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ABSTRACT

EXTENSIVE CRYPTANALYSIS OF AUTHENTICATED
ENCRYPTION WITH ASSOCIATED DATA ALGORITHM COLM

Sırrı Erdem ULUSOY

Doctor of Philosophy, Computer Engineering
Supervisor: Prof. Dr. Mehmet Önder EFE

2nd Supervisor: Assoc. Prof. Dr. Orhun KARA
July 2023, 146 pages

The main objective of an Authenticated Encryption with Associated Data (AEAD) algorithm

is to keep the encrypted plaintext secret until its tag is validated. There are two main methods

related to the cryptanalysis of AEAD algorithms that can render this objective invalid. These

methods are plaintext recovery attacks (simulating the decryption oracle) and tag guessing

attacks (producing the valid tag of a given ciphertext). There are also various kinds of forgery

attacks against AEAD algorithms in which the adversary tries to construct a valid ciphertext.

The resistance of COLM against these methods is studied in this thesis. COLM is one of

the AEAD algorithms that won the CAESAR Competition in the Defense in Depth use

case. The ciphers chosen in the Defense in Depth portfolio are supposed to contain multiple

security layers to provide robust security. The main motivation of this thesis is to examine

if COLM indeed satisfies defense-in-depth security. In this thesis, we show that COLM is

as secure as its secret whitening parameter L. We demonstrate that COLM cannot resist any

attacks mounted against AEAD algorithms once L is known. To the best of our knowledge,

we give the first example of querying an EME/EMD (Encrypt-linearMix-Encrypt/Decrypt)

AEAD scheme in its decryption direction for arbitrary ciphertext, namely, either a forgery
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or tag guessing attack. Moreover, we construct SEBC/SDBC (Simulation models of

Encryption/Decryption oracle of the underlying Block Cipher) of COLM. These models are

the first examples of an authenticated EME scheme simultaneously. The combination of

SEBC/SDBC is a powerful tool to mount a universal forgery attack, a tag guessing attack,

and a plaintext recovery attack. All of these attacks have O(N) time complexities once L

is recovered in the offline phase, indicating that the security of COLM against plaintext

recovery and tag guessing attacks is limited by the birthday bound. Besides exploiting

SEBC/SDBC, we mount a pair of plaintext recovery attacks and another universal forgery

attack by taking advantage of weaknesses in the structure of COLM. Finally, we suggest

some improvements to prevent our attacks and build stronger EME schemes.

Keywords: COLM, Cryptanalysis, Authenticated Encryption with Associated Data,

CAESAR Competition, Forgery, Tag Guessing, Plaintext Recovery, SEBC, SDBC
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ÖZET

İLGİLİ VERİ İÇEREN ASILLANMIŞ ŞİFRELEME ALGORİTMASI
COLM’un KAPSAMLI KRİPTANALİZİ

Sırrı Erdem ULUSOY

Doktora, Bilgisayar Mühendisliği
Danışman: Prof. Dr. Mehmet Önder EFE

Eş Danışman: Assoc. Prof. Dr. Orhun KARA
Haziran 2023, 146 sayfa

İlişkilendirilmiş veri içeren asıllamalı şifreleme algoritmalarının (AEAD) esas görevi,

bir şifreli bir mesajın etiketi doğrulanmadığı sürece mesajı gizli tutmaktır. AEAD

algoritmalarının kriptanalizinde bu görevi geçersiz kılma amacı olan iki temel atak

yöntemi mevcuttur. Bu ataklar açık metin ele geçirme atağı (şifre çözme kahininin

benzeştirilmesi) ve etiket tahmini atağı (verilen bir şifreli mesajın etiketini üretmek). Bu

atakların yanında AEAD algoritmalarına karşı çeşitli sahtecilik atakları da bulunmaktadır.

Sahtecilik saldırılarında, saldırgan etiketiyle beraber geçerli şifreli metin üretmeye çalışır.

Bu tez çalışmasında COLM algoritmasının bu üç atak türüne karşı direnci incelenmiştir.

COLM, CAESAR yarışmasında katmanlı güvenlik kullanım senaryosuna seçilen AEAD

algoritmalarından biridir. Katmanlı güvenlik kullanım senaryosu için seçilen şifreleme

algoritmalarının sağlam güvenlik sağlamaları için çoklu güvenlik tabakaları içermeleri

beklenir. Bu tezin temel motivasyonu, COLM’un gerçekten katmanlı güvenlik sağlayıp

sağlamadığının incelenmesidir. Bu tez çalışmasıyla, COLM’un güvenlik seviyesinin gizli

beyazlatma parametresi L’nin güvenlik seviyesinde olduğunu gösterdik. L bilindiğinde

COLM’un AEAD algoritmalarına karşı yapılan hiçbir atağa karşı güvenli olmadığını
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sunduk. Bildiğimiz kadarıyla, EME/EMD (Şifrele-Doğrusal Karıştır-Şifrele/Şifre Çöz)

yapıdaki bir AEAD inşasını rasgele şifreli mesajlar için şifre çözme yönünde sorgulayan

atakların (sahtecilik ve etiket tahmini ataklarının) ilk örneklerini sunuyoruz. Bunun yanında,

COLM’un SEBC/SDBC’ni (yapıtaşı blok şifreleme algoritmasının şifreleme/şifre çözme

kahinlerinin benzetim modelleri) inşa ettik. Bu modeller asıllamaları bir EME yapısı için

eş zamanlı olarak geliştirilen ilk modellerdir. SEBC/SDBC modellerinin birleşmesi evrensel

sahtecilik, anahtar tahmini atağı ve açık metin ele geçirme atakları tertip etmek için güçlü

bir araç olmaktadır. L çevrimdışı aşamada hesaplandıktan sonra bu atakların tamamının

güvenlik seviyesi O(n) zaman karmaşıklığına düşmektedir. Açık metin ele geçirme ve

etiket tahmini ataklarına karşı COLM’un güvenlik seviyesinin doğum günü atağıyla sınırlı

olduğu anlaşılmaktadır. SEBC/SDBC’den faydalanmanın yanı sıra, COLM’un yapısındaki

zayıflıkları kullanarak bir çift açık metin ele geçirme atağı ve evrensel sahtekarlık atağı tertip

ettik. Son olarak, ataklarımızın önlenerek daha güçlü EME yapılarının inşa edilebilmesi için

bazı önlemler öneriyoruz.

Anahtar Kelimeler: COLM, Kriptanaliz, İlgili Veri içeren Asıllanmış Şifreleme, CAESAR

Yarışması, Sahtecilik, Etiket Tahmini, Açık Metin Tahmini, SEBC, SDBC
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Tolga GİRİCİ, Assoc. Prof. Dr. Murat AYDOS and Assoc. Prof. Dr. Adem TEKEREK for

their valuable time to review my work and for giving brilliant feedback and suggestions.

I would also like to thank to my parents, Rafet ULUSOY and Hatice ULUSOY, for giving

me a back whenever I need their support.

I would also like to thank to my wife, Handan ULUSOY for her patience while I work on my

Ph.D. for long hours. I would also like to thank my children, Nazlı Gülümser ULUSOY and
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1. INTRODUCTION

Cryptology is an exciting scientific discipline that underlies both cryptography, the practice

of secure communication and data storage in the presence of adversaries, and cryptanalysis,

the practice of exploring vulnerabilities in cryptographic structures. Cryptography serves as

the common tool to ensure data confidentiality, integrity, authenticity, and non-repudiation

in many settings, including e-commerce, online banking, and military communications.

Cryptology has a rich and diverse history dating back to ancient times when people used

various techniques to keep their messages safe from adversaries. For example, hieroglyphs

and other symbols were used to encode messages on papyrus scrolls in ancient Egypt.

Cryptography and cryptanalysis have continuously evolved and improved over time. Many

noteworthy advances including the famous Caesar cipher, used by Julius Caesar himself, the

Enigma machine, a remarkable invention of the Germans for use in World War II, and the

AES, which is the main tool for secure communication in the contemporary world. In the

present day, cryptography forms the backbone of modern communication and information

security.

Cryptology is the discipline that studies the construction and assessment of codes, ciphers,

and relevant algorithms used to secure information against unauthorized access. Its objective

is not only to create practical tools for secure communication channels and data storage, but

also to break or bypass existing security measures. Cryptology is an interdisciplinary field

that involves various interconnected areas, such as steganography, which involves hiding

information within other data to prevent detection. Since its inception, cryptology has

developed and refined numerous methods and techniques to protect sensitive data, including

both classical and modern cryptographic approaches. As technology continues to advance

and becoming more sophisticated, the importance and significance of cryptology are deeply

felt by modern society, making it an indispensable area of study for information security and

privacy.

Cryptography is the field concerned with the secure transmission and storage of information
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against malicious parties. The techniques employed by cryptography ensure the

confidentiality, integrity, authenticity, and non-repudiation of data. Cryptography is utilized

in numerous areas, including e-commerce, online banking, and military communications.

As the field has evolved over time, modern cryptography heavily relies on mathematical

foundations and the utilization of advanced algorithms to encrypt and decrypt data.

Cryptography is an ever-evolving field that continually adapts to new security requirements

and counter emerging attacks.

Cryptanalysis, on the other hand, aims to find and exploit vulnerabilities in codes and ciphers

to gain unauthorized access to information. Cryptanalysis is the core scientific discipline

that helps researchers and practitioners evaluate the security of cryptographic systems and

develop more reliable protection techniques. This thesis focuses on the cryptanalysis of

AEAD schemes, which are commonly used in modern cryptography to safeguard both

transmitted and stored data. The ability to exploit vulnerabilities in AEAD schemes is crucial

for understanding their security and developing advanced, unbreakable authentication, and

encryption methods.

Information security is built upon the concepts of cryptology, cryptography, and

cryptanalysis. These concepts protect the confidentiality, integrity, authenticity, and

availability of data, collectively known as the CIA triad of information security. The

principles of the CIA triad are also adopted in cryptology. The main objective of

cryptography is to ensure confidentiality, which involves protecting data from unauthorized

reading and modification. Cryptography ensures that only authorized parties can read the

information by encryption, and through authentication or signature schemes, only authorized

parties can create or modify data. Cryptanalysis, on the other hand, tests the soundness of

cryptographic systems and attempts to identify weaknesses in advance. Cryptanalysis is

crucial for ensuring both the confidentiality and integrity of data. Cryptology, combination

of cryptography and cryptanalysis, not only aims to protect the secrecy and authenticity of

data but also provides non-repudiation by verifying the identities of communicating parties.

These principles form the fundamentals of the CIA triad and emphasize the significance of

cryptology in the extensive discipline of information security.
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Cryptographic primitives are the foundational structures of cryptography. Cryptography

utilizes these primitives to provide services for the CIA triad by appropriately applying

mathematical algorithms and protocols. Transmitted and stored data are protected using

these structures. Cryptographic primitives can be classified into symmetric and asymmetric

cryptography.

In symmetric cryptography, which is the older form of cryptographic primitives, a single

shared key is used for both encryption and decryption. The primary aim of symmetric

cryptography is to ensure the confidentiality of sensitive information by encrypting it and

preventing unauthorized access. The shared key in symmetric cryptography must be kept

secret to prevent adversaries possess the key and imporsante the key holder and gaining

the ability to decrypt or modify the information at will. In the contemporary world,

the most common symmetric-key cryptographic primitives are TDEA [2] and AES [3].

These algorithms are designed to provide high levels of security while also considering

computational efficiency. With these combined properties, these algorithms are suitable for

a wide range of applications.

Asymmetric cryptography, in contrast to symmetric cryptography, uses a pair of keys: a

public key for encryption and signature verification, and a private key for decryption and

signing. Asymmetric cryptography enables confidentiality, authenticity, and integrity. By

verifying the identities of the communicating parties, asymmetric cryptography ensures that

the data remains intact and authentic. Parties can rely on the data and be certain that

it has not been modified in any way. The hallmark of asymmetric cryptography arises

in the context of non-repudiation. In symmetric cryptography, where at least two parties

possess the same key; therefore, non-repudiation cannot be provided as a service. The most

widely used asymmetric cryptographic primitives include the RSA algorithm, used for secure

communication and digital signatures, DHKE, a popular key exchange algorithm, and ECC,

an algorithm commonly used for key exchange and digital signatures.

Cryptographic hash functions are another significant cryptographic primitive that serves

to ensure data integrity. Hash functions generate a fixed-length hash value or message
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digest from variable-length input data. Cryptographic hash functions are designed to be

collision-resistant and one-way, meaning it should be difficult to generate the original

message from the hash value or a second message from a given value. Acting as a one-way

function, cryptographic hash functions are considered to produce a digital fingerprint of the

input. By comparing the hash value of the original data with the received data, the integrity

of the data can be easily verified. It should be noted that hash functions do not utilize a

key, so any adversary can alter the original data and compute the hash of the altered data to

deceive the receiving party.

Symmetric and asymmetric cryptographic primitives, as well as hash functions, are at the

core of securing modern communication and data storage systems by serving as fundamental

tools for confidentiality, integrity, and authenticity. The usage area of these cryptographic

primitives also varies according to their security level and application performance. MACs

are used to provide both authenticity and integrity of a message, bridging the gap in

providing integrity with high performance. MACs generate fixed-size values similar to

hash functions; however, MACs use a secret key to generate the fixed-size value. In this

way, only parties holding the secret key are able to generate and verify this value. With

their performance and security properties, MACs are also an important structure in many

cryptographic applications, including secure communication and electronic transactions.

Overall, cryptographic primitives, including symmetric and asymmetric cryptography, hash

functions, and MACs, form a powerful toolkit and work in harmony according to their service

and performance capabilities against a wide range of threats and attacks, ultimately achieving

the goals of the CIA triad. In this way, modern communication and data storage systems

remain secure.

In the digitally connected contemporary world, considering a single security issue in the CIA

triad does not provide the required protection. When multiple cryptographic building blocks

are used together, the system becomes overwhelmed due to high complexity and inefficiency.

To reduce complexity in communication and storage systems, AEAD schemes have been

developed. In an AEAD scheme, both confidentiality and integrity tasks are handled

together. AEAD schemes take on the duties of both symmetric encryption and message
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authentication codes, which take care of confidentiality and integrity, respectively. Phillip

Rogaway introduced AEAD to the literature with his paper ”Authenticated-Encryption with

Associated-Data” [4] in 2002. Rogaway provided a new framework for building AEAD

schemes. With this framework, it became possible to perform encryption and authentication

functions with a single key in a single structure. The structure introduced by Rogaway

supports not only the data to be kept confidential but also the data that requires only

authentication, such as headers and metadata. In this way, a wide range of applications can

be protected in a more secure and efficient manner. The benefits of AEAD are not limited to

simplicity and security. AEAD algorithms eliminate certain types of attacks, such as chosen

ciphertext attack and chosen plaintext attacks (in some cases), as a natural consequence of

their definition. As AEAD provides protection for additional data besides the confidential

data, application designs become more flexible. Rogaway’s paper on AEAD has become a

guiding light in the development of new schemes that provide both improved security and

efficiency. As the importance of secure communication and data storage continues to grow,

the cruciality of AEAD becomes crystal clear for modern cryptography. Today, even in the

announcement of the competition of lightweight ciphers [5], NIST requires the candidates to

provide AEAD.

Cryptographic primitives and structures have been developed over the years, and evaluating

their security level has been an open problem. Researchers from all over the world have

analyzed and improved cryptographic algorithm design and evaluation techniques. As part

of the standardization processes, cryptographic competitions are adopted as a good use

case to draw the attention of researchers and cryptographers from all over the world to the

competing candidates. A cryptographic competition is a contest challenging cryptographers

and researchers to design and evaluate new cryptographic algorithms and protocols. Various

entities, including academic institutions, private companies, and government agencies

organize these competitions, which can last several years. The aim of these competitions is to

identify the best algorithm or protocol for a specific security application, such as encryption,

digital signatures, or authentication. The widely used encryption standard AES [3], hash

function SHA3 [6] are the most well-known examples of standards developed through
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competitions. These competitions are beneficial not only in the standardization process,

but they also contribute to understanding and improving cryptographic and cryptanalysis

methods. To take advantage of the competitive approach, CAESAR competition [7] was

held to select a final portfolio of AEADs.

CAESAR competition was announced in January 2013, and 57 competitors participated in

the competition. The submitted candidates competed in three specified use cases: lightweight

use case, high-performance use case, and defense in depth use case. The terms of the

lightweight use case were set with the aim of resource-constrained devices, the terms of

the high-performance use case were set with the aim of high-bandwidth applications, and the

terms of the defense in depth use case were set with the aim of systems where the highest

level of security is a subject of concern.

The evaluation of the candidates was based on their security, performance, and other relevant

factors. The importance of the evaluation metric differs from use case to use case. The

decision committee announced that only public evaluations in the literature would be taken

into account in the decision process to rely on the collective evaluation of experts. The

selection of the final portfolio of the AEADs took four rounds of evaluation, with two choices

for each of the three defined use cases included in the final portfolio. Our research focuses

on the extensive cryptanalysis of COLM algorithm [8] which was selected for the defense

in depth use case portfolio. Defense in Depth is a multilayered security approach in the

formal definition. A cryptographic scheme designed with the Defense in Depth principle

should possess a set of desirable properties to maintain its security and reliability in various

scenarios. In CAESAR competition, the desired properties mainly include authenticity

despite nonce misuse, limited privacy damage from nonce misuse, authenticity despite

the release of unverified plaintexts, limited privacy damage from the release of unverified

plaintexts, and robustness in scenarios where large amounts of data (PT − CT pairs) exist.

COLM cipher is an AEAD scheme designed while CAESAR competition was ongoing.

Most of the AEAD schemes participating in the competition were designed before the

competition began, but COLM was not originally entered into the competition by its
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designers. Initially, two distinct research groups independently submitted two different

AEAD algorithms, ELmD [9] and COPA [10]. ELmD and COPA algorithms share common

underlying structures. After the second round of the competition, the designers of the

two algorithms decided to merge their algorithms into a single one, COLM. Although

the new cipher preserves many of the design properties of the preceding algorithms, it

also has some modifications to improve performance without sacrificing security. For

example, COLM adopted COPA’s encrypt-linearmix-encrypt style instead of ELmD’s

encrypt-linearmix-decrypt style, and COPA’s simpler linear mix layer is adopted to process

the AD, while ELmD’s more complex linear mix layer is adopted to process the PT in

COLM. While designing the new cipher by combining the properties of the predecessors,

the designers kept in mind the goal to increase and/or maintain the high performance of the

AEAD schemes while maintaining the desired level of security in the resulting cipher.

In this thesis, our aim was to conduct an extensive analysis of COLM and discover any

possible vulnerabilities in it. At the outset of AEAD algorithms, the oracle is expected to

return ⊥ for illegitimate queries. We achieved our goal by identifying weaknesses in AEAD

COLM, notably by demonstrating that it can be queried in the decryption direction, thus

breaking the initial rule of AEAD structures. In another part of our study, we built SEBC and

SDBC models for COLM. Consequently, we were able to mount universal forgery, plaintext

recovery, and tag guessing attacks against COLM. Furthermore, exploiting the weaknesses

in the structure of COLM, we mounted various universal forgery, existential forgery, and

plaintext recovery attacks in different scenarios. Lastly, we introduced how the COLM oracle

can be exploited to gather data for mounting key recovery attacks against the underlying

block cipher of COLM. We explained how this data can be utilized to mount key recovery

attacks against round-reduced AES, considering that AES is the chosen underlying cipher

for COLM.

Throughout our research, we have demonstrated the security vulnerabilities of the COLM

cipher and highlighted the importance of continuous analysis and evaluation of cryptographic

algorithms. By doing so, our objective was to expose potential weaknesses that adversaries

may exploit and emphasize new criteria that should be considered in the design and
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implementation of secure AEAD schemes. The generalization of attacks presented in this

thesis to generalized ELmD/ELmE structures remains a topic for future research topic.

