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ÖZET

DÜĞÜM ÖRTÜSÜ PROBLEMİ VE KABLOSUZ AĞLARDAKİ
UYGULAMALARI ÜZERİNE BİR ÇALIŞMA

YİĞİT, Yasin

Doktora Tezi, Uluslararası Bilgisayar Anabilim Dalı
Tez Danışmanı: Doç. Dr. Orhan DAĞDEVİREN

Aralık 2020, 86 sayfa

Nesnelerin interneti kavramının giderek önem kazandığı günümüz dünyasında,
birçok cihaz aynı ağ üzerinde ortak bir hedef için dağıtık olarak çalışarak günlük
hayatımızı ve üretim süreçlerini önemli ölçüde kolaylaştırmaktadır. Bu tür ağlarda
bağlantıların izlenmesi ve meydana gelen kopmalarda ağı yeniden ayaklandırmak
büyük öneme sahiptir. Bu noktada ağlardaki bağlantıları izlemek için düğüm örtüsü
problemi karşımıza çıkmaktadır. Düğüm örtüsü, çözüm kümesine giren düğümlerin
çizge üzerindeki bütün bağlantıları izleyebildiği bir yapı sağlamaktadır. Bir hata
sonucu ağdaki düğüm örtüsü özelliği bozulduğunda, ağı tekrardan düğüm örtüsü
konumuna getirmemiz gerekir. Bu durumda karşımıza özkararlılık kavramı çık
maktadır. Özkararlık sistemin olası bir hata durumunda dış müdehale olmaksızın
kararlı hale erişebilmesi olarak tanımlanır. Telsiz duyarga ağları gibi tasarımsız
yapılarda enerjinin ve kaynakların iyi yönetilmesi ve kullanılması gerekmektedir.
Bu kısıtlamalardan yola çıkarak kapasite kısıtlı çizge teorik problemler önerilmiştir.
Bu çalışmada iki önemli çalışma alanı olan özkararlılık kavramını ve kapasite kısıtlı
problemleri düğüm örtüsü çatısı altında birleştirerek özgün algoritmalar önermek
teyiz. Önerdiğimiz algoritmaların doğruluğunu teorik olarak ispatlayıp, benzetim
sonuçlarını vererek tezimizi güçlendirimekteyiz. Önermiş olduğumuz SSCVC1
ve SSCVC2 algoritmaları gerek zaman gerek düğüm örtüsü performansı açısından
tüm rakiplerinden daha başarılı sonuçlar vermişlerdir. Enerji kullanımı açısından,
SSCVC1 algoritması enerji tüketimi en az olan algoritma olmuştur. Önerilen algo
ritmalara ek olarak bazı önemli düğüm örtüsü algoritmalarının kapsamlı performans
değerlendirmelerine yer verilmiştir.

Anahtar sözcükler: Düğüm örtüsü problemi, dağıtık algoritmalar, özkararlılık,
çizge teorisi, kapasite kısıtlı çizge teorik algoritmalar, kapasite kısıtlı düğüm örtüsü
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ABSTRACT

A STUDYON VERTEX COVER PROBLEM AND ITS
APPLICATIONS ON WIRELESS NETWORKS

YİĞİT, Yasin

PhD in International Computer Department
Supervisor: Assoc. Prof. Dr. Orhan DAĞDEVİREN

December 2020, 86 pages

In today’s world, where the concept of the Internet of Things is becoming
increasingly popular, many devices work distributed over the same network for a
common goal, significantly simplifying our daily life and production processes. In
such networks, it is of great importance to monitor connections and to make the
network available in case of breaks. At this point, in order to monitor connections
in networks, we encounter the vertex cover problem. The vertex cover provides a
structure where the nodes entering the solution set can monitor all connections on
the graph. When the vertex cover property in the network breaks down as a result
of a break, we need to bring the network back to the property where satisfies the
vertex cover. In this case, the concept of selfstabilization arises. Selfstabilization
can be defined as the ability of the system to reach the desired stable state again
without external intervention in the event of a possible fault. In adhoc structures
such as wireless sensor networks, energy and resources need to be well managed and
used. Based on these constraints, capacitated graph theoretical problems have been
proposed. In this study, we propose novel algorithms by combining the two sig
nificant fields of study, the concept of selfstabilization and capacitated problems,
under the roof of the vertex cover problem. Having proved theoretically the correct
ness of the proposed algorithms, we shore up our thesis by giving simulation results.
The proposed SSCVC1 and SSCVC2 algorithms provide better results than all of
their counterparts in terms of both time and node cover performance. In terms of en
ergy consumption, the SSCVC1 algorithm has become themost efficient algorithm.
In addition to the proposed algorithms, comprehensive performance evaluations of
some important vertex cover algorithms are included in this dissertation.

Keywords: Vertex cover problem, distributed algorithms, selfstabilization,
graph theory, capacitated graphtheoretic algorithms, capacitated vertex cover
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PREFACE

This doctoral thesis has been realized as part of the TUBITAK ARDEB
1001 project coded 215E115. Following the design and implementation of the
integrated vertex cover algorithms discussed in the master’s study, it introduces a
new vertex cover problem and algorithms that provide the properties of selfstability
and capacity constraints. After the oneyear course period, the thesis was finalized
in a total of 6 semesters with the proposal and the thesis monitoring process. One
of the thesis period’s semester was conducted at Heidelberg University.

I hope that the use of this thesis will not be limited within the boundaries of
graph theory but in any field in which have faulttolerance and selfstabilization.

İZMİR

18.12.2020 Yasin YİĞİT
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1. INTRODUCTION

Tiny smart devices have been frequently involved in our daily lives after the
development of chip technologies. These devices create networks and are able to
work independently and distributed manner to realize a common aim, such as col
lecting data from the environment like forests, farms, and even oceans. In the mod
ern era, the Internet of Things (IoT), cloud computing, and wireless sensor networks
(WSN) are extensively used by researchers, companies, and developers. New chal
lenges and problems which stem from the increasing usage of distributed systems,
attract the attention of researchers who come from different academic fields like
computer science, electrical engineering, and combinatorial mathematics, etc.

A WSN is a set of devices that can collect various data such as tempera
ture, light, and humidity from the environment and communicate with each other
to send the gathered data to a processing center (Akyildiz et al., 2002). WSNs have
been studied in the literature in areas like multihop data transmission, construc
tion of beacon nodeset, and coverage hole detection (Kavitha and Caroline, 2017;
Bin and Jiang, 2018; Feng et al., 2018). Due to the small dimensions, the nodes
in WSNs, which are also called motes, usually have limited energy source, trans
mission range, processing power, and memory. Hence, the applications and algo
rithms must use wireless sensor devices in an energyefficient manner to increase
the network lifetime (Gowrishankar et al., 2008). In such a network, due to envi
ronmental challenges or technical problems, nodes could crash and links between
nodes could disconnect. Selfstabilization is used to maintain the robustness of the
system by keeping its legitimate state against any fault such as link failures, crashes,
or message drops. A distributed system which reaches the legitimate state without
any external aid in case of any fault or arbitrary initial state and keeps the system
in this stable configuration until a fault occurs, is regarded as selfstabilizing sys
tem. Selfstabilization has been introduced by Dijkstra to solve the mutual exclusion
problem on ring topologies (Dijkstra, 1974). Nowadays, selfstabilization is used
extensively in graphtheoretical problems like vertex cover, maximal independent
set, and graph matching. Due to the restricted structure of tiny wireless devices and
environmental challenges, covering and communication capacities of these devices
are limited. Thus, each device can monitor and communicate the restricted number
of links assigned to them. To solve this type of problem, researchers have proposed
graphtheoretical problems which are restricted and more challenging versions of
the original problem.

We can model a WSN as a graph G(V,E), where V is the set of nodes and E
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Figure 1.1. Network model.

is the set of links between the nodes. Figure 1.1 shows a sample network model as
a Unit Disc Graph (UDG) where the dotted circles are the transmission ranges and
solid lines show the communication links between the nodes.

The nodes in WSNs are connected in an adhoc manner and failure in some
nodes may cutoffs the available paths and affects the routing performance. Hence,
in these networks, link monitoring is one of the vital tasks which must be carried on
by a minimum subset of nodes to minimize the energy consumption overhead. Ver
tex cover (VC) is one of the wellknown problems in graph theory which has many
applications in realworld tasks such as optimizing of wormpropagation for network
security (Filiol et al., 2007), solving Single Nucleotide Polymorphism problem in
computational biochemistry (Lancia et al., 2001) and link monitoring in wireless
sensor networks (Erciyes, 2013). A vertex cover of a given undirected graph G(V,E)
is a set C such that ∀e ∈ E is incident to at least one vertex of C ⊆ V . Karp has
proved that the optimization version of the problem is in the NPHard complexity
class (Karp, 1972). Capacitated vertex cover (CVC) problem is a generalized ver
sion of VC which restricts the nodes with bounding number of edges covered by an
individual vertex in a graph.

This thesis contributes to the literature as follows:

• We provide an extensive literature review for vertex cover problems in differ
ent settings like distributed, selfstabilizing, and central. We investigate these
algorithms and compare them theoretically, so we show their theoretical com
parison against each other.
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• We provide performance evaluation of the reviewed algorithms as below:

– We evaluate central vertex cover algorithms that exploit vast of design
techniques.

– We investigate vertex cover in distributed environment where we extend
the studywhichwe conducted as amaster thesis. We add new algorithms
to compare and provide testbed experiments to understand the behavior
of algorithms in realworld applications.

– In order to understand the capacitated vertex cover problem, we compare
performance of the linear programming algorithms which are proposed
to solve the capacitated vertex cover algorithm.

– We implement vertex cover algorithms and independent set algorithms
to perceive performance of link monitoring performance while the first
group of algorithms is designed by using graph matching algorithms and
the second group is using the greedy approach to solve independent set
which is complementary to vertex cover solution on a given graph.

• Having made a comprehensive investigation and analysis, we see the strengths
and weaknesses of different vertex cover algorithms both theoretical and prac
tical. By using this knowledge, we propose two novel algorithms named SS
CVC1 and SSCVC2 that combine capacitated and selfstabilizing settings.
SSCVC1 algorithm stabilizes at mostO(n) while SSCVC2 stabilizeO(n2)
step. As far as we can understand from our studies, both algorithms are the
first contribution to the capacitated and selfstabilizing vertex cover problem.

We organized the dissertation in two parts: the first part provides analysis
and performance evaluations of algorithms while the second one presents our novel
algorithms. The detailed explanation of the organization of the thesis is as follows:

• In Chapter 2, we give some information about the distributed system, dis
tributed algorithm and selfstabilization to warm up the thesis.

• We formulate and deeply explain the vertex cover problem in Chapter 3 to
clarify the problem and give our motivation and realworld application of the
problem in this chapter.

• We provide related works for vertex cover problem which used in different
types of domains in Chapter 4.
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• We implement the analyzed algorithm and provide comprehensive perfor
mance results in Chapter 5.

• In Chapter 6, we present two algorithms to construct the capacitated vertex
cover solution on a given graph with selfstabilization property. We theo
retically proved these algorithms and evaluated on the simulator with self
stabilizing algorithms which were modified to satisfy the capacitated prop
erty.

• We finalize the dissertation in Chapter 7 by outlining and summarizing the
results and findings of our study.
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2. BACKGROUND

2.1 Distributed Systems, Graphs and Distributed Algorithms

Over the past two decades, distributed systems have gained importance in the
commercial and academic areas because of geographical distribution, speeding up to
computation time, resource sharing, and fault tolerance for a single point of failure.
In order to talk about the existence of a distributed system, the following 3 criteria
must be met.

• Multiple processing units: The system should contain more than one pro
cessing unit with an individual thread of control.

• Interprocess Communication: Each processor should communicate with
its neighbor processor over an message or shared memory that is fetched in a
finite amount of time.

• Common Aim: Each processor must interact with others to realize a common
aim.

A distributed system is abstracted as a graph which is a tuple G(V,E) where
V is the set of vertices (processing units) and E is the set of edges (communication
links). The processing units of a distributed system are represented by a set of ver
tices V and the communication links between these vertices are represented by E.
WSNs are represented as a graph, where each sensor mote corresponds to a vertex v
of the graph. Each communication channel e = (u, v) between two sensor devices
is an instance of set E in graph G. To provide a solution to a distributed problem,
distributed algorithms are designed to be concurrently run by individual processing
units on a distributed system to reach a common goal. In contrast to centralized
algorithms, processors do not have global information about the given topology.

If each edge points only one endpoint of it, the graph is called as a directed
graph, while if the edges function in two directions, the graph is called as undirected.
In this thesis, we conducted a study on undirected graphs referred to as ”graph” for
simplicity. In a graph, two vertices u and v are considered as neighbor if and only
if e = (u, v) is in the edge set of the graph.

Definition 2.1 (Neighbors). The neighbors set of an vertex v in graph G(V,E) is
a function N(v) → V and formulated as N(v) = {u ∈ V | (u, v) ∈ E}. The
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cardinality of N(v) gives the degree of the nodes represented as δ(v) or |N(v)|.
Furthermore, the maximum degree of graph G is denoted by ∆.

Throughout the dissertation, we use the terms node, vertex, processor to state
v ∈ V and link, edge to state e ∈ E interchangeably.

2.2 SelfStabilization

In largescale distributed systems, failures are quite prevalent due to the na
ture of these types of systems. Restoring the system to its steady state by external
intervention could be harmful because it may cause inevitable problems in the fu
ture. Therefore, the internal fault recovery system must be located on distributed
systems.

Faulttolerant techniques are divided into two basic types as follows:

• Masking: In such faulttolerant systems, the effect of failure is completely
invisible to applications which include safetycritical systems such as real
time systems, database systems, and financial applications.

• Nonmasking: The effect of faults is visible until the system resumes behav
ing appropriately in these types of faulttolerant systems.

Selfstabilization is a nonmasking faulttolerant technique that brings the sys
tem legitimate state without any external aid or intervention in a finite amount of
time when a transient fault occurs or given any arbitrary initial states. A transient
fault can randomly disrupt the stable configuration of the system. The cause includ
ing this failure can take a short time but its consequences may have an impact on the
global state permanently. In order to realize a selfstabilizing system, researchers de
velop selfstabilizing algorithms which satisfy the following two properties (Dolev,
2000):

• Convergence: Regardless of the initial state of the system, the algorithm
reaches the legal state after a limited amount of time.

• Closure: The legitimate state of the system is preserved until a transient fault
occurs.
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Hauck has associated selfstabilization with a wobbly man that fulfills both
properties because it reaches its balanced position from the initial random position
(convergence) and keeps its balanced state until a fault (closure) (Hauck, 2012).

Definition 2.2 (State). Each vertexv ∈ V holds a finite set of variables {var1, var2,
..., vark−1}. The sv state of a vertex v is represented by the values of variables.

Definition 2.3 (Configuration). A configuration c of graph G is the set of states of
all vertices v ∈ V which represented as c = {s1, s2, sn−1}.

Definition 2.4 (Legitimate). Let the predicate P state that faultfree configuration
called c. The configuration c is legitimate since it satisfies the predicate P .

A selfstabilizing algorithm is built with a set of rules. Each rule contains two
parts named as precondition and action. Precondition is a boolean predicate based
on the state of the vertex and its neighbors’ state.

Definition 2.5 (Enabled Rule). A rule is enabled in a configuration c in case of its
precondition holds true. A vertex is called as enabled if one of its rules is enabled.

Whenmore than rules of an vertex is enabled, one of them is arbitrarily chosen
for progress. However, negating the rules is another way to design a selfstabilizing
algorithm in order to guarantee that only one rule is enabled per vertex.

Definition 2.6 (Move). A move is the change of the state of a vertex before execu
tion and after the execution, and it is represented as a tuple mv= (sb, sa)v.

Definition 2.7 (Step). A nonempty set of simultaneous moves that carry the system
from configuration c to configuration c .

If the central scheduler is of concern, a step is equal to a single move of a node.
Thus, a step includes the movem = (s, s )which carries the system from c to c (i.e.
m = (c, c )).

