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EŞ ZAMANLI KONUMLANDIRMA VE HARİTALAMA TEKNİKLERİNİN 

HIZ PERFORMANSNIN GELİŞTİRİLMESİ 

ÖZET 

Günümüzde endüstriyel çalışmalardan uzay araştırmalarına, eğitimden tıbbi 

uygulamalara kadar çok çeşitli alanlarda kullanılan robotlar görevlerini yerine 

getirirken bunu nasıl yapacaklarına kısmen veya tamamen kendileri karar verirken, bu 

görevleri insanlar tarafından önceden tanımlanmış olarak sabit bir şekilde de yerine 

getirebilirler. Görevlerini nasıl yapacaklarına kendileri karar veren robotlara otonom 

robotlar denir. Otonom robotların büyük bir çoğunluğu yer değiştirme yeteneğine 

sahiptirler ve genellikle hareket edecekleri ortamla ilgili önceden bir bilgileri yoktur. 

Çalışmaya başladıkları andan itibaren üzerlerindeki sensörler yardımıyla çevrelerini 

tanımlamaya ve aynı zamanda bu çevre içerisinde nerede olduklarını anlamaya 

başlarlar. Eş zamanlı konumlandırma ve haritalandırma diye adlandırılan bu işlem 

otonom ve mobil robotlar için çok büyük önem taşımaktadır. Çünkü, düzgün bir harita 

oluşturabilmek için konum bilgisinin doğru olması gerekir. Aynı şekilde konum 

bilgisini doğru bir şekilde hesaplayabilmek için de düzgün bir haritaya ihtiyaç vardır. 

Birbirine bağlı olan bu iki durum, sensörlerin bozunumlu veri elde etmesi ve çevre 

koşullarından kaynaklı sorunlardan dolayı EZKH mobil robotlar için zor bir görevdir. 

EZKH alanında çalışan araştırmacıların bir kısmı doğru harita çıkarımı ve konum 

belirlenmesi üzerine yoğunlaşmışken, bir kısmı da hız performansını geliştirmeye 

yönelik çalışmalar yapmışlardır. Bu tez çalışmasında, mevcut EZKH yöntemlerinin 

hız performansını geliştirmek için yeni bir yöntem önerilmiştir.  

Robot, oluşturduğu haritayı yeni aldığı ölçümlerle güncellerken veri ilişkilendirme 

prosedürüne başvurur. Oluşturduğu bu haritadaki eleman sayısı çok büyük boyutlara 

ulaştığında veri ilişkilendirme, robot için büyük bir zaman kaybına neden olabilir. 

Özellikle parçacık filtresi tabanlı yaklaşımlarda bu işlemin parçacık sayısı ve 

haritadaki eleman sayısı kadar tekrar edildiği düşünüldüğünde aşırı miktarda 

hesaplama yükünün oluştuğu görülmektedir.  

Önerilen yöntemde EZKH algoritmalarındaki veri ilişkilendirme adımının daha etkili 

bir şekilde kullanımının sağlanmasıyla bu aşamadaki çalışma zamanının düşürülmesi 

amaçlanmıştır. Yöntemin başarısını test etmek için simülasyon ortamında uygulamalar 

yapılmış ve ne kadar başarıya ulaştığının anlaşılması için farklı EZKH yaklaşımları da 

bu simülasyon ortamında uygulanıp sonuçlar karşılaştırılmıştır. 

Simülasyonlardan elde edilen görsel ve sayısal sonuçlar incelendiğinde, yeni EZKH 

yönteminin harita ve konum hesaplamadaki yeteneğinden bir şey kaybetmediği; bunun 

yanında çalışma hızının mevcut yaklaşımlardan açık bir şekilde daha iyi olduğu 

görülmüştür. Ayrıca EZKH yöntemi uygulanmadan önce, sensörlerden alınan 

gürültülü verinin düzeltilmesinin harita oluştururken hesapsal olarak büyük kolaylık 

sağladığı anlaşılmıştır. 
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IMPROVING RUNTIME EFFICIENCY OF SIMULTANEOUS 

LOCALIZATION AND MAPPING TECHNIQUES 

SUMMARY 

When the word "robot" is enounced, it is commonly understood that it is a humanlike 

machine with its arms, legs, head and body. But, there are lots of different types of 

robot mechanisms used in industrial sectors, planetary explorations, education and 

military. For example; a robot in an automobile factory looks like a human arm which 

is attached to a fixed joint. These machines are designed to carry out the tasks like 

painting and welding. They do their job recursively in a predefined manner by humans. 

On the other hand, a machine discovering a planet may looks like a vehicle. Because 

of unpredictable environments and conditions, these robots should decide how they 

carry out their tasks on their own. These tasks may be going to somewhere with 

specific coordinates from current location or . It is hard even to go from one place to 

another without getting lost and hitting the objects. 

In order to manage this change of location mission, a robot should first understand 

how the environment looks like and where it is in this environment. Without 

foreknowledge of the surroundings and coordinates of current position, estimating the 

robot pose and generating the map of environment is called as simultaneous 

localization and mapping (SLAM). 

SLAM also known as concurrent mapping and localization (CML) is a very hard 

problem for robots due to the noisy measurements, unpredictable conditions, wheel or 

foot slippage, presence of moving objects around and estimation errors. Additionally, 

the amount of the data collected by measurement devices may cause a huge 

computational cost for processors of the robot. For example; a laser range finder with 

360 degree field of view can collect a great number of data. This huge data causes the 

methods which constructs grid map to slow down. Likewise, a system using camera 

should process lots of data. In order to reduce the computational cost of SLAM 

algorithms, one can either increase the number of collected data or improving the 

process of SLAM techniques. 

Most of the researhers are focused on solving the problems above using probabilistic 

methods. In literature, there are two common SLAM technique called as EKF-SLAM 

and FastSLAM. The EKF-SLAM is easily applicable approach while the FastSLAM 

is computationally efficient technique. These two methods are landmark based and use 

kalman filter. Landmarks are distinct points of some objects such as doors, walls or 

several geometric objects. Using landmarks decrease the operation time when 

compared to the SLAM methods which construct grid maps. EKF-SLAM has a 

significant drawback by comparison with FastSLAM. When the number of landmarks 

reaches to a high value, EKF-SLAM gets slow drastically. This is caused by a 

procedure in EKF-SLAM which is called as data association. Data association is a 

process of matching currently sensed landmark with the one in the estimated map. All 

the elements in the map are associated with each other. Therefore, when a new 

landmark is detected, the map grows exponentially and this structure gets the algorithm 

slower.  



xxii 

 

As a solution for the exponential growth in EKF-SLAM, FastSLAM offers a very 

innovative approach. It combines the particle filter and extended Kalman filter by 

separating pose estimation and landmark estimation. While EKF-SLAM is interested 

in calculating only current pose of the robot which is called as online SLAM, 

FastSLAM is interested in calculating the path of the robot which is called as full 

SLAM. With the knowledge of the whole poses of the robot, FastSLAM estimates the 

landmarks individually. This means that all landmarks are associated with only robot 

pose. When the robot detects a new landmark, mean and covariance of the landmark 

are added for all particles that causes a linear growth in the map. Considering the 

exponential growth in EKF-SLAM, FastSLAM brings an important innovation to map 

management. However FastSLAM is very efficient approach, it also gets slower if the 

number of estimated landmarks are gigantic. Because, in such a case, FastSLAM faces 

the numerous operation in data association step. 

In order to decrease the computational cost of the data association, several approaches 

are proposed. The most effective method limits the number of landmarks to ones only 

in the range of the measurement device. This method provides a very good 

computational efficiency for SLAM techniques, especially for the particle filter based 

ones. However, if the scan range of the measurement device attached to the robot is 

extensive, the number of landmarks that are considered in data association process is 

high again. Also in some situations such as a landmark is out of the range of the sensor, 

this approach may fail.  

In this thesis, a novel technique that eliminates unnecessary operations in data 

association process is proposed. Briefly; when a new landmark is detected by 

measurement device, it is compared with the landmarks only in a small circular area. 

Other landmarks in the map and outside the circular area are automatically skipped. 

Center of this circular area is estimated by using the sensor measurement. Therefore, 

no matter how big the number of landmarks, the computational cost in data association 

step remains almost same as the beginning. 

In order to see the success of the proposed method, simulations are performed in 

different environments that were created by a simulation program called as Gazebo. 

Different SLAM algoritms are also tested in simulation environments in order to 

understand how much the new approach is faster than other aproaches. Additionally, 

these tests are done in real laboratory environments.  

Before testing the new SLAM technique and others, some arrangements were made. 

The sensor which is used for the collection of 2D data from environment, produces 

noisy data. This noisy data makes the landmark extraction very difficult. For this 

reason, a smoothing filter was implemented on the noisy data. For the sake of 

simplicity, the mean filter was prefered. After smoothing the laser data, landmark 

extraction became  easier. 

Another arrangement was made for the landmark extraction and identification. The 

curvature function method which simplifies the identification of the landmarks was 

implemented on the sensor data.  

After tuning all the parameters of the SLAM algorithms, the robot operated 30 times 

for two different environments and three different SLAM methods. 

When the simulation results were analized, it was understood that proposed method 

estimates the robot pose and landmarks map almost at the same accuracy compared 

with other methods. Afterwards, the runtime values of the three methods were 

compared. It was clearly seen that the proposed method improves the runtime 

efficiency of actual SLAM methods. The results of the real world experiments also 

reveal the improvement of the new approach. 
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In recent years, the sensor technology has improved a lot. They can scan very wide 

range of field and collect a huge data. Therefore, it is contemplated to implement the 

new SLAM method on the systems with sensors of different quality so that how the 

approach is effective. Similarly, the new technique can be implemented to the different 

SLAM algorithms to see its suitability. 
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1.  GİRİŞ 

İlk defa Çekoslavak yazar Karel Čapek'in 1920 yılında yazdığı tiyatro oyununda 

kullanılan robot kelimesi insan benzeri bir yapısı olan ve insan davranışlarını taklit 

eden bir cihazı akla getirse de bugün; endüstriden uzay araştırmalarına, tıbbi 

uygulamalardan eğlence sektörüne kadar çok farklı alanlarda kullanılan farklı yapıdaki 

birçok cihazı tanımlamaktadır [1, 2]. Örneğin; otomotiv sektöründe yaygın olarak 

kullanılan robotlar kol şeklinde bir mekanizmaya sahiptirler ve sabit bir alanda 

çalışılar. Bu robotlar, boyama ve birleştirme gibi görevleri insanlar tarafından önceden 

tanımlanmış bir şekilde tekrar tekrar yerine getirmek üzere tasarlanırlar. Diğer yandan, 

uzay araştırmalarında kullanılan robotlar ise bilinmeyen ortamlarda ve öngörülemeyen 

durumlarda çalışacağı için, bir görevi yerine getirirken bunun nasıl yapılacağına 

kısmen veya tamamen kendisi karar verebilecek şekilde tasarlanırlar. Aynı şekilde 

mağara araştırmaları veya sualtı araştırmaları için üretilen ve kendi kendilerine karar 

verebilen bu tarz robotlara otonom robotlar denir. Teknik olarak açıklanacak olursa; 

üzerindeki sensörler aracılığıyla çevresinden veri toplayıp, bu veriyi kendi 

mikroişlemcisinde anlamlı hale getirerek görevini nasıl gerçekleştireceğine karar 

veren cihazlara otonom robotlar denir.  

Otonom robotların çok büyük bir kısmı yer değiştirmeye ihtiyaç duyduğu için aynı 

zamanda mobil robotlar olarak da bilinirler. Mobil robotların üstesinden gelmesi 

gereken en önemli sorunlardan birisi daha önce hiç bilmediği bir ortamda çevresinde 

nelerin olduğunu ve hareket ettikçe bu ortam içinde nerede olduğunu anlamasıdır. 

Literatürde eş zamanlı konumlama ve haritalama(Simultaneous Localization and 

Mapping, SLAM) olarak bilinen bu konu, çok sayıda araştırmacının üzerinde uğraştığı 

bir konudur. EZKH'yi bu kadar zor hale getiren etmenlerin başında sensörler 

aracılığıyla toplanan verinin gürültülü olması, çevre koşullarının beklenmedik şekilde 

değişmesi, tahrik elemanlarına uygulanan komutların kusursuz olarak 

gerçekleşmemesi ve robotun hesaplama hataları gelmektedir. Örneğin; bir fabrika 

içinde çalışan bir robot hareket eden çok fazla insan ve yer değiştiren nesnelerle 

karşılacaktır. Bu durum harita oluştururken büyük bir karmaşaya sebep olabilir. Sualtı 
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araştırması yapan bir robot için de en büyük sorunlardan birisi suyun akıntısından 

kaynaklanan konum değişikliğidir. Tüm bu etmenlerin yanında robotun hareket ettiği 

alan büyüdükçe hesaplamalarda oluşan belirsizlikler de aynı şekilde artmaya başladığı 

için EZKH uygulamalarının çoğu olasılıksal yöntemler kullanılarak çözülmeye 

çalışılmaktadır. Bu yöntemlerin bir kısmı daha doğru sonuçlar elde edebilmek için 

sensörlerden alınan verinin tamamını kullanırken, bir kısmı ise hesaplama yükünü 

azaltmak ve hafıza gereksinimini düşürmek için verinin içinden sadece 

anlamlandırması kolay olan kısımları kullanmaktadır [2].  

EZKH uygulamalarının performansını etkileyen en önemli unsurlardan biri robot 

üzerindeki sensörlerin çeşidi ve kalitesidir. Örneğin; ucuz olmaları ve sağladığı verinin 

kolay işlenebilir olması  bakımından tercih edilen sonar sensörlerin, veri 

yoğunluğunun az ve gürültülü olması düzgün bir harita oluşturmada ve doğru konum 

belirlemede zorluk çıkarmaktadır. Diğer yandan lazer sensörler, yüksek doğrulukta ve 

çok fazla veri elde ettiği için EZKH performansı açısından büyük avantaj 

sağlamaktadırlar. Bir başka sensör çeşidi olan kameralar ise son zamanlarda giderek 

daha çok ilgi görmeye başlamıştır. Görüntüden elde edilen veri, 2 boyutlu şekil 

bilgisine ek olarak renk bilgisi de içerdiği için çevrenin anlamlandırılmasında diğer 

sensör çeşitlerine göre çok daha iyidir. Ancak çok fazla veri toplaması ve belirsizliğin 

yüksek olması, hız performansı ve doğru konumlandırma için bir dezavantaj 

olmaktadır [2]. 

Dışarıdan bilgi toplayan sensörlerin haricinde robotun kendi hareketinden 

kaynaklanan değişimleri algılayan sensörler de vardır. Tekerleklere bağlı enkoderler, 

jiroskop ve ivmeölçer gibi sensörleri içinde barındıran Atalet Ölçüm Ünitesi (Inertial 

Measurement Unit, IMU) bunlara birer örnektir. Enkoderlerden alınan veri IMU'dan 

alınan veriye göre çok daha düşük hataya sahiptir. Ancak, enkoderler tek boyuttaki 

değişimi algılayabilirken, IMU üç boyuttaki yer değişimi ve dönme, yuvarlanma ve 

yunuslama hareketlerini de algılayabilmektedir. Bu da üç boyutlu ortamlardaki EZKH 

uygulamaları için büyük kolaylık sağlamaktadır [2]. 

EZKH performansının artırılmasında sensör seçiminin önemi yüksek olsa da, 

uygulanacak yöntem de bir o kadar önemlidir. Örneğin; konum belirlemenin daha ön 

planda olduğu durumlar için işaretçi (landmark) tabanlı yöntemler hızlı olması 

açısından daha çok tercih edilirken, yol planlamanın önemsendiği durumlarda ise daha 

ayrıntılı harita oluşturan grid tabanlı yöntemler tercih edilir. Başka bir örnek olarak; 
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uzay araştırmalarında kullanılan robotlarda çevrenin neye benzediği ve hangi 

cisimlerin olduğu önemsendiği için görüntü tabanlı algoritmalar tercih edilir [3]. 

Yukarıda bahsedilen sebepler gözönüne alındığında eş zamanlı konumlandırma ve 

haritalama probleminin optimal çözümü için uygulanacak yöntem belirlenirken 

robotun hangi ortamda, hangi amaçla kullanılacağı ve üzerindeki sensörler çok 

etkilidir. Bu tez çalışmasında; geniş, kapalı alanlarda kolayca uygulanabilecek olan 

FastSLAM yöntemi kullanılmıştır.  

1.1 SLAM Tarihçesi 

Eş zamanlı konumlandırma ve haritalama üzerine yapılan ilk ciddi çalışmalar 1980'li 

yıllardan itibaren başlamıştır. [4] ve [5]'te ortaya konan çalışmanın, EZKH 

yöntemlerinin temellerini oluşturduğu söylenebilir. Çünkü; konumlandırma ve sensör 

ölçümü hatalarını olasılıksal olarak ifade etmeleri bakımından çalışmaları, 

günümüzdeki EZKH çalışmalarıyla benzerlik göstermektedir. EZKH problemi ilk defa 

[6]'da eş zamanlı haritalama ve konumlandırma olarak adlandırılmıştır. Önerilen 

yöntemde, günümüzde bu alanda çok yaygın olarak kullanılan Genişletilmiş Kalman 

Filtresi kullanıldı ve 2000'li yılların başlarında artık EZKH olarak adlandırılan çalışma 

daha da ileriye götürülerek günümüzde EKF-SLAM diye bilinen yöntem geliştirildi 

[7]. Bu geliştirilmiş yöntemde robot konumu ve işaretçi konumlarının belirsizlikleri 

olasılıksal olarak hesaplanmaktadır. Basitçe açıklanacak olursa; tahmin ve düzeltme 

olarak iki temel adımdan oluşan yöntemde, robotun konum bilgisinin ve bu konuma 

ait belirsizliği belirten bir kovaryans matrisinin olduğu bir matris işlem görmektedir. 

Bu matrisin içinde ayrıca her bir işaretçinin konum bilgileri ve bu işaretçilerin 

birbiriyle ilişkili olan kovaryansları vardır ve ölçüm alındıkça güncellenmektedir. 

Robot yeni bir işaretçi tespit ettiğinde bu işaretçiyi her bir işaretçiyle ilişkilendireceği 

için işlem yaptığı matriste üstel bir şekilde bilgi artışına sebep olur ki bu, algoritmanın 

𝑂(𝑀2) kadar eleman üzerinde işlem yapmasını gerektirir. Burada 𝑀 işaretçi sayısını 

belirtir. 𝑀 değeri yükseldikçe algoritmanın işlem hızı da büyük oranda azalmaktadır. 

Bu sorunu aşmak için bazı araştırmacılar farklı çözüm yolları önermişlerse de, 

yaptıkları çalışmalar en fazla birkaç yüz işaretçi söz konusu olduğunda işe 

yaramaktadır [8, 9, 10]. EKF-SLAM'deki üstel bir şekilde artan işlem karmaşasını çok 

daha küçük ölçekli hale getirmek ve bellek gereksinimini azaltmak için [11]'de 

FastSLAM olarak adlandırılan parçacık filtresi temelli bir yaklaşım önerilmiştir. 



4 

Genişletilmiş kalman filtresi ve parçacık filtresinin bir kombinasyonu olarak 

geliştirilen yöntem aslında Rao-Blackwellized parçacık filtresinin bir çeşididir [12]. 

