
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

POLİÜRETAN KÖPÜK İLE DOLDURULMUŞ BAL 

PETEĞİ SANDVİÇ PLAKLARIN TİTREŞİM ANALİZİ 

 

Eric Thomas TRELEASE 

 

Yüksek Lisans Tezi 

 

Anabilim Dalı: Makine Mühendisliği 

Programı: Makine Teorisi ve Dinamiği 

Danışman: Doç. Dr. Orhan ÇAKAR 

 

OCAK-2018 



T.C. 

FIRAT ÜNİVERSİTESİ 

FEN BİLİMLERİ ENSTİTÜSÜ 

POLİÜRETAN KÖPÜK İLE DOLDURULMUŞ BAL PETEĞİ SANDVİÇ 

PLAKLARIN TİTREŞİM ANALİZİ 

YÜKSEK LİSANS TEZİ 

Mak. Müh. Eric Thomas TRELEASE 

(151120102) 

Anabilim Dalı:  Makine Mühendisliği 

Programı:  Makine Teorisi ve Dinamiği 

Danışman:  Doç. Dr. Orhan ÇAKAR 

OCAK-2018





ÖNSÖZ 
 Bana yardım eden ve bana sabır gösteren hocam Doç. Dr. Orhan ÇAKAR’ a 

teşekkür ederim.  Bana zaman ayıran Doç. Dr. Mete Onur KAMAN’a teşekkür ederim.  

Bana çok yardım eden Arş. Gör. Murat ŞEN’e teşekkür ederim. Çalışmalarım boyunca 

bana destek olan eşime ve çocuklarıma teşekkürlerimi sunarım.  

    Eric Thomas TRELEASE 

ELAZIĞ - 2018 

$i



İÇİNDEKİLER Sayfa No: 

ÖNSÖZ…………………………………………………………………………………… i 

İÇİNDEKİLER…………………………………………………………………………… ii 

ŞEKİLLER LİSTESİ…………………………………………………………………….. iv 

TABLOLAR LİSTESİ……………………………………………………………………. vi 

SEMBOLLER LİSTESİ………………………………………………………………… viii 

KISALTMALAR LİSTESİ……………………………………………………………….  ix 

ÖZET………………………………………………………………………………………. x 

SUMMARY………………………………………………………………………………. xi 

1. GİRİŞ………………………………………………………………………………… 1 

1.1 Problemin Tanımı…………………………………………………………………… 1 

1.2 Tezin Amacı ve Kapsamı…………………………………………………………….. 1 

1.3 Literatür Araştıması………………………………………………………………….. 2 

2. PLAK TİTREŞİMLERİ.…………………………………………………………….. 6 

2.1  İzotopik Plaklar İçin Hareket Denklemleri………………………………………….. 6  

2.2 Sandviç Plaklar İçin Hareket Denklemleri……………..…………………………… 6 

3. BALPETEĞİ SANDVİÇ YAPILARI İÇİN EŞDEĞER PLAK TEORİLERİ……… 14 

3.1 Gibson Yöntemi……………………………………………………………………. 14 

3.2 Eşdeğer Plak Teorisi……………………………………………………………… 15 

4. MODAL ANALİZ………………………………………………………………… 17 

4.1 Modal Analiz Teorisi……………………………………………………………… 17 

4.2  Sonlu Elemanlar Yöntemi………………………………………………………… 19 

4.3 Deneysel Modal Analiz (DMA)…………………………………………………… 19 

5. EŞDEĞER MODELİN DOĞRULANMASI………………………………………. 22 

5.1  302 mm x 183 mm Boyutlarında Plak Örneği……………………………………. 22 

5.2 290mm x 40mm Plak Örneği………………………………………………………. 28 

6. DENEYSEL MODAL ANALİZ DOĞRULAMA ÇALIŞMALARI……………… 32 

6.1  Diktörgen Kesitli Basit Bir Çubuğun Modal Analizi………………………………. 34 

6.1.1  ANSYS ile Çelik Çubuk Titreşim Analizi………………………………………… 34 

6.1.2 DMA ile Çelik Çubuk Titreşim Analizi……………………………………………. 35 

6.1.3 Çelik Kiriş SE ve DMA Sonuçlarının Karşılaştırılması…………………………… 37 

$ii



6.2 Alüminyum Kapak Titreşim Analizleri…………………………………………….. 38 

6.2.1 ANSYS ile Alüminyum Kapak Titreşim Analizi…………………………………… 38 

6.2.2  DMA ile Alüminyum Kapak Titreşim Analizi……………………………………. 39 

6.2.3  Alüminyum Kapak SE ve DMA Sonuçlarının Karşılaştırması……………………. 40 

7. KÜÇÜK HÜCRELİ BAL PETEĞİ SANDVİÇ PLAKLAR İÇİN TİTREŞİM  

 ANALİZLERİ……………………………………………………………………… 43 

7.1 ANSYS ile Küçük Hücreli Bal Peteği Sandviç Plaka Titreşim Analizi…………… 44 

7.2 DMA ile Küçük Hücreli Bal Peteği Sandviç Plak İçin Deneysel Modal Analiz…  46 

7.3 Küçük Hücreli Bal Peteği Sandviç Plak Titreşim Analizleri Karşılaştırması……… 47 

8. BOŞ BÜYÜK HÜCRELİ BAL PETEĞİ SANDVİÇ PLAKLARIN TİTREŞİM  

 ANALİZLERİ……………………………………………………………………… 49 

8.1 ANSYS ile Boş Büyük Hücreli Bal Peteği Sandviç Plak Titreşim Analizi………… 50 

8.2 Boş Büyük Hücreli Bal Peteği Sandviç Plak İçin DMA…………………………… 51 

8.2.1 Boş Bal Peteği Sandviç Plak, S-S Sınır Şartları…………………………………… 52 

8.2.2 Boş Bal Peteği Sandviç Plak, A-S Sınır Şartları…………………………………… 57 

8.3 Boş Büyük Hücreli Bal Peteği Sandviç Plak Titreşim Analizleri Karşılaştırması…. 58 

9. PU KÖPÜK İLE DOLDURULMUŞ BAL PETEĞİ SANDVİÇ PLAK TİTREŞİM  

 ANALİZLERİ……………………………………………………………………… 62 

9.1  Köpük ile Doldurulmuş Büyük Hücreli Bal Peteği Sandviç Plak İçin ANSYS  

 Titreşim Analizi…………………………………………………………………… 62 

9.2 Köpük ile Doldurulmuş Büyük Hücreli Bal Peteği Sandviç Plak İçin DMA……… 63 

9.2.1 Köpüklü Bal Peteği Sandviç Plak, S-S Sınır Şartları………………………………. 63 

9.2.2 Köpüklü Bal Peteği Sandviç Plak, A-S Sınır Şartları……………………………… 65 

9.3 Köpük ile Doldurulmuş Büyük Hücreli Bal Peteği Sandviç Plaka Titreşim Analizleri  

 Karşılaştırması……………………………………………………………………… 67 

10. SONUÇLAR………………………………………………………………………. 71 

KAYNAKLAR…………………………………………………………………………… 76 

ÖZGEÇMİŞ……………………………………………………………………………… 80 

$iii



     ŞEKİLLER LİSTESİ           Sayfa No:  

Şekil 2.1 Sandviç bir plağın yapısı……………………………………………………… 7 

Şekil 3.1 Balpeteği hücre geometrisi ve boyutları……………………………………… 14 

Şekil 3.2  Bal peteği sandviç yapı için Gibson eşdeğer modeli………………………… 15 

Şekil 3.3  Bal peteği yapısının şekli……………………………………………………. 15 

Şekil 3.4  Eşdeğer plak teorisi diyagramı………………………………………………. 16 

Şekil 4.1  Deneysel modal analiz için ölçüm sistemleri………………………………… 20 

Şekil 4.2  Ölçümlerde kullanılan cihaz ve ekipmanlar………………………………… 21 

Şekil 5.1  302 mm x183 mm plak örenği için bal peteği hücre boyutları [14]………… 23 

Şekil 5.2  Gibson eşdeğer modeli, üç katmanlı bir model, kapak - çekirdek - kapak… 24 

Şekil 5.3  Gibson eşdeğer modeli sınır şartları…………………………………………. 24 

Şekil 5.4  Gibson eşdeğer modeli, mod 1, eğilme, 145.85 Hz…………………………. 25 

Şekil 5.5  Gibson eşdeğer modeli, mod 2, burulma, 474.49 Hz………………………… 25 

Şekil 5.6  Gibson eşdeğer modeli, mod 3, eğilme, 867.10 Hz………………………… 26 

Şekil 5.7  Gibson eşdeğer modeli, mod 4, yanal, 1130.50 Hz…………………………. 26 

Şekil 5.8  Bal peteği yapısının gerçek modeli………………………………………….. 27 

Şekil 5.9   A-S-S-S sınır şartlarındaki bal peteği sanviç plaka………………………… 28 

Şekil 5.10  ANSYS’teki bal peteği sandviç plaka basitleştirilmemiş SE modeli………… 29 

Şekil 6.1  Rijit kütle testi……………………………………………………………… 32 

Şekil 6.2 Rijit kütle testi yapılarak bulunduğu -20dB FTF…………………………… 33 

Şekil 6.3  Çelik çubuk, elemanlar ve serbest sınır şartı………………………………… 35 

Şekil 6.4  Deneysel modal analiz yapılan kiriş………………………………………… 36 

Şekil 6.5  Çelik çubuk üzerinde ölçülen FTF’ler……………………………………… 37 

Şekil 6.6  Deneysel modal analiz yapılan alüminyum kapak ve ölçüm noktaları……… 39 

Şekil 6.7  Alüminyum kapak üzerinde ölçülen FTF’ler………………………………… 40 

Şekil 7.1  Fabrikada yapılmış alüminyum bal peteği…………………………………… 43 

Şekil 7.2  Küçük hücreli bal peteği boyutları…………………………………………… 43 

Şekil 7.3  Küçük hücreli bal peteği sandviç plakanın katmanları (kapak - yapıştırıcı - bal  

 peteği - yapıştırıcı - kapak) ve ölçüleri (mm)……………………………….. 44 

Şekil 7.4 Deneysel çalışma için asılan küçük hücreli bal peteği yapı…………………. 46 

Şekil 7.5  Küçük hücreli bal peteği kiriş, deneysel FTF………………………………… 46 

$iv



Şekil 8.1  Büyük hücreli bal peteği boyutları…………………………………………… 49 

Şekil 8.2  Büyük hücreli bal peteği sandviç plakanın katman ölçüleri (mm), kapak-  

 yapıştırıcı-bal peteği-yapıştırıcı-kapak………………………………………. 50 

Şekil 8.3  Büyük hücreli bal peteği alüminyum şekillendirilen kalıp………………….. 52 

Şekil 8.4  Büyük hücreli bal peteği düğüm konumları…………………………………  52 

Şekil 8.5  Deneysel çalışma için asılan büyük hücreli bal peteği yapı (S-S sınır şartları) 53 

Şekil 8.6  Modal çekiç ile uygulanan kuvvet ve yapının ivme cevabı…………………. 53 

Şekil 8.7  Modal çekiç ile uygulanan kuvvetin frekans spektrumu……………………. 54 

Şekil 8.8  Boş bal peteği kiriş modal çekiç ile 1 noktadan elde edilen deneysel FTF…. 54 

Şekil 8.9  Koherans fonksiyonu……………………………………………………….. 54 

Şekil 8.10 Boş bal peteği kiriş modal çekiç ile 7 noktadan elde edilen deneysel FTF….. 55 

Şekil 8.11 Tahrik sinyal, beyaz gürültü (white noise)…………………………………… 55 

Şekil 8.12  Boş bal peteği kiriş, sarsıcı ile 7 noktadan elde edilen deneysel FTF……….. 56 

Şekil 8.13 Sarsıcı ile A-S testi için deney sistemi ve ölçüm noktaları………………….. 57 

Şekil 8.14 A-S sınır şartları için boş bal peteği kiriş elde edilen deneysel FTF………… 57  

Şekil 9.1  Köpük ile doldurulmuş büyük hücreli bal peteği…………………….………  63  

Şekil 9.2  Deney için asılan köpük ile doldurulmuş büyük hücreli bal peteği…….…… 64  

Şekil 9.3  Köpüklü bal peteği sandviç plaka, S-S sınır şartları, 1 noktadan modal çekiç  

 FTF…………………………………………………………………………… 64 

Şekil 9.4  Köpüklü bal peteği sandviç plaka, S-S sınır şartları, 7 noktadan sarsıcı ile FTF  

 ……………………………………………………………………………… 65  

Şekil 9.5  Sarsıcı A-S testi için 7 ölçüm noktaları……………………………………… 66  

Şekil 9.6  A-S sınır şartları için boş bal peteği kiriş elde edilen deneysel FTF………… 66 

Şekil 10.1 A-S sınır şartında boş ve dolu yapı için modal güvence grafiği…………… 74  

$v



    TABLOLAR LİSTESİ           Sayfa No: 

Tablo 3.1 Gibson yöntemi için eşdeğer malzeme parametreleri formülleri [4]………… 14 

Tablo 3.2  Eşdeğer Plak Teorisi denklemleri [3]………………………………………… 16 

Tablo 5.1  Bal peteği yapısının özellikleri [14]………………………………………… 22 

Tablo 5.2  Bal peteği çekirdek kısmının Gibson yöntemi ile hesaplanan parametreleri… 23 

Tablo 5.3  302 mm x 183 mm A-S-S-S Plak için doğal frekansların (Hz)  

 karşılaştırılması……………………………………………………………… 27 

Tablo 5.4.  Alüminyum sandviç plaka boyutları [14]…………………………………… 28 

Tablo 5.5  Alüminyum malzeme özellikleri (bal peteği ve kapaklar için) [4]………… 29 

Tablo 5.6  Bal peteği çekirdek için hesaplanan Gibson eşdeğer parameter değerleri…… 30 

Tablo 5.7   Eşdeğer plaka teorisi kullanılarak elde edilen eşdeğer parametre değerleri… 30 

Tablo 5.8  Basitleştirmemiş model, eşdeğer plaka teorisi ve Gibson yöntemi  

 sonuçlarlarının karşılaştırılması……………………………………………… 31 

Tablo 6.1  Çelik çubuk boyutları ve malzeme özellikleri……………………………… 34 

Tablo 6.2  Çelik çubuk ANSYS sonuçları ilk dört eğilme mod için…………………… 35 

Tablo 6.3 Modal çekiç kullanılırken ölçüm parametreleri……………………………… 36 

Tablo 6.4  Çelik çubuk için deneysel sonuçlar………………………………………….. 36 

Tablo 6.5  Çelik çubuk, ANSYS ve deneysel mod şekilleri karşılaştırması…………….. 37 

Tablo 6.6  Alüminyum alaşım 1050 H14 kapak boyutları ve malzeme özellikleri……… 38 

Tablo 6.7  Alüminyum kapak için ANSYS’ten elde edilen doğal frekanslar…………… 39 

Tablo 6.8  Alüminyum kapak için deneysel doğal frekanslar…………………………… 40 

Tablo 6.9   Alüminyum kapak titreşim sayısal ve deneysel mod şekilleri  

 karşılaştırılması……………………………………………………………… 40 

Tablo 7.1  3003 H14 alüminyum alaşım malzeme özellikleri ve boyutları……………… 43 

Tablo 7.2  Yapıştırıcı malzeme özellikleri……………………………………………… 44 

Tablo 7.3   Küçük hücreli bal peteği eşdeğer parametreleri hesaplanması……………… 45 

Tablo 7.4  Küçük hücreli bal peteği sandviç yapı kiriş ANSYS sonuçları……………… 45 

Tablo 7.5  Küçük hücreli bal peteği ANSYS ve deneysel mod şekilleri karşılaştırması… 47 

Tablo 8.1  Büyük hücreli bal peteği alüminyum alaşım 3003 H14 malzeme özellikleri  

 ve boyutları…………………………………………………………….……. 49 

Tablo 8.2  Büyük hücreli bal peteği eşdeğer parametreleri hesaplanması……………… 50 

$vi



Tablo 8.3  Büyük hücreli bal peteği kiriş ANSYS sonuçları…………………………… 51 

Tablo 8.4  S-S sınır şartları için boş bal peteği sandviç plaka elde edilen DMA sonuçlar. 56 

Tablo 8.5  Boş bal peteği, sarsıcı A - S sınır şartları, DMA sonuçlar……………………. 58  

Tablo 8.6  S-S sınır şartları için boş büyük hücreli bal peteği SE ve DMA (1 noktaya  

 modal çekiç ile vuruldu) mod şekilleri karşılaştırması………………………. 59 

Tablo 8.7  Boş bal peteği A-S sınır şartları için ANSYS ve sarsıcı DMA mod şekilleri  

 karşılaştırması………………………………………………………………… 60 

Tablo 9.1  Poliüretan köpük malzeme özellikleri [18] ………………………………… 62 

Tablo 9.2 Köpük ile doldurulmuş bal peteği sandviç plaka ANSYS doğal 

 frekansları…………………………………………………………………… 62 

Tablo 9.3   Köpüklü bal peteği sandviç plaka, S-S sınır şartları elde edilen DMA  

 sonuçlar………………….…………………………………………………… 65 

Tablo 9.4  Köpüklü bal peteği sandviç plaka, sarsıcı A - S sınır şartları, DMA sonuçlar..  66 

Tablo 9.5 S-S sınır şartları köpük ile doldurulmuş bal peteği ANSYS workbench ve 1  

 noktadan modal çekiç ile DMA mod şekilleri karşılaştırması……………….. 67 

Tablo 9.6  Köpüklü bal peteği, A - S sınır şartları, sarsıcı DMA sonuçlar……………… 69 

Tablo 10.1 S-S sınır şartları için köpük ile doldurulmuş ve boş büyük hücreli bal peteği  

 sandviç plak SE titreşim analizleri sonuçları karşılaştırması.……………… 73 

Tablo 10.2 Köpük ile doldurulmuş ve boş bal peteği sandviç plakalarının DMA sonuçları  

 karşılaştırması (1 noktadan, modal çekiç) .……………….……………….… 73  

Tablo 10.3 A-S sınır şartları için boş ve köpüklü bal peteği plakaların SE sonuçları  

 karşılaştırılması.………….……………….……………….…………………. 74 

Tablo 10.4 A - S sınır şartları köpüklü ve boş bal peteği sandviç plakaların sarsıcı DMA  

 sonuçları karşılaştırılması.……………….……………….……………….…  75 

$vii



  SEMBOLLER LİSTESİ

C: Sönüm Matris 

D: Katılık 

E: Elastisite Modülü 

G: Kayma Modülü 

Hsr(ω): s ve r  konumları için Frekans Tepki Fonksiyonu 

h: Kiriş yada plaka yüksekliği 

j: Sanal Numarası (√-1) 

K: Katılık Matris 

M: Kütle Matris 

u: Mod şekil vektörü  

ui: “i.” doğal frekansa karşılık gelen ‘‘i.’’ mod şekli 

w: Deplasman 

α(ω): Reseptans Matris (alpha) 

ρ: Yoğunluk (rho) 

ω: Doğal frekans, harmonik veri girişi ile bağlı olan (omega) 

ωi: “i” doğal frekansı (omega) 

ν: Poisson oranı (nu) 

ζ: Sönüm katsayı (zeta) 

$viii



KISALTMALAR LİSTESİ 

A: Ankastre sınır şartı 

APDL:  ANSYS Parametric Design Language 

FTF: Frekans Tepki Fonksiyonu 

MAC: Modal Assurance Criterion 

PU: Poliüretan Köpük 

S: Serbest sınır şartı 

SE: Sonlu Elemanlar 

$ix



ÖZET 

Poliüretan Köpük ile Doldurulmuş Bal Peteği Sandviç Plakların Titreşim Analizi 

 Bal peteği sandviç yapıları rijitliğin ve hafifliğin önemli olduğu yapıların 

tasarımında yaygın olarak kullanılmaktadır.  Bu yapıların dinamik davranışlarının yani 

doğal frekanslarının ve mod biçimlerinin bilinmesi de oldukça önemlidir. Bu özelliklerin 

belirlenmesi için sonlu elemanlar (SE) gibi sayısal yöntemlerin yanında deneysel 

yöntemler de kullanılabilmektedir. SE yöntemi ile çözüm yaparken balpeteği yapısını 

birebir modellemek oldukça zor olduğu gibi çok fazla eleman kullanmak gerektiğinden 

çözüm süresi oldukça uzamaktadır. Bunun yerine balpeteği sandviç yapıların katmanlı 

plaka gibi modellenebildiği eşdeğer modeller geliştirilmiştir. Balpeteği sandviç yapıların 

mekanik özelliklerinin daha da iyileştirilmesi amacıyla içinin poliüretan köpük ile 

doldurulması önerilmiştir. Ancak bu durumda yapının dinamik özellikleri de 

etkilenmektedir.  Bu çalışmada hem içi boş hem de içi poliüretan (PU) köpük ile 

doldurulmuş balpeteği sandviç yapıların titreşim analizleri hem SE hem de deneysel 

yöntemlerle incelenmiştir. SE yönteminde yapı hem birebir hem de eşdeğer modeller 

kullanılarak modellenmiş ve sonuçları karşılaştırılmıştır. Ayrıca deneysel çalışmalar için 

çeşitli balpeteği sandviç yapıları imal edilmiş ve deneysel modal analiz gerçekleştirilmiştir. 

