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SİMGELER VE KISALTMALAR

Bu çalışmada kullanılan simgeler ve kısaltmalar, açıklamaları ile birlikte aşağıda

sunulmuştur.

Simgeler Açıklamalar

BBBF
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nnn (((xxx,,,λλλ ))) Apostol Euler Fibonacci polinomu
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BBBnnn,FFF Bernoulli-F polinomu

BBBnnn Bernoulli sayısı

EEEnnn(((xxx))) Euler polinomu

EEEnnn Euler sayısı

FFFnnn!!! F-faktöriyel

∂∂∂ FFF ,,,xxx F-türev operatörü

FFFnnn Fibonacci sayısı(nnn
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)
FFF Fibonomial katsayı
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nnn (((xxx,,,λλλ ))) α. mertebeden Apostol Bernoulli-Fibonacci polinomu

EEEF,α
nnn (((xxx,,,λλλ ))) α. mertebeden Apostol Euler-Fibonacci polinomu

BBB
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nnn(((xxx))) α. mertebeden Bernoulli Polinomu

EEE
α

nnn(((xxx))) α. mertebeden Euler Polinomu

Kısaltmalar Açıklamalar
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1. GİRİŞ

Bernoulli ve Euler polinomları ve sayıları matematiğin trigonometrik fonksiyon serileri,

sayısal türev ve integral, diferensiyel denklemler, istatistik, olasılık kuramı, sayılar teorisi

gibi bir çok alanında kullanılmaktadır. Ayrıca Bernoulli polinomları yaklaşım teorisinde

elemanter fonksiyonların Euler gama fonsiyonları cinsinden asimtotik açılımlarda da

kullanılmaktadır.

Ars Conjectandi adlı kitabında Jakobs Bernoulli klasik Bernoulli, sayılarını tanımlamış olup

bu sayılar günümüze kadar insanların ilgi odağı olmuş ve çeşitli özellikleri incelenmiştir [1].

Bernoulli sayıları kullanılarak Bernoulli polinomları tanımlanmış ve birçok özelliği üzerine

çalışmalar yapılmıştır.

İlk olarak 1924 yılında Nörlund, Bernoulli polinomlarını tanımlamış olup [2], bunun

üzerine Carlitz, Nörlund yaptığı tanımlama kullanarak q−Bernoulli sayıları ve

polinomlarını tanımlamıştır [3]. Ayrıca Carlitz, yüksek mertebeden Bernoulli sayıları ile

Euler sayıları arasındaki ilişkileri içeren bazı özellikler bulmuştur [4, 5]. Al-Salam’da

q−Bernoulli sayıları ve polinomlarını içeren çalışmalar yapmıştır [6]. 1973 yılında H.

Radamacher, Bernoulli sayılarının Riemann zeta fonksiyonları arasındaki ilişkileri içeren

bir çalışma yapmıştır [7]. S. Roman, farklı tipte Bernoulli sayılarını tanımlayıp ayrıca

Bernoulli sayıları ve polinomları için üreteç fonksiyonunu elde etmiştir [8]. D. Zagier,

Bernoulli sayılarının farklı bir genellemesini tanımlamış ve modifiye Bernoulli sayıları

olarak adlandırmış ve bunların çeşitli özellikler elde etmiştir [9]. Koblitz, q−Bernoulli

sayıları ile q−zeta fonksiyonları arasında çeşitli bağıntılar elde etmiş ve q−Bernoulli

sayılarını kullanarak p−adik q−Bernoulli sayılarını tanımlamıştır [10]. Satoh, q−Bernoulli

sayıları ile Riemann zeta fonksiyonu arasında birçok özellik ve bağıntılar bulmuşlardır [11].

Tsumura, q−Dirichlet serileri ile q−Bernoulli sayıları arasındaki ilişkiyi incelemiştir ve

bunlarla ilgili çeşitli özellikler elde etmiştir [12]. F. T. Howard, 1996 yılında dejenere

Bernoulli sayıları üzerine çalışmıştır [13]. Y. Şimşek, 2003 yılında q−twisted Bernoulli

sayılarını tanımlayarak bu sayı ve polinomların sağladıkları genel özellikleri
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incelemiştir [14]. Hegazi, q−Bernoulli sayıları ve polinomlarının indirgeme bağıntısını elde

etmiş, bu bağıntıyı kullanarak üretecini elde etmiştir [15].

Leonhard Euler (1707-1783) tarafından Euler polinomlar, tanımlanmıştır. Srivastava ve

Choi, Euler polinomları ve Euler sayıları üzerine bir çok çalışmalar yapmış [16], Qiu-Ming

Luo, bilinen Euler sayıları ve polinomları içeren bir çok özellik elde etmiştir [17]. Ayrıca,

Cheon tarafından Bernoulli ve Euler polinomları ile ilgili çalışmalar devam ettirmiştir [18].

Çatma ise Bernoulli ve Euler polinomlarını inceleyip, bu polinomların bazı özelliklerini elde

etmiştir [19].

Liber Abaci kitabında İtalyan Matematikçi Pisalı Leonard tarafından terimleri

0,1,1,2,3,5, ... olan dizi Fibonacci dizisi olarak adlandırılmış [20, 21], Filipponi tarafından

1996 yılında Fibonacci sayılarının bir genelleştirmesi olan incomplete Fibonacci sayıları

tanımlanmıştır. Bu çalışmada Fibonacci ve Lucas sayılarının açık formülünden yararlanarak

incomplete Fibonacci ve Lucas sayıları tanımlanmıştır. Sonrasında bu diziler için indirgeme

bağıntıları bu sayıların bazı özellikleri ve toplam formülleri elde edilmiştir [22]. Pinter ve

Srivastava incomplete Fibonacci ve Lucas sayıları için üreteç fonksiyonlarını hesap

etmişlerdir [23]. 2004 yılında incomplete genelleştirilmiş Fibonacci ve genelleştirilmiş

Lucas sayıları ve üreteç fonksiyonları üzerinde çalışılmıştır [24]. 2010 yılında Tasci ve

Cetin-Firengiz, Fibonacci sayılarının genelleştirilmesi olan Fibonacci ve Lucas

p−sayılarının açık formülünden yararlanılarak, incomplete Fibonacci ve Lucas

p−sayılarını tanımış ve birçok özelliğini elde etmiştir [25].

Krot tarafından Fibonomiyel katsayılar kullanılarak Bernoulli−F polinomlarını

tanımlamıştır [26].

