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 ÖZET  

Bu tezde Yığın Yakınsak Uzaylar, Süzgeç Yakınsak uzaylar, Limit Uzayları ve 

Pretopolojik Uzaylar gibi topolojik kategorilerde genelleştirilmiş  ayırma 

aksiyomlarının karekterizasyonunda ihtiyaç duyulacak belli bazı sonuçları, teknik 

teoremleri  ifade ve ispat edeceğiz.  

Bu tez dört bölümden oluşmaktadır. 

Birinci bölümde kısaca Yığınlar ve Süzgeçlerin tarihçesi üzerinde durulmuş olup 

litaratür taraması mahiyetindedir. 

İkinci bölümde, amaca yönelik kategori, fanktor, topolojik fanktor, diskre ve indiskre 

objeler, yığınlar, süzgeçler ve topolojik kategori gibi temel tanımlara ve bunlarla ilgili 

temel teoremlere yer verilmiştir. 

Üçüncü bölümde,  süzgeçler ve yığınlar hakkında bazı teknik teoremler ifade ve ispat 

edilmektedir. Bir B  cümlesi üzerinde ijα , i, j=1, 2 süzgeçleri verildiğinde ij ijπ σ α= , i, 

j=1, 2 (burada ijπ  projeksiyon fonksiyonları cinsinden tanımlanmıştır) olacak şekilde bir 

σ  süzgecinin 2VΒ rinde mevcut olması için gerek ve yeter şartları veren temel 

bir sonuç verilmektedir. Ayrıca bu temel sonuçtan bazı önemli sonuçlar elde 

edilmektedir. 

2 üze∇Β  

Dördüncü bölümde, Sabit Yakınsak Süzgeç Uzayı Kategorisi (ConFCO) da  2Pre T  ve 

 objeleri karakterize edildi. '
2Pre T

Anahtar Kelimeler: Yığınlar ve Süzgeçler,  Süzgeç Yakınsak Uzayı, Limit Uzayı, 

Pretopolojik Uzaylar. 
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STACKS AND FILTERS 

    Ahmet KILIÇ                                                                            
Erciyes University, Graduate School of Natural and Applied Sciences                              

M. Sc. Thesis, August 2010                                                                   
Thesis Supervisor:Assist. Prof. Muammer KULA  

ABSTRACT 

In this thesis, we state and prove some certain results that will be needed to give an 

expilicit characterization of each of these generalized seperation properties in categories 

of Stack Convergence Spaces, Fitler Convergence Spaces, Limit Spaces and 

Pretopological Spaces. 

This thesis consists of four chapters. 

In the first chapter, the historical devolopment of the stacks and filters is given. 

In the second chapter, the basic definitions such as a category, fanctor, topological 

fanctor, discre and indiscre objects, stacks, filters and topological category were given. 

In the third chapter, we state and prove some technical theorems about stacks and filters. 

The main result is concerned with finding necessary and sufficent conditions on filters 

ijα , i, j=1, 2 on set B for which there exists a fitler σ  on the wedge  such that 2V∇Β Β2

ij ijπ σ α=  for all i, j=1, 2, where ijπ  are defined in terms of projections. We deduce 

from this some certain results. 

In the fourth chapter, 2Pre T  ve  objects are characterized in the category of '
2Pre T

constant filter convergent spaces (ConFCO). 

Keywords: Stacks and Filters, Filter Convergent Spaces, Limit Spaces, Pretopological 

Spaces.                                                                 
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1. BÖLÜM 
 

GGİİRRİİŞŞ 
 
Topolojik uzay kavramı; yakınsak uzay, limit uzayı, bornolojik uzay ve preorder 

uzaylarını da içine alarak Herlich [1], Kent [2], Wyler [3], Nell [4], Schwartz [5] ve 

diğerleri tarafından topolojik kategori kavramına genelleştirilmiştir. Topolojik kategori 

değişik yollarla tanımlanmıştır. Örneğin, Herlich [1] de belli kaynakların başlangıç 

kaldırmalarının (initial lift) varlığına dayanarak topolojik kategoriyi tanımlamıştır. 

Wyler [3] de topolojik kategori tanımını tam lattice kategorisindeki fanktora 

dayandırarak tanımlamıştır.  

 

Matematik bilim dalının farklı branşlardaki ayrışma (farklılaşma) ve uzmanlaşmanın 

(specialization) artması matematikçileri, bu çok sayıdaki farklı branşların ortak bir alan 

üzerinde düşünmelerini zorunlu kılmıştır. İşte kategori teorisi bu ortak alanlarda bir 

tanesidir ki, farklı alanlardaki araştırmacıların daha kolay bir iletişim kurmaları için 

ortak bir dil sağlamaktadır. Genel topoloji matematiğin cebir, analiz, fonksiyonel analiz, 

olasılık teorisi, lattice teorisi gibi pek çok teoride uygulamalara sahip olduğundan 

topologlar topolojik fikirleri (ideas) kategori diline çevirmeyi tercih ederler. 

 

Eğer Genel Topolojide ki teoremleri topolojik kategorilerde daha genel yapılarda 

formüle etmek ve ispatlamak istenirse, öncelikle başlangıç kaldırması, bitiş kaldırması 

ve diskre yapılar gibi belli temel kavramları herhangi bir topolojik kategori için 

tekrardan formüle etmek gerekmektedir.  

 

Topolojide ki bazı önemli kavramlar (Kompaktlık, Bağlantılılık, Tam Bağlantısızlık, 

Ayrılma Aksiyomları, Kapalılık vb.)  Manes [6] ve Herrlich, Salicrup ve Strecker [7] 

tarafından  değişik yollarla topolojik kategoriye genişletilmiştir. Bu genişlemelerin çoğu 

kapanış operatörleri kullanılarak yapılmıştır. 
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Tam (Complete) ve Cocomplete kategorileri için kapanış operatörlerinin tanımlarını 

Dikranjan ve Giuli [8] de verilmiştir. Bu kapanış operatörleri kullanılarak Hausdorff 

uzayı, kompaktlık ve bağlantılılık kavramları karakterize edilmiştir.  

 

Yine aynı kapanış operatörleri, verilen her bir ε  kategorisinin dolgun bir alt 

kategorisi λ  nın epimorfizmlerini karakterize etmek için de kullanılmıştır. Brummer 

[9], Hoffman [10], Marny [11] ve Baran [12], -aksiyomunu değişik yollarla topolojik 

kategoriye genişletilmesini yaptılar. Hang [13], Schwartz [5] ve Baran [14] de bu 

genişlemeler arasında ki ilişkileri incelediler. Baran [12] da ayrılma aksiyomlarını 

(

0T

0 1 2 3 1 4 53
2

T ,T ,T ,T ,T ,T ,T ),[15] de kapalılık kavramını ve [16] da da kompaktlık kavramını 

kapanış operatörlerini kullanmadan topolojik kategoriye genişletmiştir. Bu 

genişlemeleri yapmanın bir amacı, bu kavramların topolojinin önemli teoremlerinden 

Tietze Genişleme Teoremi, Urysohn Lemması, Urysohn Metrikleşme Teoremi, 

Tychnoff Teoremi gibi teoremlerin ifadelerinde yer almalarıdır. Diğer bir amacıda, 

kapalılık kavramı ile karakterize edilebilen kompaktlık ve bağlantılılık kavramlarını 

topolojik kategoriye genişletmektir. 

 

Bu tezde, Yığın Yakınsak Uzaylar, Süzgeç Yakınsak Uzaylar, Limit Uzayları ve 

Pretopolojik Uzaylar gibi kategorilerde bu genelleştirilmiş ayırma aksiyomlarının 

karakterizasyonunda ihtiyaç duyulacak bazı belli sonuçları ifade ve ispat edilecek. Yani, 

süzgeçler ve yığınlar hakkında bazı teknik teoremleri ifade ve ispat etmeye çalışacağız. 

Bir  cümlesi üzerinde B ijα , i,  j 1,  2= süzgeçleri verildiğinde ij ij ,  i,  j 1,  2π σ α= =   

(burada ijπ  projeksiyon (izdüşüm) fonksiyonları cinsinden tanımlanmıştır), olacak 

şekilde bir σ  süzgecinin (2 2
ΔB V B 2Β nin iki ayrı kopyasının diagonali boyunca 

kesişmesi) üzerinde mevcut olması için gerek ve yeter şartları veren temel bir sonucu 

[17] makalesinde inceleyeceğiz. Ayrıca bu temel sonuç kullanılarak yeni sonuçlar elde 

edeceğiz. Daha sonra bu sonuçların yukarıda bahsedilen kategorilerde nasıl 

kullanıldığını örneklerle açıklamaya çalışacağız.  

 
 



 

2. BÖLÜM 

   

TEMEL TANIMLAR VE TEOREMLER 

Bu bölümde daha sonraki bölümlerde kullanılacak olan genel tanımlar ve bunlarla ilgili 

bazı teoremler ifade edildi. 

2.1. Kategori   

Tanım 2.1.1. K bir sınıf olsun. K daki tüm nesnelerin (objelerin) sınıfı, herhangi iki 

nesne arasındaki dönüşümlerin (morfizimlerin) cümlesi  ve verilen iki dönüşüm için 

bunların bileşkesi verilsin. Bu bileşke aynı zamanda aşağıdaki şartları sağlarsa  K  ya 

bir Kategori denir. 

1. K  da ki her A  nesnesi için  birim dönüşümü vardır öyle ki her 

 dönüşümü için  

AAA →:1

fBAf →: f A =1o   ve her   dönüşümü için  ABg →: ggA =o1    

olmalıdır. 

2. , ,  olmak üzere bileşke “ ” işlemi birleşme 

özelliğine sahip olmalıdır. Yani,  

BAf →: CBg →: DCh →: o

( ) ( ) fghf oogh oo =   sağlanmalıdır. 

 U da ki tüm nesnelerin  (objelerin) sınıfı kısaca ( K ) (veya )  şeklinde, herhangi 

iki nesne arasındaki dönüşümlerin  (morfizimlerin)  cümlesi;  

Ob K Ο

K ( ) ( ), ,A B Hom A B= = { f BAf →: dönüşüm  şeklinde verilen iki                   

dönüşümün bileşkesi de 

}

                                          K:o ( )×BA,  K ( )→CB,  K ( )CA,                

( , )   f g → o ( )gf ,  fg o=  

şeklinde  gösterilebilir. 
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Örnek 2.1.2. K nın objeleri ( , ), ( , ), ( , ),...X Y Zτ σ δ topolojik uzaylar, dönüşümleri 

( ) ( )στ ,,: YXf →   sürekli fonksiyonlar ve bileşkede fonksiyonların bileşkesi olsun. 

K nın kategori olduğunu gösterelim. 

1.  ( )τ,X ( )τ,X→   olacak şekilde    birim fonksiyonu vardır ve bu birim  

fonksiyonu süreklidir. Ayrıca her 

XXX →:1

( ) ( )στ ,Y→,: Xf  için  ve her                   ff X =1o

( ) ( ),X: ,g Y σ τ→    için  ggX =o1   dir. 

2.  ( ) ( )στ ,,: YXf → ,    ( ) ( )δσ ,,: ZYg →     ve    :h ( )δ,Z ( )μ,W→     olmak   üzere  

,  ,  f g h   fonksiyonları sürekli olduklarından bunların bileşkeleri olan ( )fgh oo , 

  de sürekli ve eşittirler. ( )gh oo f

Dolayısıyla  K  bir kategoridir. Bu kategoriye bütün topolojik uzayların  kategorisi denir 

ve  K = TOP şeklinde gösterilir. 

Örnek 2.1.3. K nın objeleri  cümleleri, dönüşümleri  fonksiyonlar ve bileşke 

işlemi olarak da fonksiyonların bileşkesini alalım. 

, , ,A B C K

K  nın  kategori olduğunu gösterelim.   

1. Her A  cümlesi için     birim fonksiyonu vardır. Ayrıca  her  

fonksiyonu için   

AAA →:1 BAf →:

1Af f=o    ve   her      fonksiyonu  için    1   dır. ABg →: A o g g=

2. , ,  olmak üzere fonksiyonlarda  BAf →:

( )
CBg →: DCh →:

( ) foghh ofg oo =   birleşme özelliği sağlanır.  

Dolayısıyla K bir kategoridir. Bu kategoriye bütün cümlelerin kategorisi denir ve          

K =SET şeklinde gösterilir. 

Tanım 2.1.4.  K bir  kategori ve T, K nın bir objesi olsun. Eğer  K nın herhangi bir 

objesi  olmak  üzere   K(Α Α ,Τ )={ | :f f Α→Τ  dönüşüm } tek elemanlı ise Τ  ye K 

nun son (terminal) objesi denir [18].       

 Tanım 2.1.5.  K  bir kategori ve i ,  K  nun bir objesi olsun. Eğer K nın herhangi bir A 

objesi  için K(i, A)={ |  dönüşüm } tek elemanlı ise i ye K nın ilk (initial) 

objesi denir [18].  

:f f i →Α
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Tanım 2.1.6. K  bir kategori ve Z , K nın bir objesi olsun. Eğer Z , K nın hem ilk hem 

de son objesi ise Z  ye K nın sıfır ( zero ) objesi  denir [18]. 

