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ÖZET 

Akciğer kanseri, kadınlarda ve erkeklerde dünyada en yaygın görülen kanser türlerinden 

biridir. Akciğer kanserinden ölüm oranı, diğer kanser türlerine oranla %70’ in üzerindedir, 

bundan dolayı Amerikan Kanser Derneği tarafından 2016 yılında en agresif kanser türü 

olarak tanımlanmıştır. Akciğer kanserinin erken teşhisi hastaların hayatta kalma oranını 

artırabilir. Bunun için makine öğrenme teknikleri kullanılarak medikal görüntülerin 

sınıflandırılması, akciğer kanserinin erken teşhisinde işlem hızını artırarak doktorlara 

yardımcı olabilir. Geleneksel makine öğrenme teknikleri ile karşılaştırıldığında, derin 

öğrenme metotları, otomatik öznitelik çıkarma kabiliyetine sahip oldukları için daha etkin 

metotlardırlar. Bu tezde, Data Science Bowl ve Kaggle veri setindeki akciğer  tomografi 

görüntüleri üzerinden akciğer kanserinin teşhisi için bir derin öğrenme metodu olarak 

evrişimsel sinir ağları kullanılmıştır. Akciğer tomografi görüntülerinin sağlıklı ve hastalıklı 

olarak sınıflandırılması için evrişimsel sinir ağlarının AlexNet ve GoogleNet mimarileri 

kullanılmıştır. AlexNet ve GoogleNet mimarileri ile sınıflandırmada sırasıyla %95.919 ve 

%96.360 doğruluk oranları elde edilmiştir. Evrişimsel sinir ağlarının bu iki mimarisi 

karşılaştırıldığında, GoogleNet mimarisinin, AlexNet mimarisine göre akciğer tomografi 

görüntülerinin sınıflandırılmasında daha yüksek doğruluk oranına ulaştığı görülmüştür. 

Sonuç olarak, derin öğrenme yöntemleri kullanılarak akciğer tomografi görüntülerinin 

sınıflandırılması ile, zorlamasız bir yöntemle akciğer kanserinin erken tanısına ilişkin daha 

fazla bilgi elde edilebileceği gösterilmiştir. 
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ABSTRACT 

Lung cancer is one of the mostly observed cancer types in both men and women worldwide. 

Mortality rate of over 70% put the lung cancer among the most aggressive cancers list in 

2016 by American Cancer Society. However, early diagnosis of lung cancer would increase 

survival rate of patients. To this, Machine learning techniques for classification of medical 

images is used to assist physicians in order to accelerate diagnosis process. In comparison 

with shallow machine learning techniques, deep learning methods are more effective as they 

are capable of extracting features automatically. In this thesis, Convolutional Neural 

Network is used as one of the deep learning methods to diagnose lung cancer over the lung 

CT images of Data Science Bowl and Kaggle dataset. AlexNet and GoogleNet are two 

architectures of Convolutional Neural Network which are used to classify lung CT images 

as benign and malignant. AlexNet and GoogleNet architectures achieved 95.919% and 

96.360% accuracy rates respectively in classification of lung CT images. By comparison two 

architectures of Convolutional Neural Networks, it is demonstrated that GoogleNet 

architecture achieved higher accuracy rate than AlexNet architecture in classification of lung 

CT scan images. In conclusion, it has been proved that with the classification of the lung CT 

scan images using deep learning methods, more information concerning early diagnosis of 

lung cancer may be obtained with a noninvasive method. 
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1. INTRODUCTION 

Cancer, an emotive subject of our age which millions of people worldwide struggling with 

and there is still no final cure for it. However, taking it under control by early detection can 

be a way to at least increase the survival rate. There are hundreds of different types of cancer 

which were observed up to date, and most of which are deadly. Based on the location and 

the type of tumor whether it is benign or malignant a physician can make decision for 

treatment. However, diagnosis of tumor type is a laborious procedure and in some cases, it 

is needed to get the patient under surgical operation and remove part of the tumor and find 

out in the laboratory whether it is malignant or benign. 

Coming after prostate and breast cancer, lung cancer is the second mostly observed cancer 

type in both men and women [1]. Annually, over than 1.2 million people are struggling with 

this disease and most of which are losing their lives and this makes lung cancer the deadliest 

cancer among other types [2]. 

Basically, the body keeps the control of cell growth mechanism under control, in this case 

when new cells are required this system divides cells to produce new one but as much as it’s 

required. Any disturbance in this system can cause dramatic effects such as uncontrolled 

multiplication of cells that can eventually cause the formation of a mass known as a tumor. 

Spreading out the cancer is called metastasis [3]. 

The death toll of over 70%, American Cancer Society put the lung cancer among the most 

aggressive cancers list in 2016 [4]. Lung cancer was observed in roughly 42 000 people in 

2010 which means 115 people every day. Occurring cancer has been linked to use of tobacco 

products and smoking is known as the main factor leading to lung cancer, so far. Beside this, 

roughly 10% of which these cancers are diagnosed are non-smokers [5]. In comparison with 

a lifetime nonsmoker, a lifetime smoker, 20 to 30 times more, runs the risk of developing 

lung cancer. The tendency to smoke is falling down in developed countries like the United 

States and China, whereas smoking takes tens of millions of new victims annually around 

the world [6]. Global industrialization, hence releasing harmful substances as well as gases 

to the environment - most of which have carcinogenic effects - and exposure to these 

elements develops the risk of lung cancer, as well [7]. 
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Five-year life expectancy is common between 65% of patients of Non-Small Cell Lung 

Cancer (NSCLC) but if the disease is detected in early stages, whereas long run life 

expectancy can be dramatically decreased to 1% for those who have metastasis [8]. Though, 

the probability of survival will be increased to 49% if the cancer is detected in the early stage 

when it is limited to the lung and has not spread out to the lymph [9]. Tumors are divided 

into two main categories and those are: benign and malignant. Benign refers to the tumors 

which are not dangerous as cancerous tumors and/or without the feature of spreading out. 

Hence, these tumors have less detrimental effects as they can be get under control and/or 

sometimes can be removed with less chance of getting back. Beside this, malignant refers to 

the types which are growing intensively and/or have the potential of seizure and 

catastrophically damaging tissues as well as the potential of passing through the bloodstream 

or lymphatic system and spreading out of the body in a very short period of time [10]. Small 

Cell Lung Cancer (SCLC) and NSCLC are two main lung cancer types. SCLC and NSCLC 

lung cancer types are given by Figure 1.1.  

 

Figure 1.1. Small cell cancer cells (SCLC) and non-small cell cancer cells (NSCLC)  

Deriving from epithelial and neuroendocrine cells, SCLC is extremely aggressive as well as 

a hard-prognosis neuroendocrine tumor, involving small tumor cells and intensively linked 

with smoking. This type of lung cancer is hard to get under control due to its fast spreading 

out characteristic. Roughly, 25% of diagnosed lung cancers are SCLC [11]. 75% of all 

diagnosed lung cancers belong to NSCLC which itself divides into three main categories, 

involving; Adeno Carcinoma, Squamous Cell Carcinoma, and Large cell carcinoma [12] 

When it comes to the stage, scientists divided lung cancer into four stages (I to IV), 

depending on tumor size [13]. 
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Depend on physician’s decision there are some diagnosis methods of lung cancer: 

1) Imaging methods: 

 Since many years ago to diagnose diseases X-ray is the efficient method it is useful in 

lung cancer diagnosis.  Actually, X-rays include powerful radiation and waves which are 

very short in length than normal light [14]. 

 Computed Tomography (CT) is a computer aid method in which assembled image data 

by a special X-ray apparatus which are taken from different sides of the body is processed 

by computer to show a cross-section of body organs through which computer make an 

interception of CT scans of the body and make radiologists able to diagnose cancer more 

easily. Resultantly, the physician can make a precise decision of presence of a tumor as 

well as its size and precise location and the possibility of extension to the adjacent tissues 

[15]. 

 Magnetic resonance imaging or so-called MRI is an advanced imaging method in which 

magnetic field and radio waves are applied together to make clear and accurate images of 

the internal body parts [16].   

 Positron Emission Tomography (PET) is another computerized imaging method in which 

computer make an image of chemical changes occur in tissues. In this method, an 

injection of a radioactive sugar takes place that makes the radiologist able to find the 

location of the cancerous tissue since these tissues have more tendency to take sugar than 

the other substances [17].  

2) A cough along with sputum sometimes is a perilous sign. Going through the sputum under 

microscope sometimes can unearth the presence of lung cancer cells [18].  

3) Sometimes cancer suspicious tissues are removed for sampling to examine carefully             

in the laboratory through a procedure so-called biopsy [19].  
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Computed tomography scan cancer imaging 

Lung cancer detection has become easier after emerging CT scanners as for decades X-ray 

images were the most effective way of detecting lung cancer. At first, any nodule found on 

CT scan was perceived as malignant unless no growth was recorded after two years of 

monitoring. Since a large portion of the detected nodules under CT scan was malignant, this 

method was applied to reduce the risk of tardy intervention. However, there was something 

similar in all nodules and that was the diameter of those which were larger than 5 mm - most 

of which had the diameter between 1 to 3 cm [20].  

The disadvantage of CT scan is the exposure of the patients to the high dose of radiation 

which is increased the cancer rate and consequently increases the demanding to retreatment 

which is risky. However, being painless, quick and accessible in many treatment centers as 

well as the accuracy of this method, makes CT scan method more preferable to both patients 

and physicians [15]. Another advantage of CT scan in comparison with chest radiographs is 

CT scan can make a clear image of those lung nodules which are slow growing and as small 

as 1-2 mm in diameter which cannot visualize on chest radiographs [20]. 

Providing better lucidity by lowering the noise through imaging, make CT images the 

advantage of clearness and therefore the precise diagnosis of lung cancer in comparison with 

X-ray and MRI images [21]. Reportedly, early stage detect of lung cancer is possible in 85% 

of the cases through CT screening. Hence, the survival rate can be increased up to 10 years 

in 88% of lung cancer detected patients in stage I [22]. Compared to chest X-ray, low dose 

helical CT screening of lung cancer in patients can decrease the death rate by 20% [23]. 

Image of the Lung cancer in the right lobe of patient’s lung achieved by CT scan is shown 

in Figure 1.2. 
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Figure 1.2. Lung cancer in right lobe of patient’s lung achieved by CT scan [24]  

Computer aided diagnosis 

In order to early detection of different diseases, especially various type of cancers medical 

imaging assists physicians to diagnose diseases before it is too late [25]. Nowadays, 

atomization has made computers to hand humankind in every dimension of life. Hence, using 

computers assistance in the medical workflow as well as an inevitable subject of our age 

which helps physicians to make precise decisions as well as rising up the accuracy of the 

diagnose. Computer assistance itself can be divided into two main categories which are: 

Computer-Aided Detection (CADe) and Computer-Aided Diagnosis (CADx) which both are 

known as CAD. In oncological subjects, the aim of CADe is only tumor detection, whereas 

the main goal of the CADx is to differentiate between malignant and benign tumors. 

Generally, in CAD diagnosis systems, in order to classify tumors different image processing 

techniques are applied on images and features are extracted [26]. Machine learning methods 

make a model of training for medical images and they are able to handle all objects of data 

in computer assistance structure. In recent years, deep learning methods are more successful 

than shallow machine learning methods in CAD. Deep learning methods are independent of 

handcraft or any other feature extraction methods. Furthermore, deep learning methods are 

able to extract and select the features and then classify dataset in its architecture. Therefore, 

deep learning methods in CAD systems help physicians in diagnosis of cancer by improving 

the accuracy of diagnosis and cost efficiency in a short time [27].  
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Objective of thesis 

The major purpose of this thesis is diagnosis of lung cancer in early stages over the CT scan 

images. In order to diagnose of lung cancer, deep learning is used as one of the machine 

learning techniques. In this regard in order to classify the cancerous and non-cancerous CT 

scan images, one of the deep learning architectures named Convolutional Neural Network 

(CNN) has been used. AlexNet and GoogleNet which are two architectures of CNN have 

been evaluated in lung cancer diagnosis. 

Related works 

In shallow machine learning methods and CAD techniques for classification of images 

before applying image processing methods, preprocessing of images are the most important 

issue [28]. Some of the traditional detection and classification methods are reported below. 

N. Niki et al., have used K-means clustering algorithm to detect and clustering the lung 

cancer nodules on CT Scan images. To classification of malignant and benign nodules, they 

used the linear discriminant algorithm. The proposed CAD system was showed high 

performance of Receiver Operating Characteristic (ROC) than the physicians’ test on the 

same CT Scan images [29].  

Y. Matsuki et al., have used Artificial Neural Network (ANN) to diagnose normal and 

abnormal lung tumors on CT scan images. A team of radiologists diagnosed benign and 

malignant cancer cells without using CADx system. By comparison with the results which 

radiologists diagnosed, ANN algorithm showed considerable performance. The area under 

the ROC curve (𝐴𝑧) of ANN algorithm and the radiologists diagnosis were 0.951 and 0.831 

respectively. Applying ANN algorithm by radiologists caused the 𝐴𝑧 value raised up to 0.959 

[30].  

M.G.Penedo et al., have applied two ANN for detection and classification of lung nodules. 

The used dataset was CT scan images of the chest that collected by the hospital of Santiago 

de Compostela. After preprocessing and extraction of suspected areas of chest images they 

used two Multilayer Perceptron (MLP) neural network. In first step, MLP was used for 

detection of cancerous nodules and in the second step, another MLP was utilized for 
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classification. Results showed that sensitivity of two ANN was in the range of 89% to 96% 

and False Positive (FP) of two networks were between 5 and 7 [31].  

A. Teramoto and H.Fujita, have proposed cylindrical nodule-enhancement filter method to 

detect the lung cancer nodules of CT scan images. The used dataset was Lung Image 

Database Consortium (LIDC). Their aim of using proposed segmentation and detection 

method was to increase the speed of nodule detection. Support Vector Machine (SVM) 

algorithm was used to classify the detected nodules. Results showed that 80% of nodules 

were detected by the proposed method. Detection speed was compared to other similar works 

in the literature and its speed was higher than the other methods [32].  

M. Kakar and D.R.Olsen, have used SVM classification algorithm to recognize the lung 

cancer lesions on CT scan images which collected by Radium Hospitalet Medical Center of 

Oslo, Norway. First Gabor filter method and Fuzzy C-Means clustering method were used 

for feature extraction and segmentation. Cluster centers optimized by using the Genetic 

algorithm and eventually SVM classifier were used for classification of the region of lungs 

and lesions. Results showed that SVM classification algorithm achieved 89.48% sensitivity 

in differentiating the regions. Moreover, their used method for detection of left lung, right 

lung and lesions achieved the accuracy rates of 94.06%, 94.32% and 89.04% [33].  

H. Chen et al., have applied ANN and logistic regression to discriminate lung cancer nodules 

on CT scan images. By comparison, two algorithms results showed that ANN algorithm 

obtained better performance than logistic regression analyses. By considering the mean 

value and standard error, the accuracy rate of ANN and logistic regression were 90.0  2.0% 

and 86.9  1.6% respectively. Likewise, the value of the area under the ROC curve for ANN 

was higher than logistic regression. 0.955  0.015 and 0.929  0.017 were the value of the 

area under the ROC curve for ANN and logistic regression for differentiating benign and 

malignant nodules [34].  

Q. Wang et al., Have applied five CAD methods based on SVM and ANN to discriminate 

lung cancer nodules. CT scan images of Jilin Tumor Hospital were used. The five proposed 

methods were SVM based on three-dimensional matrixes (SVM 3D matrix), SVM with 

unfolding three-dimensional matrix, SVM by region of interest of nodules, ANN based on 

the region of interest of nodules and SVM classifier. Results showed that SVM 3D matrix 
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algorithm achieved the highest performance in classification of nodules. The value of True 

Positive (TP) and the area under the Roc curve of SVM 3D matrix were 0.995 and 98.2% 

respectively [35].  

A. Kulkarni and A.Panditrao, have proposed a method based on images processing 

techniques and SVM classifier to discriminate the stages of lung cancer. LIDC, CT scan of 

chest dataset was used. For preprocessing CT scan images median filtering method was used 

to eliminate noises and Gabor filter method was used for image enhancement. Watershed 

method used for segmentation of CT scan images. Area, perimeter, and eccentricity were 

extracted as features for identification of cancer stages. After preprocessing images SVM 

classification algorithm was used to differentiate the nodules and detection of cancer stages. 

Results showed that the proposed algorithm could detect stages of lung cancer by the size of 

extracted features [36].  

H. Arimura et al., have used a CAD method to detect the benign and malignant lung cancer 

nodules of CT scan images. Low-dos CT scan images of lung nodules, which collected in 

Nagano, Japan named LDCT dataset was used. To preprocess the images first, linear 

discriminant analysis was used for segmentation and filtering methods were applied as well. 

After determining the region of nodules Massive Training Artificial Neural Network 

(MTANN) and linear discriminant analysis algorithms were used for classification of 

nodules. Results showed that MTANN outperformed linear discriminant analysis algorithm 

in reduction of FP. The sensitivity of detecting benign and malignant nodules was 83% and 

84% respectively [37].  

K. Suzuki et al., have applied Multi MTANN algorithm to distinguish the benign and 

malignant nodules of Lung CT scan images. Their purpose of using Multi MTANN was 

decreasing the FP. Low-dos CT scan images of Nagano, Japan LDCT dataset was used. 

Results show that Multi MTANN algorithm reduced the FP significantly (27.4 to 4.8) and it 

achieved 80.3% sensitivity [38].  

C. Jacobs et al., have applied K Nearest Neighborhood (KNN) algorithm to classify the solid, 

non-solid and part solid of lung cancer nodules. Dutch Belgian Nelson CT scan images were 

used. To preprocess the images, segmentation methods used for features extraction. They 

reported that performance of their used method and diagnosis of experts were almost similar. 
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Cohen's kappa coefficient was between 0.54 and 0.72 and the Cohen's kappa coefficient 

value of experts’ diagnosis was between 0.56 and 0.81 [39].  

T.W. Way et al., have compared SVM with Linear discriminant analysis for classification 

of CT scan of lung nodules. After using segmentation methods and K-means algorithm for 

clustering malignant and benign nodules classification algorithms were applied. The linear 

discriminant analysis algorithm by using stepwise feature selection method improved the 

value of the area under the ROC curve from 0.821 ± 0.026 to 0.857 ± 0.023. Furthermore, 

results showed that the value of the area under the ROC curve of SVM classifier was higher 

than the value of the area under the ROC curve of linear discriminant analysis algorithm 

[40].  

Since large image datasets of lung cancers are rare and deep learning methods are novel in 

diagnosis of diseases, there are few researches in diagnosis of lung cancer [41]. 

Subsequently, so far the methods which are based on deep learning methods are described 

below. 

B.V. Ginneken et al., have compared Overfeat CNN and Food and Drug Administration 

(FDA) as a commercial method of CAD for detection of lung cancer nodules. CT scan 

images of LIDC was used for detection of nodules. Features of lung nodules were extracted 

by Overfeat CNN and SVM algorithm was used for classification of nodules. Furthermore, 

nodules were detected by commercial CAD system. Results showed that each method could 

detect nodules by over 70% sensitivity [42].  

