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SYMBOLS 

𝒄̇𝑬𝑾𝑯 : constant amount of water heat flow capacity in a single time-step 

[kW/K]. 

𝒄̇𝒋 : Water (for EWH) or air (for AC) heat flow capacity per time interval 

[kW/K]. 

𝑪′𝒄,𝒚,𝒅 : Daily bill (artificial battery degradation cost removed) [$].   

𝑪𝑨𝑪 : House thermal capacitance [kJ/ºC]. 

𝑪𝑩,𝑶&𝑴 : O&M cost of BESS [$]. 

𝑪𝑩,𝒊𝒏𝒊 : Initial cost of BESS [$]. 

𝑪𝑬𝑾𝑯 : EWH tank thermal capacitance [kJ/ºC]. 

𝑪𝑯𝑬𝑴𝑺,𝒊𝒏𝒊 : Initial cost of HEMS [$]. 

𝑪𝑶𝑷𝑨𝑪 : AC coefficient of performance. 

𝑪𝑶𝑷𝑬𝑾𝑯 : EWH coefficient of performance. 

𝑪𝑶𝑷𝑹 : Refrigerator coefficient of performance. 

𝑪𝑶𝑷𝒋 : Coefficient of performance (AC, EWH). 

𝑪𝑷𝑽,𝑶&𝑴 : O&M cost of a module [$]. 

𝑪𝑷𝑽,𝒊𝒏𝒊 : Initial cost of 1 kW PV array [$]. 

𝑪𝑹 : Refrigerator thermal capacitance [kJ/ºC]. 

𝑪𝒂𝒑𝑩, 𝑪𝒂𝒑𝑽 : BESS, EV battery capacity [kWh]. 

𝑪𝒂𝒑𝒌 : Battery capacity [kWh]. 

𝑪𝒄,𝒚,𝒅 : Daily bill (artificial battery degradation cost included) [$].  

𝑪𝒄,𝒚
𝒂𝒏𝒏,𝒘𝒊𝒕𝒉

 : Annual electricity bill of household with HEMS use [$]. 

𝑪𝒄,𝒚
𝒂𝒏𝒏,𝒘𝒊𝒕𝒉𝒐𝒖𝒕

 : Annual electricity bill of household without HEMS use [$]. 

𝑪𝒄,𝒚
𝒂𝒏𝒏 : Annual electricity bill of household [$]. 

𝑪𝒄
𝑶&𝑴 : Operation and maintenance cost of PV-BESS-HEMS [$]. 

𝑪𝒄
𝒊𝒏 : Monetary savings [$]. 

𝑪𝒄
𝒊𝒏𝒊𝒕𝒊𝒂𝒍 : Initial investment cost of PV-BESS-HEMS [$]. 

𝑪𝒄
𝒐𝒖𝒕 : Expense costs [$]. 

𝑪𝒄
𝒓𝒆𝒑𝒍𝒂𝒄𝒆𝒎𝒆𝒏𝒕

 : Replacement cost of PV-BESS-HEMS [$]. 

𝑪𝒊𝒏𝒗,𝒊𝒏𝒊 : Initial cost of 1 kW inverter [$]. 
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𝑪𝒊𝒏𝒗,𝒓𝒆𝒑 : Replacement cost of inverter [$]. 

𝑪𝒋 : Thermal capacitance (house, EWH tank) [kJ/ºC]. 

𝑪𝒍𝒂𝒃𝒐𝒓 : Installation labor cost of PV-BESS-HEMS [$]. 

𝑪𝒚𝒄𝑩, 𝑪𝒚𝒄𝑽 : BESS, EV battery lifetime in cycles. 

𝑪𝒚𝒄𝒌 : Lifetime of battery in cycles. 

𝑫𝒐𝑫𝑩, 𝑫𝒐𝑫𝑽 : BESS, EV battery depth of discharge. 

𝑫𝒐𝑫𝒌 : Depth of discharge of battery. 

𝑯𝒕𝑵𝑶𝑪𝑻 : Solar radiation at which the NOCT is defined [800 W/m2]. 

𝑯𝒕𝑺𝑻𝑪 : Global solar radiation under STC [1000 W/m2]. 

𝑳𝑩, 𝑳𝑽 : BESS, EV battery lifetime throughput energy measured for specific 

DoD [kWh]. 

𝑳𝒊𝒏𝒗  : Lifetime of inverter [years]. 

𝑳𝒌 : Battery lifetime throughput for specific DoD (BESS, EV) [kWh]. 

𝑵𝑷𝑽𝒄 : Net present value of PV-BESS-HEMS investment [$].  

𝑷𝑨𝑪 : AC power [kW]. 

𝑷𝑬𝑾𝑯  : EWH power [kW]. 

𝑷𝑳𝒕
𝑮, 𝑷𝑳𝒕

𝟐𝑮 : Power import, export peak limit [kW]. 

𝑷𝑹  : Refrigerator power [kW]. 

𝑷𝒂
𝑻𝑺𝑨 : Fixed daily energy consumption pattern of TSA 𝑎. 

𝑷𝒄,𝒅,𝒕
𝑩,𝑮

, 𝑷𝒄,𝒅,𝒕
𝑽,𝑮

 : Power drawn from grid by BESS and EV at time 𝑡 from grid [kW]. 

𝑷𝒄,𝒅,𝒕
𝑮  : Power drawn from grid by inflexible appliances, TCAs and TSAs at 

time 𝑡 [kW]. 

𝑷𝒊 : All combination possibilities of a TSA's power consumption in one 

day. 

𝑷𝒋 : Power (AC, EWH) [kW]. 

𝑷𝒕
𝑨𝑪 : AC power used [kW].  

𝑷𝒕
𝑩,𝑮

 : Power drawn from grid by BESS at time 𝑡 [kW]. 

𝑷𝒕
𝑩,𝒄𝒉

, 𝑷𝒕
𝑽,𝒄𝒉

 : BESS, EV charging power [kW]. 

𝑷𝒕
𝑩,𝒅𝒊𝒔

, 𝑷𝒕
𝑽,𝒅𝒊𝒔

 : BESS, EV discharging power [kW]. 

𝑷𝒕
𝑩,𝒖𝒔𝒆𝒅

 : BESS power used to supply energy demand of flexible and inflexible 

appliances and charging of EV [kW]. 

𝑷𝒕
𝑩,𝟐𝑮

 : Power transfer (battery-to-grid) [kW]. 

𝑷𝒕
𝑩,𝟐𝑯

 : Power transfer (battery-to-home) [kW]. 

𝑷𝒕
𝑩,𝟐𝑽

 : Power transfer (battery-to-vehicle) [kW]. 
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𝑷𝒕
𝑬𝑾𝑯 : EWH power used [kW].  

𝑷𝒕
𝑮 : Power drawn from grid by inflexible appliances, TSAs and TCAs at 

time 𝑡 [kW]. 

𝑷𝒕
𝑮 : Power purchased from grid [kW]. 

𝑷𝒕
𝑯 : Power consumption of all appliances except PSAs at time 𝑡 [kW]. 

𝑷𝒕
𝑯 : Power consumption of flexible and inflexible appliances except PSAs 

[kW]. 

𝑷𝒕
𝑷𝑽,𝒑𝒓𝒐𝒅

 : PV production at time 𝑡 [kW].  

𝑷𝒕
𝑷𝑽,𝒖𝒔𝒆𝒅

 : PV power used to supply energy demand of flexible and inflexible 

appliances and charging of PSAs [kW]. 

𝑷𝒕
𝑷𝑽,𝟐𝑩

 : Power transfer at time 𝑡 (PV-to-battery) [kW]. 

𝑷𝒕
𝑷𝑽,𝟐𝑮

 : Power transfer at time 𝑡 (PV-to-grid) [kW]. 

𝑷𝒕
𝑷𝑽,𝟐𝑯

 : Power transfer at time 𝑡 (PV-to-home) [kW]. 

𝑷𝒕
𝑷𝑽,𝟐𝑽

 : Power transfer at time 𝑡 (PV-to-vehicle) [kW]. 

 𝑷𝒕
𝑹 : Refrigerator power used [kW].  

𝑷𝒕
𝑽,𝑮

 : Power drawn from grid by EV at time 𝑡 [kW]. 

𝑷𝒕
𝑽,𝒖𝒔𝒆𝒅

 : EV power used to supply energy demand of flexible and inflexible 

appliances and charging of BESS [kW]. 

𝑷𝒕
𝑽,𝟐𝑩

 : Power transfer (vehicle-to-battery) [kW]. 

𝑷𝒕
𝑽,𝟐𝑮

 : Power transfer (vehicle-to-grid) [kW]. 

𝑷𝒕
𝑽,𝟐𝑯

 : Power transfer (vehicle-to-home) [kW]. 

𝑷𝒕
𝒈

 : Power used by inflexible appliances, TSAs and TCAs [kW]. 

𝑷𝒕
𝒊  : TSA power used at time 𝑡 [kW]. 

𝑷𝒕
𝒊𝒏𝒇

 : Total power consumption of inflexible appliances at time 𝑡 [kW]. 

𝑷𝒕
𝒋
 : TCA power used at time 𝑡 [kW]. 

𝑷𝒕
𝒌,𝒄𝒉

 : Power drawn from grid for charging at time 𝑡 [kW]. 

𝑷𝒕
𝒌,𝒅𝒊𝒔

 : Discharging power at time 𝑡 [kW]. 

𝑷𝒕
𝒌,𝟐𝑯

 : Power transfer at time 𝑡 (PSA-to-home) [kW]. 

𝑷𝒕
𝒐𝒕𝒉𝒆𝒓 : Power consumption of inflexible appliances [kW]. 

𝑷𝒕
𝟐𝑮 : Power transfer (PV+BESS+EV to grid) [kW]. 

𝑸𝑨𝑪 : AC heating capacity [kW]. 

𝑸𝑬𝑾𝑯 : EWH heating capacity [kW]. 

𝑸𝑹 : Refrigerator heating capacity [kW]. 

𝑹𝑨𝑪 : House envelope thermal resistance [ºC/kW]. 
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𝑹𝑩,𝒄𝒉, 𝑹𝑽,𝒄𝒉 : BESS, EV charging rate [kW]. 

𝑹𝑩,𝒅𝒊𝒔, 𝑹𝑽,𝒅𝒊𝒔 : BESS, EV discharging rate [kW]. 

𝑹𝑬𝑾𝑯 : EWH thermal resistance [ºC/kW]. 

𝑹𝑹 : Refrigerator thermal resistance [ºC/kW]. 

𝑹𝒆𝒑𝑩, 𝑹𝒆𝒑𝑽 : BESS, EV battery replacement cost including labor [$]. 

𝑹𝒆𝒑𝒌 : Replacement cost of battery including labor (BESS, EV) [$]. 

𝑹𝒋 : Thermal resistance (house, EWH tank) [ºC/kW]. 

𝑹𝒌,𝒄𝒉 : Charging rate (BESS, EV) [kW]. 

𝑹𝒌,𝒅𝒊𝒔 : Discharging rate (BESS, EV) [kW]. 

𝑺𝑶𝑬𝒕
𝑩, 𝑺𝑶𝑬𝒕

𝑽 : BESS, EV state of energy [kWh]. 

𝑺𝑷𝒕
𝒎𝒂𝒙, 𝑺𝑷𝒕

𝒎𝒊𝒏: AC max. and min. set-point temperature [ºC]. 

𝑺𝒐𝑬𝑩,𝒊𝒏𝒊 : Initial SoE (at start of the day) [kWh]. 

𝑺𝒐𝑬𝑩,𝒎𝒂𝒙 : BESS maximum battery capacity [kWh]. 

𝑺𝒐𝑬𝑽,𝒊𝒏𝒊 : Initial SoE (at EV arrival) [kWh]. 

𝑺𝒐𝑬𝑽,𝒎𝒂𝒙 : EV maximum battery capacity [kWh]. 

𝑺𝒐𝑬𝒌,𝒎𝒂𝒙 : Maximum SoE (BESS, EV) [kWh]. 

𝑺𝒐𝑬𝒕
𝒌 : SoE at time 𝑡 [kWh]. 

𝑻𝑹,𝒎𝒂𝒙, 𝑻𝑹,𝒎𝒊𝒏: Refrigerator max. and min. allowed inside temperature [ºC]. 

𝑻𝒂𝒎𝒃,𝑵𝑶𝑪𝑻 : Ambient temperature at which the NOCT is defined [20 °C]. 

𝑻𝒄𝒆𝒍𝒍,𝑺𝑻𝑪 : PV cell temperature under STC [25 °C]. 

𝑻𝒄𝒆𝒍𝒍,𝑵𝑶𝑪𝑻 : Nominal operating cell temperature (NOCT) [45 °C].  

𝑻𝒉𝒘,𝒎𝒂𝒙 : EWH tank maximum allowed hot water temperature [ºC]. 

𝑻𝒉𝒘,𝒎𝒊𝒏 : EWH tank minimum allowed hot water temperature [ºC]. 

𝑻𝒊,𝒎𝒂𝒙,𝒋 : Max. allowed inside temperature (house, EWH tank) [ºC]. 

𝑻𝒊,𝒎𝒊𝒏,𝒋 : Min. allowed inside temperature (house, EWH tank) [ºC]. 

𝑻𝒕
𝑨𝑪 : AC operating temperature [ºC]. 

𝑻𝒕
𝒂𝒎𝒃 : Ambient temperature [ºC]. 

𝑻𝒕
𝒄 : EWH inlet water temperature [ºC]. 

𝑻𝒕
𝒄𝒆𝒍𝒍 : PV cell temperature in the current time step [°C]. 

𝑻𝒕
𝒆𝒏,𝒋

 : Temperature of entering inlet water or outside air at time 𝑡 [ºC]. 

𝑻𝒕
𝒉𝒘 : EWH hot water temperature [ºC]. 

𝑻𝒕
𝒊,𝒋

 : Temperature inside the EWH tank or house at time 𝑡 [ºC]. 

𝑻𝒕
𝒊𝒏 : Refrigerator inside temperature [ºC]. 
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𝑻𝒕
𝒐,𝒋

 : Outside temperature at time 𝑡 (outside of house) [ºC]. 

𝑻𝒕
𝒐𝒖𝒕 : Outdoor temperature [ºC]. 

𝑿𝒂
𝑻𝑺𝑨 : Switch vector of binary variable combinations of TSA 𝑎. 

𝑿𝒊 : Switch vector to choose optimal column in 𝑃𝑖 

𝒀𝑷𝑽 : The rated capacity of the PV array under STC [kW]. 

𝒅𝑷𝑽 : PV derating factor [kW]. 

𝒏𝒄
𝑩 : Number of batteries in BESS. 

𝒏𝒄
𝑷𝑽 : Number of 1 kW PV arrays. 

𝒑𝒂,𝒕
𝑻𝑺𝑨 : Fixed power consumption of TSA 𝑎 at time 𝑡. 

𝒑𝒕
𝒊  : Constant power consumption of TSA 𝑖 at time 𝑡. 

𝒓𝒖𝒏𝒂  : Running time of TSA 𝑎.  

𝒓𝒖𝒏𝒊 : Operation duration of TSA 𝑖. 

𝒕𝒂
𝒎𝒊𝒏, 𝒕𝒂

𝒎𝒂𝒙 : Preferred hours of operation range limits of TSA 𝑎. 

𝒕𝒂𝒓𝒓, 𝒕𝒅𝒆𝒑 : Arrival and departure time of EV. 

𝒕𝒂𝒓𝒓, 𝒕𝒅𝒆𝒑 : EV home arrival and departure time. 

𝒕𝒊,𝒎𝒂𝒙 : End time of preferred operating range for TSA 𝑖. 

𝒕𝒊,𝒎𝒊𝒏 : Start time of preferred operating range for TSA 𝑖. 

𝒖𝒄𝒕 : Daily cold water usage times. 

𝒖𝒄𝒕
𝒋
 : Water usage or air ventilation at time 𝑡. 

𝒖𝒔𝒆𝒄,𝒚
𝑩  : Annual BESS use [kWh]. 

𝒙𝒂,𝒕
𝑻𝑺𝑨 : Binary variable – 1 if TSA 𝑎 starts operating at time 𝑡, else 0. 

𝒙𝒕
𝑨𝑪 : Decision variable between 0 – 1, defining AC usage. 

𝒙𝒕
𝑩 : Binary variable – 1 if BESS is charging at time 𝑡, else 0. 

𝒙𝒕
𝑬𝑾𝑯 : Decision variable between 0 – 1, defining EWH usage. 

𝒙𝒕
𝑹 : Decision variable between 0 – 1, defining refrigerator usage. 

𝒙𝒕
𝑽 : Binary variable – 1 if EV is charging at time 𝑡, else 0. 

𝒙𝒕
𝒊  : Binary variable: if TSA starts running at time 𝑡 1, else 0. 

𝒙𝒕
𝒋
 : Decision variable between 0 – 1, defining usage of TCA. 

𝒙𝒕
𝒌 : Binary variable: if PSA is charging at time 𝑡 1, else 0. 

𝜶𝑷 : Temperature coefficient of power [%/°C]. 

𝜼𝑩,𝒄𝒉, 𝜼𝑽,𝒄𝒉 : BESS, EV charging efficiency. 

𝜼𝑩,𝒅𝒊𝒔, 𝜼𝑽,𝒅𝒊𝒔 : BESS, EV discharging efficiency. 

𝜼𝑩,𝒓𝒕, 𝜼𝑽,𝒓𝒕 : BESS, EV round-trip efficiency [$/kWh]. 
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𝜼𝒌,𝒄𝒉 : Charging efficiency (BESS, EV). 

𝜼𝒌,𝒅𝒊𝒔 : Discharging efficiency (BESS, EV). 

𝜼𝒌,𝒓𝒕 : Round-trip efficiency of battery (BESS, EV) [$/kWh]. 

𝝀𝑩,𝒅𝒆𝒈, 𝝀𝑽,𝒅𝒆𝒈 : BESS, EV battery degradation cost [$/kWh]. 

𝝀𝒕
𝑩,𝒃𝒖𝒚

, 𝝀𝒕
𝑽,𝒃𝒖𝒚

 : BESS, EV artificial electricity buying price considering battery 

degradation cost [$/kWh]. 

𝝀𝒕
𝑩,𝒔𝒆𝒍𝒍

, 𝝀𝒕
𝑽,𝒔𝒆𝒍𝒍

 : BESS, EV artificial electricity selling price considering battery 

degradation cost [$/kWh]. 

𝝀𝒕
𝒃𝒖𝒚

 : Electricity buy price [$/kWh]. 

𝝀𝒕
𝒌,𝒃𝒖𝒚

 : Penalty cost included electricity buying prices (BESS, EV) [$/kWh]. 

𝝀𝒕
𝒔𝒆𝒍𝒍 : Electricity sell-back price [$/kWh]. 

𝝎′ : Hour angle on tilted surface [°].  

∆𝒕 : Time interval (5 min). 

𝑨 : Number of appliances. 

𝑩 : Index for BESS. 

𝑬 : Index for EV. 

𝑯 : Monthly average daily global radiation on horizontal surface [kWh∙m-

2-day]. 

𝑯𝒅 : Monthly average daily diffuse radiation on horizontal surface 

[kWh∙m-2-day]. 

𝑯𝒐 : Monthly average daily extraterrestrial radiation [kWh∙m-2-day]. 

𝑯𝒕 : Monthly average daily global radiation on tilted surface [kWh∙m-2-

day]. 

𝑰 : Number of TSAs. 

𝑰𝒔𝒄 : Solar constant [kW/m2]. 

𝑱 : Number of TCAs. 

𝑲 : Clearness index. 

𝑲 : Number of PSAs. 

𝑹 : Ratio of average global solar radiation on a tilted surface to that on 

horizontal surface. 

𝑹𝒃 : Ratio of average beam radiation on a tilted surface to that on horizontal 

surface. 

𝑻 : Set of time period. 

𝑻 : Set of time period. 

𝒄 : Index for PV-BESS-tilt angle combinations. 

𝒅 : Index for day. 
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𝒊 : Index for time-shiftable appliances. 

𝒋 : Index for thermostatically controlled appliances. 

𝒌 : Index for power-shiftable appliances. 

𝒏 : Day of the year. 

𝒓 : Real interest rate. 

𝒔 : Tilt of surface from horizontal [°]. 

𝒕 : Index for the time intervals of scheduling. 

𝒚 : Index for year. 

𝜹 : Solar declination [°]. 

𝝆 : Ground reflectance. 

𝝋 : Latitude of the place [°]. 

𝝎 : Hour angle [°].  
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DEVELOPMENT OF A HOME ENERGY MANAGEMENT SYSTEM TO 

INCREASE RENEWABLE SELF-CONSUMPTION IN HOUSEHOLDS 

CONSIDERING DEMAND-SIDE FLEXIBILITY 

SUMMARY 

The increase in global electrical energy demand and the rapid integration of 

intermittent renewable resources into the electricity grid has required the improvement 

and modernization of traditional grid infrastructure to achieve reliable and clean 

energy. As a result, the concept of smart grid has emerged, where all players in the 

grid network connect and interact with each other through information and 

communication technologies (ICT) to increase stability, resource efficiency and 

sustainability in the areas of energy production, transmission and distribution. 

In smart grids, unlike in the traditional grid, it becomes possible to adjust electricity 

demand according to supply. Demand side management (DSM) stands out as one of 

the ways to achieve this. DSM refers to a set of strategies for end-users to change their 

electrical energy usage habits by reducing, increasing or shifting their electrical load 

demands to a different time period for the purposes of energy efficiency, strategic load 

increase or load management. The ability of users to perform DSM can be described 

as their “demand side flexibility”. 

Demand response (DR), one of the DSM strategies, refers to balancing the load curve 

by encouraging end-users to shift their electricity demand to low demand period on 

the electricity grid. End-users can reduce their electricity bills or benefit from other 

incentives by actively participating in DR programs through DSM. Additionally, in 

case they have distributed generation (DG) units, users can increase renewable self-

consumption by shifting their electricity consumption to the period of renewable 

energy production. Today, since feed-in tariff (FiT) rates for selling electricity to grid 

has decreased significantly, increasing self-consumption becomes a necessity to 

increase the value of renewable energy system investments. Increasing DR and 

renewable self-consumption not only offers financial advantages to end-users, but also 

gives them the opportunity to contribute to a sustainable electricity grid. 

Grid-connected rooftop photovoltaic (PV) systems enable the use of solar energy 

potential in urban areas, provide on-site solutions for electrification and CO2 reduction, 

create no land costs, and reduce transmission and distribution costs. Despite these 

advantages and Türkiye's high solar energy potential, the deployment rate of grid-

connected rooftop PV systems in Türkiye has stayed low. At the beginning of this 

thesis study (2017), the share of rooftop PV capacity (200 MW) in the total installed 

PV capacity (3700 MW) was only 5%. This was a very low rate compared to examples 

in other countries (21.5% in China, 70% in Germany and 76.5% in Australia). In 

addition, most of this amount belonged to industrial and commercial buildings and the 

share of residential rooftop PVs were very low.  

Therefore, one of the aims of this thesis is to accelerate investments in residential 

rooftop PV systems in Türkiye. This can be achieved through policy mechanisms such 



xxx 

as FiT schemes, purchase subsidies, regulatory supports, information campaigns, etc., 

as well as through engineering solutions that include smart home automation. For this 

purpose, a home energy management system (HEMS) tool has been developed to 

increase residential demand-side flexibility. The developed HEMS performs energy 

optimization by planning the operating hours of manageable electrical household loads 

through DSM. To increase self-consumption, HEMS shifts electrical loads to periods 

of high solar energy production. And to realize DR, it takes advantage of time-based 

electricity prices by shifting the loads to cheap electricity period. The developed 

HEMS tool then was modified to a PV-battery sizing model. PV-battery sizing model 

can perform component sizing for a flexible household load profile due to optimal DR 

and self-consumption operations of HEMS. Lastly, a nationwide survey was 

conducted to understand demand-side flexibility in Türkiye, specifically residential 

end users' perceptions of DR and HEMS usage. The survey aimed to identify the limits 

of HEMS use and DR participation rather than making assumptions for simulation 

studies (as is often done in the literature). Survey participants' responses were entered 

into the HEMS tool and simulated to observe to what extent the daily load curve of 

Türkiye could change with the use of DR-based HEMS. This Ph.D. thesis consists of 

four thematically linked scientific publications. 

Paper 1 examines the economic feasibility of grid-connected residential rooftop PV 

systems in Türkiye. This study was conducted to understand the economic reasons for 

the low prevalence of the systems in the country and to draw conclusions for policy 

making. Economic analysis of 5 kW rooftop PV systems for a total of nine provinces 

was made using HOMER Grid software. Simulation results have shown that 

residential rooftop PV systems were not feasible in Türkiye except for one of the nine 

selected provinces. To overcome this, first, the amount of FiT rates that could make 

the systems attractive were calculated, and then, based on solar radiation differences 

in Türkiye, a regional FiT scheme was proposed, as applied in many other countries. 

It was also recommended to update FiT rates periodically (as applied in Germany, 

England, Japan and Australia) taking into account the country's rooftop PV targets and 

changes in parameters such as PV installation costs, retail electricity prices and grid 

needs. 

In Paper 2, a HEMS model is developed to increase the demand-side flexibility of 

households through automation, thereby making rooftop PV systems economically 

attractive. The developed mixed integer linear programming (MILP)-based HEMS 

model provides optimum DR and PV self-consumption by performing day-ahead load 

scheduling for cost minimization. HEMS allows bi-directional power flow between 

the household, battery energy storage system (BESS), electric vehicle (EV) and the 

grid. The model can calculate the solar radiation falling on an inclined plane using an 

isotropic model and thus determine the power output that the PV array can produce 

according to the technical specifications of the array, the inclination angle and the daily 

outdoor temperature. The proposed HEMS also includes a smart thermostat which can 

define different air conditioning temperature set-points for different periods of the day 

based on changing electricity prices, solar radiation, and occupancy level. In this way, 

DR participation is provided flexibly for air-conditioner owners. Simulation results 

showed that the proposed HEMS can reduce the daily electricity bill during summer 

days by between 53.2% (household with time-shiftable appliances (TSAs), 

thermostatically controlled appliances (TCAs), PV, BESS and EV) and 13.5% 

(household with TSAs and TCAs) depending on the household type. The smart 

thermostat integrated into HEMS managed to reduce the daily air conditioning bill by 
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15% to 24% during the summer months. It was seen that the HEMS could provide 

more bill reduction under RTP than under TOU. Under RTP, the HEMS achieved to 

sell a portion of the produced electricity to the grid and perform vehicle-to-grid (V2G). 

PV-BESS sizing becomes complicated for a household that wants to install an HEMS 

due to the load profile changing throughout the year according to HEMS oeprations. 

Therefore, in Paper 3, a renewable energy system sizing model that can calculate the 

optimal PV-BESS-PV tilt angle for HEMS-equipped households is developed. The 

proposed model simulates the load profile of a HEMS-equipped household for a year 

and repeats the simulations for each PV array capacity-tilt angle-number of batteries 

combination. The model determines the NPV of each combination and ranks them 

from highest to lowest. According to the results, under current battery and electricity 

prices, the optimal system design with the highest NPV for a HEMS-equipped 

household in Istanbul, Türkiye is 3 kW PV – no battery – 10° tilt angle. The reason 

why the optimum configuration is without a battery is that electricity prices are very 

low in Türkiye. The savings made cannot cover the investment made in the battery. In 

order to make future projections, a sensitivity analysis is conducted according to 

increasing electricity and decreasing battery prices. Battery use becomes possible if 

electricity prices increase by 25% or battery prices decrease by 25%. In the case of 

HEMS use, the NPV of the PV-BESS investment increases from $920 to $2273. This 

is an important finding, because in many countries PV projects cannot be implemented 

due to low feasibility in the absence of incentives. 

The rising adoption rate of smart home appliances and rising electricity prices make 

the use of HEMSs increasingly attractive. However, HEMSs have not yet become 

widespread, and even if they did, there is still not enough information about the future 

potential for mass adoption of these devices and consumer preferences for their use. 

Understanding this potential is closely related to appliance usage behavior, electricity 

tariff perception and DR perception. Since HEMS is a new technology and no DR 

programs are offered for residential consumers in Türkiye today, surveys can be very 

useful to understand future user behavior and preferences before the wide-scale 

deployment of these technologies. Therefore, in Paper 4, we conduct a nationwide 

survey aiming to understand the perceptions towards HEMS use (which electrical 

appliances users would want to give management to HEMS, at what time of day they 

would like HEMS to operate these appliances, etc.), time-based electricity tariffs and 

DR programs. Then, the responses of the survey participants are simulated using the 

developed HEMS, and it is investigated to what extent Türkiye’s daily load curve 

could change in case of participation in DR programs with HEMSs in Türkiye. 

According to the results, 78% of the survey participants are willing to use HEMS. 

There is a technical potential to reduce daily peak demand by 33% with the use of 

HEMS for DR purposes. However, this potential may not be possible to achieve, as 

the average electricity bill savings HEMS owners can achieve is only 6.7%. Yet in 

simulations, 21% of survey participants (16.4% of total respondents) were able to 

reduce their bills by over 10% if they used HEMS. 8% of the participants saved more 

than 15% on their bills, and 3% saved more than 20%. These households may be the 

target audience of future HEMS market and DR campaigns. Simulations show that if 

survey participants' device and HEMS usage behaviors are representative of the 

Turkish population, DR participation of 40% of all residential end-users in winter 

period and 20% in summer period is required to minimize the peak to average power 

ratio (PAR) of the Turkish load curve.  
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TALEP TARAFI ESNEKLİĞİ DİKKATE ALINARAK KONUTLARDA 

YENİLENEBİLİR ÖZ TÜKETİMİ ARTIRMAYA YÖNELİK BİR EV 

ENERJİ YÖNETİM SİSTEMİ GELİŞTİRİLMESİ 

ÖZET 

Küresel elektrik enerjisi talebindeki artış, mevcut şebeke altyapısının verimsizliği ve 

konvansiyonel kaynakların yarattığı çevresel tahribat nedeniyle kesintili yenilenebilir 

kaynakların hızlı bir şekilde elektrik şebekesine entegre olmaya başlaması, güvenilir 

ve temiz enerji elde etmek için geleneksel elektrik şebekesinin iyileştirilmesini, 

izlenebilirliğini ve modernizasyonunu gerektirmiştir. Bunun sonucunda enerji üretimi, 

iletimi ve dağıtımı alanlarında istikrarı, kaynak verimliliğini ve sürdürülebilirliği 

artırmak için şebeke ağındaki tüm oyuncuların bilgi ve iletişim teknolojileri (ICT) 

aracılığıyla birbirleriyle bağlantı kurduğu ve etkileşimde bulunduğu akıllı şebekeler 

kavramı ortaya çıkmıştır. 

Akıllı şebekelerde gelişmiş takip, iletişim ve kontrol teknikleri sayesinde elektrik 

enerjisi arzını talebe göre düzenlemek yerine, talebi arza göre düzenleyebilmek 

mümkün olmuştur. Talep tarafı yönetimi (DSM) olarak adlandırılan bu yaklaşım, son 

kullanıcıların, enerji verimliliği, stratejik yük artışı veya yük yönetimi için elektrik yük 

taleplerini azaltarak, artırarak veya farklı zaman dilimlerine kaydırarak elektrik 

enerjisi kullanım alışkanlıklarını değiştirmesine yönelik bir dizi stratejiyi ifade 

etmektedir. Kullanıcıların DSM yapabilme yeteneği onların “talep tarafı esnekliği” 

olarak tanımlanabilir.  

DSM stratejilerinden biri olan talep cevabı (DR), elektrik tüketicilerinin, bir sistem 

operatörü ya da hizmet sağlayıcıdan aldıkları sinyallere göre güç taleplerini elektrik 

şebekesindeki düşük talep dönemine kaydırarak yük eğrisini dengelemesini ifade 

etmektedir. Tüketiciler DSM yoluyla DR programlarına aktif olarak katılarak elektrik 

faturalarını azaltabilir ya da diğer maddi teşviklerden yararlanabilmektedir. Ayrıca, 

tesislerinde dağıtık üretim (DG) birimlerinin bulunması halinde yine DSM yoluyla 

elektrik tüketimlerini yenilenebilir enerji üretiminin olduğu zaman aralıklarına 

kaydırarak yenilenebilir iç tüketimi arttırabilmektedirler. Günümüzde yenilenebilir 

kaynaklarla üretilen enerjinin tarife garantisi (FiT) oranı önemli ölçüde düştüğünden, 

yenilenebilir enerji sistem yatırımlarının değerini artırmak için öz tüketimin 

arttırılması bir gereklilik haline gelmiştir. DR programlarına katılmak ve yenilenebilir 

iç tüketimi arttırmak son kullanıcılara sadece maddi avantajlar sunmaz, aynı zamanda 

onlara sürdürülebilir bir elektrik şebekesine katkıda bulunma imkanı da tanır. 

Şebekeye bağlı çatı üstü fotovoltaik (PV) sistemler güneş enerjisi potansiyelinin 

kentsel alanlarda kullanılmasına olanak tanımakta, elektrifikasyon ve CO2 azaltımı 

için yerinde çözümler sunmakta, iletim ve dağıtım maliyetlerini azaltmakta ve arazi 

maliyetlerini ortadan kaldırmaktadır. Bu avantajlarına ve Türkiye'nin yüksek güneş 

enerjisi potansiyeline rağmen Türkiye’de şebekeye bağlı çatı üstü PV sistemlerin 

kullanım oranı çok düşüktür. Tez çalışmasının başlangıcında (2017) Türkiye’deki 

toplam PV kurulu güç 3700 MW iken toplam çatı üstü PV kurulu güç 200 MW’de 
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kalmıştır. Toplam PV kurulu gücün %5’i dahi etmeyen bu oranın, Çin (%21,5), 

Almanya (%70) ve Avustralya (%76,5) gibi örneklerle karşılaştırıldığında oldukça 

düşük olduğu görülmektedir. Ayrıca, bu oranın büyük kısmı endüstriyel ve ticari 

uygulamalara ait olduğundan, Türkiye’de çatı üstü PV sistemlerin konutlarda 

yaygınlaşamadığı söylenebilir. 

Bu nedenle bu tez çalışmasının amaçlarından biri Türkiye'de konut tipi çatı üstü PV 

sistemleri ekonomik açıdan cazip hale getirmektir. Bu, politikalar üretme yoluyla 

başarılabileceği gibi teknolojik çözümlerle de başarılabilir. Makale 1’de, çatı üstü PV 

sistemleri cazip kılabilmek için garantili satış tarifesi miktarlarının bölgesel 

farklılıklara göre düzenlenmesi ve PV kurulum maliyetlerinin sübvanse edilmesi gibi 

politika çözümleri önerilmiştir. Makale 2’de konutlarda talep tarafı esnekliğini 

artırmaya yönelik bir ev enerji yönetim sistemi (HEMS) aracı geliştirilmiştir. 

Geliştirilen HEMS, DSM yoluyla yönetilebilir elektrik yüklerin çalışma saatlerini 

planlayarak hanelerde enerji optimizasyonu gerçekleştirebilmektedir. HEMS, öz 

tüketimi artırmak için elektrik yükleri güneş enerjisi üretiminin yüksek olduğu 

periyotlara, DR gerçekleştirmek için ise yükleri elektrik şebekesinin yoğun olmadığı 

yani elektriğin ucuz olduğu periyotlara kaydırarak zamana bağlı elektrik fiyatlarından 

yararlanmaktadır. Makale 3’de, geliştirilen HEMS aracı modifiye edilerek HEMS 

kurulumuna sahip haneler için optimal PV-batarya tasarımı yapabilen bir 

boyutlandırma modeli geliştirilmiştir. Bu model, HEMS işletimi nedeniyle hanenin 

elektrik yük profili (günlük değişen elektrik fiyatları, güneş radyasyonu ve sıcaklıklar 

nedeniyle) her gün değişse bile PV-batarya boyutlandırması yapabilmeyi 

amaçlamıştır. Makale 4’te Türkiye'deki talep tarafı esnekliğini, özellikle de konut son 

kullanıcılarının DR ve HEMS kullanımına ilişkin algılarını anlamak için ülke çapında 

bir anket yürütülmüştür. Anket sayesinde elektrik tüketicilerinin HEMS kullanımı ve 

DR katılımı tercihleriyle ile ilgili varsayımlar yapmak yerine bu tercihlerin sınırları 

belirlenmiştir. Ardından, anket katılımcılarının yanıtları geliştirilen HEMS aracıyla 

simüle edilerek Türkiye’de DR bazlı HEMS kullanımıyla günlük yük eğrisinin ne 

ölçüde değiştirilebilceği hesaplanmıştır. Bu doktora tez çalışması birbiriyle bağlantılı 

dört bilimsel yayının bir araya getirilmesiyle hazırlanmıştır. 

Makale 1'de, Türkiye'deki şebekeye bağlı konut tipi çatı üstü PV sistemlerinin 

ekonomik fizibilitesi incelenmektedir. Bu çalışma, sistemlerin Türkiye’deki 

yaygınlığının düşük olmasının ekonomik nedenlerini anlamak ve politika oluşturmaya 

yönelik sonuçlar çıkarmak amacıyla yapılmıştır. Çalışmanın başlangıcında Türkiye 

güneş enerjisi potansiyel atlası (GEPA) üç bölgeye ayrılmış ve ülke çapında bir 

fizibilite analizi için her bölgeden üçer il seçilmiştir. Toplam dokuz il için 5 kW’lık 

çatı üstü PV sistemlerin ekonomik analizi HOMER Grid yazılımı kullanılarak 

yapılmıştır. Simülasyon sonuçları göstermiştir ki, Türkiye’de konut tipi çatı üstü PV 

sistemler ülkenin güney kesimi haricinde fizibıl değildir. Bunu aşmak için ülkedeki 

bölgesel güneş ışınımı farklılıkları dikkate alınarak güneş enerjisinden üretilen elektrik 

için bölgesel alım fiyatı garantisi uygulamaya konulabilir. Ya da, başka ülkelerde 

uygulanan ancak Türkiye’de uygulanmayan yatırım sübvansiyonları bölgesel olarak 

sunulabilir. Türkiye’de 2011 yılında lisanssız üretim kanununda değişiklik 

yapıldığından beri alım fiyatı garantisi sabit kalmıştır. Aralarında Almanya, İngiltere, 

Japonya ve Avustralya'nın da bulunduğu birçok ülkede bu fiyatlar periyodik olarak 

güncellenmektedir. Türkiye'de de yerinde üretilen elektrik için alım fiyatı, ülkenin çatı 

üstü PV hedeflerine ve PV kurulum maliyeti, perakende elektrik fiyatı ve şebeke 

ihtiyacı gibi parametrelerdeki değişikliklere göre periyodik olarak güncellenebilir. 
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Makale 2'de, hanelerin talep tarafı esnekliğini otomasyon yoluyla artırmak ve bu 

sayede çatı üstü PV sistemleri ekonomik olarak cazip hale getirmek amacıyla bir 

HEMS modeli geliştirilmiştir. Geliştirilen karma tamsayılı doğrusal programlama 

(MILP) tabanlı bu model, maliyet minimizasyonu için gün öncesi yük çizelgelemesi 

gerçekleştirerek optimum DR ve PV öz tüketimi sağlayabilmektedir. HEMS, konut, 

batarya enerji depolama sistemi (BESS), elektrikli araç (EV) ve şebeke arasında çift 

yönlü güç akışına izin vermekte ve batarya sağlığını korumak için verdiği kararlarda 

batarya bozunumunu dikkate almaktadır. Model, tüm yönetilebilir elektrikli ev 

aletlerinin (zamana bağlı kaydırılabilir (TSA), termostatik olarak kaydırılabilir (TCA), 

güce bağlı kaydırılabilir (PSA)) çalışma saatlerini optimal bir şekilde 

ayarlayabilmektedir. Ayrıca, batarya bozunumunu da dikkate alarak her türlü 

bataryadan her şeye (B2X) ve araçtan her şeye (V2X) taleplerine yanıt 

verebilmektedir. Model, eğik düzleme düşen güneş ışınımını izotropik model 

kullanarak hesaplayabilmekte ve bu sayede günlük güneş radyasyonu tahmini 

üzerinden PV dizinin, dizinin eğim açısına, günlük dış sıcaklığa ve dizinin teknik 

özelliklerine göre üretebileceği güç çıkışını belirleyebilmektedir. Önerilen HEMS, 

bünyesinde bir akıllı termostat da barındırmaktadır. Bu akıllı termostat, değişen 

elektrik fiyatları, güneş radyasyonu ve sakinlerin evde bulunup bulunmama 

durumlarına göre günün farklı zaman dilimleri için farklı klima sıcaklık ayar noktaları 

tanımlayabilmektedir. Bu sayede klima kullanıcıları için DR katılımı esnek bir şekilde 

sağlanmaktadır. Simülasyon sonuçları, önerilen HEMS’in hane tipine bağlı olarak yaz 

aylarında günlük elektrik faturasını %53,2 (TSA'lara, TCA'lara, PV’ye, BESS’e ve 

EV'ye sahip hane) ile %13,5 (TSA'lara ve TCA'lara sahip hane) arasında azaltmayı 

başarabileceğini göstermiştir. HEMS'e entegre akıllı termostat, yaz aylarında 

İstanbul’da günlük klima faturasını %15 ile %24 arasında azaltmayı başarmıştır. 

Geliştirilen HEMS’in performansı Türkiye’de konut elektrik tüketicileri için başka bir 

alternatif olmadığı için sadece TOU tarifesine göre test edilebilmiştir. HEMS’in başka 

tarifeler altındaki performansını görmek için Türkiye’nin TOU tarifesi RTP’ye 

modifiye edilerek simülasyonlar tekrarlanmıştır. RTP altında, HEMS’in daha fazla 

fatura düşüşü sağlayabildiği görülmüştür. RTP altında TOU altında mümkün olmayan 

şebekeye elektrik satma ve araçtan şebekeye (V2G) güç aktarımı mümkün olmuştur.  

Makale 3’de HEMS donanımlı evler için optimal PV-BESS-PV eğim açısı 

hesaplayabilen bir yenilenebilir enerji sistem boyutlandırması modeli geliştirilmiştir. 

