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AKCİĞER RÖNTGEN GÖRÜNTÜLERİNDEN COVİD’19 VE ZATÜRRE 

HASTALIĞININ KUANTUM MAKİNE ÖĞRENMESİ YÖNTEMLERİ İLE 

TAHMİNİ 

 

ÖZET 

Kuantum evrişimli sinir ağları (QCNN'ler), kuantum hesaplamanın potansiyel olarak 

güçlü bazı yönlerinden yararlanarak CNN'lerin yeteneklerini genişletir. Bir dizi 

rastgele kuantum devresi kullanarak verileri yerel olarak dönüştürerek giriş verileri 

üzerinde çalışır. Klasik evrişimli sinir ağlarının verimliliğinden yola çıkarak, 

Evrişimli sinir ağını (QNN'ler) kullanarak veriler analiz edilmiş, tahminler yapılmış 

ve sonuçlar değerlendirilmiştir. Kuantum halinde kodlanmış covid’19 veri setinin 

ikili sınıflandırması gerçekleştirilmiştir. Ayrıca Pennylane'in "varsayılan qubit" 

cihazındaki farklı parametreleri de dikkate alarak performansı araştırılmıştır. 

Kullanılan veri seti modeli için 250 eğitim ve 65 test görüntüsü içermektedir. Veri 

setinde verilen görüntüler gerçek hayattaki göğüs röntgenidir ve önceden 

değiştirilmemiştir. Ancak hesaplama kaynaklarındaki bazı sınırlamalar nedeniyle bu 

çalışmada boyut 28x28 olarak tutulmuştur. Model-1, 'Normal Kişi' ve 

'Covid’19/Viral Pnömoni' olmak üzere iki sınıf arasında sınıflandırma yapar. Model-

2, 'Covid’19' ve 'Viral Pnömoni' olmak üzere iki sınıf arasında sınıflandırma yapar. 

Kuantum Sınıflandırıcısı 1'de, Temel Veri Analizi ile çıkarılan 256 öznitelik boyutlu 

girdi verisinden 11 öznitelik kullanılmıştır. Burada yaklaşık %70 doğruluk elde 

edilmiştir. Kuantum Sınıflandırıcısı 2’de TruncatedSVD yöntemini kullanarak her 

görüntünün 256 özniteliği 4'e indirilmiştir. Yaklaşık %72 doğruluk (accuracy) elde 

edilmiştir. Kuantum Sınıflandırıcısı 3’de verileri yalnızca 2 özniteliğe indirgenmiştir. 

Beklenmedik bir şekilde bu daha önce yaklaşılanların en yükseği olan %76 

doğruluğu vermiştir. 

Anahtar Kelimeler: Derin öğrenme, Makine Öğrenmesi, Kuantum makine 

öğrenmesi, Kuantum evrişimli sinir ağları, Covid’19 
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PREDICTION OF COVID'19 AND PNEUMATURE FROM LUNG X-RAY 

IMAGES USING QUANTUM MACHINE LEARNING METHODS 

 

ABSTRACT 

Quantum convolutional neural networks (QCNNs) expand the capabilities of CNNs 

by leveraging some of the potentially powerful aspects of quantum computing. It 

works on the input data by locally transforming the data using a series of random 

quantum circuits. Based on the efficiency of classical convolutional neural networks, 

using Quanvolutional neural networks (QNNs) data were analyzed, predictions were 

made and results were evaluated. Binary classification of the covid’19 data set 

encoded in quantum form was performed. In addition, the performance of 

Pennylane's "default qubit" device was investigated by taking into account different 

parameters. The dataset used contains 250 training and 65 test images for the model. 

The images provided in the dataset are real-life chest X-rays and have not been 

previously modified. However, due to some limitations in computational resources, 

the size is kept as 28x28 in this study. Model-1 classifies between two classes, 

'Normal Person' and 'Covid’19/Viral Pneumonia'. Model-2 classifies between two 

classes, 'Covid’19' and 'Viral Pneumonia'. In Quantum Classifier 1, 11 features were 

used from 256 feature sized input data extracted by Fundamental Data Analysis. 

Here, approximately 70% accuracy has been achieved. Using the TruncatedSVD 

method in Quantum Classifier 2, 256 features of each image are reduced to 4. 

Approximately 72% accuracy (accuracy) was obtained. In Quantum Classifier 3, its 

data is reduced to only 2 features. Unexpectedly, this yielded an accuracy of 76%, 

the highest ever approached. 

Keywords: Deep learning, Machine learning, Quantum machine learning, Quantum 

convolutional neural networks, Covid’19 
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1. GİRİŞ 

Makine öğrenmesi yarım yüzyıldan fazla bir süredir geliştirilmektir. Hesaplama 

yeteneğinin de gelişmesiyle birlikte bilgisayar biliminin çok önemli bir parçası haline 

gelmiştir. Bilgi işlem gücü, teknolojideki hızlı gelişimle birlikte oldukça hızlı bir 

şekilde artmıştır. Sürekli olarak yeni algoritmalar ortaya çıkmış olsa da veri artış hızı 

bilgisayarların performansındaki artış hızından çok daha fazladır. 

Artan veri ile birlikte hızlanan ve öğrenen bilgisayarların gelişmesi bugün çok daha 

değerli bir konuma gelmiştir. Geldiğimiz noktada klasik makine öğrenmesinin yanı 

sıra teknolojideki ilerlemeler sonucunda kuantum fiziğinin temellerinden faydalanan 

ve kuantum hesaplama yapabilen bilgisayarlar geliştirilmektedir. Kuantum 

hesaplama, süperpozisyon ve dolanıklık gibi kuantum mekaniği olgularına 

dayanmaktadır.  

Makine öğrenmesinin tanımı göz ardı edildiğinde öğrenme “Denetimli öğrenme 

(supervised learning), denetimsiz öğrenme (unsupervised learning) ve pekiştirmeli 

öğrenme (reinforcement learning)” olarak üç ana kategoriye ayrılır. 

Yüksek hızlı hesaplama için en önemli özellik olması nedeniyle, paralellik belirli 

sorunları çözmek için belirli algoritmalarda tasarlanabilir. Bu klasik problemler 

genellikle kuantum sisteminde olduğu kadar verimli şekilde çözülemez.  Makine 

öğrenmesi, hesaplama gücü eksikliği nedeniyle baskı altında olduğundan ve kuantum 

hesaplama bu güçlü hesaplama yeteneğine sahip olduğundan, insanlar kuantum 

hesaplama ve makine öğrenimi kombinasyonunun olasılıklarını düşünmektedir.  

Örneğin; Shor'un algoritması, kuantum hesaplamanın herhangi bir klasik yöntem 

kullanarak imkânsız olan büyük tamsayı çarpanlarına ayırma problemini çözmek için 

üstel bir hızlanma sağlayabildiğini göstermektedir (Zhang ve Ni, 2020).  Bu 

algoritmadan sonra, belirli problemleri çözmek için çok sayıda kuantum algoritması 

önerilmiştir. Yine, Grover'ın algoritmasının yapılandırılmamış bir veri tabanında 

arama yaparken ikinci dereceden bir hızlanma sağlayabileceği kanıtlanmıştır(Zhang 

ve Ni, 2020). 

Öte yandan, bazı şirketler ve araştırma kurumları, kuantum devre modeline dayalı 

evrensel kuantum bilgisayarların gerçek prototip makinelerini üreterek, bulut 
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platformları aracılığıyla az sayıda kübit (qubit) üzerinde kuantum hesaplama 

işlemleriyle deneyler yapılabilmesini sağlamıştır.  

Günümüzde, genel büyük ölçekli kuantum bilgisayarı halen geliştirilmeye devam 

etmektedir. Bununla birlikte, potansiyel kuantum makine öğrenimi algoritmalarının 

araştırılmasında bazı ilerlemeler kaydedilmiştir (Schuld ve Sinayskiy, 2015). 

Kuantum makine öğrenmesi klasik makine öğrenemsinde olduğu gibi, kuantum 

algoritmalarının makine öğrenmesi programlarına entegre edilmesidir. Bugün yoğun 

bir şekilde kullanılan makine öğrenmesi algoritmaları, çok büyük miktarlarda veriyi 

hesaplamak için kullanılırken; kuantum makine öğrenmesi, algoritmaları yapılan 

uygulamada kullanılan algoritmalar tarafından yapılan hesaplama hızını ve veri 

depolamayı iyileştirmek için kübitler ile kuantum işlemlerini veya özel kuantum 

sistemlerini kullanır.  

Bu durum, bilgisayara hesaplama açısından zor alt işlemlerin bir kuantum cihazına 

dış kaynak olarak verildiği hem klasik hem de kuantum veriyi işlemeyi içeren hibrit 

yöntemleri barındırır. Bu sureçler çalışma şekli olarak karmaşık olabilir ve klasik 

bilgisayara göre kuantum bilgisayarda daha hızlı yürütülebilir.  

Makine öğreniminde iki temel vardır; “veri ve öğrenme süreci”. Aynı şekilde 

kuantum alanı da bu iki parçayı içerir.  

Kuantum hesaplamanın kuantum verileriyle uğraşması gerektiğinden, kuantum 

hesaplamanın hayal edildiği gibi çalışabilmesi için klasik verilerin kuantum 

verilerine önceden işlenmesi gerekir. Günlük hayatta, insanların uğraştığı çoğu 

bilginin klasik olduğuna inanılır, bu nedenle bu ön işlemeyi yapmak gereklidir. 

Bununla birlikte, kuantum verisinin doğrudan işlenebileceği özel bir durum vardır. 

Örneğin, kuantum iletişimi son yıllarda sıcak bir konu haline gelmiştir ve kuantum 

kanallarında, kuantum olan bazı gürültüler olabilir (Biamonte ve diğ, 2017). 

 Bugün dünyada üretilen veri miktarı üstel olarak artarken, klasik bilgisayarların bu 

veriyi işleyip anlamlı bilgi çıkarma süresi de artmaktadır. Büyük veri kavramının 

hayatımıza girdiği günden beri önişleme süreçlerinin fazlalığı ya da bu süreçlerin 

otomatik olarak gerçekleştirilmesi yapay zekâ yöntemlerinde kaynak ihtiyacı 

gerektiren faktörlerdir. Veriye olan ihtiyacının karşılanabilmesi için çok çekirdekli, 

çok işlemcili ve grafik işlemcili bilgisayarlar yoğun bir şekilde kullanılmaktadır. 

Makine öğrenmesi modellerinin zaman maliyetini minumum seviyeye indirmek için 
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duyduğu performans ihtiyacı şuanki teknolojilerle kısmen karşılanmaktadır. 

Günümüzde yüksek başarım ile çalışan makine öğrenmesi yöntem ve 

uygulamalarının, kuantum bilgisayarlar ile bahsedilen zaman ve doğruluk maliyetini 

çok daha iyi noktalara taşıyacağı görüşü baskındır (Schuld ve Killoran, 2018). 

1.1. Literatür Taraması 

Makine öğrenimi, veri işleme ve sınıflandırma için her alanda kullanılan ve etkili bir 

teknik haline gelmiştir. Ayrıca, birçok alanda kuantum hesaplamanın üstünlüğü ve 

ilerlemesi nedeniyle (örneğin, kriptografi, makine öğrenimi, sağlık hizmetleri vb.), 

klasik makine öğrenimi ve kuantum bilgi işleme kombinasyonu kuantum makinesi 

öğrenimi olarak adlandırılan yeni bir alan haline geldi.  

Bu bölüm, QML (Quantum Machine Learning) ile ilgili kapsamlı bir incelemesini 

sunmaktadır. Son yıllarda ML (Machine Learning) tabanlı QC (Quantum 

Computing) dikkate değer bir evrime tanık oldu. Kuantum otomatik kodlayıcılar 

(Khoshan ve diğ., 2018, Pepper ve diğ., 2019, Romero ve diğ., 2017), kuantum 

biyomimetiği (Alvarez-Rodriguez vd diğ., 2018, Lamata, 2020), Kuantum İletişimi 

(Nawaz ve diğ., 2019, Sheng ve Zhou, 2017, Wallnöfer ve diğ., 2020), Kuantum 

Tavlama (Li ve diğ., 2018, Rieffel ve diğ., 2015), Hesaplama Kimyası ( McArdle ve 

diğ., 2020, von Lilienfeld, 2018) ve Boltzmann makinesi (Amin ve diğ., 2018). 

Yapılmış olan çalışmada, QML algoritmaları ML ile kullanılan kuantum hesaplama 

fikrine göre üç kategoride düzenlenebilir ve sınıflandırılabilir. Tamamen QML (Beer 

ve diğ., 2020, Dunjko ve diğ., Levine ve diğ., 2019), hibrid klasik -quantum ML 

(Killoran, Bromley ve diğ., 2019, Mari ve diğ., 2020), kuantumdan ilham alan ML 

(Gao ve diğ., 2017, Pomarico ve diğ., 2021).  

Huang ve diğ., 2021, ML görevlerinde yeni bir yaklaşım önermek için potansiyel 

kuantum avantajını kullandılar. Bu yaklaşım, giriş veri alanı aracılığıyla geometrik 

çekirdek işlevine dayanmaktadır. Ayrıca, klasik alanda “öngörülen kuantum 

çekirdekleri” (PQK) adı verilen kuantum ve klasik ML modellerini kullanarak bir 

kuantum çekirdeği sağladılar. Bu kuantum çekirdeği, veriler arasındaki benzerliği 

ölçer ve öğrenme görevlerinde katı kuantum hızlandırma sağlar. Burada kullanılan 

geometrik sabit, çeşitli çekirdek fonksiyonlarına sahip klasik ve kuantum ML 
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algoritmalarındaki geometrik farkı ölçer. Potansiyel kuantum avantajının veri 

miktarına dayandığını bildirdiler. 

Schuld ve diğ., (2016), denetimli öğrenmeye dayanan örüntü tanıma için yeni bir 

kuantum algoritması önermişlerdir. Bu algoritma, kuantum doğrusal regresyon adı 

verilen doğrusal regresyonun bir versiyonudur. Yazarlar, kuantum durumundaki 

verileri dönüştürmek için genlik kodlama yöntemini kullandılar. Kuantum lineer 

regresyon, logaritmik zaman içinde özelliklerin n-boyutları ile kuantum verileri 

üzerinde çalışır. Rebentrost ve diğ., (2014), büyük verilerin sınıflandırılması için 

Destek Vektör Makinesi'nin (QSVM) kuantum versiyonunu sunmuşlardır. Kuantum 

SVM, büyük verileri eğitmek için iç ürünün matris inversiyonunu gerçekleştirmek 

için mükemmel olmayan bir matrise dayanmaktadır. Logaritmik karmaşıklığa sahip 

çok sayıda özellik ve örnekle çalışır. Büyük verilerin kuantum SVM'si, klasik 

SVM'ye kıyasla özellik boyutları dikkate alındığında  üstel hızlandırma sağlar. 

Klasik NN'lere göre QNNs avantajları Ezhov ve Ventura'da (2000) (örn. Kuantum 

paralellik, daha yüksek stabilite, daha yüksek bilgi işleme hızı ve bellek kapasitesi) 

tartışılmaktadır. Da Silva ve diğ., (2016), Kuantum Potansiyel Frekansları (QPF) 

üzerinde kuantum algılama adı verilen yeni bir QNS (Quantum Network Solution) ve 

öğrenme algoritması, süperpozisyon tabanlı mimari öğrenme (SAL) olarak 

adlandırdı. Sal algoritması bir üst üste binme özelliğine ve kuantum operatörüne 

dayanmaktadır. Ayrıca, NN mimarisini polinom zamanıyla işler. QPF, kuantum 

algılama modellerinin sınırlamalarının üstesinden gelir. Başka bir çalışmada, yazarlar 

(Schuld ve diğ., 2015), kuantum donanımı üzerinde kuantum faz tahmini kullanarak 

klasik algılama kuantum bir versiyonunu tanıttılar. Kuantum algılama algoritması, 

NNS'deki aktivasyon fonksiyonunu (adım işlevi) simüle eder. 

Rekabetçi NN'lerde, Zhou (2010) iki ana parça sundu: birincisi, QC adı verilen 

Rekabetçi Öğrenme NN'lerine dayanan yeni bir model. QCNN modeli, kuantum 

paterni rekabetini kullanarak giriş modellerini sınıflandırır. İkinci bölümde Zhou, 

önerilen QCNN için bellek kapasitesi sağladı. QCNN, ağ ağırlığı olmadan bir 

kuantum kaydı kullanarak rekabetçi öğrenme elde eder. Kuantum dolaşımını ve 

Grover’ın algoritmasını kullanan bir başka QCNN modeli önerilmektedir (Zhong ve 

Yuan, 2012). Bu model, sahte desenler nedeniyle kuantum ilişkilendirici bellek 

kullandı. Ayrıca, bu model rekabet sürecinde sahte durumları eksik kalıplarda 
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hatırlar. Zidan ve diğ., (2019), QCPNN adı verilen ikili sınıflandırma için dolaşma 

önlemine dayanan başka bir QCNN önermişlerdir. QCPNN, giriş verilerini bir 

kuantum bilgisayardaki eksik desenlerde sınıflandırır.  

Son zamanlarda, Abbas ve diğ., (2021) QNN'nin gücünü mevcut yakın vadeli 

kuantum donanımı ile tartışmıştır. Yazarlar, adlandırdıkları modelin kapasitesi, etkili 

boyut için yeni bir önlem önermişlerdir. Bu etkili boyut, modelin yeni/görünmeyen 

veriler üzerinde genelleme yeteneğini sınırlamak için kullanılır. Buna ek olarak, 

önlemlerinin bir Fisher bilgi matrisi ile veriye bağlı bir genelleme yöntemi olduğunu 

bildirdiler. Son olarak, yazarlar QNN'nin mevcut gürültülü kuantum cihazı ile klasik 

NN'ye kıyasla daha hızlı eğitim aldığını bildirmişlerdir. Ayrıca QNN'nin klasik 

NN'den daha yetenekli olduğunu gösterdiler. Chen ve Yoo (2021), hibrit kuantum -

klasik ML'ye dayanan yeni bir eğitim modeli önerdi. Yazarlar kuantum donanımını 

(yani, cihaz veya simülatör okuma) yerel istemciler olarak kullandılar. Ayrıca, 

yazarlar özellik çıkarma için VGG16 ile klasik -quantum transfer öğrenimi 

kullanmışlardır. Önerilen çerçevenin avantajı klasik ve kuantum verileri üzerinde 

çalışır. 

