

A CROSS-LAYER INTRUSION DETECTION SYSTEM FOR
RPL-BASED INTERNET OF THINGS

RPL TABANLI NESNELERIN INTERNETI ICIN
KATMANLAR ARASI SALDIRI TESPIT SISTEMI

ERDEM CANBALABAN

ASSOC. PROF. SEVIL SEN

Supervisor

Submitted to
Graduate School of Science and Engineering of Hacettepe University
as a Partial Fulfillment to the Requirements
for the Award of the Degree of Master of Science

in Computer Engineering

2020

ETHICS

In this thesis study, prepared in accordance with the spelling rules of the Institute of Graduate
School of Science and Engineering of Hacettepe University,

I declare that
e all the information and documents have been obtained on the basis of the academic
rules

e all audio-visual and written information and results have been presented according to
the rules of scientific ethics

e in the case of using others’ works, related studies have been cited in accordance with
the scientific standards

e all cited studies have been fully referenced
e no distortion was applied to the data set

e no part of this thesis has been presented as another thesis study at Hacettepe University
or at any other university.

06/14/2020

ECabV

ERDEM CANBALABAN

YAYINLAMA VE FIKRI MULKIYET HAKLARI BEYANI

Enstitii tarafindan onaylanan lisansiistii tezimin/raporumun tamamini veya herhangi bir kis-
muni, basili (kagit) ve elektronik formatta arsivleme ve asagida verilen kosullarla kullanima
acma iznini Hacettepe {iniversitesine verdigimi bildiririm. Bu izinle Universiteye verilen
kullanim haklar1 disindaki tiim fikri miilkiyet haklarim bende kalacak, tezimin tamaminin
ya da bir boliimiiniin gelecekteki ¢alismalarda (makale, kitap, lisans ve patent vb.) kullanim

haklar1 bana ait olacaktir.

Tezin kendi orijinal ¢caligmam oldugunu, bagkalarinin haklarim ihlal etmedigimi ve tezimin
tek yetkili sahibi oldugumu beyan ve taahhiit ederim. Tezimde yer alan telif hakki bulunan
ve sahiplerinden yazili izin alinarak kullanmasi zorunlu metinlerin yazili izin alarak kul-

landigimu ve istenildiginde suretlerini Universiteye teslim etmeyi taahhiit ederim.

Yiiksekogretim Kurulu tarafindan yayinlanan Lisansiistii Tezlerin Elektronik Ortamda Top-
lanmast, Diizenlenmesi ve Erigsime Acilmasina Iliskin Yonerge kapsaminda tezim asagida
belirtilen kogullar haricince YOK Ulusal Tez Merkezi / H. U. Kiitiiphaneleri Agik Erisim

Sisteminde erisime acilir.

0 Enstitii / Fakiilte yonetim kurulu karan ile tezimin erisime agilmas: mezuniyet tarihim-

den itibaren 2 yil ertelenmistir.

o Enstitii / Fakiilte yonetim kurulu gerekgeli karari ile tezimin erisime a¢ilmasi mezu-

niyet tarihimden itibaren ay ertelenmistir.

0 Tezim ile ilgili gizlilik karari verilmistir.

14/06/2020

ECom/

ERDEM CANBALABAN

OZET

RPL TABANLI NESNELERIN INTERNETI ICIN KATMANLAR
ARASI SALDIRI TESPIT SiSTEMI

Erdem CANBALABAN

Yiiksek Lisans, Bilgisayar Miihendisligi
Damisman: Doc. Dr. Sevil SEN
Haziran 2020, 82 sayfa

“Nesnelerin Interneti” (IoT), hem birbirine hem de Internet’e bagh kisitlanmis cihazlardan
olusan heterojen bir agdir. IoT nin 6nemi son yillarda 6nemli 6l¢giide arttig1 icin, bu alanda,
ozellikle bu tiir karmagik sistemlere uygun yeni mekanizmalar ve protokoller gelistirilmesi
konusunda bir¢ok arastirma yapilmaktadir. “Diisiik Gii¢ ve Kayipli Aglar i¢in IPv6 Yonlendirme
Protokolii” (RPL), IoT i¢in kabul edilen yonlendirme protokollerinden biridir. Birden cok
noktaya yonlendirme saglar ve temel olarak “cok noktadan tek noktaya” (MP2P) iletisimin
yam sira “noktadan noktaya” (P2P) ve “tek noktadan ¢ok noktaya” (P2MP) iletisimi de
destekler. Ancak, RPL, IoT icin onerilen bir¢ok protokolde oldugu gibi, ag giivenligi 6n
planda tutularak tasarlanmamistir. Bu nedenle literatiirde RPL'nin giivenligini saglamak
icin bazi ¢oziimler gelistirilmistir. Agdaki hareketleri izleyen ve izinsiz girisleri tespit eden
“Saldirt Tespit Sistemleri” (IDS’ler), bu tiir glivenlik sistemlerinin gerekli bir parcasi haline
gelmistir, ¢linkii 6nleme mekanizmalar1 tek basina yeterli degildir. Bu tez calismasinda, bu

tiir diisiik gii¢ kullanan kayipl aglar i¢in yeni bir IDS Onerilmistir.

0T, akillt evler, akilli araclar ve tibbi bakim gibi cesitli uygulama alanlarinda kullanilir ve
her bir uygulama farkli giivenlik gereksinimlerine ihtiya¢ duyar. IoT’deki cihazlar kayiph
iletisim aglari ile birbirine baglanir ve sinirli kaynaklarla baglantili oldugundan saldirilara
aciktirlar. Ayrica, bu tiir cihazlarin iletisimi RPL tarafindan saglandigindan, i¢ saldirganlarin
hedefi haline gelebilirler. Bu tez ¢alismasinda, RPL’ye yonelik versiyon numarasi saldirisi,
en kotii ebeveyn saldirist ve merhaba sel saldiris1 gibi RPL’e 6zgii saldirilar detaylica analiz
edilmigtir. Ayrica bu tiir saldirilar tespit etmek icin yapay sinir ag1 tabanl bir saldir tespit
sistemi Onerilmistir. Bu asamada yonlendirme ve baglanti katmanindan alinan 6zniteliklerin
etkileri arastirllmis ve hem ikili simiflandirma hem de c¢oklu siiflandirma uygulanmistir.
Onerilen sistem daha sonra farkli saldiri yiizdeleri (%2, %6, %10 ve %?20) kullanilarak da
degerlendirilmistir. Calismanin sonuglari, dnerilen sistemin ikili simiflandirma i¢in %96,88
tespit orani, %0,13 yanlig pozitif oran1 ve ¢oklu siniflandirma i¢in %97,52 dogruluk orani
ile saldirilar1 etkili bir sekilde tespit edebildigini gostermistir. Daha spesifik olarak, tespit
oraninin versiyon numarasi saldiris i¢in % 93,2, en kotii ebeveyn saldirisi i¢in % 98,17 ve
merhaba sel saldirist i¢cin %99,96 oldugu gosterilmistir. Ayrica, yapay sinir ag1 egitiminde
baglant1 katmaniyla ilgili 6zniteliklerin kullanilmasiyla, yanlis pozitif oranin %0.61’den %
0.13’e diistiigli gosterilmistir. Baglanti katmaninindan alinan 6zniteliklerin olumlu etkisi
ozellikle versiyon numarasi saldirisinin tespitinde gozlenmigtir. Bildigimiz kadariyla, bu

caligma literatiirdeki ilk katmanlar aras1 saldir1 tespit sistemini sunmaktadir.

Anahtar Kelimeler: Nesnelerin Interneti, Saldir Tespiti, Yonlendirme Saldirilari, RPL,

Yapay Sinir Aglari

ii

ABSTRACT

A CROSS-LAYER INTRUSION DETECTION SYSTEM FOR
RPL-BASED INTERNET OF THINGS

Erdem CANBALABAN

Master of Science, Computer Engineering Department
Supervisor: Assoc. Prof. Sevil SEN
June 2020, 82 pages

The “Internet of Things” (IoT) is a heterogeneous network of constrained devices connected
both to each other and to the Internet. Since the significance of the IoT has risen remarkably
in recent years, a considerable amount of research has been conducted in this area, and
especially on, new mechanisms and protocols suited to such complex systems. ‘“Routing
Procotol for Low-Power and Lossy Networks” (RPL) is one of the accepted routing protocols
for the IoT. It provides for multi-hop routing and is mainly proposed for “multipoint-to-
point” (MP2P) communication as well as supporting “point-to-point” (P2P) and “point-to-
multipoint” (P2MP) communication. However RPL, as with many protocols proposed for
the IoT, was not purposefully designed with security in mind;hence, certain solutions for
securing RPL have been developed in the literature. Intrusion detection systems known as
IDSs, which monitor activities in systems and detect intrusions, have become an inevitable
part of such security systems, since prevention mechanisms alone are never enough. In this

thesis study, a new IDS is proposed for these types of low-power and lossy networks.

iii

http://cs.hacettepe.edu.tr

The IoT exists in a variety of fields such as smart homes, medical care and smart vehicles
and with each having different security requirements. Devices in the IoT are interconnected
to each other over lossy communication links, but with limited resources, they are also sus-
ceptible to attacks. Moreover, since the communication of such devices is provided by RPL,
the protocol could also be targeted by internal attackers. In this thesis study, specific attacks
against RPL, namely “version number attack”, “worst parent attack™ and “hello flood attack™
were deeply analyzed. Then, an IDS based on neural networks was proposed in order to de-
tect such attacks. Here, the effects of features taken both from the routing layer and the link
layer, were explored, and both binary classification and multi-class classification applied.
The proposed system was then evaluated on simulated networks using different percentages
of attackers (2%, 6%, 10%, 20%). The study’s results showed that the proposed system was
able to detect the attacks effectively with a 96.88% detection rate, a 0.13% false positive
rate for binary classification, and a 97.52% rate of accuracy for multi-class detection. More
specifically, the detection rate was shown to be 93.2% for “version number attack™, 98.17%
for “worst parent attack” and 99.96% for “hello flood attack”. Also, with the usage of fea-
tures related to the link layer in training, the false positive rate was shown to decrease from
0.61% to 0.13%. The positive effect of the link layer’s features was especially noted in the
detection of “version number attacks”. To the best of the author’s knowledge, this study

presents the first cross-layer IDS in the literature.

Keywords: Internet of Things, Intrusion Detection, Routing Attacks, RPL, Neural Networks

iv

ACKNOWLEDGEMENTS

First of all, I would like to express my gratitude to my supervisor, Assoc. Prof. Sevil Sen,
for her guidance, advice and criticism throughout the research. Her wisdom and support
motivated me and gave me a strength. Without her patience and understanding, completing

this thesis would have been almost impossible.

I would like to thank Wireless Networks and Intelligent Secure Systems Lab (WISE), espe-
cially Selim Yilmaz and Emre Aydogan, for their support and excellent advice that facilitates

progress throughout the thesis.

I am very grateful to my circle of friends who have been with me throughout my graduate
life and created such a cheerful environment: Aysel Akgemci, Sevil Caliskan, Negin Raz-
izadeh, Ece Biiber, Gonca Gencer, Baturay Ozel, Berkay Baykara, Barig C)ku§lar, Furkan
Dogramaci, Emek Barig Kiigiiktabak, Emre Yigit Alparslan, Nami Cagan Yiiksel, Hakan
Mert and Cenk Tiiysiiz.

I also thank Aselsan Inc. for supporting my graduate study, and my coworkers for encourag-

ing and motivating me throughout the preparation of this thesis.

I would like to share my deepest gratitude to Selin Sahin for her endless support, understand-

ing and encouragement throughout my study. I am very lucky to have you, thank you!

Last but not least, I would like to thank my parents, Seval and Metin Canbalaban, and my
big brother Ersin Canbalaban, for their endless love, trust and support in every step of my

life. My success wouldn’t have been possible, without their encouragement and love.

CONTENTS

[OZET] ... i
AB S R AT .. o 111
ACKNOWLEDGMENTS ... v
.. vi

SYMBOLS AND ABBREVIATIONS|

1. INTRODUCTIONL ettt et e et e e 1
2. BACKGROUNDYttt e 5
[2.1. Internet of Things|.........coociiiiiiiiiii e 5

2. 11 BLOWPAN. ..o e 6

vi

4.2. Proposed Neural-Network Based Intrusion Detection System|..............cccccenee 33

42.1. B I lection

[5.2. Analysis of Routing Attacks|.........cccooeiiiiiiiiiii 48
[5.2.1. Analysis of Network under No Attack|.................... i, 49
[5.2.2. Analysis of Network under Version Number Attack|....................... 51
[5.2.3. Analysis of Network under Worst Parent Attack|........................... 56
[5.2.4. Analysis of Network under Hello Flood Attack]............................ 59

vii

TABLES

Mable 2.1. Protocol stack in TOTN. .. .uuneineiit it 5
(Table 3.1. Outline of the related studies | ... 30
(Table 4.1. FEATUIES|. e ettt 34
[Table 5.1. Cooja simulation parameters|...........uveeiiiieetiine i eiineeeannn. 45
(Iable 5.2. Number of attackers in Version Number Attack| 52
(Table 5.3. Number of attackers in Worst Parent Attacklo... 57
(lable 5.4. Number of attackers in Hello Flood Attackl 60
[Table 5.5. Performance of IDS with binary classification|............................ 66
[Table 5.6. Detection rate and FPR for binary classification| 66
(Hable 5.7. Performance of IDS based on attacker class|............................... 67
(Table 5.8. Pertformance of IDS with Version Number Attack (VNA)|................ 67
(Iable 5.9. Performance of IDS with Worst Parent Attack |............................ 68
(Table 5.10. Performance of IDS with Hello Flood Attack|............................. 63
(Table 5.11. Performance of IDS with binary classification|............................ 68
[Table 5.12. Detection rate and FPR for binary classification varying link-layer fea- [
[0D ST 69
[Table 5.13. Performance of IDS with attacker classes varying link-layer features| ... 69

le 5.14 Performance of IDS with multicl lassificationl...................oel 70
(Iable 5.15. Confusion matrix for multiclass classification| 70

viii

FIGURES

[Figure 1.1. Number of devices connected i [oT |......................ooiiiiil. 2
[Figure 2.1. An loT network with [Pv6/RPL connected 6LoWPAN |................... 7
[Figure 2.2. Operation of a node in DODAG] ..., 10
[Figure 2.3. Classification of RPL attacks|...................o.. i 12
[Figure 2.4. Classification of intrusion detection Systems|..............ooeuivviennnn.... 15
[Figure 4.1. Proposed neural network architecture|oo.L. 40
[Figure 4.2. Activation functions and their dertvatives| ...t 41
[Figure 5.1. A sample sitmulated network|o 50
[Figure 5.2. PDR and E2E delay metrics of network without attack|.................... 51
[Figure 5.3. PDR for Version Number Attack - 1 min. variation|....................... 53
[Figure 5.4. E2E delay for Version Number Attack - I min. variation|................. 54
[Figure 5.5. PDR for Version Number Attack - 5 min. variation|....................... 55
[Figure 5.6. E2E delay for Version Number Attack - 5 min. variation|................. 56
[Figure 5.7. PDR for Worst Parent Attack |..................coiiiiiii 58
[Figure 5.8. E2E delay for Worst Parent Attack |...................o 59
[Figure 5.9. PDR for Hello Flood Attack|................ i, 61
[Figure 5.10. E2E delay for Hello Flood Attack |..................cooil. 62
[Figure 5.11. Accuracy of IDS with varying time interval duration|...................... 65

