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Türkiye‟de meydana gelen trafik kazaları her geçen gün önemini korumaktadır. 

Kazaların oluĢ nedenlerini belirlemek için bazı çalıĢmalar yapılmakla beraber kazaların 

birden fazla değiĢkenden etkilenmesi, çok değiĢkenli istatistiksel analizi gerekli 

kılmaktadır.  

Bu çalıĢmada, Türkiye‟de meydana gelen trafik kazaları, trafik kaza tutanağı verileri 

kullanılarak, çok değiĢkenli zaman serileri, temel bileĢenler analizi, yapay sinir ağları, 

çok değiĢkenli regresyon analizi, poisson regresyonu yöntemleri yardımıyla analiz 

edilmiĢtir. Zaman serisi analzilerinde Box-Jenkins (ARIMA(p,d,q)) ve VAR(p), 

yöntemleri kullanılmıĢtır. Mevcut verilerden, kazaları en çok etkilediği düĢünülen 

değiĢkenler ile 7 adet model oluĢturulmuĢtur. Modellerde ARIMA(p,d,q) ve YSA 

yöntemleri istatistiksel olarak en anlamlı yöntemler olmuĢtur. Nüfus, araç sayısı, sürücü 

sayısı ve Ağırlıklı Ortalama Günlük Trafik (AOGT) bağımsız değiĢkenleri ile kaza 

sayısı bağımlı değiĢkeni arasında tek yönlü bir Granger Nedenselliği bulunmuĢtur. Çok 

değiĢkenli regresyonda, nüfus, araç sayısı, ve AOGT arasında yüksek korelasyon 

gözlemlenmiĢtir. Yol-km uzunluğu ve Gayri Safi Milli Hasıla (GSMH), kaza sayısını en 

az açıklayan bağımsız değiĢkenler olmuĢtur. Kaza sayısı tahmini modellemelerinde 

YSA yöntemi istatistiksel olarak en anlamlı çıkmıĢtır.  

 

2010, 165 sayfa  

Anahtar Kelimeler: Trafik Kazaları, Zaman Serisi Analizi, Çok DeğiĢkenli Ġstatistik, 

Yapay Sinir Ağları, Poisson Regresyonu, Temel BileĢenler Analizi  
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Traffic accidents in Turkey are maintaining their importance each passing day. 

Although some studies related to the reasons of accident occurrence are performed, the 

multivariate statistical modeling is required since more than one variable have influence 

on the traffic accidents.  

 

In this study, traffic accidents in Turkey are analyzed by multivariate time series, 

principal component analysis, multivariate regression, Poisson regression and Artificial 

Neural Network (ANN) using the data obtained from traffic accident reports. Box-

Jenkins and VAR(p) methods are used in time series analysis. 7 models are constructed 

with the variables thought to have most influence on the accidents. ARIMA(p,d,q) and 

ANN models are, in general, more statistically significant than the other models. It is 

found that there is one-way granger causality among the number of accidents, 

population, number of vehicle and Annually Average Daily Traffic (AADT). In the 

multivariate regression model, it is seen that there is high correlation among the 

population, number of vehicle and AADT.  Highway length and Gross National Product 

(GNP) have least influence on the number of traffic accidents. ANN method has the 

most significance among multiregression model, poisson regression model and ANN 

model. 
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1. GĠRĠġ  

1.1. Amaç ve Kapsam 

Dünya genelinde yıllık ortalama 1.3 milyonun üzerinde insan ölmekte 50 milyonun 

üzerinde insan yaralanmakta veya sakat kalmaktadır. Ülkemizde de kaza istatistikleri 

pek iç açıcı değildir. Trafiğe kayıtlı motorlu araç sayısı 13 milyon, ehliyetli sürücü 

sayısı ise 18 milyonun üzerindedir. Yıllık ortalama 1.3 milyon ölümlü, yaralanmalı ve 

maddi hasarlı trafik kazası meydana gelmektedir. Her yıl ülkemizde 5000 kiĢi trafik 

kazaları nedeniyle ölmektedir. Yani günde ortalama 13 kiĢi ölmekte ve her 1,2 dakikada 

bir trafik kazası meydana gelmekte, yüzbinin üzerinde insanımız da yaralanmakta veya 

sakat kalmaktadır. 1980–2010 yılları arasında trafik kazalarında ülkemizde 40000 den 

fazla insan ölmüĢtür. Aynı yıllar arasında ülkemizde meydana gelen terör olaylarında, 

trafik kazalarından daha az insanımızı kaybetmiĢ bulunmaktayız.  

 
Bu kadar büyük bir problem karĢısında trafik kazalarına iliĢkin istatistiksel bir takım 

analizler yapmak ve bu analizlerle kaza sayılarını etkileyen değiĢkenleri tespit etmek ve 

bu değiĢkenlerin kendi aralarındaki iliĢkileri ortaya incelemek, gelecek yıllardaki kaza 

sayılarını, bu kazalardaki ölüm ve yaralı sayılarını tespit etmek bu çalıĢmanın amaçları 

arasında yer almaktadır.  

 
Bu çalıĢmada yer alan veriler Karayolları Genel Müdürlüğü, Karayolları 12. Bölge 

Müdürlüğü, Emniyet Genel Müdürlüğü Trafik Eğitim ve AraĢtırma Daire BaĢkanlığı, 

Türkiye Ġstatistik Kurumu (TÜĠK)‟ten alınmıĢtır. Tercan-Erzurum-Ağrı-Gürbulak sınır 

kapısına kadar olan 422 km uzunluğundaki Kuzey Transit Yoluna iliĢkin  (E–80 veya 

D–100), yol geniĢliği, YOGT, Ģerit sayısı, kaza sayısı, yaralı sayısı, ortalama hız, 

uzunluk km, bağlantı sayısı ve kavĢak sayısı, değiĢkenleri, Karayolları 12. Bölge 

Müdürlüğü‟nden elde edilmiĢtir.  
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Detay nitelikli değiĢkenlerimiz ile negatif binomial regresyon, çok değiĢkenli regresyon, 

yapay sinir ağları yöntemleri kullanılmıĢtır. Türkiye genelini kapsayan değiĢkenlerden 

bağımlı değiĢken olarak kaza sayısı, ölü sayısı ve yaralı sayısı, bağımsız değiĢken 

olarak ise nüfus, araç sayısı, otobüs, kamyon, tır, ağır tonajlı araç sayısı, ağırlıklı 

ortalama günlük trafik (AOGT), karayollarında enerji tüketimi, yol-km, yolcu-km, yük-

ton kullanılmıĢtır. Modelleme aĢamasına girmeden önce aralarında yüksek korelasyon 

bulunan bağımsız değiĢkenlere Temel BileĢenler Analizi (TBA) uygulanmıĢtır. 

Birbirleri ile korelâsyonlu p kadar değiĢken yerine bir birleri ile korelasyonsuz p kadar 

temel bileĢen ile modeller oluĢturulmuĢtur. Modeller oluĢturulurken, çok değiĢkenli 

regresyon, çok değiĢkenli Zaman Serileri Analizi (VAR(p)), ARIMA(p,d,q), ve Yapay 

Sinir Ağları (YSA) yöntemleri kullanılmıĢtır.  

 
Kullanılan modellerde bu yöntemler, belirleme katsayısı (R

2
), ortalama karesel hata 

(OKH), ve Akaike Bilgi Kriteri (AIC) kriterlerine göre sınıflandırılmıĢtır. Minimum 

OKH ve minimum AIC değerini veren iki yöntem arasında en yüksek R
2
 değerini veren 

yöntem en iyi yöntem olarak belirlenmiĢtir.  

 
Çok değiĢkenli zaman serisi analizlerinde, Granger Nedensellik analizi belirleyici bir rol 

almıĢtır. DeğiĢkenler arasındaki nedensellik, modeli oluĢtururken parametre sayısını 

etkilemiĢtir. Aynı zamanda bu yöntemde etki-tepki analizi yapılmıĢ bağımlı değiĢkene 

verilecek bir birimlik bir Ģokun diğer değiĢkenlerde nasıl bir tepki vereceği grafiksel 

olarak yorumlanmıĢtır. Varyans ayrıĢtırması yapılarak serilerimizin öngörü hata 

varyansının diğer değiĢkenler tarafından açıklanma oranları belirlenmiĢtir. Bağımlı 

değiĢkenin bağımsız değiĢkenler trafından etkilenme oranları da varyans ayrıĢtırmasında 

tespit edilmiĢtir.  

 
2008–2009 yıllarında meydana gelen kaza sayıları, bu kazalardaki ölü sayıları ve yaralı 

sayıları kullanılan modellerde ki tahmini değerlerle yakın çıkmıĢtır. Bu yıllarda 

gerçekleĢen kaza sayıları ve modellerden tahmin edilen kaza sayıları %95 güven 

aralığında bulunmuĢtur. Kazaları etkileyen değiĢkenlerin baĢında nüfus, araç sayısı, km-
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taĢıt, AOGT tespit edilmiĢtir. Aynı zamanda bu değiĢkenlere iliĢkin tespitler Camkesen 

(1998) ve Cribbins et al. (1967) tarafından da çalıĢılmıĢtır.  

 

1.2. Kaynak Özetleri  

 

Trafik kaza modellemesi ile ilgili literatürde bir çok çalıĢma mevcut olup bunlardan 

bazıları aĢağıda sunulmuĢtur.  

 

Kihlberg et al. (1968) çalıĢmasında Ģerit sayısı, orta refüj ve bağlantı noktalarının 

kontrol durumuna göre sınıflandırmıĢ homojen yol kesimlerindeki kaza Ģiddetini 

modellemede lineer regresyon analizini kullanmıĢlardır.  

 

William et al. (1973) yaptıkları çalıĢmada, tek baĢına kaza sayılarını modellemiĢtir. 

ÇalıĢmada kaza analizden ziyade Bayesci bir yaklaĢım ile bir kesitteki kaza 

potansiyelinin analiz edilmesi gerektiği önerilmiĢtir.  

 

Jovanis and Chang (1986) trafik kazaları gibi rastgele kesikli değiĢkenler için, 

geleneksel lineer regresyon modeli negatif olmayan olayları açıklayamayacağından 

genelleĢtirilmiĢ lineer regresyon modelini kullanmıĢlardır.  

 

Nakatsyii (1989), Altun vd (2005) yapay sinir ağları yardımıyla trafik akım kontrolü 

isimli bir çalıĢma yapmıĢ, bu çalıĢmayı Türkçeye çevirmiĢlerdir. Bu çalıĢmada 

sürücülerin karakteristik özellikleri (yaĢ, cinsiyet, alkol durumu, emniyet kemeri), araç 

tipi, hız, bölge özellikleri, aydınlık durumu gibi değiĢkenler girdi katmanında yer 

almıĢtır. ÇıkıĢ katmanında ise kazanın hasarsız, hafif hasarlı, orta Ģiddetli, ağır ve 

ölümcül olup olmadıkları yapay sinir ağları, fuzzy (bulanık mantık), probit model ile 

modellenmeye çalıĢılmıĢ ve yöntemler kıyaslanmıĢtır. Aynı çalıĢmada trafik akımı ve 

hızı tahmin edilmeye çalıĢılmıĢtır. Yoğunluk, hava durumu, görüĢ, açıklık ve ağır taĢıt 

yüzdesi değiĢkenleri alınmıĢ, 360.000 trafik kaydının içinden 2688 adeti seçilmiĢ, 

verilerin yarısı ağin eğitimi yarısıda ağın testi için kullanılmıĢtır.  
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Persaud (1991) YOGT ve kesim uzunluğu değiĢkenlerini kullarak, kaza sayısını NB 

Regresyon yöntemini kullanarak modellemiĢtir.  

 

Ġyinam vd (1998), tek değiĢkenli zaman serisi analizi ile aylık trafik kaza sayılarını 

modellemeye çalıĢmıĢ kaza sayılarının 20 yıllık bir süreçte ne Ģekilde arttığını 

gözlemlemeye çalıĢmıĢtır.  

 

Camkesen (1998), trafik kazalarının oluĢumunda birden fazla faktörün rol aldığını ifade 

etmektedir. Bu faktörlerin tamamının birbirleri ile iliĢkileri, yolların geometrik 

özellikleri, çevre koĢulları ve sürücü karakteristikleri, kazaların meydana gelmesinde 

büyük rol oynamaktadırlar.  

 
YOGT kullanılan birçok modelde değiĢken olarak kabul edilmiĢtir. Cribbins et al. 

(1967) yapmıĢ olduğu çalıĢmada YOGT, refüj geniĢliği, hız limiti, gibi 8 adet değiĢkeni 

kullanarak kaza tahmin modeli geliĢtirmiĢtir (Camkesen 1998). 

 
Delen et al. (2006), YSA kullanarak hangi durumlarda sürücülerin ve yolcuların öldüğü 

veya yaralandığını anlamak için sürüĢ güvenliğini artırmaya yardımcı olabilecek 

parametreler geliĢtirmek için çalıĢmıĢtır. Trafik kazalarında yaralanmaları artıran riskler 

birçok unsur içerir. Bunlardan sürücülerin karakteristik özellikleri (davranıĢ ve kiĢiliği), 

çevresel faktörler, yol Ģartları (kaza anında), aracın teknik özelliklerini, Yapay sinir 

ağları kullanılarak trafik kazalarında yaralanma Ģiddetini tahmin etmeye çalıĢmıĢlardır.  

 
Ferrer-Garcia et al. (2006), zaman serileri ile ayrıĢtırılmıĢ veriler kullanarak trafik kaza 

tahmini yapmaya çalıĢmıĢlardır. Kullanılan modellerde aylık olarak ölçülen farklı 

karakteristik özellik gösteren trafik kaza verileri kullanılmıĢtır. Özellikle trafik güvenlik 

kampanyalarının değerlendirilmesinde zorunlu değiĢkenlerin etkileri göz önüne 

alınmıĢtır.  
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Mohamed et al. (2000), trafik kazalarının meydana geliĢ Ģekli ve iliĢkilerin 

modellenmesi çalıĢmasında NB regresyon yöntemini kullanmıĢlardır. Yolların 

geometrik özellikleri ve sürücü karakteristiklerini değiĢken olarak almıĢlardır. Hız, orta 

refüj geniĢliği, Ģerit geniĢliği, Ģerit sayısı ve uluslar arası yollarda yol bağlantı 

sayılarının, kazalarla iliĢkili olduğunu göstermiĢtir. Genç erkek sürücülerin bayan 

sürücülere göre ağır trafik hacmi olan yerlerde daha dikkatsiz oldukları ve daha hızlı 

gittiklerini tespit etmiĢlerdir. Genç sürücülerin yaĢlı ve orta yaĢlı sürücülere göre 

kurplarda daha hızlı araç sürdüklerini ve bunun da kazalara neden olduğunu 

belirlemiĢlerdir. 

 
Miao et al. (2003), trafik kaza analizlerinde karar ağacı ve yapay sinir ağları kullanarak 

kaza modellemesi yapmıĢlardır. Sürücülerin emniyet kemeri kullanımı, yol hava Ģartları 

ve sürücülerin alkol durumları değiĢken olarak alınmıĢtır. DeğiĢkenler ölümlü ve 

yaralanmalı kazalar olarak sınıflandırmıĢ, kazalar yapay sinir ağları ve bulanık mantık 

ile modellenmiĢtir. 

 

Greibe (2003), Danimarka‟daki Ģehirlerarası yollar için kaza tahmin modellemesi ile 

çok değiĢkenli regresyon modeli geliĢtirmiĢtir. ÇalıĢmasında 142 km „lik bir yol 

kesiminde 1036 tali yol bağlantısı üzerinde yaptığı çalıĢmada, kaza sıklığı, yıllık 

ortalama günlük trafik, hız limiti, yol bağlantı uzunlukları, Ģerit sayısı, çift tek yön, yol 

geniĢliği, hız azaltan ölçümler, çıkıĢlar, yan yol sayıları, bisiklet imkanı, yaya yolu, park 

imkanı ve refüj gibi değiĢkenleri ele alarak bir tahmin modeli geliĢtirmiĢtir.  

 

Lee et al. (2008), çalıĢmasında yapısal denklem modeli kullanarak Kore 

karayollarındaki trafik kaza büyüklüğü analizini yapmıĢlardır. Kaza Ģiddeti, toplam araç 

sayısı, toplam hasarlı araç sayısı, toplam ölü ve yaralı sayısı ile ifade edilir denilmiĢtir. 

Güvenli ulaĢım özelliklerinin en önemli ölçüm indeksinin kaza büyüklüğü olduğu yine 

bu çalıĢmada belirtilmiĢtir. 
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Quddus (2008), çalıĢmasında kaza analizi uygulamalarında yeni kullanılmaya baĢlanılan 

Box-Jenkins (ARIMA) ve mevsimsel (SARIMA) zaman serisi metodu ile INAR 

Poisson ve NB negatif binom yöntemlerini kullanmıĢ, 1985-2007 yılları arasında kaza 

sayıları km-yol uzunluklarını modelleyerek yöntemleri karĢılaĢtırılmıĢtır. 

 

1.3. Trafik Kazaları ve Dünya Analizi 

 

Dünyada her yıl trafik kazalarından 1.3 milyon insan ölmekte 50 milyon insan da 

yaralanmaktadır. Dünyada yaralanmalı kazalarda trafik kazaları birinci sırada yer 

almaktadır. Analizciler nüfus arttıkça ve trafiğe kayıtlı karadaki motorlu araç sayısı 

arttıkça kazalarda ki artıĢın devam edeceğini bildirmiĢlerdir. Karayolu ulaĢımı, ulaĢım 

sistemleri içinde en karmaĢık olanı olmamasına rağmen en fazla ölümlü yaralanmalı 

kazanın olduğu sistemdir. Bugüne kadar bu sistem üzerine yapılan çalıĢmalarda 

kazaların azaltılmasına iliĢkin somut bir geliĢme olmamıĢtır. Havayolu, demiryolu ve 

denizyolu kazalarında kazaya sebep olan bir veya iki değiĢken varken, karayollarında 

trafik kazalarına sebep olan birbirleri ile iliĢkili birden fazla karmaĢık iliĢki söz 

konusudur.  

 
Dünya Sağlık Örgütü 1990 yılında evrensel felaket sıralamasında trafik kazalarını 9. 

sırada göstermiĢtir. 2020 yılında bu sıralamanın üçüncü en büyük felaket olacağı sonucu 

öngörülmektedir (Miranda-Morendo 2006; Kibar 2008). 

 
2007 yılı verilerine göre Avrupa ülkelerinden Ġngiltere‟de kazalardaki ölü sayılarının 

kazaya oranı %1.6, Ġtalya‟da %2.8, Fransa‟da ise %6.4‟tür. GeliĢmiĢ ülkelerde de trafik 

kazaları önemini korumaktadır. 

 

1.4. Trafik Kazaları ve Türkiye Analizi 

 

Ülkemizde trafiğe kayıtlı araç sayısı 14 milyonun üzerindedir. 2010 yılında trafiğe 

kayıtlı araç sayısı aylık olarak bir önceki aya göre ortalama %40 artıĢ göstererek devam 
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etmiĢtir. Ehliyetli sürücü sayısı da 18 milyonun üzerinde bulunmaktadır. Yıllık 

ortalama, ölümlü, yaralanmalı ve maddi hasarlı 1.3 milyon trafik kazası meydana 

gelmektedir. Yine ülkemizde yıllık ortalama 5000 kiĢi ölmektedir. Ortalama bir 

ilçemizin nüfus büyüklüğü 5000 kabul edilirse yılda bir ilçe nüfusu ölmektedir. 100 bin 

kiĢi bir yılda trafik kazalarında yaralanmaktadır. Son 10 yıllık maddi kayıp 100 milyar 

doların üzerindedir.  

 
Rakamların bu kadar büyük olmasındaki bazı sebepler; ülkemizdeki yolların son 

döneme kadar standartlara uymaması, ülkemizde karayolu ulaĢımının diğer ulaĢım 

türleri içindeki kullanım oranının %90‟nın üzerinde yer alması, trafik eğitiminin 

yeterince verilememesi, yolun geometrik özelliklerinden kaynaklanan kazalarda teknik 

bilirkiĢi raporlarının hazırlanamaması ve bu raporlar doğrultusunda iyileĢtirilmelerin 

yapılamaması sayılabilir. Ağır tonajlı araçların denetlenememesi sonucu yol 

aplamasında meydana getirdikleri deformasyonların önlenememesi, kurumsal 

altyapıların olmaması, sorumluluk aĢamasında hiçbir kurumun sorumluluğu üzerine 

almaması bu acı tabloyu tetiklemektedir.  

 
Ġnsan ölümlerinin sebepleri olarak sıralandığında ülkemizde trafik kazaları 3. sırada yer 

almaktadır. Bu kadar acı sonuçlar karĢısında maalesef ülkemizde trafik kazaları ile ilgili 

bir üst kurul veya iletiĢim sağlayacak bir yapı bulunmamaktadır.  

 
Kaza analizleri yapılırken en fazla son 10 yıllık verilere ulaĢılabilmekte, mevzuat gereği 

ve/veya kurumlar kendilerinden emin olmadıklarından bazı verilere de hiç 

ulaĢılamamaktadır. Trafik kazaları ile ilgili en sağlıklı çalıĢmalar Emniyet Genel 

Müdürlüğü, Trafik Eğitim ve AraĢtırma Daire BaĢkanlığı bünyesinde yürütülmektedir. 

Veri tabanları, trafik kaza tutanaklarının sayısallaĢtırılması ile oluĢmaktadır. Ġsteğe bağlı 

en fazla üç değiĢkenli veriler elde edilebilmektedir. Yoldan kaynaklanan sorunlarla ilgili 

hiçbir bilgiye eriĢilememektedir.  
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1.5. Trafik Kaza Analizleri ve Tahmin Modelleri 

 

1.5.1. Çok değiĢkenli zaman serisi uygulamaları 

 

Çok değiĢkenli zaman serisi analizinin kullanıldığı yöntem VAR(p) vektörel otoregresif 

zaman serileri yöntemidir. Altı farklı model üzerinde bu yöntem uygulanmıĢtır. Veriler 

TÜĠK‟ten elde edilmiĢtir. Çok değiĢkenli uygulamaların ilk modeli, kaza sayısı bağımlı 

değiĢken olarak alınmıĢ, bağımsız değiĢkenler ise yük-ton, km-taĢıt, kamyon sayısı, tır 

sayısı, otobüs sayısı, karayollarında enerji tüketimi, yol-km uzunluğu, ağırlıklı ortalama 

günlük trafik (AOGT) değerleri alınmıĢtır.  

 
Bütün modellerimiz için, zaman serilerinin varsayımlarından olan normal dağılıma 

uygunluk için değiĢkenler logaritmik dönüĢüme tabii tutulmuĢlardır. Birim kök 

analizlerinden ADF (GeliĢtirilmiĢ Dickey Fuller) istatistiği sonucu fark serileri alınarak 

durağan hale getirilmiĢlerdir.  

 
Durağan seriler üzerinden Granger Nedensellik analizleri yapılmıĢtır. DeğiĢkenler 

arasında Granger nedeni olan seriler modellere katılmıĢlardır. Akaike (AIC), Shcwartz 

(SCW), nihai sonuç hatası (FPE), Hannan-Quin (HQ) istatisiklerine göre minimum olan 

model belirleme derecesi alınmıĢ ve modellere VAR(p) olarak uygulanmıĢtır. 

Modellerin hepsi için model parametreleri ve sonuçlar, tartıĢma kısmında verilmiĢtir.  

 
Çizelge 1.1. Çok değiĢkenli zaman serileri model dereceleri 

 

Modeller VAR(p) 

Model-I VAR(1) 

Model-II VAR(2) 

Model-III VAR(2) 

Model-IV VAR(1) 

Model-V VAR(1) 
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Etki-tepki analizi yapılarak bağımlı değiĢkene verilecek bir birimlik Ģokun diğer 

değiĢkenler üzerindeki tepkileri analiz edilmiĢtir. Kaza sayılarına 1. dönemde verilen 

Ģokların bağımsız değiĢkenlerde genellikle 4., 5. ve 6. dönemde etkilerini kaybettikleri 

görülmüĢtür. Bu fonksiyonun verilerimize daha sağlıklı bir Ģekilde uygulanabilmesi için 

verilerin yıllık değil de aylık veya haftalık olarak verilmesi, sonuçların analizini daha 

anlamlı hale getirecektir. Kaza sayıları yılın belli aylarında değiĢiklik gösterdiğinden 

mevsimsel bir dalgalanmaya sahiptirler. Yaz aylarında ve bayram tatillerinde kaza 

sayılarında bir artıĢ gözlemlenmekte ve bu artıĢın etki-tepki fonksiyonuna yansıması 

daha anlamlı olmaktadır. Bu analiz yöntemine iliĢkin sonuçlar materyal ve yöntem 

kısmında grafiksel olarak verilmiĢtir. 

 
Varyans ayrıĢtırması yapılarak bir değiĢkene ait hata varyansının diğer değiĢkenler 

tarafından açıklanma oranları tespit edilmiĢtir. Modellerin hepsinde bulunan bağımlı 

değiĢken olan kaza sayısını açıklayan bağımsız değiĢken birinci modelde otobüs sayısı, 

ikinci ve üçüncü modelde nüfus, olmuĢtur. Dördüncü ve beĢinci modellerde de bağımlı 

değiĢken yaralı ve ölü sayısı olduğundan en fazla etkileyen değiĢken beklenildiği gibi 

kaza sayısı sonra da AOGT olmuĢtur.  

 
Bütün VAR(p) modellerinin hata terimlerinde otokorelasyon olmadığı LM testi ile test 

edilmiĢtir. Aynı Ģekilde hata terimlerinin normal dağılıma sahip olup olmadıkları da 

Jarque Bera testi ile test edilerek normal dağılıma uygun oldukları anlaĢılmıĢtır. Hata 

terimlerinin otokorelasyon fonksiyonu (ACF) ve kısmi otokorelasyon fonksiyonu 

(PACF) grafikleri çizilerek otokorelasyonun olup olmadığı gözlemlenmiĢtir.  

 
Seçilen modellerin parametrelerinin turtarlılıkları analiz edilip en uygun model 

belirlendikten sonra uyum grafikleri ve serpilme grafikleri çizilerek yorumlandı. 

Modellere iliĢkin VAR(p) yönteminin R
2
‟si, OKH‟sı ve AIC kriteri belirlenerek 

tartıĢma ve sonuçlar kısmında verildi. 
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1.5.2. Yapay sinir ağı uygulamaları 

 

Yedi farklı model üzerinde YSA uygulaması yapılmıĢtır. Modelleme aĢamasına 

geçmeden önce bağımsız değiĢkenler için korelasyon matrisleri hazırlanarak incelenmiĢ 

ve bağımsız değiĢkenler arasında ilk beĢ modelde yüksek korelasyon gözlemlenmiĢtir. 

Bu modeller için YSA-TBA uygulaması için Matlab‟te “prepca” kodu yardımıyla 

eğitim seti içerisinde %2‟den daha az katkısı olan elemanların elendiği geri kalan 

elemanlar kadar temel bileĢen ile giriĢ tabakasındaki nöronlar oluĢturulmuĢtur.  

 

Çizelge 1.2. Çok değiĢkenli zaman serileri model dereceleri 

 

Modeller Temel BileĢen Sayısı Ġnput Nöron Sayısı 

Model-I 2 2 

Model-II 2 2 

Model-III 2 2 

Model-IV 1 1 

Model-V 1 1 

 

Yine Matlab‟te yazılan bir yazılım ile ağın ezberlemesini engellemek için minimum 

parametre ile 3 tabakalı ağlar oluĢturuldu. Aktivasyon foksiyonu “trainbr” olarak 

belirlendi. Gizli katmandaki nöron sayısı 1-2-3 olarak sınırlandırıldı. Maksimum 

iterasyon sayısı 1000 olarak belirlendi. Dördüncü ve beĢinci modellerde çıkıĢ tabakası 

iki nöronlu olarak (ölü sayısı-yaralı sayısı) alındı. Transfer fonksiyonu logsig-purelin-

tansig olarak alınmıĢtır. Verilerimiz, transfer fonksiyonunu özelliklerine göre [0-1] arası 

veya [+1,-1] arası bir ölçeklemeye tabi tutulmuĢtur. Eğitim seti, verilerin %70‟ini, test 

seti ise verilerin %30‟unu oluĢturulmuĢtur. Program çalıĢtırıldığında birden fazla ağ 

yapısı içerisinde minimum AIC kriterinin veren ağ ile minumum OKH veren ağ 

mimarisi arasında maksimum R
2
„yi veren ağ mimarisi optimum olarak kabul edilmiĢtir. 

Bütün modellere iliĢkin YSA uygulamalarının test değerlerinin R
2
‟si, OKH‟sı ve AIC 

kriterleri belirlenerek tartıĢma ve sonuçlar kısmında verilmiĢtir. 
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1.5.3. Çok değiĢkenli regresyon (ÇDR) 

 

Modellerde kullanılan değiĢkenlerin hepsi, logaritmik dönüĢüm uygulanarak normal 

dağılıma uygun hale getirilmiĢtir. Bu modeller için bütün değiĢkenleri kapsayan 

korelasyon matrisleri oluĢturulmuĢtur. Tercan-Erzurum-Ağrı-Gürbulak E-80 

karayolunun 422 km uzunluğundaki verileri kapsayan modeller hariç diğer 5 modeldeki 

bağımsız değiĢkenler için yüksek korelasyon, yüksek R
2
, çok düĢük tolerans çok yüksek 

VIF oranları çıkmıĢtır. Bütün bu göstergeler ilk beĢ modelde Çok değiĢkenli regresyon 

uygulamasında çoklu bağlantı probleminin olduğunu göstermiĢtir.  

 

Çok değiĢkenli regresyonun varsayımlarından biri olan çoklu bağlantı probleminin 

kaldırılması için TBA uygulaması yapılmıĢtır. P kadar değiĢken yerine p kadar temel 

bileĢen bulunmuĢtur. Bu temel bileĢenlerin toplam varyansı açıklama oranı, %95 ve 

üzeri olarak kabul edilmiĢ ve hemen hemen bütün modellerde iki temel bileĢen sayısı 

bulunmuĢtur. Bu temel bileĢen sayısının tespiti için yamaç eğimi grafikleri çizilmiĢ ve 

yorumlanmıĢtır.  

 
Yeni bulunan temel bileĢen skorları ile bağımlı değiĢken, lineer regresyona tabii 

tutulmuĢ model parametreleri istatistiksel olarak anlamlı bulunmuĢtur. Fakat regresyona 

giren bağımsız değiĢkenlerin skorları ile model oluĢturmak yerine, orjinal verilerin 

kullanılması daha anlamlı olacağından, en küçük kareler kestiricileri yardımıyla 

özvektörler kullanılarak ters dönüĢüm uygulanmıĢ ve çoklu bağlantı probleminin 

olmadığı regresyon modelleri oluĢturulmuĢtur.  

 
Modellerin hepsinde tahmin ve orijinal bağımlı değiĢkenin uyum grafikleri ve serpilme 

grafikleri çizilmiĢtir. Bütün modellere iliĢkin ÇDR uygulamalarının R
2
‟si, OKH‟sı ve 

AIC kriterleri belirlenerek tartıĢma ve sonuçlar kısmında verilmiĢtir. 

 

 

 



 

 

12 

1.5.3. Poisson regresyonu ve negatif binomial regresyon uygulamaları 

 

E-80 Karayolunun, Tercan-Erzurum-Ağrı-Gürbulak sınır kapısına kadar olan 422 km‟ 

lik yol uzunluğundaki kaza sayılarının Poisson veya Negatif Binom Regresyon ile 

modellemeleri yapılmıĢtır. Bu yöntem ile daha çok sayma verileri ve kesikli rastsal 

değiĢkenler kullanılmaktadır. Kaza sayıları da kesikli rastsal değiĢkenler olduğundan 

trafik kazaları için çok uygun bir yöntemdir. Literatürde de bu yöntemin kullanılması 

sonucu birçok çalıĢma yapıldığı görülmüĢtür. Veriler 2005–2008 yıllarını 

kapsamaktadır. 

 
Bu güzergâh ilk önce Karayolları 12. Bölge Müdürlüğü tarafından kısımlara ayrılmıĢ ve 

kesimlerin baĢlangıç km‟leri tespit edilmiĢtir. Uzunluk diye tabir edilen bu değiĢkenler 

kesimlerin km‟leridir. Diğer değiĢkenler YOGT, kesimlere iliĢkin Ģerit sayısı, Ģerit 

geniĢliği, kavĢak sayısı, ortalama hız ve bağlantı sayısı, olarak alınmıĢtır. Aynı 

yöntemde bağımlı değiĢken olarak bir modelde kaza sayısı, diğer modelde ise yaralı 

sayısı alınmıĢtır.  

