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ÖNSÖZ 

 

Bu tez çalışması, " Modifiye Ortogonal Çatıya Göre Paralel Regle Yüzeyler " başlıklı araştırmanın 

sonuçlarını içermektedir. Bu çalışma, matematiksel temelleri içeren bir perspektifle, yüzeyler hakkında 

önemli bir konuyu ele almaktadır. Tez, paralel regle yüzey ailesinin modifiye ortogonal çatıya olan 

evolüsyonu detaylı bir şekilde inceleyerek bu evolüsyonu mühendislik, mimari tasarım açısından potansiyel 

etkilerini değerlendirmeyi amaçlamaktadır. 

Bu çalışmanın ortaya çıkmasında en büyük destekçim ve rehberim olan danışmanım Doc.Dr. Gülden 
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imkanlar ve atmosfer, bu çalışmanın başarılı bir şekilde tamamlanmasına katkıda bulunmuştur. 

Bu tez çalışması, Fırat Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (FÜBAP) 
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Bu tez çalışması, öncelikle paralel regle yüzey, Frenet-Serret çatısı, modifiye ortogonal çatı ve yüzey 

evolüsyonu üzerinde yapılan çalışmalar hakkında literatürdeki bilgiler incelenmiştir. Daha sonra, bu 

çalışmada kullanılan temel tanım ve teoremlere yer verilmiştir. Son olarak ise, çalışmanın temel amacı olarak, 

paralel regle yüzey ailesinin modifiye ortogonal çatı ile olan evolüsyonu incelenerek, bu evolüsyonun Frenet-

Serret Çatısı ve modifiye ortogonal çatıya göre değerlendirilmişir. 
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February 2024, Pages:  ix  + 39 
 

 
This thesis examines the literature regarding studies conducted on parallel ruled surfaces, Frenet-Serret 

frame, modified orthogonal frame, and surface evolution. Then, the basic definitions and theorems used in 

this study are given. Finally, as the main purpose of the study, the evolution of the parallel ruled surface 

family with the modified orthogonal frame was examined and this evolution was evaluated according to the 

Frenet-Serret Frame and the modified orthogonal frame. 
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1. GİRİŞ 

Diferansiyel geometri, geometrik yapıları çözmek amacıyla geometrik cisimlerin diferansiyel 

yöntemler ve integral hesapları kullanarak inceleyen matematiğin önemli bir dalıdır. 

XVII. yüzyıla kadar diferansiyel geometri sadeleştirilmiş bir formatta yer ve arazi ölçümlerinde 

kullanıldı. Ancak, XVII. yüzyılda Descartes, tüm bilinen geometriyi cebirle ilişkilendiren 

"Geometrie" adlı kitabı yayımladı. Bu eser, Descartes tarafından yazılan ve 1637'de yayımlanan bir 

kitaptır ve analitik geometri alanının başlangıcını işaret eder, [10]. Bu noktadan sonra, Leibnitz, 

Fermat ve Newton eğrilik ölçümleri ve düzlem eğrilerini araştırmaya koyuldu. 

XVIII. yüzyılda Euler, eğrileri farklı şekillerde açıklamak ve yüzeyler üzerine çalışma yapmak için 

çaba sarf etti. Euler bu çalışmalar ile Einstein'ın genel görelik teorisinin önemli bir öncülü oldu. 

Euler, yüzeyler ve eğrilerle ilgili kapsamlı çalışmalarını içeren "Introductio" adlı eseri ile analitik 

geometrinin gelişimine katkıda bulunarak, analitik geometri hakkında yazılmış ilk ders kitabı 

olduğu düşünülebilir. 

Bu dönemde, uzay eğrileri üzerine çalışmaya başlayan Alexis Clairaut, uzay eğrilerinin diferansiyel 

ve analitik geometrisi ile alakalı bir kitap yazarak bu alandaki bilgi birikimine katkıda bulundu, 

[13]. 

XIX. yüzyılda Hannover krallığından arazileri ölçmek için görevlendirilen Gauss ve kurmuş 

olduğu nirengi ağı, diferansiyel geometri adına teori pratik arasındaki geçişin ilk örneklerden 

biridir. Gauss'un çalışmaları, yüzeyler ve eğrilerin günümüz diferansiyel geometrisi hakkındaki ana 

hatların ortaya çıkmasına önemli ölçüde katkı yapmış ve bu oluşumlar Öklid dışı geometride de 

benzer olarak kullanılmaya devam etmektedir. 

Bu dönemde, Gaspard Monge yüzeyler ve düzlem eğrileri teorisine önemli katkıda bulunmuştur. 

Monge, özellikle regle yüzeyler hakkında çalışmalar ortaya çıkarmıştır, [4]. Yüzeyler teorisinde, 

bir doğrunun bir eğriyi takip etmesi ve sürekli hareket etmesi sonucu regle yüzeyler meydana 

gelir. 

Regle yüzeyler teorisi, diferansiyel geometri alanının yanı sıra birçok mühendislik dalı ve 

mimarlıkta da önemli bir rol oynamaktadır. Regle yüzeyler, mimari yapıların tasarımında sıkça 

kullanılmaktadır. Örneğin, cephe tasarımı olarak Los Angeles'da bulunan Walt Disney Konser 

Salonu'nu, regle yüzeylerin mimaride kullanılmasına örnek olarak gösterilebilir. Açılabilir bir 

yüzey, mimarlık ve mühendislik ile ilgili alanlarda yapı ve tasarım için kritik bir öneme 

sahiptir,[14]. 

Regle yüzeyler hakkında daha fazla bilgi edinmek isteyenler, çeşitli basılı kaynaklara 

başvurabilirler. Örneğin: "Diferansiyel Geometri Dersleri" (Hacısalihoğlu, 1983): Bu kitap, 

diferansiyel geometri konusunda temel bilgileri içeren bir kaynaktır. Hacısalihoğlu'nun eseri, regle 

yüzeyler ve benzer konularda detaylı bilgiler sunabilir. "Hareket Geometrisi ve Kuaterniyonlar 



2 

Teorisi" (Hacısalihoğlu, 1983): Hacısalihoğlu'nun bu kitabı, hareket geometrisi ve kuaterniyonlar 

teorisi gibi konulara odaklanmış olsa da, diferansiyel geometriyle ilgilenenler için önemli bilgiler 

içerebilir. "Diferansiyel Geometri" (Sabuncuoğlu, 2006): Sabuncuoğlu'nun bu kitabı, diferansiyel 

geometri alanında genel bilgiler sunan bir kaynaktır. Regle yüzeyler gibi konulara da değinebilir. 

Bu kitaplar, diferansiyel geometri genelinde olduğu gibi özellikle regle yüzeyler üzerine de bilgi 

sunabilir. Ancak, regle yüzeylere odaklanan daha spesifik kaynakları incelemek de faydalı olabilir, 

[13]. 

Bu çerçevede, diferansiyel geometri alanında kilit bir rol oynayan Serret-Frenet formülleri, regle 

yüzeylerin ve eğrilerin matematiksel analizi sürecinde işlevsel bir araç olarak kendini gösterir. 

Serret-Frenet formülleri, bir parçacığın eğri üzerindeki hareketini 3-boyutlu Öklid uzayında 

tanımlayan bir dizi formülasyondur. Bu formüller, düzgün bir eğri boyunca hareket eden sürekli ve 

diferansiyasyonel parçacıkların teğet, asli normal ve bir normal vektörlerinin türevlerini ifade eder. 

Serret-Frenet formüllerinin regle yüzeylerin analizinde kullanımı, bu yüzeylerin kinematik 

özelliklerini daha derinlemesine anlamak ve tasarlamak için matematiksel bir içgörü sunar. 

Özellikle, mimari yapıların tasarımında regle yüzeylerin açılabilir olması gibi özellikler, Serret-

Frenet formüllerinin pratik uygulamalarını daha da güçlendirebilir, [8]. 

Bu bağlamda, Serret-Frenet formüllerinin, regle yüzeylerin anlaşılmasına katkıda bulunarak 

diferansiyel geometrinin mühendislik ve mimarlık alanlarındaki uygulamalarını güçlendiren kritik 

bir araç olduğunu ifade edebiliriz. Matematiksel teori ile pratik uygulamalar arasında kurulan bu 

köprü, hem teorik hem de uygulamalı matematik açısından önemli bir birleşim noktası oluşturur. 

Bu nedenle, Serret-Frenet formüllerinin regle yüzeylerin analizi üzerindeki etkisi, matematik ve 

mühendislik disiplinlerini bir araya getirerek zenginleştirici bir katkı sağlar,[9].  

Yüzey evolüsyonu genel olarak bir matematiksel yüzeyin zaman içindeki değişimini inceleyen bir 

konsepttir. Bu değişim genellikle belirli bir evrim yasasına tabi tutulan parametrik veya belirgin bir 

yüzeyle ifade edilir. Yüzey evolüsyonu, matematik, fizik, bilgisayar bilimi ve mühendislik gibi 

birçok disiplinde kullanılan bir konsepttir. 

Yüzey evolüsyonu, belirli bir başlangıç durumundan yola çıkarak zamanla yüzeyin nasıl değiştiğini 

modellemek için kullanılır. Bu değişim genellikle diferansiyel denklemlerle ifade edilir ve evrim 

yasaları altında gerçekleşir. Yüzey evolüsyonu, malzeme bilimi, görüntü işleme, bilgisayar 

grafikleri ve fiziksel modellerle ilgili birçok uygulama alanında kullanılır. 

Örneğin, malzeme bilimi alanında yüzey evolüsyonu, malzemelerin zaman içindeki 

deformasyonlarını veya değişimlerini anlamak için kullanılabilir. Bilgisayar grafikleri ve 

animasyon alanında, yüzey evolüsyonu gerçekçi animasyonlar ve modellemeler oluşturmak için 

kullanılır. Ayrıca, fizikte ve mühendislikte, elastik ve plastik deformasyonları modellemek için de 

kullanılır,[6]. 
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Günümüzde bilimsel araştırmalar, karmaşık sorunlara çözüm bulma amacı taşıyan disiplinler arası 

bir çaba içerisindedir. Bu bağlamda, bu çalışma da önemli bir bilimsel problemin üzerine 

odaklanarak, bu problemin çözümüne katkı sağlamayı hedeflemektedir. Aşağıda, çalışmanın temel 

odak noktalarını tanımlayan sorulara yanıtlar verilmiştir: 

Bu çalışmanın temel bilimsel problemi, paralel regle yüzey ailesinin modifiye ortogonal çatıya göre 

evolüsyonunun incelenmesidir. Paralel regle yüzeylerin bu modifiye çatı altında nasıl evrildiği ve 

bu evrimin matematiksel olarak nasıl tanımlandığı sorunsalı, bu çalışmanın ana odak noktasını 

oluşturmaktadır. Paralel regle yüzeylerin modifiye ortogonal çatıya göre evrimi, geometri, 

matematik ve uygulamalı bilimler açısından önemlidir. Bu evrimin anlaşılması, özellikle bu tür 

yüzeylerin çeşitli endüstriyel tasarım ve modelleme uygulamalarında etkili bir şekilde 

kullanılabilmesi için önemli bir adımdır. Bu tezin nihai amacı, paralel regle yüzey ailesinin 

modifiye ortogonal çatıya göre evrimini ayrıntılı bir şekilde inceleyerek, elde edilen sonuçlarla 

literatüre yeni bir katkı sağlamaktır. Bu bağlamda, modifiye çatının avantajları ve bu evrimin 

geometrik özellikleri üzerinde odaklanılacak ve bu konuda daha derin bir anlayış elde edilecektir.  

Bu çalışmada, paralel regle yüzeylerin modifiye ortogonal çatıya göre evrimi üzerine çeşitli 

hipotezler öne sürülecektir. Bu hipotezler, yüzeylerin evrimindeki belirli değişkenler arasındaki 

ilişkileri varsayarak, tezin ana sorularına yönlendirecek bir çerçeve oluşturacaktır. Değişkenler 

arasındaki ilişkilerin varlığını göstermek ve ispatlamak için çeşitli matematiksel ve geometrik 

metotlar kullanılacaktır. Özellikle, modifiye ortogonal çatı altında paralel regle yüzeylerin evrimini 

açıklamak için diferansiyel geometri ve matematiksel analiz teknikleri kullanılacaktır. Bu çalışma, 

önceki araştırmacıların benzer problemlere yaklaşımlarını değerlendirecek ve literatürdeki 

boşlukları doldurarak mevcut bilgi birikimine katkı sağlayacaktır.  

 
 

 



2. TEMEL TANIM VE TEOREMLER 

Bu bölümde, diferansiyel geometrinin temel kavramlarına, regle yüzeylere, Serret-Frenet 

çatısı ve yüzey evolüsyonu ile ilgili temel kavramlara ve bunların karakteristik özellikleri 

verilmiştir. Ayrıca, yüzey evolüsyonu ile ilgili bazı tanım ve teoremler ile modifiye edilmiş 

ortogonal çatı tanımlanarak, Serret-Frenet çatı ve modifiye ortogonal çatı arasındaki ilişkiler 

incelenmiştir.  

 

Tanım 2.1. 𝐴 kümesi boş olmayan bir küme ve 𝐾 bir cisim, 𝐾 cismi üzerinde tanımlı bir 

vektör uzayı 𝑉  olsun. 

 𝑔: 𝐴𝑥𝐴 → 𝑉 

şeklinde fonksiyon varsa 𝐴 kümesine 𝑉 vektörüyle birleştirilmiş bir afin uzay denir. 

    (𝐴1). ∀𝑃, 𝑄, 𝑅 ∈ 𝐴 𝑖ç𝑖𝑛 𝑔(𝑃, 𝑄) + 𝑔(𝑄, 𝑅) = 𝑔(𝑃, 𝑅) 

    (𝐴2). ∀𝑃 ∈ 𝐴 𝑣𝑒 ∀𝛼 ∈ 𝑉 𝑖ç𝑖𝑛 𝑔(𝑃, 𝑄) = 𝛼  biçimde tek bir 𝑄 ∈ 𝐴 noktası vardır,[2]. 

Tanım 2.2.  𝑉 vektör uzayıyla birleşen 𝐴 bir afin uzay olsun. 𝑃₀, 𝑃₁, . . . , 𝑃௡ ∈ 𝐴 olmak üzere 

𝑃₀𝑃₁,ሬሬሬሬሬሬሬሬሬሬ⃗ 𝑃₀𝑃₂ሬሬሬሬሬሬሬሬሬ⃗ , . . . , 𝑃₀𝑃௡
ሬሬሬሬሬሬሬሬሬ⃗ ∈ 𝑉 vektörleri için ൛𝑃₀𝑃₁,ሬሬሬሬሬሬሬሬሬሬ⃗ 𝑃₀𝑃₂ሬሬሬሬሬሬሬሬሬ⃗ , . . . ,𝑃₀𝑃௡

ሬሬሬሬሬሬሬሬሬ⃗ ൟ oluşumu 𝑉 vektör uzayının bazıysa 

{𝑃₀, 𝑃₁, . . . , 𝑃௡}, (n+1)-lisine 𝐴 afin uzayının afin çatısı denir,[2]. 

Tanım 2.3. 𝐴 reel bir afin uzay ve 𝑉 vektörü de 𝐴 afin uzayıyla birleşen vektör uzayı olsun. 

İç çarpım işlemi 𝑉 vektör uzayında 

<. , . >= 𝑉 × 𝑉 → ℝ 

(𝑥, 𝑦) →< 𝑥, 𝑦 >= ෍ 𝑥௜𝑦௜

௡

௜ୀଵ

 

tanımlanırsa 𝐴 da uzaklık ve açı gibi metrik kavramlar bu işlem yardımıyla tanımlanır. Böylece 𝐴 

afin uzayı Öklid uzayı olarak tanımlanmış olur,[2]. 

Tanım 2.4. 

𝑑: 𝔼ⁿ × 𝔼ⁿ → ℝ 

(𝑥, 𝑦) → 𝑑(𝑥, 𝑦) = ‖𝑥𝑦ሬሬሬሬ⃗ ‖ = ඩ෍(𝑦௜ି𝑥௜)ଶ

௡

௜ୀଵ

 

𝔼ⁿ öklid uzayında uzaklık fonksiyonu  𝑑 olarak tanımlanır ve 𝑑(𝑥, 𝑦) şeklinde ifade edilen reel bir 

sayıdır ve  𝑥, 𝑦 ∈ 𝔼ⁿ noktalarının arasındaki uzaklık olarak adlandırılır,[2]. 

