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ES ZAMANLI KONUMLANDIRMA VE HARITALAMA TEKNIiKLERININ
HI1Z PERFORMANSNIN GELISTIRILMESI

OZET

Glinlimiizde endistriyel ¢alismalardan uzay aragtirmalarina, egitimden tibbi
uygulamalara kadar ¢ok cesitli alanlarda kullanilan robotlar gorevlerini yerine
getirirken bunu nasil yapacaklarina kismen veya tamamen kendileri karar verirken, bu
gorevleri insanlar tarafindan 6nceden tanimlanmis olarak sabit bir sekilde de yerine
getirebilirler. Gorevlerini nasil yapacaklarina kendileri karar veren robotlara otonom
robotlar denir. Otonom robotlarin biiyiik bir ¢ogunlugu yer degistirme yetenegine
sahiptirler ve genellikle hareket edecekleri ortamla ilgili 6nceden bir bilgileri yoktur.
Calismaya basladiklar1 andan itibaren iizerlerindeki sensorler yardimiyla ¢evrelerini
tanimlamaya ve ayn1 zamanda bu cevre igerisinde nerede olduklarini anlamaya
baslarlar. Es zamanli konumlandirma ve haritalandirma diye adlandirilan bu islem
otonom ve mobil robotlar i¢in ¢ok biiyiik 6nem tagimaktadir. Cilinkii, diizgilin bir harita
olusturabilmek i¢in konum bilgisinin dogru olmasi gerekir. Ayni sekilde konum
bilgisini dogru bir sekilde hesaplayabilmek i¢in de diizgiin bir haritaya ihtiyag vardir.
Birbirine bagli olan bu iki durum, sensdrlerin bozunumlu veri elde etmesi ve gevre
kosullarindan kaynakli sorunlardan dolayr EZKH mobil robotlar i¢in zor bir gorevdir.

EZKH alaninda ¢alisan arastirmacilarin bir kismi1 dogru harita ¢ikarimi ve konum
belirlenmesi lizerine yogunlasmisken, bir kismi da hiz performansini gelistirmeye
yonelik ¢alismalar yapmigslardir. Bu tez caligmasinda, mevcut EZKH yontemlerinin
hiz performansini gelistirmek igin yeni bir yontem onerilmistir.

Robot, olusturdugu haritayr yeni aldigi 6l¢iimlerle giincellerken veri iliskilendirme
prosediiriine bagvurur. Olusturdugu bu haritadaki eleman sayist ¢ok biiyiik boyutlara
ulastiginda veri iliskilendirme, robot i¢in biiylik bir zaman kaybina neden olabilir.
Ogzellikle pargacik filtresi tabanli yaklasimlarda bu islemin pargacik sayis1 ve
haritadaki eleman sayis1 kadar tekrar edildigi diislintildiiglinde asir1 miktarda
hesaplama yiikiiniin olustugu goriilmektedir.

Onerilen yontemde EZKH algoritmalarindaki veri iliskilendirme adiminin daha etkili
bir sekilde kullaniminin saglanmasiyla bu asamadaki ¢alisma zamaninin diisiiriilmesi
amaglanmistir. Ydntemin basarisini test etmek i¢in simiilasyon ortaminda uygulamalar
yapilmis ve ne kadar bagariya ulastiginin anlasilmasi i¢in farkli EZKH yaklagimlari da
bu simiilasyon ortaminda uygulanip sonuglar karsilagtirilmistir.

Simiilasyonlardan elde edilen gorsel ve sayisal sonuglar incelendiginde, yeni EZKH
yonteminin harita ve konum hesaplamadaki yeteneginden bir sey kaybetmedigi; bunun
yaninda ¢alisma hizinin mevcut yaklasimlardan agik bir sekilde daha iyi oldugu
goriilmistiir. Ayrica EZKH yontemi uygulanmadan Once, sensorlerden alinan
gliriiltiilii verinin diizeltilmesinin harita olustururken hesapsal olarak biiyiik kolaylik
sagladig anlasilmistir.
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IMPROVING RUNTIME EFFICIENCY OF SIMULTANEOUS
LOCALIZATION AND MAPPING TECHNIQUES

SUMMARY

When the word "robot" is enounced, it is commonly understood that it is a humanlike
machine with its arms, legs, head and body. But, there are lots of different types of
robot mechanisms used in industrial sectors, planetary explorations, education and
military. For example; a robot in an automobile factory looks like a human arm which
is attached to a fixed joint. These machines are designed to carry out the tasks like
painting and welding. They do their job recursively in a predefined manner by humans.
On the other hand, a machine discovering a planet may looks like a vehicle. Because
of unpredictable environments and conditions, these robots should decide how they
carry out their tasks on their own. These tasks may be going to somewhere with
specific coordinates from current location or . It is hard even to go from one place to
another without getting lost and hitting the objects.

In order to manage this change of location mission, a robot should first understand
how the environment looks like and where it is in this environment. Without
foreknowledge of the surroundings and coordinates of current position, estimating the
robot pose and generating the map of environment is called as simultaneous
localization and mapping (SLAM).

SLAM also known as concurrent mapping and localization (CML) is a very hard
problem for robots due to the noisy measurements, unpredictable conditions, wheel or
foot slippage, presence of moving objects around and estimation errors. Additionally,
the amount of the data collected by measurement devices may cause a huge
computational cost for processors of the robot. For example; a laser range finder with
360 degree field of view can collect a great number of data. This huge data causes the
methods which constructs grid map to slow down. Likewise, a system using camera
should process lots of data. In order to reduce the computational cost of SLAM
algorithms, one can either increase the number of collected data or improving the
process of SLAM techniques.

Most of the researhers are focused on solving the problems above using probabilistic
methods. In literature, there are two common SLAM technique called as EKF-SLAM
and FastSLAM. The EKF-SLAM is easily applicable approach while the FastSLAM
is computationally efficient technique. These two methods are landmark based and use
kalman filter. Landmarks are distinct points of some objects such as doors, walls or
several geometric objects. Using landmarks decrease the operation time when
compared to the SLAM methods which construct grid maps. EKF-SLAM has a
significant drawback by comparison with FastSLAM. When the number of landmarks
reaches to a high value, EKF-SLAM gets slow drastically. This is caused by a
procedure in EKF-SLAM which is called as data association. Data association is a
process of matching currently sensed landmark with the one in the estimated map. All
the elements in the map are associated with each other. Therefore, when a new
landmark is detected, the map grows exponentially and this structure gets the algorithm
slower.
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As a solution for the exponential growth in EKF-SLAM, FastSLAM offers a very
innovative approach. It combines the particle filter and extended Kalman filter by
separating pose estimation and landmark estimation. While EKF-SLAM is interested
in calculating only current pose of the robot which is called as online SLAM,
FastSLAM s interested in calculating the path of the robot which is called as full
SLAM. With the knowledge of the whole poses of the robot, FastSLAM estimates the
landmarks individually. This means that all landmarks are associated with only robot
pose. When the robot detects a new landmark, mean and covariance of the landmark
are added for all particles that causes a linear growth in the map. Considering the
exponential growth in EKF-SLAM, FastSLAM brings an important innovation to map
management. However FastSLAM is very efficient approach, it also gets slower if the
number of estimated landmarks are gigantic. Because, in such a case, FastSLAM faces
the numerous operation in data association step.

In order to decrease the computational cost of the data association, several approaches
are proposed. The most effective method limits the number of landmarks to ones only
in the range of the measurement device. This method provides a very good
computational efficiency for SLAM techniques, especially for the particle filter based
ones. However, if the scan range of the measurement device attached to the robot is
extensive, the number of landmarks that are considered in data association process is
high again. Also in some situations such as a landmark is out of the range of the sensor,
this approach may fail.

In this thesis, a novel technique that eliminates unnecessary operations in data
association process is proposed. Briefly; when a new landmark is detected by
measurement device, it is compared with the landmarks only in a small circular area.
Other landmarks in the map and outside the circular area are automatically skipped.
Center of this circular area is estimated by using the sensor measurement. Therefore,
no matter how big the number of landmarks, the computational cost in data association
step remains almost same as the beginning.

In order to see the success of the proposed method, simulations are performed in
different environments that were created by a simulation program called as Gazebo.
Different SLAM algoritms are also tested in simulation environments in order to
understand how much the new approach is faster than other aproaches. Additionally,
these tests are done in real laboratory environments.

Before testing the new SLAM technique and others, some arrangements were made.
The sensor which is used for the collection of 2D data from environment, produces
noisy data. This noisy data makes the landmark extraction very difficult. For this
reason, a smoothing filter was implemented on the noisy data. For the sake of
simplicity, the mean filter was prefered. After smoothing the laser data, landmark
extraction became easier.

Another arrangement was made for the landmark extraction and identification. The
curvature function method which simplifies the identification of the landmarks was
implemented on the sensor data.

After tuning all the parameters of the SLAM algorithms, the robot operated 30 times
for two different environments and three different SLAM methods.

When the simulation results were analized, it was understood that proposed method
estimates the robot pose and landmarks map almost at the same accuracy compared
with other methods. Afterwards, the runtime values of the three methods were
compared. It was clearly seen that the proposed method improves the runtime
efficiency of actual SLAM methods. The results of the real world experiments also
reveal the improvement of the new approach.
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In recent years, the sensor technology has improved a lot. They can scan very wide
range of field and collect a huge data. Therefore, it is contemplated to implement the
new SLAM method on the systems with sensors of different quality so that how the
approach is effective. Similarly, the new technique can be implemented to the different
SLAM algorithms to see its suitability.
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1. GIRIS

ik defa Cekoslavak yazar Karel Capek'in 1920 yilinda yazdig: tiyatro oyununda
kullanilan robot kelimesi insan benzeri bir yapisi olan ve insan davraniglarimi taklit
eden bir cihazi akla getirse de bugiin; endiistriden uzay arastirmalarina, tibbi
uygulamalardan eglence sektoriine kadar ¢ok farkli alanlarda kullanilan farkli yapidaki
bircok cihazi tanmimlamaktadir [1, 2]. Ornegin; otomotiv sektoriinde yaygin olarak
kullanilan robotlar kol seklinde bir mekanizmaya sahiptirler ve sabit bir alanda
calisilar. Bu robotlar, boyama ve birlestirme gibi gorevleri insanlar tarafindan dnceden
tanimlanmuis bir sekilde tekrar tekrar yerine getirmek {lizere tasarlanirlar. Diger yandan,
uzay arastirmalarinda kullanilan robotlar ise bilinmeyen ortamlarda ve dngoriilemeyen
durumlarda c¢alisacagi ic¢in, bir gorevi yerine getirirken bunun nasil yapilacagina
kismen veya tamamen kendisi karar verebilecek sekilde tasarlanirlar. Ayni sekilde
magara arastirmalar1 veya sualti arastirmalari i¢in iiretilen ve kendi kendilerine karar
verebilen bu tarz robotlara otonom robotlar denir. Teknik olarak agiklanacak olursa;
tizerindeki sensorler araciligiyla cevresinden veri toplayip, bu veriyi kendi
mikroislemcisinde anlamli hale getirerek gorevini nasil gergeklestirecegine karar

veren cihazlara otonom robotlar denir.

Otonom robotlarin ¢ok biiyiik bir kism1 yer degistirmeye ihtiya¢ duydugu icin ayni
zamanda mobil robotlar olarak da bilinirler. Mobil robotlarin iistesinden gelmesi
gereken en dnemli sorunlardan birisi daha dnce hi¢ bilmedigi bir ortamda ¢evresinde
nelerin oldugunu ve hareket ettikce bu ortam iginde nerede oldugunu anlamasidir.
Literatiirde es zamanli konumlama ve haritalama(Simultaneous Localization and
Mapping, SLAM) olarak bilinen bu konu, ¢ok sayida arastirmacinin {izerinde ugrastigi
bir konudur. EZKH'yi bu kadar zor hale getiren etmenlerin basinda sensorler
araciliiyla toplanan verinin giiriiltiilii olmasi, ¢evre kosullarinin beklenmedik sekilde
degismesi, tahrik elemanlarma uygulanan komutlarin  kusursuz  olarak
gerceklesmemesi ve robotun hesaplama hatalar1 gelmektedir. Ornegin; bir fabrika
icinde c¢alisan bir robot hareket eden ¢ok fazla insan ve yer degistiren nesnelerle

karsilacaktir. Bu durum harita olustururken biiyiik bir karmasaya sebep olabilir. Sualti



aragtirmasi yapan bir robot i¢in de en biiyiik sorunlardan birisi suyun akintisindan
kaynaklanan konum degisikligidir. Tiim bu etmenlerin yaninda robotun hareket ettigi
alan bliyiidiik¢e hesaplamalarda olusan belirsizlikler de ayni sekilde artmaya basladig
icin EZKH uygulamalarimin ¢ogu olasiliksal yontemler kullanilarak c¢oziilmeye
calisilmaktadir. Bu yontemlerin bir kismi daha dogru sonuglar elde edebilmek igin
sensorlerden alinan verinin tamamint kullanirken, bir kismi ise hesaplama yiikiinii
azaltmak ve hafiza gereksinimini diisirmek ic¢in verinin iginden sadece

anlamlandirmasi kolay olan kisimlar1 kullanmaktadir [2].

EZKH uygulamalariin performansini etkileyen en onemli unsurlardan biri robot
iizerindeki sensorlerin cesidi ve kalitesidir. Ornegin; ucuz olmalar1 ve sagladig verinin
kolay islenebilir olmasi  bakimindan tercih edilen sonar sensdrlerin, veri
yogunlugunun az ve giiriiltiilii olmas1 diizgiin bir harita olusturmada ve dogru konum
belirlemede zorluk ¢ikarmaktadir. Diger yandan lazer sensorler, yliksek dogrulukta ve
cok fazla veri elde ettigi i¢cin EZKH performans:t agisindan biiyiik avantaj
saglamaktadirlar. Bir bagka sensor ¢esidi olan kameralar ise son zamanlarda giderek
daha ¢ok ilgi gormeye baslamistir. Goriintiiden elde edilen veri, 2 boyutlu sekil
bilgisine ek olarak renk bilgisi de i¢erdigi i¢in ¢evrenin anlamlandirilmasinda diger
sensor ¢esitlerine gore ¢ok daha iyidir. Ancak ¢ok fazla veri toplamasi ve belirsizligin
yiikksek olmasi, hiz performansi ve dogru konumlandirma igin bir dezavantaj

olmaktadir [2].

Disaridan bilgi toplayan sensorlerin haricinde robotun kendi hareketinden
kaynaklanan degisimleri algilayan sensorler de vardir. Tekerleklere bagli enkoderler,
jiroskop ve ivmedlger gibi sensorleri icinde barindiran Atalet Olgiim Unitesi (Inertial
Measurement Unit, IMU) bunlara birer 6rnektir. Enkoderlerden alinan veri IMU'dan
alinan veriye gore ¢ok daha diigiik hataya sahiptir. Ancak, enkoderler tek boyuttaki
degisimi algilayabilirken, IMU {i¢ boyuttaki yer degisimi ve donme, yuvarlanma ve
yunuslama hareketlerini de algilayabilmektedir. Bu da {i¢ boyutlu ortamlardaki EZKH
uygulamalari i¢in biiylik kolaylik saglamaktadir [2].

EZKH performansinin artirilmasinda sensdr se¢iminin 6nemi yiiksek olsa da,
uygulanacak ydntem de bir o kadar 6nemlidir. Ornegin; konum belirlemenin daha 6n
planda oldugu durumlar i¢in isaret¢i (landmark) tabanli yontemler hizli olmasi
acisindan daha ¢ok tercih edilirken, yol planlamanin 6énemsendigi durumlarda ise daha

ayrintili harita olusturan grid tabanl yontemler tercih edilir. Bagka bir 6rnek olarak;



uzay aragtirmalarinda kullanilan robotlarda g¢evrenin neye benzedigi ve hangi

cisimlerin oldugu dnemsendigi i¢in goriintl tabanli algoritmalar tercih edilir [3].

Yukarida bahsedilen sebepler gozoniine alindiginda es zamanli konumlandirma ve
haritalama probleminin optimal ¢6ziiml i¢in uygulanacak yontem belirlenirken
robotun hangi ortamda, hangi amagla kullanilacagi ve iizerindeki sensorler g¢ok
etkilidir. Bu tez ¢alismasinda; genis, kapali alanlarda kolayca uygulanabilecek olan

FastSLAM yontemi kullanilmistir.

