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DESIGN AND IMPLEMENTATION OF A RULE-BASED DECISION
SUPPORT SYSTEM FOR DYNAMIC CUSTOMER RELATIONSHIP
MANAGEMENT

ABSTRACT

Today, business customers are quite demanding and they expect on time delivery,
short lead times, high quality and affordable prices. In addition, they have different
expectations, preferences, and tolerances. On the other side, manufacturing companies
have limited resources, and they are confronted with many complex production
planning and control (PPC) decisions. In this regard, integrating customer relationship
management (CRM) and PPC approaches help companies to build production plans or
strategies around the customers, focus on key customers, offer more customized

solutions and obtain long term business relationships.

This dissertation aims to develop a decision support system (DSS) which integrates
CRM and PPC approaches to use manufacturing capabilities more effectively in
satisfying customers. To this aim, a job shop system is dealt with and lot streaming is
applied to accelerate production flow. In sublot scheduling phase, dynamic scheduling
is performed by considering machine-based dispatching rules. Sublot and dispatching
rule configurations are determined simultaneously by a simulated annealing-based
simulation-optimization approach. Customer-oriented dispatching rules are proposed
to ensure the prioritization of orders from key customers. In addition, multiple
customer segments with different importance weights, their expectations and penalties
on tardiness, earliness and order completion rate on due date are considered and a

customer-focused objective function is formulated.

In order to provide a well-adjusted structure in terms of satisfaction levels of
different customer segments, weight setting functions that dynamically compute the
weights in the proposed customer-oriented dispatching rules are defined. It is aimed to
determine near-optimal values of the segment-based parameters of the weight setting



functions. To this aim, differential evolution-based simulation-optimization approach
IS used.

The results reveal that the proposed DSS provides more effective use of resources
in satisfying customers, and can easily be implemented by manufacturing companies
in practice by adopting their demand structure, customer base, customer weight

settings and processing features.

Keywords: Customer relationship management, production planning and control,

simulation optimization, decision support system, dynamic order prioritization



DINAMIK MUSTERI ILISKILERI YONETIMINE YONELIiK KURAL
TABANLI BiR KARAR DESTEK SiSTEMi TASARIMI VE UYGULAMASI

0z

Giiniimiizde endiistriyel misteriler oldukga talepkar olup, iiretici firmalardan
zamaninda teslimat, kisa teslim siireleri, yiiksek kalite ve kabul edilebilir fiyatlar
beklemektedir. Bunun yaninda, miisterilerin farkli konularda farkli toleranslari,
beklentileri ve tercihleri olabilmektedir. Ote yandan, kisith kaynaklar1 olan iiretici
firmalar ise, birgok karmasik iiretim planlama ve kontrol (UPK) kararlari ile karst
karstya kalmaktadir. Bu baglamda, miisteri iliskileri yonetimi (MIY) konular1 ile UPK
konularinin biitiinlestirilmesi, miisteri odakli {iretim planlarinin olusturulmasinda,
firmaya biiyiik oranda kar getiren anahtar miisterilere odaklanilmasinda, miisteriye
0zgl ¢Ozlimlerin sunulmasinda ve uzun dénemli is iliskilerinin gelistirilmesinde

yardimc1 olacaktir.

Bu tez kapsaminda, iireticilerin imalat kabiliyetlerinin miisteri memnuniyetine
yonelik olarak daha etkin bir sekilde kullanilmasi i¢in MIY ve UPK yaklasimlarim
biitiinlestiren bir karar destek sisteminin (KDS) tasarlanmasi amaglanmistir. Bu amag
dogrultusunda, bir atdlye tipi liretim sistemi ele alinarak tiretim akigini hizlandirmak
amactyla kafile bolme ve kaydirma yaklasgimi kullanilmigtir. Alt Kafilelerin
cizelgelenmesi agsamasinda ise makine bazli siralama kurallar1 kullanilarak dinamik
cizelgeleme yapilmistir. Alt kafile ve siralama kurallarina iligkin konfigilirasyonlara
tavlama benzetimi tabanli simiilasyon optimizasyon yaklasimi ile es zamanl olarak
karar verilmistir. Anahtar miisterilerden gelen siparislerin Onceliklendirilmesini
saglamak amaciyla miisteri odakli siralama kurallar1 gelistirilmistir. Ek olarak, farkli
miisteri segmentleri, bu segmentlerin ge¢ teslimat, erken teslimat ve verilen teslim
tarthinde Ttretim Kafilesinin tamamlanma oranma iliskin beklentileri ve bu
beklentilerden sapmalara verdikleri ceza katsayilar1 dikkate alinarak miisteri odakli bir

amagc fonksiyonu olusturulmustur.

Vi



Ote yandan, miisteri memnuniyet diizeylerinin miisteri segmentleri bazinda uygun
bir sekilde saglanabilmesi amaciyla, miisteri odakli siralama kurallarinda kullanilan
agirliklar1 dinamik olarak belirleyen agirlik atama fonksiyonlar: tanimlanmistir. Bu
fonksiyonlarda kullanilan segment bazli parametrelerin optimuma yakin degerlerinin
bulunmasi amaglanmis ve bu dogrultuda diferansiyel gelisim tabanli bir simiilasyon

optimizasyon yaklasimi kullanilmistir.

Elde edilen sonuglar, onerilen KDS’nin atdlye tipi iiretim sistemlerinde miisteri
memnuniyetinin saglanmasinda etkin bir sekilde kullanilabilecegini ve farkli firmalar
tarafindan kendi talep, miisteri ve imalat yapilarina gore diizenlenerek kolaylikla

kullanilabilecegi ortaya koymustur.

Anahtar kelimeler: Miisteri iligkileri yonetimi, iretim planlama ve kontrol,

simiilasyon-optimizasyon, karar destek sistemi, dinamik siparis dnceliklendirme
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CHAPTER ONE
INTRODUCTION

1.1 Motivation

Today, business customers are quite demanding and they expect on time delivery,
short lead times, high quality and affordable prices. In addition, they have many
options and they can rapidly switch to other companies. Furthermore, they have
different expectations, preferences, and tolerances on various issues. On the other
hand, manufacturing companies have limited resources and production capacity, and
they are confronted with many complex production planning and control (PPC)
decisions such as order acceptance, order scheduling, lot sizing, due date setting,

capacity allocation etc.

In the past, manufacturing companies focused heavily on engineering and
production processes in order to gain market power. However, today, they face tougher
competition and have realized that customers are the main reason for a company’s
existence. Therefore, customer orientation becomes an important strategy for the
manufacturing companies in gaining sustainable competitive advantage. In this
concern, manufacturing companies should first understand their customers’
expectations on various issues and then these issues should be reflected to the PPC
decisions so that limited resources can be used effectively in accordance with the value
of customers. In this way, companies can create a customer oriented structure which
leads increasing customer loyalty, repeat purchasing behavior, long term business
relationships, and new business opportunities. However, at this point the challenge is
to develop an integrated decision support system (DSS) that collects information about
customers and provide the efficient PPC decisions so as to meet customer expectations.

Creating a customer oriented structure necessitates deeper analysis of customer
base and customer value analysis. It should be noted that not every customer has equal
importance to the company. Therefore, manufacturing companies should not give the

same priority to all customers in PPC decisions. On the other hand, another important



issue for the manufacturing companies is the identification of customer expectations.
For instance, in business-to-business (B2B) markets, customers consider various
issues such as price, quality, technological capability, financial stability, just-in-time
(JIT) delivery practices in the supplier selection process. Among them, timeliness is
an important concern and both earliness and tardiness damage the reputation of
manufacturing companies and may cause loss of customers in the long run. Especially
companies in a make to order (MTO) environment adopting JIT philosophy need high
level of on time delivery performance. In this concern, setting reasonable due dates
and keeping promises becomes important for the manufacturers to ensure customer

satisfaction.

The aforementioned facts are the main source of our motivation at the beginning of
this research. The main objective of this dissertation is to develop a DSS which
integrates customer relationship management (CRM) and PPC approaches in order to
use manufacturing capabilities more effectively in satisfying customers. In this regard,
job shop system is dealt with and lot streaming (LS) as a PPC technique is applied to
shorten the manufacturing lead time. In sublot scheduling phase, dynamic scheduling
is performed by considering machine based dispatching rules. Sublot and dispatching
rule configurations are determined simultaneously by using a simulated annealing
(SA) based simulation optimization approach. Customer oriented dispatching rules are
proposed to ensure the prioritization of orders from the key customers in order
fulfilling. In addition, multiple customer segments with different importance weights,
their expectations and penalties on tardiness, earliness and order completion rate on

due date are considered and a customer focused objective function is formulated.

From another point of view, in order to prevent customer losses by providing a
balanced structure between the customer segments in terms of the satisfaction levels,
weight setting functions that dynamically compute the weights used in the customer
oriented dispatching rules proposed in this dissertation are defined. It is aimed to
determine the near-optimal values of the segment based parameters of the related
weight setting functions. To this aim, a combined approach, differential evolution

algorithm (DEA) based simulation optimization is used.



1.2 Original Contributions

LS denotes splitting a production lot into smaller sized sublots and then processing
the sublots simultaneously over the machines. This PPC problem is extensively studied
in the literature due to its ability to shorten the manufacturing lead time by improving
flow time. The main focus of the problem is to determine the optimal number of
sublots, their sizes and processing sequences on machines. In related area, most of the
studies do not consider customer related issues, and focus on primarily the production
efficiency based performance measures (Giligdemir & Selim, 2015b). However, in
recent years the importance of customers in PPC decisions is recognized and the

integration of PPC and CRM issues becomes an attractive research area.

In this dissertation, studies handled job shop LS problem are reviewed. As it is
stated before, most of the studies in this field do not consider customer focused
performance measures and customer related issues such as customer value to the
company, customer expectations, customer satisfaction and customer tolerances.
There is a scarce of a DSS which integrates PPC and CRM issues in order to satisfy
customers by providing well timed and effective PPC decisions. To bridge this gap, a
simulation optimization based DSS is developed in order to use manufacturing
capabilities more effectively in satisfying customers. In this regard, a realistic job shop
system is dealt with and LS is applied to improve flow time and ensure lead time
objectives. In sublot scheduling phase of the problem, dynamic scheduling is
performed by considering machine based dispatching rules. Customer oriented
dispatching rules are proposed to ensure the prioritization of orders from the key
customers in order fulfilling. In addition, multiple customer segments with different
importance weights, their expectations and penalties on tardiness, earliness and order
completion rate on due date are considered and a customer focused objective function
is formulated in order to analyze the manufacturer’s sensitivity to the customers’

expectations.

Further, in previous studies, customer oriented order prioritization is achieved by

assigning importance weights to customers and/or orders randomly or by using



probability distributions. In addition, the weights are treated as static and no attempt
was made to optimize those weights. In this dissertation, in order to prevent customer
losses by providing a balanced structure between the customer segments in terms of
the satisfaction levels, weight setting functions that dynamically compute the customer

segment based weights used in the proposed dispatching rules are defined.

The proposed DSS aims to find near-optimal solutions regarding to sublot and
dispatching rule configurations (see Chapter 4) and also the customer segment based
parameter values of the dynamic weight setting functions (see Chapter 5). The results
reveal that the proposed approach can effectively be used in practice by the
manufacturers by adopting their own demand structure, customer base, customer
weight settings, processing features, managerial objectives etc. Also, it gives
manufacturers the opportunity to gain time based competitive advantage in the market.
Finally, the main contributions of this dissertation can be stated as the following:

e A simulation optimization based DSS is proposed for reflecting the customer
oriented view to PPC decisions in job shop systems with dynamic order
arrivals.

e LS is applied in order to shorten the manufacturing lead time and ensure on
time delivery. Machine based dispatching rules are utilized for sublot
scheduling phase to realize dynamic scheduling.

e Customer oriented dispatching rules are proposed to ensure the prioritization
of orders from the key customers in order fulfilling.

e A customer satisfaction based objective function is defined, and multiple
customer segments with different importance weights, and their expectations
and penalties on order completion rate on due date, tardiness and earliness are
considered.

e In order to prevent customer losses by providing a balanced structure between
the customer segments in terms of the satisfaction levels, weight setting
functions that dynamically compute the weights used in the proposed
dispatching rules are proposed.



1.3 Organization of the Dissertation

This dissertation consists of six chapters. The first chapter is the introduction and

the remaining chapters are organized as in the following.

In Chapter 2, characteristics of B2B markets are summarized and the importance of
CRM in B2B markets is highlighted. Then, LS problem and its key concepts are
explained in detail. Additionally, a review of studies on job shop LS problem is
presented and the studies are discussed with respect to the CRM issues involved,
objective functions defined, and solution methodologies used. Further, concept of
dispatching rules is mentioned in this chapter and the most widely used dispatching
rules in job shop scheduling problems are summarized. Finally, metaheuristics and

their classification scheme is examined.

In Chapter 3, the proposed simulation optimization based DSS that integrates CRM
and PPC approaches is explained in detail. Further, the concept of simulation
optimization is presented and the techniques used in simulation optimization are

summarized in this chapter.

In Chapter 4, implementation of the proposed DSS on a realistic job shop system is
presented. The DSS is implemented by considering the dominance relationships

between the customer segments, shop utilization levels and due date tightness issues.

In Chapter 5, an implementation on dynamic order prioritization is presented.
Proposed dynamic weight setting functions are explained in detail and the

computational experiments are performed by considering various demand mixes.

Chapter 6 is devoted to the concluding remarks, original contributions and future

research directions of the dissertation.



CHAPTER TWO
LITERATURE REVIEW

2.1 Customer Relationship Management and Business-to-Business Markets

CRM is a management philosophy that is a result of the marketing theory in the
information age. With the appearance and the development of new economic
phenomena like diversification and globalization of world markets, the companies
move in a more and more challenging environment (Misdolea, 2010). In this
environment, gaining sustainable competitive advantage requires differentiation.
However, differentiations that obtained by technological developments or innovations
are short term and insufficient. In this manner, CRM is one of the most important way
to be different (T. Cater & B. Cater, 2010).

CRM is an important topic in marketing and it can be defined as ‘‘a comprehensive
strategy and process of acquiring, retaining, and partnering with selective customers
to create superior value for the company and the customer. It involves the integration
of marketing, sales, customer service, and the supply chain functions of the
organization to achieve greater efficiencies and effectiveness in delivering customer
value” (Parvatiyar & Sheth, 2001). The basic idea behind CRM is that customers are
more likely to be loyal and may create a long-term revenue stream as long as the
companies create a strong and trusting relationships with their customers by
understanding and satisfying the expectations of customers with the help of business
intelligence (Dale Wilson, 2006). The most notable benefits of CRM can be stated as
follows (Bergeron, 2002):

e Improved customer satisfaction levels

e Increased customer retention and loyalty

e Improved customer lifetime value

e Transfer of better strategic information to relevant departments
e Attraction of new customers

e Customization of products and services



Generation of new business opportunities

Efficient segmentation of customers, and establishing appropriate business

plans for the customer segments

Real time information about customer requirements, expectations and

perceptions

Competitive advantage

Increase in customer demands

CRM is not only applicable for managing relationships between businesses and

consumers, but even more crucial for business customers (Ata & Toker, 2012). B2B

markets also known as industrial markets involve the sale of products or services

between businesses. Industrial products can be classified into three main categories as
illustrated in Figure 2.1 (Chand, 2016).

Industrial
Products

v

Materials and parts

Raw materials

Manufactured materials
and parts

- Component materials

- Component parts

Y

Capital items

1

v

Services and
supplies

|

l

Installation Equipment

Supplies
- Operating supplies
- Maintenance supplies

Business services
- Maintenance and repair services
- Business advisory services

Figure 2.1 Classification of industrial products (Chand, 2016)

Materials and Parts

Materials and parts are the goods that enter the product directly and they are

classified into two categories such as raw materials and manufactured materials and

parts. Raw materials are the basic products which enter into the production process

with little or no modifications (i.e. iron ore, crude oil etc.). In addition, manufactured

materials and parts include component materials and component parts. Component

parts are the semi-finished parts that enter the product with little or no additional

change while component materials are fabricated further.



Capital Items

Capital items are those that are used in the production process. They involve
installations and equipments. Installations are the major and long term investments
such as general purpose and special purpose machines, warehouses, offices, factories,
and they are usually bought directly from the producers. On the other hand, equipments
only aid in the operation of the business (i.e. hand tools, fork lift trucks, personal

computers, desktops etc.)

Services and Supplies

Supplies and services support the operations of the business and they are not
considered as the part of the finished goods. There are two kinds of supplies, operating
supplies and maintenance supplies. Operating supplies represent the physical items
required for the running of a manufacturing or service facility owned by a business.
They include consumable materials such as lubricants, coal, writing paper, pens used
by the business on an ongoing basis. On the other hand, maintenance supplies
consumed in the production process but they do not either become part of the finished
good. They include cleaning, laboratory, industrial equipment (i.e. pumps, valves etc.)

and plant upkeep supplies (i.e. repair tools, fixtures etc.).

Companies need a wide range of services like maintenance services, auditing
services, legal services, courier services, and so on. These services are called business
services which are usually supplied on contract and by small producers who goes by
service and reputation. They include maintenance and repair services such as window
cleaning, carpet cleaning, computer repair, and business advisory services such as

legal, management consulting and advertising.

Lehmann and O’Shaughnessy (1974) classified industrial products into four classes
on the basis of problems associated with product adoption such as (i) routine order
products, (ii) procedural problem products, (iii) performance problem products and

(iv) political problem products. Routine order products are frequently ordered



products with no performance problems experienced when buying. Procedural
problem products may involve some level of training for individuals to successfully
adopt them. On the other hand, performance problem products involve the
uncertainties about the technical outcomes of using the products. For instance, when
introducing a new technology, there may be some uncertainties about the product’s
ability to be compatible with the company’s existing resources and current equipment.
Finally, political problem products are the products in which large capital investments
are made, and they are used by several different departments (e.g. a new information

system).

B2B organizations include manufacturers, industrial suppliers, technology
hardware vendors, insurance companies and so on, and a B2B transaction occurs when
a business needs to source one of the above-mentioned products or services. In
addition, B2B markets are quite different from business-to-consumer (B2C) markets
which involve the sale of products or services directly to the consumers. For instance,
in B2B markets, number of prospective customers is very few, purchasing process is
longer and more complex, custom contracts are more diverse, pricing schemes are
more complicated, organizations seek long term commitments and partnership, and
value and volume of the transactions are much higher compared to B2C. Therefore,

the risk is also higher in those markets.

In B2B markets, many customers are relying on fewer suppliers and becoming
involved in closer relationships with them (Groves & Valsamakis, 1998; Cannon &
Perreault Jr, 1999). B2B buyers choose a supplier with whom they can develop a
relationship, and they want to stay with that supplier for longer due to the invested
time and effort (Arslan, 2012). However, increased information technologies and
remarkable changes in social, cultural and economic areas have changed market
conditions and customer expectations dramatically. Today, customers became very
conscious and sophisticated and they need innovative, perfect products and high
services. They have many options and this is why they can rapidly switch to other
companies. Moreover, economic deregulation has changed the market conditions and

created a keen competition. Manufacturers get chance to reduce production costs and



consequently prices. This makes customers more price sensitive. From another point
of view, customers have realized that their purchasing behavior can cause a huge
impact to the environment. Therefore, today customers are also considering
environmental issues and they prefer both supplying and producing recyclable green

products.

All of the aforementioned issues invoke the importance of deploying CRM in both
acquiring new customers and retaining the existing ones. In addition, it is known that
the cost of acquiring a new customer is much higher than retaining an existing one.
Therefore, since the number of prospective customers is few in B2B markets,
partnership is the key success factor in those markets and CRM plays an important role
in B2B activities. In addition, it is obvious that these few customers highly contribute
the company’s entire turnover in terms of volume and value. It is therefore very
important to understand and satisfy customer needs in order to retain the existing
customers (O’Cass & Ngo, 2012). In this regard, B2B companies use CRM as a
differentiating bridge to get closer to customers. While CRM success is frequently
cited in B2C markets, B2B companies have also seen significant results from customer
oriented strategies (UK Essays, 2015).

In order to build strong customer relationships in B2B markets, companies first
track their customers’ transactions and segment their customers in accordance with
their value to the company and perform some profitability analysis. Then, they should
differentiate their products, operations and services based on the customer value and
customer expectations. Finally, they should measure the performance of their efforts
in terms of customer satisfaction levels, customer complaints, and customer churn
rates by considering every customer shifted to other suppliers could cause remarkable

problems in sales, revenue and market share.

Another important point in business environment is the constant change.
Customers, needs, products, expectations, rules, perceptions and market conditions are
subject to change over time. Therefore, estimation of future value and behavior of

customers and the interpretation of what-if type questions are important tasks for
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companies for their survival. Therefore, timely availability of information through a
DSS that integrates CRM and PPC can certainly aid companies in using resources

effectively in satisfying customers.

2.2 Lot Streaming Problem

LS is one of the PPC techniques and it denotes splitting a production lot into sublots
(transfer lots) and then processing the sublots simultaneously over the machines (Edis
& Ornek, 2009). More specifically, LS problem consists of two major parts; lot
splitting and sublot scheduling, and it can be defined as the problem of determining
the optimal number of sublots, their sizes and processing sequences that optimize some
pre-specified criterion. This criterion can be time-based such as makespan, mean flow
time, number of tardy jobs or cost-based such as production cost, inventory cost and

setup cost.

LS, accelerates the flow of a production lot through a production system, shortens
the manufacturing lead time and improves due date performance, reduces the work-in-
process (WIP) and associated costs and also reduces the capacity requirements of
material handling system (Cheng et al., 2013; Kalir & Sarin, 2000).

Before the discussion on LS in job shops, explaining the characteristics of job shop
production systems briefly would be appropriate. Job shop production systems consist
of different machines that have multiple functionalities. In general, machines are
grouped based on their functions and then those machine groups are linked by a
material handling system. As illustrated in Figure 2.2, in which circles represent inputs
and the squares represent the outputs, job shops are capable of producing various types
of jobs that have different routing and processing requirements in small batches.

11



Q Machine 1 Machine 2 ) Machine 3 '

" -

Machine 6 Machine 5 Machine 4

H m

Figure 2.2 An illustration of a job shop system

The most common issues considered in the design and control of job shops are the
determination of capacity requirements and due date setting policy, identification of

the bottlenecks etc. Some important advantages of job shops are:

High flexibility in product mix and volume

Parallel processing of multiple different jobs

High expansion flexibility (machines can be easily substituted or added)

Low obsolescence of machines

High level of customization

On the other hand, there are some disadvantages of job shops such as:

e High variations in processing times and job routings

Long (and unpredictable) production lead times and high level of WIP

Difficulties in scheduling

Low capacity utilization relative to flow shops

High-skilled employee requirement

In order to illustrate LS concept in job shops, an example in which two jobs (J1 and
J2) are to be processed on three machines (M1, M2 and M3) based on the production
sequence (route) identified is given. If the lots are not split, then it will be processed

as presented in Figure 2.3.a. However, in case of the lots are split into two sublots,
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then these sublots are processed simultaneously over the machines (see Figure 2.3.b),
and this leads a reduction in the makespan.

A
M1 I JI: M1-M2-M3
J2: M2-M1-M3
M2 2 | |
M3 o 12
@
A
M1 | a2
M2 2] n ||
improvement
M3 | un|R|Rjle—
(b)

Figure 2.3 (a) Job shop scheduling without LS, (b) Job shop scheduling with LS (Chan et al., 2004)
2.2.1 Components of LS Problems
LS can be used in various machine configurations such as flow shops, job shops,
parallel machines, open shops, hybrid flow shops etc. The major components of the
LS problems are explained in detail in the following (Chang & Chiu, 2005; Cheng et

al., 2013; Edis et al., 2007).

Machine Configuration

Machine configuration refers to the arrangement of machines. The most common
machine configurations include flow shop, job shop, open shop, parallel machines,

hybrid flow shop and assembly system.
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Number of Product Types

This refers to the number of product types involved in the production system such

as single product and multiple products.

Sublot Types

Sublot types can be consistent, variable and equal. In consistent sublot case, size of
a sublot remains the same over the machines (see Figure 2.4.a). On the other hand, in
variable sublot case, size of a sublot varies among the machines (see Figure 2.4.b).

