

İSTANBUL TEKNİK ÜNİVERSİTESİ  FEN BİLİMLERİ ENSTİTÜSÜ

YÜKSEK LİSANS TEZİ

HAZİRAN 2017

EŞ ZAMANLI KONUMLANDIRMA VE HARİTALAMA TEKNİKLERİNİN

HIZ PERFORMANSININ GELİŞTİRİLMESİ

Ziya Uygar YENGİN

Mekatronik Mühendisliği Anabilim Dalı

Mekatronik Mühendisliği Programı

HAZİRAN 2017

İSTANBUL TEKNİK ÜNİVERSİTESİ  FEN BİLİMLERİ ENSTİTÜSÜ

EŞ ZAMANLI KONUMLANDIRMA VE HARİTALAMA TEKNİKLERİNİN

HIZ PERFORMANSININ GELİŞTİRİLMESİ

YÜKSEK LİSANS TEZİ

Ziya Uygar YENGİN

(518141013)

Mekatronik Mühendisliği Anabilim Dalı

Mekatronik Mühendisliği Programı

Tez Danışmanı: Yrd. Doç. Dr. Volkan SEZER

iii

İTÜ, Fen Bilimleri Enstitüsü’nün 518141013 numaralı Yüksek Lisans Öğrencisi Ziya

Uygar YENGİN, ilgili yönetmeliklerin belirlediği gerekli tüm şartları yerine

getirdikten sonra hazırladığı “EŞ ZAMANLI KONUMLANDIRMA VE

HARİTALAMA TEKNİKLERİNİN HIZ PERFORMANSININ GELİŞTİRİLMESİ”

başlıklı tezini aşağıda imzaları olan jüri önünde başarı ile sunmuştur.

Tez Danışmanı : Yrd. Doç. Dr. Volkan SEZER

 İstanbul Teknik Üniversitesi

Teslim Tarihi : 5 Mayıs 2017

Savunma Tarihi : 6 Haziran 2017

Yrd. Doç. Dr. M. Selçuk Arslan

Yıldız Teknik Üniversitesi

Jüri Üyeleri : Yrd. Doç. Dr. Tufan KUMBASAR

 İstanbul Teknik Üniversitesi

iv

v

Aileme,

vi

vii

ÖNSÖZ

Tez çalışmamın gerçekleşmesi sürecinde her zaman değerli fikir ve deneyimleriyle

bana yol gösteren danışmanım Yrd. Doç. Dr. Volkan SEZER'e, yaptığım

simülasyonlarda ve deneysel çalışmalarda büyük yardımları dokunan Aykut

ÖZDEMİR, Mustafa DEMİR ve Emrah ABTİOĞLU'na teşekkürü bir borç bilirim.

Ayrıca bugüne kadar bana maddi ve manevi desteklerini hiçbir zaman esirgemeyen

aileme şükranlarımı sunarım.

Mayıs 2017 Ziya Uygar YENGİN

 Araştırma Görevlisi

viii

ix

İÇİNDEKİLER

Sayfa

ÖNSÖZ .. vii
İÇİNDEKİLER ... ix

KISALTMALAR .. xi
SEMBOLLER ... xiii
ÇİZELGE LİSTESİ ... xv

ŞEKİL LİSTESİ ... xvii
ÖZET ... xix
SUMMARY ... xxi
1. GİRİŞ .. 1

1.1 SLAM Tarihçesi ... 3

1.2 Tezin Amacı ... 5

2. DONANIM VE YAZILIM ALTYAPISI ... 7
2.1 Turtlebot 2 Uygulama Platformu ve Kinect Sensörü ... 7
2.2 Robot İşletim Sistemi (ROS) .. 9

2.3 Gazebo .. 10
2.4 OpenCV .. 10

3. EŞ ZAMANLI KONUMLANDIRMA VE HARİTALAMA 13
3.1 EZKH'de Kullanılan Temel Kavramlar .. 13

3.1.1 İşaretçi(Landmark) .. 13

3.1.2 Odometri ve konum tahmini (dead reckoning) ... 18
3.1.3 Veri ilişkilendirme (data association) ... 19

3.1.4 Döngü kapama .. 20
3.1.5 Hareket modeli .. 21

3.1.5.1 Odometri modeli .. 21
3.1.5.2 Hız modeli .. 26

3.1.6 Bayes filtresi ... 28

3.1.7 Kalman filtresi ... 29
3.1.8 Genişletilmiş Kalman Filtresi ... 31
3.1.9 GKF'nin EZKH'ye uygulanması ... 32
3.1.10 Parçacık filtresi ... 34

3.2 FastSLAM .. 37
3.2.1 FastSLAM İşlem Basamakları .. 38

3.2.1.2 İşaretçilerin güncellenmesi... 40
3.2.1.3 Önem ağırlıklarının hesaplanması ... 42
3.2.1.4 Yeniden Örneklendirme ... 43

3.2.2 FastSLAM'deki diğer kavramlar ... 44
3.2.2.1 Veri ilişkilendirme (en çok benzerlik yöntemi) 44

4. GELİŞTİRİLEN YÖNTEM .. 47
4.1 Giriş .. 47
4.2 Önerilen Yöntemin Teknik Ayrıntıları ... 49

x

5. UYGULAMA .. 53
5.1 Düzleştirme Filtresi .. 53
5.2 İşaretçi Çıkarımı ... 54

5.3 Gazebo Simülatöründe Oluşturulan Ortamlar .. 55
5.4 Geliştirilen Yöntem İle Oluşturulan Haritalar .. 57
5.5 Ölçüm Sonuçları ... 59

6. SONUÇ .. 61

7. KAYNAKLAR .. 63
ÖZGEÇMİŞ .. 71

xi

KISALTMALAR

SLAM : Simultaneous Localization And Mapping

EKF : Extended Kalman Filter

ROS : Robot Operating System

RANSAC : Random Sample Consensus

IMU : Inertial Measurement Unit

EZKH : Eş Zamanlı Konumlandırma ve Haritalama

GKF : Genişletilmiş Kalman Filtresi

xii

xiii

SEMBOLLER

N : İşaretçi Sayısı

∑ : İşaretçi kovaryansı

𝝁 : Ortalama

𝑵 : İşaretçi sayısı

𝒛𝒕 : t anındaki ölçüm

𝒘𝒕
[𝒎]

 : t anındaki m'inci parçacığın önem ağırlığı

𝒖𝒕 : Kontrol girişi

𝒏𝒕 : Veri ilişkilendirme

xiv

xv

ÇİZELGE LİSTESİ

Sayfa

Çizelge 3.1 : Odometri hareket modeli algoritması ... 24
Çizelge 3.2 : Odometri hareket örneklendirme modeli algoritması 26

Çizelge 3.3 : Hız hareket modeli algoritması .. 27
Çizelge 3.4 : Hız hareket örneklendirme modeli algoritması 28
Çizelge 3.5 : Bayes filtresi algoritması .. 28

Çizelge 3.6 : Parçacık filtresi algoritması .. 36
Çizelge 5.1 : EZKH yöntemlerine ait işaretçi konumu hesaplama hataları. 59
Çizelge 5.2 : EZKH yöntemlerine ait işaretçi güzergah hesaplama hataları. 59
Çizelge 5.3 : EZKH yöntemlerinin simülasyon ortamlarındaki çalışma zamanları. . 60

Çizelge 5.4 : EZKH yöntemlerinin gerçek ortamlardaki çalışma zamanlarık. 60

xvi

xvii

ŞEKİL LİSTESİ

Sayfa

Şekil 2.1 : Turtlebot 2 [20]. .. 7
Şekil 2.2 : Kinect sensörü [23]. .. 8
Şekil 2.3 : Kinect ile 7 metre uzaklıktaki (solda) ve 3 metre uzaklıktaki (sağda) düz

bir duvardan alınan ölçümler... 8
Şekil 2.4 : ROS işleyişinin örneklendirilmesi. ... 9
Şekil 2.5 : Gazebo simülatöründe hazırlanan örnek bir ortam. 10

Şekil 3.1 : Çoğu EZKH yöntemleri için temel akış şeması. 14
Şekil 3.2 : EZKH'de yer göstericilerin kullanımı [30]. .. 15
Şekil 3.3 : RANSAC yöntemi ile tespit edilen duvarın işaretçi olarak kullanılması

[31]. ... 17

Şekil 3.4 : Lazer ile ölçümü yapılan bir ortamın 2 boyutlu görüntüsü (solda) ve bu

ölçümden elde edilen eğrilik fonksiyonu (sağda) [35]. 17

Şekil 3.5 : İki kamera ile görsel odometrinin hesaplanması [38]. 19
Şekil 3.6 : Döngü kapamanın uygulanmasıyla ilgili karşılaştırmalı bir çalışma [42].

 .. 20
Şekil 3.7 : Robot konumunun global koordinat sistemine göre gösterilmesi [3]. .. 22

Şekil 3.8 : Hareket komutu uygulanan bir robotun durumunun sonsal dağılım

şeklinde gösterimi [3]. ... 23
Şekil 3.9 : Odometri hareket modeliyle hesaplanan bağıl yer değişimi ve açı

değişimi [3]. .. 23
Şekil 3.10 : Global koordinat sistemine göre yönelim açısının hesaplanması [3]. .. 24

Şekil 3.11 : Aynı 𝛼 parametreleri ile oluşturulmuş sonsal dağılım(a) ve

örneklendirilmiş parçacıklar (b) [3]. ... 25

Şekil 3.12 : Kalman filtresi algoritmasının Gauss dağılımı ile gösterimi [3]. 30
Şekil 3.13 : EKF-SLAM'de işaretçi ve robot ilişkisi [9]. ... 33
Şekil 3.14 : Parçacık filtresi şeması. .. 34

Şekil 3.15 : Monte Carlo Konumlandırması: Başta parçacıklar dağılmış haldedir

(solda), ölçüm alındıkça parçacıklar kümelenmeye başlar (ortada),

yeterince ölçüm alındıktan sonra parçacıklar tek bir küme oluşturur

(sağda) [49]. .. 35

Şekil 3.16 : EZKH'nin dinamik Bayes ağı ile gösterimi [49]. 38
Şekil 3.17 : Olasılıksal hareket modeli ile örneklendirilmiş parçacıklar [49]. 39
Şekil 3.18 : Robotun aldığı ölçümün açısı ve uzaklığı. .. 42

Şekil 3.19 : Önem ağırlıklarının hesaplanmasının bir örneği [39]. 42
Şekil 3.20 : EZKH'de ölçüm belirsizliği [49]... 46

Şekil 3.21 : EZKH'de konum belirsizliği [49]. .. 46
Şekil 4.1 : CESLAM yöntemi: sensör algılama alanı içinde kalan gri renkli

işaretçiler veri ilişkilendirmeye tabi tutulur. ... 48
Şekil 4.2 : CESLAM'de oluşabilecek yanlış eşleştirme durumu. 48

Şekil 4.3 : Dairenin yarıçapının ölçümle belirlenmesi. .. 49

Şekil 4.4 : Önerilen yöntemde bir parçacık için dairenin belirlenmesi. 50
Şekil 4.5 : Geliştirilen yöntemin akış şeması. .. 51

xviii

Şekil 5.1 : Kinect sensörü ile 2.5 metre uzaklıktaki düz bir duvardan alınan

işlenmemiş ölçüm. ... 53
Şekil 5.2 : Köşeli, düz ve yuvarlak cisimlerin olduğu bir ortamdan alınan sensör

ölçümü. .. 54
Şekil 5.3 : Köşeli, düz ve yuvarlak cisimlerin olduğu bir ortamdan alınan sensör

ölçümünün eğrilik fonksiyonu. .. 55
Şekil 5.4 : Gazebo simülatöründe hazırlanan 1. ortam... 55
Şekil 5.5 : Gazebo simülatöründe hazırlanan 2. ortam... 56

Şekil 5.6 : Gerçek uygulama ortamı-1.. 56
Şekil 5.7 : Gerçek uygulama ortamı-2.. 57
Şekil 5.8 : Önerilen yöntemle birinci simülasyon ortamında yürütülen robotun

oluşturduğu harita. ... 58

Şekil 5.9 : Önerilen yöntemle ikinci simülasyon ortamında yürütülen robotun

oluşturduğu harita. ... 58

xix

EŞ ZAMANLI KONUMLANDIRMA VE HARİTALAMA TEKNİKLERİNİN

HIZ PERFORMANSNIN GELİŞTİRİLMESİ

ÖZET

Günümüzde endüstriyel çalışmalardan uzay araştırmalarına, eğitimden tıbbi

uygulamalara kadar çok çeşitli alanlarda kullanılan robotlar görevlerini yerine

getirirken bunu nasıl yapacaklarına kısmen veya tamamen kendileri karar verirken, bu

görevleri insanlar tarafından önceden tanımlanmış olarak sabit bir şekilde de yerine

getirebilirler. Görevlerini nasıl yapacaklarına kendileri karar veren robotlara otonom

robotlar denir. Otonom robotların büyük bir çoğunluğu yer değiştirme yeteneğine

sahiptirler ve genellikle hareket edecekleri ortamla ilgili önceden bir bilgileri yoktur.

Çalışmaya başladıkları andan itibaren üzerlerindeki sensörler yardımıyla çevrelerini

tanımlamaya ve aynı zamanda bu çevre içerisinde nerede olduklarını anlamaya

başlarlar. Eş zamanlı konumlandırma ve haritalandırma diye adlandırılan bu işlem

otonom ve mobil robotlar için çok büyük önem taşımaktadır. Çünkü, düzgün bir harita

oluşturabilmek için konum bilgisinin doğru olması gerekir. Aynı şekilde konum

bilgisini doğru bir şekilde hesaplayabilmek için de düzgün bir haritaya ihtiyaç vardır.

Birbirine bağlı olan bu iki durum, sensörlerin bozunumlu veri elde etmesi ve çevre

koşullarından kaynaklı sorunlardan dolayı EZKH mobil robotlar için zor bir görevdir.

EZKH alanında çalışan araştırmacıların bir kısmı doğru harita çıkarımı ve konum

belirlenmesi üzerine yoğunlaşmışken, bir kısmı da hız performansını geliştirmeye

yönelik çalışmalar yapmışlardır. Bu tez çalışmasında, mevcut EZKH yöntemlerinin

hız performansını geliştirmek için yeni bir yöntem önerilmiştir.

Robot, oluşturduğu haritayı yeni aldığı ölçümlerle güncellerken veri ilişkilendirme

prosedürüne başvurur. Oluşturduğu bu haritadaki eleman sayısı çok büyük boyutlara

ulaştığında veri ilişkilendirme, robot için büyük bir zaman kaybına neden olabilir.

Özellikle parçacık filtresi tabanlı yaklaşımlarda bu işlemin parçacık sayısı ve

haritadaki eleman sayısı kadar tekrar edildiği düşünüldüğünde aşırı miktarda

hesaplama yükünün oluştuğu görülmektedir.

Önerilen yöntemde EZKH algoritmalarındaki veri ilişkilendirme adımının daha etkili

bir şekilde kullanımının sağlanmasıyla bu aşamadaki çalışma zamanının düşürülmesi

amaçlanmıştır. Yöntemin başarısını test etmek için simülasyon ortamında uygulamalar

yapılmış ve ne kadar başarıya ulaştığının anlaşılması için farklı EZKH yaklaşımları da

bu simülasyon ortamında uygulanıp sonuçlar karşılaştırılmıştır.

Simülasyonlardan elde edilen görsel ve sayısal sonuçlar incelendiğinde, yeni EZKH

yönteminin harita ve konum hesaplamadaki yeteneğinden bir şey kaybetmediği; bunun

yanında çalışma hızının mevcut yaklaşımlardan açık bir şekilde daha iyi olduğu

görülmüştür. Ayrıca EZKH yöntemi uygulanmadan önce, sensörlerden alınan

gürültülü verinin düzeltilmesinin harita oluştururken hesapsal olarak büyük kolaylık

sağladığı anlaşılmıştır.

xx

xxi

IMPROVING RUNTIME EFFICIENCY OF SIMULTANEOUS

LOCALIZATION AND MAPPING TECHNIQUES

SUMMARY

When the word "robot" is enounced, it is commonly understood that it is a humanlike

machine with its arms, legs, head and body. But, there are lots of different types of

robot mechanisms used in industrial sectors, planetary explorations, education and

military. For example; a robot in an automobile factory looks like a human arm which

is attached to a fixed joint. These machines are designed to carry out the tasks like

painting and welding. They do their job recursively in a predefined manner by humans.

On the other hand, a machine discovering a planet may looks like a vehicle. Because

of unpredictable environments and conditions, these robots should decide how they

carry out their tasks on their own. These tasks may be going to somewhere with

specific coordinates from current location or . It is hard even to go from one place to

another without getting lost and hitting the objects.

In order to manage this change of location mission, a robot should first understand

how the environment looks like and where it is in this environment. Without

foreknowledge of the surroundings and coordinates of current position, estimating the

robot pose and generating the map of environment is called as simultaneous

localization and mapping (SLAM).

SLAM also known as concurrent mapping and localization (CML) is a very hard

problem for robots due to the noisy measurements, unpredictable conditions, wheel or

foot slippage, presence of moving objects around and estimation errors. Additionally,

the amount of the data collected by measurement devices may cause a huge

computational cost for processors of the robot. For example; a laser range finder with

360 degree field of view can collect a great number of data. This huge data causes the

methods which constructs grid map to slow down. Likewise, a system using camera

should process lots of data. In order to reduce the computational cost of SLAM

algorithms, one can either increase the number of collected data or improving the

process of SLAM techniques.

Most of the researhers are focused on solving the problems above using probabilistic

methods. In literature, there are two common SLAM technique called as EKF-SLAM

and FastSLAM. The EKF-SLAM is easily applicable approach while the FastSLAM

is computationally efficient technique. These two methods are landmark based and use

kalman filter. Landmarks are distinct points of some objects such as doors, walls or

several geometric objects. Using landmarks decrease the operation time when

compared to the SLAM methods which construct grid maps. EKF-SLAM has a

significant drawback by comparison with FastSLAM. When the number of landmarks

reaches to a high value, EKF-SLAM gets slow drastically. This is caused by a

procedure in EKF-SLAM which is called as data association. Data association is a

process of matching currently sensed landmark with the one in the estimated map. All

the elements in the map are associated with each other. Therefore, when a new

landmark is detected, the map grows exponentially and this structure gets the algorithm

slower.

xxii

As a solution for the exponential growth in EKF-SLAM, FastSLAM offers a very

innovative approach. It combines the particle filter and extended Kalman filter by

separating pose estimation and landmark estimation. While EKF-SLAM is interested

in calculating only current pose of the robot which is called as online SLAM,

FastSLAM is interested in calculating the path of the robot which is called as full

SLAM. With the knowledge of the whole poses of the robot, FastSLAM estimates the

landmarks individually. This means that all landmarks are associated with only robot

pose. When the robot detects a new landmark, mean and covariance of the landmark

are added for all particles that causes a linear growth in the map. Considering the

exponential growth in EKF-SLAM, FastSLAM brings an important innovation to map

management. However FastSLAM is very efficient approach, it also gets slower if the

number of estimated landmarks are gigantic. Because, in such a case, FastSLAM faces

the numerous operation in data association step.

In order to decrease the computational cost of the data association, several approaches

are proposed. The most effective method limits the number of landmarks to ones only

in the range of the measurement device. This method provides a very good

computational efficiency for SLAM techniques, especially for the particle filter based

ones. However, if the scan range of the measurement device attached to the robot is

extensive, the number of landmarks that are considered in data association process is

high again. Also in some situations such as a landmark is out of the range of the sensor,

this approach may fail.

In this thesis, a novel technique that eliminates unnecessary operations in data

association process is proposed. Briefly; when a new landmark is detected by

measurement device, it is compared with the landmarks only in a small circular area.

Other landmarks in the map and outside the circular area are automatically skipped.

Center of this circular area is estimated by using the sensor measurement. Therefore,

no matter how big the number of landmarks, the computational cost in data association

step remains almost same as the beginning.

In order to see the success of the proposed method, simulations are performed in

different environments that were created by a simulation program called as Gazebo.

Different SLAM algoritms are also tested in simulation environments in order to

understand how much the new approach is faster than other aproaches. Additionally,

these tests are done in real laboratory environments.

Before testing the new SLAM technique and others, some arrangements were made.

The sensor which is used for the collection of 2D data from environment, produces

noisy data. This noisy data makes the landmark extraction very difficult. For this

reason, a smoothing filter was implemented on the noisy data. For the sake of

simplicity, the mean filter was prefered. After smoothing the laser data, landmark

extraction became easier.

Another arrangement was made for the landmark extraction and identification. The

curvature function method which simplifies the identification of the landmarks was

implemented on the sensor data.

After tuning all the parameters of the SLAM algorithms, the robot operated 30 times

for two different environments and three different SLAM methods.

When the simulation results were analized, it was understood that proposed method

estimates the robot pose and landmarks map almost at the same accuracy compared

with other methods. Afterwards, the runtime values of the three methods were

compared. It was clearly seen that the proposed method improves the runtime

efficiency of actual SLAM methods. The results of the real world experiments also

reveal the improvement of the new approach.

xxiii

In recent years, the sensor technology has improved a lot. They can scan very wide

range of field and collect a huge data. Therefore, it is contemplated to implement the

new SLAM method on the systems with sensors of different quality so that how the

approach is effective. Similarly, the new technique can be implemented to the different

SLAM algorithms to see its suitability.

