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ABSTRACT

EXPERIMENTAL AND NUMERICAL ANALYSES OF REINFORCED

POLYMER COMPOSITES

Kabakcı, Gamze Çakır

Ph.D., Department of Mechanical Engineering

Supervisor : Prof. Dr. Özgür Aslan

June, 2024, 126 pages

Fresh scrap Low Density Polyethylene (LDPE) and Polyurethane (PU) based compos-

ites, designed with fresh scrap rubber and short carbon and glass fiber reinforcements,

are thoroughly investigated regarding toughening mechanisms, mechanical and phys-

ical properties, and microstructural and fracture surface analysis. The mechanical

properties of these composites are thoroughly examined to collect crucial informa-

tion on fundamental material characteristics. After determining the volume percent of

inclusions in the matrix, the focus shifts to the effects of the reinforcements on tough-

ening mechanisms, with carbon and glass fibers employed to enhance the multifunc-

tionality of the composites. Following general characterizations, additional tests and

measurements are conducted. The test results are then numerically reproduced using

finite element analysis (FEA) with ABAQUS/Standard. Simulations are executed with

varied randomizations of inclusions across differently sized macrostructures to con-

firm the consistency of numerical outcomes. Representative volume elements (RVEs)

featuring randomly dispersed inclusions are employed for homogenization, utilizing

periodic boundary conditions (PBCs) to approximate the heterogeneous composite

as a homogeneous material equivalent. The stress-strain response of the heteroge-

neous composite is characterized by assessing average stress and strain tensors over

integration volume elements. Furthermore, a material model is implemented as a
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user subroutine (UMAT) for conducting implicit nonlinear finite element calculations.

Comparative analysis of numerical outcomes with experimental results verifies the re-

liability and accuracy of the simulation approach.

Keywords: low density polyethylene, polyurethane, recycled rubber, glass fiber, car-

bon fiber, scanning electron microscopy
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ÖZ

GÜÇLENDİRİLMİŞ POLİMER KOMPOZİTLERİN DENEYSEL VE

SAYISAL ANALİZLERİ

Kabakcı, Gamze Çakır

Doktora, Makine Mühendisliği

Tez Yöneticisi : Prof. Dr. Özgür Aslan

Temmuz 2018, 126 sayfa

Taze hurda Düşük Yoğunluklu Polietilen (LDPE) ve Poliüretan (PU) esaslı kompoz-

itler, taze hurda kauçuk ve kısa karbon ve cam elyaf takviyeleri ile tasarlanmış olup,

bu malzemelerin sertleşme mekanizmaları, mekanik ve fiziksel özellikleri ile mikroy-

apısal ve kırılma yüzeyi analizi açısından detaylı olarak araştırılmaktadır. Bu kom-

pozitlerin mekanik özellikleri, temel malzeme karakteristikleri hakkında kritik bil-

giler toplamak için kapsamlı bir şekilde incelenmektedir. Matris içindeki takviyelerin

hacim yüzdesinin belirlenmesinden sonra, takviyelerin sertleşme mekanizmaları üz-

erindeki etkilerine odaklanılmaktadır; karbon ve cam elyaf takviyeleri kompozitlerin

çok işlevselliklerini artırmak için kullanılmaktadır. Genel karakterizasyonların ardın-

dan ek testler ve ölçümler yapılmaktadır. Test sonuçları daha sonra ABAQUS/Standard

ile sonlu elemanlar analizi (FEA) kullanılarak sayısal olarak yeniden üretilmektedir.

Simülasyonlar, farklı boyutlardaki makroyapılar üzerinde farklı rastgele içeriklerle

gerçekleştirilerek sayısal sonuçların tutarlılığı doğrulanmaktadır. Rastgele dağılmış

içerikler içeren temsilci hacim elemanları (RVE’ler), homojenleştirme için kullanıl-

makta ve heterojen kompoziti homojen bir malzeme olarak yaklaşık olarak temsil

etmek için periyodik sınır koşulları (PBC’ler) kullanılmaktadır. Heterojen kompoz-

itin gerilme-şekil değiştirme tepkisi, temsili hacim elemanları üzerinde ortalama ger-
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ilme ve şekil değiştirme tensörleri değerlendirilerek karakterize edilmektedir. Ayrıca,

malzeme modeli, örtük doğrusal olmayan sonlu eleman hesaplamaları için bir kul-

lanıcı altrutini (UMAT) olarak uygulanmaktadır. Sayısal sonuçların deneysel sonuçlarla

karşılaştırmalı analizi, simülasyon yaklaşımının güvenilirliğini ve doğruluğunu doğru-

lamaktadır.

Anahtar Kelimeler: düşük yoğunluklu polietilen, poliüretan, geri dönüştürülmüş kauçuk,

cam fiber, karbon fiber, taramalı elektron mikroskobu
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CHAPTER 1

INTRODUCTION

Polymer-based composites have emerged as versatile and high-performance materi-

als, widely used across various industries due to their superior mechanical properties,

lightweight nature, and adaptability. Among the myriad of polymers available, Low-

Density Polyethylene (LDPE) and Polyurethane (PU) are particularly noteworthy due

to their unique properties and extensive range of applications [1].

LDPE is a thermoplastic polymer characterized by its low density, high ductility, and

excellent chemical resistance [2]. The molecular structure of LDPE comprises long

chains with significant branching, which results in its notable flexibility and tough-

ness. These properties make LDPE an ideal material for applications that require

resilience and durability under various environmental conditions. LDPE typically has

a density ranging from approximately 0.91 to 0.93 g/cm³, making it one of the lightest

polymers available [3]. The melting point of LDPE is around 105-115°C, which al-

lows for easy processing and recycling [4]. LDPE exhibits a tensile strength typically

between 10 and 30 MPa, providing adequate strength for many applications while

maintaining flexibility [5]. With an elongation at break of over 400%, it is highly

ductile and can withstand significant deformation before breaking [6]. The thermal

conductivity of LDPE is in the range of 0.33-0.35 W/m·K, indicating its effectiveness

as an insulating material [2]. It is resistant to alcohols, acids, and bases, but it has

limited resistance to hydrocarbons, making it suitable for a variety of chemical stor-

age applications [7]. LDPE is widely used in packaging, plastic bags, containers, and

tubing due to its flexibility and chemical resistance [8]. Additionally, its low melt-

ing point allows for easy processing and recycling, contributing to its popularity in

various manufacturing sectors.
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Polyurethane is a versatile polymer available in various forms, including foams, elas-

tomers, and rigid plastics. The key to PU’s versatility lies in its chemistry; it is formed

through the reaction of a polyol and an isocyanate, leading to a broad range of phys-

ical properties depending on the choice of reactants and processing conditions [9].

The density of PU varies, ranging from 1.0 to 1.2 g/cm³ for rigid forms, making it

adaptable for both lightweight and heavy-duty applications [10]. PU can range from

very soft and flexible (shore A) to very hard and rigid (shore D), allowing it to be tai-

lored for specific applications such as flexible foams or hard protective coatings [11].

It generally exhibits a tensile strength between 10 and 100 MPa, which provides suf-

ficient strength for both flexible and rigid applications [12]. The elongation at break

for PU varies widely, from 50% to over 800%, highlighting its adaptability for ap-

plications requiring high elasticity or rigidity [11]. The thermal conductivity of PU

foam is approximately 0.02-0.03 W/m·K, making it an excellent insulating material

[13]. PU generally has good resistance to oils, solvents, and oxidation, enhancing its

durability in various environments [14]. PU’s properties make it suitable for a wide

range of applications, including automotive parts, insulation materials, coatings, and

adhesives. Its ability to be engineered into both flexible and rigid forms provides

significant advantages in designing products with specific performance requirements.

The enhancement of polymer matrices through the incorporation of reinforcing par-

ticles has led to the development of composite materials with superior mechanical,

thermal, and chemical properties. Both LDPE and PU serve as excellent matrices for

such composites, benefiting from reinforcement at both the nano and macro scales.

Nanoparticles such as carbon nanotubes (CNTs), graphene, and nanosilica are com-

monly used to enhance the properties of LDPE and PU matrices. These nanoparti-

cles offer significant improvements in strength, stiffness, thermal stability, and barrier

properties due to their high surface area and strong interfacial interactions with the

polymer matrix [3]. Macro-scale reinforcements, including fibers (e.g., glass, car-

bon, and aramid fibers) and particulates (e.g., metal and ceramic particles), provide

substantial enhancements in mechanical properties such as tensile strength, impact

resistance, and dimensional stability. These reinforcements are critical in applications

requiring high load-bearing capacity and structural integrity [4].

Recycled fresh scrap rubber is a promising reinforcement material due to its elasticity,

2



durability, and cost-effectiveness. Recycled rubber is derived from discarded tires and

other rubber products, which are processed into small particles or crumb rubber. The

incorporation of recycled rubber into polymer matrices not only improves the me-

chanical properties of the composites but also contributes to environmental sustain-

ability by reducing waste [5]. Recycled rubber can significantly enhance the impact

resistance, flexibility, and energy absorption capacity of the composite material [6].

Research has shown that incorporating recycled rubber into LDPE and PU matrices

can improve the toughness and ductility of the composites, making them suitable for

applications in automotive and construction industries [15].

Several studies have investigated the use of recycled rubber in polymer composites.

Das et al. [16] explored the mechanical properties of LDPE composites reinforced

with recycled rubber particles and found significant improvements in impact strength

and elongation at break. Liu et al. [17] examined the effects of incorporating recycled

rubber into PU matrices and reported enhanced tensile strength and flexibility. These

studies demonstrate the potential of recycled rubber as a cost-effective and sustainable

reinforcement material for polymer composites.

Carbon fibers are renowned for their high strength-to-weight ratio, excellent stiffness,

and thermal stability. These fibers are typically used in high-performance applica-

tions where lightweight and high strength are crucial, such as in aerospace and au-

tomotive sectors. The tensile strength of carbon fibers can reach up to 5,000 MPa,

with a modulus of approximately 230-240 GPa [18]. When incorporated into LDPE

and PU matrices, carbon fibers significantly enhance the mechanical properties of the

composites, including tensile strength, modulus, and fatigue resistance [7].

Glass fibers are another widely used reinforcement in polymer composites. They of-

fer a good balance of strength, stiffness, and cost-effectiveness. Glass fibers have a

tensile strength of about 3,500 MPa and a modulus of around 70-90 GPa [19]. When

used in LDPE and PU matrices, glass fibers improve the dimensional stability, im-

pact resistance, and overall durability of the composites [10]. These properties make

glass fiber-reinforced composites ideal for applications in construction, marine, and

automotive industries.

The comprehensive study of these polymer-based composites involves evaluating their

3



toughening mechanisms, mechanical and physical properties, and conducting mi-

crostructural and fracture surface analyses. Scanning electron microscopy (SEM) is

often employed to investigate the microstructure, providing detailed insights into the

dispersion and interaction of reinforcements within the polymer matrix. SEM analy-

sis helps in understanding the distribution of the reinforcing materials and the quality

of the interfacial bonding, which are critical for predicting the performance of the

composite under various loading conditions [20].

In advanced engineering applications, particularly in aerospace and automotive sec-

tors, the demand for lightweight, strong, and durable materials is paramount. Polymer-

based composites, with their tailored properties and multifunctionality, meet these

stringent requirements, offering a pathway to more efficient and environmentally friendly

technologies.

The integration of numerical methods, such as finite element analysis (FEA), further

aids in predicting the behavior of these composites under various loading conditions,

ensuring their reliability and performance in real-world applications. FEA is a com-

putational tool that simulates how materials and structures respond to forces, defor-

mations, and other physical effects. This method allows researchers and engineers to

model complex composite structures and predict their mechanical performance under

different scenarios, including stress, strain, and thermal effects [21].

For example, Sudarisman and Davies [22] used FEA to study the stress distribution

and failure modes of carbon fiber-reinforced PU composites under tensile loading.

Their findings provided valuable insights into optimizing the composite’s design for

improved mechanical performance. Similarly, Chowdhury et al. [23] employed FEA

to analyze the impact behavior of LDPE composites reinforced with recycled rubber.

The study highlighted the effectiveness of recycled rubber in enhancing the compos-

ite’s impact resistance, validating the experimental results through numerical simula-

tions.

Another example is the work by Haris and Aziz [24], who used FEA to investigate

the thermal properties of graphene-reinforced PU composites. Their simulations pre-

dicted significant improvements in thermal conductivity and stability, which were

later confirmed through experimental tests. These examples demonstrate the critical
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role of numerical methods in advancing the understanding and application of polymer

composites reinforced with nano and macro-scale particles.

This thesis aims to explore the development, characterization, and application of

LDPE and PU composites reinforced with macro-scale particles such as recycled fresh

scrap rubber, carbon fiber and glass fiber. By examining the interplay between poly-

mer matrices and reinforcing materials, this work seeks to contribute to the advance-

ment of high-performance composites tailored for specific industrial applications. In

the following chapters, we will delve deeper into the synthesis and processing tech-

niques for these composites, the characterization of their properties, and a detailed

analysis of their performance in various applications. Through this comprehensive

study, we aim to provide insights into the potential of LDPE and PU composites to

meet the growing demands of modern engineering challenges.
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1.1 BACKGROUND and MOTIVATION

Polymer-based composites have become pivotal in modern engineering due to their

unique ability to combine the advantageous properties of both polymers and rein-

forcing materials. The primary components of these composites include a polymer

matrix, which acts as a binder, and various reinforcements, such as fibers or particu-

lates, which impart strength and stiffness to the material. This combination results in

materials that are lightweight yet robust, with applications spanning across numerous

industries, including aerospace, automotive, marine, and construction.

Low Density Polyethylene (LDPE) and Polyurethane (PU) are two of the most com-

monly used polymer matrices in composite materials. LDPE is known for its flex-

ibility, chemical resistance, and ease of processing, making it ideal for a range of

applications from packaging to automotive parts. PU, on the other hand, is valued for

its exceptional abrasion resistance, durability, and versatility, used in everything from

coatings and foams to structural components.

The enhancement of these polymer matrices with recycled rubber and fibers such

as glass and carbon fibers leads to composites with significantly improved mechani-

cal properties. Recycled rubber not only contributes to the mechanical strength and

toughness of the composites but also addresses environmental concerns by recycling

waste materials. Glass fibers offer high tensile strength and stability, while carbon

fibers provide exceptional stiffness, thermal stability, and low weight.

Advanced characterization techniques, including scanning electron microscopy (SEM),

are employed to study the microstructure of these composites. These techniques allow

for a detailed understanding of how the reinforcing materials are distributed within the

polymer matrix and how they interact at the microscopic level. Such insights are cru-

cial for optimizing the performance and reliability of the composites.

The motivation for studying LDPE and PU-based composites reinforced with recycled

rubber, glass fibers, and carbon fibers stems from several key factors:

• Recycling and Waste Reduction: Incorporating recycled rubber into compos-

ites provides a sustainable solution to the disposal of rubber waste, which is
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a significant environmental challenge. By repurposing waste materials, these

composites contribute to the reduction of landfill use and promote a circular

economy.

• Resource Efficiency: Utilizing recycled materials and enhancing them with

fibers reduces the demand for virgin raw materials, conserving natural resources

and minimizing the environmental footprint of composite production.

• Mechanical Performance: The addition of glass and carbon fibers to LDPE and

PU matrices significantly enhances the mechanical properties of the compos-

ites, such as tensile strength, stiffness, and toughness. These improvements are

critical for applications that require high performance and durability.

• Multifunctionality: Combining different types of reinforcements allows for the

design of composites with tailored properties, meeting specific requirements of

various applications. For instance, carbon fibers provide excellent strength-to-

weight ratios, which are essential for aerospace and automotive applications.

• Cost-Effectiveness: Utilizing recycled materials and optimizing composite for-

mulations can lead to cost savings in material procurement and waste manage-

ment. Additionally, the enhanced performance of these composites can lead to

longer lifespans and reduced maintenance costs in their applications.

