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AKCIGER RONTGEN GORUNTULERINDEN COViD’19 VE ZATURRE
HASTALIGININ KUANTUM MAKINE OGRENMESI YONTEMLERI iLE
TAHMINI

OZET

Kuantum evrisimli sinir aglar1 (QCNN'ler), kuantum hesaplamanin potansiyel olarak
giiclii baz1 yonlerinden yararlanarak CNN'lerin yeteneklerini genisletir. Bir dizi
rastgele kuantum devresi kullanarak verileri yerel olarak doniistiirerek giris verileri
tizerinde caligir. Klasik evrisimli sinir aglarmin verimliliginden yola c¢ikarak,
Evrisimli sinir agin1 (QNN'ler) kullanarak veriler analiz edilmis, tahminler yapilmis
ve sonuglar degerlendirilmistir. Kuantum halinde kodlanmis covid’19 veri setinin
ikili smiflandirmas1 gergeklestirilmistir. Ayrica Pennylane'in "varsayilan qubit"
cihazindaki farkli parametreleri de dikkate alarak performanst arastirilmistir.
Kullanilan veri seti modeli i¢in 250 egitim ve 65 test goriintiisii icermektedir. Veri
setinde verilen goriintiiler gercek hayattaki go6giis rontgenidir ve Onceden
degistirilmemistir. Ancak hesaplama kaynaklarindaki bazi sinirlamalar nedeniyle bu
calismada boyut 28x28 olarak tutulmustur. Model-1, 'Normal Kisi' ve
'Covid’19/Viral Pnémoni' olmak iizere iki sinif arasinda siniflandirma yapar. Model-
2, 'Covid’19' ve 'Viral Pndmoni' olmak tizere iki sinif arasinda siniflandirma yapar.
Kuantum Siniflandiricisi 1'de, Temel Veri Analizi ile ¢ikarilan 256 6znitelik boyutlu
girdi verisinden 11 oOznitelik kullanilmigtir. Burada yaklasik %70 dogruluk elde
edilmistir. Kuantum Simiflandiricisi 2°de TruncatedSVD yontemini kullanarak her
goriintiiniin 256 Ozniteligi 4'e indirilmistir. Yaklasik %72 dogruluk (accuracy) elde
edilmistir. Kuantum Siiflandiricisi 3°de verileri yalnizca 2 6znitelige indirgenmistir.
Beklenmedik bir sekilde bu daha once yaklasilanlarin en yiiksegi olan %76
dogrulugu vermistir.

Anahtar Kelimeler: Derin 6grenme, Makine Ogrenmesi, Kuantum makine
o0grenmesi, Kuantum evrigimli sinir aglari, Covid’19
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PREDICTION OF COVID'19 AND PNEUMATURE FROM LUNG X-RAY
IMAGES USING QUANTUM MACHINE LEARNING METHODS

ABSTRACT

Quantum convolutional neural networks (QCNNSs) expand the capabilities of CNNs
by leveraging some of the potentially powerful aspects of quantum computing. It
works on the input data by locally transforming the data using a series of random
quantum circuits. Based on the efficiency of classical convolutional neural networks,
using Quanvolutional neural networks (QNNSs) data were analyzed, predictions were
made and results were evaluated. Binary classification of the covid’19 data set
encoded in quantum form was performed. In addition, the performance of
Pennylane's "default qubit” device was investigated by taking into account different
parameters. The dataset used contains 250 training and 65 test images for the model.
The images provided in the dataset are real-life chest X-rays and have not been
previously modified. However, due to some limitations in computational resources,
the size is kept as 28x28 in this study. Model-1 classifies between two classes,
'‘Normal Person' and 'Covid’19/Viral Pneumonia’. Model-2 classifies between two
classes, 'Covid’19" and 'Viral Pneumonia'. In Quantum Classifier 1, 11 features were
used from 256 feature sized input data extracted by Fundamental Data Analysis.
Here, approximately 70% accuracy has been achieved. Using the TruncatedSVD
method in Quantum Classifier 2, 256 features of each image are reduced to 4.
Approximately 72% accuracy (accuracy) was obtained. In Quantum Classifier 3, its
data is reduced to only 2 features. Unexpectedly, this yielded an accuracy of 76%,
the highest ever approached.

Keywords: Deep learning, Machine learning, Quantum machine learning, Quantum
convolutional neural networks, Covid’19
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1. GIRIS

Makine 6grenmesi yarim yiizyildan fazla bir siiredir gelistirilmektir. Hesaplama
yeteneginin de gelismesiyle birlikte bilgisayar biliminin ¢ok énemli bir parcasi haline
gelmistir. Bilgi islem giicii, teknolojideki hizli gelisimle birlikte oldukg¢a hizli bir
sekilde artmistir. Siirekli olarak yeni algoritmalar ortaya ¢ikmis olsa da veri artis hizi

bilgisayarlarin performansindaki artis hizindan ¢ok daha fazladir.

Artan veri ile birlikte hizlanan ve 6grenen bilgisayarlarin gelismesi bugiin ¢ok daha
degerli bir konuma gelmistir. Geldigimiz noktada klasik makine dgrenmesinin yani
sira teknolojideki ilerlemeler sonucunda kuantum fiziginin temellerinden faydalanan
ve kuantum hesaplama yapabilen bilgisayarlar gelistirilmektedir. Kuantum
hesaplama, siliperpozisyon ve dolaniklik gibi kuantum mekanigi olgularina

dayanmaktadir.

Makine Ogrenmesinin tanimi1 géz ardi edildiginde 6grenme “Denetimli 6grenme
(supervised learning), denetimsiz 6grenme (unsupervised learning) ve pekistirmeli

ogrenme (reinforcement learning)” olarak {i¢ ana kategoriye ayrilir.

Yiiksek hizli hesaplama i¢in en 6nemli 6zellik olmas1 nedeniyle, paralellik belirli
sorunlart ¢ézmek i¢in belirli algoritmalarda tasarlanabilir. Bu klasik problemler
genellikle kuantum sisteminde oldugu kadar verimli sekilde ¢ozlilemez. Makine
O0grenmesi, hesaplama giicli eksikligi nedeniyle baski altinda oldugundan ve kuantum
hesaplama bu gii¢lii hesaplama yetenegine sahip oldugundan, insanlar kuantum

hesaplama ve makine 6grenimi kombinasyonunun olasiliklarini diistinmektedir.

Ornegin; Shor'un algoritmasi, kuantum hesaplamanin herhangi bir klasik y&ntem
kullanarak imkansiz olan biiyiik tamsay1 ¢arpanlarina ayirma problemini ¢6zmek icin
iistel bir hizlanma saglayabildigini gostermektedir (Zhang ve Ni, 2020). Bu
algoritmadan sonra, belirli problemleri ¢6zmek igin ¢ok sayida kuantum algoritmasi
Onerilmistir. Yine, Grover'in algoritmasinin yapilandirilmamisg bir veri tabaninda
arama yaparken ikinci dereceden bir hizlanma saglayabilecegi kanitlanmigtir(Zhang

ve Ni, 2020).

Ote yandan, bazi sirketler ve arastirma kurumlari, kuantum devre modeline dayali

evrensel kuantum bilgisayarlarin gercek prototip makinelerini {reterek, bulut



platformlar1 aracilifiyla az sayida kiibit (qubit) {izerinde kuantum hesaplama

islemleriyle deneyler yapilabilmesini saglamistir.

Giliniimiizde, genel biiylik 6lgekli kuantum bilgisayar1 halen gelistirilmeye devam
etmektedir. Bununla birlikte, potansiyel kuantum makine 6grenimi algoritmalarinin
aragtirtlmasinda bazi ilerlemeler kaydedilmistir (Schuld ve Sinayskiy, 2015).
Kuantum makine 6grenmesi Kklasik makine 6grenemsinde oldugu gibi, kuantum
algoritmalarinin makine 6grenmesi programlarina entegre edilmesidir. Bugiin yogun
bir sekilde kullanilan makine 6grenmesi algoritmalari, ¢ok biiylik miktarlarda veriyi
hesaplamak i¢in kullanilirken; kuantum makine 6grenmesi, algoritmalari yapilan
uygulamada kullanilan algoritmalar tarafindan yapilan hesaplama hizim1 ve veri
depolamayi iyilestirmek igin kiibitler ile kuantum islemlerini veya 6zel kuantum

sistemlerini kullanir.

Bu durum, bilgisayara hesaplama ag¢isindan zor alt islemlerin bir kuantum cihazina
dis kaynak olarak verildigi hem klasik hem de kuantum veriyi islemeyi igeren hibrit
yontemleri barindirir. Bu suregler ¢alisma sekli olarak karmasik olabilir ve Klasik

bilgisayara gore kuantum bilgisayarda daha hizli yiirtitiilebilir.

Makine 6greniminde iki temel vardir; “veri ve Ogrenme siireci”. Aym sekilde

kuantum alan1 da bu iki pargay igerir.

Kuantum hesaplamanin kuantum verileriyle ugragmasi gerektiginden, kuantum
hesaplamanin hayal edildigi gibi c¢alisabilmesi icin klasik verilerin kuantum
verilerine Onceden islenmesi gerekir. Giinliik hayatta, insanlarin ugrastigt ¢ogu
bilginin klasik olduguna inanilir, bu nedenle bu 6n islemeyi yapmak gereklidir.
Bununla birlikte, kuantum verisinin dogrudan islenebilecegi 6zel bir durum vardir.
Ornegin, kuantum iletisimi son yillarda sicak bir konu haline gelmistir ve kuantum

kanallarinda, kuantum olan bazi giiriiltiiler olabilir (Biamonte ve dig, 2017).

Bugiin diinyada tiretilen veri miktar iistel olarak artarken, klasik bilgisayarlarin bu
veriyi isleyip anlamli bilgi ¢ikarma stiresi de artmaktadir. Biiyiik veri kavraminin
hayatimiza girdigi glinden beri Onisleme siireclerinin fazlaligi ya da bu siireglerin
otomatik olarak gerceklestirilmesi yapay zekd yontemlerinde kaynak ihtiyaci
gerektiren faktorlerdir. Veriye olan ihtiyacinin karsilanabilmesi igin ¢ok ¢ekirdekli,
cok islemcili ve grafik islemcili bilgisayarlar yogun bir sekilde kullanilmaktadir.
Makine 6grenmesi modellerinin zaman maliyetini minumum seviyeye indirmek igin

2



duydugu performans ihtiyaci suanki teknolojilerle kismen karsilanmaktadir.
Gilinlimiizde yiiksek basarim ile g¢alisgan makine O6grenmesi yontem ve
uygulamalarinin, kuantum bilgisayarlar ile bahsedilen zaman ve dogruluk maliyetini

¢ok daha iyi noktalara tasiyacagi goriisii baskindir (Schuld ve Killoran, 2018).

1.1. Literatiir Taramasi

Makine 6grenimi, veri isleme ve siiflandirma i¢in her alanda kullanilan ve etkili bir
teknik haline gelmistir. Ayrica, bircok alanda kuantum hesaplamanin istiinliigii ve
ilerlemesi nedeniyle (6rnegin, kriptografi, makine 6grenimi, saglik hizmetleri vb.),
klasik makine 6grenimi ve kuantum bilgi isleme kombinasyonu kuantum makinesi

Ogrenimi olarak adlandirilan yeni bir alan haline geldi.

Bu bélim, QML (Quantum Machine Learning) ile ilgili kapsamli bir incelemesini
sunmaktadir. Son yillarda ML (Machine Learning) tabanli QC (Quantum
Computing) dikkate deger bir evrime tanik oldu. Kuantum otomatik kodlayicilar
(Khoshan ve dig., 2018, Pepper ve dig., 2019, Romero ve dig., 2017), kuantum
biyomimetigi (Alvarez-Rodriguez vd dig., 2018, Lamata, 2020), Kuantum Iletisimi
(Nawaz ve dig., 2019, Sheng ve Zhou, 2017, Wallnéfer ve dig., 2020), Kuantum
Tavlama (Li ve dig., 2018, Rieffel ve dig., 2015), Hesaplama Kimyas1 ( McArdle ve
dig., 2020, von Lilienfeld, 2018) ve Boltzmann makinesi (Amin ve dig., 2018).
Yapilmis olan ¢alismada, QML algoritmalar1 ML ile kullanilan kuantum hesaplama
fikrine gore li¢ kategoride diizenlenebilir ve siniflandirilabilir. Tamamen QML (Beer
ve dig., 2020, Dunjko ve dig., Levine ve dig., 2019), hibrid klasik -quantum ML
(Killoran, Bromley ve dig., 2019, Mari ve dig., 2020), kuantumdan ilham alan ML
(Gao ve dig., 2017, Pomarico ve dig., 2021).

Huang ve dig., 2021, ML gorevlerinde yeni bir yaklasim onermek igin potansiyel
kuantum avantajin1 kullandilar. Bu yaklasim, giris veri alani aracilifiyla geometrik
cekirdek islevine dayanmaktadir. Ayrica, klasik alanda “Ongoriilen kuantum
cekirdekleri” (PQK) adi verilen kuantum ve klasik ML modellerini kullanarak bir
kuantum cekirdegi sagladilar. Bu kuantum ¢ekirdegi, veriler arasindaki benzerligi
Olcer ve 0grenme gorevlerinde kati kuantum hizlandirma saglar. Burada kullanilan

geometrik sabit, cesitli ¢ekirdek fonksiyonlarina sahip klasik ve kuantum ML



algoritmalarindaki geometrik farki oOlger. Potansiyel kuantum avantajinin veri

miktarina dayandigini bildirdiler.

Schuld ve dig., (2016), denetimli 6grenmeye dayanan Oriintii tanima igin yeni bir
kuantum algoritmasi 6nermislerdir. Bu algoritma, kuantum dogrusal regresyon adi
verilen dogrusal regresyonun bir versiyonudur. Yazarlar, kuantum durumundaki
verileri doniistiirmek i¢in genlik kodlama yontemini kullandilar. Kuantum lineer
regresyon, logaritmik zaman icinde ozelliklerin n-boyutlar1 ile kuantum verileri
tizerinde calisir. Rebentrost ve dig., (2014), bliylik verilerin siniflandirilmast igin
Destek Vektor Makinesi'nin (QSVM) kuantum versiyonunu sunmuslardir. Kuantum
SVM, biiyiik verileri egitmek i¢in i¢ {lriiniin matris inversiyonunu gergeklestirmek
icin mitkemmel olmayan bir matrise dayanmaktadir. Logaritmik karmasikliga sahip
cok sayida oOzellik ve oOrnekle galisir. Biiylik verilerin kuantum SVM'si, klasik
SVM'ye kiyasla 6zellik boyutlart dikkate alindiginda iistel hizlandirma saglar.

Klasik NN'lere gore QNNs avantajlar1 Ezhov ve Ventura'da (2000) (6rn. Kuantum
paralellik, daha yiiksek stabilite, daha yiiksek bilgi isleme hizi ve bellek kapasitesi)
tartisilmaktadir. Da Silva ve dig., (2016), Kuantum Potansiyel Frekanslari (QPF)
tizerinde kuantum algilama adi verilen yeni bir QNS (Quantum Network Solution) ve
O0grenme algoritmasi, siiperpozisyon tabanli mimari O6grenme (SAL) olarak
adlandirdi. Sal algoritmasi bir iist liste binme 6zelligine ve kuantum operatoriine
dayanmaktadir. Ayrica, NN mimarisini polinom zamaniyla isler. QPF, kuantum
algilama modellerinin sinirlamalarinin iistesinden gelir. Baska bir ¢aligmada, yazarlar
(Schuld ve dig., 2015), kuantum donanim {izerinde kuantum faz tahmini kullanarak
klasik algilama kuantum bir versiyonunu tanittilar. Kuantum algilama algoritmasi,

NNS'deki aktivasyon fonksiyonunu (adim islevi) simiile eder.

Rekabet¢i NN'lerde, Zhou (2010) iki ana parca sundu: birincisi, QC adi verilen
Rekabetgi Ogrenme NN'lerine dayanan yeni bir model. QCNN modeli, kuantum
paterni rekabetini kullanarak giris modellerini siniflandirir. ikinci béliimde Zhou,
onerilen QCNN icin bellek kapasitesi sagladi. QCNN, ag agirhigi olmadan bir
kuantum kaydi kullanarak rekabet¢i O6grenme elde eder. Kuantum dolasimini ve
Grover’in algoritmasini kullanan bir baska QCNN modeli 6nerilmektedir (Zhong ve
Yuan, 2012). Bu model, sahte desenler nedeniyle kuantum iligkilendirici bellek

kullandi. Ayrica, bu model rekabet siirecinde sahte durumlar1 eksik kaliplarda
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hatirlar. Zidan ve dig., (2019), QCPNN adi1 verilen ikili siniflandirma i¢in dolasma
Onlemine dayanan baska bir QCNN onermislerdir. QCPNN, girig verilerini bir

kuantum bilgisayardaki eksik desenlerde siniflandirir.

Son zamanlarda, Abbas ve dig., (2021) QNN'nin giiclinii mevcut yakin vadeli
kuantum donanimu ile tartismistir. Yazarlar, adlandirdiklart modelin kapasitesi, etkili
boyut i¢in yeni bir 6nlem 6nermislerdir. Bu etkili boyut, modelin yeni/goriinmeyen
veriler iizerinde genelleme yetenegini sinirlamak i¢in kullanilir. Buna ek olarak,
Onlemlerinin bir Fisher bilgi matrisi ile veriye bagl bir genelleme yontemi oldugunu
bildirdiler. Son olarak, yazarlar QNN'nin mevcut giiriiltiilii kuantum cihaz ile klasik
NN'ye kiyasla daha hizli egitim aldigini bildirmislerdir. Ayrica QNN'nin klasik
NN'den daha yetenekli oldugunu gosterdiler. Chen ve Yoo (2021), hibrit kuantum -
klasik ML'ye dayanan yeni bir egitim modeli 6nerdi. Yazarlar kuantum donanimini
(vani, cihaz veya simiilator okuma) yerel istemciler olarak kullandilar. Ayrica,
yazarlar Ozellik c¢ikarma icin VGG16 ile klasik -quantum transfer 6grenimi
kullanmuslardir. Onerilen cercevenin avantaji klasik ve kuantum verileri {izerinde

calisir.