Örnek 2.1.7. K = SET olsun. K nun  varsa ilk, son ve sıfır objelerini bulalım.  

i  =  ilk objedir ; çünkü  ∅

Herhangi bir A objesi için  K (∅ , A) = { } { }: A fonksiyon  fonksiyonf f boş∅→ =  

tek elemanlı cümledir.  

T={ }x  tek elemanlı cümle, son objedir ; çünkü 

K (A, { }x ) =   { }{ } {: A x  fonksiyon  fonksiyon f f sabit→ = }  tek elemanlı cümledir. 

Sıfır objesi yoktur ; çünkü  i =∅ ≠ { }x =T   dir. 

 

2.2. Fanktor  

 

Tanım 2.2.1. K  ve  iki  kategori olsun. Eğer K da  ki  her L A   nesnesi  için ( )AF ,   

 nin   nesnesi   ve  K  nın  her :    dönüşümü   için   L f BA→ ( ) ( ) ( )BFAFfF →: ,   

 nin  bir  dönüşümü oluyorsa  ve; L

1.     (Her ( ) ( )AFAF 11 = ∈A Ob ( K )  için) 

2.     ( ) ( ) ( fFgFfgF oo = )

şartları   sağlanıyorsa   K  L   ye K dan L  ye  bir  fanktor  denir [18]. :F →

 

Örnek 2.2.2. TOP→SET, :F ( ),F X Xμ =   şeklinde tanımlanan  nin bir fanktor 

olduğunu gösterelim. 

F

:F TOP→SET de  ( ),F X Xτ =   ve  ( ) ( ): , ,f X Yτ σ→

F

  için  

olarak tanımlansın. Bu taktirde kolayca görülür ki   bir fanktordur. 

( ) :F f f X Y= →

a)  ( )( ) ( ), ,1 1 XX U XF τ τ= = 1

)b)   yine   ve  (F g fo ( )F g g= ( )F f f=   olduklarından    tir.  ( ) ( )F g F f g f=o o

Dolayısıyla  bir fanktordur. Bu   fanktora  unutkan  (forgetful)  fanktor denir. F
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Tanım 2.2.3.   K  L  fanktor  olsun. :F →

1. Her ∈BA, Ob(K) ve her  ( ) ( )BFAFf →:

F

  için  en  az  bir    ye 

 olacak şekilde bir  dönüşümü varsa   ye  dolgun  (full)  fanktor  denir. 

BAg →:

( )gF = f

2. Eğer her  Ob(K)  ve   dönüşümleri için   olduğunda  

  ise  ye  düzenli  (faithful)  fanktor denir. 

∈BA,

F

BAgf →:, ( ) ( )gFfF =

gf =

3.  ye  amnestik  denir ancak ve ancak  izomorfizmi için eğer  

   ise 

F

( )f =

AAf →:

( )AFdF 1=Ι AAdf 1=Ι=   olmalıdır. 

4. hem düzenli fanktor  hem de amnestik ise ye belirli (concrete) fanktor  denir 

[18]. 

F F

Örnek 2.2.4.   : SET  TOP  dönüşümü dolgun ( full), düzenli (faitfull), amnestik 

ve belirli ( concrete) fanktor dir.  

F →

F(X)=(X, P(X)) X

F(f)= f f
sürekli 

  

F(Y)=(Y, P(Y)) Y 

i) ∀ X, Y ∈ Ob(SET)    ve ∀ h: F(X) → F(Y) için en az  bir g: X→ Y dönüşümü var ve  

F(g) =h ise F ’ ye dolgun (full) fanktor denir.  

g: X→ Y ise F (g) : F(X) → F(Y) olur. (g) = h olduğundan  dolgun (full) fanktor 

dur. 

F F

F F

F

F F F F

F F 1

ii) ∀ X, Y ∈ Ob(SET) olmak üzere  f, g : X→ Y  dönüşümleri için   (f) = (g) 

olduğunda   f =g ise  ‘ ye düzenli (faitfull) denir. 

(f)= f, (g) =g olmak üzere (g) = (f) ise f=g olduğundan düzenli (faitfull) dir. 

iii)  amnestiktir ancak ve ancak f: A→ A için (f) = 1  ve f izomorfizm ise f( )F A A=  

olmalıdır.                                                                                                                             
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f: A→ A 1: 1 fonksiyon  ve  (f) = (A)=(A, P(A)) → (A) = (A, P(A)) sürekli ve F F F

F 1= 1(f) = 1  dır. Buradan f: A → A ya f(A,P(A)) (A)F A=  birim fonksiyondur. 

iiii) dönüşümü hem düzenli, hemde amnestik olduğundan belirli (concrete) fanktor 

dur. 

F

Tanım 2.2.5. K ve  iki kategori olsun.  K   fanktoru düzenli, dolgun ve her 

A∈Ob( ) için en az bir B

L :F → L

L ∈Ob(K) vardır öyleki ( ) Α≅ΒF  oluyorsa K ve  

kategorilerine denktir denir [19]. 

L

2.3.  Topolojik Fanktor 

Topolojik uzay kavramı; yakınsak uzay, limit uzayı, bornolojik uzay ve preorder 

uzaylarını da içine alarak Herrlich [1], Kent [2], Wyler [3], Schwartz [5] ve diğerleri 

tarafından topolojik kategori kavramına genelleştirilmiştir. Topolojik kategori değişik 

yollarla tanımlanmıştır. Örneğin, Herrlich [1] de belli kaynakların başlangıç 

kaldırmalarının (initial lift) varlığına dayanarak topolojik kategoriyi tanımlamıştır. 

Wyler [3] de topolojik kategori tanımını tam lattice kategorisindeki fanktora 

dayandırarak tanımlamıştır. 

Tanım 2.3.1. K   ve     kategorileri verilsin. Eğer   K    fanktoru aşağıdaki 

şartları  sağlıyorsa  ye  topolojik  fanktor   ya da   K  ya     kategorisi  üzerinde  

topolojik  kategori  denir. 

L :F →

L

L

F

1.   belirli (concrete) olmalıdır. F

2.   küçük demetlere sahiptir. Yani, her  F ∈B ( )Ob L  için    bir cümledir. 

Burada 

( )1F B−

( )1F B− { Ob( ) X= ∈ K  ( ) }F X B=   şeklinde tanımlanır ve  B  

üzerindeki demet olarak adlandırılır.                                                                                                       

3. Her - kaynağı için yani ‘de  F L : ( ii Fg )XΒ→  ailesi  için K ‘da  :i if X X→    

ailesi vardır öyle ki    dır   ve  eğer     ( )iF f g= i =( : ) : ( )i i iF Y X g k F Yh → = →Β
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( ) ( )iF X F X→  ise  bu   taktirde    k F   nin   en   az   bir   : ( ) ( )Y F X→ = Β

XYk →:    kaldırması  vardır,  yani   ( )F k k=   dır  ve if k
−

=  dir. Bunu  diağramla   

gösterelim. 

ih

      
             K                                                         L  

         if      ig  

                                                    iΧ Χ Β              i( )F Χ  

                                                                                                       F

                                                         k
−

ih k F

                                                                    Y (Y)F
 
 
 

Bu son şartın anlamı, her - kaynağı  bir  başlangıç  kaldırmaya  (initial lift) sahiptir. 

Keyfi bir 

F

F - kaynağının başlangıç kaldırmasının varlığı, keyfi  F -kavşağı ( F -sink) 

için bitiş kaldırmasına (final lift) denktir (Bitiş kaldırma, başlangıç kaldırmanın 

dualidir) [1]. 

 

Tanım 2.3.2 :F  K    topolojik fanktorunda  her  → L Ob(Ζ∈ )L  sabiti  için   

tek bir yapıya sahipse bu takdirde  ya normalleştirilmiş fanktor denir. 

-1 ( )F L

F

Burada son nesnenin alt nesneleri sabit olarak adlandırılır (Ζ  sabittir ancak ve ancak 

son eleman olmalıdır). 1Ζ ⊂ =

 

Teorem 2.3.3  ( ) ( ): , ,if A Ai iμ μ→   sürekli fonksiyonlar ailesi olsun.  μ μ∗=  olması 

için gerek ve yeter şart her ( )σ,B   topolojik uzayı ve her ( ) (: ,ig B )i i,Aσ μ→  sürekli  

fonksiyonları için eğer  hfg ii o=   olacak şekilde en az bir   fonksiyonu 

varsa, h süreklidir [18].  

ABh →:

 
Burada μ∗ ,  ler tarafından doğrulan topolojidir. Yani, if { ( ) }1 :i i

i

S f H H μ−

∈Ι

= ∈U   

alt bazı tarafından üretilen topolojidir. Buna doğrulan  (induced)  topoloji denir ve μ∗   
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ile gösterilir. Bu topoloji if : ( ) ( ), i iA A ,μ μ→  fonksiyonlarını sürekli kılan en küçük 

topolojidir [18]. 

 

Teorem 2.3.4. ( ) ( ),A: ,i if A iμ μ→  sürekli fonksiyonlar olsunlar.μ μ∗=  olması için 

gerek ve yeter şart her ( )σ,B  topolojik uzayı ve her ( ) (i ): , ,i ig A Bμ σ

:h A

→

B→

 sürekli 

fonksiyonları için   ise h fonksiyonu da süreklidir (   bir fonksiyon) 

[18]. 

i hg = ifo

 
Burada μ∗ { AU ⊂=   her ( ) }1

if UΙ∈i  için − ∈ iμ    A   üzerinde  bir  topolojidir. Bu 

topolojiye  zayıf   (coinduced)  topoloji  denir. Bu  topoloji   leri  sürekli  kılan   en 

büyük topolojidir [18].  

if

Teorem 2.3.5.  TOP→SET  normalleştirilmiş  topolojik  fanktordur. :F

İspat: 1. F  nun belirli olduğunu gösterelim. ( ) ( ), : , , 'f g A Bμ μ→

→ ,F X

  sürekli iki 

fonksiyon ve   olsun. TOP SET de    ve  ( )F f = (F ) :Fg ( ) Xμ =

( ) ( ),Y: ,f X μ σ→   için ( ) :f X Y= →F f  olarak tanımlansın. Böylece F  unutkan  

(forgetful)  fanktor  olur. 

Bundan dolayı  ve ( )F f = f ( )F g g=  dir. Böylece gf =   olur. Dolayısıyla F  

faithfuldur. 

( ) ( ): , , 'f A Bμ μ→  sürekli, ( ) 1AF f =   ve  homeomorfizm olsun.  f ( ) 1AF f f= =   

olduğundan BA =   dir. Dolayısıyla    ( ) ( ), 'A: ,f A μ μ→   olur. Bu durumda 'μ μ=  

olduğunu göstermeliyiz. 

( )1 'μ μ⊂−   dur. ( ) ( )1 ' ff  sürekli olduğundan f f f μ μ− ⊂o   dan  ( )' fμ μ⊂   olur. 

  olduğundan  Ι=f 'μ μ⊂    dur. 

( ) (: , ,'g A A )μ μ→   olsun.   sürekli olduğundan   g ( )1 'g μ μ− ⊂   dür. 

( ) ( )1 'g g gμ μ− ⊂o   den  ( )'gμ μ⊂ f  olur.   idi. Öyleyse Ι==− g1 'μ μ⊂   olur. 

Yani F  amnestiktir.  

O halde F  hem faithful, hem de amnestik olduğundan, belirli  (concrete)  dir. 
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2. ( ) { ( )1 ,F A A μ− =  ( ), ,F A Aμ =  ( )P Aμ ⊂   ve  ( ) ( 1: , ,f A A )μ μ→   sürekli ve 

( ) }1 :AF f A A= →  ise her A∈Ob(SET) için ( )A1F −  nın bir cümle olduğunu 

göstereceğiz.                                                                                                           

, TOP un alt kategorisidir. Öte yandan;( )1F A− {φ μ= ,μ  A  üzerinde bir 

topoloji  olsun. } ( )1: F Aθ φ− →  alalım. ( ),Aθ μ μ=    şeklinde tanımlanırsa kolayca 

görülür ki 

θ ,  bire bir ve örtendir.  

Dolayısıyla,  ( )1F A− ( )2P Aφ≈ ⊂   dır, yani  ( )1F A−   bir cümledir. 

3. Eğer { (: ,i i i ) if A F A Aμ→ = , }Ι∈i   SET de herhangi bir  F - kaynağı  ve μ∗   

üretilen (induced) topoloji olsun. 

Teorem 2.3.3  den  ( ) ( ): , ,if A Ai iμ μ∗ →   verilen kaynağın başlangıç kaldırmasıdır. 

Yine; { ( ): ,i i i if F A A Aμ = → , }Ι∈i ,  SET de herhangi bir F -kavşağı   ( F -sink)  

ve μ∗  zayıf  (coinduced)  topoloji olsun.  

Teorem 2.3.4  den  ( ) ( ): , ,i i if A Aμ μ∗→   verilen kaynağın bitiş kaldırmasıdır. 

Dolayısıyla    TOP→SET  topolojik fanktordur. :F

Son olarak  nun normalleştirilmiş olup olmadığına bakalım. F

{ }1 x= tek nokta cümlesi son nesne olduğundan bunun alt nesneleri                                

Ζ =∅   ve  { }xΖ =  dir. 

{ }-1 ( ) ( , )F ∅ = ∅ ∅  ve { } { } { }{ }-1 ( x ) ( x , , xF = ∅ ) dir.  