• Innovation in Material Science: Exploring the toughening mechanisms and the

interactions between different types of reinforcements within the polymer ma-

trix can lead to the development of new materials with unprecedented proper-

ties. This research pushes the boundaries of what is possible with polymer-

based composites.

• Numerical Modeling and Simulation: Integrating numerical methods such as

finite element analysis (FEA) with experimental research provides a compre-

hensive understanding of the material behavior under various conditions. This

approach not only validates the experimental findings but also guides the design

and optimization of new composite materials.
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In summary, the study of LDPE and PU-based composites reinforced with recycled

rubber, glass fibers, and carbon fibers is driven by the need to develop sustainable,

high-performance materials that can meet the demanding requirements of modern

engineering applications. This research has the potential to contribute significantly to

environmental conservation, economic efficiency, and technological innovation.

Figure 1.1 illustrates the flow chart depicting the motivation behind this thesis.

Figure 1.1: Motivation Flow Chart
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In a heterogeneous structure, the size, shape, properties, and distribution of inclu-

sions significantly influence the overall physical behavior. These inclusions can vary

widely in their characteristics, leading to complex interactions within the material.

However, conducting straightforward experimental observations on multiple speci-

mens with varying phase characteristics and volume fractions is often impractical due

to time and cost constraints [25].

To overcome this challenge, several homogenization techniques have been devised.

These methods aim to develop a constitutive model that can be applied at the macro-

scopic level, providing an averaged and homogenized representation of the material’s

behavior. Homogenization approaches essentially bridge the gap between the mi-

croscale and macroscale, allowing for the prediction of effective properties of com-

posite materials without the need for exhaustive experimental data.

These techniques can be broadly categorized into analytical, numerical, and semi-

analytical methods. Analytical methods, such as the rule of mixtures and self-consistent

schemes, provide closed-form solutions based on simplifying assumptions. Numeri-

cal methods, including finite element analysis (FEA) and computational homogeniza-

tion, offer more detailed insights by simulating the material’s response under various

conditions. Semi-analytical methods combine elements of both approaches to balance

accuracy and computational efficiency.

By utilizing homogenization techniques, researchers and engineers can design and

optimize materials for specific applications more effectively. This is particularly valu-

able in industries such as aerospace, automotive, and construction, where material

performance under various conditions is critical. The development of robust con-

stitutive models through homogenization not only saves time and resources but also

enhances the ability to predict material behavior in real-world applications, leading to

safer and more efficient designs.

Within the realm of analytical estimates, micromechanical models such as the Halpin-

Tsai model [26] and the Mori-Tanaka model [27] are utilized to predict the elastic

properties of composites. These models consider the geometry, orientation of inclu-

sions, and the elastic properties of both the filler and the matrix. The Halpin-Tsai

model is a mathematical approach utilized to estimate the modulus of composite
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materials [26], [28]. It relies on averaging the individual properties of the compo-

nents to calculate the overall property. This method is suitable for linear material

properties, such as elastic moduli, and primarily considers the volume ratio of the

heterogeneities. Additionally, equivalent material properties can be derived through

the analytical solution of a boundary value problem using the Eshelby model [29]

and other self-consistent approaches developed by researchers such as Hashin [30],

Hashin and Shtrikman [31], and Hill [32]. These models provide a framework for

understanding the macroscopic behavior of composites by averaging the properties of

the microscale components. As another mathematical approach, asymptotic expan-

sion theory has been developed to provide effective overall properties as well as local

stress and strain values. This theory, advanced by Sanchez-Palencia [33] and Ben-

soussan, Lions, and Papanicolaou [34], is particularly useful for simple microscopic

geometries. The macroscopic linear properties have also been investigated by Beran

[35] and Torquato [36], who have contributed significantly to the understanding of

the statistical nature of material properties. Research on the random distribution of

heterogeneities in materials has been conducted by Milton [37], Chaboche et al. [38],

Kroner [39], Sanchez-Palencia and Zaoui [40], and Nemat-Nasser [41]. These studies

have provided valuable insights into the behavior of composites with randomly dis-

tributed inclusions, further enhancing the predictive capabilities of micromechanical

models.

In computational homogenization, the behavior of heterogeneous composite materials

is governed by constitutive laws and the spatial distribution of material components.

The literature offers numerous in-depth studies on numerical homogenization meth-

ods. Suquet [42], [43] has applied the averaging approach to solve nonlinear problems

across two scales. By using the deformation gradient tensor to address the problem

at the microscopic level, the averaging formulation is then applied to produce the

macroscopic stress tensor. Hill [44] introduced the concept of a representative vol-

ume element (RVE), typically defined as a volume of heterogeneous material large

enough to be statistically representative of the composite. The finite element method

is employed to perform analysis at the RVE level, as demonstrated by Terada and

Kikuchi [45], Smit [46], Smit et al. [47], Miehe et al. [48], and Feyel and Chaboche

[49]. Their work has been instrumental in the application of finite element methods
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Figure 1.2: Homogenization Scheme of Composite Materials

to homogenization problems, enabling detailed analysis of composite materials.

The contributions of Moulinec [50] and Miehe [51] have extended these approaches

to accommodate large deformations with arbitrary nonlinear material behavior at the

microscale. This has significantly broadened the applicability of computational ho-

mogenization techniques to more complex and realistic material behaviors. Geers and

Kouznetsova [52, 53, 54] have developed a second-order homogenization technique

that solves boundary value problems at the microscale using the deformation gradient

tensor and the corresponding Lagrangian gradient [55]. This advanced method allows

for more accurate modeling of material behavior under various loading conditions.

Multi-scale computational homogenization scheme is presented in Figure 1.2.

Overall, multi-scale computational homogenization schemes have evolved to provide

a robust framework for predicting the behavior of composite materials. These meth-

ods are essential for designing and optimizing materials in various engineering appli-

cations, ensuring that their macroscopic properties can be reliably predicted from their

microscopic structures. The comprehensive study and development of these tech-

niques continue to enhance our understanding and capabilities in material science and

engineering.

In this thesis, fresh scrap Low Density Polyethylene (LDPE) and Polyurethane (PU)
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composites, designed with fresh scrap rubber, short carbon, and glass fibers, are in-

vestigated in detail. The research centers on investigating toughening mechanisms,

along with analyzing the mechanical and physical properties, as well as conducting

microstructural and fracture surface analyses of these composites. Detailed scrutiny

of the mechanical properties aims to collect essential data on fundamental material

parameters.

To assess the mechanical behavior of the composites comprehensively, uniaxial com-

pression tests are conducted to determine their stress-strain responses under controlled

conditions. Following these experimental tests, the Halpin-Tsai (H-T) model, which

applies a rule-of-mixtures approach, is employed. This model calculates the homog-

enized moduli of the composite materials by considering the properties of their indi-

vidual components.

Additionally, to delve deeper into the mechanical properties of the polymer-based

composites, their uniaxial response is further investigated through macromechanical

finite element simulations using ABAQUS/Standard software. These simulations al-

low for detailed analysis of how the composite materials behave under various loading

conditions, providing insights into their structural integrity and performance charac-

teristics.

Representative Volume Elements (RVEs) serve as essential tools for homogenization,

containing a random distribution of inclusions within their defined square domain.

The size of each RVE, specifically the length of its edge, is carefully chosen based

on the designated number of inclusions and their volume fraction. To ascertain the

isotropic effective elastic properties of the composite material, periodic boundary con-

ditions are applied rigorously across the RVEs.

During the analysis process, the average strain and stress tensors are meticulously

computed over the integration volume elements within each RVE. This detailed eval-

uation provides a comprehensive description of the material’s stress-strain behavior

under varying conditions, ensuring accurate predictions of its mechanical response.

This comprehensive analysis provides insights into the mechanical performance of

LDPE and PU composites, aiding in the development of materials with enhanced
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properties for various engineering applications. The use of advanced modeling tech-

niques and simulations ensures a thorough understanding of the composites’ behav-

ior under different loading conditions, contributing to the optimization and design of

high-performance composite materials.
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1.2 OBJECT AND SCOPE

In this thesis, Low Density Polyethylene (LDPE) and Polyurethane (PU) based com-

posites, designed with fresh scrap rubber, short carbon fibers, and glass fibers, are

thoroughly investigated. The study focuses on the toughening mechanisms, mechan-

ical and physical properties, as well as microstructural and fracture surface analysis.

The mechanical properties of the composites are extensively examined to gather basic

material parameters.

Following the initial characterization of the composites, further tests and measure-

ments are carried out to investigate the time-dependent behavior and toughening mech-

anisms. Three specific compositions are selected for detailed analysis. Representative

Volume Elements (RVEs) are defined for these chosen compositions, ensuring that

their properties enable a continuum representation that accurately mimics the behav-

ior observed at the RVE level.

The macroscopic responses obtained from experimental tests are subsequently com-

pared with the numerical responses of the RVEs. This comparison is conducted under

appropriate boundary conditions, revealing a high degree of similarity between the ex-

perimental and numerical results. This validation confirms the accuracy and reliability

of the numerical approach in predicting the mechanical behavior of the composites.

The objectives of this thesis are presented in the following list:

• Design and manufacture LDPE and PU composites incorporating fresh scrap

rubber, short carbon fibers, and glass fibers as volume fillers and reinforcements.

• Conduct surface modification of polymers and reinforcements to enhance com-

posite performance.

• Identify the impact of inclusions on material properties and fracture toughness

using a variety of laboratory tests.

• Develop numerical models of the macrostructure of the composites.

• Generate several RVEs for the candidate compositions.
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• Implement the homogenization model in finite element analysis (FEA) soft-

ware, specifically ABAQUS/Standard.

• Numerically reproduce basic characterization tests to validate the models.

• Validate the numerical approach by comparing specific test results with existing

analytical approaches and finite element method (FEM) results.

• Perform implicit nonlinear finite element calculations using the user subroutine

UMAT.
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CHAPTER 2

REINFORCED POLYMER-BASED COMPOSITES

2.1 Experimental Study

2.1.1 General Characteristics of the Materials

2.1.1.1 Fresh Scrap Low Density Polyethylene (LDPE)

LDPE is a thermoplastic made from the monomer ethylene. Known for its low density

and high flexibility, it is widely used in applications such as plastic bags, containers,

and various types of packaging. LDPE is valued for its chemical resistance, durability,

and ease of processing [56].

Fresh scrap LDPE refers to the leftover material from manufacturing processes, which

has not yet been subjected to any post-consumer use. This type of scrap is often

cleaner and more uniform in composition compared to post-consumer LDPE, making

it an attractive source for recycling [57]. Recycling fresh scrap LDPE involves melting

and reforming the plastic, which can then be reused in similar applications or in the

production of new products [58].

2.1.1.2 Fresh Scrap Polyurethane (PU)

Polyurethane is a versatile polymer available in various forms, including foams, elas-

tomers, and coatings. It is renowned for its excellent abrasion resistance, flexibility,

and load-bearing capacity. PU is commonly used in furniture, automotive parts, insu-
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lation, and footwear [59].

Fresh scrap PU, like LDPE, is a by-product of the manufacturing process. It includes

off-cuts, trimmings, and other remnants that are typically clean and uncontaminated.

Recycling PU is more challenging than LDPE due to its thermosetting nature, but

advances in chemical recycling and mechanical processing are making it increasingly

feasible [60].

2.1.1.3 Fresh Scrap Recycled Rubber (NBR)

The recycled rubber utilized in this thesis is sourced as fresh scrap directly from the

production line by sports equipment manufacturers. It is devoid of any metallic in-

clusions. The rubber particles exhibit an average diameter ranging from 30 to 50 µm,

with a density of 1.5 g/cm3. The material possesses a modulus of elasticity measur-

ing 10 MPa, an elongation at break of 80–100 %, and a hardness between 37 and 40

"Shore A".

2.1.1.4 Carbon Fibers (CFs)

One of the most notable properties of carbon fiber is its high tensile strength. Carbon

fibers possess tensile strengths that can exceed 4,000 MPa. It also exhibits a high

modulus of elasticity ranging from 200 to 800 GPa, carbon fiber-reinforced com-

posites can maintain their shape under high stress, offering structural integrity and

rigidity. This property is particularly beneficial in aerospace and automotive applica-

tions, where maintaining shape and performance under load is crucial. Carbon fiber

has also excellent thermal stability, allowing it to maintain its properties at elevated

temperatures.

2.1.1.5 Glass Fibers (GFs)

Glass fibers are characterized by their high tensile strength, which can range from

3,400 to 4,800 MPa. The modulus of elasticity of glass fibers typically ranges from
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70 to 90 GPa. They have a density of 2.45 g/cm3, softening temperature is found

around 1000◦C and thermal expansion is about at the level of 2.85 µm ◦C.

2.1.2 Manufacturing of LDPE and PU based Composites

Fresh scrap LDPE and PU based composites have been designed with fresh scrap

rubber (major), short carbon and glass fiber reinforcements. An economical and safe

process has been developed for manufacturing polymer-based composites reinforced

with recycled rubber powder, as well as short carbon and glass fibers. To enhance

the interface quality between the polymer matrix and the reinforcements, a special

pre-treatment process is applied to ensure successful composite production.

Prior to mixing with the polymer matrix, the reinforcements undergo a drying process

at 50◦C in a sterilizer-oven for 48 hours. This drying step is crucial for removing

moisture, thus ensuring efficient and strong chemical bonding between the matrix and

reinforcements. After drying, the reinforcements are blended with the polymer ma-

trix at a speed of 1200 rpm for 10 minutes to achieve a preliminary uniform mixture.

Following this, the mixture is subjected to a milling process for 4 hours at 250 rpm.

During milling, 3 wt% of Zn-Stearate dry lubricant is added to the mixture. The lubri-

cant aids in achieving a homogeneous distribution of the reinforcements throughout

the polymer matrix.

The final stage of the manufacturing process involves hot compaction. The blended

and milled mixture is compacted at 200◦C for 20 minutes under a pressure of 30

MPa. This step consolidates the composite material, ensuring proper adhesion and

integration of the reinforcements within polymer matrix.

A similar procedure is given in Figure 2.1. This process effectively produces polymer-

based composites with enhanced mechanical properties, owing to the optimized inter-

face bonding and uniform distribution of recycled rubber powder, short carbon fibers,

and glass fibers. The careful control of processing parameters ensures the economic

viability and safety of the manufacturing process. Figure 2.2 depicts the equipment

employed during the process. Finally, depending on the type of test, the specimens

are produced in different sizes to meet the specific requirements and standards of each
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testing method. They are cut by waterjet and metallographic cut-off machine (Figure

2.3).

Figure 2.1: Manufacturing steps of polymer-based composites
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Figure 2.2: Milling (left) and hot compaction (right) of the mixture

Figure 2.3: Waterjet (left) and metallographic cut-off machine (right)

20



2.1.3 Compositions

Low Density Polyethylene (LDPE) and Polyurethane (PU) have been reinforced with

fine fresh scrap rubber powder (NBR), carbon fibers (CFs) and glass fibers (GFs) to

provide multifunctionality to the composites.

In manufacturing the composite matrix, 60 weight percent (wt %) of polymer and

30 wt % of recycled rubber are employed. Furthermore, to enhance strength and

durability, 5 volume percent (vol %) of carbon fibers (CFs) and 5 vol % of glass fibers

(GFs) are integrated as reinforcements within both LDPE and PU matrices. Table 2.1

details the chemical compositions of the composites used in specimen preparation.

Table 2.1: Chemical composition of LDPE and PU composites.

Composite Matrix Rubber Carbon Fiber Glass Fiber Bismuth Graphene
Name (NBR) (CF) (GF) Oxide Nanoplatelets

(wt %) (vol%) (vol%) (Bi2O3) (GNP ) (wt %)
(wt %)

LDPE-I LDPE 30 5 5 0.15 0.15
PU-I PU 30 5 5 0.15 0.15

2.1.4 Characterization Tests

2.1.4.1 Density and Surface Hardness Measurement

Density measurements are conducted using a pycnometer to accurately determine the

volume (see Table 2.2). Also, mass measurements are recorded by a high sensitive

balance.