1.1 SLAM Tarihgesi

Es zamanli konumlandirma ve haritalama iizerine yapilan ilk ciddi ¢aligmalar 1980'li
yillardan itibaren baslamistir. [4] ve [5]'te ortaya konan ¢alismanin, EZKH
yontemlerinin temellerini olusturdugu sdylenebilir. Cilinkii; konumlandirma ve sensor
Olgtimii hatalarim1 olasiliksal olarak ifade etmeleri bakimindan c¢alismalari,
giinimiizdeki EZKH ¢alismalariyla benzerlik gostermektedir. EZKH problemi ilk defa
[6]'da es zamanli haritalama ve konumlandirma olarak adlandirilmistir. Onerilen
yontemde, giiniimiizde bu alanda ¢ok yaygin olarak kullanilan Genisletilmis Kalman
Filtresi kullanildi ve 2000'li y1llarin baglarinda artik EZKH olarak adlandirilan ¢alisma
daha da ileriye gotiiriilerek giintimiizde EKF-SLAM diye bilinen yontem gelistirildi
[7]. Bu gelistirilmis yontemde robot konumu ve isaret¢i konumlarinin belirsizlikleri
olasiliksal olarak hesaplanmaktadir. Basit¢e acgiklanacak olursa; tahmin ve diizeltme
olarak iki temel adimdan olusan yontemde, robotun konum bilgisinin ve bu konuma
ait belirsizligi belirten bir kovaryans matrisinin oldugu bir matris islem gormektedir.
Bu matrisin i¢inde ayrica her bir isaret¢cinin konum bilgileri ve bu isaretcilerin
birbiriyle iligkili olan kovaryanslar1 vardir ve 6l¢iim alindik¢a giincellenmektedir.
Robot yeni bir isaretci tespit ettiginde bu isaret¢iyi her bir isaret¢iyle iliskilendirecegi
icin iglem yaptig1 matriste iistel bir sekilde bilgi artisina sebep olur ki bu, algoritmanin
0(M?) kadar eleman iizerinde islem yapmasin gerektirir. Burada M isaretgi sayisini
belirtir. M degeri yiikseldik¢e algoritmanin islem hiz1 da biiyiik oranda azalmaktadir.
Bu sorunu agmak icin bazi arastirmacilar farkli ¢6ziim yollar1 Gnermislerse de,
yaptiklar1 ¢aligmalar en fazla birkag yiiz isaretci s6z konusu oldugunda ise
yaramaktadir [8, 9, 10]. EKF-SLAM'deki iistel bir sekilde artan islem karmasasini gok
daha kiigiik 6lgekli hale getirmek ve bellek gereksinimini azaltmak igin [11]'de
FastSLAM olarak adlandirilan parcacik filtresi temelli bir yaklagim onerilmistir.



Genisletilmis kalman filtresi ve parcacik filtresinin bir kombinasyonu olarak
gelistirilen yontem aslinda Rao-Blackwellized pargacik filtresinin bir ¢esididir [12].
FastSLAM'de robotun durumu parcaciklar ilizerinden ifade edildigi i¢in her bir
parcacigin kendine ait bir konum ve yonelim bilgisi bulunmaktadir. Aynm sekilde, her
bir parcacik i¢in isaret¢ilerin konumlart ve belirsizlikleri de ayr1 ayridir. EKF-
SLAM'den farkli olarak her bir isaret¢i birbirinden bagimsiz oldugu i¢in kovaryanslari
da birbiriyle iliskilendirilmemektedir. Y ani, bir pargacik i¢in yeni bir isaretci eklendigi
zaman bir konum ve kovaryans elemani eklenmis olur. Bunun N sayidaki parcacik i¢in
yapildig: diistiniiliirse FastSLAM'de O(MN) kadar bir islem karmasasi olugmaktadir.
EKF-SLAM ile karsilastirildigi zaman bunun ¢ok daha diisiik hesap yiikli anlamina
geldigi goriilmektedir. Bununla birlikte isaret¢i sayisinin devasa boyutlara ulagmasi

FastSLAM algoritmasinin da dogru orantili olarak yavaslamasina neden olmaktadir

[11, 19].

FastSLAM'in hesapsal yiikiiniin azaltilmasi i¢in bir¢ok calisma yapilmistir. Bunlarin
en etkili olanlar1 parcacik sayisinin azaltilmasi, daha az bilgi igeren haritalarin
olusturulmasi veya haritanin daha verimli bir sekilde kullanilmasina yonelik
caligmalardir. Bu konuda yapilan ¢alismalardan biri olan Unscented FastSLAM
yontemi [13]'de ortaya konmustur. Geleneksel FastSLAM yonteminde kullanilan
dogrusallastirma islemlerini kullanmayan bu yaklasim, islem yiikiinii azaltirken aym
zamanda dogrusallastirmadan kaynaklanan bilgi kayiplarin1 da ortadan kaldirdig i¢in
daha az sayida pargaciga ihtiya¢c duymaktadir. Hesap yiikiinii azaltmak ve daha dogru
sonuglar elde etmek i¢in gelistirilen bir diger yaklasim da pargacik sayisinin, robotun
caligmas1 sirasinda ¢evrimigi olarak degistirilmesine yoneliktir [14, 15]. Bu
yaklagimda pargacik sayisi; sonsal dagilimin belirsizligi biiytidiigli zaman artirilip aynm
sekilde belirsizlik kiiciildiigiinde de azaltilmaktadir. Bunu yapmaktaki amag, robotun
biitiin gérevi boyunca ayni1 sayida pargacik iizerinde ¢alisirken belirsizligin az oldugu

durumlarda gereksiz yere yapilan iglemleri ortadan kaldirmaktir.

Hesaplama hizini artirmaya yonelik diger calismalar da haritalarin olusturulmasi
tizerine yapilmustir. [16] ve [17]'te 6nerildigi tizere, tek bir harita olusturmak yerine bu
haritay1 daha kii¢iik alt haritalar seklinde olusturmak bu ¢aligmalara 6rnektir. Benzer
sekilde hibrit topolojik/metrik haritalar da iglem yiikiinii azaltmas1 bakimindan etkili

sonuglar vermektedir [18].



EZKH yontemlerinin bir¢ogu isaretcilerin kimliginin anlagilmasini saglayan ve veri
iligkilendirme adi verilen bir adim1 da igermektedir. Bu adimda, sensor tarafindan
tespit edilen bir isaret¢inin haritadaki bir isaret¢i mi yoksa yeni bir isaret¢i mi olduguna
karar verilir. Bunun i¢in, tespit edilen isaret¢i daha once tespit edilenlerin hepsiyle tek
tek karsilagtirilmaktadir. Haritadaki eleman sayisinin biiyilk boyutlara ulagsmasiyla
birlikte, veri iligkilendirme agamasinin tekrar sayisini da bir o kadar artiracagi igin, bu
durum biiyiik bir hesapsal yiikii de beraberinde getirmektedir. [19]'da Onerilen
calismaya gore, tespit edilen isaret¢i haritadaki biitiin isaretcilerle degil sadece
sensoOriin taradigr alandakilerle karsilagtirllmaktadir. Boylece veri iliskilendirme
adimimin tekrar sayist oldukga diismektedir. Giiniimiizde sensér teknolojisinin
gelistigini ve cok genis alanlar1 tarayabilen lazer mesafe Olgiiclilerin oldugunu
gozoniinde bulundurursak, bu yontemde bazen islem yiikiiniin artabilecegi
anlagilmaktadir. Bu tez calismasinda, mevcut yontemden esinlenerek daha gelismis bir

yontem tlizerinde durulmustur.

1.2 Tezin Amaci

[k gelistirilmeye baslandig1 yillardan itibaren EZKH yontemleri giderek artan bir
sekilde ilgi gébrmeye baslamis ve ¢ok cesitli yaklagimlar ortaya ¢ikmistir. EZKH'y1 bu
kadar 1ilgi ¢ekici yapan etkenlerin basinda robot durum hesaplamalarindaki giigliikler
ve islem hizinin, veri miktar1 arttikca yavaslamasidir. Hiz performansini gelistirmek
tizerine farkli bakis acilariyla yapilan c¢aligmalar bulunmaktadir. Giris boliimiinde
bahsedildigi {izere parcacik filtresi gibi yaklasimlar i¢in parcacik sayisinin
diisiiriilmesi, harita olusturulurken daha az veri toplama veya olusturulan haritanin

daha akillica bir sekilde kullanilmasina yonelik ¢aligmalar bulunmaktadir.

Bu tez calismasinda, EZKH ile olusturulan harita bilgisinin tamaminin kullanmasi
yerine sadece ilgilenilen alandaki harita bilgisinin kullanilarak hiz performansinin
artirllmas1  amaglanmustir.  Onerilen yontemin performansimi  gdrebilmek igin
simiilasyon ortaminda farkli uygulama ortamlar1 olusturularak farkli EZKH

yontemleri ile onerilen yontem karsilastirilmistir.






2. DONANIM VE YAZILIM ALTYAPISI

2.1 Turtlebot 2 Uygulama Platformu ve Kinect Sensorii

Turtlebot 2; robotik alandaki egitim ve aragtirmalar i¢in tasarlanmis, diisiik maliyetli
bir uygulama platformudur. Robot Operating System(ROS) ad1 verilen yazilimsal
caligma alani ile uyumlu oldugu, iizerinde kinect ve jiroskop gibi sensorleri
barindirdig1 icin ¢ogu O6grencinin ve arastirmacinin, ¢aligmalarini gelistirmek igin
tercih ettigi bir aractir. Sekil 2.1'de goriildiigii lizere Turtlebot 2, {ic ana kisimdan
olugmaktadir: Diger biitiin bilesenlerin bagli oldugu ve hareketi saglayan mobil govde,

ti¢ boyutlu ve renkli goriintii saglayan kinect sensorti, diziistii bilgisayar [20].

T 17T

y 1 (———— Kinect Sensorii

Diziistii Bilgisayar ——)

Bolmesi

(————  Mobil Govde

Sekil 2.1 : Turtlebot 2 [20].

Mobil govde igerisinde, odometri verisi saglayan ve tekerleklere bagli olan enkoderler,
tic eksende yonelim bilgisi veren jiroskop ve mobilite yetenegini artiran ¢arpigma

sensori, ugurum sensorii gibi elemanlar bulunmaktadir [20].

Bilgisayar; algoritmalarin gelistirildigi, mobil gévdeye komutlarin gonderildigi, ve
sensoOrlerden gelen bilgilerin islendigi kisim olmasi nedeniyle en 6nemli bilesendir. Bu

islemlerin gergeklestirilmesi ROS ile saglanmaktadir [21].

Ugiincii bilesen olan Kinect sensérii ile, farkli formatlarda sagladigi goriintiiler
sayesinde Turtlebot 2'yle calisabilecek alanlar gok cesitli olabilmektedir. Ornegin; 3
boyutlu derinlikli goriintii vermesi, 3 boyutlu EZKH uygulamalari igin kolaylik
saglamaktadir [22].



Sekil 2.2'de kinect sensoriiniin iizerindeki RGB ve kizilotesi kameralar ve kizilotesi
reflektdr goriilmektedir. Bunlara ek olarak dahili bir mikrofon ve ivmeodlger de

bulunmaktadir [23].

Kizilotesi Projektor  RGB Kamera
Kizilotesi Kamera

Egme Motoru

Mikrofonlar

Sekil 2.2 : Kinect sensortii [23].

640x320 piksel ¢oziiniirliigiinde derinlikli goriintii saglayan kizilotesi kamera yatayda
57 derece ve dikeyde de 43 derecelik bir goriis agisina sahiptir. Ayrica sensor, 40
santimetre yakina ve 8 metre uzakliga kadar olan ol¢limleri alabilmektedir. Bu tez
calismasinda, derinlikli goriintiiniin bir satirindaki veri hesaba alinarak kinect sensorii
2 boyutlu lazer mesafe dlgiicii gibi kullanilmistir. Sekil 2.3'te kinect ile elde edilmis
diiz bir duvara ait tarama goriintiileri goriilmektedir. 7 metre uzakliktan alinan

Ol¢iimler oldukga giiriiltiilii iken, EZKH uygulamasinda kullanilabilecek dogrulukta

Olgtimler alinabilmesi igin uzakligin 3 metreye kadar diistiriilmesi gerekmektedir [23].

Sekil 2.3 : Kinect ile 7 metre uzakliktaki (solda) ve 3 metre uzakliktaki (sagda) diiz
bir duvardan alinan 6lgtimler.



2.2 Robot Isletim Sistemi (ROS)

Robotik g¢aligmalarin akademik alanda ve egitim alaninda iyice yayginlagsmasiyla
birlikte robot, bilgisayar ve sensorler gibi bilesenler arasinda iletisimin
kolaylastirilmasin1 ve bu alandaki caligmalarin kolay bir sekilde gelistirilmesini
saglayacak tek bir sistemin olusturulmasi gereksinimi dogmustur. Bu durum
diisiiniilerek 2007 yilinda Stanford Universitesi'ndeki bir grup arastimaci tarafindan
gelistirilmeye baglanan ROS, agik kaynak kodlu ve iicretsiz olmasi nedeniyle bugiin

cok yaygin bir sekilde kullanilmaktadir [24].

ROS'un isleyisi temel olarak su sekildedir: Belli gorevleri olan diigiimler arasinda
yayinlayicit ve abone tipindeki mesajlar ile veri iletimi saglanir. Bu iletimin
saglanabilmesi ve diiglimlerin birbirine baglanabilmesi i¢in ROS Master adinda bir
yonetim yapist vardir. Diiglimler tek baslarina da olabilirken, bir paket igerisinde de
olabilir. Farkli robotlar {izerinde de uygulanabilen bu paketler; i¢lerinde diigiim, ROS'a
bagl kiitiiphaneler, veri kiimeleri, yapilandirma dosyalar1 ve paketin islevselligiyle

ilgili bagka dosyalar da barindirir [25].

Sekil 2.4'te ROS'un isleyisini bir 6rnek iizerinden anlatan bir sema goriilmektedir. Ilk
olarak biitiin diiglimlerin ROS Master yonetiminde birbirlerinden haberdar olmasi
saglanmaktadir. Kameradan gelen goriintii verisi, gorevi kamera ile iletisim kurmak
olan goriintli diiglimiine aktarilmaktadir. Bu diigiim ROS Master'a kayit olurken
/goriintli isminde bir konu yayinlayacagini bildirirken goriintli isleme diigiimi ve

gorlintiileme diiglimii de yayinlanan bu konuya abone olduklarini bildirir.

ROS MASTER

Gortintit
15leme
Duigiuni

Kamera
Duigtumi

Veri gorinti
‘ Mesaj

Sekil 2.4 : ROS isleyisinin 6rneklendirilmesi.



2.3 Gazebo

Robotik alanindaki uygulamalarda sensorler ve eyleyiciler gibi bilesenlerin genellikle
pahali olmasi, 6zel caligma ortamlarina ihtiya¢ duyulmasi ve uygulama sirasinda
insanlarin veya c¢evredeki esyalarin zarar gérmesi olasiligi bu tiir caligmalarin
Oncelikle simiilasyon ortaminda denenmesini gerektirmektedir. Gazebo; bu
gereksinime cevap veren, i¢ ve dis ortamlarda kullanilan robotlarin {i¢ boyutlu
simiilasyonunu gerceklestirebilmek i¢in gelistirilmistir. ROS ile uyumlu olmasi; IMU,
lazer, sonar ve kinect gibi sensorleri yapisinda hazir olarak bulundurmasi gibi
Ozelliklerinden dolay1r ¢ok kullanighh bir yazilimdir. Bunlarin haricinde Gazebo;
Turtlebot ve Husky gibi robotlar1 da hazir olarak sundugu gibi arastirmacilarin kendi
tasarladiklart robot, eyleyici veya kontrolorleri de Gazebo igerisinde kolaylikla
olusturmaya olanak saglamaktadir. Ozgiin calisma ortamlar1 olusturabilmek igin
kiitiiphanesinde bulundurdugu c¢ok ¢esitli sekiller ve hazir cisimler kullanilabilir. Sekil
2.5'te Gazebo'da olusturulmus bir ortam goriilmektedir [26].

