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DEVELOPMENT OF A HOME ENERGY MANAGEMENT SYSTEM TO
INCREASE RENEWABLE SELF-CONSUMPTION IN HOUSEHOLDS
CONSIDERING DEMAND-SIDE FLEXIBILITY

SUMMARY

The increase in global electrical energy demand and the rapid integration of
intermittent renewable resources into the electricity grid has required the improvement
and modernization of traditional grid infrastructure to achieve reliable and clean
energy. As a result, the concept of smart grid has emerged, where all players in the
grid network connect and interact with each other through information and
communication technologies (ICT) to increase stability, resource efficiency and
sustainability in the areas of energy production, transmission and distribution.

In smart grids, unlike in the traditional grid, it becomes possible to adjust electricity
demand according to supply. Demand side management (DSM) stands out as one of
the ways to achieve this. DSM refers to a set of strategies for end-users to change their
electrical energy usage habits by reducing, increasing or shifting their electrical load
demands to a different time period for the purposes of energy efficiency, strategic load
increase or load management. The ability of users to perform DSM can be described
as their “demand side flexibility”.

Demand response (DR), one of the DSM strategies, refers to balancing the load curve
by encouraging end-users to shift their electricity demand to low demand period on
the electricity grid. End-users can reduce their electricity bills or benefit from other
incentives by actively participating in DR programs through DSM. Additionally, in
case they have distributed generation (DG) units, users can increase renewable self-
consumption by shifting their electricity consumption to the period of renewable
energy production. Today, since feed-in tariff (FiT) rates for selling electricity to grid
has decreased significantly, increasing self-consumption becomes a necessity to
increase the value of renewable energy system investments. Increasing DR and
renewable self-consumption not only offers financial advantages to end-users, but also
gives them the opportunity to contribute to a sustainable electricity grid.

Grid-connected rooftop photovoltaic (PV) systems enable the use of solar energy
potential in urban areas, provide on-site solutions for electrification and CO2 reduction,
create no land costs, and reduce transmission and distribution costs. Despite these
advantages and Tiirkiye's high solar energy potential, the deployment rate of grid-
connected rooftop PV systems in Tiirkiye has stayed low. At the beginning of this
thesis study (2017), the share of rooftop PV capacity (200 MW) in the total installed
PV capacity (3700 MW) was only 5%. This was a very low rate compared to examples
in other countries (21.5% in China, 70% in Germany and 76.5% in Australia). In
addition, most of this amount belonged to industrial and commercial buildings and the
share of residential rooftop PVs were very low.

Therefore, one of the aims of this thesis is to accelerate investments in residential
rooftop PV systems in Tiirkiye. This can be achieved through policy mechanisms such
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as FiT schemes, purchase subsidies, regulatory supports, information campaigns, etc.,
as well as through engineering solutions that include smart home automation. For this
purpose, a home energy management system (HEMS) tool has been developed to
increase residential demand-side flexibility. The developed HEMS performs energy
optimization by planning the operating hours of manageable electrical household loads
through DSM. To increase self-consumption, HEMS shifts electrical loads to periods
of high solar energy production. And to realize DR, it takes advantage of time-based
electricity prices by shifting the loads to cheap electricity period. The developed
HEMS tool then was modified to a PV-battery sizing model. PV-battery sizing model
can perform component sizing for a flexible household load profile due to optimal DR
and self-consumption operations of HEMS. Lastly, a nationwide survey was
conducted to understand demand-side flexibility in Tirkiye, specifically residential
end users' perceptions of DR and HEMS usage. The survey aimed to identify the limits
of HEMS use and DR participation rather than making assumptions for simulation
studies (as is often done in the literature). Survey participants' responses were entered
into the HEMS tool and simulated to observe to what extent the daily load curve of
Tiirkiye could change with the use of DR-based HEMS. This Ph.D. thesis consists of
four thematically linked scientific publications.

Paper 1 examines the economic feasibility of grid-connected residential rooftop PV
systems in Tiirkiye. This study was conducted to understand the economic reasons for
the low prevalence of the systems in the country and to draw conclusions for policy
making. Economic analysis of 5 KW rooftop PV systems for a total of nine provinces
was made using HOMER Grid software. Simulation results have shown that
residential rooftop PV systems were not feasible in Tiirkiye except for one of the nine
selected provinces. To overcome this, first, the amount of FiT rates that could make
the systems attractive were calculated, and then, based on solar radiation differences
in Tirkiye, a regional FiT scheme was proposed, as applied in many other countries.
It was also recommended to update FiT rates periodically (as applied in Germany,
England, Japan and Australia) taking into account the country's rooftop PV targets and
changes in parameters such as PV installation costs, retail electricity prices and grid
needs.

In Paper 2, a HEMS model is developed to increase the demand-side flexibility of
households through automation, thereby making rooftop PV systems economically
attractive. The developed mixed integer linear programming (MILP)-based HEMS
model provides optimum DR and PV self-consumption by performing day-ahead load
scheduling for cost minimization. HEMS allows bi-directional power flow between
the household, battery energy storage system (BESS), electric vehicle (EV) and the
grid. The model can calculate the solar radiation falling on an inclined plane using an
isotropic model and thus determine the power output that the PV array can produce
according to the technical specifications of the array, the inclination angle and the daily
outdoor temperature. The proposed HEMS also includes a smart thermostat which can
define different air conditioning temperature set-points for different periods of the day
based on changing electricity prices, solar radiation, and occupancy level. In this way,
DR participation is provided flexibly for air-conditioner owners. Simulation results
showed that the proposed HEMS can reduce the daily electricity bill during summer
days by between 53.2% (household with time-shiftable appliances (TSAS),
thermostatically controlled appliances (TCAs), PV, BESS and EV) and 13.5%
(household with TSAs and TCAs) depending on the household type. The smart
thermostat integrated into HEMS managed to reduce the daily air conditioning bill by
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15% to 24% during the summer months. It was seen that the HEMS could provide
more bill reduction under RTP than under TOU. Under RTP, the HEMS achieved to
sell a portion of the produced electricity to the grid and perform vehicle-to-grid (V2G).

PV-BESS sizing becomes complicated for a household that wants to install an HEMS
due to the load profile changing throughout the year according to HEMS oeprations.
Therefore, in Paper 3, a renewable energy system sizing model that can calculate the
optimal PV-BESS-PV tilt angle for HEMS-equipped households is developed. The
proposed model simulates the load profile of a HEMS-equipped household for a year
and repeats the simulations for each PV array capacity-tilt angle-number of batteries
combination. The model determines the NPV of each combination and ranks them
from highest to lowest. According to the results, under current battery and electricity
prices, the optimal system design with the highest NPV for a HEMS-equipped
household in Istanbul, Tirkiye is 3 KW PV — no battery — 10° tilt angle. The reason
why the optimum configuration is without a battery is that electricity prices are very
low in Tirkiye. The savings made cannot cover the investment made in the battery. In
order to make future projections, a sensitivity analysis is conducted according to
increasing electricity and decreasing battery prices. Battery use becomes possible if
electricity prices increase by 25% or battery prices decrease by 25%. In the case of
HEMS use, the NPV of the PV-BESS investment increases from $920 to $2273. This
is an important finding, because in many countries PV projects cannot be implemented
due to low feasibility in the absence of incentives.

The rising adoption rate of smart home appliances and rising electricity prices make
the use of HEMSs increasingly attractive. However, HEMSs have not yet become
widespread, and even if they did, there is still not enough information about the future
potential for mass adoption of these devices and consumer preferences for their use.
Understanding this potential is closely related to appliance usage behavior, electricity
tariff perception and DR perception. Since HEMS is a new technology and no DR
programs are offered for residential consumers in Tiirkiye today, surveys can be very
useful to understand future user behavior and preferences before the wide-scale
deployment of these technologies. Therefore, in Paper 4, we conduct a nationwide
survey aiming to understand the perceptions towards HEMS use (which electrical
appliances users would want to give management to HEMS, at what time of day they
would like HEMS to operate these appliances, etc.), time-based electricity tariffs and
DR programs. Then, the responses of the survey participants are simulated using the
developed HEMS, and it is investigated to what extent Tiirkiye’s daily load curve
could change in case of participation in DR programs with HEMSs in Tiirkiye.
According to the results, 78% of the survey participants are willing to use HEMS.
There is a technical potential to reduce daily peak demand by 33% with the use of
HEMS for DR purposes. However, this potential may not be possible to achieve, as
the average electricity bill savings HEMS owners can achieve is only 6.7%. Yet in
simulations, 21% of survey participants (16.4% of total respondents) were able to
reduce their bills by over 10% if they used HEMS. 8% of the participants saved more
than 15% on their bills, and 3% saved more than 20%. These households may be the
target audience of future HEMS market and DR campaigns. Simulations show that if
survey participants’ device and HEMS usage behaviors are representative of the
Turkish population, DR participation of 40% of all residential end-users in winter
period and 20% in summer period is required to minimize the peak to average power
ratio (PAR) of the Turkish load curve.
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TALEP TARAFI ESNEKLIiGi DIKKATE ALINARAK KONUTLARDA
YENILENEBILIiR OZ TUKETiMi ARTIRMAYA YONELIK BIiR EV
ENERJI YONETIM SISTEMIi GELISTIRILMESI

OZET

Kiiresel elektrik enerjisi talebindeki artis, mevcut sebeke altyapisinin verimsizligi ve
konvansiyonel kaynaklarin yarattigi ¢evresel tahribat nedeniyle kesintili yenilenebilir
kaynaklarin hizli bir sekilde elektrik sebekesine entegre olmaya baslamasi, giivenilir
ve temiz enerji elde etmek igin geleneksel elektrik sebekesinin iyilestirilmesini,
izlenebilirligini ve modernizasyonunu gerektirmistir. Bunun sonucunda enerji iiretimi,
iletimi ve dagitimi alanlarinda istikrari, kaynak verimliligini ve siirdiiriilebilirligi
artirmak igin sebeke agindaki tiim oyuncularin bilgi ve iletisim teknolojileri (ICT)
araciligiyla birbirleriyle baglanti kurdugu ve etkilesimde bulundugu akilli sebekeler
kavrami ortaya ¢cikmustir.

Akilli sebekelerde gelismis takip, iletisim ve kontrol teknikleri sayesinde elektrik
enerjisi arzin1 talebe gore diizenlemek yerine, talebi arza gore diizenleyebilmek
miimkiin olmustur. Talep tarafi yonetimi (DSM) olarak adlandirilan bu yaklagim, son
kullanicilarin, enerji verimliligi, stratejik yiik artis1 veya ylik yonetimi i¢in elektrik yiik
taleplerini azaltarak, artirarak veya farkli zaman dilimlerine kaydirarak elektrik
enerjisi kullanim aligkanliklarin1 degistirmesine yonelik bir dizi stratejiyi ifade
etmektedir. Kullanicilarin DSM yapabilme yetenegi onlarin “talep tarafi esnekligi”
olarak tanimlanabilir.

DSM stratejilerinden biri olan talep cevabi1 (DR), elektrik tiiketicilerinin, bir sistem
operatOrii ya da hizmet saglayicidan aldiklari sinyallere gore giic taleplerini elektrik
sebekesindeki diisiik talep donemine kaydirarak yiik egrisini dengelemesini ifade
etmektedir. Tiiketiciler DSM yoluyla DR programlarina aktif olarak katilarak elektrik
faturalarini azaltabilir ya da diger maddi tesviklerden yararlanabilmektedir. Ayrica,
tesislerinde dagitik iiretim (DG) birimlerinin bulunmasi halinde yine DSM yoluyla
elektrik tiiketimlerini yenilenebilir enerji iretiminin oldugu zaman araliklarina
kaydirarak yenilenebilir i¢ tiikketimi arttirabilmektedirler. Giiniimiizde yenilenebilir
kaynaklarla tiretilen enerjinin tarife garantisi (FiT) oran1 6nemli 6l¢iide diistiigiinden,
yenilenebilir enerji sistem yatirimlarinin degerini artirmak i¢in 06z tiiketimin
arttirilmasi bir gereklilik haline gelmistir. DR programlarina katilmak ve yenilenebilir
i¢ tiikketimi arttirmak son kullanicilara sadece maddi avantajlar sunmaz, ayn1 zamanda
onlara stirdiiriilebilir bir elektrik sebekesine katkida bulunma imkani1 da tanir.

Sebekeye bagli gati {istii fotovoltaik (PV) sistemler giines enerjisi potansiyelinin
kentsel alanlarda kullanilmasina olanak tanimakta, elektrifikasyon ve CO> azaltimi
icin yerinde ¢dziimler sunmakta, iletim ve dagitim maliyetlerini azaltmakta ve arazi
maliyetlerini ortadan kaldirmaktadir. Bu avantajlarina ve Tiirkiye'nin yiiksek gilines
enerjisi potansiyeline ragmen Tiirkiye’de sebekeye bagli cati iistii PV sistemlerin
kullanim orami1 ¢ok diisiiktiir. Tez calismasinin baslangicinda (2017) Tiirkiye’deki
toplam PV kurulu giic 3700 MW iken toplam ¢at1 iistii PV kurulu giic 200 MW’de
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kalmistir. Toplam PV kurulu giiciin %5°1 dahi etmeyen bu oranin, Cin (%21,5),
Almanya (%70) ve Avustralya (%76,5) gibi 6rneklerle karsilastirildiginda oldukga
diisiik oldugu goriilmektedir. Ayrica, bu oranin biiyiik kismi endiistriyel ve ticari
uygulamalara ait oldugundan, Tiirkiye’de c¢ati {isti PV sistemlerin konutlarda
yayginlasamadigi sOylenebilir.

Bu nedenle bu tez ¢alismasinin amaglarindan biri Tiirkiye'de konut tipi ¢ati tistii PV
sistemleri ekonomik agidan cazip hale getirmektir. Bu, politikalar tiretme yoluyla
basarilabilecegi gibi teknolojik ¢oziimlerle de basarilabilir. Makale 1°de, ¢at1 tistii PV
sistemleri cazip kilabilmek igin garantili satig tarifesi miktarlarinin bolgesel
farkliliklara gore diizenlenmesi ve PV kurulum maliyetlerinin siibvanse edilmesi gibi
politika ¢oziimleri Onerilmistir. Makale 2’de konutlarda talep tarafi esnekligini
artirmaya yonelik bir ev enerji yonetim sistemi (HEMS) aract gelistirilmistir.
Gelistirilen HEMS, DSM yoluyla yonetilebilir elektrik yiiklerin ¢aligma saatlerini
planlayarak hanelerde enerji optimizasyonu gergeklestirebilmektedir. HEMS, 6z
tiketimi artirmak i¢in elektrik yiikleri gilines enerjisi iiretiminin yiiksek oldugu
periyotlara, DR gergeklestirmek igin ise yiikleri elektrik sebekesinin yogun olmadigi
yani elektrigin ucuz oldugu periyotlara kaydirarak zamana bagli elektrik fiyatlarindan
yararlanmaktadir. Makale 3’de, gelistirilen HEMS araci1 modifiye edilerek HEMS
kurulumuna sahip haneler i¢in optimal PV-batarya tasarimi yapabilen bir
boyutlandirma modeli gelistirilmistir. Bu model, HEMS isletimi nedeniyle hanenin
elektrik yiik profili (glinliikk degisen elektrik fiyatlari, glines radyasyonu ve sicakliklar
nedeniyle) her giin degisse bile PV-batarya boyutlandirmasi yapabilmeyi
amaglamistir. Makale 4’te Tiirkiye'deki talep tarafi esnekligini, 6zellikle de konut son
kullanicilarinin DR ve HEMS kullanimina iliskin algilarini anlamak i¢in iilke ¢apinda
bir anket yiiriitiilmiistiir. Anket sayesinde elektrik tiiketicilerinin HEMS kullanimi1 ve
DR katilimi tercihleriyle ile ilgili varsayimlar yapmak yerine bu tercihlerin sinirlari
belirlenmistir. Ardindan, anket katilimcilarinin yanitlar1 gelistirilen HEMS araciyla
simiile edilerek Tiirkiye’de DR bazli HEMS kullanimiyla giinliik yiik egrisinin ne
Olclide degistirilebilcegi hesaplanmistir. Bu doktora tez ¢alismasi birbiriyle baglantili
dort bilimsel yayiin bir araya getirilmesiyle hazirlanmistir.

Makale 1'de, Tiirkiye'deki sebekeye bagli konut tipi ¢ati {istli PV sistemlerinin
ekonomik fizibilitesi incelenmektedir. Bu c¢alisma, sistemlerin Tiirkiye’deki
yayginliginin diisiik olmasinin ekonomik nedenlerini anlamak ve politika olusturmaya
yonelik sonuglar ¢ikarmak amactyla yapilmistir. Caligmanin baslangicinda Tiirkiye
giines enerjisi potansiyel atlas1 (GEPA) ii¢ bolgeye ayrilmis ve iilke ¢apinda bir
fizibilite analizi i¢in her bolgeden iiger il secilmistir. Toplam dokuz il i¢in 5 kW’lik
cat1 Ustli PV sistemlerin ekonomik analizi HOMER Grid yazilimi kullanilarak
yapilmistir. Simiilasyon sonuclar1 gostermistir ki, Tiirkiye’de konut tipi ¢at1 listii PV
sistemler {ilkenin giiney kesimi haricinde fizibil degildir. Bunu asmak i¢in tilkedeki
bolgesel glines 1sinimi farkliliklart dikkate alinarak glines enerjisinden iiretilen elektrik
icin bolgesel alim fiyat1 garantisi uygulamaya konulabilir. Ya da, bagka {ilkelerde
uygulanan ancak Tiirkiye’de uygulanmayan yatirim siibvansiyonlar1 bolgesel olarak
sunulabilir. Tiirkiye’de 2011 yilinda lisanssiz {iretim kanununda degisiklik
yapildigindan beri alim fiyat: garantisi sabit kalmistir. Aralarinda Almanya, Ingiltere,
Japonya ve Avustralya'nin da bulundugu bir¢ok iilkede bu fiyatlar periyodik olarak
giincellenmektedir. Tiirkiye'de de yerinde iiretilen elektrik i¢in alim fiyati, ilkenin ¢at1
iisti PV hedeflerine ve PV kurulum maliyeti, perakende elektrik fiyati ve sebeke
ithtiyaci gibi parametrelerdeki degisikliklere gore periyodik olarak giincellenebilir.
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Makale 2'de, hanelerin talep tarafi esnekligini otomasyon yoluyla artirmak ve bu
sayede cat1 iistii PV sistemleri ekonomik olarak cazip hale getirmek amaciyla bir
HEMS modeli gelistirilmigtir. Gelistirilen karma tamsayili dogrusal programlama
(MILP) tabanli bu model, maliyet minimizasyonu i¢in giin 6ncesi yiik ¢izelgelemesi
gerceklestirerek optimum DR ve PV 06z tiiketimi saglayabilmektedir. HEMS, konut,
batarya enerji depolama sistemi (BESS), elektrikli arag¢ (EV) ve sebeke arasinda ¢ift
yonlii gli¢ akigina izin vermekte ve batarya sagligini korumak i¢in verdigi kararlarda
batarya bozunumunu dikkate almaktadir. Model, tiim yonetilebilir elektrikli ev
aletlerinin (zamana bagli kaydirilabilir (TSA), termostatik olarak kaydirilabilir (TCA),
glice bagli kaydirilabilir (PSA)) c¢alisma saatlerini optimal bir sekilde
ayarlayabilmektedir. Ayrica, batarya bozunumunu da dikkate alarak her tiirlii
bataryadan her seye (B2X) ve aragtan her seye (V2X) taleplerine yanit
verebilmektedir. Model, egik diizleme diisen giines 1smmimini izotropik model
kullanarak hesaplayabilmekte ve bu sayede giinliik giines radyasyonu tahmini
tizerinden PV dizinin, dizinin egim agisina, giinlik dig sicakliga ve dizinin teknik
ozelliklerine gore iiretebilecegi gii¢ cikisim belirleyebilmektedir. Onerilen HEMS,
bilinyesinde bir akilli termostat da barindirmaktadir. Bu akilli termostat, degisen
elektrik fiyatlari, giines radyasyonu ve sakinlerin evde bulunup bulunmama
durumlarina gore giiniin farkli zaman dilimleri i¢in farkli klima sicaklik ayar noktalari
tanimlayabilmektedir. Bu sayede klima kullanicilari igin DR katilimi esnek bir sekilde
saglanmaktadir. Simiilasyon sonuglari, onerilen HEMS’in hane tipine bagli olarak yaz
aylarinda giinliik elektrik faturasini %53,2 (TSA'lara, TCA'lara, PV’ye, BESS’e ve
EV'ye sahip hane) ile %13,5 (TSA'lara ve TCA'lara sahip hane) arasinda azaltmay1
basarabilecegini gostermistir. HEMS'e entegre akilli termostat, yaz aylarinda
Istanbul’da giinliik klima faturasini %15 ile %24 arasinda azaltmay1 basarmistir.
Gelistirilen HEMS’in performansi Tiirkiye’de konut elektrik tiiketicileri i¢in bagka bir
alternatif olmadig1 i¢in sadece TOU tarifesine gore test edilebilmistir. HEMS’in baska
tarifeler altindaki performansini gormek i¢in Tiirkiye’nin TOU tarifesi RTP’ye
modifiye edilerek simiilasyonlar tekrarlanmistir. RTP altinda, HEMS’in daha fazla
fatura diistlisti saglayabildigi gortilmiistiir. RTP altinda TOU altinda miimkiin olmayan
sebekeye elektrik satma ve aragtan sebekeye (V2G) gii¢ aktarimi miimkiin olmustur.

Makale 3’de HEMS donanimli evler i¢in optimal PV-BESS-PV egim agcis1
hesaplayabilen bir yenilenebilir enerji sistem boyutlandirmasi modeli gelistirilmistir.
Bunun nedeni, HEMS kullanan hanelerde DSM nedeniyle y1l boyunca giinliik olarak
degisen yiik profilinin PV-BESS boyutlandirmasini daha karmasik bir hale
getirmesidir. Gelistirilen boyutlandirma modeli, bir yil i¢in hane halki yiik profilini
HEMS kullanilmasi durumu i¢in simiile etmekte ve simiilasyonlar1 her bir PV dizisi
kapasitesi-egim agisi-batarya sayisi kombinasyonu i¢in tekrarlamaktadir. Model, her
kombinasyonun NPV'sini belirleyerek bunlar1 en yiiksekten en diisiige dogru
siralamaktadir. Sonuglara gére mevcut akii ve elektrik fiyatlar1 altinda Istanbul'da
HEMS donanimli bir ev i¢in en yiliksek NPV’ye sahip optimal konfigiirasyon,
bataryasiz 3 kW PV — 10° egim acil1 konfigiirasyon olarak bulunmustur. Optimal
konfigiirasyonda batarya bulunmamasinin nedeni, Tiirkiye’de elektrik fiyatlarinin
diisiik olmasidir. Elde edilecek fatura tasarruflari bataryaya yapilacak yatirimi
karsilamamaktadir. Caligmada gelecege yonelik projeksiyonlar yapabilmek amaciyla
artan elektrik ve diisen pil fiyatlarina gore hassasiyet analizi de yapilmistir. Batarya
kullanimt elektrik fiyatlarinin %25 artmasi veya batarya fiyatlarinin %25 diismesi
durumlarinda miimkiin hale gelmistir. HEMS kullanimi durumunda PV-BESS
yatiriminin NPV’si 920 $'dan 2273 $'a yiikselmistir. Bu dnemli bir bulgudur, ¢iinkii
bircok iilkede PV projeleri tesviklerin yoklugunda fizibilitenin diisiik olmasindan
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dolay1 hayata gecememektedir. HEMS kullanimi, PV sistemleri ekonomik agidan daha
cazip hale getirdiginden PV-BESS boyutlandirmasi i¢in yiik profillerini simiile etmek
isteyen haneler bu boyutlandirma modelinden yararlanabilir. Caligmada ayn1 zamanda
Tiirkiye ile ayn1 enlemde bulunan fakat farkli elektrik fiyatlarna sahip diger Giiney
Avrupa iilkelerinde, HEMS kurulumu yapmak isteyen haneler i¢in gerekli olan
optimal PV-BESS konfigiirasyonlar1 da arastirilmistir.

Akilli ev aletlerinin artan kullanimi ve artan elektrik fiyatlari, HEMS kullanimini
giderek daha cazip hale getirmektedir. Ancak HEMS'ler su ana kadar
yayginlasmamistir ve yayginlagsalar bile, bu cihazlarin kitlesel olarak
benimsenmesinin gelecekteki potansiyeli ve kullanimlarma dair tiiketici tercihleri
hakkinda hala yeterince bilgi bulunmamaktadir. Bu potansiyelin anlasilmasi, cihaz
kullanim davranisi, elektrik tarifesi algis1 ve DR katilim egilimi ile yakindan ilgilidir.
HEMS yeni bir teknoloji oldugundan ve gilinlimiizde yaygin olarak
kullanilmadigindan, yapilacak anketler gelecekteki kullanic1 davraniglart ve
tercihlerini anlamak acisindan faydali olabilir. Literatiirde yapilan simiilasyon
caligmalarinda HEMS ve DR katilimina dair birgok varsayimda bulunuldugundan bu
teknolojilere dair tiiketici tercihlerinin sinirlarinin belirlenmesi sonuglarin tutarligi
acisindan dnem arz etmektedir. Ayrica giliniimiizde Tiirkiye'de konut tiiketicilerine
yonelik herhangi bir DR programi sunulmamaktadir. Son kullanicilar1 DR
gerceklestirmeye motive edecek tek arag TOU tarifesidir. Bu nedenle Makale 4’te
Tiirkiye’de elektrik tiiketicilerinin HEMS kullanimina (kullanicilarin hangi elektrikli
aletlerinin yonetimini HEMS’e vermek isteyecekleri, HEMS’in bu aletleri giiniin
hangi saatlerinde ¢alistirmasini isteyecekleri vb.), zamana bagli elektrik tarifelerine ve
DR programlarina yonelik algilarini anlamayir amaglayan bir anket yapilmistir.
Ardindan, Tiirkiye genelini temsil eden anket katilimcilarinin yanitlart gelistirilen
HEMS’de simiile edilerek, Tiirkiye’de DR programlarina HEMS kullanimi yoluyla
katilim durumunda Tirkiye'nin giinliik yiik egrisinin ne Ol¢iide degisebilecegi
arastirilmistir. Sonuglara gore anket katilimeilariin %781t HEMS kullanmaya sicak
bakmaktadir. Katilimcilarin beyanina gore Tiirkiye’de DR amacli HEMS kullanimiyla
giinlik puant talebin %33 oraninda azaltilmasina yonelik bir teknik potansiyel
bulunmaktadir. Ancak HEMS sahiplerinin elde edebilecegi ortalama elektrik faturasi
tasarrufu yalnizca %6,7 oldugundan bu potansiyele ulagilmasi miimkiin olmayabilir.
Bunu agmanin yolu konut tiiketicileri i¢in daha cazip elektrik tarifelerinin tasarlanmasi
olacaktir. Yine de simiilasyonlarda anket katilimcilarmin %21'1 (toplam yanit
verenlerin %16,4'1)) HEMS kullanmalar1 durumunda faturalarint %10'un iizerinde
azaltmay1 basarmistir. Katilimcilarin %8’1 %15'in {lizerinde, %3’l ise %Z20'nin
tizerinde fatura tasarrufu saglamistir. Bu haneler gelecekteki HEMS pazarinin ve DR
kampanyalarinin hedef kitlesi olabilir. Simiilasyonlar, anket katilimcilarinin cihaz ve
HEMS kullanim davraniglarmin Tiirkiye niifusunu temsil etmesi durumunda, tepe
gii¢/ortalama gii¢ oranin1 (PAR) en aza indirmek i¢in tiim konut son kullanicilarinin
kis aylarinda %40'min ve yaz aylarinda %20'sinin DR katiliminin gerekli oldugunu
gostermektedir.
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1. GENERAL INTRODUCTION

1.1 Motivation

Meeting the rising global demand for electrical energy, improving the existing grid's
inefficiencies, and integrating intermittent renewables into the system required
upgrading, monitoring, and modernizing the conventional electricity grid for reliable
and clean energy. As a result, the concept of smart grid has emerged, in which all
players in the grid network connect and interact with each other through information
and communication technologies (ICT) to increase stability, resource efficiency and
sustainability in the fields of energy production, transmission and distribution [1].
Advanced monitoring, communication and control techniques in smart grids made it
possible to manage electrical demand, replacing the concept of “the demand follows
the supply” with “the supply follows the demand” [2]. This approach, named demand-
side management (DSM), refers to a set of strategies to change electrical energy usage
habits of end-users by reducing, increasing or shifting their load demand for energy
efficiency, strategic load growth or load management (Figure 1.1) [3]. The ability of
users to perform DSM can be described as their “demand side flexibility” [4].

Demand-side management

Energy efficiency Demand response Strategic load growth
— Market-based program Reliability-based program  —
— Demand bidding Interruptible load <+

Time-based pricing Direct load control <+
— Real-time pricing Emergency program «—

—>  Critical peak pricing

— Time-of-use pricing

Figure 1.1 : Demand-side management methods [3].



Through DSM, end-users can reduce their electricity bills by performing demand
response (DR), which refers to balancing the load curve by shifting demand to low
demand period in return for incentives [5]. In addition, they can perform DSM in the
presence of distributed generation (DG) units to increase renewable self-consumption.
As feed-in tariff (FiT) rates have decreased significantly today, increasing self-
consumption becomes more important to increase the value of a renewable energy

system investment [6].

This thesis aims to increase demand-side flexibility in residential sector in Tirkiye
through automated DSM using home energy management systems (HEMSS). In this
way, residential end-users can better utilize renewable resources, increase the value of
their on-site renewable energy systems and reduce their electricity bills, while the grid-
side can reduce investment and operating costs, all of which together contribute to a

sustainable future.

1.2 Scope and Research Objectives

Grid-connected rooftop PV systems allows the utilization of solar potential in the
urban areas, provide on-site solutions for electrification and CO; mitigation, do not
cost land, and reduce transmission and distribution costs. Despite these advantages and
Tiirkiye’s high solar energy potential, the rooftop PV deployment rate in Tiirkiye as of
2017 (at the start of the thesis study) was only 200 MW over the entire installed PV
capacity of 3700 MW. This amount was not even 5% and most of it belonged to
industrial and commercial buildings [7]. This was a very low rate when compared to
the examples from other countries (21.5% in China (2017), 70% in Germany (2017)
and 76.5% in Australia (2018) as well [8-12].

Therefore, one of the aims of this thesis is to make residential rooftop PV systems
economically attractive in Tiirkiye. This can be achieved through policymaking as well
as technological solutions. In Paper 1, policy solutions such as regulating FiT rates
according to regional differences, updating FiT rates peridocially and subsidizing PV
installation costs are suggested in order to make rooftop PV systems economically
viable. In Paper 2, a HEMS tool is developed to increase residential demand-side
flexibility. The developed HEMS can perform energy optimization in households by
scheduling the working hours of manageable home appliances via DSM. HEMS shifts

loads to solar generation period to increase self-consumption and to off-peak hours to



benefit from cheaper electricity prices. In Paper 3, the developed HEMS tool was
modified to a PV-battery sizing model. PV-battery sizing model can perform
component sizing for a flexible household load profile due to optimal DR and self-
consumption operations of HEMS. In Paper 4, a nationwide survey was conducted to
understand demand-side flexibility in Tirkiye, specifically residential end users'
perceptions of DR and HEMS usage. The survey aimed to identify the limits of HEMS
use and DR participation rather than making assumptions for simulation studies (as is
often done in the literature). Survey participants' responses were entered into the
HEMS tool and simulated to observe to what extent the daily load curve of Tiirkiye
could change with the use of DR-based HEMS. This doctoral thesis was prepared by

bringing together four interrelated scientific publications.

1.3 Linkage of Scientific Papers

This thesis consists of the combination of four scientific papers. The linkage of papers

Is summarized in Figure 1.2.

Paper 1 eExamine the feasibility of residential rooftop PV systems in Trkiye.

(Chapter 2) )

eDevelop a HEMS tool to increase the value of rooftop PV systems by
Paper 2 reducing the daily bill of users.
(Chapter 3) J

~

*Modify the HEMS tool into a PV-battery sizing tool that can perform
PV-battery sizing under HEMS management.

eConduct a nationwide survey to examine the demand-side flexibility
of Turkish households.

eInput survey results into the HEMS tool to compare the load profile of
survey participants before and after HEMS use. )

Figure 1.2 : Linkage of scientific papers.

In Paper 1 [13], an economic feasibility of residential rooftop PV systems in Tiirkiye
is examined to understand the low deployment rate of the systems in the country and

draw conclusions for policy-making.



In Paper 2 [14], a HEMS tool is developed to make rooftop PV systems economically
more viable by enhancing the demand-side flexibility of households. The developed
mixed-integer linear programming (MILP)-based HEMS tool can perform day-ahead
load scheduling for cost-minimization and provides optimal DR and PV self-
consumption. The HEMS allows bi-directional power flow between the home, battery
energy storage system (BESS), electric vehicle (EV) and the grid, and takes battery
degradation into account to maintain battery health. The HEMS is combined with a
smart thermostat to ensure the maintenance of the thermal comfort of household

occupants. The developed HEMS tool forms the basis of the following two studies.

In Paper 3 [15], the HEMS tool proposed in Paper 2 has been modified into a PV-
battery-PV tilt angle sizing tool for HEMS-equipped households. The proposed tool
simulates the household load profile under HEMS management and accordingly
determines the optimum PV-battery capacity based on the highest net-present value
(NPV) based on site-specific economic and climatic characteristics.

In Paper 4 [16], a nationwide survey is conducted to understand demand-side
flexibility in Tirkiye. Today, no DR program is offered to residential consumers in
Tiirkiye. In addition, the Turkish time-of-use (TOU) scheme, which is the only tool to
motivate end-users to perform DR, is designed for commercial and industrial groups
and does not appeal to residential end-users. Therefore, the conducted survey aims to
understand Turkish end-users’ perceptions regarding DR programs and HEMS use

before the large-scale deployments of these technologies.

1.4 Contribution to the Literature

Contributions of the papers to the literature is as follows:

Paper 1: At the time study was conducted, there was no detailed study in the literature
on the nationwide feasibility analysis of rooftop PV systems in Tiirkiye. Paper 1
therefore conducts an economic analysis of grid-connected residential rooftop PV
systems in nine provinces of Tiirkiye under the current FiT scheme. It investigates the
low installation rate of the systems (only 5% of the total PV capacity) and makes policy
recommendations, including regionalized FiT scheme, to make the systems viable in

the country.



Paper 2: The main contribution of the Paper 2 is to combine a HEMS with a smart
thermostat to provide efficient DR of air-conditioning with a higher thermal comfort
of end-users. The developed HEMS tool is comprehensive and versatile in terms of its
capabilities. After examination of the relevant publications, it became apparent that on
the basis of HEMSs:

+ integration of a smart thermostat into a HEMS

« controlling of all type of residential appliances (time-shiftable, thermostatically

controlled, power-shiftable)
+ consideration of optimizing self-consumption and DR simultaneously

+ consideration of vehicle-to-grid (V2G), vehicle-to-home (V2H), vehicle-to-
battery (V2B), battery-to-grid (B2G), battery-to-home (B2H), battery-to-
vehicle (B2V), home-to-grid (H2G) operations together

+ consideration of battery degradation and prevention of unnecessary energy
arbitrage

» consideration of a solar model for a tilted PV array, that considers installed
capacity, tilt angle of the PV array as well as the impact of temperature on PV

power output

were not evaluated together in a single HEMS framework before. Therefore, a load
scheduling optimization-based HEMS which combines all the above-mentioned

features is developed. This tool is then formed the basis of the 3rd and 4th papers.