Tanım 2.5. ∀𝑥, 𝑦, 𝑥 ∈ 𝔼ⁿ için 𝑥𝑦𝑧ෞ  açısının ölçüsü 

𝑐𝑜𝑠𝜃 =
< 𝑥𝑦ሬሬሬሬ⃗ , 𝑦𝑧ሬሬሬሬ⃗ >

‖𝑥𝑦ሬሬሬሬ⃗ ‖‖𝑦𝑧ሬሬሬሬ⃗ ‖
 

işleminden hesaplanabilen  𝜃 reel sayısıdır,[2]. 
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Tanım 2.6. 𝔼ⁿ uzayında sıralanmış {𝑃₀, 𝑃₁, . . . , 𝑃௡} bir nokta (𝑛 + 1) −lisine 𝔼ⁿ uzayında 

karşılık gelen ൛𝑃₀𝑃₁,ሬሬሬሬሬሬሬሬሬሬ⃗ 𝑃₀𝑃₂ሬሬሬሬሬሬሬሬሬ⃗ , . . . ,𝑃₀𝑃௡
ሬሬሬሬሬሬሬሬሬ⃗ ൟ  vektör 𝑛 −lisi 𝔼௡ de bir ortonormal bir baz olursa 

{𝑃₀, 𝑃₁, . . . , 𝑃௡} oluşumu 𝔼ⁿ de bir dik çatı veya öklid çatısı olarak adlandırılır,[2]. 

Tanım 2.7.  𝔼ⁿ deki {𝐸₀, 𝐸₁, . . . , 𝐸௡} çatısı, standart öklid çatısı olarak adlandırılır,[2]. 

Tanım 2.8. 𝑓: 𝔼ⁿ → ℝ  diferensiyellenebilir, 𝑣௣ሬሬሬሬ⃗ ∈ 𝑇𝔼ⁿ(𝑃) olsun. Şu koşullarda  𝑣௣ሬሬሬሬ⃗ = 𝑃𝑄ሬሬሬሬሬ⃗  

olmak üzere; 

𝑣௣ሬሬሬሬ⃗ [𝑓] =
𝑑

𝑑𝑡
(𝑓(𝑃ଵ + 𝑡(𝑄ଵ − 𝑃ଵ), … , 𝑃௡, 𝑡(𝑄௡ − 𝑃௡))ฬ

௧ୀ଴
 

 

elde edilen reel sayıya 𝑓 fonksiyonunun 𝑣௣ሬሬሬሬ⃗   vektörü yönündeki türevi denir,[2]. 

Tanım 2.9. ℝ'nin açık aralıklarından biri 𝐼 olmak üzere 𝛼: 𝐼 → 𝔼ⁿ  biçiminde düzgün bir 𝛼 

(𝐶ஶsınıfından) dönüşümüne , 𝔼ⁿ uzayında bir eğridir denir,[1]. 

Tanım 2.10. 𝛼, 𝔼ⁿ uzayında bir eğri olsun. ∀𝑢 ∈ 𝐼 için 𝛼ᇱ(𝑢) ≠ 0 ve hız vektörü 𝔼ⁿ de tüm 

noktalarda sıfırdan farklıysa 𝛼 eğrisi regüler eğridir denir,[5]. 

Tanım 2.11. 𝑀, 𝔼ⁿ Öklid uzayında bir eğri koordinat komşuluğu (𝐼, 𝛼) verilmiş 

olsun. ∀𝑢 ∈ 𝐼 için 

‖𝛼ᇱ(𝑢)‖ = 1 

şartı sağlanıyorsa (𝐼, 𝛼) ya göre 𝑀 eğrisi birim hızlı bir eğridir ve 𝑢 ∈ 𝐼 ise yay parametresi 

olarak adlandırılır,[4]. 

Tanım 2.12. 𝐼 ⊂ ℝ kümesinde tanımlı 𝔼ⁿ uzayında bir 𝛼 eğrisi verilsin 𝑎, 𝑏 ∈ 𝐼 iken  

න ‖𝛼ᇱ(𝑢)‖𝑑𝑢
௕

௔

 

olan reel sayıya 𝑎 alt sınırdan 𝑏 üst sınıra 𝛼 eğrisine ait yay uzunluğu denir,[4]. 

Tanım 2.13. 𝛼: 𝐼 → 𝔼ⁿ  şeklinde bir eğri verilsin. 𝑢଴ ∈ 𝐼 ise eğri üstünde 𝛼(𝑢଴) noktası 

itibariyle yay uzunluğu ölçüldüğünde; 

𝑢 < 𝑢଴ ise 𝛼(𝑢଴) ve 𝛼(𝑢) noktaları referans alınarak oluşturulan parçanın uzunluğunun 

negatifi 𝑓(𝑢) olsun. 

𝑢 = 𝑢଴ için 𝑓(𝑢଴) = 0 olsun. 

𝑢଴ < 𝑢 𝛼(𝑢଴) ve 𝛼(𝑢) noktaları referans alınarak oluşturulan eğri parçasının uzunluğunu 

da 𝑓(𝑢) diyelim. 

Buradan 𝑓: 𝑢 → 𝑓(𝑢) fonksiyonu 𝐼 aralığından ℝ 'ye giden bir fonksiyon olarak 

tanımlanmış olur. Elde edilen 𝑓 fonksiyonuna  𝛼: 𝐼 → 𝔼ⁿ şeklindeki eğrinin yay uzunluk 

fonksiyonu denir,[1]. 

Tanım 2.14. 𝛼: 𝐼 → 𝔼ଷ eğrisi 𝔼ଷ uzayında birim hızlı bir eğri olsun, 

𝑇(𝑢) = 𝛼ᇱ(𝑢) 
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eşitliği ile tanımlanmış 𝑇(𝑢) vektörüne, 𝛼 eğrisinin 𝛼(𝑢) noktasına karşılık gelen birim teğet 

vektörü¸denir,[1]. 

Tanım 2.15. 𝔼ଷ uzayında 𝛼: 𝐼 → 𝔼ଷ şeklinde tanımlı 𝛼 birim hızlı eğrisi için,, 

𝜅: 𝐼 → ℝ, 𝜅(𝑢) = ‖𝑇ᇱ(𝑢)‖ 

şeklindeki fonksiyona, 𝛼 eğrisinin eğrilik fonksiyonu denir. 𝛼(𝑢) noktasındaki 𝜅(𝑢) sayısına o 

noktadaki eğriliği denir,[1]. 

Tanım 2.16. 𝔼ଷ uzayında  𝛼: 𝐼 → 𝔼ଷ şeklinde tanımlı 𝛼 birim hızlı eğrisi için,. 𝑇(𝑢) =

𝛼ᇱ(𝑢) eşitliği ile yazılan bir 𝑇(𝑢) vektörüne, 𝛼 eğrisine ait 𝛼(𝑢) noktasındaki birim teğet vektörü 

denir,[1]. 

𝑇, 𝐼 aralığındaki 𝑢 noktasına, 𝑇(𝑢) teğet vektörünü, 𝛼(𝑢)’daki noktaya denk düşüren bir 

fonksiyondur. Buradan hareketle 𝛼 eğrisi üstünde 𝑇 bir vektör alanı oluşur ve bulunan bu vektör 

alanına 𝛼 eğrisinin birim vektör alanı denir. Kısaca 𝑇 = 𝛼′ yazılabilir,[1]. 

Tanım 2.17. 𝔼ଷ uzayında 𝛼: 𝐼 → 𝔼ଷ şeklinde tanımlı 𝛼 birim hızlı eğrisi için, 

𝑁(𝑢) =
1

𝜅(𝑢)
𝑇ᇱ(𝑢) 

eğriliğiyle oluşturulmuş 𝑁(𝑢) vektörüne, 𝛼 eğrisine ait 𝛼(𝑢) noktasında birinci dik (asli normal) 

vektör denir. 

𝑁 vektör alanına  𝛼 eğrisine ait birinci dik vektör(asli normal) alanı denir,[1]. 

Tanım 2.18. 𝔼ଷ uzayında 𝛼: 𝐼 → 𝔼ଷ şeklinde tanımlı 𝛼 birim hızlı eğrisi için, 

𝐵(𝑢) = 𝑇(𝑢) × 𝑁(𝑢) 

denklemiyle gösterilen 𝐵(𝑢) vektörüne, 𝛼 eğrisine ait 𝛼(𝑢) noktasında ikinci dik vektör 

(binormal) denir. 

𝐵 vektör alanıysa 𝛼 eğrisine ait ikinci dik vektör alan (binormal vektör alan) denir,[1]. 

Tanım 2.19. 𝛼: 𝐼 → 𝔼ଷ eğrisinin 𝛼(𝑢) noktasına karşılık gelen 𝑇(𝑢), 𝑁(𝑢), 𝐵(𝑢) 

vektörlerine, Frenet vektörleri denir. 

{𝑇(𝑢), 𝑁(𝑢), 𝐵(𝑢)} 

kümesine ise 𝛼 eğrisinin 𝛼(𝑢) noktasındaki Frenet çatısı denir. 

𝑇, 𝑁, 𝐵 vektör alanları 𝛼 eğrisi üzerindeki Frenet vektör alanlarını oluşturur,[1]. 

Tanım 2.20. 𝔼ଷ uzayında 𝛼: 𝐼 → 𝔼ଷ şeklinde tanımlı 𝛼 birim hızlı eğrinin 𝑇, 𝑁, 𝐵  Frenet 

vektör alanları için, 

𝜏: 𝐼 → ℝ, 𝜏(𝑢) = −〈𝐵ᇱ(𝑢), 𝑁(𝑢)〉 

fonksiyonuysa 𝛼 eğrisinin burulma fonksiyonu olarak adlandırılır. 𝜏(𝑢) sayısına eğrinin 𝛼(𝑢) 

noktasına ait burulması denir,[1]. 

Tanım 2.21. 𝔼ଷ uzayında 𝛼: 𝐼 → 𝔼ଷ şeklinde tanımlı 𝛼 birim hızlı eğrinin Frenet vektör 

alanları 𝑇, 𝑁, 𝐵 olmak üzere, 

𝑇ᇱ =  𝜅𝑁 
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𝑁ᇱ = −𝜅𝑇 + 𝜏𝐵 

𝐵ᇱ = −𝜏𝑁 

dir,[1]. 

Tanım 2.22. 𝛼: 𝐼 → 𝔼ଷ birim hızlı eğrisinin Frenet vektör alanları 𝑇, 𝑁, 𝐵 olduğuna göre, 

𝑁 × 𝐵 = 𝑇  

𝐵 × 𝑇 = 𝑁 

dir,[1]. 

Tanım 2.23. 𝜑: 𝑈 → 𝔼ଷ koordinat komşuluğu 𝑀 ⊂ 𝔼ଷ ve ∀𝑃 ∈ 𝑀, 𝑀 nin içindeki 

görüntüsü 𝑃 ye ait bir komşuluğu ihtiva eden bir koordinat komşuluğu varsa ve 𝜑ିଵ: 𝜑(𝑈) → 𝑈 

sürekliyse 𝑀 ye bir yüzey denir,[3]. 

Tanım 2.24. 𝜑(𝑈) = 𝑀 regüler bir yüzey olsun. Bu durumda 𝜑௨(𝑞) ve 𝜑௩(𝑞) vektörleri, 

yüzeye 𝜑(𝑞) = 𝑝 noktasına teğet olan bir düzlemi gererler. Bu düzleme, yüzeyin 𝑝 noktasındaki 

teğet düzlemi veya tanjant uzayı denir,[7]. 

Tanım 2.25. Teğet düzlemin, parametre eğrilerine ait 𝜑௨ ve 𝜑௩ teğet vektörleri paralel 

olduğu için 

𝑁଴ = 𝜑௨ ∧ 𝜑௩ 

vektörü, 𝑀 yüzeyinin 𝑃 noktasına ait teğet düzlemine diktir. Bu vektöre 𝑀 yüzeyinin 𝑃 noktasına 

ait normal vektörü ve  

𝑁 =
𝜑௨ × 𝜑௩

‖𝜑௨ × 𝜑௩‖
 

vektörüne de birim normal vektörü denir,[4]. 

Tanım 2.26. 𝔼ⁿ de bir yüzey 𝑀 ve 𝑁 de 𝑀 yüzeyinde birim dik vektör alanı olmak üzere 

∀𝑣௣ ∈ 𝑇௣(𝑀) için 𝑀 nin bir 𝑃 noktasına karşılık gelen 

𝑆൫𝑣௣൯ = 𝐷௩೛
𝑁 

eşitliği ile gösterilen 𝑆௣: 𝑇௣(𝑀) → 𝑇௣(𝑀) fonksiyonuna 𝑀 nin 𝑃 noktasında 𝑁 vektör alanına 

bağlı Weingarten dönüşümü veya şekil operatörü denir,[3]. 

Tanım 2.27. 𝔼ⁿ de bir 𝑀 hiperyüzeyi olsun. 𝑀 hiperyüzeyinin bir 𝑃 noktasına karşılık 

gelen şekil operatörü 𝑆(𝑃) ise 

𝐾: 𝑀 → ℝ  

𝑃 → 𝐾(𝑃) = det S(𝑃) 

şeklinde tanımlı fonksiyona 𝑀 nin Gauss eğriliği fonksiyonu ve 𝐾(𝑃) değerinde 𝑀 

hiperyüzeyinin 𝑃 noktasına göre Gauss eğriliği denir,[3]. 

Tanım 2.28. 𝔼ⁿ de bir 𝑀 hiperyüzeyi olsun. 𝑀 hiperyüzeyinin bir 𝑃 noktasına karşılık 

gelen şekil operatörü 𝑆(𝑃) ise 

𝐻: 𝑀 → ℝ  
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𝑃 → 𝐻(𝑃) = 𝑖𝑧(𝑆(𝑃)) 

şeklinde tanımlı fonksiyona 𝑀 hiperyüzeyinin ortalama eğrilik fonksiyonu ve 𝐻(𝑃) değerine de 

𝑀 nin 𝑃 noktasındaki ortalama eğriliği denir,[3].  

Tanım 2.29. 𝑀 yüzey için parametrik denklem 𝑋 = 𝑋(𝑢, 𝑣) olsun. Tüm noktalardaki teğet 

düzleminin tabanı 𝐵 = {𝑋௨, 𝑋௩} olmak üzere 

𝐸 = 〈𝑋௨, 𝑋௨〉 

𝐹 = 〈𝑋௨, 𝑋௩〉 

𝐺 = 〈𝑋௩ , 𝑋௩〉 

𝐸, 𝐹, 𝐺 ∶ 𝑈 → ℝ diferensiyellenebilen fonksiyonlara 𝐼.temel formun katsayıları denir. Bu 

takdirde 𝐼.temel form 

𝐼 = 𝐸𝑑𝑢ଶ + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺𝑑𝑣ଶ 

şeklindedir. 

ℎଵଵ = −〈𝑋௨, 𝑁௨〉 = 〈𝑁, 𝑋௨௨〉 

ℎଵଶ = −〈𝑋௨, 𝑁௩〉 = 〈𝑋௩ , 𝑁௨〉 = 〈𝑁, 𝑋௨௩〉 

ℎଶଶ = −〈𝑋௩, 𝑁௩〉 = 〈𝑁, 𝑋௩௩〉 

diferensiyellenebilir fonksiyonlarına da 𝐼𝐼.temel formun katsayıları denir.  

Bu takdirde 𝐼𝐼.temel form 

𝐼𝐼 = ℎଵଵ𝑑𝑢ଶ + 2ℎଵଶ𝑑𝑢𝑑𝑣 + ℎଶଶ𝑑𝑣ଶ 

şeklinde ifade edilir. 𝐹ூ ve 𝐹ூூ, 2 × 2 simetrik matrisleri 

𝐹ூ = ቂ
𝐸 𝐹
𝐹 𝐺

ቃ,  𝐹ூூ = ൤
ℎଵଵ ℎଵଶ

ℎଵଶ ℎଶଶ
൨ 

şeklinde tanımlanır. Böylece 𝑀 yüzeyinin ortalama eğrili ve Gauss eğrili, sırasıyla, 

𝐻 =
1

2

ℎଵଵ𝐺 − 2ℎଵଶ𝐹 + ℎଶଶ𝐸

𝐸𝐺 − 𝐹ଶ
 

𝐾 =
ℎଵଵℎଶଶ − ℎଵଶ

ଶ

𝐸𝐺 − 𝐹ଶ
 

şeklindedir,[15-16]. 