X

SYMBOLS AND ABBREVIATIONS

Abbreviations
6BR 6LOWPAN Border Router
6LoWPAN IPv6 over Low-Power Wireless Personal Area Network

ADAM ADAptive Moment Estimation Algorithm
CSMA Carrier Sense Multiple Access

CoAP Constrained Application Protocol

DAG Directed Acyclic Graph

DAO Destination Advertisement Object

DIO DODAG Information Object

DIS DODAG Information Solicitation

DODAG Destination Oriented Directed Acyclic Graph
DoS Denial-of-Service

ETX Expected Transmission Count

GUI Graphical User Interface

HFA Hello Flood Attack

IDS Intrusion Detection System

IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force

IoT Internet of Things

KDE Kernel Density Estimation

LLN Low-Power Lossy Networks

MAC Media Access Control

MANET Mobile Ad Hoc NETwork

MLP Multilayer Perceptron

MP2P MultiPoint to Point

MRHOF Minimum Rank with Hysteresis Objective Function
OF0 Objective Function Zero

Abbreviations

OSI
P2MP
P2P
PDR
ReLU
RFC
RPL
SVM
TPR
UuDP
VNA
WPA

Open System Interconnection
Point to MultiPoint

Point to Point

Packet Delivery Ratio
Rectified Linear Unit
Request For Comments
Routing Protocol for Low-Power and Lossy Networks
Support Vector Machine
True Positive Rate

User Datagram Protocol
Version Number Attack

Worst Parent Attack

X1

1. INTRODUCTION

With the development of technology, the usage of the Internet and smart devices has in-
creased with popularity on a seemingly daily basis. Advances in smart sensors, embedded
devices, and wireless communication technologies have led to the emergence of a new con-
cept known as the “Internet of Things” (IoT). With the introduction of the IoT, smart devices
which have low-levels of power and processing resources have become able to monitor,
sense, and collect information from the environment without need for human interaction.
This technology has been expanding exponentially, and now pervades many different areas
such as the smart grid, medical care, smart home appliances, smart vehicles, as well as au-
tomation in factories and in the area of logistics [1} 2]. According to research conducted by
Statista [3]], the number of devices exist in the IoT environment will exceed 50 billion by
2023 and 75 billion by 2025, as illustrated in Figure [I.T] This state of affairs and predictions

for the near future’s adds significant importance to the role of research based on the IoT.

The rapid growth of the IoT, however, has also raised certain concerns about security. Many
IoT applications collect large amounts of data from various devices, which presents a chal-
lenge for the protection of information. Moreover, most devices which connect to the Internet
for specific purposes have resource constraints related to power (i.e., they are battery pow-
ered), connectivity, and also of their physical size. IoT networks consist of a variety of de-
vices such as smart phones, wireless sensors, and wearable devices, and each with differences
in their computing and communication capabilities. This also presents a challenge in terms
of the development of complex security solutions. However, existing security solutions are
not suited to such heterogeneous and complex networks and, therefore, new solutions need

to be developed, or existing ones adapted in order to service this new environment.

Number of Devices Connected in loT

~
o
L

=]
(=]
L

51.11

w
(=]
L

42.62

35.82
30.73
310 2666
1768 23° =
1 1541 ll \

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
Year

Connected Devices in billions
NOow b
o (=) o

. 1

=
o
L

(=]

Figure 1.1. Number of devices connected in [oT

The traditional protocols for communication are also not suited to devices with limited re-
sources in the IoT. In order to resolve this problem, new types of protocols, which are both
less complex and consume less power, have been introduced for the 10T in the literature. The
Internet Protocol, known as IPv6 is not suited to IoT networks. Therefore, 6LoOWPAN was
developed as an adaptation layer between the link layer and network layer for the IoT, and
is a form of wireless network that sends packets and uses IPv6 over low power wireless per-
sonal area networks. 6LoWPAN, therefore, provides a communication environment among
devices in the IoT and also the opportunity to access the Internet using border router. With
the introduction of 6LoWPAN, devices which have constrained resources related to mem-
ory, battery power and computational power can be connected to the Internet by way of this
simplified IPv6 structure. The protocol allows devices to perform their operations even if
the scale of the network is considered to be large. The RPL was proposed by the IETF in
2012 [4]. The RPL was designed for the provision of efficient routing paths especially for
resource-constrained devices which use a lower bandwidth, and have lower computational
power and limited energy. The RPL protocol has the ability to adapt to changing network
conditions, and can thereby provide alternative routes should an existing path become no
longer available. However, even as one of the accepted protocols in the literature, it was
not fully designed with security in mind. Therefore, considering that devices in the network

have limited resources and the communication links are lossy, the RPL routing protocol may

become under serious attack, and which can further affect the entire network. However, ex-
isting “Intrusion Detection Systems” (IDSs) proposed for wired and wireless networks may
not be suitable for the IoT network, due to the complexity of IDSs as well as certain con-
straints of the devices themselves. It is therefore, important to understand the RPL routing
protocol and to analyze the potential security attacks it may face, and also their downstream
effects on the network. A need therefore exists to develop suitable security solutions for
RPL-based IoT networks in order to prevent such attacks, wherever possible, and to detect

and respond accordingly when these preventions fail.

This thesis study aimed to analyze specific attacks against RPL and to propose a solution
in order to detect them. In developing a suitable IDS for RPL, it is important to investigate
the behavior of networks under different types of attack. To obtain a detailed information
of specific attacks against RPL, this study simulated attacks on networks with varying traffic
patterns, with “version number attack”, “worst parent attack”, and “hello flood attack™. Then,
based on these analyzed attacks, an IDS based on neural networks was developed using both
binary classification and multiclass classification. The proposed method was then evaluated

on simulated networks with varying traffic patterns and attack types/attackers.

There are several studies that have analyzed attacks against RPL [S58]]. ; however, the major-
ity of these have been conducted with just a limited number of devices [, 8] . Realistically,
at least 25 or 30 devices are needed in order to see the multihop characteristics of RPL[9]].
Moreover, some of these studies have analyzed only a few attacks [5-8] , or more general
types of attack which could be applied to any type of network. There has been no detailed and
comprehensive study that covers attacks specifically against the RPL protocol. Therefore, in
the current study, three attack types specific to RPL, namely “version number attack™, “worst
parent attack”, and “hello flood attack™ were analyzed based on realistic scenarios. Accord-
ing to the attack analysis, both the version number attack and hello flood attack degraded
the network performance. In the version number attack, even if one attacker was used in
the topology, both PDR and E2E delay were dramatically affected. In the hello flood attack,
the network still continued to communicate with 60% “Packet Delivery Ratio” (PDR) for a
2% attacker density. However, in the cases based on 6%, 10%, and 20% attacker density, the
network became nonfunctional. According to the analytical results, the “worst parent attack”
was the least harmful in RPL, with RPL still operating for a 2% or 6% attacker density event,
and even where there was no attack. However, for 10% and 20% attacker density, both PDR

and E2E delay were negatively affected.

Intrusion detection systems have become inevitable parts of the modern security system.
In the literature, there are security solutions that have been developed for RPL-based IoT
networks, particularly intrusion detection systems, and which forms the main focus of this
thesis study. However most of these are not suited to resource-constrained networks[10].
Moreover, an IDS may need to process a large amount of data which could be the result of an
attack such as a DoS attack or due to the network condition itself. From this perspective, a
neural-network-based model could be a good candidate for dealing with these larger amounts
of data in order to find patterns as a means to distinguishing malicious network traffic from
benign traffic. Therefore, the current study investigated the use of neural networks in order to
detect attacks against RPL. There are few studies in the literature based on intrusion detection
in RPL-based IoT networks that have utilized deep learning techniques [11, [12] . However,
such studies have primarily focused on detecting a particular type of attack. In the current
study, both binary classification and multiclass classification were employed. If the type of
a detected attack is known, specific response mechanisms can be triggered in order to limit
the damage inflicted. Furthermore, this helps to decrease the manual analysis time required
following malicious behavior detection. Moreover, an extended feature set was employed in
this study, with features extracted from both the link layer and the network layer. Effects of
features collected from the link layer were explored first in this study, then a cross-layer IDS
was proposed and evaluated. According to the results, link-layer features showed the most
significant improvements on the detection of the version number attack type, and features

collected from the link layer were also shown to help decrease the false positive rate.

This thesis is organized as six chapters. Whilst Chapter One briefly introduces the thesis,
Chapter Two presents background information about the IoT and its fundamentals, RPL,
routing attacks taxonomy for RPL, and Intrusion Detection Systems for IoT. Chapter Three
then discusses other studies in the literature on attack analysis against RPL and on the de-
tection and mitigation of routing attacks. Chapter Four explains the routing attacks analyzed
by this study in detail, and also introduces the proposed method for attack detection, whilst
Chapter Five details the simulation environment and the created dataset, followed by the
experimental results that include routing attack analysis and the performance evaluation of
the proposed IDS. Chapter Six concludes the study by highlighting the important results and

outlining the study’s contribution to the literature, and the author’s future research plans.

2. BACKGROUND

This chapter provides background information related to the protocols used in the 10T such as
6LoWPAN and RPL. Existing routing attacks against RPL topology and IDSs for detecting

such attacks are then introduced, with IDSs then explored under different classifications.

2.1. Internet of Things

IoT is a network type that consists of objects or devices connected to the Internet or to each
other. These objects or devices communicate and share information with each other, gather
data from the environment, and are connected to each other by way of an IP protocol. IoT de-
vices can be a simple light bulb, a thermostat, or more complex devices such as a smartphone
or personal computer. In the IoT network, devices usually have limited resources with low
energy and low-rate wireless communications. The IETF designed a new communication
and security protocol that matched the constraints of the IoT network and supports certain
future uses. New standardized solutions work together with existing Internet standards, guar-
anteeing that [oT devices can communicate with other Internet entities without encountering

problems. The protocol stack created by the IETF is presented in Table [2.1]

Table 2.1. Protocol stack in IoT

OSI Layer | IoT protocol | Contiki Implementation

Application | CoAP CoAP
Transport UDP wlP
Network RPL ContikiRPL

Adaptation | 6LoWPAN SICSLoWPAN
Data Link | 802.15.4 MAC | ContikiMAC
Physical 802.15.4 PHY | Contiki 802.15.4

For the “physical” (PHY) layer and “media access control” (MAC) layer, low-rate commu-
nication is standardized and supported by IEEE 802.15.4 [13]]. The protocol sets the rules
for communications at the bottom of the protocol stack and provides the basis of 10T com-
munication protocols for higher layers. As an adaptation layer, 6LOWPAN uses IPv6 over

a low-power WPAN, with its structure and methods gathered mainly under three standards,

5

namely RFC (acronym for “Request For Comments™) 4919 [14], RFC 4944 [15]] and RFC
6282 [16] as defined by the IETF. These standards define in detail the packet architecture,
packet fragmentation and reassembly, and other functionalities of the protocol. The routing
mechanism for IoT environments is defined by the RPL [17], and can support various link
layers used in limited-resource devices. The protocol can create optimized network routes
and efficiently adapt the topology to the network. The “Constrained Application Protocol”
(CoAP) was designed as an Internet application protocol for constrained devices, with the de-
tails of the protocol defined in RFC 7252 [18]. CoAP was designed not only for use between
devices on low-power and lossy networks, but also for use between constrained devices and

general nodes of the Internet.

As previously mentioned, IoT networks contain numerous devices that vary based on their
resources and on the capability of the node itself. However, with these limitations, securing
the network presents a serious challenge. The devices in the IoT are vulnerable to both ex-
ternal and internal attackers, originating either from the Internet or the network itself. For
the traditional network, various security solutions exist such as intrusion detection systems,
trust mechanisms, mitigation techniques, as well as additional precautions over existing pro-
tocols. However, most of these methods are not considered to be suitable for the lossy and
resource-constrained environment of the IoT. Since the primary aim of the current study is
the proposal of a novel intrusion detection mechanism explicitly for the IoT network, the
study’s focus is directed towards existing intrusion detection systems. Existing IDSs are not
usually considered suitable, both due to their complexity and for being considered heavy-
weight. In order to propose a lightweight and effective security solution for the IoT, it is
necessary to gather sufficient information related to the protocols used. Since the focus of
this study is on the routing topology, both the 6LoWPAN and RPL protocols are investigated

in detail, as shown in the following subsections.

2.1.1. 6LoWPAN

“6LoWPAN” is a low-cost, low-power communication network which connects wireless de-
vices to each other using a compressed form of IPv6. The protocol defines the IPv6 header
compression and specifies the routing details of the packet to the border router of the network
using IEEE 802.15.4 protocol at the link layer and PHY layer.

6LoWPAN networks use multihop routing to communicate, with each node forwarding an-
other node’s packet to the “6LoWPAN border router” (6BR). These networks are then con-
nected to the Internet through the 6BR, which handles the compression/decompression head-
ers and fragmentation/assembly of the IPv6 messages while connecting to the Internet. A
sample network structure is illustrated in Figure [2.1] One of the constraints of these devices
in the network is their energy requirements. In order to keep power consumption to a mini-
mum, the duty cycle system is employed during communication over the network. Thereby,
for most of the time the device turned off its power. In order to receive and transmit mes-
sages, it turned on its power for short periods of time. Through this approach, devices with

low-level energy storage can work for much longer durations.

Border Router

aaaa:l

IPv6/RPL connected 6LoWPAN

Figure 2.1. An IoT network with IPv6/RPL connected 6LoWPAN

Since 6LoWPAN is derived from the IPv6 Internet Protocol, it also has the same inherent
weaknesses as the standard Internet protocol. The capability and complexity of IoT devices
are also limited compared to the standard devices using the IPv6 protocol, which generates

additional concerns in terms of securing the IoT network.

2.1.2. RPL

RPL is a standard routing protocol which can be used on top of link-layer mechanisms such
as IEEE 802.15.4 PHY and MAC layers in IoT. The definition of the protocol and its stan-
dards are explained in RFC 6550. RPL topology supports different traffic types such as
MP2P, P2MP and P2P. Especially, sensor networks where each node sends measurements
to a central node periodically, can use the RPL to create routing paths in the concept of
IoT. RPL was specifically designed for low-power and lossy networks which have limited
resources such as bandwidth, computational ability, as well as energy. The protocol has an
adaptive characteristic to varying conditions and can offer alternative paths when the existing

path is no longer available.

