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ABSTRACT

TEXTURE MAPPING FOR 3D BUILDING MODELS

The need and attempt for creating mathematically-defined three dimensional

(3D) models of real world objects has a long history. While, in the past, creating the

model was a problem itself, with recent developments in 3D reconstruction, creating

accurate, photorealistic and photogrammetric 3D models of the objects has become the

focus point. Starting from the architectural models, an interactive texture mapping

system was developed concentrating on the visual appearance of the predefined mod-

els. The system presents a semi-automatic way of extracting, correcting, and mapping

the appropriate textures to the given 3D building models using the images obtained

by standard consumer-level digital cameras. Projective geometry takes place in ex-

traction and rectification of texture candidates while popular graph cut optimization

approach was utilized to create seamless texture composites using these candidates.

A refinement phase was adopted for this procedure with a series of refinement tools

including Poisson image editing in terms of seamless cloning. For testing purposes

some publicly available datasets were used besides the imagesets that were created by

photographing real world objects. It was shown that most buildings could be textured

in an acceptable photorealistic quality without any predefined information about the

datasets. Furthermore, it was observed that the texture mapping times, even for de-

tailed building models, were quite low. This work mainly focuses on close-range or

ground level imagery since the aim is to create detailed and high quality photorealistic

view of the models. However, the approach could easily be extended towards the needs

of aerial imagery or large scale reconstruction.
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ÖZET

3B BİNA MODELLERİ İÇİN DOKU EŞLEME

Gerçek objelerin üç boyutlu (3B) matematiksel modellerini oluşturma ihtiyacının

ve girişimlerinin uzun bir geçmişi var. Eskiden modelin kendisini oluşturmak başlı

başına problemin kendisi iken, 3B geriçatma teknolojisindeki gelişmelerle, hassas, fo-

togerçekçi ve fotogrametrik modeller oluşturmak daha önemli hale geldi. Bu çalışmada

önceden tanımlı mimari modellerin görünümüne odaklanarak interaktif bir doku eşleme

sistemi geliştirdik. Sistem, standart tükeci fotoğraf makineleri ile çekilen fotoğraflar

kullanılarak verilen 3B model için uygun dokuların ayıklanması, düzeltilmesi ve eşlen-

mesi için yarı-otomatik bir yöntem önermektedir. Doku adaylarının ayıklanması ve

düzeltilmesinde izdüşümsel geometri kullanılırken, bu adaylar kullanılarak kesintisiz

doku bileşimleri oluşturmak için popüler grafik kesme eniyileme yöntemi kullanılmıştır.

Bu süreci kesintisiz klonlamada kullanılan Poisson imge işleme yönteminin de ar-

alarında olduğu bir çok yardımcı aracın bulunduğu bir iyileştirme aşaması takip et-

mektedir. Test amacıyla kendi oluşturduğumuz imge setlerinin yanı sıra bazı kullanıma

açık veri setlerini de kullandık. Yapılan denemeler sonucu veri setleriyle ilgili herhangi

bir önbilgi kullanmadan binaların hemen hepsine makul fotogerçekçi kalitelerde doku

eşleşmesi yapıldığını gözlemledik. Ayrıca, doku eşleştirme zamanlarının, detaylı bina

modelleri için bile, oldukça düşük olduğunu gösterdik. Bu çalışmada modellerin detaylı

ve yüksek kalitede fotogerçekçi görünümlerini elde etmeyi amaçladığımız için yakın

ölçekli ve zemin seviyesinden fotoğraflama yöntemini temel aldık. Fakat, kullanılan

yöntem kolayca havadan ve geniş ölçekli geriçatma sistemlerini de içine alacak şekilde

genişletilebilir.
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tᾱp A t-link between terminal α and node p

v Set of vertices on a graph

v Guidance vector field

V Graph cut interaction/smoothness penalty term

Vp,q Graph cut interaction/smoothness penalty between pixels p

and q

w Weight term

α Label of interest in graph cut optimization

θ Angle between the plane normal and viewing camera angle

ε Set of edges on a graph

μ Median color value

Ω A closed subset of image definition domain

∂Ω Boundary of Ω

∇ Gradient operator

Δ Laplacian operator

2D Two Dimensional

3D Three Dimensional

HDR High Dynamic Range

ICM Iterated Conditional Modes

LNF Luminance-Normalized Facade

MRF Markov Random Field

PDE Partial Differential Equation

RGB Red Green Blue

VP Vanishing Point

XML Extensible Markup Language



1

1. INTRODUCTION

Accurate 3D models of buildings are needed for a variety of applications, such

as fly-through or walk-through rendering, simulation for mission planning, modeling

for augmented reality environments, industrial rapid prototyping systems, equality

control purposes, faithful reconstruction of cultural heritage, computer gaming and

town planning. Therefore, the problem of 3D modeling from images and video has

received a large interest in the computer graphics and vision communities. A large

body of research exists in this area however detailed analysis of facade texture and

microstructure has been very limited.

1.1. Motivation

Recent researches and developments in 3D reconstruction of architectural models

have given rise to the need of photorealistic models. With the growing demand in

this area the quality of model views become significant day by day. Hence, in most of

the 3D reconstruction applications, it is desirable to capture not only the geometry,

but also the visual appearance of an urban environment. Shading models with pseudo

textures is a commonly used approach, but does not represent true building textures.

For realistic texture mapping of 3D building models, using images acquired with digital

cameras is more beneficial because they provide high visual realism as well as cultural

and functional information about the building.

In an urban area, while capturing surface appearance of real world objects, it is

hard to find ground views that capture an entire building. Since many buildings are

close to each other, and narrow streets limit the field of view, extraction of textures in

an acceptable way becomes a quite difficult problem. Thus, researchers overcome this

problem by using two or more photos of a building which brings a number of refinement

techniques to the area of texture mapping. Moreover, since the building appears in

multiple images, automatic determination of optimal texture with no distortion and

least occlusion for each wall of the building becomes very significant for high quality
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and effective photorealistic 3D visualization.

For generating photorealistic, textured, planar 3D models of architectural struc-

tures from an unordered collection of photographs, we develop an interactive system.

The system presents a semi-automatic way of extracting, correcting, and mapping

the appropriate textures to the given 3D building models using the images taken by

standard consumer-level digital cameras. This work mainly focuses on close-range or

ground level imagery since the aim is to capture detailed and high quality photoreal-

istic view of the models. However, the approach can easily be extended according to

the needs of aerial imagery or large scale reconstruction.

In order to achieve texture mapping in our system, firstly the user draws outlines

overlaid on 2D photographs which specifies the planes to be extracted as textures. The

user can also display the extracted planes instantly in order to decide whether or not

to use as candidate input photographs. Then, seamless texture maps are automatically

generated by combining multiple input photographs using graph cut optimization and

Poisson blending. These two approaches are the main tools that were used in order to

create texture composites and apply a refinement over this composites, respectively.

Graph cut optimization is the preferred technique used in computation photog-

raphy for finding optimal seams between image regions being stitched together while

Poisson blending is used to reduce or remove any visible artifacts that might remain

after the image seams are joined.

1.2. Literature Review

1.2.1. 3D Reconstruction

The problem of 3D modeling from images has received a big interest in the

photogrammetry, computer graphics and vision communities. Texture mapping con-

tributes to the 3D modeling task as a visualization phase and mostly 3D modeling

approach itself defines the methods that would be applied during texture mapping
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process. In fact, the level of detail in visualisation and the amount of user interaction

that is needed are highly dependent on the approach used for 3D modeling. For in-

stance, ground based and close-range methods uses improved rectification and texture

modification techniques even with texture synthesis algorithms; whereas in reconstruc-

tion techniques, which uses aerial imagery, texture mapping is generally composed of

basic image rectification and warp operations caused by smoothing algorithms applied

to 3D model. Therefore, while exploring texture mapping approaches it highly impor-

tant to understand recent concepts developed in 3D reconstruction.

3D reconstruction algorithms are classified in different manners according to dif-

ferent point of views. Here, the most basic classifications and significant works that

were done according to these classifications are described.

1.2.1.1. Geometry-Based vs. Image-Based. According to an early research [1] there

were two types of modeling and rendering architecture. The geometry-based approach

places the majority of the modeling task on the user, whereas the image-based approach

places the majority of the task on the computer. Yet, hybrid approaches divide the

modeling task into two stages, one that is interactive and one that is automated. Some

studies also named this seperation as Automated vs. Interactive. Significant success has

been recently reported with fully automated systems such as [2], [3]. These systems

are based on structure from motion process to first recover the camera poses and a

sparse point cloud reconstruction of the scene. From the sparse reconstruction, dense

multi-view stereo algorithms could generate a dense mesh model. While systems such

as [2] process video, [4] use improved feature extraction and matching techniques to

make structure from motion work with unordered photo collections obtained from the

internet. In addition to these methods, [5] proposes a fully automatic method that

uses generative models for buildings, but it is restricted by the prior models and can

only operate on small sets of images.

Although these works are impressive, yet they require dense photo collections and

their quality may suffer if the camera motion is degenerate or the scenes lack sufficient
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textures. These limitations are overcome by having a user in the loop to interactively

guide the geometry creation. Most recent examples of such interactive systems are

described in [1,7–12]. Facade [1] is one of the earliest hybrid modeling systems designed

for modeling architectural scenes which later gave rise to a commercial product called

Canoma. It provides a set of parameterized 3D primitives to user in order to model a

part of the scene. Whereas, [10], instead of using a set of pre-defined shapes, proposed

a user guided method for creating and re-using building blocks for adding in geometric

detail once a coarse model has been generated. On the other hand, single-view modeling

techniques such as [9, 13] and other methods such as [7, 14] have used vanishing point

constraints in modeling architecture. Finally, [11] and [12] are the most recent and quite

impressive systems which significantly decrease the reconstruction times and provides

functional user interfaces.

1.2.1.2. Active Camera vs. Passive Camera. A natural choice to satisfy the require-

ment of modeling the geometry and appearance is the combined use of active range

scanners and digital cameras. Frueh and Zakhor [15], Akbarzadeh et al. [16], and Polle-

feys et al. [2] used such a combination, capturing large amounts of data in continuous

mode, in contrast to the previous approaches [17] that captured a few isolated images

of the scene from a set of pre-specified viewpoints. They used laser scanners which

have the advantage of providing accurate 3D measurements directly. On the other

hand, they can be cumbersome and expensive. Several researchers in photogrammetry

and computer vision address the problem of reconstruction relying on passive sensors

(cameras) in order to increase the flexibility of the system while decreasing its size,

weight and cost.

1.2.1.3. Large Scale vs. Small Scale. There have been significant efforts in large scale

reconstruction, typically targeting urban environments or archeological sites. These

researches on urban reconstruction could be both from ground-based imagery [2, 16]

and from aerial images [15]. However, small scale reconstruction generally needs more

detailed work and uses ground-based imagery [12,18,19].
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Large scale systems typically generate partial reconstructions which are then

merged. Conflicts and errors in the partial reconstructions are identified and resolved

during the merging process.

