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ÖZET 

 

GERÇEK ZAMANLI STRATEJİ OYUNU İÇİN 

HETEROJEN ÇOKLU ETMENLER KULLANAN AKILLI 

OYUNCU 

Gerçek Zamanlı Strateji oyunları, karşılıklı mücadeleye dayanan, çeşitli kaynakları etkili 

kullanarak harita üzerine stratejik bölgeleri kontrol altına almaları ve çeşitli manevralar ile 

karşısındaki tarafın birim ve yapılarını yok ederek kazanmaya çalışmasına dayanan bir oyun 

türüdür. Satranç ve GO gibi mücadeleye dayalı oyunlardan farkı, gerçek zamanlı ilerliyor 

oluşudur; oyuncular hamle yapmak için birbirlerinin hamlelerini beklemezler. Oyunun 

gerçek zamanlı yapısından dolayı, karmaşıklığı karşılaştırılabilir diğer mücadeleye dayalı 

oyunlara göre çok daha fazladır. Son yıllarda yapay zeka alanında gerçek zamanlı strateji 

oyunlarına ilgi oldukça artmıştır. Bunun belli başlı nedenlerinden biri, oyunun durum 

uzayının büyüklüğüdür. Bu tür bir oyun için verimli bir oyuncunun tasarlanması ve 

geliştirilmesi, durum uzayının büyüklüğünden dolayı verimlilik açısından problemler 

yaratmaktadır. Bu çalışma, büyük durum uzayı problemine karşı pekiştirmeli öğrenme 

çerçevesinde bir çözüm üretmektedir. Bu çözümün en önemli katkısı, zamana yayılmış 

aksiyonlar, doğrusal işlev yaklaşıklamaları ve Yarı-Markov Karar Verme Süreçleri (SMDP) 

çalışma alanlarını kullanarak durum uzayının genişliğini kabul edilebilir bir seviyeye 

düşürmesidir. Duruma dayalı karakteristik şablonlar, birime göre özelleştirilmiş aksiyon ve 

opsiyon şablonları birim bazındaki durum uzayının boyutunu küçültürken, heterojen çoklu 

etmen kullanımı öğrenmede ayrıştırmayı ve bu sayede farklı stratejilerin durum uzayını 

büyütmeden ve daha izole biçimde öğrenilmesini mümkün kılmaktadır. Bu çalışma, genel 

olarak hesaplanabilirlik sınırlarının dışına çıkan bir öğrenme problemini kabul edilebilir 

verimlilikle gerçekleştirmektedir. 

Haziran, 2010                     Mehmet Cihan KURT  
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ABSTRACT 

 

A HETEROGENEOUS MULTI- AGENT INTELLIGENT 

PLAYER FOR A REAL-TIME STRATEGY GAME 

A Real-time Strategy (RTS) game is an adversarial game where the participants 

position and maneuver units and structures under their control to secure areas of the map 

and/or win by destroying their opponents’ units and structures. It is possible to train new 

units and build new structures during the course of a game with limited amount of resources 

present in the setting. As opposed to comparable turn-based adversarial games such as chess 

and go, opponents do not wait for each others’ moves so the game progresses naturally with 

units interacting each other in real time. As a result of the real-time nature of the game, the 

complexity of the game dramatically increases. In recent years, there has been an increasing 

interest in RTS games in the artificial intelligence community, especially from the 

perspective of reinforcement learning, to create an agent to play the RTS game, due to the 

problem’s large state-action space. Modeling and implementing an efficient learning agent 

that is able to cope with the large state space is a difficult task. This work offers a solution to 

the problem of large state space in reinforcement learning problems, especially in the 

complex domain of adversarial real-time strategy games with heterogeneous effectors by 

using feature based linear function approximation combined with temporally abstract 

options introduced with the semi-Markov decision processes (SMDP) framework. Context 

based feature templates and reduced action sets per effector type in a heterogeneous 

environment greatly reduce the complexity of the learning problem while increasing the 

efficiency of the convergence of the learning algorithm. This work accomplishes to solve an 

otherwise intractable problem with an acceptable efficiency. 

 

June, 2010                   Mehmet Cihan KURT   
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CHAPTER I.   

INTRODUCTION 

The ability to learn to act rationally (Russell & Norvig, 2003) is one of the oldest 

challenges of the field of artificial intelligence (AI). How humans are able to learn to act 

rationally is also an important question for other sciences and fields such as philosophy, 

psychology and neuroscience. Designing and implementing an agent that is able to form 

abstractions and learn a specific task to execute it efficiently has attracted a lot of 

researchers in various different fields. There has been enormous progress both in 

theoretical studies and domain applications for agents that are able to learn. Applications 

include cleaning robots that are able to discover their surroundings, sweep the whole 

floor then go to the docking station to recharge (Russell & Norvig, 2003) or computer 

agents that are able to beat human world champions in chess (Hsu, 2002) or 

backgammon (Tesauro, 1995). IBM’s Deep Blue Computer attracted a lot of media 

coverage and public interest when it managed to beat world chess champion Kasparov in 

1997. Gerald Tesauro’s backgammon playing system TD-Gammon that utilizes 

sophisticated reinforcement learning (RL) and neural network (NN) techniques is 

considered to be playing backgammon at world class. 

In recent years, there has been an increasing interest in Real-time Strategy (RTS) 

games in the AI community, especially from the perspective of RL, due to large state 

space, large action space and delayed rewards (Russel et al., 2005). A RTS game is an 

adversarial game where the participants position and maneuver units and structures 

under their control to secure areas of the map and/or win by destroying their opponents’ 

units and structures. It is possible to train new units and build new structures during the 

course of a game with limited amount of resources in the environment. As opposed to 

comparable turn-based adversarial games such as chess and backgammon, opponents do 

not wait for each others’ moves so the game proceeds naturally with units interacting 
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with each other in real time. RTS is an attractive domain to work with RL because it 

provides a challenging environment for the construction of stable and fast learning 

mechanisms in response to extremely large state-action space, multiple effectors, both 

friendly and adversarial, noise and sometimes non-stationarity existing in the 

environment. 

In this work, we used a simplified RTS with only two types of units: workers and 

marines. Workers gather minerals from mineral patches, and minerals are consumed to 

train more workers or marines. Marines are able to combat. Each player has a single 

base, training of workers or marines are carried out in the base. The goal is to destroy all 

opponents’ units, including the base. The opponent plays with a fixed strategy. The 

domain is continuous. At each step, the action taken by the learning agent is the 

composition of all actions taken by the base, workers and marines, so the dimensionality 

of the action space can increase or decrease over time. Reward is based on the outcome 

of the game.  In the case of a tie, scores are assigned based on the relative 

accomplishments of both players. 
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In Figure I-1 - Game Instance  an instance of a RTS game is shown. Enemy units 

are shown in gray. Worker1 is navigating to the Mineral Patch to collect resources, 

while Worker2 is returning to the base with the mineral patch it collected. Marine1 and 

Marine2 are attacking Marine3. 