Deneysel olarak elde edilen sonuçlar SE yöntemiyle bulunan sonuçlarla karşılaştırılmıştır.  

 Aynı analizler içi PU köpük ile doldurulmuş yapılar için de tekrarlanmıştır. Küçük 

hücreli balpeteği yapıların hücrelerini PU köpük ile doldurmadaki zorluklar nedeniyle daha 

büyük hücreli balpeteği yapıları imal edilmiş ve analizleri yapılmıştır.Küçük hücreli 

balpeteği sandviç yapıda deneysel ve SE sonuçları arasında %14.45 fark olmasına rağmen 

büyük hücreli olanda bu fark iki kattan daha büyük olmuştur. Bu büyük farkın balpeteği 

yapının imalatında karşılaşılan zorluklar nedeniyle imalat hatalarından kaynaklandığı 

sonucuna varılmıştır.  Boş ve köpük dolu balpeteği sandviç yapılar karşılaştırıldığında, 

köpük dolu yapının doğal frekansları düşük modlarda azalma eğiliminde iken yüksek 

modlarda arttığı görülmüştür.  

Anahtar Kelimleri:  Balpeteği, Poliüretan Köpük, Titreşim, Modal Analiz, Sonlu 

Elemanlar
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SUMMARY 

Vibration Analysis of Honeycomb Sandwich Plates Filled with Polyurethane Foam 

 Honeycomb sandwich structures are useful for designing structures that need to be 

rigid and light-weight.  The dynamic properties of honeycomb sandwich structures is 

important knowledge that should be obtained.  These dynamic properties include the 

honeycomb sandwich structure’s natural frequencies and corresponding mode shapes.  To 

confirm the obtained data is correct both experimental and numerical analyses should be 

performed.  To reduce the complexity of the honeycomb layer for numerical analysis, 

equivalent models exist.  This study confirmed the accuracy of the Gibson equivalent 

model by reproducing numerical analyses found in literature. 

 To improve the mechanical properties of honeycomb sandwich panels, it has been 

suggested that the honeycomb could be filled with foam.  The dynamik properties would 

need to be found for a honeycomb panel that has been filled with foam.  A large cell 

honeycomb sandwich structure was analyzed both experimentally and numerically.  Only 

the first two natural frequencies could be obtained experimentally.  Significant differences 

were found.  The numerical results for the first two natural frequencies were over double 

the value for the experimental results.  A large cell honeycomb sandwich structure was 

filled with foam and was analyzed both experimentally and numerically.  Only the first two 

natural frequencies could be obtained experimentally.  Significant differences were found.  

The numerical results for the first two natural frequencies were over double the value for 

the experimental results.  A small cell honeycomb sandwich structure was analyzed both 

experimentally and numerically.  Only the first natural frequency could be obtained 

experimentally.  The difference between this result and the numerical result was 14.45%. 

 These two large cell honeycomb sandwich structure dynamic results for the empty 

and foam filled honeycombs were compared.  The difference in the numerical results for 

the bending modes was minimal.  The difference in the experimental results was minimal 

for the first bending mode.  

Key Words:  Honeycomb, Polyurethane Foam, Vibration,  Modal Analysis, Finite Element  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1. GİRİŞ  

1.1 Problemin Tanımı  

 Bal peteği sandviç yapılı paneller, hafif ve rijit olmaları nedeniyle başta hava, uzay 

ve gemi araçları olmak üzere birçok mühendislik yapılarında yaygın olarak 

kullanılmaktadır. Bu paneller, bal peteği yapısının iki tabaka arasına yerleştirilmesiyle elde 

edilmektedir. Alt ve üst tabakalar (kapaklar) ile bal peteği yapısı alüminyum veya 

kompozit malzemeden olabilmektedir. Bu panellerin mekanik özelliklerinin iyileştirilmesi 

için hücreleri PU köpük ile doldurulmaktadır. PU köpük mekanik özellikleri olumlu yönde 

etkilerken yapının dinamik özelliklerini de değiştirmektedir.  Bu bakımdan içi boş ve PU 

köpük ile doldurulmuş bal peteği sandviç panellerin doğal frekansları, mod biçimleri ve 

sönüm özellikleri gibi titreşim karakteristiklerinin bilinmesi oldukça önemlidir. 

1.2 Tezin Amacı ve Kapsamı 

 Bu tez çalışmasında, içi boş ve PU köpük ile doldurulmuş bal peteği sandviç yapılı 

plakların dinamik özellikleri (doğal frekansları, mod biçimleri ve sönümleme özellikleri) 

hem sayısal hem de deneysel olarak incelendi. Özellikle PU köpüğün dinamik özellikler 

üzerindeki etkisi araştırıldı. 

 Titreşim analizleri hem sayısal hem de deneysel olarak yapıldı. Sayısal analiz için 

ANSYS sonlu elemanlar yazılımı kullanıldı.  SE analizleri sandviç yapı birebir 

modellenerek yapıldığı gibi literatürden bilinen eşdeğer modeller kullanılarak da yapıldı.  

Deneysel çalışmalar için uygun boyutlarda deney numuneleri imal edildi. Aynı özellik ve 

boyutlardaki plaklar hem boş hem de PU köpük doldurularak üretildi ve farklı sınır şartları 

için deneysel modal analizleri yapıldı. Bunun için yapı üzerinde belirlenen noktalara 

sırayla modal çekiç ile darbe vuruldu ve bu darbe kuvveti çekiç üzerindeki kuvvetölçer ile 

ölçüldü. Yapının bu kuvvetlere karşı titreşim cevapları ise bir ivme ölçer yardımıyla 

ölçüldü ve frekans analizörü yardımıyla sistemin frekans tepki fonksiyonları (FTF) elde 

edildi.  Elde edilen bu FTF’ler modal analiz yazılımı kullanılarak analiz edildi ve sisteme 

ait doğal frekanslar, mod biçimleri ve sönüm oranları elde edildi. Sonuçlar tablo ve 

grafikler halinde sunuldu ve karşılaştırma yapılarak PU köpüğün dinamik özellikler 

üzerindeki etkileri ortaya konuldu. Deneyler, Fırat Üniversitesi Mühendislik Fakültesi 
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Makine Mühendisliği Bölümü Makine Teorisi ve Dinamiği Laboratuvarında yapıldı ve 

ölçüm ve analizlerde OROS Modal Test Sistemi kullanıldı.  

1.3 Literatür Araştırması 

 Kompozit çubukların modellenmesi için birkaç teori vardır. Örneğin, Hajianmaleki 

ve Qatu [1] kompozit çubukların matematiksel modeli için ince ve kalın çubuk teorilerini 

vermiştir. İnce çubuk teorisi klasik kiriş teorisi olarak da bilinmektedir ve bu teoride kesme 

deformasyonu ile dönme ataletleri dikkate alınmaz. Kalın çubuk teorisi kesme 

deformasyon çubuk teorisi olarak da bilinmektedir ve birinci teoride dikkate alınmayan 

etkiler bu teoride göz önüne alınmaktadır. Yazarlar çalışmalarında her iki teoriyi kullanarak 

statik ve dinamik analizler yapmışlardır. Doğal frekansların hesabı için Liessa [2]’dekine 

benzeyen bir doğal frekans formülü vermişlerdir. Örnek bir çubuk için her iki teori 

üzerinden analizler yapılmıştır. Ayrıca ANSYS sonlu elemanlar paket programı ile de 

analiz yapılarak sonuçlar karşılaştırılmıştır. Genel olarak elde edilen sonuçların sayısal 

sonuçlar ile uyuştuğu görülmüştür. 

 Bal peteği sandviç panellerin matematiksel modelinin oluşturulması nispeten daha 

zordur. Bunların birebir olarak modellenmesi oldukça zor ve zahmetli olmakla birlikte 

eleman sayısı arttığından çözüm süresi de oldukça uzamaktadır. Bu yapıların basit bir plak 

gibi modellenmesine imkan tanıyan literatürde bir kaç teori geliştirilmiştir. Xia vd. [3] 

sandviç panelleri modellemek için üç tane eşdeğer yöntem incelemiştir.  Bunlar;  sandviç 

teorisi, bal peteği plak teorisi ve eşdeğer plak teorisidir.  SE yöntemi ile MSC.Nastran 

programı kullanılarak dört tane farklı boyuttaki bal peteği plakalarının iki farklı sınır şartı 

için doğal frekansları %10’dan daha küçük bir fark ile bulunmuştur.  Gibson [4], bal peteği 

sandviç panellerinde eş değer elastisite modülü, kayma modülü ve Poisson oranını 

hesaplamak için formüller geliştirmiştir.  Bu eş değerler kullanılarak bal peteği yapılar 

ortotropik bir plak olarak modellenip ANSYS gibi bir programda sayısal analiz 

yapılabilmektedir.  Bal peteği sandviç plakalar ile modal, sönüm ya da termal analiz 

yapıldığında genelde Gibson eşdeğer modeli kullanılmaktadır [5, 6, 7].  Li ve Zhu [8] bal 

peteğinin modellenmesinde Reddy [9]’nin üçüncü dereceden plak teorisini kullanmışlardır. 

Fakat özellikle klasik plak teorisinin iyi sonuçlar vermediği görülmüştür.  
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 Bal peteği panellerin doğal frekanslarının hesabı için eşdeğer modeller 

bulunmaktadır. Boudjemai [10] bir bal peteği plağının doğal frekanslarını A-S-S-S sınır 

şartı için eşdeğer model alıp sonlu elemanlar ve deneysel yöntemlerle hesaplayarak 

karşılaştırma yapmıştır. İlk iki frekans için aradaki farkın %4 civarında olduğu 

görülmüştür. Ancak üçüncü doğal frekansta bu fark %10 civarındadır. Bu farkın 

yapıştırıcıdan kaynaklandığı düşünülmektedir. Ayrıca çalışmada bal peteği yapısının 

kalınlığı ile malzeme özelliklerinin doğal frekanslar üzerindeki etkisi de incelenmiştir.  

Bunun yanısıra, Penado [11] sandviç panellerin ortasındaki bal peteği yapısının eşdeğer 

elastisite modüllerini elde etmek için daha kolay bir yöntem önermiştir.  Sandviç panelin 

ortasının bal peteği alüminyum yerine elyaf takviyeli kompozit olması ve kapakların da 

kompozit olmasıyla panelin ağırlığı azalacak, buna karşın rijitliği artacaktır.   

 Bal peteğinin boyutları değiştirildikçe modal analiz sonuçları da değişmektedir. 

Harish ve Sharma [12] bal peteği yapısının kalınlığının doğal frekanslar üzerindeki etkisini 

sayısal ve deneysel modal analiz yöntemleriyle incelemiş ve kalınlığa bağlı olarak ilk 

doğal frekansın çok değiştiğini göstermişlerdir.  Uygulamalar 8 mm ve 18 mm kalınlıktaki 

kare panellerin A-S-A-S ve A-A-A-A sınır şartları için yapılmıştır.  Sayısal analizde 

eşdeğer elastisite modülü ve kayma modülü kullanılmıştır.  Shrigandhi [13] bal peteği 

çubuğun kapak ve petek kalınlığının doğal frekanslar üzerindeki etkisini incelemiştir. SE 

ve deneysel sonuçları %10 dan daha az hata ile elde etmiştir.  İlaveten, Boudjemai [14] A-

S-S-S sınır şartlarıyla bal peteği yapılı çubuk ve plakanın modal analizini hem SE hem de 

deneysel modal analiz yöntemleri ile yapmıştır.  Bal peteği kalınlığını ve kapakların 

kalınlığını değiştirip sonuçları karşılaştırmıştır.  Sandviç kapakların kalınlığı ya da bal 

peteği kalınlığı artırıldıkça her modun doğal frekansı da artmıştır.  Şakar ve Bolat [15] A-

S-S-S sınır şartında alüminyum bal peteği için hem deneysel hem de sayısal analiz yapıp 

doğal frekansları ve mod biçimlerini elde etmiştir.  Birden çok parametre, yani petek 

gözünün çapı, açısı, duvar kalınlığı ve yüksekliği değiştirilip ilk doğal frekansın nasıl 

etkilendiği incelenmiştir.  Bunlardan petek gözü yüksekliğinin doğal frekansı en çok 

etkileyen parametre olduğu görülmüştür.  

 Bal peteği sandviç panellerinin mekanik özelliklerinin iyileştirilebilmesi için 

paneller, poliüretan (PU) ile doldurulabilmektedir.  Bu dolgu panelin dinamik özelliklerini 

de değiştirmektedir.  Bal peteğinin kapakları ile olan bağının zayıflık problemini çözmek 
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için Burlayenko ve Sadowski [16, 17] bal peteğinin peteklerini köpük ile doldurulmayı 

teklif etmiştir.  Doldurulmuş köpük daha büyük bir bağlama alanı sağlamış, fakat yapısal 

özelliklerini değiştirmiştir.  Modelde köpük olarak polyvinyl klorid (PVC) kullanılmıştır.  

Köpük eklendiğinden dolayı doğal frekanslarda da azalma olmuştur.  Sonrasında Sadowski 

ve Bec [18], PU köpük ile doldurulmuş bal peteği sandviç plakların statik ve dinamik 

analizlerinde kullanılmak üzere üç boyutlu sonlu elemanlar modeli önermişlerdir.  

 Şen ve Çakar [19, 20, 21], PU takviyeli plakların dinamik özelliklerini 

incelemişlerdir. Özellikle PU takviye kalınlığının plağın dinamik özellikleri üzerindeki 

etkisini araştırmışlardır. PU köpüğünün sistemin doğal frekanslarını ve titreşim sönümleme 

özelliğini etkilediği görülmüştür. 

 Jweeg [22], bal peteği sandviç yapılar için analitik bir çözüm önermiştir.  Doğal 

frekansları bulunabilen bir haraket denklemi bulmuştur.  Sayısal analiz yaparak sonuçları 

literatürdeki sonuçlar ile karşılaştırmıştır.  Nilsson [23] Hamilton prensibini kullanarak bal 

peteği veya köpük çekirdek sandviç plakaların hareket denklemini elde etmiştir.  Bal peteği 

sandviç plaklar farklı parametreler için analizler yapılmış, sayısal ve deneysel analiz 

sonuçları karşılaştırılmıştır [24, 25].  

 Bal peteği sandviç yapıların kapak malzemesi genelde aluminyum ya da kompozit 

olmaktadır.  Aluminyum ve kompozit kapaklar için  enerji sönümleme sonuçları yakın 

bulunmuştur [26].   Bal peteği sandviç panellerinin mekanik özelliklerini optimize etmek 

için ideal bir ağırlık oranı bulunmaktadır.  Bu ağırlık oranına göre bal peteği katmanının 

ağırlığı plaka ağırlığının %50-66.7 arasında olması gerekmektedir [27].  Kayma esnekliği 

ve ana diferansiyel denklemleri kullanılarak bal peteği panellerinin mod yoğunluğu elde 

edilir  [28].   Bal peteği sandviç panellerinde haraket denklemini elde etmek için Hamilton 

prensibi kullanılabilmektedir [29].  Bal peteği sandviç panellerin süreç modelleri sayısal 

analiz kullanılarak doğrulanmıştır  [30, 31]. 

 Yukarıda bal peteği sandviç çubuk ve panellerin titreşim analizleri ile ilgili yapılan 

çalışmalar özetlenmiştir. Bu çalışmalarda bal peteği hücrelerinin yükseklik ve duvar 

kalınlığı gibi tasarım parametrelerinin doğal frekanslar üzerindeki etkileri hem sayısal hem 

de deneysel olarak incelenmiştir. Bu panellerin içi PU köpük ile doldurulduğunda 

rijitliğinin arttığı ve kapak ile bal peteği arasındaki bağın kuvvetlendiği görülmüştür. 

Ancak bu durumda sistemin doğal frekansları da değişmektedir. Yapılan araştırmada PU 
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köpük ile doldurulmuş bal peteği sandviç yapıların titreşim analizleri ile ilgili çok az 

sayıda çalışmaya rastlanmıştır. Özellikle titreşim sönümleme    etkisinin incelenmesi 

üzerine bir çalışmaya rastlanmamıştır. Bu nedenle PU köpük ile doldurulmuş bal peteği 

yapılarının dinamik özelliklerinin incelenmesi üzerine bu araştırma gerçekleştirilmiştir.  
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2. PLAK TİTREŞİMLERİ 

2.1         İzotopik Plaklar İçin Hareket Denklemleri 

 Liessa [2] yirmi bir farklı sınır şart için analitik bir titreşim modeli oluşturmuş ve 

başarılı sonuçlar elde etmiştir.  Çalışmada özellikle iki sınır şartına odaklanılmıştır:  S-S-S-

S ve A-S-S-S.  Yirmi bir farklı sınır şartı için boyutsuz frekans parametresi elde edilmiştir.  

Farklı sınır şartlarına sahip dikdörtgen plakaların serbest titreşimine ait hareket denklemi:  

  

D▽⁴w + ρ ∂²w ⁄ ∂t² = 0 (2.1) 

olarak ifade edilir.  Bu denklemde ▽² = ∂² ⁄ ∂x² + ∂² ⁄ ∂y² kartezyen koordinatlar için, w yer 

değiştirme, ρ kütle yoğunluğu ve D eğilme rijitliğidir.  Eğilme rijitliği denklem (2.2) kul-

lanılarak hesaplanır.  E elastisite modülü, h plakanın kalınlığı ve ν Poisson oranıdır. 

D = Eh³/12( 1 - ν²) (2.2) 

Bu denklemler kullanılarak frekans parametresi λ aşağıdaki gibi tanımlanmıştır.   

λ = ⍵ a ²√(ρ/D) (2.3) 

Bu denklemde a dikdörtgen plakanın x yönündeki boyutudur. 

2.2 Sandviç Plaklar İçin Hareket Denklemleri 

 Şekil 2.1de iki kapak ve bir çekirdek kısmdan oluşan üç katmanlı bir yapı 

verilmiştir [23].  Alt ve üst kapakların elastisite modülü E2 ve yoğunluğu ρl tır. Orta 

katmanın eşdeğer yoğunluğu ρc , ve kayma modülü Ge ve elastisite modülü E1 dır.  Orta 

katmanın yüksekliği H, kapakların kalınlığı ise h ile ifade edilmektedir. 
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Şekil 2.1 Sandviç bir plağın yapısı 

 Toplam yanal yer değiştirme (w) bir sandviç kiriş için iki yer değiştirme toplanarak 

bulunmaktadır. Orta yapının eğilmesi (β) ile kayma gerilmesinden dolayı olan açısal yer 

değiştirmenin (Ɣ) toplamı yanal yer değiştirmeye eşittir (w). 

∂w / ∂x = 𝛾 + β (2.4) 

 Hamilton prensibi kullanılarak w, β ve Ɣ’nin diferansiyel denklemleri elde 

edilmektedir. 

