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ABSTRACT 

MONITORING THROUGH EYE-MOVEMENT DATA IN CONTEXT-

AWARE ADAPTIVE SOFTWARE SYSTEMS: A CASE STUDY ON ENDO-

NEUROSURGERY TRAINING PROGRAMS 

Menekşe Dalveren, Gonca Gökçe 

Ph.D., Software Engineering Department 

Supervisor: Assoc. Prof. Dr. Nergiz Ercil Çağıltay 

December 2017, 111 pages 

Today, modern software is becoming very complex which needs to be compatible 

with constant changes in the environment. They required to support autonomic 

behaviors by monitoring the relevant phenomena of the environment and analyzing 

the collected data to better understand the possible consequences of the changes in 

the environment. In other words, by monitoring the relevant phenomena of the 

environment and analyzing the collected data to better understand the possible 

consequences of the changes in the environment, these type of software adapt 

themselves to the environment. 

Context defined as anything that can be observed by the software system including 

end-user, computing, and primary features of identity, location, time, and physical 

conditions at runtime. Hence, Context aware adaptive software (CAASS) 

architecture can be implemented at different levels for different purposes by 

monitoring a wide range of data. However, currently there is no conceptual 

framework showing the level and scope of the adaptation performed by these 

systems.   
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Accordingly, in this study, first the related literature is examined to investigate the 

main dimensions of CAASS. Afterwards, a conceptual framework is proposed to 

address the level and scope of adaptation performed by a specific CAASS. The 

proposed framework has three dimensions namely the definition of the context of the 

adaptation, definition of the event that is planned to be adapted and finally the plan 

showing how the adaptation aimed to be performed.  

Additionally, a case study is also conducted for endo-neurosurgery education 

programs through the proposed conceptual framework. Results showed that by 

monitoring eye-movement events of the surgeons, their skill levels can be estimated 

with a high precision (91.3%). Accordingly, for this specific case, it is shown that, 

through the eye-movement events of surgeons, the content can be adapted according 

to the behaviors of the surgeons. The results of this study show evidences that, by 

regularly assessing their skill levels and evaluating the difficulty levels of each 

computer-based simulation scenario through eye movement events of the trainees, 

order of these scenarios in the curriculum can be adapted to the user skill levels and 

behaviors under different hand conditions. This will help to create a specific 

curriculum for each trainee that is adapted dynamically to their skill and knowledge. 

This study has two main contributions. First it proposes a conceptual model that can 

be used to evaluate the scope and the level of adaptation for CAASS. This 

information may help the researchers and the developers to better evaluate and 

compare the CAASS. The second contribution of this thesis study is the 

implementation of the proposed model on endo-neurosurgery domain. 

The field of endo-neurosurgery education programs have several problems. The main 

problem of these programs is the skill-based training opportunities. As the training 

and skill development had to be provided in the operating room, there are several 

drawbacks of these education programs such as the ethical considerations from the 

patients’ perspective, limited time and cases as well as the risk of patient safety.  

Currently, there are not many alternative training opportunities for the surgical 

training programs. As the skill improvement is very critical for these programs, the 

individual skill-based training opportunities are required. Even there are some 
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examples of computer-based simulations for supporting surgical training programs, 

there are very limited examples of curriculum integrated models. Additionally, there 

is no instructional model of CAASS for the surgical education programs especially in 

the endo-neurosurgery education programs.  

We believe that, because of its very nature, CAASS approach may provide several 

benefits for the endo-neurosurgery education programs. However, as the process of 

creating CAASS for the field of endo-neurosurgery education programs is a very 

complex, in this thesis study a level of CAASS conceptual model is proposed. The 

findings of this thesis study is aimed to help future studies to better build CAASS for 

the field of endo-neurosurgery education programs and to better integrate these 

systems into the current educational programs.  

Keywords: context-aware systems, self-adaptive software systems, eye-tracking, eye-

movement events, eye-movement classification algorithms, surgical skill levels, 

surgical training programs 
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ÖZ 

BAĞLAM-FARKINDA UYARLAMALI YAZILIM SİSTEMLERİNDE GÖZ-

HAREKETİ VERİSİ İLE GÖZLEMLEME: ENDOSKOPİK-NÖROŞİRURJİ 

EĞİTİM PROGRAMLARI İÇİN BİR DURUM ÇALIŞMASI 

Menekşe Dalveren, Gonca Gökçe 

Doktora, Yazılım Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Nergiz Ercil Çağıltay 

Aralık 2017, 111 sayfa 

Günümüzde modern yazılımlar, ortamdaki sürekli değişimlerle uyumlu olmaları 

gerektiğinden dolayı çok karmaşık hale gelmektedir. Çevreyle ilgili olguları 

izleyebilmek ve çevredeki değişikliklerin olası sonuçlarını daha iyi anlayabilmek için 

toplanan verileri analiz etme yeteneği aracılığıyla otonomik davranışları 

desteklemeleri gerekmektedir. Başka bir deyişle, bağlam-farkında uyarlamalı yazılım 

sistemi (BFYUS), çalışma ortamındaki bu değişikliklere cevaben kendisini çalışma 

zamanında ayarlamayı amaçlamaktadır. 

Bağlam, son kullanıcı, programlama, birincil özellikler (ör. kimlik, yer ve zaman) ve 

fiziksel koşullar gibi yazılım sistemi tarafından gözlemlenen herhangi bir şey olarak 

tanımlanır. Bu nedenle BFYUS mimarisi, geniş bir veri yelpazesini izleyerek farklı 

amaçlar için çeşitli seviyelerde uygulanabilir. Bununla birlikte, şu anda bu 

sistemlerin uyguladığı adaptasyonun seviyesini ve kapsamını gösteren hiçbir 

kavramsal çerçeve yoktur. 

Bu çalışmada, öncelikle BFYUS'ın ana boyutlarını daha iyi anlamak için ilgili 

literatür incelenmiştir. Daha sonra, belirli bir BFYUS tarafından gerçekleştirilen 
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adaptasyonun seviyesine ve kapsamına daha iyi hitap edebilmek için kavramsal bir 

çerçeve önerilmektedir.  Önerilen çerçeve üç boyuta sahiptir: adaptasyon bağlamının 

tanımı, uyarlanması planlanan olayın tanımı ve nihayetinde adaptasyonun nasıl 

gerçekleştirileceğini gösteren plan. 

Ek olarak, önerilen kavramsal çerçeve aracılığıyla endo-nöroşirurji eğitim 

programları için bir durum çalışması yürütülmüştür. Sonuçlar, cerrahların göz 

hareket olaylarını izleyerek, yetenek seviyelerinin yüksek hassasiyetle (%91.3) 

tahmin edilebileceğini göstermiştir. Buna göre, bu özel durum için, cerrahların göz 

hareketi olaylarıyla, içeriğin cerrahların davranışlarına göre uyarlanabileceği 

görülmüştür. Örneğin, beceri düzeylerini düzenli olarak ölçerek ve öğrencilerin göz 

hareket olaylarıyla her bir senaryonun zorluk seviyelerini değerlendirerek, 

müfredattaki bilgisayar tabanlı simülasyon senaryolarının düzeni, farklı el 

koşullarındaki kullanıcı beceri seviyelerine ve davranışlarına göre uyarlanabilir. Bu, 

her stajyer için beceri ve bilgiye dinamik olarak adapte edilmiş özel bir müfredat 

oluşturulmasına yardımcı olacaktır. Bu çalışmanın iki ana katkısı vardır. İlk olarak, 

BFYUS'ın kapsam ve seviyesini değerlendirmek için kullanılabilecek bir kavramsal 

model önermektedir. Bu bilgi araştırmacılara ve geliştiricilere BFYUS'ı daha iyi 

değerlendirip karşılaştırmalarına yardımcı olabilir. Bu tez çalışmasının ikinci katkısı 

önerilen modelin endo-nöroşirürji alanına uygulanmasıdır. 

Endo-nöroşirurji alanındaki eğitim programları çeşitli problemlere sahiptir. Bu 

programların asıl problemi, beceri temelli eğitim fırsatlarıdır. Eğitim ve beceri 

gelişiminin ameliyathanede sağlanması gerektiğinden dolayı, bu eğitim 

programlarının, hastaların bakış açısından etik hususlar, sınırlı zaman ve hasta 

güvenliği riski gibi pek çok dezavantajı vardır. 

Şu anda, cerrahi eğitim programları için pek fazla alternatif eğitim olanağı 

bulunmamaktadır. Bu programlarda beceri geliştirme çok kritik olduğu için, bireysel 

beceri temelli eğitim olanakları gerekmektedir. Cerrahi eğitim programlarını 

desteklemek için bilgisayar tabanlı simülasyonlara örnekler olsa bile, müfredata 

entegre modeller sınırlıdır. Ek olarak, özellikle endo-nöroşirurji eğitim 

programlarında cerrahi eğitim için BFYUS'ın herhangi bir öğretim modeli yoktur. 
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Doğası gereği, BFYUS yaklaşımının endo-nöroşirurji eğitim programlarına çeşitli 

avantajlar sağlayabileceğine inanıyoruz. Bununla birlikte, endo-nöroşirurji eğitim 

programları için BFYUS oluşturma süreci çok karmaşıktır, bu tez çalışmasında bir 

BFYUS kavramsal modeli önerilmektedir. Bu tez çalışmasının bulguları, endo-

nöroşirurji eğitim programları için daha iyi BFYUS oluşturmak üzere gelecekteki 

çalışmalara yardımcı olmak ve bu sistemleri mevcut eğitim programlarına daha iyi 

entegre etmek amacıyla hazırlanmıştır. 

Anahtar Kelimeler: Bağlam-farkında sistemler, uyarlamalı yazılım sistemleri, göz 

izleme, göz hareket olayları, göz hareketi sınıflandırma algoritmaları, cerrahi beceri 

seviyeleri, cerrahi eğitim programları 
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CHAPTER 1  

INTRODUCTION 

Today, software is the major activator of many applications and devices everywhere 

in our daily lives. Software systems are required to address management complexity, 

unexpected circumstances, changing policies and priorities that regulate objectives, 

and changing conditions (Babaoglu et al., 2005). Software affects the welfare and job 

satisfaction while providing the best utility anytime and anywhere (Hallsteinsen et 

al., 2012). With embedded systems, modern software is becoming even more 

compatible with constant changes in the environment. They are becoming able to 

support autonomic behaviors through the ability of monitoring the relevant properties 

of the environment and analyzing the collected data to predict the possible 

consequences of the changes in the environment (Filieri, Ghezzi, & Tamburrelli, 

2012).  

Traditionally, a significant portion of the research to address complexity and achieve 

quality objectives has focused on software development and internal quality 

attributes. However, in recent years there has been an increasing demand for coping 

with these problems. The main causes of this tendency are an increase in the level of 

heterogeneity of software components. Future software systems are expected to work 

in an extremely dynamic world. Despite of the unexpected changes in factors such as 

environmental conditions, user expectations, technology, regulations and market 

opportunities, systems will be expected to work properly (Di Nitto, Ghezzi, Metzger, 

Papazoglou, & Pohl, 2008). Hence, because of the increased cost of achieving these 

objectives within complex software systems today, self-adaptive software is 

becoming an alternative (Robertson, Laddaga, & Shrobe, 2000). Self-adaptive 

systems and context-aware systems aim to adjust themselves in response to changes 
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at runtime (Esfahani, Elkhodary, & Malek, 2013; Salehie & Tahvildari, 2007) to 

cope with changes in their environment and according to the user’s needs (Hussein, 

Han, & Colman, 2011; Kephart & Chess, 2003). For this reason there is a need for 

automatic adaptation to react these changes (Di Nitto et al., 2008).  Hence, the need 

to acquire flexibility and adaptability in complex software systems is obvious and 

has become a fundamental challenge for modern software engineering. In other 

words, self-adaptive systems enable algorithms to dynamically adapt to the problem 

characteristics and cope with changing environmental conditions (Bäck, 2002). Self-

adaptability is a technology that brings flexibility and adaptability to information 

systems. Such systems should be highly adaptable to react to environmental changes 

while providing fault tolerant, autonomous and acceptable performance (Karsai & 

Sztipanovits, 1999). These systems should act autonomously by changing the 

software composition to better fit the current environment while avoiding damage or 

loss of service (McKinley, Sadjadi, Kasten, & Cheng, 2004). Self-adaptation ensures 

that the software is operated successfully in dynamic, unpredictable and uncertain 

environments (Filieri, Hoffmann, & Maggio, 2014). However, self-adaptation by a 

system is considered as a complex process and depends on several variant variables 

(da Silva & de Lemos, 2011). Implementing the proposed models on large-scale 

context-aware systems is not free of obstacles (Raisinghani et al., 2006). In this 

study, we propose a Context Aware Adaptive Software System (CAASS) as a 

software that uses context-awareness to adapt to user-specific skills rather than force 

users to apply a particular assisting technology. 

1.1 Context in CAASS 

An important feature of adaptive systems is that, they can perceive the context to 

adapt to the specific capabilities of users (Macik, Cerny, & Slavik, 2014). Context-

awareness is defined as “the ability of the computer to sense and act upon 

information about its environment, such as location, time, temperature or user 

identity” (Ryan, Pascoe, & Morse, 1999). Context is defined as information that 

characterizes the conditions of an entity such as a person, place or an object (Abowd 

et al., 1999). Today, research on self-adaptive systems merely work on how to adapt 

the system according to the response to context and requirement changes, while 
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context-aware systems are mainly concerned with how to model, process and 

manage context information, where both approaches need to be evaluated together to 

generate a single model to better create an adaptive software architecture (Hussein et 

al., 2011). For example, information and user interface should be adapted to 

contextual features such as the user, environment, and access device (Viana & 

Andrade, 2008). However, specifying, designing, verifying and realizing such 

software systems that evolve at runtime is a challenge (Cheng et al., 2009; Dobson, 

Sterritt, Nixon, & Hinchey, 2010; Huebscher & McCann, 2008; Kramer & Magee, 

2007; Salehie & Tahvildari, 2009). 

Self-adaptive software changes its behavior in response to changes in the operating 

environment, namely context, that is anything that can be observed by the software 

system including end-user input, external hardware devices, and program instruments 

(Oreizy et al., 1999). The context is broadly understood as any information related to 

the user’s needs and the working environment that can be changed dynamically and 

can influence applications and be monitored using the relevant hardware and 

software mechanisms (Hallsteinsen et al., 2012).  

Regarding the abilities and preferences of users, most context models are now trying 

to adapt to the standard systems of various assistive technologies. Skill-based design 

(Wobbrock, Kane, Gajos, Harada, & Froehlich, 2011) has been proposed for this 

purpose. Because of the complex nature of such a process, context parameters could 

be grouped and selected according to certain criteria and priorities (A. A. 

Economides, 2009).  Researchers suggest that such data may not be satisfactory on 

its own and may be useful to monitor user’s feelings (Sykes & Brown, 2003), such as 

disappointment levels  (Gilleade & Dix, 2004), by making measurements from 

control pads (Sykes & Brown, 2003) or from more advanced sensors (Charles et al., 

2005). As a summary of this literature, the context components of a CAASS can be 

grouped as shown in Figure 1.1. 
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Figure 1.1 Context Components of CAASS 

Software systems take the form of self-adaptability by creating applications to 

automatically and autonomously adapt their behavior to respond to evolving needs, 

contextual changes, and failures of component services. This is a continuous process 

conducted by regularly collecting information about the context and performing the 

adaptation process. The life-cycle of this continuous process is defined in the 

following. 

1.2 Life Cycle of CAASS 

As described earlier, the context is a collection of settings and conditions, and 

knowing a current context is not often easy. For this, a CAASS monitor analyzes the 

settings and provides relevant information and services to the user; for example, that 

the information and user interface should be adapted to contextual features like user, 

environment, and access device (Mizouni, Matar, Al Mahmoud, Alzahmi, & Salah, 

2014; Viana & Andrade, 2008). Context-awareness, therefore, aims to increase the 

utility of the application, taking into account a wide range of contextual features 

(Ceri, Daniel, Facca, & Matera, 2007). The components of a self-adaptive system are 

defined as in Figure 1.2 (da Silva & de Lemos, 2011; Salehie & Tahvildari, 2007). 
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Figure 1.2 Life Cycle of CAASS 

1.2.1 Monitoring 

It is not possible to develop a software system without considering the various 

aspects of the environment where organizational and technical aspects are constantly 

changing (Pahl, 2004). The ability to tailor a software system and its requirements 

around its lifecycle in a constantly changing environment is of great importance 

(Pahl, 2004). These systems regularly monitor the domain events, detect significant 

changes, decide how to react, and act in order to execute the decision (Salehie & 

Tahvildari, 2007). These decisions can be on different levels and, accordingly, the 

structure of the self-adaptive software may change. For this, an adaptive system must 

be able to monitor the environment to determine the changes that have taken place 

and adapt itself to react to these changes (Pimentel et al., 2012). For monitoring, the 

participation of users is important but representative examples of intended target 

groups also should be introduced alongside; subjective observations must be 

accurately recorded and interpreted, and tests or questionnaires should be constructed 

using meaningful and valid heuristics (Charles et al., 2005). Fulton reports the 

difficulties of collecting satisfactory feedback and the difficulties in ensuring it (Bill 

Fulton & Medlock, 2002). Doing so, early in the development lifecycle can lead to a 

better design. (Pagulayan, Steury, Fulton, & Romero, 2003) pointed out that, despite 

high costs and no guarantee of success in the end, efficacy may be significant. The 

effects of the adaptation on the user can be easily tracked by observing the data, 

checking how fast a user is progressing, and watching the length of the sessions and 

other similar data (B Fulton & Romero, 2004). Hence, software compatibility can be 

defined to address environmental changes (Subramanian & Chung, 2001). Therefore, 

an adaptive system should be able to monitor the environment  and determine the 

changes that are happening in it (Pimentel et al., 2012). 
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1.2.2 Analysis 

Continuous participation of users is as important as continuous evaluation of the 

system and observation of changing environments (Pahl, 2004). Among these 

processes, decision-making is the critical one and a challenging process (McKinley 

et al., 2004). This is because, there are limited solutions considering variant 

requirements that need to be considered during the decision-making process (Salehie 

& Tahvildari, 2005). There are some proposed models to better analyze this 

dynamically changing data for a better decision-making such as the Box approach 

(Esfahani et al., 2013).  

1.2.3 Plan 

An adaptation plan should be generated during run time and should consider the 

actual state of the system, system elements and relationships among those elements 

(da Silva & de Lemos, 2011). This plan may need to be generated by considering the 

specific requirements of different application domains and each solution may be 

specific for the domain which may not work for other domains (da Silva & de 

Lemos, 2011).  

Different types of information about a user can simultaneously be relevant to a given 

adaptation decision (Tamminen, Oulasvirta, Toiskallio, & Kankainen, 2004). Also, 

application should be equipped with the option to decide when and why to make an 

adaptive change (Di Nitto et al., 2008). 

1.2.4 Action 

A self-adaptive software evaluates its own behavior and changes this behavior when 

the evaluation indicates that it is not achieving what the software is proposed to do, 

or when better functionality or performance is possible (Filieri et al., 2014). These 

systems are expected to automatically change and improve their own behavior 

according to the domain knowledge available (Filieri et al., 2014).  
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Adaptation, then, consists of recognizing the current environment and selecting a 

configuration that meets the needs of the context (Laddaga, 2006; Laddaga & 

Robertson, 2004). 

1.3 Different Applications of CAASS 

Self-adaptive software architecture today is implemented at different levels for 

addressing various problems. For instance, some self-adaptive software aim to make 

adaptations on the application level (Salehie & Tahvildari, 2007) and adaptive 

business intelligence systems (Bäck, 2002). Self-adaptive software is useful for 

dealing with all forms of embedded software, including robotics (Karuppiah et al., 

2000), manufacturing plants, avionics, vehicle control (Musliner, Goldman, Pelican, 

& Krebsbach, 1999), sensor systems (Reece, 2000), networking and others (Laddaga, 

2006). It is also valuable for image and signal processing applications (Laddaga, 

2006). Also, there are examples of CAASS for scheduling systems, operating 

systems, middleware, installation, configuration, system management and planning 

(Gajos, Weisman, & Shrobe, 2001). Additionally, self-adaptive software is an ideal 

framework for building pervasive computing systems (Gajos et al., 2001). Also there 

are other architectures that are designed for context-aware applications (Biegel & 

Cahill, 2004; Dey, 2001; Indulska & Sutton, 2003; Jameson, 2001; Lonsdale, Baber, 

Sharples, & Arvanitis, 2004; Petrelli, Not, Zancanaro, Strapparava, & Stock, 2001). 