RPL connects nodes to each other and to the 6BR border router by creating a DODAG.
RPL protocol defines three different node types. The first is a “low power and lossy border
router” (LBR), which is the root of DODAG which is a collection point for the multipoint-
to-point network traffic, and can create a “Directed Acyclic Graph” (DAG). It also provides
a connection between the Internet and the remaining nodes. The second is a “router”, which
is a device that generates data traffic and forwards packets in the network. Whilst unable to
create a DAG, the router can join an existing DAG using topology messages. The third is a
“host,” which only generates data traffic, and can therefore be labeled as an end-device. Each
node in a DODAG has a node ID which is the IPv6 address of the node, a list of neighbors,
a parent node, and a rank value which indicates the relative distance of node itself to the
6BR border router. The rank of a node strictly decreases towards the DODAG root whereas
it increases from the root towards the leaf nodes. The nodes on the top of DODAG have
smaller ranks, whereas the bottom nodes have larger rank values. The Root Node has the

smallest rank within the network.

In RPL there are two different modes in the route discovery phase. The first is the “non-
storing mode,” with each packet containing the complete path that the packet will follow
through the network. The forwarding nodes do not keep the routing information, therefore,
6BR is only node who keeps that information. The second is the “storing mode,” with each
node maintaining a list of routing information for nodes in its subgraph. When a node gets
a message, the node sends it to the next hop if the destination node is in the list. However,
if the node is not in the list, the packet is forwarded to the parents. The rank is used in

the topology in order to prevent construction of routing loops, and thereby allows nodes to

8

identify the parent and child nodes in the neighborhood. Also, each node stores a list of
neighbors and can use such lists in order to find a new parent should the connection be lost
with the currently selected parent. The route is calculated according to the parameters such
as energy resources, throughput, latency etc. To create a DODAG, each node decides its
parent according to the better quality of path towards the root. The node selects the parent
based on the route offers collected from its neighbors and at the end, each node has its best

route to the root.

RPL uses three different control messages, namely DAO, DIS, and DIO in order to maintain
the topology. Each node announces the route to its destination to the root by sending DAO
control packets. The DAO message is propagated in an upward direction within the DODAG
topology, via the parent of each node and border router, to become aware of the path to each
node, with the help of the DAO message. DIS helps new nodes to ask for topology informa-
tion prior to joining the network. Each new node sends a DIS message to its neighborhood.
Once the neighbors reply with a DIO message, the node selects the best neighbor as its par-
ent and joins the network. DIO helps to set and update the topology. A DIO message is
sent by each node in order to inform other nodes about its routing condition, such as version
number, rank, and Objective Function (OF). Rank relates to the quality of the path to the
root. Each node in the network calculates its rank by using Objective Function. Objective
Function defines how a node uses different metrics in order to calculate the rank value and
how to select the best route in a DODAG. In order to calculate rank, the Objective Function
can specify different parameters by considering routing metrics such as delay, link quality
and connectivity. It is important to realize that rank of a node does not necessarily relate
to the physical distance of the node to the root. For example, if load balancing is the most
important parameter, even if the potential parent node has the closest distance to the root, the
node can select another node as its parent if it has lower load potential at that time. When
the parent or the rank of the node changes, it has to send the updated information in the next
DIO message. In order to prevent a loop in the network, RPL organizes the network such
that parents are always lower ranked than their children. The operation of a node can be seen
as illustrated in Figure

Receive DIO

:::::I.?ecei\.'e DIO fo.r:::I:Lii::S-atiSfy Criterié:?;’No ‘ Dlscaf tthe ‘
st time ~ v \ packe
Yes J‘r‘es
¥ Process DIO
Add sender to
parent list l
e . No Maintain location
| Rank < Own_Rank———> " DODAG
Compute rank
based on OF lYES

Improve location
+

Get lower rank

v A 4

Forward DIO to

other nodes in
multicast

T

Discard parents
with lower rank

A

Figure 2.2. Operation of a node in DODAG

RPL protocol suggests two repair mechanisms: local and global. If there is a failure related
to a node, link, or routing topology, a local repair mechanism is started in order to select a
new parent for the affected nodes. For a node which loses connection with its parent node,
it already has a list of its neighbors, as previously mentioned, so the node checks the list
for an alternative parent. If there is no alternative parent node, it can use a neighboring
node with the same rank value in order to forward packets. If the local repair mechanism
is unable to provide stability to the network, a global repair mechanism can be used for this
purpose. A global repair mechanism is controlled by the Root Node with the help of the
DODAG version number. Once the Root Node decides to initiate a global repair, it simply
increases the DODAG version number which is located in the DIO and then broadcasts the
message. It is transferred through the network and received by the remaining nodes. When
a DIO message with an incremented version number is received by a node, the node starts

the parent selection algorithm and refreshes the parent node.The triggering condition of the

10

global repair mechanism is left to the implementation according to the RFC document [17].
Therefore, a user should define a global repair mechanism condition and implement it within
the RPL topology. For example, the DODAG root can perform a global repair mechanism if

the number of local repair requests exceeds a specified threshold value.

In order to use resources effectively, the RPL employs the trickle algorithm [[19] to adjust DIO
message frequency. In order to decrease the number of topology messages, each node has a
trickle time and DIO counter parameters. Trickle time parameter relates to the time interval
that the node waits before sending the next DIO message. If the parameters which cause a
topology change in the network are not modified in the incoming DIO message, then the DIO
counter will be increased accordingly and the trickle timer duration of the idle state increases.
When DIO message has a change which causes a trickle time to reset, the node will reset the
DIO counter and minimize its trigger time. With the help of this mechanism, the number of
DIO messages decreased and the network resources are used more efficient by decreasing
the overhead in the network.The trickle timer is reset when there is an inconsistency found in
the network. The detection of routing loops, joining of a node to the network, and changing
rank values of nodes due to mobility are considered as inconsistencies whereby the trickle

timer would be reset.

The RPL protocol is exposed to a large variety of attacks. Since “Low-Power Lossy Net-
works” (LLNs) have resource-constrained nodes, as well as limited physical security with
unreliable links, they are considered vulnerable and difficult to protect against attack. The
RPL protocol defines several security mechanisms, with integrated local and global repair
mechanisms, loop avoidance and loop detection techniques. However, the protocol still has
inherent weaknesses, especially in terms of insider attackers, and therefore requires the pro-

vision of additional security mechanisms.

2.2. Routing Attacks against RPL

The RPL is vulnerable to different kinds of routing attack, since it does not take security into
consideration. Moreover, IoT devices often have limited resources and unreliable links, and
IoT networks consist of numerous different devices such as smartphones, wireless sensors,
and wearable devices with varying resources. Therefore, a security mechanism is required

that can be applicable for each type and variation of device. In other words, any security

11

solution proposed for such a system should be lightweight in terms of its computational
and communication requirements, due to the known resource constraints of IoT devices and

wireless links.

Even though the RPL has certain mechanisms such as local and global repair mechanisms,
minimum rank increases limitations, as well as loop avoidance and loop detection techniques
in order prevent malicious attempts and to recover the network, attackers can still circumvent
these mechanisms. There are different kinds of attacks in RPL. While some are specific to
this protocol, others are of a common type such as “spoofing attacks” and “denial of service
attacks” which are known to exploit the shared vulnerabilities of both wired and wireless
networks. Attacks made against RPLs are classified according to the target resource of the

99 <&

attack, and fall into one of three different categories, namely “resources,
“traffic” [20] as illustrated in Figure @]

[s |
{ J
| i |

topology,” and

Resources Topology Traffic
Worst Parent Attack
H‘?HO EoodR o Sinkhole Attack Decreased Rank Attack
Version Number Attack =
Wormhole Attack Sybil Attack
Moo] Tl (A s Blackhole Attack Eavesdropping
PAE ImETrE STy A DAQO Inconsistency Attack

Figure 2.3. Classification of RPL attacks

Resource attacks mainly aim to consume resources of legitimate nodes, and/or the network,
and result in poor network performance. These attacks can significantly accelerate the deple-
tion of a node’s battery power, utilize the memory of nodes, and cause a lag to the remaining
necessary operations. Such attacks can place the network in an unstable position and thereby
shorten the lifespan of the network. The “hello flood attack™ is one such attack in this cate-
gory, whereby the attacker sends frequent DIS messages to the neighborhood to force them to
reply with a DIO message. As a result, it increases the routing overhead by adding numerous
routing control messages into the network, and by doing so exhausts the resources of nodes
receiving periodic DIS messages from an attacker node. In the “version number attack,” the
attacker changes the version number of the topology illegitimately by increasing the corre-

sponding field of the DIO messages prior to sending it to other nodes. This action requires

12

the rebuilding of the whole DODAG, and thereby results in a high number of routing control
messages in the network, which may in turn cause congestion in the network. Another attack
type which targets network resources is the “increased rank attack,” in which the attacking
node increases its own rank value and sends this malicious rank value in a DIO message as
if it has a higher rank. In doing so, the attacker aims to create loops in the network, forcing
other nodes to start local repair mechanisms in order to remove these loops. It is considered
a resource attack since it overconsumes node energy and results in congesting the RPL net-
work. The “DAG inconsistency attack™ is detectable when there is an inconsistency between
the direction flag and the rank of the Sender Node. Normally, if the direction of the received
packet is downward, it should come from a node which has a lower rank value, and vice
versa. When a node detects this inconsistency for the first time, it sets a flag for inconsis-
tency in the packet. However, should this situation occur for a second time whilst forwarding
a packet, the packet is dropped and the trickle timer is reset. If a malicious node modifies
the flags deliberately while forwarding a packet, other nodes will subsequently detect that as
an inconsistency and thereby drop the packet. However, since the nodes also reset the trickle
timer, the frequency of the routing control messages increases and thereby causes additional

network overhead.

RPL attacks can also aim to disrupt the topology of the network. The first attack in this cate-
gory is the “worst parent attack,” which is a specific type of rank attack. An attacker chooses
a neighbor node which has the worst rank value as its parent by using the Objective Func-
tion. This selection affects the nodes as they select a path towards the Sink Node that now
includes the malicious node. In a “sinkhole attack,” an attacker attracts traffic by advertising
itself as if it has a better link quality than it does in reality, or a shorter distance to a Sink
Node. In doing so, it may be able to falsely place itself in the path. After that, messages
could be dropped instead of being forwarded, or falsely modified, resulting in a disruption
to the network communication. The “Wormhole attack™ is another type of topology attack,
whereby two or more malicious nodes create a tunnel between each them and packets are sent
through this tunnel. Even though these malicious nodes could be physically distanced some
way from each other, they can pretend to be very closely situated using the tunnel, which
is usually achieved using a wired communication. Therefore, other nodes send their mes-
sages to the root via these malicious nodes, and the attack can thereby create non-optimized
routes within the network. In a “blackhole attack,” the attacker drops packets that pass over

it, instead of forwarding them to the Root Node. Therefore, if an attacker is positioned in

13

a strategic location, such as being a neighbor of the Sink Node, it could effectively isolate

most of the legitimate nodes from the network.

The last category covers attacks targeted at disrupting network communication. The main
aim in this category is to attract network traffic to a specific node. The first of these is
the “decreased rank attack,” in which a malicious node claims a lower rank value than its
real value in the DODAG structure in order to attract more traffic to itself. Through this
behavior, many benign nodes may connect to the Sink Node using the attacker. Then, the
malicious node, which takes control of the network traffic, could then start to drop or modify
packets. In a “Sybil attack,” a malicious node creates fake identities to participate in network
operations as a legitimate node. For instance, an attacker can create a Sybil identity in order
to behave/appear like a Root Node by using its address and thereby manage the network
traffic. The last of these attack types is the “eavesdropping attack,” in which an attacker
node can passively listen to the network in order to illegitimately obtain information about
the network such as its topology, frequency of data packets sent etc. This attack presents a
significant risk when data of a confidential nature is transmitted, and has not been subjected

to some form of encryption.

2.3. Intrusion Detection Systems (IDSs)

IDS is a security mechanism used to detect attacks against a network by analyzing the activity
based on different methods. When an IDS detects malicious activity, it warns the authori-
ties about the attack. Intrusion detection systems can be classified under three main areas
according to its “detection resource,” “detection technique,” and “detection architecture”; as
illustrated in Figure

14

| Intrusion Detection |
Systems

i

Resource Technigue Architecture
Anomaly-based]
Network-based Signature-based Centralized
Host-based Specification-based Distributed
Hybrid Hybrid Hybrid

Figure 2.4. Classification of intrusion detection systems

2.3.1. IDS Classification with Detection Technique

Detection techniques can be classified according to three classes, namely “signature-based,”
“anomaly-based,” and “‘specification-based.” The anomaly-based and signature-based tech-
niques are the most popular according to the literature. “Anomaly-based systems” detect ma-
licious activities in the network by first determining the ordinary behavior of the network, and
then comparing the current situation with this baseline. Where the current situation deviates
from the baseline more than a predefined threshold, the system raises an alarm. Anomaly-
based systems can detect all types of attack and also adapt to new types of environment, and
are therefore able to detect new attacks. However, these systems can also produce high false
positive rates. In certain conditions, even where there is no attack in the network, the system
may raise a false alarm due to small deviations from the baseline. “Signature-based” systems
create a set of signs which refer to a network’s behavior according to certain types of known
attack. The system uses a database of these signatures and compares the current behavior of
the network with these signatures. If there is a correlation between the behavior of the net-
work and these signatures, the system rises an alarm. Signature-based IDSs can produce high
“true positive rates” (TPR) for known attack types. However, if the network is faced with a
new type of attack, the signature-based IDS will not be able to successfully detect the attack
since it has no predefined signatures for such an attack. Therefore, these systems can create a
large number of false negatives. “Specification-based” systems observe the legitimate behav-
iors of the existing protocol (i.e., the RPL protocol in the current study), and uses the protocol
specifications in order to detect the attacker activity. If a node does not follow the protocol’s

specifications, the system raises an alarm for the node. This approach is deemed effective

15

in detecting topology attacks since it can detect malicious activities directly when a node
breaks predefined protocol rules. In these systems, the development of these specifications
and the coverage of the predefined rules are highly critical to the system’s effectiveness and
performance as an IDS, and can also be time-consuming for the user to define/update these
rules. “Hybrid” techniques combine more than one type of detection system, by considering
the advantages and disadvantages of each and then aiming to maximize the combined benefit
of each of these systems. However, hybrid systems are usually considered to be higher in

cost in terms of their computational, storage, and energy requirements.