1

1. GİRİŞ

İlk defa Çekoslavak yazar Karel Čapek'in 1920 yılında yazdığı tiyatro oyununda

kullanılan robot kelimesi insan benzeri bir yapısı olan ve insan davranışlarını taklit

eden bir cihazı akla getirse de bugün; endüstriden uzay araştırmalarına, tıbbi

uygulamalardan eğlence sektörüne kadar çok farklı alanlarda kullanılan farklı yapıdaki

birçok cihazı tanımlamaktadır [1, 2]. Örneğin; otomotiv sektöründe yaygın olarak

kullanılan robotlar kol şeklinde bir mekanizmaya sahiptirler ve sabit bir alanda

çalışılar. Bu robotlar, boyama ve birleştirme gibi görevleri insanlar tarafından önceden

tanımlanmış bir şekilde tekrar tekrar yerine getirmek üzere tasarlanırlar. Diğer yandan,

uzay araştırmalarında kullanılan robotlar ise bilinmeyen ortamlarda ve öngörülemeyen

durumlarda çalışacağı için, bir görevi yerine getirirken bunun nasıl yapılacağına

kısmen veya tamamen kendisi karar verebilecek şekilde tasarlanırlar. Aynı şekilde

mağara araştırmaları veya sualtı araştırmaları için üretilen ve kendi kendilerine karar

verebilen bu tarz robotlara otonom robotlar denir. Teknik olarak açıklanacak olursa;

üzerindeki sensörler aracılığıyla çevresinden veri toplayıp, bu veriyi kendi

mikroişlemcisinde anlamlı hale getirerek görevini nasıl gerçekleştireceğine karar

veren cihazlara otonom robotlar denir.

Otonom robotların çok büyük bir kısmı yer değiştirmeye ihtiyaç duyduğu için aynı

zamanda mobil robotlar olarak da bilinirler. Mobil robotların üstesinden gelmesi

gereken en önemli sorunlardan birisi daha önce hiç bilmediği bir ortamda çevresinde

nelerin olduğunu ve hareket ettikçe bu ortam içinde nerede olduğunu anlamasıdır.

Literatürde eş zamanlı konumlama ve haritalama(Simultaneous Localization and

Mapping, SLAM) olarak bilinen bu konu, çok sayıda araştırmacının üzerinde uğraştığı

bir konudur. EZKH'yi bu kadar zor hale getiren etmenlerin başında sensörler

aracılığıyla toplanan verinin gürültülü olması, çevre koşullarının beklenmedik şekilde

değişmesi, tahrik elemanlarına uygulanan komutların kusursuz olarak

gerçekleşmemesi ve robotun hesaplama hataları gelmektedir. Örneğin; bir fabrika

içinde çalışan bir robot hareket eden çok fazla insan ve yer değiştiren nesnelerle

karşılacaktır. Bu durum harita oluştururken büyük bir karmaşaya sebep olabilir. Sualtı

2

araştırması yapan bir robot için de en büyük sorunlardan birisi suyun akıntısından

kaynaklanan konum değişikliğidir. Tüm bu etmenlerin yanında robotun hareket ettiği

alan büyüdükçe hesaplamalarda oluşan belirsizlikler de aynı şekilde artmaya başladığı

için EZKH uygulamalarının çoğu olasılıksal yöntemler kullanılarak çözülmeye

çalışılmaktadır. Bu yöntemlerin bir kısmı daha doğru sonuçlar elde edebilmek için

sensörlerden alınan verinin tamamını kullanırken, bir kısmı ise hesaplama yükünü

azaltmak ve hafıza gereksinimini düşürmek için verinin içinden sadece

anlamlandırması kolay olan kısımları kullanmaktadır [2].

EZKH uygulamalarının performansını etkileyen en önemli unsurlardan biri robot

üzerindeki sensörlerin çeşidi ve kalitesidir. Örneğin; ucuz olmaları ve sağladığı verinin

kolay işlenebilir olması bakımından tercih edilen sonar sensörlerin, veri

yoğunluğunun az ve gürültülü olması düzgün bir harita oluşturmada ve doğru konum

belirlemede zorluk çıkarmaktadır. Diğer yandan lazer sensörler, yüksek doğrulukta ve

çok fazla veri elde ettiği için EZKH performansı açısından büyük avantaj

sağlamaktadırlar. Bir başka sensör çeşidi olan kameralar ise son zamanlarda giderek

daha çok ilgi görmeye başlamıştır. Görüntüden elde edilen veri, 2 boyutlu şekil

bilgisine ek olarak renk bilgisi de içerdiği için çevrenin anlamlandırılmasında diğer

sensör çeşitlerine göre çok daha iyidir. Ancak çok fazla veri toplaması ve belirsizliğin

yüksek olması, hız performansı ve doğru konumlandırma için bir dezavantaj

olmaktadır [2].

Dışarıdan bilgi toplayan sensörlerin haricinde robotun kendi hareketinden

kaynaklanan değişimleri algılayan sensörler de vardır. Tekerleklere bağlı enkoderler,

jiroskop ve ivmeölçer gibi sensörleri içinde barındıran Atalet Ölçüm Ünitesi (Inertial

Measurement Unit, IMU) bunlara birer örnektir. Enkoderlerden alınan veri IMU'dan

alınan veriye göre çok daha düşük hataya sahiptir. Ancak, enkoderler tek boyuttaki

değişimi algılayabilirken, IMU üç boyuttaki yer değişimi ve dönme, yuvarlanma ve

yunuslama hareketlerini de algılayabilmektedir. Bu da üç boyutlu ortamlardaki EZKH

uygulamaları için büyük kolaylık sağlamaktadır [2].

EZKH performansının artırılmasında sensör seçiminin önemi yüksek olsa da,

uygulanacak yöntem de bir o kadar önemlidir. Örneğin; konum belirlemenin daha ön

planda olduğu durumlar için işaretçi (landmark) tabanlı yöntemler hızlı olması

açısından daha çok tercih edilirken, yol planlamanın önemsendiği durumlarda ise daha

ayrıntılı harita oluşturan grid tabanlı yöntemler tercih edilir. Başka bir örnek olarak;

3

uzay araştırmalarında kullanılan robotlarda çevrenin neye benzediği ve hangi

cisimlerin olduğu önemsendiği için görüntü tabanlı algoritmalar tercih edilir [3].

Yukarıda bahsedilen sebepler gözönüne alındığında eş zamanlı konumlandırma ve

haritalama probleminin optimal çözümü için uygulanacak yöntem belirlenirken

robotun hangi ortamda, hangi amaçla kullanılacağı ve üzerindeki sensörler çok

etkilidir. Bu tez çalışmasında; geniş, kapalı alanlarda kolayca uygulanabilecek olan

FastSLAM yöntemi kullanılmıştır.

1.1 SLAM Tarihçesi

Eş zamanlı konumlandırma ve haritalama üzerine yapılan ilk ciddi çalışmalar 1980'li

yıllardan itibaren başlamıştır. [4] ve [5]'te ortaya konan çalışmanın, EZKH

yöntemlerinin temellerini oluşturduğu söylenebilir. Çünkü; konumlandırma ve sensör

ölçümü hatalarını olasılıksal olarak ifade etmeleri bakımından çalışmaları,

günümüzdeki EZKH çalışmalarıyla benzerlik göstermektedir. EZKH problemi ilk defa

[6]'da eş zamanlı haritalama ve konumlandırma olarak adlandırılmıştır. Önerilen

yöntemde, günümüzde bu alanda çok yaygın olarak kullanılan Genişletilmiş Kalman

Filtresi kullanıldı ve 2000'li yılların başlarında artık EZKH olarak adlandırılan çalışma

daha da ileriye götürülerek günümüzde EKF-SLAM diye bilinen yöntem geliştirildi

[7]. Bu geliştirilmiş yöntemde robot konumu ve işaretçi konumlarının belirsizlikleri

olasılıksal olarak hesaplanmaktadır. Basitçe açıklanacak olursa; tahmin ve düzeltme

olarak iki temel adımdan oluşan yöntemde, robotun konum bilgisinin ve bu konuma

ait belirsizliği belirten bir kovaryans matrisinin olduğu bir matris işlem görmektedir.

Bu matrisin içinde ayrıca her bir işaretçinin konum bilgileri ve bu işaretçilerin

birbiriyle ilişkili olan kovaryansları vardır ve ölçüm alındıkça güncellenmektedir.

Robot yeni bir işaretçi tespit ettiğinde bu işaretçiyi her bir işaretçiyle ilişkilendireceği

için işlem yaptığı matriste üstel bir şekilde bilgi artışına sebep olur ki bu, algoritmanın

𝑂(𝑀2) kadar eleman üzerinde işlem yapmasını gerektirir. Burada 𝑀 işaretçi sayısını

belirtir. 𝑀 değeri yükseldikçe algoritmanın işlem hızı da büyük oranda azalmaktadır.

Bu sorunu aşmak için bazı araştırmacılar farklı çözüm yolları önermişlerse de,

yaptıkları çalışmalar en fazla birkaç yüz işaretçi söz konusu olduğunda işe

yaramaktadır [8, 9, 10]. EKF-SLAM'deki üstel bir şekilde artan işlem karmaşasını çok

daha küçük ölçekli hale getirmek ve bellek gereksinimini azaltmak için [11]'de

FastSLAM olarak adlandırılan parçacık filtresi temelli bir yaklaşım önerilmiştir.

4

Genişletilmiş kalman filtresi ve parçacık filtresinin bir kombinasyonu olarak

geliştirilen yöntem aslında Rao-Blackwellized parçacık filtresinin bir çeşididir [12].

FastSLAM'de robotun durumu parçacıklar üzerinden ifade edildiği için her bir

parçacığın kendine ait bir konum ve yönelim bilgisi bulunmaktadır. Aynı şekilde, her

bir parçacık için işaretçilerin konumları ve belirsizlikleri de ayrı ayrıdır. EKF-

SLAM'den farklı olarak her bir işaretçi birbirinden bağımsız olduğu için kovaryansları

da birbiriyle ilişkilendirilmemektedir. Yani, bir parçacık için yeni bir işaretçi eklendiği

zaman bir konum ve kovaryans elemanı eklenmiş olur. Bunun 𝑁 sayıdaki parçacık için

yapıldığı düşünülürse FastSLAM'de 𝑂(𝑀𝑁) kadar bir işlem karmaşası oluşmaktadır.

EKF-SLAM ile karşılaştırıldığı zaman bunun çok daha düşük hesap yükü anlamına

geldiği görülmektedir. Bununla birlikte işaretçi sayısının devasa boyutlara ulaşması

FastSLAM algoritmasının da doğru orantılı olarak yavaşlamasına neden olmaktadır

[11, 19].

FastSLAM'in hesapsal yükünün azaltılması için birçok çalışma yapılmıştır. Bunların

en etkili olanları parçacık sayısının azaltılması, daha az bilgi içeren haritaların

oluşturulması veya haritanın daha verimli bir şekilde kullanılmasına yönelik

çalışmalardır. Bu konuda yapılan çalışmalardan biri olan Unscented FastSLAM

yöntemi [13]'de ortaya konmuştur. Geleneksel FastSLAM yönteminde kullanılan

doğrusallaştırma işlemlerini kullanmayan bu yaklaşım, işlem yükünü azaltırken aynı

zamanda doğrusallaştırmadan kaynaklanan bilgi kayıplarını da ortadan kaldırdığı için

daha az sayıda parçacığa ihtiyaç duymaktadır. Hesap yükünü azaltmak ve daha doğru

sonuçlar elde etmek için geliştirilen bir diğer yaklaşım da parçacık sayısının, robotun

çalışması sırasında çevrimiçi olarak değiştirilmesine yöneliktir [14, 15]. Bu

yaklaşımda parçacık sayısı; sonsal dağılımın belirsizliği büyüdüğü zaman artırılıp aynı

şekilde belirsizlik küçüldüğünde de azaltılmaktadır. Bunu yapmaktaki amaç, robotun

bütün görevi boyunca aynı sayıda parçacık üzerinde çalışırken belirsizliğin az olduğu

durumlarda gereksiz yere yapılan işlemleri ortadan kaldırmaktır.

Hesaplama hızını artırmaya yönelik diğer çalışmalar da haritaların oluşturulması

üzerine yapılmıştır. [16] ve [17]'te önerildiği üzere, tek bir harita oluşturmak yerine bu

haritayı daha küçük alt haritalar şeklinde oluşturmak bu çalışmalara örnektir. Benzer

şekilde hibrit topolojik/metrik haritalar da işlem yükünü azaltması bakımından etkili

sonuçlar vermektedir [18].

5

EZKH yöntemlerinin birçoğu işaretçilerin kimliğinin anlaşılmasını sağlayan ve veri

ilişkilendirme adı verilen bir adımı da içermektedir. Bu adımda, sensör tarafından

tespit edilen bir işaretçinin haritadaki bir işaretçi mi yoksa yeni bir işaretçi mi olduğuna

karar verilir. Bunun için, tespit edilen işaretçi daha önce tespit edilenlerin hepsiyle tek

tek karşılaştırılmaktadır. Haritadaki eleman sayısının büyük boyutlara ulaşmasıyla

birlikte, veri ilişkilendirme aşamasının tekrar sayısını da bir o kadar artıracağı için, bu

durum büyük bir hesapsal yükü de beraberinde getirmektedir. [19]'da önerilen

çalışmaya göre, tespit edilen işaretçi haritadaki bütün işaretçilerle değil sadece

sensörün taradığı alandakilerle karşılaştırılmaktadır. Böylece veri ilişkilendirme

adımının tekrar sayısı oldukça düşmektedir. Günümüzde sensör teknolojisinin

geliştiğini ve çok geniş alanları tarayabilen lazer mesafe ölçücülerin olduğunu

gözönünde bulundurursak, bu yöntemde bazen işlem yükünün artabileceği

anlaşılmaktadır. Bu tez çalışmasında, mevcut yöntemden esinlenerek daha gelişmiş bir

yöntem üzerinde durulmuştur.

1.2 Tezin Amacı

İlk geliştirilmeye başlandığı yıllardan itibaren EZKH yöntemleri giderek artan bir

şekilde ilgi görmeye başlamış ve çok çeşitli yaklaşımlar ortaya çıkmıştır. EZKH'yi bu

kadar ilgi çekici yapan etkenlerin başında robot durum hesaplamalarındaki güçlükler

ve işlem hızının, veri miktarı arttıkça yavaşlamasıdır. Hız performansını geliştirmek

üzerine farklı bakış açılarıyla yapılan çalışmalar bulunmaktadır. Giriş bölümünde

bahsedildiği üzere parçacık filtresi gibi yaklaşımlar için parçacık sayısının

düşürülmesi, harita oluşturulurken daha az veri toplama veya oluşturulan haritanın

daha akıllıca bir şekilde kullanılmasına yönelik çalışmalar bulunmaktadır.

Bu tez çalışmasında, EZKH ile oluşturulan harita bilgisinin tamamının kullanması

yerine sadece ilgilenilen alandaki harita bilgisinin kullanılarak hız performansının

artırılması amaçlanmıştır. Önerilen yöntemin performansını görebilmek için

simülasyon ortamında farklı uygulama ortamları oluşturularak farklı EZKH

yöntemleri ile önerilen yöntem karşılaştırılmıştır.

6

7

2. DONANIM VE YAZILIM ALTYAPISI

2.1 Turtlebot 2 Uygulama Platformu ve Kinect Sensörü

Turtlebot 2; robotik alandaki eğitim ve araştırmalar için tasarlanmış, düşük maliyetli

bir uygulama platformudur. Robot Operating System(ROS) adı verilen yazılımsal

çalışma alanı ile uyumlu olduğu, üzerinde kinect ve jiroskop gibi sensörleri

barındırdığı için çoğu öğrencinin ve araştırmacının, çalışmalarını geliştirmek için

tercih ettiği bir araçtır. Şekil 2.1'de görüldüğü üzere Turtlebot 2, üç ana kısımdan

oluşmaktadır: Diğer bütün bileşenlerin bağlı olduğu ve hareketi sağlayan mobil gövde,

üç boyutlu ve renkli görüntü sağlayan kinect sensörü, dizüstü bilgisayar [20].

Şekil 2.1 : Turtlebot 2 [20].

Mobil gövde içerisinde, odometri verisi sağlayan ve tekerleklere bağlı olan enkoderler,

üç eksende yönelim bilgisi veren jiroskop ve mobilite yeteneğini artıran çarpışma

sensörü, uçurum sensörü gibi elemanlar bulunmaktadır [20].

Bilgisayar; algoritmaların geliştirildiği, mobil gövdeye komutların gönderildiği, ve

sensörlerden gelen bilgilerin işlendiği kısım olması nedeniyle en önemli bileşendir. Bu

işlemlerin gerçekleştirilmesi ROS ile sağlanmaktadır [21].

Üçüncü bileşen olan Kinect sensörü ile, farklı formatlarda sağladığı görüntüler

sayesinde Turtlebot 2'yle çalışabilecek alanlar çok çeşitli olabilmektedir. Örneğin; 3

boyutlu derinlikli görüntü vermesi, 3 boyutlu EZKH uygulamaları için kolaylık

sağlamaktadır [22].

8

Şekil 2.2'de kinect sensörünün üzerindeki RGB ve kızılötesi kameralar ve kızılötesi

reflektör görülmektedir. Bunlara ek olarak dahili bir mikrofon ve ivmeölçer de

bulunmaktadır [23].

Şekil 2.2 : Kinect sensörü [23].

640x320 piksel çözünürlüğünde derinlikli görüntü sağlayan kızılötesi kamera yatayda

57 derece ve dikeyde de 43 derecelik bir görüş açısına sahiptir. Ayrıca sensör, 40

santimetre yakına ve 8 metre uzaklığa kadar olan ölçümleri alabilmektedir. Bu tez

çalışmasında, derinlikli görüntünün bir satırındaki veri hesaba alınarak kinect sensörü

2 boyutlu lazer mesafe ölçücü gibi kullanılmıştır. Şekil 2.3'te kinect ile elde edilmiş

düz bir duvara ait tarama görüntüleri görülmektedir. 7 metre uzaklıktan alınan

ölçümler oldukça gürültülü iken, EZKH uygulamasında kullanılabilecek doğrulukta

ölçümler alınabilmesi için uzaklığın 3 metreye kadar düşürülmesi gerekmektedir [23].

Şekil 2.3 : Kinect ile 7 metre uzaklıktaki (solda) ve 3 metre uzaklıktaki (sağda) düz

bir duvardan alınan ölçümler.

9

2.2 Robot İşletim Sistemi (ROS)

Robotik çalışmaların akademik alanda ve eğitim alanında iyice yaygınlaşmasıyla

birlikte robot, bilgisayar ve sensörler gibi bileşenler arasında iletişimin

kolaylaştırılmasını ve bu alandaki çalışmaların kolay bir şekilde geliştirilmesini

sağlayacak tek bir sistemin oluşturulması gereksinimi doğmuştur. Bu durum

düşünülerek 2007 yılında Stanford Üniversitesi'ndeki bir grup araştımacı tarafından

geliştirilmeye başlanan ROS, açık kaynak kodlu ve ücretsiz olması nedeniyle bugün

çok yaygın bir şekilde kullanılmaktadır [24].

ROS'un işleyişi temel olarak şu şekildedir: Belli görevleri olan düğümler arasında

yayınlayıcı ve abone tipindeki mesajlar ile veri iletimi sağlanır. Bu iletimin

sağlanabilmesi ve düğümlerin birbirine bağlanabilmesi için ROS Master adında bir

yönetim yapısı vardır. Düğümler tek başlarına da olabilirken, bir paket içerisinde de

olabilir. Farklı robotlar üzerinde de uygulanabilen bu paketler; içlerinde düğüm, ROS'a

bağlı kütüphaneler, veri kümeleri, yapılandırma dosyaları ve paketin işlevselliğiyle

ilgili başka dosyalar da barındırır [25].

Şekil 2.4'te ROS'un işleyişini bir örnek üzerinden anlatan bir şema görülmektedir. İlk

olarak bütün düğümlerin ROS Master yönetiminde birbirlerinden haberdar olması

sağlanmaktadır. Kameradan gelen görüntü verisi, görevi kamera ile iletişim kurmak

olan görüntü düğümüne aktarılmaktadır. Bu düğüm ROS Master'a kayıt olurken

/görüntü isminde bir konu yayınlayacağını bildirirken görüntü işleme düğümü ve

görüntüleme düğümü de yayınlanan bu konuya abone olduklarını bildirir.

Şekil 2.4 : ROS işleyişinin örneklendirilmesi.

10

2.3 Gazebo

Robotik alanındaki uygulamalarda sensörler ve eyleyiciler gibi bileşenlerin genellikle

pahalı olması, özel çalışma ortamlarına ihtiyaç duyulması ve uygulama sırasında

insanların veya çevredeki eşyaların zarar görmesi olasılığı bu tür çalışmaların

öncelikle simülasyon ortamında denenmesini gerektirmektedir. Gazebo; bu

gereksinime cevap veren, iç ve dış ortamlarda kullanılan robotların üç boyutlu

simülasyonunu gerçekleştirebilmek için geliştirilmiştir. ROS ile uyumlu olması; IMU,

lazer, sonar ve kinect gibi sensörleri yapısında hazır olarak bulundurması gibi

özelliklerinden dolayı çok kullanışlı bir yazılımdır. Bunların haricinde Gazebo;

Turtlebot ve Husky gibi robotları da hazır olarak sunduğu gibi araştırmacıların kendi

tasarladıkları robot, eyleyici veya kontrolörleri de Gazebo içerisinde kolaylıkla

oluşturmaya olanak sağlamaktadır. Özgün çalışma ortamları oluşturabilmek için

kütüphanesinde bulundurduğu çok çeşitli şekiller ve hazır cisimler kullanılabilir. Şekil

2.5'te Gazebo'da oluşturulmuş bir ortam görülmektedir [26].

Şekil 2.5 : Gazebo simülatöründe hazırlanan örnek bir ortam.

2.4 OpenCV

OpenCV; C/C++ programlama dillerinde yazılmış ve Linux, Windows ve Mac OS X

işletim sistemleri altında çalışabilen açık kaynak kodlu bir görüntü işleme

11

kütüphanesidir. Görüntü işleme çalışmalarında işlemsel verimlilik ve gerçek zamanlı

uygulamaların kullanımı için tasarlanmıştır [27]. Başlıca özellikleri şunlardır:

 Resim ve video görüntüleme

 Görüntü üzerinde matris ve operatör işlemleri uygulama

 Görüntü yumuşatma ve keskinleştirme

 Kamera kalibrasyonu

 Özellik çıkarımı

 Nesne tespit etme

 Görüntü bölme ve birleştirme [27]

Bu tez çalışmasında OpenCV kütüphanesinden, geliştirilen yeni EZKH uygulamasının

sonuçlarını görselleştirmek için yararlanılmıştır. Gazebo simülatöründe hazırlanan

ortamda hareket ettirilen robotun izlediği gerçek yol, hesaplanan yol, işaretçilerin

gerçek ve hesaplanan konumları ve bu konumlara ait belirsizliği gösteren hata elipsleri

çizdirilmiştir.