Paper 3: Although there are many studies and software for PV-BESS sizing in the
literature, almost none of them perform optimal sizing for HEMS-equipped
households since it is a more complicated problem. The sizing model we propose not
only closes this gap in the literature, but also is very comprehensive in terms of
including PV tilt angle sizing, energy optimization of all types of home appliances
(TSAs, TCAs, PSAs) and V2H availability for EVs.

Paper 3 conducts a techno-economic comparison between PV-BESS-equipped
households using and not using HEMS. By this means, the effect of using HEMS on
the NPV of PV-BESS systems is investigated.

Paper 4: Before the initial deployment of a technology, field tests or surveys can be
conducted to understand the perception of the technology. Although field tests are



based on actual use, they are costly and difficult to represent the general population.

On the other hand, surveys can be conducted at lower costs and with more participants,

and it has been stated that their accuracies are not low at all.

As its main contribution, Paper 4 combines information gathered in a survey with an

optimization tool to simulate the load mitigation potential of future mass adoption of
HEMSs for DR.

The study contributes to the existing literature in the following ways:

It collects information on residential electrical energy use behaviour, such as:
- ownership rate of appliances - running hours of time-shiftable appliances
(dishwashers, washing machines, dryers, etc.) - weekly operating frequency of
appliances - preferred temperature set-points of refrigerators and air
conditioners - frequency of use of electric water heaters (shower times, shower

duration, etc.)
It investigates the consumer perception of electricity tariffs,

It investigates the residential demand-side flexibility through the willingness
to participate in DR and defining operational priorities and limitations of
HEMS use, such as: - willingness to use HEMS (if yes, which appliances do
users allow HEMS to control) - time intervals users prefer HEMS to shift

electrical loads - expectations, concerns, motivational factors, etc.

It investigates to what extent HEMS-based DR can change the initial load
profile. To this end, survey responses are entered into a load scheduling-based
HEMS tool to simulate the load profiles of DR-performing households.

It is comprehensive in scope as it includes DR participation of all major

manageable home appliances.



2. ECONOMIC ANALYSIS OF GRID-CONNECTED RESIDENTIAL
ROOFTOP PV SYSTEMS IN TURKIYE

This chapter presents an economic analysis of grid-connected residential rooftop PVs
in Tirkiye under the current feed-in tariff (FiT) scheme. Three solar parts are formed
on the solar map of Tiirkiye to discuss the effect of solar radiation differences between
regions on the feasibility of PV systems. Nine provinces are selected for a nationwide
analysis. 5 kW rooftop PVs are simulated using HOMER Grid. Discounted Payback
Period (DPBP), Internal Rate of Return (IRR) and Profitability Index (PI) are used to
ensure the viability of the systems from all aspects. DPBP below 8 years, IRR above
13.12%, and PI above 2 are considered feasible.

The results showed that the current DPBP, IRR, and P1 of the systems are in the range
of 7.75 - 14.43 years, 13.68% — 6.87%, and 2.02 — 1.28, respectively. The systems are
attractive only in one province in the southern part, and far from being investable in
the northern part. A sensitivity analysis is performed to analyze the effect of varying
FiT rates and PV initial costs on the feasibility of the systems and make policy
implications. It is recommended to increase the amount of residential PV incentives in
Tiirkiye and develop a regional support mechanism, considering solar differences

between regions.

2.1 Introduction

Energy demand grows rapidly worldwide and increased demand brings challenges
such as global warming. To overcome the threat, global steps have been taken so far,
beginning from Rio Earth Summit in 1992, followed by the Kyoto Protocol in 1997,
Rio+20 in 2012 and lastly Paris Agreement in 2015. More than 190 participant
countries have agreed on a set of rules to keep global temperature increase below 2
degrees Celsius. The first step to achieve the goal has been determined as the
maximization of use of renewable energy sources. The European Union (EU) has
already set targets to increase the share of renewables to 32% by 2030 with a 40%

reduction in greenhouse gas emissions from 1990 levels [17].



However, except hydropower, there has still been insufficient use of renewable energy
worldwide. According to Renewable Energy Global Statement Report published by
Renewable Energy Policy Network (REN21), 75.5% of the global electricity
production has been provided by fossil fuels and nuclear energy resources by the end
of 2017. Wind and solar power have only been accounted for 4.0% and 1.5%,

respectively of the remaining share of 24.5% [18].

As reported in 2017 Sectoral Report of Electricity Supply published by Electricity
Generation Company (EUAS), Tiirkiye’ss total installed power generating capacity
and electrical energy production were 85360 MW and 292.6 TWh, respectively by the
end of 2017. Natural gas covers the largest portion of the total electricity production
of the country with a share of 37%. The rest of the share of energy sources is sorted as
coal 32.5%, hydropower 20%, wind 6.1%, and the others (including solar) 4.4% [19].

Solar energy stands out as one of the most promising alternatives to increase utilization
of renewables, and governments work on incentive mechanisms, regulations and
policies to promote solar energy investments. Turkish energy policy also focuses on
the exploitation of renewable energy sources not only to overcome global warming but
also to reduce the high external dependency of the country on imported energy sources
[20]. Although Tiirkiye continues its efforts to achieve better utilization of solar energy
especially in photovoltaic (PV) power plant applications, PV systems have not been

adopted sufficiently on building scale in the country and stayed behind EU countries.

Unlike large-scale PV plants, small-scale grid-connected rooftop PV applications offer
promising possibilities for the assessment of solar potential in the urban areas, provide
on-site solutions, do not cost land, and reduce transmission and distribution costs.
Thus, increasing the installation rate of these systems has vital importance, and there
is a growing body of research dealing with the feasibility of grid-connected rooftop

PVs in the literature.

Rodrigues et al. [21] investigated the feasibility of 5 kW rooftop PV systems for 13
different countries using RETScreen software and showed that the viability of the PV
systems is very dependent on incentives and subsidies. La Monaca and Ryan [22]
economically analyzed rooftop PVs for Ireland. System Advisory Model (SAM) is

used in the simulations, and policy scenarios to reduce the current payback periods in



Ireland were introduced. Li et al. [23] investigated the feasibility of rooftop PV
systems in five climatic zones of China for residential apartments. HOMER software
was used and the results were evaluated over the levelized cost of energy (LCOE) and
the net present value (NPV). Mayr et al. [24] suggested a reverse auction-based
subsidy scheme for residential PVs in Austria to increase the efficiency of the FiT.
Sagani et al. [25] found that grid-connected PV systems with a capacity below 5 kW
are not economically viable in Greece due to the low sale price of electricity.
Anagnostopoulos et al. [26] analyzed the effect of FiT cuts on the payback period,
internal rate of return and profitability index of the residential rooftop PV systems. Lee
et al. [27] studied the economic feasibility of rooftop PVs for a university campus in
New England, Connecticut and calculated payback period of the systems as 11 years.
Wee [28] discussed the economic impact of rooftop PVs on Hawaiian house prices.
Pre-installed PV systems increased the value of the properties, since new PV systems
were not subsidized anymore. Gautam et al. [29] studied the potential of rooftop PVs
in Nepal and recommended to invest in storage systems to benefit from the excess
solar energy corresponding to 85% of the production. Haegermark et al. [30]
emphasized the effect of investment subsidies and tax rebates on the profitability of
rooftop PV systems. Madmoud and Omar [31] found payback period of 5 kW rooftop
systems in Palestine as 4.9 years. Bakhshi and Sadeh [32] also investigated the
economic viability of 5 kW rooftop PVs in different cities of Iran and the payback
period of the systems was found to be below 3.5 years. Tomar and Tiwari [33] used
HOMER software and concluded that grid-connected systems in New Delhi are viable
without a need for battery storage. Lee et al. [34] showed that cost of PV systems has
reached the break-even point in 18 of 51 cities in the USA, and excellent results were
obtained in seven of 51 cities due to the effective solar incentives offered in the USA.
Li et al. [35] estimated the payback period of 5 kW PV-battery systems as 18 years
without any incentive policies, it is also concluded that PV-battery systems can enable
1.1% shaving of net peak load in Japan. Lopez Prol et al. [36] compared the
profitability of grid-connected PV systems in Germany and Spain. Spain’s obvious
higher profitability in equal conditions is compensated in reality with a lower cost of
equity in Germany. Poruschi et al. [37] discussed the effect of a reduced payback
period on social acceptance of PV systems. The study also showed that people are fond
of capital subsidies rather than FiT. Watts et al. [38] compared net billing and net

metering (NM) schemes for residential PV systems. Talavera et al. [39] investigated



the economics of grid-connected PV systems in Spain between 1998 and 2014 based
on the evolution of the legislative framework. Batman et al. [40] investigated the
feasibility of grid-connected PV systems in Istanbul considering FiT and time-of-use
rates. This was one of the few detailed studies conducted for a location in Tiirkiye,

after the current FiT scheme was introduced.

All of these studies have made important contributions to the literature. However, in
none of them, the effect of important three parameters, namely FiT, PV initial cost,
and solar radiation on the feasibility of rooftop PV systems was examined together at

the same time.

In many of the studies, only NPV and LCOE were used as economic indicators. In our
opinion, there exist more clear indicators to understand the feasibility of rooftop PVs.
For instance, these two parameters cannot tell when an energy system will start to

make a profit.

Lastly, as the main lack, none of the studies addresses the case of Tiirkiye. Different
parameters come to the fore for different countries to evaluate the feasibility of rooftop
PV systems. In countries where electricity prices are high or subject to change notably,
change in electricity prices can be an important parameter to be considered in the
sensitivity analysis. In countries in which solar radiation does not differ a lot, a
feasibility study made for a single location can give an overall idea for a whole country.
Some large countries implement regional incentives, while some prefer to have a
nationwide incentive mechanism throughout the country. In some countries, both net
metering and net billing are available. Some countries apply only FiT, some of them
use only capital/tax incentives and some of them use both. Each study in the literature
Selects necessary parameters according to their country’s own specific conditions. At
this point, it is important to define the parameters to be used for a study to be done for

Tiirkiye.

2.2 Content and Contributions

To the best of our knowledge, there are no detailed studies in the literature about the
feasibility of rooftop PV systems in Tiirkiye. The existing very few ones are
concentrated in specific locations which do not reflect the feasibility in the whole
country [40]. Also, the low number of studies is not because the rooftop PV systems
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are already feasible in Tiirkiye. Although the total installed PV capacity has reached
3700 MW in the country, the share of rooftop PV systems remains only 5%. Thus, we

found this issue is worth investigating.

Tiirkiye is relatively a large country with a surface area of 783,562 km?, which causes
solar radiation in the country to differ a lot from north to south. Moreover, Tiirkiye’s
own geographical features add this more. The country contains very different climates
within, which causes solar radiation differences to be sharper between regions. For
instance, Tiirkiye lies between latitudes 36° and 42° and the total annual radiation
intensity difference between the northern and southern regions is 900 kWh/m?,
whereas it is only 250 kWh/m? in Germany where the latitude difference is higher than
in Tirkiye (47° and 55°) [41].

If we continue with the example of Germany, in such a country a nationwide FiT and
support mechanism can be counted as fairly distributed, however, in countries such as
Tiirkiye, the use of nationwide mechanisms for PV systems can cause installations to
become concentrated at certain locations. A nationwide model can be suitable for
utility-scale PV plants in Tirkiye, but it can be an obstacle against the widespread
adoption of the grid-connected rooftop PV applications which provide on-site
solutions, do not cost land, and reduce transmission and distribution costs. Also,
considering that the population of Tiirkiye is denser in the northern part, where the

solar radiation is lower, increases, even more, the importance of this issue.

Therefore, this chapter presents a feasibility analysis of grid-connected residential
rooftop PV systems in nine provinces of Tiirkiye under the current FiT scheme to
investigate the low installation rate of the systems in the country. The main
contribution of the study is taking into account the different solar potential of the
regions for future policy implications. For this reason, three solar parts were formed
on the Solar Energy Potential Atlas (GEPA) of Tiirkiye in the north-south direction,
and three representative provinces from each part were selected for a comparative

feasibility analysis.

Another contribution is that this study evaluates the effect of varying FiT, PV system
initial cost, and solar radiation on the feasibility of rooftop PV systems together at the
same time. Also, to guarantee the feasibility of the systems from all aspects, three

economic indicators, DPBP, IRR, and PI are used as economic criteria.
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Simulations are carried out for PV systems with a capacity of 5 kW using National
Renewable Energy Laboratory’s (NREL) recently released product HOMER Grid
software. HOMER Grid uses the engine of widely-known HOMER and has been
developed to optimize the value of behind-the-meter systems. To the best of our
knowledge, this study is one of the very first studies in the literature that uses HOMER
Grid.

Finally, a sensitivity analysis is conducted considering future changes in FiT and
decrease in the initial cost of PVs, and policy recommendations are made, accordingly.
Also, the required PV capacity in each province under current conditions is calculated
up to 10 kW which FiTs are valid for in Tirkiye. Conceptual framework of the

methodology used in the study is given in Figure 2.1.
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Figure 2.1 : Conceptual framework of the methodology used in the study.
2.3 Renewable Energy Policies in Tiirkiye

Tirkiye has been implementing policies to increase the use of existing natural
resources for energy demand. The aim of the current energy strategies is to reduce
environmental impacts through measures to maximize the efficient use of renewable
energy resources. In 2009, the Strategy Paper on Electricity Market Reform and
Security of Supply has been issued to ensure to make the share of electricity generated
from renewable sources 30% by 2023 [42].
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The target of 30% renewable energy production by 2023 has remained the same in
Strategic Plan 2010-2014 published by the Ministry of Energy and Natural Resources
(MoENR) and Climate Change Strategy of Tirkiye 2010-2020, published by the
Ministry of Environment and Urbanization (MoEU). Development of renewable
energy technologies has been supported by the Strategic Plan of MOENR, and one of
the long-term objectives of Climate Change Strategy has been determined as

generating electricity from solar energy [43,44].

The current FiT scheme for renewables has been introduced within the Law on the Use
of Renewable Energy Resources for Generating Electricity numbered 6094 and dated
29/12/2010. The base amount of FiT for was identified as 13.3 $ cent/kWh for
biomass, biogas, solar PV and concentrated solar power (CSP), 10.5 $ cent/kWh for
geothermal and 7.3 $ cent/kWh for wind and hydropower. The law also provides

additional incentives for the use of locally produced equipment [45].

The license exemption for electricity generation facilities with a capacity of equal or
lower than 1000 kW has been put into practice in line with Electricity Market Law
numbered 6446 and dated 14/03/2013. The Ministry of Energy and Natural Resource
has enacted Regulation on Technical Assessment of Solar Power License Applications
which aims to identify procedures and principles for technical assessment.

2.4 Solar Potential and PV Applications in Tiirkiye

The global cumulative installed capacity of PV systems has reached 402.5 GW at the
end of 2017, whereas it was 303.1 GW in 2016, and 70.5 GW in 2011. By the end of
2017, 375 TWh of electricity has been produced by PV systems that represent more
than 2% of the global total electricity demand. In Europe, 4% of the electricity
generation has been covered by PV systems. However, the deployment rate of new

installations has slowed down in Europe [46].

The solar potential in Tiirkiye is relatively high and the country has the second-largest
potential in Europe after Spain. Tiirkiye is located between 36° —42° northern latitudes
and 26° — 45° eastern longitudes with a total surface area of 783,562 km?. The potential
implementation capacity of PV systems in Tiirkiye is assumed to be 450-500 GW
regarding annual solar radiation of 1527 kWh/m?-year and sunshine duration of 2741
hours [47]. In order to reveal the solar energy potential of the country, GEPA (Figure
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2.2) has been released by the Electricity Affairs Survey Administration (EIE) in 2010
[48]. Tirkiye contains a high potential for solar energy due to its location. The solar
radiation level decreases from south to north as expected. In the northern part of the
country, sunshine duration notably decreases related to specific climatic and

geographic conditions of the region.

By the end of 2016, the total installed PV capacity was only 0.83 GW in Tiirkiye. In
2017, the country added record 2.6 GW of new PV, and the cumulative capacity has
reached 3.42 GW at year’s end. With this performance, Tiirkiye was among the top
five countries responsible for approximately 84% of newly installed PV systems with
China, the United States, India, and Japan. Although the total capacity has reached
3.42 GW, rooftop PV systems have consisted only 200 MW of this capacity and mainly

in industrial and commercial buildings [49].

2.5 Simulations

2.5.1 Selected provinces

The GEPA was separated into three parts, namely southern, central and northern,
depending on different solar characteristics. This was due to regionally evaluate the
feasibility of residential rooftop PV systems. Three provinces with the highest, median
and lowest solar radiation were selected from each part. In Figure 2.2, selected nine
provinces and the identified parts are highlighted on GEPA [29]. Daily global

horizontal radiation data (including daily radiation and clearness index) of each pilot

province are given in Figure 2.3.
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Figure 2.2 : Solar Energy Potential Atlas of Tiirkiye and the selected provinces.
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Figure 2.3 : Global horizontal radiation (including daily radiation and clearness
index) of each pilot province.

2.5.2 HOMER Grid and input data

HOMER Grid software has been used to evaluate the design of grid-connected PV
systems [50]. HOMER Grid, released in 2018, uses the engine of optimization tool
HOMER developed by the NREL. HOMER Grid addresses behind-the-meter systems
and computes demand charge reduction, energy arbitrage, and self-consumption to
optimize an energy system. HOMER Grid’s Tariff Builder application makes it
possible to model accurate tariff models. Moreover, the library of the software contains
20,000 tariff models from different states of the USA, Canada, and Mexico.

Polycrystalline PV module spot price has been taken as 0.35 $/W in the calculation of
the PV system capital cost [51]. The additional cost items such as electrical-structural,
net profit, overhead, sales & marketing, permitting, inspection, interconnection, install
labor and supply chain have been estimated to be 0.80 $/W. In this estimation, NREL’s
assumptions were adapted into Turkish conditions considering much lower labor costs
[52]. Eventually, residential PV and inverter initial costs have been identified as 1.15

$/W and 0.15 $/W, respectively as well as the replacement costs. Operation and

15



maintenance (O&M) costs of PV module and inverter have been estimated to be 23
$/W-year and 3 $/W-year, respectively. The efficiency of PV and inverter are 17.41%
and 97.5%, respectively. PV temperature coefficient is -0.41 and the operating
temperature is 45°C. The lifetime of PV panels is 20 years as well as the project
lifetime, and inverter lifetime is 10 years. Battery storage is not evaluated in the
simulations. The real interest rate was calculated as 3.92% for Tiirkiye. Schematic
diagram of PV system components described in HOMER Grid is given in Figure 2.4.
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Figure 2.4 : Schematic diagram of the PV system components.

5 kW residential rooftop system was modeled for one side of an average open gable
roof. As an autonomous load, an average four-person Turkish household with an
average daily consumption of 11.27 kWh was determined. The daily load profile
showing the hourly electricity demand for each month is given in Figure 2.5. Seasonal
variations were taken into account as the highest load consumption occurs in July
whereas the lowest is in December. The consumption trend remains the same in each

month with peak consumption between 17:00-20:00.
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Figure 2.5 : The daily load profile used in the model.
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Solar data of each selected province was extracted from Climatological Solar
Radiation Data Sets of NREL and NASA Surface Meteorology and Solar Energy Data
Sets through HOMER Grid software [53]. Coordinates of the pilot provinces are given
in Table 2.1.

Table 2.1 : Coordinates of the pilot provinces.

Part Pil_ot Latitude Longitude
province (North) (East)
Northern Artvin 41°12' 41° 49’
Istanbul 41°02' 28° 58
Canakkale 40° 10’ 26° 24"
Central Eskisehir 39° 53 30° 32
Yozgat 40° 03' 34° 46
Denizli 37° 51 29° 05'
Southern Van 38° 31" 43°22'
Adana 37°02' 35° 18
Antalya 36° 57 31°06'

The amount of FiT for solar PV was set at 13.3 $ cent/kWh in Tiirkiye. If the selected
PV components are locally produced, the amount of FiT can rise up to 20 $ cent/kWh.
These incentives are applied for the components such as array structural mechanics,
PV modules, PV cells, inverters, and materials focusing solar ray on PV modules. In
the model, FiT was identified as 14.7 $ cent/kWh, assuming PV modules and PV cells
are imported and mounting equipment and inverter are manufactured in Tiirkiye. The
residential electricity price in the country is 10.60 $ cent/kWh including taxes and
levies [54].

2.5.3 Economic determinants

The feasibility results in the study are discussed through three economic determinants,
namely Discounted Payback Period (DPBP), Internal Rate of Return (IRR) and
Profitability Index (PI). DPBP gives the number of years needed to recover the initial

cost of a project. It considers the time value of money and is a useful determinant to
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understand the feasibility of a system. DPBP gives a good idea about how risky an
investment is. The longer the DPBP, the higher the risk that the investment will not
get the expected return. However, DPBP ignores cash flows occur after the payback
period and does not give information about the total profitability of a project. DPBP is

calculated as follows [55]:

1
DPBP = In — x| In(1+7r) (2.1)

where C, is the initial investment cost, r is the real interest rate, and C; is the net cash

flow during the time period t.

IRR is described as the interest rate where the total NPC of all the cash flows in the
project equals to zero. IRR may fail when comparing projects with different economic
scales, but useful with projects with the same initial cost. It should be noted that, in
projects with long lifetime, IRR figure could be misleading that interest rates are
subject to differ from the assumed values from time to time. IRR should be greater

than the initial discount rate to make a profit. IRR is calculated as follows [5]:

T
Z 1 +1RR)t —Go (22)

where T is the project lifetime, C; is the net cash flow during the time period ¢, IRR is

the internal rate of return, and C, is the initial investment cost.

The Pl is an index to measure the ratio between the present value of future cash flows
and the initial investment. Pl is a useful method to rank projects. PIl equal to 1 indicates
the breakeven point for a project, and PI greater than 1 means the project generates
value. Increasing Pl states increasing profitability as well as decreasing risk for
projects with a long lifetime. Pl less than 1 means the project destroys value and the

revenues do not cover the expenditures. Pl is calculated as follows [5]:

NPV

PI =
Co

+1 (2.3)

where NPV is the total net present value and C, is the initial investment cost.
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2.5.4 Simulation results

HOMER Grid simulation results of 5 kW rooftop systems for the pilot provinces under
current conditions are given in Table 2.2. Initial capital cost of 5 kW rooftop PV system
with 4 KW inverter is estimated as 6350 $. HOMER Grid takes grid purchases, grid
sales, and O&M costs into account when calculating the cash flows. The present worth
of the project is calculated by subtracting the cost of grid-only use from the net present

cost of the energy system.

Monthly average of electricity purchases and sales in households are given in Figure
2.6. Blue bars represent the energy purchased from the grid and orange bars represent
the electricity sold to the grid.
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Figure 2.6 : Monthly electricity purchases and sales in the households in each pilot
province.
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Table 2.2 : HOMER Grid results of 5 kW rooftop PV systems for the pilot provinces
under current conditions (criteria met are highlighted in bold).

Northern part Central part Southern part

Art Ist Can Esk Yoz Den Van Ada Ant
Initial capital cost ($) -6350
Net present cost ($) -4210 -3584 -2681 -2072 -1144 -602 -270 95 517
Cost of grid-only ($) -5968
Net present value ($) 1758 2384 3287 3896 4824 5366 5698 6063 6485
Energy demand of
household 4113
(kWh/year)
Electricity produced
by PV (k\);valyear) 6455 6760 7231 7559 8048 8313 8511 8664 8881

Electricity purchased
from grid (kWhiyear) 2257 2171 2128 2127 2145 2071 2127 2121 2062

Renew. electricity
sold to grid 4391 4605 5021 5341 5839 6026 6265 6412 6572
(kWhlyear)

Discounted payback
period (year)
E(r,‘/(tsma' rate of rem g7 795 921 1009 1139 1216 1259 1312 13.68

Profitability index 1.28 1.38 1.52 1.61 1.76 1.85 1.90 1.96 2.02

1443 1313 1165 1085 927 859 833 804 7.75

The feasibility results are discussed through DPBP, IRR, and Pl. The projects with
DPBP less than 8 years [37], IRR greater than the discount rate (13.12%), and PI
greater than 2 [6] were considered as favorable investments in the study (highlighted
in bold in Table 2.2). The results show that, under current conditions, DPBP of the
systems in Tirkiye is in the range of 7.75 — 8.33 years in the southern part, 8.59 —
10.85 in the central part, and 11.65 — 14.43 years in the northern part. IRR of the
systems is in the range of 13.68% — 12.59% in the southern part, 12.16% — 10.09% in
the central part, and 9.21% — 6.87% years in the northern part. And, PI of the systems
are in the range of 2.02 — 1.90 in the southern part, 1.85 — 1.61 in the central part, and
1.52 — 1.28 in the northern part. Only, province of Antalya in the southern part meets

the all of three viability criteria under the current FiT.

As of 2017, there are 9.1 million buildings in Tiirkiye, 87% of which are residential
[56]. Despite the high rooftop area potential, the share of rooftop PV is only 5.84%
(200 MW) of the total installed PV capacity (3.42 GW). The attractiveness of rooftop
PV systems is noticeably higher in the rest of the world, that is the share of rooftop PV
in total installed PV capacity are 21.5% in China (2017), 70% in Germany (2017) and
76.5% in Australia (2018) [57-59]. Thus, a sensitivity analysis was carried out to

discuss how to make rooftop PV systems viable in Tiirkiye.
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2.6 Sensitivity Analysis

In order to make future projections and analyze the effect of varying FiT and PV
system initial cost on the feasibility of the systems, scenarios of decrease and increase
in FiT (-30%, -20%, -10%, +10%, +20%, +30%) and decrease in initial PV initial cost
(-30%, -20%, -10%) were evaluated.

The reasons for the increase in FiT can be listed as follows:

e Policymakers increase the amount of FiT to promote rooftop PV investments.
e PV cells and modules begin to be produced in Tiirkiye and investors who prefer
Turkish cells and modules earn higher amount of FiT.

The reasons for the decrease in FiT can be listed as:

e PV deployment rate reaches to a desired level and policymakers decrease FiT.
e Payback period and profitability of the systems reach to a desired level and
policymakers decide to decrease FiT.

e PV initial costs drop and policymakers decide to decrease FiT.
And, the reasons for the decrease in PV initial costs can be listed as follows:

e PV module prices continue to fall.
e Policymakers decide to enable tax allowance, tax reduction or capital subsidies

to promote rooftop PV systems.

Moreover, for the provinces where 5 kW rooftop PV investments are not favorable, it

was calculated how much PV capacity is needed for an attractive investment.

2.6.1 Sensitivity analysis results for the DPBP of 5 kW rooftop PV systems
The results show that under current PV initial cost (Figure 2.7a):

e 10% increase in FiT makes DPBP viable in four of nine provinces.

e 20% increase in FiT makes DPBP viable in five of nine provinces.

e 30% increase in FiT makes DPBP viable in six of nine provinces.
If PV initial costs drop by 10% (Figure 2.7b):

e DPBP in four of nine provinces becomes viable under the current FiT.

e 10% increase in FiT makes DPBP viable in five of nine provinces.
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20% increase in FiT makes DPBP viable in six of nine provinces.

30% increase in FiT makes DPBP viable in seven of nine provinces.

If PV initial costs drop by 20% (Figure 2.7¢):

DPBP in six of nine provinces becomes viable under the current FiT.

10% and 20% increase in FiT makes DPBP viable in seven of nine provinces.

30% increase in FiT makes DPBP viable in eight of nine provinces.

If PV initial costs drop by 30% (Figure 2.7d):
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a) Current PV initial cost

12.02

6.26

-30 -20 -10 0 +10 +20 +30
Change in FiT (%)

c) 20% reduced PV initial cost

b) 10% reduced PV initial cost

10.76

5.63

-30 -20 -10 0 +10 +20 +30
Change in FiT (%)

d) 30% reduced PV initial cost

-30 -20 -10 0 +10 +20 +30
Change in FiT (%)

—o—Antalya —eo—Adana

—e—Eskisehir Canakkale

Istanbul

T 442

-30 -20 -10 0 +10 +20 +30
Change in FiT (%)

Denizli —o—Yozgat

—o—Artvin —e—Viable

Figure 2.7 : DPBP of 5 kW rooftop systems under varying PV initial cost and FiT.
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Note that, after some extent, decrease in PV initial costs makes DPBP of the systems
drop a lot more than the desired level in some provinces. Such that, FiT can be
decreased in these provinces gradually. And the required increased FiT of northern

Tiirkiye can be compensated with the decreased FiT of the southern provinces.

For instance, as above-mentioned, a 20% reduction in PV costs causes DPBP of the
systems to drop below 8 years in six out of nine provinces. In this case, if the amount
of FiT is decreased by 10% in five of these six provinces, their DPBP of these systems
still stay below 8 years. Moreover, in three of these six provinces, the FiT can be
decreased by 20%.

Similarly, a 30% reduction in PV initial costs makes DPBP of the systems drop below
8 years in seven provinces. In this case, the FiT can be decreased by 10% in seven,
20% in six and 30% in five provinces and DPBP of the systems still meet the viability

criteria.

2.6.2 Sensitivity analysis results for the IRR of 5 kW rooftop PV systems
The results of the sensitivity analysis show that under current PV initial cost (Figure

2.8a):

e 10% increase in FiT makes IRR viable in four of nine provinces.

e 20% and 30% increase in FiT makes IRR viable in five of nine provinces.
If PV initial costs drop by 10% (Figure 2.8b):

¢ IRR in four of nine provinces becomes viable under the current FiT.
e 10% increase in FiT makes IRR viable in five of nine provinces.
e 20% increase in FiT makes IRR viable in six of nine provinces.

e 30% increase in FiT makes IRR viable in seven of nine provinces.
If PV initial costs drop by 20% (Figure 2.8c):

¢ IRR in six of nine provinces becomes viable under the current FiT.
e 10% and 20% increase in FiT makes IRR viable in seven of nine provinces.

e 30% increase in FiT makes IRR viable in eight of nine provinces.
If PV initial costs drop by 30% (Figure 2.8d):

¢ IRR in seven of nine provinces becomes viable under the current FiT.

e 10% and 20% increase in FiT makes IRR viable in eight of nine provinces.
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e 30% increase in FiT makes IRR viable in all nine provinces.
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Figure 2.8 : IRR of 5 kW rooftop systems under varying PV initial cost and FiT.

2.6.3 Sensitivity analysis results for the Pl of 5 kW rooftop PV systems

The results of the sensitivity analysis show that under current PV initial cost (Figure

2.9a):

o 10% increase in FiT makes PI viable in three of nine provinces.

e 20% increase in FiT makes PI viable in four of nine provinces.

e 30% increase in FiT makes PI viable in five of nine provinces.

If PV initial costs drop by 10% (Figure 2.9b):

e Pl in two of nine provinces becomes viable under the current FiT.

e 10% increase in FiT makes Pl viable in four of nine provinces.
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e 20% increase in FiT makes PI viable in five of nine provinces.

e 30% increase in FiT makes Pl viable in six of nine provinces.
If PV initial costs drop by 20% (Figure 2.9c):

e Pl in four of nine provinces becomes viable under the current FiT.
e 10% increase in FiT makes Pl viable in five of nine provinces.

e 20% and 30% increase in FiT makes Pl viable in six of nine provinces.
If PV initial costs drop by 30% (Figure 2.9d):

e Plin five of nine provinces becomes viable under the current FiT.
e 10% and 20% increase in FiT makes Pl viable in six of nine provinces.

e 30% increase in FiT makes PI viable in seven of nine provinces.
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Figure 2.9 : Pl of 5 kW rooftop systems under varying PV initial cost and FiT.
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2.6.4 Overall results of the sensitivity analysis

The scenarios that make rooftop PV investments viable in each pilot province are given
in Table 2.3. Indices I, II, and III represent the southern, central and northern parts of
Tiirkiye, respectively. The given provinces in the table meet all of three viability
criteria (DPBP less than 8 years, IRR greater than the discount rate of 13.12%, and Pl
greater than 2). It is seen that in none of the scenarios Artvin and Istanbul in the

northern part can meet the defined criteria.

Table 2.3 : The scenarios that make rooftop PV investments viable.

PV initial cost
Current 10% reduced 20% reduced 30% reduced
30% reduced None None None None
20% reduced None None None Antalya’
Antalya!, Adana',
10% reduced None None Antalya!, Adana! -
Van!, Denizli"
Antalya', Adana',
Antalya', Adana', o
Current Antalya”  Antalya!, Adana’ o Van'!, Denizli",
Van'!, Denizli"
Yozgat"
=
s Antalya', Antalya', Antalya!, Adana’, Antalya’, Adana',
c
5 10% increased Adana!, Adana', Van!, Van!, Denizli", Van'!, Denizli",
[<B]
L Van' Denizli"! Yozgat!" Yozgat", E.sehir"!
Antalya’, Antalya',
Antalya!, Adana’, Antalya', Adana',
) Adana’, Adanal, Van', o o
20% increased o Van!, Denizli", Van', Denizli",
Van', Denizli", ) )
o Yozgat", E.sehir®  Yozgat", E.sehir”
Denizli Yozgat"
Antalya’, Antalya',
Antalya’, Adana',
Adana’, Adana’, Van!, Antalya’, Adana’, o
) o o Van'!, Denizli",
30% increased Van/, Denizli", Van!, Denizli", )
o ) Yozgat", E.sehir™,
Denizli", Yozgat", Yozgat", E.sehir"!
) Canakkale™
Yozgat" E.sehir!!
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Discounted Payback Period (years)

2.6.5 Required PV capacity on the rooftops in each pilot province

The results showed that, under current conditions, 5 kW rooftop PV systems can meet
the defined viability criteria only in one province (Antalya) in the southern part. Since
the FiT is available in Tiirkiye up to 10 kW, a sensitivity analysis was conducted up to
10 kW to find out the required PV capacity in provinces in which 5 kW is insufficient.
The effect of PV capacity on DPBP, IRR, and PI of the systems are given in Figure
2.10. Table 2.4 demonstrates the PV capacities which meet the defined viability
criteria in each province under current conditions. Indices I, II, and III represent the
southern, central and northern parts of Tirkiye, respectively. It is seen that, in addition
to Antalya, the systems can meet the all of three viability criteria, only in three
provinces, namely Adana, Van and Denizli by increasing the PV capacity to at least
5.5 kW, 6 kW and 7.5 kW, respectively. After 7.5 kW (up to 10 kW) not any other
province can enter this list. To summarize, under current FiT and PV initial cost, by
increasing the PV capacity, three of provinces from part I, one province from part Il

and none of the provinces from part I11 can meet the viability criteria.
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Figure 2.10 : Effect of PV capacity on DPBP, IRR and PI of rooftop PV systems
under current PV initial cost and FiT.
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Table 2.4 : PV capacities which meet the defined viability criteria under current

conditions.
PV capacity (kW) Province
5 Antalya!
5.5 Antalya!, Adana'
6 Antalya!, Adana', Van!
6.5 Antalya', Adana', Van!
7 Antalya!, Adana', Van!
7.5 Antalya!, Adana', Van!, Denizli"!
8 Antalya!, Adana', Van'!, Denizli"!
8.5 Antalya!, Adana', Van'!, Denizli"!
9 Antalya!, Adana', Van!, Denizli"!
9.5 Antalya!, Adana', Van!, Denizli"!
10 Antalya!, Adana', Van!, Denizli"!