Dang ve diğ., (2018), görüntü sınıflandırması için kuantum KNN algoritması olarak 

adlandırılan yeni bir kuantum modeli önerdi. Kuantum KNN modeli iki bölümden 

oluşur: klasik ve kuantum bölümü. Yazarlar klasik bilgisayarı görüntülerin 

özelliklerini çıkarmak için kullandılar. Çıkarılan özellikler bir kuantum cihaz 

tarafından bir kuantum durumuna dönüştürülür. Ardından, kuantum devresi, 

görüntüler arasındaki benzerliği hesaplamak için kullanılır. Son olarak, sınıflandırma 

işlemi bir ölçüm devresi tarafından gerçekleştirilir. Kuantum KNN modeli, verimlilik 

ve sınıflandırma performansı açısından klasik modellerden daha iyi performans 

gösterir. Adhikary ve diğ., (2020), tek bir kuantum sistemi ile yeni bir varyasyonlu 

kuantum sınıflandırıcısı sunmak ve tek-atış eğitimi adı verilen bir eğitim algoritması 

ile n-boyutlu verileri kodlamak için bir kuantum devresi kullanmıştır. Ayrıca, 

yazarlar tüm veri kümesini tek bir kuantum durumuna kodladılar. Tek atış eğitim, 

eğitim için daha az parametre kullanır ve daha yüksek hassasiyet elde eder. Mitariai 

ve diğ., (2018), sınıflandırma, regresyon ve kümeleme, kuantum devre öğrenimi 

(QCL) gibi farklı görevleri yerine getirmek için hibrit bir klasik -quantum tekniği 

sundu. QCL, küçük ölçekli kuantum cihazlarda hareket eder. Yazarlar, QCL'nin 
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yüksek boyutlu sınıflandırma/regresyon görevleri ile performansını 

gözlemlemişlerdir.  

Başka bir hibrit çalışmada, Henderson ve diğ., (2020) yazarları, görüntü 

sınıflandırması için standart evrişimsel sinir ağlarına sahip kuantum devreleri 

kullandılar. Yazarlar, mevcut küçük ölçekli ve NISQ kuantum donanımında 

uygulamak için küçük derinlikli bir kuantum devresi kullandılar. Kuantum devresi, 

bilgilendirici özellikleri çıkarmak için bir evrişim katmanı olarak uygulanır. 

Kuantum evrişim tabakasında üç aşama vardır: kodlama, kuantum devresi ve ölçüm. 

Başka bir mimaride Bausch (2020), QRNN adı verilen tekrarlayan sinir ağının 

(RNN) kuantum bir versiyonunu önerdi. QRNN'nin temel bileşeni kuantum bir 

nörondur. QRNN, rakam verilerini sınıflandırmak için kullanılır. Ayrıca, QRNN 

üretken bir model olarak kullanılır. 

Benedetti ve diğ., (2019), veri odaklı kuantum devre öğrenimi (DDQCL) adı verilen 

çerçeve üretken bir model sunmuşlardır. Kuantum bilgisayarı kullanarak yazarlar 

(Zhao, Pozas-Kerstjens, Rebentrost ve Wittek, 2019) derin öğrenme için Bayes 

tekniğinin yeni bir versiyonunu önerdi. Bu tekniğin ana kısmı kuantum matris 

inversiyonudur. Bu teknik iki kuantum donanımında (Rigetti ve IBM) uygulanır.  

QML yeni bir araştırma alanı haline geldi ve birçok uygulamada yer aldı. QC'nin 

ilerlemesi ve başarısı yaygın olarak görülmektedir. Bu nedenle, QM'nin avantajları 

ve özellikleri ML'ye uygulanmalıdır. Bildiğimiz kadarıyla, Chrisley'de (1995) 

uygulanan ilk QML kavramı. QC, Aïmeur, Brassard ve Gambs (2006) ve Lloyd, 

Mohseni ve Rebentrost'ta (2013) denetimli ve denetimsiz öğrenme ile karıştırılmıştır.  

Aïmeur ve diğerleri, 2006, Dunjko ve diğerleri, 2016 ve Schuld (2018) 'de QML 

algoritmalarını kuantum veya klasik algoritmanın entegrasyonuna bağlı olarak dört 

kategoriye ayırmıştır ve kuantum veya klasik verilerde gösterildiği gibi aşağıdaki 

Şekil 1.1 ‘de olduğu gibi tanımlanabilir. 
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Şekil 1.1.Kuantum/klasik verilere ve kuantum/klasik algoritmaya dayalı kuantum 

makinesi öğrenme algoritmaları 

 

 Kuantum -Quantum (QQ) kategorisi, bu kategori tamamen QML olarak da 

bilinir. QQ kategorisi kuantum algoritmaları ve verileri kullanır. 

 Kuantum -Klasik (QC) kategorisi olan bu kategori, klasik ajanlardan 

öğrenmek için bir kuantum algoritması kullanır (Kuo, Fang ve Chen, 2021). 

 Klasik -Quantum (CQ) kategorisi, CQ algoritmaları standart ML'nin kuantum 

sürümleridir ve bu algoritmalar gerçek bir kuantum cihazda yürütülebilir. 

 Kuantumdan ilham alan ML kategorisi tarafından yaygın olarak kullanılan 

klasik-klasik (CC) kategorisi. İlham ile CC kategorisinde kuantum bilgi işlem 

özellikleri (yani kuantum bitleri, süperpozisyon ve dolaşma) kullanılır. 

Kuantum bilgi işlem, parazit, süperpozisyon ve dolaşma gibi kuantum mekanik 

özelliklerini kullanarak bilgileri işler. Bu nedenle, kuantum bilgi işlem klasik 

algoritmaları geliştirmek için makine öğrenimi (ML) gibi çeşitli alanlarla entegre 

edilmiştir. Bu bölüm, kuantum makine öğrenimi (QML) paradigmaları (örn., 

Tamamen QML, hibrid klasik-quantum ML, kuantumdan ilham alan ML) hakkında 

kapsamlı bir literatür çalışması yapmak için düzenlenmiştir. Ayrıca, kuantum derin 

öğrenmesinde en son çalışmalar sunulmuştur. Hilbert alanında klasik verileri 

kuantum verilerine kodlamak için çeşitli yöntemler vardır. Klasik makine 

öğreniminin performansını artırmak için kuantum alt rutin kullanan birçok kuantum 

makine öğrenimi önerilmiştir. Bazı kuantum alt rutinlerini ve uygulamalarından 

bahsedildi. 
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Araştırmacılar için yeni yollar açmak için QML'nin gelecekteki perspektifleri ve 

zorlukları da ele alındı. Sınırlı kubit sayıları, küçük ölçekli kuantum donanımı ve 

kodlama yöntemleri nedeniyle QML tekniklerinin gerçek dünya sorunları ile 

uygulanması ve uygulanması için hala zorluklar vardır. 

1.2. Çalışmanın Literatüre Katkısı 

Klasik ve Kuantum Makine Öğrenmesi (Quantum Machine Learning - QML) 

şeklinde yapılan bu hibrit çalışmanın literatüre sağlıyacağı düşünülen katkısı aşağıda 

maddeler halinde verilmiştir.  

 Hız ve İşlem Kapasitesi: Klasik bilgisayarlar, belirli problemleri çözmek 

için sınırlı işlem kapasitesine sahiptir. Kuantum bilgisayarlar ise belirli tipteki 

problemleri daha hızlı çözebilir. Hibrit bir sistem, klasik bilgisayarların genel 

hesaplama yeteneklerini kullanırken, özellikle kuantum avantajlarına sahip 

problemleri çözmek için kuantum bilgisayarları kullanabilir. 

 Veri İşleme ve Analizi: Hibrit bir yaklaşım, büyük veri setlerinde daha hızlı 

ve etkili bir şekilde işlem yapabilir. Kuantum bilgisayarlar, belirli veri analizi 

problemlerinde paralel hesaplamaları kullanarak klasik bilgisayarlardan daha 

etkili olabilir. 

 Belirli Algoritmaların İyileştirilmesi: Klasik algoritmaların belirli zorlu 

problemlerde yetersiz olduğu durumlar vardır. Kuantum algoritmaları, bu tür 

problemleri çözmek için özel olarak tasarlanabilir. Hibrit bir yaklaşım, belirli 

algoritmaların klasik versiyonlarına kuantum iyileştirmeleri ekleyerek 

performansı artırabilir. 

 Yeni Algoritmaların Geliştirilmesi: Hibrit sistemler, kuantum ve klasik 

bilgisayarlar arasında etkileşim sağlayarak yeni ve daha etkili algoritmaların 

geliştirilmesine olanak tanır. Bu, belirli problemleri çözmek için özel olarak 

tasarlanmış algoritmaların oluşturulmasına imkan tanır. 

 Çeşitli Uygulama Alanları: Hibrit bir yaklaşım, finans, sağlık, yapay zeka, 

optimizasyon problemleri gibi çeşitli uygulama alanlarında kullanılabilir. Bu, 

klasik ve kuantum bilgisayarların güçlü yanlarını birleştirerek daha geniş bir 

problem yelpazesine hitap edebilir. 
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Ancak, kuantum bilgisayarlar henüz geniş çapta ticari olarak kullanılabilir değillerdir 

ve belirli teknik zorluklarla karşılaşmaktadırlar. Bu nedenle, hibrit bir yaklaşımın 

pratik uygulama alanları ve gerçek dünya etkileri üzerindeki çalışmalar halen aktif 

araştırma konularıdır. 

1.3. Tezin İçeriği 

Yapılmış olan bu tez çalışmasının ilerleyen bölümleri şu şekilde devam 

etmektedir;  Bölüm 2, Makine öğremesi  hakkında ayrıntılı bilgi içermektedir. Bölüm 

3, Derin öğrenme hakkında ayrıntılı bilgi içermektedir. Ayrıca bu bölümde  çalışma 

kapsamında kullanılan Derin öğrenme modeli,  hakkında bilgi içermektedir. Bölüm 

4, çalışmanın ana amacı olan Kuantum Makine öğrenmesi ve çeşitleriyle ilgili bilgi 

ayrıntılı bilgi vermektir. Ayrıca bu bölümde kuantumun temel yapsınını oluşruran 

kübit kavramı, süper yoğun kodlama ve son olarak kuantum kapılarıyla ilgili 

bilgi  içermektedir. Bölüm 5, Temel kuantum algoritmalarını hakkında bilgi 

vermektedir. Bölüm 6, IBM tarafından devre ve algoritma düzeyinde kuantum 

bilgisayarlarla çalışmak için oluşturulan bir yazılım geliştirme kiti olan Qiskit, 

hakkında bilgi vermektedir. Bölüm 7, tez çalışması kapsamında kullanılan veri seti 

ve önişleme, oluştuturan kuantum devresi, sınıflandırıcı model ve ortaya çıkan 

bulgular hakkında bilgi vermektedir. Son bölüm olan Bölüm 8, sonuçlar ve öneriler 

kısmını oluşturmaktadır. 
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2. MAKİNE ÖĞRENMESİ 

2.1. Makine Öğrenmesi 

Makine öğrenimi, deneyimlerden "yapay" bilgi üretimi için kullanılan genel bir 

terimdir (Reitmaier, 2015). Buna göre, yapay bir sistem örneklerden öğrenir ve 

öğrenme aşaması tamamlandıktan sonra bunları genelleştirebilir. Bunu yapmak için, 

makine öğrenimi algoritmaları eğitim verilerine dayalı istatistiksel bir model 

oluşturur ve bu model test verilerine karşı test edilir. Bu, örneklerin basitçe ezbere 

öğrenilmediği, ancak öğrenme verilerinde kalıpların ve düzenliliklerin tanındığı 

anlamına gelir. Bu şekilde, sistem bilinmeyen verileri de değerlendirebilir (öğrenme 

transferi) veya bilinmeyen verileri öğrenmede başarısız olabilir (aşırı uyum). Olası 

uygulamaların geniş yelpazesinden şunlar sayılabilir: “otomatik teşhis prosedürleri, 

kredi kartı dolandırıcılığının tanınması, borsa analizleri, nükleotid dizilerinin 

sınıflandırılması, konuşma ve metin tanıma ve otonom sistemler” (Pierson, 2021). 

Konu, "veri tabanlarında bilgi keşfi" ve "veri madenciliği" ile yakından ilgilidir, 

ancak esas olarak yeni kalıplar ve düzenlilikler bulmakla ilgilidir. Birçok algoritma 

her iki amaç için de kullanılabilir. "Veri tabanlarında bilgi keşfi" yöntemleri, 

"makine öğrenimi" için öğrenme verilerini üretmek veya önceden işlemek için 

kullanılabilir. Tersine, makine öğrenimi algoritmaları veri madenciliğinde kullanılır. 

Bu terim, yapay sinir ağlarını kullanan olası öğrenme çeşitlerinden yalnızca biri olan 

"derin öğrenme" teriminden de ayırt edilmelidir. Verilerden (varsayımsal) modellere 

yapılan çıkarıma istatistiksel çıkarım denir (Langley, 2011). 

Makine öğreniminde, bilgi temsilinin türü ve gücü önemli bir rol oynamaktadır. 

Bilginin açıkça temsil edildiği sembolik yaklaşımlar ile hesaplanabilir bir şekilde 

davranmak üzere "eğitilen" ancak öğrenilen çözüm yollarının anlaşılmasına izin 

vermeyen sinir ağları gibi sembolik olmayan yaklaşımlar arasında bir ayrım yapılır. 

Burada bilgi örtük olarak temsil edilir. Sembolik yaklaşımlar, önerme mantığı ve 

yüklem mantığı sistemleri arasında ayrım yapar. İlkinin temsilcileri ID3 ve halefi 

C4.5'tir. İkincisi tümevarımsal mantıksal programlama alanında geliştirilmiştir. 

Pratik uygulama algoritmalar aracılığıyla yapılır. Makine öğrenimi alanındaki çeşitli 

algoritmalar kabaca üç gruba ayrılabilir: “denetimli öğrenme, denetimsiz öğrenme ve 

pekiştirmeli öğrenme” (Mikut, 2008). Bu sınıflandırma Şekil 2.1 ‘de gösterilmiştir.  
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Şekil 2.1. Makine öğrenmesi çeşitleri şeması 

 

● Denetimli öğrenme: Algoritma kendisine verilen girdi ve çıktı çiftlerinden 

bir fonksiyon öğrenir. Burada amaç, ağı modelimizi girdi ve çıktılarla birkaç 

hesaplamadan sonra ilişkilendirme yapacak şekilde eğitmektir. 

● Denetimsiz öğrenme: Belirli bir girdi kümesi için algoritma, girdileri 

tanımlayan ve tanınan kategorileri ve korelasyonları içeren istatistiksel bir 

model oluşturur ve böylece tahminleri mümkün kılar. Kümeleme yöntemleri 

verileri karakteristik örüntülerle birbirinden ayrılan çeşitli kategorilere 

ayırmak için kullanılır. Böylece ağ, girdi örüntülerini böldüğü 

sınıflandırıcıları bağımsız olarak oluşturur. Bu bağlamda önemli bir 

algoritma, bir modelin parametrelerini, görülen verileri en iyi şekilde 

açıklayacak şekilde iteratif olarak ayarlayan Beklenti Maksimizasyonu (BM) 

algoritmasıdır. Bunu, gözlemlenemeyen kategorilerin varlığını varsayarak ve 

dönüşümlü olarak verilerin kategorilerden birine üyeliğini ve kategorileri 

oluşturan parametreleri tahmin ederek yapar. BM algoritmasının bir 

uygulaması, örneğin Gizli Markov Modellerinde (GMM'ler) bulunabilir. 

Temel bileşen analizi gibi diğer denetimsiz öğrenme yöntemleri 

kategorizasyondan vazgeçer. Gözlemlenen verileri, büyük ölçüde azaltılmış 

bilgiye rağmen mümkün olduğunca doğru bir şekilde yansıtan daha basit bir 

temsile dönüştürmeyi amaçlamaktadırlar (Mahesh ve diğ., 2020). 

Makine Öğrenmesi Türleri

Denetimli Öğrenme

Denetimsiz Öğrenme

Pekiştirmeli  Öğrenme
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● Pekiştirmeli Öğrenme: Bu öğrenme modelinde, bir ajanın çevresiyle 

etkileşime girerek belirli bir görevde en iyi performansı elde etmeye çalıştığı 

modelir. Ajan çevresinden gelen bildirimleri (ödüller veya cezaları) 

kullanarak öğrenir. Bu süreçte, ajan deneyimlerinden öğrenir, belirli bir 

durumda hangi aksiyonun daha iyi sonuç verdiğini anlamak için çeşitli 

stratejiler geliştirir. Bu öğrenme süreci, ajanın aldığı aksiyonlar ve elde ettiği 

ödüller arasındaki ilişkiyi optimize edene kadar devam eder. 

2.2. Makine Öğrenmesi Uygulama Alanları 

Bugün yapay zekanın bir alt kolu olan makine öğrenmesi, bilgisayarların donanımsal 

ve yazılımsal özelliklerinin artmasıyla birlikte hemen her sektörde yoğun bir şekilde 

kullanılmaya başlandı. Bu alanlara örnek olarak; eğitim, finans ve meteoroloji gibi 

birçok alanı göstermek mümkündür. Geçmişte elde edilen veriler üzerine uygulanan 

algoritmalar ve öğrenme modelleri ile gelecekte olabilecek durumların tahminleri ya 

da verilerin sınıflandırmaları yapılabilmektedir. Bu tahminlerin ve sınıflandırmaların 

en önemli özelliği, gerçekleşmesi uzun sürebilen ya da gerçekleştikten sonra geri 

dönülmez sonuçlar üretebilen olayların önceden tahmin edilmesidir. Makine 

Öğrenmesinin uygulandığı alanlara baktığımızda; Astronomiden hastalık tespitine, 

veri madenciliğinden enerji sistemlerine, doğal dil işlemeden kredi risk 

hesaplamasına kadar pek çok alanda kullanılmakta olduğu görülmektedir (Ünsal, 

2011). 

2.3. Makine Öğrenmesi Modeli 

Makine öğrenmesi modelleri, verilerden öğrenme yeteneğine sahip algoritmaları 

ifade eder. Burada birkaç temel öğrenme modeli bulunur. 

 Regrasyon Modelleri: Girdi verileri arasındaki ilişkiyi inceleyereksürekli bir 

çıktı tahimin eder. Bunlara lineer regrasyon ve polinomiyal regrasyon örnek 

olarak gösterilebilir. 

 Sınıflandırma Modelleri: Girdi verilerini farklı sınıflara ayırarak, yeni veri 

noktalarını uygunsınıflara atar. Bu modele örnek olarak, destek vektör 

makineleri (SVM), karar ağaçları ve k-en yakın komşu (k-NN) gösterilebilir. 
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 Kümeleme Modelleri: Veri noktalarını benzerliklerine göre gruplayarak, 

içsel yapıları ortaya çıkarır.  Bu modellere, k-ortalama kümeleme ve 

hiyerarşik kümeleme örnek olarak gösterilebilir. 

 Derin Öğrenme Modelleri: Yapay sinir ağları kullanılarak çok katmanlı ve 

karmaşık ilişkileri öğrenir. Bu yapıda evrişimli sinir ağları görüntü işleme 

için ve yinelemeli sinir ağları sıralı veri analizi için sıklıkla kullanılır.  

Bu modeller farklı veri türlerine, problemlere ve öğrenme süreçlerine uygun olarak 

seçilir ve kullanılır. Hangi modelin tercih edileceği, veri setinin yapısı, problem tipi 

ve kullanılabilir veri miktarı gibi faktörlere bağlıdır. 

Şekil 2.2 ’de yer alan modelin çalışması aşağıdaki gibi belirtilmiştir.  