ẟ∬(U - T + A)dxdt = 0 (2.5) 

 Birim uzunluktaki eleman için, U  potensiyel enerji, T kinetik enerji ve A etki eden 

dış kuvvetlerden meydana gelen potensiyel enerjisidir.  Orta katmanın x yönünde 

katılığının çok az olduğu tahmin edilmektedir.  Orta yapının eğilme katılığı D1 olmaktadır. 

$  (2.6) 

 Aslında E2 >>E1 dır.  Kapakların eğilme katılığı D2 ile ifade edilir. 

$  (2.7) 

 Birim genişlik başına göre kütle atalet momenti Ip 

Figure 2. De#ection caused by bending (a) and shear (b).
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Figure 3. Excitation of a beam and resulting forces and moments. Dimensions and material parameters for
laminates and core are indicated.

3. FLEXURAL VIBRATION OF SANDWICH BEAMS

The total lateral displacement w of a sandwich beam is a result of the angular
displacement due to bending of the core as de"ned by ! and the angular displacement due
to shear in the core " as

#w
#x

""#!. (1)

The di!erential equations governing w, ! and " can be determined using Hamilton's
principle [4], which for a conservative system is formulated as

$!!(;!¹#A) dxdt"0, (2)

where; is the potential energy per unit length and ¹ the corresponding kinetic energy per
unit length and A the potential energy induced per unit length by external and conservative
forces. The energies ; and ¹ are derived as functions of the displacement of the beam.

In deriving the equations governing the lateral displacement of the structure shown in
Figure 3, symmetry is assumed. The identical laminates have a Young's modulus E

!
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bending sti!ness D
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, density !

!
and thickness h. The e!ective shear sti!ness of the core is G

"
,

its Young's modulus E
"
, its equivalent density !

!
and its thickness H. The parameter G

"
is

for a thick core not necessarily equal to the shear sti!ness G as suggested by Timoshenko
[21]. The core itself is assumed to have a very low sti!ness in the x-direction. In the
y-direction, the core is assumed to be su$ciently sti! to ensure that the laminates move in
phase within the frequency range of interest.

The bending sti!ness per unit width of the beam is

D
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In general, E
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The mass moment of inertia per unit width is de"ned as
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#
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!
(H!h/2#Hh!#2h#/3) (5)

while the mass per unit area is

""2h!
!
#H!

#
. (6)

According to Hamilton's principle, equation (2), the kinetic and potential energies of the
structure must be de"ned as functions of the displacement of the beam de"ned by w, # and
$ as in equation (1). The total potential energy of a honeycomb beam is due to pure bending
of the entire beam, bending of both laminates and shear in the core. The total potential
energy of a beam, width b and length ¸, is thus

;"b
2 !

$

$
"D""%#

%x#
!#2D

!"%$
%x#

!#G
"
H$!#dx. (7)

The kinetic energy of the honeycomb panel consists of two parts, the kinetic energy due to
vertical motion of the beam and the kinetic energy due to the rotation of a section of the
beam. This gives the total kinetic energy of the beam as

¹"b
2!

$

$
"""%w

%t#
!#I""%#

%t#
!

#dx. (8)

The total potential energy for the conservative external forces according to Figure 3 is

!A"b!
$

$
pwdx#b[F

!
w(¸)!F

"
w(0)!M

!
#(¸)#M

"
#(0)]

"b!
$

$
pwdx#b[Fw!M#]$

$
, (9)

where F is the force per unit width, M the moment per unit width and p the external
pressure on the beam. The moments and forces are de"ned in Figure 3. By using the
de"nition of $, equation (1), and by inserting equations (7)}(9) into the variational
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According to Hamilton's principle, equation (2), the kinetic and potential energies of the
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where F is the force per unit width, M the moment per unit width and p the external
pressure on the beam. The moments and forces are de"ned in Figure 3. By using the
de"nition of $, equation (1), and by inserting equations (7)}(9) into the variational
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(   (2.8) 

olarak yazılır.  Birim başına kütle ise denklem (2.9)’da verilmiştir.  

µ $  (2.9) 

 Hamilton prensibine göre bir yapı için kinetik ve potansiyel enerjilerin yer 

değiştirmeye göre  (w, β ve Ɣ) tanımlanması gerekmektedir.  Sandviç yapının potansiyel 

enerjisi bal peteği katmanının eğilmesi, kapakların eğilmesi ve orta kısmın kaymasından 

ortaya çıkan potansiyal enerjilerin toplamıyla hesaplanır.  Buna göre genişliği b ve 

uzunluğu L olan bir kirişin potensiyel enerjisi aşağıdaki bağıntıdan faydalanılarak 

hesaplanır. 

$  (2.10) 

 Ayrıca bal peteği panellerin toplam kinetik enerjisi kirişin dikey hareketi ile 

dönmesinden meydana gelen enerjilerin toplamından oluşur. 

$  (2.11) 

 Dış kuvvetlerin etkisinden meydana gelen toplam potensiyel enerji 

$  (2.12)

şeklinde ifade edilir.  Bu denklemdeki F birim genişlik başına düşen kuvveti, M  birim 

genişlik başına düşen momenti ve p kirişe gelen dış basıncı ifade etmektedir.  Momentler 

bending sti!ness D
!
, density !

!
and thickness h. The e!ective shear sti!ness of the core is G

"
,

its Young's modulus E
"
, its equivalent density !

!
and its thickness H. The parameter G

"
is

for a thick core not necessarily equal to the shear sti!ness G as suggested by Timoshenko
[21]. The core itself is assumed to have a very low sti!ness in the x-direction. In the
y-direction, the core is assumed to be su$ciently sti! to ensure that the laminates move in
phase within the frequency range of interest.

The bending sti!ness per unit width of the beam is

D
"
"E

"
H#/12#E

!
(H!h/2#Hh!#2h#/3). (3)

In general, E
!
!E

"
. The bending sti!ness of one laminate is

D
!
"E

!
h#/12. (4)

The mass moment of inertia per unit width is de"ned as

I""!
#
H#/12#!

!
(H!h/2#Hh!#2h#/3) (5)

while the mass per unit area is

""2h!
!
#H!

#
. (6)

According to Hamilton's principle, equation (2), the kinetic and potential energies of the
structure must be de"ned as functions of the displacement of the beam de"ned by w, # and
$ as in equation (1). The total potential energy of a honeycomb beam is due to pure bending
of the entire beam, bending of both laminates and shear in the core. The total potential
energy of a beam, width b and length ¸, is thus

;"b
2 !

$

$
"D""%#

%x#
!#2D

!"%$
%x#

!#G
"
H$!#dx. (7)

The kinetic energy of the honeycomb panel consists of two parts, the kinetic energy due to
vertical motion of the beam and the kinetic energy due to the rotation of a section of the
beam. This gives the total kinetic energy of the beam as

¹"b
2!

$

$
"""%w

%t#
!#I""%#

%t#
!

#dx. (8)

The total potential energy for the conservative external forces according to Figure 3 is

!A"b!
$

$
pwdx#b[F

!
w(¸)!F

"
w(0)!M

!
#(¸)#M

"
#(0)]

"b!
$

$
pwdx#b[Fw!M#]$

$
, (9)

where F is the force per unit width, M the moment per unit width and p the external
pressure on the beam. The moments and forces are de"ned in Figure 3. By using the
de"nition of $, equation (1), and by inserting equations (7)}(9) into the variational

DYNAMIC PROPERTIES OF SANDWICH STRUCTURES 413

bending sti!ness D
!
, density !

!
and thickness h. The e!ective shear sti!ness of the core is G

"
,

its Young's modulus E
"
, its equivalent density !

!
and its thickness H. The parameter G

"
is

for a thick core not necessarily equal to the shear sti!ness G as suggested by Timoshenko
[21]. The core itself is assumed to have a very low sti!ness in the x-direction. In the
y-direction, the core is assumed to be su$ciently sti! to ensure that the laminates move in
phase within the frequency range of interest.

The bending sti!ness per unit width of the beam is

D
"
"E

"
H#/12#E

!
(H!h/2#Hh!#2h#/3). (3)

In general, E
!
!E

"
. The bending sti!ness of one laminate is

D
!
"E

!
h#/12. (4)

The mass moment of inertia per unit width is de"ned as

I""!
#
H#/12#!

!
(H!h/2#Hh!#2h#/3) (5)

while the mass per unit area is

""2h!
!
#H!

#
. (6)

According to Hamilton's principle, equation (2), the kinetic and potential energies of the
structure must be de"ned as functions of the displacement of the beam de"ned by w, # and
$ as in equation (1). The total potential energy of a honeycomb beam is due to pure bending
of the entire beam, bending of both laminates and shear in the core. The total potential
energy of a beam, width b and length ¸, is thus

;"b
2 !

$

$
"D""%#

%x#
!#2D

!"%$
%x#

!#G
"
H$!#dx. (7)

The kinetic energy of the honeycomb panel consists of two parts, the kinetic energy due to
vertical motion of the beam and the kinetic energy due to the rotation of a section of the
beam. This gives the total kinetic energy of the beam as

¹"b
2!

$

$
"""%w

%t#
!#I""%#

%t#
!

#dx. (8)

The total potential energy for the conservative external forces according to Figure 3 is

!A"b!
$

$
pwdx#b[F

!
w(¸)!F

"
w(0)!M

!
#(¸)#M

"
#(0)]

"b!
$

$
pwdx#b[Fw!M#]$

$
, (9)

where F is the force per unit width, M the moment per unit width and p the external
pressure on the beam. The moments and forces are de"ned in Figure 3. By using the
de"nition of $, equation (1), and by inserting equations (7)}(9) into the variational

DYNAMIC PROPERTIES OF SANDWICH STRUCTURES 413

bending sti!ness D
!
, density !

!
and thickness h. The e!ective shear sti!ness of the core is G

"
,

its Young's modulus E
"
, its equivalent density !

!
and its thickness H. The parameter G

"
is

for a thick core not necessarily equal to the shear sti!ness G as suggested by Timoshenko
[21]. The core itself is assumed to have a very low sti!ness in the x-direction. In the
y-direction, the core is assumed to be su$ciently sti! to ensure that the laminates move in
phase within the frequency range of interest.

The bending sti!ness per unit width of the beam is

D
"
"E

"
H#/12#E

!
(H!h/2#Hh!#2h#/3). (3)

In general, E
!
!E

"
. The bending sti!ness of one laminate is

D
!
"E

!
h#/12. (4)

The mass moment of inertia per unit width is de"ned as

I""!
#
H#/12#!

!
(H!h/2#Hh!#2h#/3) (5)

while the mass per unit area is

""2h!
!
#H!

#
. (6)

According to Hamilton's principle, equation (2), the kinetic and potential energies of the
structure must be de"ned as functions of the displacement of the beam de"ned by w, # and
$ as in equation (1). The total potential energy of a honeycomb beam is due to pure bending
of the entire beam, bending of both laminates and shear in the core. The total potential
energy of a beam, width b and length ¸, is thus

;"b
2 !

$

$
"D""%#

%x#
!#2D

!"%$
%x#

!#G
"
H$!#dx. (7)

The kinetic energy of the honeycomb panel consists of two parts, the kinetic energy due to
vertical motion of the beam and the kinetic energy due to the rotation of a section of the
beam. This gives the total kinetic energy of the beam as

¹"b
2!

$

$
"""%w

%t#
!#I""%#

%t#
!

#dx. (8)

The total potential energy for the conservative external forces according to Figure 3 is

!A"b!
$

$
pwdx#b[F

!
w(¸)!F

"
w(0)!M

!
#(¸)#M

"
#(0)]

"b!
$

$
pwdx#b[Fw!M#]$

$
, (9)

where F is the force per unit width, M the moment per unit width and p the external
pressure on the beam. The moments and forces are de"ned in Figure 3. By using the
de"nition of $, equation (1), and by inserting equations (7)}(9) into the variational

DYNAMIC PROPERTIES OF SANDWICH STRUCTURES 413

bending sti!ness D
!
, density !

!
and thickness h. The e!ective shear sti!ness of the core is G

"
,

its Young's modulus E
"
, its equivalent density !

!
and its thickness H. The parameter G

"
is

for a thick core not necessarily equal to the shear sti!ness G as suggested by Timoshenko
[21]. The core itself is assumed to have a very low sti!ness in the x-direction. In the
y-direction, the core is assumed to be su$ciently sti! to ensure that the laminates move in
phase within the frequency range of interest.

The bending sti!ness per unit width of the beam is

D
"
"E

"
H#/12#E

!
(H!h/2#Hh!#2h#/3). (3)

In general, E
!
!E

"
. The bending sti!ness of one laminate is

D
!
"E

!
h#/12. (4)

The mass moment of inertia per unit width is de"ned as

I""!
#
H#/12#!

!
(H!h/2#Hh!#2h#/3) (5)

while the mass per unit area is

""2h!
!
#H!

#
. (6)

According to Hamilton's principle, equation (2), the kinetic and potential energies of the
structure must be de"ned as functions of the displacement of the beam de"ned by w, # and
$ as in equation (1). The total potential energy of a honeycomb beam is due to pure bending
of the entire beam, bending of both laminates and shear in the core. The total potential
energy of a beam, width b and length ¸, is thus

;"b
2 !

$

$
"D""%#

%x#
!#2D

!"%$
%x#

!#G
"
H$!#dx. (7)

The kinetic energy of the honeycomb panel consists of two parts, the kinetic energy due to
vertical motion of the beam and the kinetic energy due to the rotation of a section of the
beam. This gives the total kinetic energy of the beam as

¹"b
2!

$

$
"""%w

%t#
!#I""%#

%t#
!

#dx. (8)

The total potential energy for the conservative external forces according to Figure 3 is

!A"b!
$

$
pwdx#b[F

!
w(¸)!F

"
w(0)!M

!
#(¸)#M

"
#(0)]

"b!
$

$
pwdx#b[Fw!M#]$

$
, (9)

where F is the force per unit width, M the moment per unit width and p the external
pressure on the beam. The moments and forces are de"ned in Figure 3. By using the
de"nition of $, equation (1), and by inserting equations (7)}(9) into the variational

DYNAMIC PROPERTIES OF SANDWICH STRUCTURES 413

bending sti!ness D
!
, density !

!
and thickness h. The e!ective shear sti!ness of the core is G

"
,

its Young's modulus E
"
, its equivalent density !

!
and its thickness H. The parameter G

"
is

for a thick core not necessarily equal to the shear sti!ness G as suggested by Timoshenko
[21]. The core itself is assumed to have a very low sti!ness in the x-direction. In the
y-direction, the core is assumed to be su$ciently sti! to ensure that the laminates move in
phase within the frequency range of interest.

The bending sti!ness per unit width of the beam is

D
"
"E

"
H#/12#E

!
(H!h/2#Hh!#2h#/3). (3)

In general, E
!
!E

"
. The bending sti!ness of one laminate is

D
!
"E

!
h#/12. (4)

The mass moment of inertia per unit width is de"ned as

I""!
#
H#/12#!

!
(H!h/2#Hh!#2h#/3) (5)

while the mass per unit area is

""2h!
!
#H!

#
. (6)

According to Hamilton's principle, equation (2), the kinetic and potential energies of the
structure must be de"ned as functions of the displacement of the beam de"ned by w, # and
$ as in equation (1). The total potential energy of a honeycomb beam is due to pure bending
of the entire beam, bending of both laminates and shear in the core. The total potential
energy of a beam, width b and length ¸, is thus

;"b
2 !

$

$
"D""%#

%x#
!#2D

!"%$
%x#

!#G
"
H$!#dx. (7)

The kinetic energy of the honeycomb panel consists of two parts, the kinetic energy due to
vertical motion of the beam and the kinetic energy due to the rotation of a section of the
beam. This gives the total kinetic energy of the beam as

¹"b
2!

$

$
"""%w

%t#
!#I""%#

%t#
!

#dx. (8)

The total potential energy for the conservative external forces according to Figure 3 is

!A"b!
$

$
pwdx#b[F

!
w(¸)!F

"
w(0)!M

!
#(¸)#M

"
#(0)]

"b!
$

$
pwdx#b[Fw!M#]$

$
, (9)

where F is the force per unit width, M the moment per unit width and p the external
pressure on the beam. The moments and forces are de"ned in Figure 3. By using the
de"nition of $, equation (1), and by inserting equations (7)}(9) into the variational

DYNAMIC PROPERTIES OF SANDWICH STRUCTURES 413

$8



ve kuvvetler Şekil 2.1’e göre tanımlanmaktadır.  Ɣ’nın tanımına göre, denklem (2.4) ve 

denklemler (2.10), 2.11), 2.12)’i denklem (2.5)’de kullanılarak denklem (2.13) elde edilir. 

$  

$  (2.13) 

 Zamana göre t0’dan t1’e ve uzunluğa göre integrasyon yapılmaktadır.  Yer değişme 

w ve açısal değişme β denklem (2.14) ve (2.15)’i sağlamak zorundadır. 

$  (2.14) 

$  (2.15) 

 β denklemlerden elenerek w’nin ana denklemi oluşturulur (2.16). 

(   

(  (2.16) 

 Benzer bir şekilde, w elenerek β’nın ana denklemi oluşturulmaktadır (2.17). 

(  

(  (2.17) 

 Sınır şartlarını sağlamak için denklem (2.13) kullanılır ve aşağıdaki denklemler 

elde edilir. 
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The shear angle % can be shown to satisfy the same di!erential equation as #, equation
(14). The boundary conditions to be satis"ed are also obtained from the variational
expression (10) as
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These equations provide the boundary conditions for a beam. Using the wave equations
(13) and (14) together with the six boundary conditions, three at each end, the displacements
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$   , w = 0, (2.18) 

$   , β = 0, (2.19) 

$   yada ∂w/∂x = 0 (2.20) 

 (2.18), (2.19) ve (2.20) denklemleri kirişin sınır şartlarını sağlar.  (2.16) ve (2.17) 

denklemleri altı sınır şartı ile kullanılarak, yer değişmeyi ifade eden w ve β elde edilir.  

Serbest titreşimler için p = 0 olarak kabul edilir. 

 Ankastre sınır şartı için yer değiştirme ve açısal değişim sıfır olması gerekmektedir.  

Bundan dolayı, (2.18) ve (2.20)’i sağlamak için w = ∂w/∂x = 0 olması gerekmektedir.  

İlaveten, M ≠ 0 olarak kabul edilir.  Denklem (2.19)’u sağlamak için β = 0 olmalıdır. 

 Serbest bir kenarda F ve M, denklemler (2.18) ve (2.19)’da gösterildiği gibi, sıfıra 

eşit olması gerekmektedir. Ancak dönme için ∂w/∂x ≠0 olmalıdır.  Bu nedenle, denklem 

(2.20)’yi sağlamak için ∂2w/∂x2 = ∂β/∂x olması gerekmektedir.  Bu şart ve M = 0 ile 

birlikte ankastre kenarın sınır şartı şöyle tanımlanmaktadır:  ∂β/∂x = 0 ve ∂2w/∂x2 = 0.  

Fakat, F = 0 için, denklem (2.18) ile F’i tanımlayıp denklem (2.15)’e koyarak serbest 

kenar için D1∂2β/∂x2 = Ip∂2β/∂t2 şeklinde tanımlanır.   

 Basit mesnet sınır şartı için kirişin tarafsız eksen üzerinde olduğu kabulu ile yer 

değiştirme ve eğilme momenti bu noktada sıfıra eşittir.  β ≠ 0 ve ∂w/∂x ≠ 0 için (2.19) ve 

(2.20) basit mesnetli kenarda ∂β/∂x = 0 ve ∂2w/∂x2 = 0 sonucunu vermektedir. 

 Denklem (2.16) için bir çözüm olan w = exp[i(⍵t - kxx)] ve basınç p = 0 olarak 

kabul edilerek, dalga numarası kx denklem (2.21)’yi sağlaması gerekmektedir. 

$ (2.21) 
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The shear angle % can be shown to satisfy the same di!erential equation as #, equation
(14). The boundary conditions to be satis"ed are also obtained from the variational
expression (10) as
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TABLE 1

Boundary conditions

Clamped end w"0, !"0, "w
"x

"0

Simply supported end w"0, "!
"x

"0,
"!w
"x!

