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1. GIRIS

Bu tez calismasinda en yaygin afin tensorlerden bahsedilecektir. Tiirev ve integral
islemlerini konu alan ve Oklit ve Hermit lineer uzaylar1 gibi uzaylarin afin uzaylarini
olusturan fonksiyonel tensorlerden bahsedilmektedir. Konum (uzay koordinatlari) ve
zaman ise bahsedilen fonksiyonellerin baglica degiskenleridir. Cebir agisindan
bakildiginda, son zamanlarda daha karmasik ve anlasilmaz goriinen tensorlerin analizi
miimkiin goriinmektedir. Tensor analizinin segkin kuruculari Voigt, Levi-Civita, Ricci,
Riemann, Christoffel, Einstein, v.b. malesef bu gilizel matematiksel yap1 ile ugrasmaya
basladiklarinda, yeteri kadar cebirsel altyapiya sahip degillerdi.Daha sonraki

caligsmalarda cebirsel yap1 kullanilarak konuya zenginlik kazandirilmistir.

Bu tez calismasi tensorlerin, pratik problemlerin ¢dziimiine nasil olanak tanidigini
gostermeyi amacglamaktadir. Tez c¢alismasi li¢ kisma ayrilmaktadir. Birinci kisim
izdiisiim, momentum, rotasyon ve yansima tensorlerini iceren E"(R) deki Oklid
tensorlerini kapsamaktadir.

Ikinci kisim ise genel affinleri, homotezileri, izometrileri ve ¢arpimlarini konu alan afin

geometrik tensorler ve homografilerden bahsetmektedir.

Son olarak, liclincii kisim ise stress ve strain tensorleri, elastik tensér ve i¢ moment

tensorleri gibi fizik ve mekanikte 6nemli baz1 tensorleri konu almaktadir.



2. KURAMSAL TEMELLER

2.1.E"(R)’de Euclidean Tensorii

vektor ve

kovektor degiskenlerinin

reel degerli fonksiyonun g6z Oniine alalim. Eger bu fonksiyon her bir degiskene gore
lineerlik sartin1 saglarsa, buna multilineer fonksiyon denir. Mesela birinci vektor

degiskenine gore lineerlik sart1, A4, 1 € R olmak lizere,

- o ~ 1 2 p o N 1 2 p o . 1 2 p
a):t[/lx+yy,x2,...,xq,§,§,...,§j:/lt(x,xz,...,xq,f,é,...,§j+yt( ,xz,...,xq,é,f,...,f)

biciminde gosterilebilir. Bu multilineer fonksiyona karsilik gelen

p
/—/%

t:VxVx..xVxV xV'x.xV' >R
%/—/

q



operatoriine V uzaymnda p. dereceden kontravaryant, (. dereceden kovaryant tensor
adi verilir. p>0, >0 olmak ilizere S= p+( sayisina tensoriin valentligi, (p,q)
semboliine ise tensoriin tipi denir. (p,O) tipli tensorlere kontravaryant tensorler ve
(O,q) tipli tensorlere kovaryant tensdrler denir (Salimov ve Magden 2008).
{éa} ortonormal bazli E" (R) Euclidean uzayini goz oniine alalim. Euclidean uzayinda

vektorlerinin skaler, vektorel ve karma carpimlart gibi temel tensorlerin yani sira

degisik tensor islemlerinde kullanilan ve tanimlanabilen diger tensorler mevcuttur.

2.2. Izdiisiim Tensorii

E*(R) lineer uzaymi ele alalim. Birim vektorii € = cos a€, +sina€, ve belirli vektorii
V=X'g +x’8, olan bir & vektoriinii eksen olarak kabul edelim (Sekil 1.1). Verilen
cksende V nin ortogonal izdiigiimii olan P=(x')'g +(x*)'€, vektdriinii bulmak

istiyoruz.

Sekil 2.1. izdiisiim Tensorii

Bu tensore izdiisiim tensorii ad1 verilir ve P, ile gosterilir:

cosa , cos’a  sinacosa
P, =] . [cosa sma]: ] .,
sin & sinacosa  sin’a



Buradan,

B = P,(7): (x") _ .cosza sinqgosa x: @1
(x?)'| |sinacosa  sina | X

yazariz.

Burada p vektorii yukarida bahsedilen tensér carpiminin kendisi olan bir matris
carpimidir. V vektoriini = (x')"6 +(x*)"€, vektoriine doniistiren ve p+{=V
esitligini  saglayan ve P ile gosterilen tamamlayict izdisim  tensori

tanimlanir. =V — P ifadesinden matris seklini;

(x")" X' cos’a sinacosa || X'
(x*)"| |x*| |sinacosa  sin‘a || X

. 1
l—cos’« —sina cosa || X
—sinacosa 1-sin‘a || x°

_ ey sin” & —sinacosa || X'
q=F;<v);{ Cl=l : 2 (2.2)
(x7) —sina cosa cos” a X

elde ederiz. B, + P, =1, oldugu agiktir. Benzer sekilde, E’(R) lineer uzayin ele alirsak
asagidaki verileri elde ederiz.
3~

.-

€ = cosaf, +cos S8, +cos yE,;V = X'§ + X6, + X’E,;

p= (Xl)’él + (Xz),éz + (x3)’é3;veq = (Xl)”él + (Xz)"éz + (XS)"é3;



cosa cos’a  cosacosf cosacosy
P, =|cos B |[cosa cosf cosy]=|cosBcosa  cos’B  cosfcosy

2
cosy cosacosy cosfcosy cos” y

Boylece tensor islemleri olarak:

(x') cos’a  cosacosfB cosacosy || X'

p=P,(V);| (X*)'|=| cos Bcos cos’ B cosBcosy || X

(x*) cosacosy cosfcosy cos’ y X’

ve tamamlayic1 izdiisiime gore:

(x")" sin’ & —cosacos B —cosacosy || X'
q=P.(V); (x*)" | =| —cosacos S sin® S —cos fcosy || X
(x*)"| | —cosacosy —cosfBcosy sin’ y X’

elde ederiz. Agikgasi

P+P. =1,

(2.3)

(2.4)

(2.5)

olur. Izdiisiimiin temel kurali olan es kuvvetlilige gére; P?, =P, dir(Ruiz-Toloso and

Castillo 2005).

Eger E’(R) Euclidean uzaymi ele alirsak V vektdriiniin bir 7 diizlemi iizerine

izdligiimii vardir. Burada 7 diizlemi lineer alt uzayin tabani olarak sec¢ilen ve iki

orthogonal birim vektorden elde edilen (77, ® 7, = 0) vektor halinde bir diizlemdir.

7, =cosq,€, +cos BE, +cos y,E

7T, = coSa,€ +cos 5,8, +cos y,E,



bigiminde dir. Gergekten 7, @7, =0 dir. Bu izdiisiim tensoriinii P, olarak ifade ederiz.

7, ve 7, birim vektorleri ile gosterilen eksenlerin her biri tizerindeki V vektoriiniin

lizerine P,, P, izdiisiimlerinin vektor toplam1 P (V) olsun. P (V) = p_ ise;

P.=P.(V)=p+P, =P, (V)+P, (V); P, = (x),8 +(x),& + ()&

3

ve
(x" cos’@,  cosq,cosfB cosq,cosy,
(X*) | =||cosa,cosfB,  cos’ B, cosp cosy,
(X’ cosa, cosy, cos /3 cosy, cos’ 7,
T -
B 2 1
cos’@,  cosa,cosfl, cosa,cosy, ||| X
+| cosa,cos B,  cos’f,  cospB,cosy, ||| X (2.6)
cosa, cosy, cos B3, cosy, cos’ 7, X’
olur.

Bazi yazarlar bu tensorii k=0 vek eR igin kP ile gosterir ve yer degisim tensorii

adin verirler(Ruiz-Toloso and Castillo 2005).

Ornek 2.1. (E*(R) de S = P, tensérii): L uzunlugunda yatay bir ipin orta noktasindan

bir P agilig1 asarsak ipte bir f yer degistirmesi meydana gelir (Sekil 2.2).



L/2 L/2

Sekil 2.2. Merkezdeki agirhigi gésteren uzunluk

1. Agirlik tarafindan olusturulan F ¢ekme kuvvetini bulunuz.

2. A kesiti icin ip gerilmesi o olan ve € ekseniyle ayn1 dogrultuda olan oP, tensoriine

esit bir S gerilme tensoriinii bulunuz.
3. S yi kullanarak & normal birim vektoriiyle @agist yapan ip gerilme kuvvetini

bulunuz.
Coziim:
1.Problemimizi E*(R) de gdzdniine alalim. Sekil 2.3 teki vektérlerin bileskesinden:

%

=sin¢

Sekil 2.3. Vektor Semasi



Sekil 2.2 den t =sing elde ederiz. Boylece:

7

elde edilir..

2. Ip gerilmesi ile OX eksenini ayn1 dogrultuda farz edersek, yani € =cosO0€, +sin 0,

secilirse (2.1) den:

cos’ sin ¢ cosa
S=0P,=0| . .,
sina cosa sin” o

. F{ cos’ 0’ Sil’lOOCOSOO:|_ PL {1 0}

‘Al 'sin0° cos0° sin0° | 4fAlo0 0

elde ederiz.

3.A" kesitine normal olan n birim vektér N=cosdg +sinde, ve A’

kesitindeki o’ gerilmesi &' = S(N) dir, yani

(&' PL[1 0][cos® PL | cosd NP PL cocHe
_—— = en O- T 41A
(c?) | 4fA|0 ol/sing| 4fA| 0 4ta "

olur.



2.3. Momentum Tensori

Bu béliimde, V vektorinii FxV vektdriine donistiren ve M (Fx) ile gosterilen bir
tensor olusturmaya calisacagiz. Dogal olarak uzayimiz E*(R) dir. F ve V nin vektdrel

carpimt: T =r' +r°6, + g, ve V=x'¢g + X6, + X’8,,

i¢in

4
|
|

e1 e2 e3
Fxv=r' r* =X -r’x®)g +(r'x' —r'x)e, +(r'x’ —r’x"Hg,
X x* X
i¢imindedir. O zaman
M, (FX)V =T xV
olur. Buradan,
X' r’x’ —r’x? 0 -r r’
M, (P x* [=| X' =X | > M (F)=| rF 0 -r 2.7)
X’ r's® —r’x' -r* 0

elde edilir. Baz1 uygulamalarda I, A noktasinin yer vektoriidiir ve Vv vektorii buna
baglidir. Bu durumda doniistiiriilen vektére momentum tensorii denir ve

M =M, (F)(V) (2.8)

biciminde gosterilir.
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Sekil 2.4. Momentum vektori

Momentum tensdriiniin izdiisiim tensoriine gore ilging bir 6zelligi de bu tensoriin (F =€

birimi ile verilen) bir uygulamast (—P,,) tensoriidiir. € birim vektdr olarak alindiginda

(2.7) den:
0 —cosy cosf 0 —cosy cospf
[Mto (éx)]2 =| cosy 0 —cosa || cosy 0 —cosa
—cosff cosa 0 —cosff cosa 0

cos’a—1 cosacosf cosacosy
=|cosacos S cos’B—-1 cospfcosy =—(,-F)=-P, (2.9)

e

cosacosy cosfcosy cos’ y—1

elde edilir. Sonug olarak, M, (Fx) tensoriiyle iliskili eksenlere gére momentum tenséri

olarak adlandirilan M ., ile gosterilen bir diger tensorii elde ederiz. Bu tensori M

vektoriiniin € ekseni iizerine izdiisiim vektorii olarak tanimlariz(Ruiz-Toloso and

Castillo). Bu durumda veriler;

1. Vv vektOru onun tatbik noktast A dir.

2. Bir & ekseni dir.
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Boylece,
M, (V) = P.(M) = B, (M, (F)(¥))
olur. Ve
Mm=M, (V) =m'e +m’e, + m’g,
i¢in
m' cos’a  cosacosf cosacosy| O -r r*|x
m® |=|cosacos f  cos’fB  cosBcosy || r O —r'|x (2.10)
m’ cosacosy cosficosy cos’y |[-r* ' 0 || X

matrisi elde edilir.
2.4. Donme Tensorii

Bu bolimde donme (rotasyon) tensdrlerinin matris halinde ifade edilmelerinden

bahsedecegiz. Donme tensorii € = cos a€, +cos €, +cos y€, birim vektoriiyle verilen e

ekseni ile Hagis1 yapan ve bu eksen etrafinda v vektoriiniin donmesini saglayan bir

tensor olup R, ile gosterilir (Schouten 1989). Burada & acis1 pozitif yonlii bir agidir.

Sekil 2.5 deki vektorler yardimiyla vektorel bir islem uygulayacagiz. OB=v

vektoriiniin eksen etrafinda dondiiriilmesiyle olusan R, (V)= OB vektbriinii diistinelim.

Bu vektorii diger vektorlerin toplami seklinde bilesenlerine ayirirsak;



12

Sekil 2.5. Donme tensorii

_ _ —

OB =0C +CH + HB 2.11)

olur.

Burada:

OC, OB =V vektoriiniin cksen iizerindeki izdiisiimii ve OC = P, (V) dir. CB, Vv nin
tamamlayict (komplementer) izdiisim vektoriidiir ve CB= P.(V) C—H, vektori

-

cos6’=‘@‘cos€ uzunluguna sahip olan ve CB vektoriiniin bir katidir.

Boylece; ﬁ:@cosﬁzcosﬁeBL (V) yazilr. C—D, & ve CB vektorlerine dik bir

vektordiir  ve 3 ve CB vektorleri  ortak  dikliklerdir. ~ Bdylece

CD=exOB=¢exV= M, (Ex)(V) yazilr. HB', CD ye paralel ve onun bir katidir. Bu

vektorlerin boyu ise ‘W‘ = ‘C—B’

sind = ‘@‘ sinf = ‘@‘ sin@ biciminde olur. Boylece;

HB' =sin OM, (€x)(V) yazilir. (2.11) deki degerleri toplarsak:
R, (V) = P,(V) +cos OP,, (V) +sin OM, (8x)(V) (2.12)

esitligini elde ederiz. Bu esitlik (2.5) formiilii kullanilarak ve yalniz tensorler igin:
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R, =P, +cos&(l, —P,)+sin M (Ex)

veya

R, =cosfl, +(1-cos@)P, +sin OM,, (Ex) (2.13)

yada (2.3) ve (2.7) esitlikleri kullanilarak matris formunda :

I 00 cos’a cosacosff cosacosy
R,=cos@|0 1 0|+(l-cosf)|cosacospf cos’ 3 cos ffcosy
0 0 1 cosacosy cos/ficosy cos’ y
0 —cosy cosf
+sin@| cosy 0 —cosa
—cos S cosa 0

bigiminde yazilabilir ve 1=cos’ & +cos’ f+cos’ y oldugu gz dniine almarak:

VR (PR
Re =|h O Iy (2.14)
G G B

yazilir. Burada,

I, =cos’ a+(cos’ B+cos’ y)cosd

I, =cosacos f(1—-cos@)—cosysind
I, =cosacosy(l—cos@)+cos Bsind
r,, =cosacos f(1—cos@)+cosysinf
r,, =cos’ f+(cos’ a+cos’ y)cos &

r,; = cos B cosy(l—cosd)—cosasinf
I, =cosacosy(l—cos®)—cos Bsinf
I, =cosacos y(l—cosf)+cos fsinf

I, =cos’ y +(cos” a +cos’ ) cos &
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V=X'g +x6 +Xx’g ve R, (V)=(x')g +(X*)€, +(x’)'g, olmak iizere diger tensorlerde

oldugu gibi,

bi¢iminde yazilir. Dénme, E’(R) de bir izometri oldugunda ortogonal bir matris

olmaldir. F, ve M, (€x) tensérleri kullanilarak matris halini yazabilir ve su 6zelliktedir.

R,eR,' = ([cos 01, +(1—cosO)P, ] +sin OM, (éx))([cos@l3 +(1-cos )P, ] -sinOM,_ (éx))

=[cosdI, +(1—c059)P§]2 —sin® G[Mto (E‘)x)]2
(2.9) esitligi kullanilir ve P> = P, izdiisiim 6zelligi gz oniine alinirsa,

R, e R, =cos’ 01, +(1-2cos @ +cos’ G)P] +2cos O(1—-cos O)P, —sin O[P, —1,]

= (sin’ @ +cos’ @)1, +(1-2cos @ +cos” @ +2cos @ —2cos’ @ —sin’ O)P,
R,eRi=1, >R =R’
bu da R, nin ortogonal matrisle temsil edilen bir matris oldugunu gosterir.