M. Anthimopoulos et al., have proposed CNN to classify and characterize different lung 

tissues of lung diseases. CT scan images of University Hospital of Geneva and Bern 

University Hospital were used as Interstitial Lung Disease (ILD) datasets. Their proposed 

CNN contained five convolutional layers, one pooling layer, and three fully connected 

layers. The proposed algorithm was compared by other CNN architecture e.g. LeNet, 

AlexNet and VGG Net. Results showed that the proposed CNN for classification and 

detection of tissues was superior compared to the other algorithms. The proposed CNN 

achieved 85.61% accuracy rate [43].   
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R. Gruetzemacher and A. Gupta, have used Deep Neural Network (DNN) for classification 

of lung cancer nodules. CT scan images of LIDC and Image Database Resource Initiative 

(IDRI) were used as a dataset. Four different topologies with different numbers of 

convolutional layers were compared. Results demonstrated that accuracy rate of all used 

methods by different convolutional layers were close to each other and network by five 

convolutional layers achieved the highest accuracy rate (82.10%) [44].  

W. Sun et al., have compared three algorithms of deep learning and traditional CAD system 

to diagnose lung cancer nodules on CT scan images. They used LIDC and IDRI datasets for 

diagnosis of lung cancer. DBN, CNN and Stacked Denoising Auto Encoder (SDAE) were 

used as three algorithms of deep learning. Results of accuracy rates demonstrated that CNN 

and DBN were superior compared to the SDAE and traditional CAD methods Furthermore, 

DBN achieved the highest accuracy rate of nodules classification. (81.19%) [41].  

F. Ciompi et al., have applied Multi-scale CNN with multi-stream architecture as a deep 

learning method for classification of lung cancer nodules on CT scan images. In order to 

characterize lung cancer nodules, Multicentric Italian Lung Detection (MID) and Danish 

Lung Cancer Screening (DLCS) datasets were used. Automatic nodules classification in six 

types was done without using any segmentation methods. All scales of CNN were combined 

in a fully connected layer of CNN.  Results of proposed multi-scale CNN were compared 

with radiologists’ diagnosis and the average accuracy rate of CNN (69.6%) is close to 

average accuracy rate of radiologists (72.9%). Moreover, accuracy of CNN with three scale 

was compared with SVM based pixel intensity of patches and SVM based unsupervised 

learning of features. Results show that CNN with three scale achieved higher accuracy rate 

(79.5%) than other two SVM based methods [45].  

K.L. Hua et al., have proposed two deep learning algorithms named CNN and Deep Belief 

Networks (DBN) to classify lung cancer nodules. CT scan images of LIDC dataset were 

used. Two proposed deep learning algorithms were compared with two algorithms of feature 

descriptors. The first method was the combination of Scale Invariant Feature Transform 

(SIFT) and Local Binary Pattern (LBP) and the second one was fractal analysis. For two 

methods of SIFT+LBP and fractal analysis SVM and KNN classifiers were utilized. 

Experimental results demonstrated that performance of two proposed deep learning methods 
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were higher than SIFT+LBP and fractal analysis in classification of nodules (sensitivity 

value of 73.4% and 73.3% for DBN and CNN) [28].  

Q. Li et al., have proposed a CNN algorithm with a single convolutional layer for 

classification of patches on high resolution computed tomography (HRCT) images. ILD lung 

dataset was used for this purpose. Furthermore, combination of SVM classifier with three 

feature extraction methods (i.e. SIFT, LBP, Restricted Boltzmann Machine (RBM)) were 

used to extract features and classify images. Their proposed CNN was compared with the 

combination of three feature extraction methods and SVM classifier. Results showed that 

their proposed CNN achieved higher Sensitivity or Recall ( about 0.88) and Precision values 

(about 0.93) than the other methods [46]. 

W. Shen et al., have proposed multi scale CNN for classification of malignant and benign 

nodules of lung. CT scan images of LIDC and IDRI datasets were used. SVM and Random 

Forest were used as classification algorithms of CNN. Their proposed CNN algorithm with 

Random Forest classifier achieved 86.84% accuracy rate in classification of lung nodules 

without using any segmentation methods [47]. 

P. Rao et al., have proposed CanNet as CNN model to classify lung CT scan images of LIDC 

dataset. Their proposed CanNet contained two convolutional layer, one max pooling and one 

fully connected layer. In comparison with traditional ANN and LeNet their proposed CanNet 

model achieved the highest accuracy rate in classification of lung CT scan images. Accuracy 

rate of each LeNet, ANN and CanNet was 56%, 72.5% and 76% respectively [48]. 

W. Alakwaa et al., have used 3D CNN to classify lung CT scan images of Data Science 

Bowl and Kaggle. For nodules detection they have used U-Net as an architecture of CNN in 

biomedical field on Lung Nodule Analysis (LUNA) dataset. LUNA was the assistant dataset 

to train network for nodule detection in Kaggle dataset. Results showed that CNN by using 

U-Net architecture in classification of lung CT scan images achieved 86.6% accuracy rate. 

FP rate and False Negetive (FN) rate of CNN were 11.9% and 14.7% respectively [49]. 

Q. Song et al., have compared performance of DNN, CNN and Stacked Auto Encoder (SAE) 

algorithms in classification of CT scan images of LIDC-IDRI datasets. Results showed that 

CNN algorithm surpassed other two algorithms in classification of lung CT scan images. 
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CNN, DNN and SAE achieved 84.15%, 82.37% and 82.59% accuracy rate. CNN and SAE 

achieved the same sensitivity (83.96%) and DNN achieved 80.66% sensitivity [50].  

N. Bondfale and S. Banait, have used CNN for classification of ILD dataset of lung CT scan 

images. They reported results of CNN for classification of healthy, ground-glass opacity, 

micro nodules, reticulation, honeycombing, consolidation and ground-glass opacity with 

reticulation seven classes of ILDs were favorable [51]. 
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2. MATERIAL AND METHODS 

In this thesis, CNN which is one of the most popular algorithms of deep learning is used for 

classification of lung CT scan images. This section covers ANN algorithm which is the 

foundation of CNN algorithm. After the description of ANN, the background of ANN, 

perceptron concept, activation functions, gradient descent algorithm and backpropagation 

training algorithm are described. Other sections are assigned to describe the deep learning. 

2.1. Artificial Neural Networks 

ANN inspired the system of biological nervous and process information by interconnected 

neurons [52]. Actually billions of variant neurons by different lengths in all part of the human 

body forming the nervous system [53]. Biological neuron’s system is shown by Figure 2.1. 

 

Figure 2.1. The structure of a biological neuron [54]   

In the biological model of a neuron, the nucleus is in the middle of the cell body (soma). The 

receiver of signals called dendrites which are connected to the cell body. The longest part of 

the cell body with various branches is axon. Axon is the connection point of one neuron to 

other neurons by the connection which is called synaptic junctions and it passes signals to 

the dendrites and cell body of the other neuron. Through the chemical signal transferring 

between two cells of a synapse, the sender part releases special kind of matters. 

Consequently, the electrical potential is increased or decreased on the receiver side. In order 

to fire the cell, electrical potential should achieve its threshold amount and axon receives 

signals by constant and periodic power. In this regard, neurons send signals to dendrites and 
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neural activities are sent to the cells of nerve or muscles fibers. Muscles and organs with 

sensors e.g. eyes or ears send information to the other types of neurons which are named 

receiver neurons [54]. When a person starts learning actually in his brain, changing operation 

of synaptic connections are take place. As a result, electrical activities take place in internal 

of a neuron and chemical processing takes place only in synapses [55]. 

The first model of the simulated biological neurons which was called threshold logic 

algorithm was developed by McCulloch and Pitts in 1943. Their model presented a various 

hypothesis of neurons’ estimations [56]. Afterward, Hebbien unsupervised learning method 

was suggested by Hebb and his proposed assumption model was inspired by neural 

plasticity. A simulator of Hebbian learning network is developed by Farley and Clark and 

Rochester et al. in 1950 [57]. Rosenblatt developed a pattern recognition model which was 

called perceptron model. His created model of the network has two layers and its 

computation system contained addition and subtraction operations [58]. 

Minsky and Papert created single layer neural network in 1960. Their created model was not 

able to simulate the XOR operation. XOR function is shown by figure XOR. Lack of 

powerful computers to overcome the problems of high time consumption lead to suspend the 

neural networks studies.  

After a while, a biological principle learning algorithm of neural networks was proposed by 

Klopf in 1972 [59]. Backpropagation learning algorithm which used multiple layers and 

various threshold functions was created by Werbos in 1975 and it could overcome XOR 

problem by using only one hidden layer. Since the progress of SVM and linear classifiers 

were considerably high, ANN has become a less interested algorithm. In late 2000, interests 

of deep learning methods captured attentions to ANN again [60]. 

2.1.1. Perceptron concept 

Perceptron learning algorithm of the neural network was created by Rosenblatt in 1958. The 

perceptron algorithm was the first algorithm for simulation of human learning system [58]. 

A perceptron is a single neuron learning algorithm and creates an output of a single neuron 

by calculating the weights of inputs and applying threshold activation function by 
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considering the threshold of the activation function as bias (b). A single layer perceptron is 

shown by figure Figure 2.2. 

 

Figure 2.2. Single layer perceptron  

By comparison of the bias value and sum of weights, the output of the perceptron will be 1 

if sum of weights is larger than bias otherwise output is 0. (Eq. 2.1) 

𝑂𝑢𝑡𝑝𝑢𝑡 = {  1      𝑖𝑓   (∑ 𝑊𝑖𝑋𝑖) > 𝑏    

𝑖

 

                      0     otherwise                  }              (2.1) 

Since a single layer perceptron is a linear learning model and makes decision among two 

classes it is not able to solve nonlinear problems, e.g., XOR function. A linear and nonlinear 

separating models are shown by Figure 2.3. A linear separable can separate objects in two 

sides whereas nonlinear separable is not able to separate objects in two sides by a one-

dimension hyperplane. As mentioned before XOR function is a simple nonlinear separable 

function [61, 53]. 

 

Figure 2.3. Linear separable (left), Nonlinear separable (right) 
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2.1.2. Activation functions 

To make decision about domain of the output of the ANNs, activation function is used. To 

achieve nonlinearity of output, activation function applies mathematical operation on the 

real values of inputs [62]. Some of the most used activation functions are described below. 

Logistic sigmoid function 

One of the most used activation function is logistic sigmoid function. Logistic sigmoid 

function could reduce the computational of training and this advantage of the function leads 

to be more acceptable than the other functions [63, 64]. Function of logistic sigmoid and its 

derivative are given by Eq. 2.2 and Eq. 2.3 respectively. Diagram of logistic sigmoid 

function is shown by Figure 2.4. 

f(z) =
1

1+exp (−z)
       (2.2) 

f ′(z) = f(z)(1 − f(z))      (2.3) 

 

Figure 2.4. Logistic sigmoid function diagram 

Hyperbolic tangent function 

Hyperbolic tangent function is the superior function. Formula of the Hyperbolic tangent and 

its derivative are given by Eq. 2.4 and Eq. 2.5 equations. By considering Eq. 2.4, weighted 

inputs are determined as z in the range of 0 and1 and calculated outputs are in the range of -

1,1 [65]. Diagram of Hyperbolic tangent is shown by Figure 2.5. 
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f(z) = tanh(z) =
sinh (z)

cosh (z)
=

ex−e−z

ez+e−z                                            (2.4) 

f ′(z) = 1 − (f(z))2                                                                                      (2.5) 

 

Figure 2.5. Hyperbolic tangent diagram  

Gaussian function 

Gaussian function is a continuous function and its output value is in the range of 0 and 1. 

Formula of the Gaussian function is given by Eq. 2.6 equation. In this formula 𝜎 represented 

standard deviation [66]. Diagram of the bell shaped of the Gaussian function is shown by 

Figure 2.6. 

f(z) = e
−

z2

2 σ2                                                                                                                       (2.6) 

 

Figure 2.6. Gaussian function  
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Relu activation function 

Generally, in CNNs for increasing nonlinearity Rectified linear unit activation function 

(Relu) is used. Using Relu activation function takes advantages of high performance, fast 

learning and simple structure therefore Relu activation function is more preferred than 

Logistic sigmoid and Hyperbolic tangent functions. Formula of Relu function and its 

derivative are shown by Eq. 2.7 and Eq. 2.8 equations. For 𝑧 ≤ 0  the gradient of Relu 

function is 0 in other respects the gradient of Relu is 1. Although gradient for 𝑧 = 0 is not 

defined, calculating average of gradient through training could achieve the result [67]. 

Diagram of the Relu activation function is shown by Figure 2.7. 

f(z) = max(0, x)                                                                                                              (2.7) 

f ′(z) = {
1          if  z > 0

       0          if  z ≤ 0        
}                                                                                    (2.8) 

 

Figure 2.7. Rectified linear unit's function diagram 

2.1.3. Multilayer Perceptron 

Since single layer perceptron could not solve the nonlinear problems, MLP architecture was 

proposed to overcome the nonlinear problem. In MLP architecture, hidden layers are 

proposed between the input layer and the output layer. Information is sent to hidden layers 

from input layer and after applying operations on information in the hidden layer, they were 

sent to the output layer. MLP leads the perceptron to solve the nonlinear problems [53]. 
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In ANN, all layers are connected to each other and the output unit of one layer could be the 

input unit of the next layer. MLP with one hidden layer and one output unit is shown by 

Figure 2.8. In this architecture, the nodes without any connections by +1 values are called 

bias and the other parts of the architecture are input layer on the left side of the network and 

the output layer with one node on the right side of the network. One hidden layer is located 

between input and output layers and through training process the values of hidden nodes are 

not observable. The number of layers is denoted by 𝑛1 and in this architecture number of 

layers are one. Input and output layers are denoted by 𝐿1 and 𝐿𝑛1
 respectively. The parameres 

of this network are formulated as Eq. 2.9 equation. By extending  equation Eq. 2.9 it can be 

interpreted that 𝑊𝑖𝑗
(𝑙)

 is the parameters (weights) among unit 𝑗 which is located in layer 𝑙 and 

unit 𝑖 which is located in layer 𝑙 + 1. Moreover bias of layer 𝑖 + 1 and related to unit 𝑖 is 

𝑏𝑖
(𝑙)

. In figure 2.8, biases are denoted as 𝑊(1) ∈  𝑅3×3 and 𝑊(2) ∈  𝑅1×3. By considering 

layer as  , number of nodes are denoted 𝑠𝑙.   

(W, b) = (W1, b1, W2, b2),                                                                                                                      (2.9) 

For unit 𝑖 of layer  , 𝑎𝑖
(𝑙)

 is the activation of layer 𝑙 , therefore 𝑎𝑖
(𝑙)

= 𝑥𝑖 is the i-th input in 

layer 𝑙 = 1. For 𝑊, 𝑏 parameters ℎ𝑊,𝑏(𝑥) is defined as hypothesis of Figure 2.8 of neural 

network and it is given by Eq. 2.10, Eq. 2.11, Eq. 2.12 and Eq. 2.13 equations. 

a1
2= f( W11

(1)
x1 + W12

(1)
x2 + W13

(1)
x3 + b1

(1)
)                                                                    (2.10)  

 a2
2= f( W21

(1)
x1 + W22

(1)
x2 + W23

(1)
x3 + b2

(1)
 )                                                                  (2.11)   

 a3
2= f( W31

(1)
x1 + W32

(1)
x2 + W33

(1)
x3 + b3

(1)
)                                                                   (2.12) 

hW, b(x) = a1
(3)

= f( W11
(2)

a1
(2)

+ W12
(2)

a2
(2)

+ W13
(2)

a3
(2)

+ b1
(2)

)                                      (2.13) 
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Figure 2.8. Multilayer Perceptron ANN with one hidden layer and one output  

Eventually for unit 𝑖 of layer 𝑙, 𝑧𝑖
𝑙 is sum of all weighted inputs by bias and it can be 

formulated as Eq. 2.14. Therefore 𝑎𝑖
(𝑙)

 is formulated as a function of 𝑧𝑖
(𝑙)

 by Eq. 2.15. By 

extending the activation function of 𝑓(. ) as Eq. 2.16, 𝑧2, 𝑎(2), 𝑧3, ℎ𝑤,𝑏(𝑥) functions are 

given as Eq. 2.17, Eq. 2.18, Eq. 2.19 and Eq. 2.20 respectively. 

zi
(2)

= ∑ Wij
(1)n

j=1  xj+bi
)                                                                                                         (2.14) 

𝑎𝑖
(𝑙)

= 𝑓(𝑧𝑖
(𝑙)

)                                                                                                                 (2.15) 

𝑓([𝑧1, 𝑧2, 𝑧3) = [𝑓(𝑧1), 𝑓(𝑧2), 𝑓(𝑧3)]                                                                             (2.16) 

 𝑧2 = 𝑊(1)𝑥 + 𝑏(1)                                                                                                         (2.17) 

𝑎(2) = 𝑓(𝑧(2))                                                                                                                (2.18) 

 𝑧3 = 𝑊(2)𝑎(2) + 𝑏(2)                                                                                                    (2.19) 

ℎ𝑤,𝑏(𝑥) = 𝑎3 = 𝑓(𝑧(3))                                                                                                 (2.20) 

This stage is called forward propagation. The total weighted sum of inputs in layer 𝑙 + 1 

and activation layer of 𝑙 + 1 are formulated by Eq. 2.21 and Eq. 2.22. 

z(l+1) = W(1)a(1) + b(1)                                                                                                 (2.21) 
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 𝑎(𝑙+1) = 𝑓(𝑧(𝑙+1)                                                                                                              (2.22) 

By applying linear algebra on data the structure of matrix and matrix-vector network 

computations will be fast and efficient. For network with more hidden layers’ activations are 

calculated as the last mentioned equations by forward propagation step.   

ANNs not only have one output unit but also have more than one output unit. MLP neural 

network by two hidden layers and two units in the output layer are shown by Figure 2.9. For 

training of multiple output units examples of (𝑥(𝑖), 𝑦(𝑖)) are required. In some fields such as 

solving medical problems for diagnosis of a disease two, vectors are required. 𝑥 for inputs 

and 𝑦 for classes of outputs. (healthy or not healthy) [68]. 

 

Figure 2.9. Multilayer Perceptron ANN with 2 hidden layers and 2 output unit 

Loss function (cost function) 

Loss function (cost function) is determined for performance evaluation of neural networks. 

Loss (cost) function calculates differentiate between the prediction of labels which are 

achieved by the algorithm and ground truth labels. There are several loss (cost) functions for 

measuring how ANN did well [69]. Mean Squared Error (MSE) and Cross entropy error are 

two common loss functions which are described below.  

Mean squared error 

The most popular and the simplest loss (cost) function is MSE and its equation is given by 

Eq. 2.23. In Eq. 2.23 equation number of training samples are denoted by m and the  𝑖𝑡ℎ 
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example of training is denoted by 𝑥𝑖 as well. Furthermore for class labeling of 𝑖𝑡ℎ example 

of training 𝑦𝑖 is defind in Eq. 2.23 equation and eventually ℎ(𝑥𝑖) is denoted to predict the 

𝑖𝑡ℎ training example of algorithm [70]. 

L(W, b) =
1

𝑚(∑ ||ℎ(𝑥𝑖)−𝑦𝑖||2)𝑚
𝑖=1

                                                                                           (2.23) 

Cross entropy error 

In classification and probabilistic problems, the most popular loss (cost) function is cross 

entropy error function. The formula of cross entropy is given by Eq. 2.24. In this equation, 

𝑥 values are denoted as inputs and 𝑎1
𝐿 , 𝑎2

𝐿  ,… and  𝑎𝑗
𝐿 are denoted as real values of all output 

neurons (𝑗) in output layer and y indicates desired output values and n is number of all 

training samples [71].  