1.1. Scope Of The Thesis

The main focus of this study is the security level of the AEAD scheme COLM, which has

been selected for the Defense in Depth portfolio of the CAESAR competition. As a member

of the Defense in Depth portfolio in a cryptographic competition, COLM is expected to

demonstrate exceptional resistance against major attacks developed against AEADs. The

primary objective of an AEAD scheme is to prevent unauthorized decryption queries to

the oracle. In this thesis, we not only successfully query a Defense in Depth AEAD

structure, but also build simulation models of the underlying block cipher in both encryption

and decryption directions. By simulating the underlying block cipher in both directions,

we deepen our understanding of the cryptographic properties of COLM. Additionally, we

introduce a range of attacks against COLM, with a particular focus on attacks specifically

designed for AEADs, such as universal forgery, existential forgery, plaintext recovery, and

tag guessing attacks.

Both the structure and the underlying block cipher of an AEAD scheme are crucially

important for ensuring its security. Attackers may target either the structure or the underlying

block cipher. One way to attack an AEAD scheme is to exploit the structure to build

simulation models of the underlying block cipher. Once an attacker successfully builds

a simulation of the underlying block cipher, she can mount various types of attacks. As

part of our analysis, we demonstrate how the COLM oracle can be queried to simulate the

underlying block cipher in both encryption and decryption directions. We take advantage

of the flaws in the structure of COLM to build these models. The presence of these flaws

indicates that COLM is not capable of providing the expected level of security as previously

believed.

In the literature, there are specific attacks, such as forgery attacks, plaintext recovery attacks,

and tag guessing attacks, that primarily target AEAD structures. AEAD algorithms should be
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designed to withstand these attacks. In the scope of our study, we successfully mounted these

attacks against COLM using various methods. Specifically, we introduced forgery attacks, as

well as plaintext recovery and tag guessing attacks, both by utilizing our simulation models

and by exploiting flaws in the design of COLM.

In summary, we present a comprehensive analysis of the AEAD scheme COLM. Our study

reveals that COLM is vulnerable to a range of attacks, including universal and existential

forgeries, plaintext recovery, and tag guessing attacks. These attacks against COLM can be

mounted in various methods, namely by building simulation models of the underlying block

cipher and exploiting design flaws in COLM. This thesis demonstrates that COLM is not as

strong as previously believed and does not meet the desired and required 128-bit security

level against attacks like plaintext recovery and tag guessing. It is necessary to redesign the

COLM scheme with further improvements to enhance its security and ensure that it provides

the desired level of protection.

1.2. Contributions

Our study makes several contributions to the field of AEAD scheme security analysis, which

serve as guiding principles in the design of future AEAD algorithms. One of our key

contributions is the introduction of an illegitimate decryption query in the COLM AEAD

scheme, which reveals the parameter S = DK(0). Additionally, we built SEBC and SDBC

models of COLM. An SDBC model of ELmD and an SEBC model of COLM were built

in [11] and [12], respectively. Notably, our SDBC model allows for querying an AEAD

structure in the decryption direction. This is significant because an AEAD scheme should

resist decryption direction queries by requiring tag validation. By querying the underlying

block cipher in both encryption and decryption directions, an adversary gains significant

capabilities against the AEAD scheme and can mount various important attacks. Through

the simulation of the underlying cipher using decryption direction queries, we have made

important contributions to the analysis of AEAD cipher security.
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Building SEBC and SDBC models of COLM is not the sole focus of our study. In another

part of our study, we exploit the structure of COLM and introduce plaintext recovery and

tag guessing attacks against COLM. These attacks are the first of their kind in the literature,

targeting a CAESAR competition winner. The significance of our attacks is heightened by

being the first to explore such vulnerabilities in a competition winner. Our results highlight

the current weaknesses and emphasize the need for further improvements to be considered

in future designs, ensuring that they provide the desired level of protection.

Finally, we evaluated the effects of our results on the complexity of mounting key recovery

attacks against the underlying block cipher of COLM. In this scope, we examined how MitM,

impossible differential, and biclique attacks can be mounted against round-reduced AES, the

underlying block cipher of COLM. As part of the complexity analysis, we also calculated

the required number of COLM queries to mount these attacks.

To sum up, our contributions involve attacks against the CAESAR winner COLM and its

underlying block cipher. They can be summarized as follows:

• The first illegitimate decryption query of a CAESAR winner, namely COLM.

• The first simulation models of the underlying block cipher in both encryption and

decryption directions of COLM.

• Building a simulation model of the underlying block cipher by querying an AEAD

scheme in the decryption direction.

• Various AEAD attacks against a CAESAR winner, including:

– Forgery attacks.

– Tag guessing attack (the first one against a CAESAR winner).

– Plaintext recovery attacks (the first one against a CAESAR winner).

• Complexity analysis of key recovery attacks, namely the MitM attack, impossible

differential attack, and biclique attack, against round-reduced AES, the underlying

block cipher of COLM.
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• Discussion of the required number of AEAD queries for these attacks.

Overall, our findings will contribute to the development of new design principles for future

AEAD schemes and advance the design and security analysis of AEAD ciphers.

1.3. Organization

The organization of the thesis is as follows:

• Chapter 1 presents our motivation, contributions, and the scope of the thesis.

• Chapter 2 provides background information on cryptography and AEAD schemes.

• Chapter 3 summarizes the existing literature by reviewing works on AEAD schemes

and COLM.

• Chapter 4 introduces how the parameter S = DK(0) can be recovered as a tag guessing

and plaintext recovery attack against COLM.

• Chapter 5 explains the construction of the SEBC and SDBC models of COLM.

• Chapter 6 demonstrates the utilization of the models introduced in Chapter 5 to mount

universal forgery, tag guessing, and plaintext recovery attacks against COLM.

• Chapter 7 introduces how the structure of COLM can be exploited to mount plaintext

recovery with missing tag.

• Chapter 8 demonstrates how CT -blocks can be permuted to mount various universal

forgery and plaintext recovery attacks against COLM.

• Chapter 9 gives a complexity analysis of using the COLM AEAD scheme to mount

MitM, impossible differential, and biclique key recovery attacks against round-reduced

AES, the underlying block cipher of COLM.

• Chapter 10 summarizes the thesis and discusses possible future directions.
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2. BACKGROUND OVERVIEW

2.1. Milestones of Cryptography

Humanity’s need for secure communication dates back to ancient times. The first known

cryptographic method is the Caesar Cipher, named after Julius Caesar, the Roman general

and statesman. The Caesar Cipher is the oldest cryptographic method and represents the

first instance of symmetric encryption, a simple substitution cipher. The understanding of

secure communication and the structure of symmetric encryption have undergone significant

changes since the time of the Caesar Cipher. As time has passed, advancements in practicality

have influenced the implementations. In [13], Kerckhoffs published six principles for

a secure and practical communication system, which have been widely adopted. These

principles for secure communication are as follows:

1. The system should be mathematically undecipherable, and if that is not possible, it

should still be significantly difficult to decipher;

2. The security of the system should not be compromised by its publicity or capture by

the enemy;

3. The key must be communicated and recalled without the need for written notes, and it

must also be easy for correspondents to change the key at will;

4. The system must have been adapted for telegraph communication

5. The system must be portable enough to be transported or operated by a single person;

6. Ultimately, the system must be user-friendly and not require detailed guidelines.

In the modern approach, there have been changes in the interpretation of these principles.

The Principle 1 has been widely adopted, and the mathematical computation requirements

to decipher a system are well-defined for various systems. With the advancements
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in technology, it has become impossible to design a secure system that can fulfill the

requirements stated in Principle 3, Principle 5, and Principle 6 using only human capabilities.

However, the responsibilities outlined in these principles have been transferred to devices,

and the design of these devices adheres to the principles. Present-day communication

systems still employ the same signaling approach as telegraph systems, thus following

Principle 4 as is. Finally, Principle 2 remains at the core of cryptographic system design

in the contemporary world.

In [14], Claude Shannon published his works on cryptography, focusing on the concept

of secrecy in general. He proved that ultimate confidentiality is only achievable when the

one-time pad is utilized. In other words, perfect secrecy is possible only when the length of

the key is at least as long as the message. In his work, he also remodeled Kerckhoff’s 2nd

Principle as ”the enemy knows the system.”

In the following years, questions regarding the integrity and authenticity of messages arose,

leading to various studies [15–18] that discussed and suggested solutions to preserve the

authentication and integrity of messages.

Another significant milestone in the history of cryptography is the development of public-key

cryptography. With the invention of public-key cryptography, digital signatures and key

agreement methods became available. Signatures provide an alternative for authentication,

with their own benefits and drawbacks. The most common public-key methods used today

are Diffie-Hellman [19] and RSA [20].

Cryptographic structures aim not only to protect parties from third parties but also from each

other. These structures include cryptographic protocols such as:

1. Zero-knowledge proofs: cryptographic primitives that allow a party to prove a

statement without revealing anything beyond the truth of the statement [21].

2. Secure multiparty computation: cryptographic protocols through which distributed

parties can perform computations while keeping their information secret [22].
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3. Homomorphic encryption: cryptographic primitives that enable algebraic

computations to be performed over encrypted data [22].

2.2. Details of AEAD Schemes

AEAD schemes are built to replace both symmetric encryption and MACs. In symmetric

encryption, secrecy is provided by a pre-shared key between parties, and third parties not

owning the key are unable to access the hidden message. Symmetric encryption schemes

may use an IV . The notation for symmetric encryption is:

CT = EK(PT ) or CT = EK(IV, PT )

PT = DK(CT ) or PT = DK(IV, CT )

Unlike symmetric encryption, the message (PT ) is public in MAC structures. The primary

aim of MAC structures is to prove that the message is generated by a party having the secret

key. MAC schemes may also utilize an IV . The notation for MAC is:

tag = MACK(PT ) or tag = MACK(IV, PT )

valid×⊥ = V erifyK(PT, tag) or valid×⊥ = V erifyK(IV, PT, tag)

Authenticated encryption with associated data (AEAD) is a cryptographic primitive that

provides both confidentiality and integrity of the data simultaneously in a single structure.

AEAD schemes consider data to consist of two parts: associated data (e.g., headers or

metadata), where only integrity is important, and the message, where both integrity and

confidentiality are important. Before the term AEAD was introduced in the literature,

confidentiality and integrity were provided by different cryptographic primitives: encryption

and message authentication codes (MACs), respectively. AEAD schemes enable the

achievement of joint confidentiality and integrity aims in a single structure with a single

key setting. Due to lower processing complexity and simpler usage, AEAD rapidly replaces
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its conventional alternatives, encryption and MACs, and is particularly preferred in secure

communication channels. In today’s interconnected world, AEAD schemes are increasingly

accepted as a means of secure data transmission. AEAD schemes are widely adopted in

communication protocols, including SSL/TLS [23], SSH [24], and IPSec [25], amplifying

the importance of AEAD schemes.

AEAD schemes generally utilize a randomly generated nonce to strengthen the security

against chosen plaintext attacks. Since the authenticity of the message is also protected with

a tag, messages are not released unless the tag is verified. This control mechanism prevents

the query of chosen ciphertext. With the additional terms of nonce, tag, and not releasing

unverified plaintext, AEAD schemes have their own notations as follows:

(CT, tag) = EK(N,A,M)

for encryption and

M ×⊥ = DK(N,A,C, T )

for decryption. During encryption, AEAD schemes take a nonce and optional additional data,

in addition to the message, and produce a ciphertext and tag to protect the confidentiality and

authenticity of the ciphertext. In symmetric encryption, the message is always released when

the decryption oracle is queried. In contrast, an AEAD scheme releases the symbol⊥ instead

of the message when the tag cannot be verified.

In the standard procedure, AEAD implementations generate the nonce as part of the data

processing. In other words, a user cannot determine and provide the nonce externally.

However, designers may choose to give attackers the option to determine the nonce in order

to claim a higher security level. This concept is referred to as nonce-misuse in the literature.

Another security level that designers may aim for is to protect against the release of unverified

plaintext. Although, in a flawless operation, an AEAD scheme does not release unverified

plaintext, such releases may occur due to implementation errors or side-channel attacks. To

mitigate these flaws and achieve a stronger security level, designers may aim for a scenario
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where the partial release of unverified plaintext does not compromise the confidentiality or

integrity of the unreleased part.

2.3. AEAD Built Methods

There are various alternative methods for building AEAD schemes. The most fundamental

of these methods are:

• Encrypt-then-MAC (EtM)

• Encrypt-and-MAC (E&M)

• MAC-then-Encrypt (MtE).

Encrypt-then-MAC is the only method proven to be strongly unforgeable. The most

common AEAD scheme, AES-GCM, is built using this method. In this method, a subkey

is derived from the main key, and authentication is provided with the subkey. Unlike the

other methods, the ciphertext is not decrypted in this method unless it is verified. During

encryption, encryption is performed first, and then the tag is generated. During decryption,

decryption and verification can be performed in parallel. However, to avoid the risk of

leaking unverified plaintext, the tag is verified first, and the plaintext is decrypted only if

the tag is valid.

Encrypt-and-MAC is the method in which the ciphertext and the tag are produced in

parallel. Before verifying the tag, the ciphertext has to be decrypted, which introduces the

risk of plaintext leakage. The E&M method is used in SSH.

MAC-then-Encrypt is the method where the tag is produced first and then encrypted

together with the plaintext. In this method, the plaintext has to be decrypted to be verified,

similar to the E&M method. Therefore, the risk of plaintext leakage also exists in this

method. Attacks taking advantage of padding errors, such as Lucky Thirteen [26], can be

mounted against this model. This method is used in SSL/TLS implementations. In this
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method, encryption and MAC algorithms are run sequentially during both encryption and

decryption.

2.4. Attacks against AEAD

Since the confidentiality and authenticity of the data are aimed to be protected simultaneously

in AEAD schemes, they are expected to resist attacks targeting either authenticity or secrecy.

AEAD schemes must have strong structures both to detect any unauthorized modification

of the data, whether it is on the associated data or the message, and to keep the data secret

unless its authentication and integrity are verified. Some of the common attacks that AEADs

may encounter are forgery attacks, tag guessing attacks, and plaintext recovery attacks.

In forgery attacks, an attacker tries to construct a valid ciphertext and tag pair. There are two

main types of forgery attacks:

1. Existential Forgery

2. (Semi-)Universal Forgery.

For the definitions of forgery attacks, we mainly adopt the definitions in [11] and [12].

According to the adopted definitions, in an existential forgery, the attacker generates a valid

ciphertext and tag pair whose plaintext is unknown. In a universal forgery attack, the attacker

generates a valid ciphertext and tag pair and knows the corresponding plaintext without

querying the forged ciphertext and tag pair. A semi-universal forgery attack is a variant of the

universal forgery attack where the attacker may query the ciphertext to specify the plaintext,

but she has to modify the associated data in her query. Since the different types of forgeries

have different aims, they require different levels of computational effort. Depending on the

sensitivity of the data, forgery attacks might be very destructive, giving the attacker a chance

to modify classified data.

Another attack method aiming to break the authenticity of the message is the tag guessing

attack. In a tag guessing attack, the attacker tries to build the tag of an associated
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data-ciphertext pair. In this attack model, either an authentication tag might be missing or

the attacker wants to modify a ciphertext without knowing the original tag. The attacker may

guess different tags for the given associated data-ciphertext pairs until the valid tag is found

or query any data in the AEAD oracle. The guessing procedure might be brute force or based

on cryptanalysis techniques. To be considered safe, the computational security level of an

AEAD scheme should not be lower than the minimum of the tag or the key length. In cases

where the key is shorter than the tag, the attacker may guess brute force to recover the key.

Therefore, the key has to be at least as long as the tag length to prevent tag guessing attacks.

A further attack to bypass the verification of an AEAD scheme is a plaintext recovery attack.

Plaintext recovery attacks achieve almost the same result as tag guessing attacks. In a tag

guessing attack, the attacker aims to produce the valid tag to decipher a given AD − CT

pair. On the other hand, in a plaintext recovery attack, the attacker aims to decipher the

plaintext directly without querying the AD − CT − tag tuple. Plaintext recovery attacks

may cause similar issues as tag guessing attacks. The computational complexity against

plaintext recovery attacks should be the same as that against tag guessing attacks.

To withstand the explained attacks, an AEAD scheme has to be designed and implemented

carefully. Robust security mechanisms have to be put in place to prevent any unauthorized

modification of the data, including associated data, ciphertext, and the tag. To meet the

necessary security targets, designers may benefit from unpredictable nonces or IV s, as well

as strong cryptographic primitives. To have confidence in the claimed security level of the

designed scheme, the AEAD scheme has to be rigorously cryptanalyzed before utilization.

After carefully following these design rules and conducting thorough analysis, organizations

can be sure of the safety of their sensitive data from access or modification by third parties.

2.5. AES-GCM: NIST’s Recommended Mode of Operation for AEAD

NIST’s recommended block cipher mode of operation, AES-GCM, is the most ubiquitous

AEAD scheme. AES-GCM is composed of the symmetric block cipher AES being used
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in counter mode of operation and the GCM for authentication. Some of the advantages of

AES-GCM are:

1. It is parallelizable

2. It utilizes a block cipher; therefore, it can be modified by just changing the underlying

block cipher.

3. It can be implemented efficiently on different platforms.

Due to its advantages, AES-GCM is widely adopted and implemented in many cryptographic

protocols and libraries. Additionally, AES-GCM is efficient in terms of computation, making

it suitable for lightweight operations such as mobile devices and IoT devices.

AES-GCM derives its strength from its two components: AES block cipher and the GCM

authentication mode. Furthermore, to enhance the unforgeability of the system, the lengths

of the AD and the PT are taken into account when calculating the tag. Masking the tag

with the encryption of IV is another protection procedure to make the system resistant

against forgery and tag guessing attacks. With all of its security measures, AES-GCM

provides a high level of security and integrity protection for sensitive data, making it a

popular choice for general-purpose usage. On the other hand, the repetition of the IV

severely degrades the security level of AES-GCM and may result in catastrophic security

violations. Extra attention should be paid to ensure a unique IV for each message. While

AES-GCM is a general-purpose design, for certain operations with a specific purpose, it

may be outperformed by another AEAD scheme designed with dedicated purposes such as

security requirements, performance, platform, and other factors.

2.6. CAESAR Competition

To fulfill the need for purpose-specific AEAD requirements, CAESAR competition was

organized in 2013. The competition consisted of four rounds, with candidates being

eliminated based on public discussions regarding their performance and security.

19



In the final round, there are seven candidates:

• ACORN

• AEGIS

• Ascon

• COLM

• Deoxys

• MORUS

• OCB.

The competition defined three use cases for specific purposes:

1. Lightweight applications

2. High-performance applications

3. Defense in depth.

The CAESAR finalists were announced in [27], and the selection criteria for each use case

were also listed in detail.

The lightweight applications category aims to choose a cipher that can run efficiently

on resource-constrained environments, particularly 8-bit CPUs. The selected ciphers

should have a small hardware footprint and/or be compatible with 8-bit CPUs. Since

these ciphers are designed for resource-constrained environments, they are expected to

process short messages in general. Resistance against side-channel attacks is also desired.

Performance-wise, the ciphers should be efficient in terms of energy/bit on hardware and fast

on 8-bit CPUs.
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The high-performance applications category aims to choose a cipher that can efficiently

run on advanced hardware and process large amounts of data. The primary target hardware

is 64-bit CPUs and/or dedicated hardware, with an alternative target being 32-bit CPUs. The

processing time for data should not vary significantly based on the message length.

The defense in depth category does not have a specific target running medium like the other

use cases. Instead, it focuses solely on resistance to harsh attack scenarios, specifically nonce

misuse and the release of unverified plaintext. The most critical scenario involves protecting

authenticity even if the nonce is misused. Another scenario deals with mitigating partial

privacy violations caused by nonce misuse. Similarly, protecting authenticity and privacy

is desired if some plaintext leaks without being verified. Lastly, this use case aims to be

resistant to attacks requiring excessive amounts of data.

