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DESIGN AND IMPLEMENTATION OF A RULE-BASED DECISION 

SUPPORT SYSTEM FOR DYNAMIC CUSTOMER RELATIONSHIP 

MANAGEMENT 

 

ABSTRACT 

 

Today, business customers are quite demanding and they expect on time delivery, 

short lead times, high quality and affordable prices. In addition, they have different 

expectations, preferences, and tolerances. On the other side, manufacturing companies 

have limited resources, and they are confronted with many complex production 

planning and control (PPC) decisions. In this regard, integrating customer relationship 

management (CRM) and PPC approaches help companies to build production plans or 

strategies around the customers, focus on key customers, offer more customized 

solutions and obtain long term business relationships. 

 

This dissertation aims to develop a decision support system (DSS) which integrates 

CRM and PPC approaches to use manufacturing capabilities more effectively in 

satisfying customers. To this aim, a job shop system is dealt with and lot streaming is 

applied to accelerate production flow. In sublot scheduling phase, dynamic scheduling 

is performed by considering machine-based dispatching rules. Sublot and dispatching 

rule configurations are determined simultaneously by a simulated annealing-based 

simulation-optimization approach. Customer-oriented dispatching rules are proposed 

to ensure the prioritization of orders from key customers. In addition, multiple 

customer segments with different importance weights, their expectations and penalties 

on tardiness, earliness and order completion rate on due date are considered and a 

customer-focused objective function is formulated.  

 

In order to provide a well-adjusted structure in terms of satisfaction levels of 

different customer segments, weight setting functions that dynamically compute the 

weights in the proposed customer-oriented dispatching rules are defined. It is aimed to 

determine near-optimal values of the segment-based parameters of the weight setting 
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functions. To this aim, differential evolution-based simulation-optimization approach 

is used. 

 

The results reveal that the proposed DSS provides more effective use of resources 

in satisfying customers, and can easily be implemented by manufacturing companies 

in practice by adopting their demand structure, customer base, customer weight 

settings and processing features. 

 

Keywords: Customer relationship management, production planning and control, 

simulation optimization, decision support system, dynamic order prioritization 
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DİNAMİK MÜŞTERİ İLİŞKİLERİ YÖNETİMİNE YÖNELİK KURAL 

TABANLI BİR KARAR DESTEK SİSTEMİ TASARIMI VE UYGULAMASI 

 

ÖZ 

 

Günümüzde endüstriyel müşteriler oldukça talepkar olup, üretici firmalardan 

zamanında teslimat, kısa teslim süreleri, yüksek kalite ve kabul edilebilir fiyatlar 

beklemektedir. Bunun yanında, müşterilerin farklı konularda farklı toleransları, 

beklentileri ve tercihleri olabilmektedir. Öte yandan, kısıtlı kaynakları olan üretici 

firmalar ise, birçok karmaşık üretim planlama ve kontrol (ÜPK) kararları ile karşı 

karşıya kalmaktadır. Bu bağlamda, müşteri ilişkileri yönetimi (MİY) konuları ile ÜPK 

konularının bütünleştirilmesi, müşteri odaklı üretim planlarının oluşturulmasında, 

firmaya büyük oranda kar getiren anahtar müşterilere odaklanılmasında, müşteriye 

özgü çözümlerin sunulmasında ve uzun dönemli iş ilişkilerinin geliştirilmesinde 

yardımcı olacaktır.  

 

Bu tez kapsamında, üreticilerin imalat kabiliyetlerinin müşteri memnuniyetine 

yönelik olarak daha etkin bir şekilde kullanılması için MİY ve ÜPK yaklaşımlarını 

bütünleştiren bir karar destek sisteminin (KDS) tasarlanması amaçlanmıştır. Bu amaç 

doğrultusunda, bir atölye tipi üretim sistemi ele alınarak üretim akışını hızlandırmak 

amacıyla kafile bölme ve kaydırma yaklaşımı kullanılmıştır. Alt kafilelerin 

çizelgelenmesi aşamasında ise makine bazlı sıralama kuralları kullanılarak dinamik 

çizelgeleme yapılmıştır. Alt kafile ve sıralama kurallarına ilişkin konfigürasyonlara 

tavlama benzetimi tabanlı simülasyon optimizasyon yaklaşımı ile eş zamanlı olarak 

karar verilmiştir. Anahtar müşterilerden gelen siparişlerin önceliklendirilmesini 

sağlamak amacıyla müşteri odaklı sıralama kuralları geliştirilmiştir. Ek olarak, farklı 

müşteri segmentleri, bu segmentlerin geç teslimat, erken teslimat ve verilen teslim 

tarihinde üretim kafilesinin tamamlanma oranına ilişkin beklentileri ve bu 

beklentilerden sapmalara verdikleri ceza katsayıları dikkate alınarak müşteri odaklı bir 

amaç fonksiyonu oluşturulmuştur.  
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Öte yandan, müşteri memnuniyet düzeylerinin müşteri segmentleri bazında uygun 

bir şekilde sağlanabilmesi amacıyla, müşteri odaklı sıralama kurallarında kullanılan 

ağırlıkları dinamik olarak belirleyen ağırlık atama fonksiyonları tanımlanmıştır. Bu 

fonksiyonlarda kullanılan segment bazlı parametrelerin optimuma yakın değerlerinin 

bulunması amaçlanmış ve bu doğrultuda diferansiyel gelişim tabanlı bir simülasyon 

optimizasyon yaklaşımı kullanılmıştır. 

 

Elde edilen sonuçlar, önerilen KDS’nin atölye tipi üretim sistemlerinde müşteri 

memnuniyetinin sağlanmasında etkin bir şekilde kullanılabileceğini ve farklı firmalar 

tarafından kendi talep, müşteri ve imalat yapılarına göre düzenlenerek kolaylıkla 

kullanılabileceği ortaya koymuştur. 

 

Anahtar kelimeler: Müşteri ilişkileri yönetimi, üretim planlama ve kontrol, 

simülasyon-optimizasyon, karar destek sistemi, dinamik sipariş önceliklendirme 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Motivation 

 

Today, business customers are quite demanding and they expect on time delivery, 

short lead times, high quality and affordable prices. In addition, they have many 

options and they can rapidly switch to other companies. Furthermore, they have 

different expectations, preferences, and tolerances on various issues. On the other 

hand, manufacturing companies have limited resources and production capacity, and 

they are confronted with many complex production planning and control (PPC) 

decisions such as order acceptance, order scheduling, lot sizing, due date setting, 

capacity allocation etc.  

 

In the past, manufacturing companies focused heavily on engineering and 

production processes in order to gain market power. However, today, they face tougher 

competition and have realized that customers are the main reason for a company’s 

existence. Therefore, customer orientation becomes an important strategy for the 

manufacturing companies in gaining sustainable competitive advantage. In this 

concern, manufacturing companies should first understand their customers’ 

expectations on various issues and then these issues should be reflected to the PPC 

decisions so that limited resources can be used effectively in accordance with the value 

of customers. In this way, companies can create a customer oriented structure which 

leads increasing customer loyalty, repeat purchasing behavior, long term business 

relationships, and new business opportunities. However, at this point the challenge is 

to develop an integrated decision support system (DSS) that collects information about 

customers and provide the efficient PPC decisions so as to meet customer expectations.  

 

Creating a customer oriented structure necessitates deeper analysis of customer 

base and customer value analysis. It should be noted that not every customer has equal 

importance to the company. Therefore, manufacturing companies should not give the 

same priority to all customers in PPC decisions. On the other hand, another important 
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issue for the manufacturing companies is the identification of customer expectations. 

For instance, in business-to-business (B2B) markets, customers consider various 

issues such as price, quality, technological capability, financial stability, just-in-time 

(JIT) delivery practices in the supplier selection process. Among them, timeliness is 

an important concern and both earliness and tardiness damage the reputation of 

manufacturing companies and may cause loss of customers in the long run. Especially 

companies in a make to order (MTO) environment adopting JIT philosophy need high 

level of on time delivery performance. In this concern, setting reasonable due dates 

and keeping promises becomes important for the manufacturers to ensure customer 

satisfaction.  

 

The aforementioned facts are the main source of our motivation at the beginning of 

this research. The main objective of this dissertation is to develop a DSS which 

integrates customer relationship management (CRM) and PPC approaches in order to 

use manufacturing capabilities more effectively in satisfying customers. In this regard, 

job shop system is dealt with and lot streaming (LS) as a PPC technique is applied to 

shorten the manufacturing lead time. In sublot scheduling phase, dynamic scheduling 

is performed by considering machine based dispatching rules. Sublot and dispatching 

rule configurations are determined simultaneously by using a simulated annealing 

(SA) based simulation optimization approach. Customer oriented dispatching rules are 

proposed to ensure the prioritization of orders from the key customers in order 

fulfilling. In addition, multiple customer segments with different importance weights, 

their expectations and penalties on tardiness, earliness and order completion rate on 

due date are considered and a customer focused objective function is formulated.  

 

From another point of view, in order to prevent customer losses by providing a 

balanced structure between the customer segments in terms of the satisfaction levels, 

weight setting functions that dynamically compute the weights used in the customer 

oriented dispatching rules proposed in this dissertation are defined. It is aimed to 

determine the near-optimal values of the segment based parameters of the related 

weight setting functions. To this aim, a combined approach, differential evolution 

algorithm (DEA) based simulation optimization is used. 
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1.2 Original Contributions 

 

LS denotes splitting a production lot into smaller sized sublots and then processing 

the sublots simultaneously over the machines. This PPC problem is extensively studied 

in the literature due to its ability to shorten the manufacturing lead time by improving 

flow time. The main focus of the problem is to determine the optimal number of 

sublots, their sizes and processing sequences on machines. In related area, most of the 

studies do not consider customer related issues, and focus on primarily the production 

efficiency based performance measures (Güçdemir & Selim, 2015b). However, in 

recent years the importance of customers in PPC decisions is recognized and the 

integration of PPC and CRM issues becomes an attractive research area.  

 

In this dissertation, studies handled job shop LS problem are reviewed. As it is 

stated before, most of the studies in this field do not consider customer focused 

performance measures and customer related issues such as customer value to the 

company, customer expectations, customer satisfaction and customer tolerances. 

There is a scarce of a DSS which integrates PPC and CRM issues in order to satisfy 

customers by providing well timed and effective PPC decisions. To bridge this gap, a 

simulation optimization based DSS is developed in order to use manufacturing 

capabilities more effectively in satisfying customers. In this regard, a realistic job shop 

system is dealt with and LS is applied to improve flow time and ensure lead time 

objectives. In sublot scheduling phase of the problem, dynamic scheduling is 

performed by considering machine based dispatching rules. Customer oriented 

dispatching rules are proposed to ensure the prioritization of orders from the key 

customers in order fulfilling. In addition, multiple customer segments with different 

importance weights, their expectations and penalties on tardiness, earliness and order 

completion rate on due date are considered and a customer focused objective function 

is formulated in order to analyze the manufacturer’s sensitivity to the customers’ 

expectations. 

 

Further, in previous studies, customer oriented order prioritization is achieved by 

assigning importance weights to customers and/or orders randomly or by using 
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probability distributions. In addition, the weights are treated as static and no attempt 

was made to optimize those weights. In this dissertation, in order to prevent customer 

losses by providing a balanced structure between the customer segments in terms of 

the satisfaction levels, weight setting functions that dynamically compute the customer 

segment based weights used in the proposed dispatching rules are defined.  

 

The proposed DSS aims to find near-optimal solutions regarding to sublot and 

dispatching rule configurations (see Chapter 4) and also the customer segment based 

parameter values of the dynamic weight setting functions (see Chapter 5). The results 

reveal that the proposed approach can effectively be used in practice by the 

manufacturers by adopting their own demand structure, customer base, customer 

weight settings, processing features, managerial objectives etc. Also, it gives 

manufacturers the opportunity to gain time based competitive advantage in the market. 

Finally, the main contributions of this dissertation can be stated as the following: 

 

 A simulation optimization based DSS is proposed for reflecting the customer 

oriented view to PPC decisions in job shop systems with dynamic order 

arrivals.  

 LS is applied in order to shorten the manufacturing lead time and ensure on 

time delivery. Machine based dispatching rules are utilized for sublot 

scheduling phase to realize dynamic scheduling.  

 Customer oriented dispatching rules are proposed to ensure the prioritization 

of orders from the key customers in order fulfilling.  

 A customer satisfaction based objective function is defined, and multiple 

customer segments with different importance weights, and their expectations 

and penalties on order completion rate on due date, tardiness and earliness are 

considered.  

 In order to prevent customer losses by providing a balanced structure between 

the customer segments in terms of the satisfaction levels, weight setting 

functions that dynamically compute the weights used in the proposed 

dispatching rules are proposed. 
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1.3 Organization of the Dissertation 

 

This dissertation consists of six chapters. The first chapter is the introduction and 

the remaining chapters are organized as in the following. 

 

In Chapter 2, characteristics of B2B markets are summarized and the importance of 

CRM in B2B markets is highlighted. Then, LS problem and its key concepts are 

explained in detail. Additionally, a review of studies on job shop LS problem is 

presented and the studies are discussed with respect to the CRM issues involved, 

objective functions defined, and solution methodologies used. Further, concept of 

dispatching rules is mentioned in this chapter and the most widely used dispatching 

rules in job shop scheduling problems are summarized. Finally, metaheuristics and 

their classification scheme is examined. 

 

In Chapter 3, the proposed simulation optimization based DSS that integrates CRM 

and PPC approaches is explained in detail. Further, the concept of simulation 

optimization is presented and the techniques used in simulation optimization are 

summarized in this chapter. 

 

In Chapter 4, implementation of the proposed DSS on a realistic job shop system is 

presented. The DSS is implemented by considering the dominance relationships 

between the customer segments, shop utilization levels and due date tightness issues.  

 

In Chapter 5, an implementation on dynamic order prioritization is presented. 

Proposed dynamic weight setting functions are explained in detail and the 

computational experiments are performed by considering various demand mixes. 

 

  Chapter 6 is devoted to the concluding remarks, original contributions and future 

research directions of the dissertation.   
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 Customer Relationship Management and Business-to-Business Markets 

 

CRM is a management philosophy that is a result of the marketing theory in the 

information age. With the appearance and the development of new economic 

phenomena like diversification and globalization of world markets, the companies 

move in a more and more challenging environment (Misdolea, 2010). In this 

environment, gaining sustainable competitive advantage requires differentiation. 

However, differentiations that obtained by technological developments or innovations 

are short term and insufficient. In this manner, CRM is one of the most important way 

to be different (T. Čater & B. Čater, 2010).  

 

CRM is an important topic in marketing and it can be defined as ‘‘a comprehensive 

strategy and process of acquiring, retaining, and partnering with selective customers 

to create superior value for the company and the customer. It involves the integration 

of marketing, sales, customer service, and the supply chain functions of the 

organization to achieve greater efficiencies and effectiveness in delivering customer 

value” (Parvatiyar & Sheth, 2001). The basic idea behind CRM is that customers are 

more likely to be loyal and may create a long-term revenue stream as long as the 

companies create a strong and trusting relationships with their customers by 

understanding and satisfying the expectations of customers with the help of business 

intelligence (Dale Wilson, 2006). The most notable benefits of CRM can be stated as 

follows (Bergeron, 2002): 

 

 Improved customer satisfaction levels  

 Increased customer retention and loyalty  

 Improved customer lifetime value  

 Transfer of better strategic information to relevant departments  

 Attraction of new customers 

 Customization of products and services  
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 Generation of new business opportunities 

 Efficient segmentation of customers, and establishing appropriate business 

plans for the customer segments 

 Real time information about customer requirements, expectations and 

perceptions  

 Competitive advantage  

 Increase in customer demands 

 

CRM is not only applicable for managing relationships between businesses and 

consumers, but even more crucial for business customers (Ata & Toker, 2012). B2B 

markets also known as industrial markets involve the sale of products or services 

between businesses. Industrial products can be classified into three main categories as 

illustrated in Figure 2.1 (Chand, 2016). 

 

Industrial 

Products

Materials and parts Capital items
Services and 

supplies

Raw materials
Manufactured materials 

and parts

- Component materials

- Component parts

Installation Equipment
Supplies

- Operating supplies

- Maintenance supplies

Business services

- Maintenance and repair services

- Business advisory services

 

Figure 2.1 Classification of industrial products (Chand, 2016) 

 

Materials and Parts 

 

Materials and parts are the goods that enter the product directly and they are 

classified into two categories such as raw materials and manufactured materials and 

parts. Raw materials are the basic products which enter into the production process 

with little or no modifications (i.e. iron ore, crude oil etc.). In addition, manufactured 

materials and parts include component materials and component parts. Component 

parts are the semi-finished parts that enter the product with little or no additional 

change while component materials are fabricated further.  
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Capital Items 

 

Capital items are those that are used in the production process. They involve 

installations and equipments. Installations are the major and long term investments 

such as general purpose and special purpose machines, warehouses, offices, factories, 

and they are usually bought directly from the producers. On the other hand, equipments 

only aid in the operation of the business (i.e. hand tools, fork lift trucks, personal 

computers, desktops etc.) 

 

Services and Supplies 

 

Supplies and services support the operations of the business and they are not 

considered as the part of the finished goods. There are two kinds of supplies, operating 

supplies and maintenance supplies. Operating supplies represent the physical items 

required for the running of a manufacturing or service facility owned by a business. 

They include consumable materials such as lubricants, coal, writing paper, pens used 

by the business on an ongoing basis. On the other hand, maintenance supplies 

consumed in the production process but they do not either become part of the finished 

good. They include cleaning, laboratory, industrial equipment (i.e. pumps, valves etc.) 

and plant upkeep supplies (i.e. repair tools, fixtures etc.).  

 

Companies need a wide range of services like maintenance services, auditing 

services, legal services, courier services, and so on. These services are called business 

services which are usually supplied on contract and by small producers who goes by 

service and reputation. They include maintenance and repair services such as window 

cleaning, carpet cleaning, computer repair, and business advisory services such as 

legal, management consulting and advertising. 

 

Lehmann and O’Shaughnessy (1974) classified industrial products into four classes 

on the basis of problems associated with product adoption such as (i) routine order 

products, (ii) procedural problem products, (iii) performance problem products and 

(iv) political problem products. Routine order products are frequently ordered 
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products with no performance problems experienced when buying. Procedural 

problem products may involve some level of training for individuals to successfully 

adopt them. On the other hand, performance problem products involve the 

uncertainties about the technical outcomes of using the products. For instance, when 

introducing a new technology, there may be some uncertainties about the product’s 

ability to be compatible with the company’s existing resources and current equipment. 

Finally, political problem products are the products in which large capital investments 

are made, and they are used by several different departments (e.g. a new information 

system).    

 

B2B organizations include manufacturers, industrial suppliers, technology 

hardware vendors, insurance companies and so on, and a B2B transaction occurs when 

a business needs to source one of the above-mentioned products or services. In 

addition, B2B markets are quite different from business-to-consumer (B2C) markets 

which involve the sale of products or services directly to the consumers. For instance, 

in B2B markets, number of prospective customers is very few, purchasing process is 

longer and more complex, custom contracts are more diverse, pricing schemes are 

more complicated, organizations seek long term commitments and partnership, and 

value and volume of the transactions are much higher compared to B2C. Therefore, 

the risk is also higher in those markets. 

 

In B2B markets, many customers are relying on fewer suppliers and becoming 

involved in closer relationships with them (Groves & Valsamakis, 1998; Cannon & 

Perreault Jr, 1999). B2B buyers choose a supplier with whom they can develop a 

relationship, and they want to stay with that supplier for longer due to the invested 

time and effort (Arslan, 2012). However, increased information technologies and 

remarkable changes in social, cultural and economic areas have changed market 

conditions and customer expectations dramatically. Today, customers became very 

conscious and sophisticated and they need innovative, perfect products and high 

services. They have many options and this is why they can rapidly switch to other 

companies. Moreover, economic deregulation has changed the market conditions and 

created a keen competition. Manufacturers get chance to reduce production costs and 
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consequently prices. This makes customers more price sensitive. From another point 

of view, customers have realized that their purchasing behavior can cause a huge 

impact to the environment. Therefore, today customers are also considering 

environmental issues and they prefer both supplying and producing recyclable green 

products.  

 

All of the aforementioned issues invoke the importance of deploying CRM in both 

acquiring new customers and retaining the existing ones. In addition, it is known that 

the cost of acquiring a new customer is much higher than retaining an existing one. 

Therefore, since the number of prospective customers is few in B2B markets, 

partnership is the key success factor in those markets and CRM plays an important role 

in B2B activities. In addition, it is obvious that these few customers highly contribute 

the company’s entire turnover in terms of volume and value. It is therefore very 

important to understand and satisfy customer needs in order to retain the existing 

customers (O’Cass & Ngo, 2012). In this regard, B2B companies use CRM as a 

differentiating bridge to get closer to customers. While CRM success is frequently 

cited in B2C markets, B2B companies have also seen significant results from customer 

oriented strategies (UK Essays, 2015).   

 

In order to build strong customer relationships in B2B markets, companies first 

track their customers’ transactions and segment their customers in accordance with 

their value to the company and perform some profitability analysis. Then, they should 

differentiate their products, operations and services based on the customer value and 

customer expectations. Finally, they should measure the performance of their efforts 

in terms of customer satisfaction levels, customer complaints, and customer churn 

rates by considering every customer shifted to other suppliers could cause remarkable 

problems in sales, revenue and market share.  

 

Another important point in business environment is the constant change. 

Customers, needs, products, expectations, rules, perceptions and market conditions are 

subject to change over time. Therefore, estimation of future value and behavior of 

customers and the interpretation of what-if type questions are important tasks for 
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companies for their survival. Therefore, timely availability of information through a 

DSS that integrates CRM and PPC can certainly aid companies in using resources 

effectively in satisfying customers. 

 

2.2 Lot Streaming Problem 

 

LS is one of the PPC techniques and it denotes splitting a production lot into sublots 

(transfer lots) and then processing the sublots simultaneously over the machines (Edis 

& Ornek, 2009). More specifically, LS problem consists of two major parts; lot 

splitting and sublot scheduling, and it can be defined as the problem of determining 

the optimal number of sublots, their sizes and processing sequences that optimize some 

pre-specified criterion. This criterion can be time-based such as makespan, mean flow 

time, number of tardy jobs or cost-based such as production cost, inventory cost and 

setup cost.  

 

LS, accelerates the flow of a production lot through a production system, shortens 

the manufacturing lead time and improves due date performance, reduces the work-in-

process (WIP) and associated costs and also reduces the capacity requirements of 

material handling system (Cheng et al., 2013; Kalir & Sarin, 2000).  

 

Before the discussion on LS in job shops, explaining the characteristics of job shop 

production systems briefly would be appropriate. Job shop production systems consist 

of different machines that have multiple functionalities. In general, machines are 

grouped based on their functions and then those machine groups are linked by a 

material handling system. As illustrated in Figure 2.2, in which circles represent inputs 

and the squares represent the outputs, job shops are capable of producing various types 

of jobs that have different routing and processing requirements in small batches.  
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Machine 1 Machine 2

Machine 4

Machine 3

Machine 5Machine 6

 

 

Figure 2.2 An illustration of a job shop system 

 

The most common issues considered in the design and control of job shops are the 

determination of capacity requirements and due date setting policy, identification of 

the bottlenecks etc. Some important advantages of job shops are: 

 

 High flexibility in product mix and volume 

 Parallel processing of multiple different jobs  

 High expansion flexibility (machines can be easily substituted or added) 

 Low obsolescence of machines 

 High level of customization 

 

On the other hand, there are some disadvantages of job shops such as: 

 

 High variations in processing times and job routings 

 Long (and unpredictable) production lead times and high level of WIP 

 Difficulties in scheduling 

 Low capacity utilization relative to flow shops 

 High-skilled employee requirement 

 

In order to illustrate LS concept in job shops, an example in which two jobs (J1 and 

J2) are to be processed on three machines (M1, M2 and M3) based on the production 

sequence (route) identified is given. If the lots are not split, then it will be processed 

as presented in Figure 2.3.a. However, in case of the lots are split into two sublots, 
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then these sublots are processed simultaneously over the machines (see Figure 2.3.b), 

and this leads a reduction in the makespan. 