2.5. Yansima Tensori

E’(R) Euclidean uzayinda, € birim vektorii verilen eksene dik olan 7 diizlemi

diistinelim.
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<f
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Sekil 2.6. Yansima tensori

Yansima tensorii ayn1 zamanda Householder tensorii olarak da adlandirilir. Bir ayna

gibi V vektoriiniin goriintiisiinii yansitir. Bu tensér H, ile gosterilir.&€ ve V vektorleri
daha énceki béliimlerde kullanilmusti. Sekil 2.6 gosterir ki AB = P,(V), B'B=2P,(V)
ve OB'=H (V) oldugunda vektor esitligi;

OB'+B'B = 0B; OB’ =0B - B'B
ve

H, (V) =V -2R,(V)=(I,-2R)V (2.15)

olur. Daha sonra (2.3) de yerine yazarsak yansima tensoriiniin matris gosterimi:

(x"y sina—cos’a —2cosacosB —2cosacosy || X'
V=H_(V); | (X*)' |=| —2cosacos B sin* f—cos’ B —2cosBcosy || X (2.16)
(x*) —2cosacosy —2cosfcosy sin’y—cos’y || X’

bigimindedir. H, tensorii ayn1 zamanda izometridir. Ciinkii:

HooH! =(1,-2P)(1,-2P,) =(1,-2P,)* = |, +4P,> —4P, = |, +4P, - 4P, = I,
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olup
He = H.'
bulunur.
Ornek 2.2. (H,,R, ve M_(€x) tensorlerinin ozellikleri)

1. M, (ex) tensdriiniin Levi-Civita tensér permiitasyonunun ve € birim vektoriiniin
daralmasi(kontraksiyonu) oldugunu gosteriniz.

_ e . - 1 . et qixs
2. M, (ex) tensériniin eksen bilesenlerinin  cos¢, :_Egijkm « 1le  gosterildigi
ispatlayiniz.

3. € nin R, donme tensoriiniin eigen(6z) vektori oldugunu gosteriniz. Eigen degerini

bulunuz.

4. R, donme tensoriiniin € degerini bulunuz.
5. |R§|=l oldugunu gosteriniz.
6. R, tensoriinde M, (€x) elde ediniz.

7. H, nin kuvvet 6zelligi oldugunu gosteriniz(Yani iki kez uygulandiginda baslangic
noktasina doner).

8. |Hé| =—1 oldugunu gosteriniz.

Not: {éa} ortonormal tabanlarda tensor indisleri kontravaryant veya kovaryant

oldugunu hatirlaymiz.
Coziim:

1. n=3 i¢in Levi-Civita permutasyonunu diisiinelim.
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0 0 0
0 0 1
0 -1 0
0 0 -1

[e]=|0 0 0
10
0 1 0
-1 0 0
0 0 0

Burada i blok satir indisi, j her blogun satirt ve K her blogun siitunudur. € birim

vektorii € = cos a€, +cos €, +cosy€, biciminde olsun,

0 1 2 3
[y =[x’ |=[ 63X = 6236 —£35%° |

0 0 O 0 0 -1 0 1 0
=—|0 0 TI|cosa—|{0 O O |cosfp—|-1 0 Ojcosy
0 -1 0 1 0 0 0 0 0

0 —cosy cosf
=| cosy 0 —cosa
—cosff  cosa 0

olur. Bu M, (€x) tensdriiniin matris gosterimidir.

1 1
2. cosq, = —E[gmm23 +&3,My, | = _5((_ cosa)+(=1)cosa) =cosa

1 1
cosa, = —5[5213m13 +&yMy, | = —5((—1) cos B+ (—cos ) = cos 3

1 1
cosa; = _E[Eﬂzmlz + &My, | = _5((_005 7)+(=Dcosy)=cosy
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oldugundan

cos ;€ = cosa€ +cos €, +cosyE, =€

olur.

3. (2.13) esitliginden:

R, (€)=cosO1,(€)+(1-cosO)P,(€)+sin M, (Ex)(€) ve € birim vektoriiniin € lizerine

1zdiisiimii kendisi oldugundan P, (€) =€ dir.

0 —cosy cosf || cosa —Ccos y cos ff+cos fcosy 0
cosy 0 —cosa || cosf |=| cosycosa—cosacosy |=|0
—cosff  cosa 0 cosy —cosa cos f+cos fcosa 0

oldugundan M, (Ex)(€) = 0 elde ederiz ve sonra buradan da:

R,(€)=cos@& +(1-cos@)g+0=¢

olur. Buda A =1 6z degerine karsilik gelen 6z vektorii oldugunu gosterir.

4. (2.14) ten R, matrisinin trace(izini) elde ederiz. Bu da:

trace(R,) = (cos” @ +cos’ B+cos’ y)+2(cos” a +cos’ B+cos’ y)cosd =1+2cos b

trace(R,)—1

Buradan da cosé = elde ederiz.
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5. (2.4) boliimde dénme tensoriin R, ortogonal matrisle ifade edildigini ve |R§| ==1
oldugunu gostermistik. € eksenini € =€,(OZ ekseni), cosa =cosff=0 ve cosy=1

sec¢ip determinantini aldiktan sonra (2.14) esitliginden:

| 0 0
[R,|=|0 cos® —sing|=cos’O+sin’ O =+1
0 sin@d cosd

elde ederiz.

6. (2.13) teki matrisin transpozunu alirsak:

R; =cos @l +(1-cos O)P, —sin OM, (x)

bulunur. (2.13) ten bu esitligi ¢ikarirsak:

R, —R! =2sinOM, (8x) - Mtﬂ(éx):;(Ré ~R!

2sinf c)

olur.
7. (2.15) ten dolayz,
H.=(1,-2P,)’ = 1] +4P’ —4P, = |, +4P, - 4P, = I,

olur.
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8. H_ ortogonal matris oldugundan |Hé|:i1 dir ve €=€, secersek yani

€

cosa =cos f=0 ve cosy =1 alinirsa (2.16) dan:

10 0
He /=10 1 0]=-1
00 -1

olur.

Ornek 2.3. (Vektor sistemlerinin indirgenmesi): E;(R) afin uzayda veya siradan bir

geometrik uzayda V, vektorler sistemini diisiinelim.

4
1. R= 2\7I bileske vektoriinii bulunuz.(Bu vektor serbest vektordiir.)
i=1

4
2. 0(0,0,0)igin orijine gore sistemin M, =Y M, (Fx)(V;) momentum vektoriinii
i=1

bulunuz. Burada A deki her bir noktanin yer vektorii ﬁ:adlr ve M, vektorii de

orijinden gectigi kabul edilen serbest bir vektordiir.

3. 0'(1,1,2) noktasina gore sistemin M, momet vektoriini bulunuz. Burada

r'=0'A dir. M, ve M, vektorleri baglantili olmalidir.
4. M. = AR olacal sekilde bir E noktasi bulunuz. Yani, M_ vektdrii ve R vektdriiniin
paralel olacak sekilde E(X,Y,Zz) noktasi bulunuz. A sabitini belirleyiniz.

5. Denklem dogrusu E noktasindan gegen ve yonii R bileske vektorii yoniinde olan

sistemin € merkez ekseninin kartezyen denklemi bulunuz.
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6. E noktasi iizerinde M., = M. esitligini saglayan € ekseni {izerinde bir E’ noktas1

belirleyiniz. Bu M =M_ vektdrii sistemin minimum vektorii olarak bilinir.
7. m vektdriiniin e ekseni ilizerinde, M, vektdriiniin izdiisiimii oldugunu gosteriniz.
Yani m=P,(M,).

9. Sistemin donme yarigapt p sabitini bulunuz.

P. (M)
R

Coziim:

1. Dort vektor toplanirsa, yani

R=V, +V, +V, +V,

R = 68, + 28, +&, bulunur.

2. (2.7) yi kullanirsak:

m' 0 -2 0off 2 0 3 211 0 0 113 0 —2 1]0
m(=[2 0 1| 4]+ 3 0 —1|-1|+]0 0 =2(-2|+/2 0 01
m | |0 -1 0J|-3] |-2 1 0]2] |[-1 2 oft]|-1 0 o]l1
-8 71 1 -1 -1
=1 [+ 1 [+] 2]+ 0|=| O |[;
—4| |3 |-7 0 -14
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olur.

Mg =g =3[ M, (79~ M, (590%)

M (F=1))V) = 2 M, (O'0x)(V)

Il
—_

=M, (003 V) =M, (0'0x)(R);

i=1
yazilir.

Buradan da M, = M, + M, (ﬁx)( R) esitligi elde edilir. Matris gosterimiyle:

M, =26 —118, - 108,
bulunur.

4. Son esitligi E(X, Y, z) noktasina uygularsak:
M¢ =M, +M, (EOX)(R) = 4R,

bulunur. Burada,
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EO:—6E:—XQ—y@—z§

ve matris yardimiyla:

m' -1 0 z -yl[e6 6
m | =l 0 [+|]-z 0 x |[|2(=41]2
m’ . [-14 y —-x 0|1 1
yazilir. Bu ise:
-y+2z=1+64
X—6Z=21
-2X+6y=14+1

denklem sistemini verir. Bu sistemin bir ¢oziimii:

(-2 83,2
41 4141 41

oldugundan,

© 120]

ml 6 41

20 40 _

m*| =(-—)|2|=| —— | > M, =—(-120€, — 408, — 20€

( 41) 41 E 41( 1 2 3)
E 20

41 |

elde edilir.

5. e merkez ekseninin denklemi:
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seklindedir.

6. e eksenindeki keyfi E' noktasinin koordinatlari( # =0 i¢in E noktas1):

EI

bigimindedir. Buna gére M. yi belirleriz. (2.17) E'noktasina uygulandiginda

Mg =My +M, (E'Ox)(R) ve matris gdsterimiyle:

_ G -]
m! 1 41 41 6
3 22
rr:z = _(1)4 + —;g—lw) 2;) (_H+6”) ?
_(H+2/I) —(—E+6/I) 0 _
i 6 85 [ 120]
—1+H+2,u—ﬁ—2,u mTE
- 0—%—@—%%# _ _% :
_—14+%+12y+%—12y_ —%_

ve buradan da




25

M. = %(—120@1 — 408, —208,)

bulunur.

7. € birim vektorii:

~ 6 2 1
Rl=v6>+22+1> =/41; &= e + e + e..
‘ ‘ \/ﬂ 1 \/ﬂ 2 \/ﬂ 3
bi¢iminde bulunur.
P,(V) izdiisiim tensorii (2.3) sagladigindan P, (M) :
3612 6] [120]
o (41 4 ar| 41
I A O .
3 41 41 41 14 41
B T R I
|41 41 41| | 41 |

esitliginden
P.(My)=m =%(—120é1 — 408, —208,)

elde edilir.

8. (2.4) verilen izdiisiim tensord, P, (M) iin matris hali:



26

5 12 6
a4 4 9
12372 g |2 a0
41 41 41 41

s o 40 |14 554
|41 41 41

Ve

3853 x41

41

P@i(mo)\=%\/792 +40° +554° =

P. (M) _3J/583x41 _ 34853
R 41341 41

bulunur. e ekseni iizerinde herhangi bir noktaya uygulananR ve m vektorleri sistem

vektoriiniin verilerine esittir ve indirgeme olarak adlandirilir.
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3. MATERYAL ve YONTEM

3.1. Afin geometrik tensorler

E;(]R) reel uzayl, E_ anlik uzay1 ve n ise E"(R)Euclidean afin uzaymin boyutunu

p

gostersin.

E;(R) uzay:{O,€, } = {kartezyen cksenler,apsis ekseni, ordinatlar, dereceler, vb}

Bu eksenler lineer Euclidean uzaymm {Q} bazli temel vektorlerinin temel

bilesenlerini olusturmaktadir. Diger kosullar belirtilmedik¢e klasik ortonormalize

sistemlerini esas alacagiz. Her hangi P € E"(R) noktasi

>
1l

olacak sekilde kartezyen koordinatlara sahiptir ve konum vektori:

OP = [é1§2...én] X = Xlé1 + Xzéz Tt Xnén € En(R) (31)

seklindedir. Geometrik uzaylarda sonsuzda siklikla noktalar mevcut oldugundan yeni
bir P noktasi i¢in yeni bir koordinat tanimlanabilir. Bu yeni koordinat onun sonlu veya

sonsuz oldugunu aciklar. Eger P noktasi sonlu bir nokta ise iki ¢esit koordinata sahiptir.
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Birincisi P(x',x%,...,x") kartezyen koordinatlar ve ikincisi P(x",x'*,...,x"",t) homojen

koordinatlardir. Bu iki koordinat sistemi:

= - (3.2)

bi¢ciminde yazilir. Sonlu P noktasi kartezyen koordinatlardan homojen koordinatlara
tagiyabilmek i¢in t =1 aliriz. Eger P noktasi sonsuz ise t =0 da homojen koordinatlara
sahiptir. Sonsuz bir noktanin yoniinii belirleyebilmek i¢in O tarafindan olusturulmus
(Sekil 3.1) paralel bir r yardimiyla r {izerinde sonlu bir A noktasi alarak t=0 da
homojen koordinatlar1 yardimiyla kartezyen koordinatlar1 olustururuz(Ruiz-Toloso and

Castillo 2005).

D, (a',a’,...,a",0) (3.3)

Sekil 3.1. Dik koordinat sisteminden homojen koordinatlara gegis
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Eger istenilirse A noktas1 O noktasindan bir birim uzaklikta olabilir. Yani ‘O—A‘ =1 dir.

Bunun i¢in koordinatlar1 vektoriin boyuna bolmemiz gerekir. Sonug olarak (esas metrik

tensor G = |, ) oldugundan:

1 2 n

a a a

D, ( , :
J@YP+.+@") J@y+.+@)y @)y +.+@"

0) (3.4)

yazilir. Bunu bazi yazarlar birim vektdr yoneticisi yada D, verilen yoniin tensorii
olarak bazilar1 ise D, (cosal,cosaz,...,cosan,O) (3.4) birim dogrultu vektoriiniin

dogrultu kosiniisleri yardimiyla (3.4) den elde edilen her 6ge olarak ifade ederler:

al

J@y+.+@"y
a2
J@y+..+@"y
\7E—AE[],éZ,...,é.,...,én] _ (3.5)

V@) +.+@")

Buradan, j bilesen
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J@y+.+@" )

[0,0,...,1,...,0]| =g eV =cosq, (3.6)

n . J

n

a

V@) +..+@") |

seklinde yazilabilir. Sonsuz noktalarin problematigini D, olarak buluruz. Ciinki

geometrik tensorlerin doniistimlerinin uygulanmas1 bazi durumlarda ¢ok uygundur

(Geometrik tensorlerin sonlu P noktalara uygulanmalari nadiren kullanilir).

3.2. Homografiler

E;(R) yi {éa}(G =1,) seklinde orthonormalize tabanlara karsilik gelen E"(R)ye afin

oklid uzay1 olacak sekilde bir geometrik uzay olsun.Kabul edelim ki belirli bir lineer

operatéor veya endomorfizm T, E"(R) deki vektorleri doniistiirsiin. Bir
A:E (R)—E"(R) afin doéniisimii EJ(R) uzaymm P ve Q giftini veE"(R)ye
karsihik getirir. Ornegin A(P,Q) =V, {0, éa} ortonormal bazli E;(]R) uzayina karsilik
gelir. {0,&,} ortonormal baz E"(R) Euclidean uzaymin ortonormalize edilmis tabanina

karsilik gelir. Daha otesi lineer T operatorii, afin bir transformasyon A benzerligiyle

E (R)alanina girer. Bu transformasyon f ile gosterilir ve asagidaki ozellikleri

olusturur.

1. f=E(R)—>E;(R); f, E;(R)de lineer doniisiimdir. VP,QeE (R): f(P)=P";
f(Q=Q; PQeE;(R) burada P’ ve Q' noktalarmim sonlu veya sonsuz oldugu

belirlenmemistir.
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2. E;(R) wuzaymda P ve Q sonlu rasgele bir nokta oldugu yerde

AO,Q)=T[AO,Q)]=T[AO,P)]+T[A(P,Q)] dir.

Eger X € E}(R) noktast;
f(X)=X (3.7)
sartin1 saglarsa X cifttir veya invaryat nokta diyebiliriz. ES(R) de afin bir

transformasyon 0,1,2,...,n ¢ift veya invaryat noktalara sahip olabililir ve hatta invaryat

noktalarin lineer alt uzaylarina (bir dogru, diizlem vb.) sahip olabilir. Bir tensor olarak
afin transformasyonu isaret edebildigimizden ve sonsuz P noktalar1 i¢in onu
kullanabildigimizden, (n+1) sirali matris sunumunu kullanir ve homojen koordinatlarla
calisiniz. Afin geometrik tensor transformasyonlari aynt zamanda homografik olarak

adlandirilir ve bunlarin matris gosterimleri

X'l tn t12 tln - : Xl
sz t2] tzz t2n - ? Xz
X' =FeX - : I R n . : (3.8)
X" t, t, ... t, — a X"
] [b b b, - b | |t]

bicimindedir. burada F, afin tensordiir (Hacisalihoglu 2005). (3.8) deki F

homografisindeki n sira blogu E (R) Euclidean uzayinda ki T lineer operatorii
T =[tij]ye karsilik gelir. Homojen koordinatlarda O'(a',a’,...,a",b,.,) noktast orijin

noktas1 olan O,(0,0,...,0,...,0,1) noktasina doniistiiriilir. Eger b, , =0 ise O nun

(orjinin) afin noktast O da belirtilen dogrultuda sonsuz bir noktadir. Eger b, # 0ise
e . . . o ,aa a"
biitiin koordinatlar1 b,,, birim olmasi i¢in b,,, ile béleriz. O'(—, ] ,1)

n+1 n+1

noktas1 homojen koordinatlarda kartezyen sonlu bir noktadir.
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O(—,—,...—/8), (3.9)

Bu ikinci durumda O orijininin afin transformasyonudur. Bir invaryat nokta ve invaryat
noktalarin diiz bir ¢izgisiyle (diizlemde) n=2 boyutunun homografikleri homojen

olarak adlandirilir.
3.3. Afiniteler

Eger bir homografi sonlu noktalar1 sonlu noktalara, sonsuz noktalar1 sonsuz noktalara
dogrusal noktalar1 dogrusal noktalara doniistiiriiyorsa ve ayrica A,B,C dogrusal

noktalar1 i¢in belirli oranlar1 sagliyorsa o zaman;

(AB,C) =%:><A',B',C'>=(A,B,C) (3.10)

dir ve afinite veya afin homografik doniisiim olarak adlandirilir. Geometrik doniistimler

|F| #(0 1ise diizenli ve |F| =0 ise tekil veya diizensiz olarak adlandirilir. Afinitelerin

matris gosterimi,

X’] _a'll a12 In — Il Xl
X7 ey a, v a,- P X
X'=AeX—>| " |=| =~ = T e (3.11)
X a, a, - a,— | X
— — — -+ - —
] [0 o 0— 1| [t]

burada doniisiim matrisi A ile ifade edilir ve
|A|£0 (3.12)

dir. Yani, bire bir iliski gereklidir ve buda diizenliliktir. A nin blok matrisi T, orthogonal
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bir matris oldugunda (T' =T ') determinant degeri |A| =21 dir ve affinitesi izometri

olarak adlandirilir.(dogrudan eger |A|:+1 ise, ve tersine |A|:—1 ise) Affiniteler

carpimsal bir non-Abelian grup olustururlar (Ruiz-Toloso and Castillo 2005).