1.2.2. Texture Mapping

1.2.2.1. Texture Mapping in General. Methods for building texture retrieval men-

tioned in the literature are mostly grouped in three general classes: (1) texturing build-

ing tops using top-down views of the roofs, typically, airborne aerial images [15,20], (2)

texturing facades by utilizing ground-based images [12,18,19,21], and (3) their combi-

nations [22]. While top-down aerial image is capable of efficiently providing a complete

set of the roof shapes of all buildings at sufficient detail and accuracy, the vertical

walls of buildings are usually invisible in normal horizontal aerial image. On the other

hand, ground-based data acquisition systems are capable of providing building facades

as seen from the street level, but the time required to extract these facades from the

images increase with level of detail and quality. Moreover, the roofs of building are not

accessible from the ground-based acquisition system if the building is too high.

Another popular approach, especially for displaying open and wide spaces, was

using panoramic views created from stitched photographs [23–25]. “Route panorama”

[26] technique followed these works to provide photo-realistic street views. However,

although panoramic visualization could generate impressive scenes, it displays only

facial appearances instead of modelling accurate building textures. Moreover, original

texture images for building facades may have shadows or portions blocked by foreign

objects and panoramic views lacks in handling this kind of problems.

In some systems the camera parameters are known and geometric distortions

caused by viewing angle can be corrected using photogrammetric methods of per-

spective photo mapping [27]. However, most commodity digital cameras do not pro-

vide complete viewing parameters unless augmented with additional (often expensive)

equipment such as GPS, INS, and digital compass. Moreover, although we have the

camera parameters we need expert users in order to integrate camera information into



6

texture mapping systems. Therefore, since in an interactive system these kind of ap-

proaches can be cumbersome for ordinary users to take place in the loop, this kind of

systems generally includes automated techniques.

For images with unknown viewing parameters, the geometries of buildings in

images might be approximated if geometric constrains are well known, but photogram-

metric corrections are difficult. In order to estimate related camera parameters, [23]

used correlations of overlapped images. Vision-based modelling methods were also sug-

gested for obtaining relative pose between the cameras and 3D scene geometry from

motion imagery [28]. One of the recent and fairly robust methods is to reconstruct

by computing vanishing points (VP) of building line segments in images. While [29]

performs stable VP estimation in a single image, [4,12] extended the concept by jointly

estimating VPs in multiple images of the same scene. On the other hand, [1] identified

building boundaries from images to determine facets of the building and to map corre-

sponding texture blocks to model surfaces from cropped areas selected from an image

spool.

That is to say, texture mapping problems highly differs according to the goal and

scope of the texture mapping applications. In the case of aerial imagery, which is mostly

used in cyber city applications, optimal vertical textures are simply obtained by using

ortho-rectification after projective mapping [15, 20]. However, when reconstruction of

specific buildings are considered we generally need more detailed and accurate systems

with additional processes such as texture selection, occlusion removal and texture re-

finement [12, 18, 19]. In other words, large scale systems tend to be more automated

systems with less amount of user interaction which relatively decreases the level of de-

tail, while small scale systems generally include more interaction to increase the level

of detail and quality.

1.2.2.2. Creating Texture Composite. In an urban area, it is hard to find ground views

that capture an entire building since many buildings are close to each other, and

narrow streets limit the field of view. The small field of view prevents the extraction of



7

textures in an acceptable way. So researchers overcome this problem by using two or

more photos of a building which brings a number of refinement techniques to the area

of texture mapping. Moreover, because the building is appeared in multiple images,

automatic determination of optimal texture with no distortion, least occlusion and

high resolution for each wall of building becomes very significant for high quality,

efficiency and effectiveness of photo-realistic 3D visualization of building model. Two

main approaches are used at this point. Some researchers, generally the ones using

large numbers of images, select necessary textures according to the rendering view

point [1], [30], [31], [32], [33]. This approach utilizes images captured from a collection

of viewpoints and uses them to generate specific textures for different rendering views.

The second approach, on the other hand, applies a preprocessing phase in order to select

the best textures or texture composites that will be used during the entire rendering

process [34], [35], [36], [18], [12]. While specifying the optimal textures [18] simply

weighted the texture fragments according the angle between the viewing direction

during acquisition and the surface normal of the related facade. Fragments are then

blended together according to their weights and formed the necessary textures. Further

works like [12] extended these list of decision parameters by adding parameters like color

consistency, visibility etc. and used an improved optimization technique called graph

cut optimization to create texture composites according to this parameters.

Since individual digital texture photographs are usually taken at different viewing

conditions (view points, looking angles, zoom factors etc.), they are of assorted per-

spectives, scales, brightness, contrasts, colour shadings and other properties that are

significant in imagery. These variations need to be adjusted in order to integrate into

a seamless mosaic. Therefore, the first challenge of 3D building texture mapping is to

merge images pertaining to the same building facade into a complete texture mosaic

that is continuous in geometric outlines and in colour shadings. Image mosaicking is a

common technique used in a variety of related applications to generate complete tex-

ture information of a building facade from digital photographs. One of the techniques

for generating image mosaics of the real-world environment was to merge sequences of

video frames [37], [18]. However, general image mosaicking algorithms were not de-

signed for photo-realistic texture mapping and generally did not fulfil the requirements
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of creating complete and seamless building texture information, which is critical in city

and building visualization and applications. In addition, directly using video sequences

for building texture often requires intensive manual treatments to eliminate occlusions,

blurs and other artifacts [38].

Another approach for creating texture composites was to define the problem as an

energy minimization problem by using some quantities (such as intensity or disparity)

changing over the images. Energy-based methods attempt to model some global image

properties that cannot be captured, for example, by local correlation techniques. The

main problem, however, is that interesting energies are often difficult to minimize.

Due to this inefficiency of computing the global minimum, many authors have opted

for a local minimum. An example of a local method using standard moves is Iterated

Conditional Modes (ICM), which is a greedy technique introduced in [39]. For each

pixel, the label which gives the largest decrease of the energy function is chosen, until

convergence to a local minimum.

Another example of an algorithm using standard moves is simulated annealing,

which was popularized by [19]. Unfortunately, it requires exponential time and as a

consequence it is very slow. Theoretically, simulated annealing should eventually find

the global minimum if it runs for long enough but [20] demonstrate that practical

implementations of simulated annealing may give results that are very far from the

global optimum. Sampling algorithms that were developed [40] could make larger

moves in order to improve the rate of convergence of simulated annealing.

If the energy minimization problem is discussed in continuous terms, variational

methods that use Euler equations, which are guaranteed to hold at a local minimum,

can be applied [41]. On the other hand, another alternative is to use discrete relaxation

labeling methods like [42], [43]. In relaxation labeling, combinatorial optimization is

converted into continuous optimization with linear constraints. Then, some form of

gradient descent is used.

In some cases, global minimum can also be computed via dynamic programming
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[44]. However, as stated in [45], in general, the two-dimensional energy functions that

arise in early vision cannot be solved efficiently via dynamic programming.

Recently, the approach of representing the quality of pixel combinations as a

Markov Random Field and formulating the problem as a minimum cost graph cut

became popular. The former examples of this approach was stated by [46], [47], [48].

These works used graph cuts to find the exact global minimum of certain type of energy

functions. However, these methods apply only if the labels were one-dimensional and

their energies were not discontinuity preserving. More recently, [45] contribute to the

area by two new algorithms for multidimensional energy minimization that use graph

cuts iteratively. They achieve approximate solutions to this NP-hard minimization

problem with guaranteed optimality bounds and most importantly they generalize the

previous results by allowing arbitrary label sets, arbitrary data terms and a very wide

class of pairwise interactions that includes discontinuity preserving cases.

After this generalization, graph cut optimization method, which is also detailed

in this thesis in Section 2.2, has been used for a variety of tasks, including image

segmentation, stereo matching and optical flow. For instance, [49] introduced the

use of graph-cuts for combining images. Although they mostly focused on stochastic

textures, they showed the ability to combine two natural images into one composite by

constraining certain pixels. Then, [50] extend this approach to the fusion of multiple

source images using a set of high-level image objectives.

Although graph cut optimization mostly finds good seams between image compos-

ites, in some cases results will not be satisfactory and researchers apply an additional

refinement operation on the results. One of the techniques employed for such a purpose

was Poisson image editing which is also the main tool applied for refinement in this

thesis. Related works stated on this issue is given in the next section (Section 1.2.2.3)

and mathematical details will be discussed in Section 2.3. As far as we know, [50] is the

first one to use Gradient Domain Fusion in combination with graph cut optimization

for such a purpose. They build up a new interactive photomontage method with new

cost functions that extend the applicability of graph cuts to a number of new appli-



10

cations. [12] followed it and transferred the concept to the space of 3D reconstruction

and texture mapping.

1.2.2.3. Texture Refinement. We implement a specific type of gradient domain fusion

approach which makes use of Poisson image editing techniques. Poisson equation has

been used extensively in computer vision. In the specific context of image editing

applications there are a number of works related to the use of the Poisson equation

proposed here.

The earliest and well-known work in image fusion used Laplacian pyramids and

per-pixel heuristics of salience to fuse two images [51, 52]. These early results demon-

strated the possibilities of obtaining increased dynamic range and depth of field, as

well as fused images of objects under varying illumination. However, these earlier ap-

proaches had difficulty capturing fine detail. They also did not provide any interactive

control over the results.

In [53], the gradient field of a High Dynamic Range (HDR) image is rescaled

non-linearly, producing a vector field that is no longer a gradient field. A new image

is then obtained by solving a Poisson equation with the divergence of this vector field

as right-hand-side and under Neumann boundary conditions specifying that the value

of the gradient of the new image in the direction normal to the boundary is zero. In

contrast, the method proposed in [54] can be applied to arbitrary patches selected

from an image, not just to the entire image. In order to do this, Neumann boundary

conditions on a rectangular outline is replaced by Dirichlet conditions on an arbitrary

outline.

Elder and Goldberg [55] introduced a system to edit an image via a sparse set

of its edge elements (edgels). To suppress an object, associated edgels are removed; to

add an object, associated edgels as well as color values on both sides of each of these

edgels are incorporated. The new image is then obtained by interpolating the colors

associated to the new set of edgels and this stands for solving a Laplace equation (a
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Poisson equation with a null right hand side) with Dirichlet boundary conditions given

by colors around edgels. However, generally, editing edgels and associated colors is not

simple. In addition, image details are lost when converting to and from the contour

domain, which might be undesirable.

Lewis [56] described a high quality method for separating intensity-detail from

overall image region intensity. Here, spots are removed from fur images by separat-

ing out the brightness component from details in a selected region and replacing the

brightness by harmonic interpolation (solving a Laplace equation) of the brightness at

the selection boundary.

In terms of image editing functionalities, two existing techniques achieve seamless

cloning as the the system introduced by [54] which is also implemented in our work.

The first one is Adobe Photoshop 7’s Healing Brush [57]. As far as we know, the

technique used by this tool has not been published yet, so we don’t know whether it

uses a Poisson solver or not. Mostly this kind of standard image-editing tools require

manual selection of boundaries, which is time consuming and burdensome. In contrast,

this thesis offers a smart blending tool which makes use of texture composite results

to achieve automatic identification of editing regions and boundaries.

The second technique is the multiresolution image blending proposed in [58].