1.3.1 Instructional CAASS 

The personalization of knowledge according to the characteristics of a learner is an 

important factor to better improve instructional systems (Lytras, 2007). As every 

learner has different characteristics, expectations, background and skills developed 

prior to the learning process, adaptation of instructional systems based on these 

individual requirements is critical. The context for adaptive instructional systems 

includes components such as learner, educational activity, infrastructure, and 

environment (A. A. Economides, 2009). In general terms, the context information 

relates to the environment, user or device status (Mizouni et al., 2014).  
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Content personalization has shown benefits for both users and content providers. 

Context-awareness can be interpreted as a natural development of personalization 

that takes the context not only of the user's identity and preferences, but also of the 

environment, including other users, their applications and their interactions (Ceri et 

al., 2007). Instructional content needs to be defined in terms of the score, duration, 

title, presentation type (e.g., skill-based simulation, game, interactive material, text, 

visual material, etc.), learning outcomes, difficulty level, learner group level 

definition (K-12, grade 2, Surgical education level 1 etc.) and sequence.  

1.3.2 Examples of Instructional CAASS 

A flexible e-learning model would take into consideration the learner’s knowledge 

state and learning preferences (Albano, Gaeta, & Salerno, 2006) to create 

personalized learning paths (Albano, Gaeta, & Ritrovato, 2007). There are studies 

conducted on adaptive game designs, arguing that player modeling and adaptive 

technologies can be used alongside the existing approaches to facilitate player-

focused game designs developed to provide a more appropriate level of challenge, 

straighten the learning curve, and improve the gameplay experience independently 

according to gender, age and experience (Charles et al., 2005). For instance in a 

study, by concentrating on diversity in learning and play styles and associating them 

with personality profiles, it is shown that problems related to players’ age or gender 

can be avoided (Kerr, 2003). As every player is different, their preference for tempo 

and style of play also differs, and the ability to play varies widely among individuals 

(Charles et al., 2005). Even players with a similar level of game playing ability will 

often find separate aspects of a game to be more difficult for them personally, and 

the techniques that each player uses to meet the challenges offered by a game can 

also vary (Charles et al., 2005). This is why adaptive game technology can have an 

important role to play in next-generation games. This technology can be used to 

moderate the challenge levels for each individual player, prevent players from being 

stuck, and assist in further adapting to the preferences of a player (Charles et al., 

2005). If all of these activities are carefully arranged, this can lead to an improved 

understanding of how players can get more satisfaction from a game (Charles et al., 

2005). Also, the importance of maintaining the correct level in game-based learning 
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environments is also highlighted (Csikszentmihalyi & Csikszentmihalyi, 1992): "The 

universal precondition for flow is that a person should perceive that there is 

something for him or her to do, and that he or she is capable of doing it. Optimal 

experience requires a balance between the challenges perceived in a given situation 

and the skills a person brings to it". It is also defined as the balance between 

difficulty and competence, or complexity and boredom (Charles et al., 2005). For 

this reason, one of the goals of adaptive design should be to keep the user in a state 

of flow by increasing the difficulty when the design appears too easy for the user, 

and decreasing it when it appears too hard (Charles et al., 2005). 

Nevertheless, previous studies reported that, without supportive models that take into 

account the needs or difficulties of individual learners, students may only be of 

temporary interest in the learning process, and the learning performance is not as 

good as usually expected (Tseng, Chu, Hwang, & Tsai, 2008). Additionally, 

personalized learning content or navigation support is considered one of the most 

important features of educational systems (Tseng et al., 2008). Smart teaching 

systems are such personalized learning systems that help individual students to 

improve their learning performance based on personal information (Walonoski & 

Heffernan, 2006). Adaptive learning systems can be seen as a special type of 

intelligent teaching system that adapts the presentation of training materials to the 

needs of the students (Hwang, Sung, Hung, Huang, & Tsai, 2012). (Brusilovsky, 

1998) stated that in the development of such systems, two adaptive approaches could 

be used, namely "adaptive presentation", which provides personalized content for 

individual learners, and "adaptive navigation support," which leads them to find the 

learning content with a personalized path. 

1.4 A Proposed Framework for Developing CAASS 

After analyzing previous studies about CAASS, it can be concluded that the scope 

and perspective of these systems are very wide. CAASS can be applied to any 

domain from different perspectives, and it is a complex process. Hence, the 

architectural design of these systems requires specific design strategies, which may 

also be specific for the domain that the adaptation is being planned to be performed. 
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We believe that, during the design stage of a CAASS, three stages need to be planned 

according to the questions posed in Figure 1.3.  

 

Figure 1.3 Proposed Framework for CAASS 

In the first stage, decision has to be made regarding which context the adaptation is 

being planned for. This question has to be answered by considering the context 

elements. Depending on the adaptation objectives, different context variables can be 

targeted to be analyzed. 

1.4.1 What to Adapt? 

Based on the aim of the adaptation, several different software components could be 

considered for the adaptation. Some of them are summarized below: 

Content and Course Adaptation 

Today, numerous studies have been conducted on content and course adaptation 

(Brusilovsky & Vassileva, 2003; Healey, Hosn, & Maes, 2002; Tretiakov, 2004; 

Vassileva, 1998; Yau & Joy, 2007a, 2007b). For instance, the course content can be 

automatically generated specific to the learners by considering their individual goals, 

previous knowledge and skills, and adapt the course according to the learner progress 

(Brusilovsky & Vassileva, 2003; Vassileva, 1998). In an ideal scenario, an 

application is expected to set its behavior based on the current content of its use.  
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User Interface Adaptation 

Researchers reported that information and user interface should be adapted to 

contextual features, such as user, environment, and access device (Viana & Andrade, 

2008). Presentation adaptation (A. A. Economides, 2009) has also received some 

attention (Kelly & Tangney, 2006; Klett, 2005; Kurzel, Slay, & Chau, 2002; 

Vassileva, 1998; Wang, Li, & Chang, 2004). For instance, GTE (Generic Tutoring 

Environment) is adapted the presentation of the content (Vassileva, 1998). The 

content was presented in a variety of ways based on both students’ prior 

competencies (pre-requisite knowledge and skills) and preferences (Kurzel et al., 

2002). The presentation was adapted to facilitate learners’ spatial reasoning on 

geometric topics (Wang et al., 2004). Multiple representations of complex or hidden 

subjects were also used (Klett, 2005). Different adaptive presentation strategies were 

used for students with different learning activities (Kelly & Tangney, 2006).  

Navigation and Sequencing Adaptation 

Several researches have been conducted on navigation and sequencing adaptation 

(Albano et al., 2007; Albano et al., 2006; Brusilovsky, Eklund, & Schwarz, 1998; 

Brusilovsky & Vassileva, 2003; Carchiolo, Longheu, & Malgeri, 2002; Eklund & 

Brusilovsky, 1998; Faraco, Rosatelli, & Gauthier, 2004; Herder & Van Dijk, 2002; 

Weber & Brusilovsky, 2001). Link annotation was adapted to the individual user in 

order to help them to find an appropriate path in a learning space (Eklund & 

Brusilovsky, 1998).  

Assessment Adaptation  

Assessment adaptation is an important area and several high-stake test organizations 

use computerized adaptive testing techniques. In computerized adaptive testing, if 

the examinee answers a question correctly, then the next question is selected from a 

more challenging pool; otherwise, from an easier pool (A. A. Economides & Roupas, 

2007). Material for self-assessment was adapted to the needs of the individual learner 

(Katerina, 2004). The examinee’s confidence in answering the question was also 

incorporated in adaptive testing (Lamboudis & Economides, 2004). It would be 
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useful for the examinee to know his current status. The amount and timing of this 

orientation information revealed to the examinees would be adapted to his learning 

characteristics (A. Economides, 2005). A Computer Adaptive Testing (CAT) system 

on mobile devices was also developed and evaluated (Triantafillou, Georgiadou, & 

Economides, 2008).  

Feedback Adaptation 

Adaptive feedback can be provided to the examinee tailored to her/his needs (A. A. 

Economides, 2006). This way, the system can try to reduce anxiety during a test (A. 

A. Economides & Moridis, 2008). A model to measure the student’s mood during a 

test was proposed (Moridis & Economides, 2008a) and validated through 

experimental data (Moridis & Economides, 2008b).  

A learner model- Adaptive Remote Tutor- is also provided for adaptive navigation 

support, course sequencing, individualized diagnosis of student solutions, and 

example-based problem-solving support (Weber & Brusilovsky, 2001).  

Communication Adaptation 

Adaptive communication and collaboration would support learners from diverse 

cultural origins (A. A. Economides, 2008). Other adaptation approaches considered 

the users’ preferences for informal communication and learning (Groth, Bogdan, 

Lindqvist, & Sundblad, 2007). Adaptive tools based on teacher’s model for 

authoring, curriculum setting, co-teaching and privileges setting, reward setting, 

assessment setting and information sharing setting have also proposed (A. A. 

Economides, 2009; Lin, Young, Chan, & Chen, 2005). 

1.4.2 How to Adapt?  

In this stage, how the adaptation is being planned to be performed is needed to be 

decided. In order to establish an appropriate adaptation the software system needs to 

monitor and assess the context elements that are decided to be considered for the 

adaptation process. Based on analysis results on the collected data, an appropriate 

adaptation strategy is needed to be developed. In this stage which data will be 
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collected, which data collection instruments will be used and how the collected data 

will be analyzed need to be planned. 

We believe that this conceptual model for CAASS design provides certain measures 

about the scope of the specific CAASS. Additionally through this model, the level of 

adaptation also better evaluated. By applying this conceptual model to the CAASS, 

the researchers and developers as well as the market analyzers may better understand 

and compare the scope and level of adaptation of these systems. 

The field of endo-neurosurgery education programs have several problems. The main 

problem of these programs is the skill-based training opportunities. As the training 

and skill development had to be provided in the operating room, there are several 

drawbacks of these education programs such as the ethical considerations from the 

patients’ perspective, limited time and cases as well as the risk of patient safety. 

Currently, there are not many alternative training opportunities for the surgical 

training programs. The trainees do not have any chance of try-and-error type of 

learning. As the skill improvement is very critical for these programs, the individual 

skill-based training opportunities are required for these programs. Even there are 

some examples of computer-based simulations for supporting surgical training 

programs, there are very limited examples of curriculum integrated models. 

Additionally, there is no instructional model of CAASS for the surgical education 

programs especially for the endo-neurosurgery education programs. We believe that, 

because of its very nature, CAASS approach may provide several benefits for the 

endo-neurosurgery education programs. 

As the process of creating CAASS for the field of endo-neurosurgery education 

programs is a very complex process, in this thesis, based on this proposed three stage 

framework for CAASS, a software requirements collection process is conducted. The 

methodology of the study is summarized in the next chapter. The findings of this 

thesis study is aimed to help future studies to better build CAASS for the field of 

endo-neurosurgery education programs and to better integrate these systems into the 

current educational programs. 
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CHAPTER 2 

METHODOLOGY 

A system can be defined as context-aware, if it uses context either for delivering 

content, or for performing system adaptations, or for doing both (Ceri et al., 2007).  

Accordingly, in this study for the development of an instructional CAASS, for 

surgical residents, their behavior patterns and experience levels were observed from 

their eye-movement data. The framework is applied as shown in Figure 2.1. 

 

Figure 2.1 A Case for Instructional CAASS based on Eye-movements 

This study first shows the value of data collected through eye-tracker devices to 

better build an adaptation process for the CAASS. Eye-tracking device is used to 

monitor the user behaviors. Eye-movements of surgical residents were recorded with 

the eye-tracking device. The recorded data is classified into various eye-movement 

events by open-source eye-movement classification algorithms. As there are several 

algorithms available to be used for the eye data classification, the classification 

results of these algorithms are evaluated in the context of surgical training programs. 

In Chapter 3, the results of these evaluations are given. 
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In the second phase, the relationship between the mental workload of the participants 

and the recognized difficulty levels of the content analyzed. Accordingly, as 

described in Chapter 4, these difficulty levels of the tasks are attempted to be 

understood through the eye-movement events of the participants. This information is 

critical to better sequence the content according to the user skill and knowledge level 

from easier to the harder ones. 

In the next stage (Chapter 5), as a context parameter, the user behaviors for the 

CAASS development is evaluated and how eye-movement events of the users can be 

used to estimate their skill levels. Here our main assumption is that, by better 

estimating the skill levels of the users, appropriate content can be better adapted.  

As the eye-tracker device records the pupil sizes, through this data, under different 

hand conditions (dominant-hand, non-dominant hand and both-hand) the behaviors 

of the surgeons are analyzed. In Chapter 6, these results are provided.  

Finally, the behaviors of different experience groups are analyzed through their eye-

movement events. This information is believed to be very helpful to adapt the 

content according to various requirements of different skill level groups. In Chapter 

7, details of these results are provided. 

As a result this study shows some examples of monitoring, data collection and 

assessment procedures for creating CAASS for the surgical education programs. We 

believe that, by understanding three main parts of the CAASS namely context, what-

to-adapt and how-to-adapt dimensions, better adaptation algorithms can be 

developed. In this case, before generating an adaptation algorithm for a CAASS for 

the endo-neurosurgery education programs, more research is required to understand 

the behaviors of different skill level groups by collecting other sources of data such 

as hand-movement behaviors and performance data. 

In this study, four different simulation scenarios have been developed for collecting 

data about surgeons’ eye gaze during operations in a virtually simulated environment 

and performed in different hand conditions. The environments resemble the real 

world with their visualization and interaction properties (X. Zhang, Jiang, Ordóñez 
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de Pablos, Lytras, & Sun, 2017). These scenarios are developed based on the surgical 

skill development requirements for endoscopic surgery purposes. As it has been 

reported there are several potential benefits in developing a gaze-focused approach to 

understand surgical skills learning and performance (Hermens, Flin, & Ahmed, 

2013). Detailed data is also collected in this environment with regard to eye gaze.  

Earlier studies report that as their skills on dominant-hand and non-dominant hand 

are different, surgeons’ performance under these different conditions do also vary 

(Hoffmann, 1997), and that skilled surgeons’ hand performances are more stable than 

the non-experienced ones (Uemura et al., 2014). The main assumption of this study 

is that surgeons’ performances in different hand conditions and their skill levels may 

also affect their eye-movements. Therefore, we aim to better understand, the 

differences between the eye-movements of intermediate and novice surgeons while 

they perform surgical tasks in a computer-simulated environment, and the effect of 

hand condition (dominant-hand, non-dominant hand and both-hand) on their eye-

movements. The results are analyzed using statistical methods to better understand 

the novice and intermediate surgeons’ behaviors and hand condition effects in this 

environment. 

2.1 Participants 

A total of 23 participants from neurosurgery and Ear-Nose-Throat (ENT) surgery 

departments of Hacettepe University Medical School in Ankara, Turkey, voluntarily 

participated in this study. As it is difficult to access surgeons of a specific field to be 

volunteer for such initiatives, this number of participants can be usually considered 

as acceptable. For this reason, studies in this field were conducted with limited 

number of participants: (M. Wilson et al., 2010) (14 surgeons), (Vine, Masters, 

McGrath, Bright, & Wilson, 2012) (27 novices), (Uemura et al., 2016) (26 surgeons), 

(M. R. Wilson, McGrath, et al., 2011) (25 surgeons), (Eivazi et al., 2017) (9 

neurosurgeons), (Cope, Mavroveli, Bezemer, Hanna, & Kneebone, 2015) (22 UK 

surgeons), (J.-Y. Zhang, Liu, Feng, Gao, & Zhang, 2017) (14 participants) and 

(Zheng, Jiang, & Atkins, 2015b) (14 novices). 
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Table 2.1 Participant Information 

   n % 

Gender 
Female 3 13.0 

Male 20 87.0 

Wearing Glass 
No 17 73.9 

Yes 6 26.1 

Surgical Experience 
Novice 14 60.9 

Intermediate 9 39.1 

Dominant-hand 
Right 20 87.0 

Left 3 13.0 

A majority of the participants were male (87.0%) and did not use glasses (73.9%). As 

seen from Table 2.1, the dominant hand of the majority is the right hand (87.0%). 

(Silvennoinen, Mecklin, Saariluoma, & Antikainen, 2009) defined the expertise and 

skill levels in minimally invasive with novices who had begun to gain basic 

knowledge of endoscopic surgery and an intermediate group that had just started 

endoscopic surgery operations. Among those 23 participants, 14 of them (2 female) 

were novices whose average age was 27.71 (SD = 6.96) and who worked as research 

assistant in the Neurosurgery or ENT departments. None of them had previously 

performed an endoscopic surgery by themselves. As seen in Table 2.2, on the 

average, they had observed 9.57 (SD = 13.51) and assisted in 3.57 (SD = 10.64) 

surgeries. 

Table 2.2 Participant Endoscopic Surgery Experience 

Participant  Age Observed Assisted Performed 

  Mean SD Mean SD Mean SD Mean SD 

Intermediate  29.33 1.50 48.33 31.62 32.00 24.19 16.56 16.60 

Novice  27.71 6.96 9.57 13.51 3.57 10.64 0.00 0.00 

On the other hand, 9 participants (1 female) were intermediates whose average age 

was 29.33 (SD = 1.50). On average, they had observed 48.33 (SD = 31.62) and 

assisted in 32.00 (SD = 24.19) surgeries. On average, the intermediate group had 

performed 16.56 (SD = 16.60) operations as surgeons. The participants’ experience 

levels are varying according to the operations they monitored, assisted and 

performed and Table 2.2 represents the average number of surgical operations that 

these surgeons had carried out. 
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2.2 Apparatus 

Four scenarios developed for recording the surgeons’ eye-movement data were used 

in this study. These scenarios were implemented as part of a Tubitak supported 

research project (ECE: Tubitak 1001, Project No: 112K287). The eye-movements of the 

surgeons were collected with an eye-tracker during the task performed in different 

hand conditions by haptic devices. Eye-tracking is the process of using sensors to 

locate features of the eyes and to estimate where the subject is looking. The data was 

recorded using Eye Tribe Eye Tracker ("The Eye Tribe," 2017) at 60 Hz with a 

screen resolution of 1920×1080 pixels (Figure 2.2). The Eye Tribe is a Danish start-

up company that produces eye-tracking technology and offers the product to software 

developers to be incorporated into different applications and programs. The company 

focuses on a sleek appearance and a portable structure. The Eye Tribe Eye Tracker is 

an affordable device, thereby making it a potentially available tool for research. 

According to the (Coyne & Sibley, 2016) the Eye Tribe system is able to 

significantly differentiate pupil size differences in high and low workload trials and 

the results are quite promising for human factors researchers. 

 

Figure 2.2 Collection of the Data 

Haptic technologies offer interaction between people and machines (Ucar, Ustunel, 

Civelek, & Umut, 2017). Therefore, to perform the tasks required in this research, 

the Geomagic Touch mid-range professional haptic device is used ("Three-D 

Systems," 2017). 3D-systems haptic devices present true 3D navigation and force 

feedback. These device are used in research and 3D modelling. Geomagic Touch 
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gives users opportunity to enhance scientific or medical simulations, improve 

productivity with interactive training, and easily maneuver mechanical components 

to produce higher quality designs. 

2.3 Scenarios 

There were four scenarios developed for simulating different surgical training 

purposes. The learning outcomes of the scenarios are increasing the 3D perception, 

gaining depth perception, using the endoscope efficiently, fast-following up of 

objects, and improving the ability to plan and strategize. Each scenario was 

performed by surgeons with their dominant-, non-dominant and both- hands. To 

provide more objectivity and getting rid of the order effect, 12 of the participants 

were started to perform the tasks by their dominant-hand, and the rest did so with the 

non-dominant one. Current technologies allow the recreation of real-life operations 

with adequate fidelity, thus profoundly improving the training environment (Munshi, 

Lababidi, & Alyousef, 2015). Accordingly, in this study two of the scenarios were 

simulated as surgical model and can be considered as higher-fidelity; the other two 

were based on general models which can be considered as lower-fidelity.  

Virtually simulated environments resemble the real world with their visualization 

and interaction properties (Perrenot et al., 2012; X. Zhang et al., 2017). Therefore, 

surgical simulation scenarios were developed based on surgical skill development 

requirements for endoscopic surgery purposes. Scenarios were designed to provide a 

practical alternative for the endoscopic surgery beginners. Hence, the participants 

were expected to use an operational instrument by their dominant-hand through a 

haptic device. 

Scenario-1 

In this scenario, the endoscope is not controlled by the participants. The light source 

that is in real environment controlled by endoscope is simulated in a fixed position 

and the camera that is controlled by the endoscope in real environments is 

coordinated through the surgical instrument in the simulated environment. The 

operation is conducted in a simulated environment using a surgical instrument under 
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virtually lit conditions. Hence, the scenario is designed to improve the participants’ 

skills on depth perception, camera control, 2D-3D conversion and effective 

instrument usage. With the help of this instrument, the participants have to catch a 

red ball in a room. The red ball can appear randomly in different locations (Figure 

2.3).  