 

Figure I-1 - Game Instance 
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There have been some attempts to apply reinforcement learning to RTS games. 

Ponsen (Ponsen et al., 2006) used a modified version of Hierarchical Semi-Markov Q-

Learning (HSMQ), based on MAXQ Value Function Decomposition algorithm 

(Dietterich, 2000), to show that hierarchical learning helps in a simple task. Madeira 

used bootstrap learning, with levels of abstraction, to learn parameters one level at a 

time while using a fixed policy at other levels (Madeira et al., 2004). Ponsen used 

abstract representations of states and utilized dynamic scripting (Spronck et al., 2006) to 

update the values of each agent's policy (Ponsen et al., 2006). Sharma used transfer 

learning to learn in a hybrid of case-based reasoning and RL (Sharma et al., 2007). Some 

of the works attack the problem by applying a relational model of the effectors to 

address large-state-space problem by reducing the interaction maps of the effectors 

(Guestrin & Gearhart, 2003). Other works utilize temporally abstract options (SMDPs) 

to solve the delayed reward problem and the large-state-space problem (Parr, 1998) 

(Russel et al., 2005) (Dietterich, 2000). Dietterich has worked on automatic discovery of 

hierarchies to remove the engineering effort of designing the hierarchy (Dietterich, 

2008).  There have also been attempts to apply dynamic scripting by using genetic 

algorithms to generate playing strategies from hard-coded scripts (Sharma et al., 2007) 

(Madeira et al., 2004). Ghavamzadeh used an average reward scheme instead of 

discounted reward using hierarchical and recursive policies, in contrary to the general 

flat policy representations that are usually paired with average reward optimality 

criterion (Ghavamzadeh & Mahadevan, 2007). 

In this work, we aim to offer a solution to the problem of large state space, large 

action space and delayed rewards in RL problems, especially in the complex domain of 

adversarial RTS games. The main contributions of our approach are two-fold 1) using a 

multi-agent structure to model a learning agent with customized action sets and feature 

templates to reduce the state-space, and 2) constructing a dynamic feature template 

structure that adapts to the environment and can scale well. We have used effector based 

feature templates and reduced action sets per effector in a heterogeneous environment to 

greatly reduce the state-space and action-space of the learning problem while increasing 

the efficiency. Context based feature templates and reduced action sets per effector type 

in a heterogeneous environment greatly reduce the state space and action space of the 
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learning problem while increasing the efficiency. In the resource collection experiment, 

we focused on feature based linear approximation to show that it reduces the state-space 

for faster convergence. In the strategic combat experiment, we showed that SMDP 

framework with options helps in building a simpler, intuitive and hierarchical game 

model that increases convergence speed by reducing the state-space and enables fair 

distribution of the delayed rewards. In our game model, effectors are assigned individual 

tasks so that they are only responsible for the outcome of their own tasks, rewarded by 

how well they performed and how quickly they execute their tasks. In this experiment 

we also compared static and dynamic features and showed that it is possible to create 

agents that can adapt to changing environmental conditions by using dynamic features. 

In the resource planning experiment, a multi-agent model with hierarchical SMDP 

structure is constructed. The multi-agent consists of two heterogeneous agents that are 

specialized in different areas, first agent is the base agent, second is the marine agent. In 

this experiment we show that separation of agents to form a multi-agent structure lead to 

better results in convergence and learning. 

   The rest of this thesis is organized as follows: Chapter II starts with the literature 

survey about RL applications in the RTS domain. General RL algorithms and their 

extensions on generalization and temporal abstraction methods, LFA and features are 

discussed. In Chapter III, learning algorithm is introduced with the model, state 

representation, actions and rewards. Chapter IV describes experiments and their results 

ending with discussions. Chapter V concludes the thesis and mentions possible future 

work. 
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CHAPTER II.   

RELATED WORK 

 

In recent years, there has been an increasing interest in the RTS game domain in 

RL community. Relational Markov decision processes (RMDPs) (Guestrin & Gearhart, 

2003) have been utilized to model the game using interaction maps and relationships of 

the effectors in the system. These interaction rules and relationships are predefined in 

the system and they are manually derived and engineered from the general rule set of the 

game, where pairwise interactions of effectors are described. For example, a worker unit 

in the domain can only interact with the resources in the environment or with the base. It 

is not possible to interact with other workers or marines. This kind of relationships 

simplifies the model of the game and thus limits the state space. In our work, we kept 

our model simpler by eliminating the need for engineering and fine-tuning of these 

relationships. Hierarchical abstract machines (HAMs) (Parr, 1998) are used to introduce 

hierarchy in the system via SMDPs, to model the game, since hierarchy naturally exists 

in the game. This hierarchical abstraction leads to reduced state space. In this work we 

also take advantage of natural hierarchy inherent in the game by using temporally 

abstract actions, but in contrary to Russel's work, we let the agents do the learning on the 

SMDP level and the basic actions on the MDP level are hard-wired, where the hard-

wired solutions are optimal policies that the agents have learned to follow by some prior 

learning process. Russel further improved the performance of his work (Russel et al., 

2005) by using ALisp programming language that allows concurrent execution of the 

tasks in the system so as to optimize learning. There is a natural concurrency in the game 

since there are multiple effectors, in our model, we allowed multiple effectors to decide 

at the same time by modeling the real-time aspect of the game in a discrete time step 

flow, to enable concurrent and thus faster learning. 
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Our work differentiates itself from other recent works by implementing a more 

complicated game scenario and higher number of active concurrent effectors in the 

game. In his work, Russel used a game scenario with up to 20 effectors concurrent in the 

game with static feature sets (Russel et al., 2005). In our work we have a game scenario 

with up to 200 effectors active in the game with dynamic features. Our agent can adapt 

to changing environmental settings. 
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II.1  REINFORCEMENT LEARNING AND MARKOV DECISION 

PROCESSES (MDPs) 

In the standard RL model, (Sutton & Barto, 1998) an agent is connected to its 

environment via observations and actions. On each step of interaction the agent observes 

its environment and gets some indication, o, of the current state, s; the agent then takes 

an action, a, to generate an output. The action changes the state of the environment, and 

the environmental evaluation of this state transition is communicated to the agent 

through a reinforcement signal, r. The agent starts to more frequently take actions that 

tend to increase the long-run sum of values of the reinforcement signal. It can learn to do 

this over time by systematic trial and error, guided by a wide variety of algorithms.  

In the RL framework, the agent makes its decisions as a function of the 

environment's states.  What we would like, ideally, is a state signal that summarizes past 

observations in a compact form in such a way that all relevant information is retained. A 

state signal that succeeds in summarizing all relevant information is said to be Markov, 

or to have the Markov property and a discrete parameter stochastic process (s(t); 

t=0,1,2....) is said to be a Markov decision process (MDP) if, for any set of points, the 

current state st depends only on st-1 (Eugene & Shwartz, 2001). This obviously should 

depend on more than the immediate observations, however in some cases the same 

observations may refer to different state representations based on the past observations. 