Equal sublot is a special case of consistent sublots in which size of the sublots are the

same.
A
M1 70 | 50 | J: M1-M2-M3
M2 | 70 | 50 |
M3 | 70 | 50
(@)
A
M1 70 | 50 |
M2 | 60 | 60 |
M3 | 60 | 60
(b)
Figure 2.4 (a) Consistent sublot, (b) Variable sublot (Chang & Chiu, 2005)
Sublot Sizes

Sublot sizes can be continuous or discrete valued. Continuous sublot sizes are real

valued, while discrete sublot sizes allow only integer values.
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Number of Sublots

The number of sublots may be known a priori (FixN), or is to be determined
(FlexN). In general, the makespan will be minimized if there exists just one item in
each sublot (Trietsch & Baker, 1993). However, setup times and difficulties in tracking

make it undesirable to have a large number of unit-sized sublots.

Sequence of Sublots

When there are multiple product types in the system, the sequence of sublots of
product j can be allowed to be interrupted by sublots of product k (intermingling) or

not (non-intermingling) (Feldman & Biskup, 2008).

Operation Continuity

Idling refers to the situation in which an idle time is allowable between two sublots
on a machine, while the no-idling situation does not allow such an idle time. In case
of no-idling, a sublot has to be processed immediately after the completion of its

predecessor.

Setup Activities

If there is no setup time, then it is always optimal to consider the maximum number
of sublots. However, since each sublot is a separate job, as the problem size increased,
it becomes much harder to solve the problem. In case of the existence of setup time,
there is a tradeoff between the time saved by dividing lots into sublots and the extra
time required because of additional setups (Dauzere-Peres & Lasserre, 1997). Setups
can be lot-attached, lot-detached or sequence dependent. Lot-attached setup refers to
the case in which a setup required to process a lot on a machine can be started only
after the arrival of the lot at the machine. However, in lot-detached setup, a setup can
be performed on a machine even before the arrival of the lot on that machine. Lot

attached and lot detached setups are illustrated in Figures 2.5.a and 2.5.b, respectively.
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Herein, two jobs (J1 and J2) are split into two sublots and scheduled on machines M1
and M2. Setup operations are denoted by tjx where j is the lot index and k is the machine

index.

A
M1 | NNt | 2 [ 2
M2 te | 01| 0| | | 2 12
@ ]
A
M1 | NN | 2 [ 2
M2 |t | NN | | 2 | 22
(b) ]

Figure 2.5 (a) LS with lot-attached setups, (b) LS with lot-detached setups

Transportation Activities

Transportation activities involve transfer and removal activities. Transfer refers
moving a lot or sublot from one machine to another. The time required for this activity
called transfer time and the machine is available for processing the next lot or sublot
during this time. In addition, removal refers removing a lot or sublot from a machine
and the time required for this activity called removal time. Unlike transfer time, the

machine is not available to process the next lot or sublot during removal time.

Performance Measurement

Obijective functions can be classified as time-based and cost-based. Commonly used
time-based objective functions are; makespan, mean flow time, total flow time, total
tardiness, mean tardiness, number of tardy jobs and total deviation from due date.
Alternatively, cost-based objective functions include costs of production, inventory,

setup and transfer/removal.
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2.2.2 Problem Representation, Dominance Relationship and Model Formulation

LS problems can be represented by the eight-field classification scheme as in the
following (Sarin & Jaiprakash, 2007, chap. 1):

{Number of machines}{machine configuration}/{number of lots}/

{sublot type}/{idling}/{sublot sizes}/{objective function}/{special features}

In this representation, machine configuration refers to the arrangement of machines
such as flow shop (F), job shop (J) or parallel machines (P). Sublot type refers to the
type of sublots, namely consistent (C), variable (V) or equal (E). Idling and no-idling
cases are denoted by Il and by NI, respectively. Sublot sizes may be continuous (CV)
or discrete (DV). The objective function can include makespan (Cmax), flowtime,
number of tardy jobs etc. The last field represents the special features such as setup,
transfer or removal activities. For instance, 5J/N/V/I1/Cmax/DV refers to a five-machine
job shop system involving N lots where sublot sizes vary among the machines, and
idling is allowed between the processing of sublots. The objective function is
minimizing makespan. Each sublot consists of integer number of items, and no special

features are involved.

As mentioned in the previous sections, LS problems have varying characteristics
and some of those characteristics dominate some others. By considering the makespan
objective, a model x dominates model y if the following relationship holds: Cmax (X) <
Cmax (y). From the sublot type perspective, variable sublots (V) dominate consistent
sublots (C) which dominate equal sublots (E). In addition, idling (1I) dominates no-
idling (N1). In this concern, the minimum possible makespan will be achieved by the
least restrictive case of V/II. This model dominates both the C/Il and V/NI models,

whereas all of these models dominate the E/NI model.

On the other hand, when sublot sizes are considered, continuous-sized sublots

(CV) dominate discrete-sized sublots (DV). In this regard, the least restrictive model
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is V/11/CV. Dominance relationships among the LS models are summarized in Figure
2.6.

Cax ({V/11}) < Crmax ({C/11}) and Crax ({V/NI})
Crnax ({C/11}) < Cmax ({E/11}) and Crnax ({C/NI3})

Crnax ({V/NI}) < Crnax ({CINI})

Crvax ({E/113) and Crnax ({C/NI}) < Crnax ({E/NI})

Figure 2.6 Dominance among the LS models (Sarin & Jaiprakash, 2007)

LS problems are commonly identified by using mathematical modelling
approaches. Linear programming formulations are used for the CV models while
integer programming formulations are used for the DV models. For instance, a basic
integer programming model for the deterministic job shop LS problem with makespan
objective is proposed by Buscher and Shen (2011). In this model, it is assumed that
each job consists of m operations and must pass through each machine exactly once

and sublots are consistent. The notations are presented in Table 2.1.

Table 2.1 Notations used in job shop LS problem formulation

Indices
ii’ jobindices, i=1,...,n
k k’ machine indices, k=1, ..., m
JJ’ sublot indices, j=I1,...,5
Parameters
n total number of jobs
m total number of machines
S total number of sublots
z sufficiently large number
LS production lot size of job i
Pik unit processing time of job i on machine k
rik setup time of job i on machine k
Sets
P set of pairs of operations constrained by precedence relations
L set of the last operations of sublots
set of operations for job i, Oi ={Oi:i=1,...,n; j=1,...,S;
Oi k=1, ..., m} where Ojj denotes operation of the j th sublot of

order i on machine k

Decision variables

Xij size of j th sublot of job i

Jijk 1 if setup is required before operation Ojj
0 otherwise

iy 1 if operation Ojj is processed before operation O,
0 otherwise

tijk start time of operation Oij
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The Integer Programming Model

min C_.. (2.1)
Subject to:
D X;=LS, Vi (2.2)
1

Xij >0 Vi, j (2.3)
Oy <X Vi, K (2.4)
tie 2y + o + P Xy V(O Oy) €P (2.5)
Lk 2t o + P Xy ViK, j<s (2.6)
C max —tlsk + I’-lké‘lsk + p|kx Vl OISk € L (2-7)
ik 24w F 0o+ P Xij = LY 28)

G = G +rik5ijk + P Xij = ZYi i
Vi +Yigi =1 Vizi' ], j' (2.9)
oy =1 Vi, k (2.10)
ik = Y —Yigenijk Vi#ELL <S8, ]k (2.11)

Equation (2.1) represents the objective function which is the minimization of
makespan. Constraints (2.2) ensure that sum of sublot sizes has to be equal to the
production lot size. Constraints (2.3) are the non-negativity constraints. Constraints
(2.4) are used to avoid redundant setups in case of a sublot size equals to zero.
Constraints (2.5) represent the operation precedence constraints of a particular sublot
in case of attached-setups are considered. Constraints (2.6) ensures that the operation
of a sublot is allowed to start on a certain machine only after the sublots with smaller
indices of the same job finish their processing. In constraints (2.7), completion time of
the last operation of the last sublot are used to define the makespan. The disjunctive
counterpart is reflected by constraints (2.8) and (2.9). Constraints (2.10) ensure that

the machines are properly adjusted before processing the first sublot of each job.
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Finally, constraints (2.11) ensure that all the consecutively scheduled sublots of the
same job are processed under a single setup.

2.2.3 Literature Review About Job Shop LS Problem

LS problem in flow shops has been extensively studied. However, in recent years,
LS is also applied to job shops (Lei & Guo, 2013). In this dissertation, literature review
is focused on the studies handling the job shop LS problem. The reader may refer to
Chang and Chiu (2005) and Cheng et al. (2013) for a detailed review of the studies
handling LS problem.

There exist numerous studies on job shop LS problem that aim to find LS
conditions. In one of the earliest studies, the equal-sized sublots are studied by Jacobs
and Bragg (1988). They consider the minimization of flow time, and use simulation to
compare several scenarios. In another study, Dauzere-Peres and Lasserre (1997)
propose an iterative procedure finding the optimal sublot sizes and sequences that
minimize makespan. In the first step, optimal sublot sizes are computed, and then a
better sequence is obtained by using a shifting bottleneck-based heuristic in the second
step. Jeong et al. (1999) focus on the effect of setup time and job composition on the
performance of schedules in job shop environment. They use modified shifting
bottleneck procedure to obtain an effective schedule by splitting production lots and
performing set up activities before the job arrival. Jin et al. (1999) develop a heuristic
that combines Lagrangian relaxation and backward dynamic programming to solve the
job shop LS problem. The objective of their study is to ensure on time product delivery
with low WIP inventory level. Wang et al. (2008) handle LS problem by considering
multiple resource constraints. They focus on makespan minimization and use genetic
algorithm (GA) to solve the problem. They consider fuzzy processing times apart from
the other studies. A three-phase algorithm is proposed by Buscher and Shen (2009) in
order to solve the job shop LS problem that aims to minimize makespan. They consider
equal-sized sublots and use tabu search (TS) method to determine the schedules of
sublots on machines. Chan et al. (2009) propose a GA-based approach solving lot

sizing and job shop scheduling problems simultaneously. A mathematical
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programming model is constructed by Low et al. (2004) for job shop LS problem.
Apart from other studies, material handling, setup and inventory costs are considered
in the study. Huang (2010) use ant colony optimization (ACO) to solve the job shop
LS problem with the objective of minimizing the weighted sum of stock, machine idle
time and carrying costs. A TS-based algorithm is proposed by Shen (2008) in order to
solve job shop LS problem with makespan minimization objective. In another
research, Liu (2009) apply LS to customer order scheduling problem where the orders
consist of more than one product type. GA is used to solve the problem. Defersha and
Chen (2012) dealt with LS problem in flexible job shops. They consider sequence
dependent setup times, attached and detached nature of setups and machine release
date and lag time in their study. They propose parallel GA to solve the problem, and
aim to minimize makespan. In another research, the effect of lot splitting on the
number of setups required is analyzed by Simons Jr et al. (2012). They perform
simulation experiments for closed job shop systems by considering three performance
measures namely mean flow time, standard deviation of flow time and number of
setups per job. The researchers use decision rules to find the sublot configurations that

can improve flow time while avoiding extra setups.

There exist some studies that extend the traditional job shop LS problem by
including transportation activities. Among them, Edis and Ornek (2009) aim to find
the number of equal sublots (NES) for job sets and analyze the effects of transporter
queue disciplines by using simulation. Lei and Guo (2013) propose a modified
artificial bee colony (ABC) algorithm. In the study, a schedule is built in the first step

and then transportation tasks are dispatched in the second step.

All of the abovementioned studies are summarized in Tables 2.2 through 2.5.
Manufacturing system configurations such as machine configurations, order
characteristics and due date assignment policies are reported in Table 2.2. As indicated
in Table 2.2, most of the studies in the literature handle the static job shop problems
and assume that orders are ready at time zero, and they tried to optimize the LS
conditions and/or schedules of a finite and known order set (e.g. 10 jobs-10 machines).

However, this assumption is unrealistic in many real life cases.
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Table 2.2 Classification of job shop LS studies in terms of manufacturing system configuration

System Configuration

Number of

Author(s) (Year) Orgier Order_ product Mgchine_e Due date
arrival quantity types configuration assignment
Jacobs and Bragg (1988) Periodic ~ Uncertain ~ Multiple J NA*
Dauzere-Peres and Lasserre (1997) Static Known Multiple J NA
Jeong et al. (1999) Static Known Multiple J NA
Jin et al. (1999) Static Known Multiple J Known
Yoon and Ventura (2002) Static Known Multiple F UDIST***
Low et al. (2004) Static Known Multiple J NA
Shen (2008) Static Known Multiple J NA
Wang et al. (2008) Static Known Multiple J NA
Buscher and Shen (2009) Static Known Multiple J NA
Chan et al. (2009) Static Known Multiple J UDIST***
Edis and Ornek (2009) Periodic ~ Uncertain  Multiple J NA
Liu (2009) Periodic ~ Known Multiple J TWK
Huang (2010) Static Known Multiple J NA
Defersha et al. (2012) Static Known Multiple Flexible J NA
Simons Jr et al. (2012) Dynamic  Dynamic Multiple J NA
Lei and Guo (2013) Static Known Multiple J NA
This dissertation Dynamic  Uncertain ~ Multiple J TWK™

*NA: Not available, **TWK: Total work content, ***Uniform distribution

In Table 2.3, sublot configurations and sublot related features such as sublot types,

sublot sizes, transportation and setup activities are presented. In addition, Table 2.4

reports the classification of the studies in terms of objective function components.

According to Table 2.4, multiple customer segments, tardiness, earliness and order

completion rate on due date issues are not considered together in most of the studies.
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Table 2.3 Classification of job shop LS studies in terms of sublot configurations

Sublot Related Features

Author(s) Number

Sublot Sequence of  Sublot Processing
(Year) types sublots sizes Setup Transport. times
sublots
Jacobs and Non-
E-C FixN intermingling CcVv Attached NA Stochastic
Bragg (1988) DRules*
Dauzere-Peres
and Lasserre E-C FixN  Intermingling DV NA NA Stochastic
(1997)
giggg;t al E-C-V FixN Intermingling cv Attached NA Stochastic
Jinetal. (1999) E-C-V  FixN Intermingling cv Attached NA Deterministic
Yoon and . A .
Ventura (2002) E-C FixN  Intermingling DV NA NA Stochastic
I(_ZO(;/(\)IA?)t al. E-C-V FlexN Intermingling DV Attached NA Deterministic
Shen (2008) E-C FixN  Intermingling DV NA NA Deterministic
Wang et al. . .
(2008) V-C FixN  Intermingling DV NA NA Fuzzy
Buscher and . o gl L
Shen (2009) V-C FixN  Intermingling Ccv NA NA Deterministic
Fixed setup
Chan et al. . i time for L
(2009) E-C-V FlexN Intermingling DV fixture NA Deterministic
changeover
. - Fixed setup
(Ezdolgg)nd QUER E-C FlexN Int%rrFr;:Jr;g;mg DV time for \ Stochastic
product types
Fixed setup
Liu (2009) E-C Flen MUMIONG gy fefor NA  Deterministic
changeover
Huang (2010) E-C FlexN  Intermingling DV UDIST S Stochastic
Sequence
Defersha et al. . - dependent .
(2012) V-C FixN  Intermingling DV Attached NA Deterministic
Detached
Based on
number of
Simons Jr et al. Non- units, avg. .
i intermingling processing
2012 E-C FlexN I DV NA Stochastic
time and
setup factor
Lei and Guo E-C FixN Intermingling DV Inri)lgedsz?nin S Deterministic
(2013) DRules i
This ) Intermingling Sequence .
dissertation E-C FlexN DRules DV dependent NA Stochastic

*DRules: Dispatching rules
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Table 2.4 Classification of job shop LS studies in terms of objective function components

Author(s) (Year) Multiple customer  Tardiness Earliness  Order completion rate
segments penalty penalty on due date

Jacobs and Bragg (1988) NA* NA NA NA
Dauzere-Peres and Lasserre (1997) NA NA NA NA
Jeong et al. (1999) NA NA NA NA

Jin et al. (1999) NA S S NA
Yoon and Ventura (2002) NA S S NA
Low et al. (2004) NA NA NA NA
Shen (2008) NA NA NA NA
Wang et al. (2008) NA NA NA NA
Buscher and Shen (2009) NA NA NA NA
Chan et al. (2009) NA S S NA
Edis and Ornek (2009) NA NA NA NA
Liu (2009) NA \ \ NA
Huang (2010) NA NA NA NA
Defersha et al. (2012) NA NA NA NA
Simons Jr et al. (2012) NA NA NA NA

Lei and Guo (2013) NA NA NA NA
This dissertation \ \ \ \

*NA: Not available

Finally, the studies are summarized in terms of their solution approaches and
performance measures used in Table 2.5. It is concluded that most of the studies focus
on production efficiency-based performance measures such as makespan, tardiness
and flowtime, and employ mathematical programming approaches as the solution
methodology. However, customer satisfaction is the key success factor for the
companies, and greater satisfaction can lead great profit and collaborative business
relationships (Armstrong & Kotler, 1996). Therefore, customer satisfaction should be
used as a performance measure in handling the PPC problems.
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Table 2.5 Classification of job shop LS studies in terms of solution approaches and performance

measures

Author(s) (Year)

Performance Measurement

Decision variable(s)

Obijective function

Solution methodology

Jacobs and Bragg
(1988)

Sublot sizes and DRules

Min flow time

Simulation
experiments

Dauzere-Peres and

Sublot sizes and schedules

Heuristic Method

Lasserre (1997) on machines Crmaxt (Shifting Bottleneck)
Sublot sizes and schedules Heuri:st.ic Met_hqd
Jeong et al. (1999) Crmax (Modified Shifting

on machines

Bottleneck)

Jin et al. (1999)

Sublot sizes and schedules
on machines

Min WIP inventory and due
dates promised to customers

Heuristic Method
(Lagrangian relaxation
and backward dynamic

prog.)
Yoon and Ventura  Sublot sizes and schedules Min mean weighted absolute Heuristic Method
(2002) on machines deviation from due dates (Neighborhood search)

Low et al. (2004)

Number of sublots and
schedules on machines

Cmax
Min total production cost

Disjunctive graph
Integer Programming

Shen (2008)

Number of sublots and

C max

Heuristic Method

schedules on machines (TS)
Sublot sizes and schedules Heuristic Method
Wang et al. (2008) B chined Crmax (GA)
Buscher and Shen  Sublot sizes and schedules c Heuristic Method
max

(2009)

on machines

(T9)

Chan et al. (2009)

Sublot sizes and schedules
on machines

Weighted sum of overall
penalty cost and total setup
cost

Heuristic Method
(GA)

Edis and Ornek
(2009)

Number of sublots and
transportation queue
disciplines

Cmax

Min avg. flow time of a sublot
Min avg. flow time of a job
Min number of tardy sublots
Min number of tardy jobs

Simulation
Optimization
(Neighborhood search)

Liu (2009)

Number of sublots,
schedules on machines and
DRules

Min weighted sum of
makespan, lateness and flow
time of finished goods

Heuristic Method
(GA)

Huang (2010)

Number of sublots and
schedules on machines

Min total WIP, machine idle
time and carrying cost

Heuristic Method
(ACO)

Defersha et al.

Sublot sizes, assigned
machines and sublot

Cmax

Heuristic Method

(2012) schedules on machines (Parallel GA)
Lot forming rules Min mean flow time
Simons Jr et al. Consistency of operation Min standard deviation of flow Simulation

(2012)

times
Decision rules

time
Min number of setups per job

(Decision rules)

Lei and Guo
(2013)

Sublot schedules on
machines and transporter
queue disciplines

Cmax

Heuristic Method
(Modified ABC)

This dissertation

Number of sublots and
machine based DRules

Min mean weighted percentage
deviation from expectations of
customer segments

Simulation
Optimization (SA)

*Cmax: Makespan

By considering the above-mentioned issues, a simulation optimization based DSS

that integrates CRM and PPC approaches is developed in this study in order to use
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manufacturing capabilities more effectively in satisfying customers. In this regard, a
job shop system is dealt with and LS is applied to improve flow time. In sublot
scheduling phase, dynamic scheduling is performed by considering machine-based
dispatching rules. The sublot and dispatching rule configurations are determined
simultaneously. In addition, multiple customer segments with different importance
weights, their expectations and penalties on tardiness, earliness and order completion
rate on due date are considered, and a customer-focused objective function is

formulated.

2.3 Dispatching Rules

Job prioritization means sorting the jobs on resources based on their importance
relative to each other. However, sequencing jobs waiting in the queue at a particular
machine becomes much more complex when there are many waiting jobs in the queue
(Korytkowski et al., 2013). Therefore, job prioritization is extensively achieved by
using priority dispatching rules. These rules can be defined as the “rules used to select
the next job to be processed from jobs awaiting service” (Blackstone et al., 1982).
They can be simple or complex, and the performance of a dispatching rule varies
depending on the system under concern and the performance criterion used (Rochette
and Sadowski, 1976; Haupt, 1989). These rules are commonly used in the simulation-
based studies (Montazer & Wassenhove, 1990).

Priority dispatching rules can be classified into two main categories, static and
dynamic rules (Pinedo, 2008). Static rules involve a priority index computed on the
basis of job and/or machine data and the index value does not change over time (Suwa
& Sandoh, 2012; Kaban et al., 2012). On the other hand, dynamic rules hold time
dependent attributes. In addition to this classification, dispatching rules can also be
classified as simple rules and composite rules. Simple rules consider single attribute
while composite rules combine several attributes of jobs (Calleja & Pastor, 2014).
From another point of view, Rajendran and Holthaus (1999) classified the dispatching

rules into five categories such as (i) processing time-based rules, (ii) due date-based
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rules, (iii) simple rules involving neither processing time nor due dates, (iv) rules

involving shop floor conditions, and (v) combination rules.

Job shop scheduling problem is difficult to solve due to multiple job types and
machines, various processing routes, setup and transfer activities. Many different
solution methodologies such as mathematical programming techniques, artificial
intelligence based techniques, local search methods and metaheuristic algorithms are
proposed to solve this problem (Vaessens et al., 1996; Gupta & Sivakumar, 2006; Calis
& Bulkan, 2015; Sharma & Jain, 2016). Job shop scheduling problem in dynamic
environments where disturbances such as machine breakdowns, new job arrivals and
change in demand mix occur is more complex. In recent years, metaheuristic
algorithms such as ACO (Zhou et al., 2009; Renna, 2010), GA (Chryssolouris &
Subramaniam, 2001), artificial neural networks (ANN) (Sim et al., 1994) and TS (Liu
et al., 2005) are commonly used for this problem. In addition, a few studies develop
hybrid metaheuristics such as hybrid GA and TS (Zhang et al., 2013), hybrid particle
swarm optimization (PSO) (Wang et al., 2010), hybrid ACO and GA (Gao et al., 2009),
hybrid variable neighborhood search (VNS) and ANN (Adibi et al., 2010). However,
these approaches require significant computational effort as the problem size
increases. Therefore, dispatching rules are extensively used to overcome this
difficulty.

The dispatching rules that have been widely used in job shop scheduling are listed
in the following (Horng, 2006; Jayamohan & Rajendran, 2000). In most of the

dispatching rules, job with the minimum priority index value (Zi) is chosen for loading.

e First In First Out (FIFO): The job that has entered the queue at the earliest is
chosen for loading. The priority index of job i is computed as Zij = rij where rj
is the arrival time of job i at machine j.

e Random (R): This rule selects a job from the queue randomly. In this rule, each
job has equal probability being selected for processing.
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Arrival Time (AT): The job with the earliest arrival time in the system is chosen
for loading. The priority index of job i is computed as Zj = ri where ri s the
arrival time of job i at the system.

Arrival Time-Total Remaining Processing Time (AT-RPT): This rule, selects
the next job from the queue based on their arrival time into the system with
respect to the total remaining processing time. The priority index of job i is
computed as Zi = ri- RPT; where RPT; is the total remaining processing time
of job i. It is commonly used for maximum flow time and flow time variance
objectives.

Shortest Processing Time (SPT): This rule selects the next job from the queue
based on the job processing time at the current machine. The priority index of
job i is computed as Zi;= pij where pjj is the processing time of job i at machine
J. It is commonly used to minimize mean flow time and percentage of tardy
jobs.

Shortest Process and Setup Time (SPST): The job with the smallest total setup
and processing time is chosen for loading. The priority index of job i is
computed as Zij = pij + Stij where stjj is the setup time required for processing
job i at machine j.

Longest Processing Time (LPT): This rule selects the next job from the queue
based on the job processing time at the current machine. The priority index of
job i is computed as Zi; = pij and unlike SPT rule, the job with the maximum
value of Z;jj is chosen for loading.

