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ÖZET 

Yüksek Lisans Tezi 
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Ayhan SARAÇOĞLU 

Atatürk Üniversitesi 

Fen Bilimleri Enstitüsü 

Matematik Anabilim Dalı 

Danışman: Prof. Dr. Abdullah MAĞDEN 

Bu tezde, Euclidean ve Hermit lineer uzayları gibi uzayların afin uzaylarını oluşturan 

izdüşüm, momentum, dönme ve yansıma tensörleri verilmiştir. Ayrıca 

afiniteler,homoteziler, izometriler  gibi afin geometrik tensörler ve homografiler 

yardımıyla Fizik ve Mekanikte kullanılan bazı önemli tensörler incelenmektedir. 

2010, 119 sayfa 

Anahtar Kelimeler: Euclidean tensörü, izdüşüm tensörü, dönme tensörü, yansıma 

tensörü, afin geometrik tensörler, homografiler, stress ve strain tensörleri. 

 

 



 

ii 
 

ABSTRACT 

Master Thesis 

TENSOR APPLICATIONS IN PHYSICS AND MECHANICS 
Ayhan SARAÇOĞLU 

Atatürk University 

Graduate School of Naturel and Applied Sciences 

Department of Mathematics 
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In this thesis, projection, momentum, rotation and reflection tensors comprising the 
affine spaces of linear spaces such as Euclidean and Hermitian spaces are given 
moreover, affinities, homothecies, isometries, affine geometric tensors and with the help 
of homographies some important tensors used in physics and mechanics are discussed. 
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1. GİRİŞ 

Bu tez çalışmasında en yaygın afin tensörlerden bahsedilecektir. Türev ve integral 

işlemlerini konu alan ve Öklit ve Hermit lineer uzayları gibi uzayların afin uzaylarını 

oluşturan fonksiyonel tensörlerden bahsedilmektedir. Konum (uzay koordinatları) ve 

zaman ise bahsedilen fonksiyonellerin başlıca değişkenleridir. Cebir açısından 

bakıldığında, son zamanlarda daha karmaşık ve anlaşılmaz görünen tensörlerin analizi 

mümkün görünmektedir. Tensor analizinin seçkin kuruculari Voigt, Levi-Civita, Ricci, 

Riemann, Christoffel, Einstein, v.b. malesef bu güzel matematiksel yapı ile uğrasmaya 

basladiklarinda, yeteri kadar cebirsel altyapiya sahip değillerdi.Daha sonraki 

çalışmalarda cebirsel yapı kullanılarak konuya zenginlik kazandırılmıştır. 

Bu tez çalışması tensörlerin, pratik problemlerin çözümüne nasıl olanak tanıdığını 

göstermeyi amaçlamaktadır. Tez çalışması üç kısma ayrılmaktadır. Birinci kısım 

izdüşüm, momentum, rotasyon ve yansıma tensörlerini içeren ( )nE  deki Öklid 

tensörlerini kapsamaktadır.   

Ikinci kısım ise genel affinleri, homotezileri, izometrileri ve çarpımlarını konu alan afin 

geometrik tensörler ve homografilerden bahsetmektedir.  

Son olarak, üçüncü kısım ise stress ve strain tensörleri, elastik tensör ve iç moment 

tensörleri gibi fizik ve mekanikte önemli bazı tensörleri konu almaktadır.  



2 
 

 

2.KURAMSAL TEMELLER 

 2.1. ( )nE ’de Euclidean Tensörü 

                                              ,     1,...,jx V j q∈ =  

vektör ve 

,    1,...,
i

V i pξ ∗∈ =  

kovektör değişkenlerinin 

1 2

1 2, ,..., , , ,...,
p

qt x x xω ξ ξ ξ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

reel değerli fonksiyonun göz önüne alalım. Eğer bu fonksiyon her bir değişkene göre 

lineerlik şartını sağlarsa, buna multilineer fonksiyon denir. Mesela birinci vektör 

değişkenine göre lineerlik şartı, ,λ μ∈  olmak üzere, 

1 2 1 2 1 2

2 2 2, ,..., , , ,..., , ,..., , , ,..., , ,..., , , ,...,
p p p

q q qt x y x x t x x x t y x xω λ μ ξ ξ ξ λ ξ ξ ξ μ ξ ξ ξ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

biçiminde gösterilebilir. Bu multilineer fonksiyona karşılık gelen 

: ... ...
p

q

t V V V V V V∗ ∗ ∗× × × × × × × →  
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operatörüne V  uzayında .p  dereceden kontravaryant, .q  dereceden kovaryant tensör 

adı verilir. 0,   0p q≥ ≥  olmak üzere s p q= +  sayısına tensörün valentliği, ( ),p q  

sembolüne ise tensörün tipi denir. ( ),0p  tipli tensörlere kontravaryant tensörler ve 

( )0, q  tipli tensörlere kovaryant tensörler denir (Salimov ve Mağden 2008). 

{ }eα ortonormal bazlı ( )nE  Euclidean uzayını göz önüne alalım. Euclidean uzayında 

vektörlerinin skaler, vektörel ve karma çarpımları gibi temel tensörlerin yanı sıra 

değişik tensör işlemlerinde kullanılan ve tanımlanabilen diğer tensörler mevcuttur.  

2.2. İzdüşüm Tensörü 

E2( ) lineer uzayını ele alalım. Birim vektörü 1 2cos sine e eα α= +  ve belirli vektörü 

1 2
1 2v x e x e= +  olan bir e vektörünü eksen olarak kabul edelim (Şekil 1.1). Verilen 

eksende v  nin ortogonal izdüşümü olan 1 2
1 2( ) ( )p x e x e′ ′= +  vektörünü bulmak 

istiyoruz. 

 
 

Şekil 2.1. İzdüşüm Tensörü 

Bu tensöre izdüşüm tensörü adı verilir ve eP  ile gösterilir: 

[ α
α
α

cos
sin
cos

⎥
⎦

⎤
⎢
⎣

⎡
=eP  ]αsin ⎥

⎦

⎤
⎢
⎣

⎡
=

ααα
ααα

2

2

sincossin
cossincos
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Buradan, 

            ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

′

′
=

)(
)(

);(
2

1

x
x

vPP e ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

2

2

sincossin
cossincos

x
x

ααα
ααα

  (2.1) 

yazarız. 

Burada p  vektörü yukarıda bahsedilen tensör çarpımının kendisi olan bir matris 

çarpımıdır. v vektörünü 1 2
1 2( ) ( )q x e x e′′ ′′= +  vektörüne dönüştüren ve p q v+ =  

eşitliğini sağlayan ve 
e

P ⊥ ile gösterilen tamamlayıcı izdüşüm tensörü 

tanımlanır. q v p= −  ifadesinden matris şeklini; 

1 1 12

22 2 2

( ) cos sin cos
sin cos sin( )

x x x
x x x

α α α
α α α

′′⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥′′ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

                                    
12

2 2

1 cos sin cos
sin cos 1 sin

x
x

α α α
α α α

⎡ ⎤⎡ ⎤− −
= ⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎣ ⎦  

              

1 12

22 2

( ) sin sin cos
( );

sin cos cos( )e

x x
q P v

x x
α α α

α α α
⊥

′′⎡ ⎤ ⎡ ⎤⎡ ⎤−
= =⎢ ⎥ ⎢ ⎥⎢ ⎥−′′ ⎣ ⎦⎣ ⎦ ⎣ ⎦

  (2.2)  

elde ederiz. 2e e
P P I⊥+ =  olduğu açıktır. Benzer şekilde, 3( )E  lineer uzayını ele alırsak 

aşağıdaki verileri elde ederiz. 

1 2 3
1 2 3 1 2 3cos cos cos ; ;e e e e v x e x e x eα β γ= + + = + +  

1 2 3 1 2 3
1 2 3 1 2 3( ) ( ) ( ) ; ( ) ( ) ( ) ;p x e x e x e veq x e x e x e′ ′ ′ ′′ ′′ ′′= + + = + +  
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[ ]
2

2

2

cos cos cos cos cos cos
cos cos cos cos cos cos cos cos cos
cos cos cos cos cos cos

eP
α α α β α γ
β α β γ β α β β γ
γ α γ β γ γ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

  

Böylece tensör işlemleri olarak: 

1 2 1

2 2 2

3 2 3

( ) cos cos cos cos cos
( ); ( ) cos cos cos cos cos

( ) cos cos cos cos cos
e

x x
p P v x x

x x

α α β α γ
β α β β γ
α γ β γ γ

′⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (2.3) 

ve tamamlayıcı izdüşüme göre: 

1 2 1

2 2 2

3 2 3

( ) sin cos cos cos cos
( ); ( ) cos cos sin cos cos

( ) cos cos cos cos sin
e

x x
q P v x x

x x

α α β α γ
α β β β γ
α γ β γ γ

⊥

′′⎡ ⎤ ⎡ ⎤ ⎡ ⎤− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′′= = − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′′ − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (2.4) 

elde ederiz. Açıkçası 

                                              3e e
P P I⊥+ =    (2.5) 

olur. İzdüşümün temel kuralı olan eş kuvvetliliğe göre; 2
e eP P=  dir(Ruiz-Toloso and 

Castillo 2005). 

Eğer 3( )E  Euclidean uzayını ele alırsak v  vektörünün bir π düzlemi üzerine 

izdüşümü vardır. Burada π  düzlemi lineer alt uzayın tabanı olarak seçilen ve iki 

orthogonal birim vektörden elde edilen ( 1 2 0π π• = ) vektör halinde bir düzlemdir. 

1 1 1 1 2 1 3

2 2 1 2 2 2 3

cos cos cos
cos cos cos

e e e
e e e

π α β γ
π α β γ

= + +
= + +
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biçiminde dir. Gerçekten 1 2 0π π• =  dır. Bu izdüşüm tensörünü Pπ  olarak ifade ederiz. 

1π  ve 2π  birim vektörleri ile gösterilen eksenlerin her biri üzerindeki v vektörünün 

üzerine 1 2,p p  izdüşümlerinin vektör toplamı ( )P vπ  olsun. ( )P v pπ π=  ise; 

         
1 21 2( ) ( ) ( );p P v p p P v P vπ π π π= = + = + 1 2 3

1 2 3( ) ( ) ( )p x e x e x eπ π π π′ ′ ′= + +  

ve 

     

1 2
1 1 1 1 1

2 2
1 1 1 1 1

3 2
1 1 1 1 1

( ) cos cos cos cos cos
( ) cos cos cos cos cos
( ) cos cos cos cos cos

x
x
x

π

α α β α γ
α β β β γ
α γ β γ γ

⎛′⎡ ⎤ ⎡ ⎤
⎜⎢ ⎥ ⎢ ⎥′ = ⎜⎢ ⎥ ⎢ ⎥
⎜⎢ ⎥ ⎢ ⎥′⎣ ⎦ ⎣ ⎦⎝

  

2 1
2 2 2 2 2

2 2
2 2 2 2 2

2 3
2 2 2 2 2

cos cos cos cos cos
cos cos cos cos cos
cos cos cos cos cos

x
x
x

α α β α γ
α β β β γ
α γ β γ γ

⎞⎡ ⎤ ⎡ ⎤
⎟⎢ ⎥ ⎢ ⎥+ ⎟⎢ ⎥ ⎢ ⎥
⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎠

  (2.6)  

olur. 

 Bazı yazarlar bu tensörü 0k ≠  ve k∈  için kPπ ile gösterir ve yer değişim tensörü 

adını verirler(Ruiz-Toloso and Castillo 2005). 

 Örnek 2.1. ( 2 ( )E de eS Pσ= tensörü): L uzunluğunda yatay bir ipin orta noktasından 

bir P ağılığı asarsak ipte bir f yer değiştirmesi meydana gelir (Şekil 2.2). 
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Şekil 2.2. Merkezdeki ağırlığı gösteren uzunluk 

1. Ağırlık tarafından oluşturulan F çekme kuvvetini bulunuz. 
 

2. A kesiti için ip gerilmesi σ  olan ve e  ekseniyle aynı doğrultuda olan ePσ  tensörüne 
eşit bir S gerilme tensörünü bulunuz.

 3. S yi kullanarak e  normal birim vektörüyle θ açısı yapan ip gerilme kuvvetini 

bulunuz.  

Çözüm:  

1.Problemimizi ( )2E  de gözönüne alalım. Şekil 2.3 teki vektörlerin bileşkesinden: 

2 sin
P

F
φ=

 

 
 

Şekil 2.3. Vektör Şeması 
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Şekil 2.2 den sin
2

f
L φ=  elde ederiz. Böylece: 

                                    

2
42

P f PLFLF f
= → =   

elde edilir..  

2. İp gerilmesi ile OX eksenini aynı doğrultuda farz edersek, yani 1 2cos 0 sin 0e e e= +  

şeçilirse (2.1) den: 

 
2

2

cos sin cos
sin cos sineS P

α α α
σ σ

α α α
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

  

2 0 0 0

0 0 2 0

1 0cos 0 sin 0 cos 0
0 04sin 0 cos0 sin 0

F PL
A fA
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

 

elde ederiz.                          

3. A′  kesitine normal olan n  birim vektör 1 2cos sinn e eθ θ= +  ve A′  

kesitindekiσ ′ gerilmesi ( )S nσ ′ = dir, yani  

1
1

12

1 0 cos cos( )
0 0 sin 04 4 4( )

PL PL PL coc e
fA fA fA

θ θσ
σ θ

θσ
′⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = → =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦  

 olur. 
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2.3. Momentum Tensörü 

Bu bölümde, v  vektörünü r v×  vektörüne dönüştüren ve 
0
( )tM r×  ile gösterilen bir 

tensör oluşturmaya çalışacağız. Doğal olarak uzayımız 3( )E  dir. r  ve v  nin vektörel 

çarpımı: 1 2 3
1 2 3r r e r e r e= + +  ve 1 2 3

1 2 3v x e x e x e= + + , 

için  

1 2 3
1 2 3 2 3 3 2 3 1 1 3 1 2 2 1

1 2 3
1 2 3

( ) ( ) ( )
e e e

r v r r r r x r x e r x r x e r x r x e
x x x

× = = − + − + −  

içimindedir. O zaman 

0
( )tM r v r v× ≡ ×  

olur. Buradan, 

0 0

1 2 3 3 2 3 2

2 3 1 1 3 3 1

3 1 2 2 1 2 1

0
( ) ( ) 0

0
t t

x r x r x r r
M r x r x r x M r r r

x r x r x r r

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥× ≡ − → × = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (2.7)  

elde edilir. Bazı uygulamalarda r , A noktasının yer vektörüdür ve v  vektörü buna 

bağlıdır. Bu durumda dönüştürülen vektöre momentum tensörü denir ve  

    
0
( )( )tM M r v= ×                                     (2.8) 

biçiminde gösterilir. 
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Şekil 2.4. Momentum vektörü 

Momentum tensörünün izdüşüm tensörüne göre ilginç bir özelliği de bu tensörün ( r e=  

birimi ile verilen) bir uygulaması ( )
e

P ⊥− tensörüdür. e birim vektör olarak alındığında 

(2.7) den: 

 
0

2
0 cos cos 0 cos cos

( ) cos 0 cos cos 0 cos
cos cos 0 cos cos 0

tM e
γ β γ β

γ α γ α
β α β α

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤× = − −⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

  

2

2

2

cos 1 cos cos cos cos
cos cos cos 1 cos cos
cos cos cos cos cos 1

α α β α γ
α β β β γ
α γ β γ γ

⎡ ⎤−
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

3( )e e
I P P ⊥= − − = −   (2.9)  

elde edilir. Sonuç olarak, 
0
( )tM r×  tensörüyle ilişkili eksenlere göre momentum tensörü 

olarak adlandırılan ( )eM  ile gösterilen bir diğer tensörü elde ederiz. Bu tensörü M  

vektörünün e ekseni üzerine izdüşüm vektörü olarak tanımlarız(Ruiz-Toloso and  

Castillo). Bu durumda veriler; 

1. v  vektörü onun tatbik noktası A dır.  

2. Bir e  ekseni dir.  
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Böylece,  

0( ) ( ) ( ) ( ( )( ))e e e tM v P M P M r v= = ×  

olur. Ve  

1 2 3
( ) 1 2 3( )em M v m e m e m e= = + +  

için  

1 2 3 2 1

2 2 3 1 2

3 2 2 1 3

cos cos cos cos cos 0
cos cos cos cos cos 0
cos cos cos cos cos 0

m r r x
m r r x
m r r x

α α β α γ
α β β β γ
α γ β γ γ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (2.10)  

matrisi elde edilir. 

 2.4. Dönme Tensörü  

Bu bölümde dönme (rotasyon) tensörlerinin matris halinde ifade edilmelerinden 

bahsedeceğiz. Dönme tensörü 1 2 3cos cos cose e e eα β γ= + +  birim vektörüyle verilen e 

ekseni ile θ açısı yapan ve bu eksen etrafında v vektörünün dönmesini sağlayan bir 

tensör olup eR  ile gösterilir (Schouten 1989). Burada θ  açısı pozitif yönlü bir açıdır. 

Şekil 2.5 deki vektörler yardımıyla vektörel bir işlem uygulayacağız. OB v≡  

vektörünün eksen etrafında döndürülmesiyle oluşan ( )eR v OB′≡  vektörünü düşünelim. 

Bu vektörü diğer vektörlerin toplamı şeklinde bileşenlerine ayırırsak; 
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Şekil 2.5. Dönme  tensörü 

                                  OB OC CH HB′ ′= + +   (2.11)  

olur. 

Burada:  

OC , OB v≡  vektörünün eksen üzerindeki izdüşümü ve ( )eOC P v= dir. CB , v  nin 

tamamlayıcı (komplementer) izdüşüm vektörüdür ve ( )
e

CB P v⊥=  CH , vektörü 

cos cosCH CB CBθ θ′= =  uzunluğuna sahip olan ve CB  vektörünün bir katıdır. 

Böylece; cos cos ( )
e

CH CB P vθ θ ⊥= =  yazılır. CD , e  ve CB  vektörlerine dik bir 

vektördür ve e  ve CB  vektörleri ortak dikliklerdir. Böylece 

0
( )( )tCD e OB e v M e v= × = × = ×  yazılır. HB′ , CD  ye paralel ve onun bir katıdır. Bu 

vektörlerin boyu ise sin sin sinHB CB CB CDθ θ θ′ ′= = =  biçiminde olur. Böylece; 

0
sin ( )( )tHB M e vθ′ = ×  yazılır. (2.11) deki değerleri toplarsak:    

     
0

( ) ( ) cos ( ) sin ( )( )e e te
R v P v P v M e vθ θ⊥= + + ×               (2.12)  

eşitliğini elde ederiz. Bu eşitlik (2.5) formülü kullanılarak ve yalnız tensörler için:



13 
 

 

   3cos ( ) sin ( )e e e toR P I P M eθ θ= + − + ×                                                
veya            

   3cos (1 cos ) sin ( )e e toR I P M eθ θ θ= + − + ×               (2.13) 

yada (2.3) ve (2.7) eşitlikleri kullanılarak matris formunda : 

2

2

2

1 0 0 cos cos cos cos cos
cos 0 1 0 (1 cos ) cos cos cos cos cos

0 0 1 cos cos cos cos cos
eR

α α β α γ
θ θ α β β β γ

α γ β γ γ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= + − ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦  

 
0 cos cos

sin cos 0 cos
cos cos 0

γ β
θ γ α

β α

−⎡ ⎤
⎢ ⎥+ −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

biçiminde yazılabilir  ve 2 2 21 cos cos cosα β γ= + +  olduğu göz önüne alınarak:  

                                    

11 12 13

21 22 23

31 32 33

e

r r r
R r r r

r r r

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  (2.14)  

yazılır. Burada,  

2 2 2
11

12

13

21
2 2 2

22

23

31

cos (cos cos )cos
cos cos (1 cos ) cos sin
cos cos (1 cos ) cos sin
cos cos (1 cos ) cos sin

cos (cos cos )cos
cos cos (1 cos ) cos sin
cos cos (1 cos ) cos sin

r
r
r
r

r
r
r
r

α β γ θ
α β θ γ θ
α γ θ β θ
α β θ γ θ

β α γ θ
β γ θ α θ
α γ θ β θ

= + +
= − −
= − +

= − +

= + +
= − −

= − −

32

2 2 2
33

cos cos (1 cos ) cos sin

cos (cos cos )cosr

α γ θ β θ

γ α β θ

= − +

= + +
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 1 2 3
1 2 3v x e x e x e= + +  ve 1 2 3

1 2 3( ) ( ) ( ) ( )eR v x e x e x e′ ′ ′= + +  olmak üzere diğer tensörlerde 

olduğu gibi, 

eR : 

1 1

2 2

3 3

( )
( )
( )

e

x x
x R x
x x

′⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥′⎣ ⎦ ⎣ ⎦

 

biçiminde yazılır. Dönme, 3( )E  de bir izometri olduğunda ortogonal bir matris 

olmalıdır. eP  ve 
0
( )tM e×  tensörleri kullanılarak matris halini yazabilir ve şu özelliktedir. 

[ ]( ) [ ]( )0 03 3cos (1 cos ) sin ( ) cos (1 cos ) sin ( )t
e e e t e tR R I P M e I P M eθ θ θ θ θ θ• = + − + × + − − ×

[ ]
0

22 2
3cos (1 cos ) sin ( )e tI P M eθ θ θ ⎡ ⎤= + − − ×⎣ ⎦     

(2.9) eşitliği kullanılır ve 2
e eP P=  izdüşüm özelliği göz önüne alınırsa,  

[ ]2 2 2
3 3cos (1 2cos cos ) 2cos (1 cos ) sint

e e e e eR R I P P P Iθ θ θ θ θ θ• = + − + + − − −
2 2 2 2 2

3(sin cos ) (1 2cos cos 2cos 2cos sin ) eI Pθ θ θ θ θ θ θ= + + − + + − −  

1
3

t t
e e e eR R I R R−• = → =  

bu da eR  nin ortogonal matrisle temsil edilen bir matris olduğunu gösterir.  