2.3.2. IDS Classification with Detection Resource

IDSs are also classified according to the resource used for the detection algorithm and they
are named as “network-based” and “host-based”. “Network-based systems” are placed at a
strategic point in order to monitor the network traffic. The system analyzes the passing traffic
through the network and checks it based on the detection method. Network-based systems
can use the obtained general view in order to boost its detection performance. However,
these systems do not possess information related to individual resources’ consumption or the
logs of the nodes related to the environment, which can be a critical disadvantage whilst de-
tecting specific types of attack. However, “host-based systems” can only observe the traffic
received and transmitted by the host node. Since host-based systems do not possess general
knowledge about the overall network, they may miss important information which can only
be observed from a more global perspective. “Hybrid” systems attempt to combine the ad-
vantages of both network-based and host-based systems in order to make use of both network

and node-based information.

2.3.3. IDS Classification with Detection Architecture

The architecture of IDS systems can be grouped as being either “centralized” or “distributed”
systems. “Centralized systems” deploy a monitoring tool to a central location and then secure
the network from this point. Especially in resource-constrained networks, not all nodes in the
network may have adequate resources to operate an additional security system. Therefore,
more powerful nodes such as the border router can run intrusion detection algorithms. There

are two main options for centralized intrusion detection systems. First, a centralized device

16

can monitor the network activity which passes through it. This approach is best suited to a
wired network since the IDS can be placed at border routers from where all network traffic
can be monitored. However, for some types of wireless network in which network traffic
cannot be monitored at a central node, such as in “Mobile Ad Hoc Networks” (MANETS),
the system may not have sufficient information to make an informed decision. In the sec-
ond method, the central node collects information from other nodes, with some or all nodes
sending periodic messages to the central node, and decisions are then made based on this
collected information. In such a case, the communication overhead is the most significant
disadvantage. Since, the nodes need to send monitoring information to the central node, the
number of packets being sent through the network may increase significantly with this ap-
proach. If malicious nodes then block the monitoring data from reaching the centralized IDS,
the performance of the IDS will likely drop significantly as a result. “Distributed systems”
can utilize every node in the network, with each node working as an intrusion detection agent.
Distributed IDSs are therefore carefully designed since not all nodes in the network may have
adequate resources to run these types of IDS. If the nodes share information with each other,
the system overhead increases, which can then cause communication problems in the net-
work. This approach has no communication overhead if the system is not collaborative. In
this case, each node makes its own assessment according to its own observations. However,
the IDSs are required to use only localized information when analyzing the network situa-
tion, which can then increase the instances of false alarms being raised. The “Hybrid system”
aims to utilize the advantages of both centralized and distributed systems. For example, the
“cluster-based” approach can be classified as a type of hybrid architecture. In this approach,
the network is divided into separate clusters in order to decrease the overhead. For each
cluster, just one cluster-head is selected, with each member of the cluster gathering infor-
mation from its neighbors and sending it to the cluster-head. Then, the cluster-head makes
the final decision on the action to be taken according to the network situation. In certain
cases, cluster-heads can also communicate with each other; however, that may also increase
the overhead. There are some limitations in IoT networks which should be considered when
designing an IDS. Since signature-based detection uses predefined conditions for different
types of attack, the storage requirements for such an approach could be considered a prob-
lem in a network which has constrained nodes. Also, since signature-based systems use the
signatures of already known attacks, they cannot by default detect unknown attacks. How-

ever, if an anomaly-based detection system is used, the computational costs will increase to

17

a point where it can negatively affect the operation of the nodes, and deplete their limited en-
ergy resources. Moreover, it is difficult to define what constitutes the “normal behavior” of a
network, especially if there are mobile nodes in a particular network. Therefore, false posi-
tive rates may also increase in anomaly-based systems. For specification-based systems, the
protocol rules of the network are used. Development of these specifications and coverage of
the created rules are highly critical and can be considered time-consuming for the user to de-
fine them. Also, in RPL topology, there are certain undefined events such as the global repair
mechanism and default parameters which can be adjusted according to the implementation,

and which thereby create a weakness in the specifications.

18

3. RELATED WORK

Traditional intrusion detection systems are not suited to IoT networks due to the connec-
tion of resource-constrained devices and lossy communication links. Therefore, suitable,
lightweight intrusion detection algorithms should be developed, or existing systems adapted
to this new environment. In the literature, some studies have proposed solutions for the
detection of attacks against RPLs. However, traditional attack types such as DoS, Sybil,
and other new attacks have emerged that target the RPL, especially its route discovery and
route maintenance mechanisms such as the “rank attack” and “version number attack”. Re-
searchers have primarily focused on detecting these specific attacks in the RPL environment,
whilst some studies have analyzed the effects of these attack types on the network. This
thesis chapter reports on the various intrusion detection proposals for RPL to be found in the

current literature.

3.1. Related Studies on Intrusion Detection for RPL-based IoT Networks

In order to secure RPL-based IoT networks, it is important to employ a type of security mech-
anism which protects the network from both internal and external attackers. As previously
discussed, there are several techniques which have generally been used to secure these net-
works such as intrusion detection systems, mitigation methods, and trust-based evaluations;
however, the current study primarily focuses on the analysis of intrusion detection systems
for RPL-based 10T networks. Many IDSs have been proposed for both wired and wireless
networks, but the main problem is that most of the traditional IDSs are not suited to low-
power and lossy IoT networks. Therefore, the research community has had to refocus its
attention to propose lightweight security solutions that specifically target the RPL-based IoT

network.

SVELTE [21] was the first IDS proposed specifically for the IoT, with the authors having
proposed a solution especially for the sinkhole attack and selective forwarding attack. Their
proposed solution consisted of three phases: “6LoWPAN mapper,” “intrusion detection,” and
a “distributed mini firewall.” In the 6LoWPAN mapper phase, one node (i.e., border router)
was selected as a mapper in order to visualize the constructed DODAG with the help of pe-
riodic messages gathered from each node. In this phase, Sink Node requests the following

information from each node: node ID, rank, parent ID, and neighbor information of each

19

node, and then uses this collected information for the purposes of intrusion detection. In the
intrusion detection phase, inconsistencies in the network are discovered by checking viola-
tions of predefined intrusion rules. For example, since the 6LoWPAN mapper gathers rank
information from the nodes, the rank of each node is checked by comparing the information
from its neighbor. If any inconsistency is noticed, the node is subsequently blocked from
the network operations. The minimum rank increase rule is also satisfied by the node while
broadcasting its own rank. If the difference between the rank of the node and its parent is less
than the predefined value , the node is marked as being malicious. Distributed mini firewall
is another mechanism in the study and the malicious traffic coming from the external hosts is
filtered by the system. In their study, the authors evaluated the model with a varying number
of nodes, from eight to 32, as well as using lossless and lossy network environments in their
test simulations. According to their published results, in the case of a lossless environment
and eight nodes, the true positive rate was measured as being 100%. However, when the
environment was reconfigured as lossy and the number of nodes was set to 32, the TPR de-
creased to 65-70%. Moreover, it was stated that false positives were found in their analysis,

although the numeric results were not explicitly given in the published study.

In 2017, Medjek et al. [22] studied on a specification-based IDS equipped with both central-
ized and distributed architecture to counter a Sybil attack. In their proposed T-IDS (Trust-
based IDS), the nodes in the network are also used to monitor the network and communicate
with each other in order to detect abnormal activity, and then reports them to the border
router. The authors examined the scenario of a Sybil attack against an RPL by defining an at-
tacker model which was both mobile and steady. In the attack scenario, the attacker behaved
as a honest node for a while, then chose a new location to move to and created a new identity
once placed at the new location. Then, it broadcast DIS messages to its neighbors like a new
node by advertising a different IP address. The attacker node repeated the same behavior
periodically and for each attempt, it created a new identity with a different IP address and
also a new location. In other words, the number of Sybil identities were equal to the number
of moves of the attacker node. Simulations were conducted on a network using a total of 50
nodes, each with varying attacker numbers and Sybil identities by using the Cooja simulator.
The authors analyzed the effects of the Sybil attack by using the following performance met-
rics: PDR, energy cost, and overhead. Then, they proposed a trust-based IDS for the Sybil
attack within an RPL environment. In their proposed mechanism, an additional trusted entity
was required to maintain the node authentication. Also, the nodes needed to send a message

to the root when inconsistencies were detected, which brought about additional overhead. In

20

their proposed IDS, each node in the network was equipped with a cryptographic coproces-
sor chip, which was used to build hardware support identification, store security parameters,
and to handle the cryptography calculation. Therefore, the solution involved additional cost
and power usage for the nodes. Simulation of the proposed IDS was, however, left as a piece

of work planned for the future.

Napiah et al. [23] proposed a hybrid-based IDS which employed both anomaly-based and
signature-based techniques, and utilized a 6LoWPAN compression header in order to detect
hello flood attacks, sinkhole attacks, and wormhole attacks, and variations thereof. At the
beginning, the packet compression header data was captured and analyzed in order to extract
specific features to help distinguish malicious from benign activity. To select the most use-
ful features, two different search techniques were employed: “best first search” and “greedy
stepwise algorithm.” Then, the “correlation-based features selection” (CFS) algorithm was
employed in evaluating the features which shows the difference between normal and mali-
cious behavior at mostFollowing the feature selection phase, the information extracted from
the header was used to classify networks as “normal,” “hello flood attack,” “sinkhole at-
tack,” or “wormhole attack” by using six different machine learning algorithms (“logistic,”
“J48,” “Multilayer Perceptron [MLP],” “naive bayes,” “Support Vector Machine [SVM],”
and “random forest”) using the WEKA tool. The proposed system then alerts the user when
a malicious activity takes place. However, in the simulation, only eight nodes were used
along with a single attacker, and it is therefore debatable whether the proposed system would
be suited to a larger 10T network. Also, the number of samples used for training and testing

consisted of unbalanced data using a small-sized dataset.

Yavuz et al. [12] studied a deep-learning-based IDS to address both the version number attack
and hello flood attack against RPL-based IoT networks. The authors created a neural network
model with five hidden layers. They used a feature set including reception/transmission rate,
reception/transmission average time, received/transmitted packet counts, reception/transmis-
sion time, and DIO/DAO packet counts with a 1,000 millisecond window size. Simulations
were run on networks varying from 10 to 1,000 nodes using the Cooja simulator. Their ex-
perimental results showed precision and recall of 94% for version number attack and 97%
for hello flood attack. However, the false positive rates were not provided in the published

study.

Muller et al. [24] proposed an anomaly-based intrusion detection system for version num-

ber attack and hello flood attack using the “Kernel Density Estimation” (KDE) algorithm.

21

The authors used a feature set which included a number of topology control messages (DIS-
/DIO/DAO), different DODAG versions, and a “User Datagram Protocol” (UDP) forward
ratio defined based on the number of transmitted and received packets. Simulations were
conducted using a maximum of 12 nodes and a time varying from 800 up to 1,400 seconds.
According to their experimental results, a 90% true positive rate was achieved for the hello
flood attack and 96% for the version number attack, while a false positive rate of 0.5% was

obtained on average.

In another study, Aydogan et al. [23] created an intrusion detection mechanism using a
genetic programming technique. Their study reported the effectiveness of evolutionary-
computation-based techniques by using a centralized IDS. The IDS showed high levels of
accuracy with low false positive rates on the detection of hello flood attack and version num-
ber attack in RPL-based IoT networks. The authors also evaluated the same intrusion detec-
tion system in a distributed manner, reporting that for the hello flood attack especially, that
the centralized IDS outperformed the distributed variant since it collected more information

than the other nodes.

Kfoury et al. [26] suggested an IDS based on the “Self-Organizing Map” (SOM) neural net-
work in order to cluster RPL routing attacks. The proposed method used self-organizing
maps in order to cluster attacks and benign traffic. The authors used a number of topology
control messages (DIS/DIO/DAO), the ratio of version number and rank changes, and the
average power consumption of the nodes as features. However, details were not provided of
the simulation parameters or the detection rate they found, only the visualization of the clus-
ters is given in the reported results. Moreover, the mobility of the nodes was not considered

as in other studies to be found in the literature.

In 2016, Le et al. [27] studied on a specification-based IDS for detection of worst parent at-
tack and hello flood attack. They used simulation trace files generated by the Cooja simulator
in order to generate the finite state machine for the RPL. A set of rules was created in order
to check the network activity by using data gathered from the nodes; then, according to these
rules, the system detected whether or not there was an attack. In order to decrease resource
usage, the network was divided into clusters, with each cluster member reporting information
about itself and its neighborhood to the cluster head. In turn, each cluster head then ran an
IDS agent to analyze the information gathered from the cluster members; and where a node
visited a state more than a predefined threshold of times during a certain interval, a threat

alarm was generated by the IDS agent. In testing, the model achieved 100% for worst parent

22

attack in terms of TPR; however, the FPR was reported to be around 5.5%. For the hello
flood attack, the TPR decreased to around 94% and the FPR was 3% some 8 minutes after
the attack started. After a period of 12 minutes on the network, TPR was reported as being
100%, but the FPR had increased up to 6%. Also, the power consumption in the network

increased by 6.3% compared to the normal behavior of the network.

ELNIDS [28] was proposed in 2019, using an ensemble-based machine learning model to
create an IDS against RPL-based attacks. The proposed model proved capable of detecting
sink-hole attack, blackhole attack, Sybil attack, clone ID attack, selective forwarding attack,
hello flood attack, and local repair attack. In their study, four different classifiers, namely
“Boosted Trees,” “Bagged Trees,” “Subspace Discriminant,” and “RUSBoosted Trees” were
used and then evaluated using a dataset which consisted of all different types of attack; how-

ever, the detection accuracy at the attack type level is not specified in the study.

Very recently, the same authors, Verma and Ranga [29],conducted a survey which inves-
tigated existing security mechanisms for RPL-based 10T networks in the literature. Their
survey reviewed more than 100 published studies, and reported that no study used a cross-
layered security solution based on both link layer and network layer activities. Also, it was
stated that no effective solution had been proposed for hello flood attack in the literature.
According to their research, most of the published studies only used a few nodes whilst sim-
ulating their test [oT network, which may indicate a potential problem when the network size

increases.

3.2. Related Studies on Attack Analysis for RPL-based IoT Networks

In order to propose effective security solutions for RPL-based [oT networks, it is critical
to observe the effects of different RPL attacks on the network. Some attack types can be
analyzed in other network types; however, some attacks such as version number attack, rank
attack, and hello flood attack are specific to the RPL topology. Therefore, these attacks
should be specifically and carefully analyzed in order not to overlook any behavioral actions

noted during network monitoring.