After public reviews by experts and the designers’ public defenses, two ciphers were chosen

for each use case. The selection committee expressed a preference for the lightweight and

defense in depth use cases, while for the high-performance use case, they announced a draw

between the winners. The final portfolio is as follows:

1. Lightweight use case:

1. Ascon

2. ACORN

2. High-performance use case:

1. AEGIS-128

2. OCB

3. Defense in depth use case:

1. Deoxys-II

2. COLM
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2.7. CAESAR Winner COLM and its Predecessor

2.7.1. AES-COPA

AES-COPA is an ELmE (Encrypt-Linear mix-Encrypt) type block cipher designed as an

authenticated encryption algorithm.

AES-COPA uses AES as the underlying block cipher, and all three key length options (128

bits, 192 bits, 256 bits) are adopted. Another security input for AES-COPA is a public

message number, serving as a nonce, with a constant length defined to be 128 bits. To provide

authenticity and integrity, AES-COPA generates a tag of variable length ranging from 64 bits

to 128 bits.

To process the data, AES-COPA employs both linear mixing and symmetric encryption. In

the linear mixing phase, the value of a block is calculated by performing an XOR operation

on the previous blocks. In the symmetric encryption layer, the blocks are encrypted using

the chosen version of AES algorithm with a symmetric key K.

Before a cryptographic operation, the subkey L = EK(0) is produced by encrypting

zero-vector 0128 with the key K. This subkey is then used to mask all input and output

blocks. In the masking procedure, each block is masked with a different multiple of the

L-value. For each of the AD, PT and CT a different multiplicative of L is chosen as the

base value. The masking value for each block is obtained by multiplying the masking value

of the previous block with 2 in GF (2). The base values are 32 · L, 3 · L and 2 · L for AD,

PT and CT respectively. The formulations of the whitening masks differ in the last blocks,

which will be explained further in the process description.

The main processes in AES-COPA can be listed as follows:

1. Processing AD

2. Encryption
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3. Decryption

4. Tag generation.

Since the block length of AES, the underlying block cipher, is 128 bits, the input data is

divided into 128-bit subblocks. If the last subblock is not a complete block, it is padded with

the pattern 10∗ where ∗ = 127− |T ∗[l]|. The data is divided into subblocks as follows:

A=(A[1], . . . , A[α− 1], A∗[α]),

M=(M [1], . . . ,M [l − 1],M∗[l]),

C=(C[1], . . . , C[l − 1], C∗[l]).

The encryption and decryption block diagrams of the algorithm are given in Figures 2.1 and

2.2, respectively. In these figures, the EK block and DK block denote AES encryption and

decryption operations, respectively.

Previously, we mentioned that during encryption and decryption, each of the AD, PT ,

and CT blocks are XORed with different whitening masks. Whitening masks are derived

according to the equations below:

∆A[i] =


33 · 2i−1 · L if i < α,

35 · 2i−1 · L if i = α &
∣∣A∗[α]

∣∣ < 128,

34 · 2i−1 · L if i = α &
∣∣A∗[α]

∣∣ = 128.

∆M [i] =


7 · 2i−1 · 3 · L if i = l &

∣∣M∗[l]
∣∣ < 128,

2i−1 · 3 · L otherwise.

∆C[i] = 2i · L.
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Also, two different masks (∆0 for the M -block, ∆1 for the T -block) are generated for the

tag generation process as follows:

∆0 = 32 ·∆M [l].

∆1 = 7 ·∆C[l].

After whitening, the input is ready for symmetric encryption. As part of the PMAC1 process,

the AD-blocks are encrypted and XORed with each other, with the exception of the last

block. The last blocks are involved in the XOR operation itself, and after XORing, the

obtained intermediate value is encrypted and results in the V -value. The PT -blocks are

processed in a similar way to the AD-blocks. The PT blocks are also involved in the

generation of the tag, and the CT is created from the PT blocks. Therefore, the intermediate

value after the process of each PT -block is encrypted and masked to obtain a CT -block.

The final step of AES-COPA is generating the tag. In this step, an additional PT -block is

constructed by XORing all input blocks and is processed in a similar way as the previous

blocks to construct the tag.

In the decryption process, the AD is processed in the same way as the encryption process.

The necessary intermediate value required to calculate the ith PT -block is obtained by

decrypting the i − 1st and ith CT -blocks and XORing the outputs, except the first block.

For the first block, the V -value obtained from the process of the AD is used instead of the

intermediate value obtained from the i − 1st CT -block. After all PT -blocks are obtained,

they are processed in the same way as in tag generation to create the control of the tag. If the

calculated tag matches the received tag, the PT is released.

The formulation of the processes in AES-COPA is given below. The first process is the

calculation of the V -value from the associated data AD, denoted as A, and the public
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message number, denoted as N :

A = A∥N

AA[i] = A[i]⊕∆A[i] for i = 1, . . . , α,

Z[i] = EK(AA[i]) for i = 1, . . . , α− 1,

W ′[1] = A[1],

W ′[i] = W [i− 1]⊕ Z[i] for i = 2, . . . , α− 1,

W ′[α] = W [α− 1]⊕ AA[α],

V = EK(W [α])

V and PT are the inputs of the encryption process. In the encryption process, besides the

CT , the S-value is generated to be used in the calculation of the tag. How to obtain the IV

from the AD has been explained recently. Encryption has three phases:

• Symmetric encryption of blocks with underlying block cipher (X[i] = EK(MM [i]))

• Linear mixing of intermediate blocks (Y [i] = X[i]⊕ Y [i− 1])

• Symmetric encryption of mixed blocks with underlying block cipher (CC[i] =

EK(Y [i]))

Pseudo code for whole encryption process is as follows:

Y [0] = V,

MM [i] = M [i]⊕∆M [i] for i = 1, . . . , d,

X[i] = EK(MM [i]) for i = 1, . . . , d

Y [i] = Y [i− 1]⊕X[i] for i = 1, . . . , d,

CC[i] = EK(Y [i]) for i = 1, . . . , d,

C[i] = CC[i]⊕∆C [i] for i = 1, . . . , d.
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After the encryption process, the tag generation process is initiated. How an incomplete

last block is padded has already been explained. The tag generation process begins with

XORing all PT -blocks to construct the last input block. After masking, the last block is

encrypted and XORed with the S-value generated during the encryption process. The tag

T is generated by encrypting and masking the last intermediate value. The output of the last

process is 128 bits. If a shorter tag length is chosen, the tag is shortened accordingly. This

process can be formulated as follows:

Σ=M [1]⊕M [2]⊕ · · · ⊕M [d],

T=EK(EK(Σ⊕∆0)⊕ S)⊕∆1

During the decryption process, V is generated in the same way as in the encryption process.

Then, by using the inverse of the sub-operations in reverse order, PT is obtained. We will

not explain it in detail but give the pseudocode:

Y [0] = V,

CC[i] = C[i]⊕∆C [i] for i = 1, . . . , d,

Y [i] = DK(MM [i]) for i = 1, . . . , d

X[i] = Y [i− 1]⊕ Y [i] for i = 1, . . . , d,

MM [i] = DK(Y [i]) for i = 1, . . . , d,

M [i] = MM [i]⊕∆M [i] for i = 1, . . . , d.

It should be noted that in the decryption process, although there are d + 1 blocks, the loop

is followed until the dth block. The last block is used to verify the tag and has a special

operation. To verify the tag, M [d + 1] is generated in the same way as in the tag generation

process after the decryption process is finished. Finally, T̂ is generated in the same way as

T is generated in the tag generation process. T̂ and T are compared before releasing the

PT . If the control mechanism checks, the PT is released; otherwise, only ⊥ is returned.
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Pseudocode for the tag verification process is:

Σ = M [1]⊕M [2]⊕ · · · ⊕M [d],

T̂ = EK(EK(Σ⊕∆0)⊕ S)⊕∆1

T
?
= T̂ .

2.7.2. ELmD

ELmD is designed as an authenticated encryption algorithm. Unlike COPA and COLM,

ELmD is an Encrypt-Linear mix-Decrypt type block cipher. The biggest advantage of

using decryption instead of encryption in the second cipher part of the algorithm is that the

same mechanism can be used during both encryption and decryption queries. However, this

advantage becomes a disadvantage for devices/systems that only require either authenticated

encryption or decryption because both symmetric encryption and decryption structures have

to be implemented regardless of system needs. For ELmD, the defined single key length is

128 bits. ELmD accepts arbitrary data up to 264 bits for each of AD and PT , and outputs

CT with the same length as PT , a tag of length from 128 bits to 255 bits, and optional

intermediate tags if determined in the parameter list.

ELmD consists of two types of operations: linear mixing and symmetric

encryption/decryption. It has the most complex linear mix among the three structures. The

linear operations in ELmD are defined in GF (2128). In the symmetric encryption layer, the

blocks are encrypted with either AES-128 algorithm or reduced-round AES-128 algorithm

using a symmetric key K.

Before either the encryption or decryption process starts, the algorithm produces three

subkeys to be used as whitening keys. These subkeys are called L, L1, and L2. Their
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formulas are given in the following equations, respectively:

L=EK(0),

L1=3 · L,

L2=32 · L.

The main subkey L, the second subkey L1, and the third subkey L2 are used as whitening

masks for PT , AD, and CT respectively. The details of the whitening process will be

explained when the encryption process is described.

ELmD algorithm has three main processes:

1. IV -generation,

2. Symmetric query;

(a) Encryption,

(b) Decryption,

3. Authentication;

(a) Tag generation,

(b) Tag verification.

The authenticated encryption consists of IV -generation, symmetric encryption, symmetric

decryption, and tag generation. The authenticated decryption consists of the same operations

as authenticated encryption, but tag generation is replaced with tag verification. In

all processes, AES-128 algorithm or round-reduced AES-128 algorithm is used as the

underlying block cipher. AD, PT , CT , and the tag are selectively given as input to these

processes. Since AES-128 takes only 128-bit input blocks, the input data is divided into

128-bit subblocks. If any of the last blocks of AD or PT is shorter than 128 bits, they are

padded with the pattern 10∗ where ∗ = 127 − |T ∗[l]| is the number needed to complete the
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last block to 128 bits. Here, T denotes either A or M according to the content. The data is

divided into subblocks as:

A=(A[1], . . . , A[α− 1], A∗[α]),

M=(M [1], . . . ,M [l − 1],M∗[l]),

C=(C[1], . . . , C[l − 1], C∗[l]).

The encryption block diagram of ELmD is shown in Figure 2.3. Since encryption

and decryption only differ in the masking and linear mixing parts, the decryption block

diagram of ELmD is omitted. In this figure, the EK block and DK block denote 128-bit

(round-reduced) AES encryption and decryption operations, respectively.

Previously, we mentioned that whitening masks are used before symmetric encryption and

after symmetric decryption. Another whitening mask is used for each AD, PT , and CT

block. The derivation of each whitening mask is given by the equations below:

∆A[i] =


7 · 2i−2 · L1 if i = d &

∣∣A∗[α]
∣∣ < 128,

2i−1 · L1 if i = d &
∣∣A∗[d]

∣∣ = 128,

2i · L1 otherwise.

∆M [i] =


72 · 2i−2 · L if i ∈ {l, l + 1} &

∣∣M∗[d]
∣∣ < 128,

7 · 2i−2 · L if i ∈ {l, l + 1} &
∣∣M∗[d]

∣∣ = 128,

2i · L otherwise.

∆C[i] = 2i+it · L2.

∆T [it] = 2i+it · L2.

In this equation, i denotes the count of the processed CT block, and it denotes the count of

the processed intermediate tag, if there exists any.
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Figure 2.3 Encryption Diagram of ELmD
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After whitening, the input is ready for symmetric encryption. The AD and PT blocks are

encrypted and then subjected to a complicated linear operation, denoted as ρ. The ρ operation

is formulated as:

(y, st′) = ρ(x, st),

y = x⊕ 3 · st,

st′ = x⊕ 2 · st.

The intermediate value obtained after processing the last AD block is called the IV . After

the linear operations, starting from the first PT block, the resulting values are decrypted and

XORed with the corresponding whitening mask (from the L2 set).

In the authenticated decryption process, the IV is generated in the same way as in the

authenticated encryption process. On the other hand, the CT blocks are encrypted after

whitening, and the encrypted blocks are processed with the inverse ρ operation, denoted as

ρ−1. The ρ−1 operation is formulated as:

(x, st′) = ρ−1(y, st),

x = y ⊕ 3 · st,

st′ = y ⊕ st.

In ρ and ρ−1 linear operations, st denotes the current state value, and st′ denotes the next

state value for the ith block (in Figure 2.3, W [i] and W [i+ 1], respectively).

After the linear operations, the resulting values are decrypted and XORed once more with

the corresponding whitening mask (from the L set).
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We mentioned that the IV is the intermediate value obtained after the last AD block is

processed. The entire process is formulated as follows:

A[0] = npub∥param

AA[i] = A[i]⊕∆A[i] for i = 0, . . . , d,

Z[i] = EK(AA[i]) for i = 0, . . . , d,

W ′[0] = 0,

W ′[i] = W [i− 1]⊕ Z[i] for i = 1, . . . , d,

IV = W ′[d].

We consider IV and PT as the core inputs of the encryption process. The method of

obtaining IV from AD was explained earlier. The encryption process consists of three

phases:

• Symmetric encryption of blocks with the underlying block cipher (X[i] =

EK(MM [i]))

• Linear mixing of intermediate blocks ((Y [i],W [i]) = ρ(X[i],W [i− 1]))

• Symmetric decryption of mixed blocks with the underlying block cipher (CC[i] =

EK(X[i]))
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The pseudocode for the entire encryption process is as follows:

W [0] = IV,

M [l] =


⊕l−1

i=1M [i]⊕ (M∗[l]∥10∗) if
∣∣M∗[l]

∣∣ < 128,⊕l−1
i=1M [i]⊕M∗[l] otherwise

M [l + 1] = M [l]

MM [i] = M [i]⊕∆M [i] for i = 1, . . . , l + 1,

X[i] = EK(MM [i]) for i = 1, . . . , l + 1

(Y [i],W [i]) = ρ(X[i],W [i− 1]) for i = 1, . . . , l + 1,

CC[i] = DK(Y [i]) for i = 1, . . . , l,

C[i] = CC[i]⊕∆C [i] for i = 1, . . . , l.

TT [it] = DK(W [i]) for it = 1, . . . , t,

T [it] = TT [i]⊕∆T [it] for it = 1, . . . , t.

CC[l + 1] = DK(Y [l + 1]⊕ 1)

C[l + 1] = CC[l + 1]⊕∆C [i].

In the encryption process, the last block of the given plaintext undergoes a different procedure

compared to other blocks. We have already explained how an incomplete block (shorter than

128 bits) is padded. Subsequently, all input blocks are XORed with each other to form the

last input block. The newly generated block is treated as the lth and l + 1st blocks in the

algorithm. Once the encryption process is completed, all CC and TT blocks are XORed

with their respective whitening masks (∆C and ∆T , respectively), resulting in the generation

of CT and intermediate tags. Consequently, the generated CT will be 128 bits to 255 bits

longer than PT if there are no intermediate tags, and an additional 128 bits longer for each

intermediate tag present. The extra bits are considered as the tag and are used to authenticate

the message in the decryption process.

During the decryption process, IV is generated in the same manner as in the encryption

process. Then, by employing the same encryption and decryption operations, along with the
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inverse of the linear operation in the same order, the PT is obtained. Since this process is

analogous to the encryption process, we will not provide a detailed explanation but instead

present the pseudocode:

W [0] = IV,

CC[i] = C[i]⊕∆C [i] for i = 1, . . . , l,

Y [i] = EK(CC[i]) for i = 1, . . . , l,

(X[i],W [i]) = ρ−1(Y [i],W [i− 1]) for i = 1, . . . , l,

MM [i] = DK(X[i]) for i = 1, . . . , l,

M [i] = MM [i]⊕∆M [i] for i = 1, . . . , l,

M∗[l] =
l⊕

i=1

⊕M [i],

M [l + 1] = M∗[l]

It is important to note that in the decryption process, even though there are l + t+ 1 blocks,

the loop is executed for the l blocks. The remaining block is used for tag verification and

involves a special operation. To verify the tag, M [l] is assigned to M [l+1] and encrypted to

obtain the corresponding CT block (C ′[l+1]). The bits of C[l+1] block that are available are

compared with the corresponding bits in C[l+1]. Additionally, the padding pattern of M∗[l]

is checked to ensure it matches the expected padding pattern. If both of these verification

mechanisms pass, the PT is released. Otherwise, only ⊥ is returned. The pseudocode for
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the tag verification process is as follows:

TT [it] = T [it]⊕∆T [it] for it = 1, . . . , t,

W ′[i+ it] = EK(TT [it]) for it = 1, . . . , t,

W [i+ it]
?
= W ′[i+ it],

M [l + 1] = M [l],

MM [l + 1] = M [l + 1]⊕∆M [l + 1],

X[l + 1] = EK(MM [l + 1]),

(Y [l + 1],W [l + 1]) = ρ(X[l + 1],W [l]),

CC[l + 1] = EK(Y [l + 1]),

C ′[l + 1] = CC[l]⊕∆C [l + 1],

C[l + 1]
?
= C ′[l + 1].

2.7.3. COLM

COLM is an ELmE (Encrypt-Linear mix-Encrypt) type authenticated encryption block

cipher. It is a combination and modification of the COPA [10] and ELmD [9] algorithms

preceding COLM.

During the encryption process, COLM takes a 128-bit key, arbitrary length AD and PT

as inputs, and produces CT , along with a tag as output and optional intermediate tags if

specified in the parameters.

COLM utilizes two types of operations: linear mixing and symmetric encryption. In

the linear mix layer, inputs are multiplied and then XORed with each other. These

multiplications are defined in the GF (2128). In the symmetric encryption layer, AES-128

algorithm is used to encrypt the blocks with a symmetric key K.

Before the encryption or decryption process begins, the algorithm generates three subkeys,

referred to as L, L1, and L2, which serve as whitening masks. Their formulas are given as

37



follows:

L=EK(0),

L1=3 · L,

L2=32 · L.

The main subkey L, the second subkey L1, and the third subkey L2 are used as whitening

masks for PT , AD, and CT respectively. The details of the whitening process will be

explained when describing the encryption process.

COLM algorithm consists of three main processes: encryption, decryption, and tag

validation. Both encryption and decryption involve a common preprocessing step called

IV -generation. AES-128 algorithm is used as the underlying block cipher for all four

processes. AD, PT , CT , and the tag are selectively given as input to these processes. Since

AES-128 operates on 128-bit blocks, the input data is divided into subblocks of 128 bits. If

the last blocks of AD or PT are shorter than 128 bits, they are padded with the pattern 10∗,

where ∗ = 127− |T ∗[l]|. Here, T refers to either A or M depending on the content. The data

is divided into subblocks as follows:

A=(A[1], . . . , A[α− 1], A∗[α]),

M=(M [1], . . . ,M [l − 1],M∗[l]),

C=(C[1], . . . , C[l − 1], C∗[l]).

The block diagrams for encryption and decryption of the COLM algorithm are depicted

in Figures 2.4 and 2.5 respectively. In these figures, the EK block represents AES-128

encryption operation, and the DK block represents AES-128 decryption operation.

As mentioned earlier, during encryption and decryption processes, the AD, PT , and CT

blocks are XORed with their corresponding whitening masks. Additionally, each data block

is XORed with an individual whitening mask. The formulas for deriving these whitening
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masks are provided in the following equations:

∆A[i] =


7 · 2i−1 · L1 if i = α &

∣∣A∗[α]
∣∣ < 128,

2i · L1 otherwise.

∆M [i] =


7 · 2i−1 · L if i ∈ {l, l + 1} &

∣∣M∗[l]
∣∣ = 128,

72 · 2i−1 · L if i ∈ {l, l + 1} &
∣∣M∗[l]

∣∣ < 128,

2i · L otherwise.

∆C[i] =


7 · 2i−1 · L2 if i ∈ {l, l + 1} &

∣∣M∗[l]
∣∣ = 128,

72 · 2i−1 · L2 if i ∈ {l, l + 1} &
∣∣M∗[l]

∣∣ < 128,

2i · L2 otherwise.

After the whitening process, the input is prepared for symmetric encryption. The AD blocks

are encrypted and then XORed with each other to generate the initialization vector (IV ).

