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ABSTRACT

TEXTURE MAPPING FOR 3D BUILDING MODELS

The need and attempt for creating mathematically-defined three dimensional
(3D) models of real world objects has a long history. While, in the past, creating the
model was a problem itself, with recent developments in 3D reconstruction, creating
accurate, photorealistic and photogrammetric 3D models of the objects has become the
focus point. Starting from the architectural models, an interactive texture mapping
system was developed concentrating on the visual appearance of the predefined mod-
els. The system presents a semi-automatic way of extracting, correcting, and mapping
the appropriate textures to the given 3D building models using the images obtained
by standard consumer-level digital cameras. Projective geometry takes place in ex-
traction and rectification of texture candidates while popular graph cut optimization
approach was utilized to create seamless texture composites using these candidates.
A refinement phase was adopted for this procedure with a series of refinement tools
including Poisson image editing in terms of seamless cloning. For testing purposes
some publicly available datasets were used besides the imagesets that were created by
photographing real world objects. It was shown that most buildings could be textured
in an acceptable photorealistic quality without any predefined information about the
datasets. Furthermore, it was observed that the texture mapping times, even for de-
tailed building models, were quite low. This work mainly focuses on close-range or
ground level imagery since the aim is to create detailed and high quality photorealistic
view of the models. However, the approach could easily be extended towards the needs

of aerial imagery or large scale reconstruction.



OZET

3B BINA MODELLERI ICIN DOKU ESLEME

Gergek objelerin ii¢ boyutlu (3B) matematiksel modellerini olugturma ihtiyacinin
ve girigimlerinin uzun bir ge¢misi var. Eskiden modelin kendisini olusturmak bagh
bagina problemin kendisi iken, 3B gericatma teknolojisindeki gelismelerle, hassas, fo-
togercgekci ve fotogrametrik modeller olugturmak daha 6nemli hale geldi. Bu ¢alismada
onceden tanimli mimari modellerin goériintimiine odaklanarak interaktif bir doku egleme
sistemi geligtirdik. Sistem, standart tiikeci fotograf makineleri ile cekilen fotograflar
kullanilarak verilen 3B model i¢in uygun dokularin ayiklanmasi, diizeltilmesi ve eslen-
mesi i¢in yari-otomatik bir yontem onermektedir. Doku adaylarinin ayiklanmasi ve
diizeltilmesinde izdiigiimsel geometri kullanilirken, bu adaylar kullanilarak kesintisiz
doku bilesimleri olusturmak icin popiiler grafik kesme eniyileme yontemi kullanilmisgtir.
Bu stireci kesintisiz klonlamada kullanilan Poisson imge isleme yonteminin de ar-
alarinda oldugu bir ¢ok yardimci aracin bulundugu bir iyilegtirme asamasi takip et-
mektedir. Test amaciyla kendi olugturdugumuz imge setlerinin yani sira bazi kullanima
agik veri setlerini de kullandik. Yapilan denemeler sonucu veri setleriyle ilgili herhangi
bir 6nbilgi kullanmadan binalarin hemen hepsine makul fotogercekgi kalitelerde doku
eglesmesi yapildigim1 gozlemledik. Ayrica, doku eglestirme zamanlarinin, detayl bina
modelleri i¢in bile, oldukca diigiik oldugunu gosterdik. Bu calismada modellerin detaylh
ve yiiksek kalitede fotogercek¢i gortintimlerini elde etmeyi amacladigimiz icin yakin
olcekli ve zemin seviyesinden fotograflama yontemini temel aldik. Fakat, kullanilan
yontem kolayca havadan ve genis 6lgekli gericatma sistemlerini de icine alacak sekilde

genisletilebilir.
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1. INTRODUCTION

Accurate 3D models of buildings are needed for a variety of applications, such
as fly-through or walk-through rendering, simulation for mission planning, modeling
for augmented reality environments, industrial rapid prototyping systems, equality
control purposes, faithful reconstruction of cultural heritage, computer gaming and
town planning. Therefore, the problem of 3D modeling from images and video has
received a large interest in the computer graphics and vision communities. A large
body of research exists in this area however detailed analysis of facade texture and

microstructure has been very limited.

1.1. Motivation

Recent researches and developments in 3D reconstruction of architectural models
have given rise to the need of photorealistic models. With the growing demand in
this area the quality of model views become significant day by day. Hence, in most of
the 3D reconstruction applications, it is desirable to capture not only the geometry,
but also the visual appearance of an urban environment. Shading models with pseudo
textures is a commonly used approach, but does not represent true building textures.
For realistic texture mapping of 3D building models, using images acquired with digital
cameras is more beneficial because they provide high visual realism as well as cultural

and functional information about the building.

In an urban area, while capturing surface appearance of real world objects, it is
hard to find ground views that capture an entire building. Since many buildings are
close to each other, and narrow streets limit the field of view, extraction of textures in
an acceptable way becomes a quite difficult problem. Thus, researchers overcome this
problem by using two or more photos of a building which brings a number of refinement
techniques to the area of texture mapping. Moreover, since the building appears in
multiple images, automatic determination of optimal texture with no distortion and

least occlusion for each wall of the building becomes very significant for high quality



and effective photorealistic 3D visualization.

For generating photorealistic, textured, planar 3D models of architectural struc-
tures from an unordered collection of photographs, we develop an interactive system.
The system presents a semi-automatic way of extracting, correcting, and mapping
the appropriate textures to the given 3D building models using the images taken by
standard consumer-level digital cameras. This work mainly focuses on close-range or
ground level imagery since the aim is to capture detailed and high quality photoreal-
istic view of the models. However, the approach can easily be extended according to

the needs of aerial imagery or large scale reconstruction.

In order to achieve texture mapping in our system, firstly the user draws outlines
overlaid on 2D photographs which specifies the planes to be extracted as textures. The
user can also display the extracted planes instantly in order to decide whether or not
to use as candidate input photographs. Then, seamless texture maps are automatically
generated by combining multiple input photographs using graph cut optimization and
Poisson blending. These two approaches are the main tools that were used in order to

create texture composites and apply a refinement over this composites, respectively.

Graph cut optimization is the preferred technique used in computation photog-
raphy for finding optimal seams between image regions being stitched together while
Poisson blending is used to reduce or remove any visible artifacts that might remain

after the image seams are joined.

1.2. Literature Review

1.2.1. 3D Reconstruction

The problem of 3D modeling from images has received a big interest in the
photogrammetry, computer graphics and vision communities. Texture mapping con-
tributes to the 3D modeling task as a visualization phase and mostly 3D modeling

approach itself defines the methods that would be applied during texture mapping



process. In fact, the level of detail in visualisation and the amount of user interaction
that is needed are highly dependent on the approach used for 3D modeling. For in-
stance, ground based and close-range methods uses improved rectification and texture
modification techniques even with texture synthesis algorithms; whereas in reconstruc-
tion techniques, which uses aerial imagery, texture mapping is generally composed of
basic image rectification and warp operations caused by smoothing algorithms applied
to 3D model. Therefore, while exploring texture mapping approaches it highly impor-

tant to understand recent concepts developed in 3D reconstruction.
3D reconstruction algorithms are classified in different manners according to dif-

ferent point of views. Here, the most basic classifications and significant works that

were done according to these classifications are described.

1.2.1.1. Geometry-Based vs. Image-Based. According to an early research [1] there

were two types of modeling and rendering architecture. The geometry-based approach
places the majority of the modeling task on the user, whereas the image-based approach
places the majority of the task on the computer. Yet, hybrid approaches divide the
modeling task into two stages, one that is interactive and one that is automated. Some
studies also named this seperation as Automated vs. Interactive. Significant success has
been recently reported with fully automated systems such as [2], [3]. These systems
are based on structure from motion process to first recover the camera poses and a
sparse point cloud reconstruction of the scene. From the sparse reconstruction, dense
multi-view stereo algorithms could generate a dense mesh model. While systems such
as [2] process video, [4] use improved feature extraction and matching techniques to
make structure from motion work with unordered photo collections obtained from the
internet. In addition to these methods, [5] proposes a fully automatic method that
uses generative models for buildings, but it is restricted by the prior models and can

only operate on small sets of images.

Although these works are impressive, yet they require dense photo collections and

their quality may suffer if the camera motion is degenerate or the scenes lack sufficient



textures. These limitations are overcome by having a user in the loop to interactively
guide the geometry creation. Most recent examples of such interactive systems are
described in [1,7-12]. Facade [1] is one of the earliest hybrid modeling systems designed
for modeling architectural scenes which later gave rise to a commercial product called
Canoma. It provides a set of parameterized 3D primitives to user in order to model a
part of the scene. Whereas, [10], instead of using a set of pre-defined shapes, proposed
a user guided method for creating and re-using building blocks for adding in geometric
detail once a coarse model has been generated. On the other hand, single-view modeling
techniques such as [9,13] and other methods such as [7,14] have used vanishing point
constraints in modeling architecture. Finally, [11] and [12] are the most recent and quite
impressive systems which significantly decrease the reconstruction times and provides

functional user interfaces.

1.2.1.2. Active Camera vs. Passive Camera. A natural choice to satisfy the require-

ment of modeling the geometry and appearance is the combined use of active range
scanners and digital cameras. Frueh and Zakhor [15], Akbarzadeh et al. [16], and Polle-
feys et al. [2] used such a combination, capturing large amounts of data in continuous
mode, in contrast to the previous approaches [17] that captured a few isolated images
of the scene from a set of pre-specified viewpoints. They used laser scanners which
have the advantage of providing accurate 3D measurements directly. On the other
hand, they can be cumbersome and expensive. Several researchers in photogrammetry
and computer vision address the problem of reconstruction relying on passive sensors
(cameras) in order to increase the flexibility of the system while decreasing its size,

weight and cost.

1.2.1.3. Large Scale vs. Small Scale. There have been significant efforts in large scale

reconstruction, typically targeting urban environments or archeological sites. These
researches on urban reconstruction could be both from ground-based imagery [2, 16]
and from aerial images [15]. However, small scale reconstruction generally needs more

detailed work and uses ground-based imagery [12,18,19].



Large scale systems typically generate partial reconstructions which are then
merged. Conflicts and errors in the partial reconstructions are identified and resolved
during the merging process.

1.2.2. Texture Mapping

1.2.2.1. Texture Mapping in General. Methods for building texture retrieval men-

tioned in the literature are mostly grouped in three general classes: (1) texturing build-
ing tops using top-down views of the roofs, typically, airborne aerial images [15,20], (2)
texturing facades by utilizing ground-based images [12,18,19,21], and (3) their combi-
nations [22]. While top-down aerial image is capable of efficiently providing a complete
set of the roof shapes of all buildings at sufficient detail and accuracy, the vertical
walls of buildings are usually invisible in normal horizontal aerial image. On the other
hand, ground-based data acquisition systems are capable of providing building facades
as seen from the street level, but the time required to extract these facades from the
images increase with level of detail and quality. Moreover, the roofs of building are not

accessible from the ground-based acquisition system if the building is too high.