The idea is to use a multiresolution representation, namely a Laplacian pyramid, of

the images of interest. The content of the source image region is mixed, within each

resolution band independently, with its new surrounding in the destination image.

The final composite image is then recovered by adding up the different levels of the

new composite Laplacian pyramid. The technique results in multiresolution mixing

where finest details are averaged very locally around the boundary of the selection.

This fast technique achieves an approximate insertion of the source Laplacian in the

destination region whereas this Laplacian insertion is performed via the solution of a

Poisson equation in this work. More importantly, multiresolution blending takes data

from distant source and destination pixels, through the upper levels of the pyramid.

This long range mixing, which might be undesirable, does not occur in the technique
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we applied.

[59] further presented a pyramid blending algorithm that used different alpha

masks in different bands. [60] developed two complex image stitching algorithms in the

gradient domain to optimize the mosaicking quality. These are all effective methods,

but they all require intensive computation and most of them can only deal with a pair

of input images at a time.

After Perez et. al. [54], Agarwala et. al. [50] used the same approach in which

a region of a single source image is copied into a destination image in the gradient

domain. However, their work differs in that they copy the gradients from many regions

simultaneously, and they have no single destination image to provide boundary condi-

tions. Thus, the Poisson equation must be solved over the entire composite space. This

approach is useful but needless in our case since a one to one correspondence between

the source and destination is sufficient to reach the desired results.

Finally, since the proposed guided interpolation framework was implemented

in [54], in the case of seamless cloning, various interpolation methods have been pro-

posed to fill in image regions automatically using only the knowledge of the boundary

conditions. One class of such approaches is composed of inpainting techniques [61]

where partial differential equation (PDE) based interpolation methods are introduced.

The PDEs to be solved are more complex than the Poisson equation, and work only for

merging fairly narrow gaps. Example-based interpolation methods [62, 63] where the

new image region is synthesized using an arrangement of many small patches are an

alternative to inpainting. These methods handle large holes and textured boundaries

in a more successful way.

Apart from gradient domain methods, other refinement techniques also exist.

An alternative technique uses histogram matching or equalization to force colour and

shading distributions of candidate images to be within the same range [64]. This

technique is applied to minimize the color and shading differences between composites,

however, directly applying this method to close-range images for texture generation
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may cause serious misrendering of colour shadings such as hazy or low-contrast images.

Another refinement method targets the degradation effects caused by the lumi-

nance. [9], present a filter that factors the image into a texture component and an

illumination component which is also useful for relighting since the decoupled tex-

ture channel has a uniform level of illumination. Whereas, [36], normalize the facade

images by linear gray-level stretching. The resulting luminance-normalized facade im-

ages (LNF images) have the same average luminance and thus are comparable to one

another for the other phases.

1.2.2.4. Interface Tools. In some specific cases, texture composition results may be

unsatisfactory even after automatic refinement tools. Thus, systems which employ

user knowledge while texture mapping, additionally, include some handy tools in order

to improve the quality of results and decrease the mapping time.

In [65], the user can draw strokes to indicate which object or part of the texture is

undesirable. The corresponding region is automatically extracted and image inpainting

[66] is used for automatically inpainting. Similarly, [12] offers an interactive way in

which the user can specify additional constraints using brush strokes. Constraints

could be both positive (the user indicates preference for specific portions) or negative

(the user erases undesired portions). [9], on the other hand, used an increased level of

interaction by implementing a Clone brushing (rubberstamping) tool for the seamless

alteration of pictures. It interactively copies a region of the image using a brush

interface and is often used to remove undesirable portions of an image, such as blemishes

or distracting objects in the background. Moreover, 3D reconstruction systems that

implement modeling interfaces also introduce some useful 3D tools. For instance, [12]

provided standard CAD utilities like extrusion, plane completion, mirroring, while [11]

implemented a mirror plane in order to build a complete model of an object which is

symmetric about a plane.
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1.3. Objective and Scope of the Work

Sinha et. al. [12] and Hengel et. al. [11] are recent successful examples of semi-

automatic 3D reconstruction systems with built-in texture mapping modules. While

Hengel et. al. focuses on video and structure from motion, Sinha et. al. decrease

the level of user interaction by introducing many assistive tools in terms of texture

mapping. However, in both systems, texture mapping comes after 3D modeling and

make use of estimated camera parameters for each image.

In this thesis, a 2D system was proposed to produce photorealistic texture maps

for 3D building models. Given digital photographs of a building and the corresponding

3D model, accurate facade textures are provided in a semiautomatic way. In this

process, it is assumed that the whole process is carried out by ordinary users with

no specific professional training in the area and ground view photographs, taken by

standard cameras, are used. All perspective distortions existing in the photographs

are removed automatically by texture rectification using projective geometry. Texture

composites are then created using graph cut optimization according to these rectified

texture candidates. In addition, a refinement phase follows this process so that users

are able to perform some minor modifications over the texture composites. One of the

most important refinement operations is seamless cloning which lets users to remove

seams between texture partitions by using guided interpolation. Finally, all algorithms

and assistive tools are presented in a user friendly interface to provide a complete visual

experience for the users.

Using our system, after the user chooses the planar face to texture, he/she defines

the planar area in the photographs by the help of a line tool. Specified areas are

cropped and rectified automatically to make them proper texture candidates. After this

point, the user can either use the texture composite created by using these candidates

or perform some additional refinements over the recommended composite. Texture

composites was created using graph cut optimization by applying the idea of [50] in

digital montage applications.
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Targeting the ordinary users, a user friendly application was developed in order

to provide a complete visual experience with a series of utilized tools created to simplify

the texture mapping process. For instance, seamless cloning approach [54] helps users

quickly remove seams existing in the composites, while traditional flip, exclude and

substitute tools let users gain time especially for the models including repeating or

symmetrical structures. Additionally, a Harris corner detector [67] is implemented to

specify plane borders more accurately. Finally, a 3D model viewer was created to let

users visualize their mapping at any time of the process.

1.4. Outline of the Thesis

The organisation of the rest of the thesis is as follows: Chapter 2 starts with the

methods used while extracting the candidate planar images from digital photographs.

Here, necessary formulations are stated in order to remove projective distortion from

the images. Then, in the second section of this chapter, graph cut optimization process

is detailed with the necessary parameters and algorithms. Besides, desired optimization

criteria are included in this section. Chapter 2 ends up with the refinement techniques

implemented to improve final texture quality. Gradient domain fusion is the main

tool explained in this section. Chapter 3, on the other hand, gives details about the

user interface application which includes implementations of all features and methods

stated in this thesis. Texture mapping examples with different kinds of buildings and

the results of application usage are stated in Chapter 4. All results are interpreted in

Chapter 5 and the thesis concludes with the possible extensions and contributions.
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2. TEXTURE MAPPING

2.1. Image Rectification

Image rectification, concisely, is a transformation process used to project multiple

images onto a common image surface. It is used in two main areas: (1) in computer

stereo vision to simplify the problem of finding matching points between images; and

(2) in geographic information systems to merge images taken from multiple perspectives

into a common map coordinate system. Our system is more related to the latter one

since we are not dealing with the reconstruction phase directly. We have the video

sequences or images of a 3D object and we do not have any information about the

camera parameters. So that, in order to begin the texture mapping process of this

object we have to extract fronto-parallel views (i.e. parallel to the image plane) of each

plane forming the 3D model. Figure 2.1 clearly exemplifies this method.

Figure 2.1. Image rectification. a) Original image. b) Rectified area.

Mathematically, while using the photos or video sequences of a building or object

we will be dealing with perspective imaging and it is well known that under perspec-

tive imaging a plane is distorted since it is mapped to the image by a plane projective

transformation. For instance, in Figure 2.1 the windows are not rectangular in the

first image, although the originals are. To determine the transformation we are us-

ing projective geometry. Since the image is a projective distortion of the original, it

is possible to “undo” this distortion by canceling projective transformation by com-

puting the inverse transformation and applying it to the image. The result will be a
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new synthesized image in which the objects in the plane are shown with their correct

geometric shape (Figure 2.1 (b)).

2.1.1. Removing the Projective Distortion

As stated in [68] once the transformation is determined, Euclidean measurements,

such as lengths and angles, can be made on the world plane directly from image mea-

surements. Furthermore, the image can be rectified by a projective warping to one that

would have been obtained from a fronto-parallel view of the plane. So to determine

the desired transformation we deal with the following notions.

2.1.1.1. Ideal Points and The Line at Infinity. We know that homogeneous vectors

x = (x1, x2, x3)
T such that x3 is nonzero correspond to finite points in R2. More-

over, one may augment R2 by adding points with last coordinate x3 = 0. The resulting

space is the set of all homogenous 3-vectors, namely the projective space P 2. The points

with last coordinate x3 = 0 are known as ideal points or points at infinity. The set of

all ideal points may be written as (x1, x2, 0)T , with a particular point specified by the

ratio x1 : x2. Note that this set lies on a single line, the line at infinity, denoted by the

vector I∞ = (0, 0, 1)T . Indeed one verifies that (0, 0, 1)(x1, x2, 0)T = 0. This explains

the fact that points with homogeneous coordinates (x, y, 0)T do not correspond to any

finite point in R2 and parallel lines meet at infinity [69].

Introduction of the concept of the points at infinity is essential because it serves

to simplify the intersection properties of points and lines. So, one could state that, in

the projective plane P 2, two distinct lines meet in a single point and two distinct points

lie on a single line. This is not true in the standard Euclidean (rectilinear) geometry

of R2, in which parallel lines form a special case.

In the proposed work, users are asked to specify a rectangular area by the help

of a user interface in order to extract planar facets from the images. Thus, having

reliable information about the parallel lines over an image we can reveal the actual
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transformation that causes distortion for a plane.

2.1.1.2. Projective Transformation. A planar projective transformation is a linear

transformation on homogenous 3-vectors represented by a non-singular 3x3 matrix in

Equation 2.1 or more briefly x’ = Hx. This is an invertible transformation from a pro-

jective plane to a projective plane that maps straight lines to straight lines. The most

general transformation between the world and image plane under imaging by a per-

spective camera, is the projective transformation which is also called a “collineation”,

“homography”, and “projectivity”.
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We compute the projective transformation by defining point-to-point correspon-

dences between user specified plane points and real rectilinear frontal corner points of

a plane. Let the inhomogeneous coordinates of a pair of matching points x and x’ in

the world and image plane be (x, y) and (x′, y′) respectively. We use inhomogeneous

coordinates here instead of the homogeneous coordinates of the points, because it is

these inhomogeneous coordinates that are measured directly from the image and from

the world plane. The projective transformation of Equation 2.1 can be written in

inhomogeneous form as

x′ =
x′

1

x′
3

=
h11x + h12y + h13

h31x + h32y + h33

, y′ =
x′

2

x′
3

=
h21x + h22y + h23

h31x + h32y + h33

(2.2)

which means each point correspondence generates two equations for the elements of

H, which after multiplying out are

x′(h31x + h32y + h33) = h11x + h12y + h13

y′(h31x + h32y + h33) = h21x + h22y + h23

(2.3)
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Four point correspondences lead to eight such linear equations in the entries of H,

which are sufficient to solve for H up to an insignificant multiplicative factor. The

only restriction is that the four points must be in “general position”, which means that

no three points are collinear. The inverse of the transformation H computed in this

way is then applied to the whole image to undo the effect of perspective distortion on

the selected plane. The results are shown in Figure 2.1.