Ornek 3.1. (Afinite): n=2 boyutunda siradan bir (O — XY) kartezyen sisteminde bir
afinite farz edelim. Oyle ki D, ikinci ¢eyrek dairenin aciortayinda invaryant bir nokta
(afinite yonii) ve invaryant noktalarin dogrusu (afinitenin e-ekseni) 2Xx—y —6 =0 olsun.
(Sekil 3.2) Ayrica biliyoruz ki bu affinitede r dogrusu, B ve B’ keyfi afin noktalarini
birlestiren ve D_ ekseni (S, B’, B) orani sabit olacak sekilde bir S noktasin da kesen bir
dogrudur. (S,B’,B) =k;k € R;k # 0) boyle sabit bir afinite oran1 olarak adlandirilir ve

bizim durumumuzda bu oran k =3 tiir.

1. O ve D, noktalarmi birlestiren r dogrusunun kartezyen denklemini bulunuz ve
eksendeki S noktasini belirleyiniz.
2. O'er ve (5,0',0) =k oldugundan O’ noktasini belirleyiniz.

3. Afinite tensorii A y1 bulunuz.

4. Bir onceki sorunun sonucundan yola c¢ikarak A nin invaryant noktalarmin elde
edildigi yukaridaki bilgiyi dogrulayiniz.

5. A(O',P",Q") tlggeninin koselerini bulunuz ve 0(0,0),P(3,0),Q(0,2) noktalarinin
affinitesini bulunuz.

6. A(O,P',Q") ve A(O,P,Q) tiggenlerinin o alanlarinin oraninin affinite sabiti k ya
esit oldugunu gosteriniz.

7. Uggenlerin agirlik merkezleri G ve G’ niin affin noktalar1 oldugunu gosteriniz.
Coziim:

1. D, noktasi D,(-1,1,0) homojen koordinatlara sahip olsun, sonlu O noktasi

0

0(0,0,1) homojen koordinatlara sahiptir. Bodylece homojen koordinatlarda r

dogrusunun denklemi:
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X-0 Y-0 t-1

r= >Y+X=0
-1 1 0
ve kartezyen koordinatlarda:
r=y+x=0
olur.
Y+X =0
2X =Y -6t=0

denklem sistemini ¢dzersek homojen koordinatlarda S(2,-2,1) noktasini elde ederiz.

2. Afinite oran1 Kk >0 oldugunda eksen afin noktalarin1 ayirmaz. Afinite bagintisini O

ve O' noktalarina uygularsak;

SO'_ Xg—Xo Y5 —Yo

- - =k
SO Xi—-Xg Ys-Y,

(S,0,0)=

elde ederiz. S(2,2,1) ve O(0,0,1) noktalart homojen koordinatlarda oldugundan

2-Xo _5 (D-Yo
2-0 7 (=2)-0

=30 Xo =—4; Y, =4

diir. Burada homojen koordinatlarda O'(—4,4,1) olur.
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Deo 2 Lo

v

Sekil 3.2. Ornek 3.1. iin semasi

3. Homojen koordinatlarda eksen denklemi e=2X —Y —6t =0 burada 6rnegin sonlu

P(3,0,1) noktast ve sonsuz L, (1,2,0)noktalar1 elde edebiliriz. Ciinkii denklemi

saglamaktadirlar. D_,S,P,L,  invaryant noktalar oldugundan afin doniisiimlii

0oV

noktalarim1 da biliriz. (3.11) deki matris denkleminde yerine yazmak i¢in O,S,P

noktalarini ve afin transfomlarini segersek:

-4 2 3 0 2 3
4 2 0(=A0 2 0

1 1 1 1 1 1

4 2 3o 2 37" 7 2 -12
A=l 4 -2 o0llo0 2 0 :%—45 12
11 1|1 1 1 0 0 3

elde edilir. Burada afinite tensoriin matrisi oldugu goriiliir. A¢ikcasi; affinitenin diizenli

karakterini saglayan |A|:1;t0 elde edilir. A matrisini (3.11) esitligin de gereken

formata sahip oldugunu goézlemleriz.
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Xx-3 y-0 t-1
2 0

homojen dogrusuna sahiptir. Béylece homojen koordinatlarda sonlu noktalar i¢in e nin

4. P(3,0,1)ve L_(1,2,0) noktalarindan gecen e dogrusu

parametrik denklemi:

X 3+4
y| =| 24 |,
t 1

e nin noktalarini doniistiiriirsek:

1"7 -2 -121[3+4
Aly =§-—4 5 12 22
t 0 0 3 1

[9+32 3+ 1 X
:%-0+6ﬂ =| 24 |=|y
| 340 R

e

burada e-ekseninin tiim noktalarinin invaryant oldugunu gosterir. D, (—1,1,0) noktasini

dontstiiriirsek:

. 7 =2 -12] -1 . -9 -3
-4 5 12| 1|==9 |=|3
3 3

0 0 3 0 0 0

burada ifadede sart kosuldugu gibi sonsuz D_(—1,1,0) noktast homojen koordinatlarda

invaryanttir.

5. 0(0,0,1) noktasinin transformu O'(—4,4,1) dir ve P(3,0,1) noktasinin da P'(3,0,1)

dir. @ nun transformuda:
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-16
X' . 7 =2 -12{0 1—16 A
=2 = - —| 22 —16/ 22
v|=5]=4 5 12 2] =5 22| 2 > Q194,224
t 0 0 3|1 3 ]
dir.
1O 30 p
6. o = AlanA(O,P,Q) = > 0 0 2= 5= 3 oldugundan,
I 1 1

4 3 —1%
1 1 64 88
"= AlanA(O,P',Q)=—|4 0 22/ | =—(——+22+22-12)=9
o (0.P.Q)=7 %l =565 s12)
1 1 1

dir.

SHES

elde edilir.

7. Homojen koordinatlarda her iki ticgenin agirlik merkezleri:
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y :—4+3—1% 19

- s

¢ 3 9

4+0+22
o 3193
3 9 9 9

ve G agirlik merkezinin afin dontigiimii:

7 [7 2w | 1‘%—5 -19¢
y" =34 5 12 % -3 1%+8 _ 3% _g
t 0 0 3| 3 1

bu da afin noktalar olduklarin1 gosterir.
3.4. Homoteziler (Benzestirme Domiisiimleri)

Sonlu degisken olmayan birim H noktasina sahip (H; homotezi merkezi) afin

dontisimlere homotezi denir. Herhangi bir X noktasi ve onun homotetigi X', H ile

dogrusal olur ve (H,X',X)= % =k durumunu saglar.’k’ sabiti homotezi orani

olarak adlandirilir; k € R,k #0 Eger k > 0ise homoteziye diiz, k <0 ise homotezi ters

olarak adlandirilir. Diiz homotezilerde H ¢ XX’ ve ters homoteziler de H e XX’ dir.
Homoteziler grubu c¢arpansal non-Abelian bir alt grup olusturur. Homojen

koordinatlarda F homotezi tensoriiniin matris gosterimi soyledir.
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x'] [k 0 - 0— (d=kh']| [x']
x| [0 k - 0— (a=kh*| [x
x| [0 0 - ke a—kh | |x G.13)
I I _
v 00 - 0- 1 |[t]

Burada H(h',h?,...,h") homotezi merkezinin kartezyen koordinatlaridir (Ruiz-Toloso

and Castillo 2005). Esitlik (3.13) gosterir ki tensor, homotezi merkezi ve onun orani

veya diger yeterli bilgiler verilirse bilinir.

Ornek 3.2 (Homotezi): n=2 boyutunda (O - XY)Kkartezyen sisteminde H(l,3)

homotezi merkezi ve Q(0,2) ve Q'(3,5) homotetik noktalar ¢iftini diigiinelim.

Homotezi oranini bulunuz.
Homotezi tensorii F yi bulunuz.

H nin invaryant nokta oldugunu ispatlayiniz.

L o=

X—Y+6=0 dogrusunun homotetik dogrusunu bulunuz.

i

x> —y? =4 hiperboliiniin homotetik dogrusunu bulunuz.

Coziim:

1. Verilenleri esitlik (3.13) te uygularsak:

k 0 (1-k).1
F={0 k (1-k)3
00 1

ve Q' noktast Q noktasinin transformu oldugundan Q've @ noktalarin1 homojen

koordinatlara uygularsak;
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31 [k 0 (a-k)][o] (3=1-k
5(={0 k (3-3k)|e|2|>{5=2k+3-3k >k=-2
1| o 0o 1 1| |1=1

olur. Buda homotezinin ters karakterini gosterir.

2. F matrisinde k =—2 homotezi oranini yerine yazarsak

-2 0 3
F={0 -2 9
0 0 1
buda homotezi tensér matrisidir.
3. H(1,3,1) noktasinin transformu;
X' -2 0 3|1 1
yi={0 -2 9||3|=|3|=H
t' 0 0 1]1 1

X' -2 0 3| x
4.1y |=| 0 -2 9|y | homotezi denkleminden

(3.14)
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elde ederiz.
X
[1 -1 6]|y|=0
t

matris seklinde verilen dogruyu (3.14) yerine yazarsak

1

. -1 0 3| (X
Sl -1 6] o -1 o) |y |=0ex-y-6t'=0
0O 0 2 t'

elde edilir. Buda kartezyen koordinatlarda x—y—6=0 dir.

5. Hiperbolii homojen koordinatlarda ve matris seklinde ifade edersek:

1 0 0} x
[x y t]jo -1 0 |[y|=0
0 0 -4t

olur ve (3.14) de yerine yazarsak:

t i

1 -1 0 3Tt o o][-1 0 3]x
Z[x’ y t]lo -1 9[jo -1 offo -1 9|y
0 0 2/|lo o —4|lo o 2ft

Buradan da homotetik hiperbol
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-1 0 -3 |X
[X y t]jo -1 9 |y|=0
-3 9 88|t

olur. Kartezyen koordinatlarda (x)* —(y)* —6x+18y—88=0 olur.

3.5. izometriler

E;(R) uzay1 ileilgili E"(R) 6klid uzayimda her bir vektoriin ve doniisiimiiniin noktasal

carpimini degistirmeyen lineer T operatdrleri vardir.

va,b eE"(R) > aeb=T(a)eT(b) (3.15)

E"(R) o6klid uzayinda bdyle operatérlere izometriler denir. Bu Oklid uzayinin {éa}
tabanina isaret ettigini ve temel matris tensoriiniin ilgili G matrisine sahip oldugunu farz
edersek bir T izometrisi tanimlanabilir. Clinkii T matrisi (3.15) i:

T'GT =G (3.16)
matris iliskisiyle saglar. Eger E"(R) nin {éa} taban1 ortonormalize edilmis ise G =1,
ve (3.16) iliskisi:

T'eT =1 yadaT'=T"' (3.17)
seklinde yazilabilir. Bu izometri tensOriiniin ortonormalize taban altinda ortogonal
matris olarak gorlindiigiinii ispatlar. Boylece (3.1) deki kisminda olusturdugumuz
klasik referanslar ortonormalize oldugundan izometri i¢in duyulan gereksinim
T, orthogonal matris olmalidir. Daha sonra en tistiin izometrilerle ilgilenecegiz. Bunlarin
ilki n=2boyutlu (diizlemdeki izometriler) ve sonra n=3 boyutlu (uzaydaki

izometriler) dir. Belirli bir adi olmayan izometrilerde vardir. Burada bunlara

deginilmeyecek fakat varligimi vurgulayacagiz. Izometrilerin non-Abelian carpansal

grup olusturdugunu ve alt bdliimlerinin diiz izometrilerde (|M | =+1) ve ters
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izometrilerde (|l\/||:—1) olarak bolim (2.4) te formiile edildigini vurgulamak

Onemlidir.

Oteleme(n = 2): Bu izometri karsilikli (yondes) iki noktanin vektor farkimin E*(R) nin

sabit bir vektorii oldugu gergegiyle karakterilize edilir. Eger;

X'=MX = A(XX")=E;t € E*(R) (Oteleme vektorii)

f=t's +t’g,

Oteleme vektorii olarak alalim, o zaman bu tensoriin homojen koordinatlar da matris

gosterimi:

, 0o - t
X 0 1 t? X
y'|= S y (3.18)
t’ t
0 0 — 1

Bu formiil sadece sonlu noktalarin 6telenmesinde kullanilir. Burada invaryant olan bazi
dogrular vardir. Bazi yazarlar bu dogrulan ¢ift dogrular, sabit dogrular, kilavuzlar vb.
olarak adlandirir. Cift dogrular terimi karmasik olabilir. Ciinkii dogrudaki bu noktalarin

invaryant veya ¢ift translasyon olduklart dogru degildir. Ciinkii bu tensér invaryant

noktalardan yoksundur. (|M | =+1) in bir diiz izometri olmast bunun nedenidir(Kaya

2002).

Doénme (N =2): Birim invaryant noktaya (donme merkezi C(a,b) olarak adlandirilan)
sahip bir diizlemdeki diiz izometriye dénme denir. Oyle ki eger X ve X' karsilikli iki

nokta ise (X'=MX) CXX'=6 acist sabit bir degerdir ve donme agis1 olarak
adlandirilir. Bu donme agisinin yonii saat yoniinde veya saat yoniiniin tersinde olabilir.

Bu bolimde donme tensoriinii dogrudan 6nermek yerine izometrilerin ¢arpansal grup
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karakterlerinin onemini vurgulamak amaciyla olustururuz. Kartezyen koordinatlarda

0(0,0) merkezli ve € acil1 klasik donmesini farz edelim.

X' cosd —sind || X
Mikeapeil 1
y sind cos@ ||y

Sonra su islemi takip ederiz.

1. Oteleme M, .Orjine gore merkezi C(a,b) noktasina dteleriz.

2. Dénme M, Bir noktay1 saat yoniinlin tersinde bir 6 agisiyla (3.19) esitligini
kullanarak merkezine gére donme yapabiliriz.

3. Oteleme M,.C merkezini C(a,b)baslangi¢ noktasmi alarak ters dteleme uygulariz.

Sonug olarak:

1 0 - -a cos) —sinfd - 0 - a
01 - -b sind cosf@ — 01 — b

M, = ; M, = ; My = ;
0O 0 - 1 0 0 -1 0 0 - 1

Ve

M=M,eM,eM,

ifadesinden
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cosd —sinf - [(1-cosb) siné’]{ﬂ
X' X
y'|=| sind coss - [-sin® (1—cos9)]m v, (3.20)
t t

0 0o - 1 |

elde ederiz. Buda 6 donme tensoriiniin saat yoniiniin tersindeki matris gosterimidir.

Ozellikleri:

e XX' dogru pargasinin merkez noktasindaki ortogonal dogru, donme merkezinden

geger.

o llgili r ve r' dogrular aralarmnda @ dénme acisii olustururlar ve dénme

merkezinden esit uzakliktadirlar.

Merkezi Simetri (n = 2): Merkez simetrigi K=-1 orani i¢in homotezinin 6zel bir

durumudur.(3.13) formiilii bu durum i¢in uygularsak:

-~ -1 0 - 2n
4 0 -1 2h?
=1 Y (3.21)
1 1
0 0 - 1

Bu homotezinin kartezyen koordinatlarda merkezi, H(h',h?) noktas: simetri merkezi

-1 0
olarak adlandirilir. Bu simetri bir izometridir. Ciinki ilgili matris T E{ 0 J

ortogonaldir.|M|:iloldugunda diiz bir izometridir. Baz1 yazarlar bu izometriyi

6 =180° = 7 nin dénmesi olarak smiflandirir.
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Eksenel Simetri (n = 2): Eksen simetrigi simetri ekseni olarak adlandirilan invaryant
bir dogruyla karakterilize edilir ve ilgili noktalar1 iceren XX dogru pargasinin
merkezine ortogonal bir dogrudur. Donme icin yukarida verilen metodu uygularsak bu

tensOriin matris gosterimini su islemlerle elde edebiliriz.

