T.C.
MARMARA UNIVERSITY
INSTITUTE FOR GRADUATE STUDIES IN

PURE AND APPLIED SCIENCES

A HETEROGENEOUS MULTI AGENT INTELLIGENT
PLAYER FOR A REAL-TIME STRATEGY GAME

Mehmet Cihan KURT

THESIS
FOR THE DEGREE OF MASTER OF SCIENCE IN

COMPUTER ENGINEERING PROGRAMME

SUPERVISOR

Assoc. Prof. M. Borahan TUMER

ISTANBUL 2010

T.C.
MARMARA UNIVERSITY
INSTITUTE FOR GRADUATE STUDIES IN

PURE AND APPLIED SCIENCES

A HETEROGENEOUS MULTI AGENT INTELLIGENT
PLAYER FOR A REAL-TIME STRATEGY GAME

Mehmet Cihan KURT

(141100320060097)

THESIS

FOR THE DEGREE OF MASTER OF SCIENCE IN

COMPUTER ENGINEERING PROGRAMME

SUPERVISOR

Assoc. Prof. M. Borahan TUMER

ISTANBUL 2010

ACKNOWLEDGEMENT

I want to thank my family and my friends for their endless support and especially Borahan

Tilimer for his guidance and patience.

TABLE OF CONTENTS

ACKNOWLEDGEMENT i
OZET...uuevveinrrnnenneccnnes iv
ABSTRACTcooverrueerurcnrseecnnee v
LIST OF SYMBOLSuuiiiiiticiininsnicenssisssisssssesssissssssess vi
ABBREVIATIONS ...ccutiiiiiiisuicstnnissnisssnssnsssissssssessssssssssessssssssssessssssssssssssssssssssssssssssss vii
LIST OF FIGURES oo Viii
CHAPTER L........coveevurcrurcuennnce. 1
CHAPTER IL ...ccuuiniiniiriieisensnicssisesssesssssssssssssssssssssesssssssssssssssssssssssssssssssssssasssssssssssssns 6
RELATED WORKoooiiiiiieteeseee ettt sttt et e s enaeenaessaensesnnens 6
II.1 REINFORCEMENT LEARNING AND MARKOV DECISION PROCESSES
(IMIDIPS) .ttt et b et ettt et at e bt et et e bt et e st e e ne et entenneen 8
I1.2 SEMI-MARKOYV DECISION PROCESSESoooiiiiieeeeeeeeeeeee 11
I1.3 FUNCTION APPROXIMATION ..ottt ettt 13
CHAPTER IILuuooueiiinininnninrnnsnssanssssssssssssssssssssssssssssssasssssssssssssssssssssasssssssssssssssssssssass 15
II1.1 MODEL OF THE GAME ..ottt 16
TIL 1.1 F@ATULES ettt ettt ettt ettt e et eeenaree s 17
ITL T.2 ACHIONS ..ttt ettt ettt eat e bt e st e et eeeaaeenbeesnaeeneeas 19
TTI. 1.3 OPtIONS ...ttt sttt st ettt st et sbe e 21
LT LEARNINGcoittiieitent ettt sttt st et 23
I T.T REWATAS .ottt st e 24
[II.2 HETEROGENEOUS AGENT MODEL......cccccociiiiiiiniiiiinieneeceeeeeeeeee 26
CHAPTER IV..uuiiiiitinnicinnennnicnisnissccssissssssisssisssssssssssssssssssssesssssssesssssssssassssssassans 28
IV.1 RESOURCE COLLECTION PROBLEMccceiiiiiiieiieieeeeee e 28
IV.2 STRATEGIC COMBAT PROBLEM......ccciiiiiiiiiiieeeeeeeee e 31
IV.3 Dynamic FEAtUIES.......ccccuiieiiiieiiieeiee ettt ettt e e 33
IV.4 Feature Selection and Dynamic Featuresccccvveeeiiencieincieccie e 36
IV.5 RESOURCE PLANNING PROBLEM........ccciiiiiiiieieieceeeeee e 41

i

CHAPTER V. ...rernrrcnnennecnnes
CURRICULUM VITAE

il

OZET

GERCEK ZAMANLI STRATEJI OYUNU iCIN
HETEROJEN COKLU ETMENLER KULLANAN AKILLI
OYUNCU

Gergek Zamanli Strateji oyunlari, karsilikli miicadeleye dayanan, ¢esitli kaynaklar etkili
kullanarak harita tizerine stratejik bolgeleri kontrol altina almalari ve g¢esitli manevralar ile
karsisindaki tarafin birim ve yapilarin1 yok ederek kazanmaya calismasina dayanan bir oyun
tirtidiir. Satrang ve GO gibi miicadeleye dayali oyunlardan farki, gercek zamanl ilerliyor
olusudur; oyuncular hamle yapmak igin birbirlerinin hamlelerini beklemezler. Oyunun
gercek zamanl yapisindan dolayi, karmasikligi karsilastirilabilir diger miicadeleye dayali
oyunlara gore ¢ok daha fazladir. Son yillarda yapay zeka alaninda gergek zamanli strateji
oyunlarma ilgi olduk¢a artmistir. Bunun belli bagli nedenlerinden biri, oyunun durum
uzaymin biiylikliigidiir. Bu tiir bir oyun i¢in verimli bir oyuncunun tasarlanmasi ve
gelistirilmesi, durum uzaymin biyiikliigiinden dolayr verimlilik agisindan problemler
yaratmaktadir. Bu ¢aligma, biiyiikk durum uzayr problemine karsi pekistirmeli 6grenme
cercevesinde bir ¢oziim tliretmektedir. Bu ¢6ziimiin en onemli katkisi, zamana yayilmis
aksiyonlar, dogrusal islev yaklasiklamalar1 ve Yari-Markov Karar Verme Siiregleri (SMDP)
calisma alanlarii kullanarak durum uzayinin genisligini kabul edilebilir bir seviyeye
diisiirmesidir. Duruma dayali karakteristik sablonlar, birime gore 6zellestirilmis aksiyon ve
opsiyon sablonlar1 birim bazindaki durum uzaymin boyutunu kiigiiltiirken, heterojen ¢oklu
etmen kullanimi 6grenmede ayrigtirmayr ve bu sayede farkli stratejilerin durum uzayim
biiytitmeden ve daha izole bi¢imde 6grenilmesini miimkiin kilmaktadir. Bu ¢alisma, genel
olarak hesaplanabilirlik siirlarimin disina ¢ikan bir 6grenme problemini kabul edilebilir

verimlilikle gergeklestirmektedir.

Haziran, 2010 Mehmet Cihan KURT

v

ABSTRACT

A HETEROGENEOUS MULTI- AGENT INTELLIGENT
PLAYER FOR A REAL-TIME STRATEGY GAME

A Real-time Strategy (RTS) game is an adversarial game where the participants
position and maneuver units and structures under their control to secure areas of the map
and/or win by destroying their opponents’ units and structures. It is possible to train new
units and build new structures during the course of a game with limited amount of resources
present in the setting. As opposed to comparable turn-based adversarial games such as chess
and go, opponents do not wait for each others’ moves so the game progresses naturally with
units interacting each other in real time. As a result of the real-time nature of the game, the
complexity of the game dramatically increases. In recent years, there has been an increasing
interest in RTS games in the artificial intelligence community, especially from the
perspective of reinforcement learning, to create an agent to play the RTS game, due to the
problem’s large state-action space. Modeling and implementing an efficient learning agent
that is able to cope with the large state space is a difficult task. This work offers a solution to
the problem of large state space in reinforcement learning problems, especially in the
complex domain of adversarial real-time strategy games with heterogeneous effectors by
using feature based linear function approximation combined with temporally abstract
options introduced with the semi-Markov decision processes (SMDP) framework. Context
based feature templates and reduced action sets per effector type in a heterogeneous
environment greatly reduce the complexity of the learning problem while increasing the
efficiency of the convergence of the learning algorithm. This work accomplishes to solve an

otherwise intractable problem with an acceptable efficiency.