 
Modellerde bazı değiĢkenler istatistiksel olarak anlamlı çıkmamıĢ ve modelden 

çıkarılmıĢlardır. Poisson regresyonu uygulanmıĢ, aĢırı yayılım göstermesi durumda 

negatif binom regresyon uygulaması yapılmıĢtır. Uyum iyiliği testi yapılmıĢ, araĢtırma 

bulguları ve tartıĢma kısmında belirtilmiĢtir. Yöntem, YSA ve çok değiĢkenli regresyon 

yöntemi ile karĢılaĢtırılmıĢtır.  

 



 

 

13 

2. KURAMSAL TEMELLER  

 

2.1. Zaman Serileri  

 

Bir zaman serisi, o serinin kapsadığı zaman içindeki hareketini gözlemler. (Bozkurt 

2007). Tek bir serinin zaman içindeki hareketleri inceleniyor ve gelecek tahmini 

yapılıyorsa, bu tip serilere ve analize tek değiĢkenli zaman serisi analizi denir.  Birden 

fazla serinin zaman içinde hareketleri inceleniyorsa ve bu serilerin birbirleri ile olan 

iliĢkileri de bu analiz içine giriyorsa, bu tip serilere de çok değiĢkenli zaman serileri 

denir. Zaman serileri, zaman içerisinde ara vermeden kaydedilebilen verilere sahip 

seriler (elektrik sinyalleri voltaj vb.) olan sürekli zaman serileri ve zaman içerisinde 

belli aralıklarla verileri kaydedilebilen seriler (kaza verileri, faiz oranları, döviz oranları 

vb.) olan kesikli zaman serileri olmak üzere iki türlüdür.  

 

Zaman serileri analizine geçmeden önce bazı varsayımların kabul edilmesi 

gerekmektedir. Bir zaman serisinin normal dağılıma uygun ve durağan olması temel 

varsayımlardan biridir. Durağan olan seri ile gelecek tahmini yapmak sahte regresyonu 

önlemekte oluĢan modellerin istatistiksel olarak anlamlı olmasını sağlamaktadır. Zaman 

serilerini oluĢturan bazı bileĢenler mevcuttur. Ayrıca zaman serileri; trend, mevsimsel 

bileĢen, çevrimsel bileĢen ve düzensiz bileĢen olmak üzere dört ana bileĢenden oluĢur 

(Kadılar 2005).  

 

Zaman serilerinin trafik kaza analizinde kullanılması düĢünülen modeli Box-Jenkins ve 

VAR modelleridir. Box-Jenkins yöntemi sırasıyla bir seriye uygun modeli belirleme, 

modelin tahmini, tanısal denetimi ve tahmin iĢlemlerini içermektedir. Serinin tamamıyla 

kendi geçmiĢ bilgisine dayanarak tahmin yapmaya yönelik bir metottur. Zaman 

serilerinin analizi için serinin durağan bir seri olması yani eğilimden arındırılması 

gerekmektedir.  
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Zaman serileri analizlerinde iki önemli fonksiyon vardır. Bunlar otokorelasyon 

fonksiyonu ve grafiği ACF(k) ile kısmi otokorelasyon fonksiyonu ve grafiği PACF(k)  

dir. AraĢtırmacılar, bu iki fonksiyonun grafiklerinden modelin derecesini ve 

durağanlığını test etmektedirler. Bunun yerine istatistiksel testlerin yapılarak yorumların 

yapılması daha uygun olur.  

 
Otokorelasyon, bir değiĢkenin birden fazla gecikmeli dönemi arasındaki iliĢki olarak 

tanımlanmaktadır. Tek bir değiĢkenin kendi gecikmeli değerleri arasındaki 

otokorelasyonu denklem 2.1. ile hesaplanabilir (Sevüktekin ve Nargileçekenler 2007).  
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Otokorelasyon kaysayısı, kovaryansların iki standart sapmasının çarpımları oranına 

eĢittir.  
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Kısmi otokorelasyonlar ise diğer zaman gecikmelerinin etkileri (t=1,2,….k-1) yok 

edildiğinde Yt, ve Yt-k arasındaki birlikteliğin derecesini ölçmede kullanılır. Aynı 

serilerin 1 (Yt-1) gecikmeli ve 2 (Yt-2) gecikmeli serileri arasında da bir otokorelasyon 

olduğunu varsayalım. Bu durumda serinin kendisi (Yt), 1 (Yt-1) gecikmeli değeri ve iki 

(Yt-2) gecikmeli değeri arasında bir otokorelasyon iliĢkisi vardır. Serinin kendisi ile iki 

(Yt-2) gecikmeli değeri arasındaki bir korelasyonu ölçmek için aradaki 1 (Yt-1) gecikmeli 

değerin etkisini bulma gereği ortaya çıkar. Bu iĢlem kısmi otokorelasyon olarak ortaya 

çıkar (Sevüktekin ve Nargileçekenler 2007).  
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k‟nıncı dereceden  kısmi otokorelasyon katsayısı kk olarak ifade edilirse, Yt-1,…….,Yt-k 

‟ya karĢı Yt‟nin regresyon modeli oluĢturulursa otokorelasyon katsayısı hesaplanabilir. 

(Sevüktekin ve Nargileçekenler 2007)  

 

tttt eYYY  

*

222

*

121

*           (2.3) 

 

Burada Yt ile Yt-2 arasındaki kısmi otokorelasyon 22 ‟dir.  Yukarıda da bahsedildiği 

gibi Yt-1‟ in etkisinin kaldırılması sonucunda Yt ile Yt-2 arasındaki korelasyondur. Örnek 

büyüklüğü T ise gecikme sayısı belirlenirken T/4 sayıda gecikme PACF „nin 

bulunmasında kullanılabilir. Her bir ACF(k) değeri %95 güvenirlik için )/1(96.1 n  

değeri bulunarak yapılır. Eğer ACF(k) değeri güven aralığı sınırları dıĢında kalıyorsa 

otokorelasyon vardır. Kısmi korelasyon fonksiyonu gecikmeli değiĢkenler arasındaki 

iliĢkiyi ifade eder. 
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Burada;  jkkkkjkkj   ,1,1  , j=1,2,3,……,k-1 dir.     (2.5) 

 

2.1.1. Birim kök testleri   

 

Bir serinin durağanlığını kontrol etmede kullanılan testlere birim kök testleri denir. 

ÇalıĢmalarımızda birim kök testlerinden GeniĢletilmiĢ Dickey Fuller (ADF) Testi 

kullanılmıĢtır. Bu test Monte Carlo yöntemi kullanılarak 1981 yılında Dickey ve Fuller 

tarafından bulunmuĢtur.  Dickey Fuller (1981), durağan olmama 1:0 H yokluk 
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hipotezinin bir deterministik trend etrafında durağan olma 1:1 H  seçenek 

hipotezine karĢı testi ele almıĢtır (Kadılar 2000). 

 

ttt yty   110         (2.6) 

 

ttt ytty   110         (2.7) 

 

Burada 1:0 H yokluk hipotezi 0:0 H  hipotezine dönüĢmektedir. Çünkü 

1   olmaktadır.   ‟nin t istatistiği, Tt Ģeklinde gösterilmektedir. Fark serisi 

alınmıĢ serinin yine trende sahip olduğu görülüyor ise en az kısıtlı model olan 

(2.7)‟nolu )0,0( 10   denklemden iĢe baĢlanmalıdır. Yokluk hipotezi red 

ediliyorsa iĢlemlere devam etmeye gerek yoktur. Eğer red edilmiyorsa trendin önemli 

olup olmadığının kontrolü gereklidir. Dickey-Fuller testi için geliĢtirilen denklem (2.8)  




 
p

i

tititt yyty
1

21110         (2.8) 

 

Burada p, t  hata terimlerinin akgürültü olabilmesi için gerekli büyüklükteki bir 

değerdir (Kadılar 2000). 

 
Zaman serileri analizlerinde yorumcular serinin durağan olması gerektiği varsayımı 

üzerinde durmuĢlardır. Durağanlık kavramı serinin değerlerinin belli bir değere 

yaklaĢmasını ya da beklenen değeri etrafında dalgalanmasını ifade eder. Durağanlık 

koĢulları aĢağıda verilmiĢtir (Bozkurt 2007).  
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Tüm gecikmeler için ortalama, varyans ve kovaryans değerleri sabit olmalıdır. Bir baĢka 

ifade ile serinin durağanlığı, zaman içinde varyansın ve ortalamanın sabit olması ve 

gecikmeli iki zaman periyodundaki değiĢkenlerin ko-varyansının değiĢkenler arasındaki 

gecikmeye bağlı olmasıdır. Bu tip durağanlığa zayıf durağanlık denir. Güçlü durağanlık 

ise değiĢkenlerin koĢullu ihtimal dağılımlarının zaman içinde değiĢmediği bir süreci 

gösterir (Enders 1995; Bozkurt 2007). 

 

Durağanlığı tespit yöntemlerinden biri de korelogramlardan faydalanmaktır. ACF eğer 

çok yüksek bir değerden baĢlayıp çok yavaĢ küçülüyorsa, bu serinin durağan 

olmadığının bir göstergesidir.  

 

Diğer bir ifade ile hesaplanan „„t‟‟ değerinin mutlak değeri Dickey-Fuller veya 

McKinnon Dickey-Fuller kritik değerlerinin mutlak değerini aĢıyorsa, zaman serisinin 

durağan olduğu hipotezini reddedemeyiz. „Ho: p=1‟ reddedilirse zaman serisi 

durağandır (ġimĢek ve Halaç 2003).  

 

Dickey-Fuller‟in ortaya koyduğu üç denklem türü bulunmaktadır;  

Sabitsiz trendsiz Dickey-Fuller denklemi: ΔYt = γY(t-1) + ut   

Sabitli trendsiz Dickey-Fuller denklemi: ΔYt = a + γY(t-1) + ut   

Sabitli trendli Dickey-Fuller denklemi: ΔYt = a + bt + γY(t-1) + ut   

 

Birim kökün varlığının denmesi için kullanılan iki hipotez kullanılmaktadır. Bunlar;  

 

H1 : γ<0 (p<1) (seride birim kök yoktur, seri durağandır.)  

H0 : γ=0 (p=1) (seride birim kök vardır, seri durağan değildir.)  
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2.1.2. Model seçim kriterleri  

 

Yapılan analizlerde bulunan birçok model içinde en uygununun bulunabilmesi bazı 

kıstasların yerine gelmesine bağlıdır. Uygulamalarda birden çok uygun model tespit 

edilebilir. Bu uygun modeller içinde istatistiksel olarak en uygun olanını tespit etmek 

gerekir. Zaman serileri analizlerinde, model seçim kriteri en fazla kullanılan hata 

terimleri varyansına bağlı olan Akaike (AIC) bilgi kriteridir.  

 

Model seçilirken gecikme sayısı, model derecesi olan p ve q ne kadar büyük olursa 

hataların karelerinin toplamı o kadar küçük olacaktır (Kutlar 2000). 

 

)(2)ln( 2 qpNAIC e             (2.9) 

 

Burada N, ölçü sayısı, 2

e hata terimlerinin varyansı, p ve q da model derecelerini temsil 

etmektedir (Salas et. al.).  Aynı kıstasın bir baĢka gösterim Ģekli; 

 
AIC=T.ln( hata kareleri toplamı)+2n       (2.10) 

SBC=T.ln (hata kareleri toplamı)+n ln(T)       (2.11) 

 
Ģeklindedir. Ġkinci kıstas ise Schwartz Bayesian kriteridir (SBC). Burada n, tahmin 

edilen parametre sayısıdır (Kutlar 2000). 

 
AIC (2.9) Formülüyle hesaplanmaktadır. Modelde sabit terim olduğunda parametre 

sayısına 1 eklemek gerekmektedir. Akaike kriterine alternatif olarak geliĢtirilen 

Schwartz Bayes kriteri (SBC) değeri  

 

SBC= T ln σ
2

ε + M ln T        (2.12) 
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formülüyle hesaplanmaktadır. Bu iki formülün aralarındaki tek fark Akaike bilgi kriteri 

formülündeki 2 yerine lnT teriminin gelmesidir ki bu terim küçük örneklemeler için 

(50<t<150) 4 ile 5 arasında değer almaktadır. Bu fark Schwartz kriterinin Akaike bilgi 

kriterine göre daha az parametreli modelleri seçme eğilimli olmasını sağlamaktadır. Bu 

açıdan bakıldığında Schwartz kriteri Akaike kriterine göre tercih edilebilmektedir 

(Kadılar 2005).  

 
Uygun olan modeller içinde bu kriter değerlerinin en küçüğüne sahip olan model, seriye 

en uygun model olmaktadır. Sonuç olarak ACF ve PACF grafikleriyle belirlenen uygun 

modellerden incelenen seri için en doğru modeli bulabilmek amacıyla Akaike ya da 

Schwarzt bilgi kriterleri kullanılmaktadır.  

 
Model seçim kriterleri içinde üçüncü bir kriter de Nihai Öngörülen Hata Kriteri (Final 

Prediction Error-FPE) dir.  

 

2̂
nT

nT
FPE




          (2.13) 

 
dir. Burada asıl olan, hata kareleri toplamının minimum olmasıdır. 

 
Belirleme kriterlerinin minimum olduğu değeri veren model en uygun model olarak 

kabul görür. Fakat bu da yeterli değildir. Modelin tahmininden sonra aĢağıda belirtilen 

maddelerin de yerine getirilmesi gerekmektedir (Hınıslıoğlu ve Bayata 2009).  

 

 Modelin tahminlerinin orjinal seriye uyumu görsel olarak görülmelidir. 

 Modelin tahmin edilen değerlerinin alt ve üst güven aralıklarının içinde olduğu 

görülmelidir.  

 Hata terimlerinin otokorelasyon ve kısmi otokorelasyon grafikleri çizilmeli serinin 

akgürültü bir seri olduğu görülmelidir.   

 Hata terimlerinin normal dağılıma uygunluğu test edilmelidir.  
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 Orijinal seri ile tahmin serisi arasındaki serpilme grafiği çizilmeli ve uyum 

gözlemlenmelidir.  

 Modelin karakteristik köklerinin birim çember içinde kalıp kalmadığı 

gözlemlenmelidir.  

 
BaĢka bir deyiĢle, model seçim kriterleri model belirleme aĢamasının son adımı 

olmakta, dolayısıyla tanısal denetim aĢaması model seçim kriterleri uygulandıktan sonra 

muhakkak yapılmalıdır (Kadılar 2005). 

 

2.1.3. Box-Jenkins yöntemi  

 

Box-Jenkins Modelleri mevsimsel ve mevsimsel olmayan, durağan ve durağan olmayan 

modeller olmak üzere dört farklı duruma ayrılmaktadır. Mevsimsel olmayan modeller 

ARIMA(p,d,q) Ģeklinde gösterilmektedir. Burada p otoregresyon (AR) modelinin 

derecesi, d fark alma iĢlemi sayısı, q hareketli ortalama modelinin (MA) derecesi 

olmaktadır. Mevsimsel Box-Jenkins modelleri ise ARIMA(p,d,q)(P,D,Q)s olmaktadır. 

Burada ise P mevsimsel otoregresyon (SAR) modelinin derecesi, D mevsimsel fark 

alma sayısı, Q mevsimsel ortalama (SMA) modelinin derecesi ve S ise periyot 

olmaktadır. Bu modeller daha çok tek değiĢkenli zaman serileri analizinde 

kullanılmaktadır (Kadılar 2005). 

 
Box-Jenkins 1970 yılında geliĢtirmiĢ olduğu bu yönteme kendi adını vermiĢtir. Bu 

yöntemde üç tip modelleme söz konusudur. Otoregresif süreç [AR(p)], hareketli 

ortalamalar süreç [MA(q) süreci] ve ikisinin birleĢiminden oluĢan Otoregresif Hareketli 

Ortalama (ARMA) sürecidir. Durağan olmayan bir seride fark alınması gerekiyor ise 

fark alma derecesi olan d(I) sürece eklenir ve yöntem ARIMA(p,d,q) haline döner. 

Yöntemin en önemli özelliği en uygun modelin belirlenmesini sağlamaktır. Yöntemin 

bazı aĢamaları vardır. Bozkurt (2000)‟a göre belirleme, tahmin ve modelin testi, 

aĢamaları mevcuttur. Serilerin ilk önce durağanlıkları test edilir. Durağan olmayan 

serilerin fark serileri alınarak analiz tekrar yapılır. Birim Kök Testi dediğimiz bu analiz 
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ve fark serilerin ACF-PACF grafiklerinden yorumlamalar yapılır. AR(p), MA(q) veya 

fark alma sayısı kadar ARIMA(p,d,q) modelleri belirlenir ve modelin parametrelerinin 

tutarlılıkları analiz edilir.  

 
Süreç belirlendikten sonra katsayıların tahmini yapılır. En küçük kareler yöntemi (EKK) 

veya en çok olabilirlik (Maksimum Likehood) yöntemi kullanılır. Modelin seriyi iyi 

açıklayıp açıklamadığını anlamak için Q istatistikleri otokorelasyon katsayılarının 

anlamlı olup olmadıkları ve hata terimlerinin normallik varsayımına uyup uymadıkları 

analiz edilmelidir.  

 

Modelin uygun bir model olduğuna karar verilirse, ileriye dönük olarak tahmin amaçlı 

kullanılabilir. Chatfield and Prothero (1973), Bozkurt (2007)‟ye göre uygun modele 

karar verdikten sonra eğer tahmin sonuçları tatmin edici değil ise farklı ARIMA(p,d,q) 

süreçleri denenmelidir. Bu alternatifler arasında minimum Q istatistiğine sahip yöntem 

seçilebilir.  

 

2.1.3.a. Otoregresif (AR(p)) süreci  

 

Otoregresif süreçte, seri kendi geçmiĢ değerlerinin ağırlık toplamı ile hata terimine 

bağlıdır (Tarı 2008). Bu tip sürece AR(p) süreci denilmektedir. Burada p „nin ne 

olacağına karar vermek için değiĢkenin korelogram görümüne bakmak veya minimum 

AIC ve SC değerlerine bakmak gerekmektedir.   

 

tptptttt yyyyy    .................332211     (2.16) 

 

tptptttt yyyyy    )(.................)()()()( 332211 (2.17) 

 

AR(p) sürecinin açık hali (2.17) nolu denklemdir. Burada yt ortalaması  etrafında ve p 

gecikme ile ifade edilen bir sürece sahip olacaktır. PACF de anlamlı bir p, ACF de ise 



 

 

22 

ağır ağır azalan bir görüntü AR(1) konusunda bir fikir verebilir (Bozkurt 2007). Basit 

bir AR(p) süreci grafiksel olarak analiz edilmek istenirse ACF grafiğinin ağır ağır 

azalması, PACF grafiğinde ise ilk gecikmede ani bir azalma söz konusu ise AR(p) 

sürecinden bahsedilebilir.  

 

2.1.3.b. Hareketli ortalama (MA(q)) süreci  

 

Bir hareketli ortalama süreci, bağımlı değiĢkenin beyaz gürültü sürecine sahip geçmiĢ 

hata terimleri ile ifade edilmesidir. MA(q) modelinin açık biçimi aĢağıda sunulmuĢtur. 

 

qtqtttttz    .................332211      (2.18) 

 

Bu eĢitlikte sağ taraf anlamlı q sayısı kadar hata terimini ifade etmektedir. Hata terimi 

sıfır ortalamaya ve sabit varyansa sahiptir. MA sürecinde ACF ve PACF grafikleri 

analiz edilirken PACF‟de geometrik bir azalma ACF‟de ise anlamlı çıkıĢlar 

gözlemlenerek gecikme sayısı olan (q) belirlenir (Gujarati 2004; Bozkurt 2007). 

 

2.1.3.c. Otoregresif bütünleĢik hareketli ortalama (ARIMA(p,d,q)) süreci  

 

ARIMA modelleri homojen ve durağan olmayan süreçlerdir. Durağan olmayan seriler 

ile çalıĢıldığından I(d) fark alma derecesi olarak kullanılır ve birinci fark ikinci fark d 

dereceden durağan oluyorsa da I(d) olur (Tarı 2008). d kadar fark alındıktan sonra 

durağan olan seriye d. dereceden fark durağan seri adı verilir. Daha önceki iki süreçtede 

ACF ve PACF grafiklerine bakılarak model derecesi hakkında bilgi sahibi 

olunabiliyorken ARIMA modellerinde bu iki grafiğin geometrik olarak beraberce 

azalıyor olması gözlemlenebilir. Eğer seri fark almadan durağan halde ise süreç 

ARMA(p,q) yapısına dönüĢür.  ARIMA(p,d,q)  modelleri zaman serileri ilgili üç unsuru 

da kapsamaktadır. Tarı (2008)‟e göre buradaki asıl mesele p,d,q değerlerinin 
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bulunmasıdır. Bu durumda cimrilik prensibinin benimsendiği Box-Jenkins metodu 

uygulanmaktadır.  

 

 
 

 
p

i

q

i

itiitit eyy
1 0

0         (2.19) 

 

qtqttttptptttt zzzzz    .......... 332211332211 (2.20) 

 

Modelde tüm karakteristik köklerin birim çember içinde kalması beklenir. ARIMA 

süreci dört kısımdan meydana gelmektedir.  

 

 Belirleme: Durağanlık için fark serisi alınarak I(d) derecesinin tespitinin Birim Kök 

testi yapılarak analiz edilmesi, AR(p) ve MA(q) gecikmelerinin belirlenmesidir.  

 Tahmin: Birinci aĢamada belirlenen parametrelerin istatistiksel tutarlılığı ve 

ARIMA(p,d,q) modellerinin tespiti yapılır. Birden fazla uygun model belirlenir.  

 Uygunluk Testi (Ayırt Edici Kontrol) : Hata terimlerinin normal dağılıma uygun olup 

olmadığını test etmek için Jarque-Bera testi ve Q testleri yapılır. Hata terimlerinin 

korelogramı incelenir.  

 Öngörü: Tahmin edilen ARIMA(p,d,q) modeli ile gelecek tahmini yapılır.   

 
Sürecin bu dört aĢamasında fark serisi alarak durağanlaĢan serimizin korelogramı 

yardımıyla AR(p) ve MA(q) ya da ARMA(p,q) süreçlerinin parametreleri p,q belirlenir. 

Köklerin mutlak değer olarak birim çember içinde kalması serinin durağan olduğunu 

göstermektedir. Eğer serinin birim kökü mutlak değer olarak 1„e eĢit ise o zamanda bu 

tip serilere birim köklü seriler denir (Akdi 2003). 

 

2.1.4. Çok değiĢkenli zaman serileri  

 

Her bir değiĢkenin kendi gecikmeli değerleri ve sistemdeki diğer tüm değiĢkenlerin 

gecikmeli değerleri ile açıklanan çok değiĢkenli bir model olmaktadır. Kısa adı VAR 
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olarak ifade edilen vektör otregresyon modeli, Sims (1980) tarafından geliĢtirilmiĢtir. 

Sistemde VAR(1) yerine VAR(p) kadar bir gecikmeye sahip bir model geliĢtirilirse 

modeldeki parametre sayısı (d
2
p)+d tane bilinmeyen parametre olur (Kadılar 2000). X 

ve Y gibi basit iki değiĢkenin VAR modeli; 

 

 
 

 
p

i

p

i

titiitit uXYY
1 1

1121110        (2.21) 

 

 
 

 
p

i

p

i

titiitit uXYX
1 1

2222120        (2.22) 

 

Burada 0i sabit terimi, ijk  i‟nci denklemdeki j‟nci değiĢkenin k gecikmesine ait 

parametre, uit hata terimi, p gecikme sayısıdır. Sabit terim, modele değiĢkenlerin 

sıfırdan farklı ortalamalara sahip olması durumunda dahil edilir (Tarı 2008). Modelin 

matrislerle ifadesi ise; 
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      (2.23) 

 

Biçiminde veya kısaca, 

 




 
p

i

titit uyAcy
1

        (2.24) 

Ģeklinde yazılabilir.  

Bu model iki değiĢkenli olduğundan 2 boyutlu bir VAR modelidir. Daha genel bir ifade 

ile k sayıda değiĢken için,  

 

tptpttt uyAyAyAcy   ......2211       (2.25) 
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VAR(p) olarak ifade edilen modelde p gecikme değeri modelin derecesini de belirler, 

p‟inci vektörel dereceden otoregresif model denir.  

 

VAR modelleri, özellikle az sayıda veri ile çalıĢılacaksa ve nedensellik iliĢkisi 

neticesinde karĢılıklı iliĢkiler saptanmıĢ ise, uygundur. Ayrıca değiĢkenlerin sadece 

gecikmeli değerlerinin yer alması geleceğe yönelik tahminlerin baĢarısını artıracaktır 

(Kumar vd 1995; Bozkurt 2007). 

 

VAR(p) modellerinin analizi yapılırken sisteme giren bütün değiĢkenlerin durağan 

olması bir zorunluluktur. Bu durumda durağan değiĢkenin Ģoku geçici bir etkiye sahip 

olacaktır. BaĢlangıçtaki bir Ģokun etkisi bir süre sonra kalkacaktır (Tarı 2008). 

 

VAR modellerinin dezavantajları ise bütün değiĢkenlerin durağan olmasının 

beklenmesidir. VAR modellerinin oluĢmasında değiĢkenlerin seçimi önemlidir. Çok 

fazla parametre içerdiklerinden serbestlik derecesi çok büyük olmaktadır (Tarı 2008).  

 

2.1.4.a. Vektör otoregresif modellerinin belirlenmesi  

 

DeğiĢkenlerin seçimi, özelliklerinin belirlenmesi ve sıralaması önemlidir. Durağanlık 

koĢulunun da sağlanması gerekmektedir. Gecikme uzunluğunun belirlenmesi ve 

öngürünün yapılması VAR modeli aĢamalarını oluĢturmaktadır.  

 
VAR(p) modelleri oluĢturulurken en önemli kıstaslardan biri modelin derecesinin 

belirlenmesidir. Eğer gereğinden küçük bir derece ile çalıĢılırsa model parametrelerinin 

tahmini tutarlı olmamakta ve tahminin varyansı gereğinden büyük çıkmaktadır (Shibata 

1976, Kadılar 2000). Model derecesinin tespiti için en çok olabilirlik yönteminin 

geliĢtirilmiĢ bir Ģeklini Akaike (1974)‟te önermiĢtir. Farklı parametrelere sahip farklı 

modeller içinde seçim yapmak için bütün modellerin en çok olabilirlik fonksiyonunu 

bulup bu fonksiyon değerinin en büyük olan modelin en uygun model olarak seçmek 

olduğu vurgulanmıĢtır (Schwarz 1978; Kadılar 2000). 
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DeğiĢkenlerin sıralaması ve normal dağılıma uygunluğu test edilir. Birim kök 

testlerinden GeniĢletilmiĢ Dickey Fuller testi uygulanması tercih edilerek serilerin 

durağanlıkları analiz edilir ve durağan olmayan seriler durağanlaĢtırılır. Normal 

dağılıma uygun olan verilerimiz durağanlaĢtıktan sonra ortalama hatanın 

minimizasyonu ile nihai tahmin hatası FPE, veya AIC Akaike bilgi kriterinin minimum 

olduğu p değerini veren gecikme seviyesi belirlenir. Bir baĢka gecikme seviyesini 

belirleme kriteri de Hannan-Quinn (HQ) kriteri ve Schwarz (SC) bilgi kriteridir. Bu son 

iki kriter tutarlı gecikme seviyesinin belirlenmesinde daha etkindir.   

 
Durağan olan değiĢkenler üzerinde Granger nedensellik analizi yapılarak değiĢkenler 

üzerinde birbirlerinin etkileĢimleri analiz edilir. Gecikme sayısı belirlenen VAR(p) 

modelinin parametrelerinin uygunluğu için hata terimlerine, LM testi yapılır ve hata 

terimlerinde otokorelasyon olup olmadığı test edilir. LM olabilirlik değerinin %5‟den 

büyük olması beklenir. Bu durumda H0 hipotezi kabul edilir.  

 

 0.......: 123210 PPPPH otokorelasyon yok  

 0.......: 123211 PPPPH otokorelasyon var  

 
Bu durumda modelin hata terimlerinde otokorelasyon yoktur denir. White testi 

uygulaması yapılarak modelde değiĢen varyanslık probleminin olup olmadığı kontrol 

edilir. Joint olabilirlik değeri %5‟ten büyük ise modelde değiĢen varyans yoktur denir. 

Hata terimleri sabit varyanslıdır denir. H0 hipotezi reddedilmez.  

 

:0H değiĢen varyans yok  

:1H değiĢen varyans var 

 

Hata terimlerinin normal dağılıma uygun olup olmadığı ise uygulamalarımızda 

kullanılan Jarque Bera testi ile analiz edilir. Bu testte olabilirliklerin %5‟ten büyük 



 

 

27 

olması beklenir. Aynı zamanda bu test 2 tablo değerinin test istatistik değerlerinden 

küçük olması beklenir bu durumda H0 hipotezi reddedilmez.  

 

 :0H hata terimleri normal değiĢen varyans yok  

 :1H değiĢen varyans var 

 

Hataların otokorelasyon grafikleri çizilerek akgürültü seri halini aldıkları 

gözlemlenmelidir. Bütün bu aĢamalardan sonra modelin uygun bir model olduğu kabul 

edilir. DeğiĢkenler arasındaki Granger nedenselliği analizi, etki-tepki analizi ve varyans 

ayrıĢtırması, VAR(p) modellerinin önemli amaçları arasındadır.  

 

2.1.4.b. Granger nedensellik analizi  

 

Granger (1969) ve Sims (1972) tarafından geliĢtirilen bu analizde değiĢkenler arasında 

karĢılıklı olarak bir nedenselliğin olabileceği düĢünülmüĢtür. Bu nedenselliğin tek yönlü 

veya çift yönlü olabileceği daha doğrusu nedenselliğin yönünün gecikme sayısına bağlı 

olarak tespit edilebileceğini belirtmiĢlerdir. Bu nedensellik testine de “Granger 

Nedensellik Testi” adını vermiĢlerdir.  

 

Granger nedensellik testi için serilerin durağan olması gerekmektedir. Nedesellik analizi 

aslında ekonomik veriler için daha çok önem arz etmektedir. Fakat bu çalıĢma da bir 

yöntem olarak kullanılmıĢtır. 

 

2.1.4.c. Etki-Tepki fonksiyonu  

 

VAR(p) modellerinde katsayıların yorumlanması oldukça güçtür. Bunun yerine 

bağımsız değiĢkenlere verilecek bir birimlik Ģokların bağımlı değiĢken ve diğer 

değiĢkenler üzerindeki etkileri analiz edilir. Sistemdeki değiĢkenlerin durağan olması 

nedeniyle verilen bir birimlik Ģokların (hata payı) diğer değiĢkenler üzerindeki etkileri 
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bir süre sonra sona erecektir. Eğer seriler durağan bir yapıda değil iseler Ģoklar devam 

edecek ve verilen tepki sağlıklı ölçülmeyecektir (Bozkurt 2007). 

 
Etki tepki analizi, Ģokların etkilerinin ve bunlara verilen tepkilerin ölçüldüğü bir analiz 

olduğundan değiĢkenler arasında bir Granger Nedenselliğinin olması gerekir. Eğer bir 

değiĢken diğerinin nedeni değil ise birinin üzerine verilecek bir birimlik Ģok diğeri 

üzerinde bir etki yapmayacaktır.  

 

2.1.4.d. Varyans ayrıĢtırması  

 

DeğiĢkenlerdeki değiĢimin, kendisi ve diğer değiĢkenler tarafından kaynaklanma 

oranlarını araĢtırır. BaĢka bir deyiĢle varyans ayrıĢtırması bir değiĢkene iliĢkin öngörü 

hata varyansının diğer değiĢkenler tarafından açıklanma oranıdır. Eğer bir Ģok, bir 

değiĢkene iliĢkin ileriye yönelik tahmin hata varyansını açıklayabiliyor ise, o değiĢken 

içsel olarak kabul edilir (Lütkepohl 1993; Bozkurt 2007). 

 

Varyans ayrıĢtırması VAR modellerinde beklenen ikinci fonksiyondur. Varyans 

ayrıĢtırması ile serinin varyansındaki değiĢmeye Ģok süresince her bir değiĢkenin katkısı 

ölçülür.  

