝑥𝑛=𝑖)(𝑦𝑛−𝑦𝑖̅̅̅̅ )2

𝑁𝑓−𝐼
 𝑛∈𝐷

𝐼
𝑖=1

                                (3.33) 

                            𝑝 = 𝑃𝑟(𝐹(𝐼 − 1,𝑁𝑓 − 𝐼) > 𝐹)                           (3.34) 

Burada; 

D: Bir düğüm içindeki gözlem sayısını, 

𝑥𝑛: Bağımsız değişkenin n’inci grubunun i. gözlem değerini, 

𝑦𝑛: Bağımlı değişkenin n’inci grubunun i. gözlem değerini, 

𝑤𝑛: n’inci grubun grup ağırlığı, 

p  : olasılık değeri, 

𝑓𝑛: n’inci grubun frekansıdır. 𝑦𝑖̅ , 𝑦̅ ve 𝑁𝑓 Eşitlik 3.35-3.37’deki formüller 

yardımıyla hesaplanır:  

𝑦𝑖̅ =
∑ 𝑤𝑛𝑓𝑛𝑦𝑛𝐼(𝑥𝑛=𝑖)𝑛∈𝐷

∑ 𝑤𝑛𝑓𝑛𝐼(𝑥𝑛=𝑖)𝑛∈𝐷
                 (3.35) 

𝑦̅ =
∑ 𝑤𝑛𝑓𝑛𝑦𝑛𝑛∈𝐷

∑ 𝑤𝑛𝑓𝑛𝑛∈𝐷
             (3.36) 

𝑁𝑓 = ∑ 𝑓𝑛𝑛∈𝐷              (3.37) 

Bağımlı değişkenin kesikli olması durumunda ise Eşitlik 3.38’de verilen Ki-

kare istatistiği kullanılarak veri seti kendi içinde homojen, birbirileri arasında 

heterojen gruplara ayrılır:  

𝜒2 = ∑
(G𝑖−B𝑖)

B𝑖

2
                                                  (3.38) 

Formülde; 

𝜒2 : Ki-kare değerini, 

G𝑖  : Gözlenen değeri, 

 𝐵𝑖  : Beklenen değeri ifade etmektedir. 

Ağaç büyütme sürecinde adım adım benzer kategorilerin birleştirilmesi 

işlemi yapılır. Bu işlem değişkenler arasında benzerlik olmadığına istatistiksel 
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olarak karar verilinceye kadar devam eder. Bu karar için Bonferroni düzeltilmiş p- 

değerinden yararlanılır. Bonferroni düzeltmesi, birkaç bağımlı veya bağımsız 

istatistiksel testin eşzamanlı olarak gerçekleştirilmesi sırasında kullanılan çoklu 

karşılaştırma düzeltmesidir (Seong, 2009). CHAID analizi algoritmasında ağaç 

büyütme sürecinde aşağıda verilen sekiz adım uygulanır (Billington et al, ): 

1. Adım: Eğer X sadece bir kategori içeriyorsa analiz durdurulur ve 

düzeltilmiş p değeri 1 olacak şekilde ayarlanır. 

2. Adım: Eğer X iki kategoriye sahipse 8. Adıma gidilir. 

3. Adım: Değilse eğer izin verilen X kategorisi çifti bulunur, izin verilen bir 

kategori çifti bağımlı değişkenle en yüksek p-değerine (bağımlı değişken sürekli ise 

Eşitlik 3.32’de verilen denklem yardımıyla p olasılık değeri hesaplanır, bağımlı 

değişken kesikli ise ki kare testi için p olasılığı değeri hesaplanır) sahip böylece en 

az farklı yani en benzer çifttir. 

4. Adım: En benzer çift için hesaplanan alfa değerinin kullanıcı tarafından 

belirlenen alfa değerinden (zirai çalışmalarda genellikle α=0.05 olarak alınır) büyük 

olup olmadığı kontrol edilir. Büyükse bu çift tek bir bileşik kategoride birleştirilir. 

Ardından yeni bir X kategorileri grubu oluşturulur. Olmazsa 7. Adıma gidilir. 

5. Adım: (İsteğe bağlı) Yeni oluşturulan bileşik kategori üç veya daha fazla 

orijinal kategoriden oluşuyorsa, p kategorisinin en küçük olduğu bileşik kategori 

içinde en iyi ikili bölünme bulunur. Eğer p-değeri belirli bir alfa seviyesinden daha 

büyük değilse ikili bölünme gerçekleştirilir. 

6. Adım: 2.Adıma gidilir. 

7. Adım: (İsteğe bağlı) Çok az gözlem olan herhangi bir kategori (kullanıcı 

tarafından belirlenen minimum gözlem boyutuyla karşılaştırıldığında), p-

değerlerinin en büyüğü tarafından ölçülen en benzer diğer kategoriyle birleştirilir. 

8. Adım: Birleştirilen kategoriler için düzeltilmiş p-değeri Bonferroni 

düzeltmeleri uygulanarak hesaplanır.  

Ağaç diyagramında bölünme, bağımlı değişkenle en yüksek ilişkiye sahip 

bağımsız değişkenin kendi içinde benzer birbiri arasında farklı gruplara ayrılması 

ile kök düğümden başlar. Bu aşamadan sonra bağımlı değişkenle en yüksek ilişkiye 

sahip ikinci bağımsız değişken tespit edilerek bölünme ve dallanma devam eder. 

Mümkün olan bütün bölünmeler sonlandırılıncaya ya da belirli durdurma kriterleri 
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tamamlanıncaya kadar (örneğin belirli bir ağaç derinliğine kadar) analiz 

tekrarlamalı olarak devam eder. Bölünmenin bittiği durumdaki düğümler terminal 

düğüm olarak adlandırılmaktadır. Verilerin analizi sonucunda kökü yukarıda olan 

ters bir ağaca benzeyen, sonuçların kolayca yorumlanabildiği grafiksel bir 

gösterimle sonuçlar özetlenir. 

Şekil 3.27. CHAID analizi diyagramı örneği 

Şekil 3.27’de yöntemi tanıtmaya yönelik örnek olarak, gerçek olmayan 

verilerden oluşturulmuş bir CHAID diyagramı çıktısı verilmiştir. Burada sıcaklık 

bağımlı değişkenini mevsim, bulutluluk ve rakım bağımsız değişkenlerinin 

etkilediği varsayılmıştır. İlkbahar, yaz, sonbahar ve kış mevsimlerinde 20’şer 

günde, havanın açık ve bulutlu olduğu günlerde ve rakımın 0 ile 500m arasında 

olduğu 10 noktadan veri alındığı kabul edilmiştir.   

Bağımlı değişken sıcaklık, mevsimden sonra en çok havanın bulutluluk 

durumundan etkilenmiş, havanın açık olduğu durumda yaz mevsiminde 10 günün 

sıcaklık ortalaması 40°C’ye kadar (Düğüm 5) yükselirken bu noktada bir başka 

bağımsız değişken olan rakım etkili olmuştur. Rakım bağımsız değişkeni diğer iki 

bağımsız değişkenin aksine sürekli bir değişkendir ve 0 ile 500 arasında bütün 

değerleri alabilmektedir. Verilen örnekte sıcaklık bakımından rakım 250m’nin altı 

ve üstü olacak şekilde iki gruba ayrılmıştır. Rakımı 250m’nin üstünde olan iki 

bölgeye ait verilerden bu iki günün ortalaması 35°C (Düğüm 10) olarak 
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belirlenmiştir. Rakımı 250m’nin altında olan 8 bölgede ise sıcaklık ortalaması 45° 

(Düğüm 11) olarak tespit edilmiştir. Düğüm 11 aynı zamanda “rakımı 250m’nin 

altındaki yerleşim birimlerinde, havanın açık olduğu yaz mevsiminde yılın en 

yüksek sıcaklık ortalaması 45°C olarak tespit edilmiştir” şeklinde de 

yorumlanabilir.  

Bütün mevsimlerde havanın bulutlu ve açık olması etkili bir faktör iken rakım 

faktörü sadece yaz mevsiminde ve havanın açık olduğu durumda etkili bulunmuş 

ve bu nedenle diğer gruplarda yeniden dallanma olmamıştır. Örneğimiz için ağaç 

derinliği üçtür. Bağımsız değişken sayısının çok ve bağımsız değişkenlerin 

tamamının bağımlı değişken üzerinde etkisinin önemli olduğu durumlarda ağaç 

derinliği de artmaktadır. Bu nedenle uygulanan CHAID analizinde kullanıcı 

tarafından bir durdurma kriteri olarak ağaç derinliği de belirlenebilmektedir. Dikkat 

edilmesi gereken nokta önemli bazı ilişkilerin gözden kaçırılmaması için ağaç 

derinliğinin çok düşük seçilmemesidir. Verilen örnek için ağaç derinliği iki olarak 

kabul edilseydi rakımın etkisi diyagramda görülemeyecekti. Bir diğer durdurma 

kriteri ise gruplara düşecek gözlem sayılarının sınırlandırılmasıdır. Gözlem 

sayılarının doğru seçilmesi de aslında önemli olan bazı ilişkilerin gözden 

kaçırılmaması için dikkatle seçilmelidir.  Verilen örnek için gözlem sayısı ebeveyn 

düğümlerde (Düğüm 1, 2, 3 ve 5) beş gözlem ve çocuk düğümlerde (Düğüm 4-11) 

iki gözlem olacak şekilde bölünmeye müsaade edilmiştir. Çocuk düğümlerde en az 

üç gözlem bulunması istenseydi Düğüm 10’daki gözlem sayısı iki olduğundan 

bölünme gerçekleşmeyecek, rakımın etkisi yine göz ardı edilmiş olacaktı.  

Ağaç büyütme işlemi tamamlandıktan sonra karar ağaçlarında budama süreci 

devreye girmektedir. Birçok karar ağacı algoritmasında CHAID analizinde olduğu 

gibi çocuk ve ebeveyn düğümlerdeki gözlem sayıları ile ağaç derinliği değerinin 

belirli bir standardı bulunmamaktadır. SPSS’te bu değerler varsayılan olarak 

ebeveyn düğüm için 100 ve çocuk düğüm için 50 olarak seçilmiştir. Varsayılan ağaç 

derinliği ise CHAID için üç, sınıflandırma ve regresyon ağacı için beştir. Araştırıcı 

bu noktada konusundaki uzmanlığını da dikkate alarak çeşitli değerler vermek 

suretiyle ve deneme yanılma yoluyla uygun ağaç yapısına ulaşabilir. Bu da CHAID 

analizinin dezavantajlarından biridir.   
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3.2.6 Modellerin performans değerlendirme ölçütleri 

İstatistiksel yöntemlerin karşılaştırılmasında modellerin doğruluğunu test 

etmek için kullanılan en yaygın performans değerlendirme ölçütlerinden bazıları 

Ortalama Mutlak Hata Yüzdesi (MAPE), Ortalama Mutlak Hata (MAE), Belirleme 

Katsayısı (R2) ve Hata Kareler Ortalamasının Karekökü (RMSE) kriterleridir. 

Çalışmada bu performans değerlendirme ölçütlerinden MAPE, RMSE ve R2 

değerleri kullanılmış, Tablo 3.9’da bu performans değerlendirme ölçütleri ve 

formülleri verilmiştir. 

Tablo 3.9. Modellerin doğruluğunu sınamak için kullanılan performans değerlendirme ölçütleri ve 

formülleri 

PERFORMANS 

DEĞERLENDİRME 

ÖLÇÜTLERİ 

EŞİTLİK 

MAPE MAPE=
1

n
∑|

𝑌i-𝑌î

𝑌i

| x100

n

i=1

 

RMSE RMSE=√∑ (Y
i
-𝑌î)

2n
i=1

n
 

R2 R2=

[
 
 
 
 
 

∑ Yi𝑌𝑖̂-
( ∑ Yi)( ∑𝑌𝑖̂)

n

√( ∑ Yi
2 -

( ∑ Yi)
2

n
)( ∑ 𝑌̂𝑖

2 -
( ∑𝑌𝑖̂)

2

n
)
]
 
 
 
 
 

2

 

∗   𝑌i : Değişkenin i. gözlem değeri, 𝑌î : Değişkenin i. tahmin değerini göstermektedir. 
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4. BULGULAR 

Bu çalışmada, et sığırlarında canlı ağırlığı tahmin etmek amacıyla üç boyutlu 

kamera ile görüntülenen sığırların görüntü matrisleri çeşitli görüntü işleme 

yöntemlerine tabi tutularak, sığırların alan ve yükseklik değerleri elde edilmiştir. 

Daha sonra bu veriler kullanılarak makine öğrenmesi yaklaşımlarından yapay sinir 

ağları (YSA), çok değişkenli uyarlanabilir regresyon eğrileri (MARS), çoklu 

doğrusal regresyon (ÇDR) ve Ki-kare otomatik interaksiyon belirleme (CHAID) 

analizleri yardımıyla sığırların canlı ağırlıkları tahmin edilmeye çalışılmıştır.  

Çalışmanın bu kısmında, yapay sinir ağlarında tahmin hatasını en aza 

indirmek için uygun ağ topolojisinin oluşturulması amacıyla öncelikle üç farklı 

katman sayısı (KS) (1, 2, 3) ve her katman için üç farklı nöron sayısının (NS) (3, 5, 

8) etkisi incelenmiştir. Ayrıca yapay sinir ağlarında kullanılan öğrenme 

algoritmalarından Levenberg-Marquardt (Levenberg-Martquardt-LM), 

Uyarlanabilir Öğrenme Oranlı Gradyan (Gradiant Descent with Momentum and 

Adaptive Learning Rate-GDX) ve Bayes Düzenlemesi (Bayesian Regularization -

BR) algoritmaları kullanılarak bu algoritmaların tahmin hatasını azaltmadaki 

etkinliği incelenmiştir. Verilerin eğitim ve test setlerine ayrılmasında veriler k-katlı 

çapraz doğrulama ile yaklaşık olarak %85 eğitim ve %15 test setine ve rastgele 

olarak %70 eğitim %15 test %15 doğrulama setine ayrılarak eğitim denemeleri 

yapılmıştır. Böyece üç farklı algoritma,  üç katman sayısı ve üç nöron sayısı ile 

dokuz parametre kombinasyonundan oluşan, iki ayrı veri ayırma durumu için ve 

verilerin normalize edilip edilmeme durumları olmak üzere (3x3x3x9x2x2=972) 

972 farklı ağ denemesi yapılmış ve elde edilen bulgular CHAID analizi ile 

özetlenerek EK-6’da verilmiştir. 

Alan, yükseklik ve ağırlıklara ait verilerin normallik varsayımı Kolmogorov-

Simirnov test istatistiği (p>0.01) ile kontrol edilmiş ve tüm değişkenlerin normal 

dağıldığı tespit edilmiştir. Yapay sinir ağlarında verilerdeki uç değerlerin etkisini 

azaltmak ve eğitimi daha verimli hale getirmek amacıyla çeşitli normalizasyon 

yöntemlerinden yararlanılmaktadır. Bu çalışmada verilere z-skor normalizasyonu 

uygulanmış, ham veriler ve normalizasyon yapılmış veriler kullanılarak yapılan 

eğitimler, tahmin hatasını azaltma bakımından karşılaştırılmıştır. Bunun dışında 

yapılan ön çalışma sonucunda momentum güncelleme katsayısı (Momentum 
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Update-MU), öğrenme oranı (Learning Rate-LR), minimum gradyan (GD) ve 

döngü sayıları (Iteration Number) parametreleri için Tablo 4.1’de verilen ve hatayı 

azaltmada etkisi olduğu düşünülen bazı parametre değerleri de kullanılarak eğitim 

denemeleri yapılmıştır.  Bu amaçla biri standart olmak üzere (VP) sekiz farklı 

parametre grubu oluşturulmuş ve ağın eğitiminde kullanılmıştır. Tüm bu durumlar 

için ayrı ayrı elde edilen tablolar çalışmanın bulgular kısmında ve bütün analiz 

sonuçlarına ait özetleri gösteren iki ayrı tablo EK 2 ve EK 3’te verilmiştir.  

4.1 Yapay Sinir Ağları Bulguları 

YSA’da canlı ağırlığın tahmin edilmesinde veriler test ve eğitim setlerine 

ayrılırken iki farklı strateji izlenmiştir. İlkinde veriler çapraz doğrulama (Cross 

Validation-CV) ile yedi gruba ayrılmış ve her defasında bu gruptan biri test diğer 

altısı eğitim seti olacak şekilde yedi farklı ağ eğitilmiş ve MAPE, RMSE ve R2 

değerlerinin ortalaması alınmıştır. İkinci stratejide ise veriler %70 eğitim, %15 

doğrulama ve %15 test seti olacak şekilde rastgele ayrılmış ve bu şekilde eğitilen 7 

ağın yine ortalama MAPE, RMSE ve R2 değerleri kaydedilmiştir. 

4.1.1 Çapraz doğrulamada ham verilerle deneme 

Bu bölümde sığırların görüntülerinden görüntü işleme sonucu elde edilen ham 

veriler çapraz doğrulama ile test ve eğitim setine ayrılarak EK 1a’daki MATLAB 

komutları yardımıyla yapay sinir ağlarında eğitimler yapılmıştır.  

Tablo 4.1. Etkisi incelenen dokuz farklı parametre grubu 

 Parametreler 

 MU λ GD Döngü 

VP 0.001 0.01 10-7 1000 

1 0.005 0.01 10-7 1000 

2 0.010 0.01 10-7 1000 

3 0.001 0.05 10-7 1000 

4 0.001 0.10 10-7 1000 

5 0.001 0.01 10-6 1000 

6 0.001 0.01 10-5 1000 

7 0.001 0.01 10-7 500 

8 0.001 0.01 10-7 100 
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Yapılan ön eğitim denemelerinde eğitim parametrelerinden bazılarının 

değerlerinde yapılan beş, on ve yüz katlık artışların hatalarda değişime neden 

olduğu gözlemlenmiş, bu nedenle veri ayırma yönteminin yanı sıra yapay sinir 

ağlarında kullanılan eğitim parametrelerinden dördünün (MU, λ, GD ve Döngü 

sayısı) etkisini incelemek amacıyla MATLAB’in varsayılan parametre değerlerine 

ek olarak çeşitli kombinasyonlarda oluşturulmuş, Tablo 4.1’de verilen sekiz farklı 

parametre grubu ile de denemeler yapılmış ve elde edilen bulgular (Tablo 4.2-4.38) 

okuyucuya sunulmuştur. 

4.1.1.1 MATLAB varsayılan parametre değerleriyle canlı ağırlık tahmini 

Tablo 4.1’de kalın rakamlarla verilen parametre grubu, MATLAB paket 

programı tarafından ileri beslemeli geri yayılımlı ağ için otomatik olarak atanan 

varsayılan parametre (VP) değerleridir.  

MATLAB varsayılan parametreleriyle yapılan analiz sonucunda Tablo 

4.2’deki bulgulara ulaşılmıştır. Tablo 4.2 incelendiğinde en düşük MAPE değerinin  

(%4.95) LM algoritması kullanıldığında elde edildiği, BR (%4.99) ve GDX (%5.1) 

algoritmalarında bu değerin daha yüksek olduğu görülmektedir. Ancak tüm katman 

ve nöron sayılarında yapılan hataların ortalaması dikkate alındığında LM 

algoritması kullanıldığında daha yüksek MAPE değeri (%13.6) ile tahmin yapıldığı 

görülmektedir. Bunun nedeni veriler çapraz doğrulama ile test ve eğitim setine 

ayrıldığında doğrulama setinin bulunmamasıdır.  

Tablo 4.2. Varsayılan parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 7.83 108 0.7347 5.07 37.48 0.9252 5.24 37.73 0.9194 

5 4.95 36.74 0.9277 5.09 37.75 0.9246 5.27 39.12 0.9145 

8 12.86 199.94 0.7772 5.27 38.67 0.9241 5.35 39.30 0.9184 

2 

3 5.16 38.04 0.9241 5.37 42.15 0.9143 5.10 37.47 0.9285 

5 6.14 54.57 0.8365 4.99 37.74 0.9241 5.38 38.77 0.9167 

8 13.77 206.16 0.4549 5.15 38.27 0.9203 6.05 44.63 0.8998 

3 

3 6.80 77.95 0.7936 5.11 37.57 0.9130 5.06 37.01 0.9272 

5 11.2 250.52 0.6313 7.58 53.41 0.7903 6.61 47.76 0.8707 

8 53.68 852.29 0.1340 7.02 49.83 0.7986 5.61 39.28 0.9197 

Ortalama 13.60 202.69 0.6904 5.63 41.43 0.8927 5.52 40.12 0.9128 

* Kalın rakamlarla gösterilen değerler her bir algoritmada elde edilen en düşük MAPE değerleridir. 
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Tablo 4.3’te verilen En iyi Döngü Sayıları (EDS) ve süreler incelendiğinde, 

normalde ortalama 25 döngü ile eğitimi sonlandıran LM algoritmasının doğrulama 

setinin yokluğunda 1000 döngüye kadar iterasyon yaptığı görülmektedir. Yani LM 

algoritmasında doğrulama seti olmadığında aşırı eğitim söz konusu olmakta ve ağ 

verilen örnekleri ezberlemektedir. Buna bağlı olarak eğitim setinde düşük hatalar 

olurken test setlerinde hata ortalaması çok yüksek (en yüksek %53.68) olmaktadır.  

Ayrıca Tablo 4.3 incelendiğinde bir katmanda beş nöron bulunduğu durumda 

LM algoritmasında en iyi döngü sayısının 180 olduğu, bu durumda LM algoritması 

ile en düşük MAPE değerinin (%4.95) elde edildiği (Tablo 4.2) görülmektedir.  Bu 

durum LM algoritmasıyla diğer katman ve nöron sayıları ile yapılan denemelerden 

elde edilen yüksek MAPE değerlerinin aşırı eğitimden kaynaklandığı tezini 

doğrulamaktadır. Diğer iki algoritma doğrulama setinin olmayışından bir miktar 

etkilense de LM algoritması kadar etkilenmemiştir.  

 Öte yandan BR algoritmasında katman ve nöron sayısını artırmak yüksek 

hatalara neden olmuştur. Üç gizli katman ve beş nöron (%7.58) ile sekiz nöron 

(%7.02) kullanıldığı durumda MAPE değeri yükselmiştir. GDX algoritması da yine 

nöron sayısının yüksek olmasından kısmen etkilenmiştir.  

Tablo 4.3. Ağın eğitiminde geçen süreler ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 7.7750 1000 2.4610 377 0.7700 1000 

5 1.4430 180 1.8490 237 0.7400 1000 

8 7.3900 1000 1.1810 126 0.9030 1000 

2 

3 7.7900 1000 1.6400 142 0.7860 1000 

5 8.9960 1000 3.8270 371 0.8330 1000 

8 9.5640 1000 10.3590 1000 0.8180 1000 

3 

3 9.2170 1000 3.5090 313 0.8650 1000 

5 10.7530 1000 2.2520 189 0.8810 1000 

8 12.5770 1000 16.5290 1000 0.9180 998 

Ort. 8.3894 909 4.8452 417 0.8349 1000 

 Eğitim esnasında geçen süreler ve eğitimin sona erdirildiği en iyi döngü 

sayıları (EDS) Tablo 4.3’te verilmiştir. Tablo 4.3 incelendiğinde GDX 

algoritmasının ortalama 1000 döngü ile eğitimi bitirmesine karşın en kısa (0.77sn) 

zamanda eğitimi tamamlayan algoritma olduğu görülmektedir. Bu parametre 

grubunda BR algoritması iki ve üç katmanda sekiz nöronun olduğu ağ yapısında 10 



83 

 

 

 

saniyenin üzerinde bir zamanda eğitimi 1000 döngü yaparak bitirmiştir. LM 

algoritmasında ise ortalama bir eğitimin 2.5sn’de sonlandırıldığı dikkate 

alındığında bu parametre grubu ve veri ayırma yöntemi için eğitimde geçen 

sürelerin ortalaması da (8.3894sn) yükselmiştir. 

4.1.1.2 Birinci grup parametrelerle eğitim 

 Bu gruptaki parametreler MATLAB tarafından varsayılan parametrelerden 

farklı olarak sadece MU değerinin 0.005 olarak alınmasıyla elde edilmiş ve 7 farklı 

ağ bu parametrelerle eğitilmiştir. Elde edilen bulgular Tablo 4.4’te verilmiştir.  

Tablo 4.4 incelendiğinde en düşük MAPE değeri (%5) ile tahminin yapıldığı BR 

algoritmasında bir önceki parametre grubunda olduğu gibi katman ve nöron 

sayısının artması (3 katman 8 nöron) daha yüksek MAPE değerine (%7.76) neden 

olmuştur. LM algoritması ile yine doğrulama setinin olmayışı nedeniyle özellikle 

iki ile üç gizli katman olması durumunda ve 8 nöron kullanıldığında yüksek MAPE 

değeri ile (%21.27 ve %29.16) tahmin yapılmıştır.  

Tablo 4.4. Birinci grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 5.12 37.99 0.9255 5.00 37.23 0.9208 5.35 39.10 0.9183 

5 5.47 44.32 0.8996 5.00 36.81 0.9230 5.28 38.62 0.9198 

8 6.12 68.33 0.7701 5.12 38.19 0.9226 5.01 36.78 0.9259 

2 

3 5.37 39.62 0.9206 5.12 38.03 0.9247 5.31 39.43 0.9121 

5 5.90 52.03 0.8560 5.14 38.20 0.9238 5.11 37.41 0.9270 

8 21.27 354.45 0.5095 5.16 38.55 0.9192 5.28 38.25 0.9161 

3 

3 6.37 89.11 0.6548 5.10 37.91 0.9214 5.18 38.32 0.9211 

5 11.51 175.98 0.5697 5.16 38.83 0.9194 5.36 39.17 0.9197 

8 29.16 368.02 0.2111 7.76 54.71 0.7959 5.33 38.31 0.9209 

Ortalama 10.70 136.65 0.7019 5.40 39.83 0.9079 5.25 38.38 0.9201 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.005, 0.01, 10-7 ve 1000 olarak alınmıştır. 

  GDX algoritması bu parametre grubu için en istikrarlı sonuçları üretmiş, 

doğrulama setinin olmayışından, katman ve nöron sayılarından çok 

etkilenmemiştir.  Bu gruptaki parametrelerle yapılan eğitim esnasında geçen süreler 

ve eğitimin sona erdirildiği en iyi döngü sayıları Tablo 4.5’te verilmiştir. Tablo 4.5 

incelendiğinde üç katman, her katmanda beş ve sekiz nöron olduğu durumda, 
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yapılan işlem sayısı arttığı için tüm algoritmalarla daha uzun zamanda eğitimin 

tamamlandığı görülmektedir. GDX algoritması yine ortalama olarak 1 sn’nin 

altında bir zamanda eğitimi tamamlamıştır. 

Tablo 4.5. Birinci grup parametrelerle eğitimde süreler ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 0.4290 63 0.8130 100 0.8080 996 

5 7.2900 1000 1.3880 192 0.9410 999 

8 9.5560 1000 1.0720 141 0.8650 995 

2 

3 8.8120 1000 1.0010 127 0.7750 1000 

5 9.5320 1000 2.1980 251 0.8310 997 

8 10.4600 1000 1.0270 72 0.8930 994 

3 

3 11.0420 1000 2.3720 181 0.9060 998 

5 12.5760 1000 4.4520 265 1.0120 1000 

8 14.4350 1000 4.6160 280 1.0600 1000 

Ort. 9.3480 896 2.1043 179 0.8990 998 

  

4.1.1.3 İkinci grup parametrelerle eğitim 

 Bu gruptaki parametreler MATLAB tarafından varsayılan parametrelerden 

farklı olarak sadece MU değerinin 0.01 olarak alınmasıyla elde edilmiş ve 7 farklı 

ağ bu parametrelerle eğitilmiştir. Eğitim sonunda elde edilen performans ölçütü 

değerleri kaydedilerek Tablo 4.6’da verilmiştir. Tablo 4.6 incelendiğinde bu 

parametre grubu için en düşük MAPE değeri (%4.96) ile tahmin üreten 

algoritmanın GDX algoritması olduğu görülmektedir.   

Tablo 4.6. İkinci grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 5.16 37.78 0.9223 5.17 38.58 0.9275 4.96 37.50 0.9234 

5 5.23 39.42 0.9187 5.18 38.41 0.9232 5.32 39.12 0.9168 

8 5.76 47.22 0.8811 5.12 37.72 0.9237 5.57 40.99 0.9124 

2 

3 5.12 38.05 0.9229 5.13 37.87 0.9227 5.06 37.30 0.9253 

5 11.19 233.49 0.6144 5.06 37.74 0.9253 5.51 39.32 0.9192 

8 25.79 614.80 0.4516 5.11 38.43 0.9209 5.51 40.57 0.9130 

3 

3 5.30 39.37 0.9138 5.29 39.19 0.9222 5.49 39.63 0.9166 

5 10.86 208.88 0.6548 5.09 37.18 0.9221 5.86 41.74 0.9052 

8 49.41 806.99 0.1487 5.10 37.49 0.9194 5.43 38.42 0.9255 

Ortalama 13.76 229.56 0.7143 5.14 38.07 0.9230 5.41 39.40 0.9175 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.01, 0.01, 10-7 ve 1000 olarak alınmıştır.  
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 Eğitim esnasında geçen süreler ve eğitimin sona erdirildiği en iyi döngü 

sayıları Tablo 4.7’de verilmiştir.  

Tablo 4.7. İkinci grup parametrelerle eğitimde süreler ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 0.5700 79 0.7390 108 0.7860 999 

5 6.8710 1000 1.4290 141 0.8500 1000 

8 7.7920 1000 2.2910 254 0.7870 1000 

2 

3 8.0540 1000 6.1840 723 0.7710 1000 

5 8.9550 1000 2.6850 278 0.9520 1000 

8 9.1770 1000 1.1240 107 0.8650 995 

3 

3 8.8390 1000 5.2610 547 0.8240 1000 

5 9.9810 1000 10.9880 1000 0.9020 1000 

8 12.2170 1000 6.8020 484 0.9330 996 

Ort. 8.0507 898 4.1670 405 0.8522 999 

 Tablo 4.7 incelendiğinde süreler bakımından önceki iki parametre grubundan 

çok farklı sonuçlar oluşmadığı görülmektedir. GDX algoritmasıyla diğer 

denemelerde olduğu gibi ortalama olarak 1sn’nin altında eğitimler tamamlanmakta, 

LM algoritmasında 1000 döngüye kadar iterasyon yapılmakta ve eğitimde geçen 

süreler uzamaktadır. BR algoritmasında ise yine katman sayısının fazla olması 

1000 döngüye kadar eğitimin devam etmesine neden olmaktadır. 