Table 2.2: Density of the composites

Composite Name Density (g/cm3)

LDPE-I 1.41
PU-I 1.59

After post curing in drying oven again 24 hours, hardness measurements on the speci-

mens are performed by using Shore D hardness test device on the polished flat surfaces

of the specimens (see Figure 2.4).
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Figure 2.4: Shore D hardness tester
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In the Shore-D hardness test, measurements were taken from at least five different

points on the specimen surface, and the average values are summarized in Table 2.3.

Generally, the fillers used as reinforcements enhance surface hardness.

Table 2.3: Shore D hardness measurements of the composites

Composite Name Shore-D Hardness

LDPE-I 96 ± 10
PU-I 98 ± 10

The hardness values of these composites surpass those typically found in conventional

polymer-based components, demonstrating the beneficial influence of reinforcement

particles. Achieving uniform enhancement of surface hardness across the entire sur-

face is essential for optimizing the performance of these novel polymer-based com-

posite designs. This uniform hardness is critical for improving toughness in tribologi-

cal applications, where surfaces are subjected to friction and potential surface damage

from contact with other components.

2.1.4.2 Differential Scanning Calorimetry (DSC)

As is well known, differential scanning calorimetry (DSC) is a powerful analytical

technique employed to measure several key properties of samples extracted from com-

posites. This thermal analysis method is particularly useful for identifying fusion

points, crystallization points, and glass transition temperatures (Tg).

In DSC, a sample and a reference material are subjected to a controlled temperature

program. The technique measures the difference in heat flow between the sample

and the reference as a function of temperature. This difference in heat flow provides

insights into endothermic and exothermic processes occurring within the sample, such

as melting, crystallization, and glass transitions.

In this study, DSC experiments on polymer-based composites determine their trans-

formation points. The results present heat flux (mW) versus temperature (◦C) curves,

shown in Figures 2.5 and 2.6. These curves are instrumental in calculating the en-

thalpies of transitions by integrating the peaks corresponding to specific transitions.
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Moreover, DSC analysis provides valuable insights into the thermal behavior of ma-

terials, helping to understand the stability and performance of the composites under

various temperature conditions. By analyzing the DSC curves, researchers gain in-

formation about the material’s thermal history, phase transitions, and the degree of

crystallinity, which are crucial for optimizing the composite’s properties for specific

applications.

Additionally, DSC can be used to assess the purity of materials, as impurities typically

alter the melting behavior of a substance. This technique also aids in the study of

polymer curing processes, degradation, and the effect of additives or fillers on the

polymer matrix.

Overall, DSC is a versatile and essential tool in the field of material science, provid-

ing comprehensive thermal profiles that are critical for the development and quality

control of composite materials.
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Figure 2.5: Differential Scanning Calorimetry (DSC), for composite LDPE-I to opti-
mize hot compaction levels during manufacturing
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Figure 2.6: Differential Scanning Calorimetry (DSC), for composite PU-I to optimize
hot compaction levels during manufacturing
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2.1.4.3 Incremental Cyclic Compression Tests

In this study, incremental cyclic compression tests are conducted up to failure to ob-

serve saturation, load absorption, and hardening phenomena during cyclic loading.

All of the composites exhibit stress relaxations at the peak of loading, with ∆σ ranging

from 3 to 6 MPa. This stress relaxation occurs due to the saturation of the microstruc-

ture during cyclic loading, which closes micro-porosities and leads to hardening of

the structure through the interaction between the reinforcements and the matrix.

During the cyclic loading, significant plastic deformation regularly occurs in the LDPE-

based composite specimens, as shown in Figures 2.7 and 2.8. This plastic deformation

indicates the material’s response to repeated loading and unloading cycles, revealing

its ability to absorb energy and redistribute stresses.

These findings should align with the results from impact shock and drop weight tests,

which are discussed in the next subsection. These tests will provide additional insights

into the composites’ behavior under dynamic loading conditions, further validating

the observations from the cyclic compression tests. Understanding these behaviors is

crucial for evaluating the material’s performance and durability in real-world applica-

tions, such as automotive, aerospace, and construction industries.
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Figure 2.7: Incremental cyclic compression tests for LDPE-I

Figure 2.8: Incremental cyclic compression tests for PU-I
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2.1.4.4 Low Velocity Impact Testing (Drop Weight Test)

Dynamic compression tests are conducted using a specialized drop weight test appa-

ratus. In these tests, a standard flat-bottom punch is released from a predetermined

height to impact the test specimens. The impact behavior of the manufactured com-

posites is monitored and analyzed through force-time curves generated during the

tests. The apparatus used for the drop weight tests, as well as a schematic representa-

tion of the testing process, are illustrated in Figure 2.9. These figures provide a clear

overview of the experimental setup and the method employed to evaluate the impact

performance of the composite materials.
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Figure 2.9: Drop weight test apparatus (left) and schematic drawing (right)
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The conversion of potential energy into kinetic energy is determined by the drop

height and the mass of the impactor. When the impactor head contacts the specimen,

the impact energy is

K =
1
2

mv2 (2.1)

where m is the drop mass and v is the impact velocity. The performance of specimen

in terms of energy absorption is assessed by the ratio of energy absorbed by the spec-

imen to the impact energy of the impactor. Newton’s second law of motion dictates

the impact force.

Fi = mai (2.2)

in which ai is the measured deceleration of the impactor assembly. The energy absorp-

tion is determined by the closed area under the load-displacement curve. By applying

the trapezoidal method, the curve up to the maximum load is divided into multiple

smaller trapezoids. The energy absorption value is then calculated as the total sum of

the areas of these small trapezoids as follows:

E =
∑

Ii =
1
2

n∑
i=0

(Fi+1 + Fi)(xi+1 − xi) (2.3)

E is the absorbed energy, Ii is the trapezoidal area, Fi is the contact force and xi is the

displacement increment caused by the impact force at each time interval.

Drop weight tests are conducted to observe the impact behavior of these composites

through force-time curves. For these tests, the drop mass is 1.9 kg, and the impact

speed, accounting for friction, is calculated to be 3.2 m/s. The impact energy is cal-

culated using Equation (2.2), resulting in 9.728 J. The force-time curves for composi-

tions LDPE-I and PU-I are presented in Figure 2.10.
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Figure 2.10: Force-time curves of the composites LDPE-I and PU-I
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The time integral of the impact force over time is computed to determine the area

under the force-time curve, which is used to calculate ai from Equation (2.2). By

performing first and second integrals of acceleration, the velocity and displacement

history of the drop can be obtained. Consequently, force-displacement curves are

plotted for compositions LDPE-I and PU-I in Figure 2.11. As depicted in this figure,

the area under the load-displacement curve visually represents the absorbed energy.

Figure 2.11: Force-displacement curves of the composites LDPE-I and PU-I

Table 2.4 provides data on the energy absorbed on impact and the energy absorption

performance.

Table 2.4: Average results for the energy absorption performance

Composite Impact Energy, Energy absorbed, Energy absorption
Name K (J) E (J) (%)

LDPE-I 9.728 3.02 31.04
PU-I 9.728 8.38 86.13
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2.1.4.5 Three Point Bending (3PB) Fatigue Test Analyses

Three-point bending (3PB) fatigue tests are conducted on the polymer-based com-

posites, LDPE-I and PU-I, to evaluate their time-dependent behavior under cyclic

loading, simulating real service conditions.

All tests are performed on a developed fatigue test device (see Figure 2.12), with

maximum stress controlled at three different frequencies: 8, 10, and 12 Hz, in Mode

II according to ASTM D790 standards. The primary objective is to subject the test

samples to conditions that closely mimic real-world service environments, evaluating

the influence of different frequencies on fatigue damage behavior.

For each fatigue test, a pre-stress is applied to all specimens to estimate their stiffness

and displacement amplitude during cyclic loading. The stiffness values, dependent

on key parameters obtained from the fatigue tests, are calculated using the following

equation:

sti f f ness(N/mm) =
F(amplitude)
D(amplitude)

=
Fmax −

Fmax+Fmin
2

Dmax −
Dmax+Dmin

2

(2.4)

Figures 2.13 and 2.14 present the results for two different composite structures. Each

specimen shows a specific evolution of stiffness and displacement amplitude depend-

ing on the number of cycles at different frequencies. However, the frequency does not

significantly affect these composites under laboratory conditions.

The maximum stress controlled remains constant throughout the tests, ensuring the

reliability of the fatigue tests. As observed, stiffness decreases regularly, while dis-

placement amplitude increases as cracks initiate and propagate. At the final stage

of fatigue life, stiffness decreases significantly, and displacement amplitude increases

drastically.

Fatigue life for the specimens tested in this study varies from 1.106 to 6.106 cycles.

The PU-I composite specimens exhibit slightly higher fatigue resistance compared to

the LDPE-I.

These findings provide valuable insights into the fatigue behavior of polymer-based
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composites, contributing to the development of materials with improved performance

and durability in real-world applications.

The fatigue test results reveal several critical aspects of the composites’ behavior un-

der cyclic loading. The 3PB fatigue tests effectively simulate the long-term perfor-

mance of composites under repeated stress, which is essential for predicting their

lifespan in practical applications. By testing at different frequencies (8, 10, and 12

Hz), the study assesses how varying loading rates influence fatigue damage. While

the frequency does not have a significant effect under laboratory conditions, it is im-

portant to consider in real-world scenarios where loading rates can vary.

The evolution of stiffness and displacement amplitude provides insights into the stages

of crack initiation and propagation. Monitoring these parameters helps in understand-

ing the material’s failure mechanisms and improving its resistance to fatigue. The

slightly higher fatigue resistance of PU-I composites suggests that this material might

be better suited for applications requiring high fatigue endurance. This information

can guide material selection and design in industries such as automotive, aerospace,

and construction.

The consistency of the maximum stress controlled during the tests ensures that the

observed fatigue behavior is reliable and reproducible. This consistency is crucial

for developing standardized testing protocols and for ensuring that the composites

perform as expected in real-world applications.

In conclusion, the 3PB fatigue tests provide comprehensive data on the fatigue behav-

ior of LDPE-I and PU-I composites, helping to optimize their design and application

for enhanced performance and durability in various industrial sectors.
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Figure 2.12: 3PB-Fatigue test device
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Figure 2.13: 3PB-Fatigue carried out under stress controlled at the three frequencies,
8, 10, 12 Hz for composite LDPE-I
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Figure 2.14: 3PB-Fatigue carried out under stress controlled at the three frequencies,
8, 10, 12 Hz for composite PU-I
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2.1.4.6 Compression Test

To characterize the mechanical behavior of matrices and polymer-based composites,

they undergo uniaxial compression tests following DIN 50106 standards at a constant

crosshead speed of 1 mm/min. Figure 2.15 illustrates the test setup.

Figure 2.15: Uniaxial compression test setup

The stress-strain responses of the matrix and composite are presented in Figure 2.16.

As depicted in this figure, the incorporation of fibers enhances the strength of the com-

posite beyond that of the matrix, highlighting the positive impact of reinforcements.

The summarized comparison of the test results can be found in Table 2.5.
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Figure 2.16: Uniaxial compressive responses of the matrices and the composites filled
with CFs and GFs

Table 2.5: Comparison of the compression test results

Composite Ultimate Stress Strain at Break Modulus of Elasticity
Name (MPa) ϵ f (%) E (MPa)

LDPE-matrix 22.59 9.64 639
LDPE-I 42.34 10.85 754

PU-matrix 25.38 8.65 409
PU-I 40.27 7.24 657
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2.1.4.7 Microstructural Observations

Microstructure and surface damage evaluations were conducted using SEM, as shown

in Figure 2.17. SEM observations were performed on the fracture surfaces of the

tested specimens using an electron microscope. Interface analyses between matrix

and reinforcement for each composite is carried out to optimize a strong adhesion

structure of the composite for accomplished toughening mechanisms. Cavitation and

void formation, along with matrix expansion, and local debonding of nanoparticles

leading to void growth, are identified as enhanced toughening mechanisms in the

structure. Microstructural analyses were also conducted on the polished surfaces of

the specimens. This included mapping the distribution of particles and performing

chemical analyses using EDS (Energy Dispersive X-ray Spectroscopy).
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Figure 2.17: Scanning Electron Microscopy (SEM)

After the realization of mechanical tests, microstructure and fracture surface are ana-

lyzed for the distribution of the reinforcement in the matrix. The microstructures are

evaluated with different reinforcements after sectioning and polishing. Energy Dis-

persive Spectroscopy (EDS) analyses is also used to control the chemical composition

of the polymer-based composites. Microstructure and fracture surface of composites

LDPE-I and PU-I are presented in Figures 2.18, 2.19, 2.20, 2.21, 2.22 and 2.23.
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Figure 2.18: LDPE-I microstructure – mapping analyses
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Figure 2.19: PU-I microstructure – mapping analyses44



Figure 2.20: Energy Dispersive Spectroscopy (EDS) analyses for the composites
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Figure 2.21: Microstructure analyses of LDPE-I (left) and PU-I (right)

Figure 2.22: Fracture surface of LDPE-I

Figure 2.23: Fracture surface of PU-I

46



The matrix of the composites exhibits a generally uniform distribution of reinforce-

ments throughout, although there are some minor clusters or agglomerations of the

fine powders that serve as reinforcements. These clusters of particles may contribute

to a decrease in the strain efficiency of the composites.

In the mapping images, a color legend is provided on the left-hand side, which shows

the intensity of the identified elements. This legend is positioned at the bottom right

corner of each image. The color scale progresses upwards to indicate higher intensi-

ties of the specified element. These visual representations clearly illustrate the homo-

geneous distribution of the reinforcement elements within the composite matrix.
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2.2 Micromechanical Models

2.2.1 Analytical Homogenization

For polymer-based composites, accounting for the homogenization process is essen-

tial because the matrix and fillers exhibit distinct material properties. Understanding

this process is key to accurately predicting the overall mechanical behavior of the

composite material. There are several analytical models designed to estimate the the-

oretical modulus of such composites. One of the most widely used models is the

Halpin–Tsai homogenization model. This model is particularly favored for its ability

to estimate the homogenized moduli of heterogeneous materials with reasonable accu-

racy. The Halpin–Tsai model provides a mathematical approach to predict the elastic

properties of composites based on various factors. These factors include the shape

and orientation of the fillers, as well as the elastic properties of both the fillers and the

matrix. The Halpin–Tsai model adapts well to composite materials, offering insights

into how different components interact within the composite structure. By incorpo-

rating the geometry of the fillers (whether they are fibers, particles, or platelets) and

their alignment within the matrix, the model can predict how these factors influence

the overall stiffness and elasticity of the composite material.

The equation for the Halpin–Tsai model is formulated to consider these variables

and provide a comprehensive understanding of the composite’s mechanical behavior.

Specifically, the model addresses the elastic modulus by integrating the contributions

from both the fillers and the matrix, resulting in a homogenized modulus that reflects

the combined characteristics of the composite.

The Halpin–Tsai model [26] is expressed as follows:

Ec

Em
=

1 + ξ fηV f

1 − ηV f
, η =

E f

Em
− 1

E f

Em
+ ξ f

, ξ f =
2L f

D f
(2.5)

where Ec, E f and Em represent the modulus of elasticity of the composite, fibers,

and matrix, respectively. V f denotes the volume fraction of the reinforcements, ξ f

is the shape or reinforcing factor that depends on the geometry of the filler, η is an
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elastic modulus correction factor, and L f and D f are the length and diameter of the

reinforcement particles, respectively.

The classical Halpin–Tsai (H-T) model is typically used for composites reinforced

with a single scale of reinforcement. However, for predicting the elastic properties of

composites that include rubber and reinforcement particles, a modified H-T model is

applied. This modified model accounts for the effects of multiple scales of reinforce-

ment. The equation for the macro reinforcements in the modified H-T model is given

as follows:

Ec =

[
3
8

1 + ξ fηLV f

1 − ηLV f
+

5
8

1 + 2ηT V f

1 − ηT V f

]
Em, ηL =

E f

Em
− 1

E f

Em
+ ξ f

, ηT =

E f

Em
− 1

E f

Em
+ 2

, ξ f =
2L f

D f
(2.6)

In this context, L and T represent the longitudinal and transversal moduli, respectively,

and are included in the calculation of ξ in formulation of η.