Earliest Due Date (EDD): The job with the earliest due date is chosen for
loading. The priority index of job i is computed as Zi = di where d;is the due
date of job i. It is commonly used for minimizing maximum tardiness and
variance of tardiness.

Minimum Slack Time (MST): This rule selects the next job from the queue
based on the slack time which is computed by subtracting total remaining
processing time and the current time from due date of job. The priority index
of job i is computed as Z; = s = di- RPTi- t where s; is the slack value of job i,

RPT; is the total remaining processing time of job i and t is the current time.
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Modified Due Date (MDD): This rule is the combination of EDD and SPT
rules. The priority index of job i is computed as Zi = Max {di, t + RPTi}.
Critical Ratio (CR): This rule selects the next job from the queue based on the
relatively available time divided by the total remaining process time of the job.
The priority index of job i is computed as Zi = (di— t)/ RPTi.

Slack per Remaining Operation (SPROP): This rule selects the next job from
the queue based on the slack time divided by the number of remaining
operations of the job. The priority index of job i is computed as Zi = (di —RPT;
—t) / NOP; where NOP; is the number of remaining operations of job i.

Raghu and Rajendran (RR) Rule: This rule is proposed by Raghu and
Rajendran (1993) and it is very effective in mean tardiness and mean flowtime
objectives. The priority index of job i is computed as Zjj= (Siexp(u) pij) / RPT;
+ exp(u) pij + wti where u denotes the machine utilization, and wt; is the average
waiting time for job i at the next unvisited machine.

Processing Time + Work in Next Queue (PT+WINQ): This rule, can improve
the mean flowtime. The priority index of job i is computed as Zjj = pij + Wti.
Processing Time + Work in Next Queue + Arrival Time (PT+WINQ+AT): This
rule can improve the maximum flowtime and the flowtime variance. The
priority index of job i is computed as Zjj = pij + wtj + ri.

Processing Time + Work in Next Queue + Negative Slack (PT+WINQ+SL):
This rule can improve the maximum tardiness time and its variance. The
priority index of job i is computed as Zj; = pij + Wti + Si.

Number of operations remaining (NOP): This rule selects the next job based
on the total number of remaining operations. The priority index of job i is
computed as Zi = NOP;.

Least work remaining (LWKR): This rule selects the job based on the remaining
work content. The priority index of job i is computed as Zi = RPT;. The job
with minimum value of Z; is chosen for loading.

Most work remaining (MWKR): This rule selects the job based on the
remaining work content. The priority index of job i is computed as Zj = RPT;.

The job with maximum value of Z; is chosen for loading.
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Performance of dispatching rules in job shops are presented in Table 2.6.

Table 2.6 Performance of dispatching rules in job shops (Horng, 2006)

Performance criterion  Best rule(s) References
SPT, LWKR Waikar et al. (1995)
. PT+WINQ Holthaus (1997)
Mean flow time PT+WINQ Holthaus and Rajendran (1997)

RR, SPT, PT+WINQ

Rajendran and Holthaus (1999)

Max flow time

AT-RPT

PT+WINQ+AT,
PT+WINQ+AT+SL

AT-RPT, PT+WINQ+AT

Holthaus (1997)

Holthaus and Rajendran (1997)

Rajendran and Holthaus (1999)

Flow time variance

AT-RPT

PT+WINQ+AT,
PT+WINQ+AT+SL

AT-RPT, PT+WINQ+AT

Holthaus (1997)

Holthaus and Rajendran (1997)

Rajendran and Holthaus (1999)

SPT, LWKR

Waikar et al. (1995)

SPT Holthaus (1997)
Percent of jobs tardy ~ SPT Holthaus and Rajendran (1997)
FIFO Liu (1998)
RR, SPT Rajendran and Holthaus (1999)
RR Holthaus (1997)
. RR Holthaus and Rajendran (1997)
Mean tardiness FIFO Liu (1998)
RR Rajendran and Holthaus (1999)
RR, PT+WINQ+SL Holthaus (1997)

Max tardiness

PT+WINQ+SL,
PT+WINQ+AT+SL

RR, PT+WINQ+SL

Holthaus and Rajendran (1997)

Rajendran and Holthaus (1999)

Tardiness variance

RR, PT+WINQ+SL

PT+WINQ+SL,
PT+WINQ+AT+SL

RR, PT+WINQ+SL

Holthaus (1997)

Holthaus and Rajendran (1997)

Rajendran and Holthaus (1999)

The sublots that are generated in LS implementations, treated as independent jobs.
Therefore, the problem size increases, and it becomes more difficult to solve it
inherently compared to the no-LS case. Therefore, dispatching rules are used in this
study to dynamically schedule sublots on machines with relatively low computational
effort. In this regard, four classical dispatching rules namely FIFO, EDD, AT, SPST,
and five modified dispatching rules proposed in this dissertation are employed. The

proposed modified rules include customer information, and they are obtained by
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dividing the prioritization attribute by the weight of the customer segment where the
weight takes the value between zero and one. Customer weight close to one indicates
a high level of customer importance. The main reason for dividing the attribute value
by the weight of the customer segment is to distinguish between sublots whose
attribute values are equal. The proposed rules that are explained in detail in Section

4.1 are summarized in the following.

e Customer Oriented EDD (COEDD): This rule incorporates due date and
customer information. Herein, the priority of a sublot is obtained by dividing
the assigned due date by the weight of the related customer segment. The sublot
with the smallest index value is chosen for loading.

e Customer Oriented AT (COAT): In this rule, the priority of a sublot is obtained
by dividing the arrival time of the order by the weight of the related customer
segment. Sublot with the smallest index value is chosen for loading.

e Customer Oriented FIFO (COFIFO): This value is obtained by dividing the
queue entrance time of the sublot by the weight of the related customer
segment. Sublot with the smallest index value is chosen for loading.

e Customer Oriented SPST (COSPST): The priority of a sublot is obtained by
dividing the total expected setup and processing time of the sublot by the
weight of the related customer segment. Sublot with the smallest index value
is chosen for loading.

e Important Customer Segment First (ICSF): The sublot with the highest
customer priority chosen for loading where customer priority is the weight of

the related customer segment.

2.4 Metaheuristics

2.4.1 Introduction

An optimization problem can be defined as the problem of finding the best solution

among all feasible solutions to meet desired objectives. Optimization problems consist

of decision variables, set of constraints and objective function. If the decision variables
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range over real numbers then the problem is called continuous. If they can only take a
finite set of distinct values, the problem is called combinatorial.

It is necessary to develop methods, often called algorithms, to solve the
optimization problems. The complexity, O, of an algorithm evaluated in terms of time
and space. The time complexity of an algorithm is the number of steps required to
solve a problem of size n. By considering the complexity classes, optimization
problems can be classified as P (polynomial) and NP (non-deterministic polynomial).
Class P problems refers the optimization problems that can be solved by an algorithm
with polynomial time complexity O (p (n)), where p (n) is a polynomial function of n.
In the solution of class P problems, exact methods such that branch and bound,
dynamic programming, Bayesian search algorithms, successive approximation
methods which guarantee optimal solutions are used. On the other hand, class NP
problems are the problems that cannot be solved in polynomial time. Its complexity is
denoted by O (c"), where c is a real constant strictly superior to 1 (Talbi, 2009). In
addition, a problem is called NP-hard if an algorithm for solving it can be translated
into one for solving any NP problem. A problem which is both NP and NP-hard is
called NP-complete. NP problems can be divided into several categories depending on
whether they are continuous or discrete, constrained or unconstrained, single or multi-
objective, static or dynamic (Boussaid et al., 2013). When dealing with NP problems,
approximate methods that provide reasonably good solution in a reasonable time are
employed. These approximate methods can be further split into approximation
algorithms and heuristic methods (Talbi, 2009; Gogna & Tayal, 2013).

Metaheuristic algorithms are commonly used to find satisfactory solutions for NP
class “hard” problems. The term metaheuristics was introduced by Glover (1986) and
it can be defined as “an iterative generation process that guides a subordinate heuristic
by combining intelligently different concepts for exploring and exploiting the search
space; learning strategies are used to structure information in order to find efficiently
near-optimal solutions” (Osman & Laporte, 1996). Unlike exact methods,

metaheuristics do not guarantee to find global optimal solutions or even bounded
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solutions. In addition, in contrast with heuristics they are not problem specific and they

can be applied to any optimization problem.

Metaheuristics are widely used to solve complex problems in industry and services,
in areas ranging from finance to production management and engineering. Some
application areas can be stated as engineering design and optimization, electronics,
automotive and robotics, machine learning and data mining, system modeling and
simulation, image processing, scheduling and planning problems, routing problems,
supply chain management problems, logistics and transportation, and so on. (Talbi,
2009).

Success of a metaheuristic highly depends on the balance between the exploration
(diversification) and the exploitation (intensification) of the search space. In
intensification, the promising regions are explored more thoroughly in the hope to find
better solutions. In diversification, non-explored regions must be visited to be sure that
all regions of the search space are evenly explored and that the search is not confined
to only a reduced number of regions. On the other hand, fundamental issues in
metaheuristics can be stated as the representation of the solution, generation of the
initial solution, identification of the neighborhood structures and the terminating
condition. In addition, some properties of the metaheuristics can be summarized as
follows (Blum & Roli, 2003):

e Metaheuristics are strategies that guide the search process

e Metaheuristics efficiently explore the search space to find near-optimal
solutions

e Metaheuristic algorithms are approximate and usually stochastic

e Metaheuristics are not problem specific

e Metaheuristic algorithms include various techniques range from simple local
search procedures to complex learning processes

e Today’s more advanced metaheuristics use search experience to guide the

search
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2.4.2 Classification of Metaheuristics

In this section, classification of the metaheuristics are summarized and seven
classes including nature inspired versus non-nature inspired, population-based versus
single solution-based, memory usage versus memoryless methods, deterministic
versus stochastic, iterative versus greedy, dynamic versus static objective function and
finally single versus multiple neighborhood structure are explained (Talbi, 2009;
Gogna & Tayal, 2013).

2.4.2.1 Nature Inspired versus Non-nature Inspired

The majority of the metaheuristics are developed by inspiring from the natural
processes such as biology, physics and social sciences. The most widely used nature
inspired metaheuristic algorithms are ACO, harmony search, firefly algorithm, GA,
PSO, ABC, SA etc. In this dissertation, SA algorithm is used to obtain the near-optimal
solutions regarding to the sublot and dispatching rule configurations. Therefore, this

algorithm is explained in detail in this section.

SA is a local optimization method that is inspired by the annealing process of
solids. In this process, a material is heated and slowly cooled in order to improve the
strength of the material (Brownlee, 2011). SA has been widely employed to solve
various combinatorial optimization problems such as job shop scheduling problems
(Ponnambalam et al., 1999), vehicle routing problems (Kuo, 2010), travelling
salesman problems (Geng et al., 2011). The reader may refer to Suman and Kumar

(2006) for a review of SA applications to operations research problems.

SA is a probabilistic method, and in addition to the solutions that improve the
objective function value (OFV) it accepts inferior solutions with a certain probability
in order to avoid being trapped in a local optimum. In SA, quality of the solution
depends on the control parameters and cooling schedule. In typical implementations,
SA method involves a pair of nested loops and additional parameters.
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SA starts from an initial solution (S), and an initial temperature To which is
systematically decreased based on the cooling schedule. In this schedule, the
neighborhood of the solution (S) is generated (often randomly) by using neighborhood
generation mechanism. The OFV of the newly generated solution is computed and the
newly generated solution is directly accepted as the current solution if the change in
the OFV (A) is less than zero. On the other hand, if A is greater than or equal to zero,
then the newly generated solution is accepted as the current solution with a Boltzman’s
probability based on Metropolis’s criterion. For this criterion, a random number X is
generated from the interval (0, 1) and if exp (-A/T) is greater than x, then the newly
generated solution is accepted. Otherwise, the current solution remains same.
Afterwards, the initial temperature is commonly reduced geometrically by multiplying
the current temperature by the cooling rate (r) which is a constant less than 1. However,
there are also some other techniques such as linear cooling, exponential cooling, and
logarithmic cooling used to update the temperature. The following figure summarizes

the procedure of SA algorithm.

Begin
Generate initial solution S, set T = Ty (To: Initial temperature)
Evaluate fitness f (S) where f (S) is the performance measure of solution S
while termination criterion not met do
for j=1: R do (where R is the number of iterations at each temperature)
pick a random neighbor S’ of S, set A= /(§") — f(S)
if A<O0then
setS=S§"
else
generate random number, x, from the interval (0, 1)
if x <exp (-A/T) then

setS=S"
end
end
end
set T=r x T where r is the cooling rate
end

Figure 2.7 Pseudo code of SA

2.4.2.2 Population Based versus Single Solution-Based Search

Single solution-based algorithms working based on a single solution at any time

and they are intensification oriented. On the other hand, population-based algorithms
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iterate and manipulate whole family of solutions and they are diversification oriented.
The most widely known single solution-based algorithms can be stated as TS, SA and
local search. Besides this, GA, PSO, and DEA are the most commonly used
population-based search algorithms. Population-based algorithms can be further
classified into two main categories namely evolutionary algorithms and swarm
intelligence algorithms. The evolutionary algorithms (e.g. GA, DEA) mimic the
evolution which is driven by the iterated selection and mutation. Evolutionary

algorithms have a simple generic outline as follows:

1. Initialize a random population of individuals
2. Apply the search (e.g. mutation and crossover) operators
3. Select the best individuals to the next generation

4. Repeat steps 2—3 until the termination criterion is met

On the other hand, the swarm intelligence algorithms mimic the colony of organism
in which each individual in the colony has the ability to decide their action based on
simple rules. The swarm intelligence algorithms use cooperation approach which
requires communication mechanism among the individuals rather than the competition

approach which is used in evolutionary algorithms (Vasant, 2012; Talbi, 2009).

In this dissertation, DEA is integrated with the simulation model and it is used to
find near-optimal solutions for the segment based parameter values of the dynamic
weight setting functions. Therefore, DEA is introduced in this section.

DEA, which is proposed by Storn and Price (1997), is a population-based stochastic
search algorithm, and it is developed for the optimization problems with continuous
domains (Karaboga & Okdem, 2004). DEA uses mutation, crossover and selection
mechanisms likewise GA and it has control parameters such that population size (NP),
scaling (weighting) factor (F) and crossover rate (CR). It has been used in various
optimization problems in the literature such as travelling salesman problem
(Tasgetiren et al., 2010), vehicle routing problem (Mingyong & Erbao, 2010), logistics

network design (Lieckens & Vandaele, 2007), revenue management (Subulan et al.,
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2016). The issues triggered researchers to prefer DEA can be stated as the simplicity
of coding, few number of control parameters, and fast convergence ability (Das &
Suganthan, 2011).

In DEA, the initial population is often generated randomly and then this population
is evolved by using mutation, crossover and selection operators. Notation X; (G), given
in Equation (2.12), represents the vector i of the population at the current generation
G where xij (G) denotes the j th parameter value of vector i at the current generation G
and D denotes the dimensionality such as number of parameters. In case of parameter

J has lower and upper bound as x- and xv, respectively, then j th components of the

population members are generated by considering the boundary constraints.
X;(G) =[*1(G). X, (G).-%(G)] (2.12)

In each iteration of the algorithm, a donor vector V; (G) is generated in order to
explore the search space. In generation of donor vector, three members (r1, r2 and r3)
are selected randomly from the current population and then the weighted difference
vector between two population members is added to the third member where the
weight is denoted by F. The process is called mutation and for the j th component of
each vector can be expressed by the following formula:

Vi (G+1) =X,;(G) +F(X.,;(C)—x4;(G)) (2.13)

In the next step, crossover is employed. The donor vector exchanges its body parts
with the target vector X; (G) based on the following scheme (Equation (2.14)) and in

this way, a trial vector U; (G) is generated for each target vector X; (G).

u;(G) =v, (G) if rand (0,1) < CR

(2.14)
u; (G) = x; (G) else
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In the subsequent step of the algorithm, selection mechanism is used to determine
which one of the target vector and the trial vector will survive in the next generation
(G+1). The vector with the lowest OFV survives into the next generation G+1 (see

Equation (2.15)) where f is the function to be minimized.

X, (G+1)=U,(G) i-f f(U,(G)) < f(X,(G)) (2.15)
X (G+)=X,(G) if f(X,(G)) < fU,(G))

In addition, the best parameter vector is evaluated for every generation in order to
keep track the optimization process. This process is continued until the maximum
number of generations is met or the difference in OFVs between two consecutive
generations reaches a small value. The search procedure of the DEA can be

summarized as follows:

Begin
Set generation number G=1, initialize population of NP real vectors at random
for all vector X;(G) in the population do
evaluate the fitness f(Xi(G))
end
while termination criterion not met do
for all vector X;(G) in the population do
pick at random 3 distinct vectors from the current population X1(G), Xr2(G), Xr3(G)
where F is the scaling factor
create donor vector Vi(G)= Xi3(G)+F(Xi1(G)- Xr2(G))
set Ui(G) as the result of the recombination of Vi(G) and Xi(G) with probability CR

if f(Ui(G)) < f(Xi(G)) then
set Xi(G+1) = Ui(G)
else
set Xi(G+1) = Xi(G)
end
end
end

Figure 2.8 Pseudo code of DEA

2.4.2.3 Memory Usage versus Memory-less Methods

Some metaheuristics are memory-less and they only use the information about the

current state during the search. On the other hand, some metaheuristics use a memory
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and they use some information gathered during the search. For instance, TS algorithm

use short-term and long-term memory during the search procedure.

2.4.2.4 Deterministic versus Stochastic

A deterministic metaheuristic solves an optimization problem by making
deterministic decisions (e.g., local search, TS). It means that the same final solution is
obtained by using the same initial solution. On the other hand, in stochastic algorithms,
some random rules are applied during the search (e.g., SA, evolutionary algorithms).
Therefore, same initial solution can be resulting with different final solutions.

2.4.2.5 lterative versus Greedy

Most of the metaheuristics are iterative algorithms and they start with a solution (or
set of solutions) then manipulate it at each iteration during the search (e.g., PSO, SA).
On the other hand, greedy algorithms start from an empty solution and at each step a

decision variable is assigned until a complete solution is obtained (e.g., ACO).

2.4.2.6 Dynamic versus Static Objective Function

The metaheuristics with static objective function keep the objective function as it is
during the search procedure (PSO). On the other hand, metaheuristics with dynamic
objective function such as guided local search, modify the objective function during

the search process.

2.4.2.7 Single versus Multiple Neighborhood Structures

Most metaheuristic algorithms work on a single neighborhood structure. Other
metaheuristics such as variable neighborhood search use a set of neighborhood

structures which gives the possibility to diversify the search by swapping between
different fitness landscapes.
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CHAPTER THREE
THE PROPOSED DECISION SUPPORT SYSTEM

For today’s companies, strategic decision making is an important task. They need
both to store data and convert the data into meaningful information. In addition, CRM
Is a broad concept involving a series of different decision making tasks and DSSs are
often used in CRM studies in order to provide strategic information for many

customer-oriented applications by reviewing and manipulating data (Bergeron, 2002).

DSS is a class of information systems that support organizational decision making
activities. It can be defined as a combination of functional procedures and techniques
allowing the transformation of the operational data into information for end users. This
information can be explored, analyzed and put into reports which will help
professionals to identify and solve problems and make decisions (Misdolea, 2010).

Sprague (1980) defines a DSS by its characteristics:

e DSS tends to be aimed at the less well structured, under specified problem that
upper level managers typically face

e DSS attempts to combine the use of models or analytic techniques with
traditional data access and retrieval functions

e DSS specifically focuses on features which make them easy to use by non-
computer people in an interactive mode

e DSS emphasizes flexibility and adaptability to accommodate changes in the

environment and the decision making approach of the user

Construction of a DSS consists of six stages such as (i) identification of the
problem, (ii) decision about mode of development, (iii) development of a prototype,
(iv) prototype validation, (v) planning for full scale system, (vi) final implementation,

maintenance and evaluation.
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In this dissertation it is aimed to develop a DSS which integrates CRM and PPC

approaches in order to use manufacturing capabilities more effectively in satisfying

business customers. The framework of the proposed DSS is presented in Figure 3.1.

Phase l.a: Customer base analysis

- Determine the customer segmentation variables

- Partition the customer base into customer segments
- Determine the importance weights of the customer
segments

- Define the performance indicators that are important
for each customer segment

- Analyze customer expectations on the predefined
performance indicators

- Identify customers’ penalties related to the

Phase I.b: Manufacturing system analysis

- Identify product types and analyze their demand
characteristics (i.e. arrival processes, demand patterns,
demand volumes etc.)

- Determine the production processes and processing
times

- Analyze setup operations and durations (if exist)

- Identify possible dispatching rules that can be used to
schedule jobs

- Determine the due date setting policy

performance indicators

v

Phase I1: Simulation modelling and optimization

- Build the simulation model of the manufacturing system and perform validation
and verification analysis

- Determine the proper optimization method to be used and integrate it with the
simulation model

A 4

Phase I11: Production and scheduling policy analysis

- Determine the lot splitting policy
- Determine the job scheduling policy

A

Y

Phase 1V: Self-monitoring

- Measure the performance
- Update decisions related to production and
scheduling policies

Figure 3.1 Framework of the proposed DSS

According to Figure 3.1, companies should first analyze their customer base in
order to understand their customers’ expectations, what they value most, and perform
customer-focused production activities. This phase (phase l.a) can include several
tasks. For instance, manufacturers can segment their customers into distinct groups
according to their similarities or value to the firm. Because, firms work with many
customers, and developing production plans by considering each customer separately

is very complex and time consuming. Therefore, grouping customers in accordance
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with their value to the company and developing production strategies for these groups
will be more effective. To do this, manufacturers should first analyze the company and
market structure and then determine the variables that will be used to segment their
customers. These variables can be firmographic variables (i.e. age, company size,
geography, industry etc.), behavioral variables (i.e. frequency of orders, product
preferences, monetary value of purchases, recency of purchases etc.) or specific
variables. Afterwards, customer base can be partitioned into groups based on the
predefined variables by using different techniques such as clustering, recency-
frequency-monetary analysis, artificial intelligence-based techniques and scoring
models. Then, the obtained customer groups can be weighted by using weighting

methods or multi criteria decision making techniques (Giigdemir & Selim, 2015a).

In addition to the customer segmentation, exploring what the customers want and
what they value most is another important task for manufacturers on the way to
becoming customer focused. In this way, they can set realistic performance measures
by considering their customers’ point of view. For instance, on time delivery is an
important concern for today’s customers. Therefore, earliness and tardiness penalties
should be incorporated into the models proposed in this field. In addition, customers
often request some portion of their order is completed and delivered within the
promised due date because they planned their own operations based on the promises
made by the manufacturer (supplier). Therefore, order completion rate on due date is
another important performance measure for the manufacturers. Moreover, customers
can give importance to these performance indicators in varying degrees. In this case,
on the contrary of Yoon and Ventura’s (2002) study, predefined indicators should be
weighted by the customers based on their own competitive strategies. For example,
tardiness can be the most important indicator for some of the customers while the order
completion rate on due date is the most important one for others. Furthermore,
customers may have some tolerances about these indicators and they can allow some
deviations from the target value. These tolerances may also vary depending on the
customers’ competition strategies, market power, company structure etc. Considering
these issues, multiple customer segments with different importance weights, and

customers’ expectations and penalties on order completion rate on due date, tardiness
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and earliness are taken into account in this dissertation. The objective function is set
as the minimization of mean weighted percentage deviation from the expectations of
customer segments. It consists of weighted positive percentage deviation from due
date (tardiness), weighted negative percentage deviation from due date (earliness), and

weighted percentage deviation from order completion rate on due date.

Phase 1.b represents the analysis of the manufacturing system under concern. In this
phase, product types and related demand characteristics should be identified,
processing requirements and job processing times should be analyzed, and type of
setup operations and durations should be determined. As dynamic job shop systems
are dealt with in this dissertation, dispatching rules especially the ones containing both
processing and customer information can be evolved. In this way, customer orders can

be effectively prioritized.

Another important task of this phase is due date setting. There exists various due
date setting methods/functions for job shop systems in the literature such as static and
dynamic functions (Veral, 2001; Baykasoglu et al., 2008). It is obvious that setting too
slack lead times may lead customer dissatisfaction. On the other hand, setting too tight
lead times can be unrealistic and it leads fail to achieve goals. Therefore,
manufacturers should analyze the characteristics of their production system and then
determine the suitable due date setting method. In this dissertation, TWK due date

assignment method, which is explained in detail in Chapter 4, is employed.