Tanım 2.30. 𝑀 ⊂ 𝔼ⁿ şeklinde yüzey verilsin. ∀𝑃 ∈ 𝑀 noktasındaki, 𝔼ⁿ in 𝑀 yüzeyinde 

kalan bir doğrusu varsa 𝑀 ye bir regle yüzeyi, 𝑃 ∈ 𝑀 noktasından geçen ve 𝑀 de kalan 

doğruyaysa 𝑀 nin doğrultmanı denir,[3]. 

Tanım 2.31. 3-boyutlu 𝔼ଷ Öklid uzayında {0} ⊂ 𝐼 ⊂ ℝ şartını sağlayan 

diferensiyellenebilen birim hızlı bir 𝛼  eğrisi  

𝛼: 𝐼 → 𝔼ⁿ, 𝑡 → 𝛼(𝑢) = (𝛼ଵ(𝑢), 𝛼ଶ(𝑢), 𝛼ଷ(𝑢)) 

kabul edelim.∀𝑢 ∈ 𝐼 için 𝛼(𝑢) noktasındaki 𝑇ఈ(௨) teğet vektörü ve ana doğrunun doğrultman 

vektörünün lineer bağımsızlık şartını sağlayacak şekilde 

𝑙: ℝ → 𝔼ⁿ  
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𝑣 → 𝑙(𝑣) = (𝛼ଵ(𝑢) + 𝑣𝑋ଵ, 𝛼ଶ(𝑢) + 𝑣𝑋ଶ, 𝛼ଷ(𝑢) + 𝑣𝑋ଷ) 

doğrusu seçilsin. Bu durumda 1 ≤ 𝑖 ≤ 3 ise 𝑋௜(𝑢) ∈ ℝ skalarları 𝛼(𝑢) noktasında olan 

doğrultman vektörünün bileşenleridir. 𝑙 doğrusu eğri boyunca hareket etmesi ile, (𝐼 × ℝ, 𝜑) 

parametrizasyonuyla verilen 

𝜑: 𝐼 × ℝ → 𝔼ⁿ 

(𝑢, 𝑣) → 𝜑(𝑢, 𝑣) = (𝛼ଵ(𝑢) + 𝑣𝑋ଵ, 𝛼ଶ(𝑢) + 𝑣𝑋ଶ, 𝛼ଷ(𝑢) + 𝑣𝑋ଷ) 

𝜑(𝑢, 𝑣) = 𝛼⃗(𝑢) + 𝑣𝑋⃗(𝑢) olacak biçimde bir regle yüzey elde edilir,[3]. 

Tanım 2.32. Bir eğri, 𝜑(𝑢, 𝑣) regle yüzeyin ana doğrularının hepsini eksiksiz olarak dik 

keserse bu eğri regle yüzeyin ortogonal yörüngesi olarak adlandırılır,[3]. 

Tanım 2.33. 𝜑(𝑢, 𝑣) şeklindeki bir regle yüzeyde iki doğrultmanın komşu olması 

durumunda orta dikmesinin esas doğrultman üzerine gelen ayağına boğaz (strikisiyon veya 

merkez) noktası denir,[3]. 

Tanım 2.34. (𝑢, 𝑣) şeklindeki bir regle yüzeyde ana doğru dayanak eğrisi boyunca yüzeyi 

oluştururken boğaz noktalarının geometrik yerlerine regle yüzeyin striksiyon eğrisi (boğaz 

çizgisi) denir,[3]. 

Tanım 2.35. Regle yüzeyin komşu olan ana iki doğrusu arasındaki uzaklığın en kısa 

olduğu durumda şartı sağlayan iki komşu ana doğru arasındaki açı ile oranına regle yüzeyin drali  

(dağılma parametresi) denir. Ayrıca yüzeyin dralinin diferensiyel gösterimi 

𝜆 = −
det (𝑇, 𝑋, 𝑋′)

〈𝑋ᇱ, 𝑋′〉
 

şeklindedir,[3]. 

Tanım 2.36. Ana doğruları boyunca teğet düzlemleri aynı olan bir regle yüzey açılabilirdir 

şeklinde ifade edilir,[3]. 

Önerme 2.37. 𝜑ሬ⃗ (𝑢, 𝑣) = 𝛼⃗(𝑢) + 𝑣𝑋⃗(𝑢) regle yüzeyin açılabilir olması için aynı zamanda 

det(𝛼ᇱ, 𝑋, 𝑋ᇱ) = 0 olması gerekir,[7] 

Tanım 2.38. 𝛼, başlangıç eğrisinin yay uzunluğu 𝑙 ise, 

𝛼: [0, 𝑙] × [0, 𝑤] → 𝔼ଷ 

(𝑢, 𝑣) → 𝛼(𝑢, 𝑣) 

şeklinde tanımlanan 𝛼(𝑢, 𝑣) fonksiyonuna, eğri evolüsyonu denir,[12]. 

Tanım 2.39. Bir 

𝛼: 𝐼 ⊂ ℝ → 𝔼ଷ  

𝑢 → 𝛼(𝑢) 

eğrisi için, 

𝜕𝛼

𝜕𝑡
 

ifadesine 𝛼(𝑢, 𝑡) evolüsyonunun akışı denir,[12]. 
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Tanım 2.40. 𝔼ଶ veya 𝔼ଷ de 
డ

డ௧
ቛ

డఈ

డ௨
ቛ = 0 ise 𝛼(𝑢, 𝑡) eğri evolüsyonuna ve onun 

డఈ

డ௧
 akışına 

elastik olmayan denir,[11]. 

Tanım 2.41. 𝑋(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝑤(𝑢, 𝑝), ‖𝑤(𝑢)‖ = 1, 𝑤ᇱ ≠ 0, 𝑑𝑒𝑡(𝑤, 𝑤ᇱ, 𝛼ᇱ) = 0 

ve 𝑢, 𝛼 nın yay uzunluğu olsun. 𝑋 in 𝐼.temel formun katsayıları,{𝐸, 𝐹, 𝐺}, 

𝜕𝐸

𝜕𝑝
=

𝜕𝐹

𝜕𝑝
=

𝜕𝐺

𝜕𝑝
= 0 

şartını sağlıyorsa 𝑋(𝑢, 𝑣, 𝑝) yüzey evolüsyonu ve 
డ௑

డ௣
 akışı, elastik olmayan olarak adlandırılır,[12] 

Tanım 2.42. 𝔼ଷ de 𝛼௜(𝑖 = 1,2,3) koordinatları olsun. 𝛼(𝑢), 𝑢 parametreli eğri olsun. Kabul 

edelim ki 𝛼 tekil olmayan eğri olmak üzere, ∑ (
ௗఈ೔

ௗ௨
)ଷ

௜ୀଵ  sıfırdan farklıdır. 𝛼(𝑢), 𝐼 ⊂ ℝ boştan 

farklı açık aralığında 𝑢 parametreli eğri olmak üzere; 

𝛼 = 𝛼(𝑢) = (𝛼ଵ, 𝛼ଶ, 𝛼ଷ) 

dir. 𝛼(𝑢) eğrisinin eğriliği 𝜅(𝑢) sıfırdan farklıdır. {𝑇, 𝑁, 𝐵} eğrilik ile modifiye edilmiş ortogonal 

çatısı 

𝑇 =
𝑑𝛼

𝑑𝑢
  

𝑁 =
𝑑𝑇

𝑑𝑢
 

 𝐵 = 𝑇 × 𝑁 

biçiminde ifade edilir,[9].  

{𝑇, 𝑁, 𝐵} eğrilik ile modifiye edilmiş ortogonal çatı Frenet çatısı {𝑡, 𝑛, 𝑏} ile modifiye edilmiş dik 

çatı {𝑇, 𝑁, 𝐵} arasındaki ilişkiler, 𝜅 eğrilik fonksiyonunun sıfır olmayan noktalarında şunlardır; 

𝑇 = 𝑡 

𝑁 =  𝜅𝑛 

𝐵 = 𝜅𝑏 

Ayrıca, 

〈𝑇, 𝑇〉 = 1  

〈𝑁, 𝑁〉 = 〈𝐵, 𝐵〉 = 𝜅ଶ 

〈𝑇, 𝑁〉 = 〈𝑇, 𝐵〉 = 〈𝑁, 𝐵〉 = 0 

dir. 

Teorem 2.43. 𝔼ଷ de {𝑇, 𝑁, 𝐵} eğrilik ile modifiye edilmiş ortogonal çatı olmak üzere 

൥
𝑇′
𝑁′
𝐵′

൩ =

⎣
⎢
⎢
⎢
⎡

0 1 0

−𝜅ଶ
𝜅′

𝜅
𝜏

0 −𝜏
𝜅′

𝜅 ⎦
⎥
⎥
⎥
⎤

൥
𝑇
𝑁
𝐵

൩ 

matris sistemi sağlanır,[3]. 

Tanım 2.44. 𝛼 eğrisinin torsiyonu ve eğriliği; 
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𝜅 = ‖𝑇ᇱ‖  

𝜏 = 𝜏(𝑠) =
det (𝛼ᇱ, 𝛼ᇱᇱ, 𝛼′′′)

𝜅ଶ
 

dir,[9]. 

Teorem 2.45. 𝔼ଷ de {𝑇, 𝑁, 𝐵} eğrilik ile modifiye edilmiş ortogonal çatı olmak üzere 

𝑇 × 𝑁 = 𝐵 

𝑁 × 𝐵 = 𝜅ଶ𝑇 

𝐵 × 𝑇 = 𝑁 

dir,[3] 

İspat: 𝔼ଷ de {𝑡, 𝑛, 𝑏} Serret-Frenet vektörleri ve {𝑇, 𝑁, 𝐵} eğriliğiyle modifiye edilmiş 

ortaogonal çatı vektörleri olsun. Serret-Frenet vektörlerinin vektörel çarpımları 

𝑡 × 𝑛 = 𝑏, 𝑛 × 𝑏 = 𝑡, 𝑏 × 𝑡 = 𝑛 

şeklindedir ve Serret-Frenet çatı vektörleri ile eğrilik ile modifiye edilmiş ortogonal çatı 

vektörleri arasındaki ilişki  

𝑇 = 𝑡, 𝑁 = 𝜅𝑛, 𝐵 = 𝜅𝑏 

olduğundan, bunlardan hareketle eğrilik ile modifiye edilmiş ortogonal çatıdaki vektörler 

çarpımlarına bakılacaktır. 

𝑡 × 𝑛 = 𝑏 

𝑇 ×
𝑁

𝜅
=

𝐵

𝜅
 

𝑇 × 𝑁 = 𝐵 

bulunur. Benzer şekilde 

𝑛 × 𝑏 = 𝑡 

𝑁

𝜅
×

𝐵

𝜅
= 𝑇 

𝑁 × 𝐵 = 𝜅ଶ𝑇 

ve 

𝑏 × 𝑡 = 𝑛 

𝐵

𝜅
× 𝑇 =

𝑁

𝜅
 

𝐵 × 𝑇 = 𝑁 

dir. Bu durumda eğrilik ile modifiye edilmiş ortogonal çatı 

𝑇 × 𝑁 = 𝐵 

𝑁 × 𝐵 = 𝜅ଶ𝑇 

𝐵 × 𝑇 = 𝑁 

şeklinde elde edilmiştir. Böylece ispat tamamlanmış olur,[8]. 
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Örnek 2.1. 𝛼: 𝐼 → 𝔼ଷ  

𝛼(𝑢) = (
3

5
sin(𝑢) , 1 + cos(𝑢) ,

4

5
sin (𝑢)) 

eğrisi için 

𝛼′(𝑢) = (
3

5
cos(𝑢) , −sin (u),

4

5
cos (𝑢)) 

dir.Normuna bakacak olursak 

‖𝛼ᇱ(𝑢)‖ = ඨ
9

25
cosଶ(𝑢) + sinଶ(u) +

16

25
cosଶ(𝑢) 

= 1 

dir. O halde eğrim birim hızlı bir eğridir. 

𝛼(𝑢) = (
3

5
sin(𝑢) , 1 + cos(𝑢) ,

4

5
sin (𝑢)) 

birim hızlı eğrisini ele alalım. Tanım 2.42 kullanarak {𝑡, 𝑛, 𝑏} Serret-Frenet çatı ile {𝑇, 𝑁, 𝐵} eğrilik 

ile modifiye edilmiş ortogonal çatı elemanları aşağıdaki gibi elde edilir. 

{𝑡, 𝑛, 𝑏} Serret-Frenet çatı elemanları 

𝑡 = 𝛼ᇱ(𝑢) = ൬
3

5
cos(𝑢) , − sin(u) ,

4

5
cos(𝑢)൰ 

𝑛 =
𝑑𝑡

𝑑𝑢
= ൬−

3

5
sin(u) , − cos(u) , −

4

5
sin(u)൰ 

𝑏 = 𝑡 × 𝑛 =

⎣
⎢
⎢
⎢
⎡

𝑒ଵ 𝑒ଶ 𝑒ଷ

3

5
cos(𝑢) − sin(u)

4

5
cos(𝑢)

−
3

5
sin(u) − cos(u) −

4

5
sin(u)

⎦
⎥
⎥
⎥
⎤

 

= (−
4

5
cos(2𝑢) , 0, −

3

5
cos(2𝑢)) 

şeklinde elde edilir. 

𝛼(𝑢) eğrisinin eğriliği için; 

𝜅 = ‖𝑡′‖ = ඨ൬
9

25
sinଶ(u) + cosଶ(𝑢) +

16

25
sinଶ(u)൰ = 1 

bulunur. 

𝛼(𝑢) eğrisinin torsiyonu için; 

𝜏 = 𝜏(𝑠) =
det (𝛼ᇱ, 𝛼ᇱᇱ, 𝛼′′′)

𝜅ଶ
= 0 

elde edilir. Buradan hareketle {𝑡, 𝑛, 𝑏} Serret-Frenet çatı ve {𝑇, 𝑁, 𝐵} eğrilik ile modifiye 

edilmiş ortogonal çatı arasındaki ilişki 
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𝑇 = 𝛼ᇱ(𝑢) = ൬
3

5
cos(𝑢) , − sin(u) ,

4

5
cos(𝑢)൰ 

𝑁 = 𝜅𝑛 = ൬−
3

5
sin(u) , − cos(u) , −

4

5
sin(u)൰ 

𝐵 = 𝜅𝑏 = (−
4

5
cos(2𝑢) , 0, −

3

5
cos(2𝑢)) 

şeklindedir. {𝑇, 𝑁, 𝐵} eğrilik ile modifiye edilmiş ortogonal çatı vektörleri bulunur. Ayrıca eğrilik 

ile modifiye edilmiş ortogonal çatı için vektörel çarpımlar 

𝑇 × 𝑁 =

⎣
⎢
⎢
⎢
⎡

𝑒ଵ 𝑒ଶ 𝑒ଷ

3

5
cos(𝑢) − sin(u)

4

5
cos(𝑢)

−
3

5
sin(u) − cos(u) −

4

5
sin(u)

⎦
⎥
⎥
⎥
⎤

 

= ൬−
4

5
cos(2𝑢) , 0, −

3

5
cos(2𝑢)൰ 

= 𝐵 

𝑁 × 𝐵 =

⎣
⎢
⎢
⎢
⎡

𝑒ଵ 𝑒ଶ 𝑒ଷ

−
3

5
sin(u) − cos(u) −

4

5
sin(u)

−
4

5
cos(2𝑢) 0 −

3

5
cos(2𝑢)

⎦
⎥
⎥
⎥
⎤

 

= ൬
3

5
cos(𝑢) , − sin(u) ,

4

5
cos(𝑢)൰ 

 

= 𝜅ଶ𝑇 

𝐵 × 𝑇 =

⎣
⎢
⎢
⎢
⎡

𝑒ଵ 𝑒ଶ 𝑒ଷ

−
4

5
cos(2𝑢) 0 −

3

5
cos(2𝑢)

3

5
cos(𝑢) − sin(u)

4

5
cos(𝑢)

⎦
⎥
⎥
⎥
⎤

 

= ൬−
3

5
sin(u) , − cos(u) , −

4

5
sin(u)൰ 

= 𝑁 

şeklinde elde edilir. 

 

 



3. PARALEL REGLE YÜZEY AİLESİNİN YÜZEY EVOLÜSYONU 

 

Teorem 3.1. 𝑃(𝑢, 𝑣, 𝑝) yüzey ailesinin evolüsyonu 𝑝 parametrizasyonu ile verilsin.  

