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ABSTRACT

MONITORING AMU DARYA RIVER CHANNEL DYNAMICS USING REMOTE
SENSING TECHNIQUES AIDED BY GOOGLE EARTH ENGINE

Mohammad Asef MOBARIZ
Department of Remote Sensing and Geographical Information Systems
Eskisehir Technical University, Institute of Graduate Programs, December 2021
Supervisor: Assoc. Prof. Gordana KAPLAN

In this study, aims at monitoring Amu Darya River Channel Dynamics using
Remote Sensing techniques within Google Earth Engine (GEE). The Amu Darya River
covers vast areas within the borders of Turkmenistan, Uzbekistan and Tajikistan. The
upper part of the Amu Darya River, the international border between Afghanistan and
Tajikistan, have been investigated in terms of river channel dynamics. Thus, for this
purpose, satellite imageris from four different periods ten years apart (1990-2000, 2000-
2010, 2010-2020), have been used to map and monitor the dynamics of the river over the
last three decades. The classification of the images was conducted in GEE using Landsat
imagery. In addition to the river mapping and monitoring, a land cover change detection
in the study area has been made. The results showed that the increase in irrigated areas,
in the four specified periods was significant and played an important role in increasing
the vulnerability of the study area to soil erosion which leads to river channel dynamics.

The results also showed that the use of Landsat and GEE can be a significant
source of updated data for mapping and monitoring river dynamics, with a classification
accuracy of the water areas higher than 90%. For future studies, we recommend using
satellite imagery with a higher spatial and spectral resolution, like Sentinel-2, for more

detailed investigation.

Keywords: Amu Darya, River Dynamics, Google Earth Engine, Classification, Remote

Sensing.



OZET

GOOGLE EARTH ENGINE YARDIMIYLA UZAKTAN ALGILAMA TEKNIKLERI
KULLANARAK AMU DARYA NEHIR KANAL DINAMIKLERININ iZLENMESI

Mohammad Asef MOBARIZ
Uzaktan Algilama ve Cografi Bilgi Sistemleri Anabilim Dali Anabilim Dali
Eskisehir Teknik Universitesi, Lisansiistii Egitim Enstitiisii, Aralik 2021

Danisman: Dog. Dr. Gordana KAPLAN

Bu calismada Afganistan’in kuzeyinde yer alan Amu Darya Nehri’ne aittir ,
Google Earth Engine Yardimiyla Uzaktan Algilam Teknikleri Kullanarak Amu Darya
Nehir Kanal Dinamiklerinin Izlenmesi amaglanmaktadir. Amu-Darya Nehri, kuzeybatida
[ran'dan baslayarak giineydoguya dogru uzanir ve Afganistan’in kuzeyinde bulunur. Bu
Nehir Tiirkmenistan, Ozbekistan ve Tajikistan sinirlar icerisinde de ¢ok genis alanlari
kapsar ve bu bolgelerde de Amu Darya’nin 6nemli alanlarini bulunmaktadir. Bu
calismada, Amu Darya nehri kanal dinamiklerinin uzaktan algilama verileri kullanilarak
iist kisimlar1 incelenmistir. Bu amagla, son otuz yilda nehrin dinamiklerini haritalamak
ve izlemek icin on yil arayla (1990-2000, 2000-2010, 2010-2020) dort farkli doneme ait
uydu goriintiileri kullanilmistir. Goriintiilerin  siniflandirilmasi, Landsat goriintiileri
kullanilarak Google Earth Engine'de (GEE) yapilmistir. Nehir haritalama ve izlemeye ek
olarak, calisma alaninda arazi oOrtiisii degisikligi tespiti yapilmistir. Sonuglar, belirlenen
dort donemdeki sulanan alanlardaki artisin 6nemli oldugunu ve nehir kanali
dinamiklerine yol acan toprak erozyonuna karsi ¢alisma alaninin kirilganliini artirmada

onemli bir rol oynadigini gostermistir.

Sonug¢ olarak, bu ¢alisma Landsat ve GEE kullaniminin, su alanlarmin % 90'in
tizerinde bir siniflandirma dogrulugu ile nehir dinamiklerinin haritalanmasi ve izlenmesi
icin onemli bir giincellenmis veri kaynagi olabilecegini gostermistir. Gelecekteki
caligmalar i¢in, Sentinel gibi daha yiiksek uzamsal ve spektral ¢oziiniirliige sahip uydu

goruntulerini kullanilmasini 6neririz.

Anahtar SoOzcukler: Amu Darya, Google Earth Engine, Nehir Dinamikleri,

Siiflandirma, Uzaktan Algilama.
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1. INTRODUCTION
1.1. Problem Definition and Objective of the Study

As the essence of life, water is one of the essential substances on Earth. It plays a
crucial environmental and societal role in all ecosystem services. People’s dependence
on water is clear as 82% of the world's population live on previously flooded land,
whereas 87% are settled along a river (Tomsett & Leyland, 2019). Also, rivers have been
used to divide lands, leading to waterways as political borders. According to Popelka and
Smith (Popelka & Smith, 2020), rivers make up 23 percent of international borders, 17
percent of the worlds state and provincial borders, and 12 percent of all county-local
borders. The number of international borders as river is the highest in South America and
lowest in Asia. The division of states, cities, and countries with water bodies often causes
political controversies. Also, river dynamics can often cause a considerable hazard to
those in the surrounding area (Hirabayashi et al., 2013). River dynamics are often
described as natural autogenic occurrences for fluvial rivers generally caused by human
modifications such as dam construction, irrigation infrastructure construction, land use
changes, and climatic factors (Langat, Kumar, & Koech, 2019). Understanding,
monitoring, and mapping the rivers are essential to prevent and lower the hazards caused
by the river channel dynamics. If the river is transboundary and natural hazards, it can
also cause geo-political problems (fUr Innere Medizin, 1988),(Yousefi, Keesstra,
Pourghasemi, Surian, & Mirzaee, 2017). Transboundary waters have been a reason for
conflict in many parts of the world (Ovezova, 2015), and it is believed that the struggle
for clean and safe water can cause even bigger geopolitical conflicts (Dhaliwal, 2009).

One of the transboundary rivers prone to conflicts is the Amu Darya river. The
Amu Darya river is a major river in Central Asia and Afghanistan, and besides being
internationally shared water between Tajikistan, Afghanistan, Uzbekistan, and
Turkmenistan, it also represents the border between Afghanistan, and Tajikistan and
Uzbekistan. Since its watercourse is constantly changing, it is very challenging for the
local people who depend primarily on agriculture to claim their rights (fUr Innere
Medizin, 1988). Afghanistan, as an impoverished country, is highly dependable on
farming. Due to war in the past few decades, economic considerations have been

secondary to political and military problems (fUr Innere Medizin, 1988).



Researchers have been searching for solutions for managing transboundary water
resources in the Aral Sea Basin (Haleemzai & Sediqi, 2018), as the lack of effective
management in the use and development of water caused severe consequences for the
natural environment, the human population, and the economies of the sharing countries
(Farzaneh & Mohammadi, 2011). Situated in the hearth of the Eurasian continent, the
Aral Sea Basin is extending over parts of five Central Asian Republics. One of the two
major rivers of the Basin, Amu Darya, originates in the mountains of Afghanistan and
Tajikistan, and flows through Uzbekistan and Turkmenistan to the Aral Sea. Amu Darya
iIs one of the major transboundary rivers, also representing an international border
between Afghanistan, and Uzbekistan and Tajikistan. Although some attempts have been
made for agreements for water resources in the Amu Darya basin, trying to deal with the
use and quality of the water resources, no significant progress has been achieved. If no
progress is made on this topic, this would result in further economic hardship,
environmental damage, and create a potential for conflict (Farzaneh & Mohammadi,
2011). It has been clearly stated that action is required to stop the increase of the crisis in
the Aras Sea Basin that affects more than 21 million people, with increased mortality
rates, disease and health disorders (Bekchanov, Ringler, & Bhaduri, 2018).

For large areas like the Amu Darya river basin, and developing countries like
Afghanistan, efficient and cost-effective scientific tools are important. Geospatial data
and tools have become valuable tools for mapping and monitoring land use and river
dynamic changes worldwide. However, remote sensing as an efficient tool for modern
geospatial mapping has not been widely used in waterways as political borders. Popelka
and Smith (Popelka & Smith, 2020) recently released a new geospatial database of the
world’s river borders for large rivers using Landsat data. Langat et al (Langat et al., 2019)
used aerial imagery combined with Landsat for monitoring the river channel dynamics
over the river Tana, Kenya and were able to analyze the temporal and spatial channel
changes of the river from 1975 — 2017. Similarly, Billah (Billah, 2018) used Landsat
imagery from 1975 — 2015 to map and monitor erosion and accretion in the Padma river,
Bangladesh. Dabojani et al (Bora, Bhuyn, & Dutta, 2021) made similar investigation over
the Manu river in Bangladesh. Remote sensing has been successfully used in many studies
for river channel dynamics (Tomsett & Leyland, 2019), (Langat et al., 2019),(Tadese,
Kumar, Koech, & Kogo, 2020). With geoformation systems, remote sensing data can

provide excellent river channel dynamics, processing, visualization, and analysis tools.



Beside the river channel dynamics, land cover maps can be produced from the remote
sensing data. With spatial analysis, the land cover changes caused by the river dynamics
can be also determined. Also, few studies can be found in the literature on monitoring
shared international waters using remote sensing data, except for few study cases over
transboundary lakes (G. J. Kaplan, Avdan, Avdan, & Jovanovska, 2019). This leaves
space in the literature to monitor transboundary rivers and river dynamics using remote
sensing and geo-information systems. River morphology changes in varying
environmental conditions over both spatial and temporal scales due to the erosion and
accretion of the river bank and the river's water flow through natural and anthropogenic
inputs.

The processes that control river morphology include channel dynamics, discharge,
runoff events, sediment supply, and vegetation cover. In addition, channel shifting and its
response to changing environmental conditions are highly reliant on local factors (channel
type, hydrologic, and vegetation conditions) affected by anthropogenic disturbances.