Bunun nedeni, HEMS kullanan hanelerde DSM nedeniyle yıl boyunca günlük olarak 

değişen yük profilinin PV-BESS boyutlandırmasını daha karmaşık bir hale 

getirmesidir. Geliştirilen boyutlandırma modeli, bir yıl için hane halkı yük profilini 

HEMS kullanılması durumu için simüle etmekte ve simülasyonları her bir PV dizisi 

kapasitesi-eğim açısı-batarya sayısı kombinasyonu için tekrarlamaktadır. Model, her 

kombinasyonun NPV'sini belirleyerek bunları en yüksekten en düşüğe doğru 

sıralamaktadır. Sonuçlara göre mevcut akü ve elektrik fiyatları altında İstanbul'da 

HEMS donanımlı bir ev için en yüksek NPV’ye sahip optimal konfigürasyon, 

bataryasız 3 kW PV – 10° eğim açılı konfigürasyon olarak bulunmuştur. Optimal 

konfigürasyonda batarya bulunmamasının nedeni, Türkiye’de elektrik fiyatlarının 

düşük olmasıdır. Elde edilecek fatura tasarrufları bataryaya yapılacak yatırımı 

karşılamamaktadır. Çalışmada geleceğe yönelik projeksiyonlar yapabilmek amacıyla 

artan elektrik ve düşen pil fiyatlarına göre hassasiyet analizi de yapılmıştır. Batarya 

kullanımı elektrik fiyatlarının %25 artması veya batarya fiyatlarının %25 düşmesi 

durumlarında mümkün hale gelmiştir. HEMS kullanımı durumunda PV-BESS 

yatırımının NPV’si 920 $'dan 2273 $'a yükselmiştir. Bu önemli bir bulgudur, çünkü 

birçok ülkede PV projeleri teşviklerin yokluğunda fizibilitenin düşük olmasından 
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dolayı hayata geçememektedir. HEMS kullanımı, PV sistemleri ekonomik açıdan daha 

cazip hale getirdiğinden PV-BESS boyutlandırması için yük profillerini simüle etmek 

isteyen haneler bu boyutlandırma modelinden yararlanabilir. Çalışmada aynı zamanda 

Türkiye ile aynı enlemde bulunan fakat farklı elektrik fiyatlarına sahip diğer Güney 

Avrupa ülkelerinde, HEMS kurulumu yapmak isteyen haneler için gerekli olan 

optimal PV-BESS konfigürasyonları da araştırılmıştır. 

Akıllı ev aletlerinin artan kullanımı ve artan elektrik fiyatları, HEMS kullanımını 

giderek daha cazip hale getirmektedir. Ancak HEMS'ler şu ana kadar 

yaygınlaşmamıştır ve yaygınlaşsalar bile, bu cihazların kitlesel olarak 

benimsenmesinin gelecekteki potansiyeli ve kullanımlarına dair tüketici tercihleri 

hakkında hala yeterince bilgi bulunmamaktadır. Bu potansiyelin anlaşılması, cihaz 

kullanım davranışı, elektrik tarifesi algısı ve DR katılım eğilimi ile yakından ilgilidir. 

HEMS yeni bir teknoloji olduğundan ve günümüzde yaygın olarak 

kullanılmadığından, yapılacak anketler gelecekteki kullanıcı davranışları ve 

tercihlerini anlamak açısından faydalı olabilir. Literatürde yapılan simülasyon 

çalışmalarında HEMS ve DR katılımına dair birçok varsayımda bulunulduğundan bu 

teknolojilere dair tüketici tercihlerinin sınırlarının belirlenmesi sonuçların tutarlığı 

açısından önem arz etmektedir. Ayrıca günümüzde Türkiye'de konut tüketicilerine 

yönelik herhangi bir DR programı sunulmamaktadır. Son kullanıcıları DR 

gerçekleştirmeye motive edecek tek araç TOU tarifesidir. Bu nedenle Makale 4’te 

Türkiye’de elektrik tüketicilerinin HEMS kullanımına (kullanıcıların hangi elektrikli 

aletlerinin yönetimini HEMS’e vermek isteyecekleri, HEMS’in bu aletleri günün 

hangi saatlerinde çalıştırmasını isteyecekleri vb.), zamana bağlı elektrik tarifelerine ve 

DR programlarına yönelik algılarını anlamayı amaçlayan bir anket yapılmıştır. 

Ardından, Türkiye genelini temsil eden anket katılımcılarının yanıtları geliştirilen 

HEMS’de simüle edilerek, Türkiye’de DR programlarına HEMS kullanımı yoluyla 

katılım durumunda Türkiye’nin günlük yük eğrisinin ne ölçüde değişebileceği 

araştırılmıştır. Sonuçlara göre anket katılımcılarının %78’i HEMS kullanmaya sıcak 

bakmaktadır. Katılımcıların beyanına göre Türkiye’de DR amaçlı HEMS kullanımıyla 

günlük puant talebin %33 oranında azaltılmasına yönelik bir teknik potansiyel 

bulunmaktadır. Ancak HEMS sahiplerinin elde edebileceği ortalama elektrik faturası 

tasarrufu yalnızca %6,7 olduğundan bu potansiyele ulaşılması mümkün olmayabilir. 

Bunu aşmanın yolu konut tüketicileri için daha cazip elektrik tarifelerinin tasarlanması 

olacaktır. Yine de simülasyonlarda anket katılımcılarının %21'i (toplam yanıt 

verenlerin %16,4'ü) HEMS kullanmaları durumunda faturalarını %10'un üzerinde 

azaltmayı başarmıştır. Katılımcıların %8’i %15'in üzerinde, %3’ü ise %20'nin 

üzerinde fatura tasarrufu sağlamıştır. Bu haneler gelecekteki HEMS pazarının ve DR 

kampanyalarının hedef kitlesi olabilir. Simülasyonlar, anket katılımcılarının cihaz ve 

HEMS kullanım davranışlarının Türkiye nüfusunu temsil etmesi durumunda, tepe 

güç/ortalama güç oranını (PAR) en aza indirmek için tüm konut son kullanıcılarının 

kış aylarında %40'ının ve yaz aylarında %20'sinin DR katılımının gerekli olduğunu 

göstermektedir.
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 GENERAL INTRODUCTION 

 Motivation 

Meeting the rising global demand for electrical energy, improving the existing grid's 

inefficiencies, and integrating intermittent renewables into the system required 

upgrading, monitoring, and modernizing the conventional electricity grid for reliable 

and clean energy. As a result, the concept of smart grid has emerged, in which all 

players in the grid network connect and interact with each other through information 

and communication technologies (ICT) to increase stability, resource efficiency and 

sustainability in the fields of energy production, transmission and distribution [1]. 

Advanced monitoring, communication and control techniques in smart grids made it 

possible to manage electrical demand, replacing the concept of “the demand follows 

the supply” with “the supply follows the demand” [2]. This approach, named demand-

side management (DSM), refers to a set of strategies to change electrical energy usage 

habits of end-users by reducing, increasing or shifting their load demand for energy 

efficiency, strategic load growth or load management (Figure 1.1) [3]. The ability of 

users to perform DSM can be described as their “demand side flexibility” [4]. 

 

Figure 1.1 : Demand-side management methods [3]. 
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Through DSM, end-users can reduce their electricity bills by performing demand 

response (DR), which refers to balancing the load curve by shifting demand to low 

demand period in return for incentives [5]. In addition, they can perform DSM in the 

presence of distributed generation (DG) units to increase renewable self-consumption. 

As feed-in tariff (FiT) rates have decreased significantly today, increasing self-

consumption becomes more important to increase the value of a renewable energy 

system investment [6]. 

This thesis aims to increase demand-side flexibility in residential sector in Türkiye 

through automated DSM using home energy management systems (HEMSs). In this 

way, residential end-users can better utilize renewable resources, increase the value of 

their on-site renewable energy systems and reduce their electricity bills, while the grid-

side can reduce investment and operating costs, all of which together contribute to a 

sustainable future. 

 Scope and Research Objectives 

Grid-connected rooftop PV systems allows the utilization of solar potential in the 

urban areas, provide on-site solutions for electrification and CO2 mitigation, do not 

cost land, and reduce transmission and distribution costs. Despite these advantages and 

Türkiye’s high solar energy potential, the rooftop PV deployment rate in Türkiye as of 

2017 (at the start of the thesis study) was only 200 MW over the entire installed PV 

capacity of 3700 MW. This amount was not even 5% and most of it belonged to 

industrial and commercial buildings [7]. This was a very low rate when compared to 

the examples from other countries (21.5% in China (2017), 70% in Germany (2017) 

and 76.5% in Australia (2018) as well [8–12].  

Therefore, one of the aims of this thesis is to make residential rooftop PV systems 

economically attractive in Türkiye. This can be achieved through policymaking as well 

as technological solutions. In Paper 1, policy solutions such as regulating FiT rates 

according to regional differences, updating FiT rates peridocially and subsidizing PV 

installation costs are suggested in order to make rooftop PV systems economically 

viable. In Paper 2, a HEMS tool is developed to increase residential demand-side 

flexibility. The developed HEMS can perform energy optimization in households by 

scheduling the working hours of manageable home appliances via DSM. HEMS shifts 

loads to solar generation period to increase self-consumption and to off-peak hours to 
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benefit from cheaper electricity prices. In Paper 3, the developed HEMS tool was 

modified to a PV-battery sizing model. PV-battery sizing model can perform 

component sizing for a flexible household load profile due to optimal DR and self-

consumption operations of HEMS. In Paper 4, a nationwide survey was conducted to 

understand demand-side flexibility in Türkiye, specifically residential end users' 

perceptions of DR and HEMS usage. The survey aimed to identify the limits of HEMS 

use and DR participation rather than making assumptions for simulation studies (as is 

often done in the literature). Survey participants' responses were entered into the 

HEMS tool and simulated to observe to what extent the daily load curve of Türkiye 

could change with the use of DR-based HEMS. This doctoral thesis was prepared by 

bringing together four interrelated scientific publications. 

 Linkage of Scientific Papers 

This thesis consists of the combination of four scientific papers. The linkage of papers 

is summarized in Figure 1.2. 

  

Figure 1.2 : Linkage of scientific papers. 

In Paper 1 [13], an economic feasibility of residential rooftop PV systems in Türkiye 

is examined to understand the low deployment rate of the systems in the country and 

draw conclusions for policy-making. 

Paper 1 
(Chapter 2)

•Examine the feasibility of residential rooftop PV systems in Türkiye.

Paper 2 
(Chapter 3)

•Develop a HEMS tool to increase the value of rooftop PV systems by 
reducing the daily bill of users.

Paper 3 
(Chapter 4)

•Modify the HEMS tool into a PV-battery sizing tool that can perform 
PV-battery sizing under HEMS management. 

Paper 4 
(Chapter 5)

•Conduct a nationwide survey to examine the demand-side flexibility 
of Turkish households. 

•Input survey results into the HEMS tool to compare the load profile of 
survey participants before and after HEMS use.
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In Paper 2 [14], a HEMS tool is developed to make rooftop PV systems economically 

more viable by enhancing the demand-side flexibility of households. The developed 

mixed-integer linear programming (MILP)-based HEMS tool can perform day-ahead 

load scheduling for cost-minimization and provides optimal DR and PV self-

consumption. The HEMS allows bi-directional power flow between the home, battery 

energy storage system (BESS), electric vehicle (EV) and the grid, and takes battery 

degradation into account to maintain battery health. The HEMS is combined with a 

smart thermostat to ensure the maintenance of the thermal comfort of household 

occupants. The developed HEMS tool forms the basis of the following two studies. 

In Paper 3 [15], the HEMS tool proposed in Paper 2 has been modified into a PV-

battery-PV tilt angle sizing tool for HEMS-equipped households. The proposed tool 

simulates the household load profile under HEMS management and accordingly 

determines the optimum PV-battery capacity based on the highest net-present value 

(NPV) based on site-specific economic and climatic characteristics. 

In Paper 4 [16], a nationwide survey is conducted to understand demand-side 

flexibility in Türkiye. Today, no DR program is offered to residential consumers in 

Türkiye. In addition, the Turkish time-of-use (TOU) scheme, which is the only tool to 

motivate end-users to perform DR, is designed for commercial and industrial groups 

and does not appeal to residential end-users. Therefore, the conducted survey aims to 

understand Turkish end-users’ perceptions regarding DR programs and HEMS use 

before the large-scale deployments of these technologies. 

 Contribution to the Literature 

Contributions of the papers to the literature is as follows: 

Paper 1: At the time study was conducted, there was no detailed study in the literature 

on the nationwide feasibility analysis of rooftop PV systems in Türkiye. Paper 1 

therefore conducts an economic analysis of grid-connected residential rooftop PV 

systems in nine provinces of Türkiye under the current FiT scheme. It investigates the 

low installation rate of the systems (only 5% of the total PV capacity) and makes policy 

recommendations, including regionalized FiT scheme, to make the systems viable in 

the country. 
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Paper 2: The main contribution of the Paper 2 is to combine a HEMS with a smart 

thermostat to provide efficient DR of air-conditioning with a higher thermal comfort 

of end-users. The developed HEMS tool is comprehensive and versatile in terms of its 

capabilities. After examination of the relevant publications, it became apparent that on 

the basis of HEMSs:  

• integration of a smart thermostat into a HEMS  

• controlling of all type of residential appliances (time-shiftable, thermostatically 

controlled, power-shiftable)  

• consideration of optimizing self-consumption and DR simultaneously 

• consideration of vehicle-to-grid (V2G), vehicle-to-home (V2H), vehicle-to-

battery (V2B), battery-to-grid (B2G), battery-to-home (B2H), battery-to-

vehicle (B2V), home-to-grid (H2G) operations together  

• consideration of battery degradation and prevention of unnecessary energy 

arbitrage 

• consideration of a solar model for a tilted PV array, that considers installed 

capacity, tilt angle of the PV array as well as the impact of temperature on PV 

power output  

were not evaluated together in a single HEMS framework before. Therefore, a load 

scheduling optimization-based HEMS which combines all the above-mentioned 

features is developed. This tool is then formed the basis of the 3rd and 4th papers. 

Paper 3: Although there are many studies and software for PV-BESS sizing in the 

literature, almost none of them perform optimal sizing for HEMS-equipped 

households since it is a more complicated problem. The sizing model we propose not 

only closes this gap in the literature, but also is very comprehensive in terms of 

including PV tilt angle sizing, energy optimization of all types of home appliances 

(TSAs, TCAs, PSAs) and V2H availability for EVs.  

Paper 3 conducts a techno-economic comparison between PV-BESS-equipped 

households using and not using HEMS. By this means, the effect of using HEMS on 

the NPV of PV-BESS systems is investigated. 

Paper 4: Before the initial deployment of a technology, field tests or surveys can be 

conducted to understand the perception of the technology. Although field tests are 
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based on actual use, they are costly and difficult to represent the general population. 

On the other hand, surveys can be conducted at lower costs and with more participants, 

and it has been stated that their accuracies are not low at all.  

As its main contribution, Paper 4 combines information gathered in a survey with an 

optimization tool to simulate the load mitigation potential of future mass adoption of 

HEMSs for DR.  

The study contributes to the existing literature in the following ways:  

• It collects information on residential electrical energy use behaviour, such as: 

- ownership rate of appliances - running hours of time-shiftable appliances 

(dishwashers, washing machines, dryers, etc.) - weekly operating frequency of 

appliances - preferred temperature set-points of refrigerators and air 

conditioners - frequency of use of electric water heaters (shower times, shower 

duration, etc.)  

• It investigates the consumer perception of electricity tariffs,  

• It investigates the residential demand-side flexibility through the willingness 

to participate in DR and defining operational priorities and limitations of 

HEMS use, such as: - willingness to use HEMS (if yes, which appliances do 

users allow HEMS to control) - time intervals users prefer HEMS to shift 

electrical loads - expectations, concerns, motivational factors, etc.  

• It investigates to what extent HEMS-based DR can change the initial load 

profile. To this end, survey responses are entered into a load scheduling-based 

HEMS tool to simulate the load profiles of DR-performing households.  

• It is comprehensive in scope as it includes DR participation of all major 

manageable home appliances.
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 ECONOMIC ANALYSIS OF GRID-CONNECTED RESIDENTIAL 

ROOFTOP PV SYSTEMS IN TÜRKİYE 

This chapter presents an economic analysis of grid-connected residential rooftop PVs 

in Türkiye under the current feed-in tariff (FiT) scheme. Three solar parts are formed 

on the solar map of Türkiye to discuss the effect of solar radiation differences between 

regions on the feasibility of PV systems. Nine provinces are selected for a nationwide 

analysis. 5 kW rooftop PVs are simulated using HOMER Grid. Discounted Payback 

Period (DPBP), Internal Rate of Return (IRR) and Profitability Index (PI) are used to 

ensure the viability of the systems from all aspects. DPBP below 8 years, IRR above 

13.12%, and PI above 2 are considered feasible. 

The results showed that the current DPBP, IRR, and PI of the systems are in the range 

of 7.75 – 14.43 years, 13.68% – 6.87%, and 2.02 – 1.28, respectively. The systems are 

attractive only in one province in the southern part, and far from being investable in 

the northern part. A sensitivity analysis is performed to analyze the effect of varying 

FiT rates and PV initial costs on the feasibility of the systems and make policy 

implications. It is recommended to increase the amount of residential PV incentives in 

Türkiye and develop a regional support mechanism, considering solar differences 

between regions. 

 Introduction 

Energy demand grows rapidly worldwide and increased demand brings challenges 

such as global warming. To overcome the threat, global steps have been taken so far, 

beginning from Rio Earth Summit in 1992, followed by the Kyoto Protocol in 1997, 

Rio+20 in 2012 and lastly Paris Agreement in 2015. More than 190 participant 

countries have agreed on a set of rules to keep global temperature increase below 2 

degrees Celsius. The first step to achieve the goal has been determined as the 

maximization of use of renewable energy sources. The European Union (EU) has 

already set targets to increase the share of renewables to 32% by 2030 with a 40% 

reduction in greenhouse gas emissions from 1990 levels [17]. 
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However, except hydropower, there has still been insufficient use of renewable energy 

worldwide. According to Renewable Energy Global Statement Report published by 

Renewable Energy Policy Network (REN21), 75.5% of the global electricity 

production has been provided by fossil fuels and nuclear energy resources by the end 

of 2017. Wind and solar power have only been accounted for 4.0% and 1.5%, 

respectively of the remaining share of 24.5% [18]. 

As reported in 2017 Sectoral Report of Electricity Supply published by Electricity 

Generation Company (EUAS), Türkiye’ss total installed power generating capacity 

and electrical energy production were 85360 MW and 292.6 TWh, respectively by the 

end of 2017. Natural gas covers the largest portion of the total electricity production 

of the country with a share of 37%. The rest of the share of energy sources is sorted as 

coal 32.5%, hydropower 20%, wind 6.1%, and the others (including solar) 4.4% [19]. 

Solar energy stands out as one of the most promising alternatives to increase utilization 

of renewables, and governments work on incentive mechanisms, regulations and 

policies to promote solar energy investments. Turkish energy policy also focuses on 

the exploitation of renewable energy sources not only to overcome global warming but 

also to reduce the high external dependency of the country on imported energy sources 

[20]. Although Türkiye continues its efforts to achieve better utilization of solar energy 

especially in photovoltaic (PV) power plant applications, PV systems have not been 

adopted sufficiently on building scale in the country and stayed behind EU countries.  

Unlike large-scale PV plants, small-scale grid-connected rooftop PV applications offer 

promising possibilities for the assessment of solar potential in the urban areas, provide 

on-site solutions, do not cost land, and reduce transmission and distribution costs. 

Thus, increasing the installation rate of these systems has vital importance, and there 

is a growing body of research dealing with the feasibility of grid-connected rooftop 

PVs in the literature. 

Rodrigues et al. [21] investigated the feasibility of 5 kW rooftop PV systems for 13 

different countries using RETScreen software and showed that the viability of the PV 

systems is very dependent on incentives and subsidies. La Monaca and Ryan [22] 

economically analyzed rooftop PVs for Ireland. System Advisory Model (SAM) is 

used in the simulations, and policy scenarios to reduce the current payback periods in 
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Ireland were introduced. Li et al. [23] investigated the feasibility of rooftop PV 

systems in five climatic zones of China for residential apartments. HOMER software 

was used and the results were evaluated over the levelized cost of energy (LCOE) and 

the net present value (NPV). Mayr et al. [24] suggested a reverse auction-based 

subsidy scheme for residential PVs in Austria to increase the efficiency of the FiT. 

Sagani et al. [25] found that grid-connected PV systems with a capacity below 5 kW 

are not economically viable in Greece due to the low sale price of electricity. 

Anagnostopoulos et al. [26] analyzed the effect of FiT cuts on the payback period, 

internal rate of return and profitability index of the residential rooftop PV systems. Lee 

et al. [27] studied the economic feasibility of rooftop PVs for a university campus in 

New England, Connecticut and calculated payback period of the systems as 11 years. 

Wee [28] discussed the economic impact of rooftop PVs on Hawaiian house prices. 

Pre-installed PV systems increased the value of the properties, since new PV systems 

were not subsidized anymore. Gautam et al. [29] studied the potential of rooftop PVs 

in Nepal and recommended to invest in storage systems to benefit from the excess 

solar energy corresponding to 85% of the production. Haegermark et al. [30] 

emphasized the effect of investment subsidies and tax rebates on the profitability of 

rooftop PV systems. Madmoud and Omar [31] found payback period of 5 kW rooftop 

systems in Palestine as 4.9 years. Bakhshi and Sadeh [32] also investigated the 

economic viability of 5 kW rooftop PVs in different cities of Iran and the payback 

period of the systems was found to be below 3.5 years. Tomar and Tiwari [33] used 

HOMER software and concluded that grid-connected systems in New Delhi are viable 

without a need for battery storage. Lee et al. [34] showed that cost of PV systems has 

reached the break-even point in 18 of 51 cities in the USA, and excellent results were 

obtained in seven of 51 cities due to the effective solar incentives offered in the USA. 

Li et al. [35] estimated the payback period of 5 kW PV-battery systems as 18 years 

without any incentive policies, it is also concluded that PV-battery systems can enable 

1.1% shaving of net peak load in Japan. Lopez Prol et al. [36] compared the 

profitability of grid-connected PV systems in Germany and Spain. Spain’s obvious 

higher profitability in equal conditions is compensated in reality with a lower cost of 

equity in Germany. Poruschi et al. [37] discussed the effect of a reduced payback 

period on social acceptance of PV systems. The study also showed that people are fond 

of capital subsidies rather than FiT. Watts et al. [38] compared net billing and net 

metering (NM) schemes for residential PV systems. Talavera et al. [39] investigated 
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the economics of grid-connected PV systems in Spain between 1998 and 2014 based 

on the evolution of the legislative framework. Batman et al. [40] investigated the 

feasibility of grid-connected PV systems in Istanbul considering FiT and time-of-use 

rates. This was one of the few detailed studies conducted for a location in Türkiye, 

after the current FiT scheme was introduced. 

All of these studies have made important contributions to the literature. However, in 

none of them, the effect of important three parameters, namely FiT, PV initial cost, 

and solar radiation on the feasibility of rooftop PV systems was examined together at 

the same time. 

In many of the studies, only NPV and LCOE were used as economic indicators. In our 

opinion, there exist more clear indicators to understand the feasibility of rooftop PVs. 

For instance, these two parameters cannot tell when an energy system will start to 

make a profit. 

Lastly, as the main lack, none of the studies addresses the case of Türkiye. Different 

parameters come to the fore for different countries to evaluate the feasibility of rooftop 

PV systems. In countries where electricity prices are high or subject to change notably, 

change in electricity prices can be an important parameter to be considered in the 

sensitivity analysis. In countries in which solar radiation does not differ a lot, a 

feasibility study made for a single location can give an overall idea for a whole country. 

Some large countries implement regional incentives, while some prefer to have a 

nationwide incentive mechanism throughout the country. In some countries, both net 

metering and net billing are available. Some countries apply only FiT, some of them 

use only capital/tax incentives and some of them use both. Each study in the literature 

selects necessary parameters according to their country’s own specific conditions. At 

this point, it is important to define the parameters to be used for a study to be done for 

Türkiye. 

 Content and Contributions 

To the best of our knowledge, there are no detailed studies in the literature about the 

feasibility of rooftop PV systems in Türkiye. The existing very few ones are 

concentrated in specific locations which do not reflect the feasibility in the whole 

country [40]. Also, the low number of studies is not because the rooftop PV systems 
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are already feasible in Türkiye. Although the total installed PV capacity has reached 

3700 MW in the country, the share of rooftop PV systems remains only 5%. Thus, we 

found this issue is worth investigating. 

Türkiye is relatively a large country with a surface area of 783,562 km2, which causes 

solar radiation in the country to differ a lot from north to south. Moreover, Türkiye’s 

own geographical features add this more. The country contains very different climates 

within, which causes solar radiation differences to be sharper between regions. For 

instance, Türkiye lies between latitudes 36° and 42° and the total annual radiation 

intensity difference between the northern and southern regions is 900 kWh/m2, 

whereas it is only 250 kWh/m2 in Germany where the latitude difference is higher than 

in Türkiye (47° and 55°) [41].  

If we continue with the example of Germany, in such a country a nationwide FiT and 

support mechanism can be counted as fairly distributed, however, in countries such as 

Türkiye, the use of nationwide mechanisms for PV systems can cause installations to 

become concentrated at certain locations. A nationwide model can be suitable for 

utility-scale PV plants in Türkiye, but it can be an obstacle against the widespread 

adoption of the grid-connected rooftop PV applications which provide on-site 

solutions, do not cost land, and reduce transmission and distribution costs. Also, 

considering that the population of Türkiye is denser in the northern part, where the 

solar radiation is lower, increases, even more, the importance of this issue. 

Therefore, this chapter presents a feasibility analysis of grid-connected residential 

rooftop PV systems in nine provinces of Türkiye under the current FiT scheme to 

investigate the low installation rate of the systems in the country. The main 

contribution of the study is taking into account the different solar potential of the 

regions for future policy implications. For this reason, three solar parts were formed 

on the Solar Energy Potential Atlas (GEPA) of Türkiye in the north-south direction, 

and three representative provinces from each part were selected for a comparative 

feasibility analysis. 

Another contribution is that this study evaluates the effect of varying FiT, PV system 

initial cost, and solar radiation on the feasibility of rooftop PV systems together at the 

same time. Also, to guarantee the feasibility of the systems from all aspects, three 

economic indicators, DPBP, IRR, and PI are used as economic criteria. 
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Simulations are carried out for PV systems with a capacity of 5 kW using National 

Renewable Energy Laboratory’s (NREL) recently released product HOMER Grid 

software. HOMER Grid uses the engine of widely-known HOMER and has been 

developed to optimize the value of behind-the-meter systems. To the best of our 

knowledge, this study is one of the very first studies in the literature that uses HOMER 

Grid. 

Finally, a sensitivity analysis is conducted considering future changes in FiT and 

decrease in the initial cost of PVs, and policy recommendations are made, accordingly. 

Also, the required PV capacity in each province under current conditions is calculated 

up to 10 kW which FiTs are valid for in Türkiye. Conceptual framework of the 

methodology used in the study is given in Figure 2.1. 

 

Figure 2.1 : Conceptual framework of the methodology used in the study. 

 Renewable Energy Policies in Türkiye 

Türkiye has been implementing policies to increase the use of existing natural 

resources for energy demand. The aim of the current energy strategies is to reduce 

environmental impacts through measures to maximize the efficient use of renewable 

energy resources. In 2009, the Strategy Paper on Electricity Market Reform and 

Security of Supply has been issued to ensure to make the share of electricity generated 

from renewable sources 30% by 2023 [42]. 
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The target of 30% renewable energy production by 2023 has remained the same in 

Strategic Plan 2010-2014 published by the Ministry of Energy and Natural Resources 

(MoENR) and Climate Change Strategy of Türkiye 2010-2020, published by the 

Ministry of Environment and Urbanization (MoEU). Development of renewable 

energy technologies has been supported by the Strategic Plan of MoENR, and one of 

the long-term objectives of Climate Change Strategy has been determined as 

generating electricity from solar energy [43,44]. 

The current FiT scheme for renewables has been introduced within the Law on the Use 

of Renewable Energy Resources for Generating Electricity numbered 6094 and dated 

29/12/2010. The base amount of FiT for was identified as 13.3 $ cent/kWh for 

biomass, biogas, solar PV and concentrated solar power (CSP), 10.5 $ cent/kWh for 

geothermal and 7.3 $ cent/kWh for wind and hydropower. The law also provides 

additional incentives for the use of locally produced equipment [45]. 

The license exemption for electricity generation facilities with a capacity of equal or 

lower than 1000 kW has been put into practice in line with Electricity Market Law 

numbered 6446 and dated 14/03/2013. The Ministry of Energy and Natural Resource 

has enacted Regulation on Technical Assessment of Solar Power License Applications 

which aims to identify procedures and principles for technical assessment. 

 Solar Potential and PV Applications in Türkiye 

The global cumulative installed capacity of PV systems has reached 402.5 GW at the 

end of 2017, whereas it was 303.1 GW in 2016, and 70.5 GW in 2011. By the end of 

2017, 375 TWh of electricity has been produced by PV systems that represent more 

than 2% of the global total electricity demand. In Europe, 4% of the electricity 

generation has been covered by PV systems. However, the deployment rate of new 

installations has slowed down in Europe [46]. 

The solar potential in Türkiye is relatively high and the country has the second-largest 

potential in Europe after Spain. Türkiye is located between 36° – 42° northern latitudes 

and 26° – 45° eastern longitudes with a total surface area of 783,562 km2. The potential 

implementation capacity of PV systems in Türkiye is assumed to be 450-500 GW 

regarding annual solar radiation of 1527 kWh/m2-year and sunshine duration of 2741 

hours [47]. In order to reveal the solar energy potential of the country, GEPA (Figure 
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2.2) has been released by the Electricity Affairs Survey Administration (EIE) in 2010 

[48]. Türkiye contains a high potential for solar energy due to its location. The solar 

radiation level decreases from south to north as expected. In the northern part of the 

country, sunshine duration notably decreases related to specific climatic and 

geographic conditions of the region. 

By the end of 2016, the total installed PV capacity was only 0.83 GW in Türkiye. In 

2017, the country added record 2.6 GW of new PV, and the cumulative capacity has 

reached 3.42 GW at year’s end. With this performance, Türkiye was among the top 

five countries responsible for approximately 84% of newly installed PV systems with 

China, the United States, India, and Japan. Although the total capacity has reached 

3.42 GW, rooftop PV systems have consisted only 200 MW of this capacity and mainly 

in industrial and commercial buildings [49].  

 Simulations 

2.5.1 Selected provinces 

The GEPA was separated into three parts, namely southern, central and northern, 

depending on different solar characteristics. This was due to regionally evaluate the 

feasibility of residential rooftop PV systems. Three provinces with the highest, median 

and lowest solar radiation were selected from each part. In Figure 2.2, selected nine 

provinces and the identified parts are highlighted on GEPA [29]. Daily global 

horizontal radiation data (including daily radiation and clearness index) of each pilot 

province are given in Figure 2.3. 

 

Figure 2.2 : Solar Energy Potential Atlas of Türkiye and the selected provinces. 
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Figure 2.3 : Global horizontal radiation (including daily radiation and clearness 

index) of each pilot province. 

2.5.2 HOMER Grid and input data 

HOMER Grid software has been used to evaluate the design of grid-connected PV 

systems [50]. HOMER Grid, released in 2018, uses the engine of optimization tool 

HOMER developed by the NREL. HOMER Grid addresses behind-the-meter systems 

and computes demand charge reduction, energy arbitrage, and self-consumption to 

optimize an energy system. HOMER Grid’s Tariff Builder application makes it 

possible to model accurate tariff models. Moreover, the library of the software contains 

20,000 tariff models from different states of the USA, Canada, and Mexico. 

Polycrystalline PV module spot price has been taken as 0.35 $/W in the calculation of 

the PV system capital cost [51]. The additional cost items such as electrical-structural, 

net profit, overhead, sales & marketing, permitting, inspection, interconnection, install 

labor and supply chain have been estimated to be 0.80 $/W. In this estimation, NREL’s 

assumptions were adapted into Turkish conditions considering much lower labor costs 

[52]. Eventually, residential PV and inverter initial costs have been identified as 1.15 

$/W and 0.15 $/W, respectively as well as the replacement costs. Operation and 
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maintenance (O&M) costs of PV module and inverter have been estimated to be 23 

$/W-year and 3 $/W-year, respectively. The efficiency of PV and inverter are 17.41% 

and 97.5%, respectively. PV temperature coefficient is -0.41 and the operating 

temperature is 45°C. The lifetime of PV panels is 20 years as well as the project 

lifetime, and inverter lifetime is 10 years. Battery storage is not evaluated in the 

simulations. The real interest rate was calculated as 3.92% for Türkiye. Schematic 

diagram of PV system components described in HOMER Grid is given in Figure 2.4.  

 

Figure 2.4 : Schematic diagram of the PV system components. 

5 kW residential rooftop system was modeled for one side of an average open gable 

roof. As an autonomous load, an average four-person Turkish household with an 

average daily consumption of 11.27 kWh was determined. The daily load profile 

showing the hourly electricity demand for each month is given in Figure 2.5. Seasonal 

variations were taken into account as the highest load consumption occurs in July 

whereas the lowest is in December. The consumption trend remains the same in each 

month with peak consumption between 17:00-20:00. 

 

Figure 2.5 : The daily load profile used in the model. 
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Solar data of each selected province was extracted from Climatological Solar 

Radiation Data Sets of NREL and NASA Surface Meteorology and Solar Energy Data 

Sets through HOMER Grid software [53]. Coordinates of the pilot provinces are given 

in Table 2.1.  

Table 2.1 : Coordinates of the pilot provinces. 

Part 
Pilot 

province 

Latitude 

(North) 

Longitude 

(East) 

Northern Artvin 41° 12' 41° 49' 

 Istanbul 41° 02' 28° 58' 

 Canakkale 40° 10' 26° 24' 

Central  Eskisehir 39° 53' 30° 32' 

 Yozgat 40° 03' 34° 46' 

 Denizli 37° 51' 29° 05' 

Southern Van 38° 31' 43° 22' 

 Adana 37° 02' 35° 18' 

 Antalya 36° 57' 31° 06' 

The amount of FiT for solar PV was set at 13.3 $ cent/kWh in Türkiye. If the selected 

PV components are locally produced, the amount of FiT can rise up to 20 $ cent/kWh. 

These incentives are applied for the components such as array structural mechanics, 

PV modules, PV cells, inverters, and materials focusing solar ray on PV modules. In 

the model, FiT was identified as 14.7 $ cent/kWh, assuming PV modules and PV cells 

are imported and mounting equipment and inverter are manufactured in Türkiye. The 

residential electricity price in the country is 10.60 $ cent/kWh including taxes and 

levies [54]. 

2.5.3 Economic determinants 

The feasibility results in the study are discussed through three economic determinants, 

namely Discounted Payback Period (DPBP), Internal Rate of Return (IRR) and 

Profitability Index (PI). DPBP gives the number of years needed to recover the initial 

cost of a project. It considers the time value of money and is a useful determinant to 
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understand the feasibility of a system. DPBP gives a good idea about how risky an 

investment is. The longer the DPBP, the higher the risk that the investment will not 

get the expected return. However, DPBP ignores cash flows occur after the payback 

period and does not give information about the total profitability of a project. DPBP is 

calculated as follows [55]:  

𝐷𝑃𝐵𝑃 = 𝑙𝑛 (
1

1 −
𝐶𝑜 × 𝑟

𝐶𝑡

) ÷ 𝑙𝑛(1 + 𝑟) (2.1) 

where 𝐶0 is the initial investment cost, 𝑟 is the real interest rate, and 𝐶𝑡 is the net cash 

flow during the time period 𝑡. 

IRR is described as the interest rate where the total NPC of all the cash flows in the 

project equals to zero. IRR may fail when comparing projects with different economic 

scales, but useful with projects with the same initial cost. It should be noted that, in 

projects with long lifetime, IRR figure could be misleading that interest rates are 

subject to differ from the assumed values from time to time. IRR should be greater 

than the initial discount rate to make a profit. IRR is calculated as follows [5]:  

0 = ∑
𝐶𝑡

(1 + 𝐼𝑅𝑅)𝑡
− 𝐶0

𝑇

𝑡=1

 (2.2) 

where 𝑇 is the project lifetime, 𝐶𝑡 is the net cash flow during the time period 𝑡, 𝐼𝑅𝑅 is 

the internal rate of return, and 𝐶𝑜 is the initial investment cost. 

The PI is an index to measure the ratio between the present value of future cash flows 

and the initial investment. PI is a useful method to rank projects. PI equal to 1 indicates 

the breakeven point for a project, and PI greater than 1 means the project generates 

value. Increasing PI states increasing profitability as well as decreasing risk for 

projects with a long lifetime. PI less than 1 means the project destroys value and the 

revenues do not cover the expenditures. PI is calculated as follows [5]: 

𝑃𝐼 =
𝑁𝑃𝑉

𝐶𝑜
+ 1 (2.3) 

where 𝑁𝑃𝑉 is the total net present value and 𝐶𝑜 is the initial investment cost.  
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2.5.4 Simulation results 

HOMER Grid simulation results of 5 kW rooftop systems for the pilot provinces under 

current conditions are given in Table 2.2. Initial capital cost of 5 kW rooftop PV system 

with 4 kW inverter is estimated as 6350 $. HOMER Grid takes grid purchases, grid 

sales, and O&M costs into account when calculating the cash flows. The present worth 

of the project is calculated by subtracting the cost of grid-only use from the net present 

cost of the energy system. 

Monthly average of electricity purchases and sales in households are given in Figure 

2.6. Blue bars represent the energy purchased from the grid and orange bars represent 

the electricity sold to the grid. 

Northern part 

   

Central part 

   

Southern part 

   

  Grid purchases            Grid sales  

Figure 2.6 : Monthly electricity purchases and sales in the households in each pilot 

province. 
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Table 2.2 : HOMER Grid results of 5 kW rooftop PV systems for the pilot provinces 

under current conditions (criteria met are highlighted in bold). 

 
Northern part Central part Southern part 

Art İst Çan Esk Yoz Den Van Ada Ant 

Initial capital cost ($) -6350 

Net present cost ($) -4210 -3584 -2681 -2072 -1144 -602 -270 95 517 

Cost of grid-only ($) -5968 

Net present value ($) 1758 2384 3287 3896 4824 5366 5698 6063 6485 

Energy demand of 

household 

(kWh/year) 

4113 

Electricity produced 

by PV (kWh/year) 
6455 6760 7231 7559 8048 8313 8511 8664 8881 

Electricity purchased 

from grid (kWh/year) 
2257 2171 2128 2127 2145 2071 2127 2121 2062 

Renew. electricity 

sold to grid 

(kWh/year) 

4391 4605 5021 5341 5839 6026 6265 6412 6572 

Discounted payback 

period (year) 
14.43 13.13 11.65 10.85 9.27 8.59 8.33 8.04 7.75 

Internal rate of return 

(%) 
6.87 7.86 9.21 10.09 11.39 12.16 12.59 13.12 13.68 

Profitability index 1.28 1.38 1.52 1.61 1.76 1.85 1.90 1.96 2.02 

The feasibility results are discussed through DPBP, IRR, and PI. The projects with 

DPBP less than 8 years [37], IRR greater than the discount rate (13.12%), and PI 

greater than 2 [6] were considered as favorable investments in the study (highlighted 

in bold in Table 2.2). The results show that, under current conditions, DPBP of the 

systems in Türkiye is in the range of 7.75 – 8.33 years in the southern part, 8.59 – 

10.85 in the central part, and 11.65 – 14.43 years in the northern part. IRR of the 

systems is in the range of 13.68% – 12.59% in the southern part, 12.16% – 10.09% in 

the central part, and 9.21% – 6.87% years in the northern part. And, PI of the systems 

are in the range of 2.02 – 1.90 in the southern part, 1.85 – 1.61 in the central part, and 

1.52 – 1.28 in the northern part. Only, province of Antalya in the southern part meets 

the all of three viability criteria under the current FiT. 

As of 2017, there are 9.1 million buildings in Türkiye, 87% of which are residential 

[56]. Despite the high rooftop area potential, the share of rooftop PV is only 5.84% 

(200 MW) of the total installed PV capacity (3.42 GW). The attractiveness of rooftop 

PV systems is noticeably higher in the rest of the world, that is the share of rooftop PV 

in total installed PV capacity are 21.5% in China (2017), 70% in Germany (2017) and 

76.5% in Australia (2018) [57–59]. Thus, a sensitivity analysis was carried out to 

discuss how to make rooftop PV systems viable in Türkiye. 
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 Sensitivity Analysis 

In order to make future projections and analyze the effect of varying FiT and PV 

system initial cost on the feasibility of the systems, scenarios of decrease and increase 

in FiT (-30%, -20%, -10%, +10%, +20%, +30%) and decrease in initial PV initial cost 

(-30%, -20%, -10%) were evaluated. 

The reasons for the increase in FiT can be listed as follows: 

• Policymakers increase the amount of FiT to promote rooftop PV investments. 

• PV cells and modules begin to be produced in Türkiye and investors who prefer 

Turkish cells and modules earn higher amount of FiT. 

The reasons for the decrease in FiT can be listed as: 

• PV deployment rate reaches to a desired level and policymakers decrease FiT.  

• Payback period and profitability of the systems reach to a desired level and 

policymakers decide to decrease FiT. 

• PV initial costs drop and policymakers decide to decrease FiT. 

And, the reasons for the decrease in PV initial costs can be listed as follows: 

• PV module prices continue to fall. 

• Policymakers decide to enable tax allowance, tax reduction or capital subsidies 

to promote rooftop PV systems. 

Moreover, for the provinces where 5 kW rooftop PV investments are not favorable, it 

was calculated how much PV capacity is needed for an attractive investment. 

2.6.1 Sensitivity analysis results for the DPBP of 5 kW rooftop PV systems 

The results show that under current PV initial cost (Figure 2.7a): 

• 10% increase in FiT makes DPBP viable in four of nine provinces.  

• 20% increase in FiT makes DPBP viable in five of nine provinces. 

• 30% increase in FiT makes DPBP viable in six of nine provinces. 

If PV initial costs drop by 10% (Figure 2.7b): 

• DPBP in four of nine provinces becomes viable under the current FiT.  

• 10% increase in FiT makes DPBP viable in five of nine provinces.  
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• 20% increase in FiT makes DPBP viable in six of nine provinces.  

• 30% increase in FiT makes DPBP viable in seven of nine provinces.  

If PV initial costs drop by 20% (Figure 2.7c):  

• DPBP in six of nine provinces becomes viable under the current FiT.  

• 10% and 20% increase in FiT makes DPBP viable in seven of nine provinces. 

• 30% increase in FiT makes DPBP viable in eight of nine provinces.  

If PV initial costs drop by 30% (Figure 2.7d):  

• DPBP in seven of nine provinces becomes viable under the current FiT. 

• 10% increase in FiT makes DPBP viable in eight of nine provinces. 

• 20% increase in FiT makes DPBP viable in all nine provinces. 

  

  

 

Figure 2.7 : DPBP of 5 kW rooftop systems under varying PV initial cost and FiT. 
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Note that, after some extent, decrease in PV initial costs makes DPBP of the systems 

drop a lot more than the desired level in some provinces. Such that, FiT can be 

decreased in these provinces gradually. And the required increased FiT of northern 

Türkiye can be compensated with the decreased FiT of the southern provinces.  

For instance, as above-mentioned, a 20% reduction in PV costs causes DPBP of the 

systems to drop below 8 years in six out of nine provinces. In this case, if the amount 

of FiT is decreased by 10% in five of these six provinces, their DPBP of these systems 

still stay below 8 years. Moreover, in three of these six provinces, the FiT can be 

decreased by 20%.  

Similarly, a 30% reduction in PV initial costs makes DPBP of the systems drop below 

8 years in seven provinces. In this case, the FiT can be decreased by 10% in seven, 

20% in six and 30% in five provinces and DPBP of the systems still meet the viability 

criteria.  

2.6.2 Sensitivity analysis results for the IRR of 5 kW rooftop PV systems 

The results of the sensitivity analysis show that under current PV initial cost (Figure 

2.8a): 

• 10% increase in FiT makes IRR viable in four of nine provinces.  

• 20% and 30% increase in FiT makes IRR viable in five of nine provinces. 