 2.5. Yansıma Tensörü 

3( )E  Euclidean uzayında, e  birim vektörü verilen eksene dik olan π  düzlemi 

düşünelim. 
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Şekil 2.6. Yansıma tensörü 

Yansıma tensörü aynı zamanda Householder tensörü olarak da adlandırılır. Bir ayna 

gibi v  vektörünün görüntüsünü yansıtır. Bu tensör eH  ile gösterilir. e  ve v  vektörleri 

daha önceki bölümlerde kullanılmıştı. Şekil 2.6 gösterir ki ( )eAB P v= , 2 ( )eB B P v′ =  

ve ( )eOB H v′ =  olduğunda vektör eşitliği;       

   ;OB B B OB′ ′+ = OB OB B B′ ′= −              

ve           

    ( )3( ) 2 ( ) 2e e eH v v P v I P v= − = −                                  (2.15)              

olur. Daha sonra (2.3) de yerine yazarsak yansıma tensörünün matris gösterimi:  

( );ev H v=  

1 2 2 1

2 2 2 2

3 2 2 3

( ) sin cos 2cos cos 2cos cos
( ) 2cos cos sin cos 2cos cos
( ) 2cos cos 2cos cos sin cos

x x
x x
x x

α α α β α γ
α β β β β γ
α γ β γ γ γ

′⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ = − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (2.16)  

biçimindedir. eH  tensörü aynı zamanda izometridir. Çünkü: 

2 2
3 3 3 3 3 3( 2 )( 2 ) ( 2 ) 4 4 4 4t t

e e e e e e e e eH H I P I P I P I P P I P P I• = − − = − = + − = + − =  
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olup  

1t
e eH H −=  

 bulunur.  

Örnek 2.2. ( ,e eH R  ve ( )toM e×  tensörlerinin özellikleri) 

1. 
0
( )tM e×  tensörünün Levi-Civita tensör permütasyonunun ve e  birim vektörünün 

daralması(kontraksiyonu) olduğunu gösteriniz. 

2. 
0
( )tM e×  tensörünün eksen bileşenlerinin 1cos

2i ijk jkmα ε= −  ile gösterildiği 

ispatlayınız.  

3. e  nin eR  dönme  tensörünün eigen(öz) vektörü olduğunu gösteriniz. Eigen değerini 

bulunuz.  

4. eR  dönme  tensörünün θ  değerini bulunuz. 

5. 1eR =  olduğunu gösteriniz. 

6. eR  tensöründe 
0
( )tM e×  elde ediniz. 

7. eH  nin kuvvet özelliği olduğunu gösteriniz(Yani iki kez uygulandığında başlangıç 

noktasına döner). 

8. 1eH = −  olduğunu gösteriniz.  

Not: { }eα  ortonormal tabanlarda tensör indisleri kontravaryant veya kovaryant 

olduğunu hatırlayınız.  

Çözüm:  

1. n=3 için Levi-Civita permutasyonunu düşünelim. 
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0 0 0
0 0 1
0 1 0

0 0 1
0 0 0
1 0 0

0 1 0
1 0 0

0 0 0

ijkε

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥− − −⎢ ⎥
⎢ ⎥−
⎢ ⎥

⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
− − −⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 

Burada i  blok satır indisi, j  her bloğun satırı ve k  her bloğun sütunudur. e  birim 

vektörü 1 2 3cos cos cose e e eα β γ= + +   biçiminde olsun, 

1 2 3
1 2 3jk jk jk jk jkm x x x xθ

θε ε ε ε⎡ ⎤ ⎡ ⎤⎡ ⎤ = − = − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

0 0 0 0 0 1 0 1 0
0 0 1 cos 0 0 0 cos 1 0 0 cos
0 1 0 1 0 0 0 0 0

α β γ
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

0 cos cos
cos 0 cos
cos cos 0

γ β
γ α
β α

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

olur. Bu 
0
( )tM e×  tensörünün matris gösterimidir. 

2. [ ]1 123 23 132 32
1 1cos (( cos ) ( 1)cos ) cos
2 2

m mα ε ε α α α= − + = − − + − =
 

[ ]2 213 13 231 31
1 1cos (( 1) cos ( cos )) cos
2 2

m mα ε ε β β β= − + = − − + − =   

[ ]3 312 12 321 21
1 1cos (( cos ) ( 1) cos ) cos
2 2

m mα ε ε γ γ γ= − + = − − + − =   
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olduğundan  

1 2 3cos cos cos cosi ie e e e eα α β γ= + + =  

olur.  

3. (2.13) eşitliğinden:  

3( ) cos ( ) (1 cos ) ( ) sin ( )( )e e toR e I e P e M e eθ θ θ= + − + ×  ve e  birim vektörünün e  üzerine 

izdüşümü kendisi olduğundan ( )eP e e=  dir. 

0 cos cos cos cos cos cos cos 0
cos 0 cos cos cos cos cos cos 0
cos cos 0 cos cos cos cos cos 0

γ β α γ β β γ
γ α β γ α α γ
β α γ α β β α

− − +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

olduğundan 
0
( )( ) 0tM e e× =  elde ederiz ve sonra buradan da:  

( ) cos (1 cos ) 0eR e e e eθ θ= + − + =  

olur. Buda 1λ =  öz değerine karşılık gelen öz vektörü olduğunu gösterir. 

 4. (2.14) ten eR  matrisinin trace(izini) elde ederiz. Bu da: 

2 2 2 2 2 2( ) (cos cos cos ) 2(cos cos cos )cosetrace R α β γ α β γ θ= + + + + + 1 2cosθ= +  

Buradan da ( ) 1cos
2

etrace Rθ −
=  elde ederiz.  
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5.  (2.4) bölümde dönme tensörün eR  ortogonal matrisle ifade edildiğini ve 1eR = ±  

olduğunu göstermiştik. e eksenini 3(e e OZ≡ ekseni), cos cos 0α β= =  ve cos 1γ =  

seçip determinantını aldıktan sonra (2.14) eşitliğinden:  

2 2

1 0 0
0 cos sin cos sin 1
0 sin cos

eR θ θ θ θ
θ θ

= − = + = +  

elde ederiz.  

6. (2.13) teki matrisin transpozunu alırsak: 

03cos (1 cos ) sin ( )t
e e tR I P M eθ θ θ= + − − ×  

bulunur. (2.13) ten bu eşitliği çıkarırsak: 

0 0

12sin ( ) ( ) ( )
2sin

t t
e e t t e eR R M e M e R Rθ

θ
− = × → × = −  

olur.  

7. (2.15) ten dolayı, 

2 2 2 2
3 3 3 3( 2 ) 4 4 4 4e e e e e eH I P I P P I P P I= − = + − = + − =  

olur.  
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8. eH  ortogonal matris olduğundan 1eH = ±  dir ve 3e e=  seçersek yani 

cos cos 0α β= =  ve cos 1γ =  alınırsa (2.16) dan:  

1 0 0
0 1 0 1
0 0 1

eH = = −
−

 

olur.  

Örnek 2.3. (Vektör sistemlerinin indirgenmesi): 3 ( )pE  afin uzayda veya sıradan bir 

geometrik uzayda iV  vektörler sistemini düşünelim.             

Başlangıç noktası 1( 1,0,2)A −  noktası olan vektör: 1 1 2 32 4 3V e e e= + −           

Başlangıç noktası 2 (1,2,3)A  noktası olan vektör: 2 1 2 32V e e e= − +           

Başlangıç noktası 3 (2,1,0)A noktası olan vektör: 3 1 2 33 2V e e e= − +                    

Başlanguç noktası 4 (0,1,2)A  noktası olan vektör: 4 2 3V e e= +  

1. 
4

1
i

i
R V

=

= ∑  bileşke vektörünü bulunuz.(Bu vektör serbest vektördür.)  

2. (0,0,0)O için orijine göre sistemin 
0

4

1

( )( )O t i i
i

M M r V
=

= ×∑  momentum vektörünü 

bulunuz. Burada iA deki her bir noktanın yer vektörü i ir OA= dır ve OM  vektörü de 

orijinden geçtiği kabul edilen serbest bir vektördür.  

3. (1,1, 2)O′  noktasına göre sistemin OM  momet vektörünü bulunuz. Burada 

i ir O A′ ′= dir. OM  ve OM ′  vektörleri bağlantılı olmalıdır.  

4. EM Rλ=  olacal şekilde bir E  noktası bulunuz. Yani, EM  vektörü ve R vektörünün 

paralel olacak şekilde ( , , )E x y z  noktası bulunuz.λ  sabitini belirleyiniz.  

5. Denklem doğrusu E  noktasından geçen ve yönü R  bileşke vektörü yönünde olan 

sistemin e  merkez ekseninin kartezyen denklemi bulunuz.  
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6. E  noktası üzerinde E EM M′ =  eşitliğini sağlayan e ekseni üzerinde bir E′  noktası 

belirleyiniz. Bu Em M=  vektörü sistemin minimum vektörü olarak bilinir.  

7. m  vektörünün e ekseni üzerinde, OM  vektörünün izdüşümü olduğunu gösteriniz. 

Yani ( )e Om P M= .                                         

9. Sistemin dönme yarıçapı ρ  sabitini bulunuz.  

( )Oe
P M

R
ρ

⊥

=  

Çözüm:  

1. Dört vektör toplanırsa, yani  

1 2 3 4R V V V V= + + +  

1 2 36 2R e e e= + +  bulunur.  

2. (2.7) yi kullanırsak:  

1

2

3

0 2 0 2 0 3 2 1
2 0 1 4 3 0 1 1
0 1 0 3 2 1 0 2

m
m
m

⎡ ⎤ − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

0 0 1 3 0 2 1 0
0 0 2 2 2 0 0 1
1 2 0 1 1 0 0 1

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ − − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  

8 7 1 1 1
1 1 2 0 0 ;
4 3 7 0 14

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + + − + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

1 314OM e e= − −  
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olur.  

3. 1 2 32i i i ir r O A OA O O OO e e e′ ′ ′ ′− = − = = − = − − −   

0 0

4

1

( )( ) ( )( )O O t i i t i i
i

M M M r V M r V′
=

⎡ ⎤′− = × − ×
⎣ ⎦∑

 

0 0

4 4

1 1

(( ) )( ) ( )( )t i i i t i
i i

M r r V M O O V
= =

′ ′= − × = ×∑ ∑
 

0 0

4

1

( )( ) ( )( );t i t
i

M O O V M O O R
=

′ ′= × = ×∑
 

yazılır.  

Buradan da ( )( )O O tM M M O O R′ ′= + × eşitliği elde edilir. Matris gösterimiyle:  

1 0 2 1 6 2
0 2 0 1 2 11
14 1 1 0 1 10

oM ′

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + − = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

1 2 32 11 10OM e e e′ = − −  

 bulunur.  

4. Son eşitliği ( , , )E x y z  noktasına uygularsak:  

0
( )( ) ,E O tM M M EO R Rλ= + × =  

 bulunur. Burada,  
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1 2 3EO OE xe ye ze= − = − − −  

ve matris yardımıyla: 

1

2

3

1 0 6 6
0 0 2 2
14 0 1 1

E

m z y
m z x
m y x

λ
⎡ ⎤ − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 

yazılır. Bu ise: 

2 1 6
6 2

2 6 14

y z
x z
x y

λ
λ

λ

− + = +⎧
⎪ − =⎨
⎪− + = +⎩

 

denklem sistemini verir. Bu sistemin bir çözümü:  

22 85 3 20( , );
41 41 41 41

E λ− = −  

olduğundan, 

1

2
1 2 3

3

120
416

20 40 1( ) 2 ( 120 40 20 )
41 41 41

1 20
41

E

E

m
m M e e e
m

⎡ ⎤−⎢ ⎥
⎡ ⎤ ⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = − → = − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

⎢ ⎥−
⎢ ⎥⎣ ⎦

 

elde edilir.  

5. e  merkez ekseninin denklemi: 
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22 85 3
41 41 41

6 2 1

x y z
e μ

+ − −
≡ = = =  

şeklindedir.  

6. e  eksenindeki keyfi E′  noktasının koordinatları( 0μ =  için E  noktası): 

22 6
41

85 2
41
3
41

x

E y

z

μ

μ

μ

⎧ = − +⎪
⎪
⎪′ = +⎨
⎪
⎪ = +⎪⎩  

biçimindedir. Buna göre EM ′  yi belirleriz. (2.17) E′ noktasına uygulandığında 

0
( )( )E O tM M M E O R′ ′= + ×  ve matris gösterimiyle: 

1

2

3

3 850 ( ) ( 2 )
41 411 6

3 220 ( ) 0 ( 6 ) 2
41 41

14 185 22( 2 ) ( 6 ) 0
41 41

m
m
m

μ μ

μ μ

μ μ

⎡ ⎤+ − +⎢ ⎥
⎡ ⎤ −⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= + − + − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

⎢ ⎥+ − − +
⎢ ⎥⎣ ⎦

 

6 85 1201 2 2
41 41 41

18 22 400 6 6
41 41 41
510 44 2014 12 12
41 41 41

μ μ

μ μ

μ μ

⎡ ⎤ ⎡ ⎤− + + − − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= − − − + = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− + + + − −
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

;  

 ve buradan da  
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1 2 3
1 ( 120 40 20 )
41EM e e e′ = − − −  

bulunur.  

7. e birim vektörü: 

2 2 26 2 1 41;R = + + =  1 2 3
6 2 1 .
41 41 41

e e e e≡ + +  

biçiminde bulunur. 

( )eP v  izdüşüm tensörü (2.3) sağladığından ( )e OP M : 

1

2

3

36 12 6 120
41 41 41 411
12 4 2 400
41 41 41 41

146 2 1 20
41 41 41 41

m
m
m

⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥
⎡ ⎤ −⎡ ⎤⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

eşitliğinden  

1 2 3
1( ) ( 120 40 20 )
41e OP M m e e e= = − − −

 

elde edilir.  

8. (2.4) verilen izdüşüm tensörü, ( )Oe
P M⊥  ün matris hali: 
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5 12 6
41 41 41 1 79
12 37 2 10 40
41 41 41 41

14 5546 2 40
41 41 41

⎡ ⎤− −⎢ ⎥
−⎡ ⎤ ⎡ ⎤⎢ ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥− − =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎣ ⎦ ⎣ ⎦

⎢ ⎥− −
⎢ ⎥⎣ ⎦

 

ve  

2 2 21 3 853 41( ) 79 40 554
41 41Oe

P M⊥

×
= + + =

 

 
( ) 3 583 41 3 853

4141 41
Oe

P M
R

ρ
⊥ ×

= = =  

bulunur. e  ekseni üzerinde herhangi bir noktaya uygulanan R  ve m vektörleri sistem 

vektörünün verilerine eşittir ve indirgeme olarak adlandırılır.  
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3. MATERYAL ve YÖNTEM 

3.1. Afin geometrik tensörler 

( )n
pE reel uzayı, pE  anlık uzayı ve n  ise ( )nE Euclidean  afin uzayının boyutunu 

göstersin. 

( )n
pE  uzayı:{ } { }, kartezyen eksenler,apsis ekseni, ordinatlar, dereceler, vbO eα ≡  

Bu eksenler lineer  Euclidean  uzayının { }eα bazlı temel vektörlerinin temel 

bileşenlerini oluşturmaktadır. Diğer koşullar belirtilmedikçe klasik ortonormalize 

sistemlerini esas alacağız. Her hangi ( )nP E∈  noktası  

1

2

.

.

.
n

x
x

X

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

≡ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

olacak şekilde kartezyen koordinatlara sahiptir ve konum vektörü: 

               [ ]1 2... nOP e e e≡  1 2
1 2 ... ( )n n

nX x e x e x e E R≡ + + + ∈  (3.1) 

şeklindedir. Geometrik uzaylarda sonsuzda sıklıkla noktalar mevcut olduğundan yeni 

bir P noktası için yeni bir koordinat tanımlanabilir. Bu yeni koordinat onun sonlu veya 

sonsuz olduğunu açıklar. Eğer P noktası sonlu bir nokta ise iki çeşit koordinata sahiptir. 
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Birincisi 1 2( , ,..., )nP x x x  kartezyen koordinatlar ve ikincisi 1 2( , ,..., , )nP x x x t′ ′ ′  homojen 

koordinatlardır. Bu iki koordinat sistemi:  

                                                 

1

1

22

. .

. .

. .
n

n

x
tx

xx t

x x
t

′⎡ ⎤
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥ ′
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

= ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ′
⎢ ⎥⎣ ⎦

  (3.2) 

biçiminde yazılır. Sonlu P noktası kartezyen koordinatlardan homojen koordinatlara 

taşıyabilmek için 1t =  alırız. Eğer P noktası sonsuz ise 0t =  da homojen koordinatlara 

sahiptir. Sonsuz bir noktanın yönünü belirleyebilmek için O tarafından oluşturulmuş 

(Şekil 3.1) paralel bir r yardımıyla r üzerinde sonlu bir A noktası alarak 0t =  da 

homojen koordinatları yardımıyla kartezyen koordinatları oluştururuz(Ruiz-Toloso and 

Castillo 2005). 

                                            
1 2( , ,..., , 0)nD a a a∞    (3.3) 

 
 
Şekil 3.1. Dik koordinat sisteminden homojen koordinatlara geçiş 
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Eğer istenilirse A noktası O noktasından bir birim uzaklıkta olabilir. Yani 1OA =  dir. 

Bunun için koordinatları vektörün boyuna bölmemiz gerekir. Sonuç olarak (esas metrik 

tensör nG I≡ ) olduğundan:  

 
1 2

1 2 2 1 2 2 1 2 2
( , ,..., ,0)

( ) ... ( ) ( ) ... ( ) ( ) ... ( )

n

n n n

a a aD
a a a a a a

∞
+ + + + + +

  (3.4)  

yazılır. Bunu bazı yazarlar birim vektör yöneticisi yada D∞  verilen yönün tensörü 

olarak bazıları ise ( )1 2cos ,cos ,..., cos ,0nD α α α∞ (3.4) birim doğrultu vektörünün 

doğrultu kosinüsleri yardımıyla (3.4) den elde edilen her öğe olarak ifade ederler: 

1

1 2 2

2

1 2 2

1 2

1 2 2

( ) ... ( )

( ) ... ( )
, ,..., ,..., .

.

.

( ) ... ( )

n

n

j n

n

n

a
a a

a
a a

v OA e e e e

a
a a

⎡ ⎤
⎢ ⎥

+ +⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+ +
⎢ ⎥⎡ ⎤≡ ≡ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+ +⎣ ⎦

   (3.5)  

Buradan, j bileşen 
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[ ]

1

1 2 2

2

1 2 2

1 2 2

1 2 2

( ) ... ( )

( ) ... ( )
0,0,...,1,...,0 .

( ) ... ( )
.
.

( ) ... ( )

n

n
j

nn

n

n

a
a a

a
a a

a I
a a

a
a a

⎡ ⎤
⎢ ⎥

+ +⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+ +
⎢ ⎥= ⎢ ⎥

+ + ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+ +⎣ ⎦

cosj je v α= • =   (3.6)  

şeklinde yazılabilir. Sonsuz noktaların problematiğini D∞ olarak buluruz. Çünkü 

geometrik tensörlerin dönüşümlerinin uygulanması bazı durumlarda çok uygundur 

(Geometrik tensörlerin sonlu P noktalara uygulanmaları nadiren kullanılır). 

3.2. Homografiler 

( )n
pE R yi { }( )ne G Iα ≡  şeklinde orthonormalize tabanlara karşılık gelen ( )nE ye afin 

öklid uzayı olacak şekilde bir geometrik uzay olsun.Kabul edelim ki belirli bir lineer 

operatör veya endomorfizm T, ( )nE  deki vektörleri dönüştürsün. Bir 

: ( ) ( )n n
pA E E→  afin dönüşümü ( )n

pE  uzayının P ve  çiftini ( )nv E∈ ye 

karşılık getirir. Örneğin ( , ) ,A P v=  { },o eα  ortonormal bazlı ( )n
pE uzayına karşılık 

gelir. { },o eα ortonormal baz ( )nE  Euclidean  uzayının ortonormalize edilmiş tabanına 

karşılık gelir. Daha ötesi lineer T operatörü, afin bir transformasyon A benzerliğiyle 

( )n
pE alanına girer. Bu transformasyon f  ile gösterilir ve aşağıdaki özellikleri 

oluşturur.  

1. ( ) ( )n n
p pf E E= → ; f , ( )n

pE de lineer dönüşümdür. , ( ) : ( ) ;n
pP E f P P′∀ ∈ =  

( ) ;f ′=  ( )n
pP E′ ′∈  burada P′  ve ′  noktalarının sonlu veya sonsuz olduğu 

belirlenmemiştir.  
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2. ( )n
pE  uzayında P ve  sonlu rasgele bir nokta olduğu yerde 

[ ] [ ] [ ]( , ) ( , ) ( , ) ( , )A O T A O T A O P T A P′ = = +  dir.  

Eğer ( )n
pX E∈  noktası;         

     ( )f X X=                  (3.7) 

şartını sağlarsa X  çifttir veya invaryat nokta diyebiliriz. ( )n
pE  de afin bir 

transformasyon 0,1, 2,..., n  çift veya invaryat noktalara sahip olabililir ve hatta invaryat 

noktaların lineer alt uzaylarına (bir doğru, düzlem vb.) sahip olabilir. Bir tensör olarak 

afin transformasyonu işaret edebildiğimizden ve sonsuz P noktaları için onu 

kullanabildiğimizden, (n+1) sıralı matris sunumunu kullanır ve homojen koordinatlarla 

çalışırız. Afin geometrik tensör transformasyonları aynı zamanda homografik olarak 

adlandırılır ve bunların matris gösterimleri  

11 1
11 12 1

22 2
21 22 2

1 2

1 2 1

...

...
... ... ... ... ...

...

...