 

J1 J2

J2 J1

J1 J2

M1

M2

M3

J1 J2M1

M2

M3

J1

JI: M1-M2-M3

J2: M2-M1-M3

J2

J2 J2 J1 J1

J1 J2J1 J2

improvement

(a)

(b)  

Figure 2.3 (a) Job shop scheduling without LS, (b) Job shop scheduling with LS (Chan et al., 2004) 

 

2.2.1 Components of LS Problems 

 

LS can be used in various machine configurations such as flow shops, job shops, 

parallel machines, open shops, hybrid flow shops etc. The major components of the 

LS problems are explained in detail in the following (Chang & Chiu, 2005; Cheng et 

al., 2013; Edis et al., 2007). 

 

Machine Configuration 

 

Machine configuration refers to the arrangement of machines. The most common 

machine configurations include flow shop, job shop, open shop, parallel machines, 

hybrid flow shop and assembly system. 
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Number of Product Types 

 

This refers to the number of product types involved in the production system such 

as single product and multiple products.  

 

Sublot Types 

 

Sublot types can be consistent, variable and equal. In consistent sublot case, size of 

a sublot remains the same over the machines (see Figure 2.4.a). On the other hand, in 

variable sublot case, size of a sublot varies among the machines (see Figure 2.4.b). 

Equal sublot is a special case of consistent sublots in which size of the sublots are the 

same. 

 

70 50M1

M2

M3

M1

M2

M3

(a)

(b)

70

70

50

50

70 50

60 60

60 60

J: M1-M2-M3

Figure 2.4 (a) Consistent sublot, (b) Variable sublot (Chang & Chiu, 2005) 

 

Sublot Sizes  

 

Sublot sizes can be continuous or discrete valued. Continuous sublot sizes are real 

valued, while discrete sublot sizes allow only integer values. 



15 
 

Number of Sublots  

 

The number of sublots may be known a priori (FixN), or is to be determined 

(FlexN). In general, the makespan will be minimized if there exists just one item in 

each sublot (Trietsch & Baker, 1993). However, setup times and difficulties in tracking 

make it undesirable to have a large number of unit-sized sublots.  

 

Sequence of Sublots 

 

When there are multiple product types in the system, the sequence of sublots of 

product j can be allowed to be interrupted by sublots of product k (intermingling) or 

not (non-intermingling) (Feldman & Biskup, 2008). 

 

Operation Continuity 

 

Idling refers to the situation in which an idle time is allowable between two sublots 

on a machine, while the no-idling situation does not allow such an idle time. In case 

of no-idling, a sublot has to be processed immediately after the completion of its 

predecessor. 

 

Setup Activities 

 

If there is no setup time, then it is always optimal to consider the maximum number 

of sublots. However, since each sublot is a separate job, as the problem size increased, 

it becomes much harder to solve the problem. In case of the existence of setup time, 

there is a tradeoff between the time saved by dividing lots into sublots and the extra 

time required because of additional setups (Dauzere-Peres & Lasserre, 1997). Setups 

can be lot-attached, lot-detached or sequence dependent. Lot-attached setup refers to 

the case in which a setup required to process a lot on a machine can be started only 

after the arrival of the lot at the machine. However, in lot-detached setup, a setup can 

be performed on a machine even before the arrival of the lot on that machine. Lot 

attached and lot detached setups are illustrated in Figures 2.5.a and 2.5.b, respectively. 
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Herein, two jobs (J1 and J2) are split into two sublots and scheduled on machines M1 

and M2. Setup operations are denoted by tjk where j is the lot index and k is the machine 

index. 

 

M1

M2

J1 J2

M1

M2

J1 J2

(a)

(b)

t11 t21

t12 t22J1 J1 J2 J2

J1 J2J1 J2t11 t21

t12 t22J1 J1 J2 J2

 

Figure 2.5 (a) LS with lot-attached setups, (b) LS with lot-detached setups 

 

Transportation Activities 

 

Transportation activities involve transfer and removal activities. Transfer refers 

moving a lot or sublot from one machine to another. The time required for this activity 

called transfer time and the machine is available for processing the next lot or sublot 

during this time. In addition, removal refers removing a lot or sublot from a machine 

and the time required for this activity called removal time. Unlike transfer time, the 

machine is not available to process the next lot or sublot during removal time. 

 

Performance Measurement 

 

Objective functions can be classified as time-based and cost-based. Commonly used 

time-based objective functions are; makespan, mean flow time, total flow time, total 

tardiness, mean tardiness, number of tardy jobs and total deviation from due date. 

Alternatively, cost-based objective functions include costs of production, inventory, 

setup and transfer/removal. 
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2.2.2 Problem Representation, Dominance Relationship and Model Formulation 

 

LS problems can be represented by the eight-field classification scheme as in the 

following (Sarin & Jaiprakash, 2007, chap. 1): 

 

{Number of machines}{machine configuration}/{number of lots}/ 

{sublot type}/{idling}/{sublot sizes}/{objective function}/{special features} 

 

In this representation, machine configuration refers to the arrangement of machines 

such as flow shop (F), job shop (J) or parallel machines (P). Sublot type refers to the 

type of sublots, namely consistent (C), variable (V) or equal (E). Idling and no-idling 

cases are denoted by II and by NI, respectively. Sublot sizes may be continuous (CV) 

or discrete (DV). The objective function can include makespan (Cmax), flowtime, 

number of tardy jobs etc. The last field represents the special features such as setup, 

transfer or removal activities. For instance, 5J/N/V/II/Cmax/DV refers to a five-machine 

job shop system involving N lots where sublot sizes vary among the machines, and 

idling is allowed between the processing of sublots. The objective function is 

minimizing makespan. Each sublot consists of integer number of items, and no special 

features are involved.  

 

As mentioned in the previous sections, LS problems have varying characteristics 

and some of those characteristics dominate some others. By considering the makespan 

objective, a model x dominates model y if the following relationship holds: Cmax (x) ≤ 

Cmax (y). From the sublot type perspective, variable sublots (V) dominate consistent 

sublots (C) which dominate equal sublots (E). In addition, idling (II) dominates no-

idling (NI). In this concern, the minimum possible makespan will be achieved by the 

least restrictive case of V/II. This model dominates both the C/II and V/NI models, 

whereas all of these models dominate the E/NI model.  

 

On the other hand, when sublot sizes are considered, continuous-sized sublots 

(CV) dominate discrete-sized sublots (DV). In this regard, the least restrictive model 
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is V/II/CV. Dominance relationships among the LS models are summarized in Figure 

2.6. 

 

 

 

 

 

 

 

Figure 2.6 Dominance among the LS models (Sarin & Jaiprakash, 2007) 

 

LS problems are commonly identified by using mathematical modelling 

approaches. Linear programming formulations are used for the CV models while 

integer programming formulations are used for the DV models. For instance, a basic 

integer programming model for the deterministic job shop LS problem with makespan 

objective is proposed by Buscher and Shen (2011). In this model, it is assumed that 

each job consists of m operations and must pass through each machine exactly once 

and sublots are consistent. The notations are presented in Table 2.1. 

 
Table 2.1 Notations used in job shop LS problem formulation 

Indices 

i, i’ job indices,   i = 1, …, n 

k, k’ machine indices,  k =1, … , m 

j, j’ sublot indices,   j =1 ,…, s 

Parameters 

n total number of jobs 

m total number of machines 

s total number of sublots 

Z sufficiently large number 

LSi production lot size of job i 

pik unit processing time of job i on machine k 

rik setup time of job i on machine k 

Sets   

P set of pairs of operations constrained by precedence relations 

L set of the last operations of sublots 

Oi 

set of operations for job i, Oi ={Oijk : i = 1, …, n ;  j =1 ,…, s ; 

k =1, … , m} where Oijk denotes operation of the j th sublot of 

order i on machine k 

Decision variables 

Xij size of j th sublot of job i 

δijk 1   if setup is required before operation Oijk 

0   otherwise 

Yiji’j’k 1   if operation Oijk is processed before operation Oi’j’k 

0   otherwise 

tijk start time of operation Oijk 

 

Cmax ({V/II}) ≤ Cmax ({C/II}) and Cmax ({V/NI}) 

Cmax ({C/II}) ≤ Cmax ({E/II}) and Cmax ({C/NI}) 

Cmax ({V/NI}) ≤ Cmax ({C/NI}) 

Cmax ({E/II}) and Cmax ({C/NI}) ≤ Cmax ({E/NI}) 
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The Integer Programming Model 
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Equation (2.1) represents the objective function which is the minimization of 

makespan. Constraints (2.2) ensure that sum of sublot sizes has to be equal to the 

production lot size. Constraints (2.3) are the non-negativity constraints. Constraints 

(2.4) are used to avoid redundant setups in case of a sublot size equals to zero. 

Constraints (2.5) represent the operation precedence constraints of a particular sublot 

in case of attached-setups are considered. Constraints (2.6) ensures that the operation 

of a sublot is allowed to start on a certain machine only after the sublots with smaller 

indices of the same job finish their processing. In constraints (2.7), completion time of 

the last operation of the last sublot are used to define the makespan. The disjunctive 

counterpart is reflected by constraints (2.8) and (2.9). Constraints (2.10) ensure that 

the machines are properly adjusted before processing the first sublot of each job. 
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Finally, constraints (2.11) ensure that all the consecutively scheduled sublots of the 

same job are processed under a single setup. 

 

2.2.3 Literature Review About Job Shop LS Problem 

 

LS problem in flow shops has been extensively studied. However, in recent years, 

LS is also applied to job shops (Lei & Guo, 2013). In this dissertation, literature review 

is focused on the studies handling the job shop LS problem. The reader may refer to 

Chang and Chiu (2005) and Cheng et al. (2013) for a detailed review of the studies 

handling LS problem. 

 

There exist numerous studies on job shop LS problem that aim to find LS 

conditions. In one of the earliest studies, the equal-sized sublots are studied by Jacobs 

and Bragg (1988). They consider the minimization of flow time, and use simulation to 

compare several scenarios. In another study, Dauzere-Peres and Lasserre (1997) 

propose an iterative procedure finding the optimal sublot sizes and sequences that 

minimize makespan. In the first step, optimal sublot sizes are computed, and then a 

better sequence is obtained by using a shifting bottleneck-based heuristic in the second 

step. Jeong et al. (1999) focus on the effect of setup time and job composition on the 

performance of schedules in job shop environment. They use modified shifting 

bottleneck procedure to obtain an effective schedule by splitting production lots and 

performing set up activities before the job arrival. Jin et al. (1999) develop a heuristic 

that combines Lagrangian relaxation and backward dynamic programming to solve the 

job shop LS problem. The objective of their study is to ensure on time product delivery 

with low WIP inventory level. Wang et al. (2008) handle LS problem by considering 

multiple resource constraints. They focus on makespan minimization and use genetic 

algorithm (GA) to solve the problem. They consider fuzzy processing times apart from 

the other studies. A three-phase algorithm is proposed by Buscher and Shen (2009) in 

order to solve the job shop LS problem that aims to minimize makespan. They consider 

equal-sized sublots and use tabu search (TS) method to determine the schedules of 

sublots on machines. Chan et al. (2009) propose a GA-based approach solving lot 

sizing and job shop scheduling problems simultaneously. A mathematical 
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programming model is constructed by Low et al. (2004) for job shop LS problem. 

Apart from other studies, material handling, setup and inventory costs are considered 

in the study. Huang (2010) use ant colony optimization (ACO) to solve the job shop 

LS problem with the objective of minimizing the weighted sum of stock, machine idle 

time and carrying costs. A TS-based algorithm is proposed by Shen (2008) in order to 

solve job shop LS problem with makespan minimization objective. In another 

research, Liu (2009) apply LS to customer order scheduling problem where the orders 

consist of more than one product type. GA is used to solve the problem. Defersha and 

Chen (2012) dealt with LS problem in flexible job shops. They consider sequence 

dependent setup times, attached and detached nature of setups and machine release 

date and lag time in their study. They propose parallel GA to solve the problem, and 

aim to minimize makespan. In another research, the effect of lot splitting on the 

number of setups required is analyzed by Simons Jr et al. (2012). They perform 

simulation experiments for closed job shop systems by considering three performance 

measures namely mean flow time, standard deviation of flow time and number of 

setups per job. The researchers use decision rules to find the sublot configurations that 

can improve flow time while avoiding extra setups. 

 

There exist some studies that extend the traditional job shop LS problem by 

including transportation activities. Among them, Edis and Ornek (2009) aim to find 

the number of equal sublots (NES) for job sets and analyze the effects of transporter 

queue disciplines by using simulation. Lei and Guo (2013) propose a modified 

artificial bee colony (ABC) algorithm. In the study, a schedule is built in the first step 

and then transportation tasks are dispatched in the second step. 

 

All of the abovementioned studies are summarized in Tables 2.2 through 2.5. 

Manufacturing system configurations such as machine configurations, order 

characteristics and due date assignment policies are reported in Table 2.2. As indicated 

in Table 2.2, most of the studies in the literature handle the static job shop problems 

and assume that orders are ready at time zero, and they tried to optimize the LS 

conditions and/or schedules of a finite and known order set (e.g. 10 jobs-10 machines). 

However, this assumption is unrealistic in many real life cases. 
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Table 2.2 Classification of job shop LS studies in terms of manufacturing system configuration 

Author(s) (Year) 

System Configuration 

Order                 

arrival 

Order 

quantity 

Number of  

product 

types 

Machine 

configuration 

Due date 

assignment 

Jacobs and Bragg (1988) Periodic Uncertain Multiple J NA* 

Dauzere-Peres and Lasserre (1997) Static Known  Multiple J NA 

Jeong et al. (1999) Static Known Multiple J NA 

Jin et al. (1999) Static Known Multiple J Known 

Yoon and Ventura (2002) Static Known  Multiple F UDIST***  

Low et al. (2004) Static Known  Multiple J NA 

Shen (2008) Static Known  Multiple J NA 

Wang et al. (2008) Static Known  Multiple J NA 

Buscher and Shen (2009) Static Known  Multiple J NA 

Chan et al. (2009) Static Known Multiple J UDIST*** 

Edis and Ornek (2009) Periodic Uncertain Multiple J NA 

Liu (2009) Periodic Known  Multiple J TWK 

Huang (2010) Static Known Multiple J NA 

Defersha et al. (2012) Static Known Multiple Flexible J NA 

Simons Jr et al. (2012) Dynamic Dynamic Multiple J NA 

Lei and Guo (2013) Static Known  Multiple J NA 

This dissertation Dynamic Uncertain Multiple J TWK** 

 

*NA: Not available, **TWK: Total work content, ***Uniform distribution 

 

In Table 2.3, sublot configurations and sublot related features such as sublot types, 

sublot sizes, transportation and setup activities are presented. In addition, Table 2.4 

reports the classification of the studies in terms of objective function components. 

According to Table 2.4, multiple customer segments, tardiness, earliness and order 

completion rate on due date issues are not considered together in most of the studies.  
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Table 2.3 Classification of job shop LS studies in terms of sublot configurations 

Author(s) 

(Year) 

Sublot Related Features 

Sublot 

types 

Number 

of 

sublots 

Sequence of 

sublots 

Sublot 

sizes 
Setup Transport. 

Processing 

times 

Jacobs and 

Bragg (1988) 
E - C FixN 

Non-

intermingling CV Attached NA Stochastic 

DRules* 

Dauzere-Peres 

and Lasserre 

(1997) 

E - C FixN Intermingling DV NA NA Stochastic 

Jeong et al. 

(1999) 
E - C - V FixN Intermingling CV Attached  NA Stochastic 

Jin et al. (1999) E - C - V FixN Intermingling CV Attached NA Deterministic 

Yoon and 

Ventura (2002) 
E - C FixN Intermingling DV NA NA Stochastic 

Low et al. 

(2004) 
E - C - V FlexN Intermingling DV Attached NA Deterministic 

Shen (2008) E - C FixN Intermingling DV NA NA Deterministic 

Wang et al. 

(2008) 
V - C FixN Intermingling DV NA NA Fuzzy 

Buscher and 

Shen (2009) 
V - C FixN Intermingling CV NA NA Deterministic 

Chan et al. 

(2009) 
E - C - V FlexN Intermingling DV 

Fixed setup 

time for 

fixture 

changeover 

NA Deterministic 

Edis and Ornek 

(2009) 
E - C FlexN 

Intermingling 

DRules 
DV 

Fixed setup 

time for 

product types 

√ Stochastic 

Liu (2009) E - C FlexN 
Intermingling 

DRules 
DV 

Fixed setup 

time for 

fixture 

changeover 

NA Deterministic 

Huang (2010) E - C FlexN Intermingling DV UDIST √ Stochastic 

Defersha et al. 

(2012) 
V - C FixN Intermingling DV 

Sequence 

dependent 
NA Deterministic 

Attached 

Detached 

Simons Jr et al. 

(2012) 
E - C FlexN 

Non-

intermingling 
DV 

Based on 

number of 

units, avg. 

processing 

time and 

setup factor 

NA Stochastic 

Lei and Guo 

(2013) 
E - C FixN 

Intermingling 

DRules 
DV 

Included in 

processing 

times 

√ Deterministic 

This 

dissertation 
E - C FlexN 

Intermingling 

DRules  
DV 

Sequence 

dependent 
NA Stochastic 

 

*DRules: Dispatching rules 

 

 

 

 



24 
 

Table 2.4 Classification of job shop LS studies in terms of objective function components 

Author(s) (Year) 
Multiple customer 

segments 

Tardiness 

penalty 

Earliness 

penalty 

Order completion rate 

on due date 

Jacobs and Bragg (1988) NA* NA NA NA 

Dauzere-Peres and Lasserre (1997) NA NA NA NA 

Jeong et al. (1999) NA NA NA NA 

Jin et al. (1999) NA √ √ NA 

Yoon and Ventura (2002) NA √ √ NA 

Low et al. (2004) NA NA NA NA 

Shen (2008) NA NA NA NA 

Wang et al. (2008) NA NA NA NA 

Buscher and Shen (2009) NA NA NA NA 

Chan et al. (2009) NA √ √ NA 

Edis and Ornek (2009) NA NA NA NA 

Liu (2009) NA √ √ NA 

Huang (2010) NA NA NA NA 

Defersha et al. (2012) NA NA NA NA 

Simons Jr et al. (2012) NA NA NA NA 

Lei and Guo (2013) NA NA NA NA 

This dissertation √ √ √ √ 

 

*NA: Not available 
 

Finally, the studies are summarized in terms of their solution approaches and 

performance measures used in Table 2.5. It is concluded that most of the studies focus 

on production efficiency-based performance measures such as makespan, tardiness 

and flowtime, and employ mathematical programming approaches as the solution 

methodology. However, customer satisfaction is the key success factor for the 

companies, and greater satisfaction can lead great profit and collaborative business 

relationships (Armstrong & Kotler, 1996). Therefore, customer satisfaction should be 

used as a performance measure in handling the PPC problems.  
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Table 2.5 Classification of job shop LS studies in terms of solution approaches and performance 

measures 

Author(s) (Year) 
Performance Measurement 

Decision variable(s) Objective function Solution methodology 

Jacobs and Bragg 

(1988) 
Sublot sizes and DRules Min flow time 

Simulation 

experiments 

Dauzere-Peres and 

Lasserre (1997) 

Sublot sizes and schedules 

on machines 
Cmax* 

Heuristic Method 

(Shifting Bottleneck) 

Jeong et al. (1999) 
Sublot sizes and schedules 

on machines 
Cmax 

Heuristic Method 

(Modified Shifting 

Bottleneck) 

Jin et al. (1999) 
Sublot sizes and schedules 

on machines 

Min WIP inventory and due 

dates  promised to customers 

Heuristic Method        

(Lagrangian relaxation 

and backward dynamic 

prog.) 

Yoon and Ventura 

(2002) 

Sublot sizes and schedules 

on machines 

Min mean weighted absolute  

deviation from due dates 

Heuristic Method 

(Neighborhood search) 

Low et al. (2004) 
Number of sublots and 

schedules on machines 

Cmax 

Min total production cost 

Disjunctive graph 

Integer Programming 

Shen (2008) 
Number of sublots and 

schedules on machines 
Cmax 

Heuristic Method                 

(TS) 

Wang et al. (2008) 
Sublot sizes and schedules 

on machines 
Cmax 

Heuristic Method            

(GA) 

Buscher and Shen 

(2009) 

Sublot sizes and schedules 

on machines 
Cmax 

Heuristic Method                 

(TS) 

Chan et al. (2009) 
Sublot sizes and schedules 

on machines 

Weighted sum of overall 

penalty cost and total setup 

cost 

Heuristic Method            

(GA) 

Edis and Ornek 

(2009) 

Number of sublots and 

transportation queue 

disciplines 

Cmax 

Min avg. flow time of a sublot 

Min avg. flow time of a job 

Min number of tardy sublots 

Min number of tardy jobs 

Simulation 

Optimization 

(Neighborhood search) 

Liu (2009) 

Number of sublots, 

schedules on machines and 

DRules 

Min weighted sum of 

makespan, lateness and flow 

time of finished goods 

Heuristic Method            

(GA) 

Huang (2010) 
Number of sublots and 

schedules on machines 

Min total WIP, machine idle 

time and carrying cost 

Heuristic Method                    

(ACO) 

Defersha et al. 

(2012) 

Sublot sizes, assigned 

machines and sublot 

schedules on machines 

Cmax 
Heuristic Method 

(Parallel GA) 

Simons Jr et al. 

(2012) 

Lot forming rules 

Consistency of operation 

times 

Decision rules 

Min mean flow time 

Min standard deviation of flow 

time 

Min number of setups per job 

Simulation 

(Decision rules) 

Lei and Guo 

(2013) 

Sublot schedules on 

machines and transporter 

queue disciplines 

Cmax 
Heuristic Method          

(Modified ABC) 

This dissertation 
Number of sublots and 

machine based DRules 

Min mean weighted percentage 

deviation from expectations of 

customer segments 

Simulation 

Optimization (SA) 

 

*Cmax: Makespan 

 

By considering the above-mentioned issues, a simulation optimization based DSS 

that integrates CRM and PPC approaches is developed in this study in order to use 
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manufacturing capabilities more effectively in satisfying customers. In this regard, a 

job shop system is dealt with and LS is applied to improve flow time. In sublot 

scheduling phase, dynamic scheduling is performed by considering machine-based 

dispatching rules. The sublot and dispatching rule configurations are determined 

simultaneously. In addition, multiple customer segments with different importance 

weights, their expectations and penalties on tardiness, earliness and order completion 

rate on due date are considered, and a customer-focused objective function is 

formulated. 

 

2.3 Dispatching Rules 

 

Job prioritization means sorting the jobs on resources based on their importance 

relative to each other. However, sequencing jobs waiting in the queue at a particular 

machine becomes much more complex when there are many waiting jobs in the queue 

(Korytkowski et al., 2013). Therefore, job prioritization is extensively achieved by 

using priority dispatching rules. These rules can be defined as the “rules used to select 

the next job to be processed from jobs awaiting service” (Blackstone et al., 1982). 

They can be simple or complex, and the performance of a dispatching rule varies 

depending on the system under concern and the performance criterion used (Rochette 

and Sadowski, 1976; Haupt, 1989). These rules are commonly used in the simulation-

based studies (Montazer & Wassenhove, 1990).  

 

Priority dispatching rules can be classified into two main categories, static and 

dynamic rules (Pinedo, 2008). Static rules involve a priority index computed on the 

basis of job and/or machine data and the index value does not change over time (Suwa 

& Sandoh, 2012; Kaban et al., 2012). On the other hand, dynamic rules hold time 

dependent attributes. In addition to this classification, dispatching rules can also be 

classified as simple rules and composite rules. Simple rules consider single attribute 

while composite rules combine several attributes of jobs (Calleja & Pastor, 2014). 