Apostol, bilinen Bernoulli sayıları ve polinomlarına benzer şekilde Lipchitz-Lerch Zeta

fonksiyonları üzerinde çalışmış ve elde ettiği polinomları Apostol-Bernoulli olarak

adlandırmıştır [27]. Apostol Bernoulli polinomları üzerine Srivastava çalışmalar yapmış,

bazı genellemeleri Luo ve Srivastava tarafından elde edilmiştir [28, 29]. Daha sonra Carlitz,

α−genişletilmiş Apostol-Bernoulli polinomlarını tanımlamıştır [30]. Apostol tipinden
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polinomların çeşitli özellikleri Luo tarafından elde edilmiştir [31]. Luo ve Srivastava

birlikte Apostol polinomların bir genelleştirmesi olan α Apostol-Euler ve ApostolBernoulli

polinomlarını tanımlamış ve birçok özelliğini elde etmişlerdir. Apostol tipinden

polinomlarının ve Apostol-Euler polinomlarının indirgeme bağıntıları ile çeşitli özellikleri

elde edilmiştir [17, 28, 29, 31, 32]. Srivastava ve Pinter, Euler ve Bernoulli polinomlarının

toplam formüllerini ve çeşitli özelliklerini içeren teoremler elde etmiştir [33].

Dattoli, harmonik sayılar ve harmonik polinomlar üzerine çalışmada, vakum yükseltme

operatör yardımıyla bunların harmonik tabanlı üstel üreteçlerını elde etmiştir [34, 35].

Özvatan ve Pashaev, Fibonomiyel katsayıları kullanarak Fibonacci hesaplamaları ve

bunların uygulamalarını yapmışlardır. Ayrıca Altın üstel fonksiyondan yararlanarak

Bernoulli Fibonacci sayıları ve Bernoulli Fibonacci polinomlarını tanımlamış ve bunların

F−üstel üreteçlerini içeren çeşitli özellikler elde etmişlerdir [36, 37].

Cvijovic, harmonik sayıları içeren üreteç fonksiyonlar ile ilgili 2010 yılında araştırmalar

yapmıştır [38]. Tuğlu ve arkadaşları harmonik Fibonacci sayılarını tanımlamış, elemanları

harmonik ve hiperharmonik Fibonacci sayıları olan circulant matrislerin çeşitli özelliklerini

incelemiştir [39]. S. Kuş doktora tez çalışmasında, Euler Fibonacci sayıları ve Euler

Fibonacci polinomlarını ve F−üstel üreteçlerini elde etmiştir. Ayrıca burada Euler

Fibonacci sayıları ve Bernoulli Fibonacci polinomlarının harmonik tabanlı F−üstel

üreteçleri elde edilmiştir [40].

Bu çalışmada, Apostol Bernoulli-Fibonacci polinomları, Apostol Bernoulli-Fibonacci

sayıları, Apostol Euler-Fibonacci polinomları, Apostol Euler-Fibonacci sayılarının

tanımları verilmiştir. Bu polinom ve sayıların sağladıkları bazı özellikler verilmiş,

harmonik tabanlı üstel üreteçleri elde edilmiştir. Bernoulli-F sayılarının tanımı kullanılarak

incomplete Bernoulli−F sayılarının tanımı verilmiş bunlarla ilgili özellikler elde edilmiştır.
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2. TANIMLAR ve TEOREMLER

Bu bölümde, çalışmamızda ihtiyaç duyacağımız bazı tanım ve kavramlara yer vereceğiz.

2.1. Temel Kavramlar

2.1.1. Tanım

F0 = 0, F1 = 1 başlangıç şartları ve n ≥ 0 için

Fn+2 = Fn+1 +Fn

indirgeme bağıntısı ile tanımlı {Fn}n≥0 dizisine Fibonacci dizisi denir [21].

2.1.2. Tanım

{Fn}n≥0 Fibonacci dizisi ve F0! = 1 olmak üzere F−faktöriyel

Fn! = Fn ·Fn−1 ·Fn−2 · · ·F1

şeklinde tanımlıdır [41].

Örneğin F4! = F4 ·F3 ·F2 ·F1 şeklindedir.

2.1.3. Tanım

n. Fibonacci sayısı Fn olmak üzere Fibonomiyel katsayılar

(
n
k

)
F
=


Fn!

Fn−k!Fk!
, 0 ≤ k ≤ n

0 , n < k

şeklinde tanımlıdır [41].
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Örnek

(
3
0

)
F
= 1

(
3
1

)
F
=

F3!
F3−1!F1!

=
2!

1!1!
= 2

(
3
2

)
F
=

F3!
F3−2!F2!

= 2

(
3
3

)
F
=

F3!
F3−3!F3!

= 1

2.1.4. Tanım

F−Binomiyel açılım formülü

(x+ y)n
F =

n

∑
k=0

(
n
k

)
F

xk yn−k

olarak tanımlanır [26].

Örnek

F−Binomiyel formülünde n = 3 alınırsa

(x+ y)3
F =

3

∑
k=0

(
3
k

)
F

x3 y3−k

=

(
3
0

)
F

x0 y3−0 +

(
3
1

)
F

x1 y3−1 +

(
3
2

)
F

x2 y3−2 +

(
3
3

)
F

x3 y3−3

=y3 +2xy2 +2x2 y+ x3

elde edilir.
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2.1.5. Tanım

F−üstel fonksiyonlar ex
F ve Ex

F olmak üzere

ex
F =

∞

∑
n=0

xn

Fn!
(2.1)

ve

Ex
F =

∞

∑
n=0

(−1)
n(n−1)

2
xn

Fn!

olarak tanımlanır [36].

F−üstel fonksiyonlar arasında

ex
F Ey

F = e
(x+y)F
F (2.2)

şeklinde bir bağıntı mevcuttur [37].

2.1.6. Tanım

α = 1+
√

5
2 ve β = 1−

√
5

2 olmak üzere herhangi bir f fonksiyonunun F−türevi

∂F,x ( f (x)) =
f (αx)− f (βx)

(α −β )x

olarak tanımlanır [37].

Örneğin f (x) = xn fonksiyonunun F−türevi

∂F,x (xn) = Fn xn−1

dir [26].
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F−üstel fonksiyonların F− türevleri

∂F,x
(
etx

F
)
= tetx

F

ve

∂F,x
(
Etx

F
)
= tE−tx

F

şeklindedir.

2.2. Bazı Özel Polinomlar ve Özellikleri

Bu bölümde, Bernoulli polinomlarının, Bernoulli sayılarının, Euler polinomlarının, Euler

sayılarının tanımları ve sağladıkları bazı özellikleri inceleyeceğiz. Daha sonra

Bernoulli-Fibonacci sayıları, Bernoulli-Fibonacci polinomları Bernoulli-Euler polinomları

Bernoulli-Euler sayıları ve Bernoulli F−polinomlarının tanımlarını verip sonraki

bölümlerde Bernoulli-Fibonacci polinomları ve Bernoulli-Euler polinomlarının bir

genelleştirmesi olan Apostol Bernoulli-Fibonacci polinomları ve Apostol Bernoulli-Euler

polinomlarının tanımları elde edilecektir.

2.2.7. Tanım

B0 = 1 olmak üzere, n ≥ 1 tamsayısı için

Bn =− 1
n+1

n−1

∑
k=0

(
n+1

k

)
Bk

ile tanımlı sayılara Bernoulli sayıları ve

Bn(x) =
n

∑
k=0

(
n
k

)
Bkxn−k

ile tanımlı polinomlara Bernoulli polinomları denir [30].
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Bn(x) Bernoulli polinomları ve Bn Bernoulli sayıları üstel üreteci fonksiyonları

tetx

et −1
=

∞

∑
n=0

Bn(x)
tn

n!
(2.3)

ve

t
et −1

=
∞

∑
n=0

Bn
tn

n!