Another popular approach, especially for displaying open and wide spaces, was
using panoramic views created from stitched photographs [23-25]. “Route panorama”
[26] technique followed these works to provide photo-realistic street views. However,
although panoramic visualization could generate impressive scenes, it displays only
facial appearances instead of modelling accurate building textures. Moreover, original
texture images for building facades may have shadows or portions blocked by foreign

objects and panoramic views lacks in handling this kind of problems.

In some systems the camera parameters are known and geometric distortions
caused by viewing angle can be corrected using photogrammetric methods of per-
spective photo mapping [27]. However, most commodity digital cameras do not pro-
vide complete viewing parameters unless augmented with additional (often expensive)
equipment such as GPS, INS, and digital compass. Moreover, although we have the

camera parameters we need expert users in order to integrate camera information into



texture mapping systems. Therefore, since in an interactive system these kind of ap-
proaches can be cumbersome for ordinary users to take place in the loop, this kind of

systems generally includes automated techniques.

For images with unknown viewing parameters, the geometries of buildings in
images might be approximated if geometric constrains are well known, but photogram-
metric corrections are difficult. In order to estimate related camera parameters, [23]
used correlations of overlapped images. Vision-based modelling methods were also sug-
gested for obtaining relative pose between the cameras and 3D scene geometry from
motion imagery [28]. One of the recent and fairly robust methods is to reconstruct
by computing vanishing points (VP) of building line segments in images. While [29]
performs stable VP estimation in a single image, [4,12] extended the concept by jointly
estimating VPs in multiple images of the same scene. On the other hand, [1] identified
building boundaries from images to determine facets of the building and to map corre-
sponding texture blocks to model surfaces from cropped areas selected from an image

spool.

That is to say, texture mapping problems highly differs according to the goal and
scope of the texture mapping applications. In the case of aerial imagery, which is mostly
used in cyber city applications, optimal vertical textures are simply obtained by using
ortho-rectification after projective mapping [15,20]. However, when reconstruction of
specific buildings are considered we generally need more detailed and accurate systems
with additional processes such as texture selection, occlusion removal and texture re-
finement [12,18,19]. In other words, large scale systems tend to be more automated
systems with less amount of user interaction which relatively decreases the level of de-
tail, while small scale systems generally include more interaction to increase the level

of detail and quality.

1.2.2.2. Creating Texture Composite. In an urban area, it is hard to find ground views

that capture an entire building since many buildings are close to each other, and

narrow streets limit the field of view. The small field of view prevents the extraction of



textures in an acceptable way. So researchers overcome this problem by using two or
more photos of a building which brings a number of refinement techniques to the area
of texture mapping. Moreover, because the building is appeared in multiple images,
automatic determination of optimal texture with no distortion, least occlusion and
high resolution for each wall of building becomes very significant for high quality,
efficiency and effectiveness of photo-realistic 3D visualization of building model. Two
main approaches are used at this point. Some researchers, generally the ones using
large numbers of images, select necessary textures according to the rendering view
point [1], [30], [31], [32], [33]. This approach utilizes images captured from a collection
of viewpoints and uses them to generate specific textures for different rendering views.
The second approach, on the other hand, applies a preprocessing phase in order to select
the best textures or texture composites that will be used during the entire rendering
process [34], [35], [36], [18], [12]. While specifying the optimal textures [18] simply
weighted the texture fragments according the angle between the viewing direction
during acquisition and the surface normal of the related facade. Fragments are then
blended together according to their weights and formed the necessary textures. Further
works like [12] extended these list of decision parameters by adding parameters like color
consistency, visibility etc. and used an improved optimization technique called graph

cut optimization to create texture composites according to this parameters.

Since individual digital texture photographs are usually taken at different viewing
conditions (view points, looking angles, zoom factors etc.), they are of assorted per-
spectives, scales, brightness, contrasts, colour shadings and other properties that are
significant in imagery. These variations need to be adjusted in order to integrate into
a seamless mosaic. Therefore, the first challenge of 3D building texture mapping is to
merge images pertaining to the same building facade into a complete texture mosaic
that is continuous in geometric outlines and in colour shadings. Image mosaicking is a
common technique used in a variety of related applications to generate complete tex-
ture information of a building facade from digital photographs. One of the techniques
for generating image mosaics of the real-world environment was to merge sequences of
video frames [37], [18]. However, general image mosaicking algorithms were not de-

signed for photo-realistic texture mapping and generally did not fulfil the requirements



of creating complete and seamless building texture information, which is critical in city
and building visualization and applications. In addition, directly using video sequences
for building texture often requires intensive manual treatments to eliminate occlusions,

blurs and other artifacts [38].

Another approach for creating texture composites was to define the problem as an
energy minimization problem by using some quantities (such as intensity or disparity)
changing over the images. Energy-based methods attempt to model some global image
properties that cannot be captured, for example, by local correlation techniques. The
main problem, however, is that interesting energies are often difficult to minimize.
Due to this inefficiency of computing the global minimum, many authors have opted
for a local minimum. An example of a local method using standard moves is Iterated
Conditional Modes (ICM), which is a greedy technique introduced in [39]. For each
pixel, the label which gives the largest decrease of the energy function is chosen, until

convergence to a local minimum.

Another example of an algorithm using standard moves is simulated annealing,
which was popularized by [19]. Unfortunately, it requires exponential time and as a
consequence it is very slow. Theoretically, simulated annealing should eventually find
the global minimum if it runs for long enough but [20] demonstrate that practical
implementations of simulated annealing may give results that are very far from the
global optimum. Sampling algorithms that were developed [40] could make larger

moves in order to improve the rate of convergence of simulated annealing.

If the energy minimization problem is discussed in continuous terms, variational
methods that use Euler equations, which are guaranteed to hold at a local minimum,
can be applied [41]. On the other hand, another alternative is to use discrete relaxation
labeling methods like [42], [43]. In relaxation labeling, combinatorial optimization is
converted into continuous optimization with linear constraints. Then, some form of

gradient descent is used.

In some cases, global minimum can also be computed via dynamic programming



[44]. However, as stated in [45], in general, the two-dimensional energy functions that

arise in early vision cannot be solved efficiently via dynamic programming.

Recently, the approach of representing the quality of pixel combinations as a
Markov Random Field and formulating the problem as a minimum cost graph cut
became popular. The former examples of this approach was stated by [46], [47], [48].
These works used graph cuts to find the exact global minimum of certain type of energy
functions. However, these methods apply only if the labels were one-dimensional and
their energies were not discontinuity preserving. More recently, [45] contribute to the
area by two new algorithms for multidimensional energy minimization that use graph
cuts iteratively. They achieve approximate solutions to this NP-hard minimization
problem with guaranteed optimality bounds and most importantly they generalize the
previous results by allowing arbitrary label sets, arbitrary data terms and a very wide

class of pairwise interactions that includes discontinuity preserving cases.

After this generalization, graph cut optimization method, which is also detailed
in this thesis in Section 2.2, has been used for a variety of tasks, including image
segmentation, stereo matching and optical flow. For instance, [49] introduced the
use of graph-cuts for combining images. Although they mostly focused on stochastic
textures, they showed the ability to combine two natural images into one composite by
constraining certain pixels. Then, [50] extend this approach to the fusion of multiple

source images using a set of high-level image objectives.

Although graph cut optimization mostly finds good seams between image compos-
ites, in some cases results will not be satisfactory and researchers apply an additional
refinement operation on the results. One of the techniques employed for such a purpose
was Poisson image editing which is also the main tool applied for refinement in this
thesis. Related works stated on this issue is given in the next section (Section 1.2.2.3)
and mathematical details will be discussed in Section 2.3. As far as we know, [50] is the
first one to use Gradient Domain Fusion in combination with graph cut optimization
for such a purpose. They build up a new interactive photomontage method with new

cost functions that extend the applicability of graph cuts to a number of new appli-
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cations. [12] followed it and transferred the concept to the space of 3D reconstruction

and texture mapping.

1.2.2.3. Texture Refinement. We implement a specific type of gradient domain fusion

approach which makes use of Poisson image editing techniques. Poisson equation has
been used extensively in computer vision. In the specific context of image editing
applications there are a number of works related to the use of the Poisson equation

proposed here.

The earliest and well-known work in image fusion used Laplacian pyramids and
per-pixel heuristics of salience to fuse two images [51,52]. These early results demon-
strated the possibilities of obtaining increased dynamic range and depth of field, as
well as fused images of objects under varying illumination. However, these earlier ap-
proaches had difficulty capturing fine detail. They also did not provide any interactive

control over the results.

In [53], the gradient field of a High Dynamic Range (HDR) image is rescaled
non-linearly, producing a vector field that is no longer a gradient field. A new image
is then obtained by solving a Poisson equation with the divergence of this vector field
as right-hand-side and under Neumann boundary conditions specifying that the value
of the gradient of the new image in the direction normal to the boundary is zero. In
contrast, the method proposed in [54] can be applied to arbitrary patches selected
from an image, not just to the entire image. In order to do this, Neumann boundary
conditions on a rectangular outline is replaced by Dirichlet conditions on an arbitrary

outline.

Elder and Goldberg [55] introduced a system to edit an image via a sparse set
of its edge elements (edgels). To suppress an object, associated edgels are removed; to
add an object, associated edgels as well as color values on both sides of each of these
edgels are incorporated. The new image is then obtained by interpolating the colors

associated to the new set of edgels and this stands for solving a Laplace equation (a
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Poisson equation with a null right hand side) with Dirichlet boundary conditions given
by colors around edgels. However, generally, editing edgels and associated colors is not
simple. In addition, image details are lost when converting to and from the contour

domain, which might be undesirable.

Lewis [56] described a high quality method for separating intensity-detail from
overall image region intensity. Here, spots are removed from fur images by separat-
ing out the brightness component from details in a selected region and replacing the
brightness by harmonic interpolation (solving a Laplace equation) of the brightness at

the selection boundary.

In terms of image editing functionalities, two existing techniques achieve seamless
cloning as the the system introduced by [54] which is also implemented in our work.
The first one is Adobe Photoshop 7’s Healing Brush [57]. As far as we know, the
technique used by this tool has not been published yet, so we don’t know whether it
uses a Poisson solver or not. Mostly this kind of standard image-editing tools require
manual selection of boundaries, which is time consuming and burdensome. In contrast,
this thesis offers a smart blending tool which makes use of texture composite results

to achieve automatic identification of editing regions and boundaries.