In the literature, several studies have analyzed rank attacks; however, most of these have
modified the rank value of the attacker nodes in order to simulate an attack. A malicious

node could advertise a lower rank value than it actually has to attract traffic, and then use that

23

traffic for different attack purposes such as dropping or modification. An attacker could also
increase the rank value of itself and send this value with DIO messages. The aim here being
to create loops within the network and to force the remaining nodes to start localized repairs
in order to remove these loops. In the worst parent attack scenario, instead of modifying the
rank value, the parent selection algorithm is modified in a way that an attacker selects the
parent which has the worst rank value instead of the best rank value. As far as is known,
the first implementation of the worst parent attack was performed by Le et al. [7] back in
2013, with simulations performed using 100 nodes on a grid topology and network perfor-
mance analyzed by changing the location of the attacker. Their experimental results showed
a security weakness found in the RPL so that the child nodes have to believe the routing in-
formation supplied by their parents via DIO packets and, the nodes have no other mechanism
to verify the reliability of the parent nodes. Therefore, if the preferred parent is malicious,
the performance of all nodes in the surrounding area of that node could be adversely affected,
leading to increased overhead and number packet collisions, according to the study’s results.
In another study involving three of the same authors, Le et al. [30] showed the effects of
different routing attacks on RPL-based networks. They performed four different type of at-
tacks, namely worst parent attack, hello flood attack, local repair attack, and neighbor attack.
Their experimental results showed hello flood attack to be the most influential in terms of

degrading the IoT network’s performance.

Mayzaud et al. [5] studied the effect of version number attack on the 10T network. Their
simulations were conducted using 20 nodes and one attacker node located in a grid topology
using the Cooja simulator. The nodes sent periodic data messages to the Sink Node every
20 seconds, with a simulation executed over a total of 50 minutes. The effects of the attack
were investigated by changing the location of the attacker node to all possible locations in the
network. According to the results, the effect of the attack increased when the malicious node
was moved away from the Sink Node, since the attacker finds an opportunity to spread the
damage.Moreover, it was observed that most of the time loops and rank inconsistencies due
to the attack were located around the neighborhood of the malicious node, which can help
in localizing the attacker. It was also shown that the unnecessary rebuilding of the DODAG
as a result of the version number attack increased the number of topology control messages,
which could in turn drain nodal resources. However, the study’s simulations were only con-
ducted on static networks with grid topology. The effects of the attacks were measured with
the following performance metrics: overhead, PDR, and E2E delay. However, there was no

analysis performed related to the power consumption of nodes.

24

Another recent study that investigated the effect of version number attack was proposed by
Aris et al. [6]], in which mobile and static nodes were placed on different network topologies
using a probabilistic attacker model, with simulations conducted using the Cooja simulator.
Both grid and random network topologies with 44 nodes were created, with simulations
ran for 50 minutes, and where all nodes in the network sent periodic messages to the root
every 60 seconds. However, only one attacker was used in the study’s experimental testing.
According to the analysis results, the effects of the attack increased when the malicious node
was further away from the Root Node. Moreover, it was shown that mobile nodes harmed
the network with the same impact of nodes located far away from the root. The authors
also performed power consumption analysis for the network, and found that for the highest

possibility of attacker, the average power consumption increased by 265%.

3.3. Other Studies

The literature also contains proposed security mechanisms other than IDSs in order to pre-
vent and decrease the effects of RPL attacks. Trust mechanisms, mitigation techniques, and
new rules in order to limit extraordinary changes in the topology are among the exemplar
mechanisms to be found in the literature. These proposals are briefly introduced in this sec-

tion.

Aris et al. [31] studied on a mitigation technique to prevent version number attacks. The mit-
igation architecture consisted of two different parts. First, nodes simply ignored the version
number updates coming from the leaf nodes. Since legitimate version number updates should
be performed using the Root Node via DIO messages, version number updates coming from
leaf nodes can therefore simply be marked as malicious activity. However, this technique
only mitigates attackers from limited locations. Second, the authors proposed a mitigation
method that did not consider the position of the attacker. In order to accept a version number
as being valid, most of the neighboring nodes with better ranks should validate the update
of the version number. The proposed method was evaluated using the Cooja simulator on a
network with 36 static nodes and one attacker. According to the results, it was possible to
protect the network against version number attacks by employing two mitigation techniques,
whilst performing legitimate version number updates. However, if the number of attackers
increased, the malicious nodes were found to manipulate the voting scheme as they wanted.

They also showed a trade-off between the resource constraints and mitigation performance,

25

and in order to obtain improved mitigation performance, increased usage of resources was

required.

In 2019, Verma and Ranga [8] proposed a mitigation method for DIS flooding attacks. The
main idea was to set thresholds in order to restrict trickle timer resets and decrease the num-
ber of control message transmissions caused by hello flood attack. Simulations were per-
formed in the Cooja network simulator with the number of nodes set to eight and 16, with
a focus on overhead and power consumption. The simulation results showed a dramatic
decrease in overhead when the proposed mechanisms were applied. For the nodal power
consumption, there was a slight decrease noted when the model was employed; however,
power consumption was still found to be much higher than for an attack-free RPL-based net-
work. Furthermore, the number of nodes in the tested simulations was reported to be very

limited.

There have also been a number of cryptographic mechanisms proposed for RPL-based net-
works. In 2011, Dvir et al. [32] studied on the VeRA (Version Number and Rank Authentica-
tion) application, which aimed to secure rank and version number with hash function, mes-
sage authentication codes, and digital signatures. By using these mechanisms, the network
was protected from illegitimate rank and version number updates. However, the system cre-
ated traffic overhead and also increased computational power requirements which degraded
the network performance. In 2013, Perrey et al. [33] studied on a mechanism called TRAIL,
which was a generic scheme for topology authentication in RPL and detected and prevented
inconsistencies in the network. This was achieved by using the nodes in order to validate
their routes to the sink node, and also to detect rank spoofing, thereby detecting rank at-
tack and version number attacks, as well as minimizing the overhead and nodal resource

consumption.

In 2016, Glissa et al. [34] proposed a modified protocol called as SRPL, which placed a
threshold on the rank parameter with the combination of hash chain authentication. The
mechanism aimed to eliminate internal attackers that degrade the network’s performance
with illegal modification the rank parameter. In order to mitigate rank attacks, The protocol
checks the number of times that a node increases or decreases its rank, and then limits them
if necessary by setting thresholds. The evaluation was tested using the performance met-
rics of power consumption, network overhead, and packet reception rate. Simulations were
conducted using 22 nodes in the Cooja simulator, with each simulation run for a period of

60 minutes. The authors then compared the number of topology messages used by SRPL

26

with RPL, and it was noted that especially in the initial stage, proposed mechanism created
an extra overhead. According to the experimental test results, the SRPL approach was able
to detect an attack when a sharp change was seen in the rank value; however, may not be

noticed when the rate of change was small.

Mayzaud et al. [35] studied on a distributed model to monitor the network and detect version
number attacks and to identify those nodes involved in such malicious activities. New nodes
were added to the RPL topology for the purpose of monitoring other nodes. Besides moni-
toring, these nodes also took part also in routing. These monitoring nodes then constructed a
separate network and used that network to periodically forward information collected about
the version number of incoming DIO messages to the root. Monitoring nodes were placed
such that each node was directly monitored by at least one monitoring node. However, it was
found that new nodes or mobile nodes might not be monitored if they are not in the trans-
mission range of the monitoring nodes, and even where every node was monitored by one
other node, FPR was reported to be 20%. As the coverage of the monitoring nodes increased,
FPR was found to drop to 1%, as shown in a test where 66% of the network’s nodes were
monitored by two monitoring nodes. Furthermore, the proposed model was evaluated on a

network with only one attacker.

There have also been studies which have provided trust-based mechanisms in order to pro-
vide network security. Airehrour et al. [36] proposed SecTrust-RPL, which was a detection
and isolation mechanism developed to counter rank attack and Sybil attack. In their frame-
work, nodes computed the trustworthiness of its neighbors based on two different metrics,
namely direct and recommended trust. Each node chose parents with higher trust values for
routing, whereas nodes with lower trust values were marked as malicious. In a rank attack
scenario, while the packet loss rate of the nodes reportedly changed between 60% and 100%
in the network, the SecTrust-RPL approach limited the packet loss to around 22%, and from
60-100% down to 15-25% for the Sybil attack.

One of the first RPL performance analyses was performed by Tripathi et al. [37] in 2010.
Their study investigated the RPL performance of a network under both P2P and MP2P traf-
fic, with a focus on the behavior of the trickle timer mechanism and its effects on network
performance. Moreover, the effect of the usage of a periodic global repair mechanism with
varying numbers of intervals against the loss of connectivity of the nodes in the network

was studied. OmNET++ was used for the simulations, with the number of nodes set to 86.

27

No local repair mechanism was implemented during the simulations, therefore the nodes

reportedly lost their connections for long periods in some cases.

3.4. Discussion

The related studies found in the literature on the security of RPL are summarized in Ta-
ble There were a number of proposals found that aimed to detect malicious attempts
in RPL-based networks, with these intrusion detection systems generally applying anomaly-

based, specification-based, or hybrid techniques.

As can be seen from Table intrusion detection proposals in the literature generally per-
formed evaluations in a limited way, with most studies using a single malicious node in their
simulations. Therefore, the effects of multiple attackers were generally omitted when eval-
uating the proposed solutions. A recent review study[29] also reported that most research
in the literature used a low number of nodes in their experimental simulations. However,
as pointed out in[9]], at least 25 or 30 devices are actually needed in order to appraise the
multihop characteristics of the RPL network. In these studies, simulations were usually only
run for periods of up to 30 minutes at most. Considering the time required for a network
to stabilize, this testing period is perceived to be very limited in terms of evaluating the real

term effects of such attacks.

Most studies explored the effect following worst parent attack, version number attack, and
hello flood attack RPL attacks; but again, the studies only employed a single malicious node
in their simulations. The experiments have also always been conducted using a grid topology
in order to see the clear effects of attackers from different locations. However, a scenario
should more realistically include a distribution of nodes and attackers, and the partitioning
of networks were also notably excluded in these studies. It was also noted that all except
one of the published studies[37] used the Cooja network simulator in order to perform attack

analysis on RPL.

Mobility was another important issue noted to affect the stability of the network. However,
only one study [6] in the literature has found to have used a mobile attacker in their network
simulation to show the effect of a mobile attacker on the performance of an IoT network.

However, no studies were found that proposed a security mechanism that targeted a network

28

with mobile nodes/attackers. Some of the studies proposed a security mechanism for RPL-
based networks or analyzed routing attacks, however some were not implemented within a
simulation environment, or at least detailed information related to the simulations were not
provided [[12} 26, 132]], and some that claimed to be suited to RPL-based networks included no
specific experimental results. Such studies should be recreated to include simulations using

proper tools and known/validated metrics.

Although there are different types of solution proposed for securing RPL-based IoT net-
works, there have been no studies published in the literature that used a cross-layered se-
curity solution based on both link layer and network layer activities. This issue was also
underlined in a recent review [29], which also stated that no effective solution has been put
forward for the hello flood attack, which is one of the contributions of the approach proposed

in the current thesis.

The reviewed studies show that more suitable solutions are needed in order to detect specific
attacks such as version number attack, worst parent attack, and hello flood attack against
RPL networks, and that offer more appropriate responses against such malicious attempts.
These types of attack can cause significant harm to IoT networks if they are not detected and
prevented. However, most of the solutions put forward in the literature have elected to focus
only on detecting one routing attack at a time. However, in reality, whilst protecting the
network from one type of attack, some other successful type of attack can place the network
in an unstable position. Moreover, while the number of devices and attackers increases,
the network can exhibit different responses to these varied attacks. However, most of the
studies have opted to use a limited number of nodes and generally only one attacker in their
simulated experiments. In the current study, the aim is to propose an IDS which can detect
more than one attack type at the same time, and with different numbers of attackers within
large and complex networks. Moreover, in another differentiation from previous approaches,

the current study explores the application of a cross-layered intrusion detection system.

29

wopuey 09 0¢/e paseq-isniy, 1194 “Yuey [9€]l "[e 19 no1yaIty
PUD 0s /1 sisk[euy yoeny IPqunN UOISIoA [9] ‘Te 10 sty
puon oJur oN 0Z/1 SISA[euy Yoeny JOqUUNN] UOTSIOA [C]] ‘Te 10 pnezAe]N
PUD Se 0S/1 sisk[euy yoeny POO[O[[SH JUaIed ISIOM [0€]l e o
PUD OJur oN 001/1 sIsA[euy yoeny juated 1SI0M [Z] ey ot

| %229) 01 0c/1 SULIOJUON PAINqLuSIY IaqunN UOISIOA [SEll e 10 pnezAey
oJur oN 09 redé juowaroxdwy T4y Juey PaseaIdd(Yuey pasearou] %€l ‘T8 12 essin
oJur oN oJur oN OoJur ON juowaroxdwy T4y yuey ‘ToquInN UOISIOA [Z5] ‘e 10 IAQ
pun SLOL‘S 91/1 ‘8/1 uonesnIN Ppool Of[PH [S] eSuey pue ewwop
WopUey/pHo 0s 9¢/1 uonesnIN JoqUINJA UOISIOA [T€] e v suy
oJur ON oJur ON oJur ON (paseq-ATewouy) SAI POO[O[[H “ToquINN] UOISIIA [92Z] "I® 12 Amoyy]
Wwopuey/pro €€ 0T 991 ‘¢¢l Cl/1 (paseq-Afewouy) SAI POO[] O[[9H “IoqUINN UOISISA [l "Te 1 so1InN
OJur oN OJur oN 0001/001 ‘001/01 “0T/¥ “01/C (paseq-A[ewouy) SAI POO[] O[[9H “IqUINN UOISISA [TT]l 'Te %0 Znaex
wopuey Y 0S/01 “0S/8 “0S/9 “0S/¥ 0S/T (paseq-uoneoyroads) ST 1194s [T 'Te 12 Yalpay
wopuey 0¢ 001/1 (paseq-uoneoyroads) ST POO[O[[SH JuaIed I1SIOM [Z2] Tere o1
wopuey 0€°0T°01 TEY 91/T '8/1 (puakH)sdI SUIpIEMIO] 9ADOA[AS “D[OLPUIS [T2] e 1o ezRy
AdAL, urdyed oyyesy, | (uru)dwi], uonenuis | ([e10L/13¥98)Y)SIPON JO JaqunN WISTUBYIIJA] AJLINIAS AdL, yoeny uonnjos pasodoig

SOIpPNJS PAJe[aI Y JO UIPNO °T°€ dqeL

30

4. PROPOSED INTRUSION DETECTION SYSTEM

This chapter describes the method used for analyzing and detecting attacks against RPL.
First, the different types of attack addressed in this thesis are presented. Then, the attack
dataset constructed for the purposes of training and testing the proposed cross-layer intrusion
detection system is introduced. Finally, the proposed neural-network-based IDS is presented.
In addition, the chapter details each of the features used for training the proposed detection

system.

