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FEATURE EXTRACTION AND CLASSIFICATION OF 

ELECTROENCEPHALOGRAPHIC (EEG) SIGNALS TOWARDS THE USE 

OF BRAIN-COMPUTER INTERFACE IN COGNITIVE APPLICATIONS 

 

ABSTRACT 

 

In this thesis, the brain computer interface system is developed for the cursor 

movement through the cognitive signals. The EEG data is handled from the Emotiv 

Neuroheadset device via our developed program written in c# language.  

 

We have worked on classification of five cognitive tasks; up, down, left, right and 

no movement. Before the movement of the cursor, the participants need to be trained 

to control the brain signals. In the training phase, the training screen is designed to 

consist of the visual stimuli. The participants have trained the program three times in 

different days and each session includes 24 trainings. EEG signals are very complex 

and the extracting information is difficult. Also, EEG signals has many artifacts 

occurred by the eye movement, muscle movement and the noise in environment. 

Therefore, median filtering and the normalization method are used in the 

preprocessing phase. Then the specific features for all cognitive tasks are extracted 

by the multifractal detrended fluctuation analysis and the fast Fourier transform. The 

Ph values and beta signals calculated from the MFDFA and FFT methods 

respectively, are used as features. 

 

Finally these features are classified by the nearest neighbor algorithms. Nearest 

neighbor (NN) algorithms are simple but effective methods for performing pattern 

classification. The CxK nearest neighbor algorithm is firstly used for cognitive EEG 

signal classification in this thesis and this method has given acceptable results when 

compared with the other studies in literature. 

 

Keywords: EEG, BCI, feature extraction, classification, k-nearest neighbor 

algorithm, CxK-nearest neighbor algorithm. 
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BiLiŞSEL UYGULAMALARDA BEYiN-BiLGiSAYAR ARAYÜZÜNÜN 

KULLANIMINA YÖNELiK ÖZELLiK ÇIKARIMI VE 

ELEKTROENSEFALOGRAFiK (EEG) SiNYALLERiN 

SINIFLANDIRILMASI 

 

ÖZ 

 

Bu tez çalıĢmasında, bilgisayar imleçinin düĢünce gücüyle hareket ettirilmesi için 

beyin-bilgisayar arayüzü geliĢtirilmiĢtir. EEG sinyalleri, Emotive Neuroheadset 

cihazının c# diliyle geliĢtirdiğimiz programa entegre edilerek elde edilmiĢtir. 

DüĢünce gücüyle imleçe yukarı, aĢağı, saga, sola ve hareket etmeme komutlarını 

yaptırma üzerinde çalıĢılmıĢtır. Öncelikle katılımcıların beyin sinyallerini control 

edebilmesi için eğitilmeleri gerekmektedir. Eğitim için komutların görsel resimlerini 

içeren bir ekran geliĢtirilmiĢtir. Katılımcılar 3 farklı günde eğitim programına tabi 

tutulmuĢtur. Her bir eğitimde görsel uyaranları içeren uygulama 24 kere gösterilerek 

elde edilen veriler sonraki çalıĢmalar için kaydedilmiĢtir.  

 

EEG verileri kompleks ve ham halinden bilgi çıkarılması zordur. Ayrıca, göz 

hareketleri, kas harketleri ve ortam sesleri EEG sinyallerinde gürültüye neden 

olmaktadır. Bu nedenle ön iĢleme aĢamasında medyan filtreleme ve normalizasyon 

yöntemleri kullanılmıĢtır. Ön iĢleme iĢleminden sonra spesifik özellikler her bir 

komut için çıkarılmıĢtır. Özellik çıkarmak için MFDFA ve FFT yöntemleri 

kullanılmıĢtır. MFDFA yöntemi ile elde edilen dağılım değeleri ve FFT yöntemi ile 

elde edilen beta sinyalleri özellik olarak kullanılmıĢtır. Böylece büyük veri setinden 

daha küçük veri seti oluĢturularak boyut indirgeme yapılmıĢtır. Son olarak, çıkarılan 

özellikler en yakın komĢu algoritmalarıyla sınıflandırılmıĢtır. Sınıflandırma yöntemi 

olarak basit fakat örüntü sınıflandırma iyi performans değerlerine sahip olan k-en 

yakın komĢu yöntemi ile EEG sinyal örüntülerinin sınıflandırılmasında daha önce 

kullanılmamıĢ olan CxK en yakın komĢu yöntemi kullanılmıĢtır ve literatürdeki 

çalıĢmalarla karĢılaĢtırıldığında kabul edilebilir sonuçlar elde edilmiĢtir. 

 

Anahtar kelimeler: EEG, BCI, özellik çıkarma, sınıflandırma, K-en yakın komĢu 

algoritması, CxK- en yakın komĢu algoritması.  
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CHAPTER ONE  

 INTRODUCTION 

 

The human body is controlled by the brain. The brain is very complex and the all 

functions have not found yet. But we know that it is responsible for perception, 

cognition, attention, emotion, memory and physical actions (Carlson, 2002; Purves et 

al., 2004). It works by the electrical activities between the neurons. When the person 

is thinking, reading, speaking or doing motor activities, the electrical signals are 

generated with chemical synapses in the different part of the brain. These electrical 

activities are measured and the occurred signals are monitored through the many 

techniques such as the electroencephalography (EEG), electrocorticography (ECoG), 

magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), 

positron emission tomography (PET) and single photo emission computed 

tomography (SPECT). These non-invasive techniques are used easily and they give 

an opportunity to analyze human brain functions.  

 

We have use EEG technique in this thesis because the EEG has been generally 

used method to capture brain signals, noninvasiveness, usability and low set-up costs 

(Blankertz, et al., 2008; Grosse-Wentrup et al. 2009). EEG has been generally used 

as non-invasive technique for the brain signal analysis. It is very useful in diagnosis 

and treatment of mental and neurological brain diseases. The extracted features have 

been used in the classification of the mental tasks of the EEG signals.  These features 

are very important for both diagnosis of the brain diseases and better understanding 

of the cognitive process. For this reason, it is vital to develop automated 

classification methods for EEG to ensure proper evaluation and treatment of 

neurological diseases (Agarwal et al., 1998). The unsupervised and supervised 

classification methods can be used to separate EEG signal features. In the 

unsupervised methods, the classes are not known but in the supervised classification, 

classes are known. We have used the supervised classification methods. 

 

Recently, EEG signal are used in brain computer interface studies. Brain 

computer interface is the very useful tool for the communication between brain and 
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computer by controlling components of EEG signals. Many studies have 

demonstrated the relationship between EEG signals and mental tasks (Keirn & 

Aunon, 1990; Lang et al., 1996; Pfurtscheller et al., 1997; Anderson et al., 1998; 

Altenmuller & Gerloff, 1999; McFarland et al., 2000).  

 

Generally, BCI Technology composed of four basic processes: recording the raw 

EEG signals as signal acquisition, removing noises as signal preprocessing, 

extraction of the intended action or desired features from the mental activity as 

feature extraction, and finally classification of the desired features.  

 

There have been many BCI applications in the literature. Brain computer interface 

works are started with the study of Farwell & Donchin (1998). The basic BCI 

applications are computer games, biofeedback therapy such as reduction of epileptic 

seizures, treatment of attention deficit hyperactivity disorder (ADHD), navigation in 

virtual reality and cursor control applications (Blankertz et al. 2007;Pfurtscheller et 

al 2006; Sellers & Donchin, 2006). The increasing technology allow the control more 

complex devices such as prostheses, robot arms and mobile robots (Graimann et al., 

2009; Vellistteet al., 2008). Also, BCI has been used for the disabled subjects. 

Therefore, BCI communication could improve the quality of life for disabled peoples 

such as lack of muscle control (McFarland et al., 1993; Wolpaw & McFarland, 

1994).  

 

In the signal acquisition process, the raw EEG signals are recorded by the Emotiv 

Epoc Neuro Headset brain computer interface technology. Signals were filtered with 

the band-pass filtering method for the removing artifacts. Also, the median filtering 

and normalization methods are used as preprocessing. The features are extracted by 

the Fast Fourier Transform (FFT) and multifractal detrended fluctuation analysis 

method. The probability distribution and midrange beta signals are used as features 

extracted by MFDFA and FFT analysis respectively.  

 

The multifractal detrended analysis has been commonly used method in the 

literature. Stan et al. (2013) have used the multifractal detrended cross correlation 
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analysis for investigating characteristics of series of length of coding and non-coding 

DNA sequences. Zheng et al. (2005) have used multiplicative multifractals for 

characterizing neuronal firing recordings. The MFDFA is used in linguistic analysis 

for the characterization of the text (Ausloos, 2012; Suckling et al., 2008). Also, ıt is 

used for EEG pattern recognition (Wang et al., 2003; Dutta et al., 2014; Kumar et al., 

2013) and eye movement analysis (Shelhamer, 2005; Ihlen & Vereijken, 

2010; Schmeisser et al., 2001; Kelty-Stephen & Nixon, 2013; Astefanoaei et al., 

2013). 

 

In this thesis, the cursor movement will be achieved using the imaginary EEG 

signals. We aim to classify the brain signals for the left, right, up, down and no 

movement mental tasks. K-Nearest Neighbor and C-KNN algorithms (Ulutagay & 

Nasibov, 2016) are used for the classification of the mental tasks. 

 

1.1 The Organization of the Thesis 

 

Thesis consists of ten chapters and in each chapter gives valuable information for 

this thesis. The organization of this thesis is briefly explained as follows: 

 

Chapter 2 provides an overview of the brain structure and functional areas. The 

brain is the complex organ of the human body. It is composed of the millions of 

neurons.  Beyond controlling the vital functions of the body, it controls the motor 

functions, sensations, thinking and visual activities. In this chapter, these issues are 

explained in a detail. 

 

Chapter 3 gives the overview of the biomedical signals. The biomedical signals 

are the observations of physiological activities of organisms, ranging from gene and 

protein sequences, to neural and cardiac rhythms, to tissue and organ images (Chang 

& Moura, 2010). The aim of the biomedical signal processing is to extract specific 

and important information from the biomedical signals. The Electroencephalogram is 

the one and the mostly used biomedical signal. The EEG and its band power 

frequency waves are mentioned in this chapter. 

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164043/#R33
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164043/#R4
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164043/#R26
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164043/#R30
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164043/#R9
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164043/#R18
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164043/#R18
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164043/#R24
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164043/#R12
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164043/#R12
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164043/#R23
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164043/#R16
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164043/#R3
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164043/#R3
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Chapter 4 explains the brain computer interface system. The BCI is the 

communication between human and machine. It allows the user to control computer 

or machines through his/her thoughts. For this reason, many processing are carried 

out in four phases.  

 

Chapter 5 provides the collection of the data, training phase and preprocessing 

methods. The data set is captured by the Emotiv Epoc Neuroheadset. The training 

phase is applied to the participants for the improvement of the classification results. 

The EEG signals are affected from the environment, muscle and eye movements and 

these effects cause to the artifacts. The preprocessing methods are applied to the raw 

EEG signal for removing artifacts. 

 

Chapter 6 presents the Emotiv Epoc Neuroheadset and our developed software 

Sycamore BCI. The Emotiv is easy to use device. It is non-invasive and, has 14 

electrode location and two reference electrode. It capture the electrical signal of the 

brain with this 14 electrodes. Firstly, we use the Emotiv cognitive application for the 

test. Also, we take the EEG data from the Emotiv application program Test Bench 

and make our analysis from this data with the Weka and Matlab. Then we develop 

the Sycamore BCI program for the preprocessing, feature extraction and 

classification processes. Also, the online test interface is developed to work with 

extracted features and selected classification method.  In this chapter these programs 

and the interfaces are displayed and explained. 

 

Chapter 7 illustrates the feature extraction methods in a detail. The feature 

extraction is very important process because of the reduce curse of dimentionality. 

The probability distribution of the Hurst exponent, extracted by the multifractal 

detrended fluctuation analysis. Also the specific brain signals are extracted from the 

time domain EEG data with the fast Fourier transform method. The midrange and the 

beta signals are used as feature too.  

 

In Chapter 8, the classification methods are mentioned. Statistical similarity 

method is the statistical hypothesis test method. It used for the validation of the data 
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by measuring similarity of the each cognitive task. The commonly used method K-

nearest neighbor classifier is used to classify Ph, midrange beta and beta feature 

signals. Also, newly proposed CxK-nearest neighbor classifier is applied to the 

classification of the features. These methods are explained by the algorithm steps. 

Finaly, 10-fold cross-validation method used for the performance evaluation is 

explained. 

 

Chapter 9 shows the experimental results for offline and online analysis. In offline 

analysis, extracted features are classified for five subjects with the K-nearest 

neighbor algorithm and CxK-nearest neighbor algorithm. This cursor movement BCI 

application is subject based application. Therefore, the feature extraction process is 

done for all subjects and the subjects features are classified separately. 

 

Chapter 10 is the final chapter. In this chapter the conclusion is explained. The 

advantages of the used processes are discussed.  