The second technique is the multiresolution image blending proposed in [58].
The idea is to use a multiresolution representation, namely a Laplacian pyramid, of
the images of interest. The content of the source image region is mixed, within each
resolution band independently, with its new surrounding in the destination image.
The final composite image is then recovered by adding up the different levels of the
new composite Laplacian pyramid. The technique results in multiresolution mixing
where finest details are averaged very locally around the boundary of the selection.
This fast technique achieves an approximate insertion of the source Laplacian in the
destination region whereas this Laplacian insertion is performed via the solution of a
Poisson equation in this work. More importantly, multiresolution blending takes data
from distant source and destination pixels, through the upper levels of the pyramid.

This long range mixing, which might be undesirable, does not occur in the technique
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we applied.

[59] further presented a pyramid blending algorithm that used different alpha
masks in different bands. [60] developed two complex image stitching algorithms in the
gradient domain to optimize the mosaicking quality. These are all effective methods,
but they all require intensive computation and most of them can only deal with a pair

of input images at a time.

After Perez et. al. [54], Agarwala et. al. [50] used the same approach in which
a region of a single source image is copied into a destination image in the gradient
domain. However, their work differs in that they copy the gradients from many regions
simultaneously, and they have no single destination image to provide boundary condi-
tions. Thus, the Poisson equation must be solved over the entire composite space. This
approach is useful but needless in our case since a one to one correspondence between

the source and destination is sufficient to reach the desired results.

Finally, since the proposed guided interpolation framework was implemented
in [54], in the case of seamless cloning, various interpolation methods have been pro-
posed to fill in image regions automatically using only the knowledge of the boundary
conditions. One class of such approaches is composed of inpainting techniques [61]
where partial differential equation (PDE) based interpolation methods are introduced.
The PDEs to be solved are more complex than the Poisson equation, and work only for
merging fairly narrow gaps. Example-based interpolation methods [62,63] where the
new image region is synthesized using an arrangement of many small patches are an
alternative to inpainting. These methods handle large holes and textured boundaries

in a more successful way.

Apart from gradient domain methods, other refinement techniques also exist.
An alternative technique uses histogram matching or equalization to force colour and
shading distributions of candidate images to be within the same range [64]. This
technique is applied to minimize the color and shading differences between composites,

however, directly applying this method to close-range images for texture generation
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may cause serious misrendering of colour shadings such as hazy or low-contrast images.

Another refinement method targets the degradation effects caused by the lumi-
nance. [9], present a filter that factors the image into a texture component and an
illumination component which is also useful for relighting since the decoupled tex-
ture channel has a uniform level of illumination. Whereas, [36], normalize the facade
images by linear gray-level stretching. The resulting luminance-normalized facade im-
ages (LNF images) have the same average luminance and thus are comparable to one

another for the other phases.

1.2.2.4. Interface Tools. In some specific cases, texture composition results may be

unsatisfactory even after automatic refinement tools. Thus, systems which employ
user knowledge while texture mapping, additionally, include some handy tools in order

to improve the quality of results and decrease the mapping time.

In [65], the user can draw strokes to indicate which object or part of the texture is
undesirable. The corresponding region is automatically extracted and image inpainting
[66] is used for automatically inpainting. Similarly, [12] offers an interactive way in
which the user can specify additional constraints using brush strokes. Constraints
could be both positive (the user indicates preference for specific portions) or negative
(the user erases undesired portions). [9], on the other hand, used an increased level of
interaction by implementing a Clone brushing (rubberstamping) tool for the seamless
alteration of pictures. It interactively copies a region of the image using a brush
interface and is often used to remove undesirable portions of an image, such as blemishes
or distracting objects in the background. Moreover, 3D reconstruction systems that
implement modeling interfaces also introduce some useful 3D tools. For instance, [12]
provided standard CAD utilities like extrusion, plane completion, mirroring, while [11]
implemented a mirror plane in order to build a complete model of an object which is

symmetric about a plane.
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1.3. Objective and Scope of the Work

Sinha et. al. [12] and Hengel et. al. [11] are recent successful examples of semi-
automatic 3D reconstruction systems with built-in texture mapping modules. While
Hengel et. al. focuses on video and structure from motion, Sinha et. al. decrease
the level of user interaction by introducing many assistive tools in terms of texture
mapping. However, in both systems, texture mapping comes after 3D modeling and

make use of estimated camera parameters for each image.

In this thesis, a 2D system was proposed to produce photorealistic texture maps
for 3D building models. Given digital photographs of a building and the corresponding
3D model, accurate facade textures are provided in a semiautomatic way. In this
process, it is assumed that the whole process is carried out by ordinary users with
no specific professional training in the area and ground view photographs, taken by
standard cameras, are used. All perspective distortions existing in the photographs
are removed automatically by texture rectification using projective geometry. Texture
composites are then created using graph cut optimization according to these rectified
texture candidates. In addition, a refinement phase follows this process so that users
are able to perform some minor modifications over the texture composites. One of the
most important refinement operations is seamless cloning which lets users to remove
seams between texture partitions by using guided interpolation. Finally, all algorithms
and assistive tools are presented in a user friendly interface to provide a complete visual

experience for the users.

Using our system, after the user chooses the planar face to texture, he/she defines
the planar area in the photographs by the help of a line tool. Specified areas are
cropped and rectified automatically to make them proper texture candidates. After this
point, the user can either use the texture composite created by using these candidates
or perform some additional refinements over the recommended composite. Texture
composites was created using graph cut optimization by applying the idea of [50] in

digital montage applications.
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Targeting the ordinary users, a user friendly application was developed in order
to provide a complete visual experience with a series of utilized tools created to simplify
the texture mapping process. For instance, seamless cloning approach [54] helps users
quickly remove seams existing in the composites, while traditional flip, exclude and
substitute tools let users gain time especially for the models including repeating or
symmetrical structures. Additionally, a Harris corner detector [67] is implemented to
specify plane borders more accurately. Finally, a 3D model viewer was created to let

users visualize their mapping at any time of the process.

1.4. Outline of the Thesis

The organisation of the rest of the thesis is as follows: Chapter 2 starts with the
methods used while extracting the candidate planar images from digital photographs.
Here, necessary formulations are stated in order to remove projective distortion from
the images. Then, in the second section of this chapter, graph cut optimization process
is detailed with the necessary parameters and algorithms. Besides, desired optimization
criteria are included in this section. Chapter 2 ends up with the refinement techniques
implemented to improve final texture quality. Gradient domain fusion is the main
tool explained in this section. Chapter 3, on the other hand, gives details about the
user interface application which includes implementations of all features and methods
stated in this thesis. Texture mapping examples with different kinds of buildings and
the results of application usage are stated in Chapter 4. All results are interpreted in

Chapter 5 and the thesis concludes with the possible extensions and contributions.
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2. TEXTURE MAPPING

2.1. Image Rectification

Image rectification, concisely, is a transformation process used to project multiple
images onto a common image surface. It is used in two main areas: (1) in computer
stereo vision to simplify the problem of finding matching points between images; and
(2) in geographic information systems to merge images taken from multiple perspectives
into a common map coordinate system. Our system is more related to the latter one
since we are not dealing with the reconstruction phase directly. We have the video
sequences or images of a 3D object and we do not have any information about the
camera parameters. So that, in order to begin the texture mapping process of this
object we have to extract fronto-parallel views (i.e. parallel to the image plane) of each

plane forming the 3D model. Figure 2.1 clearly exemplifies this method.

Figure 2.1. Image rectification. a) Original image. b) Rectified area.

Mathematically, while using the photos or video sequences of a building or object
we will be dealing with perspective imaging and it is well known that under perspec-
tive imaging a plane is distorted since it is mapped to the image by a plane projective
transformation. For instance, in Figure 2.1 the windows are not rectangular in the
first image, although the originals are. To determine the transformation we are us-
ing projective geometry. Since the image is a projective distortion of the original, it
is possible to “undo” this distortion by canceling projective transformation by com-

puting the inverse transformation and applying it to the image. The result will be a
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new synthesized image in which the objects in the plane are shown with their correct

geometric shape (Figure 2.1 (b)).

2.1.1. Removing the Projective Distortion

As stated in [68] once the transformation is determined, Euclidean measurements,
such as lengths and angles, can be made on the world plane directly from image mea-
surements. Furthermore, the image can be rectified by a projective warping to one that
would have been obtained from a fronto-parallel view of the plane. So to determine

the desired transformation we deal with the following notions.

2.1.1.1. Ideal Points and The Line at Infinity. We know that homogeneous vectors
x = (11, 22,23)7 such that x3 is nonzero correspond to finite points in R?. More-
over, one may augment R? by adding points with last coordinate x5 = 0. The resulting
space is the set of all homogenous 3-vectors, namely the projective space P?. The points
with last coordinate x3 = 0 are known as ideal points or points at infinity. The set of
all ideal points may be written as (1, 2,0)7, with a particular point specified by the
ratio x; : 2. Note that this set lies on a single line, the line at infinity, denoted by the
vector I, = (0,0,1)7. Indeed one verifies that (0,0,1)(x1,22,0)T = 0. This explains
the fact that points with homogeneous coordinates (x,y,0)T do not correspond to any

finite point in R? and parallel lines meet at infinity [69].

Introduction of the concept of the points at infinity is essential because it serves
to simplify the intersection properties of points and lines. So, one could state that, in
the projective plane P2, two distinct lines meet in a single point and two distinct points
lie on a single line. This is not true in the standard Euclidean (rectilinear) geometry

of R?, in which parallel lines form a special case.

In the proposed work, users are asked to specify a rectangular area by the help
of a user interface in order to extract planar facets from the images. Thus, having

reliable information about the parallel lines over an image we can reveal the actual



18

transformation that causes distortion for a plane.

2.1.1.2. Projective Transformation. A planar projective transformation is a linear

transformation on homogenous 3-vectors represented by a non-singular 3x3 matrix in
Equation 2.1 or more briefly x> = Hx. This is an invertible transformation from a pro-
jective plane to a projective plane that maps straight lines to straight lines. The most
general transformation between the world and image plane under imaging by a per-
spective camera, is the projective transformation which is also called a “collineation”,

“homography”, and “projectivity”.

7 hit hig has 21
zy | = | har ha ho Ty (2.1)
A har hsz hss T3

We compute the projective transformation by defining point-to-point correspon-
dences between user specified plane points and real rectilinear frontal corner points of
a plane. Let the inhomogeneous coordinates of a pair of matching points x and x’ in
the world and image plane be (z,y) and (2/,y’) respectively. We use inhomogeneous
coordinates here instead of the homogeneous coordinates of the points, because it is
these inhomogeneous coordinates that are measured directly from the image and from
the world plane. The projective transformation of Equation 2.1 can be written in
inhomogeneous form as

o) hux + hiy + s , Ty horx+ hooy + hos

x/ [ , = — = 2.2
x  hg17 + haoy + has Y xy  ha1x + haoy + has (22)

which means each point correspondence generates two equations for the elements of

H, which after multiplying out are

o' (h312 + haoy + has) = hix + hioy + his
Y (ha1x + hsoy + h3s) = ho1x + hooy + has
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Four point correspondences lead to eight such linear equations in the entries of H,
which are sufficient to solve for H up to an insignificant multiplicative factor. The
only restriction is that the four points must be in “general position”, which means that
no three points are collinear. The inverse of the transformation H computed in this
way is then applied to the whole image to undo the effect of perspective distortion on

the selected plane. The results are shown in Figure 2.1.