From another point of view, Rajendran and Holthaus (1999) classified the dispatching 

rules into five categories such as (i) processing time-based rules, (ii) due date-based 
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rules, (iii) simple rules involving neither processing time nor due dates, (iv) rules 

involving shop floor conditions, and (v) combination rules.  

 

 Job shop scheduling problem is difficult to solve due to multiple job types and 

machines, various processing routes, setup and transfer activities. Many different 

solution methodologies such as mathematical programming techniques, artificial 

intelligence based techniques, local search methods and metaheuristic algorithms are 

proposed to solve this problem (Vaessens et al., 1996; Gupta & Sivakumar, 2006; Çaliş 

& Bulkan, 2015; Sharma & Jain, 2016). Job shop scheduling problem in dynamic 

environments where disturbances such as machine breakdowns, new job arrivals and 

change in demand mix occur is more complex. In recent years, metaheuristic 

algorithms such as ACO (Zhou et al., 2009; Renna, 2010), GA (Chryssolouris & 

Subramaniam, 2001), artificial neural networks (ANN) (Sim et al., 1994) and TS (Liu 

et al., 2005) are commonly used for this problem. In addition, a few studies develop 

hybrid metaheuristics such as hybrid GA and TS (Zhang et al., 2013), hybrid particle 

swarm optimization (PSO) (Wang et al., 2010), hybrid ACO and GA (Gao et al., 2009), 

hybrid variable neighborhood search (VNS) and ANN (Adibi et al., 2010). However, 

these approaches require significant computational effort as the problem size 

increases. Therefore, dispatching rules are extensively used to overcome this 

difficulty.  

 

 The dispatching rules that have been widely used in job shop scheduling are listed 

in the following (Horng, 2006; Jayamohan & Rajendran, 2000). In most of the 

dispatching rules, job with the minimum priority index value (Zi) is chosen for loading.  

 

 First In First Out (FIFO): The job that has entered the queue at the earliest is 

chosen for loading. The priority index of job i is computed as Zij = rij where rij 

is the arrival time of job i at machine j.  

 Random (R): This rule selects a job from the queue randomly. In this rule, each 

job has equal probability being selected for processing. 
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 Arrival Time (AT): The job with the earliest arrival time in the system is chosen 

for loading. The priority index of job i is computed as Zi = ri where ri is the 

arrival time of job i at the system.  

 Arrival Time-Total Remaining Processing Time (AT-RPT): This rule, selects 

the next job from the queue based on their arrival time into the system with 

respect to the total remaining processing time. The priority index of job i is 

computed as Zi = ri - RPTi where RPTi is the total remaining processing time 

of job i. It is commonly used for maximum flow time and flow time variance 

objectives. 

 Shortest Processing Time (SPT): This rule selects the next job from the queue 

based on the job processing time at the current machine. The priority index of 

job i is computed as Zij = pij where pij is the processing time of job i at machine 

j. It is commonly used to minimize mean flow time and percentage of tardy 

jobs. 

 Shortest Process and Setup Time (SPST): The job with the smallest total setup 

and processing time is chosen for loading. The priority index of job i is 

computed as Zij = pij + stij where stij is the setup time required for processing 

job i at machine j.  

 Longest Processing Time (LPT): This rule selects the next job from the queue 

based on the job processing time at the current machine. The priority index of 

job i is computed as Zij = pij and unlike SPT rule, the job with the maximum 

value of Zij is chosen for loading. 

 Earliest Due Date (EDD): The job with the earliest due date is chosen for 

loading. The priority index of job i is computed as Zi = di where di is the due 

date of job i. It is commonly used for minimizing maximum tardiness and 

variance of tardiness. 

 Minimum Slack Time (MST): This rule selects the next job from the queue 

based on the slack time which is computed by subtracting total remaining 

processing time and the current time from due date of job. The priority index 

of job i is computed as Zi = si = di - RPTi - t where si is the slack value of job i, 

RPTi is the total remaining processing time of job i and t is the current time.  
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 Modified Due Date (MDD): This rule is the combination of EDD and SPT 

rules. The priority index of job i is computed as Zi = Max {di, t + RPTi}.  

 Critical Ratio (CR): This rule selects the next job from the queue based on the 

relatively available time divided by the total remaining process time of the job. 

The priority index of job i is computed as Zi = (di – t)/ RPTi.  

 Slack per Remaining Operation (SPROP): This rule selects the next job from 

the queue based on the slack time divided by the number of remaining 

operations of the job. The priority index of job i is computed as Zi = (di –RPTi 

– t) / NOPi where NOPi is the number of remaining operations of job i.   

 Raghu and Rajendran (RR) Rule: This rule is proposed by Raghu and 

Rajendran (1993) and it is very effective in mean tardiness and mean flowtime 

objectives. The priority index of job i is computed as Zij = (si exp(u) pij) / RPTi 

+ exp(u) pij + wti where u denotes the machine utilization, and wti is the average 

waiting time for job i at the next unvisited machine.  

 Processing Time + Work in Next Queue (PT+WINQ): This rule, can improve 

the mean flowtime. The priority index of job i is computed as Zij = pij + wti. 

 Processing Time + Work in Next Queue + Arrival Time (PT+WINQ+AT): This 

rule can improve the maximum flowtime and the flowtime variance. The 

priority index of job i is computed as Zij = pij + wti + ri. 

 Processing Time + Work in Next Queue + Negative Slack (PT+WINQ+SL): 

This rule can improve the maximum tardiness time and its variance. The 

priority index of job i is computed as Zij = pij + wti + si. 

 Number of operations remaining (NOP): This rule selects the next job based 

on the total number of remaining operations. The priority index of job i is 

computed as Zi = NOPi. 

 Least work remaining (LWKR): This rule selects the job based on the remaining 

work content. The priority index of job i is computed as Zi = RPTi. The job 

with minimum value of Zi is chosen for loading. 

 Most work remaining (MWKR): This rule selects the job based on the 

remaining work content. The priority index of job i is computed as Zi = RPTi. 

The job with maximum value of Zi is chosen for loading. 
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 Performance of dispatching rules in job shops are presented in Table 2.6. 

 
Table 2.6 Performance of dispatching rules in job shops (Horng, 2006) 

Performance criterion Best rule(s) References 

Mean flow time 

SPT, LWKR Waikar et al. (1995) 

PT+WINQ Holthaus (1997) 

PT+WINQ Holthaus and Rajendran (1997) 

RR, SPT, PT+WINQ Rajendran and Holthaus (1999) 

Max flow time 

AT-RPT Holthaus (1997) 

PT+WINQ+AT,     

PT+WINQ+AT+SL 
Holthaus and Rajendran (1997) 

AT-RPT, PT+WINQ+AT Rajendran and Holthaus (1999) 

Flow time variance 

AT-RPT Holthaus (1997) 

PT+WINQ+AT,    

PT+WINQ+AT+SL 
Holthaus and Rajendran (1997) 

AT-RPT, PT+WINQ+AT Rajendran and Holthaus (1999) 

Percent of jobs tardy 

SPT, LWKR Waikar et al. (1995) 

SPT Holthaus (1997) 

SPT Holthaus and Rajendran (1997) 

FIFO Liu (1998) 

RR, SPT Rajendran and Holthaus (1999) 

Mean tardiness 

RR Holthaus (1997) 

RR Holthaus and Rajendran (1997) 

FIFO Liu (1998) 

RR Rajendran and Holthaus (1999) 

Max tardiness 

RR, PT+WINQ+SL Holthaus (1997) 

PT+WINQ+SL,    

PT+WINQ+AT+SL 
Holthaus and Rajendran (1997) 

RR, PT+WINQ+SL Rajendran and Holthaus (1999) 

Tardiness variance 

RR, PT+WINQ+SL Holthaus (1997) 

PT+WINQ+SL,    

PT+WINQ+AT+SL 
Holthaus and Rajendran (1997) 

RR, PT+WINQ+SL Rajendran and Holthaus (1999) 

 

The sublots that are generated in LS implementations, treated as independent jobs. 

Therefore, the problem size increases, and it becomes more difficult to solve it 

inherently compared to the no-LS case. Therefore, dispatching rules are used in this 

study to dynamically schedule sublots on machines with relatively low computational 

effort. In this regard, four classical dispatching rules namely FIFO, EDD, AT, SPST, 

and five modified dispatching rules proposed in this dissertation are employed. The 

proposed modified rules include customer information, and they are obtained by 
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dividing the prioritization attribute by the weight of the customer segment where the 

weight takes the value between zero and one. Customer weight close to one indicates 

a high level of customer importance. The main reason for dividing the attribute value 

by the weight of the customer segment is to distinguish between sublots whose 

attribute values are equal. The proposed rules that are explained in detail in Section 

4.1 are summarized in the following. 

 

 Customer Oriented EDD (COEDD): This rule incorporates due date and 

customer information. Herein, the priority of a sublot is obtained by dividing 

the assigned due date by the weight of the related customer segment. The sublot 

with the smallest index value is chosen for loading. 

 Customer Oriented AT (COAT): In this rule, the priority of a sublot is obtained 

by dividing the arrival time of the order by the weight of the related customer 

segment. Sublot with the smallest index value is chosen for loading. 

 Customer Oriented FIFO (COFIFO): This value is obtained by dividing the 

queue entrance time of the sublot by the weight of the related customer 

segment. Sublot with the smallest index value is chosen for loading. 

 Customer Oriented SPST (COSPST): The priority of a sublot is obtained by 

dividing the total expected setup and processing time of the sublot by the 

weight of the related customer segment. Sublot with the smallest index value 

is chosen for loading. 

 Important Customer Segment First (ICSF): The sublot with the highest 

customer priority chosen for loading where customer priority is the weight of 

the related customer segment.  

 

2.4 Metaheuristics 

 

2.4.1 Introduction 

 

An optimization problem can be defined as the problem of finding the best solution 

among all feasible solutions to meet desired objectives. Optimization problems consist 

of decision variables, set of constraints and objective function. If the decision variables 
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range over real numbers then the problem is called continuous. If they can only take a 

finite set of distinct values, the problem is called combinatorial.  

 

It is necessary to develop methods, often called algorithms, to solve the 

optimization problems. The complexity, O, of an algorithm evaluated in terms of time 

and space. The time complexity of an algorithm is the number of steps required to 

solve a problem of size n. By considering the complexity classes, optimization 

problems can be classified as P (polynomial) and NP (non-deterministic polynomial). 

Class P problems refers the optimization problems that can be solved by an algorithm 

with polynomial time complexity O (p (n)), where p (n) is a polynomial function of n. 

In the solution of class P problems, exact methods such that branch and bound, 

dynamic programming, Bayesian search algorithms, successive approximation 

methods which guarantee optimal solutions are used. On the other hand, class NP 

problems are the problems that cannot be solved in polynomial time. Its complexity is 

denoted by O (cn), where c is a real constant strictly superior to 1 (Talbi, 2009). In 

addition, a problem is called NP-hard if an algorithm for solving it can be translated 

into one for solving any NP problem. A problem which is both NP and NP-hard is 

called NP-complete. NP problems can be divided into several categories depending on 

whether they are continuous or discrete, constrained or unconstrained, single or multi-

objective, static or dynamic (Boussaid et al., 2013). When dealing with NP problems, 

approximate methods that provide reasonably good solution in a reasonable time are 

employed. These approximate methods can be further split into approximation 

algorithms and heuristic methods (Talbi, 2009; Gogna & Tayal, 2013). 

 

Metaheuristic algorithms are commonly used to find satisfactory solutions for NP 

class “hard” problems. The term metaheuristics was introduced by Glover (1986) and 

it can be defined as “an iterative generation process that guides a subordinate heuristic 

by combining intelligently different concepts for exploring and exploiting the search 

space; learning strategies are used to structure information in order to find efficiently 

near-optimal solutions” (Osman & Laporte, 1996). Unlike exact methods, 

metaheuristics do not guarantee to find global optimal solutions or even bounded 
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solutions. In addition, in contrast with heuristics they are not problem specific and they 

can be applied to any optimization problem.  

 

Metaheuristics are widely used to solve complex problems in industry and services, 

in areas ranging from finance to production management and engineering. Some 

application areas can be stated as engineering design and optimization, electronics, 

automotive and robotics, machine learning and data mining, system modeling and 

simulation, image processing, scheduling and planning problems, routing problems, 

supply chain management problems, logistics and transportation, and so on. (Talbi, 

2009). 

 

Success of a metaheuristic highly depends on the balance between the exploration 

(diversification) and the exploitation (intensification) of the search space. In 

intensification, the promising regions are explored more thoroughly in the hope to find 

better solutions. In diversification, non-explored regions must be visited to be sure that 

all regions of the search space are evenly explored and that the search is not confined 

to only a reduced number of regions. On the other hand, fundamental issues in 

metaheuristics can be stated as the representation of the solution, generation of the 

initial solution, identification of the neighborhood structures and the terminating 

condition. In addition, some properties of the metaheuristics can be summarized as 

follows (Blum & Roli, 2003): 

 

 Metaheuristics are strategies that guide the search process 

 Metaheuristics efficiently explore the search space to find near-optimal 

solutions 

 Metaheuristic algorithms are approximate and usually stochastic 

 Metaheuristics are not problem specific 

 Metaheuristic algorithms include various techniques range from simple local 

search procedures to complex learning processes 

 Today’s more advanced metaheuristics use search experience to guide the 

search 
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2.4.2 Classification of Metaheuristics  

 

In this section, classification of the metaheuristics are summarized and seven 

classes including nature inspired versus non-nature inspired, population-based versus 

single solution-based, memory usage versus memoryless methods, deterministic 

versus stochastic, iterative versus greedy, dynamic versus static objective function and 

finally single versus multiple neighborhood structure are explained (Talbi, 2009; 

Gogna & Tayal, 2013). 

 

2.4.2.1 Nature Inspired versus Non-nature Inspired 

 

The majority of the metaheuristics are developed by inspiring from the natural 

processes such as biology, physics and social sciences. The most widely used nature 

inspired metaheuristic algorithms are ACO, harmony search, firefly algorithm, GA, 

PSO, ABC, SA etc. In this dissertation, SA algorithm is used to obtain the near-optimal 

solutions regarding to the sublot and dispatching rule configurations. Therefore, this 

algorithm is explained in detail in this section.  

 

SA is a local optimization method that is inspired by the annealing process of 

solids. In this process, a material is heated and slowly cooled in order to improve the 

strength of the material (Brownlee, 2011). SA has been widely employed to solve 

various combinatorial optimization problems such as job shop scheduling problems 

(Ponnambalam et al., 1999), vehicle routing problems (Kuo, 2010), travelling 

salesman problems (Geng et al., 2011). The reader may refer to Suman and Kumar 

(2006) for a review of SA applications to operations research problems. 

 

SA is a probabilistic method, and in addition to the solutions that improve the 

objective function value (OFV) it accepts inferior solutions with a certain probability 

in order to avoid being trapped in a local optimum. In SA, quality of the solution 

depends on the control parameters and cooling schedule. In typical implementations, 

SA method involves a pair of nested loops and additional parameters.  
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SA starts from an initial solution (S), and an initial temperature T0 which is 

systematically decreased based on the cooling schedule. In this schedule, the 

neighborhood of the solution (S’) is generated (often randomly) by using neighborhood 

generation mechanism. The OFV of the newly generated solution is computed and the 

newly generated solution is directly accepted as the current solution if the change in 

the OFV (∆) is less than zero. On the other hand, if ∆ is greater than or equal to zero, 

then the newly generated solution is accepted as the current solution with a Boltzman’s 

probability based on Metropolis’s criterion. For this criterion, a random number x is 

generated from the interval (0, 1) and if exp (-∆/T) is greater than x, then the newly 

generated solution is accepted. Otherwise, the current solution remains same. 

Afterwards, the initial temperature is commonly reduced geometrically by multiplying 

the current temperature by the cooling rate (r) which is a constant less than 1. However, 

there are also some other techniques such as linear cooling, exponential cooling, and 

logarithmic cooling used to update the temperature. The following figure summarizes 

the procedure of SA algorithm. 

 

Begin 

Generate initial solution S, set T = T0 (T0: Initial temperature) 

Evaluate fitness f (S) where f (S) is the performance measure of solution S 

while termination criterion not met do 

for j=1: R do (where R is the number of iterations at each temperature) 

pick a random neighbor S’ of S, set ∆= f(S’) – f(S) 

if  ∆ < 0 then  

set S = S’ 

else  
generate random number, x, from the interval (0, 1) 

if x < exp (-∆/T) then  

set S = S’ 

end 

end 

end 

set T= r x T where r is the cooling rate 

end 
 

Figure 2.7 Pseudo code of SA 

 

2.4.2.2 Population Based versus Single Solution-Based Search 

 

Single solution-based algorithms working based on a single solution at any time 

and they are intensification oriented. On the other hand, population-based algorithms 
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iterate and manipulate whole family of solutions and they are diversification oriented. 

The most widely known single solution-based algorithms can be stated as TS, SA and 

local search. Besides this, GA, PSO, and DEA are the most commonly used 

population-based search algorithms. Population-based algorithms can be further 

classified into two main categories namely evolutionary algorithms and swarm 

intelligence algorithms. The evolutionary algorithms (e.g. GA, DEA) mimic the 

evolution which is driven by the iterated selection and mutation. Evolutionary 

algorithms have a simple generic outline as follows:  

 

1. Initialize a random population of individuals  

2. Apply the search (e.g. mutation and crossover) operators  

3. Select the best individuals to the next generation  

4. Repeat steps 2–3 until the termination criterion is met 

 

On the other hand, the swarm intelligence algorithms mimic the colony of organism 

in which each individual in the colony has the ability to decide their action based on 

simple rules. The swarm intelligence algorithms use cooperation approach which 

requires communication mechanism among the individuals rather than the competition 

approach which is used in evolutionary algorithms (Vasant, 2012; Talbi, 2009).  

 

In this dissertation, DEA is integrated with the simulation model and it is used to 

find near-optimal solutions for the segment based parameter values of the dynamic 

weight setting functions. Therefore, DEA is introduced in this section. 

 

DEA, which is proposed by Storn and Price (1997), is a population-based stochastic 

search algorithm, and it is developed for the optimization problems with continuous 

domains (Karaboğa & Ökdem, 2004). DEA uses mutation, crossover and selection 

mechanisms likewise GA and it has control parameters such that population size (NP), 

scaling (weighting) factor (F) and crossover rate (CR). It has been used in various 

optimization problems in the literature such as travelling salesman problem 

(Tasgetiren et al., 2010), vehicle routing problem (Mingyong & Erbao, 2010), logistics 

network design (Lieckens & Vandaele, 2007), revenue management (Subulan et al., 
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2016). The issues triggered researchers to prefer DEA can be stated as the simplicity 

of coding, few number of control parameters, and fast convergence ability (Das & 

Suganthan, 2011). 

 

In DEA, the initial population is often generated randomly and then this population 

is evolved by using mutation, crossover and selection operators. Notation Xi (G), given 

in Equation (2.12), represents the vector i of the population at the current generation 

G where xij (G) denotes the j th parameter value of vector i at the current generation G 

and D denotes the dimensionality such as number of parameters. In case of parameter 

j has lower and upper bound as L

jx  and U

jx , respectively, then j th components of the 

population members are generated by considering the boundary constraints.  

 

 1 2( ) (G), (G),... ( )i i i iDX G x x x G                                          (2.12) 

 

In each iteration of the algorithm, a donor vector Vi (G) is generated in order to 

explore the search space. In generation of donor vector, three members (r1, r2 and r3) 

are selected randomly from the current population and then the weighted difference 

vector between two population members is added to the third member where the 

weight is denoted by F. The process is called mutation and for the j th component of 

each vector can be expressed by the following formula: 

 

1 2 3( 1) ( ) ( ( ) ( ))ij r j r j r jv G x G F x G x G                                     (2.13) 

 

In the next step, crossover is employed. The donor vector exchanges its body parts 

with the target vector Xi (G) based on the following scheme (Equation (2.14)) and in 

this way, a trial vector Ui (G) is generated for each target vector Xi (G). 

 

       
( ) ( )  rand (0,1) < CR

( ) ( ) 

ij ij

ij ij

u G v G if

u G x G else




                                 (2.14) 
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In the subsequent step of the algorithm, selection mechanism is used to determine 

which one of the target vector and the trial vector will survive in the next generation 

(G+1). The vector with the lowest OFV survives into the next generation G+1 (see 

Equation (2.15)) where f is the function to be minimized. 

 

( 1) ( )       ( ( )) ( ( ))

( 1) ( )      ( ( )) ( ( ))

i i i i

i i i i

X G U G if f U G f X G

X G X G if f X G f U G

  

  
                            (2.15) 

 

In addition, the best parameter vector is evaluated for every generation in order to 

keep track the optimization process. This process is continued until the maximum 

number of generations is met or the difference in OFVs between two consecutive 

generations reaches a small value. The search procedure of the DEA can be 

summarized as follows: 

 

Begin 

Set generation number G=1, initialize population of NP real vectors at random 

for all vector Xi(G) in the population do 

evaluate the fitness f(Xi(G)) 

end 

while termination criterion not met do 

 for all vector Xi(G) in the population do 

pick at random 3 distinct vectors from the current population Xr1(G), Xr2(G), Xr3(G) 

where F is the scaling factor 

create donor vector Vi(G)= Xr3(G)+F(Xr1(G)- Xr2(G))  

set Ui(G) as the result of the recombination of Vi(G) and Xi(G) with probability CR 

if f(Ui(G)) ≤  f(Xi(G)) then 

set Xi(G+1) = Ui(G) 

else 

set Xi(G+1) = Xi(G) 

end 

end  

end 
 

Figure 2.8 Pseudo code of DEA 

 

2.4.2.3 Memory Usage versus Memory-less Methods  

 

Some metaheuristics are memory-less and they only use the information about the 

current state during the search. On the other hand, some metaheuristics use a memory 
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and they use some information gathered during the search. For instance, TS algorithm 

use short-term and long-term memory during the search procedure. 

 

2.4.2.4 Deterministic versus Stochastic  

 

A deterministic metaheuristic solves an optimization problem by making 

deterministic decisions (e.g., local search, TS). It means that the same final solution is 

obtained by using the same initial solution. On the other hand, in stochastic algorithms, 

some random rules are applied during the search (e.g., SA, evolutionary algorithms). 

Therefore, same initial solution can be resulting with different final solutions. 

 

2.4.2.5 Iterative versus Greedy 

 

Most of the metaheuristics are iterative algorithms and they start with a solution (or 

set of solutions) then manipulate it at each iteration during the search (e.g., PSO, SA). 

On the other hand, greedy algorithms start from an empty solution and at each step a 

decision variable is assigned until a complete solution is obtained (e.g., ACO).  

 

2.4.2.6 Dynamic versus Static Objective Function 

 

The metaheuristics with static objective function keep the objective function as it is 

during the search procedure (PSO). On the other hand, metaheuristics with dynamic 

objective function such as guided local search, modify the objective function during 

the search process. 

 

2.4.2.7 Single versus Multiple Neighborhood Structures 

 

Most metaheuristic algorithms work on a single neighborhood structure. Other 

metaheuristics such as variable neighborhood search use a set of neighborhood 

structures which gives the possibility to diversify the search by swapping between 

different fitness landscapes. 
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CHAPTER THREE 

THE PROPOSED DECISION SUPPORT SYSTEM  

 

For today’s companies, strategic decision making is an important task. They need 

both to store data and convert the data into meaningful information. In addition, CRM 

is a broad concept involving a series of different decision making tasks and DSSs are 

often used in CRM studies in order to provide strategic information for many 

customer-oriented applications by reviewing and manipulating data (Bergeron, 2002).  

 

DSS is a class of information systems that support organizational decision making 

activities. It can be defined as a combination of functional procedures and techniques 

allowing the transformation of the operational data into information for end users. This 

information can be explored, analyzed and put into reports which will help 

professionals to identify and solve problems and make decisions (Misdolea, 2010). 

