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ABSTRACT 

MONITORING AMU DARYA RIVER CHANNEL DYNAMICS USING REMOTE 

SENSING TECHNIQUES AIDED BY GOOGLE EARTH ENGINE   

 

Mohammad Asef  MOBARİZ 

Department of Remote Sensing and Geographical Information Systems  

Eskişehir Technical University, Institute of Graduate Programs, December 2021 

Supervisor: Assoc. Prof. Gordana  KAPLAN 

In this study, aims at monitoring Amu Darya River Channel Dynamics using 

Remote Sensing techniques within Google Earth Engine (GEE). The Amu Darya River 

covers vast areas within the borders of Turkmenistan, Uzbekistan and Tajikistan. The 

upper part of the Amu Darya River, the international border between Afghanistan and 

Tajikistan, have been investigated in terms of river channel dynamics. Thus, for this 

purpose, satellite imageris from four different periods ten years apart (1990-2000, 2000-

2010, 2010-2020), have been used to map and monitor the dynamics of the river over the 

last three decades. The classification of the images was conducted in GEE using Landsat 

imagery. In addition to the river mapping and monitoring, a land cover change detection 

in the study area has been made. The results showed that the increase in irrigated areas, 

in the four specified periods was significant and played an important role in increasing 

the vulnerability of the study area to soil erosion which leads to river channel dynamics. 

The results also showed that the use of Landsat and GEE can be a significant 

source of updated data for mapping and monitoring river dynamics, with a classification 

accuracy of the water areas higher than 90%. For future studies, we recommend using 

satellite imagery with a higher spatial and spectral resolution, like Sentinel-2, for more 

detailed investigation. 

Keywords: Amu Darya, River Dynamics, Google Earth Engine, Classification, Remote 

Sensing.  
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ÖZET 

GOOGLE EARTH ENGİNE YARDIMIYLA UZAKTAN ALGILAMA TEKNİKLERİ 

KULLANARAK AMU DARYA NEHİR KANAL DİNAMİKLERİNİN İZLENMESİ 

 

Mohammad Asef  MOBARİZ 

Uzaktan Algılama ve Coğrafi Bilgi Sistemleri Anabilim Dalı Anabilim Dalı 

Eskişehir Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, Aralık 2021 

Danışman: Doç. Dr. Gordana  KAPLAN 

Bu çalışmada Afganistan’ın kuzeyinde yer alan Amu Darya Nehri’ne aittir , 

Google Earth Engine Yardımıyla Uzaktan Algılam Teknikleri Kullanarak Amu Darya 

Nehir Kanal Dinamiklerinin İzlenmesi amaçlanmaktadır. Amu-Darya Nehri, kuzeybatıda 

İran'dan başlayarak güneydoğuya doğru uzanır ve Afganistan’ın kuzeyinde bulunur. Bu 

Nehir Türkmenistan, Özbekistan ve Tajikistan sınırları içerisinde de çok geniş alanları 

kapsar ve bu bölgelerde de Amu Darya’nın önemli alanlarını bulunmaktadır. Bu 

çalışmada, Amu Darya nehri kanal dinamiklerinin uzaktan algılama verileri kullanılarak 

üst kısımları incelenmiştir. Bu amaçla, son otuz yılda nehrin dinamiklerini haritalamak 

ve izlemek için on yıl arayla (1990-2000, 2000-2010, 2010-2020) dört farklı döneme ait 

uydu görüntüleri kullanılmıştır. Görüntülerin sınıflandırılması, Landsat görüntüleri 

kullanılarak Google Earth Engine'de (GEE) yapılmıştır. Nehir haritalama ve izlemeye ek 

olarak, çalışma alanında arazi örtüsü değişikliği tespiti yapılmıştır. Sonuçlar, belirlenen 

dört dönemdeki sulanan alanlardaki artışın önemli olduğunu ve nehir kanalı 

dinamiklerine yol açan toprak erozyonuna karşı çalışma alanının kırılganlığını artırmada 

önemli bir rol oynadığını göstermiştir. 

Sonuç olarak, bu çalışma Landsat ve GEE kullanımının, su alanlarının % 90'ın 

üzerinde bir sınıflandırma doğruluğu ile nehir dinamiklerinin haritalanması ve izlenmesi 

için önemli bir güncellenmiş veri kaynağı olabileceğini göstermiştir. Gelecekteki 

çalışmalar için, Sentinel gibi daha yüksek uzamsal ve spektral çözünürlüğe sahip uydu 

görüntülerini kullanılmasını öneririz. 

Anahtar Sözcükler: Amu Darya, Google Earth Engine, Nehir Dinamikleri,   

Sınıflandırma, Uzaktan Algılama.  
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1. INTRODUCTION 

1.1. Problem Definition and Objective of the Study 

As the essence of life, water is one of the essential substances on Earth. It plays a 

crucial environmental and societal role in all ecosystem services. People`s dependence 

on water is clear as 82% of the world`s population live on previously flooded land, 

whereas 87% are settled along a river (Tomsett & Leyland, 2019). Also, rivers have been 

used to divide lands, leading to waterways as political borders. According to Popelka and 

Smith (Popelka & Smith, 2020), rivers make up 23 percent of international borders, 17 

percent of the worlds state and provincial borders, and 12 percent of all county-local 

borders. The number of international borders as river is the highest in South America and 

lowest in Asia. The division of states, cities, and countries with water bodies often causes 

political controversies. Also, river dynamics can often cause a considerable hazard to 

those in the surrounding area (Hirabayashi et al., 2013). River dynamics are often 

described as natural autogenic occurrences for fluvial rivers generally caused by human 

modifications such as dam construction, irrigation infrastructure construction, land use 

changes, and climatic factors (Langat, Kumar, & Koech, 2019). Understanding, 

monitoring, and mapping the rivers are essential to prevent and lower the hazards caused 

by the river channel dynamics. If the river is transboundary and natural hazards, it can 

also cause geo-political problems (fUr Innere Medizin, 1988),(Yousefi, Keesstra, 

Pourghasemi, Surian, & Mirzaee, 2017). Transboundary waters have been a reason for 

conflict in many parts of the world (Ovezova, 2015), and it is believed that the struggle 

for clean and safe water can cause even bigger geopolitical conflicts (Dhaliwal, 2009).  

One of the transboundary rivers prone to conflicts is the Amu Darya river. The 

Amu Darya river is a major river in Central Asia and Afghanistan, and besides being 

internationally shared water between Tajikistan, Afghanistan, Uzbekistan, and 

Turkmenistan, it also represents the border between Afghanistan, and Tajikistan and 

Uzbekistan. Since its watercourse is constantly changing, it is very challenging for the 

local people who depend primarily on agriculture to claim their rights (fUr Innere 

Medizin, 1988). Afghanistan, as an impoverished country, is highly dependable on 

farming. Due to war in the past few decades, economic considerations have been 

secondary to political and military problems (fUr Innere Medizin, 1988).  
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Researchers have been searching for solutions for managing transboundary water 

resources in the Aral Sea Basin (Haleemzai & Sediqi, 2018), as the lack of effective 

management in the use and development of water caused severe consequences for the 

natural environment, the human population, and the economies of the sharing countries 

(Farzaneh & Mohammadi, 2011). Situated in the hearth of the Eurasian continent, the 

Aral Sea Basin is extending over parts of five Central Asian Republics. One of the two 

major rivers of the Basin, Amu Darya, originates in the mountains of Afghanistan and 

Tajikistan, and flows through Uzbekistan and Turkmenistan to the Aral Sea. Amu Darya 

is one of the major transboundary rivers, also representing an international border 

between Afghanistan, and Uzbekistan and Tajikistan. Although some attempts have been 

made for agreements for water resources in the Amu Darya basin, trying to deal with the 

use and quality of the water resources, no significant progress has been achieved. If no 

progress is made on this topic, this would result in further economic hardship, 

environmental damage, and create a potential for conflict (Farzaneh & Mohammadi, 

2011). It has been clearly stated that action is required to stop the increase of the crisis in 

the Aras Sea Basin that affects more than 21 million people, with increased mortality 

rates, disease and health disorders (Bekchanov, Ringler, & Bhaduri, 2018).  

For large areas like the Amu Darya river basin, and developing countries like 

Afghanistan, efficient and cost-effective scientific tools are important. Geospatial data 

and tools have become valuable tools for mapping and monitoring land use and river 

dynamic changes worldwide. However, remote sensing as an efficient tool for modern 

geospatial mapping has not been widely used in waterways as political borders. Popelka 

and Smith (Popelka & Smith, 2020) recently released a new geospatial database of the 

world’s river borders for large rivers using Landsat data. Langat et al (Langat et al., 2019) 

used aerial imagery combined with Landsat for monitoring the river channel dynamics 

over the river Tana, Kenya and were able to analyze the temporal and spatial channel 

changes of the river from 1975 – 2017. Similarly, Billah (Billah, 2018) used Landsat 

imagery from 1975 – 2015 to map and monitor erosion and accretion in the Padma river, 

Bangladesh. Dabojani et al (Bora, Bhuyn, & Dutta, 2021) made similar investigation over 

the Manu river in Bangladesh. Remote sensing has been successfully used in many studies 

for river channel dynamics (Tomsett & Leyland, 2019), (Langat et al., 2019),(Tadese, 

Kumar, Koech, & Kogo, 2020). With geoformation systems, remote sensing data can 

provide excellent river channel dynamics, processing, visualization, and analysis tools. 
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Beside the river channel dynamics, land cover maps can be produced from the remote 

sensing data. With spatial analysis, the land cover changes caused by the river dynamics 

can be also determined. Also, few studies can be found in the literature on monitoring 

shared international waters using remote sensing data, except for few study cases over 

transboundary lakes (G. J. Kaplan, Avdan, Avdan, & Jovanovska, 2019). This leaves 

space in the literature to monitor transboundary rivers and river dynamics using remote 

sensing and geo-information systems. River morphology changes in varying 

environmental conditions over both spatial and temporal scales due to the erosion and 

accretion of the river bank and the river's water flow through natural and anthropogenic 

inputs.  