2.1.1.3. Image Warping. Images are warped by applying the inverse homography to

each pixel in the target image. In order to automate the warping and ensure that the
convex hull of the original image is correctly mapped into the rectangle of the target
image, the intensities at source points in the original image are determined by bicubic

interpolation.

During image rectification system also gathers an angle parameter for each image
in order to use as a selection criterion. Details of this process is explained in Section

2.2.2.

2.2. Creating Texture Composite

This section begins with the description of the texture mapping concept and
why we use multiple images for creating a texture composite (Section 2.2.1). Then,
we will continue (Section 2.2.3) with the mathematical description of the Graph Cut
Algorithm which is the main tool that we use for creating our texture composites. Two
basic moves developed by Boykov et. al. [45] will be defined in the following section
(Section 2.2.4). Then we will formulate the problem (Section 2.2.5) and go on with the

details of one of these basic moves (Section 2.2.6).

2.2.1. Problem Description

Given a 3D building model and images taken from different sides and angles, to

compute a texture map for each planar segment of the building model, we backproject
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Figure 2.2. Rectification of a plane image from different views. Red lines represents

the area of interest for rectification. a) Frontal image. b) Rectified area according to

(a). ¢) Another view with a larger angle. d) Rectified area according to (c).

the selected and rectified (Section 2.1) views onto the plane. As the reconstructed plane
is typically visible in multiple images, pixels from each of these backprojected images
provide potential candidates for the texels in the target texture map. A simple way
to obtain a texture map would be to blend together all the candidates for each texel,
but mostly this produces noticeable ghosting artifacts if a misalignment or unmodeled
geometric detail exists. Also losing the fine resolution existing in the images can be

counted as another drawback.

Instead, to avoid these problems, we can choose the pixel values from the most
frontal view for each texel independently. However this creates other artifacts in the
form of noticeable seams in the texture map. Moreover, none of these approaches deal

with the problem of partial occlusion of the modeled surface by foreground occluders.

So, as seen in Figure 2.2 (a,b), using the most frontal view generally satisfies
the desired quality but comes across with the problem of occluding surfaces whereas

choosing the side views with larger angles overcomes the occlusion problems but results
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in low quality textures after rectification as seen in Figure 2.2 (c,d).

Therefore, instead of trying to choose the best image and use it as the necessary
texture image, we need a combination of the two approaches which will output a
composite texture instead of a unique view. Thereby, each pixel in the resulting texture
map will include the best image pixel for it among all views. However, this method
generally yields undesired artifacts on the composite since the images contain negative
effects of warping caused by the rectification phase and nature of the uncontrolled
light conditions. An example of this situation is given in Figure 2.3. Obviously, the
resulting composite in Figure 2.3 (b) is quite unacceptable because of the numerous
seams. Moreover, looking at the labels generating the composite in Figure 2.3 (a),
although most of the pixel values come from two main views, since they are spread
over the image, they lack the desired quality. Thus, our preferred technique has to
partition the image space between different images while generating image composites
in order the minimize the unnecessary spreading. In other words, resulting texture map
must include relatively larger areas of labelings while controlling the desired properties

like the priority of the frontal views for a better quality.

The most recent and effective approach to deal with the above problem and to
find optimal seams while retrieving texture composites from image sets is graph cut
optimization. This technique applies texture map generation as a Markov Random
Field (MRF) optimization problem, where a high quality seamless texture map is com-
puted by minimizing a suitable energy functional consisting of data penalty terms and
pairwise terms [45]. Lempitsky et al [70] used a similar technique for generating image-
based texture maps and their underlying MRF was defined on a triangulated manifold
mesh whereas we prefer to apply mapping over a texel grid of planar surfaces which is

the case introduced in Sinha et al [12].

We denote the set of aligned images rectified to the target plane by I, ..., I,,. The
graph cut estimates a label image f where the label at pixel p denoted by f, indicates
which image I, should be used as the source for p in the target texture map. The

energy functional we minimize is denoted by E(f) where f is a particular label image.
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() (b)

Figure 2.3. Creating texture composite by choosing best image for each pixel. a)
Labeled image. Each label is represented with a different color. b) Image composite

created according to the labels in (a).

Note that L is piecewise constant except at seams between adjacent pixels p and g,

where f, # f,.

As we mentioned before, our energy functional E is the sum of a data penalty
term summed over all pixels of the label image f and a pairwise interaction penalty
term (sometimes called as smoothness term) summed over all pairs of neighboring

pixels in f.

E(f) = Esmooth(f) + Edata(f) (24)

Firstly, there are many image objectives that can be applied to the candidate images
to use in the minimization function. The image objective at each pixel specifies a
property that the user would like to see at each pixel in the composite. The image
objective is computed independently at each pixel position p, based on the set of pixel
values drawn from that same position p in each of the source images. We denote this

set the span at each pixel.
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The general image objectives that may be applied in a variety of applications

include:

e Designated color: a specific desired color to either match or avoid.

e Minimum or maximum luminance: the darkest or lightest pixel in the span.

e Minimum or maximum contrast: the pixel from the span with the lowest or
highest local contrast in the span.

e Minimum or maximum likelihood: the least or most common pixel value in the
span.

e Eraser: the color most different from that of the current composite.

e Designated image: a specific source image in the stack.

e Minimum or maximum difference: the color least or most similar to the color at

position p of a specific source image in the candidate set.

These objectives can be chosen according to the specific needs of the application used.
Considering the concept of 3D reconstruction and texture mapping we will add follow-

ing specific objectives to the list in order to obtain better composites.

e Preference for a frontal view: the pixel coming from the most frontal view with
the angle 6, where 6 is the angle between the plane normal and a particular
camera. Automatic retrieval of this angle parameter is described in Section 2.2.2.

e Photo-consistency: the color most similar to the median color p of the set of

candidate pixels.

Here we will go through the details of the last two image objectives which will be used

as the data term FEg,, in the original energy minimization function (Equation 2.4).

The data penalty term denoted by D,(f,) stores the cost of assigning label f, to

pixel p while the interaction penalty term V), ,(f,, f;) stores the cost of assigning labels
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fp and f; to neighboring pixels p and ¢ in the label image.

E(f) = Z Vp,q(fpv fq) + Z Dp(fp) (2.5)

{p.a}eN peP
Two main objectives which defines our data penalty term can be formulated as follows:

Dy = 1—cos*(h), (2.6)

Dy = |It,(p) - 4l (2.7)

The first objective in Equation 2.6 defines a high priority for the frontal images since 6
is the angle between the plane normal and the camera. On the other hand, the second
objective in Equation 2.7 introduces a color consistency objective which applies a high

penalty for choosing a pixel whose color deviate from the median color pu.

It follows that our data penalty term becomes the weighted sum of the two data

penalties.
Edgata = Dy(f,) = wi(1 = cos*(0)) + 1wz |11, (p) — 1| (2.8)
where w; and wy are two suitably chosen weights to balance the two objectives.
Interaction (smoothness) penalty term, on the other hand, is defined as the com-

bination of matching colors and gradients across the seams. We can denote it as

follows:

0 it fo=1

Esmooth = Vp,q(fpa fq) = _ (2.9)
X+Y if o/w

= |1}, (p) — I1,(p)| + |1}, (q) — I1,(a)], (2.10)

Y = |V, (p) = Vi, ()| + VI (0) = VI, (9)| (2.11)
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Using the sum of both color (Equation 2.10) and gradient (Equation 2.11) information
to form the smoothness term generally gives better results. However one could also use

this information separately for special cases as seen in Equation 2.12.

X if matching colors
Esmooth = Voo(fo, 1) = Y if matching gradients (2.12)
X+Y if matching colors and gradients

Boykov et. al. [45] applies graph cut optimization under two fairly general classes of
interaction penalty V: metric and semimetric. V is called a metric on the space of

labels L if it satisfies

Vie,3) =0 & a=7, (2.13)
V(e,3) = V(B,a) >0, (2.14)
Vie,p) < Vie,y)+V(7,0) (2.15)

for any labels a, 3,y € L. If V satisfies only (2.13) and (2.14), it is called a semimetric.

Note that all of the smoothness objectives mentioned above are metrics since
they always satisfy Equations (2.13), (2.14), and (2.15). [49] and [50] also add the edge
information to the equation which may, in theory, enhance the quality of resulting
image composite in terms of seams. The approach introduces the term Z = Hy, (p, q) +
Hy (p,q) where Hy(p, q) is the scalar edge potential between two neighboring pixels p
and ¢ of image ¢, computed using a Sobel filter. Edge potential is used with the color
information by using the term X/Z which is a semi-metric since it does not always
satisfy the triangle inequality in Equation 2.15. When this seam penalty is used, many
of the theoretical guarantees of the “alpha expansion” algorithm are lost. It still gives
acceptable results for some local, special cases; but while applying Poisson blending
afterwards, edge term leads to artifacts through strong image edges. Therefore, this

semi-metric is left beyond the scope of the approach used in this thesis.
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2.2.2. Extracting Angle Criterion

During the elimination of the projective distortion we also have the opportunity to
gather a parameter for each image in order to use as a selection criterion while creating
the final texture image. Textures that will be created at the end of our system, may
consist of pixel values coming from many different views. Thus, we need some criterions
while deciding the dominance of each image in the final texture composites. One of
these criterions is the closeness of the view to the frontal view of the same image.
Such an information can be used to apply higher priorities for nearly frontal views in
determining the final composites. Usage of frontal-view and many other criterions are

considered in Section 2.2.1.

A good measure for defining how close a view to the perfect frontal view is the
angle between plane normal and the vector coming from the viewing camera. Here the
plane is the area that will be textured in 3D model and let 8 be the defined angle. If we
know 6 for each view, then we can insert it into our system as one of the main selection
measures. Yet, since we are not given the camera parameters, there is no direct way
of calculating this angle. This is why we will estimate 6 values for each view by using

vanishing points.

Figure 2.4. A view showing a plane under perspective distortion. Points 1 to 4
correspond to the corners of the plane and point 5 represents the intersection of the

lines including two opposite edges of the plane in projective space.

As stated in Section 2.1.1.1, in general, parallel lines on a scene plane are not
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parallel in the image but instead converge to a finite point as seen in Figure 2.4.
Because of the structure of inherent perspective the closeness of the view to the frontal
view is increases with the distance d between the convergence point and the center of
the plane. In other words, when distance d gets bigger then the amount of distortion
increases and this means a larger viewing angle 6. In order to improve the conditioning
of the equations and eliminate the effect of plane size over the distance d, we apply 2D

normalization to the corner points so that their centroid will be at the origin.