Sprague (1980) defines a DSS by its characteristics: 

 

 DSS tends to be aimed at the less well structured, under specified problem that 

upper level managers typically face 

 DSS attempts to combine the use of models or analytic techniques with 

traditional data access and retrieval functions 

 DSS specifically focuses on features which make them easy to use by non-

computer people in an interactive mode  

 DSS emphasizes flexibility and adaptability to accommodate changes in the 

environment and the decision making approach of the user 

 

Construction of a DSS consists of six stages such as (i) identification of the 

problem, (ii) decision about mode of development, (iii) development of a prototype, 

(iv) prototype validation, (v) planning for full scale system, (vi) final implementation, 

maintenance and evaluation. 
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In this dissertation it is aimed to develop a DSS which integrates CRM and PPC 

approaches in order to use manufacturing capabilities more effectively in satisfying 

business customers. The framework of the proposed DSS is presented in Figure 3.1.   

 

Phase I.a: Customer base analysis

- Determine the customer segmentation variables

- Partition the customer base into customer segments

- Determine the importance weights of the customer   

segments

- Define the performance indicators that are important 

for each customer segment

- Analyze customer expectations on the predefined  

performance indicators

- Identify customers’ penalties related to the 

performance indicators

Phase I.b: Manufacturing system analysis

- Identify product types and analyze their demand 

characteristics (i.e. arrival processes, demand patterns, 

demand volumes etc.)

- Determine the production processes and processing 

times

- Analyze setup operations and durations (if exist)

- Identify possible dispatching rules that can be used to 

schedule jobs

- Determine the due date setting policy

Phase II: Simulation modelling and optimization

- Build the simulation model of the manufacturing system and perform validation 

and verification analysis

- Determine the proper optimization method to be used and integrate it with the 

simulation model

Phase III: Production and scheduling policy analysis

- Determine the lot splitting policy

- Determine the job scheduling policy

Phase IV: Self-monitoring

- Measure the performance 

- Update decisions related to production and 

scheduling policies

Figure 3.1 Framework of the proposed DSS  

 

According to Figure 3.1, companies should first analyze their customer base in 

order to understand their customers’ expectations, what they value most, and perform 

customer-focused production activities. This phase (phase I.a) can include several 

tasks. For instance, manufacturers can segment their customers into distinct groups 

according to their similarities or value to the firm. Because, firms work with many 

customers, and developing production plans by considering each customer separately 

is very complex and time consuming. Therefore, grouping customers in accordance 
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with their value to the company and developing production strategies for these groups 

will be more effective. To do this, manufacturers should first analyze the company and 

market structure and then determine the variables that will be used to segment their 

customers. These variables can be firmographic variables (i.e. age, company size, 

geography, industry etc.), behavioral variables (i.e. frequency of orders, product 

preferences, monetary value of purchases, recency of purchases etc.) or specific 

variables. Afterwards, customer base can be partitioned into groups based on the 

predefined variables by using different techniques such as clustering, recency-

frequency-monetary analysis, artificial intelligence-based techniques and scoring 

models. Then, the obtained customer groups can be weighted by using weighting 

methods or multi criteria decision making techniques (Güçdemir & Selim, 2015a).  

 

In addition to the customer segmentation, exploring what the customers want and 

what they value most is another important task for manufacturers on the way to 

becoming customer focused. In this way, they can set realistic performance measures 

by considering their customers’ point of view. For instance, on time delivery is an 

important concern for today’s customers. Therefore, earliness and tardiness penalties 

should be incorporated into the models proposed in this field. In addition, customers 

often request some portion of their order is completed and delivered within the 

promised due date because they planned their own operations based on the promises 

made by the manufacturer (supplier). Therefore, order completion rate on due date is 

another important performance measure for the manufacturers. Moreover, customers 

can give importance to these performance indicators in varying degrees. In this case, 

on the contrary of Yoon and Ventura’s (2002) study, predefined indicators should be 

weighted by the customers based on their own competitive strategies. For example, 

tardiness can be the most important indicator for some of the customers while the order 

completion rate on due date is the most important one for others. Furthermore, 

customers may have some tolerances about these indicators and they can allow some 

deviations from the target value. These tolerances may also vary depending on the 

customers’ competition strategies, market power, company structure etc. Considering 

these issues, multiple customer segments with different importance weights, and 

customers’ expectations and penalties on order completion rate on due date, tardiness 
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and earliness are taken into account in this dissertation. The objective function is set 

as the minimization of mean weighted percentage deviation from the expectations of 

customer segments. It consists of weighted positive percentage deviation from due 

date (tardiness), weighted negative percentage deviation from due date (earliness), and 

weighted percentage deviation from order completion rate on due date. 

 

Phase I.b represents the analysis of the manufacturing system under concern. In this 

phase, product types and related demand characteristics should be identified, 

processing requirements and job processing times should be analyzed, and type of 

setup operations and durations should be determined. As dynamic job shop systems 

are dealt with in this dissertation, dispatching rules especially the ones containing both 

processing and customer information can be evolved. In this way, customer orders can 

be effectively prioritized.  

 

Another important task of this phase is due date setting. There exists various due 

date setting methods/functions for job shop systems in the literature such as static and 

dynamic functions (Veral, 2001; Baykasoğlu et al., 2008). It is obvious that setting too 

slack lead times may lead customer dissatisfaction. On the other hand, setting too tight 

lead times can be unrealistic and it leads fail to achieve goals. Therefore, 

manufacturers should analyze the characteristics of their production system and then 

determine the suitable due date setting method. In this dissertation, TWK due date 

assignment method, which is explained in detail in Chapter 4, is employed. 

 

After the analysis of manufacturing system and customer base, simulation model 

can be built for dynamic job shop systems in order to perform the required analysis in 

the next phase (phase II). Simulation is a suitable tool for this kind of systems as it 

gives the opportunity to model the dynamic structure of manufacturing systems such 

as dynamic arrivals, dynamic scheduling, dynamic due date setting, and queue 

manipulation. Literature reviews on job shop LS problem reveal that most of the 

studies handle the static job shop problems and assume that orders are available at time 

zero, and they tried to optimize the LS conditions and/or schedules of a finite and 

known order set (e.g. 10 jobs-10 machines) by using mathematical programming 
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approaches. However, these assumptions are unrealistic in most of the real life cases. 

Additionally, simulation models alone don’t provide adequate information about what 

value should be assigned to input variables where there exist too much decision points 

in the solution space. In this case, simulation models can be integrated with 

optimization methods such as metaheuristics, local search techniques and statistical 

techniques in order to find the appropriate combination of the input variables. In this 

concern, simulation optimization is a significant methodology that combines 

optimization techniques with simulation analysis. It can be defined as the process of 

finding the best input parameter values among all possibilities without evaluating each 

possibility explicitly. It involves the search for the optimal settings of the input 

parameters, where the optimal is measured by a function of the simulation output 

(Amaran et al., 2016; Swisher, 2000). In addition, it can be very expensive to find the 

best combination of the parameter settings when dealing with complex and large-scale 

systems. Therefore, simulation optimization enables decision makers to make 

decisions with minimum resource utilization (time, money, effort) by performing few 

simulations (Amaran et al., 2016; Carson & Maria, 1997). Simulation optimization has 

been employed for various optimization problems. The reader can refer Andradottir 

(1998), Azadivar (1999), Tekin and Sabuncuoglu (2004), Swisher et al. (2004), 

Ammeri et al. (2011), Pasupathy and Ghosh (2013) and Amaran et al. (2016) for the 

comprehensive reviews of the literature about simulation optimization. 

 

The simulation optimization consists of two major parts namely, generating 

candidate solutions and evaluating their OFV. As illustrated in Figure 3.2, the 

optimizer generates a set of value for the input parameters and send it to the simulation 

model. Then the value of the objective function is computed (estimated) as an output 

of the simulation model. This OFV is used by the optimizer in the selection of the next 

trial solution. The procedure continues until a termination criterion is met. 
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Simulation Model Optimizer

Output as OFV

Input parameter values
 

Figure 3.2 Simulation optimization procedure 

 

Like the other optimization problems, simulation optimization includes 

components such as decision variables, constraints and objective function (Fu, 2001). 

Although the concept seems to be very clear and simple, complex computing 

requirements of simulation optimization may necessitate advanced software support 

and programming knowledge. Simulation optimization has various advantages and 

disadvantages. The most prominent advantages can be stated as follows. 

 

 It can be easily used for various problems 

 The simulation model can represent the real system more accurately than a 

mathematical model. In mathematical models, real system is simplified in 

general by using many assumptions  

 Objective function can be defined simply without using complex mathematical 

formulations 

 It is running automatically 

 

On the other hand, the main disadvantages of simulation optimization include the 

following. 

 

 The optimization process may run for a long time 

 Both simulation model and the optimization technique require advanced 

programming knowledge 

 Optimum solution is not guaranteed  

 It may need expensive software packages 
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There exist various techniques proposed for simulation optimization. Simulation 

optimization methods have been applied to the problems with a single objective, 

problems that require the optimization of multiple criteria, and problems with non-

parametric objectives. Figure 3.3 summarizes the major techniques used in simulation 

optimization.  

 

Simulation Optimization Techniques

Gradient based 

search methods

Stochastic 

optimization

Response 

surface 

methodology

Heuristic 

methods
A-teams

Statistical 

methods

Finite 

difference 

estimation

Likelihood 

ratio 

estimators

Perturbation 

analysis

Frequency 

domain 

experiments

Importance 

sampling

Ranking and 

selection

Multiple 

comparison

 

Figure 3.3 Techniques used in simulation optimization (Hrčka et al., 2014) 

 

In recent years, most researchers involve metaheuristic techniques such as SA, TS, 

GA into simulation optimization due to their ability to provide good results in 

reasonable time. In this dissertation, simulation optimization is performed by 

integrating the simulation model with metaheuristics namely SA and DEA.  

 

In phase III, production and scheduling policy analyses are performed in order to 

find the appropriate lot splitting and job scheduling polices. Lot splitting policy can be 

fixed for each production lot or vary across the product types. In the job scheduling 

phase, dispatching rules-based dynamic scheduling is used. This can also be fixed for 

each machine or vary across the machines. In this study, it is intended to find a near-

optimal policy regarding the machine-based dispatching rules and NES for the product 
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types. For this purpose, four commonly used dispatching rules namely FIFO, AT, EDD 

and SPST, and five modified versions of these rules namely COEDD, COAT, 

COFIFO, COSPST, ICSF proposed in this dissertation are employed. 

 

Self-monitoring is performed in the last phase in coordination with phase III. 

Candidate solutions are evaluated in terms of performance measure (OFV), and then 

decisions on lot splitting and scheduling are updated based on the data stored. More 

specifically, there is a feedback loop between the simulation model and optimization 

method that improves the OFV. 
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CHAPTER FOUR 

IMPLEMENTATION OF THE PROPOSED DECISION SUPPORT SYSTEM 

 

4.1 Problem Statement 

 

A MTO manufacturing environment in which frequently ordered components are 

involved into the products directly and produced based on closed job shop 

manufacturing process, and the number of routings available to a product type is fixed 

is dealt with in this section. Characteristics of the production system under concern is 

summarized in Figure 4.1. In this system, orders for multiple product types are given 

in lots and each production lot consists of single job (product) type. The production 

lots are split into sublots with the same size (equal), and total number of sublots and 

sublot sizes are fixed (consistent) over the machines. In case of the size of a sublot is 

not an integer, remaining part of the production lot is involved in one of the sublots of 

the production lot. Sublot sizes are assumed to be discrete valued, and the number of 

sublots is to be determined (FlexN). Intermingling sublots are allowed, in other words, 

the sequence of sublots of product i may be interrupted by sublots of product j. The 

notations are reported in Table 4.1. Herein, it is aimed to find a production policy that 

includes NES and dispatching rule configurations.  

 

Assumptions of the problem can be stated as follows: 1) buffer spaces are infinite, 

2) processing routes are known and dependent on the product type, 3) orders cannot 

be cancelled, 4) processing times are stochastic and dependent on the product type, 5) 

setup operations are sequence dependent, and 6) transportation activities are 

negligible. 
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Lot Streaming Problems

Job Shop Flow Shop Open Shop Other systems

Manufacturing system

Cost based 

objectives

Time based 

objectives

Flow time based 

objectives
Makespan

Earliness/Tardiness 

based objectives
Other objectives

Single product Multi product

Stochastic Deterministic

Consistent Variable

Number of product types

Variability

Equal Unequal

Discrete Continuous

Sublot sizes

FlexN FixN

Number of sublots

Sublot types

Performance measure

Figure 4.1 Problem structure 
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Table 4.1 Main notation 

Indices 

c index of customer segments 

i index of orders 

l index of machines 

s index of sublots 

Sets 

orderc set of orders belonging to customer segment c  

Parameters 

wc importance weight of customer segment c 

αc the penalty assigned by customer segment c for earliness  

βc the penalty assigned by customer segment c for tardiness 

γc the penalty assigned by customer segment c for order completion rate on due date 

oc minimum order completion rate required by customer segment c on the due date 

tc maximum allowable positive percentage deviation from the due date for customer 

segment c 

ec maximum allowable negative percentage deviation from the due date for customer 

segment c 

m number of customer segments 

n number of completed orders 

k the due date allowance factor 

pij expected processing time of j th operation of order i 

stisl setup time required to process the sublots of order i on machine l 

mi total number of operations of order i 

ri arrival time of order i 

thc the threshold value stating the dissatisfaction percentage in customer segment c 

qisl arrival time of sublots of order i to the queue of machine l 

ptisl expected processing time of sublots of order i on machine l 

Decision variables 

di the due date assigned to order i 

oi completion rate of order i on its due date 

cti completion time of order i 

edi negative percentage deviation from the due date for order i 

tdi positive percentage deviation from the due date for order i 

odi percentage deviation from order completion rate on the due date for order i 

rwc the rule weight used for customer segment c 

pdc percentage of dissatisfied orders in segment c 

Ѳc an auxiliary variable for customer segment c 

pc 
the exponent used for customer segment c (for exponential function) 

the coefficient used for customer segment c (for linear function) 

 

Objective function of the problem is formulated as minimizing the mean weighted 

percentage deviation from the expectations of customer segments (see Equation (4.1)). 

It is a customer-focused objective function and includes customer importance weights, 

deviations in terms of earliness, tardiness and order completion rate on due date, and 

penalties related to the deviations. 

 

 
1

MIN /
c

m

c c i c c i c c i

c i order

a w ed w td w od n 
 

                                (4.1) 
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In the simulation model of the problem under concern, orders (production lots) 

dynamically arrive in the system and then the system assigns a due date to each order 

by using the TWK due date assignment function given in Equation (4.2). This function 

first computes the expected processing time of the orders based on the route identified, 

unit processing time and lot size, then extending the expected processing time by 

adding some proportion of it.  

 

1

im

i i ij

j

d r k p


                                                   (4.2)  

      

After the assignment of due dates, production lots are split into sublots based on the 

sublot configuration vector that shows the NES for each product type. Then these 

sublots are routed to their destination station for processing. When the processing of a 

sublot is completed on a machine, the machine selects a new sublot to be processed by 

the dispatching rule identified for that machine. Calculation of priority indices over 

the dispatching rules are presented in Table 4.2.  

 
Table 4.2 Characteristics of dispatching rules  

Dispatching rule Attribute value Selection criterion 

EDD di min value first 

COEDD di / wc min value first 

FIFO qisl min value first 

COFIFO qisl / wc min value first 

SPST ptisl + stisl min value first 

COSPST (ptisl + stisl) / wc min value first 

AT ri min value first 

COAT ri / wc min value first 

ICSF wc max value first 

 

As soon as all job steps are completed, sublots are moved from one machine to the 

next one by taking the identified route. In case of the entire sublot of an order is 

completed, order completion rate of the related order is updated. In addition, when the 

entire sublots of an order are completed, completion time of the order (cti) is recorded. 

Lot splitting and processing procedure is illustrated in Figure 4.2.  
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Order Arrival

AMOD(order_sizei / NESi )<>0

Set s=1

Set 

sublot_sizeis = (order_sizei / NESi )

s<>NESi 

Set

sublot_sizeis=(order_sizei / NESi )+AMOD(order_sizei / NESi)

s = s+1

Process the sublot on 

machine

All operations completed ?

Set

completed_unitsi = completed_unitsi + sublot_sizeis

oi = completed_unitsi / order_sizei 

yes

Set order_no (i)

Set ri = tnow

Set due_date (di)

Set priority_index value

Set NESi 

oi==1

cti=tnow

while s <= NESi 

no

Set

sublot_sizeis = (order_sizei / NESi )

yes
no

End while

yes

Enter the machine queue 

based on min priority_index 

value

Route the sublot to its 

destinaion station

no

Dispose

yes no

for all sublots of order i do

End for
 

Figure 4.2 Lot splitting procedure 

 

Further, the simulation model controls the completion rates of the orders when their 

promised due dates are reached. If it equals to 1, it means that the entire order is 

completed within the promised due date. In this case, the earliness of the order is 
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examined by using Equation (4.3). If the completion time of the order is within the 

customer’s tolerance limit for earliness, then edi equals to zero. 

 

(1 )
0,

(1 )

i c i
i

i c

d e ct
ed MAX

d e

  
  

 
                                         (4.3) 

 

In case of the entire order is not completed within the promised due date, it is 

examined whether the completion rate is greater than the customer expectation or not 

by using Equation (4.4). If the completion rate of the order (oi) is greater than the 

expectation of the customer (oc), then the odi equals to zero. In the next step, tardiness 

of the order is evaluated based on the completion time of the order (see Equation (4.5)). 

If the completion time of the order doesn’t exceed the customer’s maximum allowable 

completion time then the tdi equals to zero. Finally, the OFV is updated for each order 

completion. Calculation of OFV is presented in Figure 4.3. In addition, each completed 

order must fit in one of the states defined in Table 4.3. 

 

0, c i
i

c

o o
od MAX

o

 
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 
                                                 (4.4) 
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i
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                                         (4.5) 

 

Table 4.3 States of completed orders 

State Completed on due date? odi tdi edi 

1 no 0 0 NA 

2 no 0 + NA 

3 no + 0 NA 

4 no + + NA 

5 yes 0 NA 0 

6 yes 0 NA + 
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due_date is 

reached

oi < 1

oi >= oc

yes no

Set odi =0

Compute

odi  

γc wc odi 

Set odi =0

Wait until the order is 

completed

Does cti  exceed the 

tardiness tolerance?

Set tdi =0

Compute

tdi  

ßcwc tdi 

no yes

Does cti  exceed the 

earliness tolerance?

Set edi =0

Compute

edi  

αc wc edi 

no

Update

∑γc wc odi 

Update

∑ßcwc tdi 

Update

∑αc wc edi 

Update

∑ αc wc edi +ßcwc tdi +γc wc odi  

yes yes
no

Figure 4.3 OFV calculation procedure 

 

Numerical Examples 

 

 It is assumed that the system assigns the due date of 200 to an order, and the 

company completed the order at time 150. However, customer allows at most 

10% deviation from due date in terms of earliness. In this case, di=200; cti=150 

and ec=0.10. Consequently, according to Equation (4.3), edi=0.17. 

 It is assumed that a customer orders 200 units of product type x, and the 

company completed 100 units of it within the promised due date. However, 

customer wants that at least 80% of the order has been completed within the 

promised due date. In this case oc=0.80 and oi= (100/200) = 0.50. 

Consequently, according to Equation (4.4), odi=0.375. 
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 It is assumed that the system assigned due date to an order is 100. The company 

completed the order at time 150. However, customer allows at most 20% 

deviation from due date in terms of tardiness. In this case, di=100; cti=150 and 

tc=0.20. Consequently, according to Equation (4.5), tdi=0.25. 

 

4.2 Methodology 

 

 Due to the complex interaction between sublots and machines, job shop problems 

with the application of LS strategy are difficult to formulate mathematically (Buscher 

& Shen, 2011). Therefore, simulation optimization approach is used in this section to 

determine the sublot and dispatching rule configurations. In this regard, ARENA 14.0 

and MATLAB 2014.b software packages are utilized in an integrated way. As 

illustrated in Figure 4.4, MATLAB performs the SA procedure and finds a candidate 

production policy at each step. This candidate solution is used by the simulation model 

as input, and then the simulation model runs and computes the OFV that is used as the 

fitness function value in SA. This process continues until SA procedure is terminated. 

 

Simulation Model Simulated Annealing

Output as fitness function value

Sublot and dispatching rule configurations
 

Figure 4.4 SA-based simulation optimization process 

 

4.2.1 Representation of the Solution 

 

The solution is represented by a string that consists of m+n digits, where m denotes 

the number of product types and n denotes the number of machines. The first m digits 

represent the NES for each product type and the remaining n digits represent the 

dispatching rules that is assigned to the machines (see Figure 4.5, where m=3, n=3). 

For instance, production lots for product type 1 (P1) are always split into five sublots 
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in the model, and the dispatching rule 2 is used to schedule the sublots awaiting service 

on machine 1 (M1) (see Figure 4.5).  

 

5 8 10 2 4 1 

P1 P2 P3 M1  M2 M3 

 

Figure 4.5 Representation of the solution 

 

4.2.2 Generation of the Initial Solution and Random Neighborhood Search 

 

The initial solution is obtained by generating random numbers for the digits of the 

string by considering the boundary constraints of each digit. Then the search procedure 

starts with the initial solution and calculates the OFV. Then, the value of each digit 

can be increased, decreased or remained the same with some probabilities. To 

determine the amount of change, a random number is generated from a uniform 

distribution. While making the changes, boundary constraints are controlled, and if the 

predetermined change exceeds the limits, value of the digit is remained the same. After 

these computations, a new candidate solution is generated.  

 

4.3 Computational Analysis 

 

The proposed simulation optimization approach is applied to a realistic job shop 

system. The production system under concern consists of three product types, five 

machines and three customer segments. Order arrivals are stochastic, and inter arrival 

times are exponentially distributed. An incoming order comes from the customer 

segments A, B and C with probabilities 50%, 30% and 20%, respectively (see Table 

4.4). Demand for the products varies depending on the customer segment as presented 

in Table 4.4. In addition, the order sizes are randomly generated from a uniform 

distribution and they vary depending on the both customer segment and product type 

(see Table 4.5).  
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Table 4.4 Demand and order patterns  

Customer 

segment 
Demand percent 

Product type 

1 2 3 

A 50 20% 30% 50% 

B 30 40% 40% 20% 

C 20 30% 40% 30% 

 

Table 4.5 Order sizes 

Customer  

segment 

Product type 
Order size 

1 2 3 

A unif (100,500) unif (100,300) unif (100,400) Multiples of 100 

B unif (50,300) unif (100,400) unif (50,250) Multiples of 50 

C unif (50,200) unif (100,300) unif (50,200) Multiples of 50 

 

Processing routes and times of the products on the machines are reported in Table 

4.6. Furthermore, it is assumed that setup times are sequence dependent and the same 

for each machine (see Table 4.7). 

 
Table 4.6 Processing routes and times 

Product type Machine Route and processing time per unit (min) 

1 1 M1 (unif (2,5)) M2 (unif (1,3)) M5 (unif (2,7))  

2 2 M2 (unif (2,6)) M3 (unif (1,4)) M4 (unif (4,7))  

3 3 M1 (unif (1,4)) M3 (unif (3,8)) M5 (unif (1,5)) M4 (unif (3,5)) 

 4     

  5         

 

Table 4.7 Sequence dependent setup times 

Product type 
Setup time (hr) 

1 2 3 

1 0 1 2 

2 3 0 2 

3 1 2 0 

 

As presented in Table 4.8, each customer segment has different 

expectations/allowances on order completion rate, tardiness and earliness. For 

example, segment A customers want that minimum 90% of their orders completed 

within the promised due date, and they allow maximum 10% positive, and 20% 

negative deviations from the due date. In addition, penalties for the performance 

indicators vary depending on the customer segments. For instance, segment A 

customers give 10%, 60% and 30% importance to edi, tdi and odi, respectively (see 

Table 4.8). 
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Table 4.8 Customer expectations and penalties 

Customer segment oc tc ec αc βc γc 

A 90% 10% 20% 0.10 0.60 0.30 

B 80% 20% 30% 0.15 0.50 0.35 

C 80% 25% 35% 0.20 0.50 0.30 

 

By considering the data given in Tables 4.4 and 4.5, expected order sizes are 

computed for each customer segment and product type combination (see Table 4.9). 