Dang ve dig., (2018), goriintli siniflandirmasi i¢in kuantum KNN algoritmasi olarak
adlandirilan yeni bir kuantum modeli 6nerdi. Kuantum KNN modeli iki bdliimden
olusur: klasik ve kuantum boliimii. Yazarlar klasik bilgisayar1 goriintiilerin
Ozelliklerini ¢ikarmak i¢in kullandilar. Cikarilan o6zellikler bir kuantum cihaz
tarafindan bir kuantum durumuna doniistiiriiliir. Ardindan, kuantum devresi,
goriintiiler arasindaki benzerligi hesaplamak i¢in kullanilir. Son olarak, siniflandirma
islemi bir 6l¢lim devresi tarafindan gergeklestirilir. Kuantum KNN modeli, verimlilik
ve smiflandirma performanst agisindan klasik modellerden daha iyi performans
gosterir. Adhikary ve dig., (2020), tek bir kuantum sistemi ile yeni bir varyasyonlu
kuantum smiflandiricisi sunmak ve tek-atis egitimi adi verilen bir egitim algoritmasi
ile n-boyutlu verileri kodlamak i¢in bir kuantum devresi kullanmistir. Ayrica,
yazarlar tiim veri kiimesini tek bir kuantum durumuna kodladilar. Tek atig egitim,
egitim i¢in daha az parametre kullanir ve daha yiiksek hassasiyet elde eder. Mitariai
ve dig., (2018), siniflandirma, regresyon ve kiimeleme, kuantum devre 6grenimi
(QCL) gibi farkli gorevleri yerine getirmek icin hibrit bir klasik -quantum teknigi
sundu. QCL, kiigiik 6l¢ekli kuantum cihazlarda hareket eder. Yazarlar, QCL'nin



yiksek  boyutlu  smiflandirma/regresyon  gorevleri  ile  performansini

gbzlemlemislerdir.

Baska bir hibrit calismada, Henderson ve dig., (2020) yazarlari, goriinti
simiflandirmast i¢in standart evrisimsel sinir aglarma sahip kuantum devreleri
kullandilar. Yazarlar, mevcut kiigiik o6lgekli ve NISQ kuantum donaniminda
uygulamak i¢in kiiclik derinlikli bir kuantum devresi kullandilar. Kuantum devresi,
bilgilendirici 06zellikleri ¢ikarmak icin bir evrisim katmani olarak uygulanir.
Kuantum evrisim tabakasinda li¢ asama vardir: kodlama, kuantum devresi ve 6l¢tiim.
Baska bir mimaride Bausch (2020), QRNN adi verilen tekrarlayan sinir aginin
(RNN) kuantum bir versiyonunu onerdi. QRNN'nin temel bileseni kuantum bir
norondur. QRNN, rakam verilerini siiflandirmak i¢in kullanilir. Ayrica, QRNN

uretken bir model olarak kullanilir.

Benedetti ve dig., (2019), veri odakli kuantum devre 6grenimi (DDQCL) ad1 verilen
cergeve lUretken bir model sunmuslardir. Kuantum bilgisayar1 kullanarak yazarlar
(Zhao, Pozas-Kerstjens, Rebentrost ve Wittek, 2019) derin 6grenme igin Bayes
tekniginin yeni bir versiyonunu Onerdi. Bu teknigin ana kismi kuantum matris

inversiyonudur. Bu teknik iki kuantum donaniminda (Rigetti ve IBM) uygulanir.

QML yeni bir arastirma alan1 haline geldi ve bircok uygulamada yer aldi. QC'nin
ilerlemesi ve basaris1 yaygin olarak goriilmektedir. Bu nedenle, QM'nin avantajlari
ve Ozellikleri ML'ye uygulanmalidir. Bildigimiz kadariyla, Chrisley'de (1995)
uygulanan ilk QML kavrami. QC, Aimeur, Brassard ve Gambs (2006) ve Lloyd,
Mohseni ve Rebentrost'ta (2013) denetimli ve denetimsiz 6§renme ile karistirilmistir.
Aimeur ve digerleri, 2006, Dunjko ve digerleri, 2016 ve Schuld (2018) 'de QML
algoritmalarin1 kuantum veya klasik algoritmanin entegrasyonuna bagli olarak dort
kategoriye ayirmistir ve kuantum veya klasik verilerde gosterildigi gibi asagidaki

Sekil 1.1 ‘de oldugu gibi tanimlanabilir.
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Sekil 1.1.Kuantum/klasik verilere ve kuantum/klasik algoritmaya dayal kuantum
makinesi 6grenme algoritmalari

v" Kuantum -Quantum (QQ) kategorisi, bu kategori tamamen QML olarak da
bilinir. QQ kategorisi kuantum algoritmalar1 ve verileri kullanir.

v' Kuantum -Klasik (QC) kategorisi olan bu kategori, klasik ajanlardan
ogrenmek i¢in bir kuantum algoritmasi kullanir (Kuo, Fang ve Chen, 2021).

v Klasik -Quantum (CQ) kategorisi, CQ algoritmalar1 standart ML'nin kuantum
stirlimleridir ve bu algoritmalar gercek bir kuantum cihazda yiiriitiilebilir.

v Kuantumdan ilham alan ML Kkategorisi tarafindan yaygin olarak kullanilan
klasik-klasik (CC) kategorisi. Ilham ile CC kategorisinde kuantum bilgi islem

ozellikleri (yani kuantum bitleri, siiperpozisyon ve dolagsma) kullanilir.

Kuantum bilgi islem, parazit, siiperpozisyon ve dolasma gibi kuantum mekanik
ozelliklerini kullanarak bilgileri isler. Bu nedenle, kuantum bilgi islem klasik
algoritmalar1 gelistirmek i¢in makine 6grenimi (ML) gibi ¢esitli alanlarla entegre
edilmistir. Bu bolim, kuantum makine 6grenimi (QML) paradigmalar1 (6rn.,
Tamamen QML, hibrid klasik-quantum ML, kuantumdan ilham alan ML) hakkinda
kapsamli bir literatiir calismas1 yapmak i¢in diizenlenmistir. Ayrica, kuantum derin
O0grenmesinde en son caligmalar sunulmustur. Hilbert alaninda klasik verileri
kuantum verilerine kodlamak i¢in ¢esitli yontemler vardir. Klasik makine
O0greniminin performansini artirmak i¢in kuantum alt rutin kullanan bir¢ok kuantum
makine Ogrenimi Onerilmistir. Bazi kuantum alt rutinlerini ve uygulamalarindan

bahsedildi.



Arastirmacilar i¢in yeni yollar agmak i¢in QML'nin gelecekteki perspektifleri ve
zorluklart da ele alindi. Sinirlt kubit sayilari, kiigiik 6l¢ekli kuantum donanimi ve
kodlama yontemleri nedeniyle QML tekniklerinin ger¢ek diinya sorunlari ile

uygulanmasi ve uygulanmasi i¢in hala zorluklar vardir.

1.2. Calismanin Literatiire Katkisi

Klasik ve Kuantum Makine Ogrenmesi (Quantum Machine Learning - QML)
seklinde yapilan bu hibrit ¢alismanin literatiire sagliyacagi diistiniilen katkis1 asagida

maddeler halinde verilmistir.

e Hiz ve Islem Kapasitesi: Klasik bilgisayarlar, belirli problemleri ¢ozmek
icin sinirh islem kapasitesine sahiptir. Kuantum bilgisayarlar ise belirli tipteki
problemleri daha hizli ¢6zebilir. Hibrit bir sistem, klasik bilgisayarlarin genel
hesaplama yeteneklerini kullanirken, 6zellikle kuantum avantajlarina sahip
problemleri ¢ozmek i¢in kuantum bilgisayarlar1 kullanabilir.

e Veri Isleme ve Analizi: Hibrit bir yaklasim, biiyiik veri setlerinde daha hizl
ve etkili bir sekilde islem yapabilir. Kuantum bilgisayarlar, belirli veri analizi
problemlerinde paralel hesaplamalar1 kullanarak klasik bilgisayarlardan daha
etkili olabilir.

e Belirli Algoritmalarin Iyilestirilmesi: Klasik algoritmalarin belirli zorlu
problemlerde yetersiz oldugu durumlar vardir. Kuantum algoritmalari, bu tiir
problemleri ¢6zmek i¢in 6zel olarak tasarlanabilir. Hibrit bir yaklasim, belirli
algoritmalarin klasik versiyonlarina kuantum iyilestirmeleri ekleyerek
performansi artirabilir.

e Yeni Algoritmalarin Gelistirilmesi: Hibrit sistemler, kuantum ve klasik
bilgisayarlar arasinda etkilesim saglayarak yeni ve daha etkili algoritmalarin
gelistirilmesine olanak tanir. Bu, belirli problemleri ¢6zmek i¢in 6zel olarak
tasarlanmig algoritmalarin olusturulmasina imkan tanir.

e (Cesitli Uygulama Alanlarr: Hibrit bir yaklasim, finans, saglik, yapay zeka,
optimizasyon problemleri gibi ¢esitli uygulama alanlarinda kullanilabilir. Bu,
klasik ve kuantum bilgisayarlarin gii¢lii yanlarini birlestirerek daha genis bir

problem yelpazesine hitap edebilir.



Ancak, kuantum bilgisayarlar heniiz genis ¢apta ticari olarak kullanilabilir degillerdir
ve belirli teknik zorluklarla karsilasmaktadirlar. Bu nedenle, hibrit bir yaklasimin
pratik uygulama alanlar1 ve gergek diinya etkileri tizerindeki ¢alismalar halen aktif

arastirma konularidir.

1.3. Tezin Icerigi

Yapilmig olan bu tez c¢alismasinin ilerleyen bdliimleri su sekilde devam
etmektedir; Boliim 2, Makine 6gremesi hakkinda ayrintili bilgi igermektedir. B6lim
3, Derin 6grenme hakkinda ayrintili bilgi icermektedir. Ayrica bu boliimde ¢alisma
kapsaminda kullanilan Derin 6grenme modeli, hakkinda bilgi icermektedir. Bolim
4, calismanin ana amaci olan Kuantum Makine 6grenmesi ve c¢esitleriyle ilgili bilgi
ayrintili bilgi vermektir. Ayrica bu boliimde kuantumun temel yapsinini olusruran
kiibit kavrami, siiper yogun kodlama ve son olarak kuantum kapilariyla ilgili
bilgi icermektedir. Bolim 5, Temel kuantum algoritmalarint hakkinda bilgi
vermektedir. Boliim 6, IBM tarafindan devre ve algoritma diizeyinde kuantum
bilgisayarlarla calismak icin olusturulan bir yazilim gelistirme kiti olan Qiskit,
hakkinda bilgi vermektedir. Boliim 7, tez ¢aligmasi kapsaminda kullanilan veri seti
ve Onigleme, olustuturan kuantum devresi, siniflandirict model ve ortaya ¢ikan
bulgular hakkinda bilgi vermektedir. Son boliim olan Boliim 8, sonuglar ve oneriler

kismini olusturmaktadir.



2. MAKINE OGRENMESI

2.1. Makine Ogrenmesi

Makine Ogrenimi, deneyimlerden "yapay" bilgi iiretimi i¢in kullanilan genel bir
terimdir (Reitmaier, 2015). Buna gore, yapay bir sistem orneklerden Ogrenir ve
O0grenme agamasi tamamlandiktan sonra bunlar1 genellestirebilir. Bunu yapmak i¢in,
makine Ogrenimi algoritmalar1 egitim verilerine dayali istatistiksel bir model
olusturur ve bu model test verilerine kars1 test edilir. Bu, orneklerin basit¢e ezbere
Ogrenilmedigi, ancak o6grenme verilerinde kaliplarin ve diizenliliklerin tanindig
anlamina gelir. Bu sekilde, sistem bilinmeyen verileri de degerlendirebilir (6grenme
transferi) veya bilinmeyen verileri 6grenmede basarisiz olabilir (asir1 uyum). Olasi
uygulamalarin genis yelpazesinden sunlar sayilabilir: “otomatik teshis prosediirleri,
kredi karti dolandiriciliginin taninmasi, borsa analizleri, niikleotid dizilerinin

siiflandirilmasi, konusma ve metin tanima ve otonom sistemler” (Pierson, 2021).

Konu, "veri tabanlarinda bilgi kesfi" ve "veri madenciligi" ile yakindan ilgilidir,
ancak esas olarak yeni kaliplar ve diizenlilikler bulmakla ilgilidir. Bir¢ok algoritma
her iki amag¢ icin de kullanilabilir. "Veri tabanlarinda bilgi kesfi" yontemleri,
"makine Ogrenimi" i¢in Ogrenme verilerini liretmek veya Onceden islemek icin
kullanilabilir. Tersine, makine 6grenimi algoritmalar1 veri madenciliginde kullanilir.
Bu terim, yapay sinir aglarin1 kullanan olas1 6grenme ¢esitlerinden yalnizca biri olan
"derin 6grenme" teriminden de ayirt edilmelidir. Verilerden (varsayimsal) modellere

yapilan ¢ikarima istatistiksel ¢ikarim denir (Langley, 2011).

Makine 6greniminde, bilgi temsilinin tiirii ve gilicii 6nemli bir rol oynamaktadir.
Bilginin agik¢a temsil edildigi sembolik yaklagimlar ile hesaplanabilir bir sekilde
davranmak tizere "egitilen" ancak Ogrenilen ¢6ziim yollarinin anlagilmasma izin
vermeyen sinir aglar1 gibi sembolik olmayan yaklagimlar arasinda bir ayrim yapilir.
Burada bilgi ortiik olarak temsil edilir. Sembolik yaklasimlar, 6nerme mantig1 ve
yiiklem mantig1 sistemleri arasinda ayrim yapar. Ilkinin temsilcileri ID3 ve halefi
C4.5'tir. Ikincisi tiimevarimsal mantiksal programlama alaninda gelistirilmistir.
Pratik uygulama algoritmalar araciligiyla yapilir. Makine 6grenimi alanindaki cesitli
algoritmalar kabaca {li¢ gruba ayrilabilir: “denetimli 6grenme, denetimsiz 6grenme ve

pekistirmeli 6grenme” (Mikut, 2008). Bu siniflandirma Sekil 2.1 ‘de gosterilmistir.
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Denetimli Ogrenme

Makine Ogrenmesi Tiirleri Denetimsiz Ogrenme

Pekistirmeli Ogrenme

Sekil 2.1. Makine 6grenmesi ¢esitleri semasi

e Denetimli 6grenme: Algoritma kendisine verilen girdi ve ¢ikt1 giftlerinden
bir fonksiyon 6grenir. Burada amag, agi modelimizi girdi ve ¢iktilarla birkag

hesaplamadan sonra iligskilendirme yapacak sekilde egitmektir.

e Denetimsiz 6grenme: Belirli bir girdi kiimesi i¢in algoritma, girdileri
tanimlayan ve tanian kategorileri ve korelasyonlari igeren istatistiksel bir
model olusturur ve bdylece tahminleri miimkiin kilar. Kiimeleme yontemleri
verileri karakteristik Orilintiilerle birbirinden ayrilan c¢esitli kategorilere
ayirmak i¢in  kullanmilir. Boylece ag, girdi Oriintiilerini  boldiigi
simiflandiricilart  bagimsiz olarak olusturur. Bu baglamda ©nemli bir
algoritma, bir modelin parametrelerini, goriilen verileri en iyi sekilde
aciklayacak sekilde iteratif olarak ayarlayan Beklenti Maksimizasyonu (BM)
algoritmasidir. Bunu, gézlemlenemeyen kategorilerin varligini varsayarak ve
doniistimlii olarak verilerin kategorilerden birine iiyeligini ve kategorileri
olusturan parametreleri tahmin ederek yapar. BM algoritmasmin bir
uygulamasi, Ornegin Gizli Markov Modellerinde (GMM'ler) bulunabilir.
Temel bilesen analizi gibi diger denetimsiz O6grenme yoOntemleri
kategorizasyondan vazgecer. Gozlemlenen verileri, biiyiik 6l¢iide azaltilmis
bilgiye ragmen miimkiin oldugunca dogru bir sekilde yansitan daha basit bir
temsile doniistiirmeyi amaglamaktadirlar (Mahesh ve dig., 2020).
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e Pekistirmeli Ogrenme: Bu Ogrenme modelinde, bir ajanin gevresiyle
etkilesime girerek belirli bir gérevde en iyi performansi elde etmeye calistigi
modelir. Ajan c¢evresinden gelen bildirimleri (6diiller veya cezalari)
kullanarak 6grenir. Bu siiregte, ajan deneyimlerinden 6grenir, belirli bir
durumda hangi aksiyonun daha iyi sonu¢ verdigini anlamak i¢in ¢esitli
stratejiler gelistirir. Bu 6grenme siireci, ajanin aldig1 aksiyonlar ve elde ettigi

odiiller arasindaki iligskiyi optimize edene kadar devam eder.

2.2. Makine Ogrenmesi Uygulama Alanlar:

Bugiin yapay zekanin bir alt kolu olan makine 6grenmesi, bilgisayarlarin donanimsal
ve yazilimsal 6zelliklerinin artmasiyla birlikte hemen her sektérde yogun bir sekilde
kullanilmaya baslandi. Bu alanlara 6rnek olarak; egitim, finans ve meteoroloji gibi
birgok alani géstermek miimkiindiir. Gegmiste elde edilen veriler tizerine uygulanan
algoritmalar ve 6grenme modelleri ile gelecekte olabilecek durumlarin tahminleri ya
da verilerin siniflandirmalart yapilabilmektedir. Bu tahminlerin ve siniflandirmalarin
en onemli 6zelligi, gerceklesmesi uzun siirebilen ya da gergeklestikten sonra geri
doniilmez sonuglar firetebilen olaylarin onceden tahmin edilmesidir. Makine
Ogrenmesinin uygulandig1 alanlara baktiimizda; Astronomiden hastalik tespitine,
veri madenciliginden enerji sistemlerine, dogal dil islemeden kredi risk
hesaplamasima kadar pek ¢ok alanda kullanilmakta oldugu goriilmektedir (Unsal,

2011).

2.3. Makine Ogrenmesi Modeli

Makine Ogrenmesi modelleri, verilerden 6grenme yetenegine sahip algoritmalari

ifade eder. Burada birka¢ temel 6grenme modeli bulunur.

e Regrasyon Modelleri: Girdi verileri arasindaki iliskiyi inceleyereksiirekli bir
¢ikt1 tahimin eder. Bunlara lineer regrasyon ve polinomiyal regrasyon 6rnek
olarak gosterilebilir.

e Smiflandirma Modelleri: Girdi verilerini farkli siniflara ayirarak, yeni veri
noktalarin1 uygunsiniflara atar. Bu modele Ornek olarak, destek vektor

makineleri (SVM), karar agaclar1 ve k-en yakin komsu (k-NN) gosterilebilir.
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e Kiimeleme Modelleri: Veri noktalarin1 benzerliklerine gore gruplayarak,
icsel yapilar1 ortaya c¢ikarir. Bu modellere, k-ortalama kiimeleme ve
hiyerarsik kiimeleme 6rnek olarak gosterilebilir.

e Derin Ogrenme Modelleri: Yapay sinir aglar1 kullanilarak ¢cok katmanli ve
karmasgik iliskileri 6grenir. Bu yapida evrigimli sinir aglar1 goriintii isleme

i¢cin ve yinelemeli sinir aglar1 sirali veri analizi i¢in siklikla kullanilir.