2.7 Conclusion and Policy Implications

Rooftop PV systems have not become widespread in Tiirkiye despite the country's
relatively high solar radiation, and there is a lack of studies in the literature discussing
the efficiency of the current PV support mechanism in the country. Thus, this study
presents an economic analysis of grid-connected rooftop PV systems in Tiirkiye under

the current FiT scheme.

In Tirkiye, there are large solar radiation differences between regions. In such a
country, using a single nationwide support mechanism for grid-connected residential
rooftop PVs can become an obstacle for widespread adoption of the systems.
Therefore, the need for different PV support schemes for different solar parts in the
country was discussed. Three solar parts were formed on the solar potential map of
Tiirkiye in the north-south direction, and three provinces from each part were selected

for a comparative feasibility analysis.

To investigate the feasibility of grid-connected residential 5 kW rooftop PV systems,
simulations were performed using HOMER Grid software. The results were examined
through three different economic indicators, namely DPBP, IRR, and PlI, to ensure the

viability of the systems from all aspects.

A sensitivity analysis was needed for future projections and policy implications. The
analysis was made to investigate the effect of varying PV initial cost, FiT and solar
radiation on the feasibility of the systems. In addition to the varying solar radiation of

the selected nine provinces, the parameters considered in the sensitivity analysis were:
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e 30%, 20%, 10% decrease and increase in FiT.

e 30%, 20%, 10% decrease in initial PV cost.

Here, the instruments to decrease PV initial cost can be capital subsidies or tax
incentives. It should be noted that the scenario for decreased PV initial cost also
corresponds to the future projections in which PV module prices fall.

Results showed that under current conditions in Tiirkiye;

e DPBP of 5 kW rooftop PV systems is in the range of 7.75 — 14.43 years.
¢ IRR of 5 kW rooftop PV systems is in the range of 13.68% — 6.87%.
e Pl of 5 kW rooftop PV systems is in the range of 2.02 — 1.28.

These results indicate the insufficiency of the current FiT scheme. Among nine
provinces, only Antalya in the southern region can meet the viability criteria with
DPBP below 8 years, IRR more than 13.68%, and Pl more than 2. Profitability
decreases from South to North in the country as expected. Antalya is the best location
among the nine provinces in Tiirkiye to invest in rooftop PVs, whereas Artvin presents

the least viable results.

According to the results of the sensitivity analysis, the support schemes given below
make the systems meet all the defined economic criteria (DPBP below 8 years, IRR

above 13.12%, and PI above 2) in all three solar parts:
Southern part

e 10% increased FiT or,
e 20% reduced PV initial cost or,

e 10% reduced FiT with 30% reduced PV initial cost
Central part

e 30% increased FiT with 10% reduced PV initial cost or,
e 20% increased FiT with 20% reduced PV initial cost or,

e 10% increased FiT with 30% reduced PV initial cost
Northern part

e 30% increased FiT and 30% reduced PV initial cost (In this case, all three

criteria are met in the province of Canakkale. However, in provinces of Istanbul
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and Artvin although DPBP and IRR criteria are met, Pl slightly stays under the
defined limit.)

The study was conducted for an average open gable roof in Tiirkiye which is suitable
for 5 KW rooftop PV systems. Nevertheless, FiT for residential users is available up to
10 kW in Tiirkiye. If there is enough space, users can also invest in higher capacity PV
systems. The required PV capacities in each province were also calculated as

summarized as follows:

e 5KW - Antalya

e 55KkW - Antalya, Adana

e 6 KW — Antalya, Adana, Van

e 7.5 kW — Antalya Adana, Van, Denizli

The other findings and insights of the study are listed as follows:

o Despite Tiirkiye’s high solar potential, relatively low electricity prices prevent
widespread adoption of rooftop PV systems in Tiirkiye. The prices have
remained almost stable in the last ten years, and at a low level. This causes
rooftop PV investors to achieve low electricity bill savings. The profitability is
low and this makes payback period of the systems to increase.

e Province of Istanbul (which alone contains 18.75% of Tiirkiye’s entire

population), the capital Ankara and many other populated and industrialized
provinces are located in the northern part and contain the highest rooftop
potential in Tiirkiye. Therefore, increasing the attractiveness of rooftop PVs in
the northern part of Tiirkiye has vital importance.
In many countries, the authorities have begun to reduce the amount of FiT due
to falling PV module prices and PV supply exceeding the demand during
midday. Nevertheless, possible high penetration of electric vehicles to the grid
in the near future should be taken into account, and FiT should be sustained as
high as possible. Since the number of electric vehicles in Tirkiye will be
greater in the populated and developed northern part, the requirement of the
regional incentive mechanisms is much of greater significance.

e Tiirkiye’s first integrated solar module, cell, and panel production factory was
inaugurated at the beginning of 2018. Since the amount of FiT in Tiirkiye can

rise up to 0.20 $/kWh depending on the local content of the PV components,
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residential users who prefer products manufactured in Tiirkiye may benefit
from increased FiT. In this case, rooftop PV investments can become viable
not only in the southern provinces but also in the central provinces of the
country. The scenario of increased FiT in the sensitivity analysis also

corresponds to this case.

The main limitation of this study was the interest rate fluctuation at the time of the
study. We decided to use the historical average of the last 10 years. Also, the change
in retail electricity prices which can be an important parameter in the sensitivity
analysis was neglected. This was due to the stable retail electricity prices in Tirkiye
in the last 10 years. Consideration of one more dimension in the sensitivity analysis

could have made it difficult to interpret and explain the results.

The profitability of the residential PV systems can be further increased by the
application of demand-side management (DSM) through storage systems and self-
consumption. For this reason, promotional campaigns should also be developed to

encourage DSM. DSM will also constitute the subject of future studies.

The proposed model in this study can be adapted in countries where there are large
solar radiation differences between different regions, such as in Tirkiye. Instead of
using nationwide support models, regional support models can be considered.
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3. AHOME ENERGY MANAGEMENT SYSTEM WITH AN INTEGRATED
SMART THERMOSTAT FOR DEMAND RESPONSE IN SMART GRIDS

Smart thermostats and home energy management systems (HEMSs) are generally
studied separately. However, their joint use can provide a greater benefit. Therefore,
this chapter aims to combine a smart thermostat with a HEMS. The mixed-integer
linear programming (MILP)-based HEMS performs day-ahead load scheduling for
cost-minimization and provides optimal demand response (DR) and photovoltaic (PV)
self-consumption, and the fuzzy logic-based thermostat aims efficient DR of air-
conditioning and maintenance of thermal comfort. In the first stage, unlike
conventional fixed set-point thermostats, the proposed thermostat defines different set-
points for each time interval, by fuzzifying input parameters of electricity prices, solar
radiation, and occupant presence, to be used by HEMS. In the second stage, the HEMS
schedules the operation of time-shiftable, thermostatically controlled, and power-
shiftable (battery energy storage system (BESS), electric vehicle (EV)) loads. The
HEMS considers bi-directional power flow between home, BESS, EV, and grid, as
well as battery degradation to avoid unnecessary energy arbitrage. The simulation
results show that a daily cost reduction of 53.2% is achieved under time-of-use (TOU)
and feed-in tariff rates of Tiirkiye. AC cost is reduced by 24% compared to
conventional thermostats. In a future scenario of real-time pricing (RTP) and dynamic

feed-in tariff, vehicle-to-grid (V2G) becomes possible.

3.1 Introduction

The rise in global electrical energy consumption and production, along with the rapid
integration of intermittent renewable sources to the electricity network required
improvement and modernization of the aging grid infrastructure to obtain safe,
reliable, and clean energy. Consequently, the smart grid concept has emerged, in which
all players in the grid network connect and interact with each other through
information and communication technologies (ICTs) to improve stability, resource

efficiency, and sustainability in energy production, transmission, and distribution

33



fields [1]. Residential demand-side management (DSM), associated with the smart
grid concept, aims to address these challenges by managing electrical energy usage of
residential end-users which are responsible for 26.9% of world electricity final

consumption [60].

Demand response (DR), which is a tool for DSM, can be defined as all the short-term
activities, aiming to modify consumption patterns of end-users in the form of peak
clipping, valley filling, or load shifting to meet a load shape demanded by the
electricity grid [61]. To implement residential DR, load-serving entities (LSEs) offer
time-dependent pricing or financial incentives to end-users to perform direct load
control (DLC) or indirect load control (ILC) with the help of advanced metering
infrastructure (AMI).

In DLC programs, end-users permit LSES to remotely control their appliances mainly
for peak shaving or frequency regulation in return for incentives [62]. Yet, DLC may
lead to unwillingness due to a sense of losing control [63,64] and privacy concerns
[65].

In ILC programs (also known as price-based programs) end-users are motivated to
change their consumption patterns according to time-based electricity rates such as
time-of-use (TOU) [66], critical peak pricing (CPP) [67], inclining block rates (IBR)
[68] and real-time pricing (RTP) [69] in a penalty-reward manner [70]. However, ILC
brings along a challenge of energy management as a number of electrical appliances

increases in a household [71].

On the other hand, as distributed generation units are becoming more widespread,
especially rooftop photovoltaics (PVs), a paradigm shift has occurred in the structure
of the traditional electricity grid. Traditionally passive residential consumers are
turned into active market players and assume the role of prosumers. Since the generous
feed-in tariff rates introduced at the beginning have reduced today [72], residential
load management gains importance not only to respond to time-based prices for DR
but also to benefit from a distributed generation at the maximum level by increasing

self-consumption.

In addition, the residential users earned the opportunity to become active participants
in the electricity market environment by means of energy arbitrage practiced by battery
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energy storage systems (BESSSs) to buy energy from the grid at a low price or store on-
site generated energy for free and to sell it to the grid at a higher price [73].

Moreover, the emergence of electric vehicles (EVs) introduced new technologies such
as vehicle-to-grid (V2G) and vehicle-to-home (V2H) [74], or in short, vehicle-to-
everything (V2X) [75] to overcome the problems which will be caused by the
substantial impact of EVs on the electricity grid in the near future.

Consequently, in recent years, researchers have been primarily focused on home
energy management systems (HEMSs) that can respond to all the above-mentioned
challenges and innovations. This study, too, aims to develop a HEMS for their
subsequent use in residential buildings, by enabling DR and increased self-

consumption together.

Today, space heating and cooling accounts for a share of more than 50% in total
residential electricity consumption [76]. Therefore, maintaining thermal comfort gains
more importance since thermal discomfort is one of the main barriers in adopting DR
programs [77]. To that end, the study also proposes to integrate a smart thermostat into

a HEMS for efficient DR of air-conditioning and higher thermal comfort of residents.

3.2 Literature Summary

3.2.1 Smart home appliances in residential DR

In the literature, smart home appliances compatible with residential DR fall into three

categories as follows:

1) Time-shiftable appliances (TSAS) like washing machines, dishwashers, clothes
dryers, which have fixed power consumption patterns and are uninterruptible once

they are launched [78].

2) Thermostatically controlled appliances (TCAS) like air conditioners (ACs),
electric water heaters (EWHS), and refrigerators, which are capable of storing
thermal energy in a storage medium by pre-cooling or pre-heating and providing set-
point temperature modification within the limits of thermal boundaries [79].

3) Power-shiftable appliances (PSAs) like BESSs and EVs, which have flexible
power consumption patterns and can operate between the minimum and maximum

power limits [78].
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TSAs generally have lower power consumption in households compared to TCAs and
PSAs. [80] studied DR options of a dishwasher in a home with an integrated wind
turbine. [81] investigated the DSM of dishwashers and washing machines through the
management of hot water supply. Several studies demonstrated the measured data of
load profiles of TSASs to be used in DR studies [82,83].

TCAs offer wider DR possibilities with their higher energy consumption and thermal
energy storage capability, yet thermal comfort boundaries limit them. [84] and [85]
studied DR possibilities of refrigerators with set-point adjustment and pre-cooling
control. [86] developed a partial differential equation (PDE) based model for EWHSs
as a benchmark in DR studies. [87] applied cost-comfort oriented EWH management
under dynamic pricing. [88] enabled model predictive control (MPC) of ACs for DR
considering pre-defined set-point values of inhabitants and real-time electricity prices.
The DR possibilities of fixed-speed and inverter ACs are studied in [89] and [90],

respectively.

The DR possibility of PSAs have recently aroused interest due to the emergence of
EVs and the wide distribution of energy storage systems combined with distributed
generation units. [91] studied a PV-BESS based energy management system to
increase residential  self-consumption. [92] developed an optimal EV
charging/discharging strategy to provide DR and prevent adverse effects of EVs on

low voltage distribution systems.

Residential DR can be enabled through individual smart appliances as in the above
examples. Also, following a holistic approach, several smart appliances can be

controlled simultaneously utilizing a HEMS.

3.2.2 Home energy management systems (HEMSSs)

A HEMS allows users to monitor, control, and automate an ever-increasing number of
their smart appliances efficiently by spending the least effort and time without human
intervention [93]. It can maximize electricity bill savings by DR and self-consumption
as well as can provide energy arbitrage. The holistic approach exemplified by HEMS

allows to avoid demand charges or to comply with peak limits.

In recent years, there has been a growing body of research about HEMSs for DR. [94]
studied scheduling of shiftable appliances in a smart home, which alone provided low

bill savings. [95] optimized load scheduling of dishwasher, washing machine, clothes
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dryer, and plug-in hybrid EV under RTP. A peak limiting strategy to prevent the
occurrence of further peaks was neglected. [96] developed an algorithm-based HEMS
considering load priority and users’ comfort preferences based on the use of AC,
EWH, EV, and clothes dryer. A peak limit was considered to be imposed on household
energy consumption. Demand curtailment was guaranteed during peak hours, but pre-
cooling/heating was not considered for AC and EWH. [97] dealt with the uncertainties
of EV arrival and departure times in a stochastic framework. However, in [94-97],
V2G and V2H possibilities of EVs were neglected in HEMS operation. Also, these
studies did not include the presence of distributed generation units and BESSs in smart

homes.

[98] studied operation of TSAs, TCAs and considered presence of PV-BESS units.
[99] evaluated operation of TSAs, EV, and PV-BESS taking into account VV2H, but
the management of TCAs is neglected. [100] considered battery-to-grid (B2G),
battery-to-home (B2H), V2G, and V2H operations in a household comprising EV,
PV-BESS, and EWH. The operation of TSAs and ACs were not considered. The
model proposed by [101] combined all the above-mentioned types of operational
possibilities of TSAs, TCAs, and PSAs together in a single HEMS structure as well as
considered a presence of an integrated distributed generation unit. V2H and B2H
operations were taken into account, yet selling energy back to the grid was not
considered. In [100,101] a PV model was not embedded in HEMSs, and estimation of
PV production was based on pre-measured values. [102] and [103] included a
simplified solar model for a fixed-tilt PV array that could turn a received solar radiation
data into a PV power output, but a model for a tilted PV array was neglected. [104]
used a location-based regression model for PV output, which may be hard to
implement in a commercially available HEMS in real life. None of the mentioned
studies considered a solar model for a tilted PV array. Also, in all the studies (except
in [102]) battery degradation was neglected or batteries were assumed to be replaced
free-of-charge due to pre-made agreements. In [102] self-consumption with BESS is
proved to be not always preferable to a PV-only system when battery degradation is

taken into account.

Self-consumption can be increased by shifting loads to a PV generation period. In [91],
self-consumption was managed, however, performing DR to benefit from time-based

prices was neglected. [105] proposed a detailed HEMS framework based on DR,
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however, the proposed algorithm did not aim to increase self-consumption. [102],
[106], and [107] considered DR and self-consumption together and took into account

battery degradation, but did not focus on load management.

3.2.3 Smart thermostats

DR may not be adopted to a desired level due to possible end-user comfort violations.
One of the most repulsive of these is thermal comfort violation. Therefore, the studies
regarding DR-related thermostats are examined under a subtitle in the literature

summary.

[94], [108] and [109] handled ACs as curtailable loads and the curtailment was
enabled through kW reduction. Yet, without a thermal model that allows to make an
accurate prediction of the thermal behaviour of a household, this method is likely to

cause a thermal comfort violation due to not being able to capture temperature changes.

[110] obtained a detailed thermal model of a house using OpenStudio and Energyplus
and applied set-point modification under RTP. [111] developed a detailed lumped-
capacitance model for HVAC operation in a household considering occupants’
comfort level. Although highly-complex thermal models reduce the percentage of
error, they are hard to implement in real-life applications due to a lack of knowledge
about physical properties of buildings [112]. [113] examined various thermal models
for buildings and a detailed 8R3C thermal model and a simplified 1R1C model are
found to have closer Root Mean Square Errors (RMSES), whereas the best result is
obtained with a 4R2C model. 1R1C thermal model is widely preferred in HEMS
studies due to its linear form, simplicity, and fast response [101,105,114-116].

Various studies focused on smart thermostats to respond to changing conditions.
[114,117,118] proposed a fuzzy logic-based smart thermostat for residential heating,
ventilation, and air conditioning (HVAC) systems. Unlike conventional thermostats,
the proposed model uses a fuzzy inference system (FIS) to adjust set-point temperature
according to the changes in electricity prices, occupant presence and outdoor
temperature. Nevertheless, the possible availability of a small-scale PV or a BESS in
the household was not evaluated in the decision-making process. [119] designed a
controller to coordinate PV, BESS, and HVAC in a building to reduce peak electrical
demand in response to fluctuations in dry-bulb air temperature, electricity prices,

energy demand, and comfort conditions, taking into account PV generation and battery
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state-of-charge (SoC) in decision-making. In [114,117-119] only set-point
modification was considered in a real-time control manner and pre-cooling/heating

were not available.

In [101,103,120] benefiting from thermal inertia inside was considered. [120]
proposed a MATLAB-TRNSY'S based model that could provide pre-cooling/heating
and also switch between an electrical Air Source Heat Pump (ASHP) and a natural gas
mini boiler depending on the thermal demand of a house and electricity/gas prices.
[79] considered comfort violation minimization in DLC based DR programs for AC
control. Fairness of allocation of comfort violation was considered as well as the

impact of humidity on dry-bulb temperature.

A few number of studies considered smart AC operation under a HEMS framework,
in which both varying outer and inner conditions and status of other appliances in a
household can be taken into account in decision-making. [121] proposed a hardware
design of a HEMS and considered thermal comfort in AC operation. However, the
HEMS handled each electrical load individually which limits to respond to demand
charges/peak limits and does not allow to optimally distribute a generated energy in
presence of a PV unit. [122] developed a detailed HEMS comprising a smart
thermostat that adjusts set-point considering varying conditions including occupancy
level. Battery degradation was neglected both in [121,122]. [123] considered all the
above-mentioned deficiencies except occupant presence in a thermostat integrated
HEMS. AC set-point temperature was adjusted based on the dissatisfaction of
homeowners. [124] combined an adaptive AC with a HEMS considering indoor

temperature, humidity, and clothing condition.

3.3 Content and Contributions
Based on the literature review and the above discussions, the specific contribution of
this study is twofold:

(1) The main contribution is to combine a HEMS with a smart thermostat to provide
efficient demand response (DR) of the air conditioner (AC) with a higher thermal

comfort of end-users.

e Instead of using a conventional thermostat with a fixed set-point, we introduce

a smart thermostat that regulates an initialized set-point according to the
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changing conditions (electricity prices, solar radiation, and occupant presence),
as specified in Table 3.2. Therefore, DR for AC is provided flexibly. For
instance, the thermostat sets a higher set-point within the ASHRAE limits for
AC in on-peak hours to reduce the electricity costs; however, the set-point will
not be the same for different occupancy levels. In the case of high occupancy,
the smart thermostat places more emphasis on thermal comfort, and the set-
point becomes lower than in the case of less or no occupancy. The changes in
the AC set-point also differ depending on the state of PV generation at home.
Ultimately, fuzzy logic is preferred for considering several factors.

Since the smart thermostat is not handled as a separate device but a part of a
HEMS, all the electrical loads, including AC, are considered in the day-ahead
optimization and it is ensured that a stored solar energy is optimally distributed
among all household appliances, peak power limits are met and demand
charges are avoided. When necessary, the HEMS can provide pre-

heating/cooling as well.

(2) To the best of our knowledge, this is one of the most comprehensive HEMSs in the

literature when all the relevant aspects are considered. After examination of the

publications, it became apparent that on the basis of HEMSs:

integration of a smart thermostat into a HEMS

controlling of all type of residential loads (TSA, TCA, PSA)

consideration of increased PV self-consumption and DR at the same time
consideration of vehicle-to-grid (V2G), vehicle-to-home (V2H), vehicle-to-
battery (V2B), battery-to-grid (B2G), battery-to-home (B2H), battery-to-
vehicle (B2V), home-to-grid (H2G) operations together

consideration of battery degradation to prevent unnecessary energy arbitrage
consideration of a solar model for a tilted PV array, that considers installed

capacity, tilt angle of array and the impact of temperature on PV power output

are not evaluated together in a single HEMS framework. Therefore, a load scheduling

optimization-based HEMS which combines all the above-mentioned features within is

proposed in this study.

Istanbul is chosen as the case study location. Cost savings provided by the HEMS

varies according to different types of households. Thus, daily utility bills of six types
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of households with different load profiles are analyzed under TOU and feed-in tariff
rates of Tiirkiye, and solar radiation and temperature conditions of Istanbul. Afterward,
the HEMS is tested for different days of the same month to examine the smart
thermostat operation under different weather conditions. Lastly, since Turkish
residents cannot benefit from residential RTP, which can enhance the efficiency of
HEMSs, the static TOU rates of Tiirkiye are modified into hourly varying RTP rates

and the performance of the HEMS is evaluated under dynamic pricing.

The proposed HEMS includes two stages: set-point adjustment of AC and day-ahead
scheduling of all electrical loads. The workflow of the HEMS is given in Figure 3.1.
Homeowners enter occupant presence information, their preferred initial set-point
temperature for AC, their preferred times of operation ranges for TSAs (if any), hot
water usage times for EWH, and preferred charging times of EV. - LSE forwards
energy price, DR information, and weather forecast to the household. - The
embedded smart thermostat uses the received solar radiation forecast and electricity
price data and user-defined occupant presence information (which can either be
measured by sensors or be entered by users) and defines different AC set-point values
for each time interval to be used in the optimization. = The optimization algorithm of
the HEMS performs day-ahead load scheduling to provide DR and self-consumption.
Bi-directional power flow between home, BESS, EV, and grid are considered as well
as battery degradation to avoid unnecessary energy arbitrage. The framework of the

HEMS architecture and the present electrical loads in the household are presented in

Figure 3.2.
— —
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Objective evaluation of day-ahead scheduling model (MILP)

Figure 3.1 : The workflow of the HEMS.
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3.4 Methodology and Formulation

Energy flow (AC)
Energy flow (DC)
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Time-shiftable appliances
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The HEMS is formulated in the form of a MILP problem as the appliance models are

linear and MILP ensures a global optimum solution with a fast convergence rate.

MATLAB?’s branch-and-bound based “intlinprog” solver is used. The objective of the

HEMS optimization problem is to minimize the daily electricity cost of the household:
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Here, the bought energy expressed by PF is the sum of the power purchased from the
grid by all appliances (TCAs, TSASs) excluding the PSAs. The PSAs are differentiated

here to prevent unnecessary energy arbitrage by including battery degradation costs in
their buying and selling prices [125]. Therefore, 2)""*” and 12"*” are the sum of

buying price A?”y and battery degradation prices 1°#¢9, AB.4¢9_Similarly, A‘t"se” and

A55¢ll are the sum of the selling price A5¢" and battery degradation prices 1":#€9,

ABded Thus;

e V2G or B2G are considered if only the benefit of selling energy to the grid is
higher than the battery degradation cost.

e V2H and B2H are considered if only the benefit of buying energy to use at a
later time at home is higher than the battery degradation cost.

It should be noted that the degradation cost is not included in the electricity bill. The
buying and selling prices of the PSAs above are artificial prices to optimally schedule
loads and prevent batteries from unnecessary energy arbitrage. Therefore, after the
load scheduling, EV and BESS buying and selling costs are calculated once again by

removing the degradation cost.
3.4.1 Time-shiftable appliances (TSASs)

TSAs have fixed power consumption patterns and uninterruptible once they are
launched. TSAs are modeled as follows [126,127]:

o e )
a, a, a, a,
TSA TSA ... . TSA . TSA .
Prs4 = [Paz Par ™ Pas  Pa3 | yte [tmin tmax] (3.4)
TSA . TSA ' TSA .. TSA
Pat Pai-1 " Paz Pa1
X054 = [xl5A, xb5h, . xhA], Ve € [t emax] (3:5)
T
XIA =) xBH =1, XTS € (0,1}, Ve € [en, ee] (36)
t=1
rung < |t(11nax _ tglinl (37)
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A
PTSA — Z PJSAXZ;SA (38)

a=1

Power consumption of a TSA cannot be interfered during its operation. Fixed power
consumption of a TSA can be given by PT4 = [pISA plSA ... pT$4]'. Then, all
possible combinations of power consumption of a TSA can be expressed as in Eq.
(3.4). Since only one of the combinations gives the optimal result, to select the optimal
one, a switch vector of X754 is used as in Eq. (3.5). There can be only one non-zero
element in XT54 as expressed in Eq. (3.6). Vector XI54 is an optimization parameter
to choose the optimal column in PIS4. Users may have preferred times of operation
for TSAs. Therefore, ™" and t™4* denote the beginning and ending of the preferred
times of operation range of a TSA. The length of a preferred time interval (the
difference between t™" and £™2*) cannot be lower than a running time of a TSA as

stated in Eq. (3.7). The power consumption of a TSA is given in Eq. (3.8).
3.4.2 Power-shiftable appliances (PSAS)

3.4.2.1 Battery energy storage system (BESS)

BESS is modeled as follows [128]:

pP2H 4 pB2V 4 pB2G — pB.dis. ptB'diS' vt (3.9)

0< PtB,ch < RB,Ch_xtB, Vi (3.10)

0 < PPYS < RBAIs.(1—xP), vt (3.11)

SOEP = SoEEB | + nBch. pBCch. At — PBAIS . AL vE>1 (3.12)
SOEF = SoEB™ ift =1 (3.13)

SoEB™Max. (1 — DoD®) < SoEF < SoEB™ax, vt (3.14)

Eq. (3.9) describes that the discharged power of the BESS is the sum of the power used
in the household and injected to the grid. Eg. (3.10) and (3.11) state that the charging
and discharging power of the BESS at a particular time cannot exceed the charging
and discharging rate of the battery. Eq. (3.12) and (3.13) define the state of energy
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(SoE) of the BESS. Eq. (3.14) states that SoE of the BESS cannot exceed the maximum
battery capacity and the minimum allowed SoE is limited by the permissible depth of
discharge (DoD).

3.4.2.2 Electric vehicle (EV)

The operation of the EV, so are the Eq. (3.15-3.20) are similar to the BESS except that,
while BESS is in operation all day long, charging and discharging of the EV are
constrained by the EV arrival and departure time (or preferred charging times).
Besides, the EV battery should be fully charged before its departure as expressed in
Eg. (3.21). EV is modeled as follows [128]:

PtV’ZH n PtV,ZB n PtV,ZG = Vs . PtV'diS, vt € [t gdep] (3.15)
0< P/ <RV .xY,  vte[taT,  ¢der] (3.16)

0< PV <RVAS . (1—x)),  Vte[t¥T,  tder) (3.17)
SOE{ = SoEVM 4 pV.ch . pVeh . At — pVAIS . At, Yt € YT (3.18)

SoE} = SoE}_, +nV:eh - PVl . At — PVAIS . At, Yt € [t9TT, t9eP] (3.19)
SoEV™max. (1 — DoD") < SoE! < SoEV™aX, vt € [T, tder]  (3.20)
SOE) = SoEVmax | ¢ = tdep (3.21)

3.4.3 Thermostatically controlled appliances (TCAS)

Three TCAs are considered in the HEMS operation, namely, AC, EWH, and
refrigerator. A first-order lumped capacitance 1R1C gray-box model is used, which is
reported in several studies to be sufficiently reliable to capture thermal behaviour of
house, EWH tank, and refrigerator cabinet [129-131].

3.4.3.1 Electric water heater (EWH)

Eq. (3.22) formulates the EWH model. Here, the EWH tank is assumed to be located
in a part of the house that is under the effect of AC operation, thus T*™? represents
the day-ahead ambient set-point temperatures imposed by the smart AC thermostat.
uc vector defines the hot water usage times. When hot water is used, it is replaced by

inlet water. EWH does not allow the water temperature to drop below the minimum
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allowed temperature. Eq. (3.23) denotes the allowed hot water temperature limits
inside the EWH tank. Eq. (3.24) gives the electrical power consumption of the EWH.

(Ttamb + C'.EWH . REWH . th L uc, + REWH . COPEWH . PEWH . xfWH)

TthW —
(1 + CEWH - REWH - y;¢)
+| ™
(3.22)
B (Ttamb + C'.EWH . REWH . th - uc, + REWH . COPEWH . PEWH . xfWH)
(1 + CEWH - REWH - y¢))
—(1+¢EWH.REWH ;¢ ). At
‘e REWH.cEWH , Vt
Thwmin Tthw < Thwmax (3.23)
PEWH = PEWH . xEWH vt (3.24)

3.4.3.2 Refrigerator

The refrigerator’s thermal model is similar to the EWH’s. Except that, the decision
variable changes sign and becomes negative for the cooling operation. Also, the effect
of door openings on cabinet temperature is neglected. The latter is excluded from the

model due to its low effect on temperature and power consumption [82,83].

T{" = (T#™P — RR - COPR - PR - xf)
_ o (3.25)
+ (i, — (T8> — RR - COPF - PR - xf) ) -  RFCR, vt

TR,min < TtR < TR,max, Vit (326)
PR = PR.xR vt (3.27)

3.4.3.3 Air conditioner (AC)

AC’s model is similar to the refrigerator’s. Here, Eq. (3.28) accounts only for the
cooling operation of the AC (for the heating, which is not considered here, xA¢
changes sign and becomes negative). The used COP value belongs to cooling. The
effect of air ventilation on the inside temperature is neglected. Eq. (3.29) denotes that

the AC operates within a dead band of the set-point temperatures defined by the FIS
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(Fuzzy logic set-point adjustment is detailed in Section 4.5). Eq. (3.30) stands for the
electrical power consumption of the AC.

TAC = TOut — RAC . QPAC . pAC . x AC (3.28)

At

+(TAG — (T4 — RAC - COPAC - PAC - x{\€)) - ¢ TRACCAT, it

SPtmin < TtAC < SPtmax, Vit (329)

PAC = pAC . xAC vt (3.30)

3.4.4 PV model

The proposed HEMS uses Liu and Jordan’s isotropic solar model, which is widely

used to calculate total solar radiation and PV array output on a tilted surface [132,133].

In this approach, LSE or a system operator forwards not only a price signal but also a
day-ahead solar forecast of a city or a location to the household [134]. Then, the HEMS
turns the solar data input into a PV power output according to the specific parameters
such as tilt angle and array capacity. Eqg. (3.31-3.39) gives the calculation of solar
radiation. Eqg. (3.40) calculates the cell temperature to consider the effect of
temperature on PV power output and Eq. (3.41) stands for the power calculation of the
PV array. The study assumes that the PV array always operates at its maximum power

point.

6 = 23.45sin [w (3.31)
w = arccos[— tan(§) tan(¢)] (3.32)
w' = min{w, arccos[— tan(§) tan(¢p — s)|} (3.33)

24 360n

Ho =—1Isc(1+ 0.033 cos cos(¢g) cos(9) sin(w)

e romsn ()

o in(s )

+ 180 sin(¢) sin(6)
K =H/Ho (3.35)
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Hd = H(1 — 1.13K) (3.36)

cos(¢p — s) cos(8) sin(w") + %sin(cp — s) sin(8)
b=

- (3.37)
cos(¢) cos(9) sin(w) + %sin(q)) sin(6)
Hd 1 + cos(s) 1 — cos(s)
R_Rb(l_ﬁ)-i_Hd(T)-i_p(T (338)
Ht = RH (3.39)
thell — Ttout + TToNGCT (Tcell,NOCT _ Tamb,NOCT) (3_40)
PPV,prod _ YPVdPV( Ht ) [1 +aP- (Tcell _ Tcell,STC)] (3 4]_)
t HtSTC t '

3.4.5 Fuzzy logic-based smart thermostat for AC

In this study, a fuzzy logic rule-based algorithm is proposed to define day-ahead set-
point temperatures in response to time-based electricity prices, solar radiation, and
occupancy level. In the fuzzy logic approach, instead of complicated mathematical
models, various input parameters are fuzzified into linguistic IF-THEN rules by using

Mamdani fuzzy inference system (FIS).

Then the appropriate fuzzy rules are aggregated and the defuzzification process is
performed to transfer fuzzy inference results into a crisp “set-point change” output.
The defuzzification method chosen for the study is the center of area (COA), as
described in Eq. (3.42), where K is the number of items in the fuzzy set and p4(x) is
the membership function of fuzzy set A [114]. MATLAB fuzzy logic toolbox is used

to implement FIS.

Tici a()x
COA = =21 —"— 42
2{(:1 na (x) (3 )
The thermostat adds the “set-point change” of each time interval (which can be either
“positive big (PB)”, “positive small (PS)”, “zero (Z)”, “negative small (NS)”, or
“negative big (NB)”) to the initialized set-point temperature. Membership functions of
input and output parameters of the smart thermostat are given in Figure 3.3.
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Figure 3.3 : Membership functions of input (electricity price, solar radiation,
occupant presence) and output (set-point change) parameters of the fuzzy logic-based
smart thermostat.

The HEMS increases or decreases the user-defined set-point without exceeding the
thermal comfort conditions defined by the American Society of Heating,
Refrigerating, and Air-Conditioning Engineers (ASHRAE). Table 3.1 shows
acceptable inner temperature levels according to the ASHRAE Standard 55 [135]. As
seen, a thermostat set-point can vary within the range of 4 °C in the course of a day,
still staying inside the ASHRAE comfort level and allowing consumers to benefit from

DR programs.

Table 3.1 : Acceptable temperature ranges according to ASHRAE Standard 55.

Condition Relative humidity =~ Temperature range (°C)
Summer season 30% 23-27
(Clothing insulation = 0.5 clo) 60% 22-26
Winter season 30% 18-22
(Clothing insulation = 1.0 clo) 60% 19-23

The thermostat can increase set-point within ASHRAE limits to pay less during on-
peak period or to cover the loss caused by low PV production when solar radiation is
low. Furthermore, the occupancy level of the residents can be considered in the
evaluation process and thermostat can make different decisions for different
occupancy levels. By considering occupancy level and solar radiation in the decision-
making process, the proposed smart thermostat also indirectly takes into account the
human presence and solar radiation as heat sources which are not considered in the
1R1C model.

49



Considering the mentioned varying conditions, a typical fuzzy rule can be

decided in the most favorable case as follows: IF electricity price is “low”,

solar radiation is “high” and occupant presence is “high”, THEN set-point

change is “negative big” to provide the highest thermal comfort.