This direct proportion between the distance d and angle 6 allows us to estimate
the viewing angle for each view by just making use of the points specified by the user.
Since a plane is accepted as invisible in the current view for 6 values over 90 degrees,
distance values are mapped to an angle value 6 between 0 and 90 degrees. Therefore,
system estimates an angle measure 6 for each view of the target plane in order to be

used in the next step (Section 2.2.3) as a selection criterion.
2.2.3. Graph Cut Optimization

When we have a finite set of labels L, and we want to assign every pixel p € P to

a label, in graph cut optimization, one seeks the labeling f that minimizes the energy

E(f) = Esmooth(f) + Edata(f) (216)

Here, Eg,00tn measures the extent to which f is not piecewise smooth, while Fju,
measures the disagreement between f and the observed data. Many different energy
functions have been proposed in the literature as stated in the previous part (Section

2.2.1). The form of Fyu, is typically

Edata(f) = Z Dp(fp) (2'17)

peP

where D, measures how well label f, fits pixel p given the observed data. In image

restoration, for example, D,(f,) is normally, (f,—1I,)? where I, is the observed intensity
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of p.

The major difficulty with energy minimization lies in the enormous computa-
tional costs. Typically, these energy functions have many local minima (i.e., they are
nonconvex). Worse still, the space of possible labelings has dimension |P|, which is

many thousands.

The energy functions that are considered in this thesis arise in a variety of different
contexts, including the Bayesian labeling of first-order Markov Random Fields. Here,
the quality of pixel combinations are represented as a Markov Random Field and the
problem is formulated as a minimum-cost graph-cut. Energies are considered of the

form

E(f)= > Voglfo fo) +>_Dylfy) (2.18)

{p.ateN pepP

where N is the set of interacting pairs of pixels. Typically, N consists of adjacent
pixels, but it can be arbitrary. We allow D, to be nonnegative but otherwise arbitrary.
According to the choice of E,,00tn, only pairs of pixels interact directly. Note that each

pair of pixels {p, ¢} can have its own distinct penalty V.
2.2.4. Graph Cut Moves

Any labeling f can be uniquely represented by a partition of image pixels P=
{P,|l € L}, where P, ={p € P|f, =1} is a subset of pixels which have been assigned
the label [. Since there is an obvious one to one correspondence between labelings f

and partitions P, we can use these notions interchangingly.

Given a pair of labels a, 3, a move from a partition P (labeling f) to a new
partition P’ (labeling f’) is called an a-3-swap if P, = P/ for any label [ # «, 5. This
means that the only difference between P and P’ is that some pixels that were labeled

« in P are now labeled # in P’, and some pixels that were labeled 3 in P are now
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labeled o in P’. A special case of an a-(-swap is a move that gives the label « to some

set of pixels previously labeled j3.

Given a label «, a move from a partition P (labeling f) to a new partition P’
(labeling ') is called an a-ezpansion if P, C P) and P/ C P, for any label [ # «. In
other words, an a-expansion move allows any set of image pixels to change their labels

to a.

Given a labeling f, there is an exponential number of swap and expansion moves.
Therefore, even checking for a local minimum requires exponential time if performed
naively. In contrast, checking for a local minimum when only the standard moves are

allowed is easy since there is only a linear number of standard moves given any labeling

1.

When these moves are defined, it is easy to design variants of the “fastest descent”
technique that can efficiently find the corresponding local minima. The algorithm for

the expansion move is summarized as follows:

1. Start with an arbitrary labeling f

2. Set success := 0

3. For each label o € L
(a) Find f:argmmE(f’) among f’ within one a-expansion of f
(b) If E(f) < E(f), set f:=f and success := 1

4. If success = 1 goto 2

5. Return f

Figure 2.5. Pseudocode for a-expansion algorithm

We will call a single execution of Steps (a), (b) an iteration, and an execution of
Steps 2, 3, and 4 a cycle. In each cycle, the algorithm performs an iteration for every

label (expansion algorithm) or for every pair of labels (swap algorithm), in a certain
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order that can be fixed or random. A cycle is successful if a strictly better labeling
is found at any iteration. The algorithm terminates when a pass over all labels has
occurred that fails to reduce the cost function. Thus, a cycle in the expansion algorithm

takes |L| iterations.

2.2.5. Graph Cuts

Let G = (v,e) be a weighted graph with two distinguished vertices called the
terminals. A cut C' C ¢ is a set of edges such that the terminals are separated in
the induced graph G(C) = (v,e — C). In addition, no proper subset of C separates
the terminals in G(C). The cost of the cut C, denoted |C|, equals the sum of its
edge weights. The minimum cut problem is to find the cheapest cut among all cuts

separating the terminals.

Normally, there are two types of edges in the graph: n-links and t-links. n-links
connect pairs of neighboring pixels. Thus, they represent a neighborhood system in the
image. Cost of n-links corresponds to a penalty for discontinuity between the pixels.
These costs are usually derived from the pixel interaction term V,, , in energy (Equation
2.5). t-links connect pixels with terminals (labels). The cost of a ¢-link connecting a
pixel and a terminal corresponds to a penalty for assigning the corresponding label to
the pixel. This cost is normally derived from the data term D, in the energy (Equation

2.5).

A cut C on a graph with two terminals is a partitioning of the nodes in the graph
into two disjoint subsets A and B such that the source a is in A and the sink b is in B.
Figure 2.6 shows one example of a cut. The minimum cut problem on a graph is to
find a cut that has the minimum cost among all cuts. One of the fundamental results
in this kind of optimization is that the minimum cut problem can also be solved by
finding a maximum flow from the source a to the sink b. Loosely speaking, maximum
flow is the maximum “amount of water” that can be sent from the source to the sink

by interpreting graph edges as “pipes” with capacities equal to edge weights.
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Figure 2.6. Example of a weighted graph and a sample cut.

It has been proven [71] that a maximum flow from a to b saturates a set of edges
in the graph dividing the nodes into two disjoint parts A, B corresponding to a mini-
mum cut. Therefore, min-cut and max-flow problems are equivalent and a “Duality”
relationship exists between them. This is why these kind of problems are commonly

named together as min-cut/max-flow problems.

Minimum cut is the preferred strategy in this work to optimize our energy func-
tion. For simplification, a natural labeling will be defined for each cut C in the following

section (Section 2.2.6) and this labeling will be directly used in cost calculations.

2.2.6. Finding the Optimal Expansion Move

Given an input labeling f (partition P) and a label a, we would like to find a
labeling f’ that minimizes E over all labelings within one a-expansion of f. Here, we
describe the technique that solves the problem assuming that (each) V' is a metric and,
thus, satisfies the triangle inequality (2.15). The technique is based on computing a
labeling corresponding to a minimum cut on a graph G, = (v4,&,). The structure of

this graph is determined by the current partition P and by the label . So, the graph
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dynamically changes after each iteration.

Figure 2.7. An example of GG, for a 1D image.

Figure 2.7 shows the case of a 1D image. Here, the set of pixels in the image is
P = {p,q,r, s} and the current partition for the figure is P= { P, P, P3}, whereP, =
{p}, P, = {q,r} ,and P; = {s}. For each pair of neighboring pixels {p,q} € N
separated in the current partition (i.e., such that f, # f,), we create an auziliary node
afp,qy- Auxiliary nodes which are shown as a = ay,q and b = ay,. ) in the Figure 2.7,
are introduced at the boundaries between partition sets P, for [ € L. Thus, the set of

vertices is

Vo=<a,a, |J apg (2.19)

e
Each pixel p € P is connected to the terminals o and & by ¢-links ¢ and tg, respectively.
Each pair of neighboring pixels {p, ¢} € N which are not separated by the partition P
(i.e., such that f, = f;) is connected by an n-link e(, 3. For each pair of neighboring
pixels {p, ¢} € N such that f, # f,;,we create a triplet of edges e,y = {€{p,a}> €1a,q}, 1o}

where a = ay, 4y s the corresponding auxiliary node. The edges ey, .3 and e, 4) connect
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Table 2.1. Weights assigned to the edges.

Edge | Weight for

tg o0 p € P,
tlo} D;D(fp) p ¢ Pa
to D,(«) peEP

) | {p,a}y €N, fo # fq
¢lagt | Vi fo) | {p,a} €N, fo # fq
. ) | {p.a} €N, [, # [y
epat | Vfpma) [ {p,at €N, [ = fq

pixels p and ¢ to a4 and the ¢-link ¢ connects the auxiliary node ay, g to the terminal

@. So, we can write the set of all edges as

= Uttt U con U ewa (2.20)
pepP {p,q}EN {p.g}eN
fo#fq fo=Ffq

The weights assigned to these edges can be determined as in the Table 2.1.

Any cut C on G, must include exactly one t-link for any pixel p € P. This defines

a natural labeling f¢ corresponding to a cut C on G,. Formally,

Q if tr e’
fé= P Vp € P (2.21)
fr it tyed

In other words, a pixel p is assigned label « if the cut C' separates p from the terminal
«, while p is assigned its old label f, if C' separates p from a. Note that, for p ¢ P,,
the terminal & represents labels assigned to pixels in the initial labeling f. This follows

that

Lemma 2.1 A labeling f¢ corresponding to a cut C on G, is one a-expansion away
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from the initial labeling f.

It is obvious that a cut C includes an n-link ey, 51 between neighboring pixels {p, ¢} € N
such that f, = f, if and only if C leaves the pixels p and ¢ connected to different

terminals. Formally,

Property 2.1 For any cut C and for any n-link egpqy:

(a) If t3,t5€C then epgy ¢&C

P2l
(b) If t5,t3€C  then epq ¢C
(c) If t5,te€C  then epqy €l
(d) If t5teeC  then epqy €l

Properties 2.1 (a) and 2.1 (b) follow from the requirement that no proper subset of C
should separate the terminals. Properties 2.1 (¢) and 2.1 (d) also use the fact that a
cut has to separate the terminals. These properties are illustrated in Figure 2.8. The

next lemma is a consequence of Property 2.1 and (2.21).

Lemma 2.2 For any cut C and for any n-link egy, o

[Cnepal =V I (2.22)

Now, consider the set of edges ey, 4 corresponding to a pair of neighboring pixels
{p,q} € N such that f, # f,. In this case, there are several different ways to cut these
edges even when the pair of severed t-links at p and ¢ is fixed. However, a minimum cut
C on G, is guaranteed to include the edges in ¢y, 43 depending on what ¢-links are cut
at the pixels p and ¢. The rule for this case is described in Property 2.2. Assume that

a = apq} is an auxiliary node between the corresponding pair of neighboring pixels.
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Figure 2.8. Properties of a cut C' on G, for two pixels {p, ¢} € N connected by an

n-link eg, ;1. Dotted lines show the edges cut by C' and solid lines show the edges

remaining in the induced graph.