Understanding the processes attributed to channel shifting and assessing river
morphological change has long been of interest to geologists, geomorphologists, and
engineers (Akhter et al., 2019). GIS and remote sensing technologies have proven useful
for mapping and monitoring River resources (Wu, 2017).

This study aims to find the changes in the displacement and destruction of the
Amu Darya River on its aspects. While most studies in the literature focus only on river
dynamics (Langat et al., 2019),(Billah, 2018) or land cover changes in the river basin
(Cai, Feng, Hou, & Chen, 2016),(Sarif & Gupta, 2021), this study evaluated both land
cover changes and river dynamics of Amu Darya river.

The purpose of the presented study is to apply remote sensing data and geo-
information techniques to understand the temporal and spatial channel changes and
dynamics of the Amu Darya river along Afghanistan’s border. The first objective is to
map and analyze the land cover changes of four classes over the study area and to
determine lad conversion from 1990 — 2020 between the investigated classes. The second
objective is to map river channel dynamics, quantify lateral river channel erosion and
accretion, and detect the most changed areas between 1990 and 2020. To achieve the
goals in this study, we use four Landsat images (1990, 2000, 2011, 2020) from the same
period (May — July) to avoid seasonal changes. These analyses have been made using

object-based classification, further discussed in the methodology section. The results can



be useful in practical applications where regular monitoring of river behavior is needed
for decision making. Such information can help both local and international
administrations resolve problems due to unresolved water-sharing policies and help make
geopolitical decisions beneficial for both parties. Also, the results can be crucial in flood
risk management strategies, irrigation plans, monitoring systems, etc.

In the second part of the analyses, the same analyses were made using the GEE
platform. Here we used two different types of classification to compare object-based
classification methods, which have been proven to be superior over pixel-based
classification, and pixel-based classification in the GEE platform using the suport vector
machine classification method. Although we have used two different methods, the study's
main aim was to evaluate the Amu Darya Dynamics. Furthermore, in the GEE platform,
we have performed long-term image analysis (1990-2020) and seasonal analyses to

evaluate the seasonal shift of the river in the study area.

1.2. Research Questions
The research questions that this thesis is aiming to answer are as given below:
» What is the best method for accurately identifying the Amu Darya Dynamics?
» Temporal analysis to monitor the dynamics of the Amu Darya River Canal.
» What are the results and effectiveness of GEE in this research?

» What is the best season for monitoring Amu Darya River channel dynamics?

2. THEORETICAL BASICS (BACKROUND)
2.1. Definitions
2.1.1. River

A water body that flows downhill emerged by the gravity forces is called a river.
Rivers can be different, in their shapes, areas, and depth. Smaler water bidies than rives
are called stream, creek, or brook. Rivers can be active all the time through the year or
seasonally. Seasonally rivers appear after solid rainfall. Some of the largest rivers in the
World can be as long as thousands of miles. The erosional power of rivers can form
geologic wonders like the Grand Canyon.

The source, the starting point of the river where the water begis its flow, is called

headwater. The headwater can come from rainfall or snowmelt in the mountains, but it



can also bubble up from groundwater or form at the edge of a lake or large pond. The
other end of a river is called mouth, the place where water empties into a larger body of
water, such as a lake or ocean. Along the way, rivers may pass through wetlands where
plants slow down the water and filter out pollutants (http-1).

In total, there are around 165 significant rivers in the world. These great rivers are
long and wide enough to be categorized as major rivers, and they carry large amounts of
water daily. They have tributaries and serve as a source of fresh water for billions of
people. There are thousands of smaller rivers, but it is difficult to estimate the total
number of small and major rivers in the world. The Amazon, the Nile, and the Yangtze
rivers are the world's major rivers. With a length of 6,516 kilometers, the Amazon River
is the world's biggest river by volume of water. The Nile is the world's longest river,
measuring 6,695 kilometers. The Mississippi-Missouri River System is the largest river
system in the United States.

Lakes, springs, marshes, and glaciers are the sources of most rivers. They flow
towards the sea, where their waters are emptied. There are, however, a few inland rivers
known as virgin rivers with inland source and mouth. Inland rivers include the Amu Darya
and the Syr Darya. The cradles of civilization are rivers. The river banks have seen the
development of all major civilizations, including Mesopotamia, the Indus Valley, Egypt,
and China. Rivers serve as inland rivers for transportation and hydroelectric power
generation (http-2).

2.1.2. Worldwide River Dynamics

River channel dynamics are natural autogenic occurrences for fluvial rivers
influenced by human alterations and climatic conditions that arise from discharge flow,
debris and sediment transfer, channel migration, and floodplain erosion and accretion.
Climate change, discharge amount and type of material, and hydrologic regimen
fluctuations all influence river bank erosion and accretion, as well as channel course
alterations. Anthropogenic development activities such as hydroelectric dam building,
irrigation infrastructure construction along the riverbank, and land use changes, on the
other hand, accelerate the natural geomorphologic dynamic behavior of rivers across the
basin (Langat et al., 2019).



Sediment, drinking water, irrigation, hydroelectric power, transit, food, and
recreation are all provided by rivers. Discharge, sediment, and water quality are the
factors that influence the shape and function of rivers. These are linked to the watershed's
climate, vegetation, and land use. Incision, lateral erosion, and sedimentation can all be
caused by changes in discharge. Depending on the discharge regime, sediment load,
hydrodynamic pressures, and floodplain characteristics, rivers produce distinct flow
patterns such as braided and meandering (Hemmelder, Marra, Markies, & De Jong,
2018).

River shape evolves with changing environmental circumstances on both a
geographical and  temporal scale owing to river bank erosion and accretion and natural
and human inputs to the river's water flow. Channel dynamics, discharge, runoff events,
sediment supply, and plant cover are all factors that influence river shape. Furthermore,
human disturbances alter local variables that influence channel shifting and its response
to changing environmental circumstances. Geologists, geomorphologists, and engineers
have long been interested in understanding the mechanisms linked to channel shifting and
analyzing river morphological change (Akhter et al., 2019).

The interest in researching river basin and watershed hydrology has increased
proportionately among geomorphologists in recent decades. During this period,
significant progress has been achieved in understanding channel morphology and
explaining channel shifting on a river basin's platform. Investigations of channel
morphology are required to assess the natural and human impacts on morphometric
parameters and channel dynamics. Because effective variations in these phenomena adapt
to changes in the river basin, predicting channel responses is difficult. The deterministic
model has been the focus of the majority of channel morphology research to far;

nevertheless, the river system is of a dynamic and stochastic nature (Akhter et al., 2019).

2.1.3. River Dynamics in Afghanistan

The most politicized natural resources are freshwater resources such as lakes and
rivers. 263 rivers in the world run through two or more nations. International basins cover
more than 45 percent of the Earth's land surface. As the globe becomes increasingly
water-stressed, pooled water resources can be utilized as a political tool. Furthermore,

international rivers support more than 40% of the world's population, with roughly 25%



living in developing nations. Political tensions between neighboring nations are rising as
a result of disputes and fights over shared water resources. According to a recent study,
almost 300 treaties deal with shared water resources between countries (Yousefi et al.,
2017).

On the other hand, Rivers are dynamic natural features, and their changing due to
natural erosion and sedimentation processes can result in political disputes over boundary
definitions between nations. Furthermore, because natural resources are shared, river
borders are subject to water management disputes. The Hirmand River's shape has altered
dramatically during the previous 60 years. This is most likely a result of changes in the
hinterland. Several studies have shown that land use within a watershed has a major
influence on fluvial dynamics. Changes in a catchment's upstream regions impact a river's
hydrological, geomorphological, sedimentological, and biological functions (Yousefi et
al., 2017).

2.2. Remote Sensing and GIS

Remote sensing is the process of gathering data about an object or phenomena
without making direct touch with it. While remote sensing has a wide range of
applications, it is most closely associated with Earth Science disciplines, where it is used
to detect, monitor, and categorize things on the planet. The use of active or passively
transmitted signals in remote sensing is based on electromagnetic radiation. Unlike active
remote sensing, where the remote sensing sensor (aircraft or satellite) emits signals and
subsequently detects the objects' reflections, passive remote sensing sensors sense the
sunlight's reflection.

A Geographic Information System (GIS) is a digital system that allow us to
manipulate geographic data. Geographic data is acquired using remote sensing techniques
in general, but it is stored, processed, analyzed, and visualized using GIS. Many areas
have studied the combination of GIS with remote sensing methods during the last few
decades (UN Environment, 2018).



2.2.1. Image classification

Expert and interpreters extract thematic information from satellite pictures using
visual interpretation. Tonal variations, texture, size, form, and context are all factors in
visual interpretation. Despite its widespread usage for analyzing remote sensing data,
visual analysis has the drawback of not giving quantitative information. When there is a
large amount of data, visual analysis can only extract a small amount of information.
Visual analysis also makes it difficult to make good use of all spectral bands. As a result,
computer processing of remotely sensed data is required to fully use the data's ability to
detect and quantify characteristics. Typically, land cover classes are mapped from digital
remotely sensed data using a supervised digital image classification technique (Wu,
2017).

The objects are distinguished based on the reflectance/emittance fluctuation of
their Electromagnetic (EM) radiation (Spectral signature) and other distinguishing
characteristics. A pixel is connected with a set of values for each spectral band, i.e. a
digital number (DN). The goal of digital classification is to give each pixel in a remote
sensing picture a value or label. If the labeling is done for all of the pixels in the image,
we obtain a thematic map, similar to visual interpretation.

Spectral response patterns from various surface classes will generally have a mean
value and a spread/variability around the mean. A number of factors like atmospheric
scattering, topography, class mixture, illumination and view angles etc. cause this spread
or variability within a class (Roostaei, Alavi, Nikjoo, & Valizadeh Kamran, 2012).