Definition 2.8 (Round). A round is a minimal sequence of steps where all nodes
are privileged to make their moves by the scheduler or disabled by a consequence
of their neighbors’ moves.
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Definition 2.9 (Execution). An execution of selfstabilizing algorithm is a maxi
mum sequence of configurations {c0, c1, c2, ...} where ci+1 is the result of the step
which is taken in ci.

2.2.1 Schedulers

Algorithm 2.1 Shukla’s MIS Algorithm
R1: (su = 0) ∧ ∀v ∈ N(u) : sv = 0

⇒ su := 1
R2: (su = 1) ∧ ∃v ∈ N(u) : sv = 1

⇒ su := 0

Figure 2.1. Sample execution of Shukla’s algorithmwhen all nodes are allowed to makes their move.

The necessary property of a selfstabilizing system is its synchronization that
decides which vertices will execute their enabled rules. Consider Algorithm 2.1
which has been proposed by (Shukla et al., 1995) to construct a maximal independent
set (MIS) (as well as a vertex cover since both problems complement each other).
The algorithm keeps running infinitely if all enabled rules are privileged to make
their moves for a sample scenario given in Figure 2.1.

To prevent this situation, in this example, the schedulers (i.e. deamon) term
is used when researchers develop an selfstabilizing algorithm. A scheduler is a
decision mechanism to select a nonempty set of all enabled nodes to maintenance
the progression of the algorithm. Tixeul divides schedulers into 2 parts according to
their characteristics as follows (Tixeuil, 2009):

• Spatial Scheduling: Selfstabilizing algorithmswere based on the hypothesis
that two neighbor nodes can not make their moves simultaneously in its early
era (Angluin, 1980). In the modern era of selfstabilizing algorithms, there
are 3 main types of scheduler to decide how the system privileged their nodes
to make their moves.

– Central scheduler: In these type of schedulers, only one processing unit
can make its move in a given moment. This scheduler was proposed
earlier research on the selfstabilizing area (Dijkstra, 1974).
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– Synchronous scheduler: All enabled processing unit can execute their
code simultaneously.

– Distributed scheduler: In any configuration of the system, this sched
uler allows any nonempty subset of the whole enabled nodes to make
their moves. Note that the distributed scheduler subsumes two other
schedulers and nodes can make moves at different time in the execution
of the algorithm. Because of these properties, the distributed scheduler
is more realistic than the other for realworld applications.

• Temporal Scheduling: This property refers to the fairness of schedulers as
follows:

– Fair: The scheduler allows all enabled nodes to makes their moves in
finitely often.

– Unfair (i.e. adversary): The scheduler does not guarantee the execution
of all enabled vertices in a step but the global progression of the system.
In other words, in a moment, the scheduler must privilege at least one
node.

2.3 Complexity Measure of Selfstabilizing Algorithm

The maximum number of resource demand defines the complexity measure of
an algorithm. For the case of distributed setting, the complexity measure increases
with the number of nodes that run on the system. The resources could be execu
tion time, sent and received messages, or memory usage. On the other hand, we
encounter different types of complexity measures like move, step and round com
plexities. These complexities define the maximum number of moves (steps, round)
needed to gain a stable configuration independent of the initial configuration.

For WSNs, message traffic is the most energy demanded action during the
execution of the algorithm. After a move, vertices should send their new state to all
of its neighbors. Therefore, the move count has a direct influence on the message
complexity of any algorithm which runs on a selfstabilizing setting. Therefore, we
should consider this knowledge to develop a selfstabilizing algorithm for WSN.

2.4 Distancek Knowledge

Based on the nature of the distributed algorithms, a node could read its own
and its onehop neighbors’ variables (distance1 knowledge). However, in some in
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dividual cases, it is easier to assume that each node can access the variables of nodes
that are located 2 or more hops distances. To realize this kind of algorithm to execute
in a distributed system, itmust be transformed into the distance1 algorithm. Several
transformers were proposed in the literature to fetch distancek knowledge(Gairing
et al., 2004; Goddard et al., 2008; Turau, 2012).

According to Gairing’s technique inwhich each node holds its neighbors’ state
along with its own state, on the condition that this information is needed, it must be
updated by the node (Gairing et al., 2004). Additionally, each node canmake a move
by permission of its all neighbors. By the way, only one node can make a move in
distance1 neighborhood. The slowdown factor of this approach is O(n2m) and
memory overhead is Ω(∆ logn). (Goddard et al., 2008) have extended the idea that
was proposed by (Gairing et al., 2004). It is a recursive algorithm that distributes
distancek knowledge over the topology, but its slowdown factor and memory re
quirement are nO(log k).

Turau have proposed a novel technique called as expression model (Turau,
2012). In this technique, a node holds its local variables and a set of expressions. The
value of an expression is determined by the states of the node and its neighbors. A
node can not read its 2hop neighbors’ state, but it can evaluate the expressions of its
neighbors. The critical advantage of the expressionmodel is that its slowdown factor
is only O(m) and its memory usage is adjustable by the base algorithm. We used
this technique to develop selfstabilizing and capacitated vertex cover algorithm in
this thesis.
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3. VERTEX COVER PROBLEM FORMULATION

VC problem is one of the major problems in graph theory, which has many
important applications such as router placement and link monitoring in networks.

Given a graphG(V,E), a vertex cover C ∈ V is a set of vertices such that for
any edge (u, v) ∈ E, either u ∈ C or v ∈ C (Erciyes, 2013).

min
v∈V

wv × xv

s.t. xu + xv ≥ 1 x ∈ V
xv ∈ {0, 1}

(3.1)

If the problem only takes into consideration the cardinality of the solution set, this
problem is called cardinality vertex cover. A generalized version of the vertex cover
problem is theweighted vertex cover problem, where each vertex v ∈ V has a weight
wv. When wv = 1 for all vertices in the graphG (i.e, each vertex is unit weighted),
this problem turns cardinality vertex cover problem. Equation 3.1 shows the linear
programming formulation of the weighted vertex cover problem, where xv states
whether the vertex is in the cover set or not.

(a) Minimum C ={0, 3, 5}. (b) Minimal C={0, 2, 5, 6, 7}.

Figure 3.1. Sample VC solutions.

V is a satisfying answer for the vertex cover problem, but in most applica
tions, we should find a vertex cover with the minimum number of nodes which is
an NPComplete problem (Karp, 1972). However, some central heuristics and ap
proximation algorithms can find acceptable solutions (Cormen, 2001). Formally, a
minimum VC is a VC with minimum cardinality among all VC solutions. A min
imal VC is a vertex cover which its size cannot be decreased (Ileri et al., 2016a).
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Figure 3.1a shows a minimum C = {0, 3, 5} and Figure 3.1b shows a minimal
C = {0, 2, 5, 6, 7}.

When developing a VC algorithm, we must consider the following properties:

• VC should be as small as possible.

• Designed algorithms should be efficient in terms of time, space,message com
plexity, and energy consumption.

The vertex cover problem has attracted the interest of many researchers. As
an approximation problem, the minimum approximation ratio of V C problem is
1.36 for central algorithms (Dinur and Safra, 2002) and the best upper bound is
2 − Θ(log2(n)) (Karakostas, 2009). There are many algorithms that use different
types of techniques such as depthfirst search, localratio theorem, semidefinite re
laxation, and graphtheoretic techniques to solve the vertex cover algorithm (Savage,
1982; BarYehuda and Even, 1985; Halperin, 2002; Håstad and Johan, 2001). The
exact solution for the problem can be found with the fixedparameter tractability
technique in 1.28k time complexity, where k is an integer parameter to find a vertex
cover of at most k vertices (Niedermeier and Rossmanith, 2003).

In distributing settings, the solution for the vertex cover problem can end
up with 2approximation ratio on the condition that maximal matching is provided
(Grandoni et al., 2008; Hanckowiak et al., 2001; Panconesi and Rizzi, 2001). Par
nas and Ron proposed a greedy technique to solve the vertex cover problem in dis
tributed settings (Parnas and Ron, 2007). Kavalci et. al. proposed a breathfirst
search integrated algorithm that runs on wireless sensor networks (Kavalci et al.,
2014). Also, there are some studies on the selfstabilizing manner in which the sys
temmaintains by itself in the presence of any failure or arbitrary initial state (Kiniwa,
2005; Turau and Hauck, 2011). Yigit et. al. studied a comprehensive comparison
of the selfstabilizing algorithm for link monitoring case study on wireless sensor
networks in (Yigit et al., 2018). We give a detailed literature review of different
settings of the vertex cover problem in Chapter 4.

3.1 Usage of Vertex Cover in Real Life

Vertex cover is used extensively in reallife problems from social life toWSNs.
In this section, we introduce reallife applications of vertex cover with examples.
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Figure 3.2. An example of link monitoring application for vertex cover problem.

In social networks where each person is represented as a vertex v of graph G,
the vertex cover problem is used for modeling adaptation a newly released product.
Consider each individual person has a predefined threshold. A person is considered
to be influenced by the product if the number of neighbors who have already adopted
the product is equal to the threshold. When the threshold value is equal to the number
of neighbors (i.e. the degree of vertex δ(v)), the problem becomes the vertex cover
problem (Chen, 2009).

In flow networks such as transporting on roads, the vertex cover is used to
monitor the roads that are modeled as edges on the graph by placing cameras on
the crossroads that are modeled as vertices on the graph (Tamura et al., 2001). On
the other hand, in order to simulate the propagation of worms (i.e. viruses) on large
computer networks and design favorable strategies to protect networks against ma
licious attacks, vertex cover is used (Filiol et al., 2007).

Monitoring the health of all links in the network is crucial for wireless net
works to maintain the quality of networks. Kumar andKaur have proposed a method
that is derived from the vertex cover problem to solve the beacon placement prob
lem for monitoring links in the network (Kumar and Kaur, 2004). Figure 3.2 shows
an example of link monitoring on a wireless network, where red devices are the
monitoring motes (or beacons). In this example, beacons can listen and collect all
network traffic. In this way, the network administrator is warned when a link failure
occurs.

Replication of the desired data at the server, closer to the client, can reduce the
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access time to the data and bandwidth usage. Replica placement is mostly studied
in tree networks to allow users to access the data efficiently. The solution selects
R ⊆ V and places the replicated data onto them to satisfy the request of the client
in the network. Arora et al. have studied the capacitated vertex cover problem for
replica placement in tree networks (Arora et al., 2013).
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4. LITERATURE REVIEW of VERTEX COVER ALGORITHMS

4.1 Literature Review of Sequential Vertex Cover Algorithms

(a) Vertex cover via matching. (b) Optimal solutions via greedy algorithm.

Figure 4.1. Detected VC by Greedy and Matching algorithms.

In any graph, the size of VC varies between 1 and n−1, where n is the number
of vertices in the graph. Thus, we can find minimum VC by 2n−1 trial with a brute
force algorithm which leads to O(2n) time complexity.

The smallest approximation ratio for VCproblem is 1.36 for central algorithms
and the best upper bound is 2− 1

log2(n)
(Dinur and Safra, 2002; Karakostas, 2009). In

the matching problem, a maximum matching forms a VC which redundantly covers
one edge by two vertices and provides a solution with 2approximation ratio. In
higher degrees, a greedy approach can find optimal solutions in some situations
(Erciyes, 2013). Figure 4.1a shows a sample network where the maximal matching
covers with 6 vertices, but greedy algorithm covers with 3 vertices as an optimal
solution. In both figures, the dark vertices are the members of VC.

4.1.1 Polynomial Time Algorithms

2approximation algorithm selects and removes edge e = (u, v) from given
graph G(V,E) and adds both endpoints of the edge e until there is no edge on
the G. The pseudocode of the 2approximation vertex cover algorithm is given in
Algorithm 4.2.

Theorem 4.1. The time complexity of the algorithm isO(m) wherem is the cardi
nality of the edge set.

Proof. The algorithm runs until there is no edge left in the graph where the complete
graph is the worst case for this algorithm. Thus, it runs at most O(m) where m =
n× (n− 1) for complete graph instance.
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Algorithm 4.2 2approximation VC Algorithm
Require: G(V, E)
Ensure: C ⊆ V
1: C ← ∅
2: while E = ∅ do
3: Select an e = (u, v)}
4: C ← C ∪ {u, v}
5: Remove {u,v} from V
6: end while

Theorem 4.2. 2approximation algorithm ensures that produce the result at most 2
times worse than the optimal solution.

Proof. Let E be the edge set which contains edges selected by algorithm and C∗

be optimal vertex cover solution for given graph G(V,E). C∗ must cover every
edge in E . Therefore, it must include at least one of the endpoints of each edge
e = (u, v) ∈ E , where no 2 edges in E have the same endpoint. Hence, the
size of the optimal vertex cover must be |C∗| ≥ |E|. In addition to these, the 2
approximation algorithm produces a vertex cover solution at most C = 2 ×| E | in
size. These two equations are combined, the result is C = 2 × |E | ≤ |C∗| and
concluded that the algorithm has 2 approximation ratio.

Although heuristic algorithms give acceptable and good results, they do not
theoretically promise an optimal solution. Greedy vertex cover algorithm chooses
the vertex that has maximum δ(v) and puts it to the solution set at every iteration
until there is no vertex on the given graph G(V,E) as seen in Algorithm 4.3. When
the graph become empty, the algorithm exits from the loop and return solution
set.

Algorithm 4.3 Greedy Vertex Cover Algorithm
Require: G(V, E)
Ensure: C ⊆ V
1: C ← ∅
2: while E = ∅ do
3: v ← argmax(δv|v ∈ V )
4: C ← C ∪ {v}
5: Remove{v}from graph
6: end while

Theorem 4.3. Time complexity of Algorithm 4.3 isO(m).
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Proof. The greedy algorithm continues running while there are edges inE. Assume
an execution which algorithm deletes only one edge from E (i.e. chain), this takes
|E| = m step until all edges are removed.

Theorem 4.4. Approximation ratio of Algorithm 4.3 is O(log(n)).

Proof. Since the greedy vertex cover algorithm is derived from the greedy set cover
algorithm, it is easily said that the complexity of the greedy vertex cover algorithm
is O(log(n)).

4.1.2 Optimal Algorithms

The algorithms that use the boundedsearch tree method and produce an op
timal solution, are elaborated in this subsection. The boundedsearch tree method
searches solution on reduced graph G ⊆ G and k ≤ k where k is the desired
solution size. These two algorithms are modified version of given algorithms in
(Grandoni, 2004).

Algorithm 4.4 VC1 Algorithm
1: function VC1(G(V,E), k)
2: for all v : δv = 0, v ∈ V do
3: G(V )← G(v)−{ v}
4: end for
5: if G(E) = ∅ then return ∅
6: end if
7: if k = 0 then return ℵ
8: end if
9: Select an e = (u, v)
10: m1 ← V C1(G(V −{ u}), k − 1))
11: m2 ← V C1(G(V −{ v}), k − 1))
12: m1 ← m1 ∪ {u}
13: m2 ← m2 ∪ {v}
14: if min(|m1|, |m2|) ≤ k then
15: if |m1| ≤ |m2| then returnm1
16: else returnm2
17: end if
18: else return ℵ
19: end if
20: end function

VC1 algorithm that is shown in Algorithm 4.4 finds vertex cover solution by
using a straightforward and useful method. Algorithm VC1 is based on a simple
observation. For any edge e = (u, v) of G, every vertex cover must contain at least
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one endpoint of the edge. Thus, it can be branched by including u or v in the vertex
cover. The algorithm takesG(V, E) and k as arguments and returns the vertex cover
set. When the algorithm starts execution, firstly removes vertices that have δv = 0
fromG. The algorithm terminates when there is no edge in the given graph or k = 0.
The algorithm arbitrarily selects an edge e = (u, v) and reduces graphs as V \ {u}
and V \ {v}, then call itself twice with those two reduced graph and k − 1. After
both callee functions are returnm1 andm2, caller function returns the smaller of the
m1 ∪ {u} and m2 ∪ {v} sets.

