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SUMMARY

Let us consider a circular membrane extending over a domain D defined
by a < r < b. It is uniform, homogeneous, isotropic and has an angular velocity
Q2 (Fig. 2.3). The membrane on elastic foundation which is homogeneous is taken
to be rigidly clamped on a circle of radius a and free at the outer edge, r = b. By
taking an infinitesimal element of the membrane, equilibrium equations and in-
plane stresses are obtained. The resultant expressions are same as those which are
used in  the studies of Barasch-Chen and Eversman. Then the equation of motion
is derived by taking again an infinitesimal element in rectangular coordinate,
and the equation of motion is transfered from (z,y) set to (r,6) set. So the
governing partial differantial equation is reached. In order to solve the governing
differantial equation, separation of variable is used. Finally we reach an eigenvalue
problem. After a comparison function is selected, stiffness and mass matrices are
constructed by means of Rayleigh-Ritz method, and the governing differantial
equation is numerically solved. The results are presented by using graphics and
shapes.

Later the membrane is considered to subject the harmonic excitation. It is
analyzed in the condition that its boundary at r = a is subjected to translational
harmonic motion in the form of Asinwt. The governing differantial equation
is modified and numerically solved by modal analysis. Again the results are
presented graphically.

Finally a different approach to the problem is made. In order to solve
the problem without elastic foundation a finite element software package, called
” Applied Structure”, is used. The stress and strain distributions, and mode
shapes are presented graphically.

In this study it is shown that the frequencies of a centrally clamped
spinning membrane are affected from the angular velocity and the clamped radius
seriously. Mode shapes obtaining in the second chapter are similar to those
obtaining by using Applied Structure software. This justifies that the results are
accurate enough.

Using both FTN77 and AutoLISP programming languages, the vibration
phenomena is succesfully simulated in this thesis.

vi



OZET

MERKEZI OLARAK ANKASTRE BiR DAIRESEL, |
MEBRANIN DUZLEMINE DiK TITRESIM ANALIZI

Dairesel diskler, bir ¢ok kullamm alanimin olmasindan dolay: , eskiden
oldugu gibi bugiin de degigik mithendislik disiplinlerinin ilgisini gekmektedir.
Farkli yiikler altinda, degigik simir sartlarinda dairesel diskler pratikte oldukga
fazla uygulama alam: bulmaktadir. Solar yelkenler veya uzay araglar icin optik
veya radar yansiticilar, oldukga biiylik ve eksenleri etrafinda donen dairesel diskler
i¢in iyi bir uygulama alanidir. Son yillarda modern bilgisayarlarda kayit cihaz
olarak kullamlan diskler (floppy disks) tizerindeki galigmalar, ekseni etrafinda
dénen dairesel diskler i¢in yeni bir uygulama alan1 agmigtir. Bu genis uygulama
alan1 dairesel diskler {izerindeki aragtirmalarin artacagini gostermektedir.

Dairesel disklerin analizi, stabilite, titregim, gerilme dagilimi, tasarim, op-
timizasyon ve yer degigtirme konularinda, ¢ok fazla teorik ve deneysel caligmay:
icermektedir. Bu konularla ilgili problemlerin ¢6ziimiinde genellikle sayisal ¢ozim
metodlarina gereksinim duyulur.. Clinkii analitik ¢dziimler sadece dairesel disk-
lerin dzel durumlan igin vardir. Bunun sebebi, fiziksel olay1 temsil eden diferan-
siyel denklemlerin karmagikliginin ilave terimlerle hizla artmasidir.

Bu ¢aligmada elastik homojen bir zemine oturan, dizlem, dairesel, homo-
jen, izotropik ve ¢ok ince bir diskin dinamik analizi tizerinde g¢aligilmigtir. Disk b
yarigapinda olup, r = a egrisi boyunca ankastredir ve simetri ekseni etrafinda 2
agisal hiz1 ile dSnmektedir (Sekil 2.3).

{1k olarak, yukarida geometrisi agiklanan disk izerinden sonsuz kiiciik bir
parca alinarak, bu eleman lizerine etkiyen kuvvetler digintlmiis ve problemin
tabiatindan kaynaklanan eksenel simetri ve dlizlem gerilme hali de g6z 6niinde
bulundurularak radyal ve agisal dogrultulardaki denge denklemleri

dor L T =90 | e = g
or r

1 80'9

v 50 =

ve diizlem gerilmeler
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formunda bulundu. g1, pg ve ps diskin i¢ yaricap: a, dig yarnigap: b ve Poisson
oramina baghdir.

(1 - v)mN2a?0? 3+ v)b? — (1 + v)a?

= 8 (14 v)b? 4+ (1 — v)a?
Mo = ] _ls- Vmﬂz

s = 1 -}-83qu2

Problemi temsil edecek olan hareket denklemini elde edebilmek igin ilk
olarak bazi kabullerde bulunulmugtur.

1. Disk yeterince incedir. Yani miikemmel derecede esnek ve egilme mo-
menti tagimamaktadar.

2. Disk tuzerine etkiyen gerilme, sinira normaldir.

3. Agirlik kuvvetleri ihmal edilmigtir.

4. Disk diizleminden digar: olan yer degigtirmeler diskin boyutlarina kiyasla
cok kiiguktir.

5. Egim, bir birim yaninda, oldukca kii¢iktir.

6. Dizlem yer degistirmeler ihmal edilebilir mertebededir.

Yukaridaki kabuller 1g181nda hareket denklemini elde edebilmek igin, tekrar
kartezyen koordinatlarda sonsuz kiiciik bir eleman alinip, iizerine etkiyen kuvvetlere
dikkat edilerek, z yoninde Newton’un ikinci kanununu tatbik etmek suretiyle,
hareket denklemi kartezyen koordinatlarda tiretilmig olur. Anolojiden yararla-
narak, bu hareket denklemi polar koordinatlara dontgtirilmigtir.

0%u

y—ku—m—=0

10
“a_(rd a12

50+ 260("959

Problemimizi temsil eden diferansiyel denkleme ulagtiktan sonra smir
sartlar1 da agagidaki gibi ahinabilir.

u(a,0,t) =0

0%u(b,0,1)
or?
u(r,9,t) = u(r,0 + 7,1)

(au(r,G,t)) _ (au(r,e,t))
a0 9=0¢ 99 f=fg+7

viit

=0



Diferansiyel denklemi ¢6zebilmek i¢in agagidaki gibi bir degisken doniigimi uygu-
lanmagtir.

u(r,8,t) = W(r)0(8)T(t)

Bir takim matematiksel iglemlerden sonra
T(t) = cos(wt — ¢)
6(0) = COS({,'G), &= L,2,--

olarak bulunmugtur.