şeklindedir [42].

Bn(x) Bernoulli polinomlarında x = 0 alınırsa Bn Bernoulli sayıları elde edilir.

Aşağıda bazı Bernoulli polinomları ve Bernoulli sayıları verilmiştir.

B0(x) = 1 B0 = 1

B1(x) = x− 1
2 B1 =−1

2

B2(x) = x2 − x+ 1
6 B2 =

1
6

B3(x) = x3 − 3
2x2 + 1

2x B3 = 0

B4(x) = x4 −2x3 + x2 − 1
30 B4 =− 1

30

B5(x) = x5 − 5
2x4 + 5

2x3 − 1
6x B5 = 0

Bernoulli polinomları ve sayılarının sağladığı bazı özellikler

Bn(x+ y) =
n

∑
k=0

(
n
k

)
Bk(x)yn−k, (2.4)

Bn(x) =
n

∑
k=0

(
n
k

)
Bkxn−k, n ≥ 0 (2.5)
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ve

Bn =
n

∑
k=0

(
n
k

)
Bk, n ≥ 2 (2.6)

dir [42].

2.2.8. Tanım

Üstel üreteci

2etx

et +1
=

∞

∑
n=0

En(x)
tn

n!
(2.7)

ile tanımlı En(x) polinomlara Euler polinomları ve

2
et +1

=
∞

∑
n=0

En
tn

n!

üstel üreteçi ile tanımlı sayılara En Euler sayıları denir [43].

Bazı Euler sayılarının ve polinomlarıaşağıda verilmiştir.

E0(x) = 1 E0 = 1

E1(x) = x− 1
2 E1 =−1

2

E2(x) = x2 − x E2 =
1
6

E3(x) = x3 − 3
2x2 + 1

4 E3 = 0

E4(x) = x4 −3x3 + x E4 = 0

E5(x) = x5 − 5
2x4 + 5

2x3 − 1
2 E5 =−1

2

Euler polinomları

En(x+ y) =
n

∑
k=0

(
n
k

)
Ek(x)yn−k (2.8)
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özelliği sağlar [43].

Litaratürde, Bernoulli ve Euler polinomlarının birçok genelleştirmeleri vardır. Lucas ve

arkadaşları tarafından sırasıyla α. mertebeden Bernoulli polinomlarının ve α. mertebeden

Euler polinomlarının üstel üreteç formülü

(
z

ez −1

)α

ezx =
∞

∑
n=0

B
α

n (x)
zn

n!
(2.9)

ve

(
2

ez +1

)α

ezx =
∞

∑
n=0

E
α

n (x)
zn

n!
. (2.10)

şeklinde verilmiştir [17]. Eğer burada x = 0 alınırsa α. mertebeden Bernoulli ve Euler

polinomları α. mertebeden Bernoulli ve Euler sayılarına dönüşür.

Bir diğer genelleme α ve λ keyfi reel ya da kompleks parametre olmak üzere α. mertebeden

genelleştirilmiş Apostol Bernoulli polinomu ve λ . mertebeden genelleştirilmiş Apostol Euler

polinomları sırasıyla

(
t

λet −1

)α

etx =
∞

∑
n=0

Bα
n (x,λ )

tn

n!
(2.11)

ve

(
2

λet +1

)α

etx =
∞

∑
n=0

Eα
n (x,λ )

tn

n!
. (2.12)

dir [27, 44, 45].

Eş. 2.11 ifadesinde λ = 1 alınırsa α. Bα
n (x) mertebeden Bernoulli polinomlarına dönüşür.

Eş. 2.12 ifadesinde λ = 1 alınırsa α. mertebeden Eα
n (x) Euler polinomlarına dönüşür.

Eş. 2.11 ve Eş. 2.12 ifadelerinde λ = α = 1 alınırsa sırasıyla klasik Bn(x) Bernoulli

polinomları ve En(x) Euler polinomları elde edilir.
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Bu polinomların sağladıkları bazı özellikler

B
α

n (x+ y) =
n

∑
k=0

(
n
k

)
B

α

k (x)y
n−k, (2.13)

B
α

n =
n

∑
k=0

(
n
k

)
Bα

k , (2.14)

Eα
n (x+ y) =

n

∑
k=0

(
n
k

)
Eα

k (x)y
n−k, (2.15)

Bα+β
n (x+ y,λ ) =

n

∑
k=0

(
n
k

)
Bα

n (x,λ )B
β

n−k(y,λ ) (2.16)

Eα+β
n (x+ y,λ ) =

n

∑
k=0

(
n
k

)
Eα

n (x,λ )E
β

n−k(y,λ ). (2.17)

dir [27, 44, 45].

2.2.9. Tanım

Fn! F−faktöriyel olmak üzere

tetx
F

et
F −1

=
∞

∑
n=0

BF
n (x)

tn

Fn!
(2.18)

F−üstel üreteci ile tanımlı polinomlara BF
n (x) Bernoulli-Fibonacci polinomları ve bu

polinomlarda x = 0 için

t
et

F −1
=

∞

∑
n=0

BF
n

tn

Fn!

ile tanımlı sayılara BF
n Bernoulli-Fibonacci sayıları denir [36].

Aşağıda bazı Bernoulli-Fibonacci polinomları ve Bernoulli-Fibonacci sayıları verilmiştir.
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BF
0 (x) = 1 BF

0 = 1

BF
1 (x) = x−1 BF

1 =−1

BF
2 (x) = x2 − x+ 1

2 BF
2 = 1

2

BF
3 (x) = x3 −2x2 + x− 1

3 BF
3 =−1

3

BF
4 (x) = x4 −3x3 +3x2 − x+ 3

10 BF
4 = 3

10

BF
5 (x) = x5 −5x4 + 15

2 x3 −5x2 − 3
2x+ 5

8 BF
5 = 5

8

2.2.10. Tanım

n. Fibonacci sayısı Fn olmak üzere

2etx
F

et
F +1

=
∞

∑
n=0

EF
n (x)

tn

Fn!

F−üstel üreteci ile tanımlı polinomlara EF
n (x) Euler-Fibonacci polinomları ve

2
et

F +1
=

∞

∑
n=0

EF
n

tn

Fn!

F−üstel üreteci ile tanımlı sayılara EF
n Euler Fibonacci sayıları denir [40].

