
LOCALIZED MULTIPLE KERNEL ALGORITHMS FOR MACHINE LEARNING

by

Mehmet Gönen

B.S., Industrial Engineering, Boğaziçi University, 2003

M.S., Computer Engineering, Boğaziçi University, 2005

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in Computer Engineering

Boğaziçi University

2010

ii

LOCALIZED MULTIPLE KERNEL ALGORITHMS FOR MACHINE LEARNING

APPROVED BY:

Prof. Ethem Alpaydın

(Thesis Supervisor)

Prof. H. Levent Akın

Prof. İ. Kuban Altınel

Prof. Türkan Haliloğlu

Assoc. Prof. Berrin Yanıkoğlu

DATE OF APPROVAL: 25.05.2010

iii

To my lovely father Tahir Gönen ...

iv

ACKNOWLEDGEMENTS

I would first like to thank my supervisor Prof. Ethem Alpaydın for all the support

he has given me throughout my graduate education; I have been extremely fortunate.

Much of his energy, motivation and of the long discussions we had can be found in

this thesis. I am very grateful to my examiners, Prof. H. Levent Akın, Prof. İ. Kuban

Altınel, Prof. Türkan Haliloğlu, and Assoc. Prof. Berrin Yanıkoğlu, for taking the

time to give me such useful feedback.

I am also very grateful to have been a Ph.D. student at the Department of Com-

puter Engineering, which always provided me with a lively and pleasant atmosphere in

which to work. I would like to thank all the people I have met and worked with during

my time at the department. It is not possible to thank everyone here but I would

particularly like to mention Prof. Cem Ersoy, Assist. Prof. A. Taylan Cemgil, and my

longtime friends, Salim Eryiğit, Onur Dikmen, Aydın Ulaş, İsmail Arı, Itır Karaç, and

Oya Aran, for their scientific inputs, discussions, and friendship over the years. Most

of the work in this thesis has been performed at the Perceptual Intelligence Laboratory

(PILAB). I deeply appreciate the support of all current and former members of PILAB.

Thanks to you all for bearing me all the time!

I would like to thank my parents and primary school teachers Ümmü and Tahir

Gönen, and all my family who have supported me all these years, even from hundreds

of kilometers away. Finally, I would like to thank my dearest love Gülefşan for making

me the happiest men in the world after she walked into my life.

This thesis has been supported by Boğaziçi University Scientific Research Project

07HA101, the Scientific and Technological Research Council of Turkey (TÜBİTAK)

under Grant EEEAG 107E222, and the Ph.D. scholarship (2211) from TÜBİTAK.

v

ABSTRACT

LOCALIZED MULTIPLE KERNEL ALGORITHMS FOR

MACHINE LEARNING

In recent years, several multiple kernel learning methods have been proposed

in the machine learning literature. Different kernels correspond to different notions

of similarity and multiple kernel learning can be used to combine them. It can also

be used to integrate different inputs coming from different representations, possibly

from different sources or modalities, by combining kernels calculated on these repre-

sentations. This thesis contains a number of extensions to the original multiple kernel

learning framework, together with experimental results that support their utility on

benchmark data sets from the UCI Machine Learning Repository as well as several

image image recognition and bioinformatics data sets.

This thesis introduces a regularized multiple kernel learning framework and pro-

poses to use the response surface methodology to search for the best regularization

parameter set using validation data. Optimizing such regularization parameters allows

us to obtain more robust decision functions for the classification task at hand. Ker-

nels that do not help increase the classification accuracy are pruned by selecting their

regularization parameters accordingly, obtaining smoother discriminants. Eliminating

some of the kernels directly or decreasing the number of stored support vectors reduces

the testing time for new instances.

This thesis also proposes a cost-conscious strategy to include the cost of kernel

computations and data acquisition/generation into the multiple kernel learning frame-

work. The results show that incorporating a cost factor into the model enables us to use

only the necessary kernels, avoiding costly kernel computations and input generation

for some data representations in the testing phase, when possible.

vi

The main contribution of this thesis is formulation of a localized multiple kernel

learning framework that is composed of a kernel-based learning algorithm and a gating

model to assign data-dependent weights to kernel functions. We derive the learning

algorithm for three different gating models and apply localized multiple kernel learning

to binary classification, regression, multiclass classification, and one-class classification

problems. For classification problems that use different feature representations, our

proposed method is able to construct better classifiers by combining the kernels on

these representations locally. This localized formulation achieves higher average test

accuracies and stores fewer support vectors compared to the canonical multiple kernel

combination with global weights. We also see that, as expected, combining heteroge-

neous feature representations is more advantageous than combining multiple copies of

the same representation. For image recognition problems, our proposed method iden-

tifies the relevant parts of each input image separately by using the gating model as

a saliency detector on the kernels calculated on the image patches. Different from the

multiple kernel learning methods proper, our proposed method can combine multiple

copies of the same kernel. We show that even if we provide more kernels than needed,

our proposed approach uses only as many support vectors as required and does not

overfit.

We also introduce a supervised and localized dimensionality reduction method

that trains local projection kernels coupled with a kernel-based learning algorithm. On

visualization tasks, our proposed method is able to maintain the multimodality of a

class by placing clusters of the same class on the same side of the hyperplane while

preserving a separation between them. On classification tasks, it achieves better results

than other methods by attaining both higher test accuracy and storing fewer support

vectors due to the coupled optimization of the discriminant and the local projection

matrices used in dimensionality reduction.

vii

ÖZET

YAPAY ÖĞRENME İÇİN YEREL ÇOKLU ÇEKİRDEK

ALGORİTMALARI

Son yıllarda yapay öğrenme için çeşitli çoklu çekirdek yöntemleri önerilmiştir.

Değişik çekirdekler değişik benzerlik ölçütleri tanımlamaktadır, ve çoklu çekirdek öğ-

renimi farklı benzerlik ölçütlerini birleştirmek için kullanılabildiği gibi farklı veri gös-

terimleri üzerinde hesaplanan çekirdek fonksiyonlarını kullanarak farklı kaynaklardan

gelen veya farklı özelliklerdeki verileri birleştirmek için de kullanılabilir. Bu tez, çoklu

çekirdek öğrenimi için yeni yöntemler önermekte ve bu yöntemlerin kullanılabilirliğini

standart karşılaştırma veri kümelerinin yanısıra görüntü tanıma ve biyoinformatik veri

kümeleri üzerinde alınan deneysel sonuçlarla desteklemektedir.

Bu tez, çoklu çekirdek öğreniminde düzenli sonuçlar elde etmek için, tepki yüzeyi

yöntemini kullanarak, geçerleme verisi üzerinde en iyi düzen parametrelerinin seçimi

için yeni bir çoklu çekirdek öğrenim yöntemi önermektedir. Düzen parametrelerinin

eniyilenmesi elimizdeki sınıflandırma problemi için daha iyi karar fonksiyonları elde

etmemizi sağlamaktadır. Sınıflandırma başarısına katkıda bulunmayan çekirdekler

düzen parametrelerinin bu doğrultuda seçilmesiyle elenmekte ve daha iyi ayırtaçlar

elde edilmektedir. Bazı çekirdelerin kullanılmaması veya daha az destek vektörü sak-

lanması ile yeni örnekler için deneme zamanı azalmaktadır.

Bu tez, aynı zamanda, çekirdek hesaplama ve veri toplama/işleme maliyetlerini

dikkate alan maliyet-bilinçli bir çoklu çekirdek öğrenimi yöntemi önermektedir. Sonuç-

lar maliyet etkeninin modele eklenmesinin deneme aşamasında yalnız gerekli çekirdekle-

rin kullanılabilmesini ve bazı veri gösterimleri için maliyetli çekirdek hesaplamalarından

ve veri üretim aşamasından kaçınılabilmesini sağladığını göstermektedir.

viii

Bu tezin ana katkısı, çekirdek-tabanlı bir öğrenme algoritması ve çekirdek fonksiy-

onlarına veriye bağlı ağırlıklar atayan bir geçit modelinden oluşan yerel çoklu çekirdek

öğrenim yöntemi önermesidir. Öğrenme algoritmasını üç değişik geçit modeli için

geliştirdik ve yerel çoklu çekirdek öğrenimini iki sınıflı sınıflandırma, regresyon, çok

sınıflı sınıflandırma ve tek sınıflı sınıflandırma problemlerine uyguladık. Önerilen yön-

tem, değişik veri gösterimleri üzerinde tanımlanan sınıflandırma problemlerinde, bu

veri gösterimleri üzerinde hesaplanan çekirdekleri yerel olarak birleştirerek daha iyi

sınıflandırıcılar üretmektedir. Bilinen çoklu çekirdek öğrenim yöntemiyle karşılaştırıl-

dığında, önerdiğimiz yöntem daha yüksek ortalama sınıflandırma başarısı elde etmekte

ve daha az destek vektörü saklamaktadır. Beklendiği gibi, farklı veri gösterimlerinin

birleştirilmesinin aynı veri gösteriminin birçok kopyasının birleştirilmesine göre daha

üstün olduğunu gördük. Önerilen yöntem, görüntü tanıma problemlerinde geçit mod-

eli ile görüntü parçaları üzerinde hesaplanan çekirdekler içinden seçim yaparak her

bir örnek görüntünün belirgin parçalarını bulabilmektedir. Ayrıca, genel çekirdek

ağırlıkları kullanan yöntemlerden farklı olarak aynı çekirdeğin birçok kopyasını bir-

leştirebilmektedir. Gerekenden fazla çekirdek verildiği durumda bile, modelin gerektiği

kadar destek vektörü kullandığını ve aşırı öğrenmediğini gösterdik.

Yerel izdüşüm çekirdekleri öğrenen ve çekirdek-tabanlı öğrenme algoritmaları ile

birleşik, gözetimli ve yerel bir boyut azaltma yöntemi önerdik. Bu yöntem, görselleş-

tirme görevlerinde bir sınıfın çoklu biçimli yapısını, bu sınıfın örneklerini ayırtacın aynı

tarafına koyarak ve aralarındaki ayrımı koruyarak sürdürebilmektedir. Sınıflandırma

görevlerinde ayırtaç parametlerinin ve boyut azaltmada kullanılan yerel izdüşüm mat-

rislerinin birlikte eniyilenmesiyle, diğer yöntemlere göre daha yüksek sınıflandırma

başarısı elde edilmekte ve daha az destek vektörü saklanmaktadır.

ix

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

ÖZET . vii

LIST OF FIGURES . xiii

LIST OF TABLES . xvii

LIST OF SYMBOLS/ABBREVIATIONS . xxi

1. INTRODUCTION . 1

1.1. Binary Classification Support Vector Machines 1

1.2. Regression Support Vector Machines 4

1.3. One-Class Support Vector Machines . 7

1.4. Multiclass Classification Support Vector Machines 8

1.4.1. Multimachine Approaches . 9

1.4.1.1. One-Versus-All Approach 9

1.4.1.2. All-Versus-All Approach 9

1.4.2. Single-Machine Approaches . 10

1.5. Posterior Probability Support Vector Machines 12

1.6. Outline of the Thesis . 14

2. MULTIPLE KERNEL LEARNING . 15

2.1. Fixed Rules for Kernel Combination 16

2.2. Learning Parameterized Functions of Kernels 18

2.2.1. Linear Functions of Kernels . 19

2.2.1.1. Linear Combination 19

2.2.1.2. Nonnegative Linear Combination 21

2.2.1.3. Convex Combination 24

2.2.1.4. Binary Combination 33

2.2.2. Nonlinear Functions of Kernels 33

2.3. Combining Kernels Using Kernel Similarity Measures 37

2.3.1. Combining Kernels Using Kernel Alignment 38

2.3.1.1. Linear Combination 38

x

2.3.1.2. Nonnegative Linear Combination 39

2.3.1.3. Convex Combination 41

2.3.2. Combining Kernels Using Other Similarity Measures 41

2.4. Combining Kernels Using Boosting . 43

2.5. Bayesian Kernel Combination . 44

2.6. Multiple Kernel Learning as Intermediate Integration 44

2.7. Regularizing Multiple Kernel Learning Using Response Surface Method-

ology . 46

2.7.1. Regularized Multiple Kernel Learning 46

2.7.2. Discussion . 53

2.8. Cost-Conscious Multiple Kernel Learning 56

3. LOCALIZED MULTIPLE KERNEL LEARNING 58

3.1. Gating Models . 59

3.2. Mathematical Model . 60

3.3. Training with Alternating Optimization 62

3.4. Extensions to Other Algorithms . 65

3.4.1. Regression Support Vector Machines 66

3.4.2. One-Class Support Vector Machines 68

3.4.3. Multiclass Support Vector Machines 69

3.5. Discussion . 70

3.5.1. Computational Complexity . 71

3.5.2. Knowledge Extraction . 71

3.5.3. Regularization . 72

3.5.4. Dimensionality Reduction . 72

3.5.5. Related Work . 73

4. LOCAL PROJECTION KERNELS . 75

4.1. Supervised Learning of Global Projection Kernels 77

4.2. Supervised Learning of Local Projection Kernels 80

4.3. Discussion . 85

5. EXPERIMENTS . 87

5.1. Methodology . 87

5.2. Multiple Kernel Learning Experiments 87

xi

5.2.1. Intermediate Integration Experiments 88

5.2.1.1. Data Set . 88

5.2.1.2. Added Features . 89

5.2.1.3. Methodology . 90

5.2.1.4. Results . 90

5.2.2. Regularized Multiple Kernel Learning Experiments 91

5.2.2.1. Combining General Purpose Kernels 92

5.2.2.2. Combining Domain-Specific Kernels 96

5.2.2.3. Comparison with Other Methods 100

5.2.3. Cost-Conscious Multiple Kernel Learning Experiments 103

5.2.3.1. Kernel Selection on UCI Data Sets 104

5.2.3.2. Representation Selection on Handwritten Digit Recog-

nition Data Set . 106

5.2.3.3. Kernel/Representation Selection on Bioinformatics Data

Sets . 108

5.3. Localized Multiple Kernel Learning Experiments 113

5.3.1. Classification Experiments . 113

5.3.1.1. Combining Multiple Representations on Benchmark Data

Sets . 113

5.3.1.2. Combining Multiple Input Patches for Image Recogni-

tion Problems . 118

5.3.2. Regression Experiments . 122

5.4. Local Projection Kernels Experiments 124

5.4.1. Data Visualization . 125

5.4.2. Face Recognition . 127

5.4.3. Classification Experiments . 129

5.4.4. Convergence Analysis . 131

6. CONCLUSIONS AND FUTURE WORK . 134

6.1. Contributions of the Thesis . 134

6.2. Future Work . 137

APPENDIX A: STATISTICAL TESTS USED 139

A.1. 5× 2 cv Paired F Test . 139

xii

A.2. Wilcoxon’s Signed Rank Test . 140

APPENDIX B: DATA SETS USED . 141

B.1. Benchmark Data Sets . 141

B.2. Image Recognition Data Sets . 141

B.3. Bioinformatics Data Sets . 142

REFERENCES . 144

xiii

LIST OF FIGURES

Figure 1.1. SVM solutions on a toy data set using three different kernels . . . 4

Figure 1.2. SVR solution on a toy data set 6

Figure 1.3. OCSVM solution on a toy data set 8

Figure 1.4. MCSVM solution on a three-class toy data set 12

Figure 1.5. MCSVM and MCPPSVM solutions on a three-class toy data set 14

Figure 2.1. Integration methods for multiple feature representations 45

Figure 2.2. The average validation error over {dm}Pm=1 grid on toy data sets . 49

Figure 2.3. Regularized Multiple Kernel Learning (RMKL) 52

Figure 2.4. Separating hyperplanes and support vectors of MKL and RMKL

with (kL-kP -kG) combination on the Gauss3 data set 53

Figure 2.5. Misclassification errors over {dm}Pm=1 grid on Gauss4 and Gauss5

data sets . 56

Figure 3.1. Localized Multiple Kernel Learning (LMKL) 63

Figure 3.2. MKL and LMKL solutions on the Gauss4 data set 64

Figure 3.3. The average test accuracies and support vector percentages on the

Gauss4 data set obtained by LMKL 66

xiv

Figure 3.4. Global and local fits obtained by LMKL with three linear kernels

and softmax gating on the Motorcycle data set 68

Figure 4.1. Global Projection Kernels (GPK) 79

Figure 4.2. Local Projection Kernels (LPK) 83

Figure 4.3. Motivating example for learning local projections 84

Figure 4.4. The gating model output superimposed with training data for the

motivating example . 84

Figure 5.1. Two-dimensional projections obtained on theMultiFeat-EO data

set by KPCA . 95

Figure 5.2. Comparison of MKL, RMKL, EMKL, and RWKL methods in

terms of the average test accuracy and number of kernels used with

(kL-kP -kG) combination . 100

Figure 5.3. Comparison of MKL, RMKL, EMKL, and RWKL methods in

terms of the average test accuracy and number of kernels used with

(kFac-kFou-kKar-kMor-kPix-kZer) combination 101

Figure 5.4. Comparison of MKL, RMKL, EMKL, and RWKL methods in

terms of the average test accuracy and number of kernels used with

(kPfam-kTAP -kPhys-kGen-kExp) combination 101

Figure 5.5. Comparison of MKL, RMKL, EMKL, and RWKL methods in

terms of the average test accuracy and number of kernels used with

(kPfamE-kTAP -kPhys-kGen-kExpG-kSW) combination 102

xv

Figure 5.6. The number of iterations performed by RMKL and RWKL with

(kPfam-kTAP -kPhys-kGen-kExp) and (kPfamE-kTAP -kPhys-kGen-kExpG-

kSW) combinations . 103

Figure 5.7. Four different representations for an example digit eight 107

Figure 5.8. The average test accuracies and support vector percentages on the

MultiFeat-SL data set obtained by LMKL 116

Figure 5.9. The average test accuracies and support vector percentages on the

Advert data set obtained by LMKL 118

Figure 5.10. Example use of MKL on the Olivetti data set 120

Figure 5.11. Example uses of LMKL on the Olivetti data set 121

Figure 5.12. Average kernel weights on the Olivetti data set 121

Figure 5.13. The average test mean square errors and support vector percentages

on the Concrete data set obtained by LMKL 123

Figure 5.14. Data visualization on the Iris data set 125

Figure 5.15. Data visualization on the Thyroid Disease data set 126

Figure 5.16. Data visualization on the Letter Recognition data set 126

Figure 5.17. Data visualization on the Image Segmentation data set 127

Figure 5.18. Data visualization on the Olivetti data set 128

Figure 5.19. Classification results on the Waveform data set 130

xvi

Figure 5.20. Classification results on the USPS-EO data set 130

Figure 5.21. Classification results on the USPS-SL data set 131

Figure 5.22. Classification results on the Olivetti data set 132

Figure 5.23. Convergence analysis of LPK on the Waveform data set 132

Figure 5.24. Convergence analysis of LPK on the Olivetti data set 133

xvii

LIST OF TABLES

Table 1.1. Example machine learning problems 1

Table 2.1. Taxonomy of multiple kernel learning algorithms 17

Table 2.2. Prior probabilities and Gaussian parameters used for toy data sets 48

Table 5.1. Representations, original features, and the new features of the S2783

data set . 90

Table 5.2. The average test accuracies using intermediate integration on the

S2783 data set . 91

Table 5.3. The combination weights obtained using intermediate integration

for the original and modified feature sets on the S2783 data set . . 91

Table 5.4. The average test accuracies, support vector percentages, combina-

tion weights, and regularization parameters with (kL-kP -kG) com-

bination on bioinformatics data sets 93

Table 5.5. Multiple feature representations in the MultiFeat data set 94

Table 5.6. The average test accuracies, support vector percentages, combina-

tion weights, and regularization parameters with (kFac-kFou-kKar-

kMor-kPix-kZer) combination on the MultiFeat data set 94

Table 5.7. Kernels for protein function prediction problem 96

xviii

Table 5.8. The average test accuracies, support vector percentages, combi-

nation weights, and regularization parameters with (kPfam-kTAP -

kPhys-kGen-kExp) combination on the protein function prediction ex-

periments . 97

Table 5.9. The average test accuracies, support vector percentages, combi-

nation weights, and regularization parameters with (kPfamE-kTAP -

kPhys-kGen-kExpG-kSW) combination on the protein function predic-

tion experiments . 99

Table 5.10. The average test accuracies, support vector percentages, total costs,

and normalized combination weights with (kL-kP -kG) combination

on benchmark data sets . 105

Table 5.11. The average test accuracies, support vector percentages, total costs

and normalized combination weights with (Dyn-Sta16) combina-

tion . 107

Table 5.12. The average test accuracies, support vector percentages, total costs

and normalized combination weights with (Dyn-Sta4-Sta8-Sta16)

combination . 108

Table 5.13. The average test accuracies, support vector percentages, total costs

and normalized combination weights for membrane and ribosomal

protein recognition tasks . 109

Table 5.14. The average test accuracies, support vector percentages, total costs

and normalized combination weights with (kPfam-kTAP -kPhys-kGen-

kExp) combination . 111

xix

Table 5.15. The average test accuracies, support vector percentages, total costs

and normalized combination weights with (kPfamE-kTAP -kPhys-kGen-

kExpG-kSW) combination . 112

Table 5.16. Classification results on the MultiFeat-SL data set 115

Table 5.17. Average kernel weights and number of active kernels on the Multi-

Feat-SL data set . 115

Table 5.18. Multiple feature representations in the Advert data set 116

Table 5.19. Classification results on the Advert data set 117

Table 5.20. Average kernel weights and number of active kernels on theAdvert

data set . 117

Table 5.21. Classification results on the Olivetti data set 120

Table 5.22. Regression results on the Concrete data set 123

Table 5.23. Average kernel weights and number of active kernels on the Con-

crete data set . 123

Table 5.24. Regression results on the WhiteWine data set 124

Table 5.25. Average kernel weights and number of active kernels on theWhite-

Wine data set . 124

Table 5.26. Classification data sets used in the experiments 129

Table B.1. Benchmark classification data sets used in the experiments 141

xx

Table B.2. Benchmark regression data sets used in the experiments 142

xxi

LIST OF SYMBOLS/ABBREVIATIONS

⊙ Hadamard product

‖ · ‖p lp-norm

‖ · ‖F Frobenius norm

⊤ Transpose

〈·, ·〉 Dot product

1(·) 1 if the parameter is true, 0 otherwise

b Bias term

C Trade-off parameter

d Regularization parameter

D Dimensionality of the original feature space

k(·, ·) Kernel function

K Number of classes

K Kernel matrix

N Number of training instances

N Natural numbers

N (·, ·) Normal distribution

P Number of kernel to be combined

R Real numbers

R+ Nonnegative real numbers

R++ Positive numbers

S Dimensionality of the mapped feature space

tr(·) Trace

x Data instance

V Gating model parameters

w Weight coefficients

W Projection matrix

y Output value

Z+ Nonnegative integers

xxii

α Support vector coefficient

δji Kronecker delta: 1 if i = j, 0 otherwise

ǫ Error tube width

η Kernel weight

ξ Slack variable

Φ(·) Mapping function

CYGD Comprehensive Yeast Genome Database

DLLE Discriminant Locally Linear Embedding

FDA Fisher Discriminant Analysis

GMKL Generalized Multiple Kernel Learning

GPK Global Projection Kernels

KPCA Kernel Principal Component Analysis

LFDA Local Fisher Discriminant Analysis

LLE Locally Linear Embedding

LLP Local Learning Projections

LMKL Localized Multiple Kernel Learning

LP Linear Programming

LPK Local Projection Kernels

LPP Locality Preserving Projections

MCPPSVM Multiclass Posterior Probability Support Vector Machine

MCSVM Multiclass Support Vector Machine

MKL Multiple Kernel Learning

MSE Mean Square Error

OCSVM One-Class Support Vector Machine

PAM Point Accepted Mutation

PCA Principal Component Analysis

PDB Protein Data Bank

PPSVM Posterior Probability Support Vector Machine

QCQP Quadratically Constrained Quadratic Programming

QP Quadratic Programming

xxiii

RMKL Regularized Multiple Kernel Learning

RSM Response Surface Methodology

SDP Semidefinite Programming

SILP Semi-Infinite Linear Programming

SMKL Sparse Multiple Kernel Learning

SOCP Second-Order Cone Programming

SVM Support Vector Machine

SVR Support Vector Regression

1

1. INTRODUCTION

Machine learning tries to find structural properties in the observed data and

aims to generate rules to make predictions for unseen data. In supervised learning,

we are given observed data instances with their outputs, {(xi, yi)}Ni=1, and the aim is

to estimate the output, y, for an unseen test instance, x. {yi}Ni=1 correspond to class

codes in classification and to output values in regression. Table 1.1 lists some example

machine learning problems with their input representations, features, and outputs. For

example, in face recognition problems, we are given an input face image and we want

to identify the person in the image using the pixel values as the features.

Table 1.1. Example machine learning problems.

Problem Input Features Output

Digit recognition Pixel values {0, 1, . . . , 9}

Face recognition Pixel values {Person1, Person2, . . . }

Disease diagnosis ATCGGT...TTA Nucleotide bases {Healthy, Not healthy}

In classification, a discriminant is a function that separates the instances of one

class from the instances of other classes in the input space and when it is linear, the

discriminant function is written as f(x) = 〈w,x〉+b, where w and b are the parameters

that we need to learn.

1.1. Binary Classification Support Vector Machines

Support Vector Machine (SVM) is a discriminative binary classifier based

on the theory of structural risk minimization (Vapnik, 1998). Given a sample of in-

dependent and identically distributed training instances, {(xi, yi)}Ni=1, where xi ∈ R
D

2

and yi ∈ {−1,+1} is its class label, SVM finds the linear discriminant with the maxi-

mum margin in the feature space induced by the mapping function, Φ: RD → R
S. The

discriminant function is

f(x) = 〈w,Φ(x)〉+ b

whose parameters can be determined by solving the following quadratic optimization

problem:

minimize
1

2
‖w‖22 + C

N∑

i=1

ξi

with respect to w ∈ R
S, ξ ∈ R

N
+ , b ∈ R

subject to yi(〈w,Φ(xi)〉+ b) ≥ 1− ξi ∀i (1.1)

where w is the vector of weight coefficients, S is the dimensionality of the feature

space obtained by Φ(·), C is a predefined positive trade-off parameter between model

simplicity and classification error, ξ is the vector of slack variables, and b is the bias

term of the separating hyperplane.

We obtain the Lagrangian dual of the primal problem (1.1) as follows:

LD =
1

2
‖w‖22 + C

N∑

i=1

ξi −
N∑

i=1

αi(yi(〈w,Φ(xi)〉+ b)− 1 + ξi)−
N∑

i=1

βiξi

and taking the derivatives of LD with respect to the primal variables gives

∂LD

∂w
= 0 ⇒ w =

N∑

i=1

αiyiΦ(xi)

∂LD

∂b
= 0 ⇒

N∑

i=1

αiyi = 0

∂LD

∂ξi
= 0 ⇒ C = αi + βi ∀i. (1.2)

3

From LD and (1.2), the dual formulation is obtained as

maximize

N∑

i=1

αi −
1

2

N∑

i=1

N∑

j=1

αiαiyiyj 〈Φ(xi),Φ(xj)〉
︸ ︷︷ ︸

k(xi,xj)

with respect to α ∈ R
N
+

subject to
N∑

i=1

αiyi = 0

C ≥ αi ≥ 0 ∀i (1.3)

where α is the vector of dual variables corresponding to each separation constraint and

the obtained kernel matrix of k(xi,xj) is positive semidefinite. Solving this, we get

w =
∑N

i=1 αiyiΦ(xi) and the discriminant function can be written as

f(x) =
N∑

i=1

αiyi 〈Φ(xi),Φ(x)〉
︸ ︷︷ ︸

k(xi,x)

+b.

The training instances with nonzero αi values are called support vectors. Other training

instances do not contribute to the decision function and we do not need to store these

instances for the testing phase.

There are several kernel functions successfully used in the literature such as the

linear kernel (kL), the polynomial kernel (kP), and the Gaussian kernel (kG):

kL(xi,xj) = 〈xi,xj〉

kP (xi,xj) = (〈xi,xj〉+ 1)q q ∈ N

kG(xi,xj) = exp
(
−‖xi − xj‖22/s2

)
s ∈ R++.

Figure 1.1 shows the discriminants and support vectors found by SVM with these three

kernels on a toy data set. There are also kernel functions proposed for particular ap-

plications, such as natural language processing (Lodhi et al., 2002) and bioinformatics

(Schölkopf et al., 2004a).

4

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

(a) SVM with kL

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

(b) SVM with kP (q = 2)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

(c) SVM with kG (s = 1)

Figure 1.1. SVM solutions on a toy data set using three different kernels. The solid

lines show the discriminants learned and the dashed lines show the margin

boundaries. The circled data points represent the support vectors stored.

1.2. Regression Support Vector Machines

In regression problems, we are given real-valued outputs, yi ∈ R, instead of

{−1,+1} class labels. Support Vector Regression (SVR) starts by assuming

a linear function in the feature space induced by the mapping function and uses ǫ-

insensitive error function in (1.4), that is, it ignores the error value if its magnitude is

5

less than ǫ (Vapnik, 1998):

e(y, f(x)) =

0, if |y − f(x)| ≤ ǫ,

|y − f(x)|, otherwise.

(1.4)

SVR needs two positive slack variables, ξ+i and ξ−i , for each training instance because

there is no “correct” side for regression and deviations in both directions are penalized.

The training instances that are outside of the ǫ-tube introduce error and the primal

optimization problem can be written as follows:

minimize
1

2
‖w‖22 + C

N∑

i=1

(ξ+i + ξ−i)

with respect to w ∈ R
S, ξ+ ∈ R

N
+ , ξ

− ∈ R
N
+ , b ∈ R

subject to ǫ+ ξ+i ≥ yi − 〈w,Φ(xi)〉 − b ∀i

ǫ+ ξ−i ≥ 〈w,Φ(xi)〉+ b− yi ∀i. (1.5)

We obtain the Lagrangian dual of the primal problem (1.5) as follows:

LD =
1

2
‖w‖22 + C

N∑

i=1

(ξ+i + ξ−i)−
N∑

i=1

α+
i (ǫ+ ξ+i − yi + 〈w,Φ(xi)〉+ b)

−
N∑

i=1

α−
i (ǫ+ ξ−i − 〈w,Φ(xi)〉 − b+ yi)−

N∑

i=1

β+
i ξ

+
i −

N∑

i=1

β−
i ξ

−
i

and taking the derivatives of LD with respect to the primal variables gives

∂LD

∂w
= 0 ⇒ w =

N∑

i=1

(α+
i − α−

i)Φ(xi)

∂LD

∂b
= 0 ⇒

N∑

i=1

(α+
i − α−

i) = 0

∂LD

∂ξ+i
= 0 ⇒ C = α+

i + β+
i ∀i

∂LD

∂ξ−i
= 0 ⇒ C = α−

i + β−
i ∀i. (1.6)

6

From LD and (1.6), the dual formulation is obtained as

maximize

N∑

i=1

yi(α
+
i − α−

i)− ǫ

N∑

i=1

(α+
i + α−

i)

− 1

2

N∑

i=1

N∑

j=1

(α+
i − α−

i)(α
+
j − α−

j)k(xi,xj)

with respect to α+ ∈ R
N
+ ,α

− ∈ R
N
+

subject to

N∑

i=1

(α+
i − α−

i) = 0

C ≥ α+
i ≥ 0 ∀i

C ≥ α−
i ≥ 0 ∀i

and the estimation function can be written as

f(x) =

N∑

i=1

(α+
i − α−

i)k(xi,x) + b.

Figure 1.2 shows the fit and support vectors learned by SVR with the Gaussian kernel

on a toy data set.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 1.2. SVR solution on a toy data set using kG (s = 1). The solid line shows the

fit learned and the dashed lines show the error tube.

7

1.3. One-Class Support Vector Machines

Kernel machines can also be used for novelty and outlier detection problems.

One-Class SVM (OCSVM) is a discriminative method proposed for this purpose

and the task is to learn the smoothest hyperplane that puts most of the training

instances to one side of the hyperplane while allowing other instances remaining on

the other side with a cost (Schölkopf and Smola, 2002). The corresponding primal

optimization problem is

minimize
1

2
‖w‖22 + C

N∑

i=1

ξi + b

with respect to w ∈ R
S, ξ ∈ R

N
+ , b ∈ R

subject to 〈w,Φ(xi)〉+ b+ ξi ≥ 0 ∀i. (1.7)

We obtain the Lagrangian dual of the primal problem (1.7) as follows:

LD =
1

2
‖w‖22 + C

N∑

i=1

ξi + b−
N∑

i=1

αi(〈w,Φ(xi)〉+ b+ ξi)−
N∑

i=1

βiξi

and taking the derivatives of LD with respect to the primal variables gives

∂LD

∂w
= 0 ⇒ w =

N∑

i=1

αiΦ(xi)

∂LD

∂b
= 0 ⇒

N∑

i=1

αi = 1

∂LD

∂ξi
= 0 ⇒ C = αi + βi ∀i. (1.8)

8

From LD and (1.8), the dual formulation is obtained as

maximize − 1

2

N∑

i=1

N∑

j=1

αiαik(xi,xj)

with respect to α ∈ R
N
+

subject to

N∑

i=1

αi = 1

C ≥ αi ≥ 0 ∀i

and the discriminant function can be written as

f(x) =

N∑

i=1

αik(xi,x) + b.

Figure 1.3 shows the discriminant and support vectors found by OCSVM with the

Gaussian kernel on a toy data set.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 1.3. OCSVM solution on a toy data set using kG (s = 2). The solid line

shows the discriminant learned.

1.4. Multiclass Classification Support Vector Machines

In a multiclass classification problem, we are given a training set where an instance

xi can belong to one of K > 2 classes and the class label is given as yi ∈ {1, . . . , K}.
There are two basic approaches in the literature to solve multiclass problems: In the

9

multimachine approach, the original multiclass problem is converted to a number of

independent, uncoupled two-class problems. In the single-machine approach, the con-

straints due to having multiple classes are coupled in a single formulation.

1.4.1. Multimachine Approaches

Multimachine approaches construct separate, uncoupled two-class problems from

the training set. After solving these two-class problems, a voting scheme is required

to decide on the estimated class of a given test point. Decomposition step can be

performed in three different ways: one-versus-all and all-versus-all.

1.4.1.1. One-Versus-All Approach. In one-versus-all approach, K distinct binary clas-

sifiers (K distinct discriminants) are trained to separate one class from all others (Hsu

and Lin, 2002; Rifkin and Klautau, 2004). During test, the class label that is obtained

from the binary classifier with the maximum output value is assigned to a test instance.

Each binary classifier uses all training samples, and for each class, we have a N -variable

Quadratic Programming (QP) problem to be solved. There are two basic concerns

about this approach: First, the binary classifiers are trained on many more negative

examples than positive ones. Second, the real valued outputs of binary classifiers may

be in different scales and direct comparison between them is not applicable (Mayoraz

and Alpaydın, 1999).

1.4.1.2. All-Versus-All Approach. Another approach is the all-versus-all or pairwise

decomposition (Schmidt and Gish, 1996; Krefsel, 1998), where there are K(K − 1)/2

binary classifiers for each possible pair of classes. The classifier count is generally much

larger than one-versus-all, but when separating two classes, instances of all classes

except these two are ignored and hence the quadratic programs in each classifier are

much smaller, making it possible to train the system very fast. This approach has the

disadvantage of potential variance increase due to the small training set size for each

classifier (Lee et al., 2001). The test procedure should utilize a voting scheme to decide

which class a test point belongs to, and a modified testing procedure to speed up by

10

using directed acyclic graph traversals instead of evaluating all K(K − 1)/2 classifiers

is proposed (Platt et al., 2000).