Or, in the most unfavorable case: IF electricity price is “high”, solar radiation

is “low” and occupant presence is “low”, THEN set-point change is “positive

big” to sacrifice the thermal comfort.

All the fuzzy rules defined in a linguistic form are demonstrated in Table 3.2. Unlike

the wider dead band of conventional thermostats (+0.5), the inverter AC used in the

study has a narrower dead band of +£0.25 °C. The set-point change is limited to £1.25

°C, and therefore it is ensured that the smart thermostat operates between ASHRAE

thermal comfort limits.

Table 3.2 : Rules (#) table for FIS in the smart thermostat.

#  Elec. Solar Occ. Set- # Elec. Solar Occ. Set- # Elec. Solar Occ. Set-
price rad. presence point price rad. presence point price rad. presence point
change change change
1  High Low Low PB 10  Med. Low Low PS 19 Low Low Low z
2 High Low Med. PB 11  Med. Low Med. z 20 Low Low Med. NS
3 High Low High PS 12 Med. Low High NS 21 Low Low High NB
4 High Med. Low PB 13 Med. Med. Low PS 22 Low Med. Low z
5 High Med. Med. z 14 Med. Med. Med. z 23 Low Med. Med. NS
6  High Med. High NS 15  Med. Med. High NS 24 Low Med. High NB
7  High High Low PB 16 Med. High Low z 25  Low High Low NS
8  High High Med. z 17 Med. High Med. NS 26  Low High Med. NB
9 High High High NS 18  Med. High High NB 27 Low High High NB

PB: positive big, PS: positive small, Z: zero, NS: negative small, NB: negative big.

3.4.6 Power balance

The power balance in the smart household provided by the HEMS is described by Eq.

(3.43).

P
PtG + Pt V,used + PtV,used

+

PB,used

=Pl + PV + PP, vt

(3.43)

P/ includes the power consumption of flexible and inflexible appliances except of
PSAs (3.44).
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A
Pf = ppther 4 Z PIS4 + PEWH 4 pAC + T vt (3.44)
a=1

PPVHsed s PV power used to supply the energy demand of flexible and inflexible

appliances and charging of PSAs (3.45). Similarly, P/**¢? and pZ*se¢

are powers
used to supply energy demand of flexible and inflexible appliances and charging of

PSAs due to V2H, V2B, B2H, and B2V operations (3.46-3.47).

pPVused _ pPV2H | pPV.2E | pPV.2V ;¢ (3.45)
PtV,used _ PtV.ZH 4 PtV’ZB,Vt (3.46)
pPused _ pB2H | pB2V vy (3.47)

PV production is used both for energy storage and self-consumption. The surplus
production is sold to the grid (3.48).

PtPV,prod r PtPV,used i PtPV'ZG (3_48)

Power sold to the grid through surplus PV production, and V2G and B2G operations
are given in Eq. (3.49).
P26 = PtPV,ZG + PtV’ZG + PtB'ZG vt (3.49)

)

The system operator may impose a power limit for the power imported to the grid or
exported from the grid as shown by (3.50-3.51) [128].

PtG _I_PtPV,used + PtV,used _I_PtB,used < PLG,Vt (3.50)

P26 < P26, vt (3.51)

3.5 Input Data

3.5.1 Solar radiation and temperature data and specifications of the PV modules

The selected time window for the optimization is 5 minutes (0.0833 h). The reason for
choosing high resolution is to better capture the load profiles of electrical devices. The

global solar radiation and temperature data of Istanbul are extracted from [136] (Figure

51



3.4 and Figure 3.5). The data belongs to the year 2016. The rated capacity of the
rooftop PV array is 5 kW. The technical specifications of the PV array are given in
Table 3.3.
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Figure 3.4 : Annual global solar radiation and dry bulb temperature data of Istanbul

(2016).
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Figure 3.5 : Global solar radiation and dry bulb temperature data of Istanbul, August
4, 2016.

Table 3.3 : Technical specifications of the 5 kW PV array [137].

Model Canadian-Solar-CS6P-230P
Rated capacity (W) 230
Temperature coefficient of power (%/°C) -0.38

Nominal operating cell temperature (°C) 45

PV derating factor (%) 95

Number of panels 22

Latitude of the region (°) 41.01

Optimal tilt angle (°) 29

52



3.5.2 Specifications of the batteries (EV and BESS)

PSAs, namely EV and BESS, comprise lithium-ion and lead-acid batteries,
respectively. The technical specifications of the batteries are given in Table 3.4. Here,
battery replacement cost, lifetime throughput in kWh, and lifetime in cycles are given
to calculate the battery degradation cost of the batteries. The BESS operates all day
long in the household. It consists of five Trojan T-105 RE Solar batteries, of which
technical specifications and price information are taken from [138,139] and [140]. The
residents own a Nissan Leaf, of which technical specifications are given in [141]. It is
assumed that the residents prefer EV charging to be performed at any time between
EV arrival and departure times. The battery replacement cost of the EV is half the price
of a brand new battery pack. This is due to the refabricated battery replacement offer
of the EV manufacturer [142].

Table 3.4 : Technical specifications of the batteries used in EV and BESS.

Model 5x Trojan T-105 RE  Nissan LEAF EV battery
Solar (lead-acid) (lithium-ion)

Nominal capacity (kWh) 7.65 24

Charging rate (kW) 2.0 3.3

Discharging rate (kW) 2.0 3.3

Charging efficiency (%) 89 95

Discharging efficiency (%) 89 95

DoD (%) 70 80

Round-trip efficiency (%) 89 95

Battery lifetime in cycles 1250 2000

Lifetime throughput measured 6694 38400

for specific DoD (kWh)

Battery replacement cost ($) 695 2850

Calculated battery degradation 0.117 0.078

cost ($/kwWh)

Operating time interval All-day long 18 pm (arrival) — 8 am

(departure)
Initial SoC (%) 0 68.75
Final SoC (%) 0 100
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3.5.3 Thermal properties of the smart home and thermal loads

For the thermal properties of the household, measured parameter values of a 125 m?
one-storey house are used [143], of which thermal capacitance C4¢ and thermal
resistance R4¢ are 12,312 kJ/°C and 4.87 °C/kW, respectively. The selected values are
compatible with other studies in the literature, like [144], which uses measured data of
another 120 m? house, or [145] and [146] which scales R and C values per square meter
of floor space. It should be noted that, instead of using a first-order thermal model, a
second-order model can be used and more accurate results can be achieved. However,
this study concentrates on describing the lumped thermal capacity of a household
rather than a detailed description of the temperature transients, as stated in [147]. The
inverter AC with a rated power PA¢ of 2.21 kW provides cooling capacity Q4¢ of 7.1
kW with COP of 3.21 [148].

Thermal properties measured in [149] are used in the EWH model. Thermal
capacitance CEWH and thermal resistance REWH are stated as 1770 kJ/°C and 223
°C/kW, respectively. QEWH is given as 3.0 kW. Although EWH size is not given, the
size of a 3 kW EWH can be estimated as 200 liters [150]. COP value of a standard
EWH can be taken as 1.0 [151]. Hot water usage is assumed to be 2.5 gallons per
minute and the constant amount of water heat flow capacity in single time-step ¢EWH
is calculated as 0.6594 kW/K. Since bacterias such as legionella can proliferate up to
45 °C and temperature above 60 °C may cause scalding, allowed minimum and
maximum hot water temperature inside the EWH tank is limited between these
temperatures [152]. Hot water is assumed to be used only for bathing and showering.

Inlet water temperature T is assumed to have a daily constant temperature at 21 °C.

Thermal properties of a large inverter refrigerator which is more suitable for DR due
to its higher thermal inertia, was not found in the literature. Thus, values of a small 60
liters refrigerator [153] are scaled considering a 600 liters one. Thermal resistance is
scaled according to surface area, and thermal capacitance is scaled according to
volume. Accordingly, thermal capacitance CR¢/ and thermal resistance RR¢/ values
are estimated as 89.34 kJ/°C and 297.15 °C/kW, with a power rating PR/ of 0.29 kW
and cooling capacity QR®¢/ of 0.381 kW. A typical refrigerator consumes daily 1-2
kWh, and our assumptions give a result in between (1.4 kWh) [154]. Technical

specifications, thermal parameters, and user preferences are presented in Table 3.5.
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Table 3.5 : Technical specifications and user preferences regarding TCAs.

Inverter

AC/House EWH/Tank Refrigerator/Cabinet
. . . 7.1 (24,225

Heating/Cooling capacity (kW) BTU/h) 3.0 0.29
CoP 3.21 1 0.76
Power consumption (kW) 2.21 3.0 0.381
Size 125 m? 200 liters 600 liters
Thermal resistance (°C/kW) 4.87 223 89.34
Thermal capacitance (kJ/°C) 12312 1770 297.15
Constant amount of water heat flow 0.6594 i
capacity in a single time-step (kW/K) '

06:10 — 06:20
Hot water usage times - 14:00 — 14:05 -

18:30 - 18:40
Inlet water temperature (°C) - 21 -
Min. set-point temperature (°C) Defined by smart 45.0 -1.0
Max. set-point temperature (°C) thermostat for 60.0 4.5

each time step

3.5.4 Operating phases and load profiles of the appliances

The operating phases of the TSAs are given in Table 3.6. The load profiles of

dishwasher and washing machine rely on our former measurements [155]. The load

profile of the clothes dryer is derived from [82]. The users can enter their preferred

operating times for their TSAs as stated in Eq. (3.4-3.7). Here, for the sake of

simplicity, it is assumed that the users agree that their TSAs can start to operate at any

time of day. While the refrigerator is categorized as a TCA, here, the defrost cycle of

the refrigerator is also taken into account and handled as a TSA. The defrost timer sets

the defrost cycle to run automatically every 12 hours a day, and the defrosting lasts

approximately 35 minutes [156,157].

Table 3.6 : Operating phases of the TSAs.

TSA Phase 1 2 3 4 5 6
. . Power (kW) 0.15 2.1 0.15 2.1 0.15 0.3
Washing machine . .
Duration (periods) 1 2 2 4 4 2
P kW 2.1 A 2.1 - - -
Dishwasher °.Wer ( .) 015
Duration (periods) 4 3 6 - - -
Power (kW) 3 0.15 3 0.15 3 0.15
Clothes dryer
y Duration (periods) 3 1 1 1 1 3
. Power (kW) 0.48 0 0.48 0 - -
Automatic defrost . .
Duration (periods) 7 137 7 137 - -

The load profile of the inflexible loads (Table 3.7) is based on load profile and usage

data extracted from various studies in the literature and our own experience on daily

usage of appliances [134,158-160].
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Table 3.7 : Load profile of the inflexible loads.

Inflexible Rated power Periods Operating time interval
appliance (kW) (5 min.)

Iron 1.1 6 21:00-21:30

Toaster 1.2 4 06:45-06:55, 09:30-09:40

Kettle 2.1 3 07:00-07:05, 09:30-09:35, 19:30-19:35
Coffee maker 0.6 6 08:00-08:10, 17:30-17:40, 19:00-19:10
Hairdryer 1.8 2 06:30-06:35, 22:00-22:05

TV1 0.091 96 08:00-10:30, 18:30-00:00

TV2 0.091 36 19:00-22:00

PC1 0.11 90 10:30-12:30, 17:00-20:00, 21:00-23:30
PC2 0.09 30 18:00-20:00

Electric stove 2.4 8 19:30-20:10

Cooker hood 0.225 12 19:30-20:30

Lighting 0.24 102 06:00-06:30, 17:00-01:00
Microwave 15 2 07:00-07:05, 10:30-10:35

Other (fixed) 0.1 288 00:00-00:00

3.5.5 Electricity prices

The residential TOU rates of Tiirkiye (April 2020) are given in Figure 3.6 [161]. The
rates are 0.077 $/kWh (off-peak), 0.122 $/kWh (mid-peak), and 0.178 $/kWh (on-
peak). The PV sells the excess energy to the grid through a feed-in tariff rate (0.061
$/kWh). The BESS and EV are also assumed to sell energy at the same price. Here, it
should be noted again that the buying and selling prices of the BESS and EV are used
only for load scheduling in the objective function as an artificial penalty to prevent
batteries from unwanted energy arbitrage. The battery degradation cost is included in
the optimization but not included in the daily bill calculation which is made after the

optimization.

05
0.45 |- | Mid-peak: 06:00 - 17:00 | |~~~ ~ BESS buying price Feed-in tariff

On-peak: 17:00 - 22:00 —m EV buying price -~ — EV selling price
04r . .
035 - Off-peak: 22:00 - 06:00 TOU rate BESS selling price

03F e
025 1 1 | | | Fr=—FF—LC—rC—_C—F—F—F—"——== I’ ------------------- i
02F-——-————mm — T - S
0.15 p=— === == === s s e S s S A B e B B R
0.1F
0.05F
-0.05

_01 1 1 | 1 1 | 1 1 | 1 1 1 1 1 1 1 1 1
0123 456 7 8 91011121314151617 18 192021 22 23 24

Time (hour)

$/kWh

Figure 3.6 : TOU and feed-in tariff rates of Tiirkiye (EV and BESS prices indicate
degradation cost included artificial prices to be used in load scheduling).
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The HEMS is assumed to receive a peak demand limit signal from the LSE, which is
set at 6.0 kW to prevent further peaks. In addition, in many countries, the power export
rate of recently-built residential PVs is limited by LSEs to promote self-consumption.
Therefore, it is also assumed that the LSE limits the power injection of the 5 kW array
by 70% [162]. And accordingly, the HEMS allows power export to the grid up to 3.5
KW.

3.5.6 Occupancy level

The occupant presence information, which is used by the smart thermostat in fuzzy
decision-making, can either be entered into the HEMS by the residents or measured
by occupancy sensors. In the study, an assumed occupant presence data of a typical
Turkish family is used, consisting of two working parents (A and B) and two children
(C and D); one school-aged (age 6-11) and one adolescent (age 12-18), as applied in
[122]. Although a real occupant presence data of Turkish families is not found in the
literature, the assumed profile shows similarity to a typical American family [163].
The daily presence of occupants A, B, C, and D is explained in Figure 3.7. Since
residents prefer slightly higher set-point temperatures during sleep hours, the HEMS
multiplies the occupancy level by 0.5 between 00:00 and 06:00. Therefore, although
smart thermostat enforces a higher set-point decrease during high occupancy, during

sleep hours it does not decrease set-point as high as in a daytime.

I Sicep hours I C returns, D stays
I A and B go to work, C and D stay [ A and B return, C stays, D goes out
C goes to summer school, D stays [/ D returns, all at home

N

w

-_—

Number of occupants
o N

o
N

4 6 8 10 12 14 16 18 20 22 24
Time (hour)

Figure 3.7 : Daily occupant presence in the household.
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3.5.7 AC set-point temperatures due to fuzzy decision-making

The input variables of the smart thermostat and the adjusted set-point temperatures are
shown in Figure 3.8. Firstly, the defuzzification defines the set-point change (which
varies between £1.25 °C) for each time interval. Then, the smart thermostat adds the
defined set-point change values to the initialized set-point of 23.6 °C and obtains the
set-point of each time interval (Figure 3.8). Lastly, the HEMS uses the obtained set-
point values in the day-ahead optimization considering the dead band of +0.25 °C for
the AC (Eq. (3.29)).
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Figure 3.8 : “Electricity price”, “solar radiation”, and “number of occupants” as
smart thermostat input parameters (top), and the adjusted set-point temperatures due
to output parameter of “set-point change” (bottom).

As a result, the lowest and highest set-point values become 22.76 °C and 24.42 °C,
respectively in the household in Istanbul on August 4. Taking into account the dead
band of the AC (£0.25 °C), the maximum and minimum daily inside temperature in
the household can reach 22.51 °C and 24.67 °C, respectively. These values, as
previously stated in Table 3.1, stay within the minimum and maximum limits (22 — 26
°C) defined by the ASHRAE for a humid region in summer season (Table 3.1), which
matches the conditions of Istanbul.

Although, the smart thermostat sacrifices the thermal comfort during on-peak period
by defining a higher set-point, it provides a lower set-point temperature when the

prices are lower and the occupancy level is high. At the end of the day, whereas the
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initialized set-point temperature was 23.6 °C, the daily average of the adjusted set-
points becomes nearly the same (23.7 °C).

3.6 Simulation Results and Discussions

The base-load profile of the household without battery storage, load scheduling, and
self-consumption is shown in Figure 3.9 to demonstrate all the loads within the
household before an energy management. In the formation of the base-load, the most
probable times of use of TSAs are used [164,165]. The EWH operates only when the
temperature comfort band is exceeded. The AC and refrigerator operate at their set-
point. EV charging immediately begins as it arrives home and is plugged-in. A simple
energy management system can store the surplus PV energy to be used later during the
on-peak period, however, it cannot enable load scheduling and does not hold a smart

thermostat.

[ Inflex. loads [ Dishwasher [HIlM Electric water heater
— | I Refrigerator Clothes dryer Il PV production -0.17
Air conditioner [l De-frost - Electricity price
Wash. machine EV (buy) Feed-in tariff

Power (kW)
= w N - o - N w £ o [o>] ~ [o°)

T

E
———=—]
=!=:
L1
o o o
28 »

lectricity price ($.

o 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (hour)

Figure 3.9 : The daily base-load profile of the household without battery storage,

load scheduling, and self-consumption.

The load profile of the smart home under HEMS operation is shown in Figure 3.10
(top). The HEMS provides both DR and self-consumption by shifting all the possible
loads from the on-peak period to the off-peak or PV production period. Only a little
portion (1.73 kWh) of the total PV production (26.03 kWh) is sold to the grid and
93.37% of the PV production is self-consumed either directly or due to energy storage.

The charge/discharge scheduling of the batteries is shown in Figure 3.10 (bottom).
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Figure 3.10 : The daily load profile of the smart home under HEMS operation (top),
The charge/discharge scheduling of the BESS, and EV (bottom).

All the TSAs are shifted to the midday to benefit from the PV production, and one of
the de-frost cycles of the refrigerator is shifted to the PV production period, whereas
the other to the off-peak.

All the TCAs enable pre-cooling or pre-heating before the on-peak period within the
upper and lower temperature bounds. Likewise, the least energy consumption of the
TCAs occurs within the on-peak period. The temperature level and usage of the TCAs

are detailed in Section 6.1.

The EV arrives home at 18:00 but the charging is postponed to the end of the on-peak
period, but before, between 18:00 and 22:00, the charge rate of BESS (2 kW) cannot
cover the demand of inflexible loads and the remaining part is covered by EV battery
due to V2H. B2G and VV2G operations do not occur in the smart home under the current

battery degradation costs and electricity prices of Tiirkiye.

3.6.1 Results for AC

In Figure 3.11, the inverter AC operates at set-point temperatures defined by the smart
thermostat and within the lower and upper bounds of the dead band. It also performs

pre-cooling when necessary.
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The set-point is at its lowest during the period when all the residents are at home and
the electricity prices are cheaper. The highest set-point level is between 17:00 and
18:00 where the occupancy is at the lowest, electricity prices are at the highest, and
solar radiation is low. The average defined set-point temperature is relatively high
(24.5 °C) during the on-peak period due to the high electricity price and low solar
radiation. The set-point adjustment and the pre-cooling performed before the
beginning of the on-peak period provides the AC not to operate during the whole on-
peak period of 5 hours (between 17:00 — 22:00).
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Figure 3.11 : AC operation due to set-point adjustment and pre-cooling/heating and
the temperature change inside the smart home, August 4.

The thermostat set-point can sharply increase or decrease after some time steps. For
instance, at 22:00, the maximum set-point sharply decreases and becomes lower than
the minimum set-point of the previous time step. In such occurrences, the smart
thermostat is allowed to behave flexibly and violate boundaries until the inside

temperature reaches the defined set-point.

3.6.2 Results for EWH

In Figure 3.12, the sharp temperature drops indicate the hot water usages. The EWH
enables pre-heating before the first hot water usage which occurs between 06:10 and
06:20. The heater starts working just before 05:00 within the off-peak period and stops
before the end of the off-peak period at 06:00. The second hot water usage occurs

61



between 14:00 and 14:05. Before the hot water usage, the EWH does not enable pre-
heating and uses the free PV power directly for heating. The HEMS does not allow the
tank temperature to drop below the minimum limit of 45 °C during hot water use. The
third hot water usage occurs between 18:30 and 18:40, which is within the on-peak
period. To avoid high electricity prices during the on-peak period, the EWH provides
pre-heating using the PV power (as seen in Figure 3.10) until the end of the mid-peak
period, which ends at 17:00.
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Figure 3.12 : Temperature change inside the EWH tank.
3.6.3 Results for refrigerator
In Figure 3.13, the refrigerator starts pre-cooling before the beginning of the on-peak

period. This allows the refrigerator not to consume energy for 2 hours during the on-

peak period (which lasts for 5 hours).
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Figure 3.13 : Temperature change inside the refrigerator cabinet.
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3.6.4 Case studies
3.6.4.1 HEMS operation in different types of households

The main purpose of the proposed HEMS is to reduce the daily bill of the smart
household. Thus, cost comparison with and without HEMS usage is made for different
types of households. The first case is the main case detailed in Section 6, in which all
the TSA, TCA, PSA type of loads, as well as a PV array, are present. In all other cases,
inflexible loads, TSAs, and TCAs are considered to be present, and the presence of
PSAs and PV are variable. In the evaluation of “without HEMS” cases which contains
BESS, it is assumed that a simple energy management system can store the surplus PV
energy to be used later during the on-peak period. However, this simple energy
management system cannot enable load scheduling and does not hold a smart

thermostat.

Not every rooftop might be suitable for PV installation or and not everybody may want
to invest in PV and BESS, Also, not everybody wants to have a car or replace their
gasoline cars with EVs. Thus, the absence of these loads is considered in the case
studies. Table 3.8 demonstrates daily energy purchases, self-consumption ratios, and
utility bills of six types of households, as well as their cost reduction comparison, with
and without HEMS usage.

Table 3.8 : Daily cost and power consumption comparison of different types of
households with and without HEMS usage.

Without HEMS With HEMS

PV Energy PV Energy PV Cost

Case prod.  pought energy PV self- Daily  bought energy PV self- Daily reduction
(kWh)  from usedin  consumption  cost from usedin  consumption  cost (%)

grid household (%) (&) grid household (%) %)
(kWh)  (KWh) (kWh)  (Kwh)

1 26.03 21.46 19.22 74.83 2.69 17.29 24.30 93.37 1.26 53.2
2 26.03 28.09 12.59 49.08 341 22.84 18.79 72.16 1.89 44.6
3 - 40.74 - - 5.79 42.33 - - 4.44 23.3
4 26.03 14.34 19.22 74.83 141 10.31 24.26 93.18 0.84 40.4
5 26.03 20.96 12.59 49.08 213 15.72 18.87 72.50 1.35 36.6
6 - 33.61 - - 451 35.30 - - 3.90 135
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The considered household types (cases) in Table 3.8 are as follows,

1) TSAs+TCAs+PV+BESS+EV
2) TSAs+TCAs+PV+EV,

3) TSAs+TCAs+EV (only DR),
4) TSAs+TCAs+PV+BESS,

5) TSAs+TCAs+PV

6) TSAs+TCAs (only DR).

In Case 2 (44.6%) and Case 4 (40.4%) considerably high cost reduction is obtained
due to the presence of EV in the former (high DR capability) and of BESS in the latter
(energy storage). The highest cost reduction is obtained in Case 1 (53.2%), which
contains both EV and BESS. In Case 2 and Case 5, PV exists, but without a BESS, the
self-consumption is applied only by shifting the adequate loads to the PV production
period, and the excess energy is sold to the grid. The households without PV (Case 3
and Case 6) cannot enable self-consumption but only DR. The cost reduction in these

two cases (23.3% and 13.5%, respectively) is lower compared to the others.

Under HEMS operation, a smart home that holds TSAs and TCAs (Case 6) receives a
daily bill of $3.90. When a 5 kW PV is installed (Case 5), the daily cost decreases to
$1.35, and with an inclusion of a BESS (Case 4), it decreases even to $0.84. If the
household also has an EV (Case 3), then the daily bill becomes $4.44, which decreases
to $1.89 by installing a PV (Case 2) and to $1.26 by including a BESS (Case 1).

The proposed HEMS significantly increases the self-consumption by shifting the loads
to the PV production period, such that, the self-consumption increases from 74% to
93% in Case 1 and Case 4, and from 49% to 72% in Case 2 and Case 6.

For Case 3 and Case 6, the AC cost reduction is calculable due to not having a free PV
power. According to the results, the smart HEMS thermostat provides an AC cost
reduction of 24.2% compared to a conventional fixed set-point thermostat. The cost
reduction of 24.2% is enabled with relatively low thermal comfort violation, such that,
the average daily inside temperature increase is only 0.1 °C ( 23.6 °C in case of use of

a conventional thermostat, and 23.7 °C in case of use of the proposed thermostat).

The load profiles of the households under HEMS operation in all cases are given in
Figure 3.14.
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Figure 3.14 : The load profiles of different types of households under HEMS
operation (Cases 1 — 6).

3.6.4.2 Behaviour of the smart HEMS thermostat under different solar

radiation and temperature levels

The simulations above are carried out for a day (August 4) representing the monthly
average outdoor temperature of August. In this section, the simulations are conducted
for the coolest and warmest day of the month.

In Table 3.9, the cost comparison of ACs with and without HEMS is presented under
different temperature levels. The cost reduction of 24% remains the same on a cooler
day, however, it comes down to 15% on the warmest day of the month. This is because,
while on an average and a cooler day the thermal storage can last for 5 hours during
the on-peak period (covers all the on-peak period), on the warmest day, it lasts for 2

hours 45 minutes (Figure 3.15). The average outdoor temperature during the on-peak
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period is higher on this warmest day, and consequently, AC is forced to operate during
the on-peak period. Yet, although the thermal storage lasts for a shorter duration, it is
still remarkable.

Table 3.9 : Daily cost and energy consumption comparison of AC under different
solar radiation and temperature values.

Without HEMS With HEMS
Average (fixed set-point) (adjusted set-point) AC oot
Case Day outdoor A A reduction
e A ac ac A ac oac
(C) temp. (°C)  consump. cost temp consump.  cost
' (kwh) 9) C) (kwh) $)
Coolest
(August 24.9 3.09 0.41 23.7 3.01 0.31 244
12)
3and Average
6 (August 4) 26.6 23.6 4.93 0.62 23.7 4.82 0.47 24.2
Warmest
(August 28.3 7.46 0.98 23.8 6.91 0.83 153
21)
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Figure 3.15 : Behaviour of the AC on the warmest day of the month, August 21.
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Still, it should be noted that, here, the DR capability of the thermostat is not tried to be
exploited. While the set-point could be increased up to 26 °C according to the
ASHRAE limits, considering all the parameters, the smart thermostat does not let the
set-point exceed 25 °C. Besides, in all cases, the average daily temperature stays close
to the initialized set-point of 23.6 °C. Thus, the cost reduction in Table 9 is achieved
with a relatively low sacrifice of thermal comfort. The users who want higher cost

reduction can still increase the initialized set-point temperature.
3.6.4.3 Behaviour of the HEMS under RTP and dynamic feed-in tariff

Although not in use in Tiirkiye, RTP which is already in use in several countries [166],
can increase the efficiency of the HEMS. To investigate the effect of a possible RTP,
the TOU rate of Tiirkiye is modified into RTP (Figure 3.16) as applied in [100]. To be
fair, it is ensured that the modified RTP gives quite the same daily cost as the TOU
without a use of a HEMS, but if there is a HEMS, it provides a higher demand-side
flexibility.

V2G and B2G are stated to be not viable in various studies due to the current high
battery degradation costs, and new market designs and pricing structures are
recommended to be developed to promote these technologies [102,167]. Thus, here in
this future scenario, one of the alternative pricing schemes; hourly dynamic feed-in
tariff is considered as discussed in [168,169], and the selling price is assumed to be

90% of the buying price as applied in [170].
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Figure 3.16 : Modified RTP and dynamic feed-in tariff rates of Tiirkiye (EV and
BESS prices indicate degradation cost included artificial prices to be used in load
scheduling).
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The load profile of the smart household in Istanbul under a possible future RTP
scenario is given in Figure 3.17. The first notable change is that V2G which was not
available under the current TOU rate becomes available under RTP and dynamic feed-
in tariff rates. From Figure 3.16, it can be seen that the EV selling price between 19:00-
20:00 is higher than the EV buying price between 02:00-03:00, which makes V2G
available in the smart household only for a short amount of time (an hour), but at the
highest peak period which can be crucial for the grid. The self-consumption in the
household decreases because the electricity prices during the night time decrease

considerably and DR is performed instead.

In Table 3.10, the cost comparison of HEMS operation under TOU and RTP pricing
is made. It can be seen that the RTP provides a higher DR capability to the HEMS.
Higher cost reduction in Cases 1 — 3 than Cases 4 — 6 is caused by the existence of EV

and VV2G operation.

The behaviour of the TCAs under RTP is shown in Figure 3.18. The smart thermostat
behaves more flexible in terms of the defined set-points due to the varying prices of
RTP than TOU. The AC operates with a daily average temperature of 23.7 °C. During
the high price period, the AC pre-cooling provides energy storage that lasts for 6 hours
from 15:00 to 21:00.
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Figure 3.17 : The load profile of the smart home under the modified RTP and
dynamic feed-in tariff rates (TSAs+TCAs+PV+BESS+EV).
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Figure 3.18 : Temperature change inside the household (top), EWH tank (middle),
and refrigerator cabinet (bottom) under RTP and dynamic feed-in tariff rates.
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Table 3.10 : Cost comparison of HEMS operation for different types of households

under RTP and dynamic feed-in tariff rates.

Daily cost ($)

Case Household type Without With HEMS With HEMS
HEMS (TOU (TOU and (RTP and
and flat feed-  flat feed-in dynamic

in tariff) tariff) feed-in tariff)

1 TSAs+TCAs+PV+BESS+EV 2.69 1.26 0.10

2 TSAs+TCAs+PV+EV 341 1.89 0.66

3 TSAs+TCAs+EV (only DR) 5.79 4.44 3.91

4 TSAs+TCAs+PV+BESS 1.41 0.84 0.27

5 TSAs+TCAs+PV 2.13 1.35 0.55

6 TSAs+TCAs (only DR) 4.51 3.90 357

3.6.4.4 Other findings and limitations

The other findings and insights of the study are listed as follows:

The proposed model can be implemented in other countries as well and the
results may differ primarily depending on electricity prices, climatic
conditions, and electrical appliance use patterns. In general, the efficiency of
the HEMS is expected to be higher in developed countries considering the
availability of dynamic electricity pricing schemes and higher income levels of
residents. People with higher income levels are more likely to own a higher
number of smart home appliances and EVs, and to afford detached houses
where rooftop PV systems can be invested and EV home charging can be
performed.

In particular, the integrated smart thermostat can provide a higher benefit in
warmer countries where the average temperature is higher and the cooling
operation is repeated more frequently during a year. Furthermore, in countries
where electricity prices are high, the HEMS provides higher savings, and the
higher the savings are, the higher the NPV of the PV-BESS investment
becomes. This is important because a PV-BESS investment may not always be
feasible considering the reduced feed-in tariff rates today, and the feasibility

primarily depends on savings and solar radiation.
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Lastly,

Currently, the price differential between on-peak and off-peak hours is not
enough to offset battery degradation costs to perform energy arbitrage. Yet, as
lithium-ion battery costs are decreasing, battery degradation costs can reach
favorable levels and energy arbitrage can become possible in the near future.

the limitations of the study can be listed as follows:

Here, the HEMS requires that users input the EV arrival and departure times
and occupancy status. In the case of integrating an artificial intelligence-based
algorithm, the HEMS can learn these inputs on its own, which was beyond the
scope of our study. In addition, the uncertainty of such inputs can be taken into
account in simulations. The study ignored the above-mentioned topics due to
its main focus.

The 1R1C model was used in the thermal modeling of the house. Although this
model is applicable for well-insulated, detached, and low-rise houses, it may
not be suitable for multi-storey buildings due to the heat transfer between
floors, which are not taken into account in the 1R1C model.

As widely applied in the literature, we assumed that battery cycles at specific
DoDs and then degradation are linear, which are in fact non-linear and can
slightly change the results.

Not in the TOU, but in the RTP case, the cost-reduction is calculated based on
day-ahead prices. In reality, the results may slightly differ since there might be
a difference between the estimated day-ahead prices and intraday prices on

which the bill is calculated.

3.7 Conclusions

In this chapter, a MILP-based HEMS architecture is proposed to minimize total daily

electricity costs in households by facilitating optimal DR and self-consumption. The

proposed algorithm handles the control of all types of electrical loads (TSAs, TCAs,

and PSAs) and responds to all types of battery-to-everything (B2X) and V2X

technologies taking into account battery degradation. A solar model for a tilted PV

array (Liu and Jordan’s) is embedded into the HEMS to turn a solar radiation forecast

into a PV power output. Therefore, the tilt angle of array and the impact of outdoor

temperature are taken into account in the estimation of PV power output.
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As its main contribution, the study combines a smart thermostat with a HEMS. Instead
of using a conventional thermostat with a fixed-set point, the proposed fuzzy logic-
based smart thermostat adjusts an initialized set-point in response to changing
conditions (electricity prices, solar radiation, and occupant presence) and defines
different set-points for each time interval. Therefore, DR for AC is provided flexibly.
By not considering the smart thermostat as a separate device but as part of a HEMS,
the AC is included in day-ahead optimization with other electrical loads at home and
it is ensured that a stored solar energy is optimally distributed among all household
appliances and peak power limits are met. The proposed method is compatible to use
with both fixed-speed and inverter ACs.

The effectiveness of the HEMS is investigated through six types of households in
Istanbul, Turkiye. The highest daily cost reduction of 53.2% (from $2.69 to $1.26) is
observed in the household with TSAs, TCAs, PSAs, and PV, whereas the least daily
cost reduction of 13.5% (from $4.51 to $3.90) is obtained in the household that
comprises only TSAs and TCAs. The inclusion of PV, EV, and BESS remarkably
increases the effectiveness of the HEMS with higher DR and self-consumption
potential. Unlike B2H and VV2H, B2G and V2G cannot be performed under the current
TOU and feed-in tariff rates due to currently high battery replacement costs.

The impact of the proposed smart HEMS thermostat is examined under different solar
radiation and temperature levels as well, and a daily AC cost reduction between 15%

and 24% is achieved in August, depending on the day of the month.

The effectiveness of HEMSs can be increased by introducing dynamic pricing
schemes. In the case of a future RTP and dynamic feed-in tariff in Tirkiye, the
proposed HEMS shows a significantly higher cost-benefit than in the case of static
TOU pricing and static feed-in tariff. Moreover, unlike in TOU pricing, V2G becomes
possible in dynamic pricing due to the larger gap between electricity buying and selling
prices that can surpass the battery degradation cost. Although the results are evaluated
through daily electricity cost reduction, the flexibility in prices benefits not only the
demand-side but also the grid-side by flattening the peak demand and offsetting the
need for additional generation capacity and operational costs. In this regard, the results
of the study may guide and help policymakers working on DR.