C = −
1

n
(∑x ∑j[yjLn aj

L + (1 + yj)Ln(1 − aj
L)                                                             (2.24) 

2.1.4. Gradient descent algorithm 

Gradient descent optimization algorithm tries to find local minimum to minimize loss (cost) 

function (𝐿(𝜃)) by weights (parameters) which are denoted as 𝜃. In Gradient descent 

algorithm weights are upadated contrary in direction of loss function’s slope and it denoted 

as ∇𝜃 𝐿(𝜃).The step size to reach the bottom of the slope direction in order to minimize loss 

function is denoted by 𝜂 which is called learning rate. Depending on the amount of data three 

types of Gradient descent algorithms are used which are described and formulated below. It 

is considerable that amount of data affects performance and time of updating [72, 73]. 

Batch gradient descent 

To minimize loss function, weights (parameters) (𝜃) are updated by gradient algorithm 

which it is applied on the whole training set in each iteration and it reaches to the one set of 

updated weights. 

Because of updating all training set in each iteration in the large dataset the computation of 

batch gradient descent takes too much time. More computation in large dataset leads to 
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having a redundant operation to update all samples of training set in order to reach one 

updated set of parameters. To achieve the convergence batch gradient descent computes the 

global minimum and the local minimum in convex and non-convex areas respectively. This 

algorithm updates weights with low speed. Batch gradient descent formula is shown by Eq. 

2.25 equation. In this equation, 𝜂 and 𝜃 are learning rate and weights (parameters) 

respectively [73]. 

θ = θ −  η. ∇θ L(θ)                                                                                                           (2.25) 

Stochastic gradient descent  

Stochastic Gradient Descent (SGD) algorithm apply updating operation on each sample of 

training which is denoted by 𝑥𝑖 and its label denoted by 𝑦𝑖 in each iteration. Each training 

sample is updating without depending on the other samples therefore, redundant 

computation does not take place. Applying SGD without any recalculation of training 

samples leads to be faster and more popular than batch gradient descent algorithm. SGD 

formula is given by Eq. 2.26 equation [73].  

𝜃 = 𝜃 −  𝜂. ∇𝜃 𝐿(𝜃; 𝑥𝑖; 𝑦𝑖)                                                                                               (2.26) 

Mini batch gradient descent 

In mini batch gradient descent algorithm for each iteration 𝑛 samples of training set are 

updated rather than one sample in each iteration. Updating the subset of parameters in each 

iteration to minimize loss function by mini batch gradient descent algorithm leads to be fast 

and more convergence. Mini batch gradient descent formula is given by Eq. 2.27 equation 

where subset of parameters are started from 𝑥𝑖  and its label by 𝑦𝑖 to 𝑥𝑖+𝑛 by their lables of 

𝑦𝑖+𝑛 [73].  

θ = θ −  η. ∇θ L(θ; x(i:i+n); y(i:i+n))                                                                                   (2.27) 
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2.1.5. Backpropagation algorithm 

Backpropagation algorithm is one of the best learning algorithms of ANNs, due to its ease 

of use in computation, conception, and function [74]. Bryson and Bo in1969 have presented 

Backpropagation algorithm for the first time [75]. In 1974, Werbos and Rumelhart have 

attempted to rediscover the backpropagation algorithm. In 1986, PDP group (David 

Rumelhart and McClelland) has utilized and developed the backpropagation algorithm to 

calculate the gradients [76, 77]. Backpropagation algorithm formulated as below:  

By considering batch gradient descent to train the neural network, and MSE equation which 

is given by Eq. 2.23 equation, computation of the loss (cost) function for a single training 

set of (x, y), is given by Eq. 2.28. 

J(W, b; x, y) =
1

2
||hW,b(x) − y||

2

                                                                                      (2.28) 

For 𝑚 numbers of training sets which are shown in Eq. 2.29, the loss function is formulated 

by Eq. 2.30. An average sum-of-squares error is the first part of the loss function. To recline 

value of weights and avoid of overfitting, weight decay was considered in the second term 

of the cost function. 

{(x(1), y(1)), … , (x(m), y(m))}                                                                                              (2.29) 

𝐽(𝑊, 𝑏) = [
1

𝑚
∑ 𝐽(𝑊, 𝑏; 𝑥(𝑖), 𝑦(𝑖))] +

𝜆

2

𝑚
𝑖=1 ∑ ∑ ∑ (𝑊𝑗𝑖

𝑙 )
2𝑠𝑙+1

𝑗=1
𝑠𝑙
𝑖=1

𝑛1−1
𝑙=1 =

[
1

𝑚
∑ (

1

2
||ℎ𝑊,𝑏(𝑥(𝑖)) − 𝑦(𝑖)||

2

) +
𝜆

2

𝑚
𝑖=1  ∑ ∑ ∑ (𝑊𝑗𝑖

𝑙 )
2

 
𝑠𝑙+1
𝑗=1

𝑠𝑙
𝑖=1

𝑛1−1
𝑙=1                                          (2.30) 

In classification problems, by using sigmoid activation function the y term of cost function 

would be 0 or 1, and by using tanh activation function it would be -1 or +1 to define the 

labels of classification. By initializing 𝑊𝑖𝑗
𝑙  and 𝑏𝑖

(𝑙)
 to a value near zero and using the batch 

gradient descent algorithm neural network would be trained. In this regard to obtain 

minimum value of the cost function (𝐽(𝑊, 𝑏)) is the main purpose of backpropagation 

algorithm. Gradient descent is sensitive to local optima because cost function type is a non-

convex. In contrast, practically gradient descent works great enough. It is essential to 

symmetry breaking and prevent the same value of outputs all parameters would be initialized 
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by random value. In Eq. 2.31 and Eq. 2.32 bias (b) and weigh (w) values were updated by 

gradient descent. By considering 𝛼 as the learning rate. 

Wij
(l)

= Wij
(l)

− α
∂

∂Wij
(l)  J(W, b)                                                                          (2.31) 

 bi
(l)

= bi
(l)

− α
∂

∂b
i
(l) J(W, b)                                                                               (2.32) 

Partial derivatives would be calculated by the method which backpropagation algorithm 

proposed. A derivative of the cost function (𝐽(𝑊, 𝑏)) would be calculated by Eq. 2.33 and 

Eq. 2.34. 

∂

∂Wij
(l)  J(W, b) = [

1

m
∑

∂

∂Wij
(l)

m
i=1 J(W, b; x(i), y(i))] + λWij

(l)
                               (2.33) 

∂

∂b
i
(l)  J(W, b) =

1

m
∑

∂

∂b
i
(l)

m
i=1  J (W, b; x(i), y(i))                                                     (2.34) 

In this regard firstly in backpropagation algorithm for a (𝑥, 𝑦), as an example of training set 

(forward pass) would be applied. Activations and the output value of ℎ𝑊,𝑏(𝑥) would be 

calculated in forward pass step. The error measure (𝛿𝑖
(𝑙)

) of each node (i) in each layer (l) for 

determine errors occurs in output would be computed. By considering 𝑛𝑙 as an output layer 

of the network, the output node (𝛿𝑖
(𝑛𝑙)

) would be the result of the difference among activation 

of the network and the real value of the network’s target. The steps of backpropagation 

algorithm are given below: 

1) To calculate the activations of layers (𝐿2, 𝐿3, … , 𝐿𝑛𝑙
), feedforward pass were applied. 

2) The output in layer 𝑛𝑙 formulated by Eq. 2.35 where i is the unit number of each output.  

 δi
(n1)

=
∂

∂z
i
(n1)  

1

2
||y − hW,b(x)||2 =  −(yi − ai

nl). f ′(zi
nl)                        (2.35) 
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3) 𝛿𝑖
(𝑙)

 was computed by Eq. 2.36 for every node (i) in layers 𝑙 = 𝑛𝑙 − 1, 𝑛𝑙 − 2, 𝑛𝑙 − 1𝑛𝑙 −

3, … ,2. By considering 𝑓(𝑧) as a sigmoid activation function 𝑓′(𝑧) computed as Eq. 2.37. 

δi
(l)

= (∑ Wij
(l)sl+1

j=1  δj
(l+1)

) f ′(zi
l)                                                                        (2.36) 

f ′(zi
l) =  ai

l(1 − ai
l)                                                                                              (2.37) 

4) The partial derivatives were computed by Eq. 2.38 and Eq. 2.39. 

∂

∂W
ij
(l)  J(W, b; x, y) = aj

(l)δi
(l+1)

                                                                               (2.38) 

∂

∂b
i
(l)  J(W, b; x, y) = δi

(l+1)
                                                                                       (2.39) 

To decrease the cost function 𝐽(𝑊, 𝑏) in training of ANN, batch gradient descent would be 

repeated in several iterations. One iteration of batch gradient descent by considering to 

∆𝑊(𝑙) as a matrix with the same dimension of 𝑊(𝑙) and ∆𝑏(𝑙) as a vector with the same 

dimention of bias (𝑏(𝑙)) was given in the pseudo-code [71]. 

1) For all layers (𝑙), ∆𝑊(𝑙) and ∆𝑏(𝑙) were set by zero as Eq. 2.40 and Eq. 2.41. 

∆W(l): = 0                                                                                                            (2.40) 

∆b(l): = 0                                                                                                         (2.41) 

2) For  i=1 to m, ∆𝑊(𝑙) and ∆𝑏(𝑙) computed by backpropagation algorithm, given in Eq. 

2.42 and Eq. 2.43. 

∆W(l) ≔ ∆W(l) + ∇w(l)  J(W, b; x, y)                                                                        (2.42) 

∆b(l): = ∆b(l) + ∇b(l)  J(W, b; x, y)                                                                            (2.43) 

3)  𝑊(𝑙) and 𝑏(𝑙) are updated as Eq. 2.44 and Eq. 2.45.      
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W(l) = W(l) − α [(
1

m
∆W(l)) + λW(l)]                                                                   (2.44) 

b(l) = b(l) − α [
1

m
∆b(l)]                                                                                        (2.45) 

2.2. Deep Learning and Convolutional Neural Networks 

In shallow machine learning methods to discover features form dataset, manual feature 

selection is applied on features and selected features feed to a particular machine learning 

algorithm, Whereas deep learning methods are able to extract features from raw dataset 

automatically then detect or classify dataset by extracted low, middle and high features [78-

80]. The main characteristic of deep learning methods is applying nonlinear functions on 

raw data as inputs to produce abstracted outputs [78]. Nowadays, it is easy to access to big 

datasets and computers by powerful processing systems which they are the main 

requirements of deep learning methods. Therefore, availability of the essential necessities of 

deep learning methods make them to be appropriate and popular to solve problems [81]. 

CNN, DBN, Recurrent Neural Networks (RNN), Long Short Term Memory (LSTM) and 

Deep Stacking Networks (DSN) are deep learning architectures which are used in computer 

vision, automatic audio classification and natural language processing fields to solve 

problems of large datasets [82-84]. 

Traditional ANN which is one of the first projects about visual cortex of cats by Hubel and 

Wiesel and CNNs are alike. Both algorithms include neurons which contain weights and 

biases [85]. Although the structure of both CNNs and ANNs include layers, there are main 

differents between the structure of both networks. Structure of layers in ordinary ANN 

algorithm is one dimensional and connections of all layers are fully connected. CNNs have 

three-dimensional neurons in a layer which include width, height, and depth. Furthermore, 

in CNNs each neuron of one layer connected to the only one region of the previous layer 

without any fully connected between layers. Inputs of outputs of CNN have a 3D volume of 

width, height, and depth. Three dimensional of a neuron is shown by Figure 2.10, which is 

shown in CNN each neuron has 3D volume. From 2000, to solve different problems of 

nervous systems, biological systems and natural systems, CNNs have achieved acceptable 

results by using detection, segmentation and recognition methods [78, 86-88]. 
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Figure 2.10. 3D volume of neuron in CNN structure 

In 1989 the first CNN was developed for classification of handwritten digits by Le Cun et 

al. They used backpropagation and gradient descent algorithms in their developed CNN. 

Until 1990, CNNs are utilized in Commerce fields e.g. reading of cheques [89]. Because of 

the main requirements of CNNs are large datasets and powerful computers, in last two 

decades using of CNNs were to be stopped and the other machine learning methods became 

to be popular. In 2006 for the training of a special DNN greedy layer-wise pre-training 

algorithm is proposed by Hinton et al. Their proposed algorithm caused to drop attention of 

scientists to deep learning algorithms [90].The first use of GPU for the training of CNNs by 

Ciresan et al. took place in 2011 and their works were about handwritten digits of MNIST 

dataset. Nowadays achievements of using CNNs in different fields especially in solving 

supervised problems make it to be popular. In last decades different work groups achieved 

successful results by using CNNs in the competition of ImageNet Large Scale Visual 

Recognition challenge (ILSVRC). Krizhevsky et al achieved 15.3% classification error in 

ILSVRC-2012 [91] and Clarifia group achieved 11.7% error rate in ILSVRC-2013 [92]. In 

ILSVRC-2014 GoogleNet group gained 6.66% classification error rate. MSRA group and 

Trimps- Soushen group achieved 3.57% error rate in ILSVRC-2015 and 2.99% error rate in 

ILSVRC-2016 as winners of challenge respectively [63, 93]. LeNet, AlexNet, GoogleNet, 

VGG-Net, Res-Net, ZF-Net are the most used architectures of CNN algorithm in 

classification and pattern recognition fields [63, 91-94]. Architectures of CNN take the 

advantage of powerful GPUs to minimize training time and improve the accuracy of 

classifications [95]. 

One of the advantages of using deep learning algorithms was its efficiency on a huge amount 

of datasets. Since deep learning achieved high performance in large datasets of image and 

speech, the need for powerful hardware and appropriate software become to the most 
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important challenges. The performance of the powerful GPUs was more than CPUs. The 

first use of GPU in ImageNet proposed and it was achieved high performance in 

classification of ImageNet [96]. The results of GPU based method was 10% higher than the 

CPU based method. In this thesis, the large dataset of lung CT scan images was used and 

consequently, the CPU based method could not handle all samples. To profit the high 

performance of  GPU for faster classification, Nvidia Titan (12 GB) GPU was used in this 

work. Nvidia with the support of Computer unified device architecture (Cuda) and CuDNN 

library was considered. In this thesis deep learning GPU Training System (Digits) as a 

framework for training the different architecture of CNN by using Caffe framework and 

CuDNN library is used. Nvidia Caffe Digits is our used platform for CNN modeling of lung 

CT scan dataset. Intel Corei5 is used as the cpu of the PC and Ubuntu version 16.4 is used 

as operation system.The description of requirements of this work is given below.  

Cuda for GPU computing: Nvidia created Cuda as a parallel computer platform on GPU. In 

order to use the Cuda by developers, Nvidia created the toolkit which contains a compiler, 

libraries, debugger and etc. 

CuDNN: CuDNN is a library of Nvidia’s GPU for using DNNs and it uses deep learning 

frameworks such as Caffe, TensorFlow and etc [97].  

Caffe Framework: The Caffe open source framework is developed by Berkeley Vision and 

Learning Center (BVLC) to implement the deep learning networks. Different architectures 

of deep learning are supported by Caffe. Moreover, it is a C++ library and designed to has 

bindings to Phyton and Matlab as well. Because of computational complexity, Caffe uses 

CPU and GPU in parallel in order to accelerate the processing. It leads to decrease the time 

of training model from days to hours. 

Digits: Nvidia provides Digits as a framework that supports Caffe and Torch to train and 

design deep train networks. Furthermore, it accelerates classification and segmentation tasks 

[97]. 
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2.2.1. Architecture of convolutional neural networks 

In fully connected ANNs architecture input layer is a one dimensional which are transferred 

to the hidden layers and then they are sent to the output layer. Although neurons in hidden 

layers are not connected to each other they are connected to all neurons in the previous layer. 

In classification problems output layer determines the score of each class of dataset. In 

contrast to fully connected ANNs, in CNNs there is not any fully connected in middle layers 

and each neuron connected to a local region which it contains a part of neurons in the 

previous layer. In CNNs, filter banks are used as a unit to connect to the part of the previous 

layer and it is called weight connection. In CNN layers by using local connections local 

features are detected and by pooling operations identical features are merged to be one 

feature. The architecture of CNN contains three main layers as a convolutional layer, pooling 

layer and a fully connected output layer. Moreover, some other layers e.g. normalization 

layer, are used beside main layers [98]. The main three layers of CNN are described below, 

afterward normalization layer is described as well. 

Convolutional layer 

The convolutional layer which is the main part of the architecture of CNN includes feature 

maps (depth slices) and each feature map includes sets of neurons. Similar to ANN neurons 

in CNN imitate biological neurons. The main difference of neurons in feature maps of 

convolutional layers and neurons in ordinary neural network layers is their connection types. 

The connections of neurons in ANNs are fully connections while the connections between 

neurons of the convolutional layer are local connections. In local connection each neuron in 

feature map connected to the part of neurons of the previous layer. Although the connection 

between neurons in CNN are local connection type, similar to ANN the output of a neuron 

in CNN is calculated by a nonlinear activation function. Relu is one of the most common 

activation functions which is used in training of data in CNN.   

In each convolutional layer filters which are the connections between neurons of current 

layer and neurons of the previous layer, are used. Local connections and parameters sharing 

are three characteristics and advantages of the convolutional layer which are described below 

[99, 100]. Before describing advantages of convolutional layer some terms of the 

convolutional layer are explained afterward implementation of CNN is described below. 
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Spatial arrangement  

Hyperparameters are concepts for output size management and it contains filter, stride and 

zero padding parameters. Hyperparameters of the convolutional layer are explained below.  

Filter (Kernel): In CNN to train the network, features of input are detected by arrays of 

parameters (weights) which are called filters (Kernels). The region of input which a three-

dimensional filter is applied on is called receptive field and its size is equal to a filter size. 

The output of convolving filters over input is called feature map (activation map) and the 

number of filters and feature maps of a convolutional layer are the same. Actually, the 

number of feature maps are the depth of output of a convolutional layer [101]. 

Stride: Stride size is the step of shifting by filters (kernels) on the input image. In 

convolutional layer by stride size 2, the filter is shifted by 2 pixels on the input [99]. 

Zero padding: In convolutional layer to provide the output volume in size of input volume, 

zero padding is used thus input size in width and height is controlled by the convolutional 

operation. Using of zero padding with stride size is given by Figure 2.11. In this figure input 

size is 5x5. Filter by 3x3 size and 1 border for zero padding with 1 for stride size are applied 

on the input. After convolutional operation output size is same as the input size (5x5), it 

means input size is retrained after using zero padding.  

Formulation of hyperparameters of convolutional layer: By considering parameters of 

convolutional layer where, 

N: Number of neurons in output 

K: Numbers of filters (kernels) 

F: Numbers of the receptive field size (filter size) 

S: Stride size 

P: Number of zero padding 
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W1: Width of input 

H1: Height of inputs 

D1: Depth of inputs 

W2: Width of output 

H2: Height of inputs 

D2: Depth of inputs 

Wk: Number of parameters for each filter 

Tp: Sum of parameters 

The width, height and depth size of output are formulated by Eq. 2.46, Eq. 2.47 and Eq. 2.48 

equations respectively. The acceptable value of output volume is to be an integer, otherwise, 

stride size must to be changed. By considering formula of zero padding as Eq. 2.49 equation, 

the secure stride size is one and it guarantees the input and output are in the same size. For 

each filter in convolutional layer number of parameters (weights) and the sum of all 

parameters (weights) are formulated by Eq. 2.50 and Eq. 2.51 equations.  