W (r) fonksiyonunu bulabilmek icin diger iki ¢dzlimden yararlamildiginda,
bir 6zdeger problemi ile karsilagilmaktadir. Bilindigi gibi 6zdeger problemlerinin
genel formu L{W] = AM[W] seklindedir. Elimizdeki problem icin L ve M opera-
torleri L a b

L= 2o 0y -2 2

mdr m
M_—

Bu agamada Rayleigh-Ritz Metodu devreye sokularak, 6zdegerler ve 6zvektorler,
rijitlik ve kiitle matrisleri bulunduktan sonra, elde edilmektedir. Bu degerler,
daha onceden kabul ettigimiz ¢oziim fonksiyonunda

N
W, = ZaiUg(r)

=1

yerine konarak W(r) fonksiyonu bulunmug oluyor. Yukarida W(r) igin kabul
edilen ¢6ziim fonksiyonunda o; ’ler 6zvektorler, U;(r) ise rastgele secilen fakat
biitiin siur sartlarimi saglayan bir kargilagtirma fonksiyonudur. Bizim uygula-
malarimizda bu fonksiyon agaghidaki gibi segilmi§tir.

0ir) = i [27!' (r— a)]

3(b a)

Gorialdagi gibi u(r, §,t) fonksiyonu artik bilinmektedir. Sonugta geomet-
rimizin serbest titregim analizi yapilmig ve titresim modlan grafik ve gekillerle
sunulmugtur.

Daha sonra geometrimizin uyanlmaya karsi cevab: incelenmisgtir. Disk
r = a egrisi boyunca ankastreydi. Buradaki uyarilma, ankastrenin bilinen bir
fonksiyon olan uo(t) miktarinda z yoniinde hareketidir. uo(t) rijit cisim hareketi
ve u(r, ,t), rijit cisim hareketine relatif olan elastik deformasyon olarak diigiinl-
digiinde, herhangi bir noktanin mutlak yer degigtirmesi

ug(t) + u(r,0,1)
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olarak alinabilir. Sistemimize etkiyen dig kuvvetler olmadi igin sistemimizi tarif
eden diferansiyel denklem asagidaki gibidir.

Lug(t) + u(r,0,8)] + M(r, 9)56;;[110(1&) + u(r,8,t)] =0

Gerekli matematik iglemlerden sonra denklemimiz

d%u(r,8,t)
o2

formunu alir. En son elde ettigimiz denklemin sag tarafinin f(r,8,t) gibi bir
fonksiyon oldugu diiginiilebilir. Bu durum bize, desteklerin hareketinden kay-
naklanan titregim probleminin, zorlanmig titregim problemi olarak ¢6zildiglini
gosteriyor. Sagdaki ifadenin ilk terimi yayili atalet kuvvetini, ikinci terim ise
elastik kuvvetleri temsil etmektedir. Bu caligmada rijit cisim hareketini temsil
eden ug(t) = Asinwt olarak alinmugtir. Sistemimizin uyarilmaya karg: vermis
oldugu cevab: bulabilmek igin elde edilen son haldeki diferansiyel denklem

d? uo(t)

L[u(ra 07 t)] + M(T, 0) _M( 9) Al(r7 a)uo(t)

Liu(r,8,t)] + M(r, 9)‘—%;[u(r, 0,t)] = A(k — mw?) sin wt

Denklemin ¢oziilebilmesi i¢in bundan sonra yapilmas: gereken agagidaki gibi bir

koordinat dontigimi yapmaktir.

(e

u(r,0,t) = Z ki (r, 0)ne(t)

k=1

Bu doniigimde kullamlan £(r,d) fonksiyonu onceden serbest titresim analizi
vasitasi ile hesaplanmigti. Bu asamada 7x(t) fonksiyonunun model analizi vasitas:
ile hesaplanmasi gerekmektedir. Bu fonksiyonu bulabilmek i¢in kullanilan dife-
ransiyel denklem

ﬁk(t)‘f‘wlf’?k(t) =Nk(t)) k= 1727"'

Burada

Nk(t) = / K:k(r, 9)F(t)d7‘d9
D
Laplace doniigiim metodu kullanilarak

sin wkt

m(t) = ——/ Ni(7) sinwg (¢ —7)dr+1:(0) cos w, (t)+7(0) k=1,2,.--

formunda bulunur. Burada 7x(0) ve 7%(0), baglangigtaki genellestirilmig yer
degistirme ve hizdir ve agagidaki denklemler vasitas: ile bulunurlar.

7e(0) = /D M(r, 6w, (r, 8)w(r, 6, 0)drdd

1(0) = / M(r, 0)w,(r, 0)0(r, 6,0)drd0 r=1,2,3,--
D



Fakat bizim problemimizdeki baglangig kogullar
u(r,0,0) =0

u(r,8,0) =0
oldugu icin, genellegtirilmis baglangig kogullar1 da agagidaki gibidir.

7(0) =0

k(0) =0
Sonugta sistemimizin r = a smirinin ug(t) fonksiyonu biyikligince dizlemi- '
ne dik istikamette (z yoniinde) harekete maruz kalmasina (uyanlmasmna) kars:
gosterdigi cevabi sayisal olarak ¢6zmig oluyoruz. Modelimizin herhangi bir ¢
anindaki deforme olmug halini elde edebiliriz. Yine bu analiz ile ilgili sonuglar
gekiller halinde sunulmugtur.

Daha sonraki bolimde elimizdeki probleme degisik bir agidan yaklagilmig-
tir. Elastik zemin kaldirilmig ve problem ” Applied Structure” adindaki bir yazilim
iginde modellenmistir. Bu analiz sonucunda disk Gzerindeki gerilme dagihmlan
ve yer degigimleri i¢ boyutlu olarak renklendirilmig gekilde elde edilmigtir. Fakat
kullanilan bilgisayarin kapasitesinin yetersiz olmasindan dolay: mod sekilleri an-
cak iki boyutlu olarak temsil edilebilmigtir.