The processes that control river morphology include channel dynamics, discharge, 

runoff events, sediment supply, and vegetation cover. In addition, channel shifting and its 

response to changing environmental conditions are highly reliant on local factors (channel 

type, hydrologic, and vegetation conditions) affected by anthropogenic disturbances. 

Understanding the processes attributed to channel shifting and assessing river 

morphological change has long been of interest to geologists, geomorphologists, and 

engineers (Akhter et al., 2019). GIS and remote sensing technologies have proven useful 

for mapping and monitoring River resources (Wu, 2017).  

This study aims to find the changes in the displacement and destruction of the 

Amu Darya River on its aspects. While most studies in the literature focus only on river 

dynamics (Langat et al., 2019),(Billah, 2018) or land cover changes in the river basin 

(Cai, Feng, Hou, & Chen, 2016),(Sarif & Gupta, 2021), this study evaluated both land 

cover changes and river dynamics of Amu Darya river. 

The purpose of the presented study is to apply remote sensing data and geo-

information techniques to understand the temporal and spatial channel changes and 

dynamics of the Amu Darya river along Afghanistan’s border. The first objective is to 

map and analyze the land cover changes of four classes over the study area and to 

determine lad conversion from 1990 – 2020 between the investigated classes. The second 

objective is to map river channel dynamics, quantify lateral river channel erosion and 

accretion, and detect the most changed areas between 1990 and 2020. To achieve the 

goals in this study, we use four Landsat images (1990, 2000, 2011, 2020) from the same 

period (May – July) to avoid seasonal changes. These analyses have been made using 

object-based classification, further discussed in the methodology section. The results can 
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be useful in practical applications where regular monitoring of river behavior is needed 

for decision making. Such information can help both local and international 

administrations resolve problems due to unresolved water-sharing policies and help make 

geopolitical decisions beneficial for both parties. Also, the results can be crucial in flood 

risk management strategies, irrigation plans, monitoring systems, etc.  

In the second part of the analyses, the same analyses were made using the GEE 

platform. Here we used two different types of classification to compare object-based 

classification methods, which have been proven to be superior over pixel-based 

classification, and pixel-based classification in the GEE platform using the suport vector 

machine classification method. Although we have used two different methods, the study's 

main aim was to evaluate the Amu Darya Dynamics. Furthermore, in the GEE platform, 

we have performed long-term image analysis (1990-2020) and seasonal analyses to 

evaluate the seasonal shift of the river in the study area.  

 

1.2. Research Questions 

          The research questions that this thesis is aiming to answer are as given below: 

➢ What is the best method for accurately identifying the Amu Darya Dynamics?     

➢ Temporal analysis to monitor the dynamics of the Amu Darya River Canal. 

➢ What are the results and effectiveness of GEE in this research?  

➢ What is the best season for monitoring Amu Darya River channel dynamics? 

 

2. THEORETICAL BASICS (BACKROUND)    

2.1. Definitions 

2.1.1. River 

A water body that flows downhill emerged by the gravity forces is called a river.  

Rivers can be different, in their shapes, areas, and depth.  Smaler water bidies than rives 

are called  stream, creek, or brook. Rivers can be active all the time through the year or 

seasonally. Seasonally rivers appear after solid rainfall.  Some of the largest rivers in the 

World can be as long as thousands of miles. The erosional power of rivers can form 

geologic wonders like the Grand Canyon. 

The source, the starting point of the river where the water begis its flow, is called 

headwater. The headwater can come from rainfall or snowmelt in the mountains, but it 
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can also bubble up from groundwater or form at the edge of a lake or large pond. The 

other end of a river is called mouth, the place where water empties into a larger body of 

water, such as a lake or ocean. Along the way, rivers may pass through wetlands where 

plants slow down the water and filter out pollutants (http-1). 

In total, there are around 165 significant rivers in the world. These great rivers are 

long and wide enough to be categorized as major rivers, and they carry large amounts of 

water daily. They have tributaries and serve as a source of fresh water for billions of 

people. There are thousands of smaller rivers, but it is difficult to estimate the total 

number of small and major rivers in the world. The Amazon, the Nile, and the Yangtze 

rivers are the world's major rivers. With a length of 6,516 kilometers, the Amazon River 

is the world's biggest river by volume of water. The Nile is the world's longest river, 

measuring 6,695 kilometers. The Mississippi-Missouri River System is the largest river 

system in the United States.  

Lakes, springs, marshes, and glaciers are the sources of most rivers. They flow 

towards the sea, where their waters are emptied. There are, however, a few inland rivers 

known as virgin rivers with inland source and mouth. Inland rivers include the Amu Darya 

and the Syr Darya. The cradles of civilization are rivers. The river banks have seen the 

development of all major civilizations, including Mesopotamia, the Indus Valley, Egypt, 

and China. Rivers serve as inland rivers for transportation and hydroelectric power 

generation (http-2). 

 

2.1.2. Worldwide River Dynamics 

River channel dynamics are natural autogenic occurrences for fluvial rivers 

influenced by human alterations and climatic conditions that arise from discharge flow, 

debris and sediment transfer, channel migration, and floodplain erosion and accretion. 

Climate change, discharge amount and type of material, and hydrologic regimen 

fluctuations all influence river bank erosion and accretion, as well as channel course 

alterations. Anthropogenic development activities such as hydroelectric dam building, 

irrigation infrastructure construction along the riverbank, and land use changes, on the 

other hand, accelerate the natural geomorphologic dynamic behavior of rivers across the 

basin (Langat et al., 2019).  



 

6 

 

Sediment, drinking water, irrigation, hydroelectric power, transit, food, and 

recreation are all provided by rivers. Discharge, sediment, and water quality are the 

factors that influence the shape and function of rivers. These are linked to the watershed's 

climate, vegetation, and land use. Incision, lateral erosion, and sedimentation can all be 

caused by changes in discharge. Depending on the discharge regime, sediment load, 

hydrodynamic pressures, and floodplain characteristics, rivers produce distinct flow 

patterns such as braided and meandering (Hemmelder, Marra, Markies, & De Jong, 

2018).  

River shape evolves with changing environmental circumstances on both a 

geographical and       temporal scale owing to river bank erosion and accretion and natural 

and human inputs to the river's water flow. Channel dynamics, discharge, runoff events, 

sediment supply, and plant cover are all factors that influence river shape. Furthermore, 

human disturbances alter local variables that influence channel shifting and its response 

to changing environmental circumstances. Geologists, geomorphologists, and engineers 

have long been interested in understanding the mechanisms linked to channel shifting and 

analyzing river morphological change (Akhter et al., 2019).  

The interest in researching river basin and watershed hydrology has increased 

proportionately among geomorphologists in recent decades. During this period, 

significant progress has been achieved in understanding channel morphology and 

explaining channel shifting on a river basin's platform. Investigations of channel 

morphology are required to assess the natural and human impacts on morphometric 

parameters and channel dynamics. Because effective variations in these phenomena adapt 

to changes in the river basin, predicting channel responses is difficult. The deterministic 

model has been the focus of the majority of channel morphology research to far; 

nevertheless, the river system is of a dynamic and stochastic nature (Akhter et al., 2019). 

 

2.1.3. River Dynamics in Afghanistan 

The most politicized natural resources are freshwater resources such as lakes and 

rivers. 263 rivers in the world run through two or more nations. International basins cover 

more than 45 percent of the Earth's land surface. As the globe becomes increasingly 

water-stressed, pooled water resources can be utilized as a political tool. Furthermore, 

international rivers support more than 40% of the world's population, with roughly 25% 
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living in developing nations. Political tensions between neighboring nations are rising as 

a result of disputes and fights over shared water resources. According to a recent study, 

almost 300 treaties deal with shared water resources between countries (Yousefi et al., 

2017). 

On the other hand, Rivers are dynamic natural features, and their changing due to 

natural erosion and sedimentation processes can result in political disputes over boundary 

definitions between nations. Furthermore, because natural resources are shared, river 

borders are subject to water management disputes. The Hirmand River's shape has altered 

dramatically during the previous 60 years. This is most likely a result of changes in the 

hinterland. Several studies have shown that land use within a watershed has a major 

influence on fluvial dynamics. Changes in a catchment's upstream regions impact a river's 

hydrological, geomorphological, sedimentological, and biological functions (Yousefi et 

al., 2017). 

 

2.2. Remote Sensing and GIS 

Remote sensing is the process of gathering data about an object or phenomena 

without making direct touch with it. While remote sensing has a wide range of 

applications, it is most closely associated with Earth Science disciplines, where it is used 

to detect, monitor, and categorize things on the planet. The use of active or passively 

transmitted signals in remote sensing is based on electromagnetic radiation. Unlike active 

remote sensing, where the remote sensing sensor (aircraft or satellite) emits signals and 

subsequently detects the objects' reflections, passive remote sensing sensors sense the 

sunlight's reflection. 

A Geographic Information System (GIS) is a digital system that allow us to 

manipulate geographic data. Geographic data is acquired using remote sensing techniques 

in general, but it is stored, processed, analyzed, and visualized using GIS. Many areas 

have studied the combination of GIS with remote sensing methods during the last few 

decades (UN Environment, 2018). 
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2.2.1. Image classification 

Expert and interpreters extract thematic information from satellite pictures using 

visual interpretation. Tonal variations, texture, size, form, and context are all factors in 

visual interpretation. Despite its widespread usage for analyzing remote sensing data, 

visual analysis has the drawback of not giving quantitative information. When there is a 

large amount of data, visual analysis can only extract a small amount of information. 