Furthermore, numbers of biases and numbers of filters in the convolutional layer are the 

same [72]. 

W2 = (
(W1−F+2P)

S
) + 1                                                                                                       (2.46) 

H2 = (
(H1−F+2P)

S
) + 1                                                                                                      (2.47) 

D2 = K                                                                                                                            (2.48) 

P =
(F−1)

2
                                                                                                                         (2.49) 
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Wk = F ∙ F ∙ D1                                                                                                                (2.50) 

Tp = (F ∙ F ∙ D1) × K                                                                                                       (2.51) 

 

Figure 2.11. Input size of 5×5 with filter by 3×3 size and 1 for zero padding (left), output by 

5×5 size (right) 

Local connection 

Filters in the convolutional layer are applied on width and height of input and over, all depth 

of input as well, therefore the connections between feature maps and the previous layer are 

local connections. In local connection regions of the previous layer are mapped to the feature 

map locally. Decreasing amount of parameters is the most significant advantage of local 

connections. The first convolutional layer is shown by Figure 2.12 and it shows that each 

neuron in the convolutional layer connected to the region of input in width and height. 

 

Figure 2.12. Example of local connection in the first convolutional layer 

For more explanation of local connection and reducing amount of parameters, in Figure 2.12, 

input size is 32 × 32 × 3 and filter by 5 × 5 size are convolved. After the convolutional 
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operation by considering 1 for bias, 76 is all parameters (weights) of each neuron ((5×5×3) 

+1=76). In contrast to the local connection if connections were fully connection, each neuron 

had more parameter than local connection. ((32×32×3) +1=3073 for each neuron. Fully 

connected of ordinary ANN and local connections of CNN are shown by Figure 2.13 [71, 

101]. 

 

Figure 2.13. The fully connected architecture (left), local connections (right)  

Parameters (weight) sharing 

In ordinary ANN one weight matrix is applied on input for once and then the output is 

calculated, however, in convolutional layer by parameter (weight) sharing, one weight 

matrix is used in all over the input frequently to produce the output. In other words, an 

acceptable feature in a spatial location can be used in the other spatial locations as well. 

Count of parameters is controlled by using the same neuron with its parameters (weights) in 

a depth slice of each convolutional layer. The result of parameter sharing in each depth slice 

is feature map. The output of each convolutional layer is a collection of feature maps. The 

advantage of weigh sharing is reducing the number of parameters in training and complicated 

calculation of a network. Moreover, because of using weigh sharing, translation invariance 

of input cannot change the outputs of convolutional layer [101, 102]. 

Implementation of convolutional operation 

The output of convolutional operation in a convolutional layer is given by Eq. 2.52. In this 

equation 𝐹 is denoted as filter size, 𝑚 denoted as feature maps, 𝐵 is denoted as bias and 
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weight of a filter is denoted as 𝑊𝑗. The output of convolutional layer is denoted as 𝑌𝑖
𝑙 where 

𝑖 indicates 𝑖𝑡ℎ feature map in a layer that it denoted by 𝑙. 

𝑌𝑖
𝑙 = 𝐵𝑖

𝑙 + ∑ 𝐹𝑖,𝑗
𝑙𝑚𝑙

(𝑙−1)

𝑗=1 ∗ 𝑊𝑗
(𝑙−1)

                                                                                      (2.52) 

By considering that the convolutional operations take place in two dimensions of layer 𝑙 by 

𝑚2
𝑙 . 𝑚3

𝑙 units in (𝑟, 𝑠) location the output of convolutional layer for MLP is given by Eq. 

2.53 equation [103]. 

(𝑌𝑖
(𝑙)

)𝑟,𝑠 = (𝐵𝑖
(𝑙)

)𝑟,𝑠 + ∑ (𝐹𝑖,𝑗
(𝑙)𝑚𝑙

(𝑙−1)

𝑗=1
× 𝑊𝑗

(𝑙−1)
)𝑟,𝑠  = (𝐵𝑖

(𝑙)
)𝑟,𝑠 +

∑ ∑ ∑ (𝐹𝑖,𝑗
(𝑙)

)𝑢,𝑣
ℎ2

(𝑙)

𝑣=−ℎ2
(𝑙)

ℎ1
(𝑙)

𝑢=−ℎ1
(𝑙)

𝑚𝑙
(𝑙−1)

𝑗=1
(𝑊𝑗

(𝑙−1)
)𝑟+𝑢,𝑠+𝑣                                                          (2.53) 

Pooling layer (Subsampling) 

To decrease the amount of parameters and network calculation, generally pooling 

(subsampling) layer is used among convolutional layers; Consequently, by subsampling 

operation, input size is decreased in all depth parts and it prevents overfitting through 

network training. Pooling operation is called down sampling as well. Since the spatial size 

of input is decreased by pooling operation the depth dimension is not changed. According to 

the example of CNN architecture in all pooling layer spatial dimensions are decreased and 

depth are the same as the depth of the previous layer (Figure 2.14). 

 

Figure 2.14. Example of CNN architecture  

Max pooling and Average pooling are two most commonly used types of pooling operations.  
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Example of both pooling operations is shown by Figure 2.15. 

 

Figure 2.15. Examples of max and average pooling 

By considering Figure 2.15, 4 × 4 is the input size and down sampling operation is applied 

by 2 × 2 filter size. The outputs of subsampling operations are the average and maximum 

values of input values. The width and height of output in pooling layer are achieved by Eq. 

2.54 and Eq. 2.55 equations. In formula of volume size of width and height 𝑊1, 𝐻1, 𝐷1 are 

the width, height and the depth size of input respectively. 𝑆 is denoted as stride size and 𝐹 is 

denoted as filter size. It is considerable that in pooling layer the depth of input after pooling 

operations is not changed. 

W2 = (
W1−F

S
) + 1                                                                                                             (2.54) 

H2 = (
H1−F

S
) + 1                                                                                                            (2.55) 

Overlapping pooling appears when stride size is smaller than filter size ( 𝑆 < 𝐹 ) and pooling 

by the same value of stride size and filter size is called non-overlapping pooling. Because of 

eliminating more features choosing large receptive fields in pooling layers is not acceptable 

for down sampling of input [104]. 

Fully connected layer 

The last layer of CNN architecture is fully connected layer. Similar to ordinary ANN, in the 

fully connected layer all neurons of a layer are connected to all neurons of the previous layer. 
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Through training, the score of a class between all classes of the dataset is presented in the 

fully connected layer. Fully connected operations are given by Eq. 2.56 equation which 𝑙 

and (𝑙 − 1) are denoted as fully connected layers. Output of the last fully connected is 𝑦𝑖
𝑙 

which  is indicated by 𝑖𝑡ℎ unit in layer 𝑙. In layer 𝑙, feature maps of 𝑚1
(𝑙−1)

 by 𝑚2
(𝑙−1)

×

𝑚3
(𝑙−1)

 size are denoted as inputs.  𝑊𝑖,𝑗,𝑟,𝑠
(𝑙)

 is the weights connections of 𝑖𝑡ℎ unit in layer 𝑙 and 

𝑌𝑗 which is denoted as 𝑗𝑡ℎ unit of layer 𝑙 − 1 in (𝑟, 𝑠) location [103]. 

yi
(l)

= f(zi
(l))    with  zi

(l) = ∑ ∑ ∑ Wi,j,r,s
(l)m3

(l−1)

s=1

m2
(l−1)

r=1

m1
(l−1)

j=1 (Yj
(l−1)

)r,s                                (2.56) 

 Normalization layer 

In case of demand, besides the main three layers of CNN architecture normalization layers 

are used after the other layers except fully connected layer. Because of the low effect of 

normalization layers in CNN architecture, they are used when it is needed. Local response 

normalization and batch normalization are two most popular normalization types which are 

used in different CNN architectures [91, 94]. 

Local response normalization 

One of the advantages of using Relu activation function in CNN architectures is to make 

CNN architecture independent of the normalization layers. Local response normalization is 

used when their inputs of Relu activation are positive values. Generally, local response 

normalization algorithm is used to implement the lateral inhabitation [104] of real neurons 

to improve the contrast of vision. The formula of local response normalization algorithm is 

given by Eq. 2.57 equation. In this equation 𝑏𝑥,𝑦
𝑖  is denoted as the local response 

normalization of kernel 𝑖 in (𝑥;  𝑦) location and 𝑎𝑥,𝑦
𝑖  is denoted as the output of applied 

kernel 𝑖 in (𝑥;  𝑦) location. 𝑁 is denoted as sume of leyer’s kernels and 𝑛 is denoted as is the 

number of adjacent convolutional kernels. Other parameters of local response normalization 

equation are  , β and 𝑘 which have constant values [91, 106]. 

bx,y
i = ax,y

i (k + α ∑ (ax,y
j

)2min (N−1,i+n 2⁄

j=max (0,i−n 2)⁄⁄ )β                                                                   (2.57) 



38 

 

Batch normalization 

Ioffe and Szegedy (2015), have proposed batch normalization method to improve the 

learning rate of deep learning. Internal Covariate shift is decreased by applying batch 

normalization algorithm and network training is improved greatly as well. Generally, similar 

to the others normalization algorithms, batch normalization is applied after convolutional 

layers. Learning of mean and variance parameters of batch normalization take place in back 

propagation algorithm. 

For m numbers of activation value ℬ = {𝑥1…𝑚} batch normalization transform was given by 

pseudo code below: 

Input: Values of x over a mini-batch: ℬ = {𝑥1…𝑚}; 

𝛾, 𝛽 would be learned parameters 

Output: yi = {BNγ,β(xi)} 

μℬ ⟵  
1

m
∑ xi

m
i=1                              // mini-batch mean 

𝜎ℬ
2 ⟵  

1

m
∑ (xi

m
i=1 − μℬ)2               // mini-batch variance 

𝑥̂𝑖 ⟵  
𝑥𝑖−μℬ

√𝜎ℬ
2+𝜖

                                  // normalize 

𝑦𝑖 ⟵ 𝛾𝑥̂𝑖 + 𝛽 ≡ 𝐵𝑁γ,β(𝑥𝑖)          // scale and shift  

In this pseudo code, 𝑥̂1…𝑚 , 𝑦1…𝑚  and 𝜖  are the normalized values, transformations of 

normalized values and the constant value respectively [107]. 

2.2.2. Softmax function 

In the last layer of CNN architecture, softmax function is used to calculate the probability of 

each ground truth labels of outputs between 0 and 1 and output values convert to perceptible 

values.  Actually, softmax function is the generalized version of binary logistic regression 



39 

 

and it is used for multiple classes. The formula of softmax function is given by Eq. 2.58 

equation. In this equation 𝐾 is denoted as dimensional of random values (𝑧) which are 

converted to the meaningful values between 0 and 1 by softmax function 𝑓(𝑧) [108]. 

𝑓(𝑧)𝑖 =
𝑒

𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

       𝐹𝑜𝑟 𝑗 = 1, … , 𝐾       (2.58) 

2.2.3. Different architectures of CNN 

AlexNet 

Krizhevsky et al was the winner of ILSVRC-2012 by proposing the AlexNet architecture for 

the first time. Their proposed architecture contained 5 convolutional layers, three max 

pooling layers and three fully connected layers. The training duration of AlexNet 

architecture for ImageNet dataset was about six days. In AlexNet architecture two, GTX 580 

GPUs were used to achieved fast training process. The architecture of AlexNet is given by 

Figure 2.16. In this structure, first GPU is activated on the top of architecture and the second 

GPU is activated on the bottom of the architecture. Training model is divided into two part 

and eventually in the last fully connected they join with each other and applied filters are 

divided in two part on all depth of samples as well [91]. 

 

Figure 2.16. AlexNet architecture by using two GPU [91] 

GoogleNet 

Winners of ILSVRC14 proposed a CNN architecture that was called GoogleNet. They 

inspired by the inception model of the network in network structure [109] in their own 

architecture. In network approach in order to use the ability of ANN they used small patches 

of MLP and shared MLP between all receptive fields of convolutional layers. They increased 
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the depth of network by adding 1×1 convolutional layers. In general network in network 

structure stacks various MLP convolutional layers and uses global average pooling instead 

of fully connected layer at the end of the network. The output of global average pooling is 

fed to softmax classifier. The figure 2.17 shows the structure of network in network structure. 

In this structure, three MLP convolutional layers and one global average pooling layer is 

used. 

 

Figure 2.17. The structure of network in network [109] 

 

The most important section of GoogleNet architecture is inception modules. GoogleNet 

utilizes 9 inception modules which consist of convolutional layers and max pooling layer. In 

inception model, instead of deciding about the size of kernels (filters) in convolutional 

layers, the mixture of filters is used. In order to learn more features and having a deeper 

network, the mixture of filters by 3×3 and 5×5 sizes are applied. In order to decrease the 

dimension of input in each inception modules, a filter by 1×1 size is used before applying 

larger filters by 3×3 and 5×5 sizes. Another purpose of using a filter of 1×1 size is the benefit 

of more linearity by using Relu activation function after each 1×1 filter. Although using the 

mixture of large filters cause to increasing the convolutional computation, using 1×1 filter 

reduce the computation before applying larger filters. By using inception structure 

GoogleNet architecture reduced the number of parameters 12 times less than AlexNet 

architecture. The inception is shown by Figure 2.18. In this module before applying larger 

filters, the filter of 1×1 size applied in each convolutional layers. To achieve the perfect 

results of convolutional layers, beside the convolutional layers max pooling layer is used. 

After applying inception modules, the concatenation of all used convolutional layers is fed 

to the next layer. 
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Figure 2.18. Inception module structure [94] 

Figure 2.19, shows the GoogleNet architecture. Convolutional layers, pooling layers and 

softmax were showed by blue, red and yellow rectangles respectively. Green rectangles 

presented concatenations. The depth of GoogleNet architecture is 22 layers without 

considering 5 pooling layers. The GoogleNet architecture consists of the beginning section, 

inception, and the output section. In the beginning section, convolutional operations are 

applied. 9 inception modules in GoogleNet is designed. In two middle layers that used 

classification function and the last layer, one average pooling layer is performed. The 

proposed GoogleNet architecture was called inception-v1. In this architecture for 

discrimination of features in training process two auxiliary classifiers were used in the 

middle inception layers. The main purpose of using two auxiliary classifiers in the middle 

layers was increase the power of gradient during the propagation. In training process of 

inception-v1 the value of loss of auxiliary classifiers and the value of main loss are 

aggregated and gradient will be propagated [94].  

 

Figure 2.19. GoogleNet architecture [94] 
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In the other GoogleNet architecture that is called inception-BN (inception-v2) they proposed 

other alternatives in the architecture of GoogleNet. Through training the CNN, parameters 

and the distribution of inputs are changed in all layers and it leads to decrease the training 

by using lower training rate. They called this problem as internal covariate shift and proposed 

using the normalization layer. Moreover, to reduce the complicated calculations they 

proposed using two filters by 3×3 size instead of using filter by 5×5 size in inception modules 

(Figure 2.20) [107]. 

 

Figure 2.20. Replacement of each 5×5 filter size by two 3×3 filter size in inception module 

[107] 

In inception-v3 the other version of GoogleNet architecture factorization method was 

proposed. In factorization method followed by inception-v2 [107] instead of using 𝑛 × 𝑛 

filters of convolutions 𝑛 × 1 and 1 × 𝑛 filters could be applied. They have proved using 

smaller kernals decreased the cost of computional of middle layers. Factorization method of 

inception module is shown by Figure 2.21. It is obvious that each 3×3 filters in an inception 

module of Figure 2.20 was replaced by 1×3 and 3×1 convolutional filters in Figure 2.21. In 

this paper they argued that the auxiliary classifiers did not affect accuracy more.  By batch 

normalization of auxiliary branches, the, final classifier achieved high accuracy [110]. In the 

recent paper about GoogleNet architecture two models namely inception-v4 and inception 

ResNet were proposed. Using the idea of residual connections of ResNet architecture [63]  

and inception modules [110] provided the recent architecture of GoogleNet. They proposed 

inception-v4 without using residual connections and made it deeper by using more inception 

modules. In their proposed inception ResNet, instead of concatenation of filters, residual 
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connections were used and their proposed models decreased the computation of training 

[111]. 

 

Figure 2.21. Factorized filters of inception module [110] 
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3. EXPERIMENTAL RESULTS 

As mentioned in the introduction section, the lung cancer death toll is roughly 225 000 every 

year in the United States. National Institute of Health acknowledged the costs of care and 

diagnose of lung cancer in 2010 was 12 billion dollars. The main purpose is to provide tools 

for early diagnose and increase care services. By providing tools and data in cancer fields 

diagnose processes were improved impressively [112]. In biomedical fields using machine 

learning tools could help and accelerate experts in diagnosis of diseases. Each year different 

challenges in technological fields are organized about universal important problems. In 

March 2017 Data Science Bowl group [113] organized challenge to improve diagnosis of 

lung cancer. Dataset of lung CT scan images of Data Science Bowl and Kaggle is used for 

this thesis. In this section detail of lung CT scan dataset, AlexNet and GoogleNet architecture 

for classification of lung CT scan images and their results are described.  

Dataset: Since deep learning algorithms in contrast with shallow algorithms achieved 

considerable and high performance on thousands and millions of data, a large dataset of lung 

CT scan images is used in this thesis in order to diagnose lung cancer by CNN as a deep 

learning method.  

For classification task, lung CT scan images of Data Science Bowl and Kaggle challenge 

[113] are used. They gathered the large lung CT scans from different sources and this dataset 

is the first large lung CT scan images in data science field. The challenge contained two 

stages. Because we notified late, we could not take part in this challenge therefore, we just 

used the dataset for our this thesis. The lung CT scan dataset contains 285 058 low-dose CT 

scan images of 1595 patients in Digital Imaging and Communications in Medicine (DICOM) 

format. This dataset contains 85 138 samples as malignant label and 199 920 samples as 

benign label. Because of unbalanced samples of dataset, 59 497 samples of benign labels 

and 43 656 samples of malignant labels are used in this thesis. For calssification of lung CT 

scan  images 49 599 benign samples and 34 267 malignant samples are considered as train 

dataset. Moreover, 9898 benign samples and 9389 malignant samples are considered as test 

dataset.  

Preparing dataset: One of the main advantages of using CNN is independence of hand-

crafted features and other preprocessing algorithms [114]. In this thesis preprocessing 
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methods which generally were used by shallow algorithms for feature extraction did not 

applied. Because of the high quality of DICOM formats, all images of medical systems (i.e. 

Xray, PET, CT scan) are in DICOM format [115]. 

Since the format of the CT scan images of lung dataset is medical format (DICOM), in this 

thesis, all images were converted to Portable Network Graphics (PNG) format. The Python 

code was applied in order to convert the DICOM format to PNG format. example of benign 

and malignant samples (in PNG format) are shown in Figure 3.1. 

 

Figure 3.1. Example of malignant samples (left) and benign samples (right) 

3.1. AlexNet Architecture For Classification Of Lung CT Scan Images 

AlexNet architecture of CNN contains five convolutional layers, five pooling layers, two 

normalization layers and three fully connected layers. To determine the probability of two 

classes of dataset softmax is used as the last layer. To continue learning of the network Relu 

activation function is applied on the output of each convolutional layer and fully connected 

layer. Batch size (number of samples through one training cycle) and the learning rate of the 

network are determined 32 and 0.01 respectively.This model of CNN is trained in 30 epochs. 