Böylece tek nokta ve boş cümle üzerinde sadece bir tek topoloji olduğundan 

TOP→SET  normalleştirilmiştir. :F

O halde   TOP→SET  normalleştirilmiş  topolojik fanktordur.   :F

 

2.4.  Diskre ve İndiskre Yapılar 

Tanım 2.4.1. K  ve K  birer kategori, F ve G de K  dan K′ ′  ne iki fanktor olsunlar. Eğer 

her  ve her  dönüşümü için αA: F(A)→ G(A) K, ( )A B Ob∈ BA →:fK ′  de bir 

dönüşüm ve G )f(FoB)f( o A αα = GF: → oluyorsa α  ya bir doğal dönüşüm (natural 

transformation) denir. Buda aşağıdaki diyagramın değişmeli olmasına karşılık gelir.  
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                                         K                                    K ′               
αA 

                                   A                  F(A)                     G(A) 
 

                                f                 F(f)                                  G(f) 
 
 

        B                F(B)                     G(B) 
αB 

Yani G (f ) F(f )A Bo oα α=  olmasıdır. 

 Tanım 2.4.2. K  ve  birer kategori, R ve L de fanktor olmak üzere; K ′
L

R ′⎯⎯→suuuuuu  KK  

fonksiyonları için aşağıdaki şartlar sağlanırsa L ye R nin sol adjointi veya R ye L nin 

sağ adjonti denir  ve      L         R şeklinde gösterilir. Bu şartlar;  

(1) η  doğal dönüşümler olmalıdır. IRoL:veLoRI: →ε→

ve(2)  ( ) ( )L LL LRL L de L o L Iη ε ε η⎯⎯→ ⎯⎯→ =

I)R(o)R(veRRLRR RR =ηε⎯→⎯⎯→⎯ εη  eşitlikleri sağlanmalıdır. 

Tanım 2.4.3.  1) F :K→ K ′  topolojik fanktoru bir D: K ′   → K  sol adjointine sahiptir 

ki bu sol adjointe diskre fanktoru denir. Yani K = D( (K)) nesnesi, K da diskre nesne  

olarak adlandırılır. 

F

2) :K → F K ′   topolojik fanktoru bir D*:K ′→K  sağ adjointine sahiptir ki bu sağ 

adjointe indiskre fanktoru denir. Yani X= D*( (X)) nesnesi  K da indiskre nesne olarak 

adlandırılır [1]. 

F

Teorem 2.4.4. 1) E topolojik kategori olsun. e E∈  nesnesi diskredir. Yani e = D eF  

olması için gerek ve yeter şart her FEc∈  için her e cF→

∗

d

 dönüşümünün,  

dönüşümüne kaldırılabilir olmasıdır. 

ce →

2)  indiskre, yani d D  olması için gerek ve yeter şart her  için her 

 dönüşümünün, c → d  dönüşümüne kaldırılabilir olmasıdır. 

Ed∈

cF →

dF= Ec∈

F
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İspat:1 (⇒) e diskre ve her : ( ) ( )c E için f F e F c∈ →  olsun. En az bir ce:k →  

dönüşümünün var olduğunu ve ( )F k f=  olduğunu göstereceğiz. 

F  topolojik fanktor olduğundan : ,  f e c f→  nin başlangıç kaldırması olsun. Burada 

( ) ( )F e F e=  ve e diskre olduğu için tanım gereği ee ≤  dır, yani ee:h →  bir dönüşüm 

vardır öyleki ( ) :F h İd= ( ) ( )F e F e→ = dır. ( )F e ohfk = olsun. ( ) ( )F k F f oh= =  

( ) ( )F f o F h foI f= = olur. 

 Her⇐  hangi bir c E∈ için her F (e) (c)F→

F

dönüşümü e→c dönüşümüne 

kaldırılabilsin, e’nin diskre olduğunu gösterelim. Özel olarak (e) → (c)  ve id: 

(e)→ (c) alalım. Hipotezden 

F

F F cek →=  ye bir dönüşüm vardır öyle ki ( )F k İd=  

dır. Bu demet üzerinde alınan her c nesnesi için geçerli olduğundan, e bu demet de en 

küçük nesnedir. Bu da e’nin diskre olduğunu gösterir. 

2 (⇒) d indiskre ve her c : ( ) ( )E için f F c F d∈ → F olsun.  topolojik fanktor 

olduğundan nin'fdc:f → bitiş kaldırması olsun. 

Burada (d) (d)F F=  ve d indiskre olduğu için dd ≤  dır. Yani dd:h →  ye bir dönüşüm 

vardır, öyle ki ( )F h : ( ) ( ) ( )İd F d F d F= = d→ dır. fohk =  olsun. 

( ) ( ) ( ) ( )F k F ho f F h oF f= = = ffoI  = dolayısıyla (k) fF =   dır. 

(⇐) Her  için her  dönüşümü,  dönüşümüne kaldırılabilsin. 

d’nin indiskre olduğunu gösterelim. 

Ec∈ ( ) ( )F c F d→ dc →

Özel olarak ( ) ( ) : ( ) ( )F d F c ve İd F c F d= →  alalım. Hipotezden dc:k →  dönüşümü 

vardır, öyle ki ( )F k İd=  dır. Bu dönüşüm her c için geçerli olduğundan d bu demette 

en büyük nesnedir. Bu da d’nin en büyük olduğunu gösterir, yani d indiskre nesnedir. 

Görülür ki Ee∈  diskre nesne kavramı, topolojik uzayların kategorisi Top’daki e diskre 

topolojik uzayı kavramının genelleştirilmesidir. Çünkü tanım cümlesi diskre uzayı olan 

her fonksiyon süreklidir. 
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2.5.Süzgeçler  

Tanım 2.5.1. ( ),μΧ   bir topolojik uzay ve Χ∈x  olsun. 

1. Bir ⊂ ΧN  alt cümlesine x noktasının bir komşuluğudur denir en az bir G⇔ μ∈  

vardır  öyleki x G∈ ⊂ N  dur.                                                                                           

x noktasının μ  topolojisine göre bütün komşuluklarından oluşan ailesi ( )xμN  veya 

topolojinin belirtmenin gerekmediği yerlerde kısaca ( )xN  ile göstereceğiz ve buna “x 

in komşuluklar sistemi” diyeceğiz.  

2.  alt cümle ise bir Χ⊂Μ ⊂ ΧN  alt cümlesine M nin bir komşuluğudur denir ⇔  

en az bir G μ∈  vardır öyleki GΜ ⊂ ⊂ N  dur [20]. 

Tanım 2.5.2. X boş olmayan bir cümle ve { }P(X) A A X= ⊂ , X’in kuvvet cümlesini 

göstersin. F, in bir altsınıfı aşağıdaki üç koşulu sağlıyorsa X üzerinde bir (öz) 

süzgeçtir. 

( )P X

f1) ∉φ F dır. 

f2) ∀  için   dır. A,B∈F A B∩ ∈F

A F A B⊆ Bf3) ∀ ∈  ve  ise F  dır [15]. ∈

(f1) ve (f2) aksiyomundan F süzgecine ait sonlu sayıda kümelerin kesişiminin boş 

olamayacağı ve (f3) aksiyomundan  süzgecine ait her sayıda kümelerin birleşiminin 

 süzgecine ait olduğu anlaşılır. Ayrıca (f1) aksiyomundan  kümesinin kendisi 

bir süzgeç değildir. (f3) aksiyomu ise süzgeçlerin artan bir yapıda olduğunu gösterir. 

Eğer 

F

F ( )P X

φ ∈ F ve (f2) , (f3) şartları sağlanırsa = P(X) dir.  Bu durum da e öz olmayan 

süzgeç denir. 

F F

X kümesi üzerinde bir  süzgeci var ise bu küme üzerinde bir yapı tanımlanmış 

demektir ve X kümesi de F  ile süzülmüş kümedir. 

F

Örnek 2.5.3.  X herhangi bir küme ve X in boş olmayan bir alt kümesi Y olsun. X’in alt 

kümesi olan Y’ yi kapsayan kümelerin sınıfı olan  
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{ }A Y A X= ⊂ ⊂F  

kümesi X üzerinde bir süzgeçtir. Gerçekten,  

1)  olduğundan Y ’nin üst kümesi olan A ’larda boştan farklıdır. O 

halde  dir. 

Y Y A≠ φ⇒ ⊂

φ∉F

2)  ve  A,B Y A X∈ ⇒ ⊂ ⊂F Y B X⊂ ⊂

         Y A B X⇒ ⊂ ∩ ⊂

         A B⇒ ∩ ∈F

3)  ise Y  ve A  ise  A∈F A X⊂ ⊂ B⊂ Y A B X⊂ ⊂ ⊂

B⇒ ∈F  

Bu tür süzgeçlere temel süzgeç denir.  

Tanım 2.5.4. X üzerindeki tüm süzgeçlerin sınıfı ( )F X

F

ile gösterilir. Eğer  ve G iki 

süzgeç ve  G ise, G’yeF ’den daha incedir veya ’ye G’den daha kabadır denir, 

 G veya G  şeklinde gösterilir.  süzgeci için G olduğunda G = F  

oluyorsa ’e ultrasüzgeç denir. Bu da F  den daha ince süzgecin var olmadığı 

anlamına gelir. X üzerinde ultrasüzgeçlerin sınıfı 

F

F

F

⊆

F ≤ ≥ F F ≥ F

( )U X  ile gösterilir. 

F süzgeç ve { }:∩ ∈ ≠FH H φ  ise ’e sabit süzgeç denir. Ayrıca F { }:∩ ∈FH H = φ  

ise ’e free süzgeç denir.  F

Tanım 2.5.5. , F (X, )μ  uzayındaki bir süzgeç ve olsun.  x X∈

XN = { }:   rd  öyleki U X x a ı x V U⊂ ∃ ∈ ⊂va ırç ğıV ∋  cümlesine x noktasının 

komşuluklar ailesi denir. 

Tanım 2.5.6. , (F ),μΧ  uzayındaki bir süzgeç ve x X∈ olsun. Eğer  süzgeci x F

noktasının  komşuluklar süzgecinden daha ince ise, yani  ise  

süzgeci x noktasına yakınsıyor denilir ve  veya li  şeklinde gösterilir. 

( )xN ( )x ⊂N F F

x→F m =xF
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Eğer X üzerindeki bir  süzgeci x noktasına yakınsıyor ise, X üzerinde  den ince 

olan tüm süzgeçlerin de x noktasına yakınsayacağı tanımdan aşikardır. Ayrıca X kümesi 

üzerinde x noktasına yakınsayan tüm süzgeçlerin arakesiti de  komşuluklar 

süzgecidir.  

F F

( )

F

( )

xN

Teorem 2.5.7.   X uzayının Hausdorff uzayı olması için gerek ve yeter şart bu uzaydaki 

yakınsak bir süzgecin tek bir noktaya yakınsamasıdır. 

İspat:    X uzayı Hausdorff uzayı olsun. Bu uzaydaki yakınsak bir  süzgecinin 

tek bir noktaya yakınsadığını göstereceğiz.  süzgecinin x ve y gibi farklı iki noktaya 

yakınsadığını kabul edelim. X uzayı H-uzayı olduğundan  ve 

( ) :⇒ F

N x∃ ∈N ( )

∩ =∅

M y∃ ∈N

( )x ⊂N F

 

vardır ki  dir. Oysa  süzgeci x noktasına yakınsadığından  dir 

ve dolayısı ile  dir. Benzer şekilde 

N M

N∈

F

F M∈F  dir. ( )2f  süzgeç aksiyomundan 

 elde edilir ki, bu da N M∩ =∅∈F ( )1f  ile çelişir. O halde x=y dir, yani  tek 

noktaya yakınsar. 

F

( ) :⇐   Yakınsak bir süzgeç tek noktaya yakınsasın. X uzayının H-uzayı olmadığını 

kabul edelim. O halde  vardır ki x, y X ( ) ( )yN x , M∀ ∈ ∀ ∈N N  için N M∃ ∈ ∩ ≠ ∅  

dir. Buradan c⊂N M elde edilir ve ( )M y∀ ∈N ( )M∈N için  dir. O halde 

 elde edilir ki bu da hipoteze aykırıdır. Çünkü X uzayındaki 

x

( )x( )N y ⊂ N ( )xN  

süzgeci hem x hem de y noktasına yakınsar.  

Tanım 2.5.8. F , G , H( )F∈ Α ( )F∈ Β  ve :f Α→Β  bir fonksiyon olsun.   

F ∩ G ={ U ⎢U∈ F  ve U∈G }   

F ∪ G ={U⊂ A ⎢ U ⊃ V∩W , V∈ F    ve  W ∈ G  } ve                                                     

 ( H ) = { U ⎢ U ⊃ (C)  olacak şekilde en az bir C ∈ H  mevcuttur1f − 1f − }  şeklinde 

tanımlanırlar. Görülür ki bunların her biri birer süzgeçtirler [14]. 
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2.6.  Topolojik Kategori Örnekleri 

[FΑ   bir cümle ve F ( )⊂ Ρ Α  olsun.  ] { |= Β⊂ Α  en az bir   F  vardır öyle ki  C∈

}C ⊂ Β   şeklinde ta n  [21]. 

.6.1. Eğer  [F ] = F   ise  F 

nımlansı

( )Ρ ΑTanım 2 Α  ⊂  ya üstünde bir yığın (stack) denir. Yani  

ğer 

F  süper cümle altında kapalıdır [5]. 