...

n

n

nn n
n n nn

n n

t t t ax x
t t t ax x

X F X
t t t ax x

b b b bt t+

⎡ ⎤′⎡ ⎤ ⎡ ⎤−
⎢ ⎥⎢ ⎥ ⎢ ⎥′ −⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥−

′ = • → = •⎢ ⎥⎢ ⎥ ⎢ ⎥
′ −⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥− − − − −− −
⎢ ⎥⎢ ⎥ ⎢ ⎥

′ −⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

  (3.8)  

biçimindedir. burada F, afin tensördür (Hacısalihoğlu 2005). (3.8) deki F 

homografisindeki n sıra bloğu ( )nE  Euclidean uzayında ki T lineer operatörü 

ijT t⎡ ⎤= ⎣ ⎦ ye karşılık gelir. Homojen koordinatlarda 1 2
1( , ,..., , )n

nO a a a b +′  noktası orijin 

noktası olan , (0,0,..., 0,..., 0,1)O noktasına dönüştürülür. Eğer 1 0nb + =  ise O nun 

(orjinin) afin noktası O∞′  da belirtilen doğrultuda sonsuz bir noktadır. Eğer 1 0nb + ≠ ise 

bütün koordinatları 1nb +  birim olması için 1nb +  ile böleriz. 
1 2

1 1 1

( , ,..., ,1)
n

n n n

a a aO
b b b+ + +

′  

noktası homojen koordinatlarda kartezyen sonlu bir noktadır. 
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1 2

1 1 1

( , ,..., ),
n

n n n

a a aO
b b b+ + +

′   (3.9) 

Bu ikinci durumda O orijininin afin transformasyonudur. Bir invaryat nokta ve invaryat 

noktaların düz bir çizgisiyle (düzlemde) 2n =  boyutunun homografikleri homojen 

olarak adlandırılır.  

3.3. Afiniteler  

Eğer bir homografi sonlu noktaları sonlu noktalara, sonsuz noktaları sonsuz noktalara 

doğrusal noktaları doğrusal noktalara dönüştürüyorsa ve ayrıca A,B,C doğrusal 

noktaları için belirli oranları sağlıyorsa o zaman;  

( , , ) ( , , ) ( , , )ABA B C A B C A B C
AC

′ ′ ′= ⇒ =   (3.10)  

dir ve afinite veya afin homografik dönüşüm olarak adlandırılır. Geometrik dönüşümler 

0F ≠  ise düzenli ve 0F =  ise tekil veya düzensiz olarak adlandırılır. Afinitelerin 

matris gösterimi, 

1 1 1
11 12 1

2 2 2
21 22 2

1 2

0 0 0 1

n

n

n n n
n n nn

a a ax l x
a a ax l x

X A X
a a ax l x

t t

′⎡ ⎤ ⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−

′ = • → = •⎢ ⎥ ⎢ ⎥ ⎢ ⎥
′ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −− + − −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
′ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (3.11) 

burada dönüşüm matrisi A ile ifade edilir ve      

      0A ≠                  (3.12) 

dır. Yani, bire bir ilişki gereklidir ve buda düzenliliktir. A nın blok matrisi T, orthogonal 
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bir matris olduğunda ( 1tT T −≡ ) determinant değeri 1A = ±  dir ve affinitesi izometri 

olarak adlandırılır.(doğrudan eğer 1A = +  ise, ve tersine 1A = −  ise) Affiniteler 

çarpımsal bir non-Abelian grup oluştururlar (Ruiz-Toloso and Castillo 2005).  

Örnek 3.1. (Afinite): 2n =  boyutunda sıradan bir ( )O XY−  kartezyen sisteminde bir 

afinite farz edelim. Öyle ki D∞ ikinci çeyrek dairenin açıortayında invaryant bir nokta 

(afinite yönü) ve invaryant noktaların doğrusu (afinitenin e-ekseni) 2 6 0x y− − =  olsun. 

(Şekil 3.2) Ayrıca biliyoruz ki bu affinitede r  doğrusu, B ve B′  keyfi afin noktalarını 

birleştiren ve D∞ ekseni ( , , )S B B′ oranı sabit olacak şekilde bir S noktasın da kesen bir 

doğrudur. ( , , ) ; ; 0)S B B k k R k′ = ∈ ≠  böyle sabit bir afinite oranı olarak adlandırılır ve 

bizim durumumuzda bu oran 3k =  tür.  

1. O ve D∞  noktalarını birleştiren r  doğrusunun kartezyen denklemini bulunuz ve 

eksendeki S noktasını belirleyiniz.  

2. O r′∈  ve ( , , )S O O k′ =  olduğundanO′  noktasını belirleyiniz.  

3. Afinite tensörü A yı bulunuz.  

4. Bir önceki sorunun sonucundan yola çıkarak A nın invaryant noktalarının elde 

edildiği yukarıdaki bilgiyi doğrulayınız.  

5. ( , , )O P′ ′ ′Δ  üçgeninin köşelerini bulunuz ve (0,0), (3,0), (0, 2)O P Q  noktalarının 

affinitesini bulunuz. 

6. ( , , )O P′ ′ ′Δ  ve ( , , )O PΔ  üçgenlerinin σ  alanlarının oranının affinite sabiti k ya 

eşit olduğunu gösteriniz. 

7. Üçgenlerin ağırlık merkezleri G  veG′  nün affin noktaları olduğunu gösteriniz.  

Çözüm:  

1. D∞  noktası ( 1,1,0)D∞ −  homojen koordinatlara sahip olsun, sonlu O noktası 

(0,0,1)O  homojen koordinatlara sahiptir. Böylece homojen koordinatlarda r  

doğrusunun denklemi:  
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0 0 1 0
1 1 0

X Y tr Y X− − −
≡ = = → + =

−  

ve kartezyen koordinatlarda:  

                                           0r y x≡ + =                        

olur. 

0
2 6 0
Y X

X Y t
+ =⎧

⎨ − − =⎩
 

denklem sistemini çözersek homojen koordinatlarda (2, 2,1)S −  noktasını elde ederiz. 

2. Afinite oranı 0k > olduğunda eksen afin noktalarını ayırmaz. Afinite bağıntısını O  

ve O′  noktalarına uygularsak;  

( , , ) S O S O

S O S O

X X Y YSOS O O k
SO X X Y Y

′ ′′ − −′ = ≡ = =
− −

 

elde ederiz. (2, 2,1)S  ve (0,0,1)O  noktaları homojen koordinatlarda olduğundan  

2 3;
2 0

OX ′−
=

−
 ( 2) 3; 4;

( 2) 0
O

O
Y X′

′
− −

= → = −
− −

 4OY ′ =  

dür. Burada homojen koordinatlarda ( 4, 4,1)O′ −  olur. 
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Şekil 3.2. Örnek 3.1. ün şeması 

3. Homojen koordinatlarda eksen denklemi 2 6 0e X Y t≡ − − =  burada örneğin sonlu 

(3,0,1)P  noktası ve sonsuz (1,2,0)L∞ noktaları elde edebiliriz. Çünkü denklemi 

sağlamaktadırlar. , , ,D S P L∞ ∞  invaryant noktalar olduğundan afin dönüşümlü 

noktalarını da biliriz. (3.11) deki matris denkleminde yerine yazmak için O,S,P 

noktalarını ve afin transfomlarını seçersek: 

                           

4 2 3 0 2 3
4 2 0 0 2 0
1 1 1 1 1 1

A
−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  

14 2 3 0 2 3 7 2 12
14 2 0 0 2 0 4 5 12
3

1 1 1 1 1 1 0 0 3
A

−− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

elde edilir. Burada afinite tensörün matrisi olduğu görülür. Açıkçası; affinitenin düzenli 

karakterini sağlayan 1 0A = ≠  elde edilir. A matrisini (3.11) eşitliğin de gereken 

formata sahip olduğunu gözlemleriz. 
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4. (3,0,1)P ve (1,2,0)L∞  noktalarından geçen e doğrusu 3 0 1
1 2 0

x y t λ− − −
= = =  

homojen doğrusuna sahiptir. Böylece homojen koordinatlarda sonlu noktalar için e nin 

parametrik denklemi: 

3
2
1

e

x
y
t

λ
λ
+⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

, 

e nin noktalarını dönüştürürsek:  

7 2 12 3
1 4 5 12 2
3

0 0 3 1
e

x
A y

t

λ
λ

− − +⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

9 3 3
1 0 6 2
3

3 0 1
e

x
y
t

λ λ
λ λ

+ +⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + = ≡⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  

burada e-ekseninin tüm noktalarının invaryant olduğunu gösterir. ( 1,1,0)D∞ −  noktasını 

dönüştürürsek: 

7 2 12 1 9 3
1 14 5 12 1 9 3
3 3

0 0 3 0 0 0

− − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

burada ifadede şart koşulduğu gibi sonsuz ( 1,1,0)D∞ − noktası homojen koordinatlarda 

invaryanttır.  

5. (0,0,1)O noktasının transformu ( 4, 4,1)O′ −  dir ve (3,0,1)P  noktasının da (3,0,1)P′  

dir.  nun transformuda: 
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7 2 12 0
1 4 5 12 2
3

0 0 3 1

x
y
t

′ − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
′⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

16
316

1 1622 2222 ( , ,1)3 3 33
3 1

−⎡ ⎤
−⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ −′= = →⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦

 

dir.  

6. 
0 3 0

1 6( , , ) 0 0 2 3
2 2

1 1 1
Alan O Pσ ≡ Δ = = =   olduğundan, 

164 3 3
1 22( , , ) 4 0 32

1 1 1

Alan O Pσ

−−

′ ′ ′ ′≡ Δ =  1 64 88( 22 12) 9
2 3 3

= − + + − =
 

dir. 

9 3
3

kσ
σ

= = ≡
′

 

 elde edilir.  

7. Homojen koordinatlarda her iki üçgenin ağırlık merkezleri: 

                                      
0 3 0 1;

3GX + +
= =

 

                                
0 0 2 2 2(1, 1)

3 3 3GY G+ +
= = →
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164 3 193 ;
3 9GX ′

− + −
= = −  

224 0 34 19 343 ( , ,1)
3 9 9 9GY G′

+ +
′= = → −

 

ve G ağırlık merkezinin afin dönüşümü:  

194 51 3 97 2 12
1 1 10 3424 5 12 83 3 93 3

0 0 3 1 3 1

x
y G
t

−− ⎡ ⎤⎡ ⎤−⎡ ⎤′ − −⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥′ ′= − = + = ≡⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥′⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

bu da afin noktalar olduklarını gösterir.  

3.4. Homoteziler (Benzeştirme Dömüşümleri) 

Sonlu değişken olmayan birim H noktasına sahip (H; homotezi merkezi) afin 

dönüşümlere homotezi denir. Herhangi bir X noktası ve onun homotetiği X ′ , H ile 

doğrusal olur ve ( , , ) HXH X X k
HX

′
′ = =  durumunu sağlar.’k’ sabiti homotezi oranı 

olarak adlandırılır; , 0k R k∈ ≠  Eğer 0k > ise homoteziye düz, 0k <  ise homotezi ters 

olarak adlandırılır. Düz homotezilerde H XX ′∉  ve ters homoteziler de H XX ′∈  dir. 

Homoteziler grubu çarpansal non-Abelian bir alt grup oluşturur. Homojen 

koordinatlarda F homotezi tensörünün matris gösterimi şöyledir.
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1 1 1

2 2 2

0 0 (1 )
0 0 (1 )

0 0 (1 )

0 0 0 1

n n n

kx k h x
kx k h x

kx k h x

t t

′⎡ ⎤ ⎡ ⎤ ⎡ ⎤− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−

= •⎢ ⎥ ⎢ ⎥ ⎢ ⎥
′ − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −− + − −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
′ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (3.13) 

Burada 1 2( , ,..., )nH h h h  homotezi merkezinin kartezyen koordinatlarıdır (Ruiz-Toloso 

and Castillo 2005). Eşitlik (3.13) gösterir ki tensör, homotezi merkezi ve onun oranı 

veya diğer yeterli bilgiler verilirse bilinir.  

Örnek 3.2 (Homotezi): 2n =  boyutunda ( )O XY− kartezyen sisteminde (1,3)H  

homotezi merkezi ve (0, 2)  ve (3,5)′ homotetik noktalar çiftini düşünelim. 

1. Homotezi oranını bulunuz.  

2. Homotezi tensörü F yi bulunuz.  

3. H nin invaryant nokta olduğunu ispatlayınız.  

4. 6 0x y− + =  doğrusunun homotetik doğrusunu bulunuz.  

5. 2 2 4x y− =  hiperbolünün homotetik doğrusunu bulunuz.  

Çözüm:  

1. Verilenleri eşitlik (3.13) te uygularsak:  

0 (1 ).1
0 (1 ).3
0 0 1

k k
F k k

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 

ve ′  noktası  noktasının transformu olduğundan ′ ve  noktalarını homojen 

koordinatlara uygularsak;  
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3 0 (1 ) 0 3 1
5 0 (3 3 ) 2 5 2 3 3 2
1 0 0 1 1 1 1

k k k
k k k k k

− = −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎧
⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − • → = + − → = −⎨⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎩

 

olur. Buda homotezinin ters karakterini gösterir.  

2. F  matrisinde 2k = −  homotezi oranını yerine yazarsak  

2 0 3
0 2 9
0 0 1

F
−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 

buda homotezi tensör matrisidir.  

3. (1,3,1)H  noktasının transformu; 

2 0 3 1 1
0 2 9 3 3
0 0 1 1 1

x
y H
t

′ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ = − = ≡⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
′⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

olarak belirlersek invaryant karakteri ispatlar. 

4. 
2 0 3

0 2 9
0 0 1

x x
y y
t t

′ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
′⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 homotezi denkleminden  

12 0 3 1 0 3
10 2 9 0 1 9
2

0 0 1 0 0 2

x x x
y y y
t t t

− ′ ′− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ ′= − = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

′ ′⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (3.14)  
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elde ederiz.  

[ ]1 1 6 0
x
y
t

⎡ ⎤
⎢ ⎥− =⎢ ⎥
⎢ ⎥⎣ ⎦

 

matris şeklinde verilen doğruyu (3.14) yerine yazarsak 

[ ]

11 0 3
1 1 1 6 0 1 9 0 6 0
2

0 0 2

x
y x y t
t

− ′−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′ ′ ′ ′− − = ⇔ − − =⎢ ⎥ ⎢ ⎥

′⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  

elde edilir. Buda kartezyen koordinatlarda 6 0x y− − =  dir.  

5. Hiperbolü homojen koordinatlarda ve matris şeklinde ifade edersek: 

[ ]
1 0 0
0 1 0 0
0 0 4

x
x y t y

t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

olur ve (3.14) de yerine  yazarsak:  

[ ]
1 0 3 1 0 0 1 0 3

1 0 1 9 0 1 0 0 1 9 0
4

0 0 2 0 0 4 0 0 2

t x
x y t y

t

′− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ ′ ′ ′− − − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

′⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Buradan da homotetik hiperbol  
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[ ]
1 0 3

0 1 9 0
3 9 88

x
x y t y

t

′− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′ ′ ′ ′− =⎢ ⎥ ⎢ ⎥

′⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 

olur. Kartezyen koordinatlarda 2 2( ) ( ) 6 18 88 0x y x y− − + − =  olur.  

3.5. İzometriler  

( )n
pE  uzayı ile ilgili ( )nE  öklid uzayında her bir vektörün ve dönüşümünün noktasal 

çarpımını değiştirmeyen lineer T operatörleri vardır.  

                         , ( ) ( ) ( )na b E a b T a T b∀ ∈ → • = •  (3.15)  

( )nE  öklid uzayında böyle operatörlere izometriler denir. Bu Öklid uzayının { }eα  

tabanına işaret ettiğini ve temel matris tensörünün ilgili G matrisine sahip olduğunu farz 

edersek bir T izometrisi tanımlanabilir. Çünkü T matrisi (3.15) i:   

        tT GT G=                                                   (3.16) 

matris ilişkisiyle sağlar. Eğer ( )nE  nin { }eα tabanı ortonormalize edilmiş ise nG I≡  

ve (3.16) ilişkisi:                 

   t
nT T I• =  yada 1tT T −=                          (3.17) 

şeklinde yazılabilir. Bu izometri tensörünün ortonormalize taban altında ortogonal 

matris olarak göründüğünü ispatlar. Böylece (3.1) deki  kısmında oluşturduğumuz 

klasik referanslar ortonormalize olduğundan izometri için duyulan gereksinim 

nT orthogonal matris olmalıdır. Daha sonra en üstün izometrilerle ilgileneceğiz. Bunların 

ilki 2n = boyutlu (düzlemdeki izometriler) ve sonra 3n =  boyutlu (uzaydaki 

izometriler) dir. Belirli bir adı olmayan izometrilerde vardır. Burada bunlara 

değinilmeyecek fakat varlığını vurgulayacağız. İzometrilerin non-Abelian çarpansal 

grup oluşturduğunu ve alt bölümlerinin düz izometrilerde ( 1)M = +  ve ters 
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izometrilerde ( 1)M = −  olarak bölüm (2.4) te formüle edildiğini vurgulamak 

önemlidir.  

Öteleme( 2n = ): Bu izometri karşılıklı (yöndeş) iki noktanın vektör farkının 2( )E nin 

sabit bir vektörü olduğu gerçeğiyle karakterilize edilir. Eğer; 

2( ) ; ( )X MX A XX t t E′ ′= → = ∈  (Öteleme vektörü) 

 1 2
1 2t t e t e= +   

öteleme vektörü olarak alalım, o zaman bu tensörün homojen koordinatlar da matris 

gösterimi: 

                                         

1

2

1 0
0 1

0 0 1

t
x x

t
y y
t t

⎡ ⎤−
′⎡ ⎤ ⎡ ⎤⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥′ =⎢ ⎥ ⎢ ⎥⎢ ⎥− − − −
′⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦−⎣ ⎦

  (3.18)  

Bu formül sadece sonlu noktaların ötelenmesinde kullanılır. Burada invaryant olan bazı 

doğrular vardır. Bazı yazarlar bu doğruları çift doğrular, sabit doğrular, kılavuzlar vb. 

olarak adlandırır. Çift doğrular terimi karmaşık olabilir. Çünkü doğrudaki bu noktaların 

invaryant veya çift translasyon oldukları doğru değildir. Çünkü bu tensör invaryant 

noktalardan yoksundur. ( 1)M = +  in bir düz izometri olması bunun nedenidir(Kaya 

2002).  

Dönme ( 2n = ): Birim invaryant noktaya (dönme  merkezi ( , )C a b  olarak adlandırılan) 

sahip bir düzlemdeki düz izometriye dönme  denir. Öyle ki eğer X  ve X ′  karşılıklı iki 

nokta ise ( X MX′ = ) ĈXX θ′ =  açısı sabit bir değerdir ve dönme açısı olarak 

adlandırılır. Bu dönme  açısının yönü saat yönünde veya saat yönünün tersinde olabilir. 

Bu bölümde dönme tensörünü doğrudan önermek yerine izometrilerin çarpansal grup 
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karakterlerinin önemini vurgulamak amacıyla oluştururuz. Kartezyen koordinatlarda 

(0,0)O  merkezli ve θ  açılı klasik dönmesini farz edelim. 

                                      

cos sin
sin cos

x x
y y

θ θ
θ θ

′ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥′⎣ ⎦ ⎣ ⎦ ⎣ ⎦

   (3.19)  

Sonra şu işlemi takip ederiz.  

1. Öteleme 1M .Orjine göre merkezi ( , )C a b  noktasına öteleriz.  

2. Dönme 2M .Bir noktayı saat yönünün tersinde bir θ  açısıyla (3.19) eşitliğini 

kullanarak merkezine göre dönme yapabiliriz. 

3. Öteleme 3M .C merkezini ( , )C a b başlangıç noktasını alarak ters öteleme uygularız. 

Sonuç olarak: 

1

1 0
0 1

;

0 0 1

a
b

M

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− − − −
⎢ ⎥−⎣ ⎦

 2

cos sin 0
sin cos 0

;

0 0 1

M

θ θ
θ θ

− −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− − − −
⎢ ⎥−⎣ ⎦

 3

1 0
0 1

;

0 0 1

a
b

M

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− − − −
⎢ ⎥−⎣ ⎦

 

ve 

3 2 1M M M M= • •  

ifadesinden  
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[ ]

[ ]

cos sin (1 cos ) sin

,sin cos sin (1 cos )

0 0 1

a
b

x x
a

y y
b

t t

θ θ θ θ

θ θ θ θ

⎡ ⎤⎡ ⎤
− − −⎢ ⎥⎢ ⎥

⎣ ⎦⎢ ⎥′⎡ ⎤ ⎡ ⎤⎢ ⎥⎡ ⎤⎢ ⎥ ⎢ ⎥′ = ⎢ ⎥− − − ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦′⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥− − − − − − − − − − − − − − − − − − − − −⎢ ⎥
⎢ ⎥−⎣ ⎦   

(3.20)  

elde ederiz. Buda θ  dönme tensörünün saat yönünün tersindeki matris gösterimidir. 

Özellikleri: 

 •  XX ′  doğru parçasının merkez noktasındaki ortogonal doğru, dönme merkezinden 

geçer. 

 •  İlgili r  ve r′  doğruları aralarında θ  dönme  açısını oluştururlar ve dönme 

merkezinden eşit uzaklıktadırlar.  

Merkezi Simetri (n = 2): Merkez simetriği 1k = −  oranı için homotezinin özel bir 

durumudur.(3.13) formülü bu durum için uygularsak: 

                               

1

2

1 0 2
0 1 2

1 1
0 0 1

h
x x

h
y y

⎡ ⎤− −
′⎡ ⎤ ⎡ ⎤⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎢ ⎥′ =⎢ ⎥ ⎢ ⎥⎢ ⎥− − − −

⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦−⎣ ⎦

   (3.21)  

Bu homotezinin kartezyen koordinatlarda merkezi, 1 2( , )H h h  noktası simetri merkezi 

olarak adlandırılır. Bu simetri bir izometridir. Çünkü ilgili matris 
1 0

0 1
T

−⎡ ⎤
≡ ⎢ ⎥−⎣ ⎦

 

ortogonaldir. 1M = ± olduğunda düz bir izometridir. Bazı yazarlar bu izometriyi 

0180θ π= ≡  nin dönmesi olarak sınıflandırır.  
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Eksenel Simetri (n = 2): Eksen simetriği simetri ekseni olarak adlandırılan invaryant 

bir doğruyla karakterilize edilir ve ilgili noktaları içeren XX ′  doğru parçasının 

merkezine ortogonal bir doğrudur. Dönme için yukarıda verilen metodu uygularsak bu 

tensörün matris gösterimini şu işlemlerle elde edebiliriz.  