FastSLAM'de robotun durumu parçacıklar üzerinden ifade edildiği için her bir 

parçacığın kendine ait bir konum ve yönelim bilgisi bulunmaktadır. Aynı şekilde, her 

bir parçacık için işaretçilerin konumları ve belirsizlikleri de ayrı ayrıdır. EKF-

SLAM'den farklı olarak her bir işaretçi birbirinden bağımsız olduğu için kovaryansları 

da birbiriyle ilişkilendirilmemektedir. Yani, bir parçacık için yeni bir işaretçi eklendiği 

zaman bir konum ve kovaryans elemanı eklenmiş olur. Bunun 𝑁 sayıdaki parçacık için 

yapıldığı düşünülürse FastSLAM'de 𝑂(𝑀𝑁) kadar bir işlem karmaşası oluşmaktadır. 

EKF-SLAM ile karşılaştırıldığı zaman bunun çok daha düşük hesap yükü anlamına 

geldiği görülmektedir. Bununla birlikte işaretçi sayısının devasa boyutlara ulaşması 

FastSLAM algoritmasının da doğru orantılı olarak yavaşlamasına neden olmaktadır 

[11, 19].  

FastSLAM'in hesapsal yükünün azaltılması için birçok çalışma yapılmıştır. Bunların 

en etkili olanları parçacık sayısının azaltılması, daha az bilgi içeren haritaların 

oluşturulması veya haritanın daha verimli bir şekilde kullanılmasına yönelik 

çalışmalardır. Bu konuda yapılan çalışmalardan biri olan Unscented FastSLAM 

yöntemi [13]'de ortaya konmuştur. Geleneksel FastSLAM yönteminde kullanılan 

doğrusallaştırma işlemlerini kullanmayan bu yaklaşım, işlem yükünü azaltırken aynı 

zamanda doğrusallaştırmadan kaynaklanan bilgi kayıplarını da ortadan kaldırdığı için 

daha az sayıda parçacığa ihtiyaç duymaktadır. Hesap yükünü azaltmak ve daha doğru 

sonuçlar elde etmek için geliştirilen bir diğer yaklaşım da parçacık sayısının, robotun 

çalışması sırasında çevrimiçi olarak değiştirilmesine yöneliktir [14, 15]. Bu 

yaklaşımda parçacık sayısı; sonsal dağılımın belirsizliği büyüdüğü zaman artırılıp aynı 

şekilde belirsizlik küçüldüğünde de azaltılmaktadır. Bunu yapmaktaki amaç, robotun 

bütün görevi boyunca aynı sayıda parçacık üzerinde çalışırken belirsizliğin az olduğu 

durumlarda gereksiz yere yapılan işlemleri ortadan kaldırmaktır. 

Hesaplama hızını artırmaya yönelik diğer çalışmalar da haritaların oluşturulması 

üzerine yapılmıştır. [16] ve [17]'te önerildiği üzere, tek bir harita oluşturmak yerine bu 

haritayı daha küçük alt haritalar şeklinde oluşturmak bu çalışmalara örnektir. Benzer 

şekilde hibrit topolojik/metrik haritalar da işlem yükünü azaltması bakımından etkili 

sonuçlar vermektedir [18].  
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EZKH yöntemlerinin birçoğu işaretçilerin kimliğinin anlaşılmasını sağlayan ve veri 

ilişkilendirme adı verilen bir adımı da içermektedir. Bu adımda, sensör tarafından 

tespit edilen bir işaretçinin haritadaki bir işaretçi mi yoksa yeni bir işaretçi mi olduğuna 

karar verilir. Bunun için, tespit edilen işaretçi daha önce tespit edilenlerin hepsiyle tek 

tek karşılaştırılmaktadır. Haritadaki eleman sayısının büyük boyutlara ulaşmasıyla 

birlikte, veri ilişkilendirme aşamasının tekrar sayısını da bir o kadar artıracağı için, bu 

durum büyük bir hesapsal yükü de beraberinde getirmektedir. [19]'da önerilen 

çalışmaya göre, tespit edilen işaretçi haritadaki bütün işaretçilerle değil sadece 

sensörün taradığı alandakilerle karşılaştırılmaktadır. Böylece veri ilişkilendirme 

adımının tekrar sayısı oldukça düşmektedir. Günümüzde sensör teknolojisinin 

geliştiğini ve çok geniş alanları tarayabilen lazer mesafe ölçücülerin olduğunu 

gözönünde bulundurursak, bu yöntemde bazen işlem yükünün artabileceği 

anlaşılmaktadır. Bu tez çalışmasında, mevcut yöntemden esinlenerek daha gelişmiş bir 

yöntem üzerinde durulmuştur.  

1.2 Tezin Amacı 

İlk geliştirilmeye başlandığı yıllardan itibaren EZKH yöntemleri giderek artan bir 

şekilde ilgi görmeye başlamış ve çok çeşitli yaklaşımlar ortaya çıkmıştır. EZKH'yi bu 

kadar ilgi çekici yapan etkenlerin başında robot durum hesaplamalarındaki güçlükler 

ve işlem hızının, veri miktarı arttıkça yavaşlamasıdır. Hız performansını geliştirmek 

üzerine farklı bakış açılarıyla yapılan çalışmalar bulunmaktadır. Giriş bölümünde 

bahsedildiği üzere parçacık filtresi gibi yaklaşımlar için parçacık sayısının 

düşürülmesi, harita oluşturulurken daha az veri toplama veya oluşturulan haritanın 

daha akıllıca bir şekilde kullanılmasına yönelik çalışmalar bulunmaktadır.  

Bu tez çalışmasında, EZKH ile oluşturulan harita bilgisinin tamamının kullanması 

yerine sadece ilgilenilen alandaki harita bilgisinin kullanılarak hız performansının 

artırılması amaçlanmıştır. Önerilen yöntemin performansını görebilmek için 

simülasyon ortamında farklı uygulama ortamları oluşturularak farklı EZKH 

yöntemleri ile önerilen yöntem karşılaştırılmıştır. 
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2.  DONANIM VE YAZILIM ALTYAPISI 

2.1 Turtlebot 2 Uygulama Platformu ve Kinect Sensörü 

Turtlebot 2; robotik alandaki eğitim ve araştırmalar için tasarlanmış, düşük maliyetli 

bir uygulama platformudur. Robot Operating System(ROS) adı verilen yazılımsal 

çalışma alanı ile uyumlu olduğu, üzerinde kinect ve jiroskop gibi sensörleri 

barındırdığı için çoğu öğrencinin ve araştırmacının, çalışmalarını geliştirmek için 

tercih ettiği bir araçtır. Şekil 2.1'de görüldüğü üzere Turtlebot 2, üç ana kısımdan 

oluşmaktadır: Diğer bütün bileşenlerin bağlı olduğu ve hareketi sağlayan mobil gövde, 

üç boyutlu ve renkli görüntü sağlayan kinect sensörü, dizüstü bilgisayar [20]. 

 

Şekil 2.1 : Turtlebot 2 [20]. 

Mobil gövde içerisinde, odometri verisi sağlayan ve tekerleklere bağlı olan enkoderler, 

üç eksende yönelim bilgisi veren jiroskop ve mobilite yeteneğini artıran çarpışma 

sensörü, uçurum sensörü gibi elemanlar bulunmaktadır [20].  

Bilgisayar; algoritmaların geliştirildiği, mobil gövdeye komutların gönderildiği, ve 

sensörlerden gelen bilgilerin işlendiği kısım olması nedeniyle en önemli bileşendir. Bu 

işlemlerin gerçekleştirilmesi ROS ile sağlanmaktadır [21]. 

Üçüncü bileşen olan Kinect sensörü ile, farklı formatlarda sağladığı görüntüler 

sayesinde Turtlebot 2'yle çalışabilecek alanlar çok çeşitli olabilmektedir. Örneğin; 3 

boyutlu derinlikli görüntü vermesi, 3 boyutlu EZKH uygulamaları için kolaylık 

sağlamaktadır [22]. 
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Şekil 2.2'de kinect sensörünün üzerindeki RGB ve kızılötesi kameralar ve kızılötesi 

reflektör görülmektedir. Bunlara ek olarak dahili bir mikrofon ve ivmeölçer de 

bulunmaktadır [23]. 

 

Şekil 2.2 : Kinect sensörü [23]. 

640x320 piksel çözünürlüğünde derinlikli görüntü sağlayan kızılötesi kamera yatayda 

57 derece ve dikeyde de 43 derecelik bir görüş açısına sahiptir. Ayrıca sensör, 40 

santimetre yakına ve 8 metre uzaklığa kadar olan ölçümleri alabilmektedir. Bu tez 

çalışmasında, derinlikli görüntünün bir satırındaki veri hesaba alınarak kinect sensörü 

2 boyutlu lazer mesafe ölçücü gibi kullanılmıştır. Şekil 2.3'te kinect ile elde edilmiş 

düz bir duvara ait tarama görüntüleri görülmektedir. 7 metre uzaklıktan alınan 

ölçümler oldukça gürültülü iken, EZKH uygulamasında kullanılabilecek doğrulukta 

ölçümler alınabilmesi için uzaklığın 3 metreye kadar düşürülmesi gerekmektedir [23].  

 

Şekil 2.3 : Kinect ile 7 metre uzaklıktaki (solda) ve 3 metre uzaklıktaki (sağda) düz 

bir duvardan alınan ölçümler. 
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2.2 Robot İşletim Sistemi (ROS) 

Robotik çalışmaların akademik alanda ve eğitim alanında iyice yaygınlaşmasıyla 

birlikte robot, bilgisayar ve sensörler gibi bileşenler arasında iletişimin 

kolaylaştırılmasını ve bu alandaki çalışmaların kolay bir şekilde geliştirilmesini 

sağlayacak tek bir sistemin oluşturulması gereksinimi doğmuştur. Bu durum 

düşünülerek 2007 yılında Stanford Üniversitesi'ndeki bir grup araştımacı tarafından 

geliştirilmeye başlanan ROS, açık kaynak kodlu ve ücretsiz olması nedeniyle bugün 

çok yaygın bir şekilde kullanılmaktadır [24].  

ROS'un işleyişi temel olarak şu şekildedir: Belli görevleri olan düğümler arasında 

yayınlayıcı ve abone tipindeki mesajlar ile veri iletimi sağlanır. Bu iletimin 

sağlanabilmesi ve düğümlerin birbirine bağlanabilmesi için ROS Master adında bir 

yönetim yapısı vardır. Düğümler tek başlarına da olabilirken, bir paket içerisinde de 

olabilir. Farklı robotlar üzerinde de uygulanabilen bu paketler; içlerinde düğüm, ROS'a 

bağlı kütüphaneler, veri kümeleri, yapılandırma dosyaları ve paketin işlevselliğiyle 

ilgili başka dosyalar da barındırır [25]. 

Şekil 2.4'te ROS'un işleyişini bir örnek üzerinden anlatan bir şema görülmektedir. İlk 

olarak bütün düğümlerin ROS Master yönetiminde birbirlerinden haberdar olması 

sağlanmaktadır. Kameradan gelen görüntü verisi, görevi kamera ile iletişim kurmak 

olan görüntü düğümüne aktarılmaktadır. Bu düğüm ROS Master'a kayıt olurken 

/görüntü isminde bir konu yayınlayacağını bildirirken görüntü işleme düğümü ve 

görüntüleme düğümü de yayınlanan bu konuya abone olduklarını bildirir. 

 

Şekil 2.4 : ROS işleyişinin örneklendirilmesi. 
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2.3 Gazebo 

Robotik alanındaki uygulamalarda sensörler ve eyleyiciler gibi bileşenlerin genellikle 

pahalı olması, özel çalışma ortamlarına ihtiyaç duyulması ve uygulama sırasında 

insanların veya çevredeki eşyaların zarar görmesi olasılığı bu tür çalışmaların 

öncelikle simülasyon ortamında denenmesini gerektirmektedir. Gazebo; bu 

gereksinime cevap veren, iç ve dış ortamlarda kullanılan robotların üç boyutlu 

simülasyonunu gerçekleştirebilmek için geliştirilmiştir. ROS ile uyumlu olması; IMU, 

lazer, sonar ve kinect gibi sensörleri yapısında hazır olarak bulundurması gibi 

özelliklerinden dolayı çok kullanışlı bir yazılımdır. Bunların haricinde Gazebo; 

Turtlebot ve Husky gibi robotları da hazır olarak sunduğu gibi araştırmacıların kendi 

tasarladıkları robot, eyleyici veya kontrolörleri de Gazebo içerisinde kolaylıkla 

oluşturmaya olanak sağlamaktadır. Özgün çalışma ortamları oluşturabilmek için 

kütüphanesinde bulundurduğu çok çeşitli şekiller ve hazır cisimler kullanılabilir. Şekil 

2.5'te Gazebo'da oluşturulmuş bir ortam görülmektedir [26]. 

 

Şekil 2.5 : Gazebo simülatöründe hazırlanan örnek bir ortam. 

2.4 OpenCV 

OpenCV; C/C++ programlama dillerinde yazılmış ve Linux, Windows ve Mac OS X 

işletim sistemleri altında çalışabilen açık kaynak kodlu bir görüntü işleme 
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kütüphanesidir. Görüntü işleme çalışmalarında işlemsel verimlilik ve gerçek zamanlı 

uygulamaların kullanımı için tasarlanmıştır [27]. Başlıca  özellikleri şunlardır: 

 Resim ve video görüntüleme 

 Görüntü üzerinde matris ve operatör işlemleri uygulama 

 Görüntü yumuşatma ve keskinleştirme 

 Kamera kalibrasyonu 

 Özellik çıkarımı 

 Nesne tespit etme 

 Görüntü bölme ve birleştirme [27] 

Bu tez çalışmasında OpenCV kütüphanesinden, geliştirilen yeni EZKH uygulamasının 

sonuçlarını görselleştirmek için yararlanılmıştır. Gazebo simülatöründe hazırlanan 

ortamda hareket ettirilen robotun izlediği gerçek yol, hesaplanan yol, işaretçilerin 

gerçek ve hesaplanan konumları ve bu konumlara ait belirsizliği gösteren hata elipsleri 

çizdirilmiştir. 
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3.  EŞ ZAMANLI KONUMLANDIRMA VE HARİTALAMA 

Birinci bölümde bahsedildiği gibi; mobil bir robotun, bilmediği bir ortamda ve 

bilmediği bir konumda hareket etmeye başladığında o ortamın haritasını çıkarırken 

aynı zamanda o haritaya göre konumunu belirlemeye çalışması işlemine eş zamanlı 

konumlandırma ve haritalama (EZKH) denir. Çoğu EZKH algoritmalarının olasılıksal 

yöntemler kullandığı gözönünde bulundurulursa çevrimiçi (online) EZKH ve tam 

(full) EZKH olmak üzere iki ayrı yaklaşım olduğu söylenebilir. Çevrimiçi EZKH için 

sonsal durum berlirten denklem 3.1’de robot durumunun sadece 𝑡 anındaki bilgisi 

hesaplanırken, denklem 3.2'de tam EZKH için robot durumunun başlangıçtan 𝑡 anına 

kadar olan bütün bilgileri hesaplanır. 

 𝑝(𝑠𝑡, 𝑚|𝑧1:𝑡, 𝑢1:𝑡) (3.1) 

 𝑝(𝑠𝑡:1, 𝑚|𝑧1:𝑡, 𝑢1:𝑡) (3.2) 

Mevcut EZKH yöntemleri işleyiş olarak birbirlerinden farklı olsalar da şekil 3.1'deki 

akış şemasındaki gibi temel bir prosedür vardır. Öngörü (predict) ve güncelleme 

(update) olmak üzere iki adım vardır. Öngörü aşamasında; tekerleklere bağlı bir 

enkoder, IMU (Inertial Measurement Unit) ve GPS (Global Positioning System) gibi 

hareket algılayıcılarından alınan veriler kullanılarak robotun 𝑡 − 1 anına ait konumuna 

göre 𝑡 anındaki konumu hesaplanır. Güncelleme aşamasında ise lazer ve kamera gibi 

algılayıcılarla çevreden alınan ölçümlere göre tahmin aşamasında elde edilen konum 

bilgisi güncellenerek daha doğru hale getirilmeye çalışılır. Bu aşamada aynı zamanda 

harita da güncellenir [3, 28, 29]. 

3.1 EZKH'de Kullanılan Temel Kavramlar 

3.1.1 İşaretçi (Landmark) 

Mobil bir robotun konumunu güncellerken referans olarak yararlandığı çevresindeki 

belirgin noktaların veya cisimlerin ortak adı olan işaretçiler, EZKH tekniklerinde 

yaygın olarak kullanılan bir kavramdır. Bu noktalar kapı dikmesi veya odaların 

köşeleri gibi noktasal koordinatlarla belirtilebilecek yerler olabilir [2]. 
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Şekil 3.1 : Çoğu EZKH yöntemleri için temel akış şeması. 

Otonom bir robot hareket ederken, yer göstericilerden şekil 3.2’de gösterildiği gibi 

yararlanır. 𝑥𝑘 robotun 𝑘 anındaki konumunu ve yönelimini, 𝑢𝑘 𝑘 − 1 anında robota 

uygulanan kontrol girişini, 𝑚𝑖 zamana bağlı olarak değişmeyen i'nci işaretçinin 

konumunu ve 𝑧𝑖,𝑘 da 𝑘 anında tespit edilen 𝑖'nci işaretçi için ölçüm uzaklığını belirten 

vektörlerdir. Bu örnekte robot, 𝑘 − 1 anında tespit ettiği yeni işaretçiye o anki 

hesaplamış olduğu kendi konumuna ve ölçüm bilgisine göre bir konum ataması yapar. 

𝑘 anında aynı işaretçiyi yeniden gördüğü zaman işaretçiye 𝑘 − 1 anında atamış olduğu 

konum bilgisini ve 𝑘 anında aldığı ölçüm bilgisini kullanarak hem kendi konumunu 

hem de işaretçinin konumunu günceller. 

İşaretçilerden en iyi şekilde yararlanılabilmesi için bazı özelliklere sahip olması 

gerekir. İlk olarak bir işaretçi, robot ilerlediği zaman yeniden tespit edilebilmelidir. 

Çünkü robot ne kadar ilerlediğini bulabilmek için 𝑘 anında bulduğu ve 𝑘 − 1 anında 

bulduğu işaretçiler arasında bağ kurar. Ayrıca her bir işaretçinin birbirinden kolayca 

ayırt edilebilir olması gerekir. İki farklı işaretçi aynı işaretçi gibi algılanırsa hatalı 

güncelleme yapılır. 

Aranan bir başka özellik de sayılarının yeteri kadar çok olmasıdır. Çünkü az sayıda 

işaretçi demek robot konumunun ve haritanın daha az güncellenmesi demektir. 
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Şekil 3.2 : EZKH'de yer göstericilerin kullanımı [30]. 

Son olarak da işaretçiler sabit cisimlerden seçilmelidir. Örneğin; hareket halindeki bir 

insan, robotun kendi konumu hakkında hatalı bir sonuca ulaşmasına neden olabilir 

[31]. 

İşaretçi çıkarımı için literatürde bir kaç farklı yöntem önerilmiştir. Bu yöntemlerden 

hangisinin uygulanacağının seçimi aslında kullanılan sensörler ve çıkarılmak istenen 

işaretçilerin çeşidine bağlıdır. Örneğin, lazer tarayıcı ya da lidar gibi sensörler için 

keskin kenarlı işaretçi çıkarımı (Spike Landmarks Extraction), RANSAC (Random 

Sample Consensus), tarama eşleştirme (Scan Matching) ve geometrik şekilli işaretçi 

çıkarımı gibi yöntemler geliştirilmiştir. İşaretçinin konumunun kesinliğinin yüksek 

olması istendiği durumlarda bu yöntemler ve sensörler kullanılmaktadır. Diğer 

yandan, tespit edilen işaretçilerin sınıflandırılmasının çok önemli olduğu durumlar da 

söz konusu olabilir. Dış ortamlarda araç, insan ve hayvan gibi hareketli nesnenin 

sayısının fazlalığı bunların tespit edilmesini önemli hale getirir. EZKH 

algoritmalarında hareketli nesnelerin algılanması işi kamera yardımıyla çok daha 

kolaydır. Bu gibi görüntü tabanlı yer gösterici çıkarımlarının zayıf yanı ise uzaklık 

bilgisinin lazer sensörlere göre daha belirsiz olmasıdır [28, 31, 32, 33]. 