Then, the product type-based expected order sizes are obtained by summing the 

expected sizes of orders received from the whole customer segments for the related 

product type. For instance, for product type 1, the expected order sizes of A-1 (30 

units), B-1 (21 units) and C-1 (7.5 units) are summed and then the expected order size 

of product type 1 is obtained as 58.5 units. Afterwards, expected machine loads per 

order are obtained by multiplying the expected order sizes by mean unit processing 

times (see Table 4.10).   

 
Table 4.9 Expected order sizes 

Customer 

segment 

Product 

type 
Probability 

Mean 

order size 

Expected 

order size 

A 1 0.10 300 30.0 

A 2 0.15 200 30.0 

A 3 0.25 250 62.5 

B 1 0.12 175 21.0 

B 2 0.12 250 30.0 

B 3 0.06 150 9.0 

C 1 0.06 125 7.5 

C 2 0.08 200 16.0 

C 3 0.06 125 7.5 

 

Table 4.10 Expected machine loads per order 

Product 

type 

Expected 

order size 

Mean processing time per 

unit (min)   

Expected processing time per order 

(min) 

M1 M2 M3 M4 M5   M1 M2 M3 M4 M5 

1 58.5 3.5 2   4.5  204.75 117   263.25 

2 76.0  4 2.5 5.5    304 190.0 418  

3 79.0 2.5   5.5 4.0 3.0   197.50   434.5 316 237.00 

              ∑ 402.25 421 624.5 734 500.25 

 

According to Table 4.10, maximum load emerges on machine 4 (M4) with total 

expected processing time of 734 minutes. Based on this, machine 4 can be identified 

as the bottleneck (critical) resource of the shop under concern. In this regard, 

utilization rate of the bottleneck resource for varying inter-arrival times is analyzed 
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under the conditions of dispatching rule is FIFO for each machine and the production 

lots remain un-split. Before the analysis, verification and validation of the simulation 

model is conducted. As known, verification is the task of building the simulation 

model correctly. A verified model doesn’t give any syntax errors or logical errors. In 

addition, validation is the task of building the correct model. It aims to find out whether 

the simulation model represents the behavior of the real system or not. The proposed 

model is verified by reviewing the model code and using the trace and debugging tools. 

After this, the model is validated by examining the model outputs for reasonableness 

under a variety of input parameter settings such as customer expectations and 

penalties, inter-arrival times, due date tightness, and sublot and dispatching rule 

configurations. After the analysis, it is concluded that the model is valid and it reflects 

the behavior of the real system. 

 

When modelling a manufacturing system, initial orders arrive at an empty and idle 

system. These early arrived orders quickly move through the system and cause a 

downward bias on the performance measures such as machine utilizations, time in 

system and queue lengths. After a while (warm-up period), system begins to show its 

true long-term (steady state) behavior. Therefore, steady state performance of a system 

should be obtained by eliminating the bias introduced by the starting conditions. One 

of the ways to do this is discarding the data during the warm-up period and the most 

commonly used warm-up period detection method is visual determination (Pegden et 

al., 1990, chap.5). 

 

In this dissertation, in order to determine the warm-up period, simulation model is 

run for 1500 orders and the mean flow time of the orders are analyzed. As illustrated 

in Figure 4.6, first 200 orders are determined as warm-up. The simulation for each 

replication is run for 1700 order completions. First 200 completed orders’ statistics are 

discarded and remaining 1500 order are used for the computation of the performance 

measures. Ten replications are performed for each experiment. 
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Figure 4.6 Warm-up period of the simulated production system 

 

As illustrated in Figure 4.7, inter-arrival times that are lower than 750 minutes cause 

system deadlock. On the other hand, it is obvious that in case of low demand rate (high 

inter-arrival time) significant queue lengths are not observed and customer prioritizing 

loses its importance.   

 

 

Figure 4.7 Utilization rate analysis of the bottleneck resource 

 

In addition, the effect of lot splitting on the OFV for varying inter-arrival times are 

analyzed and the results are summarized in Figure 4.8. In high shop utilization, which 

corresponds 99% utilization of the bottleneck resource, lot splitting loses its 

importance, and it makes no difference to the OFV whether splitting production lots 

into 5 equal sublots (NES=5) or not (NES=1). On the other hand, the effect of lot 

splitting is observed more clearly for the inter-arrival times between expo (850) and 

expo (1400) which correspond 90% and 55% utilization of bottleneck resource, 

respectively. After the point of expo (1400), lot splitting loses its importance on OFV 

again. Therefore, in order to build an efficient and meaningful what-if analysis, it is 

determined to conduct computational analysis for the inter-arrival time of expo (850) 
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and expo (1000) which corresponds to utilization rate of ρ=90% and ρ=80%, 

respectively.  

 

 

Figure 4.8 Change of OFV over the inter-arrival times 

 

Moreover, tardiness oriented analyses are performed by considering inter-arrival 

time, due date allowance factor (k), tardiness tolerance of the customer segments (tc) 

and lot splitting issues. In Table 4.11, recently conducted job shop studies are 

summarized in terms of the shop utilization levels and due date allowance factors used. 

It is concluded here that most of the studies uses a due date allowance factor between 

1 and 8. 

 
Table 4.11 Utilization levels and due date allowance factors in recent job shop studies 

Author (s) Year Shop utilization Due date allowance factor (k) 

Sharma and Jain 2015 90% and 85% 3 

Abd et al. 2014 75%, 85% and 95% 2, 4 and 6 

Nie et al. 2013 60%, 75% and 90% 1, 3 and 5 

Qiu and Lau 2013 60%, 75% and 90% 4, 6 and 8 

Nie 2012 60% and 90% 1, 3 and 5 

Rajabinasab and Mansour 2011 85%, 90% and 95% 4 and 8 

Zhou et al. 2009 70%, 80% and 90% 2 

 

In our tardiness analyses, dispatching rule is arbitrarily selected as EDD for each 

machine. In the first step, tardiness tolerances of the customer segments are assumed 

to be zero (tA=0, tB=0, tC=0), and any order completed with a positive deviation from 

the promised due date is labeled as “tardy” (see Table 4.12). The percent of orders 

tardy is computed by dividing the total number of orders fit in the states 2 and 4 by the 

total number of completed orders. 
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Table 4.12 Results of the tardiness analysis 

Inter-arrival 

time 
k tc 

% orders 

tardy  

NES=1 

% orders 

tardy  

NES=5 

Inter-arrival 

time 
k tc 

% orders 

tardy  

NES=1 

% orders 

tardy  

NES=5 

expo (850) 1.5 

tA=0 

tB=0 

tC=0 

0.84 0.63 expo (700) 1.5 

tA=0.10 

tB=0.20 

tC=0.25 

0.33 

0.31 

0.06 

0.05 

0.01 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.31 

expo (850) 2.0 0.68 0.48 expo (700) 2.0 0.30 

expo (1000) 1.5 0.68 0.31 expo (750) 1.5 0.05 

expo (1000) 2.0 0.44 0.15 expo (750) 2.0 0.05 

expo (1150) 1.5 0.57 0.17 expo (800) 1.5 0.00 

expo (1150) 2.0 0.32 0.07 expo (800) 2.0 0.00 

expo (1300) 1.5 0.49 0.10 expo (850) 1.5 0.00 

expo (1300) 2.0 0.25 0.03 expo (850) 2.0 0.00 

expo (1450) 1.5 0.43 0.06 expo (1000) 1.5 0.00 

expo (1450) 2.0 0.20 0.01 expo (1000) 2.0 0.00 

expo (1600) 1.5 0.38 0.04 expo (1150) 1.5 0.00 

expo (1600) 2.0 0.17 0.01 expo (1150) 2.0 0.00 

 

In the second step, real tardiness tolerances of the customer segments are considered 

(tA=0.10, tB=0.20, tC=0.25) and the same analyses are performed. According to the 

results summarized in Table 4.12, it is concluded that as the inter-arrival time and due 

date allowance factor increase, percent of tardy orders decreases, and lot splitting has 

a significant effect in terms of the percent of tardy orders. However, in case of 

customers tolerate some degree of tardiness, the assigned due dates are extended by 

adding an additional tolerance. As a result, a decrease in percent of tardy orders is 

observed. In addition, based on the sublot and dispatching rule configurations, percent 

of tardy orders is subject to change. By considering these facts, due date allowance 

factor is selected as 1.5 and 2 in the analyses which corresponds to approximately 60% 

and 30% percent of tardy orders in case of tA=0, tB=0, tC=0; NES=5; inter-arrival times 

are expo (850) and expo (1000).  

 

From the CRM point of view, three customer weight sets are taken into account in 

the analysis. These weight sets are presented in Table 4.13. In generating the weight 

sets, the following constraints are satisfied. 

 

                                                           
a b cw w w                                                                 (4.6) 

                                                                                                                             

                                                              1a b cw w w                                                                (4.7)                                                                                     
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Constraint (4.6) ensures that the weight of customer segment A must be greater than 

that of segment B, and in the same way the weight of customer segment B must be 

greater than that of segment C. Constraint (4.7) guarantees that sum of the weights of 

the customer segments equals to 1. 

 
Table 4.13 Customer weight sets and dominance relationships 

Customer 

segment 

Weight set 1 

(A is very dominant)             

Weight set 2 

 (A is moderately dominant)           

Weight set 3 

(A is less dominant)                                   

A 0.80 0.60 0.40 

B 0.15 0.25 0.35 

C 0.05 0.15 0.25 

 

4.3.1 Main Effects Analysis 

 

In this section, experimental analysis are performed in order to investigate the 

effects of NES and the dispatching rules on the OFV. Initially, NES is selected as equal 

for all product types, and the same dispatching rules are employed for all machines. 

The dispatching rules (nine alternatives) running for each NES value (20 alternatives) 

result in 180 experiments for each customer weight set, inter-arrival time and due date 

allowance factor combination. The dispatching rules are encoded as reported in Table 

4.14. 

 
Table 4.14 Encoding of the dispatching rules 

Dispatching rule Definition Dispatching rule Definition Dispatching rule Definition 

1 EDD 4 FIFO 7 COFIFO 

2 COEDD 5 SPST 8 COSPST 

3 AT 6 COAT 9 ICSF 

 

Figures 4.9, 4.10 and 4.11 illustrate the effects of dispatching rules and NES on the 

OFV for the customer weight sets 1, 2 and 3, respectively. It can be concluded here 

that lot splitting significantly affects the OFV. As NES increases, initially the OFV 

decreases. However, when NES reaches five or six, it flattens or starts rising due to 

the increasing number of setup operations. From the dispatching rule perspective, 

FIFO seems to be the worst alternative for the production system under concern. In 

FIFO rule, the increase in mean flow time is very high when NES increases. This rule 

considers the queue entrance time of the sublots and as NES increases, due to the 

increasing number of setup operations, entrance time of the sublots to the downstream 
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machine queue is delayed. This causes later completion of the whole order. Further, 

FIFO rule affects order completion rate on due date indicator most. On the other hand, 

in EDD and AT rules the attribute value is static during the execution of the system, 

and in SPST rule, setup times are taken into account. Therefore, in those classical rules 

OFV flattens as NES increases.  

 

In addition, in case of ρ=90%, the dispatching rules containing customer 

information provides superior results. However, as the dominance of customer 

segment A decreases, there are no remarkable differences between the original and 

modified dispatching rules in terms of the OFV. Figure 4.12 demonstrates that, for the 

weight set 1, the best dispatching rules are COEDD and COSPST in all cases. In the 

same way, for the weight set 2 (see Figure 4.13), COEDD and COSPST are the best 

dispatching rules in case of ρ=90%. However, when utilization of the bottleneck 

resource is 80%, SPST rule that does not contain customer information is also 

effective. Finally, for the weight set 3 (see Figure 4.14), in case of ρ=90%, SPST and 

COSPST are the best rules, while ρ=80% case, EDD is also effective.  

 



 

6
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a) ρ=90%, k=1.5  

 
b) ρ=90%, k=2 

 
c) ρ=80%, k=1.5 

 
d) ρ=80%, k=2 

 

Figure 4.9 Experimental results obtained by customer weight set 1 
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a) ρ=90%, k=1.5 

 
b) ρ=90%, k=2 

 
c) ρ=80%, k=1.5 

 
d) ρ=80%, k=2 

 

Figure 4.10 Experimental results obtained by customer weight set 2 
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a) ρ=90%, k=1.5 

 
b) ρ=90%, k=2 

 
c) ρ=80%, k=1.5 

 
d) ρ=80%, k=2 

 

Figure 4.11 Experimental results obtained by customer weight set 3 
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a) ρ=90%, k=1.5 

 
b) ρ=90%, k=2 

 
c) ρ=80%, k=1.5 

 
d) ρ=80%, k=2 

 

Figure 4.12 Main effects plots obtained by customer weight set 1 
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a) ρ=90%, k=1.5 

 
b) ρ=90%, k=2 

 
c) ρ=80%, k=1.5 

 
d) ρ=80%, k=2 

 

Figure 4.13 Main effects plots obtained by customer weight set 2 
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a) ρ=90%, k=1.5 

 
b) ρ=90%, k=2 

 
c) ρ=80, k=1.5 

 
d) ρ=80%, k=2 

 

Figure 4.14 Main effects plots obtained by customer weight set 3 
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4.3.2 Production Policy Analysis 

 

By considering the results obtained from the main effects analysis, upper bound for 

the NES is determined as ten for each product type, and upper bound for the 

dispatching rules is equal to the number of dispatching rules which equals to nine. 

Considering ten production policies for three customer weight settings, two different 

inter-arrival times and due date allowance factors, totally 120 different scenarios are 

analyzed in this section. As presented in Table 4.15, the production policies are defined 

by considering lot splitting and dispatching rules. Initially, simulation optimization is 

performed for production policy 10 which considers product type-based lot splitting 

and machine-based dispatching rules. Then the sublot configuration obtained from 

policy 10 is used for the policies 1 through 9. 

 
Table 4.15 Encoding of the production policies 

Policy Lot splitting Dispatching rule 

1 Policy 10 EDD for all machines 

2 Policy 10 COEDD for all machines 

3 Policy 10 AT for all machines 

4 Policy 10 FIFO for all machines 

5 Policy 10 SPST for all machines 

6 Policy 10 COAT for all machines 

7 Policy 10 COFIFO for all machines 

8 Policy 10 COSPST for all machines 

9 Policy 10 ICSF for all machines 

10 Product type-based Machine-based rules 

 

The parameters of SA, the initial temperature (T0) and cooling rate (r), are 

determined as 100 and 0.6, respectively. In addition, number of iterations at each 

temperature is defined as 100, and the crystallization temperature as terminating 

condition is determined as 1. For neighborhood search, probabilities of increasing, 

decreasing or fixing the value of an element are determined as 0.35, 0.50 and 0.15, 

respectively. Amount of change is determined by generating random number from a 

uniform distribution with the parameters of (1, 3). Furthermore, in order to diversify 

the search space, the problem is solved for three times. 

 

 

 



72 
 

4.4 Results and Discussion 

 

Results of the computational experiments are summarized in Tables 4.16 to 4.18. 

In addition, the previously defined policies are compared to each other. Confidence 

intervals for µi - µj where j > i have been constructed by using overall confidence level 

of 95%. To test the following hypothesis (see Equation (4.8)), Bonferroni multiple 

pairwise comparisons are employed. Bonferroni method can be thought of as alpha 

splitting. In this method, if we concern k alternatives then the number of confidence 

intervals is computed as k (k-1)/2. According to this method, each individual interval 

must be made at level 1-α/[k(k-1)/2] in order to obtain overall level 1-α.  

 

                                                        
0

1

: 0

: 0

i j

i j

H

H

 

 
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 
                                               (4.8) 

 

Tables 4.16 to 4.18 and the results of multiple pairwise comparisons presented in 

Appendices 1 to 3 reveal that in case of utilization of the bottleneck resource (M4) is 

90%, customer oriented dispatching rules (rules 2, 6, 7, 8, 9) provide better results. 

Especially, COSPST provides superior results than most of the other dispatching rules 

as it considers both customer priority and processing times. In addition, as due date 

allowance factor (k) decreases and utilization of bottleneck resource increases, 

tardiness-based deviations increase (see state 4), OFV gets worse and the use of 

dispatching rules containing customer information increases (rules 2 and 8). Moreover, 

it can be concluded that the proposed approach is more efficient for the production 

systems with high degree of machine utilizations. Furthermore, policy 10, which 

applies product-based lot splitting and machine-based dispatching rules together, 

provides superior results in most cases. Finally, it is observed that as the dominance of 

customer segment A increases, utilization of customer oriented dispatching rules 

increases.  
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Table 4.16 The results obtained by customer weight set 1 

U* k Policy OFV NES 
Dispatching rule State 

M1 M2 M3 M4 M5 S1 S2 S3 S4 S5 S6 

90% 1.5 

1 0.0842 [7  4  4] 1 1 1 1 1 9.8 0 939.2 0.5 550.5 0 

2 0.0194 [7  4  4] 2 2 2 2 2 11.5 0 629.6 25.7 833.2 0 

3 0.0890 [7  4  4] 3 3 3 3 3 10.1 0 1080.8 0.9 408.2 0 

4 0.1159 [7  4  4] 4 4 4 4 4 11.4 0 1224.5 32.0 232.1 0 

5 0.0416 [7  4  4] 5 5 5 5 5 12.3 0 528.6 58.2 900.9 0 

6 0.0351 [7  4  4] 6 6 6 6 6 10.0 0 745.9 24.6 719.5 0 

7 0.0388 [7  4  4] 7 7 7 7 7 9.8 0 750.7 64.1 675.4 0 

8 0.0188 [7  4  4] 8 8 8 8 8 16.8 0 621.6 34.1 827.5 0 

9 0.0351 [7  4  4] 9 9 9 9 9 10.0 0 745.1 25.6 719.3 0 

10 0.0183 [7  4  4] 8 2 8 8 8 16.3 0 619.0 31.7 833.0 0 

90% 2 

1 0.0662 [5  2  6] 1 1 1 1 1 6.2 0 720.0 0.3 773.5 0 

2 0.0116 [5  2  6] 2 2 2 2 2 16.9 0 502.4 17.9 962.8 0 

3 0.0736 [5  2  6] 3 3 3 3 3 11.0 0 893.9 0.4 594.7 0 

4 0.1002 [5  2  6] 4 4 4 4 4 10.5 0 1100.4 9.7 379.4 0 

5 0.0278 [5  2  6] 5 5 5 5 5 18.2 0 398.5 35.6 1047.7 0 

6 0.0238 [5  2  6] 6 6 6 6 6 16.7 0 596.0 15.8 871.5 0 

7 0.0260 [5  2  6] 7 7 7 7 7 18.5 0 610.6 34.2 836.7 0 

8 0.0171 [5  2  6] 8 8 8 8 8 27.7 0.1 508.9 22.1 941.2 0 

9 0.0239 [5  2  6] 9 9 9 9 9 16.7 0 595.3 16.2 871.8 0 

10 0.0118 [5  2  6] 2 8 2 2 2 17.6 0 503.8 19.1 959.5 0 

80% 1.5 

1 0.0366 [4  3  7] 1 1 1 1 1 2.5 0 467.0 0.0 1030.5 0 

2 0.0112 [4  3  7] 2 2 2 2 2 3.7 0 499.3 0.3 996.7 0 

3 0.0483 [4  3  7] 3 3 3 3 3 2.5 0 693.0 0.0 804.5 0 

4 0.0652 [4  3  7] 4 4 4 4 4 3.7 0 872.1 0.0 624.2 0 

5 0.0209 [4  3  7] 5 5 5 5 5 8.2 0 458.1 4.8 1028.9 0 

6 0.0233 [4  3  7] 6 6 6 6 6 3.4 0 595.0 0.4 901.2 0 

7 0.0253 [4  3  7] 7 7 7 7 7 4.4 0 635.1 0.9 859.6 0 

8 0.0150 [4  3  7] 8 8 8 8 8 9.0 0 538.0 1.1 951.9 0 

9 0.0233 [4  3  7] 9 9 9 9 9 3.4 0 595.0 0.4 901.2 0 

10 0.0113 [4  3  7] 2 8 2 2 8 5.1 0 508.1 0.5 986.3 0 

80% 2 

1 0.0198 [5  4  4] 1 1 1 1 1 1.8 0 234.8 0.0 1263.4 0 

2 0.0068 [5  4  4] 2 2 2 2 2 15.4 0 375.5 0.2 1108.9 0 

3 0.0333 [5  4  4] 3 3 3 3 3 11.5 0 475.6 0.0 1012.9 0 

4 0.0495 [5  4  4] 4 4 4 4 4 7.2 0 658.9 0.0 833.9 0 

5 0.0140 [5  4  4] 5 5 5 5 5 5.4 0 286.8 5.1 1202.7 0 

6 0.0149 [5  4  4] 6 6 6 6 6 14.0 0 447.0 0.2 1038.8 0 

7 0.0162 [5  4  4] 7 7 7 7 7 13.9 0 481.1 1.0 1004.0 0 

8 0.0075 [5  4  4] 8 8 8 8 8 20.1 0 382.5 2.2 1095.2 0 

9 0.0149 [5  4  4] 9 9 9 9 9 14.0 0 447.0 0.2 1038.8 0 

10 0.0062 [5  4  4] 1 2 2 8 1 3.5 0 299.0 1.3 1196.2 0 

 
*U: Utilization level of bottleneck resource 
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Table 4.17 The results obtained by customer weight set 2 