While this situation does not violate the Markov property, it changes its degree i.e. first, 

second or varying order Markov process.  

There are basically two types of RL algorithms: model based and model free 

(Kaelbing et al., 1996). In model-based case the transition probabilities among states are 

known or can be constructed using a constructive automaton. However when the model 

of the environment is not known or hard to build, model-free algorithms are preferred.  

The most commonly used model-free RL algorithms that we also used in this thesis are 

Monte Carlo and Temporal Difference (TD) prediction algorithms i.e. SARSA and Q-

Learning (Sutton & Barto, 1998).  

Monte Carlo methods are ways of solving the reinforcement learning problems 

based on averaging sample returns Figure II-1. To ensure that well-defined returns are 



9 

 

available, Monte Carlo methods are defined only for episodic tasks. That is, we assume 

experience is divided into episodes, and that all episodes eventually terminate no matter 

what actions are selected. It is only upon the completion of an episode that value 

estimates and policies are changed. 

Repeat forever: 

1. Choose an arbitrary policy π (e.g. ε-greedy) 

2. Generate an episode using π 

3. For each pair s,a in the episode 

a. Observe reward R 

b. Update Q(s,a) using average of R 

4. For each s in the episode 

a. a* = arg maxa Q(s,a) 

b. Update the π 

Figure II-1 Monte Carlo Algorithm (Sutton & Barto, 1998) 

TD methods on the other hand do not wait for the completion of an episode. Every 

time a non-terminal state (st) is visited the value of the state (V(st)) is updated based on 

the reward signal received. We can update the values of the states by following an on-

policy or an off-policy algorithm. SARSA (Sutton & Barto, 1998) which uses an on-

policy update follows a policy, π and updates the state-action values of the same policy 

as illustrated in Figure II-2. 

 

Repeat forever: 

1. Choose a arbitrary policy π (e.g. ε-greedy) 

2. Choose a from s using π 

3. Repeat for each episode 

a. Take action a observe r, s’ 

b. Choose a' from s’ using π 

c. Update Q(s,a) using r 

Q(s,a) = Q(s,a)+α[r+γQ(s’,a’)-Q(s,a)]  

d. s=s’; a=a’ 

4. Until s is terminal 
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Figure II-2 SARSA on-Policy TD Control (Sutton & Barto, 1998) 

Q-Learning (Sutton & Barto, 1998), on the other hand, is an off-policy TD control 

method which means it updates the values of the actions of a policy for learning, while it 

follows another policy in action selection. Q-Learning algorithm is shown in Figure II-3. 

             Repeat forever: 

1. Initialize Q(s,a) arbitrarily 

2. Choose an arbitrary behavior policy π (e.g. ε-greedy) 

3. Repeat for each episode 

a. Choose a from s using π 

b. Take action a observe r, s’ 

c. Update Q(s,a) using r 

Q(s,a) = Q(s,a)+α[r+γmax Q(s’,a’)-Q(s,a)]  

d. s=s’ 

4. Until s is terminal 

Figure II-3 Q-Learning off-Policy TD Control (Sutton & Barto, 1998) 
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II.2  SEMI-MARKOV DECISION PROCESSES 

The action, in MDPs, that is taken at time t only affects the observations and 

reward at time t+1. There is no notion of a course of action extended in time. Therefore, 

in a MDP the state representation has to cover all possible relations and it does not let 

the system designer implement a temporal abstraction. However temporal abstraction 

can be added to an MDP framework by extending it to SMDPs. 

SMDP is the minimum extension to the RL framework (Bradtke & Duff, 1994). 

SMDPs are a special kind of MDP modeled for continuous time discrete event systems. 

In an SMDP an action taken at time t does not have to be evaluated by the main system 

at t+1. Temporal abstraction provides system designers with evaluation of the action at a 

different time scale without intervening it at the main framework. Therefore in an SMDP 

one can use temporarily extended course of actions instead of primitive action selection-

evaluation method. Figure II-4 shows the relationship of actions and options in MDP, 

SMDP and Options over MDP. 

 

Figure II-4 MDP, SMDP, Options over MDP (copied from (Sutton et al., 1999)) 
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Sutton called this temporarily extended course of actions as options as illustrated 

in Figure II-5 and re-designed them by allowing intra-option modeling (Sutton et al., 

1999). In SMDP options are accepted as an indivisible deterministic sequence of actions. 

There is no attempt in SMDP theory to look inside the temporally extended actions, to 

examine or modify their structure in terms of lower-level actions. However one can 

learn and optimize inside of options by modeling and giving appropriate reward signals 

to lower level actions at different time scales. 

 

 

In the SMDP framework, Q-Value for the option state pairs follows directly from 

the MDP case as can be seen in the formula, options replacing actions: 

 

Q(s,o) = Q(s,o)+α[r+γmax Q(s’,o’)-Q(s,o)]  (II-1) 

 

SMDPs have been extensively used in RL research especially in modeling RL 

problems with temporally abstract options and hierarchical abstractions to reduce state-

space and solve the delayed reward problem (Parr, 1998) (Russel et al., 2005) 

(Dietterich, 2000) (Guestrin & Gearhart, 2003). 

Time 

Time 

t=2 

t=1 

t=0 

Option 

Time Scale of Classical MDP and Actions  

Time Scale of SMDP and Options  

Action 

at 

at+1 

at 
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at+2 
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at+5 

at+6 
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Figure II-5 Action and time models in MDP and SMDP 
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II.3  FUNCTION APPROXIMATION 

Finding a solution to an MDP problem in RL framework requires functional 

mappings such as value functions, Q-functions, and policies. While these functions are 

simply represented by lookup tables which are easy to operate on, this simple 

representation scheme is only limited to applications with a small state-action space. In 

real world problems such as a RTS game or continuous time/ continuous state Markov 

processes, the extremely large number of state-action pairs leaves the most of the state-

action pairs not sufficiently experienced and hence requires a different way to represent 

the functions (e.g. The values Q(s,a) of state-action pairs); so that the agent may 

generalize from the instances sufficiently experienced to those not ever encountered. 

The first and the most basic way of representing such functions is using a lookup table, 

which is linear in the size of the domain in both memory and computational costs. The 

computational complexity grows linearly with the state space or the cartesian product of 

the state space and action space. 

 

Linear dependency is infeasible for domains with large state spaces, such as a RTS 

game. Even our simplified RTS game has over 2
100

 states, it can reach up to 2
500

 states in 

a regular RTS game. It can be the case that functions have a special structure allowing 

them to be represented in a compact form. Function approximation helps in representing 

the Q-Value of a state in a more compact form, this helps reducing the state space size 

because the real world state is represented in a more compact form that is smaller in size 

thus enabling efficiency. 