Property 2.2 If {p,q} € N and f, # f,, then a minimum cut C' on G, satisfies:

(a)
(b)
(c)
(d)

follow from the minimality of |C| and the fact that |eg,q

If
If
If
If

to,tg € C

ty,tg €C
e t>e

p’q

ty,tg €C

then
then
then
then

CNepg =0
CNeppg =12
CNegpgy = epa)
CNepgy = efag)

Property 2.2 (a) results from the fact that no subset of C' is a cut. The others

, |e{aqy| and [t3] satisfy the

triangle inequality so that cutting any one of them is cheaper than cutting the other

two together. These properties are illustrated in Figure 2.9.

Lemma 2.3 If {p,q} € N and f, # f,, then the minimum cut C on G, satisfies

[CNepa| =V ). (2.23)
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Figure 2.9. Properties of a minimum cut C' on G, for two pixels {p, ¢} € N such that
fp # fq- Dotted lines show the edges cut by C' and solid lines show the edges

remaining in the induced graph.

Equation 2.23 comes from Property 2.2, Equation 2.21 and the edge weights. For
o 12 € C, then |C Negq| = [t3] = V(fp, fy), since Equation 2.21 implies

p’7q

that fpc = fp end qu = fs

example, if ¢

So far, we constructed the necessary mathematical background for finding the
optimal graph cut. To sum up, let GG, be constructed as above. Given f and o we
can say that, there is a one to one correspondence between elementary cuts on GG, and
labelings within one a-expansion of f. So, for any elementary cut C', we can calculate

|C| = E(f°) as follows.

We already show that an elementary cut C' can be determined by the correspond-
ing labeling f¢. The label fpc at the pixel p determines which of the ¢-links to p is in
C. Property 2.1 shows which n-links ey, .1 between pairs of neighboring pixels {p, ¢}
such that f, = f, are included. And, Property 2.2 determines which of the links in

Epqt corresponding to {p,q} € N such that f, # f, should be in the cut. Putting
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Figure 2.10. An example of a texture composite built up using a-expansion move.
(a-f) Candidate images, (rl) Initial labeling, (r2) Final labeling, (r3) Image composite
according to the final labeling.

these together, we can define the cost of an elementary cut C' as

Cl=>Cnf. e+ D [Chepgl+ Y. [CNepgl (2.24)
T

For any pixel p € P, we have |C' N {tg‘,tg‘}‘ = D,(f{). Using Lemmas 2.2 and 2.3 we

can rewrite the total cost of an elementary cut C' as

C1 =Y "Dy(fO)+ Y. V(S £9) = B(£°) (2.25)

peP {p.q}eN

As a result we can say that the lowest energy labeling within a single a-expansion move

from f is f = f¢, where C is the minimum cut on G,.
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Figure 2.10 shows a sample graph cut optimization process using a-expansion
as the necessary move operator. First 6 images (a-f) represent different views of the
same scene from different angles and form a candidate set for the texture composite.
Along with the view information (the angle between the plane normal of the target wall
and the related camera) gathered during rectification (Section 2.2.2), each candidate
is labeled with a different color and a letter. Proposed system, firstly, calculates the
data penalty terms according to the objectives explained in Section 2.2.1. Then an
arbitrary initial labeling (Figure 2.10 (r1)) is defined to begin with, in the first Graph
Cut cycle. Before each iteration smoothness (interaction) penalty terms are calculated
according to the labeling at that moment. Consequently, Graph Cut algorithm yields
a final minimized labeling (Figure 2.10 (12)) and forms the texture composite (Figure
2.10 (r3)) according to this labeling. After this point system requires the decision of the
user in order to use the final composite as texture or continue with further refinements

explained in Section 2.3.

2.3. Texture Refinement

Since we deal with real images taken with a standard digital camera and un-
controlled lighting for many applications the source images are too dissimilar for a
graph-cut alone to result in visually seamless composites. If the graph-cut optimiza-
tion cannot find ideal seams, artifacts may still exist. Therefore a refinement phase

becomes necessary for building seamless texture maps for the targeted planar surface.

Figure 2.11 demonstrates a graph cut process when there are too few images
available and these candidate images are quite different in terms of luminance. This
kind of situations generally brings out remarkable seams in the resulting composites as

in Figure (b).

In these cases, it is useful to view the input images as sources of color gradients
rather than sources of color. Using the same graph cut labeling, we copy color gra-
dients to form a composite vector field. We then calculate a color composite whose

gradients best match this vector field. Doing so allows us to smooth out color differ-
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(2) (b)

Figure 2.11. A sample graph cut process that results with a texture composite with

seams. a) Final labeling after graph cut optimization. b) Final image according to

(a).

ences between juxtaposed image regions. This process is commonly called as Poisson
blending or with a more general name as gradient-domain fusion. Many image editing
tools like selection editing, texture flattening etc. make use of this technique in or-
der to gather seamless results. Here we will use Poisson blending for applying seamless
cloning between different views with different labels in order to gather seamless texture

composites.

Firstly, we will give the basics of the gradient-domain fusion approach (Section
2.3.1). After formulating and defining guidance vector (Section 2.3.2) we will continue
with the discretization of the concept (Section 2.3.3) in order to apply to the two-

dimensional image world.

2.3.1. Gradient Domain Fusion

The main idea of the approach is the Poisson partial differential equation with
Dirichlet boundary conditions which specifies the Laplacian of an unknown function
over the domain of interest, along with the unknown function values over the boundary

of the domain. Tools created with this idea are used in many different areas like
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seamless cloning, selection editing, and seamless tilling [50,54]. Seamless cloning best
fits the needs of our seam problems occurred in composite texture images since these
textures are composed of partitions each coming from an image in the candidate list.
If we build up a source-destination relationship between this image partitions then we

will apply seamless cloning for each partition.

The seamless cloning tool basically defined as the transfer process of an image
region to another image or another area of the same image. The seams formed because
of this process are overcame by a fusion process in gradient domain. Figure 2.12
represents a seamless cloning example in which a male profile is replaced with the face
of the famous painting Mona Lisa. After defining the area of cloning, this area is pasted
over destination image (Figure 2.12 (e)). Then a guided interpolation process, which
will be detailed in Section 2.3.2, takes place in order to create a new seamless composite
by determining color flow information from the source image and color information from
the destination image. Loosely speaking, this technique stays loyal to the amount of
color transitions between pixels in source image while ensures the compliance of source
and destination boundaries. Thus the resulting clone does not include undesirable

seams (Figure 2.12 (f)) compared to the direct cloning (Figure 2.12 (e)).

Cloning area is behaved as an unknown function over some domain. Given this
domain, and the boundary conditions of the unknown function, the Poisson equation
can be solved numerically to achieve seamless filling of that domain. This can be
replicated independently in each of the channels of a color image. Solving the Poisson
equation also has an alternative interpretation as a minimization problem: it computes
the function whose gradient is the closest to some prescribed vector field - the guidance
vector field - under given boundary conditions. This guidance vector field is determined

using the source image.

Actually, unless the guidance vector field is conservative, no image exists whose
gradient exactly matches the input. Instead, a best-fit image in a least-squares sense
can be calculated by solving a discretization of the Poisson equation. Sections 2.3.2

and 2.3.3 include necessary mathematical formulation to build up the system so as to



41

(@)

Figure 2.12. Example of a seamless cloning process. (a) Destination image, (b)
Source image, (c) Area that will be transferred to the destination image, (d) Clone
mask, (e) Destination image with the selected region pasted over, (f) Final image

after Poisson seamless cloning.
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seamlessly fill in the targeted cloning area.

2.3.2. Guided Interpolation

In this section, we detail image interpolation using a guidance vector field. As
it is enough to solve the interpolation problem for each color component separately,
we consider only scalar image functions. Figure 2.13 illustrates the notations: let .S,
a closed subset of R?, be the image definition domain, and let 2 be a closed subset
of S with boundary 9f). Let f* be a known scalar function defined over S minus the
interior of €2 and let f be an unknown scalar function defined over the interior of €.

Finally, let v be a vector field defined over (2.

Figure 2.13. Guided Interpolation notation. Unknown function f interpolates in
domain €2 the destination function f*, under guidance of vector field v, which might

be or not the gradient field of a source function g.

The simplest interpolant f of f* over €2 is the membrane interpolant defined as

the solution of the minimization problem:
mfln/ IV £ with £l = f*log (2.26)
Q

where V. = [%, %] is the gradient operator. The minimizer must satisfy the associ-
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ated Euler-Lagrange equation
Af =0 over Q with f|sq, = f*[sq (2.27)

where A. = [%, g—;‘] is the Laplacian operator. Equation 2.27 is a Laplace equation
with Dirichlet boundary conditions that correspond to the constraint that the values

at the edge of the region must match the destination image’s value there.

For image editing applications, this simple method produces an unsatisfactory,
blurred interpolant, and this can be overcome in a variety of ways. One is to use a more
complex differential equation as in the “inpainting” technique of [61]. However, the
route proposed here is to modify the problem (Equation 2.26) by introducing further

constraints in the form of a guidance field as explained below.

A guidance field is a vector field v used in an extended version of the minimization
problem (Equation 2.26) and simply assists the interpolation process in a desired way.

Therefore, Equation 2.26 becomes

mfin//Q|Vf—v|2with Floa = Flaa (2.28)

whose solution is the unique solution of the following Poisson equation with Dirichlet

boundary conditions:

Af = divv over Q with f|,q = |50 (2.29)

where divv = [%, g—ﬂ is the divergence of v = (u,v). Here u and v stands for the

components along x and y directions respectively.

When the guidance field v is conservative, i.e., it is the gradient of some function
g, a helpful alternative way of understanding what Poisson interpolation does is to de-

fine the correction function 2 such that f on f = g+ f. The Poisson equation (Equation
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2.29) then becomes the following Laplace equation with boundary conditions:
Af =0 over Q with f o (f* = 9Dloo (2.30)

Therefore, inside 2, the additive correction f' is a membrane interpolant of the mis-

match (f* — g) between the source and the destination along the boundary 0.

This is the fundamental machinery of Poisson editing of color images. When our
application area, seamless cloning, is considered this machinery follows up the following
mapping of notations: S represents the domain of the destination in cloning process
whereas () stands for area of interest. Boundaries of the cloning area is determined
by 02 and let f* be the destination image minus the cloning area 2. Consequently,
f represents the unknown pixel values that are searched under the guidance of vector
field v which basically consists of the gradient of the source image in 2. Nextly (Section
2.3.3), we will discretize our system in order to apply for 2D image coordinates in this

notation.
2.3.3. Discrete Poisson Solver

The variational problem (Equation 2.28), and the associated Poisson equation
with Dirichlet boundary conditions (Equation 2.29), can be discretized and solved in a
number of ways. For discrete images the problem can be discretized naturally using the
underlying discrete pixel grid. Since an RGB image corresponds to three 2D functions
we will treat color channels separately and solve the following discrete formulation for

each color independently.