"0

Free end "!w
"x!

"0,
"!
"x

"0, D
"

"!!
"x!

"I!
"!!
"t!

w and ! can be determined. For free vibrations, the external pressure p is equal to zero
allowing w and ! to satisfy the same di!erential equation.

4. BOUNDARY CONDITIONS

For a beam with clamped, free or so-called simply supported edges, the boundary
conditions can be formulated based on results (15)}(17). For a clamped beam, the
displacement as well as the angular displacement must equal zero at the boundary. From
this it follows that w""w/"x"0 at the edge to satisfy equations (15) and (17). In addition,
MO0. Thus to satisfy equation (16) ! must equal zero.

At a free edge Fand M, given in equations (15) and (16), are zero. The rotation "w/"x is
di!erent from zero. Consequently, the requirement de"ned in equation (17) is only satis"ed
if "!w/"x!""!/"x. This condition in combination with the requirement M"0 de"nes the
boundary condition for a clamped edge as "!/"x"0 and "!w/"x!"0. However the
requirement F"0, where F is de"ned in equation (15), gives when inserted into equation
(12) the "nal condition relating to a free edge as D

"
"!!/"x!"I!"!!/"t!.

For simply supported boundary conditions, it is assumed that the beam is hinged at the
centre line or rather the neutral axis of the beam. The displacement and the bending
moment at this point are equal to zero. For !O0 and "w/"xO0, equations (16) and (17)
give "!/"x"0 and "!w/"x!"0 at a simply supported edge. In summary, the boundary
conditions are listed in Table 1.

5. WAVENUMBERS

By assuming a solution w"exp[i(#t!k
!
x)] to the wave equation (13) and allowing the

external pressure p to equal zero, the wavenumber k
!

must satisfy the expression

2D
!
k#
!
!2D

!
D

"
I!k$!#!!!$#2D

!
D

"
$#I!G"

H
D

"
"k!!#!#G

"
H!k$!! $

D
"

#!"#I!$
D

"
#$"0.

(18)

The six solutions to this equation are written as k
!
"$%

"
, $i%

!
and $i%

%
where

%
"

and %
%

are real whereas %
!

can shift from being real to imaginary for increasing
frequencies. By de"ning the sti!nesses as D

#
"D

&#
(1#i&

#
) and G

"
"G

&"
(1#i&

"
) losses are

included. The absolute values of the wavenumbers are shown in Figure 4. The material and
geometrical parameters describing the beam, denoted as A

!
, are given in Table 2. The lower

of the two parallel lines in Figure 4 represents the wavenumber corresponding to pure
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 Denklem (2.21)’in altı çözümü şöyle verilmektedir:  kx = ±𝜅1 , ±i𝜅2 ve ±i𝜅3.  𝜅1 ve 

𝜅3 gerçek ve 𝜅2 sanal ya da gerçek olabilir.  Frekanslar arttıkça ve f = fp için 𝜅2 sıfıra 

yaklaşmaktadır. 

$  (2.22) 

fp’den daha düşük olan frekanslar için dalga numarası kx = ±i𝜅2 sanaldır.  Fakat daha büyük 

frekanslar için kx=±i𝜅2 gerçektir.  Atalet momenti azaldıkça fp de azalıp kalınlığı 

artmaktadır.  Çok kalın köpüğe sahip olan kirişler için genelde fp küçüktür. 

 Özet olarak dalga numaralarının sınırlı değerleri şöyle gözükmektedir.  

$  (2.23) 

 X yönlü olan bal peteği kirişi için yer değiştirme w ve açısal değişim β diferansiyel 

denklemleri (2.16) ve (2.17)’yi sağlaması gerekmektedir.  Yer değiştirme w’nın dalga 

numaraları (𝜅1 , 𝜅2 , 𝜅3) olan bir fonksiyon olarak tanımlanması gerekmektedir.  Sonuç 

olarak aşağıdaki denklem elde edilir: 

$  (2.24) 

A1-A6 katsayıları sınır şartlarından ve dış kuvvetlerden faydalanılarak tanımlanır.  Kirişin 

eğilmesinden gelen açısal değişme β, kiriş için p = 0 şartını sağlar.  Açısal değişim, w’ya 

benzer bir şekilde ifade edilir.  

$   (2.25) 

f"f
!

where

f
!
" 1

2!!G
"
H

I!
. (19)

For frequencies below f
!

the wavenumber k
#
"$i"

!
is imaginary, de"ning evanescent

waves. For higher frequencies, k
#
"$i"

!
is real representing a rotating and propagating

wave. The frequency f
!
is decreased as the moment of inertia is decreased and thus when the

thickness H is increased. For beams with thick foam cores, the frequency f
!
tends to be fairly

low.
In summary, the limiting values for the wavenumbers are

lim#"
"
#

$P#

"lim#"
!
#

$P#

""$%!

D
"
#

"$%
, lim#"

&
#

$P#

""G!
H

2D
!
#

"$!
,

lim#"
"
#

$P'

"lim#"
&
#

$P'

""$%!

2D
!
#

"$%
, lim#"

!
#

$P'

""I!%
!

D
"
#

"$!
. (20)

6. DISPLACEMENT

For a honeycomb beam oriented along the x-axis, the displacement w and the angular
displacement & must satisfy the di!erential equations (13) and (14). The displacement
w must be de"ned as a function of the wavenumbers "

"
, "

!
and "

&
. Consequently,

w"(A
"
sin"

"
x#A

!
cos "

"
x#A

&
e("!##A

%
e"!)#(%*#A

+
e("&##A

,
e"&)#(%*)e"#&, (21)

where the amplitudes A
"
}A

,
are determined by the boundary conditions and the external

forces. The angular displacement & due to pure bending of the beam satis"es for p"0 the
same di!erential equation as w as given by equations (13) and (14). The angular
displacement can therefore be expressed in a similar way as w. Thus,

&"(B
"
sin"

"
x#B

!
cos"

"
x#B

&
e("!##B

%
e"!)#(%*#B

+
e("&##B

,
e"&)#(%*)e"#&, (22)

where "
"
, "

!
and "

&
are solutions to equation (18). In order to completely describe the

displacement w and & for a beam, the parameters A
'
and B

'
need to be determined. However,

the parameters A
'
and B

'
are not independent of each other. By inserting de"nitions (21) and

(22) into equation (12), the result is found to be a function of sin"
"
x, cos "

"
x etc. The total

expression should be valid for any x. Thus it follows that the amplitudes of the functions
sin"

"
x, cos"

"
x, etc. must equal zero. Consequently, the amplitudes B

'
can be determined as

functions of the amplitudes A
(
. The result, using the abbreviations D

&
"D

"
#2D

!
and

!"G
"
H!%!I!, is

B
"
"!A

!
(2D

!
"&
"
#G

"
H"

"
)

(D
&
"!
"
#!)

"A
!
X

!
, B

!
"A

"
(2D

!
"&
"
#G

"
H"

"
)

(D
&
"!
"
#!)

"A
"
X

"
,

B
&
"!A

&
(2D

!
"&
!
!G

"
H"

!
)

(D
&
"!
!
!!)

"A
&
X

&
, B

%
"A

%
(2D

!
"&
!
!G

"
H"

!
)

(D
&
"!
!
!!)

"A
%
X

%
,

B
+
"!A

+
(2D

!
"&
&
!G

"
H"

&
)

(D
&
"!
&
!!)

"A
+
X

+
, B

,
"A

,
(2D

!
"&
&
!G

"
H"

&
)

(D
&
"!
&
!!)

"A
,
X

,
. (23)
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f"f
!

where

f
!
" 1

2!!G
"
H

I!
. (19)

For frequencies below f
!

the wavenumber k
#
"$i"

!
is imaginary, de"ning evanescent

waves. For higher frequencies, k
#
"$i"

!
is real representing a rotating and propagating

wave. The frequency f
!
is decreased as the moment of inertia is decreased and thus when the

thickness H is increased. For beams with thick foam cores, the frequency f
!
tends to be fairly

low.
In summary, the limiting values for the wavenumbers are

lim#"
"
#

$P#

"lim#"
!
#

$P#

""$%!

D
"
#

"$%
, lim#"

&
#

$P#

""G!
H

2D
!
#

"$!
,

lim#"
"
#

$P'

"lim#"
&
#

$P'

""$%!

2D
!
#

"$%
, lim#"

!
#

$P'

""I!%
!

D
"
#

"$!
. (20)

6. DISPLACEMENT

For a honeycomb beam oriented along the x-axis, the displacement w and the angular
displacement & must satisfy the di!erential equations (13) and (14). The displacement
w must be de"ned as a function of the wavenumbers "

"
, "

!
and "

&
. Consequently,

w"(A
"
sin"

"
x#A

!
cos "

"
x#A

&
e("!##A

%
e"!)#(%*#A

+
e("&##A

,
e"&)#(%*)e"#&, (21)

where the amplitudes A
"
}A

,
are determined by the boundary conditions and the external

forces. The angular displacement & due to pure bending of the beam satis"es for p"0 the
same di!erential equation as w as given by equations (13) and (14). The angular
displacement can therefore be expressed in a similar way as w. Thus,

&"(B
"
sin"

"
x#B

!
cos"

"
x#B

&
e("!##B

%
e"!)#(%*#B

+
e("&##B

,
e"&)#(%*)e"#&, (22)

where "
"
, "

!
and "

&
are solutions to equation (18). In order to completely describe the

displacement w and & for a beam, the parameters A
'
and B

'
need to be determined. However,

the parameters A
'
and B

'
are not independent of each other. By inserting de"nitions (21) and

(22) into equation (12), the result is found to be a function of sin"
"
x, cos "

"
x etc. The total

expression should be valid for any x. Thus it follows that the amplitudes of the functions
sin"

"
x, cos"

"
x, etc. must equal zero. Consequently, the amplitudes B

'
can be determined as

functions of the amplitudes A
(
. The result, using the abbreviations D

&
"D

"
#2D

!
and

!"G
"
H!%!I!, is

B
"
"!A

!
(2D

!
"&
"
#G

"
H"

"
)

(D
&
"!
"
#!)

"A
!
X

!
, B

!
"A

"
(2D

!
"&
"
#G

"
H"

"
)

(D
&
"!
"
#!)

"A
"
X

"
,

B
&
"!A

&
(2D

!
"&
!
!G

"
H"

!
)

(D
&
"!
!
!!)

"A
&
X

&
, B

%
"A

%
(2D

!
"&
!
!G

"
H"

!
)

(D
&
"!
!
!!)

"A
%
X

%
,

B
+
"!A

+
(2D

!
"&
&
!G

"
H"

&
)

(D
&
"!
&
!!)

"A
+
X

+
, B

,
"A

,
(2D

!
"&
&
!G

"
H"

&
)

(D
&
"!
&
!!)

"A
,
X

,
. (23)

DYNAMIC PROPERTIES OF SANDWICH STRUCTURES 417

f"f
!

where

f
!
" 1

2!!G
"
H

I!
. (19)

For frequencies below f
!

the wavenumber k
#
"$i"

!
is imaginary, de"ning evanescent

waves. For higher frequencies, k
#
"$i"

!
is real representing a rotating and propagating

wave. The frequency f
!
is decreased as the moment of inertia is decreased and thus when the

thickness H is increased. For beams with thick foam cores, the frequency f
!
tends to be fairly

low.
In summary, the limiting values for the wavenumbers are

lim#"
"
#

$P#

"lim#"
!
#

$P#

""$%!

D
"
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"$%
, lim#"
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"$!
. (20)

6. DISPLACEMENT

For a honeycomb beam oriented along the x-axis, the displacement w and the angular
displacement & must satisfy the di!erential equations (13) and (14). The displacement
w must be de"ned as a function of the wavenumbers "

"
, "

!
and "

&
. Consequently,

w"(A
"
sin"

"
x#A

!
cos "

"
x#A

&
e("!##A

%
e"!)#(%*#A

+
e("&##A

,
e"&)#(%*)e"#&, (21)

where the amplitudes A
"
}A

,
are determined by the boundary conditions and the external

forces. The angular displacement & due to pure bending of the beam satis"es for p"0 the
same di!erential equation as w as given by equations (13) and (14). The angular
displacement can therefore be expressed in a similar way as w. Thus,

&"(B
"
sin"

"
x#B

!
cos"

"
x#B

&
e("!##B

%
e"!)#(%*#B

+
e("&##B

,
e"&)#(%*)e"#&, (22)

where "
"
, "

!
and "

&
are solutions to equation (18). In order to completely describe the

displacement w and & for a beam, the parameters A
'
and B

'
need to be determined. However,

the parameters A
'
and B

'
are not independent of each other. By inserting de"nitions (21) and

(22) into equation (12), the result is found to be a function of sin"
"
x, cos "

"
x etc. The total

expression should be valid for any x. Thus it follows that the amplitudes of the functions
sin"

"
x, cos"

"
x, etc. must equal zero. Consequently, the amplitudes B

'
can be determined as

functions of the amplitudes A
(
. The result, using the abbreviations D

&
"D

"
#2D

!
and

!"G
"
H!%!I!, is
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. (23)
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f"f
!

where

f
!
" 1

2!!G
"
H

I!
. (19)

For frequencies below f
!

the wavenumber k
#
"$i"

!
is imaginary, de"ning evanescent

waves. For higher frequencies, k
#
"$i"

!
is real representing a rotating and propagating

wave. The frequency f
!
is decreased as the moment of inertia is decreased and thus when the

thickness H is increased. For beams with thick foam cores, the frequency f
!
tends to be fairly

low.
In summary, the limiting values for the wavenumbers are

lim#"
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6. DISPLACEMENT

For a honeycomb beam oriented along the x-axis, the displacement w and the angular
displacement & must satisfy the di!erential equations (13) and (14). The displacement
w must be de"ned as a function of the wavenumbers "

"
, "

!
and "

&
. Consequently,

w"(A
"
sin"

"
x#A

!
cos "

"
x#A

&
e("!##A

%
e"!)#(%*#A

+
e("&##A

,
e"&)#(%*)e"#&, (21)

where the amplitudes A
"
}A

,
are determined by the boundary conditions and the external

forces. The angular displacement & due to pure bending of the beam satis"es for p"0 the
same di!erential equation as w as given by equations (13) and (14). The angular
displacement can therefore be expressed in a similar way as w. Thus,

&"(B
"
sin"

"
x#B

!
cos"

"
x#B

&
e("!##B

%
e"!)#(%*#B

+
e("&##B

,
e"&)#(%*)e"#&, (22)

where "
"
, "

!
and "

&
are solutions to equation (18). In order to completely describe the

displacement w and & for a beam, the parameters A
'
and B

'
need to be determined. However,

the parameters A
'
and B

'
are not independent of each other. By inserting de"nitions (21) and

(22) into equation (12), the result is found to be a function of sin"
"
x, cos "

"
x etc. The total

expression should be valid for any x. Thus it follows that the amplitudes of the functions
sin"

"
x, cos"

"
x, etc. must equal zero. Consequently, the amplitudes B

'
can be determined as

functions of the amplitudes A
(
. The result, using the abbreviations D
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"D

"
#2D

!
and

!"G
"
H!%!I!, is
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. (23)
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Denklemdeki 𝜅1 , 𝜅2 ve 𝜅3 denklem (2.21) için olan çözümlerdir.  Bir kiriş için yer (w) ve 

açısal (β) değişimi tam olarak tanımlayabilmek için Ai ve Bi parametrelerinin belirlenmesi 

gerekmektedir.  Fakat Ai ve Bi katsayıları birbirlerinden bağımsız değildir.  (2.24) ve 

(2.25)’i denklem (2.15)’te koyarsak çıkacak olan sonuçlar sin𝜅1x, cos𝜅2x vs. olmaktadır. 

Bütün ifadeler herhangi bir x için doğru olması gerekmektedir.  Bundan dolayı 

fonksiyonların genişlikleri sin𝜅1x, cos𝜅2x vs. = 0 olması gerekmektedir.  Bi ve Aj katsayıları 

fonksiyonlar olarak belirlenebilmektedir.  

$  (2.26 - 2.31) 

Burada (Dt = D1 + 2D2 ve Ω = GeH-⍵2Ip) olarak tanımlanır.  X1 = - X2, X3 = -X4 ve X5 = - 

X6’dır.  Sonlu bir kiriş için üç sınır şartının sağlanması gerekmektedir.  Bu sınır koşulları, 

kirişin öz frekanslarının yanı sıra A2 /A1, vb. bağıl amplitütlerinin belirlenmesi için de 

yeterlidir. 

 Sonlu bir kiriş için öz frekansları ve mod şekillerini tanımlayabilen yöntem basit 

mesnetli sınır şartı için aşağıda gösterilmektedir.  Basit mesnetli kiriş için sınır şartları x = 

0 ve x = L iken w = 0 , ∂β/∂x = 0 ve ∂2w/∂x2 = 0’dır.  Yer değiştirme w, denklem (2.24) ile 

ve açısal değişim β denklem (2.25) ile tanımlanmaktadır.  Sınır şartları ve denklemler (2.26 

- 2.31) kullanılarak bir denklem sistemi matris formunda aşağıdaki şekilde yazılır.  

f"f
!

where

f
!
" 1

2!!G
"
H

I!
. (19)

For frequencies below f
!

the wavenumber k
#
"$i"

!
is imaginary, de"ning evanescent

waves. For higher frequencies, k
#
"$i"

!
is real representing a rotating and propagating

wave. The frequency f
!
is decreased as the moment of inertia is decreased and thus when the

thickness H is increased. For beams with thick foam cores, the frequency f
!
tends to be fairly

low.
In summary, the limiting values for the wavenumbers are
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6. DISPLACEMENT

For a honeycomb beam oriented along the x-axis, the displacement w and the angular
displacement & must satisfy the di!erential equations (13) and (14). The displacement
w must be de"ned as a function of the wavenumbers "

"
, "

!
and "

&
. Consequently,

w"(A
"
sin"

"
x#A

!
cos "

"
x#A

&
e("!##A

%
e"!)#(%*#A

+
e("&##A

,
e"&)#(%*)e"#&, (21)

where the amplitudes A
"
}A

,
are determined by the boundary conditions and the external

forces. The angular displacement & due to pure bending of the beam satis"es for p"0 the
same di!erential equation as w as given by equations (13) and (14). The angular
displacement can therefore be expressed in a similar way as w. Thus,

&"(B
"
sin"

"
x#B

!
cos"

"
x#B

&
e("!##B

%
e"!)#(%*#B

+
e("&##B

,
e"&)#(%*)e"#&, (22)

where "
"
, "

!
and "

&
are solutions to equation (18). In order to completely describe the

displacement w and & for a beam, the parameters A
'
and B

'
need to be determined. However,

the parameters A
'
and B

'
are not independent of each other. By inserting de"nitions (21) and

(22) into equation (12), the result is found to be a function of sin"
"
x, cos "

"
x etc. The total

expression should be valid for any x. Thus it follows that the amplitudes of the functions
sin"

"
x, cos"

"
x, etc. must equal zero. Consequently, the amplitudes B

'
can be determined as

functions of the amplitudes A
(
. The result, using the abbreviations D

&
"D

"
#2D

!
and

!"G
"
H!%!I!, is

B
"
"!A

!
(2D

!
"&
"
#G

"
H"

"
)

(D
&
"!
"
#!)

"A
!
X

!
, B

!
"A

"
(2D

!
"&
"
#G

"
H"

"
)

(D
&
"!
"
#!)

"A
"
X

"
,

B
&
"!A

&
(2D

!
"&
!
!G

"
H"

!
)

(D
&
"!
!
!!)

"A
&
X

&
, B

%
"A

%
(2D

!
"&
!
!G

"
H"

!
)

(D
&
"!
!
!!)

"A
%
X

%
,

B
+
"!A

+
(2D

!
"&
&
!G

"
H"

&
)

(D
&
"!
&
!!)

"A
+
X

+
, B

,
"A

,
(2D

!
"&
&
!G

"
H"

&
)

(D
&
"!
&
!!)