Aşağıda bazı Euler-Fibonacci polinomları ve Euler-Fibonacci sayıları verilmiştir.
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EF
0 (x) = 1 EF

0 = 1

EF
1 (x) = x− 1

2 EF
1 =−1

2

EF
2 (x) = x2 − x

2 −
1
4 EF

2 =−1
4

EF
3 (x) = x3 − x2 − x

2 +
1
4 EF

3 = 1
4

EF
4 (x) = x4 − 3

2x3 + 3
2x2 − 3

4x+ 5
8 EF

4 = 5
8

EF
5 (x) = x5 − 5

2x4 − 15
4 x3 − 15

4 x2 + 25
8 x− 13

16 EF
5 =−13

16
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3. APOSTOL BERNOULLİ-FİBONACCİ POLİNOMLARI VE
APOSTOL EULER-FİBONACCİ POLİNOMLARI

Bu bölümde, Özvatan ve Pashaev’in altın üstel fonksiyondan yararlanarak tanımladığı

Bernoulli Fibonacci polinomlarından faydalanarak α. mertebeden Apostol

Bernoulli-Fibonacci polinomları ve Kuş ve Tuğlu’nun tanımladığı Euler-Fibonacci

polinomlarından yararlanarak yeni bir genelleştirme olan α. mertebeden Apostol

Euler-Fibonacci polinomları tanımlanmıştır.

Apostol Bernoulli-Fibonacci ve Apostol Euler-Fibonacci polinomları ve bunların özel

durumları olan sayıları tanımlanmış, aralarındaki ilişkiler ve çeşitli özellikleri elde

edilmiştir [36, 37].

3.1. Apostol Bernoulli-Fibonacci Polinomlar ve Aposto Euler-Fibonacci Polinomlar İle
İlgili Temel Kavramlar

3.1.1. Tanım

α ve λ keyfi reel ya da kompleks parametreler olmak üzere

(
t

λet
F −1

)α

etx
F =

∞

∑
n=0

BF,α
n (x,λ )

tn

Fn!
(3.1)

F−üstel üreteci ile tanımlı polinomlara α. mertebeden BF,α
n (x,λ )Apostol

Bernoulli-Fibonacci polinomları denir.

3.1.2. Tanım

α ve λ keyfi reel ya da kompleks parametreler olmak üzere

(
2

λet
F +1

)α

etx
F =

∞

∑
n=0

EF,α
n (x,λ )

tn

Fn!
(3.2)

F−üstel üreteci ile tanımlı polinomlara α. mertebeden EF,α
n (x,λ ) Apostol Euler-Fibonacci

polinomları denir.
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Eş. 3.1 ifadesinde α = 1 alınırsa, α. mertebeden BF,α
n (x,λ ) Apostol Bernoulli-Fibonacci

polinomları, BF
n (x,λ ) Apostol Bernoulli-Fibonacci polinomlarına dönüşür.

Eş. 3.2 ifadesinde α = 1 seçilirse α. mertebeden EF,α
n (x,λ ) Apostol Euler-Fibonacci

polinomları, EF,α
n (x,λ ) Apostol Euler-Fibonacci polinomlarına dönüşür. Bu polinomların

F−üstel üreteçleri sırasıyla

t
λet

F −1
etx

F =
∞

∑
n=0

BF
n (x,λ )

tn

Fn!
(3.3)

ve

2
λet

F +1
etx

F =
∞

∑
n=0

EF
n (x,λ )

tn

Fn!
(3.4)

dir.

Eş. 3.1 ifadesinde α = 1 ve x = 0 seçilirse, α. mertebeden BF,α
n (x,λ ) Apostol Bernoulli-

Fibonacci polinomlarından, BF
n (λ ) Apostol Bernoulli-Fibonacci sayıları elde edilir.

Eş. 3.2 ifadesinde α = 1 ve x= 0 seçilirse α. mertebeden EF,α
n (x,λ ) Apostol Euler-Fibonacci

polinomlarından, EF,α
n (λ ) Apostol Euler-Fibonacci sayıları elde edilir.

Apostol Bernoulli-Fibonacci sayıları ve Apostol Euler-Fibonacci sayılarının F−üstel

üreteçleri sırasıyla

t
λet

F −1
=

∞

∑
n=0

BF
n (x,λ )

tn

Fn!

ve

2
λet

F +1
=

∞

∑
n=0

EF
n (x,λ )

tn

Fn!

dır.
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3.2. Apostol Bernoulli-Fibonacci Polinomlar ve Aposto Euler-Fibonacci Polinomların
Özellilikleri

Bu bölümde Apostol Bernoulli-Fibonacci polinomları ve sayıları ile Apostol Euler-Fibonacci

polinomları ve sayılarının çeşitli özellikleri incelenecektir.

3.2.1. Teorem

BF,α
n (x,λ ), α. mertebeden Apostol Bernoulli-Fibonacci polinomu ve BF,β

n (λ ), β .

mertebeden Apostol Bernoulli-Fibonacci sayısı olmak üzere

BF,α+β
n (x,λ ) =

n

∑
k=0

(
n
k

)
F

BF,α
k (x,λ )BF,β

n−k(λ )

dir.

İspat

Eş. 3.1 ifadesi kullanılırsa;

∞

∑
n=0

BF,α+β
n (x,λ )

tn

Fn!
=

(
t

λet
F −1

)α+β

etx
F

=

(
t

λet
F −1

)α

etx
F

(
t

λet
F −1

)β

=
∞

∑
n=0

BF,α
n (x,λ )

tn

Fn!

∞

∑
n=0

BF,β
n (λ )

tn

Fn!

elde edilir. Cauchy çarpımından yararlanılırsa

∞

∑
n=0

BF,α+β
n (x,λ )

tn

Fn!
=

∞

∑
n=0

(
n

∑
k=0

(
n
k

)
F

BF,α
k (x,λ )BF,β

n−k(λ )

)
tn

Fn!

olup

BF,α+β
n (x,λ ) =

n

∑
k=0

(
n
k

)
F

BF,α
k (x,λ )BF,β

n−k(λ )

olduğu bulunur. Böylece istenilen elde edilmiş olur.
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3.2.2. Teorem

BF,α
n (x,λ ), α. mertebeden Apostol Bernoulli-Fibonacci polinomları olmak üzere

BF,α
n (x+ y,λ ) =

n

∑
k=0

(−1)
(n−k)(n−k−1)

2 BF,α
k (x,λ )yn−k (3.5)

dir.

İspat

Eş. 3.1 ve Eş. 2.2 ifadeleri kullanılırsa

∞

∑
n=0

BF,α
n (x+ y,λ )

tn

Fn!
=

(
t

λet
F −1

)α

et(x+y)
F

=

(
t

λet
F −1

)α

etx
F Ety

F

=
∞

∑
n=0

BF,α
n (x,λ )

tn

Fn!

∞

∑
n=0

(−1)
n(n−1)

2
yntn

Fn!

olup, bu ifadeye Cauchy çarpımı uygulanılırsa

∞

∑
n=0

BF,α
n (x+ y,λ )

tn

Fn!
=

∞

∑
n=0

(
n

∑
k=0

(−1)
(n−k)(n−k−1)

2 BF,α
k (x,λ )yn−k

)

olur. Buradan açıkça görülür ki

BF,α
n (x+ y,λ ) =

n

∑
k=0

(−1)
(n−k)(n−k−1)

2 BF,α
k (x,λ )yn−k

dır.