3.1.1.1 Keskin kenarlı işaretçi çıkarımı 

Bu yöntemde, sensörden elde edilen veri taranırken büyük miktardaki değişimler 

dikkate alınır. Yani ölçüm yapılan alandaki duvar köşeleri, sandalye ve masa bacakları 

gibi belirgin ve keskin şekilli cisimler tespit edilir. Bir veri dizisinde bir eleman, 

kendisinden önceki ve sonraki elemanlarla karşılaştırılır. Bu elemanlar arasındaki fark 
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belli bir değerden fazla ise işaretçi olarak tanımlanır. Keskin şekilli eşyaların, duvar 

köşelerinin sıkça rastlandığı kapalı alan uygulamaları için oldukça elverişli olan bu 

yaklaşımda genellikle yüzeyinde girinti ve çıkıntı olmayan cisimler içeren açık 

alanlarda yeterli sayıda işaretçi tespit edilmesi zordur [28, 31]. 

3.1.1.2 RANSAC 

RANSAC; belirlenen bir matematiksel model için bir veri kümesi içinde o modeli, 

verileri belli bir eşik değerini geçecek sayıda kapsayacak şekilde örneklendiren tekrarlı 

olarak uygulanan bir tekniktir [3]. İşaretçi tabanlı EZKH uygulamalarında RANSAC, 

rastgele seçilmiş lazer taramalarından alınan verileri kullanarak bu verilere en uygun 

olan doğruyu bulmak için kullanılır. Daha çok, robotun bulunduğu ortamdaki  

duvarların algılanmasında kullanılan bu teknik, robotun konum ve yönelim bilgilerinin 

güncellenmesinde oldukça faydalıdır. Bir diğer faydası da insan gibi hareketli 

nesnelerin işaretçi olarak algılanmasını önlemesidir. Çünkü EZKH'de doğru bir 

konumlandırma için sabit olan nesneler tercih edilir. Bir RANSAC algoritması genel 

olarak şu şekildedir: 

 Model parametrelerini belirlemek için gerekli en az sayıda veriyi gelişigüzel seç. 

 Bu verileri kullanarak modeli örneklendir. 

 Bütün veri kümesi içinde, örneklendirilen bu modele daha önce belirlenmiş olan 

hata payını geçmeyen yani modele uygun verileri (inliers) bul. 

 Uygun verilerin sayısının bütün verilerin sayısına oranı belli bir eşik değerini 

geçene kadar algoritmayı baştan itibaren tekrarla. 

 Eşik değeri aşıldığında uygun verilerin tamamını kullanarak model parametrelerini 

yeniden hesapla ve algoritmayı sonlandır. 

Bu algoritma eşik değere ulaşmak için sonsuz defa döndürülmez. Onun yerine en çok 

belli bir sayıda dönecek şekilde ayarlanır. Bu sayı az olduğu zaman işlem hızı yüksek 

olur ancak doğruluk payı düşük olur. EZKH'de bu algoritma büyük ölçüde aynı şekilde 

uygulanırken çizgi modeli oluşturulmasında en küçük kareler yöntemi kullanılır. 

Şekil 3.3'te görüldüğü gibi bir EZKH uygulamasında robotun konum ve yönelim 

bilgisi, çizgi olarak tespit edilen işaretçiler nokta işaretçiymiş gibi varsayılarak 

güncellenebilir. Robotun bulunduğu ortamdan sabit bir nokta seçilir ve şekilde olduğu 

gibi bu noktaya çizgi üzerindeki en yakın nokta bulunur. Daha sonra çizgi üzerindeki 
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bu sabit nokta ve robotun konumu kullanılarak uzaklık ve açı bilgileri basit 

trigonometrik hesaplarla bulunur [28, 31, 34]. 

 

Şekil 3.3 : RANSAC yöntemi ile tespit edilen duvarın işaretçi olarak kullanılması 

[31]. 

3.1.1.3 Geometrik şekilli işaretçi çıkarımı 

İki boyutlu ölçüm alan lazer sensör kullanan robotlar için çok kullanışlı olan bu 

yöntemde lazerden elde edilen veri kullanılarak bir eğrilik fonksiyonu (curvature 

function) elde edilir. Bu fonksiyonun iki boyutlu görselleştirilmesiyle ortaya çıkan 

şekilde ortamdaki yuvarlak, düz veya köşeli cisimlere karşılık gelen yerler oluşur. 

Şekil 3.4'te yuvarlak ve köşeli şekillerin olduğu bir ortama ait lazer ölçümü ve bu 

ölçümden elde edilen eğrilik fonksiyonun çizimi görülmektedir. Lazer görüntüsünde 

2 ve 3 ile işaretlenmiş köşe noktaları eğrilik fonksiyonundaki eğrilerin zirve 

noktalarına karşılık gelmektedir. Bu köşe noktaları içe doğru değil de dışa doğru 

olsalardı eğri kısımlar negatif değerler alarak aşağıya doğru olacaklardı. Lazer 

ölçümündeki yuvarlak şeklin karşılığı eğrilik fonksiyonunda x eksenin altında düz bir 

çizgi olmuştur. Duvar gibi düz şekiller ise bu fonksiyonda sıfıra yakın değerler alarak 

x ekseninin üzerinde düz bir çizgi olarak karşılık bulmuştur [35]. 

 

Şekil 3.4 : Lazer ile ölçümü yapılan bir ortamın 2 boyutlu görüntüsü (solda) ve bu 

ölçümden elde edilen eğrilik fonksiyonu (sağda) [35]. 
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Lazer verisinden eğrilik fonksiyonunu elde etmek için ölçüm verisi, (𝑥, 𝑦) 

koordinatlarına dönüştürüldükten sonra 𝑥 ve 𝑦'deki veriler bir boyutlu diziler haline 

getirilir. Bu dizilerin birinci dereceden ve ikinci dereceden türevleri alınarak denklem 

3.3'teki gibi kullanılır ve eğrilik fonksiyonu elde edilir [35]. 

 𝐾(𝑡) =
𝑥̇(𝑡)𝑦̈(𝑡) − 𝑥̈(𝑡)𝑦̇(𝑡)

(𝑥̇(𝑡)2 + 𝑦̇(𝑡)2)2/3
 (3.3) 

3.1.2 Odometri ve konum tahmini (dead reckoning) 

Denizcilik ve havacılıkta yaygın olarak kullanılan dead reckoning robotik 

uygulamalarda da kullanılan bir yöntemdir. GPS gibi referans kullanan sistemler 

olmadığı zaman konum tahmin etme ve belirleme için bu yönteme başvurulur. Dead 

reckoning, robotun hız ve yönelim gibi bilgilerini kullanarak şimdiki konumundan 

periyodik bir zaman aralığına göre bir sonraki konumunun hesaplanması işlemidir. 

Teoride, diferansiyel tahrikli mobil robotlar için bu teknik doğru bir konum 

hesaplamada yeterlidir. Ancak modelleme hataları, tahrik elemanlarının komut farkı 

ve tekerleklerin kayması gibi gerçek hayatta karşılaşılan sıkıntılardan dolayı olasılıksal 

hesaplamalardan yararlanılır [36]. Odometri ve dead reckoning birbirine çok benzer 

kavramlar olmakla birlikte verilerin elde edilmesi biraz farklıdır. Odometri'de veriler 

sadece hareket sensörlerinden alınırken dead reckoning'de ek olarak pusula, jiroskop 

ve imu (Inertial Measurement Unit) gibi dünyanın manyetik alanını kullanan sensörler 

de kullanılır [37].  

Görüntü işleme tekniklerinin gelişmesiyle birlikte kameradan alınan görüntülerle yer 

değiştirme ve yönelimin belirlenmesi üzerine çalışmalar yapılmaya başlamıştır. 

Hareket halindeki bir robot üzerindeki sabit bir kameradan farklı zamanlarda alınan 

görüntüler arasındaki farklardan yola çıkarak odometri hesabı yapılmasına görsel 

odometri (visual odometry) denir.  Tek bir kamerayla yapılabildiği gibi iki kamerayla 

stereo görüntüler elde ederek de yapılabilir. Genellikle bir görüntü üzerindeki 

öznitelikler (features) tespit edilip bir sonraki görüntüde aynı özniteliklerin karşılıkları 

bulunur ve özniteliğin görüntü üzerindeki koordinat değişimine göre hesaplama 

yapılır. Şekil 3.5'te iki kamera kullanılarak odometri hesabının nasıl yapıldığı 

görülmektedir. 𝑘 − 1 anında iki kameradan alınan görüntüler üzerindeki aynı öznitelik 

tespit edilir. Bu özniteliğin, üçgenleme yöntemiyle kameraya olan uzaklığı hesaplanır. 

𝑘 anında tekrar görüntü alınır ve 𝑘 − 1 anında tespit edilen öznitelik tekrar tespit edilir 
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ve kameraya olan uzaklığı hesaplanır. İki farklı zamanda elde edilen uzaklık bilgisinin 

farkı robotun ne kadar yer değiştirdiğini belirtir [38].  

 

Şekil 3.5 : İki kamera ile görsel odometrinin hesaplanması [38]. 

Görsel odometrinin tekerleklerden elde edilen odometriye göre bazı üstünlükleri 

vardır. Tekerlekler patinaj yaptığı zaman geleneksel odometride hatalar oluşurken bu 

tarz bir hata görsel odometride meydana gelmez. Kameralar aynı zamanda haritalama 

amaçlı da kullanılabileceği için hem konumlandırma hem de haritalama işini tek bir 

sistemle çözerek fazla sensör kullanımını ortadan kaldırmış olurlar. Küçük ve hafif 

olmaları ve düşük enerjiyle çalışabilmeleri, kameralı odometri sistemlerini bir adım 

öne çıkarmaktadır. Bunların yanında görsel odometrinin güçlük yaşadığı bazı 

durumlar da vardır. Yetersiz aydınlatma, ışık yoğunluğunun sürekli değişmesi ya da 

rüzgar gibi etkenlerden dolayı görüntü alınan ortamın dinamik hale gelmesi gibi 

sebepler hesaplama güçlüğü oluşturur. Tek kameralı görsel odometride uzaklık bilgisi 

doğrudan alınamadığı için ek bir sensöre gereksinim duyulması da bir başka zayıflıktır 

[39]. 

3.1.3 Veri ilişkilendirme (data association) 

Veri ilişkilendirme, robotun oluşturduğu haritadaki bilgiler ile o anda elde edilen 

ölçüm arasında bağlantının kurulması ile ilgilidir. Bir başka deyişle; gerçek dünyada 

tek veya aynı nesneye karşılık gelen ve farklı noktalardan ölçüm yapılarak elde edilen 

iki verinin birbiriyle ilişkilendirilmesidir [40]. Veri ilişkilendirme hem harita 

çıkarmada hem de konum belirlemede çok büyük bir öneme sahiptir. Çünkü elde 

edilen veriler arasında doğru bir ilişki kurulamazsa her adımda oluşan hatalar birikerek 

harita ve konumda büyük yanlışlıklara sebep olabilir. Veri ilişkilendirme için 
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literatürde birden fazla yöntem bulunmaktadır. Bunlardan bazıları aşağıdaki gibi 

sıralanabilir [41]: 

 En büyük olabilirlik (maximum likelihood) 

 Joint compatibility branch and bound 

 En yakın komşuluk(nearest neighbor) 

 Combined constraint data association 

 Random sample consensus (RANSAC) 

Bu yöntemler içerisinde uygulanabilirliği en kolay olan en büyük olabilirlik yöntemi, 

bu tez çalışmasında ele alınan EZKH yönteminde kullanılmıştır. 

3.1.4 Döngü kapama 

EZKH algoritmalarında ortamın haritasının çıkarılması ve konum belirlenmesinin en 

hızlı şekilde olması istenir. Buna bir çözüm olarak mobil robotlar keşif yaptığı bir 

yerden tekrar geçmez. Ancak bu durumda daha önce keşfedilen yerlerle veri 

ilişkilendirilmesi yapılmadığından dolayı haritada ve konumda birikmiş hataların 

azaltılması yapılamaz. Döngü kapama, daha önce geçilen yerden tekrar geçilerek 

haritada ve konumda düzeltme işlemi uygulanmasına izin veren bir işlemdir. Şekil 

3.6’da döngü kapamaya bir örnek verilmiştir. Üstte robotun döngü kapama yapmadan 

hemen önceki oluşturduğu harita görülmektedir. Bu haritada koridor ve kare alan 

arasında açısal bir hata meydana gelmiştir. Altta ise döngü kapama yapıldıktan sonra 

haritanın düzeltilmiş olduğu görülmektedir [24]. 

 

Şekil 3.6 : Döngü kapamanın uygulanmasıyla ilgili karşılaştırmalı bir çalışma [42]. 
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3.1.5 Hareket modeli 

Konum belirlemenin en doğru şekilde yapılabilmesi için öncelikle robotun 

mekanizması da dikkate alınarak uygun bir hareket modelinin belirlenmesi gerekir. 

Robotik uygulamalarda yaygın olarak hız komutlarına dayalı veya odometri verisini 

giriş komutu olarak kullanan iki farklı model ve bunların türevleri kullanılır. Hıza 

dayalı modeller, belli bir örnekleme aralığında motorlara sabit bir hız komutu 

uygulandığını kabul eder. Böylece mevcut durum bilgisi ve giriş komutları 

kullanılarak sonraki durum tahmin edilebilir. Bunun yanında odometri verisi, giriş 

komutları uygulandıktan sonra okunabilir. Bu yüzden, hız tabanlı modeller genellikle 

yol planlama uygulamaları için daha uygunken odometri tabanlı modeller ise EZKH 

uygulamaları için daha uygundur. Ayrıca, tahrik elemanlarına uygulanan komutun 

gerçekleştirilmesi sırasında oluşan belirsizlik tekerleklere bağlı enkoderlerden alınan 

verinin belirsizliğinden daha büyük olduğu için odometri temelli modeller konum 

tahmin etmede daha başarılı sonuçlar vermektedir [3].  

3.1.5.1 Odometri modeli  

Bu tez çalışmasında kullanılan diferansiyel tahrikli Turtlebot platformunun yapısı göz 

önüne alınarak ve birinci bölümde anlatıldığı üzere belirsizliğe sebep olan etmenler de 

düşünülerek olasılıksal bir yöntem olan odometri hareket modelinin uygulanmasına 

karar verilmiştir. Bu modelde robot, kontrol girişi olarak periyodik zaman 

aralıklarında okunan odometri verisini kullanır. Diğer bir deyişle, 𝑡 anında okunan 

değer ile 𝑡 − 1 anında okunan değer arasındaki fark kontrol komutu gibi kabul edilir. 

Odometri hareket modeli, kullanılan koordinat sistemine ve EZKH algoritmasına göre 

farklı şekillerde uygulanabilir. Bu yüzden öncelikle bazı kinematik kavramların 

açıklanmasında fayda vardır. 

Üç boyutlu uzayda bir mobil robotun durum bilgisi altı farklı değişkenle ifade edilir. 

Bunlar; robotun konumunu belirten üç boyutlu kartezyen koordinatları (𝑥, 𝑦, 𝑧) ve 

yönelimini belirten euler açılarıdır (Yuvarlanma (Roll), Yunuslama (Pitch), Sapma 

(Yaw)). Düzlemsel bir ortamda ise konum bilgisi iki boyutta ve yönelim bilgisi de tek 

bir açıyla ifade edilebilir.  Böylece, denklem 3.4'teki durum matrisi kullanılarak 

diferansiyel tahrikli bir robotun hareketi modellenebilir. Burada 𝑥 ve 𝑦 iki boyutlu 

koordinat sistemindeki konumu belirtirken 𝜃 yönelim açısını belirtir. 
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 𝑋 = [
𝑥
𝑦
𝜃
] (3.4) 

Şekil 3.7'de görüldüğü gibi konum, ortamdaki belli bir noktanın orijin olarak kabul 

edildiği bir koordinat sistemine göre hesaplanır. Öyle ki; bu orijin noktası genellikle 

robotun harekete ilk başladığı nokta olarak kabul edilir ve bu koordinat sisteminin 𝑥 

ekseni robotun bu noktadaki yönelim açısına göre belirlenir. Çünkü SLAM 

uygulamalarına göre robotun, başlangıç anında ortam hakkında bir bilgisi ve referans 

alabileceği bir koordinat sistemi yoktur. 

 

Şekil 3.7 : Robot konumunun global koordinat sistemine göre gösterilmesi [3]. 

Olasılığın büyük öneme sahip olduğu mobil robot çalışmalarında sıkça karşılaşılan bir 

kavram da sonsal durumdur. Robotun o anki olası durumu hakkında bilgi veren sonsal 

durum, denklem 3.5'teki gibi gösterilmektedir. Burada 𝑠𝑡 şu anki durumu, 𝑠𝑡−1 kontrol 

girişi uygulanmadan önceki yani bir önceki durumu ve 𝑢𝑡 de kontrol girişini ifade 

etmektedir. 

 𝑝(𝑠𝑡|𝑢𝑡, 𝑠𝑡−1) (3.5) 

Şekil 3.8'deki çizimler bir robota ait sonsal durumun iki boyutlu olarak 

görselleştirilmiş halidir. Düzlemsel bir ortamda hareket komutu uygulanmış robotun 

konumunun belirsizliğini gösteren sonsal durumda koyu renkli alanlardan açık renkli 

alanlara doğru gidildikçe robotun tahmin edilen konumunun olasılığı azalmaktadır. 

(a)'da düz bir hareket sonucunda ortaya çıkan dağılımın kısmen küçük ve hilal şeklinde 

olduğu görülürken (b)'de ise hem düz hem de dönel hareketlerin bileşiminin sonucunda 

dağılımın daha geniş ve elips şekline benzer olduğu görülmektedir. 

 𝑝𝑟𝑜𝑏(𝑎, 𝑏) =
1

√2𝜋∙𝑏2
𝑒

−
1

2
 
𝑎2

𝑏2 (3.6) 

Odometri hareket modelinde denklem 3.7'deki sonsal durum hesaplanırken kontrol 

girişleri olarak 𝑡 ve 𝑡 − 1 anındaki sensör okumaları kullanılır. 
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Şekil 3.8 : Hareket komutu uygulanan bir robotun durumunun sonsal dağılım 

şeklinde gösterimi [3]. 

Denklem 4'teki kontrol girişleri 𝑠𝑡−1 = (𝑥̅ 𝑦̅ 𝜃̅) ve 𝑠𝑡 = (𝑥̅ 𝑦̅ 𝜃̅); [𝑡 − 1, 𝑡] zaman 

aralığında uygulanan hız komutları sonucunda odometri verisindeki değişimi belirtir. 