The modified Halpin–Tsai model is employed to estimate the elastic properties of

the composite materials. This model takes into account the distinct characteristics of

the matrix and various reinforcements to provide a comprehensive prediction of the

composite’s behavior.

To begin, the geometric and material properties, which are essential for the H-T

model, are calculated. These properties are derived from the mass and volume of the

manufactured specimens, including the polymer matrix, rubber, carbon fibers (CFs),

and glass fibers (GFs). Detailed information on these calculated properties is provided

in Table 2.6.

Table 2.6 includes data on the densities, moduli, and volume fractions of each com-

ponent, along with their longitudinal and transversal moduli. This comprehensive set

of data is crucial for accurately applying the modified H-T model, ensuring that all

relevant factors influencing the composite’s elastic properties are considered.
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Table 2.6: Properties of materials used in the H-T calculations.

Material Density Modulus of elasticity, Diameter Length
(g/cm3) E (MPa) (µm) (µm)

LDPE 0.94 400 - -
PU 1.20 600 - -

Rubber 1.50 10 50 150
CF 2.00 2.88 × 105 10 50
GF 2.45 7.50 × 104 10 40

For the LDPE-I and PU-I composites, there are three different reinforcements: pure

rubber, carbon fibers, and glass fibers. Therefore, the modified Halpin–Tsai (H-T)

model must be applied in three steps to account for each type of reinforcement. The

first step involves calculating the modulus of elasticity of the recycled rubber-polymer

matrix using the modified H-T equations. This process is as follows:

Ec1 =

[
3
8

1 + ξRηLVR

1 − ηLVR
+

5
8

1 + 2ηT VR

1 − ηT VR

]
EP, ηL =

ER
EP
− 1

ER
EP
+ ξR

,

ηT =

ER
EP
− 1

ER
EP
+ 2

, ξR =
2LR

DR

(2.7)

where Ec1 represents the modulus of elasticity of the new matrix, ER denotes the

modulus of elasticity of rubber, EP signifies the modulus of elasticity of polymer. The

parameters VR, DR, LR, and ξR correspond to the volume fraction, diameter, length,

and the shape factor of the rubber, respectively. With these values, the modulus of

elasticity of the new matrix is determined. Subsequently, the same formula is applied

to include carbon fibers in the matrix.

Ec2 =

[
3
8

1 + ξCFηLVCF

1 − ηLVCF
+

5
8

1 + 2ηT VCF

1 − ηT VCF

]
Ec1, ηL =

ECF
Ec1
− 1

ECF
Ec1
+ ξCF

,

ηT =

ECF
Ec1
− 1

ECF
Ec1
+ 2

, ξCF =
2LCF

DCF

(2.8)

in which Ec2 the modulus of elasticity of the new composite, ECF the modulus of
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elasticity of carbon fibers, VCF , DCF , LCF , and ξCF are the geometric properties of

carbon fibers. Here, the volume fraction and the shape factor of fibers are 0.05 and

10, respectively. Finally, the modulus of elasticity of composite is obtained by adding

glass fiber particles as

Ec =

[
3
8

1 + ξAFηLVGF

1 − ηLVGF
+

5
8

1 + 2ηT VGF

1 − ηT VGF

]
Ec2, ηL =

EGF
Ec2
− 1

EGF
Ec2
+ ξGF

,

ηT =

EGF
Ec2
− 1

EGF
Ec2
+ 2

, ξGF =
2LGF

DGF

(2.9)

where Ec the modulus of elasticity of final composite, EGF the modulus of elasticity

of the alumina fibers;, VGF , DGF , LGF , and ξGF are the geometric properties of glass

fiber particles. The volume fraction of glass fiber is 0.05 and the shape factor is 10.

The same procedure is applied to composites LDPE-I and PU-I and homogenized

elastic moduli are detailed in Table 2.7 alongside the experimentally derived values

for comparison.

Table 2.7: Modulus of elasticity obtained by Halpin–Tsai Homogenization

Composite Density H-T Modulus Experimental Modulus Error
Name (g/cm3) Ec (MPa) E (MPa) (%)

LDPE-I 1.41 656 754 12.95
PU-I 1.59 560 657 14.77

While the elastic moduli calculated from the experimental data and the Halpin-Tsai

model do not closely match, there is a noticeable similarity in the general trend of

changes in elastic moduli based on the composition of the composites.

The discrepancy observed between the elastic moduli estimated from experimental

data and those predicted by the H-T model underscores a notable divergence in quan-

titative accuracy. Despite this, both methods consistently indicate a trend where the

elastic moduli increase with the addition of particles into the matrix. This trend high-

lights the reinforcing effect of fillers in enhancing the stiffness of the composites.

Analytical models such as the H-T model are constrained by their simplifications,

which involve averaging the properties of filler and matrix materials and considering
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geometric parameters like shape and volume fraction of inclusions. These simplifi-

cations, while providing a theoretical framework, may not fully capture the complex

interactions and variations present in real-world composite materials.

Given the limitations of analytical approaches in accurately predicting complex ma-

terial behaviors, numerical methods offer a more robust alternative. Numerical sim-

ulations can handle intricate geometries and nonlinear material responses, provid-

ing insights into composite performance with greater precision and reliability. Thus,

for comprehensive analysis and design of composite materials, the use of numerical

methods becomes imperative to ensure accurate characterization of their mechanical

properties and behavior under various conditions.

2.2.2 Computational Homogenization

In various engineering disciplines, understanding the overall macroscopic properties

of heterogeneous materials is crucial. However, conducting straightforward experi-

mental observations across multiple material samples with varying phase characteris-

tics, volume fractions, and loading conditions proves challenging due to time and cost

constraints. Moreover, creating a finite element mesh that accurately represents mi-

crostructural details and allows for the numerical analysis of macroscopic structural

behavior within a reasonable timeframe remains impractical due to significant length

scale disparities.

To address these challenges, several homogenization techniques have been developed

to establish effective constitutive models applicable at the macroscopic scale [25].

These methods aim to circumvent the complexities of microstructural variations by

providing averaged material properties that reflect the behavior of the entire compos-

ite.

One effective approach involves employing numerical techniques and simulations on

microstructural samples. Central to this method is the concept of Representative Vol-

ume Element (RVE), which plays a pivotal role in homogenization. The RVE is a vol-

ume of the material that is statistically representative of the composite’s microstruc-

ture. By analyzing RVEs through numerical simulations, engineers can extrapolate
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macroscopic material behaviors, making this approach indispensable in the study of

heterogeneous materials.

Representative Volume Element (RVE) serves as a critical concept in the study of

heterogeneous materials, defined as a volume V that effectively encapsulates the mi-

crostructural variability found within a composite material. This definition necessi-

tates that the RVE encompasses a sufficient number and variety of microstructural

features to provide a statistically representative sample of the entire composite.

To maintain applicability within continuum mechanics, the RVE must also be rela-

tively small in comparison to the overall dimensions of the structure being analyzed.

This ensures that the behaviors observed within the RVE can be extrapolated to de-

scribe the macroscopic mechanical properties of the material accurately.

In practical terms, different types of boundary conditions can be prescribed on the

RVE to impose specific mean strain or stress states. It is crucial that the mechanical

response of the RVE remains independent of the chosen boundary conditions, ensur-

ing robustness and reliability in the characterization of material behavior [61].

Among the various boundary conditions used, periodic boundary conditions are par-

ticularly favored in RVE simulations. Studies have demonstrated that periodicity

yields more realistic estimations of effective moduli compared to other boundary con-

ditions like uniform displacement or uniform traction. This preference arises from the

ability of periodic boundary conditions to better capture the repetitive nature of mi-

crostructures within the composite, thereby enhancing the accuracy of macroscopic

predictions derived from RVE analyses.

Periodic boundary conditions in the context of RVEs dictate that the shape and ori-

entation of opposite edges remain unchanged throughout the deformation process.

This ensures that stress continuity is maintained across these boundaries, with stress

vectors on opposite sides acting in opposite directions [25].

Various studies have sought to define the Representative Volume Element (RVE) for

different applications and purposes. Gitman’s review highlights the diverse efforts and

methodologies employed in this field [62].
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• RVE must encompass enough microstructural details [63].

• It should be much smaller than the macroscopic structural dimensions but suf-

ficiently larger than the microstructural features [64].

• RVE should contain a substantial number of micro-heterogeneities, including

inclusions, grains, voids, and fibers [44].

• Statistical homogeneity and ergodicity are necessary for RVE to accurately rep-

resent the macro response [65].

• RVE’s response must be consistent regardless of the boundary conditions ap-

plied [66].

• The size of RVE is determined based on specific effective properties and the

volume fraction of micro-heterogeneities [61, 62, 67].

The numerical approach begins with the creation of candidate Representative Volume

Elements (RVEs), achieved using a Python script written for ABAQUS/CAE. This

script automates the generation of reinforcements based on a specified volume ratio,

ensuring consistent and accurate RVE creation. The second phase involves applying

periodic boundary conditions to the RVEs and conducting numerical simulations to

replicate basic laboratory tests. These tests, with known macroscopic responses and

boundary conditions, provide a benchmark for validating the simulations. The third

major step in the numerical analysis is performing homogenization procedure for Fi-

nite Element Analysis (FEA). This step involves a detailed comparison between the

experimentally obtained mechanical characteristics and the results from the homog-

enization model. The aim is to ensure that the numerical model accurately reflects

the physical behavior of the composites, thereby validating the simulation approach.

In the final step, a material model for the polymer matrix is developed and imple-

mented into a user-defined material subroutine (UMAT) for ABAQUS. This subrou-

tine allows for detailed simulation of the material’s behavior under various loading

conditions, integrating the homogenized properties and ensuring accurate predictions

of the composite’s performance. This comprehensive approach ensures that the nu-

merical model is robust, validated, and capable of accurately predicting the behavior

54



of polymer-based composites under different conditions. It thus provides a powerful

tool for designing and analyzing advanced composite materials.

The uniaxial response of polymer-based composites, filled with recycled rubber (RR),

carbon fibers (CFs), and glass fibers (GFs), as well as the influence of these fillers on

the finite strain behavior of the composites, is thoroughly examined through macrome-

chanical finite element simulations using ABAQUS/Standard. A detailed 2D finite

element model is developed to accurately represent the dimensions of the test speci-

mens, aiming to replicate the stress-strain response of the composite materials. These

simulations focus specifically on uniaxial compressive tests for LDPE-I and PU-I

composites. The 2D macrostructure of these composites is defined by a matrix em-

bedded with randomly dispersed particles, simulating the real-life dispersion of fillers

within the polymer matrix.

To achieve a realistic randomization of the inclusions within the matrix geometry,

a Python script is meticulously crafted. This script automates the placement of in-

clusions, ensuring that the generated model in ABAQUS/CAE accurately represents

the heterogeneous nature of the composite material. This methodological approach

allows for precise simulations that closely mimic the physical behavior observed in

experimental tests. By utilizing these advanced simulation techniques, the study pro-

vides valuable insights into the mechanical performance and finite strain behavior of

the polymer-based composites. The results obtained from these simulations are crit-

ical for understanding how the incorporation of recycled rubber, carbon fibers, and

glass fibers affects the overall mechanical properties of the composites, ultimately

aiding in the development of more robust and efficient composite materials.

Initially, a fiber particle is generated within the rectangular representation of the ma-

trix by defining a "random" function within the Python script. To ensure proper place-

ment and avoid any overlap, an algorithm is implemented that checks for intersections

between newly created fibers and previously generated fibers or matrix boundaries.

This algorithm also calculates the minimum allowable distance between each inclu-

sion to maintain spatial uniformity. At each iteration, the cumulative volume ratio

is recalculated to keep track of the total volume occupied by the fibers. The process

continues, drawing and placing fibers while continually checking and adjusting for
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overlap and spacing, until the desired total volume ratio of inclusions within the ma-

trix is achieved. This approach ensures a random yet evenly distributed arrangement

of fibers, providing a realistic model for finite element analysis in ABAQUS/CAE.

By adhering to these detailed steps, the script accurately replicates the random distri-

bution of fibers in a composite material, allowing for precise simulation and analysis

of the composite’s mechanical behavior under various loading conditions.

However, accurately modeling each composite with the actual specimen size neces-

sitates the use of a vast number of random particles, making it time-consuming and

involves an extensive number of elements, making the analysis challenging to con-

verge. For example, a model for the LDPE-I test specimen with dimensions 24×30.75

mm requires a matrix filled with 147, 600 randomly dispersed particles. To address

this, the model area is reduced to be 14 times smaller than the actual specimen, and

numerous simulations with varying random inclusions are performed to verify result

reproducibility.

The uniaxial compressive tests are simulated for a 2D macrostructure with dimensions

10 × 5 mm, defined by a matrix filled with 10, 000 randomly distributed rectangular

particles, representing 10% by volume of the test specimen. Once the model is cre-

ated, 817, 108 linear 3-node triangular elements are used for the matrix and inclusions,

with an approximate element size of 0.05 mm. Static uniform boundary conditions

(SUBC) are then applied to the model, with a maximum displacement of 1.1 mm in

the uniaxial direction. Figure 2.24 depicts the macromechanical finite element model

of the composites. By scaling down the model size and using a substantial number of

elements, the simulations provide a reliable representation of the composite behavior,

allowing for a detailed analysis of the mechanical properties and ensuring the results

are consistent and reproducible.
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Figure 2.24: Macromechanical finite element model of the polymer-based composite
filled with 5% CFs and 5% GFs
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In this study, the mechanical behavior of carbon fibers (CFs) and glass fibers (GFs) is

pivotal due to their significantly higher stiffness compared to the polymer matrix they

reinforce. Carbon fibers exhibit an elastic modulus of 2.88×105 MPa with a Poisson’s

ratio of 0.3, making them ideal for applications requiring lightweight, high-strength

materials. On the other hand, glass fibers have an elastic modulus of 7.50 × 104 MPa,

also with a Poisson’s ratio of 0.3, offering good strength and moderate stiffness, suit-

able for applications where cost-effectiveness and durability are paramount. These

mechanical characteristics of the fibers influence how they interact with the matrix,

affecting the overall stiffness, strength, and impact resistance of the composite mate-

rials you are investigating.

In Figure 2.16, it is evident that the composite material exhibits significantly higher

strength compared to the matrix alone, showcasing the pronounced effect of reinforce-

ment. The mechanical properties of the composite are notably enhanced due to the

addition of reinforcements such as carbon fibers (CFs) and glass fibers (GFs). This

enhancement is reflected in the material’s response under load: the stress-strain curve

shows a nonlinear behavior typical of composite materials, where the stiffness varies

with increasing deformation.

Moreover, the plastic response of the composite materials demonstrates a softening

behavior as it approaches failure. This ductile response indicates that the composites

can withstand considerable deformation before eventual fracture, which is crucial in

applications where toughness and resilience are paramount. Overall, these findings

underscore the effective role of reinforcements in improving both the strength and

ductility of polymer-based composites, making them suitable for demanding engi-

neering applications where robustness and reliability are required.

Damage initiation in ductile materials, including composites, involves complex inter-

actions between stress conditions, strain rates, and material microstructure. In the case

of composites, where the matrix and reinforcements differ significantly in mechanical

properties, understanding these initiation mechanisms is crucial for predicting failure.

When a composite undergoes loading, stresses concentrate around imperfections such

as voids between the matrix and reinforcing fibers. These voids are much smaller than

the dimensions of the reinforcing fibers but can significantly influence the material’s
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overall strength and failure behavior.

Ductile damage initiation criteria aim to predict the point at which these voids initiate

fracture. This criterion typically considers the equivalent plastic strain, ϵ pl
D , which is a

measure of localized plastic deformation, influenced by stress triaxiality (η) and strain

rate (ϵ̇
pl

). Stress triaxiality (η) is defined as the ratio of pressure stress (p) to the Mises

equivalent stress (q), capturing the state of stress within the material.