1. (x;y)’nin bir kümesi alınır, burada x bir girdi vektörü ve y uygun bir çıktıdır.  

2. y=f(x) fonksiyonu, önceden bildirilen bir modelin oluşumudur;  

● Modelin kalite ölçümüne, bir kriter tanımlanır  

● Modelin kullanılacağı bir eğitim kümesi oluşturulur  

● Modelin kullanacağı geçerli bir test kümesi oluşturulur (Uzun,2005). 

 

Şekil 2.2. Makine öğrenmesi seması (Uzun, 2005) 
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2.4. Makine Öğrenmesi Teknikleri  

Makine öğrenmesi, var olan problemin çözümüne yönelik olarak bir bilgisayar 

programının belirli bir görevi yerine getirmek için verilen verileri ve uygun 

algoritmaları kullanarak kendisini geliştirip sonuçlar üretmesi anlamına gelir. Bu 

bölümde makine öğrenmesi tekniklerinden dolan ve günümüzde sıkça kullanılan 

sınıflandırma, kümeleme, birliktelik kuralları tekniklerinde yer alan makine 

öğrenmesi algoritmaları anlatılmıştır. 

Sınıflandırma: Makine öğrenmesi, bilgisayar sistemlerinin verilerden öğrenmesine 

ve bu verilerden yararlı bilgiler çıkarmasına izin veren bir alanıdır. Bu alanda 

sınıflandırma, verileri farklı kategorilere ayırma işlemidir. Sınıflandırma, öğrenme 

algoritmalarının temel öğelerinden biridir ve öğrenme sürecinde en yaygın kullanılan 

yöntemlerden biridir. 

Sınıflandırma, birçok farklı uygulama alanında kullanılır. Örneğin, spam filtreleme, 

müşteri segmentasyonu, tıbbi teşhis, yüz tanıma, doğal dil işleme gibi birçok 

uygulama alanında sınıflandırma yöntemleri kullanılır. 

Sınıflandırma, öğrenme algoritmaları tarafından verilerin farklı kategorilere 

ayrılmasıyla gerçekleştirilir. Veriler genellikle etiketli veya etiketsiz veriler olarak iki 

kategoriye ayrılır. Etiketli verilerde, verilerin her bir örneği bir etiketle belirlenir. Bu 

etiketler önceden belirlenmiş bir kategoriye ait olabilir veya uzmanlar tarafından 

belirlenir. Etiketsiz verilerde ise verilerin her bir örneği belirli bir kategoriye ait 

değildir ve öğrenme algoritmalarının bu verileri analiz etmesi ve kategorilere 

ayırması gerekmektedir. 

Sınıflandırma algoritmaları, verilerin farklı kategorilere ayrılması için farklı 

yöntemler kullanır. En yaygın kullanılan sınıflandırma yöntemleri arasında Karar 

Ağaçları, K-En Yakın Komşu (KNN), Destek Vektör Makineleri (SVM), Yapay 

Sinir Ağları (ANN) ve Doğrusal Regresyon yer almaktadır. Bu yöntemler, verilerin 

doğru bir şekilde sınıflandırılması için farklı kriterler kullanır ve farklı avantajlara 

sahiptir. Bahsedilen sınıflandırma modellerinden biri olan karar ağaçları modeli Şekil 

2.3 ‘te gösterilmektedir. 
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Şekil 2.3. Karar ağacı modeli örneği 

 

Kümeleme: Kümeleme modeli, veri madenciliği ve makine öğrenmesi alanlarında 

kullanılan bir tekniktir. Temel amacı, verileri belirli özellikleri temel alarak birbirine 

benzer gruplara (kümeler) ayırmaktır. Bu sayede verilerin daha anlaşılır hale 

gelmesi, benzer özelliklere sahip verilerin bir arada bulunması, veriler arasındaki 

ilişkilerin daha iyi anlaşılması gibi faydalar sağlanabilir. 

Kümeleme modelleri, çeşitli yöntemlerle oluşturulabilir. Bu yöntemler arasında 

hiyerarşik kümeleme, k-ortalama kümeleme ve yoğunluk tabanlı kümeleme gibi 

yöntemler bulunur. Bu yöntemlerin her biri, verilerin farklı özelliklerine göre 

kümeleme yapar. 

Örneğin, bir marketin müşteri verilerini kullanarak müşterileri belirli özelliklere göre 

kümelere ayırmak mümkündür. Bu sayede, belirli bir kümeye ait müşterilerin ortak 

özellikleri (yaş, cinsiyet, gelir seviyesi vb.) anlaşılabilir ve bu özelliklere göre 

pazarlama stratejileri belirlenebilir. 

Birliktelik Kuralları: Birliktelik kuralı, bir veri kümesindeki öğeler arasındaki 

ilişkileri tespit etmeye çalışır. Bu teknik, genellikle alışveriş sepeti analizi gibi 

uygulamalarda kullanılır. Alışveriş sepeti analizi, müşterilerin birbirleriyle hangi 

ürünleri satın aldığını belirlemek için kullanılır. Bu analiz, birliktelik kuralı 

kullanılarak gerçekleştirilir. 
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Birliktelik kuralı, veri kümesindeki öğeler arasındaki ilişkiyi sıralar ve bu ilişkileri 

belirli bir sıklıkta gerçekleşen birliktelikler olarak ifade eder. Bu birliktelikler, 

"destek" ve "güven" olarak adlandırılan iki ölçüt kullanılarak değerlendirilir. Destek, 

birliktelik kurallarının kaç kez gerçekleştiğini belirtirken, güven, birliktelik 

kurallarının ne sıklıkla gerçekleştiğini belirtir. 

Birliktelik kuralı, özellikle büyük veri kümelerindeki öğeler arasındaki ilişkileri 

keşfetmek için çok kullanışlı bir tekniktir. Bu teknik, müşteri davranışlarının analizi, 

web sayfası tavsiyeleri ve reklam hedefleme gibi birçok alanda kullanılmaktadır. 
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3. DERİN ÖĞRENME 

Bugün dünyada teknoloji alanında çalışacak olan insanlarda en çok aranan 

yeteneklernden biri de yapay zekâ, makine öğrenmesi ve derin öğrenme bilgileridir. 

Çünkü çok fazla alanda kullanıyor ve kullanılan alanların artarak devam edeceği de 

veri bilimi uzmanları tarafından öngörülmektedir.  

Derin öğrenmeyi anlayabilmek için öncelikle, yapay zekâ mantığını ve makine 

öğrenmesi ile olan temel farkları hakkında bilgi sahibi olmak gerekir. Bu bölümde 

sonraki bölümler için konunun temel taşları ele alınarak, derin öğrenmede nasıl 

kullanılabileceğinden bahsedilecektir. 

3.1. Derin Öğrenme Nedir? 

Bugün derin öğrenme kavramından bahsedildiğinde öncelikli olarak bir görüntü 

sınıflama veya nesne tanıma problemi gelmektedir. Örneğin elimizde kedi ve köpek 

olarak iki görselimiz olsun. Biz bu görsellere baktığımızda kedimi yoksa köpek mi 

olduğuna karar verirken, beynimizde kediye dair birtakım özellikleri (kullak tipi, tüy 

yapısı, yüz tipi vs.) düşünüp elimizdeki görüntüde bu özelliklerin olup olmamasını 

baz alarak karar veriyoruz. Aynı değerlendirmeyi köpek ya da başka nesneler içinde 

yaparak karar veriyoruz. Yapay sinir ağları ve makine öğrenmesi gibi modellerde bu 

özelliklere ihtiyazımız oluyordu.  

Derin öğrenmede yapay sinir ağlarından farklı olarak katmanlar arasında bu 

öznitelikler kendiliğinden öğreniliyor. Öğrenme işlemi tasarladığımız modelimize 

uyguladığımız (3x3, 5x5 vs.) filtreler sayesinde olur. Modelimize uyguladığımız her 

filtre bir öznitelik çıkarıcı olarak işlem yapıyor. Bu işlem temelde elimizde bulunan 

verinin kendisinden öğrenmeye dayalı bir yapıdır. Örneğin elimizde bir görselimizde 

varsa, bu görsele ait kenar, köşe ve ışık bilgileri ya bizim tasarlağımız bir filtre ile ya 

da hazır filtrelerle (sobel, prewitt, robert, gabor vs.) öğrenilebilir. 

3.2. Derin Sinir Ağları 

Derin sinir ağları (deep neural networks), yapay sinir hücrelerinin (nöronlar) 

katmanlar halinde bir araya getirilerek oluşturulan bir tür yapay sinir ağı yapısıdır. 

Bu yapı, karmaşık problemleri çözmek ve veri üzerinde işlem yapmak için kullanılır. 
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Her katman, girdi verilerini işleyip daha soyut temsilleri çıkararak bilgiyi hiyerarşik 

bir şekilde öğrenir.  

 

 

Şekil 3.1. Derin sinir ağı örneği 

  

Burada: 

 Giriş Katmanı, veri özelliklerini temsil eder. 

 Gizli Katmanlar, verileri daha soyut temsiller haline getirerek öğrenir. 

 Çıkış Katmanı, sonuçları üretir. 

 Toplam katman sayısı hesabında giriş katmanı sayılmaz. 

Her bir nöron, girdileri ağırlıklarla çarparak aktivasyon fonksiyonuna gönderir. Bu, 

nöronun belirli bir özellik veya deseni ne kadar "etkin" olarak temsil ettiğini belirler. 

Yapılan bu işlem sırasında aktivasyon fonkisonu kullanırız. Kullanılan fonkisyon 

doğrusal olmayan problemleri tanımalarına yardımcı olur.  Bu sorunların çözümü 

için, Sigmoid, ReLU (Rectified Linear Activation), Tanh gibi farklı aktivasyon 

fonksiyonları kullanılabilir. Burada seçilen aktivasyon fonkiyonu zaman maliyetini 

minimuma indirmek için kolay türevlenebilir olmalıdır. Aktivasyon fonskiyonun 

çalışma prensibi Şekil 3.2 ’de verilmiştir. 
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Şekil 3.2. Aktivasyon fonkisyonunun genel yapısı 

Derin öğrenme modellerinde öğrenme geri yayılım esnasında yapılır. Her 

iterasyondan sonra üretilen değer gerçek değerle karşılaştırılır ve bir kayıp (loss) 

değeri hesaplanır. Kayıp değerinin sıfır çıktığı döngülerde ya ağımız ezberleme 

yapıyor ya da optimizasyon sorunu yaşıyor olabilir. Optimizasyon sorunu yaşaması 

durumunda performansını artırmak için Gradien Descent gibi bir algoritma 

kullanılabilir. Derin sinir ağları ezberlemeye (overfitting) de yatkın olabilir. Bu 

sorunun çözümü içinse genelde veri bölme ya da azaltma tekniklerinden olan dropout 

gibi bir regularizasyon yöntemi kullanılarak ağın genelleme yeteneği artırılır. 

3.3. Derin Sinir Ağlarında Parametre ve Hiper Parametre Kullanımı  

Genel olarak parametreler, modellerde her zaman bulunması ve hesaplanması 

gereken ağırlıklar ve bias değerleridir. Hiper parametreler ise bizim karar 

vereceğimiz ve parametrelerin heseplanmasına katkı sağlayan, modelin 

performansını direk olarak etkileyen değerlerdir. Derin öğrenmede çok sayıda hiper 

parametre vardır. Literatürde hiperparametreleri bulan çok sayıda algoritmalar ve 

arayüzler var. Örneğin, 

Parametreler:  

W[1],b[1],W[2],b[2]… 

W:Ağırlıklar, 

b:Bias değerleri 
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Hiper Parametreler: 

 Öğrenme Oranı (Learning Rate)  

 İterasyon sayısı 

 Gizli katman sayısı 

 Aktivasyon fonkisyonu seçimi 

 Küme boyutu ve diğer düzenleme (regularization)yöntemleri 

  

3.4. Evrişim İşlemi 

Evrişim işlemi (convolution), özellikle görüntü ve sinyal işleme gibi alanlarda 

kullanılan matematiksel işlemdir. Evrşim işleminin genel yapısı şematik olarak Şekil 

3.3 ’te verilmiştir. Temel olarak, bir filtre veya kernel adı verilen bir matrisin, bir 

girdi matrisi (örneğin bir görüntü) üzerinde kaydırılması işlemidir. Evrişim işleminin 

amacı, verilerdeki desenleri tespit etmek, özellikleri çıkarmak ve önemli bilgileri 

vurgulamaktır. Özellikle görüntü işlemede, kenarlar, köşeler, doku gibi temel 

desenleri tespit etmek için kullanılır. 

 Özellik Çıkarma: Evrişim işlemi, girdi verilerinden önemli özellikleri 

çıkararak veriyi daha temsilci hale getirir. Bu, daha sonra gelen katmanlarda 

daha etkili öğrenmeyi sağlar. 

 Parametre Paylaşımı: Evrişim işlemi, aynı filtreleri farklı bölgelere 

uygulayarak parametre paylaşımını kullanır. Bu, ağın daha az parametre 

gerektirmesine ve daha etkili öğrenmesine yardımcı olur. 

 Davranış İnvariyansı: Evrişim işlemi, girdi verilerindeki küçük kaymaları 

(translasyonlar) tolere edebilir. Bu sayede nesnelerin farklı pozisyonlarda 

bulunabileceği durumları daha iyi işleyebilir. 

 Hiyerarşik Temsil: Evrişim işlemi, katmanlar halinde uygulanarak verinin 

farklı düzeylerdeki özellikleri daha soyutlamaya yardımcı olur. Bu da ağın 

daha karmaşık yapıları ve ilişkileri öğrenmesine olanak tanır. 

Sonuç olarak, evrişim işlemi, derin öğrenme modellerinde veri işleme ve özellik 

çıkarma süreçlerini optimize etmek için kullanılır. Görüntü işleme, ses işleme ve 
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doğal dil işleme gibi alanlarda başarılı sonuçlar elde etmek için vazgeçilmez bir 

bileşendir. 

 

 

Şekil 3.3. Evrişim işleminin genel yapısı 

 

3.5. Kenar Bulma 

Kenar bilgileri görüntüden elde edilen öznitelikler arasında en çok ihtiyaç duyulan 

bilgilerden biridir çalıştığımız görüntü üzerinde çok temel bilgileri bulmamızı sağlar. 

Giriş bilgisinin yüksek frekanslı bölgelerini simgelemektedir. Bu bilgileri elde etmek 

için dikey, yatay ya da farklı rotasyonlarda birtakım filtrelerden yararlanılır. Yapılan 

işleme evrişim denir. İşlem çıkışında yüksek frekanslı yeni görüntünün kenar 

bilgileri tespit edilmiş olur. Geleneksel yöntemlerde hazır olarak kullanılan (sobel, 

gabor, prewitt, ropert vs.)  filtrelerle bu işlemleri yaparken, derin öğrenmede 

özelliklede evrişimli sinir ağlarında böyle bir şey yapmamıza gerek yoktur. Derin 

öğrenmede evrişim işlemi boyunca bu işleri ağımız kendisi çıkarır. Evrişim 

katmanında bulunan dikey ve yatay kenarları bulup bunları birleştirdiğimiz zaman 

nesnenin dış görüntüsünü (shape) yavaş yavaş elde etmeye başlarız. Kenar bulma 

işleminin genel yapısı şematik olarak Şekil 3.4 ’te verilmiştir. 
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Şekil 3.4. Evrişimle kenar bulma örneği 

Kenar bulma işlemide evrişim işleminin benzeridir. Farklı olan tarafı bu iş için 

elimizde Şekil 3.5 ‘te görüldüğü gibi özel bir matrisin olmasıdır. 

       

 

(a)                                                   (b)                                           (c) 

 

  

  

  

  

  
 

  

  

  
 

Şekil 3.5. Kenar bulma matris örneği 

Şekil 3.5. teki bu matris görüldüğü gibi on (10) ve sıfır (0) değerlerinden oluşuyor.  

On ile sıfırı ayıran çizgi bize bir kenar bilgisi veriyor. Çünkü yüksek frenslı bölgenin 

olduğu bölgedir. Bu durumda buralarda hızlı geçişlerin olduğu anlamına gelir. 

Örneğin; Şekil 3.5 ‘te, (a) ile gösterilen şekle baktığımızda on ile ifade edilen 

kısımlar açık gri olan bölüm iken sıfır ile ifade edilen yerler siyah olarak 

gösterilmektedir. Bu iki bölümü ayıran kısım ise bize kenar bilgisini vermektedir. 

Örneğimizdeki görüntümüzü 3x3’lük bir kenar bulma filtresi uyguladığımızı 

düşünelim. Filtremizde negatif sayılarla ifade edilen bölüm en koyu renkli olan 

bölümleri, sıfır olan yerler orta renli ve pozif olanlar ise açık renkleri temsil 
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etmektedir. Çünki, görüntüyü piksellerle ifade ettiğimiz zaman küçük değerler koyu 

renki ve büyük değerler açık rengi temsil ederler. Filtremizi giriş matrisimiz üzerinde 

işlem tabi tuttuğumuzda ve gerekli matematiksel işlemleri yaptığımızda sonuç olarak 

4x4’ lük bir çıkış matrisi buluruz. Neden 4x4’lük bir matris bulduk? Genel olarak 

böyle bir işlem sonucu bulacağımız çıkış matrisi, 

Çıkış matrisi = (Giriş matrisinin boyutu – Filtre boyutu)+1                                   (3.1) 

Formülüyle hesaplanır. 

3.6. Piksel Ekleme 

Görüntü işlemine uyguladığımız evrişim işleminden sonra oluşan boyut farkını; giriş 

matrisi ile çıkış matrisinin eşit boyutta olmasını istiyorsak giriş matrisine ekstra 

pikseller eklememiz gerek. Bu işleme piksel ekleme ya da dolgulamak denir. 

Piksel ekleme işlemi için literatürde sıklıklı kullanılan iki yöntem bulunmaktadır. 

Birinci yöntem, matrisimizin çevresine ihtiyacımız olduğu kadar çevre ekleyip içini 

sırfırlarla doldurmak. Giriş matrisimize ekleyeceğimiz çerçeve sayısını ise aşağıdaki 

formülle buluruz. 

Giriş matrisi = (nxn), örnek olması açısından n=6 olsun 

Filtremiz =(fxf) ile temsil edilsin ve örnek olarak f=3 olsun 

Normalde giriş matrisimize bu filtreyi uyguladığımızda çıkış matrisimizin boyutu (n-

f)+1 den 4x4 lük bir çıkış elde ederiz.  Bu işlemden sonra görüldüğü gibi boyutumuz 

azalmış oldu. Biz giriş matrisimizin boyutu ile çıkış matrisimizin boyutu aynı olsun 

istiyoruz. Eğer piksel ekleme yapacaksak uygulanacak formül ise aşağıdaki gibidir. 

Piksel ekleme var ise;  

p = ekleme(paddink) 

p = 
f−1

2
 

Çıkış = (n+2p-f+1)x(n+2p-f+1)=(6x6) 

Eğer piksel ekleme yoksa ise çıkış =(n-f+1) x(n-f+1) =(4x4) 
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Bu işlemlerden sonra giriş matrisimize kaç çerçeve ekleneceğini bulmuş olduk. 