4.1.1.4 Üçüncü grup parametrelerle eğitim 

Tablo 4.8. Üçüncü grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 5.21 38.53 0.9234 5.03 37.50 0.9272 5.29 38.37 0.9220 

5 5.22 40.97 0.9206 5.14 38.09 0.9291 5.22 38.24 0.9268 

8 12.72 370.77 0.6565 5.06 37.39 0.9261 5.2 38.05 0.9184 

2 

3 5.46 39.98 0.9191 5.26 38.17 0.9240 5.15 38.14 0.9245 

5 6.85 64.58 0.8112 5.14 38.05 0.9279 5.53 40.48 0.9090 

8 52.18 707.58 0.4053 5.05 37.70 0.9271 5.24 37.89 0.9235 

3 

3 5.77 57.54 0.8711 5.11 38.36 0.9188 5.42 40.40 0.9159 

5 17.09 252.29 0.5841 5.07 37.19 0.9266 7.59 53.64 0.8247 

8 32.33 528.24 0.1624 7.49 50.99 0.7918 8.21 55.10 0.8330 

Ortalama 15.87 233.39 0.6949 5.37 39.27 0.9110 5.87 42.26 0.8998 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.001, 0.05, 10-7 ve 1000 olarak alınmıştır.  
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 Bu gruptaki parametreler MATLAB tarafından varsayılan parametrelerden 

farklı olarak sadece λ değerinin 0.05 olarak alınmasıyla elde edilmiş ve yedi farklı 

ağ bu parametrelerle eğitilerek elde edilen performans ölçütü değerleri Tablo 4.8’de 

verilmiştir.  

 Tablo 4.8 incelendiğinde bu parametre grubunda en düşük MAPE değeri BR 

algoritmasında, bir gizli katman ve 3 nöronun kullanıldığı durumda %5.03 olarak 

tespit edilmiştir. LM algoritması yine doğrulama setinin olmayışı nedeniyle yüksek 

hatalarla (%52.18) tahminler üretmiştir. GDX algoritması katman ve nöron 

sayısından etkilenmiş, 3 katmanda 5 ve 8 nöron kullanıldığı durumda yüksek 

hatalar (%8.21) oluşmuştur.  

 Eğitim esnasında geçen süreler ve eğitimin sona erdirildiği en iyi döngü 

sayıları Tablo 4.9’da verilmiştir. Tablo 4.9 incelendiğinde bu parametre grubunda 

da yine en kısa sürede (0.7820sn) GDX algoritması ile eğitim yapıldığı 

görülmektedir. 

Tablo 4.9. Üçüncü grup parametrelerle eğitimde süreler ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 6.1500 1000 1.2000 158 0.7820 993 

5 7.1410 1000 0.9810 109 0.8050 994 

8 8.7110 1000 1.8320 199 0.8440 998 

2 

3 9.5870 1000 10.6390 910 0.8840 998 

5 9.8940 1000 5.4090 492 0.8990 1000 

8 10.8280 1000 6.4210 540 0.8260 1000 

3 

3 10.3400 1000 3.4410 283 0.9670 995 

5 11.8840 1000 2.1580 174 1.0450 998 

8 13.6640 1000 14.6560 914 0.9160 1000 

Ort. 9.7999 1000 5.1930 420 0.8853 997 

 

4.1.1.5 Dördüncü grup parametrelerle eğitim 

 Bu gruptaki parametreler MATLAB tarafından varsayılan parametrelerden 

farklı olarak sadece λ değerinin 0.1 olarak alınmasıyla elde edilmiş ve yedi farklı 

ağ bu parametrelerle eğitilmiştir. Eğitim sonunda performans ölçütü değerleri 

kaydedilerek Tablo 4.10’da verilmiştir. Tablo 4.10 incelendiğinde bu parametre 
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grubunda en düşük MAPE değeri, BR algoritmasında iki gizli katman ve beş 

nöronun kullanıldığı durumda %5.08 olarak tespit edildiği görülmektedir.  

 GDX algoritması katman ve nöron sayısından etkilenmiş, üç katmanda sekiz 

nöron kullanıldığı durumda yüksek MAPE değeri (%6.09) elde edilmiştir. Ayrıca 

GDX algoritmasında tahmin değerleri ile gerçek gözlem değerleri arasındaki 

belirleme katsayısı (R2=0.9272) bu parametre grubunda diğer algoritmalardan 

kısmen daha yüksek bulunmuştur. 

Tablo 4.10. Dördüncü grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 5.20 37.79 0.9255 5.09 37.42 0.9238 5.14 37.90 0.9234 

5 5.53 45.27 0.8778 5.10 37.86 0.9265 5.38 39.77 0.9218 

8 5.61 43.79 0.8975 5.13 37.81 0.9219 5.68 40.44 0.9131 

2 

3 7.78 52.94 0.7863 5.24 38.81 0.9223 5.30 38.20 0.9218 

5 6.85 68.96 0.7550 5.08 37.78 0.9252 5.50 39.82 0.9137 

8 16.79 300.30 0.4407 5.14 38.01 0.9233 5.14 37.87 0.9272 

3 

3 12.31 239.06 0.5920 5.26 39.03 0.9210 5.97 43.54 0.8939 

5 8.22 99.27 0.6896 5.12 38.27 0.9195 5.37 40.09 0.9059 

8 38.60 570.73 0.1269 6.82 48.15 0.7925 6.09 44.19 0.8915 

Ortalama 11.88 162.01 0.6768 5.33 39.24 0.9084 5.51 40.20 0.9125 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.001, 0.1, 10-7 ve 1000 olarak alınmıştır.  

 Ağın eğitimi esnasında geçen süreler ve eğitimin sona erdirildiği en iyi döngü 

sayıları Tablo 4.11’de verilmiştir.  

Tablo 4.11. Dördüncü grup parametrelerle eğitimde süreler ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 3 0.7490 119 0.9340 118 0.7870 1000 

5 7.1660 1000 3.2880 436 2.0920 998 

8 7.2910 1000 1.5720 215 0.9020 985 

2 3 0.0630 6 1.5200 164 0.8340 1000 

5 8.6930 1000 5.2340 551 0.9340 1000 

8 9.0710 1000 1.7900 180 0.9500 998 

3 3 9.0600 1000 1.8750 196 0.8180 1000 

5 9.9560 1000 2.0590 204 0.9200 998 

8 12.5210 1000 5.3140 361 0.8870 1000 

Ort. 7.1744 792 2.6207 269 1.0138 998 
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 Tablo 4.11 incelendiğinde bu parametre grubunda BR algoritmasında hiçbir 

katman ve nöron sayısında 1000 döngüye kadar iterasyon yapılmadığı 

görülmektedir. Öğrenme oranının büyütülmesi BR algoritmasında döngü sayılarını 

sınırlamış olabilir. 

4.1.1.6 Beşinci grup parametrelerle eğitim 

 Bu gruptaki parametreler MATLAB tarafından varsayılan parametrelerden 

farklı olarak sadece GD değerinin 10-6 olarak alınmasıyla elde edilmiş ve yedi farklı 

ağ bu parametrelerle eğitilmiştir. Eğitim sonunda performans ölçütü değerleri 

kaydedilerek Tablo 4.12’de verilmiştir.  

Tablo 4.12. Beşinci grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 5.18 38.57 0.9290 5.18 38.40 0.9256 5.29 38.66 0.9250 

5 5.38 38.81 0.9241 5.10 37.95 0.9234 5.37 38.58 0.9254 

8 5.46 40.59 0.9230 5.16 38.34 0.9246 5.28 39.58 0.9141 

2 

3 6.45 94.47 0.8289 5.12 37.59 0.9284 5.42 38.99 0.9140 

5 12.28 264.59 0.7401 5.22 38.36 0.9183 5.32 39.12 0.9218 

8 17.23 319.67 0.4989 5.14 38.23 0.9178 5.43 39.13 0.9292 

3 

3 6.01 75.56 0.8301 5.13 38.43 0.9191 5.33 39.83 0.9165 

5 10.14 92.48 0.6996 5.21 38.26 0.9257 5.69 42.22 0.9040 

8 44.32 571.13 0.1686 7.39 53.49 0.7936 5.50 39.62 0.9196 

Ortalama 12.49 170.65 0.7269 5.41 39.89 0.9085 5.40 39.53 0.9188 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.001, 0.01, 10-6 ve 1000 olarak alınmıştır.  

 Tablo 4.12 incelendiğinde bu parametre grubunda en düşük MAPE değerinin 

BR algoritması, bir gizli katman ve beş nöronun kullanıldığı durumda %5.10 olarak 

tespit edildiği görülmektedir. LM algoritması yine doğrulama setinin olmayışı 

nedeniyle yüksek MAPE değerleri (%44.32) ile tahminler üretmiştir. BR 

algoritması üç katman ve sekiz nöronun olduğu yapıda yüksek MAPE değeri ile 

(%7.39) tahmin üretmiştir.  

 Ağın eğitimi esnasında geçen süreler ve eğitimin sona erdirildiği en iyi döngü 

sayıları Tablo 4.13’de verilmiştir. Tablo 4.13 incelendiğinde eğitimde geçen süreler 
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bakımından önceki parametre gruplarından önemli düzeyde farklı sonuçlar elde 

edilmediği görülmüştür 

Tablo 4.13. Beşinci grup parametrelerle eğitimde süreler ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 5.9490 1000 0.9550 136 0.7650 998 

5 6.5030 1000 0.5010 65 0.7930 1000 

8 7.2750 1000 0.9860 99 0.8210 1000 

2 

3 7.7260 1000 2.2430 270 0.8170 1000 

5 8.8670 1000 4.9500 528 0.9100 1000 

8 9.0240 1000 9.1080 912 0.8670 1000 

3 

3 9.2570 1000 2.0740 189 0.9030 1000 

5 10.0680 1000 10.0440 754 1.0910 1000 

8 12.2780 1000 3.6340 210 0.9310 1000 

Ort. 8.5497 1000 3.8328 351 0.8776 1000 

  

4.1.1.7 Altıncı grup parametrelerle eğitim 

Bu gruptaki parametreler sadece GD değerinin 10-5 olarak alınmasıyla elde 

edilmiş ve yedi farklı ağ bu parametrelerle eğitilmiştir. Eğitim sonunda ortalama 

performans ölçütü değerleri kaydedilerek Tablo 4.14’de verilmiştir.  

Tablo 4.14. Altıncı grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 5.21 38.53 0.9234 5.10 37.71 0.9224 5.29 38.38 0.9204 

5 5.22 40.97 0.9206 5.14 38.23 0.9263 5.31 37.93 0.9222 

8 12.72 370.77 0.6565 5.08 37.76 0.9260 5.05 36.99 0.9263 

2 

3 5.27 38.56 0.9191 5.07 37.84 0.9290 5.18 38.09 0.9191 

5 6.89 75.97 0.7726 5.20 38.63 0.9205 5.16 39.06 0.9180 

8 14.16 159.52 0.5069 5.15 38.20 0.9254 5.14 37.52 0.9260 

3 

3 5.55 44.53 0.9049 5.30 39.95 0.9086 5.38 39.09 0.9151 

5 14.24 351.05 0.5103 5.15 38.19 0.9209 5.42 40.58 0.9157 

8 33.19 511.31 0.1261 6.80 50.20 0.7845 5.11 37.22 0.9266 

Ortalama 11.38 181.25 0.6934 5.33 39.63 0.9071 5.23 38.32 0.9210 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.001, 0.01, 10-5 ve 1000 olarak alınmıştır. 

  

Tablo 4.14 incelendiğinde bu parametre grubunda en düşük hata (MAPE) 

GDX algoritması, bir gizli katman ve sekiz nöronun kullanıldığı durumda %5.05 
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olarak tespit edildiği görülmüştür. Bu parametre grubunda LM algoritması yine 

doğrulama setinin olmayışı nedeniyle yüksek MAPE değerleriyle (%33.19) 

tahminler üretmiştir. BR algoritması 3 katman ve 8 nöronun olduğu yapıda yüksek 

MAPE değeri ile (%6.8) tahmin üretmiştir. 

Ağın eğitimi esnasında geçen süreler ve eğitimin sona erdirildiği en iyi döngü 

sayıları Tablo 4.15’te verilmiştir. Tablo 4.15 incelendiğinde LM algoritmasının 

yine gereksiz yere 1000 döngüye kadar eğitime devam ettiği, GDX algoritmasının 

1sn’nin altında eğitimi tamamladığı görülmektedir. BR algoritmasının bu 

parametre grubunda üç katman ve sekiz nöron kullanılan yapıda lokal minimuma 

takıldığı söylenebilir. Zira ortalama 250 döngü ile eğitmi tamamlayan algoritma 13 

döngü ile eğitimi tamamladığı, Tablo 4.14 incelendiğinde bu grupta MAPE 

değerinin de ortalamanın bir miktar üzerinde olduğu görülebilmektedir.   

Tablo 4.15. Altıncı grup parametrelerle eğitimde süreler ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 7.6500 1000 3.5560 480 0.7730 996 

5 11.2860 1000 3.0530 237 0.9460 998 

8 10.1990 1000 2.9000 327 0.8340 1000 

2 

3 10.7330 1000 2.6530 230 0.9290 1000 

5 9.1390 1000 1.6510 168 0.8070 998 

8 13.2500 1000 2.4490 203 0.9030 996 

3 

3 10.6160 1000 2.9880 270 0.9410 1000 

5 13.8880 1000 1.7410 145 0.8860 1000 

8 12.8310 1000 0.3820 13 1.1030 995 

Ort. 11.0658 1000 2.3748 230 0.9024 998 

  

4.1.1.8 Yedinci grup parametrelerle eğitim 

 Bu gruptaki parametreler MATLAB tarafından varsayılan parametrelerden 

farklı olarak sadece döngü sayısının 500 olarak alınmasıyla elde edilmiş ve yedi 

farklı ağ bu parametrelerle eğitilmiştir. Eğitim sonunda elde edilen performans 

ölçütü değerleri Tablo 4.16’da verilmiştir. Tablo 4.16 incelendiğinde bu parametre 

grubunda en düşük MAPE değeri BR algoritması, iki gizli katman ve sekiz nöronun 

kullanıldığı durumda %5.04 olarak tespit edildiği görülmüştür.  
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Tablo 4.16. Yedinci grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 5.12 38.57 0.9193 5.12 38.04 0.9215 5.23 38.09 0.9222 

5 5.27 38.78 0.9143 5.12 37.95 0.9197 5.52 40.36 0.9066 

8 5.47 39.16 0.9191 5.21 38.88 0.9288 5.20 38.38 0.9177 

2 

3 5.35 38.93 0.9140 5.06 37.49 0.9268 5.23 37.79 0.9218 

5 6.63 60.40 0.8314 5.15 37.85 0.9289 5.58 44.41 0.9006 

8 10.48 116.34 0.5784 5.04 37.57 0.9220 5.49 39.91 0.9150 

3 

3 9.48 69.21 0.7102 5.05 37.02 0.9231 5.89 44.65 0.8933 

5 6.00 44.30 0.8954 5.09 38.02 0.9226 5.83 43.04 0.9012 

8 25.76 300.09 0.2922 5.14 38.04 0.9247 5.46 41.43 0.9165 

Ortalama 8.84 82.86 0.7749 5.11 37.87 0.9242 5.49 40.90 0.9105 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.001, 0.01, 10-7 ve 500 olarak alınmıştır.  

 LM algoritması yine doğrulama setinin olmayışı nedeniyle yüksek MAPE 

değeri (%25.76) ile tahminler üretmiş ancak döngü sayısının azalması MAPE 

değerini kısmen düşürmüştür. BR ve GDX algoritması döngü sayısı 500’e 

düşürüldüğünde katman ve nöron sayısından etkilenmemiştir.  

 Ağın eğitimi esnasında geçen süreler ve eğitimin sona erdirildiği en iyi döngü 

sayıları Tablo 4.17’de verilmiştir. Döngü sayısı 500 ile sınırlandırıldığında LM ve 

GDX algoritması maksimum döngü sayısına kadar eğitime devam ettiği, eğitimde 

geçen sürelerin iki algoritmada da yarı yarıya düşüş gösterdiği Tablo 4.17’den 

anlaşılmaktadır. BR algoritmasında sürelerde kayda değer bir azalma olmamıştır.  

Tablo 4.17. Yedinci grup parametrelerle eğitimde süreler ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 3.0240 500 0.5960 83 0.4860 494 

5 3.2410 500 1.8860 240 0.4020 497 

8 3.9070 500 0.7360 97 0.4390 500 

2 

3 3.9630 500 1.4490 175 0.4010 495 

5 4.2580 500 2.1260 203 0.5020 497 

8 4.6970 500 5.0670 500 0.4390 494 

3 

3 0.0630 3 1.9890 207 0.4490 500 

5 4.9100 500 5.4940 500 0.5080 500 

8 5.8310 500 4.2110 212 0.4790 494 

Ort. 3.7660 445 2.6171 246 0.4561 497 
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4.1.1.9 Sekizinci grup parametrelerle eğitim 

Bu gruptaki parametreler MATLAB tarafından varsayılan parametrelerden 

farklı olarak sadece döngü sayısının 100 olarak alınmasıyla elde edilmiş ve yedi 

farklı ağ bu parametrelerle eğitilmiştir. Eğitim sonunda performans ölçütü değerleri 

kaydedilerek Tablo 4.18’de verilmiştir.  

Tablo 4.18. Sekizinci grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 5.22 37.38 0.9276 5.18 38.39 0.9255 6.42 47.85 0.8823 

5 4.85 35.19 0.9291 5.14 37.47 0.9287 6.51 47.44 0.8789 

8 6.47 60.77 0.8010 5.13 37.66 0.9236 7.21 49.69 0.8574 

2 

3 5.13 37.56 0.9273 5.07 37.95 0.9266 7.59 58.02 0.8161 

5 5.75 52.00 0.8835 5.04 37.10 0.9259 6.51 46.62 0.8877 

8 8.11 106.16 0.7422 5.14 38.26 0.9229 7.08 50.04 0.8633 

3 

3 5.05 36.56 0.9306 5.03 37.02 0.9219 12.97 88.95 0.7098 

5 5.67 44.50 0.8966 5.14 37.67 0.9266 8.13 58.61 0.8183 

8 7.04 57.93 0.8406 7.18 52.55 0.7902 6.81 49.39 0.8706 

Ortalama 5.92 52.01 0.8754 5.34 39.34 0.9102 7.69 55.18 0.8427 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.001, 0.01, 10-7 ve 100 olarak alınmıştır.  

 Tablo 4.18 incelendiğinde, LM algoritmasında, varsayılan dahil dokuz 

parametre grubundan en düşük MAPE değerinin (%4.85) bu gruptaki 

paramatrelerle elde edildiği görülmektedir. Ancak GDX algoritmasında ise tam 

tersi bir durum söz konusu olmakta, döngü sayısının azaltılması MAPE ve RMSE 

değerlerini artırmaktadır. 

Ağın eğitimi esnasında geçen süreler ve eğitimin sona erdirildiği en iyi döngü 

sayıları Tablo 4.19’de verilmiştir. Tablo 4.19 incelendiğinde döngü sayısının 100 

ile sınırlandırılmasıyla bütün algoritmaların 1sn’nin altında eğitimi tamamladığı 

görülmektedir. 
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Tablo 4.19. Sekizinci grup parametrelerle eğitimde süre ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 0.6480 100 0.7330 100 0.0970 100 

5 0.7020 100 0.7410 100 0.2890 100 

8 0.7180 100 0.7650 100 0.1010 100 

2 

3 0.7630 100 0.8550 100 0.1010 100 

5 0.0575 100 0.9180 100 0.1010 100 

8 0.8160 100 1.0340 100 0.1320 100 

3 

3 0.8860 100 0.8930 100 0.1220 100 

5 0.9710 100 1.0330 100 0.1160 100 

8 1.1870 100 1.3190 100 0.1540 100 

Ort. 0.7498 100 0.9212 100 0.1348 100 

4.1.2 Çapraz doğrulamada normalize edilmiş verilerle deneme 

Çalışmanın bu kısmında sığırların görüntülerinden çeşitli görüntü işleme 

yöntemleriyle elde edilen ham veriler z-skorlarına dönüştürülerek verilere 

standartlaştırma uygulanmış, çapraz doğrulama ile test ve eğitim setine ayrılan 

veriler ve EK 1b’deki komutlar yardımıyla yapay sinir ağlarında eğitim yapılmıştır. 

Aşağıda dokuz farklı parametre grubu için yapılan analiz sonuçları verilmiştir.  

4.1.2.1 MATLAB varsayılan parametre değerleriyle canlı ağırlık tahmini 

Bu gruptaki parametreler Tablo 4.20’de görülen ve MATLAB paket programı 

tarafından ileri beslemeli geri yayılımlı ağ için otomatik olarak atanan varsayılan 

parametre değerleridir.  

Tablo 4.20. MATLAB varsayılan parametreleri 

MATLAB varsayılan parametreleri 

MU λ GD Döngü 

0.001 0.01 10-7 1000 

Yapılan analiz sonucunda Tablo 4.21’deki bulgulara ulaşılmıştır. Bulgular 

incelendiğinde BR algoritması (MAPE=%5.07) dışında standartlaştırmanın 

yapılmadığı durumdaki eğitimden hataların büyük farklılık (standartlaştırmanın 

olmadığı durumda %4.95) göstermediği anlaşılmaktadır. 
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Tablo 4.21. Varsayılan parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 5.25 39.90 0.9153 5.07 37.62 0.9254 5.10 37.41 0.9262 

5 13.19 443 0.7725 5.08 37.90 0.9168 5.24 38.21 0.9229 

8 7.71 5794 0.8058 5.07 37.65 0.9268 5.54 41.11 0.9113 

2 

3 7.48 57.31 0.8366 5.10 37.89 0.9274 5.28 39.05 0.9194 

5 12.95 237 0.7063 5.12 38.10 0.9224 5.22 37.97 0.9200 

8 15.66 252 0.4451 5.11 38.02 0.9256 5.27 39.36 0.9279 

3 

3 5.92 58.00 0.8055 5.10 37.88 0.9251 5.36 38.99 0.9193 

5 17.50 467 0.5531 5.16 38.33 0.9241 5.62 39.80 0.9189 

8 37.97 505 0.2322 5.16 67.59 0.6602 5.19 36.77 0.9324 

Ortalama 77.07 872.58 0.6747 5.11 41.22 0.8949 5.31 38.74 0.9220 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

 Ağın eğitimi esnasında geçen süreler ve eğitimin sona erdirildiği en iyi döngü 

sayıları Tablo 4.22’de verilmiştir. Tablo 4.22 incelendiğinde LM algoritması bir 

katmanda üç nöronun bulunduğu durum hariç eğitimin yine 1000 döngüye kadar 

devam ettiği görülmektedir.  

Tablo 4.22. Varsayılan parametrelerle eğitimde süreler ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 0.5360 75 0.9480 121 0.7390 1000 

5 7.5830 1000 1.5040 192 0.7650 1000 

8 7.4040 1000 1.6040 165 0.9120 1000 

2 

3 8.6210 1000 0.7550 90 0.8660 995 

5 9.8370 1000 2.0140 198 0.8460 1000 

8 10.9790 1000 1.3720 136 0.9850 998 

3 

3 10.2410 1000 9.2940 1000 0.8980 998 

5 10.0950 1000 2.8780 253 1.5230 1000 

8 14.7920 1000 12.3590 360 0.9270 1000 

Ort. 8.8987 897 3.6364 279 0.9401 999 

BR algoritsında üç katman ve üç nöronun olduğu yapıda 1000 döngüye kadar 

eğitim devam etmiş ancak diğer durumlarda aşırı eğitim gözlenmemiştir. GDX 

algoritmasında daha önceki parametre gruplarından farklı sonuçlar elde 

edilmemiştir.  



95 

 

 

 

4.1.2.2 Birinci grup parametrelerle eğitim 

Bu gruptaki parametreler MATLAB tarafından varsayılan parametrelerden 

farklı olarak sadece MU değerinin 0.005 olarak alınmasıyla elde edilmiştir.  

Tablo 4.23. Birinci grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 5.33 45.98 0.8982 5.06 37.70 0.9271 5.14 38.32 0.9130 

5 5.19 36.71 0.9274 5.15 38.23 0.9226 5.25 40.71 0.9227 

8 5.57 42.37 0.9043 5.09 37.39 0.9239 5.52 40.99 0.9075 

2 

3 5.31 39.15 0.9188 5.16 38.18 0.9219 5.29 38.32 0.9257 

5 12.39 266 0.5261 5.19 37.81 0.9244 5.49 39.56 0.9123 

8 20.28 299 0.3151 5.05 37.33 0.9257 5.37 38.73 0.9198 

3 

3 5.33 38.05 0.9222 5.10 37.43 0.9245 5.52 38.79 0.9251 

5 16.28 297 0.5036 5.07 37.92 0.9279 5.08 37.28 0.9294 

8 39.37 577 0.2042 7.53 51.02 0.7900 5.38 39.33 0.9178 

Ortalama 12.78 182.36 0.6800 5.38 39.22 0.9098 5.34 39.11 0.9193 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.005, 0.01, 10-7 ve 1000 olarak alınmıştır.  

Yedi farklı ağ bu parametrelerle eğitilmiştir. Eğitim sonunda performans 

ölçütü değerleri kaydedilerek Tablo 4.23’te verilmiştir. Tablo 4.23 incelendiğinde 

bu parametre grubunda en düşük MAPE değeri BR algoritması, iki gizli katman ve 

sekiz nöronun kullanıldığı durumda %5.04 olarak tespit edildiği görülmektedir. LM 

algoritması yine doğrulama setinin olmayışı nedeniyle yüksek MAPE değerleri 

(%39.37) ile tahminler üretmiş BR algoritması üç nöron ve sekiz katmanın olduğu 

durumda yüksek MAPE değeri (%7.53) ile tahmin üretmiştir.  

 Ağın eğitimi esnasında geçen süreler ve eğitimin sona erdirildiği en iyi döngü 

sayıları Tablo 4.24’te verilmiştir. Tablo 4.24 incelendiğinde BR algoritmasının üç 

defa 1000 döngüye kadar eğitime devam ettiği görülmektedir. GDX ve LM 

algoritmalarında ise yine önceki parametre gruplarıyla çok farklı sonuçlar elde 

edilmemiştir. 
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Tablo 4.24. Birinci grup parametrelerle eğitimde süreler ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 6.0900 1000 5.6140 676 0.7500 1000 

5 7.5090 1000 1.4540 129 0.7330 1000 

8 7.5970 1000 3.2450 309 0.7420 1000 

2 

3 8.4590 1000 8.6160 1000 0.9140 1000 

5 8.7950 1000 1.7680 187 0.7910 994 

8 9.7740 1000 4.0480 370 0.8540 1000 

3 

3 9.5340 1000 9.4410 1000 0.8120 1000 

5 11.2520 1000 5.9630 549 0.8600 1000 

8 13.8610 1000 14.2480 1000 0.8930 1000 

Ort. 9.2079 1000 6.0441 580 0.8166 999 

4.1.2.3 İkinci grup parametrelerle eğitim 

 Bu gruptaki parametreler MATLAB tarafından varsayılan parametrelerden 

farklı olarak sadece MU değerinin 0.01 olarak alınmasıyla elde edilmiş ve yedi 

farklı ağ bu parametrelerle eğitilmiştir. Bu parametre grubunda en düşük MAPE 

değerinin BR algoritması, bir gizli katman ve üç nöronun kullanıldığı durumda 

%5.03 olarak tespit edildiği Tablo 4.25’ten görülmektedir.  

Tablo 4.25. İkinci grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 5.14 38.37 0.9241 5.03 37.50 0.9272 5.29 38.36 0.9221 

5 5.76 59.63 0.8786 5.14 38.09 0.9291 5.22 38.25 0.9266 

8 5.12 36.52 0.9252 5.06 37.37 0.9262 5.19 37.99 0.9186 

2 

3 5.94 53.13 0.8684 5.26 38.17 0.9240 5.15 38.23 0.9240 

5 49.50 1509 0.6460 5.12 38.16 0.9272 5.56 40.41 0.9092 

8 29.90 454 0.5641 5.05 37.70 0.9271 5.09 37.59 0.9236 

3 

3 6.07 63.39 0.8035 5.24 39.60 0.9134 5.34 39.68 0.9198 

5 16.53 308 0.4872 5.1 37.21 0.9263 5.26 38.80 0.9218 

8 26.33 313 0.2226 5.42 42.58 0.9197 5.52 39.39 0.9109 

Ortalama 16.69 315 0.7021 5.16 38.49 0.9245 5.29 38.74 0.9196 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.01, 0.01, 10-7 ve 1000 olarak alınmıştır.  

 Ağın eğitimi esnasında geçen süreler ve eğitimin sona erdirildiği en iyi döngü 

sayıları Tablo 4.26’de verilmiştir. Tablo 4.26 incelendiğinde bir katmanda üç nöron 

kullanıldığında LM algoritmasında aşırı eğitim oluşmadığı, BR algoritmasında üç 
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katman ve sekiz nöron bulunan yapıda aşırı eğitim olduğu ve GDX algoritmasında 

diğer parametre gruplarına göre bir farklılık olmadığı görülmektedir. 

Tablo 4.26. İkinci grup parametrelerle eğitimde süreler ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 0.3010 40 1.2230 161 0.7510 996 

5 6.9870 1000 0.9030 115 0.7490 1000 

8 7.1970 1000 1.3590 169 0.7800 1000 

2 

3 7.6860 1000 7.9760 827 0.7790 1000 

5 9.5590 1000 6.4800 491 0.8070 1000 

8 10.1540 1000 5.9200 557 0.8440 1000 

3 

3 10.2800 1000 6.5610 676 0.8560 1000 

5 9.9330 1000 2.2780 181 0.8560 997 

8 13.8450 1000 15.6540 1000 0.8860 1000 

Ort. 8.4380 893 5.3727 464 0.8120 999 

 

4.1.2.4 Üçüncü grup parametrelerle eğitim 

 Bu gruptaki parametreler MATLAB tarafından varsayılan parametrelerden 

farklı olarak sadece MU değerinin 0.05 olarak alınmasıyla elde edilmiştir. Eğitim 

sonunda performans ölçütü değerleri kaydedilerek Tablo 4.27’de verilmiştir. Bu 

parametre grubunda en düşük MAPE değeri BR algoritması, üç gizli katman ve üç 

nöronun kullanıldığı durumda %4.98 olarak tespit edilmiştir.  

Tablo 4.27. Üçüncü grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 5.47 46.02 0.8987 5.13 37.37 0.9210 5.11 37.14 0.9309 

5 5.91 73.09 0.8598 5.07 37.40 0.9247 5.17 37.88 0.9276 

8 5.71 44.87 0.8678 5.10 37.56 0.9270 5.45 39.51 0.9147 

2 

3 6.92 109.75 0.7636 5.19 39.28 0.9234 5.07 36.89 0.9253 

5 21.52 770.92 0.6738 5.05 37.63 0.9246 5.44 38.23 0.9175 

8 30.81 511.95 0.2872 5.12 37.92 0.9264 5.34 38.39 0.9182 

3 

3 6.41 71.45 0.7958 4.98 37.21 0.9276 5.21 38.19 0.9251 

5 12.73 227.79 0.5780 5.10 37.62 0.9236 5.26 38.80 0.9218 

8 39.70 548.48 0.1493 5.11 37.86 0.9257 5.36 38.61 0.9197 

Ortalama 15.02 267.15 0.6527 5.09 37.76 0.9249 5.27 38.18 0.9223 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.05, 0.01, 10-7 ve 1000 olarak alınmıştır.  
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 LM algoritmasında yüksek MAPE değerleri (%39.7) ile tahminler 

üretilmiştir. GDX ve BR algoritmalarının LM algoritmasının aksine katman ve 

nöron sayılarından etkilenmediği Tablo 4.27’den görülmektedir.  