F, Α  üzerinde boş olmayan bir yığın olsun. E ,CΒ ∈F  iken F  oluyorsa F 

F  yığınının (süzgeç), öz yığın  (süzgeç) (proper) olması için gerek ve yeter şart 

 CΒ∩ ∈ 

ya üzerinde süzgeç (filter) denir [5]. A

φ∉ F , 

yani F ( )≠ Ρ Α⎡ ⎤⎣ ⎦  olmasıdır. Aksi durumda F ya öz olmayan yığın (süzgeç) (imp er) 

denir.Α  yığın ve süzgeçlerin cümlesi sırasıyla 

rop

 üzerinde ( )S Α  ve F ( )Α   ile gösterilir. 

Eğer F e G  v ∈  F(A) ise bu taktirde F ∩G { A= Β ⊂ Β∈  B∈ G a bir süzgeçtir. 

Yani  [F ∩G = F ∩G  dır. F ∩G ⊂ [F ∩G mından dolayı açıktır.  

Şimdi  [F ∩G] ⊂ F ∩G  olduğunu gösterelim. 

 F ve  }d

]  ] süzgecin tanı

Β∈[F ∩G]   alalım. En az bir G∈F ∩G    

vardır öyle ki G ⊂ Β  dir. G∈F ∩G  olduğundan G∈F  ve G∈ G dır. F  ve 

olduğundan Β∈ Β∈ ır. 

Α  bir cüml e : (S(AΚ Α

G  süzgeç 

e v )) her bir 

 F  ve  G  d

 için ( )aΚ→Ρ a∈Α ,  nın  noktasına 

‘y lmayan tüm süzgeçlerin cüm cak ı

fonksiyon olsun. 

F, A üzerinde en büyük öz süzgeç ise F ya maksimum süzgeç 

Α a

akınsayan’ boş o lesi ola şekilde tan mlanan bir 

Tanım 2.6.2. Eğer 

(ultrafilter) denir ve F  aşağıdaki gibi karakterize edilebilir. 

A nın her B alt cümlesi için ya B∈F  ya da cB ∈ F dır. 

A bir cümle ve : ( ( ))K A P S A→  şeklinde tanımlanan bir fonksiyon olsun. Her bir 

cümlesidir. 

.3. F, G ∈ F (A  bir fonksiyon olsun. Bu takdirde; 

Aa∈  için K (a ına “yakınsayan”  boş olmayan tüm yığınların 

Önerme 2.6

), A nın a noktas

)  :ve f A B→

(1) ƒ (F ∩G ) = ƒ (F ) ∩ ƒ (G )  
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(2) ƒ (F ∪G ) ⊃ ƒ (F ) ∪ ƒ (G )  

(3) 1f f− ( F ) ⊂ F  dır [12]. 

Tan .6.4.  A bir cümle veım 2  K:A→P(F(A)) her bir Aa∈  için K(a), A nın a noktasına 

“yakınsayan” boş olmayan tüm süzgeçlerin cüml şekilde tanımlanan bir 

sa (A

esi olacak 

fonksiyon olsun. Eğer K aşağıdaki şartları sağlıyor ,K) çiftine yakınsak süzgeç 

uzayı (filter convergence space) denir. 

1. Her [ ] [ ] { }∈⊂  dir. 

 G, A üstünde süzgeçler ve F ⊂ G olsun. Eğer F (a) ise G∈ K(a) dır. (A, K) 

dan (B, L) ye bir f dönüşümü, f: A→B fonksiyondur öyleki eğer F ∈K(a) ise  f(F )∈L(f(a))                    

Yani f süreklidir. 

 U ⎢U⊂ B ve en az bir C∈F  için U⊃ f (C) }şeklinde tanımlanır. 

ınsak 

süzgeç uzaylar kategorisi denir ve FCO ile gösterilir [5]. 

 sabit fonksiyon ise (A, K) ya 

sabit yakınsak süzgeç uzayı denir. Nesneleri sabit yakınsak süzgeç uzaylar ve 

 

ve yeter şart 

BaABaburada),a(KaiçinAa =∈∈

2. F ve  ∈ K

Burada [f(F )] = {

Nesneleri yakınsak süzgeç uzaylar ve dönüşümleri yukarıda tanımlanan sınıfa yak

Tanım 2.6.5. (A, K) yakınsak süzgeç uzay olsun. Eğer K

dönüşümleri  Tanım 2.6.4 deki gibi tanımlanan sınıfa sabit yakınsak süzgeç uzayların 

kategorisi denir ve ConFCO ile gösterilir. ConFCO, FCO nun dolgun alt kategorisidir.  

Örnek 2.6.6. i) (A,K) Ob(Con FCO)∈  olsun. (A,K) nın diskre uzay olması için gerek

A  için  K={a ∈ [ ], ( )a P A = [φ] Aa∈ } olmalıdır. 

ması için ge ve yete  olmasıdır. 

Ob(Con FCO)  olsun. Eğer BA:f →  bir 

 (B,L) dönüşüm labilir. 

Yani F ∈K ise         f (F ) ∈ L olduğu gösterilmelidir. 

ii) (A,K) nın indiskre uzayı ol rek r şart K = F(A)

İspat: Teorem 2.4.4 den yararlanarak; 

i) e=(A,K) Ob(Con FCO),  c=(B,L)∈ ∈

fonksiyon ise bu takdirde f  ConFCO’da (A, K) → üne kaldırı



  1188

F ∈K olsun. F = [ ] [ ]f ( )a= veya [φ], buradan f (F )  a  veya [φ]  dur.  

Dolayısıyla f(F)∈L, yani f süreklidir. 

ii) d (A,K) O on FCO) , c=(B,L) Ob( O)= ∈ ∈  olsun. Eğerb(C Con FC  AB:f →  bir 

liyiz. Hipotezden K=F(A) idi. 

F ∈L olsun. Bu durumda  f(F)∈F(A) olur. O halde f(F)∈K dır.  

İspat: Önce fanktor olduğunu gösterelim. (A, K), (B, L) ConFCO uzaylarında obje 

b

1) F (1(A, K)) = 1  olduğunu gösterelim  

    1 da  birim morfizm olmak üzere  

F (A, K)=A 1  birim fonksiyon ve  

F (1 ⇒F

F (f) F F r. Böylece bu bir fanktordur.  

Şimdi düzenli olduğunu gösterelim.  

1) (A, K) , (B, L) ∈ Ob(ConFCO) , f,g:(A, K) →(B, L) ve F (f) = F (g) olsun.  

Tanımdan F (f) =f ve F (g) =g olduğundan f=g dir. Böylece F  düzenlidir.  

fonksiyon ise f  kaldırılabilir.  

F ∈L ise f(F)∈K olduğunu göseterme

Teorem 2.6.7.  F : ConFCO → SET  topolojik fanktordur.  

olmak üzere;  

F (A, K) = A∈O (SET) ve f : (A, K) → (B, L) için 

F (f) = f:A→B tanımlasın. 

( ), KF Α

(A, K) : (A, K)→(A, K) ConFCO ‘

    (1(A, K)): F →F (A, K)=A  olan   A

     (A, K)) = 1A= ( ), K1F Α (1(A, K)) = ( ), K1F Α olur. 

2) , )  , )   ( ,
f g

K L C T→ →  tanımlasın. ( ( )A B

F (gof)=gof= F (g)o ⇒ (gof)= F (g)o (f) olu
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f:(A, K)→(A, L) olacak şekilde F (f)=f=1A:A→A ve f izomorfizm olsu n. K=L 

olduğunu gösterelim: 

     F ∈K olsun. f sürekli olduğundan f(F ) = 1 (F )= F ∈L olur ki K⊂L dır.  

ekli olduğundan, F ∈L olmak üzere f-1(F )= F ∈K dır. F ∈K 

m olduğunu 

gösterir. O halde belirlidir.  

2) F  (A) = (A, K) F (A, K) =A  ve {K K (A, P(F(A)))

) =K şeklinde tanımlanır. 

 n la  ve φ cümle 

o u -1

olsun. K={F ⎜f F)∈K , i∈I} şeklinde tanıml ın; (A,K)∈Ob(ConFCO) olduğunu 

gösterelim. Aa ∈∀ için fi[a]=[fi(a)]∈Ki i, Ki)∈ Ob(ConFC ) dur. K 

 G ∈K

(A

Her (B, L)∈ Ob(ConFCO), (A , K )∈ Ob(ConFCO) ve ConFCO da herhangi             

i i i

i

                             

A

Benzer şekilde f-1 sür

olduğundan L⊂K dır. Böylece K=L elde edilir. f=1(A,K) yani a nestik 

-1 { ⎜ } φ = ⎜ ⊂ }olsun. 

θ : F -1(A)→ φ de θ (A, K

   θ ın birebir ve örten olduğu açıktır. Do yısıyla F -1(A) 
≈ φ

lduğ ndan F  (A) bir cümledir.  

3) (Ai, Ki), ConFCO nun nesneleri ve fi : A→ F (Ai, Ki)=Ai (i∈I) Set de F  kaynağı 

i( i ans

dir. Çünkü (A

F

O

nın tanımından [a]∈K olur. Yine F ∈K ve  ⊂G olsun. fi(F)∈Ki ve F ⊂  G 

olduğundan fi(F)⊂ fi(G) dır. (Ai, Ki)∈Ob(ConFCO) olduğundan fi  (G)∈K, K nın 

tanımından  dır.  

Şimdi fi:(A, K)→ i, Ki) nin fi:A→Ai kaynağının başlangıç kaldırması olduğunu 

gösterelim.  

i i

hi :(B, L)→(A , K ) dönüşümlerin ailesi için en az bir k:B→A vardır ve F (f ) 

ok=U(h ) dir.  

F (fi)= fi F (f )ok=  (h ) i i
 

F

F (hi)= hi 
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Göstereceğizki en az bir :(B, L) →(A, K) morfizmi vardır, öyle ki F ( kk )=k dır. Yani 
∀F ∈L için k( F )∈L olduğunu göstermeliyiz. (hi) (fi) =  

F ∈L olsun. hi sürekli olduklarından hi (F)∈Ki  dir.  

i)ok= (hi) olduğundan  

)

F = hi , F fi   

Diğer taraftan F (f F

hi(F) = ( F (fi)o F (k))(F  = F (fi( k (F))) = fi ( k( F))∈Ki olur. K nı  tanımından      n

k (F)∈K dır.  

 



 

3. BÖLÜM 

 

                                          YIĞINLAR VE SÜZGEÇLER 

 

 

Bu bölümde, Yığın Yakınsak Uzaylar, Süzgeç Yakınsak Uzaylar, Limit Uzayları ve 

Pretopolojik Uzaylar gibi kategorilerde bu genelleştirilmiş ayırma aksiyomlarının 

karakterizasyonunda ihtiyaç duyulacak bazı belli başlı sonuçları ifade ve ispat edeceğiz. 

Yani, süzgeçler ve yığınlar hakkında bazı teknik teoremleri ifade ve ispat etmeye 

çalışacağız.  

 

3.1. Yığın ve Süzgeç Tanımı 

Tanım 3.1.1. A bir cümle ve σ ⊂ P(A), A’nın alt cümlelerinin bir sınıfı olsun. 

[ ]σ ={ , C∈|Β Β ⊂ Α σ  ve C }⊂ Β olarak tanımlansın. 

Tanım 3.1.2. A üzerinde bir yığın [ ]σ =σ  olacak şekilde P(A) nın bir altcümlesidir. 

Yani burada σ  üst cümleler  altında kapalıdır [5]. 

F, A üzerinde boş olmayan bir yığın olsun. B, C∈  F iken  B ∩ C∈F oluyorsa F ye A 

üzerinde bir süzgeç denir [5]. 

 

3.2. Wedge Çarpımı ve Dönüşümler 

 

X ’in iki ayrı kopyasının p noktasında çakışmasına ’in kendisi ile Wedge çarpımı 

denir ve  şeklinde gösterilir.  te ki bir x noktası   in birinci 

bileşeninde ise 

X

pX V X

1

pX V X pX V X

x  ile ikinci bileşeninde ise 2x  ile gösterilir. 

X bir cümle ve p∈ X, X Vp X de X in p wedge çarpımı olsun. 
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Tanım 3.2.1. p  de Temel Eksen Dönüsümü (Principle p Axis Map): 

2

2

 : X V X ∇ → Χ (x ) x,=

p pA  : X V X X→ , ,   p 1A (x )=(x, p) p 2A (x )=(p, x)

 p de Skewed Eksen Dönüşümü (Skewed p Axis Map): 

p pS  : X V X → Χ ,  ve  p 1S (x )=(x, x) p 2S (x )=(p, x)

 p de Katlama Dönüşümü (The Fold Map): 

p p , ∇  i=1, 2 olarak tanımlanır  [12] ve [14]. p i

Örnek 3.2.2. Eğer X reel sayılar cümlesi ve p=0 olursa p temel eksen dönüşümünün 

(Principle p Axis map) görüntüsü x ve y eksenlerinin birleşimidir. p skewed eksen 

dönüşümünün bir görüntüsü ise y=x doğrusu ve y ekseninin birleşiminden oluşur. 

Burada pA ve pS  nin görüntüsünü 2Χ  de p orijinli eksenler olarak göz önüne alabiliriz. 