 

2.2. Yapay Sinir Ağları (YSA) 

 

YSA, beynin bir iĢlevini yerine getirme yöntemini modellemek için tasarlanan bir 

sistem olarak tanımlanabilir. Bir YSA, yapay sinir hücrelerinin birbirleri ile çeĢitli 

Ģekillerde bağlanmasından oluĢur. YSA, öğrenme algoritmaları ile öğrenme sürecinden 

geçtikten sonra, bilgiyi toplama, hücreler arasındaki bağlantı ağırlıkları ile bu bilgiyi 

saklama ve genelleme yeteneğine sahip olurlar. YSA, yapılarına göre farklı öğrenme 

yaklaĢımları kullanırlar. YSA, insan beyninin çalıĢma ve düĢünebilme yeteneğinden 

yola çıkılarak oluĢturulmuĢ bir bilgi iĢlem teknolojisidir. YSA iĢleyiĢ özelliklerine 
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dayanan ikinci tür tanımı ise ilk ticari yapay sinir ağının geliĢtiricisi olan Saraç (2004) 

tarafından NIELSEN'e ait bir atıfında “Yapay sinir ağı, dıĢarıdan gelen girdilere 

dinamik olarak yanıt oluĢturma yoluyla bilgi iĢleyen, birbiriyle bağlantılı basit 

elemanlardan oluĢan bilgi iĢlem sistemidir. YSA paralel olarak bağlantılı ve çok 

sayıdaki basit elemanın, gerçek dünyanın nesneleriyle biyolojik sinir sisteminin benzeri 

yolla etkileĢim kuran, hiyerarĢik bir organizasyonudur” (Saraç 2004). 

 

Biyolojik sinir ağlarında olduğu gibi yapay sinir ağlarında da temel unsur, yapay sinir 

hücresidir. Yapay sinir hücresi, YSA‟ nın çalıĢmasına esas teĢkil eden en küçük ve 

temel bilgi iĢleme birimidir. Ağ içinde yer alan tüm nöronlar bir veya birden fazla girdi 

alırlar ve tek bir çıktı verirler. Bu çıktı yapay sinir ağının dıĢına verilen çıktılar 

olabileceği gibi baĢka nöronlara girdi olarak da kullanılabilirler. Genel özellikleri ile bir 

yapay hücre modeli 5 bileĢenden oluĢmaktadır (Saraç 2004). 

Bunlar; 

 Girdiler 

 Ağırlıklar 

 BirleĢtirme Fonksiyonu 

 Aktivasyon Fonksiyonu 

 Çıktı 
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X
1

Y

X
3

X
2

Doğrusal

Çıktı Katmanı

(Output Layer)

Çok tabakalı geri beslemeli en küçük kareler yöntemi

X
4

X
5

Sigmoid/Tanjant-Hiperbolik/Purelin

Girdi Katmanı

(İnput Layer)

Gizli

Tabaka

Ağırlıklar

ij

ik

Ağırlıklar

j

k

Bias

Bias

X
6

Ara Katma

(Hidden Layer)

 

ġekil 2.1. YSA‟da bir ağ mimarisi 

 

Yapay sinir ağlarının özellikleri ve üstünlükleri aĢağıda belirtildiği Ģekildedir.  

 

 Doğrusal olmama  

 Paralellik  

 Gerçeklenme kolaylığı 

 Yerel bilgi iĢleme 

 Hata tolerans 

 Öğrenebilirlik 

 Genelleme 

 Uyarlanabilirlik  

 Donanım hızı 

 Analiz ve tasarım kolaylığı 

 

  )(         , vFywxv ii         (2.26) 

 

Burada;  
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w: Hücrenin ağırlıklar matrisi 

x: Hücre giriĢ vektörü 

v: Hücre net giriĢi 

y: Hücre çıkıĢı‟dır. 

 

YSA‟ların verilerin transfer fonksiyonunun özelliğine göre belli bir ölçeklemeye tabii 

tutulması gerekmektedir. Bunun için veri setinde bulunan minimum ve maksimum 

değerlerin bulunması ve aĢağıda verilen ölçeklemelere tabii tutulması gerekmektedir. 

Bir Y veri setinin [0,1] aralığında ölçekleme için (2.27) No‟lu eĢitlikten [-1,1]  

aralığında ölçekleme için ise (2.28) No‟lu eĢitlikten yararlanılmalıdır. [a,b] gibi bir 

aralıkta ölçeklemek için de ölçekleme için (2.29) No‟lu eĢitlikten yararlanılmalıdır.  
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       (2.29) 

 

Eğitim esnasında normalize edilmiĢ giriĢ ve çıkıĢ değerleri kullanılır. ĠĢlem sonunda ters 

dönüĢüm yapılarak gerçek değerlere dönüĢüm sağlanmalıdır. Öğrenme algoritmasını 

etkileyen en önemli unsurlardan biri de performans fonksiyonudur. En çok kullanılan 

fonksiyonlar aĢağıda belirtilmiĢlerdir. 

 

Ġleri beslemeli ağlarda ki performans fonksiyonu karesel ortalama hatadır. (MSE mean 

square error); 
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
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        (2.30) 

 

Toplam karesel hata SSE ( sum square error) 
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Karesel ortalama hata karekökü RMSE ( root mean square error) 
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 ile ifade edilir.       (2.32) 

 

Performans fonksiyonuna ağın biaslarının ve ağırlıklarının karelerinin toplamının 

ortalama bir değerini ifade eden bir terim eklenerek genelleĢtirme iyileĢtirilebilir. Bu ağı 

daha hassas davranmaya zorlar ve ağın öğrenme kümesi haricindeki veriler içinde 

ezberleme yapmasını engeller (Sağıroğlu vd 2003).  

 
Bazen ağa giren değiĢkenler arasındaki iliĢki çok yüksek olabilir. Aynı zamanda giriĢ 

vektörünün boyutları da çok yüksek olabilir. Bu durumda giriĢ vektörünün boyutlarını 

azaltmak ve giriĢ vektöründeki değiĢkenler arasındaki korelasyonu kaldırmak için 

YSA‟da da kullanılan temel bileĢenler analizini uygulamak gerekir. Bu yöntem, giriĢ 

vektörlerini iliĢkisiz hale getirir, ortogonal bir sıralama meydana getirir ve veri kümesi 

içinde en son türe uyan bileĢenleri eler. Temel bileĢenler analizi Matlab‟de “Principal 

Component Analysis” kısaltılmıĢ Ģekli ile ifade edilen “prepca” komutu ile 

oluĢturulmaktadır (Sağıroğlu vd 2003). 
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2.2.1. Aktivasyon ve transfer fonksiyonu  

 

Aktivasyon veya transfer fonksiyonları bir YSA‟da nöronun çıkıĢ genliğini, istenilen 

değerler arasında sınırlar. Bu değerler çoğunlukla [0,1] veya [-1,+1] aralığındadır. 

YSA‟larda kullanılan fonksiyonların türevi alınabilir olmalı ve süreklilik arz etmeli. 

Uygulamalarda daha çok tanjant hiperbolik veya sigmoid fonksiyonu kullanılmaktadır. 

Lineer ve doğrusal olmayan transfer fonksiyonlarının kullanımı YSA‟ların çok 

karmaĢık problemlere uygulanmasını sağlamıĢtır (Sağıroğlu vd 2003). 

 

Doğrusal fonksiyon, YSA‟ların çıkıĢ katmanında kullanılır. Basamak fonksiyonu ise 

perseptron olarak bilinen iĢlemci eleman bu fonksiyon ile iĢlem görür. Kutupsamalı 

basamak fonksiyonu, parçalı doğrusal fonksiyon aktivasyon fonksiyonlarından 

bazılarıdır (Sağıroğlu vd 2003). 

 

Sigmoid fonksiyonu YSA uygulamalarında en çok kullanılan aktivasyon fonksiyonudur 

(2.33). Bu fonksiyonun en aktif bölgesinin 0.2 ile 0.8 arasında olduğu bilinmektedir.  
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Tanjant Hiperbolik fonksiyonu ise YSA‟larda en çok kullanılan ikinci fonksiyondur. 

GiriĢ uzayının geniĢletilmesinde etkili bir fonksiyondur (Sağıroğlu vd 2003). 
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2.2.2. Yapay sinir ağlarında öğrenme algoritmaları  

 

Öğrenme algoritması bir YSA ana çatısını oluĢturur. Birçok öğrenme algoritması vardır 

ama en çok kullanılan trainlm ve trainbr dir. Bu iki algoritma Levenberg-Marguardt 

algoritmasıdır.  

 

Trainlm, öğrenme kümesi çok büyük ise hafıza ihtiyacını alzaltan bir parametreye sahip 

Levenberg-Marguardt algoritmasıdır. Modern öğrenme algoritmalarının en hızlısıdır. 

Trainbr ise bayesian düzenleyici öğrenme metodur. Levenberg-Marguardt 

algoritmasının, genelleme yeteneğini (ezberleme) iyileĢtirmek için geliĢtirilmiĢ bir 

öğrenme algortimasıdır. Optimum ağ yapısının ne kadar olması gerektiği problemini 

kısmen azaltmaktadır (Sağıroğlu vd 2003). 

 

2.3. Çok DeğiĢkenli Regresyon Analizi  

 

Bağımlı değiĢken ile bağımsız değiĢkenler arasındaki iliĢkiyi matematiksel bir modelle 

istatistik temellere oturtturularak açıklamak, bağımsız değiĢkenler yardımıyla bağımlı 

değiĢken için kestirimde bulunabilmek çok değiĢkenli istatistik analizin amaçlarındandır 

(Alpar 2003).  

 

Bayazıt (2006)‟ya göre bir rastgele değiĢken ile birden fazla rastgele değiĢkenler 

arasında istatistikî iliĢkinin belirlenmesi amaçlanmaktadır. Söz konusu rastgele 

değiĢkenin varyansının olabildiğince büyük kısmını açıklayacak Ģekilde belirlenecek bu 

iliĢki (regresyon denklemi) ile söz konusu değiĢkenin bir olayda alacağı değer, bilinen 

diğer rastgele değiĢkenlere bağlı olarak tahmin edilecek ve tahminlerin güven aralıkları 

belirlenecektir.  

 
Çok değiĢkenli regresyon analizinde değiĢkenler arasındaki iliĢkinin doğrusal olduğu 

kabul edilmektedir. Tahmin edilen değerlerle bilinmeyen gerçek değerler arasındaki 
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farklar olan kalıntı terimlerinin bağımsız, varyansı sabit ve normal dağılmıĢ oldukları da 

yapılan kabuller arasındadır. Son kabuller istatistik hipotezlerin kontrolünde ve güven 

aralıklarının belirlenmesinde gereklidir (Bayazıt 2006). 

 
Bağımlı değiĢkeni bağımsız değiĢkenlerden hangisinin daha çok etkilediğini tespit 

etmek, çok değiĢkenli istatistiğin amaçlarındandır. Birden fazla bağımsız değiĢkenle 

açıklanabilen model içinde, bağımsız değiĢkenlerin sayılarını azaltarak az sayıda 

parametre ile bağımsız değiĢkeni açıklamakda baĢka bir amacıdır.  

 
Y bağımlı değiĢkeni ile Xj (j=1,2,…..,k) bağımsız değiĢkenleri arasındaki doğrusal 

istatistiki iliĢki  

 

 kk xbxbxbby .....22110        (2.35) 

 

denklemi ile ifade edilir. Bu denklemde bj (j=0,1,2,….,k) regresyon katsayıları, e kalıntı 

(hata) terimidir. Denklemde parametre sayısı (regresyon katsayılarının sayısı) p=k+1 

dir. Gözlemlerin sayısı n ise serbestlik derecesi s.d.= n-p olur.  
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      (2.36) 

 

 

Y değiĢkeninin alacağı değer, Xj değiĢkenlerinin bilinen xij değerlerine bağlı olarak 

tahmin edilebilir (Bayazıt 2006). 

 

2.3.1. Çok değiĢkenli regresyon analizi varsayımları  

 

Çoklu doğrusal regresyon modellerinde varsayımlar; 

 Normal dağılım 
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 Doğrusallık 

 Hata terimlerinde otokorelasyonun olmaması  

 Sabit varyans 

 Bağımsız değiĢkenler arasında çoklu bağlantı (kolinearite) olmaması 

 

olarak sınıflandırılabilir.  

 

Normal dağılıma uygunluk için istatistiksel testler ve grafiksel görüntüler incelenebilir. 

Ġstatistiksel testlerde Ki-kare uygunluk testi, Kolmogorov-Smirnov testi (K-S), Z testi 

ve Shapiro-Wilks (W istatistiği) sayılabilir. Uygulamalarımızda genellikle Kolmogorov-

Smirnov testi uygulanmıĢ ve bu testte olabilirlik değeri %5 anlamlılık düzeyinden 

büyük ise H0 hipotezi reddedilmiĢtir. Grafik testler ise histogram, gövde–yaprak, kutu, 

Q-Q ve P-P grafikleridir.  

 

Doğrusal olmayan etkiler için hesaplanacak doğrusal korelasyonlar gerçek iliĢkiyi her 

zaman düĢük gösterebilir. Ġki değiĢken arasında doğrusallığı sağlamada birçok dönüĢüm 

uygulanır. Bazı dönüĢümler logaritmik dönüĢüm (log(x)), karekök dönüĢümü )( x , 

hiperbolik dönüĢüm )1(
x

, kare dönüĢümü )( 2x , arcsin dönüĢümü 

)sin(arcsin 1 xx  , logit dönüĢümü 
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1
log5,0 olarak sayılmaktadır; (Albayrak 2006) 

 

Hata terimlerinin bağımsızlığı, hata terimlerinin normal dağılıma uygun, geçmiĢ 

değerleri ile iliĢkisi olmayan ak gürültü bir seri olduğudur. Bunun için de Durbin-

Watson testine baĢvurulur. Aynı zamanda hata terimlerinin otokorelasyon grafikleri 

çizilerek gecikmelerin güven aralıklarını geçip geçmediği görülebilir.  
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Bu amaçla DW hesaplanır ve genellikle 1.5–2.5 civarında olan DW test sonucu 

otokorelasyon olmadığını gösterir.  

 

Tek değiĢkenli analiz durumunda kovaryans matrisi sabit bir sayı ve bağımlı değiĢkenin 

varyansı bütün hücreler için eĢit olduğu zaman sabit varyanstan söz edilebilir (Albayrak 

2006). 

 
Çoklu bağlantı problemi (kolinearite) bağımsız değiĢkenler arasındaki yüksek 

korelasyondur. Bir modelde çoklu bağlantı olması durumunda modelin R
2
„si çok yüksek 

çıkmasına rağmen modele giren bağımsız değiĢkenlerin katsayılarının istatistiksel 

anlamlılıkları uygun olmamaktadır. Çoklu bağlantı olması durumunda bağımsız 

değiĢkenlerin iĢaretleri ters iĢaretli olabilmektedir. Çoklu bağlantı halinde modele 

katılan değiĢkenlerin varyans ve kovaryansları beklenmedik Ģekilde artabilir (Gujarati 

1995; Kalaycı 2006). 

 

Çoklu bağlantı problemini belirlemenin birkaç yolu vardır. Bağımsız değiĢkenlerin 

korelasyon matrisleri incelendiğinde yüksek bir iliĢki söz konusu ise çoklu bağlantının 

varlığı söz konusu olabilir. Bu yüksek iliĢkiye rağmen değiĢkenlerin katsayılarının 

olabilirliklerini test eden “t” testi sonuçları, istatistiksel olarak anlamlı çıkmayabilir. Bir 

diğer parametre olan varyans artıĢ faktörü denilen VIF (Variance Inflation Factor) 

değerinin çok yüksek toleranslarıda çok düĢük ise modelde çoklu bağlantı probleminin 

olduğu anlaĢılır (Kalaycı 2006). Çoklu bağlantı probleminin diğer bir tespit yöntemi de 

tolerans değeridir. Tolerans değeri 21 iRT  Ģeklinde hesaplanır. Daha küçük tolerans 

daha büyük VIF demektir (Gujarati 1995). 
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Bu durumda diğer bağımsız değiĢkenlerle korelasyonu yüksek olan değiĢkenler 

modelden çıkarılmalıdır. Bunu yaparken fazla bilgi kaybedilmemesine dikkat 

edilmelidir. Aralarındaki korelasyon katsayısı r olan iki bağımsız değiĢkenden biri 

modelden çıkarılırsa bilgi kaybı oranı 1-r
2 

olur (Bayazıt 2006). 

 
Çoklu bağlantı problemini ortadan kaldırmak için temel bileĢenler analizi uygulaması 

yapmak gerekir.  

 

2.3.2. Çok değiĢkenli regresyon analizinde model belirleme kriterleri  

 

Belirlilik katsayı (R
2
)
 

hemen hemen bütün istatistik modellerinde bir belirleyici 

kriterdir. Çoklu belirlilik katsayısı olarak da isimlendirilen R
2
,
 
(multiple coefficient of 

determination) birden çok bağımsız değiĢkenin bağımlı değiĢkeni açıklama oranını 

verir. 0-1 arasında değiĢen R
2
, 0‟a yaklaĢırsa verinin model verilere uygun değil 

modelin verileri açıklamadığı anlaĢılır. R
2
 değerini analiz ederken dikkatli olunmalıdır. 

Çünkü bağımsız bir değiĢkenin eklenmesi bile R
2
„de artıĢ meydana getirebilir. 

DüzeltilmiĢ R
2
 ise bir bağımsız değiĢkenin modele eklenmesiyle, artarak değiĢen R

2
 

belli bir miktar azaltılarak düzeltilir ve düzeltilmiĢ 
2

R  elde edilir. Bir modeli analiz 

ederken R ile 
2

R  arasındaki fark belirli bir dereceden fazla ise 
2

R değerine bakılması 

gerekir (Alpar 2003). 
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Model belirleme kriterlerinden biri de (2.32) No‟lu denklemde bahsedilen ortalama 

karesel hatanın (OKH “MSE mean squer error”) minimum olduğu durumdur. AIC 

Akaike bilgi kriteri de yine belirleyici bir kriterdir. Modelin tamamının istatistiksel 

olarak uygunluğunu test etmek için F testi uygulanır. Fhesap>Ftablo ve olabilirlikleri % 5‟ 

ten küçük ise modelin tamamının uygun olduğu kabul edilir. Aynı Ģekilde model içinde 

bulunan parametrelerin yani bağımsız değiĢkenlerin ve sabit terimin katsayılarının 

istatistiksel olarak anlamlıkları, t testi ile analiz edilir ve yine olabilirliklerin % 5„ten 

küçük olması beklenir.  

 

Ayrıca; tahmin serisi ile tarihi serinin %95 güven aralıkları ile grafikleri çizilerek uyum 

gözlenir. Aynı Ģekilde bağımsız değiĢkenin tarihi değerleri ile tahmin değerleri arasında 

serpilme (saçılma) grafikleri çizilir. Ġki seri arasındaki uyum R
2
 ile gözlemlenir.  

 

2.3.3. Temel bileĢen analizi (TBA) 

 

Çoklu bağlantı probleminin olması sahte regresyonu ortaya çıkarmakta modelden elde 

edilen tahminlerin yanıltıcı olmasını sağlamaktadır. Çoklu bağlantı problemini 

çözmenin en iyi yolu temel bileĢenler analizi uygulamaktır. Temel bileĢen analizi 

kısaca, bağımlı değiĢkeni, birbirleriyle çok iliĢkili bütün bağımsız değiĢkenler yerine 

birbirleriyle iliĢkisiz daha az sayıda temel bileĢen ile açıklamaktır. Bu analize geçmeden 

önce temel bileĢenler analizinin uygun bir yöntem olup olmadığını analiz etmek için 

küresellik testi denilen bir test uygulanır. Bu teste Barlett testi de denir.  

 

IRH :0  DeğiĢkenler arasındaki iliĢki önemsizdir. 

IRH :1  DeğiĢkenler arasındaki iliĢki önemlidir. 

 

Olabilirlik P<0.05 ise H0 reddedilir yani küresellik varsayımı kabul edilmez. 

DeğiĢkenkler arasındaki iliĢkiler önemlidir. Bu yüzden TBA (temel bileĢenler analizi) 

uygulanabilir.  
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Temel bileĢen (principal component) aralarında istatistiksel olarak iliĢki bulunan P adet 

)........,4,3,2,1( pjX j  değiĢkenin aralarında istatistiksel olarak iliĢki bulunmayan Zj 

kadar temel bileĢenle açıklanması olayıdır (Bayazıt 2006). 

 





p

k

kkjj XaZ
1

   qj ,......,3,2,1  pq     (2.42) 

 

jX  değiĢkenlerinin S kovaryans matrisinin yapısını açıklayarak anlamlı temel bileĢen 

sayısı q<p ise veri sayısını azaltmak temel bileĢenlerin amaçlarındandır. 

 
P boyutlu uzaydaki toplam varyans (özdeğerler toplamı), her biri özvektörlerle 

tanımlanan öyle yeni değiĢkenlerle ifade edilir ki, en küçük varyans sonuncu özvektöre 

ait olur ).............( 321 p   Bağımsız değiĢkenler kümesindeki toplam 

değiĢimin büyük bir bölümü birinci özvektör, ondan daha az bir bölümü ikinci öz vektör 

tarafından açıklanır (Alpar 2003).  

 
Temel bileĢen sayısını belirlemede bazı kıstaslar mevcuttur. Standart değiĢkenlerle 

belirlenen j ‟lerden 1‟den (ya da 0.7‟den) küçük olanlara karĢılık gelen temel 

bileĢenler gözönüne alınmayabilir. Bu kritere Kaiser kriteri denir. Cettell döküntü 

(scree) testi ise j değerlerinin j‟ye göre değiĢimini gösteren çizginin yatıklaĢmaya 

baĢladığı j değeri q olarak alınır. Bu grafik aynı zamanda scree plot denilen bir grafik 

yardımıyla analiz edilir. pjjjS   .........1 hesaplandıktan sonra jj S/  daha 

önce temel bileĢenlerin açıklamadığı varyansın jZ tarafından açıklanan oranını gösterir. 

Bu oranın 0.1‟den küçük olduğu jZ ve bundan sonraki temel bileĢenler göz önüne 

alınmayabilir (Bayazıt 2006). 

 
Temel bileĢenler analizinde her yeni değiĢken, orjinal değiĢkenlerin doğrusal bir 

bileĢimidir. Birinci yeni değiĢken (temel bileĢen) verilerdeki maksimum varyansı 
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açıklayıcı bir Ģekildedir. Ġkinci temel bileĢen geriye kalan toplam varyansa maksimum 

katkıda bulunmaktadır. Maksimum sayıda üretilebilecek temel bileĢen sayısı orjinal 

değiĢken sayısı kadardır. Yeni bileĢenler bağımsız üretilirler (Albayrak 2006). 

 

Veri matrisinde yer alan p değiĢkeninin doğrusal bileĢenlerini bulmak için kovaryans 

matrisinin ya da korelasyon matrisinin özdeğerleri ve özvektörleri kullanılır. Eğer 

değiĢkenler aynı birim veya karĢılaĢtırılabilir birimlerdeyse ve değiĢken varyansları aynı 

boyutta ise varyans-kovaryans matrisi kullanılır. Bu durumlar sağlanmadığında varyans-

kovaryans matrisi yerine korelasyon matrisi kullanılır (KocabaĢ 2008). 

TBA‟nın 3 temel amacı vardır: 

1. Verilerin boyutunu azaltmak, 

2. Tahminleme yapmak, 

3. Veri setini, bazı analizler için görüntülemek. 

TBA uyguladığımızda sürecin sonunda bu p boyutlu uzayın gerçek boyutu belirlenir. 

Bu gerçek boyuta temel bileĢenler adı verilir. 

TBA, sonuç olarak p sayıda bağımsız değiĢken yerine p sayıda temel bileĢenle bağımlı 

değiĢkeni açıklamaktadır. Bu temel bileĢenler sırasıyla toplam varyansa maksimum 

katkıda bulunurlar. Yani, birinci temel bileĢen en çok, diğer bileĢenler ise gittikçe 

azalan miktarda toplam varyansa katkıda bulunurlar. Bu nedenle az sayıdaki temel 

bileĢen ile toplam varyansın büyük bir çoğunluğu açıklanmıĢ olur. Temel bileĢen analizi 

aslında bir boyut indirgeme tekniğidir. Temel bileĢenler analizinde kullanılan veriler 

ortalamaya göre düzeltilmiĢ veya standartlaĢtırılmıĢ verilerdir. Ortalamaya göre 

düzeltilmiĢ veriler kullanılırsa temel bileĢen ağırlıkları değiĢkenlerin varyanslarından 

etkilenmektedirler. Varyansı büyük olan değiĢkenlere daha büyük ağırlıklar 

verilebilmektedir. Standart verilerle çalıĢılması durumunda değiĢkenlerin ağırlıkları 

varyanslarından etkilenmemektedirler (Albayrak 2006).  
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2.4. Poisson Regresyonu (PR) 

 

Bağımlı değiĢkenin sayma verisi aldığı (0,1,2,3,4……gibi) kesikli değer aldığı 

kategorik olmadığı birkaç durum vardır. Bu tür değiĢkenlere kaza sayıları, yangın sayısı 

patent sayısı gibi örnekler verilebilir. Kesikli ve kategorik olmayan olaylarla iliĢkili 

bağımlı değiĢkenli model bazı varsayımlar altında Poisson regresyon modeli olarak 

adlandırılır. Poisson regresyon modeli daha çok sayma verilerini analiz etmek için 

kullanılır (Maddala 1983; Akın 2002). 
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Greene (1993)‟e göre verilen Poisson regresyon modelini kaza sayılarına göre 

yorumlamak gerekirse; 

 

),,.........,,( 321 iqiiiii XXXXyYP  : Kazaların olma olasılığı 

iy : Mevcut t zaman dilimi içinde olan kaza sayısı 

i : t zaman dilimi içindeki beklenen kaza sayısı 

i , logaritmik doğrusal olarak bağımsız değiĢkenlere bağlıdır (Akın 2002). 
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Poisson regresyonu doğrusal olmayan bir regresyondur ve parametrelerin katsayıları 

maksimum olabilirlik metodu ile kolayca bulunabilir. Olabilirlik fonksiyonu 2.44 No‟lu 

denklemde ki gibi ifade edilir. 
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Parametreler, olabilirliğin maksimizasyonu veya daha genel olarak, olabilirliğin 

logaritmasının (log-olabilirlik diye belirtilir) maksimizasyonu ile tahmin edilir. Buna 

eĢdeğer olarak, tahmin, log-olabilirliğin negatifinin minimize edilmesiyle de bulunabilir 

(Kibar 2008). 

 
Kazalar kesikli rastgele olaylar olduğundan bunların normal dağılım kullanılarak 

modellemesi yapılamaz (Al-Ghirbal and Al-Ghamdi 2006). Poisson dağılımı, aralıklı 

olan ve negatif olmayan rasgele, kesikli olaylar olan kazaların ifade edilmesi için uygun 

bir metotdur (Hadayeghi 2002). Ġlk defa Fransız matematikçi Simeon Denis Poisson 

(1781–1840) tarafından incelenmeye baĢlanan bu dağılım, daha sonra Bartkrewicz 

tarafından ender görülen olaylara uygulanmıĢ ve çok uygun sonuçlar elde edilmiĢtir 

(Çömlekçi 1989; Filiz 1995; Kibar 2008). 

 

Poisson regresyonunda karĢılaĢılan sıkıntılardan biri de aĢırı yayılımdır. AĢırı yayılım 

sonucunda tahmin edilen parametrelere iliĢkin katsayıların varyansı çok küçük değerlere 

eğilim gösterir ve tahmin edilen katsayılar yanlı olurlar. Bu problem kaza verilerinin 

analizinde Negatif Binom dağılımlı olduğu kabul edilerek çözülebilir (Hadayeghi 2002; 

Kibar 2008)  

 
AĢırı yayılımın iki sebebi olabilir bunlardan biri kazaların kesikli rassal değiĢken 

olmaları münasebetiyle veri setindeki çok fazla sıfır olmasıdır. Diğeri ise trafik 

hacminin, doğru olmaması, bilgi eksikliği, hava koĢullarında ölçüsüz varyans, görsellik 

ve sürücü davranıĢları gibi etkilerin unutulmuĢ olmasıdır (Hauer 2001; Shankar 1997; 

Qin vd. 2004; Lord vd. 2005; Kibar 2008). 
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3. MATERYAL ve YÖNTEM   

 

Kaza analizleri için çeĢitli yöntemler vardır. GiriĢ bölümünde bu yöntemlerle yapılmıĢ 

araĢtırmalara yer verilmiĢtir. Kullanılan bazı yöntemler aĢağıdaki gibidir. 

 

1)  Çok değiĢkenli regresyon yöntemi  

2)  Zaman serisi yöntemi  

3)  Yapay sinir ağları yöntemi  

4)  Poisson regresyonu  

 

Çok değiĢkenli regresyon, çok değiĢkenli zaman serileri analizi, yapay sinir ağları 

yöntemi, poisson regresyonu yöntemleri aynı verilere uygulanmıĢ sonuçlar ortalama 

karesel hata (OKH), belirlilik katsayısı (R
2
) ve Akaike (AIC) bilgi kriterine göre 

değerlendirilmiĢtir. 

 

Uygulamalarda kullanılan veriler Emniyet Genel Müdürlüğü, Trafik Eğitim ve AraĢtıma 

Daire BaĢanlığından, yol ve sürücü karakteristiklerine iliĢkin detay nitelik veriler ücreti 

karĢılığında, diğer veriler ise yıllık yayınlanan Trafik Ġstatistik Yıllıklarından (1996-

2002) elde edilmiĢtir. 2003-2010 yılları arasını kapsayan veriler ise Türkiye Ġstatistik 

Kurumu‟nun yayınladığı Trafik Kaza Ġstatistikleri Karayolu, Motorlu Kara TaĢıtları 

Ġstatistikleri, UlaĢtırma Ġstatistikleri Özeti, kitaplarında elde edilmiĢtir.  

 

ÇalıĢmalarımızda kullanılan bağımsız değiĢkenler arasında lineer bir iĢliĢki 

olmamasından dolayı, lineer iliĢki olmayan değiĢkenlerin modellenmesinde kullanılan 

ve en iyi sonucu veren YSA uygulamalarımızda tercih edilmiĢtir. 

 

YSA Uygulamasında Matlab-2008‟de bir program yazıldı. Program transfer 

fonksiyonları (tansig-purelin-logsig), eğitim fonksiyonları (trainbr-trainlm), gizli 

tabakadaki nöron sayısı (1,2,3,4…..), arasında bir döngü yapabilen bir yazılım olarak 
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geliĢtirildi. Yazılımın diğer özelliği ise ağın performans belirmele kıstası olarak 

ortalama karesel hatayı alması, iterasyon sayısını isteğe bağlı olarak değiĢtirebilmesi ve 

ağın eğitiminin istenilen hasssasiyette sonladırabilmesidir. Alternatif ağ yapılarını, girdi 

tabakasındaki nöron sayısı, gizli tabakadaki nöron sayısı, çıktı tabakasındaki nöron 

sayısı, eğitim fonkisyonu, tabakalardaki transfer fonksiyonları, R
2
, OKH, AIC, 

değerlerinin excell ortamında okunabilmesi sağlanmıĢtır.  

 

3.1. Çok DeğiĢkenli Regresyon Analizi, Çok DeğiĢkenli Zaman Serisi Analizi, 

ARIMA ve Yapay Sinir Ağı Modellemeleri  

 

3.1.1. Model-I  

 

Yıllık kaza sayılarının; yük-ton değeri, yolcu-km, km-taĢıt, kamyon sayısı, tır sayısı, 

otobüs sayısı, karayollarıdaki enerji tüketimi, yol-km uzunluğu, AOGT değerlerine göre 

modellenmesi;  

 

Y:Yıllık Kaza Sayıları  

X1: Yük-Ton Değeri 

X2: Yolcu-Km 

X3: Km-TaĢıt 

X4: Kamyon sayısı  

X5: Tır Sayısı 

X6: Otobüs Sayısı 

X7: Karayollarında enerji tüketimi (bin/ton) 

X8: Yol-Km Uzunluğu 

X9: AOGT 

 

Çok değiĢkenli regresyon modellerinde normallik bir varsayım olduğu için değiĢkenleri 

modellemeden önce normal dağılıma uygunluk analizi yapıldı. (Çizelge 3.1)  

)log( ii Xk   
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)log( ii Yt   

 

Çizelge 3.1.  DeğiĢkenler için normallik test sonuçları 
 

DeğiĢken Kolmogorov-Smirnov Kolmogorov-Smirnov (Logaritmik) 

Ġstatistik Sd Olabilirlik Ġstatistik Sd Olabilirlik 

Y 0.221 34 0.000 0.148 34 0.056 

X1 0.215 34 0.000 0.181 34 0.060 

X2 0.143 34 0.078 0.143 34 0.074 

X3 0.161 34 0.026 0.143 34 0.077 

X4 0.229 34 0.000 0.121 34 0.200 

X5 0.159 34 0.029 0.094 34 0.200 

X6 0.129 34 0.161 0.101 34 0.200 

X7 0.093 34 0.200 0.133 34 0.137 

X8 0.132 34 0.142 0.129 34 0.129 

X9 0.092 34 0.168 0.08 34 0.200 

 

H0: DeğiĢkenler normal dağılım gösterir. 

H1: DeğiĢkenler normal dağılım göstemez. 