 Ağın eğitimi esnasında geçen süreler ve en iyi döngü sayıları Tablo 4.28’de 

verilmiştir. Tablo 4.28 incelendiğinde bir katmanda üç ve sekiz nöron bulunduğu 

durumlar hariç LM algoritmasında 1000 döngüye kadar eğitimin devam ettiği 

görülmektedir. BR algoritmasında bir katmanda beş nöron bulunan yapıda 1000 

döngüye kadar eğitime devam edilmiştir. GDX algoritması için diğer parametre 

gruplarıyla bir farklılık oluşmamıştır.  

Tablo 4.28. Üçüncü grup parametrelerle eğitimde süreler ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 0.6720 99 2.7440 424 0.7650 989 

5 1.7100 204 7.4110 1000 0.7400 1000 

8 10.5510 1000 0.9180 113 0.7560 994 

2 

3 7.8050 1000 2.3120 236 0.7820 997 

5 11.84 1000 3.1740 371 0.8180 1000 

8 8.9080 1000 3.4250 355 0.8870 996 

3 

3 14.1970 1000 3.5570 349 0.8710 991 

5 9.9020 1000 1.5190 116 0.8560 997 

8 11.5460 1000 1.4500 95 0.8870 1000 

Ort. 8.5701 811 2.9456 340 0.8180 996 

4.1.2.5 Dördüncü grup parametrelerle eğitim 

Bu gruptaki parametreler MATLAB tarafından varsayılan parametrelerden 

farklı olarak sadece λ değerinin 0.1 olarak alınmasıyla elde edilmiştir. Eğitim 

sonunda performans ölçütü değerleri kaydedilerek Tablo 4.29’de verilmiştir. Tablo 

4.29 incelendiğinde bu parametre grubunda en düşük MAPE değerinin GDX 

algoritması, bir gizli katman ve üç nöronun kullanıldığı durumda %4.96 olarak 

tespit edildiği görülmektedir. Doğrulama setinin olmayışı nedeniyle LM 

algoritmasıyla yüksek MAPE değerleri (%40.87) ile tahminler yapıldığı 

görülmektedir. GDX ve BR algoritmaları katman ve nöron sayılarından 

etkilenmemiştir.  
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Tablo 4.29. Dördüncü grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 5.47 46.02 0.8987 5.03 37.50 0.9272 5.27 38.11 0.9251 

5 5.91 73.09 0.8598 5.14 38.09 0.9291 5.71 40.68 0.9092 

8 5.71 44.87 0.8678 5.06 37.39 0.9261 4.96 36.79 0.9334 

2 

3 6.92 109.75 0.7636 5.26 38.17 0.9240 5.09 37.78 0.9235 

5 21.52 770.92 0.6738 5.14 38.05 0.9279 5.75 41.68 0.9136 

8 30.81 511.95 0.2871 5.05 37.70 0.9271 5.55 39.78 0.9192 

3 

3 5.29 38.97 0.9210 5.11 38.36 0.9188 5.17 37.22 0.9260 

5 14.56 274.50 0.3521 5.12 38.19 0.9239 5.50 39.91 0.9067 

8 40.87 510.57 0.1605 5.03 37.29 0.9238 5.23 37.47 0.9252 

Ortalama 15.23 264.52 0.6427 5.10 37.86 0.9253 5.36 38.82 0.9202 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.001, 0.1, 10-7 ve 1000 olarak alınmıştır.  

 Ağın eğitimi esnasında geçen süreler ve en iyi döngü sayıları Tablo 4.30’da 

verilmiştir. Tablo 4.30 incelendiğinde bir önceki grupta olduğu gibi LM 

algoritmasında bir katmanda üç ve beş nöronun olduğu yapı hariç 1000 döngüye 

kadar eğitimin sürdüğü görülmektedir. BR algoritmasında üç katmanda beş nöron 

bulunan yapıda ise 1000 döngü ile eğitim tamamlanmıştır. 

Tablo 4.30. Dördüncü grup parametrelerle eğitimde süreler ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 0.6680 99 1.0830 161 0.7230 999 

5 1.4020 204 1.2410 109 0.7520 1000 

8 8.3540 1000 1.7180 201 0.7460 1000 

2 

3 8.0710 1000 7.9500 936 0.7680 1000 

5 8.8640 1000 4.9130 520 0.8110 1000 

8 9.1300 1000 7.8120 564 0.8190 1000 

3 

3 10.0580 1000 2.9920 283 0.8230 995 

5 10.1890 1000 12.3960 1000 0.8750 1000 

8 11.9460 1000 2.7320 192 1.1190 1000 

Ort. 7.6313 811 4.7597 441 0.8262 999 

 

4.1.2.6 Beşinci grup parametrelerle eğitim 

 Bu gruptaki parametreler MATLAB tarafından varsayılan parametrelerden 

farklı olarak sadece gradyan değerinin 10-6 olarak alınmasıyla elde edilmiş ve yedi 

farklı ağ bu parametrelerle eğitilmiştir. Eğitim sonunda performans ölçütü değerleri 

kaydedilerek Tablo 4.31’de verilmiştir. Tablo 4.31 incelendiğinde bu parametre 
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grubunda en düşük MAPE değerinin BR algoritması, bir gizli katman ve üç nöronun 

kullanıldığı durumda %5.03 olarak tespit edildiği görülmektedir. LM algoritması 

yine doğrulama setinin olmayışı nedeniyle yüksek MAPE değeri (%40.87) ile 

tahminler üretmiştir.  

Tablo 4.31. Beşinci grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 3 5.47 46.03 0.8987 5.03 37.50 0.9272 5.29 38.36 0.9221 

5 5.91 73.09 0.8598 5.14 38.09 0.9291 5.22 38.25 0.9266 

8 5.71 44.87 0.8678 5.06 37.39 0.9261 5.19 37.99 0.9186 

2 3 6.92 109.75 0.7636 5.26 38.17 0.9240 5.15 38.23 0.9240 

5 21.52 770.92 0.6738 5.14 38.05 0.9279 5.56 40.41 0.9092 

8 30.81 238.50 0.2871 5.05 37.70 0.9271 5.09 37.60 0.9236 

3 3 5.29 38.97 0.9210 5.11 38.36 0.9188 5.34 39.68 0.9198 

5 14.56 274.50 0.3521 5.07 37.19 0.9266 5.26 38.80 0.9218 

8 40.87 510.57 0.1605 7.50 51.05 0.7916 5.52 39.39 0.9109 

Ortalama 15.23 234.13 0.6427 5.37 39.28 0.9109 5.29 38.75 0.9196 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.001, 0.01, 10-6 ve 1000 olarak alınmıştır.  

 GDX algoritması katman ve nöron sayılarından etkilenmezken BR 

algoritması üç katmanda sekiz nöron bulunan yapıda yüksek MAPE değeri ile 

(%7.5) tahmin üretmiştir. 

 Ağın eğitimi esnasında geçen süreler ve eğitimin sona erdirildiği en iyi döngü 

sayıları Tablo 4.32’da verilmiştir.  

Tablo 4.32. Beşinci grup parametrelerle eğitimde süreler ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 0.7150 92 1.2410 161 0.7360 996 

5 1.4900 169 0.8060 109 0.7410 1000 

8 7.3650 1000 1.9780 201 0.7610 1000 

2 

3 8.2700 1000 7.9420 936 0.8030 1000 

5 8.8760 1000 4.9000 520 0.8180 1000 

8 9.3060 1000 5.9790 564 0.8410 1000 

3 

3 10.5110 1000 2.6260 283 0.9510 1000 

5 10.6230 1000 1.7700 169 0.9240 997 

8 13.9270 1000 12.7670 892 0.9120 1000 

Ort. 7.8981 807 4.4454 426 0.8319 999 
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 Tablo 4.32 incelendiğinde sonuçların diğer parametre gruplarıyla elde edilen 

süre ve en iyi döngü sayılarından büyük farklılık göstermediği söylenebilir. Bu 

parametre grubundaki tek farklılık BR algoritmasında 1000 döngüye kadar eğitimin 

devam ettiği her hangi bir katman ve nöron sayısı yapısının bulunmamasıdır.  

4.1.2.7 Altıncı grup parametrelerle eğitim 

 Bu gruptaki parametreler MATLAB tarafından varsayılan parametrelerden 

farklı olarak sadece gradyan değerinin 10-5 olarak alınmasıyla elde edilmiş ve yedi 

farklı ağ bu parametrelerle eğitilmiştir. Eğitim sonunda performans ölçütü değerleri 

kaydedilerek Tablo 4.33’de verilmiştir. Tablo 4.33 incelendiğinde bu parametre 

grubunda en düşük MAPE değerinin BR algoritması, bir gizli katman ve 3 nöronun 

kullanıldığı durumda %5.03 olarak tespit edildiği görülmektedir. LM algoritması 

yine doğrulama setinin olmayışı nedeniyle yüksek MAPE değeri (%40.87) ile 

tahminler üretmiştir.  

Tablo 4.33. Altıncı grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 5.56 49.96 0.8874 5.03 37.50 0.9272 5.29 38.36 0.9221 

5 5.91 73.08 0.8599 5.14 38.09 0.9291 5.22 38.25 0.9266 

8 5.68 44.41 0.8709 5.06 37.39 0.9261 5.19 37.99 0.9186 

2 

3 6.92 109.75 0.7636 5.26 38.17 0.9240 5.15 38.23 0.9240 

5 21.52 770.89 0.6737 5.14 38.05 0.9279 5.56 40.41 0.9092 

8 30.81 511.95 0.2871 5.05 37.70 0.9271 5.09 37.59 0.9236 

3 

3 5.29 38.97 0.9210 5.11 38.36 0.9188 5.34 39.68 0.9198 

5 14.56 274.50 0.3521 5.07 37.19 0.9266 5.26 38.80 0.9218 

8 40.87 510.57 0.1605 7.50 51.05 0.7916 5.52 39.39 0.9109 

Ortalama 15.24 264.90 0.6418 5.37 39.28 0.9109 5.29 38.74 0.9196 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.001, 0.01, 10-5 ve 1000 olarak alınmıştır.  

 Bu grupta beşinci grup parametrelerle yapılan eğitimde elde edilen MAPE 

değerlerine çok yakın MAPE değerleri elde edilmiştir. Minimum MAPE değerleri 

birebir aynıdır. Gradyan değerini artırmak, MAPE değerlerinde bir değişime neden 

olmamaktadır.  Ağın eğitimi esnasında geçen süreler ve eğitimin sona erdirildiği 

en iyi döngü sayıları Tablo 4.34’te verilmiştir. Tablo 4.34 incelendiğinde LM 
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algoritmasının bir katmanda üç farklı nöron sayısı içinde 1000 döngüye kadar 

eğitime devam etmediği görülmektedir. BR ve GDX algoritmalarında bir önceki 

parametre grubu ile aynı süre ve döngü sayıları elde edilmiştir. Gradyan değerinin 

artırılması aynı MAPE değerlerinin elde edilmesinin yanı sıra aynı döngü sayısıyla 

eğitimin tamamlanmıştır. Önceki gruptan farklı olarak sadece sürelerde çok küçük 

farklılıklar oluşmuştur.  

Tablo 4.34. Altıncı grup parametrelerle eğitimde süreler ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 0.6160 86 1.1030 161 0.7650 996 

5 0.9530 145 0.9550 109 0.7710 1000 

8 2.9980 437 1.4660 201 0.7550 1000 

2 

3 7.7650 1000 8.2890 936 0.8170 1000 

5 8.4070 1000 4.9030 520 0.8060 1000 

8 8.9790 1000 5.8160 564 0.8300 1000 

3 

3 10.8750 1000 3.0270 283 0.8170 1000 

5 10.0990 1000 2.1220 169 0.8720 997 

8 12.2020 1000 12.9590 892 0.9020 1000 

Ort. 6.9882 741 4.5156 426 0.8150 999 

4.1.2.8 Yedinci grup parametrelerle eğitim 

 Bu gruptaki parametreler MATLAB tarafından varsayılan parametrelerden 

farklı olarak sadece döngü sayısının 500 olarak alınmasıyla elde edilmiş ve yedi 

farklı ağ bu parametrelerle eğitilmiştir.  

Tablo 4.35. Yedinci grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 5.47 46.02 0.8987 5.03 37.50 0.9272 5.43 39.57 0.9171 

5 5.66 60.18 0.8781 5.14 38.09 0.9291 5.23 38.64 0.9251 

8 5.69 44.70 0.8691 5.06 37.39 0.9261 5.37 38.92 0.9141 

2 

3 6.09 72.57 0.7817 5.26 38.17 0.9240 5.30 39.53 0.9183 

5 8.12 142.02 0.7290 5.14 38.05 0.9279 5.91 42.46 0.9000 

8 22.06 361.58 0.2941 5.05 37.70 0.9271 5.25 38.22 0.9207 

3 

3 5.16 37.86 0.9269 5.11 38.36 0.9188 5.86 43.44 0.9013 

5 12.62 238.56 0.4901 5.07 37.19 0.9266 5.29 39.53 0.9184 

8 35.37 614.35 0.0963 7.50 51.11 0.7914 5.81 41.34 0.9025 

Ortalama 11.80 179.76 0.6627 5.37 39.28 0.9109 5.49 40.18 0.9131 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.001, 0.01, 10-7 ve 500 olarak alınmıştır.  



103 

 

 

 

 Eğitim sonunda performans ölçütü değerleri kaydedilerek Tablo 4.35’te 

verilmiştir. Tablo 4.35 incelendiğinde bu parametre grubunda en düşük MAPE 

değerinin yine BR algoritması, bir gizli katman ve üç nöronun kullanıldığı durumda 

%5.03 olarak tespit edildiği görülmektedir. GDX algoritması katman ve nöron 

sayılarından etkilenmezken BR algoritması bir önceki grupta olduğu gibi yüksek 

MAPE değeri ile (%7.5) tahmin üretmiştir. 

Tablo 4.36. Yedinci grup parametrelerle eğitimde süreler ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 0.6560 99 1.1720 161 0.4550 499 

5 1.5970 204 0.8370 109 0.4020 495 

8 3.9040 500 1.5060 201 0.4930 497 

2 

3 4.1270 500 4.4810 500 0.4230 499 

5 4.6170 500 4.5120 500 0.6120 500 

8 4.1430 500 4.8810 500 0.4740 500 

3 

3 4.4630 500 2.5610 283 0.4590 494 

5 4.9280 500 1.9910 169 0.4740 500 

8 5.9630 500 7.0330 500 0.4890 500 

Ort. 3.8220 423 3.2193 325 0.4757 498 

 Ağın eğitimi esnasında geçen süreler ve eğitimin sona erdirildiği en iyi döngü 

sayıları Tablo 4.36’da verilmiştir. Maksimum döngü sayısının azaltılmasının yine 

eğitim sürelerinde bir düşüşe neden olduğu Tablo 4.36’dan görülmektedir. 

4.1.2.9 Sekizinci grup parametrelerle eğitim 

Bu gruptaki parametreler MATLAB tarafından varsayılan parametrelerden 

farklı olarak sadece döngü sayısının 100 olarak alınmasıyla elde edilmiş ve yedi 

farklı ağ bu parametrelerle eğitilmiştir. Eğitim sonunda performans ölçütü değerleri 

kaydedilerek Tablo 4.37’de verilmiştir. 

Tablo 4.37 incelendiğinde bu parametre grubunda en düşük MAPE değerinin 

BR algoritması, iki gizli katman ve üç nöronun kullanıldığı durumda %4.99 olarak 

tespit edildiği görülmektedir. LM algoritması önceki tüm parametre gruplarının 

aksine döngü sayısnın 100 ile sınırlandırılmasından olumlu etkilenmiştir. Bunun 

nedeni aşırı eğitim olmamasıdır. Bu nedenle LM algoritması daha düşük MAPE 

değerleri ve düşük MAPE ortalaması ile verilerin rastgele ayrıldığı durumda elde 

edilen MAPE değerlerine yakın tahminler üretmiştir. Ancak bu grup parametrelerle 



104 

 

 

 

eğitimde LM algoritması katman ve nöron sayısından etkilenmiş, üç katman ve 

sekiz nöronun olduğu yapıda MAPE değeri %8.37 ile tahmin üretmiştir. 

Tablo 4.37. Sekizinci grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 5.14 37.79 0.9251 5.09 37.52 0.9204 6.87 51.33 0.8607 

5 5.80 50.63 0.8573 5.09 37.15 0.9290 6.82 49.62 0.8761 

8 5.89 61.54 0.8017 5.13 38.18 0.9219 5.97 43.86 0.8947 

2 

3 5.22 37.47 0.9240 4.99 37.09 0.9270 7.39 54.32 0.8573 

5 5.52 41.32 0.9059 5.09 38.13 0.9174 6.08 44.02 0.8995 

8 6.45 51.47 0.8478 5.08 38.15 0.9235 6.06 46.00 0.8891 

3 

3 5.04 36.94 0.9281 5.04 37.38 0.9306 7.85 55.75 0.8367 

5 6.54 64.00 0.8086 5.15 38.21 0.9268 6.09 44.05 0.8954 

8 8.37 87.89 0.7475 5.15 38.00 0.9243 5.79 44.13 0.9037 

Ortalama 6.00 52.12 0.8607 5.09 37.76 0.9245 6.55 48.12 0.8792 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.001, 0.01, 10-7 ve 100 olarak alınmıştır.  

 GDX ve BR algoritmaları katman ve nöron sayılarından etkilenmemiştir. 

Döngü sayısının 100 olarak sınırlandırmasıyla bütün algoritmalar bir saniyenin 

altında eğitimi tamamlamıştır. 

 Ağın eğitimi esnasında geçen süreler ve eğitimin sona erdirildiği en iyi döngü 

sayıları Tablo 4.38’de verilmiştir.  

Tablo 4.38. Sekizinci grup parametrelerle eğitimde süreler ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 0.5420 82 0.7020 94 0.1160 100 

5 0.7180 100 0.7820 100 0.1000 100 

8 0.7390 100 0.7490 100 0.1010 99 

2 

3 0.9350 100 0.8210 100 0.1160 98 

5 0.8020 100 0.9870 100 0.1000 100 

8 1.0380 100 1.0100 100 0.1000 89 

3 

3 0.8650 100 0.9330 100 0.1240 100 

5 0.9710 100 1.0810 100 0.1540 100 

8 1.1020 100 1.3500 100 0.1310 98 

Ort. 0.8569 98 0.9350 99 0.1158 98 

 Tablo 4.38 incelendiğinde döngü sayısının 100 ile sınırlandırılması nedeniyle 

süre ve en iyi döngü sayılarında doğal bir düşüş olduğu görülmektedir. Tablo 
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4.38’den LM algoritmasında aynı döngü sayıları söz konusu olduğunda BR ve 

GDX algoritmaları gibi 1sn’nin altında eğitimin tamamlandığı görülmektedir. GDX 

algoritması yinede sekiz kat daha hızlı eğitimi tamamlamıştır. Ancak BR ve LM 

algoritmaları söz konusu olduğunda iki algoritma arasında eğitim süreleri 

bakımından büyük bir fark olmadığı görülmektedir.  

4.1.3 Çapraz doğrulama için tüm durumlara ilişkin özet 

Verilerin çapraz doğrulama ile test ve eğitim setine ayrıldığı durum için 

MATLAB tarafından otomatik olarak verilen parametre grupları dahil olmak üzere 

dokuz farklı parametre gurubu, normalize edilmiş ve ham veriler olarak iki farklı 

veri grubu için toplam 18 adet tablo elde edilmiştir. Bu tablolardan her bir algoritma 

için en düşük MAPE değeri ile sonuç veren durumlar ve bunlara ait en iyi döngü 

sayıları, eğitimde geçen süreler ile ortalama hataları gösteren özet tablo EK 2a, EK 

2b ve EK 2c’de verilmiştir. 

EK 2a incelendiğinde çapraz doğrulama için tüm durumlarda en düşük MAPE 

değeri (%4.85), LM algoritması ve standartlaştırma olmayan durumda, 8. parametre 

grubunda yani döngü sayısının 100 olarak sınırlandırıldığı durumda elde edilmiştir. 

BR ve GDX için bu değerler sırasıyla %4.98 ve %4.96 olarak elde edilmiştir. 

Çapraz doğrulama ile veriler ayrıldığında parametre gruplarının büyük 

çoğunluğunda BR algoritması ile minimum MAPE değerleri elde edilmiştir. 

4.1.4 Verilerin %70 eğitim, %15 test ve %15 doğrulama setine rastgele 

ayrılması. 

YSA’da veriler genellikle %70 eğitim, %15 test ve %15 geçerlilik setine 

rastgele olarak ayrılır. MATLAB’te bu veri ayırma biçimi varsayılan olarak 

seçilidir. Tez çalışması kapsamında çapraz doğrulama ile karşılaştırmak amacıyla 

bu veri ayırma şekli ile de denemeler yapılmıştır. Bu ayırma yönteminde daha önce 

çapraz doğrulama ile verilerin ayrıldığı durumda olduğu gibi dokuz farklı parametre 

grubunun etkisi incelenmiştir. Ayrıca verilerde normalizasyonun etkisinin de 

incelendiği tablolar ve ağın eğitiminde geçen süreler ile eğitimin sonlandırıldığı en 

iyi döngü sayılarının verildiği toplam 36 tablo elde edilerek (Tablo 4.40-Tablo 4.76)  

her bir parametre grubu için verilen başlıkların altında okuyucuya sunulmuştur. 
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4.1.5 Rastgele ayırmada ham verilerle deneme 

Çalışmanın bu kısmında et sığırlarından alınan üç boyutlu görüntülerin çeşitli 

görüntü işleme yöntemlerine tabi tutulmasıyla elde edilen sığır alanı ve 

yüksekliğine ait ham veriler herhangi bir standartlaştırmaya tabi tutulmadan 

rastgele olarak %70 eğitim, %15 test ve %15 doğrulama setine ayrılarak EK 1c’deki 

komutlar yardımıyla yapay sinir ağlarında eğitim gerçekleştirilmiştir. Dokuz farklı 

parametre grubu için yapılan analiz sonuçları aşağıda verilmiştir. 

4.1.5.1 Rastgele ayırmada MATLAB varsayılan parametreleriyle eğitim 

Bu gruptaki parametreler, Tablo 4.39’daki MATLAB paket programı 

tarafından otomatik olarak atanan varsayılan parametre değerleridir. 

Tablo 4.39. MATLAB varsayılan parametreleri 

MATLAB varsayılan parametreleri 

MU λ GD Döngü 

0.001 0.01 10-7 1000 

Yapılan eğitimler sonucunda Tablo 4.40’daki bulgulara ulaşılmıştır.  

Tablo 4.40. Rastgele ayırmada varsayılan parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 4.8 36.09 0.9321 4.96 36.87 0.9275 5.16 38.53 0.9219 

5 4.87 35.97 0.9313 4.95 36.79 0.9278 5.09 38.24 0.9231 

8 4.66 34.65 0.9372 4.99 36.92 0.9273 5.11 38.03 0.9233 

2 

3 4.84 38.06 0.9211 4.94 36.79 0.9280 5.13 37.53 0.9260 

5 4.80 35.93 0.9318 4.89 36.55 0.9288 5.16 37.53 0.9256 

8 4.68 35.26 0.9355 4.95 36.78 0.9279 4.88 36.06 0.9309 

3 

3 4.98 36.61 0.9306 4.87 36.20 0.9300 5.53 40.56 0.9123 

5 5.04 37.06 0.9269 4.77 35.76 0.9318 7.62 53.44 0.8088 

8 4.71 37.03 0.9266 7.16 50.98 0.7959 4.98 36.43 0.9299 

Ortalama 4.82 36.30 0.9303 5.16 38.18 0.9139 5.41 39.59 0.9113 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

Tablo 4.40 incelendiğinde bu parametre grubunda en düşük MAPE değerinin 

LM algoritması, bir gizli katman ve 8 nöronun kullanıldığı durumda %4.66 olarak 

tespit edildiği görülmektedir. LM algoritması verilerin rastgele ayrıldığı durumda 
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verilerin bir kısmının doğrulama setine ayrılması nedeniyle çapraz doğrulamaya 

göre daha kararlı ağlar ve daha düşük MAPE ve RMSE değerleri ile tahminler 

üretmiştir. BR algoritmasında en düşük MAPE değeri %4.77 ve GDX 

algoritmasında bu değer %4.75 olarak belirlenmiştir. Bu değer GDX algoritmasının 

bütün denemelerinden elde edilen en düşük MAPE değeridir. 

 GDX algoritması MATLAB varsayılan değerleri kullanıldığında en düşük 

MAPE değeri ile sonuç vermektedir. 

Tablo 4.41. Rastgele ayırmada varsayılan parametrelerle eğitimde süreler ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 2.6150 5 0.7640 90 0.7440 923 

5 1.8890 8 7.1810 922 0.7400 992 

8 1.9190 7 1.3810 177 0.7400 999 

2 

3 4.3720 282 8.2360 967 0.7700 947 

5 2.5320 48 2.3600 254 0.6760 589 

8 2.3200 10 6.0790 564 0.9490 702 

3 

3 2.3680 15 3.3740 315 0.8650 999 

5 2.8590 42 4.4810 397 0.9020 945 

8 3.0350 13 0.2310 12 0.7330 523 

Ort. 2.6566 48 3.7874 411 0.7910 847 

LM (en düşük %4.56) ve BR (en düşük %4.72) algoritmaları da tüm 

parametre kombinasyonları denenerek elde edilen minimum MAPE değerlerine çok 

yakın sonuçlar üretmiştir.   

Ağın eğitimi esnasında geçen süreler ve eğitimin sona erdirildiği en iyi döngü 

sayıları Tablo 4.41’de verilmiştir. Tablo 4.41 incelendiğinde LM algoritmasında iki 

gizli katman ve üç nöron kullanıldığı durum hariç az sayıda döngüyle eğitimin 

tamamlandığı görülmektedir.  

4.1.5.2 Rastgele ayırmada birinci grup parametrelerle eğitim 

Bu gruptaki parametreler MATLAB paket programı tarafından ileri beslemeli 

geri yayılımlı ağ için otomatik olarak atanan varsayılan parametre değerlerinden 

sadece MU değerinin 0.005 olarak alınmasıyla elde edilmiştir. Yapılan analizler 

sonucunda Tablo 4.42’deki bulgulara ulaşılmıştır. Tablo 4.42’den bu parametre 

grubunda en düşük MAPE değeri yine LM algoritmasında ancak iki gizli katman 

ve beş nöronun kullanıldığı durumda %4.6 olarak tespit edildiği görülmektedir.  
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Tablo 4.42. Rastgele ayırmada birinci grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 4.85 35.41 0.9335 4.93 36.74 0.9280 4.99 37.01 0.9273 

5 4.78 35.57 0.9324 4.93 36.84 0.9276 5.35 38.62 0.9209 

8 4.76 35.39 0.9340 4.95 36.95 0.9273 5.29 38.79 0.9207 

2 

3 7.11 50.46 0.7978 4.90 36.39 0.9294 7.82 55.40 0.7799 

5 4.60 33.89 0.9391 4.94 36.82 0.9278 5.28 39.93 0.9107 

8 4.62 34.54 0.9368 4.85 36.01 0.9307 5.07 37.15 0.9279 

3 

3 6.33 46.76 0.8628 4.85 35.96 0.9309 7.71 53.60 0.7859 

5 4.62 33.91 0.9390 4.86 36.07 0.9305 5.00 36.34 0.9302 

8 4.74 36.85 0.9284 4.85 36.00 0.9308 5.87 41.74 0.9022 

Ortalama 5.16 38.09 0.9115 4.90 36.42 0.9292 5.82 42.06 0.8895 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.005, 0.01, 10-7 ve 1000 olarak alınmıştır.  

 BR algoritması katman ve nöron sayılarından etkilenmezken LM ve GDX 

algoritması iki gizli katmanda üç nöron olduğu durumda yüksek MAPE değeri ile 

(%7.11, %7.82) tahmin üretmiştir. Bunun sebebi momentum güncelleme 

katsayısının 0.005 olarak alınması nedeniyle ağın lokal minimum’a takılması olarak 

değerlendirilebilir. 

 Ağın eğitimi esnasında geçen süreler ve eğitimin sona erdirildiği en iyi döngü 

sayıları Tablo 4.43’de verilmiştir. Tablo 4.43 incelendiğinde LM algoritmasında üç 

gizli katmanda beş nöronun kullanıldığı durum hariç az sayıda döngü ile eğitimin 

tamamlandığı görülmektedir.  

Tablo 4.43. Rastgele ayırmada birinci grup parametrelerle eğitimde süreler ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 1.9370 12 1.1720 156 0.6420 613 

5 2.6070 98 1.1180 148 1.4860 376 

8 2.2100 8 2.4170 302 0.7740 924 

2 

3 2.1110 12 1.1800 118 0.6010 442 

5 2.2540 12 1.8060 128 0.2650 64 

8 2.5070 22 1.5210 139 0.4790 282 

3 

3 2.5340 13 6.6600 639 0.8710 992 

5 5.4710 269 1.6040 148 0.7640 500 

8 3.3220 6 15.4090 1000 1.0170 941 

Ort. 2.7726 50 3.6541 309 0.7666 570 
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4.1.5.3 Rastgele ayırmada ikinci grup parametrelerle eğitim 

Bu gruptaki parametreler MATLAB paket programı tarafından ileri beslemeli 

geri yayılımlı ağ için otomatik olarak atanan varsayılan parametre değerlerinden 

sadece MU değerinin 0.01 olarak alınmasıyla elde edilmiştir. Yapılan analizler 

sonucunda Tablo 4.44’deki bulgulara ulaşılmıştır.  

Tablo 4.44. Rastgele ayırmada ikinci grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 4.88 36.23 0.9304 4.92 36.82 0.9279 5.17 38.21 0.9233 

5 4.75 35.47 0.9329 4.93 36.72 0.9282 5.28 38.63 0.9210 

8 4.67 34.31 0.9374 4.97 36.84 0.9276 5.22 38.06 0.9234 

2 

3 4.95 36.07 0.9313 4.88 36.35 0.9295 6.50 46.34 0.8577 

5 4.93 36.24 0.9309 4.92 36.77 0.9279 5.04 37.32 0.9263 

8 4.76 37.32 0.9299 4.93 36.69 0.9282 7.41 51.99 0.7990 

3 

3 4.80 34.75 0.9363 4.84 36.07 0.9305 5.21 38.96 0.9208 

5 4.73 34.63 0.9366 4.93 36.70 0.9282 5.29 38.09 0.9235 

8 4.86 36.11 0.9310 6.97 49.54 0.8012 5.12 37.13 0.9275 

Ortalama 4.81 35.68 0.9330 5.14 38.06 0.9144 5.58 40.53 0.9025 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.01, 0.01, 10-7 ve 1000 olarak alınmıştır.  

