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ÖZET 
 
 

GENELLEŞTĐRĐLMĐŞ MODEL YARDIMIYLA ÇĐFT-ÇĐFT ÇEKĐRDEKLERĐN 
UYARILMIŞ DURUMLARININ ĐNCELENMESĐ 

 
 

SÖNMEZ, Reşat 
Yüksek Lisans Tezi, Fizik Anabilim Dalı 

Tez Danışmanı: Yrd. Doç. Dr. Rafet YILMAZ 
Mayıs 2010, 49 Sayfa 

 
 

Günümüzde çekirdeğin yapısını, deforme olmasını ve eylemsizlik momentini 

belirleyen parametrelerin sayısal olarak hesaplanmasına olanak sağlayan çekirdeğin 

mikroskobik teorisi pek gelişmemiştir. Çekirdeklerin çeşitli özelliklerini ortaya çıkaran 

herhangi bir modelin kullanılmasına duyulan en önemli gereksinim, bu model içerisinde 

çok sayıda deneysel sonucun değerlendirilmesidir. Bu sebeple, model secimi deneysel 

verilerin miktarına bağlı olduğundan, çekirdek teorisinin fenomenolojik özellik 

taşıdığını söyleyebiliriz. Fenomenolojik teoriler bazı özelliklerini açıklamada sınırlı 

olmasına rağmen, gerçek çekirdek teorisinin oluşmasında önemli yeri olup, 

çekirdeklerin çeşitli özellikleri arasında bağlantı kurmaya ve onları izah etmeye 

yardımcı olurlar. Bunun sonucu olarak fenomenolojik teorilerin ilk deneysel 

araştırmalar için yararlı olduğu söylenebilir.  

Bu çalışmada çift-çift çekirdeklerin kolektif durumlarının hesaplanmasına imkan 

veren bir model geliştirilmiştir. Bu modelde elde edilen formüller, aynı zamanda 

uyarılmış durumlarının kuant karakteristiklerini ve bu durumlar arasındaki geçiş 

ihtimalliklerini ifade ettiği görülmüştür.  

Anahtar Kelimeler: Çift-çift çekirdek, Deforme çekirdek, Đhtimallik. 
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ABSTRACT 
 
 

THE INVERSTIGATION OF THE EXCITED STATES OF EVEN-EVEN 
NUCLEI WITH THE HELP OF GENERALICED MODEL 

 
 

SÖNMEZ, Reşat 
Msc, Physics 

Supervisor: Asist. Prof. Dr. Rafet YILMAZ 
May 2010, 49 Pages 

 

Microscopic theory of the nuclei, which enables numerical calculation of the 

parameters, defining the structure of nucleon, deformed state of nucleon and inertia of 

nuclei, has not been improved yet so far. The most important model’s necessity 

exploring various properties of nuclei is that it cantains many experimental data. Owing 

to the choice of the model is dependent on quantity of experimental data, it can be said 

that the theory of nuclei has phenomenological properties. Although phenomenological 

theories are very restrict to explain some nuclei properties they which have important 

play in constriction of nuclei theory and help to relate between various properties of 

nuclei. Consequently can be said that phenomenoligical theories are useful for 

explanations of the first experimental investigations.  

In this study a model providing possibility for calculation of even – even nuclei 

collective state has been developed. Obtained formulac in this model explain quant 

characterises of excited states and transition possibilities between them.  

Key Words: Even – even nuclei, Deformed nuclei, Possibility.  
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ÖNSÖZ 

Çekirdek kuvvetleri belirsizliklerini koruduklarından bilim insanları deney 

sonuçlarını açıklayabilmek için süre gelen zamanda çeşitli çekirdek modelleri ileri 

sürülmüşlerdir. Çekirdeklere ait çeşitli özelliklerin ve deney sonuçlarının tümünü 

açıklayabilmek üzere birbirinden farklı birçok modele başvurulmaktadır. En çok 

kullanılan modeller Bohr tarafından ileri sürülen sıvı damlası modeli ile Mayer-Jensen 

tarafından geliştirilen tabakalı çekirdek modelidir. Biz bu çalışmada, sıvı damlası 

modeli ve tabakalı çekirdek modelin bir birleşimi olan Genelleştirilmiş Modeli 

kullanacağız.  

Genelleştirilmiş Model 1950’li yıllarda Aage Bohr ve Ben Mettelson tarafından 

geliştirilmiştir. Bu modele göre çift-çift çekirdeklerin uyarılma durumları ve 

spektrumları, dönme-titreşim durumları gibi özelliklerinin nasıl değiştiği incelendi.  

Bu çalışmanın, bundan sonra yapılacak bu tür çalışmalara katkı sunacağını 

umuyorum. Bu çalışmayı bana öneren değerli hocam Sayın Prof. Dr. Ramiz 

RASĐMGĐL’e, danışmanım Yrd. Doç. Dr. Rafet YILMAZ’a ve değerli Fen Bilimleri 

Enstitüsü personeline teşekkür ederim.  

Reşat SÖNMEZ 

                                                                          Mayıs 2010 Van.  
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γo Çekirdeğin temel durumdaki enine titreşimlerini karakterize eden parametre.  
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β Çekirdeğin boyuna titreşimlerini karakterize eden parametre.  

β0 Çekirdeğin temel durumdaki boyuna titreşimlerini karakterize eden parametre.  

β1 Çekirdeğin uyarılmış durumdaki boyuna titreşimlerini karakterize eden parametre.  
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H Hamilton fonksiyonu. 
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R (Iτ) Üst enerji seviyelerinin 1. uyarılmış seviyeye oranı. 

ε  Elipsoit biçimini almış çekirdeklerin şekil değiştirme parametresi  
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1. GĐRĐŞ 

Çekirdeğin sıvı damlası ve tabaka modelleri birbirinden çok farklı yollarla, 

bilinen çekirdek davranışlarını açıklayabilmektedir. Aage Bohr (Niels Bohr’un oğlu) ve 

Ben Mottelson’un Genelleştirilmiş Modeli, her iki modelin öğelerini, sonuçlarını 

başarılı çıkan uyumlu bir biçimde birleştirmektedir. Genelleştirilmiş Model, çift-çift 

olmayan bütün çekirdeklerin küresel olamayan şekilleri ve dönen bir çekirdeğin 

merkezkaç kuvveten doğan şekil bozukluğu gibi unsurları hesaba katar. Ayrıntılı kuram, 

çekirdeklerin gama ışını tayfları ve diğer yöntemlerle bulunan uyarılmış enerji düzeyleri 

ve aralarındaki uzaklıkları açıklayabilmektedir (Arya, 1999).  

Tabaka Modelinin N=126 nın bir nötron sihirli sayısı olduğu yolundaki 

öngörünün deneyle uyum içinde olduğunu biliyoruz. Fakat Z >109 olan çekirdekler 

bilinmediğinden Z = 126 nın bir proton sihirli sayısı olup olmadığını bilmiyoruz ya da 

bu doğrulanmamaktadır. Hatta Z = 82 den sonraki proton sihirli sayısının, çekirdekteki 

protonların Coulomb potansiyel enerjilerinden dolayı, Z = 126 dan küçük olması 

olasılığı vardır. Büyük Z için bu enerji, çekirdek potansiyel enerjisine göre önem taşır. 

Acaba bu potansiyel değişimi sihirli sayıları ya da proton ve nötron sayılarını nasıl 

etkilemektedir? 

Genelleştirilmiş Model bu sonucu biraz daha değiştirerek Z = 110 un Z = 82 den 

sonraki proton sihirli sayısı için daha iyi bir örnek olduğunu ileri sürer. Dolayısıyla Z = 

110 ve N = 184 olan bir çift-çift nüklit diğer ağır nüklitlerden daha kararlı olmalıdır. 

Böyle nüklit ya da nüklitler doğada veya laboratuarda henüz bulunmamıştır. Fakat kütle 

numarası A = 294 civarında bir kararlılık adasının varlığı için öne sürülen düşünce o 

kadar dikkat çekicidir ki, bu konuda arama sürmektedir. Genelleştirilmiş modelin 

Schrödinger denkleminin çözümünün (Kumar ve Borranger, 1967) bazı 

varsayımlarından faydalanılarak çift-çift çekirdeklerin uyarılmış durumdaki enerji 

düzeyleri ve bu enerji düzeyleri arasındaki geçiş ihtimallikleri hesaplanması ve deneysel 

verilerle karşılaştırılması üzerinde durduk bu çalışmamızda.  



2. LĐTERATÜR BĐLDĐRĐŞLERĐ 

Çekirdekleri oluşturan parçacıkların arasındaki etkileşme kuvvetleri 

belirsizliğini koruduğundan, bilim insanları süregelen zamanda çeşitli yaklaşım 

modelleri önermişlerdir.  

Kolektif model temel alınarak,  güçlü etkileşimde bulunan partiküllerin toplamı 

olarak bağımsız partiküller modeli, yani; çekirdeğin ortalama alanında nükleonların 

serbest dolaştığı ileri sürüldü (Bohr, 1952). 

Yapılan çalışmada çekirdeğin uyarılmış durumlarının tek partiküllü ve kolektif 

durumlarından oluştukları izah edilmiştir (Bohr ve Mottelson, 1953). 

Önerilmiş olan kabuk (shell) modelinde kabuklar giderek artan enerjili 

nükleonlarla Paulli Dışarlama ilkesine uyacak şekilde doldurulurlar (Mayer ve Jensen, 

1955).  

Kolektif modeldeki potansiyel fonksiyonunu küremsi bir kuyu potansiyeli 

şeklinde tanımlayıp bir tek tanecik için seviyelerin enerjisini şekil değiştirmenin 

fonksiyonu olarak incelemiştir (Nilsson, 1955). 

Uyarılmış durumlar, γ → effγ ve effββ →  değişimleri yapılarak dönel operatör 

yardımıyla karakterize edilirler (Davidov ve Filippov, 1958). 

Çift-çift çekirdeklerin dönel ve titreşim durumları arasındaki ilişki pertürbasyon 

yöntemi ele alınarak incelenmiş ve bu çekirdeklerin uyarılmış durumdaki 

karakteristikleri hesaplanmıştır (Faesler ve Ark. 1964). 

Genelleştirilmiş modelin tüm çözümleri yapılarak çekirdeklerin uyarılma durum 

enerji seviyeleri formüle edilmiştir (Davidov, 1967).  

Genelleştirilmiş modeldeki schrödinger denkleminin sayısal çözümünü yaparak 

farklı spinlere göre çözümler elde edilmiştir (Kumar ve Borranger, 1967). 

Genelleştirilmiş modelin genel denkleminin çözümü, çift-çift çekirdeklerin 

titreşimleri küçük varsayılarak çözülmüştür (Robotnov ve Seregein, 1969). 