 

Kolomogorov-Smirnov testinde olabilirlikler %5 ten küçük ise seçenek hipotezi H0 ret 

edilmez.  

 

Çizelge 3.2.   Korelasyon matrisi 

 

DeğiĢ. t k1 k2 k3 k4 k5 k6 k7 k8 k9 

t 1          

k1 0.995 1         

k2 0.976 0.973 1        

k3 0.988 0.987 0.962 1       

k4 0.963 0.958 0.916 0.976 1      
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Çizelge 3.2. (devam) 

 

k5 0.953 0.947 0.936 0.959 0.982 1     

k6 0.985 0.980 0.977 0.978 0.973 0.985 1    

k7 0.952 0.956 0.967 0.944 0.936 0.967 0.983 1   

k8 0.702 0.706 0.569 0.714 0.782 0.702 0.664 0.591 1  

k9 0.959 0.958 0.970 0.951 0.937 0.960 0.981 0.987 0.955 1 

 

Bağımlı ve bağımsız değiĢkenlerimiz arasındaki yüksek korelasyon göze çarpmaktadır 

(Çizelge 3.2).  

 

TBA uygulaması yapmadan önce verilerin bu yönteme uygunluğu analiz edildi. 

Küresellik Testi yapılarak olabilirlik P<0.05 olduğundan ve Kaiser-Meyer-Olkin test 

statistik değeri 0.70 ve üzeri olduğundan, H0 seçenek hipotezi red edilerek, değiĢkenler 

arası iliĢkinin önemli olduğu ve TBA‟nın uygun bir yöntem olduğu anlaĢıldı (Çizelge 

3.3). 

 

Çizelge 3.3.  TBA Küresellik testi sonuçları 
 

Kaiser-Meyer-Olkin  0.834 Mükemmel 

Barlet Test Ġstatistiği 869.684  

Olabilirlik 0.000  

 

Çoklu bağlantı problemini çözmek için TBA uygulaması yapılarak p adet değiĢken 

yerine p adet temel bileĢenle modelimiz kuruldu. Özdeğerler ve öz vektörler Çizelge 

3.4‟de sunulmuĢtur.  
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Çizelge 3.4.  Temel bileĢenler analizi, Özvektörler 
 

DeğiĢkenler Vektör–1 Vektör–2 Vektör–3 Vektör–4 Vektör–5 Vektör–6 Vektör–7 Vektör–8 Vektör–9 

k1 
-0.3439 0.0181 0.4865 -0.0694 0.0442 -0.4639 0.4429 0.4293 -0.2055 

k2 
-0.3373 0.2567 0.4295 -0.1121 -0.4881 0.4588 -0.1331 -0.2498 -0.3074 

k3 -0.3441 -0.0112 0.3482 0.4762 0.3280 -0.0058 -0.5630 0.0987 0.3150 

k4 -0.3429 -0.1498 -0.2494 0.4701 0.2029 -0.1180 0.2333 -0.5143 -0.4501 

k5 -0.3428 0.0066 -0.5342 0.2481 -0.3451 0.1685 -0.0731 0.6074 -0.1175 

k6 -0.3467 0.1016 -0.0811 0.0661 -0.2354 0.0243 0.4489 -0.2389 0.7375 

k7 
-0.3395 0.2243 -0.2748 -0.4381 -0.1030 -0.5735 -0.4291 -0.2082 -0.0018 

k8 
-0.2518 -0.8959 0.0494 -0.3204 -0.0736 0.1089 -0.0871 -0.0300 0.0554 

k9 -0.3399 0.2188 -0.1598 -0.4176 0.6485 0.4365 0.1274 0.0937 -0.0247 

 

Aynı Ģekilde temel bileĢenler analizi sonucunda bulunan özdeğerler ve bunların toplam 

varyansı açıklama oranları Çizelge 3.5‟te sunulmuĢtur.  

 

Çizelge 3.5.  Temel bileĢenlerin bulunması ve toplam varyansı açıklama oranları 
 

Temel BileĢenler BaĢlangıç Özdeğerler  

Toplam %Varyans %Kümülatif Toplam %Varyans %Küm. 

1 8.237 91.520 91.520 8.237 91.520 91.520 

2 0.589 6.542 98.062 0.589 6.542 98.062 

3 0.087 0.972 99.034    

4 0.046 0.506 99.540    

5 0.018 0.203 99.743    

6 0.012 0.135 99.878    

7 0.006 0.066 99.943    

8 0.004 0.044 99.988    

9 0.001 0.012 100.000    

 

Öz değerler; 

237.81  , 589.02  , 087.03  , 046.04  , 018.05  , 012.06  006.07 

004.08  001.09   

olarak bulunmuĢtur.  
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olduğundan 2 adet temel bileĢen vardır. Bu oranın haricinde özdeğerlerden )( j 1‟in 

altında olanlar elenebilir. 9 Bağımsız değiĢken yerine 2 temel bileĢen ile devam 

edilecektir. Çizelge 3.5 incelendiğinde birinci temel bileĢen toplam varyansın % 

91.52‟sini açıklarken, ikinci temel bileĢen % 6.54„ünü açıklamaktadır. Bu iki temel 

bileĢen toplam varyansın % 98.06‟lık oranını açıklamaktadır. Aynı Ģekilde yamaç eğimi 

grafiği çizilerek de temel bileĢen sayısı bulunabilir. Eğimin bittiği noktada sol tarafta 

kalan sayı temel bileĢen sayısı olarak kabul edilebilir. ġekil 3.1‟de görüldüğü gibi ikinci 

temel bileĢenden itibaren eğim azalmaktadır. Bu durumda temel bileĢen sayımız 1 veya 

2 olarak alınabilir.  

 

Temel Bileşen Sayısı

987654321

Ö
z
d
e
ğ
e
r
l
e
r

10

8

6

4

2

0

 
ġekil 3.1.  Temel bileĢen sayısı için yamaç eğimi grafiği (scree grafiği) 
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Çizelge 3.6.  DeğiĢkenlerin temel bileĢenler tarafından açıklanma oranı 

 

DeğiĢkenler Oran 

k1 (yük-ton) 0.974 

k2 (yolcu-km) 0.976 

k3 (km-taĢıt) 0.975 

k4 (kamyon sayısı) 0.982 

k5 (tır sayısı) 0.968 

k6 (otobüs sayısı) 0.996 

k7 (enerji tüketimi ) 0.979 

k8 (yol-km uz) 0.995 

k9 (AOGT) 0.980 

 

DeğiĢkenlerin temel bileĢenler tarafından açıklanma oranı Çizelge 3.6‟da verilmiĢtir. 

Temel bileĢenler tarafından en çok açıklanan bileĢenler %99.5 ile yol-km uzunluğu ve 

%99.6 ile otobüs sayısı, %97.9 ile enerji tüketimi, %97.6 ile yolcu-km ve km-taĢıt 

sayıları, %96.8 ile tır sayısı, %97.4 ile de yük-ton, %98 ile AOGT‟dir. 

 

Çizelge 3.7. Temel bileĢenler matrisi 

 

DeğiĢkenler Temel BileĢenler 

1 2 

k6 (otobüs sayısı) 0.995 -0.078 

k3 (km-taĢıt) 0.987 0.009 

k1 (yük-km) 0.987 -0.014 

k4 (kamyon sayısı) 0.984 0.115 

k5 (tır sayısı) 0.984 -0.005 

k7 (enerji tüketimi ) 0.975 -0.168 

k2 (yolcu-km) 0.968 -0.172 

k8 (yol-km uz) 0.723 -0.197 

k9 (AOGT) 0.975 0.687 
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Birinci temel bileĢenler matrisimizde, % 99.5 ile otobüs sayısı %98.7 ile km-taĢıt, 

%98.7 ile yük-km ve kamyon sayısı, %98.4 ile tır sayısı, %97.5 ile enerji tüketimi, 

%96.8 ile yolcu-km, %72.3 ile yol-km uzunluğu, %97.5 ile AOGT etkili olmuĢtur 

(Çizelge 3.7). 

 

TBA sonucunda birbirleri ile iliĢkili 9 bağımsız değiĢken yerine birbirleriyle iliĢkisiz 2 

adet temel bileĢen ile model oluĢturulmuĢtur. Bu model ile ilgili istatistiksel sonuçlar 

Çizelge 3.9, ve Çizelge 3.10‟da sunulmuĢtur.  

 

Çizelge 3.8. Bağımsız değiĢken ve temel bileĢen skorları ile korelasyon matrisi 

 

DeğiĢkenler Y Z1 Z2 

Y 1   

Z1 0.890 1 0.000 

Z2 0.432 0.000 1 

 

Görüldüğü üzere temel bileĢen skorları arasındaki korelasyon sıfır olmuĢtur (Çizelge 

3.8). Aynı regresyonun diğer parametreleri Çizelge 3.9‟da gösterilmiĢtir. 

 

Çizelge 3.9.  Regresyon modeli çıktıları 

 

Model R R
2 

DüzeltilmiĢ R
2 

1 0.988 0.977 0.975 

 

Çizelge 3.10. Bağımsız değiĢken ve temel bileĢen skorları ile regresyon modeli 

parametreleri  

 

DeğiĢkenler B (Katsayı) t
 

Olab. P
 

Tolerans VIF F Olab. P 

Sabit 5.180 438.498 0.000 1.00 1.00 

655.609 0.000 SZ1 0.388 32.320 0.000 1.00 1.00 

SZ2 0.196 16.330 0.000 1.00 1.00 
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Çoklu regresyon modelleri, birinci temel bileĢen için   )( 110 szy , ikinci temel 

bileĢen için  

  )()( 22110 szszy  dir.       (3.1) 

 

Y orjinal bağımlı değiĢkenimizin standartlaĢtırılmıĢ hali ile (SY), ikinci temel bileĢenin 

standartlaĢtırılmıĢ Z1, Z2 arasında bir regresyon denklemi elde edildi (Çizelge 3.10). 

 

2211 ** ZZSY           (3.2) 

 
Denklemimizde bulunan katsayılar (-0.344, 0.024) sırasıyla birinci ve ikinci temel 

bileĢenle çarpılarak ilk iki temel bileĢen için regresyon katsayıları ,.......
~

,
~

,
~

321 bbb  elde 

edildi.  

 

iii Vb *
~
           (3.3) 

 

Burada iV  i‟ninci temel bileĢen vektörünü, i ‟de regresyon denklemindeki katsayıyı 

ifade etmektedir.  

 

)/(
~

ixyii SSbb           (3.4) 

 

Burada, yS bağımlı değiĢkenin standart sapmasını ifade etmekte 
ixS  bağımsız 

değiĢkenlerin standart sapmasını ifade etmektedir.  

 

][ 6655443322110 xbxbxbxbxbxbtb       (3.5) 

Ters dönüĢüm sonucunda model parametreleri aĢağıdaki gibi olmuĢtur (Çizelge 3.11). 
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Çizelge 3.11. Ġkinci temel bileĢen için bulunan katsayılar ve en küçük kareler 

kestiricileri  

 

DeğiĢken 

2. Temel BileĢen Ġçin 

Denklem 

 

ib                             ib  

 0.118746 0.185252 

0.122194 0.322975 

0.118086 0.221942 

0.114377 0.135824 

0.118097 0.226115 

0.121705 0.192535 

0.122183 0.289786 

0.065115 3.896268 

0.122171 0.242882 

b0 -21.8063 

R
2 

0.975 

 

Çok değiĢkenli zaman serisi analizinde logaritmik dönüĢüm ile normal dağılıma uygun 

olan değiĢkenlerimize birim kök testlerinden, GeniĢletilmiĢ Dickey Fuller testi 

uygulanmıĢ ve Çizelge 3.12‟deki sonuçlar elde edilmiĢtir.  

 

Çizelge 3.12. Çok değiĢkenli zaman serisi analizi için birim kök testi sonuçları 

 
 

DeğiĢkenler 

Fark Serisi Alınmadan Önce 1. Fark Serisi Alındıktan Sonra 

 

DeğiĢkenler 
ADF t 

istatistik 

%5 Tablo 

Değeri 
Olabilirlik 

ADF t 

istatistik 

%5 olabilirlik 

değeri 
Olabilirlik 

t(kaza sayısı) -2,73 -3,56 0,23 -3,57 -3,55 0,05 

k1 (yük-ton) -2,46 -3,57 0,34 -5,72 -3,55 0,003 

k2 (yolcu-km) -1,32 -3,55 0,86 -4,43 -3,56 0,0069 

k3 (km-taĢıt) -2,85 -3,55 0,19 -4,24 -3,55 0,0107 

k4 (kamyon sayısı) -2,12 -3,59 0,51 -4,18 -3,60 0,004 

k5 (tır sayısı) -2,11 -3,57 0,52 -5,56 -3,55 0,0028 

k6 (otobüs sayısı) -2,59 -3,55 0,29 -4,79 -3,56 0,0004 

k7 (enerji tüketimi 

) 
-2,76 -3,55 0,22 -5,55 -3,60 0,005 

k8 (yol-km uz) -8,07 -3,60 0,00 - - - 

k9 (AOGT) -1.19 -3.60 0.88 -4.26 -3.60 0.01 
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Mutlak değer olarak tADF >t0.05 olabilirlik değeri ise seri durağandır. DeğiĢkenlerimiz, 

birinci fark serisi alınarak durağan hale getirilmiĢtir.  

 

En uygun gecikme sayısının tespiti için gerekli olan kriterler ve sonuçları Çizelge 

3.13‟de verilmiĢtir. Bu durumda nihayi tahmin hatası, Akaike bilgi kriteri, Schwarz 

bilgi kriteri, Hannan-Quin bilgi kriterlerine bakılarak minimum olan değerler 

karĢılaĢtırılmıĢ olup bütün bu kriterlerden AIC değeri 1. gecikmede minimum 

olduğundan VAR(p) modelinin derecesi 1 olarak alınmıĢtır.  

 

Çizelge 3.13. Model derecesi belirleme kriterleri 

 

Gecikme Sayısı FPE (NTH) AIC SC HQ 

0  2.21e-32 -47.34830  -46.93198* -47.21259 

1  4.30e-32  -51.18189* -42.73413 -45.54022 

2   2.93e-33* -46.89732 -43.27183  -48.60341* 

 

Model derecesi belirlendikten sonra değiĢkenler arasındaki Granger Nedensellik analiz 

sonuçları Çizelge 3.14‟de sunulmuĢtur.  

 

Fhesaplanan>Ftablo ise bir nedensellik var demektir.  

)( 0:0 XYaH i   Y‟den X‟e nedensellik iliĢkisi yoktur 

)( 0:1 XYaH i   Y‟den X‟e nedensellik iliĢkisi vardır 
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Çizelge 3.14. Granger Nedensellik analiz sonuçları 

 

DeğiĢkenler F-Ġstatistik Olabilirlik 

Ton-Km   Kaza Sayısı 

Kaza Sayısı   Ton-Km 

0.25635 

7.79298 

0.7757 

0.0021 

Yolcu-kmKaza Sayısı 

Kaza SayısıYolcu-km 

1.65671 

1.14847 

0.2096 

0.3321 

Kaza SayısıKm-TaĢıt 

Km-TaĢıtKaza Sayısı 

0.14107 

10.7680 

0.8691 

0.0004 

Kaza SayısıKamyon Sayısı 

Kamyon SayısıKaza Sayısı 

0.37672 

0.97406 

0.6897 

0.3904 

Kaza SayısıTır Sayısı 

Tır SayısıKaza Sayısı 
3.85538 

0.78179 

0.0337 

0.4677 

Kaza SayısıOtobüs Sayısı 

Otobüs SayısıKaza Sayısı 
7.10407 

0.25459 

0.0033 

0.7771 

Karayollarında En. Tük.Kaza Sayısı 

Kaza Sayısı  Karayollarında En. Tük. 
4.22412 

0.48498 

0.0253 

0.6210 

Yol-kmKaza Sayısı 

Kaza SayısıYol-km 

1.33644 

1.50170 

0.2796 

0.2408 

AOGTKaza Sayısı 

Kaza SayısıAOGT 
5.51035 

2.14319 

0.02042 

0.13681 

 

Hata terimlerinin otokorelasyon ve kısmı otorkorelasyon grafikleri çizilerek akgürültü 

bir seri oldukları görüldü (ġekil 3.2).  
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   (a)      (b) 

ġekil 3.2.  Hata terimleri otokorelasyon (a) ve kısmi otokorelasyon (b) grafikleri 

 

Çizelge 3.15. Hata terimleri normallik analizi 

 

 Kolmogorov-Smirnov 

Ġstatistik sd Olabilirlik 

i  Hata Terimi 0.121 34 0.704 

 

Olabilirlik P>0.05 olduğundan seri normal dağılımlıdır (Çizelge 3.15). 
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ġekil 3.3. Hata terimleri normallik analizi Q-Q grafiği 
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Çizelge 3.16. Hata terimlerinde otokorelasyon testi LM 

 

Gecikme Sayısı 
LM-

Ġstatistik 
Olabilirlik 

1  111.2789  0.0544 

2  88.49305  0.2665 

3  92.95525  0.1714 

4  90.14755  0.2281 

5  91.32902  0.2029 

6  93.24808  0.1662 

7  129.6872  0.5005 

8  152.9377  0.6570 

9  89.91583  0.2332 

10  84.22255  0.3813 

11  94.14238  0.1508 

12  66.95759  0.8689 

 

 0........: 12321 PPPPHo Otokorelasyon yok 

 0........: 123211 PPPPH Otokorelasyon var 

 

LMOlabilirlik > 0.05 bütün gecikmeler için olduğundan 0H  reddedilmez. 

Modelin hata terimleri analiz edilirken otokorelasyonun olup olmadığı LM testi ile test 

edilmiĢ ve olabilirliklerin 0.05 üzerinde olması münasebetiyle otokorelasyon olmadığı 

anlaĢılmıĢtır (Çizelge 3.16). Hata terimlerinin normal dağılıma uygun olduğu Q-Q 

grafiği analiz edildi (ġekil 3.3). Karakteristik köklerin birim çember içinde kalıp 

kalmadığı da analiz edilmiĢtir. ġekil 3.4‟de karakteristik köklerin birim çember içinde 

kalması modelde birim kökün olmadığını göstermiĢtir.   
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ġekil 3.4.  VAR(1) Modeli için karakteristik köklerin gösterimi 
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ġekil 3.5.  VAR(1) Modeli için Etki-Tepki Fonksiyonu 
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Çizelge 3.17. VAR(1) Modeli varyans ayrıĢtırması 

 

Peryot 
Kaza 

Sayısı 
Ton-Km 

Yolcu-

Km 
Km-TaĢıt 

Kamyon 

Sayısı 
Tır Sayısı 

Otobüs 

Sayısı 
Enerj.Tük Yol-Km AOGT 

1 100.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

 2 46.45062 2.296032 14.25545 0.370144 11.22103 1.523233 8.650276 12.75385 1.737083 0.742277 

 3 49.36089 2.830059 10.83301 0.616573 9.565389 1.700782 7.121807 15.1793 1.854336 0.937855 

 4 47.25326 2.956046 9.873576 1.164632 8.296411 3.743723 11.22064 13.07651 1.607587 0.807618 

 5 43.51109 2.908381 9.038587 3.154866 7.829557 7.030609 12.18661 12.01197 1.571993 0.756345 

 6 43.71823 2.858635 9.598183 3.109218 7.841626 6.88884 11.94406 11.748 1.547015 0.746191 

 7 41.23003 2.821452 10.66706 6.118685 7.629576 6.792952 11.46559 11.08041 1.490951 0.703286 

 8 38.81777 2.895803 10.46561 10.35776 7.468792 6.387718 11.11248 10.43328 1.400451 0.660335 

 9 35.62096 3.339571 12.75971 13.46533 7.043486 5.865724 10.17877 9.825281 1.294758 0.606415 

 10 32.06227 3.517501 17.364 13.5455 7.172323 5.304191 9.175033 10.0439 1.239487 0.575787 

 

ARIMA(p,d,q) modelleri ile de bir analiz yapılmıĢtır. Analiz yapılırken SPSS 15.0 

kullanılmıĢtır. Zaman serisi analizi menüsünde bağımlı değiĢken kısmına kaza sayısı 

(Y), bağımsız değiĢkenler kısmına da sırayla, yük-ton (k1), yolcu-km (k2), km-taĢıt (k3), 

kamyon sayısı (k4), tır sayısı (k5), otobüs sayısı (k6), enerji tüketimi (k7), yol-km (k8), 

AOGT (k9), değerleri girilerek birçok alternatif denenmiĢtir. Modelde I(d) fark alma 

derecesi 1 olarak belirlenmiĢtir. Serinin durağan olmadığı Dickey-Fuller birim kök testi 

ile analiz edilmiĢ ve birinci dereceden farkı alınıp durağanlaĢtırıldığından d(1) olmuĢtur. 

Model parametreleri en tutarlı olan model ARIMA(1,1,0) olarak bulunmuĢtur. Model 

hata terimleri analizi yapılmıĢ ġekil 3.6‟da sunulmuĢtur.  
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ġekil 3.6.  ARIMA(1,1,0) Modeli için hata terimleri ACF PACF Grafikleri 
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Hata terimlerinin ACF ve PACF grafikleri çizildi. Grafiklerde gecikmeler güven 

aralıklarının içinde kaldığı görüldü (ġekil 3.6). Hata terimlerin akgürültü bir seri olduğu 

anlaĢıldı. Hata terimlerinin normallik testi olarak Kolmogorov-Smirnov testi ile 

yapılmıĢ, serinin olabilirlik P değeri 0.093>0.05, %95 güven seviyesinden büyük 

olduğundan normal dağılıma uygundur denilmiĢtir (Çizelge 3.18). Son olarak modelin 

karakteristik köklerinin birim çember içinde kaldığının grafiği çizilmiĢ ve analiz 

edilmiĢtir (ġekil 3.7). 

 

Çizelge 3.18. ARIMA(1,1,0) Modeli hata terimleri normallik testi 

 

DeğiĢken Kolmogorov-Smirnov 

Ġstatistik sd Olabilirlik 

Model ARIMA(1,1,0)  0.149 33 0.061 
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ġekil 3.7. ARIMA (1,1,0) Model için karakteristik köklerin gösterimi 

 

Son yöntem olarak YSA kullanılmıĢtır. YSA‟da 9 adet girdi kullanılmıĢ bu giriĢ 

vektörlerinin daha önceki yöntemlerde birbirleri ile korelasyonlu olması nedeniyle 
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YSA‟da temel bileĢenler analizi uygulanmıĢtır. Birbirleri ile iliĢkisiz 2 temel bileĢen 

girdi olarak kabul edilmiĢtir.  

 

Aktivasyon fonksiyonu olarak trainbr kullanılmıĢtır. Bu fonksiyonun özelliği eğitim 

verisinden baĢka test verisine ihtiyaç duymamasıdır. Eldeki veri tamamen YSA nın 

eğitimine kullanılmaktadır. YSA nın aĢırı eğitiminden dolayı ezberleme olayına izin 

vermemesidir (Can 2001).  

 

Matlab‟te yazılan bir yazılım, ağın transfer fonksiyonu olarak logsig, purelin, 

tanhiperbolik fonksiyonlarını alarak gizli tabakadaki nöron sayısını 1-10 arasında 

iterasyon yapma özelliğine sahiptir. R
2
, MSE, ve AIC kriterlerine göre ağ mimarilerini 

sıralayan 1000 iterasyon yapma özelliğine sahip program en uygun iki ağ yapısı 

arasında bu belirtilen kriterlere göre tercih yapmayı sağlamıĢtır (Çizelge 3.19). 

 

Çizelge 3.19. Optimum YSA ağ mimarisi 

 

Ağ 

Yapısı 

AIC 

(Akaike) 

Ortalama 

Karesel 

Hata 

(MSE) 

R2 Aktivasyon 

Fonksiyonu 

Transfer 

Fonksiyonu 

Ġterasyon 

Sayısı 

Tabaka 

Sayısı 

Gizli 

Tabakadaki 

nöron 

saayısı 

Yöntem1 -113.439 0.009 0.98 Trainbr 

Purelin-

purelin-

logsig 

500 3 2 

Yöntem2 -105.437 0.009 0.97 Trainbr 

Purelin-

purelin-

logsig 

500 2 3 

 

ġekil 3.8‟de örnek ağ mimarisi verilmiĢtir. 
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ġekil 3.8. YSA örnek ağ mimarisi 

 

3.1.2. Model-II 

 

II Numaralı yaklaĢımda yıllık trafik kazalarındaki yaralı sayıları; nüfus, yol-km değeri, 

km-taĢıt, ağır tonajlı araç sayısı, otomobil sayısı, otobüs sayısı, AOGT, GSMH 

değerlerine göre modellenmiĢtir.  

 

Y:Yıllık trafik kazalarındaki yaralı sayıları 

X1: Nüfus 
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X2: Yol-Km 

X3: Km-TaĢıt 

X4: Ağır tonajlı araç sayısı  

X5: Otomobil sayısı 

X6: Otobüs sayısı 

X7: AOGT 

X8: GSMH 

 

Model-II için normal dağılıma uygunluk analiz edilmiĢ, normal dağılıma uygun 

olmayan verilere doğal logaritmik dönüĢüm uygulanmıĢ ve test sonuçları Çizelge 

3.20‟de gösterilmiĢtir.  

 

Çizelge 3.20.  DeğiĢkenler için normallik test sonuçları 

 

D
eğ

iĢ
k
en

 Kolmogorov-Smirnov Kolmogorov-Smirnov (Logaritmik) 

Ġstatistik Sd Olabilirlik Ġstatistik Sd Olabilirlik 

Y 0.219 34 0.087 1.275 34 0.078 

X1 0.082 34 0.142 0.522 34 0.948 

X2 0.132 34 0.026 0.755 34 0.619 

X3 0.161 34 0.002 0.832 34 0.493 

X4 0.197 34 0.007 0.561 34 0.912 

X5 0.179 34 0.161 0.698 34 0.714 

X6 0.129 34 0.200 0.587 34 0.881 

X7 0.092 34 0.081 0.632 34 0.819 

X8 0.142 34 0.002 0.661 34 0.661 

 

)log( ii Xk   

)log( ii Yt   

H0: DeğiĢkenler normal dağılım gösterir. 
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H1: DeğiĢkenler normal dağılım göstermez. 

 

Çizelge 3.21.  Korelasyon matrisi 

 

DeğiĢkenler t k1 k2 k3 k4 k5 k6 k7 k8 

t 1         

k1 0.944 1        

k2 0.397 0.645 1       

k3 0.899 0.974 0.714 1      

k4 0.867 0.967 0.763 0.973 1     

k5 0.927 0.994 0.687 0.981 0.971 1    

k6 0.941 0.996 0.664 0.978 0.979 0.994 1   

k7 0.950 0.987 0.595 0.951 0.945 0.981 0.981 1  

k8 0.831 0.981 0.695 0.912 0.922 0.911 0.914 0.968 1 

 

Bağımlı ve bağımsız değiĢkenlerin korelasyon matrisinde bağımsız değiĢkenler arasında 

yüksek korelasyon göze çarpmaktadır (Çizelge 3.21). 

 

Çizelge 3.22.  Temel bileĢenler küresellik testi sonuçları 

 

Keiser-Meyer-Olkin 0.804 Çok Ġyi 

Barlett‟s 750.150  

Sd 21  

Olabilirlik 0.000  

 

Küresellik analizi yapılmıĢ verilerin TBA uygulamasına uygun olduğu anlaĢılmıĢtır 

(Çizelge 3.22). 
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Çizelge 3.23.  TBA, Özvektörler 

 
DeğiĢkenler Vektör–1 Vektör–2 Vektör–3 Vektör–4 Vektör–5 Vektör–6 Vektör–7 Vektör–8 

k1 
-0.365607  0.198069  0.201418  0.087095  0.044218  0.437642  0.585893  0.492127 

k2 
-0.276566 -0.913289  0.196804  0.153364  0.130800 -0.003366  0.084114 -0.054477 

k3 -0.366216  0.040235  0.055641 -0.822499  0.279122 -0.299094  0.115778 -0.062406 

k4 -0.367405 -0.059815  0.023557 -0.119202 -0.840925 -0.152669 -0.231841  0.249918 

k5 -0.368365  0.119199  0.121290  0.074806  0.365603  0.288275 -0.751228  0.220634 

k6 -0.367995  0.157765  0.070924  0.033703 -0.179696  0.412552  0.058472 -0.792222 

k7 
-0.358933  0.283202  0.249872  0.499481  0.137186 -0.664056  0.092609 -0.103346 

k8 
-0.347556 -0.046626 -0.913713  0.148211  0.105337 -0.037710  0.078487  0.038925 

 

TBA sonucunda bulunan özvektörler, özdeğeler ve bunların toplam varyansı açıklama 

oranı Çizelge 3.23 ile Çizelge 3.24‟te sunlumuĢtur.  

 

Çizelge 3.24.  TBA ve varyansı açıklama oranları 

 

Temel BileĢenler BaĢlangıç Özdeğerler  

Toplam %Varyans %Kümülatif Toplam %Varyans %Küm. 

1 7.255 90.689 90.689 7.255 90.689 90.689 

2 0.525 6.567 97.256 0.525 6.567 97.256 

3 0.145 1.818 99.074    

4 0.033 0.418 99.492    

5 0.025 0.313 99.806    

6 0.012 0.148 99.954    

7 0.002 0.030 99.894    

8 0.001 0.016 100.000    

 

Öz değerler; 

255.71  , 525.02  , 145.03  , 033.04  , 025.05  , 012.06  002.07   

001.08   

olarak bulunmuĢtur.  
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olduğundan 2 adet temel bileĢen vardır. 8 Bağımsız değiĢken yerine 2 temel bileĢen ile 

devam edilecektir. Çizelge 3.24 incelendiğinde birinci temel bileĢen toplam varyansın 

% 90.689‟unu açıklarken, ikinci temel bileĢen % 6.567‟sini açıklamaktadır. Bu iki temel 

bileĢen toplam varyansın % 97.256‟lık bir oranını açıklamaktadır.  

 

ġekil 3.9‟da temel bileĢen sayısını tespit etmekte kullanılan yamaç eğimi grafiği 

çizilmiĢtir. Grafikte eğimin 2. temel bileĢenden sonra yaklaĢık değiĢnediği 

görüldüğünden temel bileĢen sayısı 2 olarak kabul edilmiĢtir.  

 

Çizelge 3.25.  DeğiĢkenlerin temel bileĢenler tarafından açıklanma oranı 

 

DeğiĢkenler Oran 

k1 (nüfus) 0.990 

k2 (yol-km) 0.993 

k3 (km-taĢıt) 0.974 

k4 (ağır tonajlı araç) 0.981 

k5 (otomobil sayısı) 0.992 

k6 (otobüs sayısı) 0.996 

k7 (AOGT) 0.977 

k8 (GSMH) 0.878 

 

Temel bileĢenler tarafından en çok açıklanan bileĢen, %99.6 ile otobüs sayısı, %99.3 ile 

yol-km uzunluğudur, %99.2 ile otomobil sayısı, %99 ile nüfus, %98.1 ile ağır tonajlı 

araç, %97.7 ile AOGT, %97.4 ile km-taĢıt, %87.8 ile GSMH temel bileĢenler tarafından 

açıklanmaktadır (Çizelge 3.25).  
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Çizelge 3.26. Temel bileĢenler matrisi 

 

DeğiĢkenler Temel BileĢenler 

1 2 

k1 (nüfus) 0.985 -0.144 

k2 (yol-km) 0.745 0.662 

k3 (km-taĢıt) 0.986 -0.029 

k4 (ağır tonajlı araç) 0.990 0.043 

k5 (otomobil sayısı) 0.992 -0.086 

k6 (otobüs sayısı) 0.991 -0.114 

k7 (AOGT) 0.967 -0.205 

k8 (GSMH) 0.936 0.034 

 

Çizelge 3.26‟da birinci temel bileĢenler matrisimize göre; kaza sayısı üzerinde, % 99.2 

ile otomobil sayısı %99.0 ile ağır tonajlı araç sayısı, %99.1 ile otobüs sayısı, %98.5 ile 

nüfus, %98.6 ile km-taĢıt, %96.7 ile AOGT, %93.6 ile GSMH, %74.5 ile yol-km 

uzunluğu etkili olmuĢtur.  

 

Temel bileĢenler analizi sonucunda birbirleri iliĢkili 8 bağımsız değiĢken yerine 

birbirleriyle iliĢkisiz 2 adet temel bileĢen ile modelimiz oluĢturuldu. Bu model ile ilgli 

istatistiksel sonuçlar Çizelge 3.28 ve Çizelge 3.29‟da sunulmuĢtur.  

