


CLASSIFICATION OF LUNG CT IMAGES USING DEEP
CONVOLUTIONAL NEURAL NETWORK

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
GAZI UNIVERSITY

BY
Homay DANAEI MEHR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
COMPUTER ENGINEERING

DECEMBER 2017



The thesis study titled “CLASSIFICATION OF LUNG CT IMAGES USING DEEP
CONVOLUTIONAL NEURAL NETWORK?” is submitted by Homay DANAEI MEHR in partial
fulfillment of the requirements for the degree of Master of Science in the Department of Computer
Engineering, Gazi University by the following committee.

Supervisor: Asst. Prof. Dr. Hiiseyin POLAT
Department of Computer Engineering, Gazi University

I certify that this thesis is a graduate thesis in terms of quality and content L

Chairman: Asst. Prof. Dr. Javad RAHEBI

Department of Electric-Electronic Engineering, University of Turkish Aeronautical Association

I certify that this thesis is a graduate thesis in terms of quality and content L

Member: Asst. Prof. Dr. Cemal KOCAK
Department of Computer Engineering, Gazi University

| certify that this thesis is a graduate thesis in terms of quality and content

Date: 20/12/2017

I certify that this thesis, accepted by the committee, meets the requirements for being a Master of

Science Thesis.

Prof. Dr. Hadi GOKCEN

Dean of Graduate School of Natural and Applied Sciences



ETHICAL STATEMENT

| hereby declare that in this thesis study | prepared in accordance with thesis writing rules of

Gazi University Graduate School of Natural and Applied Sciences;

All data, information and documents presented in this thesis have been obtained within
the scope of academic rules and ethical conduct,

All information, documents, assessments and results have been presented in accordance
with scientific ethical conduct and moral rules,

All material used in this thesis that are not original to this work have been fully cited and
referenced,

No change has been made in the data used,

The work presented in this thesis is original,

or else, I admit all loss of rights to be incurred against me.

Homay DANAEI MEHR
20/12/2017



iv
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OZET

Akciger kanseri, kadinlarda ve erkeklerde diinyada en yaygin goriilen kanser tiirlerinden
biridir. Akciger kanserinden 6liim orani, diger kanser tiirlerine oranla %70’ in iizerindedir,
bundan dolayr Amerikan Kanser Dernegi tarafindan 2016 yilinda en agresif kanser tiirli
olarak tanimlanmistir. Akciger kanserinin erken teshisi hastalarin hayatta kalma oranini
artirabilir. Bunun i¢in makine O6grenme teknikleri kullanilarak medikal goriintiilerin
siniflandirilmasi, akciger kanserinin erken teshisinde islem hizin1 artirarak doktorlara
yardimer olabilir. Geleneksel makine 6grenme teknikleri ile karsilastirildiginda, derin
ogrenme metotlari, otomatik 6znitelik ¢ikarma kabiliyetine sahip olduklari i¢in daha etkin
metotlardirlar. Bu tezde, Data Science Bowl ve Kaggle veri setindeki akciger tomografi
goriintiileri tlizerinden akciger kanserinin teshisi i¢in bir derin 6grenme metodu olarak
evrisimsel sinir aglart kullanilmistir. Akciger tomografi goriintiilerinin saglikli ve hastalikli
olarak siniflandirilmasi i¢in evrigimsel sinir aglarmin AlexNet ve GoogleNet mimarileri
kullanilmigtir. AlexNet ve GoogleNet mimarileri ile siniflandirmada sirasiyla %95.919 ve
%96.360 dogruluk oranlar1 elde edilmistir. Evrisimsel sinir aglarimin bu iki mimarisi
karsilagtirildiginda, GoogleNet mimarisinin, AlexNet mimarisine gore akciger tomografi
goriintiilerinin siniflandirilmasinda daha yiiksek dogruluk oranina ulastigi goriilmustiir.
Sonug¢ olarak, derin 6grenme yontemleri kullanilarak akciger tomografi goriintiilerinin
siiflandirilmasi ile, zorlamasiz bir yontemle akciger kanserinin erken tanisina iligskin daha
fazla bilgi elde edilebilecegi gosterilmistir.
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ABSTRACT

Lung cancer is one of the mostly observed cancer types in both men and women worldwide.
Mortality rate of over 70% put the lung cancer among the most aggressive cancers list in
2016 by American Cancer Society. However, early diagnosis of lung cancer would increase
survival rate of patients. To this, Machine learning techniques for classification of medical
images is used to assist physicians in order to accelerate diagnosis process. In comparison
with shallow machine learning techniques, deep learning methods are more effective as they
are capable of extracting features automatically. In this thesis, Convolutional Neural
Network is used as one of the deep learning methods to diagnose lung cancer over the lung
CT images of Data Science Bowl and Kaggle dataset. AlexNet and GoogleNet are two
architectures of Convolutional Neural Network which are used to classify lung CT images
as benign and malignant. AlexNet and GoogleNet architectures achieved 95.919% and
96.360% accuracy rates respectively in classification of lung CT images. By comparison two
architectures of Convolutional Neural Networks, it is demonstrated that GoogleNet
architecture achieved higher accuracy rate than AlexNet architecture in classification of lung
CT scan images. In conclusion, it has been proved that with the classification of the lung CT
scan images using deep learning methods, more information concerning early diagnosis of
lung cancer may be obtained with a noninvasive method.

Science Code : 92431

Key Words : Lung Cancer Diagnosis, Deep Learning, Convolutional Neural
Networks, Computed Tomography

Page Number : 94

Supervisor  : Asst. Prof. Dr. Hiiseyin POLAT



Vi

ACKNOWLEDGEMENTS

Firstly, 1 am ever grateful to God, the Creator, and the Guardian, and to whom | owe my

very existence.

Foremost, | would like to express my sincere gratitude to my advisor Assist. Prof. Dr.
Hiiseyin POLAT for the continuous support of my thesis, for his patience, motivation,
enthusiasm, and immense knowledge. His guidance helped me in all the time of research
and writing of this thesis. | could not have imagined having a better advisor and mentor for

my study.

We gratefully acknowledge the support of NVIDIA Corporation with the
donation of the Titan X Pascal GPU used for this research.

I would like to thank my thesis committee for providing crucial practical guidance.

My special thanks go to my beloved mother and father, the healer of my mental twinges and

a cure-all for all tortures of mind.

Finally, I am indebted to my special person in my life, Farid for his valuable help and moral
support.



CONTENTS

CONTENTS . s
LIST OF TABLES ... ..ot
LIST OF FIGURES ...

SYMBOLS AND ABBREVIATIONS ..ottt
1. INTRODUCTION ...ttt
2. MATERIAL AND METHODS .........c.cotiiiiiitieitei s

2.1. Artificial Neural NEtWOIKS. ..........cocoiiiiiiiiiie st
2.1.1. PEICEPIION CONCEPL ... uiiiiiiieieeiiaiiente ettt sre e sn et b s e
2.1.2. ACtiVation FUNCLIONS .........ouiiiiiiiiiicieieseeeese e
2.1.3. Multilayer PErceptron ..........cocooeiiiiiieieieiese e
2.1.4. Gradient descent algorithm ..........c.cccoooiiiiiicc e
2.1.5. Backpropagation algorithmi...........cccooeiiiiiniiieeee e

2.2. Deep Learning and Convolutional Neural Networks...........ccccceevveiieiiieiiecinnns
2.2.1. Architecture of convolutional neural Networks...........cccoeveviiencicnennen
2.2.2. SOFtMAX FUNCHION ...t
2.2.3. Different architectures 0f CNN ........cooiiiiiiiei e

3. EXPERIMENTAL RESULTS ..ottt

3.1. AlexNet Architecture For Classification Of Lung CT Scan Images...................

3.2. GoogleNet Architecture For Classification Of Lung CT Scan Images...............

3.3. Performance MELICS ........ooviiiirieieise e

4. CONCLUSION ....cootiiiiicieee e

vii

Page

Vi

vii



REFERENCES

CURRICULUM VITAE



Table

Table 3.1.

Table 3.2.

Table 3.3.

Table 3.4.

Table 3.5.

Table 3.6.

Table 3.7.

LIST OF TABLES

Page
Summary of AlexNet architecture in classification of lung CT scan
LT TSSO 52
Summary of GoogleNet architecture in classification of lung CT scan
TINIAQES .. veeve ettt ettt ettt et e st e e e s b et e e e e e et e et e Rt et e e te R e e re e te e e nreereenne e 73
(@001 1] o] g I 0111 TSP 74
Confusion matrix of testing the five times trained AlexNet and
GOOGIENEL ...t 75
Summary of AlexNet and GoogleNet accuracy rateS............cccceevvervrervesneennn. 76
Training time of AlexNet and GoogleNet for classification of lung CT
SCAN,........ Wi A R 77



Figure

Figure 1.1.

Figure 1.2.
Figure 2.1.
Figure 2.2.
Figure 2.3.
Figure 2.4.
Figure 2.5.
Figure 2.6.
Figure 2.7.
Figure 2.8.
Figure 2.9.
Figure 2.10.

Figure 2.11.

Figure 2.12.
Figure 2.13.
Figure 2.14.
Figure 2.15.
Figure 2.16.
Figure 2.17.
Figure 2.18.
Figure 2.19.

Figure 2.20.

Figure 3.1.

LIST OF FIGURES

Small cell cancer cells (SCLC) and non-small cell cancer cells
(NSCLC) ittt sttt st nre b se b

Lung cancer in right lobe of patient’s lung achieved by CT scan ..............
The structure of a biological NeUroN ...
Single layer PErCePIrON .........cooiiiiieieee e
Linear separable (left), Nonlinear separable (right).........c.ccccovevivvenirnnnene.
Logistic sigmoid function diagram ........ccceoerererisinenene s
Hyperbolic tangent diagram............ccccooviiiiieiiccc e
GaUuSSIAN TUNCLION ...ttt nes
Rectified linear unit's function diagram.........ccccccoceivieiieniiie i
Multilayer Perceptron ANN with one hidden layer and one output...........
Multilayer Perceptron ANN with 2 hidden layers and 2 output unit..........
3D volume of neuron in CNIN StIUCTUTE.........ccvvieiieie e

Input size of 5x5 with filter by 3x3 size and 1 for zero padding (left),
output by 5X5 S1Z€ (TIZNL)....vvirieiiieiiiee e

Example of local connection in the first convolutional layer .....................
The fully connected architecture (left), local connections (right) ..............
Example of CNIN architeCture...........ccveiiiiiie e
Examples of max and average pooling .........ccccoeviviniininienene e
AlexNet architecture by using two GPU ...
The structure of network in NEtWOrK...........cccevvvieiieie e
Inception MOdule StTUCTUIE ........oooviiiiece s
GOOgIENEt arChitECIUIE ......vvevveie e

Replacement of each 5x5 filter size by two 3x3 filter size in inception
MOTUIE ..o

Example of malignant samples (left) and benign samples (right) ..............

Page



Figure

Figure 3.2.

Figure 3.3.
Figure 3.4.

Figure 3.5.

Figure 3.6.
Figure 3.7.
Figure 3.8.
Figure 3.9.

Figure 3.10.

Figure 3.11.
Figure 3.12.

Figure 3.13.

Figure 3.14.

Figure 3.15.
Figure 3.16.

Figure 3.17.

Figure 3.18.

Figure 3.19.

Figure 3.20.

Figure 3.21.

Figure 3.22.

Input image (left), Applied filters (middle), the output of the first
convolutional layer after applying filters by [96x55x55] size (right) ........

The first normalization layer by [96X55X55] S1Z€ ....cevvvrvvrivenieiiriieriesnen
The first pooling layer by [96X27X27] c..ocveiiieiiieieese e

256 kernels of 3x3 size (left), output of convolutional layer by
[256X13X13] S1Z€ (T1ZNL) .euveeiieiiiieiie e

Output of the pooling layer by [256X6X6] SIZE€ ......cceevevrveeieeniiieiieiieenie
The first fully connected layer ...
The second fully connected layer ..o
The third fully connected layer by softmax classifier.............c.cccoovevennne.

Input image (left), 64 kernels of 7x7 sizes (middle), output of
convolutional layer by [64x112x112] size (right) .........ccccoveveviieiveieinennn.

First pooling layer by [64X56X56] SIZ€ ....c.ccvevivirriiiiiiieiieneene e
First normalization layer by [64X56X56] S1Z€ .......ccceviiviiiiiiiiiiiiicien,

64 kernels of 1x1 size (left), output of convolutional layer by
[192X56X56] S1Z€ (T1ZNL) ....veiiieiiiieiiieiiee et

192 kernels of 3x3 size (left), output of convolutional layer by
[192X56X56] S1Z€ (T1ZNL) ....veiiiriiiieiiiieiiee e

Output of the second normalization layer by [192x56%56] size ................
Output of the second pooling layer by [192x28%28] SIZ€ ......c.cceevvervvruennne.

1x1 kernel size (left), output of the convolutional by [64x28%28] size
(FIGNE) e

96 kernels of 1x1 (left), output of convolutional by [96x28x28] size
(FIGND) e

128 kernels of 3x3 (left), output of convolutional by [128x28x28] size
(FTGNE) e e

16 kernels of 1x1 (left), output of convolutional by [16x28x28] size
(T L) U SR

32 kernels of 5x5 (left), output of convolutional by [32x28x28] size
(T L) U SR

Output of pooling layer of inception 3(a) by [32x28x28] Size...........c.c.....

Xi

Page



Figure

Figure 3.23.

Figure 3.24.

Figure 3.25.

Figure 3.26.

Figure 3.27.

Figure 3.28.

Figure 3.29.

Figure 3.30.

Figure 3.31.

Figure 3.32.

Figure 3.33.
Figure 3.34.
Figure 3.35.
Figure 3.36.
Figure 3.37.
Figure 3.38.

Figure 3.39.

128 kernels of 1x1 (left), output of convolutional by [32x28x28] size
(T L SRS

The output of inception module 3(a) by [256%28X28] S1Z€.....cccvvrvrrruernnnn.

64 kernels by 1x1 size (left), convolutional layer by [64x28%28] size
(T L) SRR

384 kernels by 1x1 size (left), output of convolutional by [384%x7x7]
SIZE (FTGNT) oo

192 kernels by 1x1 size (left), output of convolutional by [192x7x7]
SIZE (MTGNT) oo

384 kernels by 3x3 size (left), output of convolutional by [384x7x7]
SIZE (FTGNT) .o

48 kernels by 1x1 size (left), output of convolutional by [48%7%7]
SIZE (FTGNT) .o

128 kernels by 5x5 size (left), output of convolutional by [128x7%7]
SIZE (MTGNT) .o e

Output of the max pooling layer by [832X7X7] S1Z€....c.cccovervriieeiieeriieennn.

128 kernels by 1x1 size (left), output of convolutional by [128x7x7]
S PA= N (10| 110 USSP

Concatenation of inception module 5(b) by [1024X7x7] size .......ccccvvenee.
Output of avg pooling layer by [1024X1X1] SIZ€.....ccvverireeireriiieiieiieenee
Classified lung CT scan images by SOftmaX.........c.cocvvvvvrrenenenineseen
The loss diagram of the training dataset for AlexNet............ccccceeevvevnnnn
The loss diagram of the training dataset for GoogleNet...........ccccccevveneee.
Learning rate of training phase by AleXNet.........c.cccccvviviiiiiiiccie e,

Learning rate of training phase by GoogleNet.............cccccvvvveviviveiciernennnn

Xii

Page



Xiii

SYMBOLS AND ABBREVIATIONS

The symbols and abbreviations used in this thesis are presented below along with

explanations.