1. Eksenlerin eksen simetriğinin oluşturulması  

2. Genel öteleme ve rotasyon, simetriden önce eksenleri keyfi bir noktaya yerleştirmek 

için simetriyi uygulayarak 

3. Dönmesini  ve ötelemeyi tersine çevirmek için ayrıca maksimum bilgi kriterleri takip 

edilerek bu kitapta bu tensörü oluşturmak için başka bir metot daha uygulayabiliriz. 

Farz edelim ki eksenin denklemi (Şekil 3.3) 0e Ax By C≡ + + =  olsun, eğer  

x a y be
m n
− −

≡ =  bilgisi verilmişse ilk olarak bu bilgiyi önceki haliyle yazalım. 

( ,0,1)CM
A

−  ve (0, ,1)CN
B

−  noktalarının kartezyen eksenin kesenleri, 

0AX BY Ct+ + =  denkleminin e-ekseninin invaryant noktaları olduğunu biliyoruz, 

çünkü denklemi sağlamaktadırlar. 

 
 

Şekil 3.3. Eksenel Simetri 
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e nin L∞ noktası ( , ,0)L B A∞ −  olduğundan denklemi sağlar. Ortogonal yönü ( , ,0)P A B∞  

olacaktır. Çünkü her iki vektörün 2( )E de noktasal çarpımı önemsizdir.  

[ ] 1 0
0

0 1
A

B A
B

⎡ ⎤ ⎡ ⎤
− =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
, 

bu ( , ,0)P A B∞  ve ( , ,0)P A B∞′ − −  noktalarının simetrik olduğunu gösterir. Bu bilgiyi asıl 

tensör denkleminde ( X MX′ = ) kullandığımızda; 

0 0

0 0

1 1 0 1 1 0

C CA AA A
C CB M BB B

− −⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −− =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

elde edilir. Bunu düzenlersek; 

1
0 0

0 0

1 1 0 1 1 0

C CA AA A
C CM B BB B

−− −⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −= − •
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

olur. Buda eksen simetri tensörünün şöyle olduğunu gösterir. 

    

2 2

2 2

2 2

2 2

2 2
2 21

0 0

A B AB AC
x x

AB A B BC
y y

A B
t t

A B

⎡ ⎤− + − − −
′⎡ ⎤ ⎡ ⎤⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥⎢ ⎥′ =⎢ ⎥ ⎢ ⎥⎢ ⎥+ − − − − − − − − − − − − −
′⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦− +⎣ ⎦

  (3.22) 

(3.22) de M matrisinin T bloğu  
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2 2

2 2 2 2

21 ;
2

A B AB
T

A B AB A B
⎡ ⎤− + −

= ⎢ ⎥+ − −⎣ ⎦

2 2 2
2

22 2 2 2 2

( ) 01
0 ( )

t A B
T T T I

A B A B
⎡ ⎤+

• ≡ = ≡⎢ ⎥+ +⎣ ⎦  

ortogonal blok olduğundan M izometridir. Diğer yandan determinant; 

2 2 2 2 2 2 2

2 2 3

( ) 4 ( )
1

( )
A B A B A B

M
A B

⎡ ⎤− − + +⎣ ⎦= = −
+  

dir. 

Bu sonuç M  nin ters bir izometri olduğunu ispatlar. Bu geometrik anlamda simetrik 

figürü XOY düzlemin dışına taşımamız gerektiği, çevirebilmek ve prototip figürünü 

elde edebilmek için (çakıştırma yoluyla) anlamına gelir. Uzayda ayna simetrisini elde 

ettiğimizde geometrik nesneleri ( 3n = ) uzayında ( 4n = ) uzayına dönüştürebileceği 

şeklinde bir açıklamanın mümkün olmadığı görülmektedir, bu yüzden geometrik 

düşünceleri ihmal ederek şimdiye kadar gösterilen tensör özelliklerini tercih edeceğiz. 

 Benzerlik(n = 2): Geometride bir izometri ile bir homotezinin sonucuna benzerlik 

denir. En yaygın benzerliklerden biri homotezi ×  dönmedir. Burada rastgele dönme 

merkezi ( , )C a b ve homotezi merkezi 1 2( , )H h h  gerekli değildir. Bu yüzden bu 

benzerlik rasgele 1 2 1 2( , ) ( , )C s s H s s≡ bu merkezlere başka bir benzerlik oluşturacak 

şekilde indirgenebilir. Bu durumda birim merkez 1 2
0 ( , )H S s s≡  benzerlik merkezi 

olarak adlandırılır. Burada  matris sonuçları geometrik uygulamalara göre ters yönlü 

uygulanabilir. Benzerliğin ilgili tensörü izometri ve homotezinin bir ters ürününe sahip 

olduğundan S M F= • dir. Sonraki bölümlerde benzerliğin matris gösteriminden 

bahsetmeyeceğiz. Benzerlikler non-Abelian çarpansal grup oluşturmaktadırlar. 

Düzlemde homotezi ile ilgili determinant ( 2) 0F n = >  dır ve böylece S determinantı; 

0S >  dır. Eğer 1M = +  ise (düz benzerlik) 0S <  dır. Eğer 1M = −  ise (ters 

benzerlik) olacaktır.  
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Örnek 3.3. (Dönme×  Dönme): 2n =  boyutlu ( )O XY−  kartezyen sisteminde 

1 1 1( , )C a b dönme  merkezi ve 1θ  açısı takiben 2 2 2( , )C a b dönme  merkezi ve 2θ  açısını 

düşünelim.  

1. İzometri tensörünü bulunuz. 

2. Bu izometrinin başka bir dönmesi varmıdır.  

3. Bu durumu 1(2,3)C  ve 0
1 60θ = (saat yönü tersinde) ve 2C (4,5)  ve 0

2 60θ = (saat 

yönünde) verileri için uygulayınız.  

4. Aynı durumu 0
1 1(5,1), 45C θ =  ve 0

2 2(1,3), 45C θ =  (saat yönünün tersi) değerleri için 

belirleyiniz.  

Çözüm: 

1. (3.20) eşitliği kullanılarak;  

1 1 1 1 1 1

1 1 1 1 1 1
1

cos sin (1 cos ) sin
sin cos sin (1 cos )

0 0 1

a b
a b

G

θ θ θ θ
θ θ θ θ

− − − +⎡ ⎤
⎢ ⎥− − + −⎢ ⎥=
⎢ ⎥− − − − − − − − − − − − − − − − − − −
⎢ ⎥−⎣ ⎦  

2 2 1 2 1 2

2 2 1 2 1 2
2

cos sin (1 cos ) sin
sin cos sin (1 cos )

0 0 1

a b
a b

G

θ θ θ θ
θ θ θ θ

− − − +⎡ ⎤
⎢ ⎥− − + −⎢ ⎥=
⎢ ⎥− − − − − − − − − − − − − − − − − − −
⎢ ⎥−⎣ ⎦

 

elde ederiz. 1 2G G G= ×  şeklinde gösterilen izometri tensörü 1 2G G G= •  matrisine 

sahiptir.  
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11 12 13

21 22 23

0 0 1

g g g
g g g

G

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− − − − + − −
⎢ ⎥−⎣ ⎦

  (3.23)  

Burada 

                                     [ ]

11 1 2

12 1 2

13 1 1 2

cos( )
sin( )
1 cos( )

g
g
g a

θ θ
θ θ

θ θ

= +
= − +

= − +  

                     1 1 2 2 1 2 2 1 2sin( ) ( )(1 cos ) ( )sinb a a b bθ θ θ θ+ + + − − + −   

                                   [ ]

21 1 2

22 1 2

23 1 1 2 1 1 2

sin( )
cos( )

sin( ) 1 cos( )

g
g
g a b

θ θ
θ θ

θ θ θ θ

= +
= +

= − + + − +

  

                                        2 1 2 2 1 2( )sin ( )(1 cos )a a b bθ θ− − + − − . 

2. Aşağıdaki durumlarda  

(a) Eğer;  

1 2 0θ θ+ =  veya 1 2 2θ θ π+ =  ve 1 1 2 2 3( , ) ( , )a b a b G I≡ → ≡  

dir.  

(b) Eğer;  
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1 2 0θ θ+ =  veya 1 2 2θ θ π+ =  ve 1 1 2 2( , ) ( , )a b a b≠  

ise izometri bir ötelemedir ve ilgili vektör  

1
1 2 2 1 2 2 1 2

1 2 2
2 1 2 2 1 2

( )(1 cos ) ( )sin
( )sin ( )(1 cos ).

t a a b b
t t e t e

t a a b b
θ θ

θ θ
⎧ = − − + −

= + ⎨
= − − + − −⎩

 

(c) Eğer; 1 2θ θ π+ =  ise merkezi simetridir. 

(d) Diğer durumlarda 1 2θ θ θ= +  açısına sahip bir dönmedir.  

3. Verilenlere göre  

1 2

3 3 3 3 5 31 11 22 2 2 2 2 2
3 33 51 13 2 3;2 2 2 2 2 2

0 0 1 0 0 1

G G

⎡ ⎤ ⎡ ⎤− − + − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−− − − −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
− − − − − − + − − − − − − − − − − + − − − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

  

2 1

1 0 1 3

0 1 1 3

0 0 1

M G G

⎡ ⎤− −
⎢ ⎥

− +⎢ ⎥= • = ⎢ ⎥− − − − + −− −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

dir. Buda 1 2(1 3) (1 3) .t e e= − + + vektörünün ötelemesidir. 

4. Verilenleri uygularsak  
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1 2

2 2 2 25 2 2 1 22 2 2 2
2 2 2 21 3 2 3 2 2;2 2 2 2

0 0 1 0 0 1

G G

⎡ ⎤ ⎡ ⎤− −− + − +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

− − − −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
− − − − − − + − − − − − − − − − − + − − − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦  

2 1

0 1 2 3 2

1 0 2 2

0 0 1

M G G

⎡ ⎤− − +
⎢ ⎥

− − +⎢ ⎥= • = ⎢ ⎥− − + − − −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

0 0

0 0

cos90 sin 90 (2 2).1 2 2.1

sin 90 cos90 (2 2).1 2 2.1

0 0 1

⎡ ⎤− − + +
⎢ ⎥

− − + +⎢ ⎥≡ ⎢ ⎥− − − − − − + − − − − − − − − −⎢ ⎥
⎢ ⎥−⎣ ⎦  

olur. 

M izometrisi M G≡ , (2 2, 2 2)C +  merkezli ve 090θ =  açılı bir dönmedir. Bu 

örnek rotasyonların çarpansal grup oluşturmadığını gösterir.  

Örnek 3.4. (Eksen simetri ×Öteleme): 2n =  için ( )O XY−  kartezyen düzleminde 

eksen simetriği 2 2 0e x y≡ + − =  ve öteleme vektörü 1 23 4t e e= +  olsun;  

1. Oluşan izometrinin matris gösterimini bulunuz.  

2. Tensörü sınıflandırınız ve bu tensörün teoride bahsedilenlerden biri olup olmadığını 

cevabı doğrulayarak gösteriniz. 

3. Bu izometriyi e simetri ekseninin ilk çeyrek dairede belirlediği üçgende uygulayınız. 

Çözüm:                   

1. (3.22) ve (3.18) eşitlikleri kullanarak:  
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2 2

2 2
1 2 2

2

2 1 2.2.1 2.2.( 2) 3 4 8
1 12.2.1 2 1 2.1.( 2) 4 3 4 ;

2 1 5
0 0 2 1 0 0 5

M
⎡ ⎤− + − − − − −⎡ ⎤
⎢ ⎥ ⎢ ⎥= − − − − ≡ −⎢ ⎥ ⎢ ⎥+ ⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎣ ⎦  

2 2 1

1 0 3 3 4 23
10 1 4 ; . 4 3 24
5

0 0 1 0 0 5
M M M M

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

elde ederiz.  

2. Bu bir izometridir çünkü ilgili matrisi afinite formatına sahip (3.11) eşitliği ve T 

bloğu ortogonal matris olma şartlarını sağlar. 

2

2
2

3 4 25 01 1.
4 3 0 255 25

tT T T I
⎛ − − ⎞⎡ ⎤ ⎡ ⎤

= = = ≡⎜ ⎟⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎝ ⎠  

T nin yapısı T yi ötelemeye veya merkeze göre simetri olarak belirlememize izin 

vermez. Ayrıca T bir eksen simetriği değildir. Çünkü 13 23m =  ve 23 24m =  terimleri 

eşitlik (3.22) şartlarını sağlamaz. Sonuç olarak (bölüm 3.5) in girişinde bahsedilen tek 

bir izometridir ve belirli bir adı yoktur. Yapılan son açıklamalarda bazı yazarlar bu 

izometriyi ‘kayan izometri’ olarak adlandırır. Bu bizim açıkçası kaçındığımız bir 

isimdir. 1M = −  iken izometri ters izometridir.  

3.Bahsedilen üçgenin , ,A O B  köşe noktaları homojen koordinatlarda 

(1,0,1), (0,0,1), (0, 2,1)A O B  noktalarına sahiptir ve homolog matrisleri: 

3 4 23 1 0 0 20 23 15
1 14 3 24 0 0 2 20 24 30
5 5

0 0 5 1 1 1 5 5 5

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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 dir. Buda dönüştürülen üçgenin kartezyen koordinatları: 

23 24(4,4), ( , ), (3,6)5 5A O B′ ′ ′  

olduğunu gösterir.  

Örnek 3.5. (Benzerlik): 2n = boyutunda ( )O XY−  kartezyen sisteminde şu benzerliği 

düşünelim. Benzerlik ( 6, 4)H −  merkezli ve 1
4k =  oranına sahip 1F  homotezisi ve 

(0,0)C  merkezli 090θ =  açılı (saat yönünün tersi) 2G  dönmesine  sahip homotetik 

şekil olsun; 

1. Benzerlik tensörünün matris gösterimini bulunuz. 

2. Bahsedilen benzerliği sınıflandırınız. 

3. Benzerlik merkezi olarak adlandırılan invaryant noktanın koordinatlarını belirleyiniz. 

4. Bu benzerliğe göre H  ve C  noktalarının homolog formları olan H ′  ve C′  

noktalarını belirleyiniz. 

5. C′  noktasından geçen ve HC doğrusuna C  noktasında teğet olan çemberin 

denklemini yazınız.  

6. ( )HCH ′Δ  üçgeninin çevrel çemberinin denklemini bulunuz. Açıkça görülüyor ki bu 

iki çemberde C den geçer. 

7. Verilen çemberlerin kesişen diğer noktasının benzerlik merkezi olduğunu gösteriniz. 

Çözüm:                    

1. 

1

31 0 .( 6)4 4 1 0 18
1310 .(4) 0 1 12 ;4 4 4

0 0 40 0 1

F

⎡ ⎤− −⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦

⎢ ⎥⎣ ⎦  



55 
 

 

0 0

0 0
2

cos( 90 ) sin( 90 ) 0 0 1 0
sin( 90 ) cos( 90 ) 0 1 0 0 ;

0 0 1 0 0 1
G

⎡ ⎤− − − ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − − = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

  

2 1

0 1 0 1 0 18 0 1 12
1 11 0 0 0 1 12 ; 1 0 18
4 4

0 0 1 0 0 4 0 0 4
S G F S

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

benzerlik tensörüdür.  

2. Sınıflandırabilmek için şunu hesaplarız. 3

4 1 0
4 16

S = = > (düz benzerlik) 

 3. Aynı nokta şunu sağlamalıdır. 

3

11 34 0
91;( ) 1 04 2

00 0 0

x
SX X S I X y

t

⎡ ⎤−
⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥−= − = Ω→ − =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦

⎣ ⎦

 

şu çözümle, 

,
1 4 3 1 3 1 1 4 66 60 17

1 9 2 1 4 9 2 1 4 1

x y t x y t
= = → = =

− −
−

− − − −

 

Buda gösterir ki kartezyen koordinatlarda benzerlik merkezi 0
66 60( , )
17 17

S =  dir.  

4. Homolog noktalar:  
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0 1 12 6 4
1 1 0 18 4 6 (4,6)
4

0 0 4 1 1
H

x
y H
t ′

′ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ ′= − = →⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
′⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

0 1 12 0 3
1 1 0 18 0 9 2 (3,9 2)
4

0 0 4 1 1
C

x
y C
t ′

′⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ ′= − = →⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
′⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

5. Teğet doğrusunun C deki denklemi 0 0 : 2 3 0
6 4

x yCH CH x y− −
≡ = ≡ + =

−
 ve teğet 

doğrusunun C′  deki denklemi 3 9 2 : (9 2 3 ) 0
1

x yC P C P x yλ λ
λ

− −′ ′≡ = ≡ − + − =  ve 

CC′  kirişinin denklemi 0 0 : 3 2 0
3 9 2

x y CC x y− − ′= ≡ − =  dir. İki teğet ve kiriş tarafından 

oluşturulan koniklerin dizisi [ ] 2(2 3 ) (9 2 3 ) (3 2 ) 0x y x y x yλ λ μ+ − + − + − =  dır ve 

buda geliştirildiğinde şuna yol açar.  

2 2(2 9 ) ( 3 4 ) ( 2 3 12 ) (9 6 ) (27 2 9 ) 0x y xy x yλ μ μ λ μ λ λ+ + − + + − + − + − + − =   (3.24)  

Bu ifade bir çember olduğundan:  

2 9 3 4
2 3 12 0
λ μ μ

λ μ
+ = − +⎧

⎨− + − =⎩  

 buradan da şu parametreleri elde ederiz. 2 3; 1 3λ μ= − = −  ve (3.24) de yerine yazarsak 

çemberin denklemi 2 22 2 6 9 0x y x y+ − − =  şeklinde olur. 

6. ( )HCH ′Δ  üçgeninin çevrel çemberi  
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2 2

2 2

2 2

2 2

1
( 6) 4 6 4 1

0
0 0 0 0 1
4 6 4 6 1

x y x y+
− + −

=
+
+

 

 dır ve sonuç olarak 2 2 2 10 0x y x y+ + − =  elde edilir. 

7. Daha önce bahsedilen çemberlerle ilgili asıl eksen;  

2 2 2 22( 2 10 ) (2 2 6 9 ) 0 10 11 0x y x y x y x y x y+ + − − + − − = → − =  

ve asıl ekseni sistemlerden biri ile çözersek:  

2 2

0

(0,0)2 10 0
(66 17,60 17)10 11 0

Cx y x y
Sx y

⎧ + + − = ⎧
→⎨ ⎨

− = ⎩⎩  

elde edilir buda istenilen sonucu verir. 

Öteleme (n = 3): 2n =  boyutu için ötelemede verilenlere ek olarak sabitlenmiş vektör 
1 2 3

1 2 3t t e t e t e= + +  hariç 3( )t E∈  yi sağlayacak şekilde başka bir bilgiye gerek yoktur. 

Bu durumda tensör şöyle gösterilir.  

                  

1

2

3

1 0 0
0 1 0
0 0 1

0 0 0 1

t
x x

t
y y

X MX t
z z
t t

⎡ ⎤−
′⎡ ⎤ ⎡ ⎤⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥′⎢ ⎥ ⎢ ⎥⎢ ⎥′ = → = −
′⎢ ⎥ ⎢ ⎥⎢ ⎥

− − − + −⎢ ⎥ ⎢ ⎥⎢ ⎥′⎣ ⎦ ⎣ ⎦⎢ ⎥−⎣ ⎦

  (3.25) 

Merkez Simetri (n = 3): 2n =  boyutunda merkezi bölümünde anlatılanlara göre 

1k = −  için homotezi özel bir durumdur. Bu yüzden eşitlik  (3.13) e  uygularsak: 



58 
 

 

                             

1

2

3

1 0 0 2
0 1 0 2
0 0 1 2

0 0 0 1

h
x x

h
y y

h
z z
t t

⎡ ⎤− −
′⎡ ⎤ ⎡ ⎤⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎢ ⎥′⎢ ⎥ ⎢ ⎥⎢ ⎥= − −
′⎢ ⎥ ⎢ ⎥⎢ ⎥

− − − + −⎢ ⎥ ⎢ ⎥⎢ ⎥′⎣ ⎦ ⎣ ⎦⎢ ⎥−⎣ ⎦

  (3.26) 

elde edilir. Homotezi merkezi simetri merkezi olrak adlandırılır. Bu nokta kartezyen 

koordinatlarda 1 2 3( , , )H h h h  ve bu durumda izometri oluşur. Çünkü ilgili  

1 0 0
0 1 0
0 0 1

T
−⎡ ⎤
⎢ ⎥≡ −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

matrisi ortogonaldir. 1M = −  olduğundan ters izometridir. Açıkçası H, XX ′  doğru 

parçalarının merkez noktasıdır.  

Dönme (n = 3): Bölüm (2.4) de  vektör uygulama tensörlerini açıklayan dönme tensörü 

hakkında detaylı bir analiz yaptığımızdan dolayı bu bölümde 3 ( )pE  afin uzayına denk 

bütün bilgileri buradan elde edeceğiz. Aşağıdaki rotasyon bilgilerine sahip olduğumuzu 

farz edelim.                    

1. Eksen kartezyen denklemi x a y b z c
m n

− − −
= =  dir. Burada ( , , ,1)a b c  noktası eksen 

üzerinde sonlu bir noktadır. ( , , , 0)m n  ise bu eksenin P∞  yönüdür.            

2. Dönme açısı θ  (sağ el kuralına göre yönü bulunan) bölüm (2.4) de belirtilmiştir. 

Eksen yönünü belirten birim vektör: 

       
1 2 32 2 2 2 2 2 2 2 2

m ne e e e
m n m n m n

≡ + +
+ + + + + +

  (3.27) 

şeklindedir.G dönmesini  elde etmek için şu işlemi uygularız:  
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1. ( , , )a b c  noktasını tüm ekseniyle birlikte kartezyen orijini (0,0,0)  noktasına getiren 

1M  ötelemesi uygularız.  

2. Eksen O noktasından geçerken θ  açılı eR  dönmesini  gerçek eksene göre uygularız. 

Bunu da ilgili tensör yardımıyla sağlarız. 