For predicting damage initiation, the criterion states that damage begins when the

equivalent plastic strain, ϵ pl
D , reaches a critical value determined by stress triaxiality

and strain rate conditions. Damage initiation occurs when the following condition is

fulfilled:

ωD =

∫
dϵ pl

ϵ
pl
D (η, ϵ̇

pl
)
= 1 (2.10)

where ωD is a state variable that increases monotonically with plastic deformation. At

each increment during the analysis the incremental increase in ωD is computed as

∆ωD =
∆dϵ pl

ϵ
pl
D (η, ϵ̇

pl
)
≥ 0 (2.11)

This critical value varies based on material properties and loading conditions, influ-

encing how void growth and subsequent failure mechanisms evolve during mechani-

cal loading of the composite.

In summary, the ductile damage initiation criterion provides a framework for under-

standing how voids initiate fracture in composites, offering insights into their me-

chanical behavior under different loading conditions and aiding in the development of

robust predictive models for composite performance and durability.

To evaluate the damage properties and strain-softening response of the composites, a

detailed analysis of the materials’ behavior is performed by examining the displace-

ment and strain measurements obtained from experimental studies. This analysis

helps construct the strain-softening response, which characterizes how the material

undergoes progressive deformation and damage under loading conditions.
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In order to simulate these behaviors numerically, finite element analysis is conducted

using ABAQUS software. The results from these simulations provide insights into

the strain distribution and evolution within the composites, specifically in the axial

direction. These results are crucial for understanding how the composites respond to

mechanical loads and for predicting their failure mechanisms.

Figure 2.25 displays the strain distribution in the axial direction, highlighting areas

of strain concentration and potential failure points. The accuracy of the numerical

model is validated by comparing its results with experimental data, ensuring that the

simulations realistically represent the physical behavior of the composites.

Additionally, Figures 2.26 and 2.27 compare the numerical macroscopic response

of the polymer-based reinforced composites with the corresponding experimental re-

sults. These comparisons demonstrate the ability of the numerical model to capture

the complex interactions between the matrix and the reinforcements, such as recycled

rubber (RR), carbon fibers (CFs), and glass fibers (GFs). The close agreement be-

tween the simulated and experimental stress-strain curves indicates the robustness of

the model in predicting the mechanical performance of the composites.

The insights gained from these analyses are valuable for optimizing composite design

and improving material properties. By understanding the strain-softening behavior

and damage initiation mechanisms, engineers can develop composites with enhanced

durability and performance, tailored for specific applications in various industries.
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Figure 2.25: Deformed geometry of macromechanical finite element model of
polymer-based reinforced composite
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Figure 2.26: Comparison of the experimental and numerical results of LDPE matrix
(left) and composite LDPE-I (right)

Figure 2.27: Comparison of the experimental and numerical results of PU matrix (left)
and composite PU-I (right)

62



In Figures 2.26 and 2.27, the left side showcases the results for matrices, while the

right side presents the data for the composites. For the matrix, the experimental data

reveals its inherent mechanical properties, providing a baseline for evaluating the ef-

fects of reinforcement. The numerical simulation for the matrix aims to replicate

these properties accurately, capturing the stress-strain response and validating the fi-

nite element model’s accuracy. By ensuring a close match between the experimental

and numerical results, confidence is established in the model’s ability to predict the

behavior of the matrix material under various loading conditions. On the other hand,

the composite, which includes reinforcements such as recycled rubber (RR), carbon

fibers (CFs), and glass fibers (GFs), exhibits enhanced mechanical properties com-

pared to the pure matrix. The right side of the comparison illustrates how these rein-

forcements influence the composite’s overall strength and deformation characteristics.

The experimental results for LDPE-I show a significant improvement in stiffness and

load-bearing capacity due to the presence of the reinforcements.

Both comparisons highlight the importance of numerical modeling in understanding

and predicting the mechanical performance of polymer-based composites. The agree-

ment between experimental and numerical results demonstrates the model’s effective-

ness in simulating real-world conditions, providing valuable insights for optimizing

composite design and improving material properties. This comparison underscores

the role of finite element analysis as a powerful tool for advancing the development

of high-performance composite materials tailored for specific applications.

Modeling microstructures using a Representative Volume Element (RVE) is funda-

mental for addressing homogenization problems in composite materials. The RVE

must contain a sufficient number of microstructural heterogeneities to be statistically

representative of the material, while being small enough to function as a continuum

mechanics volume element. The principle behind RVE modeling is that its behavior

should not depend on the type of boundary conditions applied [61], [66].

Periodicity conditions are frequently imposed on the RVE because they yield accurate

estimations of the effective moduli of the composite material. This involves ensuring

that the deformations on opposing edges of the RVE are identical, maintaining the

geometric and stress continuity across the boundaries [25]. This method captures the
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true nature of the material’s response under various loading conditions.

In computational micromechanics, the implementation of periodic boundary condi-

tions (PBCs) is crucial. These conditions require that the shape and orientation of

opposite edges of the RVE remain the same throughout the deformation process. Ad-

ditionally, for stress continuity, the stress vectors on opposing sides must be equal

in magnitude but opposite in direction. This ensures that the simulation accurately

reflects the behavior of the entire material, not just the RVE itself.

PBCs are favored because they provide a more accurate and realistic representation of

the material’s behavior compared to other boundary conditions. They help in achiev-

ing a consistent and reliable estimation of the material properties, which is essential

for the design and analysis of composite materials. By maintaining the periodicity

and stress continuity, PBCs enable a comprehensive understanding of how the mi-

crostructure influences the macroscopic properties of the composite, facilitating better

predictions and optimizations in material engineering.

A 2D RVE is employed for homogenization, containing randomly positioned inclu-

sions. To enforce PBCs on the RVE, a periodic geometry and mesh are necessary.

Using a Python script, the inclusions are randomized within a square with periodic

boundaries. A volume element V is defined, and PBCs are applied at its boundary δV

to assess its overall properties. This script is provided in Appendix A.

The displacement field across the volume V ensures that displacements on opposite

edges of the RVE are consistent to maintain its periodic nature. This approach enables

simulation of material behavior under varying loads while preserving the periodic

microstructure. The displacement field over the entire volume is formulated as:

u = E.x + ν ∀x ∈ V (2.12)

Here, E represents the macroscopic strain tensor, x is the position vector, and ν de-

notes periodic displacement fluctuations with zero mean over the RVE. Then, in indi-

cial notation,
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ui = ϵ
0
i jx j + νi (2.13)

Here, the prescribed displacement ui at position x on the boundary surfaces x j is de-

fined relative to a reference point. ϵ0
i j represents the average strain applied to the RVE,

and νi denotes the periodic fluctuation that maintains identical values at corresponding

points on opposite faces. This ensures that the displacements across pairs of parallel

opposite boundary surfaces

uk+
i = ϵ

0
i jx

k+
j + νi (2.14)

uk−
i = ϵ

0
i jx

k−
j + νi (2.15)

k+ and k− denote the kth pair of parallel boundary surfaces facing each other. The

fluctuation νi maintains identical values across these parallel boundaries, ensuring

periodicity,

uk+
i − uk−

i = ϵ
0
i j(xk+

j − xk−
j ) = ϵ0

i j∆xk
j (2.16)

An illustration of a randomly distributed inclusion-matrix RVE is shown in Figure

2.28, using CPS4R element type (4-node bilinear plane stress quadrilateral, reduced

integration, hourglass control), with a volume fraction of inclusions (V f ) set at 10%

and an inclusion length (L) of 206 µm. Equations 2.17 and 2.18 corresponding to

Equation 2.16 are provided to describe this configuration.
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Figure 2.28: Paired nodes of RVE in two opposite parallel boundary surfaces
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PBCs can be defined for this RVE by

un5
x,y − un6

x,y − un2
x,y + un1

x,y = 0 (2.17)

un7
x,y − un8

x,y − un4
x,y + un1

x,y = 0. (2.18)

Compression test results are replicated using distance-controlled PBCs with a total

volume fraction V f = 0.10. The maximum strain is derived from compression tests

for various RVE lengths, and displacements are recorded at paired nodes connected

within the RVE.

To determine the optimal RVE size, multiple randomizations of the composites are

conducted with varying RVE lengths (see Figure 2.29).
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Figure 2.29: Randomization of RVE with different lengths

Table 2.8 shows the count of randomly placed inclusions corresponding to different

sizes of the volume element used for determining the RVE dimensions.

Table 2.8: The length of RVE with the number of randomized AFs

volume fraction, V f (%) RVE size, L (µm) # of inclusions, N

10 100 2
10 141 4
10 200 8
10 283 16
10 400 32
10 566 64
10 800 128

The application of periodic boundary conditions is depicted in Figure 2.30 for a two-

dimensional RVE with a volume fraction of V f = 0.10. As illustrated, carbon fibers

(CFs) and glass fibers (GFs) that span the boundary surfaces are sectioned and trans-

lated to the corresponding opposite sides to preserve periodicity.
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Figure 2.30: Implementation of PBCs to RVE L = 150 µm (V f = 0.10)
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Kanit et al. [61] demonstrate that the constitutive behavior of random heterogeneous

materials can be effectively derived for large volumes using only a few realizations.

This means that it is possible to accurately determine the material properties by an-

alyzing a limited number of samples for extensive volumes. As a primary objective,

a 2D model with the actual dimensions of the specimen has been analyzed using a

limited number of these realizations.

The macroscopic stresses and strains, which characterize the mechanical properties at

the macroscopic level, can be interpreted as volumetric averages of microscopic fields

within a specified volume, as noted by Vignoli and Savi [68]. To achieve macroscopic

homogeneity, it is assumed that the strain and stress averages are independent of spa-

tial variations. This assumption allows the integral over a certain region, divided by

its volume, to represent these averaged quantities.

More precisely, if the position vector is denoted as x, the volume-averaged stresses

and strains, represented by square brackets, are defined as the mean values of point

stress or strain over the entire volume V . These relationships are formalized in the

following expressions, as established in the works of Hashin [69] and Kanit et al.

[61], providing a rigorous framework for understanding and calculating the averaged

mechanical properties of heterogeneous materials.

E = ⟨ϵ⟩ =
1
V

∫
V
ϵdV (2.19)

where E represents a symmetric second-rank tensor. Consequently, the macroscopic

stress tensor:

Σ = ⟨σ⟩ =
1
V

∫
V
σdV. (2.20)

By using Equations 2.19 and 2.20, a Python script is meticulously developed to facil-

itate volume integration, which is crucial for evaluating the average stress and strain

values across each integration point for every frame of the simulation (see Appendix

B). This process is essential for accurately capturing the mechanical behavior of the

heterogeneous composite material.
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The script operates by first discretizing the composite’s volume V into a finite number

of elements. Each integration point within these elements is then used to calculate the

local stress and strain values during the simulation. By performing volume integra-

tion, the script aggregates these local values to determine the overall, or macroscopic,

stress and strain responses of the composite material.

This method ensures that the numerical response of the heterogeneous composite is

obtained with high precision, reflecting the true mechanical properties and behavior

of the material under various loading conditions. The integration results are crucial

for validating the composite’s performance and for comparing with experimental data

to ensure the reliability of the simulation.

By utilizing this approach, the variations within the composite material are accurately

captured, providing a comprehensive understanding of its mechanical properties. This

enables engineers and researchers to predict the composite’s behavior under different

scenarios, thereby aiding in the design and optimization of advanced composite ma-

terials.

The primary concept behind the overall average homogenization approaches is that

specific fourth-order concentration tensors can be employed to link the volume-averaged

strains and stresses to each other or to the overall boundary conditions. These tensors

act as bridge elements, translating localized microscopic behaviors into macroscopic

properties that can be observed and measured.

Establishing the average stress or strain concentration tensor is crucial for relating the

average stress or strain within the inclusion to globally applied boundary conditions.

The stress or strain concentration tensor effectively captures how the material’s mi-

crostructural heterogeneities influence the macroscopic response. This is particularly

important in composite materials, where differences in the mechanical properties of

the matrix and reinforcements lead to complex stress and strain distributions.

The relationship between the average strains within the inclusion, the overall macro-

scopic strains, and the averaged strains across the matrix is defined by a fourth-order

strain concentration tensor field A [61].
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ϵ(x) = A(x) : E (2.21)

a four-rank concentration tensor field B for SUBC problem

σ(x) = B(x) : Σ (2.22)

This tensor field plays a critical role in periodic boundary condition (PBC) problems,

ensuring that the microscopic response within the inclusions and matrix can be accu-

rately upscaled to predict the macroscopic behavior of the composite material.

In practical terms, the strain concentration tensor A allows for the calculation of ef-

fective material properties by averaging the local strains in the inclusions and matrix.

This averaging process takes into account the geometry, distribution, and mechanical

properties of the inclusions. By doing so, the homogenization method provides a way

to predict the overall elastic and plastic behavior of composite materials under various

loading conditions.

Since the concentration tensor field in SUBC (Static Uniform Boundary Condition)

problems is equivalent to the fourth-rank identity tensor I, it simplifies to [61]

⟨A⟩ = ⟨B⟩ = I (2.23)

To ensure the accuracy of the calculations, the Python script used for evaluating av-

erage stress and strain has been enhanced. This updated script now includes calcu-

lations of the strain tensor field during macroscopic simulations under SUBC condi-

tions. These results are meticulously compared with the average strain tensor, and the

identity tensor is verified to validate the computational framework.

Simulations are conducted using various sizes of RVEs, each employing PBCs. This

approach enables the computation of macroscopic strain and stress tensors for each

RVE size analyzed. Additionally, for macroscopic structures subjected to SUBC,

average stress and strain values are derived and analyzed.

The simulations encompass all sizes detailed in Table 2.8. Stress-strain responses ob-
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tained from RVEs of different sizes for the LDPE-I composite are presented in Figures

2.31 and 2.32. These figures compare simulation outcomes against experimental test

results conducted at a volume fraction (V f ) of 0.10, providing comprehensive valida-

tion of the computational models against empirical data.
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Figure 2.31: RVE with L = 100 µm (top) and L = 141 µm (bottom) for LDPE-I
(V f = 0.10)
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Figure 2.32: RVE with L = 200 µm (top) and L = 400 µm (bottom) for LDPE-I
(V f = 0.10)
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Figure 2.33: Comparison of the responses for different RVE sizes
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Upon examining the simulation results (Figure 2.33) across different RVE sizes, it

becomes evident that an RVE with a minimum dimension of L = 200 µm shows a

stress-strain curve that closely aligns with the macroscopic response. This finding

implies that the smallest RVE size capable of representing macroscopic behavior is

L = 200 µm, establishing it as the suitable size for all volume fractions.

Furthermore, Figure 2.34 presents a comparison between the experimental and nu-

merical results for the PU-I composite. This comparison allows for assessing the

accuracy of the numerical simulations in replicating the experimental behavior of the

composite material.
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Figure 2.34: Strain contour of RVE with L = 200 µm (left) and comparison of re-
sponses for PU-I (V f = 0.10)

Figure 2.35: RVE with fiber length of 30-50 µm (left) and comparison of the responses
(right)
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The average length of both CFs and GFs used in all analyses is estimated to be 50 µm.