Bu modeller farkli veri tiirlerine, problemlere ve 6grenme siireglerine uygun olarak
secilir ve kullanilir. Hangi modelin tercih edilecegi, veri setinin yapisi, problem tipi

ve kullanilabilir veri miktar1 gibi faktdrlere baglidir.
Sekil 2.2 *de yer alan modelin ¢aligmasi agagidaki gibi belirtilmistir.
1. (x;y) nin bir kiimesi alinir, burada x bir girdi vektorli ve y uygun bir ¢iktidir.
2. y=f(x) fonksiyonu, dnceden bildirilen bir modelin olusumudur;
e Modelin kalite 6l¢iimiine, bir kriter tanimlanir
e Modelin kullanilacag bir egitim kiimesi olusturulur

e Modelin kullanacagi gegerli bir test kiimesi olusturulur (Uzun,2005).

Cikti
Sistem

v

Girdi

Cikt1

> Makine

v
[y

Sekil 2.2. Makine 6grenmesi semasi (Uzun, 2005)
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2.4. Makine Ogrenmesi Teknikleri

Makine Ogrenmesi, var olan problemin ¢oziimiine yonelik olarak bir bilgisayar
programinin belirli bir gorevi yerine getirmek i¢in verilen verileri ve uygun
algoritmalar1 kullanarak kendisini gelistirip sonuglar {iretmesi anlamina gelir. Bu
boliimde makine 6grenmesi tekniklerinden dolan ve giiniimiizde sik¢a kullanilan
smiflandirma, kiimeleme, birliktelik kurallar1 tekniklerinde yer alan makine

O0grenmesi algoritmalar1 anlatilmistir.

Simiflandirma: Makine 6grenmesi, bilgisayar sistemlerinin verilerden 6grenmesine
ve bu verilerden yararli bilgiler ¢ikarmasmna izin veren bir alanidir. Bu alanda
siniflandirma, verileri farkli kategorilere ayirma islemidir. Siniflandirma, 6grenme
algoritmalarinin temel 6gelerinden biridir ve 6grenme siirecinde en yaygin kullanilan

yontemlerden biridir.

Siiflandirma, birgok farkli uygulama alaninda kullanilir. Ornegin, spam filtreleme,
miisteri segmentasyonu, tibbi teshis, yiiz tanima, dogal dil isleme gibi bir¢ok

uygulama alaninda siniflandirma yontemleri kullanilir.

Siniflandirma, Ogrenme algoritmalar1 tarafindan verilerin farkli kategorilere
ayrilmasiyla gergeklestirilir. Veriler genellikle etiketli veya etiketsiz veriler olarak iki
kategoriye ayrilir. Etiketli verilerde, verilerin her bir 6rnegi bir etiketle belirlenir. Bu
etiketler dnceden belirlenmis bir kategoriye ait olabilir veya uzmanlar tarafindan
belirlenir. Etiketsiz verilerde ise verilerin her bir 6rnegi belirli bir kategoriye ait
degildir ve Ogrenme algoritmalarmin bu verileri analiz etmesi ve kategorilere

ayirmasi gerekmektedir.

Smiflandirma algoritmalari, verilerin farkli kategorilere ayrilmasi i¢in farkl
yontemler kullanir. En yaygin kullanilan smiflandirma yontemleri arasinda Karar
Agaclari, K-En Yakin Komsu (KNN), Destek Vektor Makineleri (SVM), Yapay
Sinir Aglar1 (ANN) ve Dogrusal Regresyon yer almaktadir. Bu yontemler, verilerin
dogru bir sekilde siiflandirilmasi igin farklh kriterler kullanir ve farkli avantajlara
sahiptir. Bahsedilen siniflandirma modellerinden biri olan karar agaclart modeli Sekil

2.3 ‘te gosterilmektedir.
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Sekil 2.3. Karar agact modeli 6rnegi

Kiimeleme: Kiimeleme modeli, veri madenciligi ve makine 6grenmesi alanlarinda
kullanilan bir tekniktir. Temel amaci, verileri belirli 6zellikleri temel alarak birbirine
benzer gruplara (kiimeler) ayirmaktir. Bu sayede verilerin daha anlasilir hale
gelmesi, benzer 6zelliklere sahip verilerin bir arada bulunmasi, veriler arasindaki

iliskilerin daha iy1 anlagilmas1 gibi faydalar saglanabilir.

Kiimeleme modelleri, gesitli yontemlerle olusturulabilir. Bu yontemler arasinda
hiyerarsik kiimeleme, k-ortalama kiimeleme ve yogunluk tabanli kiimeleme gibi
yontemler bulunur. Bu yontemlerin her biri, verilerin farkli 6zelliklerine gore

kiimeleme yapar.

Ornegin, bir marketin miisteri verilerini kullanarak miisterileri belirli 6zelliklere gore
kiimelere ayirmak miimkiindiir. Bu sayede, belirli bir kiimeye ait miisterilerin ortak
ozellikleri (yas, cinsiyet, gelir seviyesi vb.) anlasilabilir ve bu o6zelliklere gore

pazarlama stratejileri belirlenebilir.

Birliktelik Kurallari: Birliktelik kurali, bir veri kiimesindeki 6geler arasindaki
iligkileri tespit etmeye calisir. Bu teknik, genellikle aligveris sepeti analizi gibi
uygulamalarda kullanilir. Aligveris sepeti analizi, misterilerin birbirleriyle hangi
trlinleri satin aldigimmi belirlemek i¢in kullanilir. Bu analiz, birliktelik kural

kullanilarak gerceklestirilir.
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Birliktelik kurali, veri kiimesindeki 6geler arasindaki iliskiyi siralar ve bu iligkileri
belirli bir siklikta gergeklesen birliktelikler olarak ifade eder. Bu birliktelikler,
"destek" ve "giliven" olarak adlandirilan iki 6l¢tit kullanilarak degerlendirilir. Destek,
birliktelik kurallarimin  ka¢ kez gerceklestigini belirtirken, giliven, birliktelik

kurallariin ne siklikla gergeklestigini belirtir.

Birliktelik kurali, 6zellikle biiyiik veri kiimelerindeki 6geler arasindaki iliskileri
kesfetmek i¢in ¢ok kullanish bir tekniktir. Bu teknik, miisteri davranislarinin analizi,

web sayfasi tavsiyeleri ve reklam hedefleme gibi bir¢ok alanda kullanilmaktadir.
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3. DERIN OGRENME

Bugiin diinyada teknoloji alaninda c¢alisacak olan insanlarda en ¢ok aranan
yeteneklernden biri de yapay zeka, makine 6grenmesi ve derin 6grenme bilgileridir.
Ciinkii ¢cok fazla alanda kullantyor ve kullanilan alanlarin artarak devam edecegi de

veri bilimi uzmanlari tarafindan 6ngoriilmektedir.

Derin 6grenmeyi anlayabilmek i¢in Oncelikle, yapay zeka mantigimi ve makine
ogrenmesi ile olan temel farklar1 hakkinda bilgi sahibi olmak gerekir. Bu boliimde
sonraki boliimler i¢in konunun temel taslari ele alinarak, derin 6grenmede nasil

kullanilabileceginden bahsedilecektir.

3.1. Derin Ogrenme Nedir?

Bugiin derin 6grenme kavramindan bahsedildiginde oncelikli olarak bir goriintii
siiflama veya nesne tanima problemi gelmektedir. Ornegin elimizde kedi ve kdpek
olarak iki gorselimiz olsun. Biz bu gorsellere baktigimizda kedimi yoksa kopek mi
olduguna karar verirken, beynimizde kediye dair birtakim 6zellikleri (kullak tipi, tiiy
yapisi, yliz tipi vs.) diisiinlip elimizdeki goriintiide bu 6zelliklerin olup olmamasini
baz alarak karar veriyoruz. Ayni degerlendirmeyi kopek ya da baska nesneler i¢inde
yaparak karar veriyoruz. Yapay sinir aglari ve makine 6grenmesi gibi modellerde bu

ozelliklere ihtiyazimiz oluyordu.

Derin 6grenmede yapay sinir aglarindan farkli olarak katmanlar arasinda bu
oznitelikler kendiliginden 6greniliyor. Ogrenme islemi tasarladigimiz modelimize
uyguladigimiz (3x3, 5x5 vs.) filtreler sayesinde olur. Modelimize uyguladigimiz her
filtre bir 0znitelik ¢ikarici olarak islem yapiyor. Bu igslem temelde elimizde bulunan
verinin kendisinden 6grenmeye dayali bir yapidir. Ornegin elimizde bir gorselimizde
varsa, bu gorsele ait kenar, kose ve 151k bilgileri ya bizim tasarlagimiz bir filtre ile ya

da hazir filtrelerle (sobel, prewitt, robert, gabor vs.) 6grenilebilir.

3.2. Derin Sinir Aglar

Derin sinir aglart (deep neural networks), yapay sinir hiicrelerinin (ndronlar)
katmanlar halinde bir araya getirilerek olusturulan bir tiir yapay sinir ag1 yapisidir.

Bu yapi, karmasik problemleri ¢c6zmek ve veri lizerinde islem yapmak i¢in kullanilir.
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Her katman, girdi verilerini isleyip daha soyut temsilleri ¢ikararak bilgiyi hiyerarsik

bir sekilde dgrenir.

*
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Sekil 3.1. Derin sinir ag1 drnegi

Burada:

e Giris Katmani, veri 6zelliklerini temsil eder.
e Gizli Katmanlar, verileri daha soyut temsiller haline getirerek 6grenir.
e Cikis Katmani, sonuglari {iretir.

o Toplam katman sayis1 hesabinda giris katmani sayilmaz.

Her bir noron, girdileri agirliklarla ¢arparak aktivasyon fonksiyonuna gonderir. Bu,
ndronun belirli bir 6zellik veya deseni ne kadar "etkin" olarak temsil ettigini belirler.
Yapilan bu islem sirasinda aktivasyon fonkisonu kullaniriz. Kullanilan fonkisyon
dogrusal olmayan problemleri tanimalarina yardimer olur. Bu sorunlarin ¢oziimii
igin, Sigmoid, ReLU (Rectified Linear Activation), Tanh gibi farkli aktivasyon
fonksiyonlar1 kullanilabilir. Burada secilen aktivasyon fonkiyonu zaman maliyetini
minimuma indirmek igin kolay tiirevlenebilir olmalidir. Aktivasyon fonskiyonun

caligma prensibi Sekil 3.2 *de verilmistir.
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Sekil 3.2. Aktivasyon fonkisyonunun genel yapisi

Derin 6grenme modellerinde Ogrenme geri yayilim esnasinda yapilir. Her
iterasyondan sonra iiretilen deger gergek degerle karsilastirilir ve bir kayip (loss)
degeri hesaplanir. Kayip degerinin sifir ¢iktigi dongiilerde ya agimiz ezberleme
yaptiyor ya da optimizasyon sorunu yasiyor olabilir. Optimizasyon sorunu yasamasi
durumunda performansim1 artirmak i¢in Gradien Descent gibi bir algoritma
kullanilabilir. Derin sinir aglari ezberlemeye (overfitting) de yatkin olabilir. Bu
sorunun ¢6ziimil i¢inse genelde veri bolme ya da azaltma tekniklerinden olan dropout

gibi bir regularizasyon yontemi kullanilarak agin genelleme yetenegi artirilir.

3.3. Derin Sinir Aglarinda Parametre ve Hiper Parametre Kullanim

Genel olarak parametreler, modellerde her zaman bulunmasi ve hesaplanmasi
gereken agirliklar ve bias degerleridir. Hiper parametreler ise bizim karar
verecegimiz ve parametrelerin  heseplanmasina katki saglayan, modelin
performansini direk olarak etkileyen degerlerdir. Derin 6grenmede ¢ok sayida hiper
parametre vardir. Literatiirde hiperparametreleri bulan ¢ok sayida algoritmalar ve

arayiizler var. Ornegin,
Parametreler:

W ptl w2 pia
W:Agirliklar,

b:Bias degerleri
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Hiper Parametreler:

v

v
v
v
v

Ogrenme Oran1 (Learning Rate)
Iterasyon sayis1

Gizli katman sayis1

Aktivasyon fonkisyonu se¢imi

Kiime boyutu ve diger diizenleme (regularization)yontemleri

3.4. Evrisim Islemi

Evrisim islemi (convolution), ozellikle goriintii ve sinyal isleme gibi alanlarda

kullanilan matematiksel islemdir. Evrsim isleminin genel yapist sematik olarak Sekil

3.3 ’te verilmistir. Temel olarak, bir filtre veya kernel adi verilen bir matrisin, bir

girdi matrisi (6rnegin bir goriintii) iizerinde kaydirilmasi islemidir. Evrigim isleminin

amaci, verilerdeki desenleri tespit etmek, ozellikleri ¢ikarmak ve onemli bilgileri

vurgulamaktir. Ozellikle goriintii islemede, kenarlar, koseler, doku gibi temel

desenleri tespit etmek i¢in kullanilir.

v

Ozellik Cikarma: Evrisim islemi, girdi verilerinden 6nemli o6zellikleri
cikararak veriyi daha temsilci hale getirir. Bu, daha sonra gelen katmanlarda
daha etkili 6grenmeyi saglar.

Parametre Paylasimi: Evrisim islemi, aym filtreleri farkli bolgelere
uygulayarak parametre paylagimimi kullanir. Bu, agin daha az parametre
gerektirmesine ve daha etkili 6grenmesine yardimeci olur.

Davrams Invariyansi: Evrisim islemi, girdi verilerindeki kiiciik kaymalar
(translasyonlar) tolere edebilir. Bu sayede nesnelerin farkli pozisyonlarda
bulunabilecegi durumlar1 daha iyi igleyebilir.

Hiyerarsik Temsil: Evrisim islemi, katmanlar halinde uygulanarak verinin
farkli diizeylerdeki 6zellikleri daha soyutlamaya yardimci olur. Bu da agin

daha karmasik yapilar ve iligkileri 6grenmesine olanak tanir.

Sonug olarak, evrisim islemi, derin 6grenme modellerinde veri isleme ve Ozellik

cikarma stireglerini optimize etmek i¢in kullanilir. Goriintii isleme, ses isleme ve
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dogal dil isleme gibi alanlarda basarili sonuclar elde etmek i¢in vazgegilmez bir

bilesendir.
Resim Evrisim Evrisim Evrisim Evrisim Evrisim Baglanti

Filtresi-1 Filtresi-2 Filtresi-3 Filtresi-4 Filtresi-5 Katmanlari  Tam
] ] Baglanti
Katmam

27x 27 x 256

55% 55 x 96 =]

L] L .| 1000

Sekil 3.3. Evrisim isleminin genel yapisi

3.5. Kenar Bulma

Kenar bilgileri goriintiiden elde edilen 6znitelikler arasinda en ¢ok ihtiya¢ duyulan
bilgilerden biridir ¢alistigimiz goriintii izerinde ¢ok temel bilgileri bulmamizi saglar.
Giris bilgisinin yiiksek frekansli bolgelerini simgelemektedir. Bu bilgileri elde etmek
icin dikey, yatay ya da farkli rotasyonlarda birtakim filtrelerden yararlanilir. Yapilan
isleme evrisim denir. Islem cikisinda yiiksek frekansli yeni goriintiiniin kenar
bilgileri tespit edilmis olur. Geleneksel yontemlerde hazir olarak kullanilan (sobel,
gabor, prewitt, ropert vs.) filtrelerle bu islemleri yaparken, derin 6grenmede
ozelliklede evrisimli sinir aglarinda boyle bir sey yapmamiza gerek yoktur. Derin
O0grenmede evrisim islemi boyunca bu isleri agimiz kendisi c¢ikarir. Evrisim
katmaninda bulunan dikey ve yatay kenarlar1 bulup bunlar1 birlestirdigimiz zaman
nesnenin dig goriintiisiinii (shape) yavas yavas elde etmeye baslariz. Kenar bulma

isleminin genel yapisi sematik olarak Sekil 3.4 *te verilmistir.
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olusturan pikseller

Kenar motifleri

Sekil 3.4. Evrisimle kenar bulma 6rnegi

Nesne pargalan

Nesneler

Kenar bulma islemide evrisim isleminin benzeridir. Farkli olan tarafi bu is i¢in

elimizde Sekil 3.5 ‘te goriildiigl gibi 6zel bir matrisin olmasidir.
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Sekil 3.5. Kenar bulma matris 6rnegi

(©)

Sekil 3.5. teki bu matris goriildiigii gibi on (10) ve sifir (0) degerlerinden olusuyor.

On ile sifir1 ayiran ¢izgi bize bir kenar bilgisi veriyor. Clinkii yiiksek frensli bolgenin

oldugu bolgedir. Bu durumda buralarda hizli gegislerin oldugu anlamina gelir.

Ornegin; Sekil 3.5 ‘te, (a) ile gosterilen sekle baktigimizda on ile ifade edilen

kisimlar agik gri olan bolim iken sifir ile ifade edilen yerler siyah olarak

gosterilmektedir. Bu iki boliimii ayiran kisim ise bize kenar bilgisini vermektedir.

Ornegimizdeki goriintiimiizii 3x3’lik bir kenar bulma filtresi uyguladigimizi

diistinelim. Filtremizde negatif sayilarla ifade edilen boliim en koyu renkli olan

boliimleri, sifir olan yerler orta renli ve pozif olanlar ise agik renkleri temsil
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etmektedir. Ciinki, goriintiiyli piksellerle ifade ettigimiz zaman kiigiik degerler koyu
renki ve biiyiik degerler agik rengi temsil ederler. Filtremizi giris matrisimiz tizerinde
islem tabi tuttugumuzda ve gerekli matematiksel islemleri yaptigimizda sonug olarak
4x4’ lik bir ¢ikis matrisi buluruz. Neden 4x4’liik bir matris bulduk? Genel olarak

bdyle bir islem sonucu bulacagimiz ¢ikis matrisi,
Cikis matrisi = (Giris matrisinin boyutu — Filtre boyutu)+1 (3.2)
Formiiliiyle hesaplanir.

3.6. Piksel Ekleme

Goriintii islemine uyguladigimiz evrisim isleminden sonra olusan boyut farkini; giris
matrisi ile ¢ikis matrisinin esit boyutta olmasini istiyorsak giris matrisine ekstra
pikseller eklememiz gerek. Bu isleme piksel ekleme ya da dolgulamak denir.
Piksel ekleme islemi icin literatiirde siklikli kullanilan iki yontem bulunmaktadir.
Birinci yontem, matrisimizin ¢evresine ihtiyacimiz oldugu kadar ¢evre ekleyip i¢ini
sirfirlarla doldurmak. Giris matrisimize ekleyecegimiz gerceve sayisini ise asagidaki

formiille buluruz.
Giris matrisi = (nxn), 6rnek olmas1 acisindan n=6 olsun
Filtremiz =(fxf) ile temsil edilsin ve 6rnek olarak f=3 olsun

Normalde girig matrisimize bu filtreyi uyguladigimizda ¢ikis matrisimizin boyutu (n-
f)+1 den 4x4 liik bir ¢ikis elde ederiz. Bu islemden sonra goriildiigii gibi boyutumuz
azalmis oldu. Biz giris matrisimizin boyutu ile ¢ikis matrisimizin boyutu ayni olsun

istiyoruz. Eger piksel ekleme yapacaksak uygulanacak formiil ise asagidaki gibidir.
Piksel ekleme var ise;

p = ekleme(paddink)

1
P==

Cikis = (n+2p-f+1)x(n+2p-f+1)=(6x6)

Eger piksel ekleme yoksa ise ¢ikig =(n-f+1) x(n-f+1) =(4x4)
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Bu islemlerden sonra giris matrisimize ka¢ cerceve eklenecegini bulmus olduk.
Ekledigimiz bu gergeveleri neyle ve nasil dolduracagiz. Uygulamalarda en ¢ok
kullanilan iki yontem bulunmaktadir. Birinci yontem, 6rnegin giris matrisimize iki
satir ve iKi siitun eklemissek bunlarm igini sifir (0) ile doldurmaktir. Ikinci yontem
olarak da ekledigimiz ilk cer¢eveye hemen yanindaki pikseller kopyalanir. Ikinci
cergeveye ise ilk durumdaki matrisin disardan ikinci satir ve siitunundaki pikseller

kopyalanarak doldurma islemi tamamlanir.