Tezin sonucunda elde ettigimiz grafikler gosteriyor ki; frekanslar, poisson
. oranindan ve yay katsayisindan yok denebilecek kadar az etkilenmektedir. Bunun
yaninda agisal hiz ve mebranin i¢ yarigapinin degigimleri, frekanslar oldukca etki-
lemektedir. Ayrica, yapilan analiz sonucu bulunan mod sekilleri, Applied Struc-
ture yaziliminin analizi sonucu bulunan mod gekilleri ile benzerlik géstermektedir.

xi



CHAPTER 1

A REVIEW ON ANALYSIS OF CIRCULAR DISKS

1.1 Introduction

Circular membranes under different loads at different boundary condi-
tions and different profiles have been a subject of interest of engineering. The
possible use of large spinning membranes like disks as solar sails or optical and
radar reflectors for space vehicles has led to a renewed interest in the problem
of calculating the transverse vibrations of an elatic disk rotating at a constant
speed. This subject traditionally has been studied in connection with gas and
steam turbines. More recently the problem has arisen in the study of disks with
much less stiffness such as the "floppy disk” recording devices of modern com-
puters [1]. Application areas of circular membranes vary from machine parts to

floppy disks. This widespread causes an increase of the study on disks.

Analysis of circular plates contains many theoretical and experimental
studies on the stability, vibration, stress distribution, design, optimization, and

deflection have long been an important problem in the literature on elasticity.

Solutions to the problems related to above often require numerical tech-

niques. Analytical solution exists for only special class of circular disks due to



complexitity rapidly with additional terms.

1.2 The Former Studies

The earliest study of a vibrating, spinning, elastic disk appears to be
that of Lamb and Southwell, who derived the respective contributions to the
equations from bending stress and in-plane stress due to rotation. In that paper
and a subsequent one by Southwell they examined the frequencies and and modes

of free vibration for complete disks which were either very flexible or very stiff

1.

Simmonds [2] and Eversman [3] each studied the modes of free vibration in
a centrally clamped spinning membrane for which bending stresses were ignored.
Using numerical techniques they obtained plots of frequencies, for low-ordered

modes, as a function of the clamp radius.

In Eversman and Dodson [4], a similar analysis of free vibration frequen-
cies was performed, this time with bending stress retained in the problem. The
problem treated in Ref.4, that of transverse vibrations of a spinning, centrally
clamped circular disk, was contained in the class of prc;blems treated by Mote
[5]- In Ref.5 the approximate free vibration characteristics of centrally clamped,
variable thickness disks were analyzed by the Rayleigh-Ritz technique. Natural
frequencies of transverse vibration were computed, taking into consideration rota-
tional and thermal in-plane stresses as well as purposely induced initial stresses.
Ref.[5] indicates that initial stresses can significantly raise the minimum disk

natural frequency throughout a prescribed rotational and thermal environment.

Haigh and Murdoch [6] presented a method of determinig the stress dis-
tribution in rotating axially symmetrical systems. The analysis was based on the

three-dimensional equilibrium equations and was applicable to turbine wheels of



appreciable thichness for which the thin disk (plane-stress) theory gave only ap-
proximate results. Finally three-dimensional calculation results were compared

with plane-stress theory results.

1.3 The Latter Studies

After 1970s researches on the circular disks have extended much more,
especially on the subjects which are the optimization analysis, vibration, and

stability.

Seireg and Surana [7] presented a prodecure for rational design of high
speed rotating disks due to increasing emphasis on higher speeds and lower
weights. In Ref.[7] optimum configurations were automatically calculated to sat-
isfy the designers’ objective within given constraints. [7] illustrated the applica-
bility of programming techniques to the optimal selection of the dimensions for

such disks.

In Ref.[8] two-dimensional and three-dimensional procedures for evalua-
tion of stress distribution in rotating disks of nonuniform thickness with integral
shafts were presented. The two-dimensional analysis was utilized in a design pro-
cedure to obtain the configuration of such disks. The three-dimensional analysis
was then used for accurate evaluation of the stress distribution. A comparison
between the results from the two and three-dimensional analyses was illustrated

by several examples.

The equation of motion of a rotating disk, clamped at the inner radius
and free at the outer radius, was solved by reducing the fourth-order equation of
motion to a set of four first-order equations subject to arbitrary initial conditions
(Barasch and Chen [9]). A modified Adam’s method was used to numerically

integrate the system of differential equations. Barasch and Chen showed that



Lamb-Southwell’s approximate calculation of the frequency was justified.

In recent years the finite element method has been extensively develoged,
and has become established applications of the method to stress and vibration
analysis of axisymmetric solids and disks given. In order to analyse the rotating
disks under different loads at different boundary conditions, the finite element
formulations started to be performed due to the developments in computer tech-
nology. Pardoen [10] discussed the static, vibration, and buckling analysis of
axisymmetric circular plates using the finite element method. For‘the static anal-
ysis, the stiffness matrix of a typical annular plate was derived from the given
displacement function and the appropriate constitutive relations. The static,
vibration, and buckling analysis of isotropic, circular and annular plates were
presented. In addition, the static analysis of circular and annular plates having
a polar orthotropic material was discussed. The basis for these analyses was the
presentation of exact displacement functions for circular and annular plates of

isotropic and polar orthotropic materials.

Kirkhope and Wilson [11] applied the finite element method to the stress
and vibration analysis of thin rotating disks. By making use of the axisymmetric
properties, annular finite elements were derived which describe the bending and
stretching of such disks and were characterized by having only four degrees of free-
dom. These elements incorporated the desired number of diametral nodes in their
dynamic deflection functions, and allowed for any specified thickness variation in
the radial direction. The resulting mathematical model is thus particularly effi-
cient for numerical computation. The accuracy and convergence of the method
was demonstrated by numerical comparison with both exact and experimental

data.

In Ref. [12] Night and Olson presented a finite element formulation for

the analysis of rotating disks in either a body-fixed or a space-fixed coordinate



system. The in-plane stress distribution resulting from the in-plane body force
due to rotation was determined first by a plane stress finite element analysis. The
resulting plane stresses were used as input to the out-of-plane or bending analy-
sis. Additionally a direct method of determining the critical speeds through an
eigenvalue analysis in space-fixed coordinates was presented. Then the undamped
steady state response to a space-fixed transverse point load was examined. The

effects of a viscous type damping were also presented.