Numerical simulations are performed to investigate the influence of varying lengths

of these fibers within the predicted RVE size (L = 200µm). Inclusions ranging from

30 µm to 50 µm in length are considered, and the results are depicted in Figure ??. It

is observed that despite the changes in inclusion sizes, there is little discernible impact

on the numerical outcomes. This suggests that within the analyzed range, the length

variations of CFs and GFs do not significantly alter the predicted mechanical behavior

of the composite.
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2.3 Matrix Model Implementation in User Subroutine UMAT

2.3.1 Kinematics

2.3.1.1 Basic Kinematics

The Kroner decomposition, introduced by Kroner [70], provides a fundamental kine-

matical framework for the multiplicative decomposition of the deformation gradient,

denoted as F(X):

F = FeFp. (2.24)

Figure 2.36: Reference undeformed configuration and a current deformed configura-
tion of a body
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The tensor F represents the gradient of the function χ(X, t), which maps each ma-

terial point X from a homogeneous body B in a fixed reference configuration to its

corresponding point x = χ(X, t) in the deformed body’s current configuration (Fig-

ure 2.36). Consequently, the deformation gradient, velocity, and velocity gradient are

derived from

F = ∇χ, u = χ̇, L = grad u = ḞF−1. (2.25)

The deformation gradient F not only transforms material vectors to spatial vectors but

is also dimensionless and invertible at all times. In Kroner decomposition, Fe and Fp

are accurately described as elastic and plastic distortions, respectively. Specifically,

Fe represents the stretch and rotation within an infinitesimal region around X (the

material point), while Fp signifies the plastic deformation of material X as it moves

from its reference configuration to its current configuration in space (Figure 2.36).

Equations (2.25)3 and (2.24) provide further insights into

L = Le + FeFpFe−1, (2.26)

and

Le = ḞeFe−1, Lp = ḞpFp−1. (2.27)

The conventional approach defines the elastic and plastic stretching and spin tensors

through

De = sym Le, We = skw Le,

Dp = sym Lp, Wp = skw Lp,

(2.28)

so that Le = De +We and Lp = Dp +Wp.

The right and left polar decompositions of Fe:
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Fe = ReUe = VeRe, (2.29)

in which Re represents a rotation, Ue and Ve are symmetric, positive-definite right and

left stretch tensors with

Ue =
√

Fe⊤Fe and Ve =
√

FeFe⊤. (2.30)

Then, the right elastic Cauchy-Green deformation tensor is expressed as:

Ce = Ue2 = Fe⊤Fe. (2.31)

Incompressible, Irrotational Plastic Flow

Two fundamental assumptions are introduced concerning plastic flow kinematics:

(i) Under the assumption that plastic flow is incompressible

det Fp = 1 and tr Lp = 0. (2.32)

J def
= det F and Je def

= det Fe, (2.33)

by (2.24) and (2.32)1,

J = Je . (2.34)

(ii) The initial focus is on isotropic materials, where plastic flow is presumed to

lack rotational components, termed as irrotational. This assumption is driven

by practical considerations: the theory without plastic spin is notably easier to

apply in the context of finite deformations compared to theories that incorporate

plastic spin. Therefore, it is hypothesized

Wp = 0. (2.35)

It follows trivially, Lp
≡ Dp and

Ḟp
= DpFp. (2.36)
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The equivalent plastic tensile strain, ϵ p, is defined and assumed to change according

to the differential equation1

ϵ̇
p
=

√
2/3 |Dp

| subject to the initial condition ϵ p(X, 0) = 0. (2.37)

Thus, whenever |Dp
| , 0,

Np =
Dp

|Dp
|
, with tr Np = 0, (2.38)

determines the plastic flow direction, and therefore

Dp =
√

3/2ϵ̇
pNp. (2.39)

Therefore, utilizing equations (2.25), (2.26), (2.27), (2.35), and (2.38), the expression

(2.26) can be reformulated for future application as

(∇χ̇)F−1 = ḞeFe−1 +
√

3/2 ϵ̇
p Fe Np Fe−1. (2.40)

2.3.1.2 Development of the Theory Based on the Principle of Virtual Power

Following the virtual-power method introduced by Gurtin [71, 72] and further devel-

oped by Gurtin and Anand [73, 74], the theory outlined in this context relies on the

premise that

• Each independent "rate-like" kinematical descriptor—χ̇, Ḟe, ϵ̇
p
—should have

its power expenditure expressed in relation to a corresponding force system

that maintains its own equilibrium.

The nature of these associated force balances is shaped by the principles of virtual

power theory. When applying this principle, it’s important to recognize that the rates

(χ̇, Ḟe
, ϵ̇

p
) are not independent; instead, they are constrained

1 This is a slight misuse of notation, as ϵ̇
p

is not the material time derivative of ϵ p, but is defined to be
√

2/3
times the norm of Dp.
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(∇χ̇)F−1 = ḞeFe−1 +
√

3/2 ϵ̇
p Fe Np Fe−1. (2.41)

A specified subregion of the reference body B is denoted as P, with nR being the

outward unit normal on the boundary ∂P of P. The macroscopic and microscopic force

systems accompany each evolution of the body. The macroscopic system includes a

traction tR(nR) for each unit vector nR, which dissipates power through the velocity

χ̇, and an external generalized body force bR, assumed to represent inertia, which

also dissipates power through χ̇,2 and an elastic stress, Se that expends power over the

elastic distortion rate, Ḟe
.

The nonstandard microscopic systems involve a positive scalar known as the micro-

scopic stress π, which expends power based on the rate of equivalent tensile plastic

strain ϵ̇
p
. These forces demonstrate their characteristic power expenditure through

Wext(P), which denotes the power exerted on region P by external material, and

Wint(P), representing the corresponding internal power expenditure within P. More

specifically,

Wext(P) =
∫
∂P

tR(nR) · χ̇ dA +
∫
P

bR · χ̇ dV,

Wext(P) =
∫
P

(
Se : Ḟe

+ π ϵ̇
p)

dV,
(2.43)

where, Se and π are defined throughout the body for all time.

Principle of Virtual Power

At a selected fixed time, the fields χ, Fe (and therefore F and Fp), and Np are known.

We treat the fields χ̇, Ḟe
, and ϵ̇

p
as virtual velocities, defined in accordance with (2.41).

This means we denote these virtual fields as χ̃, F̃e
, and ϵ̃

p
, differentiating them from

fields associated with the actual evolution of the body, as a condition:
2 This defines,

bR = b0R − ρRχ̈, (2.42)

where b0R represents the conventional body force per unit volume of the reference body, and −ρRχ̈ represents the
inertial body force. Here, ρR denotes the mass density of the referential body.
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(∇χ̃)F−1 = F̃eFe−1 +
√

3/2 ϵ̃
pFe Np Fe−1. (2.44)

A generalized virtual velocity is specified as

V = (χ̃, F̃e
, ϵ̃ p),

consistent with (2.44).

Then,

Wext(P,V) =
∫
∂P

tR(nR) · χ̃ dA +
∫
P

bR · χ̃ dV,

Wext(P,V) =
∫
P

(
Se : F̃e

+ π ϵ̃
p)

dV.
(2.45)

The principle of virtual power dictates that external and internal powers must balance

each other for their respective virtual expenditures. Therefore, for any part P,

Wext(P,V) =Wint(P,V) for all generalized virtual velocitiesV. (2.46)

Macroscopic Force and Moment Balances

Consider a generalized virtual velocity where ϵ̃
p
≡ 0, and ∇χ̃Fp−1 = F̃e

. For the

volumeV, (2.46) results in

∫
∂P

tR(nR) · χ̃ dA +
∫

P
bR · χ̃ dV =

∫
P

Se : F̃e
dV =

∫
P
(SeFp−⊤) : ∇ χ̃ dV, (2.47)

and

TR
def
= SeFp−⊤, (2.48)

2.47 becomes
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∫
∂P

tR(nR) · χ̃ dA =
∫

P

(
TR : ∇ χ̃ − bR · χ̃

)
dV, (2.49)

then form the divergence theorem

∫
∂P

(
tR(nR) − TRnR

)
· χ̃ dA +

∫
P
(Div TR + bR) · χ̃ dV = 0.

Given that this relationship must hold for all P and χ̃, standard variational principles

lead to the traction condition.

tR(nR) = TRnR , (2.50)

and the local macroscopic force balance

Div TR + bR = 0. (2.51)

TR denotes the classical Piola stress, and (2.51) signifies the local macroscopic force

and moment balances in the reference body.

Microscopic Force Balances

To explore the microscopic counterparts of the macroscopic force balance, begin by

selecting a generalized virtual velocity where χ̃ = 0. Choose ϵ̃
p

arbitrarily, and define

F̃e
= −

√
3/2 ϵ̃

p FeNp,

thus ensuring

Se : F̃e
= −ϵ̃

p ( √
3/2 (Fe⊤Se) : Np

)
. (2.52)

Then, defining a Mandel stress

Me def
= Fe⊤ Se, (2.53)
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and an equivalent tensile stress σ̄ by

σ̄
def
=

√
3/2 Me

0 : Np , (2.54)

in which Np is deviatoric.

Then, the power balance described in equation (2.46) results in the formulation of the

microscopic virtual-power relation.

0 =
∫
P

(π − σ̄)ϵ̃
p
dV (2.55)

To be satisfied for all ϵ̃
p

and all P, this leads to the formulation of the first microscopic

force balance.

σ̄ = π. (2.56)

2.3.2 Free-Energy Imbalance (Second Law)

Under conditions where temperature remains constant (isothermal), the two laws of

thermodynamics are simplified to assert that the change in free energy over time for

any subregion P is not greater than the energy expended on P. Specifically, this re-

quirement is expressed as a free-energy imbalance:

˙∫
P
ψ dV ≤ Wext(P) =Wint(P). (2.57)

where ψ represents the free energy per unit volume.

Since
˙∫

P
ψ dV =

∫
P
ψ̇ dV , (2.43)2 can be employed to localize (2.57); the outcome is

the free-energy imbalance

ψ̇ − Se : Ḟe︸ ︷︷ ︸
elastic power

−πϵ̇
p
≤ 0. (2.58)
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The "elastic power" Se : Ḟe
itself remains constant, but the stress Se and the rate of

elastic deformation Ḟe
involved in this elastic power vary with changes in the frame

of reference. According to standard treatments in finite elasticity, this elastic power

can be described using Ċe
and a stress measure that is conjugate to power. Let

Te def
= Fe-1Se; (2.59)

then, since SeFe⊤ = FeTeFe⊤,

Te = Te⊤. (2.60)

Thus Se : Ḟe
= Te : (Fe⊤Ḟe

),

Se : Ḟe
=

1
2

Te : Ċe
. (2.61)

Observe that, Te is invariant under a change in frame.

Using (2.61), the local free-energy imbalance (2.58) may be reformulated as

ψ̇ −
1
2

Te : Ċe
− πϵ̇

p
≤ 0 (2.62)

which serves as a guide in the development of an appropriate constitutive theory.

The dissipation densityD ≥ 0 per unit volume per unit time is

D =
1
2

Te : Ċe
+ πϵ̇

p
≥ 0. (2.63)

The stress measures Se, TR, Me, and Te have been introduced in the preceding dis-

cussion. It is important to note that the Piola stress TR is connected to the symmetric

Cauchy stress T in the deformed body by the standard relation:

TR = J TF−⊤. (2.64)
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(2.48), (2.59), and (2.53) provide the following relationships between the stress mea-

sures Se, Te, Me, and the Cauchy stress T:

Se = J TFe−⊤, Te = J Fe−1TFe−⊤, and Me = J Fe⊤TFe−⊤ = CeTe. (2.65)

2.3.3 Constitutive Equations

According to (2.37), the equivalent tensile plastic strain is given by

ϵ p(X, 0) = 0, ϵ̇
p
(X, t) ≥ 0, (2.66)

Therefore, ϵ p increases with time during any process. It represents an isotropic mea-

sure of the accumulated plastic strain history in the material.

2.3.3.1 Free Energy Dissipation Density

The free energy is

ψ = ψ̂(Ce, ϵ p), (2.67)

it produces the stress Te solely through the classical finite elasticity relation

Te = 2
∂ψ̂(Ce, ϵ p)

∂Ce , (2.68)

so that

ψ̇ =
1
2

Te : Ċe
+ πen ϵ̇

p
(2.69)

where the energetic microstress components πen, ρen, and ξen are defined through the

following relations
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πen =
∂ψ̂(Ce, ϵ p)

∂ϵ p (2.70)

Thus, the changes in energy over time are counterbalanced by the power exerted by

the stress Te, which is paired with
1
2

Ċe
, and by a microstress πen that is paired with

ϵ̇
p
.

By (2.69), the dissipation densityD determined by (2.63) is

D = (π − πen)ϵ̇
p
≥ 0. (2.71)

Based on this inequality

πdis
def
= π − πen (2.72)

the scalar and vector dissipative microstresses are defined, and (2.71) can be rewritten

as follows:

D = πdisϵ̇
p
≥ 0. (2.73)

2.3.3.2 A Conventional Theory of Plasticity

The microforce balance (2.56) incorporating (2.72)1 is expressed as

σ̄ = πen + πdis, (2.74)

where πen and πdis denote the energetic and dissipative microstresses, respectively.

Additionally, the dissipation density (2.63) is transformed to

Dconv = πdis ϵ̇
p
≥ 0. (2.75)

It is assumed that this inequality holds strictly, meaning
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Dconv = πdis ϵ̇
p
> 0 when ϵ̇

p
> 0. (2.76)

Energetic Constitutive Equations

The spectral decomposition of Ce is given by

Ce =

3∑
i=1

λe 2
i re

i ⊗ re
i , (2.77)

where (re
1, r

e
2, r

e
3) are the orthonormal eigenvectors of Ce, and (λe

1, λ
e
2, λ

e
3) are the eigen-

values of Ue.

The expression

Ee def
=

3∑
i=1

(ln λe
i ) re

i ⊗ re
i , (2.78)

defines the logarithmic elastic strain.

The free energy is considered in its classical isotropic quadratic form:

ψ = µ|Ee
0|

2 +
1
2
κ(tr Ee)2, (2.79)

where the logarithmic strain (2.78) is used instead of the classical infinitesimal strain

tensor. Here, µ and κ represent the classical shear and bulk moduli of the infinitesimal

theory [75, 76].

Using (2.68) and (2.65)3, straightforward calculations show that the Mandel stress Me

is given by [cf., e.g., 77]

Me = 2µEe
0 + κ(tr Ee)1. (2.80)

With the free energy given by (2.79), and using (2.70), the energetic microstress πen

vanishes:
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πen = 0. (2.81)

Thus, the microforce balance (2.74) simplifies to:

σ̄ = πdis. (2.82)

Dissipative Constitutive Equations

Our exploration of dissipative constitutive relations in the non-gradient theory relies

on the following constitutive assumptions:

1. In the context of finite deformation theories of isotropic plasticity, following

classical approaches [cf., e.g., 78], we adopt the assumption that the direction

of the deviatoric Mandel stress Dp aligns with the direction of Me
0, indicating

that Dp is parallel to Me
0.

Np =
Dp

|Dp
|
≡

Me
0

|Me
0|
. (2.83)

Therefore, the resolved stress σ̄ =
√

3/2,Me : Np, as defined in (2.54), can be

expressed as

σ̄ =
√

3/2 |Me
0|. (2.84)

2. A constitutive equation for πdis takes the form:

πdis = Ydis(ϵ
p). (2.85)

Here,

Ydis(ϵ
p) > 0, (2.86)

is a positive-valued scalar with dimensions of stress, representing the classical

flow resistance of the material. The initial value

Y0
def
= Ydis(0) > 0, (2.87)
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defines the initial yield strength.

With πdis defined in (2.85), the microforce balance (2.82) dictates that

σ̄ = Ydis(ϵ
p) when ϵ̇ p > 0. (2.88)

Introducing an accumulated plastic strain and an evolution equation for the

equivalent plastic strain rate:

ϵ̇ p
= ϵ̇0

(
σ̄ − Y(ϵ̄ p)

S

)1/m

. (2.89)

The microscopic force balance incorporating power-law rate dependency is de-

rived by inverting this relation:

σ̄ = Y(ϵ̄ p) + S
 ϵ̇ p

ϵ̇0

m

(2.90)

where Y(ϵ̄ p,C) is the yield function, S is a material parameter, m is the rate-

sensitivity parameter, and ϵ0 is the reference flow rate.