Eger bu islem sirasinda ilk yontemi (sifir ile doldurma) tercih etmissek, evrigim
islemi sirasinda yapacagimiz matematiksel islemler sirasinda degeri siirekli asagiya
cekecektir. Ciinki evrisimde carpma ve toplama islemi yapiyoruz. Bodylece elde

edilen ¢ikis matrisinde birbirinden ayrik degerler olusacak.

Eger ikinci yontemi kullanirsak (giris matrisindeki degerlerin disa dogru
kopyalanmasi), eklenen piksellerle diger pikseller arasinda sayisal olarak ¢ok fark
olmayacagindan yapilacak olan evrisim islemini sonrasinda elde edilecek cikislarda
goriintliye dair daha yakin bilgiler elde edilmis olacaktir. Bu islemin dezavantaji ise,
her adimda toplama ve ¢arpma yapilacagindan islem yiikiimiiz ¢ok olacaktir. Bu da
daha yavas calisan bir evrisim islemine neden olacaktir. Bununla birlikte elde

edecegimiz ¢ikis matrisi daha dogru bir matris olacaktir.

3.7. Adim Kaydirma

Evrigimli sinir aglarinin temeli olan evrisim islemini yaparken dikkate aldigimiz bir
diger onemli 6zellik ise adim kaydirmadir. Adim kaydirma, giris matrisimiz iizerinde
kullandigimiz filtremizin kag¢ piksel aralikla kaydirdigimiz islemin adidir. Adim
kaydirma isleminin genel yapis1 sematik olarak Sekil 3.6 *da verilmistir. Bu durumu

asagidaki gibi bir 6rnekle aciklamak gerekirse;

Sekil 3.6 *da piksel isleme yapilmis (7x7) boyutunda bir matris goriilmektedir.
Girig matrisi n=5x5

Uygulanan filtre f=3x3

Adim kaydirma s=2 (iki adimda bir)
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Pikel ekleme p=1 (1x1 lik 0 (sifir) lardan olusmus dis cerceve)

Burada uyguladigimiz filtremiz bir (1) lerden olusmus bir filtre olsun. Filtremizi sol
ist koseye yerletirip evrigim islemi uyguluyoruz. Yapilan islem sonucunda elde
ettigimiz deger Sekil 3.6 ‘da gorildigi tizere bes(5) tir. Sonra iki adim saga kaydirip
filtremi yeni degerlele evrisim iglemine sokuyorum. Elde ettigim sonucum yine Sekil
3.6’da goriilecegi tizere on ti¢(13) tiir. Evrisim islemini saga ve asagiya kaydirarak
tiim matrisimize uygulariz. Bu islem sonucunda (3x3) boyutunda bir matris elde

ederiz.

mm) 174235
[16]32] 15

3x3

(=3 =} f=h feh i N K]
OIRJWINIF]IR]IO
OO OIS I=INIO
OJViNI&_S N0
OQJWIVNINIWI=LIO
(=3 Rl K8 RS0 AV-0 O K]
(=3 =3 =} foh i Fo} L=

Sekil 3.6. Kaydirma islemi uygulanmig matris 6rnegi

Elde ettigimiz (3X3) boyutundaki bu matrisi nasil elde ettigimizi hatirlayacak

olursak;

((n+2p—f)

S

+ 1) X (@ + 1) formulii ile hesaplayacak olursak, (3.2)

((5+2;_3) + 1)x ((5+221—3) + 1) = 3)x(3)

Goriildigi tizere adim kaydirma islemi piksel eklemis bile olsak ¢ikis matrisimizin

boyutunu kiigiiltmektedir. Eger giris matrisimiz ile ¢ikis matrisimizin boyut farki ¢ok
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olmasin ya da ayni olsun istiyorsak, adim kaydirma araligin1 ne kadar biiyiik tutarsak

piksel ekleme sayimizda o kadar biiyiik olmalidir.

Burada o6rnek olarak kullandigimiz matrisler iki boyutlu oldugundan gri seviye bir
goriintiiyli  temsil etmektedir. Ger¢ek hayatta bizim gordigiimiiz goriintiiler

genellikle renklidir. Buda ii¢ kanall1 (kirmizi, yesil, mavi) matris yapilarindan olusur.

3.8. Ortaklama islemi

Literatiirde ortaklama islemi i¢in havuzlamada olarak kullanilsa da, en yaygin
kullanim sekli ortaklama islemidir. Ortaklama isleminin genel yapisi sematik olarak
Sekil 3.7 ’de verilmistir. Bu iglemin kulllanilan ii¢ yontemi vardi. Bunlar; maksimum
ortaklama, minumum ortaklama ve ortalama ortaklamadir. Bunlarin arasinda en
yaygin olarak kullanilan maksimum ortaklama yontemidir. Maksimum ortaklama

islemi asagidaki gibi yapilmaktadir.
Filtre boyutu f=2

Adim kaydirma s=2

Maksimum ortaklama
Islemi yaparsak

Rl w| o~
ol o &
N |~ w
Al oO| o~

Sekil 3.7. Maksimum ortaklama islemi

Giris matrisimiz lizerine filtremizi yerlestirdikten sonra, filtemizin bulundugu altinda
kalan alanda yer alan en biiyiik say1y1 aliriz. Sonar bu islemi adim kaydirma miktar
kadar saga ve asagiya giderek matrisimizin tamina uygulariz. Goriildiigl iizere giris
matrisimizdeki her dort pikseli ¢ikis matrisimizde bir pikselle bir pikselle ifade etmis

oluyoruz. Bu aslinda bir tiir boyut azaltma iglemidir.
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3.9. Cok Kanalh Evrisim islemi

Evrisim isleminin nasil yapildig1 konusunda yukarida deginildi. Bu islemi yaparken
adim kaydirma, piksel ekleme ve ortaklama islemlerinden bahsedildi. Su ana kadar
bu islemleri hep iki boyutlu gri seviye matrisler lizerinde gordiik. Yani tek kanalli

gorilintlidir.

6X6X%X3 3x3x3 4x4x1 Fxdni

Sekil 3.8. Cok kanall1 evrisim ag1

Cok kanalli goriintiiniin en basit hali kirmizi, yesil ve maviden olusan, giinliik
hayatta fotograf ¢cekerken kullandigimiz goriintii tipidir. Sekil 3.8. de goriildiigi gibi
elimizdeki goriintii 6x6 boyuntunda, renkli ve {i¢ kanalli bir goriintiiyse 6x6x3
seklilnde kanal sayisinida ekleyerek ifade ederiz. Bu goriintiiyli iic tane 6x6
boyutunda matristen olusmus bir yap1 olarak diislinebiliriz. Bu goriintiiye bir evrisim
islemi uygulayacaksak, filtremizde ti¢ boyutlu olmak zorundadir. Sekil 3.8. de
goriilecegi lizere 6x6x3 boyutundaki matrisimize 2 adet 3x3x3 liikk filte uyguladik.
Bu arada uygulanan her bir filtre bir 6zniteligi temsil etmektedir. Filtre ¢ikislarinda
elde ettigim degerler 4x4x1 boyunda matrisdir. Burada 4 degeri, (giris matrisinin
boyutu — filtre matrisinin boyutu+1) formulii ile hesaplanarak bulundu. Bu islem iki
filtremiz oldugundan iki kez tekrar ediliyor. Sonugta ise 4x4x2 boyutuda bir matris
elde edilliyor. Eger bir matris birden fazla kanaldan olusuyorsa bu matrise literatiirde
tensor denilmektedir. Bu tensor yapisi bir goriintilyii simgelemiyor olabilir ama bir

oznitelik ¢ikarma islemi gergeklestirmis oluyor. Ornegin ilk filtremiz dikey kenari,
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ikinci filtremiz yatay kenari temsil ediyorsa, elde ettigimiz tensor hem dikey hem de

yatay kenari ifade eder.

3.10. Evrisimli Sinir Ag1

Sekil 3.9 ‘da goriltiigii gibi, 27x27x3 seklinde ifade edilen bir goriintiimiiz olsun.
Giris katmanma al® ismini verdik. Her bir hesabimizin sonunda al'l, al? ve af!
katmanlarindaki degerleri elde edecegiz. Oncelikle bir filtre segiyoruz. Ornegimizde
ilk kullandigmmiz filtre i¢in fiY = 3, piksek ekleme pM=0 ve adim kaydirma
degerimiz s™M=1 olarak verilmistir. Bu filtreden on tane kullanilmustir. Giris
goriintiisiiniin boyutlarina bakacak olursak, genislik ve yiikseklik dergerleri nl%y =

nl%y = 27 ve kanal sayisida nl% =3 olarak verilmistir. Bir sonraki adima gegerken
uygulamam gereken formilii (@+ 1) ‘dir. Elde edilen yeni matris(tensor)

25x25x10 luk olacaktir. Burada eklenen on rakami uygulamis oldugumuz on filtreyi
temsil etmektedir. Boylece ilk katmandaki yapacagimiz islem bitmistir. Sonraki
katmanlarda da filtre, piksel ekleme ve adim kaydirma degerlerini degistirerek ayni
islemi tekrar ederiz. Tiim bu islemeleri yaparken bir aktivasyon fonkisyonu (relu,
sigmoid vs.) ve bir bias degeri isleme tabi tutuyoruz. Son katmandan sonra tam
baglant1 katman1 dedigimiz (full connect) katmanda vektor seklinde bir yap1 olur. Bu
katmandan sonra sonuglar bir ¢ikis néronuna ulastirilir. Burasi ise elde ettigimiz
kestirim degerimiz olur. Ornegin bir nesne smiflandirma islemi yapryorsak,

siniflandirma degerimiz olacak.

alol altl al?l a¥l o
O
~
/‘13\ =5 / )\ =
fl2l=5 pi3 =0 & )
_“1 p? =0 si3l=2 : 5‘;
073 25x25x1057=2  11x11x20  4x4x40
piHl = 0
27 X 27 %3 sll=1 .‘ 2] _ . (2] n¥ =nl =3 !
nl}l = alll =25 ny =n, =11 njl:l;l s 43’ o~ R
n[,?] = lllu(:] =27 n\(_l] =50 n(fZ] =20 ol
nLﬂl =3 |
10 filtre 20 filtre 40 filtre 4 X 4 X 40= 640

Sekil 3.9. Evrisimli sinir ag1 6rnegi
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Sekil 3.10. Evrigimli sinir ag1 6rnegi2

3.11. Resnet-50 Modeli

ResNet-50, "Residual Network" (ResNet) adi verilen bir derin 6grenme modeli
ailesinin bir liyesidir. Bu aile, 2015 yilinda Kaiming He ve arkadaslar tarafindan
Microsoft Research'te gelistirilmistir. ResNet, bilgisayar goriisii (computer
vision) gorevlerinde biiyiik basar1 elde etmis ve ImageNet gibi biiylik veri
setlerindeki goriintli siniflandirma gorevlerinde 6zellikle etkili olmustur. ResNet,
diger derin sinir aglarina kiyasla daha derin aglarin egitilmesini kolaylagtirmak
icin gelistirilmis bir mimariye sahiptir. Ana yenilik, "residual bloklar" olarak
adlandirilan 6zel bir yapidir. Bu bloklar, daha 6nceki katmanlarin ¢iktilarini
(giris) son katmana ekler. Bu, agin daha derin hale getirilmesine olanak tanirken,
ayn1 zamanda asir1 uclarini (vanishing gradients) ¢ozer ve egitimi daha verimli

hale getirir.

ResNet-50 modeli 6zellikle 50 katmanli bir derin agdir ve ortalama olarak 3.9 x

1079 parametreye sahiptir. Model asagidaki ana bilesenleri igerir:

v Giris Katmani: Resimlerin RGB renk kanallarini (genellikle 224x224 piksel)
kabul eder.

v' Bes Icerikli (Convolutional) Grup: Bu gruplar, birbirini takip eden bes
residual blok icerir. Her biri farkli filtre sayilarina ve evrisim ¢ekirdek

boyutlarina sahip olabilir.
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v Global Ortalama Havuzlama (Global Average Pooling): Son residual blok
ciktilarin1 alir ve bunlar1 global ortalama havuzlama katmanina ileterek her
bir 6zellik haritasini tek bir degere doniistiiriir.

v' Tam Baglanti Katmam (Fully Connected Layer): Global ortalama
havuzlama sonucunu, siniflandirma yapmak i¢in kullanilir. Genellikle 1000
farkli sinifi taniyabilen bir siniflandirma katmanina sahiptir.

v' Softmax Katmam: Smiflandirma sonuglarimi olasiik  dagilimlarina

doniistiiriir.

ResNet-50 modeli, ¢esitli gorsel gorevlerde dnceden egitilmis bir agirlik modeli
olarak kullanilabilir veya ozellestirilerek belirli gorevler i¢in egitilebilir. Bu model,
ozellikle nesne tespiti, goriintii siniflandirma ve transfer 6grenme gorevlerinde
popiiler bir segenektir. Sekil 3.11°de standart bir Evrisimli Sinir A§1(ESA) ile ResNet

mimarilerinde kullanilan kisa yol baglantilart goriilmektedir.

X l X
Konw:liisyon Konvoliisyon
ReLU | ReLU
Konw:liisyon - Konvoliisyon
l ReLU l

4

| ReLU

Sekil 3.11. Standart ESA (sol); ResNet mimarilerinde kullanilan
kisayol baglantilar1 (sag)
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4. KUANTUM MAKINE OGRENMESI

Kuantum Makine Ogrenimi (QML), Kuantum Fizigi (QP) ve Makine Ogreniminin
(ML) 6grenilmesine yonelik biitiinlestirici bir yaklagim olarak bilinmektedir. Bu
boliimde, kuantum makine 6grenimi ile ilgili temel fikirlerin ve Ozelliklerin bir
taslagi ortaya konmaktadir. Kuantum algoritmalarimin farkli yonleri, kuantum
takviyeli 6grenme, kuantum tavlamanin temel 6zellikleri, son olarak kuantum sinir

aglarinin QML yoniine 151k tutacak sekilde ilerlemesi bu boliimde agiklanmastir.

4.1. Kuantum Makine Ogrenmesi

Makine 0grenimi, son teknolojilerde gelismekte olan bir disiplin haline gelmistir.
Hesaplamali biyoloji, bilgisayarla gorme, bilgisayar giivenligi ve diger g¢esitli
alanlarda kullanilmaktadir. Veri analizi (DA), modern endiistride esit derecede
Oonemli bir parcadir. Makine 6grenimi ve DA istatistiksel yontemler uygulayarak
verileri analiz eder ve gozlemlenen verilerin analizi temelinde bilgisayarlara 6grenme
yetenekleri saglar. Ogrenme tarzi temelinde, Makine &grenimi algoritmalar: (MLA)
temel olarak farkli gruplara, yani denetimli 6grenme (SL), denetimsiz 6grenme (UL)
ve yart denetimli 6grenme (Semi-supervised learning-SSL) seklinde ayrilir. ML
tekniklerini kullanmanin en 6nemli eksikliklerinin, 6zellikle biiylik miktarda veri
iceren hesaplama siiresi ve depolama oldugu bilinmektedir. Bunlara ek olarak,
mevcut derin 6grenme algoritmalart kullamildiginda, egitim siiresi daha da uzun
olabilmektedir. Sonraki nesilde arastirmacilar, yukarida bahsedildigi gibi depolama
ve hesaplama siiresini azaltacak kadar akilli olabilen kuantum bilgisayar yonteminin

giiclinii kullanarak uygun bir alternatif elde etmislerdir.

Bir¢cok makine 68renimi problemi verileri matrislerle ifade ederek matris islemlerini
¢ozmek icin dogrusal cebir kullanir. Kuantum hesaplama (QC), klasik ML
gorevlerini kayitsiz sartsiz iyilestiren ¢esitli dogrusal cebir hesaplamalarini daha hizl
hale getirebilir (Rebentrost ve dig., 2014). Optimizasyon igin sayisal yontemler, s6z
konusu optimizasyon prosediirlerinin hesaplamalarini iyilestirmeyi amaglayan gok
begenilen bir arasgtirma alanidir. Klasik optimizasyon gibi, QC'nin bir dali olan
kuantum optimizasyonu da s6z konusu teknikleri daha da gelistirmeye calisir. Bu
tiirden iki {inlii ydntem Kuantum Gradyan Inisi (QGD) (Kerenidis ve Prakash, 2017)
ve Kuantum Yaklasik Optimizasyon Algoritmasidir (QAOA). Bu yontemler
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Kuantum Boltzman Makineleri (Amin ve dig.,2018) gibi kuantum sinir aglarinda
(QNN) verimli bir sekilde uygulanmaktadir. Son zamanlarda, ¢ok yeni disiplinler
arasit aragtirma alami olan kuantum makine 6grenimi, makine 6grenimi teorisini
kuantum hesaplamanin o6zellikleriyle birlestirmek amaciyla ortaya c¢ikmastir.
Kuantum makine 6grenimi (QML), farkli problemleri yiiksek etkinlikle ¢cozmek i¢in
kuantum siiperpozisyonu ve kuantum dolanikligi gibi kuantum o6zelliklerini
uygulayarak makine Ogrenimi algoritmalarin1 (MLA) kuantum atmosferinde

(sistemlerinde) uygulamaya yoneliktir (Schuld ve dig., 2015).