X bir cümle ve =X ×  X, X in kendisi ile kartezyen çarpımı olsun.  2X
2X nin iki ayrı kopyasının diagonal boyunca kesişmesi 2X VΔ

2Χ  ile gösterilir. 

2X VΔ Χ2  de bir (x, y) noktası birinci bileşeni ise ( )1
x, y   ile, ikinci bileşeni ise ( )2

x, y  

ile gösterilir. 

Açık olarak  ( )1
x, y = ( )2

x, y ⇔ x=y dir.  

  

Tanım 3.2.3. Temel Eksen Dönüşümü(Principle Axis Map): 

A: , A ( =(x, y, x) ve A2 2X VΔ Χ 3→ Χ )1
x, y ( )2

x, y =(x, x, y) olarak tanımlanır. 

Skewed Eksen Dönüşümü (Skewed Axis Map):S: 2 2X VΔ Χ 3→ Χ , S =(x, y, 

y) ve S ( =(x, x, y) olarak tanımlanır 

( )1
x, y

)2
x, y

Katlama Dönüsümü (The Fold Map): 

∇ : , i=1, 2 için 2 2X VΔ Χ 2→ Χ ∇ ( )i
x, y =(x, y) olarak tanımlanır [12] ve [14]. 

Uyarı 3.2.4. , , ∇ ,  fonksiyonlarını ; 1p 2p ijπ

1+p, p+1, 1+1:  ve pVΒ Β → Β iπ + jπ : 2 2VΔΒ Β → Β  fonksiyonları yardımı ile 

tanımlarız. Burada sırasıyla 1:Β → Β  birim fonksiyon, p: Β → Β  p noktasındaki sabit 
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fonksiyon ve  (i=1, 2) i inci izdüşüm fonksiyonudur.  j=1, 2, 3 

izdüşüm fonksiyonuda benzer şekilde tanımlanabilir [12]. 

2:iπ Β → Β 3
j :π Β → Β

A, pA , S, pS  temel ve skewend eksen dönüşümleri olduğundan, 

= , 2p 2π pS =∇ , 1π A= 11π = 1π S, 2π A=1π pA = 1p = pS , 2 = S, π pΑ1π 21π 2π 3π A= 12π  ve 

3π S= 22π  dir. 

3.3. Yığınlar İle İlgili Bazı Teknik Sonuçlar 

Şimdi Yığınlar ile ilgili bazı teknik sonuçları ifade ve ispat edelim.  

α  ve β    X  üzerinde iki yığın, γ  da Y üzerinde bir yığın ve f: Y bir fonksiyon 

olsun.  

Χ →

Tanım 3.3.1. 

α β∪ ={ }U | ada  da ki bir V için V Uβ ⊂  U X ve  y⊂ α

α β∩ ={ }U |  ve αU X ve U⊂ ∈ β   

( ) ( )1f − γ = ( ) ( ){ }1U  da ki bir W  için  f W U− ⊂| U X ve ⊂ γ  

( )f α = ( ){ }V | V  da ki bir U için  f U V⊂  Y ve ⊂ α

( )f α ∪ β

Bunların yığın oldukları açıktır. 

Lemma 3.3.2. = ( ) ( )f fα ∪ β  ve ( )f α ∩ β = ( ) (f f )α ∩ β  

( ) ( ) ( )fİspat: = β  olduğunu gösterebilmek için;  f α ∪ f α ∪β

( ) (f f ) ( )fα β α∪ ⊂ ∪ β  ve ( ) ( ) ( )f f fα β α∪ ⊂ ∪ β  kapsamalarının doğru 

olduğunu göstermeliyiz. 

( ) ( )f f α α β⊂ ∪     ⇒      α β⊂ ∪  α

( ) ( )f f α β⊂ ∪       ⇒ ( ) ( ) (f f )fβ α β⊂ ∪      ⇒      β α β α β∪ ⊂ ∪ ….(1)   

( ) ( ) ( )
( ) ( )

U f  U  f V  

 veya  W V f  

α β α β

α β β

∈ ∪ ∪ ∋ ⊃

∈ ∪ ∃ ∈ ∋ ⊃

 V

V  W α

⇒ ∃ ∈

⇒ ∃ ∈ W dir
  

( ) ( ) ( ) ( )
( ) ( ) ( ) (

 W V f V f W U f W U f

 W V f W U f W U f

α α

β β

∃ ∈ ⇒ ⊃ ⇒ ⊃ ⇒ ∈

∃ ∈ ⇒ ⊃ ⇒ ⊃ ⇒ ∈ )  olur.

W

V W f

⊃ ⇒

⊃ ⇒
 

Buradan   

( ) ( ) ( ) ( ) ( )U f f ff fα β α⇒ β α∈ ∪ ∪ ⊂ ∪ β …(2) olur ki  

(1) ve (2) den   ( )f α ∪ β = ( ) ( )f fα ∪ β  olur. 
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Şimdide  

( )f α ∩ β ⊂ ( ) (f fα ∩ )β  ve ( ) ( )f fα ∩ β ⊂ ( )f α ∩ β  ifadelerini göstermeliyiz. 

α β α∩ ⊂ ⇒ ( )f α ∩ β ( )f α⊂  

α β β∩ ⊂ ⇒ ( )f α ∩ β ( )f β⊂  buradan  

( )f α ∩ β ( ) (f f )α β⊂ ∩ …(1) olur. 

( ) ( ) ( ) ( )1 1U f f W  ve W  i in f W U ve f W U olurçα β α β∈ ∩ ⇒ ∈ ∈ ⊂ ⊂  

Oysa  ( ) ( ) ( )1 1f W f W f W W U idi.∪ = ∪ ⊂

Böylece 1W W  α β∪ ∈ ∩ olduğundan ( )U f α β∈ ∩  olurki 

Bu da …(2) olmasını gerektirir. ( ) ( )f fα ∩ β ⊂ (f α ∩ β)

(1) ve (2) den =( )f α ∩ β ( ) ( )f fα ∩ β  olur. 

Tanım 3.3.3. α , üzerinde bir yığın veya süzgeç olsun. Eğer  Β α ≠ [ ]∅  ise α ’ya 

özdür denir. 

Lemma 3.3.4. Eğer, i, j=1, 2 için ijα ’ler B üzerinde yığın ise bu durumda 2 2VΔΒ Β  

üzerinde  
2

1
ij

i, j 1

σ π α−

=

=U  yığını özdür  için i,  j 1,  2 ⇔ ∀ = ijα  özdür. Burada ijπ ’ler Uyarı 3.2.4 de 

ki gibi tanımlanır. 

İspat: 
2

1
ij

i, j 1

σ π α−

=

=U  özdür ⇔ σ∅ ∉ i,  j 1,  2⇔ ∀ =  için 1
ij ijσ π α−∅ ∉ =  i,  j 1,  2⇔ ∀ =  

için ijπ  örten olduğundan ijα∅ ∉ i,  j 1,  2⇔ ∀ =  için ijα  özdür. 

Lemma 3.3.5. Eğer, i, j=1, 2  için  ijα  ler B üzerinde öz yığın iseler bu taktirde 2 2VΔΒ Β  

üzerinde  için  i,  j 1,  2∀ = ij ijπ σ α=  olacak şekilde bir σ  öz yığını vardır. 

İspat:  

Lemma 3.3.4 ten  σ        üzerinde bir öz yığındır. 2VΔΒ Β2

Şimdi bazı k, l için klπ σ  hesaplayalım. Lemma 3.3.2 den; klπ σ = 1
ijkl ijπ π α−U  idi. 
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Buradan eğer k=i ve j=l ise  1
ijkl ijπ π α− = klα   dir. Çünkü ijπ  epiktir. Aksi halde 

1
ijkl ijπ π α− =[ ]Β  olur. B bütün yığınlarda bulunduğundan dolayı [ ]Β 1

ijkl ijπ π α−⊂  dir. 

Eğer U∈ 1
ijkl ijπ π α−  ise ijα  deki bazıV ≠ ∅  ler için   dur. 1

ij V Uklπ π − ⊂

  

                                                            V e er  k i ve j lğΒ ∪ ≠ =

≠

 
1

ij Vklπ π − = =            V           =B 1
ij ijVk lπ π π π− ∪ 1V− B e er k i  ve j lğ∪ =

                                                            e er k i  ve j lğΒ ∪ Β ≠ ≠  

 

Bu yüzden Β = [ ]U ∈ Β ve dolayısıyla 1
ijkl ijπ π α− =[ ]Β  dir 

Eğer ki [ ]k i veya j l ise α α≠ ≠ ∪ Β = , olduğundan sonuç doğrudur. 

 

3.4. Süzgeçlerle İlgili Bazı Teknik Teoremler 

Bu bölümde süzgeçlerle ilgili bazı önemli teorem ve sonuçları vereceğiz. Burada ki 

temel sonuç B üzerinde i, j=1, 2 ijα  süzgeçlerinin durumları ile ilgilidir ki burada∀  i, 

j=1, 2 için ijπ σ = ijα  olacak şekilde 2VΔ
2Β Β  üzerinde birσ  süzgeci vardır. 

 ve α β  A üzerinde iki süzgeç olsun. 

Tanım 3.4.1. { }U|U  ve bir V  ve W  i in V W Uçα β α β∪ = ⊂ Α ∈ ∈ ∩ ⊂  

Lemma 3.4.2. Eğer bir fonkiyon, f:Α → Β ve α β  da sırasıyla A ve B üzerinde süzgeç 

ise; bu durumda 

1. ( )( )1f f α α− ⊂  

2. ( )( )1f fβ β−⊂  

3.  ( ) ( )( )( )1f =f f fα α−

4. ( )( )1f f β− = β ⇔ ( )f βΑ ∈  

5. ( )1f β γ− ∪ = ( ) ( )1 1f fβ γ− −∪     (γ  B üzerinde bir süzgeç iken) 

İspat:1. U∈  ( )( )1f f α− ⇒ ( ) ( )1V  f  U f Vα −∃ ∈ ∋ ⊃  

Buradan, ( ) ( )1 1 V  V f Vα α∈ ⇒ ∃ ∈ ∋ ⊃V f  olur. 
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( ) ( )( )1 1
1U f V f f V V− −⊃ ⊃ ⊃ 1  olur ki burada 1V ∈ α  olduğundan U α∈  olur. Bu 

sonuçta ispatı tamamlar. 

2. Eğer U β∈  ise ( )( ) ( )( )1 1f f U f f β− −∈  ve ( )( )1f f U U− ⊂  olduğundan sonuç olarak 

( )( 1 )U f f β−∈ dır. Buradan ( )( )1f fβ β−⊂  dır. 

3. Eğer ( )fβ α=  ise Lemma 3.4.2 nin 2 sinden  dır. Yine 

Lemma 3.4.2 nin 1 incisinden 

( ) ( )(( 1f f f fα −⊂ ))α

( )( )( ) ( )1f f f fα α− ⊂  dır. Buradan eşitlik elde edilir. 

4. Kabul edelim ki ( )(1f f )β− = β  olsun. Biliyoruz ki ( )1f β−Α∈  ve buradan 

( ) ( )( ) ( ) yani f1f f f β β β−Α ∈ = Α ∈ dır. 

Aksine olarak, eğer U∈ ( )( 1f f )β−  ise en az bir V β∈  için U  dir. Çünkü ( )( 1f f V−⊃ )
β  bir süzgeçtir. ( )V f β∩ Α ∈  ve dolayısıyla ( )( )1f V−U f⊃  

=( )( )( 1f f V f−⊃ ∩ )Α ( )V f∩ Α  ve U β∈  dır. Yani ( )( )1f f β− β⊂  fakat 2. 

özellikten biliyoruz ki  ( )( )1f fβ β−⊂  dır. Bu yüzden ( )( )1f f β− = β  olur. 

 5. Açık olarak ( )1f β γ− ∪ ⊃ ( ) ( )1 1f fβ γ− −∪ dır. Eğer (1U f )β γ−∈ ∪  ise bu taktirde 

en az bir V β∈  ve en az bir W γ∈  için ( )1U f V W−⊃ ∩  

dır.  ve ( )f V− − ( ) (1 1f W f V∩ = )W∩1− ( ) ( )1 1f W− ∈f V− ∩  ( ) ( )1 1f fβ γ− −∩  

olduğundan ( ) ( )11U f fβ γ−−∈ ∪  dır. Buradan ( )1f β γ− ∪ = ( )1 ( )1ff β γ−− ∪   dır. 

Sonuç 3.4.3. σ ,   üzerinde bir süzgeç olsun.  2VΔΒ Β2

ijEğer 
2

1
0 ij

i, j 1

σ π π σ−

=

=U  ise bu taktirde i,  j 1,  2∀ =  için 0σ ⊂ σ  ve ij 0π σ = ijπ σ  olur. 

İspat: Lemma 3.4.2. nin 1. özelliğinden 0σ σ σ σ σ⊂ ∪ ∪ ∪ =σ  yani 0σ ⊂ σ  dir. 

Dolayısıyla ij 0π σ ⊂ ijπ σ …(1)  olur. 

Lemma 3.4.2. nin 3. özelliğinden 1
ij ijπ π −

ijπ σ = ijπ σ  ve 0σ  ın   tanımından  

1
ij ijπ π −

ijπ σ ⊂ ij 0π σ  dır. Bu yüzden ijπ σ ⊂ ij 0π σ ….(2)  olur ki (1) ve (2) den; 

ij 0π σ = ijπ σ  (  i,  j 1,  2∀ = için) eşitliği çıkar. 