 

Figure 2.3 Scenario-1: A 

As seen from Figure 2.4, after catching the ball and moving it close to the cube, the 

ball turns green. The participants have to match this ball with a green cube. The cube 

itself may also appear at random positions in the room. This task is repeated 10 times 

and the participants’ eye-movement data is collected with an eye-tracking device. 

This scenario is a general simulation model aimed to gain the ability to use the 

surgical instrument and to develop depth perception. 

 

Figure 2.4 Scenario-1: B 
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Scenario-2 

In this scenario, a model is designed based on the inside of a human nose, as depicted 

in Figure 2.5, which contains tumor like objects. The participants were expected to 

remove the tumors located at different spots within the model using a surgical tool. 

There are 10 tumors located in this model. This scenario is a simulated surgical 

model, which has made it possible for surgeons to feel as if they are in surgical 

settings. Surgeons can move the endoscopic device through the nose using the haptic 

device and feel the tissue as the device give force feedback upon collision with any 

surface. By using the surgical tool in the most accurate way, it is expected to 

complete the operation by carefully removing the tumors from their locations.  

 

Figure 2.5 Scenario-2 

Scenario-3 

In this scenario, red balls appeared randomly in one of the boxes in a virtual 

environment to be focused on as seen in Figure 2.6. Once properly focused on, the 

red balls which appear randomly in the blue boxes would explode on the condition 

that focusing is done with the right angle. If the correct angle is achieved, the ball 

will explode; otherwise it will not. This process is also repeated 10 times. In this 

scenario the aim is to develop depth perceptions and improve ability to approach a 

certain point with the correct angle. This scenario is a simulation of a general model.  
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Figure 2.6 Scenario-3 

Scenario-4 

The aim in this scenario is to continuously follow a moving object (white ball) on a 

path inside a nose model environment as seen in Figure 2.7. The main task is to 

complete the route by following the white ball which appears at the beginning of the 

path within a proper distance and angle. This scenario is a simulated surgical model 

and designed like a real nose with similar texture, simulating the field vision of a 

surgeon during an actual operation. 

 

Figure 2.7 Scenario-4 

2.4 Procedure 

First, general information regarding the participant and his/her dominant hand were 

recorded. Each participant was seated and centered in front of the monitor at a 

distance of 70cm and an oral instruction was provided regarding the procedure. Nine 

calibration points were presented, and calibration is performed. After that, according 
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to the given information, the scenarios would be performed by the participant with 

dominant- and non-dominant hands. After the completion of one-handed scenarios, 

two-handed scenarios started, in which the participants were asked to perform the 

same scenarios using both-hands. The dominant-hand used the operation tool and the 

non-dominant hand used the camera tool for lighting up the operation area.  The 

scenarios were performed as 1, 3, 2 and 4 representing the scenario numbers as 

outlined in the preceding section. 

The recorded data was classified using an open-source eye-movement classification 

algorithms (Appendix-A). There are many other commercial classification 

algorithms, but in this study only the open-source eye-movement classification 

algorithms were used. Ten open-source eye-movement algorithms were utilized for 

classifying the eye data as fixations, saccades and pursuits which are defined in the 

following section.  

Then, for the evaluation of the differences based on experience, the events namely 

number of fixation, fixation duration, saccade number, saccade duration, pursuit 

number, and pursuit duration were used. These eye-movement events used to 

distinguish the experience levels of surgeons. The algorithms are based on velocity 

or position to differentiate the eye-movement events. 

The Hidden Markov Model Identification (I-HMM), Velocity Threshold 

Identification (I-VT), and Kalman Filter Identification (I-KF) are velocity-based 

algorithms (Komogortsev & Karpov, 2013). The Minimum Spanning Tree 

Identification (I-MST), and Dispersion Threshold Identification (I-DT) are position-

based algorithms (Andersson, Larsson, Holmqvist, Stridh, & Nyström, 2017). These 

algorithms are used to classify fixations and saccades, while the others are used for 

smooth pursuit events such as Velocity and Velocity Threshold Identification (I-

VVT), Velocity and Movement Pattern Identification (I-VMP) and Velocity and 

Dispersion Threshold Identification (I-VDT) (Andersson et al., 2017).  

Additionally, there are two more algorithms used for eye-movement classifications. 

The Adaptive Event Detection algorithm (AED) proposed by Nyström and 

Holmqvist (Nyström & Holmqvist, 2010) is a velocity-based algorithm and 
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developed for classifying fixation and saccade eye-movement types. Binocular-

Individual Threshold (BIT) algorithm is developed by (van der Lans, Wedel, & 

Pieters, 2011) is a velocity-based algorithm to classify fixations from the data with 

individual-specific thresholds. 

2.5 Eye Movement Events 

In recent psycho-physiological researches, the eye-tracking technique has been 

widely used to obtain reaction parameters from eye-movement data to analyze 

cognitive processes underlying visual behavior (Bailey & Iqbal, 2008). Eye-tracking 

provides a valuable source of physiological data for the allocation of information 

processing resources through ocular activity, which are closely linked to the 

underlying neural networks in the brain (Bröhl et al., 2017). To understand surgeons’ 

behaviors while they were performing computer simulated surgical tasks, under 

different hand conditions, specific eye movement events were used. These are 

fixation, saccade, smooth pursuit events and pupil size.  

Fixation 

Fixation is a slow period event when the eye-movement is almost still with 

small dispersion and velocity. Eye-movement classification algorithms can be 

able to classify fixation events into number of fixation and fixation duration. 

Saccade 

When the eye makes fast movements between various locations, this is called 

‘saccade’. Saccade numbers and durations are classified by eye-movement 

algorithms. 

Smooth Pursuit 

Eye-movements are generally used for static stimuli; for dynamic stimuli, an 

event called ‘smooth pursuit’ occurs while tracking a dynamic object, and the 

pursuit number and pursuit duration measures are used to observe the 

differences based on experience and hand conditions. 
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Pupil Size 

There is extensive evidence as to the relationship between pupil size and 

cognitive functions (Bailey & Iqbal, 2008; Beatty, 1982; Bröhl et al., 2017; 

Just, Carpenter, & Miyake, 2003; Pomplun & Sunkara, 2003; Verney, 

Granholm, & Marshall, 2004). Hence, pupillary response is known as a 

measure of cognitive activity and attention (Bailey & Iqbal, 2008). Pupil size 

has been suggested as a metric for assessing workload during complex visual 

tasks, which are associated with higher pupil dilation (Bailey & Iqbal, 2008). 

Consequently, pupil size variances are taken into consideration and their 

relation with experience and mental workload was examined. 

2.6 Analysis Method 

Data analysis was performed using SPSS for the Windows software package 

(Version 23; IBM Corporation, New York, USA) with 95% confidence level. 

Because the normality assumptions are violated and the sample size is 23, the non-

parametric Mann Whitney and Friedman test techniques were used in this study 

(McCrum-Gardner, 2008). Mann Whitney is a test technique used to compare two 

independent groups in terms of a quantitative variable and is used for observing the 

differences between intermediate and novice surgeons. Friedman is an alternative to 

bi-directional variance analysis and is used to determine the difference between two 

major masses (McCrum-Gardner, 2008). This test technique is used to observe the 

effect of hand conditions (dominant, non-dominant and both) on eye-movement 

events among surgeons. The logistic regression analysis was conducted in this study 

to predict of the skill levels of surgeons. Hierarchical clustering method is applied to 

better understand if there is a clustering among the classification results of 10 

classification algorithms utilized in this study. 
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CHAPTER 3 

EVALUATION OF TEN OPEN-SOURCE EYE-MOVEMENT 

CLASSIFICATION ALGORITHMS  

With today’s eye-movement tracking technology several benefits for various studies 

can be reached. Hence, eye-movement classification is widely used for many fields 

such as neurology, psychology, ophthalmology and in commercial areas and 

classifying eye-movements is crucial for understanding visual attention and provides 

evidence regarding certain brain states and psychological functions (Bedell & 

Stevenson, 2013; Komogortsev, Gobert, Jayarathna, Koh, & Gowda, 2010). Later, 

these evidences can be used for diagnoses, treatment and training purposes 

(Jarodzka, Holmqvist, & Gruber, 2017). Eye-movement classification is also 

important for clinical applications such as Alzheimer’s (Crawford et al., 2005), HIV-

1 infected patients with eye-movement dysfunction (Sweeney, Brew, Keilp, Sidtis, & 

Price, 1991), and schizophrenia (Bolding et al., 2014; Flechtner, Steinacher, Sauer, & 

Mackert, 1997). Furthermore, they are applied in commercial purposes such as Web-

page navigation, shopping and human computer interaction (Larsson, Nyström, & 

Stridh, 2013). 

The classification of basic eye-movement events such as fixations, saccades and 

pursuits from noisy eye data is essential for researchers, who use eye-trackers for 

recording eye data in their studies. Fixations are the slow periods when the eye is 

nearly still. Saccades occur when the eye makes rapid shifting movements between 

different positions. If research is carried out using static stimuli, then these two eye-

movement events are the most commonly used ones. When using dynamic stimuli, 

such as moving objects in a dynamic scene, the eyes will track these objects. In this 

case, smooth pursuit eye-movement event occurs. It is up to researchers whether 

manually identify these eye-movement events or use any of the commercially or 
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freely available algorithms for classification but working on this issue manually is 

very sluggish compared to classification algorithms, so, today classification 

algorithms are the only practical solution for classification (Andersson et al., 2017).  

In the literature, there are not many studies conducted to comparatively evaluate 

these algorithms. The evaluation of these algorithms is done based on eye-movement 

data collected from 23 surgeons while they were performing 4 different virtual-

simulation scenarios in a 3D dynamic and interactive environment by using their 

dominant-, non-dominant and both-hands successively. 

3.1 Current Eye-Movement Classification Algorithms 

Nowadays, several eye-movement classification algorithms are being used; however, 

as some are not open-source or are only commercially available as part of software 

suites made by companies developing eye-tracking devices, it is not possible to 

evaluate them. Consequently, because of this situation researchers today prefer to use 

open-source eye-movement classification algorithms. The selected algorithms are 

chosen according to the criteria being up-to-date and independent of any eye-tracker 

device. Accordingly, in this study 10 different open-source, up-to-date eye-

movement classification algorithms are used to make evaluations. The investigated 

algorithms in this study were implemented with MATLAB. 

Eye-movement classification algorithms classify eye data by considering different 

features that are gathered by eye-tracker devices. There are different types of 

algorithms to classify events such as fixations, saccades and smooth pursuits. These 

types are separated as velocity-based algorithms and dispersion-based algorithms. 

Velocity-based algorithms are Velocity Threshold Identification (I-VT), Hidden 

Markov Model Identification (I-HMM), Kalman Filter Identification (I-KF) and the 

dispersion-based algorithms are Dispersion Threshold Identification (I-DT), 

Minimum Spanning Tree Identification (I-MST) (Komogortsev & Karpov, 

2013).Velocity and Velocity Threshold Identification (I-VVT) algorithm is the 

modified version of the I-VT algorithm to identify smooth pursuits from fixations, 

Velocity and Movement Pattern Identification (I-VMT) firstly utilizes velocity 
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threshold for classifying saccades, same as I-VVT algorithm, and investigates the 

eye-movement samples to split smooth pursuits from fixations, Velocity and 

Dispersion Threshold Identification (I-VDT) is used as a ternary classification 

algorithm (Komogortsev & Karpov, 2013) and also this algorithm is a modified 

combination of velocity-based and dispersion-based algorithms. 

Velocity Threshold Identification (I-VT) is based on the velocity of the eye-

movements to separate fixation events from saccade events and works with a 

velocity threshold for classifying the fixations and saccades and if the samples 

velocities are below the threshold, then the algorithm defines these samples as 

fixation; and if the sample velocities are higher than the threshold, than the algorithm 

set that sample a saccade and this velocity threshold principle is the basis for other 

algorithms (Komogortsev & Karpov, 2013). Velocity and Velocity Threshold 

Identification (I-VVT) is designed to classify fixations, saccades and smooth pursuits 

and contains a filter function which filters noisy saccade-like events according to 

minimum amplitude and duration (Komogortsev & Karpov, 2013).Velocity and 

Movement Pattern Identification (I-VMT) examines the movement patterns to detach 

smooth pursuits from fixations and this movement pattern is examined in a temporal 

window. In which the magnitude of movement is computed by analyzing angles 

created by every pair of the adjacent positional points and the horizontal coordinate 

axis, after the value representing the magnitude of the motion is calculated, a 

threshold is compared; the values above the threshold are marked as smooth pursuit 

and the below values are marked as fixation (Komogortsev & Karpov, 2013).  

Velocity and Dispersion Threshold Identification (I-VDT) is also used for the 

classification of fixations, saccades and smooth pursuits. Similar to the algorithms I-

VVT and I-VMT, it separates the saccades firstly, then, smooth pursuit dimensions 

are separated from fixations; what using an adapted I-DT method (Komogortsev & 

Karpov, 2013). The Hidden Markov Model Identification (I-HMM) similar to the I-

VT algorithm, the I-HMM is based on velocity and has two additional algorithms; 

the first one is re-classifying the fixations and saccades according to probabilistic 

parameters, and the second one updates the parameters (Komogortsev, Gobert, et al., 

2010). Kalman Filter Identification (I-KF), is a recursive predictor that computes 
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future states with estimating a series of dynamic system states from noisy 

measurements (Komogortsev, Jayarathna, Koh, & Gowda, 2010). Because the actual 

data is usually noisy and may cause data loss, the Kalman Filter minimizes the error 

between the state of the system and the state of the real system, only the previous 

time step and the estimated new condition are required to calculate the new situation 

estimate (Komogortsev, Jayarathna, et al., 2010). If the value is less than the set 

threshold and the minimum time threshold is met, it is specified as a fixation, and if 

it is above the threshold value, it is specified as a saccade (Komogortsev, Jayarathna, 

et al., 2010). 

One of the dispersion-based algorithms, Dispersion Threshold Identification (I-DT), 

is commonly used for classifying eye-movements into fixations and saccades and this 

algorithm uses x and y coordinates of the eye and thresholds for classification, 

namely maximum fixed dispersion threshold and minimum fixed time threshold 

(Komogortsev, Gobert, et al., 2010). Minimum Spanning Tree Identification (I-

MST), the other dispersion-based algorithm, creates a minimum spanning tree by 

taking a predetermined number of eye position points (Salvucci & Goldberg, 2000). 

MST is defined as a spanning tree with the least distance between all spanning trees 

in this node set, I-MST breaks the MST into determinations and thresholds based on 

predetermined distance thresholds (Salvucci & Goldberg, 2000). The advantage of 

using an I-MST is that the algorithm can correctly identify the anchor points if a 

large part of the signal is missing, as a result of this property, I-MST is claimed to be 

a highly flexible and controllable eye-movement detection tool (Salvucci & 

Goldberg, 2000). 

An adaptive event detection algorithm (AED) proposed by (Nyström & Holmqvist, 

2010) is an algorithm that tends to alter the velocity threshold based on the noise 

level of the subject, also, it describes post-saccadic releases which are defined as 

'glissades' with fixation and saccades. As a different eye-movement 'glissade' is a 

wobbling movement at the end of saccades, as a different type of eye-movements, 

the AED algorithm is a velocity-based algorithm which is developed for classifying 

fixation, saccade and glissade eye-movement events and provides graphical 

representations of the these events (Nyström & Holmqvist, 2010). Binocular-
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Individual Threshold (BIT) algorithm (van der Lans et al., 2011), is a velocity-based 

algorithm to classify fixations from the eye-movement data of both eyes with 

individual-specific thresholds. To verify fixations, the algorithm uses the velocity 

thresholds of both eyes. The BIT algorithm has advantages over the existing 

algorithms in that it contains binocular viewing and uses the information about 

fixations and co-variations between the movements of both eyes to identify saccades; 

it estimates rather than pre-sets the velocity threshold to identify fixations and 

saccades, and it permits the threshold to vary between eye-movement directions, 

tasks and individuals. Also, each record exceeding the threshold value contains the 

stochasticity which is spontaneous in the eye-movements so as not to be labeled as 

saccade (van der Lans et al., 2011). The other important feature is that BIT algorithm 

is independent of machine and sampling frequency and can be easily adapted to the 

data from varying eye-trackers with different sensitivity and sampling frequency 

(van der Lans et al., 2011). 

3.2 The Limitations for Eye-Movement Classification Algorithms 

The need for a single algorithm used in all systems and the presence of many 

algorithms addressing the same problem implies that eye-movement classification is 

not a mundane issue and assessing the performance of different algorithms is an 

important undertaking (Andersson et al., 2017). Notably, selecting the most 

appropriate from amongst means that a thorough evaluation method has to be 

designed. As this study is not the first one attempting to evaluate algorithm 

performance, it is necessary to consider the benefits and drawbacks of the previously 

established methods. 

One of the approaches has been to establish an optimal or rational relationship 

between stimuli and an individual's viewing behavior. For instance, researchers 

offered a trial to the participants in order to look at a single moving target that 

jumped a number of times (Komogortsev, Gobert, et al., 2010). Given the known 

number of jumps, positions, and amplitudes, it is possible to calculate how the ideal 

eye-movement behavior looks; then, the gaze data parsed by the algorithms is 
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compared with this ideal viewing pattern, and the more similar the algorithm is, the 

better (Komogortsev, Gobert, et al., 2010). 

The detection of eye-movement events is not a completely solved problem, because 

there is no consensus on how to evaluate the algorithms, which means that further 

refinement of the algorithms is hindered as it is not clear whether differences are due 

to the algorithms or the evaluation process itself (Andersson et al., 2017). What is 

more, it is not clearly known what is meant when we talk about an event; for 

example, there is no theoretically motivated threshold for the eye to be classified as a 

saccade to sufficiently move in a particular direction or to classify anything under it 

as another event. Classification algorithms focus on a rigorous oculomotor definition 

of fixations and saccades. Even in the definition of a fully oculomotor eye-

movement, it is difficult to identify the end point of the fixation and the start point of 

a smooth pursuit. This point is arbitrary and more or less determined by the 

sensitivity of the system. Many algorithms have some form of adjustments that need 

to be set by the researcher, such as minimum fixation time, saccade speed threshold, 

and so on. If there is an explicit and theoretically applied threshold, then in this case 

it will already be coded as a 'constant' in the algorithm. Setting the thresholds 

depends on the researcher. There could be new results that deviate from previous 

ones, selected algorithms, selected thresholds, or both, or something else entirely. It 

is common knowledge that different parameter values  for these algorithms produce 

different classification results (Andersson et al., 2017). There are many algorithms, 

which have not been compared to one another sufficiently. Often, a modest 

assessment is made while presenting a new algorithm, but it usually examines only a 

few algorithms and mainly highlights the new algorithm. 

3.3 Threshold Values of Eye-Movement Classification Algorithms 

The evaluated algorithms were used with small changes in their default settings. An 

ideal algorithm does not require any parameter setting from the user, and 

automatically adjusts the thresholds: and then, it categorizes all samples of the data 

stream in a comprehensive way (Andersson et al., 2017). There are same parameter 

values for all algorithms these are screen size value (1920x1080), distance to the 
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screen (70cm) and sampling frequency (60Hz). In the following section all other 

parameters for each algorithm are listed. 

3.3.1 Velocity Threshold Identification (I-VT) 

Velocity Threshold Identification (I-VT) algorithm uses the saccade detection 

threshold for classifying saccades and fixations. This parameter, is set to 70°/s by 

default. If the movement speed from one eye position to the next is below this value, 

it means that the eye-movement belongs to fixation; otherwise it is a saccade. 

3.3.2 Velocity and Velocity Threshold Identification (I-VVT) 

Velocity and Velocity Threshold Identification (I-VVT) algorithm uses two threshold 

parameters; one is saccade detection threshold and the other is fixation detection 

threshold. The saccade detection threshold adjusts the value of the speed threshold 

used to distinguish between saccades and fixations. This parameter was set to 70°/s 

by default.  If the movement speed from an eye position to the next is greater than 

this value, it means that the eye-movement belongs to the saccade; otherwise, it is a 

fixation or smooth pursuit.  

The determination should also be done with another threshold. Fixation detection 

threshold; which sets the value of the speed threshold used to distinguish between 

fixations and smooth pursuits. If the speed of the movement from one eye position to 

the next is larger than this value, it means that the eye-movement is a smooth pursuit; 

otherwise, it is a fixation. This parameter was set to 20°/s by default. 