Even though the inclusion of PV and BESS decreases the daily electricity bill, in fact,
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these units have initial investment, operation, maintenance, and replacement costs.
Thus, an analysis just based on a daily cost reduction may be misleading since the
savings due to cost reduction may not return the investment for distributed generation
and energy storage units. Therefore, a detailed techno-economic and life cycle cost
analysis (LCCA) and optimal system design for HEMS-operated households are going
to constitute the subject of future research.
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4. OPTIMAL SIZING OF PV-BESS UNITS FOR HOME ENERGY
MANAGEMENT SYSTEM-EQUIPPED HOUSEHOLDS CONSIDERING
DAY-AHEAD LOAD SCHEDULING FOR DEMAND RESPONSE AND SELF-
CONSUMPTION

Today, selling electricity to the grid has lost its former profitability with reduced feed-
in tariff (FiT) rates. This makes it crucial for prosumers to increase self-consumption
and size their photovoltaic (PV) and battery energy storage system (BESS) units
accordingly. Self-consumption can be increased through demand-side management
(DSM) and an efficient DSM can be achieved using home energy management systems
(HEMSs). Therefore, as its main contribution, this chapter proposes an optimal PV-
BESS sizing model for HEMS-equipped prosumers considering day-ahead load
scheduling-based DSM. Unlike other studies in the literature, the proposed model
takes into account the determination of optimal PV tilt angle, load scheduling of all
types of controllable appliances (time-shiftable, thermostatically controllable, power-
shiftable), consideration of battery degradation, and vehicle-to-home (V2H)
availability in the sizing procedure. First, the mixed-integer linear programming
(MILP)-based model performs demand response (DR) and increased self-consumption
to minimize the daily bill. Second, it simulates one year of HEMS operation and
determines the net present value (NPV) of a PV-BESS configuration over the system
lifetime. Finally, it repeats the same process for each combination of PV capacity-PV
tilt angle-battery number and chooses the combination with the highest NPV as the
optimal design.

The simulations were conducted to find the required PV-BESS capacity for a HEMS-
equipped household with average daily electricity consumption of 37.5 kWh in
Istanbul, Tirkiye. The optimal configuration was found to be 3 kW PV without BESS
at the tilt angle of 10°. A techno-economic sizing comparison was made between
households using and not using HEMS. The NPV of PV-BESS was found to be
significantly higher with HEMS use ($2273) compared with that without HEMS use

($920). Lastly, a sensitivity analysis was performed based on rising electricity prices
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(+25%, +50%, +75%, +100%) and declining battery prices (-25%). The use of BESS
became viable in Tirkiye even with +25% electricity prices or -25% battery prices.

4.1 Introduction

In recent years, with the growing adoption of photovoltaic (PV) systems and falling
PV module costs, countries have begun to phase out feed-in tariffs (FiTs) or reduce
FiT rates [171]. Consequently, the sale of on-site generated renewable energy to the
grid has lost its previously high economic appeal. The decrease in FiT rates has also
had an impact on how PV systems should be sized. Previously, the larger the system
size, the higher the profit from electricity sold to the grid. However, today, reduced
FiT rates make it necessary to increase self-consumption, in which generated
electricity is primarily used to cover domestic demand [6]. In the case of self-
consumption, PV and battery energy storage system (BESS) units should be optimally
sized, and oversizing should be avoided.

To increase self-consumption, prosumers can perform demand-side management
(DSM) by shifting available electrical loads to distributed generation (DG) period
[172]. They can also perform DSM to implement demand response (DR) to take
advantage of time-based rates to pay less for electricity [173]. Taking into account
both features, as well as an ever-increasing number of electrical appliances, the
inclusion of solar batteries, and the widespread use of electric vehicles (EVs), the
management of loads brings a challenge that can be surmounted by the implementation

of home energy management systems (HEMSs) [174].

Today, electricity consumption in buildings accounts for about 40% of the total energy
consumption [119] and the residential sector is responsible for 26.6% of the total
electricity consumption [175]. In this respect, HEMSs not only provide economic
benefits to their users but also contribute to the environment and climate change

mitigation.

DR and increased self-consumption provided by HEMS in a household can
significantly increase NPV of PV-BESS units and reduce component size and
installation cost during sizing. Ultimately, this study aims to develop an optimal PV-
BESS sizing model for HEMS-equipped households to achieve the highest net present
value (NPV) over the life of a system.
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4.1.1 Literature review

In the literature, there are a vast number of studies regarding the sizing of DG and
BESS units for residential applications [176-179]. These studies do not consider the
presence of HEMSs capable of performing DSM for controllable electrical loads,

which can reduce the size of DG-BESS units and increase NPV.

Recently, HEMS studies aiming to lower household electricity bills by providing load
scheduling for demand response and increased renewable self-consumption have
received a lot of attention. Golmohammadi et al. [98] studied load scheduling of time-
shiftable appliances (TSAs) and thermostatically controlled appliances (TCAS) in a
smart home. Ghavzini et al. [100] examined the energy management of electric water
heaters (EWHs) as TCAs and EVs as power-shiftable appliances (PSAs) in a
household taking into account vehicle-to-grid (V2G) and vehicle-to-home (V2H)
capabilities. Paterakis et al. [101] developed a HEMS capable of energy management
of all types of home appliances (TCAs, TSAs, and EVs). Although all these studies
included PV-BESS units, they neglected battery degradation. Shafie-khah and Siano
[123] considered the operation of all types of loads, as well as battery degradation and
thermal comfort in a household. These HEMS studies, with the majority not covered
here, do not address the sizing procedure. The HEMSs mentioned above are tested in
homes with pre-sized DG-BESS units installed. A HEMS of course reduces the daily
bill, but when the HEMS installation in a household is considered from the ground up,

then DG-BESS sizing can be reduced from the very beginning.

There are only a few studies that address the optimal sizing and total life cycle cost
(LCC) assessment of DG-BESS units for households that are equipped with HEMSs
capable of electrical load scheduling for DSM. Hemmati and Saboori [180] evaluated
the presence of HEMS in PV-BESS sizing, which ensures optimal
charging/discharging of batteries. Korjani et al. [181] developed an offline energy
management tool to be used in PV-BESS sizing considering the energy consumption
habits of prosumer households. Zhou et al. [182] investigated the capacity allocation
of PV-BESS units in HEMS operation considering different pricing schemes. Yaldiz
et al. [183] studied the optimal sizing of PV-BESS units considering peer-to-peer
(P2P) energy trading. Khezri et al. [184] determined the optimal capacity of a small-
scale wind turbine (WT)-BESS system for a rule-based HEMS taking into account the

uncertainties of EV, household load, and wind generation. Despite the presence of
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HEMS, electrical load management and scheduling of appliances are not considered
in [180-184]. Erding et al. [185] conducted techno-economic sizing of PV-BESS units
for EV-owner households that are under HEMS operation. Load management of PSAs
is considered but that of TSAs and TCAs is neglected. Tostado-Veliz et al. [186]
performed optimal PV-BESS sizing for smart homes considering the energy
management of TSAs and reliability against DR and grid outages. Bhamidi and
Sivasubramani [187] proposed a two-stage optimization for the sizing of WT-PV-
BESS and the electrical load management of TSAs and EVs in a household. Yet, the
presence of TCAs is neglected. It should be noted that [180-187] did not take into
account battery degradation, which is crucial to the total LCC of the systems.
Mulleriyawage and Shen [188] considered the load management of TSAs and TCAs
and the impact of battery degradation in BESS sizing for households but PV array
sizing is not considered. In all the above-mentioned sizing studies, the optimal PV tilt
angle determination was neglected. It is a crucial element in PV-BESS sizing, which
can vary according to house location, electrical load profile, and DSM. In these studies,
either PVs were not sized, pre-measured array data were used or panels were assumed
to be flat. The summary of the shortcomings of the studies regarding DG-BESS sizing
considering DSM/the presence of HEMS is demonstrated in Table 4.1,

Table 4.1 : Summary of studies on optimal sizing of DG-BESS units considering
DSM/the presence of HEMS.

Load scheduling Sizing 5
attery

Tilt  degradation
angle

Ref.

TSA  TCA EV PV WT  BESS

[180] - — —
[181] - - —
[182] - — —
[183] - — —
[184] - —
[185] - —
[186] | v

[187] | v

[188] | v v - - -
This

study v

NENENEY
|

NN
[
CAULLLNNANN Kl
I
I

78



4.1.2 Contribution

In the light of the reviewed studies, it is seen that, although there are many HEMS- or
PV-BESS sizing-related studies in the literature, only very few of them combine the
two and consider the impact of HEMS-based load scheduling on PV-BESS sizing.
Among them; none consider the modeling and management of all three types of loads
(TSAs, TCAs, PSAs). None addresses optimal PV tilt angle determination in the
presence of a load scheduling-based HEMS. They generally neglect battery

degradation or assume batteries to be replaced after a fixed time duration.
Therefore, the main contributions of this study are as follows:

(1) A comprehensive PV-BESS sizing model is developed for HEMS-equipped
households, which takes into account day-ahead load scheduling-based DR and self-
consumption in the sizing procedure. Unlike the few available studies in the literature,
the proposed model takes into account the scheduling of all types of electrical loads,
the impact of battery degradation, the V2H availability, and the determination of

optimal PV tilt angle in component sizing.

(2) A techno-economic comparison is made between PV-BESS-equipped households
using and not using HEMS. By this means, the effect of using HEMS on the NPV of
PV-BESS systems is investigated.

(3) A sensitivity analysis is performed and the impact of rising electricity prices and
falling battery prices on the PV-BESS sizing of HEMS-equipped households is
investigated.

(4) Optimal PV-BESS configurations in European countries at the same latitude as
Tiirkiye (case location) but with different electricity prices are determined and the local

results are extended to the general.

4.2 Methodology

The main steps of the procedure are summarized in a flowchart as shown in Figure 4.1.

The sizing optimization consists of two stages:

In the first stage,
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With the optimal load scheduling carried out by HEMS, the daily electricity

bill of the smart home is minimized.

In the second stage,

First stage

Second stage

FAT

)

The daily bill minimization is performed for each day of the year and the total

annual electricity bill is calculated.

The net cash inflow is calculated by finding the difference between the annual
bill with and without PV-BESS-HEMS.

The NPV is calculated by taking the difference between discounted cash

inflows and outflows.

The procedure is repeated for all possible configuration combinations of PV

array capacity-battery number-tilt angle.

The NPVs of all possible configurations are determined and then ranked from

highest to lowest. The configuration with the highest NPV is chosen as the

optimal system design.

o]
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Input initial data
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Figure 4.1 : Flowchart of the optimal PV-BESS sizing model for HEMS-equipped
households.
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4.2.1 First stage — Daily load scheduling

The mixed-integer linear programming (MILP) problem is solved by “intlingprog”
solver of MATLAB. The objective function in the first stage is annual electricity bill

minimization performed by HEMS [14]:

Coya =min ) {PSy,- At 20 + PYE, - Ac- A" + PES, - e 277
t (4.1)

PV,2G | . qsell
— P 7¢ - At A5

Daily bill minimization for a specific PV-BESS-PV tilt angle combination of c in year

y and on day d is given in Eq. (4.1). Pgd_t is the total power bought from the grid by
all household appliances (inflexible loads, TCAs and TSAs). P} 2% is the power sold
to the grid by PV. P, and PZ;’, are the power bought from the grid by EV and BESS,
respectively. EV and BESS are assumed to buy electricity at a higher, battery

degradation cost included artificial price (/’1?“3’ +2/4e9) to prevent unnecessary battery
cycles (Eqg. (4.2)). That is, V2H and battery-to-home (B2H) should occur if only the
profit from buying power to utilize in household is greater than the degradation cost
of batteries [125].

k,b b
/11: uy _ Atuy +/'lk,deg

k

/lk,deg — Rep

= T (4.2)

L¥ = Cyck - Cap” - DoD*

For example, if a household needs to buy electricity at on-peak period from 0.25
$/kWh, their EV can perform VV2H if later the EV will be able to buy electricity at a
cheap price from 0.12 $/kWh at off-peak period. Considering that this process
degrades EV battery, and the calculated degradation cost for EV battery is 0.08 $/kWh,
the cost of V2H becomes 0.20 $/kWh, which is lower than 0.25 $/kWh. If this cost
was higher than 0.25 $/kWh, then the optimization model would not permit HEMS to
perform VV2H.

Here, the battery degradation cost is also used to calculate battery replacement cost (as

detailed in Eq. (4.11)). So, instead of periodic replacement, a replacement cost is
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calculated over battery usage which is more accurate than the periodic replacement

method.

Artificial battery degradation cost added buying prices for BESS and EV
(AVP™Y 222 are only used in optimization and should be discluded from the
optimization result later. Therefore, the real bill is recalculated using real buying prices
(AB,buy)

. ;

Cloya=PSer Dt A7 + BS - At- A" + BLS - At - A0 — PyvC 3

- At - A3e |

Céy™ gives the total annual electricity bill of a specific PV-BESS-tilt angle

combination:
camn = Z & (4.4)

4.2.2 Second stage — Calculation of NPV and ranking of system combinations

The objective function in the second stage is to find the project with the highest NPV
among all possible combinations of PV array capacity, battery number, and PV tilt
angle. NPV is calculated by taking the difference between discounted cash inflows and
outflows over a period of time. An investor most of the time chooses a project with the
highest NPV. NPV is calculated as follows:

NPV, = Ci* — cout (4.5)

And the objective function is to find the optimal PVV-BESS-tilt angle combination with
the highest NPV:

max Z NPV, (4.6)
c=1

In Eq. (4.7), CI™ denotes cash inflows resulting from monetary savings over the life of
the project. Monetary savings refers to the difference in the total electricity bill when
PV-BESS-HEMS is used and not used. Here, the bill difference is due to DR, self-
consumption, and electricity sales to the grid in case of PV-BESS-HEMS use.

82



Therefore, C&™ in Eq. (4.4) is calculated two times as ™% and cZ™"*" 1o

Cly
be used in Eq. (4.7).

20 Cann,without Cann,with 4.7)
Cln — .y _ cy
¢ ( (1+r)Y 1 +r)Y

y=1

Yet, the savings are the result of investments and related expenses. C,,; indicates the

cash outflows as shown in Eq. (4.8).
Cout — (initial 4 ~0&M 4 ~Teplacement (4.8)
c C C c

Cash outflows include initial investment, O&M, and replacement cost of components
as shown in Eq. (4.9-4.11). In Eq. (4.9), for a residential application, installation labor
cost is assumed to be fixed regardless of its size. The initial cost of PV depends on its
size. The initial cost of BESS is not included here and is calculated over BESS usage
in Eq. (4.11). It is assumed that inverter size depends on PV size. As a general rule of
thumb, the inverter-to-array size ratio is taken as 0.8 [189]. The novelty of the study is
the consideration of the HEMS operation in the sizing optimization. Therefore, the
initial cost of HEMS is also added.

Ccinitial — Clabor + né’V . (CPV,ini +08- Cinv,ini) + CHEMS,ini (4.9)

In Eg. (4.10), O&M costs are considered only for PV and BESS. HEMS is assumed to
have no O&M cost and the O&M cost of the inverter is assumed to be joint with that
of the PV.

20

nPV . CPV.O&M  , B (B,0&M
comr= ) (= = (4.10)
A+r)yy A+nryy .

y=1

In Eq. (4.11), the replacement cost of the PV array is neglected since project lifetime
and PV lifetime are equal. BESS replacement is handled through BESS use. Inverter

replacement is treated as periodic replacement (10 years due to standard warranty).
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20

20

Linv i
Creplacement — z usegy - A + Z nEV -0.8- CTEP (4.11)
c (1 + T')y (1 +_r)y.Linv

y=1 y=1

4.2.3 Modeling of appliances
4.2.3.1 TSAs

TSAs (clothes dryer, dishwasher, and washing machine) have fixed consumption
patterns and their operation cannot be interrupted once they run [126]. If the vector of
Pt = [pt pi .. pL] shows the fixed power consumption of a TSA, then all

possible scheduling combinations of P* can be represented in a matrix as in Eq. (4.12).

[pi ph P B
Pi=lpé pi let pé‘,‘v’te[ti‘mm,ti’max] (4.12)
pr Pro1 - P2 Di

Among the combinations, only one of them gives the optimal result and the binary
integer vector X' defined in Eq. (4.13) functions as switch control to choose that

optimal column.
Xt =[xl xi,..., xk], Vt € [tbmin, timax] (4.13)

Eq. (4.14) expresses that only one of the elements can be non-zero in X:.

T
xi = z xi =1, X! € {0,1}, V¢ € [timin, timax] (4.14)

t=1

Residents may set a preferred time of operation for a TSA. t&™", -™ma¥ represent the
start and end of the time range, respectively, in which TSA is allowed to operate. The
length of this interval (the difference between t“™" and t“™%¥) cannot be lower than
the running duration of a TSA (Eq. (4.15)).

runt < |ghmn, ghmax) (4.15)

EqQ. (4.16) gives the power consumption of a TSA.
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Pti — pi. Xi,Vt € [ti,min’ti,max] (4.16)

4.2.3.2 TCAs

Two TCAs are assumed to be present in the household, AC, and EWH. For the sake
of simplicity and due to its lower flexibility and low energy consumption, the
refrigerator is categorized as an inflexible load. A simple 1R1C thermal model is used
in the modeling of the EWH tank and house [129-131]. EWH and AC can perform
pre-heating and pre-cooling, respectively, for DR and increased self-consumption.

Also, HEMS can increase AC set point during DR event to perform DR [14].

Eq. (4.17) models the inside hot water/indoor air temperature (Tti'j) in the EWH tank

or house. Here, the outside temperature Tto’j stands for the ambient temperature where
the EWH tank is located or the outdoor temperature outside the house. Thermal
resistance (R’) and thermal capacitance (C/) are specific to the EWH tank/house
envelope. Constant heat flow capacity per time interval (¢’) belongs to the entering
water due to water replacement or the fresh air due to air ventilation. uc, defines the

times of water replacement/air ventilation.

It should be noted that, in the study, air ventilation is assumed to not affect the indoor

air temperature and is therefore excluded for AC operation. Thus, the expressions of

J

TS™ ¢ RV -uc] and ¢/ - RV - uc] takes the value 0 in Eq. (4.17) for AC operation.

Besides, the sign of the decision variable is negative in AC operation to perform

cooling.

_(Tto']+Tten'jC]R]ucg-I_RJCOPJPJxZ)
(1+¢/-Ri-uc))

(T T IR -uc/ + RV - coPT - PT
+ (Tt"" - (( — : ) (4.17)

iLJj
T¢

1+¢/-Ri-uc!
t

—(1+c'j~Rj~uctj)~At
RJ-CJ
-e vt

)

EqQ. (4.18) expresses the upper and lower limits of hot water/indoor temperature
within the EWH tank/house.
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Ti,min,j < T]l,t < Ti,max,j’ Vvt (4.18)
Eq. (4.19) indicates the power consumption of a TCA.

4.2.3.3 PSAs

The PSAs in the household are BESS and EV which are rechargeable and operate
between certain power limits. BESS and EV have similar operations and their models
are constructed as in [128]. Eqg. (4.20) implies that the BESS or EV can discharge
power in the form of B2H (P”*") or V2H (™).

Ptk’ZH — nk,dig : Ptk,dis’ vt (4.20)

Eq. (4.21-4.22) denote that the charging (PZ“" and PY"“") and discharging (P2%** and
PtV'diS) power of BESS and EV cannot exceed their specific charging (R?<" and RV:°")

and discharging (R4S and R""%%) rates.
0 < P" < Roch . xk, vt (4.21)
0 < P9 < RRdis . (1 —xf), vt (4.22)

Eq. (4.23) stands for the state of energy (SoE) of BESS and EV. Eq. (4.24) indicates
that the SoE of batteries is limited between maximum battery capacity and allowed
depth of discharge (DoD).

SoEtk = SOE'ZC_1 + T]k’Ch . Ptk'Ch - At — Ptk'dis <At ,Vt (423)
SOE%™A% . (1 — DoD*) < SoEf < SoEX™*, vt (4.24)

The operation of EV is similar to BESS, except that, while BESS can operate for 24
hours, EV can operate only when it is home. The charge and discharge of EV are
limited between arrival and departure times. Therefore, t (time interval) index between
EQ. (4.20-4.24) is defined as in Eq. (4.25).
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t_{ k=B — Vt>1 (4.25)
T lk=V — vte [t¥T,t9%P]

The initial SoE assignment of BESS and the SoE update on the arrival of EV are
specified in Eq. (4.26-4.27). Also, as stated in Eq. (4.28), the SoE of the EV battery
should be 100% of the battery capacity before the departure.

SoEE = SoEB™ if t =1 (4.26)
SoE} = SoEVmt 4 yV:ch . pY:eh . At — pYdis . At vt € tT (4.27)
SoE! = SoEV™max, ¢ = tdep (4.28)

4.2.4 Tilted PV array model

In the reviewed HEMS-related studies, it was seen that the use of a solar radiation
estimation model for tilted PV arrays was not considered. Either arrays were
considered flat, which did not allow determination of the optimal tilt angle, or pre-
measured data from pre-installed arrays were used, which is a difficult method to

implement in real life due to its site-specific nature.

Therefore, this study uses an isotropic solar radiation estimation model (Liu and
Jordan) to estimate total global solar radiation on a tilted PV panel [132]. By using a
solar model, the proposed PV-BESS sizing model can be used in every part of the
world by entering solar radiation, latitude, and temperature information of a location
that can be accessed easily. After estimating the solar radiation on a tilted panel, the
estimation data can be converted into a useful PV power output based on the
specifications of a PV system.

Eq. (4.29-4.37) describe the estimation of solar radiation on a tilted plane using the

Liu and Jordan model.

~  [360(n + 284) (4.29)
6 = 23.45sin [T
w = arccos[— tan(d) tan(¢)] (4.30)
w' = min{w, arccos[— tan(d) tan(¢ — s)]} (4.31)
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24 360 .
H, = ?ISC (1 + 0.033 cos( 36:)) (cos((p) cos(6) sin(w) (4.32)
+ ﬁsm((p) sm(8))
Kt =H/H, (4.33)
H, = H(1 — 1.13K) (4.34)
cos(¢p — s) cos(8) sin(w') + %sin(cp — 5) sin(9) (4.35)
Rb =
cos(¢) cos(8) sin(w) + sm(<p) sin(6)
R=R, (1 B %) +H, <1 +2clc;s(s)> B <1 - czos(s)> (4.36)
H, = RH (4.37)

Eqg. (4.38) describes the estimation of the cell temperature which has a direct influence

on the array power output.

4.
thell Tout S - HNOCT (Tcell ,NOCT __ Tamb NOCT) ( 38)

t

Eqg. (4.39) gives the power output calculation of the PV array. It should be noted that
the PV system is assumed to be always operating at its maximum power point.

Ht (4.39)
A d
PtPV pro YPVdPV ( STC) [1 CZP . (thell Tcell,STC)]

t

4.2.5 Power balance

The power balance in the HEMS-operated household is summarized in Figure 4.2
(without showing the AC to DC and DC to AC conversion). Eq. (4.40) describes the
power balance of HEMS. The power drawn from the grid, used PV power, and power
transferred from PSAs to home in the form of B2H and V2H is equal to the power

consumption of the household appliances and charging power of PSAs at time t.
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K
PtG + PtV'G + PtB’G + PtPV,used — Pg{ + Z Ptk’Ch,Vt (4.40)
k=1

In Eq. (4.41), P! is the power consumption of household appliances at time t (TSAs,
TCAs and inflexible loads) except BESS and EV (PSAS).

1 ]
PH =P™ + Z Pl + Z P/, vt (4.41)
i=1 j=1

In Eq. (4.42), PV*¢? is the PV power supplying power to household appliances,
BESS and EV at time t.

PtPV,used _ PtPV,ZH n PtPV,ZB n PtPV,ZV’ vt (4.42)

Eq. (4.43) states that PV production at time t is used for self-consumption and energy

storage. The excess PV power is exported to the grid.

PtPV,prod — PtPV,used + PtPV'ZG (4_43)

- “I Rooftop PV

Grid f
(===
PtPV'ZG PtPV prod
PtPV used
A 4
PY,2B
PtB:G - - PtB,Ch
PV|2V
,c BESS I Vo
P, I E'E: A
EV
G B,2H V,2H PW,2H
Py P, P, 1 P; I
P} P/ P
I
o [ [@
TSAs TCAs Inflexibles

Figure 4.2 : Representation of the power balance in the HEMS-equipped household.
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4.3 Input Data

A day is discretized into 144 time slots and the time-window for the daily load
scheduling optimization is 10 minutes (0.167 h). The hypothetical house is located in
Istanbul, Tiirkiye, at the latitude of 41.01°. The climatic data in 10 minutes resolution
of the case study location (Figure 4.3) are obtained from TARBIL [136]. 250 W
Canadian-Solar-CS6P-250P polycrystalline panels of which temperature coefficient of
power is -0.424 %/°C and average nominal operating cell temperature is 43.6 °C are
used in the simulations [137]. PV derating factor is assumed to be 90%. The default
ground reflectance is 0.2. Tiirkiye stays in the Northern Hemisphere and therefore the

panels are oriented towards the south.
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Figure 4.3 : Climatic data of the case study location (Istanbul, Tiirkiye).

Thermal properties and technical specifications regarding AC and EWH are given in
Table 4.2. Thermal properties of a 125 m? one-story household are used [143]. An
inverter AC is considered of which rated power is 2.21 kW [148]. The initialized
thermostat set point is 22.0 °C and inverter AC works within a dead band of +0.1 °C.
During on-peak hours (between 17:00 and 22:00) HEMS increases the set point by 1.0
°C and it becomes 23.0 °C to provide DR. Thermal properties of EWH are adopted
from [149]. EWH size is not stated in [149] and is estimated as 200 liters for a 3 kW
EWH [150]. A default COP is used as 1.0 [151]. Residents are assumed to take a

shower approximately three times a day and each shower is assumed to last for 10
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minutes. Residents shower daily at 06:10, 14:00 and 18:30. The temperature inside the
EWH tank is constrained between 45 and 60 °C to avoid bacterial growth and scalding
[152]. The monthly inlet water temperature values of Istanbul are given in Table 4.3

[190]. It is assumed that inlet water temperature is constant throughout the month.

Table 4.2 : Thermal properties and technical specifications regarding AC and EWH.

Parameter House EWH tank
Size 125 m? 200 liters
Thermal capacitance (kJ/°C) 12312 1770
Thermal resistance (°C/kW) 4.87 223
AC EWH
Rated power (kW) 2.21 3.0
Coefficient of performance (COP) 3.21 1
Heat flow capacity per time interval i 0.659
(KWI/K) '
Minimum inside temp. (°C) 21.9* 45
Maximum inside temp. (°C) 22.1* 60

*The HEMS increases AC set point from 22 °C to 23 °C during DR event (between 17:00 and 22:00).

Table 4.3 : Monthly inlet water temperatures in Istanbul.

Month Temp. (°C) Month Temp. (°C)
January 10.2 July 21.9
February 9.0 August 22.9

March 9.5 September 22.4

April 11.8 October 19.8

May 15.4 November 16.9
June 19.2 December 13.2

The BESS and EV use lithium-ion batteries (Table 4.4). Lifetime throughput of
batteries in kWh are measured for specific DoD, capacity, and lifetime in cycle. Then,
battery degradation cost is calculated through lifetime throughput, round-trip
efficiency, and battery replacement cost as shown in Eq. (2) [142,191,192]. The BESS
is in operation all day long. The initial and final SoE of the BESS are 0. The batteries
are charged and discharged during the day according to the daily bill minimization.
After a full day’s operation, the BESS starts the next day with empty batteries. The
maximum SoE that BESS can reach depends on the number of batteries and the
nominal capacity. The EV is in operation between 18:00 (EV arrival) and 08:00 (EV
departure). The initial SoE of the EV on arrival is assumed to be 16.5 kWh (68.75%)
after a daily 50 km of travel which roughly equates to 7.5 kWh of consumption
(31.25%) [193]. The SoE should be 24 kWh (100%) again before departure.
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Table 4.4 : Technical specifications of BESS (KiloVault) and EV (Nissan LEAF)
batteries [141,142,192-194].

Parameter BESS EV
Nominal capacity (kWh) 2.5 24
Charging rate (kW) 2.0 3.3
Discharging rate (kW) 2.0 3.3
Charging efficiency (%) 95 95
Discharging efficiency (%) 95 95
Round-trip efficiency (%) 90 90
DoD (%) 80 80
Battery lifetime in cycles 5000 2000
Lifetime throughput (kwWh) 10000 38400
Battery replacement cost ($) 2500 3800
Bat. degradation cost ($/kWh) 0.105 0.104
Initial SOoE (KWh) 0 16.5
Final SoE (kWh) 0 24
Operating time interval 00:00 — 00:00 18:00 — 08:00

The daily electricity consumption of the household is 37.5 kWh on average, depending
on the use of different appliances on different days of the week. Load profiles of TSAs
(clothes dryer, washing machine, and dishwasher) are demonstrated in Table 4.5. Once
initialized, the dishwasher, washing machine, and clothes dryer run for 50 minutes, 70
minutes, and 60 minutes, respectively. The data are derived from [82,155]. The
residents can set their preferred operating times of TSAs on the HEMS interface as
previously expressed in Eq. 15. In this study, it is assumed that residents allow HEMS

to shift the operation of TSAs to any moment of the day.

Table 4.5 : Operating stages of TSA cycles.

Power (kW)
Time step Dishwasher Wash. machine Clothes dryer
1 2.1 1.8 3
2 2.1 1.8 3
3 0.15 0.3 0.15
4 2.1 1.8 3
5 2.1 1.8 0.15
6 - 0.15 0.15
7 - 0.15 -

Inflexible load demand consists of a kettle, coffee maker, two PCs, two televisions,
iron, toaster, hairdryer, microwave, refrigerator, lights, electric stove, cooker hood,
and refrigerator. The inflexible load profile is based on both the data collected from
references [134,158-160] and the authors' usage habits. Users can specify separate
inflexible load profiles for weekdays and weekends, or different load profiles
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according to the seasons. In this study, it is assumed that the inflexible load profile of
the household remains the same throughout the year. The weekly use of flexible
appliances in the household is demonstrated in Table 4.6. It is assumed that the weekly
pattern applies to the whole year. The dishwasher runs five and the washing machine
and clothes dryer run two times a week. The EV is charged every day except Sunday.
The EWH and AC operate every day. Yet, since AC operation depends on outdoor

temperature, it does not operate on cold days.

Table 4.6 : Residents' weekly manageable appliance usage plan.

Appliance Mon Tue Wed Thu Fri Sat Sun
Dishwasher v v v v - - v
Wash. machine - v - - v - -
Clothes dryer - v - - v - -
EV v v v v v v -
AC* v v v v v v v
EWH v v v v v v v

*depending on the outdoor temperature.

Residential TOU rates consists of three tiers in Ttirkiye as off-peak (0.076 $/kWh from
22:00 to 06:00), shoulder (0.122 $/kWh from 06:00 to 17:00) and on-peak (0.179
$/kWh from 17:00 to 22:00). Turkish residents can sell surplus electricity at the price
of 0.061 $/kWh. The prices are presented in Table 4.7 [195].

Table 4.7 : Residential electricity prices.

Rate Duration Price ($/kWh)
Flat All-day 0.120
TOU — Shoulder 06:00 —17:00 0.122
TOU — On-peak 17:00 — 22:00 0.179
TOU — Off-peak 22:00 — 06:00 0.076
FiT All-day 0.061

93



Component price data are collected through market research. Relevant price and
lifetime values of system components are given in Table 4.8. Since HEMSs have not
been commercialized enough yet, existing smart thermostats and energy monitoring
systems have been considered to set the HEMS price. The O&M cost for PV and
inverter is selected to be 2% of their initial cost as a rule of thumb. The O&M cost for
BESS is assumed to be 1% of its initial cost [196]. Battery lifetime throughput is
measured for a specific DoD of 80% as shown in Eg. (2). Soft costs include the cost
of all associated permits and all overheads including marketing, sales, and

administrative costs associated with the system.

Table 4.8 : Price and lifetime values of PV, BESS and inverter.

Parameter Value
Installation and soft costs ($) 800
PV array ($/kW) 600
Inverter ($/kW) 500
Li-ion battery - 2.5 kWh ($) 1000
HEMS ($) 200
PV array lifetime (yr) 20
Inverter lifetime (yr) 10
Battery lifetime throughput (kWh) 10000
Project lifetime (yr) 20

O&M of PV+inverter ($/kW-year)
O&M of battery ($/year)

Real interest rate (%)

2% of PV+inverter price
1% of battery pack price
2

In the simulations PV array size ranges from 1 to 7 kW with 1 kW increments, the
number of 2.5 kWh batteries ranges from 0 to 4, and the PV tilt angle ranges from 0 to
70° with 10° increments (Table 4.9). The sizing model, therefore, simulates a total of
280 combinations, determines the NPV of each system combination, and ranks them
from the highest to the lowest. It should be noted that the size range can be increased
and the size step can be reduced even more. Here, the resolution is kept low to facilitate

the interpretation of the results and to demonstrate the capabilities of the model.
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Table 4.9 : Sizing range of PV-BESS systems for HEMS-equipped households.

Size range Size step
PV 1-7 kW 1 kw
BESS 0-10 kWh 2.5 kWh
PV tilt angle 0-70° 10°

4.4 Simulation Results

4.4.1 Optimal configuration at current electricity and battery prices

The NPVs of all the PV-BESS combinations are calculated by taking into account the
savings before and after installing PV, BESS and HEMS, and considering the
associated initial investment, O&M, and replacement costs. As a result, the optimal
configuration is found as 3 kW PV —no BESS — 10° tilt angle for the HEMS-operated
household at the current electricity and battery prices in Tiirkiye (Table 4.10).

As seen in Table 4.10, increasing PV size increases NPV, but only to some extent.
After a specific array size, the self-consumption rate starts to drop. And since the
selling price is very low today, the surplus electricity which is sold to the grid does not
provide enough revenue to cover the investment that can be made for increased PV

capacity.

Table 4.10 also shows that the inclusion of batteries reduces the NPV of systems in
Tiirkiye. This is due to the currently high battery prices and low electricity prices in
the country. The bill savings provided by BESS cannot exceed the investment made in

it. Therefore, battery storage is found to be not profitable in Tiirkiye as of today.

Table 4.10 : NPV (8$) of PV-BESS systems for the HEMS-equipped household
(current electricity and battery prices).

Number of batteries (x2.5 kWh)

PV (kW) 0 1 2 3 4

1 1425 991 489 -35 -1078
2 1999 1660 1156 620 -465
3 2273 2022 1527 963 -237
4 2248 2057 1598 999 -250
5 2065 1895 1482 871 -431
6 1809 1642 1241 625 -687
7 1514 1344 951 315 -1008
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The daily bill of the smart home with and without using the optimal configuration is
shown in Figure 4.4. The annual average of the daily bill is $4.10 without any
configuration (base case) and $2.78 with 3 kW PV — no battery — HEMS configuration
(optimal case), with a reduction of 33%. The increased daily bill on summer days,
which reaches a maximum of $5.25, is due to AC usage. The minimum daily bill is
$3.18 and is for winter Sundays when there is no air conditioning and the EV does not
leave the house. In the optimal case, the daily bill varies between $4.08 and $1.20. The
annual electricity bill of the household is found to be $1510 without any configuration.
When the household is equipped with PV and HEMS (no BESS due to low feasibility),
the annual electricity bill reduces to $1008.
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Figure 4.4 : The daily electricity bill for one-year period with and without PV-
HEMS installation.