Good and Lowery [13] constructed a finite element modeling of the free
vibration of a read/write head floppy disk system. The objective of that work was
to determine the design parameters of read/write head support structure which

reduce the vibration phenomena.

Mote and Szymani [14] prepared a review report on principal develop-
ments in thin circular saw vibration and control research. That work was divided
into two parts. The first part reviewed the general research results on saw vi-
bration, saw stability, the critical speed theory and membrane stress effects on
stability (tension, rotation and thermal effects). The influence of saw design and
process parameters and aerodynamic loading on vibration were included. The
second part concentrated on saw vibration reduction and control through saw
design and membrane stress modification. Vibration noise control and feedback

control of saw vibration and stability were also discussed.

Benson and Bogy [1] examined the problem of steady deflection of a
very flexible spinning disk due to transverse loads that are fixed in space. They
approached this problem within the context of membrane theory. The membrane
differential operator was classified and shown to be hyperbolic in the outer region
and elliptic in the inner portion. The eigenvalue problem was examined and the
membrane operator was found to be s;ngular. They therefore concluded that

the problem of interest could not be solved within the context of membrane



theory. Finally the problem was formulated with bending stiffness retained. The
concentrated load problem was solved by use of a Fourier series expansion in the
angular direction in conjunction with a numerical solution for the radial modes.
Graphical results were presented for various values of the stiffness parameter and

load location.

1.4 Some Remarks

The importance of circular disks is increasing due to wide-spread use in
technology. Circular disk research usually contains vibration, stability, stress

distribution, deflections, tensioning, and rotation analysis.

Vibratory motion which is caused by normal disturbances must be be-
tween certain limits due to the harmful to products. As you know, it reduces
product accuracy, diminishes surface quality, reduces tool life and increases ma-
chine down-time. The concept of resonance is important in understanding circular
disk vibrations. Resonance occurs when the driving forces are sinusoidal at the
natural frequency of the disk. In this case large amplitude vibration occurs. Of
course the amplitude is controlled by damping. In order to diminish the vibratory
motion, either the vibration modes must be changed or the driving forces must

be changed or both of them. These tecniques are employed in the industry.
Rotating disks always vibrate. But they are not always unstable. One of
the instability mechanisms is the critical speed instability that always takes place

before buckling. Therefore it is more significant concept.

Additionally tensioning increases the critical speed at least 30 percent. It

occurs by local plastic deformation or local heating.

The angular velocity induces only tensile membrane stresses. Natural



frequencies increase with rotation speed. Rotation causes instability due to the
mechanism of moving load resonance and critical speed. The instability is not
caused by the centrifugal forces. While the rotational forces are zero, if the plate
is stationary and the forces affected as circumferential, the critical speed still

exists.

In the stress analysis two-dimensional analysis and three-dimensional case
are being used.But the accuracy of two-dimensional a,na,lysis.is adequate. In addi-
tion, it is convenient for the computer time requirements which is very important
in optimization process. Usually in the design and optimization problems two-
dimensional analysis is more adequate but in stress analysis three-dimensional

case is taken into consideration due to more accurate results.



CHAPTER 2

FORMULATION AND ANALYSIS

2.1 General Equations In Cylindrical Coordinates

v,
(¢+7"dr)(r+dr)
e T
GorOa0 g o
ao':ede dr
a0, "3
N )
o8 ar.
Gg+5—0cr
Y 3 or o
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7>0|\ /e/ \ qe/
ey ~r
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Figure 2.1 : Stresses on an Figure 2.2 : Forces due to
infinitesimal element. stresses.

Figure 2.1 shows stresses on an infinitesimal element of a thin circular disk. Figure

2.2 represents forces due to stresses acting on the element.
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2.1.1 Equilibrium Equations And In—plane Stresses

F,. and Fy are the body forces in r and 6 directions. In the case of plane
stress and plain strain o,, = 0, = 0. If we write equilibrium equations in the
direction r by assuming that d0/2 is very small and neglecting higher order terms

we get

60, 6076
e drrdf + o,drdf — ogdrdf + 50

If this expression is divided by the element area which is approximately equal to

rdf@dr

dfdr + F. =0 (2.1)

Jdo, o,—o0g 100,

. " 50 +F =0 (2.2.a)
Similarly for the tangential component

180 0Oorg 200

~55 5 Y = +Fp=0 (2.2.5)

If the body forces are neglected then if we define following stress function

ro, = ¢ (2.3.0)
o5 = %‘f (2.3.0)

Here the problem is axissymmetric so nothing depends on 4. Recall that

du
Ep = ;l-«;- (2.4.@)

Eg = — (2.4.b)

From equations (2.2.a) and (2.4) we get the following compatibility equation

d& [}

P TEF +eg—e,=0 (2.5)
Recall that
: ) )
€g = E(G’g —vo,) . - (2.6.a)

1 .
& = E(a, — vog) (2.6.5)
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From equations (2.5) and (2.6) we obtain the compatibility equations in terms of

stresses as

- -t oo(l+v)—o.(1+v)=0 (2.7)

In our problem the stresses are produced by the centrifugal loading on the mem-
brane alone. So F. = mQ?%r, Fy = 0 where {} is angular velocity. Under these

conditions equation (2.2) take the following form

a@i’r r ; % mQ2? =0 (2.8.a)
%%’9_” =0 (2.8.6) .

Let us define the following stress function which satisfy the equations (2.8)

ro, =1 (2.9.a)
_dp 2,2
9=~ + mQ*r (2.9.5)
If we substitute the equations (2.9) into the compatibility equation (2.7) we get
ey 1dyp ¢

Py + e + (3 +r)mQPr=0 (2.10)

Solving this equation the stress function is

¢ — _Mmﬂzrs + clz

&
3 2 + - (2.11)

Inserting the solution to the equations (2.9) stresses are found with two

unknowns which are integration constants.