 𝑢𝑡 = (
𝑠̅𝑡

𝑠̅𝑡−1
) (3.7) 

Sensörlerden alınan bu iki andaki durum verisi kullanılarak üç değişim elde edilir. İlk 

olarak şekil 3.9'daki robotun ilk konumu ile ikinci konumu arasındaki doğru parçasının 

yukarıda bahsedilen global koordinat sistemine göre açısı ile birinci konumdaki 

yönelim açısının farkı (𝛿𝑟𝑜𝑡1), ardından iki konum arasındaki uzaklık (𝛿𝑡𝑟𝑎𝑛𝑠) ve son 

olarak da robotun son konumundaki yönelim açısı ile iki konum arasındaki doğru 

parçasının açısının farkı (𝛿𝑟𝑜𝑡2) hesaplanır. 

 

Şekil 3.9 : Odometri hareket modeliyle hesaplanan bağıl yer değişimi ve açı değişimi 

[3]. 

Hesaplanan bu üç değişim 𝑡 − 1 anındaki 𝑠𝑡−1 durumuna eklenerek son durum yani 𝑠𝑡 

bulunur. Böylece robot konum tahmini her adımda odometri okumalarına göre 

güncellenmiş olur. 

Çizelge 3.1,  𝑝(𝑥𝑡|𝑢𝑡 , 𝑥𝑡−1) sonsalının nasıl hesaplandığını göstermektedir. Kontrol 

girişleri olarak odometri okumalarını kullanan algoritmada yukarıda bahsedilen 𝛿𝑟𝑜𝑡1, 

𝛿𝑡𝑟𝑎𝑛𝑠 ve 𝛿𝑟𝑜𝑡2 2. satırdan 4. satıra kadar olan denklemlerde hesaplanmaktadır.  



24 

Çizelge 3.1 : Odometri hareket modeli algoritması 

1: odometri-hareket-modeli(𝑥𝑡, 𝑢𝑡, 𝑥𝑡−1): 

2: 𝛿𝑟𝑜𝑡1 = atan2(𝑦̅′ − 𝑦,̅ 𝑥̅′ − 𝑥,̅ ) − 𝜃̅  

3: 𝛿𝑡𝑟𝑎𝑛𝑠 = √(𝑥̅ ′ − 𝑥̅)2 + (𝑦̅ ′ − 𝑦̅)2  

4: 𝛿𝑟𝑜𝑡2 = 𝜃̅ ′ − 𝜃̅ − 𝛿𝑟𝑜𝑡1  

  

5: 𝛿𝑟𝑜𝑡1 = atan2(𝑦′ − 𝑦, 𝑥′ − 𝑥) − 𝜃  

6: 𝛿𝑡𝑟𝑎𝑛𝑠 = √(𝑥 ′ − 𝑥)2 + (𝑦 ′ − 𝑦)2  

7: 𝛿𝑟𝑜𝑡2 = 𝜃 ′ − 𝜃 − 𝛿𝑟𝑜𝑡1  
  

8: 𝑝1 = 𝑝𝑟𝑜𝑏(𝛿𝑟𝑜𝑡1 − 𝛿𝑟𝑜𝑡1, 𝛼1𝛿𝑟𝑜𝑡1 + 𝛼2𝛿𝑡𝑟𝑎𝑛𝑠)  

9: 𝑝2 = 𝑝𝑟𝑜𝑏(𝛿𝑡𝑟𝑎𝑛𝑠 − 𝛿𝑡𝑟𝑎𝑛𝑠, 𝛼3𝛿𝑡𝑟𝑎𝑛𝑠 + 𝛼4(𝛿̂𝑟𝑜𝑡1 − 𝛿𝑟𝑜𝑡2))  

10: 𝑝1 = 𝑝𝑟𝑜𝑏(𝛿𝑟𝑜𝑡2 − 𝛿𝑟𝑜𝑡2, 𝛼1𝛿𝑟𝑜𝑡2 + 𝛼2𝛿𝑡𝑟𝑎𝑛𝑠)  

  

11: 𝑟𝑒𝑡𝑢𝑟𝑛 𝑝1 ∙ 𝑝2 ∙ 𝑝3  

2. satırdaki 𝑎𝑡𝑎𝑛2() fonksiyonunda 𝑠𝑡−1 ve 𝑠𝑡 'deki 𝑥 ve 𝑦 konumlarının farkı alınarak 

şekil 4'te görüldüğü gibi doğru parçasının global koordinat sistemine göre olan açısı 

bulunur. Robotun yönelimi hesaplanan bu değerden çıkarıldığı zaman ilk dönme açısı 

𝛿𝑟𝑜𝑡1 elde edilmiş olur. [𝑡 − 1, 𝑡] zaman aralığında robotun yer değiştirmesi ‖. ‖2'ye 

göre 3. satırda hesaplanır. 4. Satırda, 𝑡 anındaki odometri ölçümünden elde edilen 

yönelim açısından 𝑡 − 1 anındaki yönelim açısı ve 𝛿𝑟𝑜𝑡1 açısı çıkarılarak ikinci açı 

değişimi olan 𝛿𝑟𝑜𝑡2 bulunur.  

 

Şekil 3.10 : Global koordinat sistemine göre yönelim açısının hesaplanması [3]. 

Buraya kadar yapılan hesaplamalar odometri verisinin gürültüsüz olduğu düşünülerek 

yapıldı. Bundan sonraki kısımda (5., 6. ve 7. satır) odometri ölçümlerinin hatalı olduğu 

da hesaba katılarak 𝑡 anına ait rastgele bir şekilde bir durum seçilir. Burada rastgele 

olarak seçilen durum aslında şekil 3.8'de görülen koyu ve açık renkli alanları, yani 
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olası durumları belirtmektedir. Seçilen bu durum ve 𝑡 − 1 anında hesaplanan durum 

arasındaki değişimler de 2., 3. ve 4. satırda olduğu gibi hesaplanır.  

Son kısımda; odometri ile hesaplanan durum ve rastgele seçilen durum arasındaki hata 

olasığılı hesaplanır. Gauss dağılımını kullanan olasılık denklemlerindeki varyansı 

belirleyen 𝛼 parametreleri robota özgü değerlerdir. Bu değerler hareketi etkileyen 

gürültünün belirlenmesini sağlamaktadır ve belirsizliğin karakterini şu şekilde 

etkilemektedir:  

 𝛼1, dönme hareketinin açı değişiminde oluşturduğu gürültüyü 

 𝛼2, yer değiştirme hareketinin açı değişiminde oluşturduğu gürültüyü 

 𝛼3, yer değiştirme hareketinin yer değişiminde oluşturduğu gürültüyü 

 𝛼4, dönme hareketinin yer değişiminde oluşturduğu gürültüyü 

temsil etmektedir. 

Bu çalışmada parçacık filtresi temelli bir algoritma olan FastSLAM yöntemi 

kullanıldığı için odometri hareket modelinin de parçacık filtresine uygulanacak şekilde 

uyarlanmış hali kullanılmıştır. Parçacık filtresindeki örneklendirme bir diğer adıyla 

tahmin aşamasında kullanılanılan hareket modeli, odometri hareket örneklendirme 

modeli olarak adlandırılmıştır. Bu modelde, gauss dağılımı şeklinde bir sonsal durum 

hesaplanması yerine normal gauss dağılımına uygun olarak gelişigüzel 

örneklendirilmiş parçacıklar söz konusudur. Bundan dolayı, uygulanması daha 

kolaydır. Şekil 3.11'de aynı gürültü parametleri ile oluşturulmuş sonsal dağılım (a) ve 

parçacıklar (b) görülmektedir. 

 

Şekil 3.11 :  Aynı 𝛼 parametreleri ile oluşturulmuş sonsal dağılım(a) ve 

örneklendirilmiş parçacıklar (b) [3]. 
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Örneklendirme modeli; kontrol girişi olarak odometri okumalarını kullanması, 

hareketin bağıl değişimini hesaplaması ve hatayı gauss dağılımına göre modellemesi 

bakımından sonsal dağılımın hesaplandığı odometri hareket modeline benzemektedir. 

Çizelge 3.2'deki örneklendirme algoritmasında 2., 3. ve 4. satırda yönelim açısının 

değişiminin ve yer değiştirme denklemlerinin odometri hareket modelindekiyle aynı 

olduğu görülmektedir. 

5., 6. ve 7. satırlarda, odometri okumaları baz alınarak hesaplanan değişimlere 

ortalama değeri sıfır olan ve varyansı 𝑎 olan gauss dağılımına göre gürültü eklenmiştir. 

Bu gürültü değerleri denklem 3.8'de görülen fonksiyona göre gelişigüzel üretilir. 

 
𝑠𝑎𝑚𝑝𝑙𝑒(𝑎) =

𝑎

6
∑𝑟𝑎𝑛𝑑(−1,1)

12

𝑖=1

 (3.8) 

Son olarak, gürültü eklenmiş bağıl hareket değişimleri bir önceki durum olan 𝑥𝑡−1 =

(𝑥 𝑦 𝜃)𝑇 'ye eklenerek son durum 𝑥𝑡 bulunur. Gürültü ekleme ve örneklendirme işlemi 

parçacık filtresindeki her bir parçacığa ayrı ayrı uygulanır [3]. 

Çizelge 3.2 : Odometri hareket örneklendirme modeli algoritması 

1: odometri-hareket-örneklendirme-modeli(𝑢𝑡 , 𝑥𝑡−1) 

2: 𝛿𝑟𝑜𝑡1 = atan2(𝑦̅′ − 𝑦,̅ 𝑥̅′ − 𝑥,̅ ) − 𝜃̅  

3: 𝛿𝑡𝑟𝑎𝑛𝑠 = √(𝑥̅ ′ − 𝑥̅)2 + (𝑦̅ ′ − 𝑦̅)2  

4: 𝛿𝑟𝑜𝑡2 = 𝜃̅ ′ − 𝜃̅ − 𝛿𝑟𝑜𝑡1  

  

5: 𝛿𝑟𝑜𝑡1 = 𝛿𝑟𝑜𝑡1 − 𝑠𝑎𝑚𝑝𝑙𝑒(𝛼1𝛿𝑟𝑜𝑡1 + 𝛼2𝛿𝑡𝑟𝑎𝑛𝑠)  

6: 𝛿𝑡𝑟𝑎𝑛𝑠 = 𝛿𝑡𝑟𝑎𝑛𝑠 − 𝑠𝑎𝑚𝑝𝑙𝑒(𝛼3𝛿𝑡𝑟𝑎𝑛𝑠 + 𝛼4(𝛿𝑟𝑜𝑡1 + 𝛿𝑟𝑜𝑡2))  

7: 𝛿𝑟𝑜𝑡2 = 𝛿𝑟𝑜𝑡2 − 𝑠𝑎𝑚𝑝𝑙𝑒(𝛼1𝛿𝑟𝑜𝑡2 + 𝛼2𝛿𝑡𝑟𝑎𝑛𝑠)  
  

8: 𝑥′ = 𝑥 + 𝛿𝑡𝑟𝑎𝑛𝑠 cos(𝜃 + 𝛿𝑟𝑜𝑡1)  

9: 𝑦′ = 𝑥 + 𝛿𝑡𝑟𝑎𝑛𝑠 sin(𝜃 + 𝛿̂𝑟𝑜𝑡1)  

10: 𝜃′ = 𝜃 + 𝛿𝑟𝑜𝑡1 + 𝛿𝑟𝑜𝑡2)  

  

11: 𝑟𝑒𝑡𝑢𝑟𝑛 𝑥𝑡 = (𝑥′, 𝑦′, 𝜃′)𝑇  

3.1.5.2 Hız modeli 

Hız modelinde kontrol girişleri olarak doğrusal hız ve dönel hız uygulanır ve sırasıyla 

𝑣 ve 𝑤 ile gösterilir. 𝑡 anına ait kontrol girişi aşağıdaki denklem 3.9'daki gibi gösterilir. 

 𝑢𝑡 = (
𝑣𝑡

𝑤𝑡
) (3.9) 
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Doğrusal hızın pozitif bir değer olması ileriye doğru bir hareket komutu, dönel hızın 

pozitif bir değer olması da saat yönünün tersine doğru bir dönme komutu demektir. 

Odometri modelinde olduğu gibi hız modelinde de kontrol girişleri periyodik zaman 

aralıklarında uygulanır. 

Çizelge 3.3'te 𝑝(𝑠𝑡|𝑢𝑡, 𝑠𝑡−1) olasılığının nasıl hesaplandığı gösterilmektedir. Bu 

algoritmaya uygulanmadan önce hız komutlarının herhangi bir gürültüsü olmadığı 

varsayılarak yeni konum ve yönelim açısı denklem 3.10'daki gibi hesaplanır. 

 (

𝑥𝑡

𝑦𝑡

𝜃𝑡

) = (

𝑥𝑡−1

𝑦𝑡−1

𝜃𝑡−1

) +

(

 
 

−
𝑣

𝑤
𝑠𝑖𝑛 𝜃 +

𝑣

𝑤
𝑠𝑖𝑛(𝜃 + 𝑤∆𝑡)

𝑣

𝑤
𝑐𝑜𝑠 𝜃 −

𝑣

𝑤
𝑐𝑜𝑠(𝜃 + 𝑤∆𝑡)

𝑤∆𝑡 )

 
 

 (3.10) 

Kontrol girişi olarak 𝑡 − 1 anından 𝑡 anına kadar sabit bir şekilde hem doğrusal hem 

de dönel hız verildiği kabul edildiği için, robotun sanal bir çember üzerinde yol aldığı 

varsayılır. 2-5. satırlarda bu sanal çemberin merkezi(𝑥∗, 𝑦∗) ve yarıçapı(𝑟∗) hesaplanır.  

𝑥′ ve 𝑦′ gürültülü hareket sonucunda elde edilen yeni konumu belirtir. 6. satırda 

robotun bu gürültülü hareket sonucundaki yönelim açısının değişimi hesaplanır. 7-9. 

satırlarda gürültülü hızlar ve son yönelim açısı bulunur. Bütün bu hesaplamaların 

sonunda gerçek hız ve gürültülü hızların farklarını kullanarak sonsal durum olasılığı 

elde edilir. 

Çizelge 3.3 : Hız hareket modeli algoritması 

1: hız-hareket-modeli(𝑥𝑡 , 𝑢𝑡, 𝑥𝑡−1) 

2: 𝜇 =
1

2

(𝑥−𝑥′) 𝑐𝑜𝑠 𝜃+(𝑦−𝑦′) 𝑠𝑖𝑛 𝜃

(𝑦−𝑦′) 𝑐𝑜𝑠 𝜃−(𝑥−𝑥′) 𝑠𝑖𝑛 𝜃
  

3: 𝑥∗ =
𝑥+𝑥′

2
+ 𝜇(𝑦 − 𝑦′)  

4: 𝑦∗ =
𝑦+𝑦′

2
+ 𝜇(𝑥 − 𝑥′)  

5: 𝑟∗ = √(𝑥 − 𝑥∗)2 + (𝑦 − 𝑦∗)2  

6: ∆𝜃 = 𝑎𝑡𝑎𝑛2(𝑦′ − 𝑦∗, 𝑥′ − 𝑥∗) − 𝑎𝑡𝑎𝑛2(𝑦 − 𝑦∗, 𝑥 − 𝑥∗)  

7: 𝑣 =
∆𝜃

∆𝑡
𝑟∗  

8: 𝑤̂ =
∆𝜃

∆𝑡
  

9: 𝛾 =
𝜃′−𝜃

∆𝑡
− 𝑤̂  

10: 
𝑟𝑒𝑡𝑢𝑟𝑛 𝑝𝑟𝑜𝑏(𝑣 − 𝑣, 𝛼1|𝑣| + 𝛼2|𝑤|) ∙ (𝑤 − 𝑤̂, 𝛼3|𝑣| +
𝛼4|𝑤|) ∙ (𝛾, 𝛼5|𝑣| + 𝛼6|𝑤|)  
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Odometri modelinde olduğu gibi hız modeli de parçacık filtresine çizelge 3.4'teki gibi 

uyarlanabilir. Her parçacık için ayrı ayrı uygulanan aşağıdaki algoritmanın 2-4. 

satırlarında gürültülü hızlar ve son yönelim gürültüsü hesaplanır. Bu gürültülü 

değerlere göre 5-7. satırlarda da ilgili parçacığın yeni konumu ve yönelim açısı elde 

edilir [3]. 

Çizelge 3.4 : Hız hareket örneklendirme modeli algoritması 

1: hız-hareket-örneklendirme-modeli(𝑢𝑡 , 𝑥𝑡−1) 

2: 𝑣 = 𝑣 + 𝑠𝑎𝑚𝑝𝑙𝑒(𝛼1|𝑣| + 𝛼2|𝑤|)  

3: 𝑤̂ = 𝑤 + 𝑠𝑎𝑚𝑝𝑙𝑒(𝛼1|𝑣| + 𝛼2|𝑤|)  

4: 𝛾 = 𝑠𝑎𝑚𝑝𝑙𝑒(𝛼1|𝑣| + 𝛼2|𝑤|)  

5: 𝑥′ = 𝑥 −
𝑣̂

𝑤̂
sin 𝜃 +

𝑣̂

𝑤̂
sin(𝜃 + 𝑤̂∆𝑡)  

6: 𝑦′ = 𝑦 +
𝑣̂

𝑤̂
cos 𝜃 +

𝑣̂

𝑤̂
cos(𝜃 + 𝑤̂∆𝑡)  

7: 𝜃′ = 𝜃 + 𝑤̂∆𝑡 + 𝛾∆𝑡  

8: 𝑟𝑒𝑡𝑢𝑟𝑛 𝑥𝑡 = (𝑥′, 𝑦′, 𝜃′)𝑇  

3.1.6 Bayes filtresi 

Otonom robotlarda eş zamanlı konumlandırma ve haritalama için birden fazla çözüm 

önerilmiştir. En yaygın kullanılan teknikler arasında Bayes kuralı uygulayan Kalman 

Filtresi, Genişletilmiş Kalman Filtresi ve Parçacık Filtresi bulunmaktadır.  

EZKH uygulamalarında sıkça kullanılan kavramlardan birisi olan inanç (belief), 

robotun çevresi hakkındaki ve konumu hakkındaki öngörüsünü belirtir. Çizelge 3.5'te 

verilen Bayes Filtresi, bu inancın hesaplanmasında kullanılan en önemli 

algoritmalardan birisidir. Robot ölçümleri ve kontrol verileri kullanarak hesaplanır. Bu 

tablo Bayes filtresinin güncelleme kuralı olarak da bilinen tekrarlı yapısını 

göstermektedir. 

Çizelge 3.5 : Bayes filtresi algoritması 

1: Bayes-filtresi(bel(𝑥𝑡−1), 𝑢𝑡 , 𝑧𝑡) 

2: for all 𝑥𝑡 do 

3: 𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑡) = ∫ 𝑝(𝑥𝑡|𝑢𝑡, 𝑥𝑡−1)𝑏𝑒𝑙(𝑥𝑡−1)𝑑𝑥  

4: 𝑏𝑒𝑙(𝑥𝑡) = 𝜂 𝑝(𝑧𝑡|𝑥𝑡)𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑡)  
5: end for 

6: return 𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑡) 

Bayes filtresi yinelemeli bir işlemdir. Yani t anındaki 𝑏𝑒𝑙(𝑥𝑡), bir önceki inanç olan 

𝑡 − 1 anındaki 𝑏𝑒𝑙(𝑥𝑡−1)'den hesaplanır. Algoritma görüldüğü üzere iki aşamadan 

oluşmaktadır. Birinci aşamada 𝑥𝑡−1'den 𝑥𝑡 'ye geçişi sağlayan 𝑢𝑡 kontrol işaretinin 
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olasılığı ile 𝑏𝑒𝑙(𝑥𝑡−1)'nin çarpımının integrali alınır. Bu aşama kontrol güncellemesi 

ya da tahmin olarak adlandırılır. İkinci aşamada ise kontrol güncellemesinde elde 

edilen 𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑡) ile 𝑧𝑡 ölçüm olasılığı çarpılır. Burada çarpım genellikle bir olasılığı 

ifade etmediği için sonuç bir düzeltme sabiti (𝜂) ile çarpılır [3]. 