After the analysis of manufacturing system and customer base, simulation model
can be built for dynamic job shop systems in order to perform the required analysis in
the next phase (phase Il). Simulation is a suitable tool for this kind of systems as it
gives the opportunity to model the dynamic structure of manufacturing systems such
as dynamic arrivals, dynamic scheduling, dynamic due date setting, and queue
manipulation. Literature reviews on job shop LS problem reveal that most of the
studies handle the static job shop problems and assume that orders are available at time
zero, and they tried to optimize the LS conditions and/or schedules of a finite and

known order set (e.g. 10 jobs-10 machines) by using mathematical programming
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approaches. However, these assumptions are unrealistic in most of the real life cases.
Additionally, simulation models alone don’t provide adequate information about what
value should be assigned to input variables where there exist too much decision points
in the solution space. In this case, simulation models can be integrated with
optimization methods such as metaheuristics, local search techniques and statistical
techniques in order to find the appropriate combination of the input variables. In this
concern, simulation optimization is a significant methodology that combines
optimization techniques with simulation analysis. It can be defined as the process of
finding the best input parameter values among all possibilities without evaluating each
possibility explicitly. It involves the search for the optimal settings of the input
parameters, where the optimal is measured by a function of the simulation output
(Amaran et al., 2016; Swisher, 2000). In addition, it can be very expensive to find the
best combination of the parameter settings when dealing with complex and large-scale
systems. Therefore, simulation optimization enables decision makers to make
decisions with minimum resource utilization (time, money, effort) by performing few
simulations (Amaran et al., 2016; Carson & Maria, 1997). Simulation optimization has
been employed for various optimization problems. The reader can refer Andradottir
(1998), Azadivar (1999), Tekin and Sabuncuoglu (2004), Swisher et al. (2004),
Ammeri et al. (2011), Pasupathy and Ghosh (2013) and Amaran et al. (2016) for the

comprehensive reviews of the literature about simulation optimization.

The simulation optimization consists of two major parts namely, generating
candidate solutions and evaluating their OFV. As illustrated in Figure 3.2, the
optimizer generates a set of value for the input parameters and send it to the simulation
model. Then the value of the objective function is computed (estimated) as an output
of the simulation model. This OFV is used by the optimizer in the selection of the next

trial solution. The procedure continues until a termination criterion is met.
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Output as OFV:

4

Simulation Model Optimizer

T—Input parameter valuesQ

Figure 3.2 Simulation optimization procedure

Like the other optimization problems, simulation optimization includes
components such as decision variables, constraints and objective function (Fu, 2001).
Although the concept seems to be very clear and simple, complex computing
requirements of simulation optimization may necessitate advanced software support
and programming knowledge. Simulation optimization has various advantages and

disadvantages. The most prominent advantages can be stated as follows.

e It can be easily used for various problems

e The simulation model can represent the real system more accurately than a
mathematical model. In mathematical models, real system is simplified in
general by using many assumptions

e Objective function can be defined simply without using complex mathematical
formulations

e Itis running automatically

On the other hand, the main disadvantages of simulation optimization include the

following.

e The optimization process may run for a long time

e Both simulation model and the optimization technique require advanced
programming knowledge

e Optimum solution is not guaranteed

e It may need expensive software packages
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There exist various techniques proposed for simulation optimization. Simulation
optimization methods have been applied to the problems with a single objective,
problems that require the optimization of multiple criteria, and problems with non-

parametric objectives. Figure 3.3 summarizes the major techniques used in simulation

optimization.
Simulation Optimization Techniques
\
Gradient based Stochastic Response Heuristic Statistical
P surface A-teams
search methods optimization methods methods
methodology
Likelihood .
| > ratio Multlple
i comparison
estimators
Perturbation Importance
analysis sampling
Finite .
r» difference Ranklng and
L selection
estimation
Frequency
»  domain
experiments

Figure 3.3 Techniques used in simulation optimization (Hrcka et al., 2014)

In recent years, most researchers involve metaheuristic techniques such as SA, TS,
GA into simulation optimization due to their ability to provide good results in
reasonable time. In this dissertation, simulation optimization is performed by

integrating the simulation model with metaheuristics namely SA and DEA.

In phase 111, production and scheduling policy analyses are performed in order to
find the appropriate lot splitting and job scheduling polices. Lot splitting policy can be
fixed for each production lot or vary across the product types. In the job scheduling
phase, dispatching rules-based dynamic scheduling is used. This can also be fixed for
each machine or vary across the machines. In this study, it is intended to find a near-

optimal policy regarding the machine-based dispatching rules and NES for the product
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types. For this purpose, four commonly used dispatching rules namely FIFO, AT, EDD
and SPST, and five modified versions of these rules namely COEDD, COAT,
COFIFO, COSPST, ICSF proposed in this dissertation are employed.

Self-monitoring is performed in the last phase in coordination with phase III.
Candidate solutions are evaluated in terms of performance measure (OFV), and then
decisions on lot splitting and scheduling are updated based on the data stored. More
specifically, there is a feedback loop between the simulation model and optimization
method that improves the OFV.
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CHAPTER FOUR
IMPLEMENTATION OF THE PROPOSED DECISION SUPPORT SYSTEM

4.1 Problem Statement

A MTO manufacturing environment in which frequently ordered components are
involved into the products directly and produced based on closed job shop
manufacturing process, and the number of routings available to a product type is fixed
is dealt with in this section. Characteristics of the production system under concern is
summarized in Figure 4.1. In this system, orders for multiple product types are given
in lots and each production lot consists of single job (product) type. The production
lots are split into sublots with the same size (equal), and total number of sublots and
sublot sizes are fixed (consistent) over the machines. In case of the size of a sublot is
not an integer, remaining part of the production lot is involved in one of the sublots of
the production lot. Sublot sizes are assumed to be discrete valued, and the number of
sublots is to be determined (FlexN). Intermingling sublots are allowed, in other words,
the sequence of sublots of product i may be interrupted by sublots of product j. The
notations are reported in Table 4.1. Herein, it is aimed to find a production policy that
includes NES and dispatching rule configurations.

Assumptions of the problem can be stated as follows: 1) buffer spaces are infinite,
2) processing routes are known and dependent on the product type, 3) orders cannot
be cancelled, 4) processing times are stochastic and dependent on the product type, 5)
setup operations are sequence dependent, and 6) transportation activities are

negligible.

48



‘ Lot Streaming Problems ‘

T
Manufacturing system

v v v v
Job Shop ‘ Flow Shop ‘ ‘ Open Shop ‘ ‘ Other systems ‘
Performance measure
v v
Cost based Time based
objectives objectives
0 ) ‘ )
Flow fumt_e based Makespan Earliness 'I_'aro!lness Other objectives
objectives based objectives
\
Number of product types
\
Single product Multi product
Variability
\
v v
Stochastic Deterministic
I
Number of sublots
|
v v
FlexN FixN
Subloi types
|
Consistent Variable
|
Equal Unequal
\
Sublot sizes
\
v v
Discrete Continuous

Figure 4.1 Problem structure
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Table 4.1 Main notation

Indices

c index of customer segments

i index of orders

| index of machines

S index of sublots

Sets

order. set of orders belonging to customer segment ¢

Parameters

We importance weight of customer segment ¢

oc the penalty assigned by customer segment ¢ for earliness

Be the penalty assigned by customer segment ¢ for tardiness

Ve the penalty assigned by customer segment ¢ for order completion rate on due date

Oc minimum order completion rate required by customer segment ¢ on the due date

te maximum allowable positive percentage deviation from the due date for customer
segment ¢

€c maximum allowable negative percentage deviation from the due date for customer
segment ¢

m number of customer segments

n number of completed orders

k the due date allowance factor

Pij expected processing time of j th operation of order i

Stis| setup time required to process the sublots of order i on machine |

m; total number of operations of order i

ri arrival time of order i

the the threshold value stating the dissatisfaction percentage in customer segment ¢

Qisl arrival time of sublots of order i to the queue of machine |

ptisi expected processing time of sublots of order i on machine |

Decision variables

di the due date assigned to order i

(o] completion rate of order i on its due date

ctj completion time of order i

ed; negative percentage deviation from the due date for order i

tdi positive percentage deviation from the due date for order i

od; percentage deviation from order completion rate on the due date for order i

rwe the rule weight used for customer segment ¢

pdc percentage of dissatisfied orders in segment ¢

O an auxiliary variable for customer segment ¢

b the exponent used for customer segment ¢ (for exponential function)

c

the coefficient used for customer segment c (for linear function)

Obijective function of the problem is formulated as minimizing the mean weighted

percentage deviation from the expectations of customer segments (see Equation (4.1)).

It is a customer-focused objective function and includes customer importance weights,

deviations in terms of earliness, tardiness and order completion rate on due date, and

penalties related to the deviations.

MIN i Y. [aw.ed, + Bwitd, + y,w,od,]/n (4.1)

c=1 ieorder,
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In the simulation model of the problem under concern, orders (production lots)
dynamically arrive in the system and then the system assigns a due date to each order
by using the TWK due date assignment function given in Equation (4.2). This function
first computes the expected processing time of the orders based on the route identified,
unit processing time and lot size, then extending the expected processing time by
adding some proportion of it.

di =hL+ kz Pjj (4'2)
=

After the assignment of due dates, production lots are split into sublots based on the
sublot configuration vector that shows the NES for each product type. Then these
sublots are routed to their destination station for processing. When the processing of a
sublot is completed on a machine, the machine selects a new sublot to be processed by
the dispatching rule identified for that machine. Calculation of priority indices over

the dispatching rules are presented in Table 4.2.

Table 4.2 Characteristics of dispatching rules

Dispatching rule  Attribute value Selection criterion

EDD di min value first
COEDD di / we min value first
FIFO Qisl min value first
COFIFO Qist / We min value first
SPST ptisi + Stisi min value first
COSPST (ptisi + Stisi) / W min value first
AT ri min value first
COAT i/ we min value first
ICSF We max value first

As soon as all job steps are completed, sublots are moved from one machine to the
next one by taking the identified route. In case of the entire sublot of an order is
completed, order completion rate of the related order is updated. In addition, when the
entire sublots of an order are completed, completion time of the order (ct;) is recorded.

Lot splitting and processing procedure is illustrated in Figure 4.2.
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Figure 4.2 Lot splitting procedure

Further, the simulation model controls the completion rates of the orders when their

promised due dates are reached. If it equals to 1, it means that the entire order is

completed within the promised due date. In this case, the earliness of the order is
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examined by using Equation (4.3). If the completion time of the order is within the

customer’s tolerance limit for earliness, then ed; equals to zero.

ed, = MAX {o,

d,(1—e)—ct

d,(1—e,)

(4.3)

In case of the entire order is not completed within the promised due date, it is

examined whether the completion rate is greater than the customer expectation or not

by using Equation (4.4). If the completion rate of the order (0;) is greater than the

expectation of the customer (oc), then the odi equals to zero. In the next step, tardiness

of the order is evaluated based on the completion time of the order (see Equation (4.5)).

If the completion time of the order doesn’t exceed the customer’s maximum allowable

completion time then the tdi equals to zero. Finally, the OFV is updated for each order

completion. Calculation of OFV is presented in Figure 4.3. In addition, each completed

order must fit in one of the states defined in Table 4.3.

od, = MAX [o, % _Oi}
td, = MAX 01m
di(l+tc)

Table 4.3 States of completed orders

State Completed on due date? odi tdi edi
1 no 0 0 NA
2 no 0 + NA
3 no + 0 NA
4 no + + NA
5 yes 0 NA 0
6 yes 0 NA +
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Figure 4.3 OFV calculation procedure

e It is assumed that the system assigns the due date of 200 to an order, and the

company completed the order at time 150. However, customer allows at most

10% deviation from due date in terms of earliness. In this case, di=200; cti=150

and e.=0.10. Consequently, according to Equation (4.3), edi=0.17.

e It is assumed that a customer orders 200 units of product type x, and the

company completed 100 units of it within the promised due date. However,

customer wants that at least 80% of the order has been completed within the

promised due date. In this case 0.=0.80 and oi= (100/200)

Consequently, according to Equation (4.4), 0di=0.375.

= 0.50.




e Itisassumed that the system assigned due date to an order is 100. The company
completed the order at time 150. However, customer allows at most 20%
deviation from due date in terms of tardiness. In this case, di=100; ct;=150 and
t=0.20. Consequently, according to Equation (4.5), tdi=0.25.

4.2 Methodology

Due to the complex interaction between sublots and machines, job shop problems
with the application of LS strategy are difficult to formulate mathematically (Buscher
& Shen, 2011). Therefore, simulation optimization approach is used in this section to
determine the sublot and dispatching rule configurations. In this regard, ARENA 14.0
and MATLAB 2014.b software packages are utilized in an integrated way. As
illustrated in Figure 4.4, MATLAB performs the SA procedure and finds a candidate
production policy at each step. This candidate solution is used by the simulation model
as input, and then the simulation model runs and computes the OFV that is used as the
fitness function value in SA. This process continues until SA procedure is terminated.

Output as fitness function value———

4

Simulation Model Simulated Annealing

tSublot and dispatching rule configurationsJ

Figure 4.4 SA-based simulation optimization process
4.2.1 Representation of the Solution

The solution is represented by a string that consists of m+n digits, where m denotes
the number of product types and n denotes the number of machines. The first m digits
represent the NES for each product type and the remaining n digits represent the
dispatching rules that is assigned to the machines (see Figure 4.5, where m=3, n=3).

For instance, production lots for product type 1 (P1) are always split into five sublots
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in the model, and the dispatching rule 2 is used to schedule the sublots awaiting service
on machine 1 (M1) (see Figure 4.5).

P1 P2 P3 M1 M2 M3

Figure 4.5 Representation of the solution

4.2.2 Generation of the Initial Solution and Random Neighborhood Search

The initial solution is obtained by generating random numbers for the digits of the
string by considering the boundary constraints of each digit. Then the search procedure
starts with the initial solution and calculates the OFV. Then, the value of each digit
can be increased, decreased or remained the same with some probabilities. To
determine the amount of change, a random number is generated from a uniform
distribution. While making the changes, boundary constraints are controlled, and if the
predetermined change exceeds the limits, value of the digit is remained the same. After
these computations, a new candidate solution is generated.

4.3 Computational Analysis

The proposed simulation optimization approach is applied to a realistic job shop
system. The production system under concern consists of three product types, five
machines and three customer segments. Order arrivals are stochastic, and inter arrival
times are exponentially distributed. An incoming order comes from the customer
segments A, B and C with probabilities 50%, 30% and 20%, respectively (see Table
4.4). Demand for the products varies depending on the customer segment as presented
in Table 4.4. In addition, the order sizes are randomly generated from a uniform
distribution and they vary depending on the both customer segment and product type
(see Table 4.5).
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Table 4.4 Demand and order patterns

Customer Product type
segment Demand percent 1 > 3
A 50 20% 30% 50%
B 30 40% 40% 20%
C 20 30% 40% 30%
Table 4.5 Order sizes
Customer Product type Order size
segment 1 2 3

A unif (100,500)  unif (100,300) unif (100,400)  Multiples of 100
B unif (50,300) unif (100,400)  unif (50,250) Multiples of 50
C unif (50,200)  unif (100,300) unif (50,200) Multiples of 50

Processing routes and times of the products on the machines are reported in Table
4.6. Furthermore, it is assumed that setup times are sequence dependent and the same

for each machine (see Table 4.7).

Table 4.6 Processing routes and times

Product type  Machine Route and processing time per unit (min)
1 1 M1 (unif (2,5)) M2 (unif (1,3)) M5 (unif (2,7))
2 2 M2 (unif (2,6)) M3 (unif (1,4)) M4 (unif (4,7))
3 3 M1 (unif (1,4)) M3 (unif (3,8)) M5 (unif (1,5)) M4 (unif (3,5))
4
5

Table 4.7 Sequence dependent setup times

Setup time (hr)

Product type

1 2 3
1 0 1 2
2 3 0 2
3 1 2 0

As presented in Table 4.8, each customer segment has different
expectations/allowances on order completion rate, tardiness and earliness. For
example, segment A customers want that minimum 90% of their orders completed
within the promised due date, and they allow maximum 10% positive, and 20%
negative deviations from the due date. In addition, penalties for the performance
indicators vary depending on the customer segments. For instance, segment A
customers give 10%, 60% and 30% importance to ed;, tdi and odi, respectively (see
Table 4.8).
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Table 4.8 Customer expectations and penalties

Customer segment 0Oc tc €c Oc Be Ve
A 90% 10% 20% 0.10 0.60 0.30
B 80% 20% 30% 0.15 0.50 0.35
C 80% 25% 35% 0.20 0.50 0.30

By considering the data given in Tables 4.4 and 4.5, expected order sizes are

computed for each customer segment and product type combination (see Table 4.9).

Then, the product type-based expected order sizes are obtained by summing the

expected sizes of orders received from the whole customer segments for the related

product type. For instance, for product type 1, the expected order sizes of A-1 (30

units), B-1 (21 units) and C-1 (7.5 units) are summed and then the expected order size

of product type 1 is obtained as 58.5 units. Afterwards, expected machine loads per

order are obtained by multiplying the expected order sizes by mean unit processing
times (see Table 4.10).

Table 4.9 Expected order sizes

Customer  Product o Mean Expected
Probability ¢ .

segment type order size  order size
A 1 0.10 300 30.0
A 2 0.15 200 30.0
A 3 0.25 250 62.5
B 1 0.12 175 21.0
B 2 0.12 250 30.0
B 3 0.06 150 9.0
C 1 0.06 125 75
C 2 0.08 200 16.0
C 3 0.06 125 7.5

Table 4.10 Expected machine loads per order

Product Expected

Mean processing time per

Expected processing time per order

type  order size unit (min) (min)
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5
1 58.5 35 2 4.5 204.75 117 263.25
2 76.0 4 25 55 304 190.0 418
3 79.0 25 55 4.0 30 197.50 4345 316 237.00
> 402.25 421 6245 734 500.25

According to Table 4.10, maximum load emerges on machine 4 (M4) with total

expected processing time of 734 minutes. Based on this, machine 4 can be identified

as the bottleneck (critical) resource of the shop under concern. In this regard,

utilization rate of the bottleneck resource for varying inter-arrival times is analyzed
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under the conditions of dispatching rule is FIFO for each machine and the production
lots remain un-split. Before the analysis, verification and validation of the simulation
model is conducted. As known, verification is the task of building the simulation
model correctly. A verified model doesn’t give any syntax errors or logical errors. In
addition, validation is the task of building the correct model. It aims to find out whether
the simulation model represents the behavior of the real system or not. The proposed
model is verified by reviewing the model code and using the trace and debugging tools.
After this, the model is validated by examining the model outputs for reasonableness
under a variety of input parameter settings such as customer expectations and
penalties, inter-arrival times, due date tightness, and sublot and dispatching rule
configurations. After the analysis, it is concluded that the model is valid and it reflects

the behavior of the real system.

When modelling a manufacturing system, initial orders arrive at an empty and idle
system. These early arrived orders quickly move through the system and cause a
downward bias on the performance measures such as machine utilizations, time in
system and queue lengths. After a while (warm-up period), system begins to show its
true long-term (steady state) behavior. Therefore, steady state performance of a system
should be obtained by eliminating the bias introduced by the starting conditions. One
of the ways to do this is discarding the data during the warm-up period and the most
commonly used warm-up period detection method is visual determination (Pegden et
al., 1990, chap.5).

In this dissertation, in order to determine the warm-up period, simulation model is
run for 1500 orders and the mean flow time of the orders are analyzed. As illustrated
in Figure 4.6, first 200 orders are determined as warm-up. The simulation for each
replication is run for 1700 order completions. First 200 completed orders’ statistics are
discarded and remaining 1500 order are used for the computation of the performance

measures. Ten replications are performed for each experiment.
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Figure 4.6 Warm-up period of the simulated production system

As illustrated in Figure 4.7, inter-arrival times that are lower than 750 minutes cause
system deadlock. On the other hand, it is obvious that in case of low demand rate (high
inter-arrival time) significant queue lengths are not observed and customer prioritizing

loses its importance.
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Figure 4.7 Utilization rate analysis of the bottleneck resource

In addition, the effect of lot splitting on the OFV for varying inter-arrival times are
analyzed and the results are summarized in Figure 4.8. In high shop utilization, which
corresponds 99% utilization of the bottleneck resource, lot splitting loses its
importance, and it makes no difference to the OFV whether splitting production lots
into 5 equal sublots (NES=5) or not (NES=1). On the other hand, the effect of lot
splitting is observed more clearly for the inter-arrival times between expo (850) and
expo (1400) which correspond 90% and 55% utilization of bottleneck resource,
respectively. After the point of expo (1400), lot splitting loses its importance on OFV
again. Therefore, in order to build an efficient and meaningful what-if analysis, it is

determined to conduct computational analysis for the inter-arrival time of expo (850)
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and expo (1000) which corresponds to utilization rate of p=90% and p=80%,
respectively.
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Figure 4.8 Change of OFV over the inter-arrival times

Moreover, tardiness oriented analyses are performed by considering inter-arrival
time, due date allowance factor (k), tardiness tolerance of the customer segments (tc)
and lot splitting issues. In Table 4.11, recently conducted job shop studies are
summarized in terms of the shop utilization levels and due date allowance factors used.
It is concluded here that most of the studies uses a due date allowance factor between
1and8.

Table 4.11 Utilization levels and due date allowance factors in recent job shop studies

Author (s) Year Shop utilization Due date allowance factor (k)
Sharma and Jain 2015 90% and 85% 3

Abd et al. 2014  75%, 85% and 95% 2,4and 6

Nie et al. 2013 60%, 75% and 90% 1,3and5

Qiu and Lau 2013  60%, 75% and 90% 4,6and 8

Nie 2012 60% and 90% 1,3and5
Rajabinasab and Mansour 2011  85%, 90% and 95% 4and 8

Zhou et al. 2009  70%, 80% and 90% 2

In our tardiness analyses, dispatching rule is arbitrarily selected as EDD for each
machine. In the first step, tardiness tolerances of the customer segments are assumed
to be zero (ta=0, ts=0, tc=0), and any order completed with a positive deviation from
the promised due date is labeled as “tardy” (see Table 4.12). The percent of orders
tardy is computed by dividing the total number of orders fit in the states 2 and 4 by the

total number of completed orders.
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Table 4.12 Results of the tardiness analysis

Inter-arrival % orders % orders Inter-arrival % orders % orders
time k t tardy tardy time k tc tardy tardy
NES=1  NES=5 NES=1  NES=5

expo (850) 1.5 0.84 0.63  expo(700) 15 0.33 0.31
expo (850) 2.0 0.68 0.48  expo (700) 2.0 0.31 0.30
expo (1000) 1.5 0.68 0.31  expo(750) 15 0.06 0.05
expo (1000) 2.0 0.44 0.15  expo (750) 2.0 0.05 0.05
expo (1150) 15  _ 057 0.7  expo(800) 15  _,. . 0.0l 0.00
expo (1150) 2.0 tA:O 0.32 0.07  expo(800) 2.0 tA:olzo 0.00 0.00
expo (1300) 1.5 tB—O 0.49 0.10  expo (850) 1.5 tB—o'25 0.00 0.00
expo (1300) 2.0 < 0.25 0.03  expo(850) 2.0 < 0.00 0.00
expo (1450) 1.5 0.43 0.06  expo (1000) 1.5 0.00 0.00
expo (1450) 2.0 0.20 0.01  expo (1000) 2.0 0.00 0.00
expo (1600) 1.5 0.38 0.04  expo(1150) 1.5 0.00 0.00
expo (1600) 2.0 0.17 0.01  expo (1150) 2.0 0.00 0.00

In the second step, real tardiness tolerances of the customer segments are considered
(ta=0.10, tg=0.20, tc=0.25) and the same analyses are performed. According to the
results summarized in Table 4.12, it is concluded that as the inter-arrival time and due
date allowance factor increase, percent of tardy orders decreases, and lot splitting has
a significant effect in terms of the percent of tardy orders. However, in case of
customers tolerate some degree of tardiness, the assigned due dates are extended by
adding an additional tolerance. As a result, a decrease in percent of tardy orders is
observed. In addition, based on the sublot and dispatching rule configurations, percent
of tardy orders is subject to change. By considering these facts, due date allowance
factor is selected as 1.5 and 2 in the analyses which corresponds to approximately 60%
and 30% percent of tardy orders in case of ta=0, ts=0, tc=0; NES=5; inter-arrival times
are expo (850) and expo (1000).