(3 + I/) 2 2 (5] Co
o, = ———S—mﬂ 4+ 7 + = (2.12.a)
Oy = 3 mr + 5 hay T’Z (2126)

Integration constants can be determined by means of boundary conditions.The

boundary conditions are

o, (b) =0 (2.13.a)

goa) = %;,-(ag(a) —vo,.(a)) =0 (2.13.5)
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Applying the boundary conditions to the equations (2.12) and after some

mathematical manipulations

a _ o228+ ¥)  (1-v)mQ%? (34 v)b? — (1 +v)d?
5 = mQ*h 3 3 (T )E (=) (2.14.a)
(1= v)mQ%a®P® [ (3+v)b* — (1 +v)a® )
=g (T )P+ (=) (2.14.6)

We can get o, and o by putting the equations (2.14) into the equations (2.12)

_ K20 o) 2, 1 .
or =3 (b —r ){7‘ + b2,a2} (2.15.a)
o B ,
90 =2 {(b bzﬂz)r Mo /-tzr } (2.15.5)
where
. (1 — v)mQ2ab? (3 + v)b? — (1 + v)a?
= 8 (1+ )8 + (1 — v)a?
H2 = 3 _; Vm02
1+ 3v

H3 = 3 sz

2.1.2 Vibration Of Circular Membrane

Figure 2.3 : Membrane geometry.
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By referring to Figure 2.3, consider a uniform homogeneous isotropic
circular membrane of radius b spinning about its polar axis with angular velocity
2. The membrane on elastic foundation which is homogeneous is taken to be

rigidly clamped on a circle of radius a, and free at the outer edge, r = b.

2.1.2.a Equation Of Motion

In order to reach equation of motion, firstly we can take an infinitesimal

element in rectangular coordinate shown in Figures 2.4.

(x,y+dy> (x+ox,y+dyd

(x+olx,y?

Figure 2.4.a An infinitesimal element in rectangular element.

; (4+ Zax)oly : (q+ G5 aly)oix
x /) 4 oy
£ 6 _
l

L« l|u+oh.,4 4
oy 4 molxdy I 0, o malx cly

- Bo- y

Figure 2.4.b : Projection in zx-plane. Figure 2.4.c : Projection in zy-plane.

The derivation of the equation of motion employs the following assump-

tions

I. The membrane is thin enough, that is, perfectly flexible, and cannot

resist bending moment.
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2. Tension acting on membrane is normal to boundary.
3. Gravity forces are neglected.

4. Transverse deflection is small with respect to dimensions of

membrane.
5. Slop is small with respect to unity.

6. In-plane displacement is negligible.

From Figure 2.4.b and Figure 2.4.c slopes can be written as

sna=2" (2.16.0)
z
. ou 0 [Ou
w4 (2.16.c)
siny = 3 .16.
. ou 0 [Ou
s1nt9 = 5:; + 'a_y' (5?;) dy (216.d)

Under these assumptions we can write the Newton’s second law in direc-

tion z
ZFZ = Ma,

u 82 Ou
2
+(oy + 8 ydy)da:(-—-—au + g Zdy) mgdzdy = mdmdy——gtz

0 6 dos
—%dygf—: + (az d

After some mathematical manipulations, and neglecting the high order terms ,

the equation of motion are obtained as

O*u Do, Bu O*u  do, Ou %u
Jzé? Ty 8z Oz to yayz + 3—be BT (2.17)

In analogy to go from (z,y) set to (r,0) set

7, a
5—;1; 4 E; (2.18.(1)
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d? 9*

a 10
5}/-1 —_ ;-é—a- (2.18.C)
2 2
o 10,109 (2.18.d)

a7 ror 700
Applying the equations (2.18) into the equation (2.17), we obtain the equation

of motion in circular coordinate.

Ou 1 0, Ou u
—-—(rdr > 69(09 89) My (2.19)

In order to take into consideration the effect of the elastic foundation in the
equation (2.19) we have to insert an additional term. Therefore the equation
(2.19) takes the following form

1 6 6 1 0, Ou 0%u

2.1.2.b Rayleigh-Ritz Method

Quite often 1t is sufficient to know the value of only a limited number
of lowest frequencies rather than all the frequencies. The higher frequencies
cannot be taken too seriously, even if an exact solution of the eigenvalue problém
is obtained, because the assumptions employed in defining the models in most

theories restricts the validity of the solutions to the lower modes only.

The method consists of selecting a trial family of compartison functions

u; ,satisfying all the boundary conditions, and constructing a linear combination

= E avzuz

where the u; are known functions, and the a; are unknown coeffficients.

If we substitute w, in Rayleigh’s quotient we obtain

Jp waLlw,)dD _ N(wn)
JpwnM[w,)dD — D(w,)

R(w,) =
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Both the numerator and denominator depend on the function w, and are both

positive for a positive definite system.

The necessary conditions for the minimum of Rayleigh’s quotient are

OR(w,)  D(wn)?5el — N(w,)?5)
6aj - D2(wn)

::07 j=1127"'7n

Recall that

Now introduce the notation

k,'j = / ugL[uj]dD

D
mi; :/ uzM[u]]dD Za] =1,2,---,n
D
and if the system is self- adjoint we have
kij = kji ™mi; = mji
The operators L and M are linear, so we can write
n n
¥ =3 ke

=1 j=1

and, similarly
n n

D = Z Zmi,-aiaj

=1 j=1

Taking the partial derivatives with respect to a,, we write

ON -
aar =2 Z krjaj

j=1
0D =
= 2.Zm,.jaj r=1,2,---,n
da, e

Finally we obtain

n
Z(krj —-wim.)a; =0, r=1,2--,n

7=1 .
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which represents a set of n homogeneous algebraic equation in the unknowns a;
are known as Galerkin’s equations. They represent the eigenvalue problem for an

n-degree-of-freedom system and can be written in the matrix form

[k]{a} = wp[m]{a}

where [k] and [m] are n X n symmetric matrices.

2.2 Solution Of The Governing Differantial Equation

In our problem, equation of motion is derived in the equation (2.20).

