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ABSTRACT

SYNTHESIS AND STRUCTURAL IDENTIFICATION OF SOME NEW
BENZOTHIADIAZINE-RELATED DERIVATIVES
MSC THESIS
ZEYNEP GEDIiK OZSENTURKLU
BOLU ABANT IZZET BAYSAL UNIVERSITY GRADUATE SCHOOL OF
NATURAL AND APPLIED SCIENCES
DEPARTMENT OF CHEMISTRY
(SUPERVISOR: PROF. DR. YASAR DURUST)

BOLU, AUGUST 2019

The aim of this work is to synthesize some new 4H-1,2,4-benzothiadiazine
1,1-dioxide derivatives with a new aproach and identify their structures by means
of spectral and physical data.

This research work has been constructed primarily based on the synthesis of
some 3-aryl-4H-1,2,4-benzothiadiazine-1,1-dioxide  derivatives and then
determination of their structures. Novelty of the chemistry can be described as
follows; benzothiadiazine 1,1-dioxide derivatives exhibit various important
biological activities and some of them are currently being used as medicines
containing benzothiadiazine 1,1-dioxide skeleton. For this reason, major purpose is
to obtain these compounds by incorporating chloromethyl oxadiazoles by means of
microwave irradiation or otherwise classical methods. The new compounds to be
obtained will be elucidated by means of spectroscopic and physical methods.

In summary, within this work, despite the difficulties encountered during the
experiments, we succesfully synthesized 8 new benzothiadiazine-1,1-dioxide
derivatives carrying 1,2,4-oxadiazolylmethyl group at 4-position of the
benzothiadiazine ring. Synthesis of amidoximes and chloromethyl oxadiazoles as
starting materials were carried out and their nucleophilic substitution reaction with
benzothiazines dioxides were performed leading to target N-substituted products.

All of these compounds are new and original and they are considered to make
a remarkable contribution to the literature of synthetic organic chemistry. It is
strongly possible that the compounds are potentially bioactive due to having the
main skeleton and substituents. But, unfortunately, at the moment, we were not able
to conduct a bioactivity screening of the compounds due to the low amounts of
them and, in addition, regarding unrecoverable from DMSO-ds NMR solutions.

KEYWORDS:
Benzothiadiazine 1,1-dioxide, amidoxime, aminosulfonamide, aldoxime, oxadiazole,
microwave, Spectroscopy.



OZET

BAZI YENi BENZOTiYADIAZIN TUREVLERININ SENTEZi VE
YAPILARININ BELIRLENMESI
YUKSEK LiSANS TEZi
ZEYNEP GEDIiK OZSENTURKLU
BOLU ABANT iZZET BAYSAL UNiVERSITESI
FEN BIiLIMLERi ENSTIiTUSU
KIiMYA ANABILIM DALI
(TEZ DANISMANI: PROF. DR. YASAR DURUST)

BOLU, AGUSTOS - 2019

Bu tez ¢alismasinin amaci, bazi yeni 4H-1,2,4-benzotiadiazin 1,1-dioksit
tiirevlerini yeni bir yaklasimla sentezlemek ve yapilarini spektral ve fiziksel
verilerle tanitmlamaktir.

Bu arastirma caligmasi, temel olarak baz1 3-aril-4H-1,2,4-
benzotiadiazin-1,1-dioksit tiirevlerinin sentezine ve daha sonra yapilarinin
belirlenmesine dayanarak yapilmistir. Kimyadaki yeniligi soyle diisiiniilebilir;
benzotiadiazin 1,1-dioksit tiirevleri ¢esitli 6Gnemli biyolojik aktiviteler sergiler-
ler ve bazilar1 su anda benzotiadiazin 1,1-dioksit iskeleti iceren ilaglar olarak
kullanilmaktadir. Bu nedenle amacimiz, bu bilesikleri, klorometil
oksadiazollerle, mikrodalga 1s1masi ya da klasik 1sitma yontemleri kullanarak
birlestirerek elde etmektir. Elde edilen yeni bilesiklerin yapilari, spektroskopik
ve fiziksel yontemlerle aydinlatildi.

Ozet olarak, bu calisma icerisinde, deneyler sirasinda karsilasilan zor-
luklara  ragmen, benzotiyadiazin  halkasinin  4-konumunda 1,2,4-
oksadiazolilmetil grubu tasiyan 8 yeni benzotiadiazin-1,1-dioksit tiirevi basa-
riyla  sentezlendi. ik olarak baslangic bilesikleri para substitue
benzamidoksimler ve klorometil oksadiazoller sentezlendi ve benzotiyazinler
dioksitlerle etkilestirildi.

Bu bilesiklerin tiimii yeni ve orijinaldir ve sentetik organik kimya litera-
tiirtine kayda deger bir katki sagladig: diisiiniilmektedir. Bilesiklerin tasidiklari
gruplara gore potansiyel olarak biyolojik olarak aktif olmalar1 beklenmektedir.
Ancak, ne yazik ki, su anda, diisiik miktarlarda olmalar1 ve DMSO-d¢ NMR
cozeltilerinden geri kazanilamaz olmalarindan dolay: bilesiklerin biyoaktivite
taramasi gerceklestirilememistir.

ANAHTAR KELIMELER:

Benzotiyadiazin  1,1-dioksit, amidoksim, aminosulfonamid, aldoksim,
microdalga, spektroskopi.
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1. INTRODUCTION

1.1 AMIDOXIMES

Amidoximes which are one of the major starting materials for this work, in
general, are useful precursors for the construction of a great number of O, N
containing heterocyclic scaffolds and have been found to unveil many engrossing
biological activities against various species. The amidoxime group was reported to
act as a prodrug for the amidine structure (De Morais, Hallwass, Malvestiti, &

Srivastava, 2006).

Tiemann described firstly the name ‘“amidoxime” and prepared two
compounds through the addition of hydroxylamine to benzaldehyde cyanohydrin and

to benzonitrile (Eloy & Lenaers, 2002) (Scheme 1.1).

OH
/

N
74

N
/ —
QCH + NH,OH ——» QCH
\OH \OH

Mandelamidoxime

2 3 4
N—OH
<;>—CEN+ NH,OH — g QC//
\NH2
Benzamidoxime
5 3 6

Scheme 1.1. Mandelamidoxime and benzamidoxime reactions

Although the first synthesis of an amidoxime compound was managed by
Lossen and Schifferdecker (1873) via HCN and NH,OH interaction, they were not

able to identify real structure, and they called “isuretin” (Figure 1.1).



Figure 1.1. Structure of isuretin (formamidoxime)

Some amidoxime derivatives have been reported to have shown anti-
leukemic, bactericidal and fungicidal, local anesthetics, and fibrinogen receptor anta-

gonist activities (Nagahara & Nagahara, 2014; Srivastava et al., 1997).

There have been an increasing interest in the synthesis of amidoximes over
the decades by development of new methods (Sanguineti et. al., 2011;Voros et. al.,

2014).

1.1.1. Synthesis of Amidoximes

1.1.1.1 Action of Hydroxylamine on Nitriles

The preparation of amidoximes from nitriles by the action of hydroxylamine

was utilized by Tiemann and Kriiger (1884) (Scheme 1.2).

R—C=—7—=N 4 NHOH —

Scheme 1.2. Action of hydroxylamine on nitriles

They recommended a method involving the addition of the equivalent amount
of nitrile in enough alcohol (generally ethanol) to hydroxylamine hydrochloride
accompanying a base (sodium carbonate, triethylamine, sodium hydroxide,
potassium hydroxide) leading amidoximes at 60-80°C within a couple of hours. The
highest yields were reported in the case of an excess hydroxylamine in butanol (Eloy

& Lenaers, 2002).



1.1.1.2 Action of Hydroxylamine on Amides or Thioamides

Thioamides were also used to prepare some aromatic amidoximes by the

action of hydroxylamine ( Scheme 1.3).

R N
N N H,S

R—C , NHOH — » C OH |,

NH, NH,

Scheme 1.3. Action of hydroxylamine on thioamides

1.1.1.3 Reduction of Nitrosolic Acids

Benzonitrosolic and nitrolic acids have been reduced with hydrogen sulfide to

give amidoximes (Brady & Peakin, 1929).

NOH NOH
7 7
c\ + 2Hps —> C\ + 28
NO NH;
Scheme 1.4. Reduction of nitrosolic acids to give amidoxime

1.1.1.4 Action of Hydroxylamine on Amidine Hydrochlorides and

Iminoethers

Pinner also developed a method involving the interaction of hydroxylamine

and amidine hydrochlorides and iminoethers to yield benzamidoxime (Scheme 1.5).