3.3.3 Velocity and Movement Pattern Identification (I-VMT) 

The Velocity and Movement Pattern Identification (I-VMT) algorithm uses three 

threshold parameters, namely saccade detection threshold, temporary window length 

and range threshold value. The saccade detection threshold field on the I-VT tab 

adjusts the value of the speed threshold used to determine the difference between 

saccades and fixations. This parameter was set to 70°/s by default. If the movement 

speed from an eye position to the next is greater than this value, it means that the 
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eye-movement is belongs to saccade; otherwise, this is either a fixation or a smooth 

pursuit. Determination should be done in the next stage of classification. The 

temporary window length field specifies how much time is needed for dispersion 

calculation during data processing. This parameter was set at 0.5 by default. The 

range threshold value sets the threshold for the distribution of the selected samples in 

a range of 0 to 1. This parameter was set at 0.1 by default.  

3.3.4 Dispersion Threshold Identification (I-DT) 

Dispersion Threshold Identification (I-DT) algorithm uses two threshold parameters, 

first one is dispersion duration threshold, and the second is dispersion threshold. The 

dispersion duration threshold specifies how much time we must use to calculate the 

distribution during data processing. This field sets the threshold value for the 

distribution of the selected samples in degrees. If the distribution is less than this 

value, it means that fixation has been detected; otherwise, it is a saccade. The default 

values for this classification were set at 100ms as dispersion duration threshold and 

1.35° as the dispersion threshold. 

3.3.5 Velocity and Dispersion Threshold Identification (I-VDT) 

The Velocity and Dispersion Threshold Identification (I-VDT) algorithm uses three 

threshold parameters as, saccade detection threshold, dispersion duration threshold 

and dispersion threshold. The saccade detection threshold on the I-VT tab adjusts the 

value of the speed threshold used to determine the difference between saccades and 

fixations. If the movement speed from an eye position to the next is greater than this 

value, it means that the eye-movement is a saccade; otherwise, this is either a 

fixation or a smooth pursuit. Determination should be done in the next stage of 

classification. This parameter, saccade detection threshold was set at 70°/s by 

default. The dispersion duration threshold in the I-DT tab specifies how much time is 

needed to calculate the distribution during data processing. This parameter was set at 

100ms by default. The dispersion threshold field in the I-DT tab sets the threshold 

value for the distribution of the selected samples in degrees. If the distribution is less 
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than this value, it means that a fixation has been detected; otherwise, it is a saccade. 

This parameter was set at and 1.35° by default. 

3.3.6 Hidden Markov Model Identification (I-HMM) 

The Hidden Markov Model Identification (I-HMM) algorithm uses three threshold 

parameters, saccade detection threshold, Viterbi sample size and Baum-Welch 

reiteration. The saccade detection threshold is identical to the I-VT classifier. The 

Viterbi sample size specifies the number of samples the classifier uses as a data set. 

If the threshold value set too high, it means that there is not enough machine 

precision to calculate the statistical parameters. The Baum-Welch reiteration 

specifies the number of iterations of the Baum-Welch algorithm. It makes sense to 

set this value equal at 4 or 5 reiteration. Thresholds were set to the default values in 

this way as saccade detection threshold at 70°/s, Viterbi sample size at 200 and 

Baum-Welch reiteration at 5. 

3.3.7 Kalman Filter Identification (I-KF) 

The Kalman Filter Identification (I-KF) algorithm uses three threshold parameters, 

Chi threshold, sampling window size and deviation. The value for χ2-distribution 

threshold set by the Chi threshold field. If the χ2-distribution values are lower than 

this threshold, than a fixation has been detected, if not, it is a saccade. The sampling 

window size specifies the number of samples for which the χ2-distribution is 

calculated. The deviation field sets the deviation value between the anticipated and 

computed values for the χ2-distribution calculation. The parameter thresholds are set 

as defaults, namely chi-square threshold of 15, a window size of 5 samples, and a 

deviation value of 1000. 

3.3.8 Minimum Spanning Tree Identification (I-MST) 

The Minimum Spanning Tree Identification (I-MST) algorithm uses two threshold 

parameters, saccade detection threshold and window size. The saccade detection 

threshold adjusts the distance between two adjacent eye focus positions in degrees. If 

this distance is less than the threshold, it means that the eye-movement is a fixation. 
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If this distance is higher than the threshold value, it means that eye-movement is a 

saccade. The window size field sets the number of instances the classifier uses during 

data processing. If it is set too high, the sensing time for the saccades can be 

significantly increased. It is reasonable to set this value slightly lower than the 

average fixation duration. The parameter thresholds were set as defaults 0.6° for 

saccade detection threshold and 200 samples for the windows size parameter. 

3.3.9 An Adaptive Event Detection Algorithm (AED)  

The default values were used except the minimum saccade duration, which was set at 

20ms because the algorithm was design for 1250Hz of data with high precision the 

window length (F) didn't scale satisfactorily when using 60Hz data. Therefore, 

increasing F to the nearest odd integer (F=3) was sensible. To do this, there was also 

a need to increase the value of the minimum saccade duration from 10ms to 20ms. 

3.3.10 Binocular-Individual Threshold (BIT)  

This algorithm is a parameter-free fixation identification algorithm that automatically 

identifies relative and individual-specific speed thresholds by optimally using 

statistical properties of eye data. 

3.4 Results 

In this study first the common eye-movement events of those 10 algorithms were 

analyzed (Appendix-A). Data were collected from 4 scenarios and in different hand 

conditions. The classification results of these algorithms were analyzed to better 

understand the commonalities and differences among them. 

To evaluate and compare the different classification methods, each method was 

considered with respect to several characteristics such as classified eye-movement 

events, classification methods and classification results. 
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3.4.1 Algorithms and Eye-Movement Events 

As seen in Table 3.1, 10 algorithms have some common and specific eye-movement 

events. For instance, the glissade duration (GD) is only detected by the AED 

algorithm and BIT algorithm classifies number of fixation (FN), fixation duration 

(FD) and saccade number (SN) events. Likewise, the algorithms I-DT, I-HMM, I-

KF, I-MST, I-VDT, I-VMT, I-VT and I-VVT classify FN, FD and SN events. In 

addition to these, I-DT, I-HMM, I-KF, I-MST, I-VDT, I-VMT, I-VT and I-VVT 

algorithms classify saccade duration (SD), saccade amplitude degree (SAD). Also, I-

VDT, I-VMT, I-VVT algorithms classify pursuit number (PN), pursuit duration (PD) 

and pursuit velocity degree (PVD). FD and SD are the eye-movement events that the 

AED algorithm is common with other algorithms. Also, the release dates of the 

algorithms are presented in Table 3.1. Accordingly, the initial algorithms I-VT, I-

HMM, I-DT and I-MST were proposed by (Salvucci & Goldberg, 2000). The 

algorithms I-KF, I-VVT, I-VMT, I-VDT (Komogortsev, Jayarathna, et al., 2010), 

AED (Nyström & Holmqvist, 2010) and BIT (van der Lans et al., 2011) were 

developed afterwards. Algorithms have different classification methods, I-VT, I-KF, 

I-HMM, AED and BIT are velocity based algorithms and I-DT and I-MST 

algorithms are dispersion-based. The I-VVT and I-VMT algorithms are modified 

versions of the I-VT velocity based algorithm and they can be able to identify 

smooth pursuit eye-movement event. Also, the I-VDT algorithm can be able to 

identify smooth pursuit event and this algorithm is also a modified version of the 

velocity based and dispersion-based algorithm. 
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Table 3.1 Algorithms and Events 

Name Year Velocity  

Based 

Dispersion 

Based 

FN FD SN SD SAD GD PN PD PVD 

AED 2010      
 

 
 

   

I-DT 2000            

I-HMM 2000            

I-KF 2009            

I-MST 2000            

I-VDT 2011            
I-VMT 2011            
I-VT 2000            

I-VVT 2011            
BIT 2011            

FN: Fixation Number; FD: Fixation Duration; SN: Saccade Number; SD: Saccade Duration; SAD: Saccade Amplitude Degree; 

GD: Glissade Duration; PN: Pursuit Number; PD: Pursuit Duration; PVD: Pursuit Velocity Degree 

3.4.2 Differences among the Classification Results of the Algorithms 

A non-parametric Friedman test of differences among repeated measures was 

conducted for the eye-movement classification algorithm effect on the eye-

movement events. According to the results of Friedman test for ten eye-movement 

classification algorithm on all eye-movement events, a significant difference is found 

(p < 0.001). The eye-movements events mean ranks for all algorithms according to 

the results that algorithms produce are shown for different scenarios under different 

hand conditions.  The Friedman test mean ranks and rendered Chi-square values for 

each algorithm and eye-movement event are shown for each scenario in Appendix-B. 

3.4.3 Hierarchical Clustering Results 

As seen from Table 3.1, Fixation Duration (FD) is the only common eye-movement 

event among all algorithms, a hierarchical clustering method is applied to better 

understand if there is a clustering among the classification results of these 10 

algorithms. According to the results of hierarchical clustering based on mean FD for 

all algorithms and hand-conditions, two clusters are recognized (Figure 3.1). Cluster-

1 includes only BIT algorithm and Cluster-2 includes other 9 algorithms. 



 
38 

 

Figure 3.1 Dendrogram for 10 Algorithms Using Ward Linkage 

The measured mean values of FD for the Cluster-1 and Cluster-2 are given in the 

Table 3.2. 

Table 3.2 Values of Each Two Cluster 

CLUSTER FD (ms) 

I 54286.87 

II 6314.26 

Since the number of common eye-movement events is more for the other algorithms 

without the BIT and AED algorithms (Table 3.1), these two algorithms are excluded 

and the cluster analysis is performed again  with the common eye-movement events 

(FN, FD, SN, SD and SAD) for 8 algorithms (I-DT, I-HMM, I-KF, I-MST, I-VDT, I-

VMT, I-VT and I-VVT). Three clusters are encountered with these 8 algorithms. 

According to the 3 clustered structure result, I-DT and I-VDT algorithms are in 

Cluster-1, I-HMM, I-KF, I-MST and I-VT algorithms are in Cluster-2, and I-VMT 

and I-VVT algorithms are in Cluster-3. Dendrogram graph of this clusters is 

provided in Figure 3.2. 

AED 
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Figure 3.2 Dendrogram for 8 Algorithms Using Ward Linkage 

The measured mean values obtained according to the algorithms in Cluster-1, 

Cluster-2 and Cluster-3 are given in the Table 3.3. 

Table 3.3 Values of Each Three Cluster 

CLUSTER FN FD (ms) SN SD (ms) SAD (deg) 

I 15.17 6527.02 24.82 2261.56 4.39 

II 12.17 9042.51 13.87 1599.52 5.18 

III 11.75 3801.77 18.02 1367.94 5.04 

Three clusters have been found according to the hierarchical clustering analysis and 

it is seen that the clusters differs according to the methods and the threshold values of 

the algorithms. Only the BIT algorithm specifies the threshold values itself from eye-

movement data. Accordingly, the BIT algorithm clustered different from all other 

algorithms when the hierarchical clustering analysis was conducted based on the only 

common measure FD.  The BIT and AED algorithms are excluded to repeat the 

cluster analysis by increasing common measures. Hierarchical clustering analysis 

was repeated with 5 common measures for the remaining 8 algorithms. The results 

show that according to classification methods, algorithms appear in different clusters. 
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3.5 Discussion and Conclusion 

The results of this study show that, as each algorithm uses different methods of 

classification, the threshold values are important and need to be set carefully. For 

example, eye-trackers, computer properties and algorithm thresholds used in 

classification can be different. However, open-source algorithms should be able to 

work with data obtained from different types of hardware. Yet, it is difficult to obtain 

such data from different sources to be brought to a working state with open-source 

algorithms. Because eye-movement classification algorithms are complex and 

contain many structures, it is particularly challenging for non-software researchers.  

In order to make AED algorithm workable, it was necessary to have software 

infrastructure to understand the code. Since the algorithm is designed for a 1250Hz 

eye-tracker, it needs to be modified in order to work with the data received from eye-

trackers operating at different Hz values. Accordingly, the code was modified to 

make it adaptable to the eye data gained from the Eye Tribe Eye Tracker which has a 

60Hz sampling frequency.  

The algorithms I-DT, I-HMM, I-KF, I-MST, I-VDT, I-VMT, I-VT and I-VVT are 

integrated in a single software (Appendix-A). Although, the software is an open-

source, it is password-protected. The combination of algorithms with different 

features in a single interface is very useful and provides great convenience. The 

algorithms can be used one's own data by making changes through interface. Also, 

this software provides graphically representation of the results. This also brings 

about significant convenience for non-software-based researchers. Based on the 

results of this study the following important points can be highlighted: 

All algorithms classify different eye-movement events. The most common eye-

movement event among those is the FD. The second common ones are the FN, FD, 

SN, SD and SAD. Different algorithms give different classification results. This is 

because of the methods and the threshold values they use. There is no consensus for 

defining the threshold values for algorithms which significantly affects the 

classification results. 
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According to hierarchical clustering based on mean of FD produced by all 10 

algorithms, two clusters are recognized: cluster 1 includes only BIT algorithm and 

cluster 2 includes other 9 algorithms. It can be concluded that, BIT algorithm 

individually specifies the threshold values from the provided eye data. Therefore, the 

results of BIT algorithm becomes different from others. Main reason behind this 

difference is most probably the assigned threshold values. BIT automatically 

calculates threshold values whereas the default threshold values are taken for the 

other algorithms.  

As BIT and AED algorithms have restricted eye-movement events, another 

hierarchical clustering analysis is performed by excluding them. As a results, 3 

clusters are recognized. According to hierarchical clustering based on means of FN, 

FD, SN, SD and SAD produced by 8 algorithms (I-DT, I-HMM, I-KF, I-MST, I-

VDT, I-VMT, I-VT and I-VVT), 3 clusters have been recognized: Cluster-1 

consisted of I-DT which is a dispersion-based algorithm and I-VDT algorithm which 

is the modified combination of the velocity-based I-VT and dispersion-based I-DT 

algorithms. Dispersion-based algorithms are based on the x and y coordinates of the 

eye data for classifying eye-movements into fixation and saccade events. I-VDT 

algorithm differs from the modified velocity-based algorithms (I-VVT and I-VMT) 

because this algorithm separates smooth pursuits from fixations by employing a 

modified dispersion threshold identification method. Therefore, the results of I-VDT 

is different from the other modified algorithms I-VVT and I-VMT similarly reported 

in (Komogortsev & Karpov, 2013). Cluster-2 includes I-HMM, I-KF, I-MST, and I-

VT algorithms. Except I-MST algorithm remaining all algorithms in this cluster are 

velocity-based algorithms and they use velocity of the eye-movements to separate 

fixation events from saccade events. I-MST algorithm has an advantage of correctly 

identifying the anchor points if a large part of the signal is missing and this property 

makes I-MST highly flexible and controllable eye-movement detection tool 

(Salvucci & Goldberg, 2000) and this algorithm produce similar results to the 

velocity based algorithms. The threshold values may cause to that situation but the 

reasons behind this should be investigated further. The algorithms I-VMT and I-VVT 

are take part in Cluster-3, the common property of these two algorithms is they are 
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both modified versions of the velocity-based algorithm I-VT. Firstly, these two 

algorithms utilizes velocity threshold for classifying saccades then investigates the 

eye-movement samples to detach smooth pursuits from fixations. These algorithms 

are more suitable to the dynamic stimuli such as video-viewing, where objects are 

moving (Andersson et al., 2017; Komogortsev & Karpov, 2013). 

According to the results of this study, it can be concluded that if the threshold values 

were not specified than the BIT algorithm is an appropriate algorithm for classifying 

the eye-movement events. Because this algorithm can individually specifies the 

threshold values for the eye-movement data which is gathered by eye-tracking 

device. The other algorithms can be applicable if specific threshold values are 

known. Hence, the threshold values are critical for the event detection in these 

algorithms. As a conclusion, for better interpretation of eye research, appropriateness 

of the algorithm based on the research specific features need to be considered. 
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CHAPTER 4 

USING EYE-MOVEMENT EVENTS TO DETERMINE SCENARIO 

DIFFICULTY LEVELS 

Technology-enhanced educational environment, provide several benefits to improve 

surgical education programs. For instance, simulation is one of the technologies that 

allows trainees to perform clinical activities interactively by recreating such 

operations in a computer-based system without exposing patients to the associated 

risks (Maran & Glavin, 2003; Munshi et al., 2015). However, still there is a need for 

research to develop strategies for improving the curriculum integration of these 

systems and for creating standardized approaches. In this respect, the mental 

workload theory and the eye-tracking technology are two important concepts that can 

be implemented in surgical education programs.  

The mental workload concept has long been accepted as an essential aspect of 

individual performance within complex systems (Xie & Salvendy, 2000). It is 

reported that mental workload can change the performance of individuals (Zheng, 

Cassera, Martinec, Spaun, & Swanström, 2010) and further affect the competence of 

the whole system (Xie & Salvendy, 2000). Accordingly, system developers need 

certain models to assess the mental workload imposed on individuals at an early 

stages so that alternative system designs can be appraised (Xie & Salvendy, 2000). 

At the same time, mental workload can negatively affect performance and increase 

the probability of errors (Zheng et al., 2010), and researchers have spent a great deal 

of effort developing measures and probes of mental workload (Ahlstrom & 

Friedman-Berg, 2006). For instance, Moray stated that adjusting the allocation of 

mental workload could reduce human errors, improve system safety, and increase 

productivity (Moray, 1988). 
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Eye-tacking provides a valuable source of information, and events such as fixations, 

blinks, and pupil diameter can be used to assess the mental workload (Tsai, Viirre, 

Strychacz, Chase, & Jung, 2007). Accordingly, there are several studies conducted 

on the assessment of mental workload by using eye-tracking technology. A precise 

evaluation of mental workload will be essential for developing systems that manage 

user attention (Atkins, Tien, Khan, Meneghetti, & Zheng, 2013; Iqbal, Zheng, & 

Bailey, 2004). Researchers have used eye-movement events found to correlate with 

cognitive demands (Ahlstrom & Friedman-Berg, 2006). For instance, (Benedetto et 

al., 2011) examined the changes in blink duration and blink rate in a simple driving 

task and stated that blink events reflect the effects of visual workload. Another study 

evaluates the mental workload by developing combined measures based on various 

physiological indices (Ryu & Myung, 2005). To determine the mental workload, 

three physiological signals were recorded; these are: alpha rhythm, eye blink interval, 

and heart rate variability (Ryu & Myung, 2005). The study of (de Greef, Lafeber, van 

Oostendorp, & Lindenberg, 2009) describes an approach for objective assessment of 

mental workload by analyzing the differences in pupil diameter and several aspects 

of eye-movement under different levels of mental workload. Eye-movement events 

are also used in medicine for diagnoses, treatment and training purposes (Jarodzka et 

al., 2017) and for clinical applications such as Alzheimer’s (Crawford et al., 2005), 

HIV-1 infected patients with eye-movement dysfunction (Sweeney et al., 1991), and 

schizophrenia (Flechtner et al., 1997). Studies show that these events provide crucial 

information about how users interact with complex visual displays (Marshall, 2002). 

The field of radiology and visual search (Nodine & Kundel, 1987) and laparoscopic 

surgery training (Law, Atkins, Kirkpatrick, & Lomax, 2004; G. Tien, Atkins, Zheng, 

& Swindells, 2010) are among the cases in medicine where eye-tracking approach 

has been adopted. To provide an example, according to the study (Zheng et al., 

2015b), participants perform a simulated laparoscopic procedure, and when the task 

difficulty is increased, the task completion time and pupil size also increase as a 

result. 

Previous studies were conducted mostly on pupil size changes, but there are other 

eye-movement events, fixation for example, that can be informative for 
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understanding mental workload. Fixation occurs when eye-movements are nearly 

still and in order to assemble necessary information. Accordingly, in this study 

number of fixation and fixation duration events are used to validate the mental 

workload imposed by different scenarios. As changes in eye-movement events, such 

as number of fixation and fixation duration, with changes in mental workload are 

likely affected due to the nature of the scenarios (Tsai et al., 2007), understanding the 

surgeon’s mental workload while performing surgical operations is crucial for 

assessing task difficulties. Hence, this study attempts to understand the mental 

workload changes of the participants through their eye-movement events, namely 

number of fixation and fixation duration, while performing different surgical tasks. 

The authors believe that, this information will be very helpful to better design, order 

and adapt related computer-based simulation technologies according to the individual 

requirements and progress of the trainees. 