 

Çizelge 3.27. Bağımsız değiĢken ve temel bileĢen skorları ile korelasyon matrisi 

 

DeğiĢkenler Y Z1 Z2 

Y 1   

Z1 0.986 1  

Z2 0.062 0.000 1 

 

Görüldüğü üzere temel bileĢen skorları arasındaki korelasyon sıfır olmuĢtur (Çizelge 

3.27). Regresyonun diğer parametreleri, Çizelge 3.28‟de verilmiĢtir. 
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Çizelge 3.28.  Regresyon modeli çıktıları 

 

Model R R
2 

DüzeltilmiĢ R
2 

1 0.988 0.976 0.975 

 

Çizelge 3.29. Bağımsız değiĢken ve temel bileĢen skorları ile regresyon modeli 

parametreleri  

 

DeğiĢkenler B (Katsayı) t
 

Olab. P
 

Tolerans VIF F Olab. P 

Sabit 4.834 701.982 0.000 1.00 1.00 

636.849 0.000 SZ1 0.249 35.620 0.000 1.00 1.00 

SZ2 0.016 2.223 0.034 1.00 1.00 

 

)(016.0)(249.0834.4 21 szszy   

 

Orjinal değiĢkenler üzerinden kestirim yapabilecek denklemleri bulmak istatistiksel 

açıdan daha kullanıĢlıdır. Bu durumda en küçük kareler kestiricileri yardımıyla yapılan 

bir ters dönüĢüm ile orijinal verilerden elde edilecek model bulunmuĢtur.  

 

Y orjinal bağımlı değiĢkenimizin standartlaĢtırılmıĢ hali ile (SY), ikinci temel bileĢenin 

standartlaĢtırılmıĢ Z1-Z2 arasında bir regresyon denklemi bulunmuĢtur. Denklem (3.2) 

,(3.3) ve (3.4) yardımıyla  

 

21 *567.0*334.0 ZZSY   

 

denklemleri elde edilmiĢtir. Orijinal verilerin modelde kullanılabilmesi için ters 

dönüĢüm sonucunda bulanan model parametreleri Çizelge 3.30‟da sunulmuĢtur. 
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Çizelge 3.30. Ġkinci temel bileĢen için bulunan katsayılar ve en küçük kareler 

kestiricileri  

 

DeğiĢken 

2. Temel BileĢen Ġçin 

Denklem 

 

ib                             ib  

 

0.23442 0.68888 

-0.42546 -14.6312 

0.14513 0.15677 

0.08880 0.07021 

0.19206 0.12397 

0.21236 0.19308 

0.28046 0.32045 

0.08965 0.11101 

b0 67.23424 

R
2
 0.975 

 

Çizelge 3.31. Çok değiĢkenli zaman serisi analizi için birim kök testi sonuçları. 

 
 

DeğiĢkenler 
ADF t 

istatistiği 

%5 

Tablo 

Değeri 

P ADF t 

istatistiği 

%5 

olabilirlik 

değeri 

Olabilirlik ADF t 

istatistiği 

%5 

olabilirlik 

değeri 

P 

Fark Serisi Alınmadan Önce 1. Fark Serisi Alındıktan Sonra 2. Fark Serisi Alındıktan Sonra 

t (yaralı 

say.) 
-1.40 -3.55 0.84 -3.97 -3.55 0.02    

k1 (nüfus) 1.68 -3.57 1.00 -3.42 -3.57 0.06 -6.58 -3.58 0.00 

k2 (yol-km) -8.07 -3.60 0.00       

k3 (km-taĢıt) -2.85 -3.56 0.19 -4.24 -3.56 0.01    

k4 (ağır 

ton.araç) 
0.07 -3.59 0.99 -4.40 -3.56 0.009    

k5 (oto.say.) -1.55 -3.60 0.78 -3.42 -3.61 0.07 -6.09 -3.56 0.0001 

k6 

(otob.say.) 
-2.59 -3.56 0.28 -4.79 -3.56 0.003    

k7 (AOGT) -1.19 -3.60 0.88 -4.79 -3.56 0.003    

k8 (GSMH) -3.65 -3.60 0.05       

 

Mutlak değer olarak tADF >t %5 ise seri durağandır. DeğiĢkenlerimiz birinci fark serisi ve 

ikinci fark serisi alınarak durağan hale dönüĢmüĢlerdir (Çizelge 3.31).  

 

En uygun gecikme sayısının tespiti için gerekli olan kriterler ve sonuçları Çizelge 

3.32‟de verilmiĢtir. Bu durumda nihai tahmin hatası, Akaike bilgi kriteri, Schwarz bilgi 
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kriteri, Hannan-Quin bilgi kriterlerine bakılarak minimum olan değerler karĢılaĢtırılmıĢ 

olup bütün bu kriterlereden 2. gecikmeye ait değerler minimum olduğundan VAR(p) 

modelinin derecesi 2 olarak alınmıĢtır (Çizelge 3.32). 

 

Çizelge 3.32. Model derecesi belirleme kriterleri 

 

Gecikme Sayısı FPE (NTH) AIC SC HQ 

0  7.04e-33 -48.49315  -48.07279* -48.35868 

1  2.18e-34 -52.20417 -48.00058 -50.85941 

2   7.14e-35*  -55.12923* -47.14240  -52.57418* 

 

Model derecesi belirlendikten sonra değiĢkenler arasındaki Granger Nedensellik analiz 

sonuçları Çizelge 3.33‟te sunulmuĢtur.  

 

Fhesaplanan>Ftablo ise bir nedensellik var demektir.  

)( 0:0 XYaH i   Y‟den X‟e nedensellik iliĢkisi yoktur 

)( 0:1 XYaH i   Y‟den X‟e nedensellik iliĢkisi vardır 

Çizelge 3.33. Model-II Granger Nedensellik analiz sonuçları 

 

DeğiĢkenler F-Ġstatistiği P 

Nüfus   Yaralı Sayısı 

Yaralı Sayısı   Nüfus 
4.89959 

1.21476 

0.0153 

0.3125 

Yol-kmYaralı Sayısı 

Yaralı SayısıYol-km 

0.56606 

4.17839 

0.5744 

0.0262 

Yaralı SayısıKm-TaĢıt 

Km-TaĢıtYaralı Sayısı 

0.76293 

1.28574 

0.4761 

0.2928 

Yaralı Sayısı Ağır Tonajlı Araç Sayısı 

Ağır Tonajlı Araç SayısıYaralı Sayısı 

1.04984 

0.24562 

0.3638 

0.7840 
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Çizelge 3.33. (devam) 

 

Yaralı SayısıOtomobil Sayısı 

Otomobil SayısıYaralı Sayısı 

0.96458 

2.18559 

0.3939 

0.1319 

Yaralı SayısıOtobüs Sayısı 

Otobüs SayısıYaralı Sayısı 

1.32705 

0.28672 

0.2820 

0.7530 

AOGT Yaralı Sayısı 

Yaralı Sayısı  AOGT 
3.60660 

0.75773 

0.0409 

0.4784 

GSMH Yaralı Sayısı 

Yaralı Sayısı  GSMH 

0.83183 

1.47328 

0.4461 

0.2470 

 

Çizelge 3.34. Hata terimleri normallik analizi 

 

 Kolmogorov-Smirnov 

Ġstatistik sd Olabilirlik 

i  Hata Terimi 0.104 34 0.200 

 

Serinin olabilirlik P değeri 0.200>0.05, %95 güven seviyesinden büyük olduğundan 

normal dağılıma uygundur (Çizelge 3.34). Serinin hata terimlerinin normal dağılıma 

uygunluğu Q-Q grafiği ilede tespit edilmiĢtir (ġekil 3.9). 
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ġekil 3.9.  Var(2) modeli hata terimleri normallik analizi Q-Q grafiği 

 

Karakteristik köklerin birim çember içinde kaldığı analiz edilmiĢtir (ġekil 3.10). 
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ġekil 3.10.  VAR(2) Modeli için karakteristik köklerin gösterimi 
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ġekil 3.11.  VAR(2) Modeli için Etki-Tepki Fonksiyonu 

 

Gecikme Sayısı

16151413121110987654321

A
C
F
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Gecikme Sayısı
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ġekil 3.12.  VAR(2) Modeli için hata terimleri ACF-PACF grafikleri 

 

Çok değiĢkenli zaman serisi uygulamasında ve ARIMA(2,1,0) uygulamasında hata 

terimlerinin ACF-PACF grafikleri çizildi. Bütün gecikmelerin güven aralığı içinde 

kaldığı ve serinin akgürültü bir seri olduğu anlaĢıldı (ġekil 3.12-3.13). 
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Çizelge 3.35. VAR(2) Modeli varyans ayrıĢtırması 

 

Peryot 
Yaralı 

Sayısı 
Nüfus Yol-Km 

Km-

TaĢıt 

Ağır Tonajlı 

Araç Say. 

Otomobil 

Sayısı 

Otobüs 

Sayısı 
AOGT GSMH 

1  100.00  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000 

 2  86.222  3.6409  7.2299  0.3005  0.0107  0.6157  0.2194  0.0480  1.7121 

 3  69.664  8.3026  5.7872  3.7854  0.4857  1.5475  7.8305  0.6884  1.9076 

 4  66.717  8.6406  6.0758  4.9964  0.5019  2.2861  8.2043  0.7027  1.8739 

 5  62.231  8.0594  6.6041  7.8626  0.9058  3.2055  7.6736  1.5408  1.9159 

 6  58.518  7.7772  8.4587  7.2867  2.3285  3.9890  7.3276  2.3790  1.9342 

 7  56.092  7.4748  10.333  8.8976  2.3876  3.7201  6.6867  2.5388  1.8680 

 8  57.776  7.2503  9.7871  8.5453  2.2967  3.7102  6.3462  2.4655  1.8222 

 9  58.107  7.2123  9.7063  8.4245  2.2735  3.7841  6.2652  2.4206  1.8059 

 10  57.584  7.1703  9.6809  8.3150  2.2428  3.9887  6.2529  2.7812  1.9839 
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16151413121110987654321

A
C
F

1,0

0,5

0,0

-0,5

-1,0

Gecikme Sayısı

16151413121110987654321

K
ı
s
m
i
 
A
C
F

1,0

0,5

0,0

-0,5

-1,0

 
ġekil 3.13  ARIMA (2,1,0) Hata terimleri ACF ve PACF grafikleri 

 

Çizelge 3.36 ARIMA(2,1,0) Modeli normallik testi 

 

DeğiĢken Kolmogorov-Smirnov 

Ġstatistik Sd Olabilirlik 

Model ARIMA(2,1,0)  1.177 34 0.125 

 

ARIMA(2,1,0) modelinin hata terimlerine normallik analizi uygulandı. Kolmogorov 

Smirnov test sonucunda serinin normal dağılıma uygun olduğu anlaĢıldı (Çizelge 3.36). 

Modelin karakterisitk kökleri birim çember içinde olduğu görüldü (ġekil 3.14).  
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ġekil 3.14.  ARIMA (2,1,0) Model için karakteristik köklerin gösterimi 

 

3.1.3. Model-III  

 

Model III‟de yıllık Trafik kazalarında ki ölü sayıları; nüfus, yol-km değeri, km-taĢıt, 

ağır tonajlı araç sayısı, otomobil sayısı, otobüs sayısı, AOGT, GSMH, değerlerine göre 

modellenmiĢtir. 

 

Y:Yıllık Trafik Kazalarındaki Ölü Sayıları 

X1: Nüfus 

X2: Yol-Km 

X3: Km-TaĢıt 

X4: Ağır Tonajlı Araç Sayısı  

X5: Otomobil Sayısı 

X6: Otobüs Sayısı 

X7: AOGT 

X8: GSMH 
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)log( ii Xk   

)log( ii Yt   

 

Model-III için normallik analizi yapıldı. Normal dağılıma uygun olmayan verilere doğal 

logaritmik dönüĢüm uygulanmıĢ ve test sonuçları Çizelge 3.37‟de gösterilmiĢtir.  

 

Çizelge 3.37. Bağımsız değiĢken için normallik test sonucu 

 

DeğiĢken Kolmogorov-Smirnov Kolmogorov-Smirnov (Logaritmik) 

Ġstatistik sd Olabilirlik Ġstatistik sd Olabilirlik 

Y 0.095 34 0.200 0.123 34 0.200 

 

H0: DeğiĢkenler normal dağılım gösterir. 

H1: DeğiĢkenler normal dağılım göstermez. 

 

Çizelge 3.38.  Korelasyon matrisi 

 

DeğiĢkenler t k1 k2 k3 k4 k5 k6 k7 k8 

t 1         

k1 -0.479 1        

k2 -0.864 0.645 1       

k3 -0.545 0.974 0.714 1      

k4 -0.607 0.967 0.763 0.973 1     

k5 -0.497 0.994 0.687 0.981 0.971 1    

k6 -0.487 0.996 0.664 0.978 0.979 0.994 1   

k7 -0.407 0.987 0.595 0.951 0.945 0.981 0.981 1  

k8 -0.472 0.891 0.695 0.912 0.922 0.911 0.914 0.868 1 

 

Bağımlı ve bağımsız değiĢkenlerimiz arasındaki korelasyon matrisinde, bağımsız 

değiĢkenler arasındaki yüksek korelasyon göze çarpmaktadır (Çizelge 3.38). Model-
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II„de kullanmıĢ olduğumuz bağımsız değiĢkenler Model III‟ten farklılık 

göstermediğinden TBA uygulamalarındaki bazı tablolarda değiĢiklik yoktur. Çizelge 

3.22, 3.23, 3.24, 3.25 ve 3.26 aynıdır. Aynı zamanda ġekil 3.9‟daki yamaç eğimi grafiği 

de aynıdır. Model-III uygulamasında da 8 bağımsız değiĢken yerine iki temel bileĢenle 

model açıklanmaya çalıĢılacaktır.  

 

Temel bileĢenler analizi sonucunda birbirleri ile iliĢkili 8 bağımsız değiĢken yerine,  

birbirleriyle iliĢkisiz 2 adet temel bileĢen kullanarak model oluĢturuldu. Bu model ile 

ilgili istatistiksel sonuçlar Çizelge 3.40 ve Çizelge 3.41„de sunulmuĢtur.  

 

Çizelge 3.39. Bağımsız değiĢken ve temel bileĢen skorları ile korelasyon matrisi 

 

DeğiĢkenler Y Z1 Z2 

Y 1   

Z1 -0.182 1  

Z2 -0.847 0.000 1 

 

Görüldüğü üzere temel bileĢen skorları arasındaki korelasyon sıfır olmuĢtur (Çizelge 

3.39). 

 

Çizelge 3.40. Regresyon modeli çıktıları 

 

Model R R
2 

DüzeltilmiĢ R
2 

1 0.866 0.751 0.735 

 

Çizelge 3.41. Bağımsız değiĢken ve temel bileĢen skorları ile regresyon modeli 

parametreleri  

DeğiĢkenler B (Katsayı) t
 

P
 

Tolerans VIF F P 

Sabit 3.690 340.743 0.000 1.00 1.00 

46.684 0.000 SZ1 -0.022 -2.035 0.051 1.00 1.00 

SZ2 -0.104 -9.446 0.000 1.00 1.00 
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Orijinal verilerin modelde kullanılabilmesi için ters dönüĢüm sonucunda bulanan model 

parametreleri Çizelge 3.42‟de sunulmuĢtur. 

 

Çizelge 3.42. Ġkinci temel bileĢen için bulunan katsayılar ve en küçük kareler 

kestiricileri  

 

DeğiĢken 

2. Temel BileĢen Ġçin 

Denklem 

 

ib                             ib  

 0.10446 0.149225 

-0.89105 -14.8667 

-0.03948 -0.0207 

-0.13097 -0.05159 

0.03297 0.010132 

0.06734 0.029724 

0.18362 0.101859 

-0.11481 -0.06903 

b0 74.11142 

R
2 

0.735 

 

Çok değiĢkenli zaman serisi analizinde logaritmik dönüĢüm ile normal dağılıma uygun 

olan bağımlı değiĢkenimize birim kök testlerinden GeniĢletilmiĢ Dickey Fuller testi 

uygulanmıĢ ve Çizelge 3.43‟deki sonuçlar elde edilmiĢtir. Bağımsız değiĢkenler Model-

II uygulamasındakiyle aynı olması münasebetiyle Çizelge 3.31‟de verilmiĢti.  

 

Çizelge 3.43. Çok değiĢkenli zaman serisi analizi için birim kök testi sonuçları 

 
 

DeğiĢkenler 
ADF t 

istatistik 

%5 Tablo 

Değeri 

Olabilirlik ADF t 

istatistik 

%5 

olabilirlik 

değeri 

Olabilirlik 

Fark Serisi Alınmadan Önce 1. Fark Serisi Alındıktan Sonra 

t -1.88 -3.56 0.63 -3.83 -3.56 0.03 

 

En uygun gecikme sayısının tespiti için gerekli olan kriterler ve sonuçları Çizelge 

3.44‟de verilmiĢtir. Bu durumda nihai tahmin hatası, Akaike bilgi kriteri, Schwarz bilgi 

kriteri, Hannan Quin bilgi kriterlerine bakılarak minimum olan değerler karĢılaĢtırılmıĢ 



 

 

79 

olup bütün bu kriterlereden 2. gecikmeye ait değerler minimum olduğundan VAR(p) 

modelinin derecesi 2 olarak alınmıĢtır.  

 

Çizelge 3.44. Model derecesi belirleme kriterleri 

 

Gecikme Sayısı FPE (NTH) AIC SC HQ 

0 5.99e-33 -48.65383 -48.23348 -48.51936 

1 1.77e-34* -52.41472 -48.21113 -51.06996 

2 8.47e-36 -57.22298* -49.24305* -54.67482* 

 

Model derecesi belirlendikten sonra değiĢkenler arasında ki Granger Nedensellik analiz 

sonuçları Çizelge 3.45‟te sunulmuĢtur.  

 

Fhesaplanan>Ftablo ise bir nedensellik var demektir.  

)( 0:0 XYaH i   Y‟den X‟e nedensellik iliĢkisi yoktur 

)( 0:1 XYaH i   Y‟den X‟e nedensellik iliĢkisi vardır 

 

Çizelge 3.45. Model Granger Nedensellik analiz sonuçları 

 

DeğiĢkenler F-Ġstatistik Olabilirlik 

Nüfus   Ölü Sayısı 

Ölü Sayısı   Nüfus 

 4.56670 

 

2.08029 

0.0409 

 

0.1596 

Yol-kmÖlü Sayısı 

Ölü Sayısı Yol-km 

 4.49415 

 

1.29947 

0.0424 

 

0.2633 

Ölü SayısıKm-TaĢıt 

Km-TaĢıtÖlü Sayısı 

 9.94288 

  

0.18462 

0.0037 

 

0.6705 

Ölü Sayısı Ağır Tonajlı Araç Sayısı 

Ağır Tonajlı Araç SayısıÖlü Sayısı 
5.10487 

5.63889 

0.0313 

0.2142 

Ölü SayısıOtomobil Sayısı 

Otomobil SayısıÖlü Sayısı 
6.42133 

0.56235 

0.0167 

0.4592 
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Çizelge 3.45. (devam) 

 

Ölü SayısıOtobüs Sayısı 

Otobüs SayısıÖlü Sayısı 
4.63269 

0.72426 

0.0395 

0.4015 

AOGT Ölü Sayısı 

Ölü Sayısı  AOGT 
6.00818 

0.64804 

0.0203 

0.4271 

GSMH Ölü Sayısı 

Ölü Sayısı  GSMH 
2.77692 

1.06469 

0.3022 

0.3104 

 

Granger nedensellik analizi yapıldıktan sonra model parameterleri belirlenmiĢtir. 

Modelin uygun bir model olup olmadığını anlayabilmek için hata terimleri üzerindeki 

varsayımların analizinin yapılması gerekmektedir.  

 

Hata terimlerinin otokorelasyon ve kısmı otokorelasyon grafikleri çizilerek akgürültü 

bir seri oldukları görüldü (ġekil 3.15). 
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   (a)     (b) 

ġekil 3.15.  Hata terimleri otokorelasyon (a) ve ksımı otokorelasyon (b) grafikleri. 

Hata terimleri normal dağılıma uygunlukları test edildi. 
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Çizelge 3.46. Hata terimleri normallik analizi 

 

 Kolmogorov-Smirnov 

Ġstatistik Sd Olabilirlik 

i  Hata Terimi 0.118 33 0.200 

 

Olabilirlik P>0.05 olduğundan hata terimleri normal dağılmlıdır (Çizelge 3.46-ġekil 

3.16).  
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ġekil 3.16. Hata terimleri normallik analizi Q-Q grafiği 

 

Karakteristik köklerin birim çember içinde kalıp kalmadığı analiz edildi. Bütün 

karakteristik köklar birim çember içinde olduğundan modelde birim kök olmadığı 

anlaĢıldı (ġekil 3.17). 
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ġekil 3.17. VAR(2) Modeli için karakteristik köklerin gösterimi 
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ġekil 3.18. VAR(2) Modeli için Etki-Tepki Fonksiyonu 
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Çizelge 3.47. VAR(2) Modeli varyans ayrıĢtırması 

 

Peryot 
Ölü 

Sayısı 
Nüfus Yol-Km Km-TaĢıt 

Ağır 

Tonajlı 
Araç Say. 

Otomobil 

Sayısı 

Otobüs 

Sayısı 
AOGT GSMH 

1  100.0000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.0000 

 2  78.10667  4.622056  0.213871  7.153873  0.265287  0.504103  0.660243  8.187221  0.2866 

 3  67.51323  3.997529  0.651505  9.044366  1.337053  0.501688  9.337100  7.068831  0.5487 

 4  63.78269  3.794757  0.994411  10.72341  2.079621  0.497605  10.29408  7.228576  0.6048 

 5  62.95964  3.780598  1.205117  11.37190  2.076007  0.491180  10.16355  7.267797  0.6842 

 6  62.80851  3.773967  1.330116  11.35701  2.075642  0.509933  10.10272  7.254957  0.7871 

 7  62.67116  3.825031  1.392099  11.28427  2.064248  0.576314  10.03351  7.287450  0.8659 

 8  62.56947  3.833847  1.428448  11.26297  2.055719  0.633170  9.998842  7.300900  0.9166 

 9  62.48681  3.843595  1.446473  11.26629  2.051246  0.673503  9.983709  7.298012  0.9503 

 10  62.43555  3.844987  1.455140  11.27777  2.048992  0.699563  9.973139  7.292261  0.9725 

 

Model parametreleri en tutarlı olan model ARIMA(0,1,1) olarak bulunmuĢtur. Model 

hata terimleri akgürültü bir seri olduğu gecikmelerin güven aralıklarının içinde kaldığı 

ġekil 3.19‟da görülmüĢtür. 
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ġekil 3.19. ARIMA(0,1,1) Modeli için hata terimleri ACF PACF Grafikleri 

 

Çizelge 3.48. ARIMA(0,1,1) Modeli hata terimleri normallik testi 

 

DeğiĢken Kolmogorov-Smirnov 

Ġstatistik Sd Olabilirlik 

Model ARIMA(0,1,1)  0.132 34 0.139 

 

Olabilirlik P>0.05 olduğundan seri normal dağılmlıdır (ġekil 3.48).  
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ġekil 3.20. ARIMA (0,1,1) Model için karakteristik köklerin gösterimi 

 

Hareketli ortalama modeli olan ARIMA(0,1,1) karakterisitk kökü birim çember içinde 

kalmıĢtır (ġekil 3.20).  

 

3.1.4. Model II-III için yapay sinir ağı uygulaması   

 

Modellerden Model-II ve Model-III‟ün yapay sinir ağı uygulaması beraber yapılmıĢtır. 

Ġlk önce 8 bağımsız değiĢken ġekil 3.22„deki gibi giriĢ vektörünü oluĢturmuĢtur. GiriĢ-

gizli ve çıkıĢ tabakası olmak üzere toplam üç tabakadan oluĢan bir ağ mimarisi üzerinde 

çıkıĢ tabakasında 2 nöron bulunmaktadır. Ağın %60‟ı eğitim seti, %40‟ıda test seti 

olmak üzere sınıflandırılmıĢtır. ÇıkıĢ nöronları ölü sayısı ve yaralı sayısıdır. Ağın eğitim 

setinde R
2
=0.95 olarak tespit edilmiĢtir. Aktivasyon fonksiyonu trainbr olarak 

alınmıĢtır. Transfer fonksiyonları, logsig, purelin, tansig olarak tespit edilmiĢtir.  

 

GiriĢ nöronları arasında yüksek korelasyon olduğundan 8 bağımsız değiĢken üzerinde 

TBA uygulaması yapılmıĢ ve eğitim setine %2‟den daha az katkısı olan elemanların 

elendiği yeni giriĢ vektörleri oluĢturulmuĢtur. Birbirleri ile iliĢkili 8 nöron yerine 
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iliĢkisiz 2 nöron giriĢ nöronlarını meydana getirmiĢtir. Gizli tabakada da 2 nöron kabul 

edilmiĢ çıktı tabakasında ise ölü ve yaralı sayılarının olduğu 2 nöron alınmıĢ ġekil 

4.17‟de ağ yapısı sunlmuĢtur. Ağın eğitim setinde ölü sayıları için R
2
= 0.95, yaralı 

sayıları içinde R
2
= 0.98 olarak bulunmuĢtur. Eğitim seti de ölü sayısı için OKH= 0.001, 

yaralı sayısı için ise OKH= 0.002 olarak bulunmuĢtur.  
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ġekil 3.21. Model II-III genel YSA ağ mimarisi 
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3.1.5. Model-IV  

 

Bu modelde; yıllık trafik kazalarındaki yaralı sayılarının, kaza sayısı, AOGT, GSMH 

değerlerine göre modellenmesi yapılmıĢtır. 

 

Y:Yıllık Trafik Kazalarındaki Yaralı Sayıları 

X1: Kaza Sayısı 

X2: AOGT 

X3: GSMH 

 

)log( ii Xk   

)log( ii Yt   

 

Çizelge 3.49. Bağımsız değiĢken için normallik test sonucu 

 

DeğiĢken Kolmogorov-Smirnov Kolmogorov-Smirnov (Logaritmik) 

Ġstatistik sd Olabilirlik Ġstatistik sd Olabilirlik 

Y 0.819 34 0.001 1.275 34 0.078 

X1 1.289 34 0.007 0.864 34 0.444 

X2 0.534 34 0.013 0.632 34 0.819 

X3 0.827 34 0.045 0.730 34 0.661 

 

Logaritmik dönüĢümden sonra yapılan Kolmogorov-Smirnov test sonuçları Çizelge 

3.49‟da sunulmuĢtur. 

H0: DeğiĢkenler normal dağılım gösterir. 

H1: DeğiĢkenler normal dağılım göstermez. 
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Çizelge 3.50.  Korelasyon matrisi 

 

DeğiĢkenler t k1 k2 k3 

t 1    

k1 0.915 1   

k2 0.950 0.959 1  

k3 0.831 0.903 0.868 1 

 

Bağımlı ve bağımsız değiĢkenlerimiz arasındaki korelasyon matrisinde bağımsız 

değiĢkenler arasında yüksek korelasyon göze çarpmaktadır (Çizelge 3.50).  

 

Çizelge 3.51.  Temel bileĢenler küresellik testi sonuçları 

 

Keiser-Meyer-Olkin 0.729 Ġyi 

Barlett‟s 131.270  

Sd 3  

Olabilirlik 0.000  

 

Çizelge 3.52.  Temel bileĢenler analizi Özvektörler 

 

DeğiĢkenler Vektör–1 Vektör–2 Vektör–3 

k1 -0.586107 -0.255629 -0.768851 

k2 -0.579017 -0.531629 0.618151 

k3 -0.566761 0.807481 0.163578 

 

Küresellik analizi sonucunda veriler TBA uygulamsına uygun olduğu sonucuna 

varılmıĢtır (Çizelge 3.51). Temel bileĢenler analizi sonucunda bulunan özvektörlert 

Çizelge 3.52‟de, özdeğeler ve bunların toplam varyansı açıklama oranı Çizelge 3.53‟te 

sunulmuĢtur.  
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Çizelge 3.53. Temel bileĢenlerin bulunması ve toplam varyansı açıklama oranları 

 

Temel 

BileĢenler 

BaĢlangıç Özdeğerler  

Toplam %Varyans %Kümülatif Toplam %Varyans %Küm. 

1 2.821 94.017 94.017 2.821 94.017 94.017 

2 0.143 4.755 98.772    

3 0.037 1.228 100.000    

 

Özdeğerler; 

821.21  , 143.02  , 037.03   

olarak bulunmuĢtur.  

 








m

j

j

p1 3

2
988.0

3

143.0821.2
 

 

olduğundan 1 adet temel bileĢenimiz vardır. 3 Bağımsız değiĢken yerine 1 temel bileĢen 

ile devam edilecektir. Çizelge 3.53 incelendiğinde birinci temel bileĢen toplam 

varyansın % 94.017‟sini açıklarken, ikinci temel bileĢen % 4.755‟ini açıklamaktadır. 

Yamaç eğimi grafiği incelendiğinde 1 temel bileĢenle modelin açıklanacağı 

görülebilmektedir (ġekil 3.22). 
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ġekil 3.22.  Temel bileĢen sayısı için yamaç eğimi (çizgi) grafiği 

 

Çizelge 3.54.  DeğiĢkenlerin temel bileĢenler tarafından açıklanma oranı 

 

DeğiĢkenler Oran 

k1 (kaza sayısı) 0.969 

k2 (AOGT) 0.946 

k3 (GSMH) 0.906 

 

DeğiĢkenlerin temel bileĢenler tarafından açıklanma oranı Çizelge 3.54‟te verilmiĢtir. 

Temel bileĢenler tarafından en çok açıklanan bileĢenimiz %96.9 ile kaza sayısıdır. 

Çizelge 3.55. Temel bileĢenler matrisi 

DeğiĢkenler Temel BileĢenler 

1 

k1 (kaza sayısı) 0.984 

k2 (AOGT) 0.972 

k3 (GSMH) 0.952 
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Temel bileĢenler matrisine, % 98.4 ile kaza sayısı, %97.2 ile AOGT, %95.2 ile GSMH 

etkili olmuĢtur (Çizelge 3.55). 

 

Temel bileĢenler analizi sonucunda birbirleri iliĢkili 3 bağımsız değiĢken yerine 1 adet 

temel bileĢen ile modelimiz oluĢturuldu. Bağımlı değiĢken ile temel bileĢen faktörü 

arasındaki korelasyon matrisi Çizelge 3.56‟da verilmiĢtir. Bu model ile ilgili istatistiksel 

sonuçlar Çizelge 3.57 ve Çizelge 3.58‟de sunulmuĢtur.  

 

Çizelge 3.56. Bağımsız değiĢken ve temel bileĢen skorları ile korelasyon matrisi 

 

DeğiĢkenler Y Z1 

Y 1  

Z1 0.927 1 

 

Çizelge 3.57.  Regresyon modeli çıktıları 

 

Model R R
2 

DüzeltilmiĢ R
2 

1 0.927 0.860 0.856 

 

Çizelge 3.58. Bağımsız değiĢken ve temel bileĢen skorları ile regresyon modeli 

parametreleri  

 

DeğiĢkenler B (Katsayı) t
 

Olab. P
 

Tolerans VIF F Olab. P 

Sabit 4.834 293.902 0.000 1.00 1.00 
196.699 0.000 

SZ1 0.234 14.025 0.000 1.00 1.00 
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Çizelge 3.59. Ġkinci temel bileĢen için bulunan katsayılar ve en küçük kareler 

kestiricileri  

 

DeğiĢken 

1. Temel BileĢen Ġçin 

Denklem 

 

ib                             ib  

 0.323531 0.185939 

0.319617 0.365186 

0.312852 0.387412 

b0 1.356429 

R
2 

0.856 

 

TBA sonucunda ters dönüĢüm yapılmıĢ ve modelin katsayıları Çizelge 3.59‟da 

sunulmuĢtur. 

 

Çizelge 3.60. Çok değiĢkenli zaman serisi analizi için birim kök testi sonuçları. 

 
 

DeğiĢkenler 
ADF t 

istatistik 

%5 

Tablo 

Değeri 

P ADF t 

istatistik 

%5 

olabilirlik 

değeri 

P 

Fark Serisi Alınmadan Önce 1. Fark Serisi Alındıktan Sonra 

t (yaralı 

say.) 
-1.40 -3.55 0.84 -3.97 -3.55 0.02 

k1 (kaza 

sayısı) 
-2.73 -3.56 0.23 -3.57 -3.55 0.05 

k2 (AOGT) -1.19 -3.60 0.88 -4.79 -3.56 0.003 

k3 (GSMH) -3.65 -3.60 0.05    

 

Mutlak değer olarak tADF >t %5 ise seri durağandır. DeğiĢkenlerimiz birinci fark serisi ve 

ikinci fark serisi alınarak durağan hale getirilmiĢtir (Çizelge 3.60). 