𝑃(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝛽(𝑢, 𝑝), ‖𝛽(𝑢, 𝑝)‖ = 1, 𝛽ᇱ ≠ 0, det(𝛽, 𝛽ᇱ, 𝛼ᇱ) = 0 ve 𝑢,𝛼 nın yay 

uzunluğu olsun. 𝑃(𝑢, 𝑣, 𝑝)'nin 𝐼.temel formun katsayıları; 

   𝐸 = 1 + 2𝑣〈𝑇ఈ(𝑢, 𝑝), 𝑇ఉ(𝑢, 𝑝)〉 + 𝑣ଶ 

𝐹 = 〈𝑇ఈ(𝑢, 𝑝), 𝛽(𝑢, 𝑝)〉 

𝐺 = 1 

dir.  

İspat: 

Yüzey ailesinin evolüsyonunun 𝑢 ve 𝑣 ye göre kısmi türevleri 

𝑃௨ = 𝛼(ଵ,଴)(𝑢, 𝑝) + 𝑣𝛽(ଵ,଴)(𝑢, 𝑝) = 𝑇ఈ(𝑢, 𝑝) + 𝑣𝑇ఉ(𝑢, 𝑝)  

𝑃௩ = 𝛽(𝑢, 𝑝) 

olur.Buradan hareketle; 

   𝐸 = 〈𝑃௨, 𝑃௨〉 = 〈𝑇ఈ(𝑢, 𝑝) + 𝑣𝑇ఉ(𝑢, 𝑝), 𝑇ఈ(𝑢, 𝑝) + 𝑣𝑇ఉ(𝑢, 𝑝)〉 

=〈𝑇ఈ(𝑢, 𝑝), 𝑇ఈ(𝑢, 𝑝)〉+〈𝑇ఈ(𝑢, 𝑝), 𝑣𝑇ఉ(𝑢, 𝑝)〉+〈𝑣𝑇ఉ(𝑢, 𝑝), 𝑇ఈ(𝑢, 𝑝)〉 + 〈𝑣𝑇ఉ(𝑢, 𝑝), 𝑣𝑇ఉ(𝑢, 𝑝)〉 

= 1 + 2𝑣〈𝑇ఈ(𝑢, 𝑝), 𝑇ఉ(𝑢, 𝑝)〉 + 𝑣ଶ 

elde edilir. Benzer şekilde; 

𝐹 = 〈𝑃௨, 𝑃௩〉 = 〈𝑇ఈ(𝑢, 𝑝) + 𝑣𝑇ఉ(𝑢, 𝑝), 𝛽(𝑢, 𝑝)〉 

= 〈𝑇ఈ(𝑢, 𝑝), 𝛽(𝑢, 𝑝)〉 + 𝑣〈𝑇ఉ(𝑢, 𝑝), 𝛽(𝑢, 𝑝)〉 

= 〈𝑇ఈ(𝑢, 𝑝), 𝛽(𝑢, 𝑝)〉 

ve 

𝐺 = 〈𝑃௩ , 𝑃௩〉 = 〈𝛽(𝑢, 𝑝), 𝛽(𝑢, 𝑝)〉 

= 1 

olarak bulunur. 

Teorem 3.2.  𝑃(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝛽(𝑢, 𝑝) tanımlanan 𝑃(𝑢, 𝑣, 𝑝) elastik olmayan yüzey 

evolüsyonu olabilmesi için gerek ve yeter şart, 

〈𝑇ఈ
(଴,ଵ)(𝑢, 𝑝), 𝑇ఉ(𝑢, 𝑝)〉 = −〈𝑇ఈ(𝑢, 𝑝), 𝑇ఉ

(଴,ଵ)(𝑢, 𝑝)〉 

ve 

〈𝑇ఈ
(଴,ଵ)(𝑢, 𝑝), 𝛽(𝑢, 𝑝)〉 = −〈𝑇ఈ(𝑢, 𝑝), 𝛽(଴,ଵ)(𝑢, 𝑝)〉 

olmasıdır. 
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İspat: 𝑃(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝛽(𝑢, 𝑝) yüzeyinin 𝐼.temel formun katsayıları; 

𝐸 = 1 + 2𝑣〈𝑇ఈ(𝑢, 𝑝), 𝑇ఉ(𝑢, 𝑝)〉 + 𝑣ଶ 

𝐹 = 〈𝑇ఈ(𝑢, 𝑝), 𝛽(𝑢, 𝑝)〉 

𝐺 = 1 

şeklinde bulunur. Tanım 2.41’dan 

𝐸௣ =
∂

∂p
൫1 + 2𝑣〈𝑇ఈ(𝑢, 𝑝), 𝑇ఉ(𝑢, 𝑝)〉 + 𝑣ଶ൯ = 0 

olmalıdır. Çarpımın türevinden;  

2𝑣൫〈𝑇ఈ
(଴,ଵ)(𝑢, 𝑝), 𝑇ఉ(𝑢, 𝑝)〉 + 〈𝑇ఈ(𝑢, 𝑝), 𝑇ఉ

(଴,ଵ)(𝑢, 𝑝)〉൯ = 0 

bulunur. 

൫〈𝑇ఈ
(଴,ଵ)(𝑢, 𝑝), 𝑇ఉ(𝑢, 𝑝)〉 + 〈𝑇ఈ(𝑢, 𝑝), 𝑇ఉ

(଴,ଵ)(𝑢, 𝑝)〉൯ = 0 

ve 

〈𝑇ఈ
(଴,ଵ)(𝑢, 𝑝), 𝑇ఉ(𝑢, 𝑝)〉 = −〈𝑇ఈ(𝑢, 𝑝), 𝑇ఉ

(଴,ଵ)(𝑢, 𝑝)〉 

elde edilir. Tanım 2.41’dan 

𝐹௣ =
∂

∂p
(〈𝑇ఈ(𝑢, 𝑝), 𝛽(𝑢, 𝑝)〉) = 0 

olmalıdır. Çarpımın türevinden;  

〈𝑇ఈ
(଴,ଵ)(𝑢, 𝑝), 𝛽(𝑢, 𝑝)〉 + 〈𝑇ఈ(𝑢, 𝑝), 𝛽(଴,ଵ)(𝑢, 𝑝)〉 = 0 

bulunur. 

〈𝑇ఈ
(଴,ଵ)(𝑢, 𝑝), 𝛽(𝑢, 𝑝)〉 = −〈𝑇ఈ(𝑢, 𝑝), 𝛽(଴,ଵ)(𝑢, 𝑝)〉 

elde edilir. 

𝐺௣ = 0  

bulunur. Buradan hareketle 𝐸௣, 𝐹௣, 𝐺௣ eşitliklerinin; 

𝐸௣ = 𝐹௣ = 𝐺௣ = 0 

sağlandığı görülür ki ispat tamamlanmış olur. 

Teorem 3.3. 𝑃(𝑢, 𝑣, 𝑝) yüzey ailesinin evolüsyonu 𝑝 parametrizasyonu ile verilsin.  

𝑃(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝛽(𝑢, 𝑝), ‖𝛽(𝑢, 𝑝)‖ = 1, 𝛽ᇱ ≠ 0, det(𝛽, 𝛽ᇱ, 𝛼ᇱ) = 0 ve u,𝛼 nın yay 

uzunluğu olsun. 𝑃(𝑢, 𝑣, 𝑝)'nin 𝐼𝐼.temel formun katsayıları; 

     ℎ₁₁ = 〈𝑁ఈ(𝑢, 𝑝) + 𝑣𝑁ఉ(𝑢, 𝑝), 𝑈(𝑢, 𝑣, 𝑝)〉 

     ℎ₁₂ = 〈𝑇ఉ(𝑢, 𝑝)  , 𝑈(𝑢, 𝑣, 𝑝)〉 

     ℎ₂₂ = 〈0, 𝑈(𝑢, 𝑣, 𝑝)〉 = 0 

dir. 
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İspat: 

Yüzey evolüsyonunun 𝑢 ve 𝑣 ye göre ikinci dereceden kısmi türevleri 

 

𝑃௨௨ = 𝑇ఈ
(ଵ,଴)(𝑢, 𝑝) + 𝑣𝑇ఉ

(ଵ,଴)(𝑢, 𝑝) = 𝑁ఈ(𝑢, 𝑝) + 𝑣𝑁ఉ(𝑢, 𝑝) 

𝑃௩௩ = 0 

𝑃௨௩ = 𝑇ఉ(𝑢, 𝑝)  

ve normali; 

𝑈(𝑢, 𝑣, 𝑝) =
𝑃௨ × 𝑝௩

‖𝑃 × 𝑃௩‖
=

൫𝑇ఈ(𝑢, 𝑝) + 𝑣𝑇ఉ(𝑢, 𝑝)൯ × 𝛽(𝑢, 𝑝)

ฮ൫𝑇ఈ(𝑢, 𝑝) + 𝑣𝑇ఉ(𝑢, 𝑝)൯ × 𝛽(𝑢, 𝑝)ฮ
 

 

olur. Buradan hareketle; 

 

     ℎ₁₁ = 〈𝜙௨௨, 𝑈(𝑢, 𝑣, 𝑝)〉 = 〈𝑁ఈ(𝑢, 𝑝) + 𝑣𝑁ఉ(𝑢, 𝑝), 𝑈(𝑢, 𝑣, 𝑝)〉 

elde edilir. Benzer şekilde; 

     ℎ₁₂ = 〈𝜙௨௩, 𝑈(𝑢, 𝑣, 𝑝)〉 = 〈𝑇ఉ(𝑢, 𝑝)  , 𝑈(𝑢, 𝑣, 𝑝)〉 

ve 

     ℎ₂₂ = 〈𝜙௩௩ , 𝑈(𝑢, 𝑣, 𝑝)〉 = 〈0, 𝑈(𝑢, 𝑣, 𝑝)〉 = 0 

olarak bulunur. 

 

Sonuç 3.4. 𝑃(𝑢, 𝑣, 𝑝) yüzey ailesinin sırası ile Ortalama eğriliği ve Gauss eğriliği  

Tanım 2.29’dan 

𝐻 =
1

2

ℎ₁₁𝐺 − 2ℎ₁₂𝐹 + ℎ₂₂𝐸

𝐸𝐺 − 𝐹²
 

𝐾 =
ℎ₁₁ℎ₂₂ − ℎ₁₂²

𝐸𝐺 − 𝐹²
 

olduğundan 

 

𝐻 =
1

2

〈𝑁ఈ(𝑢, 𝑝) + 𝑣𝑁ఉ(𝑢, 𝑝), 𝑈(𝑢, 𝑣, 𝑝)〉 − 2〈𝑇ఉ(𝑢, 𝑝)  , 𝑈(𝑢, 𝑣, 𝑝)〉〈𝑇ఈ(𝑢, 𝑝), 𝛽(𝑢, 𝑝)〉

൫1 + 2𝑣〈𝑇ఈ(𝑢, 𝑝), 𝑇ఉ(𝑢, 𝑝)〉 + 𝑣ଶ൯ − 〈𝑇ఈ(𝑢, 𝑝), 𝛽(𝑢, 𝑝)〉²
 

ve 

𝐾 =
−〈𝑇ఉ(𝑢, 𝑝)  , 𝑈(𝑢, 𝑣, 𝑝)〉²

൫1 + 2𝑣〈𝑇ఈ(𝑢, 𝑝), 𝑇ఉ(𝑢, 𝑝)〉 + 𝑣ଶ൯ − 〈𝑇ఈ(𝑢, 𝑝), 𝛽(𝑢, 𝑝)〉²
 

elde edilir. 
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Teorem 3.5. 𝑃(𝑢, 𝑣, 𝑝) yüzey ailesinin evolüsyonu 𝑝 parametrizasyonu ile verilsin.  

𝑃(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝛽(𝑢, 𝑝), ‖𝛽(𝑢, 𝑝)‖ = 1, 𝛽ᇱ ≠ 0, det(𝛽, 𝛽ᇱ, 𝛼ᇱ) = 0 ve u,𝛼 nın yay 

uzunluğu olsun. 𝑃(𝑢, 𝑣, 𝑝)'nin paralelinin  𝑃෨(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝛽(𝑢, 𝑝) + 𝑟𝑈(𝑢, 𝑣, 𝑝) 𝐼.temel 

formun katsayıları; 

𝐸 = 1 + 𝑟ଶ + 2𝑣〈𝑇ఈ(𝑢, 𝑝), 𝑇ఉ(𝑢, 𝑝)〉 + 2𝑟〈𝑇ఈ(𝑢, 𝑝), 𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) 〉 + 𝑣ଶ

+ 2𝑣𝑟〈𝑇ఉ(𝑢, 𝑝), 𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) 〉 

𝐹 = 〈𝑇ఈ(𝑢, 𝑝), 𝛽(𝑢, 𝑝)〉 + 𝑟〈𝑇ఈ(𝑢, 𝑝), 𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝) 〉 + 𝑣〈𝑇ఉ(𝑢, 𝑝), 𝛽(𝑢, 𝑝)〉

+ 𝑣𝑟〈𝑇ఉ(𝑢, 𝑝), 𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝) 〉 + 𝑟〈𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) , 𝛽(𝑢, 𝑝) 〉

+ 𝑟ଶ〈𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) , 𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝) 〉 

𝐺 = 1 + 𝑟ଶ + 2〈𝛽(𝑢, 𝑝), 𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝)〉 

dir. 

İspat: 

𝑃(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝛽(𝑢, 𝑝) 

Yüzey ailesinin paraleli; 

𝑃෨(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝛽(𝑢, 𝑝) + 𝑟𝑈(𝑢, 𝑣, 𝑝) 

Yüzey ailesinin paralelinin u ve v ye göre kısmi türevleri; 

𝑃෨௨ = 𝛼௨(𝑢, 𝑝) + 𝑣𝛽௨(𝑢, 𝑝) + 𝑟𝑈௨(𝑢, 𝑣, 𝑝) = 𝑇ఈ(𝑢, 𝑝) + 𝑣𝑇ఉ(𝑢, 𝑝) + 𝑟𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝)  

𝑃෨௩ = 𝛽(𝑢, 𝑝) + 𝑟𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝) 

olur. Buradan hareketle; 

  𝐸 = 〈𝑃෨௨, 𝑃෨௨〉 = 〈𝑇ఈ(𝑢, 𝑝) + 𝑣𝑇ఉ(𝑢, 𝑝) + 𝑟𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) , 𝑇ఈ(𝑢, 𝑝) + 𝑣𝑇ఉ(𝑢, 𝑝)

+ 𝑟𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) 〉 

= 〈𝑇ఈ(𝑢, 𝑝), 𝑇ఈ(𝑢, 𝑝)〉 + 〈𝑇ఈ(𝑢, 𝑝), 𝑣𝑇ఉ(𝑢, 𝑝)〉 + 〈𝑇ఈ(𝑢, 𝑝), 𝑟𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) 〉

+ 〈𝑣𝑇ఉ(𝑢, 𝑝), 𝑇ఈ(𝑢, 𝑝)〉 + 〈𝑣𝑇ఉ(𝑢, 𝑝), 𝑣𝑇ఉ(𝑢, 𝑝) 〉

+ 〈𝑣𝑇ఉ(𝑢, 𝑝), 𝑟𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) 〉 + 〈𝑟𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) , 𝑇ఈ(𝑢, 𝑝)〉

+ 〈𝑟𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) , 𝑣𝑇ఉ(𝑢, 𝑝)〉 + 〈𝑟𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) , 𝑟𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) 〉 

= 1 + 𝑟ଶ + 2𝑣〈𝑇ఈ(𝑢, 𝑝), 𝑇ఉ(𝑢, 𝑝)〉 + 2𝑟〈𝑇ఈ(𝑢, 𝑝), 𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) 〉 + 𝑣ଶ

+ 2𝑣𝑟〈𝑇ఉ(𝑢, 𝑝), 𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) 〉 

elde edilir. Benzer şekilde; 

𝐹 = 〈𝑃෨௨, 𝑃෨௩〉 = 〈𝑇ఈ(𝑢, 𝑝) + 𝑣𝑇ఉ(𝑢, 𝑝) + 𝑟𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) , 𝛽(𝑢, 𝑝) + 𝑟𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝) 〉 

= 〈𝑇ఈ(𝑢, 𝑝), 𝛽(𝑢, 𝑝)〉 + 𝑟〈𝑇ఈ(𝑢, 𝑝), 𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝) 〉 + 𝑣〈𝑇ఉ(𝑢, 𝑝), 𝛽(𝑢, 𝑝)〉

+ 𝑣𝑟〈𝑇ఉ(𝑢, 𝑝), 𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝) 〉 + 𝑟〈𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) , 𝛽(𝑢, 𝑝) 〉

+ 𝑟ଶ〈𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) , 𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝) 〉 

ve 
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𝐺 = 〈𝑃෨௩ , 𝑃෨௩〉 = 〈𝛽(𝑢, 𝑝) + 𝑟𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝), 𝛽(𝑢, 𝑝) + 𝑟𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝)〉 

= 〈𝛽(𝑢, 𝑝), 𝛽(𝑢, 𝑝)〉 + 〈𝛽(𝑢, 𝑝), 𝑟𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝)〉 + 〈𝑟𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝), 𝛽(𝑢, 𝑝)〉

+ 〈𝑟𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝), 𝑟𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝)〉 

= 1 + 𝑟ଶ + 2〈𝛽(𝑢, 𝑝), 𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝)〉 

olarak bulunur. 