1.4.2. Single-Machine Approaches

A more natural way than using the multimachine approach is to construct a de-

cision function by considering all classes at once (Vapnik, 1998; Weston and Watkins,

1998; Bredensteiner and Bennett, 1999). For the single-machine approach called Mul-

ticlass SVM (MCSVM), for class l, we write the discriminant function as follows:

f l(x) = 〈wl,Φ(x)〉+ bl ∀l.

The corresponding primal optimization problem is

minimize
1

2

K∑

l=1

‖wl‖22 + C

N∑

i=1

K∑

l=1

ξli

with respect to wl ∈ R
S, ξl ∈ R

N
+ , b

l ∈ R

subject to (〈wyi ,Φ(xi)〉+ byi)− (〈wl,Φ(xi)〉+ bl) ≥ 2− ξli ∀(i, l 6= yi)

ξyii = 0 ∀i. (1.9)

We obtain the Lagrangian dual of the primal problem (1.9) as follows:

LD =
1

2

K∑

l=1

‖wl‖22 + C
N∑

i=1

K∑

l=1

ξli −
N∑

i=1

K∑

l=1

βl
iξ

l
i

−
N∑

i=1

K∑

l=1

αl
i((〈wyi ,Φ(xi)〉+ byi)− (〈wl,Φ(xi)〉+ bl)− 2 + ξli)

11

and taking the derivatives of LD with respect to the primal variables gives

∂LD

∂wl
= 0 ⇒ wl =

N∑

i=1

(δlyiAi − αl
i)Φ(xi)

∂LD

∂bl
= 0 ⇒

N∑

i=1

αl
i −

N∑

i=1

δlyiAi = 0 ∀l

∂LD

∂ξli
= 0 ⇒ C = αl

i + βl
i ∀(i, l) (1.10)

where δlyi is 1 if yi = l and 0 otherwise, and Ai =
∑K

l=1 α
l
i.

From LD and (1.8), the dual formulation is obtained as

maximize 2

N∑

i=1

K∑

l=1

αl
i −

1

2

N∑

i=1

N∑

j=1

(

δyjyi AiAj −
K∑

l=1

αl
i(2α

yi
j − αl

j)

)

k(xi,xj)

with respect to αl ∈ R
N
+

subject to

N∑

i=1

αl
i −

N∑

i=1

δlyiAi = 0 ∀l

(1− δlyi)C ≥ αl
i ≥ 0 ∀(i, l) (1.11)

and the discriminant function for class l can be written as

f l(x) =
N∑

i=1

(δlyiAi − αl
i)k(xi,x) + bl.

The main disadvantage of this approach is the enormous size of the resulting

quadratic programs. For example, one-versus-all method solves K separate N -variable

quadratic problems, but the dual formulation in (1.11) has N × (K − 1) variables.

In order to tackle such large quadratic problems, different decomposition methods

and optimization algorithms are proposed. Crammer and Singer (2001) develop a

mathematical model that reduces the variable size from N× (K−1) to N and propose

an efficient algorithm to solve the new formulation.

12

Figure 1.4 shows the discriminants and support vectors found by MCSVM with

the linear kernel on a toy data set.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 1.4. MCSVM solution on a three-class toy data set using kL. The solid lines

show the discriminants learned.

1.5. Posterior Probability Support Vector Machines

Tao et al. (2005b) in their proposed Posterior Probability SVM (PPSVM)

modify the canonical SVM discussed above to utilize class probabilities instead of using

hard {−1,+1} labels. These “soft labels” are calculated from estimated posterior

probabilities as

ŷi = 2Pr(+1|xi)− 1 ∀i (1.12)

and they rewrite the separation constraints as

ŷi(〈w,Φ(xi)〉+ b) ≥ ŷ2i − ŷ2i ξi ∀i. (1.13)

Note that the separation constraints can also be rewritten as (1.13) with hard labels,

{yi}Ni=1 in place of soft labels, {ŷi}Ni=1. In other words, yi are equal to ŷi when the

posterior probability estimates in (1.12) are 0 or 1.

13

The advantage of using soft labels derived from posterior probabilities, {ŷi}Ni=1,

instead of hard class labels, {yi}Ni=1, in (1.13) is twofold. Because the posterior prob-

ability at a point is the combined effect of a number of neighboring instances, first,

it gives a chance to correct the error introduced by wrongly labeled/noisy points due

to correctly labeled neighbors; this can be seen as a smoothing of labels and therefore

of the induced boundary. Second, an instance that is surrounded by a number of in-

stances of the same class becomes redundant and this decreases the number of stored

supports.

The multiclass extension to SVM, MCSVM, is modified to include posterior

probability estimates instead of hard labels (Gönen et al., 2008). The separation con-

straints in (1.9) try to place each instance on the correct side of each hyperplane with

at least two units distance. In the canonical formulation, this comes from the fact that

the true class label is +1 and the wrong class label is −1.

In theMulticlass PPSVM (MCPPSVM) formulation, the label of an instance

for class l is defined as 2 Pr(l|x)− 1. So, the separation constraints in (1.9) should be

replaced by the following constraints:

(〈wyi,Φ(xi)〉+ byi)− (〈wl,Φ(xi)〉+ bl) ≥ 2(Pr(yi|xi)− Pr(l|xi))− ξli ∀(i, l 6= yi).

The objective function in (1.11) in the dual formulation becomes

maximize 2
N∑

i=1

K∑

l=1

αl
i(Pr(yi|xi)− Pr(l|xi))

− 1

2

N∑

i=1

N∑

j=1

(

δyjyiAiAj −
K∑

l=1

αl
i(2α

yi
j − αl

j)

)

k(xi,xj).

We show the difference between MCSVM and MCPPSVM on a three-class toy

data set in Figure 1.5. We see that MCSVM stores the outliers as support vectors

(filled points) and this shifts the induced boundary (solid lines). With MCPPSVM,

14

because the neighbors of the outliers belong to a different class, the posterior proba-

bilities there are small and the outliers are effectively canceled resulting in a reduction

in bias; they are not chosen as support vectors and therefore they do not effect the

boundary. Though this causes some training error, the generalization is improved, and

the number of support vectors decreases from seven to four.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

(a) MCSVM

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

(b) MCPPSVM

Figure 1.5. MCSVM and MCPPSVM solutions on a three-class toy data set using

kP (q = 2).

1.6. Outline of the Thesis

The thesis is organized as follows: In Chapter 2, we review the multiple kernel

learning methods and give two new formulations for regularizing the solutions and in-

tegrating the costs of kernels into the combination algorithm. The proposed localized

multiple kernel learning method is introduced in Chapter 3. In Chapter 4, a super-

vised and localized dimensionality reduction algorithm based on kernel machines is

developed. Empirical results obtained with the proposed methods of Chapters 2–4

and statistical comparisons with existing methods in the literature are presented in

Chapter 5. We conclude and discuss possible future work in Chapter 6.

15

2. MULTIPLE KERNEL LEARNING

Kernel machines learn a decision function in terms of kernel values between train-

ing instances, {xi}Ni=1, and the test instance, x, as follows:

f(x) =
N∑

i=1

αik(xi,x) + b

where the kernel function k(·, ·) can be one of the general purpose kernels (e.g., linear,

polynomial, and Gaussian) or one that is application-specific (e.g., a graph kernel, a

tree kernel, and so on). Selecting the kernel function k(·, ·) and its parameters (e.g.,

degree in the polynomial kernel or spread in the Gaussian kernel) is an important

issue in training. Generally, a cross-validation procedure is used to choose the best

performing kernel function among a set of kernel functions on a separate validation set

different from the training set.

In recent years, Multiple Kernel Learning (MKL) methods have been pro-

posed, where we use multiple kernels instead of selecting one specific kernel function

and its corresponding parameters:

kη(xi,xj) = fη({km(xm
i ,x

m
j)}Pm=1) (2.1)

where the combination function, fη(·), can be a linear or a nonlinear function of the

input kernels. Kernel functions, {km(·, ·)}Pm=1, take P feature representations (not

necessarily different) of data instances, where xi = {xm
i }Pm=1, x

m
i ∈ R

Dm , and Dm is

the dimensionality of the corresponding feature representation.

The reasoning is similar to combining different classifiers: Instead of choosing a

single kernel function and putting all our eggs in the same basket, it is better to have

a set and let an algorithm do the picking or combination. There can be two uses of

MKL:

16

(a) Different kernels correspond to different notions of similarity and instead of trying

to find which works best, a learning method does the picking for us, or may use

a combination of them. Using a specific kernel may be a source of bias, and

in allowing a learner to choose among a set of kernels, a better solution can be

found.

(b) Different kernels may be using inputs coming from different representations possi-

bly from different sources or modalities. Since these are different representations,

they have different measures of similarity corresponding to different kernels. In

such a case, combining kernels is one possible way to combine multiple informa-

tion sources. Noble (2004) call this method of combining kernels intermediate

combination and contrasts this with early combination (where features from dif-

ferent sources are concatenated and fed to a single learner) and late combination

(where different features are fed to different classifiers whose decisions are then

combined by a fixed or trained combiner).

There is significant amount of work in the machine learning literature for com-

bining multiple kernels. We give a taxonomy in Table 2.1 and the following sections

follow this taxonomy (Gönen and Alpaydın, 2009b).

2.1. Fixed Rules for Kernel Combination

Fixed rules for kernel combination use fη(·) in (2.1) as a fixed function of the

kernels, without any training. Once we obtain kη(·, ·) using fη(·), we train a canonical

kernel machine with the kernel matrix calculated using kη(·, ·). For example, we can

obtain a valid kernel by taking the summation or multiplication of two valid kernels

(Cristianini and Shawe-Taylor, 2000):

kη(xi,xj) = k1(x
1
i ,x

1
j) + k2(x

2
i ,x

2
j)

kη(xi,xj) = k1(x
1
i ,x

1
j)k2(x

2
i ,x

2
j). (2.2)

17

Table 2.1. Taxonomy of multiple kernel learning algorithms.

Fixed Rules

Pavlidis et al. (2001); Ben-Hur and Noble (2005)

Parameterized Functions

Linear Functions

Linear Combination

Lanckriet et al. (2002); Lanckriet et al. (2004a); Conforti and Guido (2010)

Nonnegative Linear Combination

Fung et al. (2004); Lanckriet et al. (2004a); Tsuda et al. (2004); Qiu and Lane (2005); Lin

et al. (2009); Zhao et al. (2009); Kloft et al. (2010)

Convex Combination

Bousquet and Herrmann (2003); Bach et al. (2004); Argyriou et al. (2005); Argyriou et al.

(2006); Micchelli and Pontil (2005); Kim et al. (2006); Sonnenburg et al. (2006a); Sonnen-

burg et al. (2006b); De Bie et al. (2007); Rakotomamonjy et al. (2007); Rakotomamonjy

et al. (2008); Ye et al. (2007a); Zien and Ong (2007); Longworth and Gales (2008); Long-

worth and Gales (2009); Xu et al. (2009a)

Binary Combination

Xu et al. (2009b)

Nonlinear Functions

Ong et al. (2003); Ong et al. (2005); Ong and Smola (2003); Lewis et al. (2006a); Varma

and Ray (2007); Varma and Babu (2009); Cortes et al. (2010)

Similarity-Based Methods

Kernel Alignment

Linear Combination

Lanckriet et al. (2004a); Igel et al. (2007)

Nonnegative Linear Combination

Kandola et al. (2002); Lanckriet et al. (2004a)

Convex Combination

Qiu and Lane (2009)

Other Similarity Measures

He et al. (2008); Nguyen and Ho (2008); Ying et al. (2009)

Boosting Methods

Bennett et al. (2002); Crammer et al. (2003); Bi et al. (2004)

Bayesian Methods

Girolami and Rogers (2005); Girolami and Zhong (2007); Damoulas and Girolami (2008);

Damoulas and Girolami (2009a); Damoulas and Girolami (2009b)

18

We can apply the rules in (2.2) recursively to obtain the rules for more than two kernels:

kη(xi,xj) =

P∑

m=1

km(x
m
i ,x

m
j)

kη(xi,xj) =
P∏

m=1

km(x
m
i ,x

m
j). (2.3)

Pavlidis et al. (2001) report that on a gene functional classification task, training an

SVM with an unweighted sum of heterogeneous kernels gives better results than the

combination of multiple SVMs each trained with one of these kernels.

Pairwise kernels are used to express the similarity between pairs (e.g., of proteins

in terms of similarities between individual proteins). The simplest way to define a

pairwise kernel is

k({xa
i ,x

a
j}, {xb

i ,x
b
j}) = k(xa

i ,x
b
i)k(x

a
j ,x

b
j) + k(xa

i ,x
b
j)k(x

a
j ,x

b
i).

Ben-Hur and Noble (2005) combine pairwise kernels in two different ways

kη({xa
i ,x

a
j}, {xb

i ,x
b
j}) =

P∑

m=1

km({xa
i ,x

a
j}, {xb

i ,x
b
j})

kη({xa
i ,x

a
j}, {xb

i ,x
b
j}) = kη(x

a
i ,x

b
i)kη(x

a
j ,x

b
j) + kη(x

a
i ,x

b
j)kη(x

a
j ,x

b
i)

and improve the classification performance for protein-protein interaction prediction

task.

2.2. Learning Parameterized Functions of Kernels

In (2.1), instead of using a fixed fη(·), we can have a function parameterized by

a set of parameters Θ and then we have a learning procedure to optimize Θ as well.

19

2.2.1. Linear Functions of Kernels

The simplest case is to parameterize the sum rule using kernel weights, {ηm}Pm=1:

kη(xi,xj) = fη({km(xm
i ,x

m
j)}Pm=1|Θ = {ηm}Pm=1) =

P∑

m=1

ηmkm(x
m
i ,x

m
j).

Different versions of this approach differ in the way they put restrictions on {ηm}Pm=1.

2.2.1.1. Linear Combination. A direct approach to optimize the unrestricted kernel

combination weights can be followed (Lanckriet et al., 2002; Lanckriet et al., 2004a).

The implausibility of a kernel matrix, ω(K), is defined as the objective function value

obtained after solving a canonical SVM optimization problem (Here we only consider

the soft margin formulation, which uses the l1-norm on slack variables).

maximize ω(K) =
N∑

i=1

αi −
1

2

N∑

i=1

N∑

j=1

αiαjyiyjk(xi,xj)

with respect to α ∈ R
N
+

subject to

N∑

i=1

αiyi = 0

C ≥ αi ≥ 0 ∀i

The combined kernel matrix is selected from the following set:

KL =

{

K : K =

P∑

m=1

ηmKm, K � 0, tr(K) ≤ c

}

where the selected kernel matrix is forced to be positive semidefinite.

The resulting optimization problem that minimizes the implausibility of the com-

bined kernel matrix (the objective function value of the corresponding soft margin SVM

20

optimization problem) is formulated as

minimize ω(Ktra
η)

with respect to Kη ∈ KL

subject to tr(Kη) = c

where Ktra
η is the kernel matrix calculated over only the training set and this problem

can be cast into the following Semidefinite Programming (SDP) formulation:

minimize t

with respect to η ∈ R
P , t ∈ R, λ ∈ R,ν ∈ R

N
+ , δ ∈ R

N
+

subject to tr(Kη) = c

(yy⊤)Ktra

η e+ ν − δ + λy

(e+ ν − δ + λy)⊤ t− 2Cδ⊤e

 � 0

Kη � 0.

This optimization problem is defined for a transductive learning setting and we need

to be able to calculate the kernel function values for test instances as well as training

instances.

Different kernels calculated on heterogeneous genomic data, namely, amino acid

sequences, protein-protein interactions, genetic interactions, protein complex data, and

expression data, are combined using SDP formulation for predicting function classifi-

cations associated with Yeast proteins (Lanckriet et al., 2004c; Lanckriet et al., 2004a).

This gives better results than SVMs trained with each kernel in nine out of 13 exper-

iments. Conforti and Guido (2010) propose another SDP formulation that removes

the trace restriction on the combined kernel matrix and introduces constraints over the

kernel weights for an inductive setting.

21

2.2.1.2. Nonnegative Linear Combination. Lanckriet et al. (2004a) restrict the com-

bination weights to have nonnegative values by selecting the combined kernel matrix

from

KP =

{

K : K =
P∑

m=1

ηmKm, η ≥ 0, K � 0, tr(K) ≤ c

}

.

and reduce the SDP formulation to the following Quadratically Constrained

QP (QCQP) optimization problem by selecting the combined kernel matrix from KP :

minimize
1

2
ct−

N∑

i=1

αi

with respect to α ∈ R
N
+ , t ∈ R

subject to tr(Km)t ≥ α⊤
(
(yy⊤)Ktra

m

)
α ∀m

N∑

i=1

αiyi = 0

C ≥ αi ≥ 0 ∀i

where we can jointly find the support vector coefficients and the kernel combination

weights. This optimization problem is also developed for a transductive setting, but we

can simply take the number of test instances as zero and find the kernel combination

weights for an inductive setting. The interior-point methods used to solve this QCQP

formulation also return the optimal values of the dual variables, and they correspond

to the optimal kernel weights. Qiu and Lane (2005) give Semi-Infinite Linear

Programming (SILP) andQCQP formulations of regression estimation using ǫ-tube

SVR. The QCQP formulation is used for predicting siRNA efficacy by combining

kernels over heterogeneous data sources (Qiu and Lane, 2009). Zhao et al. (2009)

develop a multiple kernel learning method for clustering problems using the maximum

margin clustering idea of Xu et al. (2005) and a nonnegative linear combination of

kernels.

Lanckriet et al. (2004a) combine two different kernels obtained from heteroge-

neous information sources, namely, bag-of-words and graphical representations, on

22

Reuters-21578 data set. Combining these two kernels with positive weights outper-

forms single-kernel results obtained with SVM on four tasks out of five. Lanckriet

et al. (2004b) uses a QCQP formulation to integrate multiple kernel functions calcu-

lated on heterogeneous views of genome data obtained through different experimental

procedures. These views include amino acid sequences, hydropathy profiles, gene ex-

pression data and known protein-protein interactions. The prediction task is to rec-

ognize the particular classes of proteins, namely, membrane proteins and ribosomal

proteins. The QCQP approach gives significantly better results than any single kernel

and the unweighted sum of kernels. The assigned kernel weights also enable us to

extract the relative importance of the data sources feeding the separate kernels. This

approach assigns near zero weights to random kernels added to the candidate set of

kernels before training. Dehak et al. (2008) combine three different kernels obtained

on the same features and get better results than score fusion for speaker verification

tasks.

Fung et al. (2004) propose an iterative algorithm based on kernel Fisher discrim-

inant analysis to combine heterogeneous kernels in a linear manner with nonnegative

weights. The proposed method requires solving a simple nonsingular system of linear

equations of size (N + 1) and a QP problem having P decision variables at each iter-

ation. On a colorectal cancer diagnosis task, this method obtains similar results using

much less computation time compared to selecting a kernel for standard kernel Fisher

discriminant analysis.

Tsuda et al. (2004) learn the kernel combination weights by minimizing an ap-

proximation of the cross-validation error for kernel Fisher discriminant analysis. In

order to update the kernel combination weights, cross-validation error should be ap-

proximated with a differentiable error function. Tsuda et al. (2004) use the sigmoid

function for approximation and derive the update rules of the kernel weights. This pro-

cedure requires inverting a N × N matrix and calculating the gradients at each step.

Tsuda et al. (2004) combine heterogeneous data sources using kernels, which are mixed

linearly and nonlinearly, for bacteria classification and gene function prediction tasks.

Fisher discriminant analysis with the combined kernel matrix, which is optimized using

23

the cross-validation error approximation, gives significantly better results than single

kernels for both tasks.

In order to consider the capacity of the resulting classifier, Tan and Wang (2004)

optimize the nonnegative combination coefficients by using the minimal upper bound

of the Vapnik-Chervonenkis dimension as the target function.

Lin et al. (2009) propose a dimensionality reduction method that uses multiple

kernels to embed data instances from different feature spaces to a unified feature space.

The method is derived from a graph embedding framework using kernel matrices in-

stead of data matrices. The learning phase is performed using a two-step alternating

optimization procedure that updates the dimensionality reduction coefficients and the

kernel weights in turn. McFee and Lanckriet (2009) propose a method for learning a

unified space from multiple kernels calculated over heterogeneous data sources. This

method uses a partial order over pairwise distances as the input and produces an embed-

ding using graph-theoretic tools. The kernel (data source) combination rule is learned

by solving an SDP problem and all input instances are mapped to the constructed

common embedding space.

Kloft et al. (2010) generalize the MKL formulation for arbitrary lp (p ≥ 1)

norms by regularizing over the kernel coefficients (which is done by adding µ‖η‖pp to

the objective function) or equivalently constraining them (‖η‖pp ≤ 1). The resulting

optimization problem is

maximize

N∑

i=1

αi −
1

2

P∑

m=1

(
N∑

i=1

N∑

j=1

αiαiyiyjkm(x
m
i ,x

m
j)

)
p− 1

p

p

p− 1

with respect to α ∈ R
N
+

subject to

N∑

i=1

αiyi = 0

C ≥ αi ≥ 0 ∀i.

24

and Kloft et al. (2010) solve this problem by using alternating optimization strategies

based on Newton descent and cutting planes.

Lewis et al. (2006b) compare the performances of unweighted and weighted sums

of kernels on a gene functional classification task. Their results can be summarized

with two guidelines:

(a) When all kernels or data sources are informative, we should use the unweighted

sum rule.

(b) When some of the kernels or the data sources are noisy or irrelevant, we should

optimize the kernel weights.

Usually, the kernel weights are constrained by a trace or l1-norm regularization.

Cortes et al. (2009) discuss the suitability of the l2-norm for MKL. They combine

kernels with ridge regression using the l2-norm regularization over the kernel weights.

They conclude that using the l1-norm improves the performance for a small number

of kernels, but degrades the performance when combining a large number of kernels.

However, the l2-norm never decreases the performance and significantly increases the

performance for larger sets of candidate kernels. Yan et al. (2009) compare the l1-norm

and the l2-norm for image and video classification tasks, and conclude that the l2-norm

should be used when the combined kernels carry complementary information.

2.2.1.3. Convex Combination. We can think of kernel combination as a weighted av-

erage of kernels and consider η ∈ R
P
+ and

∑P
m=1 ηm = 1. Joachims et al. (2001) show

that combining two kernels is beneficial if both of them achieve approximately the same

performance and use different data instances as support vectors. This makes sense: In

combination, we want kernels to be useful by themselves and complementary. In a web

page classification experiment, combining the word and the hyperlink representations

through the convex combination of two kernels (i.e., η2 = 1 − η1) can achieve better

classification accuracy than each of the kernels.

25

Chapelle et al. (2002) calculate the derivative of the margin and the derivative

of the radius (of the smallest sphere enclosing the training points) with respect to a

kernel parameter, θ:

∂‖w‖22
∂θ

= −
N∑

i=1

N∑

j=1

αiαjyiyj
∂k(xi,xj)

∂θ

∂R2

∂θ
=

N∑

i=1

βi
∂k(xi,xi)

∂θ
−

N∑

i=1

N∑

j=1

βiβj
∂k(xi,xj)

∂θ

where α is obtained by solving the canonical SVM optimization problem and β is

obtained by solving the QP problem defined by Vapnik (1998). These derivatives

can be used to optimize the individual parameters (e.g., scaling coefficient) on each

feature by using an alternating optimization procedure (Weston et al., 2001; Chapelle

et al., 2002; Grandvalet and Canu, 2003). This strategy is also a multiple kernel

learning approach because the optimized parameters can be interpreted as the kernel

parameters, and then we combine these kernel values over all features.

Bousquet and Herrmann (2003) rewrite the gradient of the margin by replacing

K with Kη and taking the derivative with respect to the kernel weights gives

∂‖wη‖22
∂ηm

= −
N∑

i=1

N∑

j=1

αiαjyiyj
∂kη(xi,xj)

∂ηm
= −

N∑

i=1

N∑

j=1

αiαjyiyjkm(x
m
i ,x

m
j) ∀m

where wη is the weight vector obtained using Kη in training. In an iterative manner,

an SVM is trained to obtain α, then η is updated using the calculated gradient while

considering nonnegativity (i.e., η ∈ R
P
+) and normalization (i.e.,

∑P
m=1 ηm = 1). This

procedure considers the performance (in terms of margin maximization) of the resulting

classifier, which uses the combined kernel matrix.

Micchelli and Pontil (2005) try to learn an optimal kernel over the convex hull

of predefined basic kernels by minimizing a regularization functional. Their analysis

shows that any optimizing kernel can be expressed as the convex combination of basic

kernels. Practical algorithms for learning a suboptimal kernel when the basic kernels

26

are continuously parameterized by a compact set can be built (Argyriou et al., 2005;

Argyriou et al., 2006). This continuous parameterization allows us to select kernels

from basically an infinite set instead of a finite number of basic kernels.

Kim et al. (2006) show that selecting the optimal kernel from the set of convex

combinations over the candidate kernels can be formulated as a convex optimization

problem. This formulation is more efficient than the iterative approach of Fung et al.

(2004). Ye et al. (2007a) formulate an SDP problem inspired by Kim et al. (2006) for

learning an optimal kernel over a convex set of candidate kernels for regularized kernel

discriminant analysis. The SDP formulation can be modified so that it can jointly

optimize the kernel weights and the regularization parameter. The QCQP and SILP

formulations equivalent to the previous SDP problem are derived in order to reduce

the time complexity (Ye et al., 2007b; Ye et al., 2008). These three formulations are

directly applicable to multiclass classification due to being dependent on regularized

kernel discriminant analysis.

De Bie et al. (2007) derive a QCQP formulation of one-class classification prob-

lem using a convex combination of multiple kernels. In order to prevent the combined

kernel from overfitting, they also propose a modified mathematical model that puts

lower limits for the kernel weights. Hence, each kernel in the set of candidate kernels

is used in the combined kernel and we obtain a more regularized learner. Their results

on gene prioritization task coincide with that of Lewis et al. (2006b).

Bach et al. (2004) propose a modified primal formulation that uses the weighted

l1-norm on feature spaces and the l2-norm within each feature space. The modified

primal formulation is

minimize
1

2

(
P∑

m=1

dm‖wm‖2
)2

+ C
N∑

i=1

ξi

with respect to wm ∈ R
Sm, ξ ∈ R

N
+ , b ∈ R

subject to yi

(
P∑

m=1

〈wm,Φm(x
m
i)〉+ b

)

≥ 1− ξi ∀i (2.4)

27

where the feature space constructed by using Φm(·) has the dimensionality Sm and the

weight dm. When we consider this optimization problem as a Second-Order Cone

Programming (SOCP), we obtain the following dual formulation:

minimize
1

2
γ2 −

N∑

i=1

αi

with respect to γ ∈ R,α ∈ R
N
+

subject to γ2d2m ≥
N∑

i=1

N∑

j=1

αiαjyiyjkm(x
m
i ,x

m
j) ∀m

N∑

i=1

αiyi = 0

C ≥ αi ≥ 0 ∀i (2.5)

where we again get the optimal kernel weights from the optimal dual variables and

the weights satisfy
∑P

m=1 d
2
mηm = 1. The dual problem is exactly equivalent to the

QCQP formulation of Lanckriet et al. (2004a) when we take dm =
√

tr(Km)/c. The

advantage of the SOCP formulation is that Bach et al. (2004) devise an SMO-like

algorithm by adding a Moreau-Yosida regularization term, 1/2
∑P

m=1 a
2
m‖wm‖22, to the

primal objective function and deriving the corresponding dual formulation. Using the

l1-norm on feature spaces, Yamanishi et al. (2007) combine tree kernels for identifying

human glycans into four blood components: leukemia cells, erythrocytes, plasma, and

serum. Except on plasma task, representing glycans as rooted trees and combining

kernels improve performance in terms of area under the curve. Bach (2009) develops

a method for learning linear combinations of an exponential number of kernels, which

can be expressed as product of sums. The method is applied to nonlinear variable

selection and efficiently explores the large feature spaces in polynomial time.

28

The QCQP formulation of Bach et al. (2004) can be rewritten as

minimize γ

with respect to γ ∈ R,α ∈ R
N
+

subject to

N∑

i=1

αiyi = 0

C ≥ αi ≥ 0 ∀i

γ ≥ 1

2

N∑

i=1

N∑

j=1

αiαjyiyjkm(x
m
i ,x

m
j)−

N∑

i=1

αi

︸ ︷︷ ︸

Sm(α)

∀m

and can be converted into the following SILP problem:

maximize θ

with respect to θ ∈ R,η ∈ R
P
+

subject to
P∑

m=1

ηm = 1

P∑

m=1

ηmSm(α) ≥ θ ∀α ∈ {α : α ∈ R
N , α⊤y = 0, C ≥ α ≥ 0}

where the problem has infinitely many constraints due to possible values ofα (Sonnenburg

et al., 2006a; Sonnenburg et al., 2006b).

The SILP formulation has lower computational complexity compared to the SDP

and QCQP formulations. A column generation approach is used to solve the resulting

SILPs using a generic Linear Programming (LP) solver and a canonical SVM

solver in the inner loop (Sonnenburg et al., 2006a; Sonnenburg et al., 2006b). Both the

LP solver and the SVM solver can use previous optimal values for hot-start to obtain

the new optimal values faster. These allow us to use the SILP formulation to learn the

kernel combination weights for hundreds of kernels on hundreds of thousands of training

instances efficiently. For example, they perform training on a million real-world splice

data set from computational biology with string kernels. They also generalize the idea

29

to regression estimation, one-class classification, and strictly convex and differentiable

loss functions.

Zien and Ong (2007) develop a QCQP formulation and convert this formulation

in two different SILP problems for multiclass classification problems. They show that

their formulation is the multiclass generalization of the previously developed binary

classification methods of Bach et al. (2004) and Sonnenburg et al. (2006b). The pro-

posed multiclass formulation is tested on different bioinformatics applications such as

bacterial protein location prediction (Zien and Ong, 2007) and protein subcellular loca-

tion prediction (Zien and Ong, 2007; Zien and Ong, 2008), and outperforms individual

kernels and unweighted sum of kernels. Hu et al. (2009) combine the generalized mul-

tiple kernel learning formulation of Zien and Ong (2007) and the sparse kernel learning

method of Wu et al. (2006). This hybrid approach learns the optimal kernel weights

and also obtains a sparse solution.

A different primal problem for MKL and a projected gradient method to solve

this optimization problem are proposed (Rakotomamonjy et al., 2007; Rakotomamonjy

et al., 2008). The proposed primal formulation is

minimize
1

2

P∑

m=1

1

ηm
‖wm‖22 + C

N∑

i=1

ξi

with respect to wm ∈ R
Sm , ξ ∈ R

N
+ , b ∈ R,η ∈ R

P
+

subject to yi

(
P∑

m=1

〈wm,Φm(xi)〉+ b

)

≥ 1− ξi ∀i

P∑

m=1

ηm = 1

30

and the optimal SVM objective function value given η, J(η), is defined as

minimize J(η) =
1

2

P∑

m=1

1

ηm
‖wm‖22 + C

N∑

i=1

ξi

with respect to wm ∈ R
Sm , ξ ∈ R

N
+ , b ∈ R

subject to yi

(
P∑

m=1

〈wm,Φm(xi)〉+ b

)

≥ 1− ξi ∀i.

Due to strong duality, one can also calculate J(η) using the dual formulation:

maximize J(η) =

N∑

i=1

αi −
1

2

N∑

i=1

N∑

j=1

αiαjyiyjkη(xi,xj)

with respect to α ∈ R
N
+

subject to

N∑

i=1

αiyi = 0

C ≥ αi ≥ 0 ∀i.

The primal formulation can be seen as the following constrained optimization problem:

minimize J(η)

with respect to η ∈ R
P
+

subject to

P∑

m=1

ηm = 1.

The overall procedure to solve this problem, called SimpleMKL, consists of two main

steps: (a) solving a canonical SVM optimization problem with given η, and, (b)

updating η using the following gradient calculated with α found in the first step:

∂J(η)

∂ηm
= −1

2

N∑

i=1

N∑

j=1

αiαjyiyjkm(x
m
i ,x

m
j) ∀m.

31

The gradient update procedure must consider the nonnegativity and normaliza-

tion properties of the kernel weights. The derivative with respect to the kernel weights

is exactly equivalent (up to a multiplicative constant) to the gradient of the margin

calculated by Bousquet and Herrmann (2003). The overall algorithm is very similar to

the algorithm used by Sonnenburg et al. (2006a) and Sonnenburg et al. (2006b) to solve

SILP formulation. Both algorithms use a canonical SVM solver in order to calculate

α at each step. The difference is that they use different updating procedures for η,

namely, a projected gradient update and solving an LP. SimpleMKL is more stable

than solving the SILP formulation and can be generalized to regression estimation,

one-class classification, and multiclass classification (Rakotomamonjy et al., 2008).

Xu et al. (2009a) propose a hybrid method that combines the SILP formulation

(Sonnenburg et al., 2006b) and SimpleMKL (Rakotomamonjy et al., 2008). The

SILP formulation does not regularize the kernel weights obtained from the cutting

plane method and SimpleMKL uses the gradient calculated only in the last iteration.

The proposed model overcomes both disadvantages and finds the kernel weights for the

next iteration by solving a small QP problem; this regularizes the solution and uses

the past information.

To the objective function of SimpleMKL (Rakotomamonjy et al., 2008), an extra

regularization term can also be introduced (Longworth and Gales, 2008; Longworth and

Gales, 2009). This allows us to change the level of sparsity for the kernels used in the

combined kernel. The extra regularization term is

λ
P∑

m=1

(

ηm − 1

P

)2

= λ

(
P∑

m=1

η2m − 1

P

)

=+ λ
P∑

m=1

η2m

where λ is regularization parameter that determines the solution sparsity. For example,

large values of λ force the mathematical model to use all kernels with uniform weight,

whereas small values produce sparse combinations.

32

Instead of selecting kernels from a predefined finite set, we can increase the num-

ber of candidate kernels in an iterative manner. Gehler and Nowozin (2008) propose a

new algorithm that can basically select kernels from an uncountable infinite set. Their

forward selection algorithm finds the kernel weights for a fixed size of candidate ker-

nels by using one of the methods described above, then adds a new kernel to the set

of candidate kernels, until convergence.

Most MKL methods do not consider the group structure between the kernels

combined. For example, a group of kernels may be calculated on the same set of

features and even if we assign a nonzero weight to only one of them, we have to extract

the features in the testing phase. When kernels have such a group structure, it is

reasonable to pick all or none of them in the combined kernel. Szafranski et al. (2008)

follow this idea and derive a MKL method by changing the mathematical model used

by Rakotomamonjy et al. (2007).

Subrahmanya and Shin (2010) generalize group-feature selection to kernel selec-

tion by introducing a log-based concave penalty term for obtaining extra sparsity; this

is called Sparse MKL (SMKL). The reason for adding this concave penalty term is

explained as the lack of ability of convex MKL methods to obtain sparse formulations.

They show that SMKL obtains more sparse solutions than convex formulations for

signal processing applications.