U k  Policy OFV NES 
Dispatching rule State 

M1 M2 M3 M4 M5 S1 S2 S3 S4 S5 S6 

90% 1.5 

1 0.0726 [6  7  8] 1 1 1 1 1 14.8 0.0 916.9 0.7 567.6 0 

2 0.0282 [6  7  8] 2 2 2 2 2 21.3 0.0 598.0 38.3 842.4 0 

3 0.0797 [6  7  8] 3 3 3 3 3 15.2 0.0 1059.2 0.9 424.7 0 

4 0.1192 [6  7  8] 4 4 4 4 4 15.7 0.0 866.9 428.5 188.9 0 

5 0.0352 [6  7  8] 5 5 5 5 5 57.6 2.0 543.9 64.6 831.9 0 

6 0.0388 [6  7  8] 6 6 6 6 6 19.1 0.0 703.6 35.2 742.1 0 

7 0.0507 [6  7  8] 7 7 7 7 7 18.2 0.0 709.8 122.4 649.6 0 

8 0.0268 [6  7  8] 8 8 8 8 8 54.0 1.7 613.7 47.4 783.2 0 

9 0.0309 [6  7  8] 9 9 9 9 9 19.4 0.0 703.2 35.3 742.1 0 

10 0.0269 [6  7  8] 1 2 2 2 8 32.7 0.0 578.1 47.3 841.9 0 

90% 2 

1 0.0577 [3  6  5] 1 1 1 1 1 7.6 0.0 715.7 0.2 776.5 0 

2 0.0212 [3  6  5] 2 2 2 2 2 11.2 0.0 490.0 31.9 966.9 0 

3 0.0667 [3  6  5] 3 3 3 3 3 7.0 0.0 890.2 0.4 602.4 0 

4 0.1048 [3  6  5] 4 4 4 4 4 0.9 0.0 1088.6 118.5 292.0 0 

5 0.0285 [3  6  5] 5 5 5 5 5 34.8 3.0 399.7 60.9 1001.6 0 

6 0.0299 [3  6  5] 6 6 6 6 6 9.7 0.0 582.4 30.0 877.9 0 

7 0.0368 [3  6  5] 7 7 7 7 7 7.9 0.0 585.5 95.1 811.5 0 

8 0.0204 [3  6  5] 8 8 8 8 8 34.5 2.0 482.8 40.9 939.8 0 

9 0.0300 [3  6  5] 9 9 9 9 9 9.9 0.0 581.0 30.6 878.5 0 

10 0.0207 [3  6  5] 5 1 2 2 1 10.3 0.0 428.8 29.8 1031.1 0 

80% 1.5 

1 0.0306 [4  7  7] 1 1 1 1 1 12.8 0.0 438.9 0.0 1048.3 0 

2 0.0183 [4  7  7] 2 2 2 2 2 17.6 0.0 487.5 0.7 994.2 0 

3 0.0441 [4  7  7] 3 3 3 3 3 11.4 0.0 675.5 0.0 813.1 0 

4 0.0732 [4  7  7] 4 4 4 4 4 7.9 0.0 1001.4 0.4 490.3 0 

5 0.0193 [4  7  7] 5 5 5 5 5 35.8 0.3 469.2 7.8 986.9 0 

6 0.0271 [4  7  7] 6 6 6 6 6 15.1 0.0 578.9 0.5 905.5 0 

7 0.0319 [4  7  7] 7 7 7 7 7 13.4 0.0 659.7 1.6 825.3 0 

8 0.0174 [4  7  7] 8 8 8 8 8 39.2 0.5 523.6 3.8 932.9 0 

9 0.0271 [4  7  7] 9 9 9 9 9 15.1 0.0 578.9 0.5 905.5 0 

10 0.0163 [4  7  7] 1 9 8 8 8 37.7 0.3 514.3 3.2 944.5 0 

80% 2 

1 0.0164 [5  4  6] 1 1 1 1 1 3.0 0.0 223.7 0.0 1273.3 0 

2 0.0133 [5  4  6] 2 2 2 2 2 18.4 0.0 372.7 0.1 1108.8 0 

3 0.0305 [5  4  6] 3 3 3 3 3 11.1 0.0 459.3 0.0 1029.6 0 

4 0.0488 [5  4  6] 4 4 4 4 4 10.7 0.0 689.0 0.0 800.3 0 

5 0.0117 [5  4  6] 5 5 5 5 5 12.3 0.0 301.9 5.2 1180.6 0 

6 0.0191 [5  4  6] 6 6 6 6 6 18.1 0.0 430.9 0.1 1050.9 0 

7 0.0214 [5  4  6] 7 7 7 7 7 19.9 0.0 477.1 0.9 1002.1 0 

8 0.0117 [5  4  6] 8 8 8 8 8 32.4 0.1 364.4 2.2 1100.9 0 

9 0.0191 [5  4  6] 9 9 9 9 9 18.1 0.0 430.9 0.1 1050.9 0 

10 0.0100 [5  4  6] 1 8 1 8 1 14.6 0.0 272.1 3.0 1210.3 0 
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Table 4.18 The results obtained by customer weight set 3 

U k Policy OFV NES 
Dispatching rule State 

M1 M2 M3 M4 M5 S1 S2 S3 S4 S5 S6 

90% 1.5 

1 0.0634 [4  5  6] 1 1 1 1 1 9.1 0.0 932.2 0.7 558.0 0 

2 0.0382 [4  5  6] 2 2 2 2 2 10.6 0.0 621.7 25.4 842.3 0 

3 0.0726 [4  5  6] 3 3 3 3 3 7.6 0.0 1070.5 0.9 421.0 0 

4 0.0968 [4  5  6] 4 4 4 4 4 0.2 0.0 1169.0 124.2 206.6 0 

5 0.0297 [4  5  6] 5 5 5 5 5 51.1 3.1 534.2 62.3 849.3 0 

6 0.0463 [4  5  6] 6 6 6 6 6 9.4 0.0 732.9 24.2 733.5 0 

7 0.0546 [4  5  6] 7 7 7 7 7 6.5 0.1 744.9 95.8 652.7 0 

8 0.0283 [4  5  6] 8 8 8 8 8 47.2 3.1 568.0 52.4 829.3 0 

9 0.0464 [4  5  6] 9 9 9 9 9 8.9 0.0 725.6 29.6 735.9 0 

10 0.0279 [4  5  6] 1 5 8 8 8 48.8 3.2 553.2 58.0 836.8 0 

90% 2 

1 0.0500 [3  4  4] 1 1 1 1 1 0.0 0.0 723.6 0.3 776.1 0 

2 0.0307 [3  4  4] 2 2 2 2 2 0.0 0.0 512.2 20.4 967.4 0 

3 0.0616 [3  4  4] 3 3 3 3 3 0.0 0.0 903.6 0.4 596.0 0 

4 0.0863 [3  4  4] 4 4 4 4 4 0.0 0.0 1147.3 25.7 327.0 0 

5 0.0203 [3  4  4] 5 5 5 5 5 0.0 0.0 394.9 56.0 1049.1 0 

6 0.0378 [3  4  4] 6 6 6 6 6 0.0 0.0 609.1 20.2 870.7 0 

7 0.0426 [3  4  4] 7 7 7 7 7 0.0 0.0 617.9 61.1 821.0 0 

8 0.0206 [3  4  4] 8 8 8 8 8 0.0 0.0 429.7 52.6 1017.7 0 

9 0.0378 [3  4  4] 9 9 9 9 9 0.0 0.0 603.2 24.1 872.7 0 

10 0.0210 [3  4  4] 8 2 8 8 5 0.0 0.0 425.3 52.5 1022.2 0 

80% 1.5 

1 0.0284 [6  3  5] 1 1 1 1 1 10.0 0.0 465.2 0.0 1024.8 0 

2 0.0264 [6  3  5] 2 2 2 2 2 19.6 0.0 487.8 0.3 992.3 0 

3 0.0437 [6  3  5] 3 3 3 3 3 11.2 0.0 697.5 0.0 791.3 0 

4 0.0537 [6  3  5] 4 4 4 4 4 17.9 0.0 839.6 0.0 642.5 0 

5 0.0162 [6  3  5] 5 5 5 5 5 16.9 0.0 426.4 5.0 1051.7 0 

6 0.0336 [6  3  5] 6 6 6 6 6 18.4 0.0 589.2 0.4 892.0 0 

7 0.0354 [6  3  5] 7 7 7 7 7 19.3 0.0 624.7 0.7 855.3 0 

8 0.0168 [6  3  5] 8 8 8 8 8 24.6 0.0 434.0 3.9 1037.5 0 

9 0.0336 [6  3  5] 9 9 9 9 9 18.4 0.0 589.2 0.4 892.0 0 

10 0.0152 [6  3  5] 1 1 5 5 8 19.8 0.0 412.0 5.0 1063.2 0 

80% 2 

1 0.0142 [4  6  6] 1 1 1 1 1 6.2 0.0 222.7 0.0 1271.1 0 

2 0.0199 [4  6  6] 2 2 2 2 2 17.3 0.0 375.1 0.5 1107.1 0 

3 0.0289 [4  6  6] 3 3 3 3 3 6.2 0.0 463.5 0.0 1030.3 0 

4 0.0502 [4  6  6] 4 4 4 4 4 10.2 0.0 761.3 0.3 728.2 0 

5 0.0110 [4  6  6] 5 5 5 5 5 33.5 0.2 307.8 7.0 1151.5 0 

6 0.0244 [4  6  6] 6 6 6 6 6 13.4 0.0 437.1 0.6 1048.9 0 

7 0.0279 [4  6  6] 7 7 7 7 7 13.9 0.0 496.4 1.4 988.3 0 

8 0.0112 [4  6  6] 8 8 8 8 8 39.6 0.6 328.3 4.4 1127.1 0 

9 0.0244 [4  6  6] 9 9 9 9 9 13.4 0.0 437.1 0.6 1048.9 0 

10 0.0089 [4  6  6] 5 1 5 8 5 39.2 0.5 275.5 5.7 1179.1 0 

 

State 5 is the most frequently observed state in policies which applies customer 

oriented dispatching rules. It means that most of the orders are completed without 

deviation. On the other hand, state 6 is the unobserved state in the analysis. The main 

reason of this is the examination of relatively tight systems in our analyses as slack 

systems where the orders completed early don’t give chance to analyze the effect of 

dispatching rules. However, in order to verify the model, some additional analyses are 

performed related to the earliness by considering inter-arrival time, due date allowance 
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factor (k), earliness tolerance of the customer segments (ec) and lot splitting issues. In 

the analyses, dispatching rule is arbitrarily selected as EDD for each machine. In the 

first step, earliness tolerance of the customer segments are assumed to be zero (eA=0, 

eB=0, eC=0), and any order completed with a negative deviation from the promised due 

date is labeled as “early”. Percent of orders early is computed by dividing the total 

number of orders fit in the state 6 by the total number of completed orders. As reported 

in Table 4.19, percent of early orders increases as the inter-arrival time increases, and 

lot splitting has an improving effect in terms of percent of early orders.  

 
Table 4.19 Results of earliness analysis 

Inter-arrival 

time 
k ec 

% orders early 

NES=1 

% orders early  

NES=5 

expo (850) 1.5 

eA=0 

eB=0 

eC=0 

0.16 0.37 

expo (850) 2.0 0.32 0.52 

expo (1000) 1.5 0.32 0.69 

expo (1000) 2.0 0.56 0.85 

expo (1200) 1.5 0.46 0.86 

expo (1200) 2.0 0.71 0.95 

expo (1400) 1.5 0.55 0.93 

expo (1400) 2.0 0.79 0.98 

expo (1600) 1.5 0.62 0.96 

expo (1600) 2.0 0.83 0.99 

expo (1800) 1.5 0.67 0.98 

expo (1800) 2.0 0.87 1.00 

 

In the second step, earliness tolerances of the customer segments and level of due 

date allowance factor (k) are varied and the same analysis are performed. According 

to the results presented in Table 4.20, it is concluded that as the earliness tolerance of 

the customers increases (eA=0.20, eB=0.30, eC=0.35) it becomes difficult to observe 

orders fit in state 6. Because, earliness tolerance shortens the due date and it becomes 

impossible to complete the orders earlier than the tolerated due date. On the other hand, 

as the due date allowance factor increases percent of early orders also increases. 
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Table 4.20 Analysis on earliness tolerance and due date allowance factor 

Inter-arrival 

time 
k ec 

% early orders 

NES=1 

% early orders  

NES=5 

expo (850) 

1.5 
eA=0.01 

eB=0.01 

eC=0.01 

0.00 0.00 

2.0 0.01 0.02 

4.0 0.19 0.25 

6.0 0.48 0.55 

expo (850) 

1.5 
eA=0.20 

eB=0.30 

eC=0.35 

0.00 0.00 

2.0 0.00 0.00 

4.0 0.00 0.00 

6.0 0.00 0.00 

expo (1000) 

1.5 
eA=0.01 

eB=0.01 

eC=0.01 

0.00 0.00 

2.0 0.02 0.04 

4.0 0.25 0.33 

6.0 0.55 0.64 

expo (1000) 

1.5 
eA=0.20 

eB=0.30 

eC=0.35 

0.00 0.00 

2.0 0.00 0.00 

4.0 0.00 0.00 

6.0 0.00 0.00 

 

In this section, a segment-based analysis for the best production policies is also 

performed. As illustrated in Figure 4.15 and reported in Table 4.21, dominance of 

segment A has a significant effect on the OFV. In addition, when the segment-based 

weighted percentage deviation per order is taken into consideration, it can be seen that 

there exist a huge gap between segment A and both segments B and C in cases of 

customer segment A is very dominant and moderately dominant. Additionally, in case 

of segment A is less dominant, a more balanced structure is observed. In practice, 

companies may prefer a balanced structure or more segment-focused structures 

parallel to their business strategies and customer base. 
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Table 4.21 Customer segment-based results obtained by the production policies 

Weight 

set 

Inter-

arrival 

time 

k Policy 
Customer 

segment 

Segment 

weight 

Number 

of orders 

(1) 

Total 

weighted 

percentage 

deviation 

(2) 

Weighted 

percentage 

deviation 

per order 

(2/1) 

OFV 

1 

expo 

(850) 
1.5 10 

A 0.80 749.1 12.587 0.017 

0.018 B 0.15 461.3 11.149 0.024 

C 0.05 289.6 3.694 0.013 

expo 

(850) 
2.0 2 

A 0.80 746.5 2.295 0.003 

0.012 B 0.15 458.6 11.504 0.025 

C 0.05 294.9 3.664 0.012 

expo 

(1000) 
1.5 2 

A 0.80 746.1 4.102 0.006 

0.011 B 0.15 456.7 9.745 0.021 

C 0.05 297.2 2.914 0.010 

expo 

(1000) 
2.0 10 

A 0.80 746.3 2.956 0.004 

0.006 B 0.15 456.8 4.570 0.010 

C 0.05 296.9 1.701 0.006 

2 

expo 

(850) 
1.5 8 

A 0.60 757.0 13.277 0.018 

0.027 B 0.25 457.2 17.580 0.038 

C 0.15 285.8 9.328 0.033 

expo 

(850) 
2.0 8 

A 0.60 753.6 8.899 0.012 

0.020 B 0.25 459.8 13.951 0.030 

C 0.15 286.6 7.748 0.027 

expo 

(1000) 
1.5 10 

A 0.60 746.6 8.132 0.011 

0.016 B 0.25 456.8 10.537 0.023 

C 0.15 296.6 5.772 0.020 

expo 

(1000) 
2.0 10 

A 0.60 745.6 7.829 0.011 

0.010 B 0.25 457.3 4.731 0.010 

C 0.15 297.1 2.419 0.008 

3 

expo 

(850) 
1.5 10 

A 0.40 752.8 19.686 0.026 

0.028 B 0.35 456.3 13.616 0.030 

C 0.25 290.9 8.488 0.029 

expo 

(850) 
2.0 8 

A 0.40 751.7 14.830 0.020 

0.021 B 0.35 456.7 9.179 0.020 

C 0.25 291.6 6.901 0.024 

expo 

(1000) 
1.5 10 

A 0.40 746.6 12.827 0.017 

0.015 B 0.35 456.3 7.073 0.016 

C 0.25 297.1 2.885 0.010 

expo 

(1000) 
2.0 10 

A 0.40 746.0 7.802 0.011 

0.009 B 0.35 456.9 3.585 0.008 

C 0.25 297.1 1.980 0.007 
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a) ρ=90%, k=1.5 

 

b) ρ=90%, k=2 

c) ρ=80%, k=1.5 d) ρ=80%, k=2 

Figure 4.15 Summary of customer segment-based results 

 

In addition to the above-mentioned analysis, main effects analysis are performed 

by considering the expectations/allowances of customer segments on order completion 

rate on due date, tardiness and earliness. Seven levels of oc, tc and ec are defined as 

presented in Table 4.22. 

 
Table 4.22 Factor levels 

Factor Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 

oc 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

tc 0.05 0.10 0.15 0.20 0.25 0.30 0.35 

ec 0.05 0.10 0.15 0.20 0.25 0.30 0.35 

 

Series of experiments are carried out for the case in which the customer weight set 

is 1, due date allowance factor is 1.5, production policy is 10 for ρ=90%, 2 for ρ=80% 

and 10 for ρ=70% (expo 1150). According to the results presented in Figures 4.16 to 

4.18, customer expectation on order completion rate on due date has the greatest effect 

on the OFV. As the oc increases OFV gets worse. Figure 4.16 indicates that, as the 

production system with high demand rate is investigated, it can be seen that allowances 

about negative percentage deviations from due dates have no effect on the OFV. 

Additionally, allowances about positive percentage deviations from due dates below 
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0.15 tc have an increasing impact on the OFV. On the other hand, it has a reducing 

effect on the OFV in case of the allowances above 0.20. However, as illustrated in 

Figures 4.17 and 4.18, customer allowances about earliness and tardiness lose 

importance as the utilization of the bottleneck resource decreases. 

 

 

Figure 4.16 ρ=90%, NES=[7  4  4], dispatching rule=[8  2  8  8  8] 

 

 

Figure 4.17 ρ=80%, NES=[4  3  7], dispatching rule=[2  2  2  2  2] 
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Figure 4.18 ρ=70%, NES=[6  8  4], dispatching rule=[1  2  2  2  2] 

 

4.5 Conclusions and Future Research Directions 

 

In this section, the proposed simulation optimization based DSS is applied to a 

realistic job shop system to confirm its viability. In detail, in order to accelerate the 

flow of the production and prioritize the customer orders, product type-based lot 

splitting and machine-based dispatching rules are applied together. Multiple customer 

segments with different importance weights, and their expectations and penalties on 

order completion rate on due date, tardiness and earliness are considered. Accordingly, 

the objective function is defined as the minimization of mean weighted percentage 

deviation from the expectations of customer segments.  

 

It is aimed to make the near-optimal policy decisions regarding the machine-based 

dispatching rules and NES for the product types. In this regard, four well known 

dispatching rules, FIFO, AT, EDD and SPST, and five modified version of these rules 

which contain customer information are employed. Computational experiments are 

performed by considering different shop utilization levels, due date allowance factors 

and dominance relationships amongst the customer segments. Results of the 

experiments reveal that integration of CRM and PPC approaches in job shop systems 

provides more efficient use of resources in satisfying customers. More specifically, the 

combined application of lot splitting and machine-based dispatching rules can offer 
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superior results in terms of common performance measures such as tardiness, earliness 

and order completion rate on due date in customer oriented job shop systems.  

 

The proposed approach can be implemented easily by manufacturing companies 

through adopting their demand structure, customer base, customer weight settings, 

processing features etc. In addition, implementation of different heuristic methods, due 

date setting functions and different dispatching rules can be stated as future research 

topics.  
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CHAPTER FIVE 

DYNAMIC ORDER PRIORITIZATION IN CUSTOMER 

ORIENTED MANUFACTURING ENVIRONMENTS 

 

5.1 Introduction 

 

In today’s B2B markets, numerous manufacturers compete with each other in order 

to satisfy the distinct needs of customers. In this environment, satisfying and retaining 

the existing customers becomes very important for the manufacturers. As stated in 

Section 2.1, in addition to consumer markets, customer-oriented view is essential for 

B2B markets, and it must be adopted to whole business processes. In this regard, this 

kind of view should be adopted not only to sales and marketing decisions but also to 

production, distribution, inventory etc. decisions (Paiva, 2010). In this way, 

manufacturers can use their scarce resources for the customers in accordance with 

customers’ value to the company.  

 

Creating a customer-oriented structure starts with deeper analysis of the customer 

base. Thus, manufacturing companies can understand their customers’ needs, 

expectations and tolerances about various issues and also determine their value for the 

company. Accordingly, they can satisfy their customers by developing more 

customized strategies. However, developing customer-specific strategies is complex 

and time consuming. Therefore, manufacturing companies should first segment their 

customers and then determine the special offerings and priorities in order fulfilling 

(Güçdemir & Selim, 2015a). 

 

Manufacturing companies confronted with many complex PPC decisions and they 

aim to use their limited resources for the production activities so as to satisfy customer 

demand over a specified time horizon. PPC problems are generally characterized as 

optimization problems that include many conflicting objectives and constraints. Time 

or cost-based objectives and resource-based constraints are extensively taken into 

account in the studies in this field. However, customer satisfaction is a key issue for 
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the companies and it should be a critical focus for developing effective production 

plans (Calleja & Pastor, 2014). 

 

Today, customers are quite demanding and on time delivery is one of the most 

important issues customers are concerned about (Xiang et al., 2014; Sobeyko & 

Mönch, 2016). As the number of prospective customers is smaller in B2B markets, 

retaining the existing customers by providing high level of service is the key success 

factor for the manufacturers. However, it is very difficult to complete all of the orders 

by the promised due dates in case of high shop utilization. Therefore, manufacturers 

should prioritize the orders and primarily focus on meeting the expectations of their 

key customers. However, it should be noted here that while providing high level of 

service to the key customers, dissatisfaction of the remaining customers should be at 

an acceptable level. Otherwise, customer relationships are damaged and consequently 

customer losses would be unavoidable (Güçdemir & Selim, 2016). 

 

In this chapter, the problem identified in the previous chapter is dealt with and a 

simulation optimization-based approach is developed for dynamic order prioritization 

by considering multiple customer segments, shop floor conditions and managerial 

objectives in B2B markets. In order to provide dynamic prioritization of the orders, 

weight setting functions are proposed in this dissertation. These functions update the 

segment-based “rule weights (rwc)” used in the dispatching rules dynamically by 

considering the threshold values defined by the management for the percent of 

dissatisfied orders within the customer segments. It is aimed to determine the near-

optimal values of the segment-based parameters of the related weight setting functions. 

To this aim, a DEA-based simulation optimization approach is proposed. To confirm 

its viability, the proposed approach is applied to a realistic job shop. 

 

5.2 Related Literature 

 

As stated in Section 2.3, dispatching rules are commonly used in dynamic systems 

to achieve order prioritization. Most of the classical dispatching rules do not utilize 

customer information, and implementation of customer-oriented production planning 
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is scarce in the literature (Chen et al., 2012). However, developing priority dispatching 

rules incorporating both processing and customer information enables manufacturing 

companies to satisfy their customers with well-timed and effective scheduling 

decisions. In one of the earliest studies in the related field, Malhotra et al. (1994) aim 

to manage customer priorities in job shops. Order review and release policies and 

dispatching rules are considered in the study in an integrated way, and it is aimed to 

find the best combination of these issues. To this aim, two customer classes, high 

priority and low priority, are defined. In addition, two types of queues are identified 

for these classes. Simulation analyses are performed by considering the varying levels 

of due date tightness and percentage of high priority jobs. They use EDD rule as the 

benchmark in their analysis, and propose two-queue rule, rotating rule, forced pace 

rule and preemption rule incorporating customer priority information. In addition, 

customer-oriented performance measures such as weighted mean tardiness, root mean 

square tardiness and percentage of tardy jobs are taken into account in the study. In 

another work, Jensen et al. (1995) emphasize the necessity of considering customer 

priorities in scheduling decisions. They focus on constructing a customer importance 

index in the form of job tardiness penalty. Tardiness penalties are drawn from 

probability distributions (i.e. Bernoulli, uniform, triangular) characterized by shape 

and dispersion. Simulation analyses are conducted to evaluate the effectiveness of the 

proposed system under different combinations of due date tightness, spread and shape 

of job tardiness penalties. In the scheduling phase, both weighted and un-weighted 

priority dispatching rules are used. Mean flow time and weighted customer service are 

taken into account as performance measures. Natarajan et al. (2007) propose priority 

dispatching rules minimizing weighted tardiness and weighted flowtime. In the study, 

existing dispatching rules are modified by using job weights for holding and tardiness 

issues. Varying importance weights are assigned to jobs of different customers. The 

weights are obtained by using a uniformly distributed numerical scale. In this way, 

customer importance is incorporated in the dispatching rules. Simulation analyses are 

performed in the study for an assembly job shop system in order to evaluate the 

effectiveness of the proposed dispatching rules. The results indicate that the proposed 

rules performed well in minimizing the flowtime and tardiness-based performance 

measures in most cases. Ramkumar et al. (2011) handle job shop scheduling problem 
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and propose a fuzzy rule-based approach to solve the problem. In the study, scheduling 

process includes functions such as due date, customer priority and processing time. 

The researchers classify customer priorities into five categories namely bad, low, 

medium, high and very important, and define these categories by using fuzzy sets. 

Results of the study i that the proposed approach can effectively solve the job shop 

scheduling problems with customer constraints. In another study, Chen et al. (2012) 

focus on composite dispatching rule design that considers both scheduling criteria and 

customer priority in a single machine environment. In this concern, seven dispatching 

rules are taken into account and they are composed with weighted aggregation. Mean 

flow time, mean tardiness and percentage of tardy jobs are used as the scheduling 

criteria. Data envelopment analysis is applied to select the elementary dispatching 

rules. Then the obtained schedule is adjusted by considering customer priorities. 