Teorem 3.6.  𝑃(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝛽(𝑢, 𝑝) tanımlanan yüzey evolüsyonunun paraleli  

𝑃෨(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝛽(𝑢, 𝑝) + 𝑟𝑈(𝑢, 𝑣, 𝑝) için 𝑃෨(𝑢, 𝑣, 𝑝) elastik olmayan yüzey evolüsyonu 

olabilmesi için gerek ve yeter şart, 

〈𝑇ఈ
(଴,ଵ)(𝑢, 𝑝), 𝑣𝑇ఉ(𝑢, 𝑝) + 𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝)〉 + 

+𝑣〈𝑇ఉ
(଴,ଵ)(𝑢, 𝑝), 𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) + 𝑇ఈ(𝑢, 𝑝) 〉

= −𝑟〈𝑇ఈ(𝑢, 𝑝) + 𝑣𝑇ఉ(𝑢, 𝑝), 𝑈(ଵ,଴,ଵ)(𝑢, 𝑣, 𝑝) 〉 

ve 

〈𝑇ఈ
(଴,ଵ)(𝑢, 𝑝) + 𝑣𝑇ఉ

(଴,ଵ)(𝑢, 𝑝) + 𝑟𝑈(ଵ,଴,ଵ)(𝑢, 𝑣, 𝑝), 𝛽(𝑢, 𝑝) + 𝑟𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝)〉 

= −〈𝑇ఈ(𝑢, 𝑝) + 𝑣𝑇ఉ(𝑢, 𝑝) + 𝑟𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝), 𝛽(଴,ଵ)(𝑢, 𝑝) + 𝑟𝑈(଴,ଵ,ଵ)(𝑢, 𝑣, 𝑝)〉 

ve 

〈𝛽(଴,ଵ)(𝑢, 𝑝), 𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝)〉 = −〈𝛽(𝑢, 𝑝), 𝑈(଴,ଵ,ଵ)(𝑢, 𝑣, 𝑝)〉 

olmasıdır. 

İspat: 𝑃෨(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝛽(𝑢, 𝑝) + 𝑟𝑈(𝑢, 𝑣, 𝑝) yüzeyinin 𝐼.temel formun katsayıları; 

𝐸 = 1 + 𝑟ଶ + 2𝑣〈𝑇ఈ(𝑢, 𝑝), 𝑇ఉ(𝑢, 𝑝)〉 + 2𝑟〈𝑇ఈ(𝑢, 𝑝), 𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) 〉 + 𝑣ଶ

+ 2𝑣𝑟〈𝑇ఉ(𝑢, 𝑝), 𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) 〉 

𝐹 = 〈𝑇ఈ(𝑢, 𝑝), 𝛽(𝑢, 𝑝)〉 + 𝑟〈𝑇ఈ(𝑢, 𝑝), 𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝) 〉 + 𝑣〈𝑇ఉ(𝑢, 𝑝), 𝛽(𝑢, 𝑝)〉

+ 𝑣𝑟〈𝑇ఉ(𝑢, 𝑝), 𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝) 〉 + 𝑟〈𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) , 𝛽(𝑢, 𝑝) 〉

+ 𝑟ଶ〈𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) , 𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝) 〉 

𝐺 = 1 + 𝑟ଶ + 2〈𝛽(𝑢, 𝑝), 𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝)〉 

   şeklinde bulunur. Tanım 2.41’dan 

𝐸௣ =
∂

∂p
൫1 + 𝑟ଶ + 2𝑣〈𝑇ఈ(𝑢, 𝑝), 𝑇ఉ(𝑢, 𝑝)〉 + 2𝑟〈𝑇ఈ(𝑢, 𝑝), 𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) 〉 + 𝑣ଶ

+ 2𝑣𝑟〈𝑇ఉ(𝑢, 𝑝), 𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) 〉൯ = 0 

olmalıdır. Çarpımın türevinden;  

2𝑣〈𝑇ఈ
(଴,ଵ)(𝑢, 𝑝), 𝑇ఉ(𝑢, 𝑝)〉 + 2𝑣〈𝑇ఈ(𝑢, 𝑝), 𝑇ఉ

(଴,ଵ)(𝑢, 𝑝)〉

+ 2𝑟〈𝑇ఈ
(଴,ଵ)(𝑢, 𝑝), 𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) 〉 + 2𝑟〈𝑇ఈ(𝑢, 𝑝), 𝑈(ଵ,଴,ଵ)(𝑢, 𝑣, 𝑝) 〉

+ 2𝑣𝑟〈𝑇ఉ
(଴,ଵ)(𝑢, 𝑝), 𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) 〉 + 2𝑣𝑟〈𝑇ఉ(𝑢, 𝑝), 𝑈(ଵ,଴,ଵ)(𝑢, 𝑣, 𝑝) 〉

= 0 

bulunur. 
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𝑣〈𝑇ఈ
(଴,ଵ)(𝑢, 𝑝), 𝑇ఉ(𝑢, 𝑝)〉 + 𝑣〈𝑇ఈ(𝑢, 𝑝), 𝑇ఉ

(଴,ଵ)(𝑢, 𝑝)〉 

+𝑟〈𝑇ఈ
(଴,ଵ)(𝑢, 𝑝), 𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) 〉 + 𝑟〈𝑇ఈ(𝑢, 𝑝), 𝑈(ଵ,଴,ଵ)(𝑢, 𝑣, 𝑝) 〉 

+𝑣𝑟〈𝑇ఉ
(଴,ଵ)(𝑢, 𝑝), 𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) 〉 + 𝑣𝑟〈𝑇ఉ(𝑢, 𝑝), 𝑈(ଵ,଴,ଵ)(𝑢, 𝑣, 𝑝) 〉 

= 0 

ve 

〈𝑇ఈ
(଴,ଵ)(𝑢, 𝑝), 𝑣𝑇ఉ(𝑢, 𝑝) + 𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝)〉 + 

+𝑣〈𝑇ఉ
(଴,ଵ)(𝑢, 𝑝), 𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) + 𝑇ఈ(𝑢, 𝑝) 〉

= −𝑟〈𝑇ఈ(𝑢, 𝑝) + 𝑣𝑇ఉ(𝑢, 𝑝), 𝑈(ଵ,଴,ଵ)(𝑢, 𝑣, 𝑝) 〉 

elde edilir. Tanım 2.41’dan 

𝐹௣ =
∂

∂p
൫〈𝑇ఈ(𝑢, 𝑝), 𝛽(𝑢, 𝑝)〉 + 𝑟〈𝑇ఈ(𝑢, 𝑝), 𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝) 〉 + 𝑣〈𝑇ఉ(𝑢, 𝑝), 𝛽(𝑢, 𝑝)〉

+ 𝑣𝑟〈𝑇ఉ(𝑢, 𝑝), 𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝) 〉 + 𝑟〈𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) , 𝛽(𝑢, 𝑝) 〉

+ 𝑟ଶ〈𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) , 𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝) 〉൯ = 0 

olmalıdır. Çarpımın türevinden;  

〈𝑇ఈ
(଴,ଵ)(𝑢, 𝑝), 𝛽(𝑢, 𝑝)〉 + 〈𝑇ఈ(𝑢, 𝑝), 𝛽(଴,ଵ)(𝑢, 𝑝)〉 + 𝑟〈𝑇ఈ

(଴,ଵ)(𝑢, 𝑝), 𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝) 〉

+ 𝑟〈𝑇ఈ(𝑢, 𝑝), 𝑈(଴,ଵ,ଵ)(𝑢, 𝑣, 𝑝) 〉 + 𝑣〈𝑇ఉ
(଴,ଵ)(𝑢, 𝑝), 𝛽(𝑢, 𝑝)〉

+ 𝑣〈𝑇ఉ(𝑢, 𝑝), 𝛽(଴,ଵ)(𝑢, 𝑝)〉 + 𝑣𝑟〈𝑇ఉ
(଴,ଵ)(𝑢, 𝑝), 𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝) 〉

+ 𝑣𝑟〈𝑇ఉ(𝑢, 𝑝), 𝑈(଴,ଵ,ଵ)(𝑢, 𝑣, 𝑝) 〉 + 𝑟〈𝑈(ଵ,଴,ଵ)(𝑢, 𝑣, 𝑝) , 𝛽(𝑢, 𝑝)〉

+ +𝑟〈𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) , 𝛽(଴,ଵ)(𝑢, 𝑝)〉 + 𝑟ଶ〈𝑈(ଵ,଴,ଵ)(𝑢, 𝑣, 𝑝) , 𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝) 〉

+ 𝑟ଶ〈𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) , 𝑈(଴,ଵ,ଵ)(𝑢, 𝑣, 𝑝) 〉 = 0 

ve 

〈𝑇ఈ
(଴,ଵ)(𝑢, 𝑝) + 𝑣𝑇ఉ

(଴,ଵ)(𝑢, 𝑝) + 𝑟𝑈(ଵ,଴,ଵ)(𝑢, 𝑣, 𝑝), 𝛽(𝑢, 𝑝) + 𝑟𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝)〉 

+〈𝑇ఈ(𝑢, 𝑝) + 𝑣𝑇ఉ(𝑢, 𝑝) + 𝑟𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝), 𝛽(଴,ଵ)(𝑢, 𝑝) + 𝑟𝑈(଴,ଵ,ଵ)(𝑢, 𝑣, 𝑝)〉 = 0 

ve 

〈𝑇ఈ
(଴,ଵ)(𝑢, 𝑝) + 𝑣𝑇ఉ

(଴,ଵ)(𝑢, 𝑝) + 𝑟𝑈(ଵ,଴,ଵ)(𝑢, 𝑣, 𝑝), 𝛽(𝑢, 𝑝) + 𝑟𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝)〉 

= −〈𝑇ఈ(𝑢, 𝑝) + 𝑣𝑇ఉ(𝑢, 𝑝) + 𝑟𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝), 𝛽(଴,ଵ)(𝑢, 𝑝) + 𝑟𝑈(଴,ଵ,ଵ)(𝑢, 𝑣, 𝑝)〉 

elde edilir. Tanım 2.41’dan 

𝐺௣ =
∂

∂p
൫1 + 𝑟ଶ + 2〈𝛽(𝑢, 𝑝), 𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝)〉൯ = 0 

olmalıdır. Çarpımın türevinden;  

〈𝛽(଴,ଵ)(𝑢, 𝑝), 𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝)〉 + 〈𝛽(𝑢, 𝑝), 𝑈(଴,ଵ,ଵ)(𝑢, 𝑣, 𝑝)〉 = 0 

ve 

〈𝛽(଴,ଵ)(𝑢, 𝑝), 𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝)〉 = −〈𝛽(𝑢, 𝑝), 𝑈(଴,ଵ,ଵ)(𝑢, 𝑣, 𝑝)〉 
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elde edilir. 

Buradan hareketle 𝐸௣, 𝐹௣, 𝐺௣ eşitliklerinin; 

𝐸௣ = 𝐹௣ = 𝐺௣ = 0 

sağlandığı görülür ki ispat tamamlanmış olur. 

Teorem 3.7. 𝑃(𝑢, 𝑣, 𝑝) yüzey ailesinin evolüsyonu 𝑝 parametrizasyonu ile verilsin.  

𝑃(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝛽(𝑢, 𝑝), ‖𝛽(𝑢, 𝑝)‖ = 1, 𝛽ᇱ ≠ 0, det(𝛽, 𝛽ᇱ, 𝛼ᇱ) = 0 ve u,𝛼 nın yay 

uzunluğu olsun. 𝑃(𝑢, 𝑣, 𝑝)'nin paralelinin 𝑃෨(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝛽(𝑢, 𝑝) + 𝑟𝑈(𝑢, 𝑣, 𝑝) 𝐼𝐼.temel 

formun katsayıları; 

        ℎ₁₁ = 〈𝑁ఈ(𝑢, 𝑝) + 𝑟𝑈(ଶ,଴,଴)(𝑢, 𝑣, 𝑝), 𝑈෩(𝑢, 𝑣, 𝑝)〉 

     ℎ₁₂ = 〈𝑇ఉ(𝑢, 𝑝) + 𝑟𝑈(ଵ,ଵ,଴)(𝑢, 𝑣, 𝑝)   , 𝑈෩(𝑢, 𝑣, 𝑝)〉 

     ℎ₂₂ = 〈𝑟𝑈(଴,ଶ,଴)(𝑢, 𝑣, 𝑝), 𝑈෩(𝑢, 𝑣, 𝑝)〉 

İspat: 

 

𝑃(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝛽(𝑢, 𝑝) 

Yüzey ailesinin paraleli; 

𝑃෨(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝛽(𝑢, 𝑝) + 𝑟𝑈(𝑢, 𝑣, 𝑝) 

Yüzey evolüsyonunun u ve v ye göre kısmi türevleri 

𝑃෨௨ = 𝛼(ଵ,଴)(𝑢, 𝑝) + 𝑣𝛽(ଵ,଴)(𝑢, 𝑝) + 𝑟𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) 

Modifiye çatının özelliğinden 

𝑃෨௨ = 𝑇ఈ(𝑢, 𝑝) + 𝑣𝑇ఉ(𝑢, 𝑝) + 𝑟𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝)  

elde edilir. 

𝑃෨௩ = 𝛽(𝑢, 𝑝) + 𝑟𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝) 

 

𝑃෨௨௨ = 𝑇ఈ
(ଵ,଴)(𝑢, 𝑝) + 𝑟𝑈(ଶ,଴,଴)(𝑢, 𝑣, 𝑝) 

Modifiye çatının özelliğinden 

𝑃෨௨௨ = 𝑁ఈ(𝑢, 𝑝) + 𝑟𝑈(ଶ,଴,଴)(𝑢, 𝑣, 𝑝) 

elde edilir. 

𝑃෨௩௩ = 𝑟𝑈(଴,ଶ,଴)(𝑢, 𝑣, 𝑝)  

𝑃෨௨௩ = 𝑇ఉ(𝑢, 𝑝) + 𝑟𝑈(ଵ,ଵ,଴)(𝑢, 𝑣, 𝑝)  

ve normali; 

𝑈෩(𝑢, 𝑣, 𝑝) =
𝑃෨௨ × 𝑃෨௩

ฮ𝑃෨௨ × 𝑃෨௩ฮ

=
ቀ𝑇ఈ(𝑢, 𝑝) + 𝑣𝑇ఉ(𝑢, 𝑝) + 𝑟𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝)ቁ × (𝛽(𝑢, 𝑝) + 𝑟𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝)) 

ቛቀ𝑇ఈ(𝑢, 𝑝) + 𝑣𝑇ఉ(𝑢, 𝑝) + 𝑟𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝)ቁ × (𝛽(𝑢, 𝑝) + 𝑟𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝))ቛ
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olur. Buradan hareketle; 

       ℎ₁₁ = 〈𝑃෨௨௨, 𝑈෩(𝑢, 𝑣, 𝑡)〉 = 〈𝑁ఈ(𝑢, 𝑝) + 𝑟𝑈(ଶ,଴,଴)(𝑢, 𝑣, 𝑝), 𝑈෩(𝑢, 𝑣, 𝑝)〉 

elde edilir. Benzer şekilde; 

     ℎ₁₂ = 〈𝑃෨௨௩ , 𝑈෩(𝑢, 𝑣, 𝑝)〉 = 〈𝑇ఉ(𝑢, 𝑝) + 𝑟𝑈(ଵ,ଵ,଴)(𝑢, 𝑣, 𝑝)   , 𝑈෩(𝑢, 𝑣, 𝑝)〉 

ve 

     ℎ₂₂ = 〈𝑃෨௩௩ , 𝑈෩(𝑢, 𝑣, 𝑝)〉 = 〈𝑟𝑈(଴,ଶ,଴)(𝑢, 𝑣, 𝑝), 𝑈෩(𝑢, 𝑣, 𝑝)〉 

olarak bulunur. 