/N—OH N—OH
+ NHOH — / + NH,CI
NHy.HCI NH,

Scheme 1.5. Synthesis of benzamidoxime by Pinner



According to Pinner and Lossen’s method, benzamidoxime was obtained
straightforward manner by interacting ethyl iminobenzoate with hydroxylamine

accompanying ethanol release (Scheme 1.6).

NH —OH
* NH,O0H —>» ®—</ + C,HsOH
OC,Hs NH,

Scheme 1.6. Synthesis of benzamidoxime by Pinner and Lossen

1.1.1.5 Action of Ammonia on Hydroxamic Acid Chlorides

Direct chlorination of aldoximes leaded to chloroximes or hydroxamic acid
chlorides. Further, these compounds reacts straightforwardly with ammonia or other

primary or secondary amines to yield amidoximes (Werner&Buss,1894).

/N—OH
R N
R—C/ . 2NH —>\c/ - . NHCI
Cl

NH,

Scheme 1.7. Action of ammonia on chloroxime

1.1.1.6 Action of Formamidoxime on Aromatic Aldehydes

Conduché (1908) carried out a reaction where formamidoxime reacted with

benzaldehyde ending up to an aldol type condensation product.

Ol — 0O

Scheme 1.8. Interaction of benzaldehyde with formamidoxime



1.1.2 Physical Properties of Amidoximes

As they are usually obtained in fine crystals, amidoximes, especially aromatic
ones, display sharp melting points.They can be decomposed by heating over the
melting point. They tend to be soluble in lower amounts in water and higher in
alcohols and also in some polar organic solvents. In addition, aromatic ones are more
stable than aliphatic ones in terms of decomposing tendency. The aqueous
solubilities of aliphatic amidoximes decrease with increasing molecular weight. The
amidoximes are considered to be O—H acids, not N—H acids which can be accounted
for the remarkable higher pKys of O-methyl derivative of benzamidoxime (pKga
value is 26.0). The pKya value of benzamidoxime itself is 23.0 (Bordwell &
Ji1,1992). Acidity measurements have been performed for a variety of amidoximes

(Diirtist et. al., 2002; Diiriist, et. al. 2000; Akay et. al., 1999).

Tautomerism, conformation, and configuration are important characteristics

observed in amidoximes (Figure 1.2) (Novikov & Bolotin, 2018;Eloy & Lenaers,

2002).
N
aw \‘/ o Y o

N N
NH, N N
| Il ]

Figure 1.2. Amidoximes

IR and NMR data of the O-acyl derivatives of amidoximes reveal that they
exist in solutions in the amino oxime form (Bauer et al.,1964). In the IR spectra of
amidoximes, two distinct absorption bands are mostly observed; the first one is a
doublet at (3484-3412 cm™ ) and (3378-3300 cmﬁl) which can be assigned to NH,
stretching vibrations; the second one (1680 and 1644 cm! ) is considered as of C=N
absorption. Very broad NOH stretching band which is attributed to strong both intra
and intermolecular hydrogen bonding interactions, appears at approximately 3125

cm” (Field et. al., 2008).



1.2 OXADIAZOLES

In the oxadiazole ring there are two nitrogens and one oxygen atom, totally
five atoms and suffix —ole stands for a five-membered heterocycle according to
IUPAC nomenclature system. According to IUPAC numbering recommendations,
oxadiazoles may be depicted as 1,2,4-, 1,2,5-, 1,2,3- and 1,3,4-oxadiazoles. The
numbers are indicating the locations of heteroatoms with their compatible priority

(State et al., 1995) (Figure 1.3).

0] 0]
DD PP
N
N / N\/ N\N/ \\/
1,2,3-oxadiazole 1,2 4-oxadiazole 1,3 ,4-oxadiazole 1,2,5-oxadiazole

unstable furazan

Figure 1.3. Representation of simple oxadiazoles

Depending on the ring composition and position of the heteroatoms they have
been reported to exhibit diverse bioactivities against various species such as fungi,
bacteria, gastric ulcer, cancer, etc. (Bishayee et al., 1997;Chitamber and Wereley,
1997). As a representative example, 1,3,4-oxadiazoles bearing substitution at 3 and 5
positions display activities regarding antibacterial, , antimalarial, antiinflammatory
antifungal and anticonvulsant (Silvestrini&Pagatti, 1961;Sharma&Bahel, 1982;Jain
et al., 2009;Hutt et al., 1970;Modi & Modi, 2012).

Generally speaking of oxadiazole itself, the ring is a very weak base due to the
lone pairs of nitrogens which are spz—hybridized. Incorporation of two -CH= groups
in furan by two spz—hybridized nitrogens reduces aromaticity of resulting
oxadiazole.The aromaticity degree of oxadiazoles was being determined by Bird
unified aromaticity index Ia. In this regard, 1,2,4-oxadiazole having I5 of 48 is lower
than that of 1,2,5-oxadiazole with a I, value of 52 (Balaban et. al., 2004; Joule
&Mills, 2004).



1.2.1 1,2,4-Oxadiazoles

Namely, 1,2,4-oxadiazoles are composed of five ring atoms three of which
are nitrogens and oxygen. They can have also substitutions at 3 and 5 positions

depicted as in (Figure 1.4).

N0
| 5
)\N/

R'l
Figure 1.4. A disubstituted 1,2,4-oxadiazole

As a presentation of the general properties of these heterocycles, mechanical
interpretations of the thermal and photochemical reactivity of 1,2,4-oxadiazoles have
been published recently. Further, their usage in different area of life sciences and

chemistry was compiled (Pace, Buscemi, Piccionello, & Pibiri, 2015).

1.2.2 Synthesis of 1,2,4-Oxadiazoles

1.2.2.1 Classical methods of synthesis 1,2,4-Oxadiazole

The classical methods to construct 1,2,4-oxadiazole ring utilize different
starting reagents and precursors. Among them, cycloaddition strategy is based on the
1,3-dipolar cycloaddition of a nitrile and a nitrile oxide which is mostly generated in
situ from hydroxamoyl halides, and heterocyclization process via amidoxime-and
acid derivative. Both strategies involve a nitrile moiety, the corresponding
substituent (Rl) terminating at the final oxadiazole product, in the case of 1,3-dipolar
cycloaddition (Scheme 1.9) or at the target oxadiazole position in the amidoxime

route (Scheme 1.10) (Pace et al., 2015).

@

R2
* O—N=C—FR2 /( \§
R1 O/N

—Z

0]

T —0

Scheme 1.9. Cycloaddition route leading to oxadiazoles



The intermediate O-acylamidoxime may be isolated before proceeding to the
final cyclization step in some transformations depending on reaction and purification

conditions.

1y N -HX RZ 0
HO

Y 1
N N R AN R?
2 Y
Il NH,0H R Mx \|( H,Y N
c—> | — | AN |[— 7
R'] N
o

Scheme 1.10. The amidoxime-acid derivative route leading to oxadiazoles

A recent synthetic protocol for 1,2,4-oxadiazoles carrying ferrocenyl units

was reported by Zora et. al., (2014).

1.2.2.2 Reactive Sites in the 1,2,4-Oxadiazole Ring

The 1,2,4-oxadiazole ring can be classified as electron-poor azole due to
being the furan-type heterocycle and the two sp>-hybridized nitrogens. Impact of
nitrogens may be considered to resemble the effect exposed by a NO, or CN group.
Furthermore, due to its asymmetric structure, the electron-withdrawing effect of the
1,2,4-oxadiazole ring is much more sensed in the 5-position than in the 3-position.
Induced reactivity by oxadiazole ring and reactive sites in the ring were shown below

(Figure 1.5) (Pace et al., 2015).

Weakly
nucleophilic
R1
N—( }\l @&—\\Veakly electrophilic
Oxadiazole-Enhanced /< \ /< Ambiohilic
Electrophilic Side-Chain o 4 N === Ambip
Reactive Site -
Electrophilic ? Photocleavable
Internal bond
Leaving
Group

Figure 1.5. Reactivity sites in oxadiazole



1.2.2.3 Contemporary Synthetic Routes to 1,2,4-Oxadiazoles

A great number of recent syntheses of 1,2,4-oxadiazole derivatives are based
one of the two classical transformations described above (Schemes 1.9 and 1.10).
Protected precursors, where a sensitive group which can be affected by reaction
medium and conditions is attached to the main oxadiazole skeleton are sometimes
used. In some combinatorial cases, reactive precursors are particularly generated in
situ; as an example, acylamino furazan is being converted into the 1,3-dipolar
intermediate through a photoinduced reverse cycloaddition pathway, then
sequentially it is attacked by the nucleophile (Nu) and turns into open-chain
intermediate and finally cyclizes into 1,2,4-oxadiazole (Scheme 1.11) (Pace et al.,

2015).