Visual analysis also makes it difficult to make good use of all spectral bands. As a result, 

computer processing of remotely sensed data is required to fully use the data's ability to 

detect and quantify characteristics. Typically, land cover classes are mapped from digital 

remotely sensed data using a supervised digital image classification technique (Wu, 

2017).  

The objects are distinguished based on the reflectance/emittance fluctuation of 

their Electromagnetic (EM) radiation (Spectral signature) and other distinguishing 

characteristics. A pixel is connected with a set of values for each spectral band, i.e. a 

digital number (DN). The goal of digital classification is to give each pixel in a remote 

sensing picture a value or label. If the labeling is done for all of the pixels in the image, 

we obtain a thematic map, similar to visual interpretation. 

Spectral response patterns from various surface classes will generally have a mean 

value and a spread/variability around the mean. A number of factors like atmospheric 

scattering, topography, class mixture, illumination and view angles etc. cause this spread 

or variability within a class (Roostaei, Alavi, Nikjoo, & Valizadeh Kamran, 2012).  

Using a variety of satellite image processing methods, surveys, and field data to 

investigate the link between land cover change and water availability, demand, and 

consumption has proven to be highly successful in determining regional water balances. 

The categorization employed in this study, in particular, was quite accurate and accurately 

reflected the various changes in the study region over the previous 30 years. Furthermore, 

we can analyze the water balances in the Amu Darya river watershed using a mix of 

satellite and field data. Throughout the literature review, remote sensing has demonstrated 

superior performance in the investigation of land use/cover changes and the formulation 

and production of land cover change scenarios for hydrological modeling (Hafyani et al., 

2020). Flood and drought disasters can be prevented and mitigated by monitoring river 

channel dynamics, especially in developing nations. Fluvial river channel dynamics 

research provides a firm grip on the reasons for and size of erosion and accretion episodes, 
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which is essential for river behavior management and planning. As modern-day river 

development planning and project assessment requirements, efficient and cost-effective 

scientific methods and methodologies for geomorphodynamic mapping and monitoring 

are critical. Techniques and tools for geospatial analysis because of their capacity to cover 

spatiotemporal elements utilizing synoptic, RS and GIS have recently become 

geomorphology tools for change detection in rivers and their floodplain dynamics at the 

strategic scale. Various RS and GIS approaches are utilized to get insight into the river 

channel vulnerability as well as a better knowledge of the river reach's temporal and 

spatial channel alterations and dynamics (Langat et al., 2019).  

River morphological dynamics are natural autogenic occurrences caused by 

discharge flow mechanisms, debris and sediment movement, channel migration, and 

floodplain erosion and accretion in fluvial rivers. Climate change, discharge amount and 

type of sediment, and hydrologic regimen fluctuations all play a role in riverbank erosion, 

accretion, and channel course changes. Anthropogenic development activities such as 

hydroelectric dam building, irrigation infrastructure construction along the riverbank, and 

land use changes, on the other hand, accelerate the natural geomorphologic dynamic 

behavior of rivers across the basin. Human alterations have grown more powerful than 

natural factors such as floods and droughts, posing a danger to autogenic river channel 

dynamics, resulting in significant channel deterioration, disruption of sediment supply 

and water routes, and river provisioning services (Langat et al., 2019). 

 

2.2.2. Object-based classification 

One of the most common methods to obtain land-cover information from satellite 

images is remote sensing image classification. Image classification converts the data into 

meaningful information. Depending on the supervision, classifications can be supervised 

and unsupervised, while depending on the data type, two different classification types can 

be distinguished: pixel and object-based classification. The pixel-based classification has 

been widely used since the revolution of remote sensing in the 1980s. Pixel-based 

classification uses multi-spectral classification techniques that assign similar pixel in the 

same class (Yan, Mas, Maathuis, Xiangmin, & Van Dijk, 2006).  

Object-based classification, as opposed to pixel-based classification, classifies 

images based on objects rather than pixels. Although this approach was first presented in 
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the 1970s, it was only a decade ago used in remote sensing (Makinde, Salami, Olaleye, 

& Okewusi, 2016). This approach has been effectively implemented in middle-resolution 

images, despite being often employed for high and very high-resolution imaging. Object-

based image classification is superior than the classic pixel-based classification approach 

in numerous studies (G. Kaplan & Avdan, 2017),(Esetlili et al., 2018). In order to classify 

the land cover in the study area, object-based image analysis (OBIA) was used in this 

paper. The OBIA was performed in eCognition software. The first and most meaningful 

step of object based classification is the segmentation, in which the pixels are grouped as 

objects, or segments. The multiresolution segmentation has been successfully used in 

segmenting middle-resolution satellite images, like Landsat (Benz, Hofmann, Willhauck, 

Lingenfelder, & Heynen, 2004). The objects are then formed based on the given criteria 

(Yan et al., 2006). Furthermore, the land cover was classified into four different classes: 

Water, Cropland, Bare Land, and Wetland. Using the land cover maps, a land conversion 

analysis of the study area have been made, calculating the changes and shifts from one 

class to another. In the second part, using only the water class, river channel analysis has 

been made, thus calculating the erosion and accretion amount and determining the river 

bank's shift on both left and right side of the river (Figure 4.1). For the accuracy 

assessment, 400 random points have been used, and the overall accuracy and kappa 

statistics were calculated. 

Landsat satellite images from 1990, 2000, 2011, and 2020 were used to examine 

land-use change dynamics along the Amu Darya River during the last 30 years. Beginning 

with the most recent year, these years were chosen to identify probable quick and lengthy 

changes. The availability of cloud-free pictures for the Amu Darya river was also taken 

into account. The pictures were obtained from the earth explorer of the United States 

Geological Survey (USGS, https://earthexplorer.usgs.gov/). Four satellite pictures with a 

path/row of 154 / 034 were collected for the selected years to cover the whole research 

region. ENVI 5.3 was used to process, classify, and analyze Landsat pictures. Pre-

processing of pictures, land-use categorization, accuracy evaluation, and land-use change 

detection were all part of the digital satellite image analysis from 1990 to 2020 (Tadese 

et al., 2020).  

In this study, land cover was classified into four different classes: Water, 

Cropland, Bare Land, and Wetland. Using the land cover maps, a land conversion analysis 

of the study area have been made, calculating the changes and shifts from one class to 
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anotherand Using the chart below (Figure 2.1), we performed the steps and methods of 

the study. 

 

Figure 2.1. Methodology used in this study 

 

2.2.3. Remote Sensing and GIS for River mapping and monitoring 

Natural water resources on the earth's surface include river and stream networks 

with higher geological importance. The rivers exhibit enormous spatiotemporal 

differences in their shapes and sizes, as well as dynamism. Variability in natural and 

human activity causes continual changes on the earth's surface. These modifications result 

in a cut, carry, and deposit of materials from the ground surface as a result of these 

operations. One of the outcomes of these activities is a change in the base stream and the 

shape of rivers as a result of river erosion and accretion (Aher, Bairagi, Deshmukh, & 

Gaikwad, 2012). Climate change has a greater impact on river bank erosion and accretion 

and channel course alterations.. River bank erosion and accretion, and channel course 
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changes are more related to climate change, discharge quantity and type of sediment, and 

variations of hydrologic regimen (Langat et al., 2019). 

The assessment of the rate of river erosion known as the change in the form and 

shape of the river has become crucial. Remote sensing (RS) and Geographic Information 

System (GIS) which are now-a-days used very commonly for spatiotemporal assessment 

of the different Topographical, Geomorphical, Geological change. Satellite data can 

deliver comprehensive, synoptic sight of equitably huge area at regular intervals by using 

RS. RS and GIS are suitable and idyllic for analyzing and monitoring river bank change 

or erosion and accretion rate. 

Also, by integration of RS and GIS changes of channel configuration and the 

orientations between the river channel and its embankments can be determined. Using the 

RS and GIS technology, river profiles at a definite time frame are developed and the rate 

of erosion and accretion is computed and the use of temporal satellite images to express 

the dynamics move. The rate of erosion and accretion is computed but also the use of 

temporal satellite images can express the dynamics move ofa definite time frame are 

developed. The rate of erosion and accretion is computed but also the use of temporal 

satellite images can express the dynamic movement of the river and its floodplain. Also,, 

multi-temporal satellite images help predict how the mobility of the river will continue or 

restore stability which kind of actions will be preferable. The study is undertaken due to 

the availability of remotely sensed databases and benefit of remotely sensed data like 

large view, multi-temporal etc (Aher et al., 2012).  

Soil is a natural resource that plays an important role in the environment, society, 

and economy. The absence of precise information on the regions impacted by soil erosion 

and its size is a constraint of the aforementioned efforts. Most of these efforts, for 

example, are limited to traditional approaches like the Revised Universal Soil Loss 

Equation (RUSLE), and conservation initiatives are also regarded a failure because 

populations in impacted regions lack a feeling of ownership. The ability to measure and 

monitor soil erosion at local, national, and regional scales has considerably improved 

because to the use of aerial photos and satellite data. 

Traditional erosion modeling approaches use manual identification of erosional 

levels using air pictures and field work measurements. The main disadvantage of these 

techniques is that they are time-consuming and expensive and confined to specialist 

knowledge. In conjunction with GIS, RS offers crucial information on erosional dynamics 
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and intensity over time and location, which is essential for soil erosion evaluation, 

management, and prediction. According to the literature, one of the most severe 

worldwide environmental concerns is soil erosion, including water and wind erosion, 

chemical degradation, excessive salts, physical and biological deterioration (Sarath, 

Saran, & Ramana, 2018). Although geomorphologic processes can induce soil erosion, 

rapid soil erosion is favored mainly by human activities. Rapid population expansion, 

deforestation, inappropriate land agriculture, unregulated, and overgrazing have all 

contributed to increased soil erosion globally, particularly in emerging nations (Gelagay 

& Minale, 2016). Numerous investigations conducted to date using satellite technology 

have verified this (Sarath et al., 2018). 