Algorithm 4.5 VC2 Algorithm
1: function VC2(G(V, E), k)
2: for all v : δv = 0, v ∈ V do
3: G(V )← G(v)−{ v}
4: end for
5: if G(E) = ∅ then return ∅
6: end if
7: if k = 0 then return ℵ
8: end if
9: if ∃v : N(v) = w then
10: m← V C2(G(V −{ w}), k − 1))
11: m← m ∪ {w}
12: if |m| ≤ k then returnm
13: else return ℵ
14: end if
15: end if
16: Select random vertex v
17: m1 ← V C2(G(V − {v}), k − 1))
18: m2 ← V C2(G(V −N(v)), k −|N(v)|))
19: m1 ← {v}
20: m2 ← N(v)
21: if min(|m1|, |m2|) ≤ k then
22: if |m1| ≤ |m2| then returnm1
23: else returnm2
24: end if
25: else return ℵ
26: end if
27: end function

Theorem 4.5. Time complexity of Algorithm 4.5 isO(2kn).

Proof. The recursion formula of VC1 algorithm is:
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T (n, k) ≤





c× n, if k = 1

2× T (n, k − 1) + c× k × n, if k > 1
(4.1)

Equation 4.1 could be solved with proof by induction.

Base case :

There is a real number c that satisfies T (n, 1) ≤ c× n ≤ 2× n when k = 1.

Induction step: We assume that Equation 6.3 is correct for k − 1, and show it
is also true for k.

T (n, k) ≤ 2× T (n, k − 1) + c× k × n

≤ 2× c× 2k−1 × (k − 1)× n+ c× k × n
≤ c× 2k × n× (k − 1) + c× k × n

= c× 2k × k × n− c× 2k × n+ c× k × n
≤ c× 2k × k × n

(4.2)

Equation 4.2 concludes that the time complexity of Algorithm 4.4 is O(2kn).

In Algorithm 4.5, it is seen that the improved version of Algorithm 4.4. Al
gorithm 4.5 checks if there exists a vertex v which has only one neighbor w. If so,
the algorithm reduces G as G(V −w) and calls itself with reduced graph and k− 1
as seen in Line 10. VC2 algorithm branches over reduced graphs G(V \ v) and
G(V −N(v)) instead of branching both end points of randomly selected e = (u, v)
as is in Algorithm 4.4.

Theorem 4.6. Time complexity of Algorithm 4.5 is O(1.62kn2)

Proof. Assume a graph G which does not have any vertex such that its degree is 1.
In such a graph, the algorithm runs between lines 11 and 19 and produces a recursion
formula as following:

T (k) ≤ T (k − 1) + T (k −|N(v)|) (4.3)
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Table 4.1. Theoretical comparison of sequential vertex cover algorithms.

Algorithm Time Complexity Approximation
2approximation O(m) 2

Greedy O(m) O(log(n))
VC1 O(2kkn) Exact
VC2 O(1.62kn2) Exact

According to our assumption, |N(V )| should be greater than 1. Then, Equa
tion 4.3 turns out T (k) ≤ T (k − 1) + T (k − 2). The characteristic function of
this recursion formula is rk + rk−1 + rk−2 = 0. The positive root of the charac
teristic function x ≈ 1.62. Namely, the algorithm calls itself at most 1.62k times
(creates subproblems) depending on the variable k. The solving cost of a problem
by excluding the corresponding subproblem takes 2n. Therefore, the complexity of
Algorithm 4.5 is O(1.62kn2).

For a detailed analysis of algorithms VC1 and VC2 please refer (Grandoni,
2004).

Table 4.1 shows the time complexities and approximation ratios of the afore
mentioned algorithms.

4.2 Literature Review of Distributed Vertex Cover Algorithms

Parnas and Ron have proposed an algorithm for VC problem using reduction
(Parnas and Ron, 2007). In each round, the nodes add themselves to VC, if their de
gree is greater than∆/2R where∆ is the maximum degree of the graph andR is the
current round of algorithm. Other nodes sendDROP messages to their neighbors.
The approximation ratio of this algorithm is 2(log2(∆)+1). Algorithms terminates
in log(∆) round by sending at most sendingm = n2 message for a complete graph
instance.

Hoepman’s simple distributed weightedmatching algorithm (Hoepman, 2004)
has been adapted by Kavalci et al. for VC problem (Kavalci et al., 2014). In this
algorithm, each node selects a node v with maximum id from N(v) that have the
minimum degree and sends PROPOSE message to the selected node v. When node
v receives PROPOSE message from u, node v include itself VC if they send PRO
POSE to each other and δv > δu in the first round. The condition δv > δu is not
required in the other rounds. We can find the maximal matching on the bipartite
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graph after at most ∆ steps. Hancowiak et. al. has proposed a distributed match
ing algorithm using this fact with O(n) time complexity (Hanckowiak et al., 2001).
Polishchuk and Suomela has exploited Hancowiak’s algorithm to find a VC with
3approximation ratio (Polishchuk and Suomela, 2009). In their proposed approach
the graph G(E,V ) is converted to an bipartite graph as G(V1, V2, E) such that:

• each vertex v ∈ V is replaced by v1 ∈ V1 and v2 ∈ V2.

• The edge u, v is replaced by two edges as (u1, v2) ∈ E and (u2, v1) ∈ E.

This provides two copies for each vertex in G(V,E) (white and black copies). For
the edge between u and v, thewhite copy of u is connected to the black copy of v and
the black copy of u is connected to the white copy of v. After computing maximal
matching in this converted graph, the minimal VC will be the white or black copies
of the nodes (Erciyes, 2013; Ileri et al., 2016a). Matching based algorithms cover
one edge through two nodes unnecessarily. Hence, these algorithms can not exceed
2approximation ratio for the VC problem as seen in Figure 4.1a.

Kavalci et al. (Kavalci et al., 2014) has proposed an algorithm that uses BFST
to form a VC. The algorithm asynchronously constructs a BFST on a given graph
with unicast messages and then covers the vertices according to their level. If a node
is in evennumbered level, it is added to VC directly. Otherwise, they are selected
if they have a neighbor with a lower id . The algorithm may cover all nodes in an
oddnumbered level except one that has the minimum id. The algorithm produces a
vertex solution at most n round by sending n3 messages in total.

Yigit has proposed two novel algorithms which integrate BFS and V C like
Kavalci’s algorithm (Yigit, 2016). Unlike the Kavalci’s algorithm’s, these algo
rithms run the greedy approach to cover the uncovered layers of the structured BFS
tree. The first proposed algorithm covers evennumbered layers directly and covers
oddnumbered layers by using the greedy technique. The second one is to look first
into which layer (odd or evennumbered) contains more crossedges, then decides
to the layer will be covered. These algorithms are called VECO1 and VECO2, re
spectively. Both algorithms execute in n round at the worst case by transmitting n2

message on all over the network.

We provide a summary of the distributed vertex cover algorithms in Table 4.2
for a better understanding. We also recommend İleri et. al’s survey which deeply
elaborates vertex cover algorithms in wider aspects (Ileri et al., 2016b).



22

Table 4.2. Theoretical comparison of distributed vertex cover algorithms.

Algorithm Approx. Ratio Time Comp. Msg. Comp. Space Comp.
VECO1  O(n) O(n2) O(∆ log(n))
VECO2  O(n) O(n2) O(∆ log(n))
Kavalci  O(n) O(n3) O(∆ log(n))
Parnas 2(log2(∆) +1) log(n2) O(∆) O(∆ log(n))
Greedy log(n) O(n) O(n2) O(∆ log(n))
Hoepman 2 O(n) O(n2) O(∆ log(n))
Polishchuk 3 2∆ +1 4m O(∆ log(n))

4.3 Literature Review of Capacitated Vertex Cover Algorithms

The capacitated vertex cover problem has been introduced by Guha et al.
(Guha et al., 2003). In this version of the problem, nodes can exist more than one
time in the vertex cover solution. This version of the problem is called as soft capac
itated vertex cover. Moreover, in this study, each vertex has a weight represented
as wv. The integer programming formulation proposed by Guha et al. is seen in
Equation 7.1. Guha et al. have proposed a simple algorithm to solve the capacitated
vertex cover problem. Firstly, the relaxed version which yev and xv are fractional
is solved. After then, each yev >= 1

2
v ∈ V rounded to new variable y∗ev as 1,

otherwise yev = 0. Now, it can be derived x∗v =
e∈E(v) y

∗
ev

kv
from y∗ev where E(v)

represents incident edges to v. The approximation ratio of this simple algorithm is
4. This means that x∗v ≤ 4× xv.

min
v∈V

wv × xv

s.t. yeu + yev ≥ 1 e = (u, v) ∈ E

kv × xv −
e∈E(v)

yev ≥ 0 v ∈ V

xv ≤ yev v ∈ e ∈ E

yev ∈ 0, 1 v ∈ e ∈ E
xv ∈ N0

(7.1)

Chuzhoy and Naor have proposed two randomized rounding algorithms to
solve the problem (Chuzhoy and , Seffi). In this version of the problem, each node
has a bound variable b(v) which restricts the number of contributions of a node in
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Figure 4.2. Preprocessing step that uses maxflow algorithm to detect configuration is feasible.

the vertex cover set. Nodes in this version of the linear programming formulation
are unit weighted. As a first algorithm, the authors put forward a simple randomized
rounding algorithm that has 8approximation ratio in the worst case. After this algo
rithm, the author introduces a 3approximation randomized rounding algorithm to
solve the problem. The main difference between these two algorithms is their limit
value to include a vertex in the cover set. After the linear programming solution,
the first algorithm includes vertices that have xv ≥ 1

2
while the second one includes

vertices that have xv ≥ 1
3
. Now each algorithm applies its randomized rounding and

alteration process.

Lastly, Gandhi et al. have proposed an algorithmwhich is the same asChuzhoy’s
algorithm but has main 2 differences (Gandhi et al., 2003). There is a preprocessing
step before the linear programmingwhich focuses on eliminating capacity1 vertices
from the solution set. For this preprocessing step, maxflow is used to maintain the
feasibility of a given configuration. Figure 4.2 depicts preprocessing on a sample
graph, the explanation to which is given following. G = (E,V, F ) is a bipartite
graph in which the lefthand side of the bipartite is E and righthand side is V of
given graph G(V,E). An edge (e, v) ∈ F if and only e is touches to v. Construct a
flow network in which the source is connected to all vertices in E and each vertex
in V is connected to the sink. The capacities of the edges in F is 1. The capacities
of the edges emanating from the source are all 1. The capacity of an edge from any
node v ∈ V to the sink is capv. G has a feasible solution if the maximum flow value
from the source to the sink is |E|. After a linear programming solution, the algo
rithm includes vertices that have xv ≥ 1

2
, and makes randomization and alteration

steps. At the end of the algorithm, y∗ is created by the maxflow algorithm which is
used in the preprocessing step. The approximation ratio of the algorithm is 2.
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Table 4.3. Theoretical comparison of capacitated vertex cover algorithms.

Algorithm Technique
Approximation

Ratio
(Guha et al., 2003) Rounding 4

(Chuzhoy and , Seffi)1
Randomized
Rounding

8

(Chuzhoy and , Seffi)2
Randomized
Rounding

3

(Gandhi et al., 2003)
Randomized
Rounding

2

In Table 4.3 we provide a summary of the capacitated vertex cover algorithms.

4.4 LiteratureReview of SelfStabilizingVertexCover Algorithms

In selfstabilizing settings, the first algorithm for the vertex cover problem has
been proposed by Kiniwa (Kiniwa, 2005). Kiniwa’s algorithm firstly constructs a
maximal matching by favoring the edges connecting the heaviest nodes with the
lightest nodes on the graph and then covers the nodes on the basis of this match
ing. Each vertex holds cover and color variables which describe whether the vertex
in vertex cover set and color of the matched port respectively. Also, each vertex
maintains three sets which are named High, Low and Others. TheHigh(v) set con
tains neighbors of vertex v which have bigger color value. On the contrary, Low(v)
contains neighbors of node v which have smaller color value. Others(v) holds
neighbors that do not point to v. The algorithm obtains (2− 1

∆
)approximation ver

tex cover using the shared memory and distributed scheduler inM +2 round where
M is the size of the matching.

(a) Sample graph G. (b) Kronecker graph K(G) of G

Figure 4.3. Production of Kronecker graph from graph G

Turau has proposed two algorithms based on the distributed approximationVC
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Algorithm 4.6 Turau’s first selfstabilizing vertex cover algorithm.
R1: ¬whiteMatched(v) ∧ (v.white = v ∨ v.white = selectBlack(v))
⇒ if v.white = v
v.white← v

else
v.white← selectBlack(v)

R2: ¬blackMatched(v) ∧ (v.black = v ∨ v.black.white = v.black)∧
v.black = selectWhite(v)
⇒ v.black ← selectWhite(v)

algorithm in (Turau and Hauck, 2011). Turau’s algorithms run under the distributed
unfair scheduler and linkregister communication model on an anonymous network.
Turau’s algorithms exploit Hancowiak port numbering method on kronecker double
graph (Hanckowiak et al., 2001). Kronecker double graph is a graph that holds two
copies of each vertex as shown in Figure 4.3. Both algorithms are based on the
(Polishchuk and Suomela, 2009) which cannot exceed 3 approximation by using
the matching method on the anonymous networks proved by (Angluin, 1980).

Turau firstly proposes a basic algorithm that will be base of the second algo
rithm. The basic algorithm consists of two predicates that show the vertex v con
nected whether black or white copy. These predicates are shown in Equation 4.4
and Equation 4.5. The complete algorithm is shown in Algorithm 4.6 as well. The
basic algorithm calculates 3approximation ratio vertex cover set with O(n + m)
moves, where n and m are the number of vertices and edges, respectively.

blackMatched(v) ≡ v = null ∧ v.black.white = v (4.4)

whiteMatched(v) ≡ v = null ∧ v.white.black = v (4.5)

In addition to these predicates, each node use two function to select neighbor
formatching. Function selectBlack(v) shown in Equation 4.6 (4.7) (selectWhite(v))
returns the neighbor x which shows vertex v with its black pointer (white pointer).

selectBlack(v) ≡ v.select{x ∈ N(v)|x.black = v} (4.6)

selectWhite(v) ≡ v.select{x ∈ N(v)|x.white = v} (4.7)

In the same paper, Turau presents an improvement method which finds (3 −
2
∆+1
)approximation a vertex cover in O(n + m) moves. This improvement algo

rithm contains the first basic algorithm with additional rules. After the execution of
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two basic rules, some nodes may still be unmatched with both pointer. The algo
rithm excludes this type of vertices from the vertex cover solution by using Equation
4.8.

candidate(v) ≡

((blackMatched(v) ∨ v.black = null) ∧ v.white = null)∨
((whiteMatched(v) ∨ v.white = null) ∧ v.black = null)

(4.8)

Independent set problem is another wellknown graphtheoretical problem
which has a strong connection with VC. In a graph G(V, E), S ⊂ V is an indepen
dent set if there is not adjacent nodes in S. Literally, if S ⊆ V : ¬(u ∈ S ∧ v ∈ S)
∀e = (u, v) ∈ E. If no extra node can be added to S without violating the indepen
dent set condition, S is maximal. The problem of finding the IS with the maximum
IS having the maximum possible cardinality is called maximum independent set.
Every solution S to IS problem gives a feasible solution C to VC problem such that
C = V \S. Even though these two problems have different approximation behaviors
and an approximation to one of the problems does not guarantee an approximation
to the other (Dinur and Safra, 2005), we can use IS algorithms to find feasible so
lutions to VC. Thus, we include selfstabilizing independent set algorithms in the
scope of our work.

The first selfstabilizing maximal independent set algorithm has been pre
sented by Shukla et al. (Shukla et al., 1995). It assumes a central scheduler and
anonymous network. A node joins S (updates its state to ) if it has no neigh
bors in S, and leaves S (updates its state to ) if at least one of its neighbors is
in S. Ikeda et al. have proposed an algorithm that copes with a distributed sched
uler (Ikeda et al., 2002). It assumes the nodes have unique identifiers for symmetry
breaking and a node can only leave S if it has a neighbor in S with a lower id.
Goddard et al. have presented the first algorithm that guarantees to stabilize under
synchronous scheduler. A node can only join S if it has the lowest id among
neighbors, and can only leave S if it has the highest id among neighbors.

Turau has presented the first distributed selfstabilizing algorithm for IS that
requires a linear number of moves using an unfair distributed scheduler(Turau, 2007).
It introduces a new intermediate state called . If a node has no neighbors in S, it
changes its state to . A node in state updates becomes if it has some
at least one neighbors, or it becomes if it has no neighbor that has a lower
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Table 4.4. Theoretical comparison of selfstabilizing vertex cover algorithms.