R2 R2 R?
[ el .
)/_\< . ® NuH Nu— 0 N
N. N R'CN N ) A \
0 e HO R2 N

Nu=NH, NR, OR.
Scheme 1.11. Retro-cycloaddition reaction of acylamino furazan leading to

1,2,4-oxadiazole

Another method uses carbonyl diimidazole (CDI) activation involving an
acyl amidoxime intermediate then cyclization to 1,2,4-oxadiazole end product

(Scheme 1.12) (Deegan, et. al.,1999).

00O
N/OH R'COH R2 '\f \(1
R2 |NH CDI,DMF,30 min NHR
3 2 R?
R
CDI,DMF
115 °C,6h
e
N
| )R
R2 N
R3

Scheme 1.12. Carbonyl diimidazole route to 1,2,4-oxadiazole



Starting from carboxylic acid, 1,2,4-oxadiazoles have been synthesized using

ethyl chloroformate then cyclization of intermediate (Filho et. al., 2009).

0]

oHoa| I T

R'CO0H ——

K>CO3
CHchQ r.t.
Ar Dry heating
>-N 120°C 4h N N~ Y
I\ - )
N\ R
(@)

Scheme 1.13. Ethyl chloroformate and acid route to 1,2,4-oxadiazole

Agirbas et. al., (1992) reported a synthesis where end products are a mixture
of 5-chloromethyl oxadiazole and O-amidoximate mixture, being predominantly the

compound 40.

0 N
= Ph
_OH CI\/I\ NN D
N Cl =N NQC /N_
)L — >  Nx + 0 NH
NH, Benzene, reflux \£CI

5h

Ph

Scheme 1.14. Chloroacetyl chloride and amidoxime reaction

1.3  SULFONAMIDES

Upon the recognition of the importance of sulfonamides in the early 1930s,
thanks to them, many bacterial diseases have been treated. Sulfonamides are now
widely used in pharmaceutical preparations, agrochemicals. Penoxsulam, Probenecid
and Sulfadiazine which are on the pharmaceutical market as best selling drugs
belong to sulfonamide carrying molecules (Figure 1.6). Sulfonamide formation
usually takes place within a reaction of corresponding amines and sulfonyl chlorides.

However, the synthetic routes for sulfonyl chlorides are often carried out in
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extremely dry reaction medium and need special precations due to hazardous

chemicals, contaminants or oxidants (Zhang et al., 2018).

MeO
CHF, )
HN o
0, 0 0 o NN 7

~N

NH™ °N

/N\/, e

CF3
Sildenafil Penoksulam

0] O NT X
N =

Sy y
k/ H
HO,C HN" C

Probenesid Sulfadiazine

Figure 1.6. Some sulfonamide drugs in pharmaceutical market

1.3.1 Synthesis of Sulfonamides

Aromatic sulfonamides carrying chiral centers have been found to be
effective carbonic anhydrase inhibitors. In general, sulfonamides are formed by
reaction of sulfonyl chloride and ammonia or amines. Caddick et. al., (2002) reported
a method involving an intermolecular radical addition to pentafluorophenyl

vinylsulfonate and sequential aminolysis (Scheme 1.15).

F F NEt
\\// ' _ \/

e \/\CI F F 0’ %

0 R" R2—NH,

\S/O — \/ — \/
0" 4 PFPO/ \/\ 7 \/\

RZHN

Scheme 1.15. Sulfonamide synthesis via radical addition method
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There are two synthetic methodologies to obtain compounds of medicinal
importance containing a sulfonamide group exhibiting significant therapeutic role
from a sulfonic acid. First one uses TCT or cyanuric chloride as chlorinating agent
for sulfonic acid and then triethylamine added to yield sulfonyl chloride.
Successively, a secondary amine is added to the reaction mixture. Second method
starts with sodium sulfonate salt and uses a crown ether as catalyst (De Luca &

Giacomelli, 2008) (Schemes 1.16 and 1.17).

o\S /O 1.TCT,NEt;, acetone _ O\S /o
R/ \OH R/ \CI

o\s/o
R/ AN

NR;R,

Scheme 1.16. Sulfonamide synthesis from sulfonic acids

(@) @]
O\ /O N\
N\ S
S\ 1.TCT, 18-crown-6, acetone ~
ONa g
2 HNR;R,NaOH,q, THF

NR;R,

Scheme 1.17. Sulfonamide synthesis from sulfonic acid sodium salts

Sulfonamide synthesis was managed by reacting sulfonic acid with

isocyanide at room temperature (Shaabani et. al., 2007).

A transformation using ionic liquid as medium leading to sulfonamides and
sulfonyl azides directly from thiols using NCS was reported (Veisi, Ghorbani-
Vaghei, Hemmati, & Mahmoodi, 2011) (Scheme 1.18).
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R—S—N
N 2
@Q’g\* (|)| R
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RSH — » R—S—Cl R2=Alk, Ar
NCS (3 equiv)
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2 ﬁ
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o}

Scheme 1.18. Sulfonamides and sulfonyl azides directly from thiols using N-
chlorosuccinimide (NCS) in ionic liquids

Preparation of sulfonamides from various primary and secondary amine
sulfonate salts using triethylamine as base and cyanuric chloride or TCT in

acetonitrile (Rad et al., 2009) (Scheme 1.19).

0]

R2
| I TCT, Et;N 1 [
R—S—0  NH,R?R® > R —S—N\
|c|> MeCN, r.t., 1-2 h (|)| R3
R'=Alk, Ar

R2, R3=H, Alk, Ar,Allyl, Benzyl, Heterocycle

Scheme 1.19. Sulfonamide preparation from an dialkylamino—sulfonate salt

Ca (NTf,), was utilized as catalyst to perform disubstituted sulfonamide
synthesis via the reaction between benzene sulfonyl fluoride and aromatic (or

heteroaromatic) amines with high yields (Scheme 1.20) (Mukherjee et al., 2018).

(0] (0]
.. R ot equy \Y4
\s/ *  H—N " Ph/ \N/R1

t-amylOH
Ph/ \F \R2 60°C, 24 h \

R2

Scheme 1.20. Sulfonamides from PhSO,F by the effect of triflate catalyst
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Zhang et al.,, (2018) reported a multicomponent synthetic protocol
incorporating aryl diazotetrafluoroborate bicyclic base, SO, and chloroamine with

accompanying a triflate salt (Scheme 1.21).

RZ O O
Ar——N,BF, /" Cu(OT),(5 mol %) \S/
v /N DCE, /PrOH, 80 °C - awa
DABCO - (SO,), \R1 bl Ar T
R2

-insertion of sulfur dioxide
-mild condition and broad substrate scope
-construction of valuable sulfonamides

Scheme 1.21. A multicomponent generation of sulfonamides with
aryldiazotetrafluoroborate, DABCO-(SO,);, and N-
chloroamine

Under the action of a palladium catalyst, the aryl ammonium sulfates con-
veniently were prepared from aryliodides and DABSO and then intermediate
sulphinate salt underwent a reaction with pyrrolidine carboxylate in the presence of

sodium hypochlorite to give sulfonamide (Flegeau et. al., 2016) (Scheme 1.22).

0,5 -N\/\N-so2

L/
0 O CcOo,Me

| Pd(OAc), O MeOzC/O 2

PAd,Bu | N \s/
— /s\ —_— > Ny
EtsN ® NaOClI
MeS .
© IPrOH, 75°C a” 8 ey HO  1es

Scheme 1.22. Palladium-catalyzed sulfination of aryl iodides for sulfonamide
synthesis

1.4 BENZOTHIADIAZINES

Benzothiadiazine-1,1-dioxides are important scaffolds in heterocyclic
chemistry due to their various biological activities as diuretics, antihypertensive,
anticancer, antimicrobial (Karpe et. al., 2019). Literature survey reveals that first

synthesis was accomplished by Parke &Williams in 1950.
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Over the last few decades, a number of different methods have been
introduced related to benzothiadiazine-1,1-dioxides that is a compilation of literature
citations of the specific and representative syntheses can be given as follows;
Restrepo et.al., (2011) used synthetic sequence through aminobenzenesulfonamide

and aldehyde or carboxylic acids by means of microwave heating.