4.1 Results 

Four different computer-based simulation scenarios are performed with dominant-

hand, non-dominant hand and both-hands. During this process, eye-movement data is 

recorded by an eye-tracker. The results were analyzed using statistical methods 

aimed to better understand the surgeons’ behaviors in these different simulation 

scenarios.  

The recorded data was classified using an open-source eye-movement classification 

algorithm (Binocular-Individual Threshold-BIT). BIT algorithm, developed by (van 

der Lans et al., 2011) was utilized which is a velocity-based algorithm to classify 

fixations from the data with individual-specific thresholds. For the evaluation of 

differences based on scenario difficulties, the number of fixation and fixation 

duration events were used. 

In all, 276 (23 surgeons, 4 scenarios, and 3 hand conditions) datasets were recorded, 

significantly increasing the accuracy of the results in this work. To evaluate and 

compare the differences among the difficulty levels of the scenarios, the eye-

movement events, number of fixation, fixation duration, were analyzed. 
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4.1.1 Number of Fixation  

A non-parametric Friedman test of differences among the repeated measures was 

conducted for the scenario difficulty level effect on the number of fixation. The 

effect of the scenario was significant (in all p < .05) on the number of fixation 

according to the results. While the hand condition is fixed, the results of the analysis 

of the repeated measurements differ according to the scenarios. Based on the 

Friedman test for different measurement groups, there is a statistically significant 

difference between the number of fixation when using the dominant-hand (χ2 = 

37.08, p < 0.05) for different scenarios. Scenario-1 has the lowest mean rank for the 

number of fixation (1.57), while Scenario-2 has the highest (3.78). When using the 

non-dominant hand (χ2 = 50.18, p < 0.05) for different scenarios, Scenario-1 has the 

lowest mean rank for the number of fixation (1.26) while Scenario-2 has the highest 

(3.70) number of fixation. According to the test results when using both-hands (χ2= 

52.74, p < 0.05) for different scenarios, Scenario-1 has the lowest mean rank for the 

number of fixation (1.07) while Scenario-2 has the highest mean rank (3.80) for the 

number of fixation . According to the results of the three hand conditions for the 

number of fixation measure, the scenario that makes number of fixation larger is 

reported (Figure 4.1). Generally, in Scenario-2 the number of fixation becomes larger 

compared to the other scenarios. 

 

Figure 4.1 Number of Fixation Differences among Scenarios 
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4.1.2 Fixation Duration 

A non-parametric Friedman test of differences among the repeated measures was 

conducted for the scenario effect on fixation duration. The effect of scenario was 

significant (in all p < .05) on the fixation duration according to the results. While the 

hand condition is fixed, the results of the analysis of the repeated measurements 

differ according to the scenarios. According to Friedman test for different 

measurement groups, there is a statistically significant difference between the 

fixation duration when using the dominant-hand (χ2 = 52.41, p < 0.05) for different 

scenarios. Scenario-1 has the lowest mean rank for the fixation duration (1.04) while 

Scenario-2 has the highest mean rank for the (3.70) fixation duration. When the non-

dominant hand is used (χ2= 54.49, p < 0.05) for different scenarios, Scenario-1 has 

the lowest mean rank for the fixation duration (1.04) while Scenario-4 has the 

highest mean rank for the (3.52) fixation duration. In the both-hand condition (χ2 = 

65.56, p < 0.05), Scenario-1 has the lowest mean rank for the fixation duration (1.00) 

while Scenario-2 has the highest mean rank for the (3.96) fixation duration. 

According to the results of the three hand conditions, the scenario that makes the 

fixation duration longer is reported (Figure 4.2). In Scenario-2 and Scenario-4 the 

fixation duration becomes larger compared to the other scenarios. 

 

Figure 4.2 Fixation Duration Differences among Scenarios 
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4.2 Discussion and Conclusion 

This research describes an approach for an objective assessment of mental workload 

by analyzing the differences in the number of fixation and fixation duration under 

different levels of mental workload while surgeons perform simulated scenarios. The 

eye-movement data was collected with an eye-tracking device and classified into 

number of fixation and fixation duration events with an eye-movement classification 

algorithm. There are many other eye-movement classification algorithms, but in this 

study an open-source eye-movement classification algorithm, BIT, was used. The 

reason behind this choice was that BIT algorithm is eye-tracker independent and easy 

to implement and use. The aim of this study is to examine whether the number of 

fixation and fixation duration events can, indeed, be indicators for mental workload 

and whether there are any among the imposed mental workloads within different 

scenarios. According to the results, the number of fixation and fixation duration both 

show a significant increase if the mental workload increases. For understanding the 

differences between the scenarios, four of them were developed in this study; two 

were simulated surgical models and the other two were general models. The results 

can be summarized as highlighted below: 

 In the dominant-hand condition, Scenario-1 has the lowest mean rank for the 

number of fixation (1.47) and fixation duration (1.04) while Scenario-2 has 

the highest mean rank for the number of fixation (3.78) and fixation duration 

(3.70).  

 When using the non-dominant hand, Scenario-1 has the lowest mean rank for 

the number of fixation (1.26) and fixation duration (1.04), while Scenario-2 

has the highest mean rank for number of fixation (3.70) and Scenario-4 has 

the highest mean rank for fixation duration (3.52).  

 When using both-hands, Scenario-1 has the lowest mean rank for the number 

of fixation (1.07) and fixation duration (1.00), whereas Scenario-2 has the 

highest mean rank for number of fixation (3.80) and fixation duration (3.96). 
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In general, it can be concluded that in the scenarios that are designed by using the 

models that simulate the operational area (Scenario 2 & 4), the fixation duration and 

number of fixation values become higher compared to the other group of scenarios 

(Scenario 1 & 3). When the hand condition is evaluated descriptively, it can be 

concluded that in all scenarios, mostly under the non-dominant hand and both-hand 

conditions, the fixation duration and number of fixation events are higher compared 

to the dominant-hand condition. However, the effect of the hand condition on these 

events needs to be researched in further detail. 

In previous studies, it has been stated that the pupil diameter and fixation time both 

show a general significant increase if the mental workload increases (de Greef et al., 

2009). Another study stated that the pupil size increased in response to task difficulty 

(Nakayama, Takahashi, & Shimizu, 2002). (Iqbal et al., 2004) also stated that more 

difficult tasks demand longer processing times, induce higher subjective ratings of 

mental workload, and reliably evoke greater pupillary response at corresponding 

subtasks than a less difficult task. Additionally, (Zheng et al., 2015b) stated that the 

pupil size of surgeons is influenced depending on the task difficulties increasing as 

the difficulty level elevates. It is also reported that the fidelity level is a crucial factor 

affecting the mental workload (Munshi et al., 2015). In support to these studies, our 

results show that the scenarios based on simulated tasks using surgical models 

(higher level of fidelity) increase surgeons’ mental workloads. Hence, it can be 

concluded that eye-movement events, such as number of fixation and fixation 

duration, can be used to increase our knowledge of the mental workload of surgical 

trainees.  

Additionally, as there are very limited studies analyzing the eye-movement behaviors 

of endo-neurosurgery residents, there are no standards in classifying the simulation 

content according to the level of surgical skills. Similarly, the metrics that can be 

used to evaluate the skill levels of these residents are also very limited and there are 

no standards on these metrics, either. Hence, the results of this study encourage 

researchers to develop other standardized approaches for using objective metrics in 

surgical skill performance, and provides additional insights about the threshold 

values of the novice or intermediate level of endo-neurosurgery residents’ eye-
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movement events. Additionally, the results may guide instructional system designers 

in this field to better organize the content of computer-based simulation scenarios 

based on the eye-movement behaviors of the trainees. 
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CHAPTER 5 

DETERMINING SURGICAL SKILL LEVELS  

Surgical skills assessment is a critical process to ensure competence and prevent 

clinical errors while developing effective instructional methods for such evaluation. 

Currently, the assessment of surgical residents’ skill levels is based on a subjective 

approaches and conventional methods and, as such, open to bias and questionable 

rationality (Eubanks et al., 1999; Feldman, Hagarty, Ghitulescu, Stanbridge, & Fried, 

2004; Resnick, Taylor, & Maudsley, 1991; Richstone et al., 2010; Wanzel, Ward, & 

Reznick, 2002).  

It is commonly acknowledged that the skill levels of surgeons vary (Uhrich, 

Underwood, Standeven, Soper, & Engsberg, 2002). Several studies have reported 

that more effective skill level assessment techniques and training evaluation systems 

could improve skill-based training programs and, accordingly, patient health care 

(Reiley, Lin, Yuh, & Hager, 2011). Assessment is crucial for adapting the content 

and level of training programs to the surgical residents’ needs and qualifications, 

providing appropriate feedback for both the trainees and educators, and improving 

the curriculum (Cagiltay, Ozcelik, Sengul, & Berker, 2017). However, traditional 

assessment methods have many shortcomings, such as subjective evaluation, need 

for an expert, and need for a standardized methods to assess surgical skills (Ahmidi, 

Ishii, Fichtinger, Gallia, & Hager, 2012; Moorthy, Munz, Sarker, & Darzi, 2003). 

Objective evaluation of surgical residents is very important and necessary, but 

difficult to achieve. In this context, there is a need for objective metrics to evaluate 

the skill levels of surgical residents. To fill this gap, new technologies can be used 

advantageously by recording the eye-movements of surgeons and analyzing such 
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data to provide a cost-effective, automated, and objective basis for assessing a 

surgeon's skill level (Ahmidi et al., 2012).  

Eye-tracking provides objective metrics about human behavior (Bröhl et al., 2017; 

Yarbus, 1967). Currently, eye-tracking systems have many beneficial properties and 

it is easy to record and analyze eye-movement data with these systems (T. Tien et al., 

2015). Hence, eye-tracking is being used for assessing and understanding the 

differences between skill levels in the medical domain. It has been reported that 

surgical skill levels can be objectively evaluated by eye-tracking metrics through 

virtually simulated and live environments (Richstone et al., 2010). Additionally, it 

has been reported that the differences in performances are, in fact, differences in the 

information-processing capabilities of the left and right hemispheres of the brain, 

implying that when visual control is required, the dominant-hand will perform better 

than the non-dominant hand and both-hands (Hoffmann, 1997). For instance, (J. 

Vickers, 1995) examined the change in eye-movements between expert and novice 

basketball players in foul shooting, and reported that earlier in a shot, expert 

basketball players' visual system programs their motor control system, which means 

that they do not need to follow the entire shooting process with their eyes, yet, the 

novice ones use their visuals to adjust their shots until releasing the ball. Also, 

(Kasarskis, Stehwien, Hickox, Aretz, & Wickens, 2001) reports differences between 

the eye-movements of expert and novice pilots while simulating the landing 

operation, and it was shown that experts’ fixation times are shorter than novices 

because the former assemble the necessary information more rapidly. Virtually 

simulated environments allow surgical residents to perform clinical operations 

interactively in computer-based systems without risks (Gallagher & Satava, 2002; 

Lababidi, Alyousef, & Munshi, 2015; Maran & Glavin, 2003). Such, virtual 

scenarios are developed for surgical-skill development and assessment requirements 

for surgery purposes (Gallagher & Satava, 2002; McNatt & Smith, 2001).  

Accordingly, in this study a surgical simulation scenario is developed for surgical 

residents. Even though virtual simulations provide alternatives to improve education 

and assessment in surgery education programs and allow for several objective 

assessment measures (Oostema, Abdel, & Gould, 2008), there are not many existing 
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tools for assessing the overall performance of surgical residents (Cagiltay et al., 

2017). Therefore, in this study a surgical scenario is performed by surgical residents 

and their eye-movement is were collected while performing the required tasks. Data 

is classified with an open-source eye-movement classification algorithm Binocular 

Individual Threshold (BIT) (van der Lans et al., 2011). This algorithm classifies the 

eye-movement data into number of fixation and fixation duration events. Fixation is 

an eye-movement event when movements are nearly still, and this event occurs to 

assemble the necessary information. Also, the dominant-hand is an important factor 

for performing surgical tasks.  

5.1 Results 

The eye-movement data of surgical residents were collected with an eye-tracking 

device while they performed Scenario-1. The recorded data was classified using an 

open-source eye-movement classification algorithm, namely BIT, designed to 

classify number of fixation and fixation duration events (van der Lans et al., 2011). 

Hence, to understand the differences between the skill levels, number of fixation and 

fixation duration events were used. The results were analyzed using statistical 

methods to predict the skill levels of surgeons based on their eye-movement 

behaviors. The logistic regression analysis was conducted in this study to predict of 

the skill levels of surgeons. 

In this study, the number of fixation and fixation duration events are analyzed. 

Twenty-three (9 intermediate, 14 novice) surgeons performed the simulation 

scenario.  The results show that the number of fixation (Figure 5.1) and fixation 

duration (Figure 5.2) of novices are higher than the intermediate surgeons. 
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Figure 5.1 Number of Fixations of Novice and Intermediate Surgeons 

 

 

Figure 5.2 Fixation Durations of Novice and Intermediate Surgeons 

Logistic regression was performed to ascertain the effects of number of fixation, 

fixation duration and the dominant-hand on the prediction of the participants’ skill 

level. According to the results, the logistic regression model was statistically 

significant, χ2(3) = 15.661, p = .001. The model explained 66.9% (Negelkerke R2) 

of the variance in skill level and correctly classified 91.3% of cases. 

5.2 Discussion and Conclusion 

Assessment of surgical residents’ skill levels is critical because objective evaluations 

are necessary to monitor the progress of surgeons in surgical education programs. 

Also, these measurements are vital to prevent medical errors (Richstone et al., 2010). 

However, assessment of surgical skill levels is typically made by an observer and 

such evaluations do not always yield objective results (Richstone et al., 2010). An 
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ideal evaluation of such skill has to be objective, devoid from bias, and should 

require neither the presence of evaluators nor a review of lengthy operative 

performances (Richstone et al., 2010). The results of this study show that it is 

possible to objectively assess the skill levels of novice and intermediate surgeons 

using eye-movement events such as number of fixation and fixation duration. These 

events could be used to objectively monitor the acquisition of skills throughout 

training programs. The use of eye-movement events is more objective than the 

approaches currently used, and does not involve the time or expense of an expert 

evaluator. Therefore, from this study it can be seen that eye-movement events can 

reliably distinguish intermediate surgeons from novices. In the near future, the data 

obtained from the eye-movements of surgical residents is likely to take the place of 

subjective evaluation methods, and assessments will become more objective in this 

way. 
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CHAPTER 6 

DETERMINING MENTAL WORKLOAD FROM PUPIL SIZES 

CONSIDERING HAND CONDITION 

When compared with traditional methods, endoscopic surgery provides several 

benefits. It has been reported that people who underwent endoscopic surgery instead 

of traditional open procedures  experience a faster recovery period and less pain 

(Feng, Rozenblit, & Hamilton, 2007). In these operations, smaller size incisions are 

used, and unlike traditional methods, surgeons need to use both-hands effectively. 

For this reason, the surgeons’ skills in performing tasks with their dominant-, non-

dominant and both-hands are very critical for the patients’ safety and quality of 

operations.  

According to the mental workload theory, there is a correlation between the rate at 

which knowledge is handled by the human operator, and the rate at which decisions 

are taken (Moray, 2013). In the literature, it is stated that mental workload is related 

to several physiological measures, namely heart rate, blink frequency and duration, 

pupil size, electro-dermal activity, respiratory frequency and other variables derived 

from EEG (Hogervorst, Brouwer, & van Erp, 2014). Factors such as hand condition 

are most probably effective on the mental workload of surgical residents. Parallel to 

the mental workload theory, psycho-physiological studies show that eye-tracking is 

broadly used to collect response parameters from the eye-movement data to analyze 

cognitive processes underlying visual behavior (Berger, Winkels, Lischke, & 

Höppner, 2012). Additionally, cognitive load theory describes how the mental effort 

of learners is influenced by the design of the learning material (Mayer & Moreno, 

2003; Sweller, 1988, 1994).  
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Studies show that human pupillary response is satisfactory evidence for the 

relationship between pupil size and a wide range of important cognitive variables, 

including mental workload (Andreu-Perez, Solnais, & Sriskandarajah, 2016; 

Bradshaw, 1967; Hess & Polt, 1964; Kahneman, 1973; Kahneman, Beatty, & 

Pollack, 1967; Klingner, Tversky, & Hanrahan, 2011; Menekse, Cagiltay, Ozcelik, & 

Maras, 2017; Simpson, 1969); hence, there exists a relationship between cognitive 

load and pupil diameter (Beatty & Lucero-Wagoner, 2000). Supportively, other 

studies report that pupil size is an important indicator of the brain function (Joshi, Li, 

Kalwani, & Gold, 2016; Murphy, O'connell, O'sullivan, Robertson, & Balsters, 2014; 

Rajkowski, 1993; Varazzani, San-Galli, Gilardeau, & Bouret, 2015). 

Today’s eye-tracking technology provides priceless physiological data to better 

understand the consumption of resources through ocular activity, which is closely 

related to the neural networks underlying the brain (Andreu-Perez et al., 2016; 

Jarodzka et al., 2017); it has also been reported that this technology can be used for 

high-temporal-resolution tracking of cognitive workload (Wierda, van Rijn, Taatgen, 

& Martens, 2012). Therefore, current advances in the consistency of the eye-tracking 

methodology in addition to the increasing accessibility of affordable simulation and 

modeling technology have widened research prospects in a range of areas and 

applications (Andreu-Perez et al., 2016). In addition, pupil size changes have been 

suggested as a metric for evaluating mental workload while complex visual tasks are 

performed (Andreu-Perez et al., 2016). 

For instance, studies report that changes in pupil diameter might reflect neuronal 

activity and cognitive functions throughout some parts of the brain (Joshi et al., 

2016; Zekveld, Heslenfeld, Johnsrude, Versfeld, & Kramer, 2014). In another study, 

pupil size changes have recommended as a biomarker in early-phase detection of 

Alzheimer’s (Andreu-Perez et al., 2016).  

Additionally, the relationship between pupil size and information processing load in 

a variety of cognitive tasks is also well proven (Jiang, Atkins, Tien, Bednarik, & 

Zheng, 2014; Zekveld et al., 2014), while pupil size dynamics have been shown to be 

a reliable measure to investigate the cognitive processes involved in sentence 
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processing and memory functioning (Fernández, Biondi, Castro, & Agamenonni, 

2016). As the human mental capacity is a finite resource, the extent of achievement 

of a complex task relies on the task requirements to be performed (Cassenti & 

Kelley, 2006). It is reported that the pupil response pattern is distinguishable 

depending on different levels of task difficulty as the pupil diameter increases in 

harder tasks (Jiang et al., 2014). Studies conducted in this area show that, based on 

psychomotor evidence regarding surgeons’ performances, task specific training 

curricula can be designed to improve the related skills (Zheng, Jiang, & Atkins, 

2015a). Especially, eye-tracking applications are being increasingly used in different 

areas. The accessibility of affordable devices from monitor screens, to goggles and 

computer peripherals has extended this application area in a variety of disciplines 

such as medicine, commerce and education (Andreu-Perez et al., 2016). 

Several eye-tracking studies conducted on physiological signs have been used to 

evaluate surgeons’ mental workloads (Zheng et al., 2015a). The results of past 

research suggest that, when the surgical tasks become difficult, the mental workload 

increases as evident from the pupil size changes. Additionally results of earlier 

studies about surgeons also show that, due to the long tool shaft and the lack of depth 

information when projecting the scene inside the body to a two-dimensional screen, 

the task requirements in laparoscopic surgery are considered as higher (more 

demanding) than in open surgery (Jiang et al., 2014). Also, when the task difficulty 

level increases in the surgical laparoscopic procedures, the subjects’ peak pupil size 

also increases (Zheng et al., 2015a). However, in the literature there are not many 

studies conducted to better understand how the pupil size changes correlate with the 

level of the task difficulty in an eye-hand coordination movement (Jiang et al., 2014). 

Therefore, in this study the changes of surgeons’ physiological signals are examined 

related with the mental workload by considering their eye-movements in different 

hand conditions.  

This study is an experimental one and conducted on a computer-simulated surgical 

task with 23 surgical residents. In detail, this study attempts to better understand the 

influence of the hand condition (dominant-, non-dominant, or both-hands) on the 

eye-movements of surgeons while they perform a skill-based surgical task in a 
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computer simulated environment. The results of this study expected to guide 

instructional system designers to better address the skill development requirements 

especially for educational CAASS. 