Using a variety of satellite image processing methods, surveys, and field data to
investigate the link between land cover change and water availability, demand, and
consumption has proven to be highly successful in determining regional water balances.
The categorization employed in this study, in particular, was quite accurate and accurately
reflected the various changes in the study region over the previous 30 years. Furthermore,
we can analyze the water balances in the Amu Darya river watershed using a mix of
satellite and field data. Throughout the literature review, remote sensing has demonstrated
superior performance in the investigation of land use/cover changes and the formulation
and production of land cover change scenarios for hydrological modeling (Hafyani et al.,
2020). Flood and drought disasters can be prevented and mitigated by monitoring river
channel dynamics, especially in developing nations. Fluvial river channel dynamics

research provides a firm grip on the reasons for and size of erosion and accretion episodes,



which is essential for river behavior management and planning. As modern-day river
development planning and project assessment requirements, efficient and cost-effective
scientific methods and methodologies for geomorphodynamic mapping and monitoring
are critical. Techniques and tools for geospatial analysis because of their capacity to cover
spatiotemporal elements utilizing synoptic, RS and GIS have recently become
geomorphology tools for change detection in rivers and their floodplain dynamics at the
strategic scale. Various RS and GIS approaches are utilized to get insight into the river
channel vulnerability as well as a better knowledge of the river reach's temporal and
spatial channel alterations and dynamics (Langat et al., 2019).

River morphological dynamics are natural autogenic occurrences caused by
discharge flow mechanisms, debris and sediment movement, channel migration, and
floodplain erosion and accretion in fluvial rivers. Climate change, discharge amount and
type of sediment, and hydrologic regimen fluctuations all play a role in riverbank erosion,
accretion, and channel course changes. Anthropogenic development activities such as
hydroelectric dam building, irrigation infrastructure construction along the riverbank, and
land use changes, on the other hand, accelerate the natural geomorphologic dynamic
behavior of rivers across the basin. Human alterations have grown more powerful than
natural factors such as floods and droughts, posing a danger to autogenic river channel
dynamics, resulting in significant channel deterioration, disruption of sediment supply

and water routes, and river provisioning services (Langat et al., 2019).

2.2.2. Object-based classification

One of the most common methods to obtain land-cover information from satellite
images is remote sensing image classification. Image classification converts the data into
meaningful information. Depending on the supervision, classifications can be supervised
and unsupervised, while depending on the data type, two different classification types can
be distinguished: pixel and object-based classification. The pixel-based classification has
been widely used since the revolution of remote sensing in the 1980s. Pixel-based
classification uses multi-spectral classification techniques that assign similar pixel in the
same class (Yan, Mas, Maathuis, Xiangmin, & Van Dijk, 2006).

Object-based classification, as opposed to pixel-based classification, classifies
images based on objects rather than pixels. Although this approach was first presented in



the 1970s, it was only a decade ago used in remote sensing (Makinde, Salami, Olaleye,
& Okewusi, 2016). This approach has been effectively implemented in middle-resolution
images, despite being often employed for high and very high-resolution imaging. Object-
based image classification is superior than the classic pixel-based classification approach
in numerous studies (G. Kaplan & Avdan, 2017),(Esetlili et al., 2018). In order to classify
the land cover in the study area, object-based image analysis (OBIA) was used in this
paper. The OBIA was performed in eCognition software. The first and most meaningful
step of object based classification is the segmentation, in which the pixels are grouped as
objects, or segments. The multiresolution segmentation has been successfully used in
segmenting middle-resolution satellite images, like Landsat (Benz, Hofmann, Willhauck,
Lingenfelder, & Heynen, 2004). The objects are then formed based on the given criteria
(Yan et al., 2006). Furthermore, the land cover was classified into four different classes:
Water, Cropland, Bare Land, and Wetland. Using the land cover maps, a land conversion
analysis of the study area have been made, calculating the changes and shifts from one
class to another. In the second part, using only the water class, river channel analysis has
been made, thus calculating the erosion and accretion amount and determining the river
bank's shift on both left and right side of the river (Figure 4.1). For the accuracy
assessment, 400 random points have been used, and the overall accuracy and kappa
statistics were calculated.

Landsat satellite images from 1990, 2000, 2011, and 2020 were used to examine
land-use change dynamics along the Amu Darya River during the last 30 years. Beginning
with the most recent year, these years were chosen to identify probable quick and lengthy
changes. The availability of cloud-free pictures for the Amu Darya river was also taken
into account. The pictures were obtained from the earth explorer of the United States
Geological Survey (USGS, https://earthexplorer.usgs.gov/). Four satellite pictures with a
path/row of 154 / 034 were collected for the selected years to cover the whole research
region. ENVI 5.3 was used to process, classify, and analyze Landsat pictures. Pre-
processing of pictures, land-use categorization, accuracy evaluation, and land-use change
detection were all part of the digital satellite image analysis from 1990 to 2020 (Tadese
et al., 2020).

In this study, land cover was classified into four different classes: Water,
Cropland, Bare Land, and Wetland. Using the land cover maps, a land conversion analysis

of the study area have been made, calculating the changes and shifts from one class to
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anotherand Using the chart below (Figure 2.1), we performed the steps and methods of

the study.
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Figure 2.1. Methodology used in this study

2.2.3. Remote Sensing and GIS for River mapping and monitoring

Natural water resources on the earth's surface include river and stream networks
with higher geological importance. The rivers exhibit enormous spatiotemporal
differences in their shapes and sizes, as well as dynamism. Variability in natural and
human activity causes continual changes on the earth's surface. These modifications result
in a cut, carry, and deposit of materials from the ground surface as a result of these
operations. One of the outcomes of these activities is a change in the base stream and the
shape of rivers as a result of river erosion and accretion (Aher, Bairagi, Deshmukh, &
Gaikwad, 2012). Climate change has a greater impact on river bank erosion and accretion

and channel course alterations.. River bank erosion and accretion, and channel course
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changes are more related to climate change, discharge quantity and type of sediment, and
variations of hydrologic regimen (Langat et al., 2019).

The assessment of the rate of river erosion known as the change in the form and
shape of the river has become crucial. Remote sensing (RS) and Geographic Information
System (GIS) which are now-a-days used very commonly for spatiotemporal assessment
of the different Topographical, Geomorphical, Geological change. Satellite data can
deliver comprehensive, synoptic sight of equitably huge area at regular intervals by using
RS. RS and GIS are suitable and idyllic for analyzing and monitoring river bank change
or erosion and accretion rate.

Also, by integration of RS and GIS changes of channel configuration and the
orientations between the river channel and its embankments can be determined. Using the
RS and GIS technology, river profiles at a definite time frame are developed and the rate
of erosion and accretion is computed and the use of temporal satellite images to express
the dynamics move. The rate of erosion and accretion is computed but also the use of
temporal satellite images can express the dynamics move ofa definite time frame are
developed. The rate of erosion and accretion is computed but also the use of temporal
satellite images can express the dynamic movement of the river and its floodplain. Also,,
multi-temporal satellite images help predict how the mobility of the river will continue or
restore stability which kind of actions will be preferable. The study is undertaken due to
the availability of remotely sensed databases and benefit of remotely sensed data like
large view, multi-temporal etc (Aher et al., 2012).

Soil is a natural resource that plays an important role in the environment, society,
and economy. The absence of precise information on the regions impacted by soil erosion
and its size is a constraint of the aforementioned efforts. Most of these efforts, for
example, are limited to traditional approaches like the Revised Universal Soil Loss
Equation (RUSLE), and conservation initiatives are also regarded a failure because
populations in impacted regions lack a feeling of ownership. The ability to measure and
monitor soil erosion at local, national, and regional scales has considerably improved
because to the use of aerial photos and satellite data.

Traditional erosion modeling approaches use manual identification of erosional
levels using air pictures and field work measurements. The main disadvantage of these
techniques is that they are time-consuming and expensive and confined to specialist

knowledge. In conjunction with GIS, RS offers crucial information on erosional dynamics
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and intensity over time and location, which is essential for soil erosion evaluation,
management, and prediction. According to the literature, one of the most severe
worldwide environmental concerns is soil erosion, including water and wind erosion,
chemical degradation, excessive salts, physical and biological deterioration (Sarath,
Saran, & Ramana, 2018). Although geomorphologic processes can induce soil erosion,
rapid soil erosion is favored mainly by human activities. Rapid population expansion,
deforestation, inappropriate land agriculture, unregulated, and overgrazing have all
contributed to increased soil erosion globally, particularly in emerging nations (Gelagay
& Minale, 2016). Numerous investigations conducted to date using satellite technology
have verified this (Sarath et al., 2018).

A coastline is a physical boundary between land and sea. The charting of coasts,
which allows observation of how they have evolved across different periods, is one
approach to discover changes in wetland habitats. This is because knowing the coastline's
location is essential for assessing and describing land and coastal water resources. Shifts
in shoreline position are crucial for coastal zone management due to erosion and
deposition since extremely dynamic coasts can pose significant dangers to human usage
and development. Safe navigation, resource management, environmental protection, and
sustainable coastal development and planning all need coastline mapping and
measurement of position changes. In addition, the European Union's (EU) Ecosystems
Directive has designated several coastal habitats as special protection zones. As a result,
it's clear that updating coastal maps and monitoring movement rates would require quick,
repeatable procedures (Petropoulos, Kalivas, Griffiths, & Dimou, 2015).

The Earth Observation (EO) technological framework is ideally adapted for
habitat mapping and monitoring, and it may offer data for conservation programs such as
the European Commission's (EC) Habitats Directive. The potential of EO technology to
give cheap, continuous, synoptic views at a range of geographical and temporal scales,
even for inaccessible places providing data has been preserved, is one of its main
advantages. Indeed, since satellites can offer digital images in infrared spectral regions
where the land-water boundary may be well delineated, detecting coastal changes with
EO data has been increasingly important in recent decades. Furthermore, EO data may be
integrated with GIS to give a robust set of tools for evaluating and extracting spatial data,
allowing for more consistent and trustworthy decision-making. This connection with EO

datasets provides a fantastic foundation for data collecting, storage, synthesis
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measurements, and analysis, all of which are critical in investigating coastal changes
(Petropoulos et al., 2015).