Iwakawa et. al, (1991) reported a cycloaddition pathway to afford
sulfonamides. Yang et al., (2009) used transition metal catalyzed reactions to
synthesize 1,2,4-benzothiadiazine-1,1-dioxide. In this regard, iron catalyst provided
the combination of 2-bromobenzenesulfonamide with amidine hydrochloride.
Among the most recently published studies, Karpe et. al., (2019) have studied
palladium-catalyzed cleavage initiated by oxygen and subsequent cyclization
reaction of aminosulfonamides with styrene leading to 3-substituted

benzothiadiazine-1,1-dioxide (Scheme 1.23).

(0] (0] e} fe)
\\S// \\S//
~ PA(TFA),(10 mol %) <
p- . NH2 oy (20 mol %) NH
" DMSO, 100°C, P
2 0,, 12h N

Scheme 1.23. Phenyl substituted benzothiadiazine-1,1-dioxide from styrene
and amino sulfonamide

1.4.1 Synthesis of Benzothiadiazine Derivatives

1.4.1.1 Synthesis of 4H-1,2,4-benzothiadiazine-1,1-dioxide

Some of the antihypertensive, antiviral (including anti-HIV) and
antimicrobial compounds have the common structural 1,2,4-benzothiadiazine-1,1-
dioxide moiety. So-called ring is generally constructed by incorporating the o-
aminobenzenesulfonamides with orthoesters or acylating reagents. The main
disadvantage of this method is the difficulties encountered in the synthesis and
availability of o-aminosulfonamides. An alternative way is presented by Cherepakha

et. al., (2011) who developed a one-pot approach based on ring closure under
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Friedel-Crafts conditions through a conjugate addition (Michael) of chlorosulfonyl
isocyanate to anilines. This group also performed a successful transformation in a
combination of o-bromobenzylsulfonyl azide with highly substituted terminal

acetylene in the presence of NH4CI (Scheme 1.24).

\\// \\// \\//

PG Ii — LI,

Scheme 1.24. 4H-1,2,4- benzothiadiazine-1,1-dioxides synthesis
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2. AIM AND SCOPE OF THE STUDY

The core 1,2,4-benzothiadiazine ring having sulfone group can be found in

the structure of many bioactive substances; especially in anti-Alzheimer, anti-
hypertensive, anti-microbial, anti-viral and

anti-scizophrenia agents (Parenti et
al.,1988).

O\\ //O

(0] O (0] O
N\? N\
H,0,NS S S Cl S
NH NH NH
‘\\\\\H )\
Cl N
H N N
Cyclothiazide

S-18986 IDRA-21
T |
( ILW g
NH /@ N
~ N
Cl S Cl S CHs
o// \\o o// \\‘o

Figure 2.1. Some benzothiadiazine drugs with chiral centers as potent AMPA
transmission (Cyclothiazide), AMPA receptor modulator (S-

18986) and cognition-enhancing activity (IDRA-21) and used
against Alzhemier’s disease and sczophrenia
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Amidoximes and aldoximes which are also among the key starting substances
are prepared according to methods previously published in literature (Nicolaides et.
al.,1998;Diirtiist et.al., 2002) and they are selected to have electron-withdrawing and
electron-releasing substituents. These derivatives were synthesized starting from the

substituted aromatic aldehydes or nitriles.

Since it is the key precursor for the thesis, substituted 2-amino benzene
sulfonamides were prepared by reacting the substituted amino benzenes with
chlorosulfonyl isocyanates and successive ring opening with acid according to

previously reported publications.

On the other hand, as oxygen and nitrogen containing heterocycles, 1,2,4-
oxadiazoles and their derivatives have been drawing an increasing attention over the
recent decades. In this regard, many synthetic protocols were developed. In addition
to synthesis, bioactivity screening was performed for a variety of biological activities
such as Nrf2 activators, inhibitors of EthR, antitumor agents and anti-protozoal

agents (Spink et. al., 2015; Diiriist et al.,2012).

Chen et. al. (2010) described the major 1,2,4-benzothiadiazine skeleton which
is generally constructed by reacting 2-aminoarylsulfonamides with orthoester or
acylating reagents.To the best of our literature knowledge, there is no 1,2.4-
oxadiazole substituted benzothiadiazine core structures in the 3-position of the ring

reported so far.

The major purpose of this work is to construct benzothiadiazine-1,1-dioxide
skeletone carrying para-substituted 1,2,4-oxadiazole moiety on the N4 nitrogen atom
(thiadiazine ring numbering). In order to achieve this ultimate goal, first, para-
substituted benzamidoximes (2a-k) have been obtained by using para substituted
benzonitriles. Subsequently, these compounds were transformed into 5-chloromethyl
1,2,4-oxadiazoles (8a-i). Interaction of oxadiazoles with the benzothiadiazine-1,1-
dioxide (7a) which was prepared from aminosulfonamide (5a) gave the target

heterocycles (9a-h) (Scheme 2.1).
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Scheme 2.1. Synthesis of new benzothiadiazine-related derivatives
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3. MATERIALS AND METHODS

All reagents and solvents were supplied from commercial sources in
analytical grade (Merck, Sigma-Aldrich). A computer-controlled single-mode
microwave reactor (CEM Discover Explorer SP) were used for microwave heating.
NMR spectra were recorded on a JEOL ECS 400 spectrometer (400 MHz for proton
and 100 MHz for carbon) in CDCls or DMSO-dg at room temperature. All chemical
shifts (8) were reported in parts per million (ppm) downfield from TMS; J values are
given in Hz. The abbreviations used for NMR signals are: br s= broad singlet, s =
singlet, d = doublet, t = triplet, q = quartet, hept = heptet, m = multiplet, dd=doublet
of doublets, dt=doublet of triplets, ddd=doublet of doublet of doublets. IR spectra
were recorded on a SHIMADZU FTIR-8400S instrument using KBr pellets. LC-MS
spectra were run on a Agilent instrument. Melting points were determined on a
MELTEMP apparatus and they are uncorrected. TLC analyses were carried out to
monitor the reaction progress using precoated plates with fluorescent indicator
(Merck 5735). Column chromatographic separations were performed on silica gel
(Merck, 230-400 mesh ASTM) and the eluents were mostly mixtures of ethyl acetate
and hexanes. Staining solutions of KMnO,4 and UV-(254 or 366 nm) light were used
to detect the TLC spots.
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3.1 EXPERIMENTAL

3.1.1 PREPARATION OF STARTING MATERIALS

3.1.1.1 Preparation of para substituted benzamidoximes

To a solution of p-substituted benzonitrile (1 eq.) and triethylamine in
ethanol, NH,OH.HCI (1.5 eq.) was added slowly by stirring until all of
hydroxylamine hydrochloride was dissolved. The mixture was stirred at 80-85°C for
0.5-24 h. During this time interval, reactions were monitored on TLC plate. When
the reaction was finished, the reaction mixture was cooled to room temperature.
When the temperature reduced to RT, white or yellow precipitate form in ethanol
mixture. Ethanol was evaporated with a rotary evaporator. Then, water was added to
these white or yellow precipitate in remaining ethanol mixture. The resulting
precipitate was filtered off and it was washed with a plenty of distilled water. The
resulting solid was thoroughly dried under vacuo. (Agirbas et.al., 1992; Diiriist &
Karakus, 2017; Diiriist et. al., 2017; Diiriist et. al, 2015; Diiriist et. al., 2014; Sagirh
& Diiriist, 2018).

N—OH
1.5 eq.NH,OH.HCI /
R C=N » R
2.4 qut3N NH2

1a-k EtOH reflux 2a-k

Benzamidoxime (2a):

N
Z “OH
NH,
2a

Benzonitrile (1a) (3.094 g, 30 mmol), triethylamine (10 ml), hydroxylamine
hydrochloride (3.132 g, 45 mmol), EtOH (30 ml). After cooling the reaction mixture

to room temperature, white precipitate formation was not observed.
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After evaporation of most of ethanol from the mixture, a white solid was observed,
but with addition of water to the remaining part, white solid dissolved. Extraction
was performed with EtOAc and water only. The organic layer was dried with
anhydrous Na;SOy. Yield: 2.042 g (50%). M.p. : 74-75°C. R : 0.425 (2:1 ; EtOAc
:n-Hexane).IR (KBr: cmﬁl): 3454, 3362 (N-H), 1651 (C=N).

4-Methoxybenzamidoxime (2b):

/O

N
Z OH

NH»
2b

4-Methoxybenzonitrile (1b) (3.995 g, 30 mmol), triethylamine (10 ml),
hydroxylamine hydrochloride (3.132 g, 45 mmol), EtOH (30 ml). Yield: 3.00 g (
60%).