Abbreviations Description

ANN Anrtificial Neural Network

BVLC Berkeley Vision and Learning Center

CADe Computer-Aided Detection

CADx Computer-Aided Diagnosis

CNN Convolutional Neural Network

CT Computed Tomography

Cuda Computer unified device architecture

DBN Deep Belief Networks

DICOM Digital Imaging and Communications in Medicine
Digits Deep Learning GPU Training System

DLCS Danish Lung Cancer Screening

DNN Deep Neural Network

DSN Deep Stacking Networks

FDA Food and Drug Administration

FN False Negative

FP False Positives

IDRI Image Database Resource Initiative

ILD Interstitial Lung Disease

ILSVRC ImageNet Large Scale Visual Recognition challenge
JSRT Japanese Society of Radiological Technology
KNN K Nearest Neighborhood

LBP Local Binary Pattern

LIDC Lung Image Database Consortium

LSTM Long Short Term Memory

LUNA Lung Nodule Analysis

MID Multicentric Italian Lung Detection

MLP Multilayer Perceptron



Abbreviations

MSE
MTANN
NSCLC
PNG
RBM
Relu
RNN
ROC
SAE
SCLC
SDAE
SGD
SIFT

SVM 3D matrix

SVM
TN
TP

Description

Mean Squared Error

Massive Training Artificial Neural Network
Non-Small Cell Lung Cancer

Portable Network Graphics

Restricted Boltzmann Machine

Rectified linear unit

Recurrent Neural Networks

Receiver Operating Characteristic

Stacked Auto Encoder

Small Cell Lung Cancer

Stacked Denoising Auto Encoder
Stochastic gradient descent

Scale Invariant Feature Transform

SVM based on three dimensional matrixes
Support Vector Machine

True Negative

True Positive
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1. INTRODUCTION

Cancer, an emotive subject of our age which millions of people worldwide struggling with
and there is still no final cure for it. However, taking it under control by early detection can
be a way to at least increase the survival rate. There are hundreds of different types of cancer
which were observed up to date, and most of which are deadly. Based on the location and
the type of tumor whether it is benign or malignant a physician can make decision for
treatment. However, diagnosis of tumor type is a laborious procedure and in some cases, it
is needed to get the patient under surgical operation and remove part of the tumor and find
out in the laboratory whether it is malignant or benign.

Coming after prostate and breast cancer, lung cancer is the second mostly observed cancer
type in both men and women [1]. Annually, over than 1.2 million people are struggling with
this disease and most of which are losing their lives and this makes lung cancer the deadliest
cancer among other types [2].

Basically, the body keeps the control of cell growth mechanism under control, in this case
when new cells are required this system divides cells to produce new one but as much as it’s
required. Any disturbance in this system can cause dramatic effects such as uncontrolled
multiplication of cells that can eventually cause the formation of a mass known as a tumor.

Spreading out the cancer is called metastasis [3].

The death toll of over 70%, American Cancer Society put the lung cancer among the most
aggressive cancers list in 2016 [4]. Lung cancer was observed in roughly 42 000 people in
2010 which means 115 people every day. Occurring cancer has been linked to use of tobacco
products and smoking is known as the main factor leading to lung cancer, so far. Beside this,
roughly 10% of which these cancers are diagnosed are non-smokers [5]. In comparison with
a lifetime nonsmoker, a lifetime smoker, 20 to 30 times more, runs the risk of developing
lung cancer. The tendency to smoke is falling down in developed countries like the United
States and China, whereas smoking takes tens of millions of new victims annually around
the world [6]. Global industrialization, hence releasing harmful substances as well as gases
to the environment - most of which have carcinogenic effects - and exposure to these

elements develops the risk of lung cancer, as well [7].



Five-year life expectancy is common between 65% of patients of Non-Small Cell Lung
Cancer (NSCLC) but if the disease is detected in early stages, whereas long run life
expectancy can be dramatically decreased to 1% for those who have metastasis [8]. Though,
the probability of survival will be increased to 49% if the cancer is detected in the early stage
when it is limited to the lung and has not spread out to the lymph [9]. Tumors are divided
into two main categories and those are: benign and malignant. Benign refers to the tumors
which are not dangerous as cancerous tumors and/or without the feature of spreading out.
Hence, these tumors have less detrimental effects as they can be get under control and/or
sometimes can be removed with less chance of getting back. Beside this, malignant refers to
the types which are growing intensively and/or have the potential of seizure and
catastrophically damaging tissues as well as the potential of passing through the bloodstream
or lymphatic system and spreading out of the body in a very short period of time [10]. Small
Cell Lung Cancer (SCLC) and NSCLC are two main lung cancer types. SCLC and NSCLC
lung cancer types are given by Figure 1.1.
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Figure 1.1. Small cell cancer cells (SCLC) and non-small cell cancer cells (NSCLC)

Deriving from epithelial and neuroendocrine cells, SCLC is extremely aggressive as well as
a hard-prognosis neuroendocrine tumor, involving small tumor cells and intensively linked
with smoking. This type of lung cancer is hard to get under control due to its fast spreading
out characteristic. Roughly, 25% of diagnosed lung cancers are SCLC [11]. 75% of all
diagnosed lung cancers belong to NSCLC which itself divides into three main categories,
involving; Adeno Carcinoma, Squamous Cell Carcinoma, and Large cell carcinoma [12]
When it comes to the stage, scientists divided lung cancer into four stages (I to 1V),

depending on tumor size [13].



Depend on physician’s decision there are some diagnosis methods of lung cancer:

1) Imaging methods:

= Since many years ago to diagnose diseases X-ray is the efficient method it is useful in
lung cancer diagnosis. Actually, X-rays include powerful radiation and waves which are

very short in length than normal light [14].

= Computed Tomography (CT) is a computer aid method in which assembled image data
by a special X-ray apparatus which are taken from different sides of the body is processed
by computer to show a cross-section of body organs through which computer make an
interception of CT scans of the body and make radiologists able to diagnose cancer more
easily. Resultantly, the physician can make a precise decision of presence of a tumor as
well as its size and precise location and the possibility of extension to the adjacent tissues
[15].

= Magnetic resonance imaging or so-called MRI is an advanced imaging method in which
magnetic field and radio waves are applied together to make clear and accurate images of

the internal body parts [16].

= Positron Emission Tomography (PET) is another computerized imaging method in which
computer make an image of chemical changes occur in tissues. In this method, an
injection of a radioactive sugar takes place that makes the radiologist able to find the
location of the cancerous tissue since these tissues have more tendency to take sugar than

the other substances [17].

2) A cough along with sputum sometimes is a perilous sign. Going through the sputum under

microscope sometimes can unearth the presence of lung cancer cells [18].

3) Sometimes cancer suspicious tissues are removed for sampling to examine carefully

in the laboratory through a procedure so-called biopsy [19].



Computed tomography scan cancer imaging

Lung cancer detection has become easier after emerging CT scanners as for decades X-ray
images were the most effective way of detecting lung cancer. At first, any nodule found on
CT scan was perceived as malignant unless no growth was recorded after two years of
monitoring. Since a large portion of the detected nodules under CT scan was malignant, this
method was applied to reduce the risk of tardy intervention. However, there was something
similar in all nodules and that was the diameter of those which were larger than 5 mm - most
of which had the diameter between 1 to 3 cm [20].

The disadvantage of CT scan is the exposure of the patients to the high dose of radiation
which is increased the cancer rate and consequently increases the demanding to retreatment
which is risky. However, being painless, quick and accessible in many treatment centers as
well as the accuracy of this method, makes CT scan method more preferable to both patients
and physicians [15]. Another advantage of CT scan in comparison with chest radiographs is
CT scan can make a clear image of those lung nodules which are slow growing and as small

as 1-2 mm in diameter which cannot visualize on chest radiographs [20].

Providing better lucidity by lowering the noise through imaging, make CT images the
advantage of clearness and therefore the precise diagnosis of lung cancer in comparison with
X-ray and MRI images [21]. Reportedly, early stage detect of lung cancer is possible in 85%
of the cases through CT screening. Hence, the survival rate can be increased up to 10 years
in 88% of lung cancer detected patients in stage | [22]. Compared to chest X-ray, low dose
helical CT screening of lung cancer in patients can decrease the death rate by 20% [23].
Image of the Lung cancer in the right lobe of patient’s lung achieved by CT scan is shown
in Figure 1.2.



Figure 1.2. Lung cancer in right lobe of patient’s lung achieved by CT scan [24]

Computer aided diagnosis

In order to early detection of different diseases, especially various type of cancers medical
imaging assists physicians to diagnose diseases before it is too late [25]. Nowadays,
atomization has made computers to hand humankind in every dimension of life. Hence, using
computers assistance in the medical workflow as well as an inevitable subject of our age
which helps physicians to make precise decisions as well as rising up the accuracy of the
diagnose. Computer assistance itself can be divided into two main categories which are:
Computer-Aided Detection (CADe) and Computer-Aided Diagnosis (CADx) which both are
known as CAD. In oncological subjects, the aim of CADe is only tumor detection, whereas

the main goal of the CADX is to differentiate between malignant and benign tumors.

Generally, in CAD diagnosis systems, in order to classify tumors different image processing
techniques are applied on images and features are extracted [26]. Machine learning methods
make a model of training for medical images and they are able to handle all objects of data
in computer assistance structure. In recent years, deep learning methods are more successful
than shallow machine learning methods in CAD. Deep learning methods are independent of
handcraft or any other feature extraction methods. Furthermore, deep learning methods are
able to extract and select the features and then classify dataset in its architecture. Therefore,
deep learning methods in CAD systems help physicians in diagnosis of cancer by improving

the accuracy of diagnosis and cost efficiency in a short time [27].



Obijective of thesis

The major purpose of this thesis is diagnosis of lung cancer in early stages over the CT scan
images. In order to diagnose of lung cancer, deep learning is used as one of the machine
learning techniques. In this regard in order to classify the cancerous and non-cancerous CT
scan images, one of the deep learning architectures named Convolutional Neural Network
(CNN) has been used. AlexNet and GoogleNet which are two architectures of CNN have

been evaluated in lung cancer diagnosis.

Related works

In shallow machine learning methods and CAD techniques for classification of images
before applying image processing methods, preprocessing of images are the most important

issue [28]. Some of the traditional detection and classification methods are reported below.

N. Niki et al., have used K-means clustering algorithm to detect and clustering the lung
cancer nodules on CT Scan images. To classification of malignant and benign nodules, they
used the linear discriminant algorithm. The proposed CAD system was showed high
performance of Receiver Operating Characteristic (ROC) than the physicians’ test on the

same CT Scan images [29].

Y. Matsuki et al., have used Artificial Neural Network (ANN) to diagnose normal and
abnormal lung tumors on CT scan images. A team of radiologists diagnosed benign and
malignant cancer cells without using CADx system. By comparison with the results which
radiologists diagnosed, ANN algorithm showed considerable performance. The area under
the ROC curve (A,) of ANN algorithm and the radiologists diagnosis were 0.951 and 0.831
respectively. Applying ANN algorithm by radiologists caused the A, value raised up to 0.959
[30].

M.G.Penedo et al., have applied two ANN for detection and classification of lung nodules.
The used dataset was CT scan images of the chest that collected by the hospital of Santiago
de Compostela. After preprocessing and extraction of suspected areas of chest images they
used two Multilayer Perceptron (MLP) neural network. In first step, MLP was used for

detection of cancerous nodules and in the second step, another MLP was utilized for



classification. Results showed that sensitivity of two ANN was in the range of 89% to 96%
and False Positive (FP) of two networks were between 5 and 7 [31].

A. Teramoto and H.Fujita, have proposed cylindrical nodule-enhancement filter method to
detect the lung cancer nodules of CT scan images. The used dataset was Lung Image
Database Consortium (LIDC). Their aim of using proposed segmentation and detection
method was to increase the speed of nodule detection. Support Vector Machine (SVM)
algorithm was used to classify the detected nodules. Results showed that 80% of nodules
were detected by the proposed method. Detection speed was compared to other similar works

in the literature and its speed was higher than the other methods [32].

M. Kakar and D.R.Olsen, have used SVM classification algorithm to recognize the lung
cancer lesions on CT scan images which collected by Radium Hospitalet Medical Center of
Oslo, Norway. First Gabor filter method and Fuzzy C-Means clustering method were used
for feature extraction and segmentation. Cluster centers optimized by using the Genetic
algorithm and eventually SVM classifier were used for classification of the region of lungs
and lesions. Results showed that SVM classification algorithm achieved 89.48% sensitivity
in differentiating the regions. Moreover, their used method for detection of left lung, right
lung and lesions achieved the accuracy rates of 94.06%, 94.32% and 89.04% [33].

H. Chen et al., have applied ANN and logistic regression to discriminate lung cancer nodules
on CT scan images. By comparison, two algorithms results showed that ANN algorithm
obtained better performance than logistic regression analyses. By considering the mean
value and standard error, the accuracy rate of ANN and logistic regression were 90.0 + 2.0%
and 86.9 + 1.6% respectively. Likewise, the value of the area under the ROC curve for ANN
was higher than logistic regression. 0.955 + 0.015 and 0.929 + 0.017 were the value of the
area under the ROC curve for ANN and logistic regression for differentiating benign and

malignant nodules [34].

Q. Wang et al., Have applied five CAD methods based on SVM and ANN to discriminate
lung cancer nodules. CT scan images of Jilin Tumor Hospital were used. The five proposed
methods were SVM based on three-dimensional matrixes (SVM 3D matrix), SVM with
unfolding three-dimensional matrix, SVM by region of interest of nodules, ANN based on

the region of interest of nodules and SVM classifier. Results showed that SVM 3D matrix



algorithm achieved the highest performance in classification of nodules. The value of True
Positive (TP) and the area under the Roc curve of SVM 3D matrix were 0.995 and 98.2%
respectively [35].

A. Kulkarni and A.Panditrao, have proposed a method based on images processing
techniques and SVM classifier to discriminate the stages of lung cancer. LIDC, CT scan of
chest dataset was used. For preprocessing CT scan images median filtering method was used
to eliminate noises and Gabor filter method was used for image enhancement. Watershed
method used for segmentation of CT scan images. Area, perimeter, and eccentricity were
extracted as features for identification of cancer stages. After preprocessing images SVM
classification algorithm was used to differentiate the nodules and detection of cancer stages.
Results showed that the proposed algorithm could detect stages of lung cancer by the size of

extracted features [36].

H. Arimura et al., have used a CAD method to detect the benign and malignant lung cancer
nodules of CT scan images. Low-dos CT scan images of lung nodules, which collected in
Nagano, Japan named LDCT dataset was used. To preprocess the images first, linear
discriminant analysis was used for segmentation and filtering methods were applied as well.
After determining the region of nodules Massive Training Artificial Neural Network
(MTANN) and linear discriminant analysis algorithms were used for classification of
nodules. Results showed that MTANN outperformed linear discriminant analysis algorithm
in reduction of FP. The sensitivity of detecting benign and malignant nodules was 83% and
84% respectively [37].

K. Suzuki et al., have applied Multi MTANN algorithm to distinguish the benign and
malignant nodules of Lung CT scan images. Their purpose of using Multi MTANN was
decreasing the FP. Low-dos CT scan images of Nagano, Japan LDCT dataset was used.
Results show that Multi MTANN algorithm reduced the FP significantly (27.4 to 4.8) and it
achieved 80.3% sensitivity [38].

C. Jacobs et al., have applied K Nearest Neighborhood (KNN) algorithm to classify the solid,
non-solid and part solid of lung cancer nodules. Dutch Belgian Nelson CT scan images were
used. To preprocess the images, segmentation methods used for features extraction. They

reported that performance of their used method and diagnosis of experts were almost similar.



Cohen's kappa coefficient was between 0.54 and 0.72 and the Cohen's kappa coefficient

value of experts’ diagnosis was between 0.56 and 0.81 [39].

T.W. Way et al., have compared SVM with Linear discriminant analysis for classification
of CT scan of lung nodules. After using segmentation methods and K-means algorithm for
clustering malignant and benign nodules classification algorithms were applied. The linear
discriminant analysis algorithm by using stepwise feature selection method improved the
value of the area under the ROC curve from 0.821 + 0.026 to 0.857 + 0.023. Furthermore,
results showed that the value of the area under the ROC curve of SVM classifier was higher
than the value of the area under the ROC curve of linear discriminant analysis algorithm
[40].

Since large image datasets of lung cancers are rare and deep learning methods are novel in
diagnosis of diseases, there are few researches in diagnosis of lung cancer [41].
Subsequently, so far the methods which are based on deep learning methods are described

below.

B.V. Ginneken et al., have compared Overfeat CNN and Food and Drug Administration
(FDA) as a commercial method of CAD for detection of lung cancer nodules. CT scan
images of LIDC was used for detection of nodules. Features of lung nodules were extracted
by Overfeat CNN and SVM algorithm was used for classification of nodules. Furthermore,
nodules were detected by commercial CAD system. Results showed that each method could
detect nodules by over 70% sensitivity [42].