Eş. 3.5 ifadesinde y = 1 alınırsa

BF,α
n (x+1,λ ) =

n

∑
k=0

(−1)
(n−k)(n−k−1)

2 BF,α
k (x,λ )

elde edilir.
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3.2.3. Teorem

BF
n (x,λ ), Apostol Bernoulli-Fibonacci polinomları ve BF

n (λ ) Apostol Bernoulli-Fibonacci

sayıları olmak üzere

BF
n (x,λ ) =

n

∑
k=0

(
n
k

)
F

BF
k (λ )xn−k (3.6)

bulunur.

İspat

Eş. 3.3 ve Eş. 2.2 eşitlikleri kullanılırsa

∞

∑
n=0

BF
n (x,λ )

tn

Fn!
=

(
t

λet
F −1

)
etx

F

=
∞

∑
n=0

BF
n (λ )

tn

Fn!

∞

∑
n=0

xn tn

Fn!

elde edilir. Bu ifadeye Cauchy çarpımı uygulanırsa

∞

∑
n=0

BF
n (x,λ )

tn

Fn!
=

∞

∑
n=0

(
n

∑
k=0

(
n
k

)
F

BF
k (λ )x

n−k

)
tn

Fn!

bulunur. Katsayılar karşılaştırılırsa

BF
n (x,λ ) =

n

∑
k=0

(
n
k

)
F

BF
k (λ )xn−k

olup, istenilen sonuç elde edilir.

Eş. 3.6 ifadesinde x = 1 alınırsa

BF
n (1,λ ) =

n

∑
k=0

(
n
k

)
F

BF
k (λ )

olduğu açıkça görülür.
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3.2.4. Teorem

EF
n (x,λ ), Apostol Euler-Fibonacci polinomları ve EF

n (λ ), Apostol Euler-Fibonacci sayıları

olmak üzere

EF
n (x,λ ) =

n

∑
k=0

(
n
k

)
F

EF
k (λ )xn−k (3.7)

elde edilir.

İspat

Eş. 3.4 ve Eş. 2.2 eşitliklerinden kullanılırsa

∞

∑
n=0

EF
n (x,λ )

tn

Fn!
=

(
2

λet
F +1

)
etx

F

=
∞

∑
n=0

EF
n (λ )

tn

Fn!

∞

∑
n=0

xn tn

Fn!

elde edilir. Bu ifadeye Cauchy çarpımı uygulanırsa

∞

∑
n=0

EF
n (x,λ )

tn

Fn!
=

∞

∑
n=0

(
n

∑
k=0

(
n
k

)
F

EF
k (λ )x

n−k

)
tn

Fn!

bulunur, katsayılar karşılaştırılırsa

EF
n (x,λ ) =

n

∑
k=0

(
n
k

)
F

EF
k (λ )x

n−k

elde edilir.

3.2.5. Teorem

BF
n (x,λ ) Apostol Bernoulli-Fibonacci polinomları olmak üzere

BF
n (x+ y,λ ) =

n

∑
k=0

(
n
k

)
F
(−1)

(n−k)(n−k−1)
2 yn−kBF

n (x,λ ) (3.8)

dir.
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İspat

Eş. 3.3 ve Eş. 2.2 kullanılırsa

∞

∑
n=0

BF
n (x+ y,λ )

tn

Fn!
=

(
t

λet
F −1

)
et(x+y)

F

=

(
t

λet
F −1

)
etx

F Ety
F

=
∞

∑
n=0

BF
n (x,λ )

tn

Fn!

∞

∑
n=0

(−1)
n(n−1)

2 yn tn

Fn!

=
∞

∑
n=0

(
n

∑
k=0

(
n
k

)
F
(−1)

(n−k)(n−k−1)
2 yn−kBF

k (x,λ )

)
tn

Fn!

katsayılar karşılaştırılırsa

BF
n (x+ y,λ ) =

n

∑
k=0

(
n
k

)
F
(−1)

(n−k)(n−k−1)
2 yn−kBF

n (x,λ )

elde edilir.

Eğer Eş. 3.8 ifadesinde y = 1 alınırsa

BF
n (x+1,λ ) =

n

∑
k=0

(
n
k

)
F
(−1)

(n−k)(n−k−1)
2 BF

k (x,λ )

elde edilir.

3.2.6. Teorem

EF,α
n (x,λ ), Apostol Euler -Fibonacci polinomları olmak üzere

EF
n (x+ y) =

n

∑
k=0

(
n
k

)
F
(−1)

(n−k)(n−k−1)
2 yn−kEF

n (x,λ ) (3.9)

dir.
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İspat

Eş. 3.4 ve Eş. 2.2 kullanılırsa

∞

∑
n=0

EF
n (x+ y,λ )

tn

Fn!
=

(
2

λet
F +1

)
et(x+y)

F

=

(
2

λet
F +1

)
etx

F Ety
F

=
∞

∑
n=0

EF
n (x,λ )

tn

Fn!

∞

∑
n=0

(−1)
n(n−1)

2 yn tn

Fn!

=
∞

∑
n=0

(
n

∑
k=0

(
n
k

)
F
(−1)

(n−k)(n−k−1)
2 yn−kEF

k (x,λ )

)
tn

Fn!

dir. Katsayıların karşılaştırılmasından sonuç açıktır.

3.2.7. Teorem

EF
n (x,λ ), Apostol Euler-Fibonacci polinomları olmak üzere

EF
n

(x
2
,λ
)
=

n

∑
k=0

(
n
k

)
F
(−1)

(n−k)(n−k+1)
2

(x
2

)n−k
EF

k (x,λ ) (3.10)

dir.

İspat

Eş. 3.4 ve Eş. 2.2 kullanılırsa

∞

∑
n=0

EF
n

(x
2
,λ
) tn

Fn!
=

(
2

λet
F +1

)
e

x
2 t
F

=

(
2

λet
F +1

)
ext

F E
− x

2 t
F

=
∞

∑
n=0

EF
n (x,λ )

tn

Fn!

∞

∑
n=0

(−1)
n(n−1)

2

(
−x
2

)n tn

Fn!

=
∞

∑
n=0

(
n

∑
k=0

(
n
k

)
F
(−1)

(n−k)(n−k+1)
2

(x
2

)n−k
EF

k (x,λ )

)
tn

Fn!



23

elde edilir. Burada tn

Fn! katsayıları karşılaştırılırsa istenilen

EF
n

(x
2
,λ
)
=

n

∑
k=0

(
n
k

)
F
(−1)

(n−k)(n−k+1)
2

(x
2

)n−k
EF

k (x,λ )

elde edilir.

3.2.8. Teorem

BF
n (x,λ ) Apostol-Bernoulli-Fibonacci polinomlar ve ∂F,x F−türev operatörü olmak üzere

∂F,x
(
BF

n+1(x,λ )
)
= Fn+1 BF

n (x,λ ) (3.11)

dir.