First, the input images by [227×227×3] size are fed to the network. In the first convolutional 

layer, 96 kernels (filters) by 11×11 filter size are applied on the input images. In the first 

convolutional layer, stride size is initialized by 4 pixels furthermore zero padding is not used 

in the first convolutional layer (zero padding=0). Each kernel is connected to the receptive 

field of the previous layer only (local connections). The output of the first convolutional 

layer obtained from Eq. 2.46. By considering W1=227 as input size, F=11 as receptive field 

size, P=0 as zero padding, S=4 as stride size, W2 =(((227-11)+(2×0))/4)+1=55 is the output 
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size. The size of the first covolutional layer will be [96×55×55]. This layer has 

55×55×96=290 400  neurons and each neuron has 11×11×3=363  weights with one bias. 

Figure 3.2, shows filters by [96, 3, 11, 11] size and output of the first convolutional layer 

after applying filters by [96×55×55] size. After calulating covolutional operations the Relu 

nonlinearity activation function is used on the output of the first convolutional layer. 

Although the motifs learned by filters are not more obvious in the first layer, in deeper layers 

they will learn more features of image gradually.  Local response normalization is used to 

make more brightness on output of convolutional layer. 

 

Figure 3.2. Input image (left), Applied filters (middle), the output of the first convolutional 

layer after applying filters by [96×55×55] size (right)  

The size of the output of convolutional layer is not affected by normalization layer. 

Normalization layer makes the output othe convolutional layer more clear and bright. The 

first normalization layer by [96×55×55] size is shown by Figure 3.3. 
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Figure 3.3. The first normalization layer by [96×55×55] size 

The second main layer of AlexNet architecture is pooling layer. For subsampling of the 

output of convolutional layer, overlapping max pooling by 3×3 filter and two strides (S=2) 

is applied. The output of the first pooling layer is obtained by Eq. 2.54. By considering 

W1=55 as input and F=3 as receptive field size, W2= ((55-3)/2)+1=27 is the output size. 

Since pooling is applied on each layer and it causes the size of images to be subsample. 

Consequently,the depth size will be the same as the depth size of the previous layer.The 

output of pooling layer is [96×27×27]. The first pooling layer is shown by Figure 3.4, and it 

is obvious in pooling layer data dimension is reduced.   
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Figure 3.4. The first pooling layer by [96×27×27] 

The next layer is the second convolutional layer. In this layer 256 kernels (filter) by 5×5  

filter size and 1 for stride size are applied on the inputs by [96×27×27]size. Two pixels of 

zero padding is considered for the second convolutional layer. The output of layer is 

calculated as W2 = ((27-5+(2×2)) /1)+1=27. The original size of the previous layer is restored 

by using 2 for zero padding and the output size is [256×27×27]. It is noticeable that in the 

original AlexNet architecture of CNN [91] due to lack of powerful GPUs, they have used 

two GPUs for training of the large imagenet dataset. In this architecture, the training model 

was divided into two section to benefit the power of two GPUs for training the whole dataset. 

Consequently, filters were applied on all depth of samples in two sections. Nowadays 

because of powerful GPUs, AlexNet architecture of CNN could be applied on one GPU.The 

size of the final output of the second convolutional layer is [256×27×27]. Relu activation 

function is applied on the output of the second convolutional layer.  

The next step is take the advantage of the second response normalization layer. The 

dimension of samples (256) is not changed by normalization layer. The size of the second 

normalization layer is [256×27×27].  

After normalization of the output of the second convolutional layer, the next pooling is 

applied. In the second poling layer, input images are fed to the overlapping max pooling with 

the filter size of 3×3 and stride of 2. Width and height of data dimension is reduced by 

pooling operations and the depth is not changed (256). The output of the second pooling 
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layer by Eq. 2.54 calculated as W2 = ((27-3)/2)+1=13. The size of the output of this layer is 

[256×113.3×13]. The output of pooling layer is fed to the third convolutional layer of 384 

kernels (filters) with 3×3 filter size. Stride size is 1 and moreover 1 zero padding is used. By 

using one pixel for zero padding the size of convolutional layer is not changed. Output is 

calculated as W2 =(((13-3+(1×2))/1)+1=13. Output size of the third convolutional layer is 

[384×13×13]. Applying Relu activation function on the output of the convolutional layer is 

the next step.The next layer of AlexNet architecture is the forth convolutional layer. Input 

image are fed to the forth convolutional layer by applying 384 kernels (filters) by 3×3 size 

and 1 for both stride size and zero padding. The output (𝑊2) is the same as the previous layer 

by using 1 for zero padding and it is calculated as W2= ((13-3+(1×2))/1)+1=13. Output size 

of the convolutional layer is [384×13×13]. Relu activation function is applied after 

convolutional layer. 

For the fifth convolutional layer, 256 kernels with 3×3  filter size are applied. The stride size 

and the zero padding for both layers are 1. The output of the convolutional layer by applying 

256 kernels by 3×3 size is [256×13×13] and it is shown by Figure 3.5. Relu activation 

function is applied on the output of the convolutional layer.   

 

Figure 3.5. 256 kernels of 3×3  size (left), output of convolutional layer by [256×13×13] size 

(right) 

Overlapping max pooling by 3×3 kernel size with stride size of 2 is the next layer. The output 

size of the pooling layer is [256×6×6] and it is shown by Figure 3.6.  
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Figure 3.6. Output of the pooling layer by [256×6×6] size 

By following AlexNet architecture, the output of the last layer by [256×6×6] size is fed to 

each of 4096 neurons of the first fully connected layer. The output of the first fully connected 

layer is fed to the second fully connected layer by 4096 neurons. After each fully connected 

layers, Relu activation functions is applied. In the third fully connected layer to calculate the 

probability of each label of lung dataset which includes benign and malignant labels, the 

output of the previous fully connected layer is fed to the two way softmax function. The first 

and the second fully connected layers are shown by Figure 3.7 and Figure 3.8, respectively. 

Two classes of lung CT scan images which are classified in the third fully connected are 

shown by Figure 3.9. Total learned parameters of lung CT scan images in AlexNet 

architecture is calculated as 56 876 418. Summary of layers and output size of lung images 

through training by AlexNet architecture are given by Table 3.1.   

 

Figure 3.7. The first fully connected layer 
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Figure 3.8. The second fully connected layer 

 

Figure 3.9. The third fully connected layer by softmax classifier 

Table 3.1. Summary of AlexNet architecture in classification of lung CT scan images 

Layer type Number of kernels Kernel size Output size 

Convolutional 96 11×11 96×55×55 

Max pooling  3×3 96×27×27 

Convolutional 256 5×5 256×27×27 

Max pooling  3×3 256×13×13 

Convolutional 384 3×3 384×13×13 

Convolutional 256 3×3 256×13×13 

Max pooling  3×3 256×6×6 

Fully connected   4096×1×1 

Fully connected   4096×1×1 

Fully connected with 

softmax 
  2×1×1 
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3.2. GoogleNet Architecture For Classification Of Lung CT Scan Images 

GoogleNet architecture, consists of nine different inception modules. 3(a), 3(b), 4(a), 4(b), 

4(c), 4(d), 4(e), 5(a) and 5(b) are the 9 inception modules in GoogleNet  architecture. At the 

end of the 3(b), 4(e) and 5(b) inception modules max pooling layer is applied and the output 

of the max pooling is fed to the next layer. Each inception module includes convolutional 

and pooling layers. Each filter in inception module comprises the part of information about 

the image. The output of each inception module is the concatenation of its layers that would 

be the input of the next inception module. Six convolutional layers and one max pooling 

layer are used in each inception module. Totally two local response normalization layers are 

used in this architecture. In all inception modules and the other convolutional layers, Relu 

activation functions are used. At the end of the architecture average pooling is used as a final 

pooling layer and on fully connected layer softmax classifier is applied. Batch size and the 

learning rate of the network are determined 32 and 0.01 respectively. The training of CNN 

in GoogleNet architecture for lung CT scan images is applied in 30 epochs. After two 

convolutional layers inception layers are applied consecutively. In this architecture input 

image by [224×224×3] size is fed the first convolutional layer by 64 kernels (filters) of  7×7 

size with 3 for zero padding and 2 for stride size. By considering Eq. 2.46 and W1=224 as 

input size, F=7 as receptive field size, P=3 as zero padding and S=2 as stride the output of 

the first convolutional layer is calculated as W2= (((224-7)+(2×3))/2)+1=112.5≈ 112. (floor 

value of 112.5 is 112). In order to achieve the fractional of values, the ceiling and floor 

functions have been used in Caffe. 

[64×112×112] is the size of the first convolutional layer. This layer has 112×112×64=874 

496 neurons and each neuron has 7×7×3=147 weights with one bias. Figure 3.10, shows the 

input image by [224×224×3] size (left image), 64 filters by 7×7 on the same depth of image, 

[64, 3, 7, 7] (middle image) and the output of the first convolutional layer after applying 

kernels on each feature maps by [64×112×112] size. For nonlinearity Relu activation 

function is applied on the first convolutional layer.  
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Figure 3.10. Input image (left), 64 kernels of 7×7 sizes (middle), output of convolutional 

layer by [64×112×112] size (right) 

The second layer of GoogleNet architecture is the first pooling layer. Overlapping max 

pooling by 3×3 filter size with stride size of 2 is applied for subsampling. By considering 

W1=112 as input, F=3 as receptive field size and stride (S=2), the output of the first pooling 

layer is obtained by Eq. 2.54. The ceiling value is concidered in pooling layer. 

W2= ((112-3)/2)+1=55.5≈56. The output of pooling layer is [64×56×56]. Although the result 

of pooling layer leads to subsample the size of image,  the depth is the same as the depth of 

previous layer. The first pooling layer of the architecture is shown by Figure 3.11.  

 

Figure 3.11. First pooling layer by [64×56×56] size 
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After the first pooling layer to make more brightness on the output of pooling layer, local 

response normalization layer is applied. The output of the first normalization layer is the 

same as the previous pooling layer by [64×56×56] size and it does not affect the overall size 

of the previous layer.  The first normalization layer is shown by Figure 3.12. 

 

Figure 3.12. First normalization layer by [64×56×56] size 

In the second convolutional layer, the dimension of channels is reduced by using small 

kernels of 1×1. Small kernels lead to creating fewer parameters.64 Kernels of 1×1 size with 

a stride of 1 and without any zero padding create the output by [64×56×56] which is 

calculated as W2= ((56-1)/1)+1=56. Relu nonlinearity activation function is applied. For the 

second step of the second convolutional layer 192 kernels of 3×3 size with stide size of 1 

and one zero pading is applied. The output (W2) is calculated by Eq. 2.46 and it is calculated 

as W2=((56-3+(2×1))/1)+1=56, therefore, the output size is [192×56×56]. The Relu 

activation function is applied on the output of the second layer. 64 filters of 1×1 size and the 

output of reduced convolutional layer are shown by Figure 3.13. 192 filters of 3×3 size and 

the output of the second convolutional layer by [192×56×56] size are shown by Figure 3.14.  



56 

 

 

Figure 3.13. 64 kernels of 1×1 size (left), output of convolutional layer by [192×56×56] size         

(right) 

 

Figure 3.14. 192 kernels of 3×3 size (left), output of convolutional layer by [192×56×56] 

size (right) 

After applying the Relu activation function normalization is applied on the output of the 

convolutional layer. The second normalization layer makes the output of the convolutional 

layer bright and its size is the same as the size of the convolutional layer. The second 

normalization layer by [192×56×56] size is shown by Figure 3.15. 
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Figure 3.15. Output of the second normalization layer by [192×56×56] size 

For subsampling of the output of the previous convolutional layer, the second overlapping 

max pooling by 3×3  filter size with stride size of 2 is applied. The output of pooling layer 

is calculated by Eq. 2.54 as W2= ((56-3)/2)+1=27.5≈28.Therefore, the output size of pooling 

layer is [192×28×28]. It is noticiblae that the pooling operation dos not change the depth of 

its input. The second pooling layer is shown by Figure 3.16. 

 

Figure 3.16. Output of the second pooling layer by [192×28×28] size 

After reducing the dimension of the input image, nine inception layers are applied. In all 

inception modules the main purpose is using small kernels to prevent overfitting and before 

using larger kernels the tiniest kernels by 1×1 size is applied. After all 1×1, 3×3 and 5×5 
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kernels for nonlinearity Relu activation function is used. Beside convolutional layers, one 

max pooling layer is applied to achieve the reasonable result. At the end of each inception 

module, all small kernels are concatenated as one part that consists of all information about 

a part of the image. The concatenated part is an input of the next inception module. In 

inception module 3(a), 64 tiny kernels (filter) by 1×1 size with stride size of 1 and without 

any zero padding is used. 

The output of 1×1 kernel size is calculated by Eq. 2.46 as W2=(((28-1)+0)/1)+1=28. The 

output of the convolutional of 1×1 kernel size is [64×28×28]. Relu activation function is 

applied. 64 kernels by 1×1 size and the output by [64×28×28] size are shown by Figure 3.17. 

 

Figure 3.17. 1×1 kernel size (left), output of the convolutional by [64×28×28] size (right)  

The first inception module that includes  four convolutional layers is applied on its previous 

layer (pooling layer). The input of the other inception modules are the output of the 

concatenation of the previous inception module. By considering the inception module model, 

after applying the single 1×1 kernel, the second step of inception module is applying kernels 

by 1×1 and 3×3  on previous pooling layer. The output of convolutional by applying 96 

kernels by 1×1 size with stride size of 1 and without zero padding on the output of the 

previous layer is calculated as W2=(((28-1)+0)/1)+1=28. Therefore, the output of 

convolutional of 1×1 kernel size is [96×28×28]. The Relu activation function is applied on 

the output of the convolutional layer. After applying the tiny kernel by 1×1 size, 28 larger 

kernels by 3×3 size with 1 for stride size of  and with 1 for zero padding, is applied. The 

output of convolutional layer is calculated as W2=(((28-3)+(2×1))/1)+1=28. Therefore, the 
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output size is [128×28×28]. Relu activation function is applied on the output of the second 

step of the 3(a) inception module. 96 kernels by 1×1 size and its output of convolutional 

layer by [96×28×28] size are shown by Figure 3.18. 128 kernels by 3×3 size and its output 

of convolutional layer by [128×28×28] size are shown by Figure 3.19. 

 

Figure 3.18. 96 kernels of 1×1 (left), output of convolutional by [96×28×28] size (right) 

 

Figure 3.19. 128 kernels of 3×3 (left), output of convolutional by [128×28×28] size (right) 

The third part of the 3(a) inception module is applying 1×1 and 5×5 kernels on its previous 

pooling layer. First, the tiny 16 kernels by 1×1 size with stride size of 1 and without zero 

padding and next 32 kernels by 5×5 size with stride size of 1 and with 2 for zero padding are 

applied. After each convolutional Relu activation function is applied. The output size of the 
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1×1 convolutional layer is [16×28×28] and the output size of the 5×5 convolutional layer is 

[32×28×28].16 kernels by 1×1 size and its convolutional output by [16×28×28] size are 

shown by Figure 3.20. 32 kernels by 5×5 size and its convolutional output by [32×28×28] 

size are shown by Figure 3.21. 

 

Figure 3.20. 16 kernels of 1×1 (left), output of convolutional by [16×28×28] size (right) 

 

Figure 3.21. 32 kernels of 5×5 (left), output of convolutional by [32×28×28] size (right) 

The fourth part of 3(a) inception module is applying the max pooling layer.The output size 

of max pooling by 3×3 kernel size with 1 for stride size and 1 for zero padding, is 

[32×28×28]. Max pooling layer is shown by Figure 3.22. Convolutional layer by 128 kernels 

of 1 × 1 size is the last operation of the fourth part of 3(a) inception module. The output of 

the convolutional layer is [32×28×28] and is shown by Figure 3.23. 
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Figure 3.22. Output of pooling layer of inception 3(a) by [32×28×28] size 

 

Figure 3.23. 128 kernels of 1×1 (left), output of convolutional by [32×28×28] size (right) 

The last step is the concatenation of all layers in inception module 3(a). In concatenation 

layer sum of all depth of inception module is calculated as 64,128 and 32 for kernels by 1×1, 

3×3 and 5×5 size respectively. 32 kernels for pooling layer is considered. Sum of all depths 

(256) calculated as the depth of last output of inception module. The output of concatenation 

of all layers in inception module 3(a) by [256×28×28] size is fed to the second inception 

module 3(b). the output of the inception module 3(a) is shown by Figure 3.24. 



62 

 

 

Figure 3.24. The output of inception module 3(a) by [256×28×28] size 

Following inception module model, in inception module 3(b) the first 128 kernels by 1×1 

size with stride size of 1 and without zero padding are applied on the output of the previous 

layer. The size of the convolutional layer of 1×1 kernels is [128×28×28]. Relu activation 

function is applied on the output of the first convolutional layer of inception module 3(b).  

In the second step of inception module 3(b), 1×1 and 3×3 kernels are applied on the output 

of the previous layer by [256×28×28] size. The output of the convolutional layer by 128 

kernels by 1 × 1 size is [128×28×28]. Relu activation function is applied on the output of 

the convolutional layer of the 1×1 kernels. In the second step of the inception module 3(b) 

after 1×1 kernels, 192 kernels by 3×3 size are applied on the output of the convolutional 

layer of 1×1 kernels. The output size of the convolutional layer of 3×3 kernel size is 

[192×28×28]. On the output of the convolutional by 3×3 kernel size, Relu activation function 

is applied. 

In the third step of inception module 3(b), 1×1 and 5×5 kernels are applied on the output of 

the previous layer [256×28×28] .The size of the output convolutional of the 32 kernels by 

1 × 1 size is [32×28×28] For nonlinearity, Relu activation function is applied on the output 

of the convolutional layer. On the output of the 1×1 convolutional layer, 96 kernels by 5×5 

size with a stride of 1 and zero padding of 2 are applied. The output size of the convolutional 

layer is [96×28×28]. Relu activation function is applied on the output of the convolutional 

layer.  
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The fourth step of the second inception module 3(b) is applying max pooling. In this layer 

max poling by 3×3 kernel size with 1for stride size and zero padding is applied on the output 

of the  previous layer [256×28×28]. Max pooling operation does not affect the depth of input 

and the output of the max pooling layer is calculated as W2=(((28-3)+(2×1))/1)+1=28. The 

size of max pooling layer is [256×28×28]. Because of the used stride size in max poling 

output size is not changed.  

Following the inception module model in GoogleNet architecture in the fourth step after 

pooling layer a convolutional layer is applied. 64 kernels by 1×1 size are applied on the 

output of the max poling layer. The output of the convolutional layer is [64×28×28] kernels 

by 1×1 size and the output of the convolutional layer are shown by Figure 3.25. 

 

Figure 3.25. 64 kernels by 1×1 size (left), convolutional layer by [64×28×28] size (right) 

After applying the Relu activation function, concatenation of all layers of inception module 

3(b) is calculated as the output of the inception 3(b). Sum of 128, 192 and 96 for kernels by 

1×1, 3×3 and 5×5 sizes and 32 for kernels of pooling layer is calculated as the depth of 

inception module 3(b) as 480. After applying max pooling layer on the output of 

concatenation of all layers of inception module 3(b), it is fed to the inception module 4(a). 