4.1. Target Attacks

The primary focus of the study is attacks that are specific to RPL-based IoTs. In the sim-
ulations, three attacks were used based on their potential effects on RPL: version number
attack, worst parent attack, and hello flood attack, which are each detailed in the subsequent

subsections.

4.1.1. Version Number Attack

In RPL, the version number is specified in DIO, and the version number change is triggered
only by the Root Node where it is deemed necessary to apply a DODAG global repair. When
the Sink (Root) Node changes the version number, this information is carried with DIO,
and new DODAG is consequently reconstructed. In this attack scenario, a malicious node
illegally changes the version number field before forwarding the received DIO message on
to its neighbors. Unfortunately, RPL does not have a security mechanism which protects
the protocol from such abnormal behavior. The “version number attack” results in unneces-
sary reconstruction of the DODAG graph, and thereby introduces unnecessary overhead to
the network due to excessive routing control messages used in reconstructing the DODAG.
Hence, rebuilding of the graph repeatedly results in the unnecessary usage of nodal resources
and the network’s performance is decreased as a result. Moreover, it could create routing

loops in the network that might result in packet loss.

31

4.1.2. Worst Parent Attack

“Rank attack™ is one of the most dangerous attacks that aims to change the topology of
a DODAG. A rank value is calculated by each node, and indicates the quality of a path
between the node itself and the root of the DODAG. The rank value has some important roles
in RPL such as creating an optimal topology, prevention of loop formation, and managing
the overhead of routing control messages. Since RPL assumes that IoT network consists
of reliable nodes and follow the specifications of itself, there is currently no mechanism
defined to check for nodal misconduct related to the determination and assignment of the
rank value. In a rank attack scenario, the attacker falsifies its rank information and sends a
DIO message to its neighbors using a rank that differs from its genuine rank. As a result,
a rank attack affects the parental node selection mechanism in the network and degrades
network performance due to the selection of non-optimal parents on routing paths. Worst
Parent attack is a type of rank attack in which a node selects the worst parent according to
the Objective Function. As a result, a child node could find itself in a non-optimal routing
path having been deceived into seleccting the attacker as its parent. Therefore, the child node
will experience a degraded network performance compared to being on the optimum path.
However, this attack cannot be detected easily, since child nodes depend on their parents to
send data packets to the Root Node. Furthermore, this attack cannot be monitored or detected
by the attacker’s neighboring nodes since they can only see the rank value calculated by the

malicious node itself and cannot decide whether or not the rank value is genuine.

4.1.3. Hello Flood Attack

In RPL, a node which wants to join the network broadcasts DIS messages to the neigh-
borhood in order to inform them. Since there is no specific time interval defined in RFC
6550 [17] for the transmission of DIS messages, it may therefore differ according to the RPL
implementation. A new node transmits DIS messages using fixed time interval and awaits
a reply from other nodes within its transmission range. When one of the neighboring nodes
answers the DIS message with a DIO message, the new node joins the network by respond-
ing with a DAO message to nodes who send a DIO message. The main aim of the hello
flood attack is to generate large amounts of network traffic, and thereby keeping nodes and
routes to the Root Node excessively busy, with the attacker’s aim to consume the network’s

resources. The malicious node behaves like a new node who wants to join the network and

32

broadcasts DIS messages periodically to the neighborhood. Hence, neighboring nodes are
forced to reset their trickle timers or to to respond with a DIO. This situation can overload
RPL nodes by increasing the overhead of the control message, and hence result in network

congestion.

4.2. Proposed Neural-Network Based Intrusion Detection System

This section details the proposed neural-network-based IDS for RPL-based IoT networks.
Before introducing the IDS model, the feature set used in the training of the neural network

is detailed, along with other related information.

4.2.1. Feature Selection

In order to obtain an effective security solution against routing attacks in the IoT, it is im-
portant to determine the features that are suitable for training a machine learning system.
The selected features should contain sufficient information to distinguish malicious from be-
nign activities. Furthermore, they are preferred to have non-redundant information, as the
presence of too many features could adversely affect the training process. In order to select
suitable features for training the neural network, first the behavior of a network not under
attack is analyzed in terms of different performance metrics. Then, each attack is imple-
mented using different parameters and their effects on the network are analyzed. In a recent
study [235]], a feature set which covers most of the features related to RPL control messages
and data packets in the network was employed for the purposes of intrusion detection. In
the current study, in addition to this feature set, features related to the link layer were em-
ployed in the training process. A list of the features used as the input to the neural network

is presented in Table after which follows an explanation of each feature.

33

Table 4.1. Features

COUNT_DATA Number of data packets

COUNT_DIO Number of DIO messages

COUNT_DIS Number of DIS Messages

COUNT_DAO Number of DAO Messages

COUNT_MAC_DROP Number of dropped packets due to link-layer collisions

COUNT_NEIGH_DROP

Number of dropped packets due to link-layer neighbor allocation

COUNT_QUEUEBUF_DROP

Number of dropped packets due to link-layer queueing

COUNT_PACKET_DROP

Number of dropped packets due to link-layer packeting

RADIO_TRANSMIT_ENERGY

Energy consumed during transmission in the link layer

RADIO_LISTEN_ENERGY

Energy consumed during listening

MAX_VERSION

Maximum version number

MIN_VERSION

Minimum version number

DIF_VERSION

Difference between minimum and maximum version numbers

MAX_RANK Maximum rank value
MIN_RANK Minimum rank value
AVG_RANK Average rank value

MAX _DATA LEN Maximum length of data message
MIN_DATA _LEN Minimum length of data message

AVG_DATA_LEN

Average length of data message

MAX_TIME_BTW_DATA

Maximum time difference between data messages

MIN_TIME_BTW _DATA

Minimum time difference between data messages

AVG_TIME_BTW _DATA

Average time difference between data messages

MAX_TIME_BTW_DIO

Maximum time difference between DIO messages

MIN_TIME_BTW _DIO

Minimum time difference between DIO messages

AVG_TIME_BTW _DIO

Average time difference between DIO messages

MAX_TIME_BTW_DIS

Maximum time difference between DIS messages

MIN_TIME_BTW _DIS

Minimum time difference between DIS messages

AVG_TIME_BTW _DIS

Average time difference between DIS messages

MAX_TIME_BTW _DAO

Maximum time difference between DAO messages

MIN_TIME_BTW _DAO

Minimum time difference between DAO messages

AVG_TIME_BTW _DAO

Average time difference between DAO messages

COUNT_DATA is the total number of data messages destined to the Root Node. Every node

which joins the network sends a periodic data message to the Root Node each minute. As

a result of different situations such as the failure of a link connected to a parent node, local

or global repairs in the network, some nodes cannot join the network or send a message to

the Sink Node periodically for a specific time interval. Therefore, this situation provides

information related to the network’s stability.

COUNT _DIO is the total number of DIO messages destined to the root in the network. As

34

previously mentioned, DIOs are sent periodically to the neighborhood to provide information
about the node itself. The frequency of these messages can change according to the stability

of the network, which could signal anomalous behaviors in the network.

COUNT.DIS is the total number of the DIS messages sent by nodes in the Root Node’s
transmission range in the network. DIS messages are sent by nodes who want to join the
network or somehow to renew its parent node, and are seeking a path to the root. Therefore,
the number of DIS messages is an important feature which shows the state of the network.
Since the hello flood attack uses DIS packets in order to choke the network, this feature can
be effective in the identification of a hello flood attack, especially if the monitored node is

within transmission range of the attacker.

COUNT_DAO is the total number of DAO messages sent to the Sink Node in the network.
Since destination information is propagated in the upward direction with the help of DAO

messages, it can also provide clues about the state of the network.

COUNT_MAC _DRQOP is the number of dropped packets due to collisions in the link layer,
which uses CSMA/CA as a multiple access protocol. After a specific number of retransmis-
sions, the packet which has still to be transmitted is subsequently dropped. This feature and
the consecutive three features are important to distinguishing the reason for packets being

dropped in the network, especially for those dropped in different layers.

COUNT _NEIGH DROP is the number of dropped packets due to neighbor allocation in the
link layer. In the link layer, when there is a drop related to not being able to allocate buffer

space in the full neighbor queue, this counter is incremented.

COUNT_QUEUEBUF_DROP is the number of dropped packets in the link layer due to
queuing. Therefore, when the number of packets in the network increases, packets are

dropped due to non-allocation of space in the transmitter buffers.

COUNT_PACKET DROP is the number of dropped packets due to problems in the buffer
management module that manages incoming and outgoing packets in the CSMA/CA pro-
tocol. Once the packet is ready, 6LOWPAN passes it to the link layer for transmission.
Likewise, when packets are received, the link layer passes packets to 6LoWPAN via this

module.

35

MAX _VERSION, MIN_VERSION and DIF _VERSION are features related to the repair
mechanisms in the RPL, hence they concern version number updating. As previously men-
tioned, the version number is only incremented by the Sink Node in order to create a new
version of the DODAG. However, in several types of RPL attack, the version number can
be incremented by an attacker directly or indirectly. Therefore, the maximum and minimum
version number encountered during the feature extraction time interval is also selected as a
feature. The difference between the maximum and minimum version numbers is also se-
lected as a feature in order to take into account the changing rate of the version number. In
“version number attacks,” since the version number changes more frequently than is consid-

ered normal network behavior, it can be a strong indicator for the existence of this attack

type.

MAX_RANK, MIN_RANK and AVG_RANK are features related to the rank value calcu-
lated by each node. The rank value of a Sender Node is obtained from DIO messages broad-
cast to the Root Node. As previously described, the rank of a node represents the quality
of the route between the node itself and the root. The rank value could change according to
different routing metrics given in the Objective Function. A malicious node could change the
rank of a node directly or indirectly. Moreover, it could falsely advertise its own rank value.
Therefore, it is important to inspect the Sender Node’s maximum, minimum, and average
rank values in order to observe the effects of RPL attacks. It could be especially effective in
detecting “worst parent attacks,” as the attacker node chooses the worst neighbor (with the
worst rank value) as its parent in this attack scenario, which subsequently increases the rank
value of the attacker node. Since other nodes use the rank of their parent in calculating their
own rank value, the rank of nodes in the downward direction is increased cumulatively, and
thereby affects the MAX RANK and AVG RANK feature values.

MAX DATA LEN, MIN_DATA LEN and AVG_DATA _LEN report the length of the data
frame for all of the packets received by the Root Node. Since data messages could have
different data lengths, these three features provide information about the density of messages

transmitted within a specific time period.

The other features are time-related, providing information about the time intervals between
data and routing control protocol packets in the network. For each packet type, the minimum
and maximum time between two packets and also the average time difference is extracted
and recorded. Each of these features were extracted from “.pcap” files, which are the output

files of the Wireshark [38] packet analyzer tool. Other features could also be extracted from

36

the “.pcap” files such as source address, destination address, and timestamp, however, these
features are considered network-topology-specific, and are therefore not used for training

purposes.

Two more features were selected, but have yet to be implemented, with their evaluation to
be the subject of study in the future. First, RADIO_TRANSMIT _ENERGY represents the
energy consumed by nodes during packet transmission, and is a feature extracted from the
simulation log files via the “CollectView” tool in the Cooja simulator[39]. Due to the de-
structive effects of RPL attacks, nodes may have reason to attempt retransmission of packets
due to collisions. As a result of these retransmissions, the energy consumed by each node
could increase, which in turn could be taken as a sign of the network being attacked. Sec-
ond, RADIO_LISTEN _ENERGY is a feature for measuring power consumption as a node
listens to the network in order to receive packets destined for that node. When the network
becomes unstable, the trickle timer is reset more frequently than usual and the energy spent
by each node for listening increases by differing ratios. Therefore, this is an important feature

that can be used to identify attacks within RPL-based network.

4.2.2. Proposed IDS Model Based on Neural Networks

Today, numerous devices require connection to the Internet. However, this has increased the
level of traffic and consequently the risk of data leakage where local devices are connected
to the wider outside network. This can pose a major problem in terms of information shar-
ing, with data potentially easily accessible to third parties if the necessary precautions are
not employed. In wireless networks, the situation can become more acute, since such net-
works use an open medium. Whilst communication is conducted using physical cables in
wired networks, in wireless networks the communication signals are openly broadcast, leav-
ing a potential open door to potential attackers. Another issue in IoT networks is the use of
lossy and weak communication links. Especially in RPL-based [oT networks, differentiating
anomalous from normal network behavior is much more demanding than for other network
types, since packet loss could result in false positives and false negatives. Lastly, the nodes
in IoT networks could be affected by resource constraints, meaning that complex security
solutions might not be readily adaptable to such networks. For all these reasons, new intru-
sion detection systems should be proposed that are specifically designed for RPL-based 1oT
networks. Most RPL-based [oT networks are generally used for multipoint-to-point (MP2P)

37

communication, therefore data (such as sensor data collected from the environment) flows
are from leaf nodes to the Root Node. Root Node is usually responsible either for forwarding
collected data to other applications, or for analyzing the data locally. Since it is a single point
of failure, many IoT applications use a backup node. For instance, one of the Sink Node’s
neighbors may take the place of the Sink Node and it results in a failure of the design. More-
over, this node is generally a more powerful device than other nodes, and in the network
layer, the Root Node has a better view of the network than any other individual node in the
network due to the use of RPL as a routing protocol. Based on all of these assumptions,
the current thesis study proposes a centralized intrusion detection system located in the Root
Node for applications based on MP2P communication. Moreover, taking into consideration
the resource-constrained nature , a centralized intrusion detection architecture is expected to

be more efficient for computation and communication costs than a distributed system.

As the 10T network is getting larger, the RPL protocol generates a large number of routing
control messages collected in the Root Node. In order to process such a large volume of data,
this thesis proposes a neural-network-based IDS. With increasing popularity, deep learning
techniques are used in a number of wireless network domains in areas such as network secu-
rity, mobility analysis, network control, signal processing, and mobile data analysis. Recent
survey studies [40, 41] have also detailed the domains in which these techniques can be ap-
plied, as well as specifying their usage. The current thesis study investigates its usage in
developing an intrusion detection system for RPL-based IoT. The problem at hand is a clas-
sification task in machine learning, with the aim being to differentiate malicious attempts
from normal network behaviors, utilizing data collected in the Root Node. The aim is not
only to predict whether or not the network is being attacked, but to predict the type of RPL
attack with a high degree of accuracy. Therefore, the problem is explored within this thesis

study using both binary and multiclass classification.