Problem Algorithm Topology Scheduler Move Comp. Round Comp. Approx. Ratio

VC

(Turau and Hauck, 2011) Anonymous Adversarial O(n+m)  3

(Turau and Hauck, 2011) Anonymous Adversarial O(n+m) O(∆) 3− 2
∆+1

(Kiniwa, 2005) Unique ID Distributed, fair  M + 2 2− 1
∆

MIS

(Shukla et al., 1995) Anonymous Central O(n)  

(Ikeda et al., 2002) Unique ID Adversarial O(n2)  

(Goddard et al., 2003) Unique ID Synchronous  O(n) 

(Turau, 2007) Unique ID Adversarial O(n)  

identifier.

Vertex cover and independent set solutions complement each other on a given
graph G(V,E). Based on this fact, the performance evaluation of the vertex cover
and independent set algorithms was examined in (Yigit et al., 2018) on the self
stabilizing setting. The study shows that selfstabilizing independent set algorithms
are faster and better than matchingbased selfstabilizing vertex cover algorithms.

In Table 4.4, we provide a summary of selfstabilizing VC and MIS algo
rithms. We refer readers to (Ileri et al., 2016b) and (Guellati and Kheddouci, 2010)
for more detailed reviews on selfstabilizing versions of these problems.
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5. IMPLEMENTATION of VERTEX COVER ALGORITHMS

5.1 PerformanceEvaluation of SequentialVertexCoverAlgorithms

In this section, two optimal algorithms are compared with one heuristic and
one approximation algorithm in terms of running time and cardinality of the vertex
cover set.

5.1.1 Simulation Environment

Algorithms are executed on randomly created graphs of varying sizes between
1050. Each graph has 3 different density types, which are determined by the av
erage degree which could be 3, 5, or 7. For each type of graph, we construct 10
different topologies, which gives 150 different scenarios to clearly compare algo
rithms. Algorithms were implemented with Python 2.7 programming language and
networkX 1.10 library was used to create topologies (Schult and Swart, 2008).

5.1.2 Running Times of Algorithms

(a) Running times of algorithms by graph size (avg.
degree 5).

(b) Running times of algorithms by average degree
(graph size 30).

Figure 5.1. Comparisons of algorithms in terms of running time.

Figure 5.1a shows the execution times of algorithms on different sized graphs
which fixed on average degree 5. VC1 algorithm takes a big step with 180 seconds
running time on graphs with size 30 where the VC1 algorithm was not accounted
for after this size. Algorithm VC2 produces a feasible solution even if it is a non
polynomial algorithm until the size of graphs reaches 50. However, after graph size
50, it is not possible to measure the running time of VC2 algorithm on our setup.
Both Greedy and 2approximation algorithms produce better results than both op
timal algorithms since they have polynomial time complexity O(m). On 50 sized
graphs, execution of 2approximation, Greedy, and VC2 took 94×10−5, 12×10−4,
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and1.8 seconds, respectively. Since the 2approximation algorithm puts two ver
tices at every iteration, it terminates faster than the Greedy algorithm which selects
only one vertex at an iteration.

Running time comparison of algorithms on 30 sized graphs depending on the
average degree is shown 5.1b. VC1 algorithm is more affected algorithm by the
increasing of the density of the graph since its execution time jumps up to 20 minutes
as the graphs get denser. In spite of being affected by the density of the graph, it
gives feasible solutions when compared to VC1. Both polynomial algorithms show
better and faster running time while they are not affected by graph density.

5.1.3 Cardinality of Vertex Cover Set

(a) VC size of algorithms by graph size (avg. de
gree 5).

(b) VC size of algorithms by average degree (graph
size 30).

Figure 5.2. Comparison of algorithms in terms of VC set size.

Figure 5.2a shows the size of vertex cover sets produced by each algorithm
in the case of increasing graph size. Algorithms VC1 and VC2 give the best re
sult against Greedy and 2approximation algorithms because they are optimal al
gorithms. As shown in the figure, the Greedy algorithm produces the closest re
sult to both optimal algorithms VC1 and VC2. 2approximation algorithm does not
show the same performance which has shown in the execution time. Since the 2
approximation algorithm almost selects all vertices in setV , it gives theworst vertex
cover solutions among all implemented algorithms.

Vertex cover size by increasing the average degree of graphs is shown in 5.2b.
All algorithms are affected by the density of the graph since the density causes
more edges to cover. For 30 sized graphs VC1, VC2, Greedy and 2approximation
produce VC solutions in size 15, 17.6 19.4, respectively. Although Greedy is a
polynomialtime algorithm which does neither ensure the optimal solution nor have
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a constant approximation ratio, it produces feasible solutions as VC1 and VC2 pro
duce. It is observed to give optimal solutions to some scenarios during the simu
lation. As expected 2approximation algorithm produces the largest VC solutions
which almost the same size as V .

We provide a summary of the charts as a table in Table 5.1 to reveal the per
formance of the algorithm on all graph types.

Table 5.1. Performance metrics of the implemented algorithms for all scenarios.

Time VC
Algorithm Size 3 Degree 5 Degree 7 Degree 3 Degree 5 Degree 7 Degree

Approximation

10 1.09×104 1.10×104 1.29×104 8.4 8.6 9.6
20 2.25×104 2.49×104 2.87×104 15.6 17.2 17.8
30 3.89×104 4.49×104 4.89×104 23.6 25.2 26.8
40 5.91×104 6.22×104 7.42×104 31.2 33.0 35.0
50 8.45×104 9.38×104 1.06×103 39.2 42.2 43.8

Greedy

10 1.28×104 1.38×104 1.50×104 5.7 6.5 7.5
20 2.79×104 3.17×104 3.48×104 10.3 12.9 13.5
30 5.08×104 5.49×104 5.85×104 15.6 17.8 20.5
40 7.77×104 8.30×104 9.12×104 20.8 24.4 27.3
50 1.10×103 1.19×103 1.26×103 25.3 30.8 33.4

VC1

10 2.16×102 4.12×102 7.45×102 5.4 6.3 7.3
20 8.52×101 4.17 7.04 10.0 12.2 13.4
30 3.98×10 1.90*10 1.20*10 15.0 17.6 19.4
40      
50      

VC2

10 1.94×103 4.69×103 4.87×103 5.4 6.3 7.3
20 4.90*103 3.56×102 4.44×102 10.0 12.2 13.4
30 1.29×102 1.30*101 2.61×101 15.0 17.6 19.4
40 2.66×102 4.21×101 1.42 19.7 23.1 26.2
50 3.57×102 1.88 8.26 24.7 28.5 32.2

5.2 PerformanceEvaluationAndTestBedExperiment ofDistributed
Vertex Cover Algorithms

In this section, we implement distributed vertex cover algorithms in simu
lator and testbed to compare their results. Firstly, we analyze time, space and bit
complexity of these algorithms. After that, we provide simulation and testbed eval
uations on the TOSSIM simulation environment and IRIS motes.

We implemented the Greedy algorithm, Parnas and Ron algorithm, Kavalci
algorithm and Hoepman algorithm and two VECO algorithms in terms of perfor
mance metrics which are received bytes, sent bytes, energy consumption, running
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Table 5.2. Real experiments parameters.

Mote IRIS
Platform TinyOS 2.1.2

Transceiver 2.4 GHz, IEEE 802.15.4 compatible
Transmission Rate 250 kbps
Transmission Power 3 dBm
Number of Nodes 20

MAC TDMA
Transmission Range 50 m

Node Degrees 3 and 7

time and the performance of vertex cover size. To provide fairness in performance
evaluation, the cost of BFS tree construction is added to the results of algorithms
which are not based on the BFS tree.

5.2.1 Testbed Experiments

We conduct real experiment on IRIS motes in order to compare the perfor
mance of distributed vertex cover algorithms. We implement the algorithms on
TinyOS operating system (Levis et al., 2003) with nesC programming language that
runs on IRIS motes. The IRIS is a 2.4 GHz mote used for wireless sensor networks
that need low power consumption. IRISmotes have 250 kbps data transmission rate,
128 Kb programmable flash memory, 8 Kb ram, and 3 dBm transmission power that
enable a maximum 50m indoor transmission range (Memsic, 2011). We reduced the
transmission power of IRIS motes, to establish the desired networks in a laboratory
environment. Due to the different characteristic of the radio range of each mote,
some link becomes unidirectional which is an undesirable situation for the reliable
communication in wireless sensor networks. Each node sends its list of neighbors
after receives HELLO message and thus unidirectional links are ignored by nodes.
This setup phase does not count as the performance of algorithms since it is the same
for all algorithms. We use 20 nodes in order to achieve real experiments. The algo
rithms are executed 10 times on randomly generated topologies that are sparse and
dense. Each node has three neighbors in sparse topologies and seven neighbors in
dense topologies on average. Table 5.2 shows the sum of the simulation parameters.

Six examples of sparse and dense topologies used in real practice are shown in
Figure 5.3. While Figures 5.3a, 5.3b, 5.3c show sparse topology, dense topologies
are shown in Figures 5.3d, 5.3e, 5.3f. Gray nodes are the vertex cover solution
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(a) (b) (c)

(d) (e) (f)

Figure 5.3. Six sample topologies for real experiments.

produced by the VECO1 algorithm. Deployment of IRIS motes is seen in Figure
5.4.

Firstly, the algorithms are evaluated on sparse topology. VECO1 produces
the best results for all performance parameters but VC size. The VECO1 algorithm
produces 1.6 times better results than Hoepman and Greedy algorithms in terms of
sent bytes. In addition, the received bytes of the VECO1 algorithm are 1.5 times
better than the Hoepman algorithm and 2 times better than the Greedy algorithm.
VECO1 and VECO2 give almost the same performance, but VECO2 needs a lit
tle bit more message traffic and system resources for sparse topologies. Kavalci
algorithm needs higher message traffic and energy consumption because of uni
cast messages. Greedy and Parnas algorithms produce the best VC solution 12.6
and 12.7, respectively. After these two algorithms, VECO algorithms produce the
thirdbest VC solution by selecting 13.2 vertices on average. However, we could
say that energy consumption and message traffic performances eliminate the differ
ences of VC solution. Snapshot of the monitoring program that contains sent bytes,
received bytes, covered flag, and running time is seen in Figure 5.5. The sumup of
the experiment results is seen in Table 5.3. Sent bytes, received bytes, and energy
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Figure 5.4. Placement of an example topology.

Table 5.3. Real experiment results in sparse topologies.

Algorithm Sent Bytes Received Bytes Energy (mJ) Time (s) VC Size
VECO1 202.5 412.1 1059.8 25.1 13.2
VECO2 231.6 501.6 1263.3 30.1 13.2
Kavalci 474.0 874.0 2327.6 337.8 13.6

Parnas+BFS 205.2 500.4 1231.9 33.3 12.7
Greedy+BFS 328.8 799.5 1941.1 39.0 12.6
Hoepman+BFS 323.3 621.6 1630.7 38.3 13.6

consumption are values obtained from the entire topology.

Secondly, the algorithms are evaluated on dense topologies. In those topolo
gies, Kavalci needs to send more messages which is 4.7 times more than VECO1
and VECO2 algorithms. Kavalci algorithm shows the worst result among the 6 al
gorithms and its VC size is almost equal |V | of the graph size. Hoepman algorithm
not only gives bad results in terms of message traffic and running time, but also the
size of the VC set it produces is quite large. Parnas and Greedy have close VC size
solutions, but their running time is more than the other algorithms. The running
times of all algorithms are smaller than sparse topologies’ sinceD is getting smaller
for dense topologies. VECO algorithms give a feasible solutionwith feasible system
usage.

The sumup of the evaluation results is indicated in Table 5.4 a snapshot of
the VECO2 algorithm is given in Figure 5.6.
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Figure 5.5. Evaluation of VECO1 algorithm on a sparse topology by nodes.

Table 5.4. Real experiments result in dense topologies.

Algorithm Sent Bytes Received Bytes Energy (mJ) Time (s) VC Size
VECO1 266.5 1165.6 2447.8 17.69 16.4
VECO2 261.2 1218.3 2527.3 22.3 15.8
Kavalci 1233.5 2433.5 6326.0 162.0 17.2

Parnas+BFST 210.4 1187.9 2384.8 27.8 15.2
Greedy+BFST 446.4 2375.3 4814.7 40.6 15.0
Hoepman+BFST 403.8 1428.2 3138.0 40.6 18.4
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Figure 5.6. Produced VC solution by VECO2 algorithm on a dense topology.

Table 5.5. Simulation Parameters

Node Distribution Random
Sink Position Random location in graph
Number of Nodes 50250 (step 50)
Node Degrees 3, 5, 7
MAC TDMA

5.2.2 Simulation Results

We conduct TOSSIM (Levis et al., 2003) simulation along with testbed ex
periments because of the small number of motes. It is difficult to distinguish the
difference between the implemented algorithms on 20 motes. Therefore, we create
larger random topologies in order to see the behavior of algorithms.

We have generated randomly connected networks with different node counts,
from 50 to 250 (step 50) nodes. In the generated topologies, the average degrees of
nodes are 3, 5, and 7 and the transmission range of each node is 50 m. We measured
the total the sent and received bytes, wall clock time, energy consumption, and the
cardinality of the detected VC. Each measurement is the average of 10 iterations for
each class of the topologies. Table 5.5 summarizes the topologies and simulation
parameters. We used the simple time division multiple access (TDMA) protocol to
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(a) Sent bytes of algorithms against node count. (b) Sent bytes of algorithms against node degree.

Figure 5.7. Sent bytes of algorithms.

eliminate packet interference.

A comparison of the total sent bytes of the implemented algorithms is pre
sented in Figure 5.7a. VECO1 algorithm send the lowest amount of messages to
construct BFST and VC. Parnas algorithm comes after VECO1 algorithm for all
graph size. VECO2 is very close to both algorithms and needs a little bit more mes
sage to produce VC. For instance, VECO2 needs 1839 bytes in total to construct VC
with BFST, while Parnas and VECO2 need approximately 1500 bytes on graph with
150 nodes. The sent bytes of VECO1 algorithm are 5, 1.9, 1.8, 1.06 times lower than
Kavalci, Greedy, Hoepman and Parnas algorithm for graphs with 250 nodes.

Figure 5.7b shows the total sent bytes of algorithms against the average degree
on 150 sized graphs. All algorithms are under the influence of the increase in the
average degrees of the networks. Nevertheless, Kavalci is the most affected algo
rithm by the densities of networks. Increasing of sent bytes for Kavalci on denser
topologies is stemmed from unicast messages. VECO1 algorithm sends 1364, 1450,
and 2091 bytes on graphs with 3, 5, and 7 average degrees. On the other hand, the
VECO2 algorithm stays around 1830 bytes for all densities. This means that select
ing levels that are covered directly (odd or even), could reduce message sending for
the denser graph.

Figure 5.8a demonstrates the comparison of the total received bytes of the
implemented algorithms. VECO1 and VECO2 produce the lowest received bytes
among the other algorithms. VECO1 and VECO2 produce 4765 and 5817 received
bytes on graphs with 250 nodes, while Parnas the nearest algorithm to these algo
rithms, needs 6046 bytes to produce VC with BFST. This information tells us that
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(a) Received bytes of algorithms against node
counts.

(b) Received bytes of algorithms against node de
gree.

Figure 5.8. Received bytes of algorithms.

(a) Running time of algorithms against node count.(b) Running time of algorithms against node degree.

Figure 5.9. Running time of algorithms.

VECO1 and VECO2 need 1.26 and 1.03 times lower receiving messages than Par
nas. After these three algorithms, Hoepman, Greedy and Kavalci algorithms come
with a tremendous amount of message traffic. For instance, Kavalci algorithm needs
12746 received bytes on 250 sized graphs.