From the CRM point of view, three customer weight sets are taken into account in
the analysis. These weight sets are presented in Table 4.13. In generating the weight

sets, the following constraints are satisfied.

W, > W, > W, (4.6)

W, +W, +w, =1 4.7)
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Constraint (4.6) ensures that the weight of customer segment A must be greater than
that of segment B, and in the same way the weight of customer segment B must be
greater than that of segment C. Constraint (4.7) guarantees that sum of the weights of

the customer segments equals to 1.

Table 4.13 Customer weight sets and dominance relationships

Customer Weight set 1 Weight set 2 Weight set 3
segment (A is very dominant) (Ais moderately dominant) (A is less dominant)
A 0.80 0.60 0.40
B 0.15 0.25 0.35
C 0.05 0.15 0.25

4.3.1 Main Effects Analysis

In this section, experimental analysis are performed in order to investigate the
effects of NES and the dispatching rules on the OFV. Initially, NES is selected as equal
for all product types, and the same dispatching rules are employed for all machines.
The dispatching rules (nine alternatives) running for each NES value (20 alternatives)
result in 180 experiments for each customer weight set, inter-arrival time and due date
allowance factor combination. The dispatching rules are encoded as reported in Table
4.14.

Table 4.14 Encoding of the dispatching rules

Dispatching rule Definition Dispatching rule Definition Dispatching rule Definition

1 EDD 4 FIFO 7 COFIFO
2 COEDD 5 SPST 8 COSPST
3 AT 6 COAT 9 ICSF

Figures 4.9, 4.10 and 4.11 illustrate the effects of dispatching rules and NES on the
OFV for the customer weight sets 1, 2 and 3, respectively. It can be concluded here
that lot splitting significantly affects the OFV. As NES increases, initially the OFV
decreases. However, when NES reaches five or six, it flattens or starts rising due to
the increasing number of setup operations. From the dispatching rule perspective,
FIFO seems to be the worst alternative for the production system under concern. In
FIFO rule, the increase in mean flow time is very high when NES increases. This rule
considers the queue entrance time of the sublots and as NES increases, due to the

increasing number of setup operations, entrance time of the sublots to the downstream
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machine queue is delayed. This causes later completion of the whole order. Further,
FIFO rule affects order completion rate on due date indicator most. On the other hand,
in EDD and AT rules the attribute value is static during the execution of the system,
and in SPST rule, setup times are taken into account. Therefore, in those classical rules
OFYV flattens as NES increases.

In addition, in case of p=90%, the dispatching rules containing customer
information provides superior results. However, as the dominance of customer
segment A decreases, there are no remarkable differences between the original and
modified dispatching rules in terms of the OFV. Figure 4.12 demonstrates that, for the
weight set 1, the best dispatching rules are COEDD and COSPST in all cases. In the
same way, for the weight set 2 (see Figure 4.13), COEDD and COSPST are the best
dispatching rules in case of p=90%. However, when utilization of the bottleneck
resource is 80%, SPST rule that does not contain customer information is also
effective. Finally, for the weight set 3 (see Figure 4.14), in case of p=90%, SPST and
COSPST are the best rules, while p=80% case, EDD is also effective.
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Figure 4.9 Experimental results obtained by customer weight set 1
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Figure 4.12 Main effects plots obtained by customer weight set 1
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Figure 4.13 Main effects plots obtained by customer weight set 2
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4.3.2 Production Policy Analysis

By considering the results obtained from the main effects analysis, upper bound for
the NES is determined as ten for each product type, and upper bound for the
dispatching rules is equal to the number of dispatching rules which equals to nine.
Considering ten production policies for three customer weight settings, two different
inter-arrival times and due date allowance factors, totally 120 different scenarios are
analyzed in this section. As presented in Table 4.15, the production policies are defined
by considering lot splitting and dispatching rules. Initially, simulation optimization is
performed for production policy 10 which considers product type-based lot splitting
and machine-based dispatching rules. Then the sublot configuration obtained from

policy 10 is used for the policies 1 through 9.

Table 4.15 Encoding of the production policies

Policy Lot splitting Dispatching rule
1 Policy 10 EDD for all machines
2 Policy 10 COEDD for all machines
3 Policy 10 AT for all machines
4 Policy 10 FIFO for all machines
5 Policy 10 SPST for all machines
6 Policy 10 COAT for all machines
7 Policy 10 COFIFO for all machines
8 Policy 10 COSPST for all machines
9 Policy 10 ICSF for all machines
10 Product type-based Machine-based rules

The parameters of SA, the initial temperature (To) and cooling rate (r), are
determined as 100 and 0.6, respectively. In addition, number of iterations at each
temperature is defined as 100, and the crystallization temperature as terminating
condition is determined as 1. For neighborhood search, probabilities of increasing,
decreasing or fixing the value of an element are determined as 0.35, 0.50 and 0.15,
respectively. Amount of change is determined by generating random number from a
uniform distribution with the parameters of (1, 3). Furthermore, in order to diversify

the search space, the problem is solved for three times.
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4.4 Results and Discussion

Results of the computational experiments are summarized in Tables 4.16 to 4.18.
In addition, the previously defined policies are compared to each other. Confidence
intervals for wi- wjwhere j > i have been constructed by using overall confidence level
of 95%. To test the following hypothesis (see Equation (4.8)), Bonferroni multiple
pairwise comparisons are employed. Bonferroni method can be thought of as alpha
splitting. In this method, if we concern k alternatives then the number of confidence
intervals is computed as k (k-1)/2. According to this method, each individual interval
must be made at level 1-o/[k(k-1)/2] in order to obtain overall level 1-a.

Moish =4 =0 (4.8)

H, — U # 0
Tables 4.16 to 4.18 and the results of multiple pairwise comparisons presented in
Appendices 1 to 3 reveal that in case of utilization of the bottleneck resource (M4) is
90%, customer oriented dispatching rules (rules 2, 6, 7, 8, 9) provide better results.
Especially, COSPST provides superior results than most of the other dispatching rules
as it considers both customer priority and processing times. In addition, as due date
allowance factor (k) decreases and utilization of bottleneck resource increases,
tardiness-based deviations increase (see state 4), OFV gets worse and the use of
dispatching rules containing customer information increases (rules 2 and 8). Moreover,
it can be concluded that the proposed approach is more efficient for the production
systems with high degree of machine utilizations. Furthermore, policy 10, which
applies product-based lot splitting and machine-based dispatching rules together,
provides superior results in most cases. Finally, it is observed that as the dominance of
customer segment A increases, utilization of customer oriented dispatching rules

increases.

72



Table 4.16 The results obtained by customer weight set 1

. Dispatching rule State
U* | k| Policy| OFV | NES mon—y o M3 Ma M5] SI S2 53 S4 S5 S6
1 |o00842|[744 |1 1 1 1 1|98 0 9392 05 5505 0
2 |oo104|[744|2 2 2 2 2|115 0 6206 257 8332 0
3 |00890|[744|3 3 3 3 3[101 0 10808 09 4082 O
4 [01159|[744]| 4 4 4 4 4 |114 0 12245 320 2321 O
ooy |15| 5 |0046([744|5 5 5 5 5123 0 5286 582 9009 0
®l 6 |0031|[744|6 6 6 6 6 (100 0 7459 246 7195 O
7 loo3s8|[744|7 7 7 7 7|98 0 7507 641 6754 0
8 |00188|[744|8 8 8 8 8 |168 0 6216 341 8275 0
9 |0035L|[744]|9 9 9 9 9100 0 7451 256 7193 0
10 |00183|[744)|8 2 8 8 8163 0 6190 317 8330 0
1 |o0662|[526)] L 1 1 1 1|62 0 7200 03 7735 0
2 |oow6|[526]| 2 2 2 2 2169 0 5024 179 9628 0
3 |00736|[526]| 3 3 3 3 3|110 0 8939 04 5%7 0
4 |01002|[526]| 4 4 4 4 4 |105 0 11004 97 3794 0
oo | 2| 5 [00278|[526]| 5 5 5 5 5182 0 3985 356 1047.7 O
6 |00238|[526]| 6 6 6 6 6 |167 0 590 158 8715 0
7 |oo60|[526| 7 7 7 7 7185 0 6106 342 8367 0
8 |00171|[526]| 8 8 8 8 8 |27.7 01 5089 221 9412 0
9 |00239|[526]|9 9 9 9 9 [167 0 5953 162 8718 0
10 |00118|[526]| 2 8 2 2 2176 0 5038 191 9595 0
1 |00366[[437]| 1 1 1 1 1] 25 0 4670 00 10305 0
2 |o0112|[437 |2 2 2 2 2|37 0 493 03 99%7 0
3 |00483|[437]| 3 3 3 3 3|25 0 6930 00 8045 0
4 |00652|[437]| 4 4 4 4 4|37 0 8721 00 6242 0
60 |15| 5 |00209(#37|5 5 5 5 5|82 0 4581 48 10289 0
6 |00233|[437]|6 6 6 6 6|34 0 5950 04 9012 0
7 l00253|[4371|7 7 7 7 7|44 0 6351 09 8596 0
8 |00150([437]|8 8 8 8 8|90 0 5380 11 9519 0
9 |00233[[437]| 9 9 9 9 9|34 0 5950 04 9012 0
10 |00113|[437]| 2 8 2 2 8|51 0 5081 05 9863 0
1 |00198|[544] 1 1 1 1 1|18 0 2348 00 12634 0
2 |ooo68|[544| 2 2 2 2 2|154 0 3755 02 11089 0
3 |00333|[544|3 3 3 3 3[115 0 4756 00 10129 0
4 [00495|[544]| 4 4 4 4 4|72 0 6589 00 8339 0
60y | o | 5 |00140[[B44|5 5 5 5 5|54 0 2868 51 12027 0
6 |00149|[544]| 6 6 6 6 6140 0 447.0 02 10388 0
7 loow2|[544| 7 7 7 7 7 (139 0 4811 1.0 10040 O
8 |00075|[544| 8 8 8 8 8 (201 0 3825 22 10952 O
9 |00149|[544| 9 9 9 9 9140 0 4470 02 10388 0
10 |00062|[544|1 2 2 8 1|35 0 2990 13 11962 0

*U: Utilization level of bottleneck resource
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Table 4.17 The results obtained by customer weight set 2

. Dispatching rule State
U | k |Policy| OFV | NES Fon—n M3 M4 M5 S S2 53 S4 S5 S6
1 |o00726|[678| 1 1 1 1 1 |148 00 9169 07 5676 0
2 |oo282[[678 |2 2 2 2 2|213 00 5980 383 8424 O
3 |00797|[678| 3 3 3 3 3 [152 00 10592 09 4247 0
4 [01192([678| 4 4 4 4 4[157 00 8669 4285 1889 O
ooy |15| 5 |00382{[678|5 5 5 5 5 |576 20 5439 646 83L9 0
1 6 |0038|[678|6 6 6 6 6 |191 00 7036 352 7421 0
7 looso7|[678 |7 7 7 7 7 /182 00 7098 1224 6496 O
8 |00268[[678|8 8 8 8 8 |540 L7 6137 474 7832 0
9 |00309[[678|9 9 9 9 9 |194 00 7032 353 7421 O
10 |00269|[678| 1 2 2 2 8327 00 5781 473 8419 0
1 (0057|365 |1 1 1 1 1|76 00 71567 02 7765 0
2 |00212|[365 |2 2 2 2 2|112 00 490 319 9669 O
3 |00667|[365 |3 3 3 3 3| 7000 8902 04 6024 0
4 |01048|[365]| 4 4 4 4 4|09 00 10886 1185 2920 0
oo | o | 5 |00285|[365]| 5 5 5 5 5 (348 30 3997 60.9 10016 O
6 |00299|[365]|6 6 6 6 6|97 00 5824 300 8779 0
7 |o00368|[365 |7 7 7 7 7|79 00 585 951 8115 0
8 |00204[[365 |8 8 8 8 8 |345 20 4828 409 9398 0
9 |00300|[365]|9 9 9 9 9| 9900 580 306 8785 0
10 |00207|[365]|5 1 2 2 1 /103 00 4288 298 10311 0
1 |00306[[477]| 1 1 1 1 1 |128 00 4389 00 10483 0
2 |00183|[477 |2 2 2 2 2|176 00 4875 07 9942 0
3 |00441|[477]| 3 3 3 3 3 |114 00 6755 00 8131 0
4 |00732|[477]| 4 4 4 4 4| 79 00 10004 04 4903 0
e0ss |15| 5 |0098|#771|5 5 5 5 5 |35803 4692 78 9869 0
6 |00271|[477]| 6 6 6 6 6 |151 00 5789 05 9055 O
7 loo319|[4771| 7 7 7 7 7 |134 00 6597 16 8253 0
8 |00174[[477]| 8 8 8 8 8 (392 05 5236 38 9329 0
9 |00271|[4771] 9 9 9 9 9151 00 5789 05 9055 O
10 |00163|[477]] 1 9 8 8 8 |377 03 5143 32 9445 0
1 |00164|[546] 1 1 1 1 13000 2237 00 12733 0
2 |00133|[546 |2 2 2 2 2184 00 3727 01 11088 O
3 |00305|[546|3 3 3 3 3[111 00 4593 00 10296 0
4 |00488|[546]| 4 4 4 4 4[107 00 6890 00 8003 0
e0ss | o | 5 |0017|[546|5 5 5 5 5123 00 3019 52 11806 0
6 |0019L|[546]| 6 6 6 6 6181 00 4309 01 1050.9 0
7 lo0214|[546| 7 7 7 7 7[199 00 4771 09 10021 0
8 |00117|[546]| 8 8 8 8 8 |324 01 3644 22 11009 0
9 |00191|[546 |9 9 9 9 9181 00 4309 01 10509 0
10 |00100|[546]| 1 8 1 8 1 |146 00 2721 30 12103 0
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Table 4.18 The results obtained by customer weight set 3

. Dispatching rule State
U | k|Policy| OFV | NES o=\ M3 Ma M5| SI S2  S3  S4 S5 S6
1 |00634| 456/ |1 1 1 1 1] 91 00 9322 07 5580 0
2 |o0032| [456] |2 2 2 2 2(106 00 6217 254 8423 0
3 |00726| 456 |3 3 3 3 3|76 00 10705 09 4210 0
4 |00968| [456] | 4 4 4 4 4| 02 00 11690 1242 2066 O
o0 |15| 5 |00297| [456 |5 5 5 5 5 |511 31 5342 623 8493 0
®l 6 |00463| [456]| 6 6 6 6 6| 94 00 7329 242 7335 0
7 |oo0s46| (456 |7 7 7 7 7|65 01 7449 958 6527 O
8 |00283| [456] |8 8 8 8 8 (472 31 5680 524 8293 0
9 |o00464| [456] |9 9 9 9 9|89 00 7256 296 7359 O
10 |00279| [456] | 1 5 8 8 8 |488 32 5532 580 8368 0
1 |00500| 344 |1 1 1 1 1|00 00 7236 03 7761 0
2 |00307| 344 |2 2 2 2 2|00 00 5122 204 974 0
3 |00616| 344 |3 3 3 3 3|00 00 9036 04 5960 0
4 |00863|[344] |4 4 4 4 4|00 00 11473 257 3270 O
oo | o | 5 [00203| [344 |5 5 5 5 5|00 00 3949 560 10491 O
6 |00378| 344 |6 6 6 6 6|00 00 6091 202 8707 0
7 |oose| 344 |7 7 7 7 7|00 00 6179 611 8210 0
8 |00206| 344 |8 8 8 8 8|00 00 4297 526 10177 0
9 |00378| 344 |9 9 9 9 9|00 00 6032 241 8727 0
10 |002200( 344 |8 2 8 8 5|00 00 4253 525 10222 0
1 |00284|[635 |1 1 1 1 1100 00 4652 00 10248 0
2 |00264| 635 |2 2 2 2 2[196 00 4878 03 9923 0
3 |00437| 635 |3 3 3 3 3[112 00 6975 00 7913 0
4 |00s37|[635 |4 4 4 4 4179 00 8396 00 6425 0
600 |15| 5 |00162| 635 |5 5 5 5 5169 00 4264 50 105.7 0
6 |00336|[635 |6 6 6 6 6 |184 00 5892 04 8920 0
7 |o003s4| 635 |7 7 7 7 7/193 00 6247 07 853 0
8 |0068| 635 |8 8 8 8 8|246 00 4340 39 10375 0
9 |0033| 635 |9 9 9 9 9[184 00 582 04 8920 0
10 |00152| 635 |1 1 5 5 8 |198 00 4120 50 10632 0
1 |o0w42|[466] |1 1 1 1 1|62 00 2227 00 12711 0
2 |00w99| (466 |2 2 2 2 2[173 00 3751 05 11071 0
3 |00289| [466] |3 3 3 3 3|62 00 4635 00 10303 0
4 |00502| [466] |4 4 4 4 4[102 00 7613 03 7282 0
60 | o | 5 |0010| [466 |5 5 5 5 5|35 02 3078 7.0 11515 0
6 |00244| [466] |6 6 6 6 6|134 00 4371 06 10489 0
7 |oo279| 466 |7 7 7 7 7[139 00 494 14 9883 0
8 |00112| (466 |8 8 8 8 8[396 06 3283 44 11271 0
9 |00244| [466] |9 9 9 9 9[134 00 4371 06 10489 0
10 |00089 | [466] |5 1 5 8 5 [302 05 2755 57 11791 0

State 5 is the most frequently observed state in policies which applies customer
oriented dispatching rules. It means that most of the orders are completed without
deviation. On the other hand, state 6 is the unobserved state in the analysis. The main
reason of this is the examination of relatively tight systems in our analyses as slack
systems where the orders completed early don’t give chance to analyze the effect of
dispatching rules. However, in order to verify the model, some additional analyses are
performed related to the earliness by considering inter-arrival time, due date allowance
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factor (k), earliness tolerance of the customer segments (ec) and lot splitting issues. In
the analyses, dispatching rule is arbitrarily selected as EDD for each machine. In the
first step, earliness tolerance of the customer segments are assumed to be zero (ea=0,
es=0, ec=0), and any order completed with a negative deviation from the promised due
date is labeled as “early”. Percent of orders early is computed by dividing the total
number of orders fit in the state 6 by the total number of completed orders. As reported
in Table 4.19, percent of early orders increases as the inter-arrival time increases, and

lot splitting has an improving effect in terms of percent of early orders.

Table 4.19 Results of earliness analysis

Inter-arrival K e % orders early % orders early
time ¢ NES=1 NES=5
expo (850) 1.5 0.16 0.37
expo (850) 2.0 0.32 0.52
expo (1000) 1.5 0.32 0.69
expo (1000) 2.0 0.56 0.85
expo (1200) 1.5 — 0.46 0.86
expo (1200) 2.0 eA:o 0.71 0.95
expo (1400) 1.5 ijo 0.55 0.93
expo (1400) 2.0 ¢ 0.79 0.98
expo (1600) 1.5 0.62 0.96
expo (1600) 2.0 0.83 0.99
expo (1800) 1.5 0.67 0.98
expo (1800) 2.0 0.87 1.00

In the second step, earliness tolerances of the customer segments and level of due
date allowance factor (k) are varied and the same analysis are performed. According
to the results presented in Table 4.20, it is concluded that as the earliness tolerance of
the customers increases (ea=0.20, eg=0.30, ec=0.35) it becomes difficult to observe
orders fit in state 6. Because, earliness tolerance shortens the due date and it becomes
impossible to complete the orders earlier than the tolerated due date. On the other hand,

as the due date allowance factor increases percent of early orders also increases.
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Table 4.20 Analysis on earliness tolerance and due date allowance factor

Inter-arrival K e % early orders % early orders
time c NES=1 NES=5
1.5 0.00 0.00
ea=0.01
2.0 - 0.01 0.02
expo (850) 4.0 98:0-01 0.19 0.25
6.0 ec=0.01 0.48 0.55
1.5 0.00 0.00
ea=0.20
2.0 _ 0.00 0.00
expo (850) 4.0 98:0-30 0.00 0.00
15 0.00 0.00
ea=0.01
20 7 0.02 0.04
expo (1000) 4.0 gg:g-gi 0.25 0.33
6.0 s 0.55 0.64
15 0.00 0.00
ea=0.20
2.0 _ 0.00 0.00
expo (1000) o gs:ggg 0.00 0.00
60 0.00 0.00

In this section, a segment-based analysis for the best production policies is also
performed. As illustrated in Figure 4.15 and reported in Table 4.21, dominance of
segment A has a significant effect on the OFV. In addition, when the segment-based
weighted percentage deviation per order is taken into consideration, it can be seen that
there exist a huge gap between segment A and both segments B and C in cases of
customer segment A is very dominant and moderately dominant. Additionally, in case
of segment A is less dominant, a more balanced structure is observed. In practice,
companies may prefer a balanced structure or more segment-focused structures

parallel to their business strategies and customer base.
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Table 4.21 Customer segment-based results obtained by the production policies

Total Weighted

. Inter- Number weighted percentage
Wsé?ht arrival k Policy i:;ﬁ?nir S&%girt]t of orders percentage deviation OFV
time (D) deviation  per order

(2 (211)
A 080  749.1 12587 0.017

fg‘é’g’) 15 10 B 015 4613 11149 0024  0.018
c 005 2896 3694 0013
A 080 7465 2295  0.003

(eé(5p8)) 20 2 B 015  458.6 11504 0.025  0.012
. c 005 2949 3664  0.012
A 0.80 7461 4102 0.006

(%88) 15 2 B 015  456.7 9.745 0021  0.011
c 005 2972 2914  0.010
A 080 7463 2956 0.004

(%88) 20 10 B 015  456.8 4570 0010  0.006
c 005 2969 1701  0.006
A 060  757.0 13277  0.018

ggc?) 15 8 B 025  457.2 17580 0.038  0.027
c 015 2858 9328  0.033
A 060 7536 8899 0012

fé‘é)(;’) 20 8 B 025  459.8 13951  0.030  0.020
, c 015 2866 7748  0.027
A 060 7466 8132 0011

(%gg) 15 10 B 025  456.8 10537  0.023  0.016
© 015  296.6 5772 0.020
A 060 7456 7.829 0011

(%88) 20 10 B 025  457.3 4731 0010 0.010
C 015  297.1 2419  0.008
A 040 7528 19.686  0.026

fg‘;’(% 15 10 B 035 4563 13616 0.030  0.028
c 025 2909 8.488  0.029
A 040 7517 14830  0.020

(eé(é)(;)) 20 8 B 035  456.7 9179 0020 0.021
5 c 025 2916 6.901  0.024
A 040 7466 12827 0.017

(‘i’égg) 15 10 B 035  456.3 7073 0016 0015
C 025  297.1 2885  0.010
A 040 7460 7802 0011

(%88) 20 10 B 035 4569 3585 0008  0.009
C 025  297.1 1.980  0.007
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Figure 4.15 Summary of customer segment-based results

In addition to the above-mentioned analysis, main effects analysis are performed
by considering the expectations/allowances of customer segments on order completion
rate on due date, tardiness and earliness. Seven levels of o, tc and ec are defined as

presented in Table 4.22.

Table 4.22 Factor levels

Factor Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7

Oc 0.70 0.75 0.80 0.85 0.90 0.95 1.00
tc 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Ec 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Series of experiments are carried out for the case in which the customer weight set
is 1, due date allowance factor is 1.5, production policy is 10 for p=90%, 2 for p=80%
and 10 for p=70% (expo 1150). According to the results presented in Figures 4.16 to
4.18, customer expectation on order completion rate on due date has the greatest effect
on the OFV. As the oc increases OFV gets worse. Figure 4.16 indicates that, as the
production system with high demand rate is investigated, it can be seen that allowances
about negative percentage deviations from due dates have no effect on the OFV.

Additionally, allowances about positive percentage deviations from due dates below
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0.15 tc have an increasing impact on the OFV. On the other hand, it has a reducing
effect on the OFV in case of the allowances above 0.20. However, as illustrated in
Figures 4.17 and 4.18, customer allowances about earliness and tardiness lose

importance as the utilization of the bottleneck resource decreases.