M. Anthimopoulos et al., have proposed CNN to classify and characterize different lung
tissues of lung diseases. CT scan images of University Hospital of Geneva and Bern
University Hospital were used as Interstitial Lung Disease (ILD) datasets. Their proposed
CNN contained five convolutional layers, one pooling layer, and three fully connected
layers. The proposed algorithm was compared by other CNN architecture e.g. LeNet,
AlexNet and VGG Net. Results showed that the proposed CNN for classification and
detection of tissues was superior compared to the other algorithms. The proposed CNN

achieved 85.61% accuracy rate [43].
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R. Gruetzemacher and A. Gupta, have used Deep Neural Network (DNN) for classification
of lung cancer nodules. CT scan images of LIDC and Image Database Resource Initiative
(IDRI) were used as a dataset. Four different topologies with different numbers of
convolutional layers were compared. Results demonstrated that accuracy rate of all used
methods by different convolutional layers were close to each other and network by five

convolutional layers achieved the highest accuracy rate (82.10%) [44].

W. Sun et al., have compared three algorithms of deep learning and traditional CAD system
to diagnose lung cancer nodules on CT scan images. They used LIDC and IDRI datasets for
diagnosis of lung cancer. DBN, CNN and Stacked Denoising Auto Encoder (SDAE) were
used as three algorithms of deep learning. Results of accuracy rates demonstrated that CNN
and DBN were superior compared to the SDAE and traditional CAD methods Furthermore,

DBN achieved the highest accuracy rate of nodules classification. (81.19%) [41].

F. Ciompi et al., have applied Multi-scale CNN with multi-stream architecture as a deep
learning method for classification of lung cancer nodules on CT scan images. In order to
characterize lung cancer nodules, Multicentric Italian Lung Detection (MID) and Danish
Lung Cancer Screening (DLCS) datasets were used. Automatic nodules classification in six
types was done without using any segmentation methods. All scales of CNN were combined
in a fully connected layer of CNN. Results of proposed multi-scale CNN were compared
with radiologists’ diagnosis and the average accuracy rate of CNN (69.6%) is close to
average accuracy rate of radiologists (72.9%). Moreover, accuracy of CNN with three scale
was compared with SVM based pixel intensity of patches and SVM based unsupervised
learning of features. Results show that CNN with three scale achieved higher accuracy rate
(79.5%) than other two SVM based methods [45].

K.L. Hua et al., have proposed two deep learning algorithms named CNN and Deep Belief
Networks (DBN) to classify lung cancer nodules. CT scan images of LIDC dataset were
used. Two proposed deep learning algorithms were compared with two algorithms of feature
descriptors. The first method was the combination of Scale Invariant Feature Transform
(SIFT) and Local Binary Pattern (LBP) and the second one was fractal analysis. For two
methods of SIFT+LBP and fractal analysis SVM and KNN classifiers were utilized.

Experimental results demonstrated that performance of two proposed deep learning methods



11

were higher than SIFT+LBP and fractal analysis in classification of nodules (sensitivity
value of 73.4% and 73.3% for DBN and CNN) [28].

Q. Li et al.,, have proposed a CNN algorithm with a single convolutional layer for
classification of patches on high resolution computed tomography (HRCT) images. ILD lung
dataset was used for this purpose. Furthermore, combination of SVM classifier with three
feature extraction methods (i.e. SIFT, LBP, Restricted Boltzmann Machine (RBM)) were
used to extract features and classify images. Their proposed CNN was compared with the
combination of three feature extraction methods and SVM classifier. Results showed that
their proposed CNN achieved higher Sensitivity or Recall ( about 0.88) and Precision values
(about 0.93) than the other methods [46].

W. Shen et al., have proposed multi scale CNN for classification of malignant and benign
nodules of lung. CT scan images of LIDC and IDRI datasets were used. SVM and Random
Forest were used as classification algorithms of CNN. Their proposed CNN algorithm with
Random Forest classifier achieved 86.84% accuracy rate in classification of lung nodules

without using any segmentation methods [47].

P. Rao et al., have proposed CanNet as CNN model to classify lung CT scan images of LIDC
dataset. Their proposed CanNet contained two convolutional layer, one max pooling and one
fully connected layer. In comparison with traditional ANN and LeNet their proposed CanNet
model achieved the highest accuracy rate in classification of lung CT scan images. Accuracy
rate of each LeNet, ANN and CanNet was 56%, 72.5% and 76% respectively [48].

W. Alakwaa et al., have used 3D CNN to classify lung CT scan images of Data Science
Bowl and Kaggle. For nodules detection they have used U-Net as an architecture of CNN in
biomedical field on Lung Nodule Analysis (LUNA) dataset. LUNA was the assistant dataset
to train network for nodule detection in Kaggle dataset. Results showed that CNN by using
U-Net architecture in classification of lung CT scan images achieved 86.6% accuracy rate.
FP rate and False Negetive (FN) rate of CNN were 11.9% and 14.7% respectively [49].

Q. Song et al., have compared performance of DNN, CNN and Stacked Auto Encoder (SAE)
algorithms in classification of CT scan images of LIDC-IDRI datasets. Results showed that
CNN algorithm surpassed other two algorithms in classification of lung CT scan images.
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CNN, DNN and SAE achieved 84.15%, 82.37% and 82.59% accuracy rate. CNN and SAE
achieved the same sensitivity (83.96%) and DNN achieved 80.66% sensitivity [50].

N. Bondfale and S. Banait, have used CNN for classification of ILD dataset of lung CT scan
images. They reported results of CNN for classification of healthy, ground-glass opacity,
micro nodules, reticulation, honeycombing, consolidation and ground-glass opacity with
reticulation seven classes of ILDs were favorable [51].



13

2. MATERIAL AND METHODS

In this thesis, CNN which is one of the most popular algorithms of deep learning is used for
classification of lung CT scan images. This section covers ANN algorithm which is the
foundation of CNN algorithm. After the description of ANN, the background of ANN,
perceptron concept, activation functions, gradient descent algorithm and backpropagation

training algorithm are described. Other sections are assigned to describe the deep learning.

2.1. Artificial Neural Networks

ANN inspired the system of biological nervous and process information by interconnected
neurons [52]. Actually billions of variant neurons by different lengths in all part of the human

body forming the nervous system [53]. Biological neuron’s system is shown by Figure 2.1.

Dendrite

\

| Synapse

5 Synapses

A\l
Cell Body or Soma

Figure 2.1. The structure of a biological neuron [54]

In the biological model of a neuron, the nucleus is in the middle of the cell body (soma). The
receiver of signals called dendrites which are connected to the cell body. The longest part of
the cell body with various branches is axon. Axon is the connection point of one neuron to
other neurons by the connection which is called synaptic junctions and it passes signals to
the dendrites and cell body of the other neuron. Through the chemical signal transferring
between two cells of a synapse, the sender part releases special kind of matters.
Consequently, the electrical potential is increased or decreased on the receiver side. In order
to fire the cell, electrical potential should achieve its threshold amount and axon receives
signals by constant and periodic power. In this regard, neurons send signals to dendrites and
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neural activities are sent to the cells of nerve or muscles fibers. Muscles and organs with
sensors e.g. eyes or ears send information to the other types of neurons which are named
receiver neurons [54]. When a person starts learning actually in his brain, changing operation
of synaptic connections are take place. As a result, electrical activities take place in internal

of a neuron and chemical processing takes place only in synapses [55].

The first model of the simulated biological neurons which was called threshold logic
algorithm was developed by McCulloch and Pitts in 1943. Their model presented a various
hypothesis of neurons’ estimations [56]. Afterward, Hebbien unsupervised learning method
was suggested by Hebb and his proposed assumption model was inspired by neural
plasticity. A simulator of Hebbian learning network is developed by Farley and Clark and
Rochester et al. in 1950 [57]. Rosenblatt developed a pattern recognition model which was
called perceptron model. His created model of the network has two layers and its

computation system contained addition and subtraction operations [58].

Minsky and Papert created single layer neural network in 1960. Their created model was not
able to simulate the XOR operation. XOR function is shown by figure XOR. Lack of
powerful computers to overcome the problems of high time consumption lead to suspend the

neural networks studies.

After a while, a biological principle learning algorithm of neural networks was proposed by
Klopf in 1972 [59]. Backpropagation learning algorithm which used multiple layers and
various threshold functions was created by Werbos in 1975 and it could overcome XOR
problem by using only one hidden layer. Since the progress of SVM and linear classifiers
were considerably high, ANN has become a less interested algorithm. In late 2000, interests
of deep learning methods captured attentions to ANN again [60].

2.1.1. Perceptron concept

Perceptron learning algorithm of the neural network was created by Rosenblatt in 1958. The

perceptron algorithm was the first algorithm for simulation of human learning system [58].

A perceptron is a single neuron learning algorithm and creates an output of a single neuron

by calculating the weights of inputs and applying threshold activation function by
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considering the threshold of the activation function as bias (b). A single layer perceptron is

shown by figure Figure 2.2.

Activation
X 2 T o ° Function
Xi —o bias
Input Layer Weights

Figure 2.2. Single layer perceptron

By comparison of the bias value and sum of weights, the output of the perceptron will be 1

if sum of weights is larger than bias otherwise output is 0. (Eq. 2.1)

Output = { 1 if (z WX,) > b
i

0 otherwise } (2.1)

Since a single layer perceptron is a linear learning model and makes decision among two
classes it is not able to solve nonlinear problems, e.g., XOR function. A linear and nonlinear
separating models are shown by Figure 2.3. A linear separable can separate objects in two
sides whereas nonlinear separable is not able to separate objects in two sides by a one-
dimension hyperplane. As mentioned before XOR function is a simple nonlinear separable

function [61, 53].

Figure 2.3. Linear separable (left), Nonlinear separable (right)
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2.1.2. Activation functions

To make decision about domain of the output of the ANNSs, activation function is used. To
achieve nonlinearity of output, activation function applies mathematical operation on the

real values of inputs [62]. Some of the most used activation functions are described below.

Logistic sigmoid function

One of the most used activation function is logistic sigmoid function. Logistic sigmoid
function could reduce the computational of training and this advantage of the function leads
to be more acceptable than the other functions [63, 64]. Function of logistic sigmoid and its
derivative are given by Eq. 2.2 and Eq. 2.3 respectively. Diagram of logistic sigmoid
function is shown by Figure 2.4.

f(z) = H;p(_) (2.2)
f'(z) = f{(2)(1 - f(2)) (2.3)

1.0} —
08fF /

06}
!

v

1 o

-10 -5 5 10

Figure 2.4. Logistic sigmoid function diagram

Hyperbolic tangent function

Hyperbolic tangent function is the superior function. Formula of the Hyperbolic tangent and
its derivative are given by Eq. 2.4 and Eq. 2.5 equations. By considering Eq. 2.4, weighted
inputs are determined as z in the range of 0 and1 and calculated outputs are in the range of -

1,1 [65]. Diagram of Hyperbolic tangent is shown by Figure 2.5.



17

sinh(z) _ e*-e™?

f(z) = tanh(z) = b @ — e (2.4)
f'(z) = 1 - (f(2))* (2.5)
1.0F —_—
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Figure 2.5. Hyperbolic tangent diagram

Gaussian function

Gaussian function is a continuous function and its output value is in the range of 0 and 1.
Formula of the Gaussian function is given by Eq. 2.6 equation. In this formula o represented
standard deviation [66]. Diagram of the bell shaped of the Gaussian function is shown by

Figure 2.6.

2

f(z) = e 7 (2.6)

Figure 2.6. Gaussian function
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Relu activation function

Generally, in CNNs for increasing nonlinearity Rectified linear unit activation function
(Relu) is used. Using Relu activation function takes advantages of high performance, fast
learning and simple structure therefore Relu activation function is more preferred than
Logistic sigmoid and Hyperbolic tangent functions. Formula of Relu function and its
derivative are shown by Eq. 2.7 and Eq. 2.8 equations. For z < 0 the gradient of Relu
function is 0 in other respects the gradient of Relu is 1. Although gradient for z = 0 is not
defined, calculating average of gradient through training could achieve the result [67].

Diagram of the Relu activation function is shown by Figure 2.7.

f(z) = max(0,x) (2.7)
r@={ o itsc0 ) 28)

1 1

=10 -5

Figure 2.7. Rectified linear unit's function diagram

2.1.3. Multilayer Perceptron

Since single layer perceptron could not solve the nonlinear problems, MLP architecture was
proposed to overcome the nonlinear problem. In MLP architecture, hidden layers are
proposed between the input layer and the output layer. Information is sent to hidden layers
from input layer and after applying operations on information in the hidden layer, they were

sent to the output layer. MLP leads the perceptron to solve the nonlinear problems [53].
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In ANN, all layers are connected to each other and the output unit of one layer could be the
input unit of the next layer. MLP with one hidden layer and one output unit is shown by
Figure 2.8. In this architecture, the nodes without any connections by +1 values are called
bias and the other parts of the architecture are input layer on the left side of the network and
the output layer with one node on the right side of the network. One hidden layer is located
between input and output layers and through training process the values of hidden nodes are
not observable. The number of layers is denoted by n; and in this architecture number of
layers are one. Input and output layers are denoted by L, and L, respectively. The parameres

of this network are formulated as Eq. 2.9 equation. By extending equation Eq. 2.9 it can be
interpreted that WL.ED is the parameters (weights) among unit j which is located in layer [ and
unit i which is located in layer [ + 1. Moreover bias of layer i + 1 and related to unit i is

bl.(”. In figure 2.8, biases are denoted as W™ € R3*3 and W® € R'*3. By considering

layer as , number of nodes are denoted s;.
(W,b) = (W', b, W?,b?), (2.9)

(

i

®

For unit i of layer , a Y js the activation of layer [, therefore a;~ = x; is the i-th input in

layer [ = 1. For W, b parameters hy, ,(x) is defined as hypothesis of Figure 2.8 of neural

network and it is given by Eq. 2.10, Eq. 2.11, Eq. 2.12 and Eqg. 2.13 equations.

as=f( Wl(i)xl + WS)XZ + Wl(?xg + bgl)) (2.10)
a2= f(WPx; + Wx, + W x; +bS) (2.11)
a%=f( Wﬁ)xl + WS)XZ + W§;)X3 + bgl)) (2.12)

b b® = 2 = f{ WPa® + WDa® + WDa® +b?) 2.13)



hyyp(x)

Layer L,

+1

Layer L, Layer L,
Figure 2.8. Multilayer Perceptron ANN with one hidden layer and one output

Eventually for unit i of layer I, z} is sum of all weighted inputs by bias and it can be

formulated as Eq. 2.14. Therefore ai(l) is formulated as a function of zl.(l) by Eg. 2.15. By

extending the activation function of £(.) as Eq. 2.16, z2, a®, z3, h,,,(x) functions are
given as Eq. 2.17, Eq. 2.18, Eq. 2.19 and Eq. 2.20 respectively.

7" = T Wi X4 (2.14)
ol = f(z) (2.15)
f[z1,22,23) = [f (21), f (22), f (25)] (2.16)
72 =W®x + p® (2.17)
a® = f(z®) (2.18)
722 =w®a® 4+ p@ (2.19)
hyp(x) = a® = f(z®) (2.20)

This stage is called forward propagation. The total weighted sum of inputs in layer [ + 1

and activation layer of [ + 1 are formulated by Eq. 2.21 and Eq. 2.22.

Z(l+1) = W(l)a(l) + b(l) (221)
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D) = £(z0+1) (2.22)

By applying linear algebra on data the structure of matrix and matrix-vector network
computations will be fast and efficient. For network with more hidden layers’ activations are

calculated as the last mentioned equations by forward propagation step.

ANNSs not only have one output unit but also have more than one output unit. MLP neural
network by two hidden layers and two units in the output layer are shown by Figure 2.9. For
training of multiple output units examples of (x®,y®) are required. In some fields such as
solving medical problems for diagnosis of a disease two, vectors are required. x for inputs

and y for classes of outputs. (healthy or not healthy) [68].