Lemma 3.4.4. i, j=1, 2 için ijα  ler B üzerinde öz süzgeç ve 
2

1
ij ij

i, j 1

σ π α−

=

=U  olsun. 
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(1)  σ  özdür ⇔ ya (a) ( )11 22α α∪  ve ( )22 21α α∪  özdür, ya da ( )11 21α α∪  ve 

( )22 12α α∪  özdür.    

(2) Eğer α  öz ise, bu taktirde; 

 

                 ( )11 21α α∪              eğer (a) geçerli değilse 

11π σ =      ( )11 12α α∪             eğer (b) geçerli değilse 

                  ( )11 12 21α α α∪ ∩  eğer hem

)

 (a) hem de (b) geçerli değilse 

  

                     

                  ( 11 21α α∪             eğer (a) geçerli değilse 

21π σ =       ( )22 21α α∪             eğer (b) geçerli değilse 

                  (21 11 22 )α α α∪ ∩    eğer hem (a) hem de (b) geçerli değilse 

 

 

                  ( )12 22α α∪             eğer (a) geçerli değilse 

12π σ =       ( )11 12α α∪             eğer (b) geçerli değilse 

                  (12 11 22 )α α α∪ ∩    eğer hem (a) hem de (b) geçerli değilse 

    

                 

  

                ( )22 12α α∪                eğer (a) geçerli değilse 

22π σ =       ( )22 21α α∪             eğer (b) geçerli değilse 

                  (22 12 21 )α α α∪ ∩    eğer hem (a) hem de (b) geçerli değilse 

 

İspat: (1)σ  nın bir elamanı  

W = =  olacak şekilde W elemanını içerir. Burada W nin, 

(i, j=1, 2) iken bazı 

2
1

ij
i, j 1

Uijπ −

=
I (

2
1 1

i ij j ij
i, j 1

U Uπ π− −

=

+I

ijU ij

)

α∈  ler için  
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W= ( ) ( ) ( ) ( )11 12 22 21 11 21 22 12U U U U U U U U∩ × ∩ × ∩ × ∩  olduğu kolayca görülür. 

Biz burada W yi kanonik formda belirtiyoruz. Açık olarak, W ≠ ∅ ⇔ wedge çarpımının 

en az bir bileşeni boştan farklıdır. Çünkü bir çarpanın boştan farklı olması için gerek ve 

yeter şart her iki çarpanının da boştan farklı olması gerekir. Buradan ilk çarpan 

(sırasıyla ikinci çarpan) boştan farklıdır ancak ve ancak (a) (sırasıyla (b)) sağlanması 

gerekir. 

(2) Kabul edelim ki σ  öz olsun. İspatı sadece 11π σ  için yapacağız. Çünkü diğerleri 

içinde benzer şekilde yapılabilir.  

Eğer U ∈ 11π σ  ise, bu durumda 11W Uπ ⊂  olacak şekilde en az bir W σ∈  mevcuttur. 

Hatta W yı kanonik formda farz edelim. O halde; 

            

( ) ( )
( ) ( )
( ) ( )

11 21

11 11 12

11 12 11 21 11

U U                                                           e er a  ge erli de ilse

W U U                                                           e er b  ge erli de ilse

U U U U U U

ğ ç ğ

ğ ç ğπ

∩

= ∩

∩ ∪ ∩ = ∩ ( )12 21U  e er her ikisi de ge erli de ilseğ ç ğ

⎧
⎪
⎨
⎪ ∩⎩

                                                                

                    

Şu halde, eğer (a) geçerli değilse  11π σ 11 21α α⊂ ∪ , eğer (b) geçerli değilse 

11π σ 11 12α α⊂ ∪ , eğer her ikiside geçerli değilse 11π σ (11 12 21 )α α α⊂ ∪ ∩  olur. Bunun 

sonucunda eğer 11 21U α α∈ ∪  ise i=1, 2 olmak üzere bazı ijU i1α∈  ler için 

 dir. Eğer (a) geçerli değilse, 11 21U⊃ ∩U U

0W = ( ) ( )11 21B U U B σ∅ × ∨ ∩ × ∈  dan 

11 0Wπ = ( )11 21U U U∩ ⊂  olur. Bu yüzden 11 21 11α α π∪ ⊂ σ  dır. İkinci durumda benzer 

şekilde ispatlanır. Sonuç olarak, ( )12 2111U α α α∈ ∪ ∩  ise bu taktirde ij ijU α∈  için 

 dır. ( )11 12 21U U⊃ ∩ ∪U U

W= ( ) ( )11 12 21 11 21 12U U U U U U∩ × Β ∩ ∨ ∩ × Β ∩  şeklinde alalım. 

Açık olarak W∈ σ  dır. Çünkü B, B üzerindeki bütün süzgeçlerin içindedir. Buradan 

11Wπ = ( )  olur ki bu da ispatı tamamlar. (11 12 11 21U U U U∩ ∪ ∩ ) U⊂
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Teorem 3.4.5. i, j=1, 2  olmak üzere ijα  B üzerinde bir öz süzgeç olsun. O halde her i, 

j=1, 2  için ijπ σ = ijα  olacak şekilde  2VΔ
2Β Β  üzerinde bir öz süzgeçin mevcut olması 

için gerek ve yeter şart  

1. Eğer Lemma 3.4.4 ün (a) maddesi sağlanmıyorsa, 11α = 21α  ve  22α = 12α  dir. 

2. Eğer Lemma 3.4.4 ün (b) maddesi sağlanmıyorsa, 11α = 12α  ve  22α = 21α  dir. 

3. Eğer Lemma 3.4.4 te  ne (a) ne de (b) sağlanmıyorsa, 11 22 12 21α α α α∩ = ∩  dir. 

İspat: Kabul edelim ki her i, j=1, 2 için ijπ σ = ijα  olacak şekilde  üzerinde bir  2VΔΒ Β2

σ  süzgeci bulunsun. Eğer, 
2

1
0 ij

i, j 1
ijσ π π σ−

=

=U =
2

1
ij ij

i, j 1

π α−

=
U  ise bu taktirde Sonuç 3.4.3 ten 0σ ⊂ σ  ve ij 0π σ = ijπ σ olur. 

Şu halde Lemma 3.4.4 teki σ = 0σ  alalım. Burada 0σ  özdür. Lemma 3.4.4 teki (a) 

sağlanmıyorsa, bu taktirde 11 0 11 21π σ α α= ∪ , 12 12 22 22π σ α α π σ= ∪ =  ve 

21 11 21π σ α α= ∪  dır. Buradan 11 21π σ π σ=  yani 11α = 21α  ve 22 12π σ π= 2σ  yani 2α = 12α  

 B a (1) in sağlandığını gösterir. dir. u d

 Lemma 3.4.4 te ki (b) sağlanmıyorsa bu taktirde 11π σ = 11 12α α∪ = 12π σ  yani 11α = 12α  

ve 22π σ = 22 21α α∪ = 21π σ  yani 22α = 21α dir. Bu da (2) nin doğru olduğunu gösterir. 

Şimdi ne (a) ne de (b) nin sağlanmadığını kabul edelim.  

Lemma 3.4.4 ten, 

( )11 11 11 12 21α π σ α α α= = ∪ ∩ ( )11 11 11 12 21α π σ α α α= = ∪ ∩ ,

( )12 12 12 11 22α π σ α α α= = ∪ ∩ , ( )11 2221 21 21α π σ α= =

)

α α∪ ∩  ve 

(22 22 22 12 21α π σ α α α= = ∪ ∩  eşitlikleri elde edilir. Buradan 11 22α α∩ 12 21α α⊂ ∩ , 

12 21α α∩ 11 22α α⊂ ∩ , ve dolayısıyla 11 22α α∩ = 12 21α α∩  olur. Bu da (3) ün doğru 

olduğunu gösterir. 

Aksine olarak kabul edelim ki (1) sağlasın fakat (a) sağlanmasın. 
2

1
ij ij

i, j 1

σ π α−

=

=U  ifadesini alalım. Bu durumda Lemma 3.4.4 ün (1) inden σ  2 2VΔΒ Β  

üzerinde bir öz süzgeçtir. O halde geriye her i,  j=1, 2 için ijπ σ = ijα  olduğunu 

göstermek kalır. Lemma 3.4.4 ün (2) sinden biliyoruz ki 11 11 21 21π σ α α π σ== ∪  dır. 

Çünkü 11 21α α= , 11 11π σ α=  ve 21 21π σ α=  dir. Hatta 22 22 12π σ α α= ∪ = 12π σ  ve şu 
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 dir. Buradan 22 22π σ α=  ve 12 12π σ α=halde ka 22bulden 12α α=  olur. Eğ (2) ser ağlanır 

ve (b) sağlanmaz ise σ  yı da yukarıda ki gibi alalım. ma 3.4.4 ün (2) sinden 

11 11 12 12

Yine Lem

π σ α α π= ∪ =  ve 22 22 21 21σ π σ α α π σ= ∪ =  eşitlikleri elde edilir. Açık olarak 

kabulllerden 11 12α α=  ve 22 21α α=  dir. Buradan  11π σ = 11α , 12 12π σ α= , 21 21π σ α=  ve 

22 22π σ α=  d olar l edelim ki (3 ğl sın ve  ne (a) ne de (b) 

n. Aynı 

ır

sağlanması

. Son ak kabu ) sa an

σ  için Lemma 3.4.4 ün (2) sinden, ( )11 11 12 21π σ α α α= ∪ ∩ , 

( )12 12 11 22π σ α α= ∪ ∩ , α ( )21 21 11 22π σ α α α= ∪ ∩  ve 22 ( )21 1222π σ . α= ∪ α α∩ olur

Şimdi (3) ten ( )12 2111 11π σ α= ∪ α α∩ = ( )2211 11α α α∪ ∩ 11=α  ve benzer olarak bütün i, 

j=1, 2 için ijπ σ = ijα  if

11

adesi içinde sağla r. Bu da ispatnı ma ar. 

Sonuç 3.4.6. 

ı ta ml

α , 12α , 21α  B üzerinde öz süzgeçler olsunlar. Eğer, 1 1
11 11 12 12σ π α π α− −= ∪  

1
21 21π α−  ise, bu taktirde 

σ  özdür ⇔  ya (a) 11 12α α∪  ya da (b) 11 21α α  özdür. ∪1. 

2. Eğer σ  öz ise, bu ta tirde k

                  ( )11 21α α∪              eğer (a) ilse  geçerli değ

11π σ =      ( )11 12α α∪

( 12

             eğer (b) geçerli değilse 

                  11 )21α α∪ α∩   eğer hem (a) hem de (b) geçerli değilse 

 

                  12α                 eğer (a) geçerli değilse 

12π σ =       ( )1 121α α∪    eğer (b) geçerli değilse 

        12          α             

( )21

    eğer hem (a) hem de (b) geçerli değilse 

 

 

 

                  11α α∪    eğer (a) geçerli değilse 

21π σ =       21α  

        21

               eğer (b) geçerli değilse 

          α                 eğer hem (a) hem de (b) geçerli değilse 
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İspat: Lemma 3.4.4 de [ ]22α = Β  olarak alalım. B üzerinde herhangi α  öz süzgeci için 

α ∪ [ ]Β =α  ve [ ] [ ]α ∩ Β = Β  olduğundan ispatın doğruluğu görülür. 

Sonuç 3.4.7. 11α , 12α , 22α  B üzerinde öz süzgeçler olsun. Eğer, 

1 1
11 11 21 22

1
2221σ π α π α− −= ∪ ∪π α−  ise, bu taktirde 

1. σ  özdür ⇔  ya (a) 22 21α α∪  ya da (b) 11 21α α∪  özdür 

2. Eğer  σ  öz ise, buradan 

 

                 ( )11 21α α∪     eğer (a) geçerli değilse 

11π σ =      11α                  eğer (b) geçerli değilse 

                  11α                 eğer hem (a) hem de(b) geçerli değilse 

 

 

                  ( )11 21α α∪                 eğer (a) geçerli değilse 

21π σ =       ( )22 21α α∪                eğer (b) geçerli değilse 

                  (21 11 22 )α α α∪ ∩       eğer hem (a) hem de (b) geçerli değilse 

 

 

 

 

                  22α                 eğer (a) geçerli değilse 

22π σ =       ( )22 21α α∪    eğer (b) geçerli değilse 

                  22α                 eğer hem (a) hem de (b) geçerli değilse 

 

 

 

İspat: Lemma 3.4.4 de 12α =[ ]Β  olarak alalım. B üzerinde herhangi α  öz süzgeci için 

α ∪ [ ]Β =α  ve [ ] [ ]α ∩ Β = Β  olduğundan ispatın doğruluğu görülür. 
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Teorem 3.4.8. 11α , 12α  ve 21α  B üzerinde öz süzgeçler olarak alalım. Bu taktirde, 

11π σ = 11α , 12 12π σ = α  ve 21 21π σ α=  olacak şekilde 2VΔ
2Β Β  üzerinde en az birσ  öz 

süzgeci vardır ⇔  

1. Eğer Sonuç 3.4.6 nın (a) sı geçerli değilse, 11 21α α=  dır. 

2. Eğer Sonuç 3.4.6 nın (b) sı geçerli değilse, 11 12α α=  dır. 

3. Eğer Sonuç 3.4.6 nın ne (a) sı ne de (b) si geçerli değilse, 12 21 11α α α∩ ⊂  dır. 

İspat: Lemma 3.4.4 ten Teorem 3.4.5 in elde edilmesinde kullanılan verilere benzer 

olarak Sonuç 3.4.6 nın ispatına benzer olarak bununda ispatı yapılır. 