Genelleştirilmiş modelin schrödinger denklemindeki eylemsizlik momentine ait 

kısmın değeri ortalama değerle değiştirilerek küçük titreşimleri için iyi bir uyum 

sağlanmıştır (Suares ve Ark., 1969).  
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Davidov’un dönel elipsoit çekirdekler için geliştirdiğim metodu 0≠effγ  hali 

için kuadropol momentinin hesaplama yöntemini teklif etmişlerdir (Karayev ve Şaripov, 

1972). 

Bütün çekirdeklerin özetini tek ciltlik bir kitap halinde yayınlanmıştır (Lederer 

ve Shirley, 1972). 

Çift-çift çekirdeklerin kolektif yapıları, deformasyonu, dönel ve titreşim 

durumları arasındaki geçişler incelenmiştir (Kenneth, 1987). 

Çift-çift çekirdeklerin enerji düzeyleri ve bu enerji düzeyleri arasındaki geçiş 

ihtimalleri deneysel sonuçlarları bir araya getirilip kitap halinde yayınlanmıştır 

(Begcanov ve Ark., 1989). 

Uranyum ötesi bazı komşu çift-çift çekirdeklerin dönme spektrumları analizi 

yapılmıştır (Rasimgil ve Ark.,2006). 

 



3. MATERYAL VE YÖNTEM 

3.1. Çift-çift Çekirdekler ve Genelleştirilmiş Model 

Çekirdeksel kuvvetler belirsizliğini koruduğunda, çekirdeklerin yapısı hakkında 

geliştirilen modeller genellikle fenomenolojiktir yani yarı deneyseldir. En çok 

kullanılan modeller Bohr tarafından ileri sürülen sıvı dalması modeli ve Mayer–Jensen 

tarafından geliştirilen tabakalı çekirdek modelidir. Sıvı damlası modelinin temel kabulü, 

bir çekirdekteki her nükleonun, bir sıvının molekülleri gibi, sadece en yakın 

komşularıyla etkileşmeleridir. Bununla beraber her nükleonun, tüm diğer nükleonlar 

tarafından oluşturulan bir ortalama kuvvet alanıyla etkileştiği hipotezi de kuvvetle 

desteklenmektedir. Aynı zamanda bu model, çekirdeklerin kararlılığı ve fisyon olayının 

mekanizması gibi konuları da açıklamıştır. Bu model yardımı ile çekirdeklerin 

kütlelerini iyi veren ),( AZfM =  yarı ampirik kütle formülünü elde etmek 

mümkündür(Weizoeker, 1939). Fakat, Z proton sayısı veya N nötron sayısı, sihirli 

sayılar adı verilen 2; 8; 20; 28; 50; 82; 126 ve 184 gibi değerlere eşit olan bazı 

çekirdeklerin komşu çekirdeklere kıyasla gösterdikleri çok daha kararlı durumları sıvı 

damlası modeli ile açıklamak mümkün değildir. Bu eksikliği gidermek için tabakalı 

çekirdek modeli 1948’de Mayer ile Jensen tarafından geliştirildi. Bu modelin 

geliştirilmesi çalışmaları halen de devam etmektedir. Ancak, Z veya N değerleri sihirli 

sayılar arasında bulunan bazı çekirdeklerin kuadropol momentlerinin yüksek değerler 

göstermesi tabakalı çekirdek modeli ile açıklanamamış ve 1953’de A. Bohr ve 

Mottelson tarafından Genelleştirilmiş Model geliştirilmiştir. Genelleştirilmiş Modele 

göre, tabakalı modelin kapalı tabakaları üstünde bulunan nükleonların daha çok yüzeyde 

kalan kolektif hareketleri çekirdekte küresel simetriden ayrılan şekil değişikliklerine ve 

dolayısı ile elektriksel kuadropol momentlerinin yükselmesine sebep olmaktadır. 

Günümüzde de bu modelin geliştirilmesi üzerine çalışmalar devam etmektedir.  

Çekirdeklerin çeşitli özelliklerine ait deney sonuçları Z proton sayısının veya N 

nötron sayısının fonksiyonu olarak gösterildiğinde, Z ve N’nin belirli değerler için, 

özelliklerde (atomlar için Mendelief cetvelinde olduğu gibi) periyodik bir değişim 

ortaya çıkıyor. Z ve N’nin bu  

2; 8; 20; 28; 50; 82; 126 ve 184 
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değerlerine sihirli sayılar adı verilir. Bugün, bu değerlere eşit sayıda nükleonlarla, 

çekirdeklerdeki proton ve nötron tabakalarının dolduğu ve kararlı yapılar meydana 

geldiği kesinlikle bilinmektedir.  

Proton ve nötron sayıları sihirli sayılara eşit olan çekirdeklerde elektriksel 

kuadrupol momentinin çok küçük değerler aldığını ve bu sonucun sihirli ya da çift-çift 

çekirdeklerde küresel simetriye yakın kapalı tabakaların olduğunun bir işaretidir. Sihirli 

sayılara sahip çift-çift çekirdeklerin birinci uyarılmış durumları komşu çekirdeklere 

kıyasla anormal şekilde büyüktür. Kütle numarası 140 ile 190 arasında bulunan 

çekirdeklerin birinci uyarılma enerji değerleri genellikle 0,1 MeV olduğu halde, iki defa 

sihirli olan 
208

Pb82 (N=208-82=126) çekirdeği için bu değer 2,5 MeV tur. Çift-çift 

çekirdeklerde, N nötron sayısının fonksiyonu olarak birinci uyarılmış durum enerji 

seviyelerinin nasıl değiştiği aşağıdaki şekilde gösterilmiştir.  

 

Şekil 3.1.1. Birinci uyarılmış enerji seviyeleri (Tanyel, 1994) 
 

Uyarılma enerjileri, uyarılan çekirdeğin tekrar taban durumuna düşmesi 

sırasında yayımlanan γ -ların enerjisidir. Çift-çift çekirdeklerde uyarılma enerjilerinin 

büyük oluşu, bu çekirdeklerde bir nükleonun kapalı bir tabakadan öteki bir tabakaya 

geçişi ile açıklanabilir. Halbuki, komşu çekirdekler için gözlenen değerler, bir 

nükleonun, bir alt seviyeden başka bir alt seviyeye geçmesinden ileri gelir.  
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Tabakalı çekirdek modelinin temelinde, her bir nükleonun öteki nükleonlardan 

bağımsız olduğu ve bütün öteki nükleonların meydana getirdiği ortalama bir potansiyel 

içerisinde hareket ettiği kabul edilir. Problem, önce uygun bir potansiyel fonksiyonun 

bulunmasıdır. Sonra, bir tek nükleonun bu potansiyel içindeki hareketi incelenir, enerji 

öz değerleri araştırılarak tabakalardan her birinin bağlanma enerjisi bulunur ve Paulli 

Dışarlama ilkesine göre bu tabakaların alabileceği nükleon sayıları hesaplanır. Eğer 

seçilen potansiyel yeter derecede bir yaklaşık sağlıyorsa deneyin gösterdiği sihirli 

sayıların elde edilmesi gerekiyor. Ama tabakalı çekirdek modeli ile ancak ilk üç sihirli 

sayıyı (2, 8, 20 ) elde edebiliriz.  

Öteki sihirli sayıları elde etmek için de 1949’da Maria Mayer ve Jensen, spin-

yörünge çiftlenmesinden ileri gelen bir potansiyel fonksiyonu önerdiler. Đleri sürülen bu 

modele göre, nükleonun yörüngesel açısal momentumu ile spini arasındaki 

çiftlenmeden, büyüklüğü l
r

 ve S
r

 vektörlerinin birbirine yönelmesine bağlı bulunan ve 

merkezi olmayan bir kuvvet meydana gelmektedir. Bu kuvvet L ’si aynı olan 

durumlardaki bozulmayı ortadan kaldırmakta ve seviyeleri toplam açısal momentumu  

2/1ml
rrr

=+= SLJ  

olan seviyeleri ayırmaktadır. l  ne kadar büyükse aradaki fark yani aralık da o kadar 

büyük dolayısıyla enerjideki fark da aynı oranda büyük olur. Daha sonra S
r

 ve L
r

, 

birbiriyle bağlaşarak, büyüklüğü  

h
rr

)1( +JJ  

olan bir J
v

 toplam açısal momentumu oluştururlar. Bir ara bağlaşım biçiminin geçerli 

olduğu bir geçiş bölgesinden sonra, daha ağır çekirdekler JJ
rr

.  bağlaşımı gösterirler. Bu 

durumdan önce her parçacığın iS
r

 ve il
r

’si bağlaşarak o parçacık için büyüklüğü  

h)1( +JJ  olan iJ
r

 oluştururlar, sonra değişik iJ
r

’ler birbiriyle bağlaşarak J
r

 

toplam açısal momentumunu oluştururlar. JJ
rr

.  bağlaşımı çekirdeklerin hepsi için 

olmasa da çoğu için geçerlidir.  

Spin – yörünge etkileşimi için uygun bir yeğinlik kabul edildiğinde her iki sınıf 

nükleonun da enerji düzeyleri Şekil 3.1.2. de gösterildiği gibi dizilir.  
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Şekil 3.1.2. Tabaka modeline göre nükleon enerji düzeylerinin sıralanışı (Beisser, 
1987). 

 

Nükleonların ortalama bir potansiyel içinde hareket etmelerine dayanan tabakalı 

çekirdek modeli, sihirli sayıları dolmuş tabakalı çekirdeklere ait deney sonuçlarını 
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açıklıyor, fakat dolmamış bir tabakadan birden fazla nükleon bulunduğunda, kapalı 

tabakalar dışında bulunan nükleonlar arasındaki çiftlenmelerinde hesaba katılması 

gerekir. Buna göre, çekirdek içindeki bütün taneciklerin birlikte (kolektif) hareketlerini 

göz önüne almak ve bu hareketler sonucu çekirdeğin şeklinin nasıl değiştiği incelemek 

gerekir. Bu şekil değiştirmeye kapalı tabakalar dışındaki nükleonların hareketinden ileri 

gelen kutuplanmanın sebep olduğu kabul edilmektedir. Bu modelde, çekirdeğin özünü 

meydana getiren kapalı tabakaların biçimi ve açısal momentumu önemli rol 

oynamaktadır. Dolu çekirdek tabakasının dönme ve titreşim enerjisinin hesaba katılması 

gerekir. Bu iki tip hareket arasında bir çeşit etkileşmenin göz önüne alınması ile hem 

tabakalı modelin hem kolektif modelin özelliklerini taşıyan genelleştirilmiş model 

ortaya çıkmaktadır. Genelleştirilmiş modelde ortalama potansiyel küresel simetriden 

ayrılır ve zamanla değişir. Bu potansiyel, ilk bir yaklaşıklıkla aşağıdaki gibidir.  

)()()( 22 θo

o YrVrVV +=        (3.1.1) 

Burada )(rVo , merkezi potansiyeldir. )(2 rV , küresel simetriden ayrılmadan ileri 

gelen kuadropol etkidir. )(2 θoY  ise II. basamaktan ileri gelen küresel harmonik 

fonksiyondur.  