The net and cumulative cash flows are presented in Figure 4.5. Cash inflow consists
of savings, which is the difference ($502) in the annual bill before ($1510) and after
($1008) using PV — HEMS. And the cash outflow consists of the initial investment of
a PV system, which is $4000 ($1800 PV array + $1200 inverter + $800 labor and soft
costs + $200 HEMS) and O&M costs ($66) and replacement cost of the inverter. The
cash inflows and outflows are susceptible to the real interest rate of 2%.
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Figure 4.5 : The net (top figure) and cumulative (bottom figure) cash flow for the
optimal configuration for the HEMS-equipped household (3 kW PV — no BESS).

The load profile of the HEMS-equipped household for the optimal configuration (3
kW PV — no BESS) in winter and summer periods is shown in Figure 4.6. January 9
and July 24 are chosen as sample days. Both these days coincide with Tuesday, when
all devices are operational, as stated in Table 4.6. In this way, it can be seen how the

HEMS schedules all manageable appliances.

HEMS shifts EV charging to off-peak hours on both days. On January 9, the PV
generation is very low and all the generated energy is self-consumed without any
injection into the grid. Part of the EWH heating demand is covered by this generation.
TSAs are shifted to the off-peak period.
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On July 24, self-consumption is maximized by EWH pre-heating, AC pre-cooling, and
dishwasher running during the PV generation period. Clothes dryer and washing
machine operation are not shifted to the PV generation period as the surplus generation
can only cover a very small fraction of their power consumption. Instead, they benefit

from lower electricity prices of the off-peak period and provide DR.

Residents shower daily at 06:10, 14:00, and 18:30. For the first shower, on both days,
EWH pre-heats before 6:00 while it is still an off-peak period. For the second shower,
on both days, EWH uses PV power before 14:00. For the third shower, on July 24, the
energy for the use of EWH is supplied from PV via pre-heating. And on January 9 the
energy is supplied by the grid, taking advantage of lower electricity prices the shoulder

period which are cheaper than the prices of the on-peak period which starts at 17:00.
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Figure 4.6. The load profile of the HEMS-operated household with the optimal
configuration (3 kW PV —no BESS — 10° tilt angle).
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4.4.2 Impact of tilt angle on PV-BESS sizing for HEMS-equipped households

The sizing model not only sizes the required PV-BESS capacity but also determines
the optimal tilt angle. The optimal angle for the entire annual period was found to be
10° for the 3 kW — no BESS configuration.

The change in the monthly bill of the HEMS-equipped house according to different
tilt angles is shown in Figure 4.7. In winter, the highest power output and therefore the
lowest bill is achieved at the angle of 20°. In summer, the highest output and the
highest bill are achieved at the angle of 0°. It can be seen that the changes in tilt angle

significantly affect the PV power output on summer days, but have a minor effect on
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Figure 4.7 : The monthly electricity bill of the HEMS-equipped household with the
optimal configuration (3 KW PV — no BESS) for different PV tilt angles.

The annual PV generation and annual electricity bill are shown in Table 4.11. As seen,
the lowest annual electricity bill is achieved at the angle of 10°. The annual bill change
is very low between 0° and 20°, and therefore, it can be concluded that there is no need
to be very sensitive in the selection of the tilt angle for HEMS-operated prosumer
households. If this was a PV power plant and all the produced energy was injected into

the grid, then the sensitivity in the tilt angle could have a higher impact.

Table 4.11 : Annual electricity bill and PV production of the HEMS-equipped
household for different tilt angles (3 kW PV —no BESS).

Tilt angle (°) 0 10 20 30 40 50 60 70
Annual PV prod. (kWh) 3529 3537 3502 3424 3305 3148 2957 2737
Annual electricity bill ($) 1009 1008 1012 1019 1029 1044 1062 1083
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4.4.3 Techno-economic comparison of PV-BESS with and without HEMS

The impact of HEMS use on the NPV of PV-BESS units can be better understood
when a comparison is made between households using and not using HEMS.

Therefore, different case scenarios are created.

Case A represents a household with HEMS (examined in detail in Sections 4.2 and
4.3) and Cases B, C and D represent households without HEMS. The residents in each
case have different levels of DSM awareness, decreasing from A to D. The residents
in Case A have the highest DSM awareness since they use HEMS. The residents in
Case B do not use HEMS but still have high DSM awareness and try to maximize PV
self-consumption by running appliances during the solar generation period. On the
other hand, the residents in Case C and D do not care much about DSM and run most
of their electrical appliances outside of the solar generation period despite having

rooftop PV. The DSM awareness level of the users is explained in detail in Table 4.12.

vV* indicates that the relevant appliance in the household is shifted optimally by
HEMS. vV indicates that the appliance is shifted manually by users either to the solar

generation period or to the low price period. v indicates that the appliance is manually

shifted by users but partially, which means, the appliance either operates during the

shoulder period or some part of it operates at advantageous hours and some at
disadvantageous hours. For AC, vV and Vv indicate that the residents manually

decrease the set point level during on-peak hours. — indicates that the appliance is not

shifted at all and operates during on-peak hours.

Table 4.12 : Hypothetical DSM awareness level of households based on load
shifting status of manageable loads.

DSM awareness (Case) Very high (A) High (B) Medium (C) Low (D)

Dishwasher vV* vV vV vV
Washing machine V* vV v
EV vV* v v
AC vV* v v -
EWH VV* vV v -
Clothes dryer VAVA vV - -

Vv V*: Shifted by HEMS, v/ v: Shifted manually, v: Partially shifted manually, —: Not shifted
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The cases examined and their results are given in Table 4.13. The load profiles of the
households of all cases are shown in Fig. 8 over a sample day (Tuesday, March 1). It
should be noted that many different cases can be formed. Nevertheless, the cases

reviewed here are sufficient to demonstrate the impact of HEMS use.

Table 4.13 : Techno-economic comparison of PV-BESS systems for households

with and without HEMS.
Case A B C D
HEMS use Yes No No No
DSM awareness Very high High Medium Low
Optimal configuration 3kWPV - 4kWPV- 4kWPV- 2KWPV -

no BESS noBESS noBESS  noBESS

Viable tariff TOU TOU Flat Flat
(Sosol)f-consumption rate 93 68 63 69
Cash outflow ($) -6064 -7551 -7551 -4176
Cash inflow ($) 8336 8472 6796 3006
NPV (3) 2273 920 -755 -1167

As seen in Figure 4.8, in Case A, the HEMS maximizes the PV self-consumption. It
shifts the TSAs to the off-peak period to take advantage of low electricity prices and
uses nearly all solar generation to cover the load demand of water heating and
inflexible loads during midday. Just a very little portion of the generated electricity is
sold to the grid. On the other hand, in Case B, C, and D, a larger portion of solar
generation is sold to the grid. As can be seen in Table 4.13, this causes the NPV to
decrease because the FiT rate is low, that is, it is not very profitable to sell power to
the grid and the PV investment cannot pay itself back. In addition, the ability of HEMS
to heat water in accordance with the form of solar production significantly increases
the self-consumption in Case A. In the absence of HEMS, solar generation can only

meet a certain portion of the EWH demand.
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Figure 4.8 : The load profile of households with and without HEMS use on March 1
(DSM awareness decreases from A to D).

The simulations showed that the residents in cases C and D should use flat tariff instead
of TOU, as their electricity consumption during the on-peak period is too high and
they do not shift enough loads to the off-peak period or the solar generation period.
For Cases C and D, the higher electricity price of the TOU scheme during the on-peak
period is a disadvantage. For the non-HEMS case, PV-BESS sizing was performed for
both TOU and flat tariff, and the NPV values for the two tariff cases were compared.
It was found that it would not be economically viable to switch from flat tariff to TOU
for these residents unless a more efficient DSM is implemented, as in Cases B and A.
The economically viable tariff schemes for different DSM awareness levels are shown
in Table 4.13.

The use of HEMS reduced the required PV size by increasing self-consumption and
shifting available loads to the off-peak period. In Case A, the optimal configuration
was found to be 3 kW PV, while in Case B and C, the optimal configurations were

found to be 4 kW PV as more devices were running during the solar generation period
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in these households. In Case D, the optimal configuration was 2 kW PV as the load

demand is very low during the solar generation period in the household.

Today, with the reduced FiT rates negative NPV for PV systems is not rare. For
example, in the USA, in 33 of 50 states break-even point cannot be reached and the
NPV of PV systems stays negative [34]. In Cases C and D, the NPVs are found to be
negative (Table 4.13), meaning that the savings from the PV installation cannot meet
the initial investment. The low savings are due to cheap electricity prices and low FiT
rates in Tirkiye. Yet, in Case A, it is seen that the use of HEMS makes PV-BESS
investments more feasible and NPV increases significantly as it maximizes the savings
due to optimal load scheduling. This is one of the main findings of the study. The
savings are greater when HEMS is used as it significantly increases self-consumption

and shifts required loads to the cheap electricity period.

4.5 Sensitivity Analysis

4.5.1 Optimal configurations at varying electricity and battery prices

In the previous section, it was determined that it is not possible to include BESS in a
rooftop PV system at current electricity and battery prices in Tiirkiye, and the optimal
configuration was obtained with a PV-only system. Yet, BESSs can become applicable
in different conditions. For this reason, a sensitivity analysis is performed for taking
into account the rising electricity prices and falling battery prices in PV-BESS sizing.
The reasons for choosing these two parameters and neglecting others are listed as

follows:

v' Today, especially after the commercialization of EVs, lithium-ion battery
prices have entered a downward trend and are expected to decrease further in
the future [196,197]. In addition, purchase subsidies and tax deductions can be
applied for these units to encourage battery storage, as is already practiced in
some countries such as Australia [176].

v Residential electricity prices have increased in the last decade (more than 25%
in the EU) [198]. Therefore, the scenario of an increase in electricity prices is
included in the sensitivity analysis. Another reason is that electricity prices in
Tiirkiye are low (one of the lowest in Europe), so the results in Section 4 based
on these prices may not reflect the situation in countries with higher electricity

103



prices. Therefore, this case gives an idea about the possible PV-BESS sizing
that can be implemented in countries such as Greece, Croatia, Romania,
Portugal, Spain, Italy, and France (southern part) that have similar solar
radiation to Tiirkiye but have higher electricity prices. In these countries, unlike
in Tirkiye, BESSs can become viable due to the increased bill savings which
can cover the battery investment.

Although the change in the initial investment cost of PV is generally taken into
account in sensitivity analysis in such studies, the initial investment cost of
rooftop PV systems has become quite stable in recent years [199]. Thus, the
change in PV initial investment cost is not considered in the sensitivity
analysis.

The change in the electricity sales price to the grid was not taken into account
as well, since selling prices/FiT rates have decreased significantly today and
lost their previously high impact and instead, increasing the self-consumption

has gained importance [72].

The cases examined in the sensitivity analysis are +25%, +50%, +75% and +100%

electricity prices and -25% battery prices. The NPV results are shown in a heatmap in

Table 4.14. As seen, the use of BESS becomes viable with reduced battery prices and

increased electricity prices. Even +25% electricity prices or -25% battery prices make
the use of BESS viable in Tirkiye.

In the case of -25% battery prices, the optimal configuration becomes 4 kW
PV - 2.5 kWh BESS.

In the case of +25% electricity prices, the optimal configuration becomes 5 kW
PV -5 kWh BESS.

In the case of -25% battery prices with +25% electricity prices, the optimal
configuration becomes 5 kW PV — 7.5 kWh BESS.

In the cases of +50% electricity prices, +50% electricity prices with -25%
battery prices, +75% electricity prices, and +75% electricity prices with -25%
battery prices, the optimal configuration becomes 6 kW PV — 7.5 kWh BESS.
In the cases of +100% electricity prices and +100% electricity prices with -
25% battery prices, the optimal configuration becomes 7 kW PV — 7.5 kWh
BESS.
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Table 4.14 : NPV (8$) of PV-BESS systems for the HEMS-equipped household at
different electricity and battery prices.

Number of batteries (x2.5 kWh) Number of batteries (x2.5 kWh)

PV (kW) 0 1 2 3 4 PV (kW) 0 1 2 3 4

Case 1: Current electricity prices and current battery prices Case 2: Current electricity prices and -25% battery prices
1 1425 991 489 -35 -1078 1 1425 1425 1356 1267 658
2 1999 1660 1156 620 -465 2 1999 2093 2024 1921 1270
3 2273 2022 1527 963 -237 3 2273 2456 2395 2264 1498
4 2248 2057 1598 999 -250 4 2248 2491 2465 2300 1485
5 2065 1895 1482 871 -431 5 2065 2329 2349 2172 1304
6 1809 1642 1241 625 -687 6 1809 2075 2109 1927 1048
7 1514 1344 951 g5 -1008 7 1514 1777 1819 1616 727

Case 3: +25% electricity prices and current battery prices Case 4: +25% electricity prices and -25% battery prices
1 2454 2345 2151 1930 1060 1 2454 2779 3018 3231 2795
2 3616 3602 3407 3170 2247 2 3616 4036 4274 4471 3982
3 4282 4425 4271 4016 2954 3 4282 4859 5138 5317 4689
4 4472 4731 4655 4388 3301 4 4472 5165 5523 5689 5036
5 4401 4726 4741 4483 3344 5 4401 5160 5609 5784 5079
6 4238 4577 4620 4381 3248 6 4238 5011 5487 5682 4983
7 4018 4358 4420 4166 2279 7 4018 4792 5287 5467 4766

Case 5: +50% electricity prices and current battery prices Case 6: +50% electricity prices and -25% battery prices
1 3482 3698 3812 3895 3198 1 3482 4132 4680 5196 4933
2 5212 5545 5657 5720 4960 2 5212 5977 6524 7021 6695
3 6268 6829 7015 7070 6146 3 6268 7262 7882 8371 7881
4 6672 7403 7712 7778 6852 4 6672 7837 8580 9079 8588
5 6723 7556 7999 8094 7119 5 6723 7990 8866 9395 8854
6 6652 7510 7996 8134 7181 6 6652 7944 8863 9435 8916
7 6506 7370 7886 8013 7068 7 6506 7804 8754 9314 8803

Case 7: +75% electricity prices and current battery prices Case 8: +75% electricity prices and -25% battery prices
1 4510 5052 5474 5859 5335 1 4510 5486 6341 7160 7070
2 6809 7487 7907 8269 7672 2 6809 7921 8774 9570 9407
3 8254 9231 9757 10121 9335 3 8254 9665 10625 11422 11070
4 8871 10074 10767 11165 10402 4 8871 10508 11635 12466 12137
5 9044 10384 11255 11703 10892 5 9044 10818 12122 13005 12627
6 9065 10441 11370 11885 11112 6 9065 10875 12238 13186 12847
7 8993 10380 11350 11859 11102 7 8993 10814 12218 13160 12837

Case 9: +100% electricity prices and current battery prices Case 10: +100% electricity prices and -25% battery prices
1 5539 6405 7136 7824 7473 1 5539 6839 8003 9125 9208
2 8407 9427 10157 10819 10385 2 8407 9863 11025 12120 12120
3 10280 11749 12568 13174 12526 3 10280 12183 13435 14475 14261
4 11252 13043 14070 14736 14070 4 11252 13476 14918 16038 15803
5 11752 13697 14915 15613 14903 5 11752 14130 15783 16915 16637
6 11936 13984 15316 16082 15405 6 11936 14418 16184 17383 17140
7 12035 14068 15465 16283 15611 7 12035 14502 16333 17584 17335

The load profiles of the HEMS-equipped households for all electricity and battery
price cases are demonstrated in Figure 4.9 over a sample summer Tuesday. As seen,
BESS is present in all cases except for Case 1. In Case 1, the power is drawn from the
grid during the entire on-peak period. In Case 2 and 3, a part of the on-peak demand
is met from the grid. In Cases 4-10 all the on-peak demand is covered by the battery.
The use of BESS becomes more and more viable as electricity prices increase or
battery prices decrease. It is seen that as electricity price increases, PV size increases.
This is to be expected because when the electricity price is high, the most important

thing is to buy as little electricity from the grid as possible.
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In Case 1 and 2, where there is no battery and the electricity price is low, the optimal
tilt angle is 10° whereas in Cases 2-10, where a battery exists and the electricity price
increases, the optimal tilt angle is 20°. This is because the PV output is maximized in
winter at the tilt angle of 20° and it is more beneficial that this maximized production

Is stored in BESS to meet load demand during the on-peak period.
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Figure 4.9 : Load profile of HEMS-equipped household for optimal configuration
for all electricity and battery price cases (Summer period, July 24).

V2H occurs in all cases except Case 1. The reason for the availability of V2H in other
cases is the decrease in the battery price for Case 2, and the decrease in both the battery
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price and the increase in the electricity prices for Cases 3-10. In cases where V2H
occurs, the household does not buy electricity at a high price. Instead, the EV injects
power to the household at on-peak hours and then recharges the battery at off-peak
hours. When V2H occurs, the sum of the off-peak electricity price and battery

degradation cost of EV is lower than the on-peak electricity price.

The charge and discharge scheduling of BESS and EV batteries is explained in detail
in Figure 4.10 over a sample graph, which belongs to Case 3 (5 kW — 5 kWh BESS)
where BESS exists. During the day, BESS is charged by the PV to be discharged
during the on-peak period. The reason for the intermittent discharges during the day is
that the consumption at these moments is higher than the PV production. As can be
seen, part of the household load demand during on-peak hours is supplied by the EV
battery in the form of V2H. This is because the discharge rate of the BESS battery is
2 kKW, which cannot cover the whole demand. Therefore, EV supplies the rest of the
on-peak demand.
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Figure 4.10 : Charge/discharge scheduling of BESS and EV batteries as a sample
(Summer period, July 24, Case 3 (5 kW PV —5 kWh BESS).

The detailed economic results of the optimal configurations for all electricity and
battery price cases are presented in Table 4.15. As seen, the NPV of PV-BESS units
increases as the electricity price, and therefore the bill savings that PV-BESS
investment can provide increases. This also means that the use of HEMS can provide

a higher NPV increase when electricity prices are high.
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Table 4.15 : Detailed results of optimal PV-BESS configurations for HEMS-
equipped households for all electricity and battery price cases.

0&M Cash Cash

Case Elgc. Battery PV BESS  Tilt Initial cost Replace. outflow inflow NPV
price price (kW)  (kwh)  (°)  cost($) $) cost ($) $) $) (%)
1 Current  Current 3 - 10 -4000 -1079 -984 -6064 8336 2273
2 Current -25% 4 25 10 -5750 -1562 -1741 -9053 11544 2491
3 +25% Current 5 5 20 -8000 -2126 -2784 -12909 17651 4741
4 +25% -25% 5 7.5 20 -8250 -2167 -2927 -13343 19127 5784
5 +50% Current 6 7.5 20 -10000 -2649 -3682 -16332 24466 8134
6 +50% -25% 6 7.5 20 -9250 -2526 -3255 -15031 24466 9435
7 +75%  Current 6 7.5 20 -10000  -2649 -3683 -16332 28217 11885
8 +75% -25% 6 7.5 20 -9250 -2526 -3255 -15031 28217 13186
9 +100%  Current 7 7.5 20  -11000  -3009 -4011 -18020 34303 16283
10 +100% -25% 7 7.5 20  -10250  -2886 -3583 -16719 34303 17584

4.5.2 Comparison of examined cases with other countries

The cases examined in Section 5.1 can give an idea about the required PV-BESS
configurations for HEMS-equipped households in several major European cities that
are located in the same solar belt as Istanbul (Tirkiye), such as Porto (Portugal),
Barcelona (Spain), Marseille (France), Rome (ltaly), Thessaloniki (Greece), Split

(Croatia) and Bucharest (Romania).

The household electricity prices and sell-back prices in these countries are given in
Table 4.16. Increasing electricity price cases for Tiirkiye in Section 5.1 coincide with
the current electricity prices of these countries. The form of the TOU scheme can
slightly differ, but in principle, on-peak and off-peak hours are quite the same in each
country. A few years ago sell-back rates could make a difference, but today they have
fallen in most countries, and instead, self-consumption has gained importance. Here,
Bulgaria does not match any of the cases due to the currently favorable FiT rates in
the country (0.13 — 0.15 $/kwh) [200,201].

The cities located in the same solar belt with the selected location and the
corresponding cases are highlighted on the Global Solar Atlas [202] in Figure 4.11.
According to the results, 7 kwh PV — 7.5 kWh BESS configurations for HEMS-
equipped households can become viable in Spain, Italy and Portugal, 6 kWh PV — 7.5
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kWh configurations in France and Greece, and 5 kW PV —5 kWh BESS configurations

in Romania and Croatia.

Table 4.16 : The household electricity prices and sell-back prices in the countries
that are located in the same solar belt as Tiirkiye.

Country Electricity price Sell-back price Corresponding case
($/kWh) [198] ($/kWh)
Tiirkiye 0.12 0.06 Base
Bulgaria 0.12 0.13-0.15[201] None*
Croatia 0.15 0.09 [203] +25% elec. price
Romania 0.16 0.06 [204] +25% elec. price
Greece 0.18 0.09 [205] +50% elec. price
France 0.22 0.07 - 0.12 [206] +75% elec. price
Italy 0.24 0.06 — 0.07 [207] +100% elec. price
Portugal 0.24 0.05 [208] +100% elec. price
Spain 0.25 0.06 [209] +100% elec. price

*Due to the high FiT rate that does not promote self-consumption.

Sign Corresponding case Elec. price ($/kWh) Optimal configuration
O Current elec. prices ~0.12 3 kW PV — No BESS
@) +25% elec. prices ~0.15 5 kW PV -5 kWh BESS
O +50% elec. prices ~0.18 6 kW PV — 7.5 kWh BESS
0] +75% elec. prices ~0.21 6 kW PV — 7.5 kWwh BESS
(0] +100% elec. prices ~0.24 7 kW PV — 7.5 kWh BESS
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Bucharest) located in the same solar belt as the selected location (Istanbul) and the

corresponding cases.
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4.6 Discussion

As a result of the study, the highest NPV in Tirkiye was obtained with the
configuration of 3 kW PV without BESS. The main reason why the use of batteries is
not viable is low electricity prices in the country and high battery prices globally. For
this reason, a sensitivity analysis was performed for increasing electricity prices and
decreasing battery prices. Among the scenarios considered in the sensitivity analysis,
possible ones for Tirkiye in the short term are -25% battery prices and +25%

electricity prices.

Currently, residential electricity prices in Tirkiye are subsidized and kept low.
Commercial and industrial electricity prices are 21% and 16% higher than residential
electricity prices, respectively [210]. On the contrary, residential electricity prices are
higher than commercial and industrial electricity prices in Europe and the USA
[211,212]. Considering that the price gap between residential and other end-user
groups can be eliminated in Tiirkiye, as in Europe and the USA, it can be said that the
+25% electricity price scenario is quite likely for Tiirkiye in the short term. In addition,
the electricity prices have already increased by 15% in the country in 2021. Yet,
increases of 50% or more do not seem possible in the short term.

The decrease in battery price may result from improvements in manufacturing
technology, as well as subsidies or value-added tax (VAT) reductions to be applied by
the government to encourage battery storage. Presumably, Tirkiye will soon offer
incentives to promote battery storage as in other countries. For instance, Germany
offers generous incentives for battery installation such as battery rebates (covering
around 30% of the cost) and 40% of rooftop PV applications in the country are with
batteries. The country expects 150,000 new battery installations in 2021 [213,214].
Australia provides favorable purchase subsidies for battery storage and aims to reach
one million battery installations by 2025 for behind-the-meter applications [213]. So
far, the prevalence of battery systems for on-grid applications in Tiirkiye has remained
almost non-existent. One reason is that until the end of 2020, the FiT rates were very
high which did not require battery installation. Another reason is that the regulations
on battery storage have just begun in the country and there are no incentive schemes
yet.
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4.7 Conclusion

This study proposes a method to optimally size residential PV-BESS units considering
HEMS capable of performing DSM of controllable electrical loads. In this way,
automated DR by taking advantage of time-based electricity tariffs and increased self-
consumption are taken into account in component sizing. Unlike other studies in the
literature, the proposed model can determine the optimal PV tilt angle according to the
climatic conditions of the location. Moreover, it can perform load scheduling of all
types of electrical loads (TCA, TSA, and PSA), consider battery degradation to avoid

unnecessary battery cycles, and respond to V2H technology.

The case location is selected as Istanbul, Tiirkiye, and simulations are conducted for a
HEMS-equipped household with average daily electricity consumption of 37.5 kWh.
The sizing model simulates HEMS operation over one year and repeats the simulations
for each PV array capacity-tilt angle-battery number combination. The model
determines the NPV of each combination over the system lifetime and then ranks them

from highest to lowest.

The optimal configuration is found to be 3 kW PV — no BESS — 10° tilt angle for a
HEMS-equipped household in Istanbul at the current battery and electricity prices. A
sensitivity analysis is performed based on rising electricity prices (+25%, +50%,
+75%, +100%) and falling battery prices (-25%) to make future projections. The BESS
use becomes viable even with +25% electricity prices or -%25 battery prices in

Tiirkiye. The optimal system configurations are found as follows:

e 4 KW PV -2.5kWh BESS — 20° tilt angle in the case of -25% battery prices

e 5KW PV —-5kWh BESS — 20° tilt angle in the case of +25% electricity prices

e 5KkW PV - 7.5 kWh BESS - 20° tilt angle in the case of -25% battery prices
with +25% electricity prices

e 6 kW PV — 7.5 kWh BESS — 20° tilt angle in the cases of +50% electricity
prices, +50% electricity prices with -25% battery prices, +75% electricity
prices, and +75% electricity prices with -25% battery prices

e 7 kW PV — 7.5 kWh BESS — 20° tilt angle in the cases of +100% electricity
prices and +100% electricity prices with -25% battery prices

Lastly, a techno-economic comparison is made. PV-BESS units are sized with and
without HEMS use and the impact of HEMS use on the NPV of the systems is
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investigated. In three hypothetical cases where residents have different levels of DSM
awareness, the NPV values are found to be $920, $-755, and $-1167. When HEMS is
used, the NPV increases drastically and becomes $2273. This is an important finding,
as PV projects in many countries suffer from low feasibility today in the absence of

incentives.

The proposed optimal PV-BESS sizing model is applied for a HEMS-equipped
household in Istanbul, Tirkiye. This model can also be applied to different types of
households in various regions of the world with different electricity prices and
different solar energy characteristics. The decentralized model developed in this study
for individual households can be reconsidered with a centralized approach. The model
can be modified for use in grid-connected microgrids, increasing self-consumption

through shared use of PV, and considering P2P energy trading in component sizing.
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5. SURVEY- AND SIMULATION-BASED ANALYSIS OF RESIDENTIAL
DEMAND RESPONSE: APPLIANCE USE BEHAVIOR, ELECTRICITY
TARIFFS, HOME ENERGY MANAGEMENT SYSTEMS

Residential demand response (DR) aims to stabilize the electricity grid by utilizing the
flexibility of end-users. To this end, end-users are offered time-varying electricity
prices and incentivized for load shifting. End-users can maximize bill reduction
through automated load shifting using home energy management systems (HEMSS).
Since HEMS is a new technology, the future DR potential of its mass use is unknown.
Here, surveys can be very useful for gaining insight into future behavior and
preferences in using HEMS. Therefore, the objective of this study is twofold: (1) to
understand appliance use behavior, electricity tariff perception, and tendency towards
HEMS-based DR participation, through a survey. And then, (2) to simulate the DR
potential by entering survey responses into a HEMS optimization tool. The results
show that 78% of the respondents are willing to engage in HEMS-based DR. This
provides the potential to reduce the peak period consumption by 33%. However, the
average bill savings achieved by HEMS owners is only 6.7%, which can hinder
reaching this potential. Still, 21% of the HEMS owners save more than 10% on their
bills. 8% save over 15%, and 3% over 20%. These can be the target audience of the

future HEMS market and DR campaigns.

5.1 Introduction

In the last decades, the modernization of the traditional grid has become a necessity,
both to ensure reliable, sustainable, and cost-effective transmission and distribution of
electricity and to integrate renewable sources into the power grid to mitigate global
warming [215]. To this end, the concept of the smart grid has emerged to provide better
measurement, monitoring, and control of the grid infrastructure through information

and communication technologies (ICTs) [216].

Two-way communication provided by ICT led to the utilization of advanced metering

systems (AMIs). In this way, traditionally static electricity consumers became flexible
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participants of the grid. The grid-side earned the opportunity to change the power
consumption pattern of the demand side to stabilize the grid by offering time-based
electricity tariffs and incentives, which is defined as demand response (DR) [217].
Today, residential buildings are responsible for a large portion (26.6%) of total

electricity consumption, and therefore residential DR gains absolute importance [175].

Residential DR can be implemented in two ways: Direct load control (DLC) and
Indirect load control (ILC). In DLC, users, in return for incentives, allow a system
operator to remotely control home appliances during critical conditions to meet grid
needs such as frequency regulation, peak shaving, or ancillary services [218]. DLC
can provide higher DR than ILC in terms of load reduction but with lower customer
participation [219]. Reasons such as the sense of losing control over appliances or the
lack of an override option hinder its adoption [64]. Besides, DLC can raise privacy
concerns due to the collection of energy usage data that may be processed in the hands
of third parties [65,220]. In ILC, on the other hand, users are motivated to perform DR
to take advantage of time-based electricity tariffs with their consent, without involving
any remote operator. Therefore, they gain more control over their electrical appliances
and do not have privacy concerns. They either change their electrical appliance usage
habits on their own or through automation devices such as programmable home

appliances, smart plugs, or smart thermostats [221].

The individual home automation devices mentioned above can also be centrally
managed using home energy management systems (HEMSs). Users can set their
scheduling priorities via a HEMS interface for each smart home appliance and can
optimally schedule their loads considering price and DR signals or (if it exists)
photovoltaic (PV) generation. In this way, users both reduce their electricity bills and
indirectly balance electricity supply and demand at the grid end [222]. To use HEMS,
households require to have smart meters to receive price or DR signals, and appliances
require to have the “smart” feature. Once installed, HEMSs can optimally schedule
running hours of time-shiftable loads such as washing machines, dishwashers, and
clothes dryers. It can also perform set-point adjustment or pre-cooling/heating for
thermostatically controlled loads such as air conditioners, refrigerators, and electric
water heaters [223]. The increasing use of smart home appliances and rooftop
PV/battery energy storage systems (BESSs), as well as increasing electricity prices

make the use of HEMSs more viable than ever before.
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5.1.1 Objective

HEMS is a new technology that has not yet become widespread and future HEMS
usage preferences (and their load mitigationewwe potential) are not yet known.
Therefore, simulation studies on HEMS-based DR are often performed for non-
standardized situations with uncertain user preferences. Whereas, initial research into
HEMS usage preferences can be conducted through surveys using small or incomplete
sample sets, and then enabling larger-scale, more complete testing can help validate

real-world HEMS usage preferences, ideally in a field setting [224].

Therefore, the objective of this study is twofold: (1) to understand electrical appliance
use behavior, perceptions of DR and time-based electricity tariffs, and tendency
towards HEMS use, through a survey study. And then, (2) to simulate survey responses
of participants using a HEMS optimization tool to explore to what extent their
electrical load demand could be changed by HEMS-based DR.

The motivation in (2) emerged during our previous works on developing a load
scheduling-based HEMS tool and sizing PV-BESS for households using this tool
[14,15]. When we wanted to simulate the HEMS model and perform PV-BESS sizing
using it, we needed to rely on many assumptions regarding energy use behavior.
Modeling the unmanageable load profile in the household was not a problem since
there were available data in the literature, but modeling the manageable load profile
was. What would be the HEMS preferences of users? For instance, what percentage of
people who install HEMS would allow load shifting for their dishwashers? Would they
allow its run to be shifted to any time of day or a certain time interval? How many
times a week would they run their dishwashers? And what would be the answers to
these questions for other manageable home appliances? This study tried to give

answers to these, or at least, to get an idea to be used in future simulation studies.

5.2 Related Studies

In the literature, many studies have been carried out on residential demand-side
management (DSM), DR, and HEMS. A vast amount of these is survey studies to
understand electrical home appliances usage behavior and to what extent it can be
modified through DR [225].
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[226] used time-use survey data of Swedish households to construct load profiles of
home appliances using a deterministic conversion model and then validated the results
with measurement data. The study showed that time-use data could be an alternative
to energy monitoring and measurement. [227] showed the practicality of the same
approach for load profiling in the absence of smart meters in developing countries to
design targeted DSM strategies. [228] modeled electrical and thermal load profiles of
private households in Germany as the electrification of these two sectors will place a
large burden on the grid infrastructure soon. [229] examined DR and DR-based
gamification preferences and expectations of Turkish households. The conducted
gamification trial provided a significant change in the dishwasher and washing
machine usage habits during the peak period. [230] conducted a survey on energy use
behavior (space cooling behavior, lighting behavior, etc.), energy-saving awareness,
and consumer reaction to energy-saving policies for residential end-users in China.
[231] surveyed 146 people on the island of Mayotte to assess the preferences of the
population on DLC-based DR and electricity tariffs. [232] used a multi-criteria
decision-making method using survey data of 1023 participants for identifying user
preferences for residential DR. Appliance use types were ranked in terms of
willingness to give up for DR. Participants were more willing to sacrifice showering
needs and less willing for laundry and dishwashing. Load shifting can be performed
not only to perform DR but also, with a similar motivation, to increase PV self-
consumption. [233] surveyed 2505 prosumers in Denmark and showed that 67% of
Danish prosumers often or always try to shift their loads to the solar generation period.

The survey-based studies on residential buildings in the literature can be classified as;
energy consumption, resident behavior, comfort, resident preferences, time use, and
simulation [234]. Almost all simulation studies are directed toward generating load
profiles using survey responses. The same approach can be used to generate load
profiles of DR-performing households as well [235], but only very few studies in the
literature attempt this. [236] investigated the demand-side flexibility of washing
machines and dishwashers in 12 European countries. Washing machines and
dishwashers were found to be available in the grid as flexible loads of 5 MW and 10
MW, respectively if 100,000 households agreed to load shifting. [237] analyzed the
bidding behavior of air conditioner users for DR participation with a survey study and

then simulated the survey results of 552 participants using an optimization tool. [238]
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conducted a survey to identify the flexible load use pattern of households in rural
Guanzhong, China. Then, the optimal scheduling of flexible loads was made according
to the survey results. [239] surveyed DR preferences of 200 households in Italy.
Participants' preferred set-points for air conditioners and desired operating time
intervals for washing machines and dishwashers were learned, and then the results
were translated into a simulation. [240] surveyed 80 households in Ghana and then
calibrated the survey data using the measurements from monitoring of households. The
study provided information on end-users’ responsiveness and financial benefits which
are crucial in evaluating the cost-effectiveness of different DR programs. [241]
surveyed 141 EV owners from two different cities in China to understand EV use
behavior, charging demand, and charging service quality. Next, a survey-based
simulation platform was developed which was capable of implementing optimized
charging/discharging strategies based on survey results. [242] et al. surveyed the
operating hours of dishwashers, washing machines, clothes dryers, ovens, and ranges
in 564 households in the Midwest region of the US. The results were then aggregated
to the grid level and the maximum load reduction potential of each appliance was
simulated. The taxonomy of studies simulating electrical load profiles of buildings that
perform DR, based on survey responses, is given in Table 5.1.

Table 5.1 : Taxonomy of studies simulating electrical load profile of DR-performing
buildings, based on survey responses.