 

En uygun gecikme sayısının tespiti için gerekli olan kriterler ve sonuçları Çizelge 3.61‟ 

de verilmiĢtir. Bu durumda nihai tahmin hatası, Akaike bilgi kriteri, Schwarz bilgi 

kriteri, Hannan Quin bilgi kriterlerine bakılarak minimum olan değeler karĢılaĢtırılmıĢ 

olup bütün bu kriterlereden 1. gecikmeye ait değerler minimum olduğundan VAR(p) 

modelinin derecesi 1 olarak alınmıĢtır (Çizelge 3.61). 
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Çizelge 3.61. Model derecesi belirleme kriterleri 

 

Gecikme Sayısı FPE (NTH) AIC SC HQ 

0 8.89e-11 -11.79 -11.61 -11.73 

1 1.26e-11* -13.76* -12.83* -13.46* 

2 1.91e-11 -13.40 -11.74 -12.86 

 

Model derecesi belirlendikten sonra değiĢkenler arasındaki Granger Nedensellik analiz 

sonuçları Çizelge 3.62‟de sunulmuĢtur.  

 

Fhesaplanan>Ftablo ise bir nedensellik var demektir.  

)( 0:0 XYaH i   Y‟den X‟e nedensellik iliĢkisi yoktur. 

)( 0:1 XYaH i   Y‟den X‟e nedensellik iliĢkisi vardır. 

 

Çizelge 3.62. Model Granger Nedensellik analiz sonuçları 

 

DeğiĢkenler F-Ġstatistik Olabilirlik 

Kaza Sayısı   Yaralı Sayısı 

Yaralı Sayısı   Kaza Sayısı 

0.00018 

7.60745 

0.9893 

0.0098 

AOGTYaralı Sayısı 

Yaralı SayısıAOGT 

0.23826 

2.08297 

0.6290 

0.0159 

Yaralı SayısıGSMH 

GSMHYaralı Sayısı 

 0.08772 

1.25893 

0.7691 

0.2708 

 

Hata terimleri normal dağılıma uygunlukları test edildi (Çizelge 3.63). 

Çizelge 3.63. Hata terimleri normallik analizi 

 

 Kolmogorov-Smirnov 

Ġstatistik Sd Olabilirlik 

i  Hata Terimi 0.512 31 0.956 
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Olabilirlik P>0.05 olduğundan seri normal dağılmlıdır (Çizelge 3.63). Karakteristik 

köklerin birim çember içinde kaldığından seride brim kök olmadığı anlaĢıldı (ġekil 

3.23). 
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ġekil 3.23.  VAR(1) Modeli için karakteristik köklerin gösterimi 
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ġekil 3.24.  VAR(1) Modeli için hata terimleri ACF-PACF grafikleri 

 

VAR(1) modeline iliĢkin hata terimleri ACF ve PACF grafikleri çizilerek modelin hata 

terimlerinin güven aralıkları içinde kaldığı görüldü. Hata terimleri otokorelasyon 

olmadığı ve akgürültü bir seri oldukları anlaĢıldı (ġekil 3.24). 
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ġekil 3.25.  VAR(1) Modeli için Etki-Tepki Fonksiyonu 

 

Çizelge 3.64. VAR(1) Modeli varyans ayrıĢtırması 

 

Peryot 
Ölü 

Sayısı 

Kaza 

Sayısı 
AOGT GSMH 

1  100.0000  0.000000  0.000000  0.000000 

 2  74.74605  0.611930  13.61899  11.02303 

 3  71.41362  0.600674  13.01725  14.96845 

 4  70.38023  0.667310  13.96429  14.98817 

 5  70.31579  0.781184  13.94552  14.95751 

 6  70.28618  0.810303  13.95477  14.94875 

 7  70.27411  0.814320  13.95464  14.95693 

 8  70.26859  0.815297  13.96063  14.95548 

 9  70.26597  0.815400  13.96209  14.95654 

 10  70.26468  0.815414  13.96170  14.95821 
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ġekil 3.26. ARIMA (1,1,0) Hata terimleri ACF ve PACF grafikleri 

 

ARIMA(1,1,0) modeline iliĢkin hata terimleri ACF ve PACF grafikleri çizilerek 

modelin hata terimlerinin güven aralıkları içinde kaldığı görüldü. Hata terimleri 

otokorelasyon olmadığı ve akgürültü bir seri oldukları anlaĢıldı (ġekil 3.26). 

 

Çizelge 3.65. ARIMA(1,1,0) Modeli normallik testi 

 

DeğiĢken Kolmogorov-Smirnov 

Ġstatistik Sd Olabilirlik 

Model ARIMA(1,1,0)  0.992 34 0.278 

 

Olabilirlik P>0.05 olduğundan seri normal dağılmlıdır (Çizelge 3.65). 
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ġekil 3.27. ARIMA (1,1,0) Model için karakteristik köklerin gösterimi 

 

Karakteristik köklerin birim çember içinde kaldığı görüldü. Modelin birim kök 

taĢımadığı anlaĢıldı (ġekil 3.27). 

 

3.1.6. Model-V  

 

Model-V‟de yıllık trafik kazalarındaki ölü sayıları, kaza sayısı, AOGT ve GSMH 

değerlerine göre modellenmiĢtir. 

 

Y:Yıllık Trafik Kazalarındaki Ölü Sayıları 

X1: Kaza Sayısı 

X2: AOGT 

X3: GSMH 

 

)log( ii Xk   

)log( ii Yt 
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Çizelge 3.66. Bağımsız değiĢken için normallik test sonucu 

 

DeğiĢken Kolmogorov-Smirnov Kolmogorov-Smirnov (Logaritmik) 

Ġstatistik sd Olabilirlik Ġstatistik sd Olabilirlik 

Y 0.095 34 0.200 0.123 34 0.200 

 

Olabilirlik P>0.05 olduğundan seri normal dağılmlıdır (Çizelge 3.66). 

 

H0: DeğiĢkenler normal dağılım gösterir. 

H1: DeğiĢkenler normal dağılım göstermez. 

 

Çizelge 3.67.  Korelasyon matrisi. 

 

DeğiĢkenler t k1 k2 k3 

t 1    

k1 -0.528 1   

k2 -0.407 0.959 1  

k3 -0.472 0.903 0.868 1 

 

Bağımlı ve bağımsız değiĢkenlerimiz arasındaki korelasyon matrisinde Çizelge 3.67‟de 

bağımsız değiĢkenler arasında yüksek korelasyon göze çarpmaktadır. Model IV„de 

kullanmıĢ olduğumuz bağımsız değiĢkenler, Model V„de farklılık göstermediğinden, 

TBA uygulamalarındaki bazı tablolarda değiĢiklik yoktur. Çizelge 3.51, 3.52, 3.53, 3.54 

ve 3.55 ile aynıdır. Aynı zamanda ġekil 3.22‟deki yamaç eğimi grafiğide aynıdır. Model 

IV uygulamasında 3 bağımsız değiĢken yerine bir temel bileĢenle model açıklanmaya 

çalıĢılacaktır.  

 

Temel bileĢenler analizi sonucunda birbirleri iliĢkili 3 bağımsız değiĢken yerine 1 adet 

temel bileĢen ile model oluĢturuldu. Bu model ile ilgili istatistiksel sonuçlar Çizelge 

3.69 ve Çizelge 3.70‟te sunulmuĢtur.  



 

 

98 

Çizelge 3.68. Bağımsız değiĢken ve temel bileĢen skorları ile korelasyon matrisi 

 

DeğiĢkenler Y Z1 

Y 1  

Z1 -0.484 1 

 

Model-V için bağımlı değiĢken ve TBA skoru arasındaki korelasyon negatif 

bulunmuĢtur (Çizelge 3.68). 

 

Çizelge 3.69. Regresyon modeli çıktıları 

 

Model R R
2 

DüzeltilmiĢ R
2 

1 0.484 0.432 0.421 

 

Çizelge 3.70. Bağımsız değiĢken ve temel bileĢen skorları ile regresyon modeli 

parametreleri  

 

DeğiĢkenler B (Katsayı) t
 

Olab. P
 

Tolerans VIF F Olab. P 

Sabit 3.690 197.505 0.000 1.00 1.00 
9.784 0.000 

SZ1 -0.059 -3.128 0.051 1.00 1.00 

 

Model-V‟te belirlilik katsayısı düzeltilmiĢ R
2
 oldukça küçük bulunmuĢtur (Çizelge 

3.69). Modelin diğer parametreleri ise istatistiksel olarak anlamlı bulunmuĢtur (Çizelge 

3.70). 
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Çizelge 3.71. Temel bileĢen için bulunan katsayılar ve en küçük kareler kestiricileri  

 

DeğiĢken 

Temel BileĢen Ġçin Denklem 

 

ib                             ib  

 -0.16880 -0.0471 

-0.16676 -0.0925 

-0.16323 -0.0981 

b0 4.570631 

R
2 

0.48 

 

Çok değiĢkenli zaman serisi analizinde logaritmik dönüĢüm ile normal dağılıma uygun 

olan bağımlı değiĢkenimize birim kök testlerinden GeniĢletilmiĢ Dickey Fuller testi 

uygulanmıĢ ve Çizelge 3.71‟deki sonuçlar elde edilmiĢtir. 

 

Çizelge 3.72. Çok değiĢkenli zaman serisi analizi için birim kök testi sonuçları 

 
 
DeğiĢkenler 

ADF t 

istatistik 

%5 Tablo 

Değeri 

Olabilirlik ADF t 

istatistik 

%5 

olabilirlik 

değeri 

Olabilirlik 

Fark Serisi Alınmadan Önce 1. Fark Serisi Alındıktan Sonra 

t -1.88 -3.56 0.63 -3.83 -3.56 0.03 

 

Fark serisi alınarak duğanlaĢan serilen ADF test sonuçları Çizelge 3.72‟de sunulmuĢtur. 

En uygun gecikme sayısının tespiti için gerekli olan kriterler ve sonuçları Çizelge 

3.73‟de verilmiĢtir. Bu durumda nihayi tahmin hatası, Akaike bilgi kriteri, Schwarz 

bilgi kriteri, Hannan Quin bilgi kriterlerine bakılarak minimum olan değeler 

karĢılaĢtırılmıĢ olup bütün bu kriterlereden 1. gecikmeye ait değerler minimum 

olduğundan VAR(p) modelinin derecesi 1 olarak alınmıĢtır.  

 

Çizelge 3.73. Model derecesi belirleme kriterleri 

 

Gecikme Sayısı FPE (NTH) AIC SC HQ 

0  8.35e-11 -11.85435 -11.66932 -11.79404 

1   1.00e-11*  -13.98772*  -13.06257*  -13.68614* 

2  1.82e-11 -13.44685 -11.78158 -12.90402 
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Model derecesi belirlendikten sonra değiĢkenler arasında ki Granger Nedensellik analiz 

sonuçları Çizelge 3.74‟te sunulmuĢtur.  

 

Fhesaplanan>Ftablo ise bir nedensellik var demektir.  

)( 0:0 XYaH i   Y‟den X‟e nedensellik iliĢkisi yoktur 

)( 0:1 XYaH i   Y‟den X‟e nedensellik iliĢkisi vardır 

 

VAR(1) modeline iliĢkin uygun gecikme sayısı tespit edilmiĢtir. Gecikme sayısına bağlı 

olrak Granger Nedensellikleri bulunmuĢtur (Çizelge 3.74). 

 

Çizelge 3.74. Model Granger Nedensellik analiz sonuçları 

 

DeğiĢkenler F-Ġstatistik Olabilirlik 

Kaza Sayısı   Ölü Sayısı 

Ölü Sayısı   Kaza Sayısı 

6.84949 

 

3.69149 

0.0138 

 

0.0542 

AOGT Ölü Sayısı 

Ölü Sayısı  AOGT 
6.00818 

0.64804 

0.0203 

0.4271 

GSMH Ölü Sayısı 

Ölü Sayısı  GSMH 

2.77692 

1.06469 

0.0226 

0.3104 

 

Çizelge 3.75. Hata terimleri normallik analizi 

 

 Kolmogorov-Smirnov 

Ġstatistik Sd Olabilirlik 

i  Hata Terimi 0.113 32 0.200 

 

Olabilirlik P>0.05 olduğundan seri normaldir (Çizelge 3.75) 
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Karakteristik köklerin birim çember içinde kalıp kalmadığı analiz edilmiĢtir (ġekil 

3.28).  
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ġekil 3.28. VAR(1) Modeli için karakteristik köklerin gösterimi 

 

Etki tepki analizi yapılmıĢtır. Ölü sayılarının hata terimleri varyansına bir birimlik bir 

Ģok kaza sayısı, AOGT ve GSMH değiĢkenleri 4. dönemde etkisini kaybetmektedir. O 

halde değiĢkenlerimiz için 4. dönemde Ģokların etkisi azalmaktadır (ġekil 3.29). 
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ġekil 3.29. VAR(1) Modeli için Etki-Tepki Fonksiyonu 

 

Çizelge 3.76. VAR(1) Modeli varyans ayrıĢtırması 

 
Peryot Ölü Sayısı Kaza Sayısı AOGT  GSMH 

1  100.0000  0.000000  0.000000  0.000000 

 2  91.39659  0.127956  8.055317  0.420137 

 3  90.52961  0.298917  8.060754  1.110720 

 4  89.69245  0.316083  7.985256  2.006214 

 5  88.71725  0.312777  8.043403  2.926572 

 6  87.81612  0.315077  8.033811  3.834989 

 7  86.92586  0.324003  8.052471  4.697663 

 8  86.09126  0.337332  8.057558  5.513854 

 9  85.30076  0.351883  8.065371  6.281986 

 10  84.55749  0.366567  8.070524  7.005419 

 

Model hata terimlerinin ACF ve PACf grafikleri çizilmiĢ gecikmelerin güven 

aralıklarının içinde kaldığı görülmüĢtür (ġekil 3.30). 
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ġekil 3.30. ARIMA(1,1,0) modeli için hata terimleri ACF PACF Grafikleri 

 

Çizelge 3.77. ARIMA(1,1,0) modeli hata terimleri normallik testi 

 

DeğiĢken Kolmogorov-Smirnov 

Ġstatistik Sd Olabilirlik 

Model ARIMA(1,1,0)  0.118 33 0.155 

 

Modelin hata terimlerinin normallik analizi yapılmıĢtır. Hata terimlerinin normal 

dağılıma uygun olduğu görülmüĢtür (Çizelge 3.76). ARIMA(1,1,0) modelinin 

karakteristik kökleri birim çember içinde kalmıĢtır ve model, birim kök içermemektedir 

(ġekil 3.31). 
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ġekil 3.31. ARIMA (1,1,0) Model için karakteristik köklerin gösterimi 

 

3.1.7. Model IV-V için yapay sinir ağı uygulaması  

 

Modellerden Model-IV ve Model-V‟in yapay sinir ağı uygulaması beraber yapılmıĢtır. 

Ġlk önce 3 bağımsız değiĢken ġekil 3.33„deki gibi giriĢ vektörünü oluĢturmuĢtur. GiriĢ-

gizli ve çıkıĢ tabakası olmak üzere toplam üç tabakadan oluĢan bir ağ mimarisi üzerinde 

çıkıĢ tabakasında 2 nöron bulunmaktadır. Ağın %60‟ı eğitim seti, %40‟ıda test seti 

olmak üzere sınıflandırılmıĢtır. ÇıkıĢ nöronları ölü sayısı ve yaralı sayısıdır. Ağın eğitim 

setinde R
2
= 0.98 olarak tespit edilmiĢtir. Aktivasyon fonksiyonu trainbr olarak 

alınmıĢtır. Transfer fonksiyonları, tanjant-sigmoid olarak tespit edilmiĢtir.  

 

Gizli tabakada da 2 nöron kabul edilmiĢ çıktı tabakasında ise ölü ve yaralı sayılarının 

olduğu 2 nöron alınmıĢ ve Ģekil 4.28‟de sunulmuĢtur. Ağın eğitim setinde ölü sayıları 

için R
2
= 0.95, yaralı sayıları içinde R

2
= 0.98 olarak bulunmuĢtur. Eğitim setinde ölü 

sayısı için OKH= 0.001, yaralı sayısı içinde OKH= 0.002 olarak bulunmuĢtur.  
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ġekil 3.32. Model-IV ve Model-V‟te kullanılan bağımlı ve bağımsız değiĢkenlere 

iliĢkin örnek YSA ağ mimarisi 

 

3.2. Poisson Regresyonu Çok DeğiĢkenli Regresyon ve Yapay Sinir Ağı Modelleri  

 

Uygulamada, (Mercan – Tercan – AĢkale – Erzurum – Pasinler – Horasan – EleĢkirt – 

Ağrı - Doğubayazıt) güzergahında bulunan 422 km uzunluğundaki E–80 (D – 100) 

Karayolu (100-27), (100-28), (100-29), (100-30), (100-31), (100-32), (100-33) 

kesimlerine ait kaza istatistikleri ve yolun geometrik özelliklerine ait istatistikler 

kullanılmıĢtır. Veriler Erzurum Karayolları 12. bölge Müdürlüğü‟nden elde edilmiĢtir. 

Poisson Regresyonu, Çok DeğiĢkenli Ġstatistik ve Yapay Sinir Ağları yöntem olarak 

kullanılacaktır.  



 

 

106 

 

 
 

ġekil 3.33. Model VI-VII uygulama alanı 

 

3.2.1. Model – VI  

 

Model-VI‟da kullanılan parametreler aĢağıda sunulmuĢtur.  

Y1:Toplam Kaza Sayıları  

X1:Yıllık Ortalama Günlük Trafik YOGT)  

X2:KavĢak Sayısı  

X3:ġerit Sayısı  

X4:ġerit GeniĢliği  

X5:Uzunluk km  

X6:Ortalama Hız   

X7:Bağlantı Sayısı  

 

Poisson veya Negatif Binom hata yapılarından hangisinin kullanılacağının kararı Ģu 

yöntemle belirlenmiĢtir. Ġlk olarak model parametreleri Poisson regresyonu ile tahmin 

edilmiĢ, sonra, aĢırı yayılım göstergesi hesaplanmıĢtır. 

AĢırı Yayılım Testi:  

 







n

i i

ii

YVar

y
Pearson

1

2
2

)(

)( 
  

 



 

 

107 

Dağılım parametresi  önemli derecede 0‟dan büyük ise dağılım aĢırı yayılım göstermiĢ 

ve Negatif Binomial Regresyon uygun yöntemdir denir. Dağılım parametresi 

uygulamamızda 5340817,0  bulunmuĢtur.  

 

Dağılım parametresinin testi içinde;  

2

)1,21())(log)((log2 sddomialnegatifbinkolabilirlipoissonkolabilirliLR    ise 

0  hipotezi ret edilir ve negatif binomial regresyonunu uygun yöntem olduğu 

anlaĢılır. 

Uyum iyiliği değerlendirmesi için  

 

2,18,0
2





pn

Pearson
  

 

Değerine bakılması uygundur ve bu aralıkta 0,8-1,2 aralığında olması beklenmektedir. 

Uygulamada uyum iyiliği değeri 0.66 bulunmuĢtur. Modele giren bağımız değiĢkenlerin 

katsayılarının %95 güven aralığı içinde kaldıkları gözlemlenmiĢtir. DeğiĢkenlere ait 

olabilirlik değeri “P” değeri 0,05‟den küçüktür. Yapılan çalıĢmada denenen birçok 

modelden en iyi sonucu veren model parametreleri Çizelge 3.77‟de sunulmuĢtur. 

 

Çizelge 3.77. Poisson regresyonu model parametreleri 

 

n=120  sd=n-p=120-6=114       Pearson 7460982,1152          342,1242

113,05.0   

Parametre Katsayı Standart Hata  z oranı P 

loguz 1.2396 0.136 9.09 0,001 

Yogt 0.0002328 0.00002 9.29 0,001 

sg 0.1746494 0.0808 2.16 0,031 

Hız -0.011652 0.006 9.88 0,000 

bs 0.0604 0.004 -2.86 0.004 

 

Veriler için ikinci olarak çok değiĢkenli regresyon yöntemi kullanılmıĢtır. Bu aĢamada 

modele giren bütün bağımsız değiĢkenler için korelasyon matrisi incelendi. Bağımsız 

değiĢkenler arasında yüksek korelasyon gözlemlenmiĢtir (Çizelge 3.78). 
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Çizelge 3.78.  Korelasyon matrisi 

 

DeğiĢkenler ks uz yogt ss kavs sg bs hız 

ks 1        

uz 0.253 1       

yogt 0.252 -0.025 1      

ss 0.072 -0.115 0.225 1     

kavs 0.259 0.146 -0.044 0.177 1    

sg 0.111 0.038 -0.030 0.269 0.236 1   

bs 0.389 -0.004 0.065 0.097 0.695 0.290 1  

hız -0.045 -0.107 0.116 -0.035 -0.105 0.190 0.038 1 

 

OluĢturulan model incelendiğinde Ģerit sayısı, kavĢak sayısı, Ģerit geniĢliği ve hız 

değiĢkenlerinin katsayılarının istatistiksel olarak anlamlı olmadıkları görülmektedir. 

Modelin tamamını istatistiksel olarak test eden “F” testi anlamlı çıkmıĢtır (Çizelge 

3.80). Buna paralel düĢük tolerans, düĢük varyans artıĢ faktörü bulunmuĢtur. Anlamsız 

değiĢkenlerin modelden çıkarılarak yeniden modellenmesi yapılmıĢtır.  

 

Yeni modeldeki değiĢkenlerimiz hız, bağlantı sayısı, uzunluk km, YOGT olmuĢtur. Bu 

değiĢkenlere iliĢkin parametreler Çizelge 3.79‟da sunulmuĢtur.  

 

Çizelge 3.79.  Regresyon modeli çıktıları 

 

Model R R
2 

DüzeltilmiĢ R
2 

1 0.788 0.620 0.607 

 

Model parametrelerinin tutarlığının analizi için, varyans tablosu ve katsayılar tablosu ile 

“F” istatistik değeleri, “t” değerleri, tolerans ve VIF değeleri Çizelge 3.80‟de 

sunulmuĢtur.  
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Çizelge 3.80.  Regresyon modeli parametre çıktıları 

 

DeğiĢkenler B (Katsayı) T
 

Olab. P
 

Tolerans VIF F Olab. P 

uz 8.654 3.177 0.002 0.819 1.078 

44.124 0.000 
yogt 13.157 3.012 0.003 0.892 1.116 

bs 0.707 4.753 0.000 0.878 1.134 

hız -24.866 -4.374 0.002 0.565 1.196 

 

En uygun YSA mimarilerine iliĢkin kıstaslar Çizelge 3.81‟de sunulmuĢtur. 

 

Çizelge 3.81. Optimum YSA mimarisi 

 

Ağ 

Yapısı 

AIC 

(Akaike) 

Ortalama 

Karesel 

Hata (MSE) 

R2 Aktivasyon 

Fonksiyonu 

Transfer 

Fonksiyonu 

Ġterasyon 

Sayısı 

Tabaka 

Sayısı 

Gizli 

Tabakadaki 

nöron saayısı 

Yöntem 

1 
-239.894 0.008 0.96 Trainbr 

Tansig 

tansig 

purelin 

500 3 3 

Yöntem 

2 
-222.869 0.008 0.96 Trainbr 

Tansig 

tansig 

purelin 

500 3 2 
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ġekil 3.34. Model-VI ve Model-VII için Optimum YSA mimarisi 

 

3.2.2. Model – VII  

 

Model-VII‟de kullanılan parametreler aĢağıda sunulmuĢtur.  

Y1:Yaralı Sayısı  

X1:Kaza Sayısı (ks) 

X2:Yıllık Ortalama Günlük Trafik (YOGT)  

X3:KavĢak Sayısı (kavs) 

X4:ġerit Sayısı (Ģs) 

X5:ġerit GeniĢliği (Ģg) 

X6:Uzunluk km (uz) 

X7:Ortalama Hız (hz) 

X8:Bağlantı Sayısı (bs) 
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Bağımlı değiĢken olarak yaralı sayısı alınmıĢtır. Bütün bağımsız değiĢkenler modele 

katılmıĢtır. Bazı değiĢkenler istatistiksel olarak anlamlı çıkmadığından modelden 

çıkarılmıĢtır. AĢırı yayılım göstergesi hesaplanmıĢtır. 

 

AĢırı Yayılım Testi:  

Dağılım parametresi 12293242,0   olduğundan dağılım aĢırı yayılım göstermemiĢ 

olduğundan Negatif Binomial Regresyon uygun bir yöntem olmadığından Poisson 

regresyonu ile modellenmenin yapılacağına karar verilmiĢtir. 

Uyum iyiliği değerlendirmesi için  

 

Uygulamada uyum iyiliği değeri 5.85 çıkmıĢtır. Bu sonuç bir kez daha yöntem olarak 

Negatif Binomial Regresyon yönteminin uygun bir yöntem olmadığını ve yerine 

Poisson regresyonunun kullanılması gerektiğini göstermiĢtir.  

 

YapmıĢ olduğumuz çalıĢmada denenen birçok modelden en iyi sonucu veren model 

parametreleri Çizelge 3.82‟de verilmiĢtir. 

 

Çizelge 3.82. Poisson regresyonu model parametreleri 

 

n=120  sd=n-p=120-6=114      Pearson 445.7592          342,1242

113,05.0   

Parametre Katsayı Standart Hata  z oranı P 

Ks 0.0196034 0.002 8.25 0.000 

Ss 0.04661516 0.017 2.60 0.009 

Kavs -0.0848338 0.022 -3.79 0.000 

Bs 0.0512742 0.007 7.16 0.000 

Hiz -0.008345 0.004 -1.91 0.055 

Sabit 3.207331 0.374 8.57 0.000 

 

Km-uzunluk, Ģerit geniĢliği, değiĢkenleri istatistiksel olarak anlamlı çıkmadıklarından 

modelden çıkarılmıĢlardır.  
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Veriler için ikinci olarak çok değiĢkenli regresyon yöntemi kullanılmıĢtır. Bu aĢamada 

modele giren bütün bağımsız değiĢkenler için korelasyon matrisi incelenmiĢtir. 

Bağımsız değiĢkenler arasında yüksek korelasyon gözlemlenmiĢtir (Çizelge 3.83). 

 

Çizelge 3.83. Korelasyon matrisi 

 

DeğiĢkenler ys ks uz yogt ss kavs sg bs hız 

ys 1         

ks 0.430 1        

uz -0.830 0.030 1       

yogt 0.011 0.222 -0.201 1      

ss 0.099 -0.111 -0.258 0.174 1     

kavs 0.113 0.146 0.038 0.251 0.160 1    

sg 0.166 0.032 -0.050 0.211 0.324 0.341 1   

bs 0.357 -0.004 -0.042 0.289 0.054 0.695 0.503 1  

hız 0.066 -0.107 -0.121 -0.101 -0.024 -0.105 0.208 0.038 1 

 

Model parametreleri incelendiğinde Ģerit sayısı, kavĢak sayısı, Ģerit geniĢliği, uzunluk-

km, sabit terim ve hız değiĢkenlerinin katsayılarının istatistiksel olarak anlamlı 

olmadıkları görülmektedir. Modelin tamamını istatistiksel olarak test eden “F” testi 

anlamlı çıkmıĢtır. Buna paralel düĢük tolerans, düĢük varyans artıĢ faktörü bulunmuĢtur. 

Anlamsız değiĢkenlerin modelden çıkarılarak yeniden modellenmesi yapılacaktır.  

 

Yeni modeldeki değiĢkenler hız, bağlantı sayısı, uzunluk km ve YOGT olmuĢtur. Bu 

değiĢkenlerimize iliĢkin belirlilik katsayısı Çizelge 3.84‟te sunulmuĢtur.  

 

Çizelge 3.84.  Regresyon modeli çıktıları 

 

Model R R
2 

DüzeltilmiĢ R
2 

1 0.86 0.77 0.76 
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Model parametrelerinin tutarlığının analizi için, varyans tablosu ve katsayılar tablosu ile 

“F” istatistik değeleri, “t” değerleri, tolerans ve VIF değerleri Çizelge 3.84‟de 

sunulmuĢtur.  

 

Çizelge 3.85‟te regresyon parametreleri, Çizelge 3.86‟da ise optimum YSA ağ 

yapılarına iliĢkin özellikler sunulmuĢtur.  

 

Çizelge 3.85.  Regresyon modeli parametre çıktıları 

 

DeğiĢkenler 
B 

(Katsayı) 
T

 
Olab. P

 
F Olab. P 

Ks 0.271 4.620 0.000 

694.949 0.000 
Kavs -0.062 -2.637 0.010 

Bs 0.031 4.048 0.000 

Hız -0.504 20.700 0.000 

 

Çizelge 3.86. Optimum YSA ağ mimarisi 

 

Ağ 

Yapısı 

AIC 

(Akaike) 

Ortalama 

Karesel 

Hata (MSE) 

R2 Aktivasyon 

Fonksiyonu 

Transfer 

Fonksiyonu 

Ġterasyon 

Sayısı 

Tabaka 

Sayısı 

Gizli 

Tabakadaki 

nöron saayısı 

Yöntem 

1 
-327.563 0.18 0.95 Trainbr 

Logsig 

purelin 

logsig 

390 3 2 

Yöntem 

2 
-310.862 0.28 0.92 Trainbr  

Logsig 

purelin 

logsig 

285 3 1 

 

ġekil 3.36‟da Model-VI ve Model-VII için optimum YSA ağ mimarisi verilmiĢtir. 
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X
2

Y

X
4

X
3

Kavşak

Sayısı

Doğrusal

Yaralı  Sayısı

Uzunluk

km

X
5

Yogt

Şerit

Ganişliği

X
6

i

Sigmoid/Tanjant-hiperbolik

Girdi

Tabakası

Gizli

Tabaka

Çıkış

Tabakası

Ağırlıklar

ij

ik

Ağırlıklar

j

k

Bias

Bias

Şerit Sayısı

X
7

Ortalama

Hız

X
7

Bağlantı

Sayısı
X

Kaza Sayısı

 

ġekil 3.35 Optimum YSA mimarisi 
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4. ARAġTIRMA BULGULARI ve TARTIġ MA 

 

4.1. Çok DeğiĢkenli Regresyon, Çok DeğiĢkenli Zaman Serisi Analizi, ARIMA 

(p,d,q) ve Yapay Sinir Ağı Model Bulguları 

 

4.1.1. Model-I bulguları 

 

Yıllık kaza sayılarının, yük-ton değeri, yolcu-km değeri, km-taĢıt değeri, kamyon sayısı, 

tır sayısı, otobüs sayısı, karayollarıdaki enerji tüketimi, yol-km uzunluğu ve AOGT 

değerlerine göre modellendi. 

 

Yapılan bu çalıĢmada çok değiĢkenli regresyon denklemi uygulamasında, temel 

bileĢenler analizi birbirleri ile iliĢkili 9 bağımsız değiĢken yerine birbirleri ile iliĢkisiz 2 

temel bileĢenle regresyon modeli oluĢturulmuĢtur. StandartlaĢtırılmıĢ temel bileĢen 

skorları ile yapılan regresyon modeli aĢağıda verilmiĢtir. 

 

)*196.0()*388.0(180.5 21 ZZt   

 

2008 yılı için kaza sayısı tahmini aĢağıdaki gibi elde edilmiĢtir.  

 

92.5)41213.1*196.0()22294.1*388.0(180.5 t  

 

En küçük kareler kestiricileri yardımıyla yapılan ters dönüĢüm sonucu, orijinal verilerin 

kullanıldığı regresyon modeli aĢağıdaki biçimde elde edilmiĢtir.  
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91.5)*242882.0()*896268.3(

)*289786.0()*192535.0()*226115.0()*135824.0(

)*221942.0()*322975.0()*185252.0(8063.21







AOGTkmyol

enerjiotobüstirkamyon

arackmkmyolcukmtont

 

 

ÇDR uygulaması sonucunda elde edilen uyum grafiği ve serpilme grafiği ġekil 4.1‟de 

model belirleme kriterlerinden R
2
 değeride Çizelge 4.1‟de sunulmuĢtur.  

 

Gözlemlenen

6,000005,800005,600005,400005,200005,000004,800004,60000

B
e
k
l
e
n
e
n
 
D
e
ğ
e
r

6,0000000

5,8000000

5,6000000

5,4000000

5,2000000

5,0000000

4,8000000

4,6000000

R^2=0,977

 

    (a)     (b) 

ġekil 4.1.  Temel bileĢen skorları ile tarihi seri arasında yapılan regresyon modeli 

serpilme grafiği (a) ve uyum grafiği (b)  

 

Çizelge 4.1. Çok değiĢkenli regresyon için model belirleme kriterleri 

 

Yöntem R
2 

OKH AIC 

Çok DeğiĢkenli Regresyon 0.97 0.004 -73.198 

 

2008–2009 yıllarında meydana gelen ölümlü yaralanmalı ve maddi hasarlı trafik kaza 

sayısı 2008 yılı için 950120, 2009 yılı için 1034435 olarak gerçekleĢmiĢtir. Yapılan 

logaritmik ters dönüĢüm sonucunda modelden bulunan değerler ise güven aralıkları 

içine girerek 2008 yılında tahmini kaza sayısının 950.000 üzerinde, 2009 yılında ise 

1040000‟nin üzerinde olabileceği anlaĢılmıĢtır.  
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Çok değiĢkenli zaman serisi analizi uygulamasında VAR modelleri için varsayım olan 

durağanlık sonucu, durağan hale gelen seri ile tahminler yapılmıĢ ve tahmin serisi ile 

tarihi seri arasındaki serpilme grafikleri ve uyum grafiği ġekil 4.2‟de VAR(1) 

yöntemine iliĢkin kıstaslar ise Çizelge 4.2‟de sunulmuĢtur. VAR(1) modelinin genel 

ifadesi aĢağıda verilmiĢtir. 