)(2 rV  nin ε  şekil değiştirme parametresi ile orantılı olduğu kabul edilir ve ε  

aşağıdaki bağıntı ile tanımlanır.  

[ ])(1)( 0
20 θεθ YRR +=        (3.1.2) 

Yarı eksenleri a ve b olan bir elipsiot için ε  değeri şöyledir:  

).......(

2
0

bar
R

R

ba

ba
−=∆

∆
→

+

−
=ε       (3.1.3) 

Toplam nükleon sayısı A ve kapalı tabakalar dışında kalan nükleonların sayısı n 

olan bir çekirdek için ε ∼
A

n
 dır. Bu sebeple, hafif çekirdeklerde şekil değiştirme 

parametresi büyük değerler alır. Küresel simetriden ayrılıp elipsoit biçimini almış 

çekirdeklerin potansiyel enerjileri, ε  şekil değiştirme parametresinin fonksiyonu olarak 

Şekil 3.1.3.a ve 3.1.3.b deki eğrilerle gösterilebilir. Şeklin ortasındaki eğri, küresel 

simetri gösteren dolu tabakalı bir çekirdeğin potansiyel enerjisidir. Öteki eğriler, kapalı 
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tabaka dışındaki nükleon sayıları git gide artan çekirdeklerin potansiyel enerjilerini 

göstermektedir.  

 

a) 

 

 

b) 

Şekil 3.1.3. a-b. Küresel simetriden ayrılıp  elipoit biçimini almış çekirdeğin potansiyel 
enerjileri(Adler ve Ark., 1956) 

 

0R

R∆
≅ε  şekil değiştirme parametresi ile belirlenen küremsi bir kuyu şeklinde bir 

tek tanecik için seviyelerin enerjisinin şekil değiştirmenin fonksiyonu olarak aşağıdaki 

gibi bir potansiyel fonksiyonu geliştirildi (Nilsson, 1955). 

222
1 2

1
)(

2

1
kxyxkV ++=        (3.1.4) 
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Şekil 3.1.4. Tek bir parçacık için enerji seviyeleri (Nilsson, 1955) 

 

Görüldü gibi (merkezde bulunan) kapalı tabakalardan ayrıldıkça, enerji eğrileri 

KJ z =  değerlerine göre birbirinden ayrılmaktadır. Küresel bir alanda  )0( =ε  jl  

durumunda bulunan bir nükleon, küresel olmayan bir alanda simetri ekseni boyunca 

açısal momentum bileşenleri jjjjK p −−−−= ),1(),......,1(  olan )12( +j  tane durum 

olabilir. Şekil değiştirme yozlaşmayı ya da dejenerasyonu ortadan kaldırmıştır.  

3.2. Genelleştirilmiş Modelde Uyarılma Durumları 

Genelleştirilmiş modelde şekil değiştirmiş çekirdeğin üç çeşit uyartılmasını göz 

önüne almak gerekir.  

i) Nükleonların küresel olmayan potansiyel içinde hareketlerine bağlı öz 

uyartılma durumları 

ii) Kolektif dönme durumları 

iii) Titreşim durumları 
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Genelleştirilmiş modelde öz uyarılma durumları çift-çift çekirdekler için tabakalı 

modellinin aynısıdır; kapalı tabakalar dışındaki nükleonların sayısı artıkça potansiyelin 

biçiminden ötürü, durumlar tabakalı modeldeki değerlerden ayrılır. Şimdi, şekil 

değiştirmiş çekirdeğin kolektif hareketlerini ele alarak, dönme ve titreşim durumlarına 

bağlı olarak uyartılma durumlarına bakalım.  

1950’li yıllarda uyarılmış çekirdek durumlarının şekli hakkında A. Bohr ve B. 

Mottelson, çekirdeklerin küresel olmadığını ima ediyorlardı. Genelde, temel durumda 

olan çekirdekler küresel, asimetrik olan çekirdekler ise z-ekseni boyunca uzanmış veya 

eğilmiş elipsoit şeklinde olurlar. Nükleer dönme hareketi sadece denge şekli küresel 

olmayan çekirdeklerde gözlenebilir. Bu çekirdekler, küresel şekilden önemli ölçüde 

sapmalara sahip olabilirler ve deforme olurlar.  

 

Şekil 3.2.1. A 150-190 ve A>220 aralığındaki çekirdeklerin deforme olması (Kenneth, 
1987) 

 

Deforme çekirdeklerde tek parçacık durumlar için  

)(.......)(......).....,,( ,,,21,, ∑=Ψ
k

iKM
j

iKMnMJ Dqrrr θϕ αα    (3.2.1) 
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Wigner tarafından Euler açılarına bağlı bir fonksiyon geliştirilmiştir. 

.......)(.......,, iKM qαϕ  sistemin radyal fonksiyonu, K kuant sayısı baş açısal 

momentumunun z-ekseni üzerine iz düşümüdür. Eğer sistemin eksenel simetriye sahip 

olmayan bir koordinat sistemi merkezi varsa ζηξ ,,  koordinatları kullanılır ve 

ψπθππϕψθϕ −−+→ ,,,,  olur.  

Bu durumda Wigner fonksiyonu  aşağıdaki gibi oluşur.  

J

KM

JJ

KM DD −−→ ,, )1(         (3.2.2) 

Fiziksel sonuçlar eksenel yönünü seçmeye bağlı olmadığından (3.2.1) 

fonksiyonu aşağıdaki gibi olur.  

{ })()1()(....)(........)(.... ,,,,,, i

J

KM

KJ

i

J

KMiKMiMJ Dqr θθϕψ αα ∆−+= +     (3.2.3) 

Bu fonksiyon, radyal fonksiyonun paritesine (teklik – çiftlik) bağlı olur. Çift-çift 

çekirdeklerde, yani, K=0 olduğunda j, yalnızca 0,2,4,6…. değerinde olabilir. Buna göre 

çekirdeğin dönme enerjisi kuantum mekaniksel olarak aşağıdaki gibi olur.  

))1()1((
2

2

+−+= KKJJ
I

Ed

h
      (3.2.4) 

Burada I, eylemsizlik momentidir. Biz çift-çift çekirdeklerle ilgilendiğimizden 

bu ifade (K=0) 

)1(
2

2

+= JJ
I

Ed

h
        (3.2.5)  

şeklinde olur. Görüldüğü gibi bu terim, iki atomlu bir molekülün dönme enerjisine 

benzemektedir. Burada K = 0’ın sebebi, çift-çift çekirdeklerin, zıt açısal momentumlu 

nükleonların ikişer ikişer çiftlenmesinden kaynaklanmaktadır.  

Bu dönme enerji değeri için Hf180
72  çekirdeğinin dönme spektumu aşağıdaki gibi 

olur.  
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Şekil 3.2.2. Hf180
72  çekirdeğinin dönme spektrumu (Tanyel, 1994) 

 

Deforme çekirdekler için verilen bu dalga fonksiyonları, çekirdeklerin dönme 

hareketi yapmasına müsaade eder ve her parçacık durumu üzerine I(I+1) enerji aralığını 

takip eder. 

Dönme enerji düzeylerinin iyi örneklerinden biri olan Hf177  çekirdeğinin enerji 

düzeyleri aşağıdaki şekildeki gibi olur.  
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Şekil 3.2.3. Hf177 ’nin enerji düzeyleri (Kenneth, 1987) 

 

Kabuk modeline göre enerji seviyeleri N, l , J kuant sayıları ile belirlenirdi, N baş 

kuant sayısı olup enerjiyi sembolize eder, l, çekirdeğin yörünge açısal momentumu, J 

ise toplam açısal momentumu karakterize eder. Eğer deforme potansiyel küresel 

potansiyel ile aynı davranışı gösterse idi toplam açısal momentum korunmaz yalnız iz 

düşümleri korunurdu. Bu da gösteriyor ki çekirdeğin enerji seviyeleri açısal 

momentumun z ve z′  eksenlerinin iz düşümü ile belirlenir. Potansiyelin dejenere 

olmasından dolayı N, l , J kuant sayıları yerine [ ]ΛzNnK π  kuant sayıları gelir. Toplam 

açısal momentum JRI
rrr

+=  dir. R, çekirdeğin toplam dönel momenti; J, çekirdeğin 

dahili hareketinden kaynaklanan toplam açısal momentumudur. Deformasyon 

parametresi µ - olarak alınırsa 0>µ  olduğunda N tane kabukta K= ½ durumunda 

Nnz =  olur. Üs olarak ifade edilen π , seviye paritesidir. Burada µ  aşağıdaki gibidir: 
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3/1
0

53

4
ARR

R

R
ort

ort

=
∆

=
π

µ  

R∆  küresel simetriden ayrılan yani deforme olan çekirdeğin elipsoit şeklinin büyük yarı 

ekseniyle küçük yarı ekseni arasındaki farktır.  

Çekirdeğin az bir deformasyona sahip olduğunu göz önüne alınarak çekirdek 

enerji seviyelerinin m- kuant sayısına bağlı olarak 12 +J  dereceden dejenereliğe 

sahiptir. Bu durumun hamiltonieni,  

2
0 IDIsCHH NN

av

av ++=  şeklinde seçilip ve  

( )2222222
0

22

1
zwywxw

m

m
H zyx

av ′+′+′+∆= ′′′  olarak alınırsa;  

)
3

4
1)((

)
3

2
1)((

2

0

2

2

0

22

δδ

δδ

−=

+==

′

′′

ww

www

z

yx

 

şeklinde belirlenir.  

20
2

0

20
0

00

000

6/132
0

2

0

53

4

)(
2

)
27

16

3

4
1()(

YrwH

r
w

H

HHH

zmwzymwyxmwx

ww

av

π
δ

δδδ

δ

δ

=

+∆−=

+=

′=′=′=

−−=

 

Bu durumda kuant sayıları Λ,l  ve Σ olur ve denklemler şu görünüşü alır.  

〉ΛΣ+=〉ΛΣ ll NwNNH 00 )2/3(  olur.  

Enerji durumları ise, [ ]ΛzNnK π  ile belirlenir. N kabuğundaki en küçük k=1/2 

değeri için Nnz =  olur. Bundan sonra gelen k’nın değeri için 1−= Nnz  olur ve k’nın 

diğer değerleri ise ,........3,2 −−= NNnz  şeklinde devam eder.  
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Çift-çift çekirdekler için kolektif model gerçek çekirdekler için sadece yaklaşık 

olarak geçerli olan ideal bir modeldir. Gerçek çekirdeklerin yapısı basit modellerin ön 

gördüğünden çok daha karmaşıktır. Bundan başka gerçek çekirdeklerde bir tür yapıyı 

göz önüne alıp sadece diğeri yok sayılamaz. Dolayısıyla kolektif özellikleri ağır basan 

çekirdekler bile tek parçacık etkisi gösterirler, kabuk modeli, çekirdeklerdeki 

nükleonların oluşturduğu kor şimdiye kadar ihmal edilen kolektif etkilere katkıda 

bulunabilir. Birçok çekirdeğin yapısı tek-parçacık ve kolektif hareket olarak birbirinden 

kolayca ayrılamaz ve her ikisinin birleşimi göz önüne alınmalıdır.  