Reference Survey DR Simulated behavior of appliance Location
vee DwW WM CD Ref. AC EWH EV

[236] Online ILC v v x x x x x Europe
[237] Field DLC x x x x N x x China
[238] Field ILC x v x x v x v China
[239] Online DLC v v x x v x x Italy
[240] Field ILC x v x v v v x Ghana
[241] Field DLC x x x x x x v China
[242] Online  ILC v v v x x x x USA
This study Online ILC v v v v v v x Tiirkiye

DW: Dishwasher, WM: Washing machine, CD: Clothes dryer, AC: Air conditioner, EWH: Electric water heater
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The above-mentioned studies can help utilities and aggregators to comprehensively
benefit from the shifting potential of manageable electrical appliances. Yet, the
adoption of DR or HEMS depends not only on technical issues but also on social
plausibility. Financial opportunities are linked to social motivators. The main concerns
of the public about smart homes are loss of control, affordability, trustworthiness,
privacy, and data security [243]. Strengthening the concept of HEMS raises an

important issue as technology anxiety stands out as a big obstacle [244].

Bill reduction seems to be the biggest motivator, yet the social groups most concerned
with their energy bills are those most resistant to performing DR [220]. HEMSs are
more appealing to the upper-middle income group, in fact, those who suffer from
energy poverty are the ones who need HEMS the most [245]. Nevertheless, the social
injustice regarding availability and affordability between different consumer groups
can be overcome with appropriate designs and policies, which also enhances the
effectiveness of DR programs [246]. It is also worth noting that while consuming
electricity was previously a background activity, consuming it with a HEMS requires
an “effort”, which creates a paradigm shift. This effort to control the HEMS interface
should be somewhat compensated, but trials show that bill discounts are much lower
than users’ initial expectations [247]. Therefore, additional motivational factors come
to the fore to boost HEMS use. 75% of people in New York were willing to pay at
least $1 per month for HEMS features to support the environment, control their home
appliances, and visualize and monitor their electricity consumption [248]. In a
resource-rich country, Qatar, people did not seem to be interested in price-based DR
as a concept but were interested in adopting smart, modern, and new infrastructures in
households, including smart thermostats and smart water heaters which provide DR
[249]. Prosumers in Germany enjoyed the technical side of monitoring their electrical
energy production and consumption. With a deepening environmental awareness, they
set energy-saving targets and tried to achieve them [250].

Regardless of social factors, the adoption of DR also depends on the adequacy of
electricity tariffs [251]. The most common time-based tariff in a significant part of the
world is time-of-use (TOU), which divides the day into parts with different prices for
electricity. A less-used alternative is dynamic pricing, where prices change hourly
throughout the day according to the supply-demand balance [252]. Two major barriers

to the adoption of time-based electricity tariffs stand out as the low consumer
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confidence in electricity suppliers and the complexity of the pricing systems [253].
Residential users are more likely to adopt less complex static TOU compared to
dynamic pricing. Nevertheless, dynamic pricing has been shown to be as acceptable

as static pricing in the case of automation that can be provided by HEMSs [254].
5.2.1 Contribution

Before a large-scale deployment of technology, it is required to do extensive field
trials, tests, and simulations [255]. Survey questionnaires can be very insightful in this
respect. Although many studies in the literature make electrical load profiling using
time-use survey data, only very few use the same method for load profiling in the case
of home energy management. One reason for this is that the latter is a more complex

process due to automation.

Therefore, this study aims to fill a gap. As its main contribution, it combines
information gathered in a survey with an optimization tool to simulate the load
mitigation potential of future mass adoption of HEMSs for DR. The study contributes

to the existing literature in the following ways:

(1) 1t collects information on residential electrical energy use behavior, such as
ownership rate of appliances, running hours of time-shiftable appliances (dishwashers,
washing machines, dryers, etc.), weekly operating frequency of appliances, preferred
temperature set-points of refrigerators and air conditioners, frequency of use of electric

water heaters (shower times, shower duration, etc.).
(2) It investigates the consumer perception of electricity tariffs,

(3) It investigates the residential demand-side flexibility through the willingness to
participate in DR and defining operational priorities and limitations of HEMS use,
such as willingness to use HEMS (if yes, which appliances do users allow HEMS to
control), time intervals users prefer HEMS to shift electrical loads, expectations,

concerns, motivational factors, etc.

(4) It investigates to what extent HEMS-based DR can change the initial load profile.
To this end, survey responses are entered into a load scheduling-based HEMS tool to

simulate the load profiles of DR-performing households.

(5) The study is comprehensive in scope and includes DR participation of all major
manageable home appliances (Table 5.1).
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5.2.2 Methodology

The study consists of two parts. In Part 1, the results of the survey are presented and
analyzed, and in Part 2, the before and after of the HEMS use are simulated based on

the survey responses.

Part 1 (Survey) consists of three subparts; a) Ownership rate of electrical home
appliances and energy use behavior, b) Electricity tariffs, c) HEMS use behavior for
DR purposes. “a” investigates the present residential energy use behavior. “b” is
important as electricity tariffs are a major instrument to implement DR, and “c”
explores the willingness to use HEMS and the preferences and priorities regarding its

use (e.g. to what extent people would leave the control of their appliances to HEMS).

Part 2 (Simulations) investigates the impact of HEMS use on total load demand and
electricity bills. The information collected in “a” allows creating the electrical load
profile before HEMS use, and the information collected in “c” allows creating the load
profile after HEMS use. These data are entered into a HEMS tool, and the before and
after of the survey participants' load profiles are simulated, and then the change is
compared. An optimization-based HEMS tool that was previously developed (as
introduced and detailed in [14,15]) is used in the simulations. The flowchart of the
study is presented in Figure 5.1.

Part 1 (Survey) Part 2 (Simulations)
Start Start

1 l

a) Questions about socio-demographic . | Simulate electrical load profile
characteristics and appliance use behavior (without HEMS use)

l |
b) Questions about Simulate electrical load profile
electricity tariffs (with HEMS use)
1 |
No Want to use Compare load profile before
HEMS? and after HEMS use
Yes l
c) Questions about HEMS ¢ v
use and DR participation End
— End

Figure 5.1 : Flowchart of the study.
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5.3 Sociodemographic Characteristics and Household Electricity Consumption
Behavior of the Participants

5.3.1 Participants and surveyed households

The survey was conducted across Tiirkiye. A web-based online questionnaire was
structured and distributed through a professional online survey company. Gift
vouchers were used as incentives. The minimum sample size was calculated as 384
with a confidence level of 95% using Krejcie and Morgan’s formula [256]. Following
the initial filtering of the survey company, 460 complete results were received, 18
results were excluded due to inconsistent information, and 442 results were considered
valid. The survey company aimed to target those responsible for the management of
household appliances. The proportion of older participants were lower than average
which is expected in online surveys [257]. For these reasons, the sample is considered
slightly biased. Yet, there are also important consistencies, as will be explained. Each
participant represented a household. Different people from the same household did not
participate in the survey. Answering the questionnaire took an average of 20 minutes.
The majority (56%) were between the ages of 25 and 34 (the average of the survey
sample is 34.3 and the average of Tiirkiye is 33.5 according to the Turkish Statistical
Institute (TURKSTAT) [258]). Half of the participants had 2- or 4-year (vocational or
bachelor’s) degrees (not reflecting the average of Tiirkiye). Most of the participants
were from Istanbul, followed by Ankara, Antalya, Bursa, and I1zmir, in line with [258]

with slight differences. The participant profile is summarized in Table 5.2.

Table 5.2 : Socio-economic character of the survey participants.

Age Frequency (%)
18-24 5.2
25-34 55.9
35-44 27.4
45-54 7.5
55-64 3.6
65+ 0.5
Education level Frequency (%)
Primary school 12.2
High school 28.7
2-year/4-year degree 50.2
Master’s degree 6.1
Doctoral degree 2.7

Half of the households belonged to the low-income group. Household income
distribution showed a quite high similarity with [259]. The vast majority (88%) stated
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that they live in apartments. Although there is no data on this, 11.7% of the Turkish
population live in 1-storey, 17.3% in 2-storey and the rest in higher-floor buildings
[260]. The average size of the residential dwellings of the participants was 116 m? (114
m? according to TURKSTAT [261]. Family size distribution did not match with
TURKSTAT data, yet the average family size was close (3.50 people in our sample
and 3.35 people in TURKSTAT data [261]). 42% of the participants were landlords
which is 60.7% according to [260]. The monthly electricity consumption of
participants was calculated as 211 kWh based on the bills they declared and the
residential electricity price of the period (4th quarter, 2021). Although there is no
TURKSTAT data on this subject, the average monthly bill of the respondents (195 b)
at that time exactly coincides with the figure given in the Energy Consumption and
Economy Survey, conducted by [262]. According to [262], 58% of Turkish households
use combi boilers for heating, 22% use stoves, 10% use central heating, 7% use air
conditioners, and 2% use electric heaters [262]. These rates are close to the survey
results, except for combi boilers and stoves. The detailed profile of the surveyed
households is presented in Table 5.3. The household size and monthly electricity

consumption is demonstrated in Figure 5.2.

Table 5.3 : Detailed profile of the surveyed households.

Tenure Frequency (%)
Tenant 57.9
Landlord 42.1
Family size Frequency (%)
1 person 0.9

2 persons 16.5

3 persons 32.8

4 persons 35.1

5 or more persons 14.7
Household type Frequency (%)
Apartment 88.0
Detached 12.0
Household heating Frequency (%)
Combi boiler 70.8
Central heating 14.0
Heating stove 7.2

Air conditioner 6.1
Electric heater 1.6

Heat pump 0.3
Household income Frequency (%)
Low 49.9
Lower-middle 27.5
Middle 15.5
Upper-middle 4.7

High 25
Average household size 116 m?
Average electricity use 211 kWh/month
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Household size distribution
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Figure 5.2 : Household size and monthly electricity consumption distribution of 442

participants.
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Figure 5.3 : Occupancy level in households on average.
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The average occupancy level of households according to the time of day is
demonstrated in Figure 5.3. Most of the households consisted of 3 to 4 people (68%).
The average number of residents from 08:00 to 17:00 was quite similar, between 2.0
and 2.3. The number increased to 3.2 between 17:00 and 19:00 when parents and
children come home from work and school. The average number of residents present
at home from after 20:00 to the morning was 3.5.

5.3.2 Electrical load profile of the households

Electrical home appliances can be divided into two as manageable and unmanageable
in terms of automation. The ownership rate of unmanageable and manageable
appliances in the surveyed households is given in Table 5.4 and Table 5.5,

respectively.

[263] shares the ownership rates of the unmanageable appliances in Tiirkiye as 94%
for vacuum cleaner, 92% for cooker/oven, 81% for blender/food processor, 54% for
microwave, and 34% for toaster. As seen from Table 5.4, vacuum cleaner, oven and
blender/food processor ownership rates show great similarity but microwave and
toaster do not. The incompatibility in the toaster may be because panini grills are also
called toasters in Tiirkiye. [264] shares the ownership rate of laptop as 50% which is
56% in our sample. [262] shares the kettle ownership rate as 69% which is 74% in our

sample.

Despite the slight bias in the sample, refrigerator, washing machine, and air
conditioner ownership rates are in line with the data of [259,265]. The ownership rate
of dishwasher is 94% in our survey, whereas it is 78% according to TURKSTAT and
91% according to [263]. There is no source on the dryer and electric water heater
ownership rates. It can be said that the ownership rate of refrigerators and washing
machines is similar in European countries [266,267]. The ownership rate of electric
water heaters is low as the majority live in natural gas-heated apartments and the
number of detached households is low. The ownership of solar collectors (these may
also belong to the whole building) is 7.5%. The participants have an average of 4
compact fluorescent lamps (CFL) and 6.34 light-emitting diode (LED) lights in their

homes.
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Table 5.4 : Ownership rate of unmanageable household appliances.

Appliance Ownership rate  Appliance Ownership rate
(%) (%)
Oven 97.3 LED TV 24.4
Microwave oven 31.2 LCD TV 64.3
Electric stove 37.6 CRTTV 11.8
Electric grill 115 Iron 93.7
Stove hood 67.9 Vacuum cleaner 97.1
Toaster 85.3 Hair dryer 90.5
Kettle 73.8 Laptop computer 56.1
Blender/Food 83.7 Desktop computer 17.0
processor
Electric fryer 10.2 Scanner 15.6
Air purifier 4.8 Printer 5.0
Fan/Ceiling fan 26.0 Solar collector 75

Table 5.5 : Ownership rate of manageable household appliances.

Manageable appliance Ownership rate (%)
Time-shiftable

Dishwasher 94.1
Washing machine 99.1
Clothes dryer 13.8
Washer dryer 8.1
Rice cooker 0.0
Bread maker 2.3
Robotic vacuum 12.7
Electric bike/scooter 2.5
Thermostatically controlled

Air conditioner 22.6
Refrigerator 99.3
Electric water heater 9.9

In Figure 5.4, the most preferred usage times of time-shiftable appliances
(dishwashers, washing machines, clothes dryers, washer dryers) on weekdays and
weekends are presented (bread makers, rice cookers, robot vacuums, and electric
bikes/scooters are excluded due to their low ownership rates and low energy demand).
Users usually run their appliances when they come home from work on weekdays.
Dishwashers are usually run after dinner time while washing machines and dryers are
run both in the middle of the day and during peak hours. This pattern complies with
the results obtained by [268]. Washing machines are usually run in the middle of the
day (peak at 10-11 am), showing a similar pattern to that of [269,270]. On weekdays
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33% of dishwasher, 29% of washing machine, 22% of clothes dryer and 21% of washer
dryer operation occurs during the on-peak period when electricity is expensive. The
time of use of appliances on weekends and weekdays are quite the same except for
dishwashers. On weekends, dishwashers work significantly more during midday. On
weekends 23% of dishwasher, 17% of washing machine, 25% of clothes dryer, and

15% of washer dryer operation occurs during on-peak period.

"What time do you prefer to run your "What time do you prefer to run your
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Figure 5.4 : Most preferred time of use of time-shiftable appliances (dishwashers,
washing machines, clothes dryers, and washer dryers).

Time-shiftable appliances do not operate every day of the week. Therefore, when
creating a survey-based load profile, it is important to know how many times a week
these appliances run. Users were asked about this. The results are shared in Figure 5.5.
Among time-shiftables, dishwashers are the most frequently operated. For instance, on
Monday, while 71% of the dishwashers run, the number is lower for washing machines
as 47%. On Tuesdays and Thursdays, clothes dryers run more often than washing
machines. This may be due to the urgent need for hand washing followed by sudden
drying (e.g. drying hand-washed baby clothes, school uniforms, or work clothes). On
average, users run their dishwashers, washing machines, clothes dryers, and washer
dryers 63%, 46%, 43%, and 40% of a week, respectively (100%, when an appliance
runs once every day). The average operation ratio is lower on weekdays (62%, 40%,
39%, and 32%, respectively) and gets higher on weekends (67%, 61%, 54%, and 61%,

respectively).
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"What days of the week do you run your appliances?"
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Figure 5.5 : Frequency of running time-shiftable appliances.

Participants were asked about the use habits of their thermostatically controlled
appliances (air conditioner, refrigerator, electric water heater). On average, they set
refrigerator temperature to 3.9°C. This is important because especially during the peak
period this temperature can be increased even further and offer a DR potential of up to
7°C. Or, pre-cooling can be applied before electricity gets expensive. Refrigerators can
be cooled down to 1°C before the peak period and the stored energy can be benefited
during peak hours [271].

On average, the participants set their air conditioner temperature to 21.7°C on summer
days during the daytime. This temperature can be increased even further, especially
during the peak period, and offers a DR potential of up to 26°C (high humidity) or
27°C (low humidity) in summer according to the ASHRAE standard [114]. Or,
similarly, pre-cooling can be performed and the relevant zone can be cooled to a certain
temperature before expensive hours. Nearly 20% of the users stated that they operate
their air conditioners at 18°C. These might be intermittent users turning on and off
their devices due to air conditioning disturbances such as lethargy, headaches, irritated
skin, etc. The average air conditioner set-point temperature during sleep hours is higher
than that during the daytime as 22.5°C. 44% of air conditioner users turn off their air

conditioners during sleep hours.

The use of electric water heaters is not common in Tiirkiye, as the vast majority live
in multi-storey apartment buildings heated by natural gas. The ownership rate of
electric water heaters among the participants was 9.9%. Most of them (43%) use 65-

liter water heaters (77 liters on average). People usually shower 4 times a week in
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winter and 7.5 times a week in summer. On average, they spend 16 minutes a day in
the shower. The majority take showers between 20:00 and 22:00 (within peak hours).
The rate of taking a shower is high between 07:00 and 09:00 as well on weekdays. The
majority take showers between 20:00 and 22:00 (within peak hours). The rate of taking
a shower is high between 07:00 and 09:00 as well on weekdays. Showering is done
more often in the middle of the day on weekends than on weekdays. This pattern shows
similarity to the measured values in [226]. The distribution of the refrigerator and air
conditioner set-point temperatures and showering hours of participants are shared in

Figure 5.6.
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Figure 5.6. Distribution of air conditioner set-point temperature, refrigerator set-
point temperature, and showering hours.

5.4 Perception of Electricity Tariffs

Residential customers in Tiirkiye can subscribe to three types of electricity tariffs;
fixed tariff, TOU tariff, and green tariff (which guarantees that all the electricity
supplied is produced from environmentally friendly renewable energy sources).
Turkish TOU divides the day into three and does not differ for weekdays and
weekends. Options such as critical peak pricing (CPP) or real-time pricing (RTP) have
not been available for the residential group so far. This part of the survey aims to

understand residents’ perception of electricity tariffs in Tiirkiye.

According to the survey results, 59.9% of the participants do not know which tariff

they are subscribed to. As switching to TOU and green tariff are a result of choice and
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awareness, these participants can be assumed as fixed tariff subscribers. Then, with
this assumption, 91% of the participants use fixed tariff, 8.4% use TOU, and 0.6% use
green tariff. The detailed results of electricity tariff awareness are presented in Table
5.6.

Table 5.6 : Awareness of the participants about electricity tariffs.

Do you know which tariff you are subscribed to? Frequency (%)
Yes 40.1
No 59.9
Tariff distribution Frequency (%)
Fixed tariff 91.0
TOU 8.4
Green tariff 0.6
TOU awareness Frequency (%)
I do not know about the TOU scheme. 73.8
I know about the TOU scheme.* 26.2

*| know expensive/cheap hours. 44.8

*| approximately know expensive/cheap hours. 35.3

*1 have no idea when it gets expensive/cheap. 19.8
TOU misconception Frequency (%)

Fixed tariff subscriber but tries to run appliances at night,

thinking that electricity will be cheaper. B0
Green tariff awareness Frequency (%)
I heard about the green tariff. 8.4

I have not heard about the green tariff. 91.6
(After informed) Would you be willing to switch to the green Frequency (%)
tariff?

Yes 76.2

No 23.8
Green tariff is 60% more expensive. Still willing to switch? Frequency (%)
Yes 142

No 85.8

When all participants were informed about the green tariff and asked if they would
like to switch to it, 76.2% showed willingness. However, there was a big change in
their views when they were later informed that the green tariff was 60% more
expensive than the fixed tariff. After updated, 81.4% changed their minds about their
willingness to pay for green electricity.

5.4.1 Perception of TOU

Only 26.2% of the respondents stated that they have heard about TOU. Among them,

44.8% stated they know when electricity gets cheaper or more expensive, 35.3% stated
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they approximately know the cheap and expensive hours and 19.8% stated they do not

know the cheap and expensive hours (Table 5.6).

In Tirkiye, many people suffer from a misconception: “Electricity is cheap at night
for everyone”. Although they are not TOU subscribers and cannot benefit from cheap
electricity prices, many fixed tariff subscribers try to run their electrical devices after
10 pm. 51.6% of the fixed-rate subscribers were found to be suffering from this
misconception from time to time, thinking that electricity will be cheaper for them as
well at night (Table 5.6). Although this unexpected load shifting contributes to
reducing the peak load, it is a big misconception for consumers. It is also a sign that
many fixed tariff subscribers are potential TOU subscribers and can be guided in this

direction.
5.4.2 Expectations, concerns, and motivational factors associated with TOU

The results of participants’ monetary and comfort-related concerns and expectations, and their
social motivations regarding the TOU tariff are demonstrated in Figure 5.7. The two biggest
concerns are similar; TOU does not provide sufficient bill discount or it is hard to estimate
what kind of bill discount TOU can provide. The difficulty of keeping track of when electricity
gets cheaper or more expensive seems to be an important obstacle as well. As seen, 47% of
respondents do not want to track the times when electricity prices get cheap/expensive. Here,
HEMS might be a solution for these people. Although these people do not want to follow
cheap/expensive times, it does not mean they do not want to perform DR. HEMS can enable

these individuals to shift their loads automatically and therefore effortlessly.
I do not want to deal with keeping track of hours when _ 252 _
electricity is cheap or expensive. :
| think that TOU reduces the comfort level of people. _ 27.8 _
The fact that electricity is very expensive during certain _
hours prevents me from switching to TOU. _ Sl -
If TOU provided higher bill reduction, then | would _
switch to this tariff. B8 20
| can estimate the amount of bill reduction TOU can
brovide. s7WEsZN 3 [T2msl 148
I find TOU tariff confusing. || ECHIIGESE =02 =
If | see that people around me are switching to TOU, _
then | switch to this tariff, too. SELT -_
0O 10 20 30 40 50 60 70 80 90 100
(%)

m Strongly disagree  m Disagree Neither disagree nor agree  ®Agree  m Strongly agree

Figure 5.7 : Perception of time-based electricity tariffs.

130



5.5 Perception of HEMS Use and DR

In the last part of the questionnaire, detailed information about the concept of HEMS
(how it works, functions, benefits, etc.) was presented to the participants and then they
were asked about their willingness to use HEMS and HEMS usage preferences. A
majority of 78% showed a willingness to install a HEMS. The willingness to
participate in DR was found to be 50% in Tokyo and 70% in New York [272], 81.5 in
the island of Mayotte [231], 74.7% in China [273], 50% in US Midwest [274] and 78%
in another study conducted in Tiirkiye [275].

After the initial interest in HEMS use was learned, the respondents who said they
wanted to use HEMS were asked which manageable appliances they would like to
leave control of to HEMS. 72% of dishwasher, 69% of washing machine, 59% of
clothes dryer, 67% of washer dryer, 81% of refrigerator, 93% of air conditioner, and
95% of electric water heater users agreed to leave control of their appliances to HEMS.
This is in line with the results obtained by [232], in terms of the priority order of
appliances for DR participation. The results are presented in Figure 5.8. Overall,

participants were willing to install HEMS for DR.
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Ownership rate  ®Do you allow HEMS to control it?

Figure 5.8 : Ownership rate of manageable appliances and answer to “Do you allow
HEMS to control this device?”.
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After learning how many participants want to use HEMS and what appliances they
leave control of to HEMS, they were asked about the time intervals they want HEMS
to shift time-shiftable appliances. Then, the following questions were asked regarding

thermostatically controlled appliances:

- “Would you allow HEMS to interfere with the temperature of your air
conditioner? So that, within thermal comfort standards, you can compromise
your comfort level a little for the benefit of your bill and electricity grid.”

- “Would you allow HEMS to interfere with your refrigerator temperature
without spoiling your food?”

- “Would you allow HEMS to interfere with your electric water heater

temperature by performing pre-heating before electricity gets expensive?”.

According to the answers, the highest HEMS participation was for electric water
heaters, where users were expected to feel the least loss of comfort. 95% of electric
water heater users let HEMS pre-heat water during cheap hours before shower time.
Although this is a very high rate, only 9.9% of the total participants use electric water
heaters. In other words, the DR participation potential of the electric water heater in
the total population is 9.4%. Still, it should be noted that electric water heaters offer a
great DR possibility due to their significantly high energy consumption.

A significant portion (81.2%) of refrigerator users allowed HEMS to intervene in
refrigerator temperature when necessary. Although the individual DR potential of
refrigerators is low due to their low instantaneous power, the widespread use of
refrigerators (99.3%) makes the DR associated with the refrigerator important when
their collective participation is considered. The DR participation of refrigerators in the

total population is very high as 80.6%.

The DR potential of air conditioners is also high. 22.6% of the participants have air
conditioners and 92.8% of them allowed HEMS to intervene in the set-point
temperature when necessary, making the ratio of the DR potential of air conditioners

to the general population 21%.

Among time-shiftable appliances, the appliance with the highest demand-side
flexibility belonged to dishwashers. Most respondents chose to leave control of their
dishwashers (72%) and washing machines (69%) to HEMS. The lowest HEMS

participation was for the clothes dryers (59%) among all manageable appliances,
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probably because their operation depends on a previous wash cycle or washing clothes
by hand. Since washer dryers do not have that problem, the share of washer dryers
(67%) showed a similar pattern to washing machines. The DR participation potentials
of these appliances in the total population are 68%, 68%, 8%, and 5% for dishwasher,

washing machine, clothes dryer, and washer dryer, respectively.

5.5.1 Operational priorities regarding time-shiftable appliances

In the literature, in the simulation of HEMS tools, it is either assumed that time-
shiftable appliances can be shifted to any time of the day or to preferred time intervals.
These preferred intervals reflect the authors’ own preferences, daily experiences, Or
opinions. Various preferred load shifting intervals for time-shiftable appliances can be
found in [101,276-284]. Although they individually give an idea, they do not reflect

the actual preferences of the average population.

This shortcoming in the literature led us to search for the average preferred time
intervals for time-shiftable appliances to be shifted, which is among the contributions
of the study. Hereby, the participants were asked; “What time slots would you prefer
HEMS to shift your dishwasher, washing machine, clothes dryer, and washer dryer?”.
A day was divided into seven time slots in the questionnaire, and the participants were
asked to choose the appropriate slots (could be multiple choice) for load shifting.

The results are shared in Figure 5.9. Participants who are willing to use HEMS are
highly fond of their appliances being shifted to off-peak periods, especially to 22:00
and 00:00, where both electricity is cheap and it is not sleep time yet (where the noise
of appliances cannot wake anyone up). 00:00 — 02:00 seemed to be a very desirable
period as well. The least favorable time slot was 06:00 — 09:00 for all appliances.
Presumably, this time slot is the most suitable to unload laundry and dishes for users

who prefer to run appliances at night.

To summarize, 74% of dishwasher, 58% of washing machine, 61% of clothes dryer
and 51% of washer dryer users who are willing to use HEMS agreed their electrical

appliances to be shifted to off-peak periods.
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Figure 5.9 : “What time slots do you prefer HEMS to shift your dishwasher,
washing machine, clothes dryer, and washer dryer?”.

5.5.2 Expectations, concerns and motivational factors for HEMSs

The participants were asked about their expectations, concerns, and motivational
factors regarding HEMSs. The results are demonstrated in Figure 5.10 and Figure 5.11.
The influence of the social environment seems to be quite effective in the acceptance
of HEMS. People who see that people around them start using HEMS are likely to
adopt this technology. Among the concerns, the biggest seems to be the waiting of the
clothes in the washing machine and the related odor problem. The least of the concerns

is an unwanted decrease/increase in the air conditioner set-point.
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Figure 5.10 : Perception of HEMS.
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Participants were asked about factors that could motivate them to use HEMS. The
results are presented in Fig. 5.11. The biggest motivation was financial factors such as
the free installation of the systems and electricity bill reduction. Technological factors
such as following a technological innovation and visualized monitoring of electricity

consumption in the household received slightly less attention.

Short payback period of the HEMS investment
To benefit from free memberships, gifts and campaigns
offered in exchange for HEMS installation

To be able to benefit from the TOU without considering
when to turn my appliances on and off.

Ease of automatic management of appliances/To
remotely manage devices with my phone

Free installation of the system [J}
To follow a technological innovation |l
To reduce my electricity bill [Jj

To contribute to the environment [l

To be able to monitor my electricity consumption -
visually on the HEMS screen/phone

0 10 20 30 40 50 60 70 80 90 100
(%)

m Strongly disagree Disagree Neither disagree nor agree Agree B Strongly agree
Figure 5.11 : “What does motivate you for a HEMS installation?”.
5.6 Simulations: Methodology and Input Data

5.6.1 Methodology

Most of the data presented in the previous sections are not available in the literature or
are only partially available. These data can be very useful in HEMS/DR-based
simulation studies which often use assumed input parameters in simulations (e.g. the
preferred time intervals for load shifting). In this section, these data will be used as
input and entered into a HEMS-optimization tool. So, the changes in the electricity
load profiles and electricity bills of the 442 participants will be simulated based on

their responses.
5.6.1.1 Objective function

A previously developed mixed-integer linear programming (MILP)-based HEMS tool
is simplified to be used in this study [14,15]. The objective of this model is to minimize
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the daily electricity bill by shifting time-shiftable appliances to the cheap electricity
period, and pre-cooling or pre-heating the zones (water heater tank, household, and
refrigerator cabinet) of thermostatically controlled appliances for thermal storage

before electricity gets expensive.

The MILP problem is solved using “intlingprog” solver of MATLAB. The objective
function is daily electricity bill minimization performed by HEMS as shown in Eqg.
(5.1).

ﬁ::minzpt'At'At (51)
t

where, P; is the power drawn from the grid at time t [KW], At is the time interval and

A¢ is electricity price at time t [$/kWh].

P, consists of the sum of the power consumption of all available home appliances in
the household as in Eq. (5.2).

I J
P, =P,}‘"+ZP§+ZPj,Vt (5.2)
i=1 =1

where, P, P} and Ptj are the power drawn from the grid by unmanageable appliances,
time-shiftable appliances, and thermostatically controlled appliances at time t,

respectively [KW].
5.6.1.2 Time-shiftable appliance model

The optimization model can shift time-shiftable appliances (dishwasher, washing
machine, clothes dryer or washer dryer) to cheap electricity period to perform DR.
These appliances are modeled as in Eq. (5.3-5.7) [126]. A time-shiftable appliance has
an uninterruptible operation which means it cannot be interfered with once started. The

fixed consumption of a time-shiftable appliance can be represented as in Eq. (5.3).
Pt=1Ipi p; ~ bl (5.3)

where p| is the power consumption of the time-shiftable appliance i at time ¢t [kW],
and T is the set of time period. For instance, for a daily operation of the dishwasher, at

1-hour interval, T would be 24 (or at 5-min interval 288). At 1-hour interval, P could
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have been something like PP =[1.61 018 0 0 -- 0] In this example, it
would mean that the appliance i could draw power for 2 hours over 24 hours, with a

total consumption of 1.79 kWh per cycle.

All possible shifting combinations of P! can be represented in matrix form as in Eq.
(5.4).

P Pr P3P
pi—|P: P1 Py D3 VYt (5.4)
ot ph, pi pil

Among all shifting combinations, only one of them belongs to the optimal result.
Therefore, the binary integer vector X* defined in Eq. (5.5) functions as a switch

control to choose that optimal column.
Xt=[xt,xb,..., xk], vt (5.5)

where, x! is the binary variable at time t (1 if the appliance i starts working at t, else
0).

Eq. (5.6) expresses that only one of the elements can be non-zero in X¢, which is equal

to one, to choose the optimal column.

ti,max

Z xt =1, X' €{0,1},vt (5.6)
fhmin
Users define their preferred operation range for time-shiftable appliances and HEMS
shifts appliances only into this range. For example, if a user prefers appliance i to be
operated between 12:00 and 17:00, then, among 24 variables (at 1-hour interval), only
the ones between 12 and 16 can take the value of "1" and the rest must be "0". t>™n
and t“™a% represent the start and end times of the preferred operating range,

respectively.

The length of the operation range (the difference between t“™™ and t>™3%) cannot be
lower than the running duration dur® of an appliance as shown in Eq. (5.7). So, if an
appliance has a two-hour run duration, then users should set a minimum two-hour

operation range for load shifting of this appliance.
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dur® < |¢bmin — ghmax| (5.7)

Some appliances, such as washing machines and clothes dryers, may require a

sequential operation. The related logical constraints are given in Egs. (5.8-5.11).

th otk et ]
. S R R :
ri=|tz L ot B3]y ef01) (5.8)
tr trg vty 4
max (T? - X7 +T2.X2) <1 (5.9)
T =T X, vt (5.10)
9i1,i26£1,1_0 < 6;'2,0_1 (511)

In Eq. (5.8), T* represents the possible shifted-operation combinations where all t& are
binary variables. Eq. (5.9) expresses that certain two appliances cannot operate at the
same time. However, this constraint cannot ensure that the washing machine runs
before the clothes dryer. Therefore, the operational array of appliance i is extracted
from Eq. (5.10). Then, the priority of appliance i1 and i2 are put in order by detecting
the stopping and starting instances of appliances from Eq. (5.11). Here, §:%-°
represents the instance when the appliance i1 stops (the status from 1 to 0) and
similarly 62" gives the starting point of appliance i2. Also, 82 is 1 when both

appliances i1 and i2 are within the time slot t, otherwise 0.

Eqg. (5.12) gives the power consumption of time-shiftable appliance i [kW].
Pl =Pt X\ vt (5.12)

5.6.1.3 Thermostatically controlled appliance model

The optimization model can perform DR for thermostatically controlled appliances by
pre-cooling or pre-heating zones before electricity gets expensive or by setting

different set-points during expensive hours.

In the study, a simple first-order lumped capacitance (1R1C) model is used in the
modeling of the zones (house envelope for air conditioner, cabinet for refrigerator,

tank for water heater) [285]. The same thermal model can be used with slight
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differences for different thermostatically controlled appliances [129-131]. The sign of
the decision variable is positive in the heating operation of the electric water heater (as
in Eg. (5.13)) and negative in the cooling operation of the air conditioner and

refrigerator.

Tti‘j models the inside air/water temperature in a zone as expressed in Eq. (5.13).

i _ (T + 1™ ¢RI -uc] + RV - COPI - P - x])
‘ (1+¢/-Ri-uc))

o goi _ (T2 + 1™ - ¢RI -uc] + RI - COPJ - PJ ")
‘ (1+¢/-RV-ucl)

—(1 +éj-Rj-ucg)-At
RI.cJ
‘e Vvt

)

) (5.13)

where, Tt"'j is the ambient temperature (outdoor temperature for air conditioner /
ambient temperature for refrigerator and water heater), R/ and C’ are the equivalent
thermal resistance and thermal capacitance of the zone (specific to the house
envelope/refrigerator cabinet/water tank), ¢/ is the constant amount of air/water heat
flow capacity in a single time-step (due to air replacement for air conditioner and
refrigerator / due to water replacement for water heater), uc; is the time when air
replacement or hot water replacement occurs, Tte”'j is the temperature of entering inlet

water or outside air at time t, COP/ is the coefficient of performance of the relevant

appliance, P/ is the input power of the relevant appliance and x; is the decision

variable between 0 and 1, defining the running status of the relevant appliance.

It should be noted that, in the study, air ventilation and refrigerator door openings are

assumed to not affect the indoor air temperature. Therefore, the expressions of Tf”’j .

¢/ - RJ-uc] and ¢/ - R - uc] takes the value 0 in Eq. (5.13) for air conditioner and

refrigerator operation.

Eq. (5.14) expresses the upper and lower limits of hot water/indoor temperature

within the zone.
Timinj < T]lt < Ti,max,j, Vi (5_14)

where TE™MimJ gnd TH™Ma%J gre the minimum and maximum allowed inside
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temperatures in a zone.