June, 2010 Mehmet Cihan KURT

LIST OF SYMBOLS

0 : Feature vector

® : Feature space

n : Discount factor

S : State (set of states)

A : Action (set of actions)

O : Options (set of options)

Q : Q-Value (value function of actions)
Q : Average Q-Value

71: : Policy

vi

ABBREVIATIONS

RL

MDP

SMDP

TD Learning

LFA

: Reinforcement Learning

: Markov Decision Processes

: Semi Markov Decision Processes
: Temporal Difference Learning

: Linear Function Approximation

Vil

LIST OF FIGURES

PAGE NUMBER
Figure I-1 - Game INSLANCEooueeiiriiiieiiciesieeee et 3
Figure II-2 Monte Carlo Algorithm (Sutton & Barto, 1998)ccccoevieviiiiieiiieieieee, 9
Figure II-3 SARSA on-Policy TD Control (Sutton & Barto, 1998)cccceivvvniennnnnn 10
Figure [I-4 Q-Learning off-Policy TD Control (Sutton & Barto, 1998).......cc.ccceeeennne 10
Figure II-5 MDP, SMDP, Options over MDP (copied from (Sutton et al., 1999)) 11
Figure II-6 Action and time models in MDP and SMDP............ccccooiniiininiiniiniiiene 12
Figure III-1 RTS Reinforcement Learning Modelcccoceviiiiniiniininiiniiicnicnee 16
Figure III-2 Marine Units Taking Concurrent Option Decisions..........cccccecvereevueneennnenne 26
Figure I1I-3 Hierarchy of options and actions...........ceceveeverienienienienieneeiescee e 27
Figure IV-1 Q-Learning with LFA vs. Flat Q-Learning..........ccccccceeveviienenneniencnniennene 29
Figure IV-2 Q-Learning with LFA - Single Feature, Q-Learning with LFA - Two
Features vs. Flat Q-Learning..........ccccoeveviiiiiiiiniiiiiienecicnteseeeetee et 30
Figure IV-3 Comparison of different number of initial marine unitscccccceceeneene 32
Figure IV-4 - Static vs. Dynamic Features (5 vS. 5 Marines).......cccccceeveevveeieenieniieennenns 34
Figure V-5 - Static vs. Dynamic Features (100 vs. 100 marines)........ccccceceeveervereennennee 34
Figure IV-6 - ART2a ClasSes (5 VS. 5) cueeeriiirieeiieiie ettt ettt ettt 35
Figure IV-7 - ART2a Classes (20 VS. 20) ..eovuieeiieiieeiieiie ettt 36
Figure IV-8 - ART2a Classes (100 vS. 100) ...ccccveieiiiieiiieeieeeieeeeeeeee e 36
Figure IV-9 - F1 VS, F2 oo 38
Figure IV-10 - F1 VS, F3 oottt 38
Figure IV-11 - F1 VS F4 Lot 39
Figure IV-12 - F1 VS F5 oot 39
Figure IV-13 - F1 + F2 vs. F1 + F2 4+ F3 . 40
Figure IV-14 - F1 + F2 + F3 vS. F1 + F2 + F3 + F4 oo, 40
Figure IV-15-F1 + F2 + F3 + F4 vs. F1 + F2 + F3 + F4+ F5 .o 41
Figure IV-16 - Resource Planning - Multi Agent vs. Single Agent...........ccceevevveenneenns 43

viii

file:///C:/Users/cihan.kurt.INVEONHQ/Documents/My%20Dropbox/Thesis/Draft/Tez_Final_07102010.docx%23_Toc274253348

LIST OF TABLES

PAGE NUMBER

Table ITI-1 FEAtUIES......ccuiiiiiiiieiieeieee ettt ettt 18
Table IT1-2 Action-Unit MatriXcccueerieiiiieniieeieesiee ettt 20
TabIe IT1-3 OPLIONS. ..c.uiiiiieiiieeiieiieeteerte ettt et et e ete et e esbeesareesbeesseeesseessseenseensseanseennns 21
Table IT1-4 Option-Unit MAtIIX......cccierieeiiienieeiienieeieeneeeieesereereesieeeseesseeeseesseeenneennns 22

X

CHAPTER L.

INTRODUCTION

The ability to learn to act rationally (Russell & Norvig, 2003) is one of the oldest
challenges of the field of artificial intelligence (Al). How humans are able to learn to act
rationally is also an important question for other sciences and fields such as philosophy,
psychology and neuroscience. Designing and implementing an agent that is able to form
abstractions and learn a specific task to execute it efficiently has attracted a lot of
researchers in various different fields. There has been enormous progress both in
theoretical studies and domain applications for agents that are able to learn. Applications
include cleaning robots that are able to discover their surroundings, sweep the whole
floor then go to the docking station to recharge (Russell & Norvig, 2003) or computer
agents that are able to beat human world champions in chess (Hsu, 2002) or
backgammon (Tesauro, 1995). IBM’s Deep Blue Computer attracted a lot of media
coverage and public interest when it managed to beat world chess champion Kasparov in
1997. Gerald Tesauro’s backgammon playing system TD-Gammon that utilizes
sophisticated reinforcement learning (RL) and neural network (NN) techniques is

considered to be playing backgammon at world class.

In recent years, there has been an increasing interest in Real-time Strategy (RTS)
games in the Al community, especially from the perspective of RL, due to large state
space, large action space and delayed rewards (Russel et al., 2005). A RTS game is an
adversarial game where the participants position and maneuver units and structures
under their control to secure areas of the map and/or win by destroying their opponents’
units and structures. It is possible to train new units and build new structures during the
course of a game with limited amount of resources in the environment. As opposed to
comparable turn-based adversarial games such as chess and backgammon, opponents do

not wait for each others’ moves so the game proceeds naturally with units interacting

1

with each other in real time. RTS is an attractive domain to work with RL because it
provides a challenging environment for the construction of stable and fast learning
mechanisms in response to extremely large state-action space, multiple effectors, both
friendly and adversarial, noise and sometimes non-stationarity existing in the

environment.

In this work, we used a simplified RTS with only two types of units: workers and
marines. Workers gather minerals from mineral patches, and minerals are consumed to
train more workers or marines. Marines are able to combat. Each player has a single
base, training of workers or marines are carried out in the base. The goal is to destroy all
opponents’ units, including the base. The opponent plays with a fixed strategy. The
domain is continuous. At each step, the action taken by the learning agent is the
composition of all actions taken by the base, workers and marines, so the dimensionality
of the action space can increase or decrease over time. Reward is based on the outcome
of the game. In the case of a tie, scores are assigned based on the relative

accomplishments of both players.

In Figure I-1 - Game Instance an instance of a RTS game is shown. Enemy units
are shown in gray. Workerl is navigating to the Mineral Patch to collect resources,
while Worker2 is returning to the base with the mineral patch it collected. Marinel and

Marine2 are attacking Marine3.

Mineral
Patch
Base1 Worker1
Baze?

Figure I-1 - Game Instance

There have been some attempts to apply reinforcement learning to RTS games.
Ponsen (Ponsen et al., 2006) used a modified version of Hierarchical Semi-Markov Q-
Learning (HSMQ), based on MAXQ Value Function Decomposition algorithm
(Dietterich, 2000), to show that hierarchical learning helps in a simple task. Madeira
used bootstrap learning, with levels of abstraction, to learn parameters one level at a
time while using a fixed policy at other levels (Madeira et al., 2004). Ponsen used
abstract representations of states and utilized dynamic scripting (Spronck et al., 2006) to
update the values of each agent's policy (Ponsen et al., 2006). Sharma used transfer
learning to learn in a hybrid of case-based reasoning and RL (Sharma et al., 2007). Some
of the works attack the problem by applying a relational model of the effectors to
address large-state-space problem by reducing the interaction maps of the effectors
(Guestrin & Gearhart, 2003). Other works utilize temporally abstract options (SMDPs)
to solve the delayed reward problem and the large-state-space problem (Parr, 1998)
(Russel et al., 2005) (Dietterich, 2000). Dietterich has worked on automatic discovery of
hierarchies to remove the engineering effort of designing the hierarchy (Dietterich,
2008). There have also been attempts to apply dynamic scripting by using genetic
algorithms to generate playing strategies from hard-coded scripts (Sharma et al., 2007)
(Madeira et al., 2004). Ghavamzadeh used an average reward scheme instead of
discounted reward using hierarchical and recursive policies, in contrary to the general
flat policy representations that are usually paired with average reward optimality

criterion (Ghavamzadeh & Mahadevan, 2007).

In this work, we aim to offer a solution to the problem of large state space, large
action space and delayed rewards in RL problems, especially in the complex domain of
adversarial RTS games. The main contributions of our approach are two-fold 1) using a
multi-agent structure to model a learning agent with customized action sets and feature
templates to reduce the state-space, and 2) constructing a dynamic feature template
structure that adapts to the environment and can scale well. We have used effector based
feature templates and reduced action sets per effector in a heterogeneous environment to
greatly reduce the state-space and action-space of the learning problem while increasing
the efficiency. Context based feature templates and reduced action sets per effector type

in a heterogeneous environment greatly reduce the state space and action space of the

4

learning problem while increasing the efficiency. In the resource collection experiment,
we focused on feature based linear approximation to show that it reduces the state-space
for faster convergence. In the strategic combat experiment, we showed that SMDP
framework with options helps in building a simpler, intuitive and hierarchical game
model that increases convergence speed by reducing the state-space and enables fair
distribution of the delayed rewards. In our game model, effectors are assigned individual
tasks so that they are only responsible for the outcome of their own tasks, rewarded by
how well they performed and how quickly they execute their tasks. In this experiment
we also compared static and dynamic features and showed that it is possible to create
agents that can adapt to changing environmental conditions by using dynamic features.
In the resource planning experiment, a multi-agent model with hierarchical SMDP
structure is constructed. The multi-agent consists of two heterogeneous agents that are
specialized in different areas, first agent is the base agent, second is the marine agent. In
this experiment we show that separation of agents to form a multi-agent structure lead to

better results in convergence and learning.