Eklediğimiz bu çerçeveleri neyle ve nasıl dolduracağız. Uygulamalarda en çok 

kullanılan iki yöntem bulunmaktadır. Birinci yöntem, örneğin giriş matrisimize iki 

satır ve iki sütun eklemişsek bunların içini sıfır (0) ile doldurmaktır. İkinci yöntem 

olarak da eklediğimiz ilk çerçeveye hemen yanındaki pikseller kopyalanır. İkinci 

çerçeveye ise ilk durumdaki matrisin dışardan ikinci satır ve sütunundaki pikseller 

kopyalanarak doldurma işlemi tamamlanır.  

Eğer bu işlem sırasında ilk yöntemi (sıfır ile doldurma) tercih etmişsek, evrişim 

işlemi sırasında yapacağımız matematiksel işlemler sırasında değeri sürekli aşağıya 

çekecektir. Çünki evrişimde çarpma ve toplama işlemi yapıyoruz. Böylece elde 

edilen çıkış matrisinde birbirinden ayrık değerler oluşacak.  

Eğer ikinci yöntemi kullanırsak (giriş matrisindeki değerlerin dışa doğru 

kopyalanması), eklenen piksellerle diğer pikseller arasında sayısal olarak çok fark 

olmayacağından yapılacak olan evrişim işlemini sonrasında elde edilecek çıkışlarda 

görüntüye dair daha yakın bilgiler elde edilmiş olacaktır. Bu işlemin dezavantajı ise, 

her adımda toplama ve çarpma yapılacağından işlem yükümüz çok olacaktır. Bu da 

daha yavaş çalışan bir evrişim işlemine neden olacaktır. Bununla birlikte elde 

edeceğimiz çıkış matrisi daha doğru bir matris olacaktır. 

 

3.7. Adım Kaydırma 

Evrişimli sinir ağlarının temeli olan evrişim işlemini yaparken dikkate aldığımız bir 

diğer önemli özellik ise adım kaydırmadır. Adım kaydırma, giriş matrisimiz üzerinde 

kullandığımız filtremizin kaç piksel aralıkla kaydırdığımız işlemin adıdır. Adım 

kaydırma işleminin genel yapısı şematik olarak Şekil 3.6 ’da verilmiştir. Bu durumu 

aşağıdaki gibi bir örnekle açıklamak gerekirse; 

Şekil 3.6 ’da piksel işleme yapılmış (7x7) boyutunda bir matris görülmektedir.  

Giriş matrisi n=5x5 

Uygulanan filtre f=3x3 

Adım kaydırma s=2 (iki adımda bir) 
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Pikel ekleme p=1 (1x1 lik 0 (sıfır) lardan oluşmuş dış çerçeve) 

Burada uyguladığımız filtremiz bir (1) lerden oluşmuş bir filtre olsun. Filtremizi sol 

üst köşeye yerletirip evrişim işlemi uyguluyoruz. Yapılan işlem sonucunda elde 

ettiğimiz değer Şekil 3.6 ‘da görüldüğü üzere beş(5) tir. Sonra iki adım sağa kaydırıp 

filtremi yeni değerlele evrişim işlemine sokuyorum. Elde ettiğim sonucum yine Şekil 

3.6’da görüleceği üzere on üç(13) tür.  Evrişim işlemini sağa ve aşağıya kaydırarak 

tüm matrisimize uygularız. Bu işlem sonucunda (3x3) boyutunda bir matris elde 

ederiz. 

  

 

Şekil 3.6. Kaydirma işlemi uygulanmış matris örneği 

 

 

Elde ettiğimiz (3X3) boyutundaki bu matrisi nasıl elde ettiğimizi hatırlayacak 

olursak; 

 

(
(n+2p−f)

s
+ 1) 𝑥 (

(n+2p−f)

s
+ 1)  formulü ile hesaplayacak olursak,                      (3.2) 

(
(5+2.1−3)

2
+ 1) 𝑥 (

(5+2.1−3)

2
+ 1) = (3)𝑥(3)  

 

Görüldüğü üzere adım kaydırma işlemi piksel eklemiş bile olsak çıkış matrisimizin 

boyutunu küçültmektedir. Eğer giriş matrisimiz ile çıkış matrisimizin boyut farkı çok 



26 

 

olmasın ya da aynı olsun istiyorsak, adım kaydırma aralığını ne kadar büyük tutarsak 

piksel ekleme sayımızda o kadar büyük olmalıdır. 

Burada örnek olarak kullandığımız matrisler iki boyutlu olduğundan gri seviye bir 

görüntüyü temsil etmektedir. Gerçek hayatta bizim gördüğümüz görüntüler 

genellikle renklidir. Buda üç kanallı (kırmızı, yeşil, mavi) matris yapılarından oluşur. 

 

3.8. Ortaklama İşlemi 

Literatürde ortaklama işlemi için havuzlamada olarak kullanılsa da, en yaygın 

kullanım şekli ortaklama işlemidir. Ortaklama işleminin genel yapısı şematik olarak 

Şekil 3.7 ’de verilmiştir. Bu işlemin kulllanılan üç yöntemi vardı. Bunlar; maksimum 

ortaklama, minumum ortaklama ve ortalama ortaklamadır. Bunların arasında en 

yaygın olarak kullanılan maksimum ortaklama yöntemidir.  Maksimum ortaklama 

işlemi aşağıdaki gibi yapılmaktadır.  

Filtre boyutu f=2 

Adım kaydırma s=2  

 

   
 

1 4 3 1 

5 6 7 8 

3 2 1 0 

1 0 2 4 

 

 

Maksimum ortaklama 

İşlemi yaparsak 

 

6 8 

3 4 

   

Şekil 3.7. Maksimum ortaklama işlemi 

 

 

Giriş matrisimiz üzerine filtremizi yerleştirdikten sonra, filtemizin bulunduğu altında 

kalan alanda yer alan en büyük sayıyı alırız. Sonar bu işlemi adım kaydırma miktarı 

kadar sağa ve aşağıya giderek matrisimizin tamına uygularız. Görüldüğü üzere giriş 

matrisimizdeki her dört pikseli çıkış matrisimizde bir pikselle bir pikselle ifade etmiş 

oluyoruz. Bu aslında bir tür boyut azaltma işlemidir.  
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3.9. Çok Kanallı Evrişim İşlemi 

Evrişim işleminin nasıl yapıldığı konusunda yukarıda değinildi. Bu işlemi yaparken 

adım kaydırma, piksel ekleme ve ortaklama işlemlerinden bahsedildi. Şu ana kadar 

bu işlemleri hep iki boyutlu gri seviye matrisler üzerinde gördük. Yani tek kanallı 

görüntüdür. 

 

 

 Şekil 3.8. Çok kanallı evrişim ağı 

 

Çok kanallı görüntünün en basit hali kırmızı, yeşil ve maviden oluşan, günlük 

hayatta fotoğraf çekerken kullandığımız görüntü tipidir. Şekil 3.8. de görüldüğü gibi 

elimizdeki görüntü 6x6 boyuntunda, renkli ve üç kanallı bir görüntüyse 6x6x3 

şeklilnde kanal sayısınıda ekleyerek ifade ederiz. Bu görüntüyü üç tane 6x6 

boyutunda matristen oluşmuş bir yapı olarak düşünebiliriz. Bu görüntüye bir evrişim 

işlemi uygulayacaksak, filtremizde üç boyutlu olmak zorundadır. Şekil 3.8. de 

görüleceği üzere 6x6x3 boyutundaki matrisimize 2 adet 3x3x3 lük filte uyguladık. 

Bu arada uygulanan her bir filtre bir özniteliği temsil etmektedir. Filtre çıkışlarında 

elde ettiğim değerler 4x4x1 boyunda matrisdir. Burada 4 değeri, (giriş matrisinin 

boyutu – filtre matrisinin boyutu+1) formulü ile hesaplanarak bulundu. Bu işlem iki 

filtremiz olduğundan iki kez tekrar ediliyor. Sonuçta ise 4x4x2 boyutuda bir matris 

elde edilliyor. Eğer bir matris birden fazla kanaldan oluşuyorsa bu matrise literatürde 

tensor denilmektedir. Bu tensor yapısı bir görüntüyü simgelemiyor olabilir ama bir 

öznitelik çıkarma işlemi gerçekleştirmiş oluyor. Örneğin ilk filtremiz dikey kenarı, 
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ikinci filtremiz yatay kenarı temsil ediyorsa, elde ettiğimiz tensor hem dikey hem de 

yatay kenarı ifade eder. 

3.10. Evrişimli Sinir Ağı 

Şekil 3.9 ‘da görültüğü gibi, 27x27x3 şeklinde ifade edilen bir görüntümüz olsun. 

Giriş katmanına a[0] ismini verdik. Her bir hesabımızın sonunda a[1], a[2] ve a[3] 

katmanlarındaki değerleri elde edeceğiz. Öncelikle bir filtre seçiyoruz. Örneğimizde 

ilk kullandığımız filtre için f[1] = 3, piksek ekleme p[1]=0 ve adım kaydırma 

değerimiz s[1]=1 olarak verilmiştir. Bu filtreden on tane kullanılmıştır. Giriş 

görüntüsünün boyutlarına bakacak olursak, genişlik ve yükseklik derğerleri n[0]
H = 

n[0]
W = 27 ve kanal sayısıda n[0]

3 =3 olarak verilmiştir. Bir sonraki adıma geçerken 

uygulamam gereken formülü (
(n+2p−f)

s
+ 1) ‘dir. Elde edilen yeni matris(tensor) 

25x25x10 luk olacaktır. Burada eklenen on rakamı uygulamış olduğumuz on filtreyi 

temsil etmektedir. Böylece ilk katmandaki yapacağımız işlem bitmiştir. Sonraki 

katmanlarda da filtre, piksel ekleme ve adım kaydırma değerlerini değiştirerek aynı 

işlemi tekrar ederiz. Tüm bu işlemeleri yaparken bir aktivasyon fonkisyonu (relu, 

sigmoid vs.) ve bir bias değeri işleme tabi tutuyoruz. Son katmandan sonra tam 

bağlantı katmanı dediğimiz (full connect) katmanda vektör şeklinde bir yapı olur. Bu 

katmandan sonra sonuçlar bir çıkış nöronuna ulaştırılır. Burası ise elde ettiğimiz 

kestirim değerimiz olur. Örneğin bir nesne sınıflandırma işlemi yapıyorsak, 

sınıflandırma değerimiz olacak.    

 

Şekil 3.9. Evrişimli sinir ağı örneği 
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Şekil 3.10. Evrişimli sinir ağı örneği2 

 

3.11. Resnet-50 Modeli 

ResNet-50, "Residual Network" (ResNet) adı verilen bir derin öğrenme modeli 

ailesinin bir üyesidir. Bu aile, 2015 yılında Kaiming He ve arkadaşları tarafından 

Microsoft Research'te geliştirilmiştir. ResNet, bilgisayar görüşü (computer 

vision) görevlerinde büyük başarı elde etmiş ve ImageNet gibi büyük veri 

setlerindeki görüntü sınıflandırma görevlerinde özellikle etkili olmuştur. ResNet, 

diğer derin sinir ağlarına kıyasla daha derin ağların eğitilmesini kolaylaştırmak 

için geliştirilmiş bir mimariye sahiptir. Ana yenilik, "residual bloklar" olarak 

adlandırılan özel bir yapıdır. Bu bloklar, daha önceki katmanların çıktılarını 

(giriş) son katmana ekler. Bu, ağın daha derin hale getirilmesine olanak tanırken, 

aynı zamanda aşırı uçlarını (vanishing gradients) çözer ve eğitimi daha verimli 

hale getirir. 

ResNet-50 modeli özellikle 50 katmanlı bir derin ağdır ve ortalama olarak 3.9 x 

10^9 parametreye sahiptir. Model aşağıdaki ana bileşenleri içerir: 

 Giriş Katmanı: Resimlerin RGB renk kanallarını (genellikle 224x224 piksel) 

kabul eder. 

 Beş İçerikli (Convolutional) Grup: Bu gruplar, birbirini takip eden beş 

residual blok içerir. Her biri farklı filtre sayılarına ve evrişim çekirdek 

boyutlarına sahip olabilir. 
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 Global Ortalama Havuzlama (Global Average Pooling): Son residual blok 

çıktılarını alır ve bunları global ortalama havuzlama katmanına ileterek her 

bir özellik haritasını tek bir değere dönüştürür. 

 Tam Bağlantı Katmanı (Fully Connected Layer): Global ortalama 

havuzlama sonucunu, sınıflandırma yapmak için kullanılır. Genellikle 1000 

farklı sınıfı tanıyabilen bir sınıflandırma katmanına sahiptir. 

 Softmax Katmanı: Sınıflandırma sonuçlarını olasılık dağılımlarına 

dönüştürür. 

ResNet-50 modeli, çeşitli görsel görevlerde önceden eğitilmiş bir ağırlık modeli 

olarak kullanılabilir veya özelleştirilerek belirli görevler için eğitilebilir. Bu model, 

özellikle nesne tespiti, görüntü sınıflandırma ve transfer öğrenme görevlerinde 

popüler bir seçenektir. Şekil 3.11’de standart bir Evrişimli Sinir Ağı(ESA) ile ResNet 

mimarilerinde kullanılan kısa yol bağlantıları görülmektedir. 

 

Şekil 3.11. Standart ESA (sol); ResNet mimarilerinde kullanılan 

kısayol bağlantıları (sağ) 
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4. KUANTUM MAKİNE ÖĞRENMESİ 

Kuantum Makine Öğrenimi (QML), Kuantum Fiziği (QP) ve Makine Öğreniminin 

(ML) öğrenilmesine yönelik bütünleştirici bir yaklaşım olarak bilinmektedir. Bu 

bölümde, kuantum makine öğrenimi ile ilgili temel fikirlerin ve özelliklerin bir 

taslağı ortaya konmaktadır. Kuantum algoritmalarının farklı yönleri, kuantum 

takviyeli öğrenme, kuantum tavlamanın temel özellikleri,  son olarak kuantum sinir 

ağlarının QML yönüne ışık tutacak şekilde ilerlemesi bu bölümde açıklanmıştır. 

4.1. Kuantum Makine Öğrenmesi 

Makine öğrenimi, son teknolojilerde gelişmekte olan bir disiplin haline gelmiştir. 

Hesaplamalı biyoloji, bilgisayarla görme, bilgisayar güvenliği ve diğer çeşitli 

alanlarda kullanılmaktadır. Veri analizi (DA), modern endüstride eşit derecede 

önemli bir parçadır. Makine öğrenimi ve DA istatistiksel yöntemler uygulayarak 

verileri analiz eder ve gözlemlenen verilerin analizi temelinde bilgisayarlara öğrenme 

yetenekleri sağlar. Öğrenme tarzı temelinde, Makine öğrenimi algoritmaları (MLA) 

temel olarak farklı gruplara, yani denetimli öğrenme (SL), denetimsiz öğrenme (UL) 

ve yarı denetimli öğrenme (semi-supervised learning-SSL) şeklinde ayrılır. ML 

tekniklerini kullanmanın en önemli eksikliklerinin, özellikle büyük miktarda veri 

içeren hesaplama süresi ve depolama olduğu bilinmektedir. Bunlara ek olarak, 

mevcut derin öğrenme algoritmaları kullanıldığında, eğitim süresi daha da uzun 

olabilmektedir. Sonraki nesilde araştırmacılar, yukarıda bahsedildiği gibi depolama 

ve hesaplama süresini azaltacak kadar akıllı olabilen kuantum bilgisayar yönteminin 

gücünü kullanarak uygun bir alternatif elde etmişlerdir. 

Birçok makine öğrenimi problemi verileri matrislerle ifade ederek matris işlemlerini 

çözmek için doğrusal cebir kullanır. Kuantum hesaplama (QC), klasik ML 

görevlerini kayıtsız şartsız iyileştiren çeşitli doğrusal cebir hesaplamalarını daha hızlı 

hale getirebilir (Rebentrost ve diğ., 2014). Optimizasyon için sayısal yöntemler, söz 

konusu optimizasyon prosedürlerinin hesaplamalarını iyileştirmeyi amaçlayan çok 

beğenilen bir araştırma alanıdır. Klasik optimizasyon gibi, QC'nin bir dalı olan 

kuantum optimizasyonu da söz konusu teknikleri daha da geliştirmeye çalışır. Bu 

türden iki ünlü yöntem Kuantum Gradyan İnişi (QGD) (Kerenidis ve Prakash, 2017) 

ve Kuantum Yaklaşık Optimizasyon Algoritmasıdır (QAOA). Bu yöntemler 
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Kuantum Boltzman Makineleri (Amin ve diğ.,2018) gibi kuantum sinir ağlarında 

(QNN) verimli bir şekilde uygulanmaktadır. Son zamanlarda, çok yeni disiplinler 

arası araştırma alanı olan kuantum makine öğrenimi, makine öğrenimi teorisini 

kuantum hesaplamanın özellikleriyle birleştirmek amacıyla ortaya çıkmıştır. 

Kuantum makine öğrenimi (QML), farklı problemleri yüksek etkinlikle çözmek için 

kuantum süperpozisyonu ve kuantum dolanıklığı gibi kuantum özelliklerini 

uygulayarak makine öğrenimi algoritmalarını (MLA) kuantum atmosferinde 

(sistemlerinde) uygulamaya yöneliktir (Schuld ve diğ., 2015).  