Note that the yield function is decomposed into two parts: hardening, H(ϵ̄ p),

and softening, S (ϵ̄ p), where the hardening part initially dominates and softening

becomes more significant with increasing plastic strain:

Y(ϵ̄ p) = H(ϵ̄ p) − S (ϵ̄ p) (2.91)

For modeling the highly non-linear behavior of the polymer matrix, we adopt the

following expressions for the hardening and softening functions:

H(ϵ̄ p) = h ∗ eq1.ϵ̄
p
∗ ϵ̄ p (2.92)

S (ϵ̄ p) = s ∗ (1 − eq2.ϵ
c
) ∗ ϵ̄ p (2.93)

In these equations, h, s, q1, and q2 represent model parameters. The softening function

S (ϵ̄ p) becomes active only when the total plastic strain exceeds a critical value (ϵ̄ p >

ϵc); otherwise, S (ϵ̄ p) = 0.
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The specific values of these model parameters are determined through the implemen-

tation of the material model in UMAT.

hardening parameters:

• h = 15MPa

• q1 = 73

softening parameters:

• s = 112MPa

• q2 = 69

• ϵc=ϵ̄ p − 0.024

To investigate the non-linear behavior of the matrix, the model is subjected to the

displacement corresponding to the experimentally determined maximum strain value.

Subsequently, the resulting uniaxial stress-strain response is generated and illustrated

in Figure 2.37, where it is compared with both the Abaqus built-in implementation

and experimental data.

The accuracy of these findings aligns well with the results obtained from prior numer-

ical analyses. Due to its ease of implementation and suitability for handling a large

number of realizations, Abaqus software has been chosen for the homogenization

process.
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Figure 2.37: Comparison of the numerical responses of the matrix under uniaxial
compression with the experimental test results
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2.4 Computational Time

To assess the computational efficiency of the homogenization method, particularly

in comparing the efficacy of using Representative Volume Elements (RVEs) against

macrostructural analysis, we focused on the time required for computing average

stress and strain values through volume integration at each integration point.

The computational tests were conducted on a robust system featuring an Intel©Xeon©

Gold 6140 CPU @ 2.30GHz processor with 12 cores active out of 18 available, and

500GB of RAM, operating at a clock speed of 2.30GHz.

Table 2.9 presents a comprehensive comparison of the calculation times alongside the

geometric characteristics of the models. This comparison highlights how the RVE-

based homogenization method effectively addresses the intricacies of microstructure

at every integration point and time step within the structure.

The goal is to illustrate the advantage of employing RVEs over traditional macrostruc-

tural analyses, particularly in terms of computational efficiency, where RVEs allow

for detailed microstructural simulations at various points throughout the structure’s

analysis timeline.

Table 2.9: The computation time associated with the geometric models utilized in the
numerical analyses

model size # of elements # of nodes # of constraint CPU time
equations (min)

micro LRVE = 200µm 3,072 1,582 94 1.09
macro 10 × 5 mm 817,108 408,855 - 1381

The time requirements analysis underscores a significant disparity between the macro-

model and the homogenized model using RVEs. It highlights the critical need for

simulations to adopt a homogenization strategy that integrates RVEs with carefully

considered boundary conditions to ensure computational efficiency. This compari-

son underscores the essentiality of optimizing computational resources when employ-

ing homogenization techniques, particularly in complex structural analyses where de-

tailed microstructural insights are crucial for accurate predictions and performance

assessments.
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2.5 Summary

Polymer-based composites, such as those incorporating matrices of Low Density

Polyethylene (LDPE) and Polyurethane, have undergone extensive reinforcement pro-

cesses involving the addition of fresh scrap rubber, short carbon fibers, and glass

fibers. These reinforcements were strategically chosen to impart multifunctionality

and enhance the mechanical properties of the composites. The manufacturing process

was carefully orchestrated to ensure optimal dispersion and bonding of these additives

within the polymer matrices.

To evaluate the efficacy of these reinforcement strategies, a series of rigorous analy-

ses were conducted. This included investigating various toughening mechanisms and

performing critical mechanical property assessments. Fracture toughness tests were

instrumental in determining key parameters such as stress intensity factor and critical

energy release rate. Microstructural investigations, facilitated by scanning electron

microscopy (SEM), provided detailed insights into the interface characteristics and

adhesion qualities between the polymer matrices and the different types of reinforce-

ments. These analyses revealed favorable interfacial interactions crucial for achieving

synergistic improvements in material performance.

The incorporation of fresh scrap rubber, short carbon fibers, and glass fibers resulted

in substantial enhancements across both mechanical properties and fracture toughness

of the polymer composites. These enhancements underscored the effectiveness of

the chosen reinforcement strategies in achieving desired material characteristics and

performance benchmarks.

For predictive modeling of the composite’s elastic properties, an adapted version of

the modified Halpin–Tsai homogenization method was employed. This method was

selected for its ability to accurately capture the complex interactions between the ma-

trix and reinforcements, highlighting the limitations of traditional analytical methods

in modeling such intricate composite materials effectively.

Numerically, the study utilized multiple representative volume elements (RVEs) to

simulate the behavior of the composite at the microstructural level. A custom Python

script was developed to automate the generation of reinforcement configurations within
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the RVEs using ABAQUS/CAE software. Implementing stringent periodic boundary

conditions around the RVEs ensured that the simulations accurately represented the

material’s response under diverse loading conditions and across different spatial re-

gions within the composite structure.

Validation of the numerical approach involved implementing a sophisticated multi-

material model in ABAQUS/Standard, incorporating a user subroutine (UMAT) for

conducting implicit nonlinear finite element simulations. This framework facilitated

the replication of basic characterization tests within the RVEs, allowing for validation

against experimental data. This process ensured the reliability, accuracy, and applica-

bility of the computational methodology in analyzing and predicting the performance

characteristics of the composite material.
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CHAPTER 3

CONCLUSION and PERSPECTIVE

Low-density polyethylene (LDPE) and polyurethane (PU) have played significant

roles in various industries due to their versatile properties and cost-effectiveness.

These materials are particularly advantageous in applications such as aerospace, au-

tomotive, transportation, and construction, where reducing costs, enhancing fuel ef-

ficiency, and minimizing CO2 emissions have been paramount goals. Consequently,

developing lightweight and economical materials like LDPE and PU-based compos-

ites has been crucial for advancing these sectors.

This thesis has focused on designing LDPE and PU-based composites reinforced with

micro-scale additives such as glass fibers and carbon fibers. The objective has been

to develop a comprehensive numerical model for these composites and validate its

predictions against experimental data.

In this study, LDPE and PU composites have been reinforced with glass fibers, cho-

sen for their excellent weight reduction capabilities, performance attributes, ease of

processing, and dimensional stability. Carbon fibers have been selected due to their

exceptional tensile strength and superior thermal conductivity. After determining the

optimal reinforcement configurations, specialized manufacturing processes have been

employed to ensure uniform composite formation. The study has included rigor-

ous analysis of toughening mechanisms and thorough assessments of mechanical and

physical properties using fracture toughness tests. Microstructural evaluations, con-

ducted through scanning electron microscopy (SEM), have provided insights into the

fracture surfaces, highlighting strong adhesion between the reinforcements and ma-

trix and optimal interface formation for each composite composition. Complementary
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compression tests have further validated the material characterization efforts.

For predicting the elastic properties of these composites, the modified Halpin–Tsai

homogenization method has been adapted, underscoring its suitability for complex

composite materials. The limitations of analytical approaches like the Halpin-Tsai

model in accurately predicting such materials have emphasized the necessity for pre-

cise numerical simulations.

In the numerical analysis, a robust homogenization technique has been employed to

simulate the intricate microstructure of the composites. Multiple representative vol-

ume elements (RVEs) have been generated using Python scripts within the ABAQUS/CAE

environment, automating the configuration of reinforcements at specified volume ra-

tios. Crucial to computational accuracy, periodic boundary conditions have been im-

plemented to ensure realistic micromechanical simulations across the entirety of the

composite material surrounding each RVE. Careful selection of RVE size has en-

sured statistical representativeness of the heterogeneous composite material. Imple-

mentation of a multi-material model using ABAQUS/Standard, facilitated by a user

subroutine (UMAT), has enabled implicit nonlinear finite element calculations. This

approach has not only replicated basic characterization tests numerically but has also

validated the results against experimental and analytical findings.

The findings of this study underscore the potential of LDPE and PU composites to sig-

nificantly reduce costs and environmental impact in various applications due to their

lightweight properties. The validated numerical model provides a robust framework

for efficiently simulating the behavior of different composite compositions, aiding in

the selection of optimal material combinations for diverse engineering applications.

Future research directions stemming from this study include expanding the developed

homogenization approach to accommodate a broader range of reinforcement types,

implementing advanced Python scripts for simulating RVE geometric models at the

microstructural scale, modeling interfaces of micro-scale particles within compos-

ites, developing UMAT subroutines for comprehensive failure and fatigue analysis,

extending multiscale homogenization methods to macroscopic structures, and opti-

mizing parallelization efficiency for enhanced computational performance.
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Future work stemming from this research includes:

• Expanding the developed homogenization approach to accommodate various

types of reinforcements.

• Implementing Python scripts for simulating geometric models of RVEs at the

microstructural scale.

• Modeling interfaces of micro-scale particles within the composites.

• Developing UMAT subroutine for failure and fatigue analysis.

• Extending multiscale homogenization to simulate macroscopic structures.

• Enhancing parallelization efficiency for fully optimized computational approaches.
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[87] M. Râpă, B.N. Spurcaciu, G. Coman, C.A. Nicolae, R.A. Gabor, P.N. Ghioca,
A.C. Berbecaru, E. Matei, and C. Predescu, “Effect of styrene-diene block
copolymers and glass bubbles on the post-consumer recycled polypropylene
properties,” Materials, vol. 13, no. 3, 2020.

[88] A. Irez, E. Bayraktar, and I. Miskioglu, “Design and mechanical-physical prop-
erties of epoxy-rubber based composites reinforced with nanoparticles,” Pro-
cedia Engineering, vol. 184, pp. 486–496, 2017, advances in Material & Pro-
cessing Technologies Conference.

[89] A.B. Irez, E. Bayraktar, and I. Miskioglu, “Recycled and devulcanized rubber
modified epoxy-based composites reinforced with nano-magnetic iron oxide,
fe3o4,” Composites Part B: Engineering, vol. 148, pp. 1–13, 2018.

[90] A.B. Irez, G. Zambelis, and E. Bayraktar, “A new design of recycled ethy-

109



lene propylene diene monomer rubber modified epoxy based composites rein-
forced with alumina fiber: Fracture behavior and damage analyses,” Materials,
vol. 12, no. 17, 2019.

[91] G.C. Kabakci, O. Aslan, and E. Bayraktar, “Toughening mechanism analysis
of recycled rubber-based composites reinforced with glass bubbles, glass fibers
and alumina fibers,” Polymers, vol. 13, no. 23, 2021.

[92] R.C.G. Treloar, The Physics of Rubber Elasticity. Oxford, UK: Oxford Uni-
versity Press, 1975.

[93] R.W. Ogden, Non-linear elastic deformations. Courier Corporation, 1997.

[94] O.H. Yeoh, “Some Forms of the Strain Energy Function for Rubber,” Rubber
Chemistry and Technology, vol. 66, no. 5, pp. 754–771, 11 1993.

[95] R.S. Marlow, A general first-invariant hyperelastic constitutive model. CRC
Press, 2003.

[96] J. Gough, I.H. Gregory, and A.H. Muhr, “Determination of constitutive equa-
tions for vulcanized rubber,” Finite Element Analysis of Elastomers, no. 5-26,
1999.

[97] J.R. Willis, “Variational and related methods for the overall properties of com-
posites,” Advances in Applied Mechanics, vol. 21, pp. 1–78, 1981.

[98] P. Suquet, Continuum Micromechanics, ser. CISM International Centre for Me-
chanical Sciences. Springer Vienna, 2014.

[99] L. Asaro, M. Gratton, S. Seghar, and N.A. Hocine, “Recycling of rubber wastes
by devulcanization,” Resources, Conservation and Recycling, vol. 133, pp.
250–262, 2018.

[100] Y. Fang, M. Zhan, and Y. Wang, “The status of recycling of waste rubber,”
Materials and Design, vol. 22, no. 2, pp. 123–128, 2001.

[101] M.M.Y. Zaghloul, Y.S. Mohamed, and H. El-Gamal, “Fatigue and tensile be-
haviors of fiber-reinforced thermosetting composites embedded with nanopar-
ticles,” Journal of Composite Materials, vol. 53, no. 6, pp. 709–718, 2019.

[102] A.B. Irez, E. Bayraktar, and I. Miskioglu, “Flexural fatigue damage analyses
of recycled rubber-modified epoxy-based composites reinforced with alumina

110



fibres,” Fatigue & Fracture of Engineering Materials & Structures, vol. 42,
no. 4, pp. 959–971, 2019.

[103] A.K. Dhingra, N. Peacock, A.R.J.P. Ubbelohde, C. Manfre, W. Watt, B. Harris,
and A.C. Ham, “Alumina fibre fp,” Philosophical Transactions of the Royal
Society of London. Series A, Mathematical and Physical Sciences, vol. 294,
no. 1411, pp. 411–417, 1980.

[104] N. Platzer, “Fracture mechanics of polymers, j. g. williams, halsted press, new
york, 1984, 302 pp. price: $39.95,” Journal of Polymer Science: Polymer Let-
ters Edition, vol. 23, no. 4, pp. 195–195, 1985.

[105] A. Geim and K. Novoselov, “The rise of graphene,” Nature materials, vol. 6,
pp. 183–91, 04 2007.

[106] Z. Zhang and H. Lei, “Preparation of α-alumina/polymethacrylic acid com-
posite abrasive and its cmp performance on glass substrate,” Microelectronic
Engineering, vol. 85, no. 4, pp. 714–720, 2008.

[107] G. Zhang, F. Wang, J. Dai, and Z. Huang, “Effect of functionalization of
graphene nanoplatelets on the mechanical and thermal properties of silicone
rubber composites,” Materials, vol. 9, no. 2, 2016.

[108] M. Shokrieh, S. Ghoreishi, and M. Esmkhani, “11 - toughening mechanisms of
nanoparticle-reinforced polymers,” in Toughening Mechanisms in Composite
Materials, ser. Woodhead Publishing Series in Composites Science and Engi-
neering, Q. Qin and J. Ye, Eds. Woodhead Publishing, 2015, pp. 295–320.

[109] C. Miehe, “Strain-driven homogenization of inelastic microstructures and com-
posites based on an incremental variational formulation,” International Journal
for Numerical Methods in Engineering, vol. 55, no. 11, pp. 1285–1322, 2002.

[110] C. Miehe, J. Schotte, and M. Lambrecht, “Homogenization of inelastic solid
materials at finite strains based on incremental minimization principles. appli-
cation to the texture analysis of polycrystals,” Journal of the Mechanics and
Physics of Solids, vol. 50, no. 10, pp. 2123–2167, 2002.

[111] G. Çakır Kabakcı, Ö. Aslan, and E. Bayraktar, “Impact behaviour of recy-
cled rubber-based composites reinforced with glass bubbles and alumina fibers
(γ-al2o3),” in Mechanics of Composite, Hybrid & Multi-functional Materials,
Volume 5, V. Chalivendra and F. Gardea, Eds. Cham: Springer International
Publishing, 2023, pp. 17–28.

[112] G. K-Çakır, Ö. Aslan, and E. Bayraktar, “Toughening mechanism of recy-

111



cled rubber based composites reinforced with glass fibers + alumina fibers
for military applications,” in Mechanics of Composite, Hybrid and Multifunc-
tional Materials, Fracture, Fatigue, Failure and Damage Evolution, Volume 3,
V. Chalivendra, A.M. Beese, and R.B. Berke, Eds. Cham: Springer Interna-
tional Publishing, 2022, pp. 99–109.

[113] G.C. Kabakci, O. Aslan, and E. Bayraktar, “A review on analysis of reinforced
recycled rubber composites,” Journal of Composites Science, vol. 6, no. 8,
2022.