Đşte bu çalışmada matematiksel olarak karmaşık olan genelleştirilmiş nükleer 

model ele alınacaktır.  

Çekirdek modelleri iki ana yönde gelişmiştir. Bunlardan birincisi güçlü etkileşen 

nükleonların toplamı diğeri ise çekirdeğin ortalama alanında yaklaşık olarak serbest 

dolaşan nükleonlar topluluğudur.  

A. Bohr ve Mottelson tarafından teklif edilen genelleştirilmiş çekirdek modeli bu 

iki yöntemi de içerir. Bu modelin esasına göre çekirdeğin şekli dönel elisoittir.  

Günümüzde, çekirdeklerin uyarılmış durumları, her bir nükleonun hareket 

durumuna ait olan tek nükleonlu ve çok nükleonlu hareket durumlarına ait olan kolektif 

durumlara ayrılabilir. Çekirdek maddesine sıkıştırılmamış olarak bakıldığından, 10 

MeV’den daha düşük enerjili uyarılmış durumlarda sabit yoğunlukta çekirdekteki 

nükleonların dağılımı değişir. Aslında bu dağılımın değişimi çekirdek formunun 

değişimine sebebiyet verir.  

Kolektif ve tek partiküllü hareketler 1.5-2 MeV enerjili çiftlenme efektinden 

dolayı birbirinden ayrılır. Genelde serbest −β  ve −γ ’lar için Schrödinger denkleminin 

analitik çözümü olmadığından böyle bir ayırım kabul edilmiştir.  

Bu bir adyobatik yaklaşım olarak bilinir ve çift-çift çekirdeklere daha iyi bir 

şekilde uygulanabilir.  

Davidov ve Filippov adyobatik yaklaşımlarında uyarılmış durumları tasvir eden 

Hamiltoniyen de effββ →  ve effγγ →  değişimi yapmışlardır.  
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Davidov ve Arkadaşları, 01 ββ ≥  ve 01 γγ ≥  etkilerini hesaba alabilmek için 

γ =0 alarak β ’yı serbest bıraktılar. Kolektif durumları hamiltoniyenine ve eylemsizlik 

momentine ait olan ifadesinin değerini orta değeriyle değiştirerek 

)
3

2
((sin

3

2
(sin 22

ii XX
π

γ
π

γ −=−   Schrödinger denklemini çözmeye başladı.  

Çift-çift çekirdeklerin uyarılmış enerji durumlarını hesaplamak için titreşim 

hareketlerinin dönel hareketler ile etkileşmesini pertürbasyon yaklaşımı hesaba 

alınmıştır.  

Kumar ve Boranger birkaç seviye için genel Schrödinger denklemini sayısal 

olarak çözdüler.  

Benzer yaklaşımla Robotnov ve arkadaşları 6-8 spinli seviyeye kadar 

hesaplayabildiler. Daha fazlası için yapamadılar.  

Küresel olmayan çift-çift çekirdeklerin yüzeysel kuadrapol titreşimlerine ait olan 

durumların Hamilton fonksiyonu şu görünüştedir.  

( ) ),(
1

2 2

2

γβ
β

γβ VTTT
B

h
H rot +









++=      (3.2.6) 

Burada βT -radyal titreşimin hamiltonu γγ −T  titreşimin hamiltoniyeni, −rotT  

dönel durumun hamiltoniyeni olmak üzere;  

∑
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1
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1

λ
π

γ

γ
γ
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β
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β
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ile ifade edilirler. Potansiyel ise;  

2
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−
Λ−Λ

−
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−
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şeklinde yazılır. Burada değişkenlerin değişim aralıkları aşağıdaki gibi yazılabilir.  
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πθπθπθ
π

γβ 20,0,20,
3

0,0 321 ≤≤≤≤≤≤≤≤∞≤≤   (3.2.7) 

Bu durumda Schrödinger denklemi şöyle olur.  
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2
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0

ii

E
x θγβψ

β
θγβψ =                                                             (3.2.8) 

Biz bu genel denklemin tüm varsayımlarından faydalanarak çift-çift 

çekirdeklerin uyarılmış enerji düzeylerini inceleyeceğiz. 



4. BULGULAR 

(3.2.8) ifadesiyle verilen Schrödinger denkleminin hem analitik çözümünün 

olmayışı hem de teorimizin fenomenolojik bir teori oluşu Hamiltoniyeni 

),(),,( etkilesme ii HHH θβγθγβ ↔+=      (4.1) 

şeklinde yazmaya ve eylemsizlik momenti ile potansiyel enerji ifadesinde effγγ →  

değişimi yapmaya olanak sağlamıştır.  

Küresel olmayan çift-çift çekirdeklerin kuadrupol uyarılmasına ait denklemler 

aşağıdaki şekilde yazılabilir.  

( )
( )

0)(
)(2

3cos3cos

2

)(

)(4

2
0

2

04

00

0

2

0

4
0

2
0

2

2

=





















+−
Γ

−

−
−Λ−Λ

−
−

+−−

Λ

Λ

β

β
γγ

β

ββ

βµβ

ββ

βββ
v

v

eff

F
IE

d

d

d

d

   (4.2) 

0)(33
2

2

=







−−− γ

γ
γ

γ
λPL

d

d
ctg

d

d
      (4.3) 

0)(
2

)(

3

2
sin

4

1 3

1

2

2

=












−















−∑

−

−

ii

n

neff

I
In θϕ

επ
γ τ

τ     (4.4) 

(4.2), (4.3) ve (4.4) denklemler sistemi çift-çift çekirdeklerin uyarılmış durumlarını 

tasvir eden denklemler sistemi diye postula edilebilir. Burada L-dış titreşimlerin kuant 

sayısı olup;  

2

)(I
L τε

−Λ=  ;  
[ ]

γ

γ
ε

τ

τ
3sin

)3(sin89)1(33
)(

2

2−−+
=I   (4.5) 

şeklinde tasvir edilir.  

)1(9 += λλL  değerine eşit olduğunda (4.1) denkleminin çözümü Legendre 

polinomları olur. (4.2) denklemi ise h240 ≤≤ I  spin değerleri için çözülmüştür.  

Eğer (4.2) denkleminde 

)()( 2 βββ vv GF Λ
−

Λ =         (4.6) 

fonksiyon değişimi yapılırsa  
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0)()(),(
2 2

22

=







−+− ΛΛ βγβ

β

β
vveff GIEV

d

d
    (4.7) 

denklemi elde edilir. Burada 

( ) ( )
2
0

4

2
0

2'
0

2

2
00

2
0

4

2'
0

222
),(

βµ

ββ

β

β

βµ

ββ
γβ

−
−

Λ−Λ
−

−
=effV     (4.8) 

olup, potansiyel enerji rolünü oynar ve  

( ) )1(3cos3cos
2

1 0

2

04

4

0
'
0 αβγγ

µ
ββ −=








−

Γ
−= eff     (4.9) 

dir.  

),( effV γβ ’yi 
2

)(
(

I
L τε

β +=ΛΛ  çekirdek enerjisini −τ,I  kuant sayıları toplamı 

ile karakterize eden ve denklemleri ayırma sabiti) değeri etrafında kuvvet serisine 

açılarak ikinci mertebeden sonraki terimleri ihmal edilip, kuadratik hat ile sınırlansın, 

yeni  

ΛΛ

ΛΛ −
=

βµ

ββ

ı

ıP
Z

)(
        (4.10) 

değişkenini kullanıp ve  

)()( 2

2

zUeG v

z

v Λ

−

Λ =β         (4.11) 

ifadesi ile fonksiyon değiştirilirse (4.7) yerine  

0)(22
2

2

=







+− Λ zUv

dz

d
z

dz

d
v       (4.12) 

denklemi elde edilir. (4.10) formülündeki Λ1P ve Λ1µ ’nun, 1µ  parametresine ve Λ  

sabitine bağlılığı aşağıdaki bağıntılarla verilmektedir:  









++=−ΛΛ

2

)(
)1(9)1( 4

11
3

1

I
PP τε

λλµ      (4.13) 

0

1
1

β

β
=ΛP ’dır.  
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4

1

1

11

3
4

−

Λ

Λ 







−=

P
µµ         (4.14) 

burada 

11
0

1

2
04

4
1

01 )1()3cos3(cos
2

1 −−
Λ

−

−
ΛΛ −=








−

Γ
−= αββγγ

µ
ββ effP   (4.15) 

1

1

2
04

4

1 )1()3cos3(cos
2

1 −

−

−=







−

Γ
−= αµγγ

µ
µµ eff    (4.16) 

2
04

4

)3cos3(cos
2

γγ
µ

α −
Γ

= eff       (4.17) 

dir.  

Bundan sonra daha önce tanımlanmış olan, çekirdeğin deforme halini 

karakterize eden µ  ve 0Γ  parametreleri yerine çekirdeğin genel deformosyonunu 

karakterize 1µ  parametresi kullanacağız.  

(4.17) denkleminin çözümü 

)()( zNHzU vv =Λ         (4.18) 

şeklindedir. Burada 

[ ] ∑
∞

=

−







 −
Γ

−
−Γ=

0

1

2
)2(

!

)1(
)(2)(

k

k
k

v

vk
z

k
vzH      (4.19) 

birinci tür Hermits fonksiyonları olur. Burada −Γ Gamma fonksiyonudur.  

Çift-çift çekirdeklerin uyarılmış enerji seviyelerinin (
2

0

2

ββ ′

h
 biriminde) 

değerlerini hesaplamak için;  

2
1

0

4
1

11

1
2
1

2

1

2

)1)(12(3
42

1

)(
µµµ

λτ

+
−

−−
+−

+
= ΛΛ

Λ

v
PP

P

v

IE
v          (4.20) 

bağıntısı kullanılır (Davidov, 1967). 



 22 

v- kuantum sayısı 0
1

1 =







−

Λ

Λ

µ

P
H v  denkleminin kökleri olur. Burada 

4

1

1

11

3
4.

−

Λ

Λ 







−=

P
µµ  

dir.  

vIi τλ=  ve '''' vIf λτ=  durumları arasındaki E2- geçiş olasılıkları ( π16/
2'

0Q  

biriminde, '
0Q  çekirdeğin dahili kuadropol momenti) aşağıdaki bağıntı kullanılarak 

hesaplanır.  