Temel olarak QML, ML'deki mevcut yaklaşımları iyileştirmek amacıyla genellikle 

verilerden öğrenen kuantum algoritmalarını tanıtmak amacıyla bilgi işlemenin 

kuantum araştırmasının bir alt disiplini olarak bilinmektedir. Dolayısıyla amaç, 

MLA'larının esnekliği ve öğrenme kabiliyetinin yanı sıra kuantum bilgisayarların 

etkisine sahip çeşitli MLA'larının kuantum uygulamalarını geliştirmektir. Sinir ağları 

(NN), grafik modeller, destek vektör makineleri (SVM) gibi çeşitli makine öğrenimi 

modelleri için çeşitli kuantum algoritmaları tanıtılmıştır. QML, kuantum 

perspektifinden öğrenme düşüncesi hakkında daha temel soruları araştırır. Bazı 

durumlarda QML, ML'yi kuantum bilgisine uygulamak için araştırmacılar tarafından 

kapsamlı bir şekilde tanımlanmaktadır. QML'de kullanılan örtük metodolojilerin yanı 

sıra, klasik ML algoritmalarının birkaç kuantum versiyonu bulunmaktadır. Temelde 

doğrusal sınıflandırma için uygulanan Kuantum Destek Vektör Makineleri (QSVM)  

bu türün popüler bir örneğidir. Buna ek olarak, boyut indirgeme için popüler bir 

yaklaşım olan Kuantum Temel Bileşen Analizi (QPCA) (Lloyd ve diğ., 2014), 

kümeleme ve yoğunluk tahmini için bir başka ünlü yaklaşım olan Kuantum Guassian 

Karışım Modelleridir (Rahman ve Geiger, 2016). Makine öğreniminin gelişmekte 

olan bir alt disiplini Kuantum Destek Vektör Makineleri (QSVM) olarak 

adlandırılmaktadır. Günümüzde kuantum bilgisayarlar, önemli miktarda depolama ve 

zaman gerektiren DL uygulamaları için kullanılmaktadır. Bu uygulamaların bazı 

popüler örnekleri Kuantum Boltzmann Makineleri, Kuantum Üretken Çekişmeli 

Ağlar (Lloyd ve Weedbrook, 2018), Kuantum Evrişimli Sinir Ağları (Cong ve diğ., 

2018) ve Kuantum Varyasyonel Otomatik Kodlayıcılardır (Khoshaman ve diğ., 

2018). Ek olarak, makine öğrenimi içinde daha aydınlanmış bir alan pekiştirmeli 

Öğrenme (RL) olarak bilinir. RL, çevreyi keşfederek zaman geçtikçe öğrenme olarak 

tanımlanabilir. 
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4.2. Kuantum Pekiştirmeli Öğrenme 

Denetimli ve denetimsiz öğrenmenin yanı sıra, pekiştirmeli öğrenme de popüler bir 

öğrenme yöntemi kategorisidir. SL ve UL'nin aksine RL, girdi-çıktı çiftlerini 

değerlendirmek için ödül adı verilen skaler bir değer kullanır ve durumlardan 

eylemlere bir eşleme öğrenmek için çevre ile etkileşime girmek için deneme yanılma 

politikasını kullanır. 1980 yılından bu yana, RL giderek ML için önemli bir yaklaşım 

haline gelmiştir. Şimdiye kadar, yapay zekada (AI), özellikle robotikte yaygın olarak 

uygulanmıştır. Bunun nedeni, on-line adaptasyonda mükemmel bir performans 

göstermesi ve buna ek olarak, herhangi bir karmaşık doğrusal olmayan sistem için 

geçerli bir öğrenme yeteneğine sahip olmasıdır (Smart ve diğ., 2004). 

Pratik uygulamalarla uğraşırken, keşif stratejisi, yavaş öğrenme hızı gibi bazı 

karmaşık problemler olabilir; özellikle karmaşık problemlerin ele alınması, durum-

eylem uzayı devasa boyutlara ulaşırken ve öğrenilecek parametrelerin sayısı boyutun 

artmasıyla birlikte üstel olarak artarken gözlemlenebilir. Son yıllarda bu durumla 

mücadele etmek için çeşitli yöntemler ortaya konmuştur. 

RL'yi optimize etmek için farklı öğrenme paradigmaları bir araya getirilmiştir. Smith 

(Smith, 2002), kendi kendini organize eden harita (SOM) ve kıyaslamalı Q-öğrenme 

temelinde modelsiz RL'de temsil etmek ve genelleştirmek için yeni bir model 

önermiştir. Ayrıca, büyük/sürekli durum-eylem uzaylarına sahip problemler için 

Watkins'in Q-öğrenmesi ile bulanık çıkarım sistemlerinin adaptasyonu da 

sunulmuştur (Er ve Deng, 2004).  

Shor algoritması ve Grover algoritması olarak adlandırılan iki önemli kuantum 

algoritması tanıtılmıştır. Rigatos ve Tzafestas (2002), amacı bulanık çıkarımı 

hızlandırmak olan bulanık mantıksal kontrol algoritmasının (FCA) 

paralelleştirilmesinden faydalanmak için kuantum hesaplama teorisini uygulamıştır. 

Kuantum evrimsel algoritmalar (QIEA), mevcut evrimsel algoritmaların (EA) 

performansını artırmak için geliştirilmiştir (Sahin ve diğ., 2005). İlerleyen 

zamanlarda, Hogg ve Portnov (2000) aşırı kısıtlı doyurulabilirlik ve asimetrik gezgin 

satıcıya sahip kombinatoryal optimizasyon problemini çözmek için bir kuantum 

algoritması tanıtmıştır. Son zamanlarda, kuantum arama yöntemi dinamik 

programlamaya uygulanmıştır (Naguleswaran ve diğ., 2005). Hesaplamanın ruhunu 

dikkate alan (Dong ve diğ., 2005), kuantum hesaplamanın temel kavramı olan durum 
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süperpozisyon ilkesi ve paralellikten esinlenerek Kuantum Takviyeli Öğrenme 

(QRL) kavramını geliştirmişlerdir. QRL, öğrenmeyi hızlandırmak ve simüle edilmiş 

deneyler sırasında RL'nin sömürülmesi ve keşfedilmesi arasında bir denge sağlamak 

için geliştirilmiştir. 

4.3. Kuantum Tavlama 

İstatistiksel mekanikte, kuantum-mekanik dalgalanmalar alanında uygulanan 

kuantum tavlama (QA), benzetimli tavlamanın (SA) kuantum versiyonudur (Matsuda 

ve diğ., 2009).  Kuantum Stokastik Optimizasyon algoritması olarak da bilinir. SA 

gibi, kuantum tavlama da zor optimizasyon problemini çözmek için başarıyla 

uygulanmaktadır. Kuantum hesaplamanın aktif alanında kuantum adyabatik evrim 

prensibine göre çalışır ve klasik ve kuantum teknolojisi arasında önemli bir 

hibridizasyondur. QA, bilgisayar bilimi (Choi, 2010), makine öğrenimi (Adachi ve 

Henderson, 2015), grafik teorisi (Vinci ve diğ., 2014), iletişim (Chancellor ve diğ., 

2016), finans (Marzec, 2014), havacılık (Coxson ve diğ., 2014) ve diğer gerçek 

dünya problemleri gibi farklı alanlarda uygulanmaktadır. 

Benzetimli tavlamada, istatistiksel-mekanik bir sistemin sıcaklığa bağlı rastgele 

yürüyüşü verilen bir optimizasyon probleminin maliyet fonksiyonu olarak kullanılır. 

Bu fonksiyon çözüm uzayının potansiyel enerji profilini belirler ve termal 

dalgalanmalar keşfin yerel bir minimumda takılıp kalmasını önler (de Falco ve 

Tamascelli, 2011). Zaman evrimi sırasında sistemin termal dengeye yakın kalması 

beklenir. Sıcaklık düşüş hızı yeterince yavaşsa bu gerçekleşebilir ve böylece sonunda 

en düşük enerjili durum olan sıfır sıcaklık denge durumuna yol açabilir. Genel 

uygulanabilirliği, makul performansı ve çoğu durumda nispeten kolay uygulanması 

nedeniyle SA, birçok gerçek hayat uygulamasında etkin bir şekilde kullanılmaktadır. 

Bir problem, sistemi termal dengeye yakın tutarak kesin çözümü elde etmek için 

sonsuz uzun bir süre gerektirdiğinde, SA ölçülebilir bir hesaplama süresi içinde 

yaklaşık çözümü elde etmek için uygulanır. Kuantum dalgalanmaları, QA'da yapay 

kuantum doğası dereceleri, komütatif olmayan operatörler eklenerek indüklenir. 

Kuantum dalgalanmalarının gücü, sıcaklığı yavaşça düşürerek temel duruma ulaşmak 

için kontrol edilir (Morita ve Nishimori, 2011). 

Bir optimizasyon probleminin maliyet fonksiyonunun minimizasyonunu bulmak 

gibi, klasik bir Ising Hamiltonian H0'ın temel durumunu bulmak olarak düşünülebilir 
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(Lucas, 2014). Farklı türdeki pratik problemler, çok sayıda yerel minimuma sahip 

maliyet fonksiyonlarına sahiptir. Benzer şekilde, Ising Hamiltoniyenleri klasik spin 

camlarını anımsatmaktadır (Nishimori, 2001). Bu tür özellikler için, klasik 

algoritmalar için küresel minimumları bulmak çok zordur. Bu sorun, klasik Ising 

Hamiltonyeni H0'ı kuantum alanına yükseltme fikri ile aşılabilir. Kuantum 

mekaniğinin adyabatik teoremine dayanarak, klasik Ising modelinin temel durumu, 

sistemi bazı başlangıç Hamiltonyeni H1'in temel durumunda biçimlendirerek 

türetilebilir. Hem teorik hem de deneysel olarak geliştirilmesi kolaydır. H1, H0 ile 

değiş tokuş yapmayacak şekilde seçilir. Sistem parametreleri yeterince yavaş 

değiştikçe Hamiltonyen kademeli olarak H1'den H0'a değişir (Amin ve diğ., 2007). 

4.4. Kuantum Sinir Ağları 

Kuantum sinir ağları (QNN'ler), kuantum mekaniği ilkelerini içeren sinir ağı 

modellerinin enkarnasyonlarıdır. Hesaplama açısından bakıldığında, bir kuantum 

sinir ağı sınıfı yapay sinir ağı modellerini birleştirir ve daha sağlam ve verimli 

modeller geliştirmek için kuantum hesaplamanın özelliklerini içine yerleştirir. Bu 

çabaların arkasındaki temel felsefe, kuantum paralelliği, girişim ve dolaşıklık 

özelliklerine başvurarak klasik sinir ağlarının büyük verileri işlemedeki 

sınırlamalarını aşmaktır. Bununla birlikte, QNN modellerinin çoğu klasik ikili veya 

McCulloch-Pitts nöronlarını kuantum mekanik ilkeleriyle ortaya çıkan kübitlerle 

("quron" olarak da adlandırılır) değiştirmeye çalışır (da Silva ve diğ., 2016). 

1995 yılında Subhash Kak ve Ron Chrisley, nöral aktivasyon fonksiyonunun 

kuantum mekaniksel özdeğer denklemi ile benzerliğini ortaya koyarak bir kuantum 

nöral model fikrini ortaya atmışlardır. Ajit Narayanan ve Tammy Menneer, kuantum 

ölçümü uygulandığında istenen durumlara çöken çoklu-evren teorisini kullanarak bir 

kuantum sinir ağının fotonik bir uygulamasını tanıtmıştır (Narayanan ve Menneer, 

2000). O zamandan beri, algılayıcının kuantum versiyonunu bulmak için çok çaba 

harcanmıştır. Ancak bu yöndeki ilerlemeler, karakteristik nöral doğrusal olmayan 

aktivasyon fonksiyonlarının, bir kuantum sistemindeki doğal doğrusal işlemler 

nedeniyle kuantum teorisinin matematiksel yapısını nadiren takip etmesi nedeniyle 

engellenmiştir. Uzun çabalardan sonra Schuld, Sinayskiy ve Petruccione aktivasyon 

fonksiyonunu uygulamak için kuantum faz tahmin algoritmasını (Schuld ve diğ., 

2014) kullanmıştır. Bunun dışında, bulanık mantık tabanlı bir sinir ağını uygulamak 
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için kuantumdan ilham alan birçok model ortaya çıkmıştır. Elizabeth Behrman ve 

Jim Steck ayarlanabilir karşılıklı etkileşimlere sahip bir dizi kübitten oluşan yeni bir 

kuantum hesaplama düzeneği önermiştir. Modellerinde, etkileşim güçleri, klasik geri 

yayılım algoritmasını takiben istenen girdi-çıktı ilişkilerinden oluşan bir eğitim seti 

kullanılarak güncellenmekte ve böylece kuantum ağının bir algoritma öğrenmesi 

sağlanmaktadır. Kuantum ilişkisel bellek 1999 yılında Dan Ventura ve Tony 

Martinez tarafından tanıtılmıştır. Yazarlar, devre tabanlı bir kuantum bilgisayar için 

ilişkisel bir belleği taklit etmek üzere bir algoritma önermişlerdir. Bu algoritmada, 

bellek durumları kuantum durumlarının bir süperpozisyonu olarak öngörülmüştür. 

Daha sonra verilen bir girdiye en yakın bellek durumunu almak için bir kuantum 

arama algoritması kullanılır. Bu emülasyon, bellek durumlarının üstel bir depolama 

kapasitesini vaat etmektedir (Behrman ve diğ., 2008). 

4.5. Kubit ve Fizik 

Klasik bir bilgisayarda bilgiyi en küçük yapı taşı olan ve bit diye ifade ettiğimiz 

(Binary Digit) yapılarda depolarız. Fiziksel cihazlarda bitler 0 ve 1 olmak üzere iki 

durumda tutulur. Bizim klasik bilgisayarda bitlerle ifade ettiğimiz yapılar kuantum 

bilgisayarlarda qubitlerle ifade edilmektedir. Qubitlerde (0) ve (1) olabileceği gibi 

bunların kombinasyonları olan süper pozisyonda da olabilir.  Qubitlerin bu durumları 

|00>,|01>,|10>ve |11>  ve şeklinde gösterilir. Qunatum bilgisayarda qubitlerin 

durumlarını anlamamız ve ölçümlememiz klasik bilgisayar bitleri gibi olamamasının 

yanı sıra klasik fizik kuralları ile de anlamamız mümkün değildir. Bu yüzden 

quantum bilgisayarda atom altı parçacıkları olan elektron spinlerinin yönünü ve 

değerini tespit edebilmemiz için quantum fiziğinden yararlanırız. Bu atom altı 

parçacıklarının yönü aşağı ve yukarı olmak üzere iki durumdan ibarettir. Bu 

durumlar bizim yaşadığımız dünyada anladığımız yukarı ve aşağı kavramları 

değildir. Eğer bir qubit içinde bulunduğu manyetik alanla aynı yönde ise yukarı, ters 

yönde ise aşağı yönlüdür. Bir elektron spinin aynı anda üç bileşeninden (x- ekseni, y-

ekseni ve z-ekseni) manyetik alanı hangisine uygulamışsak onun durumunu 

ölçebiliriz. Çünkü manyetik alanı sadece bir yönde uygulayabiliriz. 
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4.6. Kuantum Kapıları 

Bir kuantum kapısı veya kuantum mantık kapısı, az sayıda kübit üzerinde çalışan 

ilkel bir kuantum devresidir. Aynı zamanda bu kapılar birer matristir. Bu matrisler 

üzerinde değişik işlemler yaparak bit’in ya da kubit’in yeni durumlar almasını 

sağlarlar. Kuantum mantık kapıları, birçok klasik mantık kapısının aksine tersine 

çevrilebilir. Kuantum mantık kapıları üniter matrislerle temsil edilir (Nielsen ve 

Chuang, 2000). 

4.6.1. X (not) kapısı 

Geçidin girişi '0' olduğunda, çıkış '1' olur. Geçidin girişi '1' olduğunda, çıkış '0' olur. 

NOT kapısı yalnızca tek bir bit içerir, ancak diğer kapılar daha fazla bit içerir. 

Örneğin XOR (veya EXOR) kapısı 2 bitlik bir giriş alır ve 2 giriş bitinden tam olarak 

birinin 1 ve diğerinin '0' olması durumunda '1' olan bir değer çıkarır. 

 

Şekil 4.1. NOT kapısı ve doğruluk tablosu 

 

 

4.6.2. X (pauli x) kapısı 

Klasik bilgisayarlar için NOT kapısının kuantum eşdeğeri Pauli-X kapısı olarak 

adlandırılır. Tek bir kübit üzerinde etki eder. Eğer kübit |0> ya da |1> 

durumlarındaysa, Pauli-X kapısı |0> değerini |1>'e çevirir ya da tam tersini yapar. İki 

saf durumu |0> ve |1> dikey eksen boyunca karşılıklı iki nokta olarak temsil edersek 

 

Şekil 4.2. Pauli(X) kapısı gösteri 
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Pauli-X geçidinin uygulanması, kübitin durumunun 180 derece döndürülmesine 

eşdeğerdir. Bu doğası nedeniyle bazen bit-flip olarak adlandırılır. 

 

Şekil 4.3. Pauli(X) kapısına uygulanma gösterimi 

 

Klasik hesaplamada olduğu gibi, her kuantum kapısı bir sembolle temsil edilir; 

aşağıda genellikle Pauli kapısını nasıl temsil ettiğimiz gösterilmektedir. 

 

Şekil 4.4. Pauli kapısı 

 

Matematiksel olarak konuşmak gerekirse, bir kuantum kapısı uygulamak, matris 

biçimindeki doğrusal bir U operatörünü manipüle etmeye eşittir.     

 

   |0>=[
1
0

], |1>=[
0
1

]              (4.1) 

 

 

Pauli-X geçidinin matris gösterimi, yani Pauli-X matrisi aşağıdaki 2x2 matrisidir: 

 

                                           X=[
0 1
1 0

]                                                                      (4.2) 
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|0> ve |1> saf durumlarına uygulandığında, |0>'ın |1>'e dönüştüğünü ve bunun 

tersinin de geçerli olduğu kolayca görülebilir: 

                                   [
0 1
1 0

] [
1
0

] = [
0
1

]                                                                  (4.3) 

                                   [
0 1
1 0

] [
0
1

] = [
1
0

]                                                                  (4.4) 

 

 

 

4.6.3. Y (pauli y) kapısı 

Pauli-Y kapısı tek bir kübit üzerinde etki eder. Bloch küresinin Y ekseni etrafında π 

radyan kadar bir dönüşe eşittir. |0>'ı |1⟩'e ve |1⟩'i, -i|0⟩'a eşler. Bloch küresi üzerinde 

i|1> yukarıdaki açıklama uyarınca |1> ile aynı nokta olacaktır (i|1> = eiγ|1> γ=π/2 ile) 

ve -i|0> |0> ile aynı gösterime sahip olacaktır (-i|0> = e-iπ/2|0>).  Y kapısının matris 

gösterimi aşağıdaki gibidir: 

                                                Y=[
0 −𝑖
𝑖 0

]                                                              (4.5) 

 

|ψ> = Karışık bir duruma α|0> + β|1> uygulandığında Pauli-Y geçidi Y|ψ> = Y(α|0> 

+ β|1>) = -iβ|0> + iα|1> değerini verir. 

 

                                                 Y=[
0 −𝑖
𝑖 0

] [
𝛼
𝛽]=[

−𝑖𝛽
𝑖𝛼

]                                           (4.6) 

 

 

 

 

4.6.4. Z (pauli z) kapısı 

Pauli-Z kapısı tek bir kübit üzerinde de etkilidir. Bloch küresinin Z ekseni etrafında π 

radyan kadar bir dönüşe eşittir. |0> temel durumunu değiştirmeden bırakır ve |1>'i -

|1>'e eşler. Z kapısının matris gösterimi aşağıdaki gibidir. 
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                                                        Z=[
1 0
0 −1

]                                                      (4.7) 

 

 Karışık bir duruma uygulandığında |ψ> = α|0> + β|1> Pauli-Z kapısı Z|ψ> = Z(α|0> 

+ β|1>) = α|0> - β|1> sonucunu verir. 