Boundary conditions are

u(a,0,t) =0 (2.21.a)
%u(b,0,t)

=0 (2.21.5)

u(r,0,t) = u(r,0 + m,t) (2.21.c)

Bu(r, 0,1) ) (au(r, 8, 1) )
—_— = —— 2.21.d
( ae 8=0g ao =00+ ( )

2.2.1 Eigenvalue Problem

In order to solve the problem we can use separation of variables as
u(r,6,t) = W(r)o(0)T'(t) (2.22)
After substitution the equation (2.22) into the equation (2.20) then division by
W(r)e(9)T'(t)

1 d dW 1 d doO k 1 2T
G T e s\ d) T m S T dE (2.23)

Since right side is only function of t

—S s =) (2.24)
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\ % +AT =0 (2.25)

General solution of the equation (2.25) is
T(t) = cos(wt — @) (2.26)

The equation (2.23) becomes

1 d daw 1 d, d© k

) e ) Tm (2.27)

Multiply the equation (2.27) by mr? and rearranging

r d dW. r*mi  kr? 1d%0
WO'g dr( T dr ) op + 0'_9 T do? (2.28)

Since right side is only function of §

i@ = —¢?
0 do?

d?0
oz

General solution of this equation is

+ £20 (2.30)

0O(8) = Acos(£6) + B sin(é0) (2.31)
From the equations (2.21.c) and (2.21.d)
0(8) = 6(6 + ) (2.32)

d@) (d@)
— == 2.33

Applying the boundary conditions (2.32) and (2.33) into the equation (2.31) to

calculate the unknowns A and B we obtain
O(0) = cos(&:9), Li=1,2,--- (2.34)

If the equation (2.29) is substituted into the equation (2.28)
r d dW ., r?m) kr

_ a, oW, 42
Woy dr (ro; dr ) og oy & (2:35)
After some arrangement the equation becomes
1d 2 09 kr
— dr( ) f W - ——W + AW =0 (2.36)

As it is seen, we reach an eigenvalue problem
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2.2.2 Solution Of The Eigenvalue Problem

Consider the eigenvalue problem in the form

LIW] = AM[W] (2.37)
Here L and M operator are
Lz—%jr(rarjr)— ?:—;—% (2.38)
M=—r (2.39)
Consider one of the solution of the equation (2.37) W, and A,
LW, = A M[W;] (2.40)

In order to obtain Rayleigh’s Quotient multiply the equation (2.40) by W, and

integrate over the domain and extract A,

\, = JoLWdD (2.41)

[, M[W,]dD

If we apply this procedure to our problem Rayleigh’s Quotient is

o L& (ro, SYWdr — [} 2 Wdr — [} EW2dr

rm

IR

R= (2.42)

Take the first term in the numerator which needs some work and by using inte-

gration by parts

aw daw 1 dW__, 1d
/mrar o —%dr——rard—Wl /amdr(ra, 7.)Wdr (2.43)

Since o,(b) = 0 and W(a) = 0,

1 dw
Ero;—Wlb =0 (2.44)

From the equation (2.44) Rayleigh’s Quotient becomes

L (Srg (W) 4 [P e22aWdr 4+ [ Ey2dr

rm

fa rWadr

B =

(2.45)
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Assume solution is N
Wa =) aili(r) (2.46)
=1

Applying Rayleigh’s Ritz method, stiffness and mass matrices are

_ 1 dU(r)dUi(r) b 200
Ki; —--r—n-/; roy— Tdr-]-/a ¢ T—T;U,(T)Uj(r)dr+

/b I:—;‘Ui(r)Uj(T)d'l' (2.47)

M;; = /ab rUi(r)U;(r)dr (2.48)

Finally eigenvalue problem becomes

[[K:;] — M M]] [es] = 0 (2.49)
2.3 Numerical Results

In this analysis the following admissible function, an arbitrary function,

satifying all boundary conditions, is used.

Ui(r) = sin (_231} — a)

b—a

In solution the first fourteen terms are taken into consideration. The results
obtaining in this chapter are presented in the following pages by being used

graphics and shapes.

The frequency is increasing with increasing the coefficient of the springs
representing the elastic foundation, and the values of Poisson ratio so slowly that
this effect on the frequencies can be neglected. But the effect of the angular

velocity and the clamp radius on the frequencies is appearing obviously.
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CHAPTER 3

"RESPONSE OF A CIRCULAR MEMBRANE

3.1 General Formulation

Consider a continuous system described by the partial differential equa-

tion
O*w(P,t)
ot?

over domain D. L is a linear homogeneous self-adjoint differential operator.

Lw(P,1)] + M(P) = f(P,1) + Fi(1)6(P — F;) (3.1)

The operator I contains the information concerning the stiffness distribution
and M(P) is the mass distribution of the system. The excitation consists of
the distributed force f(P,t) and the concentrated forces of amplitude Fj(t) and
acting at points P = F;. The symbol § (P — P;) indicates a spatial Dirac’s delta
function defined by

8§(P—-P)=0, P+#P

/D §(P — P,)dD(P) = 1 (3.2)

At every point of the boundary there are p boundary conditions of the type
B[w(Pt)]=0, i=1,2,---,p (3.3)

where B; are linear homogeneous differential operators.
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The normal modes analysis calls for the solution of the special eigenvalue

problem consisting of the differential equation
L{w] = AM[w] = w* M[w] (3.4)

The solution of the special eigenvalue problem consists of an infinite set of eigen-

functions w,(P) with corresponding natural frequencies w;.

The eigenfunctions are orthogonal, and if they are normalized such that

/D M(P)w,(P)w,(P)dD(P) = 6., (3.5.0)

/D wy(P)L{w,(P)|dD(P) = w26, (3.5.5)

Using the expansion theorem we write the solution of the equation (3.1)
as a superposition of the normal modes w,(P) multiplying corresponding time-
dependent generalized coordinates 7,(t). Hence

w(P,t) = 3 w,(P)ne(t) -39
r=1
Inserting the equation (3.6) to the equation (3.1), we obtain

LY. (P (0] + MPY2 > wn (P (8) = F(P 1)+

r=1 r=1

Fi()8(P - P) (3.7)
Rearrange the equation (3.7)
D (O Lw (P + Y () M(P)w,(P) = f(P,t) + F(t)§(P - F;)  (3.8)
r=1 r=1
In order to be able to use orthogonality conditios multiply the equation (3.8) by
w,(P) and integrate over domain D

> 0r(t) [ wP) Ll (PYID(P) + Y (t) /D w,(P)M(P)uw,(P)dD(P) =

r=1 r=1

[ w. PP + FPHI(P - P)laD(P) (3.9)
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Assume that we have [ number of concentrated load and recalling the defition of

the delta function we can write

N0 = [ w(PS(POIDP)+ Y wnlP)FD) (3.10)

where N, (t) denotes a generalized force associated with the generalized coordinate

7 (2)-

In view of the equations (3.5) and (3.10), the equation (3.9) becomes

ﬁ,.(t) + ‘*’fﬂr(t) = N"‘(t)’ r= 172) e (311)