Ao id] N N R RS )

Sekil 2.5 : Gazebo simiilatoriinde hazirlanan ornek bir ortam.
2.4 OpenCV

OpenCV; C/C++ programlama dillerinde yazilmis ve Linux, Windows ve Mac OS X

isletim sistemleri altinda c¢alisabilen agik kaynak kodlu bir goriintii isleme
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kiitiiphanesidir. Goriintii isleme ¢alismalarinda islemsel verimlilik ve gercek zamanl

uygulamalarin kullanimi i¢in tasarlanmistir [27]. Baslica 6zellikleri sunlardir:
e Resim ve video goriintiileme

e GOriintii lizerinde matris ve operator islemleri uygulama

e Goriintii yumusatma ve keskinlestirme

e Kamera kalibrasyonu

e Ozellik ¢gikarimi

¢ Nesne tespit etme

Goriintii bolme ve birlestirme [27]

Bu tez calismasinda OpenCV kiitiiphanesinden, gelistirilen yeni EZKH uygulamasinin
sonuclarint gorsellestirmek icin yararlanilmistir. Gazebo simiilatoriinde hazirlanan
ortamda hareket ettirilen robotun izledigi gercek yol, hesaplanan yol, isaret¢ilerin
gercek ve hesaplanan konumlar1 ve bu konumlara ait belirsizligi gosteren hata elipsleri

cizdirilmistir.
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3. ES ZAMANLI KONUMLANDIRMA VE HARITALAMA

Birinci boliimde bahsedildigi gibi; mobil bir robotun, bilmedigi bir ortamda ve
bilmedigi bir konumda hareket etmeye basladiginda o ortamin haritasini ¢ikarirken
ayni zamanda o haritaya gore konumunu belirlemeye ¢alismasi islemine es zamanlh
konumlandirma ve haritalama (EZKH) denir. Cogu EZKH algoritmalarinin olasiliksal
yontemler kullandigr gozoniinde bulundurulursa ¢evrimigi (online) EZKH ve tam
(full) EZKH olmak iizere iki ayr1 yaklasim oldugu sdylenebilir. Cevrimi¢i EZKH i¢in
sonsal durum berlirten denklem 3.1°de robot durumunun sadece t anindaki bilgisi
hesaplanirken, denklem 3.2'de tam EZKH i¢in robot durumunun baslangigtan t anina

kadar olan biitiin bilgileri hesaplanir.
p(st,m|Z1;t,u1;t) (31)

p(st:lﬂmlzl:t'ul:t) (32)

Mevcut EZKH yontemleri isleyis olarak birbirlerinden farkli olsalar da sekil 3.1'deki
akis semasindaki gibi temel bir prosediir vardir. Ongorii (predict) ve giincelleme
(update) olmak iizere iki adim vardir. Ongérii asamasinda; tekerleklere bagli bir
enkoder, IMU (Inertial Measurement Unit) ve GPS (Global Positioning System) gibi
hareket algilayicilarindan alinan veriler kullanilarak robotun ¢ — 1 anina ait konumuna
gore t anindaki konumu hesaplanir. Giincelleme agamasinda ise lazer ve kamera gibi
algilayicilarla ¢evreden alinan dlglimlere gore tahmin agamasinda elde edilen konum
bilgisi giincellenerek daha dogru hale getirilmeye ¢alisilir. Bu asamada ayni1 zamanda

harita da giincellenir [3, 28, 29].
3.1 EZKH'de Kullanilan Temel Kavramlar
3.1.1 Isaretci (Landmark)

Mobil bir robotun konumunu giincellerken referans olarak yararlandig1 ¢evresindeki
belirgin noktalarin veya cisimlerin ortak adi olan isaretgiler, EZKH tekniklerinde
yaygin olarak kullanilan bir kavramdir. Bu noktalar kapi1 dikmesi veya odalarin

koseleri gibi noktasal koordinatlarla belirtilebilecek yerler olabilir [2].
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Robot Hareket Eder

Odometri, IMU vb. Tahmin

Tahmin Edilen Robot Konumu ve Harita

Lazer,

Lidar, Kamera Sensor Olgiimleri Gluncelleme
vb.

Glncel Harita ve
Konum

Sekil 3.1 : Cogu EZKH yo6ntemleri i¢in temel akis semasi.

Otonom bir robot hareket ederken, yer gostericilerden sekil 3.2°de gosterildigi gibi
yararlanir. x;, robotun k anindaki konumunu ve yonelimini, u, k — 1 aninda robota
uygulanan kontrol girisini, m; zamana bagli olarak degismeyen i'nci isaretcinin
konumunu ve z; , da k aninda tespit edilen i'nci isaret¢i i¢in dl¢lim uzakligini belirten
vektorlerdir. Bu Ornekte robot, k — 1 aninda tespit ettigi yeni isaretciye o anki
hesaplamis oldugu kendi konumuna ve 6l¢iim bilgisine gore bir konum atamasi yapar.
k aninda ayni isaret¢iyi yeniden gordiigii zaman isaretciye k — 1 aninda atamis oldugu
konum bilgisini ve k aninda aldig1 6l¢iim bilgisini kullanarak hem kendi konumunu

hem de isaret¢inin konumunu giinceller.

[saretgilerden en iyi sekilde yararlanilabilmesi igin bazi &zelliklere sahip olmasi
gerekir. Ilk olarak bir isaretci, robot ilerledigi zaman yeniden tespit edilebilmelidir.
Ciinkii robot ne kadar ilerledigini bulabilmek i¢in k aninda buldugu ve k — 1 aninda
buldugu isaretciler arasinda bag kurar. Ayrica her bir isaret¢inin birbirinden kolayca
ayirt edilebilir olmas1 gerekir. Iki farkli isaret¢i ayni isaretgi gibi algilanirsa hatali

giincelleme yapilir.

Aranan bir baska 6zellik de sayilarinin yeteri kadar ¢ok olmasidir. Ciinkii az sayida

isaret¢i demek robot konumunun ve haritanin daha az giincellenmesi demektir.
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Sekil 3.2 : EZKH'de yer gostericilerin kullanimi [30].

Son olarak da isaretciler sabit cisimlerden segilmelidir. Ornegin; hareket halindeki bir

insan, robotun kendi konumu hakkinda hatali bir sonuca ulasmasina neden olabilir
[31].

Isaret¢i ¢ikarimi icin literatiirde bir kag farkli yontem 6nerilmistir. Bu yontemlerden
hangisinin uygulanacaginin se¢imi aslinda kullanilan sensorler ve ¢ikarilmak istenen
isaretcilerin cesidine baglhdir. Ornegin, lazer tarayici ya da lidar gibi sensérler igin
keskin kenarli isaret¢i ¢ikarimi (Spike Landmarks Extraction), RANSAC (Random
Sample Consensus), tarama eslestirme (Scan Matching) ve geometrik sekilli isaretgi
cikarim gibi yontemler gelistirilmistir. Isaret¢inin konumunun kesinliginin yiiksek
olmasi istendigi durumlarda bu yontemler ve sensorler kullanilmaktadir. Diger
yandan, tespit edilen isaret¢ilerin siniflandirilmasinin ¢ok 6nemli oldugu durumlar da
s0z konusu olabilir. Di1s ortamlarda arag, insan ve hayvan gibi hareketli nesnenin
sayisinin ~ fazlaligi  bunlarin  tespit edilmesini Onemli hale getirir. EZKH
algoritmalarinda hareketli nesnelerin algilanmasi isi kamera yardimiyla ¢ok daha
kolaydir. Bu gibi goriintii tabanli yer gosterici ¢ikarimlarinin zayif yani ise uzaklik

bilgisinin lazer sensorlere gore daha belirsiz olmasidir [28, 31, 32, 33].

3.1.1.1 Keskin kenarh isaret¢i ¢cikarim

Bu yontemde, sensorden elde edilen veri taranirken biiyiik miktardaki degigsimler
dikkate alinir. Yani 6l¢iim yapilan alandaki duvar koseleri, sandalye ve masa bacaklari
gibi belirgin ve keskin sekilli cisimler tespit edilir. Bir veri dizisinde bir eleman,

kendisinden onceki ve sonraki elemanlarla karsilastirilir. Bu elemanlar arasindaki fark
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belli bir degerden fazla ise isaret¢i olarak tanimlanir. Keskin sekilli esyalarin, duvar
koselerinin sikca rastlandigi kapali alan uygulamalar i¢in oldukga elverisli olan bu
yaklasimda genellikle yiizeyinde girinti ve ¢ikintt olmayan cisimler igeren agik

alanlarda yeterli sayida isaret¢i tespit edilmesi zordur [28, 31].

3.1.1.2 RANSAC

RANSAUC; belirlenen bir matematiksel model i¢in bir veri kiimesi i¢inde o modeli,
verileri belli bir esik degerini gegecek sayida kapsayacak sekilde 6rneklendiren tekrarl
olarak uygulanan bir tekniktir [3]. Isaretci tabanli EZKH uygulamalarinda RANSAC,
rastgele secilmis lazer taramalarindan alinan verileri kullanarak bu verilere en uygun
olan dogruyu bulmak i¢in kullanilir. Daha c¢ok, robotun bulundugu ortamdaki
duvarlarin algilanmasinda kullanilan bu teknik, robotun konum ve yonelim bilgilerinin
giincellenmesinde olduk¢a faydalidir. Bir diger faydasi da insan gibi hareketli
nesnelerin isaret¢i olarak algilanmasini Onlemesidir. Clinkii EZKH'de dogru bir
konumlandirma i¢in sabit olan nesneler tercih edilir. Bir RANSAC algoritmasi genel

olarak su sekildedir:
e Model parametrelerini belirlemek i¢in gerekli en az sayida veriyi gelisigiizel seg.
o Bu verileri kullanarak modeli 6rneklendir.

e Biitiin veri kiimesi i¢inde, 6rneklendirilen bu modele daha 6nce belirlenmis olan

hata payini gegmeyen yani modele uygun verileri (inliers) bul.

e Uygun verilerin sayisinin biitiin verilerin sayisina orani belli bir esik degerini

gecene kadar algoritmay1 bastan itibaren tekrarla.

e Esik degeri asildiginda uygun verilerin tamamini kullanarak model parametrelerini

yeniden hesapla ve algoritmay1 sonlandir.

Bu algoritma esik degere ulagmak i¢in sonsuz defa dondiiriilmez. Onun yerine en ¢ok
belli bir sayida donecek sekilde ayarlanir. Bu say1 az oldugu zaman islem hiz1 yiiksek
olur ancak dogruluk pay1 diisiik olur. EZKH'de bu algoritma biiyiik 6l¢iide ayn1 sekilde

uygulanirken ¢izgi modeli olusturulmasinda en kiiciik kareler yontemi kullanilir.

Sekil 3.3'te goriildiigii gibi bir EZKH uygulamasinda robotun konum ve yonelim
bilgisi, ¢izgi olarak tespit edilen isaret¢iler nokta isaretciymis gibi varsayilarak
giincellenebilir. Robotun bulundugu ortamdan sabit bir nokta se¢ilir ve sekilde oldugu

gibi bu noktaya ¢izgi lizerindeki en yakin nokta bulunur. Daha sonra ¢izgi tizerindeki
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bu sabit nokta ve robotun konumu kullanilarak uzaklik ve aci bilgileri basit

trigonometrik hesaplarla bulunur [28, 31, 34].

RANSAC'la
bulunan ¢izgi
isaretgi

Sabit noktaya en yakin

olan nokta \

Secilen sabit bir
noktadan ¢izgi
isaretgiye dik olacak

sekilde dogru gizilir.
(0,0)

Sekil 3.3 : RANSAC yontemi ile tespit edilen duvarin isaretci olarak kullanilmasi
[31].

3.1.1.3 Geometrik sekilli isaret¢i ¢ikarimi

Iki boyutlu 6l¢iim alan lazer sensor kullanan robotlar icin ¢ok kullanisli olan bu
yontemde lazerden elde edilen veri kullanilarak bir egrilik fonksiyonu (curvature
function) elde edilir. Bu fonksiyonun iki boyutlu gorsellestirilmesiyle ortaya ¢ikan
sekilde ortamdaki yuvarlak, diiz veya koseli cisimlere karsilik gelen yerler olusur.
Sekil 3.4'te yuvarlak ve koseli sekillerin oldugu bir ortama ait lazer dlglimii ve bu
6l¢iimden elde edilen egrilik fonksiyonun ¢izimi goriilmektedir. Lazer goriintiisiinde
2 ve 3 ile isaretlenmis kose noktalart egrilik fonksiyonundaki egrilerin zirve
noktalarina karsilik gelmektedir. Bu kdse noktalar1 ice dogru degil de disa dogru
olsalard1 egri kisimlar negatif degerler alarak asagiya dogru olacaklardi. Lazer
6l¢iimiindeki yuvarlak seklin karsilig egrilik fonksiyonunda x eksenin altinda diiz bir
¢izgi olmustur. Duvar gibi diiz sekiller ise bu fonksiyonda sifira yakin degerler alarak

x ekseninin lizerinde diiz bir ¢izgi olarak karsilik bulmustur [35].

2
E
\N E
1 \“-D
4
im o 0 %
range readings

Sekil 3.4 : Lazer ile 6lglimii yapilan bir ortamin 2 boyutlu goriintiisii (solda) ve bu
6l¢iimden elde edilen egrilik fonksiyonu (sagda) [35].
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Lazer verisinden egrilik fonksiyonunu elde etmek icin Olciim verisi, (x,y)
koordinatlarina dontistiiriildiikten sonra x ve y'deki veriler bir boyutlu diziler haline
getirilir. Bu dizilerin birinci dereceden ve ikinci dereceden tiirevleri alinarak denklem
3.3'teki gibi kullanilir ve egrilik fonksiyonu elde edilir [35].
_ (0§ - ¥Oy(0)
(02 +y(£)*)*/3

3.1.2 Odometri ve konum tahmini (dead reckoning)

K(t) (3.3)

Denizcilik ve havacilikta yaygin olarak kullanilan dead reckoning robotik
uygulamalarda da kullanilan bir yontemdir. GPS gibi referans kullanan sistemler
olmadigr zaman konum tahmin etme ve belirleme i¢in bu yonteme basvurulur. Dead
reckoning, robotun hiz ve yonelim gibi bilgilerini kullanarak simdiki konumundan
periyodik bir zaman araliina gore bir sonraki konumunun hesaplanmasi islemidir.
Teoride, diferansiyel tahrikli mobil robotlar i¢in bu teknik dogru bir konum
hesaplamada yeterlidir. Ancak modelleme hatalari, tahrik elemanlarinin komut farki
ve tekerleklerin kaymasi gibi gercek hayatta karsilasilan sikintilardan dolay1 olasiliksal
hesaplamalardan yararlanilir [36]. Odometri ve dead reckoning birbirine ¢ok benzer
kavramlar olmakla birlikte verilerin elde edilmesi biraz farklidir. Odometri'de veriler
sadece hareket sensorlerinden alinirken dead reckoning'de ek olarak pusula, jiroskop
ve imu (Inertial Measurement Unit) gibi diinyanin manyetik alanini kullanan sensorler

de kullanilir [37].

Gorlintli isleme tekniklerinin gelismesiyle birlikte kameradan alinan goriintiilerle yer
degistirme ve yonelimin belirlenmesi iizerine calismalar yapilmaya baslamistir.
Hareket halindeki bir robot tizerindeki sabit bir kameradan farkli zamanlarda alinan
goriintiiler arasindaki farklardan yola ¢ikarak odometri hesab1 yapilmasina gorsel
odometri (visual odometry) denir. Tek bir kamerayla yapilabildigi gibi iki kamerayla
stereo goriintiiler elde ederek de yapilabilir. Genellikle bir goriintii {izerindeki
Oznitelikler (features) tespit edilip bir sonraki goriintiide ayn1 6zniteliklerin karsiliklar
bulunur ve Ozniteligin goriintii {izerindeki koordinat degisimine gore hesaplama
yapilir. Sekil 3.5'te iki kamera kullanilarak odometri hesabinin nasil yapildigi
goriilmektedir. k — 1 aninda iki kameradan alinan goriintiiler tizerindeki ayn1 6znitelik
tespit edilir. Bu 6zniteligin, liggenleme yontemiyle kameraya olan uzakligi hesaplanir.

k aninda tekrar goriintii alinir ve k — 1 aninda tespit edilen 6znitelik tekrar tespit edilir
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ve kameraya olan uzaklig1 hesaplanir. Iki farkli zamanda elde edilen uzaklik bilgisinin

farki robotun ne kadar yer degistirdigini belirtir [38].

Sekil 3.5 : iki kamera ile gorsel odometrinin hesaplanmasi [38].

Gorsel odometrinin tekerleklerden elde edilen odometriye gore bazi iistiinliikleri
vardir. Tekerlekler patinaj yaptig1 zaman geleneksel odometride hatalar olusurken bu
tarz bir hata gorsel odometride meydana gelmez. Kameralar ayn1 zamanda haritalama
amacli da kullanilabilecegi i¢in hem konumlandirma hem de haritalama isini tek bir
sistemle ¢ozerek fazla sensor kullanimini ortadan kaldirmis olurlar. Kiiglik ve hafif
olmalari ve diisiik enerjiyle galisabilmeleri, kamerali odometri sistemlerini bir adim
one cikarmaktadir. Bunlarmm yaninda gorsel odometrinin giiclik yasadigi bazi
durumlar da vardir. Yetersiz aydinlatma, 1sik yogunlugunun siirekli degismesi ya da
riizgar gibi etkenlerden dolay1 goriintii alinan ortamin dinamik hale gelmesi gibi
sebepler hesaplama giicliigii olusturur. Tek kamerali gorsel odometride uzaklik bilgisi
dogrudan alinamadigi i¢in ek bir sensore gereksinim duyulmasi da bir bagka zayifliktir
[39].