Tanabe et al. (2008) propose the following rule in order to choose the kernel

weights for classification problems:

ηm =
πm − δ

P∑

h=1

(πh − δ)

where πm is the accuracy obtained using only Km and δ is the threshold that should

be less than or equal to the minimum of the accuracies obtained from single-kernel

learners. Qiu and Lane (2009) propose two simple heuristics to select the kernel weights

33

for regression estimation problems:

ηm =
Rm

P∑

h=1

Rh

∀m

ηm =

P∑

h=1

Mh −Mm

(P − 1)
P∑

h=1

Mh

∀m

where Rm is the Pearson correlation coefficient the predicted labels generated by the

regressor using kernel matrix Km and the true labels, and Mm is the mean square error

generated by the regressor using kernel matrix Km.

2.2.1.4. Binary Combination. Another possibility is to allow only binary ηm for kernel

selection. We get rid of kernels whose ηm = 0 and use the kernels whose ηm = 1.

Xu et al. (2009b) define a combined kernel over the set of kernels calculated on

each feature independently and perform feature selection using this definition. The

defined kernel function can be expressed as

kη(xi,xj) =
D∑

m=1

ηmk(xi[m],xj[m])

where η ∈ {0, 1}D. For efficient learning, η is relaxed into the continuous domain (i.e.,

1 ≥ η ≥ 0). Following Lanckriet et al. (2004a), an SDP formulation is derived and

this formulation is cast into a QCQP problem in order to reduce the time complexity.

2.2.2. Nonlinear Functions of Kernels

A linear combination may be restrictive and other combinations are also possible.

Ong et al. (2003) propose learning a kernel function instead of a kernel ma-

trix. They define a kernel function in the space of kernels called a hyperkernel. Their

34

construction includes convex combinations of an infinite number of pointwise non-

negative kernels. Hyperkernels are generalized to different machine learning prob-

lems such as classification, regression estimation, and one-class classification (Ong and

Smola, 2003; Ong et al., 2005). When they use the regularized risk functional as the

empirical quality functional to be optimized, the learning phase can be performed by

solving an SDP problem. Tsang and Kwok (2006) convert the resulting optimization

problems into SOCP problems in order to reduce the time complexity of the training

phase.

de Diego et al. (2004) define a functional form of combining two kernels:

Kη =
1

2
(K1 +K2) + f(K1 −K2)

where the term f(K1 −K2) represents the difference of information between what K1

and K2 provide for classification. They investigate three different functions:

kη(xi,xj) =
1

2
(k1(x

1
i ,x

1
j) + k2(x

2
i ,x

2
j)) + τyiyj|k1(x1

i ,x
1
j)− k2(x

2
i ,x

2
j)|

kη(xi,xj) =
1

2
(k1(x

1
i ,x

1
j) + k2(x

2
i ,x

2
j)) + τyiyj(k1(x

1
i ,x

1
j)− k2(x

2
i ,x

2
j))

Kη =
1

2
(K1 +K2) + τ(K1 −K2)(K1 −K2)

where τ ∈ R+ is the parameter that represents the weight assigned to the term f(K1−
K2) selected through cross-validation procedure and the first two functions do not

ensure having positive semidefinite kernel matrices. More than two kernel functions

can also be combined by applying these rules recursively.

Moguerza et al. (2004) propose a matrix functional form of combining kernels:

kη(xi,xj) =

P∑

m=1

ηm(xi,xj)km(x
m
i ,x

m
j)

where ηm(·, ·) assigns a weight to km(·, ·) according to xi and xj . They propose different

heuristics to estimate the weighing functions.

35

Lee et al. (2007) combine kernels using a compositional method that constructs

a (P × N) × (P × N) compositional kernel matrix. This matrix and P times repli-

cated training instances are used to train a canonical SVM. Lewis et al. (2006a) use

a latent variable generative model using the maximum entropy discrimination to learn

data-dependent kernel combination weights. This method combines a generative prob-

abilistic model with a discriminative large margin method.

A generalized formulation of MKL called Generalized MKL (GMKL) that

contains two regularization terms and a loss function in the objective function is pro-

posed (Varma and Ray, 2007; Varma and Babu, 2009). This formulation tries to

regularize both the hyperplane weight and the kernel combination weights. The loss

function can be one of the classical loss functions, such as hinge loss for classification

or ǫ-loss for regression estimation. The proposed primal formulation applied to bi-

nary classification problem with hinge loss and the regularization function r(·) can be

written as

minimize
1

2
‖wη‖22 + C

N∑

i=1

ξi + r(η)

with respect to wη ∈ R
Sη , ξ ∈ R

N
+ , b ∈ R,η ∈ R

P
+

subject to yi(〈wη,Φη(xi)〉+ b) ≥ 1− ξi ∀i.

This problem, different from the primal problem of SimpleMKL, is not convex, but the

solution strategy is the same. The objective function value of the primal formulation

given η is used as the target function:

minimize J(η) =
1

2
‖wη‖22 + C

N∑

i=1

ξi + r(η)

with respect to wη ∈ R
Sη , ξ ∈ R

N
+ , b ∈ R

subject to yi(〈wη,Φη(xi)〉+ b) ≥ 1− ξi ∀i

36

and the following dual formulation is used for the gradient step:

maximize J(η) =
N∑

i=1

αi −
1

2

N∑

i=1

N∑

j=1

αiαjyiyjkη(xi,xj) + r(η)

with respect to α ∈ R
N
+

subject to
N∑

i=1

αiyi = 0

C ≥ αi ≥ 0 ∀i.

The regularization function r(·) and kη(·, ·) can be any differentiable function of η with

continuous derivative. The gradient with respect to the kernel weights is calculated as

∂J(η)

∂ηm
=

∂r(η)

∂ηm
− 1

2

N∑

i=1

N∑

j=1

αiαjyiyj
∂kη(xi,xj)

∂ηm
∀m.

Gender identification experiments on a face image data set are performed by

combining kernels calculated on each individual feature, and hence, features used in

kernels whose ηm goes to 0 are eliminated (Varma and Ray, 2007; Varma and Babu,

2009). The standard MKL and GMKL are trained with the kernel functions kS
η(·, ·)

and kP
η (·, ·), respectively.

kS
η(xi,xj) =

D∑

m=1

ηm exp
(
−γm (xi[m]− xj [m])2

)

kP
η (xi,xj) =

D∏

m=1

exp
(
−ηm (xi[m]− xj [m])2

)
= exp

(
D∑

m=1

−ηm (xi[m]− xj[m])2
)

where [·] indexes the elements of a vector. They show that GMKL with kP
η (·, ·) per-

forms significantly better than the standard MKL with kS
η(·, ·). We see that using

kP
η (·, ·) as the combined kernel function is equivalent to using different scaling param-

eters on each feature and using an RBF kernel over these scaled features with unit

radius, as done by Grandvalet and Canu (2003).

37

Cortes et al. (2010) develop a nonlinear kernel combination method based on ker-

nel ridge regression and polynomial combination of kernels. They propose to combine

kernels as follows:

kη(xi,xj) =
∑

q∈Q

ηq1q2...qP

P∏

m=1

km(x
m
i ,x

m
j)

qm

where Q = {q : q ∈ Z
P
+,

∑P
m=1 qm ≤ d} and ηq1...qP ≥ 0. The number of parameters

to be learned is too large and the combined kernel is simplified in order to reduce the

learning complexity:

kη(xi,xj) =
∑

q∈R

P∏

m=1

ηqmm km(x
m
i ,x

m
j)

qm

where R = {q : q ∈ Z
P
+,

∑P
m=1 qm = d} and η ∈ R

P . The combination weights are

optimized using the following min-max optimization problem:

minimize
η∈M

maximize
α∈RN

−α⊤(Kη + λI)α+ 2α⊤y.

where M is a positive, bounded, and convex set. A projection-based gradient-descent

algorithm can be utilized to solve this problem.

2.3. Combining Kernels Using Kernel Similarity Measures

We can learn the kernel combination weights by using a quality measure that

gives performance estimates for the kernel matrices calculated on training data. This

corresponds to a function that assigns weights to kernel functions:

ηm = gη(K1,K2, . . . ,KP).

38

2.3.1. Combining Kernels Using Kernel Alignment

Cristianini et al. (2002) define a notion of similarity between two kernels called

kernel alignment. The empirical alignment of two kernels is calculated as follows:

A(K1,K2) =
〈K1,K2〉F

√

〈K1,K1〉F 〈K2,K2〉F

where 〈K1,K2〉F =
∑N

i=1

∑N
j=1 k1(x

1
i ,x

1
j)k2(x

2
i ,x

2
j). This similarity measure can be

seen as the cosine of angle between K1 and K2. yy
⊤ can be defined as ideal kernel for

binary classification, and the alignment between a kernel and the ideal kernel becomes

A(K,yy⊤) =
〈K,yy⊤〉F

√

〈K,K〉F 〈yy⊤,yy⊤〉F
=

〈K,yy⊤〉F
N
√

〈K,K〉F
.

Kernel alignment has one key property due to concentration (i.e., the probability of

deviation from the mean is decayed exponentially), which enables us to keep the high

alignment on a test set when we optimize it on a training set.

2.3.1.1. Linear Combination. Lanckriet et al. (2004a) propose to optimize the kernel

alignment as follows:

maximize A(Ktra
η ,yy⊤)

with respect to Kη ∈ KL

subject to tr(Kη) = 1

where the trace of the combined kernel is set to 1. This problem is equivalent to

maximize 〈Ktra
η ,yy⊤〉F

with respect to Kη ∈ KL

subject to 〈Kη,Kη〉F = 1

tr(Kη) = 1

39

and this problem can be converted into the following SDP problem:

maximize 〈Ktra
η ,yy⊤〉F

with respect to Kη ∈ KL,A ∈ SN

subject to tr(A) ≤ 1

A K⊤

η

Kη I

 � 0.

Igel et al. (2007) propose maximizing the kernel alignment using gradient-based

optimization. They calculate the gradient of the alignment with respect to the kernel

parameters:

∂A(Kη,yy
⊤)

∂ηm
=

〈
∂Kη

∂ηm
,yy⊤

〉

F

〈Kη,Kη〉F − 〈Kη,yy
⊤〉F

〈
∂Kη

∂ηm
,Kη

〉

F

N
√

〈Kη,Kη〉3F
.

In a transcription initiation site detection task for bacterial genes, they obtain bet-

ter results by optimizing the kernel weights of the combined kernel function that is

composed of six sequence kernels, using the gradient above.

2.3.1.2. Nonnegative Linear Combination. (Lanckriet et al., 2004a) restrict the kernel

weights to be nonnegative, their SDP formulation reduces to the following QCQP

problem:

maximize
P∑

m=1

ηm〈Ktra
m ,yy⊤〉F

with respect to η ∈ R
P
+

subject to

P∑

m=1

P∑

h=1

ηmηh〈Km,Kh〉F ≤ 1. (2.6)

40

Kandola et al. (2002) propose to maximize the alignment between a nonnegative

linear combination of kernels and the ideal kernel. The alignment can be calculated as

follows:

A(Kη,yy
⊤) =

P∑

m=1

ηm〈Km,yy
⊤〉F

N

√
P∑

m=1

P∑

h=1

ηmηh〈Km,Kh〉F
.

We should choose kernel weights that maximize the alignment and this idea can be

cast into the following optimization problem:

maximize A(Kη,yy
⊤)

with respect to η ∈ R
P
+

and this problem is equivalent to

maximize
P∑

m=1

ηm〈Km,yy
⊤〉F

with respect to η ∈ R
P
+

subject to

P∑

m=1

P∑

h=1

ηmηh〈Km,Kh〉F = c.

Using the Lagrangian function, we can convert it into the following unconstrained

optimization problem:

maximize

P∑

m=1

ηm〈Km,yy
⊤〉F − µ

(
P∑

m=1

P∑

h=1

ηmηh〈Km,Kh〉F − c

)

with respect to η ∈ R
P
+.

Kandola et al. (2002) take µ = 1 arbitrarily and add a regularization term to the

objective function in order to prevent overfitting. The resulting QP is very similar to

41

the hard margin SVM problem and is expected to give sparse kernel weights.

maximize
P∑

m=1

ηm〈Km,yy
⊤〉F −

P∑

m=1

P∑

h=1

ηmηh〈Km,Kh〉F − λ
P∑

m=1

η2m

with respect to η ∈ R
P
+

where we only learn the kernel combination weights.

2.3.1.3. Convex Combination. Qiu and Lane (2009) propose the following simple heuris-

tic to select the kernel weights using kernel alignment:

ηm =
A(Km,yy

⊤)
P∑

h=1

A(Kh,yy⊤)

∀m. (2.7)

2.3.2. Combining Kernels Using Other Similarity Measures

He et al. (2008) choose to optimize the distance between the combined kernel

matrix and the ideal kernel, instead of optimizing the kernel alignment measure, by

using the following optimization problem:

minimize 〈Kη − yy⊤,Kη − yy⊤〉2F
with respect to η ∈ R

P
+

subject to
P∑

m=1

ηm = 1.

42

This problem is equivalent to

minimize
P∑

m=1

P∑

h=1

ηmηh〈Km,Kh〉F − 2
P∑

m=1

ηm〈Km,yy
⊤〉F

with respect to η ∈ R
P
+

subject to
P∑

m=1

ηm = 1. (2.8)

Nguyen and Ho (2008) propose another quality measure called feature space-

based kernel matrix evaluation measure (FSM) defined as

FSM(K,y) =
s+ + s−

‖m+ −m−‖2

where {s+, s−} are standard deviations of the positive and negative classes, and {m+,m−}
are class centers in the feature space. Tanabe et al. (2008) optimize the kernel weights

for the convex combination of kernels by minimizing this measure:

minimize FSM(Kη,y)

with respect to η ∈ R
P
+

subject to
P∑

m=1

ηm = 1.

This method give similar performance results when compared to the SMO-like algo-

rithm of Bach et al. (2004) for a protein-protein interaction prediction problem using

much less time and memory.

Ying et al. (2009) follow an information theoretic approach based on the Kullback-

Leibler (KL) divergence between the combined kernel matrix and the optimal kernel

matrix:

minimize
η

KL(N (0,Kη)‖N (0,yy⊤)).

43

The kernel combinations weights can be optimized by using a projected gradient-

descent method.

2.4. Combining Kernels Using Boosting

Another possibility is to iteratively update by adding a new kernel to fη(·) as

training continues.

Inspired from ensemble (Kuncheva, 2004) and boosting methods (Schapire, 1990),

Bennett et al. (2002) modify the decision function in order to use multiple kernels:

f(x) =
N∑

i=1

P∑

m=1

αm
i km(x

m
i ,x

m) + b.

The model parameters, {αm}Pm=1 and b, of kernel ridge regression model are learned

using a gradient-descent algorithm in the function space. The columns of the combined

kernel matrix are generated from the heterogeneous kernels on the fly. Bi et al. (2004)

develop column generation boosting methods for binary classification and regression

estimation problems. In each iteration, the proposed methods solve an LP or a QP

on a working set depending on the regularization term used.

Crammer et al. (2003) modify the boosting methodology to work with kernels by

rewriting two loss functions for a pair of data instances by considering the pair as a

single instance:

ExpLoss(k(xi,xj), yiyj) = exp(−yiyjk(xi,xj))

LogLoss(k(xi,xj), yiyj) = log(1 + exp(−yiyjk(xi,xj))).

We iteratively update the combined kernel matrix by using one of these two loss func-

tions.

44

2.5. Bayesian Kernel Combination

In a trained combiner parameterized by Θ, if we assume Θ are random variables

with a prior, we can use a Bayesian approach. For the case of a weighted sum, we can

for example have a prior on the kernel weights, {ηm}Pm=1.

Girolami and Rogers (2005) formulate a Bayesian hierarchical model and derive

variational Bayes estimators for classification and regression problems. The proposed

decision function is

f(x) =
N∑

i=0

αi

P∑

m=1

ηmkm(x
m
i ,x

m)

where η is modeled with a Dirichlet prior and α is modeled with a zero-mean Gaussian

with an inverse gamma variance prior. Damoulas and Girolami (2009b) extend this

method by adding auxiliary variables and developing a Gibbs sampler. Multinomial

probit likelihood is used to obtain an efficient sampling procedure. These methods

are applied to different bioinformatics problems, such as protein fold recognition and

remote homology problems, and improve the prediction performances for these tasks

(Damoulas and Girolami, 2008; Damoulas and Girolami, 2009a).

Girolami and Zhong (2007) use the kernel combination idea for the covariance

matrices in Gaussian processes. Instead of using a single covariance matrix, they

define a weighted sum of covariance matrices calculated over different data sources. A

joint inference is performed for both the Gaussian process coefficients and the kernel

combination weights.

2.6. Multiple Kernel Learning as Intermediate Integration

No single machine learning algorithm nor feature representation, in classification

or regression, induces always the most accurate learner in any domain. The usual

approach is to try many and choose the one that performs the best on a separate

validation set unused during training. Recently, it has been shown that accuracy

45

may be improved by combining multiple learners (Kuncheva, 2004). There are three

possible methods for combining multiple feature representations: early integration, late

integration, and intermediate integration (Noble, 2004).

Early integration is used when there are multiple feature representations and

they are concatenated as one large vector and a single learner (classifier or regressor)

is used. In late integration, multiple classifiers/regressors are trained over different

feature representations and their decisions are combined by a trained learner. These

two approaches can be applied with any classification/regression algorithm.

Kernel machines allow combination in a third way, using multiple kernels; this

is called intermediate integration. A kernel function basically measures similarity be-

tween two data instances and a single-kernel machine can combine separate kernels

for different feature representations, instead of combining data before training a single

learner (as in early integration) or combining decisions from multiple learners (as in

late integration). Figure 2.1 compares integration methods for multiple feature repre-

sentations.

R2

R1

RC L

(a) Early integration

R2

R1

L2

L1

LC

(b) Late integration

R2

R1

K2

K1

LC

(c) Intermediate integration

Figure 2.1. Integration methods for multiple feature representations.

In general, we would expect early integration to suffer more from the curse of

dimensionality when many input sources are concatenated. Late integration combines

decisions and therefore is expected to be more robust; the disadvantage would be the

need to train/store/use multiple learners. Intermediate integration is in between these

two extremes where separate feature representations are not used in a raw manner (as

in early integration) nor are decisions extracted from them (as in late integration) but

are converted to similarities (using kernels) and fed to a single learner. An advantage of

46

intermediate integration is in knowledge extraction; the relative importance of feature

representations can be measured in terms of the weights assigned to the corresponding

kernels.

2.7. Regularizing Multiple Kernel Learning Using Response Surface

Methodology

The MKL formulation of Bach et al. (2004) introduces new regularization pa-

rameters that are directly related to the sparsity of the solution obtained. The easiest

approach of setting them all equal does not always work well because it implies giving

equal a priori weight to all kernels. The approach in Bach et al. (2005) is a heuristic

to simply estimate the weights but it is clear that ideally, these weights should also be

trained in a coupled manner with the kernel machines.

We propose using Response Surface Methodology (RSM) on validation

error to optimize these parameters using data and to obtain more regularized solutions

(Gönen and Alpaydın, 2010c). We show that optimizing the regularization parameters

using an RSM-based approach leads to more sparse kernel ensembles where some

kernels are given zero weight without diminishing accuracy. Not using a kernel in the

ensemble may be either because: (a) the notion of similarity used in the kernel function

is not appropriate, or, (b) the data source used to calculate the kernel does not carry

useful information. If a kernel function is assigned zero weight in the combination rule,

it means that this specific kernel function or the data source used in this kernel function

does not carry discriminative information for the problem and hence can be pruned.

2.7.1. Regularized Multiple Kernel Learning

We use the mathematical model in (2.4) developed by Bach et al. (2004) as

our base model, where the regularization term in the objective function consists of

{wm}Pm=1 and {dm}Pm=1. In general, {dm}Pm=1 are treated as scaling factors to balance

the scale differences between kernel function outputs. It is a common procedure to

47

normalize the kernel outputs before training:

k(xi,xj) =
k(xi,xj)

√

k(xi,xi)k(xj ,xj)
(2.9)

and the trace of each normalized kernel becomes N . All {dm}Pm=1 values are taken as

1 after normalization; this strategy is used in Sonnenburg et al. (2006b).

The solution obtained from the optimization problem gives us a linear combina-

tion of kernel functions that satisfies
∑P

m=1 d
2
mηm = 1 obtained from the Karush-Kuhn-

Tucker optimality conditions (Bach et al., 2004). This equation defines upper bounds

for {ηm}Pm=1 and we can control the feasible region for {ηm}Pm=1 by changing {dm}Pm=1.

We consider {dm}Pm=1 as regularization parameters and from this perspective,

the training process should also find better {dm}Pm=1 for better regularization, instead

of simply selecting them all equal to 1. In order to show the effect of {dm}Pm=1 on

regularization, we create four toy data sets, which are mixtures of Gaussians consisting

of 1200 data instances with different number of components (see Table 2.2) and we test

the effect of different {dm}Pm=1 using MKL on these data sets.

We combine three kernels (kL, kP , and kG) on toy data sets by taking dL as 1

and changing dP and dG on a grid in the log scale. We use the second-degree (q = 2)

polynomial kernel and estimate s in the Gaussian kernel as follows:

s =
1

N

N∑

i=1

‖xi − xnn(i)‖2 (2.10)

where nn(i) is the index of the nearest neighbor of xi.

Figure 2.2 shows the plot of the misclassification error on each data set for differ-

ent values of dP and dG. The complexity of the discriminant increases as we increase

the number of components, which increases the need for nonlinear kernels. We see that

onGauss2 andGauss3 data sets, the best classification performance is obtained when

48

Table 2.2. Prior probabilities and Gaussian parameters used for toy data sets. In the

Gauss2 data set, each class has one Gaussian component. In the Gauss3 data set,

the positive class has two and the negative class has one component. The Gauss4

data set has two components in each class and the Gauss5 data set has three

components in the positive class and two components in the negative class.

Data Set Pos. Class (priors,means, covariances) Neg. Class (priors,means, covariances)

Gauss2 p1 = 0.50 µ1 =

−1.0

+1.0

 Σ1 =

0.8 0.0

0.0 2.0

 p2 = 0.50 µ2 =

+1.0

−2.2

 Σ2 =

0.8 0.0

0.0 4.0

Gauss3 p1 = 0.25 µ1 =

−2.0

+1.0

 Σ1 =

0.8 0.0

0.0 2.0

 p3 = 0.50 µ3 =

+0.0

−2.2

 Σ3 =

0.8 0.0

0.0 4.0

p2 = 0.25 µ2 =

+2.0

+1.0

 Σ2 =

0.8 0.0

0.0 2.0

Gauss4 p1 = 0.25 µ1 =

−3.0

+1.0

 Σ1 =

0.8 0.0

0.0 2.0

 p3 = 0.25 µ3 =

−1.0

−2.2

 Σ3 =

0.8 0.0

0.0 4.0

p2 = 0.25 µ2 =

+1.0

+1.0

 Σ2 =

0.8 0.0

0.0 2.0

 p4 = 0.25 µ4 =

+3.0

−2.2

 Σ4 =

0.8 0.0

0.0 4.0

Gauss5 p1 = 0.16 µ1 =

−4.0

+1.0

 Σ1 =

0.8 0.0

0.0 2.0

 p4 = 0.25 µ4 =

−2.0

−2.2

 Σ4 =

0.8 0.0

0.0 4.0

p2 = 0.18 µ2 =

+0.0

+1.0

 Σ2 =

0.8 0.0

0.0 2.0

 p5 = 0.25 µ5 =

+2.0

−2.2

 Σ5 =

0.8 0.0

0.0 4.0

p3 = 0.16 µ3 =

+4.0

+1.0

 Σ3 =

0.8 0.0

0.0 2.0

we choose dP and dG larger than or near 1, that is, when we force the model to use the

more complex kernels kP and kG with smaller coefficients to avoid overfitting. On the

other hand, dP and dG are chosen smaller than or near 1, resulting larger coefficients

for kP and kG to avoid underfitting on Gauss4 and Gauss5 data sets. This indicates

that each data set has its own smoothness constraint, and that {dm}Pm=1 should not

just be taken equal but should be selected carefully to avoid overfitting or underfitting.

We propose to use RSM on validation error for selecting {dm}Pm=1 in an outer

loop. RSM is a collection of statistical and mathematical techniques developed espe-

cially for process optimization (Myers and Montgomery, 2002). It is assumed that the

system response, r, is written as some unknown function of P factors, d = {dm}Pm=1:

r = f({dm}Pm=1) + ǫ

49

−0.5

0

0.5

−0.5

0

0.5

5

10

15

20

log
10

d
Glog

10
d

P

E
rr

or

(a) Gauss2

−0.5

0

0.5

−0.5

0

0.5

10

20

30

40

50

log
10

d
Glog

10
d

P

E
rr

or

(b) Gauss3

−0.5

0

0.5

−0.5

0

0.5

12

14

16

18

20

22

log
10

d
Glog

10
d

P

E
rr

or

(c) Gauss4

−0.5

0

0.5

−0.5

0

0.5

12

13

14

15

16

log
10

d
Glog

10
d

P

E
rr

or

(d) Gauss5

Figure 2.2. The average validation error over {dm}Pm=1 grid on toy data sets. We see

that taking {dm}Pm=1 = 1 (0 in the log scale) may not always be optimal (shown by a

filled circle). The circles show the sampled points and the star shows the solution

found by our proposed response surface approach.

where ǫ is a random error component. We do not know f(·) and instead, we approx-

imate it by f̂(·) using a low-order polynomial function (e.g., quadratic). We start by

taking a small sample (D, r) of d and the corresponding r values, around some center

in the d space. RSM consists of two basic steps: First, we fit the response surface f̂(·)
to (D, r) and then, we optimize the response, that is, from f̂(·) we sample an d∗ value,

which we believe will return a better f(·) value. In the case of a quadratic fit, this

can be calculated analytically as the optimum point of f̂(·). d∗ and the corresponding

actual r∗ are added to (D, r) and the procedure continues until there is no further

improvement.

50

In our case, factors correspond to kernels and response corresponds to validation

accuracy. We select a second-order model in the log scale (in order to ensure nonnega-

tivity of {dm}Pm=1) for estimating the misclassification error. Without loss of generality,

we can fix the regularization parameter for one of the kernels and the misclassification

error can be expressed as

β0 +
P∑

m=2

βi log10 dm +
P∑

m=2

P∑

h=m

βmh log10 dm log10 dh

where β0, {βm}Pm=1, and {βmh}Pm=1,h=m are the model parameters.

At each iteration, because we are fitting a quadratic, at least P (P + 1)/2 points

are required to estimate the model parameters. To initialize, we use the second-order

Koshal design (Myers and Montgomery, 2002) that uses three levels for each variable

and with three factors (kernels), it is given as

k1

k2

k3

0 0 0 0 0 0

0 +∆ −∆ 0 0 +∆

0 0 0 +∆ −∆ +∆

where the rows correspond to kernels and the columns correspond to different {dm}Pm=1

values in the log scale assigned to kernels. For example, the first column is often

referred as the “center point” in RSM (which in our case for the first iteration of RSM

corresponds to having all {dm}Pm=1 equal to 1). Then, we construct “axial points” by

moving towards negative and positive directions in each dimension by a small increment

∆ (columns 2–5). The remaining runs required for estimating all model parameters

are selected as “factorial points” by moving toward positive direction in each pair of

dimensions (column 6); that is, we sample around the center point. We train MKLs

at these points and check their misclassification error on the validation data. Then, we

fit a quadratic to those set of errors and find analytically its optimum, which gives us

the next sample point. We then sample there, add it to the list and make a new fit,

until the improvement is negligible.

51

Using a second-order model in RSM corresponds to using Newton’s method to

find the minimum of the smoothed validation error curve. If the error curve obtained

from sampled points is close to a quadratic surface, RSM converges very fast. If the

error surface has an irregular shape with multiple local minima, RSM converges to one

of the local minima like Newton’s method.

The usual approach for finetuning parameters in machine learning is exhaustive

grid search. There are two main motivations for using RSM instead of exhaustive grid

search:

(a) RSM may require significantly fewer points: grid search requires L(P−1) points

for the case with P kernels and L levels, whereas RSM starts with P (P + 1)/2

initial points and converges long before L(P−1) iterations.

(b) RSM can obtain the result in terms of arbitrary factor values other than prede-

fined factor levels and does a finer search than the resolution of the grid.

Figure 2.3 illustrates the idea of our proposed Regularized MKL (RMKL) in

more detail. An initial search grid is constructed between Lines 2–11 using the second-

order Koshal design. MKL is trained on validation sets with {dm}Pm=1 taken from the

points of the initial search grid and validation errors are calculated for response surface

calculations between Lines 12–16. The initial search grid points and their validation

errors are used to start RSM and used to fit the quadratic response surface. The

optimum operating point is calculated at its minimum. MKL method is trained at

this point on the training set and its validation set (different from the training set)

error is added to the sample points (Lines 17–27) and the next fit is done. RSM

continues until convergence, which can be checked by ‖d(t+1) − d(t)‖2 < ǫ where ǫ is a

small threshold.

An example is given in Figure 2.2. The stars show the points of convergence

of RSM. We can see that it converges to points which are in deep valleys of the

error function. The effect of regularization can also be clearly seen in Figure 2.4.

MKL method selects a combination with weights (ηL-ηP -ηG) = (0.00-0.25-0.75) on the

52

1: gridSize ⇐ kernelCount(kernelCount+ 1)/2 start of initialization

2: LD ⇐ 0 center point (0 vector in the log scale)

3: for i = 2 to kernelCount do

4: LD ⇐ [LD +∆ei] high level for each dimension

5: LD ⇐ [LD −∆ei] low level for each dimension

6: end for

7: for i = 2 to kernelCount do

8: for j = i+ 1 to kernelCount do

9: LD ⇐ [LD +∆ei +∆ej] high levels for each pair of dimensions

10: end for

11: end for

12: for t = 1 to gridSize do

13: d(t) ⇐

1

10LD(:,t)

 moves the point from the log scale to original space

14: ve(t) ⇐ TrainMKLSVM(d(t)) returns the average error on validation sets

15: VE ⇐ [VE ve(t)]

16: end for end of initialization

17: loop

18: t ⇐ t+ 1

19: ld(t) ⇐ ResponseSurface(LD,VE) fits surface and finds the best point

20: d(t) ⇐

1

10ld
(t−1)

 moves the point from the log scale to original space

21: if ‖ld(t) − ld(t−1)‖2 ≤ ǫ then checks convergence

22: return d(t−1) returns the last point

23: end if

24: ve(t) ⇐ TrainMKLSVM(d(t)) returns the average error on validation sets

25: LD ⇐ [LD ld(t)]

26: VE ⇐ [VE ve(t)]

27: end loop

Figure 2.3. Regularized Multiple Kernel Learning (RMKL)

Gauss3 data set and it overfits. When we train with our proposedRSM-based method,

it converges to the point (dL-dP -dG) = (1.00-0.85-1.46) selecting a different combination

with weights (ηL-ηP -ηG) = (0.00-0.48-0.31), shown by a star in Figure 2.2(b). This

53

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

(a) MKL

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

(b) RMKL

Figure 2.4. Separating hyperplanes (solid lines) and support vectors (thick points) of

MKL and RMKL with (kL-kP -kG) combination on the Gauss3 data set. Dashed

lines show the Gaussians from which data are sampled and the optimal Bayes’

discriminant. (a) (ηL-ηP -ηG) = (0.00-0.25-0.75) (b) (ηL-ηP -ηG) = (0.00-0.48-0.31),

shown by a star in Figure 2.2(b).

particular run takes seven iterations where the first six iterations are used to initialize

RSM. This solution implies that the second-order polynomial kernel is favored over

the Gaussian kernel and this leads to a smaller combination weight for the Gaussian

kernel and, as we see in Figure 2.4(a)-(b), a smoother separating boundary using fewer

support vectors.

2.7.2. Discussion

Chapelle et al. (2002) propose a similar approach for choosing multiple parameters

for SVMs. Their method tries to minimize the estimated test error bound and instead

of explicitly fitting a response surface, updates parameters with a gradient-descent step

calculated from the error bound. Our proposed method fits an approximate response

surface for the test error using validation errors obtained over the sample points and

finds the minimum point of the fitted response. Momma and Bennett (2002) use a

more similar approach to select support vector regression parameters. They do not

fit a response surface either; instead, they perform a moving grid search strategy by

changing the center point of the grid.

54

RSM is also used by Blum et al. (2008) in protein structure prediction together

with a Monte Carlo search procedure. Their model is not a kernel machine but they

optimize the parameters of a specific function used in bioinformatics, called Rosetta

energy function. They formulate the energy function in terms of input features and

try to optimize it through optimizing the response surface. In order to get rid of

irregularities emerging due to the high number of input features, they eliminate some

of the features and calculate the response surface using the remaining features. In our

case, the number of dimensions (factors) is limited by the number of kernel functions

and this does not lead to any convergence problem in our experiments.

Regularization issues in multiple kernel learning have previously been studied.

Bach et al. (2005) try to learn the entire regularization path for multiple kernel learning.

The regularization path is calculated for the parameter that corresponds to the C

parameter in the objective function of (2.4). We do not consider the optimization of

C in the regularization process, we simply use a cross-validation procedure for this

purpose, but it can also be added to this process by appending it as another dimension

(factor) to RSM. The effect of {dm}Pm=1 onto regularization is also mentioned, though

their optimization is not discussed. Micchelli and Pontil (2005) and Micchelli and Pontil

(2007) formulate the multiple kernel learning problem from a different perspective;

they directly perform optimization for convex combination parameters using square

loss regularization.

Bach et al. (2005) and Bach (2008) also state that selecting the regularization

parameters ({dm}Pm=1) in a data-dependent manner may lead to better results. For

example, Bach et al. (2005) propose to select these parameters by looking at the eigen-

values of combined kernel matrices and their methodology is as follows: Given P

different kernel matrices, the numbers ({em}Pm=1) of the eigenvalues greater than 1/2

for each kernel matrix1 are calculated and the regularization parameters are taken as

dm = eγm where γ is selected between 0 and 1 (we refer to this method as EMKL). In

our experiments, we optimize γ by trying values 0, 0.1, 0.2, . . . , 1 on the validation sets

1In Bach et al. (2005), it was 1/2N but we normalize kernel matrices to unit diagonal instead of
unit trace. So, we count the eigenvalues greater than 1/2.

55

of all folds and choosing the best. Our proposed method using RSM selects the regu-

larization parameters by looking at the performance measures obtained with different

parameter selections and does not consider any prior information.

We also note that selecting the regularization parameters with the help of the

eigenvalues integrates the kernel matrix complexity into the selection process before

training. For example, the second-degree polynomial and the Gaussian kernel usually

have higher {em}Pm=1 values than the linear kernel and this leads to the penalization

of these kernels if we choose γ larger than 0. Even if we use γ values smaller than 0,

the regularization parameters are selected as a function of em values and this restricts

us to use a predetermined region in the parameter space. Our method allows {dm}Pm=1

to converge to any point in the parameter space independently. The advantage of this

difference can be clearly seen on Gauss4 and Gauss5 data sets in Figure 2.5. The

search direction obtained by using the eigenvalues (shown by the line) may not be

a good direction for searching the optimum point of the response surface (shown by

the star). EMKL can improve the performance of MKL but it performs parameter

selection only on this search direction and the selected parameter set may be subop-

timal. RMKL selects {dm}Pm=1 from the whole parameter space by starting from a

grid of samples (circles) around the center point (corresponding to the original MKL

selection).