Bu parametre grubunda LM algoritması önceki iki MU değerinden daha 

istikrarlı sonuçlar üretmiş, Tablo 4.45’deki en iyi döngü sayılarıda incelenecek 

olursa en fazla 31 döngüde eğitimi tamamlamasına karşın hiçbir denemede %5 

üzerinde MAPE değeri elde edilmemiştir. BR algoritması üç katman ve sekiz 

nöronun kullanıldığı durumda aşırı eğitimden etkilenmiş bunun dışındaki 

denemelerde %5’in altında MAPE değeri ile ağlar üretmiştir.  

 Ağın eğitimi esnasında geçen süreler ve eğitimin sona erdirildiği en iyi döngü 

sayıları Tablo 4.45’de verilmiştir. Tablo 4.45 incelendiğinde bir önceki parametre 

gurubunda LM algoritmasında ortalama 50 olan en iyi döngü sayısının bu parametre 

grubunda ortalama 16 olduğu görülmektedir. MU parametresini 10 kat büyütmek 

LM algoritmasında döngü sayısının azalmasına neden olmuştur.  
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Tablo 4.45. Rastgele ayırmada ikinci grup parametrelerle eğitimde süreler ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 2.0560 28 0.7190 82 0.5700 476 

5 2.3790 16 2.5150 285 0.8250 923 

8 2.2860 31 5.3030 638 0.3860 212 

2 

3 2.4140 13 1.8580 198 0.8030 1000 

5 2.9610 2 3.8540 363 0.8840 989 

8 3.1380 12 1.3190 111 0.9190 940 

3 

3 2.6620 26 2.2910 244 0.8960 995 

5 2.9420 6 1.9580 144 0.3800 103 

8 3.8180 9 14.2180 1000 0.9870 963 

Ort. 2.7396 16 3.7817 341 0.7389 733 

 

4.1.5.4 Rastgele ayırmada üçüncü grup parametrelerle eğitim 

 Bu gruptaki parametreler MATLAB paket programı tarafından ileri beslemeli 

geri yayılımlı ağ için otomatik olarak atanan varsayılan parametre değerlerinden 

sadece λ değerinin 0.05 olarak alınmasıyla elde edilmiştir. Yapılan analizler 

sonucunda Tablo 4.46’daki bulgulara ulaşılmıştır. Tablo 4.46 incelendiğinde bu 

parametre grubunda yine en düşük MAPE değerinin (%4.72) LM algoritmasıyla 

elde edildiği görülmektedir.  

Tablo 4.46. Rastgele ayırmada üçüncü grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 4.94 36.26 0.9305 4.92 36.83 0.9279 5.07 37.73 0.9251 

5 4.73 35.06 0.9345 4.89 36.25 0.9299 5.28 39.18 0.9184 

8 4.72 34.80 0.9355 4.97 36.93 0.9273 5.19 37.58 0.9257 

2 

3 4.95 36.07 0.9313 4.85 36.09 0.9305 10.97 74.77 0.6584 

5 4.93 36.24 0.9309 4.92 36.77 0.9279 5.01 37.09 0.9273 

8 4.76 37.32 0.9299 4.92 36.62 0.9285 4.99 36.40 0.9296 

3 

3 4.80 34.75 0.9363 4.84 36.01 0.9307 5.09 37.13 0.9269 

5 4.73 34.63 0.9366 4.92 36.64 0.9285 5.58 41.33 0.9069 

8 4.86 36.11 0.9310 9.33 64.22 0.6671 5.59 41.30 0.9069 

Ortalama 4.82 35.69 0.9329 5.40 39.60 0.8998 5.86 42.50 0.8917 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.001, 0.05, 10-7 ve 1000 olarak alınmıştır.  

 LM algoritması öğrenme oranının beş kat büyütülmesinden etkilenmemiş 

tüm denemelerde %5’in altında MAPE değerleriyle tahminler elde edilmiştir. BR 
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algoritmasında üç katmanda sekiz nöronun bulunduğu durum hariç %5’in altında 

MAPE değerleri ile tahminler üretilmiş, GDX algoritması iki katmanda üç nöronun 

bulunduğu yapıda lokal minimum’a takılmış, yüksek bir MAPE değeri (%10.97) 

ile tahmin üretmiştir. 

 Ağın eğitimi esnasında geçen süreler ve en iyi döngü sayıları Tablo 4.47’de 

verilmiştir. Tablo 4.47 incelendiğinde tüm algoritmalarda en iyi döngü sayılarında 

azalma olduğu görülmektedir.  

Tablo 4.47. Rastgele ayırmada üçüncü grup parametrelerle eğitimde süreler ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 1.9200 28 0.6640 81 0.5990 465 

5 1.8900 16 2.6380 268 0.3550 152 

8 2.2060 31 6.6520 765 0.9030 912 

2 

3 2.1250 13 0.8960 92 0.7170 639 

5 2.6250 2 4.0790 371 0.8560 916 

8 2.6300 12 10.7260 1000 0.3540 145 

3 

3 2.9710 26 1.9620 209 0.8870 912 

5 2.7610 6 1.7000 148 0.9090 980 

8 3.7610 9 14.4530 1000 0.9490 822 

Ort. 2.5432 16 4.8633 437 0.7254 660 

4.1.5.5 Rastgele ayırmada dördüncü grup parametrelerle eğitim 

Bu gruptaki parametreler MATLAB paket programı tarafından ileri beslemeli 

geri yayılımlı ağ için otomatik olarak atanan varsayılan parametre değerlerinden 

sadece λ değerinin 0.1 olarak alınmasıyla elde edilmiştir. Yapılan analizler 

sonucunda Tablo 4.48’daki bulgulara ulaşılmıştır. Tablo 4.48’den görüldüğü gibi 

bu parametre grubunda yine en düşük MAPE değeri (%4.72) ile tahmin LM 

algoritmasından elde edilmiştir.  LM algoritması öğrenme oranının beş kat 

büyütülmesinden etkilenmemiş tüm denemelerde %5’in altında MAPE değerleri ile 

tahminler üretmiştir. BR algoritması katman ve nöron sayısının artışından 

etkilenmiş üç katman ve sekiz nöron bulunan yapıda yüksek bir MAPE değeri 

(%9.33) ile tahmin üretmiştir. 
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Tablo 4.48. Rastgele ayırmada dördüncü grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 4.94 36.26 0.9305 4.92 36.83 0.9279 5.13 38.05 0.9240 

5 4.73 35.06 0.9345 4.89 36.25 0.9299 5.22 38.36 0.9222 

8 4.72 34.80 0.9355 4.97 36.93 0.9273 5.20 37.99 0.9235 

2 

3 4.95 36.07 0.9313 4.85 36.10 0.9305 5.63 43.21 0.8977 

5 4.93 36.24 0.9309 4.92 36.77 0.9279 5.09 37.67 0.9250 

8 4.76 37.32 0.9299 4.92 36.62 0.9285 7.37 51.73 0.8365 

3 

3 4.80 34.75 0.9363 4.84 36.01 0.9307 5.12 38.08 0.9237 

5 4.73 34.63 0.9366 4.92 36.64 0.9285 5.25 37.75 0.9249 

8 4.86 36.11 0.9310 9.33 64.22 0.6671 5.09 36.95 0.9284 

Ortalama 4.82 35.69 0.9329 5.40 39.60 0.8998 5.46 39.98 0.9118 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.001, 0.1, 10-7 ve 1000 olarak alınmıştır.  

Tablo 4.49’da en iyi döngü sayıları incelendiğinde diğer durumlarda ortalama 

400 döngü ile eğitimi tamamlayan BR algoritmasında üç katman ve sekiz nöron 

bulunan yapıda 1000 döngü ile eğitimi tamamladığı görülmektedir. Yüksek MAPE 

değerinin sebebi aşırı eğitim olabilir. 

Tablo 4.49. Rastgele ayırmada dördüncü grup parametrelerle eğitimde süre ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 2.0530 28 0.6240 81 0.6700 591 

5 2.2280 16 2.0360 268 0.8020 959 

8 2.2180 31 5.8560 765 0.4010 221 

2 

3 2.1520 13 0.8020 92 0.7870 1000 

5 2.4290 2 3.6890 371 0.8020 932 

8 2.3360 12 10.1500 1000 0.8490 990 

3 

3 2.4660 26 2.1590 209 0.8720 995 

5 2.5380 6 1.6410 148 0.4010 105 

8 3.1140 9 14.5840 1000 0.9870 967 

Ort. 2.3927 16 4.6157 437 0.7301 751 

 

Ağın eğitimi esnasında geçen süreler ve eğitimin sona erdirildiği en iyi döngü 

sayıları Tablo 4.49’da verilmiştir. Tablo 4.49 incelendiğinde GDX algoritmasında 

en iyi döngü sayılarında bir düşüş olduğu ancak Tablo 4.48’de bu azalmanın MAPE 

değerlerinde bir yükselmeye sebebiyet verdiği görülmektedir. 



113 

 

 

 

4.1.5.6 Rastgele ayırmada beşinci grup parametrelerle eğitim 

Bu gruptaki parametreler MATLAB paket programı tarafından ileri beslemeli 

geri yayılımlı ağ için otomatik olarak atanan varsayılan parametre değerlerinden 

sadece gradyan değerinin 10-6 olarak alınmasıyla elde edilmiştir.  

Yapılan analiz sonucunda Tablo 4.50’deki bulgulara ulaşılmıştır. Tablo 4.50 

incelendiğinde bu parametre grubunda yine en düşük MAPE değerinin (%4.56) LM 

algoritmasından elde edildiği görülmektedir. Bu değer tüm denemelerden elde 

edilen üç minimum MAPE değerinden biridir.  

Tablo 4.50. Rastgele ayırmada beşinci grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 5.33 39.24 0.9191 4.93 36.76 0.9280 5.28 39.25 0.9185 

5 4.87 35.90 0.9315 4.93 36.39 0.9293 5.20 38.35 0.9223 

8 4.68 35.87 0.9311 4.96 36.86 0.9275 4.98 36.42 0.9302 

2 

3 4.82 35.92 0.9319 4.94 36.65 0.9283 5.06 37.06 0.9273 

5 4.78 35.05 0.9348 4.94 36.72 0.9281 7.34 52.27 0.8061 

8 4.56 34.21 0.9377 4.92 36.66 0.9285 5.18 37.53 0.9260 

3 

3 4.82 35.35 0.9335 4.87 36.24 0.9300 5.37 39.44 0.9171 

5 4.81 36.83 0.9290 4.83 35.94 0.9310 5.16 37.99 0.9239 

8 4.74 34.75 0.9367 4.88 36.49 0.9290 5.04 36.86 0.9277 

Ortalama 4.82 35.90 0.9317 4.91 36.52 0.9289 5.40 39.46 0.9110 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.001, 0.01, 10-6 ve 1000 olarak alınmıştır. 

*** Siyah dolgulu hücre tüm denemeler sonucunda LM için en düşük MAPE değeridir. 

 GDX algoritması katman ve nöron sayısının artışından olumsuz yönde 

etkilenmiş, iki katman ve sekiz nöron bulunan yapıda yüksek bir MAPE değeri 

(%7.34) ile tahmin üretmiştir.  

BR algoritmasının daha önceki parametre gruplarıyla yapılan denemelerde de 

katman ve nöron sayılarının artmasından olumsuz etkilendiği gözlemlenmiştir. 

Gradyan değerinin 10 kat azaltıldığı bu parametre grubunda BR algoritmasıyla üç 

katman ve sekiz nöron bulunduğu yapıda da düşük MAPE değerleri elde edildiği 

Tablo 4.50’den görülmektedir.  
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 Ağın eğitimi esnasında geçen süreler ve eğitimin sona erdirildiği en iyi döngü 

sayıları Tablo 4.51’de verilmiştir. Tablo 4.51 incelendiğinde GDX algoritmasında 

üç katmanda beş ve sekiz nöron bulunan yapıda yaklaşık 100 döngüde eğitimin 

sona erdiği görülmektedir. 

Tablo 4.51. Rastgele ayırmada beşinci grup parametrelerle eğitimde süreler ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 1.4040 17 1.1340 163 0.7330 999 

5 1.8250 13 3.9100 413 0.7640 967 

8 2.0570 21 2.5380 331 0.7870 932 

2 

3 2.8080 52 3.5040 395 0.7410 687 

5 2.2600 15 3.0390 305 0.3190 116 

8 2.3430 7 1.4350 124 0.8960 943 

3 

3 3.9610 169 8.7140 809 0.8570 944 

5 2.5440 10 7.6530 659 0.5080 102 

8 2.9850 6 14.9920 1000 0.5390 105 

Ort. 2.4652 34 5.2132 467 0.6827 644 

 

4.1.5.7 Rastgele ayırmada altıncı grup parametrelerle eğitim 

 Bu gruptaki parametreler MATLAB paket programı tarafından ileri beslemeli 

geri yayılımlı ağ için otomatik olarak atanan varsayılan parametre değerlerinden 

sadece gradyan değerinin 10-5 olarak alınmasıyla elde edilmiştir. Yapılan analizler 

sonucunda Tablo 4.52’deki bulgulara ulaşılmıştır.  

Tablo 4.52 incelendiğinde bu parametre grubunda yine en düşük MAPE 

değerinin (%4.6) LM algoritmasından elde edildiği görülmektedir. LM algoritması 

gradyan değerinin 100 kat büyütülmesinden en iyi döngü sayıları bakımından 

olumlu etkilenmiş (ortalama 12 döngü) ayrıca tüm denemelerde %5’in altında 

MAPE değerleri ile tahminler ürettiği görülmektedir. BR algoritması gradyan 

değerinin büyütülmesinden pozitif yönde etkilenmiş, tüm denemelerden elde edilen 

minimum MAPE değeri bu parametre grubunda elde edilmiştir. Ayrıca GDX 

algoritmasında lokal minimum probleminin oluşmadığı, MAPE değerlerinin 

yükselmediği görülmektedir.  
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Tablo 4.52. Rastgele ayırmada altıncı grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 4.96 36.42 0.9294 4.94 36.78 0.9279 5.11 38.21 0.9225 

5 4.83 35.97 0.9316 4.99 36.87 0.9275 5.27 38.38 0.9220 

8 4.72 34.54 0.9368 4.93 36.77 0.9279 5.20 38.53 0.9211 

2 

3 4.91 36.35 0.9306 4.87 35.88 0.9313 5.10 38.35 0.9230 

5 4.65 34.31 0.9377 4.92 36.66 0.9284 5.46 40.70 0.9114 

8 4.77 35.03 0.9351 4.79 35.49 0.9327 4.89 36.25 0.9311 

3 

3 4.97 36.03 0.9309 4.81 35.46 0.9328 5.48 39.96 0.9153 

5 4.60 34.03 0.9386 4.85 36.02 0.9307 5.00 36.70 0.9287 

8 4.65 34.93 0.9351 4.70 34.85 0.9351 5.22 38.73 0.9213 

Ortalama 4.78 35.29 0.9340 4.87 36.09 0.9305 5.19 38.42 0.9218 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.001, 0.01, 10-5 ve 1000 olarak alınmıştır.  

*** Siyah dolgulu hücre tüm denemeler sonucunda BR için en düşük MAPE değeridir.   

 Ağın eğitimi esnasında geçen süreler ve eğitimin sona erdirildiği en iyi döngü 

sayıları Tablo 4.53’de verilmiştir.  

Tablo 4.53. Rastgele ayırmada altıncı grup parametrelerle eğitimde süreler ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 2.7420 16 0.6240 86 0.7330 721 

5 2.9650 14 1.6570 202 0.7640 1000 

8 3.0060 7 4.0580 467 0.7240 573 

2 

3 2.7670 12 4.2120 453 0.8560 948 

5 8.0210 9 2.0210 181 0.8870 921 

8 2.5750 10 3.9210 344 0.9260 831 

3 

3 2.5110 15 1.7130 179 0.9640 924 

5 2.5760 17 7.9790 666 1.0180 958 

8 3.3720 5 4.1300 269 0.9870 934 

Ort. 3.3928 12 3.3683 316 0.8732 868 

 Tablo 4.53 incelendiğinde BR ve LM algoritmalarının eğitim süreleri 

bakımından yine birbirlerine benzer oldukları GDX algoritmasının bu parametre 

grubunda da yine çok daha kısa sürede eğitimi tamamladığı görülmektedir. 

4.1.5.8 Rastgele ayırmada yedinci grup parametrelerle eğitim 

 Bu gruptaki parametreler MATLAB paket programı tarafından ileri beslemeli 

geri yayılımlı ağ için otomatik olarak atanan varsayılan parametre değerlerinden 
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sadece döngü sayısının 500 olarak alınmasıyla elde edilmiştir. Yapılan analizler 

sonucunda Tablo 4.54’deki bulgulara ulaşılmıştır.  

Tablo 4.54. Rastgele ayırmada yedinci grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 4.86 36.26 0.9305 4.92 36.83 0.9279 5.23 38.70 0.9213 

5 4.73 35.06 0.9345 4.89 36.25 0.9299 5.40 39.42 0.9176 

8 4.72 34.80 0.9355 4.97 36.93 0.9273 5.27 38.79 0.9200 

2 

3 4.95 36.07 0.9313 4.85 36.09 0.9305 6.69 47.89 0.8511 

5 4.93 36.24 0.9309 4.92 36.77 0.9279 5.26 38.99 0.9195 

8 4.76 37.32 0.9299 4.92 36.62 0.9285 7.54 52.94 0.8131 

3 

3 4.80 34.75 0.9363 4.84 36.01 0.9307 5.63 41.58 0.9078 

5 4.73 34.63 0.9366 4.92 36.64 0.9284 5.45 39.65 0.9180 

8 4.86 36.11 0.9310 9.33 64.23 0.6671 5.53 40.39 0.9122 

Ortalama 4.82 35.69 0.9329 5.40 39.60 0.8998 5.78 42.04 0.8978 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.001, 0.01, 10-7 ve 500 olarak alınmıştır. 

 Tablo 4.54 incelendiğinde döngü sayısının azaltılması GDX algoritmasında 

hataların bir miktar yükselmesine neden olmuştur. Bunun dışında diğer iki 

algoritmaya bir etkisi olmamıştır. Ağın eğitimi esnasında geçen süreler ve eğitimin 

sona erdirildiği en iyi döngü sayıları Tablo 4.55’te verilmiştir. Tablo 4.55 

incenlendiğinde döngü sayısının azaltılmasının BR ve LM algoritmalarına bir etkisi 

olmazken GDX algoritmasında ise en iyi döngü sayıları ve süreler bakımından 

döngü sayısının sınırlandırılması nedeniyle doğal olarak yarı yarıya bir azalma 

olduğu görülmektedir.  

Tablo 4.55. Rastgele ayırmada yedinci grup parametrelerle eğitimde süreler ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 2.0940 28 0.6250 81 0.4150 476 

5 2.1090 16 2.0160 268 0.4710 460 

8 2.2180 31 3.8890 500 0.3880 212 

2 

3 2.2340 13 1.0460 92 0.4360 500 

5 2.1560 2 3.5620 371 0.4730 483 

8 2.3740 12 5.2330 500 0.5310 394 

3 

3 2.9700 26 2.1080 209 0.5510 459 

5 2.9370 6 2.2010 148 0.4910 438 

8 3.3240 9 7.4520 500 0.5490 463 

Ort. 2.4907 16 3.1258 297 0.4783 432 
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4.1.5.9 Rastgele ayırmada sekizinci grup parametrelerle eğitim 

Bu gruptaki parametreler MATLAB paket programı tarafından ileri beslemeli 

geri yayılımlı ağ için otomatik olarak atanan varsayılan parametre değerlerinden 

sadece döngü sayısının 100 olarak alınmasıyla elde edilmiştir.  

Tablo 4.56. Rastgele ayırmada sekizinci grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 4.91 36.05 0.9313 4.92 36.78 0.9279 6.64 49.45 0.8671 

5 4.85 35.73 0.9338 4.94 36.73 0.9280 7.19 51.43 0.8552 

8 4.65 34.56 0.9371 4.98 36.91 0.9274 6.91 51.19 0.8624 

2 

3 4.77 34.86 0.9352 4.92 36.73 0.9281 7.73 57.55 0.8203 

5 4.78 34.56 0.9367 4.82 35.63 0.9323 7.06 51.89 0.8538 

8 4.80 37.72 0.9267 4.90 36.71 0.9282 6.94 50.99 0.8601 

3 

3 6.97 48.82 0.8261 4.9 36.24 0.9299 8.50 61.67 0.7892 

5 4.62 34.21 0.9379 7.19 50.98 0.7958 7.78 58.51 0.8118 

8 5.40 40.03 0.9225 4.85 36.11 0.9304 7.79 56.72 0.8163 

Ortalama 5.08 37.39 0.9208 5.16 38.09 0.9142 7.39 54.38 0.8374 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.001, 0.01, 10-7 ve 100 olarak alınmıştır.  

 Yapılan analizler sonucunda Tablo 4.56’daki bulgulara ulaşılmıştır. Tablo 

4.56’dan döngü sayısından en fazla etkilenen algoritmanın GDX algoritması olduğu 

görülmektedir. Bu parametre grubunda yine en düşük MAPE değeri  (%4.62) LM 

algoritması ile yapılan tahmin elde edilmiştir.  

Tablo 4.57. Rastgele ayırmada sekizinci grup parametrelerle eğitimde süreler ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 0.5550 20 0.6240 85 0.1040 100 

5 0.7970 6 0.7670 100 0.1060 100 

8 0.7810 62 0.8120 100 0.1070 100 

2 

3 0.8280 44 0.8810 100 0.1210 100 

5 0.9210 5 0.9660 100 0.1160 87 

8 0.9370 10 1.0720 100 0.1470 100 

3 

3 0.9210 99 1.1390 100 0.1630 98 

5 1.0630 11 1.4140 100 0.1300 100 

8 1.1770 4 1.4980 100 0.1270 95 

Ort. 0.8867 29 1.0192 98 0.1246 98 

 Ağın eğitimi esnasında geçen süreler ve eğitimin sona erdirildiği en iyi döngü 

sayıları Tablo 4.57’de verilmiştir. Tablo 4.57’den döngü sayısının azaltılmasının 
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beklenen bir durum olarak tüm algoritmalarda eğitimde geçen süreleri azalttığı 

görülmektedir. 

4.1.6 Rastgele ayırmada normalize edilmiş verilerle deneme 

Çalışmanın bu kısmında sığırların görüntülerinden çeşitli görüntü işleme 

yöntemleriyle elde edilen ham veriler z-skorlara dönüştürülerek standartlaştırma 

uygulanmış, rastgele olarak %70 eğitim, %15 test ve %15 geçerlilik setine ayrılan 

veriler EK1d’deki MATLAB komutları yardımıyla yapay sinir ağlarında eğitim 

yapılmıştır. Aşağıda dokuz farklı parametre grubu için yapılan deneme sonuçları 

verilmiştir.  

4.1.6.1 Rastgele ayırmada normalize edilmiş veriler ve MATLAB varsayılan 

parametreleriyle eğitim 

Bu gruptaki parametreler Tablo 4.58’de görülen ve MATLAB paket programı 

tarafından ileri beslemeli geri yayılımlı ağ için otomatik olarak atanan varsayılan 

parametre değerleridir.  

Tablo 4.58. MATLAB varsayılan parametreleri 

MATLAB varsayılan parametreleri 

MU λ GD Döngü 

0.001 0.01 10-7 1000 

Verilerin rastgele olarak alt setlere ayrıldığı ve verilere normalizasyon 

uygulanarak MATLAB varsayılan parametreleriyle yapılan analizler sonucunda 

Tablo 4.59’daki bulgulara ulaşılmıştır. Tablo 4.59 incelendiğinde varsayılan 

parametrelerle yapılan eğitimde GDX algoritmasının daha önce varsayılan 

grubunda olduğu gibi düşük MAPE ve RMSE değeri ile tahmin ürettiği 

görülmektedir. Diğer iki algoritmada yine minimum hata değerlerine çok yakın 

sonuçlarla eğitimi tamamlamıştır.  
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Tablo 4.59. Normalize veriler ve varsayılan parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 4.88 35.95 0.9313 4.94 36.79 0.9278 5.37 39.77 0.9163 

5 4.78 35.27 0.9339 4.94 36.70 0.9281 5.33 40.07 0.9134 

8 4.69 34.62 0.9372 4.96 36.87 0.9276 5.23 38.21 0.9225 

2 

3 4.85 35.31 0.9336 4.89 36.60 0.9287 5.03 36.78 0.9285 

5 4.61 34.36 0.9371 4.86 36.01 0.9307 5.11 37346 0.9263 

8 4.58 34.01 0.9385 4.93 36.73 0.9281 4.88 36.29 0.9309 

3 

3 4.82 35.84 0.9318 4.75 34.72 0.9355 5.52 41.09 0.9104 

5 4.70 34.11 0.9383 4.78 35.91 0.9312 5.32 38.96 0.9200 

8 4.80 35.29 0.9355 7.20 51.34 0.7944 4.94 38.09 0.9281 

Ortalama 4.75 34.97 0.9352 5.14 37.96 0.9147 5.19 38.51 0.9218 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.001, 0.01, 10-7 ve 1000 olarak alınmıştır.  

   Ağların eğitimi tamamladıkları süreler ve en iyi döngü sayıları Tablo 

4.60’da verilmiştir.  

Tablo 4.60. Normalize veriler ve varsayılan parametrelerle eğitimde süreler ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 0.2690 5 0.9550 136 0.7550 920 

5 1.0450 12 1.9920 268 0.2830 92 

8 2.2720 19 0.9020 111 0.8070 978 

2 

3 2.7910 18 6.8210 733 0.8070 1000 

5 2.7370 71 9.6560 965 0.5150 255 

8 2.4370 15 3.8410 356 0.8560 932 

3 

3 2.8220 22 6.7190 682 0.8820 1000 

5 2.8170 32 2.2580 196 0.8990 914 

8 3.4550 18 8.4990 601 0.9180 584 

Ort. 2.2939 24 4.6270 450 0.7469 742 

Tablo 4.60 incelendiğinde bir katman üç nöron bulunan yapıda LM 

algoritmasıyla beş döngü yaparak dahi %4.88’lik bir MAPE değeri ile tahmin 

yapılabildiği görülmektedir. Bu durum, veriler ayrılırken doğrulama setinin 

bulunması ve verilerin normalize edilmesinden dolayı, LM algoritması 

kullanıldığında diğer algoritmalara göre daha az döngü ve daha yüksek doğrulukla 

tahmin yapılabildiğini göstermektedir. 
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4.1.6.2 Normalize edilmiş veriler ve birinci grup parametrelerle eğitim 

sonucu hatalar 

Bu gruptaki parametreler MATLAB varsayılan parametrelerinden sadece 

MU değerinin 0.005 olarak alınmasıyla elde edilmiştir. Yapılan analiz sonucunda 

Tablo 4.61’deki bulgulara ulaşılmıştır. Tablo 4.61’den bu parametre grubunda en 

düşük MAPE değerinin (%4.64) önceki parametre gruplarında olduğu gibi LM 

algoritmasından elde edildiği görülmektedir. Genel ortalamala MAPE değeri 

(%4.79) dikkate alındığında yine LM algoritması tüm denemelerde ortalama olarak 

daha düşük MAPE değeri tahminlerin yapıldığı algoritma olmuştur.  

Tablo 4.61. Rastgele ayırmada normalize veriler ve birinci grup parametrelerle yapılan analiz 

bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 5.00 36.60 0.9308 4.94 36.74 0.9280 5.12 37.59 0.9257 

5 4.71 36.51 0.9277 4.96 36.84 0.9277 5.38 39.08 0.9184 

8 4.67 35.13 0.9348 4.97 36.81 0.9277 5.14 37.76 0.9241 

2 

3 4.90 35.97 0.9312 4.88 36.25 0.9299 4.99 37.06 0.9271 

5 4.64 33.90 0.9389 4.85 36.08 0.9305 5.21 37.94 0.9238 

8 4.80 36.80 0.9294 4.97 36.86 0.9275 5.08 37.85 0.9245 

3 

3 4.70 34.35 0.9373 4.77 35.33 0.9334 5.47 40.33 0.9149 

5 4.83 35.10 0.9360 4.85 36.02 0.9308 5.14 37.15 0.9275 

8 4.89 36.15 0.9321 4.86 33.02 0.9300 4.90 35.95 0.9313 

Ortalama 4.79 35.61 0.9331 4.89 35.99 0.9295 5.16 37.86 0.9241 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.005, 0.01, 10-7 ve 1000 olarak alınmıştır.   

 Ağın eğitimi esnasında geçen süreler ve eğitimin sona erdirildiği en iyi döngü 

sayıları Tablo 4.62’de verilmiştir. Tüm algoritmalarda döngü sayıları ve süreler 

bakımından kayda değer bir değişim gözlenmediği Tablo 4.62’den görülmektedir. 
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Tablo 4.62. Normalize veriler ve 1. grup parametrelerle eğitimde süreler ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 1.8580 24 2.0600 301 0.9030 973 

5 1.9360 19 0.8800 113 0.7530 937 

8 1.9420 8 0.9640 95 0.2840 95 

2 

3 2.1340 4 3.7300 306 0.9440 476 

5 2.8230 51 1.1110 114 0.9030 997 

8 2.6850 5 1.2590 119 0.9200 1000 

3 

3 2.4770 26 2.1040 185 0.8970 926 

5 2.8690 9 1.6060 136 0.9620 905 

8 3.4280 5 15.5950 1000 0.9500 917 

Ort. 2.4613 17 3.2566 263 0.8351 803 

  

4.1.6.3 Normalize veriler ve ikinci grup parametrelerle eğitim sonucu hatalar 

Bu gruptaki parametreler MATLAB paket programı tarafından ileri beslemeli 

geri yayılımlı ağ için otomatik olarak atanan varsayılan parametre değerlerinden 

sadece MU değeri 0.01 olarak alınmasıyla elde edilmiştir.  

Tablo 4.63. Rastgele ayırmada normalize veriler ve ikinci grup parametrelerle yapılan analiz 

bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 4.85 35.70 0.9323 4.94 36.84 0.9278 5.08 38.34 0.9224 

5 4.88 40.68 0.9081 4.95 36.80 0.9278 5.20 38.90 0.9200 

8 4.58 33.74 0.9402 4.94 36.85 0.9277 5.36 39.78 0.9155 

2 

3 4.96 35.61 0.9334 4.92 36.57 0.9287 5.37 39.07 0.9196 

5 4.72 34.61 0.9362 4.92 36.71 0.9281 5.34 39.32 0.9188 

8 4.70 35.52 0.9332 4.92 36.78 0.9278 5.24 38.33 0.9217 

3 

3 4.76 34.77 0.9357 4.91 36.60 0.9285 5.23 37.89 0.9241 

5 5.12 36.64 0.9274 4.80 35.63 0.9324 5.17 37.71 0.9242 

8 4.56 33.81 0.9399 4.83 35.96 0.9310 5.12 37.17 0.9274 

Ortalama 4.79 35.68 0.9318 4.90 36.53 0.9289 5.23 38.50 0.9215 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.01, 0.01, 10-7 ve 1000 olarak alınmıştır.  

*** Siyah dolgulu hücre tüm denemeler sonucunda LM için elde edilen en düşük MAPE değeridir. 

 Yapılan analizler sonucunda Tablo 4.63’teki bulgulara ulaşılmıştır. Tablo 

4.63 incelendiğinde bu parametre grubunda LM algoritmasıyla tüm denemelerden 
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elde edilen en düşük MAPE değerlerinden birisiyle (%4.56) eğitimin tamamlandığı 

görülmektedir.  