"A
,
X

,
. (23)
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$  (2.32) 

 İlk satır için x = 0’ken w = 0 olarak ve ikinci satır x = L olarak çözülür.  Üçüncü ve 

dördüncü satır için ∂β/∂x = 0 olarak x = 0’da ve x = L’de çözülür.  Çözümler, yani öz 

frekanslarını elde edebilmek için matrisin determinantı sıfıra eşitlenmelidir. A1 = 1 

yazılarak diğer katsayların oranları (2.32)’den elde edilir.  Daha sonra (2.26 - 2.31) 

denklemleri kullanılarak Bi katsayları elde edilebilmektedir.  

TABLE 3

Predicted eigenfrequencies for beam A
!

in vacuum; ¸"1)2 m

Eigenfrequency (Hz) Free ends Clamped ends Simply supported ends

Euler Sandw. Euler Sandw. Euler Sandw.

f
!

38 37 38 37 17 17
f
"

106 103 106 101 68 66
f
#

207 199 207 196 152 147
f
$

342 326 342 320 271 258
f
%

511 479 511 470 423 397
f
&

714 658 714 644 609 562
f
'

952 859 952 839 829 750
f
(

1222 1080 1222 1054 1083 960

From these results, it follows that X
!
"!X

"
, X

#
"!X

$
and X

%
"!X

&
. For a "nite

beam there are three boundary conditions at each end to be satis"ed. These boundary
conditions are su$cient for determining the relative amplitudes A

"
/A

!
, etc. as well as the

eigenfrequencies for the beam.
The procedure for de"ning the eigenfrequencies and their corresponding modes of

vibrations for a "nite beam is demonstrated by considering a simply supported beam. The
boundary conditions for a simply supported beam are according to Table 1 given as w"0,
!"/!x"0 and !"w/!x""0 for x"0 and ¸. The displacement w is given in equation (21)
and the angular displacement " in equation (22). The six boundary conditions in
combination with equation (23) give a system of equations, which can be written in matrix
form as

0 1 1 e)!"" 1 e)!#"

sin#
!
¸ cos#

!
¸ e)!"" 1 e)!#" 1

0 X
"
#
!

!X
#
#
"

X
$
#
"
e)!"" !X

%
#
#

X
&
#
#
e)!#"

!X
!
#
!
sin #

!
¸ X

"
#
!
cos#

!
¸ !X

#
#
"
e)!"" X

$
#
"

!X
%
#
#
e)!#" X

&
#
#

0 !#"
!

#"
!

#"
"
e)!"" #"

#
#"
#
e)!#"

!#"
!
sin#

!
¸ !#"

!
cos#

!
¸ #"

"
e)!"" #"

"
#"
#
e)!#" #"

#

A
!

A
"

A
#

A
$

A
%

A
&

"0.

(24)

The "rst line is obtained for w"0 at x"0 and the second at x"¸. The third and fourth
are for !"/!x"0 "rst at x"0 and then at x"¸. The last two lines are obtained when
!"w/!x""0 for x"0 and ¸ respectively. The eigenfrequencies are obtained as solutions to
the determinant of the matrix being zero. For each solution or eigenfrequency, the relative
ratio of the amplitudes are obtained from equation (24) by setting A

!
"1. The amplitudes

B
#
are thereafter obtained from equation (23).
By using the method outlined above the "rst eight eigenfrequencies for beam A

!
,

described in Table 2, are predicted for the boundary conditions of the beam being free,
clamped and simply supported. The resulting eigenfrequencies are listed in Table 3. For
comparison, the corresponding eigenfrequencies using the Euler beam theory are also given
in Table 3. For the Euler beam the bending sti!ness is set to equal D

!
de"ned in equation (3).

The eigenfrequencies predicted from the Euler beam theory are always higher than the
corresponding eigenfrequencies derived as described above; the reason being that shear and

418 E. NILSSON AND A. C. NILSSON
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3. BALPETEĞİ SANDVİÇ YAPILARI İÇİN EŞDEĞER PLAK TEORİLERİ 

 Balpeteği sandviç yapıların SE çözümleri için birebir olarak modellenmesi oldukça 

zor ve zahmetli olmakla birlikte eleman sayısı arttığından çözüm süresi de oldukça 

uzamaktadır. Bu bakımdan bu yapıların basit bir plak gibi modellenmesini sağlayan 

eşdeğer modeller bulunmaktadır. Bu bölümde literatürdeki mevcut iki eşdeğer model 

hakkında bilgi verilecektir. 

3.1 Gibson Yöntemi 

 Gibson [4] balpeteği yapısının ortotropik bir plak olarak modellenebilmesini 

sağlayan bir yöntem sunmuştur. Bu yöntemde eşdeğer modelin elastisite modülleri ve 

yoğunluk gibi malzeme parametreleri balpeteği yapının hücre boyutları (Şekil 3.1) ve 

malzeme özelliklerine bağlı olarak hesaplanabilmektedir. Eşdeğer malzeme 

parametrelerinin hesaplanması için gerekli denklemler Tablo 3.1’de verilmiştir, [4]. 

$    

Şekil 3.1 Balpeteği hücre geometrisi ve boyutları 

Tablo 3.1  Gibson yöntemi için eşdeğer malzeme parametreleri formülleri [4] 

t

l

Eşdeğer x yönündeki Elastisite modülü Exeq 2.3 ( t / l )³ E

Eşdeğer y yönündeki Elastisite modülü Eyeq 2.3 (t / l)³ E

Eşdeğer z yönündeki Elastisite modülü Ezeq (t / l) E

Eşdeğer Kayma modülü, xy Gxyeq 0.57 (t / l)³ E

Eşdeğer Kayma modülü, yz Gyzeq 0.577 (t / l) G

Eşdeğer Kayma modülü, xz Gxzeq 0.577 (t / l) G

Eşdeğer Poisson oranı, xy νxy , eq 0.99

Eşdeğer Poisson oranı, yz νyz , eq 0

Eşdeğer Poisson oranı, xz νxz , eq 0

Eşdeğer Yoğunluk ρeq 1.155 (t / l) ρ
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Şekil 3.2 Bal peteği sandviç yapı için Gibson eşdeğer modeli 

3.2 Eşdeğer Plak Teorisi 

 Balpeteği sandviç yapıları için diğer bir eşdeğer model Xia vd. [3] tarafından 

önerilen eşdeğer plak teorisidir. Bu teoride sandviç yapının alt ve üst katmanları (kapaklar) 

ile çekirdeği oluşturan balpeteği katmanının malzemesi aynı olmak koşulu ile ortotropik 

sandviç plak izotropik bir plak olarak modellenebilir. 

$  

Şekil 3.3 Bal peteği yapısının şekli 

 Eşdeğer plak teorisinde h bal peteği kalınlığı, t kapak kalınlığı, H sandviç yapı 

kalınlığı, E elastisite modülü,  ρf  kapakların yoğunluğu ve ρc çekirdek malzemenin 

yoğunluğudur (Şekil 3. 4).  

y
x

z
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$  

Şekil 3.4 Eşdeğer plak teorisi diyagramı 

 Tablo 3.2’deki denklemlere göre yeni modellenen izotropik eşdeğer modelin 

özellikleri bulunur. 

Tablo 3.2 Eşdeğer plak teorisi denklemleri [3]

 Eşdeğer elastisite modülü, yoğunluk ve kalınlık hesaplandıktan sonra balpeteği ile 

alt ve üst katmanlardan oluşan üç katmanlı sandviç yapı izotropi bir plak gibi dikkate alınır 

ve analizler buna göre yapılabilir. 

y
x

z

Eeq (Elastisite modülü)  2Et/ teq

ρeq (Yoğunluk) ( 2 ρf t + 2 ρc ( H - t)) / teq

teq (Kalınlık) (t2+12h2)1/2
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4. MODAL ANALİZ 

Modal analiz yöntemi, yapıların titreşim karakteristiklerinin yani doğal frekanslarının, 

mod biçimlerinin ve sönüm oranlarının belirlenmesi için oldukça kullanışlı bir yöntemdir. 

Modal analiz sayısal olarak yapılabildiği gibi mevcut yapılar üzerinde deneysel olarak da 

icra edilebilmektedir. Bu bölümde modal analiz teorisi ve deneysel modal analiz yöntemi 

ile ilgili bilgiler verilmektedir. 

4.1 Modal Analiz Teorisi 

Bu kısımda özellikle Inman’ın [32] kitabından faydalanılarak modal analiz teorisi 

açıklanmıştır.  Çok serbestlik dereceli sistem için matris formundaki hareket denklemi 

 $  (4.1) 

şeklinde yazılır. 

Denklem (4.1)’i çözmek için denklem (4.2) gibi bir çözüm önerilmektedir ve denklem 

(4.3) elde edilir. 

$  (4.2) 

Bu çözüm önerisi ve türevleri Denklem (4.1) de kullanıldığında, 

$  (4.3) 

elde edilir. Bu dx ve aşağıdaki gibi yazılabilir. 

$  (4.4) 

Kuvvet önündeki katsayı α(ω) reseptans matrisi olarak tanımlanır:  

$17



$  (4.5) 

Reseptans matrisi modların toplamı biçiminde de yazılabilmektedir. 

$  (4.6) 

Eğer u bir 1 x n  boyutlu vektör ise reseptans n x n boyutlu bir matris halini alır.  

Reseptans matrisinde s satır numarasını ve r sütün numarasını temsil etmek üzere bir 

elemanı 

  

$  (4.7) 

şeklinde yazılır.  αsr; r noktasında uygulanan tahrik kuvvetine karşı yapının s koordinatında 

vereceği tepkiyi ifade eder ve frekans tepki fonksiyonu (FTF) olarak adlandırılır. Deneysel 

uygulamalardan tahrik r noktasında uygulanır ve tepki s noktasından ölçülür (Denklem 

(4.8)).  

$  (4.8) 

FTF ilgilenilen frekans aralığında her bir tahrik frekansı için hesaplanır. Tahrik frekan-

sı doğal frekansa yaklaştıkça (ωi=ω) karakteristik kök sıfıra yaklaşır ve FTF grafiğinde bir 

zirve oluşturur (Denklem (4.9)). 

$  (4.9) 
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4.2  Sonlu Elemanlar Yöntemi 

 Yapıların sayısal yöntemi ile titreşim analizinde SE yöntemi yaygın olarak kul-

lanılır. SE yöntemi ile yapılar incelenirken yapı çok sayıdaki düğümlerden oluşan eleman-

lara bölünür ve yapının kütle ve rijitlik matrisleri elde edilir.  Serbest titreşim için yani sis-

temde herhangibir kuvvet yok iken özdeğer probleminin çözülmesiyle yapıya ait özdeğer-

ler ve özvektörler elde edilir. Bu özdeğerlerin karesi doğal frekanslara ve özvektörler de 

mod biçimlerine karşılık gelmektedir. Gerek duyulursa harmonik kuvvetler uygulanarak 

yapının frekans cevapları da elde edilebilir. 

4.3 Deneysel Modal Analiz (DMA) 

 Deneysel modal analizde (DMA) incelenen yapı bilinen kuvvet veya kuvvetlerle 

tahrik edilir ve bu kuvvetlere karşı cevapları ölçülerek bir frekans analizörü yardımıyla 

yapının frekans tepki fonksiyonları (FTF) elde edilir. Bu FTF’ler çeşitli yöntemlerle analiz 

edilerek yapıya ait doğal frekanslar ve mod biçimleri elde edilir.  DMA için genel olarak 

gerekli ekipmanlar Şekil 4.1’de verilmiştir.  Test yapısı önce uygun sınır şartı sağlanacak 

biçimde mesnetlenir. Çoğunlukla serbest sınır şartlarını sağlayacak şekilde elastik 

kordonlarla asılırlar. Test yapısı üzerinde SE yönteminde olduğu gibi bir ağ yapısı 

oluşturulur. Bu ağ yapısındaki düğüm noktaları tahrik ve cevap noktalarını oluşturur. 

Tahrik uygulamak için modal çekiç veya sarsıcı kullanılabilir. Yapıya uygulanan kuvvet 

çekiç ucunda bulunan kuvvet ölçer yardımıyla ölçülür.  Yapının cevaplarını ölçmek için de 

ivme ölçerler kullanılır. Sarsıcı kullanılması durumunda genelde sarsıcıya bağlı itici çubuk 

ile yapı arasına yerleştirilen bir empedans ölçerden faydalanılır. Bu empedans ölçer ile 

tahrik noktasındaki kuvvet ve ivme birlikte ölçülebilmektedir. Tahrik için gerekli kuvvet 

bilgisayarda üretilerek bir güç yükselticiden geçirilip sarsıcıya gönderilmektedir. Tahrik 

kuvveti belirli frekanslarda tek bir sinüs, belli frekans aralığındaki birçok sinüsün toplamı, 

kuş cıvıltısı (chirp), rastlantısal sayılardan oluşan beyaz gürültü (white noise) gibi 

formlarda olabilmektedir.   
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$  

Şekil 4.1 Deneysel modal analiz için ölçüm sistemleri 

Bu çalışmada modal çekiç ve sarsıcı DMA için OROS OR36 kanal analizör ve 

Dytran model 3097A2 ivme ölçerler, yapıyı tahrik etmek için Kistler 9724A2000 modal 

çekiç, MB Dynamics Modal 50 sarsıcı,  MB Dynamics model MB500VI güç yükseltici ve 

Dytran 5860B empedans ölçer  kullanılmıştır. Bu cihaz ve ekipmanlar Şekil 4.2 de 

görülmektedir. 
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Şekil 4.2 Ölçümlerde kullanılan cihaz ve ekipmanlar 
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5. EŞDEĞER MODELİN DOĞRULANMASI 

 Bu bölümde, sonradan yapılacak analizlerin güvenilirliği için öncelikle Gibson 

eşdeğer modelinin doğrulanması amaçlanmıştır. Bu amaçla, literatürden alınan iki tane 

farklı örnek için uygulamalar yapılmıştır. Birinci uygulamada Gibson eşdeğer modeli ve 

basitleştirilmemiş model kullanılarak analizler yapılmış ve [14] ile karşılaştırılmıştır. İkinci 

uygulamada ise Gibson eşdeğer modeli, Eşdeğer plak modeli ve basitleştirilmemiş model 

kullanılarak analizler yapılmış ve [14] ile karşılaştırılmıştır.  Aşağıda iki farklı sandviç plak 

için yapılan uygulamalar verilmiştir. 

5.1 302 mm x 183 mm Boyutlarında Plak Örneği 

 Gibson eşdeğer modeli kullanılarak literatürdeki bir çalışmanın doğrulanması 

amaçlanmıştır.  Boudjemai [14] A-S-S-S sınır şartlarındaki bal peteği yapılı plakanın 

modal analizini sayısal analiz yöntemi ile yapmıştır.  Kapaklar ve bal peteği aynı 

alüminyum malzemeden yapılmıştır.  Tablo 5.1 debal peteği sandviç yapının geometrik 

boyutları ve malzeme özellikleri verilmiştir. Hücre geometrisi ve ölçüleri de Şekil 5.1’de 

verilmiştir. 

Tablo 5.1 Bal peteği yapısının özellikleri [14] 

Kapakların Kalınlığı 1 mm

Bal Peteği Kalınlığı 10 mm

Sandviç Yapı Uzunluğu 302 mm

Sandviç Yapı Genişliği 183 mm

Elastisite Modülü, E 72 GPa

Kayma Modülü, G 27 GPa

Yoğunluk, ρ 2800 kg/m3
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Şekil 5.1 302 mm x183 mm plak örenği için bal peteği hücre boyutları [14] 

 İlk önce Gibson eşdeğer denklemleri kullanılarak bu bal peteği çekirdek kısmının 

eşdeğer parametreleri elde edilmiştir.  Bu parametreler sadece bal peteği çekirdek kısmı 

için ortotropik bir katı model tanımlar.  Tablo 5.2’de hesaplanan parametrelerin değerleri 

verilmiştir. 

Tablo 5.2 Bal peteği çekirdek kısmının Gibson yöntemi ile hesaplanan parametreleri  

  ANSYS APDL (ANSYS Parametric Design Language)’de Shell 281 eleman seçil-

erek üç katmanlı (kapak, çekirdek ve kapak) bir model oluşturulmuştur (Şekil 5.2).  Shell 

281 elemanı 8 düğümlüdür ve her düğümü 6 serbestlik derecelidir.  Modeldeki eleman 

sayısı 589 ve düğüm sayısı 1868 dir. 

Bal peteği çekirdek kısmı 
için malzeme özellikleri

Eşdeğer parametre 
denklemleri

Hesaplanan 
değerler

Ex 2.3 ( t / l )³ E 165.6 MPa

Ey 2.3 (t / l)³ E 165.6 MPa

Ez (t / l) E 7200 MPa

Gxy 0.57 (t / l)³ E 41.04 MPa

Gyz 0.577 (t / l) G 1557.9 MPa

Gxz 0.577 (t / l) G 1557.9 MPa

νxy 1 1

νyz 0 0

νxz 0 0

ρ 1.155 (t / l) ρ 323.316 kg/m³
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$  

Şekil 5.2 Gibson eşdeğer modeli, üç katmanlı bir model, kapak - çekirdek - kapak 

 Şekil 5.3’te görüldüğü gibi plak bir kenarından ankastre ve diğer kenarlarından 

serbest (A-S-S-S) olarak mesnetlenmiştir. 

$  

Şekil 5.3 Gibson eşdeğer modeli sınır şartları 

 İlk dört mod için doğal frekanslar ve karşılık gelen mod biçimleri elde edilmiştir. 

Mod biçimleri Şekil 5.4 - 5.7’de verilmiş ve doğal frekanslar [14] deki sonuçlarla Tablo 

5.3’te karşılaştırılmıştır.
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$  

Şekil 5.4 Gibson eşdeğer modeli, mod 1, eğilme, 145.85 Hz 

$  

Şekil 5.5 Gibson eşdeğer modeli, mod 2, burulma, 474.49 Hz 
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Şekil 5.6 Gibson eşdeğer modeli, mod 3, eğilme, 867.10 Hz 

$  

Şekil 5.7 Gibson eşdeğer modeli, mod 5, yanal, 1130.50 Hz 
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 Ayrıca bu çalışmada Şekil 5.1 ve Tablo 5.1 de özellikleri verilen aynı yapının 

birebir gerçek (basitleştirilmemiş) modeli Solidworks’ta oluşturulmuştur (Şekil 5.8).  Bu 

gerçek model ANSYS Workbench’e yüklenip analizi yapılarak doğal frekanslar elde 

edilmiştir.  İlk dört mod için doğal frekanslar Tablo 5.3’te (gerçek model) verilmiştir. 

$  

Şekil 5.8 Bal peteği yapısının gerçek modeli 

Tablo 5.3 302 mm x 183 mm A-S-S-S Plak için doğal frekansların (Hz) karşılaştırılması 

 Tablo 5.3’te ilk modun doğal frekansı için fark %3.0’ten; ikinci, üçüncü ve 

dördüncü modlar için fark %7.0’den daha düşüktür.  Buna göre Gibson eşdeğer modelinin 

güvenilir bir yöntem olduğu söylenebilir. 

Mod Şekilleri
Mod 1 

(eğilme)
Mod 2 

(burulma)
Mod 3 

(eğilme)
Mod 4 
(yanal)

Literatürden [14], Hz 143.55 462.57 854.76 1190.80

Gibson Eşdeğer Modeli, Hz 145.85 474.49 867.10 1130.50

Fark % 1.60 2.58 1.44 5.06

Gerçek Modeli, Hz 147.44 494.96 882.69 1162.50

Fark % 2.71 7.00 3.27 2.38
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5.2 290 mm x 40 mm Plak Örneği 

 Bu kısımda, Gibson eşdeğer modeli kullanılarak literatürdeki bir çalışmanın 

doğrulanması amaçlanmıştır.  A-S-S-S sınır şartlarındaki alüminyum bal peteği sandviç 

plakanın doğal frekanslarını saptamak için titreşim analizi gerçekleştirilmiştir.  Yapılan 

analizde, Gibson’un ve Xia’nin sandviç plakalarının sadeleştirilmiş modelleri ve eşdeğer 

plaka yaklaşımları kullanılmıştır. Ayrıca basitlştirme yapmadan birebir model kullanılarak 

da analizler yapılmış ve elde edilen sonuçlar Boudjemai’nin [14] çalışmasıyla 

karşılaştırılmıştır. 