It is also possible to perform RSM on combination weights ({ηm}Pm=1) directly by

solving the canonical SVM optimization problems without using the MKL formula-

tion; we refer to this method as RWKL. This approach clearly speeds up the training

phase but we can not take advantage of the sparsity provided by the objective function

of MKL formulation. The objective function of (2.4) forces the model to choose sparse

kernel combinations, whereas replacing the kernel in the objective function of SVM

with a weighted sum of kernels does not favor sparsity.

We are going to report our experimental results for comparing MKL, RMKL,

EMKL, and RWKL in Subsection 5.2.2.

56

−0.5

0

0.5

−0.5

0

0.5

12

14

16

18

20

22

log
10

d
Glog

10
d

P

E
rr

or

(a) Gauss4

−0.5

0

0.5

−0.5

0

0.5

12

13

14

15

16

log
10

d
Glog

10
d

P

E
rr

or

(b) Gauss5

Figure 2.5. Misclassification errors over {dm}Pm=1 grid on Gauss4 and Gauss5 data

sets. The circles and star show the sampled points and the solution found by our

proposed RSM-based approach. The triangles and line show the sampled points and

search direction if we use the eigenvalues of combined kernel matrices, as used in

Bach et al. (2005).

2.8. Cost-Conscious Multiple Kernel Learning

We can also think {dm}Pm=1 in (2.4) as the cost coefficients for using {km(·, ·)}Pm=1

(Gönen and Alpaydın, 2010a). There are two possible cases:

(a) We can combine different kernel functions and {dm}Pm=1 may be considered as the

costs of evaluating kernels. For example, evaluating the Gaussian kernel function

is more costly than evaluating the linear kernel. Here, the kernel cost is generally

expressed in terms of the required processor time.

(b) We can combine different representations or modalities and {dm}Pm=1 may be con-

sidered as the costs of extracting/sensing the corresponding representations/signals.

Each data representation has its own data acquisition cost and kernel function

evaluation time due to its different dimensionality. Kernel combination should fa-

vor the cheaper and smaller data representations if they are sufficient for accurate

classification. If a particular data representation is not selected (i.e., its η is 0)

after the training phase, we are not required to collect and prepare data for this

representation in the testing phase. So, by assigning higher costs, we can elimi-

57

nate some of the data representations and therefore decrease the total cost and

time for test examples, unless the costly kernels/representations are absolutely

necessary for accuracy. For example, in speech recognition where additional to

the usual acoustic input, if we also use visual lip image as another source, we

need to make sure that its contribution to accuracy is worth the cost of acquiring

and processing the image. Or in biometrics where we have multiple modalities

(face, fingerprint, iris, signature), we only want to include those whose costs can

be justified in terms of additional accuracy.

From this perspective, setting all weights equal to 1 corresponds to assuming equal

costs for all kernels, which, in general, is not true. We need a measure to estimate the

total cost for the testing phase based on the number of support vectors and the kernel

functions selected in training, which we define as

c =

N∑

i=1

1(αi > 0)

︸ ︷︷ ︸

the number of
support vectors

P∑

m=1

1(ηm > 0)
dm
P∑

h=1

dh
︸ ︷︷ ︸

the total normalized
cost for active kernels

where we multiply the number of support vectors and the summation of the normalized

costs for active kernels.

We are going to report our experimental results for comparing MKL and its

cost-conscious variant in Subsection 5.2.3.

58

3. LOCALIZED MULTIPLE KERNEL LEARNING

In this chapter, we propose a nonlinear MKL method called Localized MKL

(LMKL) that is composed of a kernel-based learning algorithm and a parametric gating

model to assign local weights to kernel functions. These two components are trained in

a coupled manner using a two-step alternating optimization algorithm. We derive the

learning algorithm for three different gating models (softmax, sigmoid, and Gaussian)

and apply the LMKL framework to four different machine learning problems (binary

classification, regression, multiclass classification, and one-class classification).

Using a fixed (unweighted or weighted) sum assigns the same weight to a ker-

nel over the whole input space. Assigning different weights to a kernel in different

regions of the input space may produce a better classifier. If the data has underlying

local structure, different similarity measures may be suited in different regions. We

propose to divide the input space into regions using a gating function and assign com-

bination weights to kernels in a data-dependent way (Gönen and Alpaydın, 2008); in

the neural network literature, a similar architecture is previously proposed under the

name “mixture of experts” (Jacobs et al., 1991). The discriminant function for binary

classification is rewritten as

f(x) =
P∑

m=1

ηm(x|V)〈wm,Φm(x
m)〉+ b (3.1)

where ηm(x|V) is a parametric gating model that assigns a weight to Φm(x
m) as a

function of x and V is the matrix of gating model parameters. Note that unlike in

MKL, in LMKL, it is not obligatory to combine different feature spaces; we can also

use multiple copies of the same feature space (i.e., kernel) in different regions of the

input space and thereby obtain a more complex discriminant function. For example,

we can combine multiple linear kernels to get a piecewise linear discriminant.

59

3.1. Gating Models

We can use different gating models to assign kernel weights in a data-dependent

way. The first gating model we investigate is the softmax gating model:

ηm(x|V) =
exp(〈vm,x

G〉+ vm0)
P∑

h=1

exp(〈vh,x
G〉+ vh0)

∀m (3.2)

where xG ∈ R
DG is the representation of the input instance in the feature space in which

we learn the gating model and V ∈ R
P×(DG+1) contains the gating model parameters

{vm, vm0}Pm=1. The softmax gating model uses kernels in a competitive manner and

generally a single kernel is active for each input. We may also use the sigmoid function

instead of softmax and thereby allow multiple kernels to be used in a cooperative

manner:

ηm(x|V) =
1

1 + exp(−〈vm,xG〉 − vm0)
∀m. (3.3)

Instead of parameterizing the boundaries of the local regions for kernels, we can also

parameterize their centers and spreads using Gaussian gating:

ηm(x|V) =
exp(−‖xG − µm‖22/σ2

m)
P∑

h=1

exp(−‖xG − µh‖22/σ2
h)

∀m (3.4)

where V ∈ R
P×(DG+1) contains the means, {µm}Pm=1, and the spreads, {σm}Pm=1.

If we combine the same feature representation with different kernels (i.e., x =

x1 = x2 = . . . = xP), we can simply use it also in the gating model (i.e., xG = x)

(Gönen and Alpaydın, 2008). If we combine different feature representations with

the same kernel, the gating model representation xG can be one of the representations,

{xm}Pm=1, a concatenation of a subset of them, or a completely different representation.

In some application areas such as bioinformatics where data instances may appear in

60

a non-vectorial format such as sequences, trees, and graphs, where we can calculate

kernel matrices but can not represent the data instances as x vectors directly, we may

use an empirical kernel map (Schölkopf et al., 2004b) and define xG in terms of the

kernel values (Gönen and Alpaydın, 2009c):

xG = (kG(x1,x) kG(x2,x) · · · kG(xN ,x))
⊤ (3.5)

where the gating kernel, kG(·, ·), can be one of the combined kernels, {km(·, ·)}Pm=1, a

combination of them, or a completely different kernel used only for determining the

gating boundaries.

3.2. Mathematical Model

By using the discriminant function in (3.1) and regularizing the discriminant

coefficients of all the feature spaces together, LMKL obtains the following optimization

problem:

minimize
1

2

P∑

m=1

‖wm‖22 + C
N∑

i=1

ξi

with respect to wm ∈ R
Sm , ξ ∈ R

N
+ ,V ∈ R

P×(DG+1), b ∈ R

subject to yi

(
P∑

m=1

ηm(xi|V)〈wm,Φm(x
m
i)〉+ b

)

≥ 1− ξi ∀i (3.6)

where nonconvexity is introduced to the model due to the nonlinearity formed by

using the gating model outputs in the separation constraints. Instead of trying to

solve (3.6) directly, we can use a two-step alternating optimization algorithm (Gönen

and Alpaydın, 2008), also used for choosing kernel parameters (Chapelle et al., 2002)

and obtaining ηm parameters of MKL (Rakotomamonjy et al., 2008). This procedure

consists of two basic steps: (a) solving the model with a fixed gating model, and, (b)

updating the gating model parameters with the gradients calculated from the current

solution.

61

For a fixed V, we obtain the Lagrangian dual of the primal problem (3.6) as

follows:

LD(V) =
1

2

P∑

m=1

‖wm‖22 + C

N∑

i=1

ξi −
N∑

i=1

βiξi

−
N∑

i=1

αi

(

yi

(
P∑

m=1

ηm(xi|V)〈wm,Φm(x
m
i)〉+ b

)

− 1 + ξi

)

and taking the derivatives of LD(V) with respect to the primal variables gives

∂LD(V)

∂wm
= 0 ⇒ wm =

N∑

i=1

αiyiηm(xi|V)Φm(x
m
i) ∀m

∂LD(V)

∂b
= 0 ⇒

N∑

i=1

αiyi = 0

∂LD(V)

∂ξi
= 0 ⇒ C = αi + βi ∀i. (3.7)

From LD(V) and (3.7), the dual formulation is obtained as

maximize J(V) =

N∑

i=1

αi −
1

2

N∑

i=1

N∑

j=1

αiαiyiyjkη(xi,xj)

with respect to α ∈ R
N
+

subject to

N∑

i=1

αiyi = 0

C ≥ αi ≥ 0 ∀i (3.8)

where the locally combined kernel function is defined as

kη(xi,xj) =

P∑

m=1

ηm(xi|V) 〈Φm(x
m
i),Φm(x

m
j)〉

︸ ︷︷ ︸

km(x
m
i ,x

m
j)

ηm(xj|V). (3.9)

62

By using the support vector coefficients obtained from (3.8) and the gating model

parameters, we obtain the following discriminant function:

f(x) =

N∑

i=1

αiyikη(xi,x) + b.

Due to strong duality, for a given V, the gradients of the objective function in (3.8)

are equal to the gradients of the objective function in (3.6). These gradients are used

to update the gating model parameters at each step.

3.3. Training with Alternating Optimization

We can find the gradients of J(V) with respect to the parameters of all three

gating models. The gradients of (3.8) with respect to the parameters of the softmax

gating model (3.2) are

∂J(V)

∂vm
= −1

2

N∑

i=1

N∑

j=1

P∑

h=1

Υj
iηh(xi|V)kh(x

h
i ,x

h
j)ηh(xj|V)

(xG
i (δ

h
m − ηm(xi|V)) + xG

j (δ
h
m − ηm(xj |V)))

∂J(V)

∂vm0
= −1

2

N∑

i=1

N∑

j=1

P∑

h=1

Υj
iηh(xi|V)kh(x

h
i ,x

h
j)ηh(xj|V)

(δhm − ηm(xi|V) + δhm − ηm(xj |V))

where Υj
i = αiαjyiyj. The same gradients with respect to the parameters of the sigmoid

gating model (3.3) are

∂J(V)

∂vm
= −1

2

N∑

i=1

N∑

j=1

Υj
iηm(xi|V)km(x

m
i ,x

m
j)ηm(xj |V)

(xG
i (1− ηm(xi|V)) + xG

j (1− ηm(xj|V)))

∂J(V)

∂vm0
= −1

2

N∑

i=1

N∑

j=1

Υj
iηm(xi|V)km(x

m
i ,x

m
j)ηm(xj |V)

(1− ηm(xi|V) + 1− ηm(xj|V))

63

where the gating model parameters for a kernel function are updated independently.

We can also find the gradients with respect to the means and the spreads of the

Gaussian gating model (3.4) are

∂J(V)

∂µm

= −
N∑

i=1

N∑

j=1

P∑

h=1

Υj
iηh(xi|V)kh(x

h
i ,x

h
j)ηh(xj|V)

((xG
i − µm)(δ

h
m − ηm(xi|V)) + (xG

j − µm)(δ
h
m − ηm(xj |V)))/σ2

m

∂J(V)

∂σm
= −

N∑

i=1

N∑

j=1

P∑

h=1

Υj
iηh(xi|V)kh(x

h
i ,x

h
j)ηh(xj|V)

(‖xG
i − µm‖22(δhm − ηm(xi|V)) + ‖xG

j − µm‖22(δhm − ηm(xj |V)))/σ3
m.

The complete algorithm of our proposed LMKL is summarized in Figure 3.1.

The convergence of the algorithm can be determined by observing the change in the

objective function value of (3.8).

1: Initialize V(0) randomly

2: repeat

3: Calculate K
(t)
η = {kη(xi,xj)}Ni,j=1 using V(t)

4: Solve kernel machine with K
(t)
η

5: Calculate descent direction
∂J(V)

∂V
6: Determine step size, ∆(t), using Armijo’s rule

7: Update gating model parameters: V(t+1) ⇐ V(t) −∆(t) ∂J(V)

∂V
8: until convergence

Figure 3.1. Localized Multiple Kernel Learning (LMKL)

In order to illustrate our proposed algorithm, we use the toy data set Gauss4.

First, we train both MKL and LMKL with softmax gating to combine a linear kernel,

kL, and a second-degree polynomial kernel, kP (q = 2). Figure 3.2(b) shows the clas-

sification boundaries calculated and the support vectors stored on one of the training

folds by MKL that assigns combination weights 0.32 and 0.68 to kL and kP , respec-

tively. We see that using the kernel matrix obtained by combining kL and kP with these

64

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

(a) Gauss4 Data Set

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

(b) MKL with (kL-kP)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

(c) LMKL with (kL-kP)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

(d) LMKL with (kL-kL-kL)

Figure 3.2. MKL and LMKL solutions on the Gauss4 data set. (a) The dashed

ellipses show the Gaussians from which data are sampled and the solid line shows the

optimal Bayes’ discriminant. (b)-(d) The solid lines show the discriminants learned.

The circled data points represent the support vectors stored.

weights, we could not achieve a good approximation to the optimal Bayes’ boundary.

As we see in Figure 3.2(c), LMKL divides the input space into two regions (the gating

boundary is shown as a dashed line) and uses the polynomial kernel to separate one

component from two others quadratically in one region and the linear kernel for the

other component in the other region. We see that we get a very good approximation

of the optimal Bayes’ boundary. The softmax function in the gating model achieves a

65

smooth transition between the two kernels. The superiority of the localized approach

is also apparent in the smoothness of the fit that uses fewer support vectors: MKL

achieves 90.95±0.61 per cent average test accuracy by storing 38.23±2.34 per cent of

training instances as support vectors, whereas LMKL achieves 91.83±0.24 per cent

average test accuracy by storing 25.13±0.91 per cent support vectors.

With LMKL, we can also combine multiple copies of the same kernel, as shown

in Figure 3.2(d), which shows the classification and gating model boundaries of LMKL

(solid and dashed lines, respectively) using three linear kernels and approximates the

optimal Bayes’ boundary in a piecewise linear manner. For this configuration, LMKL

achieves 91.78±0.55 per cent average test accuracy by storing 23.83±1.20 per cent sup-

port vectors. Instead of using complex kernels such as polynomial kernels of high-degree

or the Gaussian kernel, local combination of simple kernels (e.g., linear or low-degree

polynomial kernels) can produce accurate classifiers and avoid overfitting. Figure 3.3

shows the average test accuracies and support vector percentages with one standard

deviation for LMKL with different number of linear kernels. We see that even if we

provide more kernels than needed, LMKL uses only as many support vectors as re-

quired and does not overfit. LMKL obtains nearly the same average test accuracies

and support vector percentages with three or more linear kernels.

3.4. Extensions to Other Algorithms

We extend our LMKL framework for binary classification to other kernel-based

algorithms, namely SVR, MCSVM, and OCSVM. Note that any kernel machine that

has a hyperplane-based decision function can be localized by replacing 〈w,Φ(x)〉 with
∑P

m=1 ηm(x|V)〈wm,Φm(x
m)〉 and deriving the corresponding update rules.

66

5 10 15 20
89

90

91

92

93

P
te

st
 a

cc
ur

ac
y

5 10 15 20
10

20

30

40

50

P

su
pp

or
t v

ec
to

r

Figure 3.3. The average test accuracies and support vector percentages on the

Gauss4 data set obtained by LMKL with multiple copies of linear kernels and

softmax gating.

3.4.1. Regression Support Vector Machines

We can also apply the localized kernel idea to ǫ-tube SVR (Gönen and Alpaydın,

2010b). The decision function is rewritten as

f(x) =
P∑

m=1

ηm(x|V)〈wm,Φm(x
m)〉+ b

and the modified primal optimization problem is

minimize
1

2

P∑

m=1

‖wm‖22 + C
N∑

i=1

(ξ+i + ξ−i)

with respect to wm ∈ R
Sm, ξ+ ∈ R

N
+ , ξ

− ∈ R
N
+ ,V ∈ R

P×(DG+1), b ∈ R

subject to ǫ+ ξ+i ≥ yi −
P∑

m=1

ηm(xi|V)〈wm,Φm(x
m
i)〉 − b ∀i

ǫ+ ξ−i ≥
P∑

m=1

ηm(xi|V)〈wm,Φm(x
m
i)〉+ b− yi ∀i

67

where {ξ+, ξ−} are the vectors of slack variables and ǫ is the width of the regression

tube. For a given V, the corresponding dual formulation is

maximize J(V) =

N∑

i=1

yi(α
+
i − α−

i)− ǫ

N∑

i=1

(α+
i + α−

i)

− 1

2

N∑

i=1

N∑

j=1

(α+
i − α−

i)(α
+
j − α−

j)kη(xi,xj)

with respect to α+ ∈ R
N
+ ,α

− ∈ R
N
+

subject to
N∑

i=1

(α+
i − α−

i) = 0

C ≥ α+
i ≥ 0 ∀i

C ≥ α−
i ≥ 0 ∀i

and the resulting decision function is

f(x) =

N∑

i=1

(α+
i − α−

i)kη(xi,x) + b.

The same learning algorithm given for binary classification problems can be applied

to regression problems by simply replacing Υj
i in gradient-descent of the gating model

(see Section 3.3) with (α+
i − α−

i)(α
+
j − α−

j).

We illustrate the applicability of LMKL to regression problems on the Motor-

cycle data set discussed by Silverman (1985). We train LMKL with three linear

kernels and softmax gating (C = 1000 and ǫ = 16) using 10-fold cross validation.

Figure 3.4 shows the average of global and local fits obtained for these 10 folds. We

learn a piecewise linear fit through three local models that are obtained using linear

kernels in each region and we combine them by using the softmax gating model (shown

by dashed lines). The softmax gating model divides the input space between kernels,

generally selects a single kernel to use, and also ensures a smooth transition between

local fits.

68

0 10 20 30 40 50 60
−150

−100

−50

0

50

100

η
2 η

1

η
3

k
η

k
2

k
1

k
3

Figure 3.4. Global and local fits (solid lines) obtained by LMKL with three linear

kernels and softmax gating on the Motorcycle data set. The dashed lines show

gating model outputs, which are multiplied by 50 for visual clarity.

3.4.2. One-Class Support Vector Machines

OCSVM is a discriminative method proposed for novelty detection problems

(Schölkopf and Smola, 2002). The task is to learn the smoothest hyperplane that

puts most of the training instances to one side of the hyperplane while allowing other

instances remaining on the other side with a cost. In the localized version, we rewrite

the discriminant function as

f(x) =

P∑

m=1

ηm(x|V)〈wm,Φm(x
m)〉+ b

and the modified primal optimization problem is

minimize
1

2

P∑

m=1

‖wm‖22 + C

N∑

i=1

ξi + b

with respect to wm ∈ R
Sm , ξ ∈ R

N
+ ,V ∈ R

P×(DG+1), b ∈ R

subject to
P∑

m=1

ηm(xi|V)〈wm,Φm(x
m
i)〉+ b+ ξi ≥ 0 ∀i.

69

For a given V, we obtain the following dual optimization problem:

maximize J(V) = −1

2

N∑

i=1

N∑

j=1

αiαikη(xi,xj)

with respect to α ∈ R
N
+

subject to
N∑

i=1

αi = 1

C ≥ αi ≥ 0 ∀i

and the resulting discriminant function is

f(x) =
N∑

i=1

αikη(xi,x) + b.

In the learning algorithm, Υj
i should be replaced with αiαj when calculating the gra-

dients with respect to the gating model parameters.

3.4.3. Multiclass Support Vector Machines

We can easily apply LMKL to the multimachine approach by solving (3.8) for

each two-class problem separately. In such a case, we obtain different gating models

parameters and hence, different kernel weighing strategies for each of the problems.

Another possibility is to solve these uncoupled problems separately but learn a common

gating model; a similar approach is used for obtaining common kernel weights in MKL

for multiclass problems (Rakotomamonjy et al., 2008).

For the single-machine approach, for class l, we write the discriminant function

as follows:

f l(x) =

P∑

m=1

ηm(x|V)〈wl
m,Φm(x

m)〉+ bl.

70

The modified primal optimization problem is

minimize
1

2

P∑

m=1

K∑

l=1

‖wl
m‖22 + C

N∑

i=1

K∑

l=1

ξli

with respect to wl
m ∈ R

Sm , ξl ∈ R
N
+ ,V ∈ R

P×(DG+1), bl ∈ R

subject to f yi(xi)− f l(xi) ≥ 2− ξli ∀(i, l 6= yi)

ξyii = 0 ∀i.

We can obtain the dual formulation for a given V by following the same derivation

steps:

maximize J(V) = 2
N∑

i=1

K∑

l=1

αl
i −

1

2

N∑

i=1

N∑

j=1

(

δyjyiAiAj −
K∑

l=1

αl
i(2α

yi
j − αl

j)

)

kη(xi,xj)

with respect to αl ∈ R
N
+

subject to
N∑

i=1

αl
i −

N∑

i=1

δlyiAi = 0 ∀l

(1− δlyi)C ≥ αl
i ≥ 0 ∀(i, l)

where Ai =
∑K

l=1 α
l
i. The resulting discriminant functions that use the locally combined

kernel function are given as

f l(x) =
N∑

i=1

(δlyiAi − αl
i)kη(xi,x) + bl.

Υj
i should be replaced with (δ

yj
yiAiAj−

∑K
l=1 α

l
i(2α

yi
j −αl

j)) in learning the gating model

parameters for multiclass classification problems.

3.5. Discussion

In this section, we discuss the key properties of our proposed method and compare

it with similar MKL methods in the literature.

71

3.5.1. Computational Complexity

When we are training LMKL, we need to solve a canonical kernel machine prob-

lem with the combined kernel obtained with the current gating model parameters and

calculate the gradients of J(V) at each iteration. The gradient calculation step has

lower time complexity compared to the kernel machine solver. The gradients calcula-

tions are made by using the support vectors of the current iteration. The computational

complexity of LMKL mainly depends on the complexity of the canonical kernel ma-

chine solver used in the main loop, which can be reduced by using a hot-start procedure

(i.e., starting from the previous solution). The number of iterations before convergence

clearly depends on the training data and the step size selection procedure. The key is-

sue for faster convergence is to select good gradient-descent step sizes at each iteration.

The step size of each iteration should be determined with a line search method (e.g.,

Armijo’s rule), which requires solving additional kernel machine problems. Clearly,

the time complexity for each iteration increases but the algorithm converges in fewer

iterations. In practice, we see convergence in five to 20 iterations.

One main advantage of LMKL is in reducing the time complexity for the testing

phase as a result of localization. When calculating the locally combined kernel function,

kη(xi,x), in (3.9), km(x
m
i ,x

m) needs to be evaluated or calculated only if both ηm(xi)

and ηm(x) are active, i.e., nonzero.

3.5.2. Knowledge Extraction

The kernel weights obtained by MKL can be used to extract knowledge about

the relative contributions of kernel functions used in combination. Different kernels

define different similarity measures and we can deduce which similarity measures are

appropriate for the task at hand. If kernel functions are evaluated over different feature

subsets or feature representations, the important ones have higher combination weights.

With our LMKL framework, we can extract similar information for different regions

of the input space. This enables us to extract information about kernels (similarity

measures), feature subsets, and/or feature representations in a data-dependent manner.

72

3.5.3. Regularization

Canonical kernel machines learn sparse models as a result of regularization on

the weight vector but the underlying complexity of the kernel function is the main

factor for determining the model complexity. The main advantage of LMKL in terms

of regularization over canonical kernel machines is the inherent regularization effect

on the gating model in (3.7). When we regularize hyperplane weight vectors, we also

regularize the gating model as a side effect. MKL can combine only different kernel

functions and more complex kernels are favored over the simpler ones in order to get

better performance. However, LMKL can also combine multiple copies of the same

kernel and it can dynamically construct a more complex locally combined kernel by

using the kernels in a data-dependent way. LMKL eliminates some of the kernels

by assigning zero weights to the corresponding gating outputs in order to get a more

regularized solution. Figure 3.3 gives empirical support to this regularization effect,

where we see that LMKL does not overfit even if we increase the number of kernels

up to 20.

3.5.4. Dimensionality Reduction

The localized kernel idea can also be combined with dimensionality reduction.

If the training instances have a local structure (i.e., lie on low-dimensional manifolds

locally), we can learn low-dimensional local projections in each region, which we can

also use for visualization. Previously, it has been proposed to integrate a projection

matrix into the discriminant function (Chapelle et al., 2002) and we extend this idea to

project data instances into different feature spaces by using local projection matrices

combined with a gating model, and calculate the combined kernel function with the dot

product in the combined feature space (see Chapter 4). The local projection matrices

can be learned with the other parameters, as before, using a two-step alternating

optimization algorithm.

73

3.5.5. Related Work

LMKL finds a nonlinear combination of kernel functions with the help of the

gating model. The idea of learning a nonlinear combination is also discussed in different

studies. For example, Lewis et al. (2006a) propose a latent variable generative model

using the maximum entropy discrimination to learn data-dependent kernel combination

weights. This method combines a generative probabilistic model with a discriminative

large margin method using a log-ratio of Gaussian mixtures as the classifier.

In a more recent work, a nonlinear kernel combination method based on kernel

ridge regression and polynomial combination of kernels is proposed and the kernel

weights are optimized over a positive, bounded, and convex set using a projection-

based gradient-descent algorithm (Cortes et al., 2010).

Similar to LMKL, a Bayesian approach is developed for combining different

feature representations in a data-dependent way under the Gaussian process framework

(Christoudias et al., 2009). A common covariance function is obtained by combining

the covariances of feature representations in a nonlinear manner. This formulation

can identify the noisy data instances for each feature representation and prevent them

from being used. Classification is performed using the standard Gaussian processes

approach with the common covariance function.

Inspired from LMKL, two methods that learn a data-dependent kernel function

are used for image recognition applications (Yang et al., 2009; Yang et al., 2010); they

differ in their gating models that are constants rather than functions of the input. In

Yang et al. (2009), the training set is divided into clusters as a preprocessing step

and then cluster-specific kernel weights are learned using an alternating optimization

method. The combined kernel function can be written as

kη(xi,xj) =
P∑

m=1

ηmci km(x
m
i ,x

m
j)η

m
cj

74

where ηmci corresponds to the weight of kernel km(·, ·) in the cluster xi belongs to.

The kernel weights of the cluster that the test instance is assigned to are used in the

testing phase. In Yang et al. (2010), instance-specific kernel weights are used instead

of cluster-specific weights. The corresponding combined kernel function is

kη(xi,xj) =

P∑

m=1

ηmi km(x
m
i ,x

m
j)η

m
j

where ηmi corresponds to the weight of kernel km(·, ·) for xi and instance-specific weights

are optimized using an alternating optimization problem for the training set. But, in

the testing phase, the kernel weights for a test instance are all taken to be equal.

We are going to give our experimental results for classification and regression

tasks on several data sets in Section 5.3.

75

4. LOCAL PROJECTION KERNELS

Dimensionality reduction is commonly used to alleviate the effect of redundant

or correlated features and to visualize the training data using few, for example, two

dimensions.

Principal Component Analysis (PCA) is the first method that comes to

mind for linear dimensionality reduction (Pearson, 1901). PCA seeks to maximize the

explained variance of the data in the projected feature space and performs a linear

dimensionality reduction by calculating a projection matrix from the eigenvectors of

the covariance matrix. It may perform badly for classification problems due to its

linear and unsupervised nature. Kernel PCA (KPCA) is an extension to PCA

algorithm that obtains nonlinear mappings with the help of kernel functions (Schölkopf

and Smola, 2002).

Fisher Discriminant Analysis (FDA) is a well-known linear supervised

method for dimensionality reduction that jointly minimizes the within-class variance

and maximizes the between-class variance (Fisher, 1936). FDA has two main limita-

tions: (a) the dimensionality of the projected feature space can be at most K−1 where

K is the number of classes, and, (b) it assumes that each class follows a unimodal dis-

tribution, which may not always hold. FDA can also be kernelized to obtain nonlinear

mappings.

Methods such as PCA and FDA learn a global projection matrix and use this

matrix over the whole input space. This approach may not work for data sets that

have a local neighborhood structure. A mixture of principal component analyzers has

been proposed to capture regional differences in the covariance structure (Tipping and

Bishop, 1999). The method divides the input density into clusters and learns a local

PCA model in each cluster. However, the unsupervised nature of PCA method is

preserved even though we learn local models.

76

Locally Linear Embedding (LLE) (Roweis and Saul, 2000), Isomap (Tenenbaum

et al., 2000), and Laplacian Eigenmaps (Belkin and Niyogi, 2002) are some exam-

ples of unsupervised locality preserving manifold learning algorithms but these methods

do not explicitly learn a mapping function for unseen data instances. Ocnlinx et al.

(2009) and Hou et al. (2009) propose two variants of the LLE algorithm in order to

capture the local neighborhood structure in the data better. Locality Preserv-

ing Projections (LPP) have been proposed also to learn a mapping function while

preserving locality (He and Niyogi, 2004).

In addition to these unsupervised methods, there are also supervised methods

that preserve the local neighborhood structure in the data. Local FDA (LFDA)

combines the ideas behind FDA and LPP (Sugiyama, 2007). The mapping is obtained

again by solving a generalized eigenvalue problem but the between-class scatter and

within-class scatter matrices are calculated locally with the help of an affinity matrix

(an idea that is borrowed from LPP). LFDA also removes the restriction of obtaining

at most K − 1 dimensions in the projected feature space. Tao et al. (2009) extend

FDA by maximizing the geometric mean of the divergences between different pairs

of classes. This strategy obtains better projections in terms of class separation for

multiclass problems. Another method is Local Learning Projections (LLP)

that can use supervised information (its difference from PCA) and minimize the local

estimation error instead of the global estimation error (Wu et al., 2007).

Yan et al. (2007) formulate a common framework for representing different di-

mensionality reduction algorithms as graph embedding problems. For example, PCA,

FDA, Isomap, LLE, LPP, and Laplacian Eigenmaps can be cast into a common

formulation. Following this idea, a supervised variant of LLE called Discriminant

LLE (DLLE) that also learns a mapping function is proposed (Li et al., 2008).

In this chapter, we propose a supervised dimensionality reduction method cou-

pled with a kernel machine called Local Projection Kernels (LPK) (Gönen and

Alpaydın, 2010d). We reproduce the modification of the discriminant function of the

SVM by integrating a projection matrix and explain how to optimize SVM parameters

77

and the projection matrix jointly, as given by Chapelle et al. (2002). Then, we combine

this idea of projections with the localized kernel idea of Chapter 3, and describe how

to optimize all of the parameters in a coupled manner with an alternating optimization

procedure.

4.1. Supervised Learning of Global Projection Kernels

Suppose that, instead of using the original features in the SVM formulation, we

apply a linear projection to data instances with the projection matrix, W ∈ R
D×R:

z = W⊤x

where R is the dimensionality of the projected feature space. If we use the projected

instances in the decision function, we obtain

f(x) = 〈w,Φ(z)〉+ b

and the primal problem becomes

minimize
1

2
‖w‖2 + C

N∑

i=1

ξi

with respect to w ∈ R
S, b ∈ R, ξ ∈ R

N
+ ,W ∈ R

D×R

subject to yi (〈w,Φ(zi)〉+ b) ≥ 1− ξi ∀i. (4.1)

Note that the optimization problem in (4.1) is not convex due to the nonlinearity in

the separation constraints.

Instead of trying to optimize the SVM parameters, {w, b, ξ}, and the projection

matrix, W, together, we utilize a two-step optimization algorithm as in Chapelle et al.

(2002) and Rakotomamonjy et al. (2008). The algorithm starts with a random pro-

jection matrix. In the first step, we solve (4.1) with respect to {w, b, ξ} while fixing

W. We then update W using a gradient-descent step calculated from the objective

78

function of (4.1) in the second step. The following dual formulation can be solved

instead of the primal formulation in the first step to apply the kernel trick:

maximize J(W) =

N∑

i=1

αi −
1

2

N∑

i=1

N∑

j=1

αiαjyiyj 〈Φ(zi),Φ(zj)〉
︸ ︷︷ ︸

k(zi, zj)

with respect to α ∈ R
N
+

subject to
N∑

i=1

αiyi = 0

C ≥ αi ≥ 0 ∀i. (4.2)

For a fixed W, we solve the dual optimization problem and obtain the optimal

α values. We need to update W by calculating the gradient of the objective function

in (4.2). The gradient of the objective function with respect to the elements of W is

calculated as

∂J(W)

∂W[k, l]
= −1

2

N∑

i=1

N∑

j=1

αiαjyiyj
∂k(W⊤xi,W

⊤xj)

∂W[k, l]
∀(k, l)

where k ∈ {1, 2, . . . , D}, l ∈ {1, 2, . . . , R}, and [·, ·] indexes the elements of a matrix.

The same gradient can also be obtained as the derivative of the margin (Chapelle

et al., 2002).

Three commonly used kernels, linear kernel (kL), polynomial kernel (kP), and

Gaussian kernel (kG), can be expressed in terms of W as follows:

kL(zi, zj) = 〈zi, zj〉 = x⊤
i WW⊤xj

kP (zi, zj) = (〈zi, zj〉+ 1)q = (x⊤
i WW⊤xj + 1)q

kG(zi, zj) = exp(− ‖zi − zj‖22
/
s2)

= exp(−(xi − xj)
⊤WW⊤(xi − xj)

/
s2).

79

The derivatives of the kernels with respect to the elements of the projection matrix are

given as

∂kL(zi, zj)

∂W[k, l]
= xi[k]zj [l] + zi[l]xj [k]

∂kP (zi, zj)

∂W[k, l]
= (xi[k]zj [l] + zi[l]xj[k])q(〈zi, zj〉+ 1)q−1

∂kG(zi, zj)

∂W[k, l]
= −2(xi[k]− xj [k])(zi[l]− zj [l])kG(zi, zj)/s

2.

The projection matrix can be updated using a simple gradient-descent update

rule with a fixed step size or Armijo’s rule can be used to determine a better step

size at each iteration. Note that this alternating optimization procedure does not

guarantee convergence to the global optimum and the initial value of W may affect the

solution quality. Figure 4.1 lists the main steps of the procedure that we call Global

Projection Kernels (GPK).

1: Initialize W(0) randomly

2: repeat

3: Calculate K(t) = {k(zi, zj)}Ni,j=1 using W(t)

4: Solve kernel machine with K(t)

5: Determine step size, µ(t), using Armijo’s rule

6: Update projection matrix: W(t+1) ⇐ W(t) − µ(t)∂J(W)

∂W
7: until convergence

Figure 4.1. Global Projection Kernels (GPK)

After convergence, we obtain the decision function in terms of model parameters

as follows:

f(x) =

N∑

i=1

αiyik(W
⊤xi,W

⊤x) + b.