If PV initial costs drop by 10% (Figure 2.8b): 

• IRR in four of nine provinces becomes viable under the current FiT.  

• 10% increase in FiT makes IRR viable in five of nine provinces.  

• 20% increase in FiT makes IRR viable in six of nine provinces.  

• 30% increase in FiT makes IRR viable in seven of nine provinces.  

If PV initial costs drop by 20% (Figure 2.8c):  

• IRR in six of nine provinces becomes viable under the current FiT.  

• 10% and 20% increase in FiT makes IRR viable in seven of nine provinces. 

• 30% increase in FiT makes IRR viable in eight of nine provinces.  

If PV initial costs drop by 30% (Figure 2.8d):  

• IRR in seven of nine provinces becomes viable under the current FiT. 

• 10% and 20% increase in FiT makes IRR viable in eight of nine provinces. 
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• 30% increase in FiT makes IRR viable in all nine provinces. 

  

  

 

Figure 2.8 : IRR of 5 kW rooftop systems under varying PV initial cost and FiT. 

2.6.3 Sensitivity analysis results for the PI of 5 kW rooftop PV systems 

The results of the sensitivity analysis show that under current PV initial cost (Figure 

2.9a): 

• 10% increase in FiT makes PI viable in three of nine provinces.  

• 20% increase in FiT makes PI viable in four of nine provinces. 

• 30% increase in FiT makes PI viable in five of nine provinces. 

If PV initial costs drop by 10% (Figure 2.9b): 

• PI in two of nine provinces becomes viable under the current FiT.  

• 10% increase in FiT makes PI viable in four of nine provinces.  
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• 20% increase in FiT makes PI viable in five of nine provinces.  

• 30% increase in FiT makes PI viable in six of nine provinces.  

If PV initial costs drop by 20% (Figure 2.9c):  

• PI in four of nine provinces becomes viable under the current FiT.  

• 10% increase in FiT makes PI viable in five of nine provinces.  

• 20% and 30% increase in FiT makes PI viable in six of nine provinces. 

If PV initial costs drop by 30% (Figure 2.9d):  

• PI in five of nine provinces becomes viable under the current FiT. 

• 10% and 20% increase in FiT makes PI viable in six of nine provinces. 

• 30% increase in FiT makes PI viable in seven of nine provinces. 

  

  

 

Figure 2.9 : PI of 5 kW rooftop systems under varying PV initial cost and FiT. 
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2.6.4 Overall results of the sensitivity analysis 

The scenarios that make rooftop PV investments viable in each pilot province are given 

in Table 2.3. Indices Ι, ΙΙ, and ΙΙΙ represent the southern, central and northern parts of 

Türkiye, respectively.  The given provinces in the table meet all of three viability 

criteria (DPBP less than 8 years, IRR greater than the discount rate of 13.12%, and PI 

greater than 2). It is seen that in none of the scenarios Artvin and Istanbul in the 

northern part can meet the defined criteria. 

Table 2.3 : The scenarios that make rooftop PV investments viable. 

 

PV initial cost 

Current 10% reduced 20% reduced 30% reduced 

F
ee

d
-i

n
 t

ar
if

f 

30% reduced None None None None 

20% reduced None None None AntalyaΙ 

10% reduced None None AntalyaΙ, AdanaΙ 
AntalyaΙ, AdanaΙ, 

VanΙ, DenizliΙΙ 

Current AntalyaΙ AntalyaΙ, AdanaΙ 
AntalyaΙ, AdanaΙ, 

VanΙ, DenizliΙΙ 

AntalyaΙ, AdanaΙ, 

VanΙ, DenizliΙΙ, 

YozgatΙΙ 

10% increased 

AntalyaΙ, 

AdanaΙ, 

VanΙ 

AntalyaΙ, 

AdanaΙ, VanΙ, 

DenizliΙΙ 

AntalyaΙ, AdanaΙ, 

VanΙ, DenizliΙΙ, 

YozgatΙΙ 

AntalyaΙ, AdanaΙ, 

VanΙ, DenizliΙΙ, 

YozgatΙΙ, E.sehirΙΙ 

20% increased 

AntalyaΙ, 

AdanaΙ, 

VanΙ, 

DenizliΙΙ 

AntalyaΙ, 

AdanaΙ, VanΙ, 

DenizliΙΙ, 

YozgatΙΙ 

AntalyaΙ, AdanaΙ, 

VanΙ, DenizliΙΙ, 

YozgatΙΙ, E.sehirΙΙ 

AntalyaΙ, AdanaΙ, 

VanΙ, DenizliΙΙ, 

YozgatΙΙ, E.sehirΙΙ 

30% increased 

AntalyaΙ, 

AdanaΙ, 

VanΙ, 

DenizliΙΙ, 

YozgatΙΙ 

AntalyaΙ, 

AdanaΙ, VanΙ, 

DenizliΙΙ, 

YozgatΙΙ, 

E.sehirΙΙ 

AntalyaΙ, AdanaΙ, 

VanΙ, DenizliΙΙ, 

YozgatΙΙ, E.sehirΙΙ 

AntalyaΙ, AdanaΙ, 

VanΙ, DenizliΙΙ, 

YozgatΙΙ, E.sehirΙΙ, 

CanakkaleΙΙΙ 
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2.6.5 Required PV capacity on the rooftops in each pilot province 

The results showed that, under current conditions, 5 kW rooftop PV systems can meet 

the defined viability criteria only in one province (Antalya) in the southern part. Since 

the FiT is available in Türkiye up to 10 kW, a sensitivity analysis was conducted up to 

10 kW to find out the required PV capacity in provinces in which 5 kW is insufficient. 

The effect of PV capacity on DPBP, IRR, and PI of the systems are given in Figure 

2.10. Table 2.4 demonstrates the PV capacities which meet the defined viability 

criteria in each province under current conditions. Indices Ι, ΙΙ, and ΙΙΙ represent the 

southern, central and northern parts of Türkiye, respectively. It is seen that, in addition 

to Antalya, the systems can meet the all of three viability criteria, only in three 

provinces, namely Adana, Van and Denizli by increasing the PV capacity to at least 

5.5 kW, 6 kW and 7.5 kW, respectively. After 7.5 kW (up to 10 kW) not any other 

province can enter this list. To summarize, under current FiT and PV initial cost, by 

increasing the PV capacity, three of provinces from part I, one province from part II 

and none of the provinces from part III can meet the viability criteria. 

  

 

 

Figure 2.10 : Effect of PV capacity on DPBP, IRR and PI of rooftop PV systems 

under current PV initial cost and FiT. 
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Table 2.4 : PV capacities which meet the defined viability criteria under current 

conditions. 

PV capacity (kW) Province 

5 AntalyaΙ 

5.5 AntalyaΙ, AdanaΙ 

6 AntalyaΙ, AdanaΙ, VanΙ 

6.5 AntalyaΙ, AdanaΙ, VanΙ 

7 AntalyaΙ, AdanaΙ, VanΙ 

7.5 AntalyaΙ, AdanaΙ, VanΙ, DenizliΙΙ 

8 AntalyaΙ, AdanaΙ, VanΙ, DenizliΙΙ 

8.5 AntalyaΙ, AdanaΙ, VanΙ, DenizliΙΙ 

9 AntalyaΙ, AdanaΙ, VanΙ, DenizliΙΙ 

9.5 AntalyaΙ, AdanaΙ, VanΙ, DenizliΙΙ 

10 AntalyaΙ, AdanaΙ, VanΙ, DenizliΙΙ 

 Conclusion and Policy Implications 

Rooftop PV systems have not become widespread in Türkiye despite the country's 

relatively high solar radiation, and there is a lack of studies in the literature discussing 

the efficiency of the current PV support mechanism in the country. Thus, this study 

presents an economic analysis of grid-connected rooftop PV systems in Türkiye under 

the current FiT scheme. 

In Türkiye, there are large solar radiation differences between regions. In such a 

country, using a single nationwide support mechanism for grid-connected residential 

rooftop PVs can become an obstacle for widespread adoption of the systems. 

Therefore, the need for different PV support schemes for different solar parts in the 

country was discussed. Three solar parts were formed on the solar potential map of 

Türkiye in the north-south direction, and three provinces from each part were selected 

for a comparative feasibility analysis.  

To investigate the feasibility of grid-connected residential 5 kW rooftop PV systems, 

simulations were performed using HOMER Grid software. The results were examined 

through three different economic indicators, namely DPBP, IRR, and PI, to ensure the 

viability of the systems from all aspects. 

A sensitivity analysis was needed for future projections and policy implications. The 

analysis was made to investigate the effect of varying PV initial cost, FiT and solar 

radiation on the feasibility of the systems. In addition to the varying solar radiation of 

the selected nine provinces, the parameters considered in the sensitivity analysis were: 
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• 30%, 20%, 10% decrease and increase in FiT.  

• 30%, 20%, 10% decrease in initial PV cost. 

Here, the instruments to decrease PV initial cost can be capital subsidies or tax 

incentives. It should be noted that the scenario for decreased PV initial cost also 

corresponds to the future projections in which PV module prices fall.  

Results showed that under current conditions in Türkiye; 

• DPBP of 5 kW rooftop PV systems is in the range of 7.75 – 14.43 years. 

• IRR of 5 kW rooftop PV systems is in the range of 13.68% – 6.87%. 

• PI of 5 kW rooftop PV systems is in the range of 2.02 – 1.28. 

These results indicate the insufficiency of the current FiT scheme. Among nine 

provinces, only Antalya in the southern region can meet the viability criteria with 

DPBP below 8 years, IRR more than 13.68%, and PI more than 2. Profitability 

decreases from South to North in the country as expected. Antalya is the best location 

among the nine provinces in Türkiye to invest in rooftop PVs, whereas Artvin presents 

the least viable results. 

According to the results of the sensitivity analysis, the support schemes given below 

make the systems meet all the defined economic criteria (DPBP below 8 years, IRR 

above 13.12%, and PI above 2) in all three solar parts: 

Southern part 

• 10% increased FiT or, 

• 20% reduced PV initial cost or, 

• 10% reduced FiT with 30% reduced PV initial cost 

Central part 

• 30% increased FiT with 10% reduced PV initial cost or, 

• 20% increased FiT with 20% reduced PV initial cost or, 

• 10% increased FiT with 30% reduced PV initial cost  

Northern part 

• 30% increased FiT and 30% reduced PV initial cost (In this case, all three 

criteria are met in the province of Canakkale. However, in provinces of Istanbul 
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and Artvin although DPBP and IRR criteria are met, PI slightly stays under the 

defined limit.) 

The study was conducted for an average open gable roof in Türkiye which is suitable 

for 5 kW rooftop PV systems. Nevertheless, FiT for residential users is available up to 

10 kW in Türkiye. If there is enough space, users can also invest in higher capacity PV 

systems. The required PV capacities in each province were also calculated as 

summarized as follows: 

• 5 kW – Antalya 

• 5.5 kW – Antalya, Adana  

• 6 kW – Antalya, Adana, Van 

• 7.5 kW – Antalya Adana, Van, Denizli 

The other findings and insights of the study are listed as follows: 

• Despite Türkiye’s high solar potential, relatively low electricity prices prevent 

widespread adoption of rooftop PV systems in Türkiye. The prices have 

remained almost stable in the last ten years, and at a low level. This causes 

rooftop PV investors to achieve low electricity bill savings. The profitability is 

low and this makes payback period of the systems to increase.  

• Province of Istanbul (which alone contains 18.75% of Türkiye’s entire 

population), the capital Ankara and many other populated and industrialized 

provinces are located in the northern part and contain the highest rooftop 

potential in Türkiye. Therefore, increasing the attractiveness of rooftop PVs in 

the northern part of Türkiye has vital importance. 

In many countries, the authorities have begun to reduce the amount of FiT due 

to falling PV module prices and PV supply exceeding the demand during 

midday. Nevertheless, possible high penetration of electric vehicles to the grid 

in the near future should be taken into account, and FiT should be sustained as 

high as possible. Since the number of electric vehicles in Türkiye will be 

greater in the populated and developed northern part, the requirement of the 

regional incentive mechanisms is much of greater significance. 

• Türkiye’s first integrated solar module, cell, and panel production factory was 

inaugurated at the beginning of 2018. Since the amount of FiT in Türkiye can 

rise up to 0.20 $/kWh depending on the local content of the PV components, 
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residential users who prefer products manufactured in Türkiye may benefit 

from increased FiT. In this case, rooftop PV investments can become viable 

not only in the southern provinces but also in the central provinces of the 

country. The scenario of increased FiT in the sensitivity analysis also 

corresponds to this case. 

The main limitation of this study was the interest rate fluctuation at the time of the 

study. We decided to use the historical average of the last 10 years. Also, the change 

in retail electricity prices which can be an important parameter in the sensitivity 

analysis was neglected. This was due to the stable retail electricity prices in Türkiye 

in the last 10 years. Consideration of one more dimension in the sensitivity analysis 

could have made it difficult to interpret and explain the results.  

The profitability of the residential PV systems can be further increased by the 

application of demand-side management (DSM) through storage systems and self-

consumption. For this reason, promotional campaigns should also be developed to 

encourage DSM. DSM will also constitute the subject of future studies. 

The proposed model in this study can be adapted in countries where there are large 

solar radiation differences between different regions, such as in Türkiye. Instead of 

using nationwide support models, regional support models can be considered. 
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 A HOME ENERGY MANAGEMENT SYSTEM WITH AN INTEGRATED 

SMART THERMOSTAT FOR DEMAND RESPONSE IN SMART GRIDS 

Smart thermostats and home energy management systems (HEMSs) are generally 

studied separately. However, their joint use can provide a greater benefit. Therefore, 

this chapter aims to combine a smart thermostat with a HEMS. The mixed-integer 

linear programming (MILP)-based HEMS performs day-ahead load scheduling for 

cost-minimization and provides optimal demand response (DR) and photovoltaic (PV) 

self-consumption, and the fuzzy logic-based thermostat aims efficient DR of air-

conditioning and maintenance of thermal comfort. In the first stage, unlike 

conventional fixed set-point thermostats, the proposed thermostat defines different set-

points for each time interval, by fuzzifying input parameters of electricity prices, solar 

radiation, and occupant presence, to be used by HEMS. In the second stage, the HEMS 

schedules the operation of time-shiftable, thermostatically controlled, and power-

shiftable (battery energy storage system (BESS), electric vehicle (EV)) loads. The 

HEMS considers bi-directional power flow between home, BESS, EV, and grid, as 

well as battery degradation to avoid unnecessary energy arbitrage. The simulation 

results show that a daily cost reduction of 53.2% is achieved under time-of-use (TOU) 

and feed-in tariff rates of Türkiye. AC cost is reduced by 24% compared to 

conventional thermostats. In a future scenario of real-time pricing (RTP) and dynamic 

feed-in tariff, vehicle-to-grid (V2G) becomes possible. 

 Introduction 

The rise in global electrical energy consumption and production, along with the rapid 

integration of intermittent renewable sources to the electricity network required 

improvement and modernization of the aging grid infrastructure to obtain safe, 

reliable, and clean energy. Consequently, the smart grid concept has emerged, in which 

all players in the grid network connect and interact with each other through 

information and communication technologies (ICTs) to improve stability, resource 

efficiency, and sustainability in energy production, transmission, and distribution 
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fields [1]. Residential demand-side management (DSM), associated with the smart 

grid concept, aims to address these challenges by managing electrical energy usage of 

residential end-users which are responsible for 26.9% of world electricity final 

consumption [60]. 

Demand response (DR), which is a tool for DSM, can be defined as all the short-term 

activities, aiming to modify consumption patterns of end-users in the form of peak 

clipping, valley filling, or load shifting to meet a load shape demanded by the 

electricity grid [61]. To implement residential DR, load-serving entities (LSEs) offer 

time-dependent pricing or financial incentives to end-users to perform direct load 

control (DLC) or indirect load control (ILC) with the help of advanced metering 

infrastructure (AMI).  

In DLC programs, end-users permit LSEs to remotely control their appliances mainly 

for peak shaving or frequency regulation in return for incentives [62]. Yet, DLC may 

lead to unwillingness due to a sense of losing control [63,64] and privacy concerns 

[65]. 

In ILC programs (also known as price-based programs) end-users are motivated to 

change their consumption patterns according to time-based electricity rates such as 

time-of-use (TOU) [66], critical peak pricing (CPP) [67], inclining block rates (IBR) 

[68] and real-time pricing (RTP) [69] in a penalty-reward manner [70]. However, ILC 

brings along a challenge of energy management as a number of electrical appliances 

increases in a household [71]. 

On the other hand, as distributed generation units are becoming more widespread, 

especially rooftop photovoltaics (PVs), a paradigm shift has occurred in the structure 

of the traditional electricity grid. Traditionally passive residential consumers are 

turned into active market players and assume the role of prosumers. Since the generous 

feed-in tariff rates introduced at the beginning have reduced today [72], residential 

load management gains importance not only to respond to time-based prices for DR 

but also to benefit from a distributed generation at the maximum level by increasing 

self-consumption.  

In addition, the residential users earned the opportunity to become active participants 

in the electricity market environment by means of energy arbitrage practiced by battery 
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energy storage systems (BESSs) to buy energy from the grid at a low price or store on-

site generated energy for free and to sell it to the grid at a higher price [73].  

Moreover, the emergence of electric vehicles (EVs) introduced new technologies such 

as vehicle-to-grid (V2G) and vehicle-to-home (V2H) [74], or in short, vehicle-to-

everything (V2X) [75] to overcome the problems which will be caused by the 

substantial impact of EVs on the electricity grid in the near future. 

Consequently, in recent years, researchers have been primarily focused on home 

energy management systems (HEMSs) that can respond to all the above-mentioned 

challenges and innovations. This study, too, aims to develop a HEMS for their 

subsequent use in residential buildings, by enabling DR and increased self-

consumption together.  

Today, space heating and cooling accounts for a share of more than 50% in total 

residential electricity consumption [76]. Therefore, maintaining thermal comfort gains 

more importance since thermal discomfort is one of the main barriers in adopting DR 

programs [77]. To that end, the study also proposes to integrate a smart thermostat into 

a HEMS for efficient DR of air-conditioning and higher thermal comfort of residents. 

 Literature Summary 

3.2.1 Smart home appliances in residential DR 

In the literature, smart home appliances compatible with residential DR fall into three 

categories as follows: 

1) Time-shiftable appliances (TSAs) like washing machines, dishwashers, clothes 

dryers, which have fixed power consumption patterns and are uninterruptible once 

they are launched [78]. 

2) Thermostatically controlled appliances (TCAs) like air conditioners (ACs), 

electric water heaters (EWHs), and refrigerators, which are capable of storing 

thermal energy in a storage medium by pre-cooling or pre-heating and providing set-

point temperature modification within the limits of thermal boundaries [79]. 

3) Power-shiftable appliances (PSAs) like BESSs and EVs, which have flexible 

power consumption patterns and can operate between the minimum and maximum 

power limits [78]. 
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TSAs generally have lower power consumption in households compared to TCAs and 

PSAs. [80] studied DR options of a dishwasher in a home with an integrated wind 

turbine. [81] investigated the DSM of dishwashers and washing machines through the 

management of hot water supply. Several studies demonstrated the measured data of 

load profiles of TSAs to be used in DR studies [82,83]. 

TCAs offer wider DR possibilities with their higher energy consumption and thermal 

energy storage capability, yet thermal comfort boundaries limit them. [84] and [85] 

studied DR possibilities of refrigerators with set-point adjustment and pre-cooling 

control. [86] developed a partial differential equation (PDE) based model for EWHs 

as a benchmark in DR studies. [87] applied cost-comfort oriented EWH management 

under dynamic pricing. [88] enabled model predictive control (MPC) of ACs for DR 

considering pre-defined set-point values of inhabitants and real-time electricity prices. 

The DR possibilities of fixed-speed and inverter ACs are studied in [89] and [90], 

respectively. 

The DR possibility of PSAs have recently aroused interest due to the emergence of 

EVs and the wide distribution of energy storage systems combined with distributed 

generation units. [91] studied a PV–BESS based energy management system to 

increase residential self-consumption. [92] developed an optimal EV 

charging/discharging strategy to provide DR and prevent adverse effects of EVs on 

low voltage distribution systems. 

Residential DR can be enabled through individual smart appliances as in the above 

examples. Also, following a holistic approach, several smart appliances can be 

controlled simultaneously utilizing a HEMS. 

3.2.2 Home energy management systems (HEMSs) 

A HEMS allows users to monitor, control, and automate an ever-increasing number of 

their smart appliances efficiently by spending the least effort and time without human 

intervention [93]. It can maximize electricity bill savings by DR and self-consumption 

as well as can provide energy arbitrage. The holistic approach exemplified by HEMS 

allows to avoid demand charges or to comply with peak limits.  

In recent years, there has been a growing body of research about HEMSs for DR. [94] 

studied scheduling of shiftable appliances in a smart home, which alone provided low 

bill savings. [95] optimized load scheduling of dishwasher, washing machine, clothes 
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dryer, and plug-in hybrid EV under RTP. A peak limiting strategy to prevent the 

occurrence of further peaks was neglected. [96] developed an algorithm-based HEMS 

considering load priority and users’ comfort preferences based on the use of AC, 

EWH, EV, and clothes dryer. A peak limit was considered to be imposed on household 

energy consumption. Demand curtailment was guaranteed during peak hours, but pre-

cooling/heating was not considered for AC and EWH. [97] dealt with the uncertainties 

of EV arrival and departure times in a stochastic framework. However, in [94–97], 

V2G and V2H possibilities of EVs were neglected in HEMS operation. Also, these 

studies did not include the presence of distributed generation units and BESSs in smart 

homes. 

[98] studied operation of TSAs, TCAs and considered presence of PV-BESS units. 

[99] evaluated operation of TSAs, EV, and PV-BESS taking into account V2H, but 

the management of TCAs is neglected. [100] considered battery-to-grid (B2G), 

battery-to-home (B2H), V2G, and V2H operations in a household comprising EV, 

PV–BESS, and EWH. The operation of TSAs and ACs were not considered. The 

model proposed by [101] combined all the above-mentioned types of operational 

possibilities of TSAs, TCAs, and PSAs together in a single HEMS structure as well as 

considered a presence of an integrated distributed generation unit. V2H and B2H 

operations were taken into account, yet selling energy back to the grid was not 

considered. In [100,101] a PV model was not embedded in HEMSs, and estimation of 

PV production was based on pre-measured values. [102] and [103] included a 

simplified solar model for a fixed-tilt PV array that could turn a received solar radiation 

data into a PV power output, but a model for a tilted PV array was neglected. [104] 

used a location-based regression model for PV output, which may be hard to 

implement in a commercially available HEMS in real life. None of the mentioned 

studies considered a solar model for a tilted PV array. Also, in all the studies (except 

in [102]) battery degradation was neglected or batteries were assumed to be replaced 

free-of-charge due to pre-made agreements. In [102] self-consumption with BESS is 

proved to be not always preferable to a PV-only system when battery degradation is 

taken into account. 

Self-consumption can be increased by shifting loads to a PV generation period. In [91], 

self-consumption was managed, however, performing DR to benefit from time-based 

prices was neglected. [105] proposed a detailed HEMS framework based on DR, 
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however, the proposed algorithm did not aim to increase self-consumption. [102], 

[106], and [107] considered DR and self-consumption together and took into account 

battery degradation, but did not focus on load management. 

3.2.3 Smart thermostats 

DR may not be adopted to a desired level due to possible end-user comfort violations. 

One of the most repulsive of these is thermal comfort violation. Therefore, the studies 

regarding DR-related thermostats are examined under a subtitle in the literature 

summary. 

[94], [108] and  [109] handled ACs as curtailable loads and the curtailment was 

enabled through kW reduction. Yet, without a thermal model that allows to make an 

accurate prediction of the thermal behaviour of a household, this method is likely to 

cause a thermal comfort violation due to not being able to capture temperature changes.  

[110] obtained a detailed thermal model of a house using OpenStudio and Energyplus 

and applied set-point modification under RTP. [111] developed a detailed lumped-

capacitance model for HVAC operation in a household considering occupants’ 

comfort level. Although highly-complex thermal models reduce the percentage of 

error, they are hard to implement in real-life applications due to a lack of knowledge 

about physical properties of buildings [112]. [113] examined various thermal models 

for buildings and a detailed 8R3C thermal model and a simplified 1R1C model are 

found to have closer Root Mean Square Errors (RMSEs), whereas the best result is 

obtained with a 4R2C model. 1R1C thermal model is widely preferred in HEMS 

studies due to its linear form, simplicity, and fast response [101,105,114–116]. 

Various studies focused on smart thermostats to respond to changing conditions. 

[114,117,118] proposed a fuzzy logic-based smart thermostat for residential heating, 

ventilation, and air conditioning (HVAC) systems. Unlike conventional thermostats, 

the proposed model uses a fuzzy inference system (FIS) to adjust set-point temperature 

according to the changes in electricity prices, occupant presence and outdoor 

temperature. Nevertheless, the possible availability of a small-scale PV or a BESS in 

the household was not evaluated in the decision-making process. [119] designed a 

controller to coordinate PV, BESS, and HVAC in a building to reduce peak electrical 

demand in response to fluctuations in dry-bulb air temperature, electricity prices, 

energy demand, and comfort conditions, taking into account PV generation and battery 
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state-of-charge (SoC) in decision-making. In [114,117–119] only set-point 

modification was considered in a real-time control manner and pre-cooling/heating 

were not available.  

In [101,103,120] benefiting from thermal inertia inside was considered. [120] 

proposed a MATLAB-TRNSYS based model that could provide pre-cooling/heating 

and also switch between an electrical Air Source Heat Pump (ASHP) and a natural gas 

mini boiler depending on the thermal demand of a house and electricity/gas prices. 

[79] considered comfort violation minimization in DLC based DR programs for AC 

control. Fairness of allocation of comfort violation was considered as well as the 

impact of humidity on dry-bulb temperature. 

A few number of studies considered smart AC operation under a HEMS framework, 

in which both varying outer and inner conditions and status of other appliances in a 

household can be taken into account in decision-making. [121] proposed a hardware 

design of a HEMS and considered thermal comfort in AC operation. However, the 

HEMS handled each electrical load individually which limits to respond to demand 

charges/peak limits and does not allow to optimally distribute a generated energy in 

presence of a PV unit. [122] developed a detailed HEMS comprising a smart 

thermostat that adjusts set-point considering varying conditions including occupancy 

level. Battery degradation was neglected both in [121,122]. [123] considered all the 

above-mentioned deficiencies except occupant presence in a thermostat integrated 

HEMS. AC set-point temperature was adjusted based on the dissatisfaction of 

homeowners. [124] combined an adaptive AC with a HEMS considering indoor 

temperature, humidity, and clothing condition. 

 Content and Contributions 

Based on the literature review and the above discussions, the specific contribution of 

this study is twofold: 

 (1) The main contribution is to combine a HEMS with a smart thermostat to provide 

efficient demand response (DR) of the air conditioner (AC) with a higher thermal 

comfort of end-users. 

• Instead of using a conventional thermostat with a fixed set-point, we introduce 

a smart thermostat that regulates an initialized set-point according to the 
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changing conditions (electricity prices, solar radiation, and occupant presence), 

as specified in Table 3.2. Therefore, DR for AC is provided flexibly. For 

instance, the thermostat sets a higher set-point within the ASHRAE limits for 

AC in on-peak hours to reduce the electricity costs; however, the set-point will 

not be the same for different occupancy levels. In the case of high occupancy, 

the smart thermostat places more emphasis on thermal comfort, and the set-

point becomes lower than in the case of less or no occupancy. The changes in 

the AC set-point also differ depending on the state of PV generation at home. 

Ultimately, fuzzy logic is preferred for considering several factors. 

• Since the smart thermostat is not handled as a separate device but a part of a 

HEMS, all the electrical loads, including AC, are considered in the day-ahead 

optimization and it is ensured that a stored solar energy is optimally distributed 

among all household appliances, peak power limits are met and demand 

charges are avoided. When necessary, the HEMS can provide pre-

heating/cooling as well. 

(2) To the best of our knowledge, this is one of the most comprehensive HEMSs in the 

literature when all the relevant aspects are considered. After examination of the 

publications, it became apparent that on the basis of HEMSs: 

• integration of a smart thermostat into a HEMS 

• controlling of all type of residential loads (TSA, TCA, PSA) 

• consideration of increased PV self-consumption and DR at the same time 

• consideration of vehicle-to-grid (V2G), vehicle-to-home (V2H), vehicle-to-

battery (V2B), battery-to-grid (B2G), battery-to-home (B2H), battery-to-

vehicle (B2V), home-to-grid (H2G) operations together 

• consideration of battery degradation to prevent unnecessary energy arbitrage 

• consideration of a solar model for a tilted PV array, that considers installed 

capacity, tilt angle of array and the impact of temperature on PV power output 

are not evaluated together in a single HEMS framework. Therefore, a load scheduling 

optimization-based HEMS which combines all the above-mentioned features within is 

proposed in this study.  

Istanbul is chosen as the case study location. Cost savings provided by the HEMS 

varies according to different types of households. Thus, daily utility bills of six types 
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of households with different load profiles are analyzed under TOU and feed-in tariff 

rates of Türkiye, and solar radiation and temperature conditions of Istanbul. Afterward, 

the HEMS is tested for different days of the same month to examine the smart 

thermostat operation under different weather conditions. Lastly, since Turkish 

residents cannot benefit from residential RTP, which can enhance the efficiency of 

HEMSs, the static TOU rates of Türkiye are modified into hourly varying RTP rates 

and the performance of the HEMS is evaluated under dynamic pricing. 

The proposed HEMS includes two stages: set-point adjustment of AC and day-ahead 

scheduling of all electrical loads. The workflow of the HEMS is given in Figure 3.1. 

Homeowners enter occupant presence information, their preferred initial set-point 

temperature for AC, their preferred times of operation ranges for TSAs (if any), hot 

water usage times for EWH, and preferred charging times of EV. → LSE forwards 

energy price, DR information, and weather forecast to the household. → The 

embedded smart thermostat uses the received solar radiation forecast and electricity 

price data and user-defined occupant presence information (which can either be 

measured by sensors or be entered by users) and defines different AC set-point values 

for each time interval to be used in the optimization. → The optimization algorithm of 

the HEMS performs day-ahead load scheduling to provide DR and self-consumption. 

Bi-directional power flow between home, BESS, EV, and grid are considered as well 

as battery degradation to avoid unnecessary energy arbitrage. The framework of the 

HEMS architecture and the present electrical loads in the household are presented in 

Figure 3.2. 

 

Figure 3.1 : The workflow of the HEMS. 
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Figure 3.2 : The framework of the HEMS architecture. 

 Methodology and Formulation 

The HEMS is formulated in the form of a MILP problem as the appliance models are 

linear and MILP ensures a global optimum solution with a fast convergence rate. 

MATLAB’s branch-and-bound based “intlinprog” solver is used. The objective of the 

HEMS optimization problem is to minimize the daily electricity cost of the household:  

min𝑓 = ∑{
𝑃𝑡

𝐺 ∙ ∆𝑡 ∙ 𝜆𝑡
𝑏𝑢𝑦

+ 𝑃𝑡
𝑉,𝐺 ∙ ∆𝑡 ∙ 𝜆𝑡

𝑉,𝑏𝑢𝑦
+ 𝑃𝑡

𝐵,𝐺 ∙ ∆𝑡 ∙ 𝜆𝑡
𝐵,𝑏𝑢𝑦

−𝑃𝑡
𝑃𝑉,2𝐺 ∙ ∆𝑡 ∙ 𝜆𝑡

𝑠𝑒𝑙𝑙 − 𝑃𝑡
𝑉,2𝐺 ∙ ∆𝑡 ∙ 𝜆𝑡

𝑉,𝑠𝑒𝑙𝑙 − 𝑃𝑡
𝐵,2𝐺 ∙ ∆𝑡 ∙ 𝜆𝑡

𝐵,𝑠𝑒𝑙𝑙
}

𝑡

 (3.1) 

𝜆𝑡
𝑉,𝑏𝑢𝑦

= 𝜆𝑡
𝑏𝑢𝑦

+ 𝜆𝑉,𝑑𝑒𝑔 

𝜆𝑡
𝑉,𝑠𝑒𝑙𝑙 = 𝜆𝑡

𝑠𝑒𝑙𝑙 + 𝜆𝑉,𝑑𝑒𝑔 

𝜆𝑉,𝑑𝑒𝑔 =
𝑅𝑒𝑝𝑉

(𝐿𝑉 ∙ 𝜂𝑉,𝑟𝑡)
 

𝐿𝑉 = 𝐶𝑦𝑐𝑉 ∙ 𝐶𝑎𝑝𝑉 ∙ 𝐷𝑜𝐷𝑉 

(3.2) 

𝜆𝑡
𝐵,𝑏𝑢𝑦

= 𝜆𝑡
𝑏𝑢𝑦

+ 𝜆𝐵,𝑑𝑒𝑔 

𝜆𝑡
𝐵,𝑠𝑒𝑙𝑙 = 𝜆𝑡

𝑠𝑒𝑙𝑙 + 𝜆𝐵,𝑑𝑒𝑔 

𝜆𝐵,𝑑𝑒𝑔 =
𝑅𝑒𝑝𝐵

(𝐿𝐵 ∙ 𝜂𝐵,𝑟𝑡)
 

𝐿𝐵 = 𝐶𝑦𝑐𝐵 ∙ 𝐶𝑎𝑝𝐵 ∙ 𝐷𝑜𝐷𝐵 

(3.3) 
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Here, the bought energy expressed by 𝑃𝑡
𝐺  is the sum of the power purchased from the 

grid by all appliances (TCAs, TSAs) excluding the PSAs. The PSAs are differentiated 

here to prevent unnecessary energy arbitrage by including battery degradation costs in 

their buying and selling prices [125]. Therefore, 𝜆𝑡
𝑉,𝑏𝑢𝑦

 and 𝜆𝑡
𝐵,𝑏𝑢𝑦

 are the sum of 

buying price 𝜆𝑡
𝑏𝑢𝑦

 and battery degradation prices 𝜆𝑉,𝑑𝑒𝑔, 𝜆𝐵,𝑑𝑒𝑔. Similarly, 𝜆𝑡
𝑉,𝑠𝑒𝑙𝑙

 and 

𝜆𝑡
𝐵,𝑠𝑒𝑙𝑙

 are the sum of the selling price 𝜆𝑡
𝑠𝑒𝑙𝑙 and battery degradation prices 𝜆𝑉,𝑑𝑒𝑔, 

𝜆𝐵,𝑑𝑒𝑔. Thus; 

• V2G or B2G are considered if only the benefit of selling energy to the grid is 

higher than the battery degradation cost. 

• V2H and B2H are considered if only the benefit of buying energy to use at a 

later time at home is higher than the battery degradation cost. 

It should be noted that the degradation cost is not included in the electricity bill. The 

buying and selling prices of the PSAs above are artificial prices to optimally schedule 

loads and prevent batteries from unnecessary energy arbitrage. Therefore, after the 

load scheduling, EV and BESS buying and selling costs are calculated once again by 

removing the degradation cost.  

3.4.1 Time-shiftable appliances (TSAs) 

TSAs have fixed power consumption patterns and uninterruptible once they are 

launched. TSAs are modeled as follows [126,127]:  

𝑃𝑎
𝑇𝑆𝐴 = 

[
 
 
 
 
𝑝𝑎,1

𝑇𝑆𝐴 𝑝𝑎,𝑡
𝑇𝑆𝐴 ⋯ 𝑝𝑎,3

𝑇𝑆𝐴 𝑝𝑎,2
𝑇𝑆𝐴

𝑝𝑎,2
𝑇𝑆𝐴 𝑝𝑎,1

𝑇𝑆𝐴 ⋯ 𝑝𝑎,4
𝑇𝑆𝐴 𝑝𝑎,3

𝑇𝑆𝐴

⋮ ⋮ ⋱ ⋮ ⋮
𝑝𝑎,𝑡

𝑇𝑆𝐴 𝑝𝑎,𝑡−1
𝑇𝑆𝐴 ⋯ 𝑝𝑎,2

𝑇𝑆𝐴 𝑝𝑎,1
𝑇𝑆𝐴]

 
 
 
 

, ∀𝑡 ∈  [𝑡𝑎
𝑚𝑖𝑛, 𝑡𝑎

𝑚𝑎𝑥] (3.4) 

𝑋𝑎
𝑇𝑆𝐴 = [𝑥𝑎,1

𝑇𝑆𝐴, 𝑥𝑎,2
𝑇𝑆𝐴, . . . , 𝑥𝑎,𝑡

𝑇𝑆𝐴]′, ∀𝑡 ∈  [𝑡𝑎
𝑚𝑖𝑛, 𝑡𝑎

𝑚𝑎𝑥] (3.5) 

𝑋𝑎
𝑇𝑆𝐴 = ∑𝑥𝑎,𝑡

𝑇𝑆𝐴 = 1,

𝑇

𝑡=1

 𝑋𝑇𝑆𝐴 ∈ {0,1}, ∀𝑡 ∈  [𝑡𝑎
𝑚𝑖𝑛, 𝑡𝑎

𝑚𝑎𝑥] (3.6) 

𝑟𝑢𝑛𝑎 ≤ |𝑡𝑎
𝑚𝑎𝑥 − 𝑡𝑎

𝑚𝑖𝑛| (3.7) 
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𝑃𝑇𝑆𝐴 = ∑ 𝑃𝑎
𝑇𝑆𝐴𝑋𝑎

𝑇𝑆𝐴

𝐴

𝑎=1

 (3.8) 

Power consumption of a TSA cannot be interfered during its operation. Fixed power 

consumption of a TSA can be given by 𝑷𝒂
𝑻𝑺𝑨 =  [𝒑𝒂,𝟏

𝑻𝑺𝑨 𝒑𝒂,𝟐
𝑻𝑺𝑨 ⋯ 𝒑𝒂,𝑻

𝑻𝑺𝑨]
′
. Then, all 

possible combinations of power consumption of a TSA can be expressed as in Eq. 

(3.4). Since only one of the combinations gives the optimal result, to select the optimal 

one, a switch vector of 𝑿𝒂
𝑻𝑺𝑨 is used as in Eq. (3.5). There can be only one non-zero 

element in 𝑿𝒂
𝑻𝑺𝑨 as expressed in Eq. (3.6). Vector 𝑿𝒂

𝑻𝑺𝑨 is an optimization parameter 

to choose the optimal column in 𝑷𝒂
𝑻𝑺𝑨. Users may have preferred times of operation 

for TSAs. Therefore, 𝒕𝒂
𝒎𝒊𝒏 and 𝒕𝒂

𝒎𝒂𝒙 denote the beginning and ending of the preferred 

times of operation range of a TSA. The length of a preferred time interval (the 

difference between 𝒕𝒂
𝒎𝒊𝒏 and 𝒕𝒂

𝒎𝒂𝒙) cannot be lower than a running time of a TSA as 

stated in Eq. (3.7). The power consumption of a TSA is given in Eq. (3.8). 

3.4.2 Power-shiftable appliances (PSAs) 

3.4.2.1 Battery energy storage system (BESS) 

BESS is modeled as follows [128]: 

𝑃𝑡
𝐵,2𝐻 + 𝑃𝑡

𝐵,2𝑉 + 𝑃𝑡
𝐵,2𝐺 = 𝜂𝐵,𝑑𝑖𝑠 ∙ 𝑃𝑡

𝐵,𝑑𝑖𝑠, ∀𝑡 (3.9) 

0 ≤ 𝑃𝑡
𝐵,𝑐ℎ ≤ 𝑅𝐵,𝑐ℎ ∙ 𝑥𝑡

𝐵 , ∀𝑡 (3.10) 

0 ≤ 𝑃𝑡
𝐵,𝑑𝑖𝑠 ≤ 𝑅𝐵,𝑑𝑖𝑠 ∙ (1 − 𝑥𝑡

𝐵), ∀𝑡 (3.11) 

𝑆𝑜𝐸𝑡
𝐵 = 𝑆𝑜𝐸𝑡−1

𝐵 + 𝜂𝐵,𝑐ℎ ∙ 𝑃𝐵,𝑐ℎ ∙ ∆𝑡 − 𝑃𝐵,𝑑𝑖𝑠 ∙ ∆𝑡 , ∀𝑡 > 1 (3.12) 

𝑆𝑜𝐸𝑡
𝐵 = 𝑆𝑜𝐸𝐵,𝑖𝑛𝑖, 𝑖𝑓 𝑡 = 1 (3.13) 

𝑆𝑜𝐸𝐵,𝑚𝑎𝑥 ∙ (1 − 𝐷𝑜𝐷𝐵) ≤ 𝑆𝑜𝐸𝑡
𝐵 ≤ 𝑆𝑜𝐸𝐵,𝑚𝑎𝑥, ∀𝑡 (3.14) 

Eq. (3.9) describes that the discharged power of the BESS is the sum of the power used 

in the household and injected to the grid. Eq. (3.10) and (3.11) state that the charging 

and discharging power of the BESS at a particular time cannot exceed the charging 

and discharging rate of the battery. Eq. (3.12) and (3.13) define the state of energy 
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(SoE) of the BESS. Eq. (3.14) states that SoE of the BESS cannot exceed the maximum 

battery capacity and the minimum allowed SoE is limited by the permissible depth of 

discharge (DoD). 

3.4.2.2 Electric vehicle (EV) 

The operation of the EV, so are the Eq. (3.15-3.20) are similar to the BESS except that, 

while BESS is in operation all day long, charging and discharging of the EV are 

constrained by the EV arrival and departure time (or preferred charging times). 

Besides, the EV battery should be fully charged before its departure as expressed in 

Eq. (3.21). EV is modeled as follows [128]: 

𝑃𝑡
𝑉,2𝐻 + 𝑃𝑡

𝑉,2𝐵 + 𝑃𝑡
𝑉,2𝐺 = 𝜂𝑉,𝑑𝑖𝑠 ∙ 𝑃𝑡

𝑉,𝑑𝑖𝑠, ∀𝑡 ∈ [𝑡𝑎𝑟𝑟 , 𝑡𝑑𝑒𝑝] (3.15) 

0 ≤ 𝑃𝑡
𝑉,𝑐ℎ ≤ 𝑅𝑉,𝑐ℎ ∙ 𝑥𝑡

𝑉 , ∀𝑡 ∈ [𝑡𝑎𝑟𝑟 , 𝑡𝑑𝑒𝑝] (3.16) 

0 ≤ 𝑃𝑡
𝑉,𝑑𝑖𝑠 ≤ 𝑅𝑉,𝑑𝑖𝑠 ∙ (1 − 𝑥𝑡

𝑉), ∀𝑡 ∈ [𝑡𝑎𝑟𝑟 , 𝑡𝑑𝑒𝑝] (3.17) 

𝑆𝑜𝐸𝑡
𝑉 = 𝑆𝑜𝐸𝑉,𝑖𝑛𝑖 + 𝜂𝑉,𝑐ℎ ∙ 𝑃𝑉,𝑐ℎ ∙ ∆𝑡 − 𝑃𝑉,𝑑𝑖𝑠 ∙ ∆𝑡 , ∀𝑡 ∈ 𝑡𝑎𝑟𝑟

 (3.18) 

𝑆𝑜𝐸𝑡
𝑉 = 𝑆𝑜𝐸𝑡−1

𝑉 + 𝜂𝑉,𝑐ℎ ∙ 𝑃𝑉,𝑐ℎ ∙ ∆𝑡 − 𝑃𝑉,𝑑𝑖𝑠 ∙ ∆𝑡 , ∀𝑡 ∈ [𝑡𝑎𝑟𝑟 , 𝑡𝑑𝑒𝑝] (3.19) 

𝑆𝑜𝐸𝑉,𝑚𝑎𝑥 ∙ (1 − 𝐷𝑜𝐷𝑉) ≤ 𝑆𝑜𝐸𝑡
𝑉 ≤ 𝑆𝑜𝐸𝑉,𝑚𝑎𝑥, ∀𝑡 ∈ [𝑡𝑎𝑟𝑟 , 𝑡𝑑𝑒𝑝] (3.20) 

𝑆𝑜𝐸𝑡
𝑉 = 𝑆𝑜𝐸𝑉,𝑚𝑎𝑥 , 𝑡 = 𝑡𝑑𝑒𝑝 (3.21) 

3.4.3 Thermostatically controlled appliances (TCAs) 

Three TCAs are considered in the HEMS operation, namely, AC, EWH, and 

refrigerator. A first-order lumped capacitance 1R1C gray-box model is used, which is 

reported in several studies to be sufficiently reliable to capture thermal behaviour of 

house, EWH tank, and refrigerator cabinet [129–131]. 