Sandviç plaka Şekil 5.9’da görüldüğü gibi bir kenarından ankastre ve diğer 

kenarlarından serbest olacak şekilde mesnetlenmiştir. 

$  

Şekil 5.9  290 mm x 40 mm plak örneği için A-S-S-S sınır şartlarındaki bal peteği 

sandviç plaka 

 Sandviç plakanın boyutları Tablo 5.4’de ve malzeme özellikleri ise Tablo 5.5’te 

verilmiştir.   

Tablo 5.4. Alüminyum sandviç plaka boyutları [14]

Uzunluk X Genişlik 290mm X 40mm

İçi Yükselliği (hc) 9.0mm

Kapak Kalınlığı (tf) 1.0mm

Bal Peteği Hücre Duvarının Kalınlığı (t) 0.2mm

Bal Peteği Hücre Duvarının Uzunluğu (l) 2.0mm
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Tablo 5.5. Alüminyum malzeme özellikleri (bal peteği ve kapaklar için) [4]

İlk olarak sandviç yapı ANSYS ile basitleştirilmeden modellenmiştir. ANSYS’te 

oluşturulan basitleştirilmemiş bal peteği sandviç yapı modeli Şekil 5.10’de görülmektedir. 

İlk beş doğal frekans elde edilip, sonuçlar Tablo 5.8’de literatür [14] ile karşılaştırmalı 

olarak verilmiştir.  Bu örnekte bal peteği ve kapaklar için Shell 93 eleman tipi 

kullanılmıştır. 

$  

Şekil 5.10 ANSYS’teki bal peteği sandviç plaka basitleştirilmemiş SE modeli 

İkinci olarak, Gibson [4] yöntemi kullanılarak Boudjemai’nin [14] kullandığı bal 

peteği yapısı için eşdeğer malzeme özellikleri ortotropik bal peteği çekirdek elde 

edilmiştir.  Gibson yöntemi kullanılarak elde edilen eşdeğer malzeme parametrelerinin 

değerleri Tablo 5.6’da verilmiştir. 

Elastisite Modülü, E 72 GPa

Kayma Modülü, G 27 GPa

Yoğunluk, ρ 2800 kg/m3
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Tablo 5.6 Bal peteği çekirdek için hesaplanan Gibson eşdeğer parameter değerleri 

Tablo 5.7’deki değerler, ANSYS SE analizinin ortotropik çekirdek tabakası için 

kullanılmıştır.  ANSYS SE programında ‘‘Shell Lay-Up’’ modeli ve Shell 281 eleman tipi 

kullanılmıştır. Titreşim analizi sonuçları Tablo 5.8’de listelenmiştir.  

 Son olarak aynı balpeteği sandviç plakayı modellemek için Xia ve ark. [3] tarafından 

önerilen Eşdeğer Plaka Teorisi kullanılmıştır. Bu teoride ortotropik sandviç plaka izotropik 

plaka olarak modellenir. Plakanın analizi için literatürden [14] alınan eşdeğer parametreler 

kullanılmıştır ve Tablo 5.7’de verilmiştir. 

Tablo 5.7  Eşdeğer plaka teorisi kullanılarak elde edilen eşdeğer parametre değerleri 

Bal Peteği katı eşdeğer  
malzeme özellikleri

Gibson eşdeğer 
değerleri

Ex 165.6 MPa

Ey 165.6 MPa

Ez 7200 MPa

Gxy 41.04 MPa

Gyz 1557.9 MPa

Gxz 1557.9 MPa

vxy 0.99

vyz 0

vxz 0

ρ 323.316 kg/m³

Eşdeğer Özellikleri Eşdeğer Parametreler

Eşdeğer Elastisite Modülü, E 6.29 GPa

Kalınlığı, kapaklar dahil, teq 0.01716m

Eşdeğer Yoğunluğu, ρeq 428.12 kg/m3
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  Bu plaka ANSYS APDL’de tek katmanlı katı model olarak Shell 281 eleman tipi 

kullanılarak oluşturulmuştur  (Shell 281'in 8 düğümü ve her düğümünde 6 serbestlik 

derecesi vardır).  Bu şekilde model 415 düğüm ve 116 elemandan meydana gelmiştir.  Elde 

edilen sonuçlar, literatürde MSC.Nastran [14] kullanılarak elde edilmiş sonuçlar ile 

karşılaştırmalı olarak Tablo 5.8’de verilmiştir.  

  Bu çalışmada basitleştirilmemiş model kullanılarak elde edilen sonuçlar Gibson 

yöntemi ve Eşdeğer Plaka Teorisi kullanılarak elde edilen sonuçlar ile Tablo 5.8’de 

karşılaştırılmıştır. 

Tablo 5.8 Basitleştirmemiş model, eşdeğer plaka teorisi ve Gibson yöntemi 

sonuçlarının karşılaştırılması 

Mod

Basitleştirilmemiş  
modeli

Eşdeğer plaka teorisi
Bu Çalışma, 
ANSYS, Gib-
son yöntemi, 

(Hz)

MSC. 
Nastran 

[14], 
(Hz)

Bu Çalış-
ma, AN-

SYS, (Hz)

MSC. Nas-
tran [14], 

(Hz)

Bu Çalışma, 
ANSYS, 

(Hz)

1 (eğilme) 130.66 147.29 130.98 126.75 140.05

2 (yanal) 304.67 310.34 300.91 291.26 337.51

3 (eğilme) 790.34 885.84 807.69 781.09 850.20

4 (burulma) 1278 1417.40 1449.9 1388.7 1332.60

5 (yanal) - 1794.00 - 1685.4 1936.70
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6. DENEYSEL MODAL ANALİZ DOĞRULAMA ÇALIŞMALARI 

 Yapıların dinamik özelliklerinin belirlenmesinde SE yönteminden yaygın bir şek-

ilde faydalanılmaktadır. Ancak malzeme özellikleri genelde homojen kabul edilmektedir. 

Cıvata veya kaynak gibi bağlantıların modellenmesindeki güçlükler ve kullanılan eleman 

sayısı da sonuçları oldukça etkilemektedir. Diğer taraftan deneysel titreşim ölçümleri 

doğrudan doğruya incelenen yapı üzerinde yapıldığı için test düzeneğinin doğru kurulması 

halinde deneysel sonuçların sayısal yöntemlerden elde edilen sonuçlardan daha doğru 

olduğu kabul edilir. Bu bakımdan deneysel ölçümlerin güvenilirliğini artırmak için genel 

olarak aşağıda verilen üç kontrol testi uygulanmaktadır. 

i) Rijit kütle testi: Bu testte genelde 10 kg lık rijit bir kütle asılarak bir yüzüne 

çekiç ile vurulur ve diğer yüzünden ivme cevabı ölçülür (Şekil 6.1). Bu 

durumda FTF genliğinin tüm frekanslarda sabit olarak -20 dB olarak okunması 

beklenir. Bu çalışmada yapılan rijit kütle testinden elde edilen FTF Şekil 6.2 ‘de 

görülmektedir. 

$  (6.1) 

          

 

 

Şekil 6.1 Rijik kütle testi 

1

1
( ) 20log 20 dB

10

aF ma H
F m

H dB

= → = =

⎛ ⎞= = −⎜ ⎟
⎝ ⎠
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$  

Şekil 6.2 Rijik kütle testi yapılarak bulunduğu -20dB FTF 

ii) Tekrarlanabilirlik testi 

Bu testte ölçülen bir FTF farklı zamanlarda tekrar ölçülerek birbiri ile uyuştuğu 

kontrol edilir. 

iii) Karşılıklılık testi (reciprocity check) 

Bilindiği üzere p ve q koordinatları arasındaki FTF ler arasında Hpq=Hqp eşitliği vardır.  

İlk ölçümde p koordinatında tahrik uygulanıp q koordinatında cevap ölçülür. Sonra q 

koordinatında kuvvet uygulanıp p koordinatında cevap ölçülür. Bu iki durum için ölçülen 

FTF’ler üstüste çizdirilerek karşılaştırılır. Karşılıklılık teorisi gereği bu ikisinin üstüste 

örtüşmesi beklenir. 

Bu çalışmada deneysel çalışmalar için çeşitli balpeteği sandviç yapıları hazırlanacaktır. 

Ancak el becerisi ile yapılmaya çalışılacak olan bu test numunelerinin herbirinin düzgün 

bir şekilde herbirinin aynı özellikte hazırlanması mümkün olmayacağı açıktır. Bal peteği 

gözlerinin aynı ölçüde homojen bir şekilde oluşturulması, kapakların tüm yüzey boyunca 

homojen bir şekilde yapıştırılması, PU köpüğün homojen bir şekilde uygulanması numune 

hazırlamada karşılaşılacak problemlerdendir. Diğer taraftan SE analizleri için bu 

düzensizliklerin modellenmesi mümkün olmayacağından deneysel sonuçlarla SE 

sonuçlarının birbiri ile örtüşmemesi kaçınılmazdır. Deneysel ölçümler doğrudan test 

numuneleri üzerinde yapılacağından deneysel sonuçların tam olarak test numunesinin 

özelliklerini yansıtması beklenmektedir. Ancak bunun için de deney sisteminin doğru 

kurulması ve kalibrasyonunun yapılması gerekir. 
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Bu çalışmada deneysel ölçümler yapılırken yukarıda bahsedilen üç kalibrasyon testi 

yapılarak ölçümlerin güvenilirliği sağlanmıştır. Ayrıca bu kontrollerin yanında deneysel 

ölçümlerin doğruluğunu göstermek amacıyla sonuçları literatürde bilinen ve doğrulanmış 

biri diktörtgen kesitli çubuk diğeri kare bir plak olmak üzere iki temel sistemin hem SE 

yöntemi hem de DMA ile tireşim analizi yapılarak sonuçları karşılaştırılmıştır. Bu 

çalışmalar aşağıda sunulmuştur. 

6.1. Diktörgen Kesitli Basit Bir Çubuğun Modal Analizi 

 Deney sisteminin güvenilirliğini göstermek için ölçüleri ve malzeme özellikleri 

Tablo 6.1 de verilen diktörtgen kesitli bir çubuğun hem SE hem de deneysel modal analiz 

ile titreşim analizi yapılmıştır. Deneysel uygulamalarda kolay ve daha doğru sonuçlar 

verdiğinden serbest sınır şartları gözönüne alınmıştır. 

Tablo 6.1 Çelik çubuk boyutları ve malzeme özellikleri 

6.1.1 ANSYS ile Çelik Çubuk Titreşim Analizi 

 Çelik çubuğun sayısal modal analizi için ANSYS APDL kullanıldı.  Shell 8node281 

eleman tipi seçildi.  Ağ yapısı 429 düğüm ve 120 elemandan (Şekil 6.3) oluşmuştur.  S-S 

sınır şartları uygulanmıştır.  İlk dört doğal frekans Tablo 6.2’de verilmiştir.  Eğilme modu 

ve şekli Tablo 6.2 ve 6.5 görülmektedir.  Mod biçimleri de Tablo 6.5’te karşılaştırmalı 

olarak gösterilmiştir. 

Uzunluk X Genişlik 856mm x 25mm

Kalınlık 12mm

Elastisite Modülü, E 205 GPa

Poisson Oranı, ν 0.33

Yoğunluk, ρ 7860 kg/m3
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(  

Şekil 6.3 Çelik çubuk, elemanlar ve serbest sınır şartı 

Tablo 6.2 Çelik çubuk ANSYS sonuçları ilk dört eğilme mod için 

6.1.2  DMA ile Çelik Çubuk Titreşim Analizi 

 SE ile analizi yapılan aynı çubuğun serbest sınır şartlarında 0-1 kHz frekans 

aralığında deneysel modal analizi yapılmıştır (Şekil 6.4).  Ölçümlerde OROS marka OR36 

model 8 kanallı frekans analizörü kullanılmış olup ölçüm parametreleri Tablo 6.3’te 

verilmiştir. Deneysel modal analiz yapmak için çubuk boyunca 22 ölçüm noktası 

belirlendi. Serbest sınır şartını sağlamak için çubuk bir ucundan misina ile asıldı. Alt uca 

(22 nolu düğüm) bir ivme ölçer (Daytran 3097A2) bağlandı ve modal çekiç (Kistler model 

9724A2000, S/N 2069942) ile sırayla 22 noktadan vurularak FTF’ler ölçüldü.  Ölçülen 

FTF’ler Şekil 6.5’te görülmektedir. FTF’lerdeki tepe noktalar çubuğun doğal ffrekanslarına 

karşılık gelmektedir. Oros Modal analiz yazılımında “BroadBand” yöntemi kullanılarak 

modal analiz yapıldı ve çubuğun doğal frekansları ve mod biçimleri elde edildi.  Doğal 

frekanslar Tablo 6.4’te verilmiştir. 

Eğilme Modları ANSYS Sonuçu, (Hz)

1 (eğilme) 85.913

2 (eğilme) 236.52

3 (eğilme) 462.82

4 (eğilme) 763.22

$35



(     (  

Şekil 6.4 Deneysel modal analiz yapılan kiriş 

Tablo 6.3 Modal çekiç kullanılırken ölçüm parametreleri 

Tablo 6.4 Çelik çubuk için deneysel sonuçlar 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

1 

22 

Parametre Değer/Ayar

Frekans Aralığı 0 - 800 Hz

Frekans aralığı 0.5 Hz

Adım Sayısı 1601

Pencereleme fonksiyonu yok

Modlar Doğal frekanslar, (Hz)

1 (eğilme) 85.95

2 (eğilme) 236.19

3 (eğilme) 463.29

4 (eğilme) 764.73
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Şekil 6.5 Çelik çubuk üzerinde ölçülen FTF’ler 

6.1.3  Çelik Kiriş SE ve DMA Sonuçlarının Karşılaştırılması 

 Tablo 6.5’te sayısal ve deneysel modal analiz sonuçları karşılaştırıldı.  Deneysel ve 

SE çözümden elde edilen sonuçların birbirleriyle uyuştuğu ve aralarındaki farkın %0.04 - 

%0.20 arasında olduğu görülmektedir. Bu da deney sisteminin doğru kurulduğunu, 

ölçümlerin ve analiz sonuçlarının güvenilir olduğunu göstermektedir. 

Tablo 6.5 Çelik çubuk, ANSYS ve deneysel mod şekillerinin karşılaştırması 

Mod ANSYS Sonuçları, (Hz) Deneysel Sonuçları, (Hz) Fark (%) 

1 
(eğilme)

%0.04

2 
(eğilme)

%0.14

3 
(eğilme)

%0.10462.82 

$

85.913 

$

236.19 

$

236.52 

$

463.29 

$

85.95 

$
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6.2 Alüminyum Kapak Titreşim Analizleri 

 Deney sisteminin güvenilirliğini göstermek için ikinci bir test sandviç plakların üst 

ve alt katmanlarını oluşturan alüminyum plak üzerinde gerçekleştirilmiştir. Bu çalışmada 

kapak olarak 1050 H14 alüminyum alaşımlı levhalar kullanıldı (bir kapağın boyutu ve 

malzeme özellikleri Tablo 6.6’te verilmiştir).  Bu kapak için de analizler SS sınır şartları 

için yapıldı. 

Tablo 6.6 Alüminyum alaşım 1050 H14 kapak boyutları ve malzeme özellikleri 

6.2.1  ANSYS ile Alüminyum Kapak Titreşim Analizi 

 Bu alüminyum kapak için ANSYS APDL’de Shell 281 eleman tipi seçildi.  Shell 

281'in 8 düğümü ve her düğümünde 6 serbestlik derecesi vardır.  ‘‘Shell Lay-Up’’ modeli 

bir kat için kullanıldı. Ağ yapısı 429 düğüm ve 120 elemandan oluşmuştur.  İlk yedi mod 

için elde edilen doğal frekanslar Tablo 6.7’de verilmiştir.  Mod şekilleri Tablo 6.9’de 

görülmektedir. 

4 
(eğilme)

%0.20

Mod ANSYS Sonuçları, (Hz) Deneysel Sonuçları, (Hz) Fark (%) 

764.73 

$

763.22 

$

Uzunluk X Genişlik 801 mm X 79.5 mm

Kalınlık 0.85 mm

Elastisite Modülü, E 69 GPa

Poisson Oranı, ν 0.33

Yoğunluk, ρ 2705 kg/m3

Kayma Modülü, G 26.0 GPa
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Tablo 6.7 Alüminyum kapak için ANSYS’ten elde edilen doğal frekanslar 

6.2.2  DMA ile Alüminyum Kapak Titreşim Analizi 

 Alüminyum kapağa deneysel modal analiz yapıldı (Şekil 6.6).  S-S sınır şartlarını 

sağlamak  için kapak bir ucundan misina ile asıldı ve modal çekiç ile kuvvet bilgi elde 

edildi.  Kapak üzerinde 17 ölçüm noktası belirlendi.  Ölçülen FTF’ler Şekil 6.7’de 

görülmektedir. Analizde ilk beş eğilme modu elde edilerek doğal frekanslar Tablo 6.8’de 

ve mod şekilleri Tablo 6.9’da verildi.   

(  (  

Şekil 6.6 Deneysel modal analiz yapılan alüminyum kapak ve ölçüm noktaları 

Modları ANSYS Sonucu, (Hz)

1 (eğilme) 8.0975

2 (eğilme) 22.362

3 (eğilme) 43.952

4 (burulma) 48.681

5 (eğilme) 72.876

6 (burulma) 98.111

7 (eğilme) 109.22

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

1 

17 
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Şekil 6.7 Alüminyum kapak üzerinde ölçülen FTF’ler 

Tablo 6.8 Alüminyum kapak için deneysel doğal frekanslar

6.2.3 Alüminyum Kapak SE ve DMA Sonuçlarının Karşılaştırması

 Alüminyum kapak için sayısal ve deneysel modal analiz sonuçları Tablo 6.9’da 

karşılaştırıldı.  Fark %2.56 - %6.16 arasındadır ve sonuçlar oldukça güvenilirdir. 

Tablo 6.9  Alüminyum kapak titreşim sayısal ve deneysel mod şekilleri karşılaştırılması 

Modlar Doğal frekans, (Hz)

1 (eğilme) 8.31

2 (eğilme) 21.2

3 (eğilme) 41.47

5 (eğilme) 68.65

7 (eğilme) 103.00

Mod ANSYS Sonuçları, (Hz) Deneysel Sonuçları, (Hz) Fark (%) 

1 
(eğilme)

%2.568.31 

$

8.0975 

$
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Bu bölümde yapılan doğrulama çalışmalarından sonra bu tezin konusu olan bal 

peteği sandviç yapıların titreşim analizlerine geçilmiştir. Bal peteği sandviç yapıları 

oluşturmak için öncelikle piyasadan alüminyum malzemeli balpeteği levhalar temin 

2 
(eğilme)

%5.48

3 
(eğilme)

%5.99

4  
(burul-

ma)
- -

5 
(eğilme)

%6.16

6  
(burul-

ma)
- -

7 (eğilme)

%6.04

Mod ANSYS Sonuçları, (Hz) Deneysel Sonuçları, (Hz) Fark (%) 

48.681 

$

109.22 

$

43.952 

$

98.111 

$

103.00 

$

41.47 

$

22.362 

$

72.876 

$

21.20 

$

68.65

$
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edilmiş ve bunların alt ve üst yüzleri alüminyum levhalarla kapatılarak sandviç yapı 

oluşturulmuştur. Bu sandviç yapıların analizlerinden sonra PU köpüğün bu yapılar 

üzerindeki etkilerini göstermek amacıyla balpeteği hücreleri PU köpük ile doldurulmaya 

çalışılmıştır. PU köpük piyasadan tüpler içerisinde hazır olarak temin edilmiştir. PU köpük 

bilindiği gibi hava ile temasa geçtiğinde hacimce genişleyerek kabarmakta ve gözenekli bir 

yapı oluşmaktadır. Bu özelliğinden dolayı hazır tüplerin kullanılması halinde küçük hücreli 

balpeteğinin hücrelerinin PU köpük ile doldurulmasında sorun yaşanmış ve başarısız 

olunmuştur. Çözüm olarak daha geniş hücreli balpeteği levhalarının el yordamı ile 

üretilmesine karar verilmiştir. Bunun için alüminyum levhalar ölçüsünde kesilip kalıpta 

şekil verildikten sonra yapıştırılarak balpeteği levhalar hazırlanmıştır. Bu sayede hem 

hücreler PU köpük ile doldurulabilmiş hem de FE analizlerinde daha az eleman sayısı ile 

çalışılarak analiz süresi kısaltılmıştır.  