Temel olarak QML, ML'deki mevcut yaklagimlari iyilestirmek amaciyla genellikle
verilerden O6grenen kuantum algoritmalarini tanitmak amaciyla bilgi islemenin
kuantum arastirmasinin bir alt disiplini olarak bilinmektedir. Dolayisiyla amag,
MLA'larinin esnekligi ve 6grenme kabiliyetinin yani sira kuantum bilgisayarlarin
etkisine sahip ¢esitli MLA'larinin kuantum uygulamalarini gelistirmektir. Sinir aglar
(NN), grafik modeller, destek vektdr makineleri (SVM) gibi ¢esitli makine 6grenimi
modelleri icin ¢esitli kuantum algoritmalart tanitilmistir. QML, kuantum
perspektifinden 6grenme diisiincesi hakkinda daha temel sorulari arastirir. Bazi
durumlarda QML, ML'y1 kuantum bilgisine uygulamak i¢in arastirmacilar tarafindan
kapsamli bir sekilde tanimlanmaktadir. QML'de kullanilan ortiik metodolojilerin yam
sira, klasik ML algoritmalarinin birka¢ kuantum versiyonu bulunmaktadir. Temelde
dogrusal smiflandirma i¢in uygulanan Kuantum Destek Vektor Makineleri (QSVM)
bu tiirlin popiiler bir 6rnegidir. Buna ek olarak, boyut indirgeme i¢in popiiler bir
yaklagim olan Kuantum Temel Bilesen Analizi (QPCA) (Lloyd ve dig., 2014),
kiimeleme ve yogunluk tahmini i¢in bir bagka {inlii yaklasim olan Kuantum Guassian
Karisim Modelleridir (Rahman ve Geiger, 2016). Makine 6greniminin gelismekte
olan bir alt disiplini Kuantum Destek Vektor Makineleri (QSVM) olarak
adlandirilmaktadir. Giinlimiizde kuantum bilgisayarlar, 6nemli miktarda depolama ve
zaman gerektiren DL uygulamalar1 i¢in kullanilmaktadir. Bu uygulamalarin bazi
popiiler drnekleri Kuantum Boltzmann Makineleri, Kuantum Uretken Cekismeli
Aglar (Lloyd ve Weedbrook, 2018), Kuantum Evrisimli Sinir Aglar1 (Cong ve dig.,
2018) ve Kuantum Varyasyonel Otomatik Kodlayicilardir (Khoshaman ve dig.,
2018). Ek olarak, makine 6grenimi i¢inde daha aydinlanmis bir alan pekistirmeli
Ogrenme (RL) olarak bilinir. RL, ¢evreyi kesfederek zaman gectik¢e dgrenme olarak

tanimlanabilir.
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4.2. Kuantum Pekistirmeli Ogrenme

Denetimli ve denetimsiz 6grenmenin yani sira, pekistirmeli 6grenme de popiiler bir
O0grenme yontemi kategorisidir. SL ve UL'min aksine RL, girdi-¢ikt1 ciftlerini
degerlendirmek ic¢in Odiil adi verilen skaler bir deger kullanir ve durumlardan
eylemlere bir esleme 6grenmek i¢in ¢evre ile etkilesime girmek i¢in deneme yanilma
politikasini kullanir. 1980 yilindan bu yana, RL giderek ML icin 6nemli bir yaklagim
haline gelmistir. Simdiye kadar, yapay zekada (Al), 6zellikle robotikte yaygin olarak
uygulanmistir. Bunun nedeni, on-line adaptasyonda miikemmel bir performans
gostermesi ve buna ek olarak, herhangi bir karmagik dogrusal olmayan sistem igin

gecerli bir 6grenme yetenegine sahip olmasidir (Smart ve dig., 2004).

Pratik uygulamalarla ugrasirken, kesif stratejisi, yavas ogrenme hizi gibi bazi
karmasik problemler olabilir; 6zellikle karmasik problemlerin ele alinmasi, durum-
eylem uzay1 devasa boyutlara ulasirken ve 6grenilecek parametrelerin sayist boyutun
artmasiyla birlikte iistel olarak artarken gozlemlenebilir. Son yillarda bu durumla

miicadele etmek i¢in cesitli yontemler ortaya konmustur.

RL'yi optimize etmek i¢in farkli 6grenme paradigmalari bir araya getirilmistir. Smith
(Smith, 2002), kendi kendini organize eden harita (SOM) ve kiyaslamali Q-6grenme
temelinde modelsiz RL'de temsil etmek ve genellestirmek i¢in yeni bir model
Oonermistir. Ayrica, biiyiik/slirekli durum-eylem uzaylarina sahip problemler icin
Watkins'in - Q-6grenmesi ile bulanik ¢ikarim sistemlerinin adaptasyonu da

sunulmustur (Er ve Deng, 2004).

Shor algoritmas1 ve Grover algoritmasi olarak adlandirilan iki 6nemli kuantum
algoritmas1 tamitilmistir. Rigatos ve Tzafestas (2002), amaci bulanik c¢ikarimi
hizlandirmak  olan  bulamik  mantiksal  kontrol  algoritmasinin  (FCA)
paralellestirilmesinden faydalanmak i¢in kuantum hesaplama teorisini uygulamistir.
Kuantum evrimsel algoritmalar (QIEA), mevcut evrimsel algoritmalarin (EA)
performansini artirmak igin gelistirilmistir (Sahin ve dig., 2005). Ilerleyen
zamanlarda, Hogg ve Portnov (2000) asir1 kisitli doyurulabilirlik ve asimetrik gezgin
satictya sahip kombinatoryal optimizasyon problemini ¢6zmek i¢in bir kuantum
algoritmast tanitmigtir. Son zamanlarda, kuantum arama yontemi dinamik
programlamaya uygulanmistir (Naguleswaran ve dig., 2005). Hesaplamanin ruhunu

dikkate alan (Dong ve dig., 2005), kuantum hesaplamanin temel kavrami olan durum
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siiperpozisyon ilkesi ve paralellikten esinlenerek Kuantum Takviyeli Ogrenme
(QRL) kavramini gelistirmislerdir. QRL, 6grenmeyi hizlandirmak ve simiile edilmis
deneyler sirasinda RL'nin somiiriilmesi ve kesfedilmesi arasinda bir denge saglamak

i¢in gelistirilmistir.
4.3. Kuantum Tavlama

Istatistiksel mekanikte, kuantum-mekanik dalgalanmalar alaninda uygulanan
kuantum tavlama (QA), benzetimli tavlamanin (SA) kuantum versiyonudur (Matsuda
ve dig., 2009). Kuantum Stokastik Optimizasyon algoritmasi olarak da bilinir. SA
gibi, kuantum tavlama da zor optimizasyon problemini ¢6zmek icin basariyla
uygulanmaktadir. Kuantum hesaplamanin aktif alaninda kuantum adyabatik evrim
prensibine gore calisir ve klasik ve kuantum teknolojisi arasinda Onemli bir
hibridizasyondur. QA, bilgisayar bilimi (Choi, 2010), makine 6grenimi (Adachi ve
Henderson, 2015), grafik teorisi (Vinci ve dig., 2014), iletisim (Chancellor ve dig.,
2016), finans (Marzec, 2014), havacilik (Coxson ve dig., 2014) ve diger gergek

diinya problemleri gibi farkli alanlarda uygulanmaktadir.

Benzetimli tavlamada, istatistiksel-mekanik bir sistemin sicakliga bagl rastgele
yiiriiyiisii verilen bir optimizasyon probleminin maliyet fonksiyonu olarak kullanilir.
Bu fonksiyon ¢O6ziim uzaymin potansiyel enerji profilini belirler ve termal
dalgalanmalar kesfin yerel bir minimumda takilip kalmasini onler (de Falco ve
Tamascelli, 2011). Zaman evrimi sirasinda sistemin termal dengeye yakin kalmasi
beklenir. Sicaklik diisiis hiz1 yeterince yavassa bu gergeklesebilir ve boylece sonunda
en digik enerjili durum olan sifir sicaklik denge durumuna yol agabilir. Genel
uygulanabilirligi, makul performansi ve ¢ogu durumda nispeten kolay uygulanmasi
nedeniyle SA, bir¢ok gergek hayat uygulamasinda etkin bir sekilde kullanilmaktadir.
Bir problem, sistemi termal dengeye yakin tutarak kesin ¢oziimii elde etmek igin
sonsuz uzun bir siire gerektirdiginde, SA Olgiilebilir bir hesaplama siiresi iginde
yaklasik ¢6ziimii elde etmek icin uygulanir. Kuantum dalgalanmalari, QA'da yapay
kuantum dogas1 dereceleri, komiitatif olmayan operatorler eklenerek indiiklenir.
Kuantum dalgalanmalarinin giicii, sicaklig1 yavasga diisiirerek temel duruma ulasmak

i¢in kontrol edilir (Morita ve Nishimori, 2011).

Bir optimizasyon probleminin maliyet fonksiyonunun minimizasyonunu bulmak
gibi, klasik bir Ising Hamiltonian HO'in temel durumunu bulmak olarak diisiiniilebilir
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(Lucas, 2014). Farkli tiirdeki pratik problemler, ¢ok sayida yerel minimuma sahip
maliyet fonksiyonlarina sahiptir. Benzer sekilde, Ising Hamiltoniyenleri klasik spin
camlarimi anmimsatmaktadir (Nishimori, 2001). Bu tiir o6zellikler icin, klasik
algoritmalar igin kiiresel minimumlari bulmak ¢ok zordur. Bu sorun, klasik Ising
Hamiltonyeni HO'1 kuantum alanina yiikseltme fikri ile asilabilir. Kuantum
mekaniginin adyabatik teoremine dayanarak, klasik Ising modelinin temel durumu,
sistemi bazi baglangic Hamiltonyeni H1'in temel durumunda big¢imlendirerek
tiiretilebilir. Hem teorik hem de deneysel olarak gelistirilmesi kolaydir. H1, HO ile
degis tokus yapmayacak sekilde secilir. Sistem parametreleri yeterince yavas

degistikge Hamiltonyen kademeli olarak H1'den HO'a degisir (Amin ve dig., 2007).

4.4. Kuantum Sinir Aglar

Kuantum sinir aglar1 (QNN'ler), kuantum mekani8i ilkelerini igeren sinir agi
modellerinin enkarnasyonlaridir. Hesaplama acgisindan bakildiginda, bir kuantum
sinir ag1 sinift yapay sinir agt modellerini birlestirir ve daha saglam ve verimli
modeller gelistirmek i¢in kuantum hesaplamanin 6zelliklerini i¢ine yerlestirir. Bu
cabalarin arkasindaki temel felsefe, kuantum paralelligi, girisim ve dolasiklik
ozelliklerine basvurarak klasik sinir aglarmin  biiyilk  verileri  islemedeki
sinirlamalarini agsmaktir. Bununla birlikte, QNN modellerinin ¢ogu klasik ikili veya
McCulloch-Pitts noronlarin1 kuantum mekanik ilkeleriyle ortaya ¢ikan kiibitlerle

("quron" olarak da adlandirilir) degistirmeye ¢alisir (da Silva ve dig., 2016).

1995 yilinda Subhash Kak ve Ron Chrisley, noral aktivasyon fonksiyonunun
kuantum mekaniksel 6zdeger denklemi ile benzerligini ortaya koyarak bir kuantum
noral model fikrini ortaya atmislardir. Ajit Narayanan ve Tammy Menneer, kuantum
6l¢limii uygulandiginda istenen durumlara ¢6ken ¢oklu-evren teorisini kullanarak bir
kuantum sinir aginin fotonik bir uygulamasini tanitmistir (Narayanan ve Menneer,
2000). O zamandan beri, algilayicinin kuantum versiyonunu bulmak i¢in ¢ok caba
harcanmigtir. Ancak bu yondeki ilerlemeler, karakteristik néral dogrusal olmayan
aktivasyon fonksiyonlarinin, bir kuantum sistemindeki dogal dogrusal islemler
nedeniyle kuantum teorisinin matematiksel yapisini nadiren takip etmesi nedeniyle
engellenmistir. Uzun ¢abalardan sonra Schuld, Sinayskiy ve Petruccione aktivasyon
fonksiyonunu uygulamak i¢in kuantum faz tahmin algoritmasmi (Schuld ve dig.,

2014) kullanmistir. Bunun diginda, bulanik mantik tabanl bir sinir agin1 uygulamak
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i¢cin kuantumdan ilham alan birgok model ortaya ¢ikmistir. Elizabeth Behrman ve
Jim Steck ayarlanabilir karsilikli etkilesimlere sahip bir dizi kiibitten olusan yeni bir
kuantum hesaplama diizenegi 6nermistir. Modellerinde, etkilesim giicleri, klasik geri
yayilim algoritmasinm takiben istenen girdi-¢ikt1 iligkilerinden olusan bir egitim seti
kullanilarak giincellenmekte ve boylece kuantum aginin bir algoritma 6grenmesi
saglanmaktadir. Kuantum iligkisel bellek 1999 yilinda Dan Ventura ve Tony
Martinez tarafindan tanitilmistir. Yazarlar, devre tabanli bir kuantum bilgisayar icin
iliskisel bir bellegi taklit etmek iizere bir algoritma Onermislerdir. Bu algoritmada,
bellek durumlart kuantum durumlarinin bir siiperpozisyonu olarak ongoriilmiistiir.
Daha sonra verilen bir girdiye en yakin bellek durumunu almak i¢in bir kuantum
arama algoritmasi kullanilir. Bu emiilasyon, bellek durumlarinin {istel bir depolama

kapasitesini vaat etmektedir (Behrman ve dig., 2008).

4.5. Kubit ve Fizik

Klasik bir bilgisayarda bilgiyi en kiiclik yap1 tast olan ve bit diye ifade ettigimiz
(Binary Digit) yapilarda depolariz. Fiziksel cihazlarda bitler 0 ve 1 olmak tizere iki
durumda tutulur. Bizim klasik bilgisayarda bitlerle ifade ettigimiz yapilar kuantum
bilgisayarlarda qubitlerle ifade edilmektedir. Qubitlerde (0) ve (1) olabilecegi gibi
bunlarin kombinasyonlar1 olan siiper pozisyonda da olabilir. Qubitlerin bu durumlar
|00>,/01>,]10>ve |11> ve seklinde gosterilir. Qunatum bilgisayarda qubitlerin
durumlarin1 anlamamiz ve dl¢imlememiz klasik bilgisayar bitleri gibi olamamasinin
yant sira klasik fizik kurallari ile de anlamamiz miimkiin degildir. Bu yiizden
quantum bilgisayarda atom alt1 parcaciklar1 olan elektron spinlerinin yoniinii ve
degerini tespit edebilmemiz i¢in quantum fiziginden yararlaniriz. Bu atom alti
parcaciklarinin yonii asagi ve yukari olmak {lizere iki durumdan ibarettir. Bu
durumlar bizim yasadigimiz diinyada anladiimiz yukar1 ve asagi kavramlar
degildir. Eger bir qubit i¢inde bulundugu manyetik alanla ayni1 yonde ise yukari, ters
yonde ise asag1 yonliidiir. Bir elektron spinin ayni anda ti¢ bileseninden (x- ekseni, y-
ekseni ve z-ekseni) manyetik alan1 hangisine uygulamigsak onun durumunu

Ol¢ebiliriz. Clinkii manyetik alan1 sadece bir yonde uygulayabiliriz.
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4.6. Kuantum Kapilar

Bir kuantum kapis1 veya kuantum mantik kapisi, az sayida kiibit iizerinde ¢alisan
ilkel bir kuantum devresidir. Aym1 zamanda bu kapilar birer matristir. Bu matrisler
tizerinde degisik islemler yaparak bit’in ya da kubit’in yeni durumlar almasim
saglarlar. Kuantum mantik kapilari, bircok klasik mantik kapisinin aksine tersine
cevrilebilir. Kuantum mantik kapilar1 {initer matrislerle temsil edilir (Nielsen ve

Chuang, 2000).

4.6.1. X (not) kapisi

Gegidin girisi '0' oldugunda, ¢ikis '1' olur. Gegidin girisi '1' oldugunda, ¢ikis '0' olur.
NOT kapist yalnizca tek bir bit igerir, ancak diger kapilar daha fazla bit igerir.
Ornegin XOR (veya EXOR) kapist 2 bitlik bir giris alir ve 2 giris bitinden tam olarak

birinin 1 ve digerinin '0' olmas1 durumunda '1' olan bir deger ¢ikarir.

Sekil 4.1. NOT kapist ve dogruluk tablosu

4.6.2. X (pauli x) kapisi

Klasik bilgisayarlar icin NOT kapisinin kuantum esdegeri Pauli-X kapis1 olarak
adlandirilir. Tek bir kiibit tlizerinde etki eder. Eger kiibit [0> ya da [1>
durumlarindaysa, Pauli-X kapis1 |0> degerini |1>'e cevirir ya da tam tersini yapar. iki

saf durumu |0> ve |1> dikey eksen boyunca karsilikli iki nokta olarak temsil edersek

0)

1)
Sekil 4.2. Pauli(X) kapis1 gosteri
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Pauli-X gegidinin uygulanmasi, kiibitin durumunun 180 derece dondiiriilmesine

esdegerdir. Bu dogasi nedeniyle bazen bit-flip olarak adlandirilir.

0)

'} NOT [0} =]1)

1)
Sekil 4.3. Pauli(X) kapisina uygulanma gosterimi

Klasik hesaplamada oldugu gibi, her kuantum kapisi bir sembolle temsil edilir;

asagida genellikle Pauli kapisini nasil temsil ettigimiz gosterilmektedir.

(N
L/

Sekil 4.4. Pauli kapisi

Matematiksel olarak konusmak gerekirse, bir kuantum kapisi uygulamak, matris

bi¢cimindeki dogrusal bir U operatoriinii manipiile etmeye esittir.