We project both the input x and the support vector xi to the lower dimensional space

and calculate the kernel there.

80

4.2. Supervised Learning of Local Projection Kernels

Using a single projection matrix over the whole input space can not capture

multiple modalities that may exist in the data. At this point, we can combine localized

kernel functions of Chapter 3 with projection matrices and similar to using kernel

functions with changing weights in different regions, we can divide the input space into

P regions and learn a local projection matrix, Wm ∈ R
Dm×Rm , m = 1, . . . , P , in each

region, in order to capture the local structure information. So, we have P different

projected data instances for each instance:

zm = W⊤
mx

m ∀m

and the discriminant function can be rewritten as

f(x) =

P∑

m=1

ηm(x|V)〈wm,Φm(z
m)〉+ b

where the gating model, ηm(x|V), now chooses the weight for the corresponding pro-

jected feature space, Φm(z
m), as a function of input x. By modifying the formulation

in (4.1) with this new discriminant function, we get the following optimization problem:

minimize
1

2

P∑

m=1

‖wm‖22 + C

N∑

i=1

ξi

with respect to wm ∈ R
Sm , b ∈ R, ξ ∈ R

N
+ ,V ∈ R

P×(DG+1),Wm ∈ R
Dm×Rm

subject to yi

(
P∑

m=1

ηm(xi|V)〈wm,Φm(z
m
i)〉+ b

)

≥ 1− ξi ∀i (4.3)

81

and this problem is not convex, either.For givenV and {Wm}Pm=1 values, (4.3) becomes

convex and we can obtain the Lagrangian of the primal problem:

LD(V, {Wm}Pm=1) =
1

2

P∑

m=1

‖wm‖22 + C

N∑

i=1

ξi −
N∑

i=1

βiξi

−
N∑

i=1

αi

(

yi

(
P∑

m=1

ηm(xi|V)〈wm,Φm(z
m
i)〉+ b

)

− 1 + ξi

)

and taking the derivatives of LD with respect to the primal variables gives

∂LD(V, {Wm}Pm=1)

∂wm
⇒ wm =

N∑

i=1

αiyiηm(xi|V)Φm(z
m
i) ∀m

∂LD(V, {Wm}Pm=1)

∂b
⇒

N∑

i=1

αiyi = 0

∂LD(V, {Wm}Pm=1)

∂ξi
⇒ C = αi + βi ∀i. (4.4)

From LD(V, {Wm}Pm=1) and (4.4), the dual formulation is obtained as

maximize J(V, {Wm}Pm=1) =
N∑

i=1

αi −
1

2

N∑

i=1

N∑

j=1

αiαjyiyjkη(xi,xj)

with respect to α ∈ R
N
+

subject to
N∑

i=1

αiyi = 0

C ≥ αi ≥ 0 ∀i (4.5)

where the local projection kernel function is defined as

kη(xi,xj) =

P∑

m=1

ηm(xi|V) 〈Φm(z
m
i),Φm(z

m
j)〉

︸ ︷︷ ︸

km(z
m
i , zmj)

ηm(xj |V)

82

and using kη(xi,xj) corresponds to projecting data instances into the (
∑P

m=1 Sm)-

dimensional feature space and using the dot product in this feature space.

η1(xj |V)Φ1(W
⊤
1 x

1
i)

η2(xj |V)Φ2(W
⊤
2 x

2
i)

...

ηP (xj |V)ΦP (W
⊤
Px

P
i)

⊤

η1(xj|V)Φ1(W
⊤
1 x

1
j)

η2(xj|V)Φ2(W
⊤
2 x

2
j)

...

ηP (xj|V)ΦP (W
⊤
Px

P
j)

Having fixed the SVM parameters and the gating model parameters, we can

update the local projection matrices using gradient-descent. For given α and V values,

the gradient of the objective function in (4.5) with respect to the elements of Wm

matrices is given as

∂J(V, {Wm}Pm=1)

∂Wm[k, l]
= −1

2

N∑

i=1

N∑

j=1

Υj
iηm(xi|V)

∂km(z
m
i , z

m
j)

∂Wm[k, l]
ηm(xj|V).

Having fixed the SVM parameters and the local projection matrices, we can

update the gating model parameters. For given α and {Wm}Pm=1 values, the gradients

of the objective function in (4.5) with respect to the parameters of the softmax gating

model (3.2) are given as

∂J(V, {Wm}Pm=1)

∂vm

= −1

2

N∑

i=1

N∑

j=1

P∑

h=1

Υj
iηh(xi|V)kh(z

h
i , z

h
j)ηh(xj|V)

(xG
i (δ

h
m − ηm(xi|V)) + xG

j (δ
h
m − ηm(xj |V)))

∂J(V, {Wm}Pm=1)

∂vm0

= −1

2

N∑

i=1

N∑

j=1

P∑

h=1

Υj
iηh(xi|V)kh(z

h
i , z

h
j)ηh(xj|V)

(δhm − ηm(xi|V) + δhm − ηm(xj |V)).

83

The complete algorithm of our proposed LPK is summarized in Figure 4.2. The

convergence of the algorithm can be determined by observing the change in the objec-

tive function value of (4.5).

1: Initialize V(0) and {W(0)
m }Pm=1 randomly

2: repeat

3: Calculate K
(t)
η = {kη(xi,xj)}Ni,j=1 using V(t) and {W(t)

m }Pm=1

4: Solve kernel machine with K
(t)
η

5: Determine step size, µ(t), using Armijo’s rule

6: Update local projection matrices: W
(t+1)
m ⇐ W

(t)
m −µ(t)∂J(V, {Wm}Pm=1)

∂Wm
∀m

7: Calculate K
(t)
η = {kη(xi,xj)}Ni,j=1 using V(t) and {W(t+1)

m }Pm=1

8: Solve kernel machine with K
(t)
η

9: Determine step size, ∆(t), using Armijo’s rule

10: Update gating model parameters: V(t+1) ⇐ V(t) −∆(t) ∂J(V, {Wm}Pm=1)

∂V
11: until convergence

Figure 4.2. Local Projection Kernels (LPK)

After determining the final α, b, V, and {Wm}Pm=1 values, the resulting discrim-

inant function is:

f(x) =
N∑

i=1

P∑

m=1

αiyiηm(xi|V)km(W
⊤
mx

m
i ,W

⊤
mx

m)ηm(x|V) + b.

In order to better illustrate our proposed method, we create a toy data set con-

sisting of four clusters (two for each class) as shown in Figure 4.3(a). If we use a

global projection matrix over the whole input space, we can not obtain a clear linear

separation between classes due to intraclass multimodalities. However, we can obtain

a projected space in which classes are well-separated and multimodal structures in

each class are preserved, as shown in Figure 4.3(b), by splitting the input space into

two regions using the softmax gating model (shown with the thick dashed line in Fig-

ure 4.3(a)) and performing local projections (one-dimensional projections, W1 ∈ R
2×1

and W2 ∈ R
2×1, shown with arrows in Figure 4.3(a)) in each region.

84

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

W
1

W
2

(a) Original Feature Space

−2 −1 0 1 2
−2

−1

0

1

2

W
1

W
2

(b) Projected Feature Space

Figure 4.3. Motivating example for learning local projections. The solid lines show

the resulting discriminants in the original and projected feature spaces. (a) There are

two local regions in the original feature space and the thick dashed line separate

them. W1 and W2 arrows show the projection directions in the two regions. (b) The

horizontal and vertical axes correspond to the projected directions in the two regions.

Figure 4.4 shows the gating model output for the first projection matrix, η1(x|V),

superimposed with training data. We see that η1(x|V) divides the input space into

two local regions. The line where η1(x|V) = 0.5 is shown by a thick dashed line in

Figure 4.3(a).

−6−5−4−3−2−1 0 1 2 3 4 5 6 −6−5−4−3−2−10 1 2 3 4 5 6
0

0.5

1

Figure 4.4. The gating model output superimposed with training data for the

motivating example.

85

4.3. Discussion

In LPK training, the gradient calculations have ignorable time complexity com-

pared with the SVM solver and these calculations are made by using only the support

vectors at the current iteration. The key issue for faster convergence is to select good

gradient-descent step sizes, (∆(t) and µ(t) in Figure 4.2), at each iteration. Better step

size values can be obtained by utilizing a line search method such as Armijo’s rule but

this process needs additional calls to the SVM solver. Clearly, the time complexity

for each iteration increases but the algorithm converges in fewer iterations. In our

experiments, we use Armijo’s rule to determine the step sizes at each iteration and

the algorithm converges in a few iterations (generally five to 10). A more detailed

convergence analysis is performed in Subsection 5.4.4.

We describe LPK for binary classification problems but the same idea can easily

be applied to regression estimation and novelty detection problems (Schölkopf and

Smola, 2002) by changing the dual optimization problem (4.5) solved at each iteration

and calculating the gradients with respect to the new objective function. The gradient

formulations obtained for binary classification problems can be used by just replacing

Υj
i with (α+

i − α−
i)(α

+
j − α−

j) for SVR and with αiαj for OCSVM.

Using local projection matrices in different regions of the input space enables us

to extract information about the relative importance of features in each region. The

features with high magnitude weights in local projection matrices give more information

in the corresponding region of the input space. The features with very small weights

can also be discarded to perform feature selection locally.

Coupled learning of a data projection rule and a classification algorithm has also

been studied by Weinberger and Saul (2009) and Globerson and Roweis (2006). In

these studies, a Mahalanobis distance metric used in nearest neighbor classification is

learned by directly considering the classification accuracy. Tao et al. (2005a) propose

a supervised learning method that performs learning and feature extraction together

for tensor data. The discriminant parameters and the projection matrix are optimized

86

using an alternating approach. Our proposed LPK is more similar to Pereira and

Gordon (2006) in that the optimization of the projection matrix and the classifier

(SVM as in our case) performed jointly. They use a global projection matrix over the

whole input space, but we introduce a data-dependent projection by using a gating

model for choosing the projection matrix.

We are going to give our experimental results for visualization and classification

tasks in Section 5.3.

87

5. EXPERIMENTS

This chapter gives experimental results that support utility of our proposed meth-

ods on benchmark data sets from the UCI Machine Learning Repository as well as

several image image recognition and bioinformatics data sets.

5.1. Methodology

Except otherwise stated, our experimental methodology is as follows: Given a

data set, if separate training and test splits are not supplied, a random one-third is

reserved as the test set and the remaining two-thirds is resampled using 5 × 2 cross-

validation to generate 10 training and validation sets, with stratification for classifica-

tion problems. The validation sets of all folds are used to optimize C and for regression

problems, ǫ, the width of the error tube. The best configuration (measured as the high-

est average classification accuracy or the lowest mean square error (MSE) for regression

problems) on the validation folds is used to train the final classifiers/regressors on the

training folds and their performance is measured over the test set. So, for each data

set, we have ten test set results; we report their averages and one standard deviations.

We use our own implementations of SVM, SVR, MKL, RMKL, LMKL, GPK,

and LPK written in MATLAB and the resulting optimization problems for all these

methods are solved using the MOSEK optimization software (Mosek, 2010). We stop

the algorithms of LMKL, GPK, and LPK when the objective function value of the

current iteration is not less than (1 − τ) times the objective function value of the

previous iteration. The parameter τ is set to 0.001 in our experiments.

5.2. Multiple Kernel Learning Experiments

This section lists the results of intermediate integration experiments and compares

MKL with its regularized and cost-conscious variants we propose.

88

5.2.1. Intermediate Integration Experiments

In protein design and analysis, understanding the stability in sequence, struc-

ture, and function paradigms is of importance (Lee and Levitt, 1991) and hence there

is a need for predicting the protein stability change due to mutation. Single amino

acid mutations can significantly change the stability of a protein structure (Cheng

et al., 2006). To acquire a set of experimental annotations for every possible random

mutation is combinatorial and requires significant resources and time. Thus, accurate

computational prediction would be of use for suggesting the destructive mutations as

well as the most favorable and stable novel protein sequences. To this end, the predic-

tion of protein stability change due to amino acid substitutions remains a challenging

task in the field of molecular biology.

One can predict the direction towards which the mutation shifts the stability of

the protein (namely the sign of ∆∆G). It could be positive or negative, corresponding to

an increase or decrease in stability, respectively. From a machine learning perspective,

this is a binary classification task, where given x, information about the single-site

amino acid substitution, the aim is to decide whether this is a positive or negative

example, depending on whether the mutation is favorable or not.

5.2.1.1. Data Set. We extract a data set (S2783) that contains 2783 single-site muta-

tions with known Protein Data Bank (PDB) code of the protein and ∆∆G values

from the ProTherm database (Gromiha et al., 2000).2 Each instance has the following

features: PDB code of the protein, mutated position and mutation itself, solvent ac-

cessibility (SA), pH value, temperature (T), and the change in the free energy (∆∆G)

due to a mutation in a single position. As there are instances for the same mutation and

position where ∆∆G differs with T and pH values, T and pH are kept as features in

our data set. After removing the instances with missing values, S2783 reduces to 2471

instances from 68 different proteins and 755 of them (30.55 per cent) are stabilizing

mutations.

2Experiments done in Subsection 5.2.1 are the results of joint work with Ayşegül Özen and Türkan
Haliloğlu from the Deparment of Chemical Engineering.

89

5.2.1.2. Added Features. The substitution frequency of an amino acid for another

is considered here as an additional feature with the Point Accepted Mutation

(PAM) matrix (Dayhoff et al., 1978). PAM250 is chosen for the score of each amino

acid substitution and is based on the frequency of that substitution in closely related

proteins that have experienced a certain amount of evolutionary divergence.

Another feature considered is the mobility/flexibility of the amino acid position

in a given structure. The B-Factors reported in the PDB file is a good and quick

indicator of this feature. Neighbors of the mutated residue in both amino acid sequence

and 3D structure are the two other features that have been used recently (Capriotti

et al., 2004; Cheng et al., 2006). A window size of seven in the sequence (Cheng

et al., 2006) and a cutoff distance of 9Å in space (Capriotti et al., 2004) are previously

used to find the neighbors of the mutated position as the optimum sequence length and

distance. In our implementation, in addition to alpha-carbon atoms (Cα), beta-carbon

(Cβ) atoms are also considered to reflect the packing at a relatively higher resolution.

A mutation in a position of a protein sequence will change the number of side-

chain atoms of the residue in that position. This may trigger a conformational change

or local readjustments that may result also in a change in the atomic packing around

that residue and the fluctuations of the surrounding residues and the mutated residue

itself. Nevertheless, as in other studies (Capriotti et al., 2004; Cheng et al., 2006; Huang

et al., 2006), we neglect this effect.

Table 5.1 gives a list of the representations, original features, and the new fea-

tures that we introduce. The information coming only from the sequence (SO), and

the topology of the protein structure (TO), and both (ST) are encoded in the same

way as defined in previous studies (Cheng et al., 2006). An added asterisk, for ex-

ample, (SO∗), denotes the representation with newly added features. Neighbors of

the mutated position in the sequence, mutation, T, and pH are encoded in SO/SO∗.

Sequence information is not used in TO/TO∗; instead, spatial neighbors and the sol-

vent accessibility of the mutated position are encoded. In ST/ST∗, all information are

combined. The substitution likelihood of an amino acid is added to the existing data as

90

a new feature in all three representations. Crystallographic B-Factors of the Cα and

Cβ atoms are used in TO∗ and ST∗. For discrete features like amino acid identities,

1-of-n encoding is used, that is, if the variable can take one of n different values, one

is set to 1 and all others to 0.

Table 5.1. Representations, original features, and the new features of the S2783 data

set. In all three representations, amino acid substitution likelihood is used as a

feature. B-Factors of the Cα and Cβ atoms and spatial neighbor determined using

both Cα and Cβ atoms are features introduced into TO and ST.

Representation Original Features New Representation New Features

SO ±3 Neighbors (±3Ne) SO∗ PAM250 (PAM)

Mutation (Mut)

T/pH

TO Mutation (Mut) TO∗ PAM250 (PAM)

Cα Contacts (CA) Cα B-Factors (BFA)

SA/T/pH Cβ B-Factors (BFB)

Cα and Cβ Contacts (CB)

ST ±3 neighbors (±3 Ne) ST∗ PAM250 (PAM)

Mutation (Mut) Cα B-Factors (BFA)

Cα Contacts (CA) Cβ B-Factors (BFB)

SA/T/pH Cα and Cβ Contacts (CB)

5.2.1.3. Methodology. We use a slightly different methodology on the S2783. We

apply 20-fold cross-validation on the training set and obtain 20 folds. This whole

process is replicated 10 times each time using a different random test set. As a result,

we obtain 10× 20 test set results and report the average of these results.

5.2.1.4. Results. We perform experiments with early, late, and intermediate integra-

tion using both classification and regression formulation with/without the reject option

(Özen et al., 2009). But, we report here only the results of intermediate integration

using classification formulation without the reject option. The average test accuracies

for all data representations using intermediate integration are given in Table 5.2. When

91

we use MKL (linear formulation of (Bach et al., 2004)), we can see that adding extra

features does not change accuracy. The highest accuracy is obtained with ST as 0.806.

Table 5.2. The average test accuracies using intermediate integration on the S2783

data set.

SO SO∗ TO TO∗ ST ST∗

0.800 0.799 0.805 0.802 0.806 0.804

When we look at Table 5.3, we can say that the added features carry information

for predicting the energy change for single-site mutations even though they do not

improve the average testing accuracy. Local spatial composition with Cα and Cβ (CB)

has larger weight than local spatial composition with Cα (CA) and the information

that reflects the extents of mobility/flexibility of Cα and Cβ (BFA and BFB) has

nonzero weights.

Table 5.3. The combination weights obtained using intermediate integration for the

original and modified feature sets on the S2783 data set.

SO (0.19)1Ne + (0.20)2Ne + (0.23)3Ne + (0.27)Mut + (0.09)T + (0.03)pH

SO∗ (0.19)1Ne + (0.20)2Ne + (0.22)3Ne + (0.27)Mut + (0.09)T + (0.03)pH + (0.00)PAM

TO (0.19)Mut + (0.56)CA + (0.17)SA + (0.05)T + (0.02)pH

TO∗ (0.21)Mut + (0.23)CA + (0.12)SA + (0.06)T + (0.02)pH + (0.00)PAM + (0.23)CB +

(0.07)BFA + (0.06)BFB

ST (0.04)1Ne + (0.03)2Ne + (0.04)3Ne + (0.21)Mut + (0.45)CA + (0.15)SA + (0.06)T +

(0.02)pH

ST∗ (0.02)1Ne + (0.02)2Ne + (0.03)3Ne + (0.21)Mut + (0.21)CA + (0.11)SA + (0.06)T +

(0.02)pH + (0.00)PAM + (0.19)CB + (0.06)BFA + (0.06)BFB

5.2.2. Regularized Multiple Kernel Learning Experiments

In this section, we perform experiments using the regularized MKL approach of

Section 2.7. In this set of experiments, C parameter is selected from {0.01, 0.1, 1,
10, 100} using cross-validation. ∆ parameter for RSM method is selected as 0.3 in

our experiments. This corresponds to selecting the low and high factor levels as 0.5

92

(10−0.3) and 2 (10+0.3). In the result tables, we report the average test accuracies,

support vector percentages, combination weights, and regularization parameters. The

average test accuracies and support vector percentages are made bold if the difference

between MKL and the regularized variant is statistically significant using the 5 × 2

cv paired F test (Alpaydın, 1999). We also report the count of (W)ins-(T)ies-(L)osses

of kernel combination with RMKL from direct comparison and the 5 × 2 cv paired

F test. The Wilcoxon’s signed-rank test is used to compare the two variants over a

number of data sets in terms of average accuracies and support vector percentages and

the result is shown as (W)in, (T)ie, or (L)oss (Wilcoxon, 1945). For both statistical

tests, the significance level, α, is taken as 0.05.

5.2.2.1. Combining General Purpose Kernels. We perform experiments on five differ-

ent bioinformatics data sets by combining the linear kernel, the second-degree polyno-

mial kernel and the Gaussian kernel whose width parameter is estimated as in (2.10).

Acceptors and Donors are human splice site detection data sets consisting of

3889 and 6246 data instances, respectively (Kulp et al., 1996). Arabidopsis and

Vertebrates are translation initiation site detection data sets containing 2048 and

13454 instances, respectively (Pedersen and Nielsen, 1997). Polyadenylation is a

polyadenylation signal prediction data set containing 9255 instances for human DNA

and mRNA sequences (Liu et al., 2003). We use the supplied training and test splits

on Acceptors, Donors, and Polyadenylation data sets.

We see in Table 5.4 that RMKL uses statistically significantly fewer support

vectors on Acceptors and Donors data sets and obtains statistically significantly

higher accuracy on the Acceptors data set. MKL uses kL and kP with nonzero

weights, whereas RMKL assigns zero weights to these kernels and uses only kG on the

Acceptors data set. This selection improves the average test accuracy statistically

significantly and even though RMKL uses only the Gaussian kernel, it stores statis-

tically significantly fewer support vectors. On the Donors data set, RMKL assigns

more weight to the linear kernel, removing the second-order polynomial kernel and

using the Gaussian kernel less; the accuracy does not change but the percentage of

93

support vectors decreases statistically significantly. This shows that RMKL is able to

choose between kernels depending on the complexity of the discriminant to be learned:

If the boundary needs be complex, the Gaussian kernel is favored; if it is simple, linear

or polynomial kernels are given higher weights.

Table 5.4. The average test accuracies, support vector percentages, combination

weights, and regularization parameters with (kL-kP -kG) combination on

bioinformatics data sets.

MKL RMKL

Test Acc. SV Test Acc. SV

ηL-ηP -ηG ηL-ηP -ηG dL-dP -dG

Acceptors 90.45±0.42 50.12±1.11 91.19±0.38 44.90±0.82

0.30-0.70-0.00 0.00-0.00-4.59 1.00-1.55-0.47

Donors 94.77±0.28 27.78±0.47 94.78±0.21 26.25±0.45

0.11-0.03-0.86 0.17-0.00-0.73 1.00-1.52-1.06

Arabidopsis 85.29±0.84 62.32±1.10 85.92±0.85 62.39±0.98

0.25-0.75-0.00 0.00-0.00-5.16 1.00-1.00-0.44

Vertebrates 86.22±0.22 53.84±0.72 86.15±0.30 40.86±0.44

0.20-0.80-0.00 0.70-0.15-0.00 1.00-1.42-1.16

Polyadenylation 68.25±1.24 72.14±1.02 68.70±1.34 72.81±1.06

0.01-0.16-0.84 0.00-0.00-1.09 1.00-1.54-0.96

On the Arabidopsis data set, too, RMKL chooses to use only kG instead of

using both kL and kP . It obtains statistically significantly higher accuracy by storing a

comparable number of support vectors. On the Vertebrates data set, RMKL gives

higher weight to kL than kP and this causes a significant decrease in the support vector

count. RMKL stores nearly 13 per cent fewer support vectors than MKL.

On the Polyadenylation data set, RMKL obtains comparable accuracy and

support vector count. kL and kP are replaced with kG (one kernel is calculated instead of

two) and RMKL increases the average test accuracy but not statistically significantly.

We also perform experiments on the Multiple Features (MultiFeat) digit recog-

nition data set from the UCI Machine Learning Repository, composed of six different

94

data representations for 2000 handwritten numerals. The properties of these feature

representations are summarized in Table 5.5. Two binary classification problems are

generated from the MultiFeat data set: In the MultiFeat-EO data set, we sep-

arate even digits from odd digits; in the MultiFeat-SL data set, we separate small

(‘0’ - ‘4’) digits from large (‘5’ - ‘9’) digits.

Table 5.5. Multiple feature representations in the MultiFeat data set.

Name Dimension Data Source

Fac 216 Profile correlations

Fou 76 Fourier coefficients of the shapes

Kar 64 Karhunen-Loève coefficients

Mor 6 Morphological features

Pix 240 Pixel averages in 2× 3 windows

Zer 47 Zernike moments

In our experiments, we combine six linear kernels calculated on each of the repre-

sentations by MKL and RMKL. We see in Table 5.6 that RMKL uses five data repre-

sentations (eliminating Pix by assigning zero weight) on theMultiFeat-EO data set,

whereas MKL uses all data representations with nonzero weights. Both methods ob-

tain comparable average accuracy results on the test set. On the MultiFeat-SL data

set, RMKL eliminates two data representations (Pix and Zer) without a significant

decrease in accuracy while storing statistically significantly fewer support vectors.

Table 5.6. The average test accuracies, support vector percentages, combination

weights, and regularization parameters with (kFac-kFou-kKar-kMor-kPix-kZer)

combination on the MultiFeat data set.

MKL RMKL

Test Acc. SV Test Acc. SV

η1-η2-η3-η4-η5-η6 η1-η2-η3-η4-η5-η6 d1-d2-d3-d4-d5-d6

EO 98.31±0.34 14.86±0.79 98.18±0.29 14.50±0.96

0.30-0.29-0.11-0.01-0.28-0.02 0.40-0.24-0.22-0.05-0.00-0.27 1.00-1.07-1.02-0.58-1.63-0.53

SL 97.40±0.37 32.59±0.82 97.13±0.31 27.58±1.56

0.25-0.30-0.09-0.15-0.15-0.07 0.31-1.11-0.13-0.47-0.00-0.00 1.00-0.59-1.19-0.50-1.58-2.14

95

In order to see the differences between kernel combination rules, we apply KPCA

to the kernels obtained using unweighted sum (Sum), MKL, and RMKL. Figure 5.1

gives the two-dimensional projections obtained on the MultiFeat-EO data set. We

see that using a weighted sum (learning the combination weights using MKL or

RMKL) produces a better projection than using an unweighted sum; there does not

seem to be a significant difference between the projections obtained by MKL and

RMKL.

(a) Sum (b) MKL

(c) RMKL

Figure 5.1. Two-dimensional projections obtained on the MultiFeat-EO data set

by KPCA. (a) Sum: The first two eigenvectors explains 24.86 per cent of the

variance. (b) MKL: The first two eigenvectors explains 23.66 per cent of the variance.

(c) RMKL: The first two eigenvectors explains 16.32 per cent of the variance.

96

5.2.2.2. Combining Domain-Specific Kernels. We perform protein function prediction

experiments on the MIPS Comprehensive Yeast Genome Database (CYGD) (Mewes

et al., 2000) that categorizes 3588 proteins into 13 top-level categories that can be

interpreted as 13 binary classification tasks (Y1, Y2, . . . , Y13), one for each category.

The reason for decomposing into binary classification problems instead of using a mul-

ticlass formulation is that some proteins belong to more than one category. We use the

eight kernel functions shown in Table 5.7, also used in Lanckriet et al. (2004b).

Table 5.7. Kernels for protein function prediction problem (Lanckriet et al., 2004b).

Kernel Explanation Data Source

kPfam Pfam kernel Protein sequences

kPfamE Enriched Pfam kernel Protein sequences

kTAP Diffusion kernel Protein interactions

kPhys Diffusion kernel Protein interactions

kGen Diffusion kernel Protein interactions

kExp Correlation kernel Gene expression profiles

kExpG Gaussian kernel Gene expression profiles

kSW Smith-Waterman kernel Protein sequences

Two different kernel subsets described in Lanckriet et al. (2004b) are also used in

our experiments: (kPfam-kTAP -kPhys-kGen-kExp) and (kPfamE-kTAP -kPhys-kGen-kExpG-

kSW).

In Table 5.8, comparing MKL and our proposed regularized variant, RMKL, we

see that the average accuracy percentage on the test set remains statistically similar on

the 13 tasks for the first subset. Direct comparison between average accuracies shows

that the average accuracy increases on 10 out of 13 tasks, and the Wilcoxon’s signed-

rank test finds a significant win of RMKL accuracy over MKL. Comparing support

vector percentages, RMKL has six significant wins and eight direct comparison wins;

using the Wilcoxon’s signed-rank test however, there is no significant difference between

the support vector percentages.

We can also compare the combination weights ({ηm}Pm=1) for both methods and

the regularization parameters ({dm}Pm=1) found by RMKL in Table 5.8, and we see

97

Table 5.8. The average test accuracies, support vector percentages, combination

weights, and regularization parameters with (kPfam-kTAP -kPhys-kGen-kExp)

combination on the protein function prediction experiments.

MKL RMKL

Test Acc. SV Test Acc. SV

η1-η2-η3-η4-η5 η1-η2-η3-η4-η5 d1-d2-d3-d4-d5

Y1
78.59±0.87 91.50±1.40 79.21±0.45 94.85±1.05

0.70-0.04-0.08-0.14-0.05 0.46-0.06-0.05-0.12-0.09 1.00-1.23-1.32-1.30-1.33

Y2
93.23±0.00 90.95±3.15 93.56±0.25 85.93±2.51

0.37-0.03-0.15-0.22-0.22 0.34-0.25-0.41-0.00-0.00 1.00-1.00-1.00-2.06-2.06

Y3
87.17±0.39 96.11±0.40 87.47±0.28 93.14±1.05

0.12-0.02-0.18-0.32-0.37 0.23-0.07-0.25-0.45-0.00 1.00-1.00-1.00-1.00-2.08

Y4
85.62±0.51 87.22±1.43 87.07±0.58 82.81±2.07

0.22-0.03-0.24-0.30-0.21 0.34-0.22-0.33-0.04-0.00 1.00-0.94-1.10-1.33-1.57

Y5
91.90±0.26 91.24±1.44 92.29±0.21 77.52±4.48

0.20-0.01-0.18-0.26-0.34 0.35-0.01-0.00-0.00-0.74 1.00-1.25-1.39-1.59-0.93

Y6
86.73±0.36 93.58±1.26 87.64±0.43 92.78±1.26

0.59-0.00-0.15-0.25-0.01 0.40-0.01-0.04-0.46-0.00 1.00-1.24-1.32-1.06-1.76

Y7
90.31±0.30 82.56±0.88 90.49±0.36 86.45±0.68

0.20-0.00-0.28-0.22-0.30 0.32-0.00-0.54-0.10-0.00 1.00-1.37-0.97-1.30-1.62

Y8
92.92±0.20 91.49±3.03 93.26±0.26 95.91±1.34

0.16-0.02-0.16-0.22-0.45 1.00-0.00-0.00-0.00-0.00 1.00-10.0-10.0-10.0-10.0

Y9
94.75±0.10 82.28±3.69 95.20±0.40 84.18±2.39

0.14-0.15-0.19-0.10-0.42 0.39-0.00-0.12-0.00-0.10 1.00-2.39-1.54-3.18-1.78

Y10
89.16±0.36 93.39±1.51 89.05±0.32 75.94±2.87

0.09-0.00-0.27-0.24-0.39 0.23-0.00-0.25-0.45-0.00 1.00-1.41-1.13-1.00-1.42

Y11
94.65±0.00 96.24±1.05 94.43±0.13 86.68±1.79

0.05-0.03-0.15-0.17-0.60 0.22-0.15-0.24-0.39-0.00 1.00-1.00-1.00-1.00-2.08

Y12
95.26±0.33 76.32±1.91 95.24±0.45 79.63±2.24

0.99-0.01-0.00-0.00-0.00 0.57-0.01-0.05-0.20-0.00 1.00-1.37-1.33-1.27-1.33

Y13
97.73±0.04 77.14±4.49 97.74±0.00 9.74±0.83

0.11-0.12-0.15-0.18-0.44 0.13-0.15-0.20-0.00-0.52 1.00-1.00-1.00-1.41-1.00

5×2 cv Paired F Test (W-T-L) 0-13-0 6-5-2

Direct Comparison (W-T-L) 10-0-3 8-0-5

Wilcoxon’s Rank Test (W/T/L) W T

98

that another difference between these two methods is the number of active kernels with

nonzero weights. RMKL method, on 10 out of 13 tasks, assigns nonzero combination

weights to fewer kernel functions, compared to MKL. This leads to a decrease in kernel

calculations, and therefore test time for new instances. As an extreme case, on the Y8

task, RMKL converges to a point where all dm coefficients except for the first kernel

function are equal to 10 and are effectively pruned. For this task, we obtain combination

rules that use only one kernel function (kPfam) with higher average accuracy. RMKL

uses fewer kernels on Y2, Y3, Y4, Y7, Y10, and Y11 tasks by assigning a larger

regularization parameter to kExp. This can be interpreted as an indication that gene

expression profiles do not give useful information for these classification tasks and can

safely be removed from the ensemble of kernels.

Table 5.9 lists the average accuracy and support vector percentages for the sec-

ond subset of kernels. As on the first subset, the regularized variant achieves similar

accuracy results and statistically significantly reduces the support vector percentage

on six out of 13 tasks, increasing on four tasks. With direct comparison, the numbers

of wins increase to six and eight for the average accuracy on the test set and support

vectors stored, respectively. On this second subset, the Wilcoxon’s signed-rank test

does not report a difference between MKL and RMKL in terms of average accuracies

on the test set nor support vector counts.

Table 5.9 also gives the combination weights ({ηm}Pm=1) for both methods and the

regularization parameters ({dm}Pm=1) found by RMKL. On 12 out of 13 tasks, RMKL

assigns nonzero weights to fewer kernel functions. As mentioned before, this leads to

a significant reduction in the total time needed to calculate the output for a given test

input. Note that here, we do not explicitly penalize nonzero weights; the number of

kernels used decreases as a part of the regularization process. On the Y8 task, RMKL

converges to a point where regularization coefficient for kSW is smaller than 1. We can

say that the Smith-Waterman kernel provides the most informative similarity measure

for this classification task and its combination weight goes up to 4.10, removing all

other kernels. A similar behavior is also observed for kPfamE on Y1, Y4, Y5, Y6,

and Y12 tasks. On all these tasks, RMKL assigns combination weights greater than

99

Table 5.9. The average test accuracies, support vector percentages, combination

weights, and regularization parameters with (kPfamE-kTAP -kPhys-kGen-kExpG-kSW)

combination on the protein function prediction experiments.