R —
huws(x)
 —
+1 Layer L,
+1
LayerL,

Layer L, LayerL,

Figure 2.9. Multilayer Perceptron ANN with 2 hidden layers and 2 output unit

Loss function (cost function)

Loss function (cost function) is determined for performance evaluation of neural networks.
Loss (cost) function calculates differentiate between the prediction of labels which are
achieved by the algorithm and ground truth labels. There are several loss (cost) functions for
measuring how ANN did well [69]. Mean Squared Error (MSE) and Cross entropy error are

two common loss functions which are described below.

Mean squared error

The most popular and the simplest loss (cost) function is MSE and its equation is given by

Eq. 2.23. In Eq. 2.23 equation number of training samples are denoted by m and the it"
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example of training is denoted by x* as well. Furthermore for class labeling of it"* example
of training y* is defind in Eq. 2.23 equation and eventually h(x?") is denoted to predict the

it" training example of algorithm [70].

1

LW, b) = S G5

(2.23)

Cross entropy error

In classification and probabilistic problems, the most popular loss (cost) function is cross
entropy error function. The formula of cross entropy is given by Eq. 2.24. In this equation,
x values are denoted as inputs and al , a4 ... and ajL are denoted as real values of all output
neurons (j) in output layer and y indicates desired output values and n is number of all

training samples [71].

1
C=—=(ZxYjlyjLnaj + (1 +y;)Ln(1 —ay) (2.24)
2.1.4. Gradient descent algorithm

Gradient descent optimization algorithm tries to find local minimum to minimize loss (cost)
function (L(6)) by weights (parameters) which are denoted as 6. In Gradient descent
algorithm weights are upadated contrary in direction of loss function’s slope and it denoted
as Vg L(6).The step size to reach the bottom of the slope direction in order to minimize loss
function is denoted by n which is called learning rate. Depending on the amount of data three
types of Gradient descent algorithms are used which are described and formulated below. It

is considerable that amount of data affects performance and time of updating [72, 73].

Batch gradient descent

To minimize loss function, weights (parameters) (6) are updated by gradient algorithm
which it is applied on the whole training set in each iteration and it reaches to the one set of

updated weights.

Because of updating all training set in each iteration in the large dataset the computation of
batch gradient descent takes too much time. More computation in large dataset leads to
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having a redundant operation to update all samples of training set in order to reach one
updated set of parameters. To achieve the convergence batch gradient descent computes the
global minimum and the local minimum in convex and non-convex areas respectively. This
algorithm updates weights with low speed. Batch gradient descent formula is shown by Eq.
2.25 equation. In this equation, n and 6 are learning rate and weights (parameters)

respectively [73].

8=0— 1.V L(0) (2.25)

Stochastic gradient descent

Stochastic Gradient Descent (SGD) algorithm apply updating operation on each sample of
training which is denoted by x* and its label denoted by y* in each iteration. Each training
sample is updating without depending on the other samples therefore, redundant
computation does not take place. Applying SGD without any recalculation of training
samples leads to be faster and more popular than batch gradient descent algorithm. SGD

formula is given by Eq. 2.26 equation [73].
6=0-—nVyL(6;x5y") (2.26)

Mini batch gradient descent

In mini batch gradient descent algorithm for each iteration n samples of training set are
updated rather than one sample in each iteration. Updating the subset of parameters in each
iteration to minimize loss function by mini batch gradient descent algorithm leads to be fast
and more convergence. Mini batch gradient descent formula is given by Eq. 2.27 equation
where subset of parameters are started from x* and its label by y* to x*™ by their lables of
yi*+n [73].

0 = 0 — 1.Vg L(0; x(i+0); y(iitn) (2.27)
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2.1.5. Backpropagation algorithm

Backpropagation algorithm is one of the best learning algorithms of ANNS, due to its ease
of use in computation, conception, and function [74]. Bryson and Bo in1969 have presented
Backpropagation algorithm for the first time [75]. In 1974, Werbos and Rumelhart have
attempted to rediscover the backpropagation algorithm. In 1986, PDP group (David
Rumelhart and McClelland) has utilized and developed the backpropagation algorithm to

calculate the gradients [76, 77]. Backpropagation algorithm formulated as below:

By considering batch gradient descent to train the neural network, and MSE equation which
is given by Eq. 2.23 equation, computation of the loss (cost) function for a single training

set of (X, y), is given by Eq. 2.28.

2
J(W,b; %) = 5|l (0 — y| (228)

For m numbers of training sets which are shown in Eq. 2.29, the loss function is formulated
by Eq. 2.30. An average sum-of-squares error is the first part of the loss function. To recline
value of weights and avoid of overfitting, weight decay was considered in the second term

of the cost function.

{(X(l),y(l)), " (x(m),y(m))} (2.29)
](W b) _ [_ 1](W b; x(l)’y(l))] +2 Zn1 1 Sl+1( )2 —
[i ( ||hWb(x(l)) y(L)ll )-l— Zn1—1 Sz+1( )2 (2.30)

In classification problems, by using sigmoid activation function the y term of cost function

would be 0 or 1, and by using tanh activation function it would be -1 or +1 to define the

labels of classification. By initializing Wilj and bi(l) to a value near zero and using the batch
gradient descent algorithm neural network would be trained. In this regard to obtain
minimum value of the cost function (J(W, b)) is the main purpose of backpropagation
algorithm. Gradient descent is sensitive to local optima because cost function type is a non-
convex. In contrast, practically gradient descent works great enough. It is essential to

symmetry breaking and prevent the same value of outputs all parameters would be initialized
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by random value. In Eq. 2.31 and Eq. 2.32 bias (b) and weigh (w) values were updated by

gradient descent. By considering « as the learning rate.

1 1 d
Wig) = Wig) - O‘aw_(_l) J(W,b) (2.31)
ij

i}
bi(l) — bi(l) _ aab_(l) J(W, b) (2.32)

Partial derivatives would be calculated by the method which backpropagation algorithm
proposed. A derivative of the cost function (J(W, b)) would be calculated by Eg. 2.33 and
Eq. 2.34.

J(W,b) = [ J(W, by x®, y @) + aw (2.33)

aw(” aw(‘)

(1) J(W,b) = =X, (1) I(W b; X(l) y(l)) (2.34)

In this regard firstly in backpropagation algorithm for a (x, y), as an example of training set
(forward pass) would be applied. Activations and the output value of hy, ,(x) would be
calculated in forward pass step. The error measure (61.(1)) of each node (i) in each layer (1) for
determine errors occurs in output would be computed. By considering n; as an output layer
of the network, the output node (di("l)) would be the result of the difference among activation

of the network and the real value of the network’s target. The steps of backpropagation

algorithm are given below:

1) To calculate the activations of layers (Ly, L3, ..., Ly,,), feedforward pass were applied.

2) The output in layer n; formulated by Eq. 2.35 where i is the unit number of each output.

3] ’
5" = 5w 3 Iy~ BwpOIF = ~(ri —al"). £ (2") (2:35)
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3) 61.(1) was computed by Eq. 2.36 for every node (i) in layersl = n; — 1,n; — 2,n; — 1n; —

3, ...,2. By considering f (z) as a sigmoid activation function f’(z) computed as Eq. 2.37.

® _ 1D A+ o
8 = (zitwi” 81V) £(2h) (2.36)
f'(z}) = al(1—al) (2.37)

4) The partial derivatives were computed by Eq. 2.38 and Eq. 2.39.

d Dcd
0 JWbixy) = a Vst y (2.38)
ij
d
—5 J(W, b xy) = 8 (2.39)

To decrease the cost function J(W, b) in training of ANN, batch gradient descent would be
repeated in several iterations. One iteration of batch gradient descent by considering to
AW ® as a matrix with the same dimension of W® and Ab® as a vector with the same

dimention of bias (b)) was given in the pseudo-code [71].

1) For all layers (1), AW® and Ab® were set by zero as Eq. 2.40 and Eq. 2.41.

AW®D: =0 (2.40)
Ab®:=0 (2.41)

2) For i=1tom, AW® and Ab® computed by backpropagation algorithm, given in Eq.
2.42 and Eq. 2.43.

AWD = AWD + Vo) J(W, b; %, y) (2.42)
Ab®D: = AbD + v, o) J(W, b; %, y) (2.43)

3) W® and b® are updated as Eq. 2.44 and Eq. 2.45.
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WO =wO — o [(2aw®) + 2w | (2.44)

1
m
b® =b® — o [Zab®| (2.45)
m

2.2. Deep Learning and Convolutional Neural Networks

In shallow machine learning methods to discover features form dataset, manual feature
selection is applied on features and selected features feed to a particular machine learning
algorithm, Whereas deep learning methods are able to extract features from raw dataset
automatically then detect or classify dataset by extracted low, middle and high features [78-
80]. The main characteristic of deep learning methods is applying nonlinear functions on
raw data as inputs to produce abstracted outputs [78]. Nowadays, it is easy to access to big
datasets and computers by powerful processing systems which they are the main
requirements of deep learning methods. Therefore, availability of the essential necessities of
deep learning methods make them to be appropriate and popular to solve problems [81].
CNN, DBN, Recurrent Neural Networks (RNN), Long Short Term Memory (LSTM) and
Deep Stacking Networks (DSN) are deep learning architectures which are used in computer
vision, automatic audio classification and natural language processing fields to solve

problems of large datasets [82-84].

Traditional ANN which is one of the first projects about visual cortex of cats by Hubel and
Wiesel and CNNs are alike. Both algorithms include neurons which contain weights and
biases [85]. Although the structure of both CNNs and ANNs include layers, there are main
differents between the structure of both networks. Structure of layers in ordinary ANN
algorithm is one dimensional and connections of all layers are fully connected. CNNs have
three-dimensional neurons in a layer which include width, height, and depth. Furthermore,
in CNNs each neuron of one layer connected to the only one region of the previous layer
without any fully connected between layers. Inputs of outputs of CNN have a 3D volume of
width, height, and depth. Three dimensional of a neuron is shown by Figure 2.10, which is
shown in CNN each neuron has 3D volume. From 2000, to solve different problems of
nervous systems, biological systems and natural systems, CNNs have achieved acceptable
results by using detection, segmentation and recognition methods [78, 86-88].
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Figure 2.10. 3D volume of neuron in CNN structure

In 1989 the first CNN was developed for classification of handwritten digits by Le Cun et
al. They used backpropagation and gradient descent algorithms in their developed CNN.
Until 1990, CNNs are utilized in Commerce fields e.g. reading of cheques [89]. Because of
the main requirements of CNNs are large datasets and powerful computers, in last two
decades using of CNNs were to be stopped and the other machine learning methods became
to be popular. In 2006 for the training of a special DNN greedy layer-wise pre-training
algorithm is proposed by Hinton et al. Their proposed algorithm caused to drop attention of
scientists to deep learning algorithms [90].The first use of GPU for the training of CNNs by
Ciresan et al. took place in 2011 and their works were about handwritten digits of MNIST
dataset. Nowadays achievements of using CNNs in different fields especially in solving
supervised problems make it to be popular. In last decades different work groups achieved
successful results by using CNNs in the competition of ImageNet Large Scale Visual
Recognition challenge (ILSVRC). Krizhevsky et al achieved 15.3% classification error in
ILSVRC-2012 [91] and Clarifia group achieved 11.7% error rate in ILSVRC-2013 [92]. In
ILSVRC-2014 GoogleNet group gained 6.66% classification error rate. MSRA group and
Trimps- Soushen group achieved 3.57% error rate in ILSVRC-2015 and 2.99% error rate in
ILSVRC-2016 as winners of challenge respectively [63, 93]. LeNet, AlexNet, GoogleNet,
VGG-Net, Res-Net, ZF-Net are the most used architectures of CNN algorithm in
classification and pattern recognition fields [63, 91-94]. Architectures of CNN take the
advantage of powerful GPUs to minimize training time and improve the accuracy of

classifications [95].

One of the advantages of using deep learning algorithms was its efficiency on a huge amount
of datasets. Since deep learning achieved high performance in large datasets of image and

speech, the need for powerful hardware and appropriate software become to the most
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important challenges. The performance of the powerful GPUs was more than CPUs. The
first use of GPU in ImageNet proposed and it was achieved high performance in
classification of ImageNet [96]. The results of GPU based method was 10% higher than the
CPU based method. In this thesis, the large dataset of lung CT scan images was used and
consequently, the CPU based method could not handle all samples. To profit the high
performance of GPU for faster classification, Nvidia Titan (12 GB) GPU was used in this
work. Nvidia with the support of Computer unified device architecture (Cuda) and CuDNN
library was considered. In this thesis deep learning GPU Training System (Digits) as a
framework for training the different architecture of CNN by using Caffe framework and
CuDNN library is used. Nvidia Caffe Digits is our used platform for CNN modeling of lung
CT scan dataset. Intel Corei5 is used as the cpu of the PC and Ubuntu version 16.4 is used

as operation system.The description of requirements of this work is given below.

Cuda for GPU computing: Nvidia created Cuda as a parallel computer platform on GPU. In
order to use the Cuda by developers, Nvidia created the toolkit which contains a compiler,

libraries, debugger and etc.

CuDNN: CuDNN is a library of Nvidia’s GPU for using DNNs and it uses deep learning
frameworks such as Caffe, TensorFlow and etc [97].

Caffe Framework: The Caffe open source framework is developed by Berkeley Vision and
Learning Center (BVLC) to implement the deep learning networks. Different architectures
of deep learning are supported by Caffe. Moreover, it is a C++ library and designed to has
bindings to Phyton and Matlab as well. Because of computational complexity, Caffe uses
CPU and GPU in parallel in order to accelerate the processing. It leads to decrease the time
of training model from days to hours.

Digits: Nvidia provides Digits as a framework that supports Caffe and Torch to train and
design deep train networks. Furthermore, it accelerates classification and segmentation tasks
[97].
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2.2.1. Architecture of convolutional neural networks

In fully connected ANNSs architecture input layer is a one dimensional which are transferred
to the hidden layers and then they are sent to the output layer. Although neurons in hidden
layers are not connected to each other they are connected to all neurons in the previous layer.
In classification problems output layer determines the score of each class of dataset. In
contrast to fully connected ANNS, in CNNs there is not any fully connected in middle layers
and each neuron connected to a local region which it contains a part of neurons in the
previous layer. In CNNs, filter banks are used as a unit to connect to the part of the previous
layer and it is called weight connection. In CNN layers by using local connections local
features are detected and by pooling operations identical features are merged to be one
feature. The architecture of CNN contains three main layers as a convolutional layer, pooling
layer and a fully connected output layer. Moreover, some other layers e.g. normalization
layer, are used beside main layers [98]. The main three layers of CNN are described below,

afterward normalization layer is described as well.

Convolutional layer

The convolutional layer which is the main part of the architecture of CNN includes feature
maps (depth slices) and each feature map includes sets of neurons. Similar to ANN neurons
in CNN imitate biological neurons. The main difference of neurons in feature maps of
convolutional layers and neurons in ordinary neural network layers is their connection types.
The connections of neurons in ANNSs are fully connections while the connections between
neurons of the convolutional layer are local connections. In local connection each neuron in
feature map connected to the part of neurons of the previous layer. Although the connection
between neurons in CNN are local connection type, similar to ANN the output of a neuron
in CNN is calculated by a nonlinear activation function. Relu is one of the most common

activation functions which is used in training of data in CNN.

In each convolutional layer filters which are the connections between neurons of current
layer and neurons of the previous layer, are used. Local connections and parameters sharing
are three characteristics and advantages of the convolutional layer which are described below
[99, 100]. Before describing advantages of convolutional layer some terms of the

convolutional layer are explained afterward implementation of CNN is described below.
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Spatial arrangement

Hyperparameters are concepts for output size management and it contains filter, stride and

zero padding parameters. Hyperparameters of the convolutional layer are explained below.

Filter (Kernel): In CNN to train the network, features of input are detected by arrays of
parameters (weights) which are called filters (Kernels). The region of input which a three-
dimensional filter is applied on is called receptive field and its size is equal to a filter size.
The output of convolving filters over input is called feature map (activation map) and the
number of filters and feature maps of a convolutional layer are the same. Actually, the

number of feature maps are the depth of output of a convolutional layer [101].

Stride: Stride size is the step of shifting by filters (kernels) on the input image. In
convolutional layer by stride size 2, the filter is shifted by 2 pixels on the input [99].