The rest of this thesis is organized as follows: Chapter II starts with the literature
survey about RL applications in the RTS domain. General RL algorithms and their
extensions on generalization and temporal abstraction methods, LFA and features are
discussed. In Chapter III, learning algorithm is introduced with the model, state
representation, actions and rewards. Chapter IV describes experiments and their results
ending with discussions. Chapter V concludes the thesis and mentions possible future

work.

CHAPTERII.

RELATED WORK

In recent years, there has been an increasing interest in the RTS game domain in
RL community. Relational Markov decision processes (RMDPs) (Guestrin & Gearhart,
2003) have been utilized to model the game using interaction maps and relationships of
the effectors in the system. These interaction rules and relationships are predefined in
the system and they are manually derived and engineered from the general rule set of the
game, where pairwise interactions of effectors are described. For example, a worker unit
in the domain can only interact with the resources in the environment or with the base. It
is not possible to interact with other workers or marines. This kind of relationships
simplifies the model of the game and thus limits the state space. In our work, we kept
our model simpler by eliminating the need for engineering and fine-tuning of these
relationships. Hierarchical abstract machines (HAMs) (Parr, 1998) are used to introduce
hierarchy in the system via SMDPs, to model the game, since hierarchy naturally exists
in the game. This hierarchical abstraction leads to reduced state space. In this work we
also take advantage of natural hierarchy inherent in the game by using temporally
abstract actions, but in contrary to Russel's work, we let the agents do the learning on the
SMDP level and the basic actions on the MDP level are hard-wired, where the hard-
wired solutions are optimal policies that the agents have learned to follow by some prior
learning process. Russel further improved the performance of his work (Russel et al.,
2005) by using ALisp programming language that allows concurrent execution of the
tasks in the system so as to optimize learning. There is a natural concurrency in the game
since there are multiple effectors, in our model, we allowed multiple effectors to decide
at the same time by modeling the real-time aspect of the game in a discrete time step

flow, to enable concurrent and thus faster learning.

Our work differentiates itself from other recent works by implementing a more
complicated game scenario and higher number of active concurrent effectors in the
game. In his work, Russel used a game scenario with up to 20 effectors concurrent in the
game with static feature sets (Russel et al., 2005). In our work we have a game scenario
with up to 200 effectors active in the game with dynamic features. Our agent can adapt

to changing environmental settings.

1.1 REINFORCEMENT LEARNING AND MARKOV DECISION
PROCESSES (MDPs)

In the standard RL model, (Sutton & Barto, 1998) an agent is connected to its
environment via observations and actions. On each step of interaction the agent observes
its environment and gets some indication, o, of the current state, s; the agent then takes
an action, a, to generate an output. The action changes the state of the environment, and
the environmental evaluation of this state transition is communicated to the agent
through a reinforcement signal, ». The agent starts to more frequently take actions that
tend to increase the long-run sum of values of the reinforcement signal. It can learn to do

this over time by systematic trial and error, guided by a wide variety of algorithms.

In the RL framework, the agent makes its decisions as a function of the
environment's states. What we would like, ideally, is a state signal that summarizes past
observations in a compact form in such a way that all relevant information is retained. A
state signal that succeeds in summarizing all relevant information is said to be Markov,
or to have the Markov property and a discrete parameter stochastic process (s(z);
t=0,1,2....) 1s said to be a Markov decision process (MDP) if, for any set of points, the
current state s, depends only on s,; (Eugene & Shwartz, 2001). This obviously should
depend on more than the immediate observations, however in some cases the same
observations may refer to different state representations based on the past observations.
While this situation does not violate the Markov property, it changes its degree i.e. first,

second or varying order Markov process.

There are basically two types of RL algorithms: model based and model free
(Kaelbing et al., 1996). In model-based case the transition probabilities among states are
known or can be constructed using a constructive automaton. However when the model
of the environment is not known or hard to build, model-free algorithms are preferred.
The most commonly used model-free RL algorithms that we also used in this thesis are
Monte Carlo and Temporal Difference (TD) prediction algorithms i.e. SARSA and Q-
Learning (Sutton & Barto, 1998).

Monte Carlo methods are ways of solving the reinforcement learning problems
based on averaging sample returns Figure II-1. To ensure that well-defined returns are

8

available, Monte Carlo methods are defined only for episodic tasks. That is, we assume
experience is divided into episodes, and that all episodes eventually terminate no matter
what actions are selected. It is only upon the completion of an episode that value

estimates and policies are changed.

Repeat forever:
1. Choose an arbitrary policy & (e.g. e-greedy)
2. Generate an episode using
3. For each pair s,a in the episode
a. Observe reward R
b. Update O(s,a) using average of R
4. For each s in the episode
a. a*=argmax, 0(s,a)
b. Update the n
Figure II-1 Monte Carlo Algorithm (Sutton & Barto, 1998)

TD methods on the other hand do not wait for the completion of an episode. Every
time a non-terminal state (s,) is visited the value of the state (V(s,)) is updated based on
the reward signal received. We can update the values of the states by following an on-
policy or an off-policy algorithm. SARSA (Sutton & Barto, 1998) which uses an on-
policy update follows a policy, m and updates the state-action values of the same policy

as illustrated in Figure II-2.

Repeat forever:
1. Choose a arbitrary policy © (e.g. e-greedy)
2. Choose a from s using ©
3. Repeat for each episode
a. Take action a observe 7, s’
b. Choose a' from s’ using ©
c. Update O(s,a) using r
O(s.a) = O(s,a)+a[r+yQ(s’.a’)-0(s,a)]
d. s=s’;a=a’
4. Until s is terminal

Figure II-2 SARSA on-Policy TD Control (Sutton & Barto, 1998)

Q-Learning (Sutton & Barto, 1998), on the other hand, is an off-policy TD control
method which means it updates the values of the actions of a policy for learning, while it

follows another policy in action selection. Q-Learning algorithm is shown in Figure II-3.

Repeat forever:
1. Initialize Q(s,a) arbitrarily
2. Choose an arbitrary behavior policy 7 (e.g. e-greedy)
3. Repeat for each episode
a. Choose a from s using &
b. Take action a observe r, s’
c. Update O(s,a) using r
Os.a) = O(s,a)+a[r+tymax Q(s’,a’)-0(s,a)]
d. s=s’

4. Until s is terminal

Figure II-3 Q-Learning off-Policy TD Control (Sutton & Barto, 1998)

10

I1.2 SEMI-MARKOYV DECISION PROCESSES

The action, in MDPs, that is taken at time ¢ only affects the observations and
reward at time ¢+/. There is no notion of a course of action extended in time. Therefore,
in a MDP the state representation has to cover all possible relations and it does not let
the system designer implement a temporal abstraction. However temporal abstraction

can be added to an MDP framework by extending it to SMDPs.

SMDP is the minimum extension to the RL framework (Bradtke & Duff, 1994).
SMDPs are a special kind of MDP modeled for continuous time discrete event systems.
In an SMDP an action taken at time ¢ does not have to be evaluated by the main system
at t+1. Temporal abstraction provides system designers with evaluation of the action at a
different time scale without intervening it at the main framework. Therefore in an SMDP
one can use temporarily extended course of actions instead of primitive action selection-
evaluation method. Figure 1I-4 shows the relationship of actions and options in MDP,

SMDP and Options over MDP.

Time ——

MDP "'/L_\//%\vf* IState

SMDP o~ P _
\/ \kﬁ/

i NS N

&

Figure 1I-4 MDP, SMDP, Options over MDP (copied from (Sutton et al., 1999))

11

Sutton called this temporarily extended course of actions as options as illustrated
in Figure II-5 and re-designed them by allowing intra-option modeling (Sutton et al.,
1999). In SMDP options are accepted as an indivisible deterministic sequence of actions.
There is no attempt in SMDP theory to look inside the temporally extended actions, to
examine or modify their structure in terms of lower-level actions. However one can
learn and optimize inside of options by modeling and giving appropriate reward signals

to lower level actions at different time scales.

=0

Action

t=0

Time Scale of SMDP and Options

Figure II-5 Action and time models in MDP and SMDP

In the SMDP framework, Q-Value for the option state pairs follows directly from

the MDP case as can be seen in the formula, options replacing actions:

Q(s,0) = O(s,0)+a[rtymax O(s’,0)-0(s,0)] (II-1)

SMDPs have been extensively used in RL research especially in modeling RL
problems with temporally abstract options and hierarchical abstractions to reduce state-
space and solve the delayed reward problem (Parr, 1998) (Russel et al., 2005)
(Dietterich, 2000) (Guestrin & Gearhart, 2003).