MKL RMKL

Test Acc. SV Test Acc. SV

η1-η2-η3-η4-η5-η6 η1-η2-η3-η4-η5-η6 d1-d2-d3-d4-d5-d6

Y1
80.72±0.74 93.24±0.78 80.68±0.52 89.29±1.28

0.17-0.03-0.10-0.16-0.05-0.48 0.45-0.17-0.20-0.03-0.10-0.00 1.00-1.02-1.06-1.18-1.02-2.52

Y2
94.32±0.21 75.74±2.90 94.48±0.22 72.15±3.05

0.00-0.01-0.12-0.21-0.06-0.59 0.00-0.00-0.21-0.00-0.07-0.71 1.00-2.06-1.00-2.06-1.00-1.00

Y3
87.51±0.38 81.13±1.69 87.53±0.34 73.17±1.14

0.04-0.01-0.15-0.30-0.05-0.45 0.23-0.04-0.22-0.40-0.11-0.00 1.00-1.00-1.00-1.00-1.00-2.08

Y4
85.63±0.48 86.10±1.11 85.53±0.77 76.23±1.30

0.15-0.03-0.20-0.23-0.06-0.33 0.45-0.04-0.38-0.01-0.04-0.00 1.00-1.12-1.05-1.37-1.25-1.50

Y5
93.68±0.50 62.69±3.23 94.59±0.23 34.16±1.49

0.14-0.01-0.16-0.09-0.19-0.40 0.50-0.01-0.01-0.00-1.01-0.00 1.00-1.21-1.32-1.46-0.68-1.48

Y6
87.44±0.74 93.01±0.96 87.90±0.61 84.12±1.38

0.11-0.01-0.11-0.19-0.04-0.54 0.42-0.14-0.33-0.00-0.11-0.00 1.00-1.00-1.00-2.06-1.00-2.06

Y7
91.05±0.24 75.72±1.28 90.70±0.35 81.55±1.09

0.08-0.01-0.28-0.23-0.02-0.38 0.35-0.00-0.49-0.11-0.00-0.00 1.00-1.57-1.00-1.22-1.46-1.50

Y8
93.78±0.43 57.60±2.13 93.77±0.31 81.87±1.66

0.01-0.03-0.18-0.24-0.03-0.52 0.00-0.00-0.00-0.00-0.00-4.10 1.00-1.34-1.36-1.17-1.29-0.49

Y9
95.00±0.32 76.14±2.69 94.99±0.31 72.54±3.77

0.05-0.27-0.20-0.11-0.04-0.33 0.04-0.00-0.29-0.00-0.08-0.58 1.00-2.06-1.00-2.06-1.00-1.00

Y10
89.56±0.36 70.95±2.80 89.58±0.36 89.83±1.49

0.00-0.00-0.27-0.22-0.02-0.48 0.00-0.00-0.27-0.23-0.00-0.50 1.00-1.00-1.00-1.00-2.08-1.00

Y11
94.43±0.11 87.63±1.79 94.43±0.11 87.63±1.79

0.00-0.03-0.19-0.24-0.02-0.53 0.00-0.03-0.19-0.24-0.02-0.53 1.00-1.00-1.00-1.00-1.00-1.00

Y12
96.41±0.32 36.42±1.02 96.22±0.29 46.70±1.53

0.43-0.02-0.19-0.04-0.01-0.31 0.68-0.00-0.15-0.03-0.00-0.02 1.00-1.38-1.25-1.25-1.38-1.25

Y13
97.80±0.09 61.70±9.56 97.83±0.11 50.16±9.26

0.00-0.18-0.12-0.15-0.07-0.50 0.00-0.00-0.18-0.00-0.15-0.67 1.00-2.06-1.00-2.06-1.00-1.00

5×2 cv Paired F Test (W-T-L) 0-13-0 6-3-4

Direct Comparison (W-T-L) 6-1-6 8-1-4

Wilcoxon’s Rank Test (W/T/L) T T

100

0.42 to kPfamE . The reduction in the number of kernel functions used in the decision

function after training is also observed in this set of experiments.

5.2.2.3. Comparison with Other Methods. Figure 5.2 compares MKL with RMKL,

EMKL, and RWKL methods using (kL-kP -kG) combination on the bioinformatics

data sets. We see that RMKL obtains better or similar accuracy results, compared to

MKL on these data sets except Polyadenylation. RMKL, EMKL, and RWKL

obtain similar results for all data sets. However, RMKL always uses fewer or as

many kernels on all tasks. On the Arabidopsis data set for example, as shown in

Table 5.4, RMKL favors the Gaussian kernel instead of the linear and the second-

degree polynomial kernels. On this data set, if we use the eigenvalues to decide on the

regularization parameters, we penalize the Gaussian kernel due to the high number of

large eigenvalues and fail to obtain the result obtained by RMKL.

Acc. Don. Ara. Ver. Pol.

−0.5

0

0.5

1

task

ac
cu

ra
cy

 d
iff

er
en

ce

MKL
RMKL
EMKL
RWKL

Acc. Don. Ara. Ver. Pol.

1

2

3

task

ac
tiv

e
ke

rn
el

 c
ou

nt

Figure 5.2. Comparison of MKL, RMKL, EMKL, and RWKL methods in terms of

the average test accuracy and number of kernels used with (kL-kP -kG) combination.

In accuracy comparisons, the average accuracy of MKL is used as the baseline

performance.

Figure 5.3 compares MKL, RMKL, EMKL, and RWKL methods with (kFac-

kFou-kKar-kMor-kPix-kZer) combination on the MultiFeat data set. We see that

RMKL obtains statistically similar accuracy results, compared to other methods on

these two tasks, by using fewer or as many kernels.

101

EO SL

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

task

ac
cu

ra
cy

 d
iff

er
en

ce

MKL
RMKL
EMKL
RWKL

EO SL

1

2

3

4

5

6

task

ac
tiv

e
ke

rn
el

 c
ou

nt

Figure 5.3. Comparison of MKL, RMKL, EMKL, and RWKL methods in terms of

the average test accuracy and number of kernels used with

(kFac-kFou-kKar-kMor-kPix-kZer) combination.

When we compare MKL, RMKL, EMKL, and RWKL on the protein function

prediction problem with (kPfam-kTAP -kPhys-kGen-kExp) combination, we see in Fig-

ure 5.4 that RMKL, EMKL, and RWKL generally obtain better accuracy results

than MKL. However, there are significant differences between the number of used ker-

nels by RMKL and other methods on almost all tasks. RMKL obtains smaller kernel

ensembles due to the regularization and sparsity effects of MKL and eliminates the

redundant kernels/data sources.

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9Y10Y11Y12Y13

−0.5

0

0.5

1

1.5

task

ac
cu

ra
cy

 d
iff

er
en

ce

MKL
RMKL
EMKL
RWKL

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9Y10Y11Y12Y13

1

2

3

4

5

task

ac
tiv

e
ke

rn
el

 c
ou

nt

Figure 5.4. Comparison of MKL, RMKL, EMKL, and RWKL methods in terms of

the average test accuracy and number of kernels used with

(kPfam-kTAP -kPhys-kGen-kExp) combination.

102

When we make the same comparison with (kPfamE-kTAP -kPhys-kGen-kExpG-kSW)

combination, Figure 5.5 shows that all methods obtains comparable accuracy results

on almost all tasks. RMKL again uses fewer kernels compared to the other three

methods without diminishing accuracy.

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9Y10Y11Y12Y13

−1

−0.5

0

0.5

1

task

ac
cu

ra
cy

 d
iff

er
en

ce

MKL
RMKL
EMKL
RWKL

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9Y10Y11Y12Y13

1

2

3

4

5

6

task

ac
tiv

e
ke

rn
el

 c
ou

nt

Figure 5.5. Comparison of MKL, RMKL, EMKL, and RWKL methods in terms of

the average test accuracy and number of kernels used with

(kPfamE-kTAP -kPhys-kGen-kExpG-kSW) combination.

The running time of our proposed method is directly related to the running time

of the MKL solver and the convergence speed of RSM. The convergence time can

be long especially with large number of kernels, (in practice, we see convergence in

terms of iterations) but it will always be faster and more detailed than exhaustive grid

search. The running time can be decreased by using a subset of training points in the

intermediate steps of RSM; once the best {dm}Pm=1 set is found, the whole training set

can be used for final training before test. Figure 5.6 shows the number of iterations

performed by RMKL and RWKL for all tasks of protein function prediction problem.

The running time of RMKL and EMKL is directly related to the number of times

the MKL solver is called. RMKL calls the MKL solver 15 to 35 times for all tasks

of protein function prediction problem, whereas EMKL calls the solver 11 times for

the different γ values (0, 0.1, 0.2, . . . , 1.0) we try. However, RWKL calls a canonical

SVM solver at each iteration and 15 to 30 times in total. Clearly, the running time

of RWKL is smaller than both RMKL and EMKL due to the complexity difference

between the optimization problems of SVM and MKL.

103

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9Y10Y11Y12Y13
0

5

10

15

20

25

30

35

task

ite
ra

tio
n

co
un

t

RMKL
RWKL

(a) P = 5

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9Y10Y11Y12Y13
0

5

10

15

20

25

30

35

task

ite
ra

tio
n

co
un

t

(b) P = 6

Figure 5.6. The number of iterations performed by RMKL and RWKL with

(kPfam-kTAP -kPhys-kGen-kExp) and (kPfamE-kTAP -kPhys-kGen-kExpG-kSW)

combinations. Dashed lines show the number of iterations required to initialize RSM.

RSM converges in 1 to 14 additional iterations for RMKL after the initialization

phase and requires much fewer iterations than grid search, whereas grid search requires

81 (34) and 243 (35) iterations for the cases of P = 5 and P = 6, respectively, if we

use three levels for {dm}Pm=1 parameters and arbitrarily fix one of them. Fitting a

quadratic approximation in RSM requires O(P 2) sample points, which may be costly

when P , the number of kernels, is large. One can fit a first-order RSM model using

O(P) sample points to initialize and use gradient-descent to find the next point to be

sampled.

5.2.3. Cost-Conscious Multiple Kernel Learning Experiments

In this section, we perform experiments using the cost-conscious MKL approach

of Section 2.7. In this set of experiments, C parameter is selected from {0.0001, 0.001,
0.01, 0.1, 1, 10, 100, 1000, 10000} using cross-validation. In the result tables, we report

the average test accuracies, support vector percentages, total costs, and normalized

combination weights. Total cost calculation is performed with the cost coefficients of

cost-conscious variant to get comparable results. The average test accuracies, support

vector percentages, and total costs are made bold if the difference between MKL

and the cost-conscious variant is statistically significant using the 5 × 2 cv paired F

104

test (Alpaydın, 1999). We also report the count of (W)ins-(T)ies-(L)osses of kernel

combination with the cost-conscious MKL from direct comparison and the 5 × 2 cv

paired F test. The Wilcoxon’s signed-rank test is used to compare the two variants

over a number of data sets in terms of average accuracie, support vector percentages,

and total costs (Wilcoxon, 1945). The result is shown as (W)in, (T)ie, or (L)oss. For

both statistical tests, the significance level, α, is taken as 0.05.

5.2.3.1. Kernel Selection on UCI Data Sets. We perform the experiments on 12 bench-

mark data sets (Banana, Heart, Ionosphere, Liverdisorder, Optdigits, Pen-

digits, Pima, Ringnorm, Sonar, Spambase, Twonorm, and Wdbc) from the

UCI Machine Learning Repository. Optdigits and Pendigits data sets are optical

and pen-based digit recognition problems, respectively. Two-class subsets of these data

sets (1vs8 and 3vs9 for Optdigits, 0vs8, 1vs7, and 5vs9 for Pendigits) are taken

to obtain binary classification problems.

Three different kernel functions are used in this part: the linear kernel, the poly-

nomial kernel, and the Gaussian kernel. We use the second-degree (q = 2) polynomial

kernel and estimate s in the Gaussian kernel as in (2.10). Outputs obtained from each

kernel function are in different scales. In order to avoid this scale problem, kernel

outputs are normalized by using (2.9). We experiment two scenarios on (kL-kP -kG): In

the first one, all kernels have equal cost (dL = 1.00, dP = 1.00, dG = 1.00) and in the

second, their cost increase as we go from linear to polynomial to Gaussian (dL = 1.00,

dP =
√
2 = 1.41, dG = 2.00). The polynomial kernel is slightly more costly than

the linear kernel because of taking the second power and the Gaussian kernel is more

complicated than that because of the exp(·) function. These values we use are rough

estimates; exact values depend on the particular hardware implementation.

On all 12 data sets, the comparison of results by MKL and cost-conscious MKL

is given in Table 5.10. We can see that Pendigits (5vs9), Pima, and Wdbc use only

the linear kernel when we increase dP and dG and achieve statistically similar accuracy

results. Removing the polynomial and the Gaussian kernel from the ensemble by

105

Table 5.10. The average test accuracies, support vector percentages, total costs and

normalized combination weights with (kL-kP -kG) combination on benchmark data

sets. The first line is the case where all kernels have equal cost and the second line is

where complex kernels are penalized.

Data Set Test Acc. SV Total Cost ηL-ηP -ηG

Banana
83.17±0.52 90.68±0.11 70.14±0.08 0.00-0.03-0.97

83.27±1.05 83.27±0.11 64.40±0.08 0.00-0.04-0.96

Heart
79.67±1.74 79.44±3.28 18.00±0.74 1.00-0.00-0.00

79.67±1.74 79.44±3.28 18.00±0.74 1.00-0.00-0.00

Ionosphere
93.85±1.13 64.36±2.73 54.25±7.54 0.01-0.46-0.53

90.94±1.57 46.67±2.52 44.65±7.54 0.29-0.60-0.10

Liverdisorder
64.17±4.14 93.30±1.54 57.01±20.32 0.02-0.00-0.98

65.91±3.17 80.87±3.60 66.57±20.32 0.67-0.30-0.03

Optdigits (1vs8)
98.01±0.14 28.21±2.68 28.21±1.00 0.27-0.38-0.34

98.01±0.14 19.12±1.83 10.46±1.00 0.53-0.47-0.00

Optdigits (3vs9)
96.71±1.53 25.46±4.19 25.46±1.15 0.44-0.20-0.36

97.37±1.39 15.25±2.10 8.34±1.15 0.73-0.27-0.00

Pendigits (0vs8)
99.30±0.11 11.70±0.53 11.70±0.11 0.18-0.71-0.11

99.80±0.00 9.10±0.11 9.10±0.11 0.25-0.66-0.09

Pendigits (1vs7)
100.00±0.00 14.00±1.69 14.00±1.58 0.39-0.24-0.37

100.00±0.00 6.50±1.58 6.50±1.58 0.68-0.23-0.09

Pendigits (5vs9)
99.20±0.21 33.20±0.21 18.16±0.05 0.79-0.21-0.00

99.20±0.21 32.60±0.21 7.39±0.05 1.00-0.00-0.00

Pima
73.09±0.75 68.91±1.62 20.14±0.37 0.97-0.03-0.00

72.93±1.01 68.79±1.65 15.58±0.37 1.00-0.00-0.00

Ringnorm
98.01±0.63 26.85±0.00 12.17±0.79 0.00-0.00-1.00

87.25±0.42 82.46±1.16 56.05±0.79 0.75-0.00-0.25

Sonar
81.14±3.14 86.96±2.46 86.96±3.10 0.14-0.33-0.54

80.29±3.61 69.13±5.68 37.81±3.10 0.48-0.52-0.00

Spambase
92.53±0.10 42.99±4.33 42.99±6.23 0.39-0.18-0.43

92.43±0.00 31.06±2.53 12.40±6.23 0.96-0.04-0.00

Twonorm
97.20±0.00 89.10±0.11 20.18±0.05 1.00-0.00-0.00

97.20±0.00 89.00±0.21 20.16±0.05 1.00-0.00-0.00

Wdbc
95.45±0.91 22.26±3.21 16.97±0.36 0.70-0.06-0.24

94.97±0.97 17.00±1.59 3.85±0.36 1.00-0.00-0.00

(W-T-L) 2-12-1 8-6-1 8-6-1 5×2 cv Paired F Test

(W-T-L) 4-5-6 13-1-1 12-1-2 Direct Comparison

(W/T/L) T W W Wilcoxon’s Rank Test

106

penalizing them decreases total cost significantly for Pendigits (5vs9) and Wdbc.

The cost-conscious MKL assigns zero weight to the Gaussian kernel for Optdigits

(1vs8 and 3vs9), Sonar, and Spambase data sets, whereas the equal cost variant

uses the Gaussian kernel with weights larger than 0.30. Nonlinear data sets such as

Banana andRingnorm continue using the Gaussian kernel even if its cost is increased

to 2. However the average test accuracy in Ringnorm data set is reduced drastically

after changing the combination weight of the Gaussian kernel from 1.00 to 0.25. By

comparing two variants over all data sets, we see that the cost-conscious MKL achieves

similar accuracy results according to both the 5× 2 cv paired F test (12 ties out of 15

tasks) and the Wilcoxon’s signed rank test. The 5 × 2 cv paired F test reports that

total cost is decreased significantly over eight out of 15 tasks. Reduction in total cost

is also reported to be statistically significant using the Wilcoxon’s signed rank test over

15 tasks.

5.2.3.2. Representation Selection on Handwritten Digit Recognition Data Set. Kernel

combination can also be used to combine different data representations or modalities.

In this case, it can be the case that extracting different representations or modalities

may have costs associated with them and we do not want to use a costly one unless it

is deemed necessary for classification. For example, Pendigits data set has four dif-

ferent representations: Dyn, Sta4, Sta8, and Sta16 (Alimoğlu and Alpaydın, 1997).

Dyn contains eight successive pen points on two-dimensional coordinate system and is

used when combining kernel functions on Pendigits data set. Sta16 is 16×16 image

bitmap representation of the corresponding training instance formed by connecting the

points in the Dyn representation by line segments. Sta4 and Sta8 are 4×4 and 8×8

subsampled bitmap representations of Sta16, respectively. Figure 5.7 illustrates Dyn,

Sta16, Sta8, and Sta4 representations on a sample data instance.

In our experiments, we use linear kernels over four different representations of

Pendigits data set. We form two sets of experiments as follows: (a) (kDyn-kSta16)

with (dDyn-dSta16) taken as (1.00-1.00) and (1.00-4.00), increasing the cost of form-

ing the image representation, and, (b) (kDyn-kSta4-kSta8-kSta16) with (dDyn-dSta4-dSta8-

107

(a) Dyn (b) Sta16 (c) Sta8 (d) Sta4

Figure 5.7. Four different representations for an example digit eight.

dSta16) taken as (1.00-1.00-1.00-1.00) and (1.00-1.00-2.00-4.00), increasing the cost of

representation with higher dimensionalities.

As we see in Table 5.11, when both representations, Dyn and Sta16, have equal

cost, both are chosen for 0vs8 and 1vs7. When we increase the cost of the Sta16

to 4, only Dyn representation is used for 1vs7. The average accuracy percentage for

all three tasks remains the same according to the 5 × 2 cv paired F test results with

increasing dSta16. Total cost in testing phase decreases because of two factors: (a) The

average support vector percentages are decreased. (b) kSta16 is not evaluated when

ηSta16 is equal to 0.

Table 5.11. The average test accuracies, support vector percentages, total costs and

normalized combination weights with (Dyn-Sta16) combination.

Data Set Test Acc. SV Total Cost ηDyn-ηSta16

Pendigits (0vs8)
99.40±0.21 15.10±0.95 15.10±0.21 0.21-0.79

99.00±0.42 8.80±0.21 8.80±0.21 0.75-0.25

Pendigits (1vs7)
99.70±0.32 11.00±0.21 11.00±0.02 0.35-0.65

100.00±0.00 3.70±0.11 0.74±0.02 1.00-0.00

Pendigits (5vs9)
99.20±0.21 32.80±0.21 6.56±0.08 1.00-0.00

99.20±0.21 32.80±0.42 6.56±0.08 1.00-0.00

When we combine all four representations and penalize kernels proportional to

their dimensionality (see Table 5.12), we obtain accuracy results that are statistically

the same, but using only two representations (Dyn and Sta4) for 5vs9 and three

representations (Dyn, Sta4, and Sta8) for 0vs8 and 1vs7. The cost-conscious MKL

108

also uses significantly fewer support vectors in all cases. Estimated total cost for both

cases decrease drastically as a result of using fewer kernels and support vectors.

Table 5.12. The average test accuracies, support vector percentages, total costs and

normalized combination weights with (Dyn-Sta4-Sta8-Sta16) combination.

Data Set Test Acc. SV Total Cost ηDyn-ηSta4-ηSta8-ηSta16

Pendigits (0vs8)
99.50±0.11 10.70±0.11 10.70±0.33 0.24-0.16-0.33-0.26

99.30±0.32 5.80±0.42 2.90±0.21 0.48-0.38-0.14-0.00

Pendigits (1vs7)
99.90±0.11 9.70±0.53 9.70±1.33 0.32-0.31-0.31-0.06

99.70±0.32 3.00±0.42 1.50±0.21 0.45-0.51-0.04-0.00

Pendigits (5vs9)
99.30±0.11 12.90±0.95 12.90±0.04 0.35-0.12-0.10-0.44

99.50±0.11 10.30±0.11 2.58±0.03 0.64-0.36-0.00-0.00

5.2.3.3. Kernel/Representation Selection on Bioinformatics Data Sets. We perform pro-

tein location prediction and protein function prediction experiments on the MIPS

CYGD (Mewes et al., 2000). CYGD assigns subcellular locations for 2318 and 1150

proteins according to whether they participate in the membrane and the ribosome, re-

spectively. We combine the seven kernel functions used also in Lanckriet et al. (2004b)

for comparing equal cost and cost-conscious variants of MKL.

kSW and kB are generated from protein sequences using Smith-Waterman (SW)

and the BLAST pairwise sequence comparison algorithms, respectively. kPfam are also

generated from protein sequences by replacing pairwise comparison scores with the

expectation values obtained from hidden Markov models in the Pfam database. kFFT

is calculated by comparing the frequency content of the hydropathy profiles of the two

proteins. kLI is the inner product between interaction values for a pair of proteins.

kD is the diffusion kernel calculated over the graph constructed by using the same

interaction data used in kLI . kE is the Gaussian kernel calculated over microarray gene

expression measurements.

kSW , kB, and kPfam require pairwise comparison scores for protein sequences, so,

they are computationally expensive. The same concern is also valid for kFFT . kLI

109

obtained by inner product over protein interactions is a simple kernel. kD requires

constructing a graph from protein interactions and calculating a similarity measure

based on a random walk on this graph. kE is also a cheap kernel, which simply evaluates

the Gaussian kernel function over 441 dimensional gene expressions.

Two different cost combinations are formed by considering all seven kernels de-

spite the fact that kE and kFFT are not much relevant for membrane and ribosomal

protein recognition tasks, respectively. We consider the following two (dSW -dB-dPfam-

dFFT -dLI-dD-dE) combinations: (a) (1.00-1.00-1.00-1.00-1.00-1.00-1.00), all kernels are

considered with equal cost coefficients as a base case, and, (b) (1.41-1.41-1.41-1.41-1.00-

2.00-1.00), the diffusion kernel (kD) is assigned the largest cost coefficient due to its

computational complexity, kLI and kE are given cost coefficients smaller than those of

sequence based kernels (kSW -kB-kPfam-kFFT) due to their simplicity. The cost values

we assign here are used as rough estimates to give us an ordering of the costs. Ex-

act values depend on the implementation of these kernel functions and the time/space

complexity of the data structures and the algorithms that are used.

Table 5.13 summarizes the results for ribosomal and membrane protein recog-

nition problem. Cost-conscious variant uses statistically significantly fewer support

vectors compared to the equal cost variant in membrane protein recognition. As an

important result, it can be observed that discarding kD (i.e., dD = 2), which is compu-

tationally expensive, and using protein sequence based kernels with a larger cost than

kLI achieves similar classification results by improving total cost for both tasks.

Table 5.13. The average test accuracies, support vector percentages, total costs and

normalized combination weights for protein recognition tasks.

Task Test Acc. SV Total Cost ηSW -ηB-ηPfam-ηFFT -ηLI -ηD-ηE

Membrane
86.30±0.61 84.42±1.03 75.34±5.09 0.28-0.31-0.11-0.05-0.00-0.15-0.10

85.40±0.55 71.33±1.67 37.81±5.09 0.00-0.26-0.06-0.00-0.07-0.00-0.60

Ribosomal
98.99±0.26 18.56±1.56 6.86±1.96 0.01-0.00-0.00-0.16-0.03-0.00-0.80

99.07±0.18 18.61±1.46 6.08±1.96 0.00-0.00-0.00-0.01-0.03-0.00-0.96

110

We also perform experiments on protein function prediction data set desribed in

Subsection 5.2.2. kPfam is the inner product between binary representations of pro-

tein sequences to Pfam domains. kPfamE is an enriched variant of kPfam obtained by

using additional domains. kTAP , kPhys, and kGen are three different diffusion kernels

calculated over the graphs constructed from three different types of protein interac-

tions: co-participation in a protein complex, genetic interactions, and protein-protein

interactions, respectively. kExp and kExpG are calculated from cell cycle gene expression

measurements. kExp is a binary kernel function that is determined by using Pearson

correlation of a pair of expression profiles. kExpG is the Gaussian kernel defined on the

expression profiles. kSW is obtained by applying SW algorithm on protein sequences.

Two different kernel subsets described in Lanckriet et al. (2004a) are also used

for experiments: (kPfam-kTAP -kPhys-kGen-kExp) and (kPfamE-kTAP -kPhys-kGen-kExpG-

kSW). For the first subset, kPfam and diffusion kernels are assigned cost coefficients

higher (dPfam = 1.41 and dTAP = dPhys = dGen = 2.00) than kExp (dExp = 1.00).

Likewise, kPfamE , kSW , and diffusion kernels are penalized (dPfamE = dSW = 1.41 and

dTAP = dPhys = dGen = 2.00) in the second subset.

The results for each binary classification task in the first subset are given in

Table 5.14. We see that avoiding the expensive kernels such as diffusion kernels leads

to significant accuracy loss and increase in the number of support vectors stored. The

cost-conscious MKL uses kExp only in four out of 13 tasks. In other tasks except Y12,

kExp is used with a combination weight between 0.82 and 1. Support vector percentages

are increased in nearly all cases but total kernel evaluation will be decreased for test

instances due to the unused kernels. This result can also be seen from the estimated

total cost results, which has an obvious decreasing trend for the cost-conscious variant.

The 5× 2 cv paired F test and the Wilcoxon’s signed rank test report significant win

for total cost and significant loss for the average test accuracy and support vector

percentages, indicating that in this case, the expensive kernels are worth their costs.

Table 5.15 lists the results for the second subset. Cost-conscious variant uses

kExpG heavily with combination weights ranging from 0.39 to 0.89. Equal cost variant

111

Table 5.14. The average test accuracies, support vector percentages, total costs and

normalized combination weights with (kPfam-kTAP -kPhys-kGen-kExp) combination.

Task Test Acc. SV Total Cost ηPfam-ηTAP -ηPhys-ηGen-ηExp

Y1
78.20±0.84 91.08±0.85 91.08±26.82 0.67-0.03-0.07-0.17-0.06

72.70±0.56 97.03±0.59 50.96±26.82 0.14-0.00-0.00-0.01-0.85

Y2
93.29±0.10 91.10±2.33 88.92±0.08 0.23-0.01-0.14-0.18-0.44

93.24±0.06 96.54±0.69 11.47±0.08 0.00-0.00-0.00-0.00-1.00

Y3
86.40±0.46 95.68±0.86 95.68±14.66 0.11-0.01-0.18-0.32-0.37

83.96±0.35 94.62±1.43 56.27±14.66 0.16-0.00-0.00-0.01-0.83

Y4
84.81±0.56 93.17±1.07 93.17±18.68 0.22-0.03-0.23-0.21-0.31

82.07±0.49 94.48±1.18 60.71±18.68 0.16-0.01-0.01-0.00-0.82

Y5
91.51±0.17 75.42±1.54 75.42±23.51 0.19-0.01-0.13-0.25-0.41

91.50±0.19 90.96±1.77 60.76±23.51 0.15-0.00-0.01-0.01-0.84

Y6
86.75±0.45 91.74±1.25 76.48±29.43 0.63-0.00-0.13-0.23-0.01

83.84±0.66 95.46±1.20 54.40±29.43 0.16-0.00-0.00-0.01-0.82

Y7
90.20±0.41 83.09±1.92 75.09±0.18 0.18-0.03-0.28-0.23-0.27

87.01±0.29 95.46±0.63 27.39±0.18 0.12-0.00-0.00-0.00-0.88

Y8
92.93±0.16 91.67±3.51 82.92±0.23 0.34-0.01-0.10-0.14-0.42

92.73±0.16 95.91±0.81 27.52±0.23 0.10-0.00-0.00-0.00-0.90

Y9
94.59±0.14 84.71±2.71 84.71±0.11 0.16-0.11-0.22-0.11-0.39

94.57±0.00 96.55±0.94 11.47±0.11 0.00-0.00-0.00-0.00-1.00

Y10
89.97±0.23 94.88±0.53 79.08±17.56 0.09-0.00-0.24-0.23-0.44

88.54±0.48 92.54±1.85 44.18±17.56 0.15-0.00-0.02-0.00-0.83

Y11
94.66±0.11 92.97±1.92 75.30±0.04 0.07-0.00-0.17-0.25-0.51

94.65±0.00 97.22±0.38 11.55±0.04 0.00-0.00-0.00-0.00-1.00

Y12
94.87±0.35 75.80±2.17 32.56±0.87 0.99-0.01-0.00-0.00-0.00

94.10±0.62 83.02±3.02 23.82±0.87 0.59-0.00-0.00-0.00-0.41

Y13
97.74±0.00 86.64±8.66 85.43±0.06 0.12-0.05-0.10-0.07-0.66

97.74±0.00 96.79±0.54 11.50±0.06 0.00-0.00-0.00-0.00-1.00

(W-T-L) 0-7-6 0-8-5 8-5-0 5×2 cv Paired F Test

(W-T-L) 0-1-12 2-0-11 13-0-0 Direct Comparison

(W/T/L) L L W Wilcoxon’s Signed Rank Test

112

Table 5.15. The average test accuracies, support vector percentages, total costs and

normalized combination weights with (kPfamE-kTAP -kPhys-kGen-kExpG-kSW)

combination.

Task Test Acc. SV Total Cost ηPfamE -ηTAP -ηPhys-ηGen-ηExpG-ηSW

Y1
79.15±0.77 92.74±0.84 92.74±8.57 0.16-0.02-0.09-0.16-0.05-0.51

78.15±0.49 86.26±1.20 38.88±8.57 0.11-0.00-0.00-0.00-0.56-0.33

Y2
94.13±0.29 70.44±4.10 66.03±3.99 0.01-0.01-0.16-0.21-0.09-0.52

93.94±0.49 42.96±3.49 13.78±3.99 0.00-0.00-0.00-0.00-0.63-0.36

Y3
86.40±0.54 90.47±1.07 86.85±5.76 0.05-0.01-0.16-0.29-0.05-0.44

85.03±0.50 66.71±3.20 36.29±5.76 0.14-0.00-0.00-0.05-0.75-0.06

Y4
85.64±0.58 84.27±1.67 84.27±0.37 0.17-0.03-0.20-0.18-0.06-0.37

82.32±0.76 62.67±0.82 28.15±0.37 0.34-0.01-0.00-0.00-0.65-0.00

Y5
93.12±0.50 60.38±2.86 60.38±4.73 0.17-0.01-0.12-0.15-0.22-0.32

94.54±0.42 49.11±2.85 27.18±4.73 0.10-0.00-0.00-0.00-0.64-0.26

Y6
86.89±0.37 84.23±0.94 82.53±0.62 0.14-0.01-0.12-0.24-0.04-0.47

85.96±0.85 77.61±1.59 30.23±0.62 0.10-0.00-0.00-0.00-0.50-0.40

Y7
91.14±0.46 89.77±1.19 87.96±0.87 0.09-0.04-0.28-0.24-0.03-0.32

88.07±0.54 75.24±2.25 29.31±0.87 0.24-0.00-0.00-0.00-0.39-0.37

Y8
93.66±0.19 83.07±3.94 70.03±3.43 0.00-0.04-0.18-0.22-0.03-0.52

93.41±0.31 53.28±1.69 15.33±3.43 0.00-0.00-0.00-0.00-0.65-0.34

Y9
94.67±0.35 40.18±5.08 39.40±6.79 0.02-0.14-0.24-0.12-0.01-0.47

94.72±0.38 57.95±3.32 23.52±6.79 0.02-0.00-0.00-0.00-0.60-0.37

Y10
90.09±0.25 70.98±1.62 49.26±6.70 0.00-0.00-0.23-0.19-0.02-0.57

88.65±0.09 71.62±3.64 25.36±6.70 0.00-0.00-0.01-0.00-0.61-0.38

Y11
94.65±0.00 86.89±2.20 58.53±2.91 0.00-0.01-0.16-0.13-0.01-0.68

94.65±0.00 58.95±3.44 15.34±2.91 0.00-0.00-0.00-0.00-0.70-0.30

Y12
96.01±0.24 54.92±3.24 45.70±2.61 0.39-0.11-0.07-0.02-0.02-0.37

95.58±0.59 38.89±1.58 15.94±2.61 0.34-0.00-0.00-0.00-0.46-0.20

Y13
97.68±0.10 63.12±5.14 54.04±2.33 0.00-0.24-0.10-0.11-0.03-0.51

97.74±0.00 30.47±2.17 8.82±2.33 0.02-0.00-0.00-0.00-0.89-0.09

(W-T-L) 0-10-3 11-2-0 13-0-0 5×2 cv Paired F Test

(W-T-L) 3-1-9 11-0-2 13-0-0 Direct Comparison

(W/T/L) L W W Wilcoxon’s Signed Rank Test

113

uses kSW with a significant weight in all tasks. However cost-conscious variant prefers

to use kSW with a smaller coefficient. Different from the first subset, support vector

percentages also decrease significantly in 11 out of 13 tasks, in addition to a decrease

in total cost. The 5× 2 cv paired F test reports a significant loss for the average test

accuracy in three tasks and the difference between the average test accuracies of two

variants is significant according to the Wilcoxon’s signed rank test. The Wilcoxon’s

signed rank test finds significant wins for the number of support vectors and cost.

5.3. Localized Multiple Kernel Learning Experiments

In this section, we report empirical performance of our method LMKL of Chap-

ter 3 for classification and regression problems on several data sets and compare LMKL

with SVM, SVR, and MKL (using the linear formulation of Bach et al. (2004)). In

this set of experiments, C parameter is selected from {0.01, 0.1, 1, 10, 100} using cross-

validation. We use the 5×2 cv paired F test for statistical comparison (Alpaydın, 1999).

The significance level, α, for the 5× 2 cv paired F test is taken as 0.05.

5.3.1. Classification Experiments

We perform experiments on benchmark and image recognition classification data

sets in order to compare with LMKL with other methods.

5.3.1.1. Combining Multiple Representations on Benchmark Data Sets. We compare

SVM, MKL, and LMKL in terms of classification performance and model complexity

(i.e., stored support vector percentage). We train SVMs with linear kernels calculated

on each feature representation separately. We also train an SVM with a linear kernel

calculated on the concatenation of all feature representations, which is referred to as

All. MKL and LMKL combine linear kernels calculated on each feature represen-

tation. LMKL uses a single feature representation or the concatenation of all feature

representations in the gating model. We use both softmax and sigmoid gating models

in our experiments.

114

We perform experiments on the MultiFeat-SL data set desribed in Subsec-

tion 5.2.2. We use the concatenation of all feature representations in the gating model

for this data set.

Table 5.16 lists the classification results on the MultiFeat-SL data set obtained

by SVM, MKL, and LMKL. We see that SVM (All) is significantly more accurate

than the best SVM with single feature representation, namely SVM (Fac), but with

a significant increase in the number of support vectors. MKL is as accurate as SVM

(All) but stores significantly more support vectors. LMKL with softmax gating is as

accurate as SVM (All) using significantly fewer support vectors. LMKL with sigmoid

gating is significantly more accurate thanMKL, SVM (All), and single-kernel SVMs.

It stores significantly fewer support vectors than MKL and SVM (All), and ties with

SVM (Fac). For the MultiFeat-SL data set, the average kernel weights and the

average number of active kernels (whose gating values are nonzero) calculated on the

test set are given in Table 5.17. We see that both LMKL with softmax gating and

LMKL with sigmoid gating use fewer kernels than MKL in the decision function.

MKL uses all kernels with the same weight for all inputs; LMKL uses a different

smaller subset for each input. By storing significantly fewer support vectors and using

fewer active kernels, LMKL is significantly faster than MKL in the testing phase.