6.1 Results 

In order to fully grasp the influence of the hand condition (dominant-, non-dominant, 

or both-hands) on the performance of skill-based surgical tasks in a computer-based 

simulated environment, right eye pupil sizes, left eye pupil sizes and average both-

eye pupil sizes of 23 surgical residents are examined. An endoscopic surgery was 

performed with an endoscope and several long, thin instruments through small 

incisions. According to the medical requirements, in this study a simulation scenario 

of an endoscopic procedure was modeled in an educational computer-based-

simulation environment (ECE). The pupil sizes of the surgical residents were 

collected with an eye tracker while they were performing the Scenario-2 performed 

with the haptic devices under different hand conditions (dominant-, non-dominant, 

both hand). 

A non-parametric Friedman test of differences among repeated measures was 

conducted for hand condition effect on left eye pupil size and rendered a Chi-square 

value of 11.57 which was significant (p < 0.010), as seen from Table 6.1. Post hoc 

analysis with Wilcoxon signed-rank tests was conducted with a Bonferroni 

correction applied, resulting in a significance level set at p < 0.017. There were no 

significant differences (Z = -1.765, p = 0.078) between the mean of left eye pupil 

sizes of the participants while they were performing the tasks under the dominant 

hand condition (18.37, SD = 3.22), and non-dominant hand condition (19.27, SD = 

2.13). Similarly, there were no significant differences (Z = -2.103, p = 0.035) 

between the mean of left eye pupil sizes of the participants while they were 

performing the tasks under the dominant hand condition (18.37, SD = 3.22), and 

both-hands condition (19.89, SD = 2.76). Finally, there were no significant 

differences (Z = -1.583, p = 0.113) between the mean of left eye pupil sizes of the 

participants while they were performing the tasks under the non-dominant hand 

condition (19.27, SD = 2.13) and both-hands condition (19.89, SD = 2.76). This 
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result indicates that the hand condition significantly effects the left eye pupil size 

however there is no significant difference on the left eye pupil size among different 

hand conditions.  

A non-parametric Friedman test of differences among repeated measures was 

conducted for hand condition effect on right eye pupil size and rendered a Chi-square 

value of 16.44 which was significant (p < 0.010), as seen from Table 6.1. Post hoc 

analysis with Wilcoxon signed-rank tests was conducted with a Bonferroni 

correction applied, resulting in a significance level set at p < 0.017. There were no 

significant differences (Z = -1.491, p = 0.126) on the mean of the right eye pupil 

sizes of the surgical residents, while they were performing the computer simulated 

surgical tasks under the dominant hand condition (18.56, SD = 2.73), and non-

dominant hand condition (19.12, SD = 2.10). However, there was a statistically 

significant (Z = -3.535, p = 0.000) reduction on the mean of the right eye pupil sizes 

of the surgical residents while they were performing the computer simulated surgical 

tasks under the dominant hand condition (18.56, SD = 2.73), compared to under the 

both-hands condition (20.34, SD = 2.60). Similarly, there was a statistically 

significant (Z = -2.801, p = 0.005) reduction on the mean for the right eye pupil sizes 

of the surgical residents while they were performing the computer simulated surgical 

tasks under the non-dominant hand condition (19.12, SD = 2.10) compared to under 

the both-hands condition (20.34, SD = 2.60). 

A non-parametric Friedman test of differences among repeated measures was 

conducted for hand condition effect on average of both-eyes pupil sizes and rendered 

a Chi-square value of 11.57 which was significant (p < 0.010), as seen from Table 

6.1. Post hoc analysis with Wilcoxon signed-rank tests was conducted with a 

Bonferroni correction applied, resulting in a significance level set at p < 0.017. No 

significant differences (Z = -1.522, p = 0.128) on the mean for average of left and 

right eye pupil sizes was found while the surgical residents were performing the 

computer simulated surgical tasks under the dominant hand condition (18.47, SD = 

2.87), and non-dominant hand condition (19.23, SD = 2.01). Similarly, no significant 

differences (Z = -2.192, p = 0.028) on the mean of the average of left and right eye 

pupil sizes was found while the surgical residents were performing the computer 
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simulated surgical tasks under the non-dominant hand condition (19.23, SD = 2.01) 

and the both-hands condition (20.12, SD = 2.62). However, there was a statistically 

significant (Z = -2.499, p = 0.012) reduction in the mean of the average of left and 

right eye pupil sizes of the surgical residents while they were performing the 

computer simulated surgical tasks under the dominant hand condition (18.47, SD = 

2.87), when compared to the  both-hands condition (20.12, SD = 2.62). 

Table 6.1 Friedman Test Statistics for Pupil Size 

 Left Eye Right Eye Both Eyes 

N 23.00 23.00 23.00 

Chi-Square 11.57 16.44 11.57 

df 2.00 2.00 2.00 

p 0.00 0.00 0.00 

 Mean Rank 

Dominant-hand 1.52 1.48 1.48 

Non-dominant hand 1.96 1.87 2.04 

Both-hands 2.52 2.65 2.48 

The results indicate that, when the task was performed under different hand 

conditions, there is a significant difference among the left, right and the average of 

both eyes pupil sizes.  As seen from Figure 6.1, under the both-hand condition, the 

left eye and the right eye pupil sizes as well as the average pupil sizes of both eyes 

are larger when compared to the dominant-hand and non-dominant hand conditions.  

 

Figure 6.1 Mean Ranks of Pupil Size in Different Hand Conditions 
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6.2 Discussions and Conclusion 

The main aim of the study was to better understand the influence of hand conditions 

on the mental workload of surgical residents. For this purpose, while performing 

computer-simulated surgical tasks, the participants' pupil sizes were recorded and 

analyzed. Surgeons performed the same tasks under dominant-hand, non-dominant 

hand, and finally both-hand conditions. The Friedman statistical analysis method was 

used to better understand the effect of different hand conditions on pupil sizes.  The 

results of this study show that, while performing computer-simulated surgical tasks, 

the hand condition (dominant-hand, non-dominant hand and both-hand) significantly 

affects the pupil sizes (left eye pupil size, right eye pupil size and average of both eye 

pupil sizes) of the participants. According to this result, under both-hand conditions, 

the pupil sizes of the surgical residents become larger than other conditions (non-

dominant and dominant-hand). Earlier studies reported that pupil sizes grow in direct 

proportion to the mental workload (Beatty & Lucero-Wagoner, 2000; Hess & Polt, 

1964; Zheng et al., 2015a). 

Also it is noted that mental workload is generally defined as the ratio between the 

capacity of a person and task demands, and that mental workload is high when the 

task demands exceed capacity (Strang, Best, & Funke, 2014). Mental workload has 

been described as a subjective perception of the association between mental 

processing ability and the amount of processing required to perform a task (Strang et 

al., 2014). Knowledge of a person's mental workload will be useful in assessing and 

designing systems or working conditions, such as monitoring and helping people at 

work (Brouwer et al., 2012). Hence, under the both-hand condition the simulated 

surgical tasks are regarded as harder than under other hand conditions, indicating that 

under the both-hand conditions the mental workload increases.  

According to the results, it is seen that surgical residents have more difficulty when 

using both-hands. Since in real operations it is necessary to use both-hands in a 

coordinated fashion, surgical residents’ skills under both-hand conditions need to be 

assessed and improved systematically during surgical education programs. As the 

pupil sizes appear to provide an objective assessment of the mental workload among 



 
63 

surgical residents, this information can be used to better evaluate and guide skill 

improvements during simulation-based surgical training programs. The pupil size 

measures are capable of providing instructional system design alternatives for 

individualized training programs. This study encourages instructional system 

developers of simulation-based surgical education programs to utilize pupil size data 

for better guiding and assessing the trainees’ skill improvements. 

This study was conducted on surgical residents, a majority of whom used their right 

hands as the dominant-hand. Since there were only three participants whose 

dominant-hand was their left hand, a comparison could not be conducted in this 

study. However, in future attempts the dominant-hand being left or right can also be 

evaluated as a factor. Additionally, similar studies can also be conducted with people 

from other domains, such as pilots, users of intricate machines and systems, and so 

on. 
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CHAPTER 7 

EFFECT OF EXPERIENCE LEVEL AND HAND CONDITION ON EYE-

MOVEMENT EVENTS 

Eye-tracking technology provides objective measures about human behaviors (Bröhl 

et al., 2017; Yarbus, 1967). Currently, eye-tracking systems have many useful 

features and it is easy to collect and analyze data with these systems (T. Tien et al., 

2015). Eye-tracking is being used by many researchers to investigate the behavior 

patterns of experts in various fields such as aviation (Schriver, Morrow, Wickens, & 

Talleur, 2008), arts (Vogt & Magnussen, 2007), sports (North, Williams, Hodges, 

Ward, & Ericsson, 2009) and driving (Crundall, Underwood, & Chapman, 1999). For 

instance, (J. Vickers, 1995) examined the change in eye-movements between expert 

and novice basketball players in foul shooting. It is reported that, earlier in a shot, 

expert basketball players' visual system programs their motor control system which 

means that they do not need to follow the entire shooting process with their eyes.  

However, novice basketball players use their visuals to adjust their shots until they 

release the ball (J. Vickers, 1995). Another study (J. Vickers, 2003) differentiates the 

eye-movements of expert and novice golf players, and reporting that expert players 

make fewer saccadic eye-movements. Also, (Kasarskis et al., 2001) report the 

differences between the eye-movements of expert and novice pilots while simulating 

the landing operation. According to that work experts’ fixation times are shorter than 

the novices’ because the former tended to acquire the necessary information faster. 

Studies also show that there are several benefits associated with eye-tracking 

technology in the field of medicine. For instance, it is reported that expert 

radiologists generally do not scan the edges of the lungs and, instead, look at the 

other regions because there are fewer lesions in the corners (Nodine & Mello-Thoms, 
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2000). According to them, novice radiologists are not aware of this and, hence, 

examine the corner regions of the lungs as well (Nodine & Mello-Thoms, 2000). 

Significant differences are reported in gaze patterns between novice and expert 

surgeons while watching surgical videos (Khan et al., 2012). As a result of a meta-

analysis, it is reported that experts’ fixation duration are shorter than non-experts’ 

(Gegenfurtner, Lehtinen, & Säljö, 2011). However, their number of fixations on 

target locations are higher than non-experts’ where the latter split their time between 

focusing on the target and tracking the tool (M. R. Wilson, McGrath, et al., 2011). It 

is also reported that the number of fixations of experts are higher on task-relevant 

areas, and fewer on task-redundant areas (Gegenfurtner et al., 2011) as well as during 

the entire process (Dogusoy-Taylan & Cagiltay, 2014) than that of the non-experts’. 

Additionally, as a results of a literature review, it is reported that recording the eye-

movements of surgeons may be beneficial both for skill assessment and training 

purposes (Hermens et al., 2013). It is also well-known that there is a need for better 

assessment methodologies for the skill-based training programs (Cagiltay et al., 

2017). Other studies also report the potential benefits of captured gaze patterns to 

improve medical education either as part of an assessment system or in a gaze-

training application (Di Stasi et al., 2017; Eivazi et al., 2017). Eye-tracking metrics, 

through virtually simulated and live environments are also suggested as objective 

measures for surgical skill level assessment purposes (Richstone et al., 2010). 

Studies found in the literature show that eye-tracking systems are also used in 

laparoscopic/endoscopic surgery that is Minimally Invasive Surgery (MIS) in 

general. The validation of MIS training systems continues and these systems provide 

information on surgeons' skill levels, taking into account different measurements, 

namely time, motion economics and number of errors (Law et al., 2004). In addition 

to these measurements, the use of eye-movements in order to develop instructional 

modules for surgical training programs is under investigation by researchers 

(Hermens et al., 2013). Hence, understanding the behaviors and differences between 

intermediate and novice surgeons while performing surgical tasks is important for 
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developing better assessment and instructional materials to support the surgical 

training programs.  

However, a review study also reported that the vast majority of virtual-reality 

psychomotor skills tasks show construct validity for one or more metrics, mainly 

time and motion; however, there is a need for standardized proficiency scores should 

facilitate virtual reality-based laparoscopic psychomotor skills curricula (Sinitsky, 

Fernando, & Berlingieri, 2012). Earlier studies also reported that more work has to 

be done to understand how experienced surgeons attempt to overcome the perceptual 

difficulties inherent in the laparoscopic environment (M. R. Wilson, McGrath, et al., 

2011). Similarly, based on the results of a systematic review conducted in 2013, it is 

concluded that eye-tracking provides reliable quantitative data as an objective 

assessment tool with potential applications in surgical training to improve 

performance. For this reason, this field remains as a promising area of research with 

the possibility of future implementations in surgical skills assessment  (T. Tien et al., 

2014). 

MIS requires the ability to use both-hands at the same time. In MIS operations, 

surgeons use a surgical tool with one hand (usually the dominant one) and an 

endoscope (camera and light source) with the other (usually the non-dominant one), 

implying that they need to improve their eye-hand and left-right hand coordination 

skills. Accordingly, using dominant-hand, non-dominant hand or both-hands create 

mental workload at different levels which can be assessed by pupil size, number of 

fixation, fixation duration, saccade number, saccade duration, pursuit number and 

pursuit duration. Accordingly, it has been suggested that the differences in 

performances are due to information-processing capabilities of the left and right 

hemispheres of the brain (Hoffmann, 1997). It is also suggested that the times for 

hand movements should be similar when movements are made ballistically, and that 

when visual control is required, the preferred (dominant) hand will perform better 

(Hoffmann, 1997). When the non-preferred (non-dominant) hand and both-hands are 

used, then the times for performing the tasks increases (Hoffmann, 1997).  
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Earlier studies also report that expert behavior is manifested in distinct eye-

movement patterns of proactivity, reactivity and suppression depending on the nature 

of the task and the presence of abnormalities at any given moment (Bertram, Helle, 

Kaakinen, & Svedström, 2013). Additionally, it is reported that gaze entropy and 

velocity were significantly higher when surgeons performed the most complex 

surgical procedure (Diaz-Piedra, Sanchez-Carrion, Rieiro, & Di Stasi, 2017). In 

complex environments, the number of fixations increase and fixations durations 

decrease (Vine et al., 2014). In the literature, there are promising results showing that 

training interventions designed to guide optimal gaze control may facilitate the 

performance of surgeons and improve computer-based simulation training programs 

(Behan & Wilson, 2008; Causer, Vickers, Snelgrove, Arsenault, & Harvey, 2014; 

Gegenfurtner, Lehtinen, Jarodzka, & Säljö, 2017; J. N. Vickers & Williams, 2007; 

Vine, Chaytor, McGrath, Masters, & Wilson, 2013; Vine et al., 2012; M. R. Wilson, 

Vine, et al., 2011). 

However, in the literature there are very limited studies analyzing the mental 

workload of surgeons while performing surgical tasks in different hand conditions. 

Therefore, in this experimental study four simulated applications of a surgical task 

are presented with an eye-tracking approach to understand the mental workload in 

different hand conditions: the dominant-hand, the non-dominant hand, and both-

hands. In the literature studies mostly conducted on the differences between the 

experts and novices in other domains but in this study it is aimed to understand the 

differences between intermediate and novice surgeons which is more difficult to 

differentiate. 

Also, few studies have been attempted to better understand the eye-movements of the 

surgeons in the field of endo-neurosurgery. For this reason, in this study an endo-

neurosurgery simulation environment is designed and developed to examine their eye 

and hand coordination skills. Accordingly, this work presents an eye-tracking 

initiative to determine the experience levels of surgeons and the effect of hand 

conditions (dominant, non-dominant and both-hand) from their gaze behaviors while 

performing interactive endo-neurosurgical tasks in different hand conditions. 
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7.1 Results 

Four simulation scenarios have been used for collecting data about intermediate and 

novice surgeons’ eye gaze during operations in a virtually simulated environment 

and performed in different hand conditions. The main assumption of this study is that 

surgeons’ performances in different hand conditions and their skill levels may also 

affect their eye-movements. Therefore, we aim to better understand, firstly, the 

differences between the eye-movements of intermediate and novice surgeons while 

they perform surgical tasks in a computer-simulated environment, and secondly the 

effect of hand condition (dominant-hand, non-dominant hand and both-hand) on their 

eye-movements. The results are analyzed using statistical methods to better 

understand the novice and intermediate surgeons’ behaviors and hand condition 

effects in this environment. The recorded data was classified using open-source eye-

movement classification algorithms.  

As a result, 276 (23 surgeons, 4 tasks, and 3 hand conditions) datasets were recorded, 

which significantly increases the accuracy of the results in this work. To evaluate and 

compare the difference between intermediates and novices, various eye-movement 

events were analyzed: number of fixation, fixation duration, saccade number, 

saccade duration, pursuit number, pursuit duration, and pupil size. 

7.1.1 Number of Fixation  

According to the Mann Whitney test for novices and intermediates, there is a 

statistically significant difference in the number of fixation between the two groups 

as seen in Figure 7.1. Novice surgeons fixated longer than the intermediate surgeons 

according to results of the BIT algorithm for Scenario-1 with dominant-hand (U = 

16, p < 0.05), the I-KF algorithm for Scenario-4 with both-hand (U = 34, p < 0.05), 

and the I-VDT algorithm for Scenario-4 with non-dominant hand (U = 32.5, p < 

0.05). It is seen from the results that there is a difference between intermediate and 

novice surgeons based on their skill levels. 
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D.H.: Dominant-Hand; N.H.: Non-dominant hand; B.H.: Both-Hand 

Figure 7.1 Number of Fixation Differences between Intermediate and Novice 

Surgeons 

A non-parametric Friedman test of differences among repeated measures was 

conducted for the hand condition effect on number of fixation. For Scenario-1, the 

effect of hand condition was significant (in all p < 0.05) on the number of fixation 

according to the results of the algorithms I-HMM χ2(2) = 15.09, I-MST χ2(2) = 

9.689, I-VDT χ2(2) = 21.478, I-VMT χ2(2) = 30.484, I-VT χ2(2) = 9.512, I-VVT 

χ2(2) = 34.308. For the algorithms BIT, I-DT, and I-KF the effect of hand condition 

was not significant (in all p > 0.05). For Scenario-2, the effect of hand condition was 

significant (in all p < 0.05) on the number of fixation according to the results of 

algorithms  I-DT χ2(2) = 28.637, I-HMM χ2(2) = 9.867, I-KF χ2(2) = 9.191, I-MST 

χ2(2) = 10.023, I-VDT χ2(2) = 35.043, I-VMT χ2(2) = 30.522, I-VT χ2(2) = 10.747, 

I-VVT χ2(2) = 35.670. For the BIT algorithm, the effect of hand condition was not 

significant (p > 0.05). For Scenario-3, the effect of hand condition was significant (in 

all p < 0.05) on the number of fixation according to the results of algorithms  BIT 

χ2(2) = 21.217, I-DT χ2(2) = 25.438, I-HMM χ2(2) = 19.727, I-KF χ2(2) = 23.889, I-

MST χ2(2) = 26.847, I-VDT χ2(2) = 19.126, I-VMT χ2(2) = 4.963, I-VT χ2(2) = 

22.091, I-VVT χ2(2) = 8.156. For Scenario-4, the effect of hand condition was 

significant (in all p < 0.05) on the number of fixation according to the results of 
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algorithms BIT χ2(2) = 13.889, I-DT χ2(2) = 13.622, I-HMM χ2(2) = 9.489, I-KF 

χ2(2) = 7.622, I-VDT χ2(2) = 23.143, I-VMT χ2(2) = 13.241, I-VT χ2(2) = 11.565, I-

VVT χ2(2) = 16.637. For the I-MST algorithm, the effect of hand condition was not 

significant (p > 0.05). The AED algorithm was not reported for number of fixation 

because this algorithm does not measure this eye-movement event. 

Table 7.1 Hand Condition Effect on Number of Fixation 

 
I-DT I-HMM I-KF I-MST I-VDT I-VMT I-VT I-VVT BIT 

Scenario 1 
 

NH 
 

DH DH NH DH DH 
 

Scenario 2 BH BH BH NH BH BH NH BH 
 

Scenario 3 BH BH BH BH BH 
 

BH BH BH 

Scenario 4 BH NH BH 
 

BH BH NH BH BH 

DH: Dominant-hand; NH: Non-dominant hand; BH: Both-hand 

According to the results of each eye-movement classification algorithm for the 

number of fixation measure, the hand conditions that make this measure larger is 

reported in Table 7.1. Generally, in both-hand condition the number of fixation 

measure is becomes larger compared to the dominant- and non-dominant hand 

conditions as can be seen from Table 7.1. 