2.1.1.3. Image Warping. Images are warped by applying the inverse homography to

each pixel in the target image. In order to automate the warping and ensure that the

convex hull of the original image is correctly mapped into the rectangle of the target

image, the intensities at source points in the original image are determined by bicubic

interpolation.

During image rectification system also gathers an angle parameter for each image

in order to use as a selection criterion. Details of this process is explained in Section

2.2.2.

2.2. Creating Texture Composite

This section begins with the description of the texture mapping concept and

why we use multiple images for creating a texture composite (Section 2.2.1). Then,

we will continue (Section 2.2.3) with the mathematical description of the Graph Cut

Algorithm which is the main tool that we use for creating our texture composites. Two

basic moves developed by Boykov et. al. [45] will be defined in the following section

(Section 2.2.4). Then we will formulate the problem (Section 2.2.5) and go on with the

details of one of these basic moves (Section 2.2.6).

2.2.1. Problem Description

Given a 3D building model and images taken from different sides and angles, to

compute a texture map for each planar segment of the building model, we backproject
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Figure 2.2. Rectification of a plane image from different views. Red lines represents

the area of interest for rectification. a) Frontal image. b) Rectified area according to

(a). c) Another view with a larger angle. d) Rectified area according to (c).

the selected and rectified (Section 2.1) views onto the plane. As the reconstructed plane

is typically visible in multiple images, pixels from each of these backprojected images

provide potential candidates for the texels in the target texture map. A simple way

to obtain a texture map would be to blend together all the candidates for each texel,

but mostly this produces noticeable ghosting artifacts if a misalignment or unmodeled

geometric detail exists. Also losing the fine resolution existing in the images can be

counted as another drawback.

Instead, to avoid these problems, we can choose the pixel values from the most

frontal view for each texel independently. However this creates other artifacts in the

form of noticeable seams in the texture map. Moreover, none of these approaches deal

with the problem of partial occlusion of the modeled surface by foreground occluders.

So, as seen in Figure 2.2 (a,b), using the most frontal view generally satisfies

the desired quality but comes across with the problem of occluding surfaces whereas

choosing the side views with larger angles overcomes the occlusion problems but results
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in low quality textures after rectification as seen in Figure 2.2 (c,d).

Therefore, instead of trying to choose the best image and use it as the necessary

texture image, we need a combination of the two approaches which will output a

composite texture instead of a unique view. Thereby, each pixel in the resulting texture

map will include the best image pixel for it among all views. However, this method

generally yields undesired artifacts on the composite since the images contain negative

effects of warping caused by the rectification phase and nature of the uncontrolled

light conditions. An example of this situation is given in Figure 2.3. Obviously, the

resulting composite in Figure 2.3 (b) is quite unacceptable because of the numerous

seams. Moreover, looking at the labels generating the composite in Figure 2.3 (a),

although most of the pixel values come from two main views, since they are spread

over the image, they lack the desired quality. Thus, our preferred technique has to

partition the image space between different images while generating image composites

in order the minimize the unnecessary spreading. In other words, resulting texture map

must include relatively larger areas of labelings while controlling the desired properties

like the priority of the frontal views for a better quality.

The most recent and effective approach to deal with the above problem and to

find optimal seams while retrieving texture composites from image sets is graph cut

optimization. This technique applies texture map generation as a Markov Random

Field (MRF) optimization problem, where a high quality seamless texture map is com-

puted by minimizing a suitable energy functional consisting of data penalty terms and

pairwise terms [45]. Lempitsky et al [70] used a similar technique for generating image-

based texture maps and their underlying MRF was defined on a triangulated manifold

mesh whereas we prefer to apply mapping over a texel grid of planar surfaces which is

the case introduced in Sinha et al [12].

We denote the set of aligned images rectified to the target plane by I1, ..., In. The

graph cut estimates a label image f where the label at pixel p denoted by fp indicates

which image Ik should be used as the source for p in the target texture map. The

energy functional we minimize is denoted by E(f) where f is a particular label image.



22

Figure 2.3. Creating texture composite by choosing best image for each pixel. a)

Labeled image. Each label is represented with a different color. b) Image composite

created according to the labels in (a).

Note that L is piecewise constant except at seams between adjacent pixels p and q,

where fp 6= fq.

As we mentioned before, our energy functional E is the sum of a data penalty

term summed over all pixels of the label image f and a pairwise interaction penalty

term (sometimes called as smoothness term) summed over all pairs of neighboring

pixels in f .

E(f) = Esmooth(f) + Edata(f) (2.4)

Firstly, there are many image objectives that can be applied to the candidate images

to use in the minimization function. The image objective at each pixel specifies a

property that the user would like to see at each pixel in the composite. The image

objective is computed independently at each pixel position p, based on the set of pixel

values drawn from that same position p in each of the source images. We denote this

set the span at each pixel.
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The general image objectives that may be applied in a variety of applications

include:

• Designated color: a specific desired color to either match or avoid.

• Minimum or maximum luminance: the darkest or lightest pixel in the span.

• Minimum or maximum contrast: the pixel from the span with the lowest or

highest local contrast in the span.

• Minimum or maximum likelihood: the least or most common pixel value in the

span.

• Eraser: the color most different from that of the current composite.

• Designated image: a specific source image in the stack.

• Minimum or maximum difference: the color least or most similar to the color at

position p of a specific source image in the candidate set.

These objectives can be chosen according to the specific needs of the application used.

Considering the concept of 3D reconstruction and texture mapping we will add follow-

ing specific objectives to the list in order to obtain better composites.

• Preference for a frontal view: the pixel coming from the most frontal view with

the angle θ, where θ is the angle between the plane normal and a particular

camera. Automatic retrieval of this angle parameter is described in Section 2.2.2.

• Photo-consistency: the color most similar to the median color μ of the set of

candidate pixels.

Here we will go through the details of the last two image objectives which will be used

as the data term Edata in the original energy minimization function (Equation 2.4).

The data penalty term denoted by Dp(fp) stores the cost of assigning label fp to

pixel p while the interaction penalty term Vp,q(fp, fq) stores the cost of assigning labels
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fp and fq to neighboring pixels p and q in the label image.

E(f) =
∑

{p,q}∈N

Vp,q(fp, fq) +
∑

p∈P

Dp(fp) (2.5)

Two main objectives which defines our data penalty term can be formulated as follows:

D1 = 1 − cos2(θ), (2.6)

D2 =
∣
∣Ifp(p) − μ

∣
∣ (2.7)

The first objective in Equation 2.6 defines a high priority for the frontal images since θ

is the angle between the plane normal and the camera. On the other hand, the second

objective in Equation 2.7 introduces a color consistency objective which applies a high

penalty for choosing a pixel whose color deviate from the median color μ.

It follows that our data penalty term becomes the weighted sum of the two data

penalties.

Edata = Dp(fp) = w1(1 − cos2(θ)) + w2

∣
∣Ifp(p) − μ

∣
∣ (2.8)

where w1 and w2 are two suitably chosen weights to balance the two objectives.

Interaction (smoothness) penalty term, on the other hand, is defined as the com-

bination of matching colors and gradients across the seams. We can denote it as

follows:

Esmooth = Vp,q(fp, fq) =






0 if fp = fq

X + Y if o/w
(2.9)

X =
∣
∣Ifp(p) − Ifq(p)

∣
∣+
∣
∣Ifp(q) − Ifq(q)

∣
∣ , (2.10)

Y =
∣
∣∇Ifp(p) −∇Ifq(p)

∣
∣+
∣
∣∇Ifp(q) −∇Ifq(q)

∣
∣ (2.11)
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Using the sum of both color (Equation 2.10) and gradient (Equation 2.11) information

to form the smoothness term generally gives better results. However one could also use

this information separately for special cases as seen in Equation 2.12.

Esmooth = Vp,q(fp, fq) =






X if matching colors

Y if matching gradients

X + Y if matching colors and gradients

(2.12)

Boykov et. al. [45] applies graph cut optimization under two fairly general classes of

interaction penalty V : metric and semimetric. V is called a metric on the space of

labels L if it satisfies

V (α, β) = 0 ⇔ α = β, (2.13)

V (α, β) = V (β, α) ≥ 0, (2.14)

V (α, β) ≤ V (α, γ) + V (γ, β) (2.15)

for any labels α, β, γ ∈ L. If V satisfies only (2.13) and (2.14), it is called a semimetric.

Note that all of the smoothness objectives mentioned above are metrics since

they always satisfy Equations (2.13), (2.14), and (2.15). [49] and [50] also add the edge

information to the equation which may, in theory, enhance the quality of resulting

image composite in terms of seams. The approach introduces the term Z = Hfp(p, q)+

Hfq(p, q) where Ht(p, q) is the scalar edge potential between two neighboring pixels p

and q of image t, computed using a Sobel filter. Edge potential is used with the color

information by using the term X/Z which is a semi-metric since it does not always

satisfy the triangle inequality in Equation 2.15. When this seam penalty is used, many

of the theoretical guarantees of the “alpha expansion” algorithm are lost. It still gives

acceptable results for some local, special cases; but while applying Poisson blending

afterwards, edge term leads to artifacts through strong image edges. Therefore, this

semi-metric is left beyond the scope of the approach used in this thesis.
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2.2.2. Extracting Angle Criterion

During the elimination of the projective distortion we also have the opportunity to

gather a parameter for each image in order to use as a selection criterion while creating

the final texture image. Textures that will be created at the end of our system, may

consist of pixel values coming from many different views. Thus, we need some criterions

while deciding the dominance of each image in the final texture composites. One of

these criterions is the closeness of the view to the frontal view of the same image.

Such an information can be used to apply higher priorities for nearly frontal views in

determining the final composites. Usage of frontal-view and many other criterions are

considered in Section 2.2.1.

A good measure for defining how close a view to the perfect frontal view is the

angle between plane normal and the vector coming from the viewing camera. Here the

plane is the area that will be textured in 3D model and let θ be the defined angle. If we

know θ for each view, then we can insert it into our system as one of the main selection

measures. Yet, since we are not given the camera parameters, there is no direct way

of calculating this angle. This is why we will estimate θ values for each view by using

vanishing points.

Figure 2.4. A view showing a plane under perspective distortion. Points 1 to 4

correspond to the corners of the plane and point 5 represents the intersection of the

lines including two opposite edges of the plane in projective space.

As stated in Section 2.1.1.1, in general, parallel lines on a scene plane are not
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parallel in the image but instead converge to a finite point as seen in Figure 2.4.

Because of the structure of inherent perspective the closeness of the view to the frontal

view is increases with the distance d between the convergence point and the center of

the plane. In other words, when distance d gets bigger then the amount of distortion

increases and this means a larger viewing angle θ. In order to improve the conditioning

of the equations and eliminate the effect of plane size over the distance d, we apply 2D

normalization to the corner points so that their centroid will be at the origin.

This direct proportion between the distance d and angle θ allows us to estimate

the viewing angle for each view by just making use of the points specified by the user.