The output of the max pooling layer by 3×3 kernel size with stride size of 2 is achieved as 

[480×14×14]. 

In inception module 4(a), the first step is applying 192 kernels by 1×1 size on the input of 

[480×14×14] size. [192×14×14] is the output size of the convolutional layer. Relu function 

is applied on the output of the convolutional layer. In the second step of inception module 

4(a) before applying kernels by 3×3 size, kernels by 1×1 size are applied. The output of the 
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96 kernels by 1×1 size with stride size of 1 on input by [480×14×14] size is [96×14×14]. 

After applying Relu activation function 208 kernels by 3×3 size with 1 for stride size and 

zero padding are applied on the output of the convolutional of 1×1 size. [208×14×14] is the 

output of the convolutional which is achieved by 3×3 kernel size. Relu activation function 

is used for nonlinearity. The third step is applying 1×1 and 5×5 kernels and using Relu 

activation function after each output convolutional layer. The output of the 16 Kernels by 

1×1 size on input by [480×14×14] size is [16×14×14]. The output of the 48 kernels by 5×5 

size with 2 for zero padding on the input by [16×14×14] size is [480×14×14]. 

The fourth step is applying max pooling on the output of the previous inception module and 

1×1 kernel size of the convolutional layer. The output of the applying max pooling by 3×3 

kernel size with 1 for zero padding and 1 for stride size is [480×14×14] and the output of the 

convolutional layer by 64, 1×1 kernel size is [64×14×14]. Relu activation function is applied 

on the output of the convolutional layer.The total output size of inception module 4(a) is 

achieved by concatenation of its all convolutional and pooling layers. The sum of depths is 

calculated as 192+208+48+64=512. The output size of the concatenation of inception 

module 4(a) is [512×14×14]. 

In the first step of inception module 4(b), 160 kernels by 1 × 1 size on the input of 

[512×14×14] size are applied [160×14×14] is the output size of the convolutional layer. Relu 

function is applied on the output of the convolutional layer. In the second step of inception 

module 4(b) kernels by 1×1 size are applied before applying kernels by 3×3 size. The output 

of the 112 kernels by 1×1 size with stride size of 1 on input by [512×14×14] size is 

[112×14×14]. After applying Relu activation function 224 kernels by 3×3 size with 1 for 

zero padding are applied on the output of the convolutional of 1 × 1 size. [224×14×14] is 

the output of the convolutional which is achieved by 3×3 kernel size. Relu activation 

function is used for nonlinearity. In the third step 1×1 and 5×5 kernels and Relu activation 

function are applied after each output of the convolutional layer. The output of the 24 Kernels 

by 1×1 size on input by [512×14×14] size is [24×14×14]. The output of the 64 kernels by 

5×5 size with 2 for zero padding on the input by [24×14×14] size is [64×14×14]. Relu 

activation function is applied on the output of the convolutional layer as well. In the fourth 

step max pooling by the 3×3 kernel with 1 for zero padding and 1 for stride size is applied 

on the previous inception model by [512×14×14] size and its result is [512×14×14] In the 

convolutional layer of this step, 64 kernels by 1×1 size are applied on the input by 
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[512×14×14] size and the output of convolutional layer is [64×14×14] . On the output of the 

convolutional layer Relu activation function is applied.The total output size of inception 

module 4(b) is claculated by concatenation of its pooling layer by 64 kernels,160 kernels for 

1×1, 224 kernels for 3×3 and 64 kernels for 5×5 convolutional layers. Sum of depths is 512. 

The size of the concatenation of inception module 4(b) is [512×14×14]. 

In the first step of inception module 4(c) of the convolutional layer 128 kernels by 1×1 size 

are applied on the output of the last inception module by [512×14×14] size. The size of the 

output of the convolutional layer is [128×14×14]. After the first convolutional layer of the 

inception module 4(c), Relu activation function is applied. In the second step of inception 

module 4(c) before applying 3×3 kernels, 128 kernels by 1×1 size are applied on the output 

of the previous inception module. [128×14×14] is the output of the 128 kernels by 1×1 size. 

After applying Relu activation function on the output of the convolutional with 1 × 1 

kernels, 256 kernels by 3×3 size with 1 for zero padding are applied. [256×14×14] is the 

output of the convolutional achieved by 3×3 kernel size. After convolutional layer, Relu 

activation function is used for nonlinearity. After the convolutional layer of the second step 

of inception module 4(c), Relu activation function is applied. In the third step of the inception 

module 4(c) output of the previous inception modules by [512×14×14] size is fed to the 24 

kernels by 1×1 size before applying 5×5 kernels. Convolutional layer of 1×1 kernels 

achieved the output by [24×14×14] size. Relu activation function is also used after 

convolutional layer. Subsequently 64 kernels by 5×5 size with 2 for zero padding is applied 

on the input by [24×14×14] size as the next convolutional layer. The output of the 

convolutional layer is [64×14×14] . Relu activation function is used after convolutional 

layer. In the fourth step of the inception module 4(c) max pooling by 3×3 kernel with 1 for 

zero padding and 1 for stride size is applied on the output of the previous inception model 

by [512×14×14] size and its result is [512×14×14]. 64 kernels by 1×1 size are applied on 

[512×14×14] as convolutional layer and the output of convolutional layer is [64×14×14]. 

The last Relu of the inception module 4(c) is applied after the last convolutional layer.  

The last step of the inception module 4(c) is depth calculation by concatenation of pooling 

layer’s depth and depths of the convolutional layers by 1×1, 3×3 and 5× 5 kernels. Sum of 

64 kernels of the max pooling layer, 128 kernels for 1× 1 , 256 kernels for 3× 3 and 64 

kernels for 5× 5 is calculated 512 as the depth of inception module 4(c). [512×14×14] is the 

total size of inception module 4(c).  
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The next inception module in GoogleNet architecture is inception module 4(d). Similar to 

the other modules of GoogleNet architecture it follows the process of inception modules. In 

the first step of the inception module 4(d), on the output of the previous module by 

[512×14×14] size, 112 kernels by 1×1 size are applied. The output of the convolutional layer 

by using 1×1 kernels is [112×14×14]. Relu activation function is applied after the 

convolutional layer of the first step. In the second step of inception module 4(d), 144 kernels 

by 1×1 size are applied on the output of the previous module by [512×14×14] and the output 

is [144×14×14]. Relu activation function is applied on the output of the convolutional layer. 

After 1×1 kernels, 288 kernels by 3×3 size with 1 for zero padding are applied on 

[144×14×14] and the convolutional layer’s output is achieved by [288×14×14] size. Relu 

activation function is used after convolutional as well. The third step is applying 32 kernels 

by 1×1 size on the input by [512×14×14] size and 64 kernels by 5×5 size with 1 for zero 

padding on the output of 1×1 kernels. The output size of the convolutional by using 1×1  

kernel is [32×14×14] and the output of the convolutional by using 5×5 kernels is 

[64×14×14]. After each convolutional layer, Relu activation function is applied. By 

following the GoogleNet architecture the fourth step is applying max pooling layer with 5 ×

5 Kernel size and 1 for both stride and zero padding on the input by [512×14×14] size. After 

applying max pooling layer in the fourth step, 64 kernels by 1×1 size are applied on 

[512×14×14] as a convolutional layer and the output of convolutional layer is [64×14×14]. 

Relu activation function is applied after convolutional layer as well.The depth of the 

inception module 4(d) is the sum of 64 for kernels of max pooling layer, 112 kernels for 1×1 

Kernels, 288 kernels for 3×3 and 64 kernels for 5×5. The concatenation of depths in 

inception module 4(d) is [528×14×14]. 

In the first step of inception module 4(e) the output of the convolutional layer by 256 kernels 

of 1 × 1 size on the output of the previous layer by [528×14×14] is  [256×14×14]. Relu 

activation function is applied after convolutional layer.The second step is applying 160 

kernels by 1 × 1 size on the input by [528×14×14] size. Applying 320 kernels by 3×3 size 

and with 1 for zero padding on the output of the 160 kernels by 1×1 is the next section of the 

second step. The output size of 160 by 1 × 1 kernels in the convolutional layer is 

[160×14×14] and the output size of convolutional layer by 320  kernels with 3×3 size is 

[320×14×14] . Relu activation function is used after both convolutional layers by 1×1 and 

3×3 kernels.In the third step of inception module 4(e) before applying kernels by 5×5 size, 
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32 kernels by 1×1 size are applied on the input by [528×14×14] size. The output size of the 

convolutional layer is [32×14×14] and the output size of the convolutional layer by applying 

128 kernels with 5×5 size and with 2 for zero padding on the input by [320×14×14] size is 

[128×14×14]. Relu activation function is applied after both convolutional layers by 1×1 and 

5×5 kernels. By following GoogleNet architecture the fourth step in the inception module 

4(e) is applying max pooling and convolutional layer by 1×1 kernel size as well. Max 

pooling by 3×3 kernel size with 1 for both zero padding and stride size is applied on the 

input by [528×14×14] size. The size of the output of the max pooling layer is [528×14×14] 

and the size of the output of the convolutional layer by 128 kernels with 1×1 size on the 

output of the max pooling layer is [128×14×14] . After convolutional layer, Relu activation 

function is applied. The depth of output of the inception module 4 (e) is the concatenation 

of the depth of max pooling layer and the depth of the convolutional layers. Sum of 256, 

320,128 and 128 for kernels of 1×1, 3×3, 5×5 of convolutional layers and pool layer is 832 

as the depth of inception module 4(e). The output size of inception module 4(e) is 

[832×14×14]. The output of the inception module 4(e) is fed to the max poling layer then it 

is fed to the next inception module. Max poling layer by 3×3 kernel size with 2 for stride 

size is applied on the output of the concatenation by [832×14×14] size.  

The first step of the inception module 5(a) is applying 256 kernels by 1×1 kernels on the 

input by [832×14×14] size. The output of the convolutional layer is calculated as [256×7×7]. 

Relu activation function is applied on the output of the convolutional layer. In the second 

step of the inception module 5(a) 160 kernels by 1×1 size are applied on the output of the 

previous layer by [832×7×7] size. After applying 1×1 kernels, 320 kernels by 3×3 size with 

1 for zero padding are applied on the output of the convolutional by 1×1 kernel size. The 

output of the convolutional of 320 kernels by 3×3 size is [320×7×7]. After both 

convolutional layer of the inception module 5(a), Relu activation function is applied. In the 

third step of the inception module 5(a) before applying kernels by 5×5 size, 32 kernels by 

1×1 size are applied on the output of the previous layer by [832×7×7] .The output size of the 

convolutional layer is [32×7×7]. Relu activation function is applied after convolutional 

layer. 128 kernels by 5×5 size with 2 for zero padding are applied after convolutional layer 

by 1×1 kernel size. The output of the convolutional layer of 128 kernels by 5×5 size on the 

input by [32×7×7] size is [128×7×7]. Relu activation function is applied after convolutional 

layer as well. In the fourth step of the inception module 5(a) max pooling by 3×3 kernel size 

with 1 for both stride size and zero padding is applied on the output of the previous layer by 
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[832×7×7] size. The output size of the max pooling layer is [832×7×7] . After max pooling 

layer one convolutional layer of 128 kernels by 1×1 size is aplied and the output size of the 

convolutional layer is [128×7×7] . After convolutional layer Relu activation function is 

applied. Concatenation of the all depths of convolutional layers and max pooling layer in 

inception module 5(a) is the depth of module. Sum of 256,320, 128, 128 for depth of 

convolutional by 1×1, 3×3, 5×5 kernels and max pooling layer is calculated as 832 for depth 

of inception module 5(a). The output size of the inception module 5(a) is [832×7×7]. 

The last inception module of GoogleNet architecture is inception module 5(b). By following 

all inception modules of GoogleNet architecture the first step is applying convolutional layer 

by 1×1 kernel size on the output of the previous layer by [832×7×7] size. The output of the 

convolutional of 384 kernels by 1×1 size is [384×7×7] The convolutional layer of 384 

kernels by 1×1 size and its output are shown by Figure 3.26. Relu activation function is 

applied after convolutional layer. 

 

Figure 3.26. 384 kernels by 1×1 size (left), output of convolutional by [384×7×7] size (right) 

In the second step of the inception module 5(b) before applying convolutional by 3×3 size 

192 kernels by 1×1 size are applied on the output of previous layer by [832×7×7] size. The 

size of the output of the convolutional by the 3×3 kernel is [192×7×7] size and it is shown 

by Figure 3.27. 
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Figure 3.27. 192 kernels by 1×1 size (left), output of convolutional by [192×7×7] size (right) 

After applying convolutional layer by 1×1 kernel size, 384 kernels by 3×3 size with 1 for 

zero padding are applied on the output of the previous convolutional layer by 1 × 1 kernel 

size. The output size of the convolutional layer is [384×7×7] and it is shown by Figure 3.28. 

After both convolutional layers, Relu activation function is applied. 

 

Figure 3.28. 384 kernels by 3×3 size (left), output of convolutional by [384×7×7] size (right)  

The third step of the inception module 5(b) includes convolutional layers by 1×1 and 5×5 

kernel size. 48 kernels by 1×1 size are applied on the output of the previous layer and the 

output size of the convolutional is [48×7×7] Convolutional of 48 kernels by 1×1 size and its 

output are shown by Figure 3.29. 128 kernels by 5×5size with 2 for zero padding are applied 

on the last convolutional layer by [48×7×7] size. The output size of convolutional by 5×5 
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kernel size is [48128×7×7]. A convolutional layer of 128 kernels by 5×5 size and its output 

are shown by Figure 3.30. After both convolutional layers, Relu activation function is 

applied.  

 

Figure 3.29. 48 kernels by 1 × 1 size (left), output of convolutional by [48×7×7] size (right)  

 

Figure 3.30. 128 kernels by 5×5 size (left), output of convolutional by [128×7×7] size (right) 

In the fourth step of inception module 5(b), max pooling and convolutional layer are applied. 

The output size of the max pooling layer by 3×3 kernel size with 1 for both zero padding 

and stride on the output of the previous layer is [832×7×7]. Max pooling layer is shown by 

Figure 3.31. For convolutional layer, 128 kernels by 1×1 size are applied on the output of 

the max pooling layer. The output of the convolutional layer of 128 kernels by 1×1 size is 

[128×7×7] and it is shown by Figure 3.32. Relu activation function is applied after 

convolutional layer. 
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Figure 3.31. Output of the max pooling layer by [832×7×7] size 

 

Figure 3.32. 128 kernels by 1×1 size (left), output of convolutional by [128×7×7] size (right) 

The depth of inception module 5(b) is a concatenation of the depths in all layers of the 

module. Sum of 384,384,128 and 128 for depth of convolutional layers by 1×1, 3×3,5×5 

kernels and depth of max pooling layer is calculated as 1024. The output size of inception 

module 5(b) is [1024×7×7] and it is shown by Figure 3.33. 
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Figure 3.33. Concatenation of inception module 5(b) by [1024×7×7] size 

The output of the previous layer by [1024×7×7] is fed to an average pooling layer and it is 

down sampled by 7×7 kernel size with stride size of 1. The output of the average pooling 

layer is [1024×7×7] and it is shown by Figure 3.34.  

 

Figure 3.34. Output of avg pooling layer by [1024×1×1] size 

The fully connected layer contains 1024 neurons with 1×1 size which is provided by average 

pooling operation. In fully connected layer instead of local connections, all connections are 

fully connection the output of the fully connected layer is fed to the softmax classifier. In 

order to make meaningful output, softmax classifier is applied to achieve the probability of 

each ground truth labels of the images. Lung dataset includes two classes of benign and 
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malignant and for each class probability distribution is calculated by softmax classifier. Two 

classes of lung dataset which are classified by softmax classifier are shown by Figure 3.35.  

 

Figure 3.35. Classified lung CT scan images by softmax 

Total learned parameters in this architecture is calculated as 5 975 602 parameters. Summary 

of layers and output size of lung images through training by GoogleNet architecture are 

given by Table 3.2.  

Table 3.2. Summary of GoogleNet architecture in classification of lung CT scan images 

Layer type Number of kernels Kernel size Output size 

Convolutional 64 7×7 64×112×112 

Max pooling  3×3 64×56×56 

Convolutional 192 3×3 192×56×56 

Max pooling  3×3 192×28×28 

Inception 3(a)   256×28×28 

Inception 3(b)   480×28×28 

Max pooling  3×3 480×14×14 

Inception 4(a)   512×14×14 

Inception 4(b)   512×14×14 

Inception 4(c)   512×14×14 

Inception 4(d)   528×14×14 

Inception 4(e)   832×14×14 

Max pooling  3×3 832×7×7 

Inception 5(a)   832×7×7 

Inception 5(b)   1024×7×7 

Avg pooling  7×7 1024×1×1 

Fully connected   1024×1×1 

Fully connected with 

softmax 
  2×1×1 
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3.3. Performance Metrics 

Generally, for performance evaluation of classification algorithm, real and predicted values 

of classes are compared by confusion matrix [116]. The confusion matrix is given by Table 

3.3. Performance metrics which are used in this thesis are given below. 

Table 3.3. Confusion matrix 

Confusion Matrix 
Prediction 

Positive Negative 

Actual 
Positive TP FN 

Negative FP TN 

TP: Positive samples which are predicted accurately as a positive label. 

FN: Positive samples which are predicted incorrectly as a negative label. 

FP: Negative samples which are incorrectly predicted as a positive label. 

TN: Negative samples which are correctly predicted as a negative label. 

Accuracy: Performance evaluation of algorithm in the classification of class labels of each 

sample in dataset is calculated by accuracy. Formula of accuracy is given by Eq. 3.1. 

Accuracy =
TP+TN

TP+FP+TN+FN
                                                                                                  (3.1) 

Sensitivity or Recall: Indicates what proportion of real positive classes are labeled as positive 

class by classifier. Formula of sensitivity is given by Eq. 3.2. 

Sensitivity = Recall =
TP

TP+FN
                                                                                               (3.2) 

Precision: Indicates what proportion of classified classes as positive label have actually 

positive class labels. Formula of precision is given by Eq. 3.3. 
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Precision =
TP

TP+FP
                                                                                                             (3.3) 

Classification performance metrics of used architectures 

To evaluate the performance of two architectures, 19 287 samples are selected as test set 

(9898 samples as benign label and 9389 samples as malignant label). For each one of the 

architectures (AlexNet and GoogleNet) training samples are trained five times. Then the test 

set is fed to all five training models of each architecture. Confusion matrix of testing the five 

times trained for each AlexNet and GoogleNet architectures are given by Table 3.4.   