 

1.2 Significance of this Study 

 

Contributory disciplines of BCI are known as Cognitive Psychology, Social and 

Organizational Psychology, Ergonomics and Human Factors, Engineering, Design, 

Anthropology, Sociology, Philosophy, Linguistics, Artificial Intelligence and 

Computer Science. 

 

Scope of a user interface includes design of input and output devices, workstation 

environment, context of use, information layout and meaning. 

 

User characteristics such as cognitive ability, expertise/experience, level of 

education, age, attitude, physical ability and culture will be affected by the 

improvements and outcomes of BCI studies. 

 

In a business context, user interface and related studies such as BCI may improve 

efficiency, effectiveness, productivity, safety and user satisfaction yielding; 
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 Completeness and accuracy with which users achieve specified goals 

(effective) 

 The speed with accuracy in which users can complete the tasks for which 

they use the product (efficient) 

 Pleasant and satisfying to use (engaging) 

 Prevent errors caused by the user’s interaction & help the user recover 

from any errors that do occur (error tolerant) 

 Allows users to build on their knowledge without deliberate effort (easy to 

learn) 

 

In this thesis; 

  The statistical similarity method is used as first time for the data 

validation. 

 The newly developed classifier the CxK-nearest neighbor algorithm is 

applied to the EEG signal classification as a first time. This method is 

basic and gives acceptable results in both online and offline analysis. 

 In the literature, it is known that thinking signals occurs in the midrange 

beta signal frequency but the Ph values give the better results than the 

midrange beta signal. This shows that the Ph values represent the specific 

features of the cognitive tasks.  

 The BCI studies are done as a project with the team, in this study we have 

carried out this works with a small team. Nevertheles, we take acceptable 

results. 

 

Any contribution to the BCI system is valuable. This proposed classification 

method can be used for the wheel chair management for disable people, games, and 

linguistic comments etc.  
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CHAPTER TWO 

STRUCTURE OF THE BRAIN 

 

The human brain is the mysterious organ which controls all essential functions of 

the body. The brain receives the information from the outside world through five 

senses organ: eye (vision), nose (smell), skin (touch), tongue (taste), and ear 

(hearing). Then it interprets the received information to meaningful information for 

us and stores in memory. Also, thoughts, speech, movement of the limb, function of 

many organs within body, breathing are a few of the things controlled by the brain. 

 

2.1 Lobes and the Functional Areas of the Brain 

 

Brain is the most complex organ of the human body. All physical and mental 

tasks are managed through the brain. The brain anatomically consists of three 

important parts; cerebrum, cerebellum and brainstem (Gray, 2002) as displayed in 

Figure 2.1.  

 

 

Figure 2.1 Anatomy of the brain and functions (Gray, 2002). 
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The afformentioned parts are explained as follows: 

 

Cerebrum:  

 

The cerebrum is the largest and principle part of the brain. It is located in the in 

the front area of the skull and consisting of left and righ hemispheres. Each 

hemisphere composed of the four parts called as lobes: frontal, parietal, occipital, and 

temporal (Purves et al., 2004) as shown in Figure 2.2. The outer layer of the 

cerebrum is made up of neural tissues known as the cerebral cortex. The cerebrum 

part of the brain is generally responsible from thoughts, movements, emotions and 

motor brain functions. These lobes are responsible for variety functions. 

 

 

 

Figure 2.2 The lobes of the cerebrum (Purves et al., 2004). 

 

https://en.wikipedia.org/wiki/Cerebrum
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 Frontal Lobe is located at the front of the brain and positioned in front of the 

parietal lobe and above and in front of the temporal lobe. The frontal lobe 

controls voluntary movement, emotions, problem solving, motor 

development, reasoning, planning, parts of speech and movement. 

 

 Parietal Lobe is positioned above the occipital lobe and behind the frontal 

lobe. The parietal lobe is responsible for sensation such as pain, touch etc., 

sensory comprehension, and recognition, perception of stimuli, orientation 

and movement. 

 

 Occipital Lobe is responsible for visual processing, such as color 

differentiation, and motion perception. 

 

 Temporal Lobe is positioned under the lateral fissure on both cerebral 

hemispheres. The temporal lobe is involved in processing sensory inputs 

of visual memories, language comprehension, and emotion association. 

 

Cerebellum:  

 

The cerebellum is the part of the brain at the lower back of the skull in vertebrates. 

Also, cerebellum composed of the two hemispheres: left and right. It is the second 

largest part of the brain and contains more than half of the brain neurons. This part is 

generally responsible for the sensory perception, coordinates and regulates muscular 

activities. The cerebellum is also associated with voluntary muscle movements, fine 

motor skills, posture and balance regulation. 

 

Brainstem:  

 

The brainstem is the posterior part of the brain and connects the cerebrum and 

spinal cord. In the human brain, the brainstem contains the midbrain, pons and 

medulla. The midbrain is associated with vision, hearing, motor control, sleep/awake, 

alertness, and temperature regulation. The pons contains system that carry signals 

https://en.wikipedia.org/wiki/Lateral_fissure
https://en.wikipedia.org/wiki/Cerebral_hemisphere
https://en.wikipedia.org/wiki/Cerebral_hemisphere
https://en.wikipedia.org/wiki/Visual_memory
https://en.wikipedia.org/wiki/Language_comprehension
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from the cerebrum to the medulla and vice versa. Also it carries sensory signals to 

the thalamus.  

 

 

 

Figure 2.3 The parts of the brainstem. 

 

The brain stem is the main control panel of the body. It is responsible for vital 

functions of the body, including breathing, consciousness, movements of the eyes 

and mouth, and the relaying of sensory messages (pain, heat, noise etc), heartbeat, 

blood pressure and hunger. 

 

2.2 Cortical Homunculus 

 

The homunculus shows in which the body parts are rendered according to how 

much of the somatosensory cortex is devoted to them (Schacter et al., 2009). The 

homunculus scheme was useful to determine a good choice of discrimination tasks 

for each patient, leading to motor imagery of left hand vs. right hand or little left 

finger vs. tongue. 

 

 

https://en.wikipedia.org/wiki/Cerebrum
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Figure 2.4 The motor homunculus visualizes the mapping of body muscles to the motor cortex. The 

mapping is not isomorph as important areas like tongue, hands and lips are overly represented 

(according to (Gohlenhofen, 1997)). 

 

2.3 Brain Cell 

 

The human nervous system consists of approximately 10
10

 to 10
11

 neurons, cells 

specialized in information processing, and of about the same number of neuroglia 

cells that support the neurons’ activities in various ways (Eckert et al., 1993). Most 

of the neurons are situated in the central nervous system consisting of the brain and 

the spinal cord. The single pyramidal neuron cell is in Figure 2.5:  
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Figure 2.5 The cell of the human motor cortex. 

 

The neuron is the basic unit and messenger of the peripheral nervous system. It is 

composed of four basic parts:  

 - soma (or cell body),  

 - dendrites,   

 - axon, and   

 - axon terminals. 

The soma surrounds the nucleus. Dendrites sense information from neighboring 

cells. The axon can be part of the spinal cord, connect with muscle or sensory nerves, 

or branch into small fibers. The axon terminals branch off from the axon and send 

the action potential to nearby neurons. 
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CHAPTER THREE 

BIOMEDICAL SIGNALS 

 

The human body consists of the many systems. These are the nervous system, the 

cardiovascular system, and the musculoskeletal system. Each system is composed of 

subsystems that perform many physiological processes. For example, the cardiac 

system performs the rhythmic pumping of blood throughout the body to facilitate the 

delivery of nutrients, as well as pumping blood through the pulmonary system for 

oxygenation of the blood itself. 

 

Physiological processes are including: 

- Nervous or hormonal stimulation and control;  

- Inputs and outputs that could be in the form of physical material,  

- Neurotransmitters,  

- Mechanical, electrical, or biochemical actions.  

 

The physiological processes are described by the signals. These signals have 

many types; biochemical, electrical and physical. The signal reflects the form of 

hormones and neurotransmitters is called biochemical signals. The electrical signals 

reflect the form of potential or current. Also, the physical signals reflect the form of 

pressure or temperature. 

 

3.1  Electroencephalogram (EEG) 

 

EEG represents the electrical activity of the brain (Cox et al., 1972; Cooper et al., 

1980; Kooi et al., 1978, Rangayyan 2002). The electrical activity in the brain was 

discovered in 1875 by an English physician Richard Caton. Caton observed the EEG 

signals of rabbits and monkeys.  

 

In 1924 Hans Berger, a German neurologist, used his ordinary radio equipment to 

amplify the brain's electrical activity measured on the human scalp. He announced 

that weak electric currents generated in the brain can be recorded without opening 

the skull, and depicted graphically on a strip of paper.  
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The activity that he observed changed according to the functional status of the 

brain, such as in sleep, anesthesia, lack of oxygen and in certain neural diseases, such 

as in epilepsy. 

 

Figure 3.1 First recording of EEG signals made by Hans Berger (Berger, 1929). 

 

Berger laid the foundations for many of the present applications of 

electroencephalography. He also used the word electroencephalogram as the first for 

describing brain electric potentials in humans. He was right with his suggestion that 

brain activity changes in a consistent and recognizable way when the general status 

of the subject changes, as from relaxation to alertness (Bronzino, 1995). 

 

 Later in 1934 Adrian & Matthews published the paper verifying concept of 

“human brain waves” and identified regular oscillations around 10 to 12 Hz which 

they termed “alpha rhythm” (Bronzino, 1995). 
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3.2 Measuring Brain Activity  

 

The brain analysis is composed of structural and functional analysis. Structural 

analysis is used to analyze the anatomy of the brain, in order to find structural 

features.  These could be tumors, hemorrhages, blood clots and lesions, or even 

deficits present at birth.  

 

The magnetic resonance imaging (MRI) is the structural analysis method.  

Functional analysis is used to measure and locate brain activity.  It is used for 

exploring the functions of special structures, and to diagnose epileptic seizures or 

diseases affecting brain activity.  

 

The electroencephalography (EEG) and functional magnetic resonance imaging 

(fMRI) are used as functional analysis methods. Functional imaging is also used to 

aid surgical treatment of brain lesions when it becomes necessary to determine the 

locality of essential functional cortex to help guide the best surgical approach.  Many 

times a structural and functional method will be used in conjunction to better assess 

how the activity and region are related.   

 

The EEG and fMRI are two commonly used methods for investigating human 

brain states in cognitive neuroscience experiments. Both are noninvasive, but in other 

respects they are complimentary. EEG measures voltage changes in electrodes placed 

on the scalp (Figure 3.2), whose number ranges commonly from 32 to 256.  
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Figure 3.2 EEG sensing device. 

 

 

EEG has millisecond time sensitivity, but spatial information must be inferred 

through an inversion process, and has at most as many independent spatial 

measurements as there are electrodes (Grave de Peralta Menendez et al., 2001). 

 

The fMRI measures changes in blood oxygen level also called the BOLD signal, 

throughout the brain (Ogawa et al., 1990; Frahm et al., 1992). It produces a 3D 

image with a spatial resolution of roughly a few millimeters, but temporal resolution 

is on the order of a few seconds. 

 

Furthermore the BOLD signal is a complicated convolution of brain activity 

because the blood oxygen level takes several seconds to rise and even longer to fall 

in response to an impulse of activity. Thus EEG provides an excellent measure of 

temporal dynamics but a poor measure of spatial locations, and fMRI provides an 

excellent measure of spatial locations but a poor measure of temporal dynamics. 
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3.3  Brain Waves 

 

Brain patterns are commonly formed sinusoidal wave shapes. Usually, these 

signals are measured from peak to peak and normally range from 0.5 to 100 μV in 

amplitude. The power spectrum is derived from the raw EEG signal by the Fourier 

transform. The contribution of sine waves with different frequencies can be seen in 

power spectrum.  

 

The brain waves have been categorized into basic groups as Delta, Theta, Alpha, 

Beta and Gamma (Table 3.1) (Teplan, 2002). For the detailed analysis in this work 

Beta signals are separated to Low, Midrange and High frequency bands. 

 

Table 3.1 Brain wave frequencies (Teplan, 2002) 

Brainwave Type Frequency Range Mental States and Conditions 

Delta 0.1 Hz. to 3 Hz. Deep, dreamless sleep, NON-Rem sleep, unconcsious 

Theta 4 Hz. to 7 Hz. Intuitive, creative, recall, fantasy, imaginary, dream 

Alpha 8 Hz. to 12 Hz. Relaxed, but not drowsy, tranquil, conscious 

Low Beta 12 Hz. to 15 Hz. Formerly SMR, relaxed yet focused, integrated 

Midrange Beta 16 Hz. to 20 Hz. Thinking, aware of self & surroundings 

High Beta 21 Hz. to 30 Hz. Alertness, agitation 

Gamma 30 Hz. to 100 Hz. Motor functions, higher mental activity 

 

Delta (0.1 – 3 Hz): Delta waves are between 0.1 Hz and 3 Hz frequency range 

(Figure 3.3). Delta waves are usually associated with the deep sleep. Sleep is 

generally divided into two types: non-rapid eye movement sleeps (NREM) and REM 

sleep. NREM and REM occur in alternating cycles. NREM is further divided into 

stage I, stage II, stage III, and stage IV. The last two stages correspond to deeper 

sleep, where slow delta waves show higher proportions.  