Figure5.8b compares the received bytes of the implemented algorithms against
the average degree of each node. Kavalci algorithm is the most affected algorithm
by the degree value. Increasing the average degree value increases the received
bytes of Kavalci algorithm faster than other algorithms. After the Kavalci algo
rithm, the Greedy algorithm produces the secondworst total received bytes. The
received bytes of VECO1 and VECO2 algorithms are close to each other and the
degree value has a trivial impact on them. Hoepman and Parnas algorithms yield
worse results than the VECO1 andVECO2 algorithms in terms of the received bytes.
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(a) Energy consumption of algorithms against node
count.

(b) Energy consumption of algorithms against node
degree.

Figure 5.10. Energy consumption of algorithms.

Figure 5.9a shows the comparison of the wall clock time of algorithms against
the node count. VECO1 is about 1.4, 1.94, 2.14, 11 times faster than Parnas, Greedy,
Hoepman, andKavalci algorithms, respectively. After theVECO1 algorithm, VECO2
produces VC as the second fastest algorithm, namely, it is at most 1.10 faster than
the Parnas algorithm. On 50 sized graphs, VECO1, VECO2, Parnas terminate in
44, 56, and 61 seconds respectively, while the Greedy algorithm needs 90 seconds
to terminate on the same graph size.

The comparison of the wall clock time of algorithms against the node degree
is shown in Figure 5.9b. This figure shows that when we increase the degree, the
wall clock times of all algorithms decrease because of the reduction of the diameters
of the graphs.

Since TOSSIM does not support calculating the energy consumption of the
nodes, we used Equation 5.1 which Dagdeviren and Akram use in order to calculate
the energy consumption (Dagdeviren and Akram, 2017). In Equation 5.1, S and R
respectively represent sent and received bytes by the nodes.

E ≈ ((S × 17 +R × 16)/31.25)× 3.3 mJ (5.1)

The comparison of energy consumption of all algorithms against the node
count is presented in Figure 5.10a. The graphics show the average individual energy
consumption of a node in given networks. The VECO1, VECO2, Kavalci, Greedy,
Hoepman and Parnas algorithms consume 71.0, 87.5, 224.9 153.2, 115.9, 86.8 re
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(a) VC size of algorithms against node counts. (b) VC size of algorithms against node degree.

Figure 5.11. VC size of algorithms.

spectively on graphs with average 5 degrees with 150 nodes. All algorithms except
Kavalci intend to reduce energy consumption as topologies get bigger. The energy
consumptions of VECO2, Parnas algorithms are very close to each other.

The energy consumption of algorithms on graphs with 150 nodes and various
degrees against the node counts are shown in Figure 5.10b. As the graphs become
denser, each node needs higher energy to construct VC. VECO1 algorithm is the
best algorithm on graphs with 3 and 5 average degrees with 47.6 and 71.0 mJ per
node. VECO2 is the algorithm that needs to lowest energy on graphs that have 7
average degree with 114.2 mJ. Hoepman, Greedy and Kavalci algorithms consume
more than 80mJ on sparse networks and these values are increased with the average
degree of the graphs. For example, the Greedy algorithm consumed 92.7 mJ on
graphs that have 3 average degrees, while VECO1 and VECO2 consumed 71.0 and
87.5 mJ on graphs with 5 average degrees.

Figure 5.11a shows the comparison of the detected VC cardinality in all al
gorithms. The Greedy algorithm always finds smaller VCs than other algorithms.
However, the cardinality of detected VCs of VECO1 and VECO1 are very close
to Greedy in all topologies. Kavalci algorithm detects VC which always is larger
than other algorithms except for Hoepman algorithm. Parnas and VECO algorithms
produce VC solutions that have nearly the same cardinalities. Especially, VECO2
algorithm produces smallerVC thanVECO1. Due to thematching technique, Hoep
man algorithm produces the largest VC for all graph sizes.

Figure 5.11b shows the reactions of the algorithms when the topologies be
came denser on 150 sized graphs. By increasing the average degree, the cardinality
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of detected VC by Kavalci algorithm increases faster than the other algorithms. In
sparse topologies, the Parnas algorithm gives near results to the VECO1 algorithm,
but as the topologies become denser, the VECO1 and VECO2 algorithms give better
results in terms of the cardinality of the detected VC. On graphs with 150 nodes and
7 average degrese, VECO1, VECO2, Parnas, and Greedy algorithms produce VC
set 108.2, 113.2, 114.0, and 104.1 in size respectively. We could say that VECO
algorithms produce better VC results on bigger and denser graphs.

5.3 Performance Evaluation of Capacitated Vertex Cover Algo
rithms

In this section, we compare linear programming capacitated vertex cover al
gorithm in terms of vertex cover size, execution time, and approximation ratio.

5.3.1 Experimental Setup

We use SageMath programming language to solve linear programming algo
rithms. As a solver for the mixedinteger linear program, we choose GLPK exact
library at a low level. We create random geometric networks which have approxi
mately 3, 5, 7 average degree values. We create 15 different sized topologies that
have 10 to 150 nodes (with 10 steps). Therefore, we have 45 different graph topol
ogy scenarios. We run our experiment 30 random graphs for each scenario.

Guha’s algorithm is proposed as a weighted algorithm, but we set all weights
of the nodes to 1. Because of Chuzoy’s and Gandhi’s algorithms have b(v) value,
we run experiments on different b(v) values to see the effects of bounding. For
Chuzhoy’s algorithm, we chose 3 different values as b(v): 1, 2 and∞. For Gandhi’s
algorithm, we define 1, 2, 3 as different b(v) values.

To compare these algorithms, we measure the running time, capacitated vertex
cover size, and approximation ratio. Since we use different values to bound, we
calculate each approximation ratio according to its setup. In order to be convinced
of the fact that all graph instances provide capacitated vertex cover solution, we
exploit Gandhi’s maxflow method.

5.3.2 Performance Results

In this section, we investigate the performance results of all algorithms in the
mentioned experimental setup.
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(a) VC size on graphs have avg. degree 3. (b) VC size on graphs have avg. degree 5.

(c) VC size on graphs have avg. degree 7.

Figure 5.12. VC size performance of algorithms.

5.3.2.1 Vertex Cover Size

Vertex cover problemwhich aims to find as possible as minimum vertex cover
set. As introduced in 4.3, each algorithm has a different approximation ratio. In this
subsection, we compare algorithms in term of vertex cover size.

Figure 5.12 shows vertex cover performance on graphs have different average
degrees. As seen in Figure 5.12a the performances of the algorithms are almost the
same on the sparse graphs. For example, in graphs that have 150 nodes, Gandhi’s
algorithm with b(v) = 1 produces set which has 106 nodes on average as the best
result, while Naor’s 3approximation algorithm produces set 109 in size as the worst
result in this experiment. This information indicates that the algorithms give almost
the same performance in the sparse graph.

When we look at Figure 5.12b which shows the results of graphs with 5 aver
age degrees, the gaps between the algorithms increase a little. For example, Guha
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Figure 5.13. VC size performance of algorithms by average degrees.

and Naor’s 3 approximation algorithms with b(v) = 2 and b(v) =∞ produce vertex
cover sets that have over 130 vertices. Interestingly, Naor 8 algorithm produces the
best solution with 125 vertices.

When the graphs get denser, the performances of the algorithms are seen
clearly. In Figure 5.12c that contains the results of 7 average degrees, Guha’s algo
rithm selects almost all vertices to cover graphs. In 150 sized graphs, Guha produces
148 sized vertex cover in average. Naor 8 and Gandhi algorithms give the best result
with 133 vertices on graphs that have 150 vertices and 7 average degrees.

Figure 5.13 shows performances of the algorithms in case of the density of
the graphs increase. Each algorithm is affected negatively by the increasing of the
density while Guha’s algorithm is the most affected.

5.3.2.2 Execution Time of Algorithms

The execution time of an algorithm is another crucial parameter to identify the
correct algorithm to use. In this subsection, we elaborate on the execution times of
the implemented algorithms. We measure the execution times of the algorithms by
adding the linear programming execution times.

Figure 5.14 shows the execution times of the algorithms of different densi
ties. For each density scenario, Gahndi’s algorithm executes longer than the other
algorithms. Since Gandhi’s algorithm has a preprocessing step that aims to reduce
b(v) values as possible as for vertices v that have k(v) = 1, the algorithm executes
longer. As seen in Figures 5.14a, 5.14b, 5.14c, as the b(v) value increases, the exe
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(a) Execution times of algorithms on graphs have
avg. degree 3.

(b) Execution times of algorithms on graphs have
avg. degree 5.

(c) Execution times of algorithms on graphs have
avg. degree 7.

Figure 5.14. Execution times of algorithms.

cution time of Gandhi’s algorithm increases.

For the graphs which have 3 average degrees, the algorithms execute almost
the same time except for Gandhi. For example, Guha’s algorithm executes 0.93
seconds on average as the best result for these types of graphs. With 1.14 second
execution time, Naor 3 algorithm ends up with worse results than Gandhi’s algo
rithm.

When the average degrees of graphs increase, the execution times of the algo
rithms increase as expected, the main reason for which is the structure of the linear
programming formulation. The yev variable depends on the number of edges in the
graph. When the average degree of a graph increases, the linear programmatrix will
be getting bigger. Thus, solving the linear program will be longer. For 7 average
degree graphs, the execution times of algorithms are affectedmore by increasing the
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number of nodes since problem size increases with the combination of edge num
bers and node numbers. The best algorithm for execution time is Guha’s algorithm
with 5.53 seconds on 150 sized graphs while Naor 3 is the worst algorithm with 7
second execution time after Gandhi’s implementation. In the light of such findings,
it is appropriate to claim b(v) value determines execution times of the algorithm
when we exclude Gandhi’s algorithm. In Guha’s algorithm, there is no b(v) value
that restricts nodes, then the execution is faster. If we restrict the linear program
with b(v) = 1 just like in Naor 3 and Naor 8, the execution times of the algorithms
are longer. In contrast, the bigger b(v) values in Gandhi’s algorithm increase the
execution time on account of the preprocessing step.

Figure 5.15. Execution times of algorithms by average degrees.

Figure 5.15 shows execution times of algorithms for different densities. For
higher b(v), the density of graph poses a less impact on Gandhi’s algorithm. How
ever, execution times of other algorithms increase parallel with density.

5.3.2.3 Approximation Ratio

In this subsection, we show the approximation performance of algorithms on
its own optimal solution for each formulation.

The approximation ratio of algorithms on 3degree graphs is shown in Table
5.6. This table shows us that if algorithm is restricted b(v) the approximation ratio
of algorithm will be low. Gandhi, Naor 3 and Naor 8 give the best approximation
ratios since they do not allow a node to contribute more than one in a solution set (i.e
hard capacitated). On the other side, when we relax the b(v) as 2, 3, or infinity, the
approximation ratio of the algorithm will be increase. Guha’s algorithm produces
the worst solution in terms of approximation ratio between 1.201.09. We can say
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Table 5.6. Approximation ratios of algorithms on 3 average degree graphs.

Size Naor3
Naor3
b(v) = 2

Naor
b(v) =∞

Naor8 Guha Gandhi
Gandhi
b(v) = 2

Gandhi
b(v) = 3

10 1.12 1.15 1.15 1.10 1.15 1.12 1.13 1.13
20 1.10 1.12 1.13 1.10 1.12 1.09 1.11 1.11
30 1.13 1.18 1.18 1.11 1.17 1.11 1.15 1.16
40 1.14 1.16 1.18 1.13 1.20 1.13 1.16 1.16
50 1.08 1.10 1.10 1.07 1.09 1.07 1.08 1.08
60 1.10 1.12 1.12 1.09 1.13 1.09 1.10 1.10
70 1.07 1.11 1.11 1.06 1.10 1.05 1.08 1.08
80 1.09 1.13 1.13 1.08 1.11 1.08 1.11 1.11
90 1.10 1.13 1.12 1.10 1.12 1.07 1.10 1.10
100 1.10 1.13 1.13 1.10 1.13 1.08 1.10 1.10
110 1.10 1.12 1.11 1.09 1.12 1.08 1.09 1.09
120 1.07 1.09 1.09 1.07 1.11 1.06 1.08 1.08
130 1.07 1.09 1.10 1.06 1.10 1.05 1.07 1.07
140 1.09 1.11 1.11 1.08 1.11 1.08 1.10 1.10
150 1.09 1.11 1.11 1.08 1.11 1.07 1.09 1.09

that the algorithms get closer to the optimal solution as the graph gets bigger.

We can see the same situation in Table 5.7 which shows the results of 5degree
graphs. Naor 8 and Gandhi algorithm produce the best approximation ratios on these
graphs with 1.16 on average. Generally, the approximation ratios of algorithms are
less on the bigger graph size except for Gandhi’s algorithm. Another observation
about the bounding of b(v) is that algorithms produce the same result after b(v) > 2.
For example, Gandhi’s algorithm produces almost the same result for 2 and 3 b(v)
values.

The characteristic of the algorithm on 7degree graphs is the same as 3degree
and 5degree graphs, as seen in Table 5.8. However, as graph become denser, the
approximation ratio of the algorithm increases. When we look all table together, we
can say that the approximation ratio is related to the density of a graph.

We have expected that Gandhi’s algorithm will give the best approximation
ratio followed by Naor 3 algorithm. Moreover, theoretical analysis has shown that
Naor 8 has the worst approximation ratio. However, the practical result does not ap
prove of that. Intuitively, we have waited the Guha’s algorithm could give the worst
practical approximation ratio because of its basic rounding nature which allows that
an edge can be covered by two endpoints. Naor 3 algorithm includes all vertices
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Table 5.7. Approximation ratios of algorithms on 5 average degree graphs.

Size Naor3
Naor3
b(v) = 2

Naor
b(v) =∞

Naor8 Guha Gandhi
Gandhi
b(v) = 2

Gandhi
b(v) = 3

10 1.16 1.25 1.26 1.16 1.29 1.14 1.21 1.21
20 1.18 1.23 1.25 1.17 1.24 1.17 1.21 1.21
30 1.24 1.28 1.28 1.24 1.39 1.22 1.26 1.26
40 1.21 1.26 1.26 1.20 1.29 1.19 1.23 1.23
50 1.14 1.20 1.20 1.13 1.22 1.14 1.17 1.17
60 1.17 1.23 1.23 1.16 1.27 1.15 1.20 1.20
70 1.16 1.21 1.22 1.15 1.21 1.16 1.19 1.18
80 1.16 1.20 1.21 1.16 1.23 1.15 1.20 1.19
90 1.15 1.19 1.19 1.13 1.20 1.13 1.18 1.18
100 1.19 1.23 1.24 1.18 1.24 1.17 1.21 1.22
110 1.16 1.22 1.22 1.15 1.25 1.15 1.19 1.19
120 1.16 1.21 1.21 1.15 1.24 1.16 1.20 1.20
130 1.17 1.21 1.21 1.16 1.25 1.15 1.20 1.19
140 1.15 1.20 1.20 1.13 1.22 1.13 1.18 1.17
150 1.14 1.20 1.20 1.13 1.20 1.13 1.18 1.18

Table 5.8. Approximation ratios of algorithm on 7 average degree graphs.

Size Naor3
Naor3
b(v) = 2

Naor
b(v) =∞

Naor8 Guha Gandhi
Gandhi
b(v) = 2

Gandhi
b(v) = 3

10 1.11 1.18 1.18 1.09 1.20 1.09 1.16 1.16
20 1.16 1.23 1.25 1.16 1.30 1.18 1.22 1.22
30 1.17 1.20 1.22 1.17 1.28 1.16 1.19 1.20
40 1.20 1.27 1.27 1.19 1.37 1.19 1.25 1.25
50 1.14 1.20 1.19 1.12 1.27 1.13 1.19 1.19
60 1.12 1.17 1.18 1.12 1.23 1.12 1.17 1.17
70 1.14 1.21 1.21 1.14 1.30 1.13 1.18 1.18
80 1.16 1.22 1.23 1.15 1.31 1.15 1.20 1.20
90 1.17 1.23 1.23 1.16 1.31 1.17 1.22 1.22
100 1.16 1.23 1.22 1.15 1.28 1.15 1.21 1.22
110 1.18 1.23 1.24 1.17 1.31 1.17 1.22 1.22
120 1.20 1.26 1.25 1.19 1.35 1.18 1.23 1.23
130 1.17 1.23 1.24 1.17 1.34 1.16 1.21 1.22
140 1.17 1.22 1.23 1.16 1.31 1.17 1.22 1.22
150 1.19 1.25 1.25 1.18 1.33 1.18 1.24 1.24
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which have xv ≥ 1
3
while Naor 8 includes vertices that have xv ≥ 1

2
. This difference

causes that Naor 3 includes more vertices than Naor 8 at the setup phase. Even if
the approximation ratio of Naor 8 algorithm is bigger than Naor 3’s, this algorithm
shows the better result in the average case. Gandhi algorithm with b(v) = 1 got the
same approximation ratios with Naor 8 algorithm since it allows vertices that have
xv ≥ 1

2
in the setup phase. AlthoughGandhi’s algorithm has a preprocessing phase,

it could not be useful to reduce the approximation ratio. As we mentioned before,
relaxed b(v) values cause worse approximation ratio for Naor and Gandhi.