İspat

Eş. 3.3 eşitliği kullanılırsa

∂F,x

(
t

λet
F −1

etx
F

)
=

t
λet

F −1
∂F,x

(
etx

F
)

(3.12)

=
t

λet
F −1

tetx
F

= t
∞

∑
n=0

BF
n (x,λ )

tn

Fn!

olur. Diğer taraftan, F−türev operatörünün lineerlik özelliğinden

∂F,x

(
∞

∑
n=0

BF
n (x,λ )

tn

Fn!

)
= ∂F,x

(
BF

0 (x,λ )
t0

F0!
+BF

1 (x,λ )
t1

F1!
+ · · ·

)
(3.13)

=
∞

∑
n=1

∂F,x
(
BF

n (x,λ )
) tn

Fn!

=
∞

∑
n=0

∂F,x(BF
n+1(x,λ ))

tn+1

Fn+1!

=
∞

∑
n=0

∂F,x(BF
n+1(x,λ ))

t
Fn+1

tn

Fn!
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elde edilir. Eğer Eş. 3.12 ve Eş. 3.13 ifadelerideki katsayılar karşılaştırılırsa

∂F,x
(
BF

n+1(x,λ )
)
= Fn+1 BF

n (x,λ )

elde edilir.

3.2.9. Teorem

EF
n (x,λ ), Apostol-Euler-Fibonacci polinomları ve ∂F,x F−türev operatörü olmak üzere

∂F,x
(
EF

n+1(x,λ )
)
= Fn+1 EF

n (x,λ )

dir.

İspat

Eş. 3.4 kullanılırsa

∂F,x

(
2

λet
F +1

etx
F

)
=

2
λet

F +1
∂F,x

(
etx

F
)

(3.14)

=
2tetx

F
λet

F +1

= t
∞

∑
n=0

EF
n (x,λ )

tn

Fn!

olur. diğer taraftan, F−türev operatörünün lineerlik özelliğinden

∂F,x

(
∞

∑
n=0

EF
n (x,λ )

tn

Fn!

)
= ∂F,x

(
EF

0 (x,λ )
t0

F0!
+EF

1 (x,λ )
t1

F1!
+ · · ·

)
(3.15)

=
∞

∑
n=1

∂F,x
(
EF

k (x,λ )
) tn

Fn!

=
∞

∑
n=0

∂F,x(EF
k+1(x,λ ))

tn+1

Fn+1!

=
∞

∑
k=0

∂F,x(EF
n+1(x,λ ))

t
Fn+1

tn

Fn!
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olup, Eş. 3.14 ve Eş. 3.15) ifadelerinde tn

Fn! katsayıları karşılaştırılırsa

tEF
n (x,λ ) = ∂F,x

(
EF

n+1(x,λ )
) t

Fn+1

olup

∂F,x
(
EF

n+1(x,λ )
)
= Fn+1 EF

n (x,λ )

elde edilir.

3.2.10. Teorem

BF
l (x,λ ) Apostol Bernoulli-Fibonacci polinomlar olmak üzere n ≥ 1 için

λ

n

∑
l=0

(
n
l

)
F

BF
l (x,λ ) = Fn xn−1 +BF

n (x,λ )

dir.

İspat

Apostol Bernoulli-Fibonacci polinomlarının üstel üreteç kullanırsa

t
λet

F −1
etx

F =
∞

∑
n=0

BF
n (x,λ )

tn

Fn!

eşitliğin her iki tarafı λet
F ile çarpılırsa

tetx
F

λet
F −1

λet
F =

∞

∑
n=0

BF
n (x,λ )

tn

Fn!
λet

F

elde edilir. Buradan

tetx
F

λet
F −1

(
λet

F −1
)
=

∞

∑
n=0

(
λet

FBF
n (x,λ )−BF

n (x,λ )
) tn

Fn!
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olup,

tetx
F =

∞

∑
n=0

(
λet

FBF
n (x,λ )−BF

n (x,λ )
) tn

Fn!
(3.16)

dir. Eş. 3.16 eşitliğin sol tarafından

tetx
F = ∂F,x

(
etx

F
)

= ∂F,x

(
∞

∑
n=0

(tx)n

Fn!

)

= ∂F,x

(
∞

∑
n=1

(tx)n

Fn!

)

=
∞

∑
n=1

tn∂F,x(xn)

Fn!

=
∞

∑
n=1

tnFnxn−1

Fn!

olup Eş. 3.16 nin sağ tarafı incelenecek olursa

∞

∑
n=0

(
λet

FBF
n (x,λ )−BF

n (x,λ )
tn

Fn!

)
=

∞

∑
l=0

λet
FBF

l (x,λ )
t l

Fl!
−

∞

∑
n=0

BF
n (x,λ )

tn

Fn!

dir. Eşitliğin sağ tarafını aşağıdaki gibi yazabilir;

λ

∞

∑
l=0

et
FBF

l (x,λ )
t l

Fl!
= λ

∞

∑
l=0

∞

∑
k=0

BF
l (x,λ )

tk

Fk!
t l

Fl!

= λ

∞

∑
l=0

∞

∑
k=0

BF
l (x,λ )

tk+l

Fk!Fl!
.

Burada k+ l = n, için

λ

∞

∑
l=0

et
FBF

l (x,λ )
t l

Fl!
= λ

∞

∑
n=0

1
Fn!

n

∑
l=0

BF
l (x,λ )

tnFn!
Fn−l!Fl!

= λ

∞

∑
n=0

tn

Fn!

(
n

∑
l=0

(
n
l

)
F

BF
l (x,λ )

)

elde edilir.

∞

∑
n=0

tnFnxn−1

Fn!
= λ

∞

∑
n=0

tn

Fn!

(
n

∑
l=0

(
n
l

)
F

BF
l (x,λ )

)
−

∞

∑
n=0

BF
n (x,λ )

tn

Fn!
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olup, katsayılar eşitlenirse

λ

n

∑
l=0

(
n
l

)
F

BF
l (x,λ )−BF

n (x,λ ) = Fnxn−1

elde edilir. Bu da ispatı tamamlar.

3.2.11. Teorem

EF
n (x,λ ) Apostol-Euler-Fibonacci polinomları ve Fn Fibonacci sayıları olmak üzere

λ t
n

∑
l=0

(
n
k

)
F

EF
l (x,λ )+EF

n (x,λ ) = 2Fnxn−1

dir.

İspat

Eş. 3.4 ifadesinden

2
λet

F +1
etx

F =
∞

∑
n=0

EF
n (x,λ )

tn

Fn!

olup, λet
F ile çarpılırsa

2etx
F

λet
F +1

λet
F =

∞

∑
n=0

EF
n (x,λ )

tn

Fn!
λet

F

olur. Buradan

2etx
F

λet
F +1

(
λet

F +1
)
=

∞

∑
n=0

(
λet

FEF
n (x,λ )+EF

n (x,λ )
) tn

Fn!

olup

2etx
F =

∞

∑
n=0

(
λet

FEF
n (x,λ )+EF

n (x,λ )
) tn

Fn!
(3.17)
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eşitliği elde edilir. Bu eşitliğin sol tarafını kullanılırsa

2etx
F =

2
t

∂F,x
(
etx

F
)

=
2
t

∂F,x

(
∞

∑
n=0

(tx)n

Fn!