 

 

Figure 3.3 Delta wave 
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Theta (4 - 7 Hz): Theta waves are between 4 Hz and 7 Hz frequency range (Figure 

3.4). Theta activity is seen in drowsiness, arousal and often during meditation. 

Dominant Theta activity is associated with relaxed, meditative, and creative states, 

memory recall and flow states. 

 

 

Figure 3.4 Theta wave 

 

Alpha (8 - 12 Hz): Alpha waves are between 8 Hz and 12 Hz frequency range 

(Figure 3.5). Alpha activity is induced when closing the eyes and relaxation, and 

abolished by eye opening or alerting by any mechanism (e.g. thinking, mathematical 

calculations) (Teplan, 2002). Most of people, when close their eyes their wave 

pattern significantly changes from beta into alpha waves.  

 

High Alpha levels appear in the frontal lobes during relaxation and are suppressed 

when other activities take place. It is quite common in EEG signal analysis to 

compare the Alpha suppression between different regions in order to determine the 

functional areas which are currently in use. For example, linguistic processing tends 

to depress Alpha activity in the left frontal lobe, while abstract spatial thinking can 

suppress Alpha in the right frontal lobe. Trained meditators often produce much 

higher levels of Alpha activity during normal activities, especially in the frontal 

lobes.  

 

Similar rhythms in the motor cortex called as Mu-rhythms which around the same 

frequency range indicate muscle relaxation. Suppression of Mu-rhythms in the motor 

cortex in specific regions corresponds with activation of particular muscle groups. 

For example, clenching your right fist is directly associated with a dip in Mu-rhythm 

near the F3 sensor on the left side of the head. 
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Figure 3.5 Alpha wave 

 

Beta (12 - 30Hz): Beta waves are between 12 Hz and 30 Hz frequency range (Figure 

3.6). Beta wave is the terms used to designate the frequency range of human brain 

activity between 12 and 30Hz.  

 

Beta activity of multiple and varying frequencies is often associated with active, 

task-oriented, busy or anxious thinking and active concentration. Beta waves can be 

separated to three parts: Low Beta, Midrange Beta and High Beta. The low beta 

waves are between 12 Hz and 15 Hz frequency range.  

 

It is active, when people relaxed yet focused, formerly SMR and integrated 

situations. The midrange beta waves are between 16 Hz and 20 Hz frequency range. 

It is active in thinking, aware of self and surroundings situations. The high beta 

waves are between 21 Hz and 30 Hz frequency range. It is active in alertness and 

agitation situations. 

 

 

Figure 3.6 Beta wave 

 

Gamma (> 30Hz): Gamma waves are higher than 30 Hz frequency range (Figure 

3.7). Gamma rhythms occur when different populations of neurons network together 

to carry out demanding cognitive or motor functions.  

 

Generally Gamma waves are observed in the frontal regions when fast, coupled 

processing is required, such as in fight/flight mode and when task switching during 

multi-tasking. In task switching, Gamma bursts are clearly evident when the current 
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task is archived to short term memory and a new task is retrieved for 'concurrent' 

processing. 

 

 

Figure 3.7 Gamma wave 
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CHAPTER FOUR 

BRAIN COMPUTER INTERFACE 

 

BCI is a communication system that recognizes user’s command only from his or 

her brainwaves and feedback according to commands. For this purpose subject is 

trained. Simple task can consist of desired motion of an arrow displayed on the 

screen only through subject’s imaginary of the motion of his/her left or right hand. 

As the consequence of imaging process, certain characteristics of the brainwaves are 

raised and can be used for user’s command recognition. 

 

4.1 The Structure of the BCI 

 

BCI Technology composed of four basic processes: recording the raw EEG 

signals as signal acquisition, removing noises as signal preprocessing, extraction of 

the intended action or desired features from the mental activity as feature extraction, 

and finally classification of the desired features.  

 

1. EEG Data Acquisition: The effectively acquisition of the brain signal is the most 

important phases of the brain computer interface system communication.  Human 

thoughts produce the electrical activities. These activities could be measured many 

types of EEG devices. The measured electrical activities are analog signals and 

analog signals are converted to the digital signals. In this thesis, EEG signals are 

captured by the Emotiv Epoc Neuroheadset. 

 

2. Signal Preprocessing: The EEG signals are affected from the environment 

sounds, eye movement and muscle movements. Because of the outside effects, the 

noises called as artifacts, are occurred in the captured EEG signal. Therefore, the 

preprocessing is required for the removing these artifacts. In the preprocessing phase, 

the recorded data is cleaned and purified from the noisy data (Bashashati et al. 2007). 

After the preprocessing, the quality of the data is improved. 
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Figure 4.1 The flow of the BCI system. 

 

3. Feature Extraction: EEG signals are very complex and the patterns are not 

recognized easily. In this phase, feature extraction methods extract the signal features 

that encode the user’s messages or commands. Thus, the raw EEG signals have been 

characterized by the features.  The feature extraction phase is very important because 

of the effective classification results. Also, dimension of the features are lower than 

the dimension of the raw EEG signal. So, we avoid from the curse of the 

dimensionality.  

 

4. Classification: In the classification phase, the extracted specific features are 

assigned to the accurate classes. The classes are defined as the type of cognitive 

states. There are the supervised and unsupervised methods. When the classes are 

known, the supervised classifiers are used; otherwise the unsupervised classifiers are 

used for the classification of the EEG signal. 
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5. Feedback: Finally, in this phase the feedback according to the identified cognitive 

task is provided to the participant. The goal of the feedback is that helping the 

control brain activity of the participant. 
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CHAPTER FIVE 

DATA  

 

The EEG signals can be captured through invasive and non-invasive methods. The 

invasive methods require surgery, therefore this method do not preferred. There are 

many non-invasive devices for measuring EEG signals. In this thesis, the Emotiv 

Epoc Neuroheadset is used for capturing EEG signals. 

 

5.1 Data Acquisition 

 

The raw EEG signals are recorded using an Emotiv Epoc amplifier device (Figure 

5.1). Signals were measured from 14 EEG channels plus 2 references (CMS/DRL 

references, P3/P4 locations)  offering optimal positioning for accurate spatial 

resolution.  

 

 

Figure 5.1 Emotiv Epoch device. 

 

Channel names based on the international 10-20 electrode location system are: AF3, 

F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4, with CMS/DRL references 

in the P3/P4 locations (Figure 5.2). 
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Figure 5.2 Emotiv electrode locations. 

 

The 10–20 system or International 10–20 system is an internationally recognized 

method to describe and apply the location of scalp electrodes in the context of 

an EEG test or experiment. This method was developed to ensure standardized 

reproducibility so that a subject's studies could be compared over time and subjects 

could be compared to each other. This system is based on the relationship between 

the location of an electrode and the underlying area of cerebral cortex. The "10" and 

"20" refer to the fact that the actual distances between adjacent electrodes are either 

10% or 20% of the total front–back or right–left distance of the skull. 

 

Each part has a letter to identify the lobe and a number to identify the hemisphere 

location. The letters F, T, C, P and O mean as frontal, temporal, central, parietal, 

and occipital lobes, respectively. 

 

Emotiv EPOC uses sequential sampling method, single ADC, at a rate of 128 

SPS. It operates at a resolution of 14 bits per channel with frequency response 

between 0.16 - 43 Hz. The Emotiv Epoc System comprises of a built-in digital 5th 

order sinc filter with a bandwidth of 0.2-45 Hz and a digital notch filter at 50 and 60 

Hz. 

 

http://en.wikipedia.org/wiki/Scalp
http://en.wikipedia.org/wiki/EEG
http://en.wikipedia.org/wiki/Frontal_lobe
http://en.wikipedia.org/wiki/Temporal_lobe
http://en.wikipedia.org/wiki/Parietal_lobe
http://en.wikipedia.org/wiki/Occipital_lobe
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5.2 Training Experiments 

 

The first step toward to classification of the cognitive states, is training of the 

subjects. The dataset accumulated during the subject trains itself to generate 

cognitive states. The visual stimuli is used in this study to provide instructions to the 

subject on the mental task he has to perform during the training phase. The visual cue 

contains instructions for five mental commands: Up, Down, Left, Right and No 

Movement in form of direction of an arrow and blank screen, as shown in Fig.5.3 

(Bhattacharyya et al., 2015). 

 

 

Figure 5.3 Timing diagram of a motor imagery trial performed by the subject. The direction of the 

arrows provides instruction to the subject (Bhattacharyya et al., 2015). 

 

The subject is relaxing before the training. In the visual stimuli, when plus image 

appeared the subject knowing that the training will start.  When the arrows appear, 

the subject both follows the arrows and thinks the control right hand according to the 

arrow rotation. In the blank screen, the subject thinks nothing. There is the breaks 

two second between each training. In a section, each training is repeated 24 times. 

Also, trainings of subject is undertaken over 3 diferent sessions and one session is 

performed on a single day. 

 

5.3 Data Preprocessing 

 

The EEG signals have many noises because of the various out affects, such as eye 

movement, head movement and the noises comes from the test environment. In the 

signal processing, many kinds of noise reduction methods are commonly used. In 

this thesis dissertation, median filtering and normalization is used for the 

preprocessing. 
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5.3.1 Median Filtering 

 

The median filtering as a nonlinear digital filtering technique is used for the 

removing noises for improving the results of later processing. The median filtering is 

commonly used in signal processing beacuse certain conditions, it maintains edges 

while removing noise.  

 

The median is the middle value of the data. In the calculation of the median 

filtering, all values in all rows are sorted in ascending order and then the middle 

value is found. If the sorted count is even, This values calculated from the all rows 

are substracted from each value. 

 

 

Figure 5.4 Median filtering example. 

 

5.3.2 Normalization  

 

The normalization is commonly used as a preprocessing method in biomedical 

signals. The normalization process transforms the measured data to a new interval 

from new minimum value to new maximum value for feature F. The basic forrmula 

is give by equation 5.1 . 

 

min
' ( _ max _ min ) _ min

max min

F
F F F

F F

v
v new new new


  


     (5.1) 

where v  is the current value of feature F.  
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CHAPTER SIX 

SOFTWARES 

 

In this thesis, Emotiv Epoc Neuroheadset and our developed software Sycamore 

are used for acquisition of the raw EEG signal. The training studies are done both in 

Emotive control panel and our software program which is written in c# language. 

The analysis and online tests are carried on through our Sycamore software.   

 

6.1 Emotiv Epoc Neuroheadset Software 

 

The Emotive Headset Setup is opened by default when starting EPOC Control 

Panel (Figure 6.1). This screen is used to display contact quality of EPOC 

Neuroheadset’s sensors and provide quidance to user in fitting the EPOC 

Neuroheadset correctly.   

 

Achieving best results is possible with the contact quality. It is important that 

controlling the contact quality before starting to cognitive process. Poor contact 

quality will give poor detection results. 

 

 
Figure 6.1  Emotiv Epoc control panel 
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The left side image is display the representation of the sensor and contact quality. 

Each circle represent one sensor and approximate location. The sensor colors give 

the contact quality. To achieve the the best signal, all sensors should be green.  

 

Sensor colors indicate following results: 

- Black : No Signal (Not Acceptable) 

- Red : Very Poor Signal (Not Acceptable) 

- Orange : Poor Signal 

- Yellow : Fair Signal 

- Green : Good Signal (Ideal Signal) 

 

Green and some yellows can be acceptable but green and black/orange/red can not 

acceptable. 

 

6.1.1 Training Program 

 

The Cognitive Suite panel is used for the training phase (Figure 6.2). This panel 

uses a virtual 3D cube to display an animated representation of the detected 

commands. The real time brainwave activity of the user is evaluated for physical 

actions of real or virtual object according to user cognitive intent. 

 

The detection is performed for 13 different cognitive actions: 6 directional 

movements (pull, push, left, right, up adn down) and 6 rotations (clockwise, counter-

cockwise, left, right, forward, backward) and one additional action as disappear. The 

cognitive suit allows 4 action option to the user.  
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Figure 6.2 Emotive Cognitve Suite for training. 

 

6.1.2 TestBench 

 

Data set is recording by the Emotiv Epoc Test Bench. Emotiv neuro headset 

captures users’ brainwave signals. Test Bench application independently collects 

data packets from the USB device and processes them to display, analyse, record and 

play-back time independent EEG signals (Figure 6.3).  

 

The left side of TestBench Panel is the TestBench Status Pane. This pane shows 

neuroheadset sensor contact quality. It also exposes other functions which are 

described below. 