Since a plane is accepted as invisible in the current view for θ values over 90 degrees,

distance values are mapped to an angle value θ between 0 and 90 degrees. Therefore,

system estimates an angle measure θ for each view of the target plane in order to be

used in the next step (Section 2.2.3) as a selection criterion.

2.2.3. Graph Cut Optimization

When we have a finite set of labels L, and we want to assign every pixel p ∈ P to

a label, in graph cut optimization, one seeks the labeling f that minimizes the energy

E(f) = Esmooth(f) + Edata(f) (2.16)

Here, Esmooth measures the extent to which f is not piecewise smooth, while Edata

measures the disagreement between f and the observed data. Many different energy

functions have been proposed in the literature as stated in the previous part (Section

2.2.1). The form of Edata is typically

Edata(f) =
∑

p∈P

Dp(fp) (2.17)

where Dp measures how well label fp fits pixel p given the observed data. In image

restoration, for example, Dp(fp) is normally, (fp−Ip)
2 where Ip is the observed intensity
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of p.

The major difficulty with energy minimization lies in the enormous computa-

tional costs. Typically, these energy functions have many local minima (i.e., they are

nonconvex). Worse still, the space of possible labelings has dimension |P |, which is

many thousands.

The energy functions that are considered in this thesis arise in a variety of different

contexts, including the Bayesian labeling of first-order Markov Random Fields. Here,

the quality of pixel combinations are represented as a Markov Random Field and the

problem is formulated as a minimum-cost graph-cut. Energies are considered of the

form

E(f) =
∑

{p,q}∈N

Vp,q(fp, fq) +
∑

p∈P

Dp(fp) (2.18)

where N is the set of interacting pairs of pixels. Typically, N consists of adjacent

pixels, but it can be arbitrary. We allow Dp to be nonnegative but otherwise arbitrary.

According to the choice of Esmooth, only pairs of pixels interact directly. Note that each

pair of pixels {p, q} can have its own distinct penalty Vp,q.

2.2.4. Graph Cut Moves

Any labeling f can be uniquely represented by a partition of image pixels P=

{Pl |l ∈ L}, where Pl = {p ∈ P |fp = l} is a subset of pixels which have been assigned

the label l. Since there is an obvious one to one correspondence between labelings f

and partitions P, we can use these notions interchangingly.

Given a pair of labels α, β, a move from a partition P (labeling f) to a new

partition P’ (labeling f ′) is called an α-β-swap if Pl = P ′
l for any label l 6= α, β. This

means that the only difference between P and P’ is that some pixels that were labeled

α in P are now labeled β in P’, and some pixels that were labeled β in P are now
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labeled α in P’. A special case of an α-β-swap is a move that gives the label α to some

set of pixels previously labeled β.

Given a label α, a move from a partition P (labeling f) to a new partition P’

(labeling f ′) is called an α-expansion if Pα ⊂ P ′
α and P ′

l ⊂ Pl for any label l 6= α. In

other words, an α-expansion move allows any set of image pixels to change their labels

to α.

Given a labeling f , there is an exponential number of swap and expansion moves.

Therefore, even checking for a local minimum requires exponential time if performed

naively. In contrast, checking for a local minimum when only the standard moves are

allowed is easy since there is only a linear number of standard moves given any labeling

f .

When these moves are defined, it is easy to design variants of the “fastest descent”

technique that can efficiently find the corresponding local minima. The algorithm for

the expansion move is summarized as follows:

1. Start with an arbitrary labeling f

2. Set success := 0

3. For each label α ∈ L

(a) Find f̂ = argminE(f ′) among f ′ within one α-expansion of f

(b) If E(f̂) < E(f), set f:=f̂ and success := 1

4. If success = 1 goto 2

5. Return f

Figure 2.5. Pseudocode for α-expansion algorithm

We will call a single execution of Steps (a), (b) an iteration, and an execution of

Steps 2, 3, and 4 a cycle. In each cycle, the algorithm performs an iteration for every

label (expansion algorithm) or for every pair of labels (swap algorithm), in a certain
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order that can be fixed or random. A cycle is successful if a strictly better labeling

is found at any iteration. The algorithm terminates when a pass over all labels has

occurred that fails to reduce the cost function. Thus, a cycle in the expansion algorithm

takes |L| iterations.

2.2.5. Graph Cuts

Let G = 〈v, ε〉 be a weighted graph with two distinguished vertices called the

terminals. A cut C ⊂ ε is a set of edges such that the terminals are separated in

the induced graph G(C) = 〈v, ε − C〉. In addition, no proper subset of C separates

the terminals in G(C). The cost of the cut C, denoted |C|, equals the sum of its

edge weights. The minimum cut problem is to find the cheapest cut among all cuts

separating the terminals.

Normally, there are two types of edges in the graph: n-links and t-links. n-links

connect pairs of neighboring pixels. Thus, they represent a neighborhood system in the

image. Cost of n-links corresponds to a penalty for discontinuity between the pixels.

These costs are usually derived from the pixel interaction term Vp,q in energy (Equation

2.5). t-links connect pixels with terminals (labels). The cost of a t-link connecting a

pixel and a terminal corresponds to a penalty for assigning the corresponding label to

the pixel. This cost is normally derived from the data term Dp in the energy (Equation

2.5).

A cut C on a graph with two terminals is a partitioning of the nodes in the graph

into two disjoint subsets A and B such that the source a is in A and the sink b is in B.

Figure 2.6 shows one example of a cut. The minimum cut problem on a graph is to

find a cut that has the minimum cost among all cuts. One of the fundamental results

in this kind of optimization is that the minimum cut problem can also be solved by

finding a maximum flow from the source a to the sink b. Loosely speaking, maximum

flow is the maximum “amount of water” that can be sent from the source to the sink

by interpreting graph edges as “pipes” with capacities equal to edge weights.
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Figure 2.6. Example of a weighted graph and a sample cut.

It has been proven [71] that a maximum flow from a to b saturates a set of edges

in the graph dividing the nodes into two disjoint parts A,B corresponding to a mini-

mum cut. Therefore, min-cut and max-flow problems are equivalent and a “Duality”

relationship exists between them. This is why these kind of problems are commonly

named together as min-cut/max-flow problems.

Minimum cut is the preferred strategy in this work to optimize our energy func-

tion. For simplification, a natural labeling will be defined for each cut C in the following

section (Section 2.2.6) and this labeling will be directly used in cost calculations.

2.2.6. Finding the Optimal Expansion Move

Given an input labeling f (partition P) and a label α, we would like to find a

labeling f ′ that minimizes E over all labelings within one α-expansion of f . Here, we

describe the technique that solves the problem assuming that (each) V is a metric and,

thus, satisfies the triangle inequality (2.15). The technique is based on computing a

labeling corresponding to a minimum cut on a graph Gα = 〈vα, εα〉. The structure of

this graph is determined by the current partition P and by the label α. So, the graph
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dynamically changes after each iteration.

Figure 2.7. An example of Gα for a 1D image.

Figure 2.7 shows the case of a 1D image. Here, the set of pixels in the image is

P = {p, q, r, s} and the current partition for the figure is P= {P1, P2, P3}, whereP1 =

{p}, P2 = {q, r} ,and P3 = {s}. For each pair of neighboring pixels {p, q} ∈ N

separated in the current partition (i.e., such that fp 6= fq), we create an auxiliary node

a{p,q}. Auxiliary nodes which are shown as a = a{p,q} and b = a{r,s} in the Figure 2.7,

are introduced at the boundaries between partition sets Pl for l ∈ L. Thus, the set of

vertices is

Vα =





α, ᾱ,

⋃

{p,q}∈N
fp 6=fq

a{p,q}





(2.19)

Each pixel p ∈ P is connected to the terminals α and ᾱ by t-links tαp and tᾱp , respectively.

Each pair of neighboring pixels {p, q} ∈ N which are not separated by the partition P

(i.e., such that fp = fq) is connected by an n-link e{p,q}. For each pair of neighboring

pixels {p, q} ∈ N such that fp 6= fq,we create a triplet of edges ε{p,q} = {e{p,a}, e{a,q}, t
ᾱ
a},

where a = a{p,q} is the corresponding auxiliary node. The edges e{p,a} and e{a,q} connect
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Table 2.1. Weights assigned to the edges.

Edge Weight for

tᾱp ∞ p ∈ Pα

tᾱp Dp(fp) p /∈ Pα

tαp Dp(α) p ∈ P

e{p,a} V (fp, α) {p, q} ∈ N, fp 6= fq

e{a,q} V (α, fq) {p, q} ∈ N, fp 6= fq

tᾱa V (fp, fq) {p, q} ∈ N, fp 6= fq

e{p,q} V (fp, α) {p, q} ∈ N, fp = fq

pixels p and q to a{p,q} and the t-link tᾱa connects the auxiliary node a{p,q} to the terminal

ᾱ. So, we can write the set of all edges as

εα =






⋃

p∈P

{tαp , tᾱp},
⋃

{p,q}∈N
fp 6=fq

ε{p,q},
⋃

{p,q}∈N
fp=fq

e{p,q}





(2.20)

The weights assigned to these edges can be determined as in the Table 2.1.

Any cut C on Gα must include exactly one t-link for any pixel p ∈ P . This defines

a natural labeling fC corresponding to a cut C on Gα. Formally,

fC =






α if tαp ∈ C

fp if tᾱp ∈ C
∀p ∈ P (2.21)

In other words, a pixel p is assigned label α if the cut C separates p from the terminal

α, while p is assigned its old label fp if C separates p from ᾱ. Note that, for p /∈ Pα,

the terminal ᾱ represents labels assigned to pixels in the initial labeling f . This follows

that

Lemma 2.1 A labeling fC corresponding to a cut C on Gα is one α-expansion away
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from the initial labeling f .

It is obvious that a cut C includes an n-link e{p,q} between neighboring pixels {p, q} ∈ N

such that fp = fq if and only if C leaves the pixels p and q connected to different

terminals. Formally,

Property 2.1 For any cut C and for any n-link e{p,q}:

(a) If tαp , tαq ∈ C then e{p,q} /∈ C

(b) If tᾱp , tᾱq ∈ C then e{p,q} /∈ C

(c) If tᾱp , tαq ∈ C then e{p,q} ∈ C

(d) If tαp , tᾱq ∈ C then e{p,q} ∈ C

Properties 2.1 (a) and 2.1 (b) follow from the requirement that no proper subset of C

should separate the terminals. Properties 2.1 (c) and 2.1 (d) also use the fact that a

cut has to separate the terminals. These properties are illustrated in Figure 2.8. The

next lemma is a consequence of Property 2.1 and (2.21).

Lemma 2.2 For any cut C and for any n-link e{p,q}

∣
∣C ∩ e{p,q}

∣
∣ = V (fC

p , fC
q ). (2.22)

Now, consider the set of edges ε{p,q} corresponding to a pair of neighboring pixels

{p, q} ∈ N such that fp 6= fq. In this case, there are several different ways to cut these

edges even when the pair of severed t-links at p and q is fixed. However, a minimum cut

C on Gα is guaranteed to include the edges in ε{p,q} depending on what t-links are cut

at the pixels p and q. The rule for this case is described in Property 2.2. Assume that

a = a{p,q} is an auxiliary node between the corresponding pair of neighboring pixels.
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Figure 2.8. Properties of a cut C on Gα for two pixels {p, q} ∈ N connected by an

n-link e{p,q}. Dotted lines show the edges cut by C and solid lines show the edges

remaining in the induced graph.