                                       Z=[
1 0
0 −𝑖

] [
𝛼
𝛽] = [

𝛼
−𝛽]                                                    (4.8) 

 

 

4.6.5. H (hadamard) kapısı 

Eğer kübitimiz θ = π/2 ve φ=0 (ya da kartezyen koordinatlarda x=1, y=0, z=0) açılı 

bir konumda bulunuyorsa neler olduğunu görelim. Yukarıdaki denklemdeki değerleri 

değiştirerek, kübit durumu şu şekilde genişler: 

                                    |state> =cos(
𝜋

4
) |0 > +𝑒𝑖0𝑠𝑖𝑛 (

𝜋

4
)| 1 >                              (4.9) 

                                    |state> = 
1

√2
|0 > +

1

√2
|1 > 

 

Hesaplama temeli durumlarının eşit ağırlığına sahip bir süperpozisyon durumu 

1/√2(|0> + |1>) elde ederiz. Hadamard kapısını |0> durumundaki bir kubite 

uygulamak, kubiti 0 ölçme olasılığının 1 ölçme olasılığına eşit olduğu (ve 

1/√22=1/2'ye eşit olduğu) bir |0> ve |1> süperpozisyon durumuna getirir. Benzer 

şekilde, Hadamard kapısını |1> aşağı durumuna uygulamak kubiti 1/√2(|0> - |1>) 

süperpozisyon durumuna getirir. 

 

                                              H= 
1

√2
[
1 1
1 −1

]                                                        (4.10) 

Bu geçit |0> ve |1> baz vektörlerine uygulandığında, 

                                                 
1

√2
[
1 1
1 −1

] [
1
0

]= 
1

√2
[
1
1

]                                         (4.11) 

                                                  
1

√2
[
1 1
1 −1

] [
0
1

]= 
1

√2
[

1
−1

]                                     (4.11) 
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Şekil 4.5. Hadamard kapısı manipülasyonunun bloch küresinde gösterimi 

 

 

4.6.6. Cnot kapısı 

Kuantum CNOT kapısının iki girişi ve dolayısıyla iki çıkışı vardır. Hedef giriş 

yalnızca kontrol girişi 1'e ayarlanmışsa olumsuzlanır. Kontrol girişi 0 ise geçidin 

hiçbir etkisi olmaz. Kontrol kübiti geçit tarafından değiştirilmez. Aşağıda hem klasik 

hem de kuantum diyagramlarının bir anlık görüntüsü yer almaktadır. Birbirlerini 

yansıttıklarını kolayca doğrulayabiliriz: kuantum hedef çıkış sütunu klasik XOR 

geçidinin y+x sütunuyla eşleşir. 
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Şekil 4.6. CNOT Kapısı 

 

Bildiğimiz gibi, her geçit/operatör bir matris olarak ifade edilebilir. C-NOT kapısı 

girdi olarak iki kübit ve çıktı olarak iki kübit aldığı için 4x4'lük bir matris olacaktır. 

Bir doğruluk tablosunu matrise dönüştürmek için kullanışlı bir teknik vardır. 0. satır 

0. sütundan başlayarak, sütunları ve satırları örneğin 00'dan 11'e kadar ikili olarak 

ardışık bir şekilde etiketlersiniz. Daha sonra, girdi çıktı ile eşleşiyorsa bir hücreye 1 

yerleştirirsiniz; aksi takdirde 0’dır. Örneğin, bizim durumumuzda, |11>, |10> ile 

eşleştiği için matrisin 4. satır, 3. sütun değerini 1 olarak ayarlanır. Böylelikle kapı 

için bir matris elde edilir. 

 

 

 

CNOT=[

1 0 0 0
0 1 0 0 
0 0 0 1
0 0 1 0 

] 

Şekil 4.7. CNOT kapısı’nın şekil ve matris gösterimi 

 

CNOT matrisini temel durum vektörüyle çarparak CNOT geçidini örnek olarak |00> 

durumuna uygulamaya çalışalım. 

                                         [

1 0 0 0
0 1 0 0 
0 0 0 1
0 0 1 0 

] [

1
0 
0 
0 

] = [

1
0 
0 
0 

] = |00 >                                    (4.12) 
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4.6.7. Z (z gate) kapısı 

Z-kapısı, sadece bir kübit üzerinde etkili olan üniter bir kapıdır. Özellikle 1'i -1'e 

eşler ve 0'ı değiştirmeden bırakır. Bu manipulasyonu, kübiti Z ekseni etrafında π 

radyan (180 derece) döndürerek yapar. Bunu yaparak kübitin fazını değiştirmiş olur. 

Z-kapıları işlemi aşağıdaki matris ile tanımlanır: 

                                                            Z=[
1 0
0 −1

]                                                (4.13) 

Pauli Z kapısının kübit üzerinde nasıl çalıştığını, kübit durumunun sütun vektörünü 

Pauli Z matrisiyle çarparak görebiliriz. Örneğin, kübit |0> olarak başlatılırsa: 

 

                                                        [
1 0
0 −1

] [
1
0

]=[
1
0

]                                           (4.14) 

 

Bu da |0>'ı değişmeden bırakır. Şimdi kübiti |1> olarak başlatalım ve Z geçidinin 

kübit durumunu nasıl dönüştürdüğünü görelim: 

 

                                                          [
1 0
0 −1

] [
0
1

]=[
0

−1
]                                      (4.15) 

 

Kübitlerin durumunun |1>'den -|1>'e dönüştüğü görülmektedir. Bu durumda sadece 

faz değişmiştir. Faz değişiminden sonra ölçüm yapıldığında kubit’in |1>’e çöktüğü 

gözlenmektedir. 

4.7. Süper Yoğun Kodlama 

Bu kodlama, dolanık durumların ilginç bir uygulamasıdır.  Bu durumu kısaca 

açıklamak gerekirse tek bir kubit paylaşımı ile iki bitlik klasik bilgi paylaşımını 

mümkün kılan bir protokoldür. Şekil 4.8’ de bu durum gösterilmiştir. Burada A ve B 

kişileri birbirine çok uzak noktada bulunan iki arkadaş olarak temsil edilmektedir. A, 

B’ye iki bitlik bir bilgi göndermek istemektedir. Ancak, A’nın yalnız bir kubit’lik 

bilgi göndermesi mümkündür. Burada soru şu: “A, tek bir kubit kullanarak iki bitlik 

bir bilgiyi B ile paylaşabilir mi?”. Evet, bunu yapabilir. Bunun bir tek şartı var. Daha 
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önceden bir Dolanık durumu kendi aralarında paylaşmış olmaları gerekmektedir. 

Sistemin çalışabilmesi için girişinde iki bitlik bir dolanık durum (Bell Çifti) 

hazırlanmalı ve önce Hadamard, sonra CNOT kapısından geçen bu bitlerden bir 

tanesi A diğeri B tarafından alınır. Bu gönderim kuantum kanal vasıtasıyla mümkün 

olur. Hem A hem de B kendilerine ait kubit’in |0>’mı yoksa |1>’mi olduğunu 

bilmemektedir. Eğer A kendi aldığı biti olduğu gibi B’ye göndermek istiyorsa 

üzerinde hiçbir işlem yapmaz. Eğer herhangi bir bilgi gönderecekse (00, 01,10,11) 

üzerinde işlem yapar ve B’ye gönderir. B gelen kubiti alınca yeni duruma geçmiş 

olur. B bu sahip olduğu durumu önce CNOT sonra Hadamard kapısından geçirir. 

Çıkan sonucu görmek için ölçüm yapar. Böylece B de tek bir kubit almasına rağmen, 

A’nın iki bitlik hangi bilgi dizisini gönderdiğini yüzde yüz olarak öğrenir. Kuantum 

bilgisayar ortamında gerçekleşen bu olaya Süper Yoğun Kodlama denir. 

 

Şekil 4.8. Süper yoğun kodlama protokol diyagramı 

 

Yukarda verilmiş olan diyagram gösterimi bir kuantum bilgisayarda simüle ettiğimiz 

zaman aşağıdaki gibi bir sonuç ortaya çıkar. 
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Şekil 4.9. Süper yoğun kodlama devresi 

 

 

4.8. Dolanıklık 

Birden fazla alt sistemden oluşmuş sistem topluluğuna bileşik sistem denir. Bileşik 

bir sistemin durum uzayı, sistemi oluşturan fiziksel sistemlerin durum uzaylarının 

tensor çarpımı şeklinde ifade edilir. Eğer elimizde |A> ve |B> gibi iki sistem varsa ve 

bu sistemler arasında da bir korelasyon bulunuyorsa bunlar dolanık sistemlerdir. 

Yani birisine ait bir özelliği ölçtüğümüz zaman diğer sisteme ait başka bir bilgiye 

ulaşıyorsak bu iki sistem dolanık sistemlerdir. Dolanıklık tamamen kuantum 

mekaniksel bir olay olup, biz sadece klasik olarak anoloji yapabiliriz. Örneğin, 

içerisine birer mıknatıs gömdüğümüz iki zar düşümelim. Bu iki zar üzerindeki 

manyetik alan öyle oluşur ki, birinin üzeride gelen sayı diğerinden etkileniyorsa bu 

iki zar dolanıktır. Yani birinci zarı attığınızda üst yüzde gelen sayı 6 ise, ikinci zara 

bakmadan onun üst yüzeyindeki sayının kesinlikle 4 olduğunu söyleyebiliyorsak bu 

iki zar dolanıktır. Bu durumu iki kübit üzerinde düşünecek olursak; eğer kübitlerden 

birisini ölçtüğümüzde sonucu |1> bulmuşsak diğer kübitte |1>’dir. |0> bulmuşsak 

diğer kübitte |0>’dır. 

4.9. Kuantum Işınlanma (Teleportasyon) 

Kuantum Teleportasyon, bir durum vektörünün bir yerden başka bir yere gönderme 

tekniğidir. Bu iki nokta arasındaki mesafa ışık yılı kadar uzakta olabilir. Burada 

önemli olan nokta, Kuantum durumunu iki nokta arasında birinden diğerine 

gönderirken aralarında bir kuantum kanal olmasına gerek yoktur. Kuantum ışınlama 

olayının genel olarak şematik yapısı Şekil 4.10 ‘da verilmiştir.  Burada gerçekleşen 

olay şöyle; Süper Yoğun Kodlamada olduğu gibi A ve B’nin uzun zaman önce 

birlikteyken, aralarında dolanık durumlardan (Bell Durumlarından) bir tanesini 
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paylaşıp bir kubit’ini A, diğer kubit’ini B almış ve sonra birbirlerinden uzaklaşmış 

olsun. Bir süre sonra A, B’ye |Ψ> kuantum mekaniksel durum vektörü göndermek 

istesin. A bunu aralarında bir kanal ya da kuantum kablo yokken başarabilir mi? 

Bununla birlikte, A, B ile herhangi bir kübit paylaşımında bulunamayıp, klasik bit 

(klasik kanallarla) paylaşabiliyor. Bunu biraz düşündüğümüzde imkansız olduğu 

kanaatine varırız. Doğru olan da budur.  Çünkü A’nın elindeki kendi durum 

vektörünü B’ye nasıl gönderecek? A’nın elindeki bir kubitlik durum vektörü, 

|Ψ>=α|0>+β|1>  şeklindedir. α ve β bütün durumları alabilen kompleks sayılardır ve 

bu vektörü B’ye göndermek istemektedir. Aşağıdaki, Şekil 4.10’da bir CNOT kapısı, 

bir Hadamard kapısı ve iki adet ölçüm operatörü bulunmaktadır. Tek çizgi ile 

gösterilen kısım kuantum kanalını gösterilirken, ölçüm operatöründen sonraki çift 

çizgiler ise klasik haberleşme kanallarını göstermektedir. Ölçüm yapıldıktan sonra 

durum vektörü yok olur geriye (0) ya da (1) gibi reel bir sayı kalır.  

A ve B’nin, Bell durumlarından birisini kendi aralarında paylaştığını biliyoruz.  

                                          |𝛹 >=
1

√2
(|00 > +|11 >)                                         (4.16) 

Bu formüldeki birinci kubit A’nın ikinci kubit B’nin olsun. Her ikisi de kendi 

kübitine sahip olup, birbirlerinden çok uzakta bulunmaktadırdlar ve dolanık 

durumdadırlar.   

Aşağıdaki şekilde |Ψ> durumu, A’nın B’ye göndermek istediği durum olup, |β00> ise 

dolanık Bell durumlarından bir tanesidir. Öncelikli olarak A, göndermek istediği 

durumu kendi payına düşen kübit ile etkileşime sokar.  Böylelikle A iki kübite B ise 

tek kübite sahip olur. A kendi iki kübitli durumunu önce CNOT kapısından sonra 

Hadamard kapısından geçirdikten sonra ölçüm (M1) yapar.  

 

Şekil 4.10. Kuantum ışınlanma 
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Şekilde görüleceği üzere ilk durumdaki durumu vektörü |Ψ0>, CNOT kapısından 

geçtikten sonra |Ψ1>, Hadamard kapısından geçtikten sonra |Ψ2> ve ölçümler 

yapıldıktan sonraki durum ise |Ψ3> tür. Öncelikle |Ψ1> durum vektörüne bakacak 

olursak, 

|Ψ1>=|Ψ>| β00>                                                                                                      (4.17) 

|Ψ1>= (α|0>+β|1>)(
|00>+|11>

√2
) 

|Ψ1>= 
1

√2
[α|000>+ α|011>+ β|100>+ β|111>] 

Bu |Ψ1> durum vektörünün ilk iki kubiti A’ya ait sonuncu kubit ise B’ye aittir. 

Bundan sonra |Ψ1> durum vektörü CNOT kapısından geçiyor ve |Ψ2> durum 

vektörüne sahip olur.  CNOT kapısından geçişi sırasında ise CNOT kapısı ilk iki 

kubiti manipüle edecek üçüncü kübite etki etmeyecektir. CNOT kapısında ilk kubit 

kontrol (control) kübit, ikinci kübit ise hedef (target) kübittir. Eğer kontrol kübit 

(|0>) ise, hedef kübit herhangi bir değişikliğe uğramaz. Kontol kübit (|1>) ise, hedef 

kübit (|0>) ise (|1>), (|1>) ise (|0>) olur. |Ψ2> durum kapısına bakacak olursak, 

|Ψ2>=
1

√2
[α|00>|0>+ α|01>|1>+ β|11>|0>+ β|10>|1>]                                             (4.18) 

İlk iki kübit CNOT kapısından geçtikten sonra yukardaki |Ψ2> durumu elde edilir.  

Bundan sonra birinci kübit Hadamard kapısından geçecek ve |Ψ3> durumu elde 

edilecek. Hadamard kapısı ilk kübite etki ettiğinde eğer bu kubit (|0>) ise, H|0>=
1

√2
 

|0>+|1> eğer (|1>) ise H|0>=
1

√2
 |0>-|1> ile manipüle edip süperpozisyona sokar.  Bu 

işlemden sonra oluşacak |Ψ3>  durum vektörü aşağıdaki gibi oluşur. 

|Ψ3>=
1

√2
[α(

|0>+|1>

√2
) |00>+ α(

|0>+|1>

√2
)|11> + β(

|0>−|1>

√2
)|10>+ β(

|0>−|1>

√2
)|01>]     (4.19) 

|Ψ3>=
1

2
[α|000>+ α|100>+ α|011>+ α|111>+ β|010>- β|110>+ β|001>- β|101>] 

|Ψ3>=
1

2
[ |00>( α|0>+ β|1>)+ |01>( α|1>+ β|0>) + |10>( α|0>- β|1>)+ |11>( α|1>- β|0> 

|Ψ3> durumdan sonra A kendine ait iki kübiti (M1) ölçümler. A’nın iki kübiti 

olduğundan muhtemel dört durumundan (|00>,|01>,|10>,|11>) birini gözler.  Bu dört 
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durumdan her birisinin gözlemlenme ihtimali   
1

 4
’ tür. Bunu nereden biliyoruz. A’nın 

önünden bulunan katsayılardan biliyoruz. A’nın kübitlerinin önündeki katsayı  
1

2
 ‘dir 

ve herhangi bir durum gelme ihtimali bu katsayının karesine eşittir. A, ölçümü 

yaptıktan sonra bu bilgiyi B’ye gönderir. Bunu yapabilmesi için B ile iletişime 

geçmesi ve kübit değerlerini yani iki bitlik bilgiyi (ölçümden sonra artık kübit değil 

bittir) gönderir. B kendisine A tarafından gönerilen iki bitlik bilgiye bağlı olarak, 

başlangıçta kendinde olan kübiti (A ile birer kübitini paylaştıkları dolanık durumdan) 

şekildeki (X), (Z) ya da hem (X) hem de (Z) kapılarından geçirerek A’nın kendisine 

göndermek istediği durum vektörüne sahip olur. İşte bu duruma (olaya) kuantum 

ışınlama (Teleportasyon) denir. 
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5. TEMEL KUANTUM ALGORİTMALARI 

 Kuantum makine öğrenmesi algoritmaları aşağıda ele alınmaktadır. 

5.1. Grovers Algoritması 

Grover'ın Arama Algoritması (GAA) çok popüler bir kuantum arama algoritmasıdır. 

Bu algoritma belirli bir koşulu sağlayan bir grup elemanı bulur. Bu görevi yerine 

getirmek için, genellikle oracle olarak bilinen, elemanları tanımlama yeteneğine 

sahip bir kara kutu, bulmak için gerekli kriterleri karşılamalıdır. Grubun N elemanı 

olduğunu varsayalım, kâhin yukarıda belirtilen kriterleri karşılayan tüm elemanları 

elde etmek için klasik hesaplamalar için O(M) kez çağrılır. Kuantum mekaniğini 

kullanan bu algoritma, kâhine O√M p çağrı yaparak aynı sonuca ulaşabilmektedir.  

Algoritma, kuantum hesaplamanın paralel işleme adı verilen özel bir özelliğinden 

yararlanarak kâhine aynı anda birden fazla çağrı yapma yeteneğine sahiptir. Bir 

arama listesinin N sayıda elemana sahip olduğunu varsayalım. GAA bunları temsil 

etmek için N boyutlu bir Hilbert uzayı kullanır, bu da n = log2M kübit ile elde 

edilebilir. İndeksi y olan her e ϵ N, kübitlerin durum uzayında j‘i olarak adlandırılan 

ortonormal bir vektör ile gösterilir. Amaç verilen arama kriterlerini karşılayan belirli 

bir elemanın z indeksini belirlemektir. Başlangıçta, aşağıdaki özelliklere sahip üniter 

bir işlemin kullanıldığı öngörü kullanılmaktadır 

 

            y=z, Uz|y>=-|y>                                                          (5.1) 

            y≠z, Uz|y>=|y>                                                           (5.2) 

 

Eşitlik (5.1) ve (5.2) aşağıdaki gibi de ifade edilebilir: 

                                                     

                                                  Uz = I-2|z><z|                                                        (5.3) 

            

Burada I, birim operatörünü göstermektedir. GAA eşzamanlı olarak son oracle 

operatörünü ve Grover difüzyon operatörlerini aşağıdaki şekilde tanımlandığı gibi 

kullanır. 
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                    Up = 2|p><p|-I             (4.4) 

                                             

Başlangıçta, kübitlerin durumu |p> durumuna başlatılır. Daha sonra, Uz ve Up iteratif 

olarak r(N) sayıda art arda uygulanır. Daha sonra sistem değerlendirilir ve bu da söz 

konusu (z) indeksini sonuçlandırabilecek özdeğeri (λz) sağlar. 