12

I1.3 FUNCTION APPROXIMATION

Finding a solution to an MDP problem in RL framework requires functional
mappings such as value functions, Q-functions, and policies. While these functions are
simply represented by lookup tables which are easy to operate on, this simple
representation scheme is only limited to applications with a small state-action space. In
real world problems such as a RTS game or continuous time/ continuous state Markov
processes, the extremely large number of state-action pairs leaves the most of the state-
action pairs not sufficiently experienced and hence requires a different way to represent
the functions (e.g. The values Q(s,a) of state-action pairs); so that the agent may
generalize from the instances sufficiently experienced to those not ever encountered.
The first and the most basic way of representing such functions is using a lookup table,
which is linear in the size of the domain in both memory and computational costs. The
computational complexity grows linearly with the state space or the cartesian product of

the state space and action space.

Linear dependency is infeasible for domains with large state spaces, such as a RTS

1
2 00 2500

game. Even our simplified RTS game has over states, it can reach up to states in
a regular RTS game. It can be the case that functions have a special structure allowing
them to be represented in a compact form. Function approximation helps in representing
the Q-Value of a state in a more compact form, this helps reducing the state space size
because the real world state is represented in a more compact form that is smaller in size
thus enabling efficiency.

The sort of generalization that we need to incorporate to our system is called
function approximation. In a Q-function learning algorithm, for example, the designer
might specify a set of Q-functions {Qy (s,a) | 0€®} where O represents a parameter
space in which the Q-function is expected to be approximated by a member of this set of
Q-functions. Most of the RL algorithms can work on the approximated representation
with the optimal member of ®. The tabular or lookup table representation is the simplest
way of approximating a function. There is a parameter 0, for each state s and action a,

and Oy (s, a) = 6,,. To generalize, we assume that certain state—action pairs have the

same Q-value, so we can construct a function ¢ from S X 4 to some feature space @, that

13

linearly maps these certain pairs to the same Q-value. In the end, we have a function
approximator with a parameter space consisting of all functions from ® to R, and Q-
value is calculated as Qy (s, @) = 8(¢ (s, a)). This is called the state-aggregated tabular
approximation (Sutton & Barto, 1998).

Function approximators basically lead to the generalization of states and actions. The
state-aggregated tabular approximation generalizes between state—action pairs meaning
that if they have to the same value in the feature-space, then they have to have the same
Q-value. A more flexible form of generalization is possible by linear approximation,
which can be summarized as a mapping ¢ : S x 4 — R™. Each component ¢n(s, a) is
called a feature, and ¢ (s, a) is called a feature-vector. The parameter space is then R™,

and the corresponding Q-functions can be represented as follows:

Qo (s, a)=0" (¢(s, a)) (11-2)

In the next chapter we will be explaining the general model of our agent, the
environment, the internal hierarchy and the general multi agent structure with details

about the feature, action and option structure.

14

CHAPTER III.

LEARNING

Our simplified RTS game environment consists of units interacting with each
other in the map in real time. Time is discrete, so a new action is taken by both of the
opponents at each time step and the actions take effect immediately at the same time.
The 2 dimensional coordinate system of the map is discrete so units move in discrete

steps and directions.

There are 3 types of units in the environment. Base is the headquarters, it is unable
to move. An opponent can only have a single base at the same time. Base is where the
training of new units and storage of the collected resources take place. Worker is the unit
that can move freely in the map and can gather resources from mineral patches. Marine
is the only unit that is armored with fire power. It can fire at and kill other units, as it is

able to move freely in the map.

15

III.1 MODEL OF THE GAME

A real-time strategy game is an adversarial game where players try to beat each
other within a real-time environment by generating intelligent or hard-coded strategies.
Our simplified realtime environment consists of base, worker, marine units and mineral
patches. Bases are headquarters for the players, workers collect mineral patch that can be
used to train other workers or marines. Workers do not have any weapon. Marines are
military units that are able to attack and fire. Mineral patches are static locations in the
map with limited amount of resources and these resources can be collected by any
player. The map is limited to a rectangular area and coordinates are discrete. The game
progresses in discrete time intervals, both players take decisions in every interval and it
is applied immediately in the next time interval so there is no induced advantage. When
all the units of a player are destroyed or maximum allowed time for an episode is
reached the episode ends. In Figure III-1 RTS Reinforcement Learning Model our
learning model is shown where the agent observes the state of the environment, then
take actions and after that, the environment rewards the agent. Our RL model focuses on
modeling the state of the environment which the agent observes. Agent consists of
multiple agents consisting of base, marine and worker agent. There is a two level
hierarchy, in the MDP level actions are learned, in the SMDP level options are learned.
Actions in the MDP level are single time step actions, to keep our model simple and to
focus on the SMDP aspect of the game, policy at the MDP level is hard-wired. LFA,

static features and dynamic features are utilized for better performance.

Limear Function
Approximation Agent

Easg
| Static Features] \-age-_nl‘
servation MOPE sMDP Marine
Dynamic Features »
Workiar
ARTZR

renvard
|

slale Environment —

Figure III-1 RTS Reinforcement Learning Model

16

I11.1.1 Features

In function approximation, it is a challenging task to come up with a sound
compact representation of the world state that is both simple enough to be efficiently
calculated and complex enough to give a good all around representation of. Features are
usually constructed with specific domain knowledge, so an expertise in the domain is

preferred for good results.

In his work, Ponsen uses the same RTS domain as we use in this work, in a
relatively simple task (Ponsen et al., 2006). A worker tries to navigate to a resource to
collect it, while avoiding an enemy marine that can kill it. Ponsen uses 4 features for a
compact representation of the world. Distance(enemy,s), Distance(goal,s),
DirectionTo(enemy,s) and DirectionTo (goal,s). The function Distance returns a number
between 1 and 8 or a string indicating that the object is more than 8 steps away in state s,
while DirectionTo returns the relative direction to a given object in state s. Using 8
possible values for the DirectionTo function, namely the eight directions available on a

compass rose, and 9 possible values for the Distance function.

In our work, we utilized several features to be able to capture a sound and compact
representation. In order to reduce the state space, states related to objects outside of the
visibility range of a marine or a worker are considered as irrelevant and not taken into
account. For the sake of simplicity, all our features are one dimensional binary vector. In
Table III-1, all features present in the feature space are listed. In our literature survey we
did not come by a work that used the feature set we have utilized in our work. Most of
the works used features using distance, angle for modeling the relationship of the

effectors.

17

Feature name

Value

1
f 0 Enemies

1 if 0 enemy units are in visible range, 0 otherwise

'l
f 1 to 3 Enemies

1 if 1 to 3 enemy unit is in visible range, 0 otherwise

|
f 4 to 7 Enemies

1 if 4 to 7 enemy units are in visible range, 0 otherwise

I
f 8 to 12 Enemies

1 if 8 to 12 enemy units are in visible range, 0 otherwise

I
f 13 to 18 Enemies

1 if 13 to 18 enemy units are in visible range, 0 otherwise

fl
19 to 25 Enemies

1 if 19 to 25 enemy units are in visible range, 0 otherwise

f26 or more Enemies

1 if 26 or more enemy units are in visible range, 0

otherwise

fO Friends

1 if O friendly units are in visible range, 0 otherwise

f] to 3 Friends

1 if 1 to 3 friendly unit is in visible range, 0 otherwise

f 4 to 7 Friends

1 if 4 to 7 friendly units are in visible range, 0 otherwise

f 8 to 12 Friends

1 if 8 to 12 friendly units are in visible range, 0 otherwise

f 13 to 18 Friends

1 if 13 to 18 friendly units are in visible range, 0 otherwise

f 19 to 25 Friends

1 if 19 to 25 friendly units are in visible range, 0 otherwise

f 26 or more Friends

1 if 26 or more friendly units are in visible range, 0

otherwise

F Am I Being Attacked

1 if the unit is under attack, 0 otherwise

fLow Health

1 if the unit health is below 50 percent, 0 otherwise

fF riend Under Attack

1 if a friendly unit in visible range is under attack 0

otherwise

f 0 Workers

1 if agent has 0 workers, 0 otherwise

f 1 to 3 Workers

1 if agent has 1 worker, 0 otherwise

f 4 to 7 Workers

1 if agent has 2 workers, 0 otherwise

f 8 to 12 Workers

1 if agent has 3 workers, 0 otherwise

f 13 to 18 Workers

1 if agent has 4 workers, 0 otherwise

f 19 to 25 Workers

1 if agent has 5 workers, 0 otherwise

f 26 or more Workers

1 if agent has 6 or more workers, 0 otherwise

Table I1I-1 Features

18

I11.1.2 Actions

In a RL problem, the main objective is to optimize action decisions over the state
space. In our simplified RTS game domain, there are 3 kinds of units that have different
action spaces. For example, while a marine is able to execute “attack’ action over other
units, base and workers do not have this action in their action spaces. While some of the
units share common actions, separation of action spaces per unit leads to a reduced
action space. The only action that is shared among all unit types is the Noop (No

operation) action.