Instead of combining different feature representations, we can combine multiple

copies of the same feature representation with LMKL. We combine multiple copies of

linear kernels on the single best Fac representation using the sigmoid gating model

on the same representation (see Figure 5.8). Even if we increase accuracy (not signif-

icantly) by increasing the number of copies of the kernels compared to SVM (Fac),

we could not achieve the performance obtained by combining different representations

with sigmoid gating. For example, LMKL with sigmoid gating and kernels over six

different feature representations is better than LMKL with sigmoid gating and six

copies of the kernel over the Fac representation in terms of both classification accu-

racy (though not significantly) and the number of support vectors stored (significantly)

(see Table 5.16).

115

Table 5.16. Classification results on the MultiFeat-SL data set.

Method Test Accuracy Support Vector

SVM (Fac) 94.97±0.87 17.93±0.91

SVM (Fou) 90.54±1.11 28.90±1.69

SVM (Kar) 88.13±0.73 33.62±1.31

SVM (Mor) 69.61±0.14 61.90±0.49

SVM (Pix) 89.42±0.65 46.35±1.64

SVM (Zer) 89.12±0.63 26.27±1.67

SVM (All) 97.69±0.44 23.36±1.15

MKL 97.40±0.37 32.59±0.82

LMKL (softmax) 97.69±0.44 15.06±1.03

LMKL (sigmoid) 98.58±0.41 15.27±0.92

LMKL (6 Fac and sigmoid) 97.03±0.67 18.52±2.47

Table 5.17. Average kernel weights and number of active kernels on the

MultiFeat-SL data set.

Number of

Method Fac Fou Kar Mor Pix Zer Active Kernels

MKL 0.2466 0.2968 0.0886 0.1464 0.1494 0.0722 6.00

LMKL (softmax) 0.1908 0.1333 0.1492 0.3335 0.1134 0.0797 2.43

LMKL (sigmoid) 0.5115 0.5192 0.5429 0.5566 0.5274 0.5132 5.36

We also perform experiments on the Internet Advertisements (Advert) data

set from the UCI Machine Learning Repository, composed of five different feature

representations (different bags of words) with some additional geometry information of

the images, which is ignored in our experiments due to missing values. The properties

of these feature representations are summarized in Table 5.18. The classification task

is to predict whether an image is an advertisement or not. We use the Caption

representation in the gating model due to its lower dimensionality compared to the

other representations.

116

5 10 15 20
94

95

96

97

98

P
te

st
 a

cc
ur

ac
y

5 10 15 20
10

20

30

40

P

su
pp

or
t v

ec
to

r

Figure 5.8. The average test accuracies and support vector percentages on the

MultiFeat-SL data set obtained by LMKL with multiple copies of linear kernels

and sigmoid gating on the Fac representation.

Table 5.18. Multiple feature representations in the Advert data set.

Name Dimension Data Source

URL 457 Phrases occurring in the URL

OrigURL 495 Phrases occurring in the URL of the image

AncURL 472 Phrases occurring in the anchor text

Alt 111 Phrases occurring in the alternative text

Caption 19 Phrases occurring in the caption terms

Table 5.19 gives the classification results on the Advert data set obtained by

SVM, MKL, and LMKL. We see that SVM (All) is significantly more accurate than

the best SVM with single feature representation, namely SVM (AncURL), and uses

significantly fewer support vectors. MKL has comparable classification accuracy to

SVM (All) and the difference between the number of support vectors is not significant.

LMKL with softmax/sigmoid gating has comparable accuracy to MKL and SVM

(All). LMKL with sigmoid gating stores significantly fewer support vectors than

SVM (All). The average kernel weights and the average number of active kernels on

the Advert data set are given in Table 5.20. Different from the MultiFeat-SL data

set, LMKL uses approximately the same number of or more kernels compared to MKL

117

on this data set (On one of the ten folds, MKL chooses five and on the remaining nine

folds, it chooses four kernels, leading to an average of 4.1).

Table 5.19. Classification results on the Advert data set.

Method Test Accuracy Support Vector

SVM (URL) 94.67±0.24 83.32± 1.89

SVM (OrigURL) 92.04±0.26 96.16± 0.51

SVM (AncURL) 95.45±0.31 64.90± 5.41

SVM (Alt) 89.64±0.38 87.73± 1.17

SVM (Caption) 86.60±0.09 96.65± 0.42

SVM (All) 96.43±0.24 41.99± 1.76

MKL 96.32±0.50 35.82± 4.35

LMKL (softmax) 95.78±0.46 41.72±11.59

LMKL (sigmoid) 96.72±0.46 34.40± 1.51

LMKL (5 AncURL and sigmoid) 95.66±0.29 10.87± 1.07

Table 5.20. Average kernel weights and number of active kernels on the Advert data

set.

Number of

Method URL OrigURL AncURL Alt Caption Active Kernels

MKL 0.3073 0.1600 0.3497 0.1828 0.0003 4.10

LMKL (softmax) 0.3316 0.0160 0.6292 0.0172 0.0060 4.04

LMKL (sigmoid) 0.9918 0.9820 0.9900 0.9913 0.4027 4.96

When we combine multiple copies of linear kernels on the AncURL represen-

tation with LMKL using the sigmoid gating model on the same representation (see

Figure 5.9), we see that LMKL stores much fewer support vectors compared to the

single-kernel SVM (AncURL) without sacrificing from accuracy. But, as before on

the MultiFeat-SL data set, we could not achieve the classification accuracy obtained

by combining different representations with sigmoid gating. For example, LMKL with

sigmoid gating and kernels over five different feature representations is significantly bet-

ter than LMKL with sigmoid gating and five copies of the kernel over the AncURL

118

representation in terms of classification accuracy but the latter stores significantly fewer

support vectors (see Table 5.19).

5 10 15 20
94

95

96

97

P

te
st

 a
cc

ur
ac

y

5 10 15 20
0

20

40

60

80

P

su
pp

or
t v

ec
to

r

Figure 5.9. The average test accuracies and support vector percentages on the

Advert data set obtained by LMKL with multiple copies of linear kernels and

sigmoid gating on the AncURL representation.

5.3.1.2. Combining Multiple Input Patches for Image Recognition Problems. For im-

age recognition problems, only some parts of the images contain meaningful information

and it is not necessary to examine the whole image in detail. Instead of defining kernels

over the whole input image, we can divide the image into non-overlapping patches and

use separate kernels in these patches. The kernels calculated on the parts with rele-

vant information take nonzero weights and the kernels over the non-relevant patches

are ignored. We use a low-resolution (simpler) version of the image as input to the

gating model, which selects a subset of the high-resolution localized kernels. In such

a case, it is not a good idea to use softmax gating in LMKL because softmax gating

would choose one or very few patches and a patch by itself does not carry enough

discriminative information.

We train SVMs with linear kernels calculated on the whole image in different

resolutions. MKL and LMKL combine linear kernels calculated on each image patch.

LMKL uses the whole image with different resolutions in the gating model (Gönen

and Alpaydın, 2009a).

119

We perform experiments on the Olivetti data set, which consists of 10 different

64×64 grayscale images of 40 subjects. We construct a two-class data set by combining

male subjects (36 subjects) into one class versus female subjects (four subjects) in

another class. Our experimental methodology for this data set is slightly different:

We select two images of each subject randomly and reserve these total 80 images as

the test set. Then, we apply 8-fold cross-validation on the remaining 320 images by

putting one image of each subject to the validation set at each fold. MKL and LMKL

combine 16 linear kernels calculated on image patches of size 16× 16.

Table 5.21 shows the results of MKL and LMKL combining kernels calculated

over non-overlapping patches of face images. MKL achieves significantly higher clas-

sification accuracy than all single-kernel SVMs except in 32 × 32 resolution. LMKL

with softmax gating has comparable classification accuracy to MKL and stores sig-

nificantly fewer support vectors when 4 × 4 or 16 × 16 images are used in the gating

model. This is mainly due to the normalization property of softmax gating that gener-

ally activates a single patch and ignores the others; this uses fewer support vectors but

is not as accurate. LMKL with sigmoid gating significantly improves the classification

accuracy over MKL by looking at the 8 × 8 images in the gating model and choosing

a subset of the high-resolution patches.

Figure 5.10(b)-(c) show the combination weights found by MKL and sample face

images stored as support vectors weighted with those. MKL uses the same weights

over the whole input space and thereby the parts whose weights are nonzero are used in

the decision process for all subjects. Figure 5.11 illustrates the example uses of LMKL

with softmax and sigmoid gating. We see that the gating model activates important

parts of each face image and these parts are used in the classifier with nonzero weights,

whereas the parts whose gating model outputs are zero are not considered. That is,

looking at the output of the gating model, we can skip processing the high-resolution

versions of these parts. This can be considered similar to a selective attention mecha-

nism whereby the gating model defines a saliency measure and drives a high-resolution

“fovea”/“eye” to consider only regions of high saliency (Alpaydın, 1996). For example,

if we use LMKL with softmax gating (see Figure 5.11(b)-(d)), the gating model gen-

120

Table 5.21. Classification results on the Olivetti data set.

Method Test Accuracy Support Vector

SVM (x = 4× 4) 93.28±0.65 21.70±0.93

SVM (x = 8× 8) 97.50±1.16 20.13±1.04

SVM (x = 16× 16) 97.03±0.93 19.91±1.01

SVM (x = 32× 32) 97.97±1.48 23.71±1.39

SVM (x = 64× 64) 97.66±1.41 25.94±1.01

MKL 99.06±0.88 22.19±1.00

LMKL (softmax and xG = 4× 4) 97.19±2.81 16.65±3.34

LMKL (softmax and xG = 8× 8) 97.19±2.48 22.54±4.56

LMKL (softmax and xG = 16× 16) 99.22±1.33 16.38±1.50

LMKL (sigmoid and xG = 4× 4) 99.22±0.93 22.72±1.83

LMKL (sigmoid and xG = 8× 8) 99.84±0.44 26.88±2.24

LMKL (sigmoid and xG = 16× 16) 99.38±1.34 21.65±1.44

(a) (b) (c)

Figure 5.10. Example use of MKL on the Olivetti data set. (a) Φm(x
m): features

fed into kernels, (b) ηm: combination weights, and (c) ηmΦm(x
m): features weighted

with combination weights.

121

erally activates a single patch containing a part of eyes or eyebrows depending on the

subject. This may not be enough for good discrimination and using sigmoid gating is

more appropriate. When we use LMKL with sigmoid gating (see Figure 5.11(e)-(g)),

multiple patches are given nonzero weights in a data-dependent way.

(a) (b) (c) (d) (e) (f) (g)

Figure 5.11. Example uses of LMKL on the Olivetti data set. (a) Φm(x
m):

features fed into kernels, (b) xG : features fed into softmax gating, (c) ηm(x|V):

softmax gating outputs, (d) ηm(x|V)Φm(x
m): features weighted with softmax gating

outputs, (e) xG : features fed into sigmoid gating, (f) ηm(x|V): sigmoid gating

outputs, and (g) ηm(x|V)Φm(x
m): features weighted with sigmoid gating outputs.

Figure 5.12 gives the average kernel weights on the test set forMKL, LMKL with

softmax gating, and LMKL with sigmoid gating. We see that MKL and LMKL with

softmax gating use fewer high-resolution patches than LMKL with sigmoid gating.

Figure 5.12. Average kernel weights on the Olivetti data set. (a) MKL, (b)

LMKL with softmax gating on 16× 16 resolution, and (c) LMKL with sigmoid

gating on 8× 8 resolution.

122

We can generalize this idea even further: Let us say that we have a number of

information sources that are costly to extract or process, and a relatively simpler one.

In such a case, we can feed the simple representation to the gating model and feed the

costly representations to the actual kernels and train LMKL. The gating model then

chooses a costly representation only when it is needed and chooses only a subset of the

costly representations. Note that the representation used by the gating model does not

need to be very precise, because it does not do the actual decision, but only chooses

the representation(s) that do the actual decision.

5.3.2. Regression Experiments

We compare SVR and LMKL in terms of regression performance (i.e., mean

square error) and model complexity (i.e., stored support vector percentage). We train

SVRs with different kernels, namely the linear kernel and polynomial kernels up to

fifth degree. LMKL combines these five kernels with both softmax and sigmoid gating.

We perform experiments on the Concrete Compressive Strength (Concrete)

data set and the Wine Quality (WhiteWine) data set from the UCI Machine Learning

Repository. ǫ is selected from {1, 2, 4, 8, 16} for the Concrete data set and {0.08,
0.16, 0.32, 0.64, 1.28} for the WhiteWine data set.

Table 5.22 lists the regression results on the Concrete data set obtained by

SVR and LMKL. We see that both LMKL with softmax gating and LMKL with

sigmoid gating are significantly more accurate than all of the single-kernel SVRs.

LMKL with softmax gating uses kL, kP (q = 4), and kP (q = 5) with relatively

higher weights but LMKL with sigmoid gating uses all of the kernels with significant

weights (see Table 5.23). When we combine multiple copies of the linear kernel using

the softmax gating model, (shown in Figure 5.13), we see that LMKL does not overfit

and we get significantly lower error than the best single-kernel SVR (kP and q = 3).

For example, LMKL with five copies of kL and softmax gating gets significantly lower

error than SVR (kP and q = 3) and stores significantly fewer support vectors.

123

Table 5.22. Regression results on the Concrete data set.

Method MSE Support Vector

SVR (kL) 120.61±2.15 44.31±3.46

SVR (kP and q = 2) 92.57±4.19 36.22±1.24

SVR (kP and q = 3) 58.32±3.66 73.16±1.21

SVR (kP and q = 4) 63.83±9.58 52.52±2.40

SVR (kP and q = 5) 61.26±5.31 52.17±2.23

LMKL (softmax) 44.80±6.33 64.28±4.02

LMKL (sigmoid) 48.18±5.22 49.20±2.05

LMKL (5 kL and softmax) 53.14±6.42 34.93±8.45

Table 5.23. Average kernel weights and number of active kernels on the Concrete

data set.

kL kP kP kP kP Number of

Method q = 2 q = 3 q = 4 q = 5 Active Kernels

LMKL (softmax) 0.1495 0.0091 0.0117 0.0951 0.7346 4.52

LMKL (sigmoid) 0.6675 0.8176 0.9962 0.9721 0.9989 4.68

5 10 15 20
0

50

100

150

P

te
st

 e
rr

or

5 10 15 20
0

50

100

P

su
pp

or
t v

ec
to

r

Figure 5.13. The average test mean square errors and support vector percentages on

the Concrete data set obtained by LMKL with multiple copies of linear kernels

and softmax gating.

124

Table 5.24 lists the regression results on the WhiteWine data set obtained by

SVR and LMKL. We see that both LMKL with softmax gating and LMKL with

sigmoid gating obtain significantly less error than SVR (kL), SVR (kP and q = 2),

and SVR (kP and q = 3), and have comparable error to SVR (kP and q = 4) and

SVR (kP and q = 5) but store significantly fewer support vectors than all single-kernel

SVRs. Even if we do not decrease the error, we learn computationally simpler models

by storing much fewer support vectors. We see from Table 5.25 that LMKL with

softmax gating assigns relatively higher weights to kL, kP (q = 3), and kP (q = 5),

whereas LMKL with sigmoid gating uses the polynomial kernels nearly everywhere in

the input space and the linear kernel for some of the test instances.

Table 5.24. Regression results on the WhiteWine data set.

Method MSE Support Vector

SVR (kL) 0.59±0.00 66.83± 0.57

SVR (kP and q = 2) 0.54±0.01 66.22± 0.67

SVR (kP and q = 3) 0.54±0.00 66.14± 1.13

SVR (kP and q = 4) 0.52±0.01 66.55± 1.03

SVR (kP and q = 5) 0.52±0.01 66.27± 1.24

LMKL (softmax) 0.52±0.01 18.66±13.41

LMKL (sigmoid) 0.51±0.00 38.29± 2.34

Table 5.25. Average kernel weights and number of active kernels on the WhiteWine

data set.

kL kP kP kP kP Number of

Method q = 2 q = 3 q = 4 q = 5 Active Kernels

LMKL (softmax) 0.2238 0.0302 0.1430 0.0296 0.5733 1.05

LMKL (sigmoid) 0.5956 0.9698 0.9978 0.9849 0.9929 4.58

5.4. Local Projection Kernels Experiments

In this section, we evaluate the performance of our proposed method LPK of

Chapter 4 on visualization and classification tasks using benchmark data sets. To

compare, we use the MATLAB implementation of LFDA (Sugiyama, 2007) with de-

fault parameters.

125

5.4.1. Data Visualization

We compare PCA, LFDA, and our proposed LPK for data visualization on

small benchmark data sets, namely Iris, Thyroid Disease, Letter Recognition,

and Image Segmentation from the UCI Machine Learning Repository. On these

multiclass data sets, we merge certain classes, as done by Sugiyama (2007), to obtain

multimodal two-class problems. In PCA and LFDA methods, we extract two dimen-

sions by using the first two principal directions. In LPK method using SVM with the

linear kernel, we use two regions (P = 2) with the softmax gating model and project

data points to one dimension (Rm = 1) in each region.

On the Iris data set, we combine Setosa and Virginica into a single class to obtain

multimodality. Figure 5.14 shows the two-dimensional projected feature spaces found

by each method. Both PCA and LFDA preserve within-class modality but could not

achieve a clear between-class separation. However, our proposed LPK achieves a clear

between-class separation while preserving within-class modality.

Setosa
Versicolor
Virginica

(a) PCA (b) LFDA (c) LPK

Figure 5.14. Data visualization on the Iris data set.

On the Thyroid Disease data set, we merge Hypothyroidism and Hyperthy-

roidism classes into one class. As we can see from Figure 5.15, all three methods obtain

similar results but LPK has better separation between within-class modalities.

126

Euthyroidism
Hypothyroidism
Hyperthyroidism

(a) PCA (b) LFDA (c) LPK

Figure 5.15. Data visualization on the Thyroid Disease data set.

On the Letter Recognition data set, we construct a two-class data set by

combining ‘A’ and ‘C’ letters into one class versus ‘B’ letter in another class. LFDA

achieves a good separation between clusters, whereas PCA is not able to separate the

samples from ‘B’ and ‘C’ letters (see Figure 5.16). LPK also achieves good separation

between different classes but it could not separate letters ‘A’ and ‘C’ as well as LFDA.

This is mainly because of the discriminative nature of LPK, the main goal is to separate

different classes rather than preserving multimodality in one class.

A
B
C

(a) PCA (b) LFDA (c) LPK

Figure 5.16. Data visualization on the Letter Recognition data set.

On the Image Segmentation data set, we combine Brickface and Sky classes

into one class and treat Foilage as another class. Figure 5.17 shows that PCA and

LFDA are not able to separate Brickface and Foilage classes, whereas LPK obtains

three different clusters for each class while maintaining a good between-class separation.

127

Brickface
Sky
Foliage

(a) PCA (b) LFDA (c) LPK

Figure 5.17. Data visualization on the Image Segmentation data set.

5.4.2. Face Recognition

We also compare PCA and LPK on the Olivetti face recognition data set in

order to see the performance of LPK in a real-life scenario with a very high dimensional

feature space. The Olivetti data set consists of 10 different 64× 64 grayscale images

of 40 subjects. We construct a two-class data set by combining male subjects (36

subjects) into one class versus female subjects (four subjects) in another class. In

both methods, we project data points to a two-dimensional space. PCA extracts these

two dimensions by using the first two principal directions, and LPK using SVM with

the linear kernel divides the original feature space into two regions (P = 2) with the

softmax gating model and projects data points to one dimension (Rm = 1) in each

region.

Figure 5.18(a) illustrates the projection obtained by PCA. We can see that PCA

is not able to separate classes due to its unsupervised nature. Eigenfaces obtained from

the first two principal eigenvectors are also shown on the two corners and they look

like two male subjects.

LPK finds a better two-dimensional projected space as shown in Figure 5.18(b).

LPK is able to achieve a nearly perfect separation between classes except a single

image. We also produce a face image from the gating model parameters, {v1, v2} ∈

128

Male
Female

direction#1

direction#2

(a) PCA

direction#1

direction#2

gating

(b) LPK

Figure 5.18. Data visualization on the Olivetti data set. (a) PCA: Two eigenface

images obtained from the first two principal eigenvectors are shown in the corners.

(b) LPK (P = 2 and Rm = 1): The face images obtained from the local projection

matrices, W1 and W2, are shown in the corners. Only the image marked ⋆ is

misclassified.

R
4096×1, in order to see which features are important when dividing the input space

into local regions. If we look at the face image produced, we can see that the gating

model puts more emphasis on eyes, eyebrows, nose, and mouth to assign the weights

to the local projection spaces for a given data instance. The face image obtained from

the first local projection matrix, W1 ∈ R
4096×1, is very much like a male subject with

relatively higher weights on eyebrows and nose. The face image of the other local

projection matrix, W2 ∈ R
4096×1, looks like a female subject with relatively higher

weights on eyes and mouth. LPK identifies the important parts of the face images

without using any prior information while trying to optimize the separation between

classes in a supervised manner.

129

5.4.3. Classification Experiments

We evaluate the performance of PCA, LFDA, and LPK on classification tasks

using large benchmark data sets. Table 5.26 lists the properties of the data sets.

Waveform from the UCI repository is selected due to its multimodal structure and the

first two classes are combined into a single one. USPS-EO (USPS-SL) are generated

from USPS data set (16 × 16 grayscale digit images) by combining even (small: ‘0’ -

‘4’) numbers and odd (large: ‘5’ - ‘9’) numbers into different classes.

Table 5.26. Classification data sets used in the experiments.

Data Set Dimensionality Number of Instances

Waveform 21 1500

USPS-EO 256 1500

USPS-SL 256 1500

We also train SVMs after reducing dimensionality with PCA or LFDA using

the same kernel in GPK and LPK (the linear kernel in our experiments). Note that

GPK algorithm discussed in Section 4.1 is equivalent to LPK with P = 1.

On the Waveform data set (see Figure 5.19), SVM trained after PCA and

LFDA obtains nearly the same average accuracy results (around 89 per cent) after

two dimensions. GPK achieves similar accuracy results with only one dimension. If

we use local projection matrices with LPK (P = 2 or P = 3), the average classifica-

tion accuracy increases to 92 per cent using few dimensions. Because dimensionality

reduction is done separately in different regions, we can work with much fewer dimen-

sions attaining significantly higher accuracy. For example, when Rm = 2 or Rm = 3,

LPK (P = 2 or P = 3) stores significantly fewer support vectors than SVM trained

after PCA and LFDA while achieving significantly higher accuracy. Fitting a simpler

model while attaining higher test accuracy is a clear indication of better generalization.

SVM without any dimensionality reduction obtains 88.34 per cent average accuracy.

On the USPS-EO data set (see Figure 5.20), SVM trained after LFDA obtains

an average accuracy around 79 per cent for all dimension values tried. However, SVM

130

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
75

80

85

90

95

te
st

 a
cc

ur
ac

y

dimension

PCA
LFDA
GPK
LPK (P = 2)
LPK (P = 3)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
15

20

25

30

35

40

45

50

su
pp

or
t v

ec
to

r

dimension

Figure 5.19. Classification results on the Waveform data set.

trained after PCA obtains better average accuracies after five dimensions and 86.10

per cent average accuracy with 15 dimensions. GPK and LPK (P = 3) obtains more

than 87 and 90 per cent average accuracy, respectively, for all dimension values tried.

GPK and LPK achieve significantly higher accuracies and store significantly fewer

support vectors than SVM trained after PCA for all configurations. SVM without

any dimensionality reduction obtains 87.58 per cent average accuracy.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
55

60

65

70

75

80

85

90

95

te
st

 a
cc

ur
ac

y

dimension

PCA
LFDA
GPK
LPK (P = 2)
LPK (P = 3)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

su
pp

or
t v

ec
to

r

dimension

Figure 5.20. Classification results on the USPS-EO data set.

On USPS-SL (see Figure 5.21), SVM trained after PCA has more than 70

per cent average accuracy after 14 dimensions, whereas SVM trained after LFDA

gets around 68 per cent average accuracy. GPK achieves average accuracy more than

75 per cent. When we use local projection matrices (P = 2 or P = 3), the average

accuracy increases to more than 86 per cent. LPK achieves 11 per cent higher accuracy

131

than GPK and stores only 5 per cent of training instances as support vectors. SVM

without any dimensionality reduction obtains 76.36 per cent average accuracy.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
40

50

60

70

80

90

te
st

 a
cc

ur
ac

y

dimension

PCA
LFDA
GPK
LPK (P = 2)
LPK (P = 3)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

su
pp

or
t v

ec
to

r

dimension

Figure 5.21. Classification results on the USPS-SL data set.

We also compare the classification performances of these methods on Olivetti

(see Figure 5.22). We use a different methodology for this data set. We select two

images of each subject randomly and reserve these total 80 images as the test set.

Then, we apply 8-fold cross-validation on the remaining 320 images by putting one

image of each subject to the validation set at each fold. In order to get rid of singularity

problems in LFDA method, we project data instances into a 100-dimensional space

with PCA before applying LFDA. SVM trained after PCA could not achieve more

than 96 per cent average accuracy, whereas SVM trained after LFDA gets around

98 per cent average accuracy. GPK achieves average accuracy more than 98 per cent

with four and five dimensions. LPK (P = 2 or P = 3) achieves more than 98 per

cent average accuracy after two dimensions (Rm ≥ 2). For example, LPK (P = 2 and

Rm = 4) obtains 99.69 per cent average accuracy. LPK stores nearly the same amount

of support vectors as SVM trained after LFDA but achieves higher average accuracy.

SVM without any dimensionality reduction obtains 99.06 per cent average accuracy.

5.4.4. Convergence Analysis

We perform convergence analysis of LPK on Waveform and Olivetti data

sets. We train LPK (P = 2, Rm = 1, and C = 100) with the linear kernel for 25

132

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
85

90

95

100
te

st
 a

cc
ur

ac
y

dimension

PCA
LFDA
GPK
LPK (P = 2)
LPK (P = 3)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

su
pp

or
t v

ec
to

r

dimension

Figure 5.22. Classification results on the Olivetti data set.

iterations and record the objective function value, training and test set accuracies, and

the percentage of support vectors at each iteration.

Figure 5.23 shows that LPK converges on Waveform data set after five iter-

ations. If we use the stopping condition based on the objective function value with

τ = 0.01 or 0.001, LPK stops respectively after 9 and 13 iterations (shown with a

square and a circle).

0 5 10 15 20 25
0

20000
40000
60000

ob
je

ct
iv

e
va

lu
e

τ = 0.01
τ = 0.001

0 5 10 15 20 25
0

30

60

su
pp

or
t v

ec
to

r

iteration

0 5 10 15 20 25
60

80

100

ac
cu

ra
cy

training
test

Figure 5.23. Convergence analysis of LPK on the Waveform data set.

A similar behavior is also seen on the Olivetti data set (see Figure 5.24). We

see that even τ = 0.01 is too conservative. Note that on both data sets, LPK does not

overfit even if we allow all 25 iterations.

133

0 5 10 15 20 25
0

2500

5000

7500

ob
je

ct
iv

e
va

lu
e

τ = 0.01
τ = 0.001

0 5 10 15 20 25
0

50

100

su
pp

or
t v

ec
to

r

iteration

0 5 10 15 20 25
90

95

100

ac
cu

ra
cy

training
test

Figure 5.24. Convergence analysis of LPK on the Olivetti data set.

134

6. CONCLUSIONS AND FUTURE WORK

In recent years, several MKL methods have been proposed in the machine learn-

ing literature. Different kernels correspond to different notions of similarity and MKL

can be used to combine them. It can also be used to integrate different inputs com-

ing from different representations, possibly from different sources or modalities, by

combining kernels calculated on these representations.

This thesis contains a number of extensions to the original MKL framework,

together with experimental results that support their utility on benchmark data sets

from the UCI Machine Learning Repository as well as several image recognition and

bioinformatics data sets.

6.1. Contributions of the Thesis

This thesis introduces a regularized multiple kernel learning framework extending

the MKL formulation of Bach et al. (2004). The newly introduced regularization

parameters should not be set equal; our experimental results show that they have an

effect on accuracy and this thesis proposes to use RSM to have a regularized variant

of MKL to search for the best parameter set using validation data. Our proposed

method, RMKL, is tested on several bioinformatics and digit recognition data sets

and we see that it eliminates some of the kernel functions or decreases the support

vector count, sometimes also improves accuracy, but never sacrifices from accuracy.

Optimizing the regularization parameter of each kernel allows us to obtain more

robust decision functions for the classification task at hand. Kernels that do not help

increase the classification accuracy are pruned by selecting their regularization param-

eters accordingly, obtaining smoother discriminants. Eliminating some of the kernels

directly or decreasing the number of stored support vectors reduces the testing time for

new instances. In an application where there is a single source and multiple kernels,

determining which kernels are favored and which are not needed gives us information,

135

indicating which notions of similarity are valid. When different kernels use information

from different sources, pruning kernels corresponds to pruning redundant information

sources; after all, not all sources may be necessary.

This thesis also proposes a cost-conscious multiple kernel learning framework

to include the cost of kernel computations and data acquisition/generation into the

MKL mathematical model of Bach et al. (2004). We present results for two sets of

experiments on benchmark data sets to combine different kernels on the same data

representation and to combine different data representations with the same kernel.

The results show that incorporating a cost factor into the model enables us to use only

the necessary kernels, avoiding costly kernel computations and input generation for

some data representations in the testing phase, when possible. The cost of a kernel

depends on the time/space complexity of the kernel implementation (in software or

hardware) and the cost of sensing the input representation and manipulating it.

The cost-conscious MKL variant is also tested on two bioinformatics applications

described from CYGD. Similar to the results obtained on the UCI benchmark data sets,

the cost-conscious variant of MKL helps us trade off the contribution of a kernel to

accuracy with its complexity and can eliminate expensive data representations/kernels

when possible. By using cost-conscious MKL in bioinformatics applications, we show

that one can select a kernel combination that enables us to get rid of the costlier

data representations (generally obtained through additional experimental processes)

and evaluating the expensive kernel functions.

The main contribution of this thesis is the formulation of a localized multiple ker-

nel learning framework for kernel-based algorithms. Our proposed algorithm, LMKL,

has two main ingredients: the gating model that assigns weights to kernels for a data

instance, and, the kernel-based learning algorithm that uses the locally combined ker-

nel. The training of these two components are coupled and the parameters of both

components are optimized together by using a two-step alternating optimization pro-

cedure. We derive the learning algorithm for three different gating models (softmax,

136

sigmoid, and Gaussian) and apply LMKL to four different machine learning problems

(binary classification, regression, multiclass classification, and one-class classification).

We perform experiments on several binary classification and regression problems.

We compare the empirical performance of LMKL with single-kernel SVM and SVR

as well as MKL. For classification problems that use different feature representations,

LMKL is able to construct better classifiers than MKL by combining the kernels

on these representations locally. In our experiments, LMKL achieves higher average

test accuracies and stores fewer support vectors compared to MKL. If the combined

feature representations are complementary and do not contain redundant information,

the sigmoid gating model should be selected instead of softmax gating, in order to have

the possibility of using more than one representation. We also see that, as expected,

combining heterogeneous feature representations is more advantageous than combining

multiple copies of the same representation. For image recognition problems, LMKL

identifies the relevant parts of each input image separately by using the gating model

as a saliency detector on the kernels calculated on the image patches, and we see

that LMKL obtains better classification results than MKL on a gender recognition

task using face images. For regression problems, LMKL improves the performance

by reducing the mean square error significantly or storing significantly fewer support

vectors. Different from MKL methods that use global kernel weights, LMKL can

combine multiple copies of the same kernel. We show that even if we provide more

kernels than needed, LMKL uses only as many support vectors as required and does

not overfit.

The computational complexity of LMKL depends on the complexity of the

canonical kernel machine solver used in the main loop and the number of iterations

before convergence. For example, solving a canonical SVM optimization problem has

O(N2) space and O(N3) time complexity, whereas gradient calculations for the gating

model parameters have a smaller time complexity. In practice, we see convergence

in five to 20 iterations using gradient-descent with Armijo’s rule as the line search

method. In two-step alternating optimization algorithm of LMKL, instead of using

gradient-descent to update the gating model parameters, one can use a more complex

137

procedure such as simulated annealing. This would increase time complexity but may

help us find better solutions.

We also introduce a supervised and localized dimensionality reduction method

that trains local projection kernels coupled with a kernel-based learning algorithm.

Our proposed method, LPK, has three main ingredients: the gating model that as-

signs weights to projection matrices for a data instance, the local projection matrices

that perform dimensionality reduction separately in each region constructed by the

gating model, and, the kernel-based learning algorithm that combines these locally

constructed features. The training of these three components are coupled, are all

supervised, and the parameters of components are optimized together by using an al-

ternating optimization scheme. The result of combining these three components is a

local projection kernel that performs locality preserving projection while considering

the accuracy of the discriminant formed using such kernels. For binary classification

tasks, the mathematical details of our proposed framework with the softmax gating

model are given. We discuss how the same derivation can be extended to regression

estimation and novelty detection problems.

Our proposed method, LPK, is tested and compared with two other algorithms,

PCA and LFDA, for data visualization and classification tasks on benchmark data

sets. On visualization tasks, LPK is able to maintain the multimodality of a class by

placing clusters of the same class on the same side of the hyperplane while preserving

a separation between them. This property is a direct result of using a gating model

in LPK. On classification tasks, LPK achieves better results than PCA and LFDA

by attaining both higher test accuracy and storing fewer support vectors, due to the

coupled optimization of the discriminant and the local projection matrices used in

dimensionality reduction.

6.2. Future Work

As an extension to the proposed regularization framework of RMKL, RSM on

cross-validation performance can also be used in other model selection settings. For

138

example, the regularization parameter of kernel machines and the spread parameter of

the Gaussian kernel can be selected using RSM. By doing this, we can get rid of the

costly grid search procedure and can select arbitrary parameter values (grid search can

only select from a list with predefined precision).

In the LMKL framework, the most time-consuming step is solving the canonical

kernel machine with the locally combined kernel matrix. In order to reduce the overall

time complexity, we can use the least squares formulations of canonical kernel machines.

Such a procedure has an analytical solution that requires inverting the locally combined

kernel matrix. Because the kernel matrix changes gradually when the gating model

parameters change, the inverse calculated in the previous iteration can be used to easily

calculate the inverse of the current kernel matrix.

The LMKL framework uses a parametric gating model that restricts the method

to use a specified number of kernel functions. Both the gating model and the inner

kernel machines are discriminative models. The number of kernels to be combined

should be determined before training and this is the main restriction of the LMKL

method. A Bayesian reformulation of the gating model in LMKL with infinite Dirichlet

mixtures can both select the number of kernels to be combined and learn to combine

these kernels. This would be a hybrid formulation of discriminative and generative

models applied to kernel combination. Instead of regularizing LMKL using a statistical

cross-validation procedure, infinite Dirichlet mixtures could select the model complexity

while training. The classifier in the inner loop of LMKL could also be a generative

model like Gaussian processes and we can obtain a fully generative formulation of

LMKL.

If the dimensionality of the feature representation used in the gating models

of LMKL and LPK is very high, we may need to optimize a very large number of

parameters. Instead, we can also reduce the dimensionality of the gating representation

and learn the gating model parameters in this new projected space.

139

APPENDIX A: STATISTICAL TESTS USED

In this chapter, we review the statistical tests used for comparing the algorithms

given the significance level, α.