 Ağın eğitimi esnasında geçen süreler ve eğitimin sona erdirildiği en iyi döngü 

sayıları Tablo 4.64’te verilmiştir. Tablo 4.64 incelendiğinde MU parametresinin 10 

kat büyütülmesi GDX algoritmasında daha az döngülerle eğitimin 

sonlandırılmasına neden olmuştur. BR algoritmasında da en iyi döngü sayılarında 

bir miktar azalma olduğu söylenebilir. 

Tablo 4.64. Normalize veriler ve 2. grup parametrelerle eğitimde süreler ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 1.4740 20 1.1030 155 0.5010 386 

5 2.5040 5 3.0540 411 0.7490 940 

8 2.1020 13 1.0380 129 0.2890 92 

2 

3 2.2240 5 4.3550 296 0.7870 997 

5 2.2840 15 3.8860 404 0.3160 95 

8 2.6690 9 0.9770 91 0.6330 453 

3 

3 2.3520 12 8.2060 814 0.8740 1000 

5 2.7080 26 1.4500 136 0.9490 997 

8 3.0550 10 2.7920 183 0.4020 113 

Ort. 2.3747 13 2.9846 291 0.6111 564 

4.1.6.4 Normalize veriler ve üçüncü grup parametrelerle eğitimde hatalar 

Bu gruptaki parametreler MATLAB paket programı tarafından ileri beslemeli 

geri yayılımlı ağ için otomatik olarak atanan varsayılan parametre değerlerinden 

sadece λ değeri 0.05 olarak alınmasıyla elde edilmiştir. Yapılan analizler sonucunda 

Tablo 4.65’deki bulgulara ulaşılmıştır. Tablo 4.65 incelendiğinde LM algoritması 

yine en düşük MAPE değeri (%4.59) ile tahmin üretmiştir.  

BR algoritması ile eğitilen yedi ağdan ortalama %4.85, GDX algoritması ile 

ise %5.01 MAPE değerleri elde edilmiştir. Ayrıca tüm algoritmalarda verilerin 

rastgele ayrıldığı ve normalize edildiği diğer parametre gruplarında olduğu gibi çok 

yüksek hataların oluşmadığı gözlemlenmiştir.   
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Tablo 4.65. Rastgele ayırmada normalize veriler ve 3. grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 4.94 36.74 0.9285 4.96 36.81 0.9278 5.26 39.08 0.9181 

5 4.82 35.32 0.9337 4.92 36.79 0.9279 5.31 38.95 0.9202 

8 4.62 33.69 0.9395 4.91 36.43 0.9292 5.30 39.23 0.9190 

2 

3 4.75 34.90 0.9352 4.92 36.69 0.9281 5.26 38.62 0.9212 

5 4.66 34.32 0.9375 4.89 36.29 0.9297 5.67 41.77 0.9071 

8 4.71 34.49 0.9367 4.92 36.69 0.9282 5.11 37.12 0.9282 

3 

3 4.86 35.50 0.9331 4.85 36.06 0.9306 5.17 38.09 0.9235 

5 4.59 33.89 0.9388 4.92 36.72 0.9281 5.65 41.68 0.9071 

8 4.73 35.37 0.9336 4.9 36.62 0.9286 5.01 36.60 0.9292 

Ortalama 4.74 34.91 0.9352 4.91 36.57 0.9287 5.30 39.02 0.9193 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.001, 0.05, 10-7 ve 1000 olarak alınmıştır.  

 Ağın eğitimi esnasında geçen süreler ve eğitimin sona erdirildiği en iyi döngü 

sayıları Tablo 4.66’da verilmiştir. Tablo 4.66’dan bir önceki parametre grubuna 

nazaran tüm algoritmalarda en iyi döngü sayıları ve sürelerin arttığı görülmektedir. 

Tablo 4.66. Normalize veriler ve 3. grup parametrelerle eğitimde süreler ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 1.9070 32 2.1330 313 0.3000 92 

5 1.8880 3 1.4050 180 0.8020 946 

8 1.8900 8 0.6390 74 0.8020 946 

2 

3 2.1550 21 5.4730 603 0.4010 188 

5 2.7610 78 1.2040 130 0.3390 101 

8 3.9370 7 10.6750 1000 0.5340 346 

3 

3 2.4870 30 6.4010 630 0.9180 995 

5 2.5290 8 5.9990 522 1.1240 992 

8 3.3390 30 5.0130 352 1.0250 932 

Ort. 2.5437 24 4.3269 423 0.6939 615 

4.1.6.5 Normalize veriler ve dördüncü grup parametrelerle eğitimde hatalar 

Bu gruptaki parametreler MATLAB paket programı tarafından ileri beslemeli 

geri yayılımlı ağ için otomatik olarak atanan varsayılan parametre değerlerinden 

sadece λ değeri 0.1 olarak alınmasıyla elde edilmiştir. Yapılan analizler sonucunda 

Tablo 4.67’deki bulgulara ulaşılmıştır.  
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Tablo 4.67. Rastgele ayırmada normalize veriler ve 4. grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 4.85 35.70 0.9323 4.92 36.83 0.9278 5.13 37.61 0.9256 

5 4.88 40.68 0.9081 4.93 36.72 0.9282 5.44 39.43 0.9163 

8 4.58 33.52 0.9402 4.97 36.84 0.9276 5.15 37.84 0.9237 

2 

3 4.96 35.61 0.9336 4.88 36.35 0.9295 4.97 36.90 0.9277 

5 4.72 34.61 0.9362 4.92 36.77 0.9279 5.20 37.78 0.9246 

8 4.70 35.52 0.9332 4.93 36.69 0.9282 5.05 37.61 0.9251 

3 

3 4.83 35.11 0.9343 4.84 36.07 0.9305 5.53 40.73 0.9126 

5 4.69 34.60 0.9362 4.93 36.70 0.9282 5.12 37.38 0.9259 

8 4.79 37.33 0.9283 4.78 35.38 0.9331 5.04 36.44 0.9295 

Ortalama 4.78 35.85 0.9314 4.90 36.48 0.9290 5.18 37.97 0.9234 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.001, 0.05, 10-7 ve 1000 olarak alınmıştır.  

*** Siyah dolgu ile gösterilen değer tüm analizler sonucunda elde edilen en düşük RMSE değeridir. 

Tablo 4.67 incelendiğinde bu parametre grubunda yine en düşük MAPE 

değerinin (%4.58) LM algoritmasından elde edildiği görülmektedir. Ayrıca yapılan 

bütün analizelerden elde edilen en düşük RMSE değeri (33.52kg) bu parametre 

grubunda tespit edilmiştir. Ağın eğitimi esnasında geçen süreler ve eğitimin sona 

erdirildiği en iyi döngü sayıları Tablo 4.68’de verilmiştir. 

Tablo 4.68. Normalize veriler ve 4. grup parametrelerle eğitimde süreler ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 1.1030 20 0.6170 83 0.7260 965 

5 1.8940 5 2.3570 305 0.8550 935 

8 2.1600 13 6.3820 656 0.2850 101 

2 

3 2.3370 5 2.1100 197 0.5640 462 

5 2.3380 15 3.9340 373 0.8020 1000 

8 2.5970 9 1.4840 108 0.8930 1000 

3 

3 4.0050 128 3.0600 248 0.8930 934 

5 2.6340 5 2.1360 154 0.9490 899 

8 3.0760 6 16.83 1000 0.5820 307 

Ort. 2.4604 23 4.3233 347 0.7277 734 

4.1.6.6 Normalize edilmiş veriler ve beşinci grup parametrelerle eğitim  

Bu gruptaki parametreler MATLAB paket programı tarafından ileri beslemeli 

geri yayılımlı ağ için otomatik olarak atanan varsayılan parametre değerlerinden 

sadece gradyan değerinin 10-6 olarak alınmasıyla elde edilmiştir. Yapılan analiz 

sonucunda Tablo 4.69’daki bulgulara ulaşılmıştır.  
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Tablo 4.69. Rastgele ayırmada nrm. veriler ve beşinci grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS MAPE 

(%) 

RMSE 

(Kg) 

R2 MAPE 

(%) 

RMSE 

(Kg) 

R2 MAPE 

(%) 

RMSE 

(Kg) 

R2 

1 

3 4.86 35.74 0.9321 4.91 36.83 0.9279 5.12 37.59 0.9257 

5 4.71 34.63 0.9364 4.89 36.25 0.9299 5.38 39.08 0.9184 

8 4.71 34.76 0.9361 4.97 36.93 0.9273 5.14 37.76 0.9241 

2 

3 4.94 35.89 0.9327 4.85 36.09 0.9305 4.99 37.06 0.9271 

5 4.60 34.50 0.9372 4.92 36.77 0.9279 5.21 37.94 0.9238 

8 4.76 36.20 0.9329 4.92 36.62 0.9285 5.08 37.84 0.9245 

3 

3 4.85 35.17 0.9340 4.84 36.01 0.9307 5.47 40.33 0.9149 

5 4.73 35.48 0.9331 4.92 36.64 0.9285 5.14 37.15 0.9275 

8 4.92 37.26 0.9271 6.99 49.20 0.8023 4.90 35.95 0.9313 

Ortalama 4.79 35.51 0.9335 5.13 37.93 0.9148 5.16 37.86 0.9241 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.001, 0.01, 10-6 ve 1000 olarak alınmıştır.  

Tablo 4.69 incelendiğinde bu parametre grubunda LM algoritmasının yine en 

düşük MAPE değeri (%4.6) ile eğitimi sonlandırdığı görülmektedir. BR algoritması 

üç katman ve sekiz nöron olduğu durumda yüksek MAPE değeri ile (%6.99) 

sonuçlar üretmiştir.  

Tablo 4.70. Normalize veriler ve beşinci grup parametrelerle eğitimde süreler ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 1.8610 20 0.6030 83 0.7330 973 

5 1.8650 4 2.0740 263 0.7860 937 

8 2.3290 2 6.5020 782 0.3230 95 

2 

3 2.1370 8 0.8020 91 0.5860 476 

5 2.7220 20 3.6230 374 0.8490 997 

8 2.7780 9 11.2180 1000 0.8640 1000 

3 

3 4.1500 157 2.2150 204 0.8760 926 

5 2.5560 5 2.0660 146 0.9180 905 

8 3.3460 5 15.0400 996 0.9880 917 

Ort. 2.6382 26 4.9048 438 0.7692 803 

Ağın eğitimi esnasında geçen süreler ve eğitimin sona erdirildiği en iyi döngü 

sayıları Tablo 4.70’da verilmiştir. Tablo 4.70 incelendiğinde bir önceki parametre 

grubunda üç katman ve üç nöron bulunan yapıda LM algoritması ile eğitimde 

yüksek bulunan en iyi döngü sayısının bu parametre grubu için de geçerli olduğu 

görülmektedir.  
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4.1.6.7 Normalize veriler ve altıncı grup parametrelerle eğitim sonucu hatalar 

Bu gruptaki parametreler MATLAB paket programı tarafından ileri beslemeli 

geri yayılımlı ağ için otomatik olarak atanan varsayılan parametre değerlerinden 

sadece gradyan değerinin 10-5 olarak alınmasıyla elde edilmiştir.  

Yapılan analizlerin sonucunda Tablo 4.71’deki bulgulara ulaşılmıştır. Tablo 

4.71’den LM algoritması ile en düşük MAPE değerinin (%4.6) iki katman ve beş 

nöronun olduğu yapıda elde edildiği görülmektedir. 

Ağın eğitimi esnasında geçen süreler ve eğitimin sona erdirildiği en iyi döngü 

sayıları Tablo 4.72’de verilmiştir. Tablo 4.72 incelendiğinde bu grupta yine LM 

algoritması ile eğitimde üç katman ve üç nöron bulunan yapıda en iyi döngü sayısı 

yüksek bulunmuştur. 

Tablo 4.71. Rastgele ayırmada nrm. veriler ve altıncı grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 4.86 35.75 0.9321 4.92 36.83 0.9279 5.15 37.92 0.9248 

5 4.71 34.63 0.9364 4.89 36.25 0.9299 5.20 38.01 0.9232 

8 4.71 34.76 0.9361 4.97 36.93 0.9273 5.31 39.15 0.9174 

2 

3 4.94 35.89 0.9327 4.85 36.09 0.9305 5.38 39.62 0.9157 

5 4.60 34.50 0.9372 4.92 36.77 0.9279 5.15 37.76 0.9246 

8 4.76 36.20 0.9329 4.92 36.62 0.9285 5.04 37.03 0.9269 

3 

3 4.85 35.17 0.9340 4.76 35.17 0.9339 5.20 37.73 0.9248 

5 4.73 35.48 0.9331 4.77 35.63 0.9322 5.23 38.80 0.9201 

8 4.92 37.26 0.9271 4.87 36.78 0.9279 5.21 38.28 0.9220 

Ortalama 4.79 35.52 0.9335 4.87 36.34 0.9296 5.21 38.26 0.9222 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.001, 0.01, 10-5 ve 1000 olarak alınmıştır.  

Bunun dışında BR algoritmasında sekiz nöron, iki ve üç katman olduğu 

yapılarda ağın eğitimi 1000 döngüye kadar devam etmiştir. Nöron sayısının 

gereksiz artırılması BR algoritmasında eğitimin erken durdurulmamasında etkili 

olmuş olabilir.   
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Tablo 4.72. Normalize veriler ve altıncı grup parametrelerle eğitimde süre ve iterasyon sayıları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 1.8830 20 0.6330 83 0.7270 904 

5 1.8350 4 1.9620 263 0.7870 973 

8 1.9420 2 6.4490 782 0.7640 937 

2 

3 2.0660 8 0.8160 91 0.5860 507 

5 2.7110 20 3.5630 374 0.5460 321 

8 2.3340 9 10.3320 1000 0.3690 89 

3 

3 4.2780 157 2.1040 221 0.3850 168 

5 2.9290 5 5.0500 434 0.7600 570 

8 3.0240 5 14.3560 1000 1.0810 998 

Ort. 2.5558 26 5.0294 472 0.6672 607 

 

4.1.6.8 Normalize edilmiş veriler ve yedinci grup parametrelerle eğitim 

sonucu hatalar 

Bu gruptaki parametreler MATLAB paket programı tarafından ileri beslemeli 

geri yayılımlı ağ için otomatik olarak atanan varsayılan parametre değerlerinden 

sadece döngü sayısının 500 olarak alınmasıyla elde edilmiştir. Yapılan analizler 

sonucunda Tablo 4.73’teki bulgulara ulaşılmıştır. Tablo 4.73 incelendiğinde bu 

parametre grubunda LM algoritmasının yine tüm denemelerden elde edilen en 

düşük MAPE değerlerinden biri (%4.56) ile sonuç verdiği görülmektedir.  

Tablo 4.73. Rastgele ayırmada normalize veriler ve 7. grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 5.14 43.47 0.9007 4.95 36.79 0.9279 5.19 38.50 0.9220 

5 4.86 35.92 0.9318 4.97 36.97 0.9272 5.22 38.62 0.9208 

8 4.61 34.04 0.9384 4.97 36.89 0.9275 5.27 38.49 0.9216 

2 

3 4.71 34.26 0.9377 4.94 36.70 0.9281 5.38 39.65 0.9161 

5 4.72 35.02 0.9352 4.93 36.70 0.9282 5.32 38.71 0.9207 

8 4.56 33.79 0.9393 4.91 36.75 0.9280 5.27 39.39 0.9173 

3 

3 4.78 35.23 0.9344 4.86 36.10 0.9304 5.81 43.07 0.9013 

5 4.65 37.04 0.9265 4.82 35.93 0.9310 5.78 42.73 0.9038 

8 4.75 35.53 0.9344 7.13 50.95 0.7959 5.48 41.06 0.9101 

Ortalama 4.75 36.03 0.9309 5.16 38.20 0.9138 5.41 40.02 0.9149 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.001, 0.01, 10-7 ve 500 olarak alınmıştır.  

*** Sarı dolgulu hücre tüm denemeler sonucunda LM için elde edilen en düşük MAPE değeridir. 
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BR algoritmasıyla yapılan eğitimde üç katman ve sekiz nöron bulunan yapıda 

lokal minimuma takılma söz konusu olabilir. Çünkü bu yapıda BR algoritmasının 

ortalama MAPE değerinin oldukça üzerinde bir MAPE değeri (%7.13) ile tahmin 

yapıldığı görülmektedir. 

Tablo 4.74. Rastgele ayırmada normalize veriler ve 7. grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 0.6480 14 0.8330 103 0.4700 353 

5 0.5230 11 4.3880 500 0.4640 461 

8 2.9170 54 1.9800 162 0.4170 480 

2 

3 3.2340 45 4.8290 500 0.4010 224 

5 2.6800 9 4.9820 500 0.4160 498 

8 3.1510 12 4.5830 425 0.5010 496 

3 

3 3.5110 63 5.0840 500 0.5700 398 

5 4.5990 13 5.6970 500 0.4710 499 

8 3.4960 4 7.2960 477 0.6230 449 

Ort. 2.7510 25 4.4080 407 0.4814 429 

Ağın eğitimi esnasında geçen süreler ve eğitimin sona erdirildiği en iyi döngü 

sayıları Tablo 4.74’de verilmiştir. Tablo 4.74’ten döngü sayısını 500 ile 

sınırlandırmanın GDX algoritmasında eğitim sürelerinde doğal olarak yarı yarıya 

düşüşe sebep olduğu görülmektedir.  

4.1.6.9 Normalize veriler ve sekizinci grup parametrelerle eğitimde hatalar 

Bu gruptaki parametreler MATLAB paket programı tarafından ileri beslemeli 

geri yayılımlı ağ için otomatik olarak atanan varsayılan parametre değerlerinden 

sadece döngü sayısının 100 olarak alınmasıyla elde edilmiştir. Yapılan analizler 

sonucunda Tablo 4.75’teki bulgulara ulaşılmıştır. Tablo 4.75 incelendiğinde bu 

parametre grubunda LM algoritmasının yine en düşük MAPE değerini (%4.58) 

verdiği görülmektedir. Döngü sayısının 100 ile sınırlandırıldığı diğer denemelerde 

olduğu gibi bu parametre grubunda da GDX algoritmasında MAPE değerlerinde 

yükselme görülmüştür. Böylece verilerin normalize edildiği durumdaki bütün 

denemelerde en düşük MAPE değeri daima LM algoritmasından elde edilmiştir.  
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Tablo 4.75. Rastgele ayırma, normalize veriler ve 8. grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS 
MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 MAPE 

(%) 

RMSE 

(Kg) 
R2 

1 

3 4.86 36.01 0.9312 4.96 36.85 0.9276 6.68 49.43 0.8690 

5 4.81 35.16 0.9342 4.94 36.77 0.9279 6.01 44.84 0.8916 

8 4.69 34.52 0.9365 4.96 36.85 0.9276 5.80 43.39 0.9003 

2 

3 4.91 35.59 0.9330 4.90 36.40 0.9293 6.57 48.96 0.8710 

5 4.58 33.57 0.9401 4.93 36.73 0.9281 6.02 45.06 0.8904 

8 4.61 34.83 0.9354 4.93 36.68 0.9283 5.52 40.47 0.9133 

3 

3 4.70 34.23 0.9377 4.72 35.02 0.9345 6.92 50.44 0.8624 

5 4.70 34.84 0.9361 4.90 36.79 0.9279 6.83 49.99 0.8649 

8 4.76 34.77 0.9379 4.90 36.53 0.9288 5.43 39.56 0.9168 

Ortalama 4.74 34.84 0.9358 4.90 36.51 0.9289 6.20 45.79 0.8866 

* Kalın rakamlarla gösterilen değerler her bir algoritmayla elde edilen en düşük MAPE değerleridir. 

** MU, λ, GD ve Döngü sayıları sırasıyla 0.001, 0.01, 10-7 ve 100 olarak alınmıştır.  

Ağın eğitimi esnasında geçen süreler ve eğitimin sona erdirildiği en iyi döngü 

sayıları Tablo 4.76’de verilmiştir. Tablo 4.76 incelendiğinde bu parametre 

grubunda en iyi döngü sayılarında ve sürelerde bir azalma olduğu görülmektedir. 

Ancak GDX algoritmasında döngü sayısının azaltılması döngü sayısının azaltıldığı 

diğer tüm denemelerde olduğu gibi bu grup parametrelerle yapılan denemede de 

hataların yükselmesine neden olmuştur.  

Tablo 4.76. Rastgele ayırma, normalize veriler ve 8. grup parametrelerle yapılan analiz bulguları. 

 ALGORİTMALAR 

LM BR GDX 

KS NS Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

1 

3 0.4390 21 0.7340 100 0.1000 100 

5 0.7170 6 0.7860 100 0.0970 100 

8 0.7740 14 0.8040 100 0.1010 93 

2 

3 0.8330 88 0.8510 100 0.1380 100 

5 0.9720 16 0.9490 100 0.1160 100 

8 1.0340 8 1.0340 100 0.1160 96 

3 

3 0.9020 10 0.9750 100 0.1200 100 

5 1.0040 10 1.1190 100 0.1320 100 

8 1.1730 5 1.4600 100 0.1320 92 

Ort. 0.8720 20 0.9680 100 0.1169 98 

4.1.7 Rastgele ayırma için tüm durumlara ait özet 

Verilerin rastgele olarak %70 eğitim, %15 test, %15 doğrulama setine 

ayrıldığı durum için MATLAB tarafından otomatik olarak verilen parametre 

grupları dahil olmak üzere dokuz farklı parametre gurubu, normalize edilmiş ve 
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ham veriler olarak iki farklı veri grubu için toplam 36 adet tablo elde edilmiştir 

(Tablo 4.40-Tablo 4.76). Bu tablolardan her bir algoritma için en az hata ile sonuç 

veren durumlar ve bunlara ait en iyi döngü sayıları, eğitimde geçen süreler ile 

ortalama hataları gösteren özet tablolar EK 2’de verilmiştir. Ek 2a incelendiğinde 

LM algoritması ile en düşük MAPE değerinin (%4.56) 3 kez elde edildiği 

görülmektedir. Çalışma sonunda en düşük MAPE değerlerinin elde edildiği 

durumlar kombine edilerek yapılan denemelerden Şekil 4.1’deki sonuçlar elde 

edilmiştir. Şekil 4.1’den en düşük MAPE değerinin (%4.15), (2-8-8-1) ağ mimarisi 

ile LM algoritmasıyla eğitimde 4. ağda (MAPE4) elde edildiği anlaşılmaktadır.  
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Şekil 4.1. LM algoritmasıyla en düşük MAPE değeri için MATLAB ekran görüntüsü 
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4.2 Çok Değişkenli Uyarlanabilir Regresyon Eğrileri (MARS) Bulguları 

Sığırların üstten sırt (dorsal) görüntülerinden hesaplanan alan ve yükseklik 

değerlerinin girdi verisi, ağırlık değerlerinin ise çıktı verisi olarak kullanıldığı 

MARS analizinde Tablo 4.77’de verildiği gibi MAPE, RMSE ve R2 değerleri 

sırasıyla %4.75, 32.95kg ve 0.9334 olarak tespit edilmiştir.  

Tablo 4.77. MARS analizi ile yapılan tahmin için performans ölçütü değerleri 

PERFORMANS DEĞERLENDİRME 

ÖLÇÜTLERİ 

MAPE 

(%) 

RMSE 

(Kg) 

R2 

4.75 32.95 0.9334 

Analiz Salford Predictive Modeler programı demo versiyonunda ve 

programın MARS yöntemi için önerdiği varsayılan ayarlar kullanılarak yapılmıştır. 

Program çıktıları Ekler kısmında Ek 7a ve Ek 7b’de verilmiştir. Analiz sonucunda 

temel fonksiyonlar: 

 BF1=max{0, X1-0.209354} 

 BF3=max{0, X2-138.49} 

BF5=max{0, X1-0.360215} 

BF15=max{0,  X2-153.662} 

 BF17=max{0,  X2-152.146} 

olarak elde edilmiştir. Yöntemin modeli Eşitlik 4.1’de verilmiştir: 

                  Ŷ =268.021+1690.46xBF1+3.22929xBF3-461.836xBF5-             (4.1)

 25.7811xBF15+226744xBF17 

4.3 Çoklu Doğrusal Regresyon Analizi Bulguları 

Görüntü işleme kısmında anlatılan komutlar yardımıyla hesaplanan sığırların 

görüntüde kapladığı alan yüzdeleri, sağrı yükseklikleri ile canlı ağırlıkları 

arasındaki ilişkileri gösteren grafik Şekil 4.2’de verilmiştir.  
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Şekil 4.2. Alan yüzdesi, yükseklik ve canlı ağırlıklar arasındaki ilişkilere ait yanıt yüzey grafiği.  

 Canlı ağırlık ile alan yüzdeleri arasında doğrusal bir ilişki söz konusudur. 

Bu ilişkiye ait korelasyon değeri 0.9587 olarak tespit edilmiştir. Yine yükseklik ve 

alan yüzdeleri arasındaki korelasyon değeri 0.8710 olarak hesaplanmıştır. 

Değişkenler arasındaki bu yüksek korelasyonlar, buna bağlı olarak yüksek 

belirleme katsayısı nedeniyle öncelikle Eşitlik 4.2’de modeli verilen çoklu doğrusal 

regresyon eşitliği yardımıyla hayvanların canlı ağırlıkları tahmin edilmiştir.         

                           Ŷ=-297.74+1304.72X1+2.54X2                        (4.2) 

Burada; 

Ŷ : Canlı ağırlık bağımlı değişkeninin tahmin değeri (kg), 

X1: Alan bağımsız değişkeni (%), 

X2: Yükseklik bağımsız değişkeni (cm).  

Çoklu doğrusal regresyon analizi SPSS v25 paket programı kullanılarak 

yapılmıştır. Analizin varsayımlarından normallik varsayımı Kolmogorov-Simirnov 

test istatistiği ile yapılmış ve tüm değişkenlerin normal dağıldığı tespit edilmiştir 

(P>0.01). Hataların normal dağılıp dağılmadığına da Kolmogorov-Simirnov test 

istatistiği ile bakılmış, test değeri K=0.076 olarak tespit edildiğinden hataların 

normal dağıldığına karar verilmiştir (P>0.01). Bağımsız değişkenler arasında çoklu 

bağlantılılık varsayımı için Durbin-Watson testi yapılmış test değeri d=1.667 olarak 
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bulunmuş ve bu değer yaklaşık olarak 2 olduğu için çoklu bağlantılılığın 

olmadığına karar verilmiştir. Otokorelasyon için ise VIF değerine bakılmış ve 3.916 

olarak tespit edilen bu değer 10’dan küçük olduğu için bağımsız değişkenler 

arasında otokorelasyon olmadığına karar verilmiş, varsayımlar yerine 

getirildiğinden çoklu doğrusal regresyon analizi yapılmıştır. 

Tablo 4.78. Çoklu doğrusal regresyon analizi ile yapılan tahmin için performans ölçütü değerleri 

PERFORMANS DEĞERLENDİRME 

ÖLÇÜTLERİ 

MAPE 

(%) 

RMSE 

(Kg) 
R2 

5.02 37.06 0.9266 

Tablo 4.78’de çoklu doğrusal regresyon ile yapılan tahmine ait performans 

değerlendirme ölçütleri verilmiştir. Et sığırlarının kuşbakışı görüntüsünden 

hesaplanan sığır alanı ve yüksekliği bağımsız değişkenler, et sığırlarının canlı 

ağırlığı ise bağımlı değişken olarak ele alınmış ve tahmine ait MAPE değeri %5.02, 

RMSE değeri 37.06kg ve R2 değeri ise 0.9266 olarak hesaplanmıştır.  

4.4 CHAID Analizi Bulguları 

Çalışmanın bu kısmında et sığırlarının alan ve yükseklik bilgileri kullanılarak 

canlı ağırlıklarını tahmin etmek amacıyla CHAID analizi uygulanmış ve Şekil 

4.3’teki bulgulara ulaşılmıştır. Ayrıca CHAID analizi ile yapılan tahmine ait 

performans değerlendirme ölçütleri hesaplanarak Tablo 4.79’da verilmiştir. 

Tablo 4.79. CHAID analizi ile yapılan tahmin için performans ölçütü değerleri 

PERFORMANS DEĞERLENDİRME 

ÖLÇÜTLERİ 

MAPE 

(%) 

RMSE 

(Kg) 
R2 

5.36 38.42 0.9211 

Şekil 4.3 incelendiğinde canlı ağırlık üzerine alan değişkeninin, yükseklik 

değişkeninden daha etkili olduğu görülecektir. CHAID analizi algoritması ile veri 

seti, alan bakımından kendi içinde homojen birbirleri arasında heterojen olan dokuz 

farklı gruba (Düğüm 1-9) ayrılmıştır. Kök düğüm olan Düğüm 0, veri setine ait 

genel tanımlayıcı istatistikleri içermektedir. Canlı ağırlıklara ait genel ortalama 
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601.13 ±137.13kg olarak hesaplanmıştır. Düğüm 1, Düğüm 5 ve Düğüm 9’da alan 

değişkeninden sonra yükseklik de etkili bir faktördür.  

Düğüm 1’de tüm görüntünün %29.82’sinden daha az alan kaplayan et 

sığırlarının ortalaması 366.042±47.066kg, bu grupta olup yüksekliği 128.25cm’den 

fazla olanların ortalama 401.111±21.619kg, 128.25cm’den daha az olanların ise 

ortalama olarak 345±45.904kg olduğu görülmektedir.  

Düğüm 5’te %39.77 ile %41.62 arasında alana sahip olan sığırlardan, 

yüksekliği 139.89cm’den az olanlarda ağırlık 555.56±29.309kg iken yüksekliği 

139.89cm’den fazla olanlar ortalama olarak yaklaşık 611.875±32.653kg olarak 

tespit edilmiştir.  

Düğüm 9’da toplam görüntü alanının %52.15’inden daha fazla alana sahip et 

sığırlarının (24 et sığırı) ortalaması 830.83±78.887 kg olarak belirlenmiştir. Bu 

gruptaki sığırlardan yüksekliği 151.81cm’den daha düşük olanlarda canlı ağırlık 

769±61.183kg iken 151.81cm’den daha fazla olan sığırlarda 875±58.111kg olarak 

hesaplanmıştır. 
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Şekil 4.3. Et sığırlarında canlı ağırlık tahmini için CHAID analizi diyagramı  
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Tez çalışması kapsamında ayrıca yapay sinir ağlarında kullanılan parametre, 

algoritma, katman sayısı ve nöron sayısı ile en iyi döngü sayıları ve eğitimde geçen 

sürelerin MAPE, RMSE, R2 ve EDS ile süreler bakımından karşılaştırılması da 

CHAID analizi ile yapılmıştır. Elde edilen ağaç diyagramları EK 4, EK 5 ve EK 

6’da verilmiştir.     