 

The EEG Suite reports real time changes in the subjective emotional experiences 

by the users. EEG shows brainwave signals of 14 channels (AF3, F7, F3, FC5, T7, 

P7, O1, O2, P8, T8, FC6, F4, F8, AF4).  

 

In this section, the users can choose to display one or more channels, and if users 

choose to display one channel, you can use AutoScale button. The main function of 

AutoScale button is automatic alignment of the upper and lower limits consistent 
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with the current channel values. You can set the vertical scale when more than one 

channel is displayed by changing the Channel Spacing value, which changes the 

vertical scale so that the difference between successive channel displays is equal to 

the number displayed in the box (to double the vertical resolution, change the 

number to 100 uV). 

 

 

Figure 6.3 Emotiv Test Bench display showing EEG suit. 

 

The FFT Suite shows EEG graph in the frequency domain and the power of signal 

in the frequency band. The FFT panel consists of a series of graphs.The first graph 

shows the FFT signal of a selected channel.  

 

The second graph displays the power of a signal in specific frequency bands: 

Delta (0.1-3Hz); Theta (4-7Hz); Alpha (8-12Hz); Beta (12-30Hz); and one user-

defined Custom band. 

 

The function buttons changing the parameters of the graphs are in the left side of 

the FFT panel (Figure 6.4). 
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Figure 6.4 Emotiv FFT suit 

 

The Gyro Suite displays the rotational acceleration of the head in horizontal and 

vertical axes (Figure 6.5). The gyro data used for the head movement based 

applications. 

 

The graph has two signal lines:  

 

Gyro X: the upper signal shows signal moving in the horizontal axis  

Gyro Y: the lower signal shows signal moving in the vertical axis 
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Figure 6.5 Emotiv gyro suit 

 

The Data Packets Suite shows the data packet counter and the lost packet 

indicator (Figure 6.6). The wireless drop-outs can be clearly seen from this panel. 

The graphs display the clearly reading signals and the number of packet lost, 

respectively. 

 

 

Figure 6.6 Emotiv data packet counter and packet loss display 
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Data File Format: 

 

Data is saved by TestBench in a standard binary format, EDF, which is 

compatible with many EEG analysis programs such as EEGLab. Following the initial 

information line, each successive row in the data file corresponds to one data sample, 

or 1/128 second time slice of data.  

 

Successive rows correspond to successive time slices, so for example one second 

of data is contained in 128 rows. Each column of the data file corresponds to an 

individual sensor location or other information tag. 

 

Data tag descriptions: 

 

COUNTER : The counter is used as a timebase, and runs from 0 to 128. 

 

INTERPOLATED: It shows if a packet was dropped and it gives the interpolated 

value from surrounding values. When the interpolated value is equals to zero, this 

means the sample was good. 

 

AF3..AF4 : EEG channels data.  

 

RAW_CQ: This is a multiplexed conductivity measurement used to derive the 

contact quality indicator lights. It is possible to demultiplex this channel if more 

accurate conductivity measurements are required.  

 

CQ_A F3..CQ_A F4: These numbers show the colour of the each channel’s 

signal quality, where 0=BLACK, 1 =RED, 2=ORANGE, 3=YELLOW, 4=GREEN. 

  

CQ_CMS, CQ_DRL: I gives the contact quality of the referance locations. The 

values 1 and 4 mean RED and GREEN respectively.  

 



35 
 

GYROX, GYROY: Horizontal and vertical difference readings since the previous 

sample. 

MARKER: Timing markers manually or automatically entered in the file. If no 

marker was detected at the particular timing sample, a value of zero is added into the 

file, otherwise the number associated with the marker button, or the byte transmitted 

to the COM port, is entered in the MARKER column for that sample. 

 

6.2 Sycamore BCI Software 

 

In this thesis, the software Sycamore is developed for training, analyses and 

testing processes. The test screen is designed as below (Figure 6.7) : 

 

 

Figure 6.7 Sycamore training screen. 

 

First, the user name of the participant has been written to “Subject Name” field 

and then push the “Start Training” button. The “Training Number” field shows the 

training number. In this study, each image is displayed for 1 sec and the black screen 

is displayed for 2 sec among the trainings because of the resting brain. 
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In the noiseless room, participants are seated in the chair and the training process 

is explained to them. The training process starts with the plus image, means “training 

will start and be ready” (Figure 6.8). 

 

 

Figure 6.8 Sycamore starting image of training screen. 

 

After the starting image “Plus”, training screen shows the mental task images with 

a random order (Figure 6.9-6.13). The participants are thinking the cognitive tasks 

left, right, up, down and no movement, while they are watching the corresponding 

images. 
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Figure  6.9 Sycamore up image of training screen. 

 

 

Figure 6.10 Sycamore down image of training screen. 
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Figure  6.11 Sycamore right image of training screen. 

 

 

Figure  6.12 Sycamore left image of training screen. 
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Figure  6.13 Sycamore no movement image of training screen. 

 

The statistical similarity of the training data is measured by the following screen. 

The Zm values are calculated for cognitive tasks. 

 

 

Figure 6.14 Sycamore statistical similarity calculation screen. 
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The multifractal detrended fluctuation analysis is calculated with the below 

window (Figure 6.15). The initial parameters scale, q order and signal are inserted to 

the corresponding fields and then mfdfa algorithm can be run. 

 

 

Figure 6.15 Sycamore MFDFA calculation screen. 

 

In the online test screen, participants wear the Emotiv Epoc neuroheadset and 

captured signals are classify with the K-nearest neighbor and CxK-nearest neighbor 

algorithm according to extracted features (Figure 6.16). In the left side of the screen, 

electrode locations are displayed, and the feature extraction and classification method 

options are listed. 
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Figure 6.16 Sycamore BCI online test screen. 
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CHAPTER SEVEN 

FEATURE EXTRACTION METHODS 

 

The feature extraction of the specific features is the most important phase in BCI 

because of the complexity of the EEG signals. Different mental tasks have different 

characteristics. The feature vector consists of this specific information about the 

different mental tasks. 

 

7.1 Multifractal Detrended Fluctuation analysis 

 

In recent years the detrended fluctuation analysis (DFA) method (Kantelhardt et 

al., 2002) has become a widely-used technique for the determination of (mono-) 

fractal scaling properties and the detection of long-range correlations in noisy, 

nonstationary time series (Taqqu et al., 1995; Kantelhardt et al., 2001). It has 

successfully been applied to diverse fields such as DNA sequences (Buldyrev et al., 

1998), heart rate dynamics (Ashkenazy et al., 2001), neuron spiking (Bahar et al., 

2001), human gait (Hausdorff et al., 1997), long-time weather records (Talkner & 

Weber, 2000), economics time series (Mantegna & Stanley, 2000). One reason to 

employ the DFA method is to avoid spurious detection of correlations that are 

artifacts of non-stationarities in the time series. 

 

Different mental tasks have different characteristics. The feature vector consists of 

this specific information about the different mental tasks. 

 

Kantelhardt’s MFDFA mathematical notation is used for the analysis. The steps 

required to calculate the MFDFA estimates are summarized below (Kantelhardt et 

al., 2002): 

 

Input: Let, kx  is a time series of length N  of compact support that 0kx  for an 

insignificant amount of values. 

Step 1:  First, compute the sequence of summary displacements 

1

( ) [ ], 1,...., .
i

k

k

P i x x i N


             (7.1) 
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Step 2:   Then, partition ( )P i  in a number of non-overlapping segments denoted 

by lN N l , of equal length l . The same process is repeated from end to start to 

the series to consider the small parts that can remain at the end of the series. Thus we 

obtain total 2 lN  segments. 

 

Step 3:   In this step, detrend the profile ( ), 1,...,P i i N , for each segment of 

length l , by applying least square fit on each segment and calculating their 

respective variance, which is given as 

 

2 2

1

1
( , ) { [( 1) ] ( )}

l

v

i

F l v P v l i y i
l 

             (7.2) 

 

where v is a segment such that 1,..., lv N , and 

 

2 2

1

1
( , ) { [ ( ) ] ( )}

l

l v

i

F l v P N v N l i y i
l 

                 (7.3) 

 

for 1,...,2l lv N N  , where ( )vy i  is the fitting polynomial in the segment v . 

 

Step 4: Then, calculate the qth order fluctuation function by averaging over all 

segments, as follows, 

 

1/
2

2 /2

1

1
( ) [ ( , )]

2

l
q

N
q

q

vl

F l F l v
N 

 
  
 

               (7.4) 

 

where q can take value different from zero. To determine the dependency of 

generalized q dependent fluctuations on time scale l, repeat steps 2 to 4. 

 

Step 5: Lastly, determine the scaling behavior of the fluctuating functions by 

analyzing the log–log plots of ( )qF l  versus  l  for each value of q . 
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Fq(l) ∼ l
h(q)            

      (7.5) 

 

where, ( )h q  is the q -dependent generalized Hurst exponent (Kantelhardt et al., 

2002). It is to be noted that for long-range power-law corrected series ix , ( )qF l

increases as power-law for large values of l . 

 

For each order of q, the scaling behavior of the fluctuation functions can be 

determined by the logarithmic chart of ( )qF l versus l. The slope of log ( )qF l and logs 

is the generalized Hurst exponent ( )h q .  

 

The Hurst exponent H , varies between 0 and 1 (Feder & Fractals, 1988). The 

Hurst  exponents can be interpreted as the correlation anlaysis of the time series.  

 

The scaling exponent H ; 

- 0.5H   means that the time series are uncorrelated,  

- 0.5 1H   implies long-term persistence,  

- 0 0.5H   implies short-term persistence (Movahed et al., 2003). 

 

7.2 Brain Bandpowers Extraction 

 

The EEG data is collected in time-domain space. Because of the EEG signal 

complexity, signals seems like noise and irrelavent, but it is possible the obtain 

information from the data in frequency-domain. In the signal analysis working with 

the frequency-domain is more usefull rather than the time domain.  

 

The time-domain data show a signal changes over time, whereas a frequency-

domain data shows how much of the signal lies within each frequency band over a 

range of frequencies. The signal can be converted between the time-domain and 

frequency-domain with a mathematical tranformation methods, such as Fourier 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164043/#R14
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164043/#R14
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transform. The Fourier trasnform converts the time function into a sum of sine waves 

of different frequencies.  

 

The spectrum of the frequencies is the frequency domain representaiton of the 

signal. In the Fourier trasnform, data separated to window length intervals. The fast 

fourier transform is faster if the signal window length is the power of two. Therefore, 

window lengths should be the power of two. 

 

The algorithm 1 gives the frequency components of the offline signal. Emotiv 

Epoc amplifer collect data with 256Hz, and ocular, muscle and motion artefacts are 

not treated. 

 

Algorithm 1 Steps: 

Step1 : Remove any residual common mode signals with median subtraction. 

Step2 : Limit slew rate to remove occasional noise spikes. 

Step3 : Apply IIR High-pass filter. 

Step4 :  Select epoch length for FFT (256 = 2 seconds in this example). 

Step5 :  Grab next epoch . 

    (step forward 0.25 seconds in this example, using trailing 2 second sample) 

Step6 :  Apply Hanning window filter . 

    (removes wrap-around step artefact from FFT) 

Step7 :  Run the FFT. 

Step8 :  Calculate bin power for each frequency step. 

      (square of magnitude of the complex FFT output value) 

Step9 :  Add up the power in each frequency range. 
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7.2.1 Fast Fourier Transform 

 

The fast Fourier transform (FFT) measure the discrete Fourier transform (DFT) of 

the complex valued series (Duhamel & Vetterli, 1990). It has been transformed the 

time domain data to the frequency domain data (Figure 7.1).  

 

The discrete Fourier transform can be applied to the complex series but in large 

series the computation takes very long time. The fast Fourier transform method is 

faster than the DFT. So, the fast fourier algorithm is generalt used method (Brigham, 

1988).  

 

 

Figure 7.1 A discrete Fourier analysis of a sum of cosine waves at 10, 20, 30, 40, and 50 Hz. 

 

The fast fourier transform is firstly mentioned in unpublished work of the Gauss 

(Bergland, 1969; Strang 1993). Then, Cooley & Tukey (1965) have developed the 

much faster algorithm as fast fourier transform.  

 

There are many transformation algorithms but the fast Fourier transnform is the 

more efficient than the other methods. The fast Hartley transform is as fast as fast 
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fourier transform (Bracewell, 1999). Also, Winograd transform algorithm improves 

the speed of discrete Fourier transform (Press et al., 1992; pp. 412-413, Arndt). 

 

Fast fourier Transform function explained as follows: 

  

Let ( )f t  be the continuous signal. Let N  samples are denoted: 

[0], [1], [2], ..., [ ], ... , [ 1]f f f f k f N  . 

 

The Fourier transform of the signal ( )f t ; 

( ) ( ) j tF j f t e dt






            (7.6) 

 

7.2.2 Hanning Window 

 

The Hanning function is typically used as a window function in digital signal 

processing to select a subset of a series of samples in order to perform a Fourier 

transform or other calculations (Rangayyan, 2002).  