The PT blocks are encrypted and subjected to a more complex linear operation called ρ.

The ρ operation is defined as follows:

(y, st′) = ρ(x, st),

y = x⊕ 3 · st,

st′ = x⊕ 2 · st.

After the linear operations, the resulting values are encrypted and XORed once again with

their corresponding whitening mask from the L2 set.

The CT blocks are decrypted after the whitening process, and the decrypted blocks undergo

the inverse ρ operation, denoted as ρ−1. The ρ−1 operation is defined as follows:

(x, st′) = ρ−1(y, st),

x = y ⊕ 3 · st,

st′ = y ⊕ st.
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In both the ρ and ρ−1 linear operations, st represents the current state value, and st′ represents

the next state value for the ith block (denoted as W [i] and W [i + 1] in Figures 2.4 and 2.5,

respectively).

After the linear operations, the resulting values are decrypted and XORed once again with

their corresponding whitening mask from the L set.

As previously mentioned, the AD blocks are used to generate the IV , and the entire process

can be formulated as follows:

A[0] = npub∥param

AA[i] = A[i]⊕∆A[i] for i = 1, . . . , α,

Z[i] = EK(AA[i]) for i = 1, . . . , α,

W ′[0] = EK(AA[0]),

W ′[i] = W [i− 1]⊕ Z[i] for i = 1, . . . , α,

IV = W ′[α].

We consider IV and PT as the core inputs of the encryption process. The method for

obtaining IV from AD has been recently explained. The encryption process consists of

three phases:

• Symmetric encryption of blocks with the underlying block cipher (X[i] =

EK(MM [i]))

• Linear mixing of intermediate blocks ((Y [i],W [i]) = ρ(X[i],W [i− 1]))

• Symmetric encryption of mixed blocks with the underlying block cipher (CC[i] =

EK(X[i]))
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The pseudocode for the entire encryption process is as follows:

W [0] = IV,

MM [i] = M [i]⊕∆M [i] for i = 1, . . . , l + 1,

X[i] = EK(MM [i]) for i = 1, . . . , l + 1

(Y [i],W [i]) = ρ(X[i],W [i− 1]) for i = 1, . . . , l + 1,

CC[i] = EK(Y [i]) for i = 1, . . . , l + 1,

C[i] = CC[i− 1]⊕∆C [i] for i = 1, . . . , l + 1.

In the encryption process, the last block of the given plaintext has a different procedure

compared to the other blocks. We have already explained how an incomplete block (shorter

than 128 bits) is padded. Afterward, all input blocks are XORed with each other to form

the last input block. The generated new block is given to the algorithm as the lth and l + 1st

blocks. After the encryption process is completed, all CC blocks are XORed with their

corresponding whitening mask (L2), and the ciphertext CT is generated. However, if the

PT was padded, bits are removed from CT with a length equal to the padding bits. As

a result, the generated CT will be exactly 128 bits longer than PT . These extra bits are

considered as the tag and are used to authenticate the message in the decryption process.

During the decryption process, IV is generated in the same way as in the encryption process.

Then, by using the inverse of the sub-operations in reverse order, the plaintext PT is
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obtained. We do not explain it in detail here but provide the pseudocode:

W [0] = IV,

CC[i] = C[i]⊕∆C [i] for i = 1, . . . , l,

Y [i] = E−1
K (CC[i]) for i = 1, . . . , l,

(X[i],W [i]) = ρ−1(Y [i],W [i− 1]) for i = 1, . . . , l,

MM [i] = E−1
K (X[i]) for i = 1, . . . , l,

M [i] = MM [i]⊕∆M [i] for i = 1, . . . , l,

M∗[l] = M [1]⊕ · · · ⊕M [l].

It should be noted that in the decryption process, even though there are l+1 blocks, the loop

is followed only until the lth-block. The last block is used for tag verification and undergoes

a special operation. To verify the tag, M [l] is assigned to M [l+ 1] and encrypted to obtain a

corresponding CT block (C ′[l + 1]). The available bits of the C[l + 1] block are compared

with the bits that correspond to ones in C[l + 1]. Additionally, the M∗[l] is checked to

confirm whether it has the expected padding pattern. If both of these control mechanisms

pass, the plaintext PT is released; otherwise, only ⊥ is returned. The pseudocode for the tag

verification process is as follows:

M [l + 1] = M [l],

MM [l + 1] = M [l + 1]⊕∆M [l + 1],

X[l + 1] = EK(MM [l + 1]),

(Y [l + 1],W [l + 1]) = ρ(X[l + 1],W [l]),

CC[l + 1] = EK(Y [l + 1]),

C ′[l + 1] = CC[l]⊕∆C [l + 1],

C[l + 1]
?
= C ′[l + 1].
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3. RELATED WORK

Providing authentication and encryption simultaneously has been under focus of the literature

for decades. Various studies ([15–18]) have been published to consider them together.

However, these solutions may not be able to fully meet the true demand. In real-world

applications, in addition to secret data, whose integrity and confidentiality are both important,

there also exists informative data, such as headers, that have to be transmitted in clear

while maintaining their integrity. In 2002, Rogaway published his fundamental work

([4]) by modeling data as a compound of two parts: AD and PT . Rogaway introduced

a new structure to guarantee the integrity of both AD and PT simultaneously while

securing the confidentiality of only the PT . After formulating and naming the AEAD

problem, he proposed an efficient solution in general and for the specific case of the

authenticated-encryption scheme OCB. In the general setting, he assessed nonce stealing

and ciphertext translation methods to make an authenticated-encryption scheme support

associated data. For the case of OCB, he successfully combined OCB and the pseudorandom

function PMAC and proved that the combination remains sound even when the same key is

used in both schemes. His contributions significantly advanced the state-of-the-art in AEAD

and served as the basis for subsequent research in this area.

Following [4], attention to the AEAD topic has increased, and numerous works related

to AEAD have been published. [28–31] are examples of new AEAD designs. The goal

of these designs is to increase security and/or performance without compromising the

other. In parallel with new designs, analyses have also been conducted, such as [32–35].

While analyzing the developed designs and identifying weaknesses and vulnerabilities in

the schemes, these works have also suggested methods to improve security in terms of

both authentication and confidentiality where possible. With the start of the CAESAR

competition, the focus on AEAD schemes has increased, and many more works (e.g.,

[11, 12, 36–45]) have been published to evaluate the security of AEAD schemes. Alongside

security considerations, studies such as [1, 46–50] have been published to propose efficient

and robust implementations of CAESAR candidates.
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Since the beginning of the CAESAR competition, COLM and its ancestors have been under

the focus of AEAD research groups. Numerous studies have been published on COLM

and its predecessors. In these studies, not only the security levels of these AEAD schemes

are evaluated, but also strategies to implement them efficiently on various platforms are

developed. A milestone among the analysis studies is Lu’s work [36], where an attack to

recover L = EK(0) is mounted against COPA and Marble algorithms. His method is widely

adopted against ciphers that use the sub-key L for masking the PT and/or CT blocks. The

method was adapted to ELmD and COLM by Bay et al. in [11] and by Forler in [37],

respectively. Based on this technique, we assume that the L parameter of COLM has already

been discovered. Lu’s method is explained in Section 3.1.

3.1. Almost Universal Forgery Attacks against COPA

Lu analyzed the security of the CAESAR submissions Marble and COPA authenticated

encryption algorithms and mounted attacks against them in [36]. The attacks mounted by Lu

are beyond birthday attack complexity. Lu conducted both forgery attacks and tag guessing

attacks with the same complexity. The computational complexity level of a forgery attack

is expected to be below the boundary of a birthday attack. Since Lu’s attacks are slightly

above the security level of forgery attacks, they are referred to as almost universal forgery

attacks. Additionally, a cipher should withstand tag guessing attacks with computational

complexity less than 128 bits, and Lu demonstrates that tag guessing attacks can be mounted

against AES-COPA with the same level of complexity as the forgery attacks. Lu’s attack can

be divided into two parts: the recovery of the subkey L in the first part, and mounting the

universal forgery attack with a probability of 1 in the second part.

Lu introduces two different methods for the first part, recovering the subkey L part, of his

attack;

1. variable associated data,

2. constant associated data.
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Figure 3.1 Recovering L-parameter under Variable Associated Data Setting
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Figure 3.2 Recovering L-parameter under Constant Associated Data Setting

For the second part, mounting universal forgery part, of his attack, he presents three different

methods;

1. modifying associated data,

2. modifying message,

3. modifying both associated data and message.
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3.1.1. Recovering L-parameter under Variable Associated Data Setting

For this procedure, Lu prepares two sets of messages. Lu sets M1 block to be constant

for all messages in both sets. The first set consists of 2σ messages with ADi
1,M1, where

0 < σ ≤ n
2

and ADi
1 = i, fori = 0, 1, . . . , 2σ−1. The second set consists of 2φ−1 messages

with ADj
1,M1, where 0 < φ ≤ n

2
and ADj

1 = j × (2
n
2 ), fori = 0, 1, . . . , 2φ−1. After

querying the first set, ADi
1 values are stored in a table indexed by Ci

1. Then the second set

is queried, and Cj
1 values are checked for matches in the previously stored table. If a match

is found between ω ∈ i and µ ∈ j, as depicted in Figure 3.1, an equality relationship can be

established between the AD-blocks ADω
1 and ADµ

1 . The only differentiating blocks between

the queries ω and µ are ADω
1 and ADµ

1 blocks. Therefore, the L parameter can be calculated

from this equality. This procedure to recover L requires 2σ +2φ COPA encryption queries, a

memory of n·2σ bits, and a time complexity of 2φ memory accesses. The success probability

of this operation is ≈ 1− e−2σ+φ−n .

3.1.2. Recovering the L-parameter under Constant Associated Data Setting

This procedure follows similar steps as in the variable associated data setting. However, in

this attack, the associated data is kept constant throughout the entire process, and different

messages are queried with the same associated data. The previous attack exploits the

difference in the whitening masks of complete and incomplete blocks. The AD is followed

by the message; therefore, it is possible to observe the effect of the incomplete block in the

previous attack. However, in this attack, after the incomplete block (namely, the last block)

is queried, the COPA query ends, and there is no other block that allows the observation of

the effect of the incomplete block. This attack follows the procedure below:

1. 2θ messages of 2 blocks (M (i) = M
(i)
1 ∥M

(i)
2 ) are queried through the COPA oracle for

(i = 1, 2, . . . , 2θ). The obtained ciphertexts are stored according to C
(i)
2 blocks.
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2. Step 1 is repeated until δ messages (M (i1), M (i2), . . . , M (iδ)) having ciphertext with

identical second block such that

C
(i1)
2 = C

(i2)
2 = · · · = C

(iδ)
2

are collected.

3. Two n-bit constants such that

α · (2 · 32 · L⊕ 22 · 3 · L) = β · (23 · L⊕ 2 · 7 · L)

4. 2φ messages of 3 blocks (M (j) = M
(j)
1 ∥M

(j)
2 ∥M

(j)
3 ) are queried through the COPA

oracle for (i = 1, 2, . . . , 2φ). All M (j) messages are chosen such that

M (j) = (M
(i1)
1 ∥M

(i1)
2 ∥M

(j)
3 ).

These messages are queried through COPA encryption oracle and C
(j)
3 blocks are

stored. (Note that, the key, the AD and the first two blocks are messages are the

same, therefore C
(j)
1 and C

(j)
2 blocks remain same as C

(i1)
1 and C

(i1)
2 ) blocks, i.e.

(C(j) = (C
(i1)
1 ∥C

(i1)
2 ∥C

(j)
3 )).

5. After the required message-ciphertext sets are prepared, a message-ciphertext pair with

the following property is chosen (this matching is illustrated in Figure 3.2):

M
(j)
3 ⊕ 22 · 3 · L =

2⊕
l=1

M
(it)
l ⊕ 2 · 32 · L;

C
(j)
3 ⊕ 23 · L = T (it) ⊕ 2 · 7 · L.

As an efficient way, Lu suggests checking the following equality;

α ·M (j)
3 ⊕ β · C(j)

3 = α ·
2⊕

l=1

M
(it)
l ⊕ β · T (it).
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The qualified message-ciphertext pairs are denoted as (Mω, Cω) where 1 ≤ ω ≤ 2φ.

6. From the qualified pair, L can be recovered according the equation below;

M
(ω)
3 ⊕ 22 · 3 · L =

2⊕
l=1

M
(it)
l ⊕ 2 · 32 · L.

Lu calculates the probability of at least one δ-tuple satisfying the equation in Step 2 as

pδ ≈ 1− e(
2θ

δ )·2−n(δ−1)

for θ ≪ n and small δ. The probability of the recovered L being correct is calculated as

follows;
1

2
· (1− e−δ·2φ−n+1)

When these two probabilities combined together, the success probability of the attack

becomes;

≈ 1− e(
2θ

δ )·2−n(δ−1) · 1
2
· (1− e−δ·2φ−n+1)

3.1.3. Forgery Attack by Modifying AD

To mount the forgery attack, Lu extends the current messages by adding two new blocks.

While the AD is being processed in COPA, all message blocks except the last one are

encrypted and XORed to each other. The last message block is directly XORed with the

resulting intermediate block. Since XOR is an involutive function, if two blocks which

become equal after masking added to AD twice, the state value does not change. Lu exploits

this property of COPA given that the masking subkey L is already recovered and such block

can be easily calculated and mounts the attack shown in Figure 3.3 with the following steps:
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Figure 3.3 Universal Forgery with Modifying Associated Data

1. Query the COPA encryption oracle with the following AD − PT pair:

(ÂD,M) = (AD1, AD2, · · ·ADα−1, ÂDα, ÂDα ⊕ 2α−1 · 34 · L,

ADα ⊕ 2α−1 · 36 · L,M1,M2, · · · ,Ml).

2. Obtain its CT (Ĉ) and tag (T̂ ) :

Ĉ = (Ĉ1, Ĉ2, · · · , Ĉl), T̂ .
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3. Output

C = (Ĉ1, Ĉ2, · · · , Ĉl) and T = T̂

as forged ciphertext and tag.

3.1.4. Forgery Attack by Modifying PT

In this attack model, Lu applies an extension attack. Since the subkey L is already recovered,

for a message;

M = M1,M2, · · · ,Ml

the additional block that will be queried to generate the tag can be calculated easily. In the

forgery attack mounted by modifying the PT , Lu calculates this block and appends it to end

of to the plaintext to obtain the tag as the l + 1st block of the tampered ciphertext. In this

attack, the following steps are followed;

1. The following associated data and plaintext pair is queried;

(AD, M̂) = (AD1, AD2, · · · , ADα,M1,M2, · · · ,Ml, 2
l−1 · 3 · L ·

l⊕
i=1

Mi).

2. The related ciphertext CT = Ĉ where

Ĉ = Ĉ1, Ĉ2, · · · , Ĉl, Ĉl+1

is obtained.

3. The following ciphertext and tag pair is release as the forged ciphertext and tag for

(AD,M).

C = (Ĉ1, Ĉ2, · · · , Ĉl), T = Ĉl+1 ⊕ 2l−1 · 3 · L.
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Figure 3.4 Universal Forgery with Modifying Message
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Figure 3.5 Universal Forgery with Modifying Both Associated Data and Message
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3.1.5. Forgery Attack by Modifying Both AD and PT

In the last attack method, the modifications in the previous two attacks are applied at once

and the attack is conducted as follows;

1. Query the COPA encryption oracle with the following AD − PT pair:

(ÂD,M) = (AD1, AD2, · · ·ADα−1, ÂDα, ÂDα ⊕ 2α−1 · 34 · L,

ADα ⊕ 2α−1 · 36 · L,M1,M2, · · · ,Ml, 2
l−1 · 3 · L ·

l⊕
i=1

Mi).

2. Obtain its CT (Ĉ):

Ĉ = Ĉ1, Ĉ2, · · · , Ĉl, Ĉl+1.

3. Output the following ciphertext and tag pair as the forged ciphertext and tag for

(AD,M).

C = (Ĉ1, Ĉ2, · · · , Ĉl), T = Ĉl+1 ⊕ 2l−1 · 3 · L.

3.2. Universal Forgery and SDBC Attacks against ELmD

Bay et. al mounts various forgery and key recovery attacks against ELmD cipher in [11].

The key recovery attacks are based on simulation of the decryption query of the underlying

cipher. COPA and ELmD ciphers use almost the same structures; therefore, the very same

methods are also valid to recover L-parameter. Bay et. al recover the subkey L under variable

AD setting. Then, they mount two different universal forgery attack against ELmD. In both

attacks, they modify the AD. Besides forgery attacks, they exploit the structure of ELmD to

generate multiplicative and differential PT − CT pairs. Subsequently, they use these pairs

to build a decryption simulation model for the underlying cipher of ELmD and suggest a

chosen ciphertext attack against the underlying cipher choice for AES6.
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3.2.1. Recovering the Subkey L

To recover subkey L, Bay et al. prepares two set of messages where (D,M) = (D1,M1) =

(α,M) and (D′,M ′) = (D′
1,M

′
1) = (β,M) where 0 ≤ α, β ≤ 264 − 1, α is a 64-bit value

and β is 128-bit value. Here, the authors exploit additions of different whitening masks for

complete and incomplete blocks. The sets for α and β are chosen such that ∃α, β such that

α⊕ β = Ξ for any chosen Ξ ∈ F2128 .

They query the message sets and search for a collision in the first ciphertext blocks C1 = C ′
1.

The collision in the first block means, the constructed ADs produce the same IV -value, i.e.

IV = IV ′ since M1 = M ′
1. The subkey L can be recovered easily by solving the following

equality;

D1 ⊕ 7 · 3 · L = D′
1 ⊕ 2 · 3 · L

L = (5 · 3)−1(α∥1063 ⊕ β).

Since L is already known, rest of the attacks are explained on the intermediate blocks after

whitening.

3.2.2. Universal Forgery Attacks

In their work, Bay et al. introduce two different universal forgery attacks. In the first attack,

they differ the last block of the AD from complete to incomplete or vice versa. In the second

attack, they prepend the AD with two additional blocks. The first attack for the AD − PT

pair D0, · · · , Dd,M1, · · · ,Ml with |Dd| = 128 is mounted as follows;

1. Compute

D′
d∥10∗ = Dd.

2. Query

D0, · · · , D′
d,M1, · · · ,Ml.
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Figure 3.6 1st Universal Forgery Suggested by Bay et al.

3. Output (Ĉ, T̂ ) as the forged CT and tag pair.

The queried associated data produces the same IV as the AD of the target AD − PT pair.

The associated data is equal till the d− 1th block; therefore, the intermediate value after the

d − 1th block remains the same. The other component of the ρ-operations are also equal

to each other because the last blocks are chosen such that after masking, they end up to be

equal. The equal blocks produce the same value after encryption and following that the same

IV -value. This attack is illustrated in Figure 3.6.

The same attack can be conducted for any incomplete Dd-block. In this version, D′
d block is

chosen to be complete block as;

D′
d = Dd.

58



𝐸𝐾

𝐴[0]

𝐿1

𝐸𝐾

𝑀 1 = 𝐴 0 ⊕ 2 ⋅ 𝐿

𝐿

𝐷𝐾

𝜌

𝐿2

𝐶[1]

⋅⋅⋅
𝑊′ 0

𝑀𝑀 1 = 𝐴𝐴[0]

𝐶𝐶[1]

𝑍[0]

𝑌[1]

𝑍[0]

𝑊[1]
𝜌

𝐴𝐴[0]

Figure 3.7 1st Query of the 2nd Universal Forgery Suggested by Bay et al.

The first forgery attack is conducted in a single query. The second attack requires two queries.

In the first query (See Figure 3.7), a helper block is prepared to reset the intermediate state

in the AD to 0128. In the second query (See Figure 3.7), 1st AD-block of the 1st query and

the helper block are prepended to AD and the new AD is generated. The steps to mount the

attacks are;

1. Query D0,M1 = D0.

2. Obtain C1. (Note that: C1 = DK(2 · EK(D0))

3. Query

AD′ = D0∥C1∥AD,

M ′ = M.