0>=[ 7] 1>=[7)] (4.1)

Pauli-X ge¢idinin matris gosterimi, yani Pauli-X matrisi asagidaki 2x2 matrisidir:

_[0 1
=7 o (4.2)
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0> ve |1> saf durumlarina uygulandiginda, [0>'m |I>'e doniistiigiinii ve bunun

tersinin de gecerli oldugu kolayca goriilebilir:

2 ollol =[] 3

2 oll2l =l (44

4.6.3. Y (pauli y) kapisi

Pauli-Y kapisi tek bir kiibit {izerinde etki eder. Bloch kiiresinin Y ekseni etrafinda =
radyan kadar bir doniise esittir. [0>"1 |1)'e ve |1)'i, -i|0)'a esler. Bloch kiiresi iizerinde
i|1> yukaridaki agiklama uyarinca |1> ile ayn1 nokta olacaktir (i|1> = e”[1> y=n/2 ile)
ve -ij0> |0> ile aym1 gdsterime sahip olacaktir (-ij0> = €™2/0>). Y kapisinin matris

gosterimi asagidaki gibidir:

(4.5)

|y> = Karigik bir duruma o/0> + B|1> uygulandiginda Pauli-Y gecidi Y|y> = Y (00>

+ B|1>) = -1B|0> + i0|1> degerini verir.

e “o

la

4.6.4. Z (pauli z) kapisi

Pauli-Z kapisi tek bir kiibit tizerinde de etkilidir. Bloch kiiresinin Z ekseni etrafinda nt
radyan kadar bir doniise esittir. |0> temel durumunu degistirmeden birakir ve [1>'1 -

|[1>'e esler. Z kapisinin matris gosterimi asagidaki gibidir.
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Z:[(l) —01] (4.7)

Karisik bir duruma uygulandiginda [y> = /0> + B|1> Pauli-Z kapis1 Z|y> = Z(a|0>

+ B|1>) = a|0> - B|1> sonucunu verir.

o Zillgl =[] “8)

4.6.5. H (hadamard) kapisi

Eger kiibitimiz 0 = /2 ve ¢=0 (ya da kartezyen koordinatlarda x=1, y=0, z=0) a¢ili
bir konumda bulunuyorsa neler oldugunu goérelim. Yukaridaki denklemdeki degerleri

degistirerek, kiibit durumu su sekilde genisler:
_ A i0 .+ /A
Mmp—w%ﬂkh>ﬂﬂwnﬁﬂl> 4.9

|state>:%|0 > +%|1 >

Hesaplama temeli durumlarinin esit agirhigina sahip bir siiperpozisyon durumu
1N2(10> + |1>) elde ederiz. Hadamard kapismi [0> durumundaki bir kubite
uygulamak, kubiti 0 Olgme olasiliginin 1 O6lgme olasiligina esit oldugu (ve
1\2%=1/2'ye esit oldugu) bir [0> ve |I> siiperpozisyon durumuna getirir. Benzer
sekilde, Hadamard kapisim |1> asag1 durumuna uygulamak kubiti 1/42(|0> - [1>)

sliperpozisyon durumuna getirir.

sl ) 410

Bu gecit |0> ve |1> baz vektorlerine uygulandiginda,

SHHEH @

o] PR | ool Y (4.11)
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T
11}

Sekil 4.5. Hadamard kapis1 manipiilasyonunun bloch kiiresinde gosterimi

4.6.6. Cnot kapisi

Kuantum CNOT kapisinin iki girisi ve dolayisiyla iki ¢ikisi vardir. Hedef giris
yalnizca kontrol girisi 1'e ayarlanmigsa olumsuzlanir. Kontrol girisi 0 ise gecidin
hicbir etkisi olmaz. Kontrol kiibiti gegit tarafindan degistirilmez. Asagida hem klasik
hem de kuantum diyagramlarmin bir anlik goriintlisii yer almaktadir. Birbirlerini
yansittiklarii kolayca dogrulayabiliriz: kuantum hedef ¢ikis siitunu klasik XOR

gecidinin y+x siitunuyla eslesir.
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y—U
girig cikis
X Yy X y+x
|0) [0) |0} |0O)
10) 11) 10} |1}
1) 10) |1) |1}
1) 1) [1) [0)

giris  ¢Ikis
XYy X y+X
00 0 O
01 01
1011
1110

Sekil 4.6. CNOT Kapis1

Bildigimiz gibi, her gegit/operator bir matris olarak ifade edilebilir. C-NOT kapisi

girdi olarak iki kiibit ve ¢ikt1 olarak iki kiibit aldig1 i¢in 4x4'liik bir matris olacaktir.

Bir dogruluk tablosunu matrise doniistiirmek i¢in kullanisli bir teknik vardir. 0. satir

0. siitundan baslayarak, siitunlar1 ve satirlar1 6rnegin 00'dan 11'e kadar ikili olarak

ardisik bir sekilde etiketlersiniz. Daha sonra, girdi ¢ikt1 ile eslesiyorsa bir hiicreye 1

yerlestirirsiniz; aksi takdirde 0’dir. Ornegin, bizim durumumuzda, [11>, |10> ile

eslestigi icin matrisin 4. satir, 3. siitun degerini 1 olarak ayarlanir. Boylelikle kapi

i¢in bir matris elde edilir.

X

L/

Sekil 4.7. CNOT kapist’nin sekil ve matris gosterimi

1000
0100

CNOT=

0001
0010

CNOT matrisini temel durum vektoriiyle ¢arparak CNOT gecidini 6rnek olarak |00>

durumuna uygulamaya calisalim.

1000
0100
0001
0010

42

(4.12)



4.6.7. Z (z gate) kapis1

Z-kapisi, sadece bir kiibit iizerinde etkili olan {initer bir kapidir. Ozellikle 1'i -1'e
esler ve 01 degistirmeden birakir. Bu manipulasyonu, kiibiti Z ekseni etrafinda ©
radyan (180 derece) dondiirerek yapar. Bunu yaparak kiibitin fazin1 degistirmis olur.

Z-kapilar1 iglemi asagidaki matris ile tanimlanir:

z:[(l) _01] (4.13)

Pauli Z kapisiin kiibit iizerinde nasil ¢alistigini, kiibit durumunun siitun vektoriinti

Pauli Z matrisiyle ¢arparak gorebiliriz. Ornegin, kiibit |0> olarak baslatilirsa:

[ i lol<lo) (4.14)

Bu da |0>"1 degismeden birakir. Simdi kiibiti |1> olarak baglatalim ve Z gecidinin

kiibit durumunu nasil doniigtiirdiigiini gérelim:

[(1) —01] [(1)]:[_01] (4.15)

Kiibitlerin durumunun |1>'den -|1>'e doniistigii goriilmektedir. Bu durumda sadece
faz degismistir. Faz degisiminden sonra 6lglim yapildiginda kubit’in |1>’e ¢Oktiigii

gbzlenmektedir.

4.7. Siiper Yogun Kodlama

Bu kodlama, dolanik durumlarin ilging bir uygulamasidir. Bu durumu kisaca
aciklamak gerekirse tek bir kubit paylasimi ile iki bitlik klasik bilgi paylagimim
miimkiin Kilan bir protokoldiir. Sekil 4.8” de bu durum gosterilmistir. Burada A ve B
kisileri birbirine ¢ok uzak noktada bulunan iki arkadas olarak temsil edilmektedir. A,
B’ye iki bitlik bir bilgi gondermek istemektedir. Ancak, A’nin yalniz bir kubit’lik
bilgi gdndermesi miimkiindiir. Burada soru su: “A, tek bir kubit kullanarak iki bitlik

bir bilgiyi B ile paylasabilir mi?”. Evet, bunu yapabilir. Bunun bir tek sart1 var. Daha
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onceden bir Dolanik durumu kendi aralarinda paylasmis olmalari gerekmektedir.
Sistemin calisabilmesi ic¢in girisinde iki bitlik bir dolanik durum (Bell Cifti)
hazirlanmali ve 6nce Hadamard, sonra CNOT kapisindan gegen bu bitlerden bir
tanesi A digeri B tarafindan alinir. Bu génderim kuantum kanal vasitasiyla miimkiin
olur. Hem A hem de B kendilerine ait kubit’in |0>"m1 yoksa |1>’mi oldugunu
bilmemektedir. Eger A kendi aldigi biti oldugu gibi B’ye gondermek istiyorsa
tizerinde higbir islem yapmaz. Eger herhangi bir bilgi gonderecekse (00, 01,10,11)
tizerinde islem yapar ve B’ye gonderir. B gelen kubiti alinca yeni duruma ge¢mis
olur. B bu sahip oldugu durumu 6nce CNOT sonra Hadamard kapisindan gegirir.
Cikan sonucu gormek i¢in 6l¢liim yapar. Boylece B de tek bir kubit almasina ragmen,
A’nin iki bitlik hangi bilgi dizisini génderdigini yiizde yiiz olarak 6grenir. Kuantum

bilgisayar ortaminda gerceklesen bu olaya Siiper Yogun Kodlama denir.

A - 00 +11
e 10 + 01
o 00 —11
11: XZ el
Bell Cifti
a0] o) — Y ——o | 00+11
a1l o
|
00 + 01 —y— —Te, ‘—
B 00+10 00
11+01 01
00 -10 10
P —d; <14

Sekil 4.8. Siiper yogun kodlama protokol diyagrami

Yukarda verilmis olan diyagram gosterimi bir kuantum bilgisayarda simiile ettigimiz
zaman asagidaki gibi bir sonug ortaya cikar.
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qQo

e

q0,

f

c0

Sekil 4.9. Siiper yogun kodlama devresi

4.8. Dolamklik

Birden fazla alt sistemden olusmus sistem topluluguna bilesik sistem denir. Bilesik
bir sistemin durum uzayi, sistemi olusturan fiziksel sistemlerin durum uzaylarinin
tensor ¢arpimi seklinde ifade edilir. Eger elimizde |A> ve |[B> gibi iki sistem varsa ve
bu sistemler arasinda da bir korelasyon bulunuyorsa bunlar dolanik sistemlerdir.
Yani birisine ait bir 6zelligi ol¢tiiglimiiz zaman diger sisteme ait baska bir bilgiye
ulagtyorsak bu iki sistem dolanik sistemlerdir. Dolaniklik tamamen kuantum
mekaniksel bir olay olup, biz sadece klasik olarak anoloji yapabiliriz. Ornegin,
icerisine birer miknatis godmdiigiimiiz iki zar diisimelim. Bu iki zar tizerindeki
manyetik alan dyle olusur Ki, birinin tizeride gelen say1 digerinden etkileniyorsa bu
iki zar dolaniktir. Yani birinci zar1 attigiizda st ylizde gelen say1 6 ise, ikinci zara
bakmadan onun {ist yiizeyindeki saymin kesinlikle 4 oldugunu sdyleyebiliyorsak bu
iki zar dolaniktir. Bu durumu iki kiibit {izerinde diistinecek olursak; eger kiibitlerden
birisini 6l¢tiigiimiizde sonucu |1> bulmussak diger kiibitte |1>’dir. |0> bulmussak
diger kiibitte |0>’dur.

4.9. Kuantum Isinlanma (Teleportasyon)

Kuantum Teleportasyon, bir durum vektoriiniin bir yerden baska bir yere gonderme
teknigidir. Bu iki nokta arasindaki mesafa 151k yili kadar uzakta olabilir. Burada
onemli olan nokta, Kuantum durumunu iki nokta arasinda birinden digerine
gonderirken aralarinda bir kuantum kanal olmasina gerek yoktur. Kuantum 1sinlama
olaymin genel olarak sematik yapisi Sekil 4.10 ‘da verilmistir. Burada gergeklesen
olay soyle; Siiper Yogun Kodlamada oldugu gibi A ve B’nin uzun zaman Once

birlikteyken, aralarinda dolanik durumlardan (Bell Durumlarindan) bir tanesini
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paylasip bir kubit’ini A, diger kubit’ini B almig ve sonra birbirlerinden uzaklasmis
olsun. Bir siire sonra A, B’ye |¥> kuantum mekaniksel durum vektorii gondermek
istesin. A bunu aralarinda bir kanal ya da kuantum kablo yokken basarabilir mi?
Bununla birlikte, A, B ile herhangi bir kiibit paylasiminda bulunamayip, klasik bit
(klasik kanallarla) paylagabiliyor. Bunu biraz diisiindii§iimiizde imkansiz oldugu
kanaatine variriz. Dogru olan da budur. Ciinkii A’nin elindeki kendi durum
vektoriinii B’ye nasil gonderecek? A’nin elindeki bir kubitlik durum vektorii,
|[P>=a|0>+p|1> seklindedir. a ve B biitiin durumlar alabilen kompleks sayilardir ve
bu vektorii B’ye gondermek istemektedir. Asagidaki, Sekil 4.10°da bir CNOT kapist,
bir Hadamard kapist ve iki adet 6l¢iim operatorii bulunmaktadir. Tek ¢izgi ile
gosterilen kisim kuantum kanalini gosterilirken, dl¢lim operatoriinden sonraki ¢ift
cizgiler ise klasik haberlesme kanallarini gostermektedir. Olgiim yapildiktan sonra

durum vektorii yok olur geriye (0) ya da (1) gibi reel bir say1 kalir.

A ve B’nin, Bell durumlarindan birisini kendi aralarinda paylastigini biliyoruz.
1
¥ >= ﬁ(|00 > +|11 >) (4.16)

Bu formiildeki birinci kubit A’nin ikinci kubit B’nin olsun. Her ikisi de kendi
kiibitine sahip olup, birbirlerinden ¢ok uzakta bulunmaktadirdlar ve dolanik

durumdadirlar.

Asagidaki sekilde > durumu, A’nin B’ye gondermek istedigi durum olup, |Boo> ise
dolanik Bell durumlarindan bir tanesidir. Oncelikli olarak A, géndermek istedigi
durumu kendi payina diisen kiibit ile etkilesime sokar. Boylelikle A iki kiibite B ise
tek kiibite sahip olur. A kendi iki kiibitli durumunu 6nce CNOT kapisindan sonra
Hadamard kapisindan gecirdikten sonra 6l¢iim (M1) yapar.

1) H— A
s 1 Mz
|%00) | |
xM Lzl )
o fool ;r
o 1 Y2} |v3 Yy
[vo)  [h1) b2y |43) )

Sekil 4.10. Kuantum 1s1nlanma
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Sekilde goriilecegi tlizere ilk durumdaki durumu vektorii |Wo>, CNOT kapisindan
gectikten sonra |¥1>, Hadamard kapisindan gecgtikten sonra [¥2> ve Olglimler
yapildiktan sonraki durum ise [¥s> tiir. Oncelikle [¥1> durum vektdriine bakacak

olursak,

|Y1>=|¥>| Boo> (4.17)

[¥1>= (al0>+B|1>) (22

[¥1>= —[al000>+ a/01 1>+ B[100>+ B[111>]

Bu [¥1> durum vektoriiniin ilk iki kubiti A’ya ait sonuncu kubit ise B’ye aittir.
Bundan sonra [¥1> durum vektori CNOT kapisindan geciyor ve |[¥2> durum
vektoriine sahip olur. CNOT kapisindan gegisi sirasinda ise CNOT kapist ilk iki
kubiti manipiile edecek tigiincii kiibite etki etmeyecektir. CNOT kapisinda ilk kubit
kontrol (control) kiibit, ikinci kiibit ise hedef (target) kiibittir. Eger kontrol kiibit
(|0>) ise, hedef kiibit herhangi bir degisiklige ugramaz. Kontol kiibit (|1>) ise, hedef
kiibit (|0>) ise (|1>), (|]1>) ise (|0>) olur. |¥2> durum kapisina bakacak olursak,

|‘P2>=%[a|00>\0>+ al01>[1>+ B|11>/0>+ B[10>[1>] (4.18)

Ik iki kiibit CNOT kapisindan gegtikten sonra yukardaki |¥2> durumu elde edilir.

Bundan sonra birinci kiibit Hadamard kapisindan gececek ve |W3> durumu elde

edilecek. Hadamard kapisi ilk kiibite etki ettiginde eger bu kubit (|0>) ise, H|O>=i
|0>+|1> eger (|1>) ise H|O>— |0> |1> ile manipiile edip sliperpozisyona sokar. Bu
islemden sonra olusacak [V3> durum vektorii asagidaki gibi olusur.

I0>+I1> |0>+|1>

|0> |1> |0> |1>

|‘P3>‘ L ) [00>+ a(

>+ B—7—)[10>+ B(

)01>]  (4.19)
¥s>=—[a|000>+ o 100>+ al01 1>+ af1 11>+ Bl010>- B|110>+ B001>- B101>]
|‘P3>=§[ |00>( a|0>+ B|1>)+ [01>( a1>+ B|0>) + [10>( a|0>- B[1>)+ [11>( al1>- B0>

[P3> durumdan sonra A kendine ait iki kiibiti (M1) Olclimler. A’nin iki kiibiti
oldugundan muhtemel d6rt durumundan (|00>,|01>,|]10>,/11>) birini gdzler. Bu dort
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durumdan her birisinin gézlemlenme ihtimali Z’ tiir. Bunu nereden biliyoruz. A’nin

Oniinden bulunan katsayilardan biliyoruz. A’nin kiibitlerinin 6niindeki katsay1 % ‘dir

ve herhangi bir durum gelme ihtimali bu katsayinin karesine esittir. A, Ol¢limii
yaptiktan sonra bu bilgiyi B’ye gonderir. Bunu yapabilmesi i¢in B ile iletisime
geemesi ve kiibit degerlerini yani iki bitlik bilgiyi (6l¢iimden sonra artik kiibit degil
bittir) gonderir. B kendisine A tarafindan gonerilen iki bitlik bilgiye bagli olarak,
baslangi¢ta kendinde olan kiibiti (A ile birer kiibitini paylastiklar1 dolanik durumdan)
sekildeki (X), (Z) ya da hem (X) hem de (Z) kapilarindan gegirerek A’nin kendisine
gondermek istedigi durum vektdriine sahip olur. Iste bu duruma (olaya) kuantum

1sinlama (Teleportasyon) denir.
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5. TEMEL KUANTUM ALGORITMALARI

Kuantum makine 6grenmesi algoritmalari asagida ele alinmaktadir.
5.1. Grovers Algoritmasi

Grover'n Arama Algoritmasi (GAA) ¢ok popiiler bir kuantum arama algoritmasidir.
Bu algoritma belirli bir kosulu saglayan bir grup elemani bulur. Bu gorevi yerine
getirmek i¢in, genellikle oracle olarak bilinen, elemanlari tanimlama yetenegine
sahip bir kara kutu, bulmak i¢in gerekli kriterleri karsilamalidir. Grubun N elemani
oldugunu varsayalim, kahin yukarida belirtilen kriterleri karsilayan tiim elemanlar
elde etmek icin klasik hesaplamalar i¢cin O(M) kez ¢agrilir. Kuantum mekanigini

kullanan bu algoritma, kdhine OVM p cagr1 yaparak ayni sonuca ulasabilmektedir.

Algoritma, kuantum hesaplamanin paralel isleme adi verilen 6zel bir 6zelliginden
yararlanarak kahine ayni anda birden fazla ¢agri yapma yetenegine sahiptir. Bir
arama listesinin N sayida elemana sahip oldugunu varsayalim. GAA bunlar1 temsil
etmek i¢in N boyutlu bir Hilbert uzay1 kullanir, bu da n = logoM kiibit ile elde
edilebilir. indeksi y olan her e € N, kiibitlerin durum uzayinda j‘i olarak adlandirilan
ortonormal bir vektor ile gosterilir. Amag verilen arama kriterlerini karsilayan belirli
bir elemanin z indeksini belirlemektir. Baslangicta, asagidaki 6zelliklere sahip tiniter

bir islemin kullanildig1 6ngoérii kullanilmaktadir

y=z, Usly>=-ly> (5.1)

y#z, Uzy>=|y> (5.2)

Esitlik (5.1) ve (5.2) asagidaki gibi de ifade edilebilir:

U; = I-2]z><z| (5.3)

Burada I, birim operatoriinii gostermektedir. GAA eszamanli olarak son oracle
operatoriinii ve Grover difiizyon operatorlerini asagidaki sekilde tanimlandigi gibi

kullanir.
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Up = 2|p><pl-I (4.4)

Baslangigta, kiibitlerin durumu |[p> durumuna baslatilir. Daha sonra, U, ve Uy, iteratif
olarak r(N) sayida art arda uygulanir. Daha sonra sistem degerlendirilir ve bu da s6z

konusu (z) indeksini sonuglandirabilecek 6zdegeri (A;) saglar.