3. Rotasyon uygulandıktan sonra tüm sistemi eski haline getirmek için ilk ötelemeye zıt 

olacak şekilde bir 2M ötelemesi uygularız. Doğal olarak 2 1. .eG M R M=  elde edilir. 1M  

matrisi;  

1

1 0 0
0 1 0
0 0 1

0 0 0 1

a
b

M c

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥= − −
⎢ ⎥− − − + −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

şeklinde gösterilir. eR  tensörünün matrisini elde etmek için e  vektörünün doğrultu 

kosinüs noktaları ile eşitlik  (2.14) kullanılarak homojen koordinatlarda: 

11 12 13

21 22 23

31 32 332 2 2

2 2 2

0
0

1 0

0 0 0 ( )

e

r r r
r r r

R r r r
m n

m n

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥= −

+ + ⎢ ⎥− − − − − − + − − − − −⎢ ⎥
⎢ ⎥− + +⎣ ⎦

 

yazılır. Burada,  
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2 2 2
11

12

13

21
2 2 2

22

23

31

32

2 2 2
33

2

( ) cos
(1 cos ) sin
(1 cos ) sin
(1 cos ) sin

( ) cos
(1 cos ) sin

(1 cos ) sin
(1 cos ) sin

( ) cos
1 0 0
0 1 0
0 0 1

0 0 0

r m n
r m n
r n m
r m n

r m n
r mn
r n m
r mn

r n m
a
b

M c

θ
θ θ
θ θ
θ θ

θ
θ θ
θ θ
θ θ

θ

= + +
= − −
= − +

= − +

= + +
= − −
= − −

= − +

= + +

−
−

= −
− − − + −

1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 biçimindedir. Sonuç olarak 2 1. .eG M R M= dönme matrisidir. Matris gösterimiyle: 

                 

11 12 13 14

21 22 23 24

31 32 33 342 2 2

44

1

0 0 0

g g g g
g g g g

G g g g g
m n

g

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥= −

+ + ⎢ ⎥− − − − − − + − −⎢ ⎥
⎢ ⎥−⎣ ⎦

  (3.28) 

yazılır. Burada, 
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2 2 2
11

12

13

21
2 2 2

22

23

31

32

2 2 2
33

14

24

34

44

( ) cos
(1 cos ) sin
(1 cos ) sin
(1 cos ) sin

( )cos
(1 cos ) sin

(1 cos ) sin
(1 cos ) sin

( ) cos

g m n
g m n
g n m
g m n

g m n
g mn
g n m
g mn

g n m

g
g
g

g

θ
θ θ
θ θ
θ θ

θ
θ θ
θ θ
θ θ

θ

= + +
= − −
= − +
= − +

= + +
= − −
= − −

= − +

= + +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ −⎢
⎢⎣ ⎦

11 12 13

12 22 23

13 32 33

2 2 2

s s s a
s s s b
s s s c

m n

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥

= − − − − − − − − − −⎢ ⎥
⎥ ⎢ ⎥+ +⎥ ⎢ ⎥
⎥ ⎢ ⎥

⎢ ⎥
⎣ ⎦

  (3.29)  

ve 

2 2
11

12

13

21
2 2

22

23

31

32

2 2
33

( )(1 cos )
( (1 cos ) sin )
( (1 cos ) sin )
( (1 cos ) sin )

( )(1 cos )
( (1 cos ) sin )
( (1 cos ) sin )
( (1 cos ) sin )

( )(1 cos )

s m n
s m n
s n m
s m n

s n
s mn
s n m
s mn

s m

θ
θ θ
θ θ
θ θ

θ
θ θ
θ θ
θ θ

θ

= + −
= − − −
= − − +

= − − +

= + −
= − − −

= − − −

= − − +

= + −

 

biçimindedir. G matrisinin T bloğu 3 eT R=  dir ve ayrıca daha önce ispat edildiği gibi 

rotasyon tensörü ortogonal matristir. Böylece G bir izometridir. 1G =  ise düz 

izometridir. G nin bazı özelikleri:  
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•  XX ′  doğru parçasına ortogonal olan ve merkezinden geçen düzlem dönme eksenini 

içerir.  

•Homolog olan r ve r′  doğruları rotasyon ekseninden eşit uzaklıktadırlar.  

Not 3.1: Eğer dönme ekseni iki düzlemin kesişimi olarak verilirse,  

1 1 1 1

2 2 2 2

0
0

A x B y C z D
A x B y C z D

+ + + =⎧
⎨ + + + =⎩

 

 ve dönem ekseni şu şekilde x a y b z c
m n

− − −
= =  biçiminde yazılır. G dönme matrisini 

elde etmek için formülümüz. 

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

1 1 1 1 1 1

2 2 2 2 2 2

( ) ( ) ( )1 1 1
( ) ( ) ( )
B C D C A D A B D

x y z
B C D C A D A B D
B C C A A B
B C C A A B

λ λ λ
− − −

− − −
− − −

= =    (3.30)  

dır ve  

1 1 1 1 1 1

2 2 2 2 2 2

B C C A A B
B C C A A B

λ = + +  

 olur. Sonuç olarak eğer G tensörü bu şekilde ise örnek 2.2 nin 4. noktasında belirtildiği 

gibi eR  dönme tensörünün izi kullanılarak invaryant noktalarının tensör doğrularını ve 

açısını elde ederiz.  
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Eksen Simetriği (n = 3): Bu izometri 0180θ =  açısıyla dönmenin özel bir durumudur 

ve simetri ekseni ile ilgili tek veri x a y b z c
m n

− − −
= =  dir. e  birim vektörünün eksen 

eşitliği (3.27) deki gibidir. Bu simetriyi eS  olarak adlandırırız.(3.28) ve (3.29) 

eşitliklerin de  0180θ =  olursa ilgili tensör matrisi:  

       

11 12 13 14

21 22 23 24

31 32 33 342 2 2

2 2 2

1

0 0 0 ( )

e

s s s s
s s s s

S s s s s
m n

m n

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥= −

+ + ⎢ ⎥− − − − − − + − − − − − −⎢ ⎥
⎢ ⎥− + +⎣ ⎦

   (3.31)  

burada  

2 2 2
11

12

13

2 2
14

21
2 2 2

22

23

2 2
24

31

32

2 2 2
33

2 2
34

( )
2
2

2 ( )

2

( )
2

2 ( )

2
2

( )

2 ( )

s m n
s m
s n

s m n a mb nc

s m

s m n
s mn

s ma n b mnc

s n
s mn

s n m

s na mnb m c

= − +
=
=

⎡ ⎤= + − −⎣ ⎦
=

= − +
=

⎡ ⎤= − + + −⎣ ⎦
=

=

= − +

⎡ ⎤= − − + +⎣ ⎦

 

şeklindedir. Dönme  durumunda olduğu gibi düz bir izometridir. Burada 1eS =  dir. eS  

matrisi involut dür ve 2
4eS I= dir. 

 Diğer Özellikleri:  



64 
 

 

•Homolog noktaların XX ′  doğru parçaları merkez noktasında ortogonal bir doğruya 

sahiptirler. Buda simetri eksenidir.  

•  Kesen ve eksene ortogonal olan herhangi bir doğru ve eksene ortogonal olan herhangi 

bir düzlem invaryanttır.  

Not 3.2: 2n =  boyutunda ve (3.30) eşitliğinde verilen bilgiler burada da geçerlidir.  

Ayna Simetri (n = 3): Bu tensör, simetri düzlemi olarak adlandırılan invaryant 

noktaların düzlemi ile karakterilize edilir. Bu düzlem, homolog noktaları birleştiren tüm 

XX ′  doğru parçalarına merkez noktasında ortogonaldir. Bu simetri düzlemde şu şekilde 

verilmiş olsun; 

                                       0Ax By Cz Dπ ≡ + + + =   (3.32) 

Vektör tanımında bölüm 2.5 te uygulanan eH  tensörü yansıma tensörüdür.π  düzlemi 

(şekil 2.6) da gösterilmiştir. eH  veri tensörü π  düzlemine ortogonal bir vektör 

olduğundan bölüm 2.5 te verilenleri burada kullanacağız. π  düzleminde e  birim 

vektörünü alarak veri vektörümüz şu şekilde olur.  

       
1 2 32 2 2 2 2 2 2 2 2

A B Ce e e e
A B C A B C A B C

≡ + +
+ + + + + +

  (3.33)  

Buda cos ,cosα β  ve cosγ  belirler Eğer  

2 2 2
cos A

A B C
α =

+ +
 

ise  
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2 2

2 2 2
sin B C

A B C
α +
=

+ +
 

bulunur. Benzer sonuçlar diğer cosinüs değerler içinde bulunur. Bu bilgilere sahip 

olduktan sonra 4.sütunu olmayan Sπ olarak adlandırılan ayna simetrisini oluşturmak için 

(2.16) eşitliğindeki yansıma tensöründe bu verileri kullanırız. 

11 12 13 41

21 22 23 42

31 32 33 432 2 2

2 2 2

1

0 0 0

s s s s
s s s s

S s s s s
A B C

A B C

π

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥= −

+ + ⎢ ⎥− − − − − − + − − − − − − −⎢ ⎥
⎢ ⎥− + +⎣ ⎦

 

burada  

2 2 2
11 12 13 31

2 2 2 2 2 2
22 23 32 33

; 2 ; 2

; 2 ;

s A B C s AB s s AC

s A B C s s BC s A B C

= − + + = − = = −

= − + = = − = + −
 

Koordinat eksenleri ile π  düzleminin kesişim noktaları 

,0,0,1 , 0, ,0,1 , 0,0, ,1D D D
A B C

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 olduğunu biliyoruz. Bu noktalar invaryanttır. 

Böylece bu noktaları dönüştürürsek 4.sütunun elamanlarını belirleriz. İlk apsisi 

dönüştürürsek;  

( )2 2 2
41

412 2 2

0 0
2

DA B C s
DA s AD

A B C A

⎛ ⎞− + + − + + +⎜ ⎟
⎝ ⎠ = − → = −

+ +
 

benzer şekilde diğer iki elemanda 42 432 ; 2s BD s CD= − = −  olarak bulunur. Buda ayna 

simetri tensörünü tamamlamamıza yardımcı olur.T  determinant bloğu 1eT H≡ = −  
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şeklindedir. Buda 1Sπ = −  olmasını gerektirir. Bu yüzden ters izometridir. Bölüm 2.5 

te eH yansıma tensörünün involut karakterini ispatlamıştık. Bu yüzden Sπ  matrisi 

2
4S Iπ =  eşitliğini sağlar. 

                  

3.6. İzometrilerin Çarpımı 

Daha önce bahsedilen basit izometrilerin bir kaçının ardışık uygulamasından oluşan 

izometrilere izometrilerin çarpımı veya ayrışabilir izometriler denir. İlgili matris faktör 

izometrileri ile ilgili matrislerin çarpımından oluşur.Yani, 1 2 1. ... .k kM M M M M−=  dir. 

Sonuçta izometri daha önce çalışılan izometrilerin biri olabilir veya olmayabilir. Eğer 

1M =  ise izometri düz bir izometridir. Yoksa 1M = −  ise ters izometridir. 1M = −  

olacak şekilde M  izometrilerinin tümünün dizisi bazı yazarlar tarafından sözde 

izometriler olarak adlandırılır. Demek oluyor ki bu izometriler düzenli değildir. Şunu 

not edelim ki izometrilerin çift sayılı olanlarının çarpımı açıkça görülüyor ki düz bir 

izometridir. Bu durumu bazı soyut ayrışabilir izometrilerden bahsetmek için düşünelim.  

• İki ayrı izometrilerin çarpımı 
2 1
.S Sπ π :  

     1. Eğer 1π  ve 2π  paralel ise ötelemedir. 

     2. Eğer 1π  ve 2π  kesişiyor ise rotasyondur. 

• İki merkez simetrilerin çarpımı bir ötelemedir. 

• İki eksen simetrinin çarpımı 
2 1
.e eS S :  

1. 1e  ve 2e  eksenleri kesişiyor ise dönmedir.  

2. 1e  ve 2e  eksenleri kesişmeden karşıt iseler öteleme sonucu bir dönme çarpımıdır. 

• Birbirinden bağımsız üç merkez simetrinin çarpımı başka bir merkez simetrisidir. 

Buda verilen simetrilerin merkezleri sonucu oluşan paralelkenarın merkezidir. 
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• Dönme ekseni doğrultusundaki ötelemenin sonucu oluşan rotasyonun çarpımı 

helisoidal izometridir. Fakat bazı yazarlar bu izometriyi öteleme doğrultusu, dönme 

ekseniyle uyuşmadığında eğik helisoidal olarak adlandırılır.  

Örnek 3.6. (Transformasyonların Çarpımı): Saat yönünde θ  değerine  sahip klasik 

geometri uzayında 3 ( )pE  bir dönme düşünelim. (Şekil 3.4) Dönme ekseni OZ  

ekseninden geçen ve XOZ düzlemi ile β  açısı oluşturan düzlemde yer alır. Orijin O 

noktasından geçen bu eksen (dönme ekseni) OZ ekseni ile α  açısı oluşturmaktadır. 

Sonra bir derecelendirme uygulayacağız(kartezyen eksenlerin boyutlarında 

değişim).Buda 1 2 3, ,k k k  değişkenleriyle gerçekleştirilir. 

1. Dönme matrisi 1G  bulunuz. 

2. Derecelendirme matrisi 2F  bulunuz. 

3. Karma dönüşümün T matrisini bulunuz.  

4.  2 2 2 1x y z+ + =  denklemi ile verilen kürenin ötelenen küre denklemini 045α = , 
030β =  1 1k = , 2 2k =  ve 3 3k =  değerleri için bulunuz. 

 
 
Şekil 3.4. Trasformasyonların çarpımı 
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Çözüm:  

1. Dönme  ekseninin birim vektörü 1 2 3sin cos sin sin cose e e eα β α β α≡ + +  dir. (3.28) 

ve (3.29) eşitliklerini uygularsak oT bloğu:  

11 12 13

21 22 23

31 32 33

o

t t t
T t t t

t t t

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

elde ederiz. Burada:  

2 2 2 2 2
11

2
12

13
2

21
2 2 2 2 2

22

23

sin cos (sin sin cos )cos

sin sin cos (1 cos ) cos sin
sin cos cos (1 cos ) sin sin sin

sin sin cos (1 cos ) cos sin

sin sin (sin cos cos )cos
sin cos sin (1 co

t

t
t

t

t
t

α β α β α θ

α β β θ α θ
α α β θ α β θ

α β β θ α θ

α β α β α θ
α α β

= + +

= − −
= − +

= − +

= + +
= −

31

32

2 2
33

s ) sin cos sin
sin cos cos (1 cos ) sin sin sin
sin cos sin (1 cos ) sin s sin

cos sin cos

t
t co

t

θ α β θ
α α β θ α β θ
α α β θ α β θ

α α θ

−

= − −

= − +

= +

 

dir. Bu da ortogonal olduğunu gösterir. Çünkü 3. t
o oT T I= tür. Homojen koordinatlarda 

dönme  için: 

1

0
0
0

0 0 0 1

oT
G

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥=
⎢ ⎥− − − − + −⎢ ⎥
⎢ ⎥−⎣ ⎦
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dir.  

2. Derecelendirme (3.11) eşitliğindeki matris formatında O (0,0,0) orijinli invaryant bir 

noktaya sahip bir afin dönüşümdür.  

1

2

2 3

0 0 0
0 0 0
0 0 0

0 0 0 1

k
k

F k

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥= −
⎢ ⎥− − − + −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

dir.  

3. 2 1.T F G=  şeklindedir. 

4. Sayısal değerler:  

2 1 3sin cos ;sin ;cos ;
2 2 2

α α β β= = = =  

3 5cos 3(1 cos ) 4 2 sin 3(1 cos ) 2 sin 0
8 8 41 0 0 0

3(1 cos ) 4 2 sin 1 7 cos (1 cos ) 6 sin0 2 0 0 0
8 8 40 0 3 0

3(1 cos ) 2 sin (1 cos ) 6 sin 1 cos0 0 0 1 0
4 4 2
0 0 0 1

T

θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ

⎡ ⎤+ − − − +
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥− + + − −⎢ ⎥
⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ − − − + +
⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦  

buda: 
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3 5cos 3(1 cos ) 4 2 sin 3(1 cos ) 2 sin 0
8 8 4

3(1 cos ) 4 2 sin 1 7 cos (1 cos ) 6 sin 0
4 4 2

3 3(1 cos ) 3 2 sin 3(1 cos ) 3 6 sin 3 3cos 0
4 4 2
0 0 0 1

T

θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ

⎡ ⎤+ − − − +
⎢ ⎥
⎢ ⎥
⎢ ⎥− + + − −
⎢ ⎥= ⎢ ⎥
⎢ ⎥− − − + +
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

sonucuna yol açar. Fakat bu durumda operatörün uygulanması esnasında faktörleri 

kullanmak daha kolay olacaktır. Dönme ekseni 1G  kürenin çaplarından biri olduğundan 

dönme küresi aynı küredir. Böylece küreye sadece derecelendirme tensörü uygulamak 

kalır.  

[ ]2 2 2 2

1 0 0 0
0 1 0 0

0 0
0 0 1 0
0 0 0 1

x
y

x y z t x y z t
z
t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ + − = → =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

(küre) 

1
2 2

x x x x
y y y y

F F
z z z z
t t t t

−

′ ′⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ ′⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= → =
′ ′⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ ′⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

 ve bunu küre denkleminde yerine yazarsak: 

[ ]( )1 1
2 2

1 0 0 0
0 1 0 0

0
0 0 1 0
0 0 0 1

t

x
y

x y z t F F
z
t

− −

′⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′⎢ ⎥ ⎢ ⎥′ ′ ′ ′ =

′⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥′−⎣ ⎦ ⎣ ⎦  

olur. Buda: 
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[ ]

1 0 0 0 1 0 0 0 1 0 0 0
0 1 2 0 0 0 1 0 0 0 1 2 0 0
0 0 1 3 0 0 0 1 0 0 0 1 3 0
0 0 0 1 0 0 0 1 0 0 0 1

x
y

x y z t
z
t

′⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥′⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ ′ ′ ′

′⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥′−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

[ ] 2 2 2

1 0 0 0
0 1 4 0 0 1 10 ( ) ( ) ( ) 1
0 0 1 9 0 4 9
0 0 0 1

x
y

x y z t x y z
z
t

′⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′⎢ ⎥ ⎢ ⎥′ ′ ′ ′ ′ ′ ′= → + + =

′⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥′−⎣ ⎦ ⎣ ⎦

 

ve bir elipsoid olduğunu gösterir. 
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4. ARAŞTIRMA BULGULARI  

4.1.Fizik Ve Mekanikte Tensörler  

Statik dengede bir dizi dış kuvvetler, mometler ve destekleyici koşullarla keyfi bir cisim 

düşünelim. Burada iç kuvvetlerin dağılımının belirlenmesi ve bu cisim üzerinde oluşan 

gerilmelerle ilgili problemi ele alacağız. 

Bu problem gerçek cismin yerine, gerçeğe yakın sonuçlar elde edilebilen ve tensör 

metotlarının uygulanabildiği basit modeller kullanıldığı zaman karşımıza çıkmaktadır. 

Şimdi bu yaygın modellerden bazılarını ele alalım.  

• Sert Katı: Sert katı rasyonel mekaniğin ideal tipik bozulmayan bir katısıdır. 

Mümkün olabilecek bozulmaları saymazsak bazı durumlar için (izostatik problem) 

reaksiyonları hesaplamamıza imkan tanır ve diğer durumlar için (hiperstatik problem) 

imkan tanımaz.  

• Elastik Katı: Bu model, çözümü için yeterli sayıda fakat integrali zor olan tensör 

diferansiyel denklemlerini oluşturmamıza imkan tanıyan cismin elastik deformasyonunu 

ele alır. Hook kanununa göre kuvvet gerilim ilişkisinin lineerliği kabul edilmektedir. 

Buna göre cisim üzerine uygulanan kuvvetler ortadan kaldırıldığında cisim ilk halini 

alır(lineer elastik).Diğer durumlarda, yani problem daha karmaşık varsayımlar 

gerektirdiğinde, uygulanan kuvvetler ve mometlerin deformasyonunu kabul etmek 

gerekir ve böylece ‘lineer olmayan elastik’ e değinmiş oluruz.  

• Plastik Katı: Burada kalıcı deformasyonlar mevcuttur.  

• İzotropik Katı: Elastik ve plastik özellikler tüm doğrultularda aynıdır.  