 

1 2
( ) 1 cos

2 1

n
n

N




  
      

         (7.7) 

 

The Hanning window is generally satisfactory in 95% of cases. It has good 

frequency resolution and reduced spectral leakage (Anurag & Anand, 2016). When 

the nature of the signal is unknown but a smoothing window is wanted to apply, the 

Hanning window can be used.  

 

http://mathworld.wolfram.com/WinogradTransform.html
http://mathworld.wolfram.com/Algorithm.html
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Figure 7.2 Hanning window. 
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 CHAPTER EIGHT  

CLASSIFICATION AND VALIDATION METHODS 

 

In this chapter, the methods used in this study are detail explained. The statistical 

signal similarity method is used for the validation of the dataset. The K-Nearest 

Neighbor Algorithm and CxK – Nearest Algorithm are used as classification method. 

 

8.1 Statistical Signal Similarity 

 

Measure of similarity has been used for the comparison of one signal or image 

with another. Many basic processing operations, such as matched filtering, cross 

correlation, and beam formation, may be interpreted as being based on measures of 

similarity. These related operations typically form the foundation of the detection, 

classification, localization, association and registration algorithms employed in 

semiautonomous sensor systems (Kennedy, 2007). 

  

A hypothesis test is performed with the null hypothesis being that there is no 

signal present and that the waveforms entering the beam former contain only zero-

mean Gaussian-distributed noise. 

 

The test statistic for all possible lag combinations corresponding to all physically 

measurable angles is computed. The most likely direction of the source is set equal to 

the angular coordinate for which the null hypothesis is least likely, i.e. the test 

statistic is maximized. 

 

The delay-and-sum beam-former is applied as 

 

1

0

( ) ( ),
M

m

m

y n x n





          (8.1) 

 

where xm(n) is the nth sample output from the m
th

 delay channel and y(n) is the 

beam-formed output. The noise statistics of every sample from all sensors are 
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assumed to be identical, so the n
th

 sample in each delay channel is assumed to be an 

independent observation of the random variable Xn. 

 

Analyzing the digitized waveforms (in x) over a window of length N, gives a total 

of N different random variables, with M observations of each variable. Under the 

null hypothesis the variables have a Gaussian (Normal) distribution, 

 

2( , ).n n nX N  
           (8.2) 

 

At a given n, using the data from all M channels, the Maximum Likelihood 

Estimates (MLEs) ˆ
n  and 

2ˆ
n  of the (true) mean and variance n  and 

2

n , are 

computed using, 

 

( )
ˆ

n

y n

M
 

           (8.3) 

 

and 
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       (8.4) 

 

Under the null hypothesis the following relationships hold: 

 

2
2

2
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(1);n n

a a

n

If Z M then Z
 







      (8.5) 
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( 1).n

b b

n

If Z M then Z M





 

           (8.6) 
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Under the null hypothesis it is also assumed that the noise statistics of the sensor 

outputs are zero mean and time invariant so the parameters of each distribution are 

the same: 

 

1 2 ,..., 0N       
         (8.7) 

 

and 

 

2

1 2 ,..., .N      
         (8.8) 

 

Using the reproductive property of 
2 variables, the following aggregate test 

statistics can be formed and analyzed: 

 

1
2 2

2
0

ˆ ( );
N

c n c

n

M
If Z then Z N 







 
      (8.9) 

 

1
2 2

2
0

ˆ ( ( 1)).
N

d n d

n

M
If Z then Z N M 







 
    (8.10) 

 

So far it has been assumed that the true variance (2 σ) of the (white) noise is 

known. This is an inconvenient and unnecessary assumption. It can be eliminated by 

dividing (8.9) by (8.10); furthermore, if the numerator and the denominator are 

scaled by the inverse of their respective degrees of freedom, i.e. 

 

/
,

/ ( ( 1))

c
M

d

Z N
Z

Z N M



        (8.11) 

 

Then a variable distributed according to Snedecor’s F distribution results; that is, 

after substituting (8.9) and (8.10) into, (8.11): 
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         (8.12) 

 

with 

 

( , ( 1)).MZ F N N M 
         (8.13) 

Substituting the expressions for ˆ
n  and 

2ˆ
n , given in (8.13) and (8.14) 

respectively, into (8.12) yields, 
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      (8.14) 

 

The MZ  test statistic is the ratio of two sum-of-squares quantities (8.12). If the 

square of the estimated mean (numerator) is regarded as the (delay-and-sum) signal 

power, and the variance (denominator) the noise power, then it may be convenient to 

convert MZ  into a Signal-to-Noise Ratio (SNR) in dB Images may then be formed 

using many closely-spaced beams, and presented to an operator for visual inspection. 

 

The hypothesis test is performed with the null hypothesis as below. 

 

0 : .H There is no signal present
 

 

The statistical similarity algorithm steps are in Algorithm 2: 

 

Input: x  is the input signal, 1,...,x N . 

Step 1: Calculate the differences of the signals as following equation. 
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 1( )
i it tx x x 

          
(8.15)

 

 

Step 2: Calculate de similarity measurement value with the equation (8.14). 

 

The MZ test statistic is F distributed under the null hypothesis. The F distribution 

value is determined based on the degrees of freedom. The degrees of freedom 

parameters depend on the data window length (N) and the signal count which is the 

number of the inserted signal. The determined F value is used as threshold. If the 

calculated MZ  value bigger than the thereshold, the null hypothesis is rejected and 

the signals are assumed to be present. 

 

8.2 K-Nearest Neighbor Algorithm 

 

The k-nearest neighbor (Hart et al., 2001) algorithm is a supervised classification 

method. Classes are determined before classification and characterized by sets of 

elements. The number of elements can be different among classes. This algorithm 

has been used to associate the sample to the class containing more neighbors. 

 

It has been successfully used in many applications, such as pattern recognition 

(Mahmoud & Al-Khatib, 2011) and machine learning task (Malek et al., 2012). The 

classification method involves a two-step process: 

 

1. Constructing a classification model from data, 

2. Applying the model to test examples 

 

The k-nearest neighbors of a given example z refer to the k points that are closest 

to z. The data point is classified based on the class labels of its neighbors. In the case 

where the neighbors have more than one label, the data point is assigned to the 

majority class of its nearest neighbors. 
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The choosing of the right value of key is important. If key is too small, than the 

nearest-neighbor classifier may be susceptible to over feeting because of noise in the 

training data. On the other hand, if k is too large, the nearest-neighbor classifier may 

miss classify the test instance because its list of nearest neighbors may include data 

points that are located far away from its neighborhood. 

 

The nearest-neighbor classification method is given in algorithm 3. The algorithm 

computes the distance between each test example and all the training examples to 

determine its nearest-neighbor list. Such computation can be costly if the number of 

training examples is large. The aim of this method is to find the nearest neighbors of 

a test example (Figure 8.1). 

 

 
Figure 8.1 K-nearest neighbor 

 

Algorithm 3 Steps: 

Step 1: Let k be the number of nearest neighbors and D be the set of training 

examples. 

Step 2: For each test example ( ', ')z x y  do,  

Step3: Compute ( ', )d x x , the distance between z and ever example, ( , )x y D . 
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Step 4: Select ,zD D  the set of k closest training examples to z. 

Step 4: Classified the test examples based on the majority class of its nearest 

neighbors. 

( , )
' argmax ( )

i i z
ix y D

v

y I v y


         (8.16) 

End for. 

 

8.3 C × K-Nearest Neighbor Algorithm 

 

In the artificial intelligence and other fields, the fundamental problem is 

recognition of patterns. Nearest neighbor (NN) algorithms are simple but effective 

methods for performing general and non-parametric classification (Cover & Hart, 

1967). The empirical evaluation to data in various fields shows that NN is robust and 

has asymptotic error rate that is at most twice the Bayes error rate (Cover & Hart, 

1967). 

 

The problem is that predicting the class label of an unknown sample according to 

given known class labels which can be separated into C classes (Gao & Wang, 

2007). 

 

CxK- nearest neighbor algorithm is described as follows: 

 

Algorihtm 4: 

  

Inputs: Unclassified data of training x , the set of labeled test samples

1 2{ , ,..., }nX x x x , the priori known classes 1,2,...,j C , the number of elements of 

each class jC  as jn . 

Output: Classified data of training x . 

Step 1: Set K neighbors, 1 K n  . 

Step 2: Calculate the distance between x  and   
  according to the K number for each 

class jC . 
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( , )c c

i id x x x x           (8.17) 

Where *  is the Euclidean norm. 

Step 3: For each class jC , 

If i K  then assign   
   to the set of K-nearest neighbors in jC . 

Else  

Delete the farthest sample the set of K-nearest neighbors and assign   
   to the set 

of K-nearest neighbors in jC . 

Step 4: Calculate the average distance jd  of x  from K-nearest neighbors of class jC . 

Step 5: Mark the class with minimum distance minr j jd x  and classify classify x  

in class r  of the last minimum found. 

 

8.4 k-fold Cross Validation Method 

 

The Cross-Validation is a statistical method and used for the model evaluation. 

The basic form of the cross-validation is k-fold cross-validation. Also, the k-fold 

cross-validation is used for the performance estimation of the classifier. In k-fold 

cross-validation method, the data is partitioned to the k  segments or folds. The one 

of these folds is used to train a model and the remaining folds are used as learning. 

Afterwards, in each iteration different fold of the dataset is held out for validations 

while the others 1k   folds are used for learning. The cross-validation process is then 

repeated k times, with each of the k  subsamples used only once as the validation 

data. 

 

The average of the results measured from the k  steps is calculated to produce a 

one estimation. The each observation is used for both training and validation, and 

each observation only used for validation. This is the benefit of the k- fold cross-

validation method. 

 

In the literature, 10-fold cross-validation is commonly used (Zhang et al., 

2015). The 10-fold cross-validation is the standard way of measuring the error rate of 
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a learning scheme on a particular dataset; for reliable results, 10 times 10-fold cross-

validation (Figure 8.2). 

 

 
Figure 8.2 10-fold cross validation. 

 

The two aim of the cross-validation is as follows: 

 

1) The measuring performance estimation of the validation model. 

2) The comparison of the performance between two or more different algorithms 

and determination of the best algorithm. 

 

The above two goals are highly related, since the second goal is automatically 

achieved if one knows the accurate estimates of performance. 
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CHAPTER NINE 

EXPERIMENTAL RESULTS 

 

In this section, the data validation is made before the experiments. For this 

purpose, the statistical signal similarity is measured both within tasks and within 

sections. After the data validation process, the extracted features are classified by the 

soft computing methods. 

 

9.1 Data Validation 

 

The statistical similarity measure as Zm statistics has been used for the each 

session and session means. Each sesion consists of 24 trainings and in each training 

the cognitive task images are shown for 1 sec. The statistical similarity between each 

mental task is measured for sessions. Also, the similarity within the sessions means 

for the same tasks has been measured. We expect that all tasks in each session is 

different from each other and the same tasks are similar for all sessions. The aim of 

this process, providing the consistancy of the subject’s data. 

 

As it is seen from the measurement of the statistical similarity between mental 

tasks for all three sessions, Zm statistics values of mental tasks are  above or below 

from the threshold value which is F distiribution value. But there is no channel which 

is all similarity values below the thereshold (Table 9.1-9.3).  Therefore, all channels 

are used for the further works. 
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Table 9.1 The statistical similarity between mental tasks for session 1. 

Session 1 

Comparison 

of Mental 

Tasks  

AF3 F7 F3  FC5  T7  P7  O1  O2 P8  T8  FC6  F4 F8  AF4 

Down-Blank 0.77 1.07 0.69 0.97 0.88 1.03 0.73 0.89 1.09 0.71 0.60 0.90 0.57 0.57 

Left-Blank 0.94 1.29 0.92 1.56 1.06 0.73 1.00 0.81 0.63 0.81 0.96 0.86 0.80 0.90 

Left-Down 0.98 0.75 1.12 0.81 1.07 0.82 1.39 1.53 1.13 1.39 1.41 1.13 1.16 1.16 

Left-Right 1.51 1.21 1.40 2.09 0.80 1.03 1.02 0.93 0.97 0.94 1.05 1.08 1.35 1.35 

Right-Blank 2.31 1.09 1.48 1.30 0.85 0.89 1.18 1.25 1.16 0.93 0.86 1.16 1.17 1.17 

Right-Down 0.74 0.79 0.90 0.70 0.87 1.21 1.43 0.84 1.14 1.01 1.01 1.30 1.02 1.02 

Up-Blank 0.97 0.94 0.94 1.10 1.01 1.30 0.73 0.77 1.11 1.07 1.69 1.16 1.16 1.16 

Up-Down 1.02 1.47 0.86 1.90 1.67 1.39 0.89 1.35 1.55 1.08 1.42 1.05 1.25 1.25 

Up-Left 0.99 1.02 0.97 0.96 0.99 1.00 1.18 1.52 0.92 0.74 0.90 1.05 0.80 0.80 

Up-Right 0.88 0.94 1.16 0.74 0.92 1.27 1.24 1.03 1.03 1.33 0.98 0.99 1.27 1.27 

 

Table 9.2 The statistical similarity between mental tasks for session 2. 