First, the training and testing datasets were constructed. The steps taken for constructing
these datasets are detailed in the following chapter. Then, as a preprocessing step, data
normalization was applied to the datasets. It was considered important to perform feature
scaling prior to the training in order to achieve the quickest and most appropriate results.
Therefore, the Standard Scaler function of the Scikit library [42] was used to normalize the
features so that each feature has a mean value of zero (“0”) and standard deviation of unit
variance (“1”). The neural-network-based learning algorithm was implemented using the
following libraries: Scikit [42], Pandas [43]], Numpy [44] and Keras [45]. Keras is a neural

38

network API which can be used within Tensorflow [46]]. It can also be used as a deep learning
library. Moreover, Keras allows users to model and test a neural network quickly, since it
supports algorithms run on both CPU and GPU. The current study therefore selected Keras

for the proposed neural network implementation.

An illustration of the architecture is shown in Figure 4.1.| In order to calculate the weights
of the input set, four fully-connected neural network layers, each with different output sizes,
was used. As an activation function, the “Rectified Linear Unit” (ReLU) function was em-
ployed. The output size of the first layer started with the highest number of neurons, and
decreased by a factor of two in each consecutive layer. In other words, the number of neu-
rons for the four hidden layers were 128, 64, 32, and 16, respectively. Dropout layers were
situated between each fully-connected layer, with a 0.5 drop rate applied in order to pre-
vent overfitting. Then, a fully-connected layer with the Softmax function was included. The
output size of this layer depends on the problem type, namely binary and multiclass classifi-
cation. Two neurons were used in binary classifications, representing normal and abnormal
network behaviors. Four neurons were used in multiclass classifications, with one neuron
corresponding to normal network behavior and the others corresponding to each of the vari-

ous attack types addressed in this thesis.

39

Probabilities of Output Labels

0.2 No Attack
03 Version Number
) Attack
0.4 Worst Parent Attack
0.1 Hello Flood Attack
Inout Laver 4 Hidden Layer with ReLU Activation Qutput Layer
P y Dropout with 0.5 probability with Softmax Activation

Figure 4.1. Proposed neural network architecture

The number of hidden layers and neurons used in each of the layers were defined by trial and
error method. Although different approaches for selecting the number of hidden layers have
been used in the literature 48], none were proven to be an absolute solution. In [49],
it was stated that more than two hidden layers could be used in order to learn complex rep-
resentations (sort of automatic feature engineering). In considering this approach, different
numbers of hidden layers with various numbers of neurons were used in training the model.
In the preliminary experiments, networks from one single hidden layer up to five hidden lay-
ers were evaluated separately for their accuracy. Also the number of neurons and their orders
were changed in order to observe the corresponding effect. Ultimately, the model with four
hidden layers and a decreasing number of neurons, which gave the best result, was selected

for the remainder of the experiments.

One of the important features of the proposed neural network architecture was the use of

the ReL.U activation function for determining the weights of neurons. A number of different

40

types of activation function have been used in the literature such as ReLU, linear, sigmoid,
and hyperbolic tangent, but linear (ReLLU) activation is the simplest form of activation func-
tion used in machine learning. It is also very easy to train with this function, although it is
known that it cannot learn complex structures. Sigmoid and hyperbolic tangent functions are
nonlinear activation functions which are used in different kinds of application. However, the
problem related to these functions is that sigmoidal function is likely to be saturated in certain
situations which creates a challenge when adapting weights during training [S0]. Moreover,
the calculation of the error function in back-propagation becomes more challenging as the
derivative of these functions becomes more complex. ReLU is an activation function that
appears to be a simple linear function; however, due to its unique structure, it also allows
complex relationships to be taken into account. A demonstration of the ReLU function is
presented in Equation |1}, and the activation functions, along with their derivatives, are shown
in The activation functions and their derivatives are demonstrated in Figure 4.2 The deriva-
tive of the ReL.U is simple, which enables the neural network to calculate the weights easier
than for other activation functions. Therefore, due to of all these reasons, the ReLLU function

was selected as the activation function for the calculation of the weights in the current study.

flz) = (1)

z, >0

Activation Functions Derivatives of Activation Functions

3.0 7 o Sigmoid 1.00 | === Sigmoid
Tanh Tanh
2.5 e RelU 0.75{ = RelLU
m— Softplus

m— Softplus

2.0 —— Gaussian 0.50 | = Gaussian

Figure 4.2. Activation functions and their derivatives

One of the biggest problems researchers face whilst training a neural network is overfitting.
If the neural network produces a high level of accuracy during training and a low level of
accuracy during testing, this is a strong indication of overfitting. This means that the neural

network has not learned the patterns of the data but memorized them, and when a new dataset

41

is employed for the evaluation of the trained model, it subsequently fails to meet the expected
output. In order to avoid this problem, there is a method called “dropout,” which randomly
drops the output of certain neurons according to a predefined dropping rate. In each epoch,
each dropout layer will drop different neurons’ outputs, which allows the training process to
continue with a different configuration, and results in a network which has better general-
ization for different datasets. In the proposed method, a 0.5 drop rate was used, since some
studies [S1} 52] in the literature have shown that a drop rate of approximately 0.5 provides
the best results for regularization. As the dropout rate increases, the learning process slows
down and the training time needed for the convergence of the model subsequently increases.
Conversely, if the training time is limited or the training does not continue until the point of
convergence, a high dropout rate may be accountable for inferior results. The use of dropout
usually degrades the accuracy of the neural network at the start of training; however, by the

end, the usage of dropout provides superior results in converged neural networks [S1}152].

Another important component of the network is the Softmax activation function, which was
utilized in the last layer. The Softmax activation function is considered the best choice for
both binary and multiclass classification problems because it takes the output of the previous
layer and converts it into a probabilistic interpretation by normalizing them according to the
number of classes at the output. It provides an array of probability scores for label prediction
where the sum of these probability scores are equal to 1. The accuracy of the neural network

is also calculated by taking into account the highest probability between predicted labels.

In the literature, there are many optimizers used in order to adjust weights and learning rates.
In the current study, a popular optimizer known as “Adaptive Moment Estimation Algorithm”
(ADAM) is an optimizer used for updating weights in training. The ADAM optimizer cal-
culates learning rates according to the average of both the first and second moments of the
gradients, which refer to the mean and uncentered variance [53]]. In order to compare the
ADAM optimizer with existing options, a neural network model with two fully-connected
hidden layers of 1,000 hidden units, and that uses the ReLU activation function, was em-
ployed in order to compare the ADAM optimizer with existing optimizers such as AdaGrad,
RMSProp, Stochastic gradient descent (SGD) with Nesterov momentum, and AdaDelta. In
the comparative results, the ADAM optimizer showed superior convergence over the other

optimizers [S3]].

As a loss function, “Sparse Categorical Crossentropy” was used in the design, since it can

be used in both binary and multiclass classification. Categorical Crossentropy requires that

42

the label for the output should be one-hot encoded. However, with the help of the Sparse
Categorical Crossentropy loss function, the dataset output labels are left as they are and there

is no need to modify the labels.

The model was trained for 100 epochs, which was also selected experimentally. As the
dropout rate between the hidden layers increases, the convergence time needed for train-
ing also increases. Therefore, the proposed neural network model, using the architecture
as shown in Figure§d.1] was trained and tested using a varying number of epochs with the
10-fold cross-validation technique. According to the results, the best accuracy on the test
dataset was obtained with 100 epochs. Therefore, 100 epochs was used for training the

neural network for the remainder of the experimentation.

For training and testing the model, two different schemes were employed: *“10-fold cross-
validation” and “60% percentage split.” In the percentage split scheme, the same dataset was
divided into two subsets, as training and testing sets, according to the given percentage rates.
Because of the sample variability between test and training data, while the training dataset
should provide a low error rate and with a high rate of accuracy, the test dataset can give
a higher error rate but with a lower accuracy level. Also, the model could overestimate the
training data since it uses a specific portion of the data, which results in a failed evaluation
due to overfitting. In order to avoid these kinds of problems, besides defining specific per-
centages to be applied for training and testing, the k-fold cross-validation technique [54]]
was employed. This technique randomly divides the dataset into k different groups of equal
size and iterates the training and testing for k times. In each iteration, it keeps a different
fold for testing, and performs the training using the remaining dataset. With the help of this
technique, the aim is to cover all of the dataset for both training and testing purposes and to

predict more accurate and non-variable results.

43

5. EXPERIMENTS AND RESULTS

In this chapter, the simulation environment with its parameters and the performance metrics
applied in the analysis of the experimental routing attacks are detailed. Also, the performance

of the proposed IDS solution is analyzed and discussed in this chapter.

5.1. Experimental Settings

5.1.1. Simulation Environment

To simulate [oT networks, different simulators have been used by researchers in the literature
such as Cooja [39], Omnet++ [55]], NetSim [56]], and NS-3 [57]. After some research into
these simulation tools, the “Cooja Contiki Simulator 2.7 was decided to be used, since it has
RPL implementation. Moreover, the Cooja Contiki simulator has a user-friendly Graphical
User Interface (GUI) and has also been used in numerous other research studies. Cooja can
be used both with hardware on a real-time basis, and also with programmable nodes within a
simulated environment. For RPL attack analysis, a simulator interface is used to implement
different routing attacks. Cooja allows the researcher to simulate the RPL operation in detail,
and also to implement routing attacks with a high degree of flexibility. The RPL protocol is
implemented in the Contiki OS using the name “ContikiRPL.” By modifying this protocol, it
is then possible to simulate attacks and, by using built-in measurement tools in the simulator,

the effects of each attack on the network can be analyzed.

In the simulation, “Tmote Sky” [S8] nodes were employed to simulate [oT devices. Tmote
Sky is a low-power wireless module used in monitoring applications. The Cooja simulator
creates a node type for each sky node and allows the user to simulate the same node virtually.
“Sink Mote” is a border router in the network which connects other nodes to the Internet by
collecting data from the network and helping the nodes to create the DODAG structure.
“Sender Mote” represents [oT devices in the network by sending periodic data messages to
the Sink Node by using its preferred parent constructed in the DODAG. When the preferred
node has some data packets to forward, it sends it to its own parent and through this approach,
the packet is forwarded until the Root Node received it. The “Malicious Mote” is another

Sender Mote, but its mission is to manipulate the network and decrease the performance of

44

the network. In order to perform a realistic simulation in Cooja, the simulation parameters

given in Table[5.1] were used in the experiments.

Table 5.1. Cooja simulation parameters

Simulation Parameters
Simulation tool Contiki 2.7 Cooja simulator
Mote type Sky Mote
Simulation run time 60 mins
Total number of Sender Nodes | 50
Sink Node 1
Radio medium Unit Disc Graph Medium: Distance Loss
Transmission range 50m
Interference range 100m
Mote start delay 60 secs
Seed type Random Seed
Positioning Random Positioning
Simulation area 125x125m

For the performance evaluation, additional data-gathering methods are used during the sim-
ulation. There is a tool in Cooja called “CollectView” which helps users to extract detailed
information related to the network. While sending a periodic data packet to the Sink Node,
a Sender Node includes additional information related to its condition such as consumed en-
ergy and ETX metric. The CollectView interface allows the user to both access and use these
data. To obtain information regarding all the transmitted packets in the network, “Headless
Radio Logger” is used, which creates a “.pcap” file in the Cooja directory and records every
sent packet into the file. The “Simulation Script Editor” is used to start/stop simulations
automatically, and is also used to log all of the “print” commands. These “print” commands

can also be used in order to gather information related to network behavior.

5.1.2. Performance Metrics

The effects of attacks on the network were analyzed using four metrics:

e Packet delivery Ratio
e End-to-end delay

e Overhead

45

e Power Consumption

All four of these parameters are the average of the corresponding parameters collected from

each node in order to observe the general behavior of an [oT network.

Packet delivery ratio (PDR): This provides an indication of packet loss due to interference,
bandwidth, congestion, or some other types of problem in either a wired or wireless environ-
ment. It is represented as a ratio of the number of packets having reached a destination node
over the number of packets destined to this node, and can be used to measure the overall
health of the network. In order to provide continuous data flow from IoT devices in the net-
work, the packet delivery ratio should be as high as possible. The formula for PDR is given
in Equation

T ' N
PDR otal number of packets received by the Root Node

~ Total number o f packets transmitted by other nodes * 100 @
End-to-end delay (E2E Delay): This represents the time passed for a packet to successfully
reach the destination node from the source node. Since, the communication pattern of the
proposed network is multipoint-to-point (MP2P) and the nodes use other nodes to relay their
packets to the Sink Node, the end-to-end parameter consists of transmission delay, processing
delay, and routing delay for each hop. Therefore, in each hop from source node to the
destination, these processes append additional time to the E2E delay. Lost and dropped
messages are not taken into account in calculating the E2E delay. The formula used to

calculate the E2E delay is given in Equation

Y on_ received time — sent time

End-to-end delay = (3)

n

where n is the total number of received packets by the Root Node.

Overhead: In order to manage the networking operations, RPL protocol uses different types
of message packets such as DIO, DAO, and DIS. In a stable network, these packets are used
with decreasing frequency. When the stability of a network is disturbed, the number of these
packets increase, and this increase can then start to detrimentally affect the network. The

total number of these topology control messages are noted as “Overhead” in the [oT. The

46

formula for calculating overhead is given in Equation [}

Overhead = total number of DIO + total number of DAQO + total number of DIS (4)

Power Consumption: Due to the limited resources of IoT devices, power consumption
becomes critical for the nodes. In RPL topology, the nodes receive and transmit for a certain
amount of time with smaller duty cycles. If the stability of the network is disrupted, the
nodes need to increase the duty cycle of being active in order to perform certain necessary
operations, and this results in increased power consumption. The power consumption is the

sum of the listen and transmit power in the network.

The proposed IDS was evaluated with the following four metrics:

e Precision
e Recall
e Fl-score

e False Positive Rate (FPR)

Precision: This is a ratio of the number of correct positive predictions divided by the total

number of positive predictions. The formula for precision is given in Equation [5}

TP
Precision = m—w (5)

where TP is True Positives and FP is False Positives.

Recall: This is a ratio of the number of correct positive predictions to the total number of

positives. It is also known as the detection rate. The formula for recall is given in Equation 6}

TP
Recall = m—m (6)

where TP is True Positives and FN is False Negatives.

F1-score; This is a measure of a test’s accuracy. It uses both precision and recall in order to

compute the F1-score, which is the harmonic mean of the precision and recall. The F1-score

47

can reach the value of 1 with perfect precision and recall and O as the worst condition. The

formula for F1-score is given in Equation

Precision . Recall
F1- = 2. 7
seore Precision + Recall @)

False Positive Rate (FPR):: This is a ratio of the number of incorrect positive predictions

divided by the total number of negatives. The formula for FPR is given in Equation 8}

rp
FalsePositiveRate = FPLTN (8)

where FP is False Positives and TN is True Negatives.

5.2. Analysis of Routing Attacks

In this section, the effects of routing attacks against RPL, namely “version number attack,”
“worst parent attack,” and “hello flood attacks™ are investigated. Three different node types
are used for each attack simulation. The first is the “Sink Node,” which is responsible for
connecting data from the remaining nodes. The second is the “Benign Node,” which is a
reliable and trustworthy node operating in the network. The third is the “Malicious Node,”

which behaves maliciously and aims to harm the network.