With the advancement of space technology, RS combined with GIS has become
an efficient tool for mapping and spatial-temporal monitoring of land use change and
providing a thorough knowledge of ecosystem function. As a result, these methods
demonstrate a keen interest in obtaining information about the Earth's surface in both
space and time. Several studies have been conducted throughout the world to research
land use changes using satellite image processing technologies in various climatic
situations. The International Geosphere-Biosphere Program (IGBP) and the International
Human Dimension Program (IHDP) have made it a priority to understand better the link
between biosphere aspects of the hydrological cycle (BAHC) and land use and land cover
changes (Hafyani et al., 2020). To build maps and get information and data, researchers
utilized RS, and GSI approaches (Chandra Paul, Saha, & Hembram, 2020). Landsat
images from the United States Geological Survey are the study's primary data source
(USGS). Since 1972, Landsat pictures with a temporal resolution of 16 days have given
free up-to-date photographs across the world (Sajjad et al., 2020).

Image processing means the study of any algorithm that takes an image as input
and returns an image as output. It is a process of improving the quality of an image for
analysis and manipulation. Raw remotely sensed data have found a lot of geometric as
well as radiometric errors. The geometric and radiometric corrections are mandatory
before using raw remotely sensed data for analysis (Roostaei et al., 2012).

River science and management are becoming more accessible thanks to RS
technology. Marcus and Fonstad (Bizzi, Demarchi, Grabowski, Weissteiner, & Van de
Bund, 2016) argue that RS methods should be used more broadly in research and
management. However, the field's steady advancement has resulted in a surprising
diversity of applications to fluvial geomorphology.

Many fluvial features frequently monitored for hydro morphological surveys, like
multispectral data, have been assessed in scientific research utilizing RS technology. Due
to the high expense of data gathering, however, the use of RS for river characterization
has been focused on addressing particular research issues for case studies rather than
tackling aspects of operational implementation for large-scale applications, as Marcus
and Fonstad argue (Bizzi et al., 2016). However, collecting RS data spanning broad

regions (regional or national) has only just begun to attain enough spatial and spectral
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resolution for fluvial study. The capacity to survey and define the hydro morphological
characteristics of river systems comprehensively at various dimensions, from watershed
to reaches, is unparalleled in Europe because to the advent of RS data availability at larger
scales and sufficient precision. However, this abundance of data puts existing data
analysis abilities to the test, necessitating advanced statistical modeling frameworks to be
acceptable for river definition and management (Bizzi et al., 2016).

The impacts of stream bank erosion on channel evolution are important
geomorphic research topics in various scientific and technical disciplines. RS satellite
data may give a complete, synoptic view of a relatively broad region at regular intervals
with a short turnaround time, making it suitable and excellent for researching and
monitoring river erosion and bank line movement. Various studies have been conducted
in this respect for some of the world's main rivers. Several researchers have used remotely
sensed data to determine Brahmaputra River and its tributary channel alterations. The
National Research Service Award (NRSA) has completed a river migration study of the
Brahmaputra River using an airborne scanner survey, as well as a series of surveys to
monitor changes in land use, river channels, and banks in order to provide a foundation

for estimating the river's response to flood events (M. & S., 1981).

2.3. Climate and Hydrology of Amu Darya

The Amu Darya basin's rainfall and temperature are determined mainly by terrain.
The river basin's major source of precipitation is the mid-latitude westerlies. The
precipitation mostly falls as snow during the winter, which helps feed the glaciers in the
Amu Darya's source regions, at the highest elevations in the Pamirs and the Hindu Kush,
when winter temperatures average below freezing yearly precipitation can surpass 1,015
mm. At lower elevations, mean monthly temperatures rise and precipitation falls. The
lowest sections of the Amu Darya get less than 100 millimetres of annual precipitation,
with mean July temperatures exceeding 25 °C and mean January temperatures ranging
from 0 °C to 10 °C (http-2).

15



2.4. Climate in Afghanistan

The climate of Afghanistan is typically arid continental, with cold, wet winters
(with a rainy peak in April) and hot, sunny summers. However, significant changes
depend on location and height: the south is desert, many parts are chilly due to altitude,
and the far east, which is partly impacted by the Indian monsoon, is quite wet even in
summer.

Precipitation is typically limited, at semi-desert or desert levels, except in the
eastern parts, where it surpasses 500 millimeters per year in certain locations, and even
reaches 1.000 mm in the extreme east, near the Pakistani border (Kunar and Nurestan
provinces). During the winter, disturbances from the Mediterranean reach the country's
center-north (and, on rare occasions, the south), bringing rain and even snow to the
mountains. Early in the spring, when the southern Asian continent begins to warm up, the
battle of air masses intensifies, resulting in more rainfall; in fact, March is frequently the
wettest month. The rains lessen as the season progresses, and it rarely rains from June to
September. Only in the easternmost region, east of Kabul, is there a little increase in
rainfall in July and August due to the final branch of the monsoon that impacts India and
Pakistan in (figure 2.2) (http-3).
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Figure 2.2. Average min and max temperatures in Kabul, Afghanistan, 2019

2.5. Google Earth Engine and Remote Sensing

Google Earth Engine (GEE) is a cloud computing platform for processing Earth
observation data that is free and web-based (Stuhler, 2016). For decades, RS systems have
been gathering large amounts of data, organizing and analyzing them in ways that are
impossible to do with standard software packages and desktop computing resources. In
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order to successfully handle the problems of big data analysis, Google has built a cloud
computing platform dubbed GEE. This platform, in particular, makes it easier to analyze
huge amounts of geodata over broad areas and to monitor the environment over extended
periods (Stuhler, 2016). Although the GEE platform was released in 2010 and has
demonstrated its tremendous potential for various applications, it has only recently been
extensively studied and exploited for RS applications. GEE has also been used in a variety
of applications, including LULC (Land Cover/Land Use) categorization. Despite their
strength, these categories' somewhat poor spatial resolution might restrict their utility,
especially at smaller scales. Surprisingly few algorithms exist to sharpen the spatial
resolution of moderate-resolution LULC classifications in light of finer scale imagery,
hydrology (Tamiminia et al., 2020), LULC change is a major contributor to global
greenhouse gas emissions and can have a wide range of indirect effects, including
biodiversity loss and regional hydrologic change, LULC change in the tropics frequently
occurs at small scales. Studies on LULC transformation are especially significant in
global environmental change and sustainable development because they emphasize the
intensity and pattern of human-earth relationships (Hazarika, Das, & Borah, 2015).

This study is included explicitly in this context, to demonstrate GEE's current
ability to analyze large amounts of free EO big data (for example, Landsat and Sentinel
images) for long-term spatiotemporal monitoring and its relationship to LC changes. GEE
is, in fact, Google's freshly launched computing platform "for petabyte-scale scientific
(Ravanelli et al., 2018)." Natural disasters (Alam & Ray-Bennett, 2021) have catastrophic
consequences for infrastructure, businesses, and individuals in the impacted area. More
than 5.7 billion people were impacted by catastrophes between 1998 and 2017, with more
than one million people died, and a total loss of 2.9 trillion dolars.

After the initial post-disaster reaction phase, which mostly consists of search and
rescue activities, recovery begins. According to the Sendai Framework (Ghaffarian,
Farhadabad, & Kerle, 2020), climate variability and change acting at broad scales can
lead to divergent changes in plant production at local scales (Ghaffarian et al., 2020).
Post-disaster recovery is the process of reconstructing communities in all aspects (for
example, physical, economic, social, and environmental) to return life, livelihoods, and
the built environment to their pre-impact, or even better, states (Bunting, Munson, &
Bradford, 2019).
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Quantifying how production responds to climate change at local scales is critical
for understanding underlying ecological processes and informing land management
decisions. However, it has traditionally been limited in spatiotemporal scale by using
discrete ground-based measurements or coarse resolution satellite observations.
Production responses to climate may now be assessed across large landscapes overtime
at a resolution appropriate for ecological and land management applications, as well as
image processing, thanks to the introduction of cloud-based computing through GEE. It
is predicted that more consumers from various areas would adopt GEE to tackle their
large data processing problems (Amani et al., 2020). GEE takes advantage of Google's
computing resources as well as publicly accessible RS datasets (Gorelick et al., 2017).
GEE is the most widely used big geodata processing platform, assisting scientists in their
research by offering free access to many remotely sensed datasets. GEE is accessible
through a web-based Application Programming Interface (API) and an Interactive
Development Environment (IDE).

Furthermore, users do not need to be familiar with web programming or the Hyper
Text Markup Language to utilize GEE for various applications. GEE offers characteristics
such as automated parallel processing and a fast computing platform (Amani et al., 2020).
GEE has recently been in the limelight when it comes to large data processing for remote
sensing. GEE is a cloud-based technology that makes use of Google's cloud to enable
worldwide parallel geospatial data processing. GEE is a free cloud platform that stores
petabyte amounts of remotely sensed data from the National Oceanographic and
Atmospheric Administration's Advanced Very High Resolution Radiometer Sentinel 1,
2, 3, and 5-P, as well as data from the Advanced Land Observing Satellite (ALOS)
(Tamiminia et al., 2020). A more complete study of the GEE platform is required to

explore many elements of the platform.
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3. MATERIALS AND METHODS
3.1. Study Area

The Amu Darya, also known as the Oxus River in ancient times, is one of Central
Asia’s longest rivers. From Greek and Roman times, the Amu Darya was known as the
Oxus in the Western world, and the Arabs named it the Jayn. Its current name is claimed
to be derived from the city of Amul in Turkmenistan, which is said to have formerly been
where modern-day Turkmenabat (previously Chéarjew) now stands. Although the Amu
Darya was well-known in antiquity, until the time of Peter | the Great, Tsar of Russia, the
river got little attention in Europe. Although the first reasonably accurate map of the river
was created in 1734, organized research in the region did not begin until the late
nineteenth century.