)

=
2
t

∞

∑
n=1

tn∂F,x(xn)

Fn!

=
2
t

∞

∑
n=1

tnFnxn−1

Fn!

elde edilir. Eş. 3.17 in sağ tarafı ele alınırsa;

∞

∑
n=0

(
λet

FEF
n (x,λ )+EF

n (x,λ )
tn

Fn!

)
=

∞

∑
l=0

λet
FEF

l (x,λ )
t l

Fl!
+

∞

∑
n=0

EF
n (x,λ )

tn

Fn!

burada

∞

∑
l=0

λet
FEF

l (x,λ )
t l

Fl!
= λ

∞

∑
l=0

∞

∑
k=0

EF
l (x,λ )

tk

Fk!
t l

Fl!

= λ

∞

∑
l=0

∞

∑
k=0

EF
l (x,λ )

tk+l

Fk!Fl!

k+ l = n için

λ

∞

∑
l=0

et
FEF

l (x,λ )
t l

Fl!
= λ

∞

∑
n=0

1
Fn!

n

∑
l=0

EF
l (x,λ )

tnFn!
Fn−l!Fl!

= λ

∞

∑
n=0

tn

Fn!

(
n

∑
l=0

(
n
k

)
F

EF
l (x,λ )

)

olur.

2
t

∞

∑
n=1

tnFnxn−1

Fn!
= λ

∞

∑
n=0

tn

Fn!

(
n

∑
l=0

(
n
k

)
F

EF
l (x,λ )

)
+

∞

∑
n=0

EF
n (x,λ )

tn

Fn!
.

katsayılar eşitlenirse

λ t
n

∑
l=0

(
n
k

)
F

EF
l (x,λ )+EF

n (x,λ ) = 2Fnxn−1

elde edilir.
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4. APOSTOL BERNOULLİ FİBONACCİ VE APOSTOL EULER
FİBONACCİ SAYILARININ HARMONİK ÜRETEÇLERİ

Bu bölümde Apostol Bernoulli-Fibonacci ve Apostol Euler-Fibonacci sayılarının harmonik

tabanlı üstel üreteçlerini elde edeceğiz.

4.1. Harmonik Üstel Üreteç

n doğal sayı olmak üzere hn harmonik sayıları

hn =
n

∑
k=1

1
k

ile tanımlıdır.

Dattoli’nin 2008 yılında yaptığı çalışmada harmonik sayılarını vakum yükseltme operatörü

yardımıyla harmonik tabanlı üstel üreteç fonksiyonuyla tanımlamıştır [34]. Tuglu ve

arkadaşları Harmonic Fibonacci sayılarını

Fn =
n

∑
k=1

1
Fk

olarak tanımlamışlardır [39]. Harmonik Fibonacci sayılarının tanımından

Fn+1 = Fn +
1

Fn+1

S. Kuş doktora tez çalışmasında Euler-Fibonacci sayılarının harmonic tabanlı F-üstel

üreteçlerini elde etmiştir. Burada harmonik tabanlı F üstel üreteç fonksiyonu

e fFt = 1+
∞

∑
n=1

Fn
tn

Fn!

ile ifade edilir ve

∂F,t(e fFt) = 1+
∞

∑
n=1

Fn+1
tn

Fn!

dir [40].
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Sonraki bölümde, Apostol Bernoulli-Fibonacci sayılarının harmonik tabanlı F üstel

üreteçlerini elde edilecektir

4.2. Apostol Bernoulli-Fibonacci Sayılarının Harmonik Tabanlı Üreteçleri

4.2.1. Teorem

BF
n (λ ) Apostol Bernoulli-Fibonacci sayılarının harmonik tabanlı F-üstel üreteçi

t
λ −1+λ t(∂F,te fFt − e fFt +1)

dir.

İspat

e fFt F-üstel üreteç ve Apostol Bernoulli-Fibonacci sayılarını tanımı kullanılırsa,

λet
F −1 = λ

∞

∑
n=0

tn

Fn!
−1

= λ +λ

∞

∑
n=1

tn

Fn!
−1

= λ −1+λ t
∞

∑
n=0

1
Fn+1

tn

Fn!

= λ −1+λ t
∞

∑
n=0

(Fn+1 −Fn)
tn

Fn!

= λ −1+λ t

(
1+

∞

∑
n=0

Fn+1
tn

Fn!
−

∞

∑
n=0

Fn
tn

Fn!

)
= λ −1+λ t

(
∂F,t eFt

F,t
− eFt

F,t
+1
)

olup, buradan

1
λet

F −1
=

1

λ −1+λ t
(

∂F,t eFt
F,t
− eFt

F,t
+1
) (4.1)
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yani

∞

∑
n=0

BF
n (λ )

tn

Fn!
=

t
λ −1+λ t(∂F,te fFt − e fFt +1)

elde edilir.

4.2.2. Teorem

BF
n (x,λ ) Apostol Bernoulli-Fibonacci polinomlarının harmonik tabanlı F-üstel üreteci

text
F

λ −1+λ t(∂F,te fFt − e fFt +1)

dir.

İspat

BF
n (x,λ ) Apostol Bernoulli-Fibonacci polinomları Eş. 3.6 ifadesinden

BF
n (x,λ ) =

n

∑
k=0

(
n
k

)
F

BF
k (λ )xn−k

olup,

∞

∑
n=0

BF
n (x,λ )

tn

Fn!
=

∞

∑
n=0

(
n

∑
k=0

(
n
k

)
F

BF
k (λ )xn−k

)
tn

Fn!

=
∞

∑
n=0

(
n

∑
k=0

Fn!
Fn−k!Fk!

BF
k (λ )xn−k

)
tn

Fn!

=
∞

∑
n=0

(
n

∑
k=0

1
Fn−k!Fk!

BF
k (λ )xn−k

)
tn

=
∞

∑
n=0

BF
k (λ )

tn

Fn!

∞

∑
n=0

xn tn

Fn!

dir. Apostol Bernoulli-Fibonacci sayılarının harmonik tabanlı F-üstel üreteci kullanılırsa

∞

∑
n=0

BF
n (x,λ )

tn

Fn!
=

text
F

λ −1+λ t(∂F,te fFt − e fFt +1)
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elde edilir.

4.2.3. Teorem

EF
n (λ ) Apostol Euler-Fibonacci sayılarının harmonik-tabanlı F-üstel üreteci

2
1+λ +λ t (∂F,te fFt − e fFt +1)

dir.

İspat

e fFt , F-üstel üreteç ve EF
n (λ ) Apostol Euler-Fibonacci sayılarının tanımı kullanılırsa

λet
F +1 = 1+λ +λ

∞

∑
n=1

tn

Fn!