3.1.7 Kalman filtresi 

İlk olarak 1960 yılında Rudolf Emil Kalman tarafından öne sürülen Kalman filtresi, 

Bayes kuralına dayanan olasılıksal bir tahmin algoritmasıdır. Kalman Filtresi EZKH 

için basitçe iki aşamada şu şekilde anlatılabilir: İlk olarak önceki durum ile kontrol 

girişlerinden elde edilen veriyi birleştirerek inanç için bir tahminde bulunur. İkinci 

aşamada, çevreyi algılayan sensörlerle bir ölçüm yapıp bu inancı güncelleyerek 

sonraki durum için bir sonuç üretir [3, 43].  

Kalman filtresinin üç ana bileşeni vardır:  Birincisi; filtrede hesaplanmak istenen 

konum, hız veya yönelim açısı gibi değişkenlerin olduğu durum vektörüdür. İki 

boyutlu bir uzayda konum ve yönelim bilgisi içeren bir durum vektörü denklem 

3.11’deki gibi gösterilebilir. 

 𝑣 = [
𝑥
𝑦
𝜃
] (3.11) 

İkinci bileşen dinamik model olarak adlandırılır ve durum vektörünün zaman içindeki 

dönüşümünü tanımlar. Denklem 3.12’de doğrusal bir durum için bir dinamik model 

belirtilmiştir. Buradaki 𝐹 dinamik matristir ve sabittir, 𝜀 de gürültüyü simgeler. 

 𝑣̇(𝑡) = 𝐹𝑣(𝑡) + 𝜀(𝑡) (3.12) 

Ölçüm modeli olarak bilinen üçüncü bileşen de durum ve hesaplamalar arasındaki 

ilişkiyi gösterir ve dinamik model denklemiyle benzer yapıdadır [43]. 

İki aşamalı  Kalman filtresinin algoritması denklem 3.12'den denklem 3.16'ya kadar 

olan denklem grubundaki gibidir. Burada 𝑡 anındaki inanç 𝑏𝑒𝑙(𝑥𝑡), 𝑥𝑡 ortalama değeri 

ve Σ𝑡 kovaryansı ile belirtilir. Tahmin aşamasında herhangi bir ölçüm yapılmadan 

sadece 𝑡 − 1 anındaki durum 𝑥𝑡−1 ile kontrol girişi 𝑢𝑡 toplanıp önsel durum bulunur. 

A ve B matrisleri 𝑥𝑡 ve 𝑢𝑡 ile çarpılarak durum geçiş fonksiyonu doğrusallaştırılmış 

olur. Bu yüzden Kalman Filtresi doğrusal sistemler için uygulanabilirdir. Düzeltme 

aşamasında; birinci aşamada hesaplanmış olan önsel durum yeni ölçümler kullanılarak 

yeniden hesaplanır ve buna da sonsal durum denir. 3. adımdaki 𝐾𝑡 Kalman kazancı, 
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düzeltme aşamasındaki kalman hesaplamalarının ne kadar kesin olduğunu anlatır. 

Yani 𝐾𝑡 arttıkça düzeltme hesaplamalarının olasılıksal ağırlığı da artar. Tam tersine 𝐾𝑡 

azaldıkça da tahmin hesaplamalarının olasılıksal ağırlığı artar [3, 44]. 

 𝑥̅𝑡 = 𝐴𝑡𝑥𝑡−1 + 𝐵𝑡𝑢𝑡 (3.12) 

 𝛴𝑡 = 𝐴𝑡𝛴𝑡−1𝐴𝑡
𝑇 + 𝑅𝑡 (3.13) 

 𝐾𝑡 = 𝛴𝑡𝐻𝑡
𝑇(𝐻𝑡𝛴𝑡𝐻𝑡

𝑇 + 𝑄𝑡)
−1 (3.14) 

 𝑥𝑡 = 𝑥̅𝑡 + 𝛴𝑡 = (𝐼 − 𝐾𝑡𝐻𝑡)𝛴𝑡 (3.15) 

 𝐾𝑡(𝑧𝑡 − ℎ(𝑥̅𝑡)) (3.16) 

Kalman algoritmasının Gauss dağılımı ile gösterimi şekil 3.12’deki gibidir. a'da x-1 

anındaki durumun gauss gösterimi görülmektedir. Kontrol girişi uygullandıktan sonra 

yeni durumun tahmini şekil b’deki gibidir. Tahmine ait ortalama (mean) değer daha 

düşük ve kovaryansı daha fazladır. Çünkü belirsizlik önceki inanca göre daha fazladır. 

c’de görüldüğü üzere bir sonraki aşamada yeni ölçümler alınır. Son olarak d’de bu 

ölçüm ve tahmin kullanılarak t anına ait yeni bir inanç hesaplanır [3]. 

 

Şekil 3.12 : Kalman filtresi algoritmasının Gauss dağılımı ile gösterimi [3]. 

Kalman Filtresinin yaygın olarak kullanılmasının en önemli sebepleri fazla işlemsel 

yük gerektirmemesi ve kolay uygulanabilir olmasıdır. Bununla birlikte etkin bir 

hesaplama yeteneği de olmasına rağmen çoğu robot hareket modelinin doğrusal 
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olmaması Kalman filtresine seçenek olarak genişletilmiş Kalman filtresi ve parçacık 

filtresi gibi yöntemler geliştirilmesine sebep olmuştur [3, 45]. 

3.1.8 Genişletilmiş Kalman Filtresi 

Doğrusal sistemler için Kalman filtresi çok kullanışlı olsa da gerçek hayatta robot 

uygulamalarında çoğu zaman doğrusal olmayan modellerle karşılaşıldığı için onun 

yerine temel yapısı Kalman filtresine çok benzer olan genişletilmiş Kalman filtresi 

(GKF) geliştirilmiştir. Aslında GKF, doğrusal olmayan sistemler için doğrudan 

hesaplama yapmak yerine bunu, sürekli türevlenebilir fonksiyonları kullanarak 

doğrusallaştırılmış formda yapar. Bu da Kalman filtresinde olduğu gibi gerçek bir 

inanç hesaplaması yerine benzetim yoluyla gerçek inanca yakın bir değer elde 

edilmesine sebep olur [3, 43]. 

GKF’de durum geçişi ve ölçümün, denklem 3.17 ve 3.18’de görüldüğü gibi doğrusal 

olmayan fonksiyonlarla hesaplandığı kabul edilir. Burada 𝑔 fonksiyonu Kalman 

filtresindeki 𝐴 ve 𝐵 matrislerine karşılık gelirken ℎ fonksiyonu da 𝐶 matrisine karşılık 

gelmektedir. 

 𝑥𝑡 = 𝑔(𝑢𝑡, 𝑥𝑡−1) + 𝜀𝑡 (3.17) 

 𝑧𝑡 = ℎ(𝑥𝑡) + 𝛿𝑡 (3.18) 

𝑔 ve ℎ fonksiyonları ile hesaplanan inancın gauss dağılımı olarak ifade edilebilmesi 

için bu fonksiyonların doğrusallaştırılması gerekir. Bu da Taylor serisi açılımı 

kullanılarak yapılır. Denklem 3.19'dan 3.23'e kadar olan ifadeler GKF'nin 

algoritmasını oluşturmaktadır. 

 𝑥̅𝑡 = 𝑔(𝑢𝑡, 𝑥𝑡−1) (3.19) 

 Σ̅𝑡 = 𝐺𝑡Σ𝑡−1𝐺𝑡
𝑇 + 𝑅𝑡 (3.20) 

 𝐾𝑡 = Σ̅𝑡𝐻𝑡
𝑇(𝐻𝑡Σ̅𝑡𝐻𝑡

𝑇 + 𝑄𝑡)
−1 (3.21) 

 𝑥𝑡 = 𝑥̅𝑡 + 𝐾𝑡(𝑧𝑡 − ℎ(𝑥̅𝑡)) (3.22) 

 Σ𝑡 = (𝐼 − 𝐾𝑡𝐻𝑡)Σ̅𝑡 (3.23) 

Bu algoritmadan da anlaşılacağı üzere GKF ile Kalman filtresinin yapısı  hemen 

hemen aynıdır. Tek fark, doğrusal olmayan 𝑔 ve ℎ fonksiyonlarının 

doğrusallaştırılmasıdır. Bu işlem 𝑔 fonksiyonu ve onun kısmi türevi kullanılarak 

denklem 3.24'teki gibi yapılır. 
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𝑔′(𝑢𝑡, 𝑥𝑡−1) ∶=  

𝜕𝑔(𝑢𝑡, 𝑥𝑡−1)

𝜕𝑥𝑡−1
 (3.24) 

𝑔 fonksiyonun yaklaşık değeri denklem 3.25’teki gibi elde edilir. 

 𝑔(𝑢𝑡, 𝑥𝑡−1) ≈ 𝑔(𝑢𝑡, 𝜇𝑡−1) + 𝑔′(𝑢𝑡, 𝜇𝑡−1)(𝑥𝑡−1 − 𝜇𝑡−1) (3.25) 

Böylece; 

 𝑔(𝑢𝑡, 𝑥𝑡−1) = 𝑔(𝑢𝑡, 𝜇𝑡−1) + 𝐺𝑡(𝑥𝑡−1 − 𝜇𝑡−1) (3.26) 

elde edilir. ℎ fonksiyonunun elde edilmesi de aynı işlem basamakları uygulanarak 

gerçekleşir ve 3.27'deki gibi gösterilir. 

 ℎ(𝑥𝑡) = ℎ(𝜇̅𝑡) + 𝐻𝑡(𝑥𝑡 − 𝜇̅𝑡) (3.27) 

Jakobiyen matrisi olarak adlandırılan 𝐺𝑡 ve 𝐻𝑡 matrisleri Kalman filtresindeki 𝐴𝑡, 𝐵𝑡 

ve 𝐶𝑡matrislerine karşılık gelmektedir. 

Doğrusal sistemlerde durum geçiş matrisi, dinamik matris ve gözlem matrisinin bir 

kere hesaplanması yeterliyken doğrusal olmayan sistemlerde bu matrisler her 

çevrimde yeniden hesaplanmalıdır. Bu prosedür, ek bir işlemsel yük getirmesine 

rağmen GKF, EZKH uygulamalarında Kalman filtresinden daha çok kullanım alanı 

bulmaktadır. Diğer yandan, GKF doğrusal olmayan sistemler için bir çözüm getirse de 

ortalama (𝜇) ve kovaryans (Σ)’ın kesinliği Kalman filtresindekine göre daha düşüktür 

[3, 43]. 

3.1.9 GKF'nin EZKH'ye uygulanması 

İlk EZKH uygulamalarından itibaren kullanılmaya başlayan GKF, gerek tek olarak 

gerekse birkaç farklı filtre ile birlikte, bugün birçok EZKH yönteminde hala etkin bir 

şekilde kullanılmaktadır. GKF'nin en başarılı kullanım şekillerinden birisi olan EKF-

SLAM, işaretçi tabanlı bir yaklaşımdır. Haritayı oluşturan matris yapısından dolayı 

çok sayıda işaretçinin olduğu ortamlarda EKF-SLAM tercih edilmez, çünkü işlem hızı 

çok yavaşlar. 

Diğer birçok EZKH'de olduğu gibi EKF-SLAM'de de ölçüm ve hareket gürültüsü 

Gauss Dağılımına göre hesaplanır. Monte Carlo konumlandırması ile büyük benzerlik 

gösteren bu yaklaşımın tek farkı, GKF kullanarak robot konumunu ve belirsizliğini 

hesaplamasının yanında işaretçilerin konumlarını ve belirsizliklerini de GKF ile 
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hesaplamasıdır. Bu durumda robot durumu (𝑠𝑡) ve haritayı (𝑚) içeren vektör, denklem 

3.28'deki gibidir [3]. 

 𝑦𝑡 = (
𝑠𝑡

𝑚
) (3.28) 

Şekil 3.13'te EKF-SLAM'ın uygulandığı bir örnek görülmektedir. Robot, 8 tane 

işaretçinin olduğu bir ortamda dikdörtgen benzeri bir rotayı takip etmektedir. 

Başlangıçta konum belirsizliği sıfır olan robot ilerledikçe bu belirsizlik de artmaya 

başlamaktadır. Bu sırada tespit ettiği işaretçilerin de konumlarını ve belirsizliklerini 

EKF ile hesaplayıp haritasına eklemektedir. Mavi nokta ile gösterilenler işaretçilerin 

gerçek konumları olup, kırmızı elipslerin merkezi de işaretçilerin hesaplanan 

konumlarıdır. Robot, harekete başladığı konuma doğru yaklaştığında daha önce tespit 

etttiği işaretçilerden birini yeniden tespit eder ve bunun sonucunda hem işaretçinin 

konumunun belirsizliği hem de robotun konumunun belirsizliği azalır [9]. 

 

Şekil 3.13 : EKF-SLAM'de işaretçi ve robot ilişkisi [9]. 

EKF-SLAM, öngörü ve düzeltme olmak üzere iki ana adımdan oluşur. Öngörüde 

ölçüm alınmadan sadece 𝑡 anındaki kontrol girişleri ve 𝑡 − 1 anındaki robot durumu 

kullanılarak yeni konum için öngörüde bulunulur. Bu aşamada aynı zamanda robotun 

konum belirsizliğini belirten kovaryan matrisi de güncellenir ve belirsizlik artar. Bu 

adım aslında GKF algoritmasında belirtilen öngörü adımıyla aynıdır. Denklemdeki 𝐺𝑡, 

EKF-SLAM'de kullanılan hareket modelinin jakobiyan matirisidir. 

Düzeltme aşaması, robot konumu ve işaretçi konumu belirsizliğin güncellendiği 

aşamadır. Bu iki unsur için de ortalama ve kovaryans güncellemesi yapıldığı 

düşünülürse aslında düzeltme aşaması iki kere uygulanıyor denilebilir. Ölçüm 
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alındığında ilk olarak tespit edilen işaretçi veri ilişkilendirmeye tabi tutularak bu 

işaretçinin kimliği belirlenir. Yani yeni bir işaretçi mi yoksa haritadaki bir işaretçi mi 

olduğu tespit edilir. Eğer yeni bir işaretçiyse o işaretçi için ortalama ve kovaryans 

hesaplanır. Eğer haritadaki bir işaretçiyse harita güncellenir. Düzeltme aşamasının son 

kısmında da ölçüme göre robot durumu ve belirsizliği güncellenir. Bu aşamada eğer 

tespit edilen işaretçi yeni bir işaretçiyse robotun belirsizliği artar. Eğer eski bir 

işaretçiyse belirsizlik azalır ve konum düzeltilir [3]. 

3.1.10 Parçacık filtresi 

Parçacık filtresi; Bayes kuralına dayanan ve olasılık yoğunluk dağılımlarını 

birbirinden bağımsız parçacıklarla hesaplayan bir tahmin algoritmasıdır. Parçacık 

filtresi terimi ilk defa [46]'da kullanılmıştır. Ekonomi tahminleri [47], hedef izleme, 

hava trafik kontrolü, robot ve araç konumlandırması gibi çeşitli alanlarda kullanılan 

parçacık filtresi, doğrusal olmayan sistemlere kolayca uygulanabildiğinden  Kalman 

filtresi ve türevlerine göre üstündür [48]. Bu filtrede ana fikir; sonsal durumdan 

gelişigüzel bir şekilde örneklendirilen parçacıkların, ölçümler doğrultusunda önem 

ağırlıklarının hesaplanarak bu ağırlıklar oranında çoğaltılması şeklindedir. Şekil 3.14, 

parçacık filtresinin nasıl işlediğine dair bir fikir vermektedir. Yukarıda sarı renkli olan 

parçacıklar için önem ağırlığı hesaplaması yapılmış ve Gauss şeklinde olmayan bir 

olasılık dağılım fonksiyonuna benzediği görselleştirilmiştir. Önem ağırlıkları oranında 

çoğaltılan parçacıklardan çok düşük olasılıklı olanlarının bu aşamada elendiği 

görülmektedir. Son olarak, çoğaltılarak üretilen yeni parçacıklar gelişigüzel olarak 

yeniden örneklendirilmiş ve yeni ölçüm alınarak önem ağırlıkları hesaplanmıştır.  

 

Şekil 3.14 : Parçacık filtresi şeması. 
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Monte Carlo konumlandırmasında da kullanılan parçacık filtresinde parçacıklar ilk 

başta harita içerisinde gelişigüzel dağılmış bir şekilde bulunur. Robot ilerleyip sensör 

ölçümlerini aldıkça büyük olasılıklı parçacıkların daha fazla çoğalması ve düşük 

olasılıklı parçacıkların da yok olmasından dolayı harita içerisinde belli bölgelerde 

yoğunlaşmalar başlar [49]. Şekil 3.15'te, simetrik şekillerin olduğu bir kapalı alanda 

uygulanan Monte Carlo konumlandırmasına bir örnek verilmiştir.  

 

Şekil 3.15 : Monte Carlo Konumlandırması: Başta parçacıklar dağılmış haldedir 

(solda), ölçüm alındıkça parçacıklar kümelenmeye başlar (ortada), yeterince ölçüm 

alındıktan sonra parçacıklar tek bir küme oluşturur (sağda) [49]. 

FastSLAM'de ise parçacık filtresi biraz daha farklı şekilde uygulanır. Başlangıçta hem 

konum hem de harita bilgisi olmadığı için bütün parçacıklar robot ile aynı konumda 

kabul edilirler. Robot ilerledikçe gelişigüzel olarak örneklendirilen parçacıklar 

dağılmaya başlar. Robot, sensör ölçümleri alındıkça oluşturulmaya başlanan haritada 

bilinen yerlerden geçildikçe dağılmış durumdaki parçacıklar da tekrar yoğunlaşmaya 

başlar .  

Kalman filtresinde olduğu gibi parçacık filtresinde de durum hesaplaması,  𝑡 − 1 

anındaki inancı kullanarak 𝑡 anındaki inancın hesaplanmasıyla yapılır. Ancak parçacık 

filtresinde inanç gösterimi parçacıklar kümesi olarak belirtildiği için 𝑏𝑒𝑙(𝑥𝑡) ile değil 

denklem 3.29'daki gibi gösterilir. Çünkü Kalman filtresinde durum, tek bir normal 

gauss dağılımı şeklinde ifade edilirken parçacık filtresinde ise 𝑀 tane olasılık değerleri 

olarak belirtilir. 

 𝑋𝑡 ≔ 𝑥𝑡
[1]

, 𝑥𝑡
[2]

, … , 𝑥𝑡
[𝑀]

 (3.29) 

Çizelge 3.6'daki parçacık filtresi için verilen algoritmada tahmin, düzeltme ve yeniden 

örnekleme (resampling) olmak üzere 3 adım vardır. 4. satırda 𝑀 sayıda parçacığın 

örneklenmesi için 𝑡 − 1 anına ait parçacıkların durumlarına, 𝑡 anında uygulanan 

kontrol girişi eklenerek bir tahmin yapılır. Burada üretilen parçacık kümesi Bayes 

filtresi’ndeki önsel (prior) duruma karşılık gelmektedir. Sonsal (posterior) durum 
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hesaplaması ise 5. ve 6. satırda yapılmaktadır. Düzeltme aşaması olarak bilinen bu 

kısım aynı zamanda önem örneklemesi (importance sampling) olarak da anılmaktadır. 