The Amu Darya is a west-northwest flowing river created by the confluence of
the Vakhsh and Panj (Pyandzh) rivers (at which point it is known as the Amu Darya). The
Amu Darya forms part of Afghanistan’s northern border with Tajikistan, Uzbekistan, and
Turkmenistan along its upper course. It then runs across eastern Turkmenistan's desert,
forming part of the border between Uzbekistan to the northeast and Turkmenistan to the
southwest in its lower course (Figure 3.1). The Amu Darya is 1,415 kilometers long, but
when measured from the headwaters of its headstream, the Panj River in the Pamirs, it is
2,540 kilometers long. The Amu Darya used to flow into the Aral Sea. However, in the
twentieth and twenty-first centuries, water diversion for agriculture led to the Aral Sea's
shrinkage and assured that the river no longer reaches its original terminal. The Amu
Darya is joined by three more tributaries not far below the Panj-Vakhsh junction: the
Qonduz River on the left (south) and the Kofarnihon (Kafirnigan) and Surkhan rivers on
the right (north). After leaving the highlands, the river turns northwest to pass the dry
Turan Plain, where it forms the border between the Karakum and Kyzylkum deserts to
the southwest and northeast, respectively. In this location, the Amu Darya loses much
water due to irrigation, evaporation, and seepage. The basin of the Amu Darya stretches
for 950 kilometers north to south and more than 1,450 kilometers east to west. It is
bordered on the north by the Syr Darya basin, east by the Tarim Basin, and south by the
Indus and Helmand river basins. Only half of the basin's entire size of 465,000 square
kilometers is contained within its source region, the Pamir and Hindu Kush mountain

ranges to the east. The water of the Amu Darya is changeable according to the seasons of

19



the year and also its surface rises in the rainy and wet seasons and its surface returns to

normal in the non-rainy and wet seasons, the images of which are shown in (figure 3.1).
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Figure 3.1. Location of the study area
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Image 3.1. Amu Darya, April 2021 (http-4)

Pictures of the current state of the Amu Darya from its various parts, taken in May
2021 by my friend Ali Reza Danesh, are shown in (image 3.2). It is also shown in (image
3.1) of the state of the Amu Desert.

The Syr Darya and Amu Darya river basins have a complex dams and reservoirs
that are primarily utilized for winter water storage and summer release for irrigation and
electricity generation. According to the World Bank, the Aral Sea Basin has around 80
water reservoirs, 45 hydroelectric facilities, and 57 major dams. Tajikistan (with the third
biggest hydroelectric resource in the former Soviet Union) and Kyrgyzstan are the two
countries with the most. The Amu Darya and Syr Darya have potential hydropower
resources of 306 and 162 billion kilowatt hours. The region's hydroelectric resources have
a total commercial potential of 127 billion kilowatt hours, with Tajikistan having 80
billion kilowatt hours, Kyrgyzstan 37 billion kilowatt hours, and Uzbekistan 10 billion

kilowatt hours.
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Image 3.2. Flooded parts around Amu Darya (Ali Reza Danish, May, 2021)
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Some natural elements such as geography, hydrography, hydrology, climate,
ecology, etc.;

e The social and economic requirements of the watercourse states.

e The population that is reliant on water resources; the impacts of water
consumption on other states; current and future uses

e Water resource conservation, protection, development, and efficiency and the
availability of alternatives to a planned or existing usage.

e Other elements of the 1997 United Nations Convention on International
Watercourses that are particularly relevant to the Aral Sea Basin States include
the responsibility not to cause serious harm to other watercourse States and the
general obligation to cooperate (through joint mechanisms or commissions)

e To regularly share information and offer early notification of planned actions
and emergency situations that might substantially negatively impact other

watercourse states (Farzaneh & Mohammadi, 2011).

3.2. Materials

3.2.1. Satellite imagery
3.2.2. Landsat

In order to estimate the land cover changes and the river dynamics in the study
are, three Landsat TM and one Landsat Operational Land Imager (OLI) satellite images
from four different years (1990, 2000, 2011, and 2020), in the period between the end of
May till the middle of July, have been used. These periods were cloud-free, enabling us
to perform the needed analyses. Also, the date selection was made according to the
meteorological data. May to July is the driest period after a wet period in March when the
flood is most likely to occur. In 2010, there was no cloud-free imagery, and 2011 was
selected instead. Details about the used satellite images can be found in Table 3.1. All of
the scenes were level-1 open-access data sets downloaded from the USGS webpage. The
satellite images were then pre-processed, applying atmospheric and geometric correction.

Landsat images of 30 x 30 m spatial resolution were used to assess the Amu Darya
river dynamics and monitor the spatial and temporal changes. Three snow and cloud-free

scenes of Landsat-5 Thematic Mapper for 1990, 2000 and 2010, and one scene of
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Landsat-8 OLI for 2020 from the month of June and July were acquired from the USGS
website (http-5), Properties of the images used in examining the changes.

Table 3.1. Landsat satallite features of images used

Spatial

No Sensor Senor Image download Resolution Date and Spectral
type date (m) path/Row  Resolution (um)
1 Landsat ™ 22/05/1990 30m 154/034 7 Bant
2 Landsat ™ 17/05/2000 30m 154/024 7 Bant
3 Landsat ™ 19/07/2011 30m 154/04 7 Bant
Table 3.2. Features of satellite imagery used
Sensor Date ve Path/Row Spectral Resolution (pm) Spatial Resolution (m)
22/05/1990 Band 1 0.45-0.52 30
Band 2 0.52-0.60 30
Landsat 5 Band 3 0.63-0.69 30
Thematic 17/05/2000 Band 4 0.76-0.90 30
Mapper(TM) Band 5 1.55-0.75 30
PP Band 6 10.4-12.5 120
19/07/2011 Band 7 2.08-2.35 30
Band 1 0.435-0.451 30
Band 2 0.452-0.512 30
Band 3 0.533-0.590 30
Landsat 8 Band 4 0.636-0.673 30
Operational Band 5 0.851-0.879 30
La‘; 4 Imager Band 6 1.566-1.651 30
Band 7 2.107-2.294 30
(L1 07/06/2020 Band 10 10.60-11.19 100
Band 11 11.50-12.51 100

3.2.3. Sentinel - 2

For the seasonal variations in 2020, we obtained image pre-processed and cloud-
free optical Sentinel-2 photos from GEE. Sentinel-2 uses 13 spectral bands to detect the
electromagnetic spectrum, spanning from visible to short-wave infrared (SWIR). The
satellite's visible and near-infrared (NIR) bands have a spatial resolution of 10 meters,
while the red-edge and SWIR bands have a spatial resolution of 20 meters. Other bands
with a spatial resolution of 60 m are utilized to detect water vapor, cirrus clouds, and

coastal aerosols (Brombacher, Reiche, Dijksma, & Teuling, 2020).
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Sentinel-2 (S-2) is a polar-orbiting optical mission for land and coastal region
surveillance and emergency services, with a wider spectral range and better performance
than earlier comparable imaging missions like SPOT and Landsat (Drusch et al., 2012).
The Sentinel-2 mission is responsible for monitoring agriculture, forestry, land-use and
land-cover change, mapping biophysical variables such as leaf chlorophyll content, leaf
water content, leaf area index, and risk and disaster mapping. The Sentinel-2 mission
comprises two satellites, Sentinel-2A and Sentinel-2B, each having an optical imaging
sensor called MSI (Multi-Spectral Instrument). The MSI is designed to measure reflected
radiation in 13 spectral bands ranging from Visible and Near Infrared (VNIR) to Short
Wave Infrared (SWIR) (Figure 3.2). On June 23rd, 2015, Sentinel-2A was launched,
followed by Sentinel-2B on March 7th, 2017. With the start of the operational phase (June
16th, 2017), the constellation of both satellites allows for picture acquisition over the
same area every 5 days or fewer, with a descending node at 10:30 a.m. (Main-Knorn et
al., 2017).

VNIR - SWIR -
T~ 7 w Tl
BI e BO - B0 -
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- B - BIL BIZ
10 m I |:| |:| I A D R P
B2 B3 B4 B8 |
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
nm nm nm nm nm nm nm nm nm nm nm

Figure 3.2. MSlspatial resolution (Main-Knorn et al., 2017)

The end-to-end Sentinel-2 system are divided into two parts:

The space segment will include the two orbiting satellites and their payload
sensor, and the ground section. The ground segment is responsible for data gathering from
the space segment, data processing, archiving, distribution, and overall mission control
(Drusch et al., 2012).

25



Frequent five-day revisits around the equator necessitate the use of two identical
Sentinel-2 satellites operating simultaneously. The orbit is Sun-synchronous, with a
descending node at 10:30 a.m. and a 786 km height (14+3/10 rotations per day). This
local time was chosen as the optimum compromise between cloud reduction and adequate
solar light. It is near to the Landsat local overpass time and matches SPOT's, allowing
long-term time series to be built using Sentinel2 data and historical pictures. (Brombacher
et al., 2020), (http-6), (http- 7).

3.3. GEE

In the second part of the study, the GEE platform has been used for long-term and
sesonal changes classification. For the long term, smilar to the OBIA, in GGE we have
used Landsat imagery, while for the seasonal changes we have used sentinel-2 imagery
taking into consideration its higher spectral and spatial resolution. In the next section, we

give overview of the GEE platform and the steps of the classification done in this study.

3.3.1. GEE platform overview

GEE is mainly composed of the following three platforms:

I. Earth Engine (EE) Explorer;

ii. EE Code Editor;

iii. EE Timelapse.

The details of each platform are discussed in the following sections.

EE Explorer is a data viewer tool that allows users to browse the EE Data Catalog's
vast datasets. Millions of publicly available datasets are included in the Data Catalog,
including the whole Landsat, MODIS, and Sentinel imaging collection and many
atmospheric, meteorological, and vector datasets. Every day, the Data Catalog receives
over 4000 new datasets. The Workspace and the DataCatalog constitute the EE Explorer.
Users may search through huge datasets in the Data Catalog and import them into the
workspace. Users may manipulate and visualize datasets in the workspace. The
Workspace also allows users to examine, magnify, and pan their data quickly.