• Anizotropik Katı: Elastik ve plastik özellikler doğrultuya bağlıdır. Strees kavramı 

ile ilgili sadeleştirmeleri de ele alacağız. 
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Şekil 4.1. Stress Kavramı 

Destek noktalarına uygulanan dış etkenler altında dengede bir katı düşünelim.(Şekil 4.1) 

Farz edelim ki A katının içerisinde bir nokta ve π , A noktasından geçen bir düzlem 

olsun. Katı π  düzlemi ile iki parçaya ayrılır. Üst kısmı kaldırırsak A noktasına etkiyen 

kuvvetlerin yerine dengenin değişmemesi için mekanikten bildiğimiz gibi ( Örnek 2.3) 

üst kısmın tüm kuvvetleri basit bir bileşke vektör R  ve kuvvetler çifti AM  momentine 

indirgenebilir. π  düzlemi üzerinde ve A nın komşuluğunda bir SΔ  alanı ve aşağıdaki 

limiti ele alırsak; 
0

lim ;
s

R t
sΔ →
=

Δ
 

0
lim 0A

s

M m
sΔ →
= =

Δ
 (sıfırlama çifti) lineer elastikte t  

vektörü(stress vektörü) π  nin yönelimi ile ilgili A noktasındaki gerilimdir ve m  sıfır 

olmadığından düşünülmez. Fakat lineer olmayan elastikte m  düşünülebilir. π  
düzlemine orthogonal olan birim vektörünü e ile gösterirsek e  üzerindeki t  nin 

orthogonal izdüşüm vektörü, izdüşüm tensörü yardımıyla elde edilebilir. σ  ile gösterilir 

ve normal stress olarak adlandırılır. ( )eP tσ =  ve t nin komplementer izdüşüm vektörü 

τ  ile gösterilir ve kesme  stress olarak adlandırılır. 3( ) ( )( )ee
P t I P tτ ⊥= = −  her ikiside 

A noktası üzerinde ve π  düzlemine göredir. 
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4.2. ‘S’ Gerilim (Stress) Tensörü 

Simetrik matrisi: 

( , , ) ( , , ) ( , , )
( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , )

x xy xz

xy y yz

xz yz z

x y z x y z x y z
S x y z x y z x y z x y z

x y z x y z x y z

σ τ τ
τ σ τ
τ τ σ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

şeklinde olan gerilim tensörünü düşünelim. Bu tensör 3 ( )pE geometrik uzayının her bir 

0 0 0( , , )A x y z noktası ile ilişkilidir. Buna göre S gerilme tensörünü sayı tensör olarak: 

                                      

( , , )
x xy xz

xy y yz

xz yz z

S x y z
σ τ τ
τ σ τ
τ τ σ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  (4.1) 

şeklinde yazılır (Ruiz-Toloso and Castillo 2005). Kartezyen eksenleri A  noktası orjinli 

ve koordinat sistemine paralel düşünürsek S tensörü her bir birim vektör 

cos cos cose i j kα β γ= + + olacak şekilde belirler. Bu da A  noktasından geçen 

gerilimi 1 2 3t t i t j t k= + +  olan ortogonal π  düzleminin oryantasyonunu verir ve tensör 

olarak:  

( );t S e=  

1

2

3

cos
cos
cos

t
t S
t

α
β
γ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 

şeklinde yazılır. Örneğin, S tensörünün ilk sütununun sayıları, YOZ eksenindeki A  

noktasının t  geriliminin bileşenleridir ve bu durumda e  vektörü (1,0,0)  

doğrultusundadır. ( )e eP t σ=  vektörünü hesaplarsak A  daki yüzey normal gerilimi elde 

ederiz. eP  tensörüne göre de modülü:  
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[ ]
cos

. cos cos cos cos
cos

x xy xz

e xy y yz

xz yz z

e t
σ τ τ α

σ α β γ τ σ τ β
τ τ σ γ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦  

 bulunur. Bu da:  

2 2 2cos cos cos 2 cos cose x y z xyσ σ α σ β σ γ τ α β= + + +  

2 cos cos 2 cos cosxz yzτ α γ τ β γ+ +   (4.2)  

ifadesini sağlar. Benzer şekilde 3 ( )( )( )eI P t πτ− =  hesaplarsak kesme gerilim vektörünü 

elde ederiz. Pisagor teoreminden de modülünü: 2 2
etπτ σ= −  biçiminde bulunur. S 

matrisinin birim öz vektörleri ile ilgili ana yönler , ,I II IIIe e e  şeklindedir. Bu 

doğrultularda oluşan t  gerilimi sadece σ  normal gerilim bileşenlerine sahiptir. Fakat 

kesme gerilim bileşenlerine sahip değildir. ( 0)πτ = Yani, t σ≡  dir. , ,I II IIIσ σ σ  

gerilimlerini ana gerilim olarak adlandırılır. S matrisinin polinom karakteristiği:  

                       

( ) 0
x xy xz

e xy y yz

xz yz z

S e
σ σ τ τ

σ τ σ σ τ
τ τ σ σ

−
= ⇔ − =

−
   (4.3)  

ifadesini sağlamalıdır. S simetri matrisinin , ,I II IIIσ σ σ  özdeğerlerini elde ettiğimizde, 

üç ortak ortogonal birim vektör belirlenebilir ve  taban matrisinin değişimini sağlar. 

O halde; 

                          

1

0 0
ˆ 0 0

0 0

I
t

II

III

S S S
σ

σ
σ

−

⎡ ⎤
⎢ ⎥= ≡ ≡ ⎢ ⎥
⎢ ⎥⎣ ⎦

  (4.4)  
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yazılır. Bazı yazarlara göre, tensörlerden değil fakat, S tensöründen başlayarak 

geometrik şekiller (Morh diyagram) yardımıyla A  noktasında belirli bir yöndeki 

gerilimleri bulabiliriz. Gerilim tensörünün diğer bir özelliği de A  noktası üzerinde e  

birim vektörünün doğrultusunu değiştiğimizde ( )A XYZ− kartezyen sistemine göre 

( , , )P x y z  noktası başlangıç pozisyon vektörü olacak şekilde belirlersek P  noktası 

tarafından çevrilen noktaların dizisi 2 2 2 1x y z+ + =  küresidir. Benzer bir şekilde, k 

skaler değeri için t  gerilim vektörünün bileşenleri yardımıyla 
1 2 3( , , ) ( , , )P X Y Z P kt kt kt′ ′≡  koordinatlarında t  gerilim vektörünün P′  başlangıcında 

belirleyebiliriz. Aynı şekilde e  nin P  başlangıç noktasına göre t  nin P′  noktası 

tarafından çevrelenen noktalar dizisi inceleyelim. S tensörünü kullanarak:  

cos
cos
cos

P P

X
Y kS
Z

α
β
γ′

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  

 ve 

                                          1 1

cos
cos
cos

X
k S Y

Z

α
β
γ

− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

   (4.5) 

elde edilir. Ve 

                                  

[ ]
cos

cos cos cos cos 1
cos

α
α β γ β

γ

⎡ ⎤
⎢ ⎥ =⎢ ⎥
⎢ ⎥⎣ ⎦

   (4.6)  

olduğundan (4.5) ve (4.6) eşitliklerin de yerine yazarsak: 
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[ ]( ) ( )
2

1 11 1
t

X
X Y Z S S Y

k
Z

− −

⎡ ⎤
⎛ ⎞ ⎢ ⎥ =⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎢ ⎥⎣ ⎦  

 elde edilir. Bu ikinci derece denklemden; 

                

[ ]

21

21 1
x xy xz

xy y yz

xz yz z

X
X Y Z Y

k
Z

σ τ τ
τ σ τ
τ τ σ

−⎛ ⎞⎡ ⎤ ⎡ ⎤⎜ ⎟⎢ ⎥⎛ ⎞ ⎢ ⎥ =⎜ ⎟⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎣ ⎦⎣ ⎦⎝ ⎠

  (4.7)  

bulunur. Bu denklemi; (4.4) deki taban değişimini (4.7) uygularsak kolayca 

sınıflandırabiliriz. 

( ) ( )
2

1 1

ˆ
1 ˆˆ ˆ ˆ ˆ

ˆ

t
X

X Y Z S S Y
k

Z

− −

⎡ ⎤
⎢ ⎥⎛ ⎞ ⎡ ⎤ ⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠ ⎢ ⎥
⎢ ⎥⎣ ⎦

2

22

2

1 0 0
ˆ

1 1ˆ ˆ ˆ ˆ0 0 1
ˆ

10 0

I

II

III

X

X Y Z Y
k

Z

σ

σ

σ

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠ ⎡ ⎤⎢ ⎥

⎢ ⎥⎛ ⎞⎢ ⎥⎛ ⎞ ⎡ ⎤= =⎢ ⎥⎜ ⎟⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠ ⎝ ⎠ ⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦⎢ ⎥⎛ ⎞⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦  

yazılır. Buradan; 

                                  

2 2 2

2 2 2

ˆ ˆ ˆ
1

( ) ( ) ( )I II III

X Y Z
k k kσ σ σ

+ + =   (4.8) 

şeklinde yeni bir kartezyen denklem elde edilir (Hacısalihoğlu 2005). Bu denklemde 

(4.7) nın elipsoid olduğunu ispatlar ve gerilim elipsoid olarak adlandırılır.  
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4.3. ‘Γ ’ Strain Tensörü 

3 ( )pE  uzayında ( )O XYZ−  ortonormalize düzlemi ve dış kuvvetler ve mometler 

yardımıyla statik dengede duran elastik maddeden katı cisim ele alalım. Burada katının 

taneciklerinin bağıl konumunu değiştiren iç gerilmelerin oluşturduğu elastik 

deformasyon olarak bilinen bir durumla karşılaşırız. Bu durumda analizi yapılacak 

olgunun karmaşıklığını, ona yakın bir değerde matematiksel bir modelle yer 

değiştirebiliriz. Böylece daha uygun bir tahmin yapabiliriz. Bu bölümde bu modeli ele 

alacağız. ( , , )P x y z  noktasında bulunan bir tanecik deformasyon sonrası ( , , )P x y z′ ′ ′ ′  

noktasına kaymaktadır. Bu durumda ( , , ) ( , , ) ( , , )PP c u x y z i v x y z j w x y z k′ ≡ ≡ + +  

(Şekil 4.2) vektörü yer değiştirme vektörü olarak adlandırılır. Böylece her bir 0P  noktası 

için 0c  yer değiştirme vektörü belirlenebilen bir c vektör alanı oluşur. (Eğer ,u v  ve w  

skaler değerleri biliniyorsa yer değiştirme vektörü sayısaldır.) 

 

0

0 1

0 2

1 2

( )

( )

PP c

P P r

P r

A r c

r c

c c c

c c

′ ′′= =

′ ′′= = Δ

′ ′ = Δ

′′ ′′′ = Δ = Δ

′′′ ′ = Γ Δ = Δ

′′ ′ = Δ = Δ + Δ

′ = + Δ  
 

Şekil 4.2. Strain Tensörü 
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P  ye yakın ( , , )x x y y z z+ Δ + Δ + Δ  noktasının yer değiştirmesi ′ olsun. Buna göre 

P  ve  noktaları arası ilk uzaklık P  ve son uzaklık P′ ′ değişmelerini 

inceleyebiliriz. Benzer bir şekilde P  ve P′ ′  vektörlerinin elastik deformasyonundan 

dolayı bağıl konumlarını analiz edebiliriz. Aravektörlerden: 

0r P OP O xi yj zkΔ = = − = Δ + Δ + Δ  

yazıp düzenlersek: 

2 2 2
0 ( ) ( ) ( )r P x y zΔ = = Δ + Δ + Δ  

olur. Burada:  

0 0 0

;cos ;cosx y zcos
r r r

α β γΔ Δ Δ
= = =
Δ Δ Δ

 cos se cos i j co kα β γ= + +  

dir. Farz edelim ki: 

0 0r P r eΔ = = Δ   (4.9)  

olsun ve benzer şekilde: 

1 2 3r P r i r j r k′ ′Δ = = Δ + Δ + Δ   (4.10)  

olur. 0rΔ  vektörünü rΔ vektörüne doğrudan çeviren tensör DT  ile gösterilir ve strain 

tensör alarak adlandırılır (Lichnerowicz 1962). 
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0 0( ) ( )D Dr T r T r eΔ = Δ = Δ  

 olur. Matris gösterimi de: 

1

2

3
D

r x
r T y
r z

⎡ ⎤Δ Δ⎡ ⎤
⎢ ⎥ ⎢ ⎥Δ = Δ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥Δ Δ⎣ ⎦⎣ ⎦

 

şeklindedir. Ayrıca: 

                                        

1

2
0

3

cos
cos
cos

D

r
r r T
r

α
β
γ

⎡ ⎤Δ ⎡ ⎤
⎢ ⎥ ⎢ ⎥Δ = Δ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥Δ ⎣ ⎦⎣ ⎦

   (4.11) 

şeklinde de gösterilir. Jacobian matrisini " "J ile gösterirsek: 

u u u
x y z

u v w v v vJ
x y z x y z

w w w
x y z

⎡ ⎤∂ ∂ ∂
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥⎛ ⎞ ∂ ∂ ∂

=⎜ ⎟ ⎢ ⎥∂ ∂ ∂⎝ ⎠ ⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥∂ ∂ ∂⎣ ⎦

 

olur. Tensör çözümleme kurallarına göre matris ilişkisi tahmini şu şekilde: 

                                                   3DT I J= +    (4.12) 

kurulabilir. Her bir 0P noktası için 0P  yakın 0rΔ vektörleri ile ilgili çalışmalarımızda 

yararlı olacak DT strain tensörü belirlenecek şekilde bir tensör alanı oluşturabiliriz. Şekil 

4.2 de bu durum üç bölümde tarif edilmiştir.  
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1. Birinci basamakta 0P r= Δ  vektörünü P′ ′′  konumuna taşımak için P  noktasını c  

yer değiştirmesi kadar ötelememiz gerekir. Şekilden:     

  P PP P′ ′ ′ ′+ = + ; 0 ( )r c c c rΔ + + Δ = + Δ           

elde ederiz. Buradan:          

    0r r cΔ = Δ + Δ         (4.13) 

olur.  

2. İkinci basamakta, cΔ  vektörünü incelediğimizde iki vektörün bileşkesi olduğunu 

görürüz. ′′ ′′′  birinci vektörü deformasyon sırasında 0rΔ  vektörünün rotasyonunu 

ifade eder. Bu rotasyon, rotasyon tensörü olarak adlandırılır ve A  ile gösterilir. Matrisi 

anti simetrik matris olup:  

                             

0
1 ( ) 0
2

0

z y
t

z x

y x

w w
A J J w w

w w

⎡ ⎤−
⎢ ⎥= − ≡ −⎢ ⎥
⎢ ⎥−⎣ ⎦

  (4.14) 

şeklindedir. Eğer,  

1 2 3
1 1 1 1( ) ( ) ( )c c i c j c k′′ ′′′ = Δ = Δ + Δ + Δ  ise 1 0( )c A rΔ = Δ  

olur ve matrisi: 

                                

1
1

2
1 0

3
1

( ) cos
( ) cos
( ) cos

c x
c A y r A
c z

α
β
γ

⎡ ⎤Δ Δ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ = Δ = Δ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ Δ⎣ ⎦ ⎣ ⎦⎣ ⎦

  (4.15) 

şeklindedir. Bu tensör 0rΔ  vektörünün rotasyonunu sağlar fakat deforme etmez.  
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3. Üçüncü adımda, cΔ nin ikinci vektörünü yani, 0rΔ  vektörünün değişkenlerini ifade 

eden ′′′ ′  vektörünü inceleyeceğiz. 1 2c c cΔ = Δ + Δ  toplamı başka bir vektörü 

oluşturur. Bu vektöre “pure strain tensör” adı verilir ve Γ  ile gösterilir. Her bir 0P  

noktası için Γ  tensörlerinin belirlenmesiyle yeni bir tensör alanı oluşur. 

                       

1 1
2 2

1 1 1
2 2 2

1 1
2 2

x xy xz

t
xy y xz

xz yz z

J J

ε γ γ

γ ε γ

γ γ ε

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤Γ = + ≡⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  (4.16) 

şeklinde gösterilir. Sonuç olarak, 

1 2 3
2 2 2 2( ) ( ) ( )c c i c j c k′′′ ′ = Δ = Δ + Δ + Δ  

ise Γ  tensörü:  

2 0( )c rΔ = Γ Δ ; 

1 1
1

2 2
1 0

3 3
1

( ) cos
( ) cos
( ) cos

c x
c x r
c x

α
β
γ

⎡ ⎤ ⎡ ⎤Δ Δ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ = Γ Δ = Δ Γ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ Δ ⎣ ⎦⎣ ⎦ ⎣ ⎦

  (4.17) 

olarak ifade edilir. 2cΔ  vektörü, 0rΔ  vektörünün değişkenlerini(artış veya azalışını) 

verir. Böylece şekil 4.2 deki ayrıntıdan (dönmeleri görmezsek) “tam deformasyon” 

vektörü: 

                         0 0 3 0 0( ) ( )( ) ( )DEr r I r T rΔ +Γ Δ = +Γ Δ ≡ Δ    (4.18) 

şeklinde olur. Tam deformasyon vektörünü DET  ile gösterir ve matrisi: 
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                                               3DET I= +Γ    (4.19) 

biçiminde olur. Dönme ve ötelemeleri ihmal edersek 0( )DET rΔ  vektörünün uzunluğu 

deformasyonun tam ölçümünü verir. (4.11), (4.15) ve (4.17) eşitliklerini: 

0 1 2( )r r c cΔ = Δ + Δ + Δ  

eşitliğine uygularsak: 

1

2
0 0 3 0 0

3

cos cos cos cos
cos cos cos cos
cos cos cos cos

D

r
r r T r I r A r
r

α α α α
β β β β
γ γ γ γ

⎡ ⎤Δ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ = Δ = Δ + Δ + Δ Γ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 

matrisini elde ederiz. Buradan: 

                                   3( )D DET I A T A= +Γ + = +   (4.20) 

tensörü elde edilir.(Bu eşitlik elastik deformasyonda önemli bir kuraldır) Γ (strain) 

tensörünü, e  birim vektörü üzerine uygularsak aynı doğrultuda “pure deformasyon” 

vektörü elde edilir. e  doğrultusunda uygulanan bu vektör, ( )eΓ vektörünün e  

doğrultusunda birim uzama bileşeni ‘ε ’ yi verir. ε : 

[ ]

1 1
2 2 cos

1 1( ) cos cos cos cos
2 2

cos1 1
2 2

x xy xz

xy y yz

xy yz z

e e

ε γ γ
α

ε α β γ γ ε γ β
γ

γ γ ε

⎡ ⎤
⎢ ⎥

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥= •Γ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦

⎢ ⎥
⎢ ⎥⎣ ⎦

  (4.21) 
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şeklindedir. ( )eΓ vektörünün diğer bileşeni, e vektörüne diktir. Açısal veya tanjant 

deformasyon olarak adlandırılır ve 1
2
γ ile gösterilir. S gerilim tensörüne benzer şekilde 

Pisagor teoremi yardımıyla hesaplanabilir. O halde: 

                                          
2 21 ( )

2
eγ ε= Γ −   (4.22) 

elde edilir. ε  ve 1
2
γ  vektörlerine göre izdüşümler kullanılabilir. ( ( ))eP eε = Γ : 

                                            
1 ( ( ))
2 e

P eγ ⊥= Γ   (4.23) 

olur. Buna göre 3 ( )pE uzayının ortonormal bazı { }eα  ise Γ  tensörünün bileşenleri: 

( )e eαα α αΓ = •Γ  ve ( ) ( ),e e e eαβ βα α β β αΓ = Γ = •Γ = •Γ  α β≠   (4.24) 

şeklinde bulunur. Herhangi bir simetrik tensör için, Γ  tensörü ( , , )I II IIIε ε ε öz 

değerlerine sahiptir ve birim öz değerleri ortogonaldir. Buda maksimum veya minimum 

birim deformasyonunun(ε ) doğrultusunu ve sıfır tanjant deformasyonu ( 0)γ = belirler. 

Verilen öz vektörlerle L ortogonal matrisi:  

                           

1

0 0
ˆ 0 0

0 0

I
t

II

III

L L L L
ε

ε
ε

−

⎡ ⎤
⎢ ⎥Γ = Γ ≡ Γ = ⎢ ⎥
⎢ ⎥⎣ ⎦

  (4.25) 

şeklinde yazılır. Burada L matrisi S gerilme tensörü ile aynı özelliklerdedir. Γ̂  

tensörüne, ˆ (0, cos 45, cos 45)ae ± ± ; ˆ ( cos 45,0, cos 45)be ± ± ; ˆ ( cos 45, cos 45,0)ce ± ±  
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doğrultularını uygulayarak ve (4.21), (4.22) kullanılarak maksimum tanjant 

deformasyon: 

max
1
2
γ⎛ ⎞

⎜ ⎟
⎝ ⎠

: ( ) ( )
22 22 2

max
1 ˆ ˆˆ
2 2 2

II III II III
a

a

e ε ε ε εγ ε
⎛ ⎞+ +⎛ ⎞⎛ ⎞ = Γ − = −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
  

2 2 2
4 2

II III II III II IIIε ε ε ε ε ε+ − −
= =   (4.26) 

şeklinde hesaplanır Benzer şekilde b̂e  ve ĉe  doğrultuları içinde hesaplanabilir. Γ  

tensörünün izi yani, polinomal karakteristiğin ilk değişkeni, P  noktasındaki kübik 

birim genleşme katsayısı olarak adlandırılır ve vc ile gösterilir. 

                          v x y z I II IIIc ε ε ε ε ε ε= + + = + +    (4.27) 

Buda P  nin komşuluğunda elastik deformasyondan dolayı Vδ  birim hacim artışını 

gösterir (Ruiz-Toloso and Castillo 2005). 

                                              

( )
v

V
c

V
δ
δ

Δ
=   (4.28) 

olur. 