M.p. : 118-119°C. R¢ : 0.125 (1:1 ; EtOAc :n-Hexane). IR (KBr: cm™): 3443, 3354
(N-H), 1647 (C=N).

4-Methylbenzamidoxime (2c¢):

N
~ SOH

NH,
2c

4-Methylbenzonitrile (1c¢) (5.272 g, 45 mmol), triethylamine (15 ml), hydroxylamine
hydrochloride (4.697 g, 67.5mmol), EtOH (40 ml).Yield: 5.315 g (79%).M.p. : 145-
146°C. Ry : 0.325 (1:1 ; EtOAc :n-Hexane).IR (KBr, v: cm™): 3500, 3369 (N-H),
1662 (C=N).
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4-Trifluoromethylbenzamidoxime (2d):
FsC
N
ZNT
NH,

2d

4-Trifluoromethylbenzonitrile (1d) (2.567 g, 15 mmol), triethylamine (5 ml),
hydroxylamine hydrochloride (1.564 g, 22.5 mmol), EtOH (15 ml).Yield: 2.124g (
69%). M.p. : 128—-130°C. R¢: 0.400 (1:1 ; EtOAc :n-Hexane).IR (KBr, v: cmﬁl):
3489, 3367 (N-H), 1666 (C=N).

4-Iodobenzamidoxime (2e):

~Z SoH

NH,
2e

4-Todobenzonitrile (1e) (1.603 g, 7 mmol), triethylamine (2.3 ml), hydroxylamine
hydrochloride (0.731 g, 10.5 mmol), EtOH (7 ml).Yield: 1.660 g ( 90%). M.p. : 158—
160°C. R¢: 0.375 and 0.1875 (1:1 ; EtOAc :n-Hexane).

IR (KBr, v: cm™): 3483, 3371 (N-H), 1662 (C=N).

4-Nitrobenzamidoxime (2f):

€]
\
N
NI
N
~ NoH
NH,

2f

4-Nitrobenzonitrile (1f) (4.444 g, 30 mmol), triethylamine (10 ml), hydroxylamine
hydrochloride (3.132 g, 45 mmol), EtOH (30 ml).Yield: 4.679 g (86%).
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M.p. : 163-165°C. R 0.725 and 0.400 (3:1 ; EtOAc :n-Hexane).IR (KBr, v: cmﬁl):
3462, 3358 (N-H), 1663 (C=N).

4-Methylthiobenzamidoxime (2g):

~ “SOoH
NH
29 2

4-Methylthiobenzonitrile (1g) (3.730 g, 25 mmol), triethylamine (8.3 ml),
hydroxylamine hydrochloride (2.610 g, 37.5 mmol), EtOH (25 ml).Yield: 4.184 g (
92%).M.p. : 125-127°C. R¢: 0.250 (1:1; EtOAc:n-Hexane).IR (KBr, v: cmﬁl): 3476,
3450, 3358 (N-H), 1655 (C=N).

4-N,N-Dimethylaminobenzamidoxime (2h):

_—N

Z on

2h NH,

4-N,N-dimethylaminobenzonitrile (1h) (1.608 g, 11.0 mmol), triethylamine (3.7 ml),
hydroxylamine hydrochloride (1.147 g, 16.5 mmol), EtOH (30 ml).Yield: 0.496 g (
25%). M.p. : 127-128°C. R¢ : 0.200 (3:1 ; EtOAc :n-Hexane).IR (KBr, v: cm’l):
3505, 3404 (N-H), 3188-2814 (C-H), 1654, 1612 (C=N), 1582, 1365.
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3.1.1.2 General Procedures for Preparation of 5-(chloromethyl)-3-aryl-

1,2,4-oxadiazoles

o}
CI\)J\
N—OH I
R / 1.0 eq. - N
— \
NH, Benzene, reflux

O

2a-k 22-26.5 hours 8a-i N~
1.25 eq.
Cl

To a solution of para-substituted benzamidoxime (1.25 eq.) in benzene,

chloroacetyl chloride (1.0 eq.) dissolved in 5 ml of benzene was added dropwise by
stirring and the mixture was refluxed overnight. Benzene was evaporated under the
reduced pressure. The remaining crude product was purified with flash column
chromatography in silica gel. In general, 5- (chloromethyl)-3-aryl-1,2,4-oxadiazoles
were obtained as a solid product except 5-(chloromethyl)-3-(4-fluorophenyl)-1,2,4-
oxadiazole which was a colorless liquid (Agirbas et.al., 1992; Diiriist & Karakus,
2017; Diiriist et. al., 2017; Diiriist et. al, 2015; Diirtist et. al., 2014; Sagirli & Diiriist,
2018).

5-(Chloromethyl)-3-phenyl-1,2,4-oxadiazole (8a):

Benzamidoxime (2a) (0.545 g,4.0 mmol) in benzene (200 ml), 0.362 g (3.2 mmol)
of chloroacetyl chloride in benzene (5 ml).Yield: 529 mg (85%). M.p. : 40-42°C. R¢
:0.825 (2:1; EtOAc :n-Hexane). IR (KBr, v: cmﬁl): 3069-2967 (C-H ), 1597, 1583
(C=N).

5-(Chloromethyl)-3-(p-tolyl)-1,2,4-oxadiazole (8b):

4-Methylbenzamidoxime (2¢) (0.375 g, 2.5 mmol) in benzene (200 ml), 0.226 g (2.0
mmol) of chloroacetyl chloride in benzene (5 ml).Yield: 298 mg (71%).M.p. : 41—
44°C. R¢ : 0.8125 (1:1 ; EtOAc :n-Hexane). IR (KBr, v: cm™): 3034-2854 (C-H ),
1597, 1577 (C=N).
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5-(Chloromethyl)-3-(4-methoxyphenyl)-1,2,4-oxadiazole (8c):

4-Methoxybenzamidoxime (2b) (0.499 g, 3 mmol) in benzene (115 ml),
chloroacetyl chloride (0.271 g, 2.4 mmol) in benzene (5 ml).Yield: 448 mg
(83%).M.p. :  40-41°C. Rf: 0.8125 (1:1 ; EtOAc :n-Hexane). IR (KBr, v: cmﬁl):
3020-2841 (C-H), 1612, 1597,1573 (C=N).

5-(Chloromethyl)-3-(4-chlorophenyl)-1,2,4-oxadiazole (8e) :

4-Chlorobenzamidoxime (2j) (0.342 g, 2.0 mmol) in benzene (50 ml), chloroacetyl
chloride (0.110 g, 0.974 mmol) in benzene (5 ml).Yield: 194 mg (87%).M.p. : 60—
61°C. Ry 0.725 (1:1;EtOAc :n-Hexane). IR (KBr, v: cm’l): 3020-2972 (C-H),
1591,1568 (C=N).

5-(Chloromethyl)-3-(4-iodophenyl)-1,2,4-oxadiazole (8f):

4-Todobenzamidoxime (2e) (0.524 g, 2.0 mmol) in benzene (200 ml), chloroacetyl
chloride (0.181 g, 1.6 mmol) in benzene (5 ml).Yield: 510 mg (99%). M.p. : 71—
73°C. Ry : 0.825 (1:1; EtOAc :n-Hexane).IR (KBr, v: cm™): 3069-2987 (C-H),
1595, 1560 (C=N).

5-(Chloromethyl)-3-(4-nitrophenyl)-1,2,4-oxadiazole (8g):

4-Nitrobenzamidoxime (2f) (0.544 g, 3.0 mmol) in benzene (275 ml), chloroacetyl
chloride (0.271 g, 2.4 mmol) in benzene (5 ml).Yield: 356 mg (62%). M.p. : 89—
90°C. Ry : 0.775 (2:1; EtOAc :n-Hexane).IR (KBr, v: cm™): 3099-2960 (C-H),
1612, 1578 (C=N).

5-(Chloromethyl)-3-(4-(trifluoromethyl)phenyl)-1,2,4-oxadiazole (8h):

4-Trifluoromethylbenzamidoxime (2d) (0.510 g, 2.5 mmol) in benzene (90 ml),
chloroacetyl chloride (0.226 g, 2.0 mmol) in benzene (5 ml).Yield: 380 mg (72%).
colorless oil. R¢: 0.850 (2:1; EtOAc : n-Hexane). IR (KBr, v: cm_l): 1597, 1577
(C=N).
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(5-Chloromethyl)-3-(4-N,N-dimethylaminophenyl)-1,2,4-oxadiazole (8i):

4-N,N-Dimethylaminobenzamidoxime (2h) (0.448 g, 2.50 mmol) in benzene (225
ml), chloroacetylchloride (0.226 g, 2.0 mmol) in benzene (5 ml).Yield: 139 mg
(29%). M.p. : 63-66°C. Ry : 0.775 (2:1; EtOAc : n-Hexane). IR (KBr, v: cm™):
3010-2816 (C-H), 1608 (C=N).