Zero padding: In convolutional layer to provide the output volume in size of input volume,
zero padding is used thus input size in width and height is controlled by the convolutional
operation. Using of zero padding with stride size is given by Figure 2.11. In this figure input
size is 5x5. Filter by 3x3 size and 1 border for zero padding with 1 for stride size are applied
on the input. After convolutional operation output size is same as the input size (5x5), it

means input size is retrained after using zero padding.

Formulation of hyperparameters of convolutional layer: By considering parameters of

convolutional layer where,

N: Number of neurons in output

K: Numbers of filters (kernels)

F: Numbers of the receptive field size (filter size)

S: Stride size

P: Number of zero padding
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W1: Width of input

H1: Height of inputs

D:: Depth of inputs

W>: Width of output

H>: Height of inputs

D2: Depth of inputs

W.: Number of parameters for each filter

Tp: Sum of parameters

The width, height and depth size of output are formulated by Eq. 2.46, Eq. 2.47 and Eq. 2.48
equations respectively. The acceptable value of output volume is to be an integer, otherwise,
stride size must to be changed. By considering formula of zero padding as Eg. 2.49 equation,
the secure stride size is one and it guarantees the input and output are in the same size. For
each filter in convolutional layer number of parameters (weights) and the sum of all
parameters (weights) are formulated by Eq. 2.50 and Eq. 2.51 equations.

Furthermore, numbers of biases and numbers of filters in the convolutional layer are the
same [72].

w, = (=22 4 g (2.46)
H, = (—(Hl‘g”")) +1 (2.47)
D, = K (2.48)

p— D) (2.49)
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W, =F-F-D, (2.50)

T, = (F-F-D;) XK (2.51)
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Figure 2.11. Input size of 5x5 with filter by 3x3 size and 1 for zero padding (left), output by
5x5 size (right)

Local connection

Filters in the convolutional layer are applied on width and height of input and over, all depth
of input as well, therefore the connections between feature maps and the previous layer are
local connections. In local connection regions of the previous layer are mapped to the feature
map locally. Decreasing amount of parameters is the most significant advantage of local
connections. The first convolutional layer is shown by Figure 2.12 and it shows that each

neuron in the convolutional layer connected to the region of input in width and height.

/ 32

@’—>O OO0OO
L

3

Figure 2.12. Example of local connection in the first convolutional layer

For more explanation of local connection and reducing amount of parameters, in Figure 2.12,

input size is 32 x 32 x 3 and filter by 5 x 5 size are convolved. After the convolutional
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operation by considering 1 for bias, 76 is all parameters (weights) of each neuron ((5x5x3)
+1=76). In contrast to the local connection if connections were fully connection, each neuron

had more parameter than local connection. ((32x32x3) +1=3073 for each neuron. Fully

connected of ordinary ANN and local connections of CNN are shown by Figure 2.13 [71,
101].

Figure 2.13. The fully connected architecture (left), local connections (right)

Parameters (weight) sharing

In ordinary ANN one weight matrix is applied on input for once and then the output is
calculated, however, in convolutional layer by parameter (weight) sharing, one weight
matrix is used in all over the input frequently to produce the output. In other words, an
acceptable feature in a spatial location can be used in the other spatial locations as well.
Count of parameters is controlled by using the same neuron with its parameters (weights) in
a depth slice of each convolutional layer. The result of parameter sharing in each depth slice
is feature map. The output of each convolutional layer is a collection of feature maps. The
advantage of weigh sharing is reducing the number of parameters in training and complicated
calculation of a network. Moreover, because of using weigh sharing, translation invariance

of input cannot change the outputs of convolutional layer [101, 102].

Implementation of convolutional operation

The output of convolutional operation in a convolutional layer is given by Eq. 2.52. In this

equation F is denoted as filter size, m denoted as feature maps, B is denoted as bias and
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weight of a filter is denoted as W;. The output of convolutional layer is denoted as Y} where

i indicates i*" feature map in a layer that it denoted by .

_1)

¢ _
vl =B +3  Fytew Y (2.52)

By considering that the convolutional operations take place in two dimensions of layer [ by

m,t.m3t units in (r, s) location the output of convolutional layer for MLP is given by Eq.

2.53 equation [103].
0) 0) m{ ™ W) -1 0)
(Yl )r,s = (Bi )r,s + Zj=1 (Fi,j X VIG )r,s = (Bi )r,s +

mgl—l)

R® A ® ! 4
Zj:l 2 ! z__h(l)(Figj))u,v (MG( 1))r+u,s+v (2.53)
g

u=—h§0 v

Pooling layer (Subsampling)

To decrease the amount of parameters and network calculation, generally pooling
(subsampling) layer is used among convolutional layers; Consequently, by subsampling
operation, input size is decreased in all depth parts and it prevents overfitting through
network training. Pooling operation is called down sampling as well. Since the spatial size
of input is decreased by pooling operation the depth dimension is not changed. According to
the example of CNN architecture in all pooling layer spatial dimensions are decreased and

depth are the same as the depth of the previous layer (Figure 2.14).

convolution subsampling convolution subsampling fully
l layer | layer | layer | layer | connected |

Figure 2.14. Example of CNN architecture

Max pooling and Average pooling are two most commonly used types of pooling operations.
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Example of both pooling operations is shown by Figure 2.15.

Max pooling

o] B

12 | 20 (30 | O

0 37

4 3

Avg Pooling

12 8

20

Figure 2.15. Examples of max and average pooling

By considering Figure 2.15, 4 X 4 is the input size and down sampling operation is applied
by 2 x 2 filter size. The outputs of subsampling operations are the average and maximum
values of input values. The width and height of output in pooling layer are achieved by Eq.
2.54 and Eq. 2.55 equations. In formula of volume size of width and height W;, H,, D, are
the width, height and the depth size of input respectively. S is denoted as stride size and F is
denoted as filter size. It is considerable that in pooling layer the depth of input after pooling
operations is not changed.
W,-F

W, = () +1 (2.54)

_ (H.-F
Hy = (25) +1 (2.55)
Overlapping pooling appears when stride size is smaller than filter size (S < F) and pooling
by the same value of stride size and filter size is called non-overlapping pooling. Because of
eliminating more features choosing large receptive fields in pooling layers is not acceptable

for down sampling of input [104].

Fully connected layer

The last layer of CNN architecture is fully connected layer. Similar to ordinary ANN, in the

fully connected layer all neurons of a layer are connected to all neurons of the previous layer.
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Through training, the score of a class between all classes of the dataset is presented in the
fully connected layer. Fully connected operations are given by Eq. 2.56 equation which [

and (I — 1) are denoted as fully connected layers. Output of the last fully connected is y/

which is indicated by i*" unit in layer [. In layer [, feature maps of mgl_l) by mgl_l) X

mgl_l) size are denoted as inputs. W,

- - - 'th -, =
.jrs 1S the weights connections of i* unitin layer [ and

Y; which is denoted as j* unit of layer [ — 1 in (, s) location [103].

m(ll_l) mgl_l) (1-1)

1 1 . 1 1
L e e

i s=1 ij,1,s

s (2.56)

Normalization layer

In case of demand, besides the main three layers of CNN architecture normalization layers
are used after the other layers except fully connected layer. Because of the low effect of
normalization layers in CNN architecture, they are used when it is needed. Local response
normalization and batch normalization are two most popular normalization types which are
used in different CNN architectures [91, 94].

Local response normalization

One of the advantages of using Relu activation function in CNN architectures is to make
CNN architecture independent of the normalization layers. Local response normalization is
used when their inputs of Relu activation are positive values. Generally, local response
normalization algorithm is used to implement the lateral inhabitation [104] of real neurons
to improve the contrast of vision. The formula of local response normalization algorithm is
given by Eq. 2.57 equation. In this equation b;;_y is denoted as the local response
normalization of kernel i in (x; y) location and a,‘;’y is denoted as the output of applied
kernel i in (x; y) location. N is denoted as sume of leyer’s kernels and n is denoted as is the

number of adjacent convolutional kernels. Other parameters of local response normalization

equation are , p and k which have constant values [91, 106].

- - in(N-1,i+n/2 ,_j
biy = aky/(k+a Zjn:rrrllglx(o,il—nn//z) ay)?)P (2.57)
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Batch normalization

loffe and Szegedy (2015), have proposed batch normalization method to improve the
learning rate of deep learning. Internal Covariate shift is decreased by applying batch
normalization algorithm and network training is improved greatly as well. Generally, similar
to the others normalization algorithms, batch normalization is applied after convolutional

layers. Learning of mean and variance parameters of batch normalization take place in back

propagation algorithm.

For m numbers of activation value B = {x; _,,} batch normalization transform was given by

pseudo code below:

Input: Values of x over a mini-batch: B = {x; .};

v, B would be learned parameters

Output: y; = {BN, g (x)}

1 ..
Ug — ;Z{;‘lxi /[ mini-batch mean

1 . .
op — — N1 (X; — up)’? /I mini-batch variance
R — TEEE // normalize

yi < vX; + = BN, g(x;) /I scale and shift

In this pseudo code, X¥; ., ,V1.m and e are the normalized values, transformations of

normalized values and the constant value respectively [107].

2.2.2. Softmax function

In the last layer of CNN architecture, softmax function is used to calculate the probability of
each ground truth labels of outputs between 0 and 1 and output values convert to perceptible
values. Actually, softmax function is the generalized version of binary logistic regression
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and it is used for multiple classes. The formula of softmax function is given by Eq. 2.58
equation. In this equation K is denoted as dimensional of random values (z) which are

converted to the meaningful values between 0 and 1 by softmax function f(z) [108].

f(2); = ZKL Forj=1,..,K (2.58)

k=1€k
2.2.3. Different architectures of CNN
AlexNet

Krizhevsky et al was the winner of ILSVRC-2012 by proposing the AlexNet architecture for
the first time. Their proposed architecture contained 5 convolutional layers, three max
pooling layers and three fully connected layers. The training duration of AlexNet
architecture for ImageNet dataset was about six days. In AlexNet architecture two, GTX 580
GPUs were used to achieved fast training process. The architecture of AlexNet is given by
Figure 2.16. In this structure, first GPU is activated on the top of architecture and the second
GPU is activated on the bottom of the architecture. Training model is divided into two part
and eventually in the last fully connected they join with each other and applied filters are

divided in two part on all depth of samples as well [91].
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Figure 2.16. AlexNet architecture by using two GPU [91]

GoogleNet

Winners of ILSVRC14 proposed a CNN architecture that was called GoogleNet. They
inspired by the inception model of the network in network structure [109] in their own
architecture. In network approach in order to use the ability of ANN they used small patches

of MLP and shared MLP between all receptive fields of convolutional layers. They increased
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the depth of network by adding 1x1 convolutional layers. In general network in network
structure stacks various MLP convolutional layers and uses global average pooling instead
of fully connected layer at the end of the network. The output of global average pooling is
fed to softmax classifier. The figure 2.17 shows the structure of network in network structure.

In this structure, three MLP convolutional layers and one global average pooling layer is

used.

Figure 2.17. The structure of network in network [109]

The most important section of GoogleNet architecture is inception modules. GoogleNet
utilizes 9 inception modules which consist of convolutional layers and max pooling layer. In
inception model, instead of deciding about the size of kernels (filters) in convolutional
layers, the mixture of filters is used. In order to learn more features and having a deeper
network, the mixture of filters by 3x3 and 5x5 sizes are applied. In order to decrease the
dimension of input in each inception modules, a filter by 1x1 size is used before applying
larger filters by 3x3 and 5x5 sizes. Another purpose of using a filter of 1x1 size is the benefit
of more linearity by using Relu activation function after each 1x1 filter. Although using the
mixture of large filters cause to increasing the convolutional computation, using 1x1 filter
reduce the computation before applying larger filters. By using inception structure
GoogleNet architecture reduced the number of parameters 12 times less than AlexNet
architecture. The inception is shown by Figure 2.18. In this module before applying larger
filters, the filter of 1x1 size applied in each convolutional layers. To achieve the perfect
results of convolutional layers, beside the convolutional layers max pooling layer is used.
After applying inception modules, the concatenation of all used convolutional layers is fed

to the next layer.
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Figure 2.18. Inception module structure [94]

Figure 2.19, shows the GoogleNet architecture. Convolutional layers, pooling layers and
softmax were showed by blue, red and yellow rectangles respectively. Green rectangles
presented concatenations. The depth of GoogleNet architecture is 22 layers without
considering 5 pooling layers. The GoogleNet architecture consists of the beginning section,
inception, and the output section. In the beginning section, convolutional operations are
applied. 9 inception modules in GoogleNet is designed. In two middle layers that used
classification function and the last layer, one average pooling layer is performed. The
proposed GoogleNet architecture was called inception-vi. In this architecture for
discrimination of features in training process two auxiliary classifiers were used in the
middle inception layers. The main purpose of using two auxiliary classifiers in the middle
layers was increase the power of gradient during the propagation. In training process of
inception-vy the value of loss of auxiliary classifiers and the value of main loss are

aggregated and gradient will be propagated [94].

5(a) 5(b)

Convolution

4(b 4 4@)  4(e) 2
3@ 3 4(a) (b) (©) (d) Pooling

Concat/Normalize

Figure 2.19. GoogleNet architecture [94]
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In the other GoogleNet architecture that is called inception-BN (inception-v») they proposed
other alternatives in the architecture of GoogleNet. Through training the CNN, parameters
and the distribution of inputs are changed in all layers and it leads to decrease the training
by using lower training rate. They called this problem as internal covariate shift and proposed
using the normalization layer. Moreover, to reduce the complicated calculations they
proposed using two filters by 3x3 size instead of using filter by 5x5 size in inception modules

(Figure 2.20) [107].

Filter Concat

3x3
[
3x3 3x3 1x1
[ [ i
1x1 1x1 Pool 1x1
Base

Figure 2.20. Replacement of each 5x5 filter size by two 3x3 filter size in inception module
[107]

In inception-vz the other version of GoogleNet architecture factorization method was
proposed. In factorization method followed by inception-v. [107] instead of using n X n
filters of convolutions n X 1 and 1 x n filters could be applied. They have proved using
smaller kernals decreased the cost of computional of middle layers. Factorization method of
inception module is shown by Figure 2.21. It is obvious that each 3x3 filters in an inception
module of Figure 2.20 was replaced by 1x3 and 3x1 convolutional filters in Figure 2.21. In
this paper they argued that the auxiliary classifiers did not affect accuracy more. By batch
normalization of auxiliary branches, the, final classifier achieved high accuracy [110]. In the
recent paper about GoogleNet architecture two models namely inception-v4 and inception
ResNet were proposed. Using the idea of residual connections of ResNet architecture [63]
and inception modules [110] provided the recent architecture of GoogleNet. They proposed
inception-v4 without using residual connections and made it deeper by using more inception

modules. In their proposed inception ResNet, instead of concatenation of filters, residual
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connections were used and their proposed models decreased the computation of training

[111].
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Figure 2.21. Factorized filters of inception module [110]
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3. EXPERIMENTAL RESULTS

As mentioned in the introduction section, the lung cancer death toll is roughly 225 000 every
year in the United States. National Institute of Health acknowledged the costs of care and
diagnose of lung cancer in 2010 was 12 billion dollars. The main purpose is to provide tools
for early diagnose and increase care services. By providing tools and data in cancer fields
diagnose processes were improved impressively [112]. In biomedical fields using machine
learning tools could help and accelerate experts in diagnosis of diseases. Each year different
challenges in technological fields are organized about universal important problems. In
March 2017 Data Science Bowl group [113] organized challenge to improve diagnosis of
lung cancer. Dataset of lung CT scan images of Data Science Bowl and Kaggle is used for
this thesis. In this section detail of lung CT scan dataset, AlexNet and GoogleNet architecture

for classification of lung CT scan images and their results are described.

Dataset: Since deep learning algorithms in contrast with shallow algorithms achieved
considerable and high performance on thousands and millions of data, a large dataset of lung
CT scan images is used in this thesis in order to diagnose lung cancer by CNN as a deep

learning method.