12

13

3. EŞ ZAMANLI KONUMLANDIRMA VE HARİTALAMA

Birinci bölümde bahsedildiği gibi; mobil bir robotun, bilmediği bir ortamda ve

bilmediği bir konumda hareket etmeye başladığında o ortamın haritasını çıkarırken

aynı zamanda o haritaya göre konumunu belirlemeye çalışması işlemine eş zamanlı

konumlandırma ve haritalama (EZKH) denir. Çoğu EZKH algoritmalarının olasılıksal

yöntemler kullandığı gözönünde bulundurulursa çevrimiçi (online) EZKH ve tam

(full) EZKH olmak üzere iki ayrı yaklaşım olduğu söylenebilir. Çevrimiçi EZKH için

sonsal durum berlirten denklem 3.1’de robot durumunun sadece 𝑡 anındaki bilgisi

hesaplanırken, denklem 3.2'de tam EZKH için robot durumunun başlangıçtan 𝑡 anına

kadar olan bütün bilgileri hesaplanır.

 𝑝(𝑠𝑡, 𝑚|𝑧1:𝑡, 𝑢1:𝑡) (3.1)

 𝑝(𝑠𝑡:1, 𝑚|𝑧1:𝑡, 𝑢1:𝑡) (3.2)

Mevcut EZKH yöntemleri işleyiş olarak birbirlerinden farklı olsalar da şekil 3.1'deki

akış şemasındaki gibi temel bir prosedür vardır. Öngörü (predict) ve güncelleme

(update) olmak üzere iki adım vardır. Öngörü aşamasında; tekerleklere bağlı bir

enkoder, IMU (Inertial Measurement Unit) ve GPS (Global Positioning System) gibi

hareket algılayıcılarından alınan veriler kullanılarak robotun 𝑡 − 1 anına ait konumuna

göre 𝑡 anındaki konumu hesaplanır. Güncelleme aşamasında ise lazer ve kamera gibi

algılayıcılarla çevreden alınan ölçümlere göre tahmin aşamasında elde edilen konum

bilgisi güncellenerek daha doğru hale getirilmeye çalışılır. Bu aşamada aynı zamanda

harita da güncellenir [3, 28, 29].

3.1 EZKH'de Kullanılan Temel Kavramlar

3.1.1 İşaretçi (Landmark)

Mobil bir robotun konumunu güncellerken referans olarak yararlandığı çevresindeki

belirgin noktaların veya cisimlerin ortak adı olan işaretçiler, EZKH tekniklerinde

yaygın olarak kullanılan bir kavramdır. Bu noktalar kapı dikmesi veya odaların

köşeleri gibi noktasal koordinatlarla belirtilebilecek yerler olabilir [2].

14

Şekil 3.1 : Çoğu EZKH yöntemleri için temel akış şeması.

Otonom bir robot hareket ederken, yer göstericilerden şekil 3.2’de gösterildiği gibi

yararlanır. 𝑥𝑘 robotun 𝑘 anındaki konumunu ve yönelimini, 𝑢𝑘 𝑘 − 1 anında robota

uygulanan kontrol girişini, 𝑚𝑖 zamana bağlı olarak değişmeyen i'nci işaretçinin

konumunu ve 𝑧𝑖,𝑘 da 𝑘 anında tespit edilen 𝑖'nci işaretçi için ölçüm uzaklığını belirten

vektörlerdir. Bu örnekte robot, 𝑘 − 1 anında tespit ettiği yeni işaretçiye o anki

hesaplamış olduğu kendi konumuna ve ölçüm bilgisine göre bir konum ataması yapar.

𝑘 anında aynı işaretçiyi yeniden gördüğü zaman işaretçiye 𝑘 − 1 anında atamış olduğu

konum bilgisini ve 𝑘 anında aldığı ölçüm bilgisini kullanarak hem kendi konumunu

hem de işaretçinin konumunu günceller.

İşaretçilerden en iyi şekilde yararlanılabilmesi için bazı özelliklere sahip olması

gerekir. İlk olarak bir işaretçi, robot ilerlediği zaman yeniden tespit edilebilmelidir.

Çünkü robot ne kadar ilerlediğini bulabilmek için 𝑘 anında bulduğu ve 𝑘 − 1 anında

bulduğu işaretçiler arasında bağ kurar. Ayrıca her bir işaretçinin birbirinden kolayca

ayırt edilebilir olması gerekir. İki farklı işaretçi aynı işaretçi gibi algılanırsa hatalı

güncelleme yapılır.

Aranan bir başka özellik de sayılarının yeteri kadar çok olmasıdır. Çünkü az sayıda

işaretçi demek robot konumunun ve haritanın daha az güncellenmesi demektir.

15

Şekil 3.2 : EZKH'de yer göstericilerin kullanımı [30].

Son olarak da işaretçiler sabit cisimlerden seçilmelidir. Örneğin; hareket halindeki bir

insan, robotun kendi konumu hakkında hatalı bir sonuca ulaşmasına neden olabilir

[31].

İşaretçi çıkarımı için literatürde bir kaç farklı yöntem önerilmiştir. Bu yöntemlerden

hangisinin uygulanacağının seçimi aslında kullanılan sensörler ve çıkarılmak istenen

işaretçilerin çeşidine bağlıdır. Örneğin, lazer tarayıcı ya da lidar gibi sensörler için

keskin kenarlı işaretçi çıkarımı (Spike Landmarks Extraction), RANSAC (Random

Sample Consensus), tarama eşleştirme (Scan Matching) ve geometrik şekilli işaretçi

çıkarımı gibi yöntemler geliştirilmiştir. İşaretçinin konumunun kesinliğinin yüksek

olması istendiği durumlarda bu yöntemler ve sensörler kullanılmaktadır. Diğer

yandan, tespit edilen işaretçilerin sınıflandırılmasının çok önemli olduğu durumlar da

söz konusu olabilir. Dış ortamlarda araç, insan ve hayvan gibi hareketli nesnenin

sayısının fazlalığı bunların tespit edilmesini önemli hale getirir. EZKH

algoritmalarında hareketli nesnelerin algılanması işi kamera yardımıyla çok daha

kolaydır. Bu gibi görüntü tabanlı yer gösterici çıkarımlarının zayıf yanı ise uzaklık

bilgisinin lazer sensörlere göre daha belirsiz olmasıdır [28, 31, 32, 33].

3.1.1.1 Keskin kenarlı işaretçi çıkarımı

Bu yöntemde, sensörden elde edilen veri taranırken büyük miktardaki değişimler

dikkate alınır. Yani ölçüm yapılan alandaki duvar köşeleri, sandalye ve masa bacakları

gibi belirgin ve keskin şekilli cisimler tespit edilir. Bir veri dizisinde bir eleman,

kendisinden önceki ve sonraki elemanlarla karşılaştırılır. Bu elemanlar arasındaki fark

16

belli bir değerden fazla ise işaretçi olarak tanımlanır. Keskin şekilli eşyaların, duvar

köşelerinin sıkça rastlandığı kapalı alan uygulamaları için oldukça elverişli olan bu

yaklaşımda genellikle yüzeyinde girinti ve çıkıntı olmayan cisimler içeren açık

alanlarda yeterli sayıda işaretçi tespit edilmesi zordur [28, 31].

3.1.1.2 RANSAC

RANSAC; belirlenen bir matematiksel model için bir veri kümesi içinde o modeli,

verileri belli bir eşik değerini geçecek sayıda kapsayacak şekilde örneklendiren tekrarlı

olarak uygulanan bir tekniktir [3]. İşaretçi tabanlı EZKH uygulamalarında RANSAC,

rastgele seçilmiş lazer taramalarından alınan verileri kullanarak bu verilere en uygun

olan doğruyu bulmak için kullanılır. Daha çok, robotun bulunduğu ortamdaki

duvarların algılanmasında kullanılan bu teknik, robotun konum ve yönelim bilgilerinin

güncellenmesinde oldukça faydalıdır. Bir diğer faydası da insan gibi hareketli

nesnelerin işaretçi olarak algılanmasını önlemesidir. Çünkü EZKH'de doğru bir

konumlandırma için sabit olan nesneler tercih edilir. Bir RANSAC algoritması genel

olarak şu şekildedir:

 Model parametrelerini belirlemek için gerekli en az sayıda veriyi gelişigüzel seç.

 Bu verileri kullanarak modeli örneklendir.

 Bütün veri kümesi içinde, örneklendirilen bu modele daha önce belirlenmiş olan

hata payını geçmeyen yani modele uygun verileri (inliers) bul.

 Uygun verilerin sayısının bütün verilerin sayısına oranı belli bir eşik değerini

geçene kadar algoritmayı baştan itibaren tekrarla.

 Eşik değeri aşıldığında uygun verilerin tamamını kullanarak model parametrelerini

yeniden hesapla ve algoritmayı sonlandır.

Bu algoritma eşik değere ulaşmak için sonsuz defa döndürülmez. Onun yerine en çok

belli bir sayıda dönecek şekilde ayarlanır. Bu sayı az olduğu zaman işlem hızı yüksek

olur ancak doğruluk payı düşük olur. EZKH'de bu algoritma büyük ölçüde aynı şekilde

uygulanırken çizgi modeli oluşturulmasında en küçük kareler yöntemi kullanılır.

Şekil 3.3'te görüldüğü gibi bir EZKH uygulamasında robotun konum ve yönelim

bilgisi, çizgi olarak tespit edilen işaretçiler nokta işaretçiymiş gibi varsayılarak

güncellenebilir. Robotun bulunduğu ortamdan sabit bir nokta seçilir ve şekilde olduğu

gibi bu noktaya çizgi üzerindeki en yakın nokta bulunur. Daha sonra çizgi üzerindeki

17

bu sabit nokta ve robotun konumu kullanılarak uzaklık ve açı bilgileri basit

trigonometrik hesaplarla bulunur [28, 31, 34].

Şekil 3.3 : RANSAC yöntemi ile tespit edilen duvarın işaretçi olarak kullanılması

[31].

3.1.1.3 Geometrik şekilli işaretçi çıkarımı

İki boyutlu ölçüm alan lazer sensör kullanan robotlar için çok kullanışlı olan bu

yöntemde lazerden elde edilen veri kullanılarak bir eğrilik fonksiyonu (curvature

function) elde edilir. Bu fonksiyonun iki boyutlu görselleştirilmesiyle ortaya çıkan

şekilde ortamdaki yuvarlak, düz veya köşeli cisimlere karşılık gelen yerler oluşur.

Şekil 3.4'te yuvarlak ve köşeli şekillerin olduğu bir ortama ait lazer ölçümü ve bu

ölçümden elde edilen eğrilik fonksiyonun çizimi görülmektedir. Lazer görüntüsünde

2 ve 3 ile işaretlenmiş köşe noktaları eğrilik fonksiyonundaki eğrilerin zirve

noktalarına karşılık gelmektedir. Bu köşe noktaları içe doğru değil de dışa doğru

olsalardı eğri kısımlar negatif değerler alarak aşağıya doğru olacaklardı. Lazer

ölçümündeki yuvarlak şeklin karşılığı eğrilik fonksiyonunda x eksenin altında düz bir

çizgi olmuştur. Duvar gibi düz şekiller ise bu fonksiyonda sıfıra yakın değerler alarak

x ekseninin üzerinde düz bir çizgi olarak karşılık bulmuştur [35].

Şekil 3.4 : Lazer ile ölçümü yapılan bir ortamın 2 boyutlu görüntüsü (solda) ve bu

ölçümden elde edilen eğrilik fonksiyonu (sağda) [35].

18

Lazer verisinden eğrilik fonksiyonunu elde etmek için ölçüm verisi, (𝑥, 𝑦)

koordinatlarına dönüştürüldükten sonra 𝑥 ve 𝑦'deki veriler bir boyutlu diziler haline

getirilir. Bu dizilerin birinci dereceden ve ikinci dereceden türevleri alınarak denklem

3.3'teki gibi kullanılır ve eğrilik fonksiyonu elde edilir [35].

 𝐾(𝑡) =
𝑥̇(𝑡)𝑦̈(𝑡) − 𝑥̈(𝑡)𝑦̇(𝑡)

(𝑥̇(𝑡)2 + 𝑦̇(𝑡)2)2/3
 (3.3)

3.1.2 Odometri ve konum tahmini (dead reckoning)

Denizcilik ve havacılıkta yaygın olarak kullanılan dead reckoning robotik

uygulamalarda da kullanılan bir yöntemdir. GPS gibi referans kullanan sistemler

olmadığı zaman konum tahmin etme ve belirleme için bu yönteme başvurulur. Dead

reckoning, robotun hız ve yönelim gibi bilgilerini kullanarak şimdiki konumundan

periyodik bir zaman aralığına göre bir sonraki konumunun hesaplanması işlemidir.

Teoride, diferansiyel tahrikli mobil robotlar için bu teknik doğru bir konum

hesaplamada yeterlidir. Ancak modelleme hataları, tahrik elemanlarının komut farkı

ve tekerleklerin kayması gibi gerçek hayatta karşılaşılan sıkıntılardan dolayı olasılıksal

hesaplamalardan yararlanılır [36]. Odometri ve dead reckoning birbirine çok benzer

kavramlar olmakla birlikte verilerin elde edilmesi biraz farklıdır. Odometri'de veriler

sadece hareket sensörlerinden alınırken dead reckoning'de ek olarak pusula, jiroskop

ve imu (Inertial Measurement Unit) gibi dünyanın manyetik alanını kullanan sensörler

de kullanılır [37].

Görüntü işleme tekniklerinin gelişmesiyle birlikte kameradan alınan görüntülerle yer

değiştirme ve yönelimin belirlenmesi üzerine çalışmalar yapılmaya başlamıştır.

Hareket halindeki bir robot üzerindeki sabit bir kameradan farklı zamanlarda alınan

görüntüler arasındaki farklardan yola çıkarak odometri hesabı yapılmasına görsel

odometri (visual odometry) denir. Tek bir kamerayla yapılabildiği gibi iki kamerayla

stereo görüntüler elde ederek de yapılabilir. Genellikle bir görüntü üzerindeki

öznitelikler (features) tespit edilip bir sonraki görüntüde aynı özniteliklerin karşılıkları

bulunur ve özniteliğin görüntü üzerindeki koordinat değişimine göre hesaplama

yapılır. Şekil 3.5'te iki kamera kullanılarak odometri hesabının nasıl yapıldığı

görülmektedir. 𝑘 − 1 anında iki kameradan alınan görüntüler üzerindeki aynı öznitelik

tespit edilir. Bu özniteliğin, üçgenleme yöntemiyle kameraya olan uzaklığı hesaplanır.

𝑘 anında tekrar görüntü alınır ve 𝑘 − 1 anında tespit edilen öznitelik tekrar tespit edilir

19

ve kameraya olan uzaklığı hesaplanır. İki farklı zamanda elde edilen uzaklık bilgisinin

farkı robotun ne kadar yer değiştirdiğini belirtir [38].

Şekil 3.5 : İki kamera ile görsel odometrinin hesaplanması [38].

Görsel odometrinin tekerleklerden elde edilen odometriye göre bazı üstünlükleri

vardır. Tekerlekler patinaj yaptığı zaman geleneksel odometride hatalar oluşurken bu

tarz bir hata görsel odometride meydana gelmez. Kameralar aynı zamanda haritalama

amaçlı da kullanılabileceği için hem konumlandırma hem de haritalama işini tek bir

sistemle çözerek fazla sensör kullanımını ortadan kaldırmış olurlar. Küçük ve hafif

olmaları ve düşük enerjiyle çalışabilmeleri, kameralı odometri sistemlerini bir adım

öne çıkarmaktadır. Bunların yanında görsel odometrinin güçlük yaşadığı bazı

durumlar da vardır. Yetersiz aydınlatma, ışık yoğunluğunun sürekli değişmesi ya da

rüzgar gibi etkenlerden dolayı görüntü alınan ortamın dinamik hale gelmesi gibi

sebepler hesaplama güçlüğü oluşturur. Tek kameralı görsel odometride uzaklık bilgisi

doğrudan alınamadığı için ek bir sensöre gereksinim duyulması da bir başka zayıflıktır

[39].

3.1.3 Veri ilişkilendirme (data association)

Veri ilişkilendirme, robotun oluşturduğu haritadaki bilgiler ile o anda elde edilen

ölçüm arasında bağlantının kurulması ile ilgilidir. Bir başka deyişle; gerçek dünyada

tek veya aynı nesneye karşılık gelen ve farklı noktalardan ölçüm yapılarak elde edilen

iki verinin birbiriyle ilişkilendirilmesidir [40]. Veri ilişkilendirme hem harita

çıkarmada hem de konum belirlemede çok büyük bir öneme sahiptir. Çünkü elde

edilen veriler arasında doğru bir ilişki kurulamazsa her adımda oluşan hatalar birikerek

harita ve konumda büyük yanlışlıklara sebep olabilir. Veri ilişkilendirme için

20

literatürde birden fazla yöntem bulunmaktadır. Bunlardan bazıları aşağıdaki gibi

sıralanabilir [41]:

 En büyük olabilirlik (maximum likelihood)

 Joint compatibility branch and bound

 En yakın komşuluk(nearest neighbor)

 Combined constraint data association

 Random sample consensus (RANSAC)

Bu yöntemler içerisinde uygulanabilirliği en kolay olan en büyük olabilirlik yöntemi,

bu tez çalışmasında ele alınan EZKH yönteminde kullanılmıştır.

3.1.4 Döngü kapama

EZKH algoritmalarında ortamın haritasının çıkarılması ve konum belirlenmesinin en

hızlı şekilde olması istenir. Buna bir çözüm olarak mobil robotlar keşif yaptığı bir

yerden tekrar geçmez. Ancak bu durumda daha önce keşfedilen yerlerle veri

ilişkilendirilmesi yapılmadığından dolayı haritada ve konumda birikmiş hataların

azaltılması yapılamaz. Döngü kapama, daha önce geçilen yerden tekrar geçilerek

haritada ve konumda düzeltme işlemi uygulanmasına izin veren bir işlemdir. Şekil

3.6’da döngü kapamaya bir örnek verilmiştir. Üstte robotun döngü kapama yapmadan

hemen önceki oluşturduğu harita görülmektedir. Bu haritada koridor ve kare alan

arasında açısal bir hata meydana gelmiştir. Altta ise döngü kapama yapıldıktan sonra

haritanın düzeltilmiş olduğu görülmektedir [24].

Şekil 3.6 : Döngü kapamanın uygulanmasıyla ilgili karşılaştırmalı bir çalışma [42].

21

3.1.5 Hareket modeli

Konum belirlemenin en doğru şekilde yapılabilmesi için öncelikle robotun

mekanizması da dikkate alınarak uygun bir hareket modelinin belirlenmesi gerekir.

Robotik uygulamalarda yaygın olarak hız komutlarına dayalı veya odometri verisini

giriş komutu olarak kullanan iki farklı model ve bunların türevleri kullanılır. Hıza

dayalı modeller, belli bir örnekleme aralığında motorlara sabit bir hız komutu

uygulandığını kabul eder. Böylece mevcut durum bilgisi ve giriş komutları

kullanılarak sonraki durum tahmin edilebilir. Bunun yanında odometri verisi, giriş

komutları uygulandıktan sonra okunabilir. Bu yüzden, hız tabanlı modeller genellikle

yol planlama uygulamaları için daha uygunken odometri tabanlı modeller ise EZKH

uygulamaları için daha uygundur. Ayrıca, tahrik elemanlarına uygulanan komutun

gerçekleştirilmesi sırasında oluşan belirsizlik tekerleklere bağlı enkoderlerden alınan

verinin belirsizliğinden daha büyük olduğu için odometri temelli modeller konum

tahmin etmede daha başarılı sonuçlar vermektedir [3].

3.1.5.1 Odometri modeli

Bu tez çalışmasında kullanılan diferansiyel tahrikli Turtlebot platformunun yapısı göz

önüne alınarak ve birinci bölümde anlatıldığı üzere belirsizliğe sebep olan etmenler de

düşünülerek olasılıksal bir yöntem olan odometri hareket modelinin uygulanmasına

karar verilmiştir. Bu modelde robot, kontrol girişi olarak periyodik zaman

aralıklarında okunan odometri verisini kullanır. Diğer bir deyişle, 𝑡 anında okunan

değer ile 𝑡 − 1 anında okunan değer arasındaki fark kontrol komutu gibi kabul edilir.

Odometri hareket modeli, kullanılan koordinat sistemine ve EZKH algoritmasına göre

farklı şekillerde uygulanabilir. Bu yüzden öncelikle bazı kinematik kavramların

açıklanmasında fayda vardır.

Üç boyutlu uzayda bir mobil robotun durum bilgisi altı farklı değişkenle ifade edilir.

Bunlar; robotun konumunu belirten üç boyutlu kartezyen koordinatları (𝑥, 𝑦, 𝑧) ve

yönelimini belirten euler açılarıdır (Yuvarlanma (Roll), Yunuslama (Pitch), Sapma

(Yaw)). Düzlemsel bir ortamda ise konum bilgisi iki boyutta ve yönelim bilgisi de tek

bir açıyla ifade edilebilir. Böylece, denklem 3.4'teki durum matrisi kullanılarak

diferansiyel tahrikli bir robotun hareketi modellenebilir. Burada 𝑥 ve 𝑦 iki boyutlu

koordinat sistemindeki konumu belirtirken 𝜃 yönelim açısını belirtir.

22

 𝑋 = [
𝑥
𝑦
𝜃
] (3.4)

Şekil 3.7'de görüldüğü gibi konum, ortamdaki belli bir noktanın orijin olarak kabul

edildiği bir koordinat sistemine göre hesaplanır. Öyle ki; bu orijin noktası genellikle

robotun harekete ilk başladığı nokta olarak kabul edilir ve bu koordinat sisteminin 𝑥

ekseni robotun bu noktadaki yönelim açısına göre belirlenir. Çünkü SLAM

uygulamalarına göre robotun, başlangıç anında ortam hakkında bir bilgisi ve referans

alabileceği bir koordinat sistemi yoktur.