4.4 S  ve Γ  nin Tensör İlişkileri Elastik Tensör  

Anizotropi’nin en yaygın durumu olan Hook kanunu şu şekilde genelleştirilebilir 

(Timeshenko and Goodier 1970). ( ),σ τ  yi yalnızca bir doğrultuda değil de diğer 

doğrultularda da deformasyon oluşturduğunu kabul edelim. S  gerilim tensörünü 
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oluşturan, , , , , ,x y z xy xz yzσ σ σ τ τ τ  gerilimlerden her biri Γ  tensörünün, 

, , , , ,x y z xy xz yzε ε ε γ γ γ  deformasyonlarının homojen lineer fonksiyonları olsun. Ayrıca, 

deformasyon potansiyel fonksiyonunun çakışık türevi olduğundan F  matrisi simetrik 

olmalıdır ve matrisi: 

        

, , , , , ,

, , . , , ,

, , , , , ,

, , , , , ,

, , , , , ,

, , ,

x x x x y x z x xy x xz x yz

y x y y y y z y xy y xz y yz

z x z y z z z z xy z xz z yz

xy x xy y xy z xy xy xy xy xz xy yz

xz x xz y xz z xz xy xz xy xz xy yz

yz x yz y yz z yz x

E E E G G G
E E E G G G
E E E G G G
G G G G G G
G G G G G G
G G G G

σ
σ
σ
τ
τ
τ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

=⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦ , , ,

x

y

z

xy

xz

y yz xy yz xy yz yzG G

ε
ε
ε
γ
γ
γ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

   (4.29) 

şeklindedir. (4.29) da verilen anizotropik elastik katının Hook kanununa göre tensörü, 
3( )E  Euclidean uzayında pqγ⎡ ⎤Γ = ⎣ ⎦  deformasyon tensörünün elastik özelliklerini 

gösteren ve elastik tensör olarak adlandırılan, ijklC c⎡ ⎤= ⎣ ⎦  tensörünün indirgenmiş hali 

ijS s⎡ ⎤= ⎣ ⎦  gerilim tensörü gibidir. İndirgenen tensör denklemi indisleriyle:  

        ij ijkl kls c γ=                                         

(4.30) şeklindedir. (4.30) eşitliğindeki tensörler ortonormalize tabandadırlar. Bu 

tensörlerin matris gösterimi: 

x xy xz

ij xy y yz

xz yz z

S s
σ τ τ
τ σ τ
τ τ σ

⎡ ⎤
⎢ ⎥⎡ ⎤≡ = ⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

; 

1 1
2 2

1 1
2 2
1 1
2 2

x xy xz

pq xy y yz

xz yz z

ε γ γ

γ γ ε γ

γ γ ε

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤Γ ≡ =⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  
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, , , , , , , , ,

, , , , , , , , ,

, , , , , , , , ,

, , ,

x x x xy x xz x xy xy xy xy xz x xz xy xz xz xz

x xy x y x yz xy xy y xy xy yz xy xz y xz xz yz

x xz x yz x z xy xz xy yz z xy xz xz xz yz z xz

x xy xy xy xy xz

ijkl

E G G G G G G G G
G E G G G G G G G
G G E G G G G G G

G G G
C c

− −
− −
− −

− − − − − − + − − − − − − + − − − − − −
−

⎡ ⎤≡ =⎣ ⎦

, , , , , ,

, , , , , , , , ,

, , , , , , , , ,

, , , , , , , , ,

x y y xy y xz x yz xy yz xz yz

xy xy y xy xy yz y xy y y y yz xy yz y yz yz yz

xy xz xy yz z xy y xz y yz y z xz yz yz yz z yz

x xz xy xz xz xz x yz xy yz xz yz x z z xy z

E G G G G G
G G G G E G G G G
G G G G G E G G G

G G G G G G E G G

−
− −
− −

− − − − − − + − − − − − − + − − − − − −
− −

, , , , , , , , ,

, , , , , , , , ,

xz

xy xz y xz xz yz xy yz y yz yz yz z xz y z z yz

xz xz xz yz z xz xz yz yz yz z yz z xz z yz z z

G G G G G G G E G
G G G G G G G G E

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

                                  (4.31) 

şeklindedir. Burada, 1 , , , 3i j k l≤ ≤  ve i , satır blok indisi, j  sütun blok indisi, k  her 

bloğun satır indisi ve l  her bir bloğun sütun indisidir. Elastik problem genel olarak şu              

şekilde düzenlenir.  

1. Gerilim halinin tensör alanı ( , , )S x y z bilinmelidir.  

2. Yapılacak çalışmalarda ( , , )C x y z  elastik tensör alanı bulunmalıdır.  

3. ( , , )x y zΓ  tensör alanı (4.30) eşitliğiyle bulunur ve Jacobian ‘ J ’ kısmi türevleriyle 

ilişkilidir.  

4. Bir önceki basamakta elde edilen kısmi diferansiyel denklemler, c yer değiştirme 

tensör alanını bulmak için kullanılır.  

5. c  bilinirse ,DT A  ve DET  deformasyon tensörleri elde edilir.  

Homojen izotropik elastik katı durumunda bazı sabitler aşağıdaki gibidir:  

1. Elastik veya young modülü ‘ E ’  

2. Poisson oranı, v   

3. Shear modülü, G   

4. Lame sabiti, λ elde edilir. Bu sabitler arasındaki ilişkilerden bazıları: 
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2(1 )

EG
v

=
+

; 
(1 )(1 2 )

vE
v v

λ =
+ −

; 
2( )

v
G

λ
λ

=
+

; (3 2 )G GE
G

λ
λ
+

=
+

  (4.32)  

Şeklindedir (Timoshenko and Goodier 1970). Bu sabitler yardımıyla izotropik elastik 

tensör: 

( 2 ) 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 ( 2 ) 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 ( 2 )

ijkl

G G G
G

G

G
C c G G G

G

G
G

G G G

λ
λ

λ

λ
λ

λ

λ
λ

λ

+ − −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −
⎢ ⎥− − − + − − − + − − −⎢ ⎥
⎢ ⎥− −
⎢ ⎥

⎡ ⎤≡ = − + −⎢ ⎥⎣ ⎦
⎢ ⎥− −
⎢ ⎥

− − − + − − − + − − −⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −
⎢ ⎥− − +⎣ ⎦

(4.33)  

şeklinde oluşturulur. (4.30) eşitliğini kullanarak izotropik elastik matrisi: 

                                       32 ( )S G trace Iλ= Γ + Γ   (4.34)  

veya 

                                       
3

1 ( )v vS traceS I
E E
+

Γ = −   (4.35) 

şeklinde elde edilir. Çünkü;  

                                   (3 2 )( )traceS G traceλ= + Γ   (4.36)  
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dir. Burada vtrace cΓ = (kübik genleşme katsayısı) dir.(4.34),(4.35) ve (4.36) eşitlikleri 

Lame eşitliğine denktir. 

                                  

2 ;

2 ;

2 ;

x v x xy xy

y v y xz xz

z v z yz yz

c G G

c G G

c G G

σ λ ε τ γ

σ λ ε τ γ

σ λ ε τ γ

= + =

= + =

= + =

  (4.37)  

Örnek 4.1.(Elastik ve Termik Tensörler): Young modülü E  ve Poisson oranı v  olan 

l  kenarlı küp şeklinde homojen elastik ve izotropik bir katı düşünelim. Bu katıya, üç 

farklı yüzden dik olarak ,x yF F ve zF  dış kuvvetleri etki etmektedir (Şekil 4.3). Sıcaklık 

artışından dolayı katı içerisinde termik gerilmeler oluşmaktadır ve tΔ  sıcaklık farkı ile 

doğru orantılıdır.Burada maddenin orantılılık katsayısı k dır. k  ve tΔ sayısaldır. 

 
 
Şekil 4.3. Termik ve Elastik Tensörler 

1. Verilen problemin tensör ve matris gösterimini yazınız.  

2. Katının 
3(1 2 )

EB
v

=
−

 Bulk modülü ile verilen birim küpik genleşme katsayısı vc yi 

bulunuz. 

3. Katı sıkıştırılamaz ise Poisson oranını bulunuz.  
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4. Katıya etki eden dış kuvvetlerin olmadığını farz edersek termik hareketten dolayı 

oluşacak olan Γ  deformasyonunu belirleyiniz. 

Çözüm:  

1. İlk olarak maddeye etki eden dış kuvvetlerden dolayı oluşan gerilmeler termik 

genleşmeden dolayı dengelenecektir. Buda bize (4.30) daki tensör tanımını verir. 

       ij ijkl kl ijs c k tγ= − Δ                       

İzotropik katılarda (4.33) deki matris eşitliği kullanılır.  

                            3 32 ( )S G trace I kI tλ= Γ + Γ − Δ   (4.38)  

2. (4.38) deki matris denkleminin köşegen terimlerinden:  

2 ( )
2 ( )

2 ( )

x x

y y

z z

G iz k t
G iz k t

G iz k t

σ ε λ
σ ε λ

σ ε λ

= + Γ − Δ
= + Γ − Δ

= + Γ − Δ

 

 elde edilir ve bu terimleri toplarsak:       

   2 ( ) 3 ( ) 3x y z x y zG iz k tσ σ σ ε ε ε λ+ + = + + + Γ − Δ             

veya  

                                   (2 3 )( ) 3izS G iz k tλ= + Γ − Δ    (4.39) 

olur. Bu ifade (4.36) eşitliğini verir. Diğer yandan (4.27) ve (4.32) den:   

             v x y zc izε ε ε= + + = Γ  

(1 )2 3 2 3 3 3
2(1 ) (1 )(1 2 ) (1 )(1 2 ) 3(1 2 )

E vE v E EG B
v v v v v v

λ +
+ = + = = =

+ + − + − −
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 elde edilir ve vc  ve ( 2 3G λ+ ) ifadelerini (4.39) eşitliğine uygularsak: 

3 3
3v v
izS k tizS Bc k t c

B B
Δ

= − Δ → = +  

olur. Bu durumda:  

2
x y z

x y z

F F F
izS

l
σ σ σ

+ +
= + + =  

 olur. Sonuç olarak: 

23
x y z

v

F F F k tc
l B B

+ + Δ
= +  

elde edilir. 

3. Katı sıkıştırılamaz olduğundan 0vc =  dır. Buda 0izΓ =  olduğunu gösterir. (4.39) 

eşitliğinde izΓ  yi yalnız bırakıp:  

(2 3 )
(1 2 )

EG
v

λ+ =
−  

 eşitliğini de göz önüne alırsak: 

3 (1 2 ) ( 3 ) 0
(2 3 )
izS k t viz izS k t

G Eλ
+ Δ −

Γ = = + Δ =
+

 

elde edilir. Burada 1
2

v = değeri için ifade sıfıra eşittir. 
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4. Eğer herhangi dış kuvvet yoksa gerilim tensörü S = Ω  dir. Böylece 0izS =  olur. 

Buna göre (4.38) ve (4.39) eşitliklerinden:  

3 32 ( )G iz I kI tλΓ + Γ − Δ = Ω  

ve 

3
(2 3 )

k tiz
G λ

Δ
Γ =

+  

olur. İkinci sorudaki Bulk modülünden elde edilen:  

(2 3 )
(1 2 )

EG
v

λ+ =
−

 

eşitliğini ifadede yerine yazarsak: 

3 3
(1 2 )2 (3 )vG k t I kI t

E
λ −

Γ + Δ − Δ = Ω  

olur.G  ve λ  değerlerini yerine yazarsak: 

3
3(1 2 )2 1

2(1 ) (1 )(1 2 )
E vE v k tI

v v v E
⎡ ⎤−⎛ ⎞Γ + − Δ = Ω⎜ ⎟⎢ ⎥+ + − ⎝ ⎠⎣ ⎦  

3
3 1

(1 ) (1 )
E v k tI

v v
⎡ ⎤

Γ + − Δ = Ω⎢ ⎥+ +⎣ ⎦
; 3(2 1)E v k tIΓ + − Δ = Ω  

 olur. Yani: 
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3
1 2v k t I

E
−⎛ ⎞Γ = Δ⎜ ⎟

⎝ ⎠  

 elde edilir. 

Örnek 4.2.(Temel Gerilimler): Bir katının belirli bir noktadaki gerilme durumu: 

4xσ = − ; 2yσ = ; 1zσ = ; 4xyτ = ; 0xz yzτ τ= =  şeklindedir. 

1. S  gerilme tensörünü bulunuz.  

2. (1, 2,3)r vektörüne dik olan ve π  düzleminde yer alan t  toplam gerilim tensörünü 

ve t  nin modülünü bulunuz.  

3. t  tensörüne ait σ  vektörünün normal bileşenini ve modülünü bulunuz.  

4. t  tensörüne ait π  düzlemindeki τ  vektörünün tanjant bileşenini ve modülünü 

bulunuz.  

5. , ,I II IIIσ σ σ  temel gerilim vektörlerini ve modüllerini bulunuz.  

6. Maksimum kesme gerilimini bulunuz.  

7. Maksimum kesme geriliminin etki ettiği düzlemlerin ortogonal doğrultusunu 

bulunuz.  

8. Maksimum kesme geriliminin normal gerilim değerini bulunuz.  

9. Kesme durumu sıfır ( 0)σ =  olan düzlemin ortogonal doğrultusunu bulunuz.  

10. Bir önceki durum için τ  vektörünü ve modülünü bulunuz.  

Çözüm:  

1. Gerilim tensörü: 
4 4 0

4 2 0
0 0 1

S
−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 şeklindedir.  

2. (1, 2,3)r  yönündeki birim vektörü: 1 ( 2 3 )
14re i j k= + +  dir ve t  gerilim tensörü:  
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[ ]
4 4 0 1 4

1 14 2 0 2 8
14 140 0 1 3 3

rt S e
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎡ ⎤⎣ ⎦ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

; (4 8 3 )t i j k= + +  

bulunur ve modülü:
  

2 2 21 894 8 3
1414

t = + + =  

olarak bulunur. 

3. (2.3) eşitliği kullanılarak: 

1 2 3
1 2 4 6

14
3 6 9

reP
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

olur ve 

1 2 3 4 1
1 29 1( ) 2 4 6 8 2

1414 14 143 6 9 3 3
reP t

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠  

29 29( ) ( 2 3 )
14 14 14re rP t e i j kσ = = = + +  

elde edilir. Bu eşitlikten:  

29
14

σ σ= =  
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olarak bulunur. Skaler çarpımla:  

[ ] [ ]1 1 1 291 2 3 4 8 3 (4 16 9)
14 1414 14re tσ = • = = + + =  

aynı sonuç bulunur. 

4. (2.4) kullanılarak tamamlayıcı izdüşüm tensörü :  

13 2 3
1 2 10 6

14
3 6 5

re
P ⊥

− − −⎡ ⎤
⎢ ⎥= − − −⎢ ⎥
⎢ ⎥− − −⎣ ⎦

;
13 2 3 4 3

1 9 70 1( ) 2 10 6 8 6
14 14 14 14 703 6 5 3 5

re
P t⊥

− − − ⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − − = ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠  

 9 5 9( ) 3 6 5
14 14 14r

re
P t e i j kτ ⊥

⊥ ⎡ ⎤= = = + −⎣ ⎦  

bulunur: Buradan 

9 5
14

τ τ= =  

olarak bulunur. Ayrıca aynı sonuç pisagor teoreminden: 

                       
2

2 2
2

89 29 405 9 5
14 14 14 14

tτ σ ⎛ ⎞= − = − = =⎜ ⎟
⎝ ⎠

  

bulunabilir.  

5. S nin karakteristik polinomu: 
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                     ( )( )2

4 4 0
4 2 0 0 1 2 24 0
0 0 1

σ
σ σ σ σ

σ

− −⎡ ⎤
⎢ ⎥− = → − + − =⎢ ⎥
⎢ ⎥−⎣ ⎦

 

şeklindedir. 4; 1; 6I II IIIσ σ σ= = = − özdeğerleri temel gerilimin modüllerini  verir. 

Birim vektörler: 4Iσ =  için: 

1 1

2 2

3 3

8 4 0 0 1
4 2 0 0 2
0 0 3 0 0

x x
x x
x x

⎡ ⎤ ⎡ ⎤−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− = → =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦  

olur. Buradan ( )1 2
5Ia i j= +  elde edilir. 1IIσ =  için:  

1 1

2 2

3 3

5 4 0 0 0
4 1 0 0 0
0 0 0 0 1

x x
x x
x x

⎡ ⎤ ⎡ ⎤−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= → =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 

olur. Buradan IIa k=  elde edilir. 6IIIσ = −  için:  

1 1

2 2

3 3

2 4 0 0 2
4 8 0 0 1
0 0 7 0 0

x x
x x
x x

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= → = −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 

olur. Buradan ( )1 2
5IIIa i j= −  elde edilir. Özvektörlerle ilgili taban değişimin 

doğrudan ortogonal matris olduğunu doğrular. 
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1 5 0 2 5
1 212 5 0 1 5 1
2 15

0 1 0

⎡ ⎤
⎢ ⎥

= − = − =⎢ ⎥
−⎢ ⎥

⎢ ⎥⎣ ⎦

 

Yani, yeni üç yüzlü bir direkt üçyüzlüdür.  matrisinden, S  nin ortogonal 

yükseltgenmesi: 

1

4 0 0
ˆ 0 1 0

0 0 6

tS S S−

⎡ ⎤
⎢ ⎥= ≡ = ⎢ ⎥
⎢ ⎥−⎣ ⎦

 

olur. Sonuç olarak istenilen vektörler: 

( ) ( )4 62 ; ; 2
5 5I II IIIi j k i jσ σ σ −

= + = = −  

elde edilir.  

6. (4.26)  eşitliğine göre S gerilim tensörü ve ˆ ˆ ˆ, ,a b ce e e  doğrultularından: 

( ) ( )

( ) ( )

( )

max

max

max

1 6 7
2 2 2

4 6
5

2 2
4 1 3

2 2 2

II III
a

I III
b

I II
c

σ στ

σ στ

σ στ

− −−
= = =

− −−
= = =

− −
= = =

 

olur. Buradan ( )ˆ cos 45,0, sin 45be ±  yönündeki maksimum kesme gerilimi max 5τ =  dir.  



98 
 

 

7. 1 1,0,
2 2

⎛ ⎞±⎜ ⎟
⎝ ⎠

 ortogonal vektörleri S  nin maksimum kesme geriliminin 

doğrultusundadırlar.  tabanlarını ( ), ,i j k  almamız gerekir. Bu durumda matris hali: 

ˆ ;X X=  

1 5 0 2 5 3 10 1 101 2 1 2
2 5 0 1 5 0 0 1 10 3 10

0 1 0 0 01 2 1 2

X

⎡ ⎤ ⎡ ⎤−⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥

= − =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥−⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

 

olur. Böylece 5τ =  kesme geriliminin ortogonal doğrultusu: 

( )
1

1 3
10be i j= +  ve ( )

2

1 3
10be i j= − +

 

 dir. 

8. Maksimum kesme geriliminin normal gerilimi:  

( ) [ ]
1 11

4 4 0 3
1 13 1 0 4 2 0 1
10 100 0 1 0

b be S eσ
⎛ − ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= • = •⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

 

[ ] ( )
8

1 1 103 1 0 14 24 14 0 1;
10 10 10

0

−⎡ ⎤
−⎢ ⎥= = − + + = = −⎢ ⎥

⎢ ⎥⎣ ⎦
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( ) [ ]
2 22

4 4 0 1
1 11 3 0 4 2 0 3
10 100 0 1 0

b be S eσ
⎛ − − ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= • = − •⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

  

[ ] ( )
16

1 1 101 3 0 2 16 6 0 1;
10 10 10

0

⎡ ⎤
−⎢ ⎥= − = − + + = = −⎢ ⎥

⎢ ⎥⎣ ⎦

 

şeklinde bulunur. Böylece 1 2 1σ σ= = −  olur.               

9. S  tensör sistemi alınıp ve çözülürse ilk sisteme dönülür. İstenilen doğrultu ( )ˆˆ ˆ ˆ, ,e m n  

olsun: O zaman: 

( ) 2 2 2

4 0 0
ˆ ˆ ˆ ˆ0; 0 1 0 0;4 6 0

0 0 6
e S e m n m m n

n
σ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎡ ⎤= • = = + − =⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

 olur. Bu denklemin parametrik koordinatlardaki çözümü:  

( )

( )

2

2

6ˆ 1
2

ˆ 2 6

ˆ 1

m

n

λ μ

λμ

λ μ

⎧
= −⎪

⎪⎪ =⎨
⎪ = +⎪
⎪⎩

 

olur. Burada 1λ μ= =  seçilirse, ( ) ( )ˆ ˆ ˆ, , 0, 2 6,2m n =  olur. Yani vektör 

( )ˆ 0, 6,1r olup tekrar ilk hale dönülür. 
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1 5 0 2 5 0 2
1ˆ ; 2 5 0 1 5 6 1
50 1 0 1 30

X QX m
n

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= = − = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎣ ⎦⎣ ⎦

 

dir. Çözümü: 

( )12 30 ; 2 30
35rr i j k e i j k= − + = − +  

bulunur. 

10. ( )1 2 30
35re i j k= − +  vektörü rt  gerilimine sahiptir. Buna göre: 

1

2

3

4 4 0 2 12
1 14 2 0 1 6
35 350 0 1 30 30

r

r

r

t
t
t

⎡ ⎤ ⎡ ⎤⎡ ⎤ − −⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= − =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

olur. 0σ =  olduğundan: 

( )1 12 6 30
35rt i j kτ ≡ = − + +  ve 

2 212 6 30 6
35rtτ + +

= = =  

 bulunur. 

Örnek 4.3. (Karışık Gerilmeler): Genişliği 2s = mm ve çapı 30R = cm olan Şekil 4.4 

de verilen metal tüpü düşünelim. Tüpün her iki ucundan momentler uygulanırsa: 

•  Değeri 3FM i= mT olan YOZ düzleminde kıvrılan moment. 
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• Değeri 4TM k= mT olan OZ düzlemindeki tork momenti. 

1. Tüpün dışındaki bir P  noktasındaki S  gerilme tensörünü bulunuz.  

2. Maksimum gerilmelerin oluşacağı noktaları bulunuz.  

3. Maksimum gerilmenin değerini bulunuz. 

4. Maksimum gerilme üzerinde oluşan ve düzleme dik olan birim vektörü bulunuz. 

 
 
Şekil 4.4. Metal tüp 

Çözüm:                               

1. Çapı genişliğinden çok büyük olduğundan genişliğini ihmal edebiliriz. Bu durumda 

XOY  düzlemindeki tork momenti tarafından meydana gelen tanjant gerilimi: 

2(2 ) 2
T TM M

R Rs sR
τ

π π
= =  

dir ve şekil 4.5 teki gibi OX  ve OY  eksenlerine paralel olan bu düzlemdeki kesme 

gerilimleri: 
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sin cosxz yz
y xi j i j i j
R R

τ τ τ τ α τ α τ τ= + = − + = − +  

 dir. Özetle: 

2 3.
2 2

T T
xz

M M yy
sR R sR

τ
π π

= − = − ; 2 3.
2 2

T T
yz

M M xx
sR R sR

τ
π π

= =
 

 dir. 

 
 
Şekil 4.5. Metal Tüp Üzerindeki Gerilmeler 

Bir başka deyişle bükücü momentten dolayı XOY düzlemi üzerinde oluşan dış gerilim: 

F
z

X

M y
I

σ =  dir. OX  eksenine göre düzlem kesitinin XI  iç momentini hesaplamak için 

yine ilk varsayımımız olan genişliğin çapa göre ihmal edilebilirliğini uygulayalım. O 

zaman: 

( ) 2 30 1 2
2 2X
II sR R sRπ π= = =
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 olur. Bu sonucu zσ  yerine yazarsak:  

3
F

z
M y

sR
σ

π
=  

olur. Bu gerilimleri bulduğumuz zaman tüpün dışındaki ( ), ,P x y z noktasına etki eden 

gerilim tensörünü de belirleyebiliriz. S gerilim tensörü: 

3

0 0
1 0 0

2
2

x xy xz T

xy y yz T

xz yz z T T F

M y
S M x

sR
M y M x M y

σ τ τ
τ σ τ

π
τ τ σ

⎡ ⎤ −⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦  

 olarak bulunur. 