For classification task, lung CT scan images of Data Science Bowl and Kaggle challenge
[113] are used. They gathered the large lung CT scans from different sources and this dataset
is the first large lung CT scan images in data science field. The challenge contained two
stages. Because we notified late, we could not take part in this challenge therefore, we just
used the dataset for our this thesis. The lung CT scan dataset contains 285 058 low-dose CT
scan images of 1595 patients in Digital Imaging and Communications in Medicine (DICOM)
format. This dataset contains 85 138 samples as malignant label and 199 920 samples as
benign label. Because of unbalanced samples of dataset, 59 497 samples of benign labels
and 43 656 samples of malignant labels are used in this thesis. For calssification of lung CT
scan images 49 599 benign samples and 34 267 malignant samples are considered as train
dataset. Moreover, 9898 benign samples and 9389 malignant samples are considered as test

dataset.

Preparing dataset: One of the main advantages of using CNN is independence of hand-

crafted features and other preprocessing algorithms [114]. In this thesis preprocessing
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methods which generally were used by shallow algorithms for feature extraction did not
applied. Because of the high quality of DICOM formats, all images of medical systems (i.e.
Xray, PET, CT scan) are in DICOM format [115].

Since the format of the CT scan images of lung dataset is medical format (DICOM), in this
thesis, all images were converted to Portable Network Graphics (PNG) format. The Python
code was applied in order to convert the DICOM format to PNG format. example of benign

and malignant samples (in PNG format) are shown in Figure 3.1.

Figure 3.1. Example of malignant samples (left) and benign samples (right)

3.1. AlexNet Architecture For Classification Of Lung CT Scan Images

AlexNet architecture of CNN contains five convolutional layers, five pooling layers, two
normalization layers and three fully connected layers. To determine the probability of two
classes of dataset softmax is used as the last layer. To continue learning of the network Relu
activation function is applied on the output of each convolutional layer and fully connected
layer. Batch size (number of samples through one training cycle) and the learning rate of the
network are determined 32 and 0.01 respectively.This model of CNN is trained in 30 epochs.

First, the input images by [227%x227x3] size are fed to the network. In the first convolutional
layer, 96 kernels (filters) by 11x11 filter size are applied on the input images. In the first
convolutional layer, stride size is initialized by 4 pixels furthermore zero padding is not used
in the first convolutional layer (zero padding=0). Each kernel is connected to the receptive
field of the previous layer only (local connections). The output of the first convolutional
layer obtained from Eq. 2.46. By considering W1=227 as input size, F=11 as receptive field
size, P=0 as zero padding, S=4 as stride size, W2 =(((227-11)+(2x0))/4)+1=55 is the output
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size. The size of the first covolutional layer will be [96x55x55]. This layer has
55x55x96=290 400 neurons and each neuron has 11x11x3=363 weights with one bias.
Figure 3.2, shows filters by [96, 3, 11, 11] size and output of the first convolutional layer
after applying filters by [96x55x55] size. After calulating covolutional operations the Relu
nonlinearity activation function is used on the output of the first convolutional layer.
Although the motifs learned by filters are not more obvious in the first layer, in deeper layers

they will learn more features of image gradually. Local response normalization is used to

make more brightness on output of convolutional layer.

Figure 3.2. Input image (left), Applied filters (middle), the output of the first convolutional
layer after applying filters by [96x55x55] size (right)

The size of the output of convolutional layer is not affected by normalization layer.
Normalization layer makes the output othe convolutional layer more clear and bright. The

first normalization layer by [96x55x55] size is shown by Figure 3.3.
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Figure 3.3. The first normalization layer by [96x55x55] size

The second main layer of AlexNet architecture is pooling layer. For subsampling of the
output of convolutional layer, overlapping max pooling by 3x3 filter and two strides (S=2)
is applied. The output of the first pooling layer is obtained by Eq. 2.54. By considering
W;=55 as input and F=3 as receptive field size, W>= ((55-3)/2)+1=27 is the output size.
Since pooling is applied on each layer and it causes the size of images to be subsample.
Consequently,the depth size will be the same as the depth size of the previous layer.The
output of pooling layer is [96x27x27]. The first pooling layer is shown by Figure 3.4, and it

is obvious in pooling layer data dimension is reduced.



49

Figure 3.4. The first pooling layer by [96x27x27]

The next layer is the second convolutional layer. In this layer 256 kernels (filter) by 5x5
filter size and 1 for stride size are applied on the inputs by [96x27x27]size. Two pixels of
zero padding is considered for the second convolutional layer. The output of layer is
calculated as Wo = ((27-5+(2%2)) /1)+1=27. The original size of the previous layer is restored
by using 2 for zero padding and the output size is [256x27x27]. It is noticeable that in the
original AlexNet architecture of CNN [91] due to lack of powerful GPUs, they have used
two GPUs for training of the large imagenet dataset. In this architecture, the training model
was divided into two section to benefit the power of two GPUs for training the whole dataset.
Consequently, filters were applied on all depth of samples in two sections. Nowadays
because of powerful GPUs, AlexNet architecture of CNN could be applied on one GPU.The
size of the final output of the second convolutional layer is [256x27x27]. Relu activation

function is applied on the output of the second convolutional layer.

The next step is take the advantage of the second response normalization layer. The
dimension of samples (256) is not changed by normalization layer. The size of the second

normalization layer is [256x27x27].

After normalization of the output of the second convolutional layer, the next pooling is
applied. In the second poling layer, input images are fed to the overlapping max pooling with
the filter size of 3x3 and stride of 2. Width and height of data dimension is reduced by
pooling operations and the depth is not changed (256). The output of the second pooling
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layer by Eq. 2.54 calculated as W» = ((27-3)/2)+1=13. The size of the output of this layer is
[256x113.3x13]. The output of pooling layer is fed to the third convolutional layer of 384
kernels (filters) with 3x3 filter size. Stride size is 1 and moreover 1 zero padding is used. By
using one pixel for zero padding the size of convolutional layer is not changed. Output is
calculated as W2 =(((13-3+(1x2))/1)+1=13. Output size of the third convolutional layer is
[384x13x13]. Applying Relu activation function on the output of the convolutional layer is
the next step.The next layer of AlexNet architecture is the forth convolutional layer. Input
image are fed to the forth convolutional layer by applying 384 kernels (filters) by 3x3 size
and 1 for both stride size and zero padding. The output (I#>,) is the same as the previous layer
by using 1 for zero padding and it is calculated as W»>= ((13-3+(1x2))/1)+1=13. Output size
of the convolutional layer is [384x13x13]. Relu activation function is applied after

convolutional layer.

For the fifth convolutional layer, 256 kernels with 3x3 filter size are applied. The stride size
and the zero padding for both layers are 1. The output of the convolutional layer by applying
256 kernels by 3x3 size is [256x13x13] and it is shown by Figure 3.5. Relu activation
function is applied on the output of the convolutional layer.

Figure 3.5. 256 kernels of 3x3 size (left), output of convolutional layer by [256x13x13] size
(right)

Overlapping max pooling by 3x3 kernel size with stride size of 2 is the next layer. The output

size of the pooling layer is [256x6x6] and it is shown by Figure 3.6.
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Figure 3.6. Output of the pooling layer by [256x6x6] size

By following AlexNet architecture, the output of the last layer by [256x6%6] size is fed to
each of 4096 neurons of the first fully connected layer. The output of the first fully connected
layer is fed to the second fully connected layer by 4096 neurons. After each fully connected
layers, Relu activation functions is applied. In the third fully connected layer to calculate the
probability of each label of lung dataset which includes benign and malignant labels, the
output of the previous fully connected layer is fed to the two way softmax function. The first
and the second fully connected layers are shown by Figure 3.7 and Figure 3.8, respectively.
Two classes of lung CT scan images which are classified in the third fully connected are
shown by Figure 3.9. Total learned parameters of lung CT scan images in AlexNet
architecture is calculated as 56 876 418. Summary of layers and output size of lung images

through training by AlexNet architecture are given by Table 3.1.

Figure 3.7. The first fully connected layer



Figure 3.8. The second fully connected layer

Figure 3.9. The third fully connected layer by softmax classifier

Table 3.1. Summary of AlexNet architecture in classification of lung CT scan images

Layer type Number of kernels | Kernel size Output size
Convolutional 96 11x11 96x55%55
Max pooling 3x3 96x27x27
Convolutional 256 5%5 256x27x27
Max pooling 3x3 256x13x13
Convolutional 384 3x3 384x13x13
Convolutional 256 3x3 256x13x13
Max pooling 3x3 256x6x6
Fully connected 4096x1x1
Fully connected 4096x1x1
Fully connected with Ix1x1

softmax
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3.2. GoogleNet Architecture For Classification Of Lung CT Scan Images

GoogleNet architecture, consists of nine different inception modules. 3(a), 3(b), 4(a), 4(b),
4(c), 4(d), 4(e), 5(a) and 5(b) are the 9 inception modules in GoogleNet architecture. At the
end of the 3(b), 4(e) and 5(b) inception modules max pooling layer is applied and the output
of the max pooling is fed to the next layer. Each inception module includes convolutional
and pooling layers. Each filter in inception module comprises the part of information about
the image. The output of each inception module is the concatenation of its layers that would
be the input of the next inception module. Six convolutional layers and one max pooling
layer are used in each inception module. Totally two local response normalization layers are
used in this architecture. In all inception modules and the other convolutional layers, Relu
activation functions are used. At the end of the architecture average pooling is used as a final
pooling layer and on fully connected layer softmax classifier is applied. Batch size and the
learning rate of the network are determined 32 and 0.01 respectively. The training of CNN
in GoogleNet architecture for lung CT scan images is applied in 30 epochs. After two
convolutional layers inception layers are applied consecutively. In this architecture input
image by [224x224x3] size Is fed the first convolutional layer by 64 kernels (filters) of 7x7
size with 3 for zero padding and 2 for stride size. By considering Eq. 2.46 and W1=224 as
input size, F=7 as receptive field size, P=3 as zero padding and S=2 as stride the output of
the first convolutional layer is calculated as W2= (((224-7)+(2x3))/2)+1=112.5= 112. (floor
value of 112.5 is 112). In order to achieve the fractional of values, the ceiling and floor

functions have been used in Caffe.

[64x112x112] is the size of the first convolutional layer. This layer has 112x112x64=874
496 neurons and each neuron has 7x7x3=147 weights with one bias. Figure 3.10, shows the
input image by [224x224x3] size (left image), 64 filters by 7x7 on the same depth of image,
[64, 3, 7, 7] (middle image) and the output of the first convolutional layer after applying
kernels on each feature maps by [64x112x112] size. For nonlinearity Relu activation

function is applied on the first convolutional layer.
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Figure 3.10. Input image (left), 64 kernels of 7x7 sizes (middle), output of convolutional
layer by [64x112x112] size (right)

The second layer of GoogleNet architecture is the first pooling layer. Overlapping max
pooling by 3x3 filter size with stride size of 2 is applied for subsampling. By considering
W1=112 as input, F=3 as receptive field size and stride (S=2), the output of the first pooling

layer is obtained by Eq. 2.54. The ceiling value is concidered in pooling layer.

Wo=((112-3)/2)+1=55.5=56. The output of pooling layer is [64x56x56]. Although the result

of pooling layer leads to subsample the size of image, the depth is the same as the depth of
previous layer. The first pooling layer of the architecture is shown by Figure 3.11.

Figure 3.11. First pooling layer by [64x56x56] size
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After the first pooling layer to make more brightness on the output of pooling layer, local
response normalization layer is applied. The output of the first normalization layer is the
same as the previous pooling layer by [64x56x56] size and it does not affect the overall size

of the previous layer. The first normalization layer is shown by Figure 3.12.

Figure 3.12. First normalization layer by [64x56%56] size

In the second convolutional layer, the dimension of channels is reduced by using small
kernels of 1x1. Small kernels lead to creating fewer parameters.64 Kernels of 1x1 size with
a stride of 1 and without any zero padding create the output by [64x56x56] which is
calculated as W= ((56-1)/1)+1=56. Relu nonlinearity activation function is applied. For the
second step of the second convolutional layer 192 kernels of 3x3 size with stide size of 1
and one zero pading is applied. The output (W>) is calculated by Eq. 2.46 and it is calculated
as Wy=((56-3+(2x1))/1)+1=56, therefore, the output size is [192x56x56]. The Relu
activation function is applied on the output of the second layer. 64 filters of 1x1 size and the
output of reduced convolutional layer are shown by Figure 3.13. 192 filters of 3x3 size and

the output of the second convolutional layer by [192x56x56] size are shown by Figure 3.14.
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Figure 3.13. 64 kernels of 1x1 size (left), output of convolutional layer by [192x56x56] size
(right)

Figure 3.14. 192 kernels of 3x3 size (left), output of convolutional layer by [192x56x56]
size (right)

After applying the Relu activation function normalization is applied on the output of the
convolutional layer. The second normalization layer makes the output of the convolutional
layer bright and its size is the same as the size of the convolutional layer. The second
normalization layer by [192x56x56] size is shown by Figure 3.15.
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Figure 3.15. Output of the second normalization layer by [192x56x56] size

For subsampling of the output of the previous convolutional layer, the second overlapping
max pooling by 3x3 filter size with stride size of 2 is applied. The output of pooling layer
is calculated by Eq. 2.54 as W»= ((56-3)/2)+1=27.5=28.Therefore, the output size of pooling

layer is [192x28x28]. It is noticiblae that the pooling operation dos not change the depth of
its input. The second pooling layer is shown by Figure 3.16.

Figure 3.16. Output of the second pooling layer by [192x28%28] size

After reducing the dimension of the input image, nine inception layers are applied. In all
inception modules the main purpose is using small kernels to prevent overfitting and before

using larger kernels the tiniest kernels by 1x1 size is applied. After all 1x1, 3x3 and 5x5
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kernels for nonlinearity Relu activation function is used. Beside convolutional layers, one
max pooling layer is applied to achieve the reasonable result. At the end of each inception
module, all small kernels are concatenated as one part that consists of all information about
a part of the image. The concatenated part is an input of the next inception module. In
inception module 3(a), 64 tiny kernels (filter) by 1x1 size with stride size of 1 and without
any zero padding is used.

The output of 1x1 kernel size is calculated by Eq. 2.46 as W»=(((28-1)+0)/1)+1=28. The
output of the convolutional of 1x1 kernel size is [64x28x28]. Relu activation function is

applied. 64 kernels by 1x1 size and the output by [64x28x28] size are shown by Figure 3.17.

Figure 3.17. 1x1 kernel size (left), output of the convolutional by [64x28%28] size (right)

The first inception module that includes four convolutional layers is applied on its previous
layer (pooling layer). The input of the other inception modules are the output of the
concatenation of the previous inception module. By considering the inception module model,
after applying the single 1x1 kernel, the second step of inception module is applying kernels
by 1x1 and 3x3 on previous pooling layer. The output of convolutional by applying 96
kernels by 1x1 size with stride size of 1 and without zero padding on the output of the
previous layer is calculated as W,=(((28-1)+0)/1)+1=28. Therefore, the output of
convolutional of 1x1 kernel size is [96x28%28]. The Relu activation function is applied on
the output of the convolutional layer. After applying the tiny kernel by 1x1 size, 28 larger
kernels by 3x3 size with 1 for stride size of and with 1 for zero padding, is applied. The

output of convolutional layer is calculated as W>=(((28-3)+(2x1))/1)+1=28. Therefore, the
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output size is [128x28x28]. Relu activation function is applied on the output of the second
step of the 3(a) inception module. 96 kernels by 1x1 size and its output of convolutional

layer by [96x28x28] size are shown by Figure 3.18. 128 kernels by 3x3 size and its output

of convolutional layer by [128x28x28] size are shown by Figure 3.19.