The sort of generalization that we need to incorporate to our system is called 

function approximation. In a Q-function learning algorithm, for example, the designer 

might specify a set of Q-functions {Qθ (s,a) | θΘ} where Θ represents a parameter 

space in which the Q-function is expected to be approximated by a member of this set of 

Q-functions. Most of the RL algorithms can work on the approximated representation 

with the optimal member of Θ. The tabular or lookup table representation is the simplest 

way of approximating a function. There is a parameter θs,a for each state s and action a, 

and Qθ (s, a) = θs,a. To generalize, we assume that certain state–action pairs have the 

same Q-value, so we can construct a function  from S × A to some feature space Φ, that 
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linearly maps these certain pairs to the same Q-value. In the end, we have a function 

approximator with a parameter space consisting of all functions from Φ to R, and Q-

value is calculated as Qθ (s, a) = θ( (s, a)). This is called the state-aggregated tabular 

approximation (Sutton & Barto, 1998). 

 

Function approximators basically lead to the generalization of states and actions. The 

state-aggregated tabular approximation generalizes between state–action pairs meaning 

that if they have to the same value in the feature-space, then they have to have the same 

Q-value. A more flexible form of generalization is possible by linear approximation, 

which can be summarized as a mapping  : S × A  R
M

. Each component m(s, a) is 

called a feature, and  (s, a) is called a feature-vector. The parameter space is then R
M

, 

and the corresponding Q-functions can be represented as follows: 

Qθ (s, a) = θ
 T

 ( (s, a)) (II-2) 

 

In the next chapter we will be explaining the general model of our agent, the 

environment, the internal hierarchy and the general multi agent structure with details 

about the feature, action and option structure.  
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CHAPTER III.   

LEARNING  

 

Our simplified RTS game environment consists of units interacting with each 

other in the map in real time. Time is discrete, so a new action is taken by both of the 

opponents at each time step and the actions take effect immediately at the same time. 

The 2 dimensional coordinate system of the map is discrete so units move in discrete 

steps and directions. 

 

 There are 3 types of units in the environment. Base is the headquarters, it is unable 

to move. An opponent can only have a single base at the same time. Base is where the 

training of new units and storage of the collected resources take place. Worker is the unit 

that can move freely in the map and can gather resources from mineral patches. Marine 

is the only unit that is armored with fire power. It can fire at and kill other units, as it is 

able to move freely in the map.  
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III.1  MODEL OF THE GAME 

 

A real-time strategy game is an adversarial game where players try to beat each 

other within a real-time environment by generating intelligent or hard-coded strategies. 

Our simplified realtime environment consists of base, worker, marine units and mineral 

patches. Bases are headquarters for the players, workers collect mineral patch that can be 

used to train other workers or marines. Workers do not have any weapon. Marines are 

military units that are able to attack and fire. Mineral patches are static locations in the 

map with limited amount of resources and these resources can be collected by any 

player. The map is limited to a rectangular area and coordinates are discrete. The game 

progresses in discrete time intervals, both players take decisions in every interval and it 

is applied immediately in the next time interval so there is no induced advantage. When 

all the units of a player are destroyed or maximum allowed time for an episode is 

reached the episode ends. In Figure III-1 RTS Reinforcement Learning Model our 

learning model is shown where the agent observes the state of the environment, then 

take actions and after that, the environment rewards the agent. Our RL model focuses on 

modeling the state of the environment which the agent observes. Agent consists of 

multiple agents consisting of base, marine and worker agent. There is a two level 

hierarchy, in the MDP level actions are learned, in the SMDP level options are learned. 

Actions in the MDP level are single time step actions, to keep our model simple and to 

focus on the SMDP aspect of the game, policy at the MDP level is hard-wired. LFA, 

static features and dynamic features are utilized for better performance. 

 

Figure III-1 RTS Reinforcement Learning Model 
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III.1.1 Features 

 

In function approximation, it is a challenging task to come up with a sound 

compact representation of the world state that is both simple enough to be efficiently 

calculated and complex enough to give a good all around representation of. Features are 

usually constructed with specific domain knowledge, so an expertise in the domain is 

preferred for good results. 

 

In his work, Ponsen uses the same RTS domain as we use in this work, in a 

relatively simple task (Ponsen et al., 2006). A worker tries to navigate to a resource to 

collect it, while avoiding an enemy marine that can kill it. Ponsen uses 4 features for a 

compact representation of the world. Distance(enemy,s), Distance(goal,s), 

DirectionTo(enemy,s) and DirectionTo (goal,s). The function Distance returns a number 

between 1 and 8 or a string indicating that the object is more than 8 steps away in state s, 

while DirectionTo returns the relative direction to a given object in state s. Using 8 

possible values for the DirectionTo function, namely the eight directions available on a 

compass rose, and 9 possible values for the Distance function. 

 

In our work, we utilized several features to be able to capture a sound and compact 

representation. In order to reduce the state space, states related to objects outside of the 

visibility range of a marine or a worker are considered as irrelevant and not taken into 

account. For the sake of simplicity, all our features are one dimensional binary vector. In 

Table III-1, all features present in the feature space are listed. In our literature survey we 

did not come by a work that used the feature set we have utilized in our work. Most of 

the works used features using distance, angle for modeling the relationship of the 

effectors. 
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Feature name Value 

f
1

0 Enemies 1 if 0 enemy units are in visible range, 0 otherwise 

f
1

1 to 3 Enemies 1 if 1 to 3 enemy unit is in visible range, 0 otherwise 

f
1

4 to 7 Enemies 1 if 4 to 7 enemy units are in visible range, 0 otherwise 

f
1

8 to 12 Enemies 1 if 8 to 12 enemy units are in visible range, 0 otherwise 

f
1

13 to 18 Enemies 1 if 13 to 18 enemy units are in visible range, 0 otherwise 

f
1

19 to 25 Enemies 1 if 19 to 25 enemy units are in visible range, 0 otherwise 

f26 or more Enemies 1 if 26 or more enemy units are in visible range, 0 

otherwise 

f0 Friends 1 if 0 friendly units are in visible range, 0 otherwise 

f1 to 3 Friends 1 if 1 to 3 friendly unit is in visible range, 0 otherwise 

f 4 to 7 Friends 1 if 4 to 7 friendly units are in visible range, 0 otherwise 

f 8 to 12 Friends 1 if 8 to 12 friendly units are in visible range, 0 otherwise 

f 13 to 18 Friends 1 if 13 to 18 friendly units are in visible range, 0 otherwise 

f 19 to 25 Friends 1 if 19 to 25 friendly units are in visible range, 0 otherwise 

f 26 or more Friends 1 if 26 or more friendly units are in visible range, 0 

otherwise 

FAm I Being Attacked 1 if the unit is under attack, 0 otherwise 

fLow Health 1 if the unit health is below 50 percent, 0 otherwise 

fFriend Under Attack 1 if a friendly unit in visible range is under attack 0 

otherwise 

f 0 Workers 1 if agent has 0 workers, 0 otherwise 

f 1 to 3 Workers 1 if agent has 1 worker, 0 otherwise 

f 4 to 7 Workers 1 if agent has 2 workers, 0 otherwise 

f 8 to 12 Workers 1 if agent has 3 workers, 0 otherwise 

f 13 to 18 Workers 1 if agent has 4 workers, 0 otherwise 

f 19 to 25 Workers 1 if agent has 5 workers, 0 otherwise 

f 26 or more Workers 1 if agent has 6 or more workers, 0 otherwise 

Table III-1 Features  



19 

 