3.1.1.3 Preparation of substituted 2-aminobenzene sulfonamides

o)

N/ % o
CISO,NCO s \\S/
X SNH A N
| A|C|3 H zso . | NH,
/ Z R / O NHR
R R R 5a

Chlorosulfonyl isocyanate (26 ml, 300 mmol) in nitroethane (200 ml) was cooled to
—40 ° C (dry ice-acetone), and 4-chloroaniline (270 mmol) in nitroethane (100 m)
was added dropwise with stirring. At the end of the addition, the reaction mixture
was stirred for a further 30 min and aluminium chloride (39 g, 300 mmol) was added.
The mixture was heated at 110 ° C for 1 h. The product was poured onto ice and the
precipitate was filtered off in vacuum, washed with cold water and dry ether. The
residue was taken up in 50% aqueous sulfuric acid solution (320 ml) and heated at
140 °C for 8 h. The solution was taken up on ice and neutralized with saturated
aqueous sodium hydroxide at 0 °C. The precipitate was filtered off under vacuum,
washed with cold water and dried in vacuum. The desired compound was obtained.

Spectral data are found to be consistent with the literature values (Cherepakha et al.,

2011).

3.1.1.4 General Procedures for Preparation of 4H-1,2,4-benzothiadiazine-

1,1-dioxide

2-Aminobenzenesulfonamide (1.754 g, 100 mmol) and triethylorthoformate

(155 mL) were refluxed for 2 h (146 °C).The mixture was cooled to room
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temperature, the white precipitate was filtered, washed with ether and dried in

vacuum. Yield: 1.200 g (65%).

3.1.2 SYNTHESIS OF TARGET PRODUCTS

3.1.2.1 Preparation of 4 - ((3- (p-substitutedphenyl) -1,2,4-oxadiazol-5-yl)
methyl) -4H-1,2,4-benzothiadiazine-1,1-dioxides (9a-h)

\\ //

R
wn O )
K,CO
@ J N o
—
O Acetonitrile

70 °C, overnight 9a-h N

gai NX

7a Cl

R
9a CH3
9b CH,0
9 F
9d CI
9e |
9f NO,
99 CFs;
9h NMe,

Anhydrous potassium carbonate (1.0 g) was added to an acetonitrile (20 mL)
solution of benzothiadiazine 1,1-dioxide (96.59 mg, 0.5301 mmol) and p-tolyl 5-
chloromethyl-1,2,4-oxadiazole (131 mg, 0.583 mmol) and the mixture was heated in
oil bath at 70 ° C overnight. The progress of the reaction was monitored by thin layer
chromatography The mixture was filtered, the solvent was removed under reduced
pressure. The crude product was purified by column chromatography (n-hexane:

ethyl acetate; 1: 1).
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4-((3-(4-Methylphenyl)-1,2,4-oxadiazol-5-yl)methyl)-4H-1,2,4-benzothiadiazine-
1,1-dioxide (9a)

White solid. M.p.: 155-157 °C yield : %38: IR (KBr, cm™): 3053, 1622, 1265 (SO,
asym), 1172 (SO,-sym), 1030, 738. '"H NMR (400 MHz,CDCl; ) & 8.15 (s, 1H),
7.91-7.87 (dd, J = 8.0, 1.2 Hz, 1H), 7.79 (d, J = 8.0 Hz, 2H), 7.58-7.52 (dt, J = 7.6,
1.2 Hz, 1H), 7.46-7.37 (dd, J = 16.4, 7.8 Hz, 1H), 7.20-7.16 (dd, J = 8.4, 3.6 Hz,
4H), 5.58 (s, 2H), 2.31 (s, 3H). °C NMR (101 MHz, CDCl3+DMSO-dg) § 173.17,
168.64, 150.72, 142.08, 134.99, 133.35, 129.61, 127.36, 125.31, 122.89, 115.31,
45.69, 29.52. LC-MS (ESI) C7H14N4O4S: m/z 355.36 (M + H).

4-((3-(4-Methoxyphenyl)-1,2,4-oxadiazol-5-yl)methyl)-4H-1,2 ,4-
benzothiadiazine-1,1-dioxide (9b)

\\S/I\
)
N) O-~N
Ias!
9b N
OCH;

White solid. M.p.: 145-147 °C. Yield : 48%: IR (KBr, cm™): 3078, 2928, 1620,
1257 (SO, asym), 1176 (SO,-sym), 1022, 775. "H NMR (400 MHz, CDCl; ) & 8.10-
8.04 (dd, J =94, 2.0 Hz, 1H), 7.99-7.93 (d, J = 12.0 Hz, 2H), 7.90 (s, 1H), 7.70—
7.60 (dt, J = 8.0, 2.0 Hz, 1H), 7.54-7.48 (t, J = 8.0 Hz, 1H), 7.20 (d, J = 11.2 Hz,
1H), 6.98 (d, J = 12.0 Hz, 3H), 5.34 (s, 2H), 3.87 (s, 3H). °C NMR (101 MHz,
CDCl3+DMSO-ds) 6 173.28, 168.25, 162.23, 150.97, 135.03, 133.43, 129.09,
127.31, 125.19, 123.57, 118.06, 115.54, 114.39, 55.42, 45.72. LC-MS (ESI)
Ci7H1aN4O4S: m/z 371.24 (M + H).
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4-((3-(4-Fluorophenyl)-1,2,4-oxadiazole-5-yl)methyl)-4H-1,2,4-benzothiadiazine-
1,1-dioxide (9¢)

o)
S\
Ly
N) O~N
N

NKOF

White solid. M.p.: 112-114 °C. Yield : 64%: IR (KBr, cm™): 3066, 2985, 1624,
1265 (SO, asym), 1172 (SO,-sym), 895. '"H NMR (400 MHz, CDCl3) & 8.23 (s, 1H),
7.95-7.90 (dt, J =7.2, 2.0 Hz, 1H), 7.88-7.84 (d, J/ = 8.0, 1.6 Hz, 1H), 7.61-7.55 (dt,
J=72,1.2Hz, 1H), 5.72 (s, 2H). °C NMR (101 MHz, CDCl3+DMSO-dg) & 174.20,
167.63, 165.82, 163.32, 151.23, 135.11, 133.47, 129.82, 129.74, 127.32, 125.06,
123.55, 122.23, 12220, 116.37, 116.15, 115.86, 45.76. LC-MS (ESI)
Ci6H11FN4O3S: m/z 359.48 (M + H).

9c

4-((3-(4-Chlorophenyl)-1,2,4-oxadiazole-5-yl)methyl)-4H-1,2 ,4-
benzothiadiazine-1,1-dioxide (9d)

Cl

White solid. M.p.: 132-135 °C. Yield : 55%: IR (KBr, cm™): 2924, 1620, 1311 (SO,
asym), 1170 (SO,-sym), 1018, 825, 761. 'H NMR (400 MHz, CDCl; ) § 8.18 (s,
1H), 7.95-7.89 (dt, J = 5.6, 1.6 Hz, 2H), 7.59-7.53 (dt, J = 7.2, 1.2 Hz, 1H), 7.44—
739 (t, J = 8.0 Hz, 1H), 7.38-7.34 (dt, J = 9.2, 2.4 Hz, 1H), 5.65 (s, 2H). °C NMR
(101 MHz, CDCl3+DMSO-dg) 6 173.92, 167.77, 150.94, 137.61, 134.99, 133.45,
129.26, 128.85, 127.35, 125.23, 124.35, 123.57, 115.49, 45.68. LC-MS (ESI)
Ci6H11CIN4O3S: m/z 375.30 (M + H).
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4-((3-(4-Iodophenyl)-1,2,4-oxadiazol-5-yl)methyl)-4H-1,2,4-benzothiadiazine-
1,1-dioxide (9e)

White solid. M.p.: 119-120 °C. Yield : 48%: IR (KBr, cm™): 3051, 2982, 1624,
1267 (SO, asym), 1172 (SO,-sym), 1030, 819, 731. 'H NMR (400 MHz, CDCl; ) &
8.22 (s, 1H), 7.88-7.86 (dd, J = 7.6, 1.2 Hz, 1H), 7.76-7.73 (t, J = 3.6 Hz, 2H), 7.65
(d, J=8.4 Hz, 2H), 7.60-7.56 (dt, J=8.4, 1.6 Hz, 1H), 7.43 (t, J = 8.0 Hz, 1H), 7.29
(d, J = 8.4 Hz, 1H), 5.74 (s, 2H). °C NMR (101 MHz, CDCl;+DMSO-d¢) & 174.40,
167.95, 151.23, 138.22, 135.15, 133.43, 129.00, 127.29, 125.44, 125.05, 123.65,
115.89, 98.62, 45.77. LC-MS (ESI) C;6H;{IN4O3S: m/z 467.25 (M + H).