2

2'
0

'''''
12

5
),2( ><Σ

+
=→ vIMqvMI

I
fiEB m τλ

β

β
λτ    (4.21) 

{ } 
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
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)(cos

. 2
2,

2
2,

2
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0
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mmmm DDD

Q
q     (4.22) 
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





−
Γ

−=
2

04
0

2

0
'
0 )3cos()3cos(

2
1 γγ

µ
effQQ      (4.23) 

olup, )( i

k

mnD θ ’ler Wigner fonksiyonları, −iθ Euler açılarıdır. effγ  ve  1µ - çekirdek 

maddesinin enine ve boyuna ait titreşimlerini karakterize eder. effγ  ve 1µ  

parametrelerine bağlı olan çekirdek dalga fonksiyonları 

)()()()(),,(
2

0

22
1

)(

)(

2
iIM

P

vi eHPN θϕββγθγβψ τ
βµ

ββ µ

Λ

Λ −
−

−
ΛΛ=    (4.24) 

∑ >= IMKA effIKiIM )()( γθϕ τ       (4.25) 

{ })()1()(
16

12
,2 i

I

KM

I

i

I

MK DD
I

IMK θθ
π

−−+
+

>=     (4.26) 

(4.21) bağıntısı aşağıdaki şekilde yazılabilir:  

)(),2(),2( 2 βλττλλττλ ifa SIIEBMIIMEB ′′′→=′′′′→    (4.27) 
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Burada −−′′′→ γλττλ ),2( IIEBa  titreşimlerini içeren çekirdek sert asimetrik 

durumları arasındaki geçiş olasılığıdır, )(2 βifS  çekirdek şekil değişimi ve −β  

titreşimlerini içeren bir sabittir.  

2

2
12

5
),2( ∑

′

′
′′ >′′′<

+
=′′′→

KK

mIKKIa IKqKIAA
I

IIEB λλλττλ ττ   (4.28) 

{ +>′<′′+>=′′′< λγλλλ cos)02(122 KIKIIIKqKI m  

        





>′<′′−
+

+
+

+′′
+

+
+

′

′

λ
γ

λ
δ

δ

δ

δ

2

sin
)2,2(

1

1

)22(
1

1

0

0

0

0

KIKI

KIKI

K

K

K

K

  (4.29) 

Şimdi bu ifade de yer alan değişenleri hesaplayıp yerine koyalım.  

∫ ′>=′< λγλγλ λλ dPP coscos       (4.30) 

λγPcos  Legendre polinomlarının tekrarlama bağıntısından bulunur. Buradan 

integral bağıntımız 

1,1,
12

2

1232

2

12

1
cos −′+′

−+
+

++

+
>=′< λλλλ δ

λλ

λ
δ

λλ

λ
λγλ    (4.31) 

olarak bulunur.  

Şimdi yine aynı şekilde (4.29) denkleminde bir başka bilinmeyen olan  

∫ ′>=′< γγλ
γ

λ λλ dPP sin
2

1

2

sin
      (4.32) 

integralini Legendre polinomlarından faydalanarak çözülürse bu integral şu görünüşü 

alır.  

λλδ
λ

λ
γ

λ ′
+

−>=′<
12

2

2

1

2

sin
      (4.33) 

(4.29) denklemindeki Clebsch-Gordan katsayılarını hesaplayabilmek için şu 

genel ifadeden faydalanılır.  
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    (4.34) 

(4.29) çalışmada Clebsch-Gordan katsayıları )02( KIKI ′′  ve )22( KIKI ′′  

şeklinde olduğundan ve bizde 21 mmM +=  olduğundan 1
21, =+mmMδ  ve 0=n  olur. 

Buna göre katsayıları şu görünüşü alır.  
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x  (4.36) 

Şimdi (4.29) denklemimizi değişik geçişlere uygulayabiliriz. Ama (4.28) 

denklemindeki τ
IKA  ve τ ′

IKA katsayılarını hesaplamak gerekir. Bu katsayılar daha önce 

değişik bandlar için hesaplanmıştır. E2 geçişleri üzerine çalıştığımızdan bulunmuş 

değerleri direkt olarak alınmıştır.  

Bu adımdan sonra (4.28) denklemi mümkün olan tüm geçişlere uygulanıp 

hesaplanabilir.  

Artık geçiş ihtimalliğini hesaplamak için sadece (4.27) ifadesindeki )(2 βifS  

fonksiyonunun belirlenmesi gerekir. Bu fonksiyon matrik element hesaplama metodu 

ile belirlenebilir ve gerekli katsayılar hesaplanabilir.  
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Bu ifadeler (4.37) integralinde yerine yazılırsa;  
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elde edilir. Daha net bir şekilde 
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olarak yazılabilir. Burada 
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özel olarak 11 ≈= vv  durumu için 
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[ ]{ } 2

1
2

1111 )exp(2)1(1)(
−

−−Φ+= τλτλτλ τλµπτλ III XPIIN    (4.46) 

dır.  

Böylece farklı bandlar için de −ifS  fonksiyonuda belirlenmiş oldu. Şimdi artık 

geçiş ihtimallikleri teorik olarak bütün bandlar için hesaplanabilir.  

Teorik ve deneysel sonuçların karşılaştırılmasında kolaylık sağlamak için 

çekirdeğin herhangi uyarılmış enerji seviyesini değerinin +2  spinli uyarılmış enerji 

seviyesinin değerine oranı için (4.47) ifadesi kullanılabilir.  

)2(

)(
)(

00 IE

IE
IR n

n

v

v

τ
τ

λ

λ =         (4.47) 

Yine teorik ve deneysel sonuçları iyi bir şekilde karşılaştırmak için E2- geçiş 

ihtimallikleri için şöyle bir oranın kullanılması daha uygundur. Bu orana olasılık oranı 

denir.  

),2(

),2(

fiEB

fiEB

′→′

→
        (4.48) 

Matematiksel hesaplamalar deformasyon parametresinin 7.01 =µ ’den düşük 

değerleri için v’nün ,.......)2,1,0( ≈= nvv  yaklaşık olarak tam sayı değerler aldığını 
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göstermiştir. Bu durumda çift-çift çekirdeklerin enerji durum spektumları kuantum 

sayılarının değerlerine göre aşağıdaki durum bandlarına ayrılabilir:  

,.........4,2,0,0,00 ==≈= Ivv λ  (Ana dönel band). 

,.........4,3,2,0,00 ==≈= Ivv λ  (Anomal dönel band).  

,.........4,2,0,0,11 ==≈= Ivv λ  (Dönel - β -  titreşim bandı).  

,.........4,2,0,1,00 ==≈= Ivv λ  (Dönel -γ - titreşim bandı).  

Hesaplamalar −1µ  parametresinin sıfır değerine doğru yaklaşıldığında ( effγ ’nin 

bir sabit değeri için) yukarıda belirlediğimiz bandlar için )( τIR ’lerin değerleri farklı 

hızlarla artar (hatta, dönel β - titreşimli banda ait olanlar sonsuza gider) ve farklı 

bandlar birbirinden ayrılır (deforme olmuş çekirdekler sahasına aittir). Böylece 11 =µ  

değerine doğru yaklaştığında ise )( τIR ’lerin değerlerinin azalması sonucunda bandlar 

birbirine yaklaşır ve bunların bir-birinden ayrılması zorlaşır (küresel çekirdekler 

sahasına aittir). Bütün çift-çift çekirdeklerin spektumunun incelenmesi, −1µ  

parametresinin sıfır ile bir arasında, −effγ  parametresinin ise 00  ile 30 0  arasında 

değerler aldığını gösterir.  

Aşağıda 190150 ≤≤ A  aralığına ait olan bazı çift-çift çekirdekler için )( τIR  ve 

E2- geçiş olasılıklarının hesaplanan değerleri ile deneysel değerler karşılaştırılmıştır. 

Karşılaştırma teorik ve deneysel değerler arasında iyi bir uyumun olduğunu 

göstermektedir.  

Aşağıda aldığımız çekirdeklerin deneysel değer verileri Begconov ve 

arkadaşlarının nükleer spektroskopisi çalışmasında alınmıştır. 
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Çizelge 4.1. 90
152
62 Sm ’nın deneysel enerji düzeyleri 

Ana Band β Titreşim Bandı γ Titreşim Bandı Anomal τ=I Bandı Anomal τ=2 Bandı 

 
 
 
 

14+  2733.63 
 
 
 

12+  2144.88 
 
 
 
 
 

10+  1609.36 
 
 
 

8+  1125.97 
 
 
 
 
 

6+  706.94 
 
 
 

4+  366.48 
 
 
 

2+  121.780 
 
 
 

0+  0 

14+ 2976.7 
 
 
 

12+  2525.6 
 
 
 

10+  2079.66 
 
 

8+  1666.48 
 
 

6+  1310.05 
 
 

4+  1022.96 
 
 

8+  810.4 
 

02
+ 684.7 

 
 
 
 
 
 
 
 
 

4+  1612.96  
 
 

2+  1292.80 
03

+  1082.86 
 
 
 
 

9+  2375.5 
 
 

8+  2139.7 
 
 

7+  1945.82 
 

6+  1728.38 
5+  1559.53 

 
 

4+  1371.75 
3+  1233.88 
21

+  1085.90 
 
 
 
 
 
 
 
  

22
+  1769.1  
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Çizelge 4.2. 90
152

62 Sm  Çeşitli bandlar arasındaki geçişlerin deneysel hesaplamaları. 

90
152

62 Sm  

Çekirdeği Đçin 
Ana Band Anomal τ=1 Band β- Titreşim Bandı γ Titreşim Bandı 

Yeni 
Band 
(Anomal 
τ=2 
Bandı) 

  009.324 =→R  136.123 =→R  494.104 =→R   193.102 =→R  - 

 800.526 =→R  263.124 =→R  913.106 =→R  489.104 =→R  - 

fiR
→

 240.928 =→R  436.125 =→R  433.208 =→R   - 

 210.13210 =→R  590.126 =→R  037.3010 =→R   - 

 640.17212 =→R  790.127 =→R  683.3012 =→R   - 

 500.22214 =→R  970.128 =→R  347.4014 =→R   - 

  187.229 =→R    - 

      

 860.1
)0(0)8.121(2

)8.121(2)5.366(4
=

→

→  11.1
)8.121(2)9.1085(3

)5.366(4)8.1233(3
=

→

→  375
)8.121(2)0.1023(4

)4.810(2)0.1023(4
=

→

→  4.41
)8.121(0)0.1083(0

)4.810(2)0.1083(0
=

→

→  - 

),2(

),2(

fiEB

fiEB

′→′

→
 158.1

)8.121(2)5.366(4

)5.366(4)0.707(6
=

→

→  33.2
)5.366(4)5.1559(5

)0.707(6)5.1559(5
=

→

→  50.1
)7.684(0)4.810(2

)4.810(2)0.1023(4
=

→

→  56.0
)0(0)8.1292(2

)8.121(2)8.1292(2
=

→

→  - 

 190.1
)5.366(4)0.707(6

)0.707(6)0.1126(8
=

→

→  17.4
)0.707(6)8.1945(7

)6.112(8)8.1945(7
=

→

→  17
)0.707(6)5.1666(8

)1126(8)5.1666(8
<

→

→  9.25
)8.121(2)8.1292(2

)5.366(4)8.1292(2
=

→

→  - 

 31.1
)0.707(6)0.1126(8

)0.1126(8)0.1609(10
=

→

→  33
)1126(8)5.2375(9

)8.1945(7)5.2375(9
=

→

→  3.0
)3.2736(14)7.2976(14

)6.2525(12)7.2976(14
>

→

→  3.8
)7.684(0)8.1292(2

)4.810(2)8.1292(2
>

→

→
 - 
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Çizelge 4.3. 90
152

62 Sm ’nın Çeşitli bandlar arasındaki geçişlerin teorik hesaplamaları.  

90
152

62 Sm  

Çekirdeği 
Đçin 

Ana Band Anomal τ=1 Band β- Titreşim Bandı γ Titreşim Bandı 

Yeni 
Band 
(Anomal 
τ=2 
Bandı) 