Base is distinctively different from other 2 unit types. Base cannot move. It can

train new units as necessary, a new marine or a new worker unit.

Worker can only move in 4 different directions, up, down, left and right. It is able
to pick resources from the mineral patch and drop resources at the base, but for the sake
of simplicity, the pick-up and drop actions are removed from the action space. When the
worker is at a mineral patch, it automatically does the pick-up action, and when it is at a

base, it does the drop action.

Marine is able to move and attack other units. It is the main fighting unit that is
able to destroy enemy units. Its action space consists of 4 different directions, up, down,
left, right and an attack action that targets another unit. If the marine executes the attack

action, health of the targeted unit decreases.

19

In Table III-2, units and the actions that they can take are listed.

Action \ Unit Base Worker Marine

Move Up - + +

Move Right -

Move Down -

+
+
+

Move Left -

Pick-up Resource -

+ o+ | +H|

Drop Resource -

Train Worker + - -

Train Marine + - _

Attack - - +

Table I1I-2 Action-Unit Matrix

20

II1.1.3 Options

In the SMDP framework, options are defined as temporally abstract actions
(Sutton et al., 1999). In our model, options are tasks that usually take more than one
discrete time step to execute. Units execute these options by taking a sequence of actions
that span over time. For example a “navigate” task assigned to a worker to go from the
base unit to the mineral patch can only be executed by a sequence of actions up, right,
down and left. Base executes the “train worker” task by taking the train worker action
that takes 10 time steps. Marine executes the “attack™ task by taking the “attack™ action
on each time unit until the unit itself or the enemy unit it is attacking dies. A task can

take any amount of time step until it reaches the defined terminal state of the task.

Name

Definition

Terminal State

OEXPLORE

Take one of the up, right,
down, left actions
randomly

Unit is attacked or 5 time steps have
passed

OATTACK—CLOSEST—ENEMY

Pick closest enemy in
visible range and attack

Attacking unit or the enemy is dead

OATTACK—WEAKEST—ENEMY

Pick weakest enemy in
visible range and attack

Attacking unit or the enemy is dead

ONOOP

Do nothing

Single time step

OFLEE

Navigate to a point where
no enemy units are in
visible range

Unit is in a location where no enemy units
are in visible range or unit is dead

ONAVIGATE—TO—WEAKEST—FRIEND

Navigate to a friend that is
weakest in the visible
range.

Until destination point is reached or unit
is dead

ONAVIGATE-TO-CLOSEST-FRIEND

Navigate to a friend that is
closest in the visible range.

Unit destination point is reached or unit is
dead

ONAVIGATE

Navigate to a destination
point

Unit destination point is reached or unit is
dead

OTRAIN-WORKER

Train a worker

10 time steps have passed or unit is dead.

OTRAIN -MARINE

Train a marine

10 time steps have passed or unit is dead.

Table III-3 Options

Options are specifically constructed so as to enable the units to take strategic
decisions, for example O gg option is to flee from the enemy, so a unit can learn to flee
from an enemy unit if its health is below a threshold. Oatrack-cLosEST-ENEMY 1S an option
that picks the closest enemy unit in visible range and starts attacking it. Oarrack-
WEAKEST-ENEMY 1S an option that picks the weakest enemy unit in visible range and starts

21

attacking it. These two different options with minor differences can create great

differences in the outcome of the fight between a few marines. For example, ONaviGATE-

TO-CLOSEST-FRIEND Which enables a marine to immediately go to a friendly unit for help

can mean the difference between life and death for that friendly unit.

Option space is different per unit type, for example, while Ogxprorg 1s enabled for

workers and marines, base does not have this option since it is unable to move. It is

important to emphasize that options are strictly a sequence of actions so actions are their

only building blocks. In Table III-4, units and their options spaces are listed. In the

literature survey we conducted we did not come by option usage types such as ours in

the works related to RTS games.

Option \ Unit Base Worker Marine
OgxpLorE - + +
OATTACK-CLOSEST-ENEMY - - +
OATTACK-WEAKEST-ENEMY - - +
Onoor + + +
OrLee - + +
ONAVIGATE-TO-WEAKEST-FRIEND - - +
ONAVIGATE-TO-CLOSEST-FRIEND - - +
ONAVIGATE - + +
OTRAIN-WORKER + - -
OTRAIN-MARINE + - -

Table I1I-4 Option-Unit Matrix

22

III.1 LEARNING

In the RL framework, there are two variants of temporal difference (TD) learning
algorithms: Q-Learning and SARSA. It is possible to categorize learning algorithms as
on-policy algorithms and off-policy algorithms (Sutton & Barto, 1998). On-Policy
algorithms use the same policy to both select actions from and update their values, while
off-policy algorithms keep a policy for update and another policy to follow for action

selection.

There are different types of algorithms for computing the optimal policy based on
TD. Q-learning calculates an estimate Q of the optimal Q-function. For an observed

transition (s, a, 7, s°), it performs the update

Qo(s.a)«Qo(s a) +n(r +max,Q o(s’ a")-Q o (s, a) (11i-1)

There is an exploration vs. exploitation tradeoff related to reward maximization
(Sutton & Barto, 1998), defined by a parameter epsilon, the probability of random
action, instead of choosing the action that maximizes the Q value. This random
exploration is necessary so that the value is not stuck in a local minima (Sutton & Barto,
1998). It is possible to incorporate function approximation into TD algorithms. Let’s
assume that the Q-function is approximated as Op (s, @) where the parameter 6 is in R™.

Then the Q-update can be formulated as below where VQy (s, a) represents the delta:
0 <« 0 +n(r +max, Qg (s’, a’) - Qp (s, a)) VOy (s, a) (I11-2)
The case with the function approximation is that, instead of the Q-function, the
parameter vector is being updated and there is an extra gradient termt at the end.
Actually, parameter vector is what is being learnt. In this work we use linear function

approximation so the gradient term at the end simply reduces to a feature vector and the

resulting update formula can be summarized as

0 <0 +n(r +max, Qs (s, a) - Qo (s, a)) f (s,a) (I11-3)

23

where f is the feature vector. Then the Q-Value is calculated as

Oy (s, a)=Xk=1 Oifi(s.0) (II-4)

I11.1.1 Rewards

In most of the RL domains, reward is immediate. It is received from the
environment just after the action is taken so it is relatively easy to know which action
gives the best reward for a state; after all possible actions are taken for all states.
However, in the RTS game domain, the outcome of the game, that is the reward, is only
known at the end of the game, when either of the opponents is destroyed or maximum
number of steps allowed for an episode is reached. It is a rather challenging task to
distribute the reward taken at the end of the episode to the intermediate actions taken

during the episode.

In the SMDP framework, all reward accumulated by actions taken within the
temporal span of the option is the total reward for that option. Q-Value update is done at
the terminal state of the option. In our game model, there can be a single base for each
opponent while there is no limit to the number of marine or worker an agent can have at
any given state. This leads to concurrent options being executed by any number of
marines and workers. For example, a marine can make a decision to execute “attack”
option on an enemy unit at time ty, and at time ts this marine is dead. Total reward at the
end of that option is the total number of time steps times the -1 reward that is given per
time step for all units added by the -5 penalty for being killed at the end of an “attack”
option. Assume that this same decision was taken concurrently by 5 marines and some
of them are killed in the middle of the attack option and some of them survive by killing

enemy marines. All concurrent options accumulate their own rewards and a single

marine is updated at the end. The term f (s,a) at the end of the update function is
calculated as a difference of the feature vector at time t, and t, for that specific unit that

can be formulated as

24

f (s,a) =f o (5,a)- f ,O(S,a) (I11-5)

Q-Value update is done per unit option and f (s,a) that is used in this update is
calculated per unit by saving feature vector at the beginning of the option and at the end

of the option.

General rewarding rule in our model is; -1 penalty is given at each time step to all
units, it motivates the units to complete the option they are in as soon as possible.
Marines get a -5 penalty if they are killed in an attack and +5 reward if they survive an
attack option by killing the enemy marine. At the end of the game, a general reward is
received and it is distributed evenly to all units alive in the game. General reward that is

received at the end of the game is rg., . No reward is given if the agent loses the episode.

100 — (total time steps of the episode) if agent wins (I1I-6)

Pgen = § 0 if enemy wins
distribute(100 — total time steps of the episode) if draw

25

III.2 HETEROGENEOUS AGENT MODEL

We designed a heterogeneous multi-agent model that consists of two learning
agents that work in cooperation. In order to achieve better separation and abstraction, we
implemented two different agents that are functionally different, first one the base
learning agent that learns the general behavior of an intelligent base, and the second one
is the marine learning agent that learns how to fight enemy units in groups. There is a
third unit that could have been also modeled as a learning agent but worker agent’s task
is quite simple, a resource collection task that consists of navigation between two map
coordinates. Workers follow a fixed policy of resource collection task except in the first
experiment in the experiments section that represents a simple resource collection task
while avoiding an enemy unit. In Figure III-2, please notice that marines concurrently

taking decisions and return the accumulated rewards for the Q-Value update.