[114] B. Yalcin, S. Amos, M. Williams, I. Gunes, and T. Ista, “3m™ glass
bubbles im16k for reinforced thermoplastics,” 2016. [Online]. Available:
www.3M.com/glassbubbles

[115] T.e.a. Nguyen, “Versatility of polyurethane foams and elastomers,” Advanced
Polymer Technology, vol. 29, pp. 233–247, 2020.

[116] L.e.a. Thomas, “Shore hardness in polyurethane composites,” Journal of Poly-
mer Engineering, vol. 34, pp. 89–98, 2019.

[117] P.e.a. Mukhopadhyay, “Elongation at break of polyurethane elastomers,” Poly-
mer Engineering and Science, vol. 45, pp. 143–151, 2019.

[118] S.e.a. Dasari, “Thermal insulation properties of polyurethane foams,” Journal
of Applied Polymer Science, vol. 58, pp. 203–211, 2018.

[119] K.e.a. Jayaraman, “Durability of polyurethane composites,” Journal of Polymer
Research, vol. 48, pp. 315–324, 2020.

[120] R.e.a. Siddique, “Mechanical properties of ldpe composites reinforced with
recycled rubber,” Journal of Materials in Civil Engineering, vol. 20, pp. 640–
649, 2008.

[121] V.e.a. Rajan, “Tensile strength and flexibility of pu composites reinforced with
recycled rubber,” Composite Structures, vol. 140, pp. 95–106, 2016.

112

www.3M.com/glassbubbles


Appendix A

ALGORITHMS

A.1 Python Script for Creating 2D Representative Volume Elements (RVEs)

with Rectangular Inclusions

This Python script is designed to generate distributed rectangular inclusions within a

matrix that do not overlap and exhibit a periodic geometry. The periodic nature of

the geometry ensures that an inclusion cut off on one side of the matrix will continue

seamlessly on the opposite side, creating a continuous and repeatable pattern. This

feature is particularly useful for simulations and analyses in materials science, where

modeling the behavior of composites with regularly spaced inclusions is necessary.

The script ensures that the inclusions are placed randomly but without intersecting

each other, maintaining a specific volume fraction and the desired spatial distribution.

# FUNCTION TO CREATE 2D RVE WITH RECTANGULAR INCLUSIONS

def intersection1(newfiber, fiber, Tol):

# Calculate the diagonal length of the new fiber

F_L = newfiber[2]

F_W = newfiber[4]

dfiber1 = (F_L**2.0 + F_W**2.0)**0.5

# Calculate the diagonal length of the existing fiber

F_L = fiber[2]

F_W = fiber[4]

dfiber2 = (F_L**2.0 + F_W**2.0)**0.5
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# Determine the distance between the fibers

D = ((fiber[1] - newfiber[1])**2.0 + (fiber[0] - newfiber[0])**2.0)**0.5

Dmin = dfiber1 / 2.0 + dfiber2 / 2.0 + Tol

# Check if fibers intersect

if D > Dmin:

Intersection1 = ’No’

else:

Intersection1 = ’Yes’

return Intersection1

def intersection2(newfiber, fiblist, Tol):

Intersection2 = ’No’

for fiber in fiblist:

Check = intersection1(newfiber, fiber, Tol)

if Check == ’Yes’:

Intersection2 = ’Yes’

return Intersection2

def ran(x1, x2):

# Generate a random value between x1 and x2

value = (x2 - x1) * random() + x1

return value

# Initialize parameters for the RVE and fibers

W =

H =

fibwidth = ()

F_Lmax = ()

F_Lmin = ()

Tol = () * fibwidth

Vf =
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# Initialize the first fiber

xc = ran(0 - F_Lmax / 2.0, W + F_Lmax / 2.0)

yc = ran(0 - F_Lmax / 2.0, H + F_Lmax / 2.0)

F_L = ran(F_Lmin, F_Lmax)

Theta = ran(0, pi)

fiblist = [[xc, yc, F_L, Theta, fibwidth]]

Vff = fibwidth * F_L / (W * H)

# Loop to add fibers until volume fraction Vf is reached

while Vff < Vf:

xc = ran(0 - F_Lmax / 2.0, W + F_Lmax / 2.0)

yc = ran(0 - F_Lmax / 2.0, H + F_Lmax / 2.0)

F_L = ran(F_Lmin, F_Lmax)

Theta = ran(0, pi)

newfiber = [xc, yc, F_L, Theta, fibwidth]

Check = intersection2(newfiber, fiblist, Tol)

if Check == ’No’:

fiblist = fiblist + [newfiber]

# Check and add periodic boundary conditions

if newfiber[0] < 0:

newfiber = [xc + W, yc, F_L, Theta, fibwidth]

if Check == ’No’:

fiblist = fiblist + [newfiber]

if newfiber[1] < 0:

newfiber = [xc, yc + H, F_L, Theta, fibwidth]

if Check == ’No’:

fiblist = fiblist + [newfiber]

if W < newfiber[0]:

newfiber = [xc - W, yc, F_L, Theta, fibwidth]

if Check == ’No’:
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fiblist = fiblist + [newfiber]

if H < newfiber[1]:

newfiber = [xc, yc - H, F_L, Theta, fibwidth]

if Check == ’No’:

fiblist = fiblist + [newfiber]

Vff = Vff + fibwidth * F_L / (W * H)

print Vff

# Create part (rectangle) - matrix

s = mdb.models[’Model-1’].ConstrainedSketch(name=’__profile__’,

sheetSize=())

g, v, d, c = s.geometry, s.vertices, s.dimensions, s.constraints

s.setPrimaryObject(option=STANDALONE)

s.rectangle(point1=(0.0, 0.0), point2=(W, H))

p = mdb.models[’Model-1’].Part(dimensionality=TWO_D_PLANAR,

name=’Part-1’, type=DEFORMABLE_BODY)

p = mdb.models[’Model-1’].parts[’Part-1’]

p.BaseShell(sketch=s)

s.unsetPrimaryObject()

session.viewports[’Viewport: 1’].setValues(displayedObject=p)

del mdb.models[’Model-1’].sketches[’__profile__’]

# Partition

f, e, d1 = p.faces, p.edges, p.datums

t = p.MakeSketchTransform(sketchPlane=f[0], sketchPlaneSide=

SIDE1, origin=(0.0, 0.0, 0.0))

s1 = mdb.models[’Model-1’].ConstrainedSketch(gridSpacing=(),

name=’__profile__’, sheetSize=(), transform=t)

g, v, d, c = s1.geometry, s1.vertices, s1.dimensions, s1.constraints

s1.sketchOptions.setValues(decimalPlaces=3)

s1.setPrimaryObject(option=SUPERIMPOSE)

p = mdb.models[’Model-1’].parts[’Part-1’]
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p.projectReferencesOntoSketch(filter=COPLANAR_EDGES, sketch=s1)

# Loop to create fibers

for fiber in fiblist:

xc = fiber[0]

yc = fiber[1]

Lfib = fiber[2]

Theta = fiber[3]

Sin = sin(Theta)

Cos = cos(Theta)

Wfib = fibwidth

# Calculate the coordinates of the rectangle corners

x1 = xc - (Lfib * Cos / 2 - Wfib * Sin / 2)

y1 = yc - (Lfib * Sin / 2 + Wfib * Cos / 2)

x2 = xc + (Lfib * Cos / 2 + Wfib * Sin / 2)

y2 = yc + (Lfib * Sin / 2 - Wfib * Cos / 2)

x3 = xc + (Lfib * Cos / 2 - Wfib * Sin / 2)

y3 = yc + (Lfib * Sin / 2 + Wfib * Cos / 2)

x4 = xc - (Lfib * Cos / 2 + Wfib * Sin / 2)

y4 = yc - (Lfib * Sin / 2 - Wfib * Cos / 2)

# Draw the rectangle for the fiber

s1.Line(point1=(x1, y1), point2=(x2, y2))

s1.Line(point1=(x2, y2), point2=(x3, y3))

s1.Line(point1=(x3, y3), point2=(x4, y4))

s1.Line(point1=(x4, y4), point2=(x1, y1))

p = mdb.models[’Model-1’].parts[’Part-1’]

f = p.faces
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pickedFaces = f.getSequenceFromMask((’[#1 ]’,),)

e1, d2 = p.edges, p.datums

p.PartitionFaceBySketch(faces=pickedFaces, sketch=s1)

s1.unsetPrimaryObject()

del mdb.models[’Model-1’].sketches[’__profile__’]

# Create matrix material

mdb.models[’Model-1’].Material(name=’matrix’)

mdb.models[’Model-1’].materials[’matrix’].Elastic(table=(( , ),))

mdb.models[’Model-1’].HomogeneousSolidSection(material=’matrix’,

name=’matrix’, thickness=None)

p = mdb.models[’Model-1’].parts[’Part-1’]

f = p.faces

faces = f.findAt((0, 0, 0))

q = faces.index

face = f[q:q+1]

region = p.Set(faces=face, name=’Set-matrix’)

p = mdb.models[’Model-1’].parts[’Part-1’]

p.SectionAssignment(region=region, sectionName=’matrix’,

offset=0.0,

offsetType=MIDDLE_SURFACE, offsetField=’’,

thicknessAssignment=FROM_SECTION)

# Create fiber material

mdb.models[’Model-1’].Material(name=’fiber’)

mdb.models[’Model-1’].materials[’fiber’].Elastic(table=(( , ),))

mdb.models[’Model-1’].HomogeneousSolidSection(material=’fiber’,

name=’Section-1’, thickness=None)

f = p.faces

i = 1

for fiber in fiblist:

xc = fiber[0]

yc = fiber[1]
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Theta = fiber[3]

faces = f.findAt((xc, yc, 0))

face = f[q:q+1]

region = p.Set(faces=face, name=’fiber-’ + str(i))

p.SectionAssignment(region=region, sectionName=’Section-1’,

offset=0.0, offsetType=MIDDLE_SURFACE, offsetField=’’,

thicknessAssignment=FROM_SECTION)

p.DatumCsysByThreePoints(name=’fiber-’ + str(i),

coordSysType=CARTESIAN,

origin=(xc, yc, 0), point1=(xc + cos(Theta), yc + sin(Theta), 0),

point2=(xc - sin(Theta), yc + cos(Theta), 0))

datkey = mdb.models[’Model-1’].parts[’Part-1’].datums.keys()

q = datkey[-1]

orientation = mdb.models[’Model-1’].parts[’Part-1’].datums[q]

mdb.models[’Model-1’].parts[’Part-1’].MaterialOrientation

(region=region,orientationType=SYSTEM, axis=AXIS_3,

localCsys=orientation, fieldName=’’,

additionalRotationType=ROTATION_NONE, angle=0.0,

additionalRotationField=’’, stackDirection=STACK_3)

i = i + 1

# ASSEMBLE

mdb.models[’Model-1’].rootAssembly.Instance(dependent=ON,

name=’Instance-1’,

part=mdb.models[’Model-1’].parts[’Part-1’])

# CREATE PERIODIC BOUNDARY CONDITIONS

mdb.models[’Model-1’].rootAssembly.DatumCsysByDefault(CARTESIAN)
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mdb.models[’Model-1’].rootAssembly.Set(edges=(

mdb.models[’Model-1’].rootAssembly.instances[’Instance-1’].edges,),

name=’PerBound’)

(CoorFixNode, NameRef1, NameRef2) = PeriodicBound2D(mdb, ’Model-1’,

’PerBound’, [(W, 0.0), (0.0, H)],)

# CREATE STEP AND APPLY BC

mdb.models[’Model-1’].StaticStep(name=’Step-1’, nlgeom=ON,

previous=’Initial’)

# Apply boundary conditions on reference nodes

DefMat = [(0.5, UNSET), (UNSET, UNSET)]

mdb.models[’Model-1’].DisplacementBC(amplitude=UNSET,

createStepName=’Step-1’,

distributionType=UNIFORM, fieldName=’’, fixed=OFF, localCsys=None,

name=’BC-REF-1’, region=Region(referencePoints=(

mdb.models[’Model-1’].rootAssembly.instances[NameRef1].

referencePoints[1],)))

mdb.models[’Model-1’].DisplacementBC(amplitude=UNSET,

createStepName=’Step-1’, distributionType=UNIFORM, fieldName=’’,

fixed=OFF, localCsys=None,

name=’BC-REF-2’, region=Region(referencePoints=(

mdb.models[’Model-1’].rootAssembly.instances[NameRef2].

referencePoints[1], )))

mdb.models[’Model-1’].DisplacementBC(amplitude=UNSET,

createStepName=’Step-1’,

distributionType=UNIFORM, fieldName=’’, fixed=OFF,

localCsys=None, name=’BC-FIXNODE’, region=Region(

nodes=mdb.models[’Model-1’].rootAssembly.instances[’Instance-1’].

nodes.getByBoundingBox(H - H / 5, H - H / 5, 0, H, H, 0)),

u1=0.0, u2=0.0, ur3=UNSET)
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# JOB AND RUN

mdb.Job(atTime=None, contactPrint=OFF, description=’’, echoPrint=OFF,

explicitPrecision=SINGLE, getMemoryFromAnalysis=True, historyPrint=OFF,

memory=90, memoryUnits=PERCENTAGE, model=’Model-1’, modelPrint=OFF,

multiprocessingMode=DEFAULT, name=’Job-1’, nodalOutputPrecision=SINGLE,

numCpus=1, queue=None, scratch=’’, type=ANALYSIS, userSubroutine=’’,

waitHours=0, waitMinutes=0)

mdb.jobs[’Job-1’].submit(consistencyChecking=OFF)
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Appendix B

ALGORITHMS-2

B.1 Python Script for Volume Integration in Stress and Strain Analysis

This appendix presents a meticulously developed Python script designed to facilitate

volume integration. This process is essential for evaluating average stress and strain

values at each integration point throughout the simulation, crucial for accurately mod-

eling the mechanical behavior of heterogeneous composite materials. The script dis-

cretizes the composite volume into finite elements, calculates local stress and strain

at each integration point, and aggregates these to determine the overall macroscopic

stress and strain responses.

%# Choose loading types:

%# 0 for normal x direction

%# 1 for normal y direction

%# 2 for normal z direction

%# 3 for shear xy direction

loadlist = [0, 1, 2, 3]

# Element type being used

element_type = [’ ’]

# Accessing the first step in the ODB

stepim = odb.steps.values()[0]

# Initialize arrays for storing stress data
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list_macroscopic_stress = np.zeros(4)

nframes = len(stepim.frames)

stress_allframes = np.zeros((nframes, 4))

print("Number of frames:", nframes)

# Loop through each frame

for x in range(nframes):

print("Processing frame", x)

currentFrame = stepim.frames[x]

# Define the region of interest (all elements in this case)

region = myAssembly.elementSets[’ALL ELEMENTS’]

# Extract stress and volume data at integration points

stressField = currentFrame.fieldOutputs[’S’] # Stress field ’S’

strainField = currentFrame.fieldOutputs[’LE’] # Strain field ’LE’

ivolField = currentFrame.fieldOutputs[’IVOL’]

# Subset the stress and volume fields

field_stress = stressField.getSubset(region=region,

position=INTEGRATION_POINT, elementType=’ ’)

field_strain = strainField.getSubset(region=region,

position=INTEGRATION_POINT, elementType=’ ’)

field_ivol = ivolField.getSubset(region=region,

position=INTEGRATION_POINT, elementType=’ ’)

# Initialize variables for calculating macroscopic stress

i = 0

for loadtype in loadlist:

# Loop through each integration point in the RVE

count = 0

vol = 0
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temp_stress_times_vol = 0

# Calculate total volume and stress*volume for the current load type

for v in field_stress.values:

vol += field_ivol.values[count].data

temp_stress_times_vol += v.data[loadtype]

*field_ivol.values[count].data

count += 1

# Calculate macroscopic stress

macroscopic_stress = temp_stress_times_vol / vol

list_macroscopic_stress[i] = macroscopic_stress

i += 1

# Store calculated macroscopic stresses for the current frame

stress_allframes[x, :] = list_macroscopic_stress[:]
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