EK 4’te iki farklı veri ayırma yönteminin beraber etkisinin incelendiği bir 

CHAID analizi diyagramı verilmiştir.  EK 5’de sadece çapraz doğrulama ile verinin 

ayrıldığı durumda MAPE, EDS ve süreler bakımından karşılaştırmalar 

sunulmuştur. Son olarak EK 6’da rastgele olarak verinin %70 eğitim, %15 

doğrulama ve %15 test setine ayrıldığı durumdaki MAPE, RMSE, R2,EDS ve 

süreler bakımından bütün faktörlerin etkisi karşılaştırılmıştır.  

EK 4 incelendiğinde MAPE değerini azaltma bakımından en önemli faktörün 

algoritmalar olduğu görülmektedir. Bütün denemelere ait genel ortalama MAPE 

için %6.478’dir. Düğüm 1, 2 ve 3 incelendiğinde çapraz doğrulama ile verinin 

ayrıldığı durumda, en yüksek hata ile (ortalama %8.69) LM algoritmasının en düşük 

MAPE değeri (%5.17) ile BR algoritmasının sonuç verdiği görülmektedir. LM 

algoritmasını en çok etkileyen faktör verinin ayrılma biçimidir ve veri çapraz 

doğrulama ile ayrıldığında ortalama %12.60 olan MAPE değeri (Düğüm 5), verinin 

rastgele ayrıldığı durumda ortalama %4.83 (Düğüm 4) olmaktadır. Bunun nedeni 

çapraz doğrulamada veri ayrılırken %85 eğitim %15 test seti olacak şekilde 

doğrulama seti olmadan ayrılması ve buna bağlı olarak genellikle ortalama 25 

döngü ile eğitimi tamamlayan LM algoritmasının 1000 döngüye kadar eğitime 

devam etmesidir.  Ancak Düğüm 28 incelendiğinde bu durumda MAPE’nin %5.91 

olduğu görülecektir. Bu da LM algoritmasında doğrulama seti olmasa bile katman 

ve nöron sayısının düşük tutulması ile yine hatanın azalacağını göstermektedir.   

Düğüm 13 katman sayısı farketmeksizin sadece üç nöron kullanarak MAPE 

değerinin azaltılabileceğini (%5.90) göstermektedir.  

Nöron sayısı rastgele ayırma durumunda LM algoritmasında yine önemli bir 

faktör olarak kendisini göstermektedir. Ancak bu durumda LM algoritmasından üç 

nöron kullanıldığı durumda (Düğüm 11) daha yüksek (%4.99), beş ve sekiz nöron 
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kullanıldığı durumda (Düğüm 12) daha düşük MAPE değeri (%4.75) elde 

edilmiştir. Verinin z-skorlarına dönüştürülerek normalize edilmesine bağlı olarak 

verilerin rastgele ayrıldığı (Düğüm 24, 25, 26, 27) tüm denemelerde MAPE 

değerlerinde bir miktar azalma olmuştur.  Katman sayısı MAPE ve RMSE 

değerlerinin azalmasında bir başka faktör olarak karşımıza çıkmaktadır. Verilerin 

rastgele ayrıldığı denemelerde LM algoritmasında iki katman (Düğüm 44) 

bulunması durumunda en düşük MAPE değerleri (18 ağın ortalaması %4.67) elde 

edilmiştir. Çapraz doğrulamada ise tam tersi bir durum söz konusudur, katman 

sayısının birden fazla alınması (Düğüm 29) iki kattan daha yüksek MAPE değerine 

(%12.89) neden olmuştur. Özellikle 3 katman ve 8 nöron kullanıldığı durumda 

(Düğüm 32) LM algoritmasında MAPE değerleri yaklaşık 8 kat (%34.62) artmıştır.  

Tüm veri ayırma yöntemlerinin analize dahil edildiği durumda en düşük hata 

ile tahminler BR algoritması kullanılarak yapılmıştır. BR algoritmasında zaten 

doğrulama setinin bulunmayışı nedeniyle LM algoritmasında olduğu gibi çok 

yüksek MAPE değerleri elde edilmemiş, tüm denemeler için genel ortalama MAPE 

değeri %5.17 olarak (Düğüm 2) tespit edilmiştir. Bu algoritma için katman sayısı 

önemli bir faktör olmuş 1 ve 2 katman kullanılması durumunda %5.02 MAPE 

değeri (Düğüm 6) tespit edilirken, 3 katman kullanılması durumunda MAPE değeri 

%5.48’e yükselmiştir. Katman sayısınından sonra en önemli faktör LM 

algoritmasında olduğu gibi verinin ayrılma biçimidir.  Rastgele ayırmada (Düğüm 

16) %4.92 olarak tespit edilen MAPE değeri, çapraz doğrulamada (Düğüm 17) 

%5.12 olarak belirlenmiştir. Ancak yinede LM algoritmasında olduğu gibi 8 kat bir 

farklılık söz konusu olmamıştır. Standartlaştırma yine bu algoritma için de önemli 

bir faktör olmuş (Düğüm 49 ve 50), verinin standartlaştırılması MAPE değerini bir 

miktar (%0.04) azaltmıştır. BR algoritması ile en yüksek hata 3 katman ve 8 

nöronun kullanıldığı durumda  (Düğüm 19) %6.35 olarak hesaplanmıştır.  

GDX algoritmasında MAPE değerleri en çok döngü sayısından etkilenmiştir. 

En yüksek hata döngü sayısının 100 ile sınırlandırıldığı ve standartlaştırmanın 

yapılmadığı durumda (Düğüm 23) %7.54 olarak tespit edilmiştir. GDX algoritması 

verinin ayrılma biçiminden LM agoritması kadar etkilenmemiş (Düğüm 39 ve 40) 

ancak yinede çapraz doğrulama ile verinin ayrılması MAPE değerinde bir miktar 

(%0.13) yükselmeye neden olmuştur. Bu algoritma ile döngü sayısının 1000, MU 
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parametresinin 0.005 ve 0.01, öğrenme oranının 0.1 ve gradyan değerinin 10-6,       

10-5 olarak alındığı parametre gruplarında, veriler standardize edildiğinde, veri 

rastgele olarak ayrıldığında ve 8 nöron kullanıldığında (Düğüm 53) en düşük 

MAPE değeri (%5.19) elde edilmiştir. 

Çapraz doğrulama ile verilerin ayrıldığı duruma ait CHAID analizi diyagramı 

EK 5’te verilmiştir. Ek 5 incelendiğinde çapraz doğrulamanın MAPE değeri üzerine 

etkisi daha net bir şekilde görülecektir. Sonuçlar EK 4’te izah edilen bulgulara 

benzerlik teşkil ettiğinden yeniden açıklanmayacaktır. Bunun yerine algoritmaların 

EDS ve süreler bakımından çapraz doğrulama ile veri ayırma durumunda nasıl 

davrandığı üzerinde durulacaktır. Bu anlamda EK 5b incelenecek olursa genel 

olarak (Kök düğüm) tüm algoritmalar için ortalama süre 3.861 sn’dir. GDX 

algoritması her durumda 1sn’nin altında bir sürede eğitmi tamamlamıştır. LM ve 

GDX algoritmalarında döngü sayısının azaltılması süreleri düşürmüş, BR 

algoritması bu faktörden etkilenmemiştir. GDX algoritmasında nöron sayısı etkili 

olmazken katman sayısının artması çok az bir miktar (0.751sn-0.822sn-0.887sn) 

süreyi artırmıştır. BR algoritmasında süre bakımından tek etkili faktör katman 

sayısı olmuş, katman sayısının birden fazla alınması durumunda eğitim süreleri 

yaklaşık 3 kat artmıştır.  

EK 5c incelendiğinde çapraz doğrulama ile verinin ayrıldığı durumda en iyi 

döngü sayısı için en önemli faktör müsaade edilen en çok döngü sayısı olarak 

(Düğüm 1, 2 ve 3) tespit edilmiştir. Döngü sayısının 1000 olarak alındığı durumda 

algoritmalar ikinci bir faktör olarak karşımıza çıkmaktadır. LM agoritmasında 

hataların yüksek çıkmasının en önemli nedeninin EK 5c incelendiğinde en iyi 

döngü sayıları olduğu görülecektir. Çünkü rastgele ayırmada ortalama olarak 25 

döngü ile eğitimi tamamlayan LM algoritması burada en iyi döngüye ulaşmak için 

ortalama olarak 850 döngü yapmıştır. Çalışmanın yöntem kısmında verilen Şekil 

3.26’da LM algoritmasının performans grafiği incelenecek olursa döngü sayısı 

artırıldığında LM algoritmasında yüksek hatalar oluştuğu görülecektir. Özetle LM 

algoritmasında eğitimin erken durdurulmaması yüksek hatalara neden olmaktadır. 

BR algoritması için katman sayısı önemli bir faktör olarak tespit edilmiş (Düğüm 

12 ve 13), iki ve üç katman alınması durumunda (515) bir katman kullanıldığı 

durumdan (238) daha fazla döngü ile eğitim tamamlanmıştır.  
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EK 6a’da verilerin rastgele ayrıldığı durumda MAPE’yi etkileyen faktörlerin 

incelendiği CHAID analizi diyagramı verilmiştir. Diyagram incelendiğinde en 

düşük MAPE (%4.82) ile LM algoritması kullanıldığı durumda (Düğüm 1) tahmin 

yapıldığı görülecektir. BR algoritması hatayı azaltmadaki başarısı bakımından 

ortalama olarak %5.064 MAPE değeriyle LM algoritmasından sonra (Düğüm 2) 

gelmektedir. Üç algoritma için en yüksek hata ortalaması ile (%5.552) tahminin 

yapıldığı algoritma GDX algoritması olarak (Düğüm 3) tespit edilmiştir. GDX 

algoritması için nöron ve katman sayısı etkili olmazken BR algoritmasında 

standartlaştırmanın hatayı azaltmada bir etkisi bulunmamıştır. 

LM algoritmasında beş ve sekiz nöron bulunduğu durumda (Düğüm 5, 

%4.745) üç nöron olduğu durumdan (Düğüm 4, %4.987) daha düşük hata ile 

tahminler elde edilmiştir. LM algoritmasında üç nöron kullanıldığı durumda üç 

katmanla düşük MAPE değeri (Düğüm 23, %4.794) elde edilirken, beş ve sekiz 

nöronun kullanıldığı durumda iki katman kullanılması MAPE değerini (Düğüm 25, 

%4.668) azaltmıştır. LM algoritması ile yapılan 162 deneme sonucunda iki gizli 

katmanda beş ve sekiz nöron bulunması ve standartlaştırma yapılması durumunda 

en düşük MAPE değeri %4.668 (18 denemenin ortalaması, Düğüm 25) olarak elde 

edilmiştir. LM algoritmasında en yüksek MAPE değeri (%5.111) ile katman sayısı 

önemli olmaksızın 3 nöron kullanılması ve verinin standardize edilmemesi 

durumunda elde edilmiştir.  

BR algoritmasında nöron sayısının üç ve beş alındığı durumda MAPE değeri 

(Düğüm 6, %4.914), sekiz alındığı durumdan (Düğüm 7, %5.363) daha düşük 

bulunmuştur. Gizli katman sayısı BR algoritmasında MAPE değerinin azalmasında 

önemli bir faktör olarak belirlenmiş, katman sayısının iki alınması durumunda 

MAPE değeri (Düğüm 16, %4.914) bir katmanda (Düğüm 15, %4.962) ve üç 

katmanda (Düğüm 17, %6.214) olarak tespit edilmiştir. 

GDX algoritmasının hatayı azaltma başarısını en fazla etkileyen faktör döngü 

sayısı olmaktadır ve döngü sayısının düşük tutulması durumunda yüksek MAPE 

değerleri (Düğüm 9 ve 10) elde edilmektedir. Döngü sayısı 1000, öğrenme oranı 

0.1 ve gradyan değerinin 10-6 ile 10-5 alınması durumunda (Düğüm 8), GDX 

algoritmasının katman sayısı, nöron sayısı ve normalizasyondan etkilenmediği, bu 
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grupta GDX algoritmasıyla en düşük MAPE değerinin (%5.274 ) elde edildiği EK 

6a’dan görülmektedir.  

EK 6b incelendiğinde RMSE değerleri için, EK 6c incelendiğinde ise R2 

değerleri için MAPE değerlerine benzer sonuçların elde edildiği görülmektedir. EK 

6b’de en düşük ortalama RMSE değerinin LM algoritmasından (Düğüm 5, 35.418 

kg) EK 6c’de en yüksek ortalamaya sahip belirleme katsayısının ise (Düğüm 5, 

R2=0.934) yine LM algoritması ile elde edildiği görülmektedir. EK 5d 

incelendiğinde LM algoritmasının döngü sayısı 100 ile sınırlandırıldığında (Düğüm 

6, 0.879sn) GDX algoritmasının ortalama süre değerine (Düğüm 3, 0.642sn) 

yaklaştığı görülmektedir. BR algoritmasında döngü sayısı etkili olmazken döngü 

sayısının genel ortalaması (Düğüm 3.792sn) diğer iki algoritmadan daha yüksek 

olduğu görülmektedir. EK 6e incelendiğinde LM algoritmasının en düşük RMSE 

değerini yakaladığı en iyi döngü sayısı bakımından (24 döngü) diğer iki algoritmaya 

göre (BR=350 döngü ve GDX=610 döngü) çok daha üstün olduğu söylenebilir. 

Nöron sayısının 5 ve 8 olarak alınması LM algoritmasında çok daha az döngü ile 

(Düğüm 5, 17 döngü) eğitimin tamamlanmasına neden olmuştur.  

4.5 Makine Öğrenmesi Yaklaşımlarının Performans Değerlendirme 

Ölçütleri. 

Tez çalışması kapsamında yapay sinir ağları, çok değişkenli uyarlanabilir 

regresyon eğrileri, çoklu doğrusal regresyon ve Ki-kare otomatik etkileşim 

belirleme analizleri kullanılarak yapılan tahminlere ait performans değerlendirme 

ölçütleri Tablo 4.80’de verilmiştir.  

Tablo 4.80. Performans değerlendirme ölçütleri bakımından makine öğrenmesi yaklaşımları. 

MAKİNE ÖĞRENMESİ YAKLAŞIMI 
MAPE 

(%) 

RMSE 

(Kg) 
R2 

Yapay Sinir Ağları 4.15 31.63 0.9467 

Çok Değişkenli Uyarlanabilir Regresyon Eğrileri 4.75 32.95 0.9334 

Çoklu Doğrusal Regresyon 5.02 37.06 0.9266 

Ki-Kare Otomatik Etkileşim Belirleme 5.36 38.42 0.9211 
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Makine öğrenmesi yaklaşımlarından yapay sinir ağlarında en düşük MAPE 

(%4.15) ve RMSE değeri (31.63kg) ile en yüksek belirleme katsayısı (R2=0.9467) 

olarak belirlenmiştir. Yapay sinir ağlarında elde edilen en düşük MAPE değeri, 

verilerin normalize edildiği, %70 eğitim, %15 test ve %15 doğrulama setine 

ayrıldığı durumda, Levenberg-Marquardt algoritması kullanılarak, iki gizli 

katmanda sekiz nöronun kullanıldığı yapıda (2-8-8-1),  MU değeri 0.01, GD değeri 

10-7, LR değerinin 0.01 olarak alındığı ve döngü sayısının 500 ile sınırlandırıldığı 

eğitimden elde edilmiştir. Analizlerin yapılmasında MATLAB paket programı 

kullanılmıştır. 

Çok değişkenli uyarlanabilir regresyon eğrileri yönteminde Salford 

Predictive Modeler 7.0 programı demo versiyonunda ve penalty değeri üç olarak 

alınmış, MAPE değeri %4.75, RMSE değeri 32.95kg ve R2 değeri 0.9334 olarak 

belirlenmiştir. 

Çoklu doğrusal regresyon analizinde çalışmada çok fazla bağımsız değişken 

kullanılmadığından değişken eleme ve ekleme için herhangi bir yöntem 

kullanılmamış, SPSS v25 programı kullanılarak elde edilen denklem yardımıyla 

yapılan tahminler ve gerçek canlı ağırlıklar arasındaki MAPE değeri %5.02, RMSE 

değeri 37.06kg ve R2 değeri 0.9266 olarak hesaplanmıştır. 

Son olarak SPSS v25 paket programı kullanılarak uygulanan CHAID 

yönteminde bütün analizlerde Ebeveyn: Çocuk (Parent Node: Child Node) düğüm 

oranı 50:25 olarak ayarlanmış, ağaç derinliği 7 olarak alınmış ve MAPE değeri 

%5.36, RMSE değeri 38.42kg ve R2 değeri 0.9211 olarak tespit edilmiştir. 
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5. TARTIŞMA 

Sığırlarda canlı ağırlığın tahmin edilmesiyle ilgili ilk çalışmalara 20. yüzyılın 

başlarında rastlanmaktadır. Ölçüm cetveli ya da mezura gibi ölçüm araçlarıyla 

hayvanlardan alınan göğüs çevresi, vücut uzunluğu, vücut derinliği, sağrı 

yüksekliği, kalça genişliği ve karın çevresi gibi çeşitli vücut ölçümlerini ve çoklu 

doğrusal regresyon gibi istatistiksel yöntemleri kullanarak bilim insanları 

hayvanlarda canlı ağırlığı tahmin etmeye çalışmıştır. 21. yüzyılın başlarında ise bu 

yöntemler yerini hayvanlarda çeşitli vücut özelliklerinin ve canlı ağırlığın 

görüntüleme ile tahmin edildiği çalışmalara bırakmıştır. 

Bu tez çalışmasında klasik uygulamanın aksine et sığırlarına rahatsızlık 

vermeksizin üç boyutlu bir görüntüleme aracı olan structure sensör kullanılarak 

uzaktan elde edilen görüntülerinden, görüntü işleme yöntemleri yardımıyla 

hesaplanan vücut alanı ve yükseklik bilgilerini kullanarak et sığırlarının canlı 

ağırlıkları makine öğrenmesi yaklaşımları kullanılarak tahminlenmiştir. Literatürde 

üç boyutlu görüntülerle, görüntü işleme ve makine öğrenmesi yaklaşımlarını 

birlikte kullanarak sığırlarda canlı ağırlığın tahmin edildiği çalışmalara 

rastlanmamıştır. Bu nedenle tartışma kısmında geleneksel yöntemlerle canlı 

ağırlığın tahmin edildiği çalışmalar, görüntü işleme yöntemlerini kullanmaksızın 

makine öğrenmesinde kullanılan bazı yaklaşımlarla yapılmış çalışmalar, görüntü 

işleme yöntemiyle yapılan çalışmalar ile çalışma bulguları karşılaştırılacaktır. 

Ayrıca yapay sinir ağlarında kullanılan algoritmaların etkinliği bu alanda yapılmış 

çalışmalarla karşılaştırılacaktır.  

Tez çalışmasında et sığırlarının canlı ağırlıkları ile sığır görüntülerinden 

tahmin edilen vücut alanları arasındaki belirleme katsayısı R2=0.919, vücut alanı ve 

yükseklik birlikte kullanıldığında ise R2=0.926 olarak hesaplanmıştır. Bu değer, 

çeşitli vücut ölçümlerinin elle ölçüldüğü, çoklu doğrusal regresyon yöntemi 

yardımıyla canlı ağırlığın geleneksel yöntemlerle tahmin edildiği Tüzemen et al. 

(1995), Koç ve Akman (2007) ve Gruber et al. (2018) tarafından yapılan 

çalışmalarda elde edilen sırasıyla R2=0.812, R2=0.848 ve R2=0.821 belirleme 

katsayılarından yüksektir.  
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Tez çalışmasında sığırların üç boyutlu görüntüleri ile canlı ağırlıkları arasında 

hesaplanan R2=0.926 değeri, Brunton and Salisbury (1946) tarafından çeşitli vücut 

özelliklerinin elle ölçülerek canlı ağırlıkların çoklu doğrusal regresyon analizi 

yardımıyla tahmin edildiği çalışmada, Jersey ve Siyah Alacalar birlikte ele 

alındığında hesaplanan belirleme katsayısı R2=0.953’ten daha düşüktür. Ancak aynı 

çalışmada Siyah Alacalar için hesaplanan R2=0.910 ve Jersey ırkı için hesaplanan 

R2=0.918 değeri ve Bozkurt (2006) tarafından yapılan çalışmada polinomiyal 

regresyon analizi yardımıyla göğüs çevresi ve vücut uzunluğu kullanılarak elde 

edilen R2=0.932 değeri ile yakındır.  

Çalışma kapsamında sığır görüntülerinden tahmin edilen vücut alanı ve 

yükseklik değerleri kullanılarak çoklu doğrusal regresyon yardımıyla belirleme 

katsayısı R2=0.926 olarak hesaplanmıştır. Bu değer Özlütürk vd (2006) tarafından 

vücut ölçümlerinin elle alınarak yürütüldüğü araştırmada 15-18-24 aylık erkek 

esmer sığırlar için çoklu doğrusal regresyon kullanılarak klasik yöntemlerle 

hesaplanan göğüs çevresi ve canlı ağırlık arasındaki belirleme katsayısı 

değerlerinden (R2=0.941, R2=0.924 ve R2=0.924) daha düşük ancak ergin sığırlar 

için hesaplanan R2=0.815 değerinden daha yüksektir.  15-18-24 aylık sığırlarda 

aynı yaşta sığırların seçilmesi nedeniyle verinin daha homojen yapıda olmasına 

bağlı olarak daha yüksek belirleme katsayısı elde edilmiş olabilir. 

Tez çalışması kapsamında ayrıca makine öğrenmesinde kullanılan 

yaklaşımlardan yapay sinir ağları (YSA), çok değişkenli uyarlanabilir regresyon 

eğrileri (MARS), çoklu doğrusal regresyon (ÇDR) ve Ki-kare otomatik etkileşim 

belirleme (CHAID) analizleri karşılaştırmalı olarak incelenmiştir. Bu yöntemlerle 

yapılan tahminlerden elde edilen MAPE değerleri sırasıyla %4.15, %4.75, %5.02 

ve %5.36 olarak, RMSE değerleri sırasıyla 31.63kg, 32.95kg, 37.06kg ve 38.42kg 

olarak, belirleme katsayıları ise yine aynı sırayla 0.9467, 0.9334, 0.9266 ve 0.9211 

olarak hesaplanmıştır. Çalışma bulguları, Ali et al. (2015) tarafından koyunların 

canlı ağırlıklarının tahmin edilmesi amacıyla yürütülen çalışma bulgularından 

farklılık göstermektedir. Araştırıcılar Ki-kare otomatik etkileşim belirleme analizi 

ile yapılan tahminin belirleme katsayısının R2=0.8381, yapay sinir ağları ile yapılan 

tahminden R2=0.8154 daha yüksek olduğunu tespit etmişlerdir. Oysa araştırma 

bulgularımız Ki-kare otomatik etkileşim belirleme ile yapılan tahminin yapay sinir 
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ağları ile yapılan tahminden daha düşük belirleme katsayısı elde edildiğini 

göstermektedir. Araştırıcıların Ki-kare otomatik etkileşim belirleme analizi ile daha 

yüksek belirleme katsayısı elde etmesinin sebebi çalışmalarında kullanılan 

bağımsız değişken sayısının fazla olması olabilir.  

Çeşitli vücut özelliklerinin elle ölçülerek koyunlarda canlı ağırlığın tahmin 

edildiği Karadaş et al. (2017) tarafından yürütülen çalışmada Ki-kare otomatik 

etkileşim belirleme analizinin tahmin başarısının, yapay sinir ağlarından daha 

yüksek olduğu belirtilmiştir. Araştırıcıların iki yöntem için tespit ettikleri RMSE 

değerleri birbirine yakın olsa da sığır canlı ağırlıklarının tahmin edildiği bu tez 

çalışmasında (RMSECHAID=38.42kg, RMSEYSA=31.63kg) RMSE değerlerinin 

yapay sinir ağlarında daha düşük olduğu tespit edilmiştir. Yapılan çalışmada Ki 

kare otomatik etkileşim belirleme analizinin tahmin başarısının daha yüksek olduğu 

bilgisi çalışma bulgularımızla örtüşmemektedir. 

Çelik et al. (2017) tarafından koyun ağırlıklarını tahmin etmek için yapay 

sinir ağları (YSA), çok değişkenli uyarlanabilir regresyon eğrileri (MARS) ve Ki 

kare otomatik etkileşim belirleme analizleri (CHAID) kullanılarak yürütülen 

çalışmada MAPE değerleri bakımından yaklaşımları iyiden kötüye doğru CHAID 

(MAPE=%5.797) < MARS (MAPE=%7.145) < YSA (MAPE=%7.856) olarak 

sıralamışlardır, bu bilgi de sığırlarda canlı ağırlığın aynı yöntemlerle tahmin 

edildiği çalışma bulgularımızdan (MAPECHAID=%5.36  > MAPEMARS=%4.75 > 

MAPEYSA=%4.15) farklılık göstermektedir.  

Çalışmamızda yapay sinir ağları ile yapılan tahmin sonuçları çoklu doğrusal 

regresyon analizinden daha iyi bulunmuş ve yapay sinir ağlarının, parametrik bir 

test olması nedeniyle çeşitli varsayımları bulunan çoklu doğrusal regresyon 

analizine alternatif olarak kullanılabileceği tespit edilmiştir.  

Grzesiak et al. (2003) süt verimini tahmin etmek için yürüttükleri araştırmada 

yapay sinir ağları ile tahminden elde ettikleri RMSE değerini, çoklu doğrusal 

regresyon analizi ile tahminde elde ettikleri RMSE değerinden daha düşük olarak 

belirlemişlerdir. Sığırlarda canlı ağırlığın tahmin edildiği çalışma bulgularımız 

yapay sinir ağları ile tahminde RMSE değerinin 31.63kg, çoklu doğrusal regresyon 
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analizinde bu değerin 37.06kg olduğunu ve yapay sinir ağları ile daha düşük RMSE 

değeri ile tahmin yapılabildiğini göstermekte, Grzesiak et al. (2003) tarafından 

sunulan bulguları destekler niteliktedir.   

Araştırma bulgularımız, kanatlı beslemesi alanında çalışan Perai et al. (2010) 

tarafından yürütülen, bu tez çalışmasına benzer şekilde yapay sinir ağları ile çoklu 

doğrusal regresyon analizinin karşılaştırıldığı araştırmanın bulgularını (yapay sinir 

ağlarıyla R2=0.94, çoklu doğrusal regresyonla R2=0.38) desteklemekle birlikte 

çalışmamızda yöntemlerle elde edilen belirleme katsayıları (R2
YSA=0.9467 ve 

R2
ÇDR=0.9266) arasında araştırmacıların elde ettiği kadar yüksek farklılık 

bulunmamıştır.   

Takma vd. (2012) sığırlarda süt verimini tahmin ettikleri araştırmada bu tez 

çalışmasına benzer şekilde yapay sinir ağları (R2=0.85) ile çoklu doğrusal regresyon 

analizini (R2=0.75) karşılaştırmışlardır. Araştırıcılar bu tez çalışmasını destekler 

nitelikte yapay sinir ağlarının (R2=0.9467) çoklu doğrusal regresyondan 

(R2=0.9266) daha iyi sonuç verdiğini bildirmişlerdir.  

Dongre et al. (2012) sığırlarda ilk laktasyon süt verimini tahmin etmek 

amacıyla bu tez çalışmasına benzer şekilde yapay sinir ağları ve çoklu doğrusal 

regresyon analizi yöntemlerinin tahmin başarısını karşılaştırmışlardır. 

Araştırıcıların yapay sinir ağlarının (R2=0.86) çoklu doğrusal regresyon (R2=0.85) 

analizinden daha iyi sonuç verdiğini belirttiği bulguları çalışma bulgularımızı 

(R2
YSA=0.9467 ve R2

ÇDR=0.9266) destekler niteliktedir. 

Tez çalışmasına benzer şekilde görüntü işleme yöntemleri kullanılarak 

hayvancılıkta canlı ağırlığın tahmin edildiği çalışmalardan Kmet et al. (2000) 

tarafından elde edilen R2=0.490 değerinden, Stajnko et al. (2008) tarafından 

hesaplanan R2=0.548 ve Pradana et al. (2016) tarafından belirlenen R2=0.7321 

değerinden, Goyache et al. (2001) tarafından hesaplanan 0.325 ile 0.810 R2 

değerlerinden, Özkaya (2006) tarafından tesbit edilen R2=0.81 değerinden ve Önal 

(2011) tarafından elde edilen R2=0.921 değerinden bu tez çalışmasında daha yüksek 

belirleme katsayısı (R2=0.9467) elde edilmiştir.  
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Bununla birlikte piliçlerde görüntü işleme yöntemlerini kullanılarak canlı 

ağırlığın çoklu doğrusal regresyon analizi yardımıyla tahmin edildiği Mollah et al. 

(2010) tarafından yürütülen çalışmada hesaplanan R2=0.999 değerinden daha düşük 

belirleme katsayısı elde edilmiştir.  

Taşdemir (2010) tarafından sığır görüntülerinden canlı ağırlığın bulanık 

mantık ve regresyon analizi yardımıyla tahmin edildiği çalışmada elde edilen 

R2=0.981 değeri çalışma bulgularımızda elde ettiğimiz R2
ÇDR=0.9266 değerinden 

daha yüksektir. 

Kashiha tarafından yürütülen domuzlarda görüntü işleme yöntemleri ve 

çeşitli matematiksel modeller kullanılarak elde edilen R2=0.975 değerinden 

çalışmamızda daha düşük belirleme katsayısı (R2=0.9467) hesaplanmıştır.  

Tez çalışmasında Kongsro (2014) tarafından domuz görüntülerinden canlı 

ağırlığın tahmin edildiği çalışmada elde edilen R2=0.99 değerinden daha düşük 

belirleme katsayısı elde edilmesine karşın benzer MAPE (%4-%5) değerleri elde 

edilmiştir.  

Görüntü işleme ve yapay sinir ağlarının birlikte hayvancılıkta kullanıldığı 

sadece dört çalışmaya rastlanmış bunlardan Khojastehkey et al. (2015) tarafından 

yürütülen çalışmada kuzuların post desenine göre sınıflandırılması yapılmıştır. 

İkinci çalışmada ise Wongsriworaphon et al. (2015) domuzların canlı ağırlıklarını 

yapay sinir ağları yardımıyla %2.94’lük bir hata ile tahmin etmiştir. Bu değer 

çalışmamızda elde edilen %4.15’lik hata değerinden biraz düşük bir değerdir.  

Tez çalışmasına benzer şekilde yapay sinir ağları ve görüntü işleme 

yöntemlerini birlikte kullanan çalışmalardan üçüncüsü Bhatt et al. (2018) tarafından 

yürütülmüştür. Koyunların görüntülerinden canlı ağırlıklarının tahmin edildiği bu 

çalışmada elde edilen R2=0.81 değerinden çalışma bulgularımızda elde edilen 

R2=0.9467 değeri daha yüksektir.  

Son olarak Amraei et al. (2017) tarafından etlik piliçlerin canlı ağırlıklarının 

görüntü işleme yöntemleri ve yapay sinir ağlarının birlikte kullanılarak tahmin 
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edildiği çalışmada elde edilen R2=0.984 değeri çalışmamızda elde edilen 

R2=0.9467 değerinden bir miktar yüksektir. Araştırıcılar çalışma bulgularında 

Bayesian Regularization algoritmasının Levenberg-Marquardt algoritmasından 

daha başarılı sonuçlar ürettiğini belirtmektedir. Ancak çalışmamızda Levenberg-

Marquardt algoritması en yüksek doğruluğa sahip eğitim algoritması olarak 

belirlenmiştir. Araştırıcılar veri setini test ve eğitim seti olarak iki alt sete ayırmıştır. 