4-((3-(4-Nitrophenyl)-1,2,4-oxadiazol-S-yl)methyl)-4H-1,2,4-benzothiadiazine-
1,1-dioxide (9f)

Light brown solid. M.p.: 162-165 °C. Yield : 37%: IR (KBr, cm™): 1662, 1616,
1047, 1024, 827, 765. '"H NMR (400 MHz, CDCl;+DMSO-ds) 5 8.35 (d, J = 8.8 Hz,
2H), 8.29 (s, 1H), 8.16 (d, J = 8.8 Hz, 2H), 7.96-7.92 (dd, J = 7.6, 1.2 Hz, 1H),
7.76-7.69 (dt, J = 8.4, 1.2 Hz, 1H), 7.58-7.51 (dt, J = 11.6, 7.6 Hz, 2H), 5.92 (s, 2H).
C NMR (101 MHz, CDCl3+DMSO-dg) 8 176.22, 166.94, 152.14, 149.77, 135.36,
134.01, 131.69, 129.34, 128.97, 127.83, 125.04, 123.40, 117.05, 46.26. LC-MS
(ESI) Ci6H1i1NsOsS: m/z 386.35 (M + H).
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4-((3-(4-Trifluoromethylphenyl)-1,2,4-oxadiazol-5-yl)methyl)-4H-1,2,4-
benzothiadiazine-1,1-dioxide (9g)

0.0

\\SI,\
)
N) O~N
A4
CF4

White solid. M.p: 98101 °C. Yield : 47%: IR (KBr, cm™"): 1643, 1624, 1168, 1049,
1026, 827. 'H NMR (400 MHz, CDCl;+DMSO-dg) & 8.22 (s, 1H), 8.07 (d, J = 8.0
Hz, 2H), 7.87 (d, J = 8.0 Hz, 1H), 7.67 (d, J = 8.0 Hz, 2H), 7.57 (t, J/ = 8.4 Hz, 1H),
7.42 (t,J =7.6 Hz, 1H), 7.27 (d, J = 8.4 Hz, 1H), 5.74 (s, 2H). °C NMR (101 MHz,
CDCI3+DMSO-dg) 6 174.26, 167.53, 151.12, 135.11, 133.41, 132.68, 129.47,
128.00, 127.31, 125.99, 125.95, 125.13, 123.67, 115.73, 45.74. LC-MS (ESI)
Ci7Hi1FsN4OsS: m/z 409.52 (M + H).

4-((3-(4-Dimethylaminophenyl)-1,2,4-oxadiazol-5-yl)methyl)-4H-1,2,4-
benzothiadiazine-1,1-dioxide (9h)

Beige solid. M.p.: 126-128 °C. Yield : 59%: IR (KBr, cm'l): 2922, 1654, 1612,
1313, 1170, 1026, 825, 763. "H NMR (400 MHz, CDCl;+DMSO-dg) 5 8.20 (s, 1H),
7.86 (dd, J = 7.6, 1.2 Hz, 1H), 8.07 (d, J = 8.0 Hz, 2H), 7.70 (d, J = 8.8 Hz, 2H),
7.58-7.53 (dt, J = 8.8, 1.2 Hz, 1H), 7.41 (t, J = 7.2 Hz, 1H), 6.61 (d, J = 8.8 Hz,
2H), 5.61 (s, 2H), 2.93 (s, 6H). °C NMR (101 MHz, CDCl;+DMSO-dg) & 172.82,
168.62, 152.39, 151.10, 135.09, 133.43, 128.62, 127.28, 125.09, 123.54, 115.71,
112.44, 111.59, 61.15, 45.80. LC-MS (ESI) CsH,7N503S: m/z 384.34 (M + H).
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4. RESULTS AND DISCUSSION

41 SYNTHESIS AND CHARACTERIZATION OF STARTING
MATERIALS

In order to achieve the project objectives, a series of para substituted
benzamidoximes (9 compounds) and chloro substituted 2-amino benzenesulfonamide
were synthesized. The physical constants (melting points, Ry values) in the literature
and the IR spectra were found to be in accord with those values we obtained (Scheme
4.1). Most indicative absorption bands for benzamidoximes 2a-i are C=N stretching
vibrations at around 1640 cm™' and NH; stretching vibrations at around 3300-3400
cm' (two peaks). Hydrogen-bonded strong and wide NOH absorption appears in the
region 2400-3200 cm . In addition, disappearance of C=N absorption at around
2250 cm™' * which is core signal for nitrile group, is another confirmative physical

evidence for amidoximes.

N—OH
1.5 eq.NH,OH.HCI /
R C=N » R
2.4 qut3N NH2

1a-k EtOH reflux 2a-k

Scheme 4.1. Synthesis of para substituted benzamidoximes from
corresponding nitriles

Synthesis of 2-amino-5-chlorobenzenesulphonamide which is the main
starting material of the procedure, from the 4-chloroaniline and chlorosulphonyl

isocyanate, was performed according to literature method and its structure was

verified (Scheme 4.2).
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Scheme 4.2. Synthesis of 2-amino-5-chlorobenzenesulfonamide Sa.

a

071 Cl = 5‘{\
RO /
45 e

=~
——

{ |
40 | / 8
] J RIS U
- 3 I
3] 3 ! g | 8|l {5
i NH bond | |, )\, o ¢
30 I N | 5%
- g !
: e SR
25 7 v .Ll pa L) b
20 o L
- 2 g J AN
] EEANE Arom C=(] /|
30 o B
157 2y &/ 2 §=0 stretch
g H2 stretch S=0 stretch & |
4000 3600 3200 2800 2400 2000 1800 1600 1400 1200 1000 800 600  40C
7G-12 1/cm

Figure 4.1. IR spectrum of 2-amino-5-chlorobenzenesulfonamide Sa.
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Although the reactions between chloroaminosulfonamide and various
amidoximes/or aldoximes were attempted under the different reaction conditions,

especially, no product formation could be observed in the microwave heating.

P
Cl S Microwave
NH, . Amidoxime » No product formation
NH, or aldoxime

or reflux in solvent

5a

Then, in order to obtain a structure which resembles heterocycle bearing
benzothiazine dioxide scaffold, benzothiadiazinedioxide was synthesized from

sulfonamide using triethyl orthoformate (Scheme 4.3).

O, O O, O
Y Y
\NH2 Triethylorthoformate \N
g |

146 °C )

NH; N

reflux H

5b 7a

Scheme 4.3. Synthesis of benzothiadiazine dioxide 7a

In order to obtain 3-p-(substitutedphenyl)-5-chloromethyl-1,2.4-oxadiazoles
which are the most important components of the work, para substituted
benzamidoximes were reacted with chloroacetylchloride in refluxing benzene and the
structures were confirmed by the literature data published previously (Scheme 4.4)

(Agirbas et. al., 1992).

o) R

CI\)J\
N—OH Cl
R / 1.0eq. - N
— \
NH, Benzene, reflux

O

2a-k 22-26.5 hours 8a-i N~
1.25 eq.
Cl

Scheme 4.4. Synthesis of 5-chloromethyl-1,2,4-oxadiazoles
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4.2  SYNTHESIS OF 4 - ((3- (p-SUBSTITUTEDPHENYL) -1,2,4-
OXADIAZOL-5-YL) METHYL)-4H-1,2,4-BENZOTHIADIAZINE-
1,1-DIOXIDES (9)

The N-substituted target compounds were successfully obtained from the
reaction of benzothiadiazine dioxide with 3-(p-substitutedphenyl)-5-chloromethyl-
1,2,4-oxadiazoles (Scheme 4.5).