III.1.2 Actions 

 

In a RL problem, the main objective is to optimize action decisions over the state 

space. In our simplified RTS game domain, there are 3 kinds of units that have different 

action spaces. For example, while a marine is able to execute “attack” action over other 

units, base and workers do not have this action in their action spaces. While some of the 

units share common actions, separation of action spaces per unit leads to a reduced 

action space. The only action that is shared among all unit types is the Noop (No 

operation) action. 

Base is distinctively different from other 2 unit types. Base cannot move. It can 

train new units as necessary, a new marine or a new worker unit.  

Worker can only move in 4 different directions, up, down, left and right. It is able 

to pick resources from the mineral patch and drop resources at the base, but for the sake 

of simplicity, the pick-up and drop actions are removed from the action space. When the 

worker is at a mineral patch, it automatically does the pick-up action, and when it is at a 

base, it does the drop action.  

Marine is able to move and attack other units. It is the main fighting unit that is 

able to destroy enemy units. Its action space consists of 4 different directions, up, down, 

left, right and an attack action that targets another unit. If the marine executes the attack 

action, health of the targeted unit decreases. 
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In Table III-2, units and the actions that they can take are listed. 

Action \ Unit Base Worker Marine 

Move Up - + + 

Move Right - + + 

Move Down - + + 

Move Left - + + 

Pick-up Resource - + - 

Drop Resource - + - 

Train Worker + - - 

Train Marine + - - 

Attack - - + 

 

Table III-2 Action-Unit Matrix 
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III.1.3 Options 

 

In the SMDP framework, options are defined as temporally abstract actions 

(Sutton et al., 1999). In our model, options are tasks that usually take more than one 

discrete time step to execute. Units execute these options by taking a sequence of actions 

that span over time. For example a “navigate” task assigned to a worker to go from the 

base unit to the mineral patch can only be executed by a sequence of actions up, right, 

down and left. Base executes the “train worker” task by taking the train worker action 

that takes 10 time steps. Marine executes the “attack” task by taking the “attack” action 

on each time unit until the unit itself or the enemy unit it is attacking dies. A task can 

take any amount of time step until it reaches the defined terminal state of the task. 

Name Definition Terminal State 

OEXPLORE Take one of the up, right, 

down, left actions 

randomly 

Unit is attacked or 5 time steps have 

passed 

OATTACK-CLOSEST-ENEMY Pick closest enemy in 

visible range and attack 

Attacking unit or the enemy is dead 

OATTACK-WEAKEST-ENEMY Pick weakest enemy in 

visible range and attack 

Attacking unit or the enemy is dead 

ONOOP Do nothing Single time step 

OFLEE Navigate to a point where 

no enemy units are in 

visible range 

Unit is in a location where no enemy units 

are in visible range or unit is dead 

ONAVIGATE-TO-WEAKEST-FRIEND Navigate to a friend that is 

weakest in the visible 

range. 

Until destination point is reached or unit 

is dead 

ONAVIGATE-TO-CLOSEST-FRIEND Navigate to a friend that is 

closest in the visible range. 

Unit destination point is reached or unit is 

dead 

ONAVIGATE Navigate to a destination 

point 

Unit destination point is reached or unit is 

dead 

OTRAIN-WORKER Train a worker 10 time steps have passed or unit is dead. 

OTRAIN-MARINE Train a marine 10 time steps have passed or unit is dead. 

Table III-3 Options 

Options are specifically constructed so as to enable the units to take strategic 

decisions, for example OFLEE option is to flee from the enemy, so a unit can learn to flee 

from an enemy unit if its health is below a threshold. OATTACK-CLOSEST-ENEMY is an option 

that picks the closest enemy unit in visible range and starts attacking it. OATTACK-

WEAKEST-ENEMY is an option that picks the weakest enemy unit in visible range and starts 
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attacking it. These two different options with minor differences can create great 

differences in the outcome of the fight between a few marines. For example, ONAVIGATE-

TO-CLOSEST-FRIEND which enables a marine to immediately go to a friendly unit for help 

can mean the difference between life and death for that friendly unit. 

Option space is different per unit type, for example, while OEXPLORE is enabled for 

workers and marines, base does not have this option since it is unable to move. It is 

important to emphasize that options are strictly a sequence of actions so actions are their 

only building blocks. In Table III-4, units and their options spaces are listed. In the 

literature survey we conducted we did not come by option usage types such as ours in 

the works related to RTS games. 

Option \ Unit Base Worker Marine 

OEXPLORE - + + 

OATTACK-CLOSEST-ENEMY - - + 

OATTACK-WEAKEST-ENEMY - - + 

ONOOP + + + 

OFLEE - + + 

ONAVIGATE-TO-WEAKEST-FRIEND - - + 

ONAVIGATE-TO-CLOSEST-FRIEND - - + 

ONAVIGATE - + + 

OTRAIN-WORKER + - - 

OTRAIN-MARINE + - - 

Table III-4 Option-Unit Matrix 

  



23 

 

III.1  LEARNING 

In the RL framework, there are two variants of temporal difference (TD) learning 

algorithms: Q-Learning and SARSA. It is possible to categorize learning algorithms as 

on-policy algorithms and off-policy algorithms (Sutton & Barto, 1998). On-Policy 

algorithms use the same policy to both select actions from and update their values, while 

off-policy algorithms keep a policy for update and another policy to follow for action 

selection.  

There are different types of algorithms for computing the optimal policy based on 

TD. Q-learning calculates an estimate    of the optimal Q-function. For an observed 

transition (s, a, r, s’), it performs the update 

 

   θ (s, a)     θ (s, a)  +(r +maxa’   θ (s’, a’) -    θ (s, a)) (III-1) 

 

There is an exploration vs. exploitation tradeoff related to reward maximization 

(Sutton & Barto, 1998), defined by a parameter epsilon, the probability of random 

action, instead of choosing the action that maximizes the Q value. This random 

exploration is necessary so that the value is not stuck in a local minima (Sutton & Barto, 

1998). It is possible to incorporate function approximation into TD algorithms. Let’s 

assume that the Q-function is approximated as Qθ (s, a) where the parameter θ is in R
M

. 