3.1.3 Veri iliskilendirme (data association)

Veri iligkilendirme, robotun olusturdugu haritadaki bilgiler ile o anda elde edilen
6l¢iim arasinda baglantinin kurulmasi ile ilgilidir. Bir baska deyisle; gergek diinyada
tek veya ayn1 nesneye karsilik gelen ve farkli noktalardan 6l¢iim yapilarak elde edilen
iki verinin birbiriyle iliskilendirilmesidir [40]. Veri iliskilendirme hem harita
cikarmada hem de konum belirlemede ¢ok biiyiik bir 6neme sahiptir. Clinkii elde
edilen veriler arasinda dogru bir iligki kurulamazsa her adimda olusan hatalar birikerek

harita ve konumda biiylik yanlisliklara sebep olabilir. Veri iligkilendirme igin
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literatliirde birden fazla yontem bulunmaktadir. Bunlardan bazilar1 asagidaki gibi

siralanabilir [41]:

¢ En biiyiik olabilirlik (maximum likelihood)
e Joint compatibility branch and bound

e En yakin komsuluk(nearest neighbor)

e Combined constraint data association

¢ Random sample consensus (RANSAC)

Bu yontemler icerisinde uygulanabilirligi en kolay olan en biiyiik olabilirlik yontemi,

bu tez calismasinda ele alinan EZKH yonteminde kullanilmistir.

3.1.4 Dongii kapama

EZKH algoritmalarinda ortamin haritasinin ¢ikarilmasi ve konum belirlenmesinin en
hizl1 sekilde olmasi istenir. Buna bir ¢6zliim olarak mobil robotlar kesif yaptig1 bir
yerden tekrar ge¢mez. Ancak bu durumda daha oOnce kesfedilen yerlerle veri
iligkilendirilmesi yapilmadigindan dolay1 haritada ve konumda birikmis hatalarin
azaltilmasi yapilamaz. Dongli kapama, daha once gegilen yerden tekrar gecilerek
haritada ve konumda diizeltme islemi uygulanmasina izin veren bir islemdir. Sekil
3.6°da dongii kapamaya bir 6rnek verilmistir. Ustte robotun déngii kapama yapmadan
hemen onceki olusturdugu harita goriilmektedir. Bu haritada koridor ve kare alan
arasinda acisal bir hata meydana gelmistir. Altta ise dongili kapama yapildiktan sonra

haritanin diizeltilmis oldugu goriilmektedir [24].

I | Y
| Q A
Q_)u =~ start £ e

Sekil 3.6 : Dongii kapamanin uygulanmasriyla ilgili karsilagtirmalr bir ¢alisma [42].
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3.1.5 Hareket modeli

Konum belirlemenin en dogru sekilde yapilabilmesi icin oncelikle robotun
mekanizmasi da dikkate alinarak uygun bir hareket modelinin belirlenmesi gerekir.
Robotik uygulamalarda yaygin olarak hiz komutlarina dayali veya odometri verisini
giris komutu olarak kullanan iki farkli model ve bunlarin tiirevleri kullanilir. Hiza
dayali modeller, belli bir drnekleme araliinda motorlara sabit bir hiz komutu
uygulandigimmi kabul eder. Boylece mevcut durum bilgisi ve giris komutlar
kullanilarak sonraki durum tahmin edilebilir. Bunun yaninda odometri verisi, giris
komutlar1 uygulandiktan sonra okunabilir. Bu yiizden, hiz tabanli modeller genellikle
yol planlama uygulamalari i¢in daha uygunken odometri tabanli modeller ise EZKH
uygulamalari i¢in daha uygundur. Ayrica, tahrik elemanlarina uygulanan komutun
gerceklestirilmesi sirasinda olusan belirsizlik tekerleklere bagli enkoderlerden alinan
verinin belirsizliginden daha biiyiik oldugu i¢in odometri temelli modeller konum

tahmin etmede daha basarili sonuglar vermektedir [3].

3.1.5.1 Odometri modeli

Bu tez ¢aligmasinda kullanilan diferansiyel tahrikli Turtlebot platformunun yapist goz
Oniine alinarak ve birinci bolimde anlatildig: tizere belirsizlige sebep olan etmenler de
diisiiniilerek olasiliksal bir yontem olan odometri hareket modelinin uygulanmasina
karar verilmistir. Bu modelde robot, kontrol girisi olarak periyodik zaman
araliklarinda okunan odometri verisini kullanir. Diger bir deyisle, ¢ aninda okunan
deger ile t — 1 aninda okunan deger arasindaki fark kontrol komutu gibi kabul edilir.
Odometri hareket modeli, kullanilan koordinat sistemine ve EZKH algoritmasina gore
farkli sekillerde uygulanabilir. Bu ylizden oncelikle bazi kinematik kavramlarin

aciklanmasinda fayda vardir.

Ug boyutlu uzayda bir mobil robotun durum bilgisi alt1 farkli degiskenle ifade edilir.
Bunlar; robotun konumunu belirten ii¢ boyutlu kartezyen koordinatlar1 (x,y,z) ve
yonelimini belirten euler agilaridir (Yuvarlanma (Roll), Yunuslama (Pitch), Sapma
(Yaw)). Diizlemsel bir ortamda ise konum bilgisi iki boyutta ve yonelim bilgisi de tek
bir aciyla ifade edilebilir. Boylece, denklem 3.4'teki durum matrisi kullanilarak
diferansiyel tahrikli bir robotun hareketi modellenebilir. Burada x ve y iki boyutlu

koordinat sistemindeki konumu belirtirken 8 yonelim agisini belirtir.
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X
X = lyl (3.4)
0

Sekil 3.7'de goriildiigii gibi konum, ortamdaki belli bir noktanin orijin olarak kabul
edildigi bir koordinat sistemine gore hesaplanir. Oyle ki; bu orijin noktas1 genellikle
robotun harekete ilk basladigi nokta olarak kabul edilir ve bu koordinat sisteminin x
ekseni robotun bu noktadaki yonelim agisina goére belirlenir. Ciinkii SLAM
uygulamalarina gore robotun, baslangi¢ aninda ortam hakkinda bir bilgisi ve referans

alabilecegi bir koordinat sistemi yoktur.

<0.0>
Sekil 3.7 : Robot konumunun global koordinat sistemine gore gosterilmesi [3].

Olasiligin biiylik 6neme sahip oldugu mobil robot ¢alismalarinda sik¢a karsilasilan bir
kavram da sonsal durumdur. Robotun o anki olas1 durumu hakkinda bilgi veren sonsal
durum, denklem 3.5'teki gibi gosterilmektedir. Burada s; su anki durumu, s;_, kontrol

etmektedir.

p(selue, Se-1) (3.5)
Sekil 3.8'deki c¢izimler bir robota ait sonsal durumun iki boyutlu olarak
gorsellestirilmis halidir. Diizlemsel bir ortamda hareket komutu uygulanmis robotun
konumunun belirsizligini gésteren sonsal durumda koyu renkli alanlardan agik renkli
alanlara dogru gidildik¢e robotun tahmin edilen konumunun olasilig1 azalmaktadir.
(a)'da diiz bir hareket sonucunda ortaya ¢ikan dagilimin kismen kiiciik ve hilal seklinde
oldugu goriiliirken (b)'de ise hem diiz hem de donel hareketlerin bilesiminin sonucunda
dagilimin daha genis ve elips sekline benzer oldugu goriilmektedir.

1 _la

prob(a, b) == 2 p? (3.6)

Odometri hareket modelinde denklem 3.7'deki sonsal durum hesaplanirken kontrol

girigleri olarak t ve t — 1 anindaki sensor okumalar1 kullanilir.
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(a) (b)

Sekil 3.8 : Hareket komutu uygulanan bir robotun durumunun sonsal dagilim
seklinde gosterimi [3].
Denklem 4'teki kontrol girisleri s,_, = (xy0) ve s, = (xy 0); [t —1,t] zaman

araliginda uygulanan hiz komutlari sonucunda odometri verisindeki degisimi belirtir.

w=(5") 37)

Sensdrlerden alman bu iki andaki durum verisi kullanilarak ii¢ degisim elde edilir. 11k
olarak sekil 3.9'daki robotun ilk konumu ile ikinci konumu arasindaki dogru pargasinin
yukarida bahsedilen global koordinat sistemine gore acist ile birinci konumdaki
yonelim agisinin farki (8,441 ), ardindan iki konum arasindaki uzaklik (84-qns) Ve SON
olarak da robotun son konumundaki yonelim agisi ile iki konum arasindaki dogru

pargasinin agisinin farki (8,,¢,) hesaplanir.

Sekil 3.9 : Odometri hareket modeliyle hesaplanan bagil yer degisimi ve ac1 degisimi
[3].

Hesaplanan bu ti¢ degisim t — 1 anindaki s,_; durumuna eklenerek son durum yani s;

bulunur. Boylece robot konum tahmini her adimda odometri okumalarina gore

giincellenmis olur.

Cizelge 3.1, p(x¢|us, x¢—1) sonsalmin nasil hesaplandigini gostermektedir. Kontrol
girigleri olarak odometri okumalarini kullanan algoritmada yukarida bahsedilen &;,¢1,

Otrans V€ Ororz 2. satirdan 4. satira kadar olan denklemlerde hesaplanmaktadir.
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Cizelge 3.1 : Odometri hareket modeli algoritmasi

1 odometri-hareket-modeli(x;, u;, x;_4):

2: Spor1 = atan2(y' — y,x' —x,) — 0

3: Otrans =_\/(f’__ f)z + (37’ - 37)2

4 6rot2 =60 —0-— 6rot1

5. Srotl =atan2(y' —y,x' —x) — 6

6: 6Atrans:\/(x’_x)2+(y’_y)2

I Orot2 =0 — 0 — 81011

8: P = prOb(6r0t1 - Sertlt algroAtl + azgtran;s) R
o: P2 = prOb(6trans _Aé‘trans' 6E36L“rans + 94(6r0t1 - 6rot2))
10: P1 = Prob(6rot2 — Orotzs X10rot2 + X20trans)

11: return p; * p, - Pz

2. satirdaki atan2() fonksiyonunda s;_, ve s,'deki x ve y konumlarinin farki alinarak
sekil 4'te gortildiigii gibi dogru pargasinin global koordinat sistemine gore olan agist
bulunur. Robotun ydnelimi hesaplanan bu degerden cikarildigi zaman ilk donme agis1
Orot1 €lde edilmis olur. [t — 1,t] zaman araliginda robotun yer degistirmesi ||. ||,'ye
gore 3. satirda hesaplanir. 4. Satirda, t anindaki odometri 6l¢limiinden elde edilen
yonelim agisindan ¢ — 1 anindaki yonelim agis1 ve &,,¢1 acist ¢ikarilarak ikinci agi

degisimi olan &,,;, bulunur.

61‘0(2

(st. rans

>
0 X

Sekil 3.10 : Global koordinat sistemine gore yonelim agisinin hesaplanmasi [3].
Buraya kadar yapilan hesaplamalar odometri verisinin giiriiltiisiiz oldugu diisiiniilerek
yapildi. Bundan sonraki kisimda (5., 6. ve 7. satir) odometri 6l¢timlerinin hatali oldugu

da hesaba katilarak t anina ait rastgele bir sekilde bir durum secilir. Burada rastgele

olarak segilen durum aslinda sekil 3.8'de goriilen koyu ve agik renkli alanlari, yani
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olast durumlart belirtmektedir. Secilen bu durum ve t — 1 aninda hesaplanan durum

arasindaki degisimler de 2., 3. ve 4. satirda oldugu gibi hesaplanir.

Son kisimda; odometri ile hesaplanan durum ve rastgele secilen durum arasindaki hata
olasigili hesaplanir. Gauss dagilimini kullanan olasilik denklemlerindeki varyansi
belirleyen a parametreleri robota 6zgii degerlerdir. Bu degerler hareketi etkileyen
giiriiltiiniin  belirlenmesini saglamaktadir ve belirsizligin karakterini su sekilde

etkilemektedir:

e a4, donme hareketinin a¢1 degisiminde olusturdugu giiriiltiiyli

® a5, yer degistirme hareketinin a¢1 degisiminde olusturdugu giiriiltiiyii
e a3, yer degistirme hareketinin yer degisiminde olusturdugu giiriiltiiyi
e «a,, donme hareketinin yer degisiminde olusturdugu giiriiltiyii

temsil etmektedir.

Bu c¢alismada pargacik filtresi temelli bir algoritma olan FastSLAM yontemi
kullanildigi i¢in odometri hareket modelinin de parcacik filtresine uygulanacak sekilde
uyarlanmis hali kullanilmistir. Pargacik filtresindeki 6rneklendirme bir diger adiyla
tahmin asamasinda kullanilanilan hareket modeli, odometri hareket 6rneklendirme
modeli olarak adlandirilmistir. Bu modelde, gauss dagilimi seklinde bir sonsal durum
hesaplanmas1 yerine normal gauss dagilimina uygun olarak gelisigilizel
orneklendirilmis parcaciklar s6z konusudur. Bundan dolayi, uygulanmasi daha
kolaydir. Sekil 3.11'de ayn1 giiriiltii parametleri ile olusturulmus sonsal dagilim (a) ve

parcaciklar (b) goriilmektedir.

(a) (b)

Sekil 3.11 : Ayni a parametreleri ile olusturulmus sonsal dagilim(a) ve
orneklendirilmis parcaciklar (b) [3].
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Orneklendirme modeli; kontrol girisi olarak odometri okumalarin1 kullanmasi,
hareketin bagil degisimini hesaplamasi ve hatay1 gauss dagilimina gére modellemesi
bakimindan sonsal dagilimin hesaplandig1 odometri hareket modeline benzemektedir.
Cizelge 3.2'deki orneklendirme algoritmasinda 2., 3. ve 4. satirda yonelim ag¢isinin
degisiminin ve yer degistirme denklemlerinin odometri hareket modelindekiyle ayni

oldugu goriilmektedir.

5., 6. ve 7. satirlarda, odometri okumalar1 baz alinarak hesaplanan degisimlere
ortalama degeri sifir olan ve varyansi a olan gauss dagilimina gore giirtiltii eklenmistir.

Bu giiriiltii degerleri denklem 3.8'de goriilen fonksiyona gore gelisigiizel tretilir.

12

sample(a) = %z rand(—1,1) (3.8)

i=1
Son olarak, giirtiltii eklenmis bagil hareket degisimleri bir dnceki durum olan x,_; =

(x y 6)T'ye eklenerek son durum x, bulunur. Giiriiltii ekleme ve 6rneklendirme islemi

parcacik filtresindeki her bir pargaciga ayr1 ayr1 uygulanir [3].

Cizelge 3.2 : Odometri hareket 6rneklendirme modeli algoritmasi

1: odometri-hareket-orneklendirme-modeli(u,, x;_;)
2: 8popp = atan2(y' —y,x' —x,) — 6

3: Otrans =_\/(f’__ f)z + (37’ - 3_/)2

4 Grotz2 =0 — 0 — 6,011

3! 6:rot1 = Orot1 — Sample(a16rot1 + a26trans)
6: 6Atrans = 6trans - Sample(a36trans + a4(6rot1 + 6r0t2))
I Orot2 = Orotz — Sample(a16rot2 + a26trans)
8. x'=x+ gtrans cos(6 + grotl)

o y, =x+ é:\trans 519(9 + 6rot1)

10: 0'=6+ Orot1 T 6r0t2)

11: returnx, = (x',y’,0)7

3.1.5.2 Hiz modeli

Hiz modelinde kontrol girisleri olarak dogrusal hiz ve donel hiz uygulanir ve sirasiyla

v ve w ile gosterilir. t anina ait kontrol girisi asagidaki denklem 3.9'daki gibi gosterilir.

=) 6
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Dogrusal hizin pozitif bir deger olmasi ileriye dogru bir hareket komutu, donel hizin
pozitif bir deger olmasi da saat yoniiniin tersine dogru bir donme komutu demektir.
Odometri modelinde oldugu gibi hiz modelinde de kontrol girisleri periyodik zaman

araliklarinda uygulanir.

Cizelge 3.3'te p(s¢|us, Sg—1) olasiliginin nasil hesaplandigir gosterilmektedir. Bu
algoritmaya uygulanmadan 6nce hiz komutlarinin herhangi bir giirtiltiisii olmadig1

varsayilarak yeni konum ve yonelim agist denklem 3.10'daki gibi hesaplanir.

v v
/— —sinf +—sin(0 + WAt)\
w w

Ye|={Ye-1 |+| ¥ v | (3.10)
0, 0,1 k ” cos @ " cos(8 + wAt) /

wAt

Kontrol girisi olarak t — 1 anindan t anina kadar sabit bir sekilde hem dogrusal hem
de donel hiz verildigi kabul edildigi i¢in, robotun sanal bir cember iizerinde yol aldig

varsayilir. 2-5. satirlarda bu sanal gemberin merkezi(x*, y*) ve yarigapi(r*) hesaplanir.

x" ve y' giriltilii hareket sonucunda elde edilen yeni konumu belirtir. 6. satirda
robotun bu giirtiltiilii hareket sonucundaki yonelim agisinin degisimi hesaplanir. 7-9.
satirlarda giiriiltiilii hizlar ve son yonelim agis1 bulunur. Biitiin bu hesaplamalarin

sonunda ger¢ek hiz ve giiriiltiilii hizlarin farklarini kullanarak sonsal durum olasilig

elde edilir.
Cizelge 3.3 : Hiz hareket modeli algoritmasi

1: hiz-hareket-modeli(x;, us, x;—1)
9 _ 1(x=x")cos0+(y-y')sin6

) T 2 (y—y") cos0—(x—x")sin 0

. * + ’
3 X' ===+ uly -y
£y =2 o
5: rr=Jx—x)2+ (- y)?
6: A8 = atan2(y' —y*,x' —x*) —atan2(y —y*,x — x*)
7: =0y

A6

8: w = A

. 0'-6 .
9: V=0
10: return prob(v — 0, a;|v| + a,|w]) - (w — W, az|v| +

auw)) - (v, as|v| + aglw|)
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Odometri modelinde oldugu gibi hiz modeli de parcacik filtresine ¢izelge 3.4'teki gibi
uyarlanabilir. Her pargacik i¢in ayr1 ayri1 uygulanan asagidaki algoritmanin 2-4.
satirlarinda giiriiltiilii hizlar ve son yonelim giirtiltiisii hesaplanir. Bu giirtiltili

degerlere gore 5-7. satirlarda da ilgili parcacigin yeni konumu ve yonelim agisi elde

edilir [3].