In the literature, there are different simulations conducted with varying numbers of nodes.
Most of them use fewer number of nodes while simulating the network [l 8] . However,
in order to observe the effects of these attacks properly, higher number of nodes should
be employed for the simulation. Therefore, in the current study, one Sink Node and 50
Sender Nodes were elected to be used. In order to address different types of distribution, the
simulations were run several times with “Random Seed,” which creates nodes using random
coordinates according to predefined intervals. Simulations with different network topologies
were repeated five times for each attack type. For the network under no attack, 20 different
network topologies were created. Using this approach, the simulations can address different
types of network topology. While simulating a network under attack, the attacks were started
at the 10th minute of the simulation in order to leave enough time for the network to regain

stability by using RPL.

48

5.2.1. Analysis of Network under No Attack

To compare the effects of each attack, it is also necessary to simulate the same network set-up
without an attack occurring to observe the “normal” network behavior as a baseline. For this
purpose, a simulated IoT network with one Sink Node and 50 Benign Nodes was executed
20 times, and the log files of each network were recorded. In the topology design, except for
the Root Node, the nodes send periodic data messages to the root at the rate of one packet

per minute. This simulation emulated a typical sensor network application.

An illustrated sample network topology can be seen in Figure The RPL protocol starts
to create routing paths according to the Objective Function, and each node in the network
chooses its parent according to this function. Several Objective Functions are presented for
parent selection in RPL. The most popular are MRHOF [4] and OFO [59]. According to
research conducted in 2016 [60], MRHOF has a better PDR and lower E2E delay results
for 50 nodes and 50 packets/min network density. Since MRHOF is therefore a better fit
for the current study’s set-up, it was selected for further simulations. ETX is the “expected
transmission count” which measures the quality of the path between two nodes, and the
MRHOF Objective Function decides the parent of each node by taking into account the ETX

value [61] and Energy parameters.

49

a Network EEB
View Zoom
€
@
o e @0 o
®
© ®® ®
@ @
® @ ®
€3
LEXD) ® ©
o @& ®
@
© ® &
L] Q o
© s €0
€
@
@ ®®
@ @
® % e
® @ @f

Figure 5.1. A sample simulated network

Simulation time is also an important parameter which has to be decided carefully. As can be
seen from the literature, most studies are conducted over short time intervals (5-20 min) [7,
8, 135] ; however, due to the nature of the RPL topology, it also takes time to create a DODAG
and therefore time for a network to restabilize following an attack having been resolved. The
number of nodes also impacts on the time required to restabilize the network. Moreover,
the attacker nodes could also slow down the construction of the DODAG. Therefore, in
the current study, a 60 minute simulation period was chosen in order to better observe the

changes affecting the network over time.

Each simulation was therefore conducted for a period 60 minutes, and were each recorded
using “.pcap” and “log” files. The result of the 20 simulations are given in Figure [5.2]
where PDR started at nearly 96% during the first 10 minutes, converged to 99% after around
20 minutes and then remained at that level. The end-to-end delay was nearly constant (ap-

proximately 300 milliseconds) throughout the simulation.

50

Packet Delivery Ratio

100

95 1
90 1

85 A

—— No Attack

BD T T T T T T
10 20 30 40 50 60

Simulation Time(min)

Packet Delivery Ratio(%)

End to End Delay

M
(=]

1.5

1.0

0.5

End to End Delay(sec)

0.0 T T T T T T
10 20 30 40 50 60

Simulation Time({min)

Figure 5.2. PDR and E2E delay metrics of network without attack

5.2.2. Analysis of Network under Version Number Attack

It is one of the most effective attack types against RPL-based IoT networks. The “Version
Number” is one of the parameters in the DIO, and is used to trigger global repair mechanism.
Normally, the version number can only be modified by the Sink Node; however, an attacker
can manipulate this number whilst forwarding the incoming DIOs to other nodes. When
DIO message with a different version number is received by a node, the repair mechanism is

automatically started, resulting in the network moving to an unsteady state.

One of the most important parameters while simulating the version number attack is the
frequency of version number increase triggered by the malicious node. According to the
current study’s experimental results, it was observed that increasing the version number in
every transmitted DIO causes the network to become choked, and thereby impossible to

observe the effect of the attack. Experiments were therefore conducted in order to select the

51

most appropriate version number frequency of increase for the purposes of the experimental
testing. According to the results, it was decided to use two different variations for the attack
simulation. First, an attacker increases the version number by 1 each minute, and second,
the malicious node increases the version number by 1 every five minutes. After the attack
frequency was selected, it was implemented by modifying the “dio output()” function within

the “rpl-icmp6.c” file with the help of a timer.

To observe the effects of the version number attack with different numbers of attackers, four
different cases were created for the purposes of executing test simulations, as shown in Table

For each attacker type, five simulations were conducted.

Table 5.2. Number of attackers in Version

Number Attack
Attack Case | Number of Attackers (%)
Case 1 1 2%)
Case 2 3(6%)
Case 3 5 (10%)
Case 4 10 (20%)

In the version number attack implementation, one Sink Node and 50 Sender Nodes with
varying number of attackers were used. These nodes were placed randomly in each simula-
tion in order to represent more network settlements. The effect of the version number attack
on a minute-by-minute basis for four different attacker densities is illustrated in Figure [5.3]
Even with just a 2% attacker ratio, the PDR can be seen to drop dramatically down to 10%.
After the 40th minute of simulation, the PDR increased slightly up to 20%. For the simu-
lations using a 6%, 10%, and 20% attacker ratio, the PDR was seen to remain constant at
around 10% until the end of the simulation. Therefore, where the malicious node increased
the version number by a factor of 1 every minute, even in the lightest attack case (2%), the
network was then unable to rebuild the DODAG and reachieve a stable position. Because of
the increase in the number of topology control messages the Sender Nodes mostly could not

transmit their periodic messages to the Sink Node.

52

Packet Delivery Ratio

100 =
7
\
-
\
I\ \
80 A . "' \
. \
_ "' ‘._ 1
= I' 5 ‘-.
5 AE
E 60 - AP —— No Attack
> '| '-1 —== 2% Afttacker
o 'l. . '-,. 6% Attacker
E]' B -.1I 10% Attacker
o 404 s\ 1] —-= 20% Attacker
% l' P
5 '._] \\\
Vs -
20 4 AT P
N\ -_.. _‘ . ..-"'t
\‘\. . _-El-.-.e...rm-v-ﬂi"'_. e T e e Pt e
0 T T T T T T
10 20 30 40 50 60

Simulation Time(min)

Figure 5.3. PDR for Version Number Attack - 1 min. variation

End-to-end delays for the four different attacker densities are illustrated in Figure [5.4] In
all of the cases, the E2E delay increased dramatically from 300 ms up to a maximum of 4
seconds. On average, the number of attackers did not significantly impact the E2E delay

value. Even for the lightest attack case (2%), the average E2E delay increased by 1,000%
compared to the baseline.

53

End to End Delay

30
— No Attack
—-=—= 2% Attacker
25 | 6% Attacker
10% Attacker
—-= 20% Attacker
g 20
n
-
o
a
- 15 4
=
18]
2
£ 10
L
5 - - -
e, W e ot e b
A =T
[—— ..n.-'f'.:.-'"-' -
0 T T T T T T
10 20 30 40 50 60

Simulation Time(min)

Figure 5.4. E2E delay for Version Number Attack - 1 min. variation

The second type of attacker increased the version number every 5 minutes. The PDR variance
for this second type of attacker is illustrated in Figure[5.5] During the first 5 minutes of attack,
the PDR dramatically dropped to around 40% for all attack cases. Following the 20th minute
of simulation, the PDRs started to increase, recording different levels for each case. In the
2% attacker case, the PDR stabilized at around 70%. For the 6% and 10% attacker cases, the
PDRs oscillated between 55% and 65%, whereas the PDR in the 20% attacker case oscillated
between 50% and 60%.

54

Packet Delivery Ratio

100
80 1 1‘
_ 1’l ~ RN e ————
BE" E f’ LY ‘,’ “‘i\. .—"'
=1 ; A ” - .
= s, *. i PO LR, oo
T 60-) SN R R S
Fi P, ., K T
'% ’ .{ vy \' . e .
g NS O
2 | / NS
T N/ A7
2 40 N
g Wt
(%]
1]
e —— No Attack
204 ——- 2% Attacker
6% Attacker
10% Attacker
—-= 20% Attacker
0 T T T T T T
10 20 30 40 50 60

Simulation Time(min)

Figure 5.5. PDR for Version Number Attack - 5 min. variation

The E2E delay for the second type of attacker is illustrated as shown in Figure [5.6] Up until
the 20th minute of simulation, the E2E delay increased constantly up to 2 seconds, which is
nearly seven times the baseline value. After the 20th minute of simulation, the end-to-end
delays started to decrease according to the attacker density. For the 2% and 6% attacker
cases, the end-to-end delay stabilized at around 1.2 to 1.4 seconds interval. For the 10%
and 20% attacker cases, the interval of stabilization for the E2E delay was around 1.5 to 1.8

seconds.

55

End to End Delay

5
— No Attack
—-=—= 2% Attacker
6% Attacker
47 ----- 10% Attacker
—-= 20% Attacker
"
1)
n
> 31
o
1)
[m]
=
&
o 24 f}a
e ‘A:Q\ /
=
~
= "~ -
w " { ‘%’.” - h\‘_.-'\\ ‘.(?":"' """""" \+ —— e
By VoL T N, SN _ S
14 A ek T
. i
L s A
=,
=i
0 T T T T T T
10 20 30 40 50 60

Simulation Time(min)

Figure 5.6. E2E delay for Version Number Attack - 5 min. variation

5.2.3. Analysis of Network under Worst Parent Attack

The worst parent attack is a different version of rank attack which aims to change the rank
parameter by manipulating the calculation method and thereby causing harm to the network.
As previously mentioned, the rank parameter is very important in helping child nodes to
select the best parent for themselves and to create routes to the Sink Node from each node.
Therefore, if a malicious node manages to successfully manipulate the rank parameter, the

action can result in the network becoming unstable.

Changing rank values can be detected by the RPL protocol since RPL has certain control
mechanisms in place to note illegal rank parameter changes. The “Loop Detection,” “Loop
Avoidance,” and “Greedy DODAG Parent Selection” rules can limit the malicious node from
changing its rank value to some other desired value. In this attack type, instead of changing
the rank value, the parent selection algorithm is manipulated. There is a function called “best

parent” in the “rpl-mrhof.c” library which is used to select the parent with the lowest rank.

56

Using this function, the attacker chooses the parent node with the highest rank instead of
the lowest. Since rank parameter increases when the quality of link between a node and the
Root Node decreases, selecting a parent with a higher instead of a lower rank can weaken
the established link between the node and the root. Through the modified parent selection
algorithm, child nodes which will start to use the malicious node as a parent node. If there is
more than one attacker in the path between the node itself and the root, the effect of a worst
parent attack is also increased. This attack aims to decrease the link quality between nodes,
decrease PDRs and increase end-to-end delays, since the average number of hops can also

increase.

In the simulated worst parent attack, one Sink Node and 50 Sender Nodes were used. To
increase the variety of the attack and to observe the effect of different numbers of attackers
in the network, four different attacker densities were used. For each attacker type, a total
of five simulations were conducted with a varying number of attackers. The number of
attackers and the corresponding case name are presented in Table These nodes were

placed randomly in each simulation.

Table 5.3. Number of attackers in Worst Parent

Attack
Attack Case | Number of Attackers (%)
Case 1 1 (2%)
Case 2 3 (6%)
Case 3 5 (10%)
Case 4 10 (20%)

The PDRs for four different attacker densities can be observed in the illustration in Figure[5.7]
The 2% attacker scenario PDR dropped slightly for the first 5 minutes; however, after that
point, the network tolerated the effects of the attack, the PDR increased, and the network
performed as if there was no attack taking place. In the 6% attacker case, the PDR was
slightly below what was considered the normal behavior of the network, but did not drop
below 95%. In the 10% attacker case, the attack caused the PDR to drop below 90% during
the first 5 minutes of the attack, and continued to drop to 85% and then remained at that level
throughout the simulation. In the 20% attacker case, the PDR immediately dropped to 70%
in the first 5 minutes. At a point 20 minutes from the start of the attack, the PDR slightly

57

increased to 75% and the remained at that level until the end of the simulation. The PDR
decreased from 99% to nearly 70% in the worst case, which means in excess of one packet in
every four was dropped and therefore unable to reach the Sink Node, which can cause serious
problems where the data being sent from the node is considered to be of some importance.

Packet Delivery Ratio
100

90 +
=
E p
E 80 1
\
g \ o~ -
2 \ . - ~.—. —_—
T _ ~ T T
a] /‘/ . P ~
o 70 \ N
¥4
(=]
1]
=8
—— No Attack
604 —=- 29% Attacker
6% Attacker
- 10% Attacker
—-= 20% Attacker
50 T T T T T T
10 20 30 40 50 60

Simulation Time(min)

Figure 5.7. PDR for Worst Parent Attack

E2E delays for the four different attacker densities can be observed in Figure The effect
of the attack with a 2% attacker density in unrecognizable by examining the E2E delay. In
the 6% attacker case, the E2E delay is slightly above that considered the normal behavior of
the network, but there was still no recognizable difference from the baseline. However, in the
10% attacker case, the attack caused the E2E delay to increase by 300% in the first 5 minutes
of the attack, and remained at that level for the remainder of the simulation. Similarly, in
the 20% attacker case, the E2E delay peaked at 600% of the baseline level during the first 5

minutes of the attack, and then decreased slightly up until the end of the simulation.

58

End to End Delay

2.5
—— No Attack
——=- 2% Attacker
6% Attacker
2.0 4 <-e-e 10% Attacker
—-- 20% Attacker
o .
E ! \'\
= 1.5 ! ~ e ——— o ———— -,
o . I T —— ~.— o
3 / mTT
E !
i /
2 1.0 P
© R L LA LR
2 ,, ,,,,,,,,
/
I
0.5 A iy K
=5 Y e
0.0 T T T T T T

Simulation Time(min)

Figure 5.8. E2E delay for Worst Parent Attack

In both the 2% and 6% attacker cases, the PDR and E2E delay metrics were not found
to deviate from the baseline. Instead of changing the rank value directly, the malicious
node tried to indirectly impact the network parameters, making the attack undetectable and
duplicitous. Since these two cases did not affect the performance metrics being monitored,
both the 2% and 6% attacker cases for worst parent attack were not considered as an attack

during training, validation, or testing of the developed intrusion detection system.

5.2.4. Analysis of Network under Hello Flood Attack

The hell