Then the Q-update can be formulated as below where Qθ (s, a) represents the delta: 

 

θ  θ +(r +maxa’Qθ (s’, a’) - Qθ (s, a)) Qθ (s, a) (III-2) 

 

The case with the function approximation is that, instead of the Q-function, the 

parameter vector is being updated and there is an extra gradient termt at the end. 

Actually, parameter vector is what is being learnt. In this work we use linear function 

approximation so the gradient term at the end simply reduces to a feature vector and the 

resulting update formula can be summarized as 

 

θ  θ +(r +maxa’ Qθ (s, a) - Qθ (s, a))   (s,a) (III-3) 
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where    is the feature vector. Then the Q-Value is calculated as 

 

Qθ (s, a) =   
    θk fk(s,a) (III-4) 

III.1.1 Rewards 

 

In most of the RL domains, reward is immediate. It is received from the 

environment just after the action is taken so it is relatively easy to know which action 

gives the best reward for a state; after all possible actions are taken for all states. 

However, in the RTS game domain, the outcome of the game, that is the reward, is only 

known at the end of the game, when either of the opponents is destroyed or maximum 

number of steps allowed for an episode is reached. It is a rather challenging task to 

distribute the reward taken at the end of the episode to the intermediate actions taken 

during the episode. 

In the SMDP framework, all reward accumulated by actions taken within the 

temporal span of the option is the total reward for that option. Q-Value update is done at 

the terminal state of the option. In our game model, there can be a single base for each 

opponent while there is no limit to the number of marine or worker an agent can have at 

any given state. This leads to concurrent options being executed by any number of 

marines and workers. For example, a marine can make a decision to execute “attack” 

option on an enemy unit at time t0, and at time t5 this marine is dead. Total reward at the 

end of that option is the total number of time steps times the -1 reward that is given per 

time step for all units added by the -5 penalty for being killed at the end of an “attack” 

option. Assume that this same decision was taken concurrently by 5 marines and some 

of them are killed in the middle of the attack option and some of them survive by killing 

enemy marines. All concurrent options accumulate their own rewards and a single 

marine is updated at the end. The term   (s,a) at the end of the update function is 

calculated as a difference of the feature vector at time tn and t0 for that specific unit that 

can be formulated as 
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  (s,a) =  tn(s,a)-   t0(s,a) (III-5) 

Q-Value update is done per unit option and   (s,a) that is used in this update is 

calculated per unit by saving feature vector at the beginning of the option and at the end 

of the option. 

General rewarding rule in our model is; -1 penalty is given at each time step to all 

units, it motivates the units to complete the option they are in as soon as possible. 

Marines get a -5 penalty if they are killed in an attack and +5 reward if they survive an 

attack option by killing the enemy marine. At the end of the game, a general reward is 

received and it is distributed evenly to all units alive in the game. General reward that is 

received at the end of the  game is rgen . No reward is given if the agent loses the episode. 

 

 

(III-6) 
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III.2  HETEROGENEOUS AGENT MODEL 

 

We designed a heterogeneous multi-agent model that consists of two learning 

agents that work in cooperation. In order to achieve better separation and abstraction, we 

implemented two different agents that are functionally different, first one the base 

learning agent that learns the general behavior of an intelligent base, and the second one 

is the marine learning agent that learns how to fight enemy units in groups. There is a 

third unit that could have been also modeled as a learning agent but worker agent’s task 

is quite simple, a resource collection task that consists of navigation between two map 

coordinates. Workers follow a fixed policy of resource collection task except in the first 

experiment in the experiments section that represents a simple resource collection task 

while avoiding an enemy unit. In Figure III-2, please notice that marines concurrently 

taking decisions and return the accumulated rewards for the Q-Value update. 

 

Figure III-2 Marine Units Taking Concurrent Option Decisions 

 

Base and marine learning agents are not aware of each other and they do not 

communicate explicitly, they just observe the portion of the real world state that they 
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need through feature vectors. As we have mentioned in the previous sections, base and 

marines have different option and feature spaces. This specialization and separation of 

agents, also include separation of rewards, so a base agent does not get rewards for a 

successful marine agent that kills enemies, every agent is responsible for its specialized 

task. In Figure III-3 hierarchy of options and actions are represented. 

 

Figure III-3 Hierarchy of options and actions 
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CHAPTER IV.    

EXPERIMENTS AND RESULTS 

We experimented with different problems ranging from simple resource collection 

problem to more complicated war scenarios. The first experiment is a resource collection 

problem of a worker with an enemy unit in the map that can kill the worker if it is in the 

visible range. The second experiment is a strategic marine fighting problem where two 

opponents fight each other with same number of marines. In the third experiment we 

study the full war scenario with bases, resource collection and unit training. 

IV.1  RESOURCE COLLECTION PROBLEM 

Resource collection problem is about a worker trying to reach a specific point in 

the map with resources, namely a mineral patch, while an enemy marine sits in the 

middle of the map. Worker should be able to learn how to avoid the enemy marine unit 

while reaching the mineral patch. 

There are a few challenges in this problem. First, it is important to design a sound 

and robust feature set for this specific problem. Second, finding a solution to the 

problem that generalizes well for problems alike, for example what will happen if the 

location of the enemy or the location of the mineral patch in the map changes? Using 

features and linear approximation helps in reducing the state space while choosing a 

good feature set might help in generalization. 

In this problem, grid size is 10 by 10, with 100 distinct positions. Enemy is in the 

middle of the grid, at position (5, 5). Worker starts at position (1, 1) and goal state is at 

position (10, 10). The single feature that is used for linear approximation is the 
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Manhattan distance between the worker itself and the goal. Agent gets a -1 penalty for 

each time step, reward is 0 for the goal state.  A -10 penalty is given if the worker is in 

the visible range of the enemy marine unit.  

Distance feature reduces the state space from 100 to 10. In Figure IV-1, 

performance of Linear Function Approximation (LFA) (II-2) and Flat Q-Learning (III-1) 

is compared with number of episodes and the number of steps needed to satisfy the 

termination conditions. It is obvious that LFA outperforms Flat Q-Learning in the time 

required for convergence to the optimal policy. 

 

Figure IV-1 Q-Learning with LFA vs. Flat Q-Learning 

 In the previous experiment we only used a single distance feature for state 

reduction. Now we will add another feature, Angle with the enemy marine unit, this will 

give extra information to the worker so that it can avoid the enemy unit better.  
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Figure IV-2 Q-Learning with LFA - Single Feature, Q-Learning with LFA - Two Features vs. Flat Q-

Learning 

In Figure IV-2 , comparison of the LFA with single feature with LFA with two features 

and Flat Q-Learning can be seen. Two features easily surpass two other algorithms while 

also converging to the optimum policy more consistently; notice the lower number of 

spikes in the graph for LFA Two Features. 
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IV.2  STRATEGIC COMBAT PROBLEM 

In the strategic combat problem, our main objective is to allow marine units to 

learn how to take strategic decisions while fighting in groups against other enemy 

marine groups. For example take a group of 4 marines confronting a group of 4 marines. 