Şekil 3.7 : Robot konumunun global koordinat sistemine göre gösterilmesi [3].

Olasılığın büyük öneme sahip olduğu mobil robot çalışmalarında sıkça karşılaşılan bir

kavram da sonsal durumdur. Robotun o anki olası durumu hakkında bilgi veren sonsal

durum, denklem 3.5'teki gibi gösterilmektedir. Burada 𝑠𝑡 şu anki durumu, 𝑠𝑡−1 kontrol

girişi uygulanmadan önceki yani bir önceki durumu ve 𝑢𝑡 de kontrol girişini ifade

etmektedir.

 𝑝(𝑠𝑡|𝑢𝑡, 𝑠𝑡−1) (3.5)

Şekil 3.8'deki çizimler bir robota ait sonsal durumun iki boyutlu olarak

görselleştirilmiş halidir. Düzlemsel bir ortamda hareket komutu uygulanmış robotun

konumunun belirsizliğini gösteren sonsal durumda koyu renkli alanlardan açık renkli

alanlara doğru gidildikçe robotun tahmin edilen konumunun olasılığı azalmaktadır.

(a)'da düz bir hareket sonucunda ortaya çıkan dağılımın kısmen küçük ve hilal şeklinde

olduğu görülürken (b)'de ise hem düz hem de dönel hareketlerin bileşiminin sonucunda

dağılımın daha geniş ve elips şekline benzer olduğu görülmektedir.

 𝑝𝑟𝑜𝑏(𝑎, 𝑏) =
1

√2𝜋∙𝑏2
𝑒

−
1

2

𝑎2

𝑏2 (3.6)

Odometri hareket modelinde denklem 3.7'deki sonsal durum hesaplanırken kontrol

girişleri olarak 𝑡 ve 𝑡 − 1 anındaki sensör okumaları kullanılır.

23

Şekil 3.8 : Hareket komutu uygulanan bir robotun durumunun sonsal dağılım

şeklinde gösterimi [3].

Denklem 4'teki kontrol girişleri 𝑠𝑡−1 = (𝑥̅ 𝑦̅ 𝜃̅) ve 𝑠𝑡 = (𝑥̅ 𝑦̅ 𝜃̅); [𝑡 − 1, 𝑡] zaman

aralığında uygulanan hız komutları sonucunda odometri verisindeki değişimi belirtir.

 𝑢𝑡 = (
𝑠̅𝑡

𝑠̅𝑡−1
) (3.7)

Sensörlerden alınan bu iki andaki durum verisi kullanılarak üç değişim elde edilir. İlk

olarak şekil 3.9'daki robotun ilk konumu ile ikinci konumu arasındaki doğru parçasının

yukarıda bahsedilen global koordinat sistemine göre açısı ile birinci konumdaki

yönelim açısının farkı (𝛿𝑟𝑜𝑡1), ardından iki konum arasındaki uzaklık (𝛿𝑡𝑟𝑎𝑛𝑠) ve son

olarak da robotun son konumundaki yönelim açısı ile iki konum arasındaki doğru

parçasının açısının farkı (𝛿𝑟𝑜𝑡2) hesaplanır.

Şekil 3.9 : Odometri hareket modeliyle hesaplanan bağıl yer değişimi ve açı değişimi

[3].

Hesaplanan bu üç değişim 𝑡 − 1 anındaki 𝑠𝑡−1 durumuna eklenerek son durum yani 𝑠𝑡

bulunur. Böylece robot konum tahmini her adımda odometri okumalarına göre

güncellenmiş olur.

Çizelge 3.1, 𝑝(𝑥𝑡|𝑢𝑡 , 𝑥𝑡−1) sonsalının nasıl hesaplandığını göstermektedir. Kontrol

girişleri olarak odometri okumalarını kullanan algoritmada yukarıda bahsedilen 𝛿𝑟𝑜𝑡1,

𝛿𝑡𝑟𝑎𝑛𝑠 ve 𝛿𝑟𝑜𝑡2 2. satırdan 4. satıra kadar olan denklemlerde hesaplanmaktadır.

24

Çizelge 3.1 : Odometri hareket modeli algoritması

1: odometri-hareket-modeli(𝑥𝑡, 𝑢𝑡, 𝑥𝑡−1):

2: 𝛿𝑟𝑜𝑡1 = atan2(𝑦̅′ − 𝑦,̅ 𝑥̅′ − 𝑥,̅) − 𝜃̅

3: 𝛿𝑡𝑟𝑎𝑛𝑠 = √(𝑥̅ ′ − 𝑥̅)2 + (𝑦̅ ′ − 𝑦̅)2

4: 𝛿𝑟𝑜𝑡2 = 𝜃̅ ′ − 𝜃̅ − 𝛿𝑟𝑜𝑡1

5: 𝛿𝑟𝑜𝑡1 = atan2(𝑦′ − 𝑦, 𝑥′ − 𝑥) − 𝜃

6: 𝛿𝑡𝑟𝑎𝑛𝑠 = √(𝑥 ′ − 𝑥)2 + (𝑦 ′ − 𝑦)2

7: 𝛿𝑟𝑜𝑡2 = 𝜃 ′ − 𝜃 − 𝛿𝑟𝑜𝑡1

8: 𝑝1 = 𝑝𝑟𝑜𝑏(𝛿𝑟𝑜𝑡1 − 𝛿𝑟𝑜𝑡1, 𝛼1𝛿𝑟𝑜𝑡1 + 𝛼2𝛿𝑡𝑟𝑎𝑛𝑠)

9: 𝑝2 = 𝑝𝑟𝑜𝑏(𝛿𝑡𝑟𝑎𝑛𝑠 − 𝛿𝑡𝑟𝑎𝑛𝑠, 𝛼3𝛿𝑡𝑟𝑎𝑛𝑠 + 𝛼4(𝛿̂𝑟𝑜𝑡1 − 𝛿𝑟𝑜𝑡2))

10: 𝑝1 = 𝑝𝑟𝑜𝑏(𝛿𝑟𝑜𝑡2 − 𝛿𝑟𝑜𝑡2, 𝛼1𝛿𝑟𝑜𝑡2 + 𝛼2𝛿𝑡𝑟𝑎𝑛𝑠)

11: 𝑟𝑒𝑡𝑢𝑟𝑛 𝑝1 ∙ 𝑝2 ∙ 𝑝3

2. satırdaki 𝑎𝑡𝑎𝑛2() fonksiyonunda 𝑠𝑡−1 ve 𝑠𝑡 'deki 𝑥 ve 𝑦 konumlarının farkı alınarak

şekil 4'te görüldüğü gibi doğru parçasının global koordinat sistemine göre olan açısı

bulunur. Robotun yönelimi hesaplanan bu değerden çıkarıldığı zaman ilk dönme açısı

𝛿𝑟𝑜𝑡1 elde edilmiş olur. [𝑡 − 1, 𝑡] zaman aralığında robotun yer değiştirmesi ‖. ‖2'ye

göre 3. satırda hesaplanır. 4. Satırda, 𝑡 anındaki odometri ölçümünden elde edilen

yönelim açısından 𝑡 − 1 anındaki yönelim açısı ve 𝛿𝑟𝑜𝑡1 açısı çıkarılarak ikinci açı

değişimi olan 𝛿𝑟𝑜𝑡2 bulunur.

Şekil 3.10 : Global koordinat sistemine göre yönelim açısının hesaplanması [3].

Buraya kadar yapılan hesaplamalar odometri verisinin gürültüsüz olduğu düşünülerek

yapıldı. Bundan sonraki kısımda (5., 6. ve 7. satır) odometri ölçümlerinin hatalı olduğu

da hesaba katılarak 𝑡 anına ait rastgele bir şekilde bir durum seçilir. Burada rastgele

olarak seçilen durum aslında şekil 3.8'de görülen koyu ve açık renkli alanları, yani

25

olası durumları belirtmektedir. Seçilen bu durum ve 𝑡 − 1 anında hesaplanan durum

arasındaki değişimler de 2., 3. ve 4. satırda olduğu gibi hesaplanır.

Son kısımda; odometri ile hesaplanan durum ve rastgele seçilen durum arasındaki hata

olasığılı hesaplanır. Gauss dağılımını kullanan olasılık denklemlerindeki varyansı

belirleyen 𝛼 parametreleri robota özgü değerlerdir. Bu değerler hareketi etkileyen

gürültünün belirlenmesini sağlamaktadır ve belirsizliğin karakterini şu şekilde

etkilemektedir:

 𝛼1, dönme hareketinin açı değişiminde oluşturduğu gürültüyü

 𝛼2, yer değiştirme hareketinin açı değişiminde oluşturduğu gürültüyü

 𝛼3, yer değiştirme hareketinin yer değişiminde oluşturduğu gürültüyü

 𝛼4, dönme hareketinin yer değişiminde oluşturduğu gürültüyü

temsil etmektedir.

Bu çalışmada parçacık filtresi temelli bir algoritma olan FastSLAM yöntemi

kullanıldığı için odometri hareket modelinin de parçacık filtresine uygulanacak şekilde

uyarlanmış hali kullanılmıştır. Parçacık filtresindeki örneklendirme bir diğer adıyla

tahmin aşamasında kullanılanılan hareket modeli, odometri hareket örneklendirme

modeli olarak adlandırılmıştır. Bu modelde, gauss dağılımı şeklinde bir sonsal durum

hesaplanması yerine normal gauss dağılımına uygun olarak gelişigüzel

örneklendirilmiş parçacıklar söz konusudur. Bundan dolayı, uygulanması daha

kolaydır. Şekil 3.11'de aynı gürültü parametleri ile oluşturulmuş sonsal dağılım (a) ve

parçacıklar (b) görülmektedir.

Şekil 3.11 : Aynı 𝛼 parametreleri ile oluşturulmuş sonsal dağılım(a) ve

örneklendirilmiş parçacıklar (b) [3].

26

Örneklendirme modeli; kontrol girişi olarak odometri okumalarını kullanması,

hareketin bağıl değişimini hesaplaması ve hatayı gauss dağılımına göre modellemesi

bakımından sonsal dağılımın hesaplandığı odometri hareket modeline benzemektedir.

Çizelge 3.2'deki örneklendirme algoritmasında 2., 3. ve 4. satırda yönelim açısının

değişiminin ve yer değiştirme denklemlerinin odometri hareket modelindekiyle aynı

olduğu görülmektedir.

5., 6. ve 7. satırlarda, odometri okumaları baz alınarak hesaplanan değişimlere

ortalama değeri sıfır olan ve varyansı 𝑎 olan gauss dağılımına göre gürültü eklenmiştir.

Bu gürültü değerleri denklem 3.8'de görülen fonksiyona göre gelişigüzel üretilir.

𝑠𝑎𝑚𝑝𝑙𝑒(𝑎) =

𝑎

6
∑𝑟𝑎𝑛𝑑(−1,1)

12

𝑖=1

 (3.8)

Son olarak, gürültü eklenmiş bağıl hareket değişimleri bir önceki durum olan 𝑥𝑡−1 =

(𝑥 𝑦 𝜃)𝑇 'ye eklenerek son durum 𝑥𝑡 bulunur. Gürültü ekleme ve örneklendirme işlemi

parçacık filtresindeki her bir parçacığa ayrı ayrı uygulanır [3].

Çizelge 3.2 : Odometri hareket örneklendirme modeli algoritması

1: odometri-hareket-örneklendirme-modeli(𝑢𝑡 , 𝑥𝑡−1)

2: 𝛿𝑟𝑜𝑡1 = atan2(𝑦̅′ − 𝑦,̅ 𝑥̅′ − 𝑥,̅) − 𝜃̅

3: 𝛿𝑡𝑟𝑎𝑛𝑠 = √(𝑥̅ ′ − 𝑥̅)2 + (𝑦̅ ′ − 𝑦̅)2

4: 𝛿𝑟𝑜𝑡2 = 𝜃̅ ′ − 𝜃̅ − 𝛿𝑟𝑜𝑡1

5: 𝛿𝑟𝑜𝑡1 = 𝛿𝑟𝑜𝑡1 − 𝑠𝑎𝑚𝑝𝑙𝑒(𝛼1𝛿𝑟𝑜𝑡1 + 𝛼2𝛿𝑡𝑟𝑎𝑛𝑠)

6: 𝛿𝑡𝑟𝑎𝑛𝑠 = 𝛿𝑡𝑟𝑎𝑛𝑠 − 𝑠𝑎𝑚𝑝𝑙𝑒(𝛼3𝛿𝑡𝑟𝑎𝑛𝑠 + 𝛼4(𝛿𝑟𝑜𝑡1 + 𝛿𝑟𝑜𝑡2))

7: 𝛿𝑟𝑜𝑡2 = 𝛿𝑟𝑜𝑡2 − 𝑠𝑎𝑚𝑝𝑙𝑒(𝛼1𝛿𝑟𝑜𝑡2 + 𝛼2𝛿𝑡𝑟𝑎𝑛𝑠)

8: 𝑥′ = 𝑥 + 𝛿𝑡𝑟𝑎𝑛𝑠 cos(𝜃 + 𝛿𝑟𝑜𝑡1)

9: 𝑦′ = 𝑥 + 𝛿𝑡𝑟𝑎𝑛𝑠 sin(𝜃 + 𝛿̂𝑟𝑜𝑡1)

10: 𝜃′ = 𝜃 + 𝛿𝑟𝑜𝑡1 + 𝛿𝑟𝑜𝑡2)

11: 𝑟𝑒𝑡𝑢𝑟𝑛 𝑥𝑡 = (𝑥′, 𝑦′, 𝜃′)𝑇

3.1.5.2 Hız modeli

Hız modelinde kontrol girişleri olarak doğrusal hız ve dönel hız uygulanır ve sırasıyla

𝑣 ve 𝑤 ile gösterilir. 𝑡 anına ait kontrol girişi aşağıdaki denklem 3.9'daki gibi gösterilir.

 𝑢𝑡 = (
𝑣𝑡

𝑤𝑡
) (3.9)

27

Doğrusal hızın pozitif bir değer olması ileriye doğru bir hareket komutu, dönel hızın

pozitif bir değer olması da saat yönünün tersine doğru bir dönme komutu demektir.

Odometri modelinde olduğu gibi hız modelinde de kontrol girişleri periyodik zaman

aralıklarında uygulanır.

Çizelge 3.3'te 𝑝(𝑠𝑡|𝑢𝑡, 𝑠𝑡−1) olasılığının nasıl hesaplandığı gösterilmektedir. Bu

algoritmaya uygulanmadan önce hız komutlarının herhangi bir gürültüsü olmadığı

varsayılarak yeni konum ve yönelim açısı denklem 3.10'daki gibi hesaplanır.

 (

𝑥𝑡

𝑦𝑡

𝜃𝑡

) = (

𝑥𝑡−1

𝑦𝑡−1

𝜃𝑡−1

) +

(

−
𝑣

𝑤
𝑠𝑖𝑛 𝜃 +

𝑣

𝑤
𝑠𝑖𝑛(𝜃 + 𝑤∆𝑡)

𝑣

𝑤
𝑐𝑜𝑠 𝜃 −

𝑣

𝑤
𝑐𝑜𝑠(𝜃 + 𝑤∆𝑡)

𝑤∆𝑡)

 (3.10)

Kontrol girişi olarak 𝑡 − 1 anından 𝑡 anına kadar sabit bir şekilde hem doğrusal hem

de dönel hız verildiği kabul edildiği için, robotun sanal bir çember üzerinde yol aldığı

varsayılır. 2-5. satırlarda bu sanal çemberin merkezi(𝑥∗, 𝑦∗) ve yarıçapı(𝑟∗) hesaplanır.

𝑥′ ve 𝑦′ gürültülü hareket sonucunda elde edilen yeni konumu belirtir. 6. satırda

robotun bu gürültülü hareket sonucundaki yönelim açısının değişimi hesaplanır. 7-9.

satırlarda gürültülü hızlar ve son yönelim açısı bulunur. Bütün bu hesaplamaların

sonunda gerçek hız ve gürültülü hızların farklarını kullanarak sonsal durum olasılığı

elde edilir.

Çizelge 3.3 : Hız hareket modeli algoritması

1: hız-hareket-modeli(𝑥𝑡 , 𝑢𝑡, 𝑥𝑡−1)

2: 𝜇 =
1

2

(𝑥−𝑥′) 𝑐𝑜𝑠 𝜃+(𝑦−𝑦′) 𝑠𝑖𝑛 𝜃

(𝑦−𝑦′) 𝑐𝑜𝑠 𝜃−(𝑥−𝑥′) 𝑠𝑖𝑛 𝜃

3: 𝑥∗ =
𝑥+𝑥′

2
+ 𝜇(𝑦 − 𝑦′)

4: 𝑦∗ =
𝑦+𝑦′

2
+ 𝜇(𝑥 − 𝑥′)

5: 𝑟∗ = √(𝑥 − 𝑥∗)2 + (𝑦 − 𝑦∗)2

6: ∆𝜃 = 𝑎𝑡𝑎𝑛2(𝑦′ − 𝑦∗, 𝑥′ − 𝑥∗) − 𝑎𝑡𝑎𝑛2(𝑦 − 𝑦∗, 𝑥 − 𝑥∗)

7: 𝑣 =
∆𝜃

∆𝑡
𝑟∗

8: 𝑤̂ =
∆𝜃

∆𝑡

9: 𝛾 =
𝜃′−𝜃

∆𝑡
− 𝑤̂

10:
𝑟𝑒𝑡𝑢𝑟𝑛 𝑝𝑟𝑜𝑏(𝑣 − 𝑣, 𝛼1|𝑣| + 𝛼2|𝑤|) ∙ (𝑤 − 𝑤̂, 𝛼3|𝑣| +
𝛼4|𝑤|) ∙ (𝛾, 𝛼5|𝑣| + 𝛼6|𝑤|)

28

Odometri modelinde olduğu gibi hız modeli de parçacık filtresine çizelge 3.4'teki gibi

uyarlanabilir. Her parçacık için ayrı ayrı uygulanan aşağıdaki algoritmanın 2-4.

satırlarında gürültülü hızlar ve son yönelim gürültüsü hesaplanır. Bu gürültülü

değerlere göre 5-7. satırlarda da ilgili parçacığın yeni konumu ve yönelim açısı elde

edilir [3].

Çizelge 3.4 : Hız hareket örneklendirme modeli algoritması

1: hız-hareket-örneklendirme-modeli(𝑢𝑡 , 𝑥𝑡−1)

2: 𝑣 = 𝑣 + 𝑠𝑎𝑚𝑝𝑙𝑒(𝛼1|𝑣| + 𝛼2|𝑤|)

3: 𝑤̂ = 𝑤 + 𝑠𝑎𝑚𝑝𝑙𝑒(𝛼1|𝑣| + 𝛼2|𝑤|)

4: 𝛾 = 𝑠𝑎𝑚𝑝𝑙𝑒(𝛼1|𝑣| + 𝛼2|𝑤|)

5: 𝑥′ = 𝑥 −
𝑣̂

𝑤̂
sin 𝜃 +

𝑣̂

𝑤̂
sin(𝜃 + 𝑤̂∆𝑡)

6: 𝑦′ = 𝑦 +
𝑣̂

𝑤̂
cos 𝜃 +

𝑣̂

𝑤̂
cos(𝜃 + 𝑤̂∆𝑡)

7: 𝜃′ = 𝜃 + 𝑤̂∆𝑡 + 𝛾∆𝑡

8: 𝑟𝑒𝑡𝑢𝑟𝑛 𝑥𝑡 = (𝑥′, 𝑦′, 𝜃′)𝑇

3.1.6 Bayes filtresi

Otonom robotlarda eş zamanlı konumlandırma ve haritalama için birden fazla çözüm

önerilmiştir. En yaygın kullanılan teknikler arasında Bayes kuralı uygulayan Kalman

Filtresi, Genişletilmiş Kalman Filtresi ve Parçacık Filtresi bulunmaktadır.

EZKH uygulamalarında sıkça kullanılan kavramlardan birisi olan inanç (belief),

robotun çevresi hakkındaki ve konumu hakkındaki öngörüsünü belirtir. Çizelge 3.5'te

verilen Bayes Filtresi, bu inancın hesaplanmasında kullanılan en önemli

algoritmalardan birisidir. Robot ölçümleri ve kontrol verileri kullanarak hesaplanır. Bu

tablo Bayes filtresinin güncelleme kuralı olarak da bilinen tekrarlı yapısını

göstermektedir.

Çizelge 3.5 : Bayes filtresi algoritması

1: Bayes-filtresi(bel(𝑥𝑡−1), 𝑢𝑡 , 𝑧𝑡)

2: for all 𝑥𝑡 do

3: 𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑡) = ∫ 𝑝(𝑥𝑡|𝑢𝑡, 𝑥𝑡−1)𝑏𝑒𝑙(𝑥𝑡−1)𝑑𝑥

4: 𝑏𝑒𝑙(𝑥𝑡) = 𝜂 𝑝(𝑧𝑡|𝑥𝑡)𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑡)
5: end for

6: return 𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑡)

Bayes filtresi yinelemeli bir işlemdir. Yani t anındaki 𝑏𝑒𝑙(𝑥𝑡), bir önceki inanç olan

𝑡 − 1 anındaki 𝑏𝑒𝑙(𝑥𝑡−1)'den hesaplanır. Algoritma görüldüğü üzere iki aşamadan

oluşmaktadır. Birinci aşamada 𝑥𝑡−1'den 𝑥𝑡 'ye geçişi sağlayan 𝑢𝑡 kontrol işaretinin

29

olasılığı ile 𝑏𝑒𝑙(𝑥𝑡−1)'nin çarpımının integrali alınır. Bu aşama kontrol güncellemesi

ya da tahmin olarak adlandırılır. İkinci aşamada ise kontrol güncellemesinde elde

edilen 𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑡) ile 𝑧𝑡 ölçüm olasılığı çarpılır. Burada çarpım genellikle bir olasılığı

ifade etmediği için sonuç bir düzeltme sabiti (𝜂) ile çarpılır [3].