2. Karakteristik polinom yardımıyla temel gerilimleri bulabiliriz. Buradan maksimum 

gerilmelerin yerini belirleyebiliriz.  

0
0 0

xz

yz

xz yz z

σ τ
σ τ

τ τ σ σ

−
− =

−
; ( )2 2 2 0z xz yzσ σ σ σ τ τ⎡ ⎤− + + =⎣ ⎦  

olur. Sonuç olarak:  

2 2 0zσ σ σ σ τ⎡ ⎤− + =⎣ ⎦  ve 
2

2

2 2
z zσ σσ τ⎛ ⎞= ± +⎜ ⎟

⎝ ⎠
 

ve τ  sabit olduğundan σ  maksimum değeri ( )+  için sağlanacaktır.  

 3. AB  ( )y R=  ana doğrusundaki noktada zσ değeri:  
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( ) 3 2max

2
2

F F
z

y R

M y M
sR sR

σ
π π=

⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

olur ve maksimum gerilim: 

( ) ( ) 2

2max max
max 2 2

z zσ σ
σ τ

⎡ ⎤
= + +⎢ ⎥

⎣ ⎦
 

2 2

2 2 22 2 2
F F TM M M

sR sR sRπ π π
⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  

 2 2
2

1
2 F F TM M M

sRπ
⎡ ⎤= + + +⎣ ⎦

 

olur. Momentleri cm kg× cinsinden alırsak: 

 
4

5 2 2 5 2
max 2

1 8 103 10 3 4 10 235.8 /
2 0.6 30 339.292

kg cmσ
π

×⎡ ⎤= × + + × = =⎣ ⎦× ×  

veya  

4 4
max 235.8 9.8 10 2311 10 pascalσ = × × = ×  

bulunur. 

4. σ  özdeğerine ait öz vektör: 

xz yz

m n
τ τ σ

= =  

ve maxσ  değeri için: 
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xz
y R

y
R

τ τ τ
=

⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

; 
0

0yz
x

x
R

τ τ
=

⎛ ⎞= =⎜ ⎟
⎝ ⎠  

olur. Böylece öz vektör: 

( ) ( ) ( )2 2
max 2

1, , ,0, ,0,
2 T F F Tm n M M M M

sR
τ σ

π
= − = − + + ( )0 4,0,8λ= −  

bulunur. Sonuç olarak 
max

eσ  birim vektörü: ( )max

1 2
5

e i kσ = − +  olarak bulunur. 

4.5. İç Moment Tensörü 

( )O XYZ−  uzayında bir geometrik uzayı düşünelim. 

 
 

Şekil 4.6. İç moment tensörü 

O noktasından geçen bir eksen etrafında dönen ve anlık bir e  doğrultusuna sahip 

homojen bir S  katısını ele alalım. Katının ( ), ,P x y z  noktası komşuluğunda noktasal 
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kütlesini düşünelim (Şekil 4.6). Katının, kütleleri toplamı ile eksene uzaklığının karesi 

çarpımı katının e eksenine göre iç momenti olarak adlandırılır. Şu şekilde gösterilir.  

                                                   

2
e

S

I r dm= ∫   (4.40) 

Eğer e  birim vektörünü :         

        ;e i mj nk= + +  2 2 2 1m n+ + =                

alınırsa ve P  noktasının konum vektörü:      

     v OP xi yj zk= = + +                            

alınırsa (3.4) eşitliğinden 
e

P ⊥ komplementer izdüşüm vektörü kullanılarak r  vektörü:  

2

2

2

(1 )
( ) (1 )

(1 )
e

m n x
r P v m m mn y

n mn n z
⊥

⎡ ⎤− − − ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = − − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − ⎣ ⎦⎣ ⎦  

 şeklinde hesaplanır. 

t
e e

P P⊥ ⊥≡  olduğundan: 

[ ] [ ]2 2t
e e e

x x
r r r x y z P P y x y z P y

z z
⊥ ⊥ ⊥

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= • = • =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

olur. İzdüşümler eşkuvvetlik özelliğini sağladığından: 

[ ] [ ]
2

2 2

2

(1 )
(1 )

(1 )
e

x m n x
r x y z P y x y z m m mn y

z n mn n z
⊥

⎡ ⎤− − −⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= = − − −⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦⎣ ⎦  
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veya 

[ ]
2 2

2 2

2 2

( )
( )

( )

m n m n x
x y z m n mn y

n mn m z

⎡ ⎤+ − − ⎡ ⎤
⎢ ⎥ ⎢ ⎥− + −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − + ⎣ ⎦⎣ ⎦  

 elde edilir. Daha sonra bu ifadeyi düzenleyip (4.40) ta yerine yazarsak: 

( ) ( ) ( )2 2 2 2 2 2 2 2 2 2
e

S S

I r dm m n x n y m z= = + + + + +∫ ∫ ( )mxy nxz mnyz dm− + +  

 ( ) ( ) ( )2 2 2 2 2 2 2 2 2

S S S

y z dm m x z dm n x y dm= + + + + +∫ ∫ ∫   

2
S S S

m xydm n xzdm mn yzdm
⎛ ⎞

− + +⎜ ⎟
⎝ ⎠

∫ ∫ ∫
 

olur. Sonuç olarak: 

( )2 2 ;x
S

I y z dm= +∫  ( )2 2 ;y
S

I x z dm= +∫  ( )2 2
z

S

I x y dm= +∫ ;xy
S

P xydm= ∫  ;xz
S

P xzdm= ∫   

yz
S

P yzdm= ∫   (4.41) 

olur. , ,x y zI I I  ifadeleri Kartezyen eksenine göre iç momenttirler. Çünkü , ,x y zI I I  

ifadleri daima pozitiftirler. , ,xy xz yzP P P  ifadeleri ise iç çarpımlardır ve merkezkaç 

momentler olarak adlandırılırlar.(4.41) ifadelerini eI  da yerine yazarsak: 

                
2 2 2 2 2 2e x y z xy xz yzI I I m I n P m P n P mn= + + − − −  
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[ ] ( )
x xy xz

xy y yz

xz yz z

I P P
m n P I P m e I e

P P I n

⎡ ⎤− − ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − − = •⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎣ ⎦

  (4.42)  

olur. I  ifadesi iç moment tensörü olup bir simetrik tensördür. Matris gösretimi:  

                                 

x xy xz

xy y yz

xz yz z

I P P
I P I P

P P I

⎡ ⎤− −
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

  (4.43) 

şeklindedir. Eğer Kartezyen sisteminde orjin ile S  katısının G  ağılık merkezi kesişir 

ise iç moment tensörü GI  ile gösterilir (Schouten 1989). Eğer katının ağırlık 

merkezinden e  ekseni değilde e  parelel başka bir eksen geçerse bu eksene göre iç 

moment ( )G e
I  ile gösterilir ve eI  ile ilişkisi Steiner teoremi olarak bilinir. 

                                        ( )2.e G e
I m I= Δ +   (4.44)  

Burada m  katının kütlesi, Δ  ise parelel eksenler arsındaki uzaklığı ifade eder. Konunu 

başında ifade edilen dönme ω  açısal hızına sahipse e  ekseni etrafında açısal hız 

vektörü: 

           1 2 3e i mj nk i j kω ω ω ω ω ω ω ω= = + + = + +   (4.45)  

şeklinde olur. Burada ω  açısal hızı rad
sn  cinsindendir. ( )I ω  vektörü e  eksenine göre 

S  katısının kinetik momentidir ve eh  ile gösterilir. Eğer, 

                        1 2 3eh h i h j h k= + + ise ( )2 2 2 1m n+ + = :  



109 
 

 

( )
1 1

2 2

3 3

x xy xz

xy y yz

xz yz z

h I P P
h I P I P
h P P I

ω
ω ω

ω

⎡ ⎤− −⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= = − −⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦

( )
x xy xz

xy y yz

xz yz z

I P P
I e P I P m

P P I n
ω ω

⎡ ⎤− − ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎣ ⎦

  (4.46)  

olur. 1
2 ehω •  skaler çarpımı cE  ile gösterilir ve ω  dönme açısına göre S  katısının 

kinetik enerjisi denir. Kinetik enerji şu şekilde: 

( ) ( ) ( ) ( )( ) ( )( )21 1 1 1
2 2 2 2c eE h e I e I e e I eω ω ω ω ω ω= • = • = • = •

 

yazılır. (4.42) ifadesini cE  de yerine yazarsak:      

     1
2c eE I ω=                            (4.47) 

elde edilir. İkinci dereceden tüm simetrik tensörler için I  tensörünün polinom 

karekteristiği pozitif değerdeki 1 2 3, ,I I I  öz değerlerini verir ve temel iç momentler 

olarak adlandırılır. Bu özdeğerlerle ilgili 1 2 3, ,a a a  öz birim vektörleride temel yönlerdir. 

Buda iç çarpımları sıfır olan maksimum ve minimum iç momentleri verir.  ortogonal 

matrisinin sütunlarındaki öz vektör bileşenleri I  tensörünün derecesini artırır. I  

tensörü: 

               

1
1

2 1 2 3

3

0 0
ˆ 0 0 ; 0

0 0

t

I
I I I I I I I

I

−

⎡ ⎤
⎢ ⎥= ≡ = > > >⎢ ⎥
⎢ ⎥⎣ ⎦

 (4.48)  

şeklindedir. (4.42) eşitliği e  birim vektörünün ( ), ,m n  bileşenlerinin fonksiyonu 

cinsinden katının iç momenti eI  verir ve şu şekilde: 
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2 2 2

1 x y z
e e e

m nI I I
I I I

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠  

2 2 2xy xz yz
e e e e e e

m n m nP P P
I I I I I I

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
− − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠  

yazılır. Eğer ( ), ,A x y z  noktasını seçersek bu şartları sağlayan koordinatlar: 

e

x
I

= ; 
e

my
I

= ; 
e

nz
I

=  

şeklindedir. OA  konum vektörünün A  ucu katı yüzeyinde olup: 

          
2 2 2 2 2 2 1x y z xy xz yzI x I y I z P xy P xz P yz+ + − − − =    (4.49)  

yazılır. Bu ifade S  katısının e  eksenine göre iç elipsoididir.  

Örnek4.4. (Katı ile İlgili İç Tensörler): Dik bir paralel yüz düşünelim.Bu paralel 

yüzün kenarları , ,a b c  tepe noktalarında kesişmektedir.Ayrıca bu cismin yoğunluğunun 

( )1ρ =  olduğunu farz edelim. 

1. Katının iç tensörünü, a OX∈ , b OY∈  ve c OZ∈  olacak şekilde bulunuz. 

2. ( )G XYZ−  sistemine göre GI  iç momentin bulunuz. 

3. ( )( )a O XYZ−  ve ( )( )b G XYZ−  sistemleri için e OG≡  eksenine göre katının eI  iç 

momentini bulunuz. 

4. ( )O XYZ−  sisteminde katının konumunu ; ;b OX c OY a OZ∈ ∈ ∈  olacak şekilde 

yerleştirelim. Bu durumda 1,2 ve 3 soruları yeniden cevaplayınız. 5. abcI  ve bcaI  iç 

moment tensörlerinin değerleri eşitmidir.  
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Çözüm:                        

1. (4.41) eşitliğine göre: 

( ) ( )2 2 2 2
x S

S

I y z dm y z dxdydz= + = +∫ ∫∫∫ ( ) ( )2 2 2 2

0 0 0 3
a b c abcdx dy y z dz b c= + = +∫ ∫ ∫  

( ) ( )2 2 2 2
y S

S

I x z dm x z dxdydz= + = +∫ ∫∫∫  ( ) ( )2 2 2 2

0 0 0 3
a b c abcdx dy x z dz a c= + = +∫ ∫ ∫  

( )2 2

3z
abcI a b= +

 

( ) ( )xy S
S

P xy dm xy dxdydz= =∫ ∫∫∫ ( )
0 0 0 4
a b c abcxdx xdy dz ab= =∫ ∫ ∫  ( )

4xz
abcP ac=  

( )
4yz

abcP bc=  

dir.(4.43) eşitliğine göre iç tensör: 

( )

2 2

2 2

2 2

3 4 4

4 3 4

4 4 3

b c ab ac

ab a c bcI abc

ab bc a b

⎡ ⎤+
− −⎢ ⎥

⎢ ⎥
+⎢ ⎥

= − −⎢ ⎥
⎢ ⎥

+⎢ ⎥− −⎢ ⎥
⎣ ⎦

 

şeklindedir.                               

2. Katıyı ( )G XYZ−  sisteminde orjini , ,
2 2 2
a b cG ⎛ ⎞

⎜ ⎟
⎝ ⎠

 noktası olan ve eksenleri 

( )O XYZ−  eksenine paralel şeklinde düşünelim. G  noktasında katı üç simetri eksenine 
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sahip olacağından ve integralin sınırları değişeceğinden iç çarpımların tümü sıfır olur. 

Özetle: 

                       
( ) ( ) ( )2 2 2 2

G x S
S

I y z dm y z dxdydz= + = +∫ ∫∫∫  

                       ( ) ( )2 2 2 2 2 2 2

2 2 2 12
a b c

a b c

abcdx dy y z dz b c
− −

= + = +∫ ∫ ∫  

                           
( ) ( )2 2

12G y

abcI a c= +
      

                 
( ) ( )2 2

12G z

abcI a b= +  

ve 

0xy xz yzP P P= = =  

olup buda iç tensörün: 

2 2

2 2

2 2

0 0
0 0

12
0 0

G

b c
abcI a c

a b

⎡ ⎤+
⎢ ⎥= +⎢ ⎥
⎢ ⎥+⎣ ⎦

 

olduğunu gösterir. Burada ki ( ) ( ) ( ), ,G G Gx y z
I I I  momentleri temel iç momentlerdir ve 

doğrultuları Kartezyen eksenini doğrultusundadır.( GI  tensörü için) 

3. (a) OG  doğrultu vektörü , ,
2 2 2
a b c⎛ ⎞

⎜ ⎟
⎝ ⎠

 dir ve birim vektörü: 
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( )2 2 2

1e ai bj ck
a b c

= + +
+ +

 

şeklindedir. (4.42) eşitliğini kullanarak:  

( ) [ ]

2 2

2 2

2 2 2 2 2 2

2 2

3 4 4
1 1

4 3 4

4 4 3

e

b c ab ac

a
ab a c bcI abc abc b

a b c a b cc
ab bc a b

⎡ ⎤+
− −⎢ ⎥

⎢ ⎥ ⎡ ⎤
+⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥+ + + +⎢ ⎥ ⎢ ⎥⎣ ⎦+⎢ ⎥− −⎢ ⎥

⎣ ⎦  

 
2 2 2 2 2 2

2 2 2
2 2 2 2 2 2

3 3 3 4 4 4
abc b c a c a b ab ac bca b c ab ac bc

a b c
⎛ ⎞+ + +

= + + − − −⎜ ⎟+ + ⎝ ⎠
 

( )2 2 2 2 2 2 2 2 2 2 2 2

2 2 2

2
3 2e

a b b c a cabc a b b c a cI
a b c

⎛ ⎞+ + + +⎜ ⎟= −
⎜ ⎟+ + ⎝ ⎠

2 2 2 2 2 2

2 2 26
abc a b b c a c

a b c
+ +

=
+ +  

 bulunur. 

(b) Aynı förmülü kullanarak GI  tensörü: 

( ) [ ]
2 2

2 2

2 2 2 2 2 2
2 2

0 0
1 10 0

12
0 0

G e

b c a
abcI abc a c b

a b c a b ca b c

⎡ ⎤+ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥+ + + +⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎣ ⎦

 

( ) ( ) ( )2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 212 6
b c a a c b a b cabc abc a b b c a c

a b c a b c
+ + + + + + +

= =
+ + + +  

bulunur. Aynı eksene sahip olduklarından aynı sonucu verirler.  
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4. (a) Benzer işlemler uygulanarak:  

2 2 2 2 2 2( ); ( ); ( )
3 3 3x y z

abc abc abcI c a I b a I b c= + = + = +
 

; ;
4 4 4xy xz yz

abc abc abcP bc P ba P ac= = =  

( )

2 2

2 2

2 2

3 4 4

4 3 4

4 4 3

a c bc ab

bc a b acI abc

ab ac b c

⎡ ⎤+
− −⎢ ⎥

⎢ ⎥
+⎢ ⎥′ = − −⎢ ⎥

⎢ ⎥
+⎢ ⎥− −⎢ ⎥

⎣ ⎦  

olur.                              

(b) 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2; ;
12 12 12G G Gx y z

abc abc abcI a c I a b I b c= + = + = +  

2 2

2 2

2 2

0 0
0 0

12
0 0

G

a c
abcI a b

b c

⎡ ⎤+
⎢ ⎥′ = +⎢ ⎥
⎢ ⎥+⎣ ⎦

 

olur.                               

(c) i. OG  doğrultu vektörü bu defa ( ), ,b c a  olur. Birim vektörü:  

( )2 2 2

1e bi cj ak
a b c

′ = + +
+ +  

olur. 
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[ ]

2 2

2 2

2 2 2 2 2 2

2 2

3 4 4
1

4 3 4

4 4 3

e

a c bc ab

b
abc bc a b acI bca c

a b c a b ca
ab ac b c

′

⎡ ⎤+
− −⎢ ⎥

⎢ ⎥ ⎡ ⎤
+⎢ ⎥ ⎢ ⎥′ = − −⎢ ⎥ ⎢ ⎥+ + + +⎢ ⎥ ⎢ ⎥⎣ ⎦+⎢ ⎥− −⎢ ⎥

⎣ ⎦

 

2 2 2 2 2 2

2 2 26e e
abc a b b c a cI I

a b c′
+ +′ = ≡
+ +

 

elde edilir.                   

ii.    

( ) [ ]
2 2

2 2

2 2 2 2 2 2
2 2

0 0
1 10 0

12
0 0

G e

a c b
abcI bca a b c

a b c a b cb c a
′

⎡ ⎤+ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′ = +⎢ ⎥ ⎢ ⎥+ + + +⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎣ ⎦

 

( ) ( )
2 2 2 2 2 2

2 2 26G Ge e

abc a b b c a cI I
a b c′

+ +′ = ≡
+ +

 

 bulunur. 

5. Görülüyorki: 1tM IM M IM I− ′= =  dir. Yani, eğer  

0 0 1
1 0 0
0 1 0

M
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

ve 3
tMM I=  ise sonuç: 
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( )

2 2

2 2

2 2

3 4 40 0 1 0 0 1
1 0 0 1 0 0

4 3 4
0 1 0 0 1 0

4 4 3

b c ab ac

ab a c bcabc

ab bc a b

⎡ ⎤+
− −⎢ ⎥

⎢ ⎥⎡ ⎤ ⎡ ⎤
+⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦+⎢ ⎥− −⎢ ⎥
⎣ ⎦  

( )

2 2

2 2

2 2

3 4 4

4 3 4

4 4 3

a c bc ab

bc a b acabc

ab ac b c

⎡ ⎤+
− −⎢ ⎥

⎢ ⎥
+⎢ ⎥

= − −⎢ ⎥
⎢ ⎥

+⎢ ⎥− −⎢ ⎥
⎣ ⎦  

bulunur. M matrisini almazsak I  ve I ′  matrisleri aynı polinom karakteristiğine sahip 

olup ortogonal benzerdirler. Böylece I , I ′  matrisleri aynı özdeğerlere ve temel iç 

mometlere sahiptirler. Gerçekte M matrisi, O noktasından geçen anlık bir eksen 

etrafında dönen bir matristir. Çünkü verilen sabit bir nokta için katının yer değişimine 

eşittir. Aslında M matrisini analiz edersek 1M =  dir. Yani dönme matrisidir. Örnek 

2.2 nin 4. noktasında θ  dönme açısının değerini veren förmülü, ilgili M matrisi için 

kullanılırsa:  

1 0 1 1 1 3cos 120;cos ;sin
2 2 2 2 2

izMθ θ θ θ− −
= = = − → = = − =  

olur. (2.14) eşitliğinde ki dönme tensörüne göre 11m  ve 22m  terimleri bilindiğinde e  

eksenin cosinüs bileşenlerini bulabiliriz. 

( ) ( )( )2 2 2 2 2 2
11

1cos cos cos cos cos cos cos 02m α β γ θ α β γ= + + = + + − =

( ) ( )( )2 2 2 2 2 2
22

1cos cos cos cos cos cos cos 02m β α γ θ β α γ= + + = + + − =
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ise çözüm:  

( ) 1 1 1cos ,cos ,cos , ,
3 3 3

α β γ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

dür. Buda 

0 0 1
1 0 0
0 1 0

M
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦  

matrisinin 
1 1 1
x y z
= =  eksenine göre rotasyonu çeyrek düzlemin açıortayı, 120θ =  

değerini ve katının 1.sorudaki ve 4.sorudaki konumlarının birbirine eşdeğer olduğunu 

yani izometri olduğunu gösterir. 



118 
 

 

5. SONUÇ 

Euclidean ve Hermit linear uzayların afin uzaylarını oluşturan izdüşüm, momentum, 

dönme ve yansıma tensörleri verilerek,  ( )nE  uzayında afiniteler, homoteziler  

izometriler gibi afin geometrik tensörler incelendi.Afin geometrik tensör dönüşümleri 

olan homografiler ele alındı. 2 ( )E  ve 3( )E uzaylarında öteleme, dönme, merkezi 

simetri, eksenel simetri ve benzerlik kavramları incelendi.Fizik ve Mekanikte kullanılan 

Strees ve Strain tensörleri tanıtıldı.Bu tensörlerin tensör ilişkisi olan Elatik tensör 

kavramı ile iç moment tensörü özellikleri incelendi.Ayrıca bu tensörlere ait problemler 

çözümleriyle birlikte verildi. 
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