Çalışmamızda Levenberg-Marquardt algoritmasında doğrulama seti olmadığında 

başarının azaldığı belirlenmiştir. Çalışmada Bayesian Regularization 

algoritmasının daha iyi sonuç vermesinin nedeni araştırıcıların doğrulama seti 

kullanmaması olabilir.  

Literatürde hayvancılık dışındaki alanlarda çok değişkenli uyarlanabilir 

regresyon eğrileri (MARS) ve yapay sinir ağlarının (YSA) karşılaştırmalı olarak 

incelendiği çalışmalardan Zhag and Goh (2016) tarafından yürütülen araştırmanın 

bulguları (yapay sinir ağları kullanıldığında R2=0.970 ve çok değişkenli 

uyarlanabilir regresyon eğrileri kullanıldığında R2=0.957) çalışma bulgularımıza 

paralellik göstermektedir. Araştırıcı yapay sinir ağlarının çok değişkenli 

uyarlanabilir regresyon eğrilerinden biraz daha yüksek doğruluğa sahip olduğunu 

belirtmiştir.  

Tayyebi and Pijanowski (2014) araştırmalarında çalışma bulgularımıza 

benzer şekilde yapay sinir ağlarının çok değişkenli uyarlanabilir regresyon 

eğrilerinden daha yüksek doğruluk sağladığını bildirmişlerdir.  Bunun dışında, De 

veaux et al. (1993) tarafından çok değişkenli uyarlanabilir regresyon eğrilerinin 

çoğu durumda yapay sinir ağlarına göre daha yüksek doğrulukla ve daha hızlı 

sonuçlar ürettiğini belirttiği çalışma bulgularıyla araştırma bulgularımız 

örtüşmemektedir.  

Yapay sinir ağlarında kullanılan 3 farklı öğrenme algoritmasının 

karşılaştırıldığı çalışmamızda Levenberg-Marquardt (LM) algoritması ile %4.56 

MAPE değeri ile Bayesian Regularization (BR) algoritması kullanıldığında %4.70 

ve değişken öğrenme oranlı iniş azaltma (GDX) algoritması kullanıldığında %4.75 

MAPE değerleri ile tahminler yapılmıştır. Çalışma bulgularımız Eren et al. (2016) 

ve Rahimi et al. (2018) tarafından önerilen Levenberg-Marquardt algoritmasının 
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hatayı azaltma bakımından Bayesian Regularization algoritmasından daha iyi 

sonuçlar ürettiğine dair bulgularla benzerdir.  

Moosavizadeh et al. (2011), Bui et al. (2012), Dongre et al. (2012), Akkol vd. 

(2015), Kayri (2016) ve Mukherjee and Rajanikanth (2019), Bayesian 

Regularization algoritmasının daha yüksek R2 değerleri ile tahminler ürettiğini 

bildirmektedir. Bu çalışmalarda verinin ayrılma şekli incelendiğinde veri genellikle 

test ve eğitim setine ayrılmıştır. Bu durum çalışmamızda çapraz doğrulama ile 

verinin ayrıldığı durumdaki sonuçlara benzerlik teşkil etmektedir. Zira Levenberg-

Marquardt algoritması kullanıldığında, doğrulama setinin olmayışı nedeniyle 

Bayesian Regularization algoritmasına göre daha yüksek hatalar ile tahmin 

yapılmıştır. Bayesian Regularization algoritmasında zaten doğrulama seti 

bulunmamaktadır. Bu nedenle Bayesian Regularization ve Levenberg-Marquardt 

algoritmaları açısından doğru bir karşılaştırma yapabilmek için Levenberg-

Marquardt algoritmasının kullanımında verinin belirli oranlarda eğitim, test ve 

doğrulama setlerine ayrılması gerekmektedir.  

Tez çalışmasında Levenberg-Marquardt algoritması için 3 nöron kullanıldığı 

durumda 3 gizli katman, 5 ve 8 nöron kullanıldığı durumda 2 gizli katman alınması 

önerilmektedir. Benzer şekilde Dongre et al. (2012) tarafından yürütülen araştırma 

sonucunda 2 gizli katman, 3 ve 5 nöron alınması durumunda Scaled Conjugate 

Gradient (SCG), Bayesian Regularization ve Levenberg-Marquardt 

algoritmalarında en iyi tahmin sonucuna ulaşıldığı bildirilmektedir.  

Cozler et al. (2019) süt sığırlarında çeşitli vücut özelliklerini en yüksek 

R2=0.79 belirleme katsayısı değeri elde ederek tahmin etmişlerdir. Çalışmada lazer 

projektör ile desteklenen 5 adet kamera kullanılmış ve araştırıcılar bu cihazlarla 

yapılan ölçümün yaklaşık olarak 15 dakika sürdüğünü bildirmişlerdir. 

Çalışmamızda sığır vücut özellikleri tahmin edilmese de kullanılan görüntü işleme 

yöntemi ve yapay sinir ağları ile hayvan alanının hesaplanması ve canlı ağırlığın 

tahmin edilmesi işlemleri bir dakikanın altında bir zamanda tamamlanmıştır. Bu 

bakımdan gelecekte yapılacak benzer bir çalışmada üç boyutlu iki kameranın 

(yandan ve üstten) kullanılması ve çalışamızda önerdiğimiz yöntemlerin seçilmesi 

tahmin başarısını artırabilir ve çok daha kısa sürede sonuç verebilir.  
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Amraei et al. (2018) çeşitli görüntü işleme yöntemlerini kullanarak etlik 

piliçlerde canlı ağırlığı R2=0.98 gibi yüksek bir belirleme katsayısı ile tahmin 

etmişlerdir. Bu değer çalışma bulgularımızdan (R2=0.9467) yüksek olmasına karşın 

çalışmada görüntüden pilicin ayrılması için yapılan işlemler (histogram eşikleme, 

görüntü bölütleme vs.), üç boyutlu bir görüntüleme aracı kullanılan çalışmamızda 

görüntünün ayıklanması için yapılan işlemlerden çok daha fazla adım 

gerektirmektedir. 

Yan et al. (2019) tarafından Yak (Tibet) sığırlarının iki boyutlu 

görüntülerinden canlı ağırlıklarının tahmin edildiği çalışmada elde edilen R2=0.972 

değeri çalışma bulgularımızdan (R2=0.9467) bir miktar yüksektir. Yine çalışmada 

belirlenen MAPE=%3.19 değeri çalışmamızda elde edilen MAPE=%4.16 

değerinden biraz düşük ve RMSE=7.52kg değeri çalışma bulgularımızdan 

(RMSE=31.63kg) oldukça düşüktür. Yak (Tibet) sığırlarında ağırlık ortalama 

olarak yaklaşık 260-300kg civarındadır. Değişim genişliğinin düşük olması ve 

çalışmada sadece Yak sığırının kullanılması canlı ağırlık için yapılan tahminin 

doğruluğunu artırmış olabilir.  

Shi et al. (2016) domuzlarda cidago yüksekliği, vücut uzunluğu ve canlı 

ağırlığı tahmin ettikleri araştırmada, vücut özellikleri için yapılan tahminlerle 

ölçüm değerleri arasındaki belirleme katsayılarını sırasıyla R2=0.94, R2=0.99 ve 

R2=0.9931 olarak tespit etmişlerdir. Canlı ağırlık için araştırmacılar tarafından 

tespit edilen R2=0.9931 değeri çalışma bulgularımızdan (R2=0.9467) oldukça 

yüksek olmasına karşın, araştırma bulgularımız sığırlarda da yüksekliğin, 

görüntüdeki derinlik bilgisini kullanarak yüksek doğrulukla (R2=0.9966) 

ölçülebildiğini göstermekte ve araştırıcılar tarafından tespit edilen R2=0.99 değerini 

destekler niteliktedir.  

Hayvancılık dışındaki alanlarda yapılan bazı çalışma sonuçları da çok 

değişkenli uyarlanabilir regresyon eğrileri yönteminin çoklu doğursal regresyon 

analizinden daha yüksek doğrulukla tahminde bulunduğu sonucuna ulaşılan 

çalışmamızın bulgularını desteklemektedir.  
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Mansouri et al. (2016) çoklu doğrusal regresyon (ÇDR) ve çok değişkenli 

uyarlanabilir regresyon eğrileri (MARS) yöntemlerini karşılaştırmalı olarak 

incelediği araştırmada MARS yöntemi ile elde edilen RMSE=0.127 değerinin ÇDR 

analizinden elde edilen RMSE=0.221 değerinden düşük olduğunu belirtmiştir. 

Çalışma bulgularımızda MARS analizinde çoklu doğrusal regresyon analizine göre 

daha düşük MAPE değerleri elde edildiğini göstermektedir. Araştırma sonuçları 

çalışma bulgularımızla paraleldir.  

Goh and Zhang (2013) çok değişkenli uyarlanabilir regresyon eğrileri 

yönteminin (R2=0.8559) çoklu doğrusal regresyon analizinden (R2=0.8358) daha 

yüksek doğruluğa sahip olduğunu bildirmiştir. Bu çalışmanın sonuçları da 

bulgularımızla örtüşmektedir.  

Lu et al. (2009) çok değişkenli uyarlanabilir regresyon eğrileri (MARS), 

destek vektörü regresyon (SVR), geri yayılımlı (BP) yapay sinir ağı ve çoklu 

doğrusal regresyon analizi yöntemlerini karşılaştırmalı olarak inceledikleri 

araştırmada MAPE değerlerini sırasıyla %1.15, %2.18, %3.55 ve %4.25 olarak 

tespit etmişlerdir. Çalışmamızda çok değişkenli uyarlanabilir regresyon eğrileri 

yöntemiyle yapılan tahminlerde çoklu doğrusal regresyon analizi yöntemine göre 

daha yüksek başarı elde edilmiştir. Ancak bulgularımızda iki yöntem arasında bu 

kadar yüksek bir farklılık oluşmamış, ayrıca yapay sinir ağları çok değişkenli 

uyarlanabilir regresyon eğrileri yönteminden daha düşük MAPE değeri ile tahmin 

vermiştir. Bu anlamda çalışma bulgularımızla örtüşmemektedir.  

Emamgolizadeh et al. (2015) hidroloji alanında yapmış olduğu çalışmada 

yapay sinir ağları, çok değişkenli uyarlanabilir regresyon eğrileri ve çoklu doğrusal 

regresyonu karşılaştırmış ve sonuç olarak çalışma bulgularımıza çok benzer şu 

sonuçları elde etmişlerdir. Çalışmalarında yapay sinir ağları ile yapılan tahminde 

RMSE=0.252, R2=0.892, MARS yönteminde RMSE=0.318, R2=0.864 ve çoklu 

doğrusal regresyon analizinde RMSE=0.408, R2=0.768 olarak tespit etmişlerdir. 

Araştırma bulgularımız da üç yöntemin tahmin doğruluğu bakımından aynı 

sıralamada olduğunu göstermektedir. 
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Kiran and Ravi (2007) yapay sinir ağları, çok değişkenli uyarlanabilir 

regresyon eğrileri ve çoklu doğrusal regresyon yöntemlerini beş farklı durum için, 

normalleştirilmiş hata kareler ortalamasının karekökü (Normalized Root Mean 

Square Error - NRMSE) performans değerlendirme ölçütünü kullanarak 

karşılaştırmışlardır. İlk durumda çok değişkenli uyarlanabilir regresyon eğrileri 

yöntemi ile en düşük NRMSE=0.170584 değerini elde eden araştırıcılar geri 

yayılımlı yapay sinir ağlarında (BP) bu değeri NRMSE= 0.171375 olarak, çoklu 

doğrusal regresyonda (ÇDR) ise NRMSE=0.171448 olarak tespit etmişlerdir. 

Çalışmada incelenen diğer dört durumda ise geri yayılımlı yapay sinir ağları ile elde 

edilen NRMSE değerlerinin (sırasıyla 0.166086, 0.151429, 0.144949 ve 0.145541) 

MARS yönteminden elde edilen NRMSE değerlerinden (sırasıyla 0.17091, 

0.161343, 0.154821 ve 0.15267) daha düşük olduğunu bildirmişlerdir. Çalışmada 

ayrıca yapay sinir ağlarından elde edilen NRMSE değerlerinin çoklu doğrusal 

regresyon yönteminden elde edilen NRMSE değerlerinden (sırasıyla 0.167776, 

0.156537, 0.151152 ve 0.147881) daha düşük olduğu belirtilmiştir. Çalışma 

sonuçları ilk durum hariç çalışma bulgularımızla benzerlik göstermektedir.  
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6. SONUÇ VE ÖNERİLER 

Sığır işletmelerinde canlı ağırlığın bilinmesi işletme karlılığı açısından elzem 

konular arasındadır. Klasik yöntemler kullanarak canlı ağırlığı tespit veya tahmin 

etmek zor, zahmetli ve hayvanlarda strese sebep veren bir süreçtir. Bu sebeple 

uzaktan canlı ağırlığın tahmin edildiği, böylece insan yaralanma riskinin de 

minimize edildiği, makine öğrenmesi ve görüntü işleme yöntemlerini kullanarak 

yürütülen bu çalışmanın yetiştiricilere büyük avantajlar sağlayacağı 

düşünülmektedir. Çalışma bulguları yeni yöntemle, klasik yöntemlerle yapılan 

tahminlerden daha az vücut özelliği kullanarak daha yüksek doğrulukla tahmin 

yapılabileceğini göstermektedir. Gelecekte bu verilerle eğitilmiş yapay sinir 

ağlarını kullanarak geliştirilen yazılımlar sayesinde, üç boyutlu bir kameraya sahip, 

küçük bir cihaz yardımıyla sığırların canlı ağırlığını tahmin etmek mümkün 

olabilecektir. Bu cihaz ile elde edilen veriler kablosuz olarak bir bilgisayara 

aktarıldığında hayvanların canlı ağırlıkları kaydedilecek ve bu şekilde canlı ağırlık 

takibi yapan sığırcılık işletmelerinde daha efektif üretim yapılabilecektir. 

Hayvancılıkta YSA kullanımının çoklu doğrusal regresyon analizi, ayırma 

analizi, kümeleme analizi gibi geleneksel istatistiksel yöntemlerden daha iyi 

sonuçlar verdiği birçok çalışmada belirtilmiş, et sığırlarında canlı ağırlığın 

tahminlendiği bu çalışmada da YSA ile daha düşük tahmin hataları elde edilmiştir.  

Yapay sinir ağlarında, çoklu doğrusal regresyonda olduğu gibi tek bir modelle 

canlı ağırlığı tahmin etmek pek mümkün olmamaktadır. En uygun ağ yapısının 

oluşturulması için çeşitli denemeler yapılması gerekmektedir. Bu da yapay sinir 

ağlarının dezavantajlarından biridir. Bununla birlikte daha önce benzer verilerle 

yapılmış çalışmalardaki nöron ve katman sayıları ile parametreler dikkate alınırsa 

ağın öğrenmesi hızlı bir şekilde gerçekleştirilebilir. Bu çalışmada YSA’da 

kullanılan ağ parametrelerinin etkinliği ile nöron ve katman sayılarının hatayı 

azaltmadaki etkisini incelemek amacıyla pek çok eğitim durumu denenmiştir. Bu 

nedenle çok fazla eğitim kombinasyonu ortaya çıkmış ve analiz sayısı artmıştır. 

Gerçekte bir çalışmanın yürütülmesinde bu kadar denemenin yapılmasına ihtiyaç 

duyulmamaktadır. Birkaç deneme yapılarak ya da varsayılan MATLAB 
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parametreleri kullanılarak kabul edilebilir bir hata seviyesinde tahminler elde 

edilebilmektedir.  

Çoklu doğrusal regresyon ve çok değişkenli uyarlanabilir regresyon eğrileri 

yöntemlerinde bir tahmin denkleminin olması bu yöntemleri diğer yöntemlere 

nazaran avantajlı kılmaktadır. Ancak çoklu doğrusal regresyon analizi dışındaki 

yöntemlerin ise parametrik testlerin gerektirdiği bazı önşart ve varsayımları 

gerektirmemesi yönüyle avantajı büyüktür. Özellikle birçok alanda karşılaşılan 

bağımsız değişkenler arasındaki çoklu doğrusal bağlantı (multicollinearity) 

problemi, çoklu doğrusal regresyon analizinin kullanımını sınırlandırmaktadır. 

Bunun dışında araştırıcılar tarafından varsayımlar kontrol edilmeden ve ön şartlar 

sağlanmadan analizin yapılması durumunda sonuçların geçerliliği de tartışmalı 

olmaktadır.  

Araştırmada kullanılan CHAID analizi diğer yöntemlerin aksine sunduğu 

ağaç diyagramı sayesinde sonuçların yorumlanmasına büyük kolaylık 

sağlamaktadır. Yine araştırmada kullanılan bir diğer yaklaşım olan çok değişkenli 

uyarlanabilir regresyon eğrileri ise temel fonksiyonları kullanarak çoklu doğrusal 

regresyon yönteminden daha esnek bir model oluşturması yönüyle avantaj 

sağlamaktadır.  

Bu çalışmada gelecekte yapılması planlanan benzer çalışmalara yol 

göstermek amacıyla yapay sinir ağlarında üç farklı eğitim algoritması için üç farklı 

gizli katman ve nöron kullanıldığında hangi durumda iyi sonuç alındığı, veri ayırma 

yöntemlerinden algoritmaların nasıl etkilendiği ile ilgili bilgiler verilmiştir. LM ve 

GDX algoritmalarında veriler standartlaştırıldığı zaman daha düşük MAPE 

değerleriyle tahmin yapılabileceği, eğitim süreleri bakımından da önemli bir azalma 

görüldüğü saptanmıştır. LM algoritması için 3 nöron kullanıldığı durumda 3 

katman, 5 ve 8 nöron kullanıldığı durumda 2 katman alınması önerilmektedir. 

Çalışmada en az döngü ile eğitimi tamamlayan algoritma LM algoritması olarak 

belirlenmiştir. Döngü sayısı ve maksimum başarısız döngü sayısı yüksek 

tutulduğunda GDX algoritmasının çok daha kısa sürelerde eğitimi tamamladığı 

belirlenmiştir. Hataların azaltılması bakımından en etkin algoritmanın LM 



155 

 

 

 

algoritması olduğu tespit edilmiştir. Çalışmadan elde edilen bu bilgilerin de 

araştırmacılara yol göstereceği düşünülmektedir. 

Gelecekte benzer çalışma yapmayı planlayan araştırıcılar görüntüleme 

yapılırken hayvanları aynı pozisyonda sabitleyerek görüntü almaya odaklanmalıdır. 

Sığırların bir yürüme bandında görüntülenmesi vücut uzunluğu, kalça genişliği gibi 

birkaç parametrenin de otomatik olarak hesaplanmasına olanak verebilir. İkinci bir 

kamera kullanılarak göğüs derinliğinin belirlenmesi de yine daha yüksek 

doğrulukla tahmin yapılmasını sağlayacaktır. Ayrıca aynı ırktan olan sığırların 

çalışmada kullanılması durumunda hatanın bir miktar azalacağı düşünülmektedir. 

Son olarak kullanımı son birkaç yılda yaygınlaşan derin öğrenme yöntemlerinin 

kullanılması da araştırıcılara tavsiye edilmektedir.  
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EK 1a 

clc 

clear all 

load('C:\Users\veri.mat') 

 

k = 7; 

cv = cvpartition(length(input1),'kfold',k); 

 

for i=1:k 

trainIdxs{i} = find(training(cv,i)); 

testIdxs{i}  = find(test(cv,i)); 

trainMatrix{i} = [input1(trainIdxs{i}) input2(trainIdxs{i}) target(trainIdxs{i})]; 

testMatrix{i}  = [input1(testIdxs{i})  input2(testIdxs{i}) target(testIdxs{i})]; 

 

net{i} = feedforwardnet(8); 

net{i}.trainFcn='trainlm'; 

net{i}.divideFcn = ''; 

net{i}.trainParam.epochs = 1000; 

%net{i}.trainParam.epochs = 500; 

%net{i}.trainParam.epochs = 100; 

net{i}.trainParam.max_fail = 250; 

net{i}.trainParam.min_grad = 1e-7; 

%net{i}.trainParam.min_grad = 1e-6; 

%net{i}.trainParam.min_grad = 1e-5; 

net{i}.trainParam.mu= 0.001; 

% net{i}.trainParam.mu= 0.005; 

% net{i}.trainParam.mu= 0.01; 

net{i}.trainParam.lr= 0.01; 

% net{i}.trainParam.lr= 0.05; 

% net{i}.trainParam.lr= 0.1; 

net{i}.layers{1}.transferFcn = 'tansig'; 

[net{i},tr]= train(net{i},trainMatrix{i}(:,1:2)',trainMatrix{i}(:,3)'); 

save lm18cv; 

end 

 

sim1=sim(net{1},testMatrix{1}(:,1:2)'); 

sim2=sim(net{2},testMatrix{2}(:,1:2)'); 

sim3=sim(net{3},testMatrix{3}(:,1:2)'); 

sim4=sim(net{4},testMatrix{4}(:,1:2)'); 

sim5=sim(net{5},testMatrix{5}(:,1:2)'); 

sim6=sim(net{6},testMatrix{6}(:,1:2)'); 

sim7=sim(net{7},testMatrix{7}(:,1:2)'); 

 

testMatrix{1}(:,3)=testMatrix{1}(:,3); 

a1=testMatrix{1}(:,3)-sim1'; 

c1=abs(a1./(testMatrix{1}(:,3))); 

MAPE1=mean(c1); 

ymape1=100*MAPE1; 

a1=a1.^2; 



 

 

 

 

mse1=mean(a1); 

RMSE1=sqrt(mse1); 

R1=corr(testMatrix{1}(:,3),sim1'); 

save lm18cv1; 

 

testMatrix{2}(:,3)=testMatrix{2}(:,3); 

a2=testMatrix{2}(:,3)-sim2'; 

c2=abs(a2./(testMatrix{2}(:,3))); 

MAPE2=mean(c2); 

ymape2=100*MAPE2; 

a2=a2.^2; 

mse2=mean(a2); 

RMSE2=sqrt(mse2); 

R2=corr(testMatrix{2}(:,3),sim2'); 

save lm18cv2; 

 

testMatrix{3}(:,3)=testMatrix{3}(:,3); 

a3=testMatrix{3}(:,3)-sim3'; 

c3=abs(a3./(testMatrix{3}(:,3))); 

MAPE3=mean(c3); 

ymape3=100*MAPE3; 

a3=a3.^2; 

mse3=mean(a3); 

RMSE3=sqrt(mse3); 

R3=corr(testMatrix{3}(:,3),sim3'); 

save lm18cv3; 

 

testMatrix{4}(:,3)=testMatrix{4}(:,3); 

a4=testMatrix{4}(:,3)-sim4'; 

c4=abs(a4./(testMatrix{4}(:,3))); 

MAPE4=mean(c4); 

ymape4=100*MAPE4; 

a4=a4.^2; 

mse4=mean(a4); 

RMSE4=sqrt(mse4); 

R4=corr(testMatrix{4}(:,3),sim4'); 

save lm18cv4; 

 

testMatrix{5}(:,3)=testMatrix{5}(:,3); 

a5=testMatrix{5}(:,3)-sim5'; 

c5=abs(a5./(testMatrix{5}(:,3))); 

MAPE5=mean(c5); 

ymape5=100*MAPE5; 

a5=a5.^2; 

mse5=mean(a5); 

RMSE5=sqrt(mse5); 

R5=corr(testMatrix{5}(:,3),sim5'); 

save lm18cv5; 

 



 

 

 

 

testMatrix{6}(:,3)=testMatrix{6}(:,3); 

a6=testMatrix{6}(:,3)-sim6'; 

c6=abs(a6./(testMatrix{6}(:,3))); 

MAPE6=mean(c6); 

ymape6=100*MAPE6; 

a6=a6.^2; 

mse6=mean(a6); 

RMSE6=sqrt(mse6); 

R6=corr(testMatrix{6}(:,3),sim6'); 

save lm18cv6; 

 

testMatrix{7}(:,3)=testMatrix{7}(:,3); 

a7=testMatrix{7}(:,3)-sim7'; 

c7=abs(a7./(testMatrix{7}(:,3))); 

MAPE7=mean(c7); 

ymape7=100*MAPE7; 

a7=a7.^2; 

mse7=mean(a7); 

RMSE7=sqrt(mse7); 

R7=corr(testMatrix{7}(:,3),sim7'); 

MAPEORT=(MAPE1+MAPE2+MAPE3+MAPE4+MAPE5+MAPE6+MAPE7)/7; 

RORT=(R1+R2+R3+R4+R5+R6+R7)/7; 

RKARE=RORT^2; 

RMSEORT=(RMSE1+RMSE2+RMSE3+RMSE4+RMSE5+RMSE6+RMSE7)/7; 

save lm18cv7; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

 

EK 1b 

clc 

clear all 

load('C:\Users\veri.mat') 

input1=input1';target=target'; 

[input1n,meaninput1,stdinput1,targetn,meantarget,stdtarget] = prestd(input1,target); 

k=7; 

input1n=input1n';targetn=targetn'; 

for i=1:k 

net{i} = feedforwardnet([8 8]); 

[trainInd,valInd,testInd] = dividerand(length(input1n),0.7,0.15,0.15); 

net{i}.trainFcn='traingdx'; 

% net{i}.trainParam.epochs = 1000; 

% net{i}.trainParam.epochs = 500; 

net{i}.trainParam.epochs = 100; 

net{i}.trainParam.max_fail = 250; 

net{i}.trainParam.min_grad = 1e-7; 

% net{i}.trainParam.min_grad = 1e-6; 

% net{i}.trainParam.min_grad = 1e-5; 

net{i}.trainParam.mu= 0.001; 

% net{i}.trainParam.mu= 0.005; 

% net{i}.trainParam.mu= 0.01; 

net{i}.trainParam.lr= 0.01; 

% net{i}.trainParam.lr= 0.05; 

% net{i}.trainParam.lr= 0.1; 

net{i}.layers{1}.transferFcn = 'tansig'; 

[net{i},tr] = train(net{i},input1n',targetn'); 

save gdx28rnozet 

end 

 

sim1=sim(net{1},input1n'); 

sim2=sim(net{2},input1n'); 

sim3=sim(net{3},input1n'); 

sim4=sim(net{4},input1n'); 

sim5=sim(net{5},input1n'); 

sim6=sim(net{6},input1n'); 

sim7=sim(net{7},input1n'); 

 

sim1=stdtarget*sim1 + meantarget; 

sim2=stdtarget*sim2 + meantarget; 

sim3=stdtarget*sim3 + meantarget; 

sim4=stdtarget*sim4 + meantarget; 

sim5=stdtarget*sim5 + meantarget; 

sim6=stdtarget*sim6 + meantarget; 

sim7=stdtarget*sim7 + meantarget; 

 

sim1=sim1'; 

sim2=sim2'; 

sim3=sim3'; 



 

 

 

 

sim4=sim4'; 

sim5=sim5'; 

sim6=sim6'; 

sim7=sim7'; 

 

a1=target-sim1'; 

c1=abs(a1./(target)); 

MAPE1=mean(c1); 

ymape1=100*MAPE1; 

a1=a1.^2; 

mse1=mean(a1); 

RMSE1=sqrt(mse1); 

R1=corr(target',sim1); 

R1KARE=R1^2; 

save gdx28rnozet1; 

 

a2=target-sim2'; 

c2=abs(a2./(target)); 

MAPE2=mean(c2); 

ymape2=100*MAPE2; 

a2=a2.^2; 

mse2=mean(a2); 

RMSE2=sqrt(mse2); 

R2=corr(target',sim2); 

R2KARE=R2^2; 

save gdx28rnozet2; 

 

a3=target-sim3'; 

c3=abs(a3./(target)); 

MAPE3=mean(c3); 

ymape3=100*MAPE3; 

a3=a3.^2; 

mse3=mean(a3); 

RMSE3=sqrt(mse3); 

R3=corr(target',sim3); 

R3KARE=R3^2; 

save gdx28rnozet3; 

 

a4=target-sim4'; 

c4=abs(a4./(target)); 

MAPE4=mean(c4); 

ymape4=100*MAPE4; 

a4=a4.^2; 

mse4=mean(a4); 

RMSE4=sqrt(mse4); 

R4=corr(target',sim4); 

R4KARE=R4^2; 

save gdx28rnozet4; 

 



 

 

 

 

a5=target-sim5'; 

c5=abs(a5./(target)); 

MAPE5=mean(c5); 

ymape5=100*MAPE5; 

a5=a5.^2; 

mse5=mean(a5); 

RMSE5=sqrt(mse5); 

R5=corr(target',sim5); 

R5KARE=R5^2; 

save gdx28rnozet5; 

 

a6=target-sim6'; 

c6=abs(a6./(target)); 

MAPE6=mean(c6); 

ymape6=100*MAPE6; 

a6=a6.^2; 

mse6=mean(a6); 

RMSE6=sqrt(mse6); 

R6=corr(target',sim6); 

R6KARE=R6^2; 

save gdx28rnozet6; 

 

a7=target-sim7'; 

c7=abs(a7./(target)); 

MAPE7=mean(c7); 

ymape7=100*MAPE7; 

a7=a7.^2; 

mse7=mean(a7); 

RMSE7=sqrt(mse7); 

R7=corr(target',sim7); 

R7KARE=R7^2; 

 

MAPEORT=(MAPE1+MAPE2+MAPE3+MAPE4+MAPE5+MAPE6+MAPE7)/7; 

RKAREORT=(R1KARE+R2KARE+R3KARE+R4KARE+R5KARE+R6KARE+R7KAR

E)/7; 

RMSEORT=(RMSE1+RMSE2+RMSE3+RMSE4+RMSE5+RMSE6+RMSE7)/7; 

save gdx28rnozet7; 

 

 

 

 

 

 

 

 



 

 

 

 

EK1c 

clc 

clear all 

load('C:\Users\veri.mat') 

input1=input1';target=target'; 

k=7; 

 

for i=1:k 

net{i} = feedforwardnet([8 8 8]); 

[trainInd,valInd,testInd] = dividerand(length(input1),0.7,0.15,0.15); 

net{i}.trainFcn='traingdx'; 

% net{i}.trainParam.epochs = 1000; 

% net{i}.trainParam.epochs = 500; 

net{i}.trainParam.epochs = 100; 

net{i}.trainParam.max_fail = 250; 

net{i}.trainParam.min_grad = 1e-7; 

%net{i}.trainParam.min_grad = 1e-6; 

%net{i}.trainParam.min_grad = 1e-5; 

net{i}.trainParam.mu= 0.001; 

% net{i}.trainParam.mu= 0.005; 

% net{i}.trainParam.mu= 0.01; 

% net{i}.trainParam.lr= 0.01; 

net{i}.trainParam.lr= 0.01; 

% net{i}.trainParam.lr= 0.1; 

net{i}.layers{1}.transferFcn = 'tansig'; 