Property 2.2 If {p, q} ∈ N and fp 6= fq, then a minimum cut C on Gα satisfies:

(a) If tαp , tαq ∈ C then C ∩ ε{p,q} = ∅

(b) If tᾱp , tᾱq ∈ C then C ∩ ε{p,q} = tᾱa

(c) If tᾱp , tαq ∈ C then C ∩ ε{p,q} = e{p,a}

(d) If tαp , tᾱq ∈ C then C ∩ ε{p,q} = e{a,q}

Property 2.2 (a) results from the fact that no subset of C is a cut. The others

follow from the minimality of |C| and the fact that
∣
∣e{p,a}

∣
∣ ,
∣
∣e{a,q}

∣
∣ and |tᾱa | satisfy the

triangle inequality so that cutting any one of them is cheaper than cutting the other

two together. These properties are illustrated in Figure 2.9.

Lemma 2.3 If {p, q} ∈ N and fp 6= fq, then the minimum cut C on Gα satisfies

∣
∣C ∩ ε{p,q}

∣
∣ = V (fC

p , fC
q ). (2.23)
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Figure 2.9. Properties of a minimum cut C on Gα for two pixels {p, q} ∈ N such that

fp 6= fq. Dotted lines show the edges cut by C and solid lines show the edges

remaining in the induced graph.

Equation 2.23 comes from Property 2.2, Equation 2.21 and the edge weights. For

example, if tᾱp , tᾱq ∈ C, then
∣
∣C ∩ ε{p,q}

∣
∣ = |tᾱa | = V (fp, fq), since Equation 2.21 implies

that fC
p = fp end fC

q = fq.

So far, we constructed the necessary mathematical background for finding the

optimal graph cut. To sum up, let Gα be constructed as above. Given f and α we

can say that, there is a one to one correspondence between elementary cuts on Gα and

labelings within one α-expansion of f . So, for any elementary cut C, we can calculate

|C| = E(fC) as follows.

We already show that an elementary cut C can be determined by the correspond-

ing labeling fC . The label fC
p at the pixel p determines which of the t-links to p is in

C. Property 2.1 shows which n-links e{p,q} between pairs of neighboring pixels {p, q}

such that fp = fq are included. And, Property 2.2 determines which of the links in

ε{p,q} corresponding to {p, q} ∈ N such that fp 6= fq should be in the cut. Putting
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Figure 2.10. An example of a texture composite built up using α-expansion move.

(a-f) Candidate images, (r1) Initial labeling, (r2) Final labeling, (r3) Image composite

according to the final labeling.

these together, we can define the cost of an elementary cut C as

|C| =
∑

p∈P

∣
∣C ∩ {tαp , tᾱp}

∣
∣+

∑

{p,q}∈N
fp=fq

∣
∣C ∩ e{p,q}

∣
∣+

∑

{p,q}∈N
fp 6=fq

∣
∣C ∩ ε{p,q}

∣
∣ (2.24)

For any pixel p ∈ P , we have
∣
∣C ∩ {tαp , tᾱp}

∣
∣ = Dp(f

C
p ). Using Lemmas 2.2 and 2.3 we

can rewrite the total cost of an elementary cut C as

|C| =
∑

p∈P

Dp(f
C
p ) +

∑

{p,q}∈N

V (fC
p , fC

q ) = E(fC) (2.25)

As a result we can say that the lowest energy labeling within a single α-expansion move

from f is f̂ = fC , where C is the minimum cut on Gα.
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Figure 2.10 shows a sample graph cut optimization process using α-expansion

as the necessary move operator. First 6 images (a-f) represent different views of the

same scene from different angles and form a candidate set for the texture composite.

Along with the view information (the angle between the plane normal of the target wall

and the related camera) gathered during rectification (Section 2.2.2), each candidate

is labeled with a different color and a letter. Proposed system, firstly, calculates the

data penalty terms according to the objectives explained in Section 2.2.1. Then an

arbitrary initial labeling (Figure 2.10 (r1)) is defined to begin with, in the first Graph

Cut cycle. Before each iteration smoothness (interaction) penalty terms are calculated

according to the labeling at that moment. Consequently, Graph Cut algorithm yields

a final minimized labeling (Figure 2.10 (r2)) and forms the texture composite (Figure

2.10 (r3)) according to this labeling. After this point system requires the decision of the

user in order to use the final composite as texture or continue with further refinements

explained in Section 2.3.

2.3. Texture Refinement

Since we deal with real images taken with a standard digital camera and un-

controlled lighting for many applications the source images are too dissimilar for a

graph-cut alone to result in visually seamless composites. If the graph-cut optimiza-

tion cannot find ideal seams, artifacts may still exist. Therefore a refinement phase

becomes necessary for building seamless texture maps for the targeted planar surface.

Figure 2.11 demonstrates a graph cut process when there are too few images

available and these candidate images are quite different in terms of luminance. This

kind of situations generally brings out remarkable seams in the resulting composites as

in Figure (b).

In these cases, it is useful to view the input images as sources of color gradients

rather than sources of color. Using the same graph cut labeling, we copy color gra-

dients to form a composite vector field. We then calculate a color composite whose

gradients best match this vector field. Doing so allows us to smooth out color differ-
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Figure 2.11. A sample graph cut process that results with a texture composite with

seams. a) Final labeling after graph cut optimization. b) Final image according to

(a).

ences between juxtaposed image regions. This process is commonly called as Poisson

blending or with a more general name as gradient-domain fusion. Many image editing

tools like selection editing, texture flattening etc. make use of this technique in or-

der to gather seamless results. Here we will use Poisson blending for applying seamless

cloning between different views with different labels in order to gather seamless texture

composites.

Firstly, we will give the basics of the gradient-domain fusion approach (Section

2.3.1). After formulating and defining guidance vector (Section 2.3.2) we will continue

with the discretization of the concept (Section 2.3.3) in order to apply to the two-

dimensional image world.

2.3.1. Gradient Domain Fusion

The main idea of the approach is the Poisson partial differential equation with

Dirichlet boundary conditions which specifies the Laplacian of an unknown function

over the domain of interest, along with the unknown function values over the boundary

of the domain. Tools created with this idea are used in many different areas like
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seamless cloning, selection editing, and seamless tilling [50, 54]. Seamless cloning best

fits the needs of our seam problems occurred in composite texture images since these

textures are composed of partitions each coming from an image in the candidate list.

If we build up a source-destination relationship between this image partitions then we

will apply seamless cloning for each partition.

The seamless cloning tool basically defined as the transfer process of an image

region to another image or another area of the same image. The seams formed because

of this process are overcame by a fusion process in gradient domain. Figure 2.12

represents a seamless cloning example in which a male profile is replaced with the face

of the famous painting Mona Lisa. After defining the area of cloning, this area is pasted

over destination image (Figure 2.12 (e)). Then a guided interpolation process, which

will be detailed in Section 2.3.2, takes place in order to create a new seamless composite

by determining color flow information from the source image and color information from

the destination image. Loosely speaking, this technique stays loyal to the amount of

color transitions between pixels in source image while ensures the compliance of source

and destination boundaries. Thus the resulting clone does not include undesirable

seams (Figure 2.12 (f)) compared to the direct cloning (Figure 2.12 (e)).

Cloning area is behaved as an unknown function over some domain. Given this

domain, and the boundary conditions of the unknown function, the Poisson equation

can be solved numerically to achieve seamless filling of that domain. This can be

replicated independently in each of the channels of a color image. Solving the Poisson

equation also has an alternative interpretation as a minimization problem: it computes

the function whose gradient is the closest to some prescribed vector field - the guidance

vector field - under given boundary conditions. This guidance vector field is determined

using the source image.

Actually, unless the guidance vector field is conservative, no image exists whose

gradient exactly matches the input. Instead, a best-fit image in a least-squares sense

can be calculated by solving a discretization of the Poisson equation. Sections 2.3.2

and 2.3.3 include necessary mathematical formulation to build up the system so as to
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Figure 2.12. Example of a seamless cloning process. (a) Destination image, (b)

Source image, (c) Area that will be transferred to the destination image, (d) Clone

mask, (e) Destination image with the selected region pasted over, (f) Final image

after Poisson seamless cloning.
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seamlessly fill in the targeted cloning area.

2.3.2. Guided Interpolation

In this section, we detail image interpolation using a guidance vector field. As

it is enough to solve the interpolation problem for each color component separately,

we consider only scalar image functions. Figure 2.13 illustrates the notations: let S,

a closed subset of R2, be the image definition domain, and let Ω be a closed subset

of S with boundary ∂Ω. Let f ∗ be a known scalar function defined over S minus the

interior of Ω and let f be an unknown scalar function defined over the interior of Ω.

Finally, let v be a vector field defined over Ω.

Figure 2.13. Guided Interpolation notation. Unknown function f interpolates in

domain Ω the destination function f ∗, under guidance of vector field v, which might

be or not the gradient field of a source function g.

The simplest interpolant f of f ∗ over Ω is the membrane interpolant defined as

the solution of the minimization problem:

min
f

∫∫

Ω

|∇f |2 with f |∂Ω = f ∗|∂Ω (2.26)

where ∇. =
[

∂.
∂x

, ∂.
∂y

]
is the gradient operator. The minimizer must satisfy the associ-
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ated Euler-Lagrange equation

Δf = 0 over Ω with f |∂Ω = f ∗|∂Ω (2.27)

where Δ. =
[

∂2.
∂x2 ,

∂2.
∂y2

]
is the Laplacian operator. Equation 2.27 is a Laplace equation

with Dirichlet boundary conditions that correspond to the constraint that the values

at the edge of the region must match the destination image’s value there.

For image editing applications, this simple method produces an unsatisfactory,

blurred interpolant, and this can be overcome in a variety of ways. One is to use a more

complex differential equation as in the “inpainting” technique of [61]. However, the

route proposed here is to modify the problem (Equation 2.26) by introducing further

constraints in the form of a guidance field as explained below.

A guidance field is a vector field v used in an extended version of the minimization

problem (Equation 2.26) and simply assists the interpolation process in a desired way.

Therefore, Equation 2.26 becomes

min
f

∫∫

Ω

|∇f − v|2 with f |∂Ω = f ∗|∂Ω (2.28)

whose solution is the unique solution of the following Poisson equation with Dirichlet

boundary conditions:

Δf = divv over Ω with f |∂Ω = f ∗|∂Ω (2.29)

where divv =
[

∂u
∂x

, ∂v
∂y

]
is the divergence of v = (u, v). Here u and v stands for the

components along x and y directions respectively.

When the guidance field v is conservative, i.e., it is the gradient of some function

g, a helpful alternative way of understanding what Poisson interpolation does is to de-

fine the correction function Ω such that f̃ on f = g+f̃ . The Poisson equation (Equation
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2.29) then becomes the following Laplace equation with boundary conditions:

Δf̃ = 0 over Ω with f̃
∣
∣
∣
∂Ω

= (f ∗ − g)|∂Ω (2.30)

Therefore, inside Ω, the additive correction f̃ is a membrane interpolant of the mis-

match (f ∗ − g) between the source and the destination along the boundary ∂Ω.