Session 2 

Comparison 

of Mental 

Tasks  

AF3 F7 F3  FC5  T7  P7  O1  O2 P8  T8  FC6  F4 F8  AF4 

Down-Blank 1.18 1.15 0.81 1.38 1.19 0.97 1.12 1.54 0.91 0.98 0.86 0.80 0.94 0.94 

Left-Blank 1.40 1.16 0.97 0.90 0.53 1.02 1.52 0.89 0.95 1.02 0.94 0.98 1.16 1.46 

Left-Down 0.98 0.75 1.12 0.81 1.07 0.82 1.39 1.53 1.13 1.39 1.41 1.13 1.16 1.16 

Left-Right 1.51 1.21 1.40 2.09 0.80 1.03 1.02 0.93 0.97 0.94 1.05 1.08 1.35 1.35 

Right-Blank 1.00 0.92 0.94 0.95 1.05 1.42 0.97 0.71 0.65 0.85 0.93 1.17 0.88 1.05 

Right-Down 0.74 0.79 0.90 0.70 0.87 1.21 1.43 0.84 1.14 1.01 1.01 1.30 1.02 1.02 

Up-Blank 1.05 1.00 1.41 1.18 1.10 1.12 1.07 0.88 0.72 0.85 1.08 1.44 1.03 1.05 

Up-Down 1.02 1.47 0.86 1.90 1.67 1.39 0.89 1.35 1.55 1.08 1.42 1.05 1.25 1.25 

Up-Left 0.96 1.13 1.03 1.00 1.10 0.85 1.33 0.99 1.27 1.29 1.00 1.51 1.47 1.47 

Up-Right 0.79 0.85 1.15 0.90 1.12 1.41 1.52 0.97 0.97 1.19 1.07 0.83 0.78 0.78 

 

  



60 
 

Table 9.3 The statistical similarity between mental tasks for session 3. 

Session 3 

Comparison 

of Mental 

Tasks  

AF3 F7 F3 FC5  T7  P7  O1  O2 P8  T8  FC6  F4 F8  AF4 

Down-Blank 1.35 1.15 1.03 1.63 0.92 1.10 1.32 1.15 1.22 1.05 1.55 0.88 0.91 0.91 

Left-Blank 1.84 1.08 1.19 1.31 0.70 0.86 0.75 0.91 0.77 0.91 0.87 1.08 1.60 1.60 

Left-Down 0.79 0.81 0.90 0.81 0.91 1.00 1.67 1.07 1.26 1.27 0.66 0.79 1.04 1.04 

Left-Right 1.22 1.19 1.24 1.67 1.40 1.17 1.56 0.81 1.23 1.34 1.07 0.95 1.01 1.01 

Right-Blank 0.94 1.29 0.92 1.56 1.06 0.73 1.00 0.81 0.63 0.81 0.96 0.86 0.80 0.90 

Right-Down 1.35 1.15 1.03 1.63 0.92 1.10 1.32 1.15 1.22 1.05 1.55 0.88 0.91 0.91 

Up-Blank 1.00 0.92 0.94 0.95 1.05 1.42 0.97 0.71 0.65 0.85 0.93 1.17 0.88 1.05 

Up-Down 0.97 0.94 0.94 1.10 1.01 1.30 0.73 0.77 1.11 1.07 1.69 1.16 1.16 1.16 

Up-Left 0.77 1.07 0.69 0.97 0.88 1.03 0.73 0.89 1.09 0.71 0.60 0.90 0.57 0.57 

Up-Right 1.03 0.86 0.74 0.84 0.80 1.02 0.71 0.81 0.98 0.72 0.94 1.08 1.07 1.07 

 

According to the similarity results, each cognitive task is similar in all sessions 

(Table 9.4). Also, each cognitive task are different from each other in session 

avearege (Table 9.5). This shows that the handled signals are consistant for the 

following analysis.  

 

Table 9.4 The statistical similarity of same mental tasks between sessions. 

  AF3 F7 F3 FC5 T7 P7 O1 O2 P8 T8 FC6 F4 F8 AF4 

Left 1.13 0.77 1.39 0.98 0.95 0.90 0.98 0.83 0.99 0.84 0.83 0.84 1.22 1.02 

Right 0.96 1.28 1.19 1.07 0.73 0.91 0.96 0.94 0.66 0.95 0.88 1.24 1.10 0.49 

Up 0.98 1.64 0.90 1.06 1.44 0.81 1.39 0.84 0.73 0.64 0.83 0.97 0.82 1.08 

Down 0.98 0.96 0.98 1.31 0.95 1.05 0.66 1.21 1.47 0.96 1.07 0.76 1.41 0.85 

Blank 0.97 1.05 0.85 0.95 1.09 0.81 0.80 1.41 0.89 1.17 0.99 0.95 0.93 0.83 
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Table 9.5 The statistical similarity of different mental tasks for session’s average. 

Sessions 

Average 
AF3 F7 F3 FC5 T7 P7 O1 O2 P8 T8 FC6 F4 F8 AF4 

Down-

Blank 
0.41 0.82 0.663 0.247 0.361 0.81 0.851 0.231 0.865 0.116 0.092 0.146 0.225 0.134 

Left-

Blank 
0.9 0.11 6.288 0.081 0.3 0.867 0.753 0.207 0.296 0.249 0.025 0.846 0.057 0.625 

Left-
Down 

0.16 1.5 0.839 0.16 0.9 0.892 0.282 0.733 0.164 0.571 0.516 0.002 0.259 0.198 

Left-Right 0.28 0.012 0.19 0.173 0.4 0.094 0.47 0.165 0.306 0.031 0.707 0.518 0.984 0.353 

Right-

Blank 
0.06 0.18 0.27 0.045 0.18 0.051 0.01 0.25 0.435 0.265 0.162 0.25 0.269 0.645 

Right-
Down 

0.69 0.72 0.757 0.98 0.771 0.014 0.25 0.055 0.204 0.068 0.405 0.182 0.051 0.04 

Up-Blank 0.002 1.22 0.16 1.317 0.158 0.56 1 0.001 0.007 0.195 32.87 0.0025 1.216 0.132 

Up-Down 0.221 0.002 0.264 0.436 0.165 0.012 0.716 0.439 1.129 0.029 0.018 0.556 2.706 0.142 

Up-Left 0.14 0.67 0.475 0.61 1.297 0.153 1.69 0.498 0.762 0.071 0.105 0.149 0.727 1.9 

Up-Right 0.25 1.37 0.3 0.65 0.127 19.3 0.029 3.907 2.008 0.113 0.979 0.469 0.538 0.051 

 

In this thesis dissertation, we work an online data. Before the online test the 

subject is taken to training phase. Training phase is consist of sessions and each 

session has 24 trainings. The subject has attended to three sessions in different days. 

Then the statistical similarity measure as MZ  statistics of sessions’ mean signal has 

been used for the determining the better channel which has the distinctive features of 

mental tasks. We expect that all tasks in sessions’ mean signal is different from each 

other.  

 

The subject has trained with the visual stimuli. In Sycamore training screen, when 

plus image appeared the subject knowing that the training will start.  When the 

arrows appear, the subject both follows the arrows and thinks the control right hand 

according to the arrow rotation. In the blank screen, the subject thinks nothing. There 

is the break for two second among trainings. In a section, trainings are repeated 24 

times. 
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The plot of the all channels for the mental tasks is as follows (Figure 9.1). 

 

Figure 9.1 The signals of mental tasks for the electrode locations of Subject1. 

 

The understanding of the difference of the mental tasks is very difficult from the 

above plot. Therefore, the features are classified by the soft computing algorithms.  

 

The data validation is supplied by the measuring EEG band power frequency 

analysis.  In the thinking and focusing situations, the power of the beta signals is 

higher than the other specific band powers (delta, theta, alpha, gamma). The alpha 

signals are active when the relaxing mode. Therefore, the data set is valuable when 

the power of the beta signals are higher than the alpha signals. It is show that the 

participant is focusing and thinking. 

 

According to the  beta and alpha signals power of the Subject 1 (Figure 9.2), 

the almost all power of the beta signals are higher than the power of the alpha 

signals. The difference of the power of beta and alpha signals are shows that the 

Subject 1 is thinking and concentrating in the training. The both maximum power 

of the signals have changed in a range 30-70 dB.   
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Figure 9.2 The power of the Beta and Alpha signals of Subject1. 

 

In Figure 9.3 the  beta and alpha signals power of the Subject 2, the almost all 

power of the beta signals are higher than the power of the alpha signals. There is a 

little difference between the power of beta and alpha signals. This is show that the 

Subject 2 is not full thinking and concentrating in the training. The both maximum 

power of the signals have changed in a range 30-60 dB. 
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Figure 9.3 The power of the Beta and Alpha signals of Subject2. 

 

In Figure 9.4,  the  beta and alpha signals power of the Subject 3, the almost all 

power of the beta signals are higher than the power of the alpha signals. The 

difference of the power of beta and alpha signals are shows that the Subject 3 is 

thinking and concentrating in the training. The both maximum power of the signals 

have changed in a range 30-70 dB.   
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Figure 9.4 The power of the Beta and Alpha signals of Subject3. 

 

In Figure 9.5 the  beta and alpha signals power of the Subject 4, the almost all 

power of the beta signals are higher than the power of the alpha signals. There is a 

little difference between the power of beta and alpha signals. This is show that the 

Subject 4 is not full thinking and concentrating in the training. The both maximum 

power of the signals have changed in a range 20-50 dB. The range of the powers is 

lower than the other subjects. 
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Figure 9.5 The power of the Beta and Alpha signals of Subject4. 

 

In Figure 9.6,  the  beta and alpha signals power of the Subject 5, the almost all 

power of the beta signals are higher than the power of the alpha signals. There is a 

little difference between the power of beta and alpha signals. This is show that the 

Subject 4 is not full thinking and concentrating in the training. The both maximum 

power of the signals have changed in a range 30-60 dB.   
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Figure 9.6 The power of the Beta and Alpha signals of Subject5. 

 

9.2 Offline and Online Results 

 

The electroencephalography (EEG) signals is non-linear, and non-stationary 

signals. Therefore, traditional methods of EEG analysis may overlook many 

properties of signals. Similarly, fractal analysis of EEG signals has shown scaling 

behaviors that may not be consistent with pure monofractal processes.  

 

In this study, we have used MFDFA of 2nd  order fitting polynomial, varied q  in 

the range −5 to 5 with 101 discrete intervals and scaling 128.  The 2nd   order local 
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Hurst exponents ( tH ), probability distribution of local Hurst exponents (
hP ) and 

multifractal spectrum of local Hurst components ( hD ) of the electrode locations are 

calculated. The probability distribution of Hurst exponents is used as feature vector. 

The Hurst exponent values of all mental tasks are in the interval of . 

This indicates a long-range dependence. 

 

The EEG data acquired from the Emotiv Epoc Neuro Headset for five subjects: 2 

female and 3 male, age between 20 and 50, 2 left handed and 3 right handed, and all 

of them healthy people. Subjects have been seat on the chair with open eyes and they 

are relaxed. They both think of the movement of the right hand on left, right, up and 

down directions and also watch the images in the training screen. Each training data 

is collected for 24 times and the dimension of the each cognitive task is consists of 1 

sec data for 14 channels, therefore 24x14x128 dimension data is captured. 

 

In the preprocessing phase, the dataset is normalized by the min-max 

normalization method. The distribution of the Hurst exponent hP  , calculated by the 

MFDFA method, is handled from the normalized dataset. The hP  values are 

calculated separately for each cognitive task. Also, hP  values calculated for the raw 

dataset. The hP  values calculated from normalized dataset give better results; 

therefore normalized data is used for MFDFA calculations in further works. 

 

The collected time-domain signal converted to the frequency-domain space with 

the fast Fourier transform method. Before the Fourier transform, the preprocessing 

methods are applied to the raw dataset. The Hanning window method, median 

filtering and high pass filtering methods are applied to the raw data respectively. 

Also, normalization preprocessing method is applied before the above preprocessing 

methods but the results has not found good. Therefore, normalization preprocessing 

phase is not used in the beta signal extraction process. 
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Midrange Beta and Beta signals are taken as features. The Midrange Beta signal is 

between 16 and 20 Hz. It is active in thinking and aware of the self and surrounding. 

The Beta signal is between 12 and 30 Hz.   

 

The midrange beta and beta frequency bands, and Ph values are classified by the 

K-nearest neighbor and CxK-nearest neighbor algorithms. The offline classification 

results are handled for the 10-fold cross validation.  

 

The Ph distribution of the Hurst exponent calculated by the MFDFA method, 

Midrange Beta and Beta signals are obtained and they are used as features. The 

classification of these features is made subject based and each cognitive task based. 

The 10% of the data set is randomly chosen as test set, and the rest of the data is 

chosen as train set in the 10-fold cross validation method. 