A coastline is a physical boundary between land and sea. The charting of coasts, 

which allows observation of how they have evolved across different periods, is one 

approach to discover changes in wetland habitats. This is because knowing the coastline's 

location is essential for assessing and describing land and coastal water resources. Shifts 

in shoreline position are crucial for coastal zone management due to erosion and 

deposition since extremely dynamic coasts can pose significant dangers to human usage 

and development. Safe navigation, resource management, environmental protection, and 

sustainable coastal development and planning all need coastline mapping and 

measurement of position changes. In addition, the European Union's (EU) Ecosystems 

Directive has designated several coastal habitats as special protection zones. As a result, 

it's clear that updating coastal maps and monitoring movement rates would require quick, 

repeatable procedures (Petropoulos, Kalivas, Griffiths, & Dimou, 2015).  

The Earth Observation (EO) technological framework is ideally adapted for 

habitat mapping and monitoring, and it may offer data for conservation programs such as 

the European Commission's (EC) Habitats Directive. The potential of EO technology to 

give cheap, continuous, synoptic views at a range of geographical and temporal scales, 

even for inaccessible places providing data has been preserved, is one of its main 

advantages. Indeed, since satellites can offer digital images in infrared spectral regions 

where the land-water boundary may be well delineated, detecting coastal changes with 

EO data has been increasingly important in recent decades. Furthermore, EO data may be 

integrated with GIS to give a robust set of tools for evaluating and extracting spatial data, 

allowing for more consistent and trustworthy decision-making. This connection with EO 

datasets provides a fantastic foundation for data collecting, storage, synthesis 
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measurements, and analysis, all of which are critical in investigating coastal changes 

(Petropoulos et al., 2015).  

With the advancement of space technology, RS combined with GIS has become 

an efficient tool for mapping and spatial–temporal monitoring of land use change and 

providing a thorough knowledge of ecosystem function. As a result, these methods 

demonstrate a keen interest in obtaining information about the Earth's surface in both 

space and time. Several studies have been conducted throughout the world to research 

land use changes using satellite image processing technologies in various climatic 

situations. The International Geosphere-Biosphere Program (IGBP) and the International 

Human Dimension Program (IHDP) have made it a priority to understand better the link 

between biosphere aspects of the hydrological cycle (BAHC) and land use and land cover 

changes (Hafyani et al., 2020). To build maps and get information and data, researchers 

utilized RS, and GSI approaches (Chandra Paul, Saha, & Hembram, 2020). Landsat 

images from the United States Geological Survey are the study's primary data source 

(USGS). Since 1972, Landsat pictures with a temporal resolution of 16 days have given 

free up-to-date photographs across the world (Sajjad et al., 2020).  

Image processing means the study of any algorithm that takes an image as input 

and returns an image as output. It is a process of improving the quality of an image for 

analysis and manipulation. Raw remotely sensed data have found a lot of geometric as 

well as radiometric errors. The geometric and radiometric corrections are mandatory 

before using raw remotely sensed data for analysis (Roostaei et al., 2012). 

River science and management are becoming more accessible thanks to RS 

technology. Marcus and Fonstad (Bizzi, Demarchi, Grabowski, Weissteiner, & Van de 

Bund, 2016) argue that RS methods should be used more broadly in research and 

management. However, the field's steady advancement has resulted in a surprising 

diversity of applications to fluvial geomorphology. 

Many fluvial features frequently monitored for hydro morphological surveys, like 

multispectral data, have been assessed in scientific research utilizing RS technology.  Due 

to the high expense of data gathering, however, the use of RS for river characterization 

has been focused on addressing particular research issues for case studies rather than 

tackling aspects of operational implementation for large-scale applications, as Marcus 

and Fonstad argue (Bizzi et al., 2016). However, collecting RS data spanning broad 

regions (regional or national) has only just begun to attain enough spatial and spectral 
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resolution for fluvial study. The capacity to survey and define the hydro morphological 

characteristics of river systems comprehensively at various dimensions, from watershed 

to reaches, is unparalleled in Europe because to the advent of RS data availability at larger 

scales and sufficient precision. However, this abundance of data puts existing data 

analysis abilities to the test, necessitating advanced statistical modeling frameworks to be 

acceptable for river definition and management (Bizzi et al., 2016).  

The impacts of stream bank erosion on channel evolution are important 

geomorphic research topics in various scientific and technical disciplines. RS satellite 

data may give a complete, synoptic view of a relatively broad region at regular intervals 

with a short turnaround time, making it suitable and excellent for researching and 

monitoring river erosion and bank line movement. Various studies have been conducted 

in this respect for some of the world's main rivers. Several researchers have used remotely 

sensed data to determine Brahmaputra River and its tributary channel alterations. The 

National Research Service Award (NRSA) has completed a river migration study of the 

Brahmaputra River using an airborne scanner survey, as well as a series of surveys to 

monitor changes in land use, river channels, and banks in order to provide a foundation 

for estimating the river's response to flood events (M. & S., 1981). 

 

2.3. Climate and Hydrology of Amu Darya 

The Amu Darya basin's rainfall and temperature are determined mainly by terrain. 

The river basin's major source of precipitation is the mid-latitude westerlies. The 

precipitation mostly falls as snow during the winter, which helps feed the glaciers in the 

Amu Darya's source regions, at the highest elevations in the Pamirs and the Hindu Kush, 

when winter temperatures average below freezing yearly precipitation can surpass 1,015 

mm. At lower elevations, mean monthly temperatures rise and precipitation falls. The 

lowest sections of the Amu Darya get less than 100 millimetres of annual precipitation, 

with mean July temperatures exceeding 25 °C and mean January temperatures ranging 

from 0 °C to 10 °C (http-2). 

 



 

16 

 

2.4. Climate in Afghanistan  

The climate of Afghanistan is typically arid continental, with cold, wet winters 

(with a rainy peak in April) and hot, sunny summers. However, significant changes 

depend on location and height: the south is desert, many parts are chilly due to altitude, 

and the far east, which is partly impacted by the Indian monsoon, is quite wet even in 

summer. 

Precipitation is typically limited, at semi-desert or desert levels, except in the 

eastern parts, where it surpasses 500 millimeters per year in certain locations, and even 

reaches 1.000 mm in the extreme east, near the Pakistani border (Kunar and Nurestan 

provinces). During the winter, disturbances from the Mediterranean reach the country's 

center-north (and, on rare occasions, the south), bringing rain and even snow to the 

mountains. Early in the spring, when the southern Asian continent begins to warm up, the 

battle of air masses intensifies, resulting in more rainfall; in fact, March is frequently the 

wettest month. The rains lessen as the season progresses, and it rarely rains from June to 

September. Only in the easternmost region, east of Kabul, is there a little increase in 

rainfall in July and August due to the final branch of the monsoon that impacts India and 

Pakistan in (figure 2.2) (http-3). 

 

Figure 2.2. Average min and max temperatures in Kabul, Afghanistan, 2019 

 

2.5. Google Earth Engine and Remote Sensing 

Google Earth Engine (GEE) is a cloud computing platform for processing Earth 

observation data that is free and web-based (Stuhler, 2016). For decades, RS systems have 

been gathering large amounts of data, organizing and analyzing them in ways that are 

impossible to do with standard software packages and desktop computing resources. In 
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order to successfully handle the problems of big data analysis, Google has built a cloud 

computing platform dubbed GEE. This platform, in particular, makes it easier to analyze 

huge amounts of geodata over broad areas and to monitor the environment over extended 

periods (Stuhler, 2016). Although the GEE platform was released in 2010 and has 

demonstrated its tremendous potential for various applications, it has only recently been 

extensively studied and exploited for RS applications. GEE has also been used in a variety 

of applications, including LULC (Land Cover/Land Use) categorization. Despite their 

strength, these categories' somewhat poor spatial resolution might restrict their utility, 

especially at smaller scales.  Surprisingly few algorithms exist to sharpen the spatial 

resolution of moderate-resolution LULC classifications in light of finer scale imagery, 

hydrology (Tamiminia et al., 2020), LULC change is a major contributor to global 

greenhouse gas emissions and can have a wide range of indirect effects, including 

biodiversity loss and regional hydrologic change, LULC change in the tropics frequently 

occurs at small scales. Studies on LULC transformation are especially significant in 

global environmental change and sustainable development because they emphasize the 

intensity and pattern of human-earth relationships (Hazarika, Das, & Borah, 2015).  

This study is included explicitly in this context, to demonstrate GEE's current 

ability to analyze large amounts of free EO big data (for example, Landsat and Sentinel 

images) for long-term spatiotemporal monitoring and its relationship to LC changes. GEE 

is, in fact, Google's freshly launched computing platform "for petabyte-scale scientific 

(Ravanelli et al., 2018)." Natural disasters (Alam & Ray-Bennett, 2021) have catastrophic 

consequences for infrastructure, businesses, and individuals in the impacted area. More 

than 5.7 billion people were impacted by catastrophes between 1998 and 2017, with more 

than one million people died, and a total loss of 2.9 trillion dolars.  

After the initial post-disaster reaction phase, which mostly consists of search and 

rescue activities, recovery begins. According to the Sendai Framework (Ghaffarian, 

Farhadabad, & Kerle, 2020), climate variability and change acting at broad scales can 

lead to divergent changes in plant production at local scales (Ghaffarian et al., 2020). 

Post-disaster recovery is the process of reconstructing communities in all aspects (for 

example, physical, economic, social, and environmental) to return life, livelihoods, and 

the built environment to their pre-impact, or even better, states (Bunting, Munson, & 

Bradford, 2019).  
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Quantifying how production responds to climate change at local scales is critical 

for understanding underlying ecological processes and informing land management 

decisions. However, it has traditionally been limited in spatiotemporal scale by using 

discrete ground-based measurements or coarse resolution satellite observations. 