Analytic hierarchy process is used in the study for overall job prioritization. Customer 

prioritization is achieved by considering identified customer groups. Chen and Matis 

(2013) propose a dispatching rule which extends the RR rule by adding the relative 

importance of the jobs. In this rule, priority index of the jobs are obtained by 

multiplying linear combination of slack per remaining process time and SPT rule with 

a function based on job weight and weight biasing constant. This function enables 

manufacturers to shift the schedule in order to meet the due dates of high priority jobs. 

Simulation experiments are performed for a job shop system by considering shop 

utilization, due date allowance factor, five dispatching rules, biasing parameter and 

weight truncation level issues and tardiness performance is evaluated. In the study, 

weights of the jobs are derived from a uniform distribution, and no attempt is made to 

optimize neither the weights nor the biasing constant. In another study, Zhong et al. 

(2015) focus on advanced production planning and scheduling in hybrid flowshops. 

The researchers use several dispatching rules such as EDD, customer importance, 

priority-based rule, FIFO, SPT, order-based rule and material-based grouping. In 

“customer importance” rule, jobs are weighted between 1 and 5, where 5 denotes the 

most important customer. In one of the latest studies, Sobeyko and Mönch (2016) 

discuss flexible job shop scheduling problem with total weighted tardiness objective. 

They model customer priorities by weighting the jobs. Some well-known dispatching 

rules and weighted versions of the rules are employed. However, weights are assigned 



87 
 

by using probability distribution functions based on the identified problem sets, and 

weights are assumed to be fixed in their experiments. 

 

In previous studies, importance weights of customers are assigned randomly or by 

using probability distributions. In addition, the weights have been treated as static, and 

no attempt has been made to optimize those weights. Moreover, expectations and 

penalties of predefined customer segments on issues such as tardiness, earliness and 

order completion rate on due date have not been considered simultaneously. 

Furthermore, lot splitting and machine based dispatching rules have not been included 

in the previous studies. Considering these gaps, a customer-oriented PPC approach 

that incorporates customer priorities, lot splitting, and dynamic order prioritization is 

proposed for closed job shops in this dissertation. In order to dynamically schedule the 

sublots on machines, four prominent dispatching rules and five modified versions of 

them are employed. The rule weights utilized in the modified dispatching rules are 

calculated during the execution of the system based on up to date information about 

order dissatisfaction rates, predefined managerial goals and weight setting functions. 

Static, exponential and linear weighting cases are scrutinized, and it is aimed to find 

the near-optimal values of the segment-based parameters of the functions under 

concern by using DEA-based simulation optimization approach.  

 

5.3 Problem Statement 

 

In this section, the problem identified in Section 4.1 is handled. The weights used 

in the modified dispatching rules are computed dynamically by using the proposed 

weight setting functions. In this case, initially, all rwc values are equal to 1, and 

customer-oriented order prioritization is not considered. For instance, COEDD is 

pretended to be EDD (see Table 5.1).  
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Table 5.1 Characteristics of the dispatching rules  

Dispatching Rule Attribute value Selection criterion 

EDD di min value first 

COEDD di / rwc min value first 

FIFO qisl min value first 

COFIFO qisl / rwc min value first 

SPST ptisl + stisl min value first 

COSPST (ptisl + stisl) / rwc min value first 

AT ri min value first 

COAT ri / rwc min value first 

ICSF wc max value first 

 

Finally, order completions are observed, and satisfaction and dissatisfaction levels 

are obtained. The workshop is scrutinized in every order completion. If any deviation 

occurs in terms of order completion rate on due date, earliness or tardiness, the order 

is labeled as “dissatisfied”. If the percentage of dissatisfied orders in a particular 

customer segment (pdc) exceeds the threshold value defined by the management (thc), 

the rule weight of the segment (rwc) is updated linearly (see Figure 5.1.a) or 

exponentially (see Figure 5.1.b) based on the predefined function.  

 

pdcthc

1

rwc

                       (a)  

pdcthc

1

rwc

                          (b)  

Figure 5.1 (a) Linear function, (b) Exponential function 

 

For the ease of calculation, an auxiliary variable Ѳc which considers the deviation 

from the threshold value in terms of the percentage of dissatisfied orders is defined 

(see Equation (5.1)). 

 

 c c
c

c

pd th

th



                                                      (5.1) 
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The linear and exponential weight setting functions are increasing functions of rwc 

in case of pdc ≥ thc. Specifically, as the difference between the percentage of 

dissatisfied orders and the threshold value increases, rwc also increases. This ensures 

that customer segment having higher dissatisfaction would be given a smaller priority 

index value, and thus orders from the related customer segment would be assigned 

higher priority than the orders from the other segments. 

 

Linear weight increment function increases the current rwc value by adding a certain 

proportion of the Ѳc. This increment is obtained by Equation (5.2). Alternatively, in 

exponential weight increment function, the current rwc value is increased exponentially 

by using Equation (5.3), where the exponent is 1/pc power of Ѳc. In state I functions, 

if the percentage of dissatisfied orders in a particular customer segment (pdc) is below 

the threshold value defined by the management (thc), the rule weight of the segment 

(rwc) remains the same. On the other hand, in state II functions (see Equations (5.4) 

and (5.5)), rwc value is reduced when pdc is below the thc. In all of these functions, 

segment-based control parameters (pc) whose values are greater than zero for linear 

function and greater than or equal to 1 for exponential function are defined, and it is 

aimed to find near-optimal values of these parameters.  

 

 State I – Dynamic weight setting functions 
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 State II – Dynamic weight setting functions 
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5.4 Methodology 

 

In this section, simulation optimization approach is employed in order to determine 

the segment-based parameter values of the weight setting functions. In this regard, 

ARENA 14.0 and MATLAB 2014.b software packages are utilized in an integrated 

way. More specifically, DEA is applied by MATLAB, and the fitness value is 

computed by the simulation model built with ARENA. 

 

DEA Simulation Model

Initialization

Muatation

Crossover/

Recombination

Selection

Evaluation

Terminating 

condition

Reconfigure weighting 

function parameters

Run the simulation 

model

Performance measure 

Mean weighted 

percentage deviation 

from the expectations 

of customer segments
No

Weighting function parameter values

Best weighitng 

function parameter 

values

Yes

Fitness function value

 
 

Figure 5.2 DEA-based simulation optimization approach  

 

As illustrated in Figure 5.2, in initialization phase, DEA generates initial population 

randomly for the parameters of the weight setting function, and pass it to the simulation 

model. Then the model is run and the performance is obtained for each member of the 

population. In mutation phase, three members from the population are selected 

randomly, and a new vector is generated by adding the weighted difference vector 

between two population members to the third member. Then, population members are 

crossovered with the resulting vector, and the OFV is computed by the simulation 

model for each member of the newly generated population. Members that have better 
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OFV survive in the next generation (selection). This process is continued until the 

maximum number of generations is met.  

 

The solution is represented by a matrix consisting of m rows and n columns, where 

m denotes the number of segment-based parameters of the weight setting function and 

n denotes the population size (NP). For instance, in Figure 5.3, a population with five 

member and three function parameters for the customer segments A, B and C is 

illustrated. 

 

            

  member 1 member 2 member 3 member 4 member 5 

pA 1.28 2.62 6.85 7.63 5.13 

pB 2.32 3.57 4.59 1.27 8.46 

pC 4.23 5.17 2.26 3.85 1.69 

            

 
Figure 5.3 Representation of the solution 

 

5.5 Computational Analysis 

 

The proposed simulation optimization approach is applied to a realistic hypothetical 

job shop system. As stated in Section 4.1, the system includes three product types, five 

machines and three customer segments.  

 

As reported in Table 5.2, each customer segment has different importance weights 

for the company and also has different expectations about order completion rate on 

due date, tardiness and earliness. For instance, customers in segment A desire that 

minimum 90% of their order to be completed within the promised due date, and they 

allow maximum 10% positive and 20% negative deviations from the promised due 

dates. In addition, the penalties assigned by the customer segments differ. For instance, 

customers of segment A assign 10%, 60% and 30% importance to edi, tdi and odi, 

respectively. The thresholds determined for the customer segments are presented in 

Table 5.2. As reported in the table, the management aims that the percentage of 

dissatisfied orders in customer segments A, B and C would not exceed 10%, 20%, 

30%, respectively.  
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Table 5.2 Customer data 

Customer segment wc thc oc tc ec αc βc γc 

A 0.60 0.10 90% 10% 20% 0.10 0.60 0.30 

B 0.25 0.20 80% 20% 30% 0.15 0.50 0.35 

C 0.15 0.30 80% 25% 35% 0.20 0.50 0.30 

 

The computational experiments are carried out with inter-arrival time of expo 

(1000), due date allowance factor of 1.5 and four weight setting methods including 

static and dynamic weight setting. Ten replications are performed for each experiment. 

The simulation model is run for 1700 order completions in each replication. First 200 

completed orders are observed to be within the warm-up period, and the remaining 

1500 orders are used for computing the performance. 

 

The DEA parameters, namely population size, crossover rate and scaling factor are 

determined as 10, 0.5 and 0.8, respectively. The maximum number of generation, 

which is the termination condition, is determined as 100. In addition, considering the 

stochastic nature of DEA, the problem is solved for three times. In static weight 

optimization case, rwc values are assumed to be 0<rwc≤10. In cases of utilizing linear 

and exponential weight setting functions, parameter values of the functions are 

assumed to be 0<pc≤10 and 1≤ pc≤10, respectively. 

 

In scenario I, the orders come from the customer segments A, B and C with 

probabilities 30%, 50% and 20%, respectively. First, simulation optimization is 

performed for static weight optimization case by considering the sublot and 

dispatching rule configurations presented in Table 5.3. The table reports that, rwA, rwB, 

and rwC values are obtained as 0.59, 0.29 and 0.12, respectively. In the next stage, 

simulation optimization is performed again to determine the segment-based parameter 

values of the dynamic weight setting functions including state I and state II functions. 

The results are presented in Table 5.4, and behavior of the state I functions are 

illustrated in Figures 5.4 and 5.5. 
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Table 5.3 Results of scenario I 

Weight setting method 
Sublot 

configuration 

Dispatching rule 

configuration 
OFV pdA pdB pdC 

Standard 

deviation 

Static weights 

(0.60, 0.25, 0.15) 

[7  8  7] 

M1:EDD  

M2:COEDD  

M3:EDD  

M4:COSPST  

M5:SPST 

0.0121 0.19 0.22 0.40 0.11 

Optimized weights  

(0.59, 0.29, 0.12) 
0.0119 0.19 0.20 0.43 0.14 

State I – Exponential function 0.0120 0.24 0.21 0.29 0.04 

State I -  Linear function 0.0121 0.20 0.22 0.38 0.10 

State II – Exponential function 0.0120 0.22 0.23 0.28 0.03 

State II - Linear function 0.0121 0.19 0.22 0.38 0.10 

 

Table 5.4 Parameter values for scenario I 

Parameter 
State I -Exponential 

function 

State I -Linear 

function 

State II -Exponential 

function 

State II -Linear 

function 

pA 3.1968 2.3356 2.3461 0.7899 

pB 1.1887 8.7257 8.3168 2.8695 

pC 6.5677 2.5352 7.1929 0.6951 

 

 As illustrated in Figures 5.4 and 5.5, due to the heavy workload associated with 

customer segment B, a rapid increase is observed in the rule weight of this segment 

(rwB). In addition, exponential weight setting function provides superior results in 

terms of standard deviation of the percentage of dissatisfied orders of the customer 

segments without any violation in the OFV (see Table 5.3). This means that it provides 

a more balanced structure between customer segments in terms of the percentage of 

dissatisfied orders. 

 

 

Figure 5.4 Behavior of state I - exponential functions - scenario I 
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Figure 5.5 Behavior of state I - linear functions - scenario I 

 

 In addition, the main effects of the threshold values defined by the management on 

the OFV are analyzed. Figure 5.6 illustrates that as the dissatisfaction threshold for 

customer segment A (thA) increases, OFV gets worse. More clearly, importance weight 

of segment A used in the objective function (wA) is very high, and as the threshold 

value increases, the rule weight of the customer segment is updated much later. This 

causes later prioritization of the orders from customer segment A. On the contrary, 

increasing the threshold values for customer segments B and C have a positive effect 

on the OFV under concern as it enables the model to highly prioritize the orders of 

customer segment A. 

 

 

Figure 5.6 Main effects plots for state II - exponential function – scenario I 
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 In scenario II, the orders come from the customer segments A, B and C with 

probabilities 50%, 30% and 20%, respectively. The analyses are performed for the 

weighting methods and the results are presented in Table 5.5. Segment-based 

parameter values of the related weight setting functions are reported in Table 5.6, and 

the behavior of the functions are illustrated in Figures 5.7 and 5.8. 

 
Table 5.5 Results of scenario II 

Weight setting method 
Sublot 

configuration 

Dispatching rule 

configuration 
OFV pdA pdB pdC 

Standard 

deviation 

Static weights  

(0.60, 0.25, 0.15) 

[4  7  7] 

M1:EDD  

M2:ICSF  

M3:COSPST  

M4:COSPST  

M5:COSPST 

0.0163 0.17 0.46 0.61 0.22 

Optimized weights  

(0.46, 0.32, 0.22) 
0.0158 0.23 0.37 0.52 0.15 

State I – Exponential function 0.0158 0.24 0.35 0.50 0.13 

State I - Linear function 0.0159 0.23 0.36 0.54 0.15 

State II – Exponential function 0.0159  0.25 0.34 0.50 0.13 

State II - Linear function 0.0159 0.22 0.37 0.56 0.17 

  

Table 5.6 Parameter values for scenario II 

Parameter 
State I -Exponential 

function 

State I -Linear 

function 

State II -Exponential 

function 

State II -Linear 

function 

pA 1.9120 8.1544 2.1039 7.8606 

pB 1.6538 9.1594 1.5628 7.5473 

pC 8.5471 5.4136 8.8711 3.8325 

  

 Due to the heavy workload and high importance weights associated with customer 

segments A and B, rapid increases are observed in the rule weight of these customer 

segments (see Figures 5.7 and 5.8).  

 

 

Figure 5.7 Behavior of state I - exponential functions - scenario II 
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Figure 5.8 Behavior of state I - linear functions - scenario II 

 

 As reported in Table 5.5, state I exponential weight setting function provides 

superior results in terms of standard deviation of the percentage of dissatisfied orders. 

Similar to scenario I, as the dissatisfaction threshold for customer segment A increases, 

OFV gets worse. Moreover, increasing the threshold values for customer segments B 

and C improve the OFV (see Figure 5.9). It is also observed that, the threshold values 

greater than 0.40 for customer segment C has no effect on the OFV. 

 

 

Figure 5.9 Main effects plot for state I - exponential function – scenario II 

 

 In scenario III, most of the orders are assumed to be received from customer 

segment A, and the orders come from the segments A, B and C with the probabilities 

of 70%, 20% and 10%, respectively. The results are presented in Table 5.7, and 
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corresponding parameter values are reported in Table 5.8. In addition, behaviors of the 

predefined exponential and linear functions are illustrated in Figures 5.10 and 5.11, 

respectively. Moreover, results of the main effects analysis are pointed out in Figure 

5.12. 

 
Table 5.7 Results of scenario III 

Weight setting method 
Sublot 

configuration 

Dispatching rule 

configuration 
OFV pdA pdB pdC 

Standard 

deviation 

Static weights  

(0.60, 0.25, 0.15) 

[3  6  6] 

M1:COEDD  

M2:COEDD  

M3:COSPST  

M4:SPST  

M5:COEDD 

0.0266 0.27 0.60 0.70 0.23 

Optimized weights  

(0.724, 0.192, 0.084) 
0.0261 0.27 0.61 0.73 0.24 

State I – Exponential function 0.0268 0.28 0.60 0.69 0.22 

State I - Linear function 0.0261 0.29 0.53 0.71 0.21 

State II – Exponential function 0.0267 0.27 0.61 0.69 0.22 

State II - Linear function 0.0260 0.28 0.54 0.74 0.23 

 

Table 5.8 Parameter values for scenario III 

Parameter 
State I -Exponential 

function 

State I -Linear 

function 

State II -Exponential 

function 

State II -Linear 

function 

pA 1.1791 5.2171 1.0888 2.3361 

pB 3.7100 7.8770 4.0845 3.2122 

pC 9.9703 4.2382 6.5866 0.8483 

 

 

Figure 5.10 Behavior of state I - exponential functions - scenario III 
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Figure 5.11 Behavior of state I - linear functions - scenario III 

 

 

Figure 5.12 Main effects plot for state I - linear function – scenario III 

 

In scenario IV, most of the orders are assumed to be received from customer 

segment C, and the orders come from the segments A, B and C with the probabilities 

of 20%, 30% and 50%, respectively. The results are presented in Table 5.9, and 

corresponding parameter values are reported in Table 5.10. In addition, behaviors of 

the predefined exponential and linear functions are illustrated in Figures 5.13 and 5.14, 

respectively. Furthermore, results of the main effects analysis are pointed out in Figure 

5.15. As illustrated in Figure 5.14, due to the heavy workload associated with customer 

segment C, a rapid increase is observed in the rule weight of this segment.  
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Table 5.9 Results of scenario IV 

Weight setting method 
Sublot 

configuration 

Dispatching rule 

configuration 
OFV pdA pdB pdC 

Standard 

deviation 

Static weights  

(0.60, 0.25, 0.15) 

[4  7  10] 

M1:EDD  

M2:EDD  

M3:EDD  

M4:COSPST  

M5:EDD 

0.006 0.20 0.15 0.12 0.04 

Optimized weights  

(0.38, 0.37, 0.25) 
0.006 0.15 0.13 0.17 0.02 

State I – Exponential function 0.006 0.15 0.17 0.14 0.02 

State I -  Linear function 0.006 0.10 0.16 0.20 0.05 

State II – Exponential function 0.006 0.16 0.17 0.14 0.02 

State II - Linear function 0.006 0.11 0.18 0.18 0.04 

 

Table 5.10 Parameter values for scenario IV 

Parameter 
State I -Exponential 

function 

State I -Linear 

function 

State II -Exponential 

function 

State II -Linear 

function 

pA 1.9714 2.5070 2.5070 0.2478 

pB 9.4802 1.9845 1.9845 0.1624 

pC 7.1812 2.9079 2.9079 0.5717 

 

 

Figure 5.13 Behavior of state I - exponential functions - scenario IV 

 

Figure 5.14 Behavior of state I - linear functions - scenario IV 
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Figure 5.15 Main effects plot for state I - exponential function – scenario IV 

 

Considering the results of the analyses, it can be concluded that the OFV gets worse 

when the percentage of orders received from segment A increases. Employment of 

dynamic priority assignment and segment-based dissatisfaction thresholds enable 

manufacturers to ensure a balanced structure among the satisfaction/dissatisfaction 

levels of customer segments. In addition, due to the high importance levels of customer 

segments A and B in the objective function, frequently rapid increase is observed in 

the weights of these segments. 

 

5.6 Conclusions 

 

In this chapter, a job shop system with dynamic order arrivals is dealt with. Lot 

splitting is applied in order to shorten the manufacturing lead time and ensure on time 

delivery. Machine-based dispatching rules are utilized for sublot scheduling phase to 

realize dynamic scheduling. In addition, customer-oriented dispatching rules are 

employed to ensure the prioritization of orders from the key customers in order 

fulfilling. A customer satisfaction-based objective function is defined, and multiple 

customer segments with different importance weights, and their expectations and 

penalties on order completion rate on due date, tardiness and earliness are considered. 

In order to prevent customer loss by providing a balanced structure amongst the 

customer segments in terms of satisfaction levels, weight setting functions that 
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dynamically compute the weights in the proposed dispatching rules are proposed. It is 

aimed to determine the near-optimal values of the segment-based parameters of the 

related weight setting functions. To this aim, a simulation optimization approach that 

combines simulation and DEA is proposed. To confirm its viability, the proposed 

approach is applied to a realistic job shop system. The results reveal that employing 

dynamic priority assignment creates a more balanced structure among the 

dissatisfaction levels of customer segments. The proposed approach can effectively be 

used in practice by job shop systems by adopting their own demand structure, customer 

base, customer weight settings, processing features and managerial objectives. 

Implementation of different dispatching rules, weight setting functions and 

metaheuristic algorithms can be stated as future research topics in this field. 
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CHAPTER SIX 

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

 

Today, the ultimate goal of a company is to increase loyalty by creating value for 

its customers. In value creation process, manufacturing companies should position 

themselves as the partners of their customers and understand their customers’ 

expectations on various issues. Then these issues should be reflected to the PPC 

decisions so that limited resources can effectively be used in accordance with the value 

of customers. In this way, companies can construct a customer-oriented structure that 

leads to increased customer loyalty, repeated purchasing behavior, new business 

opportunities and sustainable growth.  

 

In recent years, customer satisfaction, customer value and customer loyalty have 

been extensively considered in consumer markets, and they have become also 

important in B2B markets. The challenge is to develop an integrated DSS that use 

customers’ information and assist PPC decisions to meet customer expectations. In 

this concern, the main contribution of this dissertation is to propose a simulation 

optimization-based DSS for reflecting the customer-oriented view to PPC decisions. 

In this regard, a realistic job shop system with dynamic order arrivals is dealt with. Lot 

splitting and machine-based dispatching rules are applied together. Lot splitting is 

applied in order to shorten the manufacturing lead time, and ensure on time delivery. 

Machine-based dispatching rules are utilized for sublot scheduling phase to realize 

dynamic scheduling. Four well known dispatching rules, FIFO, AT, EDD and SPST, 

and five modified version of these rules that are proposed in this dissertation are 

employed. These modified rules are customer-oriented dispatching rules and they are 

used to ensure the prioritization of orders from the key customers in order fulfilling. 

 

From CRM point of view, multiple customer segments with different importance 

weights and their expectations and penalties on order completion rate on due date, 

earliness and tardiness are considered in this study. Accordingly, a customer 

satisfaction-based objective function which minimizes mean weighted percentage 

deviation from the expectations of customer segments is used. More specifically, the 
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objective function consists of weighted positive percentage deviation from due date 

(tardiness), weighted negative percentage deviation from due date (earliness) and 

weighted percentage deviation from order completion rate on due date.  

 

As the first novel aspect of the dissertation, a SA-based simulation optimization 

approach is proposed to make the near-optimal policy decisions regarding the 

machine-based dispatching rules and NES for the product types for a job shop system. 

Computational experiments are performed by considering different inter-arrival times, 

due date allowance factors and dominance relationships amongst the customer 

segments. Results of the experiments reveal that integration of CRM and PPC 

approaches in job shop systems provides more efficient use of resources in satisfying 

customers. More specifically, the combined application of lot splitting and machine-

based dispatching rules can offer superior results in terms of common performance 

measures such as tardiness, earliness and order completion rate on due date in 

customer-oriented job shop systems.  

 

As the second novel aspect of the dissertation, in order to prevent customer loss by 

providing a balanced structure between customer segments in terms of satisfaction 

levels, weight setting functions that dynamically compute the weights in the proposed 

dispatching rules are proposed. It is aimed to determine the near-optimal values of the 

segment-based parameters of the related weight setting functions. To this aim, a 

combined approach including simulation analysis and DEA is proposed. To confirm 

its viability, the proposed approach is applied to a realistic job shop system. The results 

reveal that employing dynamic priority assignment creates a balanced structure among 

the dissatisfaction levels of customer segments 

 

The proposed DSS is developed for the B2B manufacturing companies that have 

discrete manufacturing system in which the output is measurable in distinct units rather 

than by weight or volume, and it can be implemented by the manufacturing companies 

by adopting their demand structure, customer base, customer weight settings, 

processing features, managerial objectives etc. However, in reality, complexities in 

processing routes and high product variety can cause difficulties in controlling sublots 
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in the production system. Therefore, companies should be capable of overcoming these 

difficulties to apply LS. In addition, the proposed DSS necessitates vast amount of 

information, considerable of which is real-time in nature. In this concern, companies 

should have big data storage systems and also powerful information technology 

infrastructure to get real-time information.  