1. Eksenlerin eksen simetriginin olusturulmasi

2. Genel Oteleme ve rotasyon, simetriden Oonce eksenleri keyfi bir noktaya yerlestirmek
i¢in simetriyi uygulayarak

3. Donmesini ve Otelemeyi tersine ¢evirmek icin ayrica maksimum bilgi kriterleri takip
edilerek bu kitapta bu tensorii olusturmak i¢in bagka bir metot daha uygulayabiliriz.

Farz edelim ki eksenin denklemi (Sekil 3.3) e = Ax+ By +C =0 olsun, eger

ez—=;b bilgisi verilmisse ilk olarak bu bilgiyi 6nceki haliyle yazalim.

M(—%,O,l) ve N(O,—%,l) noktalarinin ~ kartezyen  eksenin  kesenleri,

AX +BY +Ct=0 denkleminin e-ekseninin invaryant noktalart oldugunu biliyoruz,

¢linkili denklemi saglamaktadirlar.

/' Pes (A,B,0)

Sekil 3.3. Eksenel Simetri
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enin L noktast L (—B,A,0) oldugundan denklemi saglar. Ortogonal yoni P, (A, B,0)

olacaktir. Ciinkii her iki vektoriin E*(R) de noktasal carpimi dnemsizdir.

bu P (A,B,0) ve P/(-A,—B,0) noktalarinin simetrik oldugunu gosterir. Bu bilgiyi asil

tensor denkleminde ( X' = MX ) kullandigimizda;

—% 0 -A —% 0 A
0 —% “B|=M| 0 —%
1 10 | |

S W

elde edilir. Bunu diizenlersek;

—%O—A—%OA

M= 0 —%—Boo —%B
1 10 1 1

olur. Buda eksen simetri tensoriiniin s0yle oldugunu gosterir.

« -A’+B* -2AB - -2AC
1 | 2AB A’-B* - -2BC
oy 3.22
y' A2 4B ___  ____ _ ____ y (3.22)
t 2 2 t
0 0 - A" +B

(3.22) de M matrisinin T blogu
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1 {—A%BZ ~2AB

A’ +B*)? 0
T A2 2 2 2 ;T.TtETzz 1 ( T )
A" +B —2AB A —B

A’ + B’ 0 (A* +B*)
ortogonal blok oldugundan M izometridir. Diger yandan determinant;

—[(A-B*) +4A°B% (A +B%)
(A’ +B?)’ -

M=

dir.

Bu sonug |M| nin ters bir izometri oldugunu ispatlar. Bu geometrik anlamda simetrik

figiiri XOY diizlemin disina tasimamiz gerektigi, ¢evirebilmek ve prototip figiiriinii
elde edebilmek i¢in (¢akistirma yoluyla) anlamina gelir. Uzayda ayna simetrisini elde
ettigimizde geometrik nesneleri (N =3) uzaymnda (n=4) uzaymna doniistiirebilecegi
seklinde bir ac¢iklamanin miimkiin olmadigr goriilmektedir, bu ylizden geometrik

diisiinceleri ihmal ederek simdiye kadar gosterilen tensor 6zelliklerini tercih edecegiz.

Benzerlik(n = 2): Geometride bir izometri ile bir homotezinin sonucuna benzerlik

denir. En yaygin benzerliklerden biri homotezi x donmedir. Burada rastgele dénme
merkezi C(a,b)ve homotezi merkezi H(h',h?) gerekli degildir. Bu yiizden bu
benzerlik rasgele C(s',s*)=H(s',s*)bu merkezlere baska bir benzerlik olusturacak
sekilde indirgenebilir. Bu durumda birim merkez H =S,(s',s’) benzerlik merkezi

olarak adlandirilir. Burada matris sonuglari geometrik uygulamalara gore ters yonli
uygulanabilir. Benzerligin ilgili tensorii izometri ve homotezinin bir ters iirliniine sahip
oldugundan S =M eF dir. Sonraki bdliimlerde benzerligin matris gosteriminden

bahsetmeyecegiz. Benzerlikler non-Abelian c¢arpansal grup olusturmaktadirlar.

Diizlemde homotezi ile ilgili determinant |F(n = 2)| >0 dir ve boylece S determinanti;
|S| >0 dir. Eger |M | =+1 ise (diiz benzerlik) |S| <0 dir. Eger |I\/I | =—1 ise (ters

benzerlik) olacaktir.
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Ornek 3.3. (Déonmex Doénme): n=2 boyutlu (O-XY) Kkartezyen sisteminde
C,(a,,b)donme merkezi ve 6, agisi takiben C,(a,,b,) donme merkezi ve 6, agisini

diistinelim.

1. Izometri tensoériinii bulunuz.

2. Bu izometrinin baska bir donmesi varmudir.

3. Bu durumu C (2,3) ve 6, =60°(saat yonii tersinde) ve C,(4,5) ve 6, =60°(saat
yoniinde) verileri i¢in uygulayiniz.

4. Ayni durumu C,(5,1),6, =45° ve C,(1,3),6, = 45° (saat yoniiniin tersi) degerleri i¢in

belirleyiniz.

Coziim:

1. (3.20) esitligi kullanilarak;

cosf, —sing — a(l-cosé)+Db sing
G sin, cos§, — —asing +b(l-cosb)
1 =
0 0 - 1
cosd, —sinfd, — a(l-coséb,)+b ssind,
G sind, cos#, — -—asind,+b(1-cosb,)
2 p—

elde ederiz.G =G, xG, seklinde gosterilen izometri tensorii G =G, G, matrisine

sahiptir.



Burada

g,, =cos(f +0,)
9,, =—sin(f +6,)

;=9 [1_005(01 + 92)]

+b, sin(6, + 6,) +(a, —a,)(1-cos&,) + (b, —b,)sin G,

g,, =sin(d, +6,)
g, =cos(b, +0,)

9,, =8, sin(6, +6,) +b, [1-cos(6, +6,)]

—(a,—a,)sind, + (b, —b,)(1-cosb,) .

2. Asagidaki durumlarda

(a) Eger;

6,+6,=0 veya 6 +6,=2x ve (a,b)=(a,,b,)>G=I,

dir.

(b) Eger;

50

9
g22

g13
g23

(3.23)
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6,+6,=0 veya 6 +6, =2x ve (a,,b)#(a,,b,)
ise izometri bir 6telemedir ve ilgili vektor

t' =(a, —a,)(1-cos@,)+ (b, —b)sin b,
t* =—(a, —a,)sind, + (b, —b))(1-cosH)).

f=t'g +t2é2{
(c) Eger; 6, + 0, = = 1se merkezi simetridir.

(d) Diger durumlarda @ = 6, + 6, agisina sahip bir donmedir.

3. Verilenlere gore

A A A A
G = \/_% % - %_\/g ;G, = _\/_% % - %—2\/5

0 o - 1 | [ o 0o - 1
(10 - 1-43]
M=G,eG < 0 | - 1443
JR— J— + _
0 0 - 1 |

dir. Buda t =(1- NE) )e +(1+ NE) )€, . vektoriiniin 6telemesidir.

4. Verilenleri uygularsak
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_‘/54 _‘/54 — 5+2\/§— —‘/54 _*/54 — 1+\/§_
Glzﬁg \EA - 1-32 ;Gzzﬁé \54 - 3-242

(0 -1 — 2432
M=G,eG |l 0 - ~2++2

j— — _l’_ —_—

00 - 1

2++2).1+2+2.1 ]
—(2+~/2).1+24/2.1

[c0s90°  —sin90°

sin90°  cos90°

olur.

M izometrisi M =G, C(2+«/§,2\/5) merkezli ve #=90° acili bir donmedir. Bu

ornek rotasyonlarin ¢arpansal grup olusturmadigini gosterir.

Ornek 3.4. (Eksen simetri xOteleme): n=2 igin (O - XY) Kkartezyen diizleminde

eksen simetrigi e =2x+y—2=0 ve 6teleme vektorii T =3€, +4€, olsun;

1. Olusan izometrinin matris gésterimini bulunuz.
2. Tensorii siniflandirmiz ve bu tensoriin teoride bahsedilenlerden biri olup olmadigini
cevabi dogrulayarak gosteriniz.

3. Bu izometriyi e simetri ekseninin ilk ¢eyrek dairede belirledigi tiggende uygulayimiz.

Coziim:

1. (3.22) ve (3.18) esitlikleri kullanarak:
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27 +1° -22.1 -22.(-2) -3 -4 8

MI:% 221 2°-1 -2.1.(-2) L PR 41;
2°+1 5 5

0 2% +1 0 0 5
1 0 3 -3 -4 23
M,={0 1 4;M=M,M,==|-4 3 24
0 0 1 0 0 5

elde ederiz.

2. Bu bir izometridir ¢iinkii ilgili matrisi afinite formatina sahip (3.11) esitligi ve T

blogu ortogonal matris olma sartlarini saglar.

2
-3 -4 25 0
rreor (12 AL
54 3 251 0 25

T nin yapist T yi Otelemeye veya merkeze gore simetri olarak belirlememize izin

|2

vermez. Ayrica T bir eksen simetrigi degildir. Clinkii m,; =23 ve m,, =24 terimleri

esitlik (3.22) sartlarin1 saglamaz. Sonug olarak (bdliim 3.5) in girisinde bahsedilen tek
bir izometridir ve belirli bir ad1 yoktur. Yapilan son agiklamalarda bazi yazarlar bu

izometriyi ‘kayan izometri’ olarak adlandirir. Bu bizim agikcast kagindigimiz bir

isimdir. |M | =—1 iken izometri ters izometridir.

3.Bahsedilen  iiggenin A ,O,B  kose noktalar1 homojen  koordinatlarda

A(1,0,1),0(0,0,1),B(0,2,1) noktalarina sahiptir ve homolog matrisleri:

-3 -4 23||1 0 O 20 23 15
1 -4 3 24|10 0 2 :% 20 24 30
0 0 5|1 1 1 5 5 5
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dir. Buda doniistiiriilen tiggenin kartezyen koordinatlari:
N (4,4),0'(33,29),B3,6)
oldugunu gosterir.

Ornek 3.5. (Benzerlik): n=2boyutunda (O — XY) kartezyen sisteminde su benzerligi

diisiinelim. Benzerlik H(-6,4) merkezli ve k :% oranmna sahip F homotezisi ve

C(0,0) merkezli @=90° agili (saat yoniiniin tersi) G, dénmesine sahip homotetik

sekil olsun;

1. Benzerlik tensoriiniin matris gésterimini bulunuz.

2. Bahsedilen benzerligi siniflandiriniz.

3. Benzerlik merkezi olarak adlandirilan invaryant noktanin koordinatlarini belirleyiniz.
4. Bu benzerlige gére H ve C noktalarinin homolog formlar1 olan H' ve C’
noktalarin belirleyiniz.

5. C' noktasindan gegen ve HC dogrusuna C noktasinda teget olan g¢emberin
denklemini yaziniz.

6. A(HCH'") {iggeninin ¢evrel ¢emberinin denklemini bulunuz. Agikg¢a goriiliiyor ki bu

iki gemberde C den geger.

7. Verilen gemberlerin kesisen diger noktasinin benzerlik merkezi oldugunu gosteriniz.

Coziim:

1.
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cos(-90°) —sin(-90°) 0 0 10
G, =| sin(-90°) cos(-90°) O|=|-1 0 0;

0 0 1l o o

Jo voyr o s Jo 1w

S=G,F==|-1 0 0[|0 1 12 ;S=—|-1 0 18
4 4

0 0 1[0 0 4 0 0 4

benzerlik tensoridiir.

2. Smiflandirabilmek i¢in sunu hesaplariz. |S| = 4i = % > 0 (duiz benzerlik)

3

3. Ayni nokta sunu saglamalidir.

1

I A 3 X 0

SX =X;(S-1)X =Q—|~l -1 9 lly|=|0
0 o0 o |t) [0

su ¢oziimle,
X oy ot x_ y_ t
/4 3 -1 3 -1 1/4 66 60 17
-1 9/2 -1/4 9/2| |-1/4 -1
e 1 . . . 66 60
Buda gosterir ki kartezyen koordinatlarda benzerlik merkezi S, = (ﬁ 17

4. Homolog noktalar:

) dir.
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X 0 1 12][-6] [4

y' :i -1 0 18| 4 |=|6|—>H'(4,6)

Lt 10 0 4] 1 1

X' 0 1210 3

y' =i -1 0 18]/0(=]9/2|—>C'(3,9/2)

Lt 10 0 4|1 1

- - . = X=0 y-0 =<~ g

5. Teget dogrusunun C deki denklemi CH E—6:T:CH =2X+3y=0 ve teget
dogrusunun C’ deki denklemi _’PEXT_3: y‘j/ 2. CP=Ax—y+(9/2-32)=0 ve
... . . X=0 y-0 = S ..
CC’ kirisinin denklemi 3 =9/—2:CC =3Xx—2y =0 dir. Iki teget ve kiris tarafindan

olusturulan koniklerin dizisi (2X+3Y) [/1X —y+(9/2- 3/1)] +u(3x=2y)’=0 dir ve

buda gelistirildiginde suna yol acar.
QA+9U)X* +(=3+4u)y’ +(=2+31-12)xy +(9-61)x+(27/2-94)y =0 (3.24)
Bu ifade bir ¢ember oldugundan:

2A+9u=-3+4u
—2431-12u=0

buradan da su parametreleri elde ederiz. A = —2/3; 1 =—1/3 ve (3.24) de yerine yazarsak

cemberin denklemi 2x* +2y> —6x—9y =0 seklinde olur.

6. A(HCH'") ticgeninin gevrel ¢emberi



57

X+y*  x oy 1
(-6 +4> -6 4 1

2 2 =0
0°+0 0 01
+6> 4 6 1

dir ve sonug olarak x* +y> +2x—10y =0 elde edilir.
7. Daha 6nce bahsedilen ¢gemberlerle ilgili asil eksen;

22 + Y2 +2x-10y)—(2X* +2y* —6x—9y)=0 > 10x-11y =0
ve asil ekseni sistemlerden biri ile ¢ozersek:

X*+y +2x-10y =0 . C(0,0)
10x—-11y =0 S,(66/17,60/17)

elde edilir buda istenilen sonucu verir.
Oteleme (n = 3): N=2 boyutu igin Stelemede verilenlere ek olarak sabitlenmis vektor

t =t's +t’e, +t’6, hari¢ t € E*(R) yi saglayacak sekilde bagka bir bilgiye gerek yoktur.

Bu durumda tensor sdyle gosterilir.

-1 00 = t]
X 2X
Jd 10 1 0 -t
’ y 3y
X=MX—>Z,=0 0 - vl (3.25)
____+__
t' t
00 0 — 1]

Merkez Simetri (n = 3): n=2 boyutunda merkezi boliimiinde anlatilanlara gore

k =—1 i¢in homotezi 6zel bir durumdur. Bu yiizden esitlik (3.13) ¢ uygularsak:
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- [-1 0 0o - 2n
X ) X

110 -1 0o - 2n
y, 1o 0 -1 - |’ (3.26)
Z Z

! - - - + -
t t

0 0 0 - 1

elde edilir. Homotezi merkezi simetri merkezi olrak adlandirilir. Bu nokta kartezyen

koordinatlarda H(h',h* h’) ve bu durumda izometri olusur. Ciinkii ilgili

-1 0 O
T={0 -1 O
0o 0 -1

matrisi ortogonaldir. |M|:—l oldugundan ters izometridir. Agikcas1 H, XX’ dogru

pargalarinin merkez noktasidir.

Doénme (n = 3): Boliim (2.4) de vektor uygulama tensorlerini agiklayan donme tensorii
hakkinda detayli bir analiz yaptigimizdan dolay1 bu boliimde E;(R) afin uzayina denk
biitiin bilgileri buradan elde edecegiz. Asagidaki rotasyon bilgilerine sahip oldugumuzu
farz edelim.

Xx-a y-b z
m

1. Eksen kartezyen denklemi —¢C dir. Burada (a,b,c,1) noktasi eksen
n

tizerinde sonlu bir noktadir. (¢,m,n,0) ise bu eksenin P, yoniidiir.

2. Donme agis1 € (sag el kuralina gore yonii bulunan) boliim (2.4) de belirtilmistir.

Eksen yOniinii belirten birim vektor:

! g + m € + n g (3.27)

e
JP? +m? +n? l JO2 +m?+n? JP? +m? +n?

seklindedir.G donmesini elde etmek i¢in su islemi uygulariz:
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1. (a,b,c) noktasini tiim ekseniyle birlikte kartezyen orijini (0,0,0) noktasina getiren
M, otelemesi uygulariz.
2. Eksen O noktasindan gecerken & agili R, dénmesini gergek eksene gore uygulariz.