5.2. Bernstein - Vazirani Algoritmasi

Bernstein-Vazirani Algoritmasi, Ethan Bernstein ve Umesh Vazirani tarafindan 1992
yilinda gelistirilen bir kuantum algoritmasidir. Esasen, bir fonksiyonun igerdigi ikili
bir {s} dizisini, yani sifir ve birlerden olusan bir karakter dizisini (6rnegin s =
0010110101001) bilmeyi saglar. Daha dogrusu, bdyle bir fonksiyonun f(X)=sx mod
(2) bigimini aldig1 bilinmektedir; burada x baska bir dizedir ve ¢arpma ikili ¢arpim
olarak anlasilir. Bu algoritma Deutsch-Jozsa algoritmasina benzer bir sekilde ¢alisir,
ancak islev smiflar1 arasinda ayrim yapmaya calismak yerine verilen islevi
karakterize eden dizeyi arar. Ornek olarak, ikili kodla yazilmis gizli bir sayiy1
bulmak i¢in bir oyun oynadiginizi varsayalim. Algoritmanin klasik versiyonu ile
¢oziimil elde etmenin tek yolu gizli sayiy1 bit bit kontrol etmek olacaktir ki bu da en
az N calistirma gerektirir, burada N s'nin bit sayisidir (bu hesaplama karmasikligi
teorisinde O(N) olarak gosterilir). Bernstein-Vazirani algoritmasi durumunda, bu
sayt s dizesinde kodlanmigsa, tam sayiyr bulmak i¢in algoritmanin tek bir
calistirilmas1 yeterli olacaktir. Bu algoritmanin 6nemi, aranan dizenin tek bir
calistirmadan sonra bulunabildigi klasik muadiline gore istiinliigiinde yatmaktadir

(Bernstein ve Vazirani, 1993).

5.3. Deutsch-Jozsa Algoritmasi

Kuantum hesaplamada Deutsch-Jozsa algoritmasi, 1992 yilinda David Deutsch ve
Richard Jozsa tarafindan Onerilen bir kuantum algoritmasidir. Bir kuantum
bilgisayarda caligmak iizere tasarlanan ilk algoritmalardan biridir ve kuantum
siiperpozisyon  durumlarmin  dogal  paralelliginden  yararlanarak  klasik
algoritmalardan daha verimli olma potansiyeline sahiptir. Deutsch-Jozsa
probleminde, n adet xi1, X2,..., Xn giris biti alan ve f(x1, X2,..., Xn)= 0 veya 1 ikili
degerini dondiiren bir f(x1, X2,..., Xn) fonksiyonu (bir kehanet veya kara kutu olarak

diisiiniilebilir) vardir. Amag, fonksiyonun sabit (tiim girislerde 0 veya tiim girislerde
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1) veya dengeli (girislerin yaris1 icin 1 ve diger yarist icin 0 dondiirtir) olup
olmadigint belirlemektir. Problem, kara kutuya girdiler uygulayarak ve ¢iktisin
gozlemleyerek fonksiyonun neye benzedigini (sabit veya dengeli) belirlemektir.
Ornek olarak, f(X)=x%2 fonksiyonunu, yani girdiyi ikiye béldiigiiniizde kalani
dondiiren fonksiyonu diisliniin. Bu fonksiyon, argliman tek ise 1, ¢ift ise 0 dondiiriir,
bu nedenle dengeli bir fonksiyondur. Algoritmanin iglevi, ayni sonuca miimkiin
oldugunca az yinelemeyle ulasmak olacaktir; klasik durumda bu, iki farkli sonuca
ulasilana kadar islevin tekrar tekrar degerlendirilmesini gerektirecektir ve bu nedenle
yineleme sayis1 girdi degiskenlerinin secilme sirasina bagl olacaktir (Johansson ve

Larsson, 2017).

5.4. Shor’s Algoritmasi

Kuantum hesaplamada Shor'un algoritmasi, bir N sayisim1 O((log N)%) zamanda ve
O(logN) uzayda carpanlarina ayirmak i¢in kullanilan ve Peter Shor'un adini tagiyan
bir kuantum algoritmasidir. Shor'un algoritmasi, bir sayinin ¢arpanlarini1 verimli bir
sekilde bulmak i¢in kullanilan bir prosediir diir. Bu algoritmanin uygulanmasi klasik
olarak veya kuantum devreleri kullanilarak gergeklestirilebilir (heniiz pratikte
uygulanmamustir). ikinci uygulama (elbette) belirli bir saymmn asal ¢arpanlarini
bulurken ¢ok gerekli bir parametre olan siralamay1 bulmak istediginizde en uygun
olanidir. Shor'un algoritmasinin pratik bir kuantum bilgisayarinda uygulanmasi
halinde RSA gibi pek ¢ok agik anahtarli kriptografi gegersiz hale gelecektir. RSA ile
sifrelenmis bir mesajin sifresi, iki asal saymnin ¢arpimi olan N acik anahtarinin
carpanlaria ayrilmasiyla ¢6zilebilir. Bilinen klasik algoritmalar bunu herhangi bir k
icin O((log N)¥) zamanda yapamazlar, bu nedenle N arttik¢a hizla pratik olmaktan
c¢ikarlar. Buna karsin, Shor'un algoritmasi RSA'y1 polinom zamanda kirabilir. Tiim
kuantum hesaplama algoritmalar1 gibi Shor'un algoritmasi da olasiliksaldir. Yiiksek
olasilikla dogru cevabi verir ve algoritma tekrarlanarak basarisizlik olasilig
azaltilabilir. Shor'un algoritmast 2001 yilinda IBM'deki bir grup tarafindan pratikte
uygulanmis ve 7 kiibitlik bir kuantum bilgisayar kullanilarak 15, 3 ve 5 faktorlerine

ayristirtlmistir (Nielsen ve Chuang, 2000).

Shor'un algoritmasinin ¢6zmeye calistigi problem, bir N tamsayis1 verildiginde, 1 ile
N arasinda N'yi bolen bagka bir p tamsayis1 bulmaya ¢alismaktir. Shor'un algoritmasi

iki boliimden olusmaktadir:
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e Faktorlere ayristirma probleminin, klasik bir bilgisayarda yapilabilen siray1

bulma problemine indirgenmesi.
e Periyot bulma problemini ¢6zmek i¢in bir kuantum algoritmas.

Shor'un periyodunu bulma algoritmasi, bir kuantum bilgisayarinin ayni anda bir¢ok
durumda bulunabilme yetenegine kokten baglhidir. Fizikgiler bu davranisi kuantum
stiperpozisyonu olarak adlandirir. Bir f fonksiyonunun periyodunu hesaplamak igin,
fonksiyonu tiim noktalarda ayni anda degerlendiririz. Ancak kuantum fizigi tim bu
bilgilere dogrudan erismemize izin vermiyor. Bir kuantum Ol¢limii tiim olas1
degerlerden yalnizca birini verecek, digerlerini yok edecektir. Bu nedenle
stiperpozisyonu, yiiksek olasilikla dogru cevabi veren baska bir duruma dikkatlice
doniistiirmemiz gerekir. Bu, kuantum Fourier doniisiimii kullanilarak gerceklestirilir.
Bu nedenle Shor'un ii¢ "uygulama sorununu" ¢dzmesi gerekmistir. Tiimiiniin "hizl1"
uygulanmasi1 gerekmis, bu da logN'de polinom olan sayida kuantum kapist ile

calismak anlamina gelmistir.

e Durumlarin siiperpozisyonunu olusturma: Bu, giris kaydindaki tiim
kiibitlere Hadamard kapilar1 uygulanarak yapilabilir. Baska bir yaklasim da

kuantum Fourier doniistimiinii kullanmaktir.

e ffonksiyonunu bir kuantum doniisiimii olarak uygulama: Bunu basarmak
icin Shor, modiiler iis alma doniisiimii icin karelerle iis alma ydntemini

kullanmustir.

e Bir kuantum Fourier doniisiimii gerceklestirme: Shor, NOT kontrollii
kapilar ve tek rotasyonlu kiibit kapilar1 kullanarak kuantum Fourier

doniisiimii icin tam olarak ((logN)?) kapi kullanan bir devre tasarlamustir.

Tiim bu doniistimlerden sonra bir 6l¢iim r periyoduna yaklasik bir deger verecektir.
Basitlik agisindan, yr/N bir tamsay1 olacak sekilde bir y oldugunu varsayalim. O

halde y'yi 6l¢me olasiligi 1'dir. Bunu gérmek i¢in su denklem kullanilabilir:

2mibyr

e n =1 (4.5)
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Bu nedenle y 6l¢iimiiniin olasiligini veren toplam N/r olacaktir ¢linkii b yaklasik N/r
deger alir ve bu nedenle olasilik 1/r'dir. Oyle r, y vardir ki yr/N bir tam sayidir,
dolayisiyla olasiliklarin toplami 1'dir. Shor'un algoritmasini agiklamanin bir bagka
yolu da bunun tam olarak sekil degistirmis bir kuantum faz kestirimi algoritmasi
oldugunu belirtmektir (Shor, 1999).
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6. QISKIT NEDIR?

Qiskit, IBM tarafindan devre ve algoritma diizeyinde kuantum bilgisayarlarla
calismak icin olusturulan bir yazilim gelistirme kitidir. Qiskit kullanilarak
tasarlanmig bir kuantum devre 6rnegi Sekil 6.1°de verilmistir. Qiskit kuantum
programlar1 olusturmak, manipiile etmek ve bunlari IBM Quantum Experience'daki
prototip kuantum cihazlarinda veya yerel bir bilgisayardaki simiilatorlerde
calistirmak ic¢in araglar saglar. Evrensel kuantum hesaplama i¢in devre modelini
takip eder ve bu modeli takip eden herhangi bir kuantum donanimi (su anda siiper
iletken kiibitleri ve tuzaklanmig iyonlar1 desteklemektedir) i¢in kullanilabilir. Qiskit,
IBM Research tarafindan buluttaki kuantum bilisim hizmeti IBM Quantum
Experience i¢in yazilim gelistirilmesini saglamak amaciyla kurulmustur. Genellikle
akademik kurumlardan olmak iizere disaridan meraklilar da katkida bulunmaktadir

(Hemsoth, 2018).

Qiskit'in ana stirimii Python programlama dilini kullanir. Swift ve JavaScript
stiriimleri baslangicta arastirilmis, ancak bu siirlimlerin gelistirilmesi durdurulmustur.
Bunun yerine, temel Ozelliklerin minimal bir yeniden uygulamasi, alternatif
platformlara tasinmasi kolay olacak sekilde yapilmis MicroQiskit olarak mevcuttur.
Kuantum hesaplamanin kullanimina iligskin 6rnekler igeren bir dizi Jupyter not defteri
sunulmaktadir. Bu 6rnekler arasinda Qiskit kullanilarak yapilan bilimsel ¢caligmalarin
kaynak kodlarinin yani sira insanlarin kuantum programlamanin temellerini
ogrenmelerine yardimer olacak bir dizi alistirma da yer almaktadir. Qiskit tabanl
acik kaynakli bir ders kitabi, kuantum hesaplama veya kuantum algoritmalari iizerine

bir derse ek olarak {iniversite diizeyinde mevcuttur (Wille ve dig., 2019).

Qiskit acik kaynak kodlu bir online simiilatorii olarak tanimlanmaktadir. Burada
yerel bir makine igerisinda ya da ¢evrim i¢i olarak c¢alisan ¢ok yonlii bir sistem
goriilmektedir. Bu simiilatorlerle bahsedilmis olan iki tane bes kubit sistem igerisinde
testlerin yapilmasi saglanmaktadir. Qiskit’te bir kod editorii (QASM) ile grafiksel bir

kullanict arayiiziin bulundugu belirlenmistir.

Qiskit’te siiriikkle birak yontemiyle kuantum devrenin semas: olusturulabildigi
belirlenmistir. Burada OPENQASM kullanilarak dogrudan kod yazma islemi
gergeklestirilmektedir.
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Sekil 6.1. Qiskit SDK kullanilarak tasarlanmis devre drnegi
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7. KUANTUM MAKINE OGRENMESiIi UYGULAMASI

7.1. Metodoloji

Bu tez c¢alismasi kapsaminda kuantum makine O6grenimi uygulamasi
gerceklestirilmistir. Kuantumsal Sinir Agi kullanilarak Covid’19 Veri Setlerinin
Analizi, Tahmini ve Degerlendirilmesi yapilmistir. Yapilmis olan c¢alismanin

uygulama kismi ilerleyen boliimlerde ayrintili olarak verilmistir.

7.2. Veri seti ve on isleme

Uygulamamizda siiflandirmada kullandigimiz veri seti

https://www.kaggle.com/datasets/pranavraikokte/covid19-image-dataset adresinden

elde edilmistir. Veri setimiz gogiis rontgeni gorlintiilerinden olugmaktadir. Test ve
egitim dizinlerinde yapilandirilmis Covid’19, Viral Pnomoni ve Normal Gogiis
Rontgenlerini icermektedr. Bu verilerin dagilimina baktigimizda ise; test verisi i¢in
26 adet Covid’19 verisi, 20 adet Normal ve 20 adet de Viral Pnomoni goriintiisii
olmak {izere 66 adet goriintii bulunmaktadir. Egitim veri setinin dagilimi ise, 111
adet Covid’19, 70 adet Normal ve 70 adet de Viral Pnémani olmak iizere toplamda
251 goriintiiden olugsmaktadir. Veri kiimesi, her biri 3 siifin goriintiilerinden olusan

3 klasor iceren egitim ve test dizinlerine boliinmiistiir.

Kullanilan veri seti modeli i¢in 251 egitim ve 66 test goriintiisii igermektedir. Veri
setine ait goriintiler gercek hayattaki gogiis rontgenidir ve Onceden
degistirilmemistir. Yani hepsinin farkli boyutlar1 vardir. Bundan dolay1 gorsellerin
Olgtisii belirli bir boyuta indirilmistir. Bir goriintiiyli yeniden boyutlandirmak,
yalnizca genislik, yalmizca yiikseklik veya her ikisini birden degistirmek olsun,
boyutlarinin degistirilmesi anlamina gelir. Baslangigta veri seti, her smifin tiim
gorintiilerinin farkl klasorlere yerlestirildigi bir klasor formatinda kullanilmaktadir.
Bu gorselleri openCV kiitiiphanesini kullanarak 28x28'e dontistiirmek i¢in bir Python

betigi kullanilmistir. Son olarak csv formatinda kaydedilmistir.

Bir goriintiiyii yeniden boyutlandirmak i¢in OpenCV, cv2.resize() fonksiyonuna
sahiptir. Bu c¢alismada 1ilgili fonksiyon kullanilarak boyut kiigiiltme islemi
gerceklestirilmistir.
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Desenlerin ¢ogunun bozulmadan kalmasi i¢in goriintii boyutunu 256x256 olarak
sabitlemek daha uygun olacaktir. Ancak hesaplama kaynaklarindaki bazi sinirlamalar
nedeniyle bu c¢alismada boyut 28x28 olarak tutulmustur. Veri kiimesindeki gergek
rontgen goriintiileri birgok bilgiyi barindiracak kadar biiyiiktiir. Ancak hesaplama
kaynaklarmin eksikligi nedeniyle, openCV Kkiitiiphanesi kullanilarak boyut 28x28'e

disiirilmiistir.

7.3. Performans Degerlendirmesi

Performans degerlendirmesi i¢in dogruluk (accuracy), f1 skoru, kesinlik (precision)
ve duyarhilik (recall) degerleri hesaplatilmistir. Hata matrisleri elde edilmistir. Bu

hesaplamalar asagida yer alan formiillere gore yapilmistir.

» Dogruluk (accuracy) : Modelde dogru tahmin edilen alanlarin toplam veri

kiimesine oranini veren metriktir.

TP+TN

P a N TR (7.1)
TP+FP+TN+FN

Dogruluk =

» Kesinlik (precision) : Pozitif olarak tahmin edilen degerlerin gercekte

kacinin pozitif oldugunun gézlemlendigi sonucunu veren bir metriktir.

TP

Kesinlik =
TP+FP

(7.2)

» Duyarhlik (Recall): Uygulamamizda bulunan smniflar i¢inde pozitiv olarak
tahmin etmemiz gereken islemlerin ne kadarini pozitiv olarak

gozlemledigimizi gosteren bir metriktir.

TP
TP+FN

Duyarlilik = (7.3)

» F1 skoru: Kesinlik (Precision) ve Duyarlilik (Recall) degerlerinin harmonik

ortalamasini veren bir metriktir.

F — Skor = 2 * precisionxrecall (7.4)

precision+recall
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7.4. Karmasiklik Matrisi

Bu tez calismasinda kuantum siniflandiricilar kullanilmadan 6nce transfer 6grenimi
yoluyla Imagenet {izerinde ResNet-50 agirliklartyla evrisimli bir sinir ag1 egitilmistir.

Bu sayede 6znitelikler belirlenmistir. Karmasiklik matrisi Sekil 7.1°de verilmistir.

0 1 2

Sekil 7.1. Karmasiklik matrisi

Duyarlilik, kesinlik, dogruluk ve F1 skoru degerleri Tablo 7.1°de gdsterilmistir.

Kesinlik Duyarlilik f1-skoru Destek”
0 1 i 1 94
1 1 0.90 0.95 71
2 0.91 1.00 0.95 73
Dogruluk 0.97 0.97 0.97 238

*: Destek, o sinifta yer alan gercek yanitin rneklerinin sayisidir.

Tablo 7.1°de en sol siitunda yer alan 0,1 ve 2 degerleri simiflandirmada kullanilan

smiflari ifade etmektedir. Bunlar sirasiyla Covid’19, Normal, Viral Pnémonidir.

Dogrulama setinde elde edilen accuracy puani %96,97'dir. Ayrica karmasiklik
matrisine baktigimizda temel tani unsurlarinin ¢ok yiiksek, digerlerinin ise sifir
oldugunu goriiyoruz. Anlasilacag1 iizere test setindeki tiim veri noktalar1 dogru
sekilde smiflandirilmaktadir. Performans degerlendirmesinde kullanilan bu

Metriklerin tanimlari ise boliim 7.3’te verilmistir.