4. Output C ′ and T ′ as the forged CT and tag pair.
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Figure 3.8 2nd Query of the 2nd Universal Forgery Suggested by Bay et al.

In the second query, W ′
1 = EK(D0) and the second AD-block is encrypted to be AA′

2 =

2 · EK(D0). Consequently;

ρ(W ′
1, AA

′
2) = 2 ·W ′

1 ⊕ AA′
2 = 0.

3.2.3. Generating 2-Multiplicative Pairs (R1, R2) such that 2 · EK(R1) = EK(R2)

This attack is theoretically same as the second universal forgery attack. However, the attack

is performed using message blocks because the IV is not freely chosen. The first query of

the second universal forgery is made to the oracle as is. To obtain R2 for the message R1,

the following query is made;

AD = D0∥C1 (1)

M = R1∥R1. (2)

C2 is output as R2 = DK(2 · EK(R1)). This query is illustrated in Figure 3.9.
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Figure 3.9 2nd Query of Generating 2-Multiplicative Pairs by Bay et al.

3.2.4. Generating µ-Multiplicative Pairs (P1, P2) such that µ · EK(P1) = EK(P2)

In this attack multiplicative pairs are generated in the most general form by using the pairs

constructed in Section 3.2.3. A P1 − P2 pair is found such that µ ·EK(P1) = EK(P2). Then

129-block PT , composed of P1 and P2 blocks, is prepared as shown in Figure 3.10. The

intermediate text in the last block becomes;

Y129 = µE(P1),

where µ = (3µ′ ⊕ 1). Here, µ′ = 3−1(µ⊕ 1) is the decision parameter. According to µ′ PT

blocks are chosen such that W128 becomes µ′E(R1). The last block is chosen to be P1 so

Y129 = µE(P1) and CC129 = DK(µ · EK(P1)) are constructed.

3.2.5. Generating 1-Difference Pairs (S1, S2) such that EK(S1) = EK(S2)⊕ 1

To prevent length extension attacks in ELmD, the designers XOR the last block with 1 after

the linear-mix function and use this block to generate the tag. However, this operation ends

up in a flaw in the algorithm and Bay et al. exploit it to generate 1-difference pairs. How IV

can be set to 0128 is explained in Section 3.2.3. The operations before the linear mix layers

of the AD and PT are the same; therefore, with the same method used in AD the 2nd state
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Figure 3.10 Generating µ-Difference Pairs by Bay et al.
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Figure 3.11 Generating 1-Difference Pairs by Bay et al.

can be set to 0128. For a chosen S1 value as the 3rd PT-block, S2 = DK(EK(S1) ⊕ 1) can

be obtained from the ELmD oracle as the 3rd CT-block. This process is illustrated in Figure

3.11.
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3.2.6. Generating δ-Difference Pairs (P1, P2) such that EK(P1) = EK(P2)⊕∆

After obtaining (S1, S2) such that EK(S1) = EK(S2)⊕ 1, ELmD oracle can be exploited to

generate (P1, P2) such that EK(P1) = EK(P2) ⊕∆ for any chosen ∆-value. In this attack,

first, the IV is set to 0128. The 3−1 ·∆-value is used as the decision parameter for the choice

of the message blocks. The input block is chosen as S1 if the corresponding 3−1 · ∆ bit is

0 and S2, otherwise. When the constructed message block is queried through the ELmD

encryption oracle, the targeted P2 = DK(EK(P1) ⊕ ∆) is obtain as the 129th CT -block.

This process is illustrated in Figure 3.12.

3.2.7. Simulation of Decryption Oracle of the Underlying Block Cipher

In their study, Bay et al. suggest two different ways to simulate the decryption oracle of

the underlying block cipher. However, this queries requires a known P1-EK(P1) pair. To

mount this attack, they produce two message blocks R2 = DK(EK(R1) ⊕ 1) and R3 =

DK(3
−1 · EK(R1)) by generating 1-difference pair and µ-multiplicative pair attacks. Then

they query R3 and R2 block as 1st and 2nd PT block and obtain CC2 = DK(0
1271) value.

Using this value as P1 in the generating µ-multiplicative pair attack, they find any P2-value

for the chosen µ-value.

They modify Demirci-Selcuk attack and get a chosen-ciphertext version of the attack. Then,

they use the modified version of the attack with their SDBC model to mount key recovery

attack against the ELmD oracle with AES6 as the underlying block cipher.

3.3. A Semi-Universal Forgery Attack against COLM

In [37], Forler et al. derive a new security approach for integrity of AEAD from an already

defined approach, called INT − CTXT . Then, they mount j − IV − CA attack various

AEAD schemes, including some of the 3rd round candidates of the CAESAR competition.

In their work, they mount semi-universal forgery attack against COLM. In their attack, first
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Figure 3.12 Generating δ-Difference Pairs by Bay et al.
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they recover the subkey L with the method in Section 3.2.1. In COLM oracle, AD-blocks

are mixed to each other by XOR-operation in the linear-mix layer. After the subkey L is

recovered, Forler et al. exploits the commutative property of the XOR-operation and output

alternative forgeries from each permutation of AD with the same PT after a single query.

Therefore, they release a!− 1 forgeries from a single query.

3.4. Forgery Attacks against and SEBC of COLM

As the final round of the CAESAR competition approaches, Vaudenay and Vizár analyze

and classify the candidates according to their resistance in [12]. They evaluate each of

the 15 candidates in terms of forgeries, decryption attacks and key recoveries. In their

evaluation, COLM is placed in most second resilient category. Besides the general evaluation

and classification, they mount two different L-recovery attack. Both of the attacks are

collision-based attacks, the first attack has a low probability of success and the second

attack is beyond birthday bound complexity. Moreover, they introduce three distinct types

of forgery attack, namely existential forgery, semi-universal forgery, and universal forgery.

Finally, they take advantage of structure of COLM to build a SEBC model of COLM.

3.4.1. L-Recovery Attack with Low Probability

In this attack, Vaudenay and Vizár mention that param input in the COLM algorithm is

constant and this attack is built on the assumption that 64 bits of a 128-bit value is guessed

correctly. They call this value B and assume that the last 64-bit of B is the same as the last

64-bit of 32 · L. For the remaining 64 bits, they conduct a collision attack based on birthday

paradox. The attack is mounted with the following steps;

1. Prepare a set of A0∥A1’s such that A0 = A1 ⊕B.

2. Observe a collision in the first CT -block of the queries.

3. Let the colliding blocks be ĈT1 and C̃T1 after the querying the blocks:

(N̂ , param, Â1,M) and (Ñ , param, Ã1,M).
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4. For the colliding blcoks solve the following equation to recover the L-parameter:

L = 3−2 · ((N̂∥param)⊕ (Ñ∥param)⊕B).

This attack works as follows, the collision in the 1st block of CT means that IV s collide,

too. Due to the commutative property of the linear-mix function of COLM’s AD-process,

one can deduce that

ÂA0 = ÃA1,

ÃA0 = ÂA1 ⇒

(N̂∥param⊕ 3 · L) = (Ã1 ⊕ 2 · 3 · L) and

(Ñ∥param⊕ 3 · L) = (Â1 ⊕ 2 · 3 · L).

Since N̂∥param⊕ Â1 = B. One can write;

(N̂∥param)⊕ (Ñ∥param)⊕ 32 · L = B ⇒

L = 3−2 · ((N̂∥param)⊕ (Ñ∥param)⊕B).

Success probability of this attack is 264 with 232 COLM encryption queries.

3.4.2. L-Recovery Attack Beyond Birthday Bound Complexity

This attack follows the same reasoning as the attack in Section 3.4.1 but unlike the previous

attack, it is a nonce misuse attack. For this attack, they build a nonce set and query the each

nonce with 2m different ADs. They prepare 2128−2m batches and within a batch, they keep

the nonce the same. The query data can be formulated as follows;

1. Choose 2128−2m nonces,

2. Choose 2m random two-block AD,
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3. Choose a constant M for all queries,

4. Query all (N i, Ai,j,M) for 0 ≤ i ≤ 2128−2m − 1 and 0 ≤ j ≤ m− 1,

5. Search for collision among the sets in which the same nonce is used i.e. search for

Ci,̂j, T i,̂j=Ci,̃j, T i,̃j ,

6. For the found collision recover the subkey L as in Section 3.4.1 from Ai,̂j , Ai,̃j blocks.

3.4.3. Existential Forgery against COLM

Vaudenay and Vizár generates AD − PT pairs with constant M1-block. After quering these

pais, they search for a collision in the C1-block. The C1 depends on IV and M1. For the

given set, a collision C1 blocks of two different queries implies collision in IV as the M1 is

kept constant. From the AD − PT pairs (N̂ , Â,M1, M̂2 and Ñ , Ã,M1, M̃2) that output the

same C1 block, the valid messages (N̂ , Â,M1, M̃2 and Ñ , Ã,M1, M̂2) can be forged.

3.4.4. Semi-universal Forgery against COLM

In this attack, they construct a set of data with random N and A but constant M . Then, they

query (N,A,M) until they find a collision such that Ci∥T i = Cj∥T j . After the collision

occur, they query (N i, Ai, M̂) for any given M̂ and obtain Ĉ∥T̂ and forge (N j, Aj, Ĉ, T̂ ).

3.4.5. Universal Forgery against COLM

In this attack, Vaudenay and Vizár modify A1 block to A2 ⊕ 3 · 6 ·L and A2 to A1 ⊕ 3 · 6 ·L

for any given AD − CT pair and release the resulting data as the a forged AD − CT pair.

3.4.6. SEBC Model of COLM

They built their SEBC model in two steps. The first step is a precomputation. In this step, a

set of 128 linearly independent CC blocks is aimed to be constructed. A query of 135 blocks
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Figure 3.13 1st Query of Vaudenay and Vizár’s SEBC Model

(see Figure 3.13) is increase the success probability of this step close to “1”. They use a

set named as chaining values in the precomputation and one can increase the number of the

chaining values until 128 linearly independent CC blocks are obtained. In the second step,

they find a subset of precomputed CC blocks whose sum ends up to 3−1 · (β ⊕ L) where β

is the target to be queried. After the state value is set to 0128 by choosing AA0 = AA1, the

remaining AA-blocks are set to blocks related to CC blocks in the calculated subset. Finally

MM1 blocks is set to be 0128 and α = EK(β) can be obtained as the MM1 block. This query

is shown in Figure 3.14. The precomputation is formulated as follows;

1. Set AA0 = AA1,

2. Set MM1 = 0128 for 1 ≤ i ≤ 135,

3. Observe that state (chaining) values are Wi = (2i − 1) · L for 0, 1, · · · ,

4. Yi values are 3 ·Wi−1 ⊕Xi = 2i−1 · L for 1, 2, · · · ,

5. CCi = EK(Yi) is the set aimed to be constructed in precomputation.

The online query of the attack is formulated as follows;

1. For a given β, calculate β′ = 3−1 · (β ⊕ L),

69



𝐸𝐾 𝐸𝐾

⋅⋅⋅

𝐸𝐾 𝐸𝐾

𝐸𝐾

𝜌 ⋅⋅⋅
𝑊′ 𝛼 = 𝐼𝑉 = 𝛽′

𝑀𝑀 1 = 0

𝐶𝐶 1 = 𝛼

𝑋 1 = 𝐿

𝑌 1 = 3 ⋅ 𝐼𝑉 ⊕ 𝐿 = 𝛽

𝑍[0] 𝑍[0] 𝑍[𝛼]

𝑊[1]𝑊′ 1 = 0

𝐴𝐴 0 𝐴𝐴 1 = 𝐴𝐴[0] 𝐴𝐴 𝛼 = 𝑀𝑀[ ǁ𝑖]

𝐸𝐾

𝐴𝐴 2 = 𝑀𝑀[෨1]

Figure 3.14 2nd Query of Vaudenay and Vizár’s SEBC Model

2. From CCi blocks find a linear solution of β′ by Gaussian elimination,

3. Let the index set î ⊆ i gives the solution
⊕

j∈̂iCCj = β′,

4. Set AA0 = AA1,

5. Set AAj+1 to jth element of the set î for 1 ≤ j ≤ |̂i|,

6. Query AA0∥AA1∥AA2∥ · · ·AA|̂i|+1∥MM1 = 0, for the MMî,

7. Observe that IV = β′ and Y1 = β,

8. Obtain Y Y1 = EK(β).

Recall that encryption oracle of COLM only uses the underlying block cipher in the

encryption direction. As a result, once an adversary is able to query the underlying block

cipher of COLM in encryption direction, she can forge CT and tag of any given AD − PT

pair.

3.5. DPA Protected Implementation of COLM

As being chosen to final portfolio of CAESAR competition, COLM has also drawn

attention of developers. When an encryption schemes without taking related security

measures, it might be at risk due to physical attacks aiming to jeopardize the cipher by
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attacking its implementation. In [46], Jahanbani et al. discuss application of the threshold

implementation (TI) and domain oriented masking (DOM) methods to COLM and verify

their countermeasures with t-test over the power traces.

Both TI and DOM are masking schemes aiming to secure operation by separating sensitive

data into shares. Designed approaches based TI resist first-order DPA attacks if the scheme

is designed with satisfying correctness, non-completeness and uniformity properties. DOM

is another masking schemes as secure as TI moreover it can be implemented in less area

and with less randomness. After the implementing the cipher with measures against attack,

the success of the implementations should be evaluated for this purpose, authors prefer to

conduct the first-order t-test instead of DPA. For DPA, the attacker is supposed to have

knowledge about the underlying architecture; on the other hand, in t-test, t-statistics are

calculated to distinguish two power traces. Although, this method does not lead to key

recovery, it shows if two systems can be distinguished from each other.

Protected implementation of COLM can be grouped into two parts;

1. Linear operations: Masking, finite field multiplications, etc,

2. Non-linear operations: S-Boxes.

For the linear operations, repeating the operation as the number of masks is enough; on

the other hand, the non-linear parts require complicated methods for masking. In the mask

implementation of COLM, the operations not placing in the underlying block cipher AES

are all linear operations; therefore, their masked implementations are straightforward. Since

the authors aim to make the implementation of a single mask, it is enough to implement all

of these operations twice.

The implementation of AES should be further investigated, since it still involves non-linear

operations. The TI protected implementation of AES S-Box involves converting the

operations in GF (28) into GF (24) because in GF (28) the degree of S-Box is seven,

requiring eight shares, and it becomes infeasible. On the other side, implementing the
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S-Box operations in GF (24) is not straightforward and requires to define fresh random

bits. After defining 40 fresh random bits per S-Box, AES S-box can be implemented with

a mixture of 2-3 shares and defining three multiplications and a single inversion operation

in GF (24). For the DOM protected implementation of AES S-Box, also the field should be

reduced to GF (22). DOM implementation also requires pipelined structure not to reduce the

throughput. DOM protected implementation requires 18 fresh random bits per SBox. When

the AES implemented in an 8-bit architecture by utilizing a TI/DOM protected SBox, the

key and the message are masjed into as follows; k1 = mk, k2 = mk ⊕ k, d1 = md and

d2 = md ⊕ d, here mk and md are masks for the key k and the data d, respectively. Single

AES block encryption takes 246 clocks and 205 clocks in DOM-protected implementation

and in TI-protected implementation, respectively.

The authors implement the protected and unprotected designs of COLM for practical

benchmark comparison. In the unprotected COLM implementation, |t| value for a

non-specific t-test is calculated to be more than 4.5 for the total number of 18000 traces.

For the protected setup, t value is calculated for a second order t-test additionally to a

non-specific t-test. The authors observed that for 18000 samples, both the TI-protected

implementation with hybrid 2-3 shares and DOM-protected implementation with 2 shares

pass the t-test. But unfortunately, both TI-protected and DOM-protected implementations

fail from the second-order t-test as both implementations are expected to resist against only

first-order DPA attacks.

In the study, the authors also note that DOM protected implementation of COLM requires

2.13 times more area to be implemented and produces 1.87 times less throughput than

unprotected implementation, TI protected implementation of COLM requires 2.25 times

more area to be implemented and produces 1.47 times less throughput than unprotected

implementation.
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3.6. Pipelined Hardware Implementation of COLM

As the winner of the CAESAR competition, COLM and its variants, COPA and ELmD,

have attracted the attention of researchers for implementation methods. In [1], Bossuet et al.

implemented COLM, COPA, and ELmD pipelined and compared the performance of these

implementations. From the implementation aspect, the authors divide the whole algorithm

into the following components;

1. Interface: inputs, outputs and controls,

2. AES: the underlying block cipher (two cores: one for encryption, one for decryption),

3. Encryption: 2 pipelined AES cores,

4. Mult (x2): shift and modular reduction

5. ρ, ρ−1: Mult (x2) and XORs

6. Masking:

(a) 2 Mults x2

(b) register

(c) XORs

Among these, implementation components, the interface operations, mult (x2) function,

ρ, ρ−1 operations and masking functions are single clock operations and they do not require

any strategy. On the other hand, AES and encryption components are complex operations

and they are the points where the study focus.

For the main component of the implementation, AES, the authors condider two strategies;

1. Round based: A single round is implemented and iterated 10 times with a seperation

at the last round to avoid MixColumn operation. A single block encryption takes ten

clocks.
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2. Pipelined: All of 10 rounds are cascaded to each other and the next round is fed

by the output of the previous round. Although the latency is 10 clocks in pipelined

implementation after the first output, it is possible to output in each clock cycle.

The authenticated encryption schemes in the subject family can be paralleled at a certain

level. All blocks of the inputs can be computed in parallel until the linear-mix layer and

after the linear-mix layer is performed sequentially, the remaining operations can further be

performed in parallel. All of the parallel operations involve AES encryption, this means that

there can be multiple implementations of AES cores in the design.

On the system level, the authors divide the algorithm in three parts;

1. Associated Data Processing: In this step, three operations;

• the linear masking,

• the ECB layer,

• the output accumulation

are conducted. The input of the ECB layer are independent to each other, therefore only

necessary condition for implementing pipeline architecture is to generate the masking

value of each block in each clock cycle.

2. Encryption: Five operations take place in this part;

• the first masking,

• the first ECB,

• the linear mixing,

• the second ECB,

• the final masking.

For an effective solution, the ECB cores required to be implemented in seperate

pipeline cores.
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AEAD FFs LUTs Slices Latency (CCs)
COPA 8067 32770 8875 46+(d+l)
ELmD 5677 16959 5163 35+(d+l)
COLM 8243 32593 9076 35+(d+l)

AEAD Freq. (MHz) Throughput (Gb/s) TPA
COPA 265.89 34.03 3.83
ELmD 276.01 35.33 6.84
COLM 260.45 33.34 3.67

Table 3.1 The properties of COPA, ELmD and COLM from [1]

3. Masking and Mixing Function: Whitening masks can be generated in iterative for

as a finite field multiplication by 2 to give a valid mask for each clock cycle. Also

when necessary, multiple multipliers can be used to generate multiple masking values.

Mixing functions are also single clock cycle operations; however, mixing operation for

each block has to wait for the process of the all previous blocks. Therefore, they can

be implemented simply sequential.