Sonuç 3.8. 

𝑎 = 𝐸𝐺 − 𝐹² = ൫1 + 𝑟ଶ + 2𝑣〈𝑇ఈ(𝑢, 𝑝), 𝑇ఉ(𝑢, 𝑝)〉 + 2𝑟〈𝑇ఈ(𝑢, 𝑝), 𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) 〉 + 𝑣ଶ

+ 2𝑣𝑟〈𝑇ఉ(𝑢, 𝑝), 𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) 〉൯൫1 + 𝑟ଶ + 2〈𝛽(𝑢, 𝑝), 𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝)〉൯

− (〈𝑇ఈ(𝑢, 𝑝), 𝛽(𝑢, 𝑝)〉 + 𝑟〈𝑇ఈ(𝑢, 𝑝), 𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝) 〉 + 𝑣〈𝑇ఉ(𝑢, 𝑝), 𝛽(𝑢, 𝑝)〉

+ 𝑣𝑟〈𝑇ఉ(𝑢, 𝑝), 𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝) 〉 + 𝑟〈𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) , 𝛽(𝑢, 𝑝) 〉

+ 𝑟ଶ〈𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) , 𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝) 〉)ଶ 

olsun. 𝑃෨(𝑢, 𝑣, 𝑝)  yüzey ailesinin sırası ile Ortalama eğriliği ve Gauss eğriliği Tanım 2.29’dan 

𝐻 =
1

2

ℎ₁₁𝐺 − 2ℎ₁₂𝐹 + ℎ₂₂𝐸

𝐸𝐺 − 𝐹²
 

𝐾 =
ℎ₁₁ℎ₂₂ − ℎ₁₂²

𝐸𝐺 − 𝐹²
 

olduğundan 

𝐻 =
1

2𝑎
(〈𝑁ఈ(𝑢, 𝑝) + 𝑟𝑈(ଶ,଴,଴)(𝑢, 𝑣, 𝑝), 𝑈෩(𝑢, 𝑣, 𝑝)〉(1 + 𝑟ଶ + 2〈𝛽(𝑢, 𝑝), 𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝)〉)

− 2〈𝑇ఉ(𝑢, 𝑝) + 𝑟𝑈(ଵ,ଵ,଴)(𝑢, 𝑣, 𝑝)   , 𝑈෩(𝑢, 𝑣, 𝑝)〉(〈𝑇ఈ(𝑢, 𝑝), 𝛽(𝑢, 𝑝)〉

+ 𝑟〈𝑇ఈ(𝑢, 𝑝), 𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝) 〉 + 𝑣〈𝑇ఉ(𝑢, 𝑝), 𝛽(𝑢, 𝑝)〉

+ 𝑣𝑟〈𝑇ఉ(𝑢, 𝑝), 𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝) 〉 + 𝑟〈𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) , 𝛽(𝑢, 𝑝)〉

+ 𝑟ଶ〈𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) , 𝑈(଴,ଵ,଴)(𝑢, 𝑣, 𝑝) 〉) + 〈𝑟𝑈(଴,ଶ,଴)(𝑢, 𝑣, 𝑝), 𝑈෩(𝑢, 𝑣, 𝑝)〉(1 + 𝑟ଶ

+ 2𝑣〈𝑇ఈ(𝑢, 𝑝), 𝑇ఉ(𝑢, 𝑝)〉 + 2𝑟〈𝑇ఈ(𝑢, 𝑝), 𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) 〉 + 𝑣ଶ

+ 2𝑣𝑟〈𝑇ఉ(𝑢, 𝑝), 𝑈(ଵ,଴,଴)(𝑢, 𝑣, 𝑝) 〉)) 

ve 

𝐾 =
1

𝑎
(〈𝑁ఈ(𝑢, 𝑝) + 𝑟𝑈(ଶ,଴,଴)(𝑢, 𝑣, 𝑝), 𝑈෩(𝑢, 𝑣, 𝑝)〉〈𝑟𝑈(଴,ଶ,଴)(𝑢, 𝑣, 𝑝), 𝑈෩(𝑢, 𝑣, 𝑝)〉

− 〈𝑇ఉ(𝑢, 𝑝) + 𝑟𝑈(ଵ,ଵ,଴)(𝑢, 𝑣, 𝑝)   , 𝑈෩(𝑢, 𝑣, 𝑝)〉² 

elde edilir. 

Teorem 3.9. 𝑋(𝑢, 𝑣, 𝑝) yüzey ailesinin evolüsyonu 𝑝 parametrizasyonu ile verilsin.  

𝑋(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝑇(𝑢, 𝑝), ‖𝑇(𝑢, 𝑝)‖ = 1, 𝑇ᇱ ≠ 0, det(𝑇, 𝑇ᇱ, 𝛼ᇱ) = 0 ve 𝑢,𝛼 nın yay 

uzunluğu olsun. 𝑋(𝑢, 𝑣, 𝑝)'in 𝐼.temel formun katsayıları; 
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𝐸 = 1 + 𝑣ଶ𝜅ଶ 

𝐹 = 1 

𝐺 = 1 

İspat: Yüzey evolüsyonunun 𝑢 ve 𝑣 değişkenlerine göre kısmi türevleri 

𝑋௨ = 𝛼(ଵ,଴)(𝑢, 𝑝) + 𝑣𝑇(ଵ,଴)(𝑢, 𝑝) 

olur. Modifiye ortogonal çatının özeliğinden; 

= 𝑣𝑁(𝑢, 𝑝) + 𝑇(𝑢, 𝑝) 

elde edilir. Benzer şekilde; 

𝑋௩ = 𝑇(𝑢, 𝑝) 

olur. Buradan hareketle; 

𝐸 = 

                                                                      = 〈𝑋௨𝑣𝑁(𝑢, 𝑝) + 𝑇(𝑢, 𝑝), 𝑣𝑁(𝑢, 𝑝) + 𝑇(𝑢, 𝑝)〉 

Tanım 2.42 'dan  

= 1 + 𝑣ଶ𝜅ଶ 

elde edilir. Benzer şekilde; 

𝐹 = 〈𝑋௨, 𝑋௩〉 

                                                                      = 〈𝑣𝑁(𝑢, 𝑝) + 𝑇(𝑢, 𝑝), 𝑇(𝑢, 𝑝)〉 

                                                                      = 1 

ve 

𝐺 = 〈𝑋௩ , 𝑋௩〉 

                                                                      = 〈𝑇(𝑢, 𝑝), 𝑇(𝑢, 𝑝)〉 

                                                                      = 1 

olarak bulunur. 

Teorem 3.10.  X(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝑇(𝑢, 𝑝) tanımlanan 𝑋(𝑢, 𝑣, 𝑝) elastik olmayan 

yüzey evolüsyonu olabilmesi, 

𝜅 = 𝑐, 𝑐 = 𝑠𝑏𝑡. 

olması ile mümkündür. 

İspat: X(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝑇(𝑢, 𝑝) yüzeyinin 𝐼.temel formun katsayıları; 

𝐸 = 1 + 𝑣ଶ𝜅ଶ 

𝐹 = 1 

𝐺 = 1 

   şeklinde bulunur. Tanım 2.41’dan 

𝐸௣ =
∂

∂p
(1 + 𝑣ଶ𝜅ଶ) = 0 

olmalıdır. Buradan hareketle;  

2𝑣ଶ𝜅𝜅′ = 0 
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bulunur. 

𝜅 = 𝑐 

şeklinde olmalıdır.(𝑐 = 𝑠𝑎𝑏𝑖𝑡) 

𝐹௣ = 0 

elde edilir. 

𝐺௣ = 0  

bulunur. Buradan hareketle 𝐸௣, 𝐹௣, 𝐺௣ eşitliklerinin; 

𝐸௣ = 𝐹௣ = 𝐺௣ = 0 

sağlandığı görülür ki ispat tamamlanmış olur. 

Teorem 3.11. 𝑋(𝑢, 𝑣, 𝑝) yüzey ailesinin evolüsyonu 𝑝 parametrizasyonu ile verilsin.  

𝑋(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝑇(𝑢, 𝑝), ‖𝑇(𝑢, 𝑝)‖ = 1, 𝑇ᇱ ≠ 0, det(𝑇, 𝑇ᇱ, 𝛼ᇱ) = 0 ve 𝑢,𝛼 nın yay 

uzunluğu olsun. 𝑋(𝑢, 𝑣, 𝑝) 'in 𝐼𝐼.temel formun katsayıları; 

ℎଵଵ = −𝑣𝜏𝜅 

ℎଵଶ = 0 

ℎଶଶ = 0 

dir. 

İspat: 

Yüzey evolüsyonunun 𝑢 ve 𝑣 ye göre ikinci dereceden kısmi türevleri modifiye ortogonal çatı göz 

önünde bulundurularak; 

𝑋௨௨ = 𝑁(𝑢, 𝑝) + 𝑣[𝐵(𝑢, 𝑝)𝜏 − 𝜅ଶ𝑇(𝑢, 𝑝) +
𝜅ᇱ

𝜅
𝑁(𝑢, 𝑝)] 

𝑋௩௩ = 0 

𝑋௨௩ = 𝑁(𝑢, 𝑝) 

ve normali; 

𝑈(𝑢, 𝑣, 𝑝) =
[𝑣𝑁(𝑢, 𝑝) + 𝑇(𝑢, 𝑝)] × 𝑇(𝑢, 𝑝)

‖[𝑣𝑁(𝑢, 𝑝) + 𝑇(𝑢, 𝑝)] × 𝑇(𝑢, 𝑝)‖
 

=
[𝑣𝑁(𝑢, 𝑝) × 𝑇(𝑢, 𝑝) + 𝑇(𝑢, 𝑝) × 𝑇(𝑢, 𝑝)]

‖[𝑣𝑁(𝑢, 𝑝) × 𝑇(𝑢, 𝑝) + 𝑇(𝑢, 𝑝) × 𝑇(𝑢, 𝑝)]‖
 

=
−𝑣𝐵(𝑢, 𝑝)

‖−𝑣𝐵(𝑢, 𝑝)‖
 

Modifiye ortogonal çatının özeliğinden; 

= −
1

𝜅
𝐵(𝑢, 𝑝) 

elde edilir. Buradan hareketle; 

ℎଵଵ = 〈𝑋௨௨, 𝑈(𝑢, 𝑣, 𝑝)〉 

= 〈𝑁(𝑢, 𝑝) + 𝑣[𝐵(𝑢, 𝑝)𝜏 − 𝜅ଶ𝑇(𝑢, 𝑝) +
𝜅ᇱ

𝜅
𝑁(𝑢, 𝑝)], −

1

𝜅
𝐵(𝑢, 𝑝)〉 
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= −𝑣𝜏𝜅 

elde edilir. Benzer şekilde; 

   ℎଵଶ = 〈𝑋௨௩, 𝑈(𝑢, 𝑣, 𝑝)〉 

 

= 〈𝑁(𝑢, 𝑝), −
1

𝜅
𝐵(𝑢, 𝑝)〉 

= 0 

ve 

ℎଶଶ = 〈𝑋௩௩ , 𝑈(𝑢, 𝑣, 𝑝)〉 

= 〈0, −
1

𝜅
𝐵(𝑢, 𝑝)〉 

= 0 

olarak bulunur. 

Sonuç 3.12. 𝑋(𝑢, 𝑣, 𝑝) yüzey ailesinin sırası ile ortalama eğriliği ve Gauss eğriliği  

Tanım 2.29’dan 

𝐻 =
1

2

ℎ₁₁𝐺 − 2ℎ₁₂𝐹 + ℎ₂₂𝐸

𝐸𝐺 − 𝐹²
 

𝐾 =
ℎ₁₁ℎ₂₂ − ℎ₁₂²

𝐸𝐺 − 𝐹²
 

olduğundan 

𝐻 = −
𝜏

2𝑣𝜅
 

ve 

𝐾 = 0 

elde edilir. 

Teorem 3.13. 𝑋(𝑢, 𝑣, 𝑡) yüzey ailesinin evolüsyonu 𝑝 parametrizasyonu ile verilsin.  

𝑋(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝑇(𝑢, 𝑝), ‖𝑇(𝑢, 𝑝)‖ = 1, 𝑇ᇱ ≠ 0, det(𝑇, 𝑇ᇱ, 𝛼ᇱ) = 0 ve 𝑢,𝛼 nın yay 

uzunluğu olsun. 𝑋(𝑢, 𝑣, 𝑝)'in paralelinin  𝑋෨(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝑇(𝑢, 𝑝) −
௥

఑
𝐵(𝑢, 𝑝)  𝐼.temel 

formun katsayıları; 

𝐸 = 1 + (𝑣𝜅 + 𝑟𝜏)ଶ 

𝐹 = 1 

𝐺 = 1 

dir. 

İspat: 

𝑋(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝑇(𝑢, 𝑝) 

Yüzey evolüsyonunun paraleli; 

𝑋෨(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝑇(𝑢, 𝑝) −
𝑟

𝜅
𝐵(𝑢, 𝑝) 
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Yüzey evolüsyonunun paralelinin  𝑢 ve 𝑣 değişkenlerine göre kısmi türevleri 

𝑋෨௨ = 𝑁(𝑢, 𝑝) ቀ𝑣 + 𝑟
𝜏

𝜅
ቁ + 𝑇(𝑢, 𝑝) 

𝑋෨௩ = 𝑇(𝑢, 𝑝) 

olur. Buradan hareketle; 

  𝐸 = 〈𝑋෨௨, 𝑋෨௨〉 = 〈𝑁(𝑢, 𝑝) ቀ𝑣 + 𝑟
𝜏

𝜅
ቁ + 𝑇(𝑢, 𝑝) , 𝑁(𝑢, 𝑝) ቀ𝑣 + 𝑟

𝜏

𝜅
ቁ + 𝑇(𝑢, 𝑝) 〉 

= 1 + (𝑣𝜅 + 𝑟𝜏)ଶ 

elde edilir. Benzer şekilde; 

𝐹 = 〈𝑋෨௨, 𝑋෨௩〉 = 〈𝑁(𝑢, 𝑝) ቀ𝑣 + 𝑟
𝜏

𝜅
ቁ + 𝑇(𝑢, 𝑝), 𝑇(𝑢, 𝑝) 〉 

= 1 

ve 

𝐺 = 〈𝑋෨௩ , 𝑋෨௩〉 = 〈𝑇(𝑢, 𝑝) , 𝑇(𝑢, 𝑝) 〉 

= 1 

olarak bulunur. 

Teorem 3.14.  𝑋(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝑇(𝑢, 𝑝) tanımlanan yüzey evolüsyonunun paraleli  

𝑋෨(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝑇(𝑢, 𝑝) −
௥

఑
𝐵(𝑢, 𝑝) için 𝑋෨(𝑢, 𝑣, 𝑝) elastik olmayan yüzey evolüsyonu 

olabilmesi, 

𝜅ᇱ

𝜏′
= −

𝑟

𝑣
 

olması ile mümkündür. 

İspat: 𝑋෨(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝑇(𝑢, 𝑝) −
௥

఑
𝐵(𝑢, 𝑝) yüzeyinin 𝐼.temel formun katsayıları; 

𝐸 = 1 + (𝑣𝜅 + 𝑟𝜏)ଶ 

𝐹 = 1 

𝐺 = 1 

   şeklinde bulunur. Tanım 2.41’dan 

𝐸௣ =
∂

∂p
(1 + (𝑣𝜅 + 𝑟𝜏)ଶ) = 0 

olmalıdır. Buradan hareketle;  

2(𝑣𝜅 + 𝑟𝜏)(𝑣𝜅′ + 𝑟𝜏′) = 0 

bulunur. 

(𝑣𝜅′ + 𝑟𝜏′) = 0 

ve 

𝜅ᇱ

𝜏′
= −

𝑟

𝑣
 

şeklinde olmalıdır. 
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 𝐹௣ = 0 

elde edilir. 

𝐺௣ = 0  

bulunur. Buradan hareketle 𝐸௣, 𝐹௣, 𝐺௣ eşitliklerinin; 

𝐸௣ = 𝐹௣ = 𝐺௣ = 0 

sağlandığı görülür ki ispat tamamlanmış olur. 