Main Effects Plot for OFV
Data Means

o_c t_c
0.020
0.019
oo .\'\'\‘ﬂﬂ_.
0.017
0.016

c

0.015

070 075 080 085 090 095 100 005 010 015 020 025 030 035 005 010 015 020 025 030 035
Figure 4.16 p=90%, NES=[7 4 4], dispatching rule=[8 2 8 8 8]
Main Effects Plot for OFV
Data Means
ec
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Figure 4.17 p=80%, NES=[4 3 7], dispatching rule=[2 2 2 2 2]
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Main Effects Plot for OFV
Data Means
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Figure 4.18 p=70%, NES=[6 8 4], dispatching rule=[1 2 2 2 2]

4.5 Conclusions and Future Research Directions

In this section, the proposed simulation optimization based DSS is applied to a
realistic job shop system to confirm its viability. In detail, in order to accelerate the
flow of the production and prioritize the customer orders, product type-based lot
splitting and machine-based dispatching rules are applied together. Multiple customer
segments with different importance weights, and their expectations and penalties on
order completion rate on due date, tardiness and earliness are considered. Accordingly,
the objective function is defined as the minimization of mean weighted percentage

deviation from the expectations of customer segments.

It is aimed to make the near-optimal policy decisions regarding the machine-based
dispatching rules and NES for the product types. In this regard, four well known
dispatching rules, FIFO, AT, EDD and SPST, and five modified version of these rules
which contain customer information are employed. Computational experiments are
performed by considering different shop utilization levels, due date allowance factors
and dominance relationships amongst the customer segments. Results of the
experiments reveal that integration of CRM and PPC approaches in job shop systems
provides more efficient use of resources in satisfying customers. More specifically, the

combined application of lot splitting and machine-based dispatching rules can offer

81



superior results in terms of common performance measures such as tardiness, earliness

and order completion rate on due date in customer oriented job shop systems.

The proposed approach can be implemented easily by manufacturing companies
through adopting their demand structure, customer base, customer weight settings,
processing features etc. In addition, implementation of different heuristic methods, due
date setting functions and different dispatching rules can be stated as future research

topics.
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CHAPTER FIVE
DYNAMIC ORDER PRIORITIZATION IN CUSTOMER
ORIENTED MANUFACTURING ENVIRONMENTS

5.1 Introduction

In today’s B2B markets, numerous manufacturers compete with each other in order
to satisfy the distinct needs of customers. In this environment, satisfying and retaining
the existing customers becomes very important for the manufacturers. As stated in
Section 2.1, in addition to consumer markets, customer-oriented view is essential for
B2B markets, and it must be adopted to whole business processes. In this regard, this
kind of view should be adopted not only to sales and marketing decisions but also to
production, distribution, inventory etc. decisions (Paiva, 2010). In this way,
manufacturers can use their scarce resources for the customers in accordance with

customers’ value to the company.

Creating a customer-oriented structure starts with deeper analysis of the customer
base. Thus, manufacturing companies can understand their customers’ needs,
expectations and tolerances about various issues and also determine their value for the
company. Accordingly, they can satisfy their customers by developing more
customized strategies. However, developing customer-specific strategies is complex
and time consuming. Therefore, manufacturing companies should first segment their
customers and then determine the special offerings and priorities in order fulfilling
(Gligdemir & Selim, 2015a).

Manufacturing companies confronted with many complex PPC decisions and they
aim to use their limited resources for the production activities so as to satisfy customer
demand over a specified time horizon. PPC problems are generally characterized as
optimization problems that include many conflicting objectives and constraints. Time
or cost-based objectives and resource-based constraints are extensively taken into

account in the studies in this field. However, customer satisfaction is a key issue for
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the companies and it should be a critical focus for developing effective production
plans (Calleja & Pastor, 2014).

Today, customers are quite demanding and on time delivery is one of the most
important issues customers are concerned about (Xiang et al., 2014; Sobeyko &
Monch, 2016). As the number of prospective customers is smaller in B2B markets,
retaining the existing customers by providing high level of service is the key success
factor for the manufacturers. However, it is very difficult to complete all of the orders
by the promised due dates in case of high shop utilization. Therefore, manufacturers
should prioritize the orders and primarily focus on meeting the expectations of their
key customers. However, it should be noted here that while providing high level of
service to the key customers, dissatisfaction of the remaining customers should be at
an acceptable level. Otherwise, customer relationships are damaged and consequently
customer losses would be unavoidable (Gligdemir & Selim, 2016).

In this chapter, the problem identified in the previous chapter is dealt with and a
simulation optimization-based approach is developed for dynamic order prioritization
by considering multiple customer segments, shop floor conditions and managerial
objectives in B2B markets. In order to provide dynamic prioritization of the orders,
weight setting functions are proposed in this dissertation. These functions update the
segment-based “rule weights (rwc)” used in the dispatching rules dynamically by
considering the threshold values defined by the management for the percent of
dissatisfied orders within the customer segments. It is aimed to determine the near-
optimal values of the segment-based parameters of the related weight setting functions.
To this aim, a DEA-based simulation optimization approach is proposed. To confirm

its viability, the proposed approach is applied to a realistic job shop.
5.2 Related Literature
As stated in Section 2.3, dispatching rules are commonly used in dynamic systems

to achieve order prioritization. Most of the classical dispatching rules do not utilize

customer information, and implementation of customer-oriented production planning
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Is scarce in the literature (Chen et al., 2012). However, developing priority dispatching
rules incorporating both processing and customer information enables manufacturing
companies to satisfy their customers with well-timed and effective scheduling
decisions. In one of the earliest studies in the related field, Malhotra et al. (1994) aim
to manage customer priorities in job shops. Order review and release policies and
dispatching rules are considered in the study in an integrated way, and it is aimed to
find the best combination of these issues. To this aim, two customer classes, high
priority and low priority, are defined. In addition, two types of queues are identified
for these classes. Simulation analyses are performed by considering the varying levels
of due date tightness and percentage of high priority jobs. They use EDD rule as the
benchmark in their analysis, and propose two-queue rule, rotating rule, forced pace
rule and preemption rule incorporating customer priority information. In addition,
customer-oriented performance measures such as weighted mean tardiness, root mean
square tardiness and percentage of tardy jobs are taken into account in the study. In
another work, Jensen et al. (1995) emphasize the necessity of considering customer
priorities in scheduling decisions. They focus on constructing a customer importance
index in the form of job tardiness penalty. Tardiness penalties are drawn from
probability distributions (i.e. Bernoulli, uniform, triangular) characterized by shape
and dispersion. Simulation analyses are conducted to evaluate the effectiveness of the
proposed system under different combinations of due date tightness, spread and shape
of job tardiness penalties. In the scheduling phase, both weighted and un-weighted
priority dispatching rules are used. Mean flow time and weighted customer service are
taken into account as performance measures. Natarajan et al. (2007) propose priority
dispatching rules minimizing weighted tardiness and weighted flowtime. In the study,
existing dispatching rules are modified by using job weights for holding and tardiness
issues. Varying importance weights are assigned to jobs of different customers. The
weights are obtained by using a uniformly distributed numerical scale. In this way,
customer importance is incorporated in the dispatching rules. Simulation analyses are
performed in the study for an assembly job shop system in order to evaluate the
effectiveness of the proposed dispatching rules. The results indicate that the proposed
rules performed well in minimizing the flowtime and tardiness-based performance

measures in most cases. Ramkumar et al. (2011) handle job shop scheduling problem
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and propose a fuzzy rule-based approach to solve the problem. In the study, scheduling
process includes functions such as due date, customer priority and processing time.
The researchers classify customer priorities into five categories namely bad, low,
medium, high and very important, and define these categories by using fuzzy sets.
Results of the study i that the proposed approach can effectively solve the job shop
scheduling problems with customer constraints. In another study, Chen et al. (2012)
focus on composite dispatching rule design that considers both scheduling criteria and
customer priority in a single machine environment. In this concern, seven dispatching
rules are taken into account and they are composed with weighted aggregation. Mean
flow time, mean tardiness and percentage of tardy jobs are used as the scheduling
criteria. Data envelopment analysis is applied to select the elementary dispatching
rules. Then the obtained schedule is adjusted by considering customer priorities.
Analytic hierarchy process is used in the study for overall job prioritization. Customer
prioritization is achieved by considering identified customer groups. Chen and Matis
(2013) propose a dispatching rule which extends the RR rule by adding the relative
importance of the jobs. In this rule, priority index of the jobs are obtained by
multiplying linear combination of slack per remaining process time and SPT rule with
a function based on job weight and weight biasing constant. This function enables
manufacturers to shift the schedule in order to meet the due dates of high priority jobs.
Simulation experiments are performed for a job shop system by considering shop
utilization, due date allowance factor, five dispatching rules, biasing parameter and
weight truncation level issues and tardiness performance is evaluated. In the study,
weights of the jobs are derived from a uniform distribution, and no attempt is made to
optimize neither the weights nor the biasing constant. In another study, Zhong et al.
(2015) focus on advanced production planning and scheduling in hybrid flowshops.
The researchers use several dispatching rules such as EDD, customer importance,
priority-based rule, FIFO, SPT, order-based rule and material-based grouping. In
“customer importance” rule, jobs are weighted between 1 and 5, where 5 denotes the
most important customer. In one of the latest studies, Sobeyko and Ménch (2016)
discuss flexible job shop scheduling problem with total weighted tardiness objective.
They model customer priorities by weighting the jobs. Some well-known dispatching

rules and weighted versions of the rules are employed. However, weights are assigned
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by using probability distribution functions based on the identified problem sets, and
weights are assumed to be fixed in their experiments.

In previous studies, importance weights of customers are assigned randomly or by
using probability distributions. In addition, the weights have been treated as static, and
no attempt has been made to optimize those weights. Moreover, expectations and
penalties of predefined customer segments on issues such as tardiness, earliness and
order completion rate on due date have not been considered simultaneously.
Furthermore, lot splitting and machine based dispatching rules have not been included
in the previous studies. Considering these gaps, a customer-oriented PPC approach
that incorporates customer priorities, lot splitting, and dynamic order prioritization is
proposed for closed job shops in this dissertation. In order to dynamically schedule the
sublots on machines, four prominent dispatching rules and five modified versions of
them are employed. The rule weights utilized in the modified dispatching rules are
calculated during the execution of the system based on up to date information about
order dissatisfaction rates, predefined managerial goals and weight setting functions.
Static, exponential and linear weighting cases are scrutinized, and it is aimed to find
the near-optimal values of the segment-based parameters of the functions under
concern by using DEA-based simulation optimization approach.

5.3 Problem Statement

In this section, the problem identified in Section 4.1 is handled. The weights used
in the modified dispatching rules are computed dynamically by using the proposed
weight setting functions. In this case, initially, all rw. values are equal to 1, and
customer-oriented order prioritization is not considered. For instance, COEDD s
pretended to be EDD (see Table 5.1).
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Table 5.1 Characteristics of the dispatching rules

Dispatching Rule  Attribute value Selection criterion

EDD di min value first
COEDD di / rwe min value first
FIFO Qis! min value first
COFIFO Qist / TWe min value first
SPST ptisi + Stisi min value first
COSPST (ptisi + Stisr) / rwe min value first
AT ri min value first
COAT ri/ rwe min value first
ICSF We max value first

Finally, order completions are observed, and satisfaction and dissatisfaction levels
are obtained. The workshop is scrutinized in every order completion. If any deviation
occurs in terms of order completion rate on due date, earliness or tardiness, the order
is labeled as “dissatisfied”. If the percentage of dissatisfied orders in a particular
customer segment (pdc) exceeds the threshold value defined by the management (thc),
the rule weight of the segment (rwc) is updated linearly (see Figure 5.1.a) or

exponentially (see Figure 5.1.b) based on the predefined function.

rwe 4 'we A

v
A

thc pdc thc pdC

(a) (b)

Figure 5.1 (a) Linear function, (b) Exponential function

For the ease of calculation, an auxiliary variable ©; which considers the deviation
from the threshold value in terms of the percentage of dissatisfied orders is defined
(see Equation (5.1)).

0 - pd, —th,
th

C

(5.1)
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The linear and exponential weight setting functions are increasing functions of rw
in case of pdc > th.. Specifically, as the difference between the percentage of
dissatisfied orders and the threshold value increases, rwc also increases. This ensures
that customer segment having higher dissatisfaction would be given a smaller priority
index value, and thus orders from the related customer segment would be assigned

higher priority than the orders from the other segments.

Linear weight increment function increases the current rwc value by adding a certain
proportion of the ©¢. This increment is obtained by Equation (5.2). Alternatively, in
exponential weight increment function, the current rw. value is increased exponentially
by using Equation (5.3), where the exponent is 1/p. power of Oc. In state | functions,
if the percentage of dissatisfied orders in a particular customer segment (pdc) is below
the threshold value defined by the management (thc), the rule weight of the segment
(rwe) remains the same. On the other hand, in state Il functions (see Equations (5.4)
and (5.5)), rwc value is reduced when pdc is below the thc. In all of these functions,
segment-based control parameters (pc) whose values are greater than zero for linear
function and greater than or equal to 1 for exponential function are defined, and it is

aimed to find near-optimal values of these parameters.

e State | — Dynamic weight setting functions

rw, + p.(6.) if pd, >th,
rw, = . where pc>0 (5.2)
rw, otherwise
G\Up, >
rw, = (%)™ it pd, __th° where pc= 1 (5.3)
rw, otherwise

e State Il — Dynamic weight setting functions

rw, + p.(6,) if pd, >th,
= . where pe>0 (5.4)
MAX (rw, + p.(6,),1)  otherwise
(e%)!P if pd,>th,
rw, = ) where pc= 1 (5.5)
MAX (rw, — (€*)" 1)  otherwise
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5.4 Methodology

In this section, simulation optimization approach is employed in order to determine
the segment-based parameter values of the weight setting functions. In this regard,
ARENA 14.0 and MATLAB 2014.b software packages are utilized in an integrated
way. More specifically, DEA is applied by MATLAB, and the fitness value is
computed by the simulation model built with ARENA.

DEA Simulation Model

Reconfigure weighting

Initialization .
function parameters

Weighting functiop parameter values———

y

Y

—» Evaluation |« Fitness function value— Run the simulation
model
. y
Terminatin Best weighitng
di 9 Yes»{ function parameter Performance measure
condition values Mean weighted

percentage deviation
from the expectations

No
h 4 of customer segments

Muatation

A
Crossover/
Recombination

y

L—  Selection

Figure 5.2 DEA-based simulation optimization approach

As illustrated in Figure 5.2, in initialization phase, DEA generates initial population
randomly for the parameters of the weight setting function, and pass it to the simulation
model. Then the model is run and the performance is obtained for each member of the
population. In mutation phase, three members from the population are selected
randomly, and a new vector is generated by adding the weighted difference vector
between two population members to the third member. Then, population members are
crossovered with the resulting vector, and the OFV is computed by the simulation

model for each member of the newly generated population. Members that have better
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OFV survive in the next generation (selection). This process is continued until the

maximum number of generations is met.

The solution is represented by a matrix consisting of m rows and n columns, where
m denotes the number of segment-based parameters of the weight setting function and
n denotes the population size (NP). For instance, in Figure 5.3, a population with five
member and three function parameters for the customer segments A, B and C is

illustrated.

member 1 | member 2 | member 3 | member 4 | member 5
Pa 1.28 2.62 6.85 7.63 5.13
Ps 2.32 3.57 459 1.27 8.46
Pc 4.23 5.17 2.26 3.85 1.69

Figure 5.3 Representation of the solution

5.5 Computational Analysis

The proposed simulation optimization approach is applied to a realistic hypothetical
job shop system. As stated in Section 4.1, the system includes three product types, five

machines and three customer segments.

As reported in Table 5.2, each customer segment has different importance weights
for the company and also has different expectations about order completion rate on
due date, tardiness and earliness. For instance, customers in segment A desire that
minimum 90% of their order to be completed within the promised due date, and they
allow maximum 10% positive and 20% negative deviations from the promised due
dates. In addition, the penalties assigned by the customer segments differ. For instance,
customers of segment A assign 10%, 60% and 30% importance to ed;, tdi and od;,
respectively. The thresholds determined for the customer segments are presented in
Table 5.2. As reported in the table, the management aims that the percentage of
dissatisfied orders in customer segments A, B and C would not exceed 10%, 20%,

30%, respectively.
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Table 5.2 Customer data

Customer segment  w, the 0O tc ec ac P Ve

A 0.60 0.10 90% 10% 20% 0.10 0.60 0.30
B 0.25 0.20 80% 20% 30% 0.15 0.50 0.35
C 0.15 0.30 80% 25% 35% 0.20 0.50 0.30

The computational experiments are carried out with inter-arrival time of expo
(1000), due date allowance factor of 1.5 and four weight setting methods including
static and dynamic weight setting. Ten replications are performed for each experiment.
The simulation model is run for 1700 order completions in each replication. First 200
completed orders are observed to be within the warm-up period, and the remaining
1500 orders are used for computing the performance.

The DEA parameters, namely population size, crossover rate and scaling factor are
determined as 10, 0.5 and 0.8, respectively. The maximum number of generation,
which is the termination condition, is determined as 100. In addition, considering the
stochastic nature of DEA, the problem is solved for three times. In static weight
optimization case, rwc values are assumed to be 0<rwc<10. In cases of utilizing linear
and exponential weight setting functions, parameter values of the functions are
assumed to be 0<pc<10 and 1< pe<10, respectively.

In scenario I, the orders come from the customer segments A, B and C with
probabilities 30%, 50% and 20%, respectively. First, simulation optimization is
performed for static weight optimization case by considering the sublot and
dispatching rule configurations presented in Table 5.3. The table reports that, rwa, rwe,
and rwc values are obtained as 0.59, 0.29 and 0.12, respectively. In the next stage,
simulation optimization is performed again to determine the segment-based parameter
values of the dynamic weight setting functions including state | and state 11 functions.
The results are presented in Table 5.4, and behavior of the state | functions are

illustrated in Figures 5.4 and 5.5.
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Table 5.3 Results of scenario |

Sublot Dispatching rule Standard

Weight setting method OFV pda pds pdc

configuration configuration deviation

Static weights

(0.60, 0.25, 0.15) I 0.0121 0.19 0.22 0.40 0.11
Optimized weights .

(0.59, 0.29, 0.12) M2ECOEDD 0.0119 0.19 0.20 043 0.14
State | — Exponential function L7 8 71 MiCEZgEPST 00120 024 021 029  0.04
State | - Linear function M5:SPST 0.0121 0.20 0.22 0.38 0.10
State 11 — Exponential function ' 0.0120 0.22 0.23 0.28 0.03
State Il - Linear function 0.0121 0.19 0.22 0.38 0.10

Table 5.4 Parameter values for scenario |

State | -Exponential ~ State | -Linear State Il -Exponential State Il -Linear

Parameter function function function function
Pa 3.1968 2.3356 2.3461 0.7899
Ps 1.1887 8.7257 8.3168 2.8695
Pc 6.5677 2.5352 7.1929 0.6951

As illustrated in Figures 5.4 and 5.5, due to the heavy workload associated with
customer segment B, a rapid increase is observed in the rule weight of this segment
(rwg). In addition, exponential weight setting function provides superior results in
terms of standard deviation of the percentage of dissatisfied orders of the customer
segments without any violation in the OFV (see Table 5.3). This means that it provides
a more balanced structure between customer segments in terms of the percentage of

dissatisfied orders.
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Figure 5.4 Behavior of state | - exponential functions - scenario |
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Figure 5.5 Behavior of state | - linear functions - scenario |

In addition, the main effects of the threshold values defined by the management on
the OFV are analyzed. Figure 5.6 illustrates that as the dissatisfaction threshold for
customer segment A (tha) increases, OFV gets worse. More clearly, importance weight
of segment A used in the objective function (wa) is very high, and as the threshold
value increases, the rule weight of the customer segment is updated much later. This
causes later prioritization of the orders from customer segment A. On the contrary,
increasing the threshold values for customer segments B and C have a positive effect
on the OFV under concern as it enables the model to highly prioritize the orders of

customer segment A.

Main Effects Plot for OFV
Data Means
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Figure 5.6 Main effects plots for state Il - exponential function — scenario |
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In scenario Il, the orders come from the customer segments A, B and C with
probabilities 50%, 30% and 20%, respectively. The analyses are performed for the
weighting methods and the results are presented in Table 5.5. Segment-based
parameter values of the related weight setting functions are reported in Table 5.6, and

the behavior of the functions are illustrated in Figures 5.7 and 5.8.

Table 5.5 Results of scenario 11

Sublot Dispatching rule Standard
configuration configuration OFV' pda  pds  pde deviation

0.0163 0.17 046 0.61 0.22

Weight setting method

Static weights
(0.60, 0.25, 0.15) M1:EDD
06052, 00 MZICSF 00158 025 057 052 015

State | — Exponential function 4 7 71 M3:COSPST 4158 024 035 050 0.3

State | - Linear function mgfgggﬁg 00159 023 036 054 015
State Il — Exponential function ; 0.0159 0.25 0.34 050 0.13
State Il - Linear function 0.0159 0.22 0.37 0.56 0.17

Table 5.6 Parameter values for scenario 11

State | -Exponential ~ State | -Linear State Il -Exponential State Il -Linear
Parameter

function function function function
Pa 1.9120 8.1544 2.1039 7.8606
Ps 1.6538 9.1594 1.5628 7.5473
Pc 8.5471 5.4136 8.8711 3.8325

Due to the heavy workload and high importance weights associated with customer
segments A and B, rapid increases are observed in the rule weight of these customer

segments (see Figures 5.7 and 5.8).
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Figure 5.7 Behavior of state | - exponential functions - scenario Il
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Figure 5.8 Behavior of state | - linear functions - scenario Il

As reported in Table 5.5, state | exponential weight setting function provides
superior results in terms of standard deviation of the percentage of dissatisfied orders.
Similar to scenario |, as the dissatisfaction threshold for customer segment A increases,
OFV gets worse. Moreover, increasing the threshold values for customer segments B
and C improve the OFV (see Figure 5.9). It is also observed that, the threshold values

greater than 0.40 for customer segment C has no effect on the OFV.

Main Effects Plot for OFV
Data Means
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Figure 5.9 Main effects plot for state | - exponential function — scenario Il

In scenario Ill, most of the orders are assumed to be received from customer
segment A, and the orders come from the segments A, B and C with the probabilities

of 70%, 20% and 10%, respectively. The results are presented in Table 5.7, and
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corresponding parameter values are reported in Table 5.8. In addition, behaviors of the

predefined exponential and linear functions are illustrated in Figures 5.10 and 5.11,

respectively. Moreover, results of the main effects analysis are pointed out in Figure

5.12.

Table 5.7 Results of scenario 111

. . Sublot Dispatching rule Standard
Weight setting method configuration configuration OFV' pda  pds  pde deviation
Static weights
(0.60, 0.25, 0.15) - 0.0266 0.27 0.60 0.70 0.23
Optimized weights M1:COEDD
(0.724, 0.192. 0.084) M2:COEDD 0.0261 0.27 061 073 0.4
State | - Exponential function 3 6 © m:(s:F?SSEST 0.0268 028 0.60 0.69  0.22
State | - Linear function M5:COEDD 0.0261 0.29 0.53 0.71 0.21
State 11 — Exponential function ' 0.0267 0.27 0.61 0.69 0.22
State Il - Linear function 0.0260 0.28 054 0.74 0.23

Table 5.8 Parameter values for scenario 111

Parameter

State | -Exponential ~ State | -Linear State Il -Exponential

State Il -Linear

function function function function
Pa 1.1791 5.2171 1.0888 2.3361
Ps 3.7100 7.8770 4.0845 3.2122
Pc 9.9703 4.2382 6.5866 0.8483

Figure 5.10 Behavior of state | - exponential functions - scenario 111
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Figure 5.11 Behavior of state I - linear functions - scenario I11

Main Effects Plot for OFV
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Figure 5.12 Main effects plot for state I - linear function — scenario 111

In scenario IV, most of the orders are assumed to be received from customer
segment C, and the orders come from the segments A, B and C with the probabilities
of 20%, 30% and 50%, respectively. The results are presented in Table 5.9, and
corresponding parameter values are reported in Table 5.10. In addition, behaviors of
the predefined exponential and linear functions are illustrated in Figures 5.13 and 5.14,
respectively. Furthermore, results of the main effects analysis are pointed out in Figure
5.15. Asiillustrated in Figure 5.14, due to the heavy workload associated with customer

segment C, a rapid increase is observed in the rule weight of this segment.
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Table 5.9 Results of scenario 1V

. . Sublot Dispatching rule Standard
Weight setting method configuration configuration OFV' pda  pds  pdc  joyiation
Static weights
(0.60, 0.25, 0.15) LEDD 0.006 0.20 0.15 0.12 0.04
Optimized weights :

(0.38,0.37, 0.25) M2:EDD 0006 0.15 013 017 0.02
State | — Exponential function [4 7 10] mz:gggPST 0.006 0.15 0.17 0.14 0.02
State | - Linear function M5:EDD 0.006 0.10 0.16 0.20 0.05
State 11 — Exponential function ' 0.006 0.16 0.17 0.14 0.02
State Il - Linear function 0.006 0.11 0.18 0.18 0.04
Table 5.10 Parameter values for scenario IV
State | -Exponential ~ State | -Linear State Il -Exponential State Il -Linear
Parameter ; : : .
function function function function
Pa 19714 2.5070 2.5070 0.2478
Ps 9.4802 1.9845 1.9845 0.1624
pc 7.1812 2.9079 2.9079 0.5717
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Figure 5.14 Behavior of state | - linear functions - scenario IV
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Main Effects Plot for OFV
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Figure 5.15 Main effects plot for state | - exponential function — scenario 1V

Considering the results of the analyses, it can be concluded that the OFV gets worse
when the percentage of orders received from segment A increases. Employment of
dynamic priority assignment and segment-based dissatisfaction thresholds enable
manufacturers to ensure a balanced structure among the satisfaction/dissatisfaction
levels of customer segments. In addition, due to the high importance levels of customer
segments A and B in the objective function, frequently rapid increase is observed in
the weights of these segments.