It also allows users to control factors relating to visuals, such as contrast,
brightness, and opacity levels. Users can add additional levels to the Workspace to better
evaluate any changes over time. Users can choose between a three-band RGB

26



representation or a single-band grayscale/pseudocolor representation for the layers
(Amani et al., 2020).
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Layer Manager data catalog/ Workspace

Google EartlEngine

Figure 3.3. Earth engine explorer; platform
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Figure 3.4. Earth engine explorer; eata catalog

3.3.2. EE code editor
While the EE Explorer platform is meant to display datasets, the EECode Editor
is designed to analyze large data and create EE applications using the JavaScript

programming language. The EE Code Editor is made up of various parts, as shown in
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Figure 3.4: a code editor, a map, a layer manager, geometry tools, and several tabs,
including Script, Doc, Assets, Inspector, Console, and Tasks.
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Figure 3.5. Overview of the Earth Engine Code Editor

The central panel allows users to write their JavaScript code. GEE processes the
written codes and illustrates the results as images in the Map panel or as messages in the
Console Tab. Similar to the EE Explorer, users can set the visualization parameters via
the Layer manager in the Code Editor. In the Script tab, numerous examples of scripts
facilitate devel- oping applications. There are more than 800 prebuilt functions in the EE
library, users can become familiar with them using the Doc tab, providing API reference
documentation (Amani et al., 2020).

As previously mentioned, GEE includes big open-access datasets. Users,
however, are not restricted to use only these datasets. They can upload and manage their
own data using the Asset Asset tab. It is also possible to interactively query the map using
the Inspector tab. Finally, the Geometry tools allow users to draw geometric features,
such as points, lines, and polygons, which can be used in further analyses (Amani et al.,
2020).
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3.3.3. EE time-lapse GEE

GEE's Time-laps platform (Amani et al., 2020) integrates petabytes of RS
information over four decades to generate a worldwide, zoomable, and cloud-free movie
spanning place and time. The GEE platform's enormous computing capability is
demonstrated via the Timelapse platform. This platform offers the most comprehensive
view of the planet, exposing how its inhabitants treat it. For example, with GEE Time-
lapse, one can readily witness the rapid retreat of the Mendenhall Glacier in Alaska, the
mining industry's decapitation of the West Virginia Mountains, forest destruction in the

Amazon, and the drying of the Urmia Lake in Iran over time.

3.3.4. GEE datasets

Earth Engine comprises a multi-petabyte data catalog that is ready for analysis, as
well as a high-performance, inherently parallel compute service. It is managed and
accessed via a web-based interactive development environment (IDE) and an Internet-
accessible application programming interface (API) that allows for quick prototyping and
display of outcomes (Gorelick et al., 2017).

For interactive data and algorithm exploration and processing, GEE provides a
somewhat user-friendly front-end solution. The access is granted only after the
development team has approved the type of possible usage and the user's background.
Academics, researchers, hobbyists, and remote sensing experts will benefit from the GEE
(Vasku Marek, 2019).

The EarthEngine with Code Editor can be called via: (http-12). A detailed guide
to the Code Editor can be found here: (http-8) (Stuhler, 2016).

Landsat datasets are valuable resources to perform temporal analysis. Landsat
collection includes seven multispec- tral satellites: Landsat 1-3 (1972-1983), Landsat-4
(1982- 1993), Landsat-5 (1984-2012), Landsat-7 (1999-present), and Landsat-8 (2013
present). Landsat satellites have optical sensors, the images ofwhich may be obscured by
clouds. Therefore, temporal cloud detecting, masking, and removing are essential
preprocessing steps in different applications, such as image clas- sifications using
multitemporal imagery. Additionally, the availability of the multitemporal Landsat
datasets has facilitated national and global scale analysis (Mateo-Garcia, GOmez-Chova,
Amords-Lopez, Mufoz-Mari, & Camps-Valls, 2018). Landsat-based datasets within
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GEE have been employed in various applications. For in- stance, Landsat data available
in GEE have been widely utilized in generating Land Cover/Land Use (LCLU) maps.
Moreover, urban detection and extraction is an impor- tant task in the economic
investigation due to rapid population growth. Therefore, several studies have utilized

Landsat data in river monitoring (Ravanelli et al., 2018).

3.3.5. GEE classification

To classify the study area into four classes: Water, Bare Land, Cropland, and
Wetland, image collections from Landsat — 5 (1990, 2000, and 2010), Landsat — 8 (2020),
in the cloud computing platform, GEE has been used. The image collections were filtered
by date and images from June and July were used in further processing. The obtained
images were reduced to a single image to get cloud-free imagery, calculating their median
values. Six Landsat bands (Blue, Green, Red, Near Infrared, ShorthWave Infrared-1,
ShorthWave Infrared-2), were used to classify. In addition to the mentioned bands, two
spectral indices calculated from Landsat data were added to the investigation; Normalized
Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI),
Modified Normalized Difference Water Index (MNDWI). Details and equations of the
indices are given in the table below. NDWI, MNDW!I, and NDVI are commonly
suggested in the literature for water detection (Kordelas, Manakos, Aragonés, Diaz-
Delgado, & Bustamante, 2018). The MNDW!I ranges between -1 and 1, with high values
corresponding to water and low values to land. The MNDWI is calculated using Sentinel-
2’s green (Band 3 at 559.8 nm) and short-wave infrared (SWIR) bands (Band 11 at 1613.7
nm) (Brombacher et al., 2020).

Table 3.3. Spectral indices used in the classification

Index Used Bands Equation
1 NDVI Red, NIR NIR — Red / NIR + Red
2 NDWI Green, NIR Green — NIR / Green + NIR
3 MNDWI Green, SWIR Green — SWIR / Green + SWIR

The NDWI ranges between -1 and 1, with high values corresponding to water

and low values to land. The NDWI is calculated using Sentinel-2’s green (Band 4 at
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664.6 nm) and NIR bands (Band 8 at 832.8 nm). The NDVI ranges between -1 and 1,
with high values corresponding to vegetation and low values to land. The NDVI is
calculated using Sentinel-2’s green (Band 8 at 832.8 nm) and Red bands (Band 4 at
664.6 nm).

For the four classifications, the same samples have been used. Thus, the samples
were carefully selected from the unchanged land covers over the years. The sample
training was done over the Landsat data, with validation over high-resolution imagery
from Google Earth. The classification was performed using a LIBSVM classifier. 50% of
the samples were used in the classification, while 30% were used for the accuracy
assessment where overall accuracy and kappa statistics were calculated for every year.
The same methodology has been used for the seasonal analysis. Details about the used

methodology are given in the flowchart in Figure 3.6.

3.3.6. Support vector machines (SVM)

Support Vector Machine (SVM) has been a prominent supervised machine
learning (ML) technique for classification and regression in recent decades (http-10). The
perpendicular distance or margin between decision planes (designated as decision border)
and data points is crucial to SVM. As a decision boundary, the most significant margin
has been chosen. The objects are divided based on this distance or margin, with distinct
class memberships (Heenan et al., 2015). The position of the border is determined by a
subset of data known as the support vector (Bar, Parida, & Pandey, 2020). The most
widely used Mapping and Monitoring Amu Darya River Dynamics of SVM were used to

categorize the river mapping in this study.
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Figure 3.6. Flowchart of the GEE classification

3.3.7. GEE code

After the study area has been selected, it has been added as a Geometry in the
GEE platform. Furthermore, the four classes, Water, Cropland, Bare land, and Wetland
have been distinguished in the study area. Using Landsat for the yearly, and Sentinel-2
for the seasonal analyses, 30 sample points for each class have been selected. Then, image
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collections have been selected and processed. The image collections have been clipped
according to the study area, date, cloud cover, and the same bands have been used for
Landsat — 5 and Landsat — 8 for the yearly analysis. In Figure 3.7 a sample of the GEE

code for image collection has been given.

1

2 Map.centerObject(amu);

3 //Map.addLayer(amu);

4

5 // landsat image

6

7 var landsat2e20 = ee.ImageCollection('LANDSAT/LCO®8/CO1/T1 SR')
8 .filterBounds(amu)

9 .filterDate('2020-06-01", '2020-87-308")

10 .median()

11 .select('B[2-7]")

12 .clip(amu);

13  print('Landsat Image: ',landsat2e2e);

14 Map.addLayer(landsat2e2e,{min:200, max:2000,bands:['B4", 'B3", 'B2"']}, Landsat2e20");

a
n

Figure 3.7. GEE code sample for image collection

Three different vegetaion indices have been added to the dataset. A code sample

for the index calcualtion using Landsat — 8 is given in Figure 3.8.

A9 //.eeeernnnnoeesonsnnsas NDVI..:vuuoeeunnnennnnns
20 var landsat2020ndvi = ee.ImageCollection('LANDSAT/LCO8/C01/T1_SR")
21 .filterBounds(amu)
i 22 .filterDate('2020-06-01','2020-07-30")
23~ var ndvi = landsat202endvi.map(function(img){
24 return img.normalizedDifference(['B5','B4']);
250 1) 3
26 var ndvi2020 = ndvi.max().clip(amu).rename('ndvi');
27 print('NDVI2020: ', ndvi2020);
28 Map.addLayer(ndvi2e20,{min:0,max:1,palette: [ '#ffffff', '#1bffoe’', #000000']}, NDVI2020');

Figure 3.8. Index calcuation in GEE

After stacking the Landsat bands and the calucated indices, the model has been
trained using the samplings for each class. Sample of the code for the classifier and the

classification has been given in Figure 3.9.

72 T classifier..ieviiiniinnninnennn
4

75~ var classifier = ee.Classifier.libsvm().train({

76 features: training,

77 classProperty: 'landcover’

78 });

79

2 classification.....ovvvvvnnnnnnannns
81

82 wvar classified = prostack.classify(classifier);

83

Figure 3.9. Classification in GEE
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The accuracy assessment of the classification has been done using 50% of the
collected samples. Thus, 50% of the samples were used for classification, while 50% were
used for testing the developed model. Sample of the accuracy assessment code is given
in Figure 3.10.

1e@ // Accuracy Assessment

101 wvar split = ©.5; // Roughly 50% training, 5% testing.

102 var trainingPartition = withRandom.ftilter(ee.Filter.lt( 'random', split));
183 var testingPartition = withRandom.filter(ee.Filter.gte( 'random', split));
184

185 // Trained with 5% of our data.

106 = var trainedClassifier = ee.Classifier.libsvm().train({

107 features: trainingPartition,

108 classProperty: classProperty,

109 ~ inputProperties: ['B2','B3",'B4",'B5",'B6", 'B7 ",
110

11 });

112

113 // Classify the test FeatureCollection.