 

The proposed DSS provides a conceptual framework in its current structure. In 

order to facilitate its adoption by the manufacturing companies, development of a user-

friendly interface can be stated as a future research direction. In addition, 

implementation of alternative heuristic methods, due date setting functions and 

dispatching rules, and analyzing the effect of customers’ dissatisfaction to the future 

demand can be stated as additional future research topics. 
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APPENDICES 

 

APPENDIX A1 Multiple Pairwise Comparison Results of Weight Set 1 

 

Table A1.a Results of multiple pairwise comparisons (expo (850), k=1.5)  

Comparison 
Lower 

Limit 

Upper 

Limit 
Comparison 

Lower 

Limit 

Upper 

Limit 
Comparison 

Lower 

Limit 

Upper 

Limit 

 1 -  2 0.053 0.077  2 -  9 -0.028 -0.004  5 -  6 -0.006 0.019 

 1 -  3 -0.017 0.007  2 - 10 -0.011 0.013  5 -  7 -0.009 0.015 

 1 -  4 -0.044 -0.020  3 -  4 -0.039 -0.015  5 -  8 0.011 0.035 

 1 -  5 0.031 0.055  3 -  5 0.035 0.060  5 -  9 -0.006 0.019 

 1 -  6 0.037 0.061  3 -  6 0.042 0.066  5 - 10 0.011 0.036 

 1 -  7 0.033 0.058  3 -  7 0.038 0.062  6 -  7 -0.016 0.008 

 1 -  8 0.053 0.078  3 -  8 0.058 0.082  6 -  8 0.004 0.028 

 1 -  9 0.037 0.061  3 -  9 0.042 0.066  6 -  9 -0.012 0.012 

 1 - 10 0.054 0.078  3 - 10 0.059 0.083  6 - 10 0.005 0.029 

 2 -  3 -0.082 -0.058  4 -  5 0.062 0.087  7 -  8 0.008 0.032 

 2 -  4 -0.109 -0.084  4 -  6 0.069 0.093  7 -  9 -0.009 0.016 

 2 -  5 -0.034 -0.010  4 -  7 0.065 0.089  7 - 10 0.008 0.033 

 2 -  6 -0.028 -0.004  4 -  8 0.085 0.109  8 -  9 -0.029 -0.004 

 2 -  7 -0.032 -0.007  4 -  9 0.069 0.093  8 - 10 -0.012 0.013 

 2 -  8 -0.012 0.013  4 - 10 0.085 0.110  9 - 10 0.005 0.029 

 

 

Table A1.b Results of multiple pairwise comparisons (expo (850), k=2)  

Comparison 
Lower 

Limit 

Upper 

Limit 
Comparison 

Lower 

Limit 

Upper 

Limit 
Comparison 

Lower 

Limit 

Upper 

Limit 

 1 -  2 0.042 0.068  2 -  9 -0.025 0.001  5 -  6 -0.009 0.017 

 1 -  3 -0.020 0.006  2 - 10 -0.013 0.013  5 -  7 -0.011 0.015 

 1 -  4 -0.047 -0.021  3 -  4 -0.040 -0.014  5 -  8 -0.002 0.024 

 1 -  5 0.026 0.051  3 -  5 0.033 0.059  5 -  9 -0.009 0.017 

 1 -  6 0.030 0.055  3 -  6 0.037 0.063  5 - 10 0.003 0.029 

 1 -  7 0.027 0.053  3 -  7 0.035 0.061  6 -  7 -0.015 0.011 

 1 -  8 0.036 0.062  3 -  8 0.044 0.069  6 -  8 -0.006 0.020 

 1 -  9 0.029 0.055  3 -  9 0.037 0.063  6 -  9 -0.013 0.013 

 1 - 10 0.042 0.067  3 - 10 0.049 0.075  6 - 10 -0.001 0.025 

 2 -  3 -0.075 -0.049  4 -  5 0.060 0.085  7 -  8 -0.004 0.022 

 2 -  4 -0.102 -0.076  4 -  6 0.064 0.089  7 -  9 -0.011 0.015 

 2 -  5 -0.029 -0.003  4 -  7 0.061 0.087  7 - 10 0.001 0.027 

 2 -  6 -0.025 0.001  4 -  8 0.070 0.096  8 -  9 -0.020 0.006 

 2 -  7 -0.027 -0.002  4 -  9 0.064 0.089  8 - 10 -0.008 0.018 

 2 -  8 -0.018 0.008  4 - 10 0.076 0.101  9 - 10 -0.001 0.025 
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Table A1.c Results of multiple pairwise comparisons (expo (1000), k=1.5)  

Comparison 
Lower 

Limit 

Upper 

Limit 
Comparison 

Lower 

Limit 

Upper 

Limit 
Comparison 

Lower 

Limit 

Upper 

Limit 

 1 -  2 0.018 0.033  2 -  9 -0.020 -0.005  5 -  6 -0.010 0.005 

 1 -  3 -0.019 -0.004  2 - 10 -0.008 0.007  5 -  7 -0.012 0.003 

 1 -  4 -0.036 -0.021  3 -  4 -0.024 -0.009  5 -  8 -0.002 0.013 

 1 -  5 0.008 0.023  3 -  5 0.020 0.035  5 -  9 -0.010 0.005 

 1 -  6 0.006 0.021  3 -  6 0.018 0.033  5 - 10 0.002 0.017 

 1 -  7 0.004 0.019  3 -  7 0.016 0.031  6 -  7 -0.009 0.006 

 1 -  8 0.014 0.029  3 -  8 0.026 0.041  6 -  8 0.001 0.016 

 1 -  9 0.006 0.021  3 -  9 0.018 0.033  6 -  9 -0.008 0.008 

 1 - 10 0.018 0.033  3 - 10 0.030 0.045  6 - 10 0.005 0.020 

 2 -  3 -0.045 -0.030  4 -  5 0.037 0.052  7 -  8 0.003 0.018 

 2 -  4 -0.062 -0.047  4 -  6 0.034 0.049  7 -  9 -0.006 0.009 

 2 -  5 -0.017 -0.002  4 -  7 0.033 0.047  7 - 10 0.007 0.022 

 2 -  6 -0.020 -0.005  4 -  8 0.043 0.058  8 -  9 -0.016 -0.001 

 2 -  7 -0.022 -0.007  4 -  9 0.034 0.049  8 - 10 -0.004 0.011 

 2 -  8 -0.011 0.004  4 - 10 0.047 0.062  9 - 10 0.005 0.020 

 

 

Table A1.d Results of multiple pairwise comparisons (expo (1000), k=2) 

Comparison 
Lower 

Limit 

Upper 

Limit 
Comparison 

Lower 

Limit 

Upper 

Limit 
Comparison 

Lower 

Limit 

Upper 

Limit 

 1 -  2 0.006 0.020  2 -  9 -0.015 -0.001  5 -  6 -0.008 0.006 

 1 -  3 -0.021 -0.007  2 - 10 -0.006 0.008  5 -  7 -0.009 0.005 

 1 -  4 -0.037 -0.023  3 -  4 -0.023 -0.009  5 -  8 -0.001 0.014 

 1 -  5 -0.001 0.013  3 -  5 0.012 0.026  5 -  9 -0.008 0.006 

 1 -  6 -0.002 0.012  3 -  6 0.011 0.025  5 - 10 0.001 0.015 

 1 -  7 -0.004 0.011  3 -  7 0.010 0.024  6 -  7 -0.008 0.006 

 1 -  8 0.005 0.019  3 -  8 0.019 0.033  6 -  8 0.000 0.015 

 1 -  9 -0.002 0.012  3 -  9 0.011 0.025  6 -  9 -0.007 0.007 

 1 - 10 0.007 0.021  3 - 10 0.020 0.034  6 - 10 0.002 0.016 

 2 -  3 -0.034 -0.019  4 -  5 0.029 0.043  7 -  8 0.002 0.016 

 2 -  4 -0.050 -0.036  4 -  6 0.028 0.042  7 -  9 -0.006 0.008 

 2 -  5 -0.014 0.000  4 -  7 0.026 0.040  7 - 10 0.003 0.017 

 2 -  6 -0.015 -0.001  4 -  8 0.035 0.049  8 -  9 -0.015 0.000 

 2 -  7 -0.017 -0.002  4 -  9 0.028 0.042  8 - 10 -0.006 0.008 

 2 -  8 -0.008 0.006  4 - 10 0.036 0.050  9 - 10 0.002 0.016 
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APPENDIX A2 Multiple Pairwise Comparison Results of Weight Set 2 

 

Table A2.a Results of multiple pairwise comparisons (expo (850), k=1.5) 

Comparison 
Lower 

Limit 

Upper 

Limit 
Comparison 

Lower 

Limit 

Upper 

Limit 
Comparison 

Lower 

Limit 

Upper 

Limit 

 1 -  2 0.034 0.055  2 -  9 -0.021 -0.001  5 -  6 -0.014 0.007 

 1 -  3 -0.017 0.003  2 - 10 -0.009 0.012  5 -  7 -0.026 -0.005 

 1 -  4 -0.057 -0.036  3 -  4 -0.050 -0.029  5 -  8 -0.002 0.019 

 1 -  5 0.027 0.048  3 -  5 0.034 0.055  5 -  9 -0.014 0.007 

 1 -  6 0.024 0.044  3 -  6 0.031 0.051  5 - 10 -0.002 0.019 

 1 -  7 0.012 0.032  3 -  7 0.019 0.039  6 -  7 -0.022 -0.002 

 1 -  8 0.036 0.056  3 -  8 0.043 0.063  6 -  8 0.002 0.022 

 1 -  9 0.023 0.044  3 -  9 0.030 0.051  6 -  9 -0.011 0.010 

 1 - 10 0.035 0.056  3 - 10 0.043 0.063  6 - 10 0.002 0.022 

 2 -  3 -0.062 -0.041  4 -  5 0.074 0.094  7 -  8 0.014 0.034 

 2 -  4 -0.101 -0.081  4 -  6 0.070 0.091  7 -  9 0.001 0.022 

 2 -  5 -0.017 0.003  4 -  7 0.058 0.079  7 - 10 0.014 0.034 

 2 -  6 -0.021 0.000  4 -  8 0.082 0.103  8 -  9 -0.023 -0.002 

 2 -  7 -0.033 -0.012  4 -  9 0.070 0.091  8 - 10 -0.010 0.010 

 2 -  8 -0.009 0.012  4 - 10 0.082 0.103  9 - 10 0.002 0.022 

 

 

Table A2.b Results of multiple pairwise comparisons (expo (850), k=2) 

Comparison 
Lower 

Limit 

Upper 

Limit 
Comparison 

Lower 

Limit 

Upper 

Limit 
Comparison 

Lower 

Limit 

Upper 

Limit 

 1 -  2 0.026 0.048  2 -  9 -0.020 0.002  5 -  6 -0.012 0.010 

 1 -  3 -0.020 0.002  2 - 10 -0.011 0.012  5 -  7 -0.019 0.003 

 1 -  4 -0.058 -0.036  3 -  4 -0.049 -0.027  5 -  8 -0.003 0.019 

 1 -  5 0.018 0.040  3 -  5 0.027 0.049  5 -  9 -0.013 0.010 

 1 -  6 0.017 0.039  3 -  6 0.026 0.048  5 - 10 -0.003 0.019 

 1 -  7 0.010 0.032  3 -  7 0.019 0.041  6 -  7 -0.018 0.004 

 1 -  8 0.026 0.048  3 -  8 0.035 0.057  6 -  8 -0.002 0.020 

 1 -  9 0.017 0.039  3 -  9 0.026 0.048  6 -  9 -0.011 0.011 

 1 - 10 0.026 0.048  3 - 10 0.035 0.057  6 - 10 -0.002 0.020 

 2 -  3 -0.057 -0.035  4 -  5 0.065 0.087  7 -  8 0.005 0.027 

 2 -  4 -0.095 -0.073  4 -  6 0.064 0.086  7 -  9 -0.004 0.018 

 2 -  5 -0.018 0.004  4 -  7 0.057 0.079  7 - 10 0.005 0.027 

 2 -  6 -0.020 0.002  4 -  8 0.073 0.095  8 -  9 -0.021 0.001 

 2 -  7 -0.027 -0.005  4 -  9 0.064 0.086  8 - 10 -0.011 0.011 

 2 -  8 -0.010 0.012  4 - 10 0.073 0.095  9 - 10 -0.002 0.020 
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Table A2.c Results of multiple pairwise comparisons (expo (1000), k=1.5) 

Comparison 
Lower 

Limit 

Upper 

Limit 
Comparison 

Lower 

Limit 

Upper 

Limit 
Comparison 

Lower 

Limit 

Upper 

Limit 

 1 -  2 0.005 0.019  2 -  9 -0.016 -0.002  5 -  6 -0.015 -0.001 

 1 -  3 -0.021 -0.007  2 - 10 -0.005 0.009  5 -  7 -0.020 -0.006 

 1 -  4 -0.050 -0.036  3 -  4 -0.036 -0.022  5 -  8 -0.005 0.009 

 1 -  5 0.004 0.018  3 -  5 0.018 0.032  5 -  9 -0.015 -0.001 

 1 -  6 -0.004 0.011  3 -  6 0.010 0.024  5 - 10 -0.004 0.010 

 1 -  7 -0.008 0.006  3 -  7 0.005 0.019  6 -  7 -0.012 0.002 

 1 -  8 0.006 0.020  3 -  8 0.020 0.034  6 -  8 0.003 0.017 

 1 -  9 -0.004 0.011  3 -  9 0.010 0.024  6 -  9 -0.007 0.007 

 1 - 10 0.007 0.021  3 - 10 0.021 0.035  6 - 10 0.004 0.018 

 2 -  3 -0.033 -0.019  4 -  5 0.047 0.061  7 -  8 0.008 0.022 

 2 -  4 -0.062 -0.048  4 -  6 0.039 0.053  7 -  9 -0.002 0.012 

 2 -  5 -0.008 0.006  4 -  7 0.034 0.048  7 - 10 0.009 0.023 

 2 -  6 -0.016 -0.002  4 -  8 0.049 0.063  8 -  9 -0.017 -0.003 

 2 -  7 -0.021 -0.007  4 -  9 0.039 0.053  8 - 10 -0.006 0.008 

 2 -  8 -0.006 0.008  4 - 10 0.050 0.064  9 - 10 0.004 0.018 

 

 

Table A2.d Results of multiple pairwise comparisons (expo (1000), k=2) 

Comparison 
Lower 

Limit 

Upper 

Limit 
Comparison 

Lower 

Limit 

Upper 

Limit 
Comparison 

Lower 

Limit 

Upper 

Limit 

 1 -  2 -0.003 0.009  2 -  9 -0.012 0.000  5 -  6 -0.014 -0.001 

 1 -  3 -0.020 -0.008  2 - 10 -0.003 0.010  5 -  7 -0.016 -0.004 

 1 -  4 -0.039 -0.026  3 -  4 -0.025 -0.012  5 -  8 -0.006 0.006 

 1 -  5 -0.002 0.011  3 -  5 0.013 0.025  5 -  9 -0.014 -0.001 

 1 -  6 -0.009 0.004  3 -  6 0.005 0.018  5 - 10 -0.005 0.008 

 1 -  7 -0.011 0.001  3 -  7 0.003 0.015  6 -  7 -0.009 0.004 

 1 -  8 -0.002 0.011  3 -  8 0.013 0.025  6 -  8 0.001 0.014 

 1 -  9 -0.009 0.004  3 -  9 0.005 0.018  6 -  9 -0.006 0.006 

 1 - 10 0.000 0.013  3 - 10 0.014 0.027  6 - 10 0.003 0.015 

 2 -  3 -0.024 -0.011  4 -  5 0.031 0.043  7 -  8 0.004 0.016 

 2 -  4 -0.042 -0.029  4 -  6 0.023 0.036  7 -  9 -0.004 0.009 

 2 -  5 -0.005 0.008  4 -  7 0.021 0.034  7 - 10 0.005 0.018 

 2 -  6 -0.012 0.000  4 -  8 0.031 0.043  8 -  9 -0.014 -0.001 

 2 -  7 -0.014 -0.002  4 -  9 0.023 0.036  8 - 10 -0.005 0.008 

 2 -  8 -0.005 0.008  4 - 10 0.033 0.045  9 - 10 0.003 0.015 
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APPENDIX A3 Multiple Pairwise Comparison Results of Weight Set 3 

 

Table A3.a Results of multiple pairwise comparisons (expo (850), k=1.5) 

Comparison 
Lower 

Limit 

Upper 

Limit 
Comparison 

Lower 

Limit 

Upper 

Limit 
Comparison 

Lower 

Limit 

Upper 

Limit 

 1 -  2 0.017 0.034  2 -  9 -0.017 0.001  5 -  6 -0.025 -0.008 

 1 -  3 -0.018 0.000  2 - 10 0.002 0.019  5 -  7 -0.034 -0.016 

 1 -  4 -0.042 -0.025  3 -  4 -0.033 -0.015  5 -  8 -0.007 0.010 

 1 -  5 0.025 0.042  3 -  5 0.034 0.052  5 -  9 -0.026 -0.008 

 1 -  6 0.008 0.026  3 -  6 0.018 0.035  5 - 10 -0.007 0.011 

 1 -  7 0.000 0.018  3 -  7 0.009 0.027  6 -  7 -0.017 0.001 

 1 -  8 0.026 0.044  3 -  8 0.036 0.053  6 -  8 0.009 0.027 

 1 -  9 0.008 0.026  3 -  9 0.017 0.035  6 -  9 -0.009 0.009 

 1 - 10 0.027 0.044  3 - 10 0.036 0.054  6 - 10 0.010 0.027 

 2 -  3 -0.043 -0.026  4 -  5 0.058 0.076  7 -  8 0.018 0.035 

 2 -  4 -0.067 -0.050  4 -  6 0.042 0.059  7 -  9 -0.001 0.017 

 2 -  5 0.000 0.017  4 -  7 0.034 0.051  7 - 10 0.018 0.035 

 2 -  6 -0.017 0.001  4 -  8 0.060 0.077  8 -  9 -0.027 -0.009 

 2 -  7 -0.025 -0.008  4 -  9 0.042 0.059  8 - 10 -0.008 0.009 

 2 -  8 0.001 0.019  4 - 10 0.060 0.078  9 - 10 0.010 0.027 

 

 

Table A3.b Results of multiple pairwise comparisons (expo (850), k=2) 

Comparison 
Lower 

Limit 

Upper 

Limit 
Comparison 

Lower 

Limit 

Upper 

Limit 
Comparison 

Lower 

Limit 

Upper 

Limit 

 1 -  2 0.010 0.029  2 -  9 -0.017 0.003  5 -  6 -0.027 -0.008 

 1 -  3 -0.021 -0.002  2 - 10 0.000 0.020  5 -  7 -0.032 -0.013 

 1 -  4 -0.046 -0.027  3 -  4 -0.035 -0.015  5 -  8 -0.010 0.010 

 1 -  5 0.020 0.039  3 -  5 0.032 0.051  5 -  9 -0.027 -0.008 

 1 -  6 0.003 0.022  3 -  6 0.014 0.034  5 - 10 -0.010 0.009 

 1 -  7 -0.002 0.017  3 -  7 0.009 0.029  6 -  7 -0.015 0.005 

 1 -  8 0.020 0.039  3 -  8 0.031 0.051  6 -  8 0.007 0.027 

 1 -  9 0.003 0.022  3 -  9 0.014 0.034  6 -  9 -0.010 0.010 

 1 - 10 0.019 0.039  3 - 10 0.031 0.050  6 - 10 0.007 0.027 

 2 -  3 -0.041 -0.021  4 -  5 0.056 0.076  7 -  8 0.012 0.032 

 2 -  4 -0.065 -0.046  4 -  6 0.039 0.058  7 -  9 -0.005 0.015 

 2 -  5 0.001 0.020  4 -  7 0.034 0.054  7 - 10 0.012 0.031 

 2 -  6 -0.017 0.003  4 -  8 0.056 0.076  8 -  9 -0.027 -0.007 

 2 -  7 -0.022 -0.002  4 -  9 0.039 0.058  8 - 10 -0.010 0.009 

 2 -  8 0.000 0.020  4 - 10 0.056 0.075  9 - 10 0.007 0.027 
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Table A3.c Results of multiple pairwise comparisons (expo (1000), k=1.5) 

Comparison 
Lower 

Limit 

Upper 

Limit 
Comparison 

Lower 

Limit 

Upper 

Limit 
Comparison 

Lower 

Limit 

Upper 

Limit 

 1 -  2 -0.003 0.007  2 -  9 -0.013 -0.002  5 -  6 -0.023 -0.012 

 1 -  3 -0.021 -0.010  2 - 10 0.006 0.017  5 -  7 -0.025 -0.014 

 1 -  4 -0.031 -0.020  3 -  4 -0.015 -0.005  5 -  8 -0.006 0.005 

 1 -  5 0.007 0.018  3 -  5 0.022 0.033  5 -  9 -0.023 -0.012 

 1 -  6 -0.011 0.000  3 -  6 0.005 0.015  5 - 10 -0.004 0.006 

 1 -  7 -0.012 -0.002  3 -  7 0.003 0.014  6 -  7 -0.007 0.004 

 1 -  8 0.006 0.017  3 -  8 0.022 0.032  6 -  8 0.012 0.022 

 1 -  9 -0.011 0.000  3 -  9 0.005 0.015  6 -  9 -0.005 0.005 

 1 - 10 0.008 0.019  3 - 10 0.023 0.034  6 - 10 0.013 0.024 

 2 -  3 -0.023 -0.012  4 -  5 0.032 0.043  7 -  8 0.013 0.024 

 2 -  4 -0.033 -0.022  4 -  6 0.015 0.026  7 -  9 -0.004 0.007 

 2 -  5 0.005 0.016  4 -  7 0.013 0.024  7 - 10 0.015 0.026 

 2 -  6 -0.013 -0.002  4 -  8 0.032 0.042  8 -  9 -0.022 -0.012 

 2 -  7 -0.014 -0.004  4 -  9 0.015 0.026  8 - 10 -0.004 0.007 

 2 -  8 0.004 0.015  4 - 10 0.033 0.044  9 - 10 0.013 0.024 

 

 

Table A3.d Results of multiple pairwise comparisons (expo (1000), k=2) 

Comparison 
Lower 

Limit 

Upper 

Limit 
Comparison 

Lower 

Limit 

Upper 

Limit 
Comparison 

Lower 

Limit 

Upper 

Limit 

 1 -  2 -0.011 0.000  2 -  9 -0.010 0.001  5 -  6 -0.019 -0.008 

 1 -  3 -0.020 -0.009  2 - 10 0.005 0.017  5 -  7 -0.023 -0.011 

 1 -  4 -0.042 -0.030  3 -  4 -0.027 -0.016  5 -  8 -0.006 0.005 

 1 -  5 -0.003 0.009  3 -  5 0.012 0.024  5 -  9 -0.019 -0.008 

 1 -  6 -0.016 -0.005  3 -  6 -0.001 0.010  5 - 10 -0.004 0.008 

 1 -  7 -0.019 -0.008  3 -  7 -0.005 0.007  6 -  7 -0.009 0.002 

 1 -  8 -0.003 0.009  3 -  8 0.012 0.023  6 -  8 0.008 0.019 

 1 -  9 -0.016 -0.005  3 -  9 -0.001 0.010  6 -  9 -0.006 0.006 

 1 - 10 0.000 0.011  3 - 10 0.014 0.026  6 - 10 0.010 0.021 

 2 -  3 -0.015 -0.003  4 -  5 0.034 0.045  7 -  8 0.011 0.022 

 2 -  4 -0.036 -0.025  4 -  6 0.020 0.031  7 -  9 -0.002 0.009 

 2 -  5 0.003 0.015  4 -  7 0.017 0.028  7 - 10 0.013 0.025 

 2 -  6 -0.010 0.001  4 -  8 0.033 0.045  8 -  9 -0.019 -0.008 

 2 -  7 -0.014 -0.002  4 -  9 0.020 0.031  8 - 10 -0.003 0.008 

 2 -  8 0.003 0.014  4 - 10 0.036 0.047  9 - 10 0.010 0.021 
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