Production responses to climate may now be assessed across large landscapes overtime 

at a resolution appropriate for ecological and land management applications, as well as 

image processing, thanks to the introduction of cloud-based computing through GEE. It 

is predicted that more consumers from various areas would adopt GEE to tackle their 

large data processing problems (Amani et al., 2020). GEE takes advantage of Google's 

computing resources as well as publicly accessible RS datasets (Gorelick et al., 2017). 

GEE is the most widely used big geodata processing platform, assisting scientists in their 

research by offering free access to many remotely sensed datasets. GEE is accessible 

through a web-based Application Programming Interface (API) and an Interactive 

Development Environment (IDE). 

Furthermore, users do not need to be familiar with web programming or the Hyper 

Text Markup Language to utilize GEE for various applications. GEE offers characteristics 

such as automated parallel processing and a fast computing platform (Amani et al., 2020). 

GEE has recently been in the limelight when it comes to large data processing for remote 

sensing. GEE is a cloud-based technology that makes use of Google's cloud to enable 

worldwide parallel geospatial data processing. GEE is a free cloud platform that stores 

petabyte amounts of remotely sensed data from the National Oceanographic and 

Atmospheric Administration's Advanced Very High Resolution Radiometer Sentinel 1, 

2, 3, and 5-P, as well as data from the Advanced Land Observing Satellite (ALOS) 

(Tamiminia et al., 2020). A more complete study of the GEE platform is required to 

explore many elements of the platform. 
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3. MATERIALS AND METHODS 

3.1. Study Area 

The Amu Darya, also known as the Oxus River in ancient times, is one of Central 

Asia's longest rivers. From Greek and Roman times, the Amu Darya was known as the 

Oxus in the Western world, and the Arabs named it the Jayn. Its current name is claimed 

to be derived from the city of Amul in Turkmenistan, which is said to have formerly been 

where modern-day Türkmenabat (previously Chärjew) now stands. Although the Amu 

Darya was well-known in antiquity, until the time of Peter I the Great, Tsar of Russia, the 

river got little attention in Europe. Although the first reasonably accurate map of the river 

was created in 1734, organized research in the region did not begin until the late 

nineteenth century. 

The Amu Darya is a west-northwest flowing river created by the confluence of 

the Vakhsh and Panj (Pyandzh) rivers (at which point it is known as the Amu Darya). The 

Amu Darya forms part of Afghanistan's northern border with Tajikistan, Uzbekistan, and 

Turkmenistan along its upper course. It then runs across eastern Turkmenistan's desert, 

forming part of the border between Uzbekistan to the northeast and Turkmenistan to the 

southwest in its lower course (Figure 3.1). The Amu Darya is 1,415 kilometers long, but 

when measured from the headwaters of its headstream, the Panj River in the Pamirs, it is 

2,540 kilometers long. The Amu Darya used to flow into the Aral Sea. However, in the 

twentieth and twenty-first centuries, water diversion for agriculture led to the Aral Sea's 

shrinkage and assured that the river no longer reaches its original terminal. The Amu 

Darya is joined by three more tributaries not far below the Panj-Vakhsh junction: the 

Qonduz River on the left (south) and the Kofarnihon (Kafirnigan) and Surkhan rivers on 

the right (north). After leaving the highlands, the river turns northwest to pass the dry 

Turan Plain, where it forms the border between the Karakum and Kyzylkum deserts to 

the southwest and northeast, respectively. In this location, the Amu Darya loses much 

water due to irrigation, evaporation, and seepage. The basin of the Amu Darya stretches 

for 950 kilometers north to south and more than 1,450 kilometers east to west. It is 

bordered on the north by the Syr Darya basin, east by the Tarim Basin, and south by the 

Indus and Helmand river basins. Only half of the basin's entire size of 465,000 square 

kilometers is contained within its source region, the Pamir and Hindu Kush mountain 

ranges to the east. The water of the Amu Darya is changeable according to the seasons of 
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the year and also its surface rises in the rainy and wet seasons and its surface returns to 

normal in the non-rainy and wet seasons, the images of which are shown in (figure 3.1). 

 

Figure 3.1. Location of the study area 
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Image 3.1. Amu Darya, April 2021 (http-4) 

 

Pictures of the current state of the Amu Darya from its various parts, taken in May 

2021 by my friend Ali Reza Danesh, are shown in (image 3.2). It is also shown in (image 

3.1) of the state of the Amu Desert. 

The Syr Darya and Amu Darya river basins have a complex dams and reservoirs 

that are primarily utilized for winter water storage and summer release for irrigation and 

electricity generation. According to the World Bank, the Aral Sea Basin has around 80 

water reservoirs, 45 hydroelectric facilities, and 57 major dams. Tajikistan (with the third 

biggest hydroelectric resource in the former Soviet Union) and Kyrgyzstan are the two 

countries with the most. The Amu Darya and Syr Darya have potential hydropower 

resources of 306 and 162 billion kilowatt hours. The region's hydroelectric resources have 

a total commercial potential of 127 billion kilowatt hours, with Tajikistan having 80 

billion kilowatt hours, Kyrgyzstan 37 billion kilowatt hours, and Uzbekistan 10 billion 

kilowatt hours. 
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Image 3.2. Flooded parts around Amu Darya (Ali Reza Danish, May, 2021) 

 

 

Image 3.3. Da mages aroud Amu Darya 
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Some natural elements such as geography, hydrography, hydrology, climate, 

ecology, etc.; 

• The social and economic requirements of the watercourse states. 

• The population that is reliant on water resources; the impacts of water 

consumption on other states; current and future uses 

• Water resource conservation, protection, development, and efficiency and the 

availability of alternatives to a planned or existing usage. 

• Other elements of the 1997 United Nations Convention on International 

Watercourses that are particularly relevant to the Aral Sea Basin States include 

the responsibility not to cause serious harm to other watercourse States and the 

general obligation to cooperate (through joint mechanisms or commissions) 

• To regularly share information and offer early notification of planned actions 

and emergency situations that might substantially negatively impact other 

watercourse states (Farzaneh & Mohammadi, 2011).  

 

3.2. Materials 

3.2.1. Satellite imagery 

3.2.2. Landsat 

In order to estimate the land cover changes and the river dynamics in the study 

are, three Landsat TM and one Landsat Operational Land Imager (OLI) satellite images 

from four different years (1990, 2000, 2011, and 2020), in the period between the end of 

May till the middle of July, have been used. These periods were cloud-free, enabling us 

to perform the needed analyses. Also, the date selection was made according to the 

meteorological data. May to July is the driest period after a wet period in March when the 

flood is most likely to occur. In 2010, there was no cloud-free imagery, and 2011 was 

selected instead. Details about the used satellite images can be found in Table 3.1. All of 

the scenes were level-1 open-access data sets downloaded from the USGS webpage. The 

satellite images were then pre-processed, applying atmospheric and geometric correction. 

Landsat images of 30 × 30 m spatial resolution were used to assess the Amu Darya 

river dynamics and monitor the spatial and temporal changes. Three snow and cloud-free 

scenes of Landsat-5 Thematic Mapper for 1990, 2000 and 2010, and one scene of 
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Landsat-8 OLI for 2020 from the month of June and July were acquired from the USGS 

website (http-5), Properties of the images used in examining the changes. 

 

Table 3.1. Landsat satallite features of images used 

No Sensor 
Senor 

type 

Image download 

date 

Spatial 

Resolution 

(m) 

Date and 

path/Row 

Spectral 

Resolution (μm) 

1 Landsat TM 22/05/1990 30 m 154/034 7 Bant 

2 Landsat TM 17/05/2000 30 m 154/024 7 Bant 

3 Landsat TM 19/07/2011 30 m 154/04 7 Bant 

 

Table 3.2. Features of satellite imagery used 

Sensor Date ve Path/Row Spectral Resolution (μm) Spatial Resolution (m) 

 

Landsat 5 

Thematic 

Mapper(TM) 

22/05/1990 

 

 

17/05/2000 

 

 

19/07/2011 

Band 1 0.45-0.52 

Band 2  0.52-0.60 

Band 3  0.63-0.69 

Band 4  0.76-0.90 

Band 5  1.55-0.75 

Band 6  10.4-12.5 

Band 7  2.08-2.35 

30 

30 

30 

30 

30 

120 

30 

Landsat 8     

Operational 

Land Imager 

(OLI) 

 

 

 

 

07/06/2020 

Band 1  0.435-0.451 

Band 2  0.452-0.512 

Band 3  0.533-0.590 

Band 4  0.636-0.673 

Band 5  0.851-0.879 

Band 6  1.566-1.651 

Band 7  2.107-2.294 

Band 10  10.60-11.19 

Band 11  11.50-12.51 

 

30 

30 

30 

30 

30 

30 

30 

100 

100 

 

 

3.2.3. Sentinel – 2 

For the seasonal variations in 2020, we obtained image pre-processed and cloud-

free optical Sentinel-2 photos from GEE. Sentinel-2 uses 13 spectral bands to detect the 

electromagnetic spectrum, spanning from visible to short-wave infrared (SWIR). The 

satellite's visible and near-infrared (NIR) bands have a spatial resolution of 10 meters, 

while the red-edge and SWIR bands have a spatial resolution of 20 meters. Other bands 

with a spatial resolution of 60 m are utilized to detect water vapor, cirrus clouds, and 

coastal aerosols (Brombacher, Reiche, Dijksma, & Teuling, 2020).  
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Sentinel-2 (S-2) is a polar-orbiting optical mission for land and coastal region 

surveillance and emergency services, with a wider spectral range and better performance 

than earlier comparable imaging missions like SPOT and Landsat (Drusch et al., 2012). 