Cizelge 3.4 : Hiz hareket 6rneklendirme modeli algoritmasi

1 hiz-hareket-orneklendirme-modeli(u, x; 1)
2 U = v+ sample(a|v] + ay|w])

3 W =w + sample(a,|v| + ay|w|)

4: 7 = sample(aq|v| + ay|w|)

5: x' =x ——=sin6 + =sin(f + WAt)
w w
6
7
8

y =y+ %cos@ + %cos(@ + WAL)
0' =0 + WAt + yAt
returnx, = (x',y',0)7

3.1.6 Bayes filtresi

Otonom robotlarda es zamanli konumlandirma ve haritalama i¢in birden fazla ¢6ziim
onerilmistir. En yaygin kullanilan teknikler arasinda Bayes kurali uygulayan Kalman

Filtresi, Genisletilmis Kalman Filtresi ve Pargacik Filtresi bulunmaktadir.

EZKH uygulamalarinda sikg¢a kullanilan kavramlardan birisi olan inang (belief),
robotun ¢evresi hakkindaki ve konumu hakkindaki 6ngoriisiinii belirtir. Cizelge 3.5'te
verilen Bayes Filtresi, bu inancin hesaplanmasinda kullanilan en Onemli
algoritmalardan birisidir. Robot dl¢limleri ve kontrol verileri kullanarak hesaplanir. Bu
tablo Bayes filtresinin glincelleme kurali olarak da bilinen tekrarli yapisim

gostermektedir.

Cizelge 3.5 : Bayes filtresi algoritmasi

1 Bayes-filtresi(bel(x;_1), us, z;)

2 for all x, do

3: bel(x;) = fp(xt|ut,&1)bel(xt—1)dx
4. bel(x;) = n p(z|x.)bel(x,)
S5:
6

end f_or
return bel(x;)

Bayes filtresi yinelemeli bir islemdir. Yani t anindaki bel(x;), bir 6nceki inang olan
t — 1 anindaki bel(x;_;)'den hesaplanir. Algoritma goriildiigii lizere iki asamadan

olusmaktadir. Birinci asamada x;_;'den x;'ye gecisi saglayan u, kontrol isaretinin
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olasilig1 ile bel(x;_,)min ¢arpiminin integrali alinir. Bu asama kontrol giincellemesi
ya da tahmin olarak adlandirilir. ikinci asamada ise kontrol giincellemesinde elde
edilen bel(x,) ile z, dl¢iim olasilig1 ¢arpilir. Burada carpim genellikle bir olasilig

ifade etmedigi i¢in sonug bir diizeltme sabiti () ile ¢arpilir [3].

3.1.7 Kalman filtresi

[k olarak 1960 yilinda Rudolf Emil Kalman tarafindan &ne siiriilen Kalman filtresi,
Bayes kuralina dayanan olasiliksal bir tahmin algoritmasidir. Kalman Filtresi EZKH
icin basitce iki asamada su sekilde anlatilabilir: Ik olarak énceki durum ile kontrol
girislerinden elde edilen veriyi bitlestirerek inang icin bir tahminde bulunur. Ikinci
asamada, cevreyi algilayan sensorlerle bir dlgiim yapip bu inanci giincelleyerek

sonraki durum i¢in bir sonug tretir [3, 43].

Kalman filtresinin {i¢ ana bileseni vardir: Birincisi; filtrede hesaplanmak istenen
konum, hiz veya yonelim acis1 gibi degiskenlerin oldugu durum vektoriidiir. Iki
boyutlu bir uzayda konum ve yonelim bilgisi i¢eren bir durum vektorii denklem
3.11°deki gibi gosterilebilir.

X

y
0

v = (3.11)

Ikinci bilesen dinamik model olarak adlandirilir ve durum vektdriiniin zaman igindeki
dontigiimiinti tanimlar. Denklem 3.12°de dogrusal bir durum i¢in bir dinamik model

belirtilmistir. Buradaki F dinamik matristir ve sabittir, € de giiriltiiyii simgeler.
v(t) = Fv(t) + €(t) (3.12)

Olgiim modeli olarak bilinen iiciincii bilesen de durum ve hesaplamalar arasindaki

iliskiyi gosterir ve dinamik model denklemiyle benzer yapidadir [43].

Iki asamali Kalman filtresinin algoritmas1 denklem 3.12'den denklem 3.16'ya kadar
olan denklem grubundaki gibidir. Burada t anindaki inang bel(x;), x; ortalama degeri
ve Z; kovaryansi ile belirtilir. Tahmin asamasinda herhangi bir 6l¢iim yapilmadan
sadece t — 1 anindaki durum x;_, ile kontrol girisi u; toplanip 6nsel durum bulunur.
A ve B matrisleri x; ve u; ile ¢arpilarak durum gegis fonksiyonu dogrusallastirilmis
olur. Bu yiizden Kalman Filtresi dogrusal sistemler i¢in uygulanabilirdir. Diizeltme
asamasinda; birinci asamada hesaplanmis olan 6nsel durum yeni 6l¢iimler kullanilarak

yeniden hesaplanir ve buna da sonsal durum denir. 3. adimdaki K; Kalman kazanci,
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diizeltme asamasindaki kalman hesaplamalarinin ne kadar kesin oldugunu anlatir.
Yani K; arttik¢a diizeltme hesaplamalarinin olasiliksal agirlig1 da artar. Tam tersine K;

azaldikca da tahmin hesaplamalarinin olasiliksal agirlig: artar [3, 44].

Xy = AeXe_q + Brug (3.12)

X =AS_ AT + R, (3.13)

K, =S HF (H.2.HI + Q)™ ! (3.14)
x, =% +2 = —-KH)ZE, (3.15)
K.(z; — h(xy) (3.16)

Kalman algoritmasinin Gauss dagilimi ile gosterimi sekil 3.12°deki gibidir. a'da x-1
anindaki durumun gauss gosterimi goriilmektedir. Kontrol girisi uygullandiktan sonra
yeni durumun tahmini sekil b’deki gibidir. Tahmine ait ortalama (mean) deger daha
diisiik ve kovaryansi daha fazladir. Clinkii belirsizlik 6nceki inanca gore daha fazladir.
c’de goriildigi tizere bir sonraki asamada yeni 6l¢timler alinir. Son olarak d’de bu

6l¢iim ve tahmin kullanilarak t anina ait yeni bir inang hesaplanir [3].

(b)

(@)

(©)

Sekil 3.12 : Kalman filtresi algoritmasinin Gauss dagilimi ile gosterimi [3].

Kalman Filtresinin yaygin olarak kullanilmasinin en 6nemli sebepleri fazla islemsel
yiik gerektirmemesi ve kolay uygulanabilir olmasidir. Bununla birlikte etkin bir

hesaplama yetenegi de olmasma ragmen g¢ogu robot hareket modelinin dogrusal
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olmamasi Kalman filtresine se¢enek olarak genisletilmis Kalman filtresi ve pargacik

filtresi gibi yontemler gelistirilmesine sebep olmustur [3, 45].

3.1.8 Genisletilmis Kalman Filtresi

Dogrusal sistemler i¢in Kalman filtresi ¢ok kullanish olsa da gergek hayatta robot
uygulamalarinda ¢ogu zaman dogrusal olmayan modellerle karsilagildigr i¢in onun
yerine temel yapisi Kalman filtresine ¢ok benzer olan genisletilmis Kalman filtresi
(GKF) gelistirilmistir. Aslinda GKF, dogrusal olmayan sistemler i¢in dogrudan
hesaplama yapmak yerine bunu, siirekli tiirevlenebilir fonksiyonlar1 kullanarak
dogrusallasgtirilmig formda yapar. Bu da Kalman filtresinde oldugu gibi gercek bir
inan¢ hesaplamasi yerine benzetim yoluyla gergek inanca yakin bir deger elde

edilmesine sebep olur [3, 43].

GKF’de durum gegisi ve 6l¢iimiin, denklem 3.17 ve 3.18’de goriildiigi gibi dogrusal
olmayan fonksiyonlarla hesaplandigi kabul edilir. Burada g fonksiyonu Kalman
filtresindeki A ve B matrislerine karsilik gelirken h fonksiyonu da € matrisine karsilik
gelmektedir.

xe = gue, xp—1) + & (3.17)
Zt = h(xt) + 61’ (318)

g Vve h fonksiyonlari ile hesaplanan inancin gauss dagilimi olarak ifade edilebilmesi
icin bu fonksiyonlarin dogrusallastirilmast gerekir. Bu da Taylor serisi agilimi
kullanilarak yapilir. Denklem 3.19'dan 3.23'e kadar olan ifadeler GKF'nin

algoritmasini olusturmaktadir.

Xy = g(ue, Xp—q1) (3.19)

S = G2 1GF + R, (3.20)

K, =3 HI (HZH] + Q)1 (3.21)
x; = % + K (2, — h(x,)) (3.22)
% = (I — KH)E, (3.23)

Bu algoritmadan da anlasilacag: iizere GKF ile Kalman filtresinin yapist hemen
hemen aymidir. Tek fark, dogrusal olmayan g ve h fonksiyonlarinin
dogrusallagtirilmasidir. Bu islem g fonksiyonu ve onun kismi tlirevi kullanilarak

denklem 3.24'teki gibi yapilir.
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, 89 (us %)
g (up, xe_q) = % (3.24)
Xe—1

g fonksiyonun yaklasik degeri denklem 3.25°teki gibi elde edilir.

gue, xe—1) = gQue, Pe—1) + 9" (e, Pe—1) (Xeq — He—1) (3.25)
Boylece;

gQue, xe—1) = g(ue, phe—1) + Ge(Xe—q — He—1) (3.26)

elde edilir. h fonksiyonunun elde edilmesi de ayni islem basamaklar1 uygulanarak

gerceklesir ve 3.27'deki gibi gosterilir.

h(x.) = h(i,) + He(x, — i) (3.27)

Jakobiyen matrisi olarak adlandirilan G, ve H, matrisleri Kalman filtresindeki A;, B;

ve Cymatrislerine karsilik gelmektedir.

Dogrusal sistemlerde durum gegis matrisi, dinamik matris ve gézlem matrisinin bir
kere hesaplanmasi yeterliyken dogrusal olmayan sistemlerde bu matrisler her
¢evrimde yeniden hesaplanmalidir. Bu prosediir, ek bir islemsel yiikk getirmesine
ragmen GKF, EZKH uygulamalarinda Kalman filtresinden daha ¢ok kullanim alani
bulmaktadir. Diger yandan, GKF dogrusal olmayan sistemler i¢in bir ¢dziim getirse de
ortalama (i) ve kovaryans (£)’1n kesinligi Kalman filtresindekine gore daha diisiiktiir
[3, 43].

3.1.9 GKF'nin EZKH'ye uygulanmasi

[lk EZKH uygulamalarindan itibaren kullanilmaya baslayan GKF, gerek tek olarak
gerekse birkag farkl filtre ile birlikte, bugiin bircok EZKH yonteminde hala etkin bir
sekilde kullanilmaktadir. GKF'nin en basarili kullanim sekillerinden birisi olan EKF-
SLAM, isaretci tabanli bir yaklasimdir. Haritay1 olusturan matris yapisindan dolay1
cok sayida isaret¢inin oldugu ortamlarda EKF-SLLAM tercih edilmez, ¢iinkii islem hiz1
cok yavaslar.

Diger bircok EZKH'de oldugu gibi EKF-SLAM'de de 6l¢iim ve hareket giiriiltiisii
Gauss Dagilimina gore hesaplanir. Monte Carlo konumlandirmasi ile biiyiik benzerlik
gosteren bu yaklasimin tek farki, GKF kullanarak robot konumunu ve belirsizligini

hesaplamasinin yaninda isaret¢ilerin konumlarim1 ve belirsizliklerini de GKF ile
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hesaplamasidir. Bu durumda robot durumu (s;) ve haritay1 (m) igeren vektor, denklem

3.28'deki gibidir [3].

ve=(yn) (3.28)

Sekil 3.13'te EKF-SLAM'm uygulandig1 bir 6rnek goriilmektedir. Robot, 8 tane
isaret¢inin oldugu bir ortamda dikdortgen benzeri bir rotayr takip etmektedir.
Baslangicta konum belirsizligi sifir olan robot ilerledik¢e bu belirsizlik de artmaya
baslamaktadir. Bu sirada tespit ettigi isaretgilerin de konumlarini ve belirsizliklerini
EKF ile hesaplayip haritasina eklemektedir. Mavi nokta ile gosterilenler isaretcilerin
gercek konumlart olup, kirmizi elipslerin merkezi de isaretgilerin hesaplanan
konumlaridir. Robot, harekete basladigi konuma dogru yaklastiginda daha once tespit
etttigi isaretcilerden birini yeniden tespit eder ve bunun sonucunda hem isaret¢inin

konumunun belirsizligi hem de robotun konumunun belirsizligi azalir [9].

b
\

s Y

Sekil 3.13 : EKF-SLAM'de isaretgi ve robot iliskisi [9].

EKF-SLAM, 6ngorii ve diizeltme olmak iizere iki ana adimdan olusur. Ongoriide
6l¢iim alinmadan sadece t anindaki kontrol girisleri ve t — 1 anindaki robot durumu
kullanilarak yeni konum i¢in 6ngoriide bulunulur. Bu asamada ayn1 zamanda robotun
konum belirsizligini belirten kovaryan matrisi de giincellenir ve belirsizlik artar. Bu
adim aslinda GKF algoritmasinda belirtilen 6ng6rii adimiyla aynidir. Denklemdeki G,
EKF-SLAM'de kullanilan hareket modelinin jakobiyan matirisidir.

Diizeltme asamasi, robot konumu ve isaret¢ci konumu belirsizligin giincellendigi
asamadir. Bu iki unsur icin de ortalama ve kovaryans giincellemesi yapildigi

diisiiniiliirse aslinda diizeltme asamasi iki kere uygulaniyor denilebilir. Olgiim
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alindiginda ilk olarak tespit edilen isaret¢i veri iligskilendirmeye tabi tutularak bu
isaret¢inin kimligi belirlenir. Yani yeni bir igsaret¢i mi yoksa haritadaki bir isaret¢i mi
oldugu tespit edilir. Eger yeni bir isaret¢iyse o isaret¢i i¢in ortalama ve kovaryans
hesaplanir. Eger haritadaki bir isaret¢iyse harita giincellenir. Diizeltme asamasinin son
kisminda da 6lglime gore robot durumu ve belirsizligi giincellenir. Bu asamada eger
tespit edilen isaret¢i yeni bir isaretgiyse robotun belirsizligi artar. Eger eski bir

isaret¢iyse belirsizlik azalir ve konum diizeltilir [3].

3.1.10 Parcacik filtresi

Parcacik filtresi; Bayes kuralina dayanan ve olasilik yogunluk dagilimlarini
birbirinden bagimsiz pargaciklarla hesaplayan bir tahmin algoritmasidir. Parcacik
filtresi terimi ilk defa [46]'da kullanilmistir. Ekonomi tahminleri [47], hedef izleme,
hava trafik kontrolii, robot ve ara¢ konumlandirmasi gibi ¢esitli alanlarda kullanilan
pargacik filtresi, dogrusal olmayan sistemlere kolayca uygulanabildiginden Kalman
filtresi ve tlirevlerine gore ustiindiir [48]. Bu filtrede ana fikir; sonsal durumdan
gelisigiizel bir sekilde orneklendirilen pargaciklarin, dlgiimler dogrultusunda dnem
agirliklarinin hesaplanarak bu agirliklar oraninda ¢ogaltilmasi seklindedir. Sekil 3.14,
parcacik filtresinin nasil isledigine dair bir fikir vermektedir. Yukarida sar1 renkli olan
parcaciklar icin onem agirlig1 hesaplamasi yapilmis ve Gauss seklinde olmayan bir
olasilik dagilim fonksiyonuna benzedigi gorsellestirilmistir. Onem agirliklari oraninda
cogaltilan parcaciklardan ¢ok diisiik olasilikli olanlarimin bu asamada elendigi
goriilmektedir. Son olarak, cogaltilarak {iretilen yeni pargaciklar gelisigiizel olarak

yeniden Orneklendirilmis ve yeni 6l¢lim alinarak 6nem agirliklar: hesaplanmistir.
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Sekil 3.14 : Parcacik filtresi semasi.
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Monte Carlo konumlandirmasinda da kullanilan parcacik filtresinde pargaciklar ilk
basta harita igerisinde gelisigiizel dagilmis bir sekilde bulunur. Robot ilerleyip sensor
Olgtimlerini aldik¢a biiyiikk olasilikli pargaciklarin daha fazla ¢ogalmasi ve diisiik
olasilikli parcaciklarin da yok olmasindan dolay1 harita igerisinde belli bolgelerde
yogunlagmalar baglar [49]. Sekil 3.15'te, simetrik sekillerin oldugu bir kapali alanda

uygulanan Monte Carlo konumlandirmasina bir 6rnek verilmistir.