This is the fundamental machinery of Poisson editing of color images. When our

application area, seamless cloning, is considered this machinery follows up the following

mapping of notations: S represents the domain of the destination in cloning process

whereas Ω stands for area of interest. Boundaries of the cloning area is determined

by ∂Ω and let f ∗ be the destination image minus the cloning area Ω. Consequently,

f represents the unknown pixel values that are searched under the guidance of vector

field v which basically consists of the gradient of the source image in Ω. Nextly (Section

2.3.3), we will discretize our system in order to apply for 2D image coordinates in this

notation.

2.3.3. Discrete Poisson Solver

The variational problem (Equation 2.28), and the associated Poisson equation

with Dirichlet boundary conditions (Equation 2.29), can be discretized and solved in a

number of ways. For discrete images the problem can be discretized naturally using the

underlying discrete pixel grid. Since an RGB image corresponds to three 2D functions

we will treat color channels separately and solve the following discrete formulation for

each color independently.

Without loss of generality, we will keep the same notations for the continuous

objects and their discrete counterparts: S, Ω now become finite point sets defined on

an infinite discrete grid. Note that S can include all the pixels of an image or only a

subset of them. For each pixel p in S, let Np be the set of its 4-connected neighbors

which are in S, and let 〈p, q〉 denote a pixel pair such that q ∈ Np. The boundary of

Ω is now ∂Ω = {p ∈ S Ω : Np ∩ Ω 6= ∅}. Let fp be the value of f at p. The task is to
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compute the set of intensities f |Ω = {fp, p ∈ Ω}.

Figure 2.14. (a) A laplace operator, (b) Neighborhood of pixel p.

The function minimized in Equation 2.26 can be written as ∇f(x, y) =
[

∂f
∂x

, ∂f
∂y

]
.

This represents partial derivatives of a multivariate function and we can refer this equa-

tion as the image gradient. Equation 2.31 shows how finite differences are computed

in order to represent image gradient in a discrete manner.

∂f

∂x
≈ f(x + 1, y) − f(x, y),

∂f

∂y
≈ f(x, y + 1) − f(x, y) (2.31)

where x and y specifies the column and row values of any pixel p. The laplace operator,

on the other hand, used in Poisson equation (Equation 2.29) can be shown as Δf =

∇2f =
[

∂2f
∂x2 ,

∂2f
∂y2

]
and this can be specified with the following equation according to

the well-known 2D laplace operator in Figure 2.14 (a).

Δf = ∇2f ≈ f(x + 1, y) + f(x − 1, y) + f(x, y + 1) + f(x, y − 1) − 4f(x, y) (2.32)

Turning back to the context of seamless cloning, guidance vector field v can be

thought as ∇g where g is the function representing source image and for all 〈p, q〉, we

can write vpq = gp − gq. Therefore, Equation 2.29 becomes

Δf = Δg over Ω, with f |∂Ω = f ∗|∂Ω Npvpq (2.33)
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However, generally speaking, for Dirichlet boundary conditions defined on a boundary

of arbitrary shape, it is best to discretize the variational problem (Equation 2.28) di-

rectly, rather than the Poisson equation (Equation 2.29). Replacing continues functions

with discrete image context we can read Equation 2.28 as finding image f such that

its gradients as similar as possible to given gradient field v and satisfies the boundary

conditions. The finite difference discretization of this equation yields the following

discrete, quadratic optimization problem:

min
f |Ω

∑

〈p,q〉∩Ω 6=∅

(fp − fq − vpq)
2, with fp = f ∗

p , for all p ∈ ∂Ω (2.34)

where vpq is the projection of v
(

p+q
2

)
on the oriented edge [p, q], i.e., vpq = v

(
p+q
2

)
~pq.

Its solution satisfies the following simultaneous linear equations:

for all p ∈ Ω, |Np| fp −
∑

q∈Np∩Ω

fq =
∑

q∈Np∩∂Ω

f ∗
q +

∑

q∈Np

vpq (2.35)

Here, Np defines the neighborhood given in Figure 2.14 (b). When Ω contains pixels

on the border of S, which happens for instance when Ω extends to the edge of the pixel

grid, these pixels have a truncated neighborhood such that |Np| < 4. Note that for

pixels p interior to Ω, that is, Np ∩ Ω, there are no boundary terms in the right hand

side of Equation 2.35, which reads:

|Np| fp −
∑

q∈Np∩Ω

fq =
∑

q∈Np

vpq (2.36)

Equations 2.35 form a classical, sparse (banded), symmetric, positive-definite system.

Because of the arbitrary shape of boundary ∂Ω, we have been computed the results by

using Gauss-Seidel iteration, one of the well-known iterative solvers.

2.3.4. Blending Tools in Application

In our texture mapping system we implemented two main tools by using Poisson

blending: Local Blending and Smart Blending. Local blending is applied over a rectan-
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gular area and, as usual gives good results in removing rectangular seams. Moreover,

this technique requires user interaction for specifying area of blending. Smart Blend-

ing, on the other hand, requires no user interaction since it defines the areas of interest

automatically by looking at the final partitioning of candidate images over the final

composite of labeling.

Figure 2.15. An example for smart blending. a) Final labeling after graph cut

optimization. b) Image according to (a). c) Final image after smart blending.

Figure 2.15 (a) demonstrates a labeling for a final texture composite created

after a Graph Cut iteration. In most cases, one of the candidate images dominates the

final image since it satisfies a high priority objective like being the most frontal view.

The first thing we do in Smart Blending is to find this dominant label in the composite

image. Then we create a set of blend targets from the partitions lying over the dominant

label. The images corresponding to each partition represents source images while the

image corresponding to the dominant label forms the destination image. Thus, the

system traverses each partition and applies seamless cloning between the sources and

the destination. Figure 2.15 (c) exemplifies the resulting texture image after smart

blending.

The detailed usage of both blending tools is given in Section 3.2.
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3. TEXTURE MAPPING APPLICATION

Up until now, mathematical descriptions of the approaches we applied are issued

in order to propose a stable solution to the texture mapping problem. In this chapter

we will describe the tools developed in order to provide a user interface which simplifies

the texture mapping process.

3.1. User Interface Properties

Sketch-based modeling interfaces are the main inspiration for our system [11,12,

72]. These interfaces allow users to quickly create 3D models from simple 2D drawings

and gestures. Yet most of these applications provide 3D reconstruction interface and

tools but in this application we are mainly focusing on texture refinement and mapping

of a pre-constructed 3D model.

Our system allows the user to visualize, edit and refine the textures using an

interactive interface. Photographs are rectified into planar surfaces, providing visual

feedback during geometric editing. This allows users to accelerate tasks by simply

accepting or rejecting the images as candidates.

Implemented user interface gives the opportunity to select each planar surface by

visually specifying corner points. Additionally, an optional automatic corner detector

is provided to allow ease of selection especially for images with fuzzy details. Snapping

the user specified points to the corners detected, we provide more accurate planar

images by eliminating possible user oriented click errors.

In order to texture the model, our system generates texture maps using graph cut

optimization and Poisson blending to compute seamless texture composites by combin-

ing patches from multiple input photographs. During this step, the user can exclude

undesired pixels by using exclusion tool so that the system creates new composites by

using different candidates to fill the specified areas. Unsatisfactory results of graph
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cut operation can be eliminated by a local or global blending to remove seams. Also a

smart blending tool is provided in order to minimize the interaction level.

Two other useful tools are implemented within the application. One of them is

the exclusion tool which lets users to specify the undesired areas of the final texture.

Therefore system operates a new graph cut iteration by excluding the specified areas

(applying high penalties for the labels in the specified areas). While using this tool

users can also decide the size of the exclusion brush in order to specify the undesired

area more accurately. The second feature implemented gives the opportunity to select

a predefined texture as the texture of another plane. This tool is useful especially for

buildings which include repeating planes like windows or same wall structures. A flip

property comes with this feature in order to texture symmetric structures quickly.

3.2. Interface Usage

The application has two modes: Selection Mode and Refinement Mode (Figure

3.1).

Figure 3.1. Menu for choosing the mode of application.

3.2.1. Selection Mode

Selection mode allows users to view candidate images for a real world object.

In order to extract the planar textures “Get Points” button is used (Figure 3.2). By

pressing this button users are asked to define four image points in order to specify the

planar area and perform necessary cropping and rectification operations. After a planar
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facet in the scene is identified, the system estimates the parameters of the plane (angle

between the plane normal and the camera) and the polygon is then simply projected

from the image to a new rectangular plane. Rectified image results are displayed in

the secondary image area (Figure 3.3) and users can decide whether to use or deny the

rectified result as a texture candidate.

Figure 3.2. User interface elements used in image rectification.

In the selection mode, a Harris corner detector [67] is implemented as a point

selection assistant in order to simplify the selection of corners by snapping the selection

of the user to the nearest corner found (Figure 3.2).

Figure 3.3. Image area for displaying image editing results.

3.2.2. Refinement Mode

Having selected the candidate images for all or part of the planar surfaces, one

can move on with the refinement mode. In the refinement mode the user interface
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Figure 3.4. Menu situation of the user interface during refinement phase.

provides the tools that enable the composition the resulting texture map. Firstly, the

plane whose texture will be created is selected. Then Graph Cut procedure is applied

using the candidate images selected and rectified before by pressing the button “Graph

Cut” (Figure 3.4). The resulting labeling and corresponding image are displayed in

first and secondary image areas in order. At this step, three options are provided to

the user: 1) User can accept the resulting composite as the final texture of the target

plane, 2) User can specify undesired areas like occlusions so that the system can provide

different composites by excluding the specified areas, 3) If the user is not satisfied with

the results of Graph Cut algorithm he/she will apply either local blending by selecting

seam area or smart blending by leaving the blending to an automatic process (Figure

3.5).

Figure 3.5. Menu situation of the user interface after Graph Cut.

Another handy tool implemented to reduce the texture mapping time is the sub-

stitution tool. This property lets the user to use a predefined texture for another

plane in the model. Thus, using the combo box (Figure 3.6) including the predefined

textures, users do not lose time by texturing the similar surfaces again and again.
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Figure 3.6. Red circle marks the predefined textures that can be used again. Blue

circle marks the flip property.

In addition, a “Flip” feature (Figure 3.6) is added to provide the opportunity to

flip final images while texturing symmetric planes.

3.2.3. 3D Model Viewer

The 3D viewer is separated from the 2D user interface. The user can view the

current status of the 3D model at any phase of the texture creation cycle by using a

3D viewer which includes only the completed planar textures.
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4. EXPERIMENTS AND RESULTS

4.1. Datasets and Framework

All the algorithms described in this thesis, except the 3D model viewer (Section

3.2.3), are implemented in MATLAB 7. Some useful code libraries are imported into

the developed system eighter by partly or totally while the rest of the problems are

solved in the boundaries of the MATLAB framework. Graph cut optimization is one

of the concepts that we employed a library [73] to handle. In fact, we used a MATLAB

wrapper [74] which is first implemented in [75].

We have also applied a modified version of the Poisson solver implemented in

[78] and used in gradient domain fusion algorithms applied for texture refinement like

seamless cloning.