4. satırda üretilen her bir parçacık için 𝑧𝑡 ölçümleri ile önem ağırlığı 𝑤𝑡 hesaplanır. 6. 

satırda parçacıklar ve bu parçacıklara ait önem ağırlığı 𝑋̅𝑡 parçacık kümesine eklenir 

[3]. 

Parçacık filtresi’nin en önemli kısmı olan yeniden örnekleme, 8. satırda başlar. Her bir 

parçacığının önem ağırlığı hesaplanmış olan 𝑋̅𝑡 parçacık kümesinden, onunla aynı 

boyutta yeni bir parçacık kümesi üretilir. 𝑋̅𝑡 içindeki önemi çok düşük olan örnekler 

yeni kümede yer almazlar ve parçacık sayısı azalmış olur. Bu durum bir süre sonra 

parçacıkların tükenmesine yol açabilir.  Tekrar aynı sayıya ulaşabilmek için, sayıları 

𝑋̅𝑡 içindeki diğer parçacıkların önemi ile orantılı olacak şekilde yeni örnekler üretilir. 

Yani büyük ağırlığa sahip olan parçacıklardan daha fazla sayıda örnek üretilirken 

düşük ağırlıklı olanlardan daha az sayıda üretilir. Üretilen bu yeni örneklerin her 

birinin önem ağırlığı birbirine eşittir ve ağırlıkları toplamı 1’e eşittir [3, 50]. 

Çizelge 3.6 : Parçacık filtresi algoritması 

1: Parçacık-filtresi(𝑋𝑡−1, 𝑢𝑡 , 𝑧𝑡) 

2: 𝑋̅𝑡 = 𝑋𝑡 = ∅  

3: for 𝑚 = 1 to 𝑀 do 

4: 𝑠𝑎𝑚𝑝𝑙𝑒 𝑥𝑡
[𝑚]

~𝑝(𝑥𝑡|𝑢𝑡, 𝑥𝑡−1
[𝑚]

)  

5: 𝑤𝑡
[𝑚]

= 𝑝(𝑧𝑡|𝑥𝑡
[𝑚]

)  

6: 𝑋̅𝑡 = 𝑋̅𝑡 + 〈𝑥𝑡
[𝑚]

, 𝑤𝑡
[𝑚]〉  

7: end for 

8: for 𝑚 = 1 to 𝑀 do 

9: draw 𝑖 with probability ∝ 𝑤𝑡
[𝑖]

 

10: add 𝑥𝑡
[𝑖]

 to 𝑋𝑡 

11: end for 

12: return 𝑋𝑡 

Doğrusal sistemlere kolayca uygulanabilirliğinin yanında parçacık filtresi, inanç 

olarak birden fazla seçenek sunabildiği için Kalman filtresinden bir adım daha öne 

geçmektedir. Bir dezavantaj olarak parçacık filtresinde uygulamada çok sayıda 

parçacık kullanılıyor olması ve her bir parçanın ayrı bir işlem gerektirmesi hesapsal 

yükün fazla olmasına neden olsa da günümüzde üretilen hızlı işlemcilerin kullanımıyla 

bu durumun üstesinden gelmek mümkündür. 

 



37 

3.2 FastSLAM 

Birinci bölümde bahsedildiği gibi EZKH uygulamaları için önerilen EKF-SLAM'de 

işaretçi sayısı arttıkça işlem yükü üstel bir şekilde artmaktadır. Bu sorun EKF-

SLAM'in harita oluşturma yönteminden kaynaklanmaktadır. Aşağıdaki denklem 3.30 

ve 3.31 işaretçi haritasının nasıl oluşturulduğunu göstermektedir. Denklem 3.30'da 𝜇𝑠𝑡
, 

robotun 𝑡 anındaki durumunu, 𝑛 = 1,… ,𝑁 olmak üzere 𝜇𝜃𝑛,𝑡 𝑛'inci işaretçinin 

konumunu belirtir. Bu vektör her bir yeni işaretçi için doğrusal olarak büyümektedir. 

Denklem 3.31'de Σ𝑠𝑡,𝑡, robotun 𝑡 anındaki varyansını yani belirsizliğini, Σ𝜃𝑛,𝑡 𝑛'inci 

işaretçinin varyansını ve 𝑚 = 1,… ,𝑀 olmak üzere Σ𝜃𝑛𝜃𝑚,𝑡 𝑛'inci ve 𝑚'inci işaretçinin 

kovaryansını belirtir. Bu matris her bir yeni işaretçi için üstel bir şekilde büyümektedir 

[51]. 

 𝜇𝑡 = {𝜇𝑠𝑡
, 𝜇𝜃1,𝑡, … , 𝜇𝜃𝑁,𝑡} (3.30) 

 𝛴𝑡 =

[
 
 
 
 
𝛴𝑠𝑡,𝑡 𝛴𝑠𝑡𝜃1 ,𝑡 … 𝛴𝑠𝑡𝜃𝑁,𝑡

𝛴𝑠𝑡,𝑡 𝛴𝜃1,𝑡 𝛴𝜃1𝜃2,𝑡  

⋮ 𝛴𝜃2𝜃1,𝑡 ⋱  

𝛴𝑠𝑡,𝑡   𝛴𝜃𝑁,𝑡 ]
 
 
 
 

 (3.31) 

FastSLAM, GKF ve parçacık filtresini bir arada kullanarak EKF-SLAM'deki bu üstel 

büyüme sorununa çözüm getirmektedir. Öyle ki; işaretçiler GKF'de olduğu gibi 

birbiriyle ilişkilendirilmek yerine parçacık filtresindeki her bir parçacığın konumu ile 

ilişkilendirilmektedir. Çünkü robotun gittiği yol tam olarak bilinirse işaretçileri 

birbirinden bağımsız bir şekilde hesaplamak mümkündür. Şekil 3.16'da dinamik Bayes 

ağı gösterimi ile işaretçilerin nasıl birbirinden bağımsız olabileceği belirtilmiştir. 𝑠𝑡, 

𝑧𝑡 ve 𝑢𝑡 𝑡 anında sırasıyla robotun durumunu, sensör ölçümünü ve kontrol girişini 

simgelerken 𝜃𝑛𝑡
 de 𝑛'inci işaretçiyi belirtir. Robot; 1. işaretçiyi 𝑡 = 1 ve 𝑡 = 3 

anlarında, 2. işaretçiyi de 𝑡 = 2 anında tespit etmektedir. 𝑠1 konumundayken ilk defa 

tespit ettiği 1. işaretçinin konumunu 𝑠3 anında yeniden tespit ettiğinde, o ana kadar 

izlediği yolu bildiği için 2. işaretçiden bağımsız olarak hesaplayabilmektedir. 

Denklem 3.32, FastSLAM'deki her bir parçacık için durum bilgisinin ve haritanın nasıl 

oluşturulduğunu göstermektedir. 𝑀 parçacık sayısını belirtmek üzere ve 𝑚 = 1,… ,𝑀 

iken 𝑆𝑡
[𝑚]

 𝑚'inci parçacığın durum bilgisini ve işaretçi haritasının bilgisini barındıran 

vektörü ifade eder. 
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Şekil 3.16 : EZKH'nin dinamik Bayes ağı ile gösterimi [49]. 

Bu vektörde 𝑠𝑡,[𝑚], 𝑚'inci parçacığın başlangıçtan 𝑡 anına kadar olan durumlarını yani 

izlediği yolu; 𝜇n,𝑡
[𝑚]

 ve Σn,𝑡
[𝑚]

 sırasıyla 𝑛'inci işaretçinin konumunu ve belirsizliğini 

(varyansını) belirtir. Denklem 3.32'den anlaşılacağı üzere haritaya eklenen her bir yeni 

işaretçi, toplam eleman sayısını doğrusal bir şekilde artırır. Bu durumda işlem 

yoğunluğu (2𝑁 + 1) ∗ 𝑀 olarak ifade edilebilir [49]. 

 𝑆𝑡
[𝑚]

= 〈𝑠𝑡,[𝑚], 𝜇1,𝑡
[𝑚]

, Σ1,𝑡
[𝑚]

, … , 𝜇𝑁,𝑡
[𝑚]

, Σ𝑁,𝑡
[𝑚]〉 (3.32) 

3. bölümde de anlatıldığı üzere EZKH yöntemlerinin büyük bir kısmı sonsal 

hesaplamasını, harita bilgisi ve robotun son andaki durum bilgisi üzerinden yaparken 

FastSLAM bu hesaplamayı harita bilgisi ve robotun başlangıçtan 𝑡 anına kadar olan 

bütün durumları üzerinden yapar. Dinamik bayes ağı örneği ile açıklanan koşullu 

bağımsızlıktan yararlanarak EZKH sonsalı çarpanlara ayrılmış bir şekilde aşağıdaki 

denklemdeki gibi ifade edilebilir [49]. 

 

𝑝(𝑠𝑡, Θ | 𝑧𝑡 , 𝑢𝑡, 𝑛𝑡) = 𝑝(𝑠𝑡 | 𝑧𝑡, 𝑢𝑡, 𝑛𝑡)∏𝑝(𝜃𝑛 | 𝑠𝑡, 𝑧𝑡, 𝑢𝑡, 𝑛𝑡)

𝑁

𝑛=1

 (3.33) 

3.2.1 FastSLAM İşlem Basamakları 

FastSLAM algoritması dört adımdan oluşmaktadır: 

 Kontrol girişleri uygulayarak bir önceki parçacık kümesinden yeni bir küme 

örneklendirme 
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 Tespit edilen işaretçinin her bir parçacık için güncelleme 

 Sensör ölçümüne göre her parçacık için önem ağırlığı hesaplama 

 Parçacıkların önem ağırlıkları kullanılarak yeni bir parçacık kümesi oluşturma 

3.2.1.1 Yeni konum örnekleme 

FastSLAM'de de diğer Kalman tabanlı EZKH yöntemlerinde olduğu gibi tahmin ve 

güncellleme olarak iki temel aşama vardır. Tahmin aşamasında 𝑡 − 1 anındaki 

parçacık kümesinden sadece kontrol girişleri uygulayarak yeni bir parçacık kümesi 

oluşturulur. Öneri dağılımı (proposal distribution) adı verilen bu yeni küme olasılıksal 

bir hareket modelinin her bir parçacığa tek tek uygulanmasıyla elde edilir. Bir parçacık 

için yeni bir konum elde edilmesi denklem 3.34'teki gibi gösterilir. 

 𝑠𝑡
[𝑚]

 ~ 𝑝(𝑠𝑡 | 𝑢𝑡, 𝑠𝑡−1
[𝑚]

) (3.34) 

Bütün parçacıklar örneklendirildikten sonra elde edilen öneri dağılımı ise denklem 

3.35'teki gibi ifade edilir. 

 𝑝(𝑠𝑡 | 𝑧𝑡−1, 𝑢𝑡, 𝑛𝑡−1) (3.35) 

Bu aşamadaki işlem zamanı parçacık sayısıyla doğru orantılıyken işaretçi haritasının 

büyüklüğü bu işlem zamanına herhangi bir etkide bulunmaz. 

Şekil 3.17'de, 250 tane parçacık için önceki bölümde anlatılan odometri hareket 

modeline göre örneklendirilen parçacıkların dağılımı görülmektedir. Yay şeklindeki 

çizgi kontrol girişleri uygulanarak oluşan gerçek yolu göstermektedir. Her bir 

parçacığa normal Gauss gürültüsünün gelişigüzel bir şekilde uygulanmasıyla 

parametrik olmayan bir Gauss dağılımı şeklinde bir parçacık kümesi oluşmuştur [49]. 

 

Şekil 3.17 : Olasılıksal hareket modeli ile örneklendirilmiş parçacıklar [49]. 



40 

3.2.1.2 İşaretçilerin güncellenmesi 

Yeni konum örnekleme aşamasında sonsal için bir öneri dağılımı elde edilmesi 

FastSLAM'in tahmin kısmı iken bundan sonraki adımlar güncelleme kısmıdır. Aslında 

bu aşamaların gerçekleşebilmesi için sensör tarafından bir işaretçinin algılanması 

gerekmektedir. Yoksa, sensör herhangi bir işaretçi algılayana kadar yeni konum 

örnekleme adımı tekrar edilir. 

İşaretçilerin hesaplanması birbirlerinden bağımsız olarak robotun izlediği yola göre 

yapıldığından, parçacık kümesindeki her bir parçacık için 𝑁 tane GKF vardır. Tespit 

edilen işaretçinin haritadaki mevcut bir işaretçi mi yoksa ilk defa görülen bir işaretçi 

mi olduğunun belirlenmesi için bu işaretçi ilk olarak veri ilişkilendirmeye tabi tutulur. 

Veri ilişkilendirmenin nasıl yapıldığı bu bölümün sonunda anlatıldığı için şimdilik, 

tespit edilen işaretçinin haritadaki hangi işaretçi olduğunun bilindiği varsayılmaktadır. 

𝑡 anında tespit edilen bir işaretçi 𝑛'inci işaretçi (𝜃𝑛𝑡
) değilse, 𝜃𝑛𝑡

'ye ait GKF 

değiştirilmez ve denklem 3.36'daki gibi gösterilir. 

 𝑝(𝜃𝑛≠𝑛𝑡
 | 𝑠𝑡, 𝑧𝑡 , 𝑢𝑡, 𝑛𝑡) =  𝑝(𝜃𝑛≠𝑛𝑡

 | 𝑠𝑡−1, 𝑧𝑡−1, 𝑢𝑡−1, 𝑛𝑡−1) (3.36) 

Eğer tespit edilen işaretçi 𝑛'inci işaretçi ise 𝜃𝑛𝑡
'ye ait sonsal, Bayes ve Markov kuralı 

kullanılarak denklem 3.37 ve 3.38'de görüldüğü gibi güncellenir. Bayes kuralına göre; 

 𝑝(𝜃𝑛𝑡
 | 𝑠𝑡, 𝑧𝑡 , 𝑢𝑡 , 𝑛𝑡) =  𝜂 𝑝(𝑧𝑡  | 𝜃𝑛𝑡

, 𝑠𝑡 , 𝑧𝑡−1, 𝑢𝑡, 𝑛𝑡) 𝑝(𝜃𝑛𝑡
 | 𝑠𝑡 , 𝑧𝑡−1, 𝑢𝑡 , 𝑛𝑡) (3.37) 

elde edilir ve sonra Markov özelliği ile denklem 3.38'deki gibi sadeleştirilir. 𝑡 anındaki 

ölçüm 𝑧𝑡 sadece 𝜃𝑛𝑡
, 𝑠𝑡 ve 𝑛𝑡 'ye bağlıdır. Benzer şekilde 𝜃𝑛𝑡

 de; 𝑠𝑡, 𝑢𝑡 ve 𝑛𝑡 'den 

bağımsızdır. 

 𝑝(𝜃𝑛𝑡
 | 𝑠𝑡, 𝑧𝑡 , 𝑢𝑡 , 𝑛𝑡) =  𝜂 𝑝(𝑧𝑡  | 𝜃𝑛𝑡

, 𝑠𝑡, 𝑛𝑡) 𝑝(𝜃𝑛𝑡
 | 𝑠𝑡−1, 𝑧𝑡−1, 𝑢𝑡−1, 𝑛𝑡−1) (3.38) 

GKF kullanan diğer EZKH yöntemlerinde olduğu gibi FastSLAM de ölçüm modeli 

için doğrusal Gauss yaklaşımını uygular. Buna göre; doğrusal olmayan ölçüm modeli 

𝑔(𝑠𝑡, 𝜃𝑛𝑡
), birinci dereceden bir Taylor açılımı ile doğrusal bir model hale getirilir. 

İşaretçi hesaplaması robotun gittiği yola göre koşullandırıldığı için Taylor açılımı 

işaretçilerin konumları üzerinden yapılır. Açılım; 3.40, 3.41 ve 3.42'de görüldüğü gibi 

yapılır. 

 𝑧̂𝑡 = 𝑔 (𝑠𝑡
[𝑚]

, 𝜇𝑛𝑡,𝑡−1) (3.40) 
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 𝐺𝜃𝑛𝑡
= ∇𝜃𝑛𝑡

𝑔(𝑠𝑡, 𝜃𝑛𝑡
)|

𝑠𝑡=𝑠𝑡
[𝑚]

;𝜃𝑛𝑡=𝜇𝑛𝑡,𝑡−1
[𝑚]  (3.41) 

 𝑔(𝑠𝑡, 𝜃𝑛𝑡
) ≈ 𝑧̂𝑡 + 𝐺𝜃(𝜃𝑛𝑡

− 𝜇𝑛𝑡,𝑡−1
[𝑚]

) (3.42) 

Bu koşullar altında landmark güncelleme denklemindeki çarpımın birinci terimi Gauss 

dağılımı olarak aşağıdaki denklem 3.43'teki gibi gösterilir. Burada 𝑅𝑡, ölçüm 

modelinin gürültüsünü belirten kovaryans matrisidir. 

 𝑝(𝑧𝑡 | 𝜃𝑛𝑡
, 𝑠𝑡, 𝑛𝑡)~𝒩(𝑧𝑡; 𝑧̂𝑡 + 𝐺𝜃 (𝜃𝑛𝑡

− 𝜇𝑛𝑡,𝑡−1
[𝑚]

) , 𝑅𝑡) (3.43) 

Güncelleme denklemindeki çarpımın ikinci terimi de yine Gauss dağılımı olarak 

denklem 3.44'teki gibi ifade edilir. 

 𝑝(𝜃𝑛𝑡
 | 𝑠𝑡−1, 𝑧𝑡−1, 𝑢𝑡−1, 𝑛𝑡−1)~𝒩(𝜃𝑛𝑡

; 𝜇𝑛𝑡,𝑡−1
[𝑚]

, 𝛴𝑛𝑡,𝑡−1
[𝑚]

) (3.44) 

İşaretçinin ortalama ve kovaryansı, 3.45'ten 3.50'ye kadar olan geleneksel GKF 

güncelleme denklemleriyle elde edilir. 

 𝑧̂𝑡 = 𝑔 (𝑠𝑡
[𝑚]

, 𝜇𝑛𝑡,𝑡−1) (3.45) 

 𝐺𝜃𝑛𝑡
= ∇𝜃𝑛𝑡

𝑔(𝑠𝑡, 𝜃𝑛𝑡
)|

𝑠𝑡=𝑠𝑡
[𝑚]

;𝜃𝑛𝑡=𝜇𝑛𝑡,𝑡−1
[𝑚]  (3.46) 

 𝑍𝑛,𝑡 = 𝐺𝜃𝑛𝑡
𝛴𝑛𝑡,𝑡−1

[𝑚]
𝐺𝜃𝑛𝑡

𝑇 + 𝑅𝑡 (3.47) 

 𝐾𝑡 = 𝛴𝑛𝑡,𝑡−1
[𝑚]

𝐺𝜃𝑛𝑡

𝑇 𝑍𝑛,𝑡
−1 (3.48) 

 𝜇𝑛𝑡,𝑡
[𝑚]

= 𝜇𝑛𝑡,𝑡−1
[𝑚]

+ 𝐾𝑡(𝑧𝑡 − 𝑧̂𝑡) (3.49) 

 𝛴𝑛𝑡,𝑡
[𝑚]

= (𝐼 − 𝐾𝑡𝐺𝜃𝑛𝑡
)𝛴𝑛𝑡,𝑡−1

[𝑚]
 (3.50) 

Düzlemsel bir alanda uygulanan EZKH yöntemlerindeki çoğu ölçüm modeli, şekil 

3.18'de görüldüğü gibi tespit edilen işaretçinin robota olan uzaklığını ve robota göre 

olan açısını hesaplar. 