.

oA Robot Konumu

Robot Konumu

Robot Konumu

Sekil 3.15 : Monte Carlo Konumlandirmasi: Basta pargaciklar dagilmis haldedir
(solda), 6l¢tim alindik¢a pargaciklar kiimelenmeye baslar (ortada), yeterince 6l¢iim
alindiktan sonra pargaciklar tek bir kiime olusturur (sagda) [49].

FastSLAM'de ise pargacik filtresi biraz daha farkl sekilde uygulanir. Baslangigta hem
konum hem de harita bilgisi olmadig1 i¢in biitiin pargaciklar robot ile ayn1 konumda
kabul edilirler. Robot ilerledikce gelisiglizel olarak oOrneklendirilen pargaciklar
dagilmaya baglar. Robot, sensor 6l¢ltimleri alindik¢a olusturulmaya baglanan haritada
bilinen yerlerden gecildik¢e dagilmis durumdaki parcaciklar da tekrar yogunlagsmaya

baglar

Kalman filtresinde oldugu gibi pargacik filtresinde de durum hesaplamasi, t—1
anindaki inanci kullanarak t anindaki inancin hesaplanmasiyla yapilir. Ancak parcacik
filtresinde inang gosterimi pargaciklar kiimesi olarak belirtildigi i¢in bel(x;) ile degil
denklem 3.29'daki gibi gosterilir. Ciinkii Kalman filtresinde durum, tek bir normal
gauss dagilimi seklinde ifade edilirken parcacik filtresinde ise M tane olasilik degerleri

olarak belirtilir.
X, = xM, x XM (3.29)

Cizelge 3.6'daki parcacik filtresi i¢in verilen algoritmada tahmin, diizeltme ve yeniden
ornekleme (resampling) olmak iizere 3 adim vardir. 4. satirda M sayida pargacigin
orneklenmesi i¢in ¢ — 1 anmna ait pargaciklarin durumlarina, t aninda uygulanan
kontrol girisi eklenerek bir tahmin yapilir. Burada {iretilen pargacik kiimesi Bayes

filtresi’ndeki Onsel (prior) duruma karsilik gelmektedir. Sonsal (posterior) durum
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hesaplamasi ise 5. ve 6. satirda yapilmaktadir. Diizeltme asamasi olarak bilinen bu
kisim ayn1 zamanda 6nem 6rneklemesi (importance sampling) olarak da anilmaktadir.
4. satirda iiretilen her bir parcacik i¢in z; 6lgiimleri ile 6nem agirligi w, hesaplanir. 6.
satirda pargaciklar ve bu pargaciklara ait 5nem agirligi X, parcacik kiimesine eklenir
[3].

Pargacik filtresi’nin en 6nemli kismi1 olan yeniden 6rnekleme, 8. satirda baslar. Her bir
parcaciginin énem agirligi hesaplanmis olan X, parcacik kiimesinden, onunla ayni
boyutta yeni bir parcacik kiimesi iiretilir. X, icindeki 6nemi ¢ok diisiik olan drnekler
yeni kiimede yer almazlar ve pargacik sayis1 azalmis olur. Bu durum bir siire sonra
pargaciklarin tilkenmesine yol acabilir. Tekrar ayn1 sayiya ulasabilmek i¢in, sayilar
X, icindeki diger parcaciklarin énemi ile orantili olacak sekilde yeni drnekler iiretilir.
Yani biiylik agirliga sahip olan pargaciklardan daha fazla sayida 6rnek iiretilirken
diisiik agirhikli olanlardan daha az sayida iiretilir. Uretilen bu yeni &rneklerin her

birinin 6nem agirhigi birbirine esittir ve agirliklar1 toplami 1°e esittir [3, 50].

Cizelge 3.6 : Parcgacik filtresi algoritmast

1: Parcacik-filtresi(X;_, u¢, z¢)

2 Xt = Xt = Q

3: form =1toM do

4: sample x,{m]~p(xt|ut, xt[r_nb
5: w™ = p(zla™)

6 Xe =X, + (xt[m],Wt[m])

7 end for

8: form =1toM do

o: draw i with probability oc w/"
10 add x" to X,

11: end for

12: return X,

Dogrusal sistemlere kolayca uygulanabilirliginin yaninda parcacik filtresi, inang
olarak birden fazla secenek sunabildigi i¢in Kalman filtresinden bir adim daha 6ne
gecmektedir. Bir dezavantaj olarak parcacik filtresinde uygulamada cok sayida
pargacik kullaniliyor olmasi ve her bir parcanin ayri bir islem gerektirmesi hesapsal
yiikiin fazla olmasina neden olsa da giiniimiizde iiretilen hizli islemcilerin kullanimiyla

bu durumun {iistesinden gelmek miimkiindiir.
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3.2 FastSLAM

Birinci boliimde bahsedildigi gibi EZKH uygulamalari i¢in onerilen EKF-SLAM'de
isaret¢i sayist arttikca islem yiikii iistel bir sekilde artmaktadir. Bu sorun EKF-
SLAM'in harita olusturma yonteminden kaynaklanmaktadir. Asagidaki denklem 3.30
ve 3.31 isaretci haritasmnin nasil olusturuldugunu gostermektedir. Denklem 3.30'da u,,
robotun t anindaki durumunu, n =1,..,N olmak iizere ug . n'inci isaret¢inin
konumunu belirtir. Bu vektor her bir yeni isaret¢i i¢in dogrusal olarak biiylimektedir.
Denklem 3.31'de X, ¢, robotun ¢ anindaki varyansini yani belirsizligini, Zy . n'inci
isaret¢inin varyansmi ve m = 1, ..., M olmak iizere Zg g  , n'inci ve m'inci isaret¢inin

kovaryansini belirtir. Bu matris her bir yeni isaret¢i i¢in {istel bir sekilde biiylimektedir

[51].

l’lt = {MStl #Ql,t' b ‘LleNJt} (3.30)
I[Zst’t Zstel’t e EsteN!t-l
3, = Izst,t 2ot Zoy6,t I (3.31)
l P Zgee J
ZSt,t ZBN,t

FastSLAM, GKF ve parcacik filtresini bir arada kullanarak EKF-SLAM'deki bu tistel
biiyiime sorununa ¢oziim getirmektedir. Oyle ki; isaretciler GKF'de oldugu gibi
birbiriyle iliskilendirilmek yerine parcacik filtresindeki her bir parcacigin konumu ile
iliskilendirilmektedir. Ciinkii robotun gittigi yol tam olarak bilinirse isaretgileri
birbirinden bagimsiz bir sekilde hesaplamak miimkiindiir. Sekil 3.16'da dinamik Bayes
ag1 gosterimi ile isaret¢ilerin nasil birbirinden bagimsiz olabilecegi belirtilmistir. s,
Z; Ve u; t aninda sirasiyla robotun durumunu, sensor 6l¢limiinii ve kontrol girisini
simgelerken 6,, de n'inci isaretgiyi belirtir. Robot; 1. isaret¢iyi t =1 ve t =3
anlarinda, 2. isaret¢iyi de t = 2 aninda tespit etmektedir. s; konumundayken ilk defa
tespit ettigi 1. isaret¢inin konumunu s3 aninda yeniden tespit ettiginde, o ana kadar

izledigi yolu bildigi i¢in 2. isaret¢iden bagimsiz olarak hesaplayabilmektedir.

Denklem 3.32, FastSLAM'deki her bir pargacik i¢cin durum bilgisinin ve haritanin nasil
olusturuldugunu gostermektedir. M parcacik sayisini belirtmek tizere vem =1, ..., M
iken St[m] m'inci pargacigin durum bilgisini ve isaret¢i haritasinin bilgisini barindiran

vektoru ifade eder.
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Sekil 3.16 : EZKH'nin dinamik Bayes agi ile gosterimi [49].

Bu vektorde s¥™, m'inci pargacigin baslangigtan t anina kadar olan durumlarini yani
]

[m]

[m
n,t Ve z:n,t

izledigi yolu; u stirastyla n'inci isaret¢inin konumunu ve belirsizligini
(varyansini) belirtir. Denklem 3.32'den anlasilacag iizere haritaya eklenen her bir yeni
isaret¢i, toplam eleman sayisini dogrusal bir sekilde artirir. Bu durumda islem

yogunlugu (2N + 1) = M olarak ifade edilebilir [49].

St = (st L B B (3:32)

3. bolimde de anlatildigi lizere EZKH yontemlerinin biiyiikk bir kismi sonsal
hesaplamasini, harita bilgisi ve robotun son andaki durum bilgisi lizerinden yaparken
FastSLAM bu hesaplamay1 harita bilgisi ve robotun baglangigtan t anina kadar olan
biitlin durumlari iizerinden yapar. Dinamik bayes ag1 6rnegi ile aciklanan kosullu
bagimsizliktan yararlanarak EZKH sonsali ¢arpanlara ayrilmis bir sekilde agagidaki
denklemdeki gibi ifade edilebilir [49].

N
p(st, 0|zt ut,nt) = p(st| z4H,utb, nb) Hp(@n | stz ut,nb) (3.33)

n=1
3.2.1 FastSLAM Islem Basamaklar1

FastSLAM algoritmas1 dort adimdan olusmaktadir:

e Kontrol girisleri uygulayarak bir onceki parcacik kiimesinden yeni bir kiime

orneklendirme
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e Tespit edilen isaret¢inin her bir parcacik icin glincelleme
e Sensor Ol¢limiine gore her parcacik i¢in 6nem agirlig1 hesaplama

e Pargaciklarin 6nem agirliklart kullanilarak yeni bir pargacik kiimesi olusturma

3.2.1.1 Yeni konum ornekleme

FastSLAM'de de diger Kalman tabanli EZKH yontemlerinde oldugu gibi tahmin ve
giincellleme olarak iki temel asama vardir. Tahmin asamasinda t — 1 anindaki
parcacik kiimesinden sadece kontrol girisleri uygulayarak yeni bir pargacik kiimesi
olusturulur. Oneri dagilimi (proposal distribution) ad1 verilen bu yeni kiime olasiliksal
bir hareket modelinin her bir pargaciga tek tek uygulanmasiyla elde edilir. Bir pargacik

icin yeni bir konum elde edilmesi denklem 3.34'teki gibi gosterilir.

sgm] ~p(s, | ut,sl[r_nl] (3.34)

Biitlin parcaciklar drneklendirildikten sonra elde edilen oneri dagilimi ise denklem
3.35'teki gibi ifade edilir.
p(st |zt ut,nt™h) (3.35)

Bu asamadaki islem zamani pargacik sayisiyla dogru orantiliyken isaret¢i haritasinin

bliytikligl bu islem zamanina herhangi bir etkide bulunmaz.

Sekil 3.17'de, 250 tane parcacik icin onceki boliimde anlatilan odometri hareket
modeline gore drneklendirilen parcaciklarin dagilimi gériilmektedir. Yay seklindeki
cizgi kontrol girisleri uygulanarak olusan gercek yolu gostermektedir. Her bir
parcaciga normal Gauss giriiltiisiiniin geligigiizel bir sekilde uygulanmasiyla

parametrik olmayan bir Gauss dagilimi seklinde bir pargacik kiimesi olugsmustur [49].

Tt

. e
.

Sekil 3.17 : Olasiliksal hareket modeli ile 6rneklendirilmis pargaciklar [49].
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3.2.1.2 Isaretcilerin giincellenmesi

Yeni konum Ornekleme asamasinda sonsal i¢in bir dneri dagilimi elde edilmesi
FastSLAM'in tahmin kismi iken bundan sonraki adimlar giincelleme kismidir. Aslinda
bu asamalarin gerceklesebilmesi icin sensor tarafindan bir isaret¢inin algilanmasi
gerekmektedir. Yoksa, sensor herhangi bir isaret¢i algilayana kadar yeni konum

ornekleme adimu tekrar edilir.

Isaretcilerin hesaplanmasi birbirlerinden bagimsiz olarak robotun izledigi yola gore
yapildigindan, pargacik kiimesindeki her bir pargacik i¢cin N tane GKF vardir. Tespit
edilen isaret¢inin haritadaki mevcut bir isaretci mi yoksa ilk defa goriilen bir isaret¢i
mi oldugunun belirlenmesi i¢in bu isaretgi ilk olarak veri iliskilendirmeye tabi tutulur.
Veri iligkilendirmenin nasil yapildigi bu boliimiin sonunda anlatildigi igin simdilik,

tespit edilen isaret¢inin haritadaki hangi isaretci oldugunun bilindigi varsayilmaktadir.

t aninda tespit edilen bir isaret¢i n'inci isaret¢i (6,,) degilse, 6, 'ye ait GKF

degistirilmez ve denklem 3.36'daki gibi gosterilir.
P(Bnzn, | 525Ut ") = p(Opan, | 771, 2571 u 7 0t (3.36)

Eger tespit edilen igaret¢i n'inci isaret¢i ise 6, 'ye ait sonsal, Bayes ve Markov kurali

kullanilarak denklem 3.37 ve 3.38'de goriildiigii gibi giincellenir. Bayes kuralina gore;
P(6y, | s, 25 ut,nt) = np(z | Oy, 55 2871 ub,nf) p(6y, | s5 2071, ub,nt) (3.37)
elde edilir ve sonra Markov 6zelligi ile denklem 3.38'deki gibi sadelestirilir. t anindaki

ol¢iim z, sadece 6,,, s, ve n,'ye baghdir. Benzer sekilde 6,,, de; st, ut ve n®'den

bagimsizdir.
P(On, | 55,25, u",n") = np(ze | On, 5eme) P(Bn, | 571,271 uf"hnfh)  (3.38)

GKF kullanan diger EZKH yontemlerinde oldugu gibi FastSLAM de 6l¢iim modeli
icin dogrusal Gauss yaklasimini uygular. Buna gore; dogrusal olmayan 6l¢iim modeli
g(s¢, 0y,), birinci dereceden bir Taylor agilimi ile dogrusal bir model hale getirilir.

[saretci hesaplamasi robotun gittigi yola gore kosullandirildigi igin Taylor agilimi
isaret¢ilerin konumlari tizerinden yapilir. A¢ilim; 3.40, 3.41 ve 3.42'de goriildigi gibi
yapilir.

Zt=g (Sl[m]nunt,t—l) (3.40)
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Go,, = Ve, g (St,9nt)lst=5£m1;9nt (m] (3.41)

='u'nt,t—1

9(t,6n,) = 2 + Go (B, — it ) (3.42)

Bu kosullar altinda landmark giincelleme denklemindeki ¢carpimin birinci terimi Gauss
dagilimi olarak asagidaki denklem 3.43'teki gibi gosterilir. Burada R;, Ol¢iim

modelinin giiriiltiistinii belirten kovaryans matrisidir.

P2 | Onpr SN ~N (263 2 + G (O, — tirs_1 ), R (3.43)

Giincelleme denklemindeki carpimin ikinci terimi de yine Gauss dagilimi olarak

denklem 3.44'teki gibi ifade edilir.
P(On, | 574,271 ut T TN (B g 1 Z o) (3.44)

[saret¢inin ortalama ve kovaryansi, 3.45'ten 3.50'ye kadar olan geleneksel GKF
giincelleme denklemleriyle elde edilir.

2= g (™ ngie) (3.45)

Go,, = Vo, 9(5¢e B"t)lst=sim]:9nt=u£{ﬂ . (3.46)
Zny = Go, Znei-1Gh, +Re (3.47)

K = Iyt 1G5, Zat (3.48)

i = a4 Ke(ze — 2,) (3.49)
Zl = (I = KGo, )Enmi (3.50)

Diizlemsel bir alanda uygulanan EZKH yontemlerindeki ¢ogu dl¢iim modeli, sekil
3.18'de goriildiigi gibi tespit edilen isaret¢inin robota olan uzakligini ve robota goére
olan agisin1 hesaplar.

Robotun t anindaki durumunun (s », S¢ y, S¢,g) Ve isaret¢inin konumunun {6y, , Oy, )

olarak ifade edildigini varsayarak 6l¢iim fonksiyonu g(st, 0, t) 3.51'deki gibi yazilir.