Marine Units Taking Concurrent Option Decisions

Marine Mavigate Terminal
Unity Option Stale

Marine Navigate
Unit; Optian

Terminal
State
Accumulated reward

Figure III-2 Marine Units Taking Concurrent Option Decisions

Accumulated reward

Marine ah
" 2rmina
Learning 2rmin
Agent Accumulated reward

Base and marine learning agents are not aware of each other and they do not

communicate explicitly, they just observe the portion of the real world state that they

26

need through feature vectors. As we have mentioned in the previous sections, base and
marines have different option and feature spaces. This specialization and separation of
agents, also include separation of rewards, so a base agent does not get rewards for a
successful marine agent that kills enemies, every agent is responsible for its specialized

task. In Figure III-3 hierarchy of options and actions are represented.

Agents — Options - Actions Hierarchy

o

\Age nt

Agents

Options

Train

Actions @

Figure III-3 Hierarchy of options and actions

27

CHAPTERV.

EXPERIMENTS AND RESULTS

We experimented with different problems ranging from simple resource collection
problem to more complicated war scenarios. The first experiment is a resource collection
problem of a worker with an enemy unit in the map that can kill the worker if it is in the
visible range. The second experiment is a strategic marine fighting problem where two
opponents fight each other with same number of marines. In the third experiment we

study the full war scenario with bases, resource collection and unit training.

IV.1 RESOURCE COLLECTION PROBLEM

Resource collection problem is about a worker trying to reach a specific point in
the map with resources, namely a mineral patch, while an enemy marine sits in the
middle of the map. Worker should be able to learn how to avoid the enemy marine unit

while reaching the mineral patch.

There are a few challenges in this problem. First, it is important to design a sound
and robust feature set for this specific problem. Second, finding a solution to the
problem that generalizes well for problems alike, for example what will happen if the
location of the enemy or the location of the mineral patch in the map changes? Using
features and linear approximation helps in reducing the state space while choosing a

good feature set might help in generalization.

In this problem, grid size is 10 by 10, with 100 distinct positions. Enemy is in the
middle of the grid, at position (5, 5). Worker starts at position (1, 1) and goal state is at

position (10, 10). The single feature that is used for linear approximation is the

28

Manhattan distance between the worker itself and the goal. Agent gets a -1 penalty for
each time step, reward is O for the goal state. A -10 penalty is given if the worker is in

the visible range of the enemy marine unit.

Distance feature reduces the state space from 100 to 10. In Figure IV-1,
performance of Linear Function Approximation (LFA) (II-2) and Flat Q-Learning (III-1)
is compared with number of episodes and the number of steps needed to satisfy the
termination conditions. It is obvious that LFA outperforms Flat Q-Learning in the time

required for convergence to the optimal policy.

C-Learning with LFAvs. Flat Q-Learning
1400 . . . : .

—&— Linear Function Approximation

+ _ .
1200} _. Flat O-Leaming |

1000

oo

=

o
L]

of steps

BO0

400

200

a 2 4 B 5] 10 12 14 16 18 20
of episodes

Figure IV-1 Q-Learning with LFA vs. Flat Q-Learning

In the previous experiment we only used a single distance feature for state
reduction. Now we will add another feature, Angle with the enemy marine unit, this will

give extra information to the worker so that it can avoid the enemy unit better.

29

C-Learning with LFA - Two Features, C-Leaming with LFA- Single Feature, Flat G-Learning

1""1":”:' T L L) T L] T L T T
+ —=— Single Feature
1200F —— Twno Features -
) — Flat G-Learning

1000

[un]

]

_
T

of steps

BOO |

400 |

200 F

#of episodes

Figure IV-2 Q-Learning with LFA - Single Feature, Q-Learning with LFA - Two Features vs. Flat Q-

Learning

In Figure IV-2 , comparison of the LFA with single feature with LFA with two features
and Flat Q-Learning can be seen. Two features easily surpass two other algorithms while
also converging to the optimum policy more consistently; notice the lower number of

spikes in the graph for LFA Two Features.

30

IV.2 STRATEGIC COMBAT PROBLEM

In the strategic combat problem, our main objective is to allow marine units to
learn how to take strategic decisions while fighting in groups against other enemy
marine groups. For example take a group of 4 marines confronting a group of 4 marines.
If they attack randomly to an enemy marine they choose, it would not be a wise choice
since the fire power will be distributed among enemy units and it will take much longer
to kill them. If they can somehow figure out to attack the same enemy marine all
together, which enemy marine should they choose? In this case, it would be wise to
attack the enemy marine with the weakest health level. Through sound and good feature
set selection, we are trying to enable marines act rationally in different conditions with
any number of friendly marines and enemy marine units in their visible range. Our

epsilon value is 0,01 and alpha value is 0,01.

In Table III-2, feature set for a marine is provided. In this list there are features
chosen to enable a compact representation of a number of friendly units and enemy units
in the visible range. In this problem, marine learning agent uses these features to be able
to take rational decisions in different situations and scenarios. In this experiment, we
used a 20 by 20 grid, one team starting at position (1, 1), enemy team starting at position
(20, 20). Opponents always start with the same number of marines so they fight under
the same circumstances. In the beginning, each marine is out of other marines' visibility
ranges so marines explore the map until they see an enemy unit. Enemy marines always
follow a fixed policy; explore the map randomly until they see an opponent unit, and
start attacking when it is in their visibility range. This policy seems like a
straightforward and simple policy but it is quite aggressive and effective in fact, note
that in our experiment result in Figure IV-3, the optimum policy never converges to 100
percent winning ratio, the enemy always has a 10 percent winning or not losing ratio. In
the literature, hard-coded advanced strategies developed by humans also state that
aggressive and simple algorithms are quite effective (Ying-zi & Ming-yang, 2003) (Lee
et al., 2008). Our agent can only fight against this fixed policy if it is able to employ
strategies as a whole team; attacking the same enemy unit at the same time, attacking the

weakest enemy unit at first, fleeing if it is close to death.

31

In this experiment, we started both opponents with 5 marines, increased the
number of initial marines to 20 and then to 100. In Figure IV-3, the graph of percentage
of not losing is plotted against the number of marines at the episode start. It is possible
to observe the differences in convergence time for each experiment. Our static features
have been designed for ranges changing from 0 to 25. As you can see in the Figure IV-3,
5 vs. 5 perform worse than 20 vs. 20 case 100 vs. 100 case also performs worse than 20
vs. 20 case. The reason for that performance results is ranges for the static features are
chosen for marine numbers ranging from 0 to 25 on average. In the next section,
dynamic features, we will be designing our features dynamically so it will be able to

adapt to the change.

Comparison of different number of initial marine units
100 o L] L] L L L B L N L L L

9 1

60 -

]

50 -

]

% of not losing

40 -

1

rrrrrrrrrrrrrrrrrrrrrrrrrrr 100 vs 100
20 vs 20

10 5w 5 .

]

0 L L L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
of episodes

Figure IV-3 Comparison of different number of initial marine units

32

IV.3 Dynamic Features

As we have discussed in the previous section, Feature 1 and Feature 2, which are
the number of enemies around and the number of friends around have static ranges,
which are selected by engineers' best guess. The ranges for clustering in the static feature
are [0], [1:3], [4:7], [8:12], [13:18], [19:25], [26 or more]. However, when the number of
units in the problem changes, or the problem is moved to a different domain, these static
selections might cause problems. Supervising these changes takes time and finding the
optimum values is a challenging task. This is known as the generalization problem
(Guestrin & Gearhart, 2003) (Ponsen et al., 2006). For this reason, we tried to create an
adaptive dynamic feature structure, so that these ranges are selected during the game
play. ART2a neural networks are able to cluster the sequence of inputs (Carpenter et al.,
1991). The observation sequence of number of enemies or friends around form the input
to the ART2a network and a clustering is performed during the game play. For example,
a scenario with 5 marines vs. 5 marines creates a different clustering while a scenario
with 100 marines vs. 100 marines creates a totally different clustering. Figure IV-4 and
Figure IV-5 show the performance comparison of static Feature 1 and dynamic feature
with ART2a that represents "number of enemies around" feature for 5 vs. 5 marines and
100 vs. 100 marine case. In the 5 vs. 5 marines case there is no notable performance
difference between the applications. However, in the 100 vs. 100 marine case, dynamic
feature with ART2a outperforms static feature. This performance rise is due to the
adaptive nature of the dynamic feature sets, it clusters the observation for Feature 1.
Static features are unable to capture the difference between the environment with lower
and higher number of enemy units so when the number of enemy units rise, they
perform worse than dynamic feature sets. Static and dynamic features in the 5 vs. 5
marines case converge to the same value. Note that dynamic features perform

dramatically better than static features in the 100 vs. 100 marine case.