7.1.2 Fixation Duration 

According to the Mann Whitney test for novices and intermediates, there is a 

statistically significant difference in the fixation duration between the two groups as 

seen in Figure 7.2. Novice surgeons’ fixation durations are longer than the 

intermediate surgeons according to the results of the I-VVT algorithm for Scenario-1 

with dominant-hand (U = 30, p < 0.05) and the I-KF algorithm for Scenario-4 with 

non-dominant hand (U = 30.5, p < 0.05). Only the results of  I-VMT algorithm for 

Scenario-3 with both-hand the fixation durations of intermediates are longer than the 

novice surgeons (U = 26, p < 0.05). It is seen from the results that there is a 

difference in fixation durations between intermediate and novice surgeons based on 

their skill levels. 
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Figure 7.2 Fixation Duration Differences between Intermediate and Novice 

Surgeons 

A non-parametric Friedman test of differences among repeated measures was 

conducted for the hand condition effect on fixation duration. For Scenario-1, the 

effect of hand condition was significant (in all p < 0.05) on the fixation duration 

according to the results of algorithms  BIT χ2(2) = 31.391, I-DT χ2(2) = 36.261, I-

HMM χ2(2) = 36.261, I-KF χ2(2) = 36.261, I-MST χ2(2) = 37.130, I-VDT χ2(2) = 

35.565, I-VMT χ2(2) = 32.957, I-VT χ2(2) = 36.261, I-VVT χ2(2) = 32.957. For 

algorithm AED, the effect of hand condition was not significant (p > 0.05). For 

Scenario-2, the effect of hand condition was significant (in all p < 0.05) on fixation 

duration according to the results of algorithms  BIT χ2(2) = 34.696, I-DT χ2(2) = 

35.565, I-HMM χ2(2) = 34.696, I-KF χ2(2) = 34.696, I-MST χ2(2) = 34.696, I-VDT 

χ2(2) = 36.261, I-VMT χ2(2) = 35.043, I-VT χ2(2) = 35.043, I-VVT χ2(2) = 35.565. 

For algorithm AED, the effect of hand condition was not significant (p > 0.05). For 

Scenario-3, the effect of hand condition was significant (in all p < 0.05) on fixation 

duration according to the results of algorithms BIT χ2(2) = 21.913, AED χ2(2) = 

40.261, I-DT χ2(2) = 17.304, I-HMM χ2(2) = 17.043, I-KF χ2(2) = 12.522, I-MST 

χ2(2) = 21.217, I-VDT χ2(2) = 11.565, I-VT χ2(2) = 13.652, I-VVT χ2(2) = 10.522. 

Only for algorithm I-VMT, the effect of hand condition was not significant (p > 

0.05). For Scenario-4, the effect of hand condition was significant (in all p < 0.05) on 

fixation duration according to the results of algorithms  BIT χ2(2) = 31.391, I-DT 
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χ2(2) = 21.913, I-HMM χ2(2) = 21.478, I-KF χ2(2) =18.348, I-MST χ2(2) = 22.261, 

I-VDT χ2(2) = 21.478, I-VMT χ2(2) = 10.738, I-VT χ2(2) = 21.478, I-VVT χ2(2) = 

27.217. Only for algorithm AED, the effect of hand condition was not significant (p 

> 0.05).  

Table 7.2 Hand Condition Effect on Fixation Duration 

 AED I-DT I-HMM I-KF I-MST I-VDT I-VMT I-VT I-VVT BIT 

Scenario 1  NH NH NH NH NH NH DH NH DH 

Scenario 2  BH BH BH BH BH BH BH BH BH 

Scenario 3 DH  BH  BH BH NH BH NH BH 

Scenario 4  BH BH BH BH BH BH BH BH BH 

According to the results for the fixation duration measure, the hand conditions that 

make this measure larger are reported in Table 7.2. Generally, in both-hand condition 

and non-dominant hand condition the fixation duration measure becomes larger 

compared to the dominant-hand condition. 

7.1.3 Saccade Number 

According to the Mann Whitney test for novices and intermediates, there is a 

statistically significant difference in the saccade numbers between these two groups 

as seen in Figure 7.3.  

 

Figure 7.3 Saccade Number Differences between Intermediate and Novice 

Surgeons 
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Novice surgeons’ saccade numbers are larger than the intermediate surgeons 

according to the results of the I-KF algorithm for Scenario-2 with non-dominant 

hand (U = 26.5, p < 0.05) the I-MST algorithm for Scenario-3 with dominant-hand 

(U = 31.5, p < 0.05), and the I-VVT algorithm for Scenario-2 with non-dominant 

hand (U = 29.5, p < 0.05). It is seen from the results that there is difference in 

saccade numbers between intermediate and novice surgeons based on their skill 

levels. 

A non-parametric Friedman test of differences among repeated measures was 

conducted for the hand condition effect on the saccade number. For Scenario-1, the 

effect of hand condition was significant (in all p < 0.05) on saccade number 

according to the results of algorithms I-DT χ2(2) =14.174, I-HMM χ2(2) = 25.622, I-

MST χ2(2) = 9.841, I-VDT χ2(2) = 11.495, I-VMT χ2(2) = 10.705, I-VT χ2(2) = 

15.187, I-VVT χ2(2) = 11.596. For algorithm BIT and I-KF, the effect of hand 

condition was not significant (in all p > 0.05). For Scenario-2, the effect of hand 

condition was significant (in all p < 0.05) on the saccade number according to the 

results of algorithms I-DT χ2(2) = 9.692, I-HMM χ2(2) = 11.231, I-KF χ2(2) = 

21.303, I-MST χ2(2) = 12.289, I-VDT χ2(2) = 17.297, I-VMT χ2(2) = 14.112, I-VT 

χ2(2) = 18.870, I-VVT χ2(2) = 18.870. For algorithm BIT, the effect of hand 

condition was not significant (p > 0.05). For Scenario-3, the effect of hand condition 

was significant (in all p < 0.05) on the saccade number according to the results of 

algorithms BIT χ2(2) = 7.143, I-DT χ2(2) = 25.473, I-HMM χ2(2) = 22.422, I-KF 

χ2(2) = 16.822, I-MST χ2(2) = 15.846, I-VDT χ2(2) = 19.609, I-VMT χ2(2) = 

19.846, I-VT χ2(2) = 15.846, I-VVT χ2(2) =24.261. For Scenario-4, the effect of 

hand condition was significant (in all p < 0.05) on the saccade number according to 

the results of algorithms BIT χ2(2) = 10.522, I-DT χ2(2) = 19.143, I-HMM χ2(2) = 

11.798, I-KF χ2(2) = 8.022, I-MST χ2(2) = 6.494, I-VDT χ2(2) = 6.489, I-VMT 

χ2(2) =8.273, I-VT χ2(2) =12.154. For algorithm I-VVT, the effect of hand condition 

was not significant (p > 0.05). The AED algorithm was not reported for saccade 

number because this algorithm does not measure this eye-movement event. 

For the saccade number measure, the hand conditions that make this measure larger 

according to the results of each eye-movement classification algorithm are reported 
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in Table 7.3. Generally, in both-hand condition and non-dominant hand condition the 

saccade number measure becomes larger compared to the dominant-hand condition. 

Table 7.3 Hand Condition Effect on Saccade Number 

 I-DT I-HMM I-KF I-MST I-VDT I-VMT I-VT I-VVT BIT 

Scenario 1 BH BH BH BH BH BH BH   

Scenario 2 NH NH BH NH NH NH NH NH  

Scenario 3 BH BH BH BH BH BH BH BH BH 

Scenario 4 NH NH NH NH NH NH NH  DH 

7.1.4 Saccade Duration 

According to the Mann Whitney test for novices and intermediates, there is a 

statistically significant difference in the saccade durations between these two groups 

as seen in Figure 7.4. Novice surgeons’ saccade durations are larger than the 

intermediate surgeons based on the results of the AED algorithm for Scenario-1 with 

Dominant-hand (U = 31.5, p < 0.05) and Scenario-1 with Non-dominant hand (U = 

34.5, p < 0.05). It is seen from the results that there is a difference in the saccade 

durations between intermediate and novice surgeons based on their skill levels. 

 

Figure 7.4 Saccade Duration Differences between Intermediate and Novice 

Surgeons 

A non-parametric Friedman test of differences among repeated measures was 

conducted for the hand condition effect on saccade duration. For Scenario-1, the 
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effect of hand condition was significant (in all p < 0.05) on the saccade duration 

according to the results of algorithms AED χ2(2) = 26.584, I-DT χ2(2) = 16.435, I-

HMM χ2(2) = 8.600, I-KF χ2(2) = 7.187, I-MST χ2(2) = 9.708, I-VDT χ2(2) = 

8.330, I-VMT χ2(2) = 11.217, I-VT χ2(2) = 11.934, I-VVT χ2(2) = 11.217. For 

Scenario-2, the effect of hand condition was significant (in all p < 0.05) on the 

saccade duration according to the results of algorithms AED χ2(2) = 36.609, I-DT 

χ2(2) = 14.957, I-HMM χ2(2) = 17.478, I-KF χ2(2) = 18.879, I-MST χ2(2) = 15.913, 

I-VDT χ2(2) = 14.957, I-VMT χ2(2) = 12.783, I-VT χ2(2) = 18.467, I-VVT χ2(2) = 

19.934. For Scenario-3, the effect of hand condition was significant (in all p < 0.05) 

on the saccade duration according to the results of algorithms AED χ2(2) = 38.289, I-

DT χ2(2) = 23.363, I-HMM χ2(2) = 20.957, I-KF χ2(2) = 22.522, I-MST χ2(2) = 

11.565, I-VDT χ2(2) = 16.435, I-VMT χ2(2) = 19.913, I-VT χ2(2) = 12.087, I-VVT 

χ2(2) = 18.087. For Scenario-4, the effect of hand condition was significant (in all p 

< 0.05) on the saccade duration according to the results of algorithms I-DT χ2(2) = 

19.143, I-MST χ2(2) = 10.422. However, the effect of hand condition was not 

significant (in all p > 0.05) on the saccade duration according to the results of 

algorithms AED, I-HMM, I-KF, I-VDT, I-VMT, I-VT, and I-VVT. The BIT 

algorithm was not reported for the saccade duration because this algorithm does not 

classify this eye-movement event. 

Table 7.4 Hand Condition Effect on Saccade Duration 

 AED I-DT I-HMM I-KF I-MST I-VDT I-VMT I-VT I-VVT 

Scenario 1 DH BH BH BH BH BH BH BH  

Scenario 2 DH NH NH BH NH NH NH NH NH 

Scenario 3 NH  BH  BH BH BH BH BH 

Scenario 4  NH  NH NH     

According to the results of each eye-movement classification algorithm for the 

saccade duration measure the hand conditions that makes this measure larger is 

reported in Table 7.4. Generally, in both-hand condition and non-dominant hand 

condition the saccade duration measure is becoming larger comparing to the 

dominant-hand condition. 
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7.1.5 Pursuit Number 

As seen from Figure 7.5, based on the Mann Whitney test for novices and 

intermediates, there is a statistically significant difference in the pursuit numbers 

between these two groups. The novice surgeons’ pursuit numbers are larger than the 

intermediate surgeons according to the results of the I-VMT algorithm for Scenario-1 

with dominant-hand (U = 32, p < 0.05), the I-VMT algorithm for Scenario-2 with 

non-dominant hand (U = 31, p < 0.05) and the I-VVT algorithm for Scenario-2 with 

non-dominant hand (U = 29.5, p < 0.05). Only in the I- VVT algorithm for Scenario-

1 with dominant-hand (U = 31, p < 0.05) are the pursuit numbers of intermediates 

more than the novice surgeons. It is seen from the results that there is a significant 

difference in pursuit numbers between intermediate and novice surgeons based on 

their skill levels. 

 

Figure 7.5 Pursuit Number Differences between Intermediate and Novice 

Surgeons 

A non-parametric Friedman test of differences among repeated measures was 

conducted for the hand condition effect on pursuit number. For Scenario-1, the effect 

of hand condition was significant (in all p < 0.05) on the pursuit number according to 

the results of algorithms I-VDT χ2(2) = 16.242, I-VMT χ2(2) = 6.000 and I-VVT 

χ2(2) = 32.435. For Scenario-2, the effect of hand condition was significant (in all p 

< 0.05) on the pursuit number according to the results of algorithms I-VMT χ2(2) = 
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18.087 and I-VVT χ2(2) = 27.478. However, the effect of hand condition was not 

significant (p > 0.05) on the pursuit number according to the results of the I-VDT 

algorithm. For Scenario-3, the effect of hand condition was significant (in all p < 

0.05) on the pursuit number according to the results of algorithms I-VDT χ2(2) = 

18.747, I-VMT χ2(2) = 21.478, and I-VVT χ2(2) = 26.308. For Scenario-4, the effect 

of hand condition was significant (in all p < 0.05) on the pursuit number according to 

the results of algorithms I-VDT χ2(2) = 17.868, I-VMT χ2(2) = 12.202, and I-VVT 

χ2(2) = 22.220. Algorithms BIT, AED, I-DT, I-HMM, I-KF, I-MST, and I-VT were 

not reported for the pursuit number because they do not classify this eye-movement 

event.  

Table 7.5 Hand Condition Effect on Pursuit Number 

 I-VDT I-VMT I-VVT 

Scenario 1 BH BH DH 

Scenario 2  NH BH 

Scenario 3 BH BH BH 

Scenario 4 NH NH NH 

Table 7.5 reports the larger pursuit number measures according to the hand 

conditions. Generally, in both-hand condition and non-dominant hand condition the 

pursuit number measure becomes larger compared to the dominant-hand condition. 

7.1.6 Pursuit Duration 

According to the Mann Whitney test for novice and intermediate surgeons, there is a 

statistically significant difference in the pursuit durations between these two groups 

as seen from Figure 7.6.  
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Figure 7.6 Pursuit Duration Differences between Intermediate and Novice 

Surgeons 

Novice surgeons’ pursuit durations are larger than the intermediate surgeons based 

on the results of the I-VMT algorithm for Scenario-1 with dominant-hand (U = 32, p 

< 0.05), the I-VMT algorithm for Scenario-3 with non-dominant hand (U = 29, p < 

0.05) and the I-VDT algorithm for Scenario-2 with non-dominant hand (U = 31.5, p 

< 0.05). However, the pursuit durations of intermediate surgeons are longer than the 

novices according to the results of I-VDT algorithm for Scenario-1 with dominant-

hand (U = 28, p < 0.05) and the I-VVT algorithm for Scenario-1 with dominant-hand 

(U = 27, p < 0.05). It can be concluded from the results that there is a significant 

difference in pursuit durations between intermediate and novice surgeons based on 

their skill levels. 

A non-parametric Friedman test of differences among repeated measures was 

conducted for hand condition effect on the pursuit duration. For Scenario-1, the 

effect of hand condition was significant (in all p < 0.05) on the pursuit duration 

according to the results of algorithms I-VDT χ2(2) = 10.174, I-VMT χ2(2) = 33.652, 

and I-VVT χ2(2) = 28.261. For Scenario-2, the effect of hand condition was 

significant (in all p < 0.05) on the pursuit duration according to the results of 

algorithms I-VDT χ2(2) = 14.174, I-VMT χ2(2) = 19.043, and I-VVT χ2(2) = 

15.913. For Scenario-3, the effect of hand condition was significant (in all p < 0.05) 

on the pursuit duration according to the results of algorithms I-VDT χ2(2) = 21.478, 
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I-VMT χ2(2) = 24.609, and I-VVT χ2(2) = 21.478. For Scenario-4, the effect of hand 

condition was significant (in all p < 0.05) on the pursuit duration according to the 

results of algorithms I-VDT χ2(2) = 15.913, I-VMT χ2(2) = 8.696, and I-VVT χ2(2) 

= 11.934. The algorithms BIT, AED, I-DT, I-HMM, I-MST, I-KF, and I-VT were 

not reported for pursuit durations because they do not classify this eye-movement 

event.  

Table 7.6 Hand Condition Effect on Pursuit Duration 

 I-VDT I-VMT I-VVT 

Scenario 1 BH NH DH 

Scenario 2 NH BH BH 

Scenario 3 BH BH BH 

Scenario 4 NH BH NH 

According to the results of each eye-movement classification algorithm for the 

pursuit duration measure, the hand conditions that make this measure larger are 

reported in Table 7.6. Generally, in both-hand condition and non-dominant hand 

condition, the pursuit duration measure tends to become larger compared to the 

dominant-hand condition as can be seen the table. 

7.1.7 Pupil Size 

According to the Mann Whitney test for novices and intermediates, there is a 

statistically significant difference in the pupil sizes between the intermediate and 

novice surgeons as seen from Figure 7.7. Novice surgeons right eye pupil sizes 

become larger than the intermediate surgeons according to the pupil size 

measurement results of Scenario-1 with dominant-hand (U = 31, p < 0.05). It is seen 

from the results that there is difference in pupil sizes between intermediate and 

novice surgeons based on their skill levels. 
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Figure 7.7 Pupil Size Differences between Intermediate and Novice Surgeons 

A non-parametric Friedman test of differences among repeated measures was 

conducted for the hand condition effect on the pupil size. For Scenario-1, the effect 

of hand condition was significant (in all p < 0.05) on the pupil size of left eye χ2(2) = 

26.174, the pupil size of the right eye χ2(2) = 37.130 and the average pupil size of 

both left and right eye χ2(2) = 35.826. For Scenario-2, the effect of hand condition 

was significant (in all p < 0.05) on the pupil size of the left eye χ2(2) = 11.565, the 

pupil size of the right eye χ2(2) = 16.435 and the average pupil size of both left and 

right eye χ2(2) = 11.565. For Scenario-3, the effect of hand condition was significant 

(in all p < 0.05) on the pupil size of the right eye χ2(2) = 7.913 and the average pupil 

size of both left and right eye χ2(2) = 6.870. However, the effect of hand condition 

was not significant (in all p > 0.05) on the left eye pupil size. For Scenario-4, the 

effect of hand condition was significant (in all p < 0.05) on the pupil size of the left 

eye χ2(2) = 18.087, the pupil size of the right eye χ2(2) = 22.261 and the average 

pupil size of both left and right eye χ2(2) = 19.826. 

According to the pupil sizes measured by the eye-tracker, the hand conditions that 

make this measure larger are reported in Table 7.7. Generally, in both-hand condition 

the pupil sizes are become larger compared to the dominant- and non-dominant hand 

conditions. 
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Table 7.7 Hand Condition Effect on Pupil Size 

 LE RE AVG 

Scenario 1 BH BH BH 

Scenario 2 BH BH BH 

Scenario 3  BH BH 

Scenario 4 NH BH BH 
LE: Left eye Pupil Size; RE: Right eye Pupil Size; 

AVG: Average of Left and Right eye Pupil Size 

7.2 Discussions 

This study has two purposes: the first one is to examine the differences between the 

eye-movements of intermediate and novice surgeons in a simulated virtual 

environment; the second one is to analyze the hand condition effect on these 

surgeons’ eye-movements. The study simulates endo-neurosurgery tasks and records 

the gaze data of the surgeons. Such data can vary depending on the experience of the 

subjects, thereby providing useful information by which to train basic MIS skill 

development. Specifically, the present work focusses on the common eye-

movements, namely number of fixation, fixation duration, saccade number, saccade 

duration, pursuit number, pursuit duration and pupil sizes.  

According to the results of this study, it is found that novice surgeons tend to fixate 

more on different objects than the intermediates. Also, they spend more time fixating 

on an object. This result supports that of earlier studies reporting that non-experts 

split their time between focusing on the targets and tracking the tools (M. R. Wilson, 

McGrath, et al., 2011); in addition the fixation durations of experts is shorter than 

non-experts (Gegenfurtner et al., 2011). The main reason for this behavior could be 

that, as the experience level increases, the ability to perceive information is also 

develops, thus reducing the fixation duration among intermediate surgeons is 

becoming shorter. One study (Kasarskis et al., 2001) showed the differences in 

performance between expert and novice pilots based on their eye-movements while 

conducting a landing operation in a simulator. Unsurprisingly, expert pilot’s 

performances were better than the novices, and it was also found that the fixation 

durations of experts were shorter than the novice pilots. This example highlights that 

expert pilots assemble the necessary information quickly than the novice ones. 
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Another study (J. Vickers, 1995) showed that expert basketball players tend to have 

shorter fixation durations than novice players. Expert players use their visual system 

to program their motor system, implying that they do not need to fixate at a point 

longer (J. Vickers, 1995). On the other hand, novice players tend to fixate at a point 

until shooting the ball (J. Vickers, 1995). Therefore, as it is found in this study, 

expert players are likely to have shorter fixation durations because they can gather 

the required information easily and quickly than the novices. 

Saccade numbers and saccade durations also differ between intermediate and novice 

surgeons according to the results of the analysis. Novice surgeons make more 

saccadic movements compared to the intermediate surgeons. Also, the saccade 

durations of novice surgeons are longer than the intermediates. Supportively, the 

study (J. Vickers, 2003) shows this by comparing the eye-movements of expert and 

novice golf players, concluding that novice players tended to make more saccades. 