[ [, . — 5,02 50|
T'(St, On, lzl\/(ent,x Stx)? + (Onyy = Sty) | (351)

[’) -s
¢(se, On, tan~! (—nt'y nY ) — St J

Gnt,x_st,x

9(50,6n.) = [
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Sekil 3.18 : Robotun aldig: 6l¢iimiin agis1 ve uzakligi.

Bu 6l¢iim modeline gore Jakobiyan Gg,, de denklem 3.52'deki gibi bulunur [49].

[ gnt,x_st,x gnt,y_st,y '|
Co = | \/(ent_x—st,x)z+(9nt,y—st,y)2 J (Bnpx=S62)2+ (Bnpy=sty)? | (3.52)
9., = .
ne | _ Onpy—Sty Onpx—Stx |
l (ent,x_st,x)z+(9nt,y_5t,y)2 (ent,x_st,x)z+(9nt,y_5t,y)2 J

3.2.1.3 Onem agirhklarinin hesaplanmasi

Oneri dagilimindaki parcacik kiimesi ¢ anindaki dl¢iimii ve veri iliskilendirmeyi degil
sadece kontrol girisini kullandig i¢in istenilen sonsal p(st, @ | z¢, ut, n') ile eslesmez.
Bu farki gidermek {izere yapilan 6nem orneklendirmesi igin sekil 3.19'da bir drnek
verilmistir. Parcaciklar dogrudan hedef dagilimi kullanilarak 6rneklendirilmek yerine
oneri dagilimina gore orneklendirilirler. Hedef dagiliminin 6neri dagilimindan daha
bityiik oldugu yerlerdeki parcaciklarin agirliklar1 digerlerinden daha fazladir. Oneri
dagilimi hedef dagiliminin altinda kaldik¢a parcaciklarin da 6nem agirliklar o oranda

azalir.

Oneri dagilmindaki
parcgacik kiimesi

Onem agirhiklan

hesaplanmig
parcacik kiimesi |I |"|Imllmlmuu | |

Sekil 3.19 : Onem agirliklarinin hesaplanmasinin bir 6rnegi [39].
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Her bir parcacigin énem agirligi, denklem 3.53'te oldugu gibi hedef dagilimin 6neri

dagilimina oranlanmasiyla elde edilir.

m _ hedef dagilmu  p(s"I™|zt,uf, n)

w! (3.53)

~ oneridagilimi  p(stiml|zt-1 yt, nt-1)
Denklem 3.53'teki hedef dagilimi ifadesi Bayes kurali uygulanarak asagidaki 3.54'teki
gibi genisletilebilir.

] p(ztlst,[m]’Zt—l’ut’nt)p(st,[m]|Zt—1’ut’nt)

& p(st,[m]lzt—l’ut’ nt—l) (3.54)

Denklem 3.54'in pay kismindaki ikinci terim t anindaki 6l¢iimii kullanmadigi igin t

anindaki veri iligkilendirmeye de gereksinim yoktur. Markov 6zelligi kullanilarak 3.55

elde edilir.
t)tlml t=1 ot ot t[ml|, t=1 ,,t pt—1
t[m] _ p(z*|[s™™,z"" ", ur,n")p(s"t"™ |z, ut,n" ) (3.55)
p(stIml|Zt=1 3t pnt=1)
Boylece onem agirligi denklem 3.56'daki gibi ifade edilir.
Wt[m] = p(zt|stml zt=1 ut, nt) (3.56)

Onem agirligmi hesaplamak icin gercek sensor Slciimii ile tahmin edilen Sl¢iim
arasindaki fark kullanilir. Denklem 3.57, bir pargacigin 6nem agirliginin nasil
hesaplandigini bu 6l¢iim farklari cinsinden gostermektedir. Z,,, ., GKF'deki yenilenme

matrisine karsilik gelmektedir [49].

1 1 . T -1 ”
wi = == exp{~5 (2 ~ Znt) [Znee] @~ 2} (3.57)

|2rZ,, |

3.2.1.4 Yeniden Orneklendirme

Biitiin parcaciklar i¢in 6nem agirlig1 hesaplamasi yapildiktan sonra mevcut pargacik
kiimesinden yeni bir pargacik kiimesi elde edilir. Cogu yeniden 6rnekleme yonteminde
belli bir esik degerinin altindaki parcaciklar yok edilirken diger pargaciklar ise 6nem
agirliklartyla dogru orantili olarak gogaltilir. Literatiirde cesitli yeniden 6rnekleme
algoritmalar1 bulunmaktadir. En ¢ok kullanilan yontemler; ¢okterimli (multinomial),
katmanli (stratified), sistematik (systematic) ve kalint1 (residual) yeniden 6rnekleme

yontemleridir.
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Pargaciklara yeniden Ornekleme uygulanmadan once biitiin pargaciklarin 6nem

agirliklarimin  normalize edilmesi gerekmektedir. Diger bir deyisle, pargacik

kiimesindeki 6nem agirliklarinin toplaminin 1'e esit olabilmesi i¢in her bir pargacigin

onem agirhiginin yeniden Ol¢eklendirilmesi gerekir. Bir pargacik kiimesinde M tane

parcacik oldugu varsayilarak normalizasyon denklem 3.58'deki gibi yapilir.
Wi

- TiLiw;

Bundan sonra yeniden 6rnekleme islemi 6nceden belirlenen esik degerine gore yapilir.

Wi (3.58)

FastSLAM'in en 6nemli asamalarindan biri olan yeniden ornekleme asamasinda
yasanan en biiyiikk sikinti parcacik bozulmasi (degeneracy) veya yoksullagsmasi
(impoverishment) ad1 verilen durumdur. Eger, kontrol komutlar1 uygulandiktan sonra
elde edilen pargacik kiimesindeki parcaciklarin ¢ogu sensor dlglimii ile uyumlu ise
yeniden drnekleme yapilirken biiylik 6nem agirligina sahip yani kaliteli pargaciklar

yok edilebilir. Bu da sonsal dagilimin hatali olusmasi demektir [49].

Pargacik bozulmasini ortadan kaldirmak i¢in yeniden 6rneklemenin her zaman degil,
kaliteli pargacik sayisinin az oldugu zamanlarda yapilmasi gerekir. Bu sayiy1 tespit
edebilmek icin [52]'de Efektif Ornek Sayis1 (Effective Sample Size) hesaplamasi

onerilmistir. Denklem 3.59'da bu hesaplama goriilmektedir.

1
Negs = 5o (3.59)

Efektif ornek sayist belli bir degerin altinda oldugu durumlarda yeniden 6rnekleme
yapilir. Parcacik kiimesindeki parcaciklar bir sonraki dongiiye hazir hale getirmek i¢in

biitlin pargaciklarin 6nem agirliklari denklem 3.60 kullanilarak esit hale getirilir [53].

(3.60)

1
Wizﬁ

3.2.2 FastSLAM'deki diger kavramlar

3.2.2.1 Veri iliskilendirme (en ¢ok benzerlik yontemi)

Gergek ortam uygulamalarinda dlglimle tespit edilen isaret¢inin haritadaki isaretcilerle
olan ilgisi kesin bir sekilde bilinmez. Bu da EZKH yontemleri i¢in belli bash
zorluklardan birisidir. Coziim olarak; tespit edilen isaret¢inin haritadaki diger

isaretciler icindeki benzerligi kontrol edilir ve en ¢ok benzerligi olan isaretci ile
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iliskilendirilir. Denklem 3.61'deki p(z¢|n,, At 1st, zt~1,ut) ifadesi en ¢ok benzerlik

hesaplayicisinin bir 6rnegidir.

i, = argmax p(zt|n,, At 1st, zt71 ub) (3.61)
ng

FastSLAM'de 6l¢iim alindiktan sonra veri iliskilendirme i¢in denklem 3.62'den 3.65'e
kadar olan islemler sirasiyla uygulanir. ilk olarak 8l¢iim modelinin dogrusallastirilip
Jakobiyan matrisi haline getirilmesi gerekir. m'inci pargacik i¢in Olglim tahmini
yapilir. Jakobiyan matrisi ve n'inci isaret¢inin kovaryanst kullanilarak inovasyon
matrisi olusturulur. Son olarak benzerlik hesaplamasi yapilir. En biiytik benzerligi olan
isaret¢i i¢in hesaplanan deger ayni zamanda m'inci pargacik i¢in 6nem agirligi olarak

atanir. Bu prosediir biitiin pargaciklari i¢in tekrar edilir.

Gou, = Vou, 9t 6 i _im) (3.62)

t =g (5" nge) (363)

Zny = Go, Znei-1Gh, +Re (3.64)

W™ = exp=5 (= ) ] = )
|2rZ,,, | '

GKF tabanli EZKH uygulamalarinda genellikle tekil veri iliskilendirme tercih edilir.
Bu yontemler hata yapmaya ¢ok miisaittir ve veri iligkilendirmedeki bir hata harita

hesaplanmasinda ¢ok biiylik hatalarin olusmasina sebep olabilir.

Veri iliskilendirmedeki hatalar birka¢ farklt durumdan dolay ortaya cikabilir.
EZKH'de 6lgiim giliriiltiisii ve hareket giiriiltiisii olmak {izere, belirsizlige sebep olan
iki temel etken vardir. Olgiim belirsizliginin artmas1 haritadaki isaretgilerin
belirsizliginin artmasina sebep olur. Eger bu belirsizlik ¢ok fazla olursa birbirine yakin
olan iki isaret¢inin belirsizlikleri ¢akisabilir. Sekil 3.20'de 6l¢iim belirsizligi birbiriyle
cakisan iki isaret¢cinin  veri iligkilendirme i¢in  olusturabilecegi  sorun
gorsellestirilmistir. Boyle bir durumda robot hangi isaret¢inin, tespit edilen isaret¢i
olduguna karar verirken hataya diigebilir. Eger birden fazla dl¢tim kullanilarak veri
iligkilendirilmesi yapilirsa 6l¢iim belirsizliklerinin ¢akigsmasindan kaynakli bu sorun

da ¢oziilebilir.
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Olcuim Belirsizligi

Sekil 3.20 : EZKH'de 6l¢iim belirsizligi [49].

Hareket giiriiltiisii de veri iligkilendirme acisindan sorun olusturabilecek bir durumdur.
Cok biiyilik hareket giiriiltiisli s6z konusu oldugunda parcaciklarin dagilimi da bir o
kadar biiyiiyecek ve konum belirsizligi artacaktir. Sekil 3.21'de konum belirsizliginden
kaynaklanabilecek wveri iligkilendirme karmasas1 Orneklendirilmistir. Sensoriin
algiladig iki isaret¢i birbirlerine olan konumlar1 bakimindan, bagka iki isaretci ile
benzerlik gosterebilir. Farkli konumlarda ve yonelim agisindaki parcaciklar benzer

isaret¢i giftlerini yanlis tespit edebilir [49].
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Konum Belirsizligi

Sekil 3.21 : EZKH'de konum belirsizligi [49].
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4. GELISTIRILEN YONTEM

4.1 Giris

EZKH i¢in Onerilen yontemde, isaretci tabanli algoritmalarin veri iliskilendirme
asamasi i¢in gelistirilen yeni bir yaklasimla hiz performansinin artirilmasi
amagclanmustir. Ozellikle pargacik filtresi tabanli EZKH yontemlerinde isaretgi
sayisinin devasa boyutlara ulagsmasiyla birlikte veri iliskilendirme islemi ¢ok biiytik
Olciide zaman kaybina neden olmaktadir. Cilinkii sensor Olclimiiyle tespit edilen
isaretci, haritadaki biitlin isaretcilerle karsilastirilarak o isaret¢inin  kimligi
belirlenmeye calisilmaktadir. Bu tez calismasinda kullanilan FastSLAM'de veri
iligkilendirme adiminda her bir parcacik ve isaret¢i icin bolim 3'teki denklem
grubunun tekrar tekrar hesaplanmasi gerekmektedir. Bu da biitiin algoritma i¢in biiyiik
bir islem zamanimin olusmas1 demektir. Isaretci kimliginin belirlenmesi igin haritanin
tamaminin incelenmesi yerine, asagida ayrintili olarak anlatilan bazi dlgiitleri saglayan
kiigiik bir alandaki isaretcilerin incelenmesi, gereksiz islemlerin yapilmasini engeller.
Yani binlerce elemanin bulundugu bir haritada belki de en fazla birkag tane isaret¢inin

veri iliskilendirme prosediiriine girmesi s6z konusu olabilir.

Birinci boliimde anlatildigi tizere bu konuyla ilgili daha 6nce yapilmis olan ¢aligmalar
bulunmaktadir. [19]'daki ¢alismaya gore bir isaret¢i tespit edildiginde haritadaki biitiin
isaretciler veri iliskilendirme islemine tabi tutulmazlar. Bunun yerine, sadece robot
tizerindeki sensoriin algilama uzaklig1 ve acisi igerisinde kalan isaret¢iler bu adima
sokulur. CESLAM olarak adlandirilan bu yaklasim sekil 4.1'de gorsel olarak ifade
edilmistir. 21 tane isaret¢i olan haritada robot sadece sensor algilama alani i¢inde kalan
7 tane isaret¢iyi veri iliskilendirmeye sokmaktadir. Buradan kolaylikla anlasilacagi
tizere CESLAM yontemi biiyiik bir hesap yiikiinii ¢ok aza indirmistir. Bu yaklagimin
basaris1 azzmsanmayacak kadar biiylik olmasina karsin, kullanilan sensor ve ortamdaki
isaret¢i sayisina gore algoritmanin etkisinin azalma olasihig vardir. Ornegin; iic
boyutlu tarama yapabilen ve algilama uzakligi 10 metre olan bir lazer sensor kullanan

robot, tek bir dl¢limde ¢ok sayida isaret¢i tespit edebilir.
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Sekil 4.1 : CESLAM yontemi: sensor algilama alani i¢inde kalan gri renkli
isaretciler veri iliskilendirmeye tabi tutulur.

Ayrica pargacik filtresi temelli EZKH yaklasimlarinda bu teknik bazen, veri
iliskilendirmeye alinmas1 gereken isaretcileri atlayabilir. Gri renkli biiyiik liggenin
robotu, beyaz renkli kiiciik licgenin de bir parcacigi simgeledigi sekil 4.2'de goriildiigii
tizere bu durum; tespit edilen bir isaret¢inin, ilgili parcacigin sensor algilama alani

disinda kaldig1 zaman ortaya ¢ikar.

Sekil 4.2 : CESLAM'de olusabilecek yanlis eslestirme durumu.

Bu tez caligmasinda onerilen yontemde, CESLAM'de oldugu gibi sensor algilama
alan1 i¢inde kalan isaret¢iler degil bu alandan daha kiiciik dairesel bir alandaki
isaretgiler ele alinir. Sensor algilama alani ne kadar genis olursa olsun bu dairenin alan
degismedigi i¢in veri iliskilendirme asamasinda her zaman ¢ok az sayida isaret¢i

hesaba katilir. Boylece, bu adimdaki islem yiikii hemen hemen ayni kalmaktadir.
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4.2 Onerilen Yontemin Teknik Ayrintilar:

Onerilen yéntem uygulamada oldukga basit olmasma karsin hiz performansini
artirmadaki basaris1 ¢ok yiiksektir. Cilinkii; haritada ¢ok biiylik miktarda isaret¢i olsa

bile veri iliskilendirme prosediirii uygulanan isaretc¢i sayisi ¢ok diisiik kalmaktadir.

Yontemin ana fikri su sekildedir: Robot, sensorden aldigi 6l¢lime gore pargaciklara
Olciim tahmini uygular. Merkezi bu tahmin sonucunda bulunan ve d yarigapi
genisliginde bir dairesel alan belirlenir. Bu dairenin i¢inde kalan isaretciler veri
iligkilendirmeye tabi tutulurken dairenin disinda kalan isaret¢iler atlanir. Ciinki
standart veri iliskilendirme prosediirii uygulanirken karsilastirilan biitlin isaretcilerin
benzerlik olasiliklar hesaplanir ve en biiyiik olasilikli olan isaret¢i ele alinir. Eger bu
isaretci belli bir esik degerinin altindaysa haritada olmayan yeni bir igaret¢i olarak
kaydedilir. Dairenin yaricap1 da bu esik degeri gézoniinde bulundurularak belirlenir.
Bir isaret¢inin konum belirsizligi ne kadar biiyiikse yakininda tespit edilen baska bir
isaret¢inin ona olan benzerlik olasilig1 da o kadar fazladir. Bir baska deyisle, robotun
bu iki isaret¢iyi birbirinden ayirt etmesi icin aralarindaki uzakligin belli bir degerden
fazla olmasi gerekir ve belirsizligin artmasiyla bu uzaklik da artar. Dairenin disinda
kalmasina ragmen bu benzerlik olasilig1 esik degerin iistiinde olan bir igaretci olabilir.
Bu hatanin yasanmamasi i¢in bir isaret¢inin belirsizliginin en fazla olabilecegi durum
gbzoniine alinir. Bir lazer sensoriiniin isaret¢i tespit edebilecegi en uzak mesafede o
isaret¢inin belirsizligi en biyiiktiir. Bu bilgiler 1s181nda, dairenin yarigap1 sekil 4.3'te
goriildiigli gibi deneysel olgiimlerle belirlenebilir. Belirsizligi gosteren elipsin iki
yarigap1 vardir. Bunlardan biri digerinden daha kisa olabilir. Bu kisa yarigap, dairenin
yarigap1 olarak secilirse yukarida bahsedildigi gibi benzerlik olasiligi esik degerin

istiinde olan bir isaretci dairenin disinda kalabilir. O yiizden uzun olan yaricap secilir.