3.4.3.1 Electric water heater (EWH) 

Eq. (3.22) formulates the EWH model. Here, the EWH tank is assumed to be located 

in a part of the house that is under the effect of AC operation, thus 𝑇𝑡
𝑎𝑚𝑏 represents 

the day-ahead ambient set-point temperatures imposed by the smart AC thermostat. 

𝑢𝑐 vector defines the hot water usage times. When hot water is used, it is replaced by 

inlet water. EWH does not allow the water temperature to drop below the minimum 
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allowed temperature. Eq. (3.23) denotes the allowed hot water temperature limits 

inside the EWH tank. Eq. (3.24) gives the electrical power consumption of the EWH. 

𝑇𝑡
ℎ𝑤 =

(𝑇𝑡
𝑎𝑚𝑏 + 𝑐̇𝐸𝑊𝐻 ∙ 𝑅𝐸𝑊𝐻 ∙ 𝑇𝑡

𝑐 ∙ 𝑢𝑐𝑡 + 𝑅𝐸𝑊𝐻 ∙ 𝐶𝑂𝑃𝐸𝑊𝐻 ∙ 𝑃𝐸𝑊𝐻 ∙ 𝑥𝑡
𝐸𝑊𝐻)

(1 + 𝑐̇𝐸𝑊𝐻 ∙ 𝑅𝐸𝑊𝐻 ∙ 𝑢𝑐𝑡)
 

+(𝑇𝑡−1
ℎ𝑤

− (
(𝑇𝑡

𝑎𝑚𝑏 + 𝑐̇𝐸𝑊𝐻 ∙ 𝑅𝐸𝑊𝐻 ∙ 𝑇𝑡
𝑐 ∙ 𝑢𝑐𝑡 + 𝑅𝐸𝑊𝐻 ∙ 𝐶𝑂𝑃𝐸𝑊𝐻 ∙ 𝑃𝐸𝑊𝐻 ∙ 𝑥𝑡

𝐸𝑊𝐻)

(1 + 𝑐̇𝐸𝑊𝐻 ∙ 𝑅𝐸𝑊𝐻 ∙ 𝑢𝑐𝑡)
))

∙ 𝑒
−(1+𝑐̇𝐸𝑊𝐻∙𝑅𝐸𝑊𝐻∙𝑢𝑐𝑡)∙∆𝑡

𝑅𝐸𝑊𝐻∙𝐶𝐸𝑊𝐻 , ∀𝑡 

(3.22) 

𝑇ℎ𝑤,𝑚𝑖𝑛 ≤ 𝑇𝑡
ℎ𝑤 ≤ 𝑇ℎ𝑤,𝑚𝑎𝑥, ∀𝑡 (3.23) 

𝑃𝑡
𝐸𝑊𝐻 = 𝑃𝐸𝑊𝐻 ∙ 𝑥𝑡

𝐸𝑊𝐻, ∀𝑡 (3.24) 

3.4.3.2 Refrigerator 

The refrigerator’s thermal model is similar to the EWH’s. Except that, the decision 

variable changes sign and becomes negative for the cooling operation. Also, the effect 

of door openings on cabinet temperature is neglected. The latter is excluded from the 

model due to its low effect on temperature and power consumption [82,83].  

𝑇𝑡
𝑖𝑛 = (𝑇𝑡

𝑎𝑚𝑏 − 𝑅𝑅 ∙ 𝐶𝑂𝑃𝑅 ∙ 𝑃𝑅 ∙ 𝑥𝑡
𝑅) 

+(𝑇𝑡−1
𝑖𝑛 − (𝑇𝑡

𝑎𝑚𝑏 − 𝑅𝑅 ∙ 𝐶𝑂𝑃𝑅 ∙ 𝑃𝑅 ∙ 𝑥𝑡
𝑅)) ∙ 𝑒

−
∆𝑡

𝑅𝑅∙𝐶𝑅 , ∀𝑡 

(3.25) 

𝑇𝑅,𝑚𝑖𝑛 ≤ 𝑇𝑡
𝑅 ≤ 𝑇𝑅,𝑚𝑎𝑥, ∀𝑡 (3.26) 

𝑃𝑡
𝑅 = 𝑃𝑅 ∙ 𝑥𝑡

𝑅, ∀𝑡 (3.27) 

3.4.3.3 Air conditioner (AC) 

AC’s model is similar to the refrigerator’s. Here, Eq. (3.28) accounts only for the 

cooling operation of the AC (for the heating, which is not considered here, 𝑥𝑡
𝐴𝐶  

changes sign and becomes negative). The used COP value belongs to cooling. The 

effect of air ventilation on the inside temperature is neglected. Eq. (3.29) denotes that 

the AC operates within a dead band of the set-point temperatures defined by the FIS 



47 

(Fuzzy logic set-point adjustment is detailed in Section 4.5). Eq. (3.30) stands for the 

electrical power consumption of the AC.  

𝑇𝑡
𝐴𝐶 = 𝑇𝑡

𝑜𝑢𝑡 − 𝑅𝐴𝐶 ∙ 𝐶𝑂𝑃𝐴𝐶 ∙ 𝑃𝐴𝐶 ∙ 𝑥𝑡
𝐴𝐶  

+(𝑇𝑡−1
𝐴𝐶 − (𝑇𝑡

𝑜𝑢𝑡 − 𝑅𝐴𝐶 ∙ 𝐶𝑂𝑃𝐴𝐶 ∙ 𝑃𝐴𝐶 ∙ 𝑥𝑡
𝐴𝐶)) ∙ 𝑒

−
∆𝑡

𝑅𝐴𝐶∙𝐶𝐴𝐶, ∀𝑡 

(3.28) 

𝑆𝑃𝑡
𝑚𝑖𝑛 ≤ 𝑇𝑡

𝐴𝐶 ≤ 𝑆𝑃𝑡
𝑚𝑎𝑥, ∀𝑡 (3.29) 

𝑃𝑡
𝐴𝐶 = 𝑃𝐴𝐶 ∙ 𝑥𝑡

𝐴𝐶 , ∀𝑡 (3.30) 

3.4.4 PV model 

The proposed HEMS uses Liu and Jordan’s isotropic solar model, which is widely 

used to calculate total solar radiation and PV array output on a tilted surface [132,133].  

In this approach, LSE or a system operator forwards not only a price signal but also a 

day-ahead solar forecast of a city or a location to the household [134]. Then, the HEMS 

turns the solar data input into a PV power output according to the specific parameters 

such as tilt angle and array capacity. Eq. (3.31-3.39) gives the calculation of solar 

radiation. Eq. (3.40) calculates the cell temperature to consider the effect of 

temperature on PV power output and Eq. (3.41) stands for the power calculation of the 

PV array. The study assumes that the PV array always operates at its maximum power 

point. 

𝛿 = 23.45 sin [
360(𝑛 + 284)

365
] (3.31) 

𝜔 = arccos[− tan(𝛿) tan(𝜑)] (3.32) 

𝜔′ = 𝑚𝑖𝑛{𝜔, arccos[− tan(𝛿) tan(𝜑 − 𝑠)]} (3.33) 

𝐻𝑜 =
24

𝜋
𝐼𝑠𝑐 (1 + 0.033 cos (

360𝑛

365
)) (cos(𝜑) cos(𝛿) sin(𝜔)

+
𝜋𝜔

180
sin(𝜑) sin(𝛿)) 

(3.34) 

𝐾 = 𝐻/𝐻𝑜 (3.35) 
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𝐻𝑑 = 𝐻(1 − 1.13𝐾) (3.36) 

𝑅𝑏 =
cos(𝜑 − 𝑠) cos(𝛿) sin(𝜔′) +

𝜋𝜔′

180 sin(𝜑 − 𝑠) sin(𝛿)

cos(𝜑) cos(𝛿) sin(𝜔) +
𝜋𝜔′

180 sin(𝜑) sin(𝛿)
 (3.37) 

𝑅 = 𝑅𝑏 (1 −
𝐻𝑑

𝐻
) + 𝐻𝑑 (

1 + cos(𝑠)

2𝐻
) + 𝜌 (

1 − cos(𝑠)

2
) (3.38) 

𝐻𝑡 = 𝑅𝐻 (3.39) 

𝑇𝑡
𝑐𝑒𝑙𝑙 = 𝑇𝑡

𝑜𝑢𝑡 +
𝐻𝑡

𝐻𝑡𝑁𝑂𝐶𝑇
(𝑇𝑐𝑒𝑙𝑙,𝑁𝑂𝐶𝑇 − 𝑇𝑎𝑚𝑏,𝑁𝑂𝐶𝑇) (3.40) 

𝑃𝑡
𝑃𝑉,𝑝𝑟𝑜𝑑 = 𝑌𝑃𝑉𝑑𝑃𝑉 (

𝐻𝑡

𝐻𝑡𝑆𝑇𝐶
) [1 + 𝛼𝑃 ∙ (𝑇𝑡

𝑐𝑒𝑙𝑙 − 𝑇𝑐𝑒𝑙𝑙,𝑆𝑇𝐶)] (3.41) 

3.4.5 Fuzzy logic-based smart thermostat for AC 

In this study, a fuzzy logic rule-based algorithm is proposed to define day-ahead set-

point temperatures in response to time-based electricity prices, solar radiation, and 

occupancy level. In the fuzzy logic approach, instead of complicated mathematical 

models, various input parameters are fuzzified into linguistic IF-THEN rules by using 

Mamdani fuzzy inference system (FIS).  

Then the appropriate fuzzy rules are aggregated and the defuzzification process is 

performed to transfer fuzzy inference results into a crisp “set-point change” output. 

The defuzzification method chosen for the study is the center of area (COA), as 

described in Eq. (3.42), where 𝐾 is the number of items in the fuzzy set and 𝜇𝐴(𝑥) is 

the membership function of fuzzy set 𝐴 [114]. MATLAB fuzzy logic toolbox is used 

to implement FIS. 

 𝐶𝑂𝐴 =
∑ 𝜇𝐴(𝑥)∙𝑥𝐾

𝑖=1

∑ 𝜇𝐴(𝑥)𝐾
𝑖=1

 (3.42) 

The thermostat adds the “set-point change” of each time interval (which can be either 

“positive big (PB)”, “positive small (PS)”, “zero (Z)”, “negative small (NS)”, or 

“negative big (NB)”) to the initialized set-point temperature. Membership functions of 

input and output parameters of the smart thermostat are given in Figure 3.3. 
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Figure 3.3 : Membership functions of input (electricity price, solar radiation, 

occupant presence) and output (set-point change) parameters of the fuzzy logic-based 

smart thermostat. 

The HEMS increases or decreases the user-defined set-point without exceeding the 

thermal comfort conditions defined by the American Society of Heating, 

Refrigerating, and Air-Conditioning Engineers (ASHRAE). Table 3.1 shows 

acceptable inner temperature levels according to the ASHRAE Standard 55 [135]. As 

seen, a thermostat set-point can vary within the range of 4 ºC in the course of a day, 

still staying inside the ASHRAE comfort level and allowing consumers to benefit from 

DR programs.  

Table 3.1 : Acceptable temperature ranges according to ASHRAE Standard 55. 

Condition Relative humidity Temperature range (ºC) 

Summer season  

(Clothing insulation = 0.5 clo) 

30% 23-27 

60% 22-26 

Winter season  

(Clothing insulation = 1.0 clo) 

30% 18-22 

60% 19-23 

The thermostat can increase set-point within ASHRAE limits to pay less during on-

peak period or to cover the loss caused by low PV production when solar radiation is 

low. Furthermore, the occupancy level of the residents can be considered in the 

evaluation process and thermostat can make different decisions for different 

occupancy levels. By considering occupancy level and solar radiation in the decision-

making process, the proposed smart thermostat also indirectly takes into account the 

human presence and solar radiation as heat sources which are not considered in the 

1R1C model. 
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• Considering the mentioned varying conditions, a typical fuzzy rule can be 

decided in the most favorable case as follows: IF electricity price is “low”, 

solar radiation is “high” and occupant presence is “high”, THEN set-point 

change is “negative big” to provide the highest thermal comfort.  

• Or, in the most unfavorable case: IF electricity price is “high”, solar radiation 

is “low” and occupant presence is “low”, THEN set-point change is “positive 

big” to sacrifice the thermal comfort.  

All the fuzzy rules defined in a linguistic form are demonstrated in Table 3.2. Unlike 

the wider dead band of conventional thermostats (±0.5), the inverter AC used in the 

study has a narrower dead band of ±0.25 ºC. The set-point change is limited to ±1.25 

ºC, and therefore it is ensured that the smart thermostat operates between ASHRAE 

thermal comfort limits.  

Table 3.2 : Rules (#) table for FIS in the smart thermostat. 

# Elec. 

price 

Solar 

rad. 

Occ. 

presence 

Set-

point 

change 

# Elec. 

price 

Solar 

rad. 

Occ. 

presence 

Set-

point 

change 

# Elec. 

price 

Solar 

rad. 

Occ. 

presence 

Set-

point 

change 

1 High Low Low PB 10 Med. Low Low PS 19 Low Low Low Z 

2 High Low Med. PB 11 Med. Low Med. Z 20 Low Low Med. NS 

3 High Low High PS 12 Med. Low High NS 21 Low Low High NB 

4 High Med. Low PB 13 Med. Med. Low PS 22 Low Med. Low Z 

5 High Med. Med. Z 14 Med. Med. Med. Z 23 Low Med. Med. NS 

6 High Med. High NS 15 Med. Med. High NS 24 Low Med. High NB 

7 High High Low PB 16 Med. High Low Z 25 Low High Low NS 

8 High High Med. Z 17 Med. High Med. NS 26 Low High Med. NB 

9 High High High NS 18 Med. High High NB 27 Low High High NB 

PB: positive big, PS: positive small, Z: zero, NS: negative small, NB: negative big.  

3.4.6 Power balance 

The power balance in the smart household provided by the HEMS is described by Eq. 

(3.43). 

𝑃𝑡
𝐺 + 𝑃𝑡

𝑃𝑉,𝑢𝑠𝑒𝑑 + 𝑃𝑡
𝑉,𝑢𝑠𝑒𝑑 + 𝑃𝑡

𝐵,𝑢𝑠𝑒𝑑 = 𝑃𝑡
𝐻 + 𝑃𝑡

𝑉,𝑐ℎ + 𝑃𝑡
𝐵,𝑐ℎ, ∀𝑡  (3.43) 

𝑃𝑡
𝐻 includes the power consumption of flexible and inflexible appliances except of 

PSAs (3.44). 
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𝑃𝑡
𝐻 = 𝑃𝑡

𝑜𝑡ℎ𝑒𝑟 + ∑ 𝑃𝑎,𝑡
𝑇𝑆𝐴

𝐴

𝑎=1

+ 𝑃𝑡
𝐸𝑊𝐻 + 𝑃𝑡

𝐴𝐶 + 𝑃𝑡
𝑟𝑒𝑓

, ∀𝑡  (3.44) 

𝑃𝑡
𝑃𝑉,𝑢𝑠𝑒𝑑

 is PV power used to supply the energy demand of flexible and inflexible 

appliances and charging of PSAs (3.45). Similarly, 𝑃𝑡
𝑉,𝑢𝑠𝑒𝑑

 and 𝑃𝑡
𝐵,𝑢𝑠𝑒𝑑

 are powers 

used to supply energy demand of flexible and inflexible appliances and charging of 

PSAs due to V2H, V2B, B2H, and B2V operations (3.46-3.47). 

𝑃𝑡
𝑃𝑉,𝑢𝑠𝑒𝑑 = 𝑃𝑡

𝑃𝑉,2𝐻 + 𝑃𝑡
𝑃𝑉,2𝐵 + 𝑃𝑡

𝑃𝑉,2𝑉, ∀𝑡 (3.45) 

𝑃𝑡
𝑉,𝑢𝑠𝑒𝑑 = 𝑃𝑡

𝑉,2𝐻 + 𝑃𝑡
𝑉,2𝐵, ∀𝑡 (3.46) 

𝑃𝑡
𝐵,𝑢𝑠𝑒𝑑 = 𝑃𝑡

𝐵,2𝐻 + 𝑃𝑡
𝐵,2𝑉, ∀𝑡 (3.47) 

PV production is used both for energy storage and self-consumption. The surplus 

production is sold to the grid (3.48). 

𝑃𝑡
𝑃𝑉,𝑝𝑟𝑜𝑑 = 𝑃𝑡

𝑃𝑉,𝑢𝑠𝑒𝑑 + 𝑃𝑡
𝑃𝑉,2𝐺

 (3.48) 

Power sold to the grid through surplus PV production, and V2G and B2G operations 

are given in Eq. (3.49).  

𝑃𝑡
2𝐺 = 𝑃𝑡

𝑃𝑉,2𝐺 + 𝑃𝑡
𝑉,2𝐺 + 𝑃𝑡

𝐵,2𝐺 , ∀𝑡  (3.49) 

The system operator may impose a power limit for the power imported to the grid or 

exported from the grid as shown by (3.50-3.51) [128]. 

𝑃𝑡
𝐺 + 𝑃𝑡

𝑃𝑉,𝑢𝑠𝑒𝑑 + 𝑃𝑡
𝑉,𝑢𝑠𝑒𝑑 + 𝑃𝑡

𝐵,𝑢𝑠𝑒𝑑 ≤ 𝑃𝐿𝑡
𝐺 , ∀𝑡 (3.50) 

𝑃𝑡
2𝐺 ≤ 𝑃𝐿𝑡

2𝐺 , ∀𝑡 (3.51) 

 Input Data 

3.5.1 Solar radiation and temperature data and specifications of the PV modules 

The selected time window for the optimization is 5 minutes (0.0833 h). The reason for 

choosing high resolution is to better capture the load profiles of electrical devices. The 

global solar radiation and temperature data of Istanbul are extracted from [136] (Figure 
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3.4 and Figure 3.5). The data belongs to the year 2016. The rated capacity of the 

rooftop PV array is 5 kW. The technical specifications of the PV array are given in 

Table 3.3. 

 

Figure 3.4 : Annual global solar radiation and dry bulb temperature data of Istanbul 

(2016). 

 

Figure 3.5 : Global solar radiation and dry bulb temperature data of Istanbul, August 

4, 2016. 

Table 3.3 : Technical specifications of the 5 kW PV array [137]. 

Model Canadian-Solar-CS6P-230P 

Rated capacity (W) 230 

Temperature coefficient of power (%/ºC) -0.38 

Nominal operating cell temperature (ºC) 45 

PV derating factor (%) 95 

Number of panels 22 

Latitude of the region (º) 41.01 

Optimal tilt angle (º) 29 
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3.5.2 Specifications of the batteries (EV and BESS) 

PSAs, namely EV and BESS, comprise lithium-ion and lead-acid batteries, 

respectively. The technical specifications of the batteries are given in Table 3.4. Here, 

battery replacement cost, lifetime throughput in kWh, and lifetime in cycles are given 

to calculate the battery degradation cost of the batteries. The BESS operates all day 

long in the household. It consists of five Trojan T-105 RE Solar batteries, of which 

technical specifications and price information are taken from [138,139] and [140]. The 

residents own a Nissan Leaf, of which technical specifications are given in [141]. It is 

assumed that the residents prefer EV charging to be performed at any time between 

EV arrival and departure times. The battery replacement cost of the EV is half the price 

of a brand new battery pack. This is due to the refabricated battery replacement offer 

of the EV manufacturer [142].  

Table 3.4 : Technical specifications of the batteries used in EV and BESS. 

Model 5 x Trojan T-105 RE 

Solar (lead-acid) 

Nissan LEAF EV battery 

(lithium-ion) 

Nominal capacity (kWh) 7.65 24 

Charging rate (kW) 2.0 3.3 

Discharging rate (kW) 2.0 3.3 

Charging efficiency (%) 89 95 

Discharging efficiency (%) 89 95 

DoD (%) 70 80 

Round-trip efficiency (%) 89 95 

Battery lifetime in cycles  1250 2000 

Lifetime throughput measured 

for specific DoD (kWh) 

6694 38400 

Battery replacement cost ($) 695 2850 

Calculated battery degradation 

cost ($/kWh) 

0.117 0.078 

Operating time interval All-day long 18 pm (arrival) – 8 am 

(departure) 

Initial SoC (%) 0 68.75 

Final SoC (%) 0 100 
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3.5.3 Thermal properties of the smart home and thermal loads 

For the thermal properties of the household, measured parameter values of a 125 m² 

one-storey house are used [143], of which thermal capacitance 𝐶𝐴𝐶 and thermal 

resistance 𝑅𝐴𝐶 are 12,312 kJ/ºC and 4.87 ºC/kW, respectively. The selected values are 

compatible with other studies in the literature, like [144], which uses measured data of 

another 120 m² house, or [145] and [146] which scales 𝑅 and 𝐶 values per square meter 

of floor space. It should be noted that, instead of using a first-order thermal model, a 

second-order model can be used and more accurate results can be achieved. However, 

this study concentrates on describing the lumped thermal capacity of a household 

rather than a detailed description of the temperature transients, as stated in [147]. The 

inverter AC with a rated power 𝑃𝐴𝐶 of 2.21 kW provides cooling capacity 𝑄𝐴𝐶 of 7.1 

kW with 𝐶𝑂𝑃 of 3.21 [148].  

Thermal properties measured in [149] are used in the EWH model. Thermal 

capacitance 𝐶𝐸𝑊𝐻 and thermal resistance 𝑅𝐸𝑊𝐻 are stated as 1770 kJ/ºC and 223 

ºC/kW, respectively. 𝑄𝐸𝑊𝐻 is given as 3.0 kW. Although EWH size is not given, the 

size of a 3 kW EWH can be estimated as 200 liters [150]. 𝐶𝑂𝑃 value of a standard 

EWH can be taken as 1.0 [151]. Hot water usage is assumed to be 2.5 gallons per 

minute and the constant amount of water heat flow capacity in single time-step 𝑐̇𝐸𝑊𝐻 

is calculated as 0.6594 kW/K. Since bacterias such as legionella can proliferate up to 

45 ºC and temperature above 60 ºC may cause scalding, allowed minimum and 

maximum hot water temperature inside the EWH tank is limited between these 

temperatures [152]. Hot water is assumed to be used only for bathing and showering. 

Inlet water temperature 𝑇𝑡
𝑐 is assumed to have a daily constant temperature at 21 ºC. 

Thermal properties of a large inverter refrigerator which is more suitable for DR due 

to its higher thermal inertia, was not found in the literature. Thus, values of a small 60 

liters refrigerator [153] are scaled considering a 600 liters one. Thermal resistance is 

scaled according to surface area, and thermal capacitance is scaled according to 

volume. Accordingly, thermal capacitance 𝐶𝑅𝑒𝑓 and thermal resistance 𝑅𝑅𝑒𝑓 values 

are estimated as 89.34 kJ/ºC and 297.15 ºC/kW, with a power rating 𝑃𝑅𝑒𝑓 of 0.29 kW 

and cooling capacity 𝑄𝑅𝑒𝑓 of 0.381 kW. A typical refrigerator consumes daily 1-2 

kWh, and our assumptions give a result in between (1.4 kWh) [154]. Technical 

specifications, thermal parameters, and user preferences are presented in Table 3.5.  
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Table 3.5 : Technical specifications and user preferences regarding TCAs. 

 
Inverter 

AC/House 
EWH/Tank Refrigerator/Cabinet 

Heating/Cooling capacity (kW) 
7.1 (24,225 

BTU/h)  
3.0 0.29 

COP 3.21 1 0.76 

Power consumption (kW) 2.21 3.0 0.381 

Size 125 m² 200 liters 600 liters 

Thermal resistance (ºC/kW) 4.87 223 89.34 

Thermal capacitance (kJ/ºC) 12312 1770 297.15 

Constant amount of water heat flow 

capacity in a single time-step (kW/K) 
- 0.6594 - 

Hot water usage times - 

06:10 – 06:20 

14:00 – 14:05 

18:30 – 18:40 

- 

Inlet water temperature (ºC) - 21 - 

Min. set-point temperature (ºC) Defined by smart 

thermostat for 

each time step 

45.0 -1.0 

Max. set-point temperature (ºC) 60.0 4.5 

3.5.4 Operating phases and load profiles of the appliances 

The operating phases of the TSAs are given in Table 3.6. The load profiles of 

dishwasher and washing machine rely on our former measurements [155]. The load 

profile of the clothes dryer is derived from [82]. The users can enter their preferred 

operating times for their TSAs as stated in Eq. (3.4-3.7). Here, for the sake of 

simplicity, it is assumed that the users agree that their TSAs can start to operate at any 

time of day. While the refrigerator is categorized as a TCA, here, the defrost cycle of 

the refrigerator is also taken into account and handled as a TSA. The defrost timer sets 

the defrost cycle to run automatically every 12 hours a day, and the defrosting lasts 

approximately 35 minutes [156,157].  

Table 3.6 : Operating phases of the TSAs. 

TSA Phase 1 2 3 4 5 6 

Washing machine 
Power (kW) 0.15 2.1 0.15 2.1 0.15 0.3 

Duration (periods) 1 2 2 4 4 2 

Dishwasher 
Power (kW) 2.1 0.15 2.1 - - - 

Duration (periods) 4 3 6 - - - 

Clothes dryer 
Power (kW) 3 0.15 3 0.15 3 0.15 

Duration (periods) 3 1 1 1 1 3 

Automatic defrost 
Power (kW) 0.48 0 0.48 0 - - 

Duration (periods) 7 137 7 137 - - 

The load profile of the inflexible loads (Table 3.7) is based on load profile and usage 

data extracted from various studies in the literature and our own experience on daily 

usage of appliances [134,158–160].  



56 

Table 3.7 : Load profile of the inflexible loads. 

Inflexible 

appliance 

Rated power 

(kW) 

Periods 

(5 min.) 

Operating time interval 

Iron 1.1 6 21:00-21:30 

Toaster 1.2 4 06:45-06:55, 09:30-09:40 

Kettle 2.1 3 07:00-07:05, 09:30-09:35, 19:30-19:35 

Coffee maker 0.6 6 08:00-08:10, 17:30-17:40, 19:00-19:10 

Hairdryer 1.8 2 06:30-06:35, 22:00-22:05 

TV1 0.091 96 08:00-10:30, 18:30-00:00 

TV2 0.091 36 19:00-22:00 

PC1 0.11 90 10:30-12:30, 17:00-20:00, 21:00-23:30 

PC2 0.09 30 18:00-20:00 

Electric stove 2.4 8 19:30-20:10 

Cooker hood 0.225 12 19:30-20:30 

Lighting 0.24 102 06:00-06:30, 17:00-01:00 

Microwave 1.5 2 07:00-07:05, 10:30-10:35 

Other (fixed) 0.1 288 00:00-00:00 

3.5.5 Electricity prices 

The residential TOU rates of Türkiye (April 2020) are given in Figure 3.6 [161]. The 

rates are 0.077 $/kWh (off-peak), 0.122 $/kWh (mid-peak), and 0.178 $/kWh (on-

peak). The PV sells the excess energy to the grid through a feed-in tariff rate (0.061 

$/kWh). The BESS and EV are also assumed to sell energy at the same price. Here, it 

should be noted again that the buying and selling prices of the BESS and EV are used 

only for load scheduling in the objective function as an artificial penalty to prevent 

batteries from unwanted energy arbitrage. The battery degradation cost is included in 

the optimization but not included in the daily bill calculation which is made after the 

optimization. 

 

Figure 3.6 : TOU and feed-in tariff rates of Türkiye (EV and BESS prices indicate 

degradation cost included artificial prices to be used in load scheduling). 
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The HEMS is assumed to receive a peak demand limit signal from the LSE, which is 

set at 6.0 kW to prevent further peaks. In addition, in many countries, the power export 

rate of recently-built residential PVs is limited by LSEs to promote self-consumption. 

Therefore, it is also assumed that the LSE limits the power injection of the 5 kW array 

by 70% [162]. And accordingly, the HEMS allows power export to the grid up to 3.5 

kW.  

3.5.6 Occupancy level 

The occupant presence information, which is used by the smart thermostat in fuzzy 

decision-making, can either be entered into the HEMS by the residents or measured 

by occupancy sensors. In the study, an assumed occupant presence data of a typical 

Turkish family is used, consisting of two working parents (A and B) and two children 

(C and D); one school-aged (age 6-11) and one adolescent (age 12-18), as applied in 

[122]. Although a real occupant presence data of Turkish families is not found in the 

literature, the assumed profile shows similarity to a typical American family [163]. 

The daily presence of occupants A, B, C, and D is explained in Figure 3.7. Since 

residents prefer slightly higher set-point temperatures during sleep hours, the HEMS 

multiplies the occupancy level by 0.5 between 00:00 and 06:00. Therefore, although 

smart thermostat enforces a higher set-point decrease during high occupancy, during 

sleep hours it does not decrease set-point as high as in a daytime.  

 

Figure 3.7 : Daily occupant presence in the household. 
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3.5.7 AC set-point temperatures due to fuzzy decision-making 

The input variables of the smart thermostat and the adjusted set-point temperatures are 

shown in Figure 3.8. Firstly, the defuzzification defines the set-point change (which 

varies between ±1.25 ºC) for each time interval. Then, the smart thermostat adds the 

defined set-point change values to the initialized set-point of 23.6 ºC and obtains the 

set-point of each time interval (Figure 3.8). Lastly, the HEMS uses the obtained set-

point values in the day-ahead optimization considering the dead band of ±0.25 ºC for 

the AC (Eq. (3.29)). 

 

Figure 3.8 : “Electricity price”, “solar radiation”, and “number of occupants” as 

smart thermostat input parameters (top), and the adjusted set-point temperatures due 

to output parameter of “set-point change” (bottom). 

As a result, the lowest and highest set-point values become 22.76 ºC and 24.42 ºC, 

respectively in the household in Istanbul on August 4. Taking into account the dead 

band of the AC (±0.25 ºC), the maximum and minimum daily inside temperature in 

the household can reach 22.51 ºC and 24.67 ºC, respectively. These values, as 

previously stated in Table 3.1, stay within the minimum and maximum limits (22 – 26 

ºC) defined by the ASHRAE for a humid region in summer season (Table 3.1), which 

matches the conditions of Istanbul.  

Although, the smart thermostat sacrifices the thermal comfort during on-peak period 

by defining a higher set-point, it provides a lower set-point temperature when the 

prices are lower and the occupancy level is high. At the end of the day, whereas the 
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initialized set-point temperature was 23.6 ºC, the daily average of the adjusted set-

points becomes nearly the same (23.7 ºC). 

 Simulation Results and Discussions 

The base-load profile of the household without battery storage, load scheduling, and 

self-consumption is shown in Figure 3.9 to demonstrate all the loads within the 

household before an energy management. In the formation of the base-load, the most 

probable times of use of TSAs are used [164,165]. The EWH operates only when the 

temperature comfort band is exceeded. The AC and refrigerator operate at their set-

point. EV charging immediately begins as it arrives home and is plugged-in. A simple 

energy management system can store the surplus PV energy to be used later during the 

on-peak period, however, it cannot enable load scheduling and does not hold a smart 

thermostat. 

 

Figure 3.9 : The daily base-load profile of the household without battery storage, 

load scheduling, and self-consumption. 

The load profile of the smart home under HEMS operation is shown in Figure 3.10 

(top). The HEMS provides both DR and self-consumption by shifting all the possible 

loads from the on-peak period to the off-peak or PV production period. Only a little 

portion (1.73 kWh) of the total PV production (26.03 kWh) is sold to the grid and 

93.37% of the PV production is self-consumed either directly or due to energy storage. 

The charge/discharge scheduling of the batteries is shown in Figure 3.10 (bottom). 
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Figure 3.10 : The daily load profile of the smart home under HEMS operation (top), 

The charge/discharge scheduling of the BESS, and EV (bottom). 

All the TSAs are shifted to the midday to benefit from the PV production, and one of 

the de-frost cycles of the refrigerator is shifted to the PV production period, whereas 

the other to the off-peak.  

All the TCAs enable pre-cooling or pre-heating before the on-peak period within the 

upper and lower temperature bounds. Likewise, the least energy consumption of the 

TCAs occurs within the on-peak period. The temperature level and usage of the TCAs 

are detailed in Section 6.1. 

The EV arrives home at 18:00 but the charging is postponed to the end of the on-peak 

period, but before, between 18:00 and 22:00, the charge rate of BESS (2 kW) cannot 

cover the demand of inflexible loads and the remaining part is covered by EV battery 

due to V2H. B2G and V2G operations do not occur in the smart home under the current 

battery degradation costs and electricity prices of Türkiye. 

3.6.1 Results for AC 

In Figure 3.11, the inverter AC operates at set-point temperatures defined by the smart 

thermostat and within the lower and upper bounds of the dead band. It also performs 

pre-cooling when necessary. 

V2H
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The set-point is at its lowest during the period when all the residents are at home and 

the electricity prices are cheaper. The highest set-point level is between 17:00 and 

18:00 where the occupancy is at the lowest, electricity prices are at the highest, and 

solar radiation is low. The average defined set-point temperature is relatively high 

(24.5 ºC) during the on-peak period due to the high electricity price and low solar 

radiation. The set-point adjustment and the pre-cooling performed before the 

beginning of the on-peak period provides the AC not to operate during the whole on-

peak period of 5 hours (between 17:00 – 22:00).  

 

Figure 3.11 : AC operation due to set-point adjustment and pre-cooling/heating and 

the temperature change inside the smart home, August 4. 

The thermostat set-point can sharply increase or decrease after some time steps. For 

instance, at 22:00, the maximum set-point sharply decreases and becomes lower than 

the minimum set-point of the previous time step. In such occurrences, the smart 

thermostat is allowed to behave flexibly and violate boundaries until the inside 

temperature reaches the defined set-point.  

3.6.2 Results for EWH 

In Figure 3.12, the sharp temperature drops indicate the hot water usages. The EWH 

enables pre-heating before the first hot water usage which occurs between 06:10 and 

06:20. The heater starts working just before 05:00 within the off-peak period and stops 

before the end of the off-peak period at 06:00. The second hot water usage occurs 
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between 14:00 and 14:05. Before the hot water usage, the EWH does not enable pre-

heating and uses the free PV power directly for heating. The HEMS does not allow the 

tank temperature to drop below the minimum limit of 45 ºC during hot water use. The 

third hot water usage occurs between 18:30 and 18:40, which is within the on-peak 

period. To avoid high electricity prices during the on-peak period, the EWH provides 

pre-heating using the PV power (as seen in Figure 3.10) until the end of the mid-peak 

period, which ends at 17:00.  

 

Figure 3.12 : Temperature change inside the EWH tank. 

3.6.3 Results for refrigerator 

In Figure 3.13, the refrigerator starts pre-cooling before the beginning of the on-peak 

period. This allows the refrigerator not to consume energy for 2 hours during the on-

peak period (which lasts for 5 hours). 

 

Figure 3.13 : Temperature change inside the refrigerator cabinet. 
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3.6.4 Case studies 

3.6.4.1 HEMS operation in different types of households 

The main purpose of the proposed HEMS is to reduce the daily bill of the smart 

household. Thus, cost comparison with and without HEMS usage is made for different 

types of households. The first case is the main case detailed in Section 6, in which all 

the TSA, TCA, PSA type of loads, as well as a PV array, are present. In all other cases, 

inflexible loads, TSAs, and TCAs are considered to be present, and the presence of 

PSAs and PV are variable. In the evaluation of “without HEMS” cases which contains 

BESS, it is assumed that a simple energy management system can store the surplus PV 

energy to be used later during the on-peak period. However, this simple energy 

management system cannot enable load scheduling and does not hold a smart 

thermostat. 

Not every rooftop might be suitable for PV installation or and not everybody may want 

to invest in PV and BESS, Also, not everybody wants to have a car or replace their 

gasoline cars with EVs. Thus, the absence of these loads is considered in the case 

studies. Table 3.8 demonstrates daily energy purchases, self-consumption ratios, and 

utility bills of six types of households, as well as their cost reduction comparison, with 

and without HEMS usage. 

Table 3.8 : Daily cost and power consumption comparison of different types of 

households with and without HEMS usage. 

Case 

PV 

prod. 

(kWh) 

Without HEMS With HEMS 

Cost 

reduction 

(%) 

Energy 
bought 

from 

grid 

(kWh) 

PV 
energy 

used in 

household 

(kWh) 

PV self-

consumption 

(%) 

Daily 

cost 

($) 

Energy 
bought 

from 

grid 

(kWh) 

PV 
energy 

used in 

household 

(kWh) 

PV self-

consumption 

(%) 

Daily 

cost 

($) 

1 26.03 21.46 19.22 74.83 2.69 17.29 24.30 93.37 1.26 53.2 

2 26.03 28.09 12.59 49.08 3.41 22.84 18.79 72.16 1.89 44.6 

3 - 40.74 - - 5.79 42.33 - - 4.44 23.3 

4 26.03 14.34 19.22 74.83 1.41 10.31 24.26 93.18 0.84 40.4 

5 26.03 20.96 12.59 49.08 2.13 15.72 18.87 72.50 1.35 36.6 

6 - 33.61 - - 4.51 35.30 - - 3.90 13.5 
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The considered household types (cases) in Table 3.8 are as follows, 

1) TSAs+TCAs+PV+BESS+EV 

2) TSAs+TCAs+PV+EV,  

3) TSAs+TCAs+EV (only DR),  

4) TSAs+TCAs+PV+BESS,  

5) TSAs+TCAs+PV  

6) TSAs+TCAs (only DR). 

In Case 2 (44.6%) and Case 4 (40.4%) considerably high cost reduction is obtained 

due to the presence of EV in the former (high DR capability) and of BESS in the latter 

(energy storage). The highest cost reduction is obtained in Case 1 (53.2%), which 

contains both EV and BESS. In Case 2 and Case 5, PV exists, but without a BESS, the 

self-consumption is applied only by shifting the adequate loads to the PV production 

period, and the excess energy is sold to the grid. The households without PV (Case 3 

and Case 6) cannot enable self-consumption but only DR. The cost reduction in these 

two cases (23.3% and 13.5%, respectively) is lower compared to the others.  

Under HEMS operation, a smart home that holds TSAs and TCAs (Case 6) receives a 

daily bill of $3.90. When a 5 kW PV is installed (Case 5), the daily cost decreases to 

$1.35, and with an inclusion of a BESS (Case 4), it decreases even to $0.84. If the 

household also has an EV (Case 3), then the daily bill becomes $4.44, which decreases 

to $1.89 by installing a PV (Case 2) and to $1.26 by including a BESS (Case 1).  

The proposed HEMS significantly increases the self-consumption by shifting the loads 

to the PV production period, such that, the self-consumption increases from 74% to 

93% in Case 1 and Case 4, and from 49% to 72% in Case 2 and Case 6.  

For Case 3 and Case 6, the AC cost reduction is calculable due to not having a free PV 

power. According to the results, the smart HEMS thermostat provides an AC cost 

reduction of 24.2% compared to a conventional fixed set-point thermostat. The cost 

reduction of 24.2% is enabled with relatively low thermal comfort violation, such that, 

the average daily inside temperature increase is only 0.1 ºC ( 23.6 ºC in case of use of 

a conventional thermostat, and 23.7 ºC in case of use of the proposed thermostat).  

The load profiles of the households under HEMS operation in all cases are given in 

Figure 3.14. 
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Figure 3.14 : The load profiles of different types of households under HEMS 

operation (Cases 1 – 6).  

3.6.4.2 Behaviour of the smart HEMS thermostat under different solar 

radiation and temperature levels 

The simulations above are carried out for a day (August 4) representing the monthly 

average outdoor temperature of August. In this section, the simulations are conducted 

for the coolest and warmest day of the month. 

In Table 3.9, the cost comparison of ACs with and without HEMS is presented under 

different temperature levels. The cost reduction of 24% remains the same on a cooler 

day, however, it comes down to 15% on the warmest day of the month. This is because, 

while on an average and a cooler day the thermal storage can last for 5 hours during 

the on-peak period (covers all the on-peak period), on the warmest day, it lasts for 2 

hours 45 minutes (Figure 3.15). The average outdoor temperature during the on-peak 

2) TSAs+TCAs+PV+EV

6) TSAs+TCAs

3) TSAs+TCAs+EV

5) TSAs+TCAs+PV

4) TSAs+TCAs+PV+BESS

1) TSAs+TCAs+PV+BESS+EV
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period is higher on this warmest day, and consequently, AC is forced to operate during 

the on-peak period. Yet, although the thermal storage lasts for a shorter duration, it is 

still remarkable. 

Table 3.9 : Daily cost and energy consumption comparison of AC under different 

solar radiation and temperature values. 

Case Day 

Average 

outdoor 

temp. 

(ºC) 

Without HEMS  

(fixed set-point)  

With HEMS  

(adjusted set-point) 

AC cost 

reduction 

(%) 
Average 

inside 

temp. (ºC) 

AC 

consump. 

(kWh) 

AC 

cost 

($) 

Average 

inside 

temp. 

(ºC) 

AC 

consump. 

(kWh) 

AC 

cost 

($) 

3 and 

6 

Coolest 

(August 

12) 

24.9 

23.6 

3.09 0.41 23.7 3.01 0.31 24.4 

Average 

(August 4) 
26.6 4.93 0.62 23.7 4.82 0.47 24.2 

Warmest 

(August 

21) 

28.3 7.46 0.98 23.8 6.91 0.83 15.3 

 

Figure 3.15 : Behaviour of the AC on the warmest day of the month, August 21. 
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Still, it should be noted that, here, the DR capability of the thermostat is not tried to be 

exploited. While the set-point could be increased up to 26 ºC according to the 

ASHRAE limits, considering all the parameters, the smart thermostat does not let the 

set-point exceed 25 ºC. Besides, in all cases, the average daily temperature stays close 

to the initialized set-point of 23.6 ºC. Thus, the cost reduction in Table 9 is achieved 

with a relatively low sacrifice of thermal comfort. The users who want higher cost 

reduction can still increase the initialized set-point temperature. 