5.2. Bernstein - Vazirani Algoritması 

Bernstein-Vazirani Algoritması, Ethan Bernstein ve Umesh Vazirani tarafından 1992 

yılında geliştirilen bir kuantum algoritmasıdır. Esasen, bir fonksiyonun içerdiği ikili 

bir {s} dizisini, yani sıfır ve birlerden oluşan bir karakter dizisini (örneğin s = 

0010110101001) bilmeyi sağlar. Daha doğrusu, böyle bir fonksiyonun f(x)=sx mod 

(2) biçimini aldığı bilinmektedir; burada x başka bir dizedir ve çarpma ikili çarpım 

olarak anlaşılır. Bu algoritma Deutsch-Jozsa algoritmasına benzer bir şekilde çalışır, 

ancak işlev sınıfları arasında ayrım yapmaya çalışmak yerine verilen işlevi 

karakterize eden dizeyi arar. Örnek olarak, ikili kodla yazılmış gizli bir sayıyı 

bulmak için bir oyun oynadığınızı varsayalım. Algoritmanın klasik versiyonu ile 

çözümü elde etmenin tek yolu gizli sayıyı bit bit kontrol etmek olacaktır ki bu da en 

az N çalıştırma gerektirir, burada N s'nin bit sayısıdır (bu hesaplama karmaşıklığı 

teorisinde O(N) olarak gösterilir). Bernstein-Vazirani algoritması durumunda, bu 

sayı s dizesinde kodlanmışsa, tam sayıyı bulmak için algoritmanın tek bir 

çalıştırılması yeterli olacaktır. Bu algoritmanın önemi, aranan dizenin tek bir 

çalıştırmadan sonra bulunabildiği klasik muadiline göre üstünlüğünde yatmaktadır 

(Bernstein ve Vazirani, 1993). 

5.3. Deutsch-Jozsa Algoritması 

Kuantum hesaplamada Deutsch-Jozsa algoritması, 1992 yılında David Deutsch ve 

Richard Jozsa tarafından önerilen bir kuantum algoritmasıdır. Bir kuantum 

bilgisayarda çalışmak üzere tasarlanan ilk algoritmalardan biridir ve kuantum 

süperpozisyon durumlarının doğal paralelliğinden yararlanarak klasik 

algoritmalardan daha verimli olma potansiyeline sahiptir. Deutsch-Jozsa 

probleminde, n adet x1, x2,..., xn giriş biti alan ve f(x1, x2,..., xn)= 0 veya 1 ikili 

değerini döndüren bir f(x1, x2,..., xn) fonksiyonu (bir kehanet veya kara kutu olarak 

düşünülebilir) vardır. Amaç, fonksiyonun sabit (tüm girişlerde 0 veya tüm girişlerde 
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1) veya dengeli (girişlerin yarısı için 1 ve diğer yarısı için 0 döndürür) olup 

olmadığını belirlemektir. Problem, kara kutuya girdiler uygulayarak ve çıktısını 

gözlemleyerek fonksiyonun neye benzediğini (sabit veya dengeli) belirlemektir. 

Örnek olarak, f(x)=x%2 fonksiyonunu, yani girdiyi ikiye böldüğünüzde kalanı 

döndüren fonksiyonu düşünün. Bu fonksiyon, argüman tek ise 1, çift ise 0 döndürür, 

bu nedenle dengeli bir fonksiyondur. Algoritmanın işlevi, aynı sonuca mümkün 

olduğunca az yinelemeyle ulaşmak olacaktır; klasik durumda bu, iki farklı sonuca 

ulaşılana kadar işlevin tekrar tekrar değerlendirilmesini gerektirecektir ve bu nedenle 

yineleme sayısı girdi değişkenlerinin seçilme sırasına bağlı olacaktır (Johansson ve 

Larsson, 2017). 

5.4. Shor’s Algoritması 

Kuantum hesaplamada Shor'un algoritması, bir N sayısını O((log N)3) zamanda ve 

O(logN) uzayda çarpanlarına ayırmak için kullanılan ve Peter Shor'un adını taşıyan 

bir kuantum algoritmasıdır. Shor'un algoritması, bir sayının çarpanlarını verimli bir 

şekilde bulmak için kullanılan bir prosedür dür. Bu algoritmanın uygulanması klasik 

olarak veya kuantum devreleri kullanılarak gerçekleştirilebilir (henüz pratikte 

uygulanmamıştır). İkinci uygulama (elbette) belirli bir sayının asal çarpanlarını 

bulurken çok gerekli bir parametre olan sıralamayı bulmak istediğinizde en uygun 

olanıdır. Shor'un algoritmasının pratik bir kuantum bilgisayarında uygulanması 

halinde RSA gibi pek çok açık anahtarlı kriptografi geçersiz hale gelecektir. RSA ile 

şifrelenmiş bir mesajın şifresi, iki asal sayının çarpımı olan N açık anahtarının 

çarpanlarına ayrılmasıyla çözülebilir. Bilinen klasik algoritmalar bunu herhangi bir k 

için O((log N)k) zamanda yapamazlar, bu nedenle N arttıkça hızla pratik olmaktan 

çıkarlar. Buna karşın, Shor'un algoritması RSA'yı polinom zamanda kırabilir. Tüm 

kuantum hesaplama algoritmaları gibi Shor'un algoritması da olasılıksaldır. Yüksek 

olasılıkla doğru cevabı verir ve algoritma tekrarlanarak başarısızlık olasılığı 

azaltılabilir. Shor'un algoritması 2001 yılında IBM'deki bir grup tarafından pratikte 

uygulanmış ve 7 kübitlik bir kuantum bilgisayar kullanılarak 15, 3 ve 5 faktörlerine 

ayrıştırılmıştır (Nielsen ve Chuang, 2000). 

Shor'un algoritmasının çözmeye çalıştığı problem, bir N tamsayısı verildiğinde, 1 ile 

N arasında N'yi bölen başka bir p tamsayısı bulmaya çalışmaktır. Shor'un algoritması 

iki bölümden oluşmaktadır: 
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● Faktörlere ayrıştırma probleminin, klasik bir bilgisayarda yapılabilen sırayı 

bulma problemine indirgenmesi. 

● Periyot bulma problemini çözmek için bir kuantum algoritması. 

Shor'un periyodunu bulma algoritması, bir kuantum bilgisayarının aynı anda birçok 

durumda bulunabilme yeteneğine kökten bağlıdır. Fizikçiler bu davranışı kuantum 

süperpozisyonu olarak adlandırır. Bir f fonksiyonunun periyodunu hesaplamak için, 

fonksiyonu tüm noktalarda aynı anda değerlendiririz. Ancak kuantum fiziği tüm bu 

bilgilere doğrudan erişmemize izin vermiyor. Bir kuantum ölçümü tüm olası 

değerlerden yalnızca birini verecek, diğerlerini yok edecektir. Bu nedenle 

süperpozisyonu, yüksek olasılıkla doğru cevabı veren başka bir duruma dikkatlice 

dönüştürmemiz gerekir. Bu, kuantum Fourier dönüşümü kullanılarak gerçekleştirilir. 

Bu nedenle Shor'un üç "uygulama sorununu" çözmesi gerekmiştir. Tümünün "hızlı" 

uygulanması gerekmiş, bu da logN'de polinom olan sayıda kuantum kapısı ile 

çalışmak anlamına gelmiştir. 

● Durumların süperpozisyonunu oluşturma: Bu, giriş kaydındaki tüm 

kübitlere Hadamard kapıları uygulanarak yapılabilir. Başka bir yaklaşım da 

kuantum Fourier dönüşümünü kullanmaktır. 

● f fonksiyonunu bir kuantum dönüşümü olarak uygulama: Bunu başarmak 

için Shor, modüler üs alma dönüşümü için karelerle üs alma yöntemini 

kullanmıştır. 

● Bir kuantum Fourier dönüşümü gerçekleştirme: Shor, NOT kontrollü 

kapılar ve tek rotasyonlu kübit kapıları kullanarak kuantum Fourier 

dönüşümü için tam olarak ((logN)2) kapı kullanan bir devre tasarlamıştır. 

Tüm bu dönüşümlerden sonra bir ölçüm r periyoduna yaklaşık bir değer verecektir. 

Basitlik açısından, yr/N bir tamsayı olacak şekilde bir y olduğunu varsayalım. O 

halde y'yi ölçme olasılığı 1'dir. Bunu görmek için şu denklem kullanılabilir: 

  

                                                          𝑒
2𝜋𝑖𝑏𝑦𝑟

𝑁 = 1                                                            (4.5) 
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Bu nedenle y ölçümünün olasılığını veren toplam N/r olacaktır çünkü b yaklaşık N/r 

değer alır ve bu nedenle olasılık 1/r'dir. Öyle r, y vardır ki yr/N bir tam sayıdır, 

dolayısıyla olasılıkların toplamı 1'dir. Shor'un algoritmasını açıklamanın bir başka 

yolu da bunun tam olarak şekil değiştirmiş bir kuantum faz kestirimi algoritması 

olduğunu belirtmektir (Shor, 1999). 
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6. QİSKİT NEDİR? 

Qiskit, IBM tarafından devre ve algoritma düzeyinde kuantum bilgisayarlarla 

çalışmak için oluşturulan bir yazılım geliştirme kitidir. Qiskit kullanılarak 

tasarlanmış bir kuantum devre örneği Şekil 6.1‘de verilmiştir. Qiskit kuantum 

programları oluşturmak, manipüle etmek ve bunları IBM Quantum Experience'daki 

prototip kuantum cihazlarında veya yerel bir bilgisayardaki simülatörlerde 

çalıştırmak için araçlar sağlar. Evrensel kuantum hesaplama için devre modelini 

takip eder ve bu modeli takip eden herhangi bir kuantum donanımı (şu anda süper 

iletken kübitleri ve tuzaklanmış iyonları desteklemektedir) için kullanılabilir. Qiskit, 

IBM Research tarafından buluttaki kuantum bilişim hizmeti IBM Quantum 

Experience için yazılım geliştirilmesini sağlamak amacıyla kurulmuştur. Genellikle 

akademik kurumlardan olmak üzere dışarıdan meraklılar da katkıda bulunmaktadır 

(Hemsoth, 2018).  

Qiskit'in ana sürümü Python programlama dilini kullanır. Swift ve JavaScript 

sürümleri başlangıçta araştırılmış, ancak bu sürümlerin geliştirilmesi durdurulmuştur. 

Bunun yerine, temel özelliklerin minimal bir yeniden uygulaması, alternatif 

platformlara taşınması kolay olacak şekilde yapılmış MicroQiskit olarak mevcuttur. 

Kuantum hesaplamanın kullanımına ilişkin örnekler içeren bir dizi Jupyter not defteri 

sunulmaktadır. Bu örnekler arasında Qiskit kullanılarak yapılan bilimsel çalışmaların 

kaynak kodlarının yanı sıra insanların kuantum programlamanın temellerini 

öğrenmelerine yardımcı olacak bir dizi alıştırma da yer almaktadır. Qiskit tabanlı 

açık kaynaklı bir ders kitabı, kuantum hesaplama veya kuantum algoritmaları üzerine 

bir derse ek olarak üniversite düzeyinde mevcuttur (Wille ve diğ., 2019). 

Qiskit açık kaynak kodlu bir online simülatörü olarak tanımlanmaktadır. Burada 

yerel bir makine içerisinda ya da çevrim içi olarak çalışan çok yönlü bir sistem 

görülmektedir. Bu simülatörlerle bahsedilmiş olan iki tane beş kubit sistem içerisinde 

testlerin yapılması sağlanmaktadır. Qiskit’te bir kod editörü (QASM) ile grafiksel bir 

kullanıcı arayüzün bulunduğu belirlenmiştir.  

Qiskit’te sürükle bırak yöntemiyle kuantum devrenin şeması oluşturulabildiği 

belirlenmiştir. Burada OPENQASM kullanılarak doğrudan kod yazma işlemi 

gerçekleştirilmektedir. 
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Şekil 6.1. Qiskit SDK kullanılarak tasarlanmış devre örneği 
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7.   KUANTUM MAKİNE ÖĞRENMESİ UYGULAMASI  

7.1. Metodoloji  

Bu tez çalışması kapsamında kuantum makine öğrenimi uygulaması 

gerçekleştirilmiştir. Kuantumsal Sinir Ağı kullanılarak Covid’19 Veri Setlerinin 

Analizi, Tahmini ve Değerlendirilmesi yapılmıştır. Yapılmış olan çalışmanın 

uygulama kısmı ilerleyen bölümlerde ayrıntılı olarak verilmiştir. 

7.2. Veri seti ve ön işleme 

Uygulamamızda sınıflandırmada kullandığımız veri seti 

https://www.kaggle.com/datasets/pranavraikokte/covid19-image-dataset adresinden 

elde edilmiştir.  Veri setimiz göğüs röntgeni görüntülerinden oluşmaktadır. Test ve 

eğitim dizinlerinde yapılandırılmış Covid’19, Viral Pnömoni ve Normal Göğüs 

Röntgenlerini içermektedr. Bu verilerin dağılımına baktığımızda ise; test verisi için 

26 adet Covid’19 verisi, 20 adet Normal ve 20 adet de Viral Pnömoni görüntüsü 

olmak üzere 66 adet görüntü bulunmaktadır. Eğitim veri setinin dağılımı ise, 111 

adet Covid’19, 70 adet Normal ve 70 adet de Viral Pnömani olmak üzere toplamda 

251 görüntüden oluşmaktadır. Veri kümesi, her biri 3 sınıfın görüntülerinden oluşan 

3 klasör içeren eğitim ve test dizinlerine bölünmüştür.  

Kullanılan veri seti modeli için 251 eğitim ve 66 test görüntüsü içermektedir. Veri 

setine ait görüntüler gerçek hayattaki göğüs röntgenidir ve önceden 

değiştirilmemiştir. Yani hepsinin farklı boyutları vardır. Bundan dolayı görsellerin 

ölçüsü belirli bir boyuta indirilmiştir. Bir görüntüyü yeniden boyutlandırmak, 

yalnızca genişlik, yalnızca yükseklik veya her ikisini birden değiştirmek olsun, 

boyutlarının değiştirilmesi anlamına gelir. Başlangıçta veri seti, her sınıfın tüm 

görüntülerinin farklı klasörlere yerleştirildiği bir klasör formatında kullanılmaktadır. 

Bu görselleri openCV kütüphanesini kullanarak 28x28'e dönüştürmek için bir Python 

betiği kullanılmıştır. Son olarak csv formatında kaydedilmiştir.  

Bir görüntüyü yeniden boyutlandırmak için OpenCV, cv2.resize() fonksiyonuna 

sahiptir. Bu çalışmada ilgili fonksiyon kullanılarak boyut küçültme işlemi 

gerçekleştirilmiştir.  

https://www.kaggle.com/datasets/pranavraikokte/covid19-image-dataset
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Desenlerin çoğunun bozulmadan kalması için görüntü boyutunu 256x256 olarak 

sabitlemek daha uygun olacaktır. Ancak hesaplama kaynaklarındaki bazı sınırlamalar 

nedeniyle bu çalışmada boyut 28x28 olarak tutulmuştur. Veri kümesindeki gerçek 

röntgen görüntüleri birçok bilgiyi barındıracak kadar büyüktür. Ancak hesaplama 

kaynaklarının eksikliği nedeniyle, openCV kütüphanesi kullanılarak boyut 28x28'e 

düşürülmüştür.  

7.3. Performans Değerlendirmesi 

Performans değerlendirmesi için doğruluk (accuracy), f1 skoru, kesinlik (precision) 

ve duyarlılık (recall) değerleri hesaplatılmıştır. Hata matrisleri elde edilmiştir. Bu 

hesaplamalar aşağıda yer alan formüllere göre yapılmıştır.  

 Doğruluk (accuracy) : Modelde doğru tahmin edilen alanların toplam veri 

kümesine oranını veren metriktir. 

                                  𝐷𝑜ğ𝑟𝑢𝑙𝑢𝑘 =  
TP+TN

TP+FP+TN+FN
             (7.1) 

 Kesinlik (precision) : Pozitif olarak tahmin edilen değerlerin gerçekte 

kaçının pozitif olduğunun gözlemlendiği sonucunu veren bir metriktir. 

                          Kesinlik = 
𝑇𝑃

TP+FP
              (7.2) 

 Duyarlılık (Recall): Uygulamamızda bulunan sınıflar içinde pozitiv olarak 

tahmin etmemiz gereken işlemlerin ne kadarını pozitiv olarak 

gözlemlediğimizi gösteren bir metriktir.  

                                    Duyarlılık = 
TP

TP+FN
                         (7.3) 

 

 F1 skoru: Kesinlik (Precision) ve Duyarlılık (Recall) değerlerinin harmonik 

ortalamasını veren bir metriktir. 

              F − 𝑆𝑘𝑜𝑟 = 2 ∗
precision∗recall

  precision+recall
             (7.4) 
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7.4. Karmaşıklık Matrisi 

Bu tez çalışmasında kuantum sınıflandırıcılar kullanılmadan önce transfer öğrenimi 

yoluyla Imagenet üzerinde ResNet-50 ağırlıklarıyla evrişimli bir sinir ağı eğitilmiştir. 

Bu sayede öznitelikler belirlenmiştir. Karmaşıklık matrisi Şekil 7.1’de verilmiştir.  

 

Şekil 7.1. Karmaşıklık matrisi 

 

Duyarlılık, kesinlik, doğruluk ve F1 skoru değerleri Tablo 7.1’de gösterilmiştir. 

 Kesinlik    Duyarlılık f1-skoru Destek*  

0 1 1 1 94 

1 1 0.90 0.95 71 

2 0.91 1.00 0.95 73 

Doğruluk 0.97 0.97 0.97 238 

*: Destek, o sınıfta yer alan gerçek yanıtın örneklerinin sayısıdır. 

Tablo 7.1’de en sol sütunda yer alan 0,1 ve 2 değerleri sınıflandırmada kullanılan 

sınıfları ifade etmektedir. Bunlar sırasıyla Covid’19, Normal, Viral Pnömonidir.  

Doğrulama setinde elde edilen accuracy puanı %96,97'dir. Ayrıca karmaşıklık 

matrisine baktığımızda temel tanı unsurlarının çok yüksek, diğerlerinin ise sıfır 

olduğunu görüyoruz. Anlaşılacağı üzere test setindeki tüm veri noktaları doğru 

şekilde sınıflandırılmaktadır. Performans değerlendirmesinde kullanılan bu 

metriklerin tanımları ise bölüm 7.3’te verilmiştir.  

7.5. Kuantum Devresi 

QCNN'de her katman parametrelendirilmiş devreler içerir; bu, her katmanın 

parametrelerini ayarlayarak çıktı sonucumuzu değiştirdiğimiz anlamına gelir. 
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QCNN’yi eğitirken, kayıp fonksiyonunu azaltmak için ayarlananlar bu 

parametrelerdir. Dört kübitlik QCNN örneği aşağıda Şekil 7.2’de gösterilmiştir.  