Eq. (5.15) shows the power consumption of thermostatically controlled appliance j at

time t.
P/ =Pi.x] vt (5.15)

5.6.2 Input Data
5.6.2.1 Electricity price and temperature

The selected time window for the optimization is 5 min (0.0833 h). Turkish residential
electricity prices are used in the simulations, which are 0.12 $/kWh for the flat rate
and 0.122 $/kWh (mid-peak period), 0.179 $/kWh (on-peak period), and 0.076 $/kWh
(off-peak period) for the TOU rate [195]. The temperature data required to simulate
the air conditioning operation are obtained from [136]. The inlet water temperature
data to be used for electric water heater operation when hot water is replaced by inlet

water during a shower belongs to the province of Istanbul [190].
5.6.2.2 Manageable loads

The manageable load profile of each participant was individually simulated based on
their survey response, and then all 442 profiles are aggregated. The ownership rate of
all survey participants’ manageable appliances is known (Table 5.5). It is known which
time-shiftable appliance is operated on which day of the week and at what time
(Figures. 5.4-5.5). Or, the set-point temperatures at which participants operate their
refrigerators and air conditioners are known (for the 17% who did not know their
refrigerator set-points, the average set-point of the respondents is used in the
simulations). For participants who have an electric water heater, it is known how long
an average shower lasts, at what times and how many times (Figure 5.6 and Section
3.2).

All necessary information for the load shifting was obtained from the survey results as
well. It is learned whether the participants wanted to use HEMS, and if yes, for which
manageable home appliances they wanted to use it (Figure 5.8). It is known what time
intervals participants prefer their time-shiftable appliances to be shifted (Figure 5.9).

Load shifting was done by entering these data into the developed HEMS tool.
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The data regarding the technical specifications of the thermostatically controlled
appliances and the thermal properties of their zones are collected from various studies
(Table 5.7) [145,148-150,153]. These data are used in the modeling.

Every household is assumed to be using the same model of air conditioner, refrigerator,
and electric water heater. The thermal resistance and thermal capacitance values are
scaled according to the floor area (m?) for houses and are assumed to be the same for
all refrigerators and electric water heaters. The water tank temperature is limited
between 45 and 60°C for safety [152]. The showering hours and showering duration

are based on the survey responses of the participants.

The air conditioner and refrigerator operate within a dead band at the set-point
temperature of each respondent. If the respondents are willing to use HEMS and
participate in DR with these devices, then just before peak hours air conditioner set-
point temperature is increased by 2°C (limited to a maximum of 27°C due to thermal

comfort standards), and refrigerator set-point temperature is decreased to 0°C.

Table 5.7 : Technical specifications and thermal properties regarding
thermostatically controlled appliances.

Parameter Unit A_u_r Refrigerator Water
conditioner heater
Rated power kw 2.21 0.15 3.0
COP - 3.21 0.76 1.0
Flow heat capacity KW/K i i 0.659
rate '
House Cabinet Tank
Thermal resistance °C/kW 1/(051()2())2 X 89 223
Thermal KJ/°C 144 x m? 416 1770

capacitance

Since we do not have data on energy consumption profiles of different types of
washing and drying appliances and their different operating modes, we assumed that
each household had the same model of appliance and operated them for the same
duration in the same mode. The electrical load profiles of time-shiftable appliances are
given in Figure 5.12 [82,83,155,286]. It was also assumed that every household had
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the same model air conditioner, refrigerator, and electric water heater. Also,
participants who decided to use HEMS were assumed to switch to the TOU tariff.

Load profiles of time-shiftable appliances

Dishwasher ~ Washing machine Clothes dryer Washer dryer

N

Power (kW)

o = )
o U, 0N U W

ElE2E304me5m06070809m]10nllml2ml13 014015016 17 18

nt time-step

Figure 5.12 : Electrical load profiles of time-shiftable appliances for one cycle (5
min time interval).

5.6.2.3 Unmanageable loads

The survey results are insufficient to generate a load profile of unmanageable home
appliances but can help modify profiles that have already been generated. In the
generation of unmanageable loads (office equipment, entertainment, cooking, lighting,
and others), European Union (EU)'s comprehensive Residential Monitoring to
Decrease Energy Use and Carbon Emissions in Europe (REMODECE) data was used
[287]. REMODECE presents a detailed electrical load profile for an average day for a
typical household in Europe. Assuming that the usage pattern remained the same
between the date of the project and today, but there would be changes in ownership
rate and power consumption of appliances due to technological developments,
REMODECE data was slightly modified according to the survey results (e.g. the
lighting consumption has been updated according to the number of CFLs and LEDs
obtained from the survey results and their power rating). Since the focus of the study
IS not unmanageable loads, it can be arguably said that such a modification can give a
sufficient result in simulations. The modified load consumption was scaled for 442
people. The lighting load demand was also modified by taking into account the lighting
pattern (time of use, seasonal changes) in New Zealand, which is symmetrically

located at the same latitude as Tiirkiye [288].
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5.7 Simulation Results

In this part of the study, data from the survey results were entered into a HEMS tool
and the load profile of 442 survey participants was simulated. Load profiles are

differentiated according to seasons, weekdays, and weekends.

5.7.1 Comparison of load profile of participants before and after HEMS use

Survey results reveal that the majority of respondents (78%) are willing to use HEMS.
The simulation of this best-case scenario shows what can be technically achieved by
HEMS-based DR in practice. It is assumed here that the users do not override their

initial preferences or interrupt the scheduled operations of the appliances.

Figure 5.13 shows the electrical load profiles without DR, based on the responses of
the survey participants (averages of the weekday and weekend profiles). The
differences between the profiles of seasonal profiles are the inclusion of air
conditioning, the change in the frequency and amount of hot water use, and the change
in the unmanageable load profile. The difference between the weekday and weekend
profiles is the running hours of time-shiftable appliances and hot water usage times.
The monthly average electricity consumption of a household was found to be 215

kWh, which is very close to the 211 kWh calculated according to the survey responses.

Figure 5.14 demonstrates the electrical load profiles with DR. During the summer
period, air conditioning pre-cooling before the price increase provides approximately
1 hour of thermal storage between 06:00 — 07:00. There is just a little air conditioning
between 17:00 — 22:00 due to a 2°C increase in set-point temperature for DR.
Refrigerators similarly provide thermal storage between 06:00 — 07:00 and 17:00 —
18:00 just before the price increase. Water heaters pre-heat water for thermal storage
in cheap hours before showering. This pre-heating results in increased overall
electricity consumption to keep water at a certain temperature, but the increase is
negligible compared to the benefit of DR. HEMS raises air conditioner set-point during
peak hours for DR, so the total electricity consumption in summer after DR is lower
than before DR. All possible time-shiftable loads are shifted to participants’ preferred

time intervals (Figure 5.9).
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Figure 5.13 : Daily load profile of 442 participants without DR.
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Figure 5.14 : Daily load profile of 442 participants with DR (78% agree to use
HEMS).
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New peaks occur due to load shifting before 06:00 and 22:00. While this may seem
negative, the national load curve is not just about residential loads. These new peaks
may provide valley filling in a sense, as pre-6 am and post-22 pm are times when load
demand is already very low because of low commercial and industrial load demand
(will be examined in the next sections). Also, unwanted new peaks can be limited by
grid operators through DR or price signals. Due to its scope, the peak limiting
capability of HEMS is not addressed in this study.

The numerical results are summarized in Table 5.8. With DR, on average, the on-peak
consumption decreases by 33% from 915 to 614 kWh, which is significantly important.
The off-peak consumption increases by 84% from 741 to 1365 kWh and the mid-peak
consumption decreases by 19% from 1525 to 1239 kWh. Even though the community
achieves a significant amount of load shifting (33% during the on-peak period), the

total daily bill reduction is only 5%.

Table 5.8 : The change in total daily electrical energy consumption and bill of 442
participants after HEMS-based DR.

Before DR After DR Change
Season Timeof  Time Consumption Bill Consumption Bill Consumption Bill
week of day (kwh) %) (kWh) ($) (%) (%)
Winter Weekday Off- 677 81 1,185 90 +75.0 +11.1
peak
Mid- 1,282 154 1,046 128 -18.4 -16.9
peak
On- 858 103 628 112 -26.8 +8.7
peak
Total 2,817 338 2,859 330 +1.4 -24
Weekend  Off- 685 82 1,350 103 +97 +25.6
peak
Mid- 1,509 181 1,136 139 -24.8 -23.2
peak
On- 875 105 637 114 -27.2 +8.6
peak
Total 3,070 368 3,123 355 +1.7 -3.6
Summer  Weekday Off- 792 95 1,446 110 +82.6 +15.6
peak
Mid- 1,637 196 1,376 168 -15.9 -14.5
peak
On- 969 116 599 107 -38.1 -7.8
peak
Total 3,397 408 3,421 385 +0.7 -5.6
Weekend  Off- 831 100 1,629 120 +96.0 +20.0
peak
Mid- 1,875 225 1,484 177 -20.9 -21.3
peak
On- 965 116 596 104 -38.2 -10.3
peak
Total 3,670 440 3,709 401 -1.0 -8.6
All year Off- 741 89 1,365 103 +84.2 +15.7
peak
Mid- 1,526 183 1,239 151 188 175
peak
On- 915 110 614 109 329 09
peak
Total 3,182 382 3,219 363 +1.1 -5.0
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Here, it should also be calculated how much bill reduction the HEMS users achieve
alone, because the reduction they will get is the major factor that will motivate them
to install HEMS in the future (Figure 5.11). Unfortunately, on average, the total annual
bill reduction of the HEMS users (78% of the participants) is only 6.7% (Table 5.9).
This is far from economically attractive and a challenge to surmount. Although users
perform automated DR, the unmanageable loads that cannot be shifted still pay high
for electricity during the on-peak period. Unfortunately, the TOU scheme in its current
form does not make automated DR economically attractive. Yet, bill discounts can be
improved where electric vehicle (EV) home charging and manual DSM are performed
(e.g. cooking before on-peak period) and PV-battery systems are included. Or, the

existing TOU scheme can be redesigned to become economically more attractive.

Table 5.9 : Total daily bill of HEMS users (78% of the survey participants).

Period Before DR ($) After DR (3$) Reduction (%)
Winter, Weekday 265 252 -4.9
Winter, Weekend 288 273 -5.2
Summer, Weekday 319 294 -8.1
Summer, Weekend 345 315 -8.6
Average 299 279 -6.7

The average daily running cost of the appliances of HEMS users before and after DR
is given in Table 5.10. The total average bill reduction of manageable devices is 13.6%.
However, after switching to the TOU, there is a bill increase of 4.8% in unmanageable
loads due to the increased prices of the on-peak period. Therefore, the total bill

reduction becomes 6.7%.

Table 5.10 : Average daily running cost of the appliances of HEMS users before and

after DR.

Appliance Running cost Saving

Before ($) After ($) $) (%)
Dishwasher 285 21.9 6.6 23.2
Wash. machine 32 25.7 6.3 195
Dryers 7.1 5.6 15 20.9
Refrigerator 60.0 57.6 24 3.9
Air conditioner 30.7 26.9 3.8 124
Water heater 29.3 24.4 4.9 16.8
Unmanageable 1115 116.9 -5.4 -4.8
Total 299.1 279.0 20.1 6.7

The daily appliance load profile of the 345 HEMS users before and after DR are shown
in Figure 5.15. The average daily consumptions are 243 kWh for dishwashers (9.7%),
269 kWh for washing machines (10.7%), 62 kWh for dryers (2.5%), 507 kWh for
refrigerators (20.3%), 250 kWh for air conditioners (10.0%), 264 kWh for electric
water heaters (10.6%), and 908 kWh for unmanageable loads (36.3%).
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Figure 5.15 : Average daily load profile of the manageable appliances of the HEMS
users before and after DR.

In Figure 5.16, the bill reduction of HEMS users is ordered from the highest to the
lowest. The rate of those who save more than 20% on their bills is only 3% (the highest
bill reduction is 27%). 8% has a bill reduction of above 15%, 13% has a reduction of

10-15%, 39% has a reduction of 5-10%, and 30% has a reduction of 0-5%.

With the current appliance ownership rates, appliance use behaviors and HEMS use
preferences, 10% cannot reduce their bills despite owning HEMS. On the contrary,
their bills increase after switching to the TOU tariff. These households should not

install HEMS unless their main motivation is different from bill saving.
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Figure 5.16 : Bill reduction ranking of the HEMS users from the highest to the
lowest.
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In Table 5.11, the appliance use behavior and HEMS use preferences are given for
random sample households each selected from the bill reduction ranges shown in
Figure 5.16. The bill reduction increases as the number of manageable household
appliances, the participation rate of appliances in DR, the frequency of use of

appliances, and the shift of loads from on- to off-peak hours increase.

Table 5.11 : Appliance use behavior and HEMS use preferences of the sample

households.
Bill reduction (%) 204 13.8 7.7 2.3
Appliance use behavior
DW run (weekday) 9 pm (Wed, Fri) 7 pm (every - 7 pm (Mon, Wed,
day) Fri)
DW run (weekend) 7 pm (Sun) 8 am (every - 6 pm (Sun)
day)
WM run 7 pm (Thu, Fri) 1 pm (Mon, 8 pm (Wed) 5 pm (Wed)
(weekday) Wed)
WM run 2 pm (Sat) 10 am (Sat) 2 pm (Sat, 11 am (Sat, Sun)
(weekend) Sun)
CD run (weekday) 9 pm (Thu, Fri) - - -
CD run (weekend) 5 pm (Sat) - - -
WD run (weekday) - - - -
WD run (weekend) - - - -
AC set-point (°C) 25 (27 sleep 26 - -
hours)
Ref. set-point (°C) 4 4 4 6
Avg. shower dur. 15 15 - -
(min)
EWH tank (liter) 65 120 - -
Shower use 8 am 8 am - -
(weekday)
Shower use 9pm 10 am - -
(weekend)
Shower freq. 3 times 2 times - -
(winter)
Shower freq. 6 times 4 times - -
(summer)
Number of 2 3 4 3
residents
HEMS use preferences
DW (shifted 10 pm —12 am 12 am -6 am - Shift to anytime
period)
WM (shifted Do not shift 12 am—-6am 10 pm - 12 Do not shift
period) am
CD (shifted - - - -
period)
WD (shifted - - - -
period)
AC pre-cooling Allow Allow - -
Ref. pre-cooling Allow Deny Allow Allow
EWH pre-heating Allow Allow - -

DW: Dishwasher, WM: Washing machine, CD: Clothes dryer, WD:

Electric water heater

149

Washer dryer, AC: Air conditioner, EWH:



5.7.2 Load profile of the participants for varying HEMS ownership rates

Although 78% of the survey participants wanted to use HEMS, it may not be possible
to reach these figures in reality. The bill reduction achieved is very low which may
result in less adoption of HEMS than in the survey results. Therefore, in this section,
the change in the load curve according to different HEMS ownership rates is examined.
Here, the HEMS usage behavior does not change, only the HEMS ownership rates.
The load curves of the community for different HEMS ownership rates and DR
participation levels are shown in Figure 5.17. As the DR participation rate increases,

consumption decreases in on-peak and mid-peak hours and increases in off-peak hours.
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Figure 5.17 : Load profile of the community for different HEMS ownership rates
(DR participation levels).

Another purpose of DR is to smooth to load curve by reducing the ratio of peak energy
demand to average energy demand, in other words, PAR. When the PAR rates are
examined (Table 5.12), it is seen that a DR participation of 10% gives the lowest PAR
in all periods (winter, summer, weekdays, and weekends). Although most households

agreed to shift their loads, they preferred loads to be shifted mostly in between 22:00
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and 00:00 (where the prices are cheaper but it is also not sleep hours yet). Therefore,
new peaks occur after 22:00 and PAR level starts to increase again after a DR

participation of 10%.

These results may be important for residential microgrids. However, assessing PAR
alone can be misleading, because the total daily load curve of a country is not only
composed of residential but also of commercial, industrial, and other (lighting,
agricultural, etc.) loads. For this reason, the effect of DR on the total load curve is

examined in the next section.

Table 5.12 : PAR for different HEMS-based DR participation levels of the
community (442 participants).

PAR

DR participation (%) Weekday Weekend Weekday Weekend

(Winter) (Winter) (Summer) (Summer)
0 1.726 1.666 1.581 1474
10 1.660 1.592 1.507 1.457
20 1.671 1.625 1.588 1.595
30 1.728 1.733 1.690 1.734
40 1.785 1.841 1.791 1.872
50 1.841 1.949 1.892 2.010
60 1.900 2.056 1.995 2.148
70 1.955 2.163 2.097 2.285
80 2.011 2.270 2.199 2.423

5.7.3 Impact of HEMS-based DR on the total daily load curve

This case scenario seeks to answer the question of how much DR participation would
be sufficient to minimize the PAR of Tiirkiye's total daily load demand if the survey
results were representative of all Turkish households. It has been shown in previous
studies [226] that the results of time-use surveys can be scaled to the national level
after being validated with measurement data. We do not have measurement data and
our sample is slightly biased. Nevertheless, it is recommended that the approach we
follow here (simulating load profile of DR-performing households using survey
results) be applied if a national DR campaign is to be launched in the future or if the
impact of mass DR involvement is to be estimated. This section is intended to be a

guide for future studies and policymakers.

The impact of different DR participation levels on the national load curve (weekdays)
is shown in Figure 5.18 (winter) and Figure 5.19 (summer). The national load curve
data (2021-2022) is extracted from Tiirkiye’s energy exchange company EPIAS’s

transparency platform [289]. Here, a typical summer and winter weekday represents
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the six-month average of April-September and October-March, respectively. Weekend
load profiles are discluded to avoid redundancy since weekend demand is already
below weekday demand both in Tiirkiye and the rest of the world, which makes

weekend DR less important.
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Figure 5.18 : Turkish load curve with different DR participation levels (winter,
weekday) — lowest PAR achieved at 40% DR participation level.
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Figure 5.19 : Turkish load curve with different DR participation levels (summer,
weekday) — lowest PAR achieved at 20% DR participation level.
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According to EPIAS, the average daily electricity consumption is 934,553,930 kWh
for a typical weekday in winter and 940,422,329 kWh for a typical weekday in summer
[289]. Considering that 23.1% of the demand belongs to residential users [54], the
average residential daily energy demand is 215,881,958 kWh in winter and
217,237,251 kWh in summer. In the study, the energy demand of 442 households was
found to be 2817 kWh for a winter weekday and 3397 kWh for a summer weekend.
These numbers were proportioned and the load profiles of 442 households were scaled
to represent all the households in Tiirkiye. The number makes approximately 32
million households which is close to the official number of 39 million [290]. Taking
into account the vacant houses and vacation homes that are empty for most of the year,

it can be argued that the number is quite acceptable.

The simulations show that if the appliance and HEMS use behavior of the survey
participants were representative of the Turkish population, a DR participation of 40%
of the total households in winter and 20% in summer would be required to minimize
the peak-to-average ratio (PAR) of Tiirkiye’s daily load demand (Figure 5.18 and
Figure 5.19).

5.8 Discussions

According to the survey results, the majority of respondents (78%) are willing to install
HEMS. This was considered the best-case scenario, and in Section 7.1 the technical
potential of the upper limit achievable in practice with HEMS-based DR was
simulated. The results showed that there is a potential to reduce peak period
consumption by 33%. However, this provides HEMS users only a very low bill
reduction of 6.7% on average. Given that the respondents mentioned the “bill
reduction” as their biggest motivation for HEMS installation, this is a major barrier to

overcome.

Despite the low overall bill savings in total, 3% of the HEMS users achieved bill
savings of over 20%, 8% over 15%, and 21% over 10%. These households can be the
target customers for the HEMS market and DR programs. The bill reduction increases
in the households as the number of manageable household appliances, their
participation rate in DR, their frequency of use, and their rate of shift increase. Manual
load shifting of unmanageable appliances (ovens, ranges, irons, etc.) was not

considered in the study which could further increase the monetary benefit. EV home
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charging and the use of PV-BESS units were not considered as well, since these are

niche applications for Tiirkiye as of today.

According to the survey results of EU supported “e-balance” project, 12%, 15%, and
12% of the population in Portugal, Poland, and the Netherlands expect 11-20% saving
on electricity to convince to make use of HEMS [247]. This is important because our
simulation results showed that 13% of the total respondents could also save between
11-20% with HEMS use.

A major factor that affects the ratio of bill savings is the design of a pricing scheme.
Turkish TOU seems insufficient for adequate bill savings in its current form. The
scheme was introduced in the early 1980s and has not been updated since. Unlike in
other countries, the rates are the same throughout the year and do not differ in
winter/summer or weekday/weekend periods, and there is no distinction between
different customer groups [291]. The Chamber of Electrical Engineers states that the
current Turkish TOU scheme, designed to target industrial and commercial groups, is
unfair to the residential group. The chamber recommends adjusting the scheme
according to seasonal and even geographical features, and simplifying three-tier prices

by changing them into two-tier, combining day and night [292].

Apart from improving the TOU scheme, Tiirkiye can introduce day-ahead dynamic
pricing for residential customers. Dynamic pricing is reported to be more cost-effective
than TOU in the case of automated energy management [293,294]. Lower off-peak
prices in dynamic pricing or RTP can incentivize the adoption of HEMSs as they
provide increased savings and save users the hassle of tracking daily and hourly
varying cheap prices effortlessly [295]. In the near future, innovations such as peer-to-
peer (P2P) energy trading and the community-based local energy markets may further
increase the savings HEMSs can provide, but as of today these are small-scale pilot
projects [296].

30% of the HEMS users reduced their bills by 0-5% and 10% even increased their
bills. This may lead to loss-aversion and prevent the desired levels of DR adoption.
For instance, more than 90% of the electricity subscribers in the UK were reported to
care more about avoiding financial losses than making savings and therefore are not
switching to TOU [297]. In this regard, it may be essential to offer effective, less

punitive, and well-designed electricity pricing schemes. For instance, a utility

154



company in Texas offers a residential TOU plan where customers pay a fixed energy
rate during the day (with no expensive prices during peak hours) and less at night. The
scheme is not only non-punitive but also simple and easy to understand and therefore

reported to be more attractive [298].

In addition, customers may be offered additional incentives such as subsidies or
rebates for purchasing energy-efficient and DR-capable appliances, or rewards for
switching to time-based tariffs. Moreover, tariff switching can be made easy and
seamless (by online sign-ups, providing clear instructions, or offering customer
service). A marketing move focused on gaining customer support and segmenting
customers according to their specific needs can also be vital [299]. Even if an attractive
tariff scheme is introduced, customers may not be aware of it. The survey results
showed that 59.9% do not even know which tariff they subscribe to. Marketing
campaigns and educating consumers and providing clear and accurate information on
potential bill savings are critical to reaching the desired PAR reduction levels. The

promotion of a design can be just as important as how financially attractive it is.

Although the biggest motivation factor is the bill reduction, HEMSs have additional
benefits such as contributing to the environment, following a technological innovation,
visually monitoring electricity consumption, managing appliances remotely,
improving thermal comfort, and increasing security. These can also motivate users to
install HEMS and switch to time-based tariffs.

In the last decade, electricity prices followed an increasing trend [300]. Prices surged
especially after the Russian gas crisis, and even if the crisis is resolved, prices are
unlikely to fall in the short term as many countries have decided to reduce their reliance
on imported (and cheaper) fossil fuels through decarbonization [301]. This may make
home energy management more attractive in the very near future. The increased
electricity price increases the savings provided by HEMS and the investment made
pays back faster as well.

Although this study focused on ILC-based DR, the survey results also provide
important information about DLC-based DR. For instance, it was learned which hours
users prefer HEMS to shift their loads to (Figure 5.9). These results can be broadly
similar for DLC. DLC subscribers will likely prefer a remote system operator to shift

their loads to similar hours.
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Loss of comfort is a problem in DR. To overcome this problem, some studies propose multi-
objective optimization to consider minimizing the discomfort caused by the shifted usage time
of appliances [282,302,303]. In the absence of data about preferred time intervals for load
shifting, these methods can be very useful. The method we follow in this study asks users the
exact times they want to shift their loads, and thus the degree of comfort loss is based on

choices.
5.8.1 Limitations

It should be emphasized that, although survey results may provide valuable data on
appliance use behavior, these are self-reported and not based on measurements. This
is a limitation of the study. Yet, surveys can increase understanding of patterns and
provide a key reference for grid operators [304,305]. The way to estimate the mass
behavior of users regarding a new technology that is not currently in use but is very

likely to be used in the future can be through surveys and questionnaires.

The survey sample used in this study is slightly biased. This factor, combined with the
small sample size, may limit the generalizability of research findings. Still, some data
such as monthly average electricity consumption and bills, average floor area of
households, average family size, distribution of income levels, and ownership rates of
many appliances are consistent with data from TURKSTAT and other sources. For a
nationwide higher representative conclusion, we recommend the use of the method
with a larger dataset with a more detailed time-use survey (for instance, where
respondents fill in diaries for designated days and report activities) [306]) and the
validation of results with monitoring and measurement data [226]. Following initial
research into the performance of different HEMS applications (which can be
completed using small or incomplete sample sets), enabling larger scale, more
complete testing, ideally in a field setting, can help validate real-world HEMS use

preferences [224].

There were several technical limitations. For example, in the simulations, it was
assumed that every household had the same model of air conditioner, refrigerator, and
electric water heater. These assumptions may not reflect the average. It was possible
to find out about this and more through the questionnaire, but it was not possible to
include every question. We relied on users' intuition and recall at the determination of
set-points of refrigerators and air conditioners or expected them to check their settings.

User statements may not match the facts. Older or lower-end refrigerators may not
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have accurate dials, so actual refrigerator set-point temperatures may differ slightly

from what respondents claim.

5.9 Conclusion

The growing use of smart home appliances as well as increasing electricity prices make
the use of HEMSs more viable than ever before. Yet, HEMSs have not become
widespread so far, and even if they do, we still do not know enough about the future
potential of their mass adoption and customer preferences in using them.
Understanding this potential is closely related to appliance use behavior, electricity
tariff perception, and tendency towards DR participation. Since HEMSs are not widely
used today, surveys can be very useful for understanding future behavior and user

preferences.

Therefore, in this study, a survey is conducted to understand appliance use behavior
and HEMS-based DR preferences. Next, the DR potential is simulated by inputting
the survey responses into a HEMS optimization tool. The load profiles with and
without HEMS use were simulated and the extent to which the electrical load demand
could be changed by DR was investigated. According to the simulation results, there
is a technical potential to reduce peak consumption by 33%. The biggest obstacle in
achieving this is the low bill reduction (6.7%) that HEMS users get on average from
shifting their electrical loads. This obstacle can be overcome by designing more

attractive pricing schemes, which will constitute the subject of future work.

Assessing the potential of DR-based HEMS s critical in predicting power reduction
and targeting eligible HEMS customers. 21% of the HEMS owners (16.4% of total
respondents) reduce their bills by over 10%. 8% reduce by over 15%, and 3% by over
20%. These households can be the target audience of the future HEMS market and DR

campaigns.

The survey in this study was conducted in Tiirkiye. It is recommended to carry out
similar studies in other countries. The results will differ according to different load
profiles, energy use behavior, and tariff schemes. Such surveys can provide important
insights for decision-makers prior to the large-scale deployment of HEMSs and DR

programs.
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6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

Despite Tiirkiye’s abundant solar radiation levels, the adoption of grid-connected
residential rooftop PV systems remains limited in the country. A primary reason for
this is the lack of economic profitability of the systems. While policy measures, such
as financial incentives, can address this issue, a more cost-effective alternative lies in
the utilization of technological methods, including automated DSM. However, the lack
of instruments like DR programs and dynamic pricing hinders the promotion of

automated DSM, making it an uncommon practice in households within the country.

Therefore, in this thesis, a HEMS that can provide optimal DSM in households was
developed. The proposed HEMS optimally schedules the running hours of home
appliances to increase self-consumption by shifting loads to solar generation period. It
also performs DR by shifting loads to cheap electricity period. Next, an optimal sizing
tool was developed for users who wish to install HEMS. The sizing tool assists users
in determining the required PV-BESS capacity to maximize their NPV. Following that,
a nationwide survey was conducted to understand the perception of DSM, DR and
HEMS in Tirkiye, to find deficiencies and develop policy measures. Finally, the
survey results were simulated using the developed HEMS tool and it was examined to
what extent the country's daily load curve could change with HEMS-based DR. The
research findings and conclusions presented in the thesis are summarized in the

following chapters, outlining the key outcomes.
Chapter 2

An economic analysis of residential rooftop PV systems in nine provinces in Tlirkiye
was conducted using HOMER Grid software. Three solar parts were formed on the
solar energy potential map of Tiirkiye and three provinces were selected from each

part for a nationwide feasibility analysis.

e The results showed that residential rooftop PV systems were only feasible in

the southern part of the country.
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e Systems are likely to become more viable in the future as PV installation prices
decrease. When this happens, the systems will become even more profitable in
the southern part where they are already feasible, while still being unattractive
in the northern part. In this case, the FiT rates should be increased in the
northern part and this increase should be compensated by reducing the FiT rates

in the southern part.

e Therefore, it is recommended to introduce regional FiT rates and purchase
subsidies in Tiirkiye taking into account regional solar radiation differences in
the country.

e The FiT rate has remained the same in Tiirkiye since the unlicensed production
law has been amended in 2011. In many countries, including Germany, the
United Kingdom, Japan, and Australia, the FiT rate is updated periodically. In
Tiirkiye, the FiT rate can also be updated annually according to rooftop PV
targets and the changes in parameters such as PV installation cost, retail
electricity price, and grid requirements.

Chapter 3

A MILP-based HEMS architecture was proposed to minimize daily electricity bill by
facilitating optimal DR and PV self-consumption. The proposed algorithm schedules
tasks of all types of manageable electrical loads (TSAs, TCAs, and PSAs) and
responds to all types B2X and V2X technologies taking into account battery
degradation. It can provide pre-cooling or pre-heating for TCAs. A an isotropic model
for a tilted PV array was embedded into the HEMS to turn a solar radiation forecast
into a PV power output. The isotropic model allowed to take into account the tilt angle
of array and the impact of outdoor temperature in the estimation of PV power output.
The HEMS was combined with a smart thermostat providing a flexible DR for AC
users as it can define different AC set-points for different times of the day in response

to changing conditions of electricity prices, solar radiation, and occupant presence.

e The HEMS managed to reduce daily electricity bill by between 53.2%
(household with TSAs, TCAs, PV, BESS and EV) and 13.5% (household with
TSAs and TCAs), depending on household type.
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The embedded smart thermostat of HEMS managed to reduce daily AC bill in
Istanbul, Tiirkiye by between 15% and 24% in August depending on the day
of the month.

The HEMS was tested for the climatic conditions of Istanbul and electricity
prices of Tiirkiye. Since TOU is the only tariff other than flat tariff available
for residential users in Tirkiye, to explore the effectiveness of the HEMs,
Turkish TOU prices were modified into RTP. The HEMS provided higher cost
reduction with the use of RTP due to lower electricity prices of off-peak period.

Under RTP rates, V2G operation became possible because the EV could sell
electricity to the grid at a price higher than the cost of battery degradation.

The use of HEMS provides higher bill reduction when PV and BESS units are
available, but it is worth noting that these components have investment and
O&M costs, therefore, providing a lower daily bill does not guarantee the
highest NPV. Therefore, life cycle cost analysis and optimal PV-BESS sizing

become important for smart homes under HEMS operation.

Chapter 4

Renewable energy system sizing becomes more complex in the presence of HEMS

due to varying load profile throughout a year. Therefore, an optimal PV-BESS-PV tilt

angle sizing tool was developed for HEMS-equipped households. In this way,

automated DR by taking advantage of time-based electricity tariffs and increased self-

consumption are taken into account in component sizing. The sizing model simulates

HEMS operation over one year and repeats the simulations for each PV array capacity-

tilt angle-battery number combination. The model determines the NPV of each

combination over the system lifetime and then ranks them from highest to lowest.

The optimal configuration was found to be 3 kW PV —no BESS — 10° tilt angle
for a HEMS-equipped household in Istanbul at the current battery and
electricity prices. The reason the optimal configuration was without battery is
that electricity prices is relatively low in Tiirkiye as one of the lowest in

Europe.

A sensitivity analysis was performed based on rising electricity and falling

battery prices to make future projections. The BESS use became viable when
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electricity prices increased by 25% or battery prices fell by 25%. BESS use
became viable in other Southern European countries as electricity prices were

higher than in Tirkiye.

The NPV of household in case of HEMS use increased from $920 to $2273.
This is an important finding, as PV projects in many countries suffer from low
feasibility today in the absence of incentives. HEMS use made PV systems
economically more attractive and people who want to simulate their load

profile for PV-BESS sizing can benefit from this tool.

Chapter 5

The growing use of smart home appliances as well as increasing electricity prices make

the use of HEMSs more viable than ever before. Yet, HEMSs have not become

widespread so far, and even if they do, we still do not know enough about the future

potential of their mass adoption and customer preferences in using them.

Understanding this potential is closely related to appliance use behaviour, electricity

tariff perception, and tendency towards DR participation. Since HEMSs are not widely

used today, surveys can be very useful for understanding future behaviour and user

preferences.

According to the survey results, 78% of the population is willing to use HEMS

for DR in Tiirkiye with different usage preferences.

74% of dishwasher, 58% of washing machine, 61% of clothes dryer and 51%
of washer dryer users who are willing to use HEMS in Tiirkiye agree their

electrical appliances to be shifted to off-peak periods.

Simulation of the survey participants’ preferences show that, there is a
technical potential to reduce peak consumption by 33% with the use of HEMS
for DR in Tiirkiye.

However, the average bill savings achieved by HEMS owners is only 6.7% in

Tiirkiye, which can hinder reaching this potential.

This obstacle can be overcome by designing more attractive pricing schemes,
which will constitute the subject of future studies. Assessing the potential of
HEMS-based DR is critical in predicting power reduction and targeting eligible
HEMS customers.
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o Still, 21% of the HEMS owners (16.4% of total respondents) reduced their bills
by over 10%. 8% reduced by over 15%, and 3% by over 20%. These
households can be the target audience of the future HEMS market and DR

campaigns.

e The simulations show that if the appliance and HEMS use behaviour of the
survey participants were representative of the Turkish population, a DR
participation of 40% of the total households in winter and 20% in summer
would be required to minimize the peak-to-average ratio (PAR) of Tiirkiye’s
daily load demand.

e The survey in this study was conducted in Tiirkiye. It is recommended to carry
out similar studies in other countries. The results will differ according to
different load profiles, energy use behaviour, and tariff schemes. Such surveys
can provide important insights for decision makers prior to the large-scale

deployment of HEMSs and DR programs

6.2 Future Work

The results of the study showed that more effective and flexible electricity pricing
schemes should be developed as an alternative to TOU, which has been the only
instrument for implementing DR for residential consumers in Tirkiye so far.
Alternatives such as CPP, peak time rebates or RTP can be offered to residential end-

users in Tirkiye as applied in other countries.

Innovations such as P2P energy trading and community-based local energy markets
are expected to become widespread in the near future. With minor modifications, the
proposed HEMS tool can be improved and respond to these technologies. Due to the

scope of the thesis, these features have been neglected.

Although the energy management system proposed in this study was developed to be
used for individual households, it is possible to modify it to be used for multi-story
apartment buildings or other microgrid and neighborhood-based DR applications.
These will constitute the subject of the future study.

At the same time, this tool, which is designed for ILC can also be used by system
operators for DLC purposes as well as be used in commercial and industrial sites with

minor modifications.
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