5.4 Performance Evaluation of SelfStabilizing Graph Covering
Algorithm

In this section, we consider vertex cover inWSNs as the linkmonitoring prob
lem application. We implement and examine the practical fault tolerance perfor
mances of selfstabilizing vertex cover and independent set algorithms. Note that
VC algorithms are approximation algorithms, where IS algorithms do not have an
assurance for approximating the MVC.

5.4.1 Our Model

We assume a wireless sensor network where nodes are arbitrarily distributed
over a 2D space. As for the communication model, we adopt the message pass
ing model (Afek and Brown, 1993; Dolev et al., 1991). Nodes run independently
with respect to spatially but synchronously in time. Algorithms’ executions oc
cur in phases. Nodes do calculations in even¬numbered phases, and nodes send
the results of computations in odd¬numbered phases (i.e. moves) to inform their
neighbors about their status. Note that our assumptions are wellsuited and modeled
under the notion of synchronous schedulers where each node is allowed to make at
least one move in a round certainly makes one move before the end of the round
(Dubois and Tixeuil, 2011). Each node has information about the state of its neigh
bors. However, due to concurrency, in any round t, a node knows the state of its
neighbors in round t − 1. Note that as nodes run concurrently and independently
in WSNs, the central scheduler is not a realistic choice for WSNs. However, there
exist transformers which enable a selfstabilizing algorithm designed for the central
scheduler to run under distributed scheduler, such as local mutual exclusion method
(ULME)) (Beauquier et al., 2000) or randomized selfstabilizing (Turau and Weyer,
2006). We implement these two methods to transform Shukla et al.’s algorithm to
make it run under the distributed scheduler.
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Table 5.9. Parameters and Environment of Simulations

Simulator TOSSIM
Mote IRIS

Topology Geometric
Number of Nodes 50250 (step 50)
Node Degrees 3, 5, 7

Total Number of Instances 150
Scheduler Synchronous

5.4.2 Simulation Environment

Wesimulated algorithms onTOSSIMwireless sensor network simulator (Levis
et al., 2003) which is discrete event simulator for nodes running TinyOS (Levis et
al., 2004), to compare performance evaluation of algorithms. We produced geomet
ric graphs. The order of the mentioned graphs varies from 50 to 250 with a step
increment of 50. The average degree of the produced graphs is 3, 5, and 7. For each
size and average degree pair, we produce 10 different topologies. We have 150 net
work instances in total. We assigned the state variables of all nodes randomly so that
each node is either or (and ) with equal probability for the initial con
figurations. The execution of each round contains two phases. Table 5.9 includes
the parameters of simulation environment.

We compared the algorithms depending on the number of rounds, cardinality
of vertex cover set and the move count. Hereafter, Turau’s basic VC algorithm and
improved VC algorithm, and Kiniwa’s algorithm will be called Turau 1, Turau 2 and
Kiniwa, respectively. For the MIS algorithms, we called Shukla et al.’s algorithm as
USMIS and RSMIS that adopted ULME and randomized selfstabilizing methods,
respectively. Ikeda et al.’s, Goddard et al.’s, and Turau’s algorithms are named I
MIS, GMIS, TMIS, respectively.

5.4.3 Computational Results

5.4.3.1 Move Count

The total number of moves made by the nodes until the system stabilizes from
an adversarial configuration is represented by the move count. Since nodes must
inform their neighbors of their new states after each move in the message passing
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communication model, the number of moves is an essential indicator for the total
number of messages that should be sent throughout the execution.

(a) Move count vs. graph size. Average degree: 5. (b) Move count vs. average degree. Node count:
150.

Figure 5.16. Move count of algorithms.

The required move counts for the algorithms to stabilize in the case of a arbi
trary initial configuration for graph size and average degree of the graph are shown
in Figures 5.16a and 5.16b, respectively. All IS algorithms require less number
of moves for stabilization than VC algorithms and that is the most important ob
servation. TMIS algorithm needs around 1.2 moves per node, where all other IS
algorithms give similar results and requires less than 1 move per node to stabilize.
USMIS is the most agile algorithm as IMIS comes second and GMIS is the third.
The best performing VC algorithm is Kiniwa’s algorithm in which the total num
ber of moves doubled that of the worstperforming IS algorithm (TMIS). Turau’s
improvement algorithm (Turau 2) needs 14times more moves than USMIS.

In Figure 5.16b, we show the move count results when we fix the graph size
at 150 and change the density of the graph. We observe that IS algorithms are not
affected by the changes in density and give similar results in denser graphs. On the
other hand, the number of total moves required by VC algorithms goes up as the
density of the graph grows.

5.4.3.2 Number of Rounds

Asmentioned before, enabled nodes make their moves concurrently and every
enabled node definitely makes one move under synchronous scheduler. Since the
synchronous system that we assume is a timesynchronized system, an important
parameter for the performance of a selfstabilizing algorithm is the total number
of rounds it takes to converge to a legitimate configuration. In this subsection we
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provide results for round counts.

(a) Round count vs. graph size. Average degree: 5.(b) Round count vs. average degree. Node count:
150.

Figure 5.17. Round count of algorithms.

According to Figure 5.17a, we observe that most of the IS algorithms are more
agile than VC algorithms. IMIS is the quickest algorithm to stabilize in all sizes of
graphs as it converges in around 9 rounds. GMIS and TMIS perform well, too, as
they need around 11 and 13 rounds to converge, respectively. We see that USMIS,
which is the algorithm that requires the least number of moves (Figure 5.16a), is the
slowest algorithm to converge. Furthermore, RSMIS is the second slowest although
it is one of the algorithms that requires the least number of moves. Recall that U
SMIS and RSMIS are the modified versions of Shukla et al.’s algorithm which has
been designed to work with the central scheduler. We use ULME and randomization
techniques tomake them run under a distributed scheduler. For instance, in USMIS,
only a single node in a 1hop neighborhood is scheduled to make a move, which
explains its longer running time.

It is obviously seen that the IS algorithms are quicker than VC algorithms.
Both algorithms of Turau have reached the stable state in more than 20 rounds, while
the quickest VC algorithm (Kiniwa) needs around 16 rounds and could only slightly
outperform TMIS in graphs with 200 nodes.

It is observable that the running times of the algorithms are quite independent
of the node count as they require the same number of rounds for all sizes of graphs.
Exceptions are USMIS and RSMIS since their running times slightly grow as the
graphs become larger.

Figure 5.17b shows the change in required number of rounds as the graph gets
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denser and the size of the graph is fixed at 150. We observe that VC algorithms
show linearly increasing behavior concerning time as the density increases. The
only IS algorithm that shows the similar rise in time is USMIS. As explained in
Section 5.4.3.2, USMIS does not allow neighbor nodes to make concurrent moves,
which means that the maximum possible number of enabled nodes in a single round
decreases as the density of the graph grows. Note that if the graph is complete,
USMIS can only schedule one node in a single round.

We see that the running times of the other IS algorithms (RSMIS, TMIST,
GMIS, IMIS) were not affected by the changes in the density of the graph.

5.4.3.3 Cardinality of Vertex Cover

(a) Vertex cover size vs. graph size. Average de
gree: 5.

(b) Vertex cover size vs. average degree. Node
count: 150.

Figure 5.18. Cardinality of vertex cover set of algorithm.

In this subsection, we discuss the performance of algorithms in achieving
smaller vertex covers. Figure 5.18a shows that IS algorithms considerably out
performed VC algorithms in finding vertex covers. All ISbased algorithms give
similar results in all sizes of graphs. As an example, they all provide vertex cover
with a size around 175 in graphs with 250 nodes. Turau’s improvement algorithm
and Kiniwa’s algorithm result in more than 15% larger VC solutions. Turau’s basic
algorithm gives nearly 35% larger sets with respect to IS algorithms.

The vertex cover sets that the algorithms produce based on the increasing node
degree are shown in Figure 5.18b. As shown in Figure 5.18b, there is a positive
correlation between the size of the vertex cover set with the increased average node
degree. The MISbased algorithms produce the best results even though they are
slightly more affected by the increase of average degree compared to matching
based VC algorithms. Turau 1, Turau 2, Kiniwa, and all MIS based algorithms in
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the 7degree graphs have produced vertex cover sets in sizes 144, 134, 131, and
around 117, respectively.
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6. SELFSTABILIZINGVERTEXCOVERALGORITHMSWITH
CAPACITY CONSTRAINT

In this chapter, we introduce two selfstabilizing capacitated vertex cover al
gorithms that enable the system to change its state from arbitrary to desired stable
state. The first proposed algorithm (SSCVC1) is a modification of Ikeda’s (Ikeda et
al., 2002) algorithm. The second one, which uses the greedy technique (SSCVC2)
is a novel algorithm for the problem. To the best of our knowledge, this is the first
work that combines capacitated and selfstabilizing concepts for the vertex cover
problem. Additionally, we evaluate these algorithms with existing selfstabilizing
vertex cover algorithmswhichweremodified in order to satisfy the capacitated prop
erty.

The remainder of this paper is organized as follows. We propose our algo
rithms in subsection 6.1, then we provide correctness and selfstabilizing proof of
the algorithms in subsection 6.2. Performance evaluations of the algorithms are
widely discussed in subsection 6.3. Lastly, we conclude our study and findings in
subsection 6.4.

6.1 Proposed Algorithms

In this section, the proposed algorithms are explained and exemplified on the
sample graphs. We firstly introduce a maximal independent set based algorithm,
which is called SSCVC1. After the first algorithm, we introduce our second algo
rithm which needs 2hop information about the graph.

6.1.1 SSCVC1 Algorithm

In this subsection, we present the SSCVC1 algorithm which is based on
Ikeda’s MIS algorithm (Ikeda et al., 2002). Ikeda’s MIS algorithm runs under the
unfair scheduler and stabilizes itself at most O(n2) steps. We modify the first two
rules of Ikeda’s algorithm to obtain a vertex cover set. Each node uv ∈ V maintains
coveredu variable that has two different states: {0, 1}. After the first two rules, we
add two additional rules which satisfy the capacity constraint. Algorithm 6.7 shows
the proposed SSCVC1 algorithm.

R1 is a simple rule that the node u changes its coveredu variable by looking
all of its neighbors v’s coveredv variable. If coveredu variable of the node u is 1 and
all of its neighbors v’s coveredv variable is 1, node u changes coveredu variable to
0. Figure 6.1a shows a sample scenario from u point of view where all neighbors of
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Algorithm 6.7 SSCVC1
process u
N(u) neighbors of node u
Variables :
coveredu ∈ {0, 1}
nexu ∈ N+

Rules :
R1: coveredu = 1 ∧ ∀j ∈ N(u) : coveredv = 1

⇒ coveredu := 0
R2: coveredu = 0 ∧ ∃j ∈ N(u) : coveredv = 0 ∧ cost1(v) > cost1(u)

⇒ coveredu := 1
R3: coveredu = 1 ∧ nexu = |N(u)|

capu

⇒ nexu := |N(u)|
capu

R4: coveredu = 0 ∧ nexu = 0
⇒ nexu := 0

(a) (b)

(c) (d)

Figure 6.1. Sample scenarios for rules of SSCVC1.

u are already covered, thus u sets coveredu as 0.

In the R2, each node decides whether or not to join the vertex cover set by
looking at the neighbors’ coveredv and cost1(v). We define a cost(u) function to
select greedily the vertex that joins the set. A vertex u simply calculates its cost with
the formula seen in Equation 6.1. The algorithm chooses the vertex with the locally
minimum cost. In Figure 6.1b node u enables R2 since its cost is lower than v.

R3 and R4 regulate the nexu variable that is the number of existence in vertex
cover set for vertex u. If coveredu is 1 and nexu is not correct for vertex u, as seen
in Figure 6.1c, the vertex sets nexu to N(u)

capu
. On the other hand, if coveredu is 0

and nexu is not equal to 0, the vertex sets it to 0 as that illustrated in Figure 6.1d.
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Figure 6.2. Execution of the SSCVC1 algorithm.

cost1(u) =

|N(u)|
capu

∗ weightu
|N(u)| (6.1)

In Figure 6.2, an example of the execution of the SSCVC1 algorithm is shown.
The algorithm starts with an arbitrary initial configuration where each vertex is la
beled as (cap, weight, nex). The red color represents that the vertex is already in the
vertex cover set. At a given initial configuration, the costs of vertices are 5, 2, 2, 3,
2, respectively. Although vertex 1 and vertex 2 have the same cost 2, the algorithm
uses a vertex identifier to prevent the neighbor nodes to enter into the vertex cover
set together. In the first round, vertices 2 and 4 execute R2 to set their covered vari
able to 1. Vertex 1 executes R4 and sets nex1 to 0. Vertex 3 executes R3 to justify
nex3 to 2. In the second round, vertex 3 executes R1 and sets covered3 variable to
0 since all of its neighbors are currently in the vertex cover set. Also, vertex 4 sets
nex4 to 2 by executing R3. In the last round, vertex 3 executes R4 to set nex3 to 0.
Optimal solution weight is 9 and SSCVC1 produces the optimal solution for this
example.

6.1.2 SSCVC2 Algorithm

In this subsection, we improve our SSCVC1 algorithm to reduce the weight
of the produced vertex cover solution and round complexity. In order to achieve this,
we facilitate a model defined by Turau (Turau, 2012). The model is named as the
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(a) (b)

(c) (d)

Figure 6.3. Sample scenarios for rules of SSCVC2.

expression model in which each vertex u has expressions that show their states and
states of their neighbors. 2distance model is a special case of the expression model.
In the expressionmodel, each vertex not only reads the states of its neighbors but also
reads the expressions of all of its neighbors in an atomic step. We present SSCVC2
capacitated selfstabilizing vertex cover algorithm consisting of two expressions.
The pseudocode of the algorithm is shown in Algorithm 6.8.

The expression is_tight(u) checks if the node u is already in vertex cover set
and nexu is correct. We use this expression to include a vertex in the vertex cover
set. The expression is_candidate(u) returns true if a nodeu has cost locally optimal
among all of its neighborsN(u) which could enter the vertex cover set. The macro
trade_offu is used to calculate the tradeoff value of a vertex. We need to calculate
the tradeoff value for vertex u, so we count doublecovered edges and thenmultiply
this value with the payback value nexu×weightu

covered_by_meu for an edge.

The expression has_max_trade_offu is used to find the locally optimal ver
tex to exclude it from the vertex cover set. If a node has max tradeoff among all of
its neighbors with double covered edges and is already tight, this expression returns
true.