In a block level view, the design is implemented as in Figure 3.15. Being a 10-round cipher,

AES core is expected to last 10 clock cycles. The additional clock in the Figure 3.16 is

consumed for the input selection of the AES operation. The overall time consumption of the

system is illustrated in Figure 3.16. The required time for COLM Encryption and COLM

Decryption is nearly equal to each other, the only required difference occur at the stage of

tag verification. Due to tag verification the decryption process last 13 clock cycles longer as

illustrated in Figure 3.16. Also for COLM Encryption and COLM Decryption operations,

AES Encryption and AES Decryption cores should be implemented seperately. For the other

operations the same structures can be used in different order. In Table 3.1, implementation

properties of COPA, ELmD and COLM are listed for 10-round AES, 128-bit tag length and

no intermediate tags settings. When the results on the table are compared, it is easily seen

that ELmD has a bigger advantage than COPA and COLM in terms of source usege. This

advantage comes from the fact that ELmD encryption and decryption can be built on the

same structure unlike to COPA and COLM.
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Figure 3.15 Block-Level Pipelined COLM Implementation

76



L L

M
M
[1
]…

M
M
[l]

M
[1
]…

M
[l]

C[
1]
…
C[
l+
1]

A[
0]
…
A[
d]

C[
1]
…
C[
l]

IV

Y[
1]
…
Y[
l]

X[
1]
…
X[
l]

A[
0]
…
A[
d]

M
[1
]…

M
[l+

1]

IV

X[
1]
…
X[
l+
1]

Y[
1]
…
Y[
l+
1]

CC
[1
]…

CC
[l+

1]

12
23

23
+d

35
+d

35
+d

+l
+1

12
23

23
+d

35
+d

35
+d

+l
59

+d
+l

Figure 3.16 Clock Consumption of COLM Encryption/Decryption for d-block AD and l-block
Message (The Red Scanned Area is the Additional Time Required for Tag Verification

77



3.7. Persistent Fault Attack against COLM

3.7.1. Fault Attacks

The fault attack is first introduced by Boneh et al. in [51]. Today, three types of fault attacks

are considered in the literature. These attack are;

1. Transient Fault Attack

2. Persistent Fault Attack

3. Permanent Fault Attack

In transient fault attack, the error is injected while the algorithm is running. The effect of

transient fault attack disappears in the coming runs of the algorithm. To perform the transient

fault attack and observe its effect, the same error should be injected at the same time to same

point. Therefore, it might be hard to perform since it requires high level of consistency and

synchronization. In permanent fault attack, the error is injected to a cell permanently such

EEPROM and either the algorithm or data is changed permanently. The persistent fault attack

is in between transient and permanent fault attack. The fault is injected during compilation or

synthesis. In this type of attack, the injected fault continues among the encryption processes;

on the other hand, when the device is rebooted or the algorithm is recalled from storage, the

fault disappears. The persistant fault attack is introduced by Zhang et al. in [52].

3.7.2. Persistent Fault Attack against AES

In [52], Zhang et al. change a single bit in the S-Box of a hardware AES implementation

and observe its effect at the output. Cryptographic algorithms have desirable randomness

properties when generating data. Therefore; when various data is encrypted in the long run,

all possible values are expected to appear with same property. Each byte at the last round

of AES can be modelled as in Figure 3.17. As can be inferred from Figure 3.17, after the

78



S𝑥𝑗
𝑦𝑗

𝑘𝑗

𝑐𝑗

Figure 3.17 Representation of Each Byte in Final Round of AES

error is injected according to PFA model, for each byte, the modified S-Box output (let it be

Bold) is expected to disappear and its new value (let it be Bnew) is expected to appear twice

as other values. This change in the distribution of S-Box effects the resulting CT as follows;

in the jth byte of the output, the value Bold ⊕ kj is expected not to appear on the other hand

the value Bnew ⊕ kj is expected to appear twice as other values, where kj is the jth byte of

the last round key.

By considering effect of the corrupted S-Box output, three methods can be used to extract

the kjs. These methods are

1. After enough number of erroneous encryption for the missing CT -byte, the following

equation can be solved:

kj = Bold ⊕ CTjmissing

2. After enough number of erroneous encryption for the appearing CT -byte, the

following equation can be used to eliminate impossible key candidates:

kj ̸= Bold ⊕ CTjmissing

3. After enough number of erroneous encryption for the CT -byte appearing as twice as

others, the following equation can be solved to determine the key:

kj = Bnew ⊕ tmax

The first and second methods are determined methods, contrarily the third method is a

probabilistic method. Therefore, the third method requires more erroneous queries than the
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first two methods. Another difference between these methods is that in the first two methods,

the adversary has to know which S-Box value she changes, on the other hand in the last

method she has to know the new value of the modified S-Box.

3.7.3. Mounting PFA against COLM

In case of COLM, the whitening mask is XORed to output of the AES block. Therefore,

observing a single CT -block is not enough to mount PFA against COLM. Therefore, the

attacker is supposed to use at least two CT -blocks to mount the attack.

In [39], the authors mount the attack in the encryption stage of COLM. In the encryption

stage, the whitening mask is derived from the subkey L2 = 32 · EK(0) and for the ith-block

the whitening mask is 2i · L2. Therefore, the ith block of CT can be formulated as;

CTi = B ⊕ k ⊕ 2i · L2,

where B is the output of the last SBox, k is the last round key and 2i · L2 is the whitening

key for the ith block. From each missing byte of CTi block the k ⊕ 2i · L2 = Bold ⊕ CTi.n

is calculated. By applying the same process to the CTi+1 output block k ⊕ 2i+1 · L2 =

Bold ⊕ CT(i+1).n is calculated.

Let the calculated k⊕2i value be denoted as Ri and the calculated k⊕2i+1 value be denoted

as Ri+1. From Ri and Ri+1 the last round key k can be calculated from the formula:

k = 3−1 · (2 ·Ri ⊕Ri+1).

3.8. On misuse of nonce-misuse resistance

In [40], Khairallah et al. mounted differential fault attacks against AES-based CAESAR

winners. Differential fault attack is a sort of transient fault attack in which the attacker first

encrypts the fault-free message then she injects fault at an intermediate point of the cipher
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and observes the difference between the output of the fault-free and fault-injected ciphertext.

In AEAD schemes, in the decryption stage, the oracle is expected not to release the plaintext

unless the tag is verified. Therefore, the authors conduct the attack in the encryption stage

as a nonce-misuse attack. The presence of the whitening mask makes the DFA attack more

challenging as in the PFA attack in [39]. Consequently, the authors of [40] carry out the

attack using two output blocks.

For both blocks, the authors chose the inject the fault before the diffusion layer in Round

8. To observe the effect of the fault, the authors define the Joint Difference Distribution

Table (JDDT ). The purpose of the JDDT is to precompute and store the potential

propagation paths of all four affected bytes and to analyze them simultaneously from their

joint differential properties. Figure 3.18 illustrates the propagation of the injected fault in

Round 8 through the Round 9 and Round 10. As can be observed from the Figure 3.18,

the injected fault propagates deterministically through linear layer of Round 8. After the

probabilistic change of the difference in the S-layer of Round 9, the result propagates further

through Round 9 and after Round 10 the difference ends up 4 groups of 4 bytes each having

≈ 28 candidates for the value Ai = K10 ⊕WMi. In total there will be ≈ 232 candidates for

the Ai value on average. However, the WMi is also not known, therefore, it is impossible

to retrieve information from single block. When the fault is injected into two consecutive

blocks, the attacker obtains the following two equations:

Ai = K10 ⊕WMi,

Ai+1 = K10 ⊕WMi+1,

here WMi = 2 ·WMi+1.

As it can be seen from the Figure 3.18, for each of the 4 groups, the equations similar to

below (equations for the 3rd column as an example) can be written for the difference in each
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Figure 3.18 Illustration of Adaptive Differential Fault Analysis

block:

A[31 : 0] = K10[127 : 120]∥K10[23 : 16]∥K10[47 : 40]∥K10[71 : 64]

⊕ WMi[127 : 120]∥WMi[23 : 16]∥WMi[47 : 40]∥WMi[71 : 64] (3)

B[31 : 0] = K10[127 : 120]∥K10[23 : 16]∥K10[47 : 40]∥K10[71 : 64]

⊕ WMi[126 : 119]∥WMi[22 : 15]∥WMi[46 : 39]∥WMi[70 : 63] (4)

From Equation 3 and Equation 4, 32 equations can be written of 36 variables for each group.

Besides, for each group 216 equation systems can be written resulting in 220 candidates in

total. When the results of the four groups are combined with each other, the attacker ends

up with 280 full key candidates. It is not practical identify the key among these amount of

candidates. Therefore, the authors decide to mount the attack with injecting the third fault

to the next block. As a result of the injected third fault, the authors arrive at the following
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equation:

C[31 : 0] = K10[127 : 120]∥K10[23 : 16]∥K10[47 : 40]∥K10[71 : 64]

⊕ WMi[125 : 118]∥WMi[21 : 14]∥WMi[45 : 38]∥WMi[69 : 61] (5)

When Equation 4 and Equation 5 are considered together under the assumption that false

positives are distributed uniformly, it is expected that number of key candidates reduce to 232.

Furthermore, the candidate keys can be filtered out by considering Equation 3 and Equation

5. After the final filter, it is expected that only one or zero incorrect key candidates remains

for each group. It is expected to have 16 key candidates for the full key. These remaining

key candidates can be eliminated by brute-force and the correct key can be recovered.

When the authors verified their analysis experimentally in software, they achieved to recover

the correct key. However, the final intersection set involves more than 1 suggestions, due

to the selection of the free variables, the suggested solution was equal to the correct key.

Authors also note that with the help of the JDDT table, the time complexity of the analysis

is O(nlogn), where n ≈ 220.

3.9. RUP Attacks against COLM

In [38], Datta et al. investigate the release of unverified plaintext integrity of COLM. When

designing COLM, the designers decided to XOR all input blocks to calculate the M [l]-block

despite the antecedents of COLM. In this study, Datta et al. study a special version of COLM

in which this modification is omitted.

In the study, they figure out that ELmD/ELmE structured authenticated encryption schemes’

resistances against RUP attacks strongly depend on the linear mixing function ρ. Therefore,

in their work, the linear mixing function of COLM is analyzed in its general case as;

ρ(X,W ) = (Y,W ′) = (a ·X ⊕ b ·W, c ·X ⊕ d ·W ).
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((a, b, c, d) values are chosen as (1, 1, 1, 1) in COPA and (1, 3, 1, 2) in ELmD and COLM.)

In the study, the following three attack settings are considered;

• XOR as linear mixing function under nonce-respecting setting

• a ρ alike function as linear mixing under nonce-ignorant setting

• a ρ alike function linear mixing under nonce-respecting setting

3.9.1. Nonce-Respecting INT-RUP Attack for XOR-Mixing

In this setting, they show that an attacker is able to compromise the integrity of the cipher

only within a single encryption query and 2 decryption queries.

In the attack scenario, the adversary A first makes the following query;

(C∗
1 , . . . C

∗
l , T

∗) = EK(N∗, A∗,M∗
1 , . . .M

∗
l ).

From this query, A targets to construct a new ciphertext

(N∗, A∗, C1, . . . Cl, T
∗)

such that the following equalities match:

Cl = C∗
l , (6)

l⊕
i=1

Mi =
l⊕

i=1

M∗
i . (7)

For the AdversaryA, it is enough to find ciphertext matching only these inequalities, because,

as it can be seen from Figure 2.1, the last XOR-operation is built on the following equality:
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DK(C
∗
l ⊕ 2lL)⊕DK(T

∗ ⊕ 2l−17L) = EK(
l⊕

i=1

M∗
i ⊕ 2l−132L). (8)

When the attacker achieves to construct a PT -CT pair satisfying the equalities 6 and 7, the

constructed PT -CT pair naturally will satisfy the equality 8.

The authors demonstrate how to construct such a PT -CT pair with the following steps:

• Choose l/2, n-bit strings C0
i , C1

i such that C0
i , C1

i and C∗
i are mutually distinct for

i ∈ 1, 3, . . . , l − 1 and define the following CT s:

C0 = C0
1C

∗
2C

0
3 . . . C

∗
l−2C

0
l−1C

∗
l

C1 = C1
1C

∗
2C

1
3 . . . C

∗
l−2C

1
l−1C

∗
l

• In this step, the authors make the RUP assumption and presume the following PT s

leak; even though, they are not verified.

M∗,0
1 M0,∗

2 M∗,0
3 . . .M∗,0

l−1M
0,∗
l ← DK(N

∗, A∗, C0),

M∗,1
1 M1,∗

2 M∗,1
3 . . .M∗,1

l−1M
1,∗
l ← DK(N

∗, A∗, C1),

As explained in Section 2.7.1, Mi block can be calculated from Cl−1 and Cl blocks.

• From the leaked M -blocks a valid but illegitimate plaintext can be constructed holding

the following equation:
l⊕

i=1

M
bi−1,bi
i =

l⊕
i=1

M∗
i

This equality can be solved with probability 1− 2n−l/2 by Gaussian elimination.

• Finally, the following forgery ciphertext can be output:

(N∗, A∗, Cb1
1 . . . C

bl−1

l−1 C
bl
l , T

∗)
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3.9.2. Nonce-Misuse INT-RUP Attack for Generalized XOR-Mixing

In this attack, the authors generalizes the formulation of ρ and lose the ease coming from

the XOR-operation. Therefore, to generate a collision in an intermediate state, they have

to make additional encryption queries with the same nonce. In this attack, they aim to find

a intermediate block independent of the some previous known blocks. To mount the attack,

they make the following queries (in the queries tags are not shown);

C0
1C

0
2C

0
3 ← EK(N,A,M0

1 ⋆ ⋆),

M1
1M

1
2M

1
3 ← DK(N,A, ⋆C0

2⋆),

M2
1M

2
2M

2
3 ← DK(N,A, ⋆ ⋆ C0

3),

C3
1C

3
2C

3
3 ← EK(N,A, ⋆M1

2M
2
3 ),

(⋆ represents any n-bit value). After these queries, the authors observe that the intermediate

block W 3
3 of the last query is independent of the previously chosen and known M0

1 block.

They show this by expanding the formula of W 3
3 block till W0.

W 3
3 = c ·X3

3 ⊕ cd ·X3
2 ⊕ cd2 ·X3

1 ⊕ d3 ·W0 (9)

(Notice that, the last term is W0, because N and A are the same in all four queries).

In the last query, the second and the third blocks are chosen from the result of the first query

to make X3
2 = X1

2 and X3
3 = X2

3 . In a similar manner, the second block of the second query

and the third block of the third query are chosen from the result of the first query. Therefore,

the equalities Y 1
2 = Y 0

2 and Y 2
3 = Y 0

3 also hold. This yields to

X3
3 = X2

3 = a−1 · (Y 2
3 ⊕ b ·W 2

2 ) = a−1 · (Y 0
3 ⊕ b ·W 2

2 ),

X3
2 = X1

2 = a−1 · (Y 1
2 ⊕ b ·W 1

1 ) = a−1 · (Y 0
2 ⊕ b ·W 1

1 ),
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W 3
3 = a−1c · (Y 0

3 ⊕ d · Y 0
2 )⊕ a−1bc ·W 2

2 ⊕ a−1bcd ·W 1
1 ⊕ cd2 ·X3

1 ⊕ d3 ·W0,

W 3
3 = c ·X0

3 ⊕ a−1c(bc⊕ ad) ·X0
2 ⊕ a−1bc ·W 2

2 ⊕ a−1bcd ·W 1
1 ⊕ cd2 ·X3

1 ⊕ d3 ·W0.

In the last equation, all components of the W 3
3 are independent of M0

1 .

In the next step, the authors construct two different 3-block messages M1M2M3 ̸= M ′
1M

′
2M

′
3

whose final states satisfy W3 = W ′
3 to two distinct messages with M0

1 ̸= M0′
1 , M0

2 = M0′
2

and M0
3 = M0′

3 . The resulting messages are

M1M2M3 := M3
1M

1
2M

2
3

M ′
1M

′
2M

′
3 := M3

1M
1′

2 M2′

3 .

In the last step of their attacks, the authors show that the adversary A can make 4l/3 + 1

encryption queries and 4l/3 + 1 decryption queries, each of length at most l blocks to forge

the output (N,A,C1
b1
. . . Cµ

bµ
, T ) with probability p ≥ 1 − 2n−l/3, where l, n ≥ 1 and

l ≥ 3n. They start the construction by generalizing the collision condition at W0 to each W3l

by applying their observation in Equation 9 to each 3-block chunks. After constructing two

different n-chunk messages blocks by applying their method to construct message blocks

having W3l = W ′
3l. They show that an output can be forged with probability 1− 2n−µ due to

the following equation:

µ⊕
i=1

M bi
3i−2 ⊕M bi

3i−1 ⊕M bi
3i =

l⊕
i=1

Mi.

Satisfying this equation is necessary for the tag T to hold.

3.9.3. Nonce-Respecting INT-RUP Attack for Generalized XOR-Mixing

In the last part of their studies, the authors construct a method to forge a ciphertext for

any ρ-function in nonce-respecting setting. The attack conditions are stringent, the required

length of the forged ciphertext is longer than the previous attacks. The message is required
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to be at least n2 blocks, where n is the block length. Since the this attack is mounted in

nonce-respecting setting, and in an encryption query interfering the nonce may result in

unrecoverable randomness in the query, the authors avoid the encryption queries and build

the attack from the decryption queries. To begin with, the authors make the two following

unauthenticated queries:

M0
1 . . .M

0
n+1 ← DK(N,A,C0

1C
0
1 . . . C

0
1),

M1
1 . . .M

1
n+1 ← DK(N,A,C1

1C
0
1 . . . C

0
1),

From these queries, the authors show that a valid plaintext-ciphertext pair can be constructed

such that

C2
1 . . . C

2
n+1 ← EK(N,A,M21

1 . . .M
2n+1

n+1 )

where

2i =


0 i ∈ I0

1 i ∈ I1

and there is collision in the n+1st intermediate values in the second (W 1
n+1) and third (W 2

n+1)

query. To construct the solution, the authors also append the value 1 in the set I0. Then, they

write the n + 1st intermediate value of the third query (W 2
n+1) in terms of the encrypted

plaintext blocks Xi’s such as;

W 2
n+1 = dn+1W0 ⊕ cdnX21

1 ⊕ · · · ⊕ cdXn
n ⊕ cX

2n+1

n+1
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Then, they rewrite the same equation in terms of Y -intermediate values (the intermediate

values to be encrypted to calculate the CT -blocks).

W 2
n+1 = dn+1W0

⊕ a−1cdn(Y 21
1 ⊕ bW0)

⊕ a−1cdn−1(Y 22
1 ⊕ a−1bcY 22

1 beW0)

⊕ · · ·

⊕ a−1cd(Y 2n
n ⊕ a−1bcY 2n

n−1 ⊕ · · · ⊕ a−1bcen−2Y 2n
1 ⊕ ben−1W0

⊕ a−1c(Y 2n+1
n+1 ⊕ a−1bcY 2n+1

n ⊕ · · · ⊕ a−1bcen−1Y
2n+1

1 ⊕ benW0

In this equation, e = a−1bc ⊕ d and a, b, c, d ̸= 0. In the next step, the equation is arranged

in the form:

W 2
n+1 =

n+1⊕
i=2

(
n−i⊕
j=0

a−2bc2djen−i−j ⊕ a−1cdn+1−j)Y 0
i

⊕ Ξ0 · Y 0
1 ⊕ Ξ1 · Y 1

1

⊕ (a−1bcen ⊕ a−1bcden−1 ⊕ · · · ⊕ a−1bcdn ⊕ dn+1)W0.

Here,

Ξ0 :=
⊕

i∈I0\{1}

a−2bc2dn+1−iei−2 ⊕ a−1cdn,

Ξ1 :=
⊕
i∈I1

a−2bc2dn+1−iei−2

= Ξ0 ⊕ (
n−1⊕
j=0

a−2bc2djen−1−j ⊕ a−1cdn).

Note that, the last term of the Ξ0 equation (a−1cdn) comes from the excluded element ({1})

of the set I0.
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Following the same steps W 1
n+1 can be written as:

W 1
n+1 =

n+1⊕
i=2

(
n−i⊕
j=0

a−2bc2djen−i−j ⊕ a−1cdn+1−j)Y 0
i

⊕ (
n−i⊕
j=0

a−2bc2djen−1−j ⊕ a−1cdn)Y 1
i

⊕ (a−1bcen ⊕ a−1bcden−1 ⊕ · · · ⊕ a−1bcdn ⊕ dn+1)W0.

When the two intermediate values W 1
n+1 and W 2

n+1 XORed to each other, the following

result is obtained;

W 1
n+1 ⊕W 2

n+1 = Ξ0 · (Y 0
1 ⊕ Y 1

1 ).

In the next step, they define a new variable f = ed−1 and write the following equation:

ac−1d−nΞ0 =
⊕

i∈I0\{1}

a−1bcd−1(a−1bcd−1 ⊕ 1)i−2 ⊕ 1

=
⊕

i∈I0\{1}

(f ⊕ 1)f i−2 ⊕ 1.