 

The K-nearest classification results are shown in Table 9.6 for subject 1. 

According to the K-nearest neighbor classification results of the Ph values for each 

cognitive task, no movement, left and right cognitive tasks are the highest accuracy 

rates. The mean accuracy rate of Ph feature classification is 93%.   

 

In the midrange beta classification results, left, up, and no movement cognitive 

tasks are the highest accuracy rates. The mean accuracy rate of midrange beta feature 

is equals to 85%.  

 

Finally, in the beta feature classification results, no movement, up, right and down 

cognitive tasks have better accuracy rates. The mean accuracy rate of the beta feature 

is found as 92%.  

 

From this table, we can say that the Ph  values as a feature is very good rather than 

the midrange beta and beta features for subject 1. 
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Table 9.6 The accuracy rates of K – nearest neighbor algorithm for subject 1. 

Subject 1   K – Nearest Neighbor Classification Method 

Task Ph Midrange Beta Beta 

Left 93% 89% 80% 

Right 89% 82% 93% 

Up 89% 87% 97% 

Down 93% 83% 93% 

No Movement 99% 85% 99% 

Average 93% 85% 92% 

 

Table 9.7 gives the K-nearest classification results of subject 2 for Ph, midrange 

beta and beta features. According to the K-nearest neighbor classification results of 

the Ph values for each cognitive task, no movement, left and down cognitive tasks are 

the highest accuracy rates. The mean accuracy rate of Ph feature classification is 

89%.   

 

In the midrange beta classification results, up, right and no movement cognitive 

tasks are the highest accuracy rates. The mean accuracy rate of midrange beta feature 

is equals to 84%.  

 

Finally, in the beta feature classification results, no movement and left cognitive 

tasks have better accuracy rates. The mean accuracy rate of the beta feature is found 

as 84%. From this table, we can say that the Ph values as a feature is very good 

rather than the midrange beta and beta features for subject 2. 

 

Table 9.7 The accuracy rates of K – nearest neighbor algorithm for subject 2. 

Subject 2 K – Nearest Neighbor Classification 

Task Ph Midrange Beta Beta 

Left 91% 76% 84% 

Right 86% 88% 83% 

Up 83% 97% 82% 

Down 89% 73% 83% 

No Movement 97% 85% 86% 

Average 89% 84% 84% 

 

Table 9.8 gives the K-nearest classification results of subject 3 for Ph, midrange 

beta and beta features. According to the K-nearest neighbor classification results of 
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the Ph values for each cognitive task, almost the entire cognitive task has very good 

results. The mean accuracy rate of Ph feature classification is 95%.   

 

In the midrange beta classification results, no movement, right and left cognitive 

tasks are the highest accuracy rates. The mean accuracy rate of midrange beta feature 

is equals to 80%.  

 

Finally, in the beta feature classification results, no movement and right cognitive 

tasks have better accuracy rates. The mean accuracy rate of the beta feature is found 

as 82%. From this table, we can say that the Ph values as a feature is very good 

rather than the midrange beta and beta features for subject 3. 

 
Table 9.8 The accuracy rates of K – nearest neighbor algorithm for subject 3. 

Subject 3 K – Nearest Neighbor Classification 

Task Ph Midrange Beta Beta 

Left 93% 82% 78% 

Right 91% 83% 83% 

Up 95% 73% 81% 

Down 95% 76% 80% 

No Movement 100% 85% 86% 

Average 95% 80% 82% 

 

 

The K-nearest classification results are shown in Table 9.9 for subject 4. 

According to the K-nearest neighbor classification results of the Ph values for each 

cognitive task, all left signals are correctly classified, and also up, down and no 

movement signals are the high accuracy rates. The mean accuracy rate of Ph feature 

classification is 91%.   

 

In the midrange beta classification results, up, left and down cognitive tasks are 

the highest accuracy rates. The mean accuracy rate of midrange beta feature is equals 

to 82%.  

 

Finally, in the beta feature classification results, no movement, right and up 

cognitive tasks have better accuracy rates. The mean accuracy rate of the beta feature 
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is found as 84%. From this table, we can say that the Ph values as a feature is very 

good rather than the midrange beta and beta features for subject 4. 

 

Table 9.9 The accuracy rates of K – nearest neighbor algorithm for subject 4. 

Subject 4 K – Nearest Neighbor Classification 

Task Ph Midrange Beta Beta 

Left 100% 84% 80% 

Right 82% 78% 87% 

Up 93% 85% 84% 

Down 91% 81% 82% 

No Movement 91% 80% 88% 

Average 91% 82% 84% 

 

 

Table 9.10 gives the K-nearest classification results of subject 5 for Ph, midrange 

beta and beta features. According to the K-nearest neighbor classification results of 

the Ph values for each cognitive task, almost the entire cognitive task has very good 

results. The mean accuracy rate of Ph feature classification is 92%.   

 

In the midrange beta classification results, up, left and down cognitive tasks are 

the highest accuracy rates. The mean accuracy rate of midrange beta feature is equals 

to 82%.  

 

Finally, in the beta feature classification results, down, up and no movement 

cognitive tasks have better accuracy rates. The mean accuracy rate of the beta feature 

is found as 84%. From this table, we can say that the Ph values as a feature is very 

good rather than the midrange beta and beta features for subject 5. 

 
Table 9.10 The accuracy rates of K – nearest neighbor algorithm for subject 5. 

Subject 5 K – Nearest Neighbor Classification 

Task Ph Midrange Beta Beta 

Left 93% 84% 82% 

Right 91% 78% 80% 

Up 91% 85% 84% 

Down 85% 81% 90% 

No Movement 99% 80% 83% 

Average 92% 82% 84% 

 



73 
 

 

Also, the new classification method CxK – nearest neighbor algorithm, proposed 

by the Ulutagay & Nasibov, 2016 is used for the classification of the Ph, midrange 

beta and beta features.  

 

The CxK-nearest classification results are shown in Table 9.11 for subject 1. 

According to the CxK-nearest neighbor classification results of the Ph values for each 

cognitive task is very good. The entire cognitive task has over 90% accuracy rates. 

The mean accuracy rate of Ph feature classification is 95%.   

 

In the midrange beta classification results, left, no movement and up cognitive 

tasks are the highest accuracy rates. The mean accuracy rate of midrange beta feature 

is equals to 86%.  

 

Finally, in the beta feature classification results, all cognitive tasks have high 

accuracy rates. The mean accuracy rate of the beta feature is found as 94%. From this 

table, we can say that the Ph values as a feature has higher accuracy rates than the 

midrange beta and beta features for subject 1. 

 

Table 9.11 The accuracy rates of CxK – nearest neighbor algorithm for subject 1. 

Subject 1 C x K – Nearest Neighbor Classification 

Task Ph Midrange Beta Beta 

Left 95% 91% 88% 

Right 93% 83% 95% 

Up 93% 85% 97% 

Down 94% 84% 94% 

No Movement 99% 88% 95% 

Average 95% 86% 94% 

 

 

The CxK-nearest classification results are shown in Table 9.12 for subject 2. 

According to the CxK -nearest neighbor classification results of the Ph values for 

each cognitive task is very good. The almost entire cognitive task has over 90% 

accuracy rates. The mean accuracy rate of Ph feature classification is 91%.   
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In the midrange beta classification results, no movement, up and right cognitive 

tasks are the highest accuracy rates. The mean accuracy rate of midrange beta feature 

is equals to 90%.  

 

Finally, in the beta feature classification results, all cognitive tasks have high 

accuracy rates. The mean accuracy rate of the beta feature is found as 89%. From this 

table, we can say that the Ph values as a feature has better accuracy rates than the 

midrange beta and beta features for subject 2. 

 

Table 9.12 The accuracy rates of CxK – nearest neighbor algorithm for subject 2. 

Subject 2 C x K – Nearest Neighbor Classification 

Task Ph Midrange Beta Beta 

Left 95% 82% 88% 

Right 90% 93% 90% 

Up 86% 95% 86% 

Down 91% 84% 87% 

No Movement 94% 95% 94% 

Average 91% 90% 89% 

 

The CxK-nearest classification results are shown in Table 9.13 for subject 3. 

According to the CxK-nearest neighbor classification results of the Ph values for each 

cognitive task is very good. The entire cognitive task has over 90% accuracy rates. 

The mean accuracy rate of Ph feature classification is 96%.  

 

In the midrange beta classification results, no movement, left and right cognitive 

tasks are the highest accuracy rates. The mean accuracy rate of midrange beta feature 

is equals to 90%.  

 

Finally, in the beta feature classification results, right, no movement and up 

cognitive tasks have higher accuracy rates. The mean accuracy rate of the beta 

feature is found as 84%. From this table, we can say that the Ph values as a feature is 

very good rather than the midrange beta and beta features for subject 3. 
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Table 9.13 The accuracy rates of CxK – nearest neighbor algorithm for subject 3. 

Subject 3 C x K – Nearest Neighbor Classification 

Task Ph Midrange Beta Beta 

Left 95% 93% 83% 

Right 93% 92% 88% 

Up 97% 85% 84% 

Down 98% 88% 81% 

No Movement 99% 94% 85% 

Average 96% 90% 84% 

  

 

The CxK-nearest classification results are shown in Table 9.14 for subject 4. 

According to the CxK-nearest neighbor classification results of the Ph values for each 

cognitive task is very good. The almost entire cognitive task has over 90% accuracy 

rates. The mean accuracy rate of Ph feature classification is 94%.   

 

In the midrange beta classification results, left, down and no movement cognitive 

tasks are the highest accuracy rates. The mean accuracy rate of midrange beta feature 

is equals to 89%.  

 

Finally, in the beta feature classification results, no movement and right cognitive 

tasks have high accuracy rates. The mean accuracy rate of the beta feature is found as 

89%. From this table, we can say that the Ph values as a feature is very good rather 

than the midrange beta and beta features for subject 4. 

 
Table 9.14 The accuracy rates of CxK – nearest neighbor algorithm for subject 4. 

Subject 4 C x K – Nearest Neighbor Classification 

Task Ph Midrange Beta Beta 

Left 98% 93% 87% 

Right 88% 85% 92% 

Up 95% 88% 88% 

Down 93% 91% 86% 

No Movement 94% 90% 93% 

Average 94% 89% 89% 

 

The CxK-nearest classification results are shown in Table 9.15 for subject 5. 

According to the CxK-nearest neighbor classification results of the Ph values for each 
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cognitive task is very good. The entire cognitive task has over 90% accuracy rates. 

The mean accuracy rate of Ph feature classification is 92%.   

 

In the midrange beta classification results, no movement, up and left cognitive 

tasks are the highest accuracy rates. The mean accuracy rate of midrange beta feature 

is equals to 89%.  

 

Finally, in the beta feature classification results, all cognitive tasks have high 

accuracy rates. The mean accuracy rate of the beta feature is found as 89%. From this 

table, we can say that the Ph values as a feature is very good rather than the midrange 

beta and beta features for subject 5. 

 
Table 9.15 The accuracy rates of CxK – nearest neighbor algorithm for subject 5. 

Subject 5 C x K – Nearest Neighbor Classification 

Task Ph Midrange Beta Beta 

Left 96% 90% 89% 

Right 94% 88% 92% 

Up 91% 91% 85% 

Down 90% 87% 94% 

No Movement 97% 92% 90% 

Average 92% 89% 89% 

 

The overall average classification accuracy for each cognitive task has been 

calculated for k-nearest neighbor and CxK-nearest neighbor algorithm (Table 9.16).  

The comparison of the classification accuracies: 

- The classification accuracies change between 94% and %96 for left EEG 

signals.  

- The classification accuracies change between 88% and %92 for right EEG 

signals.  

- The classification accuracies change between 90% and %92 for up EEG 

signals.  

- The classification accuracies change between 90% and %93 for down EEG 

signals.  

- The classification accuracies change between 97% and %97 for no movement 

EEG signals.  
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Table 9.16 The overall accuracy rates of CxK and K – nearest neighbor algorithm for all cognitive 

tasks. 

 K-NN CxK-NN 

 Ph MidrangeBeta Beta Ph MidrangeBeta Beta 

Left 94% 83% 81% 96% 90% 87% 

Right 88% 82% 85% 92% 88% 91% 

Up 90% 85% 85% 92% 89% 88% 

Down 90% 79% 86% 93% 87% 88% 

No Movement 97% 83% 88% 97% 92% 91% 

 

The Table 9.17 shows that the K-nearest neighbor classification accuracy rates of 

all subjects. Subject 1 and Subject 3 have Silva Mind Control education. The Silva 

mind control method has been founded and developed in 1960 through 

parapsychologist Jose Silva to help his children do better in school and increase their 

chance of success in life. This method is dynamic meditation technique. It consists of 

mental training method. The Silva Method teaches people control their subconscious 

and negative programming.  

 

Therefore subject 1 and subject 3 has better in cognitive tests. The hP  feature has 

higher accuracy rate (92%) than midrange beta (82%) and beta signal (85%) features 

for overall accuracy. 