 

Şekil 7.2. Dört kübitlik QCNN örneği 

 

Bu tez çalışması kapsamında kullanılan kuantum devresinin evrişim katmanı Şekil 

7.3’te gösterilmiştir. Havuzlama katmanı ise Şekil 7.4’te gösterilmiştir.  

 

Şekil 7.3. Kuantum devresinde evrişim katmanı 

 

 

 

 

 

  Şekil 7.4. Kuantum devresinin havuzlama katmanı 

 



60 

 

Bu yaklaşımda, her havuzlama katmanındaki kübitleri göz ardı edilmiştir. N kübit 

Kuantum Devre boyutlarını N/2'ye dönüştüren bir QCNN Havuzlama Katmanı 

oluşturulmuştur. Dört kübit devrenin boyutsallığı son iki kubite, yani bu özel 

örnekteki son iki kübite indirgenmiştir. Bu kübitler daha sonra bir sonraki katmanda 

kullanılırken, ilk ikisi QCNN'nin geri kalanında ihmal edilir. Bu iki kübitlik üniter 

devreyi uyguladıktan sonra sonraki katmanlarda ilk kübiti (q0) ihmal edilmiş ve 

sadece ikinci kübit (q1) kullanılmıştır. N kübit için havuzlama katmanımızı 

oluşturmak amacıyla bu iki kübit havuzlama katmanı farklı kübit çiftlerine 

uygulanmıştır. Bu tez çalışmasında kuantum sınıflandırmada kullanılan devre Şekil 

7.5’te gösterilmiştir.  

 

Şekil 7.5. Kuantum devresi 

 

7.6. Evrişim Katmanının Uygulanması 

Tek bir evrişim filtresinin, veri kümesindeki görüntülerin uzamsal olarak yerel alt 

bölümlerini girdi olarak alan rastgele bir kuantum devresi q kullandığı 

düşünülmüştür. Her giriş (ui), n*n boyutunda 2 boyutlu bir matristir; burada n >1'dir. 

4 kübitlik bir sistemi simüle eden bir PennyLane default.qubit cihazı başlatılmıştır. 

Şekil 7.6 ‘da verilen Kuantum devresi aşağıdakilerden oluşmaktadır: 

⮚ Yerel Ry rotasyonlarının gömülü katmanı; 

⮚ n katmanlı, rastgele parametrelendirilmiş bir kuantum devresi; 

⮚ Hesaplamalı temelde 4 beklenti değerini tahmin eden son bir ölçüm. 

Görüntü 2*2 piksellik karelere bölünür ve her kare kuantum devresi tarafından işlenir 

ve son olarak 4 beklenti değeri, tek bir çıkış pikselinin 4 farklı kanalına eşlenir. 
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Evrişimli Sinir Ağının tek katmanlı yaklaşımı bu modelde tam 4 katman olacak 

şekilde çoklu katmanlara genişletilmiştir. Başlangıçta her görüntü (28x28x1) 

boyutuna sahiptir ve bu boyut ilk Evrişim katmanıyla beslenerek (14x14x4) biçimine 

dönüştürülür. 2. Katman (7x7x16), 3. Katman (3x3x64) ve son olarak 4. ve son 

katman her birini (1x1x256) boyutlu bir veri matrisine dönüştürür. Kuantumsal 

Katman kapılarının parametreleri eşit şekilde rastgele olmasına rağmen, bu 

parametreleri eğitme yaklaşımı da göz önünde bulundurulmuştur ve bu uygulama 

çalışmasının genişletilmiş versiyonunda daha sonra sonuçta herhangi bir gelişme 

olup olmadığı değerlendirilmiştir.  

 

 Şekil 7.6: Evrişimli sinir ağının uygulanması   

 

 

7.7. Sınıflandırıcı Modeli 

Evrişim katmanlardan sonra sırada sınıflandırıcı modeli var. Sınıflandırıcı modeli, 

her biri ikili sınıflandırıcı olan iki alt sınıflandırıcıdan oluşmaktadır. Bu ikisi, 'Model-

1' ve 'Model-2' olarak adlandırılmış olup, Şekil 7.7’de gösterilmiştir.  

Model-1, 'Normal Kişi' ve 'Covid’19/Viral Pnömoni' olmak üzere iki sınıf arasında 

sınıflandırma yapar. Model-2, 'Covid’19' ve 'Viral Pnömoni' olmak üzere iki sınıf 

arasında sınıflandırma yapar. 

 

Parametrele

ndirilmiş 

Kuantum 

Devresi 

Veri Kodlama Kodlama Ölçümü 
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Burada belirtilmesi gereken önemli bir nokta, başlangıçta çok sınıflı sınıflandırma 

için tek model kullanmaya çalışılmış olunması ve sonucun oldukça düşük çıkmasıdır. 

Dolayısıyla iki modelli yaklaşım son yaklaşım olarak değerlendirilmiştir.  

Ayrıca bir diğer husus ise Model-1'in doğruluğu her zaman model-2'den daha yüksek 

oluşudur. Çünkü 'Normal Kişi' ile 'Covid’19/Viral Pnömoni'yi ayırt etmek 'Covid’19' 

ile 'Viral Pnömoni'yi ayırt etmekten daha kolaydır. 

 

 

Şekil 7.7. Sınıflandırıcı modeli 

 

Bunun için öznitelik boyutu küçültme tekniği ve özellik haritası devre tasarımı üç 

farklı yaklaşımla kullanılmıştır. Bu üç farklı kuantum sınıflandırıcısı ise şunlardır: 

 Kuantum Sınıflandırıcısı 1'de, Temel Veri Analizi ile çıkarılan 256 öznitelik 

boyutlu girdi verisinden 11 öznitelik kullanılmıştır. Burada yaklaşık %70 

doğruluk elde edilmiştir.  

İlk modele 

veri girişi 

Sağlıklı birey Covid’19 ya da 

Zatürre 

Semptomları 

İkinci 

modele veri 

girişi 

Bireyde 

Covid’19 var.  

Bireyde 

zatürre var.  
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 Kuantum Sınıflandırıcısı 2’de TruncatedSVD yöntemini kullanarak her 

görüntünün 256 özniteliği 4'e indirilmiştir. Yaklaşık %72 doğruluk 

(accuracy) elde edilmiştir.  

 Kuantum Sınıflandırıcısı 3’de verileri yalnızca 2 özniteliğe indirgenmiştir. 

Beklenmedik bir şekilde bu bize daha önce yaklaşılanların en yükseği olan 

%76 doğruluğu vermiştir.  

 

 

7.8. Tahminleme  

Tahmin yaparken öncelikle Model-1'e girdi verilmiştir. Normal kişi olarak tahmin 

yapıyorsa bu, girişe atanan son tahmindir. Değilse, aynı girdi Model-2'ye verilir ve 

sonunda göğüs röntgeninin hastalarda Covid’19 veya Viral Pnömoni olup olmadığını 

ortaya çıkaracağını tahmin edilir. 

Her giriş görüntüsünün altında kuantum evrişimi tarafından oluşturulan 4 çıkış kanalı 

gri tonlamayla görselleştirilir. Kuantum çekirdeği ve çözünürlüğün aşağı örneklemesi 

(down sampling) tarafından bazı yerel bozulmaların ortaya çıktığı açıkça 

gözlemlenebilir. Bununla birlikte, bir evrişim katmanından beklendiği gibi 

görüntünün global şekli korunur. Bu durum şekil 7.8’de gösterilmiştir.  

 

Şekil 7.8. (a) Sıkıştırılmış görüntüler 14*14. Şekil 7.8. (b) Covid’19 veri 

kümesindeki kuantumsal sinir ağı 
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7.9. Bulgular  

7.9.1. Kuantum sınıflandırıcısı -1 için elde edilen bulgular  

Model 1 ve model 2 için maliyet ve eğitim doğruluk grafikleri Şekil 7.9, 7.10, 7.11 

ve 7.12’de gösterilmiştir. Kuantum Sınıflandırıcısı 1'de, Temel Veri Analizi ile 

çıkarılan 256 öznitelik boyutlu girdi verisinden 11 öznitelik kullanılmıştır. Burada 

yaklaşık %70 doğruluk elde edilmiştir. 

 

Şekil 7.9. Kuantum sınıflandırıcı-1, model - 1 için maliyet grafiği  

 

Maliyet fonksiyonları genel olarak modellerin performansını ölçmek için kullanılır. 

Yapılan çalışmada, yineleme sayısı belirli bir işlemin tekrarlanma sayısını ifade 

etmektedir. Yineleme sayısı,  genel olarak optimal çözüme yakınsama için gerekli 

olan sayıyı temsil eder. Bu bağlamda Şekil 7.9’daki grafiğe göre iterasyon sayısı 

arttıkça model performansının arttığı gözlemlenmektedir.   
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Şekil 7.10. Kuantum sınıflandırıcı-1, model -1 için eğitim doğruluk grafiği  

 

Eğitim doğruluğu, bir makine öğrenimi modelinin eğitim sırasında ne kadar iyi 

performans gösterdiğinin ölçüsüdür. Bu çalışmada Şekil 7.10’daki grafiğe göre 

iterasyon sayısı arttıkça model performansının arttığı gözlemlenmektedir.   

 

 

Şekil 7.11. Kuantum sınıflandırıcı -1, model - 2 için maliyet grafiği 
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Şekil 7.12. Kuantum sınıflandırıcı-1, model - 2 için eğitim doğruluk grafiği 

 

Yapılan çalışmada, yineleme sayısı belirli bir işlemi veya işlemin tekrarlanma 

sayısını ifade etmektedir. Bura da amaç, optimal çözüme yakınsama için gereken 

yineleme sayısını göstermektir. Bundan dolayı, Şekil 7.11’deki grafiğe göre 

iterasyon sayısı arttıkça model performansının arttığı gözlemlenmektedir.   

Eğitim doğruluğu, bir makine öğrenimi modelinin eğitim sırasında ne kadar iyi 

performans gösterdiğinin ölçüsüdür. Bu bağlamda yapılan çalışmada, Şekil 7.12’deki 

grafiğe göre iterasyon sayısı arttıkça model performansının arttığı 

gözlemlenmektedir.  Önceden de bahsedildiği üzere bir diğer husus ise Model-1'in 

doğruluğu her zaman model-2'den daha yüksek oluşudur. Bunun sebebi ise 'Normal 

Kişi' ile 'Covid’19/Viral Pnömoni'yi ayırt etmek 'Covid’19' ile 'Viral Pnömoni'yi 

ayırt etmekten daha kolay olmasıdır.  

7.9.2. Kuantum sınıflandırıcısı - 2 için elde edilen bulgular  

Yapılan uygulamada Kuantum Sınıflandırma için kullandığımız model 2 için maliyet 

ve eğitim doğruluk grafikleri Şekil 7.13, 7.14, 7.15 ve 7.16’de gösterilmiştir.  
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Şekil 7.13. Kuantum sınıflandırıcı- 2, model-1 için maliyet grafiği 

 

Uygulamada yapılan ikinci modellemede, maliyet fonksiyonları yineleme sayısı 

optimal çözüme yakınsadıkça Şekil 7.13’deki grafikte görüldüğü üzere model 

performansının arttığı gözlemlenmektedir.   

Bu modelin eğitimi sırasında ne kadar iyi performans gösterdiği Şekil 7.14’deki 

grafikte görmekteyiz. Buna göre iterasyon sayısı arttıkça model performansının 

arttığı gözlemlenmektedir.   

Model-2 için incelediğimiz bir diğer foksiyon ise maliyet fonksiyonudur. 

Modelimizin performansını göstermek için Şekil 7.15’deki grafik kullanılmaktadır. 

Bu bağlamda Şekil 7.15’deki grafiğe göre iterasyon sayısı arttıkça model 

performansının arttığı açıkça gözlemlenmektedir.   
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Şekil 7.14. Kuantum sınıflandırıcı-2, model-1 için eğitim doğruluk grafiği 

 

 

Şekil 7.15. Kuantum sınıflandırıcı-2, model-2 için maliyet grafiği 
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Şekil 7.16. Kuantum sınıflandırıcı-2, model-2 için eğitim doğruluk grafiği 

 

Yapılan eğitimin doğruluğu, modelinmizin eğitim sırasında ne kadar iyi performans 

gösterdiğinin ölçüsüdür. Bu bağlamda Şekil 7.16’daki grafiğe göre iterasyon sayısı 

arttıkça model performansının arttığı gözlemlenmektedir.   

 

7.9.3. Kuantum sınıflandırıcısı -3 için elde edilen bulgular 

Model- 1 ve model- 2 için maliyet ve eğitim doğruluk grafikleri Şekil 7.17, 7.18, 

7.19 ve 7.20’de gösterilmiştir.  

Bu grafiklerde önceki modellerde olduğu gibi maliyet fonksiyonlarının 

performansını görmek için kullanıldı. Burada Şekil 7.17’deki grafiğe göre iterasyon 

sayısı arttıkça model performansının arttığı gözlemlenmektedir.   

Oluşturulan sınıflandırıcı için modelin eğitim doğruluğu, performans değerleri 

açısından bir ölçüdür. Şekil 7.18’deki grafiğe göre iterasyon sayısı arttıkça model 

performansının arttığı gözlemlenmektedir.   
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Şekil 7.17. Kuantum sınıflandırıcı-3, model-1 için maliyet grafiği 

 

 

 

Şekil 7.18. Kuantum sınıflandırıcı-3, model-1 için eğitim doğruluk grafiği 
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Şekil 7.19. Kuantum sınıflandırıcı-3, model-2 için maliyet grafiği 

 

 

 

 

Şekil 7.20. Kuantum sınıflandırıcı-3, model-2 için eğitim doğruluk grafiği 
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Bu grafiklerde bir önceki bölümlerde olduğu gibi maliyet fonksiyonları modellerin 

ne kadar performanslı çalıştığını görmek için kullanılır. Şekil 7.19’daki grafiğe göre 

iterasyon sayısı arttıkça model performansının arttığı gözlemlenmektedir.   

Şekil 7.20’deki grafiğe göre iterasyon sayısı arttıkça model performansının arttığı 

gözlemlenmektedir.   

Önceden de bahsedildiği üzere bir diğer husus ise Model-1'in doğruluğunun 

(accuracy) her zaman model-2'den daha yüksek oluşudur. Bunun sebebi ise 'Normal 

Kişi' ile 'Covid’19/Viral Pnömoni'yi ayırt etmek 'Covid’19' ile 'Viral Pnömoni'yi 

ayırt etmekten daha kolay olmasıdır. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



73 

 

8. SONUÇLAR VE ÖNERİLER 

Kuantum evrişimli sinir ağları (QCNN'ler), kuantum hesaplamanın potansiyel olarak 

güçlü bazı yönlerinden yararlanarak CNN'lerin yeteneklerini genişletir. Bir dizi 

rastgele kuantum devresi kullanarak verileri yerel olarak dönüştürerek giriş verileri 

üzerinde çalışır. 

Klasik evrişimli sinir ağlarının verimliliğinden yola çıkarak, Evrişimli sinir ağını 

(QNN'ler) kullanarak veriler analiz edilmiş, tahminler yapılmış ve sonuçlar 

değerlendirilmiştir. Kuantum halinde kodlanmış covid’19 veri setinin ikili 

sınıflandırması gerçekleştirilmiştir. Ayrıca Pennylane'in "varsayılan qubit" 

cihazındaki farklı parametreleri de dikkate alarak performansı araştırılmıştır.  

Bu bağlamda, kuantum devrelerinin, polinom boyutlu klasik hesaplama kaynakları 

kullanılarak gerçekleştirilmesi mümkün olmayan karmaşık fonksiyonel ilişkileri 

modelleyebildiği gösterilmiştir. Kuantum devresinin sağlamış olduğu fayda klasik 

olarak anlaşılması zor olan oldukça karmaşık çekirdekler üretebilmesidir. 

Veri kümesindeki gerçek röntgen görüntüleri birçok bilgiyi barındıracak kadar 

büyüktür. Ancak hesaplama kaynaklarının eksikliği nedeniyle, openCV kütüphanesi 

kullanılarak boyut 28x28'e düşürülmüştür, bu da birçok önemli bilgiyi bastırmış 

olabilir. Daha sonra, daha fazla hesaplama kaynağının bulunmasıyla birlikte, modelin 

doğruluğunu artırabilecek 256x256 boyutlu görüntüyü kullanmak mümkün olabilir.  

Evrişim uygulanıp veriler düzleştirildikten sonra her görüntünün 256 özelliği elde 

edildi ve 11 özellik, kübit eksikliğinden dolayı özellik seçme yöntemiyle kullanıldı. 

Bu çalışma, kuantum sistemi hakkında fikir edinmek için daha fazla sayıda mevcut 

kübit ve kuantum devresinin gerçek zamanlı simülasyonu ile gerçek zamanlı bir 

kuantum bilgisayarında uygulanabilir. Dahası, daha fazla kübitin varlığıyla rastgele 

oluşturulmuş görüntü verileri üzerinde dört evrişim katmanın eğitimi test edilebilir. 

Sonuç olarak, geleceğe dönük çalışmalar ve öneriler aşağıda verilmiştir:  

 Veri kümesindeki gerçek röntgen görüntüleri birçok bilgiyi barındıracak 

kadar büyüktür. Ancak önceden de açıklandığı üzere hesaplama 

kaynaklarının eksikliği nedeniyle, openCV kütüphanesini kullanarak boyutu 
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28x28'e düşürülmüştür, bu da birçok önemli bilgiyi bastırmış olabilir. Daha 

sonra modelin doğruluğunu artıracak 256x256 boyutlu görüntü ile denemeler 

yapılabilir.  

 Şu anda evrişimi uyguladıktan ve verileri düzleştirdikten sonra her 

görüntünün 256 özelliğine sahip olmamıza rağmen, çeşitli öznitelik boyutu 

küçültme yöntemleriyle sırasıyla Kuantum Sınıflandırıcı-1, Kuantum 

Sınıflandırıcı-2 ve Kuantum Sınıflandırıcı-3'te yalnızca 11 öznitelik, 4 

öznitelik ve 2 öznitelik kullanılmıştır. Daha yüksek boyutlu verilerle 

doğruluğun artıp artmadığını veya kuantum bilgisayarların yalnızca daha az 

sayıda özellik ile daha iyi çalışıp çalışmadığını denemek için daha fazla 

öznitelik denenebilir.  

 Görüntü verilerine uygulanan dört evrişim katmanın tümü, daha fazla 

eğitilmeyen, tek biçimli oluşturulmuş rastgele parametreler kullanmaktadır. 

Daha sonra, değiştirilmiş veri kümesinin gerçek görüntüler hakkında çok 

daha fazla veri içerebilmesi için bu evrişim katmanların da eğitilmesi söz 

konusu olabilir.  

 Son olarak, daha doğru simülatörler üzerinde eğitilen modellerin eğitim 

sonucunu ve nihai doğruluğu elde edilmesi ve daha gerçekçi deneysel veriler 

elde etmek için bunları yavaş yavaş gerçek kuantum bilgisayarlarında 

çalıştırmayı denemek doğruluk (accuracy) değerlerinin artmasını şüphesiz ki 

sağlayacaktır.   
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