3.1.7 Kalman filtresi

İlk olarak 1960 yılında Rudolf Emil Kalman tarafından öne sürülen Kalman filtresi,

Bayes kuralına dayanan olasılıksal bir tahmin algoritmasıdır. Kalman Filtresi EZKH

için basitçe iki aşamada şu şekilde anlatılabilir: İlk olarak önceki durum ile kontrol

girişlerinden elde edilen veriyi birleştirerek inanç için bir tahminde bulunur. İkinci

aşamada, çevreyi algılayan sensörlerle bir ölçüm yapıp bu inancı güncelleyerek

sonraki durum için bir sonuç üretir [3, 43].

Kalman filtresinin üç ana bileşeni vardır: Birincisi; filtrede hesaplanmak istenen

konum, hız veya yönelim açısı gibi değişkenlerin olduğu durum vektörüdür. İki

boyutlu bir uzayda konum ve yönelim bilgisi içeren bir durum vektörü denklem

3.11’deki gibi gösterilebilir.

 𝑣 = [
𝑥
𝑦
𝜃
] (3.11)

İkinci bileşen dinamik model olarak adlandırılır ve durum vektörünün zaman içindeki

dönüşümünü tanımlar. Denklem 3.12’de doğrusal bir durum için bir dinamik model

belirtilmiştir. Buradaki 𝐹 dinamik matristir ve sabittir, 𝜀 de gürültüyü simgeler.

 𝑣̇(𝑡) = 𝐹𝑣(𝑡) + 𝜀(𝑡) (3.12)

Ölçüm modeli olarak bilinen üçüncü bileşen de durum ve hesaplamalar arasındaki

ilişkiyi gösterir ve dinamik model denklemiyle benzer yapıdadır [43].

İki aşamalı Kalman filtresinin algoritması denklem 3.12'den denklem 3.16'ya kadar

olan denklem grubundaki gibidir. Burada 𝑡 anındaki inanç 𝑏𝑒𝑙(𝑥𝑡), 𝑥𝑡 ortalama değeri

ve Σ𝑡 kovaryansı ile belirtilir. Tahmin aşamasında herhangi bir ölçüm yapılmadan

sadece 𝑡 − 1 anındaki durum 𝑥𝑡−1 ile kontrol girişi 𝑢𝑡 toplanıp önsel durum bulunur.

A ve B matrisleri 𝑥𝑡 ve 𝑢𝑡 ile çarpılarak durum geçiş fonksiyonu doğrusallaştırılmış

olur. Bu yüzden Kalman Filtresi doğrusal sistemler için uygulanabilirdir. Düzeltme

aşamasında; birinci aşamada hesaplanmış olan önsel durum yeni ölçümler kullanılarak

yeniden hesaplanır ve buna da sonsal durum denir. 3. adımdaki 𝐾𝑡 Kalman kazancı,

30

düzeltme aşamasındaki kalman hesaplamalarının ne kadar kesin olduğunu anlatır.

Yani 𝐾𝑡 arttıkça düzeltme hesaplamalarının olasılıksal ağırlığı da artar. Tam tersine 𝐾𝑡

azaldıkça da tahmin hesaplamalarının olasılıksal ağırlığı artar [3, 44].

 𝑥̅𝑡 = 𝐴𝑡𝑥𝑡−1 + 𝐵𝑡𝑢𝑡 (3.12)

 𝛴𝑡 = 𝐴𝑡𝛴𝑡−1𝐴𝑡
𝑇 + 𝑅𝑡 (3.13)

 𝐾𝑡 = 𝛴𝑡𝐻𝑡
𝑇(𝐻𝑡𝛴𝑡𝐻𝑡

𝑇 + 𝑄𝑡)
−1 (3.14)

 𝑥𝑡 = 𝑥̅𝑡 + 𝛴𝑡 = (𝐼 − 𝐾𝑡𝐻𝑡)𝛴𝑡 (3.15)

 𝐾𝑡(𝑧𝑡 − ℎ(𝑥̅𝑡)) (3.16)

Kalman algoritmasının Gauss dağılımı ile gösterimi şekil 3.12’deki gibidir. a'da x-1

anındaki durumun gauss gösterimi görülmektedir. Kontrol girişi uygullandıktan sonra

yeni durumun tahmini şekil b’deki gibidir. Tahmine ait ortalama (mean) değer daha

düşük ve kovaryansı daha fazladır. Çünkü belirsizlik önceki inanca göre daha fazladır.

c’de görüldüğü üzere bir sonraki aşamada yeni ölçümler alınır. Son olarak d’de bu

ölçüm ve tahmin kullanılarak t anına ait yeni bir inanç hesaplanır [3].

Şekil 3.12 : Kalman filtresi algoritmasının Gauss dağılımı ile gösterimi [3].

Kalman Filtresinin yaygın olarak kullanılmasının en önemli sebepleri fazla işlemsel

yük gerektirmemesi ve kolay uygulanabilir olmasıdır. Bununla birlikte etkin bir

hesaplama yeteneği de olmasına rağmen çoğu robot hareket modelinin doğrusal

31

olmaması Kalman filtresine seçenek olarak genişletilmiş Kalman filtresi ve parçacık

filtresi gibi yöntemler geliştirilmesine sebep olmuştur [3, 45].

3.1.8 Genişletilmiş Kalman Filtresi

Doğrusal sistemler için Kalman filtresi çok kullanışlı olsa da gerçek hayatta robot

uygulamalarında çoğu zaman doğrusal olmayan modellerle karşılaşıldığı için onun

yerine temel yapısı Kalman filtresine çok benzer olan genişletilmiş Kalman filtresi

(GKF) geliştirilmiştir. Aslında GKF, doğrusal olmayan sistemler için doğrudan

hesaplama yapmak yerine bunu, sürekli türevlenebilir fonksiyonları kullanarak

doğrusallaştırılmış formda yapar. Bu da Kalman filtresinde olduğu gibi gerçek bir

inanç hesaplaması yerine benzetim yoluyla gerçek inanca yakın bir değer elde

edilmesine sebep olur [3, 43].

GKF’de durum geçişi ve ölçümün, denklem 3.17 ve 3.18’de görüldüğü gibi doğrusal

olmayan fonksiyonlarla hesaplandığı kabul edilir. Burada 𝑔 fonksiyonu Kalman

filtresindeki 𝐴 ve 𝐵 matrislerine karşılık gelirken ℎ fonksiyonu da 𝐶 matrisine karşılık

gelmektedir.

 𝑥𝑡 = 𝑔(𝑢𝑡, 𝑥𝑡−1) + 𝜀𝑡 (3.17)

 𝑧𝑡 = ℎ(𝑥𝑡) + 𝛿𝑡 (3.18)

𝑔 ve ℎ fonksiyonları ile hesaplanan inancın gauss dağılımı olarak ifade edilebilmesi

için bu fonksiyonların doğrusallaştırılması gerekir. Bu da Taylor serisi açılımı

kullanılarak yapılır. Denklem 3.19'dan 3.23'e kadar olan ifadeler GKF'nin

algoritmasını oluşturmaktadır.

 𝑥̅𝑡 = 𝑔(𝑢𝑡, 𝑥𝑡−1) (3.19)

 Σ̅𝑡 = 𝐺𝑡Σ𝑡−1𝐺𝑡
𝑇 + 𝑅𝑡 (3.20)

 𝐾𝑡 = Σ̅𝑡𝐻𝑡
𝑇(𝐻𝑡Σ̅𝑡𝐻𝑡

𝑇 + 𝑄𝑡)
−1 (3.21)

 𝑥𝑡 = 𝑥̅𝑡 + 𝐾𝑡(𝑧𝑡 − ℎ(𝑥̅𝑡)) (3.22)

 Σ𝑡 = (𝐼 − 𝐾𝑡𝐻𝑡)Σ̅𝑡 (3.23)

Bu algoritmadan da anlaşılacağı üzere GKF ile Kalman filtresinin yapısı hemen

hemen aynıdır. Tek fark, doğrusal olmayan 𝑔 ve ℎ fonksiyonlarının

doğrusallaştırılmasıdır. Bu işlem 𝑔 fonksiyonu ve onun kısmi türevi kullanılarak

denklem 3.24'teki gibi yapılır.

32

𝑔′(𝑢𝑡, 𝑥𝑡−1) ∶=

𝜕𝑔(𝑢𝑡, 𝑥𝑡−1)

𝜕𝑥𝑡−1
 (3.24)

𝑔 fonksiyonun yaklaşık değeri denklem 3.25’teki gibi elde edilir.

 𝑔(𝑢𝑡, 𝑥𝑡−1) ≈ 𝑔(𝑢𝑡, 𝜇𝑡−1) + 𝑔′(𝑢𝑡, 𝜇𝑡−1)(𝑥𝑡−1 − 𝜇𝑡−1) (3.25)

Böylece;

 𝑔(𝑢𝑡, 𝑥𝑡−1) = 𝑔(𝑢𝑡, 𝜇𝑡−1) + 𝐺𝑡(𝑥𝑡−1 − 𝜇𝑡−1) (3.26)

elde edilir. ℎ fonksiyonunun elde edilmesi de aynı işlem basamakları uygulanarak

gerçekleşir ve 3.27'deki gibi gösterilir.

 ℎ(𝑥𝑡) = ℎ(𝜇̅𝑡) + 𝐻𝑡(𝑥𝑡 − 𝜇̅𝑡) (3.27)

Jakobiyen matrisi olarak adlandırılan 𝐺𝑡 ve 𝐻𝑡 matrisleri Kalman filtresindeki 𝐴𝑡, 𝐵𝑡

ve 𝐶𝑡matrislerine karşılık gelmektedir.

Doğrusal sistemlerde durum geçiş matrisi, dinamik matris ve gözlem matrisinin bir

kere hesaplanması yeterliyken doğrusal olmayan sistemlerde bu matrisler her

çevrimde yeniden hesaplanmalıdır. Bu prosedür, ek bir işlemsel yük getirmesine

rağmen GKF, EZKH uygulamalarında Kalman filtresinden daha çok kullanım alanı

bulmaktadır. Diğer yandan, GKF doğrusal olmayan sistemler için bir çözüm getirse de

ortalama (𝜇) ve kovaryans (Σ)’ın kesinliği Kalman filtresindekine göre daha düşüktür

[3, 43].

3.1.9 GKF'nin EZKH'ye uygulanması

İlk EZKH uygulamalarından itibaren kullanılmaya başlayan GKF, gerek tek olarak

gerekse birkaç farklı filtre ile birlikte, bugün birçok EZKH yönteminde hala etkin bir

şekilde kullanılmaktadır. GKF'nin en başarılı kullanım şekillerinden birisi olan EKF-

SLAM, işaretçi tabanlı bir yaklaşımdır. Haritayı oluşturan matris yapısından dolayı

çok sayıda işaretçinin olduğu ortamlarda EKF-SLAM tercih edilmez, çünkü işlem hızı

çok yavaşlar.

Diğer birçok EZKH'de olduğu gibi EKF-SLAM'de de ölçüm ve hareket gürültüsü

Gauss Dağılımına göre hesaplanır. Monte Carlo konumlandırması ile büyük benzerlik

gösteren bu yaklaşımın tek farkı, GKF kullanarak robot konumunu ve belirsizliğini

hesaplamasının yanında işaretçilerin konumlarını ve belirsizliklerini de GKF ile

33

hesaplamasıdır. Bu durumda robot durumu (𝑠𝑡) ve haritayı (𝑚) içeren vektör, denklem

3.28'deki gibidir [3].

 𝑦𝑡 = (
𝑠𝑡

𝑚
) (3.28)

Şekil 3.13'te EKF-SLAM'ın uygulandığı bir örnek görülmektedir. Robot, 8 tane

işaretçinin olduğu bir ortamda dikdörtgen benzeri bir rotayı takip etmektedir.

Başlangıçta konum belirsizliği sıfır olan robot ilerledikçe bu belirsizlik de artmaya

başlamaktadır. Bu sırada tespit ettiği işaretçilerin de konumlarını ve belirsizliklerini

EKF ile hesaplayıp haritasına eklemektedir. Mavi nokta ile gösterilenler işaretçilerin

gerçek konumları olup, kırmızı elipslerin merkezi de işaretçilerin hesaplanan

konumlarıdır. Robot, harekete başladığı konuma doğru yaklaştığında daha önce tespit

etttiği işaretçilerden birini yeniden tespit eder ve bunun sonucunda hem işaretçinin

konumunun belirsizliği hem de robotun konumunun belirsizliği azalır [9].

Şekil 3.13 : EKF-SLAM'de işaretçi ve robot ilişkisi [9].

EKF-SLAM, öngörü ve düzeltme olmak üzere iki ana adımdan oluşur. Öngörüde

ölçüm alınmadan sadece 𝑡 anındaki kontrol girişleri ve 𝑡 − 1 anındaki robot durumu

kullanılarak yeni konum için öngörüde bulunulur. Bu aşamada aynı zamanda robotun

konum belirsizliğini belirten kovaryan matrisi de güncellenir ve belirsizlik artar. Bu

adım aslında GKF algoritmasında belirtilen öngörü adımıyla aynıdır. Denklemdeki 𝐺𝑡,

EKF-SLAM'de kullanılan hareket modelinin jakobiyan matirisidir.

Düzeltme aşaması, robot konumu ve işaretçi konumu belirsizliğin güncellendiği

aşamadır. Bu iki unsur için de ortalama ve kovaryans güncellemesi yapıldığı

düşünülürse aslında düzeltme aşaması iki kere uygulanıyor denilebilir. Ölçüm

34

alındığında ilk olarak tespit edilen işaretçi veri ilişkilendirmeye tabi tutularak bu

işaretçinin kimliği belirlenir. Yani yeni bir işaretçi mi yoksa haritadaki bir işaretçi mi

olduğu tespit edilir. Eğer yeni bir işaretçiyse o işaretçi için ortalama ve kovaryans

hesaplanır. Eğer haritadaki bir işaretçiyse harita güncellenir. Düzeltme aşamasının son

kısmında da ölçüme göre robot durumu ve belirsizliği güncellenir. Bu aşamada eğer

tespit edilen işaretçi yeni bir işaretçiyse robotun belirsizliği artar. Eğer eski bir

işaretçiyse belirsizlik azalır ve konum düzeltilir [3].

3.1.10 Parçacık filtresi

Parçacık filtresi; Bayes kuralına dayanan ve olasılık yoğunluk dağılımlarını

birbirinden bağımsız parçacıklarla hesaplayan bir tahmin algoritmasıdır. Parçacık

filtresi terimi ilk defa [46]'da kullanılmıştır. Ekonomi tahminleri [47], hedef izleme,

hava trafik kontrolü, robot ve araç konumlandırması gibi çeşitli alanlarda kullanılan

parçacık filtresi, doğrusal olmayan sistemlere kolayca uygulanabildiğinden Kalman

filtresi ve türevlerine göre üstündür [48]. Bu filtrede ana fikir; sonsal durumdan

gelişigüzel bir şekilde örneklendirilen parçacıkların, ölçümler doğrultusunda önem

ağırlıklarının hesaplanarak bu ağırlıklar oranında çoğaltılması şeklindedir. Şekil 3.14,

parçacık filtresinin nasıl işlediğine dair bir fikir vermektedir. Yukarıda sarı renkli olan

parçacıklar için önem ağırlığı hesaplaması yapılmış ve Gauss şeklinde olmayan bir

olasılık dağılım fonksiyonuna benzediği görselleştirilmiştir. Önem ağırlıkları oranında

çoğaltılan parçacıklardan çok düşük olasılıklı olanlarının bu aşamada elendiği

görülmektedir. Son olarak, çoğaltılarak üretilen yeni parçacıklar gelişigüzel olarak

yeniden örneklendirilmiş ve yeni ölçüm alınarak önem ağırlıkları hesaplanmıştır.

Şekil 3.14 : Parçacık filtresi şeması.

35

Monte Carlo konumlandırmasında da kullanılan parçacık filtresinde parçacıklar ilk

başta harita içerisinde gelişigüzel dağılmış bir şekilde bulunur. Robot ilerleyip sensör

ölçümlerini aldıkça büyük olasılıklı parçacıkların daha fazla çoğalması ve düşük

olasılıklı parçacıkların da yok olmasından dolayı harita içerisinde belli bölgelerde

yoğunlaşmalar başlar [49]. Şekil 3.15'te, simetrik şekillerin olduğu bir kapalı alanda

uygulanan Monte Carlo konumlandırmasına bir örnek verilmiştir.

Şekil 3.15 : Monte Carlo Konumlandırması: Başta parçacıklar dağılmış haldedir

(solda), ölçüm alındıkça parçacıklar kümelenmeye başlar (ortada), yeterince ölçüm

alındıktan sonra parçacıklar tek bir küme oluşturur (sağda) [49].

FastSLAM'de ise parçacık filtresi biraz daha farklı şekilde uygulanır. Başlangıçta hem

konum hem de harita bilgisi olmadığı için bütün parçacıklar robot ile aynı konumda

kabul edilirler. Robot ilerledikçe gelişigüzel olarak örneklendirilen parçacıklar

dağılmaya başlar. Robot, sensör ölçümleri alındıkça oluşturulmaya başlanan haritada

bilinen yerlerden geçildikçe dağılmış durumdaki parçacıklar da tekrar yoğunlaşmaya

başlar .

Kalman filtresinde olduğu gibi parçacık filtresinde de durum hesaplaması, 𝑡 − 1

anındaki inancı kullanarak 𝑡 anındaki inancın hesaplanmasıyla yapılır. Ancak parçacık

filtresinde inanç gösterimi parçacıklar kümesi olarak belirtildiği için 𝑏𝑒𝑙(𝑥𝑡) ile değil

denklem 3.29'daki gibi gösterilir. Çünkü Kalman filtresinde durum, tek bir normal

gauss dağılımı şeklinde ifade edilirken parçacık filtresinde ise 𝑀 tane olasılık değerleri

olarak belirtilir.

 𝑋𝑡 ≔ 𝑥𝑡
[1]

, 𝑥𝑡
[2]

, … , 𝑥𝑡
[𝑀]

 (3.29)

Çizelge 3.6'daki parçacık filtresi için verilen algoritmada tahmin, düzeltme ve yeniden

örnekleme (resampling) olmak üzere 3 adım vardır. 4. satırda 𝑀 sayıda parçacığın

örneklenmesi için 𝑡 − 1 anına ait parçacıkların durumlarına, 𝑡 anında uygulanan

kontrol girişi eklenerek bir tahmin yapılır. Burada üretilen parçacık kümesi Bayes

filtresi’ndeki önsel (prior) duruma karşılık gelmektedir. Sonsal (posterior) durum

36

hesaplaması ise 5. ve 6. satırda yapılmaktadır. Düzeltme aşaması olarak bilinen bu

kısım aynı zamanda önem örneklemesi (importance sampling) olarak da anılmaktadır.

4. satırda üretilen her bir parçacık için 𝑧𝑡 ölçümleri ile önem ağırlığı 𝑤𝑡 hesaplanır. 6.

satırda parçacıklar ve bu parçacıklara ait önem ağırlığı 𝑋̅𝑡 parçacık kümesine eklenir

[3].

Parçacık filtresi’nin en önemli kısmı olan yeniden örnekleme, 8. satırda başlar. Her bir

parçacığının önem ağırlığı hesaplanmış olan 𝑋̅𝑡 parçacık kümesinden, onunla aynı

boyutta yeni bir parçacık kümesi üretilir. 𝑋̅𝑡 içindeki önemi çok düşük olan örnekler

yeni kümede yer almazlar ve parçacık sayısı azalmış olur. Bu durum bir süre sonra

parçacıkların tükenmesine yol açabilir. Tekrar aynı sayıya ulaşabilmek için, sayıları

𝑋̅𝑡 içindeki diğer parçacıkların önemi ile orantılı olacak şekilde yeni örnekler üretilir.

Yani büyük ağırlığa sahip olan parçacıklardan daha fazla sayıda örnek üretilirken

düşük ağırlıklı olanlardan daha az sayıda üretilir. Üretilen bu yeni örneklerin her

birinin önem ağırlığı birbirine eşittir ve ağırlıkları toplamı 1’e eşittir [3, 50].

Çizelge 3.6 : Parçacık filtresi algoritması

1: Parçacık-filtresi(𝑋𝑡−1, 𝑢𝑡 , 𝑧𝑡)

2: 𝑋̅𝑡 = 𝑋𝑡 = ∅

3: for 𝑚 = 1 to 𝑀 do

4: 𝑠𝑎𝑚𝑝𝑙𝑒 𝑥𝑡
[𝑚]

~𝑝(𝑥𝑡|𝑢𝑡, 𝑥𝑡−1
[𝑚]

)

5: 𝑤𝑡
[𝑚]

= 𝑝(𝑧𝑡|𝑥𝑡
[𝑚]

)

6: 𝑋̅𝑡 = 𝑋̅𝑡 + 〈𝑥𝑡
[𝑚]

, 𝑤𝑡
[𝑚]〉

7: end for

8: for 𝑚 = 1 to 𝑀 do

9: draw 𝑖 with probability ∝ 𝑤𝑡
[𝑖]

10: add 𝑥𝑡
[𝑖]

 to 𝑋𝑡

11: end for

12: return 𝑋𝑡

Doğrusal sistemlere kolayca uygulanabilirliğinin yanında parçacık filtresi, inanç

olarak birden fazla seçenek sunabildiği için Kalman filtresinden bir adım daha öne

geçmektedir. Bir dezavantaj olarak parçacık filtresinde uygulamada çok sayıda

parçacık kullanılıyor olması ve her bir parçanın ayrı bir işlem gerektirmesi hesapsal

yükün fazla olmasına neden olsa da günümüzde üretilen hızlı işlemcilerin kullanımıyla

bu durumun üstesinden gelmek mümkündür.

37

3.2 FastSLAM

Birinci bölümde bahsedildiği gibi EZKH uygulamaları için önerilen EKF-SLAM'de

işaretçi sayısı arttıkça işlem yükü üstel bir şekilde artmaktadır. Bu sorun EKF-

SLAM'in harita oluşturma yönteminden kaynaklanmaktadır. Aşağıdaki denklem 3.30

ve 3.31 işaretçi haritasının nasıl oluşturulduğunu göstermektedir. Denklem 3.30'da 𝜇𝑠𝑡
,

robotun 𝑡 anındaki durumunu, 𝑛 = 1,… ,𝑁 olmak üzere 𝜇𝜃𝑛,𝑡 𝑛'inci işaretçinin

konumunu belirtir. Bu vektör her bir yeni işaretçi için doğrusal olarak büyümektedir.