Figure 3.19. 128 kernels of 3x3 (left), output of convolutional by [128x28%28] size (right)

The third part of the 3(a) inception module is applying 1x1 and 5x5 kernels on its previous
pooling layer. First, the tiny 16 kernels by 1x1 size with stride size of 1 and without zero
padding and next 32 kernels by 5x5 size with stride size of 1 and with 2 for zero padding are

applied. After each convolutional Relu activation function is applied. The output size of the
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1x1 convolutional layer is [16x28x28] and the output size of the 5x5 convolutional layer is
[32x28%28].16 kernels by 1x1 size and its convolutional output by [16x28x28] size are
shown by Figure 3.20. 32 kernels by 5x5 size and its convolutional output by [32x28x28]

size are shown by Figure 3.21.

o
>

Figure 3.20. 16 kernels of 1x1 (left), output of convolutional by [16x28%28] size (right)

Figure 3.21. 32 kernels of 5x5 (left), output of convolutional by [32x28%28] size (right)

The fourth part of 3(a) inception module is applying the max pooling layer.The output size
of max pooling by 3x3 kernel size with 1 for stride size and 1 for zero padding, is
[32x28%28]. Max pooling layer is shown by Figure 3.22. Convolutional layer by 128 kernels
of 1 x 1 size is the last operation of the fourth part of 3(a) inception module. The output of

the convolutional layer is [32x28%28] and is shown by Figure 3.23.



61

> ' AFJ-_ '_ - »)nti
e L )t.:c;u"'i AT S L & 1
A L\. . oA pas sl

.; '. I

" .!.f--.f'?.r?k e

Figure 3.23. 128 kernels of 1x1 (left), output of convolutional by [32x28%28] size (right)

The last step is the concatenation of all layers in inception module 3(a). In concatenation
layer sum of all depth of inception module is calculated as 64,128 and 32 for kernels by 1x1,
3x3 and 5x5 size respectively. 32 kernels for pooling layer is considered. Sum of all depths
(256) calculated as the depth of last output of inception module. The output of concatenation
of all layers in inception module 3(a) by [256x28%28] size is fed to the second inception

module 3(b). the output of the inception module 3(a) is shown by Figure 3.24.
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Figure 3.24. The output of inception module 3(a) by [256x28%28] size

Following inception module model, in inception module 3(b) the first 128 kernels by 1x1
size with stride size of 1 and without zero padding are applied on the output of the previous
layer. The size of the convolutional layer of 1x1 kernels is [128x28%28]. Relu activation

function is applied on the output of the first convolutional layer of inception module 3(b).

In the second step of inception module 3(b), 1x1 and 3x3 kernels are applied on the output
of the previous layer by [256x28x28] size. The output of the convolutional layer by 128
kernels by 1 x 1 size is [128x28x28]. Relu activation function is applied on the output of
the convolutional layer of the 1x1 kernels. In the second step of the inception module 3(b)
after 1x1 kernels, 192 kernels by 3x3 size are applied on the output of the convolutional
layer of 1x1 kernels. The output size of the convolutional layer of 3x3 kernel size is
[192x28%28]. On the output of the convolutional by 3x3 kernel size, Relu activation function

is applied.

In the third step of inception module 3(b), 1x1 and 5x5 kernels are applied on the output of
the previous layer [256x28x28] .The size of the output convolutional of the 32 kernels by
1 % 1 size is [32x28x28] For nonlinearity, Relu activation function is applied on the output
of the convolutional layer. On the output of the 1x1 convolutional layer, 96 kernels by 5x5
size with a stride of 1 and zero padding of 2 are applied. The output size of the convolutional
layer is [96x28%28]. Relu activation function is applied on the output of the convolutional

layer.
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The fourth step of the second inception module 3(b) is applying max pooling. In this layer
max poling by 3x3 kernel size with 1for stride size and zero padding is applied on the output
of the previous layer [256x28%28]. Max pooling operation does not affect the depth of input
and the output of the max pooling layer is calculated as W»>=(((28-3)+(2x1))/1)+1=28. The
size of max pooling layer is [256x28x28]. Because of the used stride size in max poling
output size is not changed.

Following the inception module model in GoogleNet architecture in the fourth step after
pooling layer a convolutional layer is applied. 64 kernels by 1x1 size are applied on the
output of the max poling layer. The output of the convolutional layer is [64x28x28] kernels
by 1x1 size and the output of the convolutional layer are shown by Figure 3.25.

Figure 3.25. 64 kernels by 1x1 size (left), convolutional layer by [64x28x28] size (right)

After applying the Relu activation function, concatenation of all layers of inception module
3(b) is calculated as the output of the inception 3(b). Sum of 128, 192 and 96 for kernels by
1x1, 3x3 and 5x5 sizes and 32 for kernels of pooling layer is calculated as the depth of
inception module 3(b) as 480. After applying max pooling layer on the output of
concatenation of all layers of inception module 3(b), it is fed to the inception module 4(a).
The output of the max pooling layer by 3x3 kernel size with stride size of 2 is achieved as
[480x14x14].

In inception module 4(a), the first step is applying 192 kernels by 1x1 size on the input of
[480x14x14] size. [192x14x14] is the output size of the convolutional layer. Relu function
is applied on the output of the convolutional layer. In the second step of inception module

4(a) before applying kernels by 3x3 size, kernels by 1x1 size are applied. The output of the
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96 kernels by 1x1 size with stride size of 1 on input by [480x14x14] size is [96x14x14].
After applying Relu activation function 208 kernels by 3x3 size with 1 for stride size and
zero padding are applied on the output of the convolutional of 1x1 size. [208x14x14] is the
output of the convolutional which is achieved by 3x3 kernel size. Relu activation function
is used for nonlinearity. The third step is applying 1x1 and 5x5 kernels and using Relu
activation function after each output convolutional layer. The output of the 16 Kernels by
1x1 size on input by [480x14x14] size is [16x14x14]. The output of the 48 kernels by 5x5
size with 2 for zero padding on the input by [16x14x14] size is [480x14x14].

The fourth step is applying max pooling on the output of the previous inception module and
1x1 kernel size of the convolutional layer. The output of the applying max pooling by 3x3
kernel size with 1 for zero padding and 1 for stride size is [480x14x14] and the output of the
convolutional layer by 64, 1x1 kernel size is [64x14x14]. Relu activation function is applied
on the output of the convolutional layer.The total output size of inception module 4(a) is
achieved by concatenation of its all convolutional and pooling layers. The sum of depths is
calculated as 192+208+48+64=512. The output size of the concatenation of inception
module 4(a) is [512x14x14].

In the first step of inception module 4(b), 160 kernels by 1 x 1 size on the input of
[512x14x14] size are applied [160x14x14] is the output size of the convolutional layer. Relu
function is applied on the output of the convolutional layer. In the second step of inception
module 4(b) kernels by 1x1 size are applied before applying kernels by 3x3 size. The output
of the 112 kernels by 1x1 size with stride size of 1 on input by [512x14x14] size is
[112x14x14]. After applying Relu activation function 224 kernels by 3x3 size with 1 for
zero padding are applied on the output of the convolutional of 1 X 1 size. [224x14x14] is
the output of the convolutional which is achieved by 3x3 kernel size. Relu activation
function is used for nonlinearity. In the third step 1x1 and 5x5 kernels and Relu activation
function are applied after each output of the convolutional layer. The output of the 24 Kernels
by 1x1 size on input by [512x14x14] size is [24x14x14]. The output of the 64 kernels by
5x5 size with 2 for zero padding on the input by [24x14x14] size is [64x14x14]. Relu
activation function is applied on the output of the convolutional layer as well. In the fourth
step max pooling by the 3x3 kernel with 1 for zero padding and 1 for stride size is applied
on the previous inception model by [512x14%14] size and its result is [512x14x14] In the

convolutional layer of this step, 64 kernels by 1x1 size are applied on the input by
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[512x14x14] size and the output of convolutional layer is [64x14x14] . On the output of the
convolutional layer Relu activation function is applied.The total output size of inception
module 4(b) is claculated by concatenation of its pooling layer by 64 kernels,160 kernels for
1x1, 224 kernels for 3x3 and 64 kernels for 5x5 convolutional layers. Sum of depths is 512.

The size of the concatenation of inception module 4(b) is [512x14x14].

In the first step of inception module 4(c) of the convolutional layer 128 kernels by 1x1 size
are applied on the output of the last inception module by [512x14x14] size. The size of the
output of the convolutional layer is [128x14x14]. After the first convolutional layer of the
inception module 4(c), Relu activation function is applied. In the second step of inception
module 4(c) before applying 3x3 kernels, 128 kernels by 1x1 size are applied on the output
of the previous inception module. [128%14x14] is the output of the 128 kernels by 1x1 size.
After applying Relu activation function on the output of the convolutional with 1 x 1
kernels, 256 kernels by 3x3 size with 1 for zero padding are applied. [256x14x14] is the
output of the convolutional achieved by 3x3 kernel size. After convolutional layer, Relu
activation function is used for nonlinearity. After the convolutional layer of the second step
of inception module 4(c), Relu activation function is applied. In the third step of the inception
module 4(c) output of the previous inception modules by [512x14x14] size is fed to the 24
kernels by 1x1 size before applying 5x5 kernels. Convolutional layer of 1x1 kernels
achieved the output by [24x14x14] size. Relu activation function is also used after
convolutional layer. Subsequently 64 kernels by 5x5 size with 2 for zero padding is applied
on the input by [24x14x14] size as the next convolutional layer. The output of the
convolutional layer is [64x14x14] . Relu activation function is used after convolutional
layer. In the fourth step of the inception module 4(c) max pooling by 3x3 kernel with 1 for
zero padding and 1 for stride size is applied on the output of the previous inception model
by [512x14x14] size and its result is [S12x14%x14]. 64 kernels by 1x1 size are applied on
[512x14x14] as convolutional layer and the output of convolutional layer is [64x14x14].

The last Relu of the inception module 4(c) is applied after the last convolutional layer.

The last step of the inception module 4(c) is depth calculation by concatenation of pooling
layer’s depth and depths of the convolutional layers by 1x1, 3x3 and 5x 5 kernels. Sum of
64 kernels of the max pooling layer, 128 kernels for 1x 1 , 256 kernels for 3x 3 and 64
kernels for 5x 5 is calculated 512 as the depth of inception module 4(c). [512x14x14] is the

total size of inception module 4(c).
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The next inception module in GoogleNet architecture is inception module 4(d). Similar to
the other modules of GoogleNet architecture it follows the process of inception modules. In
the first step of the inception module 4(d), on the output of the previous module by
[512x14x14] size, 112 kernels by 1x1 size are applied. The output of the convolutional layer
by using 1x1 kernels is [112x14x14]. Relu activation function is applied after the
convolutional layer of the first step. In the second step of inception module 4(d), 144 kernels
by 1x1 size are applied on the output of the previous module by [512x14x14] and the output

is [144x14x14]. Relu activation function is applied on the output of the convolutional layer.

After 1x1 kernels, 288 kernels by 3x3 size with 1 for zero padding are applied on
[144x14x14] and the convolutional layer’s output is achieved by [288x14x14] size. Relu
activation function is used after convolutional as well. The third step is applying 32 kernels
by 1x1 size on the input by [512x14x14] size and 64 kernels by 5x5 size with 1 for zero
padding on the output of 1x1 kernels. The output size of the convolutional by using 1x1
kernel is [32x14x14] and the output of the convolutional by using 5x5 kernels is
[64x14x14]. After each convolutional layer, Relu activation function is applied. By
following the GoogleNet architecture the fourth step is applying max pooling layer with 5 x
5 Kernel size and 1 for both stride and zero padding on the input by [512x14x14] size. After
applying max pooling layer in the fourth step, 64 kernels by 1x1 size are applied on
[512x14x14] as a convolutional layer and the output of convolutional layer is [64x14x14].
Relu activation function is applied after convolutional layer as well.The depth of the
inception module 4(d) is the sum of 64 for kernels of max pooling layer, 112 kernels for 1x1
Kernels, 288 kernels for 3x3 and 64 kernels for 5x5. The concatenation of depths in
inception module 4(d) is [528x14x14].

In the first step of inception module 4(e) the output of the convolutional layer by 256 kernels
of 1 x 1 size on the output of the previous layer by [528x14x14] is [256x14%x14]. Relu
activation function is applied after convolutional layer.The second step is applying 160
kernels by 1 X 1 size on the input by [528x14x14] size. Applying 320 kernels by 3x3 size
and with 1 for zero padding on the output of the 160 kernels by 1x1 is the next section of the
second step. The output size of 160 by 1 x 1 kernels in the convolutional layer is
[160x14x14] and the output size of convolutional layer by 320 kernels with 3x3 size is
[320%14x14] . Relu activation function is used after both convolutional layers by 1x1 and

3x3 kernels.In the third step of inception module 4(e) before applying kernels by 5x5 size,
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32 kernels by 1x1 size are applied on the input by [528x14x14] size. The output size of the
convolutional layer is [32x14x14] and the output size of the convolutional layer by applying
128 kernels with 5x5 size and with 2 for zero padding on the input by [320x14x14] size is
[128%14x14]. Relu activation function is applied after both convolutional layers by 1x1 and
5x5 kernels. By following GoogleNet architecture the fourth step in the inception module
4(e) is applying max pooling and convolutional layer by 1x1 kernel size as well. Max
pooling by 3x3 kernel size with 1 for both zero padding and stride size is applied on the
input by [528x%14x14] size. The size of the output of the max pooling layer is [528x14x14]
and the size of the output of the convolutional layer by 128 kernels with 1x1 size on the
output of the max pooling layer is [128x14x14] . After convolutional layer, Relu activation
function is applied. The depth of output of the inception module 4 (e) is the concatenation
of the depth of max pooling layer and the depth of the convolutional layers. Sum of 256,
320,128 and 128 for kernels of 1x1, 3x3, 5x5 of convolutional layers and pool layer is 832
as the depth of inception module 4(e). The output size of inception module 4(e) is
[832x14x14]. The output of the inception module 4(e) is fed to the max poling layer then it
is fed to the next inception module. Max poling layer by 3x3 kernel size with 2 for stride

size is applied on the output of the concatenation by [832x14x14] size.

The first step of the inception module 5(a) is applying 256 kernels by 1x1 kernels on the
input by [832x14x14] size. The output of the convolutional layer is calculated as [256x7x7].
Relu activation function is applied on the output of the convolutional layer. In the second
step of the inception module 5(a) 160 kernels by 1x1 size are applied on the output of the
previous layer by [832x7x7] size. After applying 1x1 kernels, 320 kernels by 3x3 size with
1 for zero padding are applied on the output of the convolutional by 1x1 kernel size. The
output of the convolutional of 320 kernels by 3x3 size is [320x7x7]. After both
convolutional layer of the inception module 5(a), Relu activation function is applied. In the
third step of the inception module 5(a) before applying kernels by 5x5 size, 32 kernels by
1x1 size are applied on the output of the previous layer by [832x7x7] .The output size of the
convolutional layer is [32x7x7]. Relu activation function is applied after convolutional
layer. 128 kernels by 5x5 size with 2 for zero padding are applied after convolutional layer
by 1x1 kernel size. The output of the convolutional layer of 128 kernels by 5x5 size on the
input by [32x7x7] size is [128x7x7]. Relu activation function is applied after convolutional
layer as well. In the fourth step of the inception module 5(a) max pooling by 3x3 kernel size
with 1 for both stride size and zero padding is applied on the output of the previous layer by
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[832x7x7] size. The output size of the max pooling layer is [832x7x7] . After max pooling
layer one convolutional layer of 128 kernels by 1x1 size is aplied and the output size of the
convolutional layer is [128x7x7] . After convolutional layer Relu activation function is
applied. Concatenation of the all depths of convolutional layers and max pooling layer in
inception module 5(a) is the depth of module. Sum of 256,320, 128, 128 for depth of
convolutional by 1x1, 3x3, 5x5 kernels and max pooling layer is calculated as 832 for depth

of inception module 5(a). The output size of the inception module 5(a) is [832x7x7].

The last inception module of GoogleNet architecture is inception module 5(b). By following
all inception modules of GoogleNet architecture the first step is applying convolutional layer
by 1x1 kernel size on the output of the previous layer by [832x7x7] size. The output of the
convolutional of 384 kernels by 1x1 size is [384x7x7] The convolutional layer of 384
kernels by 1x1 size and its output are shown by Figure 3.26. Relu activation function is

applied after convolutional layer.