= 1+λ +λ t
∞

∑
n=0

1
Fn+1

tn

Fn!

= 1+λ +λ t
∞

∑
n=0

(Fn+1 −Fn)
tn

Fn!

= 1+λ +λ t

(
∞

∑
n=0

Fn+1
tn

Fn!
−

∞

∑
n=0

Fn
tn

Fn!

)

= 1+λ +λ t

(
1+

∞

∑
n=1

Fn+1
tn

Fn!
−

∞

∑
n=1

Fn
tn

Fn!

)
= 1+λ +λ t

(
∂F,te fFt − e fFt +1

)

olup, buradan

1
λet

F +1
=

1
1+λ +λ t (∂F,te fFt − e fFt +1)

dir. Böylece

∞

∑
n=0

EF
n (λ )

tn

Fn!
=

1
1+λ +λ t (∂F,te fFt − e fFt +1)
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elde edilir.

4.2.4. Teorem

EF
n (x,λ ) Apostol Euler-Fibonacci polinomlarının harmonik tabanlı F-üstel üreteci

2ext
F

1+λ +λ t (∂F,te fFt − e fFt +1)

dir.

İspat

EF
n (x,λ ) Apostol Euler-Fibonacci polinomları ve Eş. 3.7 ifadesinden

EF
n (x,λ ) =

n

∑
k=0

(
n
k

)
F

EF
k (λ )xn−k

dir. Buradan

∞

∑
n=0

EF
n (x,λ )

tn

Fn!
=

∞

∑
n=0

(
n

∑
k=0

(
n
k

)
F

EF
k (λ )xn−k

)
tn

Fn!

=
∞

∑
n=0

(
n

∑
k=0

Fn!
Fn−k!Fk!

EF
k (λ )xn−k

)
tn

Fn!

=
∞

∑
n=0

(
n

∑
k=0

1
Fn−k!Fk!

EF
k (λ )xn−k

)
tn

=
∞

∑
n=0

EF
k (λ )

tn

Fn!

∞

∑
n=0

xn tn

Fn!

olup, Apostol Euler-Fibonacci sayılarının harmonik tabanlı F-üstel üreteci kullanılırsa

∞

∑
n=0

EF
n (x,λ )

tn

Fn!
=

2ext
F

1+λ +λ t (∂F,te fFt − e fFt +1)

dir.
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5. INCOMPLETE BERNOULLİ-F POLİNOMLARI

Bu bölümde, Krot tarafından tanımlanan Bernoulli-F polinomlarından faydalanarak

Incomplete Bernoulli-F polinomlarını tanımlayıp, bazı özelliklerini inceleyeceğiz.

5.1. Incomplete Polinomlar

5.1.1. Tanım

Fn, n. Fibonacci sayısı olmak üzere

Bn,F =
n

∑
k=1

1
Fk+1

(
n
k

)
F

xn−k

şeklinde tanımlı polinomlara Bernoulli-F polinomları denir [26].

Bernoulli-F polinomlarının bazıları aşağıdaki tabloda verilmektedir.

B0,F(x) = 1

B1,F(x) = x+1

B2,F(x) = x2 + x+ 1
2

B3,F(x) = x3 +2x2 + x+ 1
3

B4,F(x) = x4 +3x3 +3x2 + x+ 1
5

B5,F(x) = x5 +5x4 + 15
2 x3 +5x2 + x+ 1

8

5.1.2. Tanım

m,n birer tamsayı ve 0 ≤ m ≤ n olmak üzere

Bm
n,F =

m

∑
k=1

1
Fk+1

(
n
k

)
F

xn−k

şeklindeki polinomlara Incomplete Bernoulli-F polinomları denir.
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Incomplete Bernoulli-F polinomlarında özel olarak m = n seçilirse Bm
n,F = Bn,F elde edilir.

Örnek

n = 3 ise 0 ≤ m ≤ 3 olur.

m = 0 ise

B0
3,F =

0

∑
k=0

1
Fk+1

(
3
k

)
F

x3−k =
1
F1

(
3
0

)
F

x3 = x3

m = 1 ise

B1
3,F =

1

∑
k=0

1
Fk+1

(
3
k

)
F

x3−k =
1
F1

(
3
0

)
F

x3 +
1
F2

(
3
1

)
F

x2 = x3 +2x2

m = 2 ise

B2
3,F =

2

∑
k=0

1
Fk+1

(
3
k

)
F

x3−k =
1
F1

(
3
0

)
F

x3 +
1
F2

(
3
1

)
F

x2 +
1
F3

(
3
2

)
F

x = x3 +2x2 + x

m = 3 ise

B3
3,F =

3

∑
k=0

1
Fk+1

(
3
k

)
F

x3−k =
1
F1

(
3
0

)
F

x3+
1
F2

(
3
1

)
F

x2+
1
F3

(
3
2

)
F

x+
1
F4

(
3
3

)
F
= x3+2x2+x+

1
3

5.2. Incomplete Bernoulli-F Polinomların Bazı Özellikleri

5.2.1. Teorem

Bm
n,F (x) incomplete Bernoulli-F polinomlar ve ∂F,x F−türev olmak üzere

∂F,x
(
Bm

n,F (x)
)
= Fn Bn−1,F (x)

dir.
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İspat

Bm
n,F (x) incomplete Bernoulli F−polinomlarının birinci mertebeden F-türevi alınırsa

∂F,x
(
Bm

n,F (x)
)
= ∂F

(
m

∑
k=0

1
Fk+1

(
n
k

)
F

xn−k

)

=
m

∑
k=0

1
Fk+1

(
n
k

)
F

Fn−kxn−k−1

=
m

∑
k=0

1
Fk+1

Fn!
Fn−k!Fk!

Fn−kxn−k−1

=
m

∑
k=0

1
Fk+1

Fn!
Fn−k−1!Fk!

xn−k−1

= Fn

m

∑
k=0

1
Fk+1

(
n−1

k

)
F

xn−k−1

= Fn Bm
n,F (x)

elde edilir.

Örnek

n = 3, m = 1 için

∂F,x
(
B1

3,F (x)
)
= ∂F

(
x3 +2x2)= F3x2 +2F2x = 2

(
x2 + x

)
= F3 B1

2,F (x)

dir. Ayrıca n = 3, m = 2 için

∂F,x
(
B2

3,F (x)
)
= ∂F

(
x3 +2x2 + x

)
= F3x2 +2F2x+F1 = 2

(
x2 + x+

1
2

)
= F3B1

2,F (x)

olarak elde edilir.
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6. SONUÇ VE ÖNERİLER

Bu tezde, Apostol Bernoulli-Fibonacci polinomları ve Apostol Euler-Fibonacci polinomları

tanımlanmıştır. Ayrıca bu polinomların özellikleri detaylı olarak incelenmiştir. Üreteç

fonksiyonları kullanılarak yeni özellikler elde edilmiştir. Teoremler ve detaylı verilen

ispatlar ile bu çalışmayı inceleyenlere yardımcı olacaktır.
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