All algorithms and techniques proposed in this thesis are combined and presented

in a user friendly interface which is also developed in the MATLAB framework.

Furthermore a 3D model viewer (Section 3.2.3) is implemented in the Adobe

Flash platform by defining an XML based model structure composed of planes. All 3D

models used in this thesis are created using this structure. Required 3D engine is taken

from Papervision3D [79] which is an open source 3D engine for the Flash platform.

For all examples used in this chapter, photographs are acquired with a standard

consumer level digital camera with no additional setup or professional assistance. As

stated in previous sections (Sections 2.1 and 2.2) we did not make use of any digitally

available feature like camera parameters.
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4.2. Experiments

Since the aim of this thesis is to texture map 3D building models using unordered

photo collections, we exemplify the concept with different types of buildings and state

the results in this part. Using our system, we have textured a variety of scenes ranging

from small houses to complex architecture. Tables 4.1, 4.4, 4.8 sample the photos used

to texture map each structure while tables 4.2, 4.3, 4.5, 4.9 report the number of photos

used and the time spent by the user while texturing the models in our system. For

all the datasets except for the first example (Leuven Castle) which contains detailed

microstructures, the user was able to texture a coarse model of the whole scene very

quickly. Thus, some results (Table 4.3) do not require much interaction by the user;

textures are selected automatically by only graph cut process. Other results, on the

other hand, require some modifications by user driven information (Tables 4.5, 4.9).

This section includes detailed results of experiments applied on three different

building models. The first image set is obtained from [80] and includes 28 photographs

with almost no occluders. The images belong to a historical building called Leuven

Castle which has a quite complex model with lots of detailed structures.

The second image sequence is taken from an image database created for multiview

stereo 3D reconstruction [81]. We make use of the image set Castle R20 (original name

of the building is not given) which contains 20 photographs taken from the center of

the rectangular building structure.

We have produced the last image sequence by taking ground-based images of

Albert Long Hall, another historical building located in Boğaziçi University, Istanbul.

Neighbouring buildings and different types of occluders appearing in the image set,

make the building a good candidate for experimentation.

In the Leuven Castle sequence (Table 4.1), two roof planes are visible but since

they include microstructures it is hard to extract accurate texture especially for the

higher roof. On the other hand, the Leuven Castle sequence includes many replication
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Table 4.1. Some of the photographs used to texture map the Leuven Castle.
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of planes because of the repeating windows and microstructures. As a result, although

the model is quite complex and the number of total planes is high, by using texture

duplicates in more than one plane, texture mapping time decreases significantly. With

respect to other examples stated in this section, this image set does not contain fore-

ground occluders except for the bicycles located next to one of the walls. This occlusion

is left as a part of the wall texture since it is impossible to remove such nearly adjacent

occlusions unless manual and professional user interaction is provided which is out of

the target of our system.

Here, we have created two different models of the same building with different

level of details. As stated in Tables 4.2 and 4.3 it takes almost 5 min to texture map

the simple model with 15 planes. All detailed microstructures like rooftop windows

are removed in this simple model. However, texturing the complex model takes nearly

15 min with 46 planes. This result seems to be quite acceptable compared to the

results of [12] with the same building by taking into consideration that their results

also include modeling times.

Castle R20 image sequence includes photographs taken in the middle of a rect-

angular shaped building. Table 4.4 shows some of the photographs included in this

dataset. Obviously the tractor seen in almost every photograph becomes an occluder

for most of the planes in 3D model. Since the buildings in this set are quite high and

all images in the set are close range, we choose not to model rooftops since we could

not get an acceptable quality.

Necessary statistics about this model are given in Table 4.5. In addition, as seen

in the model views and specifically in Table 4.6, occlusions caused by the tractor are

removed in almost all textures. In Table 4.6 first row includes three different views of

the same wall. Second row specifies the calculated angles between viewing angles and

the plane normals while the third row contains transformed images after perspective

distortion is removed. Finally, the last row represents initial labeling before the graph

cut process, final labeling and final texture composite respectively.
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Table 4.2. 3D detailed model of Leuven Castle with necessary statistics.

Model: Leuven Castle (Detailed)

Number of photographs: 28

Number of planes in model: 46

Number of visible planes: 41

Texture mapping time: 18 min

Untextured model views

Textured model views
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Table 4.3. 3D simple model of Leuven Castle with necessary statistics.

Model: Leuven Castle (Simple)

Number of photographs: 28

Number of planes in model: 15

Number of visible planes: 10

Texture mapping time: 5 min

Untextured model views

Textured model views
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Table 4.4. Some of the photographs used to texture map the Castle R20.
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Table 4.5. 3D model of Castle R20 with necessary statistics.

Model: Castle R20

Number of photographs: 20

Number of planes in model: 17

Number of visible planes: 16

Texture mapping time: 11 min

Untextured model views

Textured model views

There is also a green box occluding some part of the walls in the right side of

the building. This occluder is also removed by using duplicate textures. Table 4.7

shows the stages of this operation by giving available dataset images in the first row in

which the target plane is focused by red outlines. Here, green outlines represents the

problematic occlusions with different kinds of occluders (tractor, ivy and green waste

bin). In the second row of the same table, we exemplify the usage of the same texture

for more than one plane to compose a complete nonoccluded texture.

The last example is taken from Albert Long Hall which is located in Boğaziçi Uni-

versity, Istanbul. Table 4.8 includes some of the photographs used in texture mapping

of this building. In total, 13 photographs, acquired with a standard digital camera,

have been used in the process. Because of the differing sunlight directions, intensity

values change significantly in this image set. There are also lots of occluders like the
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Table 4.6. Occlusion removal during texture mapping of Castle R20.

Unordered image samples

Angles estimated

2 57 76

Rectified texture candidates

Initial labeling, final labeling and final texture composite
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Table 4.7. Using duplicate surfaces during texture mapping of Castle R20.

bushes and the cars in front of the entrance which have been removed during graph cut

process by using visible textures for the occluded regions. On the other hand, there are

also adjacent occluders like the fire escape on the left side and the trees on the right

side. We handle the occlusion caused by fire escape structure with the help of flip and

duplicate tools we provided in the user interface. Symmetrical structure of this side let

us create a clear texture by using the non-occluded part of the symmetry. However,

the situation is not valid for the right hand side of the building since this side does

not include such a symmetric structure and has adjacent occluders composed of large

trees. So we decided to leave this side as it is with the occluders in the final model

represented in Table 4.9.

As seen, the amount of user interaction after graph cut process directly increases

total texture mapping time. However, user driven information mostly provides more

realistic results. Examples stated here are described as simple or complex according

to the number of microstructures on the models and occlusions in the datasets. More-

over, although a model includes many microstructures, most of these structures may

repeat throughout the building. Thus, for any model, the shape and the properties like

symmetry highly effect texture mapping times.
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Table 4.8. Some of the photographs used to texture map the Albert Long Hall.
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Table 4.9. 3D model of Albert Long Hall with necessary statistics.

Model: Albert Long Hall

Number of photographs: 13

Number of planes in model: 11

Number of visible planes: 8

Texture mapping time: 6 min

Untextured model views

Textured model views
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5. CONCLUSIONS

A semi-automatic texture mapping system has been proposed in this thesis. This

system makes use of unordered photos of a real world object in order to texture map the

3D model of that object. Projective Transformation, Graph Cut Optimization, Poisson

Blending and some helpful user interface tools have been used to cope with different

problems that create the texture mapping cycle. Defining these problems as different

phases of the main texture mapping problem we divide the overall system into three

main steps which can be ordered as image rectification, creating the optimal texture

composite and texture refinement. Based on the experiments and results reached in

this thesis, conclusions for each step are summed up in the following categories:

Image Rectification: Since we do not make use of any predefined parameters like

camera position we built up a rectification system by estimating the perspective dis-

tortions existing in the images according to the plane outlines drawn by the users.

Although it is a weak approach whose accuracy depends on the accuracy of the out-

lines, we implement a corner detector to help the user through the drawing process.

Moreover, we noticed that small shifts/errors on the estimated angles do not cause big

changes in the resulting texture composites. Thus, we decided to move on with the

estimated plane angles instead of making use of predefined camera parameters which

inserts a qualified user into the loop.

Creating The Optimal Texture Composite: We have seen that by using graph

cut optimization we get rid of most of the refinement steps, especially for the cases

where we have lots of candidate images. Thus, in most cases graph cut optimization

provides us the proper texture composites to go over or employ some refinements. The

main criteria focused on this work was the color consistency of the candidates and the

preference of frontal views. However, for specific purposes, one can add many other

criteria like luminance or contrast. Color consistency criterion helps removing most of

the occluders automatically unless the occluder contains very similar colors with the

plane it has occluded. Thus, this kind of problematic occluders are handled with user
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intervention using the exclude tool.

Texture Refinement: The main technique we used in texture refinement phase is

gradient domain fusion which is used in Poisson image editing. By applying the idea

of seamless cloning in texture mapping we created a tool called smart blend to employ

seamless cloning for each fragment of the texture composites provided by graph cut

optimization.

There are also assistant tools like the substitute tool that enables the user to use

a texture for more than one plane or the flip tool which is also helpful in texturing

symmetrical surfaces. There is also an exclude tool defined to remove undesired surfaces

(generally occluders) from a texture composite.

All these refinement tools help users to develop a better texture composite if

they are not satisfied with the results of graph cut texture composites. The number of

refinement tools provided can be increased by including other traditional tools like clone

brushing or color averaging. However, although these tools enhance the capabilities

of users, they also increases the texture mapping times by increasing the level of user

interaction.

5.1. Remarks and Future Directions

In this thesis, we mainly focused on texture mapping of a given 3D model. Ob-

viously, texture mapping is important while creating photorealistic and detailed 3D

models. It is also necessary to have specific information about the targeted object like

cultural heritage. Therefore texture mapping constitutes an important role in the 3D

reconstruction problem and the whole system proposed here can also be considered as

a module of a bigger 3D reconstruction system.

Acquiring photorealistic 3D models of real world objects is a growing application

area and becoming target of increasing interest. Thus, researchers gradually integrate

traditional image processing methods into this area by modifying the algorithms ac-
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cording to the needs of 3D reconstruction. Therefore, considering this thesis, there are

still some open questions which can be subjects of further research.

One issue is that using a semi-automatic system, texture synthesis approaches can

be applied to texture some parts which are invisible in all the dataset images used. [49]

proposes such an approach to texture map invisible areas.

Although graph cut optimization provides seamless textures by including color

penalties, preserving global illumination through the entire 3D model is another task

that can be helpful to provide better results especially for the photographs taken in

different times of the day. This problem also arises another issue which is about the

ease of access. After the texture mapping process is completed, all relevant parts of

the original images can be packed into one single large texture image to provide easier

handling for global modifications.

The proposed approach is presented with a detailed texture mapping application

which provides all algorithms as simple tools to let ordinary users with no professional

experience to handle the entire texture mapping process. Transforming this appli-

cation into a 3D editing tool and integrating into a 3D reconstruction system may

also be stated as a future work. Thus such a complete system, with provided camera

parameters, will increase the quality of results reached in this thesis.
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