R P S I e SN

Figure 3.26. 384 kernels by 1x1 size (left), output of convolutional by [384x7x7] size (right)

In the second step of the inception module 5(b) before applying convolutional by 3x3 size
192 kernels by 1x1 size are applied on the output of previous layer by [832x7x7] size. The
size of the output of the convolutional by the 3x3 kernel is [192x7x7] size and it is shown
by Figure 3.27.
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Figure 3.27. 192 kernels by 1x1 size (left), output of convolutional by [192x7x7] size (right)

After applying convolutional layer by 1x1 kernel size, 384 kernels by 3x3 size with 1 for
zero padding are applied on the output of the previous convolutional layer by 1 x 1 kernel
size. The output size of the convolutional layer is [384x7x7] and it is shown by Figure 3.28.

After both convolutional layers, Relu activation function is applied.

Figure 3.28. 384 kernels by 3x3 size (left), output of convolutional by [384x7x7] size (right)

The third step of the inception module 5(b) includes convolutional layers by 1x1 and 5x5
kernel size. 48 kernels by 1x1 size are applied on the output of the previous layer and the
output size of the convolutional is [48x7x7] Convolutional of 48 kernels by 1x1 size and its
output are shown by Figure 3.29. 128 kernels by 5x5size with 2 for zero padding are applied
on the last convolutional layer by [48x7x7] size. The output size of convolutional by 5x5
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kernel size is [48128x7x7]. A convolutional layer of 128 kernels by 5x5 size and its output
are shown by Figure 3.30. After both convolutional layers, Relu activation function is

applied.

Figure 3.29. 48 kernels by 1 x 1 size (left), output of convolutional by [48x7x7] size (right)

Figure 3.30. 128 kernels by 5x5 size (left), output of convolutional by [128x7x7] size (right)

In the fourth step of inception module 5(b), max pooling and convolutional layer are applied.
The output size of the max pooling layer by 3x3 kernel size with 1 for both zero padding
and stride on the output of the previous layer is [832x7x7]. Max pooling layer is shown by
Figure 3.31. For convolutional layer, 128 kernels by 1x1 size are applied on the output of
the max pooling layer. The output of the convolutional layer of 128 kernels by 1x1 size is
[128%7x7] and it is shown by Figure 3.32. Relu activation function is applied after

convolutional layer.
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Figure 3.32. 128 kernels by 1x1 size (left), output of convolutional by [128x7x7] size (right)

The depth of inception module 5(b) is a concatenation of the depths in all layers of the
module. Sum of 384,384,128 and 128 for depth of convolutional layers by 1x1, 3x3,5x5

kernels and depth of max pooling layer is calculated as 1024. The output size of inception

module 5(b) is [1024x7x7] and it is shown by Figure 3.33.
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Figure 3.33. Concatenation of inception module 5(b) by [1024x7x7] size
The output of the previous layer by [1024x7%7] is fed to an average pooling layer and it is

down sampled by 7x7 kernel size with stride size of 1. The output of the average pooling

layer is [1024x7x7] and it is shown by Figure 3.34.

Figure 3.34. Output of avg pooling layer by [1024x1x1] size

The fully connected layer contains 1024 neurons with 1x1 size which is provided by average
pooling operation. In fully connected layer instead of local connections, all connections are
fully connection the output of the fully connected layer is fed to the softmax classifier. In
order to make meaningful output, softmax classifier is applied to achieve the probability of
each ground truth labels of the images. Lung dataset includes two classes of benign and
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malignant and for each class probability distribution is calculated by softmax classifier. Two
classes of lung dataset which are classified by softmax classifier are shown by Figure 3.35.

Figure 3.35. Classified lung CT scan images by softmax

Total learned parameters in this architecture is calculated as 5 975 602 parameters. Summary
of layers and output size of lung images through training by GoogleNet architecture are
given by Table 3.2.

Table 3.2. Summary of GoogleNet architecture in classification of lung CT scan images

Layer type Number of kernels Kernel size Output size
Convolutional 64 77 64x112x112
Max pooling 3x3 64x56x56
Convolutional 192 3x3 192x56x56
Max pooling 3%3 192x28x%28
Inception 3(a) 256x28x%28
Inception 3(b) 480x28x28
Max pooling 3%3 480x14x14
Inception 4(a) 512x14x14
Inception 4(b) 512x14x14
Inception 4(c) 512x14x14
Inception 4(d) 528x14x14
Inception 4(e) 832x14x14
Max pooling 3x3 832x7x7
Inception 5(a) 832x7x7
Inception 5(b) 1024x7x7
Avg pooling 7x7 1024x1x1
Fully connected 1024x1x1
Fully connected with Ix1x1
softmax
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3.3. Performance Metrics

Generally, for performance evaluation of classification algorithm, real and predicted values
of classes are compared by confusion matrix [116]. The confusion matrix is given by Table

3.3. Performance metrics which are used in this thesis are given below.

Table 3.3. Confusion matrix

Prediction
Confusion Matrix
Positive Negative
Positive TP FN
Actual
Negative FP TN

TP: Positive samples which are predicted accurately as a positive label.

FN: Positive samples which are predicted incorrectly as a negative label.

FP: Negative samples which are incorrectly predicted as a positive label.

TN: Negative samples which are correctly predicted as a negative label.

Accuracy: Performance evaluation of algorithm in the classification of class labels of each

sample in dataset is calculated by accuracy. Formula of accuracy is given by Eq. 3.1.

TP+TN

Accuracy = ————
Y = TPrFP+TN+FN

(3.1)

Sensitivity or Recall: Indicates what proportion of real positive classes are labeled as positive

class by classifier. Formula of sensitivity is given by Eq. 3.2.

TP
TP+FN

Sensitivity = Recall = (3.2)

Precision: Indicates what proportion of classified classes as positive label have actually

positive class labels. Formula of precision is given by Eq. 3.3.
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TP
TP+FP

Precision = (3.3

Classification performance metrics of used architectures

To evaluate the performance of two architectures, 19 287 samples are selected as test set
(9898 samples as benign label and 9389 samples as malignant label). For each one of the
architectures (AlexNet and GoogleNet) training samples are trained five times. Then the test
set is fed to all five training models of each architecture. Confusion matrix of testing the five
times trained for each AlexNet and GoogleNet architectures are given by Table 3.4.

Table 3.4. Confusion matrix of testing the five times trained AlexNet and GoogleNet

. . Prediction
Confusion Matrix Actual . -
Malignant Benign

Malignant 8816 573

AlexNet -
Benign 640 9258
AlexNet Malignant 8911 478
Benign 659 9239
Malignant 8766 623

AlexNet .
Benign 414 9484
Malignant 8923 466

AlexNet .
Benign 485 9413
Malignant 8914 475

AlexNet .
Benign 312 9586
Malignant 9141 248

GoogleNet .
Benign 970 8928
Malignant 8978 411

GoogleNet .
Benign 680 9218
Malignant 8997 392

GoogleNet .
Benign 667 9231
Malignant 9043 346

GoogleNet -
Benign 584 9314
Malignant 9153 236

GoogleNet -
Benign 466 9432

Summary of accuracy rate, sensitivity and precision for testing the five times trained
AlexNet and GoogleNet architectures by 19 287 samples are given by Table 3.5. It can be
demonstrated that by testing 19 287 samples of lung CT scan dataset for five times trained
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architectures, accuracy rate of AlexNet by 95.919% is higher than the accuracy rate of other
four AlexNet and the accuracy rate of GoogleNet by 96.360% is higher than the other
accuracy rate of GoogleNets in test phase as well (Table 3.5). AlexNet with the highest
accuracy rate (95.919%) could diagnose 8914 malignant samples (TP) accurately among
total malignant of test dataset (9389) and it could diagnose 9586 benign samples (TN) among
total 9898 benign samples. AlexNet with the highest accuracy rate value classifies 475
malignant samples as benign samples incorrectly (FN) and it classifies 312 benign samples
as malignant samples (FP) incorrectly as well. The highest accuracy rate (96.360%) of
GoogleNet is the result of acceptable diagnosis of 9153 malignant samples (TP) between
total malignant test dataset (9389). Consequently, GoogleNet classifies 236 malignant
samples as benign samples incorrectly (FN). Moreover, GoogleNet could classify benign
samples (9432) as actual benign samples (TN) among total 9898 benign samples of the test
set. In classification of total 9898 benign samples, GoogleNet with the highest accuracy rate
classifies 466 benign samples incorrectly as malignant samples (FP). It is demonstrated that
the highest value of TN and TP in both AlexNet and GoogleNet leads to the highest value

of accuracy rate in classification of CT scan images (Table 3.4 and Table 3.5).

Table 3.5. Summary of AlexNet and GoogleNet accuracy rates

Arcﬁil':gsture Sensitivity Precision Accuracy Rate (%)
AlexNet 0.938 0.932 93.669
AlexNet 0.949 0.931 94.104
AlexNet 0.933 0.954 94.623
AlexNet 0.950 0.948 95.069
AlexNet 0.949 0.966 95.919

GoogleNet 0.973 0.904 93.684

GoogleNet 0.956 0.929 94.343

GoogleNet 0.958 0.930 94.509

GoogleNet 0.963 0.939 95.178

GoogleNet 0.974 0.951 96.360

GoogleNet with the highest accuracy rate (96.360%) achieves the highest value of sensitivity
and precision in classification of lung CT scan images as benign and malignant. AlexNet
with the highest accuracy rate has the highest precision value while its value of sensitivity is

the second highiest value between sensitivity values of the other four Alexnet architectures
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(Table 3.5). It is demonstrated that the lowest value of FP and FN and the highest value of
TP increased the value of sensitivity and precision. Table 3.6 illustrates training time for
each AlexNet and GoogleNet with the highest accuracy rate among their five times trained
architectures up to 30 epochs. AlexNet architecture with the highest accuracy rate (95.919%)
could train training dataset in 26 minutes and 48 seconds and its training time is less than
training time of GoogleNet architecture with the highest accuracy rate (96.360%) with 1
hour and 44 minutes. It is demonstrated that training time of deeper and more complex

models is longer than training time of less complex models.

Table 3.6. Training time of AlexNet and GoogleNet for classification of lung CT scan

CNN Architecture Training time
AlexNet (by 95.919% accuracy rate) 26 min 48 sec
GoogleNet (by 96.360% accuracy rate) 1h 44 min

Loss function is determined for performance evaluation of the training networks. Loss
function calculates differentiate between the prediction of labels which are achieved by the
algorithm and ground truth labels. In SGD algorithm weights are updated in direction of loss
value and the objective of training process is decreasing the loss value to achieve the best
trained model. Therefore, to evaluate the performance of the network, loss function is
considered in this thesis. Loss diagrams through the learning process for all training dataset
of AlexNet and GoogleNet which achieved the highest classification performance are shown

by Figure 3.36 and Figure 3.37, respectively.
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Figure 3.36. The loss diagram of the training dataset for AlexNet
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Figure 3.37. The loss diagram of the training dataset for GoogleNet

For classification of lung CT scan images as benign and malignant loss of the tarining phase
in AlexNet performed as well as loss of the training phase in GoogleNet architecture. The
values of training loss in both algorithms are changed frequently to achieve the least value
at the end of training process. Loss of train in AlexNet architecture, after epoch 4 fell down
and it is not changed dramatically after epoch 10. At the end of the training of AlexNet loss
value dropped down to 0.00075. Loss of train in GoogleNet is not changed dramatically after
epoch 15 and it dropped down to 0.000078 at the end of training phase. Both AlexNet and
GoogleNet could train samples as well by minimizing loss train through training and loss
train in both architecture is close to zero (Figure 3.36 and Figure 3.37). To minimize the loss
function, SGD algorithm is used and the learning rate is the most effective parameter of
SGD. Through the successful training process, learning rate must be decreased. In this thesis
performance of the network by learning rate are shown by figure 3.38 and figure 3.39 for
AlexNet and GoogleNet architectures with the highest accuracy rate. In the beginning of
training, a learning rate for both network architectures is considered as 0.01. During the
training learning rate of AlexNet and GoogleNet drops dramatically in every 10 epochs.
Learning rate of both AlexNet and GoogleNet architectures reached 0.00001 after epoch 29.
Both architectures could be successful in training of samples by the least learning rate at the

end of the training phase (Figure 3.38 and Figure 3.39).
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Figure 3.38. Learning rate of training phase by AlexNet
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Figure 3.39. Learning rate of training phase by GoogleNet

By comaprison two architectures of CNN it is evident that GoogleNet architecture by
96.360% accuracy rate could diagnose more benign and malignant samples than AlexNet
architecture by 95.919% accuracy rate. Results of diferent models of deep learning method
which are explained in the literature are shown by Table 3.7. Despite most of the other
methods in the literature were used on different lung CT scan datasets, in this thesis the used
architectures of CNN have got higher accuracy rate than the methods used in the literature
for classification of lung CT scan images. Moreover, accuracy rates of the used AlexNet
and GoogleNet architecture in this thesis are higher than the accuracy rate of CNN with U-

Net architecture which was used in the other paper [49] on the same dataset. (Table 3.7).
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Table 3.7. Results of different methods for classification of lung CT scan images

Dee_p Compared | Accuracy e .
Dataset learning Sensitivity Precision Ref.
method (%)
method
ANN,
LIDC | CNN (can) LeNet 76 [48]
LIDC SDAE,
&IDRI DBN CAD 81.19 [41]
LIDC
gpri | PNN 82.10 [44]
LIDC
&IDRI CNN DNN,SAE 84.15 0.8396 [50]
LeNet,
ILD CNN AlexNet, 85.61 [43]
VGG
Data
science CNN
and (U-net) 86.60 [49]
kaggle
LIDC CNN with | CNN with
&IDRI RF SVM 86.84 [47]
ILD CNN SVM 0.88 0.93 [46]
Data 96.360
science CNN AlexNet (GoogINet) 0.974 0.951 This
and (GoogleNet) 95.919 (GoogleNet) | (GoogleNet) | thesis
kaggle (AlexNet)




81

4. CONCLUSION

In this thesis to diagnose lung CT scan images as benign and malignant CNN one of the
algorithms of deep learning which is the state- of- art machine learning method is utilized.
In this regard, a large dataset of lung CT scan images which includes benign and malignant
samples is used. Unlike shallow machine learning methods, preprocessing and feature
extraction methods are not separable stages in deep learning methods and deep learning
methods take the advantage of automatic feature extraction. In order to train and classify
lung CT scan images, AlexNet and GoogleNet which are two architectures of CNN methods
are used. For each one of the AlexNet and GoogleNet architectures training dataset is trained
five times and test dataset is fed to all trained architectures. In AlexNet architecture five
convolutional, five pooling and three fully connected layers are used as a standard structure.
In GoogleNet architecture, one fully connected layer and nine inception modules which
include different convolutional and pooling layers are used as well. Both architectures of
CNN are used in 30 epochs. The results of test phase show that the acceptable AlexNet by
95.919% accuracy rate achieved higher accuracy rate than the other four AlexNet
architectures and the acceptable GoogleNet by 96.360% accuracy rate achieved higher
accuracy rate among other four trained GoogleNet architectures. Despite the higher value of
FP (466) in acceptable GoogleNet than FP value (312) of the acceptable AlexNet, GoogleNet
achieved the most acceptable values of TP, TN and FN in classification of samples.
GoogleNet classified 9153 malignant samples (TP) correctly among total 9389 malignant
samples and it could classify 9432 benign samples (TN) correctly among total 9898 benign
samples. Through training phase by minimizing loss train both AlexNet and GoogleNet
could calculate weights as well through the network and loss train in both architecture is
close to zero. Learning rate in both AlexNet and GoogleNet architectures gradually drop to
a minimum value of their first initialized value. Learning rate of both AlexNet and
GoogleNet architectures reached 0.00001 after epoch 29. Despite the same performance of
AlexNet and GoogleNet architectures in loss train and learning rate through the training
phase, the acceptable GoogleNet achieved higher classification accuracy rate (96.360%)
than AlexNet architecture (by 95.919% accuracy rate). It can be demonstrated that the
GoogleNet is performed better performance than AlexNet in classification of lung CT scan
images as benign and malignant samples and it can be helpful for physicians in diagnosis of
large amount of CT scan images in terms of time. Moreover, both used architectures of CNN

in this thesis achieved higher accuracy rate than the other methods which were used in the
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literature. It is noticeable that using larger or different CT scan images and the other CNN
architectures cause to achieve different accuracy rate.

In conclusion, it has been proved that with the classification of the lung CT scan images
using deep learning methods, more information concerning early diagnosis of lung cancer

may be obtained with a noninvasive method.
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