A.1. 5× 2 cv Paired F Test

. In 5×2 cross-validation, we perform five replications of twofold cross-validation.

In each replication, the training set is divided into two equal-sized sets. Let p
(j)
i be

the difference between the performance values of the two learners on fold j = 1, 2 of

replication i = 1, 2, . . . , 5. The average on replication i is p̄i = (p
(1)
i + p

(2)
i)/2, and the

estimated variance s2i = (p
(1)
i − p̄i)

2 + (p
(2)
i − p̄i)

2. If p
(1)
i /σ ∼ Z, then (p

(j)
i)2/σ2 ∼ χ2

1

and their sum is chi-square with ten degrees of freedom:

N =

5∑

i=1

2∑

j=1

(p
(j)
i)2

σ2
∼ χ2

10

and assuming each of s2i to be independent, their sum is chi-square with five degrees

of freedom:

M =

5∑

i=1

s2i

σ2
∼ χ2

5.

M and N divided by their respective degrees of freedom is F distributed with ten and

five degrees of freedom (Alpaydın, 1999):

f =
N/10

M/5
=

5∑

i=1

2∑

j=1

(p
(j)
i)2

σ2
5∑

i=1

s2i

∼ F10,5.

The 5 × 2 cv paired F test accepts the hypothesis that two learners have the same

performance at significance level, α, if this value is less than Fα,10,5.

140

A.2. Wilcoxon’s Signed Rank Test

The Wilcoxon’s signed-rank test is a non-parametric test for comparing the re-

sults of two learners on several data sets (Wilcoxon, 1945). It ranks the differences

between the performance values of two learners for each data set, ignoring the signs,

and compares the ranks for the positive and the negative differences.

Let pi be the difference between the performance values of the two learners on data

set i = 1, 2, . . . ,M . The differences are ranked according their absolute values. Let

R+ be the sum of ranks for the data sets on which the second learner outperformed

the first. Let R− be the sum of ranks for the data sets on which the first learner

outperformed the second. Ranks of pi = 0 are split evenly between R+ and R−; if

there is an odd number of ties, one is ignored:

R+ =
∑

pi>0

rank(pi) +
1

2

∑

pi=0

rank(pi)

R− =
∑

pi<0

rank(pi) +
1

2

∑

pi=0

rank(pi).

Let T be the minimum of the sums, T = min(R+, R−). We can look up the exact

critical value of T for small M values. Or, we can use the following statistics:

z =
T −M(M + 1)/4

√

M(M + 1)(2M + 1)/24
∼ Z.

where z is distributed approximately normally. The Wilcoxon’s signed-rank test rejects

the hypothesis that two learners have the same performance at significance level, α, if

this value is less than Zα/2.

141

APPENDIX B: DATA SETS USED

In this chapter, we list the data sets used in the experiments for comparing

algorithms.

B.1. Benchmark Data Sets

Tables B.1 and B.2 summarize the benchmark classification and regression data

sets used in the experiments.

Table B.1. Benchmark classification data sets used in the experiments.

Name N D K

Advert 3279 1558 2

Banana 5300 2 2

Heart 270 13 2

Image Segmentation 2310 19 7

Ionosphere 351 34 2

Iris 150 4 3

Liverdisorder 345 6 2

Letter Recognition 20000 16 26

Pima 768 8 2

Ringnorm 7400 20 2

Sonar 208 60 2

Spambase 4601 57 2

Thyroid Disease 215 5 3

Twonorm 7400 20 2

Waveform 5000 21 3

Wdbc 569 30 2

B.2. Image Recognition Data Sets

MultiFeat is a digit recognition data set composed of six different data repre-

sentations for 2000 handwritten numerals (see Table 5.5).

142

Table B.2. Benchmark regression data sets used in the experiments.

Name N D

Concrete 1030 8

Motorcycle 133 1

WhiteWine 4898 11

Olivetti is a face recognition data set consisting of 10 different 64×64 grayscale

images of 40 subjects.

USPS is a digit recognition data set composed of 16 × 16 grayscale images of

11000 digits.

Optdigits is a optical digit recognition data set consisting of 8 × 8 on pixel

counts calculated on 32× 32 bitmaps of 5620 digits.

Pendigits is a pen-based digit recognition data set composed of eight successive

pen points of 10992 digits on two-dimensional coordinate system.

B.3. Bioinformatics Data Sets

Acceptors and Donors are human splice site detection data sets consisting of

3889 and 6246 data instances, respectively (Kulp et al., 1996).

Arabidopsis and Vertebrates are translation initiation site detection data

sets containing 2048 and 13454 instances, respectively (Pedersen and Nielsen, 1997).

Polyadenylation is a polyadenylation signal prediction data set containing

9255 instances for human DNA and mRNA sequences (Liu et al., 2003).

Membrane and Ribosomal are protein subcellular location prediction data

sets consisting of 2318 and 1150 data instances, respectively (Mewes et al., 2000).

143

Y1, Y2, . . . , Y13 are protein function prediction data sets constructed for 13

top-level categories of 3588 proteins in CYGD (Mewes et al., 2000).

S2783 is a protein stability data set that contains 2471 single-site mutations of

68 proteins extracted from the ProTherm database (Özen et al., 2009).

144

REFERENCES

Alimoğlu, F. and E. Alpaydın, 1997, “Combining Multiple Representations and Clas-

sifiers for Pen-based Handwritten Digit Recognition”, Proceedings of the 4th In-

ternational Conference on Document Analysis and Recognition.

Alpaydın, E., 1996, “Selective Attention for Handwritten Digit Recognition”, Advances

in Neural Information Processing Systems 8.

Alpaydın, E., 1999, “Combined 5×2 cv F test for Comparing Supervised Classification

Learning Algorithms”, Neural Computation, Vol. 11, No. 8, pp. 1885–1892.

Argyriou, A., R. Hauser, C. A. Micchelli, and M. Pontil, 2006, “A DC-Programming

Algorithm for Kernel Selection”, Proceedings of the 23rd International Conference

on Machine Learning.

Argyriou, A., C. A. Micchelli, and M. Pontil, 2005, “Learning Convex Combinations

of Continuously Parameterized Basic Kernels”, Proceeding of the 18th Conference

on Learning Theory.

Bach, F., 2008, “Consistency of the Group Lasso and Multiple Kernel Learning”, Jour-

nal of Machine Learning Research, Vol. 9, pp. 1179–1225.

Bach, F. R., 2009, “Exploring Large Feature Spaces with Hierarchical Multiple Kernel

Learning”, Advances in Neural Information Processing Systems 21.

Bach, F. R., G. R. G. Lanckriet, and M. I. Jordan, 2004, “Multiple Kernel Learning,

Conic Duality, and the SMO Algorithm”, Proceedings of the 21st International

Conference on Machine Learning.

Bach, F. R., R. Thibaux, and M. I. Jordan, 2005, “Computing Regularization Paths for

Learning Multiple Kernels”, Advances in Neural Information Processing Systems

145

17.

Belkin, M. and P. Niyogi, 2002, “Laplacian Eigenmaps and Spectral Techniques for

Embedding and Clustering”, Advances in Neural Information Processing Systems

14.

Ben-Hur, A. and W. S. Noble, 2005, “Kernel Methods for Predicting Protein-Protein

Interactions”, Bioinformatics, Vol. 21, No. Suppl 1, pp. i38–46.

Bennett, K. P., M. Momma, and M. J. Embrechts, 2002, “MARK: A Boosting Algo-

rithm for Heterogeneous Kernel Models”, Proceedings of the 8th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining.

Bi, J., T. Zhang, and K. P. Bennett, 2004, “Column-Generation Boosting Methods

for Mixture of Kernels”, Proceedings of the 10th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining.

Blum, B., M. I. Jordan, D. Kim, R. Das, P. Bradley, and D. Baker, 2008, “Feature

Selection Methods for Improving Protein Structure Prediction with Rosetta”,

Advances in Neural Information Processing Systems 20.

Bousquet, O. and D. J. L. Herrmann, 2003, “On the Complexity of Learning the Kernel

Matrix”, Advances in Neural Information Processing Systems 15.

Bredensteiner, E. J. and K. P. Bennett, 1999, “Multicategory Classification by Support

Vector Machines”, Computational Optimization and Applications, Vol. 12, No. 1-

3, pp. 53–79.

Capriotti, E., P. Fariselli, and R. Casadio, 2004, “A Neural-Network-Based Method

for Predicting Protein Stability Changes upon Single Point Mutations”, Bioinfor-

matics, Vol. 20 (Supplement 1), pp. i63–i68.

Chapelle, O., V. Vapnik, O. Bousquet, and S. Mukherjee, 2002, “Choosing Multiple

Parameters for Support Vector Machines”, Machine Learning, Vol. 46, No. 1–3,

146

pp. 131–159.

Cheng, J., A. Randall, and P. Baldi, 2006, “Prediction of Protein Stability Changes

for Single-Site Mutations Using Support Vector Machines”, Proteins: Structure,

Function, and Bioinformatics, Vol. 62, pp. 1125–1132.

Christoudias, C. M., R. Urtasun, and T. Darrell, 2009, “Bayesian Localized Multi-

ple Kernel Learning”, Tech. rep., Electrical Engineering and Computer Sciences,

University of California at Berkeley.

Conforti, D. and R. Guido, 2010, “Kernel Based Support Vector Machine via Semidefi-

nite Programming: Application to Medical Diagnosis”, Computers and Operations

Research, Vol. 37, No. 8, pp. 1389–1394.

Cortes, C., M. Mohri, and A. Rostamizadeh, 2009, “L2 Regularization for Learning

Kernels”, Proceedings of the 25th Conference on Uncertainty in Artificial Intelli-

gence.

Cortes, C., M. Mohri, and A. Rostamizadeh, 2010, “Learning Non-Linear Combinations

of Kernels”, Advances in Neural Information Processing Systems 22.

Crammer, K., J. Keshet, and Y. Singer, 2003, “Kernel Design Using Boosting”, Ad-

vances in Neural Information Processing Systems 15.

Crammer, K. and Y. Singer, 2001, “On the Algorithmic Implementation of Multiclass

Kernel-Based Vector Machines”, Journal of Machine Learning Research, Vol. 2,

pp. 265–292.

Cristianini, N. and J. Shawe-Taylor, 2000, An Introduction to Support Vector Machines

and Other Kernel-Based Learning Methods, Cambridge University Press.

Cristianini, N., J. Shawe-Taylor, A. Elisseef, and J. Kandola, 2002, “On Kernel-Target

Alignment”, Advances in Neural Information Processing Systems 14.

147

Damoulas, T. and M. A. Girolami, 2008, “Probabilistic Multi-Class Multi-Kernel

Learning: On Protein Fold Recognition and Remote Homology Detection”, Bioin-

formatics, Vol. 24, No. 10, pp. 1264–1270.

Damoulas, T. and M. A. Girolami, 2009a, “Combining Feature Spaces for Classifica-

tion”, Pattern Recognition, Vol. 42, No. 11, pp. 2671–2683.

Damoulas, T. and M. A. Girolami, 2009b, “Pattern Recognition with A Bayesian

Kernel Combination Machine”, Pattern Recognition Letters, Vol. 30, No. 1, pp.

46–54.

Dayhoff, M. O., R. M. Schwartz, and B. C. Orcutt, 1978, “A Model of Evolutionary

Change in Proteins”, Atlas of Protein Sequence and Structure, Vol. 5 (Supplement

3), pp. 345–358.

De Bie, T., L.-C. Tranchevent, L. M. M. van Oeffelen, and Y. Moreau, 2007, “Kernel-

Based Data Fusion for Gene Prioritization”, Bioinformatics, Vol. 23, No. 13, pp.

i125–132.

de Diego, I. M., J. M. Moguerza, and A. Muñoz, 2004, “Combining Kernel Information

for Support Vector Classification”, Proceedings of the 4th International Workshop

Multiple Classifier Systems.

Dehak, R., N. Dehak, P. Kenny, and P. Dumouchel, 2008, “Kernel Combination for

SVM Speaker Verification”, Proceedings of the Speaker and Language Recognition

Workshop.

Fisher, R. A., 1936, “The Use of Multiple Measurements in Taxonomic Problems”,

Annals of Eugenics, Vol. 7 Part II, pp. 179–188.

Fung, G., M. Dundar, J. Bi, and B. Rao, 2004, “A Fast Iterative Algorithm for Fisher

Discriminant Using Heterogeneous Kernels”, Proceedings of the 21st International

Conference on Machine Learning.

148

Gehler, P. V. and S. Nowozin, 2008, “Infinite Kernel Learning”, Tech. rep., Max Planck

Institute for Biological Cybernetics.

Girolami, M. and S. Rogers, 2005, “Hierarchic Bayesian Models for Kernel Learning”,

Proceedings of the 22nd International Conference on Machine Learning.

Girolami, M. and M. Zhong, 2007, “Data Integration for Classification Problems Em-

ploying Gaussian Process Priors”, Advances in Neural Processing Systems 19.

Globerson, A. and S. Roweis, 2006, “Metric Learning by Collapsing Classes”, Advances

in Neural Information Processing Systems 18.

Gönen, M. and E. Alpaydın, 2008, “Localized Multiple Kernel Learning”, Proceedings

of the 25th International Conference on Machine Learning.

Gönen, M. and E. Alpaydın, 2009a, “Localized Multiple Kernel Learning for Image

Recognition”, NIPS Workshop on Understanding Multiple Kernel Learning Meth-

ods.

Gönen, M. and E. Alpaydın, 2009b, “Multiple Kernel Learning Algorithms”, Tech.

Rep. FBE-CMPE-05/2009-02, Boğaziçi University.

Gönen, M. and E. Alpaydın, 2009c, “Multiple Kernel Machines Using Localized Ker-

nels”, Supplementary Proceedings of the 4th IAPR International Conference on

Pattern Recognition in Bioinformatics.

Gönen, M. and E. Alpaydın, 2010a, “Cost-Conscious Multiple Kernel Learning”, Pat-

tern Recognition Letters, Vol. 31, No. 9, pp. 959–965.

Gönen, M. and E. Alpaydın, 2010b, “Localized Multiple Kernel Regression”, Proceed-

ings of the 20th International Conference on Pattern Recognition.

Gönen, M. and E. Alpaydın, 2010c, “Regularizing Multiple Kernel Learning Using

Response Surface Methodology”, submitted.

149

Gönen, M. and E. Alpaydın, 2010d, “Supervised Learning of Local Projection Kernels”,

Neurocomputing, Vol. 73, No. 10–12, pp. 1694–1703.

Gönen, M., A. G. Tanuğur, and E. Alpaydın, 2008, “Multiclass Posterior Probabil-

ity Support Vector Machines”, IEEE Transactions on Neural Networks, Vol. 19,

No. 1, pp. 130–139.

Grandvalet, Y. and S. Canu, 2003, “Adaptive Scaling for Feature Selection in SVMs”,

Advances in Neural Information Processing Systems 15.

Gromiha, M. M., J. An, H. Kono, M. Oobatake, H. Uedaira, P. Prabakaran, and

A. Sarai, 2000, “ProTherm, Version 2.0: Thermodynamic Database for Proteins

and Mutants”, Nucleic Acids Research, Vol. 28, pp. 283–285.

He, J., S.-F. Chang, and L. Xie, 2008, “Fast Kernel Learning for Spatial Pyramid

Matching”, Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition.

He, X. and P. Niyogi, 2004, “Locality Preserving Projections”, Advances in Neural

Information Processing Systems 16.

Hou, C., J. Wang, Y. Wu, and D. Yi, 2009, “Local Linear Transformation Embedding”,

Neurocomputing, Vol. 72, pp. 2368–2378.

Hsu, C.-W. and C.-J. Lin, 2002, “A Comparison of Methods for Multi-Class Support

Vector Machines”, IEEE Transactions on Neural Networks, Vol. 13, No. 2, pp.

415–425.

Hu, M., Y. Chen, and J. T.-Y. Kwok, 2009, “Building Sparse Multiple-Kernel SVM

Classifiers”, IEEE Transactions on Neural Networks, Vol. 20, No. 5, pp. 827–839.

Huang, L. T., M. M. Gromiha, S. F. Hwang, and S. Y. Ho, 2006, “Knowledge Acquisi-

tion and Development of Accurate Rules for Predicting Protein Stability Change”,

Computational Biology and Chemistry, Vol. 30, pp. 408–415.

150

Igel, C., T. Glasmachers, B. Mersch, N. Pfeifer, and P. Meinicke, 2007, “Gradient-

Based Optimization of Kernel-Target Alignment for Sequence Kernels Applied

to Bacterial Gene Start Detection”, IEEE/ACM Transactions on Computational

Biology and Bioinformatics, Vol. 4, No. 2, pp. 216–226.

Jacobs, R. A., M. I. Jordan, S. J. Nowlan, and G. E. Hinton, 1991, “Adaptive Mixtures

of Local Experts”, Neural Computation, Vol. 3, pp. 79–87.

Joachims, T., N. Cristianini, and J. Shawe-Taylor, 2001, “Composite Kernels for Hy-

pertext Categorisation”, Proceedings of the 18th International Conference on Ma-

chine Learning.

Kandola, J., J. Shawe-Taylor, and N. Cristianini, 2002, “Optimizing Kernel Alignment

over Combinations of Kernels”, Proceedings of the 19th International Conference

on Machine Learning.

Kim, S.-J., A. Magnani, and S. Boyd, 2006, “Optimal Kernel Selection in Kernel

Fisher Discriminant Analysis”, Proceedings of the 23rd International Conference

on Machine Learning.

Kloft, M., U. Brefeld, S. Sonnenburg, P. Laskov, K.-R. Müller, and A. Zien, 2010,

“Efficient and Accurate lp-Norm Multiple Kernel Learning”, Advances in Neural

Information Processing Systems 22.

Krefsel, U., 1998, “Pairwise Classification and Support Vector Machines”, Schölkopf,

B., C. Burges, and A. Smola (eds.), Advances in Kernel Methods - Support Vector

Learning, MIT Press.

Kulp, D., D. Haussler, M. G. Reese, and F. H. Eeckman, 1996, “A Generalized Hidden

Markov Model for the Recognition of Human Genes in DNA”, Proceedings of 4th

International Conference on Intelligent Systems for Molecular Biology.

Kuncheva, L. I., 2004, Combining Pattern Classifiers: Methods and Algorithms, Wiley-

151

Interscience.

Lanckriet, G. R. G., N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan, 2002,

“Learning the Kernel Matrix with Semidefinite Programming”, Proceedings of the

19th International Conference on Machine Learning.

Lanckriet, G. R. G., N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan,

2004a, “Learning the Kernel Matrix with Semidefinite Programming”, Journal of

Machine Learning Research, Vol. 5, pp. 27–72.

Lanckriet, G. R. G., T. de Bie, N. Cristianini, M. I. Jordan, and W. S. Noble, 2004b,

“A Statistical Framework for Genomic Data Fusion”, Bioinformatics, Vol. 20,

No. 16, pp. 2626–2635.

Lanckriet, G. R. G., M. Deng, N. Cristianini, M. I. Jordan, and W. S. Noble, 2004c,

“Kernel-Based Data Fusion and Its Application to Protein Function Prediction

in Yeast”, Proceedings of the Pacific Symposium on Biocomputing.

Lee, C. and M. Levitt, 1991, “Accurate Prediction of the Stability and Activity Effects

of Site-directed Mutagenesis on a Protein Core”, Nature, Vol. 352, pp. 448–451.

Lee, W.-J., S. Verzakov, and R. P. W. Duin, 2007, “Kernel Combination versus Classi-

fier Combination”, Proceedings of the 7th International Workshop Multiple Clas-

sifier Systems.

Lee, Y., Y. Lin, and G. Wahba, 2001, “Multicategory Support Vector Machines”, Tech.

Rep. 1043, Department of Statistics, University of Wisconsin.

Lewis, D. P., T. Jebara, and W. S. Noble, 2006a, “Nonstationary Kernel Combination”,

Proceedings of the 23rd International Conference on Machine Learning.

Lewis, D. P., T. Jebara, and W. S. Noble, 2006b, “Support Vector Machine Learning

from Heterogeneous Data: An Empirical Analysis Using Protein Sequence and

Structure”, Bioinformatics, Vol. 22, No. 22, pp. 2753–2760.

152

Li, X., S. Lin, S. Yan, and D. Xu, 2008, “Discriminant Locally Linear Embedding with

High-Order Tensor Data”, IEEE Transactions on Systems, Man, and Cybernetics,

PartB, Vol. 38, pp. 342–352.

Lin, Y.-Y., T.-L. Liu, and C.-S. Fuh, 2009, “Dimensionality Reduction for Data in

Multiple Feature Representations”, Advances in Neural Processing Systems 21.

Liu, H., H. Han, J. Li, and L. Wong, 2003, “An In-silico Method for Prediction of

Polyadenylation Signals in Human Sequences”, Proceedings of the 14th Interna-

tional Conference on Genome Informatics.

Lodhi, H., C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins, 2002, “Text

Classification Using String Kernels”, Journal of Machine Learning Research,

Vol. 2, pp. 419–444.

Longworth, C. and M. J. F. Gales, 2008, “Multiple Kernel Learning for Speaker Veri-

fication”, Proceedings of the IEEE International Conference on Acoustics, Speech

and Signal Processing.

Longworth, C. and M. J. F. Gales, 2009, “Combining Derivative and Parametric Ker-

nels for Speaker Verification”, IEEE Transactions on Audio, Speech, and Lan-

guage Processing, Vol. 17, No. 4, pp. 748–757.

Mayoraz, E. and E. Alpaydın, 1999, “Support Vector Machines for Multi-Class Clas-

sification”, Mira, E. J. and J. V. S. Andres (eds.), Engineering Applications of

Bio-Inspired Artificial Neural Networks, pp. 833–842, Springer.

McFee, B. and G. Lanckriet, 2009, “Partial Order Embedding with Multiple Kernels”,

Proceedings of the 26th International Conference on Machine Learning.

Mewes, H. W., D. Frishman, C. Gruber, B. Geier, D. Haase, A. Kaps, K. Lemcke,

G. Mannhaupt, F. Pfeiffer, C. Schüller, S. Stocker, and B. Weil, 2000, “MIPS: A

Database for Genomes and Protein Sequences”, Nucleic Acid Research, Vol. 28,

153

pp. 37–40.

Micchelli, C. A. and M. Pontil, 2005, “Learning the Kernel Function via Regulariza-

tion”, Journal of Machine Learning Research, Vol. 6, pp. 1099–1125.

Micchelli, C. A. and M. Pontil, 2007, “Feature Space Perspectives for Learning the

Kernel”, Machine Learning, Vol. 66, pp. 297–319.

Moguerza, J. M., A. Muñoz, and I. M. de Diego, 2004, “Improving Support Vector

Classification via the Combination of Multiple Sources of Information”, Proceed-

ings of the Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR

International Workshops.

Momma, M. and K. P. Bennett, 2002, “A Pattern Search Method for Model Selection

of Support Vector Regression”, Proceedings of the SIAM International Conference

on Data Mining.

Mosek, 2010, The MOSEK Optimization Tools Manual Version 6.0 (Revision 66),

MOSEK ApS, Denmark.

Myers, R. H. and D. C. Montgomery, 2002, Response Surface Methodology: Process

and Product Optimization Using Designed Experiments, Wiley-Interscience.

Nguyen, C. H. and T. B. Ho, 2008, “An Efficient Kernel Matrix Evaluation Measure”,

Pattern Recognition, Vol. 41, No. 11, pp. 3366–3372.

Noble, W. S., 2004, “Support Vector Machine Applications in Computational Biology”,

Schölkopf, B., K. Tsuda, and J.-P. Vert (eds.), Kernel Methods in Computational

Biology, chap. 3, The MIT Press.

Ocnlinx, V., V. Wertz, and M. Verleysen, 2009, “Nonlinear Data Projection on Non-

Euclidean Manifolds with Controlled Trade-off between Trustworthiness and Con-

tinuity”, Neurocomputing, Vol. 72, pp. 1444–1454.

154

Ong, C. S. and A. J. Smola, 2003, “Machine Learning using Hyperkernels”, Proceedings

of the 20th International Conference on Machine Learning.

Ong, C. S., A. J. Smola, and R. C. Williamson, 2003, “Hyperkernels”, Advances in

Neural Information Processing Systems 15.

Ong, C. S., A. J. Smola, and R. C. Williamson, 2005, “Learning the Kernel with

Hyperkernels”, Journal of Machine Learning Research, Vol. 6, pp. 1043–1071.

Özen, A., M. Gönen, E. Alpaydın, and T. Haliloğlu, 2009, “Machine Learning Inte-

gration for Predicting the Effect of Single Amino Acid Substitutions on Protein

Stability”, BMC Structural Biology, Vol. 9, p. 66.

Pavlidis, P., J. Weston, J. Cai, and W. N. Grundy, 2001, “Gene Functional Classi-

fication from Heterogeneous Data”, Proceedings of the 5th Annual International

Conference on Computational Molecular Biology.

Pearson, K., 1901, “On Lines and Planes of Closest Fit to Systems of Points in Space”,

Philosophical Magazine, Vol. 2, No. 6, pp. 559–572.

Pedersen, A. G. and H. Nielsen, 1997, “Neural Network Prediction of Translation

Initiation Sites in Eukaryotes: Perspectives for EST and Genome Analysis”, Pro-

ceedings of the 5th International Conference on Intelligent Systems for Molecular

Biology.

Pereira, F. and G. Gordon, 2006, “The Support Vector Decomposition Machine”, Pro-

ceedings of the 23rd International Conference on Machine Learning.

Platt, J. C., N. Cristianini, and J. Shawe-Taylor, 2000, “Large Margin DAGs for Mul-

ticlass Classification”, Advances in Neural Information Processing Systems 12.

Qiu, S. and T. Lane, 2005, “Multiple Kernel Learning for Support Vector Regression”,

Tech. rep., Computer Science Department, University of New Mexico.

155

Qiu, S. and T. Lane, 2009, “A Framework for Multiple Kernel Support Vector Regres-

sion and Its Applications to siRNA Efficacy Prediction”, IEEE/ACM Transac-

tions on Computational Biology and Bioinformatics, Vol. 6, No. 2, pp. 190–199.

Rakotomamonjy, A., F. Bach, S. Canu, and Y. Grandvalet, 2007, “More Efficiency in

Multiple Kernel Learning”, Proceedings of the 24th International Conference on

Machine Learning.

Rakotomamonjy, A., F. R. Bach, S. Canu, and Y. Grandvalet, 2008, “SimpleMKL”,

Journal of Machine Learning Research, Vol. 9, pp. 2491–2521.

Rifkin, R. and A. Klautau, 2004, “In Defense of One-Vs-All Classication”, Journal of

Machine Learning Research, Vol. 5, pp. 101–141.

Roweis, S. and L. Saul, 2000, “Nonlinear Dimensionality Reduction by Locally Linear

Embedding”, Science, Vol. 290, pp. 2323–2326.

Schapire, R. E., 1990, “The Strength of Weak Learnability”, Machine Learning, Vol. 5,

No. 2, pp. 197–227.

Schmidt, M. and H. Gish, 1996, “Speaker Identification via Support Vector Classi-

fiers”, Proceedings of International Conference on Acoustics, Speech, and Signal

Processing.

Schölkopf, B. and A. J. Smola, 2002, Learning with Kernels: Support Vector Machines,

Regularization, Optimization, and Beyond, The MIT Press, Cambridge, MA.

Schölkopf, B., K. Tsuda, and J.-P. Vert (eds.), 2004a, Kernel Methods in Computational

Biology, The MIT Press.

Schölkopf, B., K. Tsuda, and J.-P. Vert, 2004b, “A Primer on Kernel Methods”,

Schölkopf, B., K. Tsuda, and J.-P. Vert (eds.), Kernel Methods in Computational

Biology, chap. 2, The MIT Press.

156

Silverman, B. W., 1985, “Some Aspects of the Spline Smoothing Approach to Non-

parametric Regression Curve Fitting”, Journal of the Royal Statistical Society:

Series B, Vol. 47, pp. 1–52.

Sonnenburg, S., G. Rätsch, and C. Schäfer, 2006a, “A General and Efficient Multiple

Kernel Learning Algorithm”, Advances in Neural Information Processing Systems

18.

Sonnenburg, S., G. Rätsch, C. Schäfer, and B. Schölkopf, 2006b, “Large Scale Multiple

Kernel Learning”, Journal of Machine Learning Research, Vol. 7, pp. 1531–1565.

Subrahmanya, N. and Y. C. Shin, 2010, “Sparse Multiple Kernel Learning for Signal

Processing Applications”, IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 32, No. 5, pp. 788–798.

Sugiyama, M., 2007, “Dimensionality Reduction of Multimodal Labeled Data by Local

Fisher Discriminant Analysis”, Journal of Machine Learning Research, Vol. 8, pp.

1027–1061.

Szafranski, M., Y. Grandvalet, and A. Rakotomamonjy, 2008, “Composite Kernel

Learning”, Proceedings of the 25th International Conference on Machine Learn-

ing.

Tan, Y. and J. Wang, 2004, “A Support Vector Machine with a Hybrid Kernel and Min-

imal Vapnik-Chervonenkis Dimension”, IEEE Transactions on Knowledge and

Data Engineering, Vol. 16, No. 4, pp. 385–395.

Tanabe, H., T. B. Ho, C. H. Nguyen, and S. Kawasaki, 2008, “Simple but Effective

Methods for Combining Kernels in Computational Biology”, Proceedings of IEEE

International Conference on Research, Innovation and Vision for the Future.

Tao, D., X. Li, W. Hu, S. Maybank, and X. Wu, 2005a, “Supervised Tensor Learning”,

Proceedings of the 5th IEEE International Conference on Data Mining.

157

Tao, D., X. Li, X. Wu, and S. J. Maybank, 2009, “Geometric Mean for Subspace

Selection”, IEEE Transactions on Pattern Analysis and Machine Intelligence,

Vol. 31, pp. 260–274.

Tao, Q., G.-W. Wu, F.-Y. Wang, and J. Wang, 2005b, “Posterior Probability Support

Vector Machines for Unbalanced Data”, IEEE Transactions on Neural Networks,

Vol. 16, No. 6, pp. 1561–1573.

Tenenbaum, J., V. de Silva, and J. Langford, 2000, “A Global Geometric Framework

for Nonlinear Dimensionality Reduction”, Science, Vol. 290, pp. 2319–2323.

Tipping, M. E. and C. M. Bishop, 1999, “Mixtures of Probabilistic Principal Compo-

nent Analyzers”, Neural Computation, Vol. 11, pp. 443–482.

Tsang, I. W.-H. and J. T.-Y. Kwok, 2006, “Efficient Hyperkernel Learning Using

Second-Order Cone Programming”, IEEE Transactions on Neural Networks,

Vol. 17, No. 1, pp. 48–58.

Tsuda, K., S. Uda, T. Kin, and K. Asai, 2004, “Minimizing the Cross Validation Error

to Mix Kernel Matrices of Heterogeneous Biological Data”, Neural Processing

Letters, Vol. 19, No. 1, pp. 63–72.

Vapnik, V., 1998, The Nature of Statistical Learning Theory, John Wiley & Sons.

Varma, M. and B. R. Babu, 2009, “More Generality in Efficient Multiple Kernel Learn-

ing”, Proceedings of the 26th International Conference on Machine Learning.

Varma, M. and D. Ray, 2007, “Learning the Discriminative Power-Invariance Trade-

off”, Proceedings of the International Conference in Computer Vision.

Weinberger, K. Q. and L. K. Saul, 2009, “Distance Metric Learning for Large Margin

Nearest Neighbor Classification”, Journal of Machine Learning Research, Vol. 10,

pp. 207–244.

158

Weston, J., S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik, 2001,

“Feature Selection for SVMs”, Advances in Neural Information Processing Sys-

tems 13.

Weston, J. and C. Watkins, 1998, “Multi-class Support Vector Machines”, Tech. Rep.

CSD-TR-98-04, Royal Holloway, University of London, Department of Computer

Science.

Wilcoxon, F., 1945, “Individual Comparisons by Ranking Methods”, Biometrics, Vol. 1,

pp. 80–83.

Wu, M., B. Schölkopf, and G. Bakır, 2006, “A Direct Method for Building Sparse

Kernel Learning Algorithms”, Journal of Machine Learning Research, Vol. 7, pp.

603–624.

Wu, M., K. Yu, S. Yu, and B. Schölkopf, 2007, “Local Learning Projections”, Proceed-

ings of the 24th International Conference on Machine Learning.

Xu, L., J. Neufeld, B. Larson, and D. Schuurmans, 2005, “Maximum Margin Cluster-

ing”, Advances in Neural Processing Systems 17.

Xu, Z., R. Jin, I. King, and M. R. Lyu, 2009a, “An Extended Level Method for Efficient

Multiple Kernel Learning”, Advances in Neural Information Processing Systems

21.

Xu, Z., R. Jin, J. Ye, M. R. Lyu, and I. King, 2009b, “Non-Monotonic Feature Selec-

tion”, Proceedings of the 26th International Conference on Machine Learning.

Yamanishi, Y., F. Bach, and J.-P. Vert, 2007, “Glycan Classification with Tree Ker-

nels”, Bioinformatics, Vol. 23, No. 10, pp. 1211–1216.

Yan, F., K. Mikolajczyk, J. Kittler, and M. Tahir, 2009, “A Comparison of l1 Norm and

l2 Norm Multiple Kernel SVMs in Image and Video Classification”, Proceedings

of the 7th International Workshop on Content-Based Multimedia Indexing.

159

Yan, S., D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lin, 2007, “Graph Embedding

and Extensions: A General Framework for Dimensionality Reduction”, IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 29, pp. 40–51.

Yang, J., Y. Li, Y. Tian, L. Duan, and W. Gao, 2009, “Group-Sensitive Multiple Kernel

Learning for Object Categorization”, Proceedings of the 12th IEEE International

Conference on Computer Vision.

Yang, J., Y. Li, Y. Tian, L. Duan, and W. Gao, 2010, “Per-Sample Multiple Kernel

Approach for Visual Concept Learning”, EURASIP Journal on Image and Video

Processing.

Ye, J., J. Chen, and S. Ji, 2007a, “Discriminant Kernel and Regularization Parameter

Learning via Semidefinite Programming”, Proceedings of the 24th International

Conference on Machine Learning.

Ye, J., S. Ji, and J. Chen, 2007b, “Learning the Kernel Matrix in Discriminant Anal-

ysis via Quadratically Constrained Quadratic Programming”, Proceedings of the

13th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining.

Ye, J., S. Ji, and J. Chen, 2008, “Multi-Class Discriminant Kernel Learning via Convex

Programming”, Journal of Machine Learning Research, Vol. 9, pp. 719–758.

Ying, Y., K. Huang, and C. Campbell, 2009, “Enhanced Protein Fold Recognition

through a Novel Data Integration Approach”, BMC Bioinformatics, Vol. 10,

No. 1, p. 267.

Zhao, B., J. T. Kwok, and C. Zhang, 2009, “Multiple Kernel Clustering”, Proceedings

of the 9th SIAM International Conference on Data Mining.

Zien, A. and C. S. Ong, 2007, “Multiclass Multiple Kernel Learning”, Proceedings of

the 24th International Conference on Machine Learning.

160

Zien, A. and C. S. Ong, 2008, “An Automated Combination of Kernels for Predicting

Protein Subcellular Localization”, Proceedings of the 8th International Workshop

on Algorithms in Bioinformatics.