  262.324 =→R  330.123 =→R  561.104 =→R   245.102 =→R  - 

 082.626 =→R  460.124 =→R  123.206 =→R  621.104 =→R  - 

fiR
→

 367.1128 =→R  521.125 =→R  956.208 =→R   - 

 345.114210 =→R  623.126 =→R  451.3010 =→R   - 

 560.16212 =→R  885.127 =→R  120.4012 =→R   - 

 950.23214 =→R  956.128 =→R  976.4014 =→R   - 

  479.229 =→R    - 

      

 531.1
)0(0)8.121(2

)8.121(2)5.366(4
=

→

→
 23.1

)8.121(2)9.1085(3

)5.366(4)8.1233(3
=

→

→  368
)8.121(2)0.1023(4

)4.810(2)0.1023(4
=

→

→  21.46
)8.121(0)0.1083(0

)4.810(2)0.1083(0
=

→

→  - 

),2(

),2(

fiEB

fiEB

′→′

→
 011.1

)8.121(2)5.366(4

)5.366(4)0.707(6
=

→

→  49.2
)5.366(4)5.1559(5

)0.707(6)5.1559(5
=

→

→  211.1
)7.684(0)4.810(2

)4.810(2)0.1023(4
=

→

→  01.1
)0(0)8.1292(2

)8.121(2)8.1292(2
=

→

→  - 

 160.1
)5.366(4)0.707(6

)0.707(6)0.1126(8
=

→

→  53.4
)0.707(6)8.1945(7

)1126(8)8.1945(7
=

→

→  56.12
)0.707(6)5.1666(8

)1126(8)5.1666(8
=

→

→
 32.28

)8.121(2)8.1292(2

)5.366(4)8.1292(2
=

→

→  - 

 470.1
)0.707(6)0.1126(8

)0.1126(8)0.1609(10
=

→

→  351
)1126(8)5.2375(9

)8.1945(7)5.2375(9
=

→

→  02.1
)3.2736(14)7.2976(14

)6.2525(12)7.2976(14
>

→

→  24.10
)7.684(0)8.1292(2

)4.810(2)8.1292(2
=

→

→  - 
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Çizelge 4.4. 90
154
64 Gd ’nın deneysel enerji düzeyleri 

Ana Band β Titreşim Bandı γ Titreşim Bandı Anomal τ=I Bandı Anomal τ=2 Bandı 

 
26+  7058 

 
 
 

24+  6296 
 
 
 

22+  5521 
 
 
 

20+  4783 
 
 

18+  4088 
 
 
 

16+  3405.1 
 
 
 

14+  2778 
 
 
 

12+  2185 
 
 

10+  1637.2 
 
 

8+  1144.55 
 

6+  717.71 
 

4+  371.01 
 

2+  123.07 
 
 

0+  0 

 
 

26+   6955 
 
 
 

24+  6122 
 
 
 

22+  5349 
 
 

20+  4645 
 
 

18+  4016.8 
 
 

16+  3491.4 
 
 

14+  3027.9 
 
 

12+  2622.2 
 

10+  2194.5 
 

8+  1756.7 
 

6+  1366 
 

4+  1047.5 
 

2+  815.47 
 

02
+ 680.64 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4+  1898.2 
 

2+  1418.3 
 

03
+  1295.15 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7+  1810.3 
6+  1606.4 

5+  1432.28 
4+  1263.72 
3+  1127.82 
21

+  996.27 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 

4+  1790.2  
22

+  1531.28  
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Çizelge 4.5. 90
154

64 Gd ’nın Çeşitli bandlar arasındaki geçişlerin deneysel hesaplamaları.  

90
154

64 Gd  Çekirdeği 

için 
Ana Band Anomal τ=1 Band β- Titreşim Bandı γ Titreşim Bandı 

Yeni Band 
(Anomal τ=2 Bandı) 

  014.324 =→R  167.123 =→R  =→04R 1.198 =→04R 1.124 =→23R 1.084 

 813.526 =→R  856.124 =→R  =→06R 1.540 =→06R 1.311 =→24R 1.169 

fiR
→

 299.928 =→R  104.225 =→R  =→08R 2.006 =→08R 1.562  

 300.13210 =→R  360.226 =→R  =→010R 2.280 =→010R 1.866  

 754.17212 =→R  659.227 =→R  =→012R 3.224   

 573.22214 =→R   =→014R 4.448   

 672.27216 =→R   =→016R 5.129   

 21.33218 =→R   =→018R 5.901   

 864.38220 =→R   =→020R 6.824   

 860.44222 =→R   =→022R 7.858   

 157.51224 =→R   =→024R 8.994   

 34.57226 =→R   =→026R 10.218   

 603.1
)0(0)1.123(2

)1.123(2)0.371(4
=

→

→  144.1
)1.123(2)3.996(2

)0.371(4)3.996(2
=

→

→  156
)0(0)5.815(2

)6.680(0)5.815(2
=

→

→  92000
)1.123(2)3.1418(2

)2.1295(0)3.1418(2
=

→

→  58.2
)6.680(0)3.1531(2

)5.815(2)3.1531(2
=

→

→  

),2(

),2(

fiEB

fiEB

′→′

→
 180.1

)0.371(4)7.717(6

)7.717(6)5.1144(8
=

→

→  99.0
)1.123(2)8.1127(3

)0.371(4)8.1127(3
=

→

→  
5.18

)1.123(2)6.1047(4

)4.810(2)6.1047(4
=

→

→  
176

)0.371(4)2.1898(4

)6.1047(4)2.898(4
≥

→

→  55.0
)1.123(2)9.1660(3

)0.371(4)9.1660(3
=

→

→  

 1.1
)7.717(6)5.1144(8

)5.1144(8)8.1636(10
=

→

→  29.0
)1.123(2)8.1127(3

)5.815(2)8.1127(3
=

→

→  
16

)7.717(6)0.1366(6

)6.1047(4)0.1366(6
=

→

→  
 84.0

)5.815(2)9.1660(2

)6.1047(4)9.1660(3
=

→

→  

 190.1
)1.123(2)0.371(4

)0.371(4)7.717(6
=

→

→  40.7
)1.123(2)7.1263(4

)0.371(4)7.1263(4
=

→

→  
12

)0.2778(14)4.3491(16

)9.3027(14)4.3491(16
=

→

→  
 45.3

)1.123(2)2.1790(4

)0.371(4)2.1790(4
=

→

→  
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Çizelge 4.6. 90
154
64 Gd ’nın Çeşitli bandlar arasındaki geçişlerin teorik hesaplamaları.  

90
154
64 Gd  Çekirdeği 

için 
Ana Band Anomal τ=1 Band β- Titreşim Bandı γ Titreşim Bandı 

Yeni Band 
(Anomal τ=2 Bandı) 

  =→24R 3.512 =→23R 1.212 =→04R 1.231 =→04R 1.216 =→23R 1.201 

 =→26R 6.54 =→24R 1.995 =→06R 1.704 =→06R 1.421 =→24R 1.406 

 =→28R 10.23 =→ 25R 2.312 =→08R 2.616 =→08R 1.603  

 =→210R 14.51 =→26R 2.645 =→010R 2.820 =→010R 1.911  

 =→212R 18.97 =→27R 2.997 =→012R 3.426   

 =→214R 22.86  =→014R 4.814   

fiR
→

 =→216R 28.06  =→016R 5.391   

 =→218R 33.76  =→018R 6.101   

 =→220R 39.42  =→020R 6.979   

 =→222R 45.18  =→022R 8.106   

 =→224R 52.14  =→024R 9.169   

 =→226R 57.78  =→026R 10.56   

 78.1
)0(0)1.123(2

)1.123(2)0.371(4
=

→

→  245.1
)1.123(2)3.996(2

)0.371(4)3.996(2
=

→

→  854.1
)0(0)5.815(2

)6.680(0)5.815(2
=

→

→  90055
)1.123(2)3.1418(2

)2.1295(0)3.1418(2
=

→

→  104.3
)6.680(0)3.1531(2

)5.815(2)3.1531(2
=

→

→  

),2(

),2(

fiEB

fiEB

′→′

→
 284.1

)0.371(4)7.717(6

)7.717(6)5.1144(8
=

→

→  13.1
)1.123(2)8.1127(3

)0.371(4)8.1127(3
=

→

→  
25.19

)1.123(2)6.1047(4

)4.810(2)6.1047(4
=

→

→  207
)0.371(4)2.1898(4

)6.1047(4)2.898(4
≥

→

→  978.0
)1.123(2)9.1660(3

)0.371(4)9.1660(3
=

→

→  

 2.1
)7.717(6)5.1144(8

)5.1144(8)8.1636(10
=

→

→  401.0
)1.123(2)8.1127(3

)5.815(2)8.1127(3
=

→

→  
4.17

)7.717(6)0.1366(6

)6.1047(4)0.1366(6
=

→

→  
 07.1

)5.815(2)9.1660(2

)6.1047(4)9.1660(3
=

→

→  

 203.1
)1.123(2)0.371(4

)0.371(4)7.717(6
=

→

→  95.7
)1.123(2)7.1263(4

)0.371(4)7.1263(4
=

→

→  
14

)0.2778(14)4.3491(16

)9.3027(14)4.3491(16
=

→

→  
 21.4

)1.123(2)2.1790(4

)0.371(4)2.1790(4
=

→

→  
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Çizelge 4.7. 90
156
66 Dy ’nın deneysel enerji düzeyleri 

Ana Band β Titreşim Bandı γ Titreşim Bandı Anomal τ=I Bandı Anomal τ=2 Bandı 

     

 42+  15061.4    
 40+  13885.0    

36+ 1188.68 38+  12769.2    
34+  10828.2 36+  11670.5    
32+  9825.1 34+  10617.9    
30+  8875.8 32+  9611.2    
28+  7978.4 30+  8650.7    
26+  7130.2 28+  7738.0    
24+  6328.6 26+  6876.6    

     
 24+  6068.7    

22+  5572.9     

 22+  5320.3    
20+  4859.0     

 20+  4635.6    
18+  4178.2     

 18+  4026.1    
16+  3522.8 16+  3498.7  15+  3860.9  

 14+  3065.9    
14+  2887.8   13+  3273.5  

 12+  2706.9  12+  3997.2  
   11+  2712.4  
  10+  2700.8 10+  2448.0 5+  2476.1 

12+  2285.9 10+  2315.8  9+  2191.6 4+  2307.8 

  8+  2261.6 8+  1957.2 3+  2169.1 
10+  1725.3 8+  1858.6  7+  1728.8 22

+  2089.5 

  6+  1898.7 6+  1525.2  
8+  1215.7 6+  1437.1  5+  1335.2  

  4+  1627.3 4+  1168.5  
6+  770.3 4+  1088.3  3+  1022.1  

 2+  828.7 23
+  1447.4 21

+  890.1  
4+  404.1 02

+  575.6    

     
2+  137.1     

     
0+  0     
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Çizelge 4.8. 90
156
66 Dy ’nın Çeşitli bandlar arasındaki geçişlerin deneysel hesaplamaları.  