33

% of not losing

% of not losing

Static Feature vs Dynamic Feature (5 vs 5 marines)

100

70+

D
o
]

(6}
o
T

N
o
1

w
o
]

N
o
]

N
o
]

L L S T L L S L L

— Static Feature

Dynamic Feature ||

r r r r r r r r r

0
0

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
of episodes

Figure IV-4 - Static vs. Dynamic Features (5 vs. 5 marines)

Static Feature vs Dynamic Feature (100 vs 100 marines)

100

70

60

50

40

30

20

10

i

1

1

1

1

1

1

0
0

Static Feature

Dynamic Feature

r r r r r r r r r

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

of episodes

Figure IV-5 - Static vs. Dynamic Features (100 vs. 100 marines)

34

In Figure IV-6, Figure IV-7 and Figure IV-8, results of the clustering of ART2a
network for the dynamic feature "number of enemies around" is shown. It is obvious that
the increase in the number of enemies around from 20 to 100 does not increase the
number of classes much, but rather the distribution of the values. This is an interesting
result in the sense that, it is not counter intuitive to expect the number of classes to
increase dramatically when the number of effectors are increased from 20 to 100 but
these figures show the opposite. The adaptation to the new environment settings occur in
basically in the clustering of the values, not the number of classes. This is an advantage

because the complexity does not increase linearly with the number of effectors.

In the 5 vs 5 case Figure IV-6 - ART2a Classes (5 vs. 5), there are 5 clusters with
values 0, 1, 2 and 5 are classified independently and values 3 and 4 are in class 4. In the
20 vs 20 case Figure IV-7 - ART2a Classes (20 vs. 20), the number of classes increases
to 10. Values from 0 to 5 are classified in differently while (6:8) range, (9:13) range and
(14:20) range are classified in groups. In the 100 vs 100 case Figure IV-8 - ART2a
Classes (100 vs. 100), the number of classes increase to only 11, 0 to 5 are still classified

in distinct classes. (6:7), (8:11), (12:20), (21:45) and (46:100) form other ranges for

classes.
ART2a Classes (5 vs 5)

5

4 . 2 l
" 3
8
L

2 R

1 4

a

o 1 2 3 4 5

Value

Figure IV-6 - ART2a Classes (5 vs. 5)

35

ART2a Classes (20 vs 20)

L*

ey
(=)

Class
© o b W & O m = W@

0 1 2 3 4 5 & 7 8B 9 1MW 1 12 13 14 15 16 17 18 18 20

Value

Figure IV-7 - ART2a Classes (20 vs. 20)

ART2a Classes (100 vs 100)

L 2

Class

4

+

4 M oW s ot @ - W
L 3

(=)

Value

Figure IV-8 - ART2a Classes (100 vs. 100)

IV.4 Feature Selection and Dynamic Features

We have defined different features but not all of these features add the same value
to the learning process, we have to compare and pick the best subset of these features.
For that reason, we ran two experiments; first one is using one feature at a time. We did
not specifically used methods in the literature such as Forward Feature Selection or
Backward Feature Selection for a couple of reasons. Firstly, the number of defined
features is limited to a small number. Secondly, the test for the performance of

individual features showed that only some of the features are useful. Lastly, the increase

36

in the number of features led to divergence. The results in Figure V-9, Figure IV-10,
Figure IV-11 and Figure IV-12 show that the feature labeled Feature 1, which is the
number of enemies around is the most useful, while other features add little value. This
is surprising because common sense tells us that more detail will create a better model
but as it is obvious in the second experiment with the combination of features in Figure
IV-13, Figure IV-14 and Figure IV-15, adding features decreased the general
performance. The reason for that drop in the performance is due to the linear nature of
the linear function approximation, adding these features prevent the function to
converge, this is related to the linear separability, a linear function can only separate data
that is linearly aligned (Alpaydin, 2004). The reason for this divergence is fully studied
in Tsitsiklis and Van Roy’s work (Tsitsiklis & Van Roy, 1996). In Figure IV-10, Figure
IV-11, Figure IV-9 and Figure IV-12, feature comparisons show that F1 is significantly
more useful than other features. In these figures comparison of F1 with other features are
shown. These figures also confirm that, addition of features other than F1 to the FI
feature itself in combination does not result in a better convergence and value in Figure
IV-13 - F1 + F2 vs. F1 + F2 + F3 and Figure IV-14 - F1 + F2 + F3 vs. F1 + F2 + F3 +
F4. Note that addition of F5 to the combination actually causes a divergence in Figure

IV-15-F1 +F2+F3+F4vs. F1 +F2+F3 +F4 + F5.

37

% of not losing

100 C T C T C C C T C
()]
£
[2]
Re]
s}
c
k]
2
Feature 1
20 - b
Feature 2
10 b
0 - ﬁl’_/_ﬁ 7>7ﬁrf r - r r r r r r
0 50 100 150 200 250 300 350 400 450
of episodes
Figure IV-9 - F1 vs. F2
Performance comparison of Feature 1 vs Feature 3 (average of 10 runs)
100 T L L 3 L L L T L
N0 r- N
80~ -
70~ -
60 - M
50 ~ -
40~ M
30 N
208 Feature 1
10 Feature 3 |-
O “\\—’“% T T T T T T T T
0 50 100 150 200 250 300 350 400 450 500

Performance comparison of Feature 1 vs Feature 2 (average of 10 runs)

500

of episodes

Figure IV-10 - F1 vs. F3

38

% of not losing

% of not losing

Performance comparison of Feature 1 vs Feature 4 (average of 10 runs)

100

90~

80~

70

60

50

40

30

20

10

T T r U r r U r r

I

Feature 1

-~ — Feature 4

~ I3 r r r r r r r

0 50 100 150 200 250 300 350 400 450

of episodes

Figure IV-11 - F1 vs. F4

Performance comparison of Feature 1 vs Feature 5 (average of 10 runs)

500

100

90

80

70

60

50 -

40

30~

20~

r r T r T T r T T

T

T

T

Feature 1

10+ — Feature 5

IS s — r r r r r r r

0 50 100 150 200 250 300 350 400 450

of episodes

Figure IV-12 - F1 vs. F5

39

500

% of not losing

% of not losing

100

50

40

30

20

10

0
0

Comparison of feature combinations (F1 + F2) vs (F1 + F2 + F3)

I

I

I

I

U r r r r r

r r C

F1+F2+F3
F1+F2

r r r r r r r r r
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

of episodes

Figure IV-13 - F1 + F2 vs. F1 + F2 + F3

Comparison of feature combinations (F1 + F2 + F3) vs (F1 + F2 + F3 + F4)

100

50

40

30

20

10

[

I

I

L L 1y L L L

T L

L

F1+F2+F3+ F4
F1+F2+F3

r r r r r

r r

r

;
1000 2000 3000 4000 5000 6000 7000 8000 9000

of episodes

Figure IV-14 -F1 + F2 + F3 vs. F1 + F2 + F3 + F4

40

10000

Comparison of feature combinations (F1 + F2 + F3 + F4)vs (F1 + F2 + F3 + F4 + F5)
100 T T C C C C C T T

90

80

70

60

50 y

i

% of not losing

40 - =

- - ,

20 .
10 ! 7 - F1+F2+F3+F4+F5
F1+F2+F3+ F4

0 r r r r r r r r r
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
of episodes

Figure IV-15-F1 +F2+F3 +F4 vs. F1 + F2 + F3 + F4 + F5

IV.S RESOURCE PLANNING PROBLEM

In this last experiment, in addition to workers and marines, we add the base to the
game and it becomes a fully featured RTS game with resource collection, unit training
and sophisticated combat strategies. Base makes resource collection and unit training

possible so this experiment is really about resource planning.

In the previous section, we conducted experiments with marines on strategic
combat; this experiment includes these previous experiments while focusing on the base
and its learning capability. The game map is a 20 by 20 grid, our agent starts on the
position (1, 1) while enemy agent starts on the position (20, 20). They both start with
one base and a single worker. Mineral patch is located in the middle at position (10, 10)
so that they are equidistant to the main resource. None of the opponents has any mineral
to start with, so to train a new unit, they should first collect enough resources. A worker
or marine cost 10 minerals to train. There are 1000 minerals in the mineral patch, so the

maximum number of units trained in one episode is limited to 100. These units may or

41

may not exist in the game at the same time. When all units of an opponent are destroyed
or maximum number of time steps for an episode is reached, that is 1000 time steps, the
episode terminates. The rewards are distributed at the end of the episode. The result of
the game is not known until the episode ends, but to enable learning within the SMDP
framework, especially for the marines to learn sophisticated combat strategies, a -1
reward is given per time step added by a +5 reward if the marine kills the attacked unit
or a -5 penalty if the marine dies during an attack. This 5 reward or penalty mechanism
is necessary for the marine to kill the enemy unit as soon as possible, and the -1 reward
enables to do this quickly while also motivating the marine to do navigation options as
quickly as possible. Enemy marines follow a fixed policy as in the strategic combat
experiment, they attack what they see. Worker policy is picking up minerals from the
mineral patch and returning to the base to drop them off. Enemy base follows a fixed
policy of its own, training new workers if the number of workers is less than 5,

otherwise it trains new marines.