3.6.4.3 Behaviour of the HEMS under RTP and dynamic feed-in tariff 

Although not in use in Türkiye, RTP which is already in use in several countries [166], 

can increase the efficiency of the HEMS. To investigate the effect of a possible RTP, 

the TOU rate of Türkiye is modified into RTP (Figure 3.16) as applied in [100]. To be 

fair, it is ensured that the modified RTP gives quite the same daily cost as the TOU 

without a use of a HEMS, but if there is a HEMS, it provides a higher demand-side 

flexibility.  

V2G and B2G are stated to be not viable in various studies due to the current high 

battery degradation costs, and new market designs and pricing structures are 

recommended to be developed to promote these technologies [102,167]. Thus, here in 

this future scenario, one of the alternative pricing schemes; hourly dynamic feed-in 

tariff is considered as discussed in [168,169], and the selling price is assumed to be 

90% of the buying price as applied in [170].  

 

Figure 3.16 : Modified RTP and dynamic feed-in tariff rates of Türkiye (EV and 

BESS prices indicate degradation cost included artificial prices to be used in load 

scheduling).  
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The load profile of the smart household in Istanbul under a possible future RTP 

scenario is given in Figure 3.17. The first notable change is that V2G which was not 

available under the current TOU rate becomes available under RTP and dynamic feed-

in tariff rates. From Figure 3.16, it can be seen that the EV selling price between 19:00-

20:00 is higher than the EV buying price between 02:00-03:00, which makes V2G 

available in the smart household only for a short amount of time (an hour), but at the 

highest peak period which can be crucial for the grid. The self-consumption in the 

household decreases because the electricity prices during the night time decrease 

considerably and DR is performed instead.  

In Table 3.10, the cost comparison of HEMS operation under TOU and RTP pricing 

is made. It can be seen that the RTP provides a higher DR capability to the HEMS. 

Higher cost reduction in Cases 1 – 3 than Cases 4 – 6 is caused by the existence of EV 

and V2G operation.  

The behaviour of the TCAs under RTP is shown in Figure 3.18. The smart thermostat 

behaves more flexible in terms of the defined set-points due to the varying prices of 

RTP than TOU. The AC operates with a daily average temperature of 23.7 ºC. During 

the high price period, the AC pre-cooling provides energy storage that lasts for 6 hours 

from 15:00 to 21:00.  

 

Figure 3.17 : The load profile of the smart home under the modified RTP and 

dynamic feed-in tariff rates (TSAs+TCAs+PV+BESS+EV). 

V2H

V2G
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Figure 3.18 : Temperature change inside the household (top), EWH tank (middle), 

and refrigerator cabinet (bottom) under RTP and dynamic feed-in tariff rates. 
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Table 3.10 : Cost comparison of HEMS operation for different types of households 

under RTP and dynamic feed-in tariff rates. 

Case Household type 

Daily cost ($) 

Without 

HEMS (TOU 

and flat feed-

in tariff) 

With HEMS 

(TOU and 

flat feed-in 

tariff) 

With HEMS 

(RTP and 

dynamic 

feed-in tariff) 

1 TSAs+TCAs+PV+BESS+EV 2.69 1.26 0.10 

2 TSAs+TCAs+PV+EV 3.41 1.89 0.66 

3 TSAs+TCAs+EV (only DR) 5.79 4.44 3.91 

4 TSAs+TCAs+PV+BESS 1.41 0.84 0.27 

5 TSAs+TCAs+PV 2.13 1.35 0.55 

6 TSAs+TCAs (only DR) 4.51 3.90 3.57 

3.6.4.4 Other findings and limitations 

The other findings and insights of the study are listed as follows: 

• The proposed model can be implemented in other countries as well and the 

results may differ primarily depending on electricity prices, climatic 

conditions, and electrical appliance use patterns. In general, the efficiency of 

the HEMS is expected to be higher in developed countries considering the 

availability of dynamic electricity pricing schemes and higher income levels of 

residents. People with higher income levels are more likely to own a higher 

number of smart home appliances and EVs, and to afford detached houses 

where rooftop PV systems can be invested and EV home charging can be 

performed. 

• In particular, the integrated smart thermostat can provide a higher benefit in 

warmer countries where the average temperature is higher and the cooling 

operation is repeated more frequently during a year. Furthermore, in countries 

where electricity prices are high, the HEMS provides higher savings, and the 

higher the savings are, the higher the NPV of the PV-BESS investment 

becomes. This is important because a PV-BESS investment may not always be 

feasible considering the reduced feed-in tariff rates today, and the feasibility 

primarily depends on savings and solar radiation. 
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• Currently, the price differential between on-peak and off-peak hours is not 

enough to offset battery degradation costs to perform energy arbitrage. Yet, as 

lithium-ion battery costs are decreasing, battery degradation costs can reach 

favorable levels and energy arbitrage can become possible in the near future.  

Lastly, the limitations of the study can be listed as follows: 

• Here, the HEMS requires that users input the EV arrival and departure times 

and occupancy status. In the case of integrating an artificial intelligence-based 

algorithm, the HEMS can learn these inputs on its own, which was beyond the 

scope of our study. In addition, the uncertainty of such inputs can be taken into 

account in simulations. The study ignored the above-mentioned topics due to 

its main focus. 

• The 1R1C model was used in the thermal modeling of the house. Although this 

model is applicable for well-insulated, detached, and low-rise houses, it may 

not be suitable for multi-storey buildings due to the heat transfer between 

floors, which are not taken into account in the 1R1C model. 

• As widely applied in the literature, we assumed that battery cycles at specific 

DoDs and then degradation are linear, which are in fact non-linear and can 

slightly change the results. 

• Not in the TOU, but in the RTP case, the cost-reduction is calculated based on 

day-ahead prices. In reality, the results may slightly differ since there might be 

a difference between the estimated day-ahead prices and intraday prices on 

which the bill is calculated. 

 Conclusions 

In this chapter, a MILP-based HEMS architecture is proposed to minimize total daily 

electricity costs in households by facilitating optimal DR and self-consumption. The 

proposed algorithm handles the control of all types of electrical loads (TSAs, TCAs, 

and PSAs) and responds to all types of battery-to-everything (B2X) and V2X 

technologies taking into account battery degradation. A solar model for a tilted PV 

array (Liu and Jordan’s) is embedded into the HEMS to turn a solar radiation forecast 

into a PV power output. Therefore, the tilt angle of array and the impact of outdoor 

temperature are taken into account in the estimation of PV power output. 
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As its main contribution, the study combines a smart thermostat with a HEMS. Instead 

of using a conventional thermostat with a fixed-set point, the proposed fuzzy logic-

based smart thermostat adjusts an initialized set-point in response to changing 

conditions (electricity prices, solar radiation, and occupant presence) and defines 

different set-points for each time interval. Therefore, DR for AC is provided flexibly. 

By not considering the smart thermostat as a separate device but as part of a HEMS, 

the AC is included in day-ahead optimization with other electrical loads at home and 

it is ensured that a stored solar energy is optimally distributed among all household 

appliances and peak power limits are met. The proposed method is compatible to use 

with both fixed-speed and inverter ACs. 

The effectiveness of the HEMS is investigated through six types of households in 

Istanbul, Türkiye. The highest daily cost reduction of 53.2% (from $2.69 to $1.26) is 

observed in the household with TSAs, TCAs, PSAs, and PV, whereas the least daily 

cost reduction of 13.5% (from $4.51 to $3.90) is obtained in the household that 

comprises only TSAs and TCAs. The inclusion of PV, EV, and BESS remarkably 

increases the effectiveness of the HEMS with higher DR and self-consumption 

potential. Unlike B2H and V2H, B2G and V2G cannot be performed under the current 

TOU and feed-in tariff rates due to currently high battery replacement costs. 

The impact of the proposed smart HEMS thermostat is examined under different solar 

radiation and temperature levels as well, and a daily AC cost reduction between 15% 

and 24% is achieved in August, depending on the day of the month.  

The effectiveness of HEMSs can be increased by introducing dynamic pricing 

schemes. In the case of a future RTP and dynamic feed-in tariff in Türkiye, the 

proposed HEMS shows a significantly higher cost-benefit than in the case of static 

TOU pricing and static feed-in tariff. Moreover, unlike in TOU pricing, V2G becomes 

possible in dynamic pricing due to the larger gap between electricity buying and selling 

prices that can surpass the battery degradation cost. Although the results are evaluated 

through daily electricity cost reduction, the flexibility in prices benefits not only the 

demand-side but also the grid-side by flattening the peak demand and offsetting the 

need for additional generation capacity and operational costs. In this regard, the results 

of the study may guide and help policymakers working on DR.  

Even though the inclusion of PV and BESS decreases the daily electricity bill, in fact, 
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these units have initial investment, operation, maintenance, and replacement costs. 

Thus, an analysis just based on a daily cost reduction may be misleading since the 

savings due to cost reduction may not return the investment for distributed generation 

and energy storage units. Therefore, a detailed techno-economic and life cycle cost 

analysis (LCCA) and optimal system design for HEMS-operated households are going 

to constitute the subject of future research. 
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 OPTIMAL SIZING OF PV-BESS UNITS FOR HOME ENERGY 

MANAGEMENT SYSTEM-EQUIPPED HOUSEHOLDS CONSIDERING 

DAY-AHEAD LOAD SCHEDULING FOR DEMAND RESPONSE AND SELF-

CONSUMPTION 

Today, selling electricity to the grid has lost its former profitability with reduced feed-

in tariff (FiT) rates. This makes it crucial for prosumers to increase self-consumption 

and size their photovoltaic (PV) and battery energy storage system (BESS) units 

accordingly. Self-consumption can be increased through demand-side management 

(DSM) and an efficient DSM can be achieved using home energy management systems 

(HEMSs). Therefore, as its main contribution, this chapter proposes an optimal PV-

BESS sizing model for HEMS-equipped prosumers considering day-ahead load 

scheduling-based DSM. Unlike other studies in the literature, the proposed model 

takes into account the determination of optimal PV tilt angle, load scheduling of all 

types of controllable appliances (time-shiftable, thermostatically controllable, power-

shiftable), consideration of battery degradation, and vehicle-to-home (V2H) 

availability in the sizing procedure. First, the mixed-integer linear programming 

(MILP)-based model performs demand response (DR) and increased self-consumption 

to minimize the daily bill. Second, it simulates one year of HEMS operation and 

determines the net present value (NPV) of a PV-BESS configuration over the system 

lifetime. Finally, it repeats the same process for each combination of PV capacity-PV 

tilt angle-battery number and chooses the combination with the highest NPV as the 

optimal design.  

The simulations were conducted to find the required PV-BESS capacity for a HEMS-

equipped household with average daily electricity consumption of 37.5 kWh in 

Istanbul, Türkiye. The optimal configuration was found to be 3 kW PV without BESS 

at the tilt angle of 10°. A techno-economic sizing comparison was made between 

households using and not using HEMS. The NPV of PV-BESS was found to be 

significantly higher with HEMS use ($2273) compared with that without HEMS use 

($920). Lastly, a sensitivity analysis was performed based on rising electricity prices 
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(+25%, +50%, +75%, +100%) and declining battery prices (-25%). The use of BESS 

became viable in Türkiye even with +25% electricity prices or -25% battery prices. 

 Introduction 

In recent years, with the growing adoption of photovoltaic (PV) systems and falling 

PV module costs, countries have begun to phase out feed-in tariffs (FiTs) or reduce 

FiT rates [171]. Consequently, the sale of on-site generated renewable energy to the 

grid has lost its previously high economic appeal. The decrease in FiT rates has also 

had an impact on how PV systems should be sized. Previously, the larger the system 

size, the higher the profit from electricity sold to the grid. However, today, reduced 

FiT rates make it necessary to increase self-consumption, in which generated 

electricity is primarily used to cover domestic demand [6]. In the case of self-

consumption, PV and battery energy storage system (BESS) units should be optimally 

sized, and oversizing should be avoided. 

To increase self-consumption, prosumers can perform demand-side management 

(DSM) by shifting available electrical loads to distributed generation (DG) period 

[172]. They can also perform DSM to implement demand response (DR) to take 

advantage of time-based rates to pay less for electricity [173]. Taking into account 

both features, as well as an ever-increasing number of electrical appliances, the 

inclusion of solar batteries, and the widespread use of electric vehicles (EVs), the 

management of loads brings a challenge that can be surmounted by the implementation 

of home energy management systems (HEMSs) [174].  

Today, electricity consumption in buildings accounts for about 40% of the total energy 

consumption [119] and the residential sector is responsible for 26.6% of the total 

electricity consumption [175]. In this respect, HEMSs not only provide economic 

benefits to their users but also contribute to the environment and climate change 

mitigation.  

DR and increased self-consumption provided by HEMS in a household can 

significantly increase NPV of PV-BESS units and reduce component size and 

installation cost during sizing. Ultimately, this study aims to develop an optimal PV-

BESS sizing model for HEMS-equipped households to achieve the highest net present 

value (NPV) over the life of a system. 
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4.1.1 Literature review 

In the literature, there are a vast number of studies regarding the sizing of DG and 

BESS units for residential applications [176–179]. These studies do not consider the 

presence of HEMSs capable of performing DSM for controllable electrical loads, 

which can reduce the size of DG-BESS units and increase NPV. 

Recently, HEMS studies aiming to lower household electricity bills by providing load 

scheduling for demand response and increased renewable self-consumption have 

received a lot of attention. Golmohammadi et al. [98] studied load scheduling of time-

shiftable appliances (TSAs) and thermostatically controlled appliances (TCAs) in a 

smart home. Ghavzini et al. [100] examined the energy management of electric water 

heaters (EWHs) as TCAs and EVs as power-shiftable appliances (PSAs) in a 

household taking into account vehicle-to-grid (V2G) and vehicle-to-home (V2H) 

capabilities. Paterakis et al. [101] developed a HEMS capable of energy management 

of all types of home appliances (TCAs, TSAs, and EVs). Although all these studies 

included PV-BESS units, they neglected battery degradation. Shafie-khah and Siano 

[123] considered the operation of all types of loads, as well as battery degradation and 

thermal comfort in a household. These HEMS studies, with the majority not covered 

here, do not address the sizing procedure. The HEMSs mentioned above are tested in 

homes with pre-sized DG-BESS units installed. A HEMS of course reduces the daily 

bill, but when the HEMS installation in a household is considered from the ground up, 

then DG-BESS sizing can be reduced from the very beginning.  

There are only a few studies that address the optimal sizing and total life cycle cost 

(LCC) assessment of DG-BESS units for households that are equipped with HEMSs 

capable of electrical load scheduling for DSM. Hemmati and Saboori [180] evaluated 

the presence of HEMS in PV-BESS sizing, which ensures optimal 

charging/discharging of batteries. Korjani et al. [181] developed an offline energy 

management tool to be used in PV-BESS sizing considering the energy consumption 

habits of prosumer households. Zhou et al. [182] investigated the capacity allocation 

of PV-BESS units in HEMS operation considering different pricing schemes. Yaldız 

et al. [183] studied the optimal sizing of PV-BESS units considering peer-to-peer 

(P2P) energy trading. Khezri et al. [184] determined the optimal capacity of a small-

scale wind turbine (WT)-BESS system for a rule-based HEMS taking into account the 

uncertainties of EV, household load, and wind generation. Despite the presence of 
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HEMS, electrical load management and scheduling of appliances are not considered 

in [180–184]. Erdinç et al. [185] conducted techno-economic sizing of PV-BESS units 

for EV-owner households that are under HEMS operation. Load management of PSAs 

is considered but that of TSAs and TCAs is neglected. Tostado-Veliz et al. [186] 

performed optimal PV-BESS sizing for smart homes considering the energy 

management of TSAs and reliability against DR and grid outages. Bhamidi and 

Sivasubramani [187] proposed a two-stage optimization for the sizing of WT-PV-

BESS and the electrical load management of TSAs and EVs in a household. Yet, the 

presence of TCAs is neglected. It should be noted that [180–187] did not take into 

account battery degradation, which is crucial to the total LCC of the systems. 

Mulleriyawage and Shen [188] considered the load management of TSAs and TCAs 

and the impact of battery degradation in BESS sizing for households but PV array 

sizing is not considered. In all the above-mentioned sizing studies, the optimal PV tilt 

angle determination was neglected. It is a crucial element in PV-BESS sizing, which 

can vary according to house location, electrical load profile, and DSM. In these studies, 

either PVs were not sized, pre-measured array data were used or panels were assumed 

to be flat. The summary of the shortcomings of the studies regarding DG-BESS sizing 

considering DSM/the presence of HEMS is demonstrated in Table 4.1. 

Table 4.1 : Summary of studies on optimal sizing of DG-BESS units considering 

DSM/the presence of HEMS. 

Ref. 

Load scheduling Sizing 
Battery 

degradation 
TSA TCA EV PV WT BESS 

Tilt 

angle 

[180] − − − ✓ − ✓ − − 

[181] − − − ✓ − ✓ − − 

[182] − − − ✓ − ✓ − − 

[183] − − − ✓ − ✓ − − 

[184] − − ✓ − ✓ ✓ − − 

[185] − − ✓ ✓ − ✓ − − 

[186] ✓ − ✓ ✓ − ✓ − − 

[187] ✓ − ✓ ✓ ✓ ✓ − − 

[188] ✓ ✓ − − − ✓ − ✓ 

This 

study 
✓ ✓ ✓ ✓ − ✓ ✓ ✓ 
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4.1.2 Contribution 

In the light of the reviewed studies, it is seen that, although there are many HEMS- or 

PV-BESS sizing-related studies in the literature, only very few of them combine the 

two and consider the impact of HEMS-based load scheduling on PV-BESS sizing. 

Among them; none consider the modeling and management of all three types of loads 

(TSAs, TCAs, PSAs). None addresses optimal PV tilt angle determination in the 

presence of a load scheduling-based HEMS. They generally neglect battery 

degradation or assume batteries to be replaced after a fixed time duration. 

Therefore, the main contributions of this study are as follows: 

(1) A comprehensive PV-BESS sizing model is developed for HEMS-equipped 

households, which takes into account day-ahead load scheduling-based DR and self-

consumption in the sizing procedure. Unlike the few available studies in the literature, 

the proposed model takes into account the scheduling of all types of electrical loads, 

the impact of battery degradation, the V2H availability, and the determination of 

optimal PV tilt angle in component sizing.  

(2) A techno-economic comparison is made between PV-BESS-equipped households 

using and not using HEMS. By this means, the effect of using HEMS on the NPV of 

PV-BESS systems is investigated. 

(3) A sensitivity analysis is performed and the impact of rising electricity prices and 

falling battery prices on the PV-BESS sizing of HEMS-equipped households is 

investigated. 

(4) Optimal PV-BESS configurations in European countries at the same latitude as 

Türkiye (case location) but with different electricity prices are determined and the local 

results are extended to the general. 

 Methodology 

The main steps of the procedure are summarized in a flowchart as shown in Figure 4.1. 

The sizing optimization consists of two stages:  

In the first stage,  
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- With the optimal load scheduling carried out by HEMS, the daily electricity 

bill of the smart home is minimized.  

In the second stage,  

- The daily bill minimization is performed for each day of the year and the total 

annual electricity bill is calculated. 

- The net cash inflow is calculated by finding the difference between the annual 

bill with and without PV-BESS-HEMS. 

- The NPV is calculated by taking the difference between discounted cash 

inflows and outflows. 

- The procedure is repeated for all possible configuration combinations of PV 

array capacity-battery number-tilt angle.  

- The NPVs of all possible configurations are determined and then ranked from 

highest to lowest. The configuration with the highest NPV is chosen as the 

optimal system design. 

 

Figure 4.1 : Flowchart of the optimal PV-BESS sizing model for HEMS-equipped 

households. 
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4.2.1 First stage – Daily load scheduling 

The mixed-integer linear programming (MILP) problem is solved by “intlingprog” 

solver of MATLAB. The objective function in the first stage is annual electricity bill 

minimization performed by HEMS [14]: 

𝐶𝑐,𝑦,𝑑 = min∑{𝑃𝑐,𝑑,𝑡
𝐺 ⋅ ∆𝑡 ⋅ 𝜆𝑡

𝑏𝑢𝑦
+ 𝑃𝑐,𝑑,𝑡

𝑉,𝐺 ⋅ ∆𝑡 ⋅ 𝜆𝑡
𝑉,𝑏𝑢𝑦

+ 𝑃𝑐,𝑑,𝑡
𝐵,𝐺 ⋅ ∆𝑡 ⋅ 𝜆𝑡

𝐵,𝑏𝑢𝑦

𝑡

− 𝑃𝑐,𝑑,𝑡
𝑃𝑉,2𝐺 ⋅ ∆𝑡 ⋅ 𝜆𝑡

𝑠𝑒𝑙𝑙} 

(4.1) 

Daily bill minimization for a specific PV-BESS-PV tilt angle combination of 𝑐 in year 

𝑦 and on day 𝑑 is given in Eq. (4.1). 𝑃𝑐,𝑑,𝑡
𝐺  is the total power bought from the grid by 

all household appliances (inflexible loads, TCAs and TSAs). 𝑃𝑐,𝑑,𝑡
𝑃𝑉,2𝐺

 is the power sold 

to the grid by PV. 𝑃𝑐,𝑑,𝑡
𝑉,𝐺

 and 𝑃𝑐,𝑑,𝑡
𝐵,𝐺

 are the power bought from the grid by EV and BESS, 

respectively. EV and BESS are assumed to buy electricity at a higher, battery 

degradation cost included artificial price (𝜆𝑡
𝑏𝑢𝑦

+𝜆𝑘,𝑑𝑒𝑔) to prevent unnecessary battery 

cycles (Eq. (4.2)). That is, V2H and battery-to-home (B2H) should occur if only the 

profit from buying power to utilize in household is greater than the degradation cost 

of batteries [125].  

𝜆𝑡
𝑘,𝑏𝑢𝑦

= 𝜆𝑡
𝑏𝑢𝑦

+ 𝜆𝑘,𝑑𝑒𝑔 

𝜆𝑘,𝑑𝑒𝑔 =
𝑅𝑒𝑝𝑘

(𝐿𝑘 ⋅ 𝜂𝑘,𝑟𝑡)
 

𝐿𝑘 = 𝐶𝑦𝑐𝑘 ⋅ 𝐶𝑎𝑝𝑘 ⋅ 𝐷𝑜𝐷𝑘  

(4.2) 

For example, if a household needs to buy electricity at on-peak period from 0.25 

$/kWh, their EV can perform V2H if later the EV will be able to buy electricity at a 

cheap price from 0.12 $/kWh at off-peak period. Considering that this process 

degrades EV battery, and the calculated degradation cost for EV battery is 0.08 $/kWh, 

the cost of V2H becomes 0.20 $/kWh, which is lower than 0.25 $/kWh. If this cost 

was higher than 0.25 $/kWh, then the optimization model would not permit HEMS to 

perform V2H.  

Here, the battery degradation cost is also used to calculate battery replacement cost (as 

detailed in Eq. (4.11)). So, instead of periodic replacement, a replacement cost is 
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calculated over battery usage which is more accurate than the periodic replacement 

method. 

Artificial battery degradation cost added buying prices for BESS and EV 

( 𝜆𝑡
𝑉,𝑏𝑢𝑦

, 𝜆𝑡
𝐵,𝑏𝑢𝑦

) are only used in optimization and should be discluded from the 

optimization result later. Therefore, the real bill is recalculated using real buying prices 

(𝜆𝑡
𝐵,𝑏𝑢𝑦

): 

𝐶′𝑐,𝑦,𝑑 = 𝑃𝑑,𝑐,𝑡
𝐺 ⋅ ∆𝑡 ⋅ 𝜆𝑡

𝑏𝑢𝑦
+ 𝑃𝑑,𝑐,𝑡

𝑉,𝐺 ⋅ ∆𝑡 ⋅ 𝜆𝑡
𝑏𝑢𝑦

+ 𝑃𝑑,𝑐,𝑡
𝐵,𝐺 ⋅ ∆𝑡 ⋅ 𝜆𝑡

𝑏𝑢𝑦
− 𝑃𝑑,𝑐,𝑡

𝑃𝑉,2𝐺

⋅ ∆𝑡 ⋅ 𝜆𝑡
𝑠𝑒𝑙𝑙 

(4.3) 

𝐶𝑐,𝑦
𝑎𝑛𝑛 gives the total annual electricity bill of a specific PV-BESS-tilt angle 

combination: 

𝐶𝑐,𝑦
𝑎𝑛𝑛 = ∑ 𝐶′𝑐,𝑦,𝑑

365

𝑑=1

 (4.4) 

4.2.2 Second stage – Calculation of NPV and ranking of system combinations 

The objective function in the second stage is to find the project with the highest NPV 

among all possible combinations of PV array capacity, battery number, and PV tilt 

angle. NPV is calculated by taking the difference between discounted cash inflows and 

outflows over a period of time. An investor most of the time chooses a project with the 

highest NPV. NPV is calculated as follows: 

𝑁𝑃𝑉𝑐 = 𝐶𝑐
𝑖𝑛 − 𝐶𝑐

𝑜𝑢𝑡 (4.5) 

And the objective function is to find the optimal PV-BESS-tilt angle combination with 

the highest NPV: 

𝑚𝑎𝑥 ∑𝑁𝑃𝑉𝑐
𝑐=1

 
(4.6) 

In Eq. (4.7), 𝐶𝑐
𝑖𝑛 denotes cash inflows resulting from monetary savings over the life of 

the project. Monetary savings refers to the difference in the total electricity bill when 

PV-BESS-HEMS is used and not used. Here, the bill difference is due to DR, self-

consumption, and electricity sales to the grid in case of PV-BESS-HEMS use. 
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Therefore, 𝐶𝑐,𝑦
𝑎𝑛𝑛 in Eq. (4.4) is calculated two times as  𝐶𝑐,𝑦

𝑎𝑛𝑛,𝑤𝑖𝑡ℎ𝑜𝑢𝑡
 and 𝐶𝑐,𝑦

𝑎𝑛𝑛,𝑤𝑖𝑡ℎ
 to 

be used in Eq. (4.7). 

𝐶𝑐
𝑖𝑛 = ∑ (

𝐶𝑐,𝑦
𝑎𝑛𝑛,𝑤𝑖𝑡ℎ𝑜𝑢𝑡

(1 + 𝑟)𝑦
−

𝐶𝑐,𝑦
𝑎𝑛𝑛,𝑤𝑖𝑡ℎ

(1 + 𝑟)𝑦
)

20

𝑦=1

 

(4.7) 

Yet, the savings are the result of investments and related expenses. 𝐶𝑜𝑢𝑡 indicates the 

cash outflows as shown in Eq. (4.8). 

𝐶𝑐
𝑜𝑢𝑡 = 𝐶𝑐

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝐶𝑐
𝑂&𝑀 + 𝐶𝑐

𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡
 (4.8) 

Cash outflows include initial investment, O&M, and replacement cost of components 

as shown in Eq. (4.9-4.11). In Eq. (4.9), for a residential application, installation labor 

cost is assumed to be fixed regardless of its size. The initial cost of PV depends on its 

size. The initial cost of BESS is not included here and is calculated over BESS usage 

in Eq. (4.11). It is assumed that inverter size depends on PV size. As a general rule of 

thumb, the inverter-to-array size ratio is taken as 0.8 [189]. The novelty of the study is 

the consideration of the HEMS operation in the sizing optimization. Therefore, the 

initial cost of HEMS is also added. 

𝐶𝑐
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝐶𝑙𝑎𝑏𝑜𝑟 + 𝑛𝑐

𝑃𝑉 ⋅ (𝐶𝑃𝑉,𝑖𝑛𝑖 + 0.8 ⋅ 𝐶𝑖𝑛𝑣,𝑖𝑛𝑖) + 𝐶𝐻𝐸𝑀𝑆,𝑖𝑛𝑖 (4.9) 

In Eq. (4.10), O&M costs are considered only for PV and BESS. HEMS is assumed to 

have no O&M cost and the O&M cost of the inverter is assumed to be joint with that 

of the PV. 

𝐶𝑐
𝑂&𝑀 = ∑ (

𝑛𝑐
𝑃𝑉 ⋅ 𝐶𝑃𝑉,𝑂&𝑀

(1 + 𝑟)𝑦
+

𝑛𝑐
𝐵 ⋅ 𝐶𝐵,𝑂&𝑀

(1 + 𝑟)𝑦
)

20

𝑦=1

 (4.10) 

In Eq. (4.11), the replacement cost of the PV array is neglected since project lifetime 

and PV lifetime are equal. BESS replacement is handled through BESS use. Inverter 

replacement is treated as periodic replacement (10 years due to standard warranty).  
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𝐶𝑐
𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = ∑ (

𝑢𝑠𝑒𝑐,𝑦
𝐵 ⋅ 𝜆𝐵,𝑑𝑒𝑔

(1 + 𝑟)𝑦
)

20

𝑦=1

+ ∑ (
𝑛𝑐

𝑃𝑉 ⋅ 0.8 ⋅ 𝐶𝑖𝑛𝑣,𝑟𝑒𝑝

(1 + 𝑟)𝑦∙𝐿𝑖𝑛𝑣
)

20

𝐿𝑖𝑛𝑣−1

𝑦=1

 (4.11) 

4.2.3 Modeling of appliances 

4.2.3.1 TSAs 

TSAs (clothes dryer, dishwasher, and washing machine) have fixed consumption 

patterns and their operation cannot be interrupted once they run [126]. If the vector of 

𝑃𝑖 =  [𝑝1
𝑖 𝑝2

𝑖 ⋯ 𝑝𝑇
𝑖 ]′ shows the fixed power consumption of a TSA, then all 

possible scheduling combinations of 𝑃𝑖 can be represented in a matrix as in Eq. (4.12). 

𝑃𝑖 = 

[
 
 
 
𝑝1

𝑖 𝑝𝑇
𝑖 ⋯ 𝑝3

𝑖 𝑝2
𝑖

𝑝2
𝑖 𝑝1

𝑖 ⋯ 𝑝4
𝑖 𝑝3

𝑖

⋮ ⋮ ⋱ ⋮ ⋮
𝑝𝑇

𝑖 𝑝𝑇−1
𝑖 ⋯ 𝑝2

𝑖 𝑝1
𝑖 ]
 
 
 

, ∀𝑡 ∈ [𝑡𝑖,𝑚𝑖𝑛, 𝑡𝑖,𝑚𝑎𝑥] (4.12) 

Among the combinations, only one of them gives the optimal result and the binary 

integer vector 𝑋𝑖 defined in Eq. (4.13) functions as switch control to choose that 

optimal column.  

𝑋𝑖 = [𝑥1
𝑖 , 𝑥2

𝑖 , . . . , 𝑥𝑇
𝑖 ]′, ∀𝑡 ∈ [𝑡𝑖,𝑚𝑖𝑛, 𝑡𝑖,𝑚𝑎𝑥] (4.13) 

Eq. (4.14) expresses that only one of the elements can be non-zero in 𝑋𝑖.  

𝑋𝑖 = ∑𝑥𝑡
𝑖 = 1,

𝑇

𝑡=1

 𝑋𝑖 ∈ {0,1}, ∀𝑡 ∈ [𝑡𝑖,𝑚𝑖𝑛, 𝑡𝑖,𝑚𝑎𝑥]  (4.14) 

Residents may set a preferred time of operation for a TSA. 𝑡𝑖,𝑚𝑖𝑛, 𝑡𝑖,𝑚𝑎𝑥 represent the 

start and end of the time range, respectively, in which TSA is allowed to operate. The 

length of this interval (the difference between 𝑡𝑖,𝑚𝑖𝑛 and 𝑡𝑖,𝑚𝑎𝑥) cannot be lower than 

the running duration of a TSA (Eq. (4.15)). 

𝑟𝑢𝑛𝑖 ≤ |𝑡𝑖,𝑚𝑖𝑛, 𝑡𝑖,𝑚𝑎𝑥| (4.15) 

Eq. (4.16) gives the power consumption of a TSA. 
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𝑃𝑡
𝑖 = 𝑃𝑖 ⋅ 𝑋𝑖, ∀𝑡 ∈ [𝑡𝑖,𝑚𝑖𝑛, 𝑡𝑖,𝑚𝑎𝑥] (4.16) 

4.2.3.2 TCAs 

Two TCAs are assumed to be present in the household, AC, and EWH. For the sake 

of simplicity and due to its lower flexibility and low energy consumption, the 

refrigerator is categorized as an inflexible load. A simple 1R1C thermal model is used 

in the modeling of the EWH tank and house [129–131]. EWH and AC can perform 

pre-heating and pre-cooling, respectively, for DR and increased self-consumption. 

Also, HEMS can increase AC set point during DR event to perform DR [14]. 

Eq. (4.17) models the inside hot water/indoor air temperature (𝑇𝑡
𝑖,𝑗

) in the EWH tank 

or house. Here, the outside temperature 𝑇𝑡
𝑜,𝑗

 stands for the ambient temperature where 

the EWH tank is located or the outdoor temperature outside the house. Thermal 

resistance (𝑅𝑗) and thermal capacitance (𝐶𝑗) are specific to the EWH tank/house 

envelope. Constant heat flow capacity per time interval (𝑐̇𝑗) belongs to the entering 

water due to water replacement or the fresh air due to air ventilation. 𝑢𝑐𝑡 defines the 

times of water replacement/air ventilation.  

It should be noted that, in the study, air ventilation is assumed to not affect the indoor 

air temperature and is therefore excluded for AC operation. Thus, the expressions of 

𝑇𝑡
𝑒𝑛,𝑗

⋅ 𝑐̇𝑗 ⋅ 𝑅𝑗 ⋅ 𝑢𝑐𝑡
𝑗
  and 𝑐̇𝑗 ⋅ 𝑅𝑗 ⋅ 𝑢𝑐𝑡

𝑗
 takes the value 0 in Eq. (4.17) for AC operation. 

Besides, the sign of the decision variable is negative in AC operation to perform 

cooling. 

𝑇𝑡
𝑖,𝑗

=
(𝑇𝑡

𝑜,𝑗
+ 𝑇𝑡

𝑒𝑛,𝑗
⋅ 𝑐̇𝑗 ⋅ 𝑅𝑗 ⋅ 𝑢𝑐𝑡

𝑗
+ 𝑅𝑗 ⋅ 𝐶𝑂𝑃𝑗 ⋅ 𝑃𝑗 ⋅ 𝑥𝑡

𝑗
)

(1 + 𝑐̇𝑗 ⋅ 𝑅𝑗 ⋅ 𝑢𝑐𝑡
𝑗
)

+ (𝑇𝑡
𝑜,𝑗

− (
(𝑇𝑡

𝑜,𝑗
+ 𝑇𝑡

𝑒𝑛,𝑗
⋅ 𝑐̇𝑗 ⋅ 𝑅𝑗 ⋅ 𝑢𝑐𝑡

𝑗
+ 𝑅𝑗 ⋅ 𝐶𝑂𝑃𝑗 ⋅ 𝑃𝑗 ⋅)

(1 + 𝑐̇𝑗 ⋅ 𝑅𝑗 ⋅ 𝑢𝑐𝑡
𝑗
)

))

⋅ 𝑒
(
−(1+𝑐̇𝑗⋅𝑅𝑗⋅𝑢𝑐𝑡

𝑗
)⋅∆𝑡

𝑅𝑗⋅𝐶𝑗 )

, ∀𝑡 

(4.17) 

Eq. (4.18) expresses the upper and lower limits of hot water/indoor temperature 

within the EWH tank/house.  
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𝑇𝑖,𝑚𝑖𝑛,𝑗 ≤ 𝑇𝑗,𝑡
𝑖 ≤ 𝑇𝑖,𝑚𝑎𝑥,𝑗, ∀𝑡 (4.18) 

Eq. (4.19) indicates the power consumption of a TCA. 

𝑃𝑡
𝑗
= 𝑃𝑗 ⋅ 𝑥𝑡

𝑗
, ∀𝑡 (4.19) 

4.2.3.3 PSAs 

The PSAs in the household are BESS and EV which are rechargeable and operate 

between certain power limits. BESS and EV have similar operations and their models 

are constructed as in [128]. Eq. (4.20) implies that the BESS or EV can discharge 

power in the form of B2H (𝑃𝑡
𝐵,2𝐻

) or V2H (𝑃𝑡
𝑉,2𝐻

). 

𝑃𝑡
𝑘,2𝐻 = 𝜂𝑘,𝑑𝑖𝑠 ⋅ 𝑃𝑡

𝑘,𝑑𝑖𝑠, ∀𝑡    (4.20) 

Eq. (4.21-4.22) denote that the charging (𝑃𝑡
𝐵,𝑐ℎ

 and 𝑃𝑡
𝑉,𝑐ℎ

) and discharging (𝑃𝑡
𝐵,𝑑𝑖𝑠

 and 

𝑃𝑡
𝑉,𝑑𝑖𝑠

) power of BESS and EV cannot exceed their specific charging (𝑅𝐵,𝑐ℎ and 𝑅𝑉,𝑐ℎ) 

and discharging (𝑅𝐵,𝑑𝑖𝑠 and 𝑅𝑉,𝑑𝑖𝑠) rates. 

0 ≤ 𝑃𝑡
𝑘,𝑐ℎ ≤ 𝑅𝑘,𝑐ℎ ⋅ 𝑥𝑡

𝑘 , ∀𝑡   (4.21) 

0 ≤ 𝑃𝑡
𝑘,𝑑𝑖𝑠 ≤ 𝑅𝑘,𝑑𝑖𝑠 ⋅ (1 − 𝑥𝑡

𝑘), ∀𝑡     (4.22) 

Eq. (4.23) stands for the state of energy (SoE) of BESS and EV. Eq. (4.24) indicates 

that the SoE of batteries is limited between maximum battery capacity and allowed 

depth of discharge (DoD).  

𝑆𝑜𝐸𝑡
𝑘 = 𝑆𝑜𝐸𝑡−1

𝑘 + 𝜂𝑘,𝑐ℎ ⋅ 𝑃𝑡
𝑘,𝑐ℎ ⋅ ∆𝑡 − 𝑃𝑡

𝑘,𝑑𝑖𝑠 ⋅ ∆𝑡 , ∀𝑡  (4.23) 

𝑆𝑜𝐸𝑘,𝑚𝑎𝑥 ⋅ (1 − 𝐷𝑜𝐷𝑘) ≤ 𝑆𝑜𝐸𝑡
𝑘 ≤ 𝑆𝑜𝐸𝑘,𝑚𝑎𝑥, ∀𝑡    (4.24) 

The operation of EV is similar to BESS, except that, while BESS can operate for 24 

hours, EV can operate only when it is home. The charge and discharge of EV are 

limited between arrival and departure times. Therefore, 𝑡 (time interval) index between 

Eq. (4.20-4.24) is defined as in Eq. (4.25). 
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  𝑡 = {
𝑘 = 𝐵 ⟶ ∀𝑡 > 1

𝑘 = 𝑉 ⟶ ∀𝑡 ∈  [𝑡𝑎𝑟𝑟 , 𝑡𝑑𝑒𝑝]  
 

(4.25) 

The initial SoE assignment of BESS and the SoE update on the arrival of EV are 

specified in Eq. (4.26-4.27). Also, as stated in Eq. (4.28), the SoE of the EV battery 

should be 100% of the battery capacity before the departure.  

𝑆𝑜𝐸𝑡
𝐵 = 𝑆𝑜𝐸𝐵,𝑖𝑛𝑖 , 𝑖𝑓 𝑡 = 1 (4.26) 

𝑆𝑜𝐸𝑡
𝑉 = 𝑆𝑜𝐸𝑉,𝑖𝑛𝑖 + 𝜂𝑉,𝑐ℎ ⋅ 𝑃𝑡

𝑉,𝑐ℎ ⋅ ∆𝑡 − 𝑃𝑡
𝑉𝑑𝑖𝑠 ⋅ ∆𝑡 , ∀𝑡 ∈ 𝑡𝑎𝑟𝑟     (4.27) 

𝑆𝑜𝐸𝑡
𝑉 = 𝑆𝑜𝐸𝑉,𝑚𝑎𝑥 , 𝑡 = 𝑡𝑑𝑒𝑝 (4.28) 

4.2.4 Tilted PV array model 

In the reviewed HEMS-related studies, it was seen that the use of a solar radiation 

estimation model for tilted PV arrays was not considered. Either arrays were 

considered flat, which did not allow determination of the optimal tilt angle, or pre-

measured data from pre-installed arrays were used, which is a difficult method to 

implement in real life due to its site-specific nature.  

Therefore, this study uses an isotropic solar radiation estimation model (Liu and 

Jordan) to estimate total global solar radiation on a tilted PV panel [132]. By using a 

solar model, the proposed PV-BESS sizing model can be used in every part of the 

world by entering solar radiation, latitude, and temperature information of a location 

that can be accessed easily. After estimating the solar radiation on a tilted panel, the 

estimation data can be converted into a useful PV power output based on the 

specifications of a PV system. 

Eq. (4.29-4.37) describe the estimation of solar radiation on a tilted plane using the 

Liu and Jordan model.  

𝛿 = 23.45 sin [
360(𝑛 + 284)

365
] 

(4.29) 

𝜔 = arccos[− tan(𝛿) tan(𝜑)] (4.30) 

𝜔′ = 𝑚𝑖𝑛{𝜔, arccos[− tan(𝛿) tan(𝜑 − 𝑠)]} (4.31) 
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𝐻𝑜 =
24

𝜋
𝐼𝑆𝐶 (1 + 0.033 cos (

360𝑛

365
)) (cos(𝜑) cos(𝛿) sin(𝜔)

+
𝜋𝜔

180
sin(𝜑) sin(𝛿)) 

(4.32) 

𝐾𝑡 = 𝐻/𝐻𝑜 (4.33) 

𝐻𝑑 = 𝐻(1 − 1.13𝐾) (4.34) 

𝑅𝑏 =
cos(𝜑 − 𝑠) cos(𝛿) sin(𝜔′) +

𝜋𝜔′

180 sin(𝜑 − 𝑠) sin(𝛿)

cos(𝜑) cos(𝛿) sin(𝜔) +
𝜋𝜔′

180
sin(𝜑) sin(𝛿)

 

(4.35) 

𝑅 = 𝑅𝑏 (1 −
𝐻𝑑

𝐻
) + 𝐻𝑑 (

1 + cos(𝑠)

2𝐻
) + 𝜌 (

1 − cos(𝑠)

2
) 

(4.36) 

𝐻𝑡 = 𝑅𝐻 (4.37) 

Eq. (4.38) describes the estimation of the cell temperature which has a direct influence 

on the array power output.  

𝑇𝑡
𝑐𝑒𝑙𝑙 = 𝑇𝑡

𝑜𝑢𝑡 +
𝐻𝑡

𝐻𝑡
𝑁𝑂𝐶𝑇

(𝑇𝑐𝑒𝑙𝑙,𝑁𝑂𝐶𝑇 − 𝑇𝑎𝑚𝑏,𝑁𝑂𝐶𝑇) 
(4.38) 

Eq. (4.39) gives the power output calculation of the PV array. It should be noted that 

the PV system is assumed to be always operating at its maximum power point. 