5.6 Conclusions

In this chapter, a job shop system with dynamic order arrivals is dealt with. Lot
splitting is applied in order to shorten the manufacturing lead time and ensure on time
delivery. Machine-based dispatching rules are utilized for sublot scheduling phase to
realize dynamic scheduling. In addition, customer-oriented dispatching rules are
employed to ensure the prioritization of orders from the key customers in order
fulfilling. A customer satisfaction-based objective function is defined, and multiple
customer segments with different importance weights, and their expectations and
penalties on order completion rate on due date, tardiness and earliness are considered.
In order to prevent customer loss by providing a balanced structure amongst the

customer segments in terms of satisfaction levels, weight setting functions that
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dynamically compute the weights in the proposed dispatching rules are proposed. It is
aimed to determine the near-optimal values of the segment-based parameters of the
related weight setting functions. To this aim, a simulation optimization approach that
combines simulation and DEA is proposed. To confirm its viability, the proposed
approach is applied to a realistic job shop system. The results reveal that employing
dynamic priority assignment creates a more balanced structure among the
dissatisfaction levels of customer segments. The proposed approach can effectively be
used in practice by job shop systems by adopting their own demand structure, customer
base, customer weight settings, processing features and managerial objectives.
Implementation of different dispatching rules, weight setting functions and

metaheuristic algorithms can be stated as future research topics in this field.
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CHAPTER SIX
CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

Today, the ultimate goal of a company is to increase loyalty by creating value for
its customers. In value creation process, manufacturing companies should position
themselves as the partners of their customers and understand their customers’
expectations on various issues. Then these issues should be reflected to the PPC
decisions so that limited resources can effectively be used in accordance with the value
of customers. In this way, companies can construct a customer-oriented structure that
leads to increased customer loyalty, repeated purchasing behavior, new business

opportunities and sustainable growth.

In recent years, customer satisfaction, customer value and customer loyalty have
been extensively considered in consumer markets, and they have become also
important in B2B markets. The challenge is to develop an integrated DSS that use
customers’ information and assist PPC decisions to meet customer expectations. In
this concern, the main contribution of this dissertation is to propose a simulation
optimization-based DSS for reflecting the customer-oriented view to PPC decisions.
In this regard, a realistic job shop system with dynamic order arrivals is dealt with. Lot
splitting and machine-based dispatching rules are applied together. Lot splitting is
applied in order to shorten the manufacturing lead time, and ensure on time delivery.
Machine-based dispatching rules are utilized for sublot scheduling phase to realize
dynamic scheduling. Four well known dispatching rules, FIFO, AT, EDD and SPST,
and five modified version of these rules that are proposed in this dissertation are
employed. These modified rules are customer-oriented dispatching rules and they are

used to ensure the prioritization of orders from the key customers in order fulfilling.

From CRM point of view, multiple customer segments with different importance
weights and their expectations and penalties on order completion rate on due date,
earliness and tardiness are considered in this study. Accordingly, a customer
satisfaction-based objective function which minimizes mean weighted percentage

deviation from the expectations of customer segments is used. More specifically, the
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objective function consists of weighted positive percentage deviation from due date
(tardiness), weighted negative percentage deviation from due date (earliness) and

weighted percentage deviation from order completion rate on due date.

As the first novel aspect of the dissertation, a SA-based simulation optimization
approach is proposed to make the near-optimal policy decisions regarding the
machine-based dispatching rules and NES for the product types for a job shop system.
Computational experiments are performed by considering different inter-arrival times,
due date allowance factors and dominance relationships amongst the customer
segments. Results of the experiments reveal that integration of CRM and PPC
approaches in job shop systems provides more efficient use of resources in satisfying
customers. More specifically, the combined application of lot splitting and machine-
based dispatching rules can offer superior results in terms of common performance
measures such as tardiness, earliness and order completion rate on due date in

customer-oriented job shop systems.

As the second novel aspect of the dissertation, in order to prevent customer loss by
providing a balanced structure between customer segments in terms of satisfaction
levels, weight setting functions that dynamically compute the weights in the proposed
dispatching rules are proposed. It is aimed to determine the near-optimal values of the
segment-based parameters of the related weight setting functions. To this aim, a
combined approach including simulation analysis and DEA is proposed. To confirm
its viability, the proposed approach is applied to a realistic job shop system. The results
reveal that employing dynamic priority assignment creates a balanced structure among

the dissatisfaction levels of customer segments

The proposed DSS is developed for the B2B manufacturing companies that have
discrete manufacturing system in which the output is measurable in distinct units rather
than by weight or volume, and it can be implemented by the manufacturing companies
by adopting their demand structure, customer base, customer weight settings,
processing features, managerial objectives etc. However, in reality, complexities in

processing routes and high product variety can cause difficulties in controlling sublots
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in the production system. Therefore, companies should be capable of overcoming these
difficulties to apply LS. In addition, the proposed DSS necessitates vast amount of
information, considerable of which is real-time in nature. In this concern, companies
should have big data storage systems and also powerful information technology

infrastructure to get real-time information.

The proposed DSS provides a conceptual framework in its current structure. In
order to facilitate its adoption by the manufacturing companies, development of a user-
friendly interface can be stated as a future research direction. In addition,
implementation of alternative heuristic methods, due date setting functions and
dispatching rules, and analyzing the effect of customers’ dissatisfaction to the future

demand can be stated as additional future research topics.

104



REFERENCES

Abd, K., Abhary, K., & Marian, R. (2014). Simulation modelling and analysis of
scheduling in robotic flexible assembly cells using Taguchi method. International
Journal of Production Research, 52 (9), 2654-2666.

Adibi, M. A., Zandieh, M., & Amiri, M. (2010). Multi-objective scheduling of
dynamic job shop using variable neighborhood search. Expert Systems with
Applications, 37 (1), 282-287.

Amaran, S., Sahinidis, V.N., Sharda, B., & Burry, S.J. (2016). Simulation
optimization: a review of algorithms and applications. Annals of Operations
Research, 240 (1), 351-380.

Ammeri, A., Hachicha, W., Chabchoub, H., & Masmoudi, F. (2011). A comprehensive
literature review of mono-objective simulation optimization methods. Advances in

Production Engineering & Management, 6 (4), 291-302.

Andradottir, S. (1998). A review of simulation optimization techniques.
In Proceedings of the Winter Simulation Conference (WSC), Washington, USA,
151-158.

Armstrong, G., & Kaotler, P. (1996). Principles of Marketing (1st ed.). India: Prentice
Hall.

Arslan, F.M. (2012). Endiistriyel pazarlama rekabetsel yaklasim (1st ed.). Istanbul:
Beta.

Ata, U.Z., & Toker, A. (2012). The effect of customer relationship management in

business-to-business markets. Journal of Business & Industrial Marketing, 27 (6),
497-507.

105



Azadivar, F. (1999). Simulation optimization methodologies. In Proceedings of the
Winter Simulation Conference (WSC), Phoenix, USA, 93-100.

Baykasoglu, A., Gok¢en, M., & Unutmaz, Z. (2008). New approaches to due date
assignment in job shops. European Journal of Operational Research, 187 (1), 31-
45.

Bergeron, B. (2002). Essentials of CRM: Customer relationship management for

executives (1st ed.). New York: John Wiley & Sons Inc.

Blackstone, J. H., Phillips, D. T., & Hogg, G. L. (1982). A state-of the- art survey of
dispatching rules for manufacturing job shop operations. International Journal of
Production Research, 20 (1), 27-45.

Blum, C, & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview

and conceptual comparison. ACM Computing Surveys, 35 (3), 268-308.

Boussaid, I., Lepagnot, J., & Siarry, P. (2013). A survey on optimization
metaheuristics. Information Sciences, 237, 82-117.

Brownlee, J. (2011). Clever algorithms: Nature-inspired programming recipes (1st

ed.). Melbourne: Lulu Enterprises.
Buscher, U., & Shen, L. (2009). An integrated tabu search algorithm for the lot
streaming problem in job shops. European Journal of Operational Research, 199

(2), 385-399.

Buscher, U., & Shen, L. (2011). Modelling lot streaming problem with setup times in
a job shop manufacturing system. Engineering Letters, 19 (2), 133-142.

106



Calleja, G., & Pastor, R. (2014). A dispatching algorithm for flexible job shop
scheduling with transfer batches: an industrial application. Production Planning &
Control, 25 (2), 93-109.

Cannon, J. P., & Perreault Jr, W. D. (1999). Buyer-seller relationships in business
markets. Journal of Marketing Research, 36 (4), 439-460.

Carson, Y., & Maria, A. (1997). Simulation optimization: Methods and applications.
In Proceedings of the Winter Simulation Conference (WSC), Atlanta, USA, 118-
126.

Cater, T., & Cater, B. (2010). Product and relationship quality influence on customer
commitment and loyalty in B2B manufacturing relationships. Industrial Marketing
Management, 39 (8), 1321-1333.

Chan, F. T. S., Wong, T. C., & Chan, P. L. Y. (2004). Equal size lot streaming to job-
shop scheduling problem using genetic algorithms. In Proceedings of the IEEE
international symposium on Intelligent Control, Taipei, Taiwan, 472-476.

Chan, F. T. S.,, Wong, T. C., & Chan, P. L. Y. (2009). The application of genetic
algorithms to lot streaming in job-shop scheduling problem. International Journal
of Production Research, 47 (12), 3387-3412.

Chand, S. (2016). Industrial product: 3 Groups of Industrial goods and services.
Retrieved May 3, 2016, from http://www.yourarticlelibrary.com/industries/

industrial- product-3- groups-of-industrial-goods-and-services/22521/.

Chang, J. H., & Chiu, H. N. (2005). A comprehensive review of lot streaming.
International Journal of Production Research, 43 (8), 1515-1536.

107



Chen, B., & Matis, T. I. (2013). A flexible dispatching rule for minimizing tardiness
in job shop scheduling. International Journal of Production Economics, 141 (1),
360-365.

Chen, X., Wen Lin, H., & Murata, T. (2012). Composite dispatching rule design for
dynamic scheduling with customer-oriented production priority control. IEEJ

Transactions on Electrical and Electronic Engineering, 7 (1), 53-61.

Cheng, M., Mukherjee, N. J., & Sarin, S.C. (2013). A review of lot streaming.
International Journal of Production Research, 51 (23-24), 7023-7046.

Chryssolouris, G., & Subramaniam, V. (2001). Dynamic scheduling of manufacturing
job shops using genetic algorithms. Journal of Intelligent Manufacturing, 12 (3),
281-293.

Calis, B., & Bulkan, S. (2015). A research survey: review of Al solution strategies of
job shop scheduling problem. Journal of Intelligent Manufacturing, 26 (5), 961-
973.

Dale Wilson, R. (2006). Developing new business strategies in B2B markets by
combining CRM concepts and online databases. Competitiveness Review: An

International Business Journal, 16 (1), 38-43.

Dauzere-Peres, S., & Lasserre, J. B. (1997). Lot streaming in job shop scheduling.
Operations Research, 45 (4), 584-595.

Das, S., & Suganthan, P. N. (2011). Differential evolution: A survey of the state-of-
the-Art. IEEE Transactions on Evolutionary Computation, 15 (1), 4-31.

Defersha, F. M., & Chen, M. (2012). Job shop lot streaming with routing flexibility,

sequence-dependent setup times, machine release dates and lag time. International
Journal of Production Research, 50 (8), 2331-2352.

108



Edis, R. S., Ornek, A. M., & Eliiyi, D. T. (2007). A review on lot streaming problems
with transportation activities. Istanbul Ticaret Universitesi Fen Bilimleri Dergisi, 6
(11), 129-142.

Edis, R., & Ornek, A. (2009). Simulation analysis of lot streaming in job shops with
transportation queue disciplines. Simulation Modelling Practice and Theory, 17 (2),
442-453.

Feldmann, M., & Biskup, D. (2008). Lot streaming in a multiple product permutation
flow shop with intermingling. International Journal of Production Research, 46
(1), 197-216.

Fu, M. C. (2001). Simulation optimization. In Proceedings of the Winter Simulation
Conference (WSC), Arlington, USA, 53-61.

Gao, Y., Ding, Y., & Zhang, H. (2009). Multi-objective optimization for dynamic job-
shop scheduling in manufacturing grid. In Proceedings of the IEEE conference on
Management and Service Science (MASS), Wuhan, China, 1-4.

Geng, X., Chen, Z., Yang, W., Shi, D., & Zhao, K. (2011). Solving the traveling
salesman problem based on an adaptive simulated annealing algorithm with greedy

search. Applied Soft Computing, 11 (4), 3680-3689.

Glover, F. (1986). Future paths for integer programming and links to artificial

intelligence. Computers & Operations Research, 13 (5), 533-549.

Gogna, A., & Tayal, A. (2013). Metaheuristics: Review and application. Journal of
Experimental & Theoretical Artificial Intelligence, 25 (4), 503-526.

Groves, G., & Valsamakis, V. (1998). Supplier-customer relationships and company
performance. International Journal of Logistics Management, 9 (2), 51-62.

109



Gupta, A.K., & Sivakumar, A.l. (2006). Job shop scheduling techniques in
semiconductor manufacturing. International Journal of Advanced Manufacturing
Technology, 27 (11-12), 1163-1169.

Gligdemir, H., & Selim, H. (2015a). Integrating multi-criteria decision making and
clustering for business customer segmentation. Industrial Management & Data
Systems, 115 (6), 1022-1040.

Gligdemir, H., & Selim, H. (2015b). Simulation optimization approach for customer
centric lot streaming problem in job shops. In Proceedings of the International
Conference on Modeling, Simulation and Applied Optimization (ICMSAO),
Istanbul, Turkey, 1-6.

Giligdemir, H., & Selim, H. (2016). Miisteri odakl1 iiretim sistemlerinde dinamik siparis
onceliklendirme tizerine bir simiilasyon optimizasyon ¢alismasi. In Proceedings of

the Uretim Arastirmalar: Sempozyumu (UAS), Istanbul, Turkey, 564-569.

Haupt, R. (1989). A survey of priority rule-based scheduling. OR Spectrum, 11 (1), 3-
16.

Holthaus, O. (1997). Design of efficient job shop scheduling rules. Computers &
Industrial Engineering, 33 (1), 249-252.

Holthaus, O., & Rajendran, C. (1997). Efficient dispatching rules for scheduling in a

job shop. International Journal of Production Economics, 48 (1), 87-105.
Horng, H.C. (2006). Comparing steady-state performance of dispatching rule-pairs in

open shops. International Journal of Applied Science and Engineering, 4 (3), 259-
273.

110



Hréka, L., Vazan, P., & Sutova, Z. (2014). Basic overview of simulation
optimization. Research Papers, Faculty of Materials Science and Technology,
Slovak University of Technology, 22 (341), 11-16.

Huang, R. H. (2010). Multi-objective job-shop scheduling with lot-splitting
production. International Journal of Production Economics, 124 (1), 206-213.

Jacobs, F. B., & Bragg, D. J. (1988). Repetitive lots: Flow time reductions through

sequencing and dynamic batch sizing. Decision Sciences, 19 (2), 281-294.

Jayamohan, M.S., & Rajendran, C. (2000). New dispatching rules for shop scheduling:

A step forward. International Journal of Production Research, 38 (3), 563-586.

Jensen, J. B., Philipoom, P. R., & Malhotra, M. K. (1995). Evaluation of scheduling
rules with commensurate customer priorities in job shops. Journal of Operations
Management, 13 (3), 213-228.

Jeong, H. I, Park, J., & Leachman, R. C. (1999). A batch splitting method for a job
shop scheduling in an MRP environment. International Journal of Production
Research, 37 (15), 3583-3598.

Jin, B., Luh, P. B., & Thakur, L. S. (1999). An effective optimization-based algorithm
for job shop scheduling with fixed-size transfer lots. Journal of Manufacturing
Systems, 18 (4), 284-300.

Kaban, A. K., Othman, Z., & Rohmah, D. S. (2012). Comparison of dispatching rules
in job-shop scheduling problem using simulation: A case study. International
Journal of Simulation Modelling, 11 (3), 129-140.

Kalir, A. A., & Sarin, S. C. (2000). Evaluation of the potential benefits of lot streaming

in flow-shop systems. International Journal of Production Economics, 66 (2), 131-
142.

111



Karaboga, D., & Okdem, S. (2004). A simple and global optimization algorithm for
engineering problems: differential evolution algorithm. Turkish Journal of
Electrical Engineering & Computer Sciences, 12 (1), 53-60.

Korytkowski, P., Wisniewski, T., & Rymaszewski, S. (2013). An evolutionary
simulation-based optimization approach for dispatching scheduling. Simulation
Modelling Practice and Theory, 35, 69-85.

Kuo, Y. (2010). Using simulated annealing to minimize fuel consumption for the time-
dependent vehicle routing problem. Computers & Industrial Engineering, 59 (1),
157-165.

Lehmann, D.R., & O’Shaughnessy, J. (1974). Difference in attribute importance for
different industrial products. Journal of Marketing, 38 (2), 36-42.

Lei, D., & Guo, X. (2013). Scheduling job shop with lot streaming and transportation
through a modified artificial bee colony. International Journal of Production
Research, 51 (16), 4930-4941.

Lieckens, K., & Vandaele, N. (2007). Reverse logistics network design with stochastic
lead times. Computers & Operations Research, 34 (2), 395-416.

Liu, K.C. (1998). Dispatching rules for stochastic finite capacity scheduling.
Computers & Industrial Engineering, 35 (1), 113-116.

Liu, C. H. (2009). Lot streaming for customer order scheduling problem in job shop
environments. International Journal of Computer Integrated Manufacturing, 22
(9), 890-907.

Liu, S. Q., Ong, H. L., & Ng, K. M. (2005). Metaheuristics for minimizing the

makespan of the dynamic job shop scheduling problem. Advances in Engineering
Software, 36 (3), 199-205.

112



Low, C., Hsu, C. M., & Huang, K. I. (2004). Benefits of lot splitting in job-shop
scheduling. International Journal of Advanced Manufacturing Technology, 24 (9),
773-780.

Malhotra, M. K., Jensen, J. B., & Philipoom, P. R. (1994). Management of vital
customer priorities in job shop manufacturing environments. Decision Sciences, 25
(5-6), 711-736.

Mingyong, L., & Erbao, C. (2010). An improved differential evolution algorithm for
vehicle routing problem with simultaneous pickups and deliveries and time

windows. Engineering Applications of Artificial Intelligence, 23 (2), 188-195.

Misdolea, R. (2010). Decision support system and customer relationship management
as components of the cybernetic system enterprise. Informatica Economica, 14 (1),
201-207.

Montazeri, M., & Van Wassenhove, L. N. (1990). Analysis of scheduling rules for an
FMS. International Journal of Production Research, 28 (4), 785-802.

Natarajan, K., Mohanasundaram, K. M., Babu, B. S., Suresh, S., Raj, K. A. A.D., &
Rajendran, C. (2007). Performance evaluation of priority dispatching rules in multi-
level assembly job shops with jobs having weights for flowtime and
tardiness. International Journal of Advanced Manufacturing Technology, 31 (7-8),
751-761.

Nie, L. (2012). Discover scheduling strategies with gene expression programming for
dynamic flexible job shop scheduling problem. Advances in Swarm Intelligence,
7332, 383-390.

Nie, L., Gao, L., Li, P., & Li, X. (2013). A GEP-based reactive scheduling policies

constructing approach for dynamic flexible job shop scheduling problem with job
release dates. Journal of Intelligent Manufacturing, 24 (4), 763-774.

113



O'Cass, A., & Ngo, L.V. (2012). Creating superior customer value for B2B firms
through supplier firm capabilities. Industrial Marketing Management, 41 (1), 125-
135.

Osman, I. H., & Laporte, G. (1996). Metaheuristics: A bibliography. Annals of
Operations Research, 63 (5), 511-623.

Paiva, E. L. (2010) Manufacturing and marketing integration from a cumulative
capabilities perspective. International Journal of Production Economics, 126 (2),
379-386.

Parvatiyar, A., & Sheth, J. (2001). Customer relationship management: emerging
practice, process, and discipline. Journal of Economic and Social Research, 3 (2),
1-34.

Pasupathy, R., & Ghosh, S. (2013). Simulation optimization: A concise overview and

implementation guide. Tutorials in Operations Research, 10, 122-150.

Pegden C.D., Shannon, R.E., & Sadowski R.P. (1990). Introduction to simulation
using SIMAN (1st ed.). New York: McGraw-Hill Inc.

Pinedo, M. L. (2008). Scheduling - theory, algorithms, and systems (2nd ed.). New
York: Springer.

Ponnambalam, S. G., Jawahar, N., & Aravindan, P. (1999). A simulated annealing
algorithm for job shop scheduling. Production Planning and Control, 10 (8), 767-
T77.

Qiu, X., & Lau, H.Y.K. (2013). An AlS-based hybrid algorithm with PDRs for multi-

objective dynamic online job shop scheduling problem. Applied Soft Computing,
13 (3), 1340-1351.

114



Raghu, T.S., & Rajendran, C. (1993). An efficient dynamic dispatching rule for
scheduling in a job shop. International Journal of Production Economics, 32 (3),
301-313.

Rajabinasab, A., & Mansour, S. (2011). Dynamic flexible job shop scheduling with
alternative process plans: an agent based approach. International Journal of
Advanced Manufacturing Technology, 54 (9), 1091-1107.

Rajendran, C., & Holthaus, O. (1999). A comparative study of dispatching rules in
dynamic flowshops and job shops. European Journal of Operations Research, 116
(1), 156-170.

Ramkumar, R., Tamilarasi, A., & Devi, T. (2011). Multi criteria job shop schedule
using fuzzy logic control for multiple machines multiple jobs. International Journal

of Computer Theory and Engineering, 3 (2), 282-286.

Renna, P. (2010). Job shop scheduling by pheromone approach in a dynamic
environment. International Journal of Computer Integrated Manufacturing, 23 (5),
412-424.

Rochette, R., & Sadowski, R. P. (1976). A statistical comparison of the performance
of simple dispatching rules for a particular set of job shops. International Journal
of Production Research, 14 (1), 63-75.

Sarin, S. C., & Jaiprakash, P. (2007). Introduction to the lot streaming problem.
Flowshop lot streaming (1st ed.) (1-32). New York: Springer

Sharma, P., & Jain, A. (2015). Performance analysis of dispatching rules in a stochastic
dynamic job shop manufacturing system with sequence-dependent setup times:
simulation approach. CIRP Journal of Manufacturing Science and Technology, 10,
110-119.

115



Sharma, P., & Jain, A. (2016). A review on job shop scheduling with setup
times. Proceedings of the Institution of Mechanical Engineers Part B: Journal of
Engineering Manufacture, 230 (3), 517-533.

Shen, L. (2008). An extensive tabu search algorithm for solving the lot streaming
problem in a job shop environment. In Proceedings of Operations Research 2007,

Saarbriicken, Germany, 49-54.

Sim, S. K., Yeo, K. T., & Lee, W. H. (1994). An expert neural network system for
dynamic job shop scheduling. International Journal of Production Research, 32
(8), 1759-1773.

Simons Jr, J. V., Kraus, M. E., Mwangola, W., & Burke, G. (2012). Conditional lot
splitting to avoid setups while reducing flow time. American Journal of Operations
Research, 2 (4), 453-466.