Bunu da ilgili tensor yardimiyla saglariz.
3. Rotasyon uygulandiktan sonra tiim sistemi eski haline getirmek i¢in ilk 6telemeye zit

olacak sekilde bir M, 6telemesi uygulariz. Dogal olarak G =M, .R,.M, elde edilir. M,

matrisi;

1 0 0 — -a
01 0 - —b
M,=[0 0 1 - —c
o4
00 0 — 1|

seklinde gosterilir. R, tensorliniin matrisini elde etmek i¢in € vektoriiniin dogrultu

kosiniis_noktalart ile esitlik (2.14) kullanilarak homojen koordinatlarda:

M P s -
N I, fy -
R = ! r r r
3 £2+m2+nz 31 32 33
—_— —_— R + _____
L0 0 0 - (P+m’+n%)

yazilir. Burada,



bigimindedir. Sonug olarak G = M,.R,.M, donme matrisidir. Matris gdsterimiyle:

yazilir. Burada,
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r,=0*+(m’>+n*)cos @
I, =f{m(-cos@)—nsin@
I, =¢n(l-cos@)+msind
r, ={m{-cos@)+nsind

r, =m’+(/*+n*)cos @
I, =mn(l—cos@)—/sind
r, =/n(l—cos@)—msin
r, =mn{-cos@)+/{sind

I, =n"+({>+m*)cosd

M, =

1
0
0

0

9,

i 9.
£2+m2+n2 g31
i 0

0
1
0

0

9
0,
O3,

0
0
1

0

+

05
0,
033

a
b
c

1

014
924
O34

Ot

(3.28)
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g, =¢>+(m>+n*)cos @

0, =¢m(l—cos@)—nsinf
0; =/n(1-cosd)+msinf
g,, =/m(l—cosf)+nsind

U, =M’ +(£> +n*)cos @

g,; =mn(l—cos@)—/sind
9;, =/n(l-cos ) —msin
g5, =mn(l—cos@)+(sind

Oy, =N*+ (> +m*)cos &

014
924

9ua |

Ve

S =

S, =—(/m(1-cos@)—nsinf)
S;; =—(/n(1-cos &)+ msin H)
S,, =—(/m(l—cos &) +nsin )

Sy =

23

n v v
=
Il

7
Il

Oy |=| —————————

(m* +n*)(1-cos @)

(0* +n*)(1—cos6)

—(mn(1—cos @) —/sinH)
—(/n(1-cos@)—msinH)
—(mn(1—cos @)+ /sin B)

(0 +m*)(1—cos )

(3.29)

bi¢imindedir. G matrisinin T blogu T, =R, dir ve ayrica daha 6nce ispat edildigi gibi

rotasyon tensorii ortogonal matristir. Bdylece G bir izometridir.|G| =1 ise diz

izometridir. G nin bazi1 6zelikleri:
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e XX' dogru pargasina ortogonal olan ve merkezinden gegen diizlem donme eksenini
igerir.
e Homolog olan rve r’" dogrulari rotasyon ekseninden esit uzakliktadirlar.

Not 3.1: Eger donme ekseni iki diizlemin kesigimi olarak verilirse,

Ax+By+Cz+D, =0
Ax+B,y+C,z+D, =0

. . X— - Z— .. C
ve donem ekseni su sekilde ; a_y b _i7¢ bi¢ciminde yazilir. G donme matrisini

m n
elde etmek i¢in formiiliimiiz.
_1‘(81 _Cl) D1 _l (C1 —A,) D1 Z—l (Al _Bl) Dl
A (Bz_Cz) Dz _ A (Cz_Az) Dz _ A (Az_Bz) Dz (3 30)
Bl Cl Cl AI AI Bl
Bz Cz Cz Az Az Bz
dir ve
1= Bl C1+C A‘+‘A B1
Bz Cz Cz Az Az Bz

olur. Sonug olarak eger G tensorii bu sekilde ise 6rnek 2.2 nin 4. noktasinda belirtildigi

gibi R, donme tensoriiniin izi kullanilarak invaryant noktalarinin tensér dogrularini ve

acgisini elde ederiz.
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Eksen Simetrigi (n = 3): Bu izometri @ =180° agisiyla ddnmenin 6zel bir durumudur

X-a y-b z-c
m n

olarak adlandirnz.(3.28) ve (3.29)

dir. € birim vektOrinin eksen

ve simetri ekseni ile ilgili tek veri

esitligi (3.27) deki gibidir. Bu simetriyi S

€

esitliklerin de @ =180° olursa ilgili tensér matrisi:

S Siy 513 - Si4
1 Sy Sy 323 - Sy
S,=—————|s,, S, S, - s (3.31)
e 2 amian? 31 32 33 34
—_—— —_—— —_—— + ______
|0 0 0 - (FP+m’+n’)

burada

s, =0>—(m*+n%)

S, =2/m

S;; =2/4n

5 =2[ (M* +n”)a—¢mb—¢nc]
S,, =2/m

S, =M’ —(£*+n%)

S,; =2mn

S, = 2[—£ma +(£*+n*)b- mnc}
S, =2/4n

S,, =2mn

S, =n*—(£>+m?)

Sy, = 2[—£na —mnb +(£* + mz)cJ

seklindedir. Donme durumunda oldugu gibi diiz bir izometridir. Burada |Sé| =1 dir. S,

matrisi involut diir ve S_ = 1, dir.

Diger Ozellikleri:
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e Homolog noktalarin XX’ dogru pargalart merkez noktasinda ortogonal bir dogruya

sahiptirler. Buda simetri eksenidir.

e Kesen ve eksene ortogonal olan herhangi bir dogru ve eksene ortogonal olan herhangi

bir diizlem invaryanttir.
Not 3.2: n=2 boyutunda ve (3.30) esitliginde verilen bilgiler burada da gegerlidir.

Ayna Simetri (n = 3): Bu tensor, simetri diizlemi olarak adlandirilan invaryant
noktalarin diizlemi ile karakterilize edilir. Bu diizlem, homolog noktalar1 birlestiren tiim
XX dogru parcalarina merkez noktasinda ortogonaldir. Bu simetri diizlemde su sekilde

verilmis olsun;

7=AXx+By+Cz+D=0 (3.32)

Vektor taniminda boliim 2.5 te uygulanan H, tensorii yansima tensoriidiir. 7 diizlemi

(sekil 2.6) da gosterilmistir. H, veri tensorii x diizlemine ortogonal bir vektor

oldugundan bolim 2.5 te verilenleri burada kullanacagiz. 7z diizleminde € birim

vektOriinii alarak veri vektoriimiiz su sekilde olur.

A B

g + g+
JA? +B*+C? JA?+B*+C? JA?+B*+C?

C ~

6 6, (3.33)

Buda cosa,cos f ve cosy belirler Eger

A
JA? +B2+C?

cCosa =

ise
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JB*+C?

JA? +B*+C?

sina =

bulunur. Benzer sonuglar diger cosiniis degerler i¢inde bulunur. Bu bilgilere sahip

olduktan sonra 4.siitunu olmayan S_olarak adlandirilan ayna simetrisini olusturmak igin

(2.16) esitligindeki yansima tensoriinde bu verileri kullaniriz.

Sy Siy Si3 Sy
1 Sy Sy Sy — Sp
S =———1|5 S S - S
V4 A2+BZ+C2 31 32 33 43
[ [ [ + _______
|0 0 0 - A*+B’+C?]

burada
s, =—-A"+B*+C?;s, =-2AB;s, =5, =—2AC
s,,=A’-B*+C?;s,, =s,, =—2BC;s,, = A’ +B*-C?
Koordinat eksenleri ile V4 diizleminin kesisim noktalar1

(—%,O, 0,1],(0,—%,0,1),(0, 0,—%,1} oldugunu biliyoruz. Bu noktalar invaryanttir.

Boylece bu noktalar1 doniistiiriirsek 4.siitunun elamanlarini belirleriz. Ik apsisi

doniistiiriirsek;

D

(-A*+B° +Cﬂ(—ij+0+0+s41
=—— s, =—2AD

A’+B*+C?

benzer sekilde diger iki elemanda s,, =-2BD;s,; =—-2CD olarak bulunur. Buda ayna

simetri tensoriinii tamamlamamiza yardimci olur. T determinant blogu |T| E|Hé| =-1
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seklindedir. Buda |S”| =—1 olmasin1 gerektirir. Bu yiizden ters izometridir. Boliim 2.5
te H,yansima tensoriiniin involut karakterini ispatlamistik. Bu yiizdenS_ matrisi

S? =1, esitligini saglar.

3.6. izometrilerin Carpim

Daha once bahsedilen basit izometrilerin bir kagimnin ardisik uygulamasindan olusan
izometrilere izometrilerin ¢arpimi veya ayrisabilir izometriler denir. Ilgili matris faktor
izometrileri ile ilgili matrislerin ¢arpimindan olusur.Yani, M =M, .M, ,..M,.M, dir.
Sonucta izometri daha dnce ¢alisilan izometrilerin biri olabilir veya olmayabilir. Eger

|M | =1 ise izometri diiz bir izometridir. Yoksa |M | =—1 ise ters izometridir. |M | =-1

olacak sekilde M izometrilerinin tiimiinlin dizisi bazi1 yazarlar tarafindan sodzde
izometriler olarak adlandirilir. Demek oluyor ki bu izometriler diizenli degildir. Sunu
not edelim ki izometrilerin ¢ift sayili olanlarin ¢arpimi acik¢a goriiliiyor ki diiz bir

izometridir. Bu durumu bazi soyut ayrigabilir izometrilerden bahsetmek icin diisiinelim.

e Iki ayr izometrilerin ¢arpimi ST

1. Eger 7, ve r, paralel ise 6telemedir.
2. Eger =, ve r, kesisiyor ise rotasyondur.

e Iki merkez simetrilerin ¢arpimi bir dtelemedir.

e Iki eksen simetrinin ¢arpimi Se,S¢

1. € ve €, eksenleri kesisiyor ise donmedir.
2. € ve &, eksenleri kesismeden karsit iseler 6teleme sonucu bir donme ¢arpimidir.

e Birbirinden bagimsiz {ic merkez simetrinin ¢arpimi bagka bir merkez simetrisidir.

Buda verilen simetrilerin merkezleri sonucu olusan paralelkenarin merkezidir.
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e Donme ekseni dogrultusundaki Otelemenin sonucu olusan rotasyonun carpimi
helisoidal izometridir. Fakat baz1 yazarlar bu izometriyi 6teleme dogrultusu, donme

ekseniyle uyusmadiginda egik helisoidal olarak adlandirilir.

Ornek 3.6. (Transformasyonlarin Carpimi): Saat yoniinde € degerine sahip klasik
geometri uzayinda E;(]R) bir donme diigiinelim. (Sekil 3.4) Donme ekseni oz

ekseninden gegen ve XOZ diizlemi ile £ agisi olusturan diizlemde yer alir. Orijin O

noktasindan gegen bu eksen (donme ekseni) OZ ekseni ile « agist olusturmaktadir.
Sonra  bir derecelendirme uygulayacagiz(kartezyen eksenlerin  boyutlarinda

degisim).Buda k|, k,,k, degiskenleriyle gergeklestirilir.

1. Doénme matrisi G, bulunuz.
Derecelendirme matrisi F, bulunuz.

Karma doniisiimiin T matrisini bulunuz.

2
3
4. X +y>+1° =1 denklemi ile verilen kiirenin dtelenen kiire denklemini « = 45°,
p

=30" k =1, k, =2 vek, =3 degerleri i¢in bulunuz.

X

Sekil 3.4. Trasformasyonlarin ¢arpimi
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Coziim:

1. Donme ekseninin birim vektorii € =sina cos B€, +sin a sin B€, +cos o€, dir. (3.28)

ve (3.29) esitliklerini uygularsak T blogu:

t, t, U
To =t b,
t, G, b

elde ederiz. Burada:

t,, =sin’ @ cos’ B+ (sin’ asin® B+ cos’ a)cos &
t, =sin’ asin Bcos B(1-cos @) —cosasinf

t,; =sinacosacos f(1-cos@)+sinasin fsind
t,, =sin’ asin S cos B(1—cos &)+ cos o sin &

t,, =sin’ asin® B+ (sin’ @ cos’ B+ cos’ a)cos &
t,, =sina cosasin f(1—cosf)—sina cos fsin @
t,, =sina cosa cos f(1-cos@)—sina sin Bsin O
t,, =sina cosasin f(1—cosf) +sinacos Bsind

t,, =cos’ @ +sin’ @ cos

dir. Bu da ortogonal oldugunu gosterir. Ciinkii T,.T, = I, tiir. Homojen koordinatlarda

dénme igin:

—
|
oS o O




dir.

2. Derecelendirme (3.11) esitligindeki matris formatinda O (0,0,0) orijinli invaryant bir

noktaya sahip bir afin doniistimdiir.
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k 0 0 - 0
0 k, 0 — 0
F,={0 0 k, — 0
J— — J— + -
00 0 - 1]
dir.
3. T =F, G, seklindedir.
4. Sayisal degerler:
sina—cosa—ﬁ'sinﬂ—l'cosﬁ’—ﬁ'
2’ 2’ 2’
[ 3+5cos@ \/5(1—0059)—4\/§sin9 \/5(1—0059)-1—\/5511’19
100 0 8 8 4
02 0 0 ﬁ(l—cos9)+4\/§sin6’ 1+7cosé (1—cos6’)—x/gsin6’
T= 8 8 4
0 030
00 0 1 \/g(l—cosH)—x/EsinH (1—cos€)+x/gsin9 1+cosé
4 4 2
| 0 0 0

buda:
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3+5cosf \/5(1—0089)—4\/55i1’19 \/g(l—cosﬁ)+x/§sin0 0

8 8 4
\/g(l—cose)+4x/§sin¢9 1+7cosé (l—cosH)—\/gsinQ 0

T= 4 4 2
3\/§(l—c059)—3\/§sin6’ 3(1—coso9)+3x/gsint9 3+3cosd 0

4 4 2
| 0 0 0 1

sonucuna yol acar. Fakat bu durumda operatoriin uygulanmasi esnasinda faktorleri

kullanmak daha kolay olacaktir. Donme ekseni G, kiirenin ¢aplarindan biri oldugundan

donme kiiresi aym kiiredir. Boylece kiireye sadece derecelendirme tensorii uygulamak

kalir.

0 0 O]x
1 0 Oy
X +y +2° " =0—>[x z t =0 (kiire
y [ y ] 0 01 0]z (kire)
0 0 0 -1t
X' X X '
y,:Fzy—>y:F2’1 y,
Z z z Z
t' t t t'
ve bunu kiire denkleminde yerine yazarsak:
1 00 O '
/01 0 0 y'
X' 72 tIE -1 E -1 =0
Xy ]( ? ) 0 1 Pz
0 0 -1 t'

olur. Buda:



71

1 0 O Oof1 o0 Of1 0O 0 OfXx

0 /2 0 0}/[0 1 0 010 VY2 0 oOf}}YV
[X/ yl ZI t(] / / y

0 0 1/3 0[O0 0 1 00 0 1/3 0}Z7

O 0 O 1{{0 0 0 —=1//]0 O O 1]t

1 0 0 0| x

0 1/4 0 01}y , 1 S I
Xy 7't =0-o>(X)Y +=(Y)Y +=(Z2)" =1
[X 'y ] 0 0 19 o]z )+ () +5(@)

z
0 0 0 -1t

ve bir elipsoid oldugunu gosterir.
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4. ARASTIRMA BULGULARI

4.1.Fizik Ve Mekanikte Tensorler

Statik dengede bir dizi dis kuvvetler, mometler ve destekleyici kosullarla keyfi bir cisim
diisiinelim. Burada i¢ kuvvetlerin dagiliminin belirlenmesi ve bu cisim {izerinde olusan

gerilmelerle ilgili problemi ele alacagiz.

Bu problem gercek cismin yerine, gercege yakin sonuglar elde edilebilen ve tensor
metotlarinin uygulanabildigi basit modeller kullanildig1 zaman karsimiza ¢ikmaktadir.

Simdi bu yaygin modellerden bazilarini ele alalim.

e Sert Kati: Sert kati rasyonel mekanigin ideal tipik bozulmayan bir katisidir.
Miimkiin olabilecek bozulmalar1 saymazsak bazi durumlar i¢in (izostatik problem)
reaksiyonlar1 hesaplamamiza imkan tanir ve diger durumlar icin (hiperstatik problem)
imkan tanimaz.

e Elastik Kati: Bu model, ¢6zlimii i¢in yeterli sayida fakat integrali zor olan tensor
diferansiyel denklemlerini olusturmamiza imkan taniyan cismin elastik deformasyonunu
ele alir. Hook kanununa gore kuvvet gerilim iligkisinin lineerligi kabul edilmektedir.
Buna gore cisim iizerine uygulanan kuvvetler ortadan kaldirildiginda cisim ilk halini
alir(lineer elastik).Diger durumlarda, yani problem daha karmasik varsayimlar
gerektirdiginde, uygulanan kuvvetler ve mometlerin deformasyonunu kabul etmek
gerekir ve boylece ‘lineer olmayan elastik’ e deginmis oluruz.