The rest of the solution reduces to showing there exists a subset I ′0 ⊆ {0, . . . , n − 1} such

that ⊕
i∈I′0

f i = (f ⊕ 1)−1.

This subset gives the solution for a collision in the intermediate values W 1
n+1 and W 2

n+1.

The above operations show that in the nonce-respecting setting, for the generalized

ρ-function, it is possible to find a collision between Wn+1 intermediate blocks of two RUPs.

In Section 3.9.2, it has already been explained that to forge a ciphertext with probability

p ≥ 1 − 2n−l/(n+1, the adversary is required the find l colliding intermediate states, where

l ≥ (n + 1)n. Therefore, one can conclude to result that for generalized ρ-function, in the

nonce-respecting scenario the adversary A has to make 2 decryption queries length of n+ 1

blocks to find a collision for each intermediate values. As it is necessary to find n collisions

90



to forge the ciphertext, the adversary has to make 2(n+1) decryption queries of length from

n+ 1 to n(n+ 1), accordingly. Then the forged ciphertext

(N,A,C1
b1
. . . Cµ

bµ
, T )

can be output.
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𝐸𝐾

𝐸𝐾

𝜌

𝐸𝐾

𝐸𝐾

𝜌
𝐼𝑉 = 0

𝑀𝑀 1 = 0 𝑀𝑀 2 = 7 ⋅ 3 ⋅ 2 ⋅ 𝐿

𝑋 1 = 𝐿 𝑋 2 = 𝐸𝐾 𝑀𝑀[2]

𝑊 1 = 𝐿

𝑌 1 = 𝐿 𝑌 2 = 𝑋 2 ⊕ 3 ⋅ 𝐿

𝐶𝐶 1 = 𝐸𝐾(𝐿) 𝐶𝐶 2 = 𝐸𝐾 𝑌[2]

⋯

Figure 4.1 Encryption Phase of Obtaining S = DK(0)

4. How to Recover S = DK(0) through an Existential

Forgery

Our principal goal is to recover S = DK(0), the decryption of the zero-vector for the

underlying block cipher of COLM, to mount both the tag guessing and plaintext recovery

attacks. Furthermore, it is a milestone as being the first step of the simulation models of both

the encryption (see Section 5.2) and the decryption (see Section 5.1) oracles of the underlying

block cipher. To recover S, we need to make decryption query of the AEAD-scheme. We

further extend the decryption query to a universal decryption query in Section 6, Section 7

and Section 8. Recall that it is much more difficult to query an AEAD structure in decryption

direction since one needs the valid tag for the query. To the best of our knowledge, this

is the first work making an existential forgery that discloses plaintext-ciphertext pair from

the underlying block cipher of an authenticated EME/EMD scheme. We remind that the

simulation of underlying block cipher attacks in [11] and [12] make encryption queries of

the AEAD-schemes, ELmD and COLM, respectively.

Theorem 4.1 states how to recover S = DK(0) with an existential forgery attack. Figure 4.1

and Figure 4.2 depict how to recover S = DK(0). For simplicity, we take MM [1] = 0 in

Figure 4.1 and the tag verification is illustrated by using M̃M ′[3] in Figure 4.2. The proof

of Theorem 4.1 uses Lemma 4.2, Proposition 4.3 and Theorem 4.4. Therefore, we give the

proof as a separate section.
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𝐷𝐾

𝐷𝐾

𝜌−1

𝐷𝐾

𝐷𝐾

𝜌−1
෪𝐼𝑉 = 0

෪𝐶𝐶 1 = 𝐿 ෪𝐶𝐶 2 = 𝐶𝐶[1]

෨𝑌 1 = 0 ෨𝑌 2 = 𝑌[1]

෩𝑊 1 = 𝐼𝑉

෨𝑋 1 = 0 ෨𝑋 2 = 𝑋[1]

෪𝑀𝑀 1 = 𝐷𝐾 0 = 𝑆 ෪𝑀𝑀 2 = 𝑀𝑀 1

෩𝑊 2 = 𝑊 1

𝐸𝐾

𝐸𝐾

𝜌
෪𝑊′ 2 = 𝑊 1

෫𝑀𝑀′ 3

෩𝑋′ 3 = 𝑋[2]

෩𝑌′ 3 = 𝑌[2]

෪𝐶𝐶′ 3 = 𝐶𝐶[2]

Figure 4.2 Decryption Phase of Obtaining S = DK(0). Note that the tag is verified since
M̃M ′[3] = MM [1]⊕ 7 · 3 · 2 · L = MM [2].

Theorem 4.1. Let CC[1]∥CC[2] be the CT of AA[0]∥AA[1]∥MM [1]∥MM [2] where

AA[0] = AA[1] and MM [1] ⊕MM [2] = 7 · 3 · 2 · L. Then C̃T = L∥CC[1] is a valid

ciphertext with AA[0]∥AA[1] as ÃD and CC[2] as the tag. Moreover, the first block of its

plaintext is M̃M [1] = S = DK(0).

4.1. Proof of Theorem 4.1

Theorem 4.1 has two claims. The former is that C̃T is a valid ciphertext and the latter is

S = DK(0) = M̃M [1].

We introduce three statements to prove these claims. The first statement is Lemma 4.2 where

we show a method to satisfy W̃ [l−1] = IV . In Proposition 4.3, we introduce how to produce

the tag of a set of C̃T s under the condition W̃ [l − 1] = IV . We combine Lemma 4.2 and

Proposition 4.3 to produce a forged C̃T with a valid tag in Theorem 4.4.

Lemma 4.2 exploits a property of the inverse of the linear operator, ρ−1, to satisfy W̃ [l−1] =

IV .
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𝑊 0 = 𝐼𝑉

𝐷𝐾

𝑛𝑜𝑡 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑒𝑑

𝜌−1

𝐶𝐶 1 = 𝐴

𝑌 1 = 𝐷𝐾(𝐴)

𝐷𝐾

𝜌−1

𝑌 2 = 0

𝐶𝐶 2 = 𝐿

𝑊 1 = 𝐼𝑉 ⊕𝐷𝐾(𝐴) 𝑊 2 = 𝐼𝑉 ⊕𝐷𝐾(𝐴)

𝑛𝑜𝑡 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑒𝑑

𝐷𝐾

𝑛𝑜𝑡 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑒𝑑

𝜌−1

𝐶𝐶 3 = 𝐴

𝑌 3 = 𝐷𝐾(𝐴)

𝑊 3 = 𝐼𝑉

Figure 4.3 An Example of Lemma 4.2, CC[2] = L doesn’t have any effect on state value and
CC[3] = A compensates effect of CC[1] = A.

Lemma 4.2. For any l-block CT whose initial value is IV and whose CC[i] blocks take any

value, except L = EK(0), even number of times for 1 ≤ i < l then W [l − 1] = IV . (An

example is illustrated in Figure 4.3)

Proof. Let CT be a ciphertext of l blocks such that its CC[i] blocks take any value, except

L = EK(0), even number of times for 1 ≤ i < l. That is, for any given i < l if CC[i] ̸= L

then ∃j ̸= i such that CC[i] = CC[j] and the number of j < l satisfying this equality is

odd. This simply implies that the Y [i] blocks take a value except DK(L) = 0 even number

of times for 1 ≤ i < l. On the other hand, W [l − 1] =
⊕l−1

i=1 Y [i]
⊕

IV . Hence one can

deduce W [l − 1] = IV since nonzero Y [i]s will vanish pairwise.

The following statement provides us a method to produce the tag of a set of C̃T s where

W̃ [l − 1] = IV by using the first two CT blocks of a chosen PT of at least two blocks.

Proposition 4.3. Let a given plaintext PT be encrypted with an initial value IV and the

first two blocks of the produced CT be CC[1] and CC[2]. Assume MM [1] ⊕ MM [2] =

7 · 3 · 2l−1 · L. Then any forged l-block C̃T whose W̃ [l − 1] = IV and C̃C[l] = CC[1] has

the valid tag C̃C[l + 1] = CC[2]. (See Figure 4.4.)

Proof. Let a plaintext PT be given such that MM [1] ⊕MM [2] = 7 · 3 · 2l−1 · L. Assume

CC[1] and CC[2] are the first two blocks of the produced CT by encrypting the PT with
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𝐸𝐾

𝐸𝐾

𝜌

𝐸𝐾

𝐸𝐾

𝜌
𝐼𝑉

𝑀𝑀 1
𝑀𝑀 2
= 𝑀𝑀 1 ⊕ 7 ⋅ 3 ⋅ 2𝑙−1 ⋅ 𝐿

𝑋 1
= 𝐸𝐾 𝑀𝑀[1]

𝑋 2
= 𝐸𝐾 𝑀𝑀[2]

𝑊 1 = 𝑋[1] ⊕ 2 ⋅ 𝐼𝑉

𝑌 1
= 𝑋[1] ⊕ 3 ⋅ 𝐼𝑉

𝑌 2
= 𝑋 2 ⊕ 3 ⋅ 𝐿

𝐶𝐶 1 = 𝐸𝐾(𝑌[1]) 𝐶𝐶 2 = 𝐸𝐾 𝑌[2]

⋯

𝐷𝐾

𝐷𝐾

𝜌−1

𝐸𝐾

𝐸𝐾

𝜌

෩𝑊[𝑙 − 1]
= 𝐼𝑉

෪𝐶𝐶 𝑙
= 𝐶𝐶[1]

෨𝑌 𝑙
= 𝑌[1]

෨𝑋 𝑙 + 1
= 𝑋[2]

෩𝑊 𝑙 = 𝑊[1]

෨𝑋 𝑙
= 𝑋[1]

෨𝑌 𝑙
= 𝑌[2]

෪𝑀𝑀 𝑙 = 𝑀𝑀 1 ෪𝐶𝐶 𝑙 + 1
= 𝐸𝐾 𝑌[2] = 𝐶𝐶[2]

෫𝑀𝑀′ 𝑙 + 1

= ෪𝑀′ 𝑙 + 1 ⊕ 7 ⋅ 2𝑙 ⋅ 𝐿
= 𝑀𝑀 1 ⊕ 7 ⋅ 3 ⋅ 2𝑙−1 ⋅ 𝐿
= 𝑀𝑀[2]

෩𝑊 𝑙 = 𝑊[1]

Figure 4.4 Illustration of Proposition 4.3

IV . Let a forged l-block C̃T have C̃C[l] = CC[1] and C̃C[l + 1] = CC[2]. Observe that

M̃M [l] = DK(DK(C̃C[l])⊕ 3 · W̃ [l − 1])

= DK(DK(CC[1])⊕ 3 · IV )

= MM [1]

if W̃ [l − 1] = IV . Similarly M̃M [l + 1] = MM [2]. Therefore the tag is valid since

MM [1]⊕MM [2] = 7 · 3 · 2l−1 · L.
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We can combine Lemma 4.2 and Proposition 4.3 to produce a forged C̃T with the valid tag

which is stated by Theorem 4.4.

Theorem 4.4. Let a given plaintext PT be encrypted with the initial value IV and the first

two blocks of the produced CT be CC[1] and CC[2]. Assume MM [1] ⊕MM [2] = 7 · 3 ·

2l−1 · L. For any forged l-block C̃T whose C̃C[i] blocks take any value, except L = EK(0),

even number of times for 1 ≤ i < l, if C̃C[l] = CC[1] and C̃C[l + 1] = CC[2], then C̃T

with IV is a valid ciphertext.

Proof. For an encrypted plaintext PT , assume MM [1]⊕MM [2] = 7 · 3 · 2l−1 · L. Let the

first two blocks of its ciphertext be CC[1] and CC[2]. Let C̃T be a l-block forged ciphertext

such that its C̃C[i] blocks take any value, except L = EK(0), even number of times for

1 ≤ i < l. Then, we have W̃ [l−1] = IV by Lemma 4.2. Therefore, C̃T is a valid ciphertext

by Proposition 4.3.

Now, we can give the proof of Theorem 4.1.

Proof of Theorem 4.1. Let CC[1]∥CC[2] be the CT of

AA[0]∥AA[1]∥MM [1]∥MM [2]

where AA[0] = AA[1] and MM [1] ⊕MM [2] = 7 · 3 · 2 · L. Then, the forged ciphertext

C̃T = L∥CC[1] is valid with AD = AA[0]∥AA[1] and the tag CC[2] by Theorem 4.4. Note

that IV = EK(AA[0])⊕EK(AA[1]) = 0, Ỹ [1] = DK(L) = 0 and X̃[1] = Ỹ [1]⊕3·IV = 0.

Hence, we obtain the first block M̃M [1] = DK(0) = S by decrypting C̃T .

4.2. A Method to Produce ADs Having the same IV

Similar to Lemma 4.2, we can manipulate any AD by inserting certain values by utilizing

M̃M [1] = DK(0) = S outcome of Theorem 4.1. Lemma 4.5 states this manipulation

precisely. Note that instead of the whitening mask L, the S value is used as in Lemma 4.2.
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Lemma 4.5. For any given AD, inserting any number of the S value or any even number of

other values into the AD will not change IV .

Proof. Let an AD = AA[0]∥ . . . ∥AA[a] be given with the blocks, its IV =
⊕a

i=0X[i]

where X[i] = EK(AA[i]). Inserting the S value into any block position of AD will result

IV =
⊕a

i=0X[i]
⊕

EK(S) = IV . Similarly, inserting a different value, V twice into any

two block positions of AD will result

IV =
a⊕

i=0

X[i]
⊕

EK(V )
⊕

EK(V ) = IV.

Therefore, by induction, inserting any number of S or any even number of other values into

the AD will not change its IV .

Remark 4.6. Lemma 4.5 gives us a method to produce several other ADs having the same IV

as that of a given AD. Therefore, in all our attacks, we can choose different associated data

without changing IV while querying the encryption/decryption oracles of COLM. For the

sake of simplicity, we query plaintexts or ciphertexts without changing the AD throughout

the paper just to mean that we use the same IV . It is straightforward that we can easily

produce different associated data, when necessary, for each query by Lemma 4.5.
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Figure 5.1 Constructing EK(2i · γ) for γ = 3 · L (see Figure 5.2 for setting IV1 = L).

5. Simulation Models of Encryption/Decryption Oracles

of the Underlying Block Cipher

In this section, we show how to simulate both the encryption and the decryption oracles of

the underlying block cipher (SEBC/SDBC) for any given input. We show that the COLM

oracle can be used to query α = EK(β) and β = DK(α) for any given β and α, respectively.

For both these tasks, We use the S = DK(0) value besides the whitening mask L. Recall

that S = DK(0) can be recovered by Theorem 4.1.

5.1. Simulation Model of the Decryption Oracle of the Underlying

Block Cipher: Computing β = DK(α)

In this section, we introduce a simulation model of the decryption oracle of the underlying

block cipher (SDBC) for any given input, i.e. how to compute β = DK(α) for any given α.

Both simulation models of Bay et al. in [11] and of Vaudenay and Vizár in [12] are standard

encryption queries of an AEAD scheme, ELmD and COLM, respectively. We query COLM,

the AEAD, in decryption direction, in our attack. An AEAD shouldn’t release the plaintext

without verifying the tag. Therefore, we mount a forgery against COLM as part of this attack.
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Figure 5.3 Generating Valid Tag

We begin our attack with the query of the COLM encryption twice as a precomputation to

forge a valid tag for a chosen set of ciphertexts.

In the first query, the set of {EK(γ), EK(2 · γ), · · · , EK(2
127 · γ)} is constructed for an

arbitrary non-zero γ where both γ and DK(3
−1 · γ) are known. We choose γ = 3 · L and set

IV1 = L. Then, encrypting MM1[i] = S for i = 1, . . . , 128, we get CC1[i] = EK(2
i−1·3·L),

by Lemma 5.1 (see Figure 5.1). Taking AA1[1] = AA1[0] and AA1[2] = 0 yield to IV1 = L

(see Figure 5.2). The process of constructing the set {EK(3 ·L), EK(2 ·3 ·L), · · · , EK(2
127 ·

3 · L)} is given in Algorithm 1.

Lemma 5.1. Let AA[0] = AA[1] and AA[2] = DK(3
−1γ). Then the corresponding CT

of the PT where MM [i] = S for i = 1, . . . , 128 will result in CC[i] = EK(2
i−1 · γ) for

i = 1, . . . , 128.
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Proof. Let AA[0] = AA[1] and AA[2] = DK(3
−1γ). Then IV = W [0] = 3−1 · γ. For the

PT if MM [i] = S then X[i] = 0, for i = 1, . . . , 128. Therefore, the inputs of the linear

operator ρ will be W [i− 1] = 3−1 · 2i−1 · γ and X[i] = 0. So the output Y [i] will be 2i−1 · γ,

for i = 1, . . . , 128. That is, CC[i] = EK(Y [i]) = EK(2
i−1 · γ).

Algorithm 1 Constructing the Set of EK(3 · L), EK(2 · 3 · L), . . . , EK(2
127 · 3 · L)

procedure CONSTRUCT THE SET

IV ← L
for i← 1, 128 do

MM [i]← S
end for
(CT, tag)← EK(AD,PT )
return CC ▷ CC = CC[1]||CC[2]]|| · · · ||CC[128]

end procedure

We query another PT of at least 2 blocks during the offline phase to construct a tag which is

valid for any 258-block CT s whose CC blocks appear even number of times. This query is

depicted in Figure 5.3. The first two blocks of the resulting CT , which we denote (CC2[1],

CC2[2]), will be used for the verification according to Theorem 4.4 during the online phase.

In the decryption query, the COLM oracle is forged and β = DK(α) for the given α is

obtained. The explicit statement and the pseudocode of this process are given in Theorem

5.2 and in Algorithm 2, respectively.

Theorem 5.2. Let CC[1] and CC[2] be the first two CT blocks of a PT with MM [1] =

MM [2] ⊕ 7 · 3 · 2257 · L encrypted with the 2-block AD where AA[0] = AA[1]. Assign

αd = (3 · γ)−1 · α for a given value α. Let

C̃C[i] = C̃C[i+ 129] =


EK(2

128−i · γ) if the ith MSB

(Most Significant Bit) of αd = 1,

L otherwise,
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Figure 5.4 Forging COLM Algorithm for Simulating the Decryption Oracle of Underlying Block
Cipher. The upper part depicts producing β = DK(α). The lower part depicts verifying
the tag.
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for i = 1, . . . , 128 and C̃C[129] = L. Let C̃C[258] = CC[1] and C̃C[259] = CC[2].

Then, the C̃T = C̃C[1]∥ . . . ∥C̃C[259] will be a valid ciphertext with the 2-block AD where

AA[0] = AA[1] and MM [129] will be equal to DK(α).

Proof. Let a given plaintext PT be encrypted with the initial value IV = 0 and the first two

blocks of the produced CT be CC[1] and CC[2]. Assume MM [1]⊕MM [2] = 7 ·3 ·2257 ·L.

For any forged C̃T of 258 blocks whose C̃C[i] blocks take any value, except L = EK(0),

even number of times for 1 ≤ i < 258, we have

W̃ [257] =
128⊕
i=1

(
Ỹ [i]⊕ Ỹ [i+ 129]

)⊕
DK(L)

⊕
IV =

128⊕
i=1

0
⊕

0
⊕

0 = 0

by Lemma 4.2. By setting the last two blocks as C̃C[258] = CC[1] and C̃C[259] = CC[2],

the tag is verified by Proposition 4.3.

The decision parameter αd = (3 · γ)−1 · α is calculated. Both C̃C[i] and C̃C[i+ 129] are set

to EK(2
128−i · γ), if ith MSB of αd = 1, or set to L, otherwise and C̃C[129] is set to L.

W̃ [128] =
128⊕
i=1

Ỹ [i]
⊕

IV =
128⊕
i=1

αd[i] · 2128−i · γ = αd · γ

and hence

X̃[129] = 3 · W̃ [128]
⊕

Ỹ [129] = αd · 3γ
⊕

DK(L) = α

which yields M̃M [129] = β = DK(α) (see Figure 5.4).