90
156
66 Dy  Çekirdeği 

için 
Ana Band Anomal τ=1 Band β- Titreşim Bandı γ Titreşim Bandı 

Yeni Band 
(Anomal τ=2 Bandı) 

  =→24R 2.935 =→23R 1.148 =→02R 1.266 =→24R 1.124 =→23R 1.038 

 =→26R 5.132 =→24R 1.312 =→04R 1.610 =→26R 1.312 =→24R 1.104 

 =→28R 8.822 =→26R 1.713 =→06R 2.127 =→28R 1.562 =→25R 1.185 

 =→210R 12.520 =→27R 1.942 =→08R 2.751 =→210R 1.865  

 =→212R 16.588 =→28R 2.198 =→010R 3.427   

 =→214R 20.956 =→29R 2.462 =→012R 4.006   

fiR
→

 =→216R 25.564 =→210R 2.750 =→014R 5.420   

 =→218R 30.320 =→211R 3.047 =→016R 6.078   

 =→220R 35.261 =→212R 3.367 =→018R 6.994   

 =→222R 40.441 =→213R 3.677 =→020R 8.053   

 =→224R 45.925 =→213R 3.677 =→022R 9.243   

  =→215R 4.337 =→024R 10.54   

 - 1.24
)0.1725(10)4.2712(11

)6.2191(9)4.2712(11
=

→

→  5.86
)8.137(2)3.1088(4

)1.404(4)3.1088(4
=

→

→  
- 

 
- 

),2(

),2(

fiEB

fiEB

′→′

→
 - 67.1

)0(0)7.890(2

)8.137(2)7.890(2
=

→

→  
2.4

)1.404(4)3.1088(4

)3.770(6)3.1088(4
=

→

→  
- 

 
- 

 - 74.2
)8.137(2)1.1022(3

)1.404(4)1.1022(3
=

→

→  
5.54

)3.770(6)8.1856(8

)5.1215(8)8.1856(8
=

→

→  
- 

 
- 

 - 8.1
)1.404(4)5.1168(4

)3.770(6)5.1168(4
=

→

→  
7.4

)8.2887(14)3.3523(16

)9.3065(14)3.3523(16
=

→

→  
- 

 
- 
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Çizelge 4.9. 90
156
66 Dy ’nın Çeşitli bandlar arasındaki geçişlerin teorik hesaplamaları.  

90
156
66 Dy  Çekirdeği 

için 
Ana Band Anomal τ=1 Band β- Titreşim Bandı γ Titreşim Bandı 

Yeni Band 
(Anomal τ=2 Bandı) 

  =→24R 3.612 =→23R 1.017 =→02R 1.130 =→24R 1.087 =→23R 1.217 

 =→26R 6.160 =→24R 1.261 =→04R 1.560 =→26R 1.236 =→24R 1.265 

 =→28R 9.018 =→26R 1.517 =→06R 2.056 =→28R 1.483 =→25R 1.304 

 =→210R 12.83 =→27R 1.830 =→08R 2.561 =→210R 1.861  

 =→212R 17.61 =→28R 2.105 =→010R 3.246   

 =→214R 22.17 =→29R 2.311 =→012R 3.901   

fiR
→

 =→216R 24.562 =→210R 2.617 =→014R 5.205   

 =→218R 30.888 =→211R 2.993 =→016R 5.968   

 =→220R 36.13 =→212R 3.130 =→018R 6.664   

 =→222R 41.11 =→213R 3.593 =→020R 7.906   

 =→224R 47.061 =→215R 4.151 =→022R 8.817   

   =→024R 9.876   

 - 12.26
)0.1725(10)4.2712(11

)6.2191(9)4.2712(11
=

→

→  16.91
)8.137(2)3.1088(4

)1.404(4)3.1088(4
=

→

→  
- 

 
- 

),2(

),2(

fiEB

fiEB

′→′

→
 - 945.1

)0(0)7.890(2

)8.137(2)7.890(2
=

→

→  
21.5

)1.404(4)3.1088(4

)3.770(6)3.1088(4
=

→

→  
- 

 
- 

 - 986.2
)8.137(2)1.1022(3

)1.404(4)1.1022(3
=

→

→  
23.56

)3.770(6)8.1856(8

)5.1215(8)8.1856(8
=

→

→  
- 

 
- 

 - 13.2
)1.404(4)5.1168(4

)3.770(6)5.1168(4
=

→

→  
02.5

)8.2887(14)3.3523(16

)9.3065(14)3.3523(16
=

→

→  
- 

 
- 
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Çizelge 4.10. 92
158
66 Dy ’nın deneysel enerji düzeyleri 

Ana Band β Titreşim Bandı γ Titreşim Bandı Anomal τ=I Bandı Anomal τ=2 Bandı 

     

     
26+  6612.9     
24+  5820.3     
22+  5085.6     

     
20+  4407.5     

     
     

18+  3781.7     
     
     

16+  3190.7     

     
    6+  2388.3 

14+  2612.6    5+  2211.1 

    4+  2053.3 

    3+  1940.7 
12+  2049.2   8+  1890.9  

 8+  1890.0   22
+  1852.5 

 6+  1547.3  7+  1676.8  
10+  1519.9  2+  1362 6+  1486.4  

 4+  1280.03  5+  1311.47  
  03

+  1260 4+  1163.72  
8+  1044.1 2+  1085.63  3+  1046.52  

 02
+  990.6  21

+  946.27  
6+  637.87     

     
4+  317.26     
2+  98.94     

       
0+     
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Çizelge 4.11. 92
158
66 Dy ’nın Çeşitli bandlar arasındaki geçişlerin deneysel hesaplamaları.  

92
158
66 Dy  Çekirdeği 

için 
Ana Band Anomal τ=1 Band β- Titreşim Bandı γ Titreşim Bandı 

Yeni Band 
(Anomal τ=2 Bandı) 

  =→24R 3.206 =→23R 1.105 =→02R 1.095  =→23R 1.047 

 =→26R 6.447 =→24R 1.229 =→04R 1.292  =→24R 1.108 

 =→28R 10.552 =→25R 1.385 =→06R 1.561  =→25R 1.193 

 =→210R 15.361 =→26R 1.570 =→08R 1.907  =→26R 1.28 

 =→212R 20.721 =→27R 1.772    

 =→214R 26.405 =→28R 1.998    

fiR
→

 =→216R 32.248     

 =→218R 38.222     

 =→220R 44.547     

 =→222R 51.400     

 =→224R 58.826     

      

 35.1
)0(0)9.98(2

)9.98(2)3.317(4
=

→

→  
1.0

)9.98(2)3.946(2

)3.317(4)3.946(2
<

→

→  73.2
)0(0)6.1085(2

)9.98(2)6.1085(2
=

→

→  
- 

 
- 

),2(

),2(

fiEB

fiEB

′→′

→
 12.1

)9.98(2)3.317(6

)3.317(4)9.637(6
=

→

→  
73.0

)9.98(2)5.1046(3

)3.317(4)5.1046(3
=

→

→  
6.4

)9.98(2)6.1085(2

)3.317(4)6.1085(2
>

→

→  
- 

 
- 

 99.0
)3.317(4)3.637(6

)9.637(6)1.1044(8
=

→

→  79.4
)9.98(2)7.1163(4

)3.313(4)7.1163(4
=

→

→  
91.0

)9.98(2)0.1280(4

)3.317(4)0.1280(4
=

→

→  
- 

 
- 

 28.1
)9.1519(10)2.2049(12

)2.2049(12)6.2612(14
=

→

→  81.3
)3.317(4)4.1486(6

)9.637(6)4.486(6
=

→

→  
6.9

)3.317(4)0.1280(4

)9.637(6)0.1280(4
=

→

→  
- 

 
- 
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Çizelge 4.12. 92
158
66 Dy ’nın Çeşitli bandlar arasındaki geçişlerin teorik hesaplamaları.  

92
158
66 Dy  Çekirdeği 

için 
Ana Band Anomal τ=1 Band β- Titreşim Bandı γ Titreşim Bandı 

Yeni Band 
(Anomal τ=2 Bandı) 

  =→24R 4.06 =→23R 1.304 =→02R 1.005  =→23R 1.266 

 =→26R 7.03 =→24R 1.492 =→04R 1.165  =→24R 1.299 

 =→28R 11.167 =→25R 1.505 =→06R 1.432  =→25R 1.361 

 =→210R 16.33 =→26R 1.73 =→08R 1.795  =→26R 1.387 

 =→212R 22.042 =→27R 1.861    

 =→214R 27.36 =→28R 2.01    

fiR
→

 =→216R 34.151     

 =→218R 40.214     

 =→220R 47.61     

 =→222R 56.065     

 =→224R 60.004     

      

 47.1
)0(0)9.98(2

)9.98(2)3.317(4
=

→

→  
089.0

)9.98(2)3.946(2

)3.317(4)3.946(2
<

→

→  987.2
)0(0)6.1085(2

)9.98(2)6.1085(2
=

→

→  
- 

 
- 

),2(

),2(

fiEB

fiEB

′→′

→
 25.1

)9.98(2)3.317(6

)3.317(4)9.637(6
=

→

→  
96.0

)9.98(2)5.1046(3

)3.317(4)5.1046(3
=

→

→  
42.5

)9.98(2)6.1085(2

)3.317(4)6.1085(2
>

→

→  
- 

 
- 

 112.1
)3.317(4)3.637(6

)9.637(6)1.1044(8
=

→

→  21.5
)9.98(2)7.1163(4

)3.313(4)7.1163(4
=

→

→  
24.1

)9.98(2)0.1280(4

)3.317(4)0.1280(4
=

→

→  
- 

 
- 

 40.1
)9.1519(10)2.2049(12

)2.2049(12)6.2612(14
=

→

→  52.4
)3.317(4)4.1486(6

)9.637(6)4.486(6
=

→

→  
4.11

)3.317(4)0.1280(4

)9.637(6)0.1280(4
=

→

→  
- 

 
- 
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Çizelge 4.13. 9268
160

Er ’nın deneysel enerji düzeyleri. 