[net{i},tr] = train(net{i},input1,target); 

save gdx38rnstdyokep100 

end 

 

sim1=sim(net{1},input1); 

sim2=sim(net{2},input1); 

sim3=sim(net{3},input1); 

sim4=sim(net{4},input1); 

sim5=sim(net{5},input1); 

sim6=sim(net{6},input1); 

sim7=sim(net{7},input1); 

 

sim1=sim1'; 

sim2=sim2'; 

sim3=sim3'; 

sim4=sim4'; 

sim5=sim5'; 

sim6=sim6'; 

sim7=sim7'; 

 

a1=target-sim1'; 

c1=abs(a1./(target)); 

MAPE1=mean(c1); 

ymape1=100*MAPE1; 



 

 

 

 

a1=a1.^2; 

mse1=mean(a1); 

RMSE1=sqrt(mse1); 

R1=corr(target',sim1); 

R1KARE=R1^2; 

save gdx38rnstdyokep1001; 

 

a2=target-sim2'; 

c2=abs(a2./(target)); 

MAPE2=mean(c2); 

ymape2=100*MAPE2; 

a2=a2.^2; 

mse2=mean(a2); 

RMSE2=sqrt(mse2); 

R2=corr(target',sim2); 

R2KARE=R2^2; 

save gdx38rnstdyokep1002; 

 

a3=target-sim3'; 

c3=abs(a3./(target)); 

MAPE3=mean(c3); 

ymape3=100*MAPE3; 

a3=a3.^2; 

mse3=mean(a3); 

RMSE3=sqrt(mse3); 

R3=corr(target',sim3); 

R3KARE=R3^2; 

save gdx38rnstdyokep1003; 

 

a4=target-sim4'; 

c4=abs(a4./(target)); 

MAPE4=mean(c4); 

ymape4=100*MAPE4; 

a4=a4.^2; 

mse4=mean(a4); 

RMSE4=sqrt(mse4); 

R4=corr(target',sim4); 

R4KARE=R4^2; 

save gdx38rnstdyokep1004; 

 

a5=target-sim5'; 

c5=abs(a5./(target)); 

MAPE5=mean(c5); 

ymape5=100*MAPE5; 

a5=a5.^2; 

mse5=mean(a5); 

RMSE5=sqrt(mse5); 

R5=corr(target',sim5); 

R5KARE=R5^2; 



 

 

 

 

save gdx38rnstdyokep1005; 

 

a6=target-sim6'; 

c6=abs(a6./(target)); 

MAPE6=mean(c6); 

ymape6=100*MAPE6; 

a6=a6.^2; 

mse6=mean(a6); 

RMSE6=sqrt(mse6); 

R6=corr(target',sim6); 

R6KARE=R6^2; 

save gdx38rnstdyokep1006; 

 

a7=target-sim7'; 

c7=abs(a7./(target)); 

MAPE7=mean(c7); 

ymape7=100*MAPE7; 

a7=a7.^2; 

mse7=mean(a7); 

RMSE7=sqrt(mse7); 

R7=corr(target',sim7); 

R7KARE=R7^2; 

 

MAPEORT=(MAPE1+MAPE2+MAPE3+MAPE4+MAPE5+MAPE6+MAPE7)/7; 

RKAREORT=(R1KARE+R2KARE+R3KARE+R4KARE+R5KARE+R6KARE+R7KAR

E)/7; 

RMSEORT=(RMSE1+RMSE2+RMSE3+RMSE4+RMSE5+RMSE6+RMSE7)/7; 

save gdx38rnstdyokep1007 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

 

EK 1d 

clc 

clear all 

load('C:\Users\veri.mat') 

input1=input1';target=target'; 

[input1n,meaninput1,stdinput1,targetn,meantarget,stdtarget] = prestd(input1,target); 

k=7; 

input1n=input1n';targetn=targetn'; 

for i=1:k 

net{i} = feedforwardnet([8 8 8]); 

[trainInd,valInd,testInd] = dividerand(length(input1n),0.7,0.15,0.15); 

net{i}.trainFcn='traingdx'; 

% net{i}.trainParam.epochs = 1000; 

% net{i}.trainParam.epochs = 500; 

net{i}.trainParam.epochs = 100; 

net{i}.trainParam.max_fail = 250; 

net{i}.trainParam.min_grad = 1e-7; 

% net{i}.trainParam.min_grad = 1e-6; 

% net{i}.trainParam.min_grad = 1e-5; 

net{i}.trainParam.mu= 0.001; 

% net{i}.trainParam.mu= 0.005; 

% net{i}.trainParam.mu= 0.01; 

net{i}.trainParam.lr= 0.01; 

% net{i}.trainParam.lr= 0.05; 

% net{i}.trainParam.lr= 0.1; 

net{i}.layers{1}.transferFcn = 'tansig'; 

[net{i},tr] = train(net{i},input1n',targetn'); 

save gdx38rnep100 

end 

 

sim1=sim(net{1},input1n'); 

sim2=sim(net{2},input1n'); 

sim3=sim(net{3},input1n'); 

sim4=sim(net{4},input1n'); 

sim5=sim(net{5},input1n'); 

sim6=sim(net{6},input1n'); 

sim7=sim(net{7},input1n'); 

 

sim1=stdtarget*sim1 + meantarget; 

sim2=stdtarget*sim2 + meantarget; 

sim3=stdtarget*sim3 + meantarget; 

sim4=stdtarget*sim4 + meantarget; 

sim5=stdtarget*sim5 + meantarget; 

sim6=stdtarget*sim6 + meantarget; 

sim7=stdtarget*sim7 + meantarget; 

 

sim1=sim1'; 

sim2=sim2'; 

sim3=sim3'; 



 

 

 

 

sim4=sim4'; 

sim5=sim5'; 

sim6=sim6'; 

sim7=sim7'; 

 

a1=target-sim1'; 

c1=abs(a1./(target)); 

MAPE1=mean(c1); 

ymape1=100*MAPE1; 

a1=a1.^2; 

mse1=mean(a1); 

RMSE1=sqrt(mse1); 

R1=corr(target',sim1); 

R1KARE=R1^2; 

save gdx38rnep1001; 

 

a2=target-sim2'; 

c2=abs(a2./(target)); 

MAPE2=mean(c2); 

ymape2=100*MAPE2; 

a2=a2.^2; 

mse2=mean(a2); 

RMSE2=sqrt(mse2); 

R2=corr(target',sim2); 

R2KARE=R2^2; 

save gdx38rnep1002; 

 

a3=target-sim3'; 

c3=abs(a3./(target)); 

MAPE3=mean(c3); 

ymape3=100*MAPE3; 

a3=a3.^2; 

mse3=mean(a3); 

RMSE3=sqrt(mse3); 

R3=corr(target',sim3); 

R3KARE=R3^2; 

save gdx38rnep1003; 

 

a4=target-sim4'; 

c4=abs(a4./(target)); 

MAPE4=mean(c4); 

ymape4=100*MAPE4; 

a4=a4.^2; 

mse4=mean(a4); 

RMSE4=sqrt(mse4); 

R4=corr(target',sim4); 

R4KARE=R4^2; 

save gdx38rnep1004; 

 



 

 

 

 

a5=target-sim5'; 

c5=abs(a5./(target)); 

MAPE5=mean(c5); 

ymape5=100*MAPE5; 

a5=a5.^2; 

mse5=mean(a5); 

RMSE5=sqrt(mse5); 

R5=corr(target',sim5); 

R5KARE=R5^2; 

save gdx38rnep1005; 

 

a6=target-sim6'; 

c6=abs(a6./(target)); 

MAPE6=mean(c6); 

ymape6=100*MAPE6; 

a6=a6.^2; 

mse6=mean(a6); 

RMSE6=sqrt(mse6); 

R6=corr(target',sim6); 

R6KARE=R6^2; 

save gdx38rnep1006; 

 

a7=target-sim7'; 

c7=abs(a7./(target)); 

MAPE7=mean(c7); 

ymape7=100*MAPE7; 

a7=a7.^2; 

mse7=mean(a7); 

RMSE7=sqrt(mse7); 

R7=corr(target',sim7); 

R7KARE=R7^2; 

 

MAPEORT=(MAPE1+MAPE2+MAPE3+MAPE4+MAPE5+MAPE6+MAPE7)/7; 

RKAREORT=(R1KARE+R2KARE+R3KARE+R4KARE+R5KARE+R6KARE+R7KAR

E)/7; 

RMSEORT=(RMSE1+RMSE2+RMSE3+RMSE4+RMSE5+RMSE6+RMSE7)/7; 

save gdx38rnep1007; 
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EK 2a 

Çapraz Doğrulama ile verinin ayrıldığı durumdaki eğitimler sonucu en düşük MAPE değerlerinin dikkate alındığı özet tablo. 

PARAMETRELER 

ALGORİTMALAR 

Levenberg Marquardt Bayesian Regulation GDX 

N
o

rm
a

li
za

sy
o

n
 v

a
r 

MU λ GD Döngü KS NS MAPE 

(%) 

RMSE 

(Kg) 

R2 KS NS MAPE 

(%) 

RMSE 

(Kg) 

R2 KS NS MAPE 

(%) 

RMSE 

(Kg) 

R2 

0.001 0.01 10-7 1000 1 3 5.25 39.90 0.9153 1 8 5.07 37.65 0.9268 1 3 5.10 37.41 0.9262 

0.005 0.01 10-7 1000 1 5 5.19 36.71 0.9274 2 8 5.05 37.33 0.9257 3 5 5.08 37.28 0.9294 

0.01 0.01 10-7 1000 1 8 5.12 36.52 0.9252 1 3 5.03 37.50 0.9272 2 8 5.09 37.59 0.9236 

0.001 0.05 10-7 1000 1 3 5.47 46.02 0.8987 3 3 4.98 37.21 0.9276 2 3 5.07 36.89 0.9253 

0.001 0.1 10-7 1000 3 3 5.29 38.97 0.9210 3 8 5.03 37.29 0.9238 1 8 4.96 36.79 0.9334 

0.001 0.01 10-6 1000 3 3 5.29 38.97 0.9210 1 3 5.03 37.50 0.9272 2 8 5.09 37.60 0.9236 

0.001 0.01 10-5 1000 3 3 5.29 38.97 0.9210 1 3 5.03 37.50 0.9272 2 8 5.09 37.59 0.9236 

0.001 0.01 10-7 500 3 3 5.16 37.86 0.9269 1 3 5.03 37.50 0.9272 1 5 5.23 38.64 0.9251 

0.001 0.01 10-7 100 3 3 5.04 36.94 0.9281 2 3 4.99 37.09 0.9270 3 8 5.79 44.13 0.9037 

N
o

rm
a

li
za

sy
o

n
 y

o
k

 

0.001 0.01 10-7 1000 1 5 4.95 36.74 0.9277 2 5 4.99 37.74 0.9241 3 3 5.06 37.01 0.9272 

0.005 0.01 10-7 1000 1 3 5.12 37.99 0.9255 1 5 5.00 36.81 0.9230 1 8 5.01 36.78 0.9259 

0.01 0.01 10-7 1000 2 3 5.12 38.05 0.9229 2 5 5.06 37.74 0.9253 1 3 4.96 37.50 0.9234 

0.001 0.05 10-7 1000 1 3 5.21 38.53 0.9234 1 3 5.03 37.50 0.9272 2 3 5.15 38.14 0.9245 

0.001 0.1 10-7 1000 1 3 5.20 37.79 0.9255 2 5 5.08 37.78 0.9252 2 8 5.14 37.87 0.9272 

0.001 0.01 10-6 1000 1 3 5.18 38.57 0.9290 1 5 5.10 37.95 0.9234 1 8 5.28 39.58 0.9141 

0.001 0.01 10-5 1000 1 3 5.21 38.53 0.9234 2 3 5.07 37.84 0.9290 1 8 5.05 36.99 0.9263 

0.001 0.01 10-7 500 1 3 5.12 38.57 0.9193 2 8 5.04 37.57 0.9220 1 8 5.20 38.38 0.9177 

0.001 0.01 10-7 100 1 5 4.85 35.19 0.9291 3 3 5.03 37.02 0.9219 1 3 6.42 47.85 0.8823 

-MU: Momentum güncelleme katsayısı (Momentum update) - λ : Öğrenme oranı (Learning rate) - GD: Minimum gradyan değeri - Döngü: Müsaade edilen en çok döngü 

sayısı (epoch) - KS: Katman sayısı (Hidden layer number) - NS: Nöron sayısı (Hidden layer neuron number) - MAPE: Ortalama mutlak hata yüzdesi (Mean absolute 

percentage error)- RMSE: Hata kareler ortalamasının karekökü (Root mean square error) - R2: Belirleme katsayısı (Coefficient of determination) 

 

  



 

 

 

 

EK 2b 

Çapraz doğrulama ile verinin ayrıldığı durumdaki eğitimler sonucu ortalama MAPE değerlerinin dikkate alındığı özet tablo. 

PARAMETRELER 
ALGORİTMALAR 

Levenberg Marquardt Bayesian Regulation GDX 

 MU λ GD Döngü MAPE 

(%) 

RMSE 

(Kg) 

R2 MAPE 

(%) 

RMSE 

(Kg) 

R2 MAPE 

(%) 

RMSE 

(Kg) 

R2 

N
o

rm
a

li
za

sy
o

n
 v

a
r 

0.001 0.01 10-7 1000 77.07 872.58 0.6747 5.11 41.22 0.8949 5.31 38.74 0.9220 

0.005 0.01 10-7 1000 12.78 182.36 0.6800 5.38 39.22 0.9098 5.34 39.11 0.9193 

0.01 0.01 10-7 1000 16.70 315.00 0.7022 5.16 38.49 0.9245 5.29 38.74 0.9196 

0.001 0.05 10-7 1000 15.02 267.15 0.6527 5.09 37.76 0.9249 5.27 38.18 0.9223 

0.001 0.1 10-7 1000 15.23 264.52 0.6427 5.10 37.86 0.9253 5.36 38.82 0.9202 

0.001 0.01 10-6 1000 15.23 234.13 0.6427 5.37 39.28 0.9109 5.29 38.75 0.9196 

0.001 0.01 10-5 1000 15.24 264.90 0.6418 5.37 39.28 0.9109 5.29 38.74 0.9196 

0.001 0.01 10-7 500 11.80 179.76 0.6627 5.37 39.28 0.9109 5.49 40.18 0.9131 

0.001 0.01 10-7 100 6.00 52.12 0.8607 5.09 37.76 0.9245 6.55 48.12 0.8792 

N
o

rm
a

li
za

sy
o

n
 y

o
k

 

0.001 0.01 10-7 1000 13.60 202.69 0.6904 5.63 41.43 0.8927 5.52 40.12 0.9128 

0.005 0.01 10-7 1000 10.70 136.65 0.7019 5.40 39.83 0.9079 5.25 38.38 0.9201 

0.01 0.01 10-7 1000 13.76 229.56 0.7143 5.14 38.07 0.9230 5.41 39.40 0.9175 

0.001 0.05 10-7 1000 15.87 233.39 0.6949 5.37 39.27 0.9110 5.87 42.26 0.8998 

0.001 0.1 10-7 1000 11.88 162.01 0.6768 5.33 39.24 0.9084 5.51 40.20 0.9125 

0.001 0.01 10-6 1000 12.49 170.65 0.7269 5.41 39.89 0.9085 5.40 39.53 0.9188 

0.001 0.01 10-5 1000 11.38 181.25 0.6934 5.33 39.63 0.9071 5.23 38.32 0.9210 

0.001 0.01 10-7 500 8.84 82.86 0.7749 5.11 37.87 0.9242 5.49 40.90 0.9105 

0.001 0.01 10-7 100 5.92 52.01 0.8754 5.34 39.34 0.9102 7.69 55.18 0.8427 

-MU: Momentum güncelleme katsayısı (Momentum update) - λ : Öğrenme oranı (Learning rate) - GD: Minimum gradyan değeri - Döngü: 

Müsaade edilen en çok döngü sayısı (epoch) - KS: Katman sayısı (Hidden layer number) - NS: Nöron sayısı (Hidden layer neuron number) - 

MAPE: Ortalam mutlak hata yüzdesi (Mean absolute percentage error) - RMSE: Hata kareler ortalamasının karekökü (Root mean square 

error) - R2: Belirleme katsayısı (coefficient of determination) 

  



 

 

 

 

EK 2c 

Çapraz Doğrulama ile verinin ayrıldığı durumdaki eğitimler sonucu süreler ve en iyi döngü sayılarına ait özet tablo. 

PARAMETRELER 
Levenberg 

Marquardt 

Bayesian 

Regulation 
GDX 

N
o

rm
a

li
za

sy
o

n
 v

a
r 

MU λ GD Döngü Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

0.001 0.01 10-7 1000 8.8987 897 3.6364 279 0.9401 999 

0.005 0.01 10-7 1000 9.2079 1000 6.0441 580 0.8166 999 

0.01 0.01 10-7 1000 8.4380 893 5.3727 464 0.8120 999 

0.001 0.05 10-7 1000 8.5701 811 2.9456 340 0.8180 996 

0.001 0.1 10-7 1000 7.6313 811 4.7597 441 0.8262 999 

0.001 0.01 10-6 1000 7.8981 807 4.4454 426 0.8319 999 

0.001 0.01 10-5 1000 6.9882 741 4.5156 426 0.8150 999 

0.001 0.01 10-7 500 3.8220 423 3.2193 325 0.4757 498 

0.001 0.01 10-7 100 0.8569 98 0.9350 99 0.1158 98 

N
o

rm
a

li
za

sy
o

n
 y

o
k

 

0.001 0.01 10-7 1000 8.3894 909 4.8452 417 0.8349 1000 

0.005 0.01 10-7 1000 9.3480 896 2.1043 179 0.8990 998 

0.01 0.01 10-7 1000 8.0507 898 4.1670 405 0.8522 999 

0.001 0.05 10-7 1000 9.7999 1000 5.1930 420 0.8853 997 

0.001 0.1 10-7 1000 7.1744 792 2.6207 269 1.0138 998 

0.001 0.01 10-6 1000 8.5497 1000 3.8328 351 0.8776 1000 

0.001 0.01 10-5 1000 11.0658 1000 2.3748 230 0.9024 998 

0.001 0.01 10-7 500 3.7660 445 2.6171 246 0.4561 497 

0.001 0.01 10-7 100 0.7498 100 0.9212 100 0.1348 100 

-MU: Momentum güncelleme katsayısı (Momentum update) - λ : Öğrenme oranı (Learning rate) -Gd: 

Minimum gradyan değeri - Döngü: Müsaade edilen en çok döngü sayısı (epoch) -Süre: Eğitimde geçen 

süre – EDS: Eğitimin durdurulduğu en iyi döngü sayısı (best epoch) 
 

  



 

 

 

 

EK 3a 

Rastgele olarak verilerin ayrıldığı durumdaki eğitimler sonucu en düşük MAPE değerlerinin dikkate alındığı özet tablo. 

PARAMETRELER 

ALGORİTMALAR 

Levenberg Marquardt Bayesian Regulation GDX 

N
o

rm
a

li
za

sy
o

n
 v

a
r 

MU λ GD Döngü KS NS MAPE 

(%) 

RMSE 

(Kg) 

R2 KS NS MAPE 

(%) 

RMSE 

(Kg) 

R2 KS NS MAPE 

(%) 

RMSE 

(Kg) 

R2 

0.001 0.01 10-7 1000 2 8 4.58 34.01 0.9385 3 3 4.75 34.72 0.9355 2 8 4.88 36.29 0.9309 

0.005 0.01 10-7 1000 2 5 4.64 33.90 0.9389 3 3 4.77 35.33 0.9334 3 8 4.90 35.95 0.9313 

0.01 0.01 10-7 1000 3 8 4.56 33.81 0.9399 3 5 4.80 36.53 0.9289 1 3 5.08 38.34 0.9224 

0.001 0.05 10-7 1000 3 5 4.59 33.89 0.9388 3 3 4.85 36.06 0.9306 3 8 5.01 36.60 0.9292 

0.001 0.1 10-7 1000 1 8 4.58 33.52 0.9402 3 8 4.78 35.38 0.9331 2 3 4.97 36.90 0.9277 

0.001 0.01 10-6 1000 2 5 4.60 34.50 0.9372 3 3 4.84 36.01 0.9307 3 8 4.90 35.95 0.9313 

0.001 0.01 10-5 1000 2 5 4.60 34.50 0.9372 3 3 4.76 35.17 0.9339 2 8 5.04 37.03 0.9269 

0.001 0.01 10-7 500 2 8 4.56 33.79 0.9393 3 5 4.82 35.93 0.9310 1 3 5.19 38.50 0.9220 

0.001 0.01 10-7 100 2 5 4.58 33.57 0.9401 3 3 4.72 35.02 0.9345 3 8 5.43 39.56 0.9168 

N
o

rm
a

li
za

sy
o

n
 y

o
k

 

0.001 0.01 10-7 1000 1 8 4.66 34.65 0.9372 3 5 4.77 35.76 0.9318 2 8 4.88 36.06 0.9309 

0.005 0.01 10-7 1000 2 5 4.60 33.89 0.9391 2 3 4.90 36.39 0.9294 1 3 4.99 37.01 0.9273 

0.01 0.01 10-7 1000 1 8 4.67 34.31 0.9374 3 3 4.84 36.07 0.9305 2 5 5.04 37.32 0.9263 

0.001 0.05 10-7 1000 1 8 4.72 34.80 0.9355 3 3 4.84 36.01 0.9307 2 8 4.99 36.40 0.9296 

0.001 0.1 10-7 1000 1 8 4.72 34.80 0.9355 3 3 4.84 36.01 0.9307 3 8 5.09 36.95 0.9284 

0.001 0.01 10-6 1000 2 8 4.56 34.21 0.9377 3 5 4.83 35.94 0.9310 1 8 4.98 36.42 0.9302 

0.001 0.01 10-5 1000 3 5 4.60 34.03 0.9386 3 8 4.70 34.85 0.9351 2 8 4.89 36.25 0.9311 

0.001 0.01 10-7 500 1 8 4.72 34.80 0.9355 3 3 4.84 36.01 0.9307 1 3 5.23 38.70 0.9213 

0.001 0.01 10-7 100 3 5 4.62 34.21 0.9379 2 5 4.82 35.63 0.9323 1 3 6.64 49.45 0.8671 

-MU: Momentum güncelleme katsayısı (Momentum update) - λ : Öğrenme oranı (Learning rate) - GD: Minimum gradyan değeri - Döngü: Müsaade edilen en çok döngü 

sayısı (epoch) - KS: Katman sayısı (Hidden layer number) - NS: Nöron sayısı (Hidden layer neuron number) - MAPE: Ortalam mutlak hata yüzdesi (Mean absolute 

percentage error) - RMSE: Hata kareler ortalamasının karekökü (Root mean square error) - R2: Belirleme katsayısı (coefficient of determination) 
  



 

 

 

 

EK 3b 

Rastgele olarak verilerin ayrıldığı durumdaki eğitimler sonucu ortalama MAPE değerlerinin dikkate alındığı özet tablo. 

PARAMETRELER 

ALGORİTMALAR 

Levenberg Marquardt Bayesian Regulation GDX 

 MU λ GD Döngü MAPE 

(%) 

RMSE 

(Kg) 

R2 MAPE 

(%) 

RMSE 

(Kg) 

R2 MAPE 

(%) 

RMSE 

(Kg) 

R2 

N
o

rm
a

li
za

sy
o

n
 v

a
r 

0.001 0.01 10-7 1000 4.75 34.97 0.9352 5.14 37.96 0.9147 5.19 38.51 0.9218 

0.005 0.01 10-7 1000 4.79 35.61 0.9331 4.89 35.99 0.9295 5.16 37.86 0.9241 

0.01 0.01 10-7 1000 4.79 35.68 0.9318 4.90 36.53 0.9289 5.23 38.50 0.9215 

0.001 0.05 10-7 1000 4.74 34.91 0.9352 4.91 36.57 0.9287 5.30 39.02 0.9193 

0.001 0.1 10-7 1000 4.78 35.85 0.9314 4.90 36.48 0.9290 5.18 37.97 0.9234 

0.001 0.01 10-6 1000 4.79 35.51 0.9335 5.13 37.93 0.9148 5.16 37.86 0.9241 

0.001 0.01 10-5 1000 4.79 35.52 0.9335 4.87 36.34 0.9296 5.21 38.26 0.9222 

0.001 0.01 10-7 500 4.75 36.03 0.9309 5.16 38.20 0.9138 5.41 40.02 0.9149 

0.001 0.01 10-7 100 4.74 34.84 0.9358 4.90 36.51 0.9289 6.20 45.79 0.8866 

N
o

rm
a

li
za

sy
o

n
 y

o
k

 

0.001 0.01 10-7 1000 4.82 36.30 0.9303 5.16 38.18 0.9139 5.41 39.59 0.9113 

0.005 0.01 10-7 1000 5.16 38.09 0.9115 4.90 36.42 0.9292 5.82 42.06 0.8895 

0.01 0.01 10-7 1000 4.81 35.68 0.9330 5.14 38.06 0.9144 5.58 40.53 0.9025 

0.001 0.05 10-7 1000 4.82 35.69 0.9329 5.40 39.60 0.8998 5.86 42.50 0.8917 

0.001 0.1 10-7 1000 4.82 35.69 0.9329 5.40 39.60 0.8998 5.46 39.98 0.9118 

0.001 0.01 10-6 1000 4.82 35.90 0.9317 4.91 36.52 0.9289 5.40 39.46 0.9110 

0.001 0.01 10-5 1000 4.78 35.29 0.9340 4.87 36.09 0.9305 5.19 38.42 0.9218 

0.001 0.01 10-7 500 4.82 35.69 0.9329 5.40 39.60 0.8998 5.78 42.04 0.8978 

0.001 0.01 10-7 100 5.08 37.39 0.9208 5.16 38.09 0.9142 7.39 54.38 0.8374 

 

-MU: Momentum güncelleme katsayısı (Momentum update) - λ : Öğrenme oranı (Learning rate) - GD: Minimum gradyan değeri - Döngü: 

Müsaade edilen en çok döngü sayısı (epoch) - KS: Katman sayısı (Hidden layer number) - NS: Nöron sayısı (Hidden layer neuron number) - 

MAPE: Ortalam mutlak hata yüzdesi (Mean absolute percentage error) - RMSE: Hata kareler ortalamasının karekökü (Root mean square 

error) - R2: Belirleme katsayısı (coefficient of determination) 

  



 

 

 

 

EK 3c 

Rastgele olarak verilerin ayrıldığı durumdaki eğitimler sonucu süreler ve en iyi döngü sayılarına ait özet tablo. 

PARAMETRELER 
Levenberg 

Marquardt 

Bayesian 

Regulation 
GDX 

N
o

rm
a

li
za

sy
o

n
 v

a
r 

MU λ GD Döngü Süre(sn) EDS Süre(sn) EDS Süre(sn) EDS 

0.001 0.01 10-7 1000 2.2939 24 4.6270 450 0.7469 742 

0.005 0.01 10-7 1000 2.4613 17 3.2566 263 0.8351 803 

0.01 0.01 10-7 1000 2.3747 13 2.9846 291 0.6111 564 

0.001 0.05 10-7 1000 2.5437 24 4.3269 423 0.6939 615 

0.001 0.1 10-7 1000 2.4604 23 4.3233 347 0.7277 734 

0.001 0.01 10-6 1000 2.6382 26 4.9048 438 0.7692 803 

0.001 0.01 10-5 1000 2.5558 26 5.0294 472 0.6672 607 

0.001 0.01 10-7 500 2.7510 25 4.4080 407 0.4814 429 

0.001 0.01 10-7 100 0.8720 20 0.9680 100 0.1169 98 

N
o

rm
a

li
za

sy
o

n
 y

o
k

 

0.001 0.01 10-7 1000 2.6566 48 3.7874 411 0.7910 847 

0.005 0.01 10-7 1000 2.7726 50 3.6541 309 0.7666 570 

0.01 0.01 10-7 1000 2.7396 16 3.7817 341 0.7389 733 

0.001 0.05 10-7 1000 2.5432 16 4.8633 437 0.7254 660 

0.001 0.1 10-7 1000 2.3927 16 4.6157 437 0.7301 751 

0.001 0.01 10-6 1000 2.4652 34 5.2132 467 0.6827 644 

0.001 0.01 10-5 1000 3.3928 12 3.3683 316 0.8732 868 

0.001 0.01 10-7 500 2.4907 16 3.1258 297 0.4783 432 

0.001 0.01 10-7 100 0.8867 29 1.0192 98 0.1246 98 

-MU: Momentum güncelleme katsayısı (Momentum update) - λ : Öğrenme oranı (Learning rate) -GD: 

Minimum gradyan değeri -Döngü: Müsaade edilen en çok döngü sayısı (epoch) -Süre: Eğitimde geçen 

süre – EDS: Eğitimin durdurulduğu en iyi döngü sayısı (best epoch)
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EK-4 

Yapay sinir ağlarında yapılan bütün eğitimlere ait MAPE değerleri bakımından karşılaştırmalar için CHAID analizi bulguları.

 
  



 

 

 

 

EK 5a 

Çapraz doğrulama ile veri ayırma durumunda MAPE değerleri bakımından karşılaştırmalara ait CHAID analizi bulguları

 



 

 

 

 

 

EK 5b 

Çapraz doğrulama ile veri ayırma durumunda eğitimde geçen süreler bakımından karşılaştırmalara ait CHAID analizi bulguları 

 

 



 

 

 

 

EK 5c 

Çapraz doğrulama ile veri ayırma durumunda en iyi döngü sayıları bakımından karşılaştırmalara ait CHAID analizi bulguları 

 

 



 

 

 

 

EK 6a 

Verilerin rastgele olarak %70 eğitim %15 test %15 doğrulama setine ayrıldığı durumda MAPE değerlerine ait karşılaştırmalar için CHAID analizi bulguları 

 



 

 

 

 

EK 6b 

Verilerin rastgele olarak %70 eğitim %15 test %15 doğrulama setine ayrıldığı durumda RMSE değerlerine ait karşılaştırmalar için CHAID analizi bulguları 

 



 

 

 

 

EK 6c 

Verilerin rastgele olarak %70 eğitim %15 test %15 doğrulama setine ayrıldığı durumda R2 değerleri bakımından karşılaştırmalar için CHAID analizi bulguları 

 



 

 

 

 

EK 6d 

Verilerin rastgele olarak %70 eğitim %15 test %15 doğrulama setine ayrıldığı durumda süreler bakımından karşılaştırmalara ait CHAID analizi bulguları 

 



 

 

 

 

EK 6e 

Verilerin rastgele olarak %70 eğitim %15 test %15 doğrulama setine ayrıldığı durumda en iyi döngü sayıları bakımından karşılatırmalara ait CHAID analizi bulguları 

 

 

  



 

 

 

 

EK 7a 

Salford Predictive Modeler Programı Çok Değişkenli Uyarlanabilir Regresyon Eğrileri Analiz Sonucu. 

 



 

 

 

 

EK 7b 

Salford Predictive Modeler Programı Çok Değişkenli Uyarlanabilir Regresyon Eğrileri Analizi Temel Fonksiyonlar Çıktısı.
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