Teorem 3.4.9. 11α , 21α  ve 22α  B üzerinde öz süzgeçler olsun. 11π σ = 11α , 21 21π σ α=  

ve   22 22π σ = α   olacak şekilde 2VΔ
2Β Β  üzerinde en az bir tane σ  öz süzgeci 

mevcuttur ⇔  

1. Eğer Sonuç 3.4.7 nın (a) sı geçerli değilse, 11 21α α=  dır. 

2. Eğer Sonuç 3.4.7 nın (b) sı geçerli değilse, 22 21α α=  dır. 

3. Eğer Sonuç 3.4.7 nın ne (a) sı ne de (b) si geçerli değilse, 11 22 21α α α∩ ⊂  dır. 

İspat: Teorem 3.4.5 in ispatında kullanılan aynı yöntemlerle Sonuç 3.4.7 nin 

ispatındanda yararlanılarak teoremin ispatı kolayca bulunur. 

Bundan sonra Teorem 3.4.5 in bir yerel versiyonunu olan Teorem 3.4.11 vereceğiz. 

Bunu sonuçlandırmak için k: pVΒ Β → 2 2VΔΒ Β   dönüşümü  yi  nin 

=  alt cümlesine götüren içine (inclusion) dönüşüm olarak alalım.                  

Açık olarak 

pVΒ Β 2 2

( ) ( )1−

VΔΒ Β

p p× Β ∨ × Β

21

11 pπ

kπ = 1+p =  1p , 12kπ =p+1= , ve 2p 22kπ =∇  (Uyarı 3.2.4 e bak)  dır. 

1 1
1 1 2 2p pα α∪Sonuç 3.4.10. B üzerinde iα , i=1, 2, 3 öz süzgeçlerini alalım. Eğer,   σ = − −

1

            

3α−∪∇  ise,  bu taktirde 

1. σ  öz süzgeçtir ⇔ ya (a) [ ]2 pα ⊂  ve 1 3α α∪  özdür ya da (b) [ ]1 pα ⊂  ve 

2 3α α∪  özdür. 

2. Eğer σ  öz ise, bu taktirde 
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                 [ ]p                         eğer (a) geçerli değilse 

1p σ =      1 3α α∪                    eğer (b) geçerli değilse 

                 [ ] ( 1 3p )α α∩ ∪      eğer hem (a) hem de (b) geçerli değilse 

 

                  2 3α α∪                   eğer (a) geçerli değilse 

2p σ =          [ ]p                        eğer (b) geçerli değilse 

                 [ ] ( 2 3p )α α∩ ∪       eğer hem (a) hem de (b) geçerli değilse 

 

                  2 3α α∪                   eğer (a) geçerli değilse 

σ∇ =          1 3α α∪                   eğer (b) geçerli değilse 

                 (3 1 )2α α α∪ ∩        eğer hem (a) hem de (b) geçerli değilse 

 

İspat: Bunu ispat etmek için, ilk olarak 11α =[ ]p , 21α = 1α , 12α = 2α  ve 22α = 3α  ile 

birlikte yukarıdaki gibi tanımlanan k içine dönüşümü olmak üzere Lemma 3.4.4 ün σ  

sını σ = 1k− ( )'σ  olduğunu yani, 

'σ = 1 1 1 1
11 11 21 21 12 12 22 22π α π α π α π α− − − −∪ ∪ ∪ = [ ]1 1 1

11 21 1 12 2 22 3p 1π π α π α π α− − − −∪ ∪ ∪  olduğunu 

gösterelim. 

Lemma 3.3.2. nin (5) inden; 
1k− ( )'σ = [ ]1 1 1 1 1 1 1 1

11 21 1 12 2 22 3k k k kpπ π α π α π α− − − − − − − −∪ ∪ ∪  ve  

1p = 21kπ , 2p = 12kπ , =∇ 22kπ , ve p+p= 11kπ  bağıntılarının görüntüsünden 

1 1k 1 1 1 1 1
2 3 2 2 3

1
2p 1 1p p 1 1p pVσ α α− α α α− − − − −= ∪∇ = ∪∇ =α ∪ σ− − ⎡ ⎤Β⎣ ⎦

k

Β ∪

1 1

∪  olduğu elde 

edilir, yani σ− − =σ  dır. ( ) 1
p 11 p 'k V π σ−Β Β = ∈

1

 olduğundan  Lemma 3.4.2. nin (4) 

üncü özelliğinden k k− 'σ = 'σ  eşitliği elde edilir ( )pV',  f k,  β σ= = Α = Β Β . 1. bölüm 

Lemma 3.4.2 den kolayca ispatlanır ve [ ]pα ∪  özdür ⇔  B üzerindeki herhangi bir 

α süzgeci [ ]pα 1 2 21⊂  olmasıdır. 2. bölüm 'p k 1 '
1 kσ π σ− π σ= = , '1 '

12k2 12p kσ π σ π= = σ−  

ve '1 '
22 22kkσ π σ = π σ−∇ =  olduğu göz önüne alınarak Lemma 3.4.4 ün (2) sinden direkt 

olarak ispatlanır. 
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Teorem 3.4.11. 1α , 2α , 3α  B üzerinde öz süzgeçler olsun. 1 1p σ α= , 2 2p σ α=  ve 

3σ α∇ =  olacak şekilde  üzerinde en az bir pVΒ Β σ  öz süzgeci vardır  ⇔

1. Eğer Teorem 3.4.10 un (a) sı geçerli değilse, 2 3α α=  ve [ ]1 pα =  dır. 

2. Eğer Teorem 3.4.10 un (b) sı geçerli değilse, 1 3α α=  ve [ ]2 pα =  dır. 

3. Eğer Teorem 3.4.10 un hem (a) sı (b) sı geçerli değilse, [ ]1 2 3 pα α α∩ = ∩  dır. 

İspat: Teorem 3.4.5 ispatında kullanılan aynı veriler kullanılarak Teorem 3.4.10 dan 

kolayca ispatlanır. 

Sonuç 3.4.12. B üzerinde 1α  ve 2α  öz süzgeçlerini alalım. Eğer 1 1
1 1 2 2p pσ α− −= ∪ α  ise, 

butaktirde 

1. σ  özdür ⇔ hem (a) [ ]2 pα ⊂  hem de  (b) [ ]1 pα ⊂  dır. 
2. σ  öz ise, butaktirde 

 
                 [ ]p                    eğer (a) geçerli değilse 

1p σ =        1α                     eğer (b) geçerli değilse 

                 1α                      eğer hem (a) hem de (b) geçerli değilse 

 

 

                  2α                      eğer (a) geçerli değilse 

2p σ =        [ ]p                     eğer (b) geçerli değilse 

                   2α                     eğer hem (a) hem de (b) geçerli değilse 

  

İspat : [ ]3α = Β  ve  B üzerinde ki her α  süzgeci için [ ]α α∪ Β =  olduğu göz önüne 

alınarak Sonuç 3.4.10 dan sonuç ispatlanır.  

Teorem 3.4.13. B üzerinde 1α  ve 2α  öz süzgeçlerini alalım. 1 1p σ α= ve 2 2p σ α=  

olacak şekilde  üzerinde en az birpVΒ Β σ  öz süzgeci vardır ⇔  

1. Eğer [ ]2 pα ⊄  ise , 1α =[ ]p  dır. 

2. Eğer [ ] [ ]1 2p  ise,  pα α⊄ =  dır. 

3. Eğer [ ]p  1 2 ve α α  yi içeriyor ise, bu taktirde her zaman böyle bir σ  süzgeci 

vardır. 
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İspat: Teorem 3.4.11 in ispatında kullanılan aynı veriler kullanılarak Sonuç 3.4.12 den 

teorem ispatlanır. 

Sonuç 3.4.14. 1 3 ve  Bα α üzerinde öz süzgeçler olsun. Eğer σ = 1
1 1 3p 1α α− −∪∇  ise, bu 

taktirde 

1. σ  özdür ⇔  hem (a) 1 3α α∪  özdür hemde (b) [ ]1 pα ⊂  dır. 

2. Eğer σ  öz  ise, bu taktirde 

 

                 [ ]p                            eğer (a) geçerli değilse 

1p σ =        1 3α α∪                     eğer (b) geçerli değilse 

                 [ ](1 3 pα α∪ ∩ )         eğer hem (a) hem de (b) geçerli değilse 

 

 

                  3α                             eğer (a) geçerli değilse 

σ∇ =         1 3α α∪                     eğer (b) geçerli değilse 

                 3α                               eğer hem (a) hem de (b) geçerli değilse 

 

İspat: 2α =[ ]Β  alınarak Sonuç 3.4.10 dan kolayca ispatı yapılır. 

Teorem 3.4.15. B üzerinde 1 ve 3α α  öz süzgeçlerini alalım. 1 1p σ α=  ve 3σ α∇ =  

olacak şekilde  üzerinde en az bir  pVΒ Β σ  öz süzgeci vardır   Eğer ⇔ 1 3α α∪  öz 

değilse, [ ]1 p   ve  p2 3α σ= = α  dır. 

1. Eğer [ ] [ ]1 1 3 2p   ise,    ve  p pα α α σ⊄ = =  dır. 

2. Eğer [ ]1 1p  ve 3α α α⊂ ∪  öz ise, [ ]1 3 pα α⊃ ∩  ve [ ]2 3p pσ α= ∩  dır. 

İspat: Teorem 3.4.5 in ispatında kullanılan benzer veriler ile Sonuç 3.4.14 ten 

ispatlanır. 

q:B B/F dönüşümünü  B nin boş olmayan bir alt kümesi F yi ∗  a eşleyen özdeşlik 

fonksiyonu olarak alalım. 

→

Lemma 3.4.16. α  yı B üzerinde bir  süzgeç olarak alalım. 

1. a F∉  için, ( ) ( ) [ ]q q aα α⊂ ⇔ ⊂⎡ ⎤⎣ ⎦ a  dır. 

( ) [ ] [ ]q Fα α⊂ ∗ ⇔ ∪  özdür. 2. 
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[ ]a  α( ) (q qα ⊂ ⎡ ⎤⎣ ⎦)  olduğunu vaİspat: 1. a rsayalım. Eğer  yı kapasamaz ise, 

butaktirde k şekilde  a U∉  olaca α  nın içinde en az bir U vardır. Burada 

( ) ( ) )q U q α∈ ⊂ ⎤⎦  ve sonuç olara(q a⎡⎣ k ( )q a = ( )a q U∈  dur. Buradan ( )q x =a olacak 

 az bir x vardır. a Fşekilde U nun içinde en ∉  olduğundan, x a U= ∈  alm z ki bu da 

bir çelişkidir. Bunun sonucunda 

alıyı

[ ]aα ⊂ . Tersini ispat ünkü  olur ı açıktır. Ç [ ]aα ⊂  ise, 

bu taktirde a F∉  için ( ) [ ]q q aα ⊂ = ( )aq⎡ ⎤⎣ ⎦  dır. 

2. Kabul ede ki ( ) [ ] [ ]lim q α ⊂ ∗  olsun. Eğer  öz değil ise, bu taktirdeFα ∪  V F∩ =∅  

olacak şekilde α  nı adan n içinde en az bir V vardır. Bur ( )q V  ∈ ( ) [ ]q α ⊂ ∗ nu  

olarak 

  ve so ç

( )  q V∗ ∈  dir. Buradan ( )q x = ∗   olacak şekilde V nin içinde en az bir x vardır.

Bunun sonucunda x, V F∩  nin anı olur ki bu da bir çelişkidir. Bu yüzden 

[

 

bir elem

]Fα ∪   özdür. Tersine olarak varsayalım ki [ ]Fα ∪  öz olsun. Eğer ( ) [ ]q α ⊄ ∗  ise

olacak şekilde 

,  

 ∗ ∉ W  ( )W q α∈  vardır. ( )qW α∈ lduğundan (q V cak 

en az bir  V∈

 o ) ⊂ W  ola

şekilde α  vardır. [ ]F∪  ö dan, V Fα z olduğun ∩ ≠ ∅

sonuncunda 

. Bunun 

( )F =q V ∩ ∗ ∈ ( ) W⊂q V  yani ∗ ∈ W  olur ki bu da bir çelişkidir. 

(Buradan ) [ ]q α ⊂ ∗  elde edilir k  ispatı tamamlar. 

Uyarı 3.4.17.  ve 

i bu da

α β  A üzerinde süzgeçler olsun. Eğer f:A B bir fonkiyon ise, bu →

taktirde ( )f α β∩ ( )= ( )ff α β∩  dır. Bu da Lemma 3.3.2 nin özel bir halidir. 

Uyarı 3.  ve γ  B üzerinde bir süzgeç ise, ( )1f γ−  öz4.18. Eğer f:A B epik dü→ r ⇔ γ  

özdür. Bunun ispat açıkt  

Lemma 3.4.19.  ve 

ır.

α β  B üzerinde  süzgeçler ve q:B B/F  F yi  a özdeşleyen birim 

lalım.