¢ Plastik Kati: Burada kalic1 deformasyonlar mevcuttur.

e Izotropik Katr: Elastik ve plastik 6zellikler tiim dogrultularda aynidir.

e Anizotropik Kati: Elastik ve plastik 6zellikler dogrultuya baghdir. Strees kavrami

ile ilgili sadelestirmeleri de ele alacagiz.
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Sekil 4.1. Stress Kavrami

Destek noktalarina uygulanan dis etkenler altinda dengede bir kat1 diistinelim.(Sekil 4.1)
Farz edelim ki A katinin igerisinde bir nokta ve 7, A noktasindan gecen bir diizlem
olsun. Kat1 7 diizlemi ile iki pargaya ayrilir. Ust kismi kaldirirsak A noktasina etkiyen
kuvvetlerin yerine dengenin degismemesi i¢in mekanikten bildigimiz gibi ( Ornek 2.3)

{ist kismun tiim kuvvetleri basit bir bileske vektér R ve kuvvetler ¢ifti M, momentine

indirgenebilir. 7 diizlemi lizerinde ve A nin komsulugunda bir AS alani1 ve asagidaki

limiti ele alirsak; limi:f; lim—2=m=0 (sifirlama ¢ifti) lincer elastikte T
As—0 AS As—>0 AS

vektorii(stress vektoril) 7 nin yonelimi ile ilgili A noktasindaki gerilimdir ve m sifir
olmadigindan diisiiniilmez. Fakat lineer olmayan elastikte m disiinilebilir. 7
diizlemine orthogonal olan birim vektoriinii € ile gosterirsek € iizerindeki T nin

orthogonal izdiisiim vektori, izdiisiim tensorii yardimiyla elde edilebilir. & ile gosterilir

ve normal stress olarak adlandirilir. & =P, (f) ve t nin komplementer izdiisim vektorii
7 ile gosterilir ve kesme stress olarak adlandirihr. 7 =P, ()=, =P,)(®) her ikiside

A noktasi {lizerinde ve 7 diizlemine goredir.
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4.2. ‘S’ Gerilim (Stress) Tensorii

Simetrik matrisi:

UX(X’ y’ Z) TXy(XJ y’ Z) Z-XZ(XJ y’ Z)
S(%,Y,2) =| 7, (X, Y,2) 0,(XY,2) 7,(XY,2)
TXZ(X7 y’ Z) z-yz(xﬂ y’ Z) O-Z(X, y’ Z)

seklinde olan gerilim tensoriinii diisiinelim. Bu tensor EE(R) geometrik uzaymin her bir

A(X,, Y,,Z,) noktasi ile iliskilidir. Buna gore S gerilme tensoriinii say1 tensor olarak:

Oy Txy Xz
S(X,¥,2)=|7, o, T, 4.1)
Ty Tyz o,

seklinde yazilir (Ruiz-Toloso and Castillo 2005). Kartezyen eksenleri A noktasi orjinli

ve koordinat sistemine paralel diislinlirsek S tensorii her bir birim vektor
€ =cosai +cos f] +cosyk olacak sekilde belirler. Bu da A noktasindan gegen
gerilimi f =t'T +t*] +t’k olan ortogonal 7 diizleminin oryantasyonunu verir ve tensor

olarak:

t! cosa
t=S(); |t*|=S|cosp
t? cos y

seklinde yazilir. Ornegin, S tensoriiniin ilk siitununun sayilari, YOZ eksenindeki A

noktasinin  t  geriliminin bilesenleridir ve bu durumda € vektoéri (1,0,0)
dogrultusundadir. P,(f) =&, vektoriinii hesaplarsak A daki yiizey normal gerilimi elde

ederiz. P, tensoriine gore de modiilii:
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Oy Ty Tyl lcOsa

o,=€f=[cosa cosp cosy]/z, o, 7, | cosp

T, T, O, | cosy

bulunur. Bu da:
o, =0,c08 a+ o, cos’ B+, cos’ y+ 27, cosacos f
+21,, cosa cos y + 27, cos fcosy (4.2)

ifadesini saglar. Benzer sekilde (1, - P, ))(t) =7, hesaplarsak kesme gerilim vektoriinii

elde ederiz. Pisagor teoreminden de modiiliinii: 7, = «/|t‘|2 —o. bigiminde bulunur. S
matrisinin  birim 6z vektorleri ile ilgili ana yonler ¢€,€,,€, seklindedir. Bu
dogrultularda olusan t gerilimi sadece & normal gerilim bilesenlerine sahiptir. Fakat
kesme gerilim bilesenlerine sahip degildir. (7, =0)Yani, f =6 dir. &5,,6,,5,

gerilimlerini ana gerilim olarak adlandirilir. S matrisinin polinom karakteristigi:

S@)=0c, | oc,—oc 1, |=0 (4.3)

ifadesini saglamalidir. S simetri matrisinin o,,0,,0,, Ozdegerlerini elde ettigimizde,

tic ortak ortogonal birim vektor belirlenebilir ve Q taban matrisinin degisimini saglar.

O halde;

o 0 0
S=Q'sQ=Q'sQ=| 0 o, 0 (4.4)
0 0 oy
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yazilir. Baz1 yazarlara gore, tensorlerden degil fakat, S tensoOriinden baslayarak
geometrik sekiller (Morh diyagram) yardimiyla A noktasinda belirli bir yondeki
gerilimleri bulabiliriz. Gerilim tensoriinlin diger bir 6zelligi de A noktasi lizerinde €

birim vektoriiniin dogrultusunu degistigimizde (A— XYZ)kartezyen sistemine gore
P(X,y,z) noktas1 baslangi¢c pozisyon vektorii olacak sekilde belirlersek P noktasi
tarafindan gevrilen noktalarm dizisi x>+ Yy’ +2z° =1 kiiresidir. Benzer bir sekilde, k
skaler  degeri  i¢in t gerilim  vektOriiniin ~ bilesenleri  yardimiyla
P'(X,Y,Z)=P'(kt',kt> kt’) koordinatlarinda T gerilim vektoriinin P’ baslangicinda
belirleyebiliriz. Ayn1 sekilde € nin P baslangic noktasina gore T nin P’ noktasi

tarafindan ¢evrelenen noktalar dizisi inceleyelim. S tensoriinii kullanarak:

X cosa
Y | =kS|cosp
Z o cosy |,
ve
cosa X
cos B |=k'STY 4.5)
cosy YA
elde edilir. Ve
cosa
[cosa cosf cosy]|cosf|=1 (4.6)
cosy

oldugundan (4.5) ve (4.6) esitliklerin de yerine yazarsak:
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elde edilir. Bu ikinci derece denklemden;

sz[x Y 7]

bulunur. Bu denklemi;

siniflandirabiliriz.

yazilir. Buradan;

1Y t X
(Ej [X v z](s7)(s) Y |=1
z
1\2
O, Ty Tyq X
Ty O, Ty, Y |=1
T, T, O YA

Xz yz z

(4.7)

(4.4) deki taban degisimini (4.7) uygularsak kolayca

_ 1 ,
(_j o o

R o

X , )

A 1 Ao 2 1

Y | = - [x z} 0o |— 0

A k Ou

Z 2

0 0 (Lj

| Oy |

X? Y? 72

+ + =1
(ko )2 (ko )2 (ko )2

X

Y |=1

Z
(4.8)

seklinde yeni bir kartezyen denklem elde edilir (Hacisalihoglu 2005). Bu denklemde

(4.7) min elipsoid oldugunu ispatlar ve gerilim elipsoid olarak adlandirilir.
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4.3. ‘T’ Strain Tensorii

EZ(R) uzaymnda (O — XYZ) ortonormalize diizlemi ve dis kuvvetler ve mometler

yardimiyla statik dengede duran elastik maddeden kat1 cisim ele alalim. Burada katinin
taneciklerinin bagil konumunu degistiren i¢ gerilmelerin olusturdugu elastik
deformasyon olarak bilinen bir durumla karsilasiriz. Bu durumda analizi yapilacak
olgunun karmasikligini, ona yakin bir degerde matematiksel bir modelle yer
degistirebiliriz. Boylece daha uygun bir tahmin yapabiliriz. Bu béliimde bu modeli ele

alacagiz. P(X,y,z) noktasinda bulunan bir tanecik deformasyon sonrasi P'(x’,y’,z")
noktasina kaymaktadir. Bu durumda PP’ =C=u(x,y,2)i +V(X,Y,2)] +W(X,y,2)K
(Sekil 4.2) vektorii yer degistirme vektorii olarak adlandirilir. Boylece her bir P, noktasi
icin C, yer degistirme vektorii belirlenebilen bir C vektor alani olusur. (Eger u,v ve w

skaler degerleri biliniyorsa yer degistirme vektorii sayisaldir.)

X
PP'=QQ"=c¢
PQ=PQ =4,
P'Q = AF

Q"Q" = A(AT,) = Ac,
Q"Q' =T(AR) = AG,
Q"Q’ = AC = AC, + AC,
QQ'=c+ACT

(e}

Sekil 4.2. Strain Tensorii
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P ye yakin Q(X+ AX, Y+ Ay, z+ Az) noktasinin yer degistirmesi QQ’ olsun. Buna gore

P ve @Q noktalar1 arasi ilk uzaklik ‘P—@‘ ve son uzaklik ‘P'Q" degismelerini

inceleyebiliriz. Benzer bir sekilde P—@ ve P'Q" vektorlerinin elastik deformasyonundan

dolay1 bagil konumlarini analiz edebiliriz. Aravektorlerden:
AF, = PQ = OP —OQ = AXi +Ayj + Azk

yazip diizenlersek:

Ar, =[PQ| = J(Ax)* +(ay)* + (A2

olur. Burada:

cosa zi—z;cosﬁ zﬁ—é;cosy :AA_:O e = cosai +cos B] +cosyk
dir. Farz edelim ki:
AT, =PQ=Arg (4.9)
olsun ve benzer sekilde:
AT =P'Q = Ar'T + Ar*j + Ar’k (4.10)

olur. Ar, vektoriinii AT vektoriine dogrudan g¢eviren tensor T, ile gosterilir ve strain

tensor alarak adlandirilir (Lichnerowicz 1962).
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AF =T, (AF) =T, (Ar,)

olur. Matris gosterimi de:

Ar' AX
Ar’ =T, | Ay
Ar’ Az
seklindedir. Ayrica:
Ar' cosa
Ar* |=ArT, | cos B (4.11)
Ar’ cosy

seklinde de gosterilir. Jacobian matrisini "J "ile gosterirsek:

ou ou ou
X oy o
J(uvw]zﬂﬂﬂ
Xy z oX oy oz
oW Ow ow
x oy

olur. Tensor ¢oziimleme kurallarina gére matris iligkisi tahmini su sekilde:
To=1+J (4.12)
kurulabilir. Her bir P, noktas1 i¢in P, yakin AF vektorleri ile ilgili ¢alismalarimizda

yararli olacak T strain tensorii belirlenecek sekilde bir tensor alani olusturabiliriz. Sekil

4.2 de bu durum ti¢ boliimde tarif edilmistir.
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1. Birinci basamakta PQ = AT, vektoriinii P'Q" konumuna tagimak i¢cin P noktasini €
yer degistirmesi kadar 6telememiz gerekir. Sekilden:
PQ+QQ =PP'+P'Q'; AT, +(C+AC)=C+AF

elde ederiz. Buradan:

>
=
I
>
Ep
+
>
3]

(4.13)

olur.

2. Ikinci basamakta, AC vektdriinii inceledigimizde iki vektdriin bileskesi oldugunu

goriirtiz. Q"Q" birinci vektorii deformasyon sirasinda AF, vektoriiniin rotasyonunu

ifade eder. Bu rotasyon, rotasyon tensorii olarak adlandirilir ve A ile gosterilir. Matrisi

anti simetrik matris olup:

0 -w (4.14)

seklindedir. Eger,

Q'Q" =Ac, = (Ac)'T +(Ac))* T+ (Ac,) )’k ise AC, = A(AF,)

olur ve matrisi:

(Ac))' AX cosa
(A, |= Al Ay | = Ar Al cos 8 (4.15)
(Ac,)’ Az cosy

seklindedir. Bu tensor Ar, vektoriiniin rotasyonunu saglar fakat deforme etmez.
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3. Ugiincii adimda, ACnin ikinci vektdriinii yani, AF, vektoriiniin degiskenlerini ifade

eden Q"Q" vektoriinii inceleyecegiz. AC =AC, +AC, toplami baska bir vektorii

olusturur. Bu vektdre “pure strain tensor” adi verilir ve I' ile gosterilir. Her bir P,

noktasi i¢in I' tensorlerinin belirlenmesiyle yeni bir tensor alani olusur.

1
F:E[J +3']=|=

seklinde gosterilir. Sonug olarak,

ise I' tensorii:

Q"Q = AG, = (Ac,)'T +(Ac,)’ ] +(Ac, )’k

(Ac))' AX!

cosox

AT, =T(AF); | (Ac)? |=T| AX* |= Ar,T| cos B

(Ac,)’ AX

cosy

(4.16)

(4.17)

olarak ifade edilir. AC, vektorii, AF, vektoriiniin degiskenlerini(artis veya azaligini)

verir. Boylece sekil 4.2 deki ayrintidan (donmeleri gormezsek) “tam deformasyon”

vektoru:

seklinde olur. Tam deformasyon vektortinii T, ile gosterir ve matrisi:

AT, +T'(AR) = (1; + I)(AT) = Tpe (AR)

(4.18)
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Toe =1,+0 (4.19)

bi¢iminde olur. Dénme ve Otelemeleri thmal edersek T, (AF,) vektoriiniin uzunlugu

deformasyonun tam ol¢limiinii verir. (4.11), (4.15) ve (4.17) esitliklerini:

AT = AF, + (AC, + AG,)

esitligine uygularsak:

Ar' cosa cosa cosa cosa
Ar* |=ArT, | cos B |=Arl,| cos B |+ Ar,A| cos B |+ Ar,I'| cos B
Ar’ cos y cos y cosy cosy

matrisini elde ederiz. Buradan:

To=(L+D)+A=T . +A (4.20)

tensoOrii elde edilir.(Bu esitlik elastik deformasyonda onemli bir kuraldir) I’ (strain)
tensOriinii, € birim vektorii lizerine uygularsak ayn1 dogrultuda “pure deformasyon”

vektorii elde edilir. € dogrultusunda uygulanan bu vektor, I'(€) vektdriiniin €

dogrultusunda birim uzama bileseni ‘ ¢’ yi verir. &€

& lﬂ&y l}/xz
2 2 cosa
g=éor(é)=[cosa cos f cos;/] %yxy & %]/yz cos B (4.21)
1 1 cosy
_nyy 573,2 ¢, |
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seklindedir. I'(€) vektoriiniin diger bileseni, € vektoriine diktir. Agisal veya tanjant
deformasyon olarak adlandirilir ve %7/ ile gosterilir. S gerilim tensoriine benzer sekilde

Pisagor teoremi yardimiyla hesaplanabilir. O halde:
1 R
EyquXﬂf—ez (4.22)

elde edilir. £ ve %7/ vektorlerine gore izdiisiimler kullanilabilir. & = P,(I'(€)):

7 =P. (@) (4.23)

olur. Buna gore E;(R) uzayinin ortonormal bazi {éa} ise I' tensoriiniin bilesenleri:
I,,=€,*I'€,)vel, =T, =€ 0I['(E,)=€,'(€,), a#p (4.24)

seklinde bulunur. Herhangi bir simetrik tensér i¢in, I' tensori (g,,¢,,¢&,, )0z

degerlerine sahiptir ve birim 6z degerleri ortogonaldir. Buda maksimum veya minimum

birim deformasyonunun( &) dogrultusunu ve sifir tanjant deformasyonu (y = 0) belirler.

Verilen 6z vektorlerle L ortogonal matrisi:

g 0 0
[=LTL=L"TL=|0 ¢, O (4.25)
0 0 ¢

seklinde yazilir. Burada L matrisi S gerilme tensorii ile aym ozelliklerdedir. I’

tensoriine, éa (0,£cos45,£cos45); éb (£cos45,0,£cos45) ; éc (£cos45,£c0s45,0)
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dogrultularin1 uygulayarak ve (4.21), (4.22) kullanilarak maksimum tanjant

deformasyon:

-]

=n (4.26)

seklinde hesaplanir Benzer sekilde éb ve éc dogrultular1 icinde hesaplanabilir. T’

tensOriiniin izi yani, polinomal karakteristigin ilk degiskeni, P noktasindaki kiibik

birim genlesme katsayisi olarak adlandirilir ve C, ile gosterilir.

C, =& té, e, =6 +¢, &y (4.27)

Buda P nin komsulugunda elastik deformasyondan dolayr 6V birim hacim artigini

gosterir (Ruiz-Toloso and Castillo 2005).

c, = (4.28)

olur.