If they attack randomly to an enemy marine they choose, it would not be a wise choice 

since the fire power will be distributed among enemy units and it will take much longer 

to kill them. If they can somehow figure out to attack the same enemy marine all 

together, which enemy marine should they choose? In this case, it would be wise to 

attack the enemy marine with the weakest health level. Through sound and good feature 

set selection, we are trying to enable marines act rationally in different conditions with 

any number of friendly marines and enemy marine units in their visible range. Our 

epsilon value is 0,01 and alpha value is 0,01. 

In Table III-2, feature set for a marine is provided. In this list there are features 

chosen to enable a compact representation of a number of friendly units and enemy units 

in the visible range. In this problem, marine learning agent uses these features to be able 

to take rational decisions in different situations and scenarios. In this experiment, we 

used a 20 by 20 grid, one team starting at position (1, 1), enemy team starting at position 

(20, 20). Opponents always start with the same number of marines so they fight under 

the same circumstances. In the beginning, each marine is out of other marines' visibility 

ranges so marines explore the map until they see an enemy unit. Enemy marines always 

follow a fixed policy; explore the map randomly until they see an opponent unit, and 

start attacking when it is in their visibility range. This policy seems like a 

straightforward and simple policy but it is quite aggressive and effective in fact, note 

that in our experiment result in Figure IV-3, the optimum policy never converges to 100 

percent winning ratio, the enemy always has a 10 percent winning or not losing ratio. In 

the literature, hard-coded advanced strategies developed by humans also state that 

aggressive and simple algorithms are quite effective (Ying-zi & Ming-yang, 2003)  (Lee 

et al., 2008). Our agent can only fight against this fixed policy if it is able to employ 

strategies as a whole team; attacking the same enemy unit at the same time, attacking the 

weakest enemy unit at first, fleeing if it is close to death. 
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In this experiment, we started both opponents with 5 marines, increased the 

number of initial marines to 20 and then to 100. In Figure IV-3, the graph of percentage 

of not losing is plotted against the number of marines at the episode start. It is possible 

to observe the differences in convergence time for each experiment. Our static features 

have been designed for ranges changing from 0 to 25. As you can see in the Figure IV-3, 

5 vs. 5 perform worse than 20 vs. 20 case 100 vs. 100 case also performs worse than 20 

vs. 20 case. The reason for that performance results is ranges for the static features are 

chosen for marine numbers ranging from 0 to 25 on average. In the next section, 

dynamic features, we will be designing our features dynamically so it will be able to 

adapt to the change. 

 

Figure IV-3 Comparison of different number of initial marine units 
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IV.3  Dynamic Features 

 

As we have discussed in the previous section, Feature 1 and Feature 2, which are 

the number of enemies around and the number of friends around have static ranges, 

which are selected by engineers' best guess. The ranges for clustering in the static feature 

are [0], [1:3], [4:7], [8:12], [13:18], [19:25], [26 or more]. However, when the number of 

units in the problem changes, or the problem is moved to a different domain, these static 

selections might cause problems. Supervising these changes takes time and finding the 

optimum values is a challenging task. This is known as the generalization problem 

(Guestrin & Gearhart, 2003) (Ponsen et al., 2006).  For this reason, we tried to create an 

adaptive dynamic feature structure, so that these ranges are selected during the game 

play. ART2a neural networks are able to cluster the sequence of inputs (Carpenter et al., 

1991). The observation sequence of number of enemies or friends around form the input 

to the ART2a network and a clustering is performed during the game play. For example, 

a scenario with 5 marines vs. 5 marines creates a different clustering while a scenario 

with 100 marines vs. 100 marines creates a totally different clustering. Figure IV-4 and 

Figure IV-5  show the performance comparison of static Feature 1 and dynamic feature 

with ART2a that represents "number of enemies around" feature for 5 vs. 5 marines and 

100 vs. 100 marine case. In the 5 vs. 5 marines case there is no notable performance 

difference between the applications. However, in the 100 vs. 100 marine case, dynamic 

feature with ART2a outperforms static feature. This performance rise is due to the 

adaptive nature of the dynamic feature sets, it clusters the observation for Feature 1. 

Static features are unable to capture the difference between the environment with lower 

and higher number of enemy units so when the number of enemy units rise, they 

perform worse than dynamic feature sets. Static and dynamic features in the 5 vs. 5 

marines case converge to the same value. Note that dynamic features perform 

dramatically better than static features in the 100 vs. 100 marine case. 
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Figure IV-4 - Static vs. Dynamic Features (5 vs. 5 marines) 

 

Figure IV-5 - Static vs. Dynamic Features (100 vs. 100 marines) 
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In Figure IV-6, Figure IV-7 and Figure IV-8, results of the clustering of ART2a 

network for the dynamic feature "number of enemies around" is shown. It is obvious that 

the increase in the number of enemies around from 20 to 100 does not increase the 

number of classes much, but rather the distribution of the values. This is an interesting 

result in the sense that, it is not counter intuitive to expect the number of classes to 

increase dramatically when the number of effectors are increased from 20 to 100 but 

these figures show the opposite. The adaptation to the new environment settings occur in 

basically in the clustering of the values, not the number of classes. This is an advantage 

because the complexity does not increase linearly with the number of effectors. 

In the 5 vs 5 case Figure IV-6 - ART2a Classes (5 vs. 5), there are 5 clusters with 

values 0, 1, 2 and 5 are classified independently and values 3 and 4 are in class 4. In the 

20 vs 20 case Figure IV-7 - ART2a Classes (20 vs. 20), the number of classes increases 

to 10. Values from 0 to 5 are classified in differently while (6:8) range, (9:13) range and 

(14:20) range are classified in groups. In the 100 vs 100 case Figure IV-8 - ART2a 

Classes (100 vs. 100), the number of classes increase to only 11, 0 to 5 are still classified 

in distinct classes. (6:7), (8:11), (12:20), (21:45) and (46:100) form other ranges for 

classes. 

 

Figure IV-6 - ART2a Classes (5 vs. 5) 
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Figure IV-7 - ART2a Classes (20 vs. 20) 

 

Figure IV-8 - ART2a Classes (100 vs. 100) 

IV.4  Feature Selection and Dynamic Features 

We have defined different features but not all of these features add the same value 

to the learning process, we have to compare and pick the best subset of these features. 