Note that its sequence number defines the priority of each rule.
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Algorithm 6.8 SSCVC2
process u
Variables :
coveredu ∈ {0, 1}
nexu ∈ N+
uncovered_edgesu = {∀(u, v) ∈ E(u) | u→ (u, v) ∧ v → (u, v)}
covered_by_me = {∀(u, v) ∈ E(u) | u→ (u, v)}

Macros:
double_coveredu,= {(u, v) ∈ E(u) : i→ (u, v) ∧ v → (u, v)}
trade_offu = nexu×weightu

covered_by_meu × double_coveredu
Predicates:
all_edges_covered_by_neighs(u) ≡ (u, v) ∈ E(u) : v → (u, v) ∀v ∈ N(u)

Expression:
is_tight(u) ≡ (nexu = |uncovered_edgeu|+|covered_by_me|

capu
) ∧ coveredu = 1

is_candidate(u) ≡ (∀v ∈ N(u) : uncovered_edgesv = ∅ ∨
(covered_by_mev = ∅ ∧ is_tight(v) = false), cost(u) < cost(v))
has_max_trade_off(u) ≡ (∀v ∈ N(u) : trade_offu > trade_offv)

R1: (uncovered_edgeu = ∅ ∨ covered_by_meu = ∅) ∧ ¬is_tight(u) ∧
is_candidate(u)
⇒ coveredu := 1
⇒ nexu := |uncovered_edgeu|+|covered_by_me|

capu

⇒ ∀(u, v) ∈ uncovered_edgesu do u→ (u, v)
R2: uncovered_edgeu = ∅ ∧ is_tight(u) ∧ is_candidate(u)
⇒ ∀(u, v) ∈ uncovered_edgesu do u→ (u, v)

R3: all_edges_covered_by_neighs(u) ∧ (coveredu = 0 ∨ nexu = 0 ∨
|covered_by_me| > 0)
⇒ coveredu = 0
⇒ nexu = 0
⇒ ∀(u, v) ∈ covered_by_meu do i→ (u, v)

R4: double_covered = ∅ ∧ has_max_trade_off(u)
⇒ ∀(u, v) ∈ E(u) : u→ (u, v) ∧ v → (u, v) do u→ (u, v)
⇒ nexu = |covered_by_meu|

capu
if nexu = 0
coveredu = 0

R1 selects a locally optimal node to enter the solution set by calculating the
cost of each node that is candidate to enter this set. To calculate the cost of a vertexu,
Equation 6.2 is used. If a nodeu enablesR1 and is privileged by the scheduler, it sets
coveredu to 1, nexu to the correct value and covers all edges in uncoverededgeu.
Figure 6.3a gives an example configuration for the activation of R1 from u’s per
spective. In this configuration, u is not tight, because coveredu = 0 and it covers
edge (u,w) but edges (u, v) and (u, x) are not covered by others. The cost of u is
lower than its neighbors for this scenario, therefore the only enabled node becomes
u which enables R1.
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cost2(u) =

|uncovered_edge|
capu

∗ weightu
|uncovered_edge| (6.2)

If a node u’s uncovered_edgeu set is not empty but the node is tight, the node
checks whether is a candidate. If the node is a candidate to join the vertex cover set, it
enablesR2. In Figure 6.3b, node u activates R2 since it is locally optimal candidate
to join vertex cover set and it already satisfies the tightness that distinguishes R1
and R2. If the node makes a move, it just covers all edges in uncovered_edge_u so
coveredu and nexu variables become correct.

In R3, if at least one of coveredu, nexu, |covered_by_me| variables of a node
u, which means its all incident edges are covered by all of its neighbors, is not 0, the
node executesR3 and resets these variables. As seen in Figure 6.1c, node u activates
R3 since all of its neighbors covers all incident edges to it but coveredu = 0

We use R4 to exclude unnecessarily selected vertices from the solution set
by calculating their tradeoff value. As depicted in Figure 6.3d, the edge (u, v) is
covered by two endpoints, each node calculates its tradeoff value and the node with
the maximum tradeoff value, u in this case, reduces its nex variable. If the newly
calculated nex variable is 0, the node sets covered variable to 0 as well.

Figure 6.4 shows the execution of the SSCVC2 algorithm on the arbitrary ini
tialized graph. The nodes are labeled as in the execution of SSCVC1 in Figure 6.2.
We also randomly initialize covered_by_me sets for each vertex. The red vertices
represent the covered vertices and red arrows show the edges covered by the ver
tices. In Round 1, vertex 2 excludes itself from the vertex cover set by executing R4
since its trade_off2 value 8 is more than vertex 3. Vertex 4 excludes itself from the
vertex cover set by executing R3 since its neighbors cover all of its edges. Vertex 3
covers itself by executing R1 with cost1 = 0.75 as the local minimum cost.

In Round 2, vertices 1 and 6 execute R1 since they have 3 and 2 costs which
are locally minimum, respectively. 0 and 5 execute R1 since they have 1 cost in
Round 3. Each vertex contributes to the solution set only once, as a result the total
weight of this solution is 15, namely, the optimal solution.
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Figure 6.4. An execution of the SSCVC2 algorithm.

6.2 Theoretical Analysis Of Algorithms

In this section, proof of the correctness and step complexities of algorithms
are provided. SSCVC1 algorithm is proved via Ikeda’s proof method since this
algorithm is designed thanks to the inspiration gained from Ikeda’s algorithm. It is
shown that the SSCVC2 algorithm stabilizes under unfair distributed scheduler in
O(n) step complexity.



60

6.2.1 Theoretical Analysis of SSCVC1

Figure 6.5. Worst case scenario for SSCVC1 algorithm.

Theorem 6.1. SSCVC1 algorithm stabilizes after O(n2) steps under unfair dis
tributed scheduler.

Proof. Assume that a scheduler gives permission immediately to all nodes which
attempt to executeR1 andR3 simultaneously, and gives permission one by one to the
other nodes which attempt to executeR2 andR4. Consider a configuration as shown
in Figure 6.5 whose cost values are increasing as the following order cost(0) <
cost(1) < ... < cost(n− 1).

The scheduler allows all nodes to make their moves in one step for the first
phase. In the second phase, all nodes are privileged one by one and this process
takes to n step. The third phase is ended in only one step because each node wants
to execute R1 or R3. In phase 4, n− 1 and n− 2 stabilize and do not want to make
any move. Thus, the rest of the nodes make their moves in n− 2 steps. The number
of nodes that want to make a move decreases by 2 in each consecutive two rounds.
We can formalize this relation as 1+n− (2× r) where r is the sequence number of
two consecutive phases. Such a scenario is shown in Figure 6.5, in which the system
stabilizes when r = n−1

2
. We can formulate Equation 6.3 using these information.
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4

= O(n2) (6.3)

When we solve the summation formula, we get to O(n2) step and this concludes
the proof of the theorem.

6.2.2 Theoretical Analysis of SSCVC2

In this subsection, we have proved that the SSCVC2 algorithm is a self
stabilizing capacitated vertex cover algorithm. Firstly, we show the SSCVC2 al
gorithm to produce a capacitated vertex cover solution when it reaches a stable con
figuration. Following that, we will show that the algorithm reaches the stable con
figuration in a finite number of moves under the unfair distributed scheduler.

Lemma 6.2. When the algorithm is in the stable configuration ∀e ∈ (u, v) ∈ E :
(u→ e ∧ coveredu = 1) ∨ (v → e ∧ coveredv = 1).

Proof. If there is such an edge as e = (u, v), both endpoints i, j do not cover e, u
or v execute R1 or R2 by their costs and sets covered = 1.

Lemma 6.3. In the stable configuration ∀i ∈ V : nexu = covered_by_meu
capu

.

Proof. If nexu variable of a vertex u is not equal to covered_by_meu
capu

. The vertex
could update its nexu according to the following four different ways,

• If the is_tight(u) expression of u is false and neither covered_by_me nor
uncovered_edges are empty, u executes R1 and updates nexu =
|uncovered_edgeu|+|covered_by_me|

capu
. After the execution of R1, all edges inuncovered_edgesu

are covered by u.
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• If vertex u is tight but it has at least one edge in uncovered_edgesu, it exe
cutes R2 to set nexu = |uncovered_edgeu|+|covered_by_me|

capu
and covers all edges

in uncovered_edgesu.

• If all incident edges to u are covered byN(u), u executesR3 and sets nexu =
0 and uncovers all edges that are covered by itself.

• If an edge e = (u, v) is covered by both endpoints, the edge is considered
as a doublecovered edge. The vertex u which has the maximum trade_off
among its 1hop local neighborhood, uncovers the double covered edges and
updates its nexu by covered_by_meu.

Lemma 6.4. In the stable configuration, an edge e = (u, v) is covered by its only
one endpoint u or v.

Proof. Assume a situation that e is covered by both endpoints. u or vwill executeR4
according to their trade_off(), which is a contradiction and proves the lemma.

Theorem 6.5. A stable configuration SSCVC2 is a minimal capacitated vertex
cover.

Proof. When the system stabilizes, the covered variable of one endpoint of an edge
is 1 (Lemma 6.2). According to Lemma 6.3, nex variables of the covered vertices
are equal to covered_by_meu

capu
. If a vertex provides these properties, the vertex is

considered as tight.

If all neighbors of vertex u already cover each connected edge, the node exe
cutes R3. To prevent the double covered edge, R4 is executed by the neighbouring
vertices with the maximum tradeoff. Thus, these give us the minimality property
for the vertex cover solution.

Lemma 6.6. Each vertex could execute either R1 or R2 only once.

Proof. R1 andR2 are used to enter the vertex cover set and they are mutually exclu
sive rules due to is_tight() expression. Once a vertex enters into the vertex cover
set, it does not execute neither R1 nor R2 until a fault occurs.
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Lemma 6.7. Each vertex executes R3 only once.

Proof. Due to the arbitrary initial configuration property of selfstabilizing, the given
graph could start a configuration where vertices cover all edges. In such a config
uration, all nodes except the one which executes R1 or R2, execute R3 only once.
In the configuration where a vertex u has vertices in covered_by_meu but its cost
is higher than its neighbor’s cost, u executes R3 only one time when its neighbors
enter the solution set.

Lemma 6.8. Each vertex executes R4 only once.

Proof. Two neighbor vertices could cover the same edge due to the arbitrary initial
configuration or execution of the algorithm. To prevent this, each node with double
covered edges and maximum tradeoff value executes R4 only one time during the
execution of the algorithm.

Lemma 6.9. If a vertex v executes R3, it does not execute R4.

Proof. If a vertex v makes an R3move, then it does not have doublecovered edges
due to the removing edges from covered_by_meu.

Theorem 6.10. The step complexity of the SSCVC2 algorithm under the unfair
distributed scheduler is O(n).

Proof. The unfair distributed scheduler does not guarantee the privilege to activate
all nodes in any round, but at least one node in one round. Because of Lemma 6.6
and 6.9, each vertex could make a maximum of two moves. By the definition of
the unfair scheduler, it takes 2 × n step to stabilizing system. According to this
information, the step complexity of SSCVC2 is O(n).

6.3 Performance Evaluation

6.3.1 The Model

We assume that each node has a unique identifier and a local variable that
stores its neighbors. We run algorithms under the unfair distributed scheduler which
is the most restricted scheduler type since it does not guarantee that all active nodes
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are privileged eventually. The scheduler prevents nodes from making moves with
0.5 probability but guarantees global progress by privileging at least one vertex in
each step. We execute our algorithms on a simulator which was proposed in (Ileri
and Dagdeviren, 2018) to execute selfstabilizing algorithms.

6.3.2 Experimental Setup

Weuse random geometric network models in order to simulate wireless sensor
networks. Each vertex of the given graph G(V,E) is scattered to 2D area A. If Eu
clidean distance between two vertices is smaller than their unit range r, these nodes
are considered connected. The size of randomly generated graphs varies from 50
to 250 (with 50 steps). Graphs are divided into three sparsity groups which have
3, 5, and 7 average degrees for each vertex in a graph. Each performance metric is
obtained through 30 different simulation scenarios. We randomly assign a weight to
each vertex in the interval [1− 50]. Moreover, we assign each vertex u a cap value
in the interval [1−∆] where ∆ represents the maximum degree of a graph.

In addition to the algorithms we propose, we implement the algorithms of
Kiniwa and Turau. To provide the capacity constraint for the algorithms of Kiniwa
and Turau, we add nex and cap andweight variables and two rules which are shown
in the Algorithm 6.9. Furthermore, we provided the 1hop implementation of SS
CVC2 algorithm thanks to the transformer proposed in (Turau, 2012).

All variables of each node are initialized randomly before the algorithm starts.
When a node changes its state, all 1hop neighbors can see this move (for SSCVC2
2hop information is provided).

We compare algorithms in terms of move count, step count, the total weight
of vertex cover, cardinality of vertex cover multiset, message traffic, and energy
consumption. Move count plays a crucial role in the wireless sensor network be
cause a node must send their new state to its neighbor after a move, which affects
the message complexity of wireless media. Step complexity is vital to see how long
it takes to reach a stable algorithm configuration. Message traffic and energy con
sumption are another important metrics to measure lifetime of the networks. Weight
and cardinality of the vertex cover are the other important metrics to facilitate when
comparing the algorithms since we want to formulate a desirable solution in the
shortest possible time. Although Kinawa’s and Turau’s algorithms were proposed
for the unweighted graphs, we carried out weighted experiments to compare all
algorithms.
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Thereafter, Turau’s basic and improved algorithms and Kiniwa’s algorithm
will be called TURAU1, TURAU2, and KINIWA respectively. The transformed
version of the SSCVC2 algorithm is called as TSSCVC2.

Algorithm 6.9 Additional rules
process u
R1: coveredu = 1 ∧ nexu = |N(u)|

capu

⇒ nexu := |N(u)|
capu

R2: coveredu = 0 ∧ nexu = 0
⇒ nexu := 0

6.3.3 Performance Results

Move counts of the algorithms are shown in Figure 6.6 on the fixed aver
age degree and fixed graph size. It is seen clearly that move counts increase with
the number of the nodes in the graph for each algorithm as shown in Figure 6.6a.
KINIWA algorithm makes the maximum number of moves to reach the stable con
figuration and it is followed by TURAU2. In the graphs including 250 vertices,
KINIWA made 1351 moves to stabilize while our proposed algorithms SSCVC1
and SSCVC2 made 335 and 309 moves on the same graph. The closest algorithm
to our algorithm regarding move count is TURAU1, which makes 884 moves until
stabilizing on 250 sized graphs.

The density of the graph does not significantly affect the move counts of the
algorithm as seen in Figure 6.6b. Especially, SSCVC1 and SSCVC2 have been
affected as minimum as by density as opposed their counterparts. SSCVC2 algo
rithm needs 173, 184, and 192 moves to stabilize on graphs that have 3, 5, and 7
average degrees. KINIWA needs 669, 789, and 848 moves on the same types of
graphs.

Step count of SSCVC2 varies between 4060 while SSCVC1 has lower than
33 step counts for all graph types as shown in Figure 6.7a. KINIWA needs 80
140 steps to become stabilized for each size of the graph. The algorithm which has
the nearest step count to our algorithm is TURAU1 with 4671 steps. Compared
with TURAU1, The SSCVC1 and SSCVC2 algorithms need 1.10 and 2.15 times
less steps to stabilize. SSCVC1 and SSCVC2 are 4.22 and 2.17 times faster than
KINIWA which has the most step size for all graph sizes.

As seen in Figure 6.7b, the step count of SSCVC1 has stayed stable on 28
as the density of the graph increased while the SSCVC2’s step count has increased
with the density. On the graphs with the average degree of 7, SSCVC2 algorithm
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(a) Move count against node count on the fixed
avarage degree 5.

(b) Move count against node count on the fixed
graph size 150.

Figure 6.6. Move counts of algorithms on weighted graphs.

(a) Step count against node count on the fixed av
erage degree 5.

(b) Step count against node count on the fixed
graph size 150.

Figure 6.7. Step counts of algorithms on the weighted graphs.

exceeds the TURAU1 algorithm slightly. However, in the most graph types, SS
CVC1 and SSCVC2 algorithms overperformed other algorithms in terms of step
count.

Figure 6.8 depicts sent byte for each algorithm on the whole network in kilo
byte. SSCVC1 and SSCVC2 algorithms need the lowest message passing traffics
related to their move count performance which directly impacts message traffic be
cause after each move nodes must inform their neighbors. Note that the other factor
for sent byte performance is message size. For example, the message size for SS
CVC1 algorithm is 5 byte, while SSCVC2 holds 9 byte for each package. Because
of this difference, the slope of sent byte and move count line of SSCVC2 stay stable,
but sent byte exceed SSCVC1 as seen in Figure 6.8a and 6.8b. Graph size directly
influences sent byte of algorithms since a larger graph needs more move and mes



67

(a) Sent byte against node count on the fixed aver
age degree 5.

(b) Sent byte against node count on the fixed graph
size 150.

Figure 6.8. Sent byte of algorithms on weighted graphs.

(a) Received byte against node count on the fixed
average degree 5.

(b) Received byte against node count on the fixed
graph size 150.