The Sentinel-2 mission is responsible for monitoring agriculture, forestry, land-use and 

land-cover change, mapping biophysical variables such as leaf chlorophyll content, leaf 

water content, leaf area index, and risk and disaster mapping. The Sentinel-2 mission 

comprises two satellites, Sentinel-2A and Sentinel-2B, each having an optical imaging 

sensor called MSI (Multi-Spectral Instrument). The MSI is designed to measure reflected 

radiation in 13 spectral bands ranging from Visible and Near Infrared (VNIR) to Short 

Wave Infrared (SWIR) (Figure 3.2). On June 23rd, 2015, Sentinel-2A was launched, 

followed by Sentinel-2B on March 7th, 2017. With the start of the operational phase (June 

16th, 2017), the constellation of both satellites allows for picture acquisition over the 

same area every 5 days or fewer, with a descending node at 10:30 a.m. (Main-Knorn et 

al., 2017). 

 

Figure 3.2. MSIspatial resolution (Main-Knorn et al., 2017) 

 

The end-to-end Sentinel-2 system are divided into two parts: 

The space segment will include the two orbiting satellites and their payload 

sensor, and the ground section. The ground segment is responsible for data gathering from 

the space segment, data processing, archiving, distribution, and overall mission control 

(Drusch et al., 2012).  
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Frequent five-day revisits around the equator necessitate the use of two identical 

Sentinel-2 satellites operating simultaneously. The orbit is Sun-synchronous, with a 

descending node at 10:30 a.m. and a 786 km height (14+3/10 rotations per day). This 

local time was chosen as the optimum compromise between cloud reduction and adequate 

solar light. It is near to the Landsat local overpass time and matches SPOT's, allowing 

long-term time series to be built using Sentinel2 data and historical pictures. (Brombacher 

et al., 2020), (http-6), (http- 7). 

 

3.3. GEE 

In the second part of the study, the GEE platform has been used for long-term and 

sesonal changes classification. For the long term, smilar to the OBIA, in GGE we have 

used Landsat imagery, while for the seasonal changes we have used sentinel-2 imagery 

taking into consideration its higher spectral and spatial resolution. In the next section, we 

give overview of the GEE platform and the steps of the classification done in this study. 

3.3.1. GEE platform overview 

GEE is mainly composed of the following three platforms:  

i. Earth Engine (EE) Explorer; 

ii. EE Code Editor;  

iii. EE Timelapse.  

The details of each platform are discussed in the following sections.  

EE Explorer is a data viewer tool that allows users to browse the EE Data Catalog's 

vast datasets. Millions of publicly available datasets are included in the Data Catalog, 

including the whole Landsat, MODIS, and Sentinel imaging collection and many 

atmospheric, meteorological, and vector datasets. Every day, the Data Catalog receives 

over 4000 new datasets. The Workspace and the DataCatalog constitute the EE Explorer. 

Users may search through huge datasets in the Data Catalog and import them into the 

workspace. Users may manipulate and visualize datasets in the workspace. The 

Workspace also allows users to examine, magnify, and pan their data quickly. 

It also allows users to control factors relating to visuals, such as contrast, 

brightness, and opacity levels. Users can add additional levels to the Workspace to better 

evaluate any changes over time. Users can choose between a three-band RGB 
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representation or a single-band grayscale/pseudocolor representation for the layers 

(Amani et al., 2020). 

 

Figure 3.3. Earth engine explorer; platform 

 

 

Figure 3.4. Earth engine explorer; eata catalog 

 

3.3.2. EE code editor 

While the EE Explorer platform is meant to display datasets, the EECode Editor 

is designed to analyze large data and create EE applications using the JavaScript 

programming language. The EE Code Editor is made up of various parts, as shown in 
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Figure 3.4: a code editor, a map, a layer manager, geometry tools, and several tabs, 

including Script, Doc, Assets, Inspector, Console, and Tasks. 

 

Figure 3.5. Overview of the Earth Engine Code Editor 

 

The central panel allows users to write their JavaScript code. GEE processes the 

written codes and illustrates the results as images in the Map panel or as messages in the 

Console Tab. Similar to the EE Explorer, users can set the visualization parameters via 

the Layer manager in the Code Editor. In the Script tab, numerous examples of scripts 

facilitate devel- oping applications. There are more than 800 prebuilt functions in the EE 

library, users can become familiar with them using the Doc tab, providing API reference 

documentation (Amani et al., 2020). 

As previously mentioned, GEE includes big open-access datasets. Users, 

however, are not restricted to use only these datasets. They can upload and manage their 

own data using the Asset Asset tab. It is also possible to interactively query the map using 

the Inspector tab. Finally, the Geometry tools allow users to draw geometric features, 

such as points, lines, and polygons, which can be used in further analyses (Amani et al., 

2020). 
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3.3.3. EE time-lapse GEE 

GEE's Time-laps platform (Amani et al., 2020) integrates petabytes of RS 

information over four decades to generate a worldwide, zoomable, and cloud-free movie 

spanning place and time. The GEE platform's enormous computing capability is 

demonstrated via the Timelapse platform. This platform offers the most comprehensive 

view of the planet, exposing how its inhabitants treat it. For example, with GEE Time-

lapse, one can readily witness the rapid retreat of the Mendenhall Glacier in Alaska, the 

mining industry's decapitation of the West Virginia Mountains, forest destruction in the 

Amazon, and the drying of the Urmia Lake in Iran over time. 

 

3.3.4. GEE datasets  

Earth Engine comprises a multi-petabyte data catalog that is ready for analysis, as 

well as a high-performance, inherently parallel compute service. It is managed and 

accessed via a web-based interactive development environment (IDE) and an Internet-

accessible application programming interface (API) that allows for quick prototyping and 

display of outcomes (Gorelick et al., 2017). 

For interactive data and algorithm exploration and processing, GEE provides a 

somewhat user-friendly front-end solution. The access is granted only after the 

development team has approved the type of possible usage and the user's background. 

Academics, researchers, hobbyists, and remote sensing experts will benefit from the GEE 

(Vasku Marek, 2019). 

The EarthEngine with Code Editor can be called via: (http-12). A detailed guide 

to the Code Editor can be found here: (http-8) (Stuhler, 2016). 

Landsat datasets are valuable resources to perform temporal analysis. Landsat 

collection includes seven multispec- tral satellites: Landsat 1–3 (1972–1983), Landsat-4 

(1982– 1993), Landsat-5 (1984–2012), Landsat-7 (1999–present), and Landsat-8 (2013 

present). Landsat satellites have optical sensors, the images ofwhich may be obscured by 

clouds. Therefore, temporal cloud detecting, masking, and removing are essential 

preprocessing steps in different applications, such as image clas- sifications using 

multitemporal imagery. Additionally, the availability of the multitemporal Landsat 

datasets has facilitated national and global scale analysis (Mateo-García, Gómez-Chova, 

Amorós-López, Muñoz-Marí, & Camps-Valls, 2018). Landsat-based datasets within 
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GEE have been employed in various applications. For in- stance, Landsat data available 

in GEE have been widely utilized in generating Land Cover/Land Use (LCLU) maps. 

Moreover, urban detection and extraction is an impor- tant task in the economic 

investigation due to rapid population growth. Therefore, several studies have utilized 

Landsat data in river monitoring (Ravanelli et al., 2018). 

 

3.3.5. GEE classification 

To classify the study area into four classes: Water, Bare Land, Cropland, and 

Wetland, image collections from Landsat – 5 (1990, 2000, and 2010), Landsat – 8 (2020), 

in the cloud computing platform, GEE has been used. The image collections were filtered 

by date and images from June and July were used in further processing. The obtained 

images were reduced to a single image to get cloud-free imagery, calculating their median 

values. Six Landsat bands (Blue, Green, Red, Near Infrared, ShorthWave Infrared-1, 

ShorthWave Infrared-2), were used to classify. In addition to the mentioned bands, two 

spectral indices calculated from Landsat data were added to the investigation; Normalized 

Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), 

Modified Normalized Difference Water Index (MNDWI). Details and equations of the 

indices are given in the table below. NDWI, MNDWI,  and NDVI are commonly 

suggested in the literature for water detection (Kordelas, Manakos, Aragonés, Díaz-

Delgado, & Bustamante, 2018). The MNDWI ranges between -1 and 1, with high values 

corresponding to water and low values to land. The MNDWI is calculated using Sentinel-

2’s green (Band 3 at 559.8 nm) and short-wave infrared (SWIR) bands (Band 11 at 1613.7 

nm) (Brombacher et al., 2020).  

 

Table 3.3. Spectral indices used in the classification 

 Index Used Bands Equation  

1 NDVI Red, NIR NIR – Red / NIR + Red 

2 NDWI Green, NIR Green – NIR / Green + NIR 

3 MNDWI Green, SWIR Green – SWIR / Green + SWIR 

 

The NDWI ranges between -1 and 1, with high values corresponding to water 

and low values to land. The NDWI is calculated using Sentinel-2’s green (Band 4 at 
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664.6 nm) and NIR bands (Band 8 at 832.8 nm). The NDVI ranges between -1 and 1, 

with high values corresponding to vegetation and low values to land. The NDVI is 

calculated using Sentinel-2’s green (Band 8 at 832.8 nm) and Red bands (Band 4 at 

664.6 nm). 

For the four classifications, the same samples have been used. Thus, the samples 

were carefully selected from the unchanged land covers over the years. The sample 

training was done over the Landsat data, with validation over high-resolution imagery 

from Google Earth. The classification was performed using a LIBSVM classifier. 50% of 

the samples were used in the classification, while 30% were used for the accuracy 

assessment where overall accuracy and kappa statistics were calculated for every year. 