Whereas expert players made fewer such movements between different locations in 

order to reduce the memory impairment of distance clues the most (J. Vickers, 2003). 

Another study showed that, as well as performing the tasks better, expert surgeons 

made more efficient eye-movements with fewer number of saccades between 

different objects (Koh, Park, Wickens, Ong, & Chia, 2011). Also expert’s saccadic 

rates were lower and the peak velocities were higher according to the novice 

surgeons. In other studies (G. Tien, Atkins, & Zheng, 2012; G. Tien et al., 2010; T. 

Tien et al., 2015), experts were shown to distribute their attention more effectively 

by looking at the necessary locations of a sight at the right time, and attention of the 

experts tends to be more compact and locally defined, with the result that the focus 

of attention does not change as often as the novices.  

According to the results of this study, the differences in the pursuit numbers between 

intermediate and novice surgeons were significant. Novice surgeons tend to follow 

more objects than the intermediates. According to the study (Law et al., 2004), the 

gaze behaviors of expert and novice surgeons are distinctly different. It is stated that 

there were differences between expert and novice surgeons eye gaze behavior types, 

such that novices tend to make more saccades than experts (Law et al., 2004). Also, 

there is a difference between the target gaze and tool following behavior,  experts 
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tend to fixate on the target more frequently than novices, but for the tool following 

behavior experts tend to follow the object less frequently than the novices (Law et 

al., 2004). Due to their unfamiliarity with surgical tools, novice surgeons need to take 

more visual feedback to perform surgical tasks. As a result, they tend to follow the 

operational tools more frequently than the expert surgeons (Law et al., 2004). This 

practices represent an opportunity to learn how to coordinate hand and tool 

movements. 

Furthermore, pupil sizes show vary depending on the experience levels. The pupil 

size of novice surgeons is larger than that of the intermediate ones while performing 

a surgical task. The reason for this is that pupil sizes grow as the mental workload 

increases. While performing the same simulation scenario, the pupil sizes of the 

novices increase, because of additional workload compared to the intermediate 

surgeons. This measure is also an important finding as a way to determine the 

experience levels of individuals, for example if they are novices, intermediates, or 

experts. 

What is more, hand condition has a significant effect on the eye-movement behaviors 

of surgeons. According to the results, under the both-hand and non-dominant 

conditions the pupil sizes, numbers of fixation, saccade and pursuit events and also 

their durations increase compared to the dominant-hand condition. Supportively, in 

the literature it is stated that the non-dominant hand has larger force production 

variability and needs more corrections, thereby requiring greater movement times 

(Annett, Annett, Hudson, & Turner, 1979). Another study stated that the dominant-

hand performance was significantly faster  and always superior to the non-dominant 

hand (Hoffmann, 1997).  

7.3 Conclusion 

Parallel to earlier studies on eye-movement, the results of this study show that there 

are significant differences in the eye behaviors’ of surgeons having different 

experience levels. It has been suggested that by better understanding the differences 

in the eye behaviors of surgeons having different skill levels, appropriate assessment 
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tools and instructional systems can be developed in order to train and improving the 

skill levels of surgeons.  

However, the critical issue for integrating these technologies into the curriculum of 

surgical training programs is the appropriateness of the simulation tools which 

appropriately adapts these strategies into such programs. Our results show that, when 

the tasks are performed under the both-hand condition and the non-dominant hand 

condition, pupil sizes, number of fixations, saccades, pursuit events and their 

durations increase when compared to the dominant-hand condition. Most probably, 

this is because of the level of task complexity. Hence, there is an urgent need to 

develop strategies to better understand the level of task complexity as well as the 

acceptable threshold values for different performance indicators of the tasks specific 

to different surgical skill levels.  

Current computer-based simulation technologies are provide solutions to implement 

such strategies; however, there is a need to adapt this strategy to software 

development processes. In other words, the software development methodology for 

surgical simulation software for training purposes needs to add one more step for 

evaluating the simulated tasks with surgeons having different skill levels and 

developing task-specific threshold values for each performance indicator (e.g., task 

completion time, error rates, eye-movement events, hand movements, so on.) 

assessed in the simulation software. Afterwards, these task-specific threshold values 

can be integrated to the simulation software to better guide and assess the trainees’ 

skill development. Hence, once such standardized threshold values are arranged 

specific to the tasks being performed, the potential increases as to use of this 

information to better guide and train surgeons and improve the performance of the 

surgical education programs. 
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CHAPTER 8 

DISCUSSION AND CONCLUSION 

Main contribution of this study is twofold. Firstly, a conceptual framework for the 

Context Aware Adaptive Software System (CAASS) is proposed. Secondly, a case 

study on this framework is conducted.  

The framework consists of three main components that need to be defined for a 

specific CAASS namely context of adaptation, what-to-adapt and how-to-adapt. 

Accordingly, first the context, such as user, physical, primary and computing 

parameters, that is being addressed by the specific CAASS is need to be defined. 

Secondly, the description of the entities that are aimed to be adapted, is need to be 

defined. A single CAASS may address a unique adaptation entity, or may be aimed 

to address several adaptation entities such as content, network performance and user 

interface. Accordingly the target adaptation entity/entities should be clearly defined 

in this stage. The last component is the definition showing how the adaptation 

process is performed. Here, what events are aimed to be monitored, how the data is 

planned to be collected and analyzed as well as how the decisions are aimed to be 

made for the adaptation process are all should be described. Hence again, a specific 

CAASS may be designed to monitor several different forms of data and apply 

different analysis processes. These methods are important to differentiate and 

analyze the structures of CAASS. We believe that by applying this conceptual 

framework, the structure and behavior of CAASS can be designed and understood in 

a better way.  

The case study is conducted in the field of endo-neurosurgery to better understand 

the surgical residents’ behaviors and develop guidance for an appropriate CAASS. 

Their eye-movement data was collected with an eye-tracker device and classified 
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into eye-movement classification algorithms. The obtained data from eye-movement 

classification algorithms was investigated for understanding the task difficulties, 

surgical skill levels, mental workload, effect of hand condition and effect of 

experience levels on eye-movement events. These are the core elements for this case 

study for monitor issues in a CAASS. Monitoring and analyzing these context 

elements can help developers to better understand and develop CAASS for the endo-

neurosurgery domain. Accordingly, the results of this study shows that gathering 

detailed information from surgical simulation environments, can provide insights 

about behaviors of the surgeons. It is shown that, scenario difficulty levels and 

surgical skill levels can be assessed from eye-movement events. Also, a significant 

difference between the intermediate and novice surgeons’ eye-movement behaviors 

has been detected. The hand condition significantly effects the eye-movements and 

pupil sizes of surgical residents. Eye-movement data can be used to assess the task 

difficulty, skill levels and mental workloads of surgeons. These findings can be used 

as an objective measure for better guiding the trainees and adapting the scenarios to 

the surgeons’ performance in surgical education programs. The results of this study 

show promising findings on developing CAASS for the endo-neurosurgery training 

programs. In other words, by monitoring eye-movement events of the surgeons a 

CAASS can be developed to adapt the sequence and difficulty levels of the training 

scenarios according to the skill-levels of the trainees. Through such a CAASS, 

surgeons' eye-movements can be collected. While the surgeons are performing the 

surgical tasks, their eye data can be collected and monitored. Afterwards, the system 

may dynamically adapt the scenarios by considering their difficulty levels and the 

eye behaviors of the surgeons. In other words, by analyzing the data obtained from 

the eye-movements, mental workloads of surgeons can be assessed. Accordingly, 

their skills that need to be developed can be detected and an appropriate task 

schedule can be developed for each individual. This will in turn help the surgical 

programs to better provide individualized technology enhanced skill-based training. 
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CHAPTER 9 

 LIMITATIONS AND FUTURE WORK 

This study has some limitations such as the procedure applied can be repeated with 

higher number of participants and more simulation scenarios can be developed to 

address different skills and skill levels of surgical residents. Also, the accuracy 

depends on properties of the eye tracker, more accurate eye-tracking devices can be 

used to provide high statistical power to the analyses. According to the results of this 

study it is seen that based on the methods and threshold values of eye-movement 

classification algorithms their classification results varies. Thus, eye-movement 

classification algorithm threshold values can be specified for better evaluating these 

algorithms. What is more, the luminance conditions, time of the day and dominant 

hand may affect the pupil sizes of the surgical residents while performing the 

scenarios. Also, the order of the hand conditions (dominant or non-dominant and 

both hand) may have an effect on the eye-movements of the surgical residents.  

This study shows that a CAASS can be developed by monitoring surgical residents’ 

eye-movement behaviors. It is shown that, through this data surgeons’ behaviors, and 

skill levels can be differentiated. Additionally, this data provides information to 

measure the task difficulty levels objectively. However, monitoring for such a 

CAASS can also be supported by some other data such as hand movements and task 

progress. Accordingly, the future studies may also be conducted to better understand 

the evidences from other data sources. This is potentially may improve the adaptation 

level of a CAASS for the surgical training programs. Furthermore, these findings can 

be used to develop a CAASS for surgical training programs. Our long-term goal is to 

develop a comprehensive CAASS by using these results. We believe that such a 
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system potentially will improve the skill levels of surgical residents which in turn 

will reduce the error rates in the operating room and prevent harm to the patients.  
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APPENDIXES 

Appendix-A. Algorithm Information 

Binocular-Individual Threshold (BIT) Algorithm 

The MATLAB source code of BIT algorithm can be downloaded from the webpage 

(http://www.bm.ust.hk/~mark/staff/rlans.html). 

An Adaptive Event Detection (AED) Algorithm 

The source code of AED algorithm can be downloaded from authors’ webpage 

(http://www.humlab.lu.se/en/person/MarcusNystrom) 

Other Algorithms 

The algorithms I-DT, I-HMM, I-KF, I-MST, I-VDT, I-VMT, I-VT and I-VVT can 

be downloaded from (http://cs.txstate.edu/~ok11/emd_offline.html). However 

researchers are expected to send an e-mail to the author for explaining their research 

purpose and asking their permission. The author provides a software password and 

the algorithms become available for the research purposes. 
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Appendix-B.  Detailed Eye Movement Classification Algorithm Results 

Table 8.1 Algorithm Classification Results for Each Eye Movement Event of Scenario-1 

  DOMINANT HAND NON-DOMINANT HAND BOTH HAND 

ALGORITHM MEAN RANKS for MEAN RANKS for MEAN RANKS for 

FN FD SN SD SAD PN PD PVD FN FD SN SD SAD PN PD PVD FN FD SN SD SAD PN PD PVD 

AED   1,0   1,0           1,0   1,0           1,0   1,0         

I-DT 4,1 6,2 8,0 8,5 1,3       3,4 6,5 7,4 7,9 2,0       5,8 5,3 7,8 8,7 1,6       

I-HMM 4,5 7,1 4,0 6,1 6,1       5,1 6,7 5,9 6,8 5,2       4,8 7,6 7,8 5,4 4,8       

I-KF 1,8 5,9 4,6 8,3 5,9       2,0 5,5 4,4 8,5 7,0       2,8 6,1 2,6 7,8 6,9       

I-MST 1,8 8,9 2,3 2,3 2,3       1,7 8,9 2,1 2,5 2,5       1,8 9,0 1,5 2,2 5,1       

I-VDT 7,2 4,2 3,5 3,8 5,4 1,3 1,0 1,8 6,9 4,1 3,5 4,0 5,4 1,2 1,0 1,8 6,3 4,1 3,9 4,0 5,3 1,8 1,3 2,0 

I-VMT 3,8 2,3 3,1 3,3 6,7 1,7 2,9 1,2 4,3 2,2 2,7 3,2 5,7 1,8 3,0 1,2 2,3 2,3 3,1 3,3 6,3 1,3 3,0 1,1 

I-VT 5,2 6,7 5,2 4,9 4,9       5,1 7,2 4,7 4,8 4,5       5,7 7,0 5,3 5,8 3,5       

I-VVT 8,4 2,7 7,2 6,8 3,5 3,0 2,1 3,0 7,9 2,9 6,6 6,5 3,6 3,0 2,0 3,0 6,4 2,9 6,1 6,8 2,5 2,9 1,7 2,9 

BIT 8,2 10,0 7,1           8,7 10,0 7,9           9,0 9,6 6,8           

x2 154,56  192,89  102,42  168,25  103,35  37,08  42,35  39,91  151,43  194,32  112,50  163,00  79,59  39,39  46,00  39,39  134,06  189,89  135,88  163,87  91,98  32,09  37,13  38,35  

FN: Fixation Number; FD: Fixation Duration; SN: Saccade Number; SD: Saccade Duration; SAD: Saccade Amplitude Degree; GD: Glissade Duration; PN: Pursuit Number; PD: Pursuit Duration; PVD: Pursuit 

Velocity Degree 
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Table 8.2 Algorithm Classification Results for Each Eye Movement Event of Scenario-2 

  DOMINANT HAND NON-DOMINANT HAND BOTH HAND 

ALGORITHM MEAN RANKS for MEAN RANKS for MEAN RANKS for 

FN FD SN SD SAD PN PD PVD FN FD SN SD SAD PN PD PVD FN FD SN SD SAD PN PD PVD 

AED   1,0   1,0           1,0   1,0           1,0   1,0         

I-DT 5,7 5,1 8,3 8,8 1,4       5,1 4,9 8,7 8,9 1,4       6,7 5,0 8,4 9,0 1,1       

I-HMM 6,8 7,7 3,2 6,7 7,0       6,9 7,8 2,7 6,6 7,3       4,8 7,4 4,2 6,7 5,3       

I-KF 5,1 6,1 4,0 8,2 6,5       5,7 6,1 3,9 8,0 6,6       3,1 6,4 4,2 7,9 6,0       

I-MST 2,8 9,0 1,1 2,0 2,7       3,8 9,0 1,0 2,0 3,1       1,1 9,0 1,1 2,0 4,5       

I-VDT 3,8 3,8 4,3 3,9 5,4 1,3 2,0 1,9 3,1 3,7 4,6 4,0 4,8 1,8 2,0 2,0 5,9 4,0 3,2 3,7 6,3 1,9 1,2 2,0 

I-VMT 1,3 2,5 2,7 3,1 6,6 1,8 3,0 1,1 1,4 2,9 3,0 3,0 6,2 1,3 3,0 1,0 2,1 2,2 2,5 3,3 6,9 1,1 3,0 1,0 

I-VT 7,8 7,2 6,1 5,0 3,7       7,8 7,2 6,3 5,1 3,8       5,2 7,2 5,8 5,1 3,6       

I-VVT 2,5 2,7 7,3 6,3 2,8 2,9 1,0 3,0 2,2 2,5 7,4 6,3 2,7 2,9 1,0 3,0 7,1 2,8 7,1 6,3 2,3 3,0 1,8 3,0 

BIT 9,0 10,0 8,0           9,0 10,0 7,3           9,0 10,0 8,5           

x2 165,74 202,23 1860,72 181,00 123,05 28,26 46,00 40,78 168,60 201,79 162,38 180,89 119,29 30,02 46,00 42,09 1160,62 202,02 168,89 179,52 110,45 42,00 38,17 46,00 

FN: Fixation Number; FD: Fixation Duration; SN: Saccade Number; SD: Saccade Duration; SAD: Saccade Amplitude Degree; GD: Glissade Duration; PN: Pursuit Number; PD: Pursuit Duration; PVD: Pursuit 

Velocity Degree 
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Table 8.3 Algorithm Classification Results for Each Eye Movement Event of Scenario-3 

  DOMINANT HAND NON-DOMINANT HAND BOTH HAND 

ALGORITHM MEAN RANKS for MEAN RANKS for MEAN RANKS for 

FN FD SN SD SAD PN PD PVD FN FD SN SD SAD PN PD PVD FN FD SN SD SAD PN PD PVD 

AED   1,00   1,00           1,00   1,00           1,00   1,00         

I-DT 7,28 5,13 8,17 8,83 1,22       7,28 4,96 8,87 8,96 1,26       7,00 5,00 8,26 9,00 1,13       

I-HMM 4,63 6,91 4,09 6,85 5,43       4,46 7,33 4,87 6,87 5,67       4,07 7,04 4,98 6,85 5,67       

I-KF 2,89 6,17 3,57 7,80 6,13       3,09 6,57 4,00 7,72 6,22       3,02 6,17 3,15 7,85 7,74       

I-MST 1,39 9,00 1,41 2,17 5,22       1,35 8,98 1,39 2,30 2,85       1,33 8,91 1,37 2,13 2,76       

I-VDT 5,83 3,96 4,43 3,91 5,15 1,91 1,87 1,98 6,30 3,78 3,46 3,93 5,65 2,00 1,91 2,00 6,28 4,00 4,07 3,93 5,07 2,00 1,78 2,00 

I-VMT 2,20 2,22 2,46 2,96 6,50 1,15 3,00 1,02 2,33 2,87 2,41 3,02 7,00 1,00 2,91 1,00 2,15 2,13 2,43 3,04 6,67 1,00 3,00 1,00 

I-VT 5,48 7,70 5,59 5,00 3,83       5,39 7,13 5,59 4,93 4,33       4,72 7,87 5,98 4,98 4,04       

I-VVT 6,30 2,91 7,17 6,48 2,52 2,93 1,13 3,00 5,85 2,39 7,28 6,26 3,02 3,00 1,17 3,00 7,52 2,87 7,09 6,22 2,91 3,00 1,22 3,00 

BIT 9,00 10,00 8,11           8,96 10,00 7,13           8,91 10,00 7,67           

x2 152,55 200,96 148,23 176,30 90,67 37,62 40,78 45,52 149,38 2199,71 150,76 173,97 105,63 46,00 35,04 46,00 204,01 204,39 147,03 179,21 131,23 46,00 38,17 46,00 

FN: Fixation Number; FD: Fixation Duration; SN: Saccade Number; SD: Saccade Duration; SAD: Saccade Amplitude Degree; GD: Glissade Duration; PN: Pursuit Number; PD: Pursuit Duration; PVD: Pursuit 
Velocity Degree 
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Table 8.4 Algorithm Classification Results for Each Eye Movement Event of Scenario-4 

  DOMINANT HAND NON-DOMINANT HAND BOTH HAND 

ALGORITHM MEAN RANKS for MEAN RANKS for MEAN RANKS for 

FN FD SN SD SAD PN PD PVD FN FD SN SD SAD PN PD PVD FN FD SN SD SAD PN PD PVD 

AED   1,0   1,0           1,0   1,0           1,0   1,0         

I-DT 7,2 5,0 8,2 9,0 1,2       6,2 5,2 7,9 8,7 1,2       6,6 5,0 8,0 8,9 1,2       

I-HMM 5,7 7,2 3,6 6,8 6,9       6,1 7,2 3,5 6,2 6,6       5,8 7,7 3,1 6,2 6,5       

I-KF 4,7 6,0 2,3 8,0 7,8       3,8 5,8 2,7 8,2 7,3       4,0 6,0 2,7 8,1 7,1       

I-MST 2,9 9,0 1,8 2,3 2,6       2,6 9,0 1,3 2,1 2,7       2,8 9,0 1,3 2,1 2,8       

I-VDT 5,1 4,0 4,4 3,8 5,0 1,9 1,8 2,0 4,4 4,1 4,2 3,8 5,5 1,9 1,8 2,0 5,0 4,0 4,4 3,9 5,5 1,8 1,8 2,0 

I-VMT 1,0 2,3 3,0 2,9 6,1 1,1 3,0 1,0 1,2 2,2 3,5 3,2 6,0 1,2 3,0 1,0 1,0 2,1 3,5 3,0 6,1 1,2 3,0 1,0 

I-VT 6,1 7,9 6,0 5,0 3,7       6,8 7,7 6,0 5,1 3,6       7,0 7,3 6,1 5,0 3,9       

I-VVT 3,6 2,7 7,0 6,2 2,7 3,0 1,2 3,0 4,9 2,8 7,0 6,8 3,0 3,0 1,2 2,9 3,7 3,0 7,2 6,8 2,9 3,0 1,2 3,0 

BIT 8,7 9,8 8,7           9,0 10,0 8,8           9,0 10,0 8,7           

x2 132,25 203,67 160,82 179,70 145,82 43,29 40,51 44,09 140,04 202,29 161,36 178,63 126,57 38,26 39,39 42,09 143,67 205,54 166,14 181,44 119,00 35,63 38,17 44,09 

FN: Fixation Number; FD: Fixation Duration; SN: Saccade Number; SD: Saccade Duration; SAD: Saccade Amplitude Degree; GD: Glissade Duration; PN: Pursuit Number; PD: Pursuit Duration; PVD: Pursuit 
Velocity Degree 

 