4.4 S ve T nin Tensor Iliskileri Elastik Tensor

Anizotropi’nin en yaygin durumu olan Hook kanunu su sekilde genellestirilebilir

(Timeshenko and Goodier 1970). (O',T) yi yalnizca bir dogrultuda degil de diger

dogrultularda da deformasyon olusturdugunu kabul edelim. S gerilim tensoriinii
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olusturan,  o,,0,,0,,7,,,7,,,7,,  gerilimlerden  her biri '  tensdriniin,

E4>Eys€,5Yxys VeV, deformasyonlarmin homojen lineer fonksiyonlari olsun. Ayrica,

deformasyon potansiyel fonksiyonunun cakisik tiirevi oldugundan F matrisi simetrik

olmalidir ve matrisi:

Oy 171 Ex,x Ex,y Ex,z Gx,xy Gx,xz Gx,yz | X
O-y EX,V Ey»y EY-Z GV»X)’ GanZ Gyayz y
o, _ Ex,z Ey,z Ez,z Gz,xy Gz,xz Gz,yz &, (4 29)
Z-xy G><,xy Gy,xy Gz,xy ny,xy ny,xz ny,yz 7xy '
T Gx,xz Gy,><z Gz,><z ny,xz ny,xz ny,yz Vx2
_Tyz _Gx,yz Gy,yz Gz,yz ny,yz ny,yz ny,yz ] _7/yz

seklindedir. (4.29) da verilen anizotropik elastik katinin Hook kanununa gore tensorti,

E’(R) Euclidean uzayinda T :[7pq] deformasyon tensoriiniin elastik 6zelliklerini
gosteren ve elastik tensor olarak adlandirilan, C = [Cijk,] tensoriiniin indirgenmis hali
S= |:Sij] gerilim tensorii gibidir. Indirgenen tensér denklemi indisleriyle:

Sij = Cij Y
(4.30) seklindedir. (4.30) esitligindeki tensorler ortonormalize tabandadirlar. Bu

tensoOrlerin matris gosterimi:

3 17 17
X Xy Xz
O, Txy Ty 1 2 f
SE[Sij:'_ Xy O-y yz JFE[}/pq:‘_ 2}/xy gy Eyyz
3% Tyz o, 1 1
— &
_2 Vxa 9 yyz z |
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X,X Gx,xy Gx,xz - Gx,xy ny,xy ny,xz - Gx,xz ny,xz ze,xz
Gx,xy Ex,y G><,yz - ny,xy Gy,xy ny,yz - ny,xz Gy,xz ze,yz
Gx,xz Gx,yz X,z - ny,xz ny,yz C-:'z,xy - ze,xz ze,yz Gz,xz
X, Xy ny,xy ny,xz - Ex,y Gy,xy Gy,xz - Gx,yz ny,yz ze,yz
C= [Cijkl ] = ny,xy Gy,xy nyﬂyz - Gy,xy Ey,y Gy,yz - ny,yz Gy,yz Gyzﬂyz
ny,xz ny,yz Gzﬂxy - Gy,xz Gy,yz yz o ze,yz Gyz,yz Gzﬂyz
X, Xz ny,xz ze,xz - G><,yz ny,yz ze,yz - Ex,z Gz,xy Gz,xz
ny,xz Gy,><z ze,yz - ny,yz Gy,yz Gyz,yz - Gz,><z Ey,z Gz,yz
_ze,xz ze,yz Gz,xz - ze,yz Gyz,yz Gz,yz - Gz,><z Gz,yz Ez,z |
(4.31)

seklindedir. Burada, 1<i, j,k,1 <3 ve i, satir blok indisi, j siitun blok indisi, k her

blogun satir indisi ve | her bir blogun siitun indisidir. Elastik problem genel olarak su

sekilde diizenlenir.

1. Gerilim halinin tensor alan1 S(X, y, z) bilinmelidir.

2. Yapilacak ¢alismalarda C(x,Y,z) elastik tensor alan1 bulunmalidir.

3. T(x,y,2) tensor alani (4.30) esitligiyle bulunur ve Jacobian ©J > kismi tiirevleriyle
iligkilidir.

4. Bir 6nceki basamakta elde edilen kismi diferansiyel denklemler, C yer degistirme
tensor alanini bulmak i¢in kullanilir.

5. C bilinirse T, A ve T, deformasyon tensorleri elde edilir.

Homojen izotropik elastik katt durumunda bazi sabitler asagidaki gibidir:

Elastik veya young modiilii “ E’
Poisson orani, V

Shear modiili, G

0w o=

Lame sabiti, A elde edilir. Bu sabitler arasindaki iliskilerden bazilari:
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E VE A g_B1+26)6

v iy T age0) 746

(4.32)

Seklindedir (Timoshenko and Goodier 1970). Bu sabitler yardimiyla izotropik elastik

tensor:

[(A+2G) 0 0 - 0 G 0 — 0 0 G
0 41 0 - G 0 0 — 0 0 0
0 0 4 - 0 0 0 - G 0 0
0 G 0 - 4 0 0 — 0 O 0
C=[cul|=| G 0 0 — 0 (A1+2G) 0 — 0 © G |(4.33)
0 0 0 — 0 0 A1 - 0 G 0
0 0 G - 0 0 0O — 4 0 0
0 0 0 - 0 0 G - 0 2 0
G 00 -0 G 0 -0 0 (1+26)]
seklinde olusturulur. (4.30) esitligini kullanarak izotropik elastik matrisi:
S =2GI" + A(tracel)l, (4.34)
veya
I+v v
['=——S——(traceS)l 4.35
= E( ) (4.35)

seklinde elde edilir. Ciinkii;

traceS = (34 +2G)(tracel’) (4.36)
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dir. Burada tracel” = c, (kiibik genlesme katsayis1) dir.(4.34),(4.35) ve (4.36) esitlikleri

Lame esitligine denktir.

o, = AC, +2ng;rXy = G}/Xy
o, =A4c,+2Ge;7,, =Gy, (4.37)
o, =AC, +2ng;fyZ = G;/yZ

Ornek 4.1.(Elastik ve Termik Tensérler): Young modiilii E ve Poisson oran1 V olan
| kenarh kiip seklinde homojen elastik ve izotropik bir kati diisiinelim. Bu katiya, ii¢

farkli ytizden dik olarak F,F ve F, dis kuvvetleri etki etmektedir (Sekil 4.3). Sicaklik

artisgindan dolay1 kati icerisinde termik gerilmeler olugsmaktadir ve At sicaklik fark ile

dogru orantilidir.Burada maddenin orantililik katsayisi k dir.k ve At sayisaldir.

t e

A

X

Sekil 4.3. Termik ve Elastik Tensorler

1. Verilen problemin tensdr ve matris gosterimini yaziniz.

2. Katinin B= 3# Bulk modiilii ile verilen birim kiipik genlesme katsayis1 C,yi

(1-2v)
bulunuz.

3. Kati sikistirilamaz ise Poisson oranini bulunuz.
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4. Katiya etki eden dis kuvvetlerin olmadigin1 farz edersek termik hareketten dolay1

olusacak olan I' deformasyonunu belirleyiniz.
Coziim:

1. Ik olarak maddeye etki eden dis kuvvetlerden dolay1 olusan gerilmeler termik
genlesmeden dolay1r dengelenecektir. Buda bize (4.30) daki tensér tanimini verir.
Sij = Cija _kijAt

[zotropik katilarda (4.33) deki matris esitligi kullanilir.
S =2GI'+ A(tracel') I, — kI, At (4.38)
2. (4.38) deki matris denkleminin kosegen terimlerinden:

o, =2Gg, + A(izl") — kAt
o, =2Geg, +A(izl') — kAt
o, =2Gg, + A(iz') — kAt

elde edilir ve bu terimleri toplarsak:
o,to,+0,=2G(g, +¢,+¢&,)+3A(iz") — 3kAt

veya
izS = (2G +34)(izl") - 3KAt (4.39)

olur. Bu ifade (4.36) esitligini verir. Diger yandan (4.27) ve (4.32) den:

C, =& +é&,+¢, =120

E VE_ __(+wE _, E

2G+34=2 +3 = = =3B
2(1+v)  (d+v)(1-2v) (1+v)1-2v) 31-2v)
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elde edilir ve ¢, ve (2G +34) ifadelerini (4.39) esitligine uygularsak:

izS =3Bc, —3kAt —c, =E+%
olur. Bu durumda:
F+F +F

izS=0,+0,+0, = B

olur. Sonug olarak:

F+F +F kAt
C, = > +
3I°B B

elde edilir.

3. Katt sikigtirllamaz oldugundan ¢, =0 dir. Buda izI'=0 oldugunu gosterir. (4.39)

esitliginde izI" yi yalniz birakip:

E
(1-2v)

(2G +34) =

esitligini de géz Oniine alirsak:

o izS +3kAt _ (1-2v)
(2G+34) E

(izS +3kAt) =0

elde edilir. Burada v = % degeri icin ifade sifira esittir.
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4. Eger herhangi dis kuvvet yoksa gerilim tensoriit S=Q dir. Boylece izS =0 olur.
Buna gore (4.38) ve (4.39) esitliklerinden:

2GT + A(izD)1, — kI, At =
veE

_3kat
(2G +34)

olur. Ikinci sorudaki Bulk modiiliinden elde edilen:

E
(1-2v)

(2G +34) =

esitligini ifadede yerine yazarsak:

(1-2v)

26T + ABKAt—

), —kLAt=0

olur.G ve A degerlerini yerine yazarsak:

_E r{ vE (3(1_2V)j—1}kAtl3:Q
20+v) | d+wi-2v)l E

E il i |katl, =0 ET+(v—T)kAtl, =©
d+v) | 1+v)

olur. Yani:
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r:(l_EZV kAtj l,

elde edilir.

Ornek 4.2.(Temel Gerilimler): Bir katmin belirli bir noktadaki gerilme durumu:

O-X :—4; O‘y =2; O-Z :1; Txy =4; TXZ :Tyz :0 Sekllndedlr.

1. S gerilme tensoriinii bulunuz.

2. 7(1,2,3) vektoriine dik olan ve 7 diizleminde yer alan t toplam gerilim tensoériinii
ve t nin modiiliinii bulunuz.

3. t tensoriine ait & vektdriiniin normal bilesenini ve modiiliinii bulunuz.

4. t tensoriine ait 7 diizlemindeki 7 vektdriiniin tanjant bilesenini ve modiiliinii
bulunuz.

5. o¢,,0,,0,, temel gerilim vektorlerini ve modiillerini bulunuz.

6. Maksimum kesme gerilimini bulunuz.

7. Maksimum kesme geriliminin etki ettigi diizlemlerin ortogonal dogrultusunu
bulunuz.

8. Maksimum kesme geriliminin normal gerilim degerini bulunuz.

9. Kesme durumu sifir (o =0) olan diizlemin ortogonal dogrultusunu bulunuz.

10. Bir 6nceki durum i¢in 7 vektoriinii ve modiiliinii bulunuz.

Coziim:
-4 4 0

1. Gerilim tensorii: S=| 4 2 0| seklindedir.
0 0 1

2. 7(1,2,3) yoniindeki birim vektorii: €, = L (+2]+ 3IZ) dir ve t gerilim tensorii:

s
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0 1 4
[T]=S[E]=| 4 2 0|——=|2|=—=|8]; T =(47 +8]+3K)
1 3 3

bulunur ve modulii:

14 14
olarak bulunur.
3. (2.3) esitligi kullanilarak:
1 23
P, _ L 2 46
14
3 609
olur ve
1 2 3|4 1
Pér(f):ﬁz 4 618 :% %2
3 6 93 3
6:%(f):§érzi(f+217+3|2)
, 147" 14414
elde edilir. Bu esitlikten:
1 29
o=l5]=2



olarak bulunur. Skaler carpimla:

1 29
1 2 3 4 8 3l=—(4+16+9)==
[ ] ]14(++)14

.

5l-

ayni sonug bulunur.

4. (2.4) kullanilarak tamamlayic1 izdiisim tensorii :

13 2 -3 -3 2 34T
PéL:i 2 10 -6 ;Péﬁ):ﬁ 2 -10 6|8 =% T 6
3 6 -5 3 -6 -5||3
f:Pgi(f)=9‘Eéﬁ= ? [3T+6J—5k}
e 14 14414

bulunur: Buradan

NG
ity

olarak bulunur. Ayrica ayni sonug pisagor teoreminden:

14 14

bulunabilir.

5. S nin karakteristik polinomu:
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4 2-0 0 |=0->(c-1)(c’+20-24)=0
0 0 1-o

seklindedir. o, =4;0, =1;0,, =—60zdegerleri temel gerilimin modiillerini  verir.

Birim vektorler: o, =4 icin:

-8 4 0 X 0 X 1
4 2 0|xX|=|0|—>|x|=(2
0 0 =3[ 0 x? 0

I o .
olur. Buradan 4, :ﬁ(l +2j) elde edilir. o, =1 igin:
-5 4 0]|x'| [o x| [0
4 1 0f|x*[=0|>[x*|=|0
0 0 Of[x*| [0 x| |1
olur. Buradan &, =k elde edilir. o, =—6 igin:
2 4 0| x| [O X' 2
4 8 0| x*|=|0|>|x|=|-1
0 0 7]|x*| [0] |x]| [0

olur. Buradan 4, =%(27—j) elde edilir. Ozvektorlerle ilgili taban degisimin

dogrudan ortogonal matris oldugunu dogrular.
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/N5 0 2/
a=|25 0 I |4

0 1 0

2
-1

Yani, yeni l¢ yiizli bir direkt {gyiizlidiir. @Q matrisinden, S nin ortogonal

yiikseltgenmesi:

40 0
$=Q'sQ=0Q'sQ=(0 1 0
0 0 —6

olur. Sonug olarak istenilen vektorler:

5, :%(hzi);&” =K:y, = (27 -1)

elde edilir.

6. (4.26) esitligine gore S gerilim tensorii ve éa,éb,éc dogrultularindan:

( ) _0, — 0Oy 1_(_6) :Z
7 49

(Tmax)b = : 2 = 2 :5
_o,—-0, 4-1 :i
( max)c 2 2 2

olur. Buradan &, (cos45,0,+sin45) yoniindeki maksimum kesme gerilimi 7, =5 dir.
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1 1
7. | —,0,-—| ortogonal vektorleri S nin maksimum kesme geriliminin
(ﬁ ﬁj : :

dogrultusundadirlar. Q tabanlarim (T, 1, IZ) almamiz gerekir. Bu durumda matris hali:
X =QX;

N5 0 25 [z vz ] |30 -0
X=|2/\5 0 -1/J5] 0 0 |=|1/~10 3/J10
0 1 0 1/\/5 _1/\/5 0 0

olur. Boylece 7 =5 kesme geriliminin ortogonal dogrultusu:

—

8, =——(37+]) ve &, =——(-7+3])

Jio

S‘H
S

dir.

8. Maksimum kesme geriliminin normal gerilimi:

1 4 4 0] 3
0,=6,%5(8)=—=[3 1 0Je|[ 4 2 0| =1
V1o o o 1)V'%0
-8
“ i1 014 |t (2441440)= 20 oy,
10 10 10

0
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1 4 4 01 [l

0, =8, ¢S(6, J)=—=[-1 3 0]e[| 4 2 0|]——]|3
V10 o o 11V190,
16

—o[-1 3 0] 2 = (164 6+0) ===

seklinde bulunur. Boylece o, = o, =—1 olur.

9. S tensdr sistemi alinip ve ¢oziiliirse ilk sisteme doniiliir. Istenilen dogrultu é (%, m, ﬁ)

olsun: O zaman:

4.0 0 ¢
c=€eS(€)=0;[ 7 M fi][0 1 0| m=047"+m -6"=0
00 —6]n

_
6—7(1—12)
= 24/64u
ﬁ:(1+/12)y

olur. Burada A=pu=1 segilirse, (%,rﬁ,ﬁ):(O,Z\/g,Z) olur. Yani vektor

F(O, \/g , 1) olup tekrar ilk hale doniiliir.
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1 [N 0 250 2
X =QX;m|=|2/J5 0 -1/J5]| 6 =% -1
n o 1 o ||1]| Y|so

dir. Coziimii:

I _ 1 /- - .
r=2i - +\/%k;é,=— 20 — J +/30k
j (-] )
bulunur.
1 - s e —
10. € =——|2I - ++/30K ) vektorii t. gerilimine sahiptir. Buna gore:
\/§< J ) g p g
t! | -4 4 0] 2 | -12
t'=—=| 4 2 0| -1 |=—=]| 6
ERVER V35
5 0 0 1)[J50 N
olur. o0 =0 oldugundan:
] .. - ~ 127467430
7=t =——(-121 +6] +30k ) ve 7 =[f |=—"=""=/6
g (1206130 N

bulunur.

Ornek 4.3. (Kanisik Gerilmeler): Genisligi s=2mm ve ¢cap1 R =30cm olan Sekil 4.4

de verilen metal tiipii diisiinelim. Tiipiin her iki ucundan momentler uygulanirsa:

e Degeri M. =3i mT olan YOZ diizleminde kivrilan moment.
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e Degeri M, = 4K mT olan OZ diizlemindeki tork momenti.

Tiipiin disindaki bir P noktasindaki S gerilme tensoriinii bulunuz.
Maksimum gerilmelerin olusacagi noktalar1 bulunuz.

Maksimum gerilmenin degerini bulunuz.

bl

Maksimum gerilme iizerinde olusan ve diizleme dik olan birim vektorii bulunuz.