 Bu nedenlerle bal peteği sandviç yapıların titreşim analizleri küçük hücreli ve 

büyük hücreli olmak üzere iki ayrı bölüm altında incelenmiştir. PU köpük çalışmaları ise 

sadece büyük hücreli balpeteği yapı üzerinde gerçekleştirilmiştir.
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7.  KÜÇÜK HÜCRELİ BAL PETEĞİ SANDVİÇ PLAKLAR İÇİN TİTREŞİM  

 ANALİZLERİ 

 Piyasadan hazır olarak temin edilen alüminyum bal peteği yapısı Şekil 7.1’de 

görülmektedir.  Hücreler için iki önemli boyut bulunmaktadır:  duvarın kalınlığı ( t ) ve 

duvarın uzunluğu ( l ), (Şekil 7.2).  Duvar uzuunluğu boyutuna göre bal peteği küçük ya da 

büyük hücreli olarak isimlendirilmiştir.  Bu çalışmada kullanılan bal peteği malzemesi 

alüminyum alaşım 3003 H14 olup malzeme özellikleri Tablo 7.1’de verilmiştir. 

(  

Şekil 7.1 Fabrikada yapılmış alüminyum bal peteği 

(  

Şekil 7.2 Küçük hücreli bal peteği boyutları 

Tablo 7.1 3003 H14 alüminyum alaşım malzeme özellikleri ve boyutları 

Elastisite Modülü, E 69.1 GPa

Poisson Oranı, ν 0.33

Yoğunluk, ρ 2730 kg/m3

Kayma Modülü, G 25.0 GPa

Bal Peteği Yükselliği 0.018m
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 Bir sandviç plaka kapak-çekirdek-kapak olmak üzere üç katmandan oluşmaktadır.  

Bal peteği sandviç yapıda çekirdek katı fabrika yapımı alüminyum bal peteği (Şekil 7.2 ve 

Tablo 7.1) ve kapaklar Tablo 6.5’de verilen malzemeden oluşturulmuştur.  Pattex kontakt 

yapıştırıcı kullanılarak kapaklar alüminyum bal peteğine yapıştırılmıştır (Tablo 7.2).  

Tablo 7.2 Yapıştırcı malzeme özellikleri [37] 

  

 Küçük hücreli bal peteği sandviç plakanın katman ölçüleri Şekil 7.3’te verilmiştir.  

Sandviç plakanın uzunluğu 0.801 m ve genişliği 0.0795 m dir. 

$

Şekil 7.3 Küçük hücreli bal peteği sandviç plakanın katmanları (kapak - yapıştırıcı - bal 

peteği - yapıştırıcı - kapak) ve ölçüleri (mm) 

7.1 ANSYS ile Küçük Hücreli Bal Peteği Sandviç Plaka Titreşim Analizi 

 Sayısal modal analizi yapılmak için ANSYS APDL kullanıldı. Sandviç yapının 

çekirdeğini oluşturan bal peteği katının eşdeğer parametreleri Gibson yöntemi kullanılarak 

hesaplandı ve bulunan değerler Tablo 7.3’de verildi. 

Elastisite Modülü, E 7.0 GPa

Poisson Oranı, ν 0.35

Yoğunluk, ρ 862 kg/m3

�

�

�

t = 0.10 mm

l = 15 mm

0.85

18.0 19.7

16.2

0.85

14.0

0.25 
(yapıştırıcı)

�

�

�

t = 0.10 mm

l = 15 mm

0.85

18.0 20.2

16.2

0.85

14.0
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Tablo 7.3 Küçük hücreli bal peteği eşdeğer parametreleri hesaplanması 

Bu küçük hücreli bal peteği sandviç plaka için ANSYS APDL’de Shell 281 eleman 

tipi seçildi.   ‘‘Shell Lay-Up’’ modeli ve üç kat kullanıldı (kapak - bal peteği - kapak). Ağ 

yapısı 429 düğüm ve 120 elemandan oluşmuştur.  İlk sekiz mod için doğal frekanslar elde 

edildi ve Tablo 7.4’de verildi.  Mod şekilleri ise Tablo 7.5’te görülmektedir. 

Tablo 7.4  Küçük hücreli bal peteği sandviç yapı kiriş ANSYS sonuçları 

Malzeme 
Özellikleri

Eşdeğer Parametre 
Denklemleri

Bulunan değerler

Ex 2.3 ( t / l )³ E 0.5429 MPa

Ey 2.3 (t / l)³ E 0.5429 MPa

Ez (t / l) E 1039 MPa

Gxy 0.57 (t / l)³ E 0.1346 MPa

Gyz 0.577 (t / l) G 217.5 MPa

Gxz 0.577 (t / l) G 217.5 MPa

νxy 0,99 0.99

νyz 0 0

νxz 0 0

ρ 1.155 (t / l) ρ 47.54 kg/m3

Mod ANSYS Sonuçu, (Hz)

1 (eğilme) 240.43

2 (yanal) 578.27

3 (eğilme) 618.68

4 (burulma) 769.47

5 (eğilme) 1108.3

6 (yanal) 1506.3

7 (burulma) 1532.9

8 (eğilme) 1655.3
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7.2 DMA ile Küçük Hücreli Bal Peteği Sandviç Plaka Titreşim Analizi 

Küçük hücreli bal peteği sandviç plaka için serbest sınır şartlarında deneysel modal 

analiz yapıldı (Şekil 7.4). Çubuk üzerinde 17 ölçüm noktası belirlenmiştir. Ölçüm için bir 

ivme ölçer 17 düğümüne yerleştirilmiş ve tüm noktalardan modal çekiç ile vurularak 17 

FTF ölçülmüştür. Ölçülen FTF’ler Şekil 7.5’te görülmektedir. Deneysel modal analizde ilk 

eğilme modu sağlıklı olarak elde edilebildi.  İlk eğilme modu 210.08 Hz olarak 

bulunmuştur. 

$   $   

Şekil 7.4 Deneysel çalışma için asılan küçük hücreli bal peteği yapı

$  

Şekil 7.5 Küçük hücreli bal peteği kiriş, deneysel FTF 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

1 

17 
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7.3 Küçük Hücreli Bal Peteği Sandviç Plaka Titreşim Analizleri Karşılaştırması  

 Küçük hücreli bal peteği sandviç plaka için sayısal ve deneysel modal analiz 

sonuçları Tablo 7.5’te karşılaştırıldı.  Deneysel çalışmada sadece iki mod iyi bir şekilde 

elde edilebildiğinden sadece bu modlar verilmiştir.  Aradaki fark %14.45 olmakla beraber 

mod şekilleri benzerdir. Diğer modlardaki uyumsuzluğun imalat hatalarından 

kaynaklandığı düşünülmektedir. 

Tablo 7.5 Küçük hücreli bal peteği ANSYS ve deneysel mod şekilleri karşılaştırması 

Mod ANSYS Sonuçları, (Hz) Deneysel Sonuçları, (Hz) Fark (%) 

1 (eğilme)

%14.45

2 (yanal) - -

3 (eğilme)

%26.26

4 (burul-
ma) - -

5 (eğilme) - -

769.47

�

210.08 

�

618.68

�

490.00

$

578.27

�

1108.3

�

240.43 

�
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6 (yanal) - -

7 (burul-
ma) - -

8 (eğilme) - -

Mod ANSYS Sonuçları, (Hz) Deneysel Sonuçları, (Hz) Fark (%) 

1655.3

�

1506.3

�

1532.9

�
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8.  BOŞ BÜYÜK HÜCRELİ BAL PETEĞİ SANDVİÇ PLAKLARIN TİTREŞİM  

 ANALİZLERİ 

 Daha önce de ifade edildiği gibi iki nedenden dolayı büyük hücreli bal peteği 

yapılmasına gerek duyulmuştur.  Birincisi, büyük hücreleri köpük ile doldurmak daha 

kolaydır.  İkincisi de, bu durumda SE modelde daha az sayıda eleman ve düğüm 

kullanıldığından çözüm süresi önemli ölçüde azalmaktadır. 

 Büyük hücreli bal peteği malzemesi 3003 H14 alüminyum alaşım olup malzeme 

özellikleri ve çubuk boyutları Tablo 8.1‘de verilmiştir.  Hücre ölçüleri Şekil 8.1’de ve 

sandviç plaka katmanlarının ölçüleri de Şekil 8.2 ’de verilmiştir. Bu plak için S-S ve A-S 

sınır şartları için hem ANSYS hem de DMA kullanılarak modal analiz yapılmıştır.

Tablo 8.1 Büyük hücreli bal peteği 3003 H14 alüminyum alaşım malzeme özellikleri ve 

boyutları 

$  

Şekil 8.1 Büyük hücreli bal peteği boyutları 

Elastisite Modülü, E 69.1 GPa

Poisson Oranı, ν 0.33

Yoğunluk, ρ 2730 kg/m3

Kayma Modülü, G 25.0 GPa

Bal Peteği Yükselliği 0.014 m

Kiriş Uzunluğu (S-S) 0.800 m

Kiriş Uzunluğu (A-S) 0.720 m

�

�

�

t = 0.10 mm

l = 15 mm

0.85

18.0 19.7

16.2

0.85

14.0
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$  

Şekil 8.2 Büyük hücreli bal peteği sandviç plakanın katman ölçüleri (mm), kapak-

yapıştırıcı-bal peteği-yapıştırıcı-kapak 

8.1 ANSYS ile Boş Büyük Hücreli Bal Peteği Sandviç Plak Titreşim Analizi 

 Bu plak için de yine çekirdek katın eşdeğer parametrelerinin bulunması için Gibson 

yöntemi kullanıldı. Hesaplanan değerler Tablo 8.2 de verilmiştir. 

Tablo 8.2 Büyük hücreli bal peteği eşdeğer parametreleri hesaplanması 

  

 Bu büyük hücreli bal peteği sandviç plaka için ANSYS APDL’de Shell 281 eleman 

tipi seçildi.  ‘‘Shell Lay-Up’’ modeli beş kat olarak kullanıldı (kapak - yapıştırıcı - bal 

peteği - yapıştırıcı - kapak).  Ağ yapısı 429 düğüm ve 120 elemandan oluşmuştur.  İki sınır 

�

�

�

t = 0.10 mm

l = 15 mm

0.85

18.0 19.7

16.2

0.85

14.00.25 
(yapıştırıcı)

Malzeme 
özellikleri

Eşdeğer parametre 
denklemleri

Bulunan değerler

Ex 2.3 ( t / l )³ E 0.04709 MPa

Ey 2.3 (t / l)³ E 0.04709 MPa

Ez (t / l) E 460.67 MPa

Gxy 0.57 (t / l)³ E 0.01167 MPa

Gyz 0.577 (t / l) G 96.167 MPa

Gxz 0.577 (t / l) G 96.167 MPa

νxy 1 0,99

νyz 0 0

νxz 0 0

ρ tartılarak hesaplandı 121.01 kg/m3
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şartı için sonuçları elde edilmiştir.  İlk altı mod için elde edilen doğal frekanslar Tablo 

8.3’de verilmiştir.  Mod şekilleri de Tablo 8.4’te görülmektedir. 

Tablo 8.3 Boş büyük hücreli bal peteği kiriş ANSYS sonuçları 

8.2 Boş Büyük Hücreli Bal Peteği Sandviç Plak İçin DMA 

 Deneysel titreşim çalışmaları için büyük hücreli alüminyum bal peteği üretimi el 

yordamı ile yapılmıştır. Bunun için alüminyum levhadan 15 mm genişliğindeki şeritler 

kesildikten sonra Şekil 8.3 de gösterilen kalıpta şekil verildi. Bunlar uygun düzende bir 

araya getirilerek yapıştırıldı. Daha sonra üst ve alt kapaklar balpeteğine yapıştırılarak 

sandviç yapı oluşturuldu.  

Burada şunu belirtmek gerekir ki, DMA da tek bir FTF kullanılarak doğal 

frekansları belirlemek mümkün olmakla beraber mod biçimlerini ve özellikle yüksek 

frekanslı mod biçimlerini elde etmek için mümkün olduğunca çok sayıda ölçüm noktası 

almak gerekir. Modal çekiç ile yapılacak ölçümler bu iş için oldukça elverişli olmasına 

rağmen test yapısının yapısı nedeniyle her noktada istenilen darbe kuvvetini uygulamak 

mümkün olmamıştır. Birçok noktada çift vuruş (double hit) olarak bilinen sorun ile 

karşılaştırılmıştır.  Bu durumdan kurtulmak için sarsıcı kullanılarak da test yapılmasına 

karar verilmiştir. Bunun için yapı üzerine sarsıcı ucundaki empedans ölçere ilave olarak 6 

ivme ölçer yerleştirilip 7 FTF birlikte ölçülmüştür. Ancak bu durumda her biri 5 g olan 

ivme ölçerlerin kütlesinin 409 g olan yapının modal özelliklerini etkilemesi kaçınılmaz 

olacaktır.  Buna rağmen mod biçimleri yanında ivmeölçerlerin kütle etkisini ve sarsıcı 

ucundaki itici çubuğun etkisini de görebilmek amacıyla boş büyük hücreli bal peteği 

Mod S - S sınır şartları için (Hz)  A - S sınır şartları için (Hz)

1 173.27 (eğilme) 34.506 (eğilme)

2 432.95 (eğilme) 104.85 (yanal)

3 497.92 (burulma) 194.79 (eğilme)

4 526.23 (yanal) 279.98 (burulma)

5 751.49 (eğilme) 479.28 (eğilme)

6 992.24 (burulma) 622.60 (yanal)
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sandviç plaka için 4 farklı test yapılmıştır: (i) tek noktadan çekiç ile tahrik ve aynı 

noktadan cevap ölçümü, (ii) 7 noktadan çekiç ile tahrik ve tek noktadan cevap ölçümü (iii) 

sarsıcı ile tek noktadan tahrik ve cevap ölçümü ve (iv) sarsıcı ile tahrik ve 7 noktadan 

cevap ölçümü.  Aşağıda içi boş balpeteği sandviç yapı için S-S ve A-S sınır şartları için 

yapılan testler ve sonuçları sunulmuştur.     

(  

Şekil 8.3 Büyük hücreli bal peteği alüminyum şekillendirilen kalıp 

8.2.1 DMA:  Boş Bal Peteği Sandviç Plak, S-S Sınır Şartları  

 Modal çekiç ile vuruş yaparken ölçüm kalitesini artırmak için vuruş noktaları 

büyük hücreli bal peteği sandviç yapının hücre duvarlarına gelecek şekilde seçildi (Şekil 

8.4).  Böylece vuruşlarda enerjinin bal peteğine düzgün bir şekilde yayılması sağlanmıştır. 

Bu plaka için ölçüm noktaları Şekil 8.5 ‘de görülmektedir.  

$  

Şekil 8.4 Büyük hücreli bal peteği düğüm konumları 
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(   

Şekil 8.5 Deneysel çalışma için asılan büyük hücreli bal peteği yapı (S-S sınır şartları) 

İlk olarak bir ivme ölçer plakanın bir ucuna yani birinci düğüme tutturuldu ve 7 

noktadan modal çekiç ile vuruş yapılarak FTF’ler ölçüldü. Ölçümler 0-500 Hz frekans 

aralığında yapılmıştır. Frekans çözünürlüğü 0.625 Hz dir. Bu durumda bir ölçüm peryodu 

1.6 s dir. Uygulanan tahrik kuvveti ve yapının ivme cevabı Şekil 8.6 de görülmektedir. 

Titreşim 1.6 s sonunda yeterince sönümlendiği için pencereleme (windowing) fonksiyonu 

uygulanmamıştır. 

  

  

Şekil 8.6 Modal çekiç ile uygulanan kuvvet ve yapının ivme cevabı 
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Uygulanan kuvvetin frekans spektrumu Şekil 8.7’de verilmiştir. Frekans 

spektrumunda çekiç ile uygulanan kuvvetin ilgilenen frekans aralığında yapıya yeterince 

enerji verdiği görülmektedir.  

 

�

Şekil 8.7 Modal çekiç ile uygulanan kuvvetin frekans spektrumu 

Ölçülen noktasal FTF ve koherans fonksiyonu da sırasıyla Şekil 8.8 ve 8.9’da 

verilmiştir. Ayrıca ölçülen tüm FTF’ler Şekil 8.10’da görülmektedir.  Bu durumda 0-500 

Hz aralığında dört doğal frekans elde edildi ve bunlar Tablo 8.4’te verildi. Tablonun ilk 

kolonundaki sonuçlar tek bir FTF’nin analizinden elde edilmiştir. 

$  

Şekil 8.8 Boş bal peteği kiriş modal çekiç ile 1 noktadan elde edilen deneysel FTF 

$  

   Şekil 8.9 Koherans fonksiyonu
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(  

Şekil 8.10 Boş bal peteği kiriş modal çekiç ile 7 noktadan elde edilen deneysel FTF 

 İkinci olarak tahrik için sarsıcı kullanılmıştır. Bu testtede yine frekans aralığı 0-500 

Hz ve çözünürlüğü 0.625 Hz olarak alınmıştır. Tahrik kuvveti olarak beyaz gürültü (White 

noise kullanılmıştır (Şekil 8.11)).  

�  

   Şekil 8.11 Tahrik sinyal, beyaz gürültü (white noise) 

Sarsıcı testinde hem tek ivme ölçer hem de 7 ivme ölçer kullanılarak ölçümler 

yapılmıştır. 7 noktadan elde edilen FTF’ler Şekil 8.12’de verildi.  Bu durumda 0-500 Hz 

aralığında dört doğal frekans elde edildi ve bunlar Tablo 8.4’te verildi. Tabloda 

görülebileceği gibi ivme ölçerlerin kütle etkisinin doğal frekansları azaltıcı yönde bir etkisi 

vardır. Özellikle sarsıcı ile tahrik durumunda 7 ivme ölçer kullanılarak ölçüm yapıldığında 

doğal frekanslar hissedilir bir şekilde düşmektedir. 
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$  

Şekil 8.12 Boş bal peteği kiriş, sarsıcı ile 7 noktadan elde edilen deneysel FTF 

Tablo 8.4 S-S sınır şartları için boş bal peteği sandviç plaka elde edilen DMA sonuçlar 

  

BOŞ 

  

Mod

Modal Çekiç ile Sarsıcı ile

1 Noktadan 7 Noktadan 1 Noktadan 7 Noktadan

Doğal 
Frekans 

(Hz)

Sönü
m 

Oranı

Doğal 
Frekans 

(Hz)

Sönü
m 

Oranı

Doğal 
Frekans 

(Hz)

Sönüm 
Oranı

Doğal 
Frekan
s (Hz)

Sönüm 
Oranı

1 134.52 %4.23 132.73 %4.08 132.88 %3.04 125.69 %3.30 

2 202.08 %3.66 200.09 %3.95 198.55 %4.21 183.99 %2.93

3 314.80 %3.23 318.83 %3.61 312.67 %3.02 293.11 %1.72

4 409.42 %3.87 367.28 %0.80 410.59 %4.46 394.43 %0.23
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8.2.2 DMA:  Boş Bal Peteği Sandviç Plak, A-S Sınır Şartları 

 Ankastre sınır şartı durumunda modal çekiç ile yapılan ölçümlerde çift vuruş 

sorunu yaşandığından sarsıcı ile tahrik tercih edilmiştir. Ölçüm konumları ve deney sistemi 

Şekil 8.13’de görülmektedir.  0-500 Hz frekans aralığında ölçülen FTF’ler Şekil 8.14’de ve 

analiz sonucunda elde edilen doğal frekanslar ve sönüm oranları Tablo 8.6 ‘da verilmiştir. 