Robotun 𝑡 anındaki durumunun 〈𝑠𝑡,𝑥, 𝑠𝑡,𝑦, 𝑠𝑡,𝜃〉 ve işaretçinin konumunun 〈𝜃𝑛𝑡,𝑥, 𝜃𝑛𝑡,𝑦
〉 

olarak ifade edildiğini varsayarak ölçüm fonksiyonu 𝑔(𝑠𝑡, 𝜃𝑛𝑡
) 3.51'deki gibi yazılır. 

 𝑔(𝑠𝑡, 𝜃𝑛𝑡
) = [

𝑟(𝑠𝑡, 𝜃𝑛𝑡
)

𝜙(𝑠𝑡, 𝜃𝑛𝑡
)
] =

[
 
 
 √(𝜃𝑛𝑡,𝑥 − 𝑠𝑡,𝑥)2 + (𝜃𝑛𝑡,𝑦 − 𝑠𝑡,𝑦)2

tan−1 (
𝜃𝑛𝑡,𝑦−𝑠𝑡,𝑦

𝜃𝑛𝑡,𝑥−𝑠𝑡,𝑥
) − 𝑠𝑡,𝜃 ]

 
 
 
 (3.51) 
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Şekil 3.18 : Robotun aldığı ölçümün açısı ve uzaklığı. 

Bu ölçüm modeline göre Jakobiyan 𝐺𝜃𝑛𝑡
 de denklem 3.52'deki gibi bulunur [49]. 

 𝐺𝜃𝑛𝑡
=

[
 
 
 

𝜃𝑛𝑡,𝑥−𝑠𝑡,𝑥

√(𝜃𝑛𝑡,𝑥
−𝑠𝑡,𝑥)2+(𝜃𝑛𝑡,𝑦

−𝑠𝑡,𝑦)2

𝜃𝑛𝑡,𝑦−𝑠𝑡,𝑦

√(𝜃𝑛𝑡,𝑥
−𝑠𝑡,𝑥)2+(𝜃𝑛𝑡,𝑦

−𝑠𝑡,𝑦)2

−
𝜃𝑛𝑡,𝑦−𝑠𝑡,𝑦

(𝜃𝑛𝑡,𝑥−𝑠𝑡,𝑥)2+(𝜃𝑛𝑡,𝑦−𝑠𝑡,𝑦)2

𝜃𝑛𝑡,𝑥−𝑠𝑡,𝑥

(𝜃𝑛𝑡,𝑥−𝑠𝑡,𝑥)2+(𝜃𝑛𝑡,𝑦−𝑠𝑡,𝑦)2 ]
 
 
 

 (3.52) 

3.2.1.3 Önem ağırlıklarının hesaplanması 

Öneri dağılımındaki parçacık kümesi 𝑡 anındaki ölçümü ve veri ilişkilendirmeyi değil 

sadece kontrol girişini kullandığı için istenilen sonsal 𝑝(𝑠𝑡, Θ | 𝑧𝑡, 𝑢𝑡 , 𝑛𝑡) ile eşleşmez. 

Bu farkı gidermek üzere yapılan önem örneklendirmesi için şekil 3.19'da bir örnek 

verilmiştir. Parçacıklar doğrudan hedef dağılımı kullanılarak örneklendirilmek yerine 

öneri dağılımına göre örneklendirilirler. Hedef dağılımının öneri dağılımından daha 

büyük olduğu yerlerdeki parçacıkların ağırlıkları diğerlerinden daha fazladır. Öneri 

dağılımı hedef dağılımının altında kaldıkça parçacıkların da önem ağırlıklar o oranda 

azalır.  

 

Şekil 3.19 : Önem ağırlıklarının hesaplanmasının bir örneği [39]. 
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Her bir parçacığın önem ağırlığı, denklem 3.53'te olduğu gibi hedef dağılımın öneri 

dağılımına oranlanmasıyla elde edilir. 

 
𝑤𝑡

[𝑚]
=

ℎ𝑒𝑑𝑒𝑓 𝑑𝑎ğ𝚤𝑙𝚤𝑚𝚤

ö𝑛𝑒𝑟𝑖 𝑑𝑎ğ𝚤𝑙𝚤𝑚𝚤
=

𝑝(𝑠𝑡,[𝑚]|𝑧𝑡, 𝑢𝑡, 𝑛𝑡)

𝑝(𝑠𝑡,[𝑚]|𝑧𝑡−1, 𝑢𝑡, 𝑛𝑡−1)
 (3.53) 

Denklem 3.53'teki hedef dağılımı ifadesi Bayes kuralı uygulanarak aşağıdaki 3.54'teki 

gibi genişletilebilir. 

 
𝑤𝑡

[𝑚]
∝

𝑝(𝑧𝑡|𝑠𝑡,[𝑚], 𝑧𝑡−1, 𝑢𝑡, 𝑛𝑡)𝑝(𝑠𝑡,[𝑚]|𝑧𝑡−1, 𝑢𝑡, 𝑛𝑡)

𝑝(𝑠𝑡,[𝑚]|𝑧𝑡−1, 𝑢𝑡, 𝑛𝑡−1)
  (3.54) 

Denklem 3.54'ün pay kısmındaki ikinci terim 𝑡 anındaki ölçümü kullanmadığı için 𝑡 

anındaki veri ilişkilendirmeye de gereksinim yoktur. Markov özelliği kullanılarak 3.55 

elde edilir. 

 
𝑤𝑡

[𝑚]
=

𝑝(𝑧𝑡|𝑠𝑡,[𝑚], 𝑧𝑡−1, 𝑢𝑡, 𝑛𝑡)𝑝(𝑠𝑡,[𝑚]|𝑧𝑡−1, 𝑢𝑡, 𝑛𝑡−1)

𝑝(𝑠𝑡,[𝑚]|𝑧𝑡−1, 𝑢𝑡, 𝑛𝑡−1)
 (3.55) 

Böylece önem ağırlığı denklem 3.56'daki gibi ifade edilir. 

 𝑤𝑡
[𝑚]

= 𝑝(𝑧𝑡|𝑠𝑡,[𝑚], 𝑧𝑡−1, 𝑢𝑡, 𝑛𝑡) (3.56) 

Önem ağırlığını hesaplamak için gerçek sensör ölçümü ile tahmin edilen ölçüm 

arasındaki fark kullanılır. Denklem 3.57, bir parçacığın önem ağırlığının nasıl 

hesaplandığını bu ölçüm farkları cinsinden göstermektedir. 𝑍𝑛𝑡,𝑡, GKF'deki yenilenme 

matrisine karşılık gelmektedir [49]. 

 
𝑤𝑡

[𝑚]
=

1

√|2𝜋𝑍𝑛𝑡,𝑡|

 exp {−
1

2
(𝑧𝑡 − 𝑧̂𝑛𝑡,𝑡)

𝑇
[𝑍𝑛𝑡,𝑡]

−1
(𝑧𝑡 − 𝑧̂𝑛𝑡,𝑡)} (3.57) 

3.2.1.4 Yeniden Örneklendirme 

Bütün parçacıklar için önem ağırlığı hesaplaması yapıldıktan sonra mevcut parçacık 

kümesinden yeni bir parçacık kümesi elde edilir. Çoğu yeniden örnekleme yönteminde 

belli bir eşik değerinin altındaki parçacıklar yok edilirken diğer parçacıklar ise önem 

ağırlıklarıyla doğru orantılı olarak çoğaltılır. Literatürde çeşitli yeniden örnekleme 

algoritmaları bulunmaktadır. En çok kullanılan yöntemler; çokterimli (multinomial), 

katmanlı (stratified), sistematik (systematic) ve kalıntı (residual) yeniden örnekleme 

yöntemleridir. 
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Parçacıklara yeniden örnekleme uygulanmadan önce bütün parçacıkların önem 

ağırlıklarının normalize edilmesi gerekmektedir. Diğer bir deyişle, parçacık 

kümesindeki önem ağırlıklarının toplamının 1'e eşit olabilmesi için her bir parçacığın 

önem ağırlığının yeniden ölçeklendirilmesi gerekir. Bir parçacık kümesinde 𝑀 tane 

parçacık olduğu varsayılarak normalizasyon denklem 3.58'deki gibi yapılır. 

 𝑤𝑖 =
𝑤𝑖

∑ 𝑤𝑖
𝑀
𝑖=1

 (3.58) 

Bundan sonra yeniden örnekleme işlemi önceden belirlenen eşik değerine göre yapılır. 

FastSLAM'in en önemli aşamalarından biri olan yeniden örnekleme aşamasında 

yaşanan en büyük sıkıntı parçacık bozulması (degeneracy) veya yoksullaşması 

(impoverishment) adı verilen durumdur. Eğer, kontrol komutları uygulandıktan sonra 

elde edilen parçacık kümesindeki parçacıkların çoğu sensör ölçümü ile uyumlu ise 

yeniden örnekleme yapılırken büyük önem ağırlığına sahip yani kaliteli parçacıklar 

yok edilebilir. Bu da sonsal dağılımın hatalı oluşması demektir [49].  

Parçacık bozulmasını ortadan kaldırmak için yeniden örneklemenin her zaman değil, 

kaliteli parçacık sayısının az olduğu zamanlarda yapılması gerekir. Bu sayıyı tespit 

edebilmek için [52]'de Efektif Örnek Sayısı (Effective Sample Size) hesaplaması 

önerilmiştir. Denklem 3.59'da bu hesaplama görülmektedir. 

 
𝑁𝑒𝑓𝑓 =

1

∑ 𝑤𝑖
2𝑀

𝑖=1

 (3.59) 

Efektif örnek sayısı belli bir değerin altında olduğu durumlarda yeniden örnekleme 

yapılır. Parçacık kümesindeki parçacıkları bir sonraki döngüye hazır hale getirmek için 

bütün parçacıkların önem ağırlıkları denklem 3.60 kullanılarak eşit hale getirilir [53]. 

 
𝑤𝑖 =

1

𝑀
 (3.60) 

3.2.2 FastSLAM'deki diğer kavramlar 

3.2.2.1 Veri ilişkilendirme (en çok benzerlik yöntemi) 

Gerçek ortam uygulamalarında ölçümle tespit edilen işaretçinin haritadaki işaretçilerle 

olan ilgisi kesin bir şekilde bilinmez. Bu da EZKH yöntemleri için belli başlı 

zorluklardan birisidir. Çözüm olarak; tespit edilen işaretçinin haritadaki diğer 

işaretçiler içindeki benzerliği kontrol edilir ve en çok benzerliği olan işaretçi ile 
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ilişkilendirilir. Denklem 3.61'deki 𝑝(𝑧𝑡|𝑛𝑡, 𝑛̂
𝑡−1𝑠𝑡, 𝑧𝑡−1, 𝑢𝑡) ifadesi en çok benzerlik 

hesaplayıcısının bir örneğidir. 

 𝑛̂𝑡 = argmax
𝑛𝑡

𝑝(𝑧𝑡|𝑛𝑡, 𝑛̂
𝑡−1𝑠𝑡, 𝑧𝑡−1, 𝑢𝑡) (3.61) 

FastSLAM'de ölçüm alındıktan sonra veri ilişkilendirme için denklem 3.62'den 3.65'e 

kadar olan işlemler sırasıyla uygulanır. İlk olarak ölçüm modelinin doğrusallaştırılıp 

Jakobiyan matrisi haline getirilmesi gerekir. 𝑚'inci parçacık için ölçüm tahmini 

yapılır. Jakobiyan matrisi ve 𝑛'inci işaretçinin kovaryansı kullanılarak inovasyon 

matrisi oluşturulur. Son olarak benzerlik hesaplaması yapılır. En büyük benzerliği olan 

işaretçi için hesaplanan değer aynı zamanda 𝑚′𝑖𝑛𝑐𝑖 parçacık için önem ağırlığı olarak 

atanır. Bu prosedür bütün parçacıkları için tekrar edilir. 

 𝐺𝜃𝑛𝑡
= ∇𝜃𝑛𝑡

𝑔(𝑠𝑡, 𝜃𝑛𝑡
)|

𝑠𝑡=𝑠𝑡
[𝑚]

;𝜃𝑛𝑡=𝜇𝑛𝑡,𝑡−1
[𝑚]  (3.62) 

 𝑧̂𝑡 = 𝑔 (𝑠𝑡
[𝑚]

, 𝜇𝑛𝑡,𝑡−1) (3.63) 

 𝑍𝑛,𝑡 = 𝐺𝜃𝑛𝑡
𝛴𝑛𝑡,𝑡−1

[𝑚]
𝐺𝜃𝑛𝑡

𝑇 + 𝑅𝑡 (3.64) 

 
𝑤𝑡

[𝑚]
=

1

√|2𝜋𝑍𝑛𝑡,𝑡|

 exp {−
1

2
(𝑧𝑡 − 𝑧̂𝑛𝑡,𝑡)

𝑇
[𝑍𝑛𝑡,𝑡]

−1
(𝑧𝑡 − 𝑧̂𝑛𝑡,𝑡)} (3.65) 

GKF tabanlı EZKH uygulamalarında genellikle tekil veri ilişkilendirme tercih edilir. 

Bu yöntemler hata yapmaya çok müsaittir ve veri ilişkilendirmedeki bir hata harita 

hesaplanmasında çok büyük hataların oluşmasına sebep olabilir. 

Veri ilişkilendirmedeki hatalar birkaç farklı durumdan dolay ortaya çıkabilir. 

EZKH'de ölçüm gürültüsü ve hareket gürültüsü olmak üzere, belirsizliğe sebep olan 

iki temel etken vardır. Ölçüm belirsizliğinin artması haritadaki işaretçilerin 

belirsizliğinin artmasına sebep olur. Eğer bu belirsizlik çok fazla olursa birbirine yakın 

olan iki işaretçinin belirsizlikleri çakışabilir. Şekil 3.20'de ölçüm belirsizliği birbiriyle 

çakışan iki işaretçinin veri ilişkilendirme için oluşturabileceği sorun 

görselleştirilmiştir. Böyle bir durumda robot hangi işaretçinin, tespit edilen işaretçi 

olduğuna karar verirken hataya düşebilir. Eğer birden fazla ölçüm kullanılarak veri 

ilişkilendirilmesi yapılırsa ölçüm belirsizliklerinin çakışmasından kaynaklı bu sorun 

da çözülebilir. 
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Şekil 3.20 : EZKH'de ölçüm belirsizliği [49]. 

Hareket gürültüsü de veri ilişkilendirme açısından sorun oluşturabilecek bir durumdur. 

Çok büyük hareket gürültüsü söz konusu olduğunda parçacıkların dağılımı da bir o 

kadar büyüyecek ve konum belirsizliği artacaktır. Şekil 3.21'de konum belirsizliğinden 

kaynaklanabilecek veri ilişkilendirme karmaşası örneklendirilmiştir. Sensörün 

algıladığı iki işaretçi birbirlerine olan konumları bakımından, başka iki işaretçi ile 

benzerlik gösterebilir. Farklı konumlarda ve yönelim açısındaki parçacıklar benzer 

işaretçi çiftlerini yanlış tespit edebilir [49]. 

 

Şekil 3.21 : EZKH'de konum belirsizliği [49]. 
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4.  GELİŞTİRİLEN YÖNTEM 

4.1 Giriş 

EZKH için önerilen yöntemde, işaretçi tabanlı algoritmaların veri ilişkilendirme 

aşaması için geliştirilen yeni bir yaklaşımla hız performansının artırılması 

amaçlanmıştır. Özellikle parçacık filtresi tabanlı EZKH yöntemlerinde işaretçi 

sayısının devasa boyutlara ulaşmasıyla birlikte veri ilişkilendirme işlemi çok büyük 

ölçüde zaman kaybına neden olmaktadır. Çünkü sensör ölçümüyle tespit edilen 

işaretçi, haritadaki bütün işaretçilerle karşılaştırılarak o işaretçinin kimliği 

belirlenmeye çalışılmaktadır. Bu tez çalışmasında kullanılan FastSLAM'de veri 

ilişkilendirme adımında her bir parçacık ve işaretçi için bölüm 3'teki denklem 

grubunun tekrar tekrar hesaplanması gerekmektedir. Bu da bütün algoritma için büyük 

bir işlem zamanının oluşması demektir. İşaretçi kimliğinin belirlenmesi için haritanın 

tamamının incelenmesi yerine, aşağıda ayrıntılı olarak anlatılan bazı ölçütleri sağlayan 

küçük bir alandaki işaretçilerin incelenmesi, gereksiz işlemlerin yapılmasını engeller. 

Yani binlerce elemanın bulunduğu bir haritada belki de en fazla birkaç tane işaretçinin 

veri ilişkilendirme prosedürüne girmesi söz konusu olabilir.  

Birinci bölümde anlatıldığı üzere bu konuyla ilgili daha önce yapılmış olan çalışmalar 

bulunmaktadır. [19]'daki çalışmaya göre bir işaretçi tespit edildiğinde haritadaki bütün 

işaretçiler veri ilişkilendirme işlemine tabi tutulmazlar. Bunun yerine, sadece robot 

üzerindeki sensörün algılama uzaklığı ve açısı içerisinde kalan işaretçiler bu adıma 

sokulur. CESLAM olarak adlandırılan bu yaklaşım şekil 4.1'de görsel olarak ifade 

edilmiştir. 21 tane işaretçi olan haritada robot sadece sensör algılama alanı içinde kalan 

7 tane işaretçiyi veri ilişkilendirmeye sokmaktadır. Buradan kolaylıkla anlaşılacağı 

üzere CESLAM yöntemi büyük bir hesap yükünü çok aza indirmiştir. Bu yaklaşımın 

başarısı azımsanmayacak kadar büyük olmasına karşın, kullanılan sensör ve ortamdaki 

işaretçi sayısına göre algoritmanın etkisinin azalma olasılığı vardır. Örneğin; üç 

boyutlu tarama yapabilen ve algılama uzaklığı 10 metre olan bir lazer sensör kullanan 

robot, tek bir ölçümde çok sayıda işaretçi tespit edebilir.  



48 

 

Şekil 4.1 : CESLAM yöntemi: sensör algılama alanı içinde kalan gri renkli 

işaretçiler veri ilişkilendirmeye tabi tutulur. 

Ayrıca parçacık filtresi temelli EZKH yaklaşımlarında bu teknik bazen, veri 

ilişkilendirmeye alınması gereken işaretçileri atlayabilir. Gri renkli büyük üçgenin 

robotu, beyaz renkli küçük üçgenin de bir parçacığı simgelediği şekil 4.2'de görüldüğü 

üzere bu durum; tespit edilen bir işaretçinin, ilgili parçacığın sensör algılama alanı 

dışında kaldığı zaman ortaya çıkar. 

 

Şekil 4.2 : CESLAM'de oluşabilecek yanlış eşleştirme durumu. 

Bu tez çalışmasında önerilen yöntemde, CESLAM'de olduğu gibi sensör algılama 

alanı içinde kalan işaretçiler değil bu alandan daha küçük dairesel bir alandaki 

işaretçiler ele alınır. Sensör algılama alanı ne kadar geniş olursa olsun bu dairenin alanı 

değişmediği için veri ilişkilendirme aşamasında her zaman çok az sayıda işaretçi 

hesaba katılır. Böylece, bu adımdaki işlem yükü hemen hemen aynı kalmaktadır. 
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4.2 Önerilen Yöntemin Teknik Ayrıntıları 

Önerilen yöntem uygulamada oldukça basit olmasına karşın hız performansını 

artırmadaki başarısı çok yüksektir. Çünkü; haritada çok büyük miktarda işaretçi olsa 

bile veri ilişkilendirme prosedürü uygulanan işaretçi sayısı çok düşük kalmaktadır.  