Table 3.4. Confusion matrix of testing the five times trained AlexNet and GoogleNet  

Confusion Matrix Actual 
Prediction 

Malignant Benign 

AlexNet 
Malignant 8816 573 

Benign 640 9258 

AlexNet 
Malignant 8911 478 

Benign 659 9239 

AlexNet 
Malignant 8766 623 

Benign 414 9484 

AlexNet 
Malignant 8923 466 

Benign 485 9413 

AlexNet 
Malignant 8914 475 

Benign 312 9586 

GoogleNet 
Malignant 9141 248 

Benign 970 8928 

GoogleNet 
Malignant 8978 411 

Benign 680 9218 

GoogleNet 
Malignant 8997 392 

Benign 667 9231 

GoogleNet 
Malignant 9043 346 

Benign 584 9314 

GoogleNet 
Malignant 9153 236 

Benign 466 9432 

 Summary of accuracy rate, sensitivity and precision for testing the five times trained 

AlexNet and GoogleNet architectures by 19 287 samples are given by Table 3.5. It can be 

demonstrated that by testing 19 287 samples of lung CT scan dataset for five times trained 
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architectures, accuracy rate of AlexNet by 95.919% is higher than the accuracy rate of other 

four AlexNet and the accuracy rate of GoogleNet by 96.360% is higher than the other 

accuracy rate of GoogleNets in test phase as well (Table 3.5). AlexNet with the highest 

accuracy rate (95.919%) could diagnose 8914 malignant samples (TP) accurately among 

total malignant of test dataset (9389) and it could diagnose 9586 benign samples (TN) among 

total 9898 benign samples. AlexNet with the highest accuracy rate value classifies 475 

malignant samples as benign samples incorrectly (FN) and it classifies 312 benign samples 

as malignant samples (FP) incorrectly as well. The highest accuracy rate (96.360%) of 

GoogleNet is the result of acceptable diagnosis of 9153 malignant samples (TP) between 

total malignant test dataset (9389). Consequently, GoogleNet classifies 236 malignant 

samples as benign samples incorrectly (FN). Moreover, GoogleNet could classify benign 

samples (9432) as actual benign samples (TN) among total 9898 benign samples of the test 

set. In classification of total 9898 benign samples, GoogleNet with the highest accuracy rate 

classifies 466 benign samples incorrectly as malignant samples (FP). It is demonstrated that 

the highest value of TN and TP in both AlexNet and GoogleNet leads to the highest value 

of accuracy rate in classification of CT scan images (Table 3.4 and Table 3.5).  

Table 3.5. Summary of AlexNet and GoogleNet accuracy rates 

CNN 

Architecture 
Sensitivity Precision Accuracy Rate (%) 

AlexNet  0.938 0.932 93.669 

AlexNet 0.949 0.931 94.104 

AlexNet 0.933 0.954 94.623 

AlexNet 0.950 0.948 95.069 

AlexNet 0.949 0.966 95.919 

GoogleNet 0.973 0.904 93.684 

GoogleNet 0.956 0.929 94.343 

GoogleNet 0.958 0.930 94.509 

GoogleNet 0.963 0.939 95.178 

GoogleNet 0.974 0.951 96.360 

GoogleNet with the highest accuracy rate (96.360%) achieves the highest value of sensitivity 

and precision in classification of lung CT scan images as benign and malignant. AlexNet 

with the highest accuracy rate has the highest precision value while its value of sensitivity is 

the second highiest value between sensitivity values of the other four Alexnet architectures 
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(Table 3.5). It is demonstrated that the lowest value of FP and FN and the highest value of 

TP increased the value of sensitivity and precision. Table 3.6 illustrates training time for 

each AlexNet and GoogleNet with the highest accuracy rate among their five times trained 

architectures up to 30 epochs. AlexNet architecture with the highest accuracy rate (95.919%) 

could train training dataset in 26 minutes and 48 seconds and its training time is less than 

training time of GoogleNet architecture with the highest accuracy rate (96.360%) with 1 

hour and 44 minutes. It is demonstrated that training time of deeper and more complex 

models is longer than training time of less complex models.  

Table 3.6. Training time of AlexNet and GoogleNet for classification of lung CT scan    

CNN Architecture Training time 

AlexNet (by 95.919% accuracy rate) 26 min 48 sec 

GoogleNet (by 96.360% accuracy rate) 1h 44 min 

Loss function is determined for performance evaluation of the training networks. Loss 

function calculates differentiate between the prediction of labels which are achieved by the 

algorithm and ground truth labels. In SGD algorithm weights are updated in direction of loss 

value and the objective of training process is decreasing the loss value to achieve the best 

trained model. Therefore, to evaluate the performance of the network, loss function is 

considered in this thesis. Loss diagrams through the learning process for all training dataset 

of AlexNet and GoogleNet which  achieved the highest classification performance are shown 

by Figure 3.36 and Figure 3.37, respectively.  

 

Figure 3.36. The loss diagram of the training dataset for AlexNet 
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Figure 3.37. The loss  diagram of the training dataset for GoogleNet 

For classification of lung CT scan images as benign and malignant loss of the tarining phase 

in AlexNet performed as well as loss of the training phase in GoogleNet architecture. The 

values of training loss in both algorithms are changed frequently to achieve the least value 

at the end of training process. Loss of train in AlexNet architecture, after epoch 4 fell down 

and it is not changed dramatically after epoch 10. At the end of the training of AlexNet loss 

value dropped down to 0.00075. Loss of train in GoogleNet is not changed dramatically after 

epoch 15 and it dropped down to 0.000078 at the end of training phase. Both AlexNet and 

GoogleNet could train samples as well by minimizing loss train through training and loss 

train in both architecture is close to zero (Figure 3.36 and Figure 3.37). To minimize the loss 

function, SGD algorithm is used and the learning rate is the most effective parameter of 

SGD. Through the successful training process, learning rate must be decreased. In this thesis 

performance of the network by learning rate are shown by figure 3.38 and figure 3.39 for 

AlexNet and GoogleNet architectures with the highest accuracy rate. In the beginning of 

training, a learning rate for both network architectures is considered as 0.01. During the 

training learning rate of AlexNet and GoogleNet drops dramatically in every 10 epochs. 

Learning rate of both AlexNet and GoogleNet architectures reached  0.00001 after epoch 29. 

Both architectures could be successful in training of samples by the least learning rate at the 

end of the training phase (Figure 3.38 and Figure 3.39).  
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Figure 3.38. Learning rate of training phase by AlexNet  

 

Figure 3.39. Learning rate of training phase by GoogleNet 

By comaprison two architectures of CNN it is evident that GoogleNet architecture by 

96.360% accuracy rate could diagnose more benign and malignant samples than AlexNet 

architecture by 95.919% accuracy rate. Results of diferent models of deep learning method 

which are explained in the literature are shown by Table 3.7.  Despite most of the other 

methods in the literature were used on different lung CT scan datasets, in this thesis the used 

architectures of CNN have got higher accuracy rate than the methods used in the literature 

for classification of lung CT scan images. Moreover, accuracy rates of  the used AlexNet 

and GoogleNet architecture in this thesis are higher than the accuracy rate of CNN with U-

Net architecture which was used in the other paper [49] on the same dataset.  (Table 3.7). 
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Table 3.7. Results of different methods for classification of lung CT scan images    

Dataset 

Deep 

learning 

method 

Compared 

method 

Accuracy 

(%) 
Sensitivity Precision Ref. 

LIDC CNN (can) 
ANN, 

LeNet 
76   [48] 

LIDC 

&IDRI 
DBN 

SDAE, 

CAD 
81.19   [41] 

LIDC 

&IDRI 
DNN  82.10   [44] 

LIDC 

&IDRI 
CNN DNN,SAE 84.15 0.8396  [50] 

ILD CNN 

LeNet, 

AlexNet, 

VGG 

85.61   [43] 

Data 

science 

and 

kaggle 

CNN 

(U-net) 
 86.60   [49] 

LIDC 

&IDRI 

CNN with 

RF 

CNN with 

SVM 
86.84   [47] 

ILD CNN SVM  0.88 0.93 [46] 

Data 

science 

and 

kaggle 

CNN 

(GoogleNet) 
AlexNet 

96.360 

(GooglNet) 

95.919 

 (AlexNet) 

0.974 

(GoogleNet) 

0.951 

(GoogleNet) 

This 

thesis 
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4. CONCLUSION 

In this thesis to diagnose lung CT scan images as benign and malignant CNN one of the 

algorithms of deep learning which is the state- of- art machine learning method is utilized. 

In this regard, a large dataset of lung CT scan images which includes benign and malignant 

samples is used. Unlike shallow machine learning methods, preprocessing and feature 

extraction methods are not separable stages in deep learning methods and deep learning 

methods take the advantage of automatic feature extraction. In order to train and classify 

lung CT scan images, AlexNet and GoogleNet which are two architectures of CNN methods 

are used. For each one of the AlexNet and GoogleNet architectures training dataset is trained 

five times and test dataset is fed to all trained architectures. In AlexNet architecture five 

convolutional, five pooling and three fully connected layers are used as a standard structure. 

In GoogleNet architecture, one fully connected layer and nine inception modules which 

include different convolutional and pooling layers are used as well. Both architectures of 

CNN are used in 30 epochs. The results of test phase show that the acceptable AlexNet by 

95.919% accuracy rate achieved higher accuracy rate than the other four AlexNet 

architectures and the acceptable GoogleNet by 96.360% accuracy rate achieved higher 

accuracy rate among other four trained GoogleNet architectures. Despite the higher value of 

FP (466) in acceptable GoogleNet than FP value (312) of the acceptable AlexNet, GoogleNet 

achieved the most acceptable values of TP, TN and FN in classification of samples. 

GoogleNet classified 9153 malignant samples (TP) correctly among total 9389 malignant 

samples and it could classify 9432 benign samples (TN) correctly among total 9898 benign 

samples. Through training phase by minimizing loss train both AlexNet and GoogleNet 

could calculate weights as well through the network and loss train in both architecture is 

close to zero. Learning rate in both AlexNet and GoogleNet architectures gradually drop to 

a minimum value of their first initialized value. Learning rate of both AlexNet and 

GoogleNet architectures reached 0.00001 after epoch 29. Despite the same performance of 

AlexNet and GoogleNet architectures in loss train and learning rate through the training 

phase, the acceptable GoogleNet achieved higher classification accuracy rate (96.360%) 

than AlexNet architecture (by 95.919% accuracy rate). It can be demonstrated that the 

GoogleNet is performed better performance than AlexNet in classification of lung CT scan 

images as benign and malignant samples and it can be helpful for physicians in diagnosis of 

large amount of CT scan images in terms of time. Moreover, both used architectures of CNN 

in this thesis achieved higher accuracy rate than the other methods which were used in the 
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literature. It is noticeable that using larger or different CT scan images and the other CNN 

architectures cause to achieve different accuracy rate.  

In conclusion, it has been proved that with the classification of the lung CT scan images 

using deep learning methods, more information concerning early diagnosis of lung cancer 

may be obtained with a noninvasive method. 

  



83 

 

REFERENCES 

1. Koyama, S., Sato, E., Nomura, H., Kubo, K., Miura, M., Yamashita, T., Nagai, S. and 

Izumi, T. (1998). Bradykinin Stimulates Type II Alveolar Cells to Release Neutrophil 

and Monocyte Chemotactic Activity and Inflammatory Cytokines. American Journal 

of Pathology, 153(6), 1885-1893. 

2. Parkin, D. (2001). Global cancer statistics in the year 2000. The Lancet Oncology, 

2(10), 533-543. 

3. Mitsuuchi, Y. and Testa, J. R. (2002). Cytogenetics and molecular genetics of lung 

cancer. Journal of Medical Genetics, 115(3), 183-188. 

4. Firmino, M., Angelo, G., Morais, H., Dantas, M. R. and Valentim, R. (2016). 

Computer-aided detection (CADe) and diagnosis (CADx) system for lung cancer with 

likelihood of malignancy. BioMedical Engineering OnLine, 15, 2. 

5. Nguyen, H. T., Worring, M. and van den Boomgaard, R. (2003). Watersnakes: energy-

driven watershed segmentation. The Institute of Electrical and Electronics Engineers 

Transactions on Pattern Analysis and Machine Intelligence, 25(3), 330 - 342. 

6. Parkina, D. M., Bray, F.I. and Devesa, S.S. (2001). Cancer burden in the year 2000. 

The global picture. European Journal of Cancer, 37, 4-66. 

7. Takkouche, B. and Gestal-Otero, J. J. (1996). The epidemiology of lung cancer: 

Review of risk factors and Spanish data. European Journal of Epidemiology, 12(4), 

341-349. 

8. Maheswaran S. and Haber, D. A. (2010). Circulating tumor cells: a window into cancer 

biology and metastasis. Current Opinion in Genetics & Development, 20, 96-99. 

9. Wingo, P. A., Ries, L. A. G., Giovino, G. A., Miller, D. S., Rosenberg, H. M., 

Shopland, D. R., Thun, M. J. and Edwards, B. K. (1999). Annual Report to the Nation 

on the Status of Cancer, 1973–1996, With a Special Section on Lung Cancer and 

Tobacco Smoking. Journal of the National Cancer Institute, 91(8), 675-690. 

10. Soria, J. C., Kim, E. S., Fayette, J., Lantuejoul, S., Deutsch, E. and Hong, W. K. (2003). 

Chemoprevention of lung cancer. The Lancet Oncology, 4, 659-669. 

11. Rekhtman, N. (2010). Neuroendocrine Tumors of the Lung: An Update. Archives of 

Pathology & Laboratory Medicine, 134, 1628-1638. 

12. Devesa S. S., Bray F., Vizcaino A. P. and Parkin D. M. (2005). International lung 

cancer trends by histologic type: male:female differences diminishing and 

adenocarcinoma rates rising. International Journal of Cancer, 117(2), 294-299. 

13. Lin D. T. and Yan, C. R. (2002). Lung Nodules Identification Rules Extraction With 

Neural Fuzzy Network. Paper presented at the Proceedings ofthe 9th International 

Conference on Neural Information Processing (ICONIP'02), Singapore, Singapore. 



84 

 

14. Moran, T. C., Kaye, A. D., Rao A. and Bueno, F. R. (2016). The roles of Xrays and 

other types of electromagnetic radiation in evaluating paintings for forgery and 

restoration. Journal of Forensic Radiology and Imaging, 5, 38-46. 

15. Specht, L. and Berthelsen, A. K. (in press). PET/CT in radiation therapy planning. 

Seminars in Nuclear Medicine, 48(1), 67–75. 

16. Fass, L. (2008). Imaging and cancer: A review. Molecular  Oncology, 2, 115–152. 

17. Andreea, G. I., Pegza, R., Lascu, L., Bondari, S., Stoica, Z. and Bondari, A. (2011). 

The Role of Imaging Techniques in Diagnosis of Breast Cancer. Current Health 

Sciences Journal, 37(2), 55-61. 

18. Hubersa, A. J., van der Drift, M. A., Prinsen, C. F.M., Witte, B. I., Wang, Y., 

Shivapurkar, N., Stastny, V., Bolijn, A. S., Hol, B. E. A., Feng, Z., Dekhuijzen, P. N. 

R., Gazdar, A. F. and Thunnissen, E. (2014). Methylation analysis in spontaneous 

sputum for lung cancer diagnosis. Lung Cancer, 84, 127-133. 

19. Wright, J. D., Cham, S., Chen, L., Burke, W. M., Hou, J. Y., Tergas, A. I., Desai, V., 

Hu, J. C., Ananth, C. V., Neugut, A. I. and Hershman, D. L. (2017). Utilization of 

sentinel lymph node biopsy for uterine cancer. American Journal of Obstetrics and 

Gynecology, 216(594), 1-13. 

20. Revel, M. P., Bissery, A., Bienvenu, M., Aycard, L., Lefort, C. and Frija, G. (2004). 

Are two-dimensional CT measurements of small noncalcified pulmonary nodules 

reliable?. Radiology, 231(2), 453-458. 

21. Sharma, D. and Jindal, G. (2011). Identifying Lung Cancer Using Image Processing 

Techniques. Paper presented at the International Conference on Computational 

Techniques and Artificial Intelligence (ICCTAI'2011), Landran, India. 

22. Pedersen, J. H., Ashraf, H., Dirksen, A., Bach, K., Hansen, H., Toennesen, P., Thorsen, 

H., Brodersen, J., Skov, B. G., Døssing, M., Mortensen, J., Richter, K., Clementsen, 

P. and Seersholm, N. (2009). The Danish Randomized Lung Cancer CT Screening 

Trial—Overall Design and Results of the Prevalence Round. Journal of Thoracic 

Oncology, 4(5), 608-614. 

23. Sagara, Y.,  Hara, A. K., Pavlicek, W., Silva, A. C., Paden, R. G. and Wu, Q. (2010). 

Abdominal CT: Comparison of Low-Dose CT With Adaptive Statistical Iterative 

Reconstruction and Routine-Dose CT With Filtered Back Projection in 53 Patients. 

American Journal of Roentgenology, 195(3), 713-719. 

24. Hammen, I. (2015). Tuberculosis mimicking lung cancer. Respiratory Medicine Case 

Reports, 16, 45–47. 

25. Suzuki, K., Yan, P., Wang, F. and Shen, D. (2012). Machine Learning in Medical 

Imaging. International Journal of Biomedical Imaging, 2012(2), 1. 

26. Singh, S., Maxwell, J., Baker, J. A., Nicholas, J. L. and Lo, J. Y. (2011). Computer-

aided Classifi cation of Breast Masses: Performance and Interobserver Variability of 

Expert Radiologists Versus Residents. Radiology, 258(1), 73-80. 



85 

 

27. Cheng, J. Z., Ni, D., Chou, Y. H., Qin, J., Tiu, C. M., Chang, Y. C., Huang, C. S., 

Shen, D. and Chen, C. M. (2016). Computer-Aided Diagnosis with Deep Learning 

Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in 

CT Scans. Scientific Reports, 6, 24454. 

28. Hua, K. L., Hsu, C. H., Hidayati, S. C., Cheng, W. H. and Chen, Y. J. (2015). 

Computer-aided classification of lung nodules on computed tomography images via 

deep learning technique. OncoTargets and Therapy, 5(8), 2015–2022. 

29. Niki, N., Kawata, Y. and Kubo, M. (2001). A CAD system for lung cancer based on 

CT image. International Congress Series, 1230, 631–638. 

30. Matsuki, Y., Nakamura, K., Watanabe, H., Aoki, T., Nakata, H., Katsuragawa, S. and 

Doi, K. (2002). Usefulness of an Artificial Neural Network for Differentiating Benign 

from Malignant Pulmonary Nodules on High-Resolution CT: Evaluation with 

Receiver Operating Characteristic Analysis. American Journal of Roentgenology, 

178(3), 657-663. 

31. Penedo, M. G., Carreira, Mosquera, M. J. A. and Cabello, D. (1998). Computer-Aided 

Diagnosis: A Neural-Network-Based Approach to Lung Nodule Detection. The 

Institute of Electrical and Electronics Engineers Transactions on Medical Imaging, 

17(6), 872-880. 

32. Teramoto, A. and Fujita, H. (2013). Fast lung nodule detection in chest CT images 

using cylindrical nodule-enhancement filter. International Journal of Computer 

Assisted Radiology and Surgery, 8, 193–205. 

33. Kakar, M. and Olsen, D. R. (2009). Automatic segmentation and recognition of lungs 

and lesion from CT scans of thorax. Computerized Medical Imaging and Graphics, 

33(1), 72–82. 

34. Chen, H., Zhang, J., Xu, Y., Chen, B. and Zhang, K. (2012). Performance comparison 

of artificial neural network and logistic regression model for differentiating lung 

nodules on CT scans. Expert Systems with Applications, 39(13), 11503–11509. 

35. Wang, Q., Kang, W., Wu, C. and Wang, B. (2013). Computer-aided detection of lung 

nodules by SVM based on 3D matrix patterns. Clinical Imaging, 37(1), 62–69. 

36. Kulkarni, A. and Panditrao, A. (2014). Classification of Lung Cancer Stages on CT 

Scan Images Using Image Processing. Paper presented at the 2014 Institute of 

Electrical and Electronics Engineers International Conference on Advanced 

Connnunication Control and Computing Teclmologies (lCACCCT), 

Ramanathapuram, India. 