𝑃𝑡
𝑃𝑉,𝑝𝑟𝑜𝑑 = 𝑌𝑃𝑉𝑑𝑃𝑉 (

𝐻𝑡

𝐻𝑡
𝑆𝑇𝐶) [1 + 𝛼𝑃 ⋅ (𝑇𝑡

𝑐𝑒𝑙𝑙 − 𝑇𝑐𝑒𝑙𝑙,𝑆𝑇𝐶)] 
(4.39) 

4.2.5 Power balance 

The power balance in the HEMS-operated household is summarized in Figure 4.2 

(without showing the AC to DC and DC to AC conversion). Eq. (4.40) describes the 

power balance of HEMS. The power drawn from the grid, used PV power, and power 

transferred from PSAs to home in the form of B2H and V2H is equal to the power 

consumption of the household appliances and charging power of PSAs at time 𝑡. 



89 

𝑃𝑡
𝐺 + 𝑃𝑡

𝑉,𝐺 + 𝑃𝑡
𝐵,𝐺 + 𝑃𝑡

𝑃𝑉,𝑢𝑠𝑒𝑑 = 𝑃𝑡
𝐻 + ∑ 𝑃𝑡

𝑘,𝑐ℎ

𝐾

𝑘=1

, ∀𝑡  (4.40) 

In Eq. (4.41), 𝑃𝑡
𝐻 is the power consumption of household appliances at time 𝑡 (TSAs, 

TCAs and inflexible loads) except BESS and EV (PSAs). 

𝑃𝑡
𝐻 = 𝑃𝑡

𝑖𝑛𝑓
+ ∑𝑃𝑡

𝑖

𝐼

𝑖=1

+ ∑𝑃𝑡
𝑗

𝐽

𝑗=1

, ∀𝑡  (4.41) 

In Eq. (4.42), 𝑃𝑡
𝑃𝑉,𝑢𝑠𝑒𝑑

 is the PV power supplying power to household appliances, 

BESS and EV at time 𝑡. 

𝑃𝑡
𝑃𝑉,𝑢𝑠𝑒𝑑 = 𝑃𝑡

𝑃𝑉,2𝐻 + 𝑃𝑡
𝑃𝑉,2𝐵 + 𝑃𝑡

𝑃𝑉,2𝑉, ∀𝑡 (4.42) 

Eq. (4.43) states that PV production at time 𝑡 is used for self-consumption and energy 

storage. The excess PV power is exported to the grid. 

𝑃𝑡
𝑃𝑉,𝑝𝑟𝑜𝑑 = 𝑃𝑡

𝑃𝑉,𝑢𝑠𝑒𝑑 + 𝑃𝑡
𝑃𝑉,2𝐺

 (4.43) 

 

Figure 4.2 : Representation of the power balance in the HEMS-equipped household. 
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 Input Data 

A day is discretized into 144 time slots and the time-window for the daily load 

scheduling optimization is 10 minutes (0.167 h). The hypothetical house is located in 

Istanbul, Türkiye, at the latitude of 41.01º. The climatic data in 10 minutes resolution 

of the case study location (Figure 4.3) are obtained from TARBIL [136]. 250 W 

Canadian-Solar-CS6P-250P polycrystalline panels of which temperature coefficient of 

power is -0.424 %/ºC and average nominal operating cell temperature is 43.6 ºC are 

used in the simulations [137]. PV derating factor is assumed to be 90%. The default 

ground reflectance is 0.2. Türkiye stays in the Northern Hemisphere and therefore the 

panels are oriented towards the south. 

 

Figure 4.3 : Climatic data of the case study location (Istanbul, Türkiye). 

Thermal properties and technical specifications regarding AC and EWH are given in 

Table 4.2. Thermal properties of a 125 m² one-story household are used [143]. An 

inverter AC is considered of which rated power is 2.21 kW [148]. The initialized 

thermostat set point is 22.0 ºC and inverter AC works within a dead band of ±0.1 ºC. 

During on-peak hours (between 17:00 and 22:00) HEMS increases the set point by 1.0 

ºC and it becomes 23.0 ºC to provide DR. Thermal properties of EWH are adopted 

from [149]. EWH size is not stated in [149] and is estimated as 200 liters for a 3 kW 

EWH [150]. A default 𝐶𝑂𝑃 is used as 1.0 [151]. Residents are assumed to take a 

shower approximately three times a day and each shower is assumed to last for 10 
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minutes. Residents shower daily at 06:10, 14:00 and 18:30. The temperature inside the 

EWH tank is constrained between 45 and 60 ºC to avoid bacterial growth and scalding 

[152]. The monthly inlet water temperature values of Istanbul are given in Table 4.3 

[190]. It is assumed that inlet water temperature is constant throughout the month. 

Table 4.2 : Thermal properties and technical specifications regarding AC and EWH. 

Parameter House EWH tank 

Size 125 m² 200 liters 

Thermal capacitance (kJ/ºC) 12312 1770 

Thermal resistance (ºC/kW) 4.87 223 

 AC EWH 

Rated power (kW) 2.21 3.0 

Coefficient of performance (COP) 3.21 1 

Heat flow capacity per time interval 

(kW/K) 
- 0.659 

Minimum inside temp. (ºC) 21.9*  45 

Maximum inside temp.  (ºC) 22.1* 60 

*The HEMS increases AC set point from 22 ºC to 23 ºC during DR event (between 17:00 and 22:00). 

Table 4.3 : Monthly inlet water temperatures in Istanbul. 

Month Temp. (ºC) Month Temp. (ºC) 

January 10.2 July 21.9 

February 9.0 August 22.9 

March 9.5 September 22.4 

April 11.8 October 19.8 

May 15.4 November 16.9 

June 19.2 December 13.2 

The BESS and EV use lithium-ion batteries (Table 4.4). Lifetime throughput of 

batteries in kWh are measured for specific DoD, capacity, and lifetime in cycle. Then, 

battery degradation cost is calculated through lifetime throughput, round-trip 

efficiency, and battery replacement cost as shown in Eq. (2) [142,191,192]. The BESS 

is in operation all day long. The initial and final SoE of the BESS are 0. The batteries 

are charged and discharged during the day according to the daily bill minimization. 

After a full day’s operation, the BESS starts the next day with empty batteries. The 

maximum SoE that BESS can reach depends on the number of batteries and the 

nominal capacity. The EV is in operation between 18:00 (EV arrival) and 08:00 (EV 

departure). The initial SoE of the EV on arrival is assumed to be 16.5 kWh (68.75%) 

after a daily 50 km of travel which roughly equates to 7.5 kWh of consumption 

(31.25%) [193]. The SoE should be 24 kWh (100%) again before departure. 
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Table 4.4 : Technical specifications of BESS (KiloVault) and EV (Nissan LEAF) 

batteries [141,142,192–194]. 

Parameter BESS EV 

Nominal capacity (kWh) 2.5 24 

Charging rate (kW) 2.0 3.3 

Discharging rate (kW) 2.0 3.3 

Charging efficiency (%) 95 95 

Discharging efficiency (%) 95 95 

Round-trip efficiency (%) 90 90 

DoD (%) 80 80 

Battery lifetime in cycles  5000 2000 

Lifetime throughput (kWh) 10000 38400 

Battery replacement cost ($) 2500 3800 

Bat. degradation cost ($/kWh) 0.105 0.104 

Initial SoE (kWh) 0 16.5 

Final SoE (kWh) 0 24 

Operating time interval 00:00 – 00:00 18:00 – 08:00 

The daily electricity consumption of the household is 37.5 kWh on average, depending 

on the use of different appliances on different days of the week. Load profiles of TSAs 

(clothes dryer, washing machine, and dishwasher) are demonstrated in Table 4.5. Once 

initialized, the dishwasher, washing machine, and clothes dryer run for 50 minutes, 70 

minutes, and 60 minutes, respectively. The data are derived from [82,155]. The 

residents can set their preferred operating times of TSAs on the HEMS interface as 

previously expressed in Eq. 15. In this study, it is assumed that residents allow HEMS 

to shift the operation of TSAs to any moment of the day. 

Table 4.5 : Operating stages of TSA cycles. 

 Power (kW) 

Time step Dishwasher Wash. machine Clothes dryer 

1 2.1 1.8 3 

2 2.1 1.8 3 

3 0.15 0.3 0.15 

4 2.1 1.8 3 

5 2.1 1.8 0.15 

6 − 0.15 0.15 

7 − 0.15 − 

Inflexible load demand consists of a kettle, coffee maker, two PCs, two televisions, 

iron, toaster, hairdryer, microwave, refrigerator, lights, electric stove, cooker hood, 

and refrigerator. The inflexible load profile is based on both the data collected from 

references [134,158–160] and the authors' usage habits. Users can specify separate 

inflexible load profiles for weekdays and weekends, or different load profiles 
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according to the seasons. In this study, it is assumed that the inflexible load profile of 

the household remains the same throughout the year. The weekly use of flexible 

appliances in the household is demonstrated in Table 4.6. It is assumed that the weekly 

pattern applies to the whole year. The dishwasher runs five and the washing machine 

and clothes dryer run two times a week. The EV is charged every day except Sunday. 

The EWH and AC operate every day. Yet, since AC operation depends on outdoor 

temperature, it does not operate on cold days.  

Table 4.6 : Residents' weekly manageable appliance usage plan. 

Appliance Mon Tue Wed Thu Fri Sat Sun 

Dishwasher ✓ ✓ ✓ ✓ − − ✓ 

Wash. machine − ✓ − − ✓ − − 

Clothes dryer − ✓ − − ✓ − − 

EV ✓ ✓ ✓ ✓ ✓ ✓ − 

AC* ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

EWH ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

*depending on the outdoor temperature. 

Residential TOU rates consists of three tiers in Türkiye as off-peak (0.076 $/kWh from 

22:00 to 06:00), shoulder (0.122 $/kWh from 06:00 to 17:00) and on-peak (0.179 

$/kWh from 17:00 to 22:00). Turkish residents can sell surplus electricity at the price 

of 0.061 $/kWh. The prices are presented in Table 4.7 [195]. 

Table 4.7 : Residential electricity prices. 

Rate Duration Price ($/kWh) 

Flat All-day 0.120 

TOU – Shoulder 06:00 – 17:00 0.122 

TOU – On-peak 17:00 – 22:00 0.179 

TOU – Off-peak 22:00 – 06:00 0.076 

FiT All-day 0.061 
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Component price data are collected through market research. Relevant price and 

lifetime values of system components are given in Table 4.8. Since HEMSs have not 

been commercialized enough yet, existing smart thermostats and energy monitoring 

systems have been considered to set the HEMS price. The O&M cost for PV and 

inverter is selected to be 2% of their initial cost as a rule of thumb. The O&M cost for 

BESS is assumed to be 1% of its initial cost [196]. Battery lifetime throughput is 

measured for a specific DoD of 80% as shown in Eq. (2). Soft costs include the cost 

of all associated permits and all overheads including marketing, sales, and 

administrative costs associated with the system. 

Table 4.8 : Price and lifetime values of PV, BESS and inverter. 

Parameter Value 

Installation and soft costs ($) 800 

PV array ($/kW) 600 

Inverter ($/kW) 500 

Li-ion battery - 2.5 kWh ($) 1000 

HEMS ($) 200 

PV array lifetime (yr) 20 

Inverter lifetime (yr) 10 

Battery lifetime throughput (kWh) 10000 

Project lifetime (yr) 20 

O&M of PV+inverter ($/kW-year) 2% of PV+inverter price 

O&M of battery ($/year) 1% of battery pack price 

Real interest rate (%) 2 

In the simulations PV array size ranges from 1 to 7 kW with 1 kW increments, the 

number of 2.5 kWh batteries ranges from 0 to 4, and the PV tilt angle ranges from 0 to 

70° with 10° increments (Table 4.9). The sizing model, therefore, simulates a total of 

280 combinations, determines the NPV of each system combination, and ranks them 

from the highest to the lowest. It should be noted that the size range can be increased 

and the size step can be reduced even more. Here, the resolution is kept low to facilitate 

the interpretation of the results and to demonstrate the capabilities of the model. 
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Table 4.9 : Sizing range of PV-BESS systems for HEMS-equipped households. 

 Size range Size step 

PV 1-7 kW 1 kW 

BESS 0-10 kWh 2.5 kWh 

PV tilt angle 0-70° 10° 

 Simulation Results 

4.4.1 Optimal configuration at current electricity and battery prices 

The NPVs of all the PV-BESS combinations are calculated by taking into account the 

savings before and after installing PV, BESS and HEMS, and considering the 

associated initial investment, O&M, and replacement costs. As a result, the optimal 

configuration is found as 3 kW PV – no BESS – 10° tilt angle for the HEMS-operated 

household at the current electricity and battery prices in Türkiye (Table 4.10).  

As seen in Table 4.10, increasing PV size increases NPV, but only to some extent. 

After a specific array size, the self-consumption rate starts to drop. And since the 

selling price is very low today, the surplus electricity which is sold to the grid does not 

provide enough revenue to cover the investment that can be made for increased PV 

capacity. 

Table 4.10 also shows that the inclusion of batteries reduces the NPV of systems in 

Türkiye. This is due to the currently high battery prices and low electricity prices in 

the country. The bill savings provided by BESS cannot exceed the investment made in 

it. Therefore, battery storage is found to be not profitable in Türkiye as of today. 

Table 4.10 : NPV ($) of PV-BESS systems for the HEMS-equipped household 

(current electricity and battery prices). 

 

 Number of batteries (x2.5 kWh) 

PV (kW) 0 1 2 3 4 

1 1425 991 489 -35 -1078 

2 1999 1660 1156 620 -465 

3 2273 2022 1527 963 -237 

4 2248 2057 1598 999 -250 

5 2065 1895 1482 871 -431 

6 1809 1642 1241 625 -687 

7 1514 1344 951 315 -1008 

 

  Number of batteries (x2.5 kWh) 

PV (kW) 0 1 2 3 4 

          Case 2: Current electricity prices and -25% battery prices 

1 1425 1425 1356 1267 658 

2 1999 2093 2024 1921 1270 

3 2273 2456 2395 2264 1498 

4 2248 2491 2465 2300 1485 

5 2065 2329 2349 2172 1304 

6 1809 2075 2109 1927 1048 

7 1514 1777 1819 1616 727 

          Case 4: +25% electricity prices and -25% battery prices 

1 2454 2779 3018 3231 2795 

2 3616 4036 4274 4471 3982 

3 4282 4859 5138 5317 4689 

4 4472 5165 5523 5689 5036 

5 4401 5160 5609 5784 5079 

6 4238 5011 5487 5682 4983 

7 4018 4792 5287 5467 4766 

          Case 6: +50% electricity prices and -25% battery prices 

1 3482 4132 4680 5196 4933 

2 5212 5977 6524 7021 6695 

3 6268 7262 7882 8371 7881 

4 6672 7837 8580 9079 8588 

5 6723 7990 8866 9395 8854 

6 6652 7944 8863 9435 8916 

7 6506 7804 8754 9314 8803 

          Case 8: +75% electricity prices and -25% battery prices 

1 4510 5486 6341 7160 7070 

2 6809 7921 8774 9570 9407 

3 8254 9665 10625 11422 11070 

4 8871 10508 11635 12466 12137 

5 9044 10818 12122 13005 12627 

6 9065 10875 12238 13186 12847 

7 8993 10814 12218 13160 12837 

          Case 10: +100% electricity prices and -25% battery prices 

1 5539 6839 8003 9125 9208 

2 8407 9863 11025 12120 12120 

3 10280 12183 13435 14475 14261 

4 11252 13476 14918 16038 15803 

5 11752 14130 15783 16915 16637 

6 11936 14418 16184 17383 17140 

7 12035 14502 16333 17584 17335 

 

 Number of batteries (x2.5 kWh) 

PV (kW) 0 1 2 3 4 

Case 1: Current electricity prices and current battery prices 

1 1425 991 489 -35 -1078 

2 1999 1660 1156 620 -465 

3 2273 2022 1527 963 -237 

4 2248 2057 1598 999 -250 

5 2065 1895 1482 871 -431 

6 1809 1642 1241 625 -687 

7 1514 1344 951 315 -1008 

Case 3: +25% electricity prices and current battery prices 

1 2454 2345 2151 1930 1060 

2 3616 3602 3407 3170 2247 

3 4282 4425 4271 4016 2954 

4 4472 4731 4655 4388 3301 

5 4401 4726 4741 4483 3344 

6 4238 4577 4620 4381 3248 

7 4018 4358 4420 4166 2279 

Case 5: +50% electricity prices and current battery prices 

1 3482 3698 3812 3895 3198 

2 5212 5545 5657 5720 4960 

3 6268 6829 7015 7070 6146 

4 6672 7403 7712 7778 6852 

5 6723 7556 7999 8094 7119 

6 6652 7510 7996 8134 7181 

7 6506 7370 7886 8013 7068 

Case 7: +75% electricity prices and current battery prices 

1 4510 5052 5474 5859 5335 

2 6809 7487 7907 8269 7672 

3 8254 9231 9757 10121 9335 

4 8871 10074 10767 11165 10402 

5 9044 10384 11255 11703 10892 

6 9065 10441 11370 11885 11112 

7 8993 10380 11350 11859 11102 

Case 9: +100% electricity prices and current battery prices 

1 5539 6405 7136 7824 7473 

2 8407 9427 10157 10819 10385 

3 10280 11749 12568 13174 12526 

4 11252 13043 14070 14736 14070 

5 11752 13697 14915 15613 14903 

6 11936 13984 15316 16082 15405 

7 12035 14068 15465 16283 15611 
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The daily bill of the smart home with and without using the optimal configuration is 

shown in Figure 4.4. The annual average of the daily bill is $4.10 without any 

configuration (base case) and $2.78 with 3 kW PV – no battery – HEMS configuration 

(optimal case), with a reduction of 33%. The increased daily bill on summer days, 

which reaches a maximum of $5.25, is due to AC usage. The minimum daily bill is 

$3.18 and is for winter Sundays when there is no air conditioning and the EV does not 

leave the house. In the optimal case, the daily bill varies between $4.08 and $1.20. The 

annual electricity bill of the household is found to be $1510 without any configuration. 

When the household is equipped with PV and HEMS (no BESS due to low feasibility), 

the annual electricity bill reduces to $1008. 

  

Figure 4.4 : The daily electricity bill for one-year period with and without PV-

HEMS installation. 

The net and cumulative cash flows are presented in Figure 4.5. Cash inflow consists 

of savings, which is the difference ($502) in the annual bill before ($1510) and after 

($1008) using PV – HEMS. And the cash outflow consists of the initial investment of 

a PV system, which is $4000 ($1800 PV array + $1200 inverter + $800 labor and soft 

costs + $200 HEMS) and O&M costs ($66) and replacement cost of the inverter. The 

cash inflows and outflows are susceptible to the real interest rate of 2%. 
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Figure 4.5 : The net (top figure) and cumulative (bottom figure) cash flow for the 

optimal configuration for the HEMS-equipped household (3 kW PV – no BESS). 

The load profile of the HEMS-equipped household for the optimal configuration (3 

kW PV – no BESS) in winter and summer periods is shown in Figure 4.6. January 9 

and July 24 are chosen as sample days. Both these days coincide with Tuesday, when 

all devices are operational, as stated in Table 4.6. In this way, it can be seen how the 

HEMS schedules all manageable appliances. 

HEMS shifts EV charging to off-peak hours on both days. On January 9, the PV 

generation is very low and all the generated energy is self-consumed without any 

injection into the grid. Part of the EWH heating demand is covered by this generation. 

TSAs are shifted to the off-peak period.  
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On July 24, self-consumption is maximized by EWH pre-heating, AC pre-cooling, and 

dishwasher running during the PV generation period. Clothes dryer and washing 

machine operation are not shifted to the PV generation period as the surplus generation 

can only cover a very small fraction of their power consumption. Instead, they benefit 

from lower electricity prices of the off-peak period and provide DR. 

Residents shower daily at 06:10, 14:00, and 18:30. For the first shower, on both days, 

EWH pre-heats before 6:00 while it is still an off-peak period. For the second shower, 

on both days, EWH uses PV power before 14:00. For the third shower, on July 24, the 

energy for the use of EWH is supplied from PV via pre-heating. And on January 9 the 

energy is supplied by the grid, taking advantage of lower electricity prices the shoulder 

period which are cheaper than the prices of the on-peak period which starts at 17:00.  

 

Figure 4.6. The load profile of the HEMS-operated household with the optimal 

configuration (3 kW PV – no BESS – 10° tilt angle). 
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4.4.2 Impact of tilt angle on PV-BESS sizing for HEMS-equipped households 

The sizing model not only sizes the required PV-BESS capacity but also determines 

the optimal tilt angle. The optimal angle for the entire annual period was found to be 

10° for the 3 kW – no BESS configuration.  

The change in the monthly bill of the HEMS-equipped house according to different 

tilt angles is shown in Figure 4.7. In winter, the highest power output and therefore the 

lowest bill is achieved at the angle of 20°. In summer, the highest output and the 

highest bill are achieved at the angle of 0°. It can be seen that the changes in tilt angle 

significantly affect the PV power output on summer days, but have a minor effect on 

winter days. 

 

Figure 4.7 : The monthly electricity bill of the HEMS-equipped household with the 

optimal configuration (3 kW PV – no BESS) for different PV tilt angles. 

The annual PV generation and annual electricity bill are shown in Table 4.11. As seen, 

the lowest annual electricity bill is achieved at the angle of 10°. The annual bill change 

is very low between 0° and 20°, and therefore, it can be concluded that there is no need 

to be very sensitive in the selection of the tilt angle for HEMS-operated prosumer 

households. If this was a PV power plant and all the produced energy was injected into 

the grid, then the sensitivity in the tilt angle could have a higher impact. 

Table 4.11 : Annual electricity bill and PV production of the HEMS-equipped 

household for different tilt angles (3 kW PV – no BESS). 

Tilt angle (°) 0 10 20 30 40 50 60 70 

Annual PV prod. (kWh) 3529 3537 3502 3424 3305 3148 2957 2737 

Annual electricity bill ($) 1009 1008 1012 1019 1029 1044 1062 1083 
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4.4.3 Techno-economic comparison of PV-BESS with and without HEMS   

The impact of HEMS use on the NPV of PV-BESS units can be better understood 

when a comparison is made between households using and not using HEMS. 

Therefore, different case scenarios are created. 

Case A represents a household with HEMS (examined in detail in Sections 4.2 and 

4.3) and Cases B, C and D represent households without HEMS. The residents in each 

case have different levels of DSM awareness, decreasing from A to D. The residents 

in Case A have the highest DSM awareness since they use HEMS. The residents in 

Case B do not use HEMS but still have high DSM awareness and try to maximize PV 

self-consumption by running appliances during the solar generation period. On the 

other hand, the residents in Case C and D do not care much about DSM and run most 

of their electrical appliances outside of the solar generation period despite having 

rooftop PV. The DSM awareness level of the users is explained in detail in Table 4.12. 

✓✓* indicates that the relevant appliance in the household is shifted optimally by 

HEMS. ✓✓ indicates that the appliance is shifted manually by users either to the solar 

generation period or to the low price period. ✓ indicates that the appliance is manually 

shifted by users but partially, which means, the appliance either operates during the 

shoulder period or some part of it operates at advantageous hours and some at 

disadvantageous hours. For AC, ✓✓ and ✓ indicate that the residents manually 

decrease the set point level during on-peak hours. − indicates that the appliance is not 

shifted at all and operates during on-peak hours.  

Table 4.12 : Hypothetical DSM awareness level of households based on load 

shifting status of manageable loads. 

DSM awareness (Case) Very high (A) High (B) Medium (C) Low (D) 

Dishwasher ✓✓* ✓✓ ✓✓ ✓✓ 

Washing machine ✓✓* ✓✓ ✓ ✓ 

EV ✓✓* ✓ ✓ ✓ 

AC ✓✓* ✓ ✓ − 

EWH ✓✓* ✓✓ ✓ − 

Clothes dryer ✓✓* ✓✓ − − 

✓✓*: Shifted by HEMS, ✓✓: Shifted manually, ✓: Partially shifted manually, −: Not shifted 
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The cases examined and their results are given in Table 4.13. The load profiles of the 

households of all cases are shown in Fig. 8 over a sample day (Tuesday, March 1). It 

should be noted that many different cases can be formed. Nevertheless, the cases 

reviewed here are sufficient to demonstrate the impact of HEMS use.  

Table 4.13 : Techno-economic comparison of PV-BESS systems for households 

with and without HEMS. 

Case A B C D 

HEMS use Yes No No No 

DSM awareness Very high High Medium Low 

Optimal configuration 
3 kW PV – 

no BESS 

4 kW PV – 

no BESS 

4 kW PV – 

no BESS 

2 kW PV – 

no BESS 

Viable tariff TOU TOU Flat Flat 

Self-consumption rate 

(%) 
93 68 63 69 

Cash outflow ($) -6064 -7551 -7551 -4176 

Cash inflow ($) 8336 8472 6796 3006 

NPV ($) 2273 920 -755 -1167 

As seen in Figure 4.8, in Case A, the HEMS maximizes the PV self-consumption. It 

shifts the TSAs to the off-peak period to take advantage of low electricity prices and 

uses nearly all solar generation to cover the load demand of water heating and 

inflexible loads during midday. Just a very little portion of the generated electricity is 

sold to the grid. On the other hand, in Case B, C, and D, a larger portion of solar 

generation is sold to the grid. As can be seen in Table 4.13, this causes the NPV to 

decrease because the FiT rate is low, that is, it is not very profitable to sell power to 

the grid and the PV investment cannot pay itself back. In addition, the ability of HEMS 

to heat water in accordance with the form of solar production significantly increases 

the self-consumption in Case A. In the absence of HEMS, solar generation can only 

meet a certain portion of the EWH demand. 
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Figure 4.8 : The load profile of households with and without HEMS use on March 1 

(DSM awareness decreases from A to D). 

The simulations showed that the residents in cases C and D should use flat tariff instead 

of TOU, as their electricity consumption during the on-peak period is too high and 

they do not shift enough loads to the off-peak period or the solar generation period. 

For Cases C and D, the higher electricity price of the TOU scheme during the on-peak 

period is a disadvantage. For the non-HEMS case, PV-BESS sizing was performed for 

both TOU and flat tariff, and the NPV values for the two tariff cases were compared. 

It was found that it would not be economically viable to switch from flat tariff to TOU 

for these residents unless a more efficient DSM is implemented, as in Cases B and A. 

The economically viable tariff schemes for different DSM awareness levels are shown 

in Table 4.13. 

The use of HEMS reduced the required PV size by increasing self-consumption and 

shifting available loads to the off-peak period. In Case A, the optimal configuration 

was found to be 3 kW PV, while in Case B and C, the optimal configurations were 

found to be 4 kW PV as more devices were running during the solar generation period 
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in these households. In Case D, the optimal configuration was 2 kW PV as the load 

demand is very low during the solar generation period in the household. 

Today, with the reduced FiT rates negative NPV for PV systems is not rare. For 

example, in the USA, in 33 of 50 states break-even point cannot be reached and the 

NPV of PV systems stays negative [34]. In Cases C and D, the NPVs are found to be 

negative (Table 4.13), meaning that the savings from the PV installation cannot meet 

the initial investment. The low savings are due to cheap electricity prices and low FiT 

rates in Türkiye. Yet, in Case A, it is seen that the use of HEMS makes PV-BESS 

investments more feasible and NPV increases significantly as it maximizes the savings 

due to optimal load scheduling. This is one of the main findings of the study. The 

savings are greater when HEMS is used as it significantly increases self-consumption 

and shifts required loads to the cheap electricity period. 

 Sensitivity Analysis 

4.5.1 Optimal configurations at varying electricity and battery prices 

In the previous section, it was determined that it is not possible to include BESS in a 

rooftop PV system at current electricity and battery prices in Türkiye, and the optimal 

configuration was obtained with a PV-only system. Yet, BESSs can become applicable 

in different conditions. For this reason, a sensitivity analysis is performed for taking 

into account the rising electricity prices and falling battery prices in PV-BESS sizing. 

The reasons for choosing these two parameters and neglecting others are listed as 

follows: 

✓ Today, especially after the commercialization of EVs, lithium-ion battery 

prices have entered a downward trend and are expected to decrease further in 

the future [196,197]. In addition, purchase subsidies and tax deductions can be 

applied for these units to encourage battery storage, as is already practiced in 

some countries such as Australia [176]. 

✓ Residential electricity prices have increased in the last decade (more than 25% 

in the EU) [198]. Therefore, the scenario of an increase in electricity prices is 

included in the sensitivity analysis. Another reason is that electricity prices in 

Türkiye are low (one of the lowest in Europe), so the results in Section 4 based 

on these prices may not reflect the situation in countries with higher electricity 
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prices. Therefore, this case gives an idea about the possible PV-BESS sizing 

that can be implemented in countries such as Greece, Croatia, Romania, 

Portugal, Spain, Italy, and France (southern part) that have similar solar 

radiation to Türkiye but have higher electricity prices. In these countries, unlike 

in Türkiye, BESSs can become viable due to the increased bill savings which 

can cover the battery investment.  

- Although the change in the initial investment cost of PV is generally taken into 

account in sensitivity analysis in such studies, the initial investment cost of 

rooftop PV systems has become quite stable in recent years [199]. Thus, the 

change in PV initial investment cost is not considered in the sensitivity 

analysis.  

- The change in the electricity sales price to the grid was not taken into account 

as well, since selling prices/FiT rates have decreased significantly today and 

lost their previously high impact and instead, increasing the self-consumption 

has gained importance [72]. 

The cases examined in the sensitivity analysis are +25%, +50%, +75% and +100% 

electricity prices and -25% battery prices. The NPV results are shown in a heatmap in 

Table 4.14. As seen, the use of BESS becomes viable with reduced battery prices and 

increased electricity prices. Even +25% electricity prices or -25% battery prices make 

the use of BESS viable in Türkiye.  

• In the case of -25% battery prices, the optimal configuration becomes 4 kW 

PV – 2.5 kWh BESS.  

• In the case of +25% electricity prices, the optimal configuration becomes 5 kW 

PV – 5 kWh BESS.  

• In the case of -25% battery prices with +25% electricity prices, the optimal 

configuration becomes 5 kW PV – 7.5 kWh BESS. 

• In the cases of +50% electricity prices, +50% electricity prices with -25% 

battery prices, +75% electricity prices, and +75% electricity prices with -25% 

battery prices, the optimal configuration becomes 6 kW PV – 7.5 kWh BESS. 

• In the cases of +100% electricity prices and +100% electricity prices with -

25% battery prices, the optimal configuration becomes 7 kW PV – 7.5 kWh 

BESS. 
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Table 4.14 : NPV ($) of PV-BESS systems for the HEMS-equipped household at 

different electricity and battery prices. 

 

The load profiles of the HEMS-equipped households for all electricity and battery 

price cases are demonstrated in Figure 4.9 over a sample summer Tuesday. As seen, 

BESS is present in all cases except for Case 1. In Case 1, the power is drawn from the 

grid during the entire on-peak period. In Case 2 and 3, a part of the on-peak demand 

is met from the grid. In Cases 4-10 all the on-peak demand is covered by the battery. 

The use of BESS becomes more and more viable as electricity prices increase or 

battery prices decrease. It is seen that as electricity price increases, PV size increases. 

This is to be expected because when the electricity price is high, the most important 

thing is to buy as little electricity from the grid as possible.  

 Number of batteries (x2.5 kWh) 

PV (kW) 0 1 2 3 4 

1 1425 991 489 -35 -1078 

2 1999 1660 1156 620 -465 

3 2273 2022 1527 963 -237 

4 2248 2057 1598 999 -250 

5 2065 1895 1482 871 -431 

6 1809 1642 1241 625 -687 

7 1514 1344 951 315 -1008 

 

  Number of batteries (x2.5 kWh) 

PV (kW) 0 1 2 3 4 

          Case 2: Current electricity prices and -25% battery prices 

1 1425 1425 1356 1267 658 

2 1999 2093 2024 1921 1270 

3 2273 2456 2395 2264 1498 

4 2248 2491 2465 2300 1485 

5 2065 2329 2349 2172 1304 

6 1809 2075 2109 1927 1048 

7 1514 1777 1819 1616 727 

          Case 4: +25% electricity prices and -25% battery prices 

1 2454 2779 3018 3231 2795 

2 3616 4036 4274 4471 3982 

3 4282 4859 5138 5317 4689 

4 4472 5165 5523 5689 5036 

5 4401 5160 5609 5784 5079 

6 4238 5011 5487 5682 4983 

7 4018 4792 5287 5467 4766 

          Case 6: +50% electricity prices and -25% battery prices 

1 3482 4132 4680 5196 4933 

2 5212 5977 6524 7021 6695 

3 6268 7262 7882 8371 7881 

4 6672 7837 8580 9079 8588 

5 6723 7990 8866 9395 8854 

6 6652 7944 8863 9435 8916 

7 6506 7804 8754 9314 8803 

          Case 8: +75% electricity prices and -25% battery prices 

1 4510 5486 6341 7160 7070 

2 6809 7921 8774 9570 9407 

3 8254 9665 10625 11422 11070 

4 8871 10508 11635 12466 12137 

5 9044 10818 12122 13005 12627 

6 9065 10875 12238 13186 12847 

7 8993 10814 12218 13160 12837 

          Case 10: +100% electricity prices and -25% battery prices 

1 5539 6839 8003 9125 9208 

2 8407 9863 11025 12120 12120 

3 10280 12183 13435 14475 14261 

4 11252 13476 14918 16038 15803 

5 11752 14130 15783 16915 16637 

6 11936 14418 16184 17383 17140 

7 12035 14502 16333 17584 17335 

 

 Number of batteries (x2.5 kWh) 

PV (kW) 0 1 2 3 4 

Case 1: Current electricity prices and current battery prices 

1 1425 991 489 -35 -1078 

2 1999 1660 1156 620 -465 

3 2273 2022 1527 963 -237 

4 2248 2057 1598 999 -250 

5 2065 1895 1482 871 -431 

6 1809 1642 1241 625 -687 

7 1514 1344 951 315 -1008 

Case 3: +25% electricity prices and current battery prices 

1 2454 2345 2151 1930 1060 

2 3616 3602 3407 3170 2247 

3 4282 4425 4271 4016 2954 

4 4472 4731 4655 4388 3301 

5 4401 4726 4741 4483 3344 

6 4238 4577 4620 4381 3248 

7 4018 4358 4420 4166 2279 

Case 5: +50% electricity prices and current battery prices 

1 3482 3698 3812 3895 3198 

2 5212 5545 5657 5720 4960 

3 6268 6829 7015 7070 6146 

4 6672 7403 7712 7778 6852 

5 6723 7556 7999 8094 7119 

6 6652 7510 7996 8134 7181 

7 6506 7370 7886 8013 7068 

Case 7: +75% electricity prices and current battery prices 

1 4510 5052 5474 5859 5335 

2 6809 7487 7907 8269 7672 

3 8254 9231 9757 10121 9335 

4 8871 10074 10767 11165 10402 

5 9044 10384 11255 11703 10892 

6 9065 10441 11370 11885 11112 

7 8993 10380 11350 11859 11102 

Case 9: +100% electricity prices and current battery prices 

1 5539 6405 7136 7824 7473 

2 8407 9427 10157 10819 10385 

3 10280 11749 12568 13174 12526 

4 11252 13043 14070 14736 14070 

5 11752 13697 14915 15613 14903 

6 11936 13984 15316 16082 15405 

7 12035 14068 15465 16283 15611 
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In Case 1 and 2, where there is no battery and the electricity price is low, the optimal 

tilt angle is 10° whereas in Cases 2-10, where a battery exists and the electricity price 

increases, the optimal tilt angle is 20°. This is because the PV output is maximized in 

winter at the tilt angle of 20° and it is more beneficial that this maximized production 

is stored in BESS to meet load demand during the on-peak period. 

 
 

Figure 4.9 : Load profile of HEMS-equipped household for optimal configuration 

for all electricity and battery price cases (Summer period, July 24). 

V2H occurs in all cases except Case 1. The reason for the availability of V2H in other 

cases is the decrease in the battery price for Case 2, and the decrease in both the battery 
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price and the increase in the electricity prices for Cases 3-10. In cases where V2H 

occurs, the household does not buy electricity at a high price. Instead, the EV injects 

power to the household at on-peak hours and then recharges the battery at off-peak 

hours. When V2H occurs, the sum of the off-peak electricity price and battery 

degradation cost of EV is lower than the on-peak electricity price.  

The charge and discharge scheduling of BESS and EV batteries is explained in detail 

in Figure 4.10 over a sample graph, which belongs to Case 3 (5 kW – 5 kWh BESS) 

where BESS exists. During the day, BESS is charged by the PV to be discharged 

during the on-peak period. The reason for the intermittent discharges during the day is 

that the consumption at these moments is higher than the PV production. As can be 

seen, part of the household load demand during on-peak hours is supplied by the EV 

battery in the form of V2H. This is because the discharge rate of the BESS battery is 

2 kW, which cannot cover the whole demand. Therefore, EV supplies the rest of the 

on-peak demand. 

 

Figure 4.10 : Charge/discharge scheduling of BESS and EV batteries as a sample 

(Summer period, July 24, Case 3 (5 kW PV – 5 kWh BESS). 

The detailed economic results of the optimal configurations for all electricity and 

battery price cases are presented in Table 4.15. As seen, the NPV of PV-BESS units 

increases as the electricity price, and therefore the bill savings that PV-BESS 

investment can provide increases. This also means that the use of HEMS can provide 

a higher NPV increase when electricity prices are high.  
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Table 4.15 : Detailed results of optimal PV-BESS configurations for HEMS-

equipped households for all electricity and battery price cases. 

Case 
Elec. 

price 

Battery 

price 

PV 

(kW) 

BESS 

(kWh) 

Tilt 

(°) 

Initial 

cost ($) 

O&M 

cost 

($) 

Replace. 

cost ($) 

Cash 

outflow 

($) 

Cash 

inflow 

($) 

NPV 

($) 

1 Current Current 3 - 10 -4000 -1079 -984 -6064 8336 2273 

2 Current -25% 4 2.5 10 -5750 -1562 -1741 -9053 11544 2491 

3 +25% Current 5 5 20 -8000 -2126 -2784 -12909 17651 4741 

4 +25% -25% 5 7.5 20 -8250 -2167 -2927 -13343 19127 5784 

5 +50% Current 6 7.5 20 -10000 -2649 -3682 -16332 24466 8134 

6 +50% -25% 6 7.5 20 -9250 -2526 -3255 -15031 24466 9435 

7 +75% Current 6 7.5 20 -10000 -2649 -3683 -16332 28217 11885 

8 +75% -25% 6 7.5 20 -9250 -2526 -3255 -15031 28217 13186 

9 +100% Current 7 7.5 20 -11000 -3009 -4011 -18020 34303 16283 

10 +100% -25% 7 7.5 20 -10250 -2886 -3583 -16719 34303 17584 

4.5.2 Comparison of examined cases with other countries 

The cases examined in Section 5.1 can give an idea about the required PV-BESS 

configurations for HEMS-equipped households in several major European cities that 

are located in the same solar belt as Istanbul (Türkiye), such as Porto (Portugal), 

Barcelona (Spain), Marseille (France), Rome (Italy), Thessaloniki (Greece), Split 

(Croatia) and Bucharest (Romania). 

The household electricity prices and sell-back prices in these countries are given in 

Table 4.16. Increasing electricity price cases for Türkiye in Section 5.1 coincide with 

the current electricity prices of these countries. The form of the TOU scheme can 

slightly differ, but in principle, on-peak and off-peak hours are quite the same in each 

country. A few years ago sell-back rates could make a difference, but today they have 

fallen in most countries, and instead, self-consumption has gained importance. Here, 

Bulgaria does not match any of the cases due to the currently favorable FiT rates in 

the country (0.13 – 0.15 $/kWh) [200,201]. 

The cities located in the same solar belt with the selected location and the 

corresponding cases are highlighted on the Global Solar Atlas [202] in Figure 4.11. 

According to the results, 7 kWh PV – 7.5 kWh BESS configurations for HEMS-

equipped households can become viable in Spain, Italy and Portugal, 6 kWh PV – 7.5 
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kWh configurations in France and Greece, and 5 kW PV – 5 kWh BESS configurations 

in Romania and Croatia. 

Table 4.16 : The household electricity prices and sell-back prices in the countries 

that are located in the same solar belt as Türkiye. 

Country Electricity price 

($/kWh) [198] 

Sell-back price 

($/kWh) 

Corresponding case 

Türkiye 0.12 0.06 Base 

Bulgaria 0.12 0.13 – 0.15 [201] None* 

Croatia 0.15 0.09 [203] +25% elec. price 

Romania 0.16 0.06 [204] +25% elec. price 

Greece 0.18 0.09 [205] +50% elec. price 

France 0.22 0.07 – 0.12 [206] +75% elec. price 

Italy 0.24 0.06 – 0.07 [207] +100% elec. price 

Portugal 0.24 0.05 [208] +100% elec. price 

Spain 0.25 0.06 [209] +100% elec. price 

*Due to the high FiT rate that does not promote self-consumption. 

 

Figure 4.11 : The cities (Porto, Barcelona, Marseille, Rome, Split, Thessaloniki, 

Bucharest) located in the same solar belt as the selected location (Istanbul) and the 

corresponding cases. 

Total annual solar radiation (kWh/m2)

Sign Corresponding case Elec. price ($/kWh) Optimal configuration

O Current elec. prices ~0.12 3 kW PV – No BESS

O +25% elec. prices ~0.15 5 kW PV – 5 kWh BESS

O +50% elec. prices ~0.18 6 kW PV – 7.5 kWh BESS

O +75% elec. prices ~0.21 6 kW PV – 7.5 kWh BESS

O +100% elec. prices ~0.24 7 kW PV – 7.5 kWh BESS

803  949   1095 1241  1387   1534   1680 1826  1972   2118   2264   2410
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 Discussion 

As a result of the study, the highest NPV in Türkiye was obtained with the 

configuration of 3 kW PV without BESS. The main reason why the use of batteries is 

not viable is low electricity prices in the country and high battery prices globally. For 

this reason, a sensitivity analysis was performed for increasing electricity prices and 

decreasing battery prices. Among the scenarios considered in the sensitivity analysis, 

possible ones for Türkiye in the short term are -25% battery prices and +25% 

electricity prices.   

Currently, residential electricity prices in Türkiye are subsidized and kept low. 

Commercial and industrial electricity prices are 21% and 16% higher than residential 

electricity prices, respectively [210]. On the contrary, residential electricity prices are 

higher than commercial and industrial electricity prices in Europe and the USA 

[211,212]. Considering that the price gap between residential and other end-user 

groups can be eliminated in Türkiye, as in Europe and the USA, it can be said that the 

+25% electricity price scenario is quite likely for Türkiye in the short term. In addition, 

the electricity prices have already increased by 15% in the country in 2021. Yet, 

increases of 50% or more do not seem possible in the short term.  

The decrease in battery price may result from improvements in manufacturing 

technology, as well as subsidies or value-added tax (VAT) reductions to be applied by 

the government to encourage battery storage. Presumably, Türkiye will soon offer 

incentives to promote battery storage as in other countries. For instance, Germany 

offers generous incentives for battery installation such as battery rebates (covering 

around 30% of the cost) and 40% of rooftop PV applications in the country are with 

batteries. The country expects 150,000 new battery installations in 2021 [213,214]. 