 

Teorem 3.15. 𝑋(𝑢, 𝑣, 𝑝) yüzey ailesinin evolüsyonu 𝑝 parametrizasyonu ile verilsin.  

𝑋(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝑇(𝑢, 𝑝), ‖𝑇(𝑢, 𝑝)‖ = 1, 𝑇ᇱ ≠ 0, det(𝑇, 𝑇ᇱ, 𝛼ᇱ) = 0 ve 𝑢,𝛼 nın yay 

uzunluğu olsun. 𝑋(𝑢, 𝑣, 𝑝)'nin paralelinin  𝑋෨(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝑇(𝑢, 𝑝) −
௥

఑
𝐵(𝑢, 𝑝)  𝐼𝐼.temel 

formun katsayıları; 

ℎଵଵ = −𝜏(𝑣𝜅 + 𝑟𝜏) 

ℎଵଶ = 0 

ℎଶଶ = 0 

dir 

İspat: 

𝑋(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝑇(𝑢, 𝑝) 

Yüzey ailesinin paraleli; 

𝑋෨(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝑇(𝑢, 𝑝) −
𝑟

𝜅
𝐵(𝑢, 𝑝) 

Yüzey ailesinin 𝑢 ve 𝑣 değişkenlerine göre ikinci dereceden kısmi türevleri 

𝑋෨௨௨ = 𝐵(𝑢, 𝑝) ቆ𝑣𝜏 + 𝑟
𝜏ଶ

𝜅
ቇ + (−𝑣𝜅ଶ − 𝑟𝜅𝜏)𝑇(𝑢, 𝑝) + 𝑁(𝑢, 𝑝)(1 + 𝑣

𝜅ᇱ

𝜅
+ 𝑟

𝜏ᇱ

𝜅
) 

𝑋෨௩௩ = 0 

𝑋෨௨௩ = 𝑁(𝑢, 𝑝) 

ve normali; 

𝑈෡(𝑢, 𝑣, 𝑝) =
𝑋෨௨ × 𝑋෨௩

ฮ𝑋෨௨ × 𝑋෨௩ฮ
= −

1

𝜅
𝐵(𝑢, 𝑝) 

olur. Buradan hareketle; 

ℎଵଵ = 〈𝑋෨௨௨, 𝑈෡(𝑢, 𝑣, 𝑝)〉 

= 〈𝐵(𝑢, 𝑝) ቆ𝑣𝜏 + 𝑟
𝜏ଶ

𝜅
ቇ + (−𝑣𝜅ଶ − 𝑟𝜅𝜏)𝑇(𝑢, 𝑝) + 𝑁(𝑢, 𝑝)(1 + 𝑣

𝜅ᇱ

𝜅
+ 𝑟

𝜏ᇱ

𝜅
), −

1

𝜅
𝐵(𝑢, 𝑝)〉 

= −𝜏(𝑣𝜅 + 𝑟𝜏) 

elde edilir. Benzer şekilde; 

    ℎଵଶ = 〈𝑋෨௨௩, 𝑈෡(𝑢, 𝑣, 𝑝)〉 
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= 〈𝑁(𝑢, 𝑝), −
1

𝜅
𝐵(𝑢, 𝑝)〉 

= 0 

ve 

ℎଶଶ = 〈𝑋෨௩௩, 𝑈෡(𝑢, 𝑣, 𝑝)〉 

= 〈0, −
1

𝜅
𝐵(𝑢, 𝑝)〉 

= 0 

olarak bulunur. 

 

Sonuç 3.16. 𝑋෨(𝑢, 𝑣, 𝑝) yüzey ailesinin sırası ile Ortalama eğriliği ve Gauss eğriliği  

Tanım 2.29’dan 

𝐻 =
1

2

ℎ₁₁𝐺 − 2ℎ₁₂𝐹 + ℎ₂₂𝐸

𝐸𝐺 − 𝐹²
 

𝐾 =
ℎ₁₁ℎ₂₂ − ℎ₁₂²

𝐸𝐺 − 𝐹²
 

olduğundan 

𝐻 = −
𝜏

2𝑣𝜅 + 2𝑟𝜏
 

ve 
𝐾 = 0 

elde edilir. 
 

Örnek 3.1. 

Bir 𝛼 eğrisi 

𝛼: [−2𝜋, 2𝜋] ⊂ 𝑅 → 𝑅ଷ 

𝑢 →  𝛼(𝑢) = (𝑐𝑜𝑠(𝑢) , 𝑠𝑖𝑛(𝑢) , 𝑢) 

ve bu eğrinin, 

𝛼: [−2𝜋, 2𝜋] × [0, 𝑤] → 𝑅ଷ 

𝑢 → 𝛼(𝑢, 𝑝) = ൬
3

5
𝑝𝑐𝑜𝑠(𝑢) ,

3

5
𝑝𝑠𝑖𝑛(𝑢) ,

4

5
𝑝𝑢൰  

biçiminde tanımlı 𝛼(𝑢, 𝑝) evolüsyonu için; 

𝛼′(𝑢, 𝑝) = ൬−
3

5
𝑝𝑠𝑖𝑛(𝑢) ,

3

5
𝑝𝑐𝑜𝑠(𝑢) ,

4

5
𝑝൰ 

dir. 

Tanım 2.42  kullanarak {𝑡, 𝑛, 𝑏} Serret-Frenet çatı ile {𝑇, 𝑁, 𝐵} eğrilik ile modifiye edilmiş 

ortogonal çatı elemanları aşağıdaki gibi elde edilir. 

{𝑡, 𝑛, 𝑏} Serret-Frenet çatı elemanları 

𝑡 = 𝛼ᇱ(𝑢) = ൬−
3

5
𝑝𝑠𝑖𝑛(𝑢) ,

3

5
𝑝𝑐𝑜𝑠(𝑢) ,

4

5
𝑝൰ 
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𝑛 =
𝑑𝑡

𝑑𝑢
= ൬−

3

5
𝑝𝑐𝑜𝑠(𝑢) , −

3

5
𝑝𝑠𝑖𝑛(𝑢) , 0൰ 

𝑏 = 𝑡 × 𝑛 =

⎣
⎢
⎢
⎢
⎡

𝑒ଵ 𝑒ଶ 𝑒ଷ

−
3

5
𝑝𝑠𝑖𝑛(𝑢)

3

5
𝑝𝑐𝑜𝑠(𝑢)

4

5
𝑝

−
3

5
𝑝𝑐𝑜𝑠(𝑢) −

3

5
𝑝𝑠𝑖𝑛(𝑢) 0 ⎦

⎥
⎥
⎥
⎤

 

= (
12

25
𝑝ଶ𝑠𝑖𝑛(𝑢), −

12

25
𝑝ଶ𝑐𝑜𝑠(𝑢),

9

25
𝑝ଶ) 

vektörleri elde edilir. 

𝛼(𝑢) eğrisinin eğriliği için; 

𝜅 = ‖𝑡′‖ = ඨ൬−
3

5
𝑝𝑐𝑜𝑠(𝑢) , −

3

5
𝑝𝑠𝑖𝑛(𝑢) , 0൰ =

3

5
𝑝 

bulunur. 

𝛼(𝑢, 𝑝) eğrisinin torsiyonu için; 

𝜏 = 𝜏(𝑠) =
det (𝛼ᇱ, 𝛼ᇱᇱ, 𝛼′′′)

𝜅ଶ
=

4

5
𝑝 

elde edilir. Buradan hareketle {𝑡, 𝑛, 𝑏} Serret-Frenet çatı ve {𝑇, 𝑁, 𝐵} eğrilik ile modifiye edilmiş 

ortogonal çatı arasındaki ilişki 

𝑇(𝑢, 𝑝) = 𝑡(𝑢, 𝑝) = 𝛼ᇱ(𝑢, 𝑝) = ൬−
3

5
𝑝𝑠𝑖𝑛(𝑢) ,

3

5
𝑝𝑐𝑜𝑠(𝑢) ,

4

5
𝑝൰ 

𝑁(𝑢, 𝑝) = 𝜅𝑛(𝑢, 𝑝) = ൬−
9

25
𝑝ଶ𝑐𝑜𝑠(𝑢) , −

9

25
𝑝ଶ𝑠𝑖𝑛(𝑢) , 0൰ 

𝐵(𝑢, 𝑝) = 𝜅𝑏(𝑢, 𝑝) = (
36

125
𝑝ଷ𝑠𝑖𝑛(𝑢), −

36

125
𝑝ଷ𝑐𝑜𝑠(𝑢),

27

125
𝑝ଷ) 

{𝑇, 𝑁, 𝐵} eğrilik ile modifiye edilmiş ortogonal çatı vektörleri bulunur. (Şekil 3.1). 

 

 

Şekil 3.1. 𝛼(𝑢, 𝑝) eğrisinin 𝑝 = 𝑖, 𝑖 = 1,2,3,4 değerleri için evolüsyonu 
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𝛼(𝑢, 𝑝) eğrisi ve binormali ile oluşturulan yüzey; 

𝑋(𝑢, 𝑣, 𝑝) =  𝛼(𝑢, 𝑝) + 𝑣𝑏(𝑢, 𝑝) 

olur. Böylece; 

𝑋(𝑢, 𝑣, 𝑝) = (
ଷ

ହ
𝑝𝑐𝑜𝑠(𝑢) +

ଵଶ

ଶହ
𝑝ଶ𝑣𝑠𝑖𝑛(𝑢), −

ଵଶ

ଶହ
𝑝ଶ𝑣𝑐𝑜𝑠(𝑢) +

ଷ

ହ
𝑝𝑠𝑖𝑛(𝑢),

ସ

ହ
𝑝𝑢 +

ଽ

ଶହ
𝑝ଶ𝑣)  

elde edilir. 

𝑋(𝑢, 𝑣, 𝑝) yüzeyinin 𝑢 ve 𝑣 değişkenlerine göre türevleri; 

𝑋௨ = (
12

25
𝑝ଶ𝑣𝑐𝑜𝑠(𝑢) −

3

5
𝑝𝑠𝑖𝑛(𝑢),

3

5
𝑝𝑐𝑜𝑠(𝑢) +

12

25
𝑝ଶ𝑣𝑠𝑖𝑛(𝑢),

4

5
𝑝) 

ve 

𝑋௩ = (
12

25
𝑝ଶsin(𝑢), −

12

25
𝑝ଶcos(𝑢),

9

25
𝑝ଶ) 

şeklinde bulunur. 

 Yüzeyin normali; 

𝑈(𝑢, 𝑣, 𝑝) =
𝑋௨ × 𝑋௩

‖𝑋௨ × 𝑋௩‖
 

olduğundan, 

𝑈(𝑢, 𝑣, 𝑝)

= ቆ
125𝑐𝑜𝑠(𝑢) + 36𝑝𝑣𝑠𝑖𝑛(𝑢)

ඥ15625 + 4896𝑝ଶ𝑣ଶ
,
−36𝑝𝑣𝑐𝑜𝑠(𝑢) + 125𝑠𝑖𝑛(𝑢)

ඥ15625 + 4896𝑝ଶ𝑣ଶ
, −

48𝑝𝑣

ඥ15625 + 4896𝑝ଶ𝑣ଶ
ቇ

=
1

ඥ15625 + 4896𝑝ଶ𝑣ଶ
(125𝑐𝑜𝑠(𝑢) + 36𝑝𝑣𝑠𝑖𝑛(𝑢), −36𝑝𝑣𝑐𝑜𝑠(𝑢) + 125𝑠𝑖𝑛(𝑢), −48𝑝𝑣) 

olarak bulunur. Yüzey 𝑋(𝑢, 𝑣, 𝑝) ailesinin paraleli; 

𝑋෨(𝑢, 𝑣, 𝑝) = 𝑋(𝑢, 𝑣, 𝑝) + 𝑟𝑈(𝑢, 𝑣, 𝑝) 

olduğundan; 

𝑋෨(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝑏(𝑢, 𝑝) + 𝑟𝑈(𝑢, 𝑣, 𝑝)

= (
3

5
𝑝𝑐𝑜𝑠(𝑢) +

12

25
𝑝ଶ𝑣𝑠𝑖𝑛(𝑢)

+
𝑟൫125𝑐𝑜𝑠(𝑢) + 36𝑝𝑣𝑠𝑖𝑛(𝑢)൯

ඥ15625 + 4896𝑝ଶ𝑣ଶ
, −

12

25
𝑝ଶ𝑣𝑐𝑜𝑠(𝑢) +

3

5
𝑝𝑠𝑖𝑛(𝑢)

+
𝑟൫−36𝑝𝑣𝑐𝑜𝑠(𝑢) + 125𝑠𝑖𝑛(𝑢)൯

ඥ15625 + 4896𝑝ଶ𝑣ଶ
,
4𝑝𝑢

5
+

9𝑝ଶ𝑣

25
−

48𝑝𝑟𝑣

ඥ15625 + 4896𝑝ଶ𝑣ଶ
) 

olarak bulunur. (Şekil 3.2). 
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Şekil 3.2. Frenet-Serret çatıya göre göre 𝛼(𝑢, 𝑝) eğrisi ve binormali (b) ile oluşturulan yüzey ailesinin 

paraleli 
 

 

𝑋෨(𝑢, 𝑣, 𝑝) yüzey ailesinin u ve v ye göre kısmi türevleri; 

𝑋෨௨ = (
12

25
𝑝ଶ𝑣𝑐𝑜𝑠(𝑢) +

𝑟൫36𝑝𝑣𝑐𝑜𝑠(𝑢) − 125𝑠𝑖𝑛(𝑢)൯

ඥ15625 + 4896𝑝ଶ𝑣ଶ
−

3

5
𝑝𝑠𝑖𝑛(𝑢),

3

5
𝑝𝑐𝑜𝑠(𝑢) +

12

25
𝑝ଶ𝑣𝑠𝑖𝑛(𝑢)

+
𝑟൫125𝑐𝑜𝑠(𝑢) + 36𝑝𝑣𝑠𝑖𝑛(𝑢)൯

ඥ15625 + 4896𝑝ଶ𝑣ଶ
,
4

5
𝑝) 

ve 

𝑋෨௩ = (
12

25
𝑝ଶ𝑆𝑖𝑛(𝑢) +

36𝑝𝑟𝑠𝑖𝑛(𝑢)

ඥ15625 + 4896𝑝ଶ𝑣ଶ

−
4896𝑝ଶ𝑟𝑣൫125𝑐𝑜𝑠(𝑢) + 36𝑝𝑣𝑠𝑖𝑛(𝑢)൯

(15625 + 4896𝑝ଶ𝑣ଶ)
య

మ

, −
12

25
𝑝ଶ𝐶𝑜𝑠[𝑢]

−
36𝑝𝑟𝑐𝑜𝑠(𝑢)

ඥ15625 + 4896𝑝ଶ𝑣ଶ
−

4896𝑝ଶ𝑟𝑣൫−36𝑝𝑣𝑐𝑜𝑠(𝑢) + 125𝑠𝑖𝑛(𝑢)൯

(15625 + 4896𝑝ଶ𝑣ଶ)
య

మ

,
9𝑝ଶ

25

+
235008𝑝ଷ𝑟𝑣ଶ

(15625 + 4896𝑝ଶ𝑣ଶ)
య

మ

−
48𝑝𝑟

ඥ15625 + 4896𝑝ଶ𝑣ଶ
) 

olarak bulunur. 

𝑋෨(𝑢, 𝑣, 𝑝) yüzey ailesinin 𝐼.temel formunun katsayıları; 

𝐸 = 〈𝑋෨௨, 𝑋෨௨〉 = 𝑝ଶ +
144𝑝ସ𝑣ଶ

625
+

𝑟ଶ(15625 + 1296𝑝ଶ𝑣ଶ)

15625 + 4896𝑝ଶ𝑣ଶ
+

6𝑝𝑟(625 + 144𝑝ଶ𝑣ଶ)

25ඥ15625 + 4896𝑝ଶ𝑣ଶ
 

ve 

𝐹 = 〈𝑋෨௨, 𝑋෨௩〉 = −
60𝑝𝑟(31250𝑝 + 9792𝑝ଷ𝑣ଶ + 75𝑟ඥ15625 + 4896𝑝ଶ𝑣ଶ)

(15625 + 4896𝑝ଶ𝑣ଶ)ଷ/ଶ
 

ve 
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𝐺 = 〈𝑋෨௩ , 𝑋෨௩〉 =
9

25
𝑝ଶ(𝑝ଶ +

6250000𝑟ଶ(390625 + 166464𝑝ଶ𝑣ଶ)

(15625 + 4896𝑝ଶ𝑣ଶ)ଷ
) 

olur. 