The same methodology has been used for the seasonal analysis. Details about the used 

methodology are given in the flowchart in Figure 3.6. 

 

3.3.6. Support vector machines (SVM) 

Support Vector Machine (SVM) has been a prominent supervised machine 

learning (ML) technique for classification and regression in recent decades (http-10). The 

perpendicular distance or margin between decision planes (designated as decision border) 

and data points is crucial to SVM. As a decision boundary, the most significant margin 

has been chosen. The objects are divided based on this distance or margin, with distinct 

class memberships (Heenan et al., 2015). The position of the border is determined by a 

subset of data known as the support vector (Bar, Parida, & Pandey, 2020). The most 

widely used Mapping and Monitoring Amu Darya River Dynamics of SVM were used to 

categorize the river mapping in this study. 
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Figure 3.6. Flowchart of the GEE classification 

 

3.3.7. GEE code 

After the study area has been selected, it has been added as a Geometry in the 

GEE platform. Furthermore, the four classes, Water, Cropland, Bare land, and Wetland 

have been distinguished in the study area. Using Landsat for the yearly, and Sentinel-2 

for the seasonal analyses, 30 sample points for each class have been selected. Then, image 
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collections have been selected and processed. The image collections have been clipped 

according to the study area, date, cloud cover, and the same bands have been used for 

Landsat – 5 and Landsat – 8 for the yearly analysis. In Figure 3.7 a sample of the GEE 

code for image collection has been given. 

 

Figure 3.7. GEE code sample for image collection 

 

Three different vegetaion indices have been added to the dataset. A code sample 

for the index calcualtion using Landsat – 8 is given in Figure 3.8. 

 

Figure 3.8. Index calcuation in GEE 

 

After stacking the Landsat bands and the calucated indices, the model has been 

trained using the samplings for each class. Sample of the code for the classifier and the 

classification has been given in Figure 3.9. 

 

Figure 3.9. Classification in GEE 
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The accuracy assessment of the classification has been done using 50% of the 

collected samples. Thus, 50% of the samples were used for classification, while 50% were 

used for testing the developed model. Sample of the accuracy assessment code is given 

in Figure 3.10. 

 

Figure 3.10. Accuracy assessment in GEE 

 

Afterwards, the results have been exported and analyzed in a GIS software 

(ArcGIS) where spatial analyses for land conversion have been made.   
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4. RESULTS 

The results from the analyses are presented in three different parts; 

i. First, the results of the object-based long-term (1990-2020) classification 

have been presented. The findings of the research have been published in 

the “Moving Borders: Mapping and Monitoring Amu Darya River 

Dynamics Using Remote Sensing Data and Techniques” research paper, 

published in the Geodetski List journal. Also, part of the thesis has been 

complied as a book chapter in the book “Environmental Degradation in 

Asia: Land Degradation, Environmental Contamination, and Human 

Activities” (to be published). 

ii. The long-term (1990-2020) GEE classification results have been presented 

in the second part of the results section. The findings of the research have 

been presented at the “5th International Electronic Conference on Water 

Sciences”, titled “Monitoring Amu Darya river channel dynamics using 

remote sensing data in Google Earth Engine”.  

iii. The results of the seasonal analyses have been presented in the third part 

of the results section.  

 

4.1. Obcect-Based Classification Results 

The land cover classification of the object-based results were mapped and 

analyzed. The overall accuracy of the classification is 85%. For the accuracy assessment, 

400 random points have been used. As a reference data, the Landsat images were used, 

complied with high-resolution imagery from Google Earth from the same season and year 

as the classified images. The acceptable critical accuracy value in classification with 

middle-resolution satellite imagery is 75%, which means that the results of the 

classification in this paper are acceptable (Barakat, Ouargaf, Khellouk, El Jazouli, & 

Touhami, 2019). The total area of the study area is approximately 8,720 km2. The results 

reviled that, of the total area, in 1990, 76.8% (6,700 km2) was occupied by bare land, 

16.8% (1,470 km2) was occupied by croplands, 2.2% by water, and 4% by wetland areas. 

In the year of 2000, the land cover has changed as follows, 76% bare land, 17% cropland, 

2.6% water, and 4.3% wetland areas. In 2011, there was significant changes in the land 

cover, where the bare land area dropped to 71.7%, the cropland area increased to 22.6%, 
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2.4% was covered by water, and 3% by wetlands. The area cover with water was lowest 

in 2020 with 1.9%. The land conversion between the classes can be seen in Figure 4.1 

and Figure 4.2. From Figure 4.2 it can be clearly seen that there is a constant transition 

between the classes water, wetland, and cropland, where the areas covered with bare land 

are usually stable. The biggest transition between land cover classes can be noticed 

between water and wetland classes. Also, it should be noticed that more than 30% of the 

water areas changed in the investigated periods. In the period between 1990 – 2020, more 

than 50% of the wetland areas transited to cropland (approximately 30%), and water and 

bare land (10%). 

 

Figure 4.1. Land cover classification results for: a) 1990, b) 2000, c) 2011, d) 2020 
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Figure 4.2. Land conversion between: a) 1990 – 2000, b) 2000 – 2011, c) 2011 – 2020, d) 1990 – 

2020 

 

Table 4.1. Confusion matrix for the land cover classification 

Class Bare Land Cropland Wetland Water Total 

Bare Land 247 33 2 1 283 

Cropland 13 59 4 0 76 

Wetland 1 3 19 0 23 

Water 1 1 2 14 18 

Total 262 96 27 15 400 

AA OA = 85%; kappa = 0.75   

 

4.2. Spatial and Temporal River Channel Changes and Dynamics 

The historical river channel changes are shown in Figure 5.1 (a–c) in three 

different periods from 1990 – 2020. The blue color represents the active river channel in 

both years, with yellow color are represented the eroded areas, while with red color are 

illustrated the accretions. From the results, it can be noticed that very small part of the 

channel remained unchanged in the last thirty years. Comparing each period individually, 

and thirty years’ changes, during the first period, 1990 – 2000, the overall erosion and 

accretion areas are 4,878.1 ha and 8,377.4 ha, respectively. The second period, 2000 – 

2011, showed different results, where the accretion area was bigger than the eroded area. 

The overall accretion and erosion areas in this period are 8,257.9 ha and 6,415.8 ha, 

respectively. 
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Table 4.2. Erosion-accretion amount from 1990 – 2020 in the study area 

Duration 

Erosion Accretion 

Total (ha) (%) Total (ha) (%) 

1990 – 2000 (10 years) 4,878.1 24.9 8,377.4 42.8 

2000 – 2011 (11 years) 8,257.9 35.8 6,415.8 27.8 

2011 – 2020 (9 years) 7,692.4 36.2 5,069.5 23.9 

1990 – 2020 (30 years) 9,775.6 52.5 8,810.0 47.3 

 

Similar were the results from the second period where the overall erosion and 

accretion were 7,692.4 ha and 5,069.5 ha, respectively. The comparison between the first 

(1990) and last investigated year (2020), with duration of thirty years, showed overall 

erosion and accretion of 9,775.6 ha and 8,810.0 ha, respectively. The details are presented 

in Table 4.2. 

 

Figure 4.3. Water loss and water gain in Amu Darya river for three periods (1990 – 2020) 
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The shifting of the channel line from 1990 to 2020 on both sides of the river was 

measured through 7 cross-sections at an interval of 10 km along the river and the results 

are presented in. The analysis showed that the highest amount of erosion of land observed 

on the both sides of the bank occurred in section F (right bank, 1.4 km) in the period of 

1990 – 2000. From it can be seen that the maximum amount of accretion of land was 

noticed in the left bank along section G (1.3 km) in the period of 1990 – 2000. 

 

Figure 4.4. River border shifting from 1990 – 2020 

 

Table 4.3. River border shifting 1990 – 2020 in m. Minus sign (–) indicates narrowing (from north to 

south) and plus sign (+) indicates expanding (from south to north) 

Section 

1990 - 2000 2000 - 2011 2011 - 2020 1990 - 2020 

Left 

bank 

Right 

bank 

Left 

bank 

Right 

bank 

Left 

bank 

Right 

bank 

Left 

bank 

Right 

bank 

A +120 +300 +100 +90 +240 +55 +420 –1023 

B +61 0 - 301 -170 0 +240 +360 0 

C -210 0 180 0 -510 0 520 0 

D +95 0 -63 +60 0 -30 –60 0 

E +420 -450 +730 -660 +150 -390 +1320 –1170 

F +780 -1410 +300 +60 +330 0 +1440 0 

G +1320 -1050 +90 +130 +360 -1140 +420 –930 
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If the first and the last period of the investigation over the study area is analyzed the 

maximum amount of erosion of land observed on the both sides of the river occurred in 

section A and E (over 1 km), and the maximum accretion occurred in sections E and F 

(over 1.3 km) (Mobariz & Kaplan, 2021). 

 

4.3. GEE Yearly Results  

For every inspected year, classification has been performed within the GEE. 50% 

of the training samples were then used for the accuracy assessment analyses, and the 

results are presented in. As it can be seen from Table 4.2, the validation overall accuracy 

is higher than 0.87 in the four classifications, while the kappa statistics vary from 0.83 – 

0.97. 

 

Table 4.4. Accuracy assessment results 

 Year 
Validation Overall 

Accuracy 
kappa  

1 1990 0,90 0,86 

2 2000 0,96 0,95 

3 2010 0,87 0,83 

4 2020 0,98 0,97 

 

The results of the classifications are shown in While there are no significant 

changes in the Bare Land class, a shift of the river bed can be noticed in several points of 

the study area. For more detailed investigation, land conversion during the three 

investigated periods (1990 – 2000; 2000 – 2010; 2010 – 2020) has been made. The 

conversions between the classes are shown in  

In all three periods, the class Bare Land did not receive any additional area from 

the other classes, but small areas of Bare Land were converted to, generally, cropland. 