 

According to the overall average classification results of K-nearest neighbor 

algorithm:  

 

- The classification accuracy rate is ranges between 89% and 95% for hP . 

- The classification accuracy rate is ranges between 80% and 85% for 

midrange beta. 

- The classification accuracy rate is ranges between 82% and 92% for beta. 
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Table 9.17 The accuracy rates of K – nearest neighbor algorithm for all subjects. 

K – Nearest Neighbor Algorithm 

 MFDFA - Ph Midrange Beta Beta 

Subject 1 93% 85% 92% 

Subject 2 89% 84% 84% 

Subject 3 95% 80% 82% 

Subject 4 91% 82% 84% 

Subject 5 90% 82% 83% 

Average 92% 82% 85% 

 

In the CxK – nearest neighbor algorithm results for all subjects is displayed in 

Table 9.18. Subject 1 and subject 3 have higher accuracy results for hP  features 

again. According to the total classification accuracy results of subjects, hP  has higher 

accuracy rate (94%) than midrange beta (8%) and beta signal (89%) features.  

 

According to the overall avarege classification results of CxK-nearest neighbor 

algorithm:  

 

- The  classification accuracy rate is ranges between 92% and 95% for hP .  

- The classification accuracy rate is ranges between 86% and 90% for 

midrange beta. 

- The classification accuracy rate is ranges between 84% and 94% for beta. 

 
Table 9.18 The accuracy rates of CxK – nearest neighbor algorithm for all subjects. 

C x K – Nearest Neighbor Algorithm 

 MFDFA - Ph Midrange Beta Beta 

Subject 1 95% 86% 94% 

Subject 2 92% 90% 89% 

Subject 3 96% 88% 84% 

Subject 4 94% 89% 89% 

Subject 5 92% 89% 89% 

Average 94% 88% 89% 

 

When the k-nearest neighbor algorithm and CxK-nearest neighbor algorithm 

results are compared: 
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- The k-nearest neighbor classification accuracy rate is 92% while CxK-nearest 

neighbor classification rate is 94% for hP  signals. 

- The k-nearest neighbor classification accuracy rate is 82% while CxK-nearest 

neighbor classification rate is 88% for hP  signals. 

- The k-nearest neighbor classification accuracy rate is 85% while CxK-nearest 

neighbor classification rate is 89% for hP  signals. 

 

Because of the sensitivity to the dimensionality of the feature vector, K-nearest 

neighbor algorithm is not very common in BCI research (Borisoff et al., 2004). 

However, it has been efficient with low dimension feature vectors. Also, k-nearest 

neighbor algorithm has been used in a multiclass environment (Schlögl et al., 2005) 

and applied to cursor movements on a vertical axis, when classifying slow cortical 

potentials (Kayikcioglu & Aydemir, 2010). 

 

The CxK-nearest neighbor algorithm has given better results in our offline 

analysis. This classification method is newly used method in EEG classification. 

 

In the online analysis, subjects seat on the chair and relax before the online test. 

The test is beginning with the “Start” button and the online test is ended with the 

“Stop” button (Figure 6.16). The 1 sec data is captured in online analysis. The 

features are extracted from this 1sec with dimension 128 data and then classified by 

the C-KNN and K-NN algorithms. The session’s average data set (128 x 5 = 640 for 

five class) taken in the training phase is used as test set and the online captured data 

is used as training set. The hP  values are used as feature in online analysis. 

 

The classification accuracy is measured by true classification number of the 

training count. In the online analysis, the overall average classification results of K-

nearest neighbor algorithm:  

 

- The overall classification accuracy rate is 78% for left movement. The almost 

all subject has the same and good succes rate for the left command. 
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- The overall classification accuracy rate is 64% for right movement. The 

subject 1 and subject 5 have higher performance than the others. The overall 

accuracy rate of the right movement command has the lowest accuracy rate. 

The K-NN classifier is not good for right movement command as the 

remaining commands. 

- The overall classification accuracy rate is 74% for up movement. The subject 

3 and subject 4 have better accuracy performance.  

- The overall classification accuracy rate is 74% for down movement. 

- The overall classification accuracy rate is 78% for no movement movement. 

 

The better accuracy rates have been found for the left and no movement 

commands (78%). Then down and up accuracy rates follow them (74%). The 

accuracy rate of the right command has the lowest classification accuracy (64%).  

 

Table 9.19 The accuracy rates of the online analysis for K-NN classifier. 

 K-NN 

 Left Right Up Down No Movemet 

Subject 1 80% 70% 70% 80% 80% 

Subject 2 80% 60% 70% 80% 80% 

Subject 3 70% 60% 80% 80% 80% 

Subject 4 80% 60% 80% 70% 70% 

Subject 5 80% 70% 70% 60% 80% 

Average 78% 64% 74% 74% 78% 

 

The online classification results for CxK - nearest neighbor algorithm of all 

subjects is displayed in Table 9.20.  

 

According to the overall avarege classification results of CxK-nearest neighbor 

algorithm:  

 

- The overall classification accuracy rate is 84% for left movement. 

- The overall classification accuracy rate is 70% for right movement. 

- The overall classification accuracy rate is 74% for up movement. 

- The overall classification accuracy rate is 78% for down movement. 

- The overall classification accuracy rate is 86% for blank movement. 
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Table 9.20 The accuracy rates of the online analysis for CxK-NN classifier. 

 CxK-NN 

 Left Right Up Down No Movement 

Subject 1 80% 60% 70% 70% 90% 

Subject 2 80% 70% 60% 70% 80% 

Subject 3 80% 70% 80% 90% 90% 

Subject 4 90% 70% 90% 80% 80% 

Subject 5 90% 80% 70% 80% 90% 

Average 84% 70% 74% 78% 86% 

 

In the literature, there are many BCI applications. The results are compared with 

the other works. Bashar & Bhuiyan, (2016) is applied the k-nearest neighbor 

algorithm to the BCI competition II Graz motor imagery EEG data set. It has 140 

trials each for left and right hand. In their work, the classes of the neighbors are 

weighted according to the similarity of each neighbor where the similarity index is 

the cosine value between two sample vectors of Euclidean distance. They have found 

the accuracy rates 86% and 96% for left and right cognitive task classification.  

 

The many classifiers are used on the BCI competition Graz motor imagery data 

set. The classifiers are probabilistic neural network (PNN), support vector machine 

(SVM), generalized regression neural network (GRNN), adaptive neuro fuzzy 

inference system (ANFIS), discriminant analysis (DA), Naive Bayes (Sakthivel et 

al., 2014) and k-nearest neighbor algorithm. The below methods have been classified 

two cognitive tasks left and right (Table 9.21). 

  

http://www.sciencedirect.com/science/article/pii/S2215098616302592#b0195
http://www.sciencedirect.com/science/article/pii/S2215098616302592#b0195
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Table 9.21 The accuracy rates of the different classifiers in the literature. 

Methods Proposed by Classifier Classification 

Accuracy (%) 

(MEMD + STFT) Bashar and Bhuiyan, 

2016  

kNN 90.71 

DWT and AR model Xu et al., 2008  LDA 90 

Multiple auto 

correlation 

Wang et al., 2014  LVQ 90 

    Neural 

network 

90 

Higher order features Zhou et al., 2008 LDA 89.29 

Morlet wavelet Lemm et al., 2004  Bayes 

quadratic 

89.29 

Wavelet based 

features 

Xu et al. , 2009  FSVM 87.86 

    MLP 84.29 

    BGN 83.57 

Discriminative area 

selection 

Hsu, 2015 FHNN 83.1 

AAR Tavakolian et al., 

2007 

Bayes 

quadratic 

82.86 

    LDA 65.6 

    Gaussian 

classifiers 

65.4 

PSD Solhjoo et al.,2004 Mahalanobis 

distance 

63.1 

KNN  Hari et al., 2016   75 

SVM  Hari et al., 2016   72 

NB  Hari et al., 2016   60 

LDA  Hari et al., 2016   73 

DT  Hari et al., 2016   75 

Cross Correlation  Hari et al., 2016   74 

 

Bhattacharyya et al. (2015) is proposed “Interval type-2 fuzzy logic based 

multiclass ANFIS algorithm for real-time EEG based movement control of a robot 

arm” study. In this paper, Bhattacharyya et al. (2015) have used the MFDFA method 

for feature extraction and then they classify the feature by the methods in Table 9.20.  

 

They, classify 5 cognitive tasks: forward, backward, left, right and no movement. 

The classification accuracy rates are displayed in Table 9.22 for offline analysis. 

According to the results, the best classifier is   OVO-IT2FLF-ANFIS with 90.93%. 

http://www.sciencedirect.com/science/article/pii/S2215098616302592#b0095
http://www.sciencedirect.com/science/article/pii/S2215098616302592#b0105
http://www.sciencedirect.com/science/article/pii/S2215098616302592#b0100
http://www.sciencedirect.com/science/article/pii/S2215098616302592#b0085
http://www.sciencedirect.com/science/article/pii/S2215098616302592#b0090
http://www.sciencedirect.com/science/article/pii/S2215098616302592#b0110
http://www.sciencedirect.com/science/article/pii/S2215098616302592#b0080
http://www.sciencedirect.com/science/article/pii/S2215098616302592#b0080
http://www.sciencedirect.com/science/article/pii/S2215098616302592#b0065
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In our proposed study, K-nearest neighbor algorithm classifies 5 cognitive tasks with 

92% and CxK-nearest neighbor algorithm classifies the same tasks with 94% 

accuracy rate.  

 

Table 9.22 The offline analysis accuracy rates of the different classifiers of the Bhattacharyya et al. 

(2015) method. 

Classifier algorithm Accuracy Rate 

OVA-IT2FLF-ANFIS 88.91 

OVO-IT2FLF-ANFIS 90.93 

OVA-LDA  78.57 

OVO-LDA  79.43 

OVA-KNN  82.67 

OVO-KNN  82.13 

OVA-SVM 85.16 

OVO-SVM 86.25 

OVA-NB  85.75 

OVO-NB  85.75 

 

The online classification results of proposed method by Bhattacharyya et al. 

(2015) are shown in Table 9.23.  

 

 Table 9.23 The online analysis accuracy rates of the different classifiers of the Bhattacharyya et al. 

(2015) method. 

Subject ID OVA-IT2FLF-ANFIS (%) OVO-IT2FLF-ANFIS (%) 

1 75 80 

2 60 80 

3 50 60 

4 60 65 

5 60 70 

6 65 65 

7 70 75 

8 70 70 

9 60 65 

10 70 65 

11 70 75 

Mean 64.5 70 
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CHAPTER TEN 

CONCLUSION 

 

In this thesis EEG signals are acquired and classified using k-nearest neighbor and 

CxK- nearest neighbor algorithms. The training, analysis and online test applications 

are developed with C# language. The developed program Sycamore BCI is 

consolidated with accepted programs, MATLAB and WEKA. The MATLAB 

program is used for extracting hP  values and brain wave signals, and preprocessing. 

The WEKA program is used for the K-NN classification. Also, these processes are 

developed in Sycamore BCI program. 

 

The data set is captured with our program from the Emotiv Epoc Neuroheadset. 

Up, down, left, right and no movement features are extracted and they are used for 

classification. The classification performance is measured by the classification 

accuracy rate. The different BCI applications are developed for obtaining a higher 

performance. Any device can be controlled using EEG data with the successful 

classification application.  

 

To compare the accuracy rates of the classifications, participants of different ages 

and gender are selected and the data set acquired from the different participants is 

classified.  The performance of classification has varied due to the subjects. The 

effect of the user in BCI experience is discussed in detail. 

 

The factor analysis is used to prevent the curse of dimensionality for each 

cognitive task. But the experimented factors are not same for left, right, up, down 

and no movement cognitive tasks. We need to use all the channels because 

intersection of the cognitive tasks factors corresponds to all the channels. The 

extracted features also decrease the dimension of the dataset. 

 

The k-nearest neighbor algorithm is used for the classification of the EEG signals, 

but the CxK-nearest neighbor algorithm is not used before for the classification of 

the cognitive tasks. This method gives a more acceptable accuracy rate than the k-
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nearest neighbor algorithm. In recent years, there is a serious competition between 

many methods which are developed for the BCI analysis. There is also a competition 

between the successful algorithms. We suppose a new method to the BCI literature. 

We successfully develop a software application which can perform data acquisition, 

online and offline analysis simultaneously. 

 

The multi-class classification of cognitive EEG signal is done and the 

classification results are found acceptable. Also, the recently developed method, CxK 

nearest neighbor algorithm could be used for the multi-class classification of the 

cognitive EEG signal. The classification is done for the hP , midrange beta and beta 

features. The hP  features with the CxK-NN algorithm classification gives much 

better results (94%) compared with the literature. Finally, The CxK-NN method 

improves the accuracy rate of motor imagery EEG signal classification. 

 

It seems every improvement in BCI studies may rapidly present a better life 

quality for mankind. 
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