Australia provides favorable purchase subsidies for battery storage and aims to reach 

one million battery installations by 2025 for behind-the-meter applications [213]. So 

far, the prevalence of battery systems for on-grid applications in Türkiye has remained 

almost non-existent. One reason is that until the end of 2020, the FiT rates were very 

high which did not require battery installation. Another reason is that the regulations 

on battery storage have just begun in the country and there are no incentive schemes 

yet. 
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 Conclusion 

This study proposes a method to optimally size residential PV-BESS units considering 

HEMS capable of performing DSM of controllable electrical loads. In this way, 

automated DR by taking advantage of time-based electricity tariffs and increased self-

consumption are taken into account in component sizing. Unlike other studies in the 

literature, the proposed model can determine the optimal PV tilt angle according to the 

climatic conditions of the location. Moreover, it can perform load scheduling of all 

types of electrical loads (TCA, TSA, and PSA), consider battery degradation to avoid 

unnecessary battery cycles, and respond to V2H technology.  

The case location is selected as Istanbul, Türkiye, and simulations are conducted for a 

HEMS-equipped household with average daily electricity consumption of 37.5 kWh. 

The sizing model simulates HEMS operation over one year and repeats the simulations 

for each PV array capacity-tilt angle-battery number combination. The model 

determines the NPV of each combination over the system lifetime and then ranks them 

from highest to lowest. 

The optimal configuration is found to be 3 kW PV – no BESS – 10° tilt angle for a 

HEMS-equipped household in Istanbul at the current battery and electricity prices. A 

sensitivity analysis is performed based on rising electricity prices (+25%, +50%, 

+75%, +100%) and falling battery prices (-25%) to make future projections. The BESS 

use becomes viable even with +25% electricity prices or -%25 battery prices in 

Türkiye. The optimal system configurations are found as follows: 

• 4 kW PV – 2.5 kWh BESS – 20° tilt angle in the case of -25% battery prices 

• 5 kW PV – 5 kWh BESS – 20° tilt angle in the case of +25% electricity prices 

• 5 kW PV – 7.5 kWh BESS – 20° tilt angle in the case of -25% battery prices 

with +25% electricity prices 

• 6 kW PV – 7.5 kWh BESS – 20° tilt angle in the cases of +50% electricity 

prices, +50% electricity prices with -25% battery prices, +75% electricity 

prices, and +75% electricity prices with -25% battery prices 

• 7 kW PV – 7.5 kWh BESS – 20° tilt angle in the cases of +100% electricity 

prices and +100% electricity prices with -25% battery prices 

Lastly, a techno-economic comparison is made. PV-BESS units are sized with and 

without HEMS use and the impact of HEMS use on the NPV of the systems is 
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investigated. In three hypothetical cases where residents have different levels of DSM 

awareness, the NPV values are found to be $920, $-755, and $-1167. When HEMS is 

used, the NPV increases drastically and becomes $2273. This is an important finding, 

as PV projects in many countries suffer from low feasibility today in the absence of 

incentives. 

The proposed optimal PV-BESS sizing model is applied for a HEMS-equipped 

household in Istanbul, Türkiye. This model can also be applied to different types of 

households in various regions of the world with different electricity prices and 

different solar energy characteristics. The decentralized model developed in this study 

for individual households can be reconsidered with a centralized approach. The model 

can be modified for use in grid-connected microgrids, increasing self-consumption 

through shared use of PV, and considering P2P energy trading in component sizing. 
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 SURVEY- AND SIMULATION-BASED ANALYSIS OF RESIDENTIAL 

DEMAND RESPONSE: APPLIANCE USE BEHAVIOR, ELECTRICITY 

TARIFFS, HOME ENERGY MANAGEMENT SYSTEMS 

Residential demand response (DR) aims to stabilize the electricity grid by utilizing the 

flexibility of end-users. To this end, end-users are offered time-varying electricity 

prices and incentivized for load shifting. End-users can maximize bill reduction 

through automated load shifting using home energy management systems (HEMSs). 

Since HEMS is a new technology, the future DR potential of its mass use is unknown. 

Here, surveys can be very useful for gaining insight into future behavior and 

preferences in using HEMS. Therefore, the objective of this study is twofold: (1) to 

understand appliance use behavior, electricity tariff perception, and tendency towards 

HEMS-based DR participation, through a survey. And then, (2) to simulate the DR 

potential by entering survey responses into a HEMS optimization tool. The results 

show that 78% of the respondents are willing to engage in HEMS-based DR. This 

provides the potential to reduce the peak period consumption by 33%. However, the 

average bill savings achieved by HEMS owners is only 6.7%, which can hinder 

reaching this potential. Still, 21% of the HEMS owners save more than 10% on their 

bills. 8% save over 15%, and 3% over 20%. These can be the target audience of the 

future HEMS market and DR campaigns. 

 Introduction 

In the last decades, the modernization of the traditional grid has become a necessity, 

both to ensure reliable, sustainable, and cost-effective transmission and distribution of 

electricity and to integrate renewable sources into the power grid to mitigate global 

warming [215]. To this end, the concept of the smart grid has emerged to provide better 

measurement, monitoring, and control of the grid infrastructure through information 

and communication technologies (ICTs) [216].  

Two-way communication provided by ICT led to the utilization of advanced metering 

systems (AMIs). In this way, traditionally static electricity consumers became flexible 
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participants of the grid. The grid-side earned the opportunity to change the power 

consumption pattern of the demand side to stabilize the grid by offering time-based 

electricity tariffs and incentives, which is defined as demand response (DR) [217]. 

Today, residential buildings are responsible for a large portion (26.6%) of total 

electricity consumption, and therefore residential DR gains absolute importance [175]. 

Residential DR can be implemented in two ways: Direct load control (DLC) and 

Indirect load control (ILC). In DLC, users, in return for incentives, allow a system 

operator to remotely control home appliances during critical conditions to meet grid 

needs such as frequency regulation, peak shaving, or ancillary services [218]. DLC 

can provide higher DR than ILC in terms of load reduction but with lower customer 

participation [219]. Reasons such as the sense of losing control over appliances or the 

lack of an override option hinder its adoption [64]. Besides, DLC can raise privacy 

concerns due to the collection of energy usage data that may be processed in the hands 

of third parties [65,220]. In ILC, on the other hand, users are motivated to perform DR 

to take advantage of time-based electricity tariffs with their consent, without involving 

any remote operator. Therefore, they gain more control over their electrical appliances 

and do not have privacy concerns. They either change their electrical appliance usage 

habits on their own or through automation devices such as programmable home 

appliances, smart plugs, or smart thermostats [221]. 

The individual home automation devices mentioned above can also be centrally 

managed using home energy management systems (HEMSs). Users can set their 

scheduling priorities via a HEMS interface for each smart home appliance and can 

optimally schedule their loads considering price and DR signals or (if it exists) 

photovoltaic (PV) generation. In this way, users both reduce their electricity bills and 

indirectly balance electricity supply and demand at the grid end [222]. To use HEMS, 

households require to have smart meters to receive price or DR signals, and appliances 

require to have the “smart” feature. Once installed, HEMSs can optimally schedule 

running hours of time-shiftable loads such as washing machines, dishwashers, and 

clothes dryers. It can also perform set-point adjustment or pre-cooling/heating for 

thermostatically controlled loads such as air conditioners, refrigerators, and electric 

water heaters [223]. The increasing use of smart home appliances and rooftop 

PV/battery energy storage systems (BESSs), as well as increasing electricity prices 

make the use of HEMSs more viable than ever before. 
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5.1.1 Objective 

HEMS is a new technology that has not yet become widespread and future HEMS 

usage preferences (and their load mitigationewwe potential) are not yet known. 

Therefore, simulation studies on HEMS-based DR are often performed for non-

standardized situations with uncertain user preferences. Whereas, initial research into 

HEMS usage preferences can be conducted through surveys using small or incomplete 

sample sets, and then enabling larger-scale, more complete testing can help validate 

real-world HEMS usage preferences, ideally in a field setting [224]. 

Therefore, the objective of this study is twofold: (1) to understand electrical appliance 

use behavior, perceptions of DR and time-based electricity tariffs, and tendency 

towards HEMS use, through a survey study. And then, (2) to simulate survey responses 

of participants using a HEMS optimization tool to explore to what extent their 

electrical load demand could be changed by HEMS-based DR. 

The motivation in (2) emerged during our previous works on developing a load 

scheduling-based HEMS tool and sizing PV-BESS for households using this tool 

[14,15]. When we wanted to simulate the HEMS model and perform PV-BESS sizing 

using it, we needed to rely on many assumptions regarding energy use behavior. 

Modeling the unmanageable load profile in the household was not a problem since 

there were available data in the literature, but modeling the manageable load profile 

was. What would be the HEMS preferences of users? For instance, what percentage of 

people who install HEMS would allow load shifting for their dishwashers? Would they 

allow its run to be shifted to any time of day or a certain time interval? How many 

times a week would they run their dishwashers? And what would be the answers to 

these questions for other manageable home appliances? This study tried to give 

answers to these, or at least, to get an idea to be used in future simulation studies. 

 Related Studies 

In the literature, many studies have been carried out on residential demand-side 

management (DSM), DR, and HEMS. A vast amount of these is survey studies to 

understand electrical home appliances usage behavior and to what extent it can be 

modified through DR [225].  
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[226] used time-use survey data of Swedish households to construct load profiles of 

home appliances using a deterministic conversion model and then validated the results 

with measurement data. The study showed that time-use data could be an alternative 

to energy monitoring and measurement. [227] showed the practicality of the same 

approach for load profiling in the absence of smart meters in developing countries to 

design targeted DSM strategies. [228] modeled electrical and thermal load profiles of 

private households in Germany as the electrification of these two sectors will place a 

large burden on the grid infrastructure soon. [229] examined DR and DR-based 

gamification preferences and expectations of Turkish households. The conducted 

gamification trial provided a significant change in the dishwasher and washing 

machine usage habits during the peak period. [230] conducted a survey on energy use 

behavior (space cooling behavior, lighting behavior, etc.), energy-saving awareness, 

and consumer reaction to energy-saving policies for residential end-users in China. 

[231] surveyed 146 people on the island of Mayotte to assess the preferences of the 

population on DLC-based DR and electricity tariffs. [232] used a multi-criteria 

decision-making method using survey data of 1023 participants for identifying user 

preferences for residential DR. Appliance use types were ranked in terms of 

willingness to give up for DR. Participants were more willing to sacrifice showering 

needs and less willing for laundry and dishwashing. Load shifting can be performed 

not only to perform DR but also, with a similar motivation, to increase PV self-

consumption. [233] surveyed 2505 prosumers in Denmark and showed that 67% of 

Danish prosumers often or always try to shift their loads to the solar generation period.  

The survey-based studies on residential buildings in the literature can be classified as; 

energy consumption, resident behavior, comfort, resident preferences, time use, and 

simulation [234]. Almost all simulation studies are directed toward generating load 

profiles using survey responses. The same approach can be used to generate load 

profiles of DR-performing households as well [235], but only very few studies in the 

literature attempt this. [236] investigated the demand-side flexibility of washing 

machines and dishwashers in 12 European countries. Washing machines and 

dishwashers were found to be available in the grid as flexible loads of 5 MW and 10 

MW, respectively if 100,000 households agreed to load shifting. [237] analyzed the 

bidding behavior of air conditioner users for DR participation with a survey study and 

then simulated the survey results of 552 participants using an optimization tool. [238] 
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conducted a survey to identify the flexible load use pattern of households in rural 

Guanzhong, China. Then, the optimal scheduling of flexible loads was made according 

to the survey results. [239] surveyed DR preferences of 200 households in Italy. 

Participants' preferred set-points for air conditioners and desired operating time 

intervals for washing machines and dishwashers were learned, and then the results 

were translated into a simulation. [240] surveyed 80 households in Ghana and then 

calibrated the survey data using the measurements from monitoring of households. The 

study provided information on end-users’ responsiveness and financial benefits which 

are crucial in evaluating the cost-effectiveness of different DR programs. [241] 

surveyed 141 EV owners from two different cities in China to understand EV use 

behavior, charging demand, and charging service quality. Next, a survey-based 

simulation platform was developed which was capable of implementing optimized 

charging/discharging strategies based on survey results. [242] et al. surveyed the 

operating hours of dishwashers, washing machines, clothes dryers, ovens, and ranges 

in 564 households in the Midwest region of the US. The results were then aggregated 

to the grid level and the maximum load reduction potential of each appliance was 

simulated. The taxonomy of studies simulating electrical load profiles of buildings that 

perform DR, based on survey responses, is given in Table 5.1. 

Table 5.1 : Taxonomy of studies simulating electrical load profile of DR-performing 

buildings, based on survey responses. 

Reference Survey DR 

type 

Simulated behavior of appliance Location 

   DW WM CD Ref. AC EWH EV  

[236] Online ILC ✓ ✓ ⨯ ⨯ ⨯ ⨯ ⨯ Europe 

[237] Field DLC ⨯ ⨯ ⨯ ⨯ ✓ ⨯ ⨯ China 

[238] Field ILC ⨯ ✓ ⨯ ⨯ ✓ ⨯ ✓ China 

[239] Online DLC ✓ ✓ ⨯ ⨯ ✓ ⨯ ⨯ Italy 

[240] Field ILC ⨯ ✓ ⨯ ✓ ✓ ✓ ⨯ Ghana 

[241] Field DLC ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ✓ China 

[242] Online ILC ✓ ✓ ✓ ⨯ ⨯ ⨯ ⨯ USA 

This study Online ILC ✓ ✓ ✓ ✓ ✓ ✓ ⨯ Türkiye 

DW: Dishwasher, WM: Washing machine, CD: Clothes dryer, AC: Air conditioner, EWH: Electric water heater 
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The above-mentioned studies can help utilities and aggregators to comprehensively 

benefit from the shifting potential of manageable electrical appliances. Yet, the 

adoption of DR or HEMS depends not only on technical issues but also on social 

plausibility. Financial opportunities are linked to social motivators. The main concerns 

of the public about smart homes are loss of control, affordability, trustworthiness, 

privacy, and data security [243]. Strengthening the concept of HEMS raises an 

important issue as technology anxiety stands out as a big obstacle [244].  

Bill reduction seems to be the biggest motivator, yet the social groups most concerned 

with their energy bills are those most resistant to performing DR [220]. HEMSs are 

more appealing to the upper-middle income group, in fact, those who suffer from 

energy poverty are the ones who need HEMS the most [245]. Nevertheless, the social 

injustice regarding availability and affordability between different consumer groups 

can be overcome with appropriate designs and policies, which also enhances the 

effectiveness of DR programs [246]. It is also worth noting that while consuming 

electricity was previously a background activity, consuming it with a HEMS requires 

an “effort”, which creates a paradigm shift. This effort to control the HEMS interface 

should be somewhat compensated, but trials show that bill discounts are much lower 

than users’ initial expectations [247]. Therefore, additional motivational factors come 

to the fore to boost HEMS use. 75% of people in New York were willing to pay at 

least $1 per month for HEMS features to support the environment, control their home 

appliances, and visualize and monitor their electricity consumption [248]. In a 

resource-rich country, Qatar, people did not seem to be interested in price-based DR 

as a concept but were interested in adopting smart, modern, and new infrastructures in 

households, including smart thermostats and smart water heaters which provide DR 

[249]. Prosumers in Germany enjoyed the technical side of monitoring their electrical 

energy production and consumption. With a deepening environmental awareness, they 

set energy-saving targets and tried to achieve them [250]. 

Regardless of social factors, the adoption of DR also depends on the adequacy of 

electricity tariffs [251]. The most common time-based tariff in a significant part of the 

world is time-of-use (TOU), which divides the day into parts with different prices for 

electricity. A less-used alternative is dynamic pricing, where prices change hourly 

throughout the day according to the supply-demand balance [252]. Two major barriers 

to the adoption of time-based electricity tariffs stand out as the low consumer 
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confidence in electricity suppliers and the complexity of the pricing systems [253]. 

Residential users are more likely to adopt less complex static TOU compared to 

dynamic pricing. Nevertheless, dynamic pricing has been shown to be as acceptable 

as static pricing in the case of automation that can be provided by HEMSs [254]. 

5.2.1 Contribution 

Before a large-scale deployment of technology, it is required to do extensive field 

trials, tests, and simulations [255]. Survey questionnaires can be very insightful in this 

respect. Although many studies in the literature make electrical load profiling using 

time-use survey data, only very few use the same method for load profiling in the case 

of home energy management. One reason for this is that the latter is a more complex 

process due to automation.  

Therefore, this study aims to fill a gap. As its main contribution, it combines 

information gathered in a survey with an optimization tool to simulate the load 

mitigation potential of future mass adoption of HEMSs for DR. The study contributes 

to the existing literature in the following ways: 

 (1) It collects information on residential electrical energy use behavior, such as 

ownership rate of appliances, running hours of time-shiftable appliances (dishwashers, 

washing machines, dryers, etc.), weekly operating frequency of appliances, preferred 

temperature set-points of refrigerators and air conditioners, frequency of use of electric 

water heaters (shower times, shower duration, etc.). 

(2) It investigates the consumer perception of electricity tariffs, 

(3) It investigates the residential demand-side flexibility through the willingness to 

participate in DR and defining operational priorities and limitations of HEMS use, 

such as willingness to use HEMS (if yes, which appliances do users allow HEMS to 

control), time intervals users prefer HEMS to shift electrical loads, expectations, 

concerns, motivational factors, etc. 

(4) It investigates to what extent HEMS-based DR can change the initial load profile. 

To this end, survey responses are entered into a load scheduling-based HEMS tool to 

simulate the load profiles of DR-performing households. 

(5) The study is comprehensive in scope and includes DR participation of all major 

manageable home appliances (Table 5.1). 
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5.2.2 Methodology 

The study consists of two parts. In Part 1, the results of the survey are presented and 

analyzed, and in Part 2, the before and after of the HEMS use are simulated based on 

the survey responses.  

Part 1 (Survey) consists of three subparts; a) Ownership rate of electrical home 

appliances and energy use behavior, b) Electricity tariffs, c) HEMS use behavior for 

DR purposes. “a” investigates the present residential energy use behavior. “b” is 

important as electricity tariffs are a major instrument to implement DR, and “c” 

explores the willingness to use HEMS and the preferences and priorities regarding its 

use (e.g. to what extent people would leave the control of their appliances to HEMS). 

Part 2 (Simulations) investigates the impact of HEMS use on total load demand and 

electricity bills. The information collected in “a” allows creating the electrical load 

profile before HEMS use, and the information collected in “c” allows creating the load 

profile after HEMS use. These data are entered into a HEMS tool, and the before and 

after of the survey participants' load profiles are simulated, and then the change is 

compared. An optimization-based HEMS tool that was previously developed (as 

introduced and detailed in [14,15]) is used in the simulations. The flowchart of the 

study is presented in Figure 5.1. 

 

Figure 5.1 : Flowchart of the study. 
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 Sociodemographic Characteristics and Household Electricity Consumption 

Behavior of the Participants  

5.3.1 Participants and surveyed households 

The survey was conducted across Türkiye. A web-based online questionnaire was 

structured and distributed through a professional online survey company. Gift 

vouchers were used as incentives. The minimum sample size was calculated as 384 

with a confidence level of 95% using Krejcie and Morgan’s formula [256]. Following 

the initial filtering of the survey company, 460 complete results were received, 18 

results were excluded due to inconsistent information, and 442 results were considered 

valid. The survey company aimed to target those responsible for the management of 

household appliances. The proportion of older participants were lower than average 

which is expected in online surveys [257]. For these reasons, the sample is considered 

slightly biased. Yet, there are also important consistencies, as will be explained. Each 

participant represented a household. Different people from the same household did not 

participate in the survey. Answering the questionnaire took an average of 20 minutes. 

The majority (56%) were between the ages of 25 and 34 (the average of the survey 

sample is 34.3 and the average of Türkiye is 33.5 according to the Turkish Statistical 

Institute (TURKSTAT) [258]). Half of the participants had 2- or 4-year (vocational or 

bachelor’s) degrees (not reflecting the average of Türkiye). Most of the participants 

were from Istanbul, followed by Ankara, Antalya, Bursa, and Izmir, in line with [258] 

with slight differences. The participant profile is summarized in Table 5.2. 

Table 5.2 : Socio-economic character of the survey participants. 

Age Frequency (%) 

18-24 5.2  

25-34 55.9 

35-44 27.4 

45-54 7.5 

55-64 3.6 

65+ 0.5 

Education level Frequency (%) 

Primary school 12.2 

High school 28.7 

2-year/4-year degree 50.2 

Master’s degree 6.1 

Doctoral degree 2.7 

Half of the households belonged to the low-income group. Household income 

distribution showed a quite high similarity with [259]. The vast majority (88%) stated 
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that they live in apartments. Although there is no data on this, 11.7% of the Turkish 

population live in 1-storey, 17.3% in 2-storey and the rest in higher-floor buildings 

[260]. The average size of the residential dwellings of the participants was 116 m2 (114 

m2 according to TURKSTAT [261]. Family size distribution did not match with 

TURKSTAT data, yet the average family size was close (3.50 people in our sample 

and 3.35 people in TURKSTAT data [261]).  42% of the participants were landlords 

which is 60.7% according to [260]. The monthly electricity consumption of 

participants was calculated as 211 kWh based on the bills they declared and the 

residential electricity price of the period (4th quarter, 2021). Although there is no 

TURKSTAT data on this subject, the average monthly bill of the respondents (195 ₺) 

at that time exactly coincides with the figure given in the Energy Consumption and 

Economy Survey, conducted by [262]. According to [262], 58% of Turkish households 

use combi boilers for heating, 22% use stoves, 10% use central heating, 7% use air 

conditioners, and 2% use electric heaters [262]. These rates are close to the survey 

results, except for combi boilers and stoves. The detailed profile of the surveyed 

households is presented in Table 5.3. The household size and monthly electricity 

consumption is demonstrated in Figure 5.2.  

Table 5.3 : Detailed profile of the surveyed households. 
Tenure Frequency (%) 

Tenant 57.9 

Landlord 42.1 

Family size Frequency (%) 

1 person 0.9 

2 persons 16.5 

3 persons 32.8 

4 persons 35.1 

5 or more persons 14.7 

Household type Frequency (%) 

Apartment 88.0 

Detached 12.0 

Household heating Frequency (%) 

Combi boiler 70.8 

Central heating 14.0 

Heating stove 7.2 

Air conditioner 6.1 

Electric heater 1.6 

Heat pump 0.3 

Household income Frequency (%) 

Low 49.9 

Lower-middle 27.5 

Middle 15.5 

Upper-middle 4.7 

High 2.5 

Average household size 116 m² 

Average electricity use 211 kWh/month 
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Figure 5.2 :  Household size and monthly electricity consumption distribution of 442 

participants. 

  

Figure 5.3 : Occupancy level in households on average. 
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The average occupancy level of households according to the time of day is 

demonstrated in Figure 5.3. Most of the households consisted of 3 to 4 people (68%). 

The average number of residents from 08:00 to 17:00 was quite similar, between 2.0 

and 2.3. The number increased to 3.2 between 17:00 and 19:00 when parents and 

children come home from work and school. The average number of residents present 

at home from after 20:00 to the morning was 3.5. 

5.3.2 Electrical load profile of the households 

Electrical home appliances can be divided into two as manageable and unmanageable 

in terms of automation. The ownership rate of unmanageable and manageable 

appliances in the surveyed households is given in Table 5.4 and Table 5.5, 

respectively.  

[263] shares the ownership rates of the unmanageable appliances in Türkiye as 94% 

for vacuum cleaner, 92% for cooker/oven, 81% for blender/food processor, 54% for 

microwave, and 34% for toaster. As seen from Table 5.4, vacuum cleaner, oven and 

blender/food processor ownership rates show great similarity but microwave and 

toaster do not. The incompatibility in the toaster may be because panini grills are also 

called toasters in Türkiye. [264] shares the ownership rate of laptop as 50% which is 

56% in our sample. [262] shares the kettle ownership rate as 69% which is 74% in our 

sample. 

Despite the slight bias in the sample, refrigerator, washing machine, and air 

conditioner ownership rates are in line with the data of [259,265]. The ownership rate 

of dishwasher is 94% in our survey, whereas it is 78% according to TURKSTAT and 

91% according to [263]. There is no source on the dryer and electric water heater 

ownership rates. It can be said that the ownership rate of refrigerators and washing 

machines is similar in European countries [266,267]. The ownership rate of electric 

water heaters is low as the majority live in natural gas-heated apartments and the 

number of detached households is low. The ownership of solar collectors (these may 

also belong to the whole building) is 7.5%. The participants have an average of 4 

compact fluorescent lamps (CFL) and 6.34 light-emitting diode (LED) lights in their 

homes. 
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Table 5.4 : Ownership rate of unmanageable household appliances. 

Appliance Ownership rate 

(%) 

Appliance Ownership rate 

(%) 

Oven 97.3 LED TV 24.4 

Microwave oven 31.2 LCD TV 64.3 

Electric stove 37.6 CRT TV 11.8 

Electric grill 11.5 Iron 93.7 

Stove hood 67.9 Vacuum cleaner 97.1 

Toaster 85.3 Hair dryer 90.5 

Kettle 73.8 Laptop computer 56.1 

Blender/Food 

processor 

83.7 Desktop computer 17.0 

Electric fryer 10.2 Scanner 15.6 

Air purifier 4.8 Printer 5.0 

Fan/Ceiling fan 26.0 Solar collector 7.5 

 

Table 5.5 : Ownership rate of manageable household appliances. 

Manageable appliance Ownership rate (%) 

Time-shiftable  

Dishwasher 94.1 

Washing machine 99.1 

Clothes dryer 13.8  

Washer dryer 8.1 

Rice cooker 0.0 

Bread maker 2.3 

Robotic vacuum 12.7 

Electric bike/scooter 2.5 

Thermostatically controlled  

Air conditioner 22.6 

Refrigerator 99.3 

Electric water heater 9.9 

In Figure 5.4, the most preferred usage times of time-shiftable appliances 

(dishwashers, washing machines, clothes dryers, washer dryers) on weekdays and 

weekends are presented (bread makers, rice cookers, robot vacuums, and electric 

bikes/scooters are excluded due to their low ownership rates and low energy demand). 

Users usually run their appliances when they come home from work on weekdays. 

Dishwashers are usually run after dinner time while washing machines and dryers are 

run both in the middle of the day and during peak hours. This pattern complies with 

the results obtained by [268]. Washing machines are usually run in the middle of the 

day (peak at 10-11 am), showing a similar pattern to that of [269,270]. On weekdays 
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33% of dishwasher, 29% of washing machine, 22% of clothes dryer and 21% of washer 

dryer operation occurs during the on-peak period when electricity is expensive. The 

time of use of appliances on weekends and weekdays are quite the same except for 

dishwashers. On weekends, dishwashers work significantly more during midday. On 

weekends 23% of dishwasher, 17% of washing machine, 25% of clothes dryer, and 

15% of washer dryer operation occurs during on-peak period.  

 

Figure 5.4 : Most preferred time of use of time-shiftable appliances (dishwashers, 

washing machines, clothes dryers, and washer dryers). 

Time-shiftable appliances do not operate every day of the week. Therefore, when 

creating a survey-based load profile, it is important to know how many times a week 

these appliances run. Users were asked about this. The results are shared in Figure 5.5. 

Among time-shiftables, dishwashers are the most frequently operated. For instance, on 

Monday, while 71% of the dishwashers run, the number is lower for washing machines 

as 47%. On Tuesdays and Thursdays, clothes dryers run more often than washing 

machines. This may be due to the urgent need for hand washing followed by sudden 

drying (e.g. drying hand-washed baby clothes, school uniforms, or work clothes). On 

average, users run their dishwashers, washing machines, clothes dryers, and washer 

dryers 63%, 46%, 43%, and 40% of a week, respectively (100%, when an appliance 

runs once every day). The average operation ratio is lower on weekdays (62%, 40%, 

39%, and 32%, respectively) and gets higher on weekends (67%, 61%, 54%, and 61%, 

respectively).  
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Figure 5.5 : Frequency of running time-shiftable appliances. 
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winter and 7.5 times a week in summer. On average, they spend 16 minutes a day in 

the shower. The majority take showers between 20:00 and 22:00 (within peak hours). 

The rate of taking a shower is high between 07:00 and 09:00 as well on weekdays. The 

majority take showers between 20:00 and 22:00 (within peak hours). The rate of taking 

a shower is high between 07:00 and 09:00 as well on weekdays. Showering is done 

more often in the middle of the day on weekends than on weekdays. This pattern shows 

similarity to the measured values in [226]. The distribution of the refrigerator and air 

conditioner set-point temperatures and showering hours of participants are shared in 

Figure 5.6. 

 

Figure 5.6. Distribution of air conditioner set-point temperature, refrigerator set-

point temperature, and showering hours. 
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awareness, these participants can be assumed as fixed tariff subscribers. Then, with 

this assumption, 91% of the participants use fixed tariff, 8.4% use TOU, and 0.6% use 

green tariff. The detailed results of electricity tariff awareness are presented in Table 

5.6. 

Table 5.6 : Awareness of the participants about electricity tariffs. 

Do you know which tariff you are subscribed to? Frequency (%) 

Yes 40.1 

No 59.9 

Tariff distribution Frequency (%) 

Fixed tariff 91.0 

TOU 8.4 

Green tariff 0.6 

TOU awareness Frequency (%) 

I do not know about the TOU scheme. 73.8 

I know about the TOU scheme.* 26.2 

   *I know expensive/cheap hours. 44.8 

   *I approximately know expensive/cheap hours. 35.3 

   *I have no idea when it gets expensive/cheap. 19.8 

TOU misconception Frequency (%) 

Fixed tariff subscriber but tries to run appliances at night, 

thinking that electricity will be cheaper. 
51.6 

Green tariff awareness Frequency (%) 

I heard about the green tariff. 8.4 

I have not heard about the green tariff. 91.6 

(After informed) Would you be willing to switch to the green 

tariff? 

Frequency (%) 

Yes 76.2 

No 23.8 

Green tariff is 60% more expensive. Still willing to switch? Frequency (%) 

Yes 14.2 

No 85.8 

When all participants were informed about the green tariff and asked if they would 

like to switch to it, 76.2% showed willingness. However, there was a big change in 

their views when they were later informed that the green tariff was 60% more 

expensive than the fixed tariff. After updated, 81.4% changed their minds about their 

willingness to pay for green electricity. 

5.4.1 Perception of TOU 

Only 26.2% of the respondents stated that they have heard about TOU. Among them, 

44.8% stated they know when electricity gets cheaper or more expensive, 35.3% stated 
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they approximately know the cheap and expensive hours and 19.8% stated they do not 

know the cheap and expensive hours (Table 5.6). 

In Türkiye, many people suffer from a misconception: “Electricity is cheap at night 

for everyone”. Although they are not TOU subscribers and cannot benefit from cheap 

electricity prices, many fixed tariff subscribers try to run their electrical devices after 

10 pm. 51.6% of the fixed-rate subscribers were found to be suffering from this 

misconception from time to time, thinking that electricity will be cheaper for them as 

well at night (Table 5.6). Although this unexpected load shifting contributes to 

reducing the peak load, it is a big misconception for consumers. It is also a sign that 

many fixed tariff subscribers are potential TOU subscribers and can be guided in this 

direction. 

5.4.2 Expectations, concerns, and motivational factors associated with TOU 

The results of participants’ monetary and comfort-related concerns and expectations, and their 

social motivations regarding the TOU tariff are demonstrated in Figure 5.7. The two biggest 

concerns are similar: TOU does not provide sufficient bill discount or it is hard to estimate 

what kind of bill discount TOU can provide. The difficulty of keeping track of when electricity 

gets cheaper or more expensive seems to be an important obstacle as well. As seen, 47% of 

respondents do not want to track the times when electricity prices get cheap/expensive. Here, 

HEMS might be a solution for these people. Although these people do not want to follow 

cheap/expensive times, it does not mean they do not want to perform DR. HEMS can enable 

these individuals to shift their loads automatically and therefore effortlessly. 

 

Figure 5.7 : Perception of time-based electricity tariffs. 
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 Perception of HEMS Use and DR 

In the last part of the questionnaire, detailed information about the concept of HEMS 

(how it works, functions, benefits, etc.) was presented to the participants and then they 

were asked about their willingness to use HEMS and HEMS usage preferences. A 

majority of 78% showed a willingness to install a HEMS. The willingness to 

participate in DR was found to be 50% in Tokyo and 70% in New York [272], 81.5 in 

the island of Mayotte [231], 74.7% in China [273], 50% in US Midwest [274] and 78% 

in another study conducted in Türkiye [275].  

After the initial interest in HEMS use was learned, the respondents who said they 

wanted to use HEMS were asked which manageable appliances they would like to 

leave control of to HEMS. 72% of dishwasher, 69% of washing machine, 59% of 

clothes dryer, 67% of washer dryer, 81% of refrigerator, 93% of air conditioner, and 

95% of electric water heater users agreed to leave control of their appliances to HEMS. 

This is in line with the results obtained by [232], in terms of the priority order of 

appliances for DR participation. The results are presented in Figure 5.8. Overall, 

participants were willing to install HEMS for DR. 

 

Figure 5.8 : Ownership rate of manageable appliances and answer to “Do you allow 

HEMS to control this device?”. 
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After learning how many participants want to use HEMS and what appliances they 

leave control of to HEMS, they were asked about the time intervals they want HEMS 

to shift time-shiftable appliances. Then, the following questions were asked regarding 

thermostatically controlled appliances:  

- “Would you allow HEMS to interfere with the temperature of your air 

conditioner? So that, within thermal comfort standards, you can compromise 

your comfort level a little for the benefit of your bill and electricity grid.” 

- “Would you allow HEMS to interfere with your refrigerator temperature 

without spoiling your food?” 

- “Would you allow HEMS to interfere with your electric water heater 

temperature by performing pre-heating before electricity gets expensive?”. 

According to the answers, the highest HEMS participation was for electric water 

heaters, where users were expected to feel the least loss of comfort. 95% of electric 

water heater users let HEMS pre-heat water during cheap hours before shower time. 

Although this is a very high rate, only 9.9% of the total participants use electric water 

heaters. In other words, the DR participation potential of the electric water heater in 

the total population is 9.4%. Still, it should be noted that electric water heaters offer a 

great DR possibility due to their significantly high energy consumption.  

A significant portion (81.2%) of refrigerator users allowed HEMS to intervene in 

refrigerator temperature when necessary. Although the individual DR potential of 

refrigerators is low due to their low instantaneous power, the widespread use of 

refrigerators (99.3%) makes the DR associated with the refrigerator important when 

their collective participation is considered. The DR participation of refrigerators in the 

total population is very high as 80.6%.  

The DR potential of air conditioners is also high. 22.6% of the participants have air 

conditioners and 92.8% of them allowed HEMS to intervene in the set-point 

temperature when necessary, making the ratio of the DR potential of air conditioners 

to the general population 21%. 

Among time-shiftable appliances, the appliance with the highest demand-side 

flexibility belonged to dishwashers. Most respondents chose to leave control of their 

dishwashers (72%) and washing machines (69%) to HEMS. The lowest HEMS 

participation was for the clothes dryers (59%) among all manageable appliances, 
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probably because their operation depends on a previous wash cycle or washing clothes 

by hand. Since washer dryers do not have that problem, the share of washer dryers 

(67%) showed a similar pattern to washing machines. The DR participation potentials 

of these appliances in the total population are 68%, 68%, 8%, and 5% for dishwasher, 

washing machine, clothes dryer, and washer dryer, respectively.  

5.5.1 Operational priorities regarding time-shiftable appliances 

In the literature, in the simulation of HEMS tools, it is either assumed that time-

shiftable appliances can be shifted to any time of the day or to preferred time intervals. 

These preferred intervals reflect the authors’ own preferences, daily experiences, or 

opinions. Various preferred load shifting intervals for time-shiftable appliances can be 

found in [101,276–284]. Although they individually give an idea, they do not reflect 

the actual preferences of the average population. 

This shortcoming in the literature led us to search for the average preferred time 

intervals for time-shiftable appliances to be shifted, which is among the contributions 

of the study. Hereby, the participants were asked; “What time slots would you prefer 

HEMS to shift your dishwasher, washing machine, clothes dryer, and washer dryer?”. 

A day was divided into seven time slots in the questionnaire, and the participants were 

asked to choose the appropriate slots (could be multiple choice) for load shifting.  

The results are shared in Figure 5.9. Participants who are willing to use HEMS are 

highly fond of their appliances being shifted to off-peak periods, especially to 22:00 

and 00:00, where both electricity is cheap and it is not sleep time yet (where the noise 

of appliances cannot wake anyone up). 00:00 – 02:00 seemed to be a very desirable 

period as well. The least favorable time slot was 06:00 – 09:00 for all appliances. 

Presumably, this time slot is the most suitable to unload laundry and dishes for users 

who prefer to run appliances at night.  

To summarize, 74% of dishwasher, 58% of washing machine, 61% of clothes dryer 

and 51% of washer dryer users who are willing to use HEMS agreed their electrical 

appliances to be shifted to off-peak periods. 
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Figure 5.9 : “What time slots do you prefer HEMS to shift your dishwasher, 

washing machine, clothes dryer, and washer dryer?”. 

5.5.2 Expectations, concerns and motivational factors for HEMSs 

The participants were asked about their expectations, concerns, and motivational 

factors regarding HEMSs. The results are demonstrated in Figure 5.10 and Figure 5.11. 
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adopt this technology. Among the concerns, the biggest seems to be the waiting of the 
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is an unwanted decrease/increase in the air conditioner set-point. 

 

Figure 5.10 : Perception of HEMS. 
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Participants were asked about factors that could motivate them to use HEMS. The 

results are presented in Fig. 5.11. The biggest motivation was financial factors such as 

the free installation of the systems and electricity bill reduction. Technological factors 

such as following a technological innovation and visualized monitoring of electricity 

consumption in the household received slightly less attention. 

 

Figure 5.11 : “What does motivate you for a HEMS installation?”. 
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the daily electricity bill by shifting time-shiftable appliances to the cheap electricity 

period, and pre-cooling or pre-heating the zones (water heater tank, household, and 

refrigerator cabinet) of thermostatically controlled appliances for thermal storage 

before electricity gets expensive.  

The MILP problem is solved using “intlingprog” solver of MATLAB. The objective 

function is daily electricity bill minimization performed by HEMS as shown in Eq. 

(5.1). 

𝑓𝑐 = 𝑚𝑖𝑛 ∑𝑃𝑡 ⋅ ∆𝑡 ⋅ 𝜆𝑡

𝑡

 (5.1) 

where, 𝑃𝑡 is the power drawn from the grid at time 𝑡 [kW], ∆𝑡 is the time interval and 

𝜆𝑡 is electricity price at time 𝑡 [$/kWh]. 

𝑃𝑡 consists of the sum of the power consumption of all available home appliances in 

the household as in Eq. (5.2). 

𝑃𝑡 = 𝑃𝑡
𝑢𝑛 + ∑𝑃𝑡

𝑖

𝐼

𝑖=1

+ ∑𝑃𝑡
𝑗

𝐽

𝑗=1

, ∀𝑡  (5.2) 

where, 𝑃𝑡
𝑢𝑛, 𝑃𝑡

𝑖 and 𝑃𝑡
𝑗
 are the power drawn from the grid by unmanageable appliances, 

time-shiftable appliances, and thermostatically controlled appliances at time 𝑡, 

respectively [kW]. 

5.6.1.2 Time-shiftable appliance model 

The optimization model can shift time-shiftable appliances (dishwasher, washing 

machine, clothes dryer or washer dryer) to cheap electricity period to perform DR. 

These appliances are modeled as in Eq. (5.3-5.7) [126]. A time-shiftable appliance has 

an uninterruptible operation which means it cannot be interfered with once started. The 

fixed consumption of a time-shiftable appliance can be represented as in Eq. (5.3). 

𝑃𝑖 =  [𝑝1
𝑖 𝑝2

𝑖 ⋯ 𝑝𝑇
𝑖 ]′ (5.3) 

where 𝑝𝑡
𝑖 is the power consumption of the time-shiftable appliance 𝑖 at time 𝑡 [kW], 

and 𝑇 is the set of time period. For instance, for a daily operation of the dishwasher, at 

1-hour interval, 𝑇 would be 24 (or at 5-min interval 288). At 1-hour interval, 𝑃𝑖 could 
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have been something like 𝑃𝑖 = [1.61 0.18 0 0 ⋯ 0 ]′. In this example, it 

would mean that the appliance 𝑖 could draw power for 2 hours over 24 hours, with a 

total consumption of 1.79 kWh per cycle. 

All possible shifting combinations of 𝑃𝑖 can be represented in matrix form as in Eq. 

(5.4).  

𝑃𝑖 = 

[
 
 
 
𝑝1

𝑖 𝑝𝑇
𝑖 ⋯ 𝑝3

𝑖 𝑝2
𝑖

𝑝2
𝑖 𝑝1

𝑖 ⋯ 𝑝4
𝑖 𝑝3

𝑖

⋮ ⋮ ⋱ ⋮ ⋮
𝑝𝑇

𝑖 𝑝𝑇−1
𝑖 ⋯ 𝑝2

𝑖 𝑝1
𝑖 ]
 
 
 

, ∀𝑡 (5.4) 

Among all shifting combinations, only one of them belongs to the optimal result. 

Therefore, the binary integer vector 𝑋𝑖 defined in Eq. (5.5) functions as a switch 

control to choose that optimal column.  

𝑋𝑖 = [𝑥1
𝑖 , 𝑥2

𝑖 , . . . , 𝑥𝑇
𝑖 ]′, ∀𝑡 (5.5) 

where, 𝑥𝑡
𝑖 is the binary variable at time 𝑡 (1 if the appliance 𝑖 starts working at 𝑡, else 

0). 

Eq. (5.6) expresses that only one of the elements can be non-zero in 𝑋𝑖, which is equal 

to one, to choose the optimal column.  

∑ 𝑥𝑡
𝑖 = 1,

𝑡𝑖,𝑚𝑎𝑥

𝑡𝑖,𝑚𝑖𝑛

 𝑋𝑖 ∈ {0,1}, ∀𝑡 (5.6) 

Users define their preferred operation range for time-shiftable appliances and HEMS 

shifts appliances only into this range. For example, if a user prefers appliance 𝑖 to be 

operated between 12:00 and 17:00, then, among 24 variables (at 1-hour interval), only 

the ones between 12 and 16 can take the value of "1" and the rest must be "0". 𝑡𝑖,𝑚𝑖𝑛 

and 𝑡𝑖,𝑚𝑎𝑥 represent the start and end times of the preferred operating range, 

respectively.  

The length of the operation range (the difference between 𝑡𝑖,𝑚𝑖𝑛 and 𝑡𝑖,𝑚𝑎𝑥) cannot be 

lower than the running duration 𝑑𝑢𝑟𝑖 of an appliance as shown in Eq. (5.7). So, if an 

appliance has a two-hour run duration, then users should set a minimum two-hour 

operation range for load shifting of this appliance. 
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𝑑𝑢𝑟𝑖 ≤ |𝑡𝑖,𝑚𝑖𝑛 − 𝑡𝑖,𝑚𝑎𝑥| (5.7) 

Some appliances, such as washing machines and clothes dryers, may require a 

sequential operation. The related logical constraints are given in Eqs. (5.8-5.11). 