Without loss of generality, we will keep the same notations for the continuous
objects and their discrete counterparts: S, 2 now become finite point sets defined on
an infinite discrete grid. Note that S can include all the pixels of an image or only a
subset of them. For each pixel p in S, let N, be the set of its 4-connected neighbors
which are in S, and let (p,q) denote a pixel pair such that ¢ € N,. The boundary of
Qisnow 02 ={pe SQ:N,NQ#0D}. Let f, be the value of f at p. The task is to



45

compute the set of intensities f|, = {f,,p € Q}.

7 IN,| =4
el o
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/
(@) (b)

Figure 2.14. (a) A laplace operator, (b) Neighborhood of pixel p.

The function minimized in Equation 2.26 can be written as V f(x,y) = [%, g—?ﬂ .

This represents partial derivatives of a multivariate function and we can refer this equa-
tion as the image gradient. Equation 2.31 shows how finite differences are computed
in order to represent image gradient in a discrete manner.

Tl S B Syt ) - Sy 23D

where z and y specifies the column and row values of any pixel p. The laplace operator,
on the other hand, used in Poisson equation (Equation 2.29) can be shown as A f =
Vif = [%, giyf} and this can be specified with the following equation according to

the well-known 2D laplace operator in Figure 2.14 (a).

Turning back to the context of seamless cloning, guidance vector field v can be
thought as Vg where g is the function representing source image and for all (p, ¢), we

can write vpy = g, — g4- Therefore, Equation 2.29 becomes

Af = Agover Q, with fl,q, = |50 NpUpg (2.33)
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However, generally speaking, for Dirichlet boundary conditions defined on a boundary
of arbitrary shape, it is best to discretize the variational problem (Equation 2.28) di-
rectly, rather than the Poisson equation (Equation 2.29). Replacing continues functions
with discrete image context we can read Equation 2.28 as finding image f such that
its gradients as similar as possible to given gradient field v and satisfies the boundary
conditions. The finite difference discretization of this equation yields the following

discrete, quadratic optimization problem:

min E (fy — fq— vpg)?, With f, = [y, for all p € 992 (2.34)
fla
(p,a)NQF#D

where v, is the projection of v (’%) on the oriented edge [p, g, i.e., v,y = v (’%) Q.

Its solution satisfies the following simultaneous linear equations:

forallp € QNI fo— Y fo= D fi+ D v (2.35)

qENLNQ qENpNON qEN)

Here, N, defines the neighborhood given in Figure 2.14 (b). When 2 contains pixels
on the border of S, which happens for instance when €2 extends to the edge of the pixel
grid, these pixels have a truncated neighborhood such that |N,| < 4. Note that for
pixels p interior to (2, that is, N, N €2, there are no boundary terms in the right hand

side of Equation 2.35, which reads:

[Nyl fp — Z fo= Z Upq (2.36)

qENNQY qENy

Equations 2.35 form a classical, sparse (banded), symmetric, positive-definite system.
Because of the arbitrary shape of boundary 02, we have been computed the results by

using Gauss-Seidel iteration, one of the well-known iterative solvers.
2.3.4. Blending Tools in Application

In our texture mapping system we implemented two main tools by using Poisson

blending: Local Blending and Smart Blending. Local blending is applied over a rectan-
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gular area and, as usual gives good results in removing rectangular seams. Moreover,
this technique requires user interaction for specifying area of blending. Smart Blend-
ing, on the other hand, requires no user interaction since it defines the areas of interest
automatically by looking at the final partitioning of candidate images over the final

composite of labeling.

Figure 2.15. An example for smart blending. a) Final labeling after graph cut

optimization. b) Image according to (a). ¢) Final image after smart blending.

Figure 2.15 (a) demonstrates a labeling for a final texture composite created
after a Graph Cut iteration. In most cases, one of the candidate images dominates the
final image since it satisfies a high priority objective like being the most frontal view.
The first thing we do in Smart Blending is to find this dominant label in the composite
image. Then we create a set of blend targets from the partitions lying over the dominant
label. The images corresponding to each partition represents source images while the
image corresponding to the dominant label forms the destination image. Thus, the
system traverses each partition and applies seamless cloning between the sources and
the destination. Figure 2.15 (c¢) exemplifies the resulting texture image after smart

blending.

The detailed usage of both blending tools is given in Section 3.2.
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3. TEXTURE MAPPING APPLICATION

Up until now, mathematical descriptions of the approaches we applied are issued
in order to propose a stable solution to the texture mapping problem. In this chapter
we will describe the tools developed in order to provide a user interface which simplifies

the texture mapping process.

3.1. User Interface Properties

Sketch-based modeling interfaces are the main inspiration for our system [11,12,
72]. These interfaces allow users to quickly create 3D models from simple 2D drawings
and gestures. Yet most of these applications provide 3D reconstruction interface and
tools but in this application we are mainly focusing on texture refinement and mapping

of a pre-constructed 3D model.

Our system allows the user to visualize, edit and refine the textures using an
interactive interface. Photographs are rectified into planar surfaces, providing visual
feedback during geometric editing. This allows users to accelerate tasks by simply

accepting or rejecting the images as candidates.

Implemented user interface gives the opportunity to select each planar surface by
visually specifying corner points. Additionally, an optional automatic corner detector
is provided to allow ease of selection especially for images with fuzzy details. Snapping
the user specified points to the corners detected, we provide more accurate planar

images by eliminating possible user oriented click errors.

In order to texture the model, our system generates texture maps using graph cut
optimization and Poisson blending to compute seamless texture composites by combin-
ing patches from multiple input photographs. During this step, the user can exclude
undesired pixels by using exclusion tool so that the system creates new composites by

using different candidates to fill the specified areas. Unsatisfactory results of graph
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cut operation can be eliminated by a local or global blending to remove seams. Also a

smart blending tool is provided in order to minimize the interaction level.

Two other useful tools are implemented within the application. One of them is
the exclusion tool which lets users to specify the undesired areas of the final texture.
Therefore system operates a new graph cut iteration by excluding the specified areas
(applying high penalties for the labels in the specified areas). While using this tool
users can also decide the size of the exclusion brush in order to specify the undesired
area more accurately. The second feature implemented gives the opportunity to select
a predefined texture as the texture of another plane. This tool is useful especially for
buildings which include repeating planes like windows or same wall structures. A flip

property comes with this feature in order to texture symmetric structures quickly.

3.2. Interface Usage

The application has two modes: Selection Mode and Refinement Mode (Figure
3.1).

Choose Phaze

() Selection Phase

() Refinement Phase

E Image Panel Eﬁesun Pangl ——M8MMM —

Figure 3.1. Menu for choosing the mode of application.

3.2.1. Selection Mode

Selection mode allows users to view candidate images for a real world object.
In order to extract the planar textures “Get Points” button is used (Figure 3.2). By
pressing this button users are asked to define four image points in order to specify the

planar area and perform necessary cropping and rectification operations. After a planar
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facet in the scene is identified, the system estimates the parameters of the plane (angle
between the plane normal and the camera) and the polygon is then simply projected
from the image to a new rectangular plane. Rectified image results are displayed in
the secondary image area (Figure 3.3) and users can decide whether to use or deny the

rectified result as a texture candidate.

Choose Images m
Model Planars;  |First Wall = ( Get Paints art Blend
Available Images:  |01.jpg - Graph Cut lend Area
’ [7] Snap points to edges
e,

Fesult Panel

Figure 3.2. User interface elements used in image rectification.

In the selection mode, a Harris corner detector [67] is implemented as a point
selection assistant in order to simplify the selection of corners by snapping the selection

of the user to the nearest corner found (Figure 3.2).

‘ () Refinement Phase ‘ Available Images: |08 jpg - ‘ ‘ Graph Cut Blend Area

[] Snap points to edges

— Image Panel Reszult Panel

Figure 3.3. Image area for displaying image editing results.

3.2.2. Refinement Mode

Having selected the candidate images for all or part of the planar surfaces, one

can move on with the refinement mode. In the refinement mode the user interface
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Operations

Chooze Images

Smart Blend

Maodel Planars: Second Wall v- Get Points
Available mages:  |t_6jpg v: Graph Cut Blend Area

Figure 3.4. Menu situation of the user interface during refinement phase.

provides the tools that enable the composition the resulting texture map. Firstly, the
plane whose texture will be created is selected. Then Graph Cut procedure is applied
using the candidate images selected and rectified before by pressing the button “Graph
Cut” (Figure 3.4). The resulting labeling and corresponding image are displayed in
first and secondary image areas in order. At this step, three options are provided to
the user: 1) User can accept the resulting composite as the final texture of the target
plane, 2) User can specify undesired areas like occlusions so that the system can provide
different composites by excluding the specified areas, 3) If the user is not satisfied with
the results of Graph Cut algorithm he/she will apply either local blending by selecting
seam area or smart blending by leaving the blending to an automatic process (Figure

3.5).

|- Choose Phase

() Selection Phase

@ Refinement Phase

|

Chooze Images

Model Planars: Second Wall

Available Images:  |t_6jpg

-

-

|

Operations

Get P-Jints
[ Graph Cut\] [ Elend Area ]
S ——

|- Image Panel ERescult Panel

Figure 3.5. Menu situation of the user interface after Graph Cut.

Another handy tool implemented to reduce the texture mapping time is the sub-
stitution tool. This property lets the user to use a predefined texture for another
plane in the model. Thus, using the combo box (Figure 3.6) including the predefined

textures, users do not lose time by texturing the similar surfaces again and again.
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. L —
Small - | m Available Textures: p_1jpg - >
[ GraphCut Curren’(” Flip ] 3 iscard
g

Figure 3.6. Red circle marks the predefined textures that can be used again. Blue

circle marks the flip property.

In addition, a “Flip” feature (Figure 3.6) is added to provide the opportunity to

flip final images while texturing symmetric planes.
3.2.3. 3D Model Viewer
The 3D viewer is separated from the 2D user interface. The user can view the

current status of the 3D model at any phase of the texture creation cycle by using a

3D viewer which includes only the completed planar textures.
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4. EXPERIMENTS AND RESULTS

4.1. Datasets and Framework

All the algorithms described in this thesis, except the 3D model viewer (Section
3.2.3), are implemented in MATLAB 7. Some useful code libraries are imported into
the developed system eighter by partly or totally while the rest of the problems are
solved in the boundaries of the MATLAB framework. Graph cut optimization is one
of the concepts that we employed a library [73] to handle. In fact, we used a MATLAB

wrapper [74] which is first implemented in [75].

We have also applied a modified version of the Poisson solver implemented in
[78] and used in gradient domain fusion algorithms applied for texture refinement like

seamless cloning.

All algorithms and techniques proposed in this thesis are combined and presented

in a user friendly interface which is also developed in the MATLAB framework.

Furthermore a 3D model viewer (Section 3.2.3) is implemented in the Adobe
Flash platform by defining an XML based model structure composed of planes. All 3D
models used in this thesis are created using this structure. Required 3D engine is taken

from Papervision3D [79] which is an open source 3D engine for the Flash platform.