Yöntemin ana fikri şu şekildedir: Robot, sensörden aldığı ölçüme göre parçacıklara 

ölçüm tahmini uygular. Merkezi bu tahmin sonucunda bulunan ve 𝑑 yarıçapı 

genişliğinde bir dairesel alan belirlenir. Bu dairenin içinde kalan işaretçiler veri 

ilişkilendirmeye tabi tutulurken dairenin dışında kalan işaretçiler atlanır. Çünkü 

standart veri ilişkilendirme prosedürü uygulanırken karşılaştırılan bütün işaretçilerin 

benzerlik olasılıkları hesaplanır ve en büyük olasılıklı olan işaretçi ele alınır. Eğer bu 

işaretçi belli bir eşik değerinin altındaysa haritada olmayan yeni bir işaretçi olarak 

kaydedilir. Dairenin yarıçapı da bu eşik değeri gözönünde bulundurularak belirlenir. 

Bir işaretçinin konum belirsizliği ne kadar büyükse yakınında tespit edilen başka bir 

işaretçinin ona olan benzerlik olasılığı da o kadar fazladır. Bir başka deyişle, robotun 

bu iki işaretçiyi birbirinden ayırt etmesi için aralarındaki uzaklığın belli bir değerden 

fazla olması gerekir ve belirsizliğin artmasıyla bu uzaklık da artar. Dairenin dışında 

kalmasına rağmen bu benzerlik olasılığı eşik değerin üstünde olan bir işaretçi olabilir. 

Bu hatanın yaşanmaması için bir işaretçinin belirsizliğinin en fazla olabileceği durum 

gözönüne alınır. Bir lazer sensörünün işaretçi tespit edebileceği en uzak mesafede o 

işaretçinin belirsizliği en büyüktür. Bu bilgiler ışığında, dairenin yarıçapı şekil 4.3'te 

görüldüğü gibi deneysel ölçümlerle belirlenebilir. Belirsizliği gösteren elipsin iki 

yarıçapı vardır. Bunlardan biri diğerinden daha kısa olabilir. Bu kısa yarıçap, dairenin 

yarıçapı olarak seçilirse yukarıda bahsedildiği gibi benzerlik olasılığı eşik değerin 

üstünde olan bir işaretçi dairenin dışında kalabilir. O yüzden uzun olan yarıçap seçilir. 

 

Şekil 4.3 : Dairenin yarıçapının ölçümle belirlenmesi. 
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Şekil 4.4a'da gri renkli büyük üçgen robotu, beyaz renkli küçük üçgenler parçacıkları, 

yıldızlar da işaretçileri simgelemektedir. Robot, aldığı ölçümü kullanarak parçacık için 

ölçüm tahmini yapar ve siyah işaretçileri kapsayan daireyi belirler. Şekil 4.4b'de 

görüldüğü gibi ölçümün açısı ve uzaklığı, parçacığın konumu ve yönelimine 

eklendiğinde dairenin merkezi hesaplanır. Bu dairenin içinde kalan siyah işaretçiler 

veri ilişkilendirmeye sokulurken dışında kalanlar da atlanır.  

 

Şekil 4.4 : Önerilen yöntemde bir parçacık için dairenin belirlenmesi. 

Her bir parçacık için farklı olan dairenin merkezi denklem 4.1 ve 4.2'deki gibi 

hesaplanır. burada 𝜙 ölçümün sensöre göre açısını, 𝑟 ölçümün uzaklığını belirtirken 

𝑐𝑥 ve 𝑐𝑦 de sırasıyla dairenin merkezinin 𝑥 ve 𝑦 koordinatlarını belirtir. 

 𝑐𝑥 = 𝑠𝑡,𝑥
[𝑚]

+ 𝑟 𝑐𝑜𝑠(𝑠𝑡,𝑡ℎ𝑒𝑡𝑎
[𝑚]

+ 𝜙) (4.1) 

 𝑐𝑦 = 𝑠𝑡,𝑦
[𝑚]

+ 𝑟 𝑠𝑖𝑛(𝑠𝑡,𝑡ℎ𝑒𝑡𝑎
[𝑚]

+ 𝜙) (4.2) 

𝜇n,x
[𝑚]

 ve 𝜇n,y
[𝑚]

 𝑚'inci parçacığa ait 𝑛'inci işaretçinin sırasıyla 𝑥 ve 𝑦 koordinatlarını 

belirtmek üzere, haritadaki bir işaretçinin dairenin merkezine olan uzaklığı 4.3'teki 

gibi bulunur.  

 𝑙𝑛 = √(𝑐𝑥 − 𝜇n,x
[𝑚]

)2 + (𝑐𝑦 − 𝜇n,y
[𝑚]

)2 (4.3) 

Eğer 𝑙𝑛, dairenin yarıçapı 𝑑'den büyükse bu işaretçi veri ilişkilendirmeye alınmaz. 

Eğer küçükse, benzerlik olasılığı hesaplanır. Dairenin içinde kalan bütün işaretçiler 

için benzerlik olasılığı hesaplandıktan sonra en büyük benzerliği olan işaretçi 

ölçümdeki işaretçidir denir. Şekil 4.5'te, geliştirilen yöntemin akış şeması 

görülmektedir. 
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Şekil 4.5 : Geliştirilen yöntemin akış şeması. 
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5.  UYGULAMA 

Mobil robotlarda EZKH yöntemlerinin hız performansını artırmak için geliştirilen 

yöntemin başarısını görmek için Gazebo'da hazırlanan iki farklı haritada simülasyonlar 

gerçekleştirilmiştir. Üç farklı EZKH yaklaşımı her bir haritada Turtlebot platformu 

kullanılarak 30'ar defa çalıştırılmıştır. Elde edilen sonuçlar hız performansı, robotun 

gittiği yolun hesaplaması ve haritanın doğruluğu bakımından incelenmiştir. 

5.1 Düzleştirme Filtresi 

Yeni EZKH yönteminin uygulanması sırasında Kinect sensörü ile ilgili bazı zorluklar 

yaşandı. Çünkü Kinect daha çok, eğlence amaçlı olarak tasarlandığı için bilimsel ve 

endüstriyel çalışmalarda kullanılanılan diğer lazer sensörleri kadar doğrulukta ölçüm 

yapamamaktadır. Bu tez çalışmasında Kinect, 2-boyutlu lazer sensörü gibi 

kullanılmıştır. Şekil 5.1'de, robota 2.5 metre uzaklıktaki bir duvardan alınan iki ölçüm 

görülmektedir. Şekil 5.1a'da görülen çizim sensörden alınan verinin işlenmemiş 

halidir. Ölçüm uzaklığı az olmasına karşın elde edilen veri oldukça gürültülüdür ve 

işaretçi tespitini güçleştirmektedir. Şekil 5.1b'de ise düzleştirme filtresi uygulanmış bir 

ölçüm görülmektedir. Bu ölçüm, EZKH'de kullanmak için daha uygundur. 

 

Şekil 5.1 : Kinect sensörü ile 2.5 metre uzaklıktaki düz bir duvardan alınan 

işlenmemiş ölçüm. 
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Sinyal işleme ve görüntü işleme gibi alanlarda genellikle ortalama filtresi, ortanca 

filtresi ve Gauss filtresi gibi düzleştirme filtreleri kullanılır. Uygulama kolaylığı ve iyi 

sonuç vermesi nedeniyle Kinect sensöründen alınan veri, ortalama filtresi uygulanarak 

kullanılmıştır. Bu filtrenin işleyişi şu şekildedir: sensörden gelen veri bir dizi olarak 

olarak düşünüldüğünde filtre edilecek elemanın kendisinin ve kendisinden önce ve 

sonra gelen 𝑛 tane elemanın toplamının aritmetik ortalaması alınır. Elde edilen değer 

filtre edilen eleman ile değiştirilir. Bu işlem bütün bir dizi boyunca her bir elemena 

sırasıyla uygulanır. Ancak baştaki ve sondaki 𝑛 tane eleman bu filtreleme işlemine tabi 

tutulamaz [54].  

5.2 İşaretçi Çıkarımı 

İşaretçi çıkarımı için bölüm 3'te anlatılan eğrilik fonksiyonu yöntemi kullanılmıştır. 

şekilde köşelerin, düzlüklerin ve yuvarlak bir cismin olduğu bir ortamdan alınan 

ölçüme ait çizim görülmektedir. Şekil 5.2'de de bu ölçümden hesaplanan eğrilik 

fonksiyonunun çizimi vardır. Şekil 5.2'de, 1'den 5'e kadar numaralandırılmış olan 

noktaların şekil 5.3'teki eğrilik fonksiyonunda karşılığı olan yerler de aynı sırayla 

numaralandırılmıştır. 1 ve 3 ile gösterilen köşeler, eğrilik fonksiyonunda yukarıya 

doğru tepe oluştururken 2 ile gösterilen köşe, eğrilik fonksiyonunda aşağıya doğru tepe 

oluşturmuştur. Bu özellik, işaretçilere kimlik ataması yapılırken büyük avantaj sağlar. 

 

Şekil 5.2 : Köşeli, düz ve yuvarlak cisimlerin olduğu bir ortamdan alınan sensör 

ölçümü. 
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Ölçümde 4 ve 5 noktaları arasında kalan yuvarlak cisim eğrilik fonksiyonunda sıfırın 

üstünde düz bir çizgi olarak karşılık bulmuştur. Bunun gibi şekiller işaretçi olarak 

kullanılırken şeklin merkezini işaretçinin konumu gibi kabul etmek mümkündür. 

 

Şekil 5.3 : Köşeli, düz ve yuvarlak cisimlerin olduğu bir ortamdan alınan sensör 

ölçümünün eğrilik fonksiyonu. 

5.3 Gazebo Simülatöründe Oluşturulan Ortamlar ve Gerçek Uygulama 

Ortamları 

Şekil 5.4'te görülen 1. ortamda robot, siyah çizgi ile gösterilen rotayı takip etmektedir 

ve bu rotada bir tur attığında toplamda 13 tane işaretçi tespit edebilmektedir. İşaretçiler 

küp şeklindeki cisimlerin, sensörün gördüğü köşe kısımlarıdır. Bu ortam, robotun bir 

ölçümde en fazla bir tane işaretçi tespit edebileceği şekilde hazırlanmıştır. 

 

Şekil 5.4 : Gazebo simülatöründe hazırlanan 1. ortam. 
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Şekil 5.5'teki ortamda robot yine siyah çizgi ile gösterilen rotayı takip etmektedir ve 

bir tur sonunda toplamda 21 tane işaretçi tespit edebilmektedir. Robot bu ortamda 

ilerlerken bazen bir ölçümde sadece bir işaretçi bazen de iki işaretçi tespit 

edebilmektedir. Böylece ortamın karmaşıklığı arttıkça, önerilen yöntemin ne kadar 

başarılı olduğu kolayca gözlemlenebilmektedir. 

 

Şekil 5.5 : Gazebo simülatöründe hazırlanan 2. ortam. 

Şekil 5.6 ve şekil 5.7'de görülen laboratuvar ortamlarında robot, simülasyon 

ortamlarında olduğu gibi kare şeklinde bir rotayı takip etmektedir. Yine simülasyon 

ortamlarında olduğu gibi iki ortam, işaretçilerin sayısı ve konumu açısından farklı 

karmaşıklıkta olacak şekildedir. Böylece farklı EZKH yöntemlerinin başarılarının 

daha net anlaşılması sağlanmaktadır. 

 

Şekil 5.6 : Gerçek uygulama ortamı-1. 
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Şekil 5.7 : Gerçek uygulama ortamı-2. 

5.4 Geliştirilen Yöntem İle Oluşturulan Haritalar 

Şekil 5.5 ve şekil 5.6'daki ortamlarda çalıştırılan robotun, önerilen yöntemle 

oluşturuduğu işaretçi haritaları şekil 5.7 ve şekil 5.8'de görülmektedir. Çizimlerde 

robot yeşil renkte belirtilmiş ve sensörün algılama alanının sınırları da mavi çizgi ile 

gösterilmiştir. Bu haritalar çizdirilirken parçacık filtresindeki önem ağırlığı en yüksek 

olan parçacığın oluşturduğu harita gözönüne alınmıştır. Kırmızı nokta ile işaretlenmiş 

yerler robotun gördüğü işaretçilerin gerçek konumları, sarı nokta ile işaretlenmiş yerler 

de bu işaretçilerin hesaplanan konumlarıdır. Merkezi sarı noktalar olan beyaz renkli 

elipsler işaretçilerin belirsizliklerini gösterir. Bu belirsizlikler, robot işaretçiyi ilk 

gördüğünde daha büyükken daha sonra robot tekrar aynı işaretçiyi gördüğünde 

güncellenerek azalmıştır. 

Haritalarda ayrıca robotun gittiği gerçek yol ve EZKH ile hesaplanan yol da 

çizdirilmiştir. Beyaz renkli kare çizgi gerçek yolu, siyah renkli kare çizgi de parçacık 

filtresi ile hesaplanan yolu gösterir.  
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Şekil 5.8 : Önerilen yöntemle birinci simülasyon ortamında yürütülen robotun 

oluşturduğu harita. 

 

Şekil 5.9 : Önerilen yöntemle ikinci simülasyon ortamında yürütülen robotun 

oluşturduğu harita. 



59 

5.5 Ölçüm Sonuçları 

Üç farklı yöntem her bir simülasyon ortamında 30'ar defa çalıştırılarak harita 

hesaplama hataları, güzergah hataları ve çalışma süreleri ile ilgili sonuçlar elde 

edilmiştir. Çizelge 5.1'de 1. ve 2. ortamda tespit edilen işaretçilerin gerçek 

konumlarına göre santimetre cinsinden hataları verilmiştir. Buradaki değerler şu 

şekilde elde edilmiştir: Her bir hesaplanan işaretçinin gerçek konumuna olan uzaklığı 

2-normuna göre hesaplandıktan sonra bu uzaklıklar toplanıp işaretçi sayısına 

bölünerek hata bulunmuştur. 

Çizelge 5.1 : EZKH yöntemlerine ait işaretçi konumu hesaplama hataları. 

EZKH 

Yöntemleri 

İşaretçi Konum 

Hataları(cm) 

(1.Ortam) 

İşaretçi Konum 

Hataları(cm) 

(2.Ortam) 

FastSLAM1.0 6.8 9.7 

CESLAM 6.9 9.6 

Önerilen Yöntem 6.8 9.5 

Çizelge 5.2'de üç farklı EZKH yönteminin güzergah hesaplama hataları görülmektedir. 

Bu hataları elde etmek için robotun her adımdaki hesaplanan konumu ile gerçek 

konumu arasındaki uzaklık yine 2-normuna göre hesaplandıktan sonra bütün 

adımlardaki uzaklıklar toplanmıştır. 

Çizelge 5.2 : EZKH yöntemlerine ait işaretçi güzergah hesaplama hataları. 

EZKH 

Yöntemleri 

Güzergah  

Hataları(m) 

(1.Ortam) 

Güzergah  

Hataları(m) 

(2.Ortam) 

FastSLAM1.0 10.14 9.71 

CESLAM 9.92 9.59 

Önerilen Yöntem 9.83 9.72 

Çizelge 5.3 ve çizelge 5.4'te üç farklı EZKH yönteminin simülasyon ortamları ve 

gerçek uygulama ortamlarındaki çalışma zamanları verilmiştir. Bu değerler, robotun 

harekete başladığı andan itibaren başladığı noktaya tekrar gelene kadar izlediği yol 

boyunca her bir döngüde harcadığı süreler toplanarak elde edilmiştir. Simülasyon 

ortamlarında elde edilen değerlerin gerçek uygulama ortamlarında elde edilen 

değerlerden çok daha büyük olmasının sebebi, simülasyon ortamlarının daha büyük 

olması ve bu ortamlardaki nesne sayısının daha fazla olmasıdır. 
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Çizelge 5.3 : EZKH yöntemlerinin simülasyon ortamlarındaki çalışma zamanları. 

EZKH 

Yöntemleri 

Çalışma Zamanı(sn) 

(1. Ortam) 

Çalışma Zamanı(sn) 

 (2.Ortam) 

FastSLAM1.0 9.27 19.91 

CESLAM 4.41 6.66 

Önerilen Yöntem 4.19 5.96 

Çizelge 5.4 : EZKH yöntemlerinin gerçek ortamlardaki çalışma zamanları. 

EZKH 

Yöntemleri 

Çalışma Zamanı(sn) 

(1.Ortam) 

Çalışma Zamanı(sn) 

 (2.Ortam) 

FastSLAM1.0 0.81 1.22 

CESLAM 0.52 0.69 

Önerilen Yöntem 0.46 0.58 
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6.  SONUÇ VE ÖNERİLER 

Bu tez çalışmasında, günümüze kadar geliştirilen EZKH yöntemlerinin hız 

performanslarının artırılması için yeni bir yöntem geliştirilmiş ve simülasyon 

ortamında uygulanarak farklı EZKH algoritmalarıyla karşılaştırması yapılmıştır. 

Ancak bu karşılaştırmalar yapılmadan önce uygulamanın kolaylaşması için bir takım 

işlemler gerçekleştirilmiştir. İlk olarak, sensörden alınan gürültülü veri üzerinde 

düzleştirme filtresi uygulanmış ve daha tutarlı veriler elde edilmiştir. Böylece, ölçüm 

verisinin anlamlandırılmasının çok daha kolay olduğu anlaşılmıştır.  

Ek olarak; işaretçi çıkarımı yapılırken, eğrilik fonksiyonu yönteminden 

yararlanılmıştır. Bu yöntem kullanılarak, geometrik şekilli cisimlerin tek bir 

fonksiyonla tespit edilebildiği görülmüş ve işaretçi kimliklendirmedeki başarısı ortaya 

konmuştur. 

Bölüm 5'te elde edilen sonuçlar incelendiğinde, yeni yöntemin robot konumu 

hesaplama ve harita oluşturmadaki başarısının hemen hemen hiç değişmediği 

görülmüştür. Bunun yanında çalışma süreleri incelendiğinde, önerilen yöntemin 

parçacık filtresi tabanlı ilk yaklaşımlardan biri olan FastSLAM 1.0'a göre büyük 

oranda ilerleme kaydettiği anlaşılmıştır. FastSLAM 1.0'dan sonra geliştirilen 

CESLAM yöntemiyle bu çalışmada önerilen yöntem karşılaştırıldığında her ne kadar 

çok büyük ölçekli bir hız geliştirilmesi görülmese de açık bir şekilde yeni yöntemin 

hız performansının daha iyi olduğu anlaşılmıştır. Bu sonuçlardan anlaşılmaktadır ki 

ortamdaki işaretçiler arttıkça, geliştirilen EZKH algoritmasının başarısı daha belirgin 

hale gelmektedir.  

Düzlemsel yörüngede ilerleyen robotlar ve iki boyutlu ölçüm yapan sensörler için 

başarısının ortaya çıktığı bu yöntemin üç boyutlu ölçüm alan sensörler için daha da 

başarılı sonuçlar vereceği düşünülmektedir. Çünkü, bu tarz sensörler çok daha fazla 

bilgi toplarlar ve bunun sonucunda tek bir ölçümde alınabilecek işaretçi sayısı da çok 

fazla olabilmektedir. Geliştirilen yeni yöntemin, farklı sensörler kullanarak farklı 

EZKH yöntemleri üzerinde uygulanıp sonuçlarının incelenmesi planlanmaktadır. 
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