The solution of the equation (3.11) may be obtained by means of the

Laplace transform method. Transforming both sides of the equation (3.11)
8% (s) — $1:(0) = 1r(0) + w7, (s) = No(s) (3.12)

where 7,(s) and N,(s) are the Laplace transforms of n,(¢) and N,(t), respec-
tively, and 1,(0) and 7,(0) are the initial values associated with the generalized

coordinate 7,(t). The subsidiary equation is

N (s) s 1,
s24 wg + s2 4 WZ 77"'(0) + mnr(g) (3.13)

T (s) =
The equation (3.13) can be inverted by using Borel’s theorem

n-(t) = ;1: /0 N, (7)sinw,(t — 7)dr + 0.(0) cos w,(t)+

in w.t
ﬁr(O)Slnw ’ r=1,2,--- (3.14)

7

The integral on the equation (3.14) is known as the convolution integral. The
initial generalized displacement 7,(0) and initial generalized velocity 7,(0) are

obtained from the expressions
7+(0) = / M(P)w,(Pyw(P,0)dD(P)
D

7(0) = fD M(P)u,(P)i(P,0/dD(P), r=1,23---  (3.15)
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3.2 Undamped System Response

3.2.1 General Considerations

The excitation can be divided into forcing functions, initial displacements
and velocities, and moving supports. The vibration resulting from the action of
forcing functions upon a system is known as forced vibration, and the one resulting
from initial conditions is called free vibration. Moving supports result in forcing
functions in the form of inertia forces and elastic forces and, as such, they lead

to forced vibration problems (Ref. [15]).

For the most part the problems of obtaining the response of a continuous
system consist of a partial differential equation that the function describing the
system response must satisfy throughout a given domain and, in addition, the
function must also satisfy associated boundary conditions at every point on the
boundaries of the domain. Such problems are called boundary-value problems,
and there are various approaches to the solution of such problems. In some cases
it might be possible to obtain a solution by means of an integral transforma-
tion such as the Laplace or Fourier transformations. In other cases one may be
able to assume a solution in the form of an infinite series. The latter approach
is modal analysis applied to continuous systems and leads to an infinite set of
uncoupled ordinary differential equations. This approach is possible if the sep-
aration of variables method can be used to obtain an eigenvalue problem and,
one is able to solve the eigenvalue problem. When it is not possible to obtain an
exact solution of the eigenvalue problem, one may be content with an appropriate
solution, in which case one can still use modal analysis. Approximate methods
look upon a continuous system as a finite-degree-of-freedom system and the for-
mulation leads to a set of coupled ordinary differential equations. To obtain an
approximate solution of a continuous system by modal analysis it is necessary to

solve the eigenvalue problem of a finite-degree-of-freedom system which consists
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of symmetric matrices.
3.2.2 Circular Membrane With Moving Supports

Consider a circular membrane with the same properties stated at chapter
2. Let us consider the case in which the supports of a system undergo a known
translational motion ue(t). The absolute displacement of any point can be written
ug(t)+u( P, ), where uyp(t) can be regarded as a rigid-body translation and u(P,t)
as an elastic deformation measured relative to the rigid-body motion. If there

are no external forces applied, the equation (3.1) can be written.
L{uo(t) + u(r,0,t)] + M( P)atz[ug(t )+ u(r,0,t)] =0 (3.16)
where Lis a dilferential operator defined previously. But L is such that
Lluo(t)] = Ai(P)uo(2) (3.17)

where A)(F?) is a function of the spatial coordinates, so the equation (3.16) can

be written

Lu( Pt ermfégﬂ —Mmﬂ““)—mmmm) (3.18)
f(Pt) = —-M(P) (3.19)

where [(P,) is a known function of time and space. The first term can be identified

as a distributed inertia force and the second one as a distributed restoring force.

r |

| |
2 %P,t)

udt |

Reference Line

o ___'t___ ___________________

Figure 3.1 : Absolute displacement of any point on the membrane.
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The solution of the equation (3.18) can be obtained by following the

procedure outlined in Section 3.1.
3.2.3 Response To Harmonic Excitation

In this section, the circular membrane is analyzed in the condition that
its boundary at r = a is subjected to translational harmonic motion in the form

- of Asinwt. Therefore uo(t) in Fig. 3.1 can be written

up(t) = Asinwt (3.20)

Under these circumstances the equation (3.18) can be written

L{u(r,0,t)] + M(P)%[u(r, 0,8)] = — L[uo(t)] — M(P)gg[uo(t)] (3.21)
where

© L[ug(t)] = —kAsinwt (3.22)

M (P)—af,_;[uo(t)] = mAw® sin wt h (3.23)

Introducing the equations (3.22) and (3.23) into the equation (3.21)
Liu(r,8,t)] + Mai;[u(r, 0,t)] = A(k = mw?)sinwt (3.24)
Right side of the equation (3.24) is only function of time t. Let us define
F(t) = A(k — mw?) sinwt (3.25)

Next step is coordinate transformation

oo

u(r, 0,t) = > a(r, O)mi(t) (3.26)

k=1
where ki(r,8) was calculated by means of free vibration analysis in Chapter 1
and 7¢(t) is calculated by modal analysis. Inserting the equation.(3.26) into
the equation (3.24), and using orthogonality conditions (3.5), and after some

mathematical manipulations we obtain

ﬁk(t) + wl?:m‘(t) = Nk(t)7 k= 1’ 27 e (327)
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where

Ni(t) = /D x(r, 0) F(£)drdd (3.28)

The solution of the equation (3.27) may be obtained by means of the

Laplace transform method.

mk(t) = ;i; /0 Ni(7) sinwy(t — 7)d7 + nx(0) cos wi(t)+

1 t
(0 k=12, (3.29)
Wi

where 7;(0) is the initial generalized displacement and 7;(0) is the initial gener-

alized velocity, and these are obtained from the equation (3.15). In our case

u(r,0,0) =0 (3.30.a)
a(r,,0) = 0 (3.30.b)
Therefore
7(0) =0 (3.31.a)
7k(0) = 0 | (3.31.b)

3.3 Numerical Results

In this analysis the same admissible function being taken in the previous
chapter is used. Since the excitation frequency is near to the first and the second
frequency of the system, in the shapes, as it is seen, the effect of the first and
second mode shapes is more dominant. The effect of the other mode shapes is
not ol;vious. The first and second frequency of the system are 13.89Hz, 46.56 H z
respectively, and the excitation frequency is 20.00H 2. The results are presented

by means of the shapes in the next pages.
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0.25 sec. due to excitation