For all examples used in this chapter, photographs are acquired with a standard
consumer level digital camera with no additional setup or professional assistance. As
stated in previous sections (Sections 2.1 and 2.2) we did not make use of any digitally

available feature like camera parameters.
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4.2. Experiments

Since the aim of this thesis is to texture map 3D building models using unordered
photo collections, we exemplify the concept with different types of buildings and state
the results in this part. Using our system, we have textured a variety of scenes ranging
from small houses to complex architecture. Tables 4.1, 4.4, 4.8 sample the photos used
to texture map each structure while tables 4.2, 4.3, 4.5, 4.9 report the number of photos
used and the time spent by the user while texturing the models in our system. For
all the datasets except for the first example (Leuven Castle) which contains detailed
microstructures, the user was able to texture a coarse model of the whole scene very
quickly. Thus, some results (Table 4.3) do not require much interaction by the user;
textures are selected automatically by only graph cut process. Other results, on the

other hand, require some modifications by user driven information (Tables 4.5, 4.9).

This section includes detailed results of experiments applied on three different
building models. The first image set is obtained from [80] and includes 28 photographs
with almost no occluders. The images belong to a historical building called Leuven

Castle which has a quite complex model with lots of detailed structures.

The second image sequence is taken from an image database created for multiview
stereo 3D reconstruction [81]. We make use of the image set Castle R20 (original name
of the building is not given) which contains 20 photographs taken from the center of

the rectangular building structure.

We have produced the last image sequence by taking ground-based images of
Albert Long Hall, another historical building located in Bogazici University, Istanbul.
Neighbouring buildings and different types of occluders appearing in the image set,

make the building a good candidate for experimentation.

In the Leuven Castle sequence (Table 4.1), two roof planes are visible but since
they include microstructures it is hard to extract accurate texture especially for the

higher roof. On the other hand, the Leuven Castle sequence includes many replication
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Table 4.1. Some of the photographs used to texture map the Leuven Castle.

st
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of planes because of the repeating windows and microstructures. As a result, although
the model is quite complex and the number of total planes is high, by using texture
duplicates in more than one plane, texture mapping time decreases significantly. With
respect to other examples stated in this section, this image set does not contain fore-
ground occluders except for the bicycles located next to one of the walls. This occlusion
is left as a part of the wall texture since it is impossible to remove such nearly adjacent
occlusions unless manual and professional user interaction is provided which is out of

the target of our system.

Here, we have created two different models of the same building with different
level of details. As stated in Tables 4.2 and 4.3 it takes almost 5 min to texture map
the simple model with 15 planes. All detailed microstructures like rooftop windows
are removed in this simple model. However, texturing the complex model takes nearly
15 min with 46 planes. This result seems to be quite acceptable compared to the
results of [12] with the same building by taking into consideration that their results

also include modeling times.

Castle R20 image sequence includes photographs taken in the middle of a rect-
angular shaped building. Table 4.4 shows some of the photographs included in this
dataset. Obviously the tractor seen in almost every photograph becomes an occluder
for most of the planes in 3D model. Since the buildings in this set are quite high and
all images in the set are close range, we choose not to model rooftops since we could

not get an acceptable quality.

Necessary statistics about this model are given in Table 4.5. In addition, as seen
in the model views and specifically in Table 4.6, occlusions caused by the tractor are
removed in almost all textures. In Table 4.6 first row includes three different views of
the same wall. Second row specifies the calculated angles between viewing angles and
the plane normals while the third row contains transformed images after perspective
distortion is removed. Finally, the last row represents initial labeling before the graph

cut process, final labeling and final texture composite respectively.



Table 4.2. 3D detailed model of Leuven Castle with necessary statistics.

Model: Leuven Castle (Detailed)

Number of photographs: 28
Number of planes in model: | 46
Number of visible planes: 41
Texture mapping time: 18 min

Untextured model views

Textured model views

o7



Table 4.3. 3D simple model of Leuven Castle with necessary statistics.

Model: Leuven Castle (Simple)

Number of photographs: 28

Number of planes in model: | 15

Number of visible planes: 10

Texture mapping time: 5 min

Untextured model views

Textured model views

o8



Table 4.4. Some of the photographs used to texture map the Castle R20.
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Table 4.5. 3D model of Castle R20 with necessary statistics.

Model: Castle R20

Number of photographs: 20

Number of planes in model: | 17

Number of visible planes: 16

Texture mapping time: 11 min

Untextured model views

1|

Textured model views

There is also a green box occluding some part of the walls in the right side of
the building. This occluder is also removed by using duplicate textures. Table 4.7
shows the stages of this operation by giving available dataset images in the first row in
which the target plane is focused by red outlines. Here, green outlines represents the
problematic occlusions with different kinds of occluders (tractor, ivy and green waste
bin). In the second row of the same table, we exemplify the usage of the same texture

for more than one plane to compose a complete nonoccluded texture.

The last example is taken from Albert Long Hall which is located in Bogazici Uni-
versity, Istanbul. Table 4.8 includes some of the photographs used in texture mapping
of this building. In total, 13 photographs, acquired with a standard digital camera,
have been used in the process. Because of the differing sunlight directions, intensity

values change significantly in this image set. There are also lots of occluders like the



Table 4.6. Occlusion removal during texture mapping of Castle R20.
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Unordered image samples

Angles estimated

2 57 76

Rectified texture candidates

Initial labeling, final labeling and final texture composite
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Table 4.7. Using duplicate surfaces during texture mapping of Castle R20.

bushes and the cars in front of the entrance which have been removed during graph cut
process by using visible textures for the occluded regions. On the other hand, there are
also adjacent occluders like the fire escape on the left side and the trees on the right
side. We handle the occlusion caused by fire escape structure with the help of flip and
duplicate tools we provided in the user interface. Symmetrical structure of this side let
us create a clear texture by using the non-occluded part of the symmetry. However,
the situation is not valid for the right hand side of the building since this side does
not include such a symmetric structure and has adjacent occluders composed of large
trees. So we decided to leave this side as it is with the occluders in the final model

represented in Table 4.9.

As seen, the amount of user interaction after graph cut process directly increases
total texture mapping time. However, user driven information mostly provides more
realistic results. Examples stated here are described as simple or complex according
to the number of microstructures on the models and occlusions in the datasets. More-
over, although a model includes many microstructures, most of these structures may
repeat throughout the building. Thus, for any model, the shape and the properties like
symmetry highly effect texture mapping times.



Table 4.8. Some of the photographs used to texture map the Albert Long Hall.

63




Table 4.9. 3D model of Albert Long Hall with necessary statistics.

Model: Albert Long Hall

Number of photographs: 13

Number of planes in model: | 11

Number of visible planes: 8

Texture mapping time: 6 min

Untextured model views

Textured model views

64
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5. CONCLUSIONS

A semi-automatic texture mapping system has been proposed in this thesis. This
system makes use of unordered photos of a real world object in order to texture map the
3D model of that object. Projective Transformation, Graph Cut Optimization, Poisson
Blending and some helpful user interface tools have been used to cope with different
problems that create the texture mapping cycle. Defining these problems as different
phases of the main texture mapping problem we divide the overall system into three
main steps which can be ordered as image rectification, creating the optimal texture
composite and texture refinement. Based on the experiments and results reached in

this thesis, conclusions for each step are summed up in the following categories:

Image Rectification: Since we do not make use of any predefined parameters like
camera position we built up a rectification system by estimating the perspective dis-
tortions existing in the images according to the plane outlines drawn by the users.
Although it is a weak approach whose accuracy depends on the accuracy of the out-
lines, we implement a corner detector to help the user through the drawing process.
Moreover, we noticed that small shifts/errors on the estimated angles do not cause big
changes in the resulting texture composites. Thus, we decided to move on with the
estimated plane angles instead of making use of predefined camera parameters which

inserts a qualified user into the loop.

Creating The Optimal Texture Composite: We have seen that by using graph
cut optimization we get rid of most of the refinement steps, especially for the cases
where we have lots of candidate images. Thus, in most cases graph cut optimization
provides us the proper texture composites to go over or employ some refinements. The
main criteria focused on this work was the color consistency of the candidates and the
preference of frontal views. However, for specific purposes, one can add many other
criteria like luminance or contrast. Color consistency criterion helps removing most of
the occluders automatically unless the occluder contains very similar colors with the

plane it has occluded. Thus, this kind of problematic occluders are handled with user
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intervention using the exclude tool.

Texture Refinement: The main technique we used in texture refinement phase is
gradient domain fusion which is used in Poisson image editing. By applying the idea
of seamless cloning in texture mapping we created a tool called smart blend to employ
seamless cloning for each fragment of the texture composites provided by graph cut

optimization.

There are also assistant tools like the substitute tool that enables the user to use
a texture for more than one plane or the flip tool which is also helpful in texturing
symmetrical surfaces. There is also an exclude tool defined to remove undesired surfaces

(generally occluders) from a texture composite.

All these refinement tools help users to develop a better texture composite if
they are not satisfied with the results of graph cut texture composites. The number of
refinement tools provided can be increased by including other traditional tools like clone
brushing or color averaging. However, although these tools enhance the capabilities
of users, they also increases the texture mapping times by increasing the level of user

Interaction.

5.1. Remarks and Future Directions

In this thesis, we mainly focused on texture mapping of a given 3D model. Ob-
viously, texture mapping is important while creating photorealistic and detailed 3D
models. It is also necessary to have specific information about the targeted object like
cultural heritage. Therefore texture mapping constitutes an important role in the 3D
reconstruction problem and the whole system proposed here can also be considered as

a module of a bigger 3D reconstruction system.

Acquiring photorealistic 3D models of real world objects is a growing application
area and becoming target of increasing interest. Thus, researchers gradually integrate

traditional image processing methods into this area by modifying the algorithms ac-
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cording to the needs of 3D reconstruction. Therefore, considering this thesis, there are

still some open questions which can be subjects of further research.

One issue is that using a semi-automatic system, texture synthesis approaches can
be applied to texture some parts which are invisible in all the dataset images used. [49]

proposes such an approach to texture map invisible areas.

Although graph cut optimization provides seamless textures by including color
penalties, preserving global illumination through the entire 3D model is another task
that can be helpful to provide better results especially for the photographs taken in
different times of the day. This problem also arises another issue which is about the
ease of access. After the texture mapping process is completed, all relevant parts of
the original images can be packed into one single large texture image to provide easier

handling for global modifications.

The proposed approach is presented with a detailed texture mapping application
which provides all algorithms as simple tools to let ordinary users with no professional
experience to handle the entire texture mapping process. Transforming this appli-
cation into a 3D editing tool and integrating into a 3D reconstruction system may
also be stated as a future work. Thus such a complete system, with provided camera

parameters, will increase the quality of results reached in this thesis.
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