The classes Wetland and Water changed the most, with more than 40% conversion of the 

Water class to Wetland and Cropland. From 1990 to 2000, and 2010 to 2020, this 

conversion was 20% and 25%, respectively. As expected, the results showed that the river 

bed mainly shifts towards the Wetland and Cropland, or areas with soft soil. For a more 

detailed investigation, we recommend considering the geological characteristics of the 

river bed and its surroundings. 
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Figure 4.5. GEE Yearly Classification results 

 

 

Figure 4.6. Land conversion results; A) 1990 – 2000; B) 2000 – 2010; C) 2010 – 2020 

 

Also, the dynamics of the river in the inspected years can be seen in Figure 4.7. The 

dynamics of the river are seen in the period between 1990 – 2000, and 2010 – 2020. 

According to the statistical analyses, the water area in 2000 was approximately 30.000 ha 

smaller than the area in 1990. The water area then gains approximately 19.000 ha in 2010 

in comparison with 2000, and then it got lowered in 2020 for 11.000 ha. The results 

showed that the river dynamics mainly occupy the wetlands and croplands area, thus 

causing damages in farmers' land, and also some small villages around the river bed. It 
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should be also mentioned that the river dynamics are constantly changing the natural 

border between the sharing countries, which causes even bigger problems for farmers to 

claim their rights (Sajjad et al., 2020).  

 

Figure 4.7. Amu Darya river dynamics; A) 1990; B) 2000; C) 2010; D) 2020 

 

4.4. GEE Seasonal Results  

For every inspected season, classification has been performed within the GEE. 

50% of the training samples were then used for the accuracy assessment analyses, and the 

results are presented in Table 4.5. As it can be seen from Table 4.5, the validation overall 

accuracy is higher than 0,97 in the four classifications, while the kappa statistics vary 

from 0.91 – 0.95. 
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Table 4.5. Accuracy assessment results 

Seasons                             Validation Overall Accuracy                         Kapa 

1         Winter                                                      0.94                                            0.93 

2          Fall                                                          0.96                                            0.95 

3          Summer                                                  0.93                                             0.91 

4          Spring                                                     0.96                                             0.95 

 

While there are no significant changes in the Bare Land class, a shift of the river 

bed can be noticed in several points of the study area. For more detailed investigation, 

land conversion during the three investigated periods (fall – summer; summer – spring; 

spring – winter) has been made. The conversions between the classes are shown in Figure 

4.17, Figure 4.18, Figure 4.19. 

 

Figure 4.8. Form Winter Season Classification result 
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Figure 4.9. Classification result From Spring Season 

 

 

Figure 4.10. Classification result From Summer Season 
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Figure 4.11. Classification result From Fall Season 

 

 

Figure 4.12. Classification result from Winter Season in the zoom mode 
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Figure 4.13. Classification result from Spring Season in the zoom mode 

 

 

Figure 4.14. Classification result from Summer Season in the zoom mode 
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Figure 4.15. Classification result from Fall Season in the zoom mode 

 

 

Figure 4.16. Classification result from four season for the water 
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Figure 4.17. Land  conversion results (Fall_summer) 

 

 

Figure 4.18. Land conversion results (Summer-Spring) 
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Figure 4.19. Land conversion results (Spring -Winter) 

 

In all three periods, the class Bare Land did not receive any additional area from 

the other classes, but small areas of Bare Land were converted to, generally, cropland. 

The classes Wetland and Water changed the most, with more than 40% conversion of the 

Water class to Wetland and Cropland. From winter to fall, and summer to spring, this 

conversion was 20% and 25%, respectively. As expected, the results showed that the river 

bed mainly shifts towards the Wetland and Cropland, or areas with soft soil. For a more 

detailed investigation, we recommend considering the geological characteristics of the 

river bed and its surroundings (Mobariz & Kaplan, 2020). 
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5. DISCUSSION 

The main goals of the presented paper were to determine the Amu Darya river 

channel dynamics and the changes that occurred in its surroundings between Afghanistan, 

and Uzbekistan and Tajikistan. River dynamics can often cause considerable hazards to 

those in the surrounding area, it is more complicated for the locals who depend mostly on 

agriculture to claim their rights as Amu Darya also represents the international border 

between several countries. In order to help decision-maker and also to lower geo-political 

tensions between the sharing countries, timely mapping and monitoring of the shared 

areas as well as its surroundings are crucial. 

Landsat as the only satellite that provides historically imagery since 1980, with 

30 m spatial resolution offers valuable data that can be used for accu- rately monitoring 

of the Amu Darya river dynamics and land cover changes of its surroundings. Thus, in 

this paper, four Landsat images in the period of 1990 – 2020 were used. However, in 

future studies, Sentinel-2 that offers better spatial and spectral resolution can be used for 

more accurate and more detailed results. 

Landsat as the only satellite that provides historically imagery since 1980, with 

30 m spatial resolution offers valuable data that can be used for accu- rately monitoring 

of the Amu Darya river dynamics and land cover changes of its surroundings. Thus, in 

this paper, four Landsat images in the period of 1990 – 2020 were used. However, in 

future studies, Sentinel-2 that offers better spatial and spectral resolution can be used for 

more accurate and more detailed results. 

While most studies in the literature focus only on river dynamics (Langat et al. 

2019a, Billah 2018) or land cover changes in the river basin (Langat et al. 2019b, Cai et 

al. 2016), this study evaluated both land cover changes and river dynam- ics of Amu 

Darya river. For that purpose, an object-based classification has been made over the study 

area with four classes (Bare land, Cropland, Water, Wetland) and the land conversion has 

been estimated for the analyzed thirty-year period. The results showed that large areas of 

wetland (possible highly watered cropland) and cropland are being flooded by the new 

course of the river, meaning that the river causes damages to local peoples’ lands. Also, 

it should be noticed that more than 30% of the water areas changed in the investigated 

periods. In the period between 1990 – 2020, more than 50% of the wetland areas transited 

to cropland (approximately 30%), and water and bare land (10%). These results are 

supported with high accuracy of 85% overall accuracy, and accuracy higher than 90% for 



 

51 

 

the water class. After the first part of the study, analyses of the riv- er dynamic have been 

made. For that purpose, only water class, or the river line in the same period was analyzed. 

It should be mentioned that the right part of the river represents Tajikistan, while the left, 

Afghanistan, and with every shift of the river, left or right, the international border 

between these two countries is being changed. The erosions and accretions of the river 

have been addressed thus also presenting the active part of the river in both assessed 

periods (Fig. 5.1).  

 

Figure 5.1. River bank shift 1990-2020 
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Results showed that in the studied part of the river (approximately 70 km length), 

very small part of the channel remained unchanged. The comparison between the first 

and last classification showed overall erosion and accretion of 9,775.6 ha and 8,810.0 ha, 

respectively. However, although the areas differ for approximately 900 ha, the damage is 

rather higher. From the river shifting results, it can be noticed that most of the time, the 

river shifts from North to South, causing floods and detriment on the croplands on the 

local people on the Afghanistan side, and benefits to the local people on the Tajikistan 

side of the border. The results can be useful in practical applications where regular moni- 

toring of river behavior is needed for decision making. Such information can help both 

local and international administration in resolving problems due to unresolved water 

sharing policies, and can help in making geopolitical decisions beneficial for both parties. 

Also, the results can be crucial in flood risk manage- ment strategies, irrigation plans, 

monitoring systems, etc. The most drastically shifts between 1990 and 2020 are shown 

on Figure 4.4. 
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6. CONCLUSION 

The Amu Darya is the most water-rich sea in Central Asia, originating in the Pamir 

Mountains and flowing about 1,126 km along Afghanistan's northern borders with 

Tajikistan, Uzbekistan and Turkmenistan. The port of Amu Shirkhan is located on the 

shores of Bandar and Hairatan ports, through which Afghanistan's exports or imports to 

Central Asian countries are exchanged. Residents of the northern and northeastern 

provinces of the country have repeatedly complained about the destruction of the Amu 

Darya River and the government's negligence, but the central and local governments have 

not yet taken effective action. 

As the pressures of increasing destruction by the waters of the Amu Darya on the 

people and the inhabitants around the sea were greater and a large number of people 

suffered irreparable damage due to these devastating events and people were forced to 

leave their homes. It is also noteworthy that climate change is affecting the low-water 

areas, neighboring countries have increasingly managed and controlled the infrastructure 

and management of transboundary waters in Afghanistan, and unfortunately have 

suffered the most from Afghanistan. Similarly, over the past few years, the Government 

of Afghanistan has raised its awareness of the importance of addressing the issue of cross-

border issues with low-water neighbors to ensure the most efficient use of the region's 

precious water resources. As well as awareness of the damage done to Afghanistan. This 

research paper is a step towards strengthening Afghanistan's transboundary water 

dialogue by reviewing the situation and proposing possible solutions to promote 

cooperation and water management in the Amu Darya Basin. 

In the presented study, the land cover changes and river dynamics of inter- 

national borders and its surroundings were investigated using remote sens- ing satellite 

imagery. The most significant contribution of this tesis it that is points out a very 

important problem many local people are facing, mostly in the developing countries, but 

in fact, it should also be stated that this is also an international problem. The case study 

of the Amu Darya river is just an example of what many local people who mainly depend 

on agricultural are fac- ing with. Having said that, it should not be forgotten, that with the 

results in the study the international borders are also being monitored though satellite 

imagery. As not many studies can be found on the topic monitoring river that also 

represent international borders, we believe that the conducted study can be of great use 

and open many research opportunities for many interdisciplin- ary projects. For future 
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studies, we recommend investigating the same topic on different study area, and for more 

accurate results, the use of imagery with higher resolution, such as Sentinel-2 (Mobariz 

& Kaplan, 2021). 
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