-
S
-~

-
-
- -
-
-

______
~— -

heS
bty
-----

=
mn/l[ \
|‘ _.I ;
vy

Sekil 4.4. Metal tiip

Coziim:
1. Cap1 genisliginden ¢ok biiyiik oldugundan genigligini ihmal edebiliriz. Bu durumda

XOY diizlemindeki tork momenti tarafindan meydana gelen tanjant gerilimi:

L M, M,
R(27Rs) 2xzsR?

dir ve sekil 4.5 teki gibi OX ve OY eksenlerine paralel olan bu diizlemdeki kesme

gerilimleri:
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2_:=TXZT+Tyz]=_TSinar+TCOSQJ7=—Tlr+fli
R R
dir. Ozetle:
M, ¥ M.y M; X M. X
(3 P T, = —=
27sR* R 27sR* " 27sR* R 2xsR’
dir.

O oL
A A

X

><W

Sekil 4.5. Metal Tiip Uzerindeki Gerilmeler

Bir bagka deyisle biikiicii momentten dolayr XOY diizlemi iizerinde olusan dis gerilim:

o, ~Me¥ dir. OX eksenine gore diizlem kesitinin |, i¢ momentini hesaplamak i¢in
X

yine ilk varsayimimiz olan genisligin capa gore ihmal edilebilirligini uygulayalim. O

zaman:

l, 1
Iy == (27R)R* = 2R’
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olur. Bu sonucu o, yerine yazarsak:

= MFy
‘' 7sR’

olur. Bu gerilimleri buldugumuz zaman tiipiin disindaki P(X, Y, Z)noktasma etki eden

gerilim tensoriinii de belirleyebiliriz. S gerilim tensorti:

o, T, T 0 0 -M,y

X Xy Xz
S= Txy O'y Tyz :W 0 0 MTX
_MTy MTX 2MFy

olarak bulunur.

2. Karakteristik polinom yardimiyla temel gerilimleri bulabiliriz. Buradan maksimum

gerilmelerin yerini belirleyebiliriz.

olur. Sonug olarak:

2
o o
0[0‘2—020+12]:0 ve azji (j) +7°

ve 7 sabit oldugundan o maksimum degeri (+) icin saglanacaktir.

3. AB (y = R) ana dogrusundaki noktada o, degeri:
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2M_y M
(O-Z )max { ; 3 j = F2
27sR” ), 7SR
olur ve maksimum gerilim:

2 5 >
O-max(o-Z)max+\/|:(o_Z)man| +7° = MF2+\/( MFZJ +( M zj
2 2 27SR 2SR 2SR

! +[MF+,/M,§+MTZ}

- 27SR?

olur. Momentleri ¢cm x kg cinsinden alirsak:

1 8x 10"
P 3x105+\/32+42x105J= — 235.8kg /cm’
mx T 0.6% 307 [ 339.202 g

veya

o, =235.8x9.8x10* =2311x10" pascal

bulunur.

4. o 0zdegerine ait 6z vektor:

ve o, degeri igin:
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olur. Boylece 6z vektor:
1
(ﬁ,m,n):(—T,O,amax):m(—MT,O,MF +MZ+ M) = 7,(~4,0.8)

bulunur. Sonug olarak €,  birim vektori: €, = - + ZIZ) olarak bulunur.

1
5

4.5. ic Moment Tensérii

(O - XYZ) uzayinda bir geometrik uzayi diistinelim.

Sekil 4.6. i¢ moment tensorii

O noktasindan gecen bir eksen etrafinda donen ve anlik bir € dogrultusuna sahip

homojen bir S katisini ele alalim. Katinin P(X, y,z) noktas1 komsulugunda noktasal
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kiitlesini diistinelim (Sekil 4.6). Katinin, kiitleleri toplami ile eksene uzakliginin karesi

carpimi katinin € eksenine gore i¢ momenti olarak adlandirilir. Su sekilde gosterilir.

|, = j r’dm (4.40)
S

Eger € birim vektoriini :
E=/i+mj+nk; 2+m*+n’=1
alinirsa ve P noktasinin konum vektori:
V=0P=xi +Vj+2zK

alinirsa (3.4) esitliginden P, komplementer izdistim vektorii kullanilarak 1 vektori:

(1-¢*) —/m —m |[x
F=P.(M)=| -/m (@1-m°) -mn ||y
—(n -mn  (1-n%)|| z
seklinde hesaplanir.
P.= Pei oldugundan:
X X
rP=fef=[x y z]P eP.|y|=[x y z]P}|y
z z

olur. Izdiisiimler eskuvvetlik dzelligini sagladigindan:

X (1-0*) —/m —m |[x
rr=[x y z]P.|y|=[x y z]| -m (1-m?) -mn ||y
z —n -mn  (1-n*)| z
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veya

(m*+n’)  —/m —(n X
[x y z]| —m  (?+n*) -mn ||y
—n -mn  (*+m?) ||z

elde edilir. Daha sonra bu ifadeyi diizenleyip (4.40) ta yerine yazarsak:

I|
cn'—.

I m’ +n’ +n2)y2+(€2+m2)22—(fmxy+€nxz+mnyz)dm
S

- KZJ‘(y2 +2°)dm+ mzj'(x2 +2°)dm +n2J'(x2 +y*)dm
S S

S

—2(£mj xydm + énj xzdm + an' yzdm]
S S S

olur. Sonug olarak:

L= [(y>+2°)dm; 1, =[(x*+2*)dm; 1, =[(x*+y*)dm P, = [xydm; P, = [ xzdm;
S S S S S
P.= J' yzdm (4.41)
S
olur. 1,11, ifadeleri Kartezyen eksenine gére i¢ momenttirler. Cinki I,1,1,

ifadleri daima pozitiftirler.P_,P_,P_ ifadeleri ise i¢ carpimlardir ve merkezkag

xys ' xzo ' yz

momentler olarak adlandirilirlar.(4.41) ifadelerini |, da yerine yazarsak:

l, = 1,02 +1,m*+1,n* 2P, ¢m—2P,/n—2P,mn
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. P, P, [
=[¢ m n)|-P, 1, -P,|m|=geI(§) (4.42)
P, P, I, |In

Xz yz z

olur. | ifadesi ic moment tensorii olup bir simetrik tensordiir. Matris gosretimi:

Ix _ny sz
I=|-p, 1, -P, (4.43)
P P

seklindedir. Eger Kartezyen sisteminde orjin ile S katisinin G agilik merkezi kesisir

ise i¢ moment tensorii |; ile gosterilir (Schouten 1989). Eger katinin agirlik
merkezinden € ekseni degilde € parelel bagka bir eksen gecerse bu eksene gore i¢

moment (g )e ile gosterilir ve 1, ile iligkisi Steiner teoremi olarak bilinir.
I, =mA%+(1g), (4.44)

Burada m katinin kiitlesi, A ise parelel eksenler arsindaki uzakligi ifade eder. Konunu
basinda ifade edilen donme @ agisal hizina sahipse € ekseni etrafinda agisal hiz

vektori:
&= 8 = i +omj +onk = o +o,] + ok (4.45)

seklinde olur. Burada @ agisal hizi ra%n cinsindendir. I(c?)) vektorii e eksenine gore

S katisinin kinetik momentidir ve ﬁe ile gosterilir. Eger,

—

h,=hi+hj+hkise (¢ +m>+n’=1):

e
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h, I, —ny P, || @ I, —ny -P, || ¢
h|=1(@)=|-P, 1, -P, | |=0l(€)=0-P, 1, -P,|m| (446)
h3 sz - I:)yz I z 23 - sz l:>yz I z n

olur. %5)0 ﬁe skaler ¢arpim1 E_ ile gosterilir ve @ donme agisina gore S katisinin

kinetik enerjisi denir. Kinetik enerji su sekilde:

yazilir. (4.42) ifadesini E_ de yerine yazarsak:

E. 1 l.o (4.47)
2
elde edilir. ikinci dereceden tiim simetrik tensdrler igin | tensdriiniin polinom

karekteristigi pozitif degerdeki 1,1,,1, 6z degerlerini verir ve temel i¢ momentler
olarak adlandirilir. Bu 6zdegerlerle ilgili d,,d,,a, 0z birim vektorleride temel yonlerdir.

Buda i¢ ¢arpimlar sifir olan maksimum ve minimum i¢ momentleri verir. Q ortogonal

matrisinin siitunlarindaki 6z vektér bilesenleri | tensoriiniin derecesini artirir. |
tensori:
I, 0 O
=Q'IQ=Q'IQ=|[0 I, 0[;l,>1,>1,>0 (4.48)
0 0 I,

seklindedir. (4.42) esitligi € birim vektdriiniin (f,m,n) bilesenlerinin fonksiyonu

cinsinden katinin i¢ momenti |, verir ve su sekilde:
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yazilir. Eger A( X, Y, Z) noktasini segersek bu sartlar1 saglayan koordinatlar:

o I y= m - n
JuT
seklindedir. OA konum vektdriiniin A ucu kati ylizeyinde olup:
2 2 2
Lx*+ 1,y +1,2° -2P xy-2PB xz-2P, yz =1 (4.49)

yazilir. Bu ifade S katisinin € eksenine gore i¢ elipsoididir.

Ornek4.4. (Kat1 ile Tlgili ic Tensérler): Dik bir paralel yiiz diisiinelim.Bu paralel

yiizlin kenarlar1 a,b,c tepe noktalarinda kesismektedir.Ayrica bu cismin yogunlugunun

( p= 1) oldugunu farz edelim.

1. Katinin i¢ tensoriinii, a € O_X, beOY ve ceOZ olacak sekilde bulunuz.

2. (G—XYZ) sistemine gore |, i¢ momentin bulunuz.

3. (a)(O - XYZ) ve (b)(G — XYZ) sistemleri i¢in € = OG eksenine gore katinin |, ic
momentini bulunuz.

4. (O-XYZ) sisteminde katmmn konumunu beOX;ceOY;acOZ olacak sekilde

yerlestirelim. Bu durumda 1,2 ve 3 sorulan yeniden cevaplaymz. 5. 1,  ve I, i¢

moment tensorlerinin degerleri esitmidir.
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Coziim:

1. (4.41) esitligine gore:

I, :_l.(y2 +zz)dm=m'5(y2 +2°) dxdydz :'[Oadxjobdyj':(yz +27 Yz :aTbC(bz L)

I :i(xz+22)dmzjjfs(x2+zz)dxdydz :joadxfodeI:(X2+Zz)dZzaTm(a2+cz)

P, =)= [, () vy = [y 2 = ) P = (o)
S

_abc

P, =——(bc
yz 4 ( )
dir.(4.43) esitligine gore i¢ tensor:
b>+c> ab  ac |
3 4 4
2 2
| =(abc) _abaxc be
4 3 4
@b be al+p
4 4 3]

seklindedir.

2. Katiyt (G—-XYZ) sisteminde orjini G(%,%,%j noktast olan ve eksenleri

(O — XYZ) eksenine paralel seklinde diisiinelim. G noktasinda kati ii¢ simetri eksenine
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sahip olacagindan ve integralin siirlar1 degisece§inden i¢ ¢carpimlarin tiimii sifir olur
Ozetle:

(1g), :.!(yz+22)dm=m's(y2+zz)dxdydz

a/ / c/ b
- ;2 dlebb/z2 dyj‘c/;(y2 +2°)dz = alzc (b”+c?)

\

ny = sz = Pyz =0
olup buda i¢ tensoriin:
. b*+c? 0 0
I, = alzc 0 a+c’ 0
0 0 a’+b’

oldugunu gosterir. Burada ki (1), .(lg),.(ls), momentleri temel i¢ momentlerdir ve

dogrultular1 Kartezyen eksenini dogrultusundadir.( |, tensorii i¢in)

3. (2) OG dogrultu vektorii (%g%) dir ve birim vektorii:
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é=;(af+b]>+(:iz)

Jar+b? +c?

seklindedir. (4.42) esitligini kullanarak:

b’+c> ab  ac |
3 4 4
1 ab a’+c’ bc a 1
I, = (abc)————=[abc]| -— = ||b|——
( )\/a2+b2+cz[ ] 4 3 4 Jai+b* +¢?
2 2 c
@b _bo aleb
| 4 4 3]
2 2 2 2 2 2
=— abzc - b”+c a2+ 20 8 +b cz—za—bab—Z%aC—ZEbc
a“~+b”+c 3 3 3 4 4 4

* a’+b’+c? 6 a’+b*+c?

| abc [2(azb2 +b’c* +a’c’)  a?h? +bic? +a’c? J _abc a’h? +b%c? +a’c?
3 2 -

bulunur.

(b) Ayn1 formiilii kullanarak | tensorii:

] | b? +¢? 0 0 |

abc

.) = abc 0 a’+c? 0 b |l — ——
( G)e 12 a2+b2+cz[ ] 0 0 a2+b |l ¢ Jai+b’ +¢?

_abc (b°+¢?)at+(at+¢? )b’ + (a7 +b7)c*  apc ah? +b%c? +a’c?
12 a’+b’+c’ 6 a’+b’+c’

bulunur. Ayn1 eksene sahip olduklarindan ayni sonucu verirler.
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4. (a) Benzer islemler uygulanarak:

, :aTm(c2+a2); , :""Tbc(b2 ralyl, :aTbC(b2 +c?)

Py _aTbe 3 Pe —aTbea; P, = abe ac
a2+ c? _bc ab
3 4 4
2 2
I"=(abc) beadbt o ac
4 3 4
_ab _ac b* +¢?
| 4 4 3 ]
olur.
(b)
_abc, ., _abc, ., _abc,,
(IG)X_ 12 (a +C )’(IG)y_ 12 (a +b )’(IG)Z_U(b +C )
1 a’+c? 0 0
|g=% 0 a’+b’ 0
0 0 b* +¢?
olur.

(c)i. OG dogrultu vektérii bu defa (b,c,a) olur. Birim vektorii:

=1 1 0d = e
€ —m(bl +CJ +ak)

olur.
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a’+c’ bc ab |
3 4 4 Iy
, abc bc a’+b? ac 1
I, =————[bca]| —= - || ¢ |—
Ja’+b® +¢? 4 3 4 1, [Val+bt+c?
_ab _ac prc
4 4 3]
|, abe a’b’ +b’c’ +a’c’ _ I
“ 6 a’+b*+c® ¢
elde edilir.
1l.
] | a’+c’ 0 0 b |
( g),:a ¢ [bca]] 0 a’+b®> 0 |c
° 12 @k +b?+¢?

[2 2 2
0 0 b*+c? || a a’+b"+c

abc a’b? +b*c? +a’c?
1) = =(I
(G)e 6 a2+b2+c2 (G)e

bulunur.

5. Goériilityorki: M'IM =M ~'IM = 1" dir. Yani, eger

0 0 1
M=l1 0 0
010

ve MM' = |, ise sonug:



S == O

bulunur. M matrisini almazsak | ve |’ matrisleri ayni polinom karakteristigine sahip
olup ortogonal benzerdirler. Boylece 1,1
mometlere sahiptirler. Ger¢cekte M matrisi, O noktasindan gegen anlik bir eksen

etrafinda donen bir matristir. Ciinkii verilen sabit bir nokta i¢in katinin yer degisimine

esittir. Aslinda M matrisini analiz edersek ||\/I | =1 dir. Yani donme matrisidir. Ornek

2.2 nin 4. noktasinda € donme agisinin degerini veren formiilii, ilgili M matrisi igin

kullanilirsa:

cosd

olur. (2.14) esitliginde ki donme tensoriine gore m;, ve m,, terimleri bilindiginde €

- O O

_izM-1_0-1 :_l—>9:120;cos6’=—l;Sin9:£
2 2 2

1
0 |(abc)
0

2

eksenin cosiniis bilesenlerini bulabiliriz.

m,, =cos’ & +(c0s2 [+ cos’ 7/)cos<9 =cos’ o +(cos2 S +cos’ 7/)(—

m,, = cos’ ﬂ+(cos2 a + cos’ 7/)00519 =cos’ S+ (cos2 a +cos’ 7)(—

116

ab ac
4 4
a’+c? bc
3 4
bc a’+b?
4 3

_bc @b
4 4

a’+b’ _ac
3 4

_ac b? +¢?
4 3

!

S == O

- O O

S O

DNISN

matrisleri ayn1 06zdegerlere ve temel i¢
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1se ¢Ozlim:
1 1 1
cosa,cos f,cosy)=| ——=,—F=,—=
( pros7) ( 3B 3j
diir. Buda
0 0 1
M={1 0 0
010

... X z . . . .
matrisinin T:%:T eksenine gore rotasyonu ceyrek diizlemin agiortayi, € =120

degerini ve katinin 1.sorudaki ve 4.sorudaki konumlarinin birbirine esdeger oldugunu

yani izometri oldugunu gosterir.
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5. SONUC

Euclidean ve Hermit linear uzaylarin afin uzaylarini olusturan izdlisiim, momentum,
donme ve yansima tensorleri verilerek, E"(R) uzayinda afiniteler, homoteziler
izometriler gibi afin geometrik tensorler incelendi.Afin geometrik tensér doniistimleri
olan homografiler ele alindi. E*(R) ve E’(R)uzaylarinda 6teleme, dénme, merkezi

simetri, eksenel simetri ve benzerlik kavramlar: incelendi.Fizik ve Mekanikte kullanilan
Strees ve Strain tensorleri tanitildi.Bu tensorlerin tensor iliskisi olan Elatik tensor
kavrami ile i¢ moment tensorii 6zellikleri incelendi.Ayrica bu tensorlere ait problemler

¢Oziimleriyle birlikte verildi.
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