𝐸௣ =
∂

∂p
ቆ𝑝ଶ +

144𝑝ସ𝑣ଶ

625
+

𝑟ଶ(15625 + 1296𝑝ଶ𝑣ଶ)

15625 + 4896𝑝ଶ𝑣ଶ
+

6𝑝𝑟(625 + 144𝑝ଶ𝑣ଶ)

25ඥ15625 + 4896𝑝ଶ𝑣ଶ
ቇ = 0 

Tanım 2.41’dan dolayı olmalıdır. Buradan; 

𝐸௣ =
576𝑝ଷ𝑣ଶ

625
+

6𝑟(9765625 + 432𝑝ଶ𝑣ଶ(15625 + 3264𝑝ଶ𝑣ଶ))

25(15625 + 4896𝑝ଶ𝑣ଶ)ଷ/ଶ
+ 𝑝 ቆ2 −

112500000𝑟ଶ𝑣ଶ

(15625 + 4896𝑝ଶ𝑣ଶ)ଶ
ቇ 

olur. Benzer şekilde; 
 

𝐹௣ =
∂

∂p
൭−

60𝑝𝑟(31250𝑝 + 9792𝑝ଷ𝑣ଶ + 75𝑟ඥ15625 + 4896𝑝ଶ𝑣ଶ)

(15625 + 4896𝑝ଶ𝑣ଶ)ଷ/ଶ
൱ = 0 

 

𝐹௣ = −60𝑟(
1171875𝑟ඥ15625 + 4896𝑝ଶ𝑣ଶ

(15625 + 4896𝑝ଶ𝑣ଶ)
ఱ

మ

 

+
4𝑝(244140625 + 3672𝑝𝑣ଶ(31250𝑝 + 3264𝑝ଷ𝑣ଶ − 25𝑟ඥ15625 + 4896𝑝ଶ𝑣ଶ))

(15625 + 4896𝑝ଶ𝑣ଶ)
ఱ

మ

) 

ve 

𝐺௣ =
∂

∂p
ቆ

9

25
𝑝ଶ(𝑝ଶ +

6250000𝑟ଶ(390625 + 166464𝑝ଶ𝑣ଶ)

(15625 + 4896𝑝ଶ𝑣ଶ)ଷ
)ቇ = 0 

 
 

𝐺௣ =
36

25
𝑝(𝑝ଶ −

3125000𝑟ଶ(−6103515625 + 88128𝑝ଶ𝑣ଶ(−15625 + 9248𝑝ଶ𝑣ଶ))

(15625 + 4896𝑝ଶ𝑣ଶ)ସ
) 

 
olur. 

𝐸௣ = 𝐹௣ = 𝐺௣ = 0 
yüzey evülasyonu elastik olmayan olması için; 

𝑝 ≅ −1.08231, 𝑣 = 2, 𝑟 = 3 
olmasıdır. 

 

Aynı yüzeyi benzer şekilde Modifiye edilmiş ortogonal çatıya göre oluşturduğumuzda; 
𝑌(𝑢, 𝑣, 𝑝) =  𝛼(𝑢, 𝑝) + 𝑣𝐵(𝑢, 𝑝) 

yüzeyi oluşur. Böylece; 

𝑌(𝑢, 𝑣, 𝑝) = (
3

5
𝑝𝑐𝑜𝑠(𝑢) +

36

125
𝑝ଷ𝑣𝑠𝑖𝑛(𝑢), −

36

125
𝑝ଷ𝑣𝑐𝑜𝑠(𝑢) +

3

5
𝑝𝑠𝑖𝑛(𝑢),

4

5
𝑝𝑢 +

27

125
𝑝ଷ𝑣) 

𝑌(𝑢, 𝑣, 𝑝) yüzeyinin 𝑢 ve 𝑣 değişkenlerine göre türevleri; 

𝑌௨ = (
36

125
𝑝ଷ𝑣𝑐𝑜𝑠(𝑢) −

3

5
𝑝𝑠𝑖𝑛(𝑢),

3

5
𝑝𝑐𝑜𝑠(𝑢) +

36

125
𝑝ଷ𝑣𝑠𝑖𝑛(𝑢),

4

5
𝑝) 

ve 

𝑌௩ = (
36

125
𝑝ଷsin(𝑢), −

36

125
𝑝ଷcos(𝑢),

27

125
𝑝ଷ) 

olarak bulunur. Yüzeyin normali; 
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𝑈(𝑢, 𝑣, 𝑝) =
𝑌௨ × 𝑌௩

‖𝑌௨ × 𝑌௩‖
 

olduğundan; 

𝑈(𝑢, 𝑣, 𝑝)

= ቆ
625𝑐𝑜𝑠(𝑢) + 108𝑝ଶ𝑣𝑠𝑖𝑛(𝑢)

5ඥ15625 + 1296𝑝ସ𝑣ଶ
,
−108𝑝ଶ𝑣𝑐𝑜𝑠(𝑢) + 625𝑠𝑖𝑛(𝑢)

5ඥ15625 + 1296𝑝ସ𝑣ଶ
, −

144𝑝ଶ𝑣

5ඥ15625 + 1296𝑝ସ𝑣ଶ
ቇ

=
1

5ඥ15625 + 1296𝑝ସ𝑣ଶ
(625𝑐𝑜𝑠(𝑢) + 108𝑝ଶ𝑣𝑠𝑖𝑛(𝑢), −108𝑝ଶ𝑣𝑐𝑜𝑠(𝑢)

+ 625𝑠𝑖𝑛(𝑢), −144𝑝ଶ𝑣) 

olarak bulunur. 𝑌(𝑢, 𝑣, 𝑝) yüzey ailesinin paraleli; 

𝑌෨(𝑢, 𝑣, 𝑝) = 𝑌(𝑢, 𝑣, 𝑝) + 𝑟𝑈(𝑢, 𝑣, 𝑝) 

olur. 

𝑌෨(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝐵(𝑢, 𝑝) + 𝑟𝑈(𝑢, 𝑣, 𝑝)

= (
3

5
𝑝𝑐𝑜𝑠(𝑢) +

36

125
𝑝ଷ𝑣𝑠𝑖𝑛(𝑢)

+
𝑟൫625𝑐𝑜𝑠(𝑢) + 108𝑝ଶ𝑣𝑠𝑖𝑛(𝑢)൯

5ඥ15625 + 1296𝑝ସ𝑣ଶ
, −

36

125
𝑝ଷ𝑣𝑐𝑜𝑠(𝑢) +

3

5
𝑝𝑠𝑖𝑛(𝑢)

+
𝑟൫−108𝑝ଶ𝑣𝑐𝑜𝑠(𝑢) + 625𝑠𝑖𝑛(𝑢)൯

5ඥ15625 + 1296𝑝ସ𝑣ଶ
,
4𝑝𝑢

5
+

27𝑝ଷ𝑣

125
−

144𝑝ଶ𝑟𝑣

5ඥ15625 + 1296𝑝ସ𝑣ଶ
) 

olarak bulunur. (Şekil 3.3). 

 
Şekil 3.3. Modifiye ortogonal çatıya göre göre 𝛼(𝑢, 𝑝) eğrisi ve binormali (B) ile oluşturulan yüzey 

ailesinin paraleli 
 
𝛼(𝑢, 𝑝) eğrisi ve binormali ile oluşturulan yüzeye benzer olarak teğeti ve normali ile de 

oluşturulabilir. ((Şekil 3.4), (Şekil 3.5), (Şekil 3.6), (Şekil 3.7) ). 
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Şekil 3.4. Frenet-Serret çatıya göre göre 𝛼(𝑢, 𝑝) eğrisi ve teğeti (t) ile oluşturulan yüzey ailesinin paraleli 

      
Şekil 3.5. Modifiye ortogonal çatıya göre göre 𝛼(𝑢, 𝑝) eğrisi ve teğeti (T)  ile oluşturulan yüzey ailesinin 

paraleli 
 

 

 
Şekil 3.6. Frenet-Serret çatıya göre göre 𝛼(𝑢, 𝑝) eğrisi ve normali (n) ile oluşturulan yüzey ailesinin 

paraleli 
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Şekil 3.7. Modifiye ortogonal çatıya göre göre 𝛼(𝑢, 𝑝) eğrisi ve normali (N) ile oluşturulan yüzey ailesinin 

paraleli 
 

 

𝑌෨(𝑢, 𝑣, 𝑝) yüzey evolüsyonunun 𝑢 ve 𝑣 değişkenlerine göre kısmi türevleri; 

𝑌෨௨ = (
36

125
𝑝ଷ𝑣cos(𝑢) +

𝑟൫108𝑝ଶ𝑣cos(𝑢) − 625sin(𝑢)൯

5ඥ15625 + 1296𝑝ସ𝑣ଶ
−

3

5
𝑝sin(𝑢),

3

5
𝑝cos(𝑢)

+
36

125
𝑝ଷ𝑣sin(𝑢) +

𝑟൫625cos(𝑢) + 108𝑝ଶ𝑣sin(𝑢)൯

5ඥ15625 + 1296𝑝ସ𝑣ଶ
,
4

5
p) 

ve 

𝑌෨௩ = (
36

125
𝑝ଷ𝑠𝑖𝑛(𝑢) +

108𝑝ଶ𝑟𝑠𝑖𝑛(𝑢)

5ඥ15625 + 1296𝑝ସ𝑣ଶ

−
1296𝑝ସ𝑟𝑣(625𝑐𝑜𝑠(𝑢) + 108𝑝ଶ𝑣𝑠𝑖𝑛(𝑢))

5(15625 + 1296𝑝ସ𝑣ଶ)ଷ/ଶ
, −

36

125
𝑝ଷ𝑐𝑜𝑠(𝑢)

−
108𝑝ଶ𝑟𝑐𝑜𝑠(𝑢)

5ඥ15625 + 1296𝑝ସ𝑣ଶ
−

1296𝑝ସ𝑟𝑣(−108𝑝ଶ𝑣𝑐𝑜𝑠(𝑢) + 625𝑠𝑖𝑛(𝑢))

5(15625 + 1296𝑝ସ𝑣ଶ)ଷ/ଶ
,
27𝑝ଷ

125

+
186624𝑝଺𝑟𝑣ଶ

5(15625 + 1296𝑝ସ𝑣ଶ)ଷ/ଶ
−

144𝑝ଶ𝑟

5ඥ15625 + 1296𝑝ସ𝑣ଶ
) 

olarak bulunur. 

𝑌෨(𝑢, 𝑣, 𝑝) Yüzey ailesinin 𝐼.temel formun katsayıları; 

𝐸 = 〈𝑌෨௨, 𝑌෨௨〉 = 𝑝ଶ +
1296𝑝଺𝑣ଶ

15625
+

6

625
𝑝𝑟ඥ15625 + 1296𝑝ସ𝑣ଶ +

1

25
𝑟ଶ(9

+
250000

15625 + 1296𝑝ସ𝑣ଶ
) 

ve 

 

𝐹 = 〈𝑌෨௨, 𝑌෨௩〉 = 36𝑝ଶ𝑟(−
75𝑟

15625 + 1296𝑝ସ𝑣ଶ
−

2𝑝

ඥ15625 + 1296𝑝ସ𝑣ଶ
) 
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ve 

𝐺 = 〈𝑌෨௩ , 𝑌෨௩〉 =
81𝑝଺

625
+

20250000𝑝ସ𝑟ଶ

(15625 + 1296𝑝ସ𝑣ଶ)ଶ
 

olarak bulunur. 

𝐸௣ =
∂

∂p
ቆ𝑝ଶ +

1296𝑝଺𝑣ଶ

15625
+

6

625
𝑝𝑟ඥ15625 + 1296𝑝ସ𝑣ଶ +

1

25
𝑟ଶ(9

+
250000

15625 + 1296𝑝ସ𝑣ଶ
)ቇ = 0 

Tanım 2.41’dan dolayı olmalıdır. Buradan; 

𝐸௣ = 2𝑝 +
7776𝑝ହ𝑣ଶ

15625
−

51840000𝑝ଷ𝑟ଶ𝑣ଶ

(15625 + 1296𝑝ସ𝑣ଶ)ଶ
+

6𝑟(15625 + 3888𝑝ସ𝑣ଶ)

625ඥ15625 + 1296𝑝ସ𝑣ଶ
 

olur. Benzer şekilde; 

𝐹௣ =
∂

∂p
ቆ36𝑝ଶ𝑟(−

75𝑟

15625 + 1296𝑝ସ𝑣ଶ
−

2𝑝

ඥ15625 + 1296𝑝ସ𝑣ଶ
)ቇ = 0 

ve 

𝐹௣ = −
216𝑝𝑟

(15625 + 1296𝑝ସ𝑣ଶ)ହ/ଶ
ቆ390625𝑟ඥ15625 + 1296𝑝ସ𝑣ଶ

+ 𝑝 ൬244140625 + 432𝑝ଷ𝑣ଶ ቀ62500𝑝 + 1296𝑝ହ𝑣ଶ − 75𝑟ඥ15625 + 1296𝑝ସ𝑣ଶቁ൰ቇ 

 
 

olur. Benzer şekilde, 
 

𝐺௣ =
∂

∂p
ቆ

81𝑝଺

625
+

20250000𝑝ସ𝑟ଶ

(15625 + 1296𝑝ସ𝑣ଶ)ଶቇ = 0 

ve 
 

𝐺௣ =
486𝑝ହ

625
−

81000000𝑝ଷ𝑟ଶ(−15625 + 1296𝑝ସ𝑣ଶ)

(15625 + 1296𝑝ସ𝑣ଶ)ଷ
 

 
 

𝐸௣ = 𝐹௣ = 𝐺௣ = 0 
yüzey evülasyonunun elastik olmayan olması için; 

𝑝 ≅ −1.57743, 𝑣 = 2, 𝑟 = 3 
olması gerekir. 

 
 

𝑋෨(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝑏(𝑢, 𝑝) + 𝑟𝑈(𝑢, 𝑣, 𝑝) 

𝑌෨(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝐵(𝑢, 𝑝) + 𝑟𝑈(𝑢, 𝑣, 𝑝) 

 𝑋(𝑢, 𝑣, 𝑝) ve 𝑌(𝑢, 𝑣, 𝑝) yüzeylerinin paralelerinin yüzey evolüsyonlarının 𝑣 = 2, 𝑟 = 3 ve 
𝑢 = [−2𝜋, 2𝜋] değerleri arasında Frenet-Serret çatı ve modifiye ortogonal çatıya göre görüntüsü 
karşılaştırmalı olarak  𝑝 zamanına göre değişimleri sırasıyla Şekil 3.8. , Şekil 3.9. ve Şekil 3.10. 
da gösterilmiştir.  
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Şekil 3.8. Bu yüzey evolüsyonunun Frenet-Serret çatıya ve modifiye ortogonal çatıya ve  𝑝 = 1 zamanına 
göre görüntüsünün karşılaştırılması 

   

Şekil 3.9. Bu yüzey evolüsyonunun Frenet-Serret çatıya ve modifiye ortogonal çatıya ve  𝑝 = 2 zamanına 
göre görüntüsünün karşılaştırılması 

 

  

Şekil 3.10. Bu yüzey evolüsyonunun Frenet-Serret çatıya ve modifiye ortogonal çatıya ve  𝑝 = 3 zamanına 
göre görüntüsünün karşılaştırılma



 

4. SONUÇLAR 

 Sonuç olarak, bu tezde 

𝑋෨(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝑏(𝑢, 𝑝) + 𝑟𝑈(𝑢, 𝑣, 𝑝) 

𝑌෨(𝑢, 𝑣, 𝑝) = 𝛼(𝑢, 𝑝) + 𝑣𝐵(𝑢, 𝑝) + 𝑟𝑈(𝑢, 𝑣, 𝑝) 

yüzey ailelerinin bazı karakterizayonları elde edilerek, Wolfram Mathematica programı yardımıyla 

şekilleri elde edilmiştir.



 

ÖNERİLER 

 

Çalışmanın sonuçları, endüstriyel tasarım, matematiksel modelleme ve uygulamalı geometri 

gibi alanlarda kullanılabilir. Elde edilen bilgiler, mühendislik ve tasarım alanlarında çeşitli 

uygulamalara ilham verebilir, bu da toplumsal faydaya katkı sağlar. Bu çalışmanın sonuçları, ilgili 

endüstrilerdeki profesyoneller ve araştırmacılar için değerli olacaktır. 
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