Denklem 3.31'de Σ𝑠𝑡,𝑡, robotun 𝑡 anındaki varyansını yani belirsizliğini, Σ𝜃𝑛,𝑡 𝑛'inci

işaretçinin varyansını ve 𝑚 = 1,… ,𝑀 olmak üzere Σ𝜃𝑛𝜃𝑚,𝑡 𝑛'inci ve 𝑚'inci işaretçinin

kovaryansını belirtir. Bu matris her bir yeni işaretçi için üstel bir şekilde büyümektedir

[51].

 𝜇𝑡 = {𝜇𝑠𝑡
, 𝜇𝜃1,𝑡, … , 𝜇𝜃𝑁,𝑡} (3.30)

 𝛴𝑡 =

[

𝛴𝑠𝑡,𝑡 𝛴𝑠𝑡𝜃1 ,𝑡 … 𝛴𝑠𝑡𝜃𝑁,𝑡

𝛴𝑠𝑡,𝑡 𝛴𝜃1,𝑡 𝛴𝜃1𝜃2,𝑡

⋮ 𝛴𝜃2𝜃1,𝑡 ⋱

𝛴𝑠𝑡,𝑡 𝛴𝜃𝑁,𝑡]

 (3.31)

FastSLAM, GKF ve parçacık filtresini bir arada kullanarak EKF-SLAM'deki bu üstel

büyüme sorununa çözüm getirmektedir. Öyle ki; işaretçiler GKF'de olduğu gibi

birbiriyle ilişkilendirilmek yerine parçacık filtresindeki her bir parçacığın konumu ile

ilişkilendirilmektedir. Çünkü robotun gittiği yol tam olarak bilinirse işaretçileri

birbirinden bağımsız bir şekilde hesaplamak mümkündür. Şekil 3.16'da dinamik Bayes

ağı gösterimi ile işaretçilerin nasıl birbirinden bağımsız olabileceği belirtilmiştir. 𝑠𝑡,

𝑧𝑡 ve 𝑢𝑡 𝑡 anında sırasıyla robotun durumunu, sensör ölçümünü ve kontrol girişini

simgelerken 𝜃𝑛𝑡
 de 𝑛'inci işaretçiyi belirtir. Robot; 1. işaretçiyi 𝑡 = 1 ve 𝑡 = 3

anlarında, 2. işaretçiyi de 𝑡 = 2 anında tespit etmektedir. 𝑠1 konumundayken ilk defa

tespit ettiği 1. işaretçinin konumunu 𝑠3 anında yeniden tespit ettiğinde, o ana kadar

izlediği yolu bildiği için 2. işaretçiden bağımsız olarak hesaplayabilmektedir.

Denklem 3.32, FastSLAM'deki her bir parçacık için durum bilgisinin ve haritanın nasıl

oluşturulduğunu göstermektedir. 𝑀 parçacık sayısını belirtmek üzere ve 𝑚 = 1,… ,𝑀

iken 𝑆𝑡
[𝑚]

 𝑚'inci parçacığın durum bilgisini ve işaretçi haritasının bilgisini barındıran

vektörü ifade eder.

38

Şekil 3.16 : EZKH'nin dinamik Bayes ağı ile gösterimi [49].

Bu vektörde 𝑠𝑡,[𝑚], 𝑚'inci parçacığın başlangıçtan 𝑡 anına kadar olan durumlarını yani

izlediği yolu; 𝜇n,𝑡
[𝑚]

 ve Σn,𝑡
[𝑚]

 sırasıyla 𝑛'inci işaretçinin konumunu ve belirsizliğini

(varyansını) belirtir. Denklem 3.32'den anlaşılacağı üzere haritaya eklenen her bir yeni

işaretçi, toplam eleman sayısını doğrusal bir şekilde artırır. Bu durumda işlem

yoğunluğu (2𝑁 + 1) ∗ 𝑀 olarak ifade edilebilir [49].

 𝑆𝑡
[𝑚]

= 〈𝑠𝑡,[𝑚], 𝜇1,𝑡
[𝑚]

, Σ1,𝑡
[𝑚]

, … , 𝜇𝑁,𝑡
[𝑚]

, Σ𝑁,𝑡
[𝑚]〉 (3.32)

3. bölümde de anlatıldığı üzere EZKH yöntemlerinin büyük bir kısmı sonsal

hesaplamasını, harita bilgisi ve robotun son andaki durum bilgisi üzerinden yaparken

FastSLAM bu hesaplamayı harita bilgisi ve robotun başlangıçtan 𝑡 anına kadar olan

bütün durumları üzerinden yapar. Dinamik bayes ağı örneği ile açıklanan koşullu

bağımsızlıktan yararlanarak EZKH sonsalı çarpanlara ayrılmış bir şekilde aşağıdaki

denklemdeki gibi ifade edilebilir [49].

𝑝(𝑠𝑡, Θ | 𝑧𝑡 , 𝑢𝑡, 𝑛𝑡) = 𝑝(𝑠𝑡 | 𝑧𝑡, 𝑢𝑡, 𝑛𝑡)∏𝑝(𝜃𝑛 | 𝑠𝑡, 𝑧𝑡, 𝑢𝑡, 𝑛𝑡)

𝑁

𝑛=1

 (3.33)

3.2.1 FastSLAM İşlem Basamakları

FastSLAM algoritması dört adımdan oluşmaktadır:

 Kontrol girişleri uygulayarak bir önceki parçacık kümesinden yeni bir küme

örneklendirme

39

 Tespit edilen işaretçinin her bir parçacık için güncelleme

 Sensör ölçümüne göre her parçacık için önem ağırlığı hesaplama

 Parçacıkların önem ağırlıkları kullanılarak yeni bir parçacık kümesi oluşturma

3.2.1.1 Yeni konum örnekleme

FastSLAM'de de diğer Kalman tabanlı EZKH yöntemlerinde olduğu gibi tahmin ve

güncellleme olarak iki temel aşama vardır. Tahmin aşamasında 𝑡 − 1 anındaki

parçacık kümesinden sadece kontrol girişleri uygulayarak yeni bir parçacık kümesi

oluşturulur. Öneri dağılımı (proposal distribution) adı verilen bu yeni küme olasılıksal

bir hareket modelinin her bir parçacığa tek tek uygulanmasıyla elde edilir. Bir parçacık

için yeni bir konum elde edilmesi denklem 3.34'teki gibi gösterilir.

 𝑠𝑡
[𝑚]

 ~ 𝑝(𝑠𝑡 | 𝑢𝑡, 𝑠𝑡−1
[𝑚]

) (3.34)

Bütün parçacıklar örneklendirildikten sonra elde edilen öneri dağılımı ise denklem

3.35'teki gibi ifade edilir.

 𝑝(𝑠𝑡 | 𝑧𝑡−1, 𝑢𝑡, 𝑛𝑡−1) (3.35)

Bu aşamadaki işlem zamanı parçacık sayısıyla doğru orantılıyken işaretçi haritasının

büyüklüğü bu işlem zamanına herhangi bir etkide bulunmaz.

Şekil 3.17'de, 250 tane parçacık için önceki bölümde anlatılan odometri hareket

modeline göre örneklendirilen parçacıkların dağılımı görülmektedir. Yay şeklindeki

çizgi kontrol girişleri uygulanarak oluşan gerçek yolu göstermektedir. Her bir

parçacığa normal Gauss gürültüsünün gelişigüzel bir şekilde uygulanmasıyla

parametrik olmayan bir Gauss dağılımı şeklinde bir parçacık kümesi oluşmuştur [49].

Şekil 3.17 : Olasılıksal hareket modeli ile örneklendirilmiş parçacıklar [49].

40

3.2.1.2 İşaretçilerin güncellenmesi

Yeni konum örnekleme aşamasında sonsal için bir öneri dağılımı elde edilmesi

FastSLAM'in tahmin kısmı iken bundan sonraki adımlar güncelleme kısmıdır. Aslında

bu aşamaların gerçekleşebilmesi için sensör tarafından bir işaretçinin algılanması

gerekmektedir. Yoksa, sensör herhangi bir işaretçi algılayana kadar yeni konum

örnekleme adımı tekrar edilir.

İşaretçilerin hesaplanması birbirlerinden bağımsız olarak robotun izlediği yola göre

yapıldığından, parçacık kümesindeki her bir parçacık için 𝑁 tane GKF vardır. Tespit

edilen işaretçinin haritadaki mevcut bir işaretçi mi yoksa ilk defa görülen bir işaretçi

mi olduğunun belirlenmesi için bu işaretçi ilk olarak veri ilişkilendirmeye tabi tutulur.

Veri ilişkilendirmenin nasıl yapıldığı bu bölümün sonunda anlatıldığı için şimdilik,

tespit edilen işaretçinin haritadaki hangi işaretçi olduğunun bilindiği varsayılmaktadır.

𝑡 anında tespit edilen bir işaretçi 𝑛'inci işaretçi (𝜃𝑛𝑡
) değilse, 𝜃𝑛𝑡

'ye ait GKF

değiştirilmez ve denklem 3.36'daki gibi gösterilir.

 𝑝(𝜃𝑛≠𝑛𝑡
 | 𝑠𝑡, 𝑧𝑡 , 𝑢𝑡, 𝑛𝑡) = 𝑝(𝜃𝑛≠𝑛𝑡

 | 𝑠𝑡−1, 𝑧𝑡−1, 𝑢𝑡−1, 𝑛𝑡−1) (3.36)

Eğer tespit edilen işaretçi 𝑛'inci işaretçi ise 𝜃𝑛𝑡
'ye ait sonsal, Bayes ve Markov kuralı

kullanılarak denklem 3.37 ve 3.38'de görüldüğü gibi güncellenir. Bayes kuralına göre;

 𝑝(𝜃𝑛𝑡
 | 𝑠𝑡, 𝑧𝑡 , 𝑢𝑡 , 𝑛𝑡) = 𝜂 𝑝(𝑧𝑡 | 𝜃𝑛𝑡

, 𝑠𝑡 , 𝑧𝑡−1, 𝑢𝑡, 𝑛𝑡) 𝑝(𝜃𝑛𝑡
 | 𝑠𝑡 , 𝑧𝑡−1, 𝑢𝑡 , 𝑛𝑡) (3.37)

elde edilir ve sonra Markov özelliği ile denklem 3.38'deki gibi sadeleştirilir. 𝑡 anındaki

ölçüm 𝑧𝑡 sadece 𝜃𝑛𝑡
, 𝑠𝑡 ve 𝑛𝑡 'ye bağlıdır. Benzer şekilde 𝜃𝑛𝑡

 de; 𝑠𝑡, 𝑢𝑡 ve 𝑛𝑡 'den

bağımsızdır.

 𝑝(𝜃𝑛𝑡
 | 𝑠𝑡, 𝑧𝑡 , 𝑢𝑡 , 𝑛𝑡) = 𝜂 𝑝(𝑧𝑡 | 𝜃𝑛𝑡

, 𝑠𝑡, 𝑛𝑡) 𝑝(𝜃𝑛𝑡
 | 𝑠𝑡−1, 𝑧𝑡−1, 𝑢𝑡−1, 𝑛𝑡−1) (3.38)

GKF kullanan diğer EZKH yöntemlerinde olduğu gibi FastSLAM de ölçüm modeli

için doğrusal Gauss yaklaşımını uygular. Buna göre; doğrusal olmayan ölçüm modeli

𝑔(𝑠𝑡, 𝜃𝑛𝑡
), birinci dereceden bir Taylor açılımı ile doğrusal bir model hale getirilir.

İşaretçi hesaplaması robotun gittiği yola göre koşullandırıldığı için Taylor açılımı

işaretçilerin konumları üzerinden yapılır. Açılım; 3.40, 3.41 ve 3.42'de görüldüğü gibi

yapılır.

 𝑧̂𝑡 = 𝑔 (𝑠𝑡
[𝑚]

, 𝜇𝑛𝑡,𝑡−1) (3.40)

41

 𝐺𝜃𝑛𝑡
= ∇𝜃𝑛𝑡

𝑔(𝑠𝑡, 𝜃𝑛𝑡
)|

𝑠𝑡=𝑠𝑡
[𝑚]

;𝜃𝑛𝑡=𝜇𝑛𝑡,𝑡−1
[𝑚] (3.41)

 𝑔(𝑠𝑡, 𝜃𝑛𝑡
) ≈ 𝑧̂𝑡 + 𝐺𝜃(𝜃𝑛𝑡

− 𝜇𝑛𝑡,𝑡−1
[𝑚]

) (3.42)

Bu koşullar altında landmark güncelleme denklemindeki çarpımın birinci terimi Gauss

dağılımı olarak aşağıdaki denklem 3.43'teki gibi gösterilir. Burada 𝑅𝑡, ölçüm

modelinin gürültüsünü belirten kovaryans matrisidir.

 𝑝(𝑧𝑡 | 𝜃𝑛𝑡
, 𝑠𝑡, 𝑛𝑡)~𝒩(𝑧𝑡; 𝑧̂𝑡 + 𝐺𝜃 (𝜃𝑛𝑡

− 𝜇𝑛𝑡,𝑡−1
[𝑚]

) , 𝑅𝑡) (3.43)

Güncelleme denklemindeki çarpımın ikinci terimi de yine Gauss dağılımı olarak

denklem 3.44'teki gibi ifade edilir.

 𝑝(𝜃𝑛𝑡
 | 𝑠𝑡−1, 𝑧𝑡−1, 𝑢𝑡−1, 𝑛𝑡−1)~𝒩(𝜃𝑛𝑡

; 𝜇𝑛𝑡,𝑡−1
[𝑚]

, 𝛴𝑛𝑡,𝑡−1
[𝑚]

) (3.44)

İşaretçinin ortalama ve kovaryansı, 3.45'ten 3.50'ye kadar olan geleneksel GKF

güncelleme denklemleriyle elde edilir.

 𝑧̂𝑡 = 𝑔 (𝑠𝑡
[𝑚]

, 𝜇𝑛𝑡,𝑡−1) (3.45)

 𝐺𝜃𝑛𝑡
= ∇𝜃𝑛𝑡

𝑔(𝑠𝑡, 𝜃𝑛𝑡
)|

𝑠𝑡=𝑠𝑡
[𝑚]

;𝜃𝑛𝑡=𝜇𝑛𝑡,𝑡−1
[𝑚] (3.46)

 𝑍𝑛,𝑡 = 𝐺𝜃𝑛𝑡
𝛴𝑛𝑡,𝑡−1

[𝑚]
𝐺𝜃𝑛𝑡

𝑇 + 𝑅𝑡 (3.47)

 𝐾𝑡 = 𝛴𝑛𝑡,𝑡−1
[𝑚]

𝐺𝜃𝑛𝑡

𝑇 𝑍𝑛,𝑡
−1 (3.48)

 𝜇𝑛𝑡,𝑡
[𝑚]

= 𝜇𝑛𝑡,𝑡−1
[𝑚]

+ 𝐾𝑡(𝑧𝑡 − 𝑧̂𝑡) (3.49)

 𝛴𝑛𝑡,𝑡
[𝑚]

= (𝐼 − 𝐾𝑡𝐺𝜃𝑛𝑡
)𝛴𝑛𝑡,𝑡−1

[𝑚]
 (3.50)

Düzlemsel bir alanda uygulanan EZKH yöntemlerindeki çoğu ölçüm modeli, şekil

3.18'de görüldüğü gibi tespit edilen işaretçinin robota olan uzaklığını ve robota göre

olan açısını hesaplar.

Robotun 𝑡 anındaki durumunun 〈𝑠𝑡,𝑥, 𝑠𝑡,𝑦, 𝑠𝑡,𝜃〉 ve işaretçinin konumunun 〈𝜃𝑛𝑡,𝑥, 𝜃𝑛𝑡,𝑦
〉

olarak ifade edildiğini varsayarak ölçüm fonksiyonu 𝑔(𝑠𝑡, 𝜃𝑛𝑡
) 3.51'deki gibi yazılır.

 𝑔(𝑠𝑡, 𝜃𝑛𝑡
) = [

𝑟(𝑠𝑡, 𝜃𝑛𝑡
)

𝜙(𝑠𝑡, 𝜃𝑛𝑡
)
] =

[

 √(𝜃𝑛𝑡,𝑥 − 𝑠𝑡,𝑥)2 + (𝜃𝑛𝑡,𝑦 − 𝑠𝑡,𝑦)2

tan−1 (
𝜃𝑛𝑡,𝑦−𝑠𝑡,𝑦

𝜃𝑛𝑡,𝑥−𝑠𝑡,𝑥
) − 𝑠𝑡,𝜃]

 (3.51)

42

Şekil 3.18 : Robotun aldığı ölçümün açısı ve uzaklığı.

Bu ölçüm modeline göre Jakobiyan 𝐺𝜃𝑛𝑡
 de denklem 3.52'deki gibi bulunur [49].

 𝐺𝜃𝑛𝑡
=

[

𝜃𝑛𝑡,𝑥−𝑠𝑡,𝑥

√(𝜃𝑛𝑡,𝑥
−𝑠𝑡,𝑥)2+(𝜃𝑛𝑡,𝑦

−𝑠𝑡,𝑦)2

𝜃𝑛𝑡,𝑦−𝑠𝑡,𝑦

√(𝜃𝑛𝑡,𝑥
−𝑠𝑡,𝑥)2+(𝜃𝑛𝑡,𝑦

−𝑠𝑡,𝑦)2

−
𝜃𝑛𝑡,𝑦−𝑠𝑡,𝑦

(𝜃𝑛𝑡,𝑥−𝑠𝑡,𝑥)2+(𝜃𝑛𝑡,𝑦−𝑠𝑡,𝑦)2

𝜃𝑛𝑡,𝑥−𝑠𝑡,𝑥

(𝜃𝑛𝑡,𝑥−𝑠𝑡,𝑥)2+(𝜃𝑛𝑡,𝑦−𝑠𝑡,𝑦)2]

 (3.52)

3.2.1.3 Önem ağırlıklarının hesaplanması

Öneri dağılımındaki parçacık kümesi 𝑡 anındaki ölçümü ve veri ilişkilendirmeyi değil

sadece kontrol girişini kullandığı için istenilen sonsal 𝑝(𝑠𝑡, Θ | 𝑧𝑡, 𝑢𝑡 , 𝑛𝑡) ile eşleşmez.

Bu farkı gidermek üzere yapılan önem örneklendirmesi için şekil 3.19'da bir örnek

verilmiştir. Parçacıklar doğrudan hedef dağılımı kullanılarak örneklendirilmek yerine

öneri dağılımına göre örneklendirilirler. Hedef dağılımının öneri dağılımından daha

büyük olduğu yerlerdeki parçacıkların ağırlıkları diğerlerinden daha fazladır. Öneri

dağılımı hedef dağılımının altında kaldıkça parçacıkların da önem ağırlıklar o oranda

azalır.

Şekil 3.19 : Önem ağırlıklarının hesaplanmasının bir örneği [39].

43

Her bir parçacığın önem ağırlığı, denklem 3.53'te olduğu gibi hedef dağılımın öneri

dağılımına oranlanmasıyla elde edilir.

𝑤𝑡

[𝑚]
=

ℎ𝑒𝑑𝑒𝑓 𝑑𝑎ğ𝚤𝑙𝚤𝑚𝚤

ö𝑛𝑒𝑟𝑖 𝑑𝑎ğ𝚤𝑙𝚤𝑚𝚤
=

𝑝(𝑠𝑡,[𝑚]|𝑧𝑡, 𝑢𝑡, 𝑛𝑡)

𝑝(𝑠𝑡,[𝑚]|𝑧𝑡−1, 𝑢𝑡, 𝑛𝑡−1)
 (3.53)

Denklem 3.53'teki hedef dağılımı ifadesi Bayes kuralı uygulanarak aşağıdaki 3.54'teki

gibi genişletilebilir.

𝑤𝑡

[𝑚]
∝

𝑝(𝑧𝑡|𝑠𝑡,[𝑚], 𝑧𝑡−1, 𝑢𝑡, 𝑛𝑡)𝑝(𝑠𝑡,[𝑚]|𝑧𝑡−1, 𝑢𝑡, 𝑛𝑡)

𝑝(𝑠𝑡,[𝑚]|𝑧𝑡−1, 𝑢𝑡, 𝑛𝑡−1)
 (3.54)

Denklem 3.54'ün pay kısmındaki ikinci terim 𝑡 anındaki ölçümü kullanmadığı için 𝑡

anındaki veri ilişkilendirmeye de gereksinim yoktur. Markov özelliği kullanılarak 3.55

elde edilir.

𝑤𝑡

[𝑚]
=

𝑝(𝑧𝑡|𝑠𝑡,[𝑚], 𝑧𝑡−1, 𝑢𝑡, 𝑛𝑡)𝑝(𝑠𝑡,[𝑚]|𝑧𝑡−1, 𝑢𝑡, 𝑛𝑡−1)

𝑝(𝑠𝑡,[𝑚]|𝑧𝑡−1, 𝑢𝑡, 𝑛𝑡−1)
 (3.55)

Böylece önem ağırlığı denklem 3.56'daki gibi ifade edilir.

 𝑤𝑡
[𝑚]

= 𝑝(𝑧𝑡|𝑠𝑡,[𝑚], 𝑧𝑡−1, 𝑢𝑡, 𝑛𝑡) (3.56)

Önem ağırlığını hesaplamak için gerçek sensör ölçümü ile tahmin edilen ölçüm

arasındaki fark kullanılır. Denklem 3.57, bir parçacığın önem ağırlığının nasıl

hesaplandığını bu ölçüm farkları cinsinden göstermektedir. 𝑍𝑛𝑡,𝑡, GKF'deki yenilenme

matrisine karşılık gelmektedir [49].