: Disk geometry at ¢

Figure 3.2

. Disk geometry at ¢

0.40 sec. due to excitation

Figure 3.3

0.60 sec. due to excitation

: Disk geometry at ¢

Figure 3.4
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:  Disk geometry at ¢t = 0.90 sec. due to excitation

Figure 3.5

: Disk geometry at ¢ = 1.00 sec. due to excitation

Figure 3.6

: Disk geometry at ¢t = 1.30 sec. due to excitation

Figure 3.7



CHAPTER 4

A Different Approach with Applied Structure Software

4.1 General Purpose Software

Applied Structure software is a product of Rasna Corporation, which was
founded in November 1987 by physicists and mechanical engineers from IBM’s
Almaden Research Center. The program allows engineers to construct computer
models of structures or components, apply loads, and study stress effects without

having to build the object or destroy it in testing.

The software is used in a wide variety of disciplines, ranging from the
aerospace and automotive industries to civil construction. The program has been
used to analyze such everyda:y items as aluminum cans, paper clip, and hair
dryer, as well as for designing bridges, and machinery crank. Applied Structure
is used to solve many types of analyses, including structural, mechanical, thermal
a.na,lyées. Also, the results can be expressed in a variety of ways, as displacements,

stresses, and strains in color-coded graphic displays or in text.

Applied Structure is used for sté.tic, dynamic, and vibrational analyses

and includes preprocessing, solution, and postprocessing. These analses can be
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done in one, two, or three dimensions. With these capabilities, large, complex sys-
tems can be modeled and analyzed. Once the model is built, analysts can specify
boundary conditions applicable to the model which can be displayed graphically.
Solution output can be displayed graphically.

Finite Element Analysis is the most commonly used numerical method
for the structural problems. The most commercial softwares use the h-version of
FEA. An alternative method of the h-version of FEA is called the p-version. In
_ p-extension the finite element mesh is usually much simpler than in h-extension
‘and the time required for data preparation is substantially less. Therefore, the
overall cost of analysis is substantially less. Importantly, p-extension produces a
strongly sequence of solutions at a small marginal cost and in a small amount of

additional time.

Sequences of discretization can be constructed in various ways: by mesh
refinement, increasing t];Le degree of the standard polnomial space, or any com-
bination of these. For reasons of implementation most commonly the mesh is
refined, or the degree of the standard polynomial space is increased, or mesh re-
finement is combined with increase of the polynomial degrees. These approaches

are respectively call h-extension, p-extension and hp-extension.

By using p-version Applied Structure can define a model with fewer and

larger elements, substantially simplifying modeling for analysis.
4.2 Modeling within Applied Structure and Results

Firstly model geometry is created by using the drawing and editing com-
mands. Secondly model elements are built on geometry and material properties
are specified. In this problem four planar four-sided shells are used to build ele-

ments.Then a centrifugal force that acts on the entire model is defined by entering
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the angular velocity. Additionaly boundary conditions are defined.

After all above things, the static analysis is performed in order to obtain
stress and strain distribution on the model. Since this analysis is simpler than
the modal analysis, the model is constructed three-dimensionally (Figure 4 .1).
The results are taken in color-coded graphic displays due to allowing the quick

interpretation.

_But in order to be able to obtain mode shapes, due to not enough capacity
of the computer on which the software runs, two-dimensional modal analysis can
be specified. In spite of performing two-dimensional analysis, only first five mode

shapes can be found.

The outputs of Applied Structure are presented in the following pages.
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3D model for stress-strain analysis
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Figure 4.3 : von Mises stress analysis results

Figure 4.4 : Maximum principles stress analysis results
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Figure 4.5 : 0., stress analysis results
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Figure 4.6 : o, stress analysis results
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Figure 4.7 : o, stress analysis results

Figure 4.8 : wu,, strain analysis results
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Figure 4.9 : wu,, strain analysis results

Figure 4.10 : wu,, strain analysis results
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Figure 4.11 : Membrane strain energy analysis results

Figure 4.12 : Displacement magnitute analysis results
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Figure 4.13 : Modal analysis result showing first five mode shapes
(a) first mode shape, (b) second mode shape,
(c) third mode shape, (d) fourth mode shape,
(e) fifth mode shape



CHAPTER 5

CONCLUSIONS AND DISCUSSIONS

In this thesis a circular membrane with a centrally hole on a circle of radius
a on elastic foundation which is taken to be rigidly clamped on a circle of radius
a and free at the outer edge is examined. The mode shapes are obtained two-
dimensionally and three-dimensionally and the frequencies’ variation versus the
most important quantities is plotted. Then the membrane is considered to subject
the harmonic excitation in the condition that the support is moving translationaly
in the form of Asinwt. Under these circumstances undamped system response is
reached. At any of time disk geometry due to excitation can be found. Finally the
problem with the exception of the effect of elastic foundation is modeled in the
Applied Structure software. Stress and strain distributions and modal analysis

results involving the first five mode shapes are presented.

In order to solve the problem numerically, in the beginning of the analysis
the solution is chosen as a sin series. It is important how many terms are taken in
the analysis. Of course the results are more accurate with increasing the number
of the terms of the series. But the more term causes the more computational

time. In the solutions the first fourteen terms are taken.
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It can be said that the frequencies are not affected by the variation of
the poisson ratio. The variation of the coefficient of the springs representing
the elastic foundation causes very little increment in the frequencies and does
not effect the mode shapes. But the frequencies are going up obviously with
increasing the clamp radius a, and the angular velocity Q. Because the system is
more stiff with increasing the clamp radius and the angular velocity. The reason

is that the elastic forces are more dominant than the inertia forces.

_ In addition the mode shapes finding in Chapter 3 are same as the mode
shapes obtaining from the analysis of Applied Structure software. This situation

implies that the analyses done are true.

From the results of the modal analysis done in Chapter 3, it can be said
that when the frequency of harmonic excitation is equal to the frequencies of
the system, displacements on the membrane goes to infinity, that is, resonance
occurs. Additionaly if the frequency of the harmonic excitation is near to which
frequency of system, membrane’s shape due to excitation is the same as mode

shape belonging to that frequency.

In this study the vibration within the plane of the membrane is not taken

into consideration.
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