 

11110191817

161514131211

9876

54321

CkCkCkCkC

kCkCkCkCkCtCt

tttt

ttttttt
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




 

 

ÇalıĢmada elde edilen VAR(1) modeli;  

 

3611.090717.071403.067906.050641.0

4*2028.03*1420.02*2141.01*0414.03298.0

1111

11111
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olarak bulunmuĢtur. 

Tahmin Serisi
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    (a)     (b) 

ġekil 4.2.  Orijinal seri ile tahmin serisi için yapılan VAR(1) modeli serpilme grafiği (a) 

ve uyum grafiği (b)  
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Çizelge 4.2. Çok değiĢkenli zaman serisi modeli model belirleme kriterleri 

 

Yöntem R
2 

OKH AIC 

Vektörel Otoregresyon (VAR) 0.99 0.006 -41.88 

 

Üçüncü yöntem olarak ARIMA(p,d,q) modelleri uygulanmıĢtır. Yapılan çalıĢmada 

bağımlı değiĢken kaza sayısı (Y), bağımsız değiĢken olarak AOGT (X9) alınmıĢtır. 

Diğer bağımsız değiĢkenlerin katsayıları istatistiksel olarak anlamlı bulunmamıĢtır. 

Uyum grafiği ve serpilme grafikleri ġekil 4.3‟te, model kıstasları ise Çizelge 4.3‟te 

sunulmuĢtur. 

ttttt eyyyy   3322110     

91 012.0360.0 Xyy tt  
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   (a)     (b) 

ġekil 4.3.  Orijinal seri ile tahmin serisi arasında yapılan ARIMA(1,1,0) modeli uyum 

grafiği ve uyum grafiği  
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Çizelge 4.3. ARIMA (1,1,0) zaman serisi modeli model belirleme kriterleri 

 

Yöntem R
2 

OKH AIC 

ARIMA(1,1,0) 0.99 0.02 -142.82 

 

Dördüncü yöntem olarak yapay sinir ağları kullanılmıĢtır. Bu yöntemde birbirleri iliĢkili 

9 bağımsız değiĢken yerine prepca kodu kullanılarak Matlab temel bileĢenler analizi 

yapılmıĢ ve eğitim seti içinde toplam değiĢime %2‟den daha az katkısı olan değiĢkenler 

alınmamıĢtır. Bu durumda birbirleri iliĢkili 9 bağımsız değiĢken yerine birbirleri ile 

iliĢkisiz 2 temel bileĢen input olarak kabul edilmiĢtir (ġekil 4.4). Veriler [0,1] arasında 

bir normalize edilmiĢtir. Ağın eğitimi sonucu bulunan uyum ve serpilme grafikleri ġekil 

4.5‟te sunulmuĢtur. Ağın testi sonucu bulunan uyum ve serpilme grafikleri ġekil 4.6‟da 

YSA yöntemi kıstasları ise Çizelge 4.4‟te sunulmuĢtur.  

Y

Z
1

Doğrusal

Kaza Sayısı

1. Temel

Bileşen

i Sigmoid/Tanjant-hiperbolik

Yıllık kestirimler

Girdi

Tabakası

Gizli

Tabaka

Çıkış

Tabakası

Ağırlıklar

ij

ik

Ağırlıklar

j

k

Bias

Bias

Z
1

2. Temel

Bileşen

 

ġekil 4.4.  Örnek ağ mimarisi 
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Gözlemlenen Eğitim Seti
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      (a)                 (b) 

ġekil 4.5.  Yapay sinir ağının eğitimi sırasındaki gözlemlenen ve hesaplanan kaza 

sayıları (a), ağın eğitimi aĢamasındaki serpilme grafiği (b) 
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YSA ile elde edilen modelin matris Ģeklinde gösterimi aĢağıda verilmiĢtir.  
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Gözlemlenen Test Seti
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(a)      (b) 

ġekil 4.6.  Yapay sinir ağının testi sırasındaki gözlemlenen ve hesaplanan kaza sayıları 

(a), ağın testi aĢamasındaki serpilme grafiği (b) 

 

Çizelge 4.4. YSA modeli için belirleme kriterleri 

 

Yöntem Eğitim Seti Test Seti 

R
2 

OKH AIC R
2 

OKH AIC 

YSA 0.97 0.009 -113.439 0.96 0.002 -47.198 

 

Çizelge 4.5. ÇDR, VAR(1), ARIMA (1,1,0) YSA yöntemlerinin karĢılaĢtırılması 

 

Yöntem R
2 

OKH AIC 

ÇDR 0.97 0.004 -73.93 

VAR(1) 0.67 0.086 -62.30 

ARIMA(1,1,0) 0.99 0.008 -131.26 

YSA 0.95 0.002 -47.198 

 

R
2
 belirlilik katsayısı en yüksek olan ve Akaike AIC bilgi kiriteri en küçük olan yöntem 

ARIMA(1,1,0) olmuĢtur (Çizelge 4.5). 
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4.1.2. Model-II bulguları 

 

Yıllık trafik kazalarındaki yaralı sayılarının; nüfus, yol-km değeri, km-taĢıt, ağır tonajlı 

araç sayısı, otomobil sayısı, otobüs sayısı, AOGT, GSMH değerlerine göre modellendi. 

 

Yapılan bu çalıĢmada çok değiĢkenli regresyon denklemi uygulamasında temel 

bileĢenler analizi uygulanmıĢ olup birbirleri ile iliĢkili 8 bağımsız değiĢken yerine 

birbirleri ile iliĢkisiz 2 temel bileĢenle regresyon modeli oluĢturulmuĢtur.  

 

)*016.0()*249.0(834.4 21 SZSZti   

 

Temel bileĢenler skorları ile yapılan bu modelin 2007 yılı kestirim değerini bulmak için;  

 

15098.5)531159.1*016.0()7758.1*249.0(834.4 t  2007 yılı kestirimi, 

2007 yılı gerçek değer ise 175552.5t dir.  

 

Aynı tahmin aĢağıda ters dönüĢüm uygulanmıĢ denklemlede yapılmıĢ ve yaklaĢık aynı 

sonuç elde edilmiĢtir.  

 

15.5)*1110.0()*3205.0()*1931.0()*1240.0(

)*0721.0()*1568.0()*6312.14()*6889.0(23424.67
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ÇDR uygulamasında modelin uyum grafiği ve serpilme grafiği ġekil 4.7‟de, yöntemin 

kıstasları ise Çizelge 4.6‟da sunulmuĢtur. 
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Hesaplanan Yaralı Sayısı
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   (a)     (b) 

ġekil 4.7.  Temel bileĢen skorları ile tarihi seri arasında yapılan regresyon modeli 

serpilme grafiği (a) ve uyum grafiği (b) 

 

Çizelge 4.6. Çok değiĢkenli regresyon modeli model belirleme kriterleri 

 

Yöntem R
2 

OKH AIC 

Çok DeğiĢkenli Regresyon 0.98 0.004 -73.198 

 

2008–2009 yıllarında meydana gelen trafik kazalarındaki yaralı sayısı 2008 yılı için 

184468, 2009 yılı için 200405 olarak gerçekleĢmiĢtir. Yapılan logaritmik ters dönüĢüm 

sonucunda modelimizden bulunan değerler güven aralıkları içine girerek 2008 yılı için 

170 binin üzerinde 2009 yılı için ise 185 binin üzerinde olduğu görülmüĢtür.  

 

Çok değiĢkenli zaman serisi analizi uygulamasında, VAR modellerinin bir varsayımı 

olan durağanlık için, durağan hale gelen seriler ile tahminler yapılmıĢ ve tahmin serisi 

ile tarihi seri arasındaki serpilme grafikleri ve uyum grafiği ġekil 4.8‟de, yöntemin 

kıstasları Çizelge 4.7‟de sunulmuĢtur. 

 

VAR(2) modelinin genel ifadesi ve çalıĢmada elde edilen VAR(2) modeli aĢağıda 

verilmiĢtir.  
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Gözlemlenen

150000,00125000,00100000,0075000,0050000,0025000,00

H
e
s
a
p
l
a
n
a
n

150000,00

125000,00

100000,00

75000,00

50000,00

25000,00 R^2=0,96

 

   (a)     (b) 

ġekil 4.8.  Orijinal seri ile tahmin serisi arasında yapılan VAR(2) modeli serpilme 

grafiği ve uyum grafiği 

 

Çizelge 4.7. Çok değiĢkenli zaman serisi modeli için belirleme kriterleri 

 

Yöntem R
2 

OKH AIC 

Vektörel Otoregresyon (VAR) 0.96 0.0006 -55.13 

 

Üçüncü yöntem olarak ARIMA(p,d,q) modelleri uygulanmıĢtır. Yapılan çalıĢmada 

bağımlı değiĢken kaza sayısı (Y), bağımsız değiĢkenler ise; yol-km uzunluğu (X2) ve 

(X8) AOGT alınmıĢtır. Diğer bağımsız değiĢkenlerin katsayıları istatistiksel olarak 
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anlamlı bulunmamıĢtır. Yöntemin uyum grafiği ve serpilme grafiği ġekil 4.9.‟da, 

kıstasları ise Çizelge 4.8‟de sunulmuĢtur. 

 

Elde edilen model aĢağıda verilmiĢtir.  

ttttt eyyyy   3322110     

8221 067.0280.0520.0483.1 XXyyy ttt  
 

 

Hesaplanan

5,20000005,00000004,80000004,60000004,40000004,2000000

G
ö
z
l
e
m
l
e
n
e
n

5,2000000

5,0000000

4,8000000

4,6000000

4,4000000

4,2000000

R^2=0,92

 

   (a)     (b) 

ġekil 4.9. Orijinal seri ile tahmin serisi arasında yapılan ARIMA(2,1,0) modeli serpilme 

grafiği (a) uyum grafiği (b) 

 

Çizelge 4.8. ARIMA (2,1,0) zaman serisi modeli için belirleme kriterleri 

 

Yöntem R
2 

OKH AIC 

ARIMA(2,1,0) 0.92 0.0021 -70.3525 
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Çizelge 4.9. ÇDR, VAR(2), ARIMA (2,1,0) yöntemlerinin karĢılaĢtırılması 

 

Yöntem R
2 

OKH AIC 

ÇDR 0.98 0.004 -73.198 

VAR(1) 0.96 0.0006 -55.13 

ARIMA(2,1,0) 0.92 0.0021 -70.35 

 

Belirlilik katsayısı (R
2
)
 
en yüksek olan ve AIC bilgi kiriteri en küçük olan yöntem çok 

değiĢkenli regresyon yöntemi olmuĢtur (Çizelge 4.9). 

 

4.1.3. Model-III bulguları 

 

Yıllık trafik kazalarında ki ölü sayılarının, nüfus, yol-km değeri, km-taĢıt, ağır tonajlı 

araç sayısı, otomobil sayısı, otobüs sayısı, AOGT, GSMH değerlerine göre modellendi.  

 

Yapılan çalıĢmada çok değiĢkenli regresyon denklemi uygulamasında temel bileĢenler 

analizi uygulanmıĢ olup, birbirleri ile iliĢkili 8 bağımsız değiĢken yerine, birbirleri ile 

iliĢkisiz 2 temel bileĢenle regresyon modeli oluĢturulmuĢtur.  

 

)*104.0()*022.0(690.3 21 SZSZti   

Temel bileĢenler skorları ile yapılan bu modelin 2007 yılı kestirim değeri;  

5044.3)53159.1*005.0()17758.1*022.0(690.3 t  olarak hesaplanmıĢtır. 

2007 yılı gerçek değer ise 539327.3t dir.  

 

2211 ** ZZSY    

21 *912.0*208.0 ZZSY   

 

)*06903.0()*101859.0()*029724.0()*010132.0(

)*05159.0()*0207.0()*8667.14()*149225.0(11142.74

8765

4321
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Ters dönüĢüm yapılarak elde edilen yukarıdaki denklemden elde edilen 2007 yılı için 

kesitirim değeri 3.50 dir.  

 

ÇDR uygulamasında tahmin serisi ile tarihi seri arasındaki serpilme grafikleri ve uyum 

grafiği ġekil 4.10‟da, yöntemin kıstasları ise Çizelge 4.10‟da gösterilmiĢtir.  

 

Hesaplanan Ölü Sayısı

3,900003,800003,700003,600003,50000

G
ö
z
l
e
m
l
e
n
e
n
 
Ö
l
ü
 
S
a
y
ı
s
ı

3,9000000

3,8000000

3,7000000

3,6000000

3,5000000

3,4000000 R^2=0,75

 

   (a)     (b) 

ġekil 4.10.  Temel bileĢen skorları ile tarihi seri arasında yapılan regresyon modeli 

serpilme grafiği (a) ve uyum grafiği (b) 

 

Çizelge 4.10. Çok değiĢkenli regresyon modeli için belirleme kriterleri 

 

Yöntem R
2 

OKH AIC 

Çok DeğiĢkenli Regresyon 0.75 0.004 -77.50 

 

2008–2009 yıllarında meydana gelen trafik kazalarında ölü sayısı 2008 yılı için 4236, 

2009 yılı için 4300 olarak gerçekleĢmiĢtir. Yapılan logaritmik ters dönüĢüm sonucunda 

modelimizden bulunan değerlerin ise güven aralıkları içine girerek 2008 yılı için 4150‟ 

nin üzerinde 2009 yılı için ise 4200‟ün üzerinde olabileceği anlaĢılmıĢtır.  
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Çok değiĢkenli zaman serisi analizi uygulamasında VAR modelleri için varsayım olan 

durağanlık sonucu durağan hale gelen seri ile tahminler yapılmıĢ ve tahmin serisi ile 

tarihi seri arasındaki serpilme grafikleri ve uyum grafiği ġekil 4.11‟da, yöntemin 

kıstasları ise Çizelge 4.11‟de gösterilmiĢtir.  

 

 

VAR(2) modelinin genel ifadesi aĢağıdaki gibi olmuĢtur.  
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ÇalıĢmada elde edilen model aĢağıda verilmiĢtir.  
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Gözlemlenen

3,903,803,703,603,503,40
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3,90

3,80

3,70

3,60

3,50

3,40

R^2=0,84

 

   (a)     (b) 

ġekil 4.11.  Orijinal seri ile tahmin serisi arasında yapılan VAR(2) modeli serpilme 

grafiği (a) ve uyum grafiği (b)  
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Çizelge 4.11. Çok değiĢkenli zaman serisi modeli için belirleme kriterleri 

 

Yöntem R
2 

OKH AIC 

Vektörel Otoregresyon (VAR) 0.84 0.0008 -52.4288 

 

Üçüncü yöntem olarak ARIMA(p,d,q) modeli uygulanmıĢtır. Yapılan çalıĢmada bağımlı 

değiĢken kaza sayısı (Y), bağımsız değiĢken ise; yol-km uzunluğu olarak (X2) 

alınmıĢtır. Diğer bağımsız değiĢkenlerin katsayıları istatistiksel olarak anlamlı 

bulunmamıĢtır.  

 

Modelin genel ifadesi aĢağıda verilmiĢtir.  

tttt eey    ........22110    

ÇlaıĢmada elde edilen model aĢağıdaki gibi olmuĢtur. 

21 382.3517.0086.18 Xey tt  
 

 

ARIMA(0,1,1) modeline iliĢkin uyum ve serpilme grafikleri ġekil 4.12‟de, modelin 

kıstasları ise Çizelge 4.12‟de sunulmuĢtur. 

 

Hesaplanan

3,90000003,80000003,70000003,60000003,50000003,4000000
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3,8000000

3,7000000

3,6000000

3,5000000

3,4000000
R^2=0,83

 

    (a)    (b) 

ġekil 4.12.  Orijinal seri ile tahmin serisi arasında yapılan ARIMA(0,1,1) modeli 

serpilme grafiği (a) ve uyum grafiği (b) 
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Çizelge 4.12. ARIMA (0,1,1) zaman serisi modeli için belirleme kriterleri 

 

Yöntem R
2 

OKH AIC 

ARIMA(0,1,1) 0.83 0.002 -120.924 

 

Çizelge 4.13. ÇDR, VAR(1), ARIMA (0,1,1) YSA yöntemlerinin karĢılaĢtırılması 

 

Yöntem R
2 

OKH AIC 

ÇDR 0.75 0.004 -77.50 

VAR(2) 0.84 0.0008 -52.4288 

ARIMA(0,1,1) 0.83 0.002 -120.92 

 

Belirlilik katsayısı (R
2
)
 
en yüksek olan yöntem VAR(2) ve Akaile AIC bilgi kiriteri en 

küçük olan yöntem ARIMA(0,1,1) olmuĢtur (Çizelge 4.13). 

 

4.1.4. Model II-III için yapay sinir ağı uygulaması 

 

YSA uygulamasında verilerin %60‟ı eğitim, %40‟da test amaçlı kullanıldığından ölü ve 

yaralı sayılarına iliĢkin eğitim ve test setindeki uyum ve serpilme grafikleri ġekil 4.13 -

4.14 – 4.15 - 4.16‟da sunulmuĢtur. Yaralı ve ölü sayılarına iliĢkin model kıstasları ise 

Çizelge 4.14–4.15‟te sunulmuĢtur. 
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Ölü Sayısı (Eğitim Seti)

8000,00000007000,00000006000,00000005000,00000004000,0000000
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8000,0000000

7000,0000000

6000,0000000

5000,0000000

4000,0000000 R^0,95

 

          (a)    (b) 

ġekil 4.13.  Ölü sayıları için yapay sinir ağının eğitimi sırasındaki gözlemlenen ve 

hesaplanan kaza sayıları serpilme grafiği (a), ağın eğitimi aĢamasındaki uyum grafiği 

(b) 

Gözlemlenen Yaralı Sayısı (Eğitim Seti)

100000,0080000,0060000,0040000,0020000,00

T
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n
 
E
d
i
l
e
n
 
Y
a
r
a
l
ı
 
S
a
y
ı
s
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(
E
ğ
i
t
i
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S
e
t
i
)

100000,00

80000,00

60000,00

40000,00

20000,00

R^2=0,98

 

          (a)    (b) 

ġekil 4.14.  Yaralı sayıları için yapay sinir ağının eğitimi sırasındaki gözlemlenen ve 

hesaplanan kaza sayıları serpilme (a), ağın eğitimi aĢamasındaki uyum grafiği (b) 
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Ölü Sayısı Gözlemlenen (Test Seti)

7000,006000,005000,004000,003000,002000,00

Ö
l
ü
 
S
a
y
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e
s
a
p
l
a
n
a
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(
T
e
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S
e
t
i
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7000,00

6000,00

5000,00

4000,00

3000,00

2000,00 R^0,93

 

       (a)     (b) 

ġekil 4.15.  Ölü sayılarının yapay sinir ağının testi sırasındaki gözlemlenen ve 

hesaplanan kaza sayıları serpilme (a), ağın testi aĢamasındaki uyum grafiği (b) 

 

Gözlemlenen Yaralı Sayısı (Test Seti)

150000,00140000,00130000,00120000,00110000,00100000,0090000,00

T
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n
 
E
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l
e
n
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ı
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(
T
e
s
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S
e
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i
)

150000,00

140000,00

130000,00

120000,00

110000,00

100000,00

90000,00 R^2=0,96

 

          (a)    (b) 

ġekil 4.16.  Yaralı sayılarının yapay sinir ağının testi sırasındaki gözlemlenen ve 

hesaplanan kaza sayıları serpilme (a), ağın testi aĢamasındaki uyum grafiği (-b-) 

Çizelge 4.14. Ölü sayıları için YSA modeli için belirleme kriterleri 

 

Yöntem Eğitim Seti Test Seti 

R
2 

OKH AIC R
2 

OKH AIC 

YSA 0.95 0.0014 -30.088 0.93 0.004 -23.83 
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Çizelge 4.15. Yaralı sayıları için YSA modeli için belirleme kriterleri 

 

Yöntem Eğitim Seti Test Seti 

R
2 

OKH AIC R
2 

OKH AIC 

YSA 0.98 0.0017 -28.02 0.96 0.0002 -49.31 

X
1

Y

Doğrusal

Yaralı Sayısı

i

Sigmoid/Tanjant-hiperbolik
1974-2007 yılları yıllık değerleri

Girdi

Tabakası

Gizli

Tabaka

Çıkış

Tabakası

Ağırlıklar

ij

ik

Ağırlıklar

j
k

Bias Bias

2. Temel Bileşen

X
7 Y Ölü Sayısı

1. Temel Bileşen

 

ġekil 4.17.  Model II-III için YSA ağ mimarisi 

 

4.1.5. Model-IV bulguları 

 

Yıllık trafik kazalarındaki yaralı sayıları; kaza sayısı, AOGT ve GSMH değerlerine göre 

modellendi.  

 

ÇalıĢmada çok değiĢkenli regresyon uygulamasında temel bileĢenler analizi ile olup 

birbirleri ile iliĢkili 3 bağımsız değiĢken yerine 1 temel bileĢenle model oluĢturulmuĢtur.  

)*234.0(834.4 1SZti   

Temel bileĢenler skorları ile yapılan bu modelin 2007 yılı kestirim değeri;  

24851.5)75965.1*234.0(834.4 t  olarak hesaplanmıĢtır. 

2007 yılı gerçek değer ise 175552.5t dir.  
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2211 ** ZZSY    

1*552.0 ZSY   

)*387412.0()*365186.0()*185939.0(356429.1 321 kkkt 
 

 

Hesaplanan Yaralı Sayısı

5,200005,000004,800004,600004,400004,20000
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Y
a
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a
l
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S
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5,2000000

5,0000000

4,8000000

4,6000000

4,4000000

4,2000000
R^2=0,90

 

          (a)    (b) 

ġekil 4.18.  Temel bileĢen skorları ile tarihi seri arasında yapılan regresyon modeli 

serpilme grafiği (a) ve uyum grafiği (b) 

 

Çizelge 4.16. Çok değiĢkenli regresyon modeli için belirleme kriterleri 

 

Yöntem R
2 

OKH AIC 

Çok DeğiĢkenli Regresyon 0.86 0.00018 -67.003 

 

ÇDR uygulamasında tahmin serisi ile tarihi seri arasındaki serpilme grafikleri ve uyum 

grafiği ġekil 4.18‟de, yöntemin kıstasları ise Çizelge 4.16‟da gösterilmiĢtir.  

 

2008–2009 yıllarında meydana gelen trafik kazalarındaki yaralı sayısı 2008 yılı için 

184468, 2009 yılı için 200405 olarak gerçekleĢmiĢtir. Yapılan logaritmik ters dönüĢüm 

sonucunda modelimizden bulunan değerlerin ise güven aralıkları içine girerek 2008 yılı 
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için 171 binin üzerinde 2009 yılı içinde 183 binin üzerinde olabileceği tahmin 

edilmiĢtir.  

 

Çok değiĢkenli zaman serisi analizi uygulamasında durağan hale gelen seriler ile 

tahminler yapılmıĢ ve tahmin serisi ile tarihi seri arasındaki serpilme grafikleri ve uyum 

grafiği ġekil 4.19‟da yöntemin kıstasları ise Çizelge 4.17‟de gösterilmiĢtir. Modelin 

genel ifadesi aĢağıdaki gibi olmuĢtur.  

 

1614131211 321 CkCkCkCtCt ttttt    

ÇalıĢmada elde edilen model aĢağıda verilmiĢtir.  

1692.030447.023665.010641.03986.0 1111   ttttt kkktt  

 

Hesaplanan Yaralı Sayısı

5,40000005,20000005,00000004,80000004,60000004,4000000
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5,2000000

5,0000000

4,8000000

4,6000000

4,4000000

4,2000000
R^2=0,79

 

          (a)    (b) 

ġekil 4.19.  Orijinal seri ile tahmin serisi arasında yapılan VAR(1) modeli serpilme 

grafiği (a) ve uyum grafiği (b) 

 

Çizelge 4.17. Çok değiĢkenli zaman serisi modeli için belirleme kriterleri  

 

Yöntem R
2 

OKH AIC 

Vektörel Otoregresyon (VAR) 0.79 0.003 -13.82 
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Üçüncü yöntem olarak ARIMA(p,d,q) modelleri verilere uygulanmıĢtır. Yapılan 

çalıĢmada bağımlı değiĢken kaza sayısı (Y), bağımsız değiĢkenlerden AOGT (X1) 

alınmıĢtır. Diğer bağımsız değiĢkenlerin parametreleri istatistiksel olarak anlamlı 

bulunmamıĢtır. Yöntemin uygulamsı sonucunda tahmin edilen değerler ile gerçek 

değerler arasındaki uyum ve serpilme grafikleri ġekil 4.20‟de yöntemin kıstasları ise 

Çizelge 4.18‟de sunulmuĢtur. 

 

ttttt eyyyy   3322110     

21 317.0981.0717.3 Xyy tt  
 

 

Hesaplanan Yaralı Sayısı

5,20000005,00000004,80000004,60000004,4000000
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5,2000000

5,0000000

4,8000000

4,6000000

4,4000000

4,2000000

R^2=0,97

 

          (a)    (b) 

ġekil 4.20.  Orijinal seri ile tahmin serisi arasında yapılan ARIMA(1,1,0) modeli 

serpilme (a) grafiği ve uyum grafiği (b) 

 

Çizelge 4.18. ARIMA (1,1,0) zaman serisi modeli için belirleme kriterleri 

 

Yöntem R
2 

OKH AIC 

ARIMA(1,1,0) 0.92 0.0052 -75.93 
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Çizelge 4.19. ÇDR, VAR(1), ARIMA (1,1,0) yöntemlerinin karĢılaĢtırılması 

 

Yöntem R
2 

OKH AIC 

ÇDR 0.86 0.00018 -67.003 

VAR(1) 0.79 0.003 -13.82 

ARIMA(1,1,0) 0.92 0.0052 -75.93 

 

Belirlilik katsayısı (R
2
) en yüksek olan ve Akaile AIC bilgi kiriteri en küçük olan 

yöntem çok değiĢkenli regresyon yöntemi olmuĢtur (Çizelge 4.19). 

 

4.2.1. Model-V bulguları  

 

Yıllık trafik kazalarındaki ölü sayılarının, kaza sayısı, AOGT ve GSMH değerlerine 

göre modellendi. 

 

Yapılan çalıĢmada çok değiĢkenli regresyon denklemi uygulamasında temel bileĢenler 

analizi uygulanmıĢ olup birbirleri ile iliĢkili 3 bağımsız değiĢken yerine 1 temel 

bileĢenle regresyon modeli oluĢturulmuĢtur.  

 

)*059.0(690.3 1SZti   

Temel bileĢenler skorları ile yapılan bu modelin 2007 yılı kestirim değeri, 

5862.3)75965.1*059.0(690.3 t  olarak hesaplanmıĢtır. 

2007 yılı gerçek değer ise 539327.3t dir.  

 

11 *ZSY   

1*288.0 ZSY   

)*0981.0()*0925.0()*0471.0(570631.4 321 kkkY   

Ters dönüĢüm yapılarak eld edilen yukarıdaki denklemden 2007 yılı için kesitirim 

değeri 3.58‟dir.  
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ÇDR uygulamasında tahmin serisi ile tarihi seri arasındaki serpilme grafikleri ve uyum 

grafiği ġekil 4.21‟de, yöntemin kıstasları ise Çizelge 4.20‟de gösterilmiĢtir.  

 

Hesaplanan Ölü Sayısı

3,850003,800003,750003,700003,650003,600003,55000

G
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3,9000000

3,8000000

3,7000000

3,6000000

3,5000000

3,4000000

R^2=0,40

 

          (a)    (b) 

ġekil 4.21.  Temel bileĢen skorları ile tarihi seri arasında yapılan regresyon modeli 

serpilme grafiği (a) ve uyum grafiği (b) 

 

Çizelge 4.20. Çok değiĢkenli regresyon modeli için belirleme kriterleri  

 

Yöntem R
2 

OKH AIC 

Çok DeğiĢkenli Regresyon 0.40 0.010 -65.59 

 

2008–2009 yıllarında meydana gelen trafik kazalarındaki ölü sayısı 2008 yılı için 4236, 

2009 yılı için 4300 olarak gerçekleĢmiĢtir. Yapılan logaritmik ters dönüĢüm sonucunda 

modelimizden bulunan değerler ise güven aralıkları içine girerek 2008 yılı için tahmini 

kaza sayısı 4100 ün üzerinde bir ölü sayısı tahmin edilmiĢ 2009 yılı içinde 4320‟nin 

üzerinde bir kazanın olabileceği anlaĢılmıĢtır.  

 

Çok değiĢkenli zaman serisi analizi uygulamasında durağan hale gelen seri ile tahminler 

yapılmıĢ ve tahmin serisi ile tarihi seri arasındaki serpilme grafikleri ve uyum grafiği 

ġekil 4.22‟de yöntemin kıstasları ise Çizelge 4.21‟de gösterilmiĢtir.  
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514131211 321 CkCkCkCtCt ttttt    

1614.03*0463.02*4453.01*00389.04916.0 1111   ttttt kkktt  

 

Hesaplanan

4,00000003,90000003,80000003,70000003,60000003,5000000

G
ö
z
l
e
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e
n

3,9000000

3,8000000

3,7000000

3,6000000

3,5000000

3,4000000

R^2=0,63

 

          (a)    (b) 

ġekil 4.22.  Orijinal seri ile tahmin serisi arasında yapılan VAR(1) modeli serpilme 

grafiği (a) ve uyum grafiği (b) 

 

Çizelge 4.21. Çok değiĢkenli zaman serisi modeli için belirleme kriterleri 

 

Yöntem R
2 

OKH AIC 

Vektörel Otoregresyon (VAR) 0.63 0.0019 -14.02116 

 

Üçüncü yöntem olarak ARIMA(p,d,q) modeli uygulanmıĢtır. Yapılan çalıĢmada bağımlı 

değiĢken kaza sayısı (Y), bağımsız değiĢken ise; AOGT (X2) alınmıĢtır. Diğer bağımsız 

değiĢkenlerin katsayıları istatistiksel olarak anlamlı bulunmamıĢtır. Yöntem sonucu 

tahmin değerleri ile gerçek değerler arasındaki uyum ve serpilme grafikleri ġekil 4.23‟te 

yöntemin kıstasları ise Çizelge 4.22‟de sunulmuĢtur. 

 

Modelin genel ifadesi aĢağıda verilmiĢtir.  
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tttt eey    ........22110    

 

ÇalıĢmada elde edilen model aĢağıdaki gibidir.  

21 328.0471.0 Xyy tt  
 

 

Hesaplanan Ölü Sayısı

4,00000003,90000003,80000003,70000003,60000003,50000003,4000000
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3,9000000

3,8000000

3,7000000

3,6000000

3,5000000

3,4000000

R^2=0,91

 

          (a)    (b) 

ġekil 4.23.  Orijinal seri ile tahmin serisi arasında yapılan ARIMA(1,1,0) modeli uyum 

grafiği (a) ve uyum grafiği (b)  

 

Çizelge 4.22. ARIMA (1,1,0) zaman serisi modeli için belirleme kriterleri 

 

Yöntem R
2 

OKH AIC 

ARIMA(1,1,0) 0.91 0.0016 -92.78 

 

Çizelge 4.23. ÇDR, VAR(1), ARIMA (1,1,0) YSA yöntemlerinin karĢılaĢtırılması 

 

Yöntem R
2 

OKH AIC 

ÇDR 0.40 0.010 -65.59 

VAR(1) 0.63 0.0019 -14.02116 

ARIMA(1,1,0) 0.91 0.0016 -92.78 
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Belirlilik katsayısı (R
2
)
 
en yüksek olan yöntem ARIMA(1,1,0), ve AIC en küçük olan 

yöntem yine ARIMA(1,1,0) olmuĢtur (Çizelge 4.23). 

 

4.1.7. Model IV-V için yapay sinir ağı uygulaması 

 

YSA uygulamasında verilerin %60‟ı eğitim, %40‟da test amaçlı kullanıldığından ölü ve 

yaralı sayılarına iliĢkin eğitim ve test setindeki uyum ve serpilme grafikleri ġekil 4.24 – 

4.25 – 4.26 – 4.27‟de sunulmuĢtur. Yaralı ve ölü sayılarına iliĢkin model kıstasları ise 

Çizelge 4.24 – 4.25‟de sunulmuĢtur. 