𝑇𝑖 = 

[
 
 
 
𝑡1
𝑖 𝑡𝑇

𝑖 ⋯ 𝑡3
𝑖 𝑡2

𝑖

𝑡2
𝑖 𝑡1

𝑖 ⋯ 𝑡4
𝑖 𝑡3

𝑖

⋮ ⋮ ⋱ ⋮ ⋮
𝑡𝑇
𝑖 𝑡𝑇−1

𝑖 ⋯ 𝑡2
𝑖 𝑡1

𝑖 ]
 
 
 

, ∀ 𝑡𝑇
𝑖 ∈ {0,1} (5.8) 

max (𝑇𝑖1 ⋅ 𝑋𝑖1 + 𝑇𝑖2 ⋅ 𝑋𝑖2) ≤ 1 (5.9) 

 𝑇𝑡
𝑖 = 𝑇𝑖 ⋅ 𝑋𝑖 , ∀𝑡 (5.10) 

𝜃𝑖1,𝑖2𝛿𝑡
𝑖1,1_0 < 𝛿𝑡

𝑖2,0_1
 (5.11) 

In Eq. (5.8), 𝑇𝑖 represents the possible shifted-operation combinations where all 𝑡𝑇
𝑖  are 

binary variables. Eq. (5.9) expresses that certain two appliances cannot operate at the 

same time. However, this constraint cannot ensure that the washing machine runs 

before the clothes dryer. Therefore, the operational array of appliance 𝑖 is extracted 

from Eq. (5.10). Then, the priority of appliance 𝑖1 and 𝑖2 are put in order by detecting 

the stopping and starting instances of appliances from Eq. (5.11). Here, 𝛿𝑡
𝑖1,1_0

 

represents the instance when the appliance 𝑖1 stops (the status from 1 to 0) and 

similarly 𝛿𝑡
𝑖2,0_1

 gives the starting point of appliance 𝑖2. Also, 𝜃𝑖1,𝑖2 is 1 when both 

appliances 𝑖1 and 𝑖2 are within the time slot 𝑡, otherwise 0. 

Eq. (5.12) gives the power consumption of time-shiftable appliance 𝑖 [kW]. 

𝑃𝑡
𝑖 = 𝑃𝑖 ⋅ 𝑋𝑖, ∀𝑡 (5.12) 

5.6.1.3 Thermostatically controlled appliance model 

The optimization model can perform DR for thermostatically controlled appliances by 

pre-cooling or pre-heating zones before electricity gets expensive or by setting 

different set-points during expensive hours.  

In the study, a simple first-order lumped capacitance (1R1C) model is used in the 

modeling of the zones (house envelope for air conditioner, cabinet for refrigerator, 

tank for water heater) [285]. The same thermal model can be used with slight 
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differences for different thermostatically controlled appliances [129–131]. The sign of 

the decision variable is positive in the heating operation of the electric water heater (as 

in Eq. (5.13)) and negative in the cooling operation of the air conditioner and 

refrigerator. 

𝑇𝑡
𝑖,𝑗

 models the inside air/water temperature in a zone as expressed in Eq. (5.13). 

𝑇𝑡
𝑖,𝑗

=
(𝑇𝑡

𝑜,𝑗
+ 𝑇𝑡

𝑒𝑛,𝑗
⋅ 𝑐̇𝑗 ⋅ 𝑅𝑗 ⋅ 𝑢𝑐𝑡

𝑗
+ 𝑅𝑗 ⋅ 𝐶𝑂𝑃𝑗 ⋅ 𝑃𝑗 ⋅ 𝑥𝑡

𝑗
)

(1 + 𝑐̇𝑗 ⋅ 𝑅𝑗 ⋅ 𝑢𝑐𝑡
𝑗
)

+ (𝑇𝑡
𝑜,𝑗

− (
(𝑇𝑡

𝑜,𝑗
+ 𝑇𝑡

𝑒𝑛,𝑗
⋅ 𝑐̇𝑗 ⋅ 𝑅𝑗 ⋅ 𝑢𝑐𝑡

𝑗
+ 𝑅𝑗 ⋅ 𝐶𝑂𝑃𝑗 ⋅ 𝑃𝑗 ⋅)

(1 + 𝑐̇𝑗 ⋅ 𝑅𝑗 ⋅ 𝑢𝑐𝑡
𝑗
)

))

⋅ 𝑒
(
−(1+𝑐̇𝑗⋅𝑅𝑗⋅𝑢𝑐𝑡

𝑗
)⋅∆𝑡

𝑅𝑗⋅𝐶𝑗 )

, ∀𝑡 

(5.13) 

where, 𝑇𝑡
𝑜,𝑗

 is the ambient temperature (outdoor temperature for air conditioner / 

ambient temperature for refrigerator and water heater), 𝑅𝑗 and 𝐶𝑗 are the equivalent 

thermal resistance and thermal capacitance of the zone (specific to the house 

envelope/refrigerator cabinet/water tank), 𝑐̇𝑗 is the constant amount of air/water heat 

flow capacity in a single time-step (due to air replacement for air conditioner and 

refrigerator / due to water replacement for water heater), 𝑢𝑐𝑡 is the time when air 

replacement or hot water replacement occurs, 𝑇𝑡
𝑒𝑛,𝑗

 is the temperature of entering inlet 

water or outside air at time 𝑡, 𝐶𝑂𝑃𝑗 is the coefficient of performance of the relevant 

appliance, 𝑃𝑗  is the input power of the relevant appliance and 𝑥𝑡
𝑗
 is the decision 

variable between 0 and 1, defining the running status of the relevant appliance. 

It should be noted that, in the study, air ventilation and refrigerator door openings are 

assumed to not affect the indoor air temperature. Therefore, the expressions of 𝑇𝑡
𝑒𝑛,𝑗

⋅

𝑐̇𝑗 ⋅ 𝑅𝑗 ⋅ 𝑢𝑐𝑡
𝑗
  and 𝑐̇𝑗 ⋅ 𝑅𝑗 ⋅ 𝑢𝑐𝑡

𝑗
 takes the value 0 in Eq. (5.13) for air conditioner and 

refrigerator operation. 

Eq. (5.14) expresses the upper and lower limits of hot water/indoor temperature 

within the zone.  

𝑇𝑖,𝑚𝑖𝑛,𝑗 ≤ 𝑇𝑗,𝑡
𝑖 ≤ 𝑇𝑖,𝑚𝑎𝑥,𝑗, ∀𝑡 (5.14) 

where 𝑇𝑖,𝑚𝑖𝑛,𝑗 and 𝑇𝑖,𝑚𝑎𝑥,𝑗 are the minimum and maximum allowed inside 
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temperatures in a zone. 

Eq. (5.15) shows the power consumption of thermostatically controlled appliance 𝑗 at 

time 𝑡. 

𝑃𝑡
𝑗
= 𝑃𝑗 ⋅ 𝑥𝑡

𝑗
, ∀𝑡 (5.15) 

5.6.2 Input Data 

5.6.2.1 Electricity price and temperature 

The selected time window for the optimization is 5 min (0.0833 h). Turkish residential 

electricity prices are used in the simulations, which are 0.12 $/kWh for the flat rate 

and 0.122 $/kWh (mid-peak period), 0.179 $/kWh (on-peak period), and 0.076 $/kWh 

(off-peak period) for the TOU rate [195]. The temperature data required to simulate 

the air conditioning operation are obtained from [136]. The inlet water temperature 

data to be used for electric water heater operation when hot water is replaced by inlet 

water during a shower belongs to the province of Istanbul [190]. 

5.6.2.2 Manageable loads 

The manageable load profile of each participant was individually simulated based on 

their survey response, and then all 442 profiles are aggregated. The ownership rate of 

all survey participants’ manageable appliances is known (Table 5.5). It is known which 

time-shiftable appliance is operated on which day of the week and at what time 

(Figures. 5.4-5.5). Or, the set-point temperatures at which participants operate their 

refrigerators and air conditioners are known (for the 17% who did not know their 

refrigerator set-points, the average set-point of the respondents is used in the 

simulations). For participants who have an electric water heater, it is known how long 

an average shower lasts, at what times and how many times (Figure 5.6 and Section 

3.2).  

All necessary information for the load shifting was obtained from the survey results as 

well. It is learned whether the participants wanted to use HEMS, and if yes, for which 

manageable home appliances they wanted to use it (Figure 5.8). It is known what time 

intervals participants prefer their time-shiftable appliances to be shifted (Figure 5.9). 

Load shifting was done by entering these data into the developed HEMS tool. 
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The data regarding the technical specifications of the thermostatically controlled 

appliances and the thermal properties of their zones are collected from various studies 

(Table 5.7) [145,148–150,153]. These data are used in the modeling.  

Every household is assumed to be using the same model of air conditioner, refrigerator, 

and electric water heater. The thermal resistance and thermal capacitance values are 

scaled according to the floor area (m2) for houses and are assumed to be the same for 

all refrigerators and electric water heaters. The water tank temperature is limited 

between 45 and 60°C for safety [152]. The showering hours and showering duration 

are based on the survey responses of the participants.  

The air conditioner and refrigerator operate within a dead band at the set-point 

temperature of each respondent. If the respondents are willing to use HEMS and 

participate in DR with these devices, then just before peak hours air conditioner set-

point temperature is increased by 2°C (limited to a maximum of 27°C due to thermal 

comfort standards), and refrigerator set-point temperature is decreased to 0°C. 

Table 5.7 : Technical specifications and thermal properties regarding 

thermostatically controlled appliances. 

Parameter Unit 
Air 

conditioner 
Refrigerator 

Water 

heater 

Rated power kW 2.21 0.15 3.0 

COP  - 3.21 0.76 1.0 

Flow heat capacity 

rate 
kW/K - - 0.659 

  House Cabinet Tank 

Thermal resistance °C/kW 
1/(0.002 x 

m2) 
89 223 

Thermal 

capacitance 
kJ/°C 144 x m2 416 1770 

Since we do not have data on energy consumption profiles of different types of 

washing and drying appliances and their different operating modes, we assumed that 

each household had the same model of appliance and operated them for the same 

duration in the same mode. The electrical load profiles of time-shiftable appliances are 

given in Figure 5.12 [82,83,155,286]. It was also assumed that every household had 
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the same model air conditioner, refrigerator, and electric water heater. Also, 

participants who decided to use HEMS were assumed to switch to the TOU tariff. 

 

Figure 5.12 : Electrical load profiles of time-shiftable appliances for one cycle (5 

min time interval). 

5.6.2.3 Unmanageable loads 

The survey results are insufficient to generate a load profile of unmanageable home 

appliances but can help modify profiles that have already been generated. In the 

generation of unmanageable loads (office equipment, entertainment, cooking, lighting, 

and others), European Union (EU)'s comprehensive Residential Monitoring to 

Decrease Energy Use and Carbon Emissions in Europe (REMODECE) data was used 

[287]. REMODECE presents a detailed electrical load profile for an average day for a 

typical household in Europe. Assuming that the usage pattern remained the same 

between the date of the project and today, but there would be changes in ownership 

rate and power consumption of appliances due to technological developments, 

REMODECE data was slightly modified according to the survey results (e.g. the 

lighting consumption has been updated according to the number of CFLs and LEDs 

obtained from the survey results and their power rating). Since the focus of the study 

is not unmanageable loads, it can be arguably said that such a modification can give a 

sufficient result in simulations. The modified load consumption was scaled for 442 

people. The lighting load demand was also modified by taking into account the lighting 

pattern (time of use, seasonal changes) in New Zealand, which is symmetrically 

located at the same latitude as Türkiye [288].  
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 Simulation Results 

In this part of the study, data from the survey results were entered into a HEMS tool 

and the load profile of 442 survey participants was simulated. Load profiles are 

differentiated according to seasons, weekdays, and weekends.  

5.7.1 Comparison of load profile of participants before and after HEMS use 

Survey results reveal that the majority of respondents (78%) are willing to use HEMS. 

The simulation of this best-case scenario shows what can be technically achieved by 

HEMS-based DR in practice. It is assumed here that the users do not override their 

initial preferences or interrupt the scheduled operations of the appliances. 

Figure 5.13 shows the electrical load profiles without DR, based on the responses of 

the survey participants (averages of the weekday and weekend profiles). The 

differences between the profiles of seasonal profiles are the inclusion of air 

conditioning, the change in the frequency and amount of hot water use, and the change 

in the unmanageable load profile. The difference between the weekday and weekend 

profiles is the running hours of time-shiftable appliances and hot water usage times. 

The monthly average electricity consumption of a household was found to be 215 

kWh, which is very close to the 211 kWh calculated according to the survey responses. 

Figure 5.14 demonstrates the electrical load profiles with DR. During the summer 

period, air conditioning pre-cooling before the price increase provides approximately 

1 hour of thermal storage between 06:00 – 07:00. There is just a little air conditioning 

between 17:00 – 22:00 due to a 2°C increase in set-point temperature for DR. 

Refrigerators similarly provide thermal storage between 06:00 – 07:00 and 17:00 – 

18:00 just before the price increase. Water heaters pre-heat water for thermal storage 

in cheap hours before showering. This pre-heating results in increased overall 

electricity consumption to keep water at a certain temperature, but the increase is 

negligible compared to the benefit of DR. HEMS raises air conditioner set-point during 

peak hours for DR, so the total electricity consumption in summer after DR is lower 

than before DR. All possible time-shiftable loads are shifted to participants’ preferred 

time intervals (Figure 5.9). 
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Figure 5.13 : Daily load profile of 442 participants without DR. 
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Figure 5.14 : Daily load profile of 442 participants with DR (78% agree to use 

HEMS). 
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New peaks occur due to load shifting before 06:00 and 22:00. While this may seem 

negative, the national load curve is not just about residential loads. These new peaks 

may provide valley filling in a sense, as pre-6 am and post-22 pm are times when load 

demand is already very low because of low commercial and industrial load demand 

(will be examined in the next sections). Also, unwanted new peaks can be limited by 

grid operators through DR or price signals. Due to its scope, the peak limiting 

capability of HEMS is not addressed in this study.  

The numerical results are summarized in Table 5.8. With DR, on average, the on-peak 

consumption decreases by 33% from 915 to 614 kWh, which is significantly important. 

The off-peak consumption increases by 84% from 741 to 1365 kWh and the mid-peak 

consumption decreases by 19% from 1525 to 1239 kWh. Even though the community 

achieves a significant amount of load shifting (33% during the on-peak period), the 

total daily bill reduction is only 5%. 

Table 5.8 : The change in total daily electrical energy consumption and bill of 442 

participants after HEMS-based DR. 

   Before DR After DR Change 

Season Time of 

week 

Time 

of day 

Consumption 

(kWh) 

Bill 

($) 

Consumption 

(kWh) 

Bill 

($) 

Consumption 

(%) 

Bill 

(%) 

Winter Weekday Off-

peak 

677 81 1,185 90 +75.0 +11.1 

Mid-

peak 

1,282 154 1,046 128 -18.4 -16.9 

On-

peak 

858 103 628 112 -26.8 +8.7 

Total 2,817 338 2,859 330 +1.4 -2.4 

Weekend Off-

peak 

685 82 1,350 103 +97 +25.6 

Mid-

peak 

1,509 181 1,136 139 -24.8 -23.2 

On-

peak 

875 105 637 114 -27.2 +8.6 

Total 3,070 368 3,123 355 +1.7 -3.6 

Summer Weekday Off-

peak 

792 95 1,446 110 +82.6 +15.6 

Mid-

peak 

1,637 196 1,376 168 -15.9 -14.5 

On-

peak 

969 116 599 107 -38.1 -7.8 

Total 3,397 408 3,421 385 +0.7 -5.6 

Weekend Off-

peak 

831 100 1,629 120 +96.0 +20.0 

Mid-

peak 

1,875 225 1,484 177 -20.9 -21.3 

On-

peak 

965 116 596 104 -38.2 -10.3 

Total 3,670 440 3,709 401 -1.0 -8.6 

All year  Off-

peak 

741 89 1,365 103 
+84.2 +15.7 

Mid-

peak 

1,526 183 1,239 151 
-18.8 -17.5 

On-

peak 

915 110 614 109 
-32.9 -0.9 

Total 3,182 382 3,219 363 +1.1 -5.0 
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Here, it should also be calculated how much bill reduction the HEMS users achieve 

alone, because the reduction they will get is the major factor that will motivate them 

to install HEMS in the future (Figure 5.11). Unfortunately, on average, the total annual 

bill reduction of the HEMS users (78% of the participants) is only 6.7% (Table 5.9). 

This is far from economically attractive and a challenge to surmount. Although users 

perform automated DR, the unmanageable loads that cannot be shifted still pay high 

for electricity during the on-peak period. Unfortunately, the TOU scheme in its current 

form does not make automated DR economically attractive. Yet, bill discounts can be 

improved where electric vehicle (EV) home charging and manual DSM are performed 

(e.g. cooking before on-peak period) and PV-battery systems are included. Or, the 

existing TOU scheme can be redesigned to become economically more attractive. 

Table 5.9 : Total daily bill of HEMS users (78% of the survey participants). 

Period Before DR ($) After DR ($) Reduction (%) 

Winter, Weekday 265 252 -4.9 

Winter, Weekend 288 273 -5.2 

Summer, Weekday 319 294 -8.1 

Summer, Weekend 345 315 -8.6 

Average 299 279 -6.7 

The average daily running cost of the appliances of HEMS users before and after DR 

is given in Table 5.10. The total average bill reduction of manageable devices is 13.6%. 

However, after switching to the TOU, there is a bill increase of 4.8% in unmanageable 

loads due to the increased prices of the on-peak period. Therefore, the total bill 

reduction becomes 6.7%.  

Table 5.10 : Average daily running cost of the appliances of HEMS users before and 

after DR. 
Appliance Running cost Saving 

 Before ($) After ($) ($) (%) 

Dishwasher 28.5 21.9 6.6 23.2 

Wash. machine 32 25.7 6.3 19.5 

Dryers 7.1 5.6 1.5 20.9 

Refrigerator 60.0 57.6 2.4 3.9 

Air conditioner 30.7 26.9 3.8 12.4 

Water heater 29.3 24.4 4.9 16.8 

Unmanageable 111.5 116.9 -5.4 -4.8 

Total 299.1 279.0 20.1 6.7 

The daily appliance load profile of the 345 HEMS users before and after DR are shown 

in Figure 5.15. The average daily consumptions are 243 kWh for dishwashers (9.7%), 

269 kWh for washing machines (10.7%), 62 kWh for dryers (2.5%), 507 kWh for 

refrigerators (20.3%), 250 kWh for air conditioners (10.0%), 264 kWh for electric 

water heaters (10.6%), and 908 kWh for unmanageable loads (36.3%). 
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Figure 5.15 : Average daily load profile of the manageable appliances of the HEMS 

users before and after DR. 

In Figure 5.16, the bill reduction of HEMS users is ordered from the highest to the 

lowest. The rate of those who save more than 20% on their bills is only 3% (the highest 

bill reduction is 27%). 8% has a bill reduction of above 15%, 13% has a reduction of 

10-15%, 39% has a reduction of 5-10%, and 30% has a reduction of 0-5%.  

With the current appliance ownership rates, appliance use behaviors and HEMS use 

preferences, 10% cannot reduce their bills despite owning HEMS. On the contrary, 

their bills increase after switching to the TOU tariff. These households should not 

install HEMS unless their main motivation is different from bill saving. 

 

Figure 5.16 : Bill reduction ranking of the HEMS users from the highest to the 

lowest. 
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In Table 5.11, the appliance use behavior and HEMS use preferences are given for 

random sample households each selected from the bill reduction ranges shown in 

Figure 5.16. The bill reduction increases as the number of manageable household 

appliances, the participation rate of appliances in DR, the frequency of use of 

appliances, and the shift of loads from on- to off-peak hours increase. 

Table 5.11 : Appliance use behavior and HEMS use preferences of the sample 

households.  
Bill reduction (%) 20.4 13.8 7.7 2.3 

Appliance use behavior 

DW run (weekday) 9 pm (Wed, Fri) 7 pm (every 

day) 

- 7 pm (Mon, Wed, 

Fri) 

DW run (weekend) 7 pm (Sun) 8 am (every 

day) 

- 6 pm (Sun) 

WM run 

(weekday) 

7 pm (Thu, Fri) 1 pm (Mon, 

Wed) 

8 pm (Wed) 5 pm (Wed) 

WM run 

(weekend) 

2 pm (Sat) 10 am (Sat) 2 pm (Sat, 

Sun) 

11 am (Sat, Sun) 

CD run (weekday) 9 pm (Thu, Fri) - - - 

CD run (weekend) 5 pm (Sat) - - - 

WD run (weekday) - - - - 

WD run (weekend) - - - - 

AC set-point (°C) 25 (27 sleep 

hours) 

26 - - 

Ref. set-point (°C) 4 4 4 6 

Avg. shower dur. 

(min) 

15 15 - - 

EWH tank (liter) 65 120 - - 

Shower use 

(weekday) 

8 am 8 am - - 

Shower use 

(weekend) 

9 pm 10 am - - 

Shower freq. 

(winter) 

3 times 2 times  - - 

Shower freq. 

(summer) 

6 times 4 times - - 

Number of 

residents 

2 3 4 3 

HEMS use preferences 

DW (shifted 

period) 

10 pm – 12 am 12 am – 6 am - Shift to anytime 

WM (shifted 

period) 

Do not shift 12 am – 6 am 10 pm – 12 

am 

Do not shift 

CD (shifted 

period) 

- - - - 

WD (shifted 

period) 

- - - - 

AC pre-cooling Allow Allow - - 

Ref. pre-cooling Allow Deny Allow Allow 

EWH pre-heating Allow Allow - - 

DW: Dishwasher, WM: Washing machine, CD: Clothes dryer, WD: Washer dryer, AC: Air conditioner, EWH: 

Electric water heater 
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5.7.2 Load profile of the participants for varying HEMS ownership rates 

Although 78% of the survey participants wanted to use HEMS, it may not be possible 

to reach these figures in reality. The bill reduction achieved is very low which may 

result in less adoption of HEMS than in the survey results. Therefore, in this section, 

the change in the load curve according to different HEMS ownership rates is examined. 

Here, the HEMS usage behavior does not change, only the HEMS ownership rates. 

The load curves of the community for different HEMS ownership rates and DR 

participation levels are shown in Figure 5.17. As the DR participation rate increases, 

consumption decreases in on-peak and mid-peak hours and increases in off-peak hours. 

 

Figure 5.17 : Load profile of the community for different HEMS ownership rates 

(DR participation levels). 

Another purpose of DR is to smooth to load curve by reducing the ratio of peak energy 

demand to average energy demand, in other words, PAR. When the PAR rates are 

examined (Table 5.12), it is seen that a DR participation of 10% gives the lowest PAR 

in all periods (winter, summer, weekdays, and weekends). Although most households 

agreed to shift their loads, they preferred loads to be shifted mostly in between 22:00 
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and 00:00 (where the prices are cheaper but it is also not sleep hours yet). Therefore, 

new peaks occur after 22:00 and PAR level starts to increase again after a DR 

participation of 10%. 

These results may be important for residential microgrids. However, assessing PAR 

alone can be misleading, because the total daily load curve of a country is not only 

composed of residential but also of commercial, industrial, and other (lighting, 

agricultural, etc.) loads. For this reason, the effect of DR on the total load curve is 

examined in the next section. 

Table 5.12 : PAR for different HEMS-based DR participation levels of the 

community (442 participants). 

 PAR 

DR participation (%) Weekday 

(Winter) 

Weekend 

(Winter) 

Weekday 

(Summer) 

Weekend 

(Summer) 

0 1.726 1.666 1.581 1.474 

10 1.660 1.592 1.507 1.457 

20 1.671 1.625 1.588 1.595 

30 1.728 1.733 1.690 1.734 

40 1.785 1.841 1.791 1.872 

50 1.841 1.949 1.892 2.010 

60 1.900 2.056 1.995 2.148 

70 1.955 2.163 2.097 2.285 

80 2.011 2.270 2.199 2.423 

5.7.3 Impact of HEMS-based DR on the total daily load curve 

This case scenario seeks to answer the question of how much DR participation would 

be sufficient to minimize the PAR of Türkiye's total daily load demand if the survey 

results were representative of all Turkish households. It has been shown in previous 

studies [226] that the results of time-use surveys can be scaled to the national level 

after being validated with measurement data. We do not have measurement data and 

our sample is slightly biased. Nevertheless, it is recommended that the approach we 

follow here (simulating load profile of DR-performing households using survey 

results) be applied if a national DR campaign is to be launched in the future or if the 

impact of mass DR involvement is to be estimated. This section is intended to be a 

guide for future studies and policymakers. 

The impact of different DR participation levels on the national load curve (weekdays) 

is shown in Figure 5.18 (winter) and Figure 5.19 (summer). The national load curve 

data (2021-2022) is extracted from Türkiye’s energy exchange company EPIAŞ’s 

transparency platform [289]. Here, a typical summer and winter weekday represents 
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the six-month average of April-September and October-March, respectively. Weekend 

load profiles are discluded to avoid redundancy since weekend demand is already 

below weekday demand both in Türkiye and the rest of the world, which makes 

weekend DR less important. 

 

Figure 5.18 : Turkish load curve with different DR participation levels (winter, 

weekday) – lowest PAR achieved at 40% DR participation level. 

 

Figure 5.19 : Turkish load curve with different DR participation levels (summer, 

weekday) – lowest PAR achieved at 20% DR participation level. 
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According to EPIAŞ, the average daily electricity consumption is 934,553,930 kWh 

for a typical weekday in winter and 940,422,329 kWh for a typical weekday in summer 

[289]. Considering that 23.1% of the demand belongs to residential users [54], the 

average residential daily energy demand is 215,881,958 kWh in winter and 

217,237,251 kWh in summer. In the study, the energy demand of 442 households was 

found to be 2817 kWh for a winter weekday and 3397 kWh for a summer weekend. 

These numbers were proportioned and the load profiles of 442 households were scaled 

to represent all the households in Türkiye. The number makes approximately 32 

million households which is close to the official number of 39 million [290]. Taking 

into account the vacant houses and vacation homes that are empty for most of the year, 

it can be argued that the number is quite acceptable. 

The simulations show that if the appliance and HEMS use behavior of the survey 

participants were representative of the Turkish population, a DR participation of 40% 

of the total households in winter and 20% in summer would be required to minimize 

the peak-to-average ratio (PAR) of Türkiye’s daily load demand (Figure 5.18 and 

Figure 5.19). 

 Discussions 

According to the survey results, the majority of respondents (78%) are willing to install 

HEMS. This was considered the best-case scenario, and in Section 7.1 the technical 

potential of the upper limit achievable in practice with HEMS-based DR was 

simulated. The results showed that there is a potential to reduce peak period 

consumption by 33%. However, this provides HEMS users only a very low bill 

reduction of 6.7% on average. Given that the respondents mentioned the “bill 

reduction” as their biggest motivation for HEMS installation, this is a major barrier to 

overcome. 

Despite the low overall bill savings in total, 3% of the HEMS users achieved bill 

savings of over 20%, 8% over 15%, and 21% over 10%. These households can be the 

target customers for the HEMS market and DR programs. The bill reduction increases 

in the households as the number of manageable household appliances, their 

participation rate in DR, their frequency of use, and their rate of shift increase. Manual 

load shifting of unmanageable appliances (ovens, ranges, irons, etc.) was not 

considered in the study which could further increase the monetary benefit. EV home 
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charging and the use of PV-BESS units were not considered as well, since these are 

niche applications for Türkiye as of today.  

According to the survey results of EU supported “e-balance” project, 12%, 15%, and 

12% of the population in Portugal, Poland, and the Netherlands expect 11-20% saving 

on electricity to convince to make use of HEMS [247]. This is important because our 

simulation results showed that 13% of the total respondents could also save between 

11-20% with HEMS use. 

A major factor that affects the ratio of bill savings is the design of a pricing scheme. 

Turkish TOU seems insufficient for adequate bill savings in its current form. The 

scheme was introduced in the early 1980s and has not been updated since. Unlike in 

other countries, the rates are the same throughout the year and do not differ in 

winter/summer or weekday/weekend periods, and there is no distinction between 

different customer groups [291]. The Chamber of Electrical Engineers states that the 

current Turkish TOU scheme, designed to target industrial and commercial groups, is 

unfair to the residential group. The chamber recommends adjusting the scheme 

according to seasonal and even geographical features, and simplifying three-tier prices 

by changing them into two-tier, combining day and night [292]. 

Apart from improving the TOU scheme, Türkiye can introduce day-ahead dynamic 

pricing for residential customers. Dynamic pricing is reported to be more cost-effective 

than TOU in the case of automated energy management [293,294]. Lower off-peak 

prices in dynamic pricing or RTP can incentivize the adoption of HEMSs as they 

provide increased savings and save users the hassle of tracking daily and hourly 

varying cheap prices effortlessly [295]. In the near future, innovations such as peer-to-

peer (P2P) energy trading and the community-based local energy markets may further 

increase the savings HEMSs can provide, but as of today these are small-scale pilot 

projects [296]. 

30% of the HEMS users reduced their bills by 0-5% and 10% even increased their 

bills. This may lead to loss-aversion and prevent the desired levels of DR adoption. 

For instance, more than 90% of the electricity subscribers in the UK were reported to 

care more about avoiding financial losses than making savings and therefore are not 

switching to TOU [297]. In this regard, it may be essential to offer effective, less 

punitive, and well-designed electricity pricing schemes. For instance, a utility 
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company in Texas offers a residential TOU plan where customers pay a fixed energy 

rate during the day (with no expensive prices during peak hours) and less at night. The 

scheme is not only non-punitive but also simple and easy to understand and therefore 

reported to be more attractive [298].  

In addition, customers may be offered additional incentives such as subsidies or 

rebates for purchasing energy-efficient and DR-capable appliances, or rewards for 

switching to time-based tariffs. Moreover, tariff switching can be made easy and 

seamless (by online sign-ups, providing clear instructions, or offering customer 

service). A marketing move focused on gaining customer support and segmenting 

customers according to their specific needs can also be vital [299]. Even if an attractive 

tariff scheme is introduced, customers may not be aware of it. The survey results 

showed that 59.9% do not even know which tariff they subscribe to. Marketing 

campaigns and educating consumers and providing clear and accurate information on 

potential bill savings are critical to reaching the desired PAR reduction levels. The 

promotion of a design can be just as important as how financially attractive it is.  

Although the biggest motivation factor is the bill reduction, HEMSs have additional 

benefits such as contributing to the environment, following a technological innovation, 

visually monitoring electricity consumption, managing appliances remotely, 

improving thermal comfort, and increasing security. These can also motivate users to 

install HEMS and switch to time-based tariffs. 

In the last decade, electricity prices followed an increasing trend [300]. Prices surged 

especially after the Russian gas crisis, and even if the crisis is resolved, prices are 

unlikely to fall in the short term as many countries have decided to reduce their reliance 

on imported (and cheaper) fossil fuels through decarbonization [301]. This may make 

home energy management more attractive in the very near future. The increased 

electricity price increases the savings provided by HEMS and the investment made 

pays back faster as well. 

Although this study focused on ILC-based DR, the survey results also provide 

important information about DLC-based DR. For instance, it was learned which hours 

users prefer HEMS to shift their loads to (Figure 5.9). These results can be broadly 

similar for DLC. DLC subscribers will likely prefer a remote system operator to shift 

their loads to similar hours. 
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Loss of comfort is a problem in DR. To overcome this problem, some studies propose multi-

objective optimization to consider minimizing the discomfort caused by the shifted usage time 

of appliances [282,302,303]. In the absence of data about preferred time intervals for load 

shifting, these methods can be very useful. The method we follow in this study asks users the 

exact times they want to shift their loads, and thus the degree of comfort loss is based on 

choices.  

5.8.1 Limitations 

It should be emphasized that, although survey results may provide valuable data on 

appliance use behavior, these are self-reported and not based on measurements. This 

is a limitation of the study. Yet, surveys can increase understanding of patterns and 

provide a key reference for grid operators [304,305]. The way to estimate the mass 

behavior of users regarding a new technology that is not currently in use but is very 

likely to be used in the future can be through surveys and questionnaires.  

The survey sample used in this study is slightly biased. This factor, combined with the 

small sample size, may limit the generalizability of research findings. Still, some data 

such as monthly average electricity consumption and bills, average floor area of 

households, average family size, distribution of income levels, and ownership rates of 

many appliances are consistent with data from TURKSTAT and other sources. For a 

nationwide higher representative conclusion, we recommend the use of the method 

with a larger dataset with a more detailed time-use survey (for instance, where 

respondents fill in diaries for designated days and report activities) [306]) and the 

validation of results with monitoring and measurement data [226]. Following initial 

research into the performance of different HEMS applications (which can be 

completed using small or incomplete sample sets), enabling larger scale, more 

complete testing, ideally in a field setting, can help validate real-world HEMS use 

preferences [224].  

There were several technical limitations. For example, in the simulations, it was 

assumed that every household had the same model of air conditioner, refrigerator, and 

electric water heater. These assumptions may not reflect the average. It was possible 

to find out about this and more through the questionnaire, but it was not possible to 

include every question. We relied on users' intuition and recall at the determination of 

set-points of refrigerators and air conditioners or expected them to check their settings. 

User statements may not match the facts. Older or lower-end refrigerators may not 
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have accurate dials, so actual refrigerator set-point temperatures may differ slightly 

from what respondents claim. 

 Conclusion 

The growing use of smart home appliances as well as increasing electricity prices make 

the use of HEMSs more viable than ever before. Yet, HEMSs have not become 

widespread so far, and even if they do, we still do not know enough about the future 

potential of their mass adoption and customer preferences in using them. 

Understanding this potential is closely related to appliance use behavior, electricity 

tariff perception, and tendency towards DR participation. Since HEMSs are not widely 

used today, surveys can be very useful for understanding future behavior and user 

preferences. 

Therefore, in this study, a survey is conducted to understand appliance use behavior 

and HEMS-based DR preferences. Next, the DR potential is simulated by inputting 

the survey responses into a HEMS optimization tool. The load profiles with and 

without HEMS use were simulated and the extent to which the electrical load demand 

could be changed by DR was investigated. According to the simulation results, there 

is a technical potential to reduce peak consumption by 33%. The biggest obstacle in 

achieving this is the low bill reduction (6.7%) that HEMS users get on average from 

shifting their electrical loads. This obstacle can be overcome by designing more 

attractive pricing schemes, which will constitute the subject of future work.  

Assessing the potential of DR-based HEMS is critical in predicting power reduction 

and targeting eligible HEMS customers. 21% of the HEMS owners (16.4% of total 

respondents) reduce their bills by over 10%. 8% reduce by over 15%, and 3% by over 

20%. These households can be the target audience of the future HEMS market and DR 

campaigns. 

The survey in this study was conducted in Türkiye. It is recommended to carry out 

similar studies in other countries. The results will differ according to different load 

profiles, energy use behavior, and tariff schemes. Such surveys can provide important 

insights for decision-makers prior to the large-scale deployment of HEMSs and DR 

programs. 
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 CONCLUSIONS AND FUTURE WORK 

 Conclusions 

Despite Türkiye’s abundant solar radiation levels, the adoption of grid-connected 

residential rooftop PV systems remains limited in the country. A primary reason for 

this is the lack of economic profitability of the systems. While policy measures, such 

as financial incentives, can address this issue, a more cost-effective alternative lies in 

the utilization of technological methods, including automated DSM. However, the lack 

of instruments like DR programs and dynamic pricing hinders the promotion of 

automated DSM, making it an uncommon practice in households within the country. 

Therefore, in this thesis, a HEMS that can provide optimal DSM in households was 

developed. The proposed HEMS optimally schedules the running hours of home 

appliances to increase self-consumption by shifting loads to solar generation period. It 

also performs DR by shifting loads to cheap electricity period. Next, an optimal sizing 

tool was developed for users who wish to install HEMS. The sizing tool assists users 

in determining the required PV-BESS capacity to maximize their NPV. Following that, 

a nationwide survey was conducted to understand the perception of DSM, DR and 

HEMS in Türkiye, to find deficiencies and develop policy measures. Finally, the 

survey results were simulated using the developed HEMS tool and it was examined to 

what extent the country's daily load curve could change with HEMS-based DR. The 

research findings and conclusions presented in the thesis are summarized in the 

following chapters, outlining the key outcomes. 

Chapter 2 

An economic analysis of residential rooftop PV systems in nine provinces in Türkiye 

was conducted using HOMER Grid software. Three solar parts were formed on the 

solar energy potential map of Türkiye and three provinces were selected from each 

part for a nationwide feasibility analysis.  

• The results showed that residential rooftop PV systems were only feasible in 

the southern part of the country.  
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• Systems are likely to become more viable in the future as PV installation prices 

decrease. When this happens, the systems will become even more profitable in 

the southern part where they are already feasible, while still being unattractive 

in the northern part. In this case, the FiT rates should be increased in the 

northern part and this increase should be compensated by reducing the FiT rates 

in the southern part. 

• Therefore, it is recommended to introduce regional FiT rates and purchase 

subsidies in Türkiye taking into account regional solar radiation differences in 

the country. 

• The FiT rate has remained the same in Türkiye since the unlicensed production 

law has been amended in 2011. In many countries, including Germany, the 

United Kingdom, Japan, and Australia, the FiT rate is updated periodically. In 

Türkiye, the FiT rate can also be updated annually according to rooftop PV 

targets and the changes in parameters such as PV installation cost, retail 

electricity price, and grid requirements. 

Chapter 3 

A MILP-based HEMS architecture was proposed to minimize daily electricity bill by 

facilitating optimal DR and PV self-consumption. The proposed algorithm schedules 

tasks of all types of manageable electrical loads (TSAs, TCAs, and PSAs) and 

responds to all types B2X and V2X technologies taking into account battery 

degradation. It can provide pre-cooling or pre-heating for TCAs. A an isotropic model 

for a tilted PV array was embedded into the HEMS to turn a solar radiation forecast 

into a PV power output. The isotropic model allowed to take into account the tilt angle 

of array and the impact of outdoor temperature in the estimation of PV power output. 

The HEMS was combined with a smart thermostat providing a flexible DR for AC 

users as it can define different AC set-points for different times of the day in response 

to changing conditions of electricity prices, solar radiation, and occupant presence. 

• The HEMS managed to reduce daily electricity bill by between 53.2% 

(household with TSAs, TCAs, PV, BESS and EV) and 13.5% (household with 

TSAs and TCAs), depending on household type.  
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• The embedded smart thermostat of HEMS managed to reduce daily AC bill in 

Istanbul, Türkiye by between 15% and 24% in August depending on the day 

of the month.  

• The HEMS was tested for the climatic conditions of İstanbul and electricity 

prices of Türkiye. Since TOU is the only tariff other than flat tariff available 

for residential users in Türkiye, to explore the effectiveness of the HEMs, 

Turkish TOU prices were modified into RTP. The HEMS provided higher cost 

reduction with the use of RTP due to lower electricity prices of off-peak period.  

• Under RTP rates, V2G operation became possible because the EV could sell 

electricity to the grid at a price higher than the cost of battery degradation. 

• The use of HEMS provides higher bill reduction when PV and BESS units are 

available, but it is worth noting that these components have investment and 

O&M costs, therefore, providing a lower daily bill does not guarantee the 

highest NPV. Therefore, life cycle cost analysis and optimal PV-BESS sizing 

become important for smart homes under HEMS operation. 

Chapter 4 

Renewable energy system sizing becomes more complex in the presence of HEMS 

due to varying load profile throughout a year. Therefore, an optimal PV-BESS-PV tilt 

angle sizing tool was developed for HEMS-equipped households. In this way, 

automated DR by taking advantage of time-based electricity tariffs and increased self-

consumption are taken into account in component sizing. The sizing model simulates 

HEMS operation over one year and repeats the simulations for each PV array capacity-

tilt angle-battery number combination. The model determines the NPV of each 

combination over the system lifetime and then ranks them from highest to lowest. 

• The optimal configuration was found to be 3 kW PV – no BESS – 10° tilt angle 

for a HEMS-equipped household in Istanbul at the current battery and 

electricity prices. The reason the optimal configuration was without battery is 

that electricity prices is relatively low in Türkiye as one of the lowest in 

Europe.  

• A sensitivity analysis was performed based on rising electricity and falling 

battery prices to make future projections. The BESS use became viable when 
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electricity prices increased by 25% or battery prices fell by 25%. BESS use 

became viable in other Southern European countries as electricity prices were 

higher than in Türkiye.  

• The NPV of household in case of HEMS use increased from $920 to $2273. 

This is an important finding, as PV projects in many countries suffer from low 

feasibility today in the absence of incentives. HEMS use made PV systems 

economically more attractive and people who want to simulate their load 

profile for PV-BESS sizing can benefit from this tool. 

Chapter 5 

The growing use of smart home appliances as well as increasing electricity prices make 

the use of HEMSs more viable than ever before. Yet, HEMSs have not become 

widespread so far, and even if they do, we still do not know enough about the future 

potential of their mass adoption and customer preferences in using them. 

Understanding this potential is closely related to appliance use behaviour, electricity 

tariff perception, and tendency towards DR participation. Since HEMSs are not widely 

used today, surveys can be very useful for understanding future behaviour and user 

preferences. 

• According to the survey results, 78% of the population is willing to use HEMS 

for DR in Türkiye with different usage preferences. 

• 74% of dishwasher, 58% of washing machine, 61% of clothes dryer and 51% 

of washer dryer users who are willing to use HEMS in Türkiye agree their 

electrical appliances to be shifted to off-peak periods. 

• Simulation of the survey participants’ preferences show that, there is a 

technical potential to reduce peak consumption by 33% with the use of HEMS 

for DR in Türkiye.  

• However, the average bill savings achieved by HEMS owners is only 6.7% in 

Türkiye, which can hinder reaching this potential.  

• This obstacle can be overcome by designing more attractive pricing schemes, 

which will constitute the subject of future studies. Assessing the potential of 

HEMS-based DR is critical in predicting power reduction and targeting eligible 

HEMS customers.  
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• Still, 21% of the HEMS owners (16.4% of total respondents) reduced their bills 

by over 10%. 8% reduced by over 15%, and 3% by over 20%. These 

households can be the target audience of the future HEMS market and DR 

campaigns. 

• The simulations show that if the appliance and HEMS use behaviour of the 

survey participants were representative of the Turkish population, a DR 

participation of 40% of the total households in winter and 20% in summer 

would be required to minimize the peak-to-average ratio (PAR) of Türkiye’s 

daily load demand. 

• The survey in this study was conducted in Türkiye. It is recommended to carry 

out similar studies in other countries. The results will differ according to 

different load profiles, energy use behaviour, and tariff schemes. Such surveys 

can provide important insights for decision makers prior to the large-scale 

deployment of HEMSs and DR programs 

 Future Work 

The results of the study showed that more effective and flexible electricity pricing 

schemes should be developed as an alternative to TOU, which has been the only 

instrument for implementing DR for residential consumers in Türkiye so far. 

Alternatives such as CPP, peak time rebates or RTP can be offered to residential end-

users in Türkiye as applied in other countries. 

Innovations such as P2P energy trading and community-based local energy markets 

are expected to become widespread in the near future. With minor modifications, the 

proposed HEMS tool can be improved and respond to these technologies. Due to the 

scope of the thesis, these features have been neglected. 

Although the energy management system proposed in this study was developed to be 

used for individual households, it is possible to modify it to be used for multi-story 

apartment buildings or other microgrid and neighborhood-based DR applications. 

These will constitute the subject of the future study. 

At the same time, this tool, which is designed for ILC can also be used by system 

operators for DLC purposes as well as be used in commercial and industrial sites with 

minor modifications. 
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