114 var test = testingPartition.classify(trainedClassifier);

115

116 // Print the confusion matrix.

117 var confusionMatrix = test.errorMatrix(classProperty, 'classification’');
118 print('Confusion Matrix', confusionMatrix);

119

120 //Print the overall accuracy to the console

121  print('validation overall accuracy: ', confusionMatrix.accuracy());

122  print('Kappa: ', confusionMatrix.kappa());

Figure 3.10. Accuracy assessment in GEE

Afterwards, the results have been exported and analyzed in a GIS software
(ArcGIS) where spatial analyses for land conversion have been made.
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4. RESULTS

The results from the analyses are presented in three different parts;

i.  First, the results of the object-based long-term (1990-2020) classification
have been presented. The findings of the research have been published in
the “Moving Borders: Mapping and Monitoring Amu Darya River
Dynamics Using Remote Sensing Data and Techniques” research paper,
published in the Geodetski List journal. Also, part of the thesis has been
complied as a book chapter in the book “Environmental Degradation in
Asia: Land Degradation, Environmental Contamination, and Human
Activities” (to be published).

ii.  The long-term (1990-2020) GEE classification results have been presented
in the second part of the results section. The findings of the research have
been presented at the “5th International Electronic Conference on Water
Sciences”, titled “Monitoring Amu Darya river channel dynamics using
remote sensing data in Google Earth Engine”.

iii.  The results of the seasonal analyses have been presented in the third part

of the results section.

4.1. Obcect-Based Classification Results

The land cover classification of the object-based results were mapped and
analyzed. The overall accuracy of the classification is 85%. For the accuracy assessment,
400 random points have been used. As a reference data, the Landsat images were used,
complied with high-resolution imagery from Google Earth from the same season and year
as the classified images. The acceptable critical accuracy value in classification with
middle-resolution satellite imagery is 75%, which means that the results of the
classification in this paper are acceptable (Barakat, Ouargaf, Khellouk, El Jazouli, &
Touhami, 2019). The total area of the study area is approximately 8,720 km2. The results
reviled that, of the total area, in 1990, 76.8% (6,700 km2) was occupied by bare land,
16.8% (1,470 km2) was occupied by croplands, 2.2% by water, and 4% by wetland areas.
In the year of 2000, the land cover has changed as follows, 76% bare land, 17% cropland,
2.6% water, and 4.3% wetland areas. In 2011, there was significant changes in the land
cover, where the bare land area dropped to 71.7%, the cropland area increased to 22.6%,
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2.4% was covered by water, and 3% by wetlands. The area cover with water was lowest
in 2020 with 1.9%. The land conversion between the classes can be seen in Figure 4.1
and Figure 4.2. From Figure 4.2 it can be clearly seen that there is a constant transition
between the classes water, wetland, and cropland, where the areas covered with bare land
are usually stable. The biggest transition between land cover classes can be noticed
between water and wetland classes. Also, it should be noticed that more than 30% of the
water areas changed in the investigated periods. In the period between 1990 — 2020, more
than 50% of the wetland areas transited to cropland (approximately 30%), and water and
bare land (10%).

orer o een ed ween . o e wn o

" a) Land Cover Map (1990) + b) Land Cover Map (2000)

Figure 4.1. Land cover classification results for: a) 1990, b) 2000, ¢) 2011, d) 2020

36



a) b)

100% 100%

90% 90%
80% 80%
70% 70%
60% 60%
0% 50%
409 0%
30% 30%
20% 20%
10% = 10%

0% 0%

® Bare Land Cropland = Water ® Wetland m Barc Land Cropland = Waler = Wetland
¢) d)

100% 100%
90% 90%
80% 80%
70% 70%
60% 60%
50% 50%
0% 40%
30% 0%
20% 20%
10% 105

0%
% " wBarcLand = Cropland " Watcr = Wetland mBarc Land = Cropland = Water = Wetland

Figure 4.2. Land conversion between: a) 1990 — 2000, b) 2000 — 2011, c) 2011 — 2020, d) 1990 —
2020

Table 4.1. Confusion matrix for the land cover classification

Class Bare Land Cropland Wetland Water Total
Bare Land 247 33 2 1 283
Cropland 13 59 4 0 76
Wetland 1 3 19 0 23

Water 1 1 2 14 18

Total 262 96 27 15 400

AA OA = 85%; kappa =0.75

4.2. Spatial and Temporal River Channel Changes and Dynamics

The historical river channel changes are shown in Figure 5.1 (a—c) in three
different periods from 1990 — 2020. The blue color represents the active river channel in
both years, with yellow color are represented the eroded areas, while with red color are
illustrated the accretions. From the results, it can be noticed that very small part of the
channel remained unchanged in the last thirty years. Comparing each period individually,
and thirty years’ changes, during the first period, 1990 — 2000, the overall erosion and
accretion areas are 4,878.1 ha and 8,377.4 ha, respectively. The second period, 2000 —
2011, showed different results, where the accretion area was bigger than the eroded area.
The overall accretion and erosion areas in this period are 8,257.9 ha and 6,415.8 ha,
respectively.

37



Table 4.2. Erosion-accretion amount from 1990 — 2020 in the study area

Erosion Accretion
Duration Total (ha) (%) Total (ha) (%)
1990 — 2000 (10 years) 4,878.1 24.9 8,377.4 42.8
2000 — 2011 (11 years) 8,257.9 35.8 6,415.8 27.8
2011 — 2020 (9 years) 7,692.4 36.2 5,069.5 23.9
1990 — 2020 (30 years) 9,775.6 525 8,810.0 473

Similar were the results from the second period where the overall erosion and
accretion were 7,692.4 ha and 5,069.5 ha, respectively. The comparison between the first
(1990) and last investigated year (2020), with duration of thirty years, showed overall
erosion and accretion of 9,775.6 ha and 8,810.0 ha, respectively. The details are presented
in Table 4.2.
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Figure 4.3. Water loss and water gain in Amu Darya river for three periods (1990 — 2020)

38



The shifting of the channel line from 1990 to 2020 on both sides of the river was
measured through 7 cross-sections at an interval of 10 km along the river and the results
are presented in. The analysis showed that the highest amount of erosion of land observed
on the both sides of the bank occurred in section F (right bank, 1.4 km) in the period of
1990 — 2000. From it can be seen that the maximum amount of accretion of land was
noticed in the left bank along section G (1.3 km) in the period of 1990 — 2000.
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Figure 4.4. River border shifting from 1990 — 2020

Table 4.3. River border shifting 1990 — 2020 in m. Minus sign (-) indicates narrowing (from north to
south) and plus sign (+) indicates expanding (from south to north)

1990 - 2000 2000 - 2011 2011 - 2020 1990 - 2020
Section Left Right Left Right Left Right Left Right
bank bank bank bank bank bank bank bank
A +120 +300 +100 +90 +240 +55 +420 -1023
B +61 0 - 301 -170 0 +240 +360 0
C -210 0 180 0 -510 0 520 0
D +95 0 -63 +60 0 -30 -60 0
E +420 -450 +730 -660 +150 -390 +1320 -1170
F +780 -1410 +300 +60 +330 0 +1440 0
G +1320 -1050 +90 +130 +360 -1140 +420 -930
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If the first and the last period of the investigation over the study area is analyzed the
maximum amount of erosion of land observed on the both sides of the river occurred in
section A and E (over 1 km), and the maximum accretion occurred in sections E and F
(over 1.3 km) (Mobariz & Kaplan, 2021).

4.3. GEE Yearly Results

For every inspected year, classification has been performed within the GEE. 50%
of the training samples were then used for the accuracy assessment analyses, and the
results are presented in. As it can be seen from Table 4.2, the validation overall accuracy
is higher than 0.87 in the four classifications, while the kappa statistics vary from 0.83 —
0.97.

Table 4.4. Accuracy assessment results

Validation Overall

Year Aeuracy kappa
1 1990 0,90 0,86
2 2000 0,96 0,95
3 2010 0,87 0,83
4 2020 0,98 0,97

The results of the classifications are shown in While there are no significant
changes in the Bare Land class, a shift of the river bed can be noticed in several points of
the study area. For more detailed investigation, land conversion during the three
investigated periods (1990 — 2000; 2000 — 2010; 2010 — 2020) has been made. The
conversions between the classes are shown in

In all three periods, the class Bare Land did not receive any additional area from
the other classes, but small areas of Bare Land were converted to, generally, cropland.
The classes Wetland and Water changed the most, with more than 40% conversion of the
Water class to Wetland and Cropland. From 1990 to 2000, and 2010 to 2020, this
conversion was 20% and 25%, respectively. As expected, the results showed that the river
bed mainly shifts towards the Wetland and Cropland, or areas with soft soil. For a more
detailed investigation, we recommend considering the geological characteristics of the

river bed and its surroundings.
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Figure 4.5. GEE Yearly Classification results
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Figure 4.6. Land conversion results; A) 1990 — 2000; B) 2000 — 2010; C) 2010 — 2020

Also, the dynamics of the river in the inspected years can be seen in Figure 4.7. The
dynamics of the river are seen in the period between 1990 — 2000, and 2010 — 2020.
According to the statistical analyses, the water area in 2000 was approximately 30.000 ha
smaller than the area in 1990. The water area then gains approximately 19.000 ha in 2010
in comparison with 2000, and then it got lowered in 2020 for 11.000 ha. The results
showed that the river dynamics mainly occupy the wetlands and croplands area, thus

causing damages in farmers' land, and also some small villages around the river bed. It
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should be also mentioned that the river dynamics are constantly changing the natural
border between the sharing countries, which causes even bigger problems for farmers to
claim their rights (Sajjad et al., 2020).

Figure 4.7. Amu Darya river dynamics; A) 1990; B) 2000; C) 2010; D) 2020

4.4. GEE Seasonal Results

For every inspected season, classification has been performed within the GEE.
50% of the training samples were then used for the accuracy assessment analyses, and the
results are presented in Table 4.5. As it can be seen from Table 4.5, the validation overall
accuracy is higher than 0,97 in the four classifications, while the kappa statistics vary
from 0.91 — 0.95.