𝑤𝑡

[𝑚]
=

1

√|2𝜋𝑍𝑛𝑡,𝑡|

 exp {−
1

2
(𝑧𝑡 − 𝑧̂𝑛𝑡,𝑡)

𝑇
[𝑍𝑛𝑡,𝑡]

−1
(𝑧𝑡 − 𝑧̂𝑛𝑡,𝑡)} (3.57)

3.2.1.4 Yeniden Örneklendirme

Bütün parçacıklar için önem ağırlığı hesaplaması yapıldıktan sonra mevcut parçacık

kümesinden yeni bir parçacık kümesi elde edilir. Çoğu yeniden örnekleme yönteminde

belli bir eşik değerinin altındaki parçacıklar yok edilirken diğer parçacıklar ise önem

ağırlıklarıyla doğru orantılı olarak çoğaltılır. Literatürde çeşitli yeniden örnekleme

algoritmaları bulunmaktadır. En çok kullanılan yöntemler; çokterimli (multinomial),

katmanlı (stratified), sistematik (systematic) ve kalıntı (residual) yeniden örnekleme

yöntemleridir.

44

Parçacıklara yeniden örnekleme uygulanmadan önce bütün parçacıkların önem

ağırlıklarının normalize edilmesi gerekmektedir. Diğer bir deyişle, parçacık

kümesindeki önem ağırlıklarının toplamının 1'e eşit olabilmesi için her bir parçacığın

önem ağırlığının yeniden ölçeklendirilmesi gerekir. Bir parçacık kümesinde 𝑀 tane

parçacık olduğu varsayılarak normalizasyon denklem 3.58'deki gibi yapılır.

 𝑤𝑖 =
𝑤𝑖

∑ 𝑤𝑖
𝑀
𝑖=1

 (3.58)

Bundan sonra yeniden örnekleme işlemi önceden belirlenen eşik değerine göre yapılır.

FastSLAM'in en önemli aşamalarından biri olan yeniden örnekleme aşamasında

yaşanan en büyük sıkıntı parçacık bozulması (degeneracy) veya yoksullaşması

(impoverishment) adı verilen durumdur. Eğer, kontrol komutları uygulandıktan sonra

elde edilen parçacık kümesindeki parçacıkların çoğu sensör ölçümü ile uyumlu ise

yeniden örnekleme yapılırken büyük önem ağırlığına sahip yani kaliteli parçacıklar

yok edilebilir. Bu da sonsal dağılımın hatalı oluşması demektir [49].

Parçacık bozulmasını ortadan kaldırmak için yeniden örneklemenin her zaman değil,

kaliteli parçacık sayısının az olduğu zamanlarda yapılması gerekir. Bu sayıyı tespit

edebilmek için [52]'de Efektif Örnek Sayısı (Effective Sample Size) hesaplaması

önerilmiştir. Denklem 3.59'da bu hesaplama görülmektedir.

𝑁𝑒𝑓𝑓 =

1

∑ 𝑤𝑖
2𝑀

𝑖=1

 (3.59)

Efektif örnek sayısı belli bir değerin altında olduğu durumlarda yeniden örnekleme

yapılır. Parçacık kümesindeki parçacıkları bir sonraki döngüye hazır hale getirmek için

bütün parçacıkların önem ağırlıkları denklem 3.60 kullanılarak eşit hale getirilir [53].

𝑤𝑖 =

1

𝑀
 (3.60)

3.2.2 FastSLAM'deki diğer kavramlar

3.2.2.1 Veri ilişkilendirme (en çok benzerlik yöntemi)

Gerçek ortam uygulamalarında ölçümle tespit edilen işaretçinin haritadaki işaretçilerle

olan ilgisi kesin bir şekilde bilinmez. Bu da EZKH yöntemleri için belli başlı

zorluklardan birisidir. Çözüm olarak; tespit edilen işaretçinin haritadaki diğer

işaretçiler içindeki benzerliği kontrol edilir ve en çok benzerliği olan işaretçi ile

45

ilişkilendirilir. Denklem 3.61'deki 𝑝(𝑧𝑡|𝑛𝑡, 𝑛̂
𝑡−1𝑠𝑡, 𝑧𝑡−1, 𝑢𝑡) ifadesi en çok benzerlik

hesaplayıcısının bir örneğidir.

 𝑛̂𝑡 = argmax
𝑛𝑡

𝑝(𝑧𝑡|𝑛𝑡, 𝑛̂
𝑡−1𝑠𝑡, 𝑧𝑡−1, 𝑢𝑡) (3.61)

FastSLAM'de ölçüm alındıktan sonra veri ilişkilendirme için denklem 3.62'den 3.65'e

kadar olan işlemler sırasıyla uygulanır. İlk olarak ölçüm modelinin doğrusallaştırılıp

Jakobiyan matrisi haline getirilmesi gerekir. 𝑚'inci parçacık için ölçüm tahmini

yapılır. Jakobiyan matrisi ve 𝑛'inci işaretçinin kovaryansı kullanılarak inovasyon

matrisi oluşturulur. Son olarak benzerlik hesaplaması yapılır. En büyük benzerliği olan

işaretçi için hesaplanan değer aynı zamanda 𝑚′𝑖𝑛𝑐𝑖 parçacık için önem ağırlığı olarak

atanır. Bu prosedür bütün parçacıkları için tekrar edilir.

 𝐺𝜃𝑛𝑡
= ∇𝜃𝑛𝑡

𝑔(𝑠𝑡, 𝜃𝑛𝑡
)|

𝑠𝑡=𝑠𝑡
[𝑚]

;𝜃𝑛𝑡=𝜇𝑛𝑡,𝑡−1
[𝑚] (3.62)

 𝑧̂𝑡 = 𝑔 (𝑠𝑡
[𝑚]

, 𝜇𝑛𝑡,𝑡−1) (3.63)

 𝑍𝑛,𝑡 = 𝐺𝜃𝑛𝑡
𝛴𝑛𝑡,𝑡−1

[𝑚]
𝐺𝜃𝑛𝑡

𝑇 + 𝑅𝑡 (3.64)

𝑤𝑡

[𝑚]
=

1

√|2𝜋𝑍𝑛𝑡,𝑡|

 exp {−
1

2
(𝑧𝑡 − 𝑧̂𝑛𝑡,𝑡)

𝑇
[𝑍𝑛𝑡,𝑡]

−1
(𝑧𝑡 − 𝑧̂𝑛𝑡,𝑡)} (3.65)

GKF tabanlı EZKH uygulamalarında genellikle tekil veri ilişkilendirme tercih edilir.

Bu yöntemler hata yapmaya çok müsaittir ve veri ilişkilendirmedeki bir hata harita

hesaplanmasında çok büyük hataların oluşmasına sebep olabilir.

Veri ilişkilendirmedeki hatalar birkaç farklı durumdan dolay ortaya çıkabilir.

EZKH'de ölçüm gürültüsü ve hareket gürültüsü olmak üzere, belirsizliğe sebep olan

iki temel etken vardır. Ölçüm belirsizliğinin artması haritadaki işaretçilerin

belirsizliğinin artmasına sebep olur. Eğer bu belirsizlik çok fazla olursa birbirine yakın

olan iki işaretçinin belirsizlikleri çakışabilir. Şekil 3.20'de ölçüm belirsizliği birbiriyle

çakışan iki işaretçinin veri ilişkilendirme için oluşturabileceği sorun

görselleştirilmiştir. Böyle bir durumda robot hangi işaretçinin, tespit edilen işaretçi

olduğuna karar verirken hataya düşebilir. Eğer birden fazla ölçüm kullanılarak veri

ilişkilendirilmesi yapılırsa ölçüm belirsizliklerinin çakışmasından kaynaklı bu sorun

da çözülebilir.

46

Şekil 3.20 : EZKH'de ölçüm belirsizliği [49].

Hareket gürültüsü de veri ilişkilendirme açısından sorun oluşturabilecek bir durumdur.

Çok büyük hareket gürültüsü söz konusu olduğunda parçacıkların dağılımı da bir o

kadar büyüyecek ve konum belirsizliği artacaktır. Şekil 3.21'de konum belirsizliğinden

kaynaklanabilecek veri ilişkilendirme karmaşası örneklendirilmiştir. Sensörün

algıladığı iki işaretçi birbirlerine olan konumları bakımından, başka iki işaretçi ile

benzerlik gösterebilir. Farklı konumlarda ve yönelim açısındaki parçacıklar benzer

işaretçi çiftlerini yanlış tespit edebilir [49].

Şekil 3.21 : EZKH'de konum belirsizliği [49].

47

4. GELİŞTİRİLEN YÖNTEM

4.1 Giriş

EZKH için önerilen yöntemde, işaretçi tabanlı algoritmaların veri ilişkilendirme

aşaması için geliştirilen yeni bir yaklaşımla hız performansının artırılması

amaçlanmıştır. Özellikle parçacık filtresi tabanlı EZKH yöntemlerinde işaretçi

sayısının devasa boyutlara ulaşmasıyla birlikte veri ilişkilendirme işlemi çok büyük

ölçüde zaman kaybına neden olmaktadır. Çünkü sensör ölçümüyle tespit edilen

işaretçi, haritadaki bütün işaretçilerle karşılaştırılarak o işaretçinin kimliği

belirlenmeye çalışılmaktadır. Bu tez çalışmasında kullanılan FastSLAM'de veri

ilişkilendirme adımında her bir parçacık ve işaretçi için bölüm 3'teki denklem

grubunun tekrar tekrar hesaplanması gerekmektedir. Bu da bütün algoritma için büyük

bir işlem zamanının oluşması demektir. İşaretçi kimliğinin belirlenmesi için haritanın

tamamının incelenmesi yerine, aşağıda ayrıntılı olarak anlatılan bazı ölçütleri sağlayan

küçük bir alandaki işaretçilerin incelenmesi, gereksiz işlemlerin yapılmasını engeller.

Yani binlerce elemanın bulunduğu bir haritada belki de en fazla birkaç tane işaretçinin

veri ilişkilendirme prosedürüne girmesi söz konusu olabilir.

Birinci bölümde anlatıldığı üzere bu konuyla ilgili daha önce yapılmış olan çalışmalar

bulunmaktadır. [19]'daki çalışmaya göre bir işaretçi tespit edildiğinde haritadaki bütün

işaretçiler veri ilişkilendirme işlemine tabi tutulmazlar. Bunun yerine, sadece robot

üzerindeki sensörün algılama uzaklığı ve açısı içerisinde kalan işaretçiler bu adıma

sokulur. CESLAM olarak adlandırılan bu yaklaşım şekil 4.1'de görsel olarak ifade

edilmiştir. 21 tane işaretçi olan haritada robot sadece sensör algılama alanı içinde kalan

7 tane işaretçiyi veri ilişkilendirmeye sokmaktadır. Buradan kolaylıkla anlaşılacağı

üzere CESLAM yöntemi büyük bir hesap yükünü çok aza indirmiştir. Bu yaklaşımın

başarısı azımsanmayacak kadar büyük olmasına karşın, kullanılan sensör ve ortamdaki

işaretçi sayısına göre algoritmanın etkisinin azalma olasılığı vardır. Örneğin; üç

boyutlu tarama yapabilen ve algılama uzaklığı 10 metre olan bir lazer sensör kullanan

robot, tek bir ölçümde çok sayıda işaretçi tespit edebilir.

48

Şekil 4.1 : CESLAM yöntemi: sensör algılama alanı içinde kalan gri renkli

işaretçiler veri ilişkilendirmeye tabi tutulur.

Ayrıca parçacık filtresi temelli EZKH yaklaşımlarında bu teknik bazen, veri

ilişkilendirmeye alınması gereken işaretçileri atlayabilir. Gri renkli büyük üçgenin

robotu, beyaz renkli küçük üçgenin de bir parçacığı simgelediği şekil 4.2'de görüldüğü

üzere bu durum; tespit edilen bir işaretçinin, ilgili parçacığın sensör algılama alanı

dışında kaldığı zaman ortaya çıkar.

Şekil 4.2 : CESLAM'de oluşabilecek yanlış eşleştirme durumu.

Bu tez çalışmasında önerilen yöntemde, CESLAM'de olduğu gibi sensör algılama

alanı içinde kalan işaretçiler değil bu alandan daha küçük dairesel bir alandaki

işaretçiler ele alınır. Sensör algılama alanı ne kadar geniş olursa olsun bu dairenin alanı

değişmediği için veri ilişkilendirme aşamasında her zaman çok az sayıda işaretçi

hesaba katılır. Böylece, bu adımdaki işlem yükü hemen hemen aynı kalmaktadır.

49

4.2 Önerilen Yöntemin Teknik Ayrıntıları

Önerilen yöntem uygulamada oldukça basit olmasına karşın hız performansını

artırmadaki başarısı çok yüksektir. Çünkü; haritada çok büyük miktarda işaretçi olsa

bile veri ilişkilendirme prosedürü uygulanan işaretçi sayısı çok düşük kalmaktadır.

Yöntemin ana fikri şu şekildedir: Robot, sensörden aldığı ölçüme göre parçacıklara

ölçüm tahmini uygular. Merkezi bu tahmin sonucunda bulunan ve 𝑑 yarıçapı

genişliğinde bir dairesel alan belirlenir. Bu dairenin içinde kalan işaretçiler veri

ilişkilendirmeye tabi tutulurken dairenin dışında kalan işaretçiler atlanır. Çünkü

standart veri ilişkilendirme prosedürü uygulanırken karşılaştırılan bütün işaretçilerin

benzerlik olasılıkları hesaplanır ve en büyük olasılıklı olan işaretçi ele alınır. Eğer bu

işaretçi belli bir eşik değerinin altındaysa haritada olmayan yeni bir işaretçi olarak

kaydedilir. Dairenin yarıçapı da bu eşik değeri gözönünde bulundurularak belirlenir.

Bir işaretçinin konum belirsizliği ne kadar büyükse yakınında tespit edilen başka bir

işaretçinin ona olan benzerlik olasılığı da o kadar fazladır. Bir başka deyişle, robotun

bu iki işaretçiyi birbirinden ayırt etmesi için aralarındaki uzaklığın belli bir değerden

fazla olması gerekir ve belirsizliğin artmasıyla bu uzaklık da artar. Dairenin dışında

kalmasına rağmen bu benzerlik olasılığı eşik değerin üstünde olan bir işaretçi olabilir.

Bu hatanın yaşanmaması için bir işaretçinin belirsizliğinin en fazla olabileceği durum

gözönüne alınır. Bir lazer sensörünün işaretçi tespit edebileceği en uzak mesafede o

işaretçinin belirsizliği en büyüktür. Bu bilgiler ışığında, dairenin yarıçapı şekil 4.3'te

görüldüğü gibi deneysel ölçümlerle belirlenebilir. Belirsizliği gösteren elipsin iki

yarıçapı vardır. Bunlardan biri diğerinden daha kısa olabilir. Bu kısa yarıçap, dairenin

yarıçapı olarak seçilirse yukarıda bahsedildiği gibi benzerlik olasılığı eşik değerin

üstünde olan bir işaretçi dairenin dışında kalabilir. O yüzden uzun olan yarıçap seçilir.

Şekil 4.3 : Dairenin yarıçapının ölçümle belirlenmesi.

50

Şekil 4.4a'da gri renkli büyük üçgen robotu, beyaz renkli küçük üçgenler parçacıkları,

yıldızlar da işaretçileri simgelemektedir. Robot, aldığı ölçümü kullanarak parçacık için

ölçüm tahmini yapar ve siyah işaretçileri kapsayan daireyi belirler. Şekil 4.4b'de

görüldüğü gibi ölçümün açısı ve uzaklığı, parçacığın konumu ve yönelimine

eklendiğinde dairenin merkezi hesaplanır. Bu dairenin içinde kalan siyah işaretçiler

veri ilişkilendirmeye sokulurken dışında kalanlar da atlanır.

Şekil 4.4 : Önerilen yöntemde bir parçacık için dairenin belirlenmesi.

Her bir parçacık için farklı olan dairenin merkezi denklem 4.1 ve 4.2'deki gibi

hesaplanır. burada 𝜙 ölçümün sensöre göre açısını, 𝑟 ölçümün uzaklığını belirtirken

𝑐𝑥 ve 𝑐𝑦 de sırasıyla dairenin merkezinin 𝑥 ve 𝑦 koordinatlarını belirtir.

 𝑐𝑥 = 𝑠𝑡,𝑥
[𝑚]

+ 𝑟 𝑐𝑜𝑠(𝑠𝑡,𝑡ℎ𝑒𝑡𝑎
[𝑚]

+ 𝜙) (4.1)

 𝑐𝑦 = 𝑠𝑡,𝑦
[𝑚]

+ 𝑟 𝑠𝑖𝑛(𝑠𝑡,𝑡ℎ𝑒𝑡𝑎
[𝑚]

+ 𝜙) (4.2)

𝜇n,x
[𝑚]

 ve 𝜇n,y
[𝑚]

 𝑚'inci parçacığa ait 𝑛'inci işaretçinin sırasıyla 𝑥 ve 𝑦 koordinatlarını

belirtmek üzere, haritadaki bir işaretçinin dairenin merkezine olan uzaklığı 4.3'teki

gibi bulunur.

 𝑙𝑛 = √(𝑐𝑥 − 𝜇n,x
[𝑚]

)2 + (𝑐𝑦 − 𝜇n,y
[𝑚]

)2 (4.3)

Eğer 𝑙𝑛, dairenin yarıçapı 𝑑'den büyükse bu işaretçi veri ilişkilendirmeye alınmaz.

Eğer küçükse, benzerlik olasılığı hesaplanır. Dairenin içinde kalan bütün işaretçiler

için benzerlik olasılığı hesaplandıktan sonra en büyük benzerliği olan işaretçi

ölçümdeki işaretçidir denir. Şekil 4.5'te, geliştirilen yöntemin akış şeması

görülmektedir.

51

Şekil 4.5 : Geliştirilen yöntemin akış şeması.

52

53

5. UYGULAMA

Mobil robotlarda EZKH yöntemlerinin hız performansını artırmak için geliştirilen

yöntemin başarısını görmek için Gazebo'da hazırlanan iki farklı haritada simülasyonlar

gerçekleştirilmiştir. Üç farklı EZKH yaklaşımı her bir haritada Turtlebot platformu

kullanılarak 30'ar defa çalıştırılmıştır. Elde edilen sonuçlar hız performansı, robotun

gittiği yolun hesaplaması ve haritanın doğruluğu bakımından incelenmiştir.

5.1 Düzleştirme Filtresi

Yeni EZKH yönteminin uygulanması sırasında Kinect sensörü ile ilgili bazı zorluklar

yaşandı. Çünkü Kinect daha çok, eğlence amaçlı olarak tasarlandığı için bilimsel ve

endüstriyel çalışmalarda kullanılanılan diğer lazer sensörleri kadar doğrulukta ölçüm

yapamamaktadır. Bu tez çalışmasında Kinect, 2-boyutlu lazer sensörü gibi

kullanılmıştır. Şekil 5.1'de, robota 2.5 metre uzaklıktaki bir duvardan alınan iki ölçüm

görülmektedir. Şekil 5.1a'da görülen çizim sensörden alınan verinin işlenmemiş

halidir. Ölçüm uzaklığı az olmasına karşın elde edilen veri oldukça gürültülüdür ve

işaretçi tespitini güçleştirmektedir. Şekil 5.1b'de ise düzleştirme filtresi uygulanmış bir

ölçüm görülmektedir. Bu ölçüm, EZKH'de kullanmak için daha uygundur.

Şekil 5.1 : Kinect sensörü ile 2.5 metre uzaklıktaki düz bir duvardan alınan

işlenmemiş ölçüm.

54

Sinyal işleme ve görüntü işleme gibi alanlarda genellikle ortalama filtresi, ortanca

filtresi ve Gauss filtresi gibi düzleştirme filtreleri kullanılır. Uygulama kolaylığı ve iyi

sonuç vermesi nedeniyle Kinect sensöründen alınan veri, ortalama filtresi uygulanarak

kullanılmıştır. Bu filtrenin işleyişi şu şekildedir: sensörden gelen veri bir dizi olarak

olarak düşünüldüğünde filtre edilecek elemanın kendisinin ve kendisinden önce ve

sonra gelen 𝑛 tane elemanın toplamının aritmetik ortalaması alınır. Elde edilen değer

filtre edilen eleman ile değiştirilir. Bu işlem bütün bir dizi boyunca her bir elemena

sırasıyla uygulanır. Ancak baştaki ve sondaki 𝑛 tane eleman bu filtreleme işlemine tabi

tutulamaz [54].

5.2 İşaretçi Çıkarımı

İşaretçi çıkarımı için bölüm 3'te anlatılan eğrilik fonksiyonu yöntemi kullanılmıştır.

şekilde köşelerin, düzlüklerin ve yuvarlak bir cismin olduğu bir ortamdan alınan

ölçüme ait çizim görülmektedir. Şekil 5.2'de de bu ölçümden hesaplanan eğrilik

fonksiyonunun çizimi vardır. Şekil 5.2'de, 1'den 5'e kadar numaralandırılmış olan

noktaların şekil 5.3'teki eğrilik fonksiyonunda karşılığı olan yerler de aynı sırayla

numaralandırılmıştır. 1 ve 3 ile gösterilen köşeler, eğrilik fonksiyonunda yukarıya

doğru tepe oluştururken 2 ile gösterilen köşe, eğrilik fonksiyonunda aşağıya doğru tepe

oluşturmuştur. Bu özellik, işaretçilere kimlik ataması yapılırken büyük avantaj sağlar.

Şekil 5.2 : Köşeli, düz ve yuvarlak cisimlerin olduğu bir ortamdan alınan sensör

ölçümü.

55

Ölçümde 4 ve 5 noktaları arasında kalan yuvarlak cisim eğrilik fonksiyonunda sıfırın

üstünde düz bir çizgi olarak karşılık bulmuştur. Bunun gibi şekiller işaretçi olarak

kullanılırken şeklin merkezini işaretçinin konumu gibi kabul etmek mümkündür.

Şekil 5.3 : Köşeli, düz ve yuvarlak cisimlerin olduğu bir ortamdan alınan sensör

ölçümünün eğrilik fonksiyonu.

5.3 Gazebo Simülatöründe Oluşturulan Ortamlar ve Gerçek Uygulama

Ortamları

Şekil 5.4'te görülen 1. ortamda robot, siyah çizgi ile gösterilen rotayı takip etmektedir

ve bu rotada bir tur attığında toplamda 13 tane işaretçi tespit edebilmektedir. İşaretçiler

küp şeklindeki cisimlerin, sensörün gördüğü köşe kısımlarıdır. Bu ortam, robotun bir

ölçümde en fazla bir tane işaretçi tespit edebileceği şekilde hazırlanmıştır.