Ana Band β Titreşim Bandı γ Titreşim Bandı Anomal τ=I Bandı 

 50+  20114   

 48+  18808   

 46+  17525   

 44+  16286   

 42+  16098   

 40+  13963   

 38+  12876   

 36+  11830   
34+  10812 34+  10818   
32+  9947    

 32+  9836   
30+  9043    

 30+  8874   
28+  8184    

 28+  7937   

    
26+  7341    

 26+  7035   
24+  6615    

 24+  6182   

    
22+  5714    

 22+  5389   

 20+  4666   
20+  4975 18+  4020.8   
18+  4283 16+  3465.4   
16+  3659 142

+  2931.5   
14+  3125    

   13+  3365 
12+  2339.3   11+  2803 

10+  1760.1   9+  2245 
8+  1228.4   7+  1744 

   6+  1505.7 
6+  764.7  4+  1230.3 5+  1316.6 

4+  389.53  2+  1008.07 4+  1128.6 
2+  125.61  02

+ 893.76 3+  987.31 
0+ 0   21

+  854.7 
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Çizelge 4.14. 92
160

68 Er ’nın Çeşitli bandlar arasındaki geçişlerin deneysel hesaplamaları.  

92
160

68 Er  Çekirdeği 

için 
Ana Band Anomal τ=1 Band β- Titreşim Bandı γ Titreşim Bandı 

Yeni Band 
(Anomal τ=2 Bandı) 

  =→24R 3.101 =→23R 1.155 =→02R 1.127   

 =→26R 6.087 =→24R 1.320 =→04R 1.376   

 =→28R 9.779 =→25R 1.540    

 =→210R 14.010 =→26R 1.879    

 =→212R 18.620 =→27R 2.040    

 =→214R 24.870 =→29R 2.629    

fiR
→

 =→216R 29.123 =→211R 3.279    

 =→218R 34.092 =→211R 3.279    

 =→220R 39.601 =→213R 3.938    

 =→222R 45.490     

 =→224R 51.862     

      

 45.1
)0(0)6.125(2

)6.125(2)5.389(4
=

→

→  
- - - 

 
- 

),2(

),2(

fiEB

fiEB

′→′

→
 10.1

)6.125(2)5.389(4

)5.389(4)7.764(6
=

→

→  
- - - 

 
- 

 99.0
)5.389(4)7.764(6

)7.764(6)4.1228(8
=

→

→  
- - - 

 
- 

 32.1
)5.2931(14)4.3465(16

)4.3465(16)8.4020(18
=

→

→  
- - - 

 
- 
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Çizelge 4.15. 92
160

68 Er ’nın Çeşitli bandlar arasındaki geçişlerin teorik hesaplamaları.  

92
160

68 Er  Çekirdeği 

için 
Ana Band Anomal τ=1 Band β- Titreşim Bandı γ Titreşim Bandı 

Yeni Band 
(Anomal τ=2 Bandı) 

  =→24R 3.830 =→23R 1.101 =→02R 1.195   

 =→26R 7.210 =→24R 1.297 =→04R 1.430   

 =→28R 10.26 =→25R 1.555    

 =→210R 16.81 =→26R 1.810    

 =→212R 20.12 =→27R 2.003    

 =→214R 26.18 =→29R 2.591    

fiR
→

 =→216R 31.08 =→211R 3.161    

 =→218R 36.02 =→213R 3.883    

 =→220R 41.09     

 =→222R 47.87     

 =→224R 54.08     

      

 51.1
)0(0)6.125(2

)6.125(2)5.389(4
=

→

→  
- - - 

 
- 

),2(

),2(

fiEB

fiEB

′→′

→
 24.1

)6.125(2)5.389(4

)5.389(4)7.764(6
=

→

→  
- - - 

 
- 

 01.1
)5.389(4)7.764(6

)7.764(6)4.1228(8
=

→

→  
- - - 

 
- 

 39.1
)5.2931(14)4.3465(16

)4.3465(16)8.4020(18
=

→

→  
- - - 

 
- 
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Çizelge 4.16. 9666
162

Dy ’nın deneysel enerji düzeyleri. 

Ana Band β Titreşim Bandı γ Titreşim Bandı Anomal τ=I Bandı 

    

   18+  3836.2 

16+  3138.4   14+  3182 

 14+  2955.6   

   13+  2859.7 

 12+  2593.4   

14+  2492.4   12+  2532.7 

    

 10+  2261.9  11+  2337.7 

    

 8+  1985.8  10+  2087.7 
12+  1901.4  4+  1887.1 9+  1878.2 

 6+  1767.5   

  2+  1728.0  

 4+  1575.5 02
+ 1665.8 8+  1670.4 

 2+  1453.49   
10+  1374.9 02

+  1400.2  7+  1480.4 

   6+  1324.55 

   5+  1182.82 

   4+  1061.05 
8+  920.9   3+  963.00 

   21
+  888.22 

    
6+  548.53    

    
4+  265.66    
2+  80.66    

    
0+ 0    
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Çizelge 4.17. 96
162

66 Dy ’nın Çeşitli bandlar arasındaki geçişlerin deneysel hesaplamaları.  

96
162

66 Dy  Çekirdeği 

için 
Ana Band Anomal τ=1 Band β- Titreşim Bandı γ Titreşim Bandı 

Yeni Band 
(Anomal τ=2 Bandı) 

  =→24R 3.293 =→23R 1.084 =→02R 1.038 =→02R 1.037  

 =→26R 6.800 =→24R 1.194 =→04R 1.125 =→04R 1.132  

 =→28R 11.410 =→25R 1.331 =→06R 1.262   

 =→210R 17.042 =→26R 1.491 =→08R 1.458   

 =→212R 23.573 =→27R 1.677 =→010R 1.615   

 =→214R 30.901 =→28R 1.880 =→012R 1.852   

fiR
→

 =→216R 38.909 =→29R 2.114 =→014R 2.150   

 =→218R 47.560 =→210R 2.350    

  =→211R 2.631    

  =→212R 2.851    

  =→213R 3.219    

  =→214R 3.582    

 47.1
)0(0)7.80(2

)7.80(2)7.265(4
=

→

→  
08.0

)7.80(2)2.888(2

)7.265(4)2.888(2
=

→

→  25
)0(0)5.1453(2

)7.80(2)5.1453(2
=

→

→  
- 

 
- 

),2(

),2(

fiEB

fiEB

′→′

→
 05.1

)7.80(2)7.265(4

)7.265(4)5.548(6
=

→

→  
67.0

)7.80(2)0.963(3

)7.265(4)0.963(3
=

→

→  
71.0

)7.80(2)5.1453(2

)7.265(4)5.1453(2
=

→

→  
- 

 
- 

 89.0
)9.920(8)9.1347(10

)9.1347(10)4.1901(12
=

→

→  11.0
)7.265(4)1.1061(4

)5.548(6)1.1061(4
=

→

→  
- - 

 
- 

 88.0
)4.2492(14)4.3138(16

)4.3138(16)2.3836(18
=

→

→  19.1
)7.265(4)8.1182(5

)5.548(6)8.1182(5
=

→

→  
- - 

 
- 
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Çizelge 4.18. 96
162

66 Dy ’nın Çeşitli bandlar arasındaki geçişlerin teorik hesaplamaları.  

96
162

66 Dy  Çekirdeği 

için 
Ana Band Anomal τ=1 Band β- Titreşim Bandı γ Titreşim Bandı 

Yeni Band 
(Anomal τ=2 Bandı) 

  =→24R 3.53 =→23R 1.204 =→02R 1.104 =→02R 1.086  

 =→26R 7.42 =→24R 1.281 =→04R 1.216 =→04R 1.189  

 =→28R 12.76 =→25R 1.399 =→06R 1.338   

 =→210R 12.993 =→26R 1.412 =→08R 1.547   

 =→212R 19.570 =→27R 1.602 =→010R 1.751   

 =→214R 24.991 =→28R 1.792 =→012R 1.916   

fiR
→

 =→216R 37.81 =→29R 1.991 =→014R 2.23   

 =→218R 49.889 =→210R 2.535    

  =→211R 2.712    

  =→212R 2.897    

  =→213R 3.501    

  =→214R 3.897    

 645.1
)0(0)7.80(2

)7.80(2)7.265(4
=

→

→  
105.0

)7.80(2)2.888(2

)7.265(4)2.888(2
=

→

→  35.24
)0(0)5.1453(2

)7.80(2)5.1453(2
=

→

→  
- 

 
- 

),2(

),2(

fiEB

fiEB

′→′

→
 251.1

)7.80(2)7.265(4

)7.265(4)5.548(6
=

→

→  
965.0

)7.80(2)0.963(3

)7.265(4)0.963(3
=

→

→  
86.0

)7.80(2)5.1453(2

)7.265(4)5.1453(2
=

→

→  
- 

 
- 

 09.1
)9.920(8)9.1347(10

)9.1347(10)4.1901(12
=

→

→  174.0
)7.265(4)1.1061(4

)5.548(6)1.1061(4
=

→

→  
- - 

 
- 

 08.1
)4.2492(14)4.3138(16

)4.3138(16)2.3836(18
=

→

→  211.1
)7.265(4)8.1182(5

)5.548(6)8.1182(5
=

→

→  
- - 

 
- 

           



5. TARTIŞMA VE SONUÇ 

Çift-çift çekirdekler için Ana, β , γ  ve dönel durumlarını tasvir eden iki 

parametreye bağlı bir model ileri sürüldü. Bu model çekirdeklerin uyarılmış durumdaki 

formunun değişmesini (deforme olmasını) hesaba alarak çift-çift çekirdeklerin uyarılmış 

seviyeleri arasındaki E2 geçişlerinin ihtimalliklerini hesaplama olanağını sağladı. 

Yapılan hesaplamalara göre 1µ  Parametresi 0-1 değerleri arasında değişir. Bundan 

anlaşılıyor ki, çift-çift çekirdekler uyarılmış duruma geçtiğinde şekil değişiminin önemli 

bir rol oynadığı söylenebilir. 1µ  nın düşük değerlerinde (0.2) çıkarılan formüllerin 

küresel çekirdeklerine ait olduğu görüldü.  

Davidov ve Arkadaşları’nın öne sürdükleri modele −γ  titreşimleri eklenip 

devam ettirildiğinde hesaplamaların 3 parametreye bağlı olduğu görülüyor. Yapılan 

çalışmada ise model teoriye daha yakın olsun diye 3 parametre yerine 2 parametreye 

indirgenmiş bir model geliştirildi. Modele göre yapılan hesaplamaların deforme 

çekirdekler için deneysel sonuçlarla daha iyi bir uyum içerisinde olduğu görüldü. Hatta 

spin (I > 24) nin büyük değerlerinde bile olumlu sonuçlar alındı. Tahmini hesaplamalara 

göre deforme bölgesinde yer alan bütün çekirdekler içinde aynı uyum sağlanabilir.  

Yapılan hesaplamalar ve karşılaştırmalar sonucunda, β  bandının γ  bandına 

göre deneyle daha iyi uyum gösterdiği kanısına varıldı. Bazı durumlar için uyumun 

daha iyi bir şekilde sağlanabilmesi için, fenomonolojik teoriden mikroskobik teoriye 

geçişin olması gerekir.  
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