42



Table 4.5. Accuracy assessment results

Seasons Validation Overall Accuracy Kapa
1 Winter 0.94 0.93
2 Fall 0.96 0.95
3 Summer 0.93 0.91
4 Spring 0.96 0.95

While there are no significant changes in the Bare Land class, a shift of the river
bed can be noticed in several points of the study area. For more detailed investigation,
land conversion during the three investigated periods (fall — summer; summer — spring;
spring — winter) has been made. The conversions between the classes are shown in Figure

4.17, Figure 4.18, Figure 4.19.

“ 66°0'0"E 67°0'0"E 68°0'0"E

s _ ) 2

a0 a) ’ g
Land Cover Map (Winter) ]

q

z A 4

2 "l ¢

; N - e ==&

Legend u ; ; ] i "
Class Name | w@»n
“ Water | g

Cropland
Bareland | 0510 20 30 40
“ Wetland ' anmmm = Kilometers
T 66°%00E T er0wE 68°0'0"E

Figure 4.8. Form Winter Season Classification result

43



“ 66°00"E 67°00"E 68°00"E .
. I [ | N
2 p { WSS 2 s =S e e e s — — = = -
) ' Land Cover Map (Spring) 5
| | |
|
|
|
g :
3 Legend | - e R —E
Class Name | w@n i
o8 Vater | S
@, Cropland | I |
~ Bareland 0510 20 30 40 |
®@ Wetland ENEEE . Kllomqters |
o : | .,/'
66°0'0"E 67°00"E 68°0'0"E
Figure 4.9. Classification result From Spring Season
z 66°00"E 67°00"E 68°00°E )
R I | g
= = ' Land Cover Map (Summer) T
: ' |
[
|
|
&
i = 2 o o o it ¢
- o E
Class Name ’
o vaer 3 I
O Cropland ! |
" Bareland: 0510 20 30 40 |
% Wetland snmmm  mmm Kilometers |
. : . )
66°00"E 67°0'0"E 68°0'0"E

Figure 4.10. Classification result From Summer Season

44



37°20'0"N

37°0'0"N

. |

' Land Cover Map (Fall)
: |

o6 Water
@4, Cropland | |
* Bareland'
0510 20 30 40 |
O Wetland | pnmm  mmKil
lomqters |

66°00"E 67°0'0"E 68°0'0"E

Figure 4.11. Classification result From Fall Season

37°20'0"N

Figure 4.12. Classification result from Winter Season in the zoom mode

45



66°30'0"F 66°40'0"F

37°20'0"N

G ‘ - # T ol " o
b s Nale | W@u R
o “w‘m ' -.". 1 g
" Cropland o :
~ Bareland | 612 4 & 8 -
t’ Wetland = w meemw e Kilometers
66°30'0"E e ey

Figure 4.13. Classification result from Spring Season in the zoom mode

66°30'0"F 66°40'0"F

37°20'0"N
37°20'0"N

66°30°0"E 66°40'0"E

Figure 4.14. Classification result from Summer Season in the zoom mode

46



66°40'0"F

Kilometers

66°40'0"E

Figure 4.15. Classification result from Fall Season in the zoom mode

66°30"0"E 66°40'0"E

37°20'0"N

37°200"N

(Winter,Spring,Summer,Fall)
Winter_ [l Water
Spring_ |l Water

Summer Water

Fall_ [ Water

01 2 4 6 8

O e e Kilometers

66°30'0"FE 66°40'0"F

Figure 4.16. Classification result from four season for the water

47



100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

Class_Fall v
m Water m Cropland Bareland m Wetland

Figure 4.17. Land conversion results (Fall_summer)

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0% Class_Summer ¥
B Water ® Cropland Bareland B Wetland
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Figure 4.19. Land conversion results (Spring -Winter)

In all three periods, the class Bare Land did not receive any additional area from
the other classes, but small areas of Bare Land were converted to, generally, cropland.
The classes Wetland and Water changed the most, with more than 40% conversion of the
Water class to Wetland and Cropland. From winter to fall, and summer to spring, this
conversion was 20% and 25%, respectively. As expected, the results showed that the river
bed mainly shifts towards the Wetland and Cropland, or areas with soft soil. For a more
detailed investigation, we recommend considering the geological characteristics of the
river bed and its surroundings (Mobariz & Kaplan, 2020).
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5. DISCUSSION

The main goals of the presented paper were to determine the Amu Darya river
channel dynamics and the changes that occurred in its surroundings between Afghanistan,
and Uzbekistan and Tajikistan. River dynamics can often cause considerable hazards to
those in the surrounding area, it is more complicated for the locals who depend mostly on
agriculture to claim their rights as Amu Darya also represents the international border
between several countries. In order to help decision-maker and also to lower geo-political
tensions between the sharing countries, timely mapping and monitoring of the shared
areas as well as its surroundings are crucial.

Landsat as the only satellite that provides historically imagery since 1980, with
30 m spatial resolution offers valuable data that can be used for accu- rately monitoring
of the Amu Darya river dynamics and land cover changes of its surroundings. Thus, in
this paper, four Landsat images in the period of 1990 — 2020 were used. However, in
future studies, Sentinel-2 that offers better spatial and spectral resolution can be used for
more accurate and more detailed results.

Landsat as the only satellite that provides historically imagery since 1980, with
30 m spatial resolution offers valuable data that can be used for accu- rately monitoring
of the Amu Darya river dynamics and land cover changes of its surroundings. Thus, in
this paper, four Landsat images in the period of 1990 — 2020 were used. However, in
future studies, Sentinel-2 that offers better spatial and spectral resolution can be used for
more accurate and more detailed results.

While most studies in the literature focus only on river dynamics (Langat et al.
20193, Billah 2018) or land cover changes in the river basin (Langat et al. 2019b, Cai et
al. 2016), this study evaluated both land cover changes and river dynam- ics of Amu
Darya river. For that purpose, an object-based classification has been made over the study
area with four classes (Bare land, Cropland, Water, Wetland) and the land conversion has
been estimated for the analyzed thirty-year period. The results showed that large areas of
wetland (possible highly watered cropland) and cropland are being flooded by the new
course of the river, meaning that the river causes damages to local peoples’ lands. Also,
it should be noticed that more than 30% of the water areas changed in the investigated
periods. In the period between 1990 — 2020, more than 50% of the wetland areas transited
to cropland (approximately 30%), and water and bare land (10%). These results are

supported with high accuracy of 85% overall accuracy, and accuracy higher than 90% for
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the water class. After the first part of the study, analyses of the riv- er dynamic have been
made. For that purpose, only water class, or the river line in the same period was analyzed.
It should be mentioned that the right part of the river represents Tajikistan, while the left,
Afghanistan, and with every shift of the river, left or right, the international border
between these two countries is being changed. The erosions and accretions of the river
have been addressed thus also presenting the active part of the river in both assessed

periods (Fig. 5.1).

Uzbekistan

Legend

E 1990 River channel
[:] 2020 River channel

Uzbekistan

Afghanistan

Figure 5.1. River bank shift 1990-2020
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Results showed that in the studied part of the river (approximately 70 km length),
very small part of the channel remained unchanged. The comparison between the first
and last classification showed overall erosion and accretion of 9,775.6 ha and 8,810.0 ha,
respectively. However, although the areas differ for approximately 900 ha, the damage is
rather higher. From the river shifting results, it can be noticed that most of the time, the
river shifts from North to South, causing floods and detriment on the croplands on the
local people on the Afghanistan side, and benefits to the local people on the Tajikistan
side of the border. The results can be useful in practical applications where regular moni-
toring of river behavior is needed for decision making. Such information can help both
local and international administration in resolving problems due to unresolved water
sharing policies, and can help in making geopolitical decisions beneficial for both parties.
Also, the results can be crucial in flood risk manage- ment strategies, irrigation plans,
monitoring systems, etc. The most drastically shifts between 1990 and 2020 are shown
on Figure 4.4.
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6. CONCLUSION

The Amu Darya is the most water-rich sea in Central Asia, originating in the Pamir
Mountains and flowing about 1,126 km along Afghanistan's northern borders with
Tajikistan, Uzbekistan and Turkmenistan. The port of Amu Shirkhan is located on the
shores of Bandar and Hairatan ports, through which Afghanistan's exports or imports to
Central Asian countries are exchanged. Residents of the northern and northeastern
provinces of the country have repeatedly complained about the destruction of the Amu
Darya River and the government's negligence, but the central and local governments have
not yet taken effective action.

As the pressures of increasing destruction by the waters of the Amu Darya on the
people and the inhabitants around the sea were greater and a large number of people
suffered irreparable damage due to these devastating events and people were forced to
leave their homes. It is also noteworthy that climate change is affecting the low-water
areas, neighboring countries have increasingly managed and controlled the infrastructure
and management of transboundary waters in Afghanistan, and unfortunately have
suffered the most from Afghanistan. Similarly, over the past few years, the Government
of Afghanistan has raised its awareness of the importance of addressing the issue of cross-
border issues with low-water neighbors to ensure the most efficient use of the region's
precious water resources. As well as awareness of the damage done to Afghanistan. This
research paper is a step towards strengthening Afghanistan's transboundary water
dialogue by reviewing the situation and proposing possible solutions to promote
cooperation and water management in the Amu Darya Basin.

In the presented study, the land cover changes and river dynamics of inter-
national borders and its surroundings were investigated using remote sens- ing satellite
imagery. The most significant contribution of this tesis it that is points out a very
important problem many local people are facing, mostly in the developing countries, but
in fact, it should also be stated that this is also an international problem. The case study
of the Amu Darya river is just an example of what many local people who mainly depend
on agricultural are fac- ing with. Having said that, it should not be forgotten, that with the
results in the study the international borders are also being monitored though satellite
imagery. As not many studies can be found on the topic monitoring river that also
represent international borders, we believe that the conducted study can be of great use

and open many research opportunities for many interdisciplin- ary projects. For future
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studies, we recommend investigating the same topic on different study area, and for more
accurate results, the use of imagery with higher resolution, such as Sentinel-2 (Mobariz
& Kaplan, 2021).
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