\\ //

R
@ )
K,CO
@ I My =2
—
O  Acetonitrile

N 70 °C, overnight 9a-h

8a-i
7a Cl

R

9a CH,
9b CH;0
9 F
9d CI
9e |
9f NO,
99 CF3
9h NMe,

Scheme 4.5. Synthesis of 4 - ((3- (p-substitutedphenyl) -1,2,4-oxadiazol-5-yl)
methyl) -4H-1,2,4-benzothiadiazine-1,1-dioxides 9a-h

These novel compunds have been elucidated by spectral and physical

methods. IR, NMR and mass spectra shown below (Figures 4.10—4.13). Molecular

ion peak of each compounds is clearly seen in the LC-mass spectra. Further, the

asymmetric and symmetric vibration bands of the sulfone group being the most

prominent absorption bands in the IR spectra of the compounds arose at 1260 and

1170 cm™, respectively. C = N stretching absorption band arose at 1620 cm™

In the proton NMR spectra, the most indicative proton signals were CH,
protons from the initial oxadiazoles at about 5.5 ppm, and the iminic protons from
benzothiadiazine-1,1-dioxide at about 8.5 ppm as singlets. In the ¥ C NMR spectra,
oxadiazole iminic carbons appeared at about 172 and 170 ppm, and benzothiazine
ring carbon at about 150 ppm. The oxadiazole methylene carbon appears to be

around 45 ppm. Both proton and carbon chemical shifts observed show a distinctive
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feature depending on the nature of substituents attached at para positions of the
phenyl ring of oxadiazole moiety. In this regard, we see more deshielded protons and
carbons especially for NO, and F substitution due to strong electron withdrawing
effect. Thus, in compound 9f, oxadiazole bridge methylene protons (Ha) resonated at
most deshielded region (5.92 ppm) and also oxadiazole ring C3 carbon at 176.22
ppm. Lowest value for these carbons is that of compound 9h where electron
releasing N(CHj3), group is attached at para position. In addition, as an unexpected
manner, iminic proton of benzothiadiazine ring have been found to be affected by the
substituents also.These variations in chemical shifts may be considered as a result of
field-spatial effects of the substituents. Another observation we have noticed is that
substituents exposing electron-releasing or electron-withdrawing effect by resonance
have much higher impact on the chemical shift values than that of inductive effects.

These are tabulated and shown below (Tables 4.1 and 4.2).

Table 4.1. Chemical Shift (5 ppm) values of Typical Protons of 9a-h

0.0
SN
NJ——Hb

N O.
Ha“""C\« IN
Ha N-C?’i
R
S (ppm) & (ppm)
Compound R
(N-CH,-oxadiazole, Ha)  (C3-H-benzothiadiazine, Hb)
9a CH; 5.58 8.15
9b CH;0 5.34 7.90
9c F 5.72 8.23
9d Cl 5.65 8.18
9e | 5.74 8.22
of NO, 5.92 8.29
9g CF; 5.74 8.22
9h N(CH), 5.61 8.20
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Table 4.2. Chemical Shift (6 ppm) values of Typical Carbons of 9a-h

Q.0
S‘N
J
N
O.
H2C \« ,[\j
N—Cg
R
6 (ppm) 6 (ppm)
Compound R
(C3-oxadiazole) (N-CH,-oxadiazole)
9a CH; 45.77 173.17
9b CH;0 45.72 173.28
9c F 45.76 174.20
9d cl 45.68 173.92
9e | 45.77 174.40
of NO, 46.26 176.22
9g CF; 45.74 174.26
9h N(CH;), 45.80 172.82

The Hammett equation (linear free energy relationship) has been one of the
most widely used means for the study and interpretation of organic reactions and
their mechanisms. It was basically established for the acidities of the substituted
benzoic acids and given by the following equation, but, later, it has been used to
analyze various organic reactions in terms of substituent effects (Hammett, 1937 &

1938; Hansch et. al., 1991) (Figure 4.4).
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+ The equation describing the straight line correlation between a series of
reactions with substituted aromatics and the hydrolysis of benzoic acids
with the same substituents is known as the Hammett Equation.

k K
100 =p-o or =p-O

T~

/ o = substituent constant

A measure of the total polar
Log of the ratio of effect exerted by substituent X

either the reaction (relative to no substituent) on
rate constant or the the reaction centre.

equilibrium constant p = reaction constant
_ _ recall:
Proportionality o =-(pK, - pK,(H))
constant between log
of k (or K) values and o —ve = electron-donating

+ve = electron-withdrawing

Figure 4.4. Hammett equation and descriptions of its elements

The Hammett equation, or its extended form is one of the most useful tool to
interprete too many different types of organic reactions. Hammett's successs can be
seen especially in taking account of the electronic effects of substituents on the
reaction rates and equilibria. That is why organic chemists or experts in other

chemical fields use this equation in their research studies over the decades.

Based on the above considerations, we have already performed Hammett
correlations between the chemical shifts of the typical protons, carbons related to the

benzothiadiazine-1,1-dioxide derivatives 9a-h and sigma para substituent constants

(op) (Figures 4.5-4.8 ).
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Figure 4.5. Hammett correlation of bridge methylene (Ha) protons
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Figure 4.6. Hammett correlation of iminic protons (Hb) of benzothiadiazine

ring.
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Figure 4.7. Hammett correlation of C3 iminic carbons of oxadiazole ring.

Upon examination of the above plots, we may conclude that most coinciding
one is that of the iminic carbon correlation with the Hammett sigma substituent
constants. This can be interpreted by taking account of being closure to the electron

with-drawing and electron releasing subtituents.

46,3
p-NO2 *

46,2
46,1

46

3 p-NMe
45,9 2 —
p-MeO p-l 3
45,8 * p-F
o o7 .
45,7 LT o p
45 ,6 T T T T T T T T T 1
1 0,8 0,6 0,4 0,2 0 0,2 0,4 0,6 0,8 1
Gp

Figure 4.8. Hammett correlation of bridge methylene carbons
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In general, the graphs given above tell us about the higher chemical shift
values which are an indication of deshielding effect of strongly electron-withdrawing
substituent like NO,.The lower chemical shift values was related to the more
shielded protons or carbons distinctive for electron-releasing substituent such as a
dimethylamino. In summary, minus values of sigma para constants coincide with the
electron-donating substituents appearing in left lower side of the graph. Reversely,
plus sigma para constant values appear in the right upper side of the graph.These

results are in accord with theoretically established calculations.

Q.0
S<
N
O3
N O~N
S
N

Figure 4.9. Structure of 4-((3-(4-methylphenyl)-1,2,4-oxadiazol-5-yl)
methyl)-4H-1,2,4- benzothiadiazine-1,1-dioxide 9a
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Figure 4.10. IR spectrum of 9a
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5.  CONCLUSIONS

In summary, within this study, despite the difficulties encountered during the
experiments, we succesfully synthesized 8 new benzothiadiazine-1,1-dioxide
derivatives carrying 1,2,4-oxadiazolylmethyl group at 4-position of the
benzothiadiazine ring. Synthesis of amidoximes and chloromethyl oxadiazoles as
starting materials were carried out and their interaction with benzothiazine-1,1-
dioxide were performed. Amidoximes and aminosulfonamides did not undergo an
anticipated reaction which would lead to target compounds even if we tried under too

many conditions including microwave or classical heating methods.

All of these compounds are new and original and makes a remarkable
contribution to the literature of synthetic organic chemistry. It is strongly possible
that the compounds are potentially bioactive according to the groups they carry. But,
unfortunately, at the moment, we are not able to conduct a bioactivity screening of
the compounds due to the low amounts of them and being unrecoverable from

DMSO-ds NMR solutions.
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7. APPENDICES

IR,"H NMR,"*C NMR and LC-MS Spectra of the precursors and

products
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Figure 7.1. IR spectrum of benzamidoxime 2a
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Figure 7.27. IR spectrum of compound 9d
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Figure 7.37. '"H NMR spectrum of compound 9f

71



CARBON_01

2G-52

~
~
©
~
-
I

166.94
— 152.14

~149.77

46.26

32000
30000
28000
26000
24000
22000
20000
r 18000
r 16000
r 14000
12000
10000
8000

6000

4000

2000

-2000

200

190

180 170 160

150

140 130 120 110 100

90

80 70 60

f1 (ppm)

Figure 7.38. °C NMR spectrum of compound 9f

Default file
ZG52 241 (4.822)

1: Scan ES+

100+

%]

.162.70

163.12 229:25

203.92
274.11

386.35
|

|
|

328.34

701.26

1.84e6

790.20

385.86

441.92 465.99
#

434.50 517.35

|
| 3;86.56 598.32 650{.52 789.99

m/z
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Figure 7.40. LC-MS (ES-) spectrum of compound 9f
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Figure 7.48. LC-MS spektrum of compound 9h
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