Şekil 5.4 : Gazebo simülatöründe hazırlanan 1. ortam.

56

Şekil 5.5'teki ortamda robot yine siyah çizgi ile gösterilen rotayı takip etmektedir ve

bir tur sonunda toplamda 21 tane işaretçi tespit edebilmektedir. Robot bu ortamda

ilerlerken bazen bir ölçümde sadece bir işaretçi bazen de iki işaretçi tespit

edebilmektedir. Böylece ortamın karmaşıklığı arttıkça, önerilen yöntemin ne kadar

başarılı olduğu kolayca gözlemlenebilmektedir.

Şekil 5.5 : Gazebo simülatöründe hazırlanan 2. ortam.

Şekil 5.6 ve şekil 5.7'de görülen laboratuvar ortamlarında robot, simülasyon

ortamlarında olduğu gibi kare şeklinde bir rotayı takip etmektedir. Yine simülasyon

ortamlarında olduğu gibi iki ortam, işaretçilerin sayısı ve konumu açısından farklı

karmaşıklıkta olacak şekildedir. Böylece farklı EZKH yöntemlerinin başarılarının

daha net anlaşılması sağlanmaktadır.

Şekil 5.6 : Gerçek uygulama ortamı-1.

57

Şekil 5.7 : Gerçek uygulama ortamı-2.

5.4 Geliştirilen Yöntem İle Oluşturulan Haritalar

Şekil 5.5 ve şekil 5.6'daki ortamlarda çalıştırılan robotun, önerilen yöntemle

oluşturuduğu işaretçi haritaları şekil 5.7 ve şekil 5.8'de görülmektedir. Çizimlerde

robot yeşil renkte belirtilmiş ve sensörün algılama alanının sınırları da mavi çizgi ile

gösterilmiştir. Bu haritalar çizdirilirken parçacık filtresindeki önem ağırlığı en yüksek

olan parçacığın oluşturduğu harita gözönüne alınmıştır. Kırmızı nokta ile işaretlenmiş

yerler robotun gördüğü işaretçilerin gerçek konumları, sarı nokta ile işaretlenmiş yerler

de bu işaretçilerin hesaplanan konumlarıdır. Merkezi sarı noktalar olan beyaz renkli

elipsler işaretçilerin belirsizliklerini gösterir. Bu belirsizlikler, robot işaretçiyi ilk

gördüğünde daha büyükken daha sonra robot tekrar aynı işaretçiyi gördüğünde

güncellenerek azalmıştır.

Haritalarda ayrıca robotun gittiği gerçek yol ve EZKH ile hesaplanan yol da

çizdirilmiştir. Beyaz renkli kare çizgi gerçek yolu, siyah renkli kare çizgi de parçacık

filtresi ile hesaplanan yolu gösterir.

58

Şekil 5.8 : Önerilen yöntemle birinci simülasyon ortamında yürütülen robotun

oluşturduğu harita.

Şekil 5.9 : Önerilen yöntemle ikinci simülasyon ortamında yürütülen robotun

oluşturduğu harita.

59

5.5 Ölçüm Sonuçları

Üç farklı yöntem her bir simülasyon ortamında 30'ar defa çalıştırılarak harita

hesaplama hataları, güzergah hataları ve çalışma süreleri ile ilgili sonuçlar elde

edilmiştir. Çizelge 5.1'de 1. ve 2. ortamda tespit edilen işaretçilerin gerçek

konumlarına göre santimetre cinsinden hataları verilmiştir. Buradaki değerler şu

şekilde elde edilmiştir: Her bir hesaplanan işaretçinin gerçek konumuna olan uzaklığı

2-normuna göre hesaplandıktan sonra bu uzaklıklar toplanıp işaretçi sayısına

bölünerek hata bulunmuştur.

Çizelge 5.1 : EZKH yöntemlerine ait işaretçi konumu hesaplama hataları.

EZKH

Yöntemleri

İşaretçi Konum

Hataları(cm)

(1.Ortam)

İşaretçi Konum

Hataları(cm)

(2.Ortam)

FastSLAM1.0 6.8 9.7

CESLAM 6.9 9.6

Önerilen Yöntem 6.8 9.5

Çizelge 5.2'de üç farklı EZKH yönteminin güzergah hesaplama hataları görülmektedir.

Bu hataları elde etmek için robotun her adımdaki hesaplanan konumu ile gerçek

konumu arasındaki uzaklık yine 2-normuna göre hesaplandıktan sonra bütün

adımlardaki uzaklıklar toplanmıştır.

Çizelge 5.2 : EZKH yöntemlerine ait işaretçi güzergah hesaplama hataları.

EZKH

Yöntemleri

Güzergah

Hataları(m)

(1.Ortam)

Güzergah

Hataları(m)

(2.Ortam)

FastSLAM1.0 10.14 9.71

CESLAM 9.92 9.59

Önerilen Yöntem 9.83 9.72

Çizelge 5.3 ve çizelge 5.4'te üç farklı EZKH yönteminin simülasyon ortamları ve

gerçek uygulama ortamlarındaki çalışma zamanları verilmiştir. Bu değerler, robotun

harekete başladığı andan itibaren başladığı noktaya tekrar gelene kadar izlediği yol

boyunca her bir döngüde harcadığı süreler toplanarak elde edilmiştir. Simülasyon

ortamlarında elde edilen değerlerin gerçek uygulama ortamlarında elde edilen

değerlerden çok daha büyük olmasının sebebi, simülasyon ortamlarının daha büyük

olması ve bu ortamlardaki nesne sayısının daha fazla olmasıdır.

60

Çizelge 5.3 : EZKH yöntemlerinin simülasyon ortamlarındaki çalışma zamanları.

EZKH

Yöntemleri

Çalışma Zamanı(sn)

(1. Ortam)

Çalışma Zamanı(sn)

 (2.Ortam)

FastSLAM1.0 9.27 19.91

CESLAM 4.41 6.66

Önerilen Yöntem 4.19 5.96

Çizelge 5.4 : EZKH yöntemlerinin gerçek ortamlardaki çalışma zamanları.

EZKH

Yöntemleri

Çalışma Zamanı(sn)

(1.Ortam)

Çalışma Zamanı(sn)

 (2.Ortam)

FastSLAM1.0 0.81 1.22

CESLAM 0.52 0.69

Önerilen Yöntem 0.46 0.58

61

6. SONUÇ VE ÖNERİLER

Bu tez çalışmasında, günümüze kadar geliştirilen EZKH yöntemlerinin hız

performanslarının artırılması için yeni bir yöntem geliştirilmiş ve simülasyon

ortamında uygulanarak farklı EZKH algoritmalarıyla karşılaştırması yapılmıştır.

Ancak bu karşılaştırmalar yapılmadan önce uygulamanın kolaylaşması için bir takım

işlemler gerçekleştirilmiştir. İlk olarak, sensörden alınan gürültülü veri üzerinde

düzleştirme filtresi uygulanmış ve daha tutarlı veriler elde edilmiştir. Böylece, ölçüm

verisinin anlamlandırılmasının çok daha kolay olduğu anlaşılmıştır.

Ek olarak; işaretçi çıkarımı yapılırken, eğrilik fonksiyonu yönteminden

yararlanılmıştır. Bu yöntem kullanılarak, geometrik şekilli cisimlerin tek bir

fonksiyonla tespit edilebildiği görülmüş ve işaretçi kimliklendirmedeki başarısı ortaya

konmuştur.

Bölüm 5'te elde edilen sonuçlar incelendiğinde, yeni yöntemin robot konumu

hesaplama ve harita oluşturmadaki başarısının hemen hemen hiç değişmediği

görülmüştür. Bunun yanında çalışma süreleri incelendiğinde, önerilen yöntemin

parçacık filtresi tabanlı ilk yaklaşımlardan biri olan FastSLAM 1.0'a göre büyük

oranda ilerleme kaydettiği anlaşılmıştır. FastSLAM 1.0'dan sonra geliştirilen

CESLAM yöntemiyle bu çalışmada önerilen yöntem karşılaştırıldığında her ne kadar

çok büyük ölçekli bir hız geliştirilmesi görülmese de açık bir şekilde yeni yöntemin

hız performansının daha iyi olduğu anlaşılmıştır. Bu sonuçlardan anlaşılmaktadır ki

ortamdaki işaretçiler arttıkça, geliştirilen EZKH algoritmasının başarısı daha belirgin

hale gelmektedir.

Düzlemsel yörüngede ilerleyen robotlar ve iki boyutlu ölçüm yapan sensörler için

başarısının ortaya çıktığı bu yöntemin üç boyutlu ölçüm alan sensörler için daha da

başarılı sonuçlar vereceği düşünülmektedir. Çünkü, bu tarz sensörler çok daha fazla

bilgi toplarlar ve bunun sonucunda tek bir ölçümde alınabilecek işaretçi sayısı da çok

fazla olabilmektedir. Geliştirilen yeni yöntemin, farklı sensörler kullanarak farklı

EZKH yöntemleri üzerinde uygulanıp sonuçlarının incelenmesi planlanmaktadır.

62

63

7. KAYNAKLAR

[1] Ort, T. (2013). Art and Life in Modernist Prague: Karel Čapek and His

Generation, 1911-1938. Springer.

[2] Siciliano, B., & Khatib, O. (2016). Handbook of robotics. Springer.

[3] Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. Cambride,

MA: MIT Press.

[4] Smith, R. C., & Cheeseman, P. (1986). On the Representation and Estimation

of Spatial Uncertainty. The International Journal of Robotics Research,

5(4), 56–68. doi:10.1177/027836498600500404

[5] Smith, R., Self, M., & Cheeseman, P. (1990). Estimating Uncertain Spatial

Relationships in Robotics. Autonomous Robot Vehicles, 4(April), 167–

193. doi:10.1109/ROBOT.1987.1087846

[6] J. J. Leonard and H. F. Durrant-Whyte. (1991). Simultaneous map building

and localization for an autonomous mobile robot, Intelligent Robots and

Systems '91. 'Intelligence for Mechanical Systems, Proceedings IROS

'91, (pp. 1442-1447). IEEE/RSJ International Workshop on, Osaka,

1991, vol.3.

[7] Dissanayake, M. W. M. G., Newman, P., Durrant-Whyte, H. F., Clark, S.,

& Csorba, M. (2000). An experimental and theoretical investigation

into simultaneous localisation and map building. In Experimental

Robotics VI (pp. 265–274). London: Springer London.

doi:10.1007/BFb0119405

[8] J. Guivant & E. Nebot. (2001). Optimization of the simultaneous localization

and map building algorithm for real time implementation. IEEE

Transaction of Robotic and Automation, 17(3), 242-257.

doi:10.1109/70.938382

64

[9] Leonard, J. J., & Feder, H. J. S. (2000). A computationally efficient method

for large-scale concurrent mapping and localization. In D. Koditschek

& J. Hollerbach (Eds.), Robotics Research: The Ninth International

Symposium. Snowbird, Utah: Springer Verlag.

[10] Lu, F., & Milios, E. (1997). Globally Consistent Range Scan Alignment for

Environment Mapping. Autonomous Robots, 4(4), 333–349.

doi:10.1023/A:1008854305733

[11] Montemerlo, M., Thrun, S., Koller, D., & Wegbreit, B. (2002). FastSLAM:

A Factored Solution to the Simultaneous Localization and Mapping

Problem. In Eighteenth National Conference on Artificial Intelligence

(pp. 593–598). Menlo Park, CA, USA: American Association for

Artificial Intelligence.

[12] Murphy, K. P. (2000). Bayesian Map Learning in Dynamic Environments. In

S. A. Solla, T. K. Leen, & K. Müller (Eds.), Advances in Neural

Information Processing Systems 12 (pp. 1015–1021). MIT Press.

Retrieved from http://papers.nips.cc/paper/1716-bayesian-map-

learning-in-dynamic-environments.pdf

[13] C. Kim, R. Sakthivel and W. K. Chung, (2008). Unscented FastSLAM: A

Robust and Efficient Solution to the SLAM Problem. IEEE

Transactions on Robotics, 24(4), 808-820.

doi:10.1109/TRO.2008.924946

[14] Kwak, N., Kim, I. K., Lee, H. C., & Lee, B. H. (2007). Adaptive prior boosting

technique for the efficient sample size in FastSLAM. IEEE

International Conference on Intelligent Robots and Systems (pp. 630–

635). doi:10.1109/IROS.2007.4399039

[15] Xu, W., Jiang, R., Xie, L., Tian, X., & Chen, Y. (2017). Adaptive Square-root

Transformed Unscented FastSLAM with KLD-resampling.

International Journal of Systems Science, 48(6), 1322–1330.

doi:10.1080/00207721.2016.1256449

[16] Chang, H. J., Lee, C. S. G., & Hu, Y. C. (2004). A computational efficient

SLAM algorithm based on logarithmic-map partitioning. 2004

IEEE/RSJ International Conference on Intelligent Robots and Systems

65

(IROS) (IEEE Cat. No.04CH37566), 2, 1041–1046.

doi:10.1109/IROS.2004.1389534

[17] M. Yokozuka and O. Matsumoto, (2012). Sub-map dividing and re-alignment

FastSLAM with scalable voxel map system. 2012 IEEE/ASME

International Conference on Advanced Intelligent Mechatronics (AIM),

Kachsiung, 2012, pp. 180-185. doi: 10.1109/AIM.2012.6265914

[18] K. Kouzoubov and D. Austin, (2004). Hybrid topological/metric approach to

SLAM. Proceedings. ICRA '04. 2004 IEEE International Conference

on Robotics and Automation, pp. 872-877 Vol.1.

doi:10.1109/ROBOT.2004.1307259

[19] C. K. Yang, C. C. Hsu and Y. T. Wang, (2013). Computationally efficient

algorithm for simultaneous localization and mapping (SLAM). 10th

IEEE International Conference on Networking, Sensing and Control

(ICNSC), Evry, 2013, pp. 328-332. doi: 10.1109/ICNSC.2013.6548759

[20] Url-2 <http://www.turtlebot.com/turtlebot2/> alındığı tarih: 10.04.2017

[21] Url-1 <http://wiki.ros.org/Robots/TurtleBot> alındığı tarih: 10.04.2017

[22] Oliver, A., Kang, S., Wünsche, B. C., & MacDonald, B. (2012). Using the

Kinect As a Navigation Sensor for Mobile Robotics. 27th Conference

on Image and Vision Computing, (pp. 509–514). New York, NY, USA:

ACM. doi:10.1145/2425836.2425932

[23] Url-3 <https://msdn.microsoft.com/en-us/library/jj131033.aspx> alındığı

tarih: 10.04.2017

[24] Quigley, M., Berger, E., & Ng, A. Y. (2007). STAIR : Hardware and Software

Architecture. AAAI 2007 Robotics Workshop, Vancouver, BC, 31–37.

[25] Boucher, S. (2012). Obstacle Detection and Avoidance Using TurtleBot

Platform and XBox Kinect. New York, NY, USA.

[26] Koenig, N. & Howard, A. (2004). Design and use paradigms for gazebo, an

open-source multi-robot simulator. Intelligent Robots and Systems,

2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International

Conference on (Vol. 3, pp. 2149-2154). IEEE.

66

[27] Url-4 <http://opencv.org/about.html/> alındığı tarih: 14.04.2017.

[28] M. R. Naminski. (2013). An Analysis of Simultaneous Localization and

Mapping Algorithms. Macalester Math, Statistics and Computer

Science Department.

[29] Leung, K. Y. K. (2010). An Introduction to Multi-robot Simultaneous

Localization and Mapping. Middlebury College. Retrieved from

http://middarchive.middlebury.edu/cdm/ref/collection/scholarship/id/1

59.

[30] Durrant-Whyte, H. & Bailey, T. (2006). Simultaneous Localisation and

Mapping (SLAM): Part I The Essential Algorithms. IEEE robotics &

automation magazine, 13 (2), 99-110.

[31] Riisgaard, S., & Blas, M. R. (2004). SLAM for Dummies: A Tutorial Approach

to Simultaneous Localization and Mapping. Retrieved from

http://ocw.num.edu.mn/NR/rdonlyres/Aeronautics-and-

Astronautics/16-412JSpring-2005/9D8DB59F-24EC-4B75-BA7A-

F0916BAB2440/0/1aslam_blas_repo.pdf.

[32] Srinivasan, N. (2010). Feature based landmark extraction for real time visual

SLAM. 2nd International Conference on Advances in Recent

Technologies in Communication and Computing, (pp. 390–394).

doi:10.1109/ARTCom.2010.10.

[33] F. Bonaccorso, G. Muscato and S. Baglio, (2012). Laser range data scan-

matching algorithm for mobile robot indoor self-localization. World

Automation Congress, Puerto Vallarta, Mexico, pp. 1-5.

[34] Fischler, M. A., & Bolles, R. C. (1981). Random Sample Consensus: A

Paradigm for Model Fitting with Applications to Image Analysis and

Automated Cartography. Communications of the ACM, 24(6), 381–

395. doi:10.1145/358669.358692.

[35] Núñez, P., Vázquez-Martín, R., Del Toro, J. C., Bandera, A., & Sandoval,

F. (2008). Natural landmark extraction for mobile robot navigation

based on an adaptive curvature estimation. Robotics and Autonomous

Systems, 56 (3), 247-264.

67

[36] Allawi, Z. T., & Abdalla, T. Y. (2014). Article: An Accurate Dead Reckoning

 Method based on Geometry Principles for Mobile Robot Localization.

 International Journal of Computer Applications, 95(13), 21–25.

 doi:10.5120/16654-6632.

[37] R. Siegwart, I. R. Nourbakhsh. (2004). Introduction to Autonomous Mobile

Robots. The MIT Press.

[38] D. Scaramuzza and F. Fraundorfer, (2011). Visual Odometry [Tutorial]. IEEE

Robotics & Automation Magazine, 18(4), pp. 80-92.

doi:10.1109/MRA.2011.943233.

[39] Aqel, M. O. A., Marhaban, M. H., Saripan, M. I., & Ismail, N. B. (2016).

Review of visual odometry: types, approaches, challenges, and

applications. SpringerPlus, 5(1), 1897. doi:10.1186/s40064-016-3573-

7.

[40] Hähnel, D., Burgard, W., Wegbreit, B., & Thrun, S. (2003). Towards Lazy

Data Association in {SLAM}. International Symposium of Robotics

Research (ISRR’03). Sienna, Italy: Springer.

[41] Cooper, A. (2005). A comparison of data association techniques for

simultaneous localization and mapping. Massachusetts Instıtute of

Technology. Retrieved from http://dspace.mit.edu/handle/1721.1/3243

8.

[42] C. Stachniss, D. Hahnel & W. Burgard, (2004). Exploration with active loop-

closing for FastSLAM. IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566),

2004, pp. 1505-1510 vol.2.

[43] Kleinbauer, R. (2004). Kalman Filtering Implementation with Matlab Study

Report in the Field of Study. Technology. Retrieved from

https://pdfs.semanticscholar.org/cb43/08212420e350701233495490c2

a5c8905cd4.pdf.

[44] Welch, G., & Bishop, G. (1995). An Introduction to the Kalman Filter. Chapel

Hill, NC, USA: University of North Carolina at Chapel Hill.

[45] E. A. Rückert. (2009). Simultaneous Localisation and Mapping for Mobile

Robots with Recent Sensor Technologies. Graz University of

http://dspace.mit.edu/handle/1721.1/3243%208
http://dspace.mit.edu/handle/1721.1/3243%208

68

Technology, Institute for Computer Graphics and Vision, Master

Thesis. Austria, December, 2009.

[46] Moral, P. Del. (1997). Nonlinear filtering: Interacting particle resolution.

Comptes Rendus de l’Académie Des Sciences - Series I - Mathematics,

325(6), 653–658. doi:10.1016/S0764-4442(97)84778-7.

[47] Kim, S., Shephard, N., & Chib, S. (1998). Stochastic Volatility: Likelihood

Inference and Comparison with ARCH Models. The Review of

Economic Studies, 65(3), 361. doi:10.1111/1467-937X.00050.

[48] Gustafsson, F., Gunnarsson, F., Bergman, N., Forssell, U., Jansson, J.,

Karlsson, R., & Nordlund, P.-J. (2002). Particle Filters for

Positioning, Navigation, and Tracking. IEEE Transactions on Signal

Processing, 50(2), 425–437. doi:10.1109/78.978396.

[49] Fox, D., Burgard, W., Dellaert, F., & Thrun, S. (1999). Monte Carlo

Localization: Efficient Position Estimation for Mobile Robots. 16th

National Conference on Artificial Intelligence and the Eleventh

Innovative Applications of Artificial Intelligence Conference Innovative

Applications of Artificial Intelligence, (pp. 343–349). Menlo Park, CA,

USA.

[50] E. Orhan. (2012). Bayesian Inference: Particle Filtering. Department of Brain

& Cognitive Sciences, University of Rochester. USA.

[51] Montemerlo, M., & Thrun, S. (2010). FastSLAM: A Scalable Method for the

Simultaneous Localization and Mapping Problem in Robotics (1st ed.).

Springer Publishing Company, Incorporated.

[52] Kong, A., Liu, J. S., & Wong, W. H. (1994). Sequential Imputations and

Bayesian Missing Data Problems. Journal of the American Statistical

Association, 89(425), 278–288. doi:10.1080/01621459.1994.10476469

[53] Havangi, R., Nekoui, M. A., & Teshnehlab, M., (2012). An improved

FastSLAM framework using soft computing." Turkish Journal of

Electrical Engineering & Computer Sciences 20.1 (2012): 25-46.

doi:10.3906/elk-1004-504.

69

[54] Url-5 <http://homepages.inf.ed.ac.uk/rbf/HIPR2/filtops.htm> alındığı tarih:

26.04.2017.

70

71

ÖZGEÇMİŞ

Ad-Soyad : Ziya Uygar YENGİN

Doğum Tarihi ve Yeri : 12.04.1989/Ağlasun

E-posta : yengin@itu.edu.tr

ÖĞRENİM DURUMU:

 Lisans : Kocaeli Üniversitesi Mekatronik Mühendisliği (2013)

 Yüksek Lisans : İstanbul Teknik Üniversitesi (halen)