Sekil 4.3 : Dairenin yarigapinin lgiimle belirlenmesi.
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Sekil 4.4a'da gri renkli biiyiik iggen robotu, beyaz renkli kii¢lik tiggenler parcaciklari,
yildizlar da isaretgileri simgelemektedir. Robot, aldig1 6l¢iimii kullanarak pargacik igin
Ol¢tim tahmini yapar ve siyah isaretcileri kapsayan daireyi belirler. Sekil 4.4b'de
gorildiigi gibi Ol¢limiin agis1 ve uzakligi, parcacigin konumu ve yoOnelimine
eklendiginde dairenin merkezi hesaplanir. Bu dairenin i¢inde kalan siyah isaretgiler

veri iliskilendirmeye sokulurken diginda kalanlar da atlanir.

Sekil 4.4 : Onerilen ydntemde bir pargacik igin dairenin belirlenmesi.

Her bir pargacik igin farkli olan dairenin merkezi denklem 4.1 ve 4.2'deki gibi
hesaplanir. burada ¢ 6l¢limiin sensore gore agisini, r Ol¢limiin uzakligini belirtirken

Cx Ve ¢, de sirasiyla dairenin merkezinin x ve y koordinatlarini belirtir.

Cx = S,[TQ] +7r cos(st theta T D) (4.1)
Cy =Spy +7 sm(st theta T @) (4.2)
ul[:?(] ve ﬂx[:,?;] m'inci parcaciga ait n'inci isaret¢inin sirasiyla x ve y koordinatlarini

belirtmek {izere, haritadaki bir isaret¢inin dairenin merkezine olan uzaklig1 4.3'teki

gibi bulunur.

= JCe— a2 + (o, — W2 “3)

Eger [,,, dairenin yarigap1 d'den biiylikse bu isaret¢i veri iliskilendirmeye alinmaz.
Eger kiigiikse, benzerlik olasilig1 hesaplanir. Dairenin i¢inde kalan biitlin isaretgiler
icin benzerlik olasilifi hesaplandiktan sonra en biiyiikk benzerligi olan isaretci
Olctimdeki 1isaretcidir denir. Sekil 4.5'te, gelistirilen yontemin akis semasi

gorilmektedir.
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Sekil 4.5 : Gelistirilen yontemin akis semasi.
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5. UYGULAMA

Mobil robotlarda EZKH yontemlerinin hiz performansini artirmak igin gelistirilen
yontemin basarisini gormek i¢in Gazebo'da hazirlanan iki farkli haritada simiilasyonlar
gerceklestirilmistir. Ug¢ farkli EZKH yaklagimi her bir haritada Turtlebot platformu
kullanilarak 30'ar defa calistirilmistir. Elde edilen sonuglar hiz performansi, robotun

gittigi yolun hesaplamasi ve haritanin dogrulugu bakimindan incelenmistir.

5.1 Diizlestirme Filtresi

Yeni EZKH yonteminin uygulanmasi sirasinda Kinect sensorti ile ilgili bazi zorluklar
yasandi. Cilinkii Kinect daha ¢ok, eglence amagh olarak tasarlandigi i¢in bilimsel ve
endistriyel ¢alismalarda kullanilanilan diger lazer sensorleri kadar dogrulukta 6lgiim
yapamamaktadir. Bu tez c¢aligmasinda Kinect, 2-boyutlu lazer sensorii gibi
kullanilmastir. Sekil 5.1'de, robota 2.5 metre uzakliktaki bir duvardan alinan iki 6l¢tim
goriilmektedir. Sekil 5.1a'da goriilen ¢izim sensorden alinan verinin islenmemis
halidir. Ol¢iim uzaklig1 az olmasia karsin elde edilen veri oldukea giiriiltiiliidiir ve
isaretci tespitini gliglestirmektedir. Sekil 5.1b'de ise diizlestirme filtresi uygulanmais bir
6lgtim goriilmektedir. Bu 6l¢tim, EZKH'de kullanmak i¢in daha uygundur.

Sekil 5.1 : Kinect sensorii ile 2.5 metre uzakliktaki diiz bir duvardan alinan
islenmemig Sl¢lim.
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Sinyal isleme ve goriintii isleme gibi alanlarda genellikle ortalama filtresi, ortanca
filtresi ve Gauss filtresi gibi diizlestirme filtreleri kullanilir. Uygulama kolayligi ve iyi
sonug¢ vermesi nedeniyle Kinect sensoriinden alinan veri, ortalama filtresi uygulanarak
kullanilmistir. Bu filtrenin isleyisi su sekildedir: sensorden gelen veri bir dizi olarak
olarak disiiniildiigiinde filtre edilecek elemanin kendisinin ve kendisinden dnce ve
sonra gelen n tane elemanin toplaminin aritmetik ortalamasi alinir. Elde edilen deger
filtre edilen eleman ile degistirilir. Bu islem biitiin bir dizi boyunca her bir elemena
strastyla uygulanir. Ancak bastaki ve sondaki n tane eleman bu filtreleme islemine tabi

tutulamaz [54].

5.2 Isaret¢i Cikarim

Isaret¢i cikarimi icin béliim 3'te anlatilan egrilik fonksiyonu ydntemi kullanilmistir.
sekilde koselerin, diizliiklerin ve yuvarlak bir cismin oldugu bir ortamdan alinan
Olciime ait ¢izim goriilmektedir. Sekil 5.2'de de bu olgiimden hesaplanan egrilik
fonksiyonunun ¢izimi vardir. Sekil 5.2'de, 1'den 5'e kadar numaralandirilmis olan
noktalarin sekil 5.3'teki egrilik fonksiyonunda karsiligi olan yerler de ayni sirayla
numaralandirilmigtir. 1 ve 3 ile gosterilen kdseler, egrilik fonksiyonunda yukariya
dogru tepe olustururken 2 ile gosterilen kose, egrilik fonksiyonunda agagiya dogru tepe

olusturmustur. Bu 6zellik, isaretcilere kimlik atamasi yapilirken biiylik avantaj saglar.

Sekil 5.2 : Kdseli, diiz ve yuvarlak cisimlerin oldugu bir ortamdan alinan sensor
Olgtimii.
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Olgiimde 4 ve 5 noktalar1 arasinda kalan yuvarlak cisim egrilik fonksiyonunda sifirin
istiinde diiz bir ¢izgi olarak karsilik bulmustur. Bunun gibi sekiller isaretci olarak

kullanilirken seklin merkezini isaret¢inin konumu gibi kabul etmek miimkiindiir.

Sekil 5.3 : Kdseli, diiz ve yuvarlak cisimlerin oldugu bir ortamdan alinan sensor
Ol¢iimiiniin egrilik fonksiyonu.

5.3 Gazebo Simiilatériinde Olusturulan Ortamlar ve Ger¢ek Uygulama

Ortamlan

Sekil 5.4'te goriilen 1. ortamda robot, siyah ¢izgi ile gosterilen rotay: takip etmektedir
ve bu rotada bir tur attiginda toplamda 13 tane isaretci tespit edebilmektedir. Isaretciler
kiip seklindeki cisimlerin, sensoriin gordiigii kdse kisimlaridir. Bu ortam, robotun bir

Olciimde en fazla bir tane isaretgi tespit edebilecegi sekilde hazirlanmistir.

Sekil 5.4 : Gazebo simiilatoriinde hazirlanan 1. ortam.
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Sekil 5.5'teki ortamda robot yine siyah ¢izgi ile gosterilen rotay takip etmektedir ve
bir tur sonunda toplamda 21 tane isaretgi tespit edebilmektedir. Robot bu ortamda
ilerlerken bazen bir Olglimde sadece bir isaret¢ci bazen de iki isaret¢i tespit
edebilmektedir. Boylece ortamin karmasiklig: arttikca, onerilen yontemin ne kadar

basarili oldugu kolayca gozlemlenebilmektedir.

Sekil 5.5 : Gazebo simiilatoriinde hazirlanan 2. ortam.

Sekil 5.6 ve sekil 5.7'de goriilen laboratuvar ortamlarinda robot, simiilasyon
ortamlarinda oldugu gibi kare seklinde bir rotay: takip etmektedir. Yine simiilasyon
ortamlarinda oldugu gibi iki ortam, isaret¢ilerin sayisi ve konumu agisindan farkli
karmagiklikta olacak sekildedir. Boylece farkli EZKH yontemlerinin basarilarinin

daha net anlagilmasi saglanmaktadir.

Sekil 5.6 : Gergek uygulama ortami-1.
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Sekil 5.7 : Gergek uygulama ortami-2.
5.4 Gelistirilen Yontem ile Olusturulan Haritalar

Sekil 5.5 ve sekil 5.6'daki ortamlarda c¢alistirilan robotun, Onerilen yontemle
olusturudugu isaret¢i haritalar1 sekil 5.7 ve sekil 5.8'de goriilmektedir. Cizimlerde
robot yesil renkte belirtilmis ve sensoriin algilama alaninin sinirlar1 da mavi ¢izgi ile
gosterilmistir. Bu haritalar ¢izdirilirken parcacik filtresindeki dnem agirligi en yiiksek
olan parcacigin olusturdugu harita gézoniine alinmistir. Kirmizi nokta ile isaretlenmis
yerler robotun gordiigii isaretcilerin gercek konumlari, sar1 nokta ile isaretlenmis yerler
de bu isaretcilerin hesaplanan konumlaridir. Merkezi sar1 noktalar olan beyaz renkli
elipsler isaretgilerin belirsizliklerini gosterir. Bu belirsizlikler, robot isaretciyi ilk
gordiiglinde daha biiylikken daha sonra robot tekrar ayni isaret¢iyi gordiiglinde

giincellenerek azalmistir.

Haritalarda ayrica robotun gittigi gercek yol ve EZKH ile hesaplanan yol da
cizdirilmistir. Beyaz renkli kare ¢izgi gercek yolu, siyah renkli kare ¢izgi de parcacik

filtresi ile hesaplanan yolu gosterir.
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Sekil 5.8 : Onerilen yontemle birinci simiilasyon ortaminda yiiriitiilen robotun
olusturdugu harita.

Sekil 5.9 : Onerilen yontemle ikinci simiilasyon ortaminda yiiriitiilen robotun
olusturdugu harita.
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5.5 Ol¢iim Sonuclar:

Ug farkli ydntem her bir simiilasyon ortaminda 30'ar defa calistirilarak harita
hesaplama hatalari, giizergah hatalar1 ve calisma stireleri ile ilgili sonuglar elde
edilmistir. Cizelge 5.1'de 1. ve 2. ortamda tespit edilen isaretgilerin gergek
konumlarina gore santimetre cinsinden hatalar1 verilmistir. Buradaki degerler su
sekilde elde edilmistir: Her bir hesaplanan isaret¢inin ger¢cek konumuna olan uzakligi
2-normuna gore hesaplandiktan sonra bu uzakliklar toplanip isaret¢i sayisina

boliinerek hata bulunmustur.

Cizelge 5.1 : EZKH yontemlerine ait igaret¢i konumu hesaplama hatalar.

EZKH Isaretci Konum Isaretci Konum
Yéntemleri Hatalari(cm) Hatalari(cm)
(1.0rtam) (2.0rtam)
FastSLAML1.0 6.8 9.7
CESLAM 6.9 9.6
Onerilen Yontem 6.8 9.5

Cizelge 5.2'de ti¢ farkli EZKH yonteminin giizergah hesaplama hatalar1 goriilmektedir.
Bu hatalar1 elde etmek igin robotun her adimdaki hesaplanan konumu ile gercek
konumu arasindaki uzaklik yine 2-normuna gore hesaplandiktan sonra biitiin

adimlardaki uzakliklar toplanmustir.

Cizelge 5.2 : EZKH yontemlerine ait isaretci giizergah hesaplama hatalari.

EZKH Glizergah Glizergah
Yéntemleri Hatalari(m) Hatalari(m)
(1.0rtam) (2.0rtam)
FastSLAM1.0 10.14 9.71
CESLAM 9.92 9.59
Onerilen Yontem 9.83 9.72

Cizelge 5.3 ve ¢izelge 5.4'te lic farkli EZKH yonteminin simiilasyon ortamlar1 ve
gercek uygulama ortamlarindaki ¢aligma zamanlar1 verilmistir. Bu degerler, robotun
harekete basladigir andan itibaren basladigi noktaya tekrar gelene kadar izledigi yol
boyunca her bir donglide harcadig: siireler toplanarak elde edilmistir. Simiilasyon
ortamlarinda elde edilen degerlerin gergek uygulama ortamlarinda elde edilen
degerlerden ¢ok daha biiylik olmasinin sebebi, simiilasyon ortamlarinin daha biiyiik

olmas1 ve bu ortamlardaki nesne sayisinin daha fazla olmasidir.
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Cizelge 5.3 : EZKH yontemlerinin simiilasyon ortamlarindaki ¢aligma zamanlari.

EZKH Calisma Zamani(sn) Calisma Zamani(sn)
Yontemleri (1. Ortam) (2.0rtam)
FastSLAM1.0 9.27 19.91
CESLAM 441 6.66
Onerilen Yontem 4.19 5.96

Cizelge 5.4 : EZKH yontemlerinin ger¢ek ortamlardaki ¢calisma zamanlari.

EZKH Calisma Zamani(sn) Calisma Zamani(sn)
Y Ontemleri (1.0rtam) (2.0rtam)
FastSLAM1.0 0.81 1.22
CESLAM 0.52 0.69
Onerilen Yontem 0.46 0.58
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6. SONUC VE ONERILER

Bu tez calismasinda, glinlimiize kadar gelistirilen EZKH yontemlerinin hiz
performanslarinin artirilmasi i¢in yeni bir yontem gelistirilmis ve simiilasyon
ortaminda uygulanarak farkli EZKH algoritmalariyla karsilastirmasi yapilmistir.
Ancak bu karsilagtirmalar yapilmadan dnce uygulamanin kolaylasmasi i¢in bir takim
islemler gerceklestirilmistir. Ilk olarak, sensorden alinan giiriiltiilii veri iizerinde
diizlestirme filtresi uygulanmis ve daha tutarli veriler elde edilmistir. Boylece, 6l¢iim

verisinin anlamlandirilmasinin ¢ok daha kolay oldugu anlagilmistir.

Ek olarak; isaretci c¢ikarimi yapilirken, egrilik fonksiyonu yonteminden
yararlanilmistir. Bu yontem kullanilarak, geometrik sekilli cisimlerin tek bir
fonksiyonla tespit edilebildigi goriilmiis ve isaretci kimliklendirmedeki basarisi ortaya

konmustur.

Bolim S'te elde edilen sonuglar incelendiginde, yeni ydntemin robot konumu
hesaplama ve harita olusturmadaki basarisinin hemen hemen hi¢c de§ismedigi
gorlilmiigtir. Bunun yaninda ¢alisma siireleri incelendiginde, Onerilen yontemin
parcacik filtresi tabanli ilk yaklasimlardan biri olan FastSLAM 1.0'a gore biiyiik
oranda ilerleme kaydettigi anlasilmistir. FastSLAM 1.0'dan sonra gelistirilen
CESLAM yontemiyle bu calismada onerilen yontem karsilastirildiginda her ne kadar
cok biiyiik 6lgekli bir hiz gelistirilmesi goriilmese de agik bir sekilde yeni yontemin
hiz performansinin daha iyi oldugu anlasilmistir. Bu sonuglardan anlagilmaktadir ki
ortamdaki isaret¢iler arttikca, gelistirilen EZKH algoritmasinin basaris1 daha belirgin
hale gelmektedir.

Diizlemsel yoriingede ilerleyen robotlar ve iki boyutlu dl¢im yapan sensorler igin
basarisinin ortaya ¢iktigi bu yontemin {i¢ boyutlu Sl¢iim alan sensorler icin daha da
basarili sonuglar verecegi diistiniilmektedir. Ciinkii, bu tarz sensorler ¢ok daha fazla
bilgi toplarlar ve bunun sonucunda tek bir 6l¢iimde alinabilecek isaretci sayisi da ¢ok
fazla olabilmektedir. Gelistirilen yeni yontemin, farkli sensorler kullanarak farkli

EZKH yo6ntemleri lizerinde uygulanip sonuglarimin incelenmesi planlanmaktadir.
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