For that reason, we ran two experiments; first one is using one feature at a time. We did 

not specifically used methods in the literature such as Forward Feature Selection or 

Backward Feature Selection for a couple of reasons. Firstly, the number of defined 

features is limited to a small number. Secondly, the test for the performance of 

individual features showed that only some of the features are useful. Lastly, the increase 



37 

 

in the number of features led to divergence. The results in Figure IV-9, Figure IV-10, 

Figure IV-11 and Figure IV-12 show that the feature labeled Feature 1, which is the 

number of enemies around is the most useful, while other features add little value. This 

is surprising because common sense tells us that more detail will create a better model 

but as it is obvious in the second experiment with the combination of features in Figure 

IV-13, Figure IV-14 and Figure IV-15, adding features decreased the general 

performance. The reason for that drop in the performance is due to the linear nature of 

the linear function approximation, adding these features prevent the function to 

converge, this is related to the linear separability, a linear function can only separate data 

that is linearly aligned (Alpaydin, 2004). The reason for this divergence is fully studied 

in Tsitsiklis and Van Roy’s work (Tsitsiklis & Van Roy, 1996). In Figure IV-10, Figure 

IV-11, Figure IV-9 and Figure IV-12, feature comparisons show that F1 is significantly 

more useful than other features. In these figures comparison of F1 with other features are 

shown. These figures also confirm that, addition of features other than F1 to the F1 

feature itself in combination does not result in a better convergence and value in Figure 

IV-13 - F1 + F2 vs. F1 + F2 + F3 and Figure IV-14 - F1 + F2 + F3 vs. F1 + F2 + F3 + 

F4. Note that addition of F5 to the combination actually causes a divergence in Figure 

IV-15 - F1 + F2 + F3 + F4 vs. F1 + F2 + F3 + F4 + F5. 
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Figure IV-9 - F1 vs. F2 

 

Figure IV-10 - F1 vs. F3 
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Figure IV-11 - F1 vs. F4 

 

Figure IV-12 -  F1 vs. F5 
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Figure IV-13 - F1 + F2 vs. F1 + F2 + F3 

 

Figure IV-14 - F1 + F2 + F3 vs. F1 + F2 + F3 + F4 
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Figure IV-15 - F1 + F2 + F3 + F4 vs. F1 + F2 + F3 + F4 + F5 

IV.5  RESOURCE PLANNING PROBLEM 

 

In this last experiment, in addition to workers and marines, we add the base to the 

game and it becomes a fully featured RTS game with resource collection, unit training 

and sophisticated combat strategies. Base makes resource collection and unit training 

possible so this experiment is really about resource planning. 

 In the previous section, we conducted experiments with marines on strategic 

combat; this experiment includes these previous experiments while focusing on the base 

and its learning capability. The game map is a 20 by 20 grid, our agent starts on the 

position (1, 1) while enemy agent starts on the position (20, 20). They both start with 

one base and a single worker. Mineral patch is located in the middle at position (10, 10) 

so that they are equidistant to the main resource. None of the opponents has any mineral 

to start with, so to train a new unit, they should first collect enough resources. A worker 

or marine cost 10 minerals to train. There are 1000 minerals in the mineral patch, so the 

maximum number of units trained in one episode is limited to 100. These units may or 
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may not exist in the game at the same time. When all units of an opponent are destroyed 

or maximum number of time steps for an episode is reached, that is 1000 time steps, the 

episode terminates. The rewards are distributed at the end of the episode. The result of 

the game is not known until the episode ends, but to enable learning within the SMDP 

framework, especially for the marines to learn sophisticated combat strategies, a -1 

reward is given per time step added by a +5 reward if the marine kills the attacked unit 

or a -5 penalty if the marine dies during an attack. This 5 reward or penalty mechanism 

is necessary for the marine to kill the enemy unit as soon as possible, and the -1 reward 

enables to do this quickly while also motivating the marine to do navigation options as 

quickly as possible. Enemy marines follow a fixed policy as in the strategic combat 

experiment, they attack what they see. Worker policy is picking up minerals from the 

mineral patch and returning to the base to drop them off. Enemy base follows a fixed 

policy of its own, training new workers if the number of workers is less than 5, 

otherwise it trains new marines. 

 

In Figure IV-16, performances of the single agent and the multi-agent are 

compared as the percentage of not losing. Both of the sides start with a base unit and a 

worker unit. There is a mineral patch with 100 minerals. We can see that multi-agent 

outperforms the single agent case. Heterogeneous separation of agents leads to better 

specialization and faster convergence. In the multi-agent hierarchy, the agents do not 

have communication in between. They are not aware of each other existence and they 

don't need to, since they are specialized in different areas and they observe what they 

need to. 
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Figure IV-16 - Resource Planning - Multi Agent vs. Single Agent 

 

 

 

As a result of this experiment, we can conclude that multi agent model outperformed 

single agent model in learning to beat an aggressive opponent in the game of RTS. It has 

learned to do resource planning in building an army that is both balanced in resource 

allocation and strategic combat. This last experiment showed that our agents designed in 

the previous experiments for resource collection and strategic combat with an added 

resource planning base unit in this experiment converged to a better policy when 

compared to a single agent model. Our multi agent model learned to beat the enemy 

90% of the time while the single agent model managed to converge to only 70% winning 

ratio when not using the advanced techniques we applied in our work. 
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CHAPTER V.   

CONCLUSION 

 

RL framework is a broad subject with a lot of opportunities for designing and 

implementing learning agents in various different problem domains. We have applied 

RL techniques to a quite sophisticated problem and executed different experiments 

focusing on different aspects of the game, from delayed rewards to temporally abstract 

actions, from feature and option templates per unit to dynamic feature sets. We 

implemented a multi-agent abstraction, separated the marine units and base units in 

order to achieve a more efficient learning and better convergence. This leads to a better 

separation and better design at the cost of time and expertise needed to engineer those 

parameters and design. 

In our first experiment, resource collection problem, we concluded that Linear 

Function Approximation with sound feature choices leads to a reduced state space and 

faster convergence, while additional features lead to even faster convergence. In the 

second experiment, strategic combat problem, we firstly used static features and 

compared the performance of static features in problems with different number of 

effectors. We concluded that static features only perform well for a specific range of 

number of effectors but when the number of effectors in the game, thus the state space, 

increases, they converge to a worse performing sub-optimal policy. Secondly we utilized 

a dynamic feature selection schema with ART2A to construct the dynamic features 

during the game play to overcome the limitations of static features. Usage of dynamic 

features lead to a better generalization and better convergence compared to static 

features when the number of effectors were increased. In the third experiment, resource 

planning problem, we showed that a multi agent model that uses a marine agent for 

strategic combat and a base agent for resource planning by differentiating agents in a 

multi agent structure lead to a better convergence compared to a single agent that 
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attempts at learning the same task. Multi agent model outperformed the single agent 

model by 20% in winning ratios against the enemy agent. 

There are many points to improve for possible future work. It might be possible to 

introduce more clever features to create a better and more compact representation of the 

real world state. Another improvement might be, automatic feature extraction from the 

environment with a given initial set of basic features, then as the learning proceeds 

features that have lower impact on the function approximation can be discarded. 
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