→  ∗

dönüşüm olarak a  

1. Eğer [ ]Fα ∪ ( ) ( )q q   σ α σ⊂ ⇔ ⊂ öz değil ise, α  dır. 

2. Eğer [ ]Fα ∪  öz ise, ( ) ( )q  α⊂ ⇔  q σ [ ] [ ]F  vσ α∩ ⊂ ∪e α F  özdür. 

İspat: 1. [ ]Fα ∪  öz olmasın. B e V Fu taktird ∩ =∅   olacak şekilde en az bir V α∈  

vardır. Eğ ) ( )qer (q σ α⊂  ve U σ∈  ise, ( ) ( ) ( )q U q qσ α⊂  ve en az bir 1V   

( ) ( )1q U q V⊃  ve sonuç

∈

ak 

için

) (q V V⊃ ∩ 1   olar 1V V∩ ∈ α  dır. B adan ur
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U F∪ ⊃ ( )( ) ( )( )1 1
1q q U q q V V V V− −⊃ ∩ =

U

1∩  ve şu halde =∅  olduğundan 

 dur. Bunun sonucunda U

V F∩

1 ⊂V V∩ α∈  yani σ α⊂  dır. Tersinin ispatı açıktır. 

[ ]Fα ∪  yi öz olarak ifade edersek  Lemma 3.4.16 nın (2)  sinden ( )2. q α [ ]⊂ ∗  ve 

sonuç olarak ( )q σ [ ]⊂ ∗( ) ( )q qσ α⊂  ise,  dir. Tekrar Lemma 3.4.16 dan [ ]Fσ ∪  

özdür. Geriye [ ]Fσ α∩ ⊂  olduğunu göstermek kalır. Eğer [ ]U σ∈ ∩ F  ise, 

( ) ( ) ( ) ve q U q qF U σ σ α∈ ⊂⊂ ∈  dır. Şu halde [ ]Fα ∪  öz olduğundan V F∩ ≠ ∅  

olacak şekildeki ( ) ( )Vq Uα   daki bir V için  q⊃  dır. Sonuç olarak 

( )( ) ( )( )1 1F q q V q q U− −= ⊂V V⊂ ∪ =U yani [ ]Fσ ∩ α⊂  dır. Tersine olarak kabul 

edelim ki [ ]Fσ α∩ ⊂  ve [ ]Fσ ∪ ( ) ( ) öz olsun. q q α⊂  olduğunu gösterelim. σ

[ ]Fσ ∪ [ ]  öz olduğundan Lemma 3.4.16 nın (2) sinden ( )q  dır. Uyarı 3.4.17 den σ ⊂ ∗

[ ]( ) ( ) ( ) ( ) [ ] ( )q F q q F q qσ σ σ∩ = ∩ = ∩ ∗ =⎡ ⎤⎣ ⎦ σ  ve sonuç olarak  

[ ]( ) ( )q F qσ α∩ ⊂( )q σ ( ) ( )q qσ α⊂=   yani  dır ki bu da ispatı tamamlar. 

 



4. BÖLÜM 

SABİT YAKINSAK SÜZGEÇ UZAYI KATEGORİSİNDE  OBJELER 2PreT

Bu bölümde Sabit Yakınsak Süzgeç Uzayı Kategorisinin (ConFCO) nun topolojik 

kategori olduğu gösterildi. Ayrıca 3. bölümde verilen teoremlerin kullanılmasına örnek 

olması açısından  2Pre T  ve  objeleri karakterize edildi. '
2Pre T

4.1. Con FCO Topolojik Kategorisi 

Teorem 4.1.1.  : Con FCO → SET topolojik fanktordur. F

PreT

2

2 2 2

2 2

İspat : Teorem 2.6.7 den ispat açıktır. 

Tanım 4.1.2. (B,K)∈ Ob(ConFCO), (B,K) diskre ise K = { [a], [∅]: 

a∈A}yapıdadır. 

4.2. ConFCO da   Objeler 2

X bir cümle ve =X ×  X, X in kendisi ile Kartezyen çarpımı olsun.  X

X nin iki ayrı kopyasının diagonali boyunca kesişmesi  ile gösterilir. X VΔ Χ

X VΔ Χ  de bir (x,y) noktası birinci bileşeni ise ( )1
x, y   ile, ikinci bileşeni ise 

 ile gösterilir. ( )2
x, y

( ) ( )1
x, y =

2
x, yAçık olarak  ⇔ x=y dir.  
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Tanım 4.2.1. Temel Eksen Dönüşümü(Principle Axis Map): 

A: , A =(x, y, x) ve A2 2 3 ( )X VΔ Χ → Χ
1

x, y ( )

)

2
x, y =(x, x, y) olarak tanımlanır. 

Skewed Eksen Dönüşümü (Skewed Axis Map): 

S: , S =(x, y, y) ve S2 2X VΔ Χ 3→ Χ ( 1
x, y ( )2

x, y =(x, x, y) olarak tanımlanır 

Katlama Dönüsümü (The Fold Map): 

∇ : , i=1, 2 için 2 2X VΔ Χ 2→ Χ ∇ ( )i
x, y =(x, y) olarak tanımlanır [12] ve [14]. 

Tanım  4.2.2. X in 2Pre T  olması için gerek ve yeter şart ( ){ }2 2 3 3S: B V B U x BΔ → =  

ve ( ){ }2 2 3 3: B V B U x BΔΑ → =  U- kaynaklarının başlangıç kaldırmalarının 

çakışmasıdır [14].   
Tanım 4.2.3. X in  olması için gerek ve yeter şart '

2Pre T ( ){ }2 2 3 3S: B V B U x BΔ → =  

U- kaynağının başlangıç kaldırması ile { 1 2i , i : ( )2U x = }2 2 2B B V BΔ→  U- 
kavşağının bitiş kaldırmasının çakışmasıdır [14].  

Uyarı 4.2.4. { (B,K) (Bi,Ki) if : → i I∈  } kaynağı ConFCO başlangıç kaldırmadır 

ancak ve ancak  olduğunda tüm iK için f ( ) Kα ∈ i iI∈ α ∈

2

dır. 

Uyarı 4.2.5.  kanonik dönüşümler olmak üzere 1i ve i ( ) ( ){ }2 2 2
1 2i , i : ,K V ,LΔΒ → Β Β   

örten kavşağının (epi sink) ConFCO da bitiş kaldırmadır ancak ve ancak wedgedeki 

herhangi bir α  süzgeci için k=1 veya 2 iken en az  bir 1 Kα ∈  için k 1iα α⊃  olmasıdır. 

Uyarı 4.2.6.  i inci izdüşüm fonksiyonları (i=1, 2, 3) olmak üzere 3
i :B Bπ → i jπ  ler 

 şeklinde tanımlanmış dönüşümlerdir. Buradan 

,  , 

2 2: B  V BΔ →

1S Aπ 2 2π =

i j i j Bπ = π + π

1 11π = π = π 1 2S A= π 2A3 1= π 22S ve 3 = π  dır [12]. π π

Teorem 4.2.7. Con FCO da  (B, K) objesi 2Pre T dir ancak ve ancak herhangi 

α , ∈K öz süzgeçleri için σ α σ∪  öz ise α σ∩ ∈K dır. 

İspat: Kabul edelim ki (B, K) 2Pre T  olsun. Yani Tanım 4.2.1, Tanım 4.2.2 ve 

Uyarı 4.2.4 den wedge çarpımındaki her hangibir β  süzgeci için eğer 11π β  ve 

21β , K da ise 12β ∈K olması için gerek ve yeter şart 22β ∈K olmasıdır. K da π π π
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α , β  süzgeçleri için Teorem 3.4.5 de 11verilen α α σ∪ , 21 α= , 12α α β= =  ve 

22α = α σ∩  olsun. Dikkat edelim ki 11 12α α∪ =α σ∪ , 22 21α α α=∪ , 

11 21α α α σ∪∪ =  ve 22 12α α σ∪ =  özdürler ve 11 22 12 21α α α σ α α∩ = ∩ = ∩  olur. 

Böylece Teorem 3.4.5 den her i, j=1, 2 için ij ijπ β α=  olacak şekilde wedge 

üzerinde en az bir öz β  süzgeci vardır. Buradan 22α = α σ∩ K∈  dır. 

Tersine olarak, kabul edelim ki istenilen şart sağlansın. Eğer β  öz olmayan süzgeç 

ise, butaktirde ispat açıktır. Varsayalım ki β  öz ve 11 , 21π β π β ∈K olsun. Teorem 

3.4.5 de  11 11α π β 21 21= , α π β= , 12 12α π β=  ve 22 22α π β=  olarak alalım. Eğer 

Teorem 3.4.5 de ki (1) sağlanırsa, 22 12α α=  olur ve bunun sonucunda 22 Kα ∈  

ancak ve ancak 12 K  dır. Eğer Teorem 3.4.5 de ki (2) sağlanırsa  ve α 11 12α α=∈

 dir ve  bunun sonucunda 22 Kα ∈  ve 12 Kα ∈22 21α α=  olur. Eğer Teorem 3.4.5 de 

ki (3) sağlanırsa 11 22 12 21α α α∩ = ∩α  dir. 21α π β= , 12σ π β= , 11α α σ= ∪  olarak 

alalım ve buradan α σ∩ K∈ özdür. Kabulden  ‘ yı elde ederiz. Fakat α σ∪

β  olması K  olmasını gerektirir. Benzer olarak eğer =α σ∩ ⊆ 22α 22π 22α ∈

211 21,  ,  22 Kπ β π β π β ∈  ise 12 Kπ β ∈  olur. Böylece (B, K) Pr  dır. e T

'
2Pre TTeorem 4.2.8. ConFCO da ki (B, K) objesi  dir ancak ve ancak (B, K) 

diskre objedir. 

İspat: Kabul edelim ki (B, K) objesi  olsun. Yani  Tanım 4.2.3, Uyarı 4.2.4 

ve Uyarı 4.2.5 den wedge üzerinde ki her hangi bir 

'
2Pre T

β  süzgeci için (I) 

11 21,  ,  22 Kπ β π β π β ∈  dır ancak ve ancak (II) B  üzerinde ki çarpım yapısı  ve 

k=1 veya 2 için herhangi bir 

2 2K

1β ∈ 2K  için k 1iβ β⊃  olmasıdır.  olsun. Eğer Kα ∈

α  öz değil ise ispat aşikardır. Kabul edelim ki α  öz süzgeç olsun. Teorem 3.4.9 u 

uygulayalım. Teorem 3.4.9 da 11α =α = 21α =  olsun. Dikkat edelim ki 22α

11 12 21 22α α α α α∪∪ = =  özdür. Böylece Teorem 3.4.9 dan 

11π β =α = 21 22 Kπ β π= β ∈  olacak şekilde wedge üzerinde en az bir tane β  öz 

süzgeci vardır. (B, K) objesi  olduğundan en az bir  ve k=1 veya 2 '
2Pre T 2K∈1β
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iiçin k 1β⊃ W i dir. Eğer k=1 ve 1 1β β∈  ise, en az bir V 1 1π β∈  ve 2 2T π β∈

)×

 için 

= (  ve bunun sonucunda da ( )1W i V⊃ × T
1

V T ( )1
V T× β∈  olur. Fakat β  nın 

tipik bir elemanı, Teorem 3.4.9 da ki (3) sağlandığından dolayı en az bir N α∈  

için  formunda bir eleman içerir ve bunun sonucunda 2 2N NΔ ( )1
V T× ⊃ 2 2N NΔ  

olur. Bu durumun gerçekleşmesi için gerek ve yeter şart en az bir y∈Β  için 

{ }N = y  olmasıdır. Böylece [ ]y=α  dir. Benzer şekilde eğer k=2 ve W i2 1β∈  ise 

en az bir y∈Β  için [ ]yα =  olur.  

Tersine olarak, (B, K) diskre olsun. [ ]22  den (II),  (I) i sağlar. Biz ise (I) in (II) yi 

sağladığını göstermeliyiz. Eğer β  öz değilse, sonuç açıktır. Kabul edelim ki α  öz 

olsun. Teorem 3.4.9 da =11α 11π β , =21α 21π β  ve 22α = 22π β  olarak alaım. Eğer teorem 

3.4.9 daki (1) sağlanırsa 11 21π β π β=  olur. (B,K) diskre olduğundan 

[ ] [ ]11 21π β π 22x  ve β π

1 1

y

1
2 22

β

1
11

= = =  olacak şekilde Con FCO daki (B, K) için B de x  ve y 

noktaları vardır. β π π

1 1

β− π π β−= ∪  olsun ve dikkat edelim ki  dir. Sonuç 

3.4.3 den 

2K1β ∈

iβ β⊃  olduğu görülür. Eğer Teorem 3.4.9 daki (2) şartı sağlanırsa benzer 

olarak 2i 1β β⊃  olur. Eğer Teorem 3.4.9 daki (3) şartı sağlanırsa 11 22 21π β π β∩ ⊂ π β  

olur. (B, K) Con FCO da olduğundan , [ ]11 xπ β =x y B∈  için ,  22π β =[ ]y  dir ve  

bunun sonucunda (B,K) diskre olduğundan 21π β =[ ]x  ve ya [ ]y  olur. Böylece k=1 ve 

ya 2 için k iiβ β⊃  dir. Bu ise ispatı tamamlar. 
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