In Figure IV-16, performances of the single agent and the multi-agent are
compared as the percentage of not losing. Both of the sides start with a base unit and a
worker unit. There is a mineral patch with 100 minerals. We can see that multi-agent
outperforms the single agent case. Heterogeneous separation of agents leads to better
specialization and faster convergence. In the multi-agent hierarchy, the agents do not
have communication in between. They are not aware of each other existence and they
don't need to, since they are specialized in different areas and they observe what they

need to.

42

Resource Planning Problem - Multi Agent vs Single Agent
100 L L L T L T L U L

% of not losing
an
o
1

40- 1

30+ o

20~ '
— Multi Agent

10~ Single Agent g

0 r r r r r r r r r
0 200 400 600 800 1000 1200 1400 1600 1800 2000
of episodes

Figure IV-16 - Resource Planning - Multi Agent vs. Single Agent

As a result of this experiment, we can conclude that multi agent model outperformed
single agent model in learning to beat an aggressive opponent in the game of RTS. It has
learned to do resource planning in building an army that is both balanced in resource
allocation and strategic combat. This last experiment showed that our agents designed in
the previous experiments for resource collection and strategic combat with an added
resource planning base unit in this experiment converged to a better policy when
compared to a single agent model. Our multi agent model learned to beat the enemy
90% of the time while the single agent model managed to converge to only 70% winning

ratio when not using the advanced techniques we applied in our work.

43

CHAPTERV.

CONCLUSION

RL framework is a broad subject with a lot of opportunities for designing and
implementing learning agents in various different problem domains. We have applied
RL techniques to a quite sophisticated problem and executed different experiments
focusing on different aspects of the game, from delayed rewards to temporally abstract
actions, from feature and option templates per unit to dynamic feature sets. We
implemented a multi-agent abstraction, separated the marine units and base units in
order to achieve a more efficient learning and better convergence. This leads to a better
separation and better design at the cost of time and expertise needed to engineer those

parameters and design.

In our first experiment, resource collection problem, we concluded that Linear
Function Approximation with sound feature choices leads to a reduced state space and
faster convergence, while additional features lead to even faster convergence. In the
second experiment, strategic combat problem, we firstly used static features and
compared the performance of static features in problems with different number of
effectors. We concluded that static features only perform well for a specific range of
number of effectors but when the number of effectors in the game, thus the state space,
increases, they converge to a worse performing sub-optimal policy. Secondly we utilized
a dynamic feature selection schema with ART2A to construct the dynamic features
during the game play to overcome the limitations of static features. Usage of dynamic
features lead to a better generalization and better convergence compared to static
features when the number of effectors were increased. In the third experiment, resource
planning problem, we showed that a multi agent model that uses a marine agent for
strategic combat and a base agent for resource planning by differentiating agents in a

multi agent structure lead to a better convergence compared to a single agent that

44

attempts at learning the same task. Multi agent model outperformed the single agent

model by 20% in winning ratios against the enemy agent.

There are many points to improve for possible future work. It might be possible to
introduce more clever features to create a better and more compact representation of the
real world state. Another improvement might be, automatic feature extraction from the
environment with a given initial set of basic features, then as the learning proceeds

features that have lower impact on the function approximation can be discarded.

45

BIBLIOGRAPHY
Alpaydin, E., 2004. Introduction to Machine Learning. MIT Press.

Bower, E.R. & Gordon, H., 1975. Theories of Learning, Englewood Cliffs, NJ, fourth
edition. Prentice-Hall.

Bradtke, S.J. & Duff, M.O., 1994. Reinforcement learning methods for continuous-time
Markov decision problems. In Advances in Neural Information Processing Systems.,
1994. MIT Press.

Carpenter, G.A., Grossberg, S. & Rosen, D.B., 1991. ART 2-A: An Adaptive Resonance
Algorithm for Rapid Category Learning and Recognition. Neural Networks.

Dietterich, T.G., 2000. Hierarchical reinforcement learning with the MAXQ value
function. Journal of Artificial Intelligence Research, pp.227-303.

Dietterich, T.G., 2008. Automatic discovery and transfer of MAXQ hierarchies. In
Proceedings of the 25th international conference on Machine learning. Helsinki, 2008.

Eugene, A.F. & Shwartz, A., 2001. Handbook of Markov Decision Processes. Springer.

Ghavamzadeh, M. & Mahadevan, S., 2007. Hierarchical Average Reward
Reinforcement Learning. Journal of Machine Learning Research.

Guestrin, C. & Gearhart, C., 2003. Generalizing plans to new environments in relational
MDPs. IJCAI

Hsu, F.-h., 2002. Behind Deep Blue: Building the Computer that Defeated the World
Chess Champion. Princeton University Press.

Kaelbing, P.L., Littman, L.M. & Moore, A.W., 1996. Reinforcement Learning: A
Survey. Journal of Artificial Intelligence Research, pp.237-85.

Lee, J., Koo, B. & Oh, K., 2008. State space optimization using plan recognition and
reinforcement learning on RTS game., 2008.

Madeira, C., Corruble, V., Ramalho, G. & Ratitch, B., 2004. Bootstrapping the Learning
Process for the Semi-automated Design of a Challenging Game Al. In n Proceedings of
the AAAI Workshop on Challenges in Game Al. San Jose, CA, 2004.

Parr, R., 1998. Hierarchical control and learning for Markov decision processes.
University of California, Berkeley.

Ponsen, M.J.V., Muiioz-Avila, H., Spronck, P. & Aha, D.W., 2006. Automatically
Generating Game Tactics via Evolutionary Learning. Al Magazine, pp.75-84.

46

Ponsen, M., Spronck, P. & Tuyls, K., 2006. Hierarchical Reinforcement Learning with
Deictic Representation in a Computer Game. In /8th Benelux Conference on Artificial
Intelligence., 2006.

Russell, S. & Norvig, P., 2003. Artificial Intelligence A Modern Approach. Prentice
Hall.

Russel, S., Marthi, B. & Latham, D., 2005. Concurrent Hierarchical Reinforcement
Learning. In In Proceedings 1JCAI., 2005.

Russel, S. & Parr, R., 1998. Reinforcement learning with hierarchies of machines. MIT
Press.

Sharma, M. et al., 2007. Transfer Learning in Real-Time Strategy Games Using Hybrid
CBR/RL. IJCAI pp.1041-46.

Spronck, P., Ponsen, M., Sprinkhuizen-Kuyper, 1. & Postma, E., 2006. Adaptive game
Al with dynamic scripting. Machine Learning, 63(3), pp.217-48.

Sutton, R. & Barto, A.G., 1998. Reinforcement Learning. MIT Press.

Sutton, R., Precup, D. & Singh, S., 1999. Between MDPs and Semi-MDPs: A
Framework for Temporal Abstraction in Reinforcement Learning. Artificial Intelligence,
pp-112:181-211.

Tesauro, G., 1995. Temporal Difference Learning and TD-Gammon. Communications of
the ACM.

Tsitsiklis, J.N. & Van Roy, B., 1996. Feature-Based Methods for Large Scale Dynamic
Programming. Machine Learning 22, pp.59-94.

Tsitsiklis, J.N. & Van Roy, B., 1997. An Analysis of Temporal-Difference Learning
with Function Approximation. /EEE Transactions on Automatic Control.

Williams, R.J., 1992. Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning. Machine Learning, 8, pp.229-56.

Ying-zi, W. & Ming-yang, Z., 2003. Effective strategies for complex skill real-time
learning using reinforcement learning. In /EEE International Conference on Robotics,
Intelligent Systems and Signal Processing., 2003.

47

CURRICULUM VITAE

MEHMET CIiHAN KURT

Atakdy 4. Kistm O-188 2/4 34158 Bakirkdy / ISTANBUL
Phone : +90 212 560 24 27/ GSM: +90 533 641 24 08

e-mail: cihan.kt@gmail.com

EDUCATION

2006 — ... :Marmara University (MS in Computer Engineering), ISTANBUL
1997 — 2005 : Bogazici University (BS in Computer Engineering), ISTANBUL
1990 — 1997 : Ar-el College

WORK EXPERIENCE

Inveon Information Systems, Istanbul — Software Engineering Manager (2006 Oct - ..

Altaca Group, Istanbul — Software Engineer (2003 Feb - 2005 Dec)
Loquisoft, Vienna — Software Engineer (2006 Jan — 2006 Jun)
OY AK Renault, Bursa —Sofware Development Specialist (2002 Sep — 2003 Sep)

PERSONAL INFORMATION

)

Birth Date and Place : 07/05/1979 - Istanbul

RESEARCH INTERESTS

Machine Learning, Reinforcement Learning.

48