Figure 6.9. Received byte of algorithms on weighted graphs.

sage passing. For the graphs with 250 nodes, TURAU1 and TURAU2 and KINIWA
send 3.26 kB, 6.02 kB and 6.59 kBmessages in total while SSCVC1 and SSCVC2
algorithm needs 1.63 kB and 2.55 kB messages to stabilize. SSCVC1 algorithm
shows 2 times better performance against its closest competitor TURAU1. Graph
density does not play a crucial role on sent byte performance of algorithm as seen
in Figure 6.8b.

Received byte is another important measurement to determine algorithm qual
ity because it affects the network lifetime. Figure 6.9 shows the performance of al
gorithms in terms of received byte until the system reaches to stable configuration.
Figure 6.9a compares sent byte performance of algorithms with respect to graph size.
SSCVC1 algorithm overperforms all other algorithms since it has smaller packages
to send and less message traffic. For example SSCVC1 algorithm has 4.81 kB av
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(a) Energy consumption against node count on the
fixed average degree 5.

(b) Energy consumption against node count on the
fixed graph size 150.

Figure 6.10. Energy consumption of algorithms on weighted graphs.

erage received byte for graphs with 150 nodes, on the other hand KINIWA needs
18.88 kB to stabilize on same type of graphs. The best algorithm after SSCVC1
is TURAU1 algorithm which needs 2 times more received byte in total. SSCVC2
algorithm shows poor results since it assumes messages are passed to the 2hop
neighborhood.

Figure 6.9b depicts the performance of algorithms when the average degree
of graphs gets larger. Unlike the sent byte performance of algorithms, the density of
graphs impacts received byte performances of algorithms. However, this impact is
minimum for SSCVC1 in comparison to the other algorithms as seen from slopes of
lines. On graphs with 150 nodes, SSCVC1 always stays under 7 kB for all density
types.

Figure 6.10 illustrates the energy consumption of each individual node in the
network. In order to calculate the energy consumption of nodes, we exploit Equa
tion 5.1 that takes sent byte count and received byte count as parameters. As seen in
Figure 6.10a, SSCVC1 algorithm consumes 67.44 mJ per node as the most energy
efficient algorithm among all implemented algorithms. Since the energy calculation
takes into account the received byte count, SSCVC2 algorithm consumes more
energy than its counterparts. After the SSCVC1 algorithm, TURAU1 consumes
136.08 mJ per node to reach the stable configuration. It is obvious that SSCVC1
algorithm solves the capacitated vertex cover problem 2 times efficiently in com
parison to its nearest counterpart.

Figure 6.10b shows impacts of graph density on energy consumption for algo
rithms. We see exactly the same graphic as 6.9b except for numbers, due to received
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byte dominates the energy consumption calculation. But still density affects less SS
CVC1 than others since its energy consumption increase lower than 1.6 times for
each average degree. Besides, TURAU1’s energy consumption increase 1.7 times
for each average degree but its energy consumption always higher than SSCVC1.
SSCVC2 algorithm is the most energy consumer algorithm among all implemented
algorithms and its slop is higher than others’.

Figures 6.11a and 6.11b show that the cardinality of VC solution is directly
affected by the graph size and density of the graph. Intuitively, when the graph
gets larger and denser we must choose more vertices to cover all edges in the graph
because edge count increaseswith the number of the nodes and the average degree of
the graph. SSCVC2 algorithm produce the best VC solution for all graph sizes and
densities. SSCVC2 produced VC multiset that contains 291 vertices on the 250
sized graphs. After the SSCVC2 algorithm, the SSCVC1 algorithm comes with
a multiset which contains 360 vertices on the graphs which contain 250 vertices.
The SSCVC2 algorithm produces 1.75, 1.59, and 1.48 times smaller vertex cover
solutions in comparison to TURAU1, TURAU2, and KINIWA.

As the density of the graph rises, SSCVC2 algorithm is less affected by the
density when we compare it with the other algorithms. On the 150 sized graphs, SS
CVC2 produces 140, 168, and 183 sized VC solutions for the graphs that have 3, 5,
and 7 average degrees while the best matching based algorithm KINIWA produces
183, 248, 281 sized VC solutions.

(a) VC size against node count on the fixed average
degree 5.

(b) VC size against node count on the fixed graph
size 150.

Figure 6.11. VC size of algorithms on the weighted graphs.

When we look at Figure 6.12, it can be clearly seen that the weight of VC
has the same characteristic as the cardinality of VC multiset because the weight
of the solution is a function of the cardinality. SSCVC1 and SSCVC2 algorithms
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produce vertex cover solutions which have less weight than the other algorithms.
SSCVC1, KINIWA, TURAU2, and TURAU1 produced weighted vertex covers
which have 1.23, 1.58, 1.70, and 1.88 times higher than SSCVC2’s solutions for
250 sized graphs. The density of graphs impacts the weight of the solution as seen in
Figure 6.12 for all algorithms, however, our proposed algorithms SSCVC1 and SS
CVC2 produced lower weighted solutions for all density in our experiments. Note
that the accrual of the weight for SSCVC2 is lowest among all other implemented
algorithms as seen in graphic.

(a) VC weight against node count on the fixed av
erage degree 5.

(b) VC weight against node count on the fixed
graph size 150.

Figure 6.12. VC Weight of algorithms on the weighted graphs.

We elaborate the weighted approximation ratios of algorithms in Tables 6.1,
6.2, 6.3. Accordingly, we obtain the optimal solution in SageMath programming
language by implementing Guha’s integer linear programming algorithm proposed
in (Guha et al., 2003).

Tables show us that the SSCVC2 algorithm has better approximation ratios
among all algorithms. After the SSCVC2 algorithm, the secondlowest approxi
mation belongs to the SSCVC1 for all graph types. Matching based vertex cover
algorithms produced more than 2 approximation ratios. Since these algorithms have
not been proposed for the weighted graphs, they exceeded the theoretical approxi
mation ratios.

The density of the graphs affects the approximation ratios of all algorithms
while the graph size has not any correlation to the approximation ratio.

We provide the move count and step count performances of the transformer
proposed byTurau in Figure 6.13. The transformer provides an interface that enables
to execute an algorithm which is designed for 2hop, with 1hop information with
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Table 6.1. Approximation ratios of the algorithms (Avg. degree = 3)

Size SSCVC2 SSCVC1 KINIWA TURAU2 TURAU1
50 1.55 1.71 2.17 2.50 2.88
100 1.53 1.65 2.16 2.48 2.90
150 1.56 1.69 2.19 2.56 2.92
200 1.56 1.71 2.18 2.54 2.92

Table 6.2. Approximation ratios of the algorithms (Avg. degree = 5)

Size SSCVC2 SSCVC1 KINIWA TURAU2 TURAU1
50 1.62 2.03 2.61 2.77 3.06
100 1.61 1.98 2.56 2.75 3.03
150 1.61 1.93 2.54 2.70 2.99
200 1.62 1.96 2.55 2.74 3.03

O(m) slowdown factor. The move count and step count of transformed SSCVC2
(namely TSSCV2) are always higher than SSCVC2 due to slowdown factor. T
SSCVC2 needs to make moves at least 15.4 times more than SSCVC2 to reach
the minimal capacitated vertex cover solution since SSCVC2 algorithm stabilizes
after 309 moves while TSSCVC2 algorithm needs 4773 moves to reach the stable
configuration on the 250 sized graph. We could infer the same regarding the step
count which is 15 times more for the TSSCVC2 on the 50 sized graph.

To reach a stable configuration TSSCVC2 needs more message traffic as
depicted in 6.14. As we have said before, message sending is tightly related to move
count of algorithm. Nodes on TSSCVC2 send 15 times more byte and receive 4
times more message byte in comparison with SSCVC2.

In terms of weight of vertex cover, SSCVC2 and TSSCVC2 algorithms pro
duced the same results as seen in Figure 6.15b but TSSCVC2 needs 5 times more
energy to produce the same results in average.

Table 6.3. Approximation ratios of the algorithms (Avg. degree = 7)

Size SSCVC2 SSCVC1 KINIWA TURAU2 TURAU1
50 1.67 2.23 2.78 2.99 3.18
100 1.66 2.18 2.74 2.84 3.07
150 1.63 2.16 2.68 2.83 3.03
200 1.62 2.11 2.67 2.78 3.01
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(a) Move count against node count on the fixed av
erage degree 5.

(b) Step count against node count on the fixed av
erage degree 5.

Figure 6.13. Move and step count performances of TSSCVC2 algorithm against to SSCVC2.

(a) Sent byte against node count on the fixed aver
age degree 5.

(b) Received byte against node count on the fixed
average degree 5.

Figure 6.14. Sent and received byte performances of TSSCVC2 algorithm against to SSCVC2.

6.4 Conclusion

In this chapter, we have proposed two capacitated vertex cover algorithms that
run on the selfstabilizing setting. We have modified Ikeda’s algorithm by adding
two new rules and changing the existing rules. Also, we have proposed a new algo
rithm based on greedy heuristic. We analyzed these two algorithms and have shown
theoretical step complexities that are O(n2) and O(n) under the unfair scheduler.

We have evaluated the performance of our algorithms and compared the results
with the existing algorithms in the literature. The experimental results show that
SSCVC2 and SSCVC1 algorithms overperformed the existing matching based
algorithms (by modifying them) in step count, round count, and cardinality of vertex
cover metrics. SSCVC1 algorithm needs the lowest message traffic as opposed to
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(a) Energy consumption against node count on the
fixed average degree 5.

(b) VC weight against node count on the fixed av
erage degree 5.

Figure 6.15. Energy consumption and solution performances of TSSCVC2 algorithm against to
SSCVC2.

SSCVC2 in which nodes receive more messages than other algorithms. Since the
message traffic directly affects energy usage, the SSCVC2 algorithm is the one with
the most energy need. However, the approximation ratio of SSCVC2 is not greater
than 1.7 for all graph types, while the matchingbased algorithm produces at least
2 times bigger than the optimal solution. In addition to these, we have provided
performance results of the transformed version of SSCVC2 which needs more time
to stabilize under unfair scheduler but produce the same solution as SSCVC2.

As a conclusion, we can state that the SSCVC2 algorithm is better than the
others in terms of VC and execution time performance when 2hop information is
provided. Yet, if it is not provided, the SSCVC1 algorithm is another option to
find the capacitated vertex cover rather than matched based vertex cover algorithms
with the advantage of lowest energy consumption. Using the transformer provides
the same result in terms of the vertex cover, but it does take longer than SSCVC2.
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7. CONCLUSION

In this chapter, we conclude the thesis and present future works about the
thesis.

7.1 Summary

In this thesis, we make an extensive performance evaluation about vertex
cover problems from the central setting to the selfstabilizing setting. The perfor
mance evaluations include the following titles:

• Sequential vertex cover algorithms

• Linearprogramming vertex cover algorithms

• Distributed vertex cover algorithms

• Selfstabilizing vertex cover algorithms

The performance evaluation of sequential algorithms shows that the Greedy
algorithm is the best candidate to construct a vertex cover in a graph with feasible
running time and vertex cover solution. Finding an exact solution is hard to get in
most situations because of the time constraint. Therefore, some intuitive methods
like the greedy approach give a feasible solution most of the time if an exact solution
is not necessary.

For the capacitated vertex cover algorithm in linear programming setting, there
is a tradeoff between Naor 8 and Guha’s algorithm. If a faster algorithm with the
right solution is required, we should choose Guha’s algorithm. Nonetheless, if it
is required that a better result with acceptable running time, we can choose Naor 8
algorithm to solve our capacitated vertex cover problem. Gandhi’s preprocessing
step does not give success as promised despite its longer execution times. Guha’s
3 approximation algorithm gives fine results in all aspects, but it is not better than
Guha 8. We conclude that the theory does not match the practice findings at every
time, and sometimes a theoretically weak algorithm could give the best performance
among its opponents.

We evaluated performances of distributed vertex cover algorithms in the TOSSIM
simulator and on IRIS motes for testbed experiment. VECO algorithms remained
consistent with increasing of node count and degree as expected. The result shows
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that the cardinalities of the detected VCs of the proposed algorithms are lower than
the other algorithms except Greedy. VECO1 and VECO2 algorithms produced good
results for energy efficiency and running time, albeit slightly behind the Greedy al
gorithm in terms of the detected VC algorithm. However, as the sizes of the graphs
grow, the difference reduces in favor of VECO algorithms. Hoepman algorithm
gives poor results in terms of energy consumption but also gives poor results in terms
of cardinality of VC. Since Kavalci is designed asynchronously with unicast mes
saging, VECO algorithms overperformed it in all performance parameters. Con
sidering the tradeoff between energy consumption and optimization, the proposed
algorithms provide a feasible and more efficient approach for finding the VCs with
BFST inWSNs. We saw that we should combine the two algorithms to get a quicker
and feasible solution.

In most of the tests, selfstabilizing IS algorithms have outperformed VC algo
rithms. Firstly, IS algorithms provided better VC solutions as they find around 15%
smaller sets that Turau’s improvement algorithm and Kiniwa’s algorithm, and 35%
smaller sets than that of Turau’s basic algorithm. Secondly, IS algorithms that are
designed to run under distributed scheduler (TMIS, GMIS, IMIS) converged to a
solution in significantly less number of rounds than VC algorithms. The quickest al
gorithm is IMIS with a runningtime of 9 rounds, while the quickest VC algorithm
has required 14 rounds on average. Finally, considering the total number of moves
required for an algorithm to converge, none of the VC algorithms could outperform
any IS algorithms. These results suggest that selfstabilizing IS algorithms can be
more efficient than VC algorithms in providing vertex cover sets for link monitoring
in wireless sensor networks. We conclude that changing the way to solve problems
in some situations like restricted areas could be beneficial in terms of efficiency.

By using this information, we have proposed two novel selfstabilizing ca
pacitated vertex cover algorithms that combine two different paradigms. SSCVC1
algorithm is inspired by Ikeda’s MIS algorithm and SSCVC2 is our distance2
knowledge algorithm that uses the expression model proposed by Turau. After
a detailed explanation of these algorithms, we provided a theoretical analysis of
them. Due to the absence of algorithms to compare with our algorithms, we mod
ified selfstabilizing vertex cover algorithms to construct capacitated vertex cover
solutions. Both proposed algorithms overperformed their counterparts. SSCVC2
solved the problem at most 1.7 approximation ratio for all graph types, while the
other matchingbased algorithms produced at least 2 times bigger than the opti
mal solution (for the weighted setting). Because of the SSCVC2 algorithm needs
distance2 knowledge, we compared the performance of SSCVC2 and its trans
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formed version TSSCVC2 which uses a transformer proposed by Turau. This
comparison showed that using a transformer needs more time and energy to sta
bilize the algorithm since it adds extra rules, yet it has produced the same vertex
cover performance.

7.2 Future Works

The capacity constraint is not only applied to the vertex cover problem, but it
can be applied to other wellknown graphtheoretical algorithms such as indepen
dent set, matching, and dominating set. We touched on the independent set and
matching technique since they have a close relationship with the vertex cover prob
lem. We could apply our inferences to these problems.

We made simulations of our proposed algorithm on a simulator written in
Python language. It could be turned into testbed experiments on IRIS motes. How
ever, to achieve this, an infrastructure that provides distance2 knowledge on wire
less networks is essential. We can implement a transformed version of SSCVC2 on
IRIS motes as well. We will work on reducing the energy consumption, as well, of
the SSCVC2 algorithm by reducing its message traffic.

We would evaluate other generalized versions of vertex cover problems such
as the connected vertex cover problem to build a backbone over the given network.
Our performance evaluations would be improved by adding new algorithms and
new comparison techniques like the maximum lifetime of the network in distributed
settings.

The main focus of this thesis is WSNs, but it could be extended to other re
search trends such as complex networks, IoT, and cloud computing, which have
close relationships with distributed algorithms. For example, the findings of this
dissertation can be extended and implemented to UAV networks to handle coverage
and connectivity issues since drone networks attract a lot of researchers from differ
ent areas. The proposed algorithms could be improved for the purpose of using on
devices which have multiple antennas, namelyMIMO antennas, to manage capacity
constraint by assigning a predefined number of edge to cover on each antenna.
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