37. Arimura, H., Katsuragawa, S., Suzuki, K., Li, F., Shiraishi, J., Sone, S. and Doi, K. 

(2004). Computerized Scheme for Automated Detection of Lung Nodules in Low-

Dose Computed Tomography Images for Lung Cancer Screening. Academic 

Radiology, 11(6), 617–629. 

38. Suzuki, K., Armato, S. G., Li, F., Sone, S. and Doi, K. (2003). Massive training 

artificial neural network )MTANN) for reduction of false positives in computerized 



86 

 

detection of lung nodules in low-dose computed tomography. Medical Physics, 30(7), 

1602–1617. 

39. Jacobs, C., van Rikxoort, E. M., Scholten, E. T., de Jong, P. A., Prokop, M., Schaefer-

Prokop, C. and van Ginneken, B. (2015). Solid, part-solid, or non-solid?: classification 

of pulmonary nodules in low-dose chest computed tomography by a computer-aided 

diagnosis system. Investigative Radiology, 50(3), 168-173. 

40. Way, T. W., Sahiner, B., Chan, H. P., Hadjiiski, L., Cascade, P. N., Chughtai, A., 

Bogot, N. and Kazerooni, E. (2009). Computer-aided diagnosis of pulmonary nodules 

on CT scans: Improvement of classification performance with nodule surface features. 

Medical Physics, 36(7), 3086–3098. 

41. Sun, W., Zheng, B. and Qian, W. (2016). Computer aided lung cancer diagnosis with 

deep learning algorithms. Paper presented at the Proceedings of the International 

Society for Optics and Photonics Conference, California, United States. 

42. Ginneken, B. V., Setio, A. A. A., Jacobs, C. and Ciompi, F. (2015). Off-The-Shelf 

Convolutional Neural Network Features For Pulmonary Nodule Detection In 

Computed Tomography Scans. Paper presented at 2015 Institute of Electrical and 

Electronics Engineers 12th International Symposium on Biomedical Imaging (ISBI), 

New York, United States. 

43. Anthimopoulos, M., Christodoulidis, S., Ebner, L., Christe, A. and Mougiakakou, S. 

(2016). Lung Pattern Classification for Interstitial Lung Diseases Using a Deep 

Convolutional Neural Network. The Institute of Electrical and Electronics Engineers 

Transactions on Medical Imaging, 35(5), 1207-1216. 

44. Gruetzemacher, R. and Gupta, A. (2016). Using Deep Learning for Pulmonary Nodule 

Detection & Diagnosis. Paper presented at the Twenty-second Americas Conference 

on Information Systems, San Diego, United States. 

45. Ciompi, F., Chung, K., van Riel, S. J., Setio, A. A. A., Gerke, P. K., Jacobs, C., 

Scholten, E. T., Prokop, C. S., Wille, M. M. W., Marchianò, A., Pastorino, U., Prokop, 

M. and van Ginneken, B. (2017). Towards automatic pulmonary nodule management 

in lung cancer screening with deep learning. Scientific Reports, 7(46479), 1-10. 

46. Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D. D. and Chen, M. (2014). Medical Image 

Classification with Convolutional Neural Network. Paper presented at the 2014 13th 

International Conference on Control, Automation, Robotics & Vision, Marina Bay 

Sands, Singapore. 

47. Shen, W., Zhou, M., Yang, F., Yang, C. and Tian, J. (2015). Multi-scale Convolutional 

Neural Networks for Lung Nodule Classification. Information Processing in Medical 

Imaging, 24, 588-599. 

48. Rao, P., Pereira, N. A. and Srinivasan, R. (2016). Convolutional Neural Networks for 

Lung Cancer Screening in Computed Tomography (CT) Scans. Paper presented at the 

2016 2nd International Conference on Contemporary Computing and Informatics 

(IC3I), Noida, India. 

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7911113
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7911113
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7911113


87 

 

49. Alakwaa, W., Nassef, M. and Badr, A. (2017). Lung Cancer Detection and 

Classification with 3D Convolutional Neural Network (3D-CNN). International 

Journal of Advanced Computer Science and Applications (IJACSA), 8(8), 409-417. 

50. Song, Q. Z., Zhao, L., Luo, X. K. and Dou, X. C. (2017). Using Deep Learning for 

Classification of Lung Nodules on Computed Tomography Images. Journal of 

Healthcare Engineering, 2017, 1-7. 

51. Bondfale N. and Banait, S. (2017). Lung Pattern Classification for Interstitial Lung 

Diseases Using a Deep Convolutional Neural Network. International Journal of 

Innovative Research in Computer and Communication Engineering, 5(5), 9851-9856. 

52. Fyfe, C. (2005). Do Smart Adaptive Systems Exist? Artificial Neural Networks. Berlin: 

Springer,57–79. 

53. Basheer, I.A. and Hajmeer, M. (2000). Artificial neural networks: fundamentals, 

computing, design, and application. Journal of Microbiological Methods, 43, 3–31. 

54. Pratap, K., and Shelja. (2013). Artificial Neural Network (Ann) Inspired From 

Biological Nervous System. International Journal of Application or Innovation in 

Engineering & Management, 2(1), 227-231. 

55. Jain, A. K., Mao, J. and Mohiuddin, K. (1996). Artificial neural networks: A tutorial. 

The Institute of Electrical and Electronics Engineers Computer, 29, 31-44. 

56. Mcculloch, W. S., and Pitts, W. (1990). A logical calculus of the ideas immanent in 

nervous activity. Bulletin of Mothemnticnl Biology, 52(1/2), 99-115. 

57. Rochester, N., Holland, J. H., Haibt, L.H., and Duda, W.L. (1956).  Tests on A Cell 

Assembly Theory of The Action of The Brain, Using A Large Digital Computer. 

Institute of the Radio Engineers Transactions on Information Theory, 2(3), 80 - 93. 

58. Rosenblatt, F. (1958). The Perceptron: A Probabilistic Model For Information Storage 

And Organization in The Brain. Psychological Review, 65(6), 65-386. 

59. Klopf, A. H. (1972). Brain Function and Adaptive Systems: A Heterostatic Theory, 

Air Force Cambridge Research Laoratories, Special Peports, 133. 

60. Werbos, P. (1974). Beyond regression : new tools for prediction and analysis in the 

behavioral sciences, Doctorate Thesis, Harvard University Mathematical Engineering 

and Applied Physics, United States. 

61. Graupe, D. (2013). Principles of artificial neural networks. Singapur: World 

Scientific, 17-36. 

62. Sibi, P., Jones, S. A. and Siddarth, P. (2013). Analysis of Different Activation 

Functions Using Back Propagation Neural Networks. Journal of Theoretical and 

Applied Information Technology, 47(3), 1264-1268. 

63. He, K., Zhang, X., Ren, S. and Sun, J. (2016). Deep Residual Learning for Image 

Recognition. Paper presented at the 2016 IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), Las Vegas, NV, USA. 



88 

 

64. Glorot, X., and Bengio, Y. (2010). Understanding the difficulty of training deep 

feedforward neural networks. Paper presented at theProceedings of the Thirteenth 

International Conference on Artificial Intelligence and Statistics, Qu´ebec, Canada. 

65. Karlik, B., and Olgac, A. V. (2011). Performance analysis of various activation 

functions in generalized mlp architectures of neural networks. International Journal 

of Artificial Intelligence And Expert Systems, 1(4), 111-122. 

66. Debes, K., Koenig, A., and Gross, H. M. (2005). Transfer functions in artificial neural 

networks-a simulation-based tutorial. Supplementary Material for Urn, 1, 1-11. 

67. Maas, A. L., Hannun, A. Y. and Ng, A. Y. (2013). Rectifier nonlinearities improve 

neural network acoustic models. Paper presented at the Proceedings of the 30 th 

International Conference on Machine Learning, Atlanta, Georgia, United States. 

68. Svozil, D., Eka, V. K. and Pospichal, J. (1997). Introduction to multi-layer feed-

forward neural networks. Chemometrics and Intelligent Laboratory Systems, 39, 43-

62. 

69. Hagiwara, M. (1992). Theoretical derivation of momentum term in back-propagation. 

Paper presented at the International Joint Conference on Neural Networks (IJCNN), 

Baltimore, MD, United States. 

70. Satapathy, S.C., Udgata, S.K. and Biswal, B.N. (2014). Advances in intelligent systems 

and computing (vol. 247). Switzerland: Springer International Publishing. 

71. Internet: Nielsen, M. A. (2015). Neural networks and deep learning. URL: 

http://www.webcitation.org/query?url=http%3A%2F%2Fneuralnetworksanddeeplear

ning.com%2F&date=2017-12-28, Last Access Date: 04.11.2017. 

72. Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. United States: 

MIT Press. 

73. Ruder, S. (2016). An overview of gradient descent optimization algorithms. Clinical 

Orthopaedics and Related Research, 1609, 04747. 

74. LeCun, Y., Bottou, L., OrrKlaus, G. B., and Müller, R. (1998). Efficient BackProp. 

Lecture Notes in Computer Science (LNCS), 1524, 1-44. 

75. Bryson A. E. and Ho Y. C. (1969). Applied optimal control: optimization, estimation, 

and control. Waltham, MA: Blaisdell. 

76. Parker, D. B. (1986). A comparison of algorithms for neuron-like cells. Paper 

presented at the American Institute of Physics (AIP) Conference Proceedings, Utah, 

United States. 

77. Nielsen, R. H. (1989). Theory of the backpropagation neural network. in International 

Joint Conference on Neural Networks (IJCNN), Washington, DC, United States. 

78. LeCun, Y., Bengio, Y. and Hinton, G. (2015). Deep learning. Nature, 521, 436-444. 



89 

 

79. Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the Dimensionality of Data 

with Neural Networks. Science, 313, 504-507. 

80. Bengio, Y. (2009). Learning Deep Architectures for AI. Foundations and Trends in 

Machine Learning, 2(1), 1-127. 

81. Dong, C., Loy, C. C., He, K. and Tang, X. (2014, September). Learning a deep 

convolutional network for image super-resolution. Paper presented at the European 

Conference on Computer Vision (pp. 184-199), Hong Kong, China. 

82. Hinton, G., Osindero, S. and Teh, Y. W. (2006). A fast learning algorithm for deep 

belief nets. Neural Computation, 18, 1527–1554. 

83. Ranzato, M. A., Huang, F. J., Boureau, Y. L. and LeCun, Y. (2007). Unsupervised 

Learning of Invariant Feature Hierarchies with Applications to Object Recognition. 

Paper presented at the IEEE Conference on Computer Vision and Pattern Recognition 

(CVPR '07), Minneapolis, MN, United States. 

84. Lee, H., Largman, Y., Pham, P. and Ng, A. Y. (2009). Unsupervised feature learning 

for audio classification using convolutional deep belief networks. Paper presented at 

the Neural Information Processing Systems (NIPS'09) Proceedings of the 22nd 

International Conference on Neural Information Processing Systems, Vancouver, 

British Columbia, Canada. 

85. Hubel, D. H. and Wiesel, T. N. (1968). Receptive fields and functional architecture of 

monkey striate cortex. The Journal of Physiology., 195, 215-243. 

86. Turaga, S. C. (2010). Convolutional networks can learn to generate affinity graphs for 

image segmentation. Neural Computation, 22, 511–538. 

87. Ning, F., Delhomme, D., LeCun, Y., Piano, F., Bottou, L. and Barbano, P. E. (2005). 

Toward automatic phenotyping of developing embryos from videos. The Institute of 

Electrical and Electronics Engineers Transactions on Image Processing, 14(9), 1360-

1371. 

88. Cireşan, D., Meier, U., Masci, J., and Schmidhuber, J. (2012). Multi-column deep 

neural network for traffic sign classification. Neural Networks, 32, 333–338. 

89. Lecun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998). Gradient-based learning 

applied to document recognition. Proceedings of the The Institute of Electrical and 

Electronics Engineers, 86(11), 2278 - 2324. 

90. Cireşan, D. C., Meier, U., Masci, J., Gambardella, L. M. and Schmidhuber, J. (2011). 

Flexible, high performance convolutional neural networks for image classification. in 

IJCAI'11 Proceedings of the Twenty-Second international joint conference on 

Artificial Intelligence, Barcelona, Catalonia, Spain. 

91. Krizhevsky, A., Sutskever, I. and Hinton, G. E. (2012). ImageNet Classification with 

Deep Convolutional Neural Networks. in Neural Information Processing Systems 

(NIPS'12) Proceedings of the 25th International Conference on Neural Information 

Processing Systems, Lake Tahoe, Nevada. 



90 

 

92. Simonyan, K. and Zisserman, A. (2015). Very Deep Convolutional Networks for 

Large-Scale Image Recognition. Paper presented at the Published as a conference 

International Conference on Learning Representations, Oxford, United Kingdom. 

93. Internet: Image Net. URL: 

http://www.webcitation.org/query?url=http%3A%2F%2Fimage-

net.org%2F&date=2017-12-27, Last Access Date: 04.11.2017. 

94. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,  

Vanhoucke, V. and Rabinovich, A. (2015). Going Deeper with Convolutions. Paper 

presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition 

(CVPR), Boston, MA, United States. 

95. László, E., Szolgay, P., and Nagy, Z. (2012). Analysis of a GPU based CNN 

implementation. Paper presented at the 2012 13th International Workshop on Cellular 

Nanoscale Networks and Their Applications, Turin, Italy. 

96. Cireşan, D. C., Meier, U., Gambardella, L. M., and Schmidhuber, J. (2011). 

Handwritten Digit Recognition with a Committee of Deep Neural Nets on GPUs. 

Istituto Dalle Molle di Studi Sull'Intelligenza Artificiale / Università della Svizzera 

İtaliana, Manno, Switzerland. 

97. Internet: NVIDIA. Deep Learning AI. URL: 

http://www.webcitation.org/query?url=https%3A%2F%2Fwww.nvidia.com%2Fen-

us%2Fdeep-learning-ai%2F&date=2017-12-27, Last Access Date: 14.10. 2017. 

98. LeCun, Y., Kavukcuoglu, K. and Farabet, C. (2010, May). Convolutional networks 

and applications in vision. Paper presented at the Circuits and Systems (ISCAS), 

Proceedings of 2010 IEEE International Symposium on (pp. 253-256). Paris, France. 

99. Ketkar, N. (2017). Deep learning with python: A hands-on introduction. Bangalore: A 

Press. 

100. Gollapudi, S. (2016). Practical machine learning. United Kingdom: Packt Publishing 

Ltd. 

101. Aghdam, H. H. and Heravi, E. J. (2017). Guide to Convolutional Neural Networks. 

Switzerland: Springer. 

102. Abdel-Hamid, O., Deng, L. and Yu, D. (2013). Exploring Convolutional Neural 

Network Structures and Optimization Techniques for Speech Recognition. Paper 

presented at Interspeech 2013, Lyon, France. 

103. Stutz, D. (2014). Understanding convolutional neural networks. Germany: Fakultät 

für Mathematik, Informatik und Naturwissenschaften. 

104. Scherer, D., Müller, A. and Behnke, S. (2010). Evaluation of Pooling Operations in 

Convolutional Architectures for Object Recognition. Paper presented at the 20th 

International Conference on Artificial Neural Networks (ICANN), Thessaloniki, 

Greece. 



91 

 

105. Kramer, R. H. and Davenport, C. M. (2015). Lateral Inhibition in the Vertebrate 

Retina: The Case of the Missing Neurotransmitter. Public Library of Science Biology, 

13(2), 1002322. 

106. Jarrett, K., Kavukcuoglu, K., Ranzato, M. A. and LeCun, Y. (2009). What is the best 

multi-stage architecture for object recognition?. Paper presented at the 2009 Institute 

of Electrical and Electronics Engineers 12th International Conference on Computer 

Vision, Kyoto, Japan. 

107. Ioffe, S. and Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network 

Training by Reducing Internal Covariate Shift. Paper presented at the Proceedings of 

the 32nd International Conference on Machine Learning, California, United States.  

108. Bouchard, G. (2007). Efficient Bounds for the Softmax Function and Applications to 

Approximate Inference in Hybrid models. Paper presented at the Presentation at The 

Workshop For Approximate Bayesian Inference in Continuous/Hybrid Systems at  

Neural Information Processing Systems (NIPS), Meylan, France. 

109. Internet: Lin, M., Chen, Q. and Yan, S. (2014). Network In Network. 

arXiv:1312.4400v3 [cs.NE]. URL: 

http://www.webcitation.org/query?url=https%3A%2F%2Farxiv.org%2Fpdf%2F131

2.4400.pdf&date=2017-12-28, Last Access Date: 14.10. 2017. 

110. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. and Wojna, Z. (2016). Rethinking the 

Inception Architecture for Computer Vision. Paper presented at the The Institute of 

Electrical and Electronics Engineers Conference on Computer Vision and Pattern 

Recognition (CVPR), Nevada, United States. 

111. Szegedy, C., Ioffe, S., Vanhoucke, V. and Alemi, A. A. (2017). Inception-v4, 

Inception-ResNet and the Impact of Residual Connections on Learning. Paper 

presented at the Proceedings of the Thirty-First Conference on Artificial Intelligence 

(AAAI-17), Mountain View, California, United States.  

112. Internet: National Institutes of Health. (2011). Cancer costs projected to reach at least 

$158 billion in 2020: New NIH study projects survivorship and costs of cancer care 

based on changes in the US population and cancer trends. National Institute of Health 

(NIH). URL: 

http://www.webcitation.org/query?url=https%3A%2F%2Fwww.nih.gov%2Fnews-

events%2Fnews-releases%2Fcancer-costs-projected-reach-least-158-billion-

2020&date=2017-12-27, Last Access Date: 9. 11. 2017. 

113. Internet: Data Science Bowl. Data Science Bowl. URL: 

http://www.webcitation.org/query?url=https%3A%2F%2Fwww.kaggle.com%2Fc%2

Fdata-science-bowl-2017&date=2017-12-28, Last Access Date: 6. 9. 2017. 

114. Lan, Z., Yu, S. I., Lin, M., Raj, B. and Hauptmann, A. G. (2015). Local Handcrafted 

Features Are Convolutional Neural Networks. Paper presented at International 

Conference on Learning Representations, San Juan, Puerto Rico. 

115. Cho, J., Lee, K., Shin, E., Choy, G. and Do, S. (2015). Medical Image Deep Learning 

With Hospital Pacs Dataset, Paper presented at the International Conference on 

Learning Representations, Boston, Massachusetts, United States. 

http://www.webcitation.org/query?url=https%3A%2F%2Fwww.nih.gov%2Fnews-events%2Fnews-releases%2Fcancer-costs-projected-reach-least-158-billion-2020&date=2017-12-27
http://www.webcitation.org/query?url=https%3A%2F%2Fwww.nih.gov%2Fnews-events%2Fnews-releases%2Fcancer-costs-projected-reach-least-158-billion-2020&date=2017-12-27
http://www.webcitation.org/query?url=https%3A%2F%2Fwww.nih.gov%2Fnews-events%2Fnews-releases%2Fcancer-costs-projected-reach-least-158-billion-2020&date=2017-12-27


92 

 

116. Polat H., Danaei Mehr H. and Cetin A. (2017). Diagnosis of chronic kidney disease 

based on support vector machine by feature selection methods. Journal of Medical 

Systems, 41(4), 55. 

 

  



95 

 

 

 

 

 

 

 

 

 
 

GAZİ GELECEKTİR... 
 

 

 

 

  