Sobeyko, O., & Monch, L. (2016). Heuristic approaches for scheduling jobs in large-
scale flexible job shops. Computers & Operations Research, 68, 97-1009.

Sprague, R. H. (1980). A framework for the development of decision support systems.
MIS Quarterly, 4 (4), 1-26.

Storn, R., & Price, K. (1997). Differential evolution-a simple and efficient adaptive
scheme for global optimization over continuous spaces. Journal of Global
Optimization, 11 (4), 341-359.

Subulan, K., Baykasoglu, A., Eren Akyol, D., & Yildiz, G. (2016). Metaheuristic-
based simulation optimization approach to network revenue management with an
improved self-adjusting bid price function. Retrieved October 27, 2016, from
http://www.tandfonline.com/doi/pdf/10.1080/0013791X.2016.1174323?needAcce

Ss=true.

116


http://www.tandfonline.com/doi/pdf/10.1080/0013791X.2016.1174323?needAccess=true
http://www.tandfonline.com/doi/pdf/10.1080/0013791X.2016.1174323?needAccess=true

Suman, B., & Kumar, P. (2006). A survey of simulated annealing as a tool for single
and multiobjective optimization. Journal of the Operational Research Society, 57
(10), 1143-1160.

Suwa, H., & Sandoh, H. (2012). Online scheduling in manufacturing: a cumulative
delay approach (1st ed.). London: Springer — Verlag.

Swisher, J. R., Hyden, P. D., Jacobson, S. H., & Schruben, L. W. (2000). A survey of
simulation optimization techniques and procedures. In Proceedings of the Winter
Simulation Conference (WSC), Orlando, USA, 119-128.

Swisher, J. R., Hyden, P. D., Jacobson, S. H., & Schruben, L. W. (2004). A survey of
recent advances in discrete input parameter discrete-event simulation
optimization. I11E Transactions, 36 (6), 591-600.

Talbi, E. G. (2009). Metaheuristics: from design to implementation (1 st ed.). New
Jersey: John Wiley & Sons.

Tasgetiren, M. F., Suganthan, P. N., & Pan, Q. K. (2010). An ensemble of discrete
differential evolution algorithms for solving the generalized traveling salesman
problem. Applied Mathematics and Computation, 215 (9), 3356-3368.

Tekin, E., & Sabuncuoglu, I. (2004). Simulation optimization: A comprehensive

review on theory and applications. IIE Transactions, 36, 1067-1081.

Trietsch, D., & Baker, K. R. (1993). Basic techniques for lot streaming. Operations
Research, 41 (6), 1065-1076.

UK Essays. (2015). Customer relationship management the business to business
marketing essay. Retrieved February 2, 2017, from
https://www.ukessays.com/essays/marketing/customer-relationship-management-

the-business-to-business-marketing-essay.php?essayad=carousel&utm_expid=

117



309629-42. KXZ6CCs5RRCgVDyVYVWeng.1&utm_referrer= https%3A%2F%2
Fwww.google.com.tr%2F.

Vaessens, R.J.M., Aarts, E.H., & Lenstra, J.K. (1996). Job shop scheduling by local
search. INFORMS Journal on Computing, 8 (3), 302-317

Vasant, P. M. (2012). Meta-heuristics optimization algorithms in engineering,

business, economics, and finance (1 st ed.). United States: 1GI Global.

Veral, E. A. (2001). Computer simulation of due-date setting in multi-machine job

shops. Computers & Industrial Engineering, 41 (1), 77-94.

Waikar, A. M., Sarker, B. R., & Lal, A. M. (1995). A comparative study of some
priority dispatching rules under different job shop loads. Production Planning &
Control, 6 (4), 301-310.

Wang, S., Xiao, X., Li, F., & Wang, C. (2010). Applied research of improved hybrid
discrete PSO for dynamic job-shop scheduling problem. In Proceedings of the IEEE
conference on Intelligent Control and Automation (WCICA), Jinan, China, 4065-
4068.

Wang, H.Y., Zhao, Y.W., Xu, X., & Wang, W.L. (2008). A batch splitting job shop
scheduling problem with bounded batch sizes under multiple-resource constraints
using genetic algorithm. In Proceedings of the IEEE conference on Cybernetics and
Intelligent Systems (CIS), London, United Kingdom, 220-225.

Xiang, W., Song, F., & Ye, F. (2014). Order allocation for multiple supply-demand
networks within a cluster. Journal of Intelligent Manufacturing, 25 (6), 1367-1376.

Yoon, S. H.,, & Ventura, J. A. (2002). Minimizing the mean weighted absolute

deviation from due dates in lot streaming flow shop scheduling. Computers &
Operations Research, 29 (10), 1301-1315.

118



Zhang, L., Gao, L., & Li, X. (2013). A hybrid genetic algorithm and tabu search for
multi-objective dynamic job shop scheduling problem. International Journal of
Production Research, 51 (12), 3516-3531.

Zhong, R. Y., Huang, G. Q., Lan, S., Dai, Q., Zhang, T., & Xu, C. (2015). A two-level
advanced production planning and scheduling model for RFID-enabled ubiquitous

manufacturing. Advanced Engineering Informatics, 29, 799-812.
Zhou, R., Nee, A. Y. C.,, & Lee, H. P. (2009). Performance of an ant colony

optimization algorithm in dynamic job shop scheduling problems. International
Journal of Production Research, 47 (11), 2903-2920.

119



APPENDICES

APPENDIX Al Multiple Pairwise Comparison Results of Weight Set 1

Table Al.a Results of multiple pairwise comparisons (expo (850), k=1.5)

Lower Upper Lower Upper Lower Upper

comparison e [jmit  COMPAMSON e L imie  COMPANSON it Limit
1-2 0.053 0.077 2-9 -0.028 -0.004 5-6 -0.006 0.019
1-3 -0.017  0.007 2-10 -0.011 0.013 5-7 -0.009 0.015
1-4 -0.044 -0.020 3-4 -0.039 -0.015 5-8 0.011 0.035
1-5 0.031 0.055 3-5 0.035 0.060 5-9 -0.006 0.019
1-6 0.037 0.061 3-6 0.042 0.066 5-10 0.011 0.036
1-7 0.033 0.058 3-7 0.038 0.062 6-7 -0.016 0.008
1-38 0.053 0.078 3-8 0.058 0.082 6-8 0.004 0.028
1-9 0.037 0.061 3-9 0.042 0.066 6-9 -0.012 0.012
1-10 0.054 0.078 3-10 0.059 0.083 6-10 0.005 0.029
2-3 -0.082 -0.058 4-5 0.062 0.087 7-8 0.008 0.032
2-4 -0.109 -0.084 4-6 0.069 0.093 7-9 -0.009 0.016
2-5 -0.034 -0.010 4-7 0.065 0.089 7-10 0.008 0.033
2-6 -0.028 -0.004 4-8 0.085 0.109 8-9 -0.029 -0.004
2-7 -0.032 -0.007 4-9 0.069 0.093 8-10 -0.012 0.013
2-8 -0.012  0.013 4-10 0.085 0.110 9-10 0.005 0.029
Table Al.b Results of multiple pairwise comparisons (expo (850), k=2)
. Lower Upper . Lower Upper . Lower Upper
Comparison Limit L?r'?]it Comparison Limit L?r?ﬂt Comparison Limit L?r?ﬂt
1-2 0.042  0.068 2-9 -0.025 0.001 5-6 -0.009 0.017
1-3 -0.020  0.006 2-10 -0.013  0.013 5-7 -0.011 0.015
1-4 -0.047 -0.021 3-4 -0.040 -0.014 5-8 -0.002 0.024
1-5 0.026  0.051 3-5 0.033 0.059 5-9 -0.009 0.017
1-6 0.030 0.055 3-6 0.037 0.063 5-10 0.003 0.029
1-7 0.027  0.053 3-7 0.035 0.061 6-7 -0.015 0.011
1-8 0.036  0.062 3-8 0.044 0.069 6-8 -0.006 0.020
1-9 0.029  0.055 3-9 0.037 0.063 6-9 -0.013 0.013
1-10 0.042  0.067 3-10 0.049 0.075 6-10  -0.001 0.025
2-3 -0.075 -0.049 4-5 0.060 0.085 7-8 -0.004 0.022
2-4 -0.102 -0.076 4-6 0.064 0.089 7-9 -0.011 0.015
2-5 -0.029 -0.003 4-7 0.061 0.087 7-10 0.001 0.027
2-6 -0.025 0.001 4-8 0.070  0.096 8-9 -0.020 0.006
2-7 -0.027 -0.002 4-9 0.064 0.089 8-10  -0.008 0.018
2- 8 -0.018  0.008 4-10 0.076 0.101 9-10 -0.001 0.025
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Table Al.c Results of multiple pairwise comparisons (expo (1000), k=1.5)

. Lower Upper . Lower Upper . Lower Upper
Comparison Limit L?rgﬂt Comparison Limit Lli)rlr)nt Comparison Limit L?rgit
1-2 0.018 0.033 2-9 -0.020 -0.005 5-6 -0.010  0.005
1-3 -0.019 -0.004 2-10 -0.008 0.007 5-7 -0.012  0.003
1-4 -0.036 -0.021 3-4 -0.024 -0.009 5-8 -0.002 0.013
1-5 0.008 0.023 3-5 0.020 0.035 5-9 -0.010  0.005
1-6 0.006  0.021 3-6 0.018 0.033 5-10 0.002 0.017
1-7 0.004 0.019 3-7 0.016 0.031 6-7 -0.009  0.006
1-8 0.014 0.029 3-8 0.026 0.041 6-8 0.001 0.016
1-9 0.006  0.021 3-9 0.018 0.033 6-9 -0.008  0.008
1-10 0.018 0.033 3-10 0.030 0.045 6-10 0.005 0.020
2-3 -0.045 -0.030 4-5 0.037 0.052 7-8 0.003 0.018
2-4 -0.062 -0.047 4-6 0.034 0.049 7-9 -0.006  0.009
2-5 -0.017 -0.002 4-7 0.033 0.047 7-10 0.007 0.022
2-6 -0.020 -0.005 4-8 0.043 0.058 8-9 -0.016 -0.001
2-7 -0.022 -0.007 4-9 0.034 0.049 8-10 -0.004 0.011
2-8 -0.011  0.004 4-10 0.047 0.062 9-10 0.005 0.020

Table Al.d Results of multiple pairwise comparisons (expo (1000), k=2)

Lower Upper Lower Upper Lower Upper

Comparison iy [jmit  COMPAMSON e Limje  COMPANSON i Limit
1-2 0006 0020 2-9  -0015 0001 5-6 -0.008 0.006
1-3 -0021 -0007 2-10 -0006 0008 5-7  -0.009 0.005
1-4  -0037 -0023 3-4  -0023 0009 5-8 -0.001 0014
1-5 0001 0013 3-5 0012 0026 5-9 -0.008 0.006
1-6  -0002 0012 3-6 0011 0025 5-10 0001 0.015
1-7 0004 0011 3-7 0010 0024 6-7 -0.008 0.006
1-8 0005 0019 3-8 0019 0033 6-8 0000 0.015
1-9  -0002 0012 3-9 0011 0025 6-9  -0.007 0.007
1-10 0007 0021 3-10 0020 0034 6-10 0002 0.016
2-3  -0034 -0019 4-5 0029 0043 7-8 0002 0.016
2-4 0050 -0036 4-6 0.028 0042 7-9  -0.006 0.008
2-5 0014 0000 4-7 0.026 0040 7-10  0.003 0.017
2-6  -0015 -0.001 4-8 0035 0049 8-9  -0.015 0.000
2-7 0017 -0002 4-9 0.028 0042 8-10 -0.006 0.008
2-8 -0008 0006 4-10 0036 0050 9-10  0.002 0.016
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APPENDIX A2 Multiple Pairwise Comparison Results of Weight Set 2

Table A2.a Results of multiple pairwise comparisons (expo (850), k=1.5)

Lower Upper Lower Upper Lower Upper

Comparison Comparison Comparison

Limit Limit Limit Limit Limit Limit
1-2 0.034  0.055 2-9 -0.021 -0.001 5-6 -0.014  0.007
1-3 -0.017  0.003 2-10 -0.009 0.012 5-7 -0.026  -0.005
1-4 -0.057 -0.036 3-4 -0.050 -0.029 5-8 -0.002  0.019
1-5 0.027  0.048 3-5 0.034 0.055 5-9 -0.014  0.007
1-6 0.024 0.044 3-6 0.031 0.051 5-10 -0.002  0.019
1-7 0.012 0.032 3-7 0.019 0.039 6-7 -0.022 -0.002
1-8 0.036  0.056 3-8 0.043 0.063 6-8 0.002  0.022
1-9 0.023 0.044 3-9 0.030 0.051 6-9 -0.011  0.010
1-10 0.035 0.056 3-10 0.043 0.063 6-10 0.002  0.022
2-3 -0.062 -0.041 4-5 0.074 0.094 7-8 0.014 0.034
2-4 -0.101 -0.081 4-6 0.070 0.091 7-9 0.001  0.022
2-5 -0.017  0.003 4-7 0.058 0.079 7-10 0.014 0.034
2-6 -0.021  0.000 4-8 0.082 0.103 8-9 -0.023 -0.002
2-7 -0.033 -0.012 4-9 0.070  0.091 8-10 -0.010 0.010
2-8 -0.009 0.012 4-10 0.082 0.103 9-10 0.002  0.022
Table A2.b Results of multiple pairwise comparisons (expo (850), k=2)
. Lower Upper . Lower Upper . Lower Upper
Comparison Limit L?r[r)nt Coglierison Limit Lﬁfr)\it Comparison Limit L?rzit
1-2 0.026 0.048 2-9 -0.020 0.002 5-6 -0.012 0.010
1-3 -0.020 0.002 2-10 -0.011 0.012 5-7 -0.019 0.003
1-4 -0.058 -0.036 3-4 -0.049 -0.027 5-8 -0.003 0.019
1-5 0.018 0.040 3-5 0.027 0.049 5-9 -0.013 0.010
1-6 0.017 0.039 3-6 0.026 0.048 5-10 -0.003 0.019
1-7 0.010 0.032 3-7 0.019 0.041 6-7 -0.018 0.004
1-8 0.026 0.048 3-8 0.035 0.057 6-8 -0.002 0.020
1-9 0.017 0.039 3-9 0.026 0.048 6-9 -0.011 0.011
1-10 0.026 0.048 3-10 0.035 0.057 6-10 -0.002 0.020
2-3 -0.057 -0.035 4-5 0.065 0.087 7-8 0.005 0.027
2-4 -0.095 -0.073 4-6 0.064 0.086 7-9 -0.004 0.018
2-5 -0.018 0.004 4-7 0.057 0.079 7-10 0.005 0.027
2-6 -0.020 0.002 4-8 0.073 0.095 8-9 -0.021 0.001
2-7 -0.027 -0.005 4-9 0.064 0.086 8-10 -0.011 0.011
2-8 -0.010 0.012 4-10 0.073 0.095 9-10 -0.002 0.020
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Table A2.c Results of multiple pairwise comparisons (expo (1000), k=1.5)

. Lower Upper . Lower Upper . Lower Upper
Comparison Limit L?rgﬂt Comparison Limit Lli)rlr)nt Comparison Limit L?rgit
1-2 0.005 0.019 2-9 -0.016 -0.002 5-6 -0.015 -0.001
1-3 -0.021 -0.007 2-10 -0.005 0.009 5-7 -0.020 -0.006
1-4 -0.050 -0.036 3-4 -0.036 -0.022 5-8 -0.005 0.009
1-5 0.004 0.018 3-5 0.018 0.032 5-9 -0.015 -0.001
1-6 -0.004 0.011 3-6 0.010 0.024 5-10 -0.004 0.010
1-7 -0.008  0.006 3-7 0.005 0.019 6-7 -0.012  0.002
1-8 0.006  0.020 3-8 0.020 0.034 6-8 0.003 0.017
1-9 -0.004 0.011 3-9 0.010 0.024 6-9 -0.007  0.007
1-10 0.007 0.021 3-10 0.021 0.035 6-10 0.004 0.018
2-3 -0.033 -0.019 4-5 0.047 0.061 7-8 0.008 0.022
2-4 -0.062 -0.048 4-6 0.039 0.053 7-9 -0.002 0.012
2-5 -0.008 0.006 4-7 0.034 0.048 7-10 0.009 0.023
2-6 -0.016 -0.002 4-8 0.049 0.063 8-9 -0.017 -0.003
2-7 -0.021 -0.007 4-9 0.039 0.053 8-10 -0.006  0.008
2-8 -0.006  0.008 4-10 0.050 0.064 9-10 0.004 0.018

Table A2.d Results of multiple pairwise comparisons (expo (1000), k=2)

Lower Upper Lower Upper Lower Upper

comparison - i [mit  COMPAMSON e Limie  COMPANSON e Limit
1-2 0003 0009 2-9  -0012 0000 5-6 -0.014 -0.001
1-3 0020 -0008 2-10 -0003 0010 5-7  -0.016 -0.004
1-4 0039 -0026 3-4  -0025 0012 5-8 -0.006 0.006
1-5 0002 0011 3-5 0013 0025 5-9 -0014 -0.001
1-6  -0009 0004 3-6 0.005 0018 5-10 -0.005 0.008
1-7 0011 0001 3-7 0.003 0015 6-7 -0009 0.004
1-8  -0002 0011 3-8 0013 0025 6-8 0001 0.014
1-9  -0009 0004 3-9 0.005 0018 6-9 -0006 0.006
1-10 0000 0013 3-10 0014 0027 6-10  0.003 0.015
2-3 0024 -0011 4-5 0031 0043 7-8 0004 0.016
2-4 0042 -0029 4-6 0023 0036 7-9 -0004 0.009
2-5  -0005 0008 4-7 0021 0034 7-10 0005 0.018
2-6  -0012 0000 4-8 0031 0043 8-9 -0014 -0.001
2-7 0014 -0002 4-9 0.023 0036 8-10 -0005 0.008
2-8 -0005 0008 4-10 0033 0045 9-10 0003 0.015
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APPENDIX A3 Multiple Pairwise Comparison Results of Weight Set 3

Table A3.a Results of multiple pairwise comparisons (expo (850), k=1.5)

Lower Upper Lower Upper Lower Upper

Comparison Comparison Comparison

Limit Limit Limit Limit Limit Limit
1-2 0.017 0.034 2-9 -0.017 0.001 5-6 -0.025 -0.008
1-3 -0.018  0.000 2-10 0.002 0.019 5-7 -0.034 -0.016
1-4 -0.042 -0.025 3-4 -0.033 -0.015 5-8 -0.007 0.010
1-5 0.025 0.042 3-5 0.034 0.052 5-9 -0.026  -0.008
1-6 0.008 0.026 3-6 0.018 0.035 5-10 -0.007 0.011
1-7 0.000 0.018 3-7 0.009 0.027 6-7 -0.017  0.001
1-8 0.026 0.044 3-8 0.036 0.053 6-8 0.009  0.027
1-9 0.008 0.026 3-9 0.017 0.035 6-9 -0.009  0.009
1-10 0.027 0.044 3-10 0.036 0.054 6-10 0.010 0.027
2-3 -0.043 -0.026 4-5 0.058 0.076 7-8 0.018 0.035
2-4 -0.067 -0.050 4-6 0.042 0.059 7-9 -0.001  0.017
2-5 0.000 0.017 4-7 0.034 0.051 7-10 0.018 0.035
2-6 -0.017  0.001 4-8 0.060 0.077 8-9 -0.027 -0.009
2-7 -0.025 -0.008 4-9 0.042 0.059 8-10 -0.008  0.009
2-8 0.001 0.019 4-10 0.060 0.078 9-10 0.010 0.027
Table A3.b Results of multiple pairwise comparisons (expo (850), k=2)
. Lower Upper . Lower Upper . Lower Upper
Comparison Limit L?r[r)nt Coglierison Limit Lﬁfr)\it Comparison Limit L?:r)\it

1-2 0.010 0.029 2-9 -0.017 0.003 5-6 -0.027 -0.008
1-3 -0.021 -0.002 2-10 0.000 0.020 5-7 -0.032 -0.013
1-4 -0.046 -0.027 3-4 -0.035 -0.015 5-8 -0.010 0.010
1-5 0.020 0.039 3-5 0.032 0.051 5-9 -0.027 -0.008
1-6 0.003 0.022 3-6 0.014 0.034 5-10 -0.010 0.009
1-7 -0.002 0.017 3-7 0.009 0.029 6-7 -0.015 0.005
1-8 0.020 0.039 3-8 0.031 0.051 6-8 0.007 0.027
1-9 0.003 0.022 3-9 0.014 0.034 6-9 -0.010 0.010
1-10 0.019 0.039 3-10 0.031 0.050 6-10 0.007 0.027
2-3 -0.041 -0.021 4-5 0.056 0.076 7-8 0.012 0.032
2-4 -0.065 -0.046 4-6 0.039 0.058 7-9 -0.005 0.015
2-5 0.001 0.020 4-7 0.034 0.054 7-10 0.012 0.031
2-6 -0.017 0.003 4-8 0.056 0.076 8-9 -0.027 -0.007
2-7 -0.022 -0.002 4-9 0.039 0.058 8-10 -0.010 0.009
2-8 0.000 0.020 4-10 0.056 0.075 9-10 0.007 0.027
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Table A3.c Results of multiple pairwise comparisons (expo (1000), k=1.5)

. Lower Upper . Lower Upper . Lower Upper
Comparison Limit L?nr;it Comparison Limit Lli)rlr)nt Comparison Limit L?rgit
1-2 -0.003 0.007 2-9 -0.013 -0.002 5-6 -0.023 -0.012
1-3 -0.021 -0.010 2-10 0.006 0.017 5-7 -0.025 -0.014
1-4 -0.031 -0.020 3-4 -0.015 -0.005 5-8 -0.006  0.005
1-5 0.007 0.018 3-5 0.022 0.033 5-9 -0.023 -0.012
1-6 -0.011 0.000 3-6 0.005 0.015 5-10 -0.004 0.006
1-7 -0.012 -0.002 3-7 0.003 0.014 6-7 -0.007 0.004
1-8 0.006 0.017 3-8 0.022 0.032 6-8 0.012 0.022
1-9 -0.011 0.000 3-9 0.005 0.015 6-9 -0.005 0.005
1-10 0.008 0.019 3-10 0.023 0.034 6-10 0.013 0.024
2-3 -0.023 -0.012 4-5 0.032 0.043 7-8 0.013 0.024
2-4 -0.033 -0.022 4-6 0.015 0.026 7-9 -0.004  0.007
2-5 0.005 0.016 4-7 0.013 0.024 7-10 0.015 0.026
2-6 -0.013 -0.002 4-8 0.032 0.042 8-9 -0.022 -0.012
2-7 -0.014 -0.004 4-9 0.015 0.026 8-10 -0.004  0.007
2-8 0.004 0.015 4-10 0.033 0.044 9-10 0.013  0.024

Table A3.d Results of multiple pairwise comparisons (expo (1000), k=2)

Lower Upper Lower Upper Lower Upper

comparison e (mit  COMPAMSON e Limie  COMPANSON e Limit
1-2  -0011 0000 2-9  -0010 0001 5-6 -0.019 -0.008
1-3  -0020 -0009 2-10 0005 0017 5-7  -0.023 -0.011
1-4  -0042 -0030 3-4  -0027 0016 5-8  -0.006 0.005
1-5  -0.003 0009 3-5 0012 0024 5-9 -0019 -0.008
1-6  -0.016 -0005 3-6  -000L 0010 5-10 -0.004 0.008
1-7  -0019 -0008 3-7  -0005 0007 6-7 -0.009 0.002
1-8  -0.003 0009 3-8 0012 0023 6-8 0008 0.019
1-9  -0016 -0005 3-9  -000L 0010 6-9  -0.006 0.006
1-10 0000 0011 3-10 0014 0026 6-10 0010 0021
2-3  -0015 -0.003 4-5 0034 0045 7-8 0011 0.022
2-4  -0036 -0025 4-6 0020 0031 7-9  -0002 0.009
2-5 0.003 0015 4-7 0017 0028 7-10 0013 0.025
2-6  -0010 0001 4-8 0033 0045 8-9 -0019 -0.008
2-7  -0014 -0002 4-9 0020 0031 8-10 -0.003 0.008
2-8 0003 0014 4-10 0036 0047 9-10 0010 0021
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