 

Gözlemlenen

100000,000000080000,000000060000,000000040000,000000020000,0000000

H
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(
E
ğ
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S
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100000,0000000

80000,0000000

60000,0000000

40000,0000000

20000,0000000

R^2=0,99

 

          (a)    (b) 

ġekil 4.24.  Yaralı sayıları için yapay sinir ağının eğitimi sırasındaki gözlemlenen ve 

hesaplanan kaza sayılarının ağın eğitimi aĢamasındaki serpilme grafiği (a), uyum grafiği 

(b) 
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Gözlemlenen Yaralı Sayısı (Test Seti)

150000,00140000,00130000,00120000,00110000,00100000,0090000,00

H
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a
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Y
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r
a
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S
a
y
ı
s
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150000,00

140000,00

130000,00

120000,00

110000,00

100000,00

90000,00
R^2=0,92

 

          (a)    (b) 

ġekil 4.25.  Yaralı sayıları için yapay sinir ağının eğitimi sırasındaki gözlemlenen ve 

hesaplanan kaza sayılarının, ağın testi aĢamasındaki serpilme grafiği (a), uyum grafiği 

(b) 

 

Gözlemlenen Ölü Sayısı (Eğitim Seti)

80007000600050004000
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7000

6000

5000

4000

R^2=0,99

 

       (a)     (b) 

ġekil 4.26.  Ölü sayılarının yapay sinir ağının eğitimi sırasındaki gözlemlenen ve 

hesaplanan kaza sayılarının, ağın testi aĢamasındaki serpilme grafiği (a), uyum grafiği 

(b) 
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Gözlemlenen Ölü Sayısı(Test Seti)

700060005000400030002000

H
e
s
a
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n
 
Ö
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7000

6000

5000

4000

3000

2000

R^2=0,97

 

          (a)    (b) 

ġekil 4.27. Ölü sayılarının yapay sinir ağının testi sırasındaki gözlemlenen ve 

hesaplanan kaza sayılarının, ağın testi aĢamasındaki serpilme grafiği (a), uyum grafiği 

(b) 

 

Çizelge 4.24. Ölü sayıları için YSA modeli için belirleme kriterleri 

 

Yöntem Eğitim Seti Test Seti 

R
2 

OKH AIC R
2 

OKH AIC 

YSA 0.99 0.00026 -39.78 0.97 0.0021 -22.49 

 

Çizelge 4.25. Yaralı sayıları için YSA modeli için belirleme kriterleri 

 

Yöntem Eğitim Seti Test Seti 

R
2 

OKH AIC R
2 

OKH AIC 

YSA 0.99 0.00018 -42.51 0.92 0.00045 -36.30 
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X
1

Y

Doğrusal

Yaralı Sayısı

i

Sigmoid/Tanjant-hiperbolik

1974-2007 yılları yıllık değerleri

Girdi

Tabakası

Gizli

Tabaka

Çıkış

Tabakası
Ağırlıklar

ij

ik

Ağırlıklar

j

k

Bias

Bias

AOGT

X
2

Y Ölü Sayısı

Kaza Sayısı

X
3

GSMH

 

ġekil 4.28.  Model IV-V için YSA mimarisi 

 

4.2. Poisson Regresyonu, Çok DeğiĢkenli Ġstatistik, Yapay Sinir Ağı Modellemeleri 

 

4.2.1. Model-VI bulguları 

 

Denenen birçok model içinde parametreleri en anlamlı model aĢağıdaki gibi 

bulunmuĢtur.  

 

).......exp()( 22110 qq XbXbXbbAE   

)*011652.0

*0604205.0*1746494.0*0002328,0log*239572.1exp()(

hiz

bssgyogtuzAE




 

 

Burada;  

n:  Gözlem sayısı  

p:  Parametre sayısı 

sd:  Serbestlik derecesi 

sabit:  Sabit terim 
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ks:  Kaza sayısı 

yogt:  Yıllık ortalama günlük trafik 

log(uz): Ġlgili yolun km yol uzunluğunun doğal logaritması  

ss:  ġerit sayısı  

kavs:  KavĢak sayısı 

sg:  ġerit geniĢliği 

bs:  bağlantı sayısı  

hız :  Ortalama hız  

 

Poisson regresyonu bütün bağımsız değiĢkenler modele katılmıĢtır. Yapılan analizlerde 

bütün bağımsız değiĢkenler modele katıldığında P değerleri bazı değiĢkenler için 0.05 

değerinden büyük olduklarından anlamlı bulunmamıĢ ve modelden çıkarılmıĢlardır. 

Modelleme aĢamasında, kavĢak sayısı (kavs) ve Ģerit sayısı (ss), bağımsız değiĢken 

olarak kullanılmıĢ fakat bu değerler %95 güven aralığında çıkmadığından modelden 

çıkarılmıĢlardır. Yöntemin uyum ve serpilme grafikleri ġekil 4.29‟da sunulmuĢtur. 

 

Gözlemlenen Kaza Sayısı

50,0040,0030,0020,0010,000,00
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40,00

30,00

20,00

10,00

0,00 R^2=0,57

 

          (a)    (b) 

ġekil 4.29.  Model VI-Poisson regresyon modeli için serpilme grafiği (a) ve uyum 

grafiği (b) 
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Çok değiĢkenli regresyon uygulamasında ise R
2
= 0.61 olarak bulunmuĢ ve modelin 

matematiksel ifadesi aĢağıdaki gibi olmuĢtur (ġekil 4.30).  

 

hizbsyogtuzks 866.24*707.0*157.13*654.8   

 

Gözlemlenen Kaza Sayısı
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0,00

R^2=0,61

 

(a)            (b) 

ġekil 4.30.  Model VI-Çok değiĢkenli regresyon modeli için serpilme grafiği (a) ve 

uyum grafiği (b) 

 

YSA uygulamasında eğitim seti için uyum ve serpilme grafikleri ġekil 4.31‟de 

sunulmuĢtur.  
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50,0000000

40,0000000

30,0000000

20,0000000

10,0000000

0,0000000

Hesaplanan Eğitim Seti

40,000000030,000000020,000000010,00000000,0000000-10,0000000

R^2=0,96

 

    (a)       (b) 

 

ġekil 4.31.  Model VI-YSA eğitim seti uyum grafiği (a) ve serpilme grafiği (b) 

 

Çizelge 4.26. Yöntemlerin karĢılaĢtırılması 

 

Yöntem R
2 

OKH Değerlendirme 

Poisson Reg. 0.57 0.33  

ÇDR 0.61 0.26  

YSA 0.93 0.004 En anlamlı yöntem 

 

Belirlilik katsayısı (R
2
) en yüksek olan yöntem YSA, OKH en küçük olan yöntem yine 

YSA olmuĢtur (Çizelge 4.26). 

 

4.2.2. Model-VII bulguları 

 

Modelde yaralı sayıları bağımlı değiĢken olarak alınmıĢtır. Denenen birçok model 

içinde parametreleri en anlamlı model aĢağıdaki gibi bulunmuĢtur.  
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).......exp()( 22110 qqi XbXbXbbE   

 

)(008345.0)(0512742.0

)(0848338.0)(*0461516,0)(*0196034.0207331.3exp(

hizbs

kavsssksi




 

Burada;  

n: Gözlem sayısı  

p: Parametre sayısı 

sd: Serbestlik derecesi 

Ys )( : Yaralı sayısı 

sabit: Sabit terim 

ks: Kaza sayısı 

yogt: Yıllık ortalama günlük trafik 

ss: ġerit sayısı  

kavs: KavĢak sayısı 

sg: ġerit geniĢliği 

bs: Bağlantı sayısı  

hız : Ortalama hız  

 

Poisson regresyonu modelinde bütün bağımsız değiĢkenler modele katıldığında P 

değerleri bazı değiĢkenler için 0.05 değerinden büyük olduklarından anlamlı 

bulunmamıĢ ve modelden çıkarılmıĢlardır. Modelleme aĢamasında; kavĢak sayısı 

(kavs), Ģerit sayısı (ss), bağımsız değiĢken olarak kullanılmıĢ fakat değiĢkenlerin 

katsayıları anlamlı çıkmadığından modelden çıkarılmıĢlardır. ġekil 4.32 ve 4.33‟de 

modelin uyum ve serpilme grafikleri verilmiĢtir. 
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Yaralı Sayısı Tahmin Edilen
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(a)      (b) 

ġekil 4.32.  Model VII-Poisson regresyonu uyum grafiği (a) ve serpilme grafiği (b) 

 

Gözlemlenen Yaralı Sayısı
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R^2=0,76

 

(a)         (b) 

ġekil 4.33.  Model VII-Çok değiĢkenli regresyon uyum grafiği (a) ve serpilme grafiği 

(b) 

 

Çok değiĢkenli regresyon sonucu bulunan model; 

Yaralı Sayısı= 0.509*(ks)+1.031*(bs)-0.062*(kavs)-0.504(hız) 
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Gözlemlenen Yaralı Sayısı (Eğitim Seti)
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0,00
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(a)       (b) 

ġekil 4.34.  Model VII-YSA eğitim seti uyum grafiği (a) ve serpilme grafiği (b) 

 

Gözlemlenen Yaralı Sayısı (Test Seti)
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0,00

R^2=0,93

 

(a)       (b) 

ġekil 4.35.  Model VII-YSA test seti uyum grafiği (a) ve serpilme grafiği (b) 

 

YSA uygulamsında eğitim ve test setleri için uyum ve serpilme grafikleri ġekil 4.34. ve 

4.35.‟de sunulmuĢtur.  

 

Belirlilik katsayısı (R
2
) en yüksek olan yöntem YSA ve OKH en küçük olan yöntem 

yine YSA olmuĢtur (Çizelge 4.27.) 
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Çizelge 4.27.  Yöntemlerin karĢılaĢtırılması 

 

Yöntem R
2 

OKH Değerlendirme 

Poisson Reg. 0.58 0.086  

ÇDR 0.76 0.062  

YSA 0.93 0.018 En uygun yöntem 
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5. SONUÇ ve ÖNERĠLER 

 

Model I uygulamasında, çok değiĢkenli regresyon yapılmıĢ olup değiĢkenler arasında 

çok fazla korelasyon çıkmıĢtır. Çok yüksek belirlilik katsayısı (R
2
)
 
çıkmıĢ, düĢük 

tolerans ve yüksek VIF değerleri bulunmuĢtur. Bu bilgiler ıĢığında değiĢkenlerimiz 

arasında çoklu bağlantı problemi olduğu anlaĢılmıĢtır. TBA yapılarak iki temel bileĢen 

ile modeller oluĢturulmuĢ ve kaza sayısı açıklanmıĢtır.  

 

Granger Nedensellik analizinde tablo değeri F(m,n-k)=3.49 olarak bulunmuĢtur. Fhesap 

değeri tablo değerinden büyük olan ve olabilirlikleri 0.05‟ten küçük olan değiĢkenler 

tespit edilmiĢtir. Bu durumda olan değiĢkenler arasında bir nedensellik olduğu 

anlaĢılmıĢtır. Kaza sayısı ile yük-ton değiĢkeni arasında tek yönlü bir nedenselliğin 

olduğu görülmüĢtür. Karayollarındaki taĢınan yükün artıĢ göstermesi araç yoğunluğunu 

artıracağından kaza sayılarında bir değiĢime sebep olacağı anlaĢılmıĢtır. Kaza sayısı ile 

km-taĢıt değiĢkeni, tır sayısı, otobüs sayısı ile karayollarında tüketilen enerji miktarı, 

AOGT değerleri ile de tek yönlü bir Granger Nedenselliği olduğu anlaĢılmıĢtır. 

Nedensellik analizleri beklendiği gibi çıkmıĢtır. Yol-km uzunluğu değerinde ise 

nedensellik bulunamamıĢtır. Yolcu-km değeri ile de Granger Nedenselliği bulunamamıĢ 

bunun nedeninin, taĢınan yolcu sayısı değerlerinin 1994 yılından öncesinde sağlıklı 

gözlemlenememesi olarak yorumlanmıĢtır.  

 

Granger Nedensellik analizinden sonra aynı verilere eĢbütünleĢme analizi 

uygulamasınında yapılması uygun olacaktır. Gelecekte bu değiĢkenlerin birbirlerini 

nasıl etkilediği bu analiz yöntemi ile belirlenebilir.  

 

Etki tepki fonksiyonun ise kaza sayısına verilecek bir birimlik bir Ģok bağımsız 

değiĢkenleri 7. ve 8. dönemlerinde etkisini kaybetmektedir. Kaza sayısındaki bir 

birimlik Ģokun, km-taĢıt, yolcu-km, kamyon sayısı, otobüs sayısı, enerji tüketimi, yol-

km uzunlukları üzerindeki değiĢimler analiz edilmiĢ ve ortalama 7. peryotta etkilerin 

kaybolduğu gözlemlenmiĢtir (ġekil 3.11). Yıllık verilerle değil de aylık veya haftalık 
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verilerle çalıĢıldığında etki-tepki analiz sonuçları daha verimli olacaktır. Örneğin 2010 

yılının nisan ayında trafiğe yeni çıkan araç sayısı, bir önceki aya göre %62 oranında 

artıĢ göstermiĢtir. 2009 yılı aylık verilerinde küresel kriz nedeniyle trafiğe kayıtlı araç 

sayılarında, bir önceki yılın aynı aylarında negatif yönde bir artıĢ olmuĢtur. Mevsimsel 

dalgalanmalar, bayram tatilleri, yaz aylarındaki YOGT artıĢı ve kaza sayılarındaki 

değiĢimler etki-tepki analizinde daha iyi anlaĢılacaktır.  

 

Varyans ayrıĢtırmasında ise yolcu-km, km-taĢıt, enerji tüketimi, kaza sayısını en çok 

açıklayan değiĢkenler olmuĢtur. Bu modelde AOGT değerinin de kaza sayısını en çok 

açıklayan değiĢkenler arasında yer alması beklenirken bu sonuç elde edilememiĢtir 

(Çizelge 3.35).  

 
Dört farklı yöntem içinde ARIMA(1,1,0) en baĢarılı yöntem olmuĢtur. Fakat bu 

yöntemde bağımsız değiĢken olarak sadece AOGT istatistiksel olarak anlamlı çıkmıĢtır. 

Bütün değiĢkenlerin modele katıldığı yöntemlerden biri de VAR(1) modeli olmuĢtur. 

Bu modelinde kıstasları diğer yöntemlere göre daha anlamlı çıkmıĢtır. R
2
=0.67, 

OKH=0.086, AIC=-62.30 değerleri ile diğer yöntemler arasında en uygun yöntem 

olmuĢtur. YSA yönteminin test setine uygulanması sonucunda R
2
=0.95 çıkmıĢtır. YSA 

yönteminde modele bütün değiĢkenler katılmıĢtır. Sonuç olarak YSA, OKH= 0.002 ve 

AIC=-47.198 ile YSA en baĢarılı yöntem olarak kabul edilmiĢtir (Çizelge 4.5).  

 
Gelecek yıllar içinde ne yazıkki kaza sayılarındaki artıĢın azalacağı düĢünülmemektedir. 

Tahmin sonuçları da bunu destekler niteliktedir. Yıllık 1.2 milyonun üzerinde ölümlü, 

yaralanmalı ve maddi hasarlı trafik kazası olacaktır. BölünmüĢ yolların artması, 

ortalama hızın 110 km/h„te çıkması gibi etkenlerin kaza sayıları üzerindeki etkisi 

incelendiğinde 2010 yılı ilk yarısındaki kaza sayılarında bir önceki yıla göre artıĢ 

olduğu görülmüĢtür. 

 
Model II uygulamasında, çok değiĢkenli regresyon yapılmıĢ olup değiĢkenler arasında 

yüksek korelasyon çıkmıĢtır. DüĢük tolerans ve yüksek VIF değerleri bulunmuĢtur. Bu 
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bilgiler ıĢığında 8 adet birbirleri ile iliĢkili bağımsız değiĢken yerine 2 adet iliĢkisiz 

bağımsız temel bileĢen ile modelleme yapılmıĢtır. Temel bileĢenleri en fazla etkileyen 

değiĢken otomobil sayısı olmuĢtur.  

 
Yaralı sayıları üzerinde Granger Nedenselliği analizi yapılmıĢtır. F tablo değeri olan 

F(m,n-k)=3.49 ile hesaplanan F değeri karĢılaĢtırılmıĢ, olabilirlikleri P<0.05 olan 

değiĢkenler tespit edilmiĢtir. Bu analiz sonucunda trafik kazalarındaki yaralı sayısı ile 

nüfus değiĢkeni arasında tek yönlü bir Granger Nedenselliği‟nin olduğu ispatlanmıĢtır 

(Çizelge 3.33). AOGT değeri ile yaralı sayısı arasında da beklenildiği gibi tek yönlü 

nedensellik söz konusudur. Yol-km değeri ile yaralı sayısı arasında tek yönlü bir 

nedensellik olduğu görülmektedir. GSMH, km-taĢıt, ağır tonajlı araç sayıları ile yaralı 

sayıları arasında bir nedensellik bulunamamıĢtır.  

 
Etki-tepki analizi yapılmıĢ yaralı sayılarının hata terimleri varyansına bir birimlik bir 

Ģok verilerek nüfus, yol-km, km-taĢıt, ağır tonajlı araç, otomobil sayısı, otobüs, AOGT 

ve GSMH değiĢkenleri üzerindeki etkileri analiz edilmiĢtir. Bu modelde performanslı 

sonuç elde edilmemiĢtir. Grafiksel olarak yorumlanması güç bir tablo çıkmıĢtır. Yaralı 

sayısının birinci döneminde yapılacak 0.05‟lik bir etki, km-taĢıt, otobüs, GSMH 

değiĢkenlerinin 2. döneminde negatif bir tepki meydana getirmiĢtir. DeğiĢkenlerimiz 

için genel olarak 9. dönemde Ģokların etkisi azalmaktadır (ġekil 3.11).  

 
Varyans ayrıĢtırması yapılarak yaralı sayısındaki değiĢimin yani modelin tahmin 

edilemeyen hareketi gözlemlenmiĢtir. 10 dönemlik periyot içerisinde yaralı sayısı 

değiĢkeni kendi hata varyansının %57.584‟ünü açıklamaktadır. Yol-km uzunluğu, km-

taĢıt, ağır tonajlı araç sayısı, otobüs sayısı, AOGT, GSMH, otomobil ve nüfus 

değiĢkenlerinin varyansı açıklama oranları sırasıyla, %9.68, %8.31, %2.24, %6.25, 

%2.78, %1.98, %3.98, %7.17 olmuĢtur (Çizelge 3.35).  

 

Model-II„de üç farklı yöntem kullanılmıĢ, YSA yöntemi farklı olarak 

değerlendirilmiĢtir. Üç yöntem içinde çok değiĢkenli regresyon yönteminin belirlilik 
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katsayısı (R
2
 =0.98) ile en büyük, OKH‟sı (0.0006) ve AIC bilgi kriteri (-73.198) en 

küçük olan model olmuĢtur.  

 
Model-III‟ün Model-II‟den farkı bağımlı değiĢkenin ölü sayısı olarak alınmıĢ olmasıdır. 

Bu uygulamada da Granger Nedenselliği analizi yapılmıĢtır. F tablo değeri olan F(m,n-

k)=3.49 ile hesaplanan F değeri karĢılaĢtırılmıĢtır. Ftablo<Fhesap olan ve olabilirlikleri 

P<0.05 olan değiĢkenler tespit edilmiĢtir. Bu istatistiksel değerlere sahip değiĢkenler 

arasında Granger Nedenselliği olduğu anlaĢılmıĢtır. Bu analiz sonucunda trafik 

kazalarındaki ölü sayıları ile nüfus, yol-km, km-taĢıt, ağır tonajlı araç sayısı, otomobil 

sayısı, otobüs sayısı, AOGT değiĢkenleri arasında tek yönlü bir Granger 

Nedenselliği‟nin olduğu ispatlanmıĢtır. GSMH değeri ile ölü sayısı  arasında bir 

nedensellik bulunamamıĢtır (Çizelge 3.45). 

 

Etki-tepki analizi bu modelimizde de yapılmıĢtır. Ölü sayılarının hata terimleri 

varyansına bir birimlik bir Ģok verilerek; nüfus, yol-km, km-taĢıt, ağır tonajlı araç, 

otomobil sayısı, otobüs, AOGT ve GSMH değiĢkenleri üzerindeki etkileri incelenmiĢtir. 

6. dönemde Ģokların etkisi sona ermiĢtir. Ölü sayısının birinci döneminde yapılacak 

0.014‟lük bir Ģok etkisi, km-taĢıt, ağır tonajlı araç, AOGT ve GSMH değiĢkenlerinin 2. 

döneminde negatif bir tepki meydana getirmiĢtir. DeğiĢkenlerimiz için genel olarak 9. 

dönemde Ģokların etkisi azalmaktadır (ġekil 3.18).  

 
Varyans ayrıĢtırması yapılarak ölü sayısı modelinde, tahmin edilemeyen hareketler 

incelenmiĢtir. 10 dönemlik peryot içerisinde ölü sayısı değiĢkeni kendi hata varyansının  

%62.43‟ünü açıklamıĢtır. Yol-km uzunluğu, km-taĢıt, otomobil sayısı, otobüs sayısı, 

AOGT, GSMH, nüfus değiĢkenlerinin toplam varyansı açıklama oranları sırasıyla, % 

1.45, %11.27, %0.69, %9.97, %7.29, %0.97, %3.84 olmuĢtur. Bağımlı değiĢkeni en 

fazla açıklayan bağımsız değiĢkenler, km-taĢıt, otobüs sayısı, AOGT ve nüfus değerleri 

olmuĢtur (Çizelge 3.47). 
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Model-III‟de üç farklı yöntem kullanılmıĢ, YSA yöntemi farklı olarak 

değerlendirilmiĢtir. Üç yöntem içinde çok değiĢkenli zaman serisi VAR(2) yönteminin 

belirlilik katsayısı (R
2
 =0.84) ile en büyük, OKH‟sı (0.0008) ile en küçük olan model 

olmuĢtur. AIC bilgi kriteri en az olan model ise ARIMA(0,1,1) olmuĢtur. Bu bilgiler 

ıĢığında VAR(2) modeli istatistiksel olarak daha baĢarılı olduğu görülmüĢtür (Çizelge 

4.13).  

 
Ölü sayılarının tespitinde performans ölçüleri R

2
=0.93, OKH=0.004, AIC=-23.83 olarak 

tespit edilmiĢtir. Yaralı sayıları içinde R
2
=0.96, OKH=0.0002, AIC=-49.31 olarak tespit 

edilmiĢtir. Bu sonuçlar itibariyle Model II-III „te yapılan diğer yöntemler içinde YSA en 

baĢarılı yöntem olarak tespit edilmiĢtir (Çizelge 4.14). 

 

Model IV uygulamasında yaralı sayısının, kaza sayısı, AOGT, GSMH bağımsız 

değiĢkenleri ile çok değiĢkenli regresyon modeli oluĢturulmuĢ olup bağımsız 

değiĢkenler arasında yüksek korelasyon çıkmıĢtır. Çok yüksek belirlilik katsayısı (R
2 

)
 

çıkmıĢ, düĢük tolerans ve yüksek VIF değerleri bulunmuĢtur. Bu bilgiler ıĢığında 3 adet 

birbirleri ile iliĢkili bağımsız değiĢken yerine 1 adet temel bileĢen ile modelleme 

yapılmıĢtır. Temel bileĢenimizi en fazla etkileyen değiĢkenimiz kaza sayısı olmuĢtur. 

Yaralı sayıları üzerinde Granger Nedenselliği analizi yapılmıĢtır. Bu analiz sonucunda 

trafik kazalarındaki yaralı sayısı ile kaza sayısı ve AOGT değiĢkeni arasında tek yönlü 

bir Granger Nedenselliği‟nin olduğu ispatlanmıĢtır. GSMH ile yaralı sayıları arasında 

bir nedensellik bulunamamıĢtır (Çizelge 3.62).  

 
Etki-tepki analizi ile ölü sayılarının hata terimleri varyansına bir birimlik bir Ģok 

verildiğinde, kaza sayısı, AOGT ve GSMH değiĢkenleri üzerinde 4. dönemde etkisini 

kaybetmektedir. Yaralı sayısının birinci döneminde yapılacak 0.014‟lük bir Ģok etkisi, 

AOGT ve GSMH değiĢkenlerinin 2. döneminde negatif bir tepki meydana getirmiĢtir. 

DeğiĢkenlerimiz için genel olarak 4. dönemde Ģokların etkisi azalmaktadır (ġekil 3.25).  

 

Varyans ayrıĢtırması yapılarak 10 dönemlik periyot içerisinde yaralı sayısı değiĢkeni 

kendi hata varyansının %70.26‟sını, kaza sayısı %0.82‟sini, AOGT %13.97‟sini, GSMH 
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%14.96‟sını açıkladığı görülmüĢtür. Yaralı sayısını en fazla açıklayan değiĢkenlerimiz, 

AOGT ve GSMH değerleri olmuĢtur (Çizelge 3.65). 

 

Model-IV‟de üç farklı yöntem kullanılmıĢ YSA yöntemi farklı olarak 

değerlendirilmiĢtir. Üç yöntem içinde ARIMA(1,1,0) yöntemi belirlilik katsayısı 

(R
2
=0.92) en fazla, AIC bilgi kriteri (-75.93) ise en az olan model olmuĢtur. OKH‟sı 

0.00018 ile en az olan model ise ÇDR olmuĢtur. Bu bilgiler ıĢığında ARIMA(1,1,0) 

modeli istatistiksel olarak baĢarılı olmuĢtur (Çizelge 4.19).  

 
Model-V‟in Model-IV‟den farkı bağımlı değiĢkenin ölü sayısı olarak alınmıĢ olmasıdır. 

Ölü sayıları üzerinde Granger Nedenselliği analizi yapılmıĢtır. Bu analiz sonucunda 

trafik kazalarındaki ölü sayıları ile kaza sayısı, AOGT değiĢkenleri arasında tek yönlü 

bir Granger Nedenselliği‟nin olduğu ispatlanmıĢtır. GSMH değeri ile ölü sayısı  

arasında bir nedensellik bulunamamıĢtır (Çizelge 3.74).  

 
Etki tepki analizi ölü sayılarının hata terimleri varyansına bir birimlik bir Ģok; nüfus, 

kaza sayısı, AOGT ve GSMH değiĢkenlerinin 4. döneminde Ģokların etkisini sona 

erdirmiĢtir. Ölü sayısının birinci döneminde yapılacak 0.019‟luk bir Ģok etkisi, kaza 

sayısı, AOGT ve GSMH değiĢkenlerinin 2. döneminde negatif bir tepki meydana 

getirmiĢtir. DeğiĢkenlerimiz için genel olarak 4. dönemde Ģokların etkisi azalmaktadır 

(ġekil 3.29).  

 
Varyans ayrıĢtırması ile 10 dönemlik periyot içerisinde ölü sayısı değiĢkeni kendi hata 

varyansının %84.56‟sını, kaza sayısı %0.37‟sini, AOGT %8.07‟sini ve GSMH ise 

%7.01‟ini, açıklamaktadır. Bağımlı değiĢkenimizi en fazla açıklayan değiĢkenler, 

AOGT ve GSMH değerleri olmuĢtur (Çizelge 3.76). 

 

Model-V uygulamasında da üç farklı yöntem kullanılmıĢ, YSA yöntemi farklı olarak 

değerlendirilmiĢtir. Üç yöntem içinde ARIMA(1,1,0) modeli, belirlilik katsayısı 

(R
2
=0.91) en fazla, AIC bilgi kriteri (-92.78) ve OKH‟sı (0.0016) en az olan model 
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olmuĢtur. Bu bilgiler ıĢığında ARIMA(1,1,0) modeli istatistiksel olarak daha baĢarılı 

olmuĢtur (Çizelge 4.23). 

 
Model IV-V YSA uygulamalarında ölü sayılarının tespitinde performans ölçüleri 

R
2
=0.97, OKH=0.0021, AIC=-22.49 olarak tespit edilmiĢtir (Çizelge 4.24). Yaralı 

sayıları içinde R
2
=0.92, OKH=0.00045, AIC=-36.30 olarak tespit edilmiĢtir (Çizelge 

4.25). Bu sonuçlar itibariyle Model IV-V„te kullanılan yöntemler içinde YSA en baĢarılı 

yöntem olarak tespit edilmiĢtir. 

 
Model-VI uygulamalarında model aĢırı yayılım göstermemiĢtir. Bu yüzden yöntem 

olarak Poisson Regresyonu kullanılmıĢtır (Çizelge 3.77). Modelde hız değiĢkeninin 

katsayısı negatif çıkmıĢtır. Bunun sebebi olarak güzergah boyunca ilgili tarihlerde 

yapılan bölünmüĢ yol çalıĢmaları gösterilebilir. Ortalama hızın 78-95 km/h arası değer 

aralığında olması negatif bir katsayıya sahip olabileceğini göstermektedir. Bununla 

birlikte çok değiĢkenli regresyon uygulanmıĢ bu yöntemde ilk önce bütün değiĢkenler 

modele katılmıĢ sabit gözardı edilmemiĢtir. Bunun sonucu olarak belirlilik katsayısı 

(R
2
) çok düĢük çıkmıĢtır. Sabit ve parametreleri tutarlı olmayan değiĢkenler modelden 

çıkarılmıĢlardır (Çizelge 3.80). Böylece model istatistiksel olarak daha anlamlı 

olmuĢtur. YSA uygulamasında ise bütün değiĢkenler girdi olarak alınmıĢtır (Çizelge 

3.81). Üç yöntem içinde istatistiksel olarak en anlamlı olan yöntem YSA yöntemi 

olmuĢtur (Çizelge 4.26). 

 
Model VII uygulamamızda yaralı sayıları bağımlı değiĢken olarak alınmıĢ Poisson 

Regresyonu ile modelleme yapılmıĢtır. Dağılım parametresi birden küçük olduğundan 

Negatif Binomial Regresyon yerine Poisson Regresyonu ile modelleme yapılmıĢtır. 

YOGT değerinin doğal logaritması modele katılmıĢtır. KavĢak sayısının katsayısı 

negatif çıkmıĢtır. Bu durum kavĢak sayısı ne kadar artarsa hızın düĢeceği kaza sayısının 

azalacağı ve yaralı sayısına da negatif bir etki yapması olarak yorumlanmıĢtır. ġerit 

geniĢliği, uzunluk km, değiĢkenlerinin parametreleri anlamlı çıkmadığından modelden 

çıkarılmıĢlardır (Çizelge 3.82). Çok değiĢkenli regresyon uygulamasında R
2
=0.96 

bulunmuĢtur (Çizelge 3.84-3.85). YSA uygulamasında bütün değiĢkenler girdi olarak 
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alınmıĢtır. Eğitim setinde R
2
=0.95 bulunmuĢtur. Test setinde ise R

2
=0.93 bulunmuĢtur 

(Çizelge 3.86). YSA üç yöntem içinde istatistiksel olarak en anlamlı yöntemdir.  

 

Belirli bölgelerdeki trafik kazaları analiz sonuçlarının Coğrafi Bilgi Sistemleri (CBS) 

aracılığıyla veri tabanlarına iĢlenerek, araçlardaki navigasyon cihazlarına uydular 

aracılığıyla iletilmesi ve sürücülerin özellikle kaza yoğunluğu fazla olan yol 

kesimlerinde uyarılabilmesi, yazar tarafından planlanan çalıĢmalar arasındadır.  

 

Özellikle kaza yoğunluğu fazla olan bölgelerimiz için, yol geometrik elemanları, iklim 

Ģartları ve yol yüzey karakteristiklerinin, kazalar üzerindeki etkilerinin modellenmesi, 

ilgili bölgelerdeki kaza sayılarının azaltılması yönünde alınacak tedbirlerin daha 

gerçekçi olmasını sağlayacaktır.  

 

Ülkemizde meydana gelen trafik kazalarının azaltılmasına yönelik Ģu ana kadar bir çok 

çalıĢma yapılmıĢtır. Fakat kazalara ait verilerin toplanması, analizi ve çözüm 

önerilerinin hayata geçirilmesi ile ilgili, kurumsal bir yetki karmaĢası olduğu da bir 

gerçektir. Ülkemizin en önemli problemlerinden biri olan bu problemi daha etkin 

çözmek için, UlaĢtırma Bakanlığı nezdinde kurulacak tam ve tek yetkili bir kuruma 

ihtiyaç olduğu açıkça görülmektedir. Böylece kaza sayılarının azaltılması yolunda kısa 

zamanda büyük mesafeler alınacağı muhakkaktır.  
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