7.5. Kuantum Devresi

QCNN'de her katman parametrelendirilmis devreler igerir; bu, her katmanin

parametrelerini ayarlayarak ¢ikti sonucumuzu degistirdigimiz anlamina gelir.
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QCNN’yi egitirken, kaylp fonksiyonunu azaltmak i¢in ayarlananlar bu
parametrelerdir. Dort kiibitlik QCNN o6rnegi asagida Sekil 7.2°de gosterilmistir.

qo
a1

—— Evrisim (= Havuzlama
¢, —0 Katmam || Katmam || Evrisim

Havuzlama p=—
Katmani Katmani

qs - - -

s (] 1t

Sekil 7.2. Dért kiibitlik QCNN 6rnegi

Bu tez calismasi kapsaminda kullanilan kuantum devresinin evrisim katmani Sekil

7.3’te gosterilmistir. Havuzlama katmani ise Sekil 7.4’te gosterilmistir.

o ——M— R — R Rz _

an m -
g Rz —s—IRy — Ry — Rz — Rz

au 21 a1 w
0 Rz o M Rl - Rel 4 Ry N Ryl

3] 2 == an 8]
0 Rz 'Ry @ IRy
-me LU sl

Go —a— Re @ Re

a1

Gz

g LfA—FRa — Rz

Sekil 7.3. Kuantum devresinde evrisim katmani

Rz
9o 6[0]
q: — Rz — Ry 5 __ Ry _

—mf2 1] az2]

Sekil 7.4. Kuantum devresinin havuzlama katmani
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Bu yaklasimda, her havuzlama katmanindaki kiibitleri goz ardi edilmistir. N kiibit
Kuantum Devre boyutlarini N/2'ye doniistiiren bir QCNN Havuzlama Katmani
olusturulmustur. Dort kiibit devrenin boyutsalligi son iki kubite, yani bu 06zel
ornekteki son iki kiibite indirgenmistir. Bu kiibitler daha sonra bir sonraki katmanda
kullanilirken, ilk ikisi QCNNin geri kalaninda ihmal edilir. Bu iki kiibitlik iiniter
devreyi uyguladiktan sonra sonraki katmanlarda ilk kiibiti (q0) ihmal edilmis ve
sadece ikinci kiibit (ql) kullanilmistir. N kiibit i¢cin havuzlama katmanimizi
olusturmak amaciyla bu iki kiibit havuzlama katmani farkli kiibit c¢iftlerine
uygulanmistir. Bu tez ¢alismasinda kuantum siniflandirmada kullanilan devre Sekil

7.5’te gosterilmisgtir.

%0 1

a1 —5321_—_
O e ;
® Canes e

Sekil 7.5. Kuantum devresi

7.6. Evrisim Katmaninin Uygulanmasi

Tek bir evrisim filtresinin, veri kiimesindeki goriintiilerin uzamsal olarak yerel alt
boliimlerini girdi olarak alan rastgele bir kuantum devresi q kullandig
diistiniilmiisttir. Her giris (ui), n*n boyutunda 2 boyutlu bir matristir; burada n >1'dir.
4 kibitlik bir sistemi simiile eden bir PennyLane default.qubit cihazi baglatilmistir.

Sekil 7.6 ‘da verilen Kuantum devresi asagidakilerden olugmaktadir:

> Yerel Ry rotasyonlarinin gomiilii katmani;
> n katmanly, rastgele parametrelendirilmis bir kuantum devresi;

> Hesaplamali temelde 4 beklenti degerini tahmin eden son bir dl¢liim.

Goriintii 2*2 piksellik karelere boliiniir ve her kare kuantum devresi tarafindan islenir

ve son olarak 4 beklenti degeri, tek bir ¢ikis pikselinin 4 farkli kanalina eslenir.
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Evrisimli Sinir Aginin tek katmanli yaklagimi bu modelde tam 4 katman olacak
sekilde c¢oklu katmanlara genisletilmistir. Baslangicta her goriinti (28x28x1)
boyutuna sahiptir ve bu boyut ilk Evrisim katmaniyla beslenerek (14x14x4) bi¢imine
dontstiiriiliir. 2. Katman (7x7x16), 3. Katman (3x3x64) ve son olarak 4. ve son
katman her birini (1x1x256) boyutlu bir veri matrisine donistiiriir. Kuantumsal
Katman kapilarinin parametreleri esit sekilde rastgele olmasina ragmen, bu
parametreleri egitme yaklasimi da géz Oniinde bulundurulmustur ve bu uygulama
caligmasiin genisletilmis versiyonunda daha sonra sonugta herhangi bir gelisme

olup olmadig1 degerlendirilmistir.

i 28*28

IOﬁm— Parametrele E: H
oA—Ry(@f ndirimis LA} |
on—ima| S
lon—{Ry(a)| —1A

Veri Kodlama " Kodlama Olgiimii

Sekil 7.6: Evrigimli sinir aginin uygulanmasi

7.7. Smiflandiric1 Modeli

Evrisim katmanlardan sonra sirada siniflandirici modeli var. Smiflandirict1 modeli,
her biri ikili siniflandirict olan iki alt siniflandiricidan olusmaktadir. Bu ikisi, ‘Model-

1' ve 'Model-2' olarak adlandirilmis olup, Sekil 7.7°de gosterilmistir.

Model-1, 'Normal Kisi' ve 'Covid’19/Viral Pnomoni' olmak tizere iki sinmif arasinda
simiflandirma yapar. Model-2, 'Covid’19' ve 'Viral Pnoémoni' olmak tizere iki siif

arasinda siiflandirma yapar.
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Burada belirtilmesi gereken 6nemli bir nokta, baslangicta ¢ok sinifli siiflandirma
icin tek model kullanmaya calisilmig olunmasi ve sonucun oldukea diisiik ¢ikmasidir.

Dolayistyla iki modelli yaklasim son yaklasim olarak degerlendirilmistir.

Ayrica bir diger husus ise Model-1'in dogrulugu her zaman model-2'den daha yiiksek
olusudur. Ciinkii 'Normal Kisi' ile 'Covid’19/Viral Pnomoni'yi ayirt etmek 'Covid’19'

ile 'Viral Pnomoni'yi ayirt etmekten daha kolaydir.

Ik modele
veri girisi

Saglikli birey Covid’19 ya da
Zatiirre
Semptomlari
L J) T
Y
Model-1 S
IKinci
modele veri
/ girisi \
Bireyde Bireyde
Covid’19 var. zatiirre var.
\ )
Y
Model-2

Sekil 7.7. Smiflandirict modeli

Bunun i¢in 6znitelik boyutu kiigliltme teknigi ve 6zellik haritasi devre tasarimi ii¢

farkli yaklasimla kullanilmistir. Bu {i¢ farkli kuantum siniflandiricisi ise sunlardir:

» Kuantum Smiflandiricis1 1'de, Temel Veri Analizi ile ¢ikarilan 256 6znitelik
boyutlu girdi verisinden 11 6znitelik kullanilmistir. Burada yaklasik %70
dogruluk elde edilmistir.
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» Kuantum Smiflandiricisi 2°de TruncatedSVD yontemini kullanarak her
gorlintlinlin 256 Ozniteligi 4'e indirilmistir. Yaklasik %72 dogruluk
(accuracy) elde edilmistir.

» Kuantum Siniflandiricis1 3’de verileri yalnizca 2 6znitelige indirgenmistir.
Beklenmedik bir sekilde bu bize daha once yaklasilanlarin en yiiksegi olan

%76 dogrulugu vermistir.

7.8. Tahminleme

Tahmin yaparken oncelikle Model-1'e girdi verilmistir. Normal kisi olarak tahmin
yaptyorsa bu, girise atanan son tahmindir. Degilse, ayn1 girdi Model-2'ye verilir ve
sonunda gogiis rontgeninin hastalarda Covid’19 veya Viral Pndmoni olup olmadigini

ortaya cikaracagini tahmin edilir.

Her giris goriintiisiiniin altinda kuantum evrisimi tarafindan olusturulan 4 ¢ikis kanali
gri tonlamayla gorsellestirilir. Kuantum cekirdegi ve ¢oziiniirliigiin asag1 6rneklemesi
(down sampling) tarafindan bazi yerel bozulmalarin ortaya c¢iktig1 agikca
gbzlemlenebilir. Bununla birlikte, bir evrisim katmanindan beklendigi gibi

goriintiiniin global sekli korunur. Bu durum sekil 7.8’de gosterilmistir.
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Sekil 7.8. (a) Sikigtirilmig goriintiiler 14*14. Sekil 7.8. (b) Covid’19 veri
kiimesindeki kuantumsal sinir ag1
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7.9. Bulgular

7.9.1. Kuantum smiflandiricisi -1 i¢in elde edilen bulgular

Model 1 ve model 2 i¢in maliyet ve egitim dogruluk grafikleri Sekil 7.9, 7.10, 7.11
ve 7.12°de gosterilmistir. Kuantum Siniflandiricisi 1'de, Temel Veri Analizi ile
cikarilan 256 Oznitelik boyutlu girdi verisinden 11 6znitelik kullanilmistir. Burada
yaklagik %70 dogruluk elde edilmistir.

0.950
0.925

0.900

0.875 \

Maliyet

0.0 25 5.0 1.5 100 125 150 175

Yineleme (iterasyon) sayisi
Sekil 7.9. Kuantum smiflandirici-1, model - 1 i¢in maliyet grafigi

Maliyet fonksiyonlar1 genel olarak modellerin performansini 6l¢mek igin kullanilir.
Yapilan ¢alismada, yineleme sayisi belirli bir islemin tekrarlanma sayisini ifade
etmektedir. Yineleme sayisi, genel olarak optimal ¢oziime yakinsama igin gerekli
olan sayiyi temsil eder. Bu baglamda Sekil 7.9’daki grafige gore iterasyon sayisi

arttikga model performansinin arttigi gozlemlenmektedir.
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Sekil 7.10. Kuantum smiflandirici-1, model -1 i¢in egitim dogruluk grafigi

Egitim dogrulugu, bir makine 6grenimi modelinin egitim sirasinda ne kadar iyi
performans gosterdiginin Olgiisiidiir. Bu calismada Sekil 7.10°daki grafige gore

iterasyon sayis1 arttikca model performansinin arttig1 gézlemlenmektedir.

13
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Maliyet
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0.0 25 5.0 75 100 125 150 175

Yineleme (iterasyon) sayisi

Sekil 7.11. Kuantum smiflandirici -1, model - 2 i¢in maliyet grafigi
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Egitim dogrulugu
o
(-
o

Yineleme (iterasyon) sayisi

Sekil 7.12. Kuantum smiflandirici-1, model - 2 igin egitim dogruluk grafigi

Yapilan g¢alismada, yineleme sayist belirli bir islemi veya islemin tekrarlanma
sayisini ifade etmektedir. Bura da amag, optimal ¢oziime yakinsama icin gereken
yineleme sayisini gostermektir. Bundan dolayi, Sekil 7.11°deki grafige gore

iterasyon sayis1 arttikca model performansinin arttig1 gézlemlenmektedir.

Egitim dogrulugu, bir makine 6grenimi modelinin egitim sirasinda ne kadar iyi
performans gosterdiginin 6l¢iisiidiir. Bu baglamda yapilan ¢alismada, Sekil 7.12°deki
grafife gore iterasyon sayist arttikca model performansinin  arttig
gozlemlenmektedir. Onceden de bahsedildigi iizere bir diger husus ise Model-1'in
dogrulugu her zaman model-2'den daha yiiksek olusudur. Bunun sebebi ise ‘'Normal
Kisi' ile 'Covid’19/Viral Pnomoni'yi ayirt etmek 'Covid’19' ile 'Viral Pnomoni'yi

ayirt etmekten daha kolay olmasidir.

7.9.2. Kuantum siniflandiricisi - 2 i¢cin elde edilen bulgular

Yapilan uygulamada Kuantum Siniflandirma i¢in kullandigimiz model 2 i¢in maliyet

ve egitim dogruluk grafikleri Sekil 7.13, 7.14, 7.15 ve 7.16°de gosterilmistir.
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Sekil 7.13. Kuantum siniflandirici- 2, model-1 i¢in maliyet grafigi

Uygulamada yapilan ikinci modellemede, maliyet fonksiyonlari yineleme sayisi
optimal ¢6ziime yakinsadik¢a Sekil 7.13’deki grafikte goriildiigii tizere model

performansinin arttig1 gézlemlenmektedir.

Bu modelin egitimi sirasinda ne kadar iyi performans gosterdigi Sekil 7.14’deki
grafikte gormekteyiz. Buna gore iterasyon sayisi arttikca model performansinin

arttig1 gézlemlenmektedir.

Model-2 i¢in inceledigimiz bir diger foksiyon ise maliyet fonksiyonudur.
Modelimizin performansini gostermek icin Sekil 7.15°deki grafik kullanilmaktadir.
Bu baglamda Sekil 7.15°deki grafige gore iterasyon sayist arttikca model

performansinin arttig1 agik¢a gdzlemlenmektedir.
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Sekil 7.14. Kuantum siniflandirici-2, model-1 i¢in egitim dogruluk grafigi
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Sekil 7.15. Kuantum smiflandirici-2, model-2 igin maliyet grafigi
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Sekil 7.16. Kuantum siniflandirici-2, model-2 igin egitim dogruluk grafigi

Yapilan egitimin dogrulugu, modelinmizin egitim sirasinda ne kadar iyi performans
gosterdiginin Olctsiidiir. Bu baglamda Sekil 7.16°daki grafige gore iterasyon sayisi

arttikga model performansinin arttig1 gozlemlenmektedir.

7.9.3. Kuantum siiflandiricis: -3 i¢in elde edilen bulgular

Model- 1 ve model- 2 igin maliyet ve egitim dogruluk grafikleri Sekil 7.17, 7.18,
7.19 ve 7.20°de gosterilmistir.

Bu grafiklerde Onceki modellerde oldugu gibi maliyet fonksiyonlarinin
performansini gormek i¢in kullanildi. Burada Sekil 7.17°deki grafige goére iterasyon

sayisi arttikga model performansinin arttig1 gézlemlenmektedir.

Olusturulan smiflandirict icin modelin egitim dogrulugu, performans degerleri
acisindan bir Olciidiir. Sekil 7.18°deki grafige gore iterasyon sayist arttikca model

performansinin arttig1 gézlemlenmektedir.
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Sekil 7.17. Kuantum siniflandirici-3, model-1 i¢in maliyet grafigi
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Sekil 7.18. Kuantum simiflandirici-3, model-1 igin egitim dogruluk grafigi
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Sekil 7.19. Kuantum siniflandirici-3, model-2 i¢in maliyet grafigi
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Sekil 7.20. Kuantum smiflandirici-3, model-2 igin egitim dogruluk grafigi
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Bu grafiklerde bir 6nceki boliimlerde oldugu gibi maliyet fonksiyonlart modellerin
ne kadar performansli ¢alistigini gormek igin kullanilir. Sekil 7.19°daki grafige gore

iterasyon sayisi arttikca model performansinin arttig1 gézlemlenmektedir.

Sekil 7.20°deki grafige gore iterasyon sayist arttikgca model performansinin arttigi

gozlemlenmektedir.

Onceden de bahsedildigi iizere bir diger husus ise Model-1'in dogrulugunun
(accuracy) her zaman model-2'den daha yiiksek olusudur. Bunun sebebi ise 'Normal
Kisi' ile 'Covid’19/Viral Pnémoni'yi ayirt etmek 'Covid’19' ile 'Viral Pnomoni'yi

ayirt etmekten daha kolay olmasidir.

72



8. SONUCLAR VE ONERILER

Kuantum evrisimli sinir aglar1 (QCNN'ler), kuantum hesaplamanin potansiyel olarak
giiclii baz1 yonlerinden yararlanarak CNN'lerin yeteneklerini genisletir. Bir dizi
rastgele kuantum devresi kullanarak verileri yerel olarak doniistiirerek giris verileri

tizerinde calisir.

Klasik evrisimli sinir aglarinin verimliliginden yola ¢ikarak, Evrisimli sinir agini
(QNN'ler) kullanarak veriler analiz edilmis, tahminler yapilmis Vve sonuglar
degerlendirilmistir. Kuantum halinde kodlanmis covid’19 veri setinin ikili
siniflandirmas1  gergeklestirilmistir. Ayrica Pennylane'in  "varsayillan  qubit"

cihazindaki farkli parametreleri de dikkate alarak performansi arastirilmistir.

Bu baglamda, kuantum devrelerinin, polinom boyutlu klasik hesaplama kaynaklar
kullanilarak gercgeklestirilmesi miimkiin olmayan karmasik fonksiyonel iligkileri
modelleyebildigi gosterilmistir. Kuantum devresinin saglamis oldugu fayda klasik

olarak anlasilmasi zor olan oldukg¢a karmasik ¢ekirdekler iiretebilmesidir.

Veri kiimesindeki gergek rontgen goriintiileri bir¢ok bilgiyi barindiracak kadar
biiyiiktiir. Ancak hesaplama kaynaklarinin eksikligi nedeniyle, openCV Kkiitiiphanesi
kullanilarak boyut 28x28'e diisiiriilmiistiir, bu da bir¢ok onemli bilgiyi bastirmis
olabilir. Daha sonra, daha fazla hesaplama kaynaginin bulunmasiyla birlikte, modelin

dogrulugunu artirabilecek 256x256 boyutlu goriintiiyli kullanmak miimkiin olabilir.

Evrisim uygulanip veriler diizlestirildikten sonra her goriintiiniin 256 6zelligi elde
edildi ve 11 ozellik, kiibit eksikliginden dolay1 6zellik segme yontemiyle kullanildi.
Bu ¢alisma, kuantum sistemi hakkinda fikir edinmek i¢in daha fazla sayida mevcut
kiibit ve kuantum devresinin gercek zamanli simiilasyonu ile gercek zamanli bir
kuantum bilgisayarinda uygulanabilir. Dahasi, daha fazla kiibitin varligiyla rastgele
olusturulmus goriintii verileri {izerinde dort evrisim Katmanin egitimi test edilebilir.

Sonug olarak, gelecege doniik calismalar ve oneriler asagida verilmistir:

» Veri kiimesindeki gergcek rontgen goriintiileri birgok bilgiyi barindiracak
kadar Dbiyiiktiir. Ancak Onceden de agiklandigi {izere hesaplama

kaynaklarmin eksikligi nedeniyle, openCV kiitiiphanesini kullanarak boyutu
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28x28'e diisiiriilmiistiir, bu da birgok 6nemli bilgiyi bastirmig olabilir. Daha
sonra modelin dogrulugunu artiracak 256x256 boyutlu goriintii ile denemeler
yapilabilir.

Su anda evrisimi Uyguladiktan ve wverileri diizlestirdikten sonra her
goriintiiniin 256 ozelligine sahip olmamiza ragmen, cesitli 6znitelik boyutu
kiiciltme yontemleriyle sirasiyla Kuantum Siniflandirici-1, Kuantum
Smiflandirici-2 ve Kuantum Smiflandirici-3'te yalnizeca 11 6znitelik, 4
Oznitelik ve 2 Oznitelik kullanmilmistir. Daha yiiksek boyutlu verilerle
dogrulugun artip artmadigini veya kuantum bilgisayarlarin yalnizca daha az
sayida ozellik ile daha iyi g¢alisip calismadigini denemek i¢in daha fazla
Oznitelik denenebilir.

Gorlintii verilerine uygulanan dort evrisim katmanmn tiimii, daha fazla
egitilmeyen, tek bi¢imli olusturulmus rastgele parametreler kullanmaktadir.
Daha sonra, degistirilmis veri kiimesinin gercek goriintiiler hakkinda ¢ok
daha fazla veri igerebilmesi igin bu evrisim katmanlarin da egitilmesi soz
konusu olabilir.

Son olarak, daha dogru simiilatorler ilizerinde egitilen modellerin egitim
sonucunu ve nihai dogrulugu elde edilmesi ve daha gercekei deneysel veriler
elde etmek i¢in bunlar1 yavas yavas gercek kuantum bilgisayarlarinda
calistirmay1 denemek dogruluk (accuracy) degerlerinin artmasin siiphesiz ki

saglayacaktir.
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