The online cost of this attack is a single COLM decryption query for an input consisting of a

2-block AD and a 259-block CT including the tag.
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Algorithm 2 Forging COLM to Decrypt DK(α)

procedure DK(α)
αd ← (32 · L)−1 · α
ÃA[1]← ÃA[0]
for i← 1, 128 do ▷ 1 is the MSB, 128 is the LSB (Least Significant Bit)

if αd[i] = 1 then
C̃C[i]← EK(2

128−i · 3 · L)
else

C̃C[i]← L
end if
C̃C[i+ 129]← C̃C[i]

end for
C̃C[129]← L

C̃C[258]← CC[1]

C̃C[259]← CC[2]

C̃C = C̃C[1]|| · · · ||C̃C[259]

P̃ T ← DK(ÃD, C̃T )

return M̃M [129] ▷ M̃M = M̃M [1]|M̃M [2]]|| · · · ||M̃M [258]
end procedure
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5.2. Simulation Model of the Encryption Oracle of the Underlying

Block Cipher: Computing α = EK(β)

For a given β, we construct a convenient (AD, PT ) such that the last CT block will be the

required α value. The explicit statement is given in Theorem 5.3. We always choose AD so

that IV = 0 independent of the given β. For example AD can be taken as two blocks such

that AA[0] = AA[1], then it is clear that IV = 0 (see Figure 5.2).

Theorem 5.3. Let a PT be encrypted with an AD of two blocks such that AA[1] = AA[0].

Let βd = (3 · L)−1 · β for a given β. Take

MM [i] =


S if the ith MSB of βd = 0,

0 otherwise,

for i = 1, . . . , 128. Let MM [129] = S. Then the last block of the corresponding CT ,

CC[129], equals α = EK(β).

Proof. For any given β, we define the decision parameter βd = (3 · L)−1 · β. Then, take

MM [i] = S if the ith MSB of βd is zero and MM [i] = 0, otherwise. This leads to

W [i] = 2 ·W [i− 1]⊕ βd[i] · L.

Let βd = βd[1]βd[2] · · · βd[128] where βd[1] is the MSB and βd[128] is the LSB of βd. Then,

W [128] = βd · L = ⊕128
i=1βd[i] · 2128−i · L

as depicted in Figure 5.5. On the other hand, X[129] = 0 since MM [129] = S. Hence

Y [129] = 3 ·W [128]⊕X[129] = 3 · βd · L.
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As a result,

CC[129] = EK [β] = α.

Algorithm 3 gives the pseudocode of how to construct the convenient PT for given β. Then

querying AD∥PT , the last block of the corresponding CT will be α by Theorem 5.3 (see

Figure 5.5). Let’s remark that this is a different method for SEBC of COLM from Vaudenay’s

and Vizár’s method in [12]. In [12], the authors precompute the series EK((2
n−1)L), where

0 ≤ n ≤ 134 and arrange an arbitrary length AD to obtain Y [1] = β. In this attack, we

precompute only DK(0) and arrange a 129-block PT to obtain Y [129] = β.

Algorithm 3 Computing α = EK(β) for a given β

procedure EK(β)
AA[1]← AA[0]
βd ← (3 · L)−1 · β
for i from 1 to 128 do

if βd[i] = 0 then ▷ 1 is the MSB, 128 is the LSB
MM [i]← S

else
MM [i]← 0

end if
end for
MM [129]← S
(CT, tag)← EK(AD,PT )
return CC[129] ▷ α = EK(β) is CC[129]

end procedure

The cost of this attack is a single COLM encryption query for an input consisting of a 2-block

AD and a 259-block PT .
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Figure 5.5 Simulation of the Encryption Oracle of the Underlying Block Cipher via COLM Oracle
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6. Universal Forgery, Tag Guessing and Plaintext

Recovery Attacks

In a universal forgery attack, the attacker is given any (AD, PT ) pair and required to compute

the corresponding CT and the tag. The attacker can query the encryption and decryption

oracles of COLM for any data except for the given PT with any AD or the given AD with

any PT .

Each ciphertext has two different tags in COLM, one for the full last block case and one

for the incomplete last block case. In a tag guessing attack, the attacker is given any (AD,

CT ) pair and required to compute one of these two tags. The attacker can query any data

except for the given CT with any AD or the given AD with any CT in the encryption and

decryption oracles of COLM.

In a plaintext recovery attack, the attacker is given any (AD, CT ) pair and required to

compute the corresponding PT . The attacker can query the encryption and the decryption

oracles of COLM for anything except for the given AD or CT even with different ciphertexts

or associated data, respectively. Notice that the challenging pair (AD, CT ) can be given

with the valid tag in another version of plaintext recovery attacks. But we adopt the former

definition in this section and in Section 7. We introduce also a plaintext recovery attack for

the latter definition in Section 8.

All of the attacks above can be deduced easily from the SEBC and SDBC introduced in

Section 5. An attacker who can run both SEBC and SDBC has the same capability as a

legitimate user. Therefore, in such a scenario the attacker can produce the CT and its tag

for any given PT and also decrypt any given CT even if its tag is missing. In the universal

forgery attack, the state values are obtained by querying the MM blocks as in Section 5.2; on

the other hand, in the tag guessing and plaintext recovery attacks the state values are obtained

by querying the CC blocks as in Section 5.1.
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In the universal forgery attack, first of all, the MM [l] and the MM [l+1] blocks are prepared

as explained in Section 4. All Z, X and CC blocks in an encryption process of COLM are the

outputs of the underlying block cipher encryption. Therefore, we use the SEBC to recover

all Z, X and CC blocks from the AA, the MM , and the Y blocks respectively as in Section

5.2. The AA and the MM blocks are given while the Y blocks are computed via the linear

combinations of the Z and the X blocks. Hence, we can produce the CT of any given PT

by the SEBC. We query COLM a+2 · l+2 times, where a is the number of the AD-blocks,

and l is the number of the PT -blocks.

The tag guessing attack and the plaintext recovery attack are similar to our universal forgery

attack. In both attacks, the SDBC introduced in Section 5.1 is also used and the AD-blocks

are encrypted through the SEBC to obtain the Z blocks as explained in Section 5.2 and

the IV is calculated via XORing the Z blocks. Similarly, the CT -blocks are decrypted

through the SDBC to recover the Y -blocks. The W and the X-blocks are calculated via the

inverse linear mix. All X blocks are decrypted through the SDBC to recover the PT -blocks.

Furthermore, in the tag guessing attack, MM ′[l+1] is computed. It is MM [l]⊕7 ·3 ·2l−1 ·L

for the PT s whose last block is full. CC ′[l + 1] is recovered by using MM ′[l + 1] and W [l]

through the SEBC. Let’s remark that we don’t need the whole PT to obtain the length of its

last block. We query COLM a+ l + 3 times for the tag guessing and a+ 2 · l + 2 times for

plaintext recovery, where a is the number of the AD blocks, and l is the number of the PT

blocks.
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7. Another Plaintext Recovery without Tag

In this section, we introduce another plaintext recovery attack where we can decrypt any

ciphertext without its tag. In this attack, we use Lemma 4.5, Lemma 4.2, Proposition 4.3 and

Theorem 4.4.

Let an (AD, CT ) pair be a given ciphertext with its associated data. It is possible to mount

an attack to decrypt this CT even if the tag is not known. Let

CT = CC[1]∥ . . . ∥CC[l].

Then, query a message of two blocks satisfying Equation 10 with the associated data AD:

M̂M [1]⊕ M̂M [2] = 7 · 3 · 22l · L. (10)

Let the first two blocks of the output be ĈC[1] and ĈC[2]. To forge a C̃T , set C̃C[2l+ 1] =

ĈC[1], C̃C[2l + 2] = ĈC[2] and choose the other C̃C[i]’s such that

C̃C[i] = C̃C[i+ l] = CC[i] for 1 ≤ i ≤ l.

Observe that

W̃ [2l] =
l⊕

i=1

(
DK(C̃C[i])

⊕
DK(C̃C[i+ l])

)⊕
IV = IV. (11)

Then the (ÃD, C̃C) pair will be an authenticated ciphertext with the tag C̃C[2l + 2] (see

Figure 7.1). Indeed, Equation 10 and Equation 11 together yield ĈC[2] = C̃C ′[2l + 2] by

Lemma 4.2 and Proposition 4.3. Therefore, C̃C[2l + 2] = ĈC[2] is a valid tag by Theorem

4.4.

It is clear that, the first l blocks of the plaintext of the forged ciphertext (ÃD, C̃T ) will be

the plaintext of the given ciphertext (AD, CT ).
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Note that C̃C[2l+2] = ĈC[2] is the valid tag for any forged (ÃD, C̃T ) pair where ĨV = IV

(see Lemma 4.5), C̃C[2l+1] = ĈC[1] and C̃C[i] blocks take any value, except L = EK(0),

even number of times for 1 ≤ i ≤ 2l. Therefore, the plaintext recovery attack can be

converted to an existential forgery of 2l + 1-block such C̃T s (see Lemma 4.2).
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Figure 7.1 Plaintext Recovery Attack in Section 7. In Part A: Two PT blocks with a special
difference are queried to obtain ĈC[1] and ĈC[2]. In Part B: C̃C[2l + 1] = ĈC[1] and
C̃C[2l + 2] = ĈC[2] are verified through the special difference of M̂M [1] and M̂M [2]
depicted in Part A.
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8. Permuting CT -Blocks

In this section, we introduce a new property for COLM. The CT blocks can be permuted

without any effect on the tag value. This results from a property of the linear operator

of COLM explained in Proposition 8.2. This property can be exploited to mount a

plaintext recovery attack and a universal forgery attack. During the encryption, a state

value W [i] depends on all X[j]-blocks, 1 ≤ j ≤ i, through the linear operation ρ.

Hence W [i] can be written as a linear combination of all X[j]s along with the IV , namely

W [i] =
⊕i

j=1 2
i−j · X[j]

⊕
2i · IV . Observe that each X[j] has a different coefficient in

this combination. Therefore, reordering the MM [j] blocks changes the state value W [i].

However, this is not true for the decryption process. Lemma 8.1 states this property of

COLM.

Lemma 8.1. For a given l-block ciphertext CT produced by COLM, the C̃T obtained by

swapping any two blocks CC[i] and CC[j] for i, j < l is still valid with the same tag CC[l+

1].

Proof. Let a ciphertext CT = CC[1]|| · · · ||CC[l] with its tag CC[l + 1] be given with the

initialization value IV . During the decryption, the state value W [l] can be written as the

accumulation of all the Y [j] values where 1 ≤ j ≤ l as W [l] =
⊕l

j=1 Y [j]
⊕

IV since

W [k] = W [k − 1]⊕ Y [k] for any 1 ≤ k ≤ l. By swapping CC[i] and CC[j], we swap Y [i]

and Y [j] for i, j < l. The new CT has the following Y values Ỹ [k] = Y [k] for any k ̸= i, j;

Ỹ [i] = Y [j] and Ỹ [j] = Y [i]. Hence,

W̃ [l − 1] =
l−1⊕
j=1

Ỹ [j]
⊕

IV =
l−1⊕
j=1

Y [j]
⊕

IV = W [l − 1]

and

W̃ [l] =
l⊕

j=1

Ỹ [j]
⊕

IV =
l⊕

j=1

Y [j]
⊕

IV = W [l].

Therefore, the checksum of the PT blocks MM [l] remains same and hence the new

ciphertext C̃C is valid with the tag CC[l + 1].
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Figure 8.1 First Query to Recover PT

We can generalize the statement in Lemma 8.1 by applying arbitrary permutation instead of

a swap operation.

Proposition 8.2. For a given l-block ciphertext CT , the C̃T obtained by permuting the CC[i]

blocks for i < l is still valid with the same tag C̃C[l + 1] = CC[l + 1].

Proof. Let CT be a given ciphertext consists of CC[1]∥ · · · ∥CC[l] with its tag CC[l+1] and

the initialization value IV . Let the new ciphertext C̃T be obtained by permuting the CC[i]

blocks for i < l. On the other hand, any permutation can be written as the combination of

two-cycles (swap operations). Hence, this new ciphertext C̃T can be obtained by swapping

certain pairs of the CC blocks. However, after each swap the tag value remains same by

Lemma 8.1. Therefore, the same tag CC[l + 1] is valid for C̃T .

Proposition 8.2 can be used to mount a plaintext recovery attack of any given (AD, CT ) pair

where CT = CC[1]∥CC[2]∥CC[3]∥CC[4]∥ . . . ∥tag of at least 5 blocks. One can recover

the plaintext by querying

DK(AD,CC[1]∥CC[2]∥CC[4]∥CC[3]∥ . . . ∥tag)(See Figure 8.1)

DK(AD,CC[2]∥CC[1]∥CC[3]∥CC[4]∥ . . . ∥tag)(See Figure 8.2)

with an associated data AD and obtaining
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MM [1]∥MM [2]∥M̃M [3]∥M̃M [4]∥ . . .

M̃M [1]∥M̃M [2]∥MM [3]∥MM [4]∥ . . .

respectively and then combining the first two blocks of the former plaintext with the rest of

the latter plaintext.

Proposition 8.2 can be used also to produce the CT and the tag of a given PT =

MM [1]∥MM [2]∥MM [3]∥ . . . by querying the oracle as follows:

CC[1]∥CC[2]∥C̃C[3]∥t̃ag,← EK(AD,MM [1]∥MM [2]∥M̃M [3])

M̃M [1]∥M̃M [2]∥M̃M [3],← DK(AD,CC[2]∥CC[1]∥C̃C[3]∥t̃ag)

CC[2]∥CC[1]∥CC[3]∥ . . . ∥tag.← EK(AD, M̃M [1]∥M̃M [2]∥MM [3]∥ . . . )

with an associated data AD. For illustration of these queries refer to Figure 8.3, Figure 8.4,

Figure 8.5, respectively.

The third block of the target message is modified to be an arbitrary M̃M [3] value and the

new message is encrypted to CC[1]∥CC[2]∥C̃C[3]∥t̃ag, whose first two blocks will be the

original CT blocks. The oracle decrypts this CT when we swap the first two blocks since

the tag is still valid by Lemma 8.1. The first two M̃M blocks will result in random values

(M̃M [1] and M̃M [2]) but observe that W̃ [2] will be equal to W [2]. Therefore, querying

this M̃M [1]∥M̃M [2]∥MM [3]∥ . . . leads to CC[2]∥CC[1]∥CC[3]∥ . . . ∥tag from which the

original CT can be obtained by just swapping the first two blocks.
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MM [l], MM [l + 1] and W [l − 1] parameters are used for the tag verification. Permuting

the first (l − 1) CT -blocks will not affect these parameters by Proposition 8.2, resulting in

(l − 1)! existential forgeries.
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Table 9.1 Some Key Recovery Attacks against AES-128. MitM: Meet-in-the-Middle, ID:
Impossible Differential

Attack Rounds Data Query Time Reference

MitM 7 297 CPA 2105 299 [53]

ID 7 2105 CPA 2113 2106.88 [54]

Biclique 10 288 CCA 297 2126.18 [55]

9. Key Recovery

In this Section, we introduce how to use COLM oracle to collect necessary data for mounting

attacks against (reduced-round) AES-128.

There are several attacks against reduced-round AES-128. In general, these attacks require

large amount of data, as either CPA or CCA. The question is how to collect data for an

AES key used in the COLM encryption. In principle, any weakness of AES isn’t supposed

to be exploited in COLM oracle even in nonce misuse scenario since COLM is chosen to

the defense-in-depth final portfolio of the CAESAR competition. However, as explained

in Section 5, we can simulate AES encryption and decryption oracles for any given input,

enabling us to collect data required for an attack against (reduced-round) AES-128.

We give three examples of combining these oracles (see Section 5) with published CPA/CCA

attacks against reduced-round AES-128, a meet-in-the-middle (MitM) attack [53], an

impossible differential (ID) attack [54] and a biclique attack [55]. The baseline complexities

of these published attacks are listed in Table 9.1. In Section 5.2, we show that a single COLM

query of a 132-block AD-PT is enough to get the AES encryption of the any given input.

Therefore, to collect the data for MitM and ID attacks, we need to make 262 × 297 ≈ 2105

and 262 × 2105 ≈ 2113 AES-128 queries in COLM, respectively. In Section 5.1, we show

that a single COLM query of a 261-block AD-CT is enough to get the AES decryption of

any given input. Therefore, to collect the data for biclique attack, we make 520× 288 ≈ 297

AES-128 queries in COLM. Recall that we need 2130 AES-128 encryptions (L = EK(0),

Z[0] = EK(AA[0]), X[1] = EK(MM [1]), CC[1] = EK(Y [1]) for each key candidate) to
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mount a brute force attack against COLM. Therefore, these attacks compared to brute force

attacks are 4 times more time efficient in COLM oracle scenario than in AES oracle scenario.
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10. Conclusions and Suggestions

In this thesis, we showed that COLM is as secure as the secrecy of its whitening parameter

L = EK(0). We mounted plaintext recovery attacks, a tag guessing attack, several forgery

attacks, and successfully built an SEBC and an SDBC with polynomial time complexity

once the L parameter is known. To the best of our knowledge, this thesis introduces the first

simulation model where an EME/EMD type AEAD is queried in the decryption direction,

enabling the building of both an SEBC and an SDBC together. It should be noted that an

attacker in possession of both an SEBC and an SDBC can generate any plaintext or ciphertext

like a legitimate user with key access. Generalizing our methods for mounting plaintext

recovery and tag guessing attacks to an arbitrarily formed authenticated EME/EMD scheme

remains an open problem.

EME algorithms have generally a whitening mask L defined by designers. In authenticated

encryption, algorithms are supposed to have the security level of min(|key|, |block|) against

some attacks such as plaintext recovery and tag guessing. Both the key and the block sizes

are 128 bits in COLM. So, the security level of recovering L or the EME structure must be

at least 128-bit. Forler et al. illustrate that L can be recovered in 265 queries [37]. In this

thesis, we show that the EME structure in COLM doesn’t satisfy 128-bit security against

plaintext recovery and tag guessing attacks. That is, neither the confidentiality of L nor EME

of COLM satisfies 128-bit security.

We recommend that both recovering L and the EME structure should have the security

level of min(|key|, |block|) for an authenticated EME scheme designed in defense-in-depth

approach. Accordingly, if one of them fails to provide this security level, the authenticated

EME scheme still remains secure.

We suggest some modifications for COLM to prevent our attacks. We propose a simple but

unconventional suggestion to fulfill the security requirement for recovering L, by producing

it with another key deduced from the main key by a slight modification. Even if L is

recovered (note that Lu’s method is still valid), it can’t be exploited in our attacks in
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Algorithm 3, Algorithm 1 and Algorithm 2 since L is produced by a different key and it

does not give a plaintext-ciphertext pair for the underlying block cipher. Our next suggestion

is to modify the ρ-operation. Note that W [i] = W [i− 1]⊕ Y [i] in the ρ−1 operation and we

exploit this property in Lemma 4.2, Lemma 8.1, Proposition 8.2, Theorem 4.1, Theorem 4.4,

Theorem 5.3 and Algorithm 2. Hence, in the computation of W [i] the coefficients of W [i−1]

inputs shouldn’t be 1 in both ρ and ρ−1. This criterion should also be adopted for W ′[i]. As

an example; W ′[i] = 3 ·W ′[i− 1]⊕A[i] for processing AD, and W [i] = 4 ·W [i− 1]⊕X[i],

Y [i] = 6 · W [i − 1] ⊕ X[i] for processing PT (resulting in W [i] = 2 · W [i − 1] ⊕ Y [i],

X[i] = 6 ·W [i − 1] ⊕ Y [i]) can be used. Our last suggestion is to use different coefficients

for the M blocks in the summation to compute the M [l] and the M [l + 1] blocks so that

one cannot isolate the last two blocks when verifying the tag. This suggestion will render

Proposition 4.3, Proposition 8.2, Theorem 4.1, Theorem 4.4 and Theorem 5.2 invalid. Lastly,

these suggestions are to prevent our attacks and COLM is still required to be analyzed with

these amendments.
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