$ $    

Şekil 8.13 Sarsıcı ile A-S testi için deney sistemi ve ölçüm noktaları 

$  

Şekil 8.14 A-S sınır şartları için boş bal peteği kiriş elde edilen deneysel FTF 

10.  SARSICI İLE DENEYSEL MODAL ANALİZ 

 Önceki bölümlerde modal çekiç ile tahrik kuvveti uygulanmak suretiyle deney 

numunelerinin modal analizi yapılmıştır. Ancak bazı vuruş noktalarında çift vuruş olayı ile 

karşılaşıldığından FTF’lerin kalitesi ve dolayısıyla analiz sonuçları olumsuz olarak etkilenmiştir. 

Deneysel modal analizde daha önce de bahsedildiği gibi kuvvet bir sarsıcı yardımıyla da 

uygulanabilmektedir. Bu çalışmada sarsıcı ile çoklu sinüs (multiple sine), kuş cıvıltısı (chirp) ve 

beyaz gürültü (White noise) gibi sinyaller kullanılarak boş ve PU köpük ile dolu balpeteği yapılar 

hem S-S ve hem de A-S sınır şartları için modal analizler yapılmıştır. En iyi sonuçlar beyaz gürültü 

durumu için elde edildiğinden bu analize ait sonuçlar bu bölümde verilmiştir.  

 S-S ve A-S sınır şartları için ölçüm noktaları Şekil 10.1.(a) ve (b) de gösterilmiştir. İvme 

ölçerlerin kütle etkisini artırmamak için sadece 6 noktadan ölçüm alınmıştır. Sarsıcı ucundaki 

çubuğa bir empedans ölçer (ivme ve kuvvet ölçer beraber) bağlanmış ve yapıya yapıştırıcı ile 

tutturulmuştur. Tahrik uygulama noktaları ilgilenilen frekans aralığındaki tüm modları görebilecek 

şekilde seçilmiştir. Ölçümde kullanılan parametre değerleri Tablo 10.1 de verilmiştir. Her iki sınır 

şartı için ölçüm ve analiz sonuçları aşağıdaki bölümlerde sunulmuştur 

%  

Şekil 10.1 Sarsıcı testleri için ölçüm noktaları a) S-S sınır şartlı ve b) A-S sınır şartı. 

  

.   

İvmeölçerler

1

2

3

4

5

6

Sarsıcı

İtici 
çubuk

İvme + kuvvet 
ölçer

İvme + kuvvet 
ölçer

İvmeölçerler

1

2

3

4

5

6

Sarsıcı

İtici 
çubuk

(a) (b)

10.  SARSICI İLE DENEYSEL MODAL ANALİZ 

 Önceki bölümlerde modal çekiç ile tahrik kuvveti uygulanmak suretiyle deney 

numunelerinin modal analizi yapılmıştır. Ancak bazı vuruş noktalarında çift vuruş olayı ile 

karşılaşıldığından FTF’lerin kalitesi ve dolayısıyla analiz sonuçları olumsuz olarak etkilenmiştir. 

Deneysel modal analizde daha önce de bahsedildiği gibi kuvvet bir sarsıcı yardımıyla da 

uygulanabilmektedir. Bu çalışmada sarsıcı ile çoklu sinüs (multiple sine), kuş cıvıltısı (chirp) ve 

beyaz gürültü (White noise) gibi sinyaller kullanılarak boş ve PU köpük ile dolu balpeteği yapılar 

hem S-S ve hem de A-S sınır şartları için modal analizler yapılmıştır. En iyi sonuçlar beyaz gürültü 

durumu için elde edildiğinden bu analize ait sonuçlar bu bölümde verilmiştir.  

 S-S ve A-S sınır şartları için ölçüm noktaları Şekil 10.1.(a) ve (b) de gösterilmiştir. İvme 

ölçerlerin kütle etkisini artırmamak için sadece 6 noktadan ölçüm alınmıştır. Sarsıcı ucundaki 

çubuğa bir empedans ölçer (ivme ve kuvvet ölçer beraber) bağlanmış ve yapıya yapıştırıcı ile 

tutturulmuştur. Tahrik uygulama noktaları ilgilenilen frekans aralığındaki tüm modları görebilecek 

şekilde seçilmiştir. Ölçümde kullanılan parametre değerleri Tablo 10.1 de verilmiştir. Her iki sınır 
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Tablo 8.6 Boş bal peteği, sarsıcı A - S sınır şartları, DMA sonuçlar 

8.3      Boş Büyük Hücreli Bal Peteği Sandviç Plak Titreşim Analizleri Karşılaştırması 

 Büyük hücreli bal peteği sandviç plaka için sayısal ve deneysel modal analiz 

sonuçları elde edilip Tablo 8.7’de karşılaştırıldı.  Yeterli sayıda ölçüm noktası olmadı için 

yüksek frekanslı mod biçimleri tam olarak elde edilememiştir.  Bundan dolayı denseysel 

sonuçlar için sadece üç mod verildi.  Deneysel ölçümlerde tek eksenli ivme ölçer kul-

lanıldığından sadece eğilme yönündeki modların elde edilebildiğini de hatırlatmak gerekir. 

Bu mod şekilleri düzgün çıkmasına rağmen sayısal sonuçlar ile karşılaştırıldığında ar-

alarında bir iki kat fark olduğu görülmektedir.  Bu farkın imalat hatalarından kaynaklandığı 

düşünülmekle birlikte test edilen numuneler için deneysel sonuçların daha doğru olduğu 

söylenebilir. Çünkü SE model imalat hatalarını içermemektedir.  

 A-S sınır şartları SE ve DMA sonuçları Tablo 8.8’de karşılaştırıldı.  Birinci eğilme, 

yanal ve burulma frekanslarındaki ve mod biçimlerindeki fark %10’dan daha küçüktür.

  

Mod Deneysel Sonuçları (Hz) Sönüm Oranı

1 31.44 %4.42

2 97.61 %5.34

3 117.36 %3.56

4 217.47 %4.72

5 303.45 %2.10

6 339.65 %4.76

7 388.82 %4.81
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Tablo 8.7 S-S sınır şartları için boş büyük hücreli bal peteği SE ve DMA (1 noktaya modal 
çekiç ile vuruldu) mod şekilleri karşılaştırması 

Mod ANSYS Sonuçları, (Hz) Deneysel Sonuçları, (Hz) Fark (%) 

1 
(eğilme)

%28.80

2 
(eğilme)

%114.2

3  
(burul-

ma)
- -

4 (yanal) - -

5 
(eğilme)

%138.7

526.23

�

173.27 

�

134.52 

$

497.92

�

432.95 

�

751.49

�

202.08

$

314.80 

$
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Tablo 8.8 Boş bal peteği A-S sınır şartları için ANSYS ve sarsıcı DMA mod şekilleri 

karşılaştırması 

6  
(burul-

ma)
- -

Mod ANSYS Sonuçları, (Hz) Deneysel Sonuçları, (Hz) Fark (%) 

992.24

�

Mod ANSYS Sonuçları, (Hz) Deneysel Sonuçları, (Hz) Fark (%) 

1. Eğilme %9.75

2. Yanal 97.61 %7.41

3. Eğilme %65.98

4. 
Burulma

303.45 %-7.73

- - -

279.98 

$

339.65 

�

31.44 

$

194.79 

$

117.36 

�

104.85 

$

34.506 

$
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5. Eğilme %120.7

6. Yanal 388.82 %60.31

Mod ANSYS Sonuçları, (Hz) Deneysel Sonuçları, (Hz) Fark (%) 

217.47 

�

479.28 

$

622.60 

$
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9.  PU KÖPÜK İLE DOLDURULMUŞ BAL PETEĞİ SANDVİÇ PLAK   

 TİTREŞİM ANALİZLERİ 

 Bu bölümde PU köpüğün balpeteği sandviç yapının dinamik özelliklerine etkisi 

incelenmiştir. PU köpük piyasadan hazır sprey olarak temin edilmiştir. Küçük hücreye 

köpük doldurmak zor olduğundan sadece büyük hücreli bal peteği yapısı PU köpük ile 

doldurulmuş ve hem sayısal hem de deneysel modal analiz icra edilmiştir.  Poliüretan 

köpüğünün malzeme özellikleri Tablo 9.1’de verilmiştir. 

Tablo 9.1 Poliüretan köpük malzeme özellikleri [18] 

  

9.1  Köpük ile Doldurulmuş Bal Peteği Sandviç Plak için ANSYS Titreşim Analizi 

 ANSYS Workbench’te öncelikle gerçek bir model yani basitleştirilmemiş bir model 

kullanılarak titreşim analizi yapıldı.  Dört farklı malzeme atandı:  poliüretan köpük, 

alüminyum bal peteği, alüminyum kapak ve yapıştırıcı.  İki farklı sınır şartları için ANSYS 

Workbench’ten elde edilen doğal frekanslar Tablo 9.2’de verilmiştir. 

Tablo 9.2  Köpük ile doldurulmuş bal peteği sandviç plaka ANSYS doğal frekansları  

Elastisite Modülü, E 2.0 MPa

Poisson Oranı, ν 0.25

Yoğunluk, ρ 15.0 kg/m3

Modları S - S sınır şartları için (Hz)  A - S sınır şartları için (Hz)

1 200.88 (eğilme) 39.80 (eğilme)

2 520.04 (eğilme) 116.64 (yanal)

3 582.72 (yanal) 233.43 (eğilme)

4 694.26 (burulma) 393.43 (burulma)

5 939.4 (eğilme) 600.17 (eğilme)

6 1381.2 (burulma) 692.57 (yanal)

7 1414.6 (eğilme) 1062.6 (eğilme)

8 1516.8 (yanal) 1172.0 (burulma)

9 - 1580.9 (eğilme)
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9.2 Köpük ile Doldurulmuş Büyük Hücreli Bal Peteği Sandviç Plak İçin DMA 

 Büyük hücreli bal peteği poliüretan sprey köpük ile dolduruldu.  Köpük hücrelerin 

içinde kuruduktan sonra bazı hücrelerde beklendiği gibi boşluklar olduğu görülmektedir 

(Şekil 9.1).  Bu nedenle köpüğün yoğunluğunun hücreden hücreye biraz değiştiği tahmin 

edilmektedir.  

 Köpüklü bal peteği sandviç plakanın hem S-S hem de A-S sınır şartları için ölçüm 

ve analizler yapılmıştır. Bu denylerde de yine sarsıcı ve modal çekiç kullanılarak farklı 

ölçme teknikleri uygulanmıştır. 

 

Şekil 9.1 Köpük ile doldurulmuş büyük hücreli bal peteği 

9.2.1 DMA:  Köpüklü Bal Peteği Sandviç Plak, S-S Sınır Şartları  

 Test edilen büyük hücreli balpeteği sandviç yapı Şekil 9.2’de görülmektedir. Büyük 

hücreli bal peteği olduğu için ölçüm noktaları dikkatli seçildi.  Şekil 8.4’e göre vurulacak 

düğümler seçildi.  İvme ölçer plakanın alt ucuna yani birinci düğüme yerleştirilmiştir. 
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Şekil 9.2 Deney için asılan köpük ile doldurulmuş büyük hücreli bal peteği 

 Köpük ile doldurulmuş büyük hücreli bal peteği plaka için çekiç ve sarsıcı kul-

lanılarak ölçülen  FTF’lerden bazıları Şekil 9.3 ve 9.4’te, analiz sonuçları da Tablo 9.3 de 

verilmiştir. 

$  

Şekil 9.3 Köpüklü bal peteği sandviç plaka, S-S sınır şartları, 1 noktadan modal çekiç FTF 
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Şekil 9.4 Köpüklü bal peteği sandviç plaka, S-S sınır şartları, 7 noktadan sarsıcı ile FTF 

Tablo 9.3 Köpüklü bal peteği sandviç plaka, S-S sınır şartları elde edilen DMA sonuçlar 

9.2.2 DMA:  Köpüklü Bal Peteği Sandviç Plak, A-S Sınır Şartları 

 PU köpük doldurulmuş sandviç yapının A-S sınır şartlarındaki testleri ve analizleri 

yapılmıştır. Sarsıcı kullanılarak yapılan teste ait resim ve ölçüm noktaları Şekil 9.5 de 

görülmektedir.  Ölçülen FTF’ler Şekil 9.6’da ve analiz sonucunda elde edilen doğal 

frekanslar Tablo 9.5 de verilmiştir. 

  

BOŞ 

  

Mod

Modal Çekiç ile Sarsıcı ile

1 Noktadan 7 Noktadan 1 Noktadan 7 Noktadan

Doğal 
Frekans 

(Hz)

Sönü
m 

Oranı

Doğal 
Frekans 

(Hz)

Sönü
m 

Oranı

Doğal 
Frekans 

(Hz)

Sönüm 
Oranı

Doğal 
Frekan
s (Hz)

Sönüm 
Oranı

1 117.96 %0.98 112.18 %1.42 112.92 %3.59 109.04 %3.49

2 210.93 %4.80 149.07 %1.24 156.08 %2.61 149.53 %3.03

3 275.42 %5.25 206.84 %0.83 217.56 %2.86 207.02 %3.72

4 288.66 %0.53 275.63 %0.62 284.29 %3.40 271.45 %3.63

5 397.02 %4.94 365.19 %6.55 410.37 %3.42 391.55 %4.09

6 475.10 %3.83 430.70 %5.03 481.47 %3.27 465.26 %4.26
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$ $    

Şekil 9.5 Sarsıcı A-S testi için 7 ölçüm noktaları 

$  

Şekil 9.6 A-S sınır şartları için boş bal peteği kiriş elde edilen deneysel FTF 

Tablo 9.4 Köpüklü bal peteği sandviç plaka, sarsıcı A - S sınır şartları, DMA sonuçlar 

10.  SARSICI İLE DENEYSEL MODAL ANALİZ 

 Önceki bölümlerde modal çekiç ile tahrik kuvveti uygulanmak suretiyle deney 

numunelerinin modal analizi yapılmıştır. Ancak bazı vuruş noktalarında çift vuruş olayı ile 

karşılaşıldığından FTF’lerin kalitesi ve dolayısıyla analiz sonuçları olumsuz olarak etkilenmiştir. 

Deneysel modal analizde daha önce de bahsedildiği gibi kuvvet bir sarsıcı yardımıyla da 

uygulanabilmektedir. Bu çalışmada sarsıcı ile çoklu sinüs (multiple sine), kuş cıvıltısı (chirp) ve 

beyaz gürültü (White noise) gibi sinyaller kullanılarak boş ve PU köpük ile dolu balpeteği yapılar 

hem S-S ve hem de A-S sınır şartları için modal analizler yapılmıştır. En iyi sonuçlar beyaz gürültü 

durumu için elde edildiğinden bu analize ait sonuçlar bu bölümde verilmiştir.  

 S-S ve A-S sınır şartları için ölçüm noktaları Şekil 10.1.(a) ve (b) de gösterilmiştir. İvme 

ölçerlerin kütle etkisini artırmamak için sadece 6 noktadan ölçüm alınmıştır. Sarsıcı ucundaki 

çubuğa bir empedans ölçer (ivme ve kuvvet ölçer beraber) bağlanmış ve yapıya yapıştırıcı ile 

tutturulmuştur. Tahrik uygulama noktaları ilgilenilen frekans aralığındaki tüm modları görebilecek 

şekilde seçilmiştir. Ölçümde kullanılan parametre değerleri Tablo 10.1 de verilmiştir. Her iki sınır 

şartı için ölçüm ve analiz sonuçları aşağıdaki bölümlerde sunulmuştur 

%  

Şekil 10.1 Sarsıcı testleri için ölçüm noktaları a) S-S sınır şartlı ve b) A-S sınır şartı. 
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 Önceki bölümlerde modal çekiç ile tahrik kuvveti uygulanmak suretiyle deney 

numunelerinin modal analizi yapılmıştır. Ancak bazı vuruş noktalarında çift vuruş olayı ile 

karşılaşıldığından FTF’lerin kalitesi ve dolayısıyla analiz sonuçları olumsuz olarak etkilenmiştir. 

Deneysel modal analizde daha önce de bahsedildiği gibi kuvvet bir sarsıcı yardımıyla da 

uygulanabilmektedir. Bu çalışmada sarsıcı ile çoklu sinüs (multiple sine), kuş cıvıltısı (chirp) ve 

beyaz gürültü (White noise) gibi sinyaller kullanılarak boş ve PU köpük ile dolu balpeteği yapılar 

hem S-S ve hem de A-S sınır şartları için modal analizler yapılmıştır. En iyi sonuçlar beyaz gürültü 

durumu için elde edildiğinden bu analize ait sonuçlar bu bölümde verilmiştir.  

 S-S ve A-S sınır şartları için ölçüm noktaları Şekil 10.1.(a) ve (b) de gösterilmiştir. İvme 

ölçerlerin kütle etkisini artırmamak için sadece 6 noktadan ölçüm alınmıştır. Sarsıcı ucundaki 

çubuğa bir empedans ölçer (ivme ve kuvvet ölçer beraber) bağlanmış ve yapıya yapıştırıcı ile 

tutturulmuştur. Tahrik uygulama noktaları ilgilenilen frekans aralığındaki tüm modları görebilecek 

şekilde seçilmiştir. Ölçümde kullanılan parametre değerleri Tablo 10.1 de verilmiştir. Her iki sınır 

şartı için ölçüm ve analiz sonuçları aşağıdaki bölümlerde sunulmuştur 

%  

Şekil 10.1 Sarsıcı testleri için ölçüm noktaları a) S-S sınır şartlı ve b) A-S sınır şartı. 

  

.   

İvmeölçerler

1

2

3

4

5

6

Sarsıcı

İtici 
çubuk

İvme + kuvvet 
ölçer

İvme + kuvvet 
ölçer

İvmeölçerler

1

2

3

4

5

6

Sarsıcı

İtici 
çubuk

(a) (b)

A-S sınır şartı  

aFRFs 7 nodes shaker 801 line boş 

  

KÖPÜKLÜ  

  

FREE  

SHAKER KÖPÜKLÜ 

Mod Deneysel Sonuçları, (Hz) Sönüm Oranı (%)

1 32.50 %4.24

2 83.46 %2.97

3 92.63 %3.40

4 161.05 %1.11

5 190.63 %3.92

6 196.2 %0.91

7 263.55 %4.28

8 314.70 %3.01

9 389.79 %4.19

$66



9.3 Köpük ile Doldurulmuş Bal Peteği Sandviç Plak Titreşim Analizleri   

 Karşılaştırması 

 PU köpük dolu balpeteği yapının S-S sınır şartları  SE ve DMA ile elde edilen 

sonuçları Tablo 9.5’te karşılaştırıldı.  Deneysel çalışmada sadece üç mod iyi bir şekilde 

elde edilebildiğinden sadece bu üç mod verilmiştir.  Deneysel mod şekilleri ANSYS ile 

bulunanlarla uyuşmasına rağmen doğal frekanslar arasındaki fark bir iki kat olmuştur. Bu 

farkın daha önce de belirtildiği gibi imalat hatalarından kaynaklandığı tahmin edilmektedir.  

 A-S sınır şartları SE ve DMA sonuçları da Tablo 9.6’da karşılaştırıldı.  Birinci 

eğilme mod biçimdeki fark %22.46’dır.

Tablo 9.5  S-S sınır şartları köpük ile doldurulmuş bal peteği ANSYS workbench ve 1 
noktadan modal çekiç ile DMA mod şekilleri karşılaştırması 

Mod ANSYS Sonuçları, (Hz) Deneysel Sonuçları, (Hz) Fark (%) 

1 
(eğilme)

%70.29

2 
(eğilme)

%146.5

3 (yanal) - -

582.72

$

 

 

 

 

 

200.88

$

 

 

 

 

 

210.93

$

520.04

$

 

 

 

 

 

117.96 

$
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4  
(burulma)

- -

5 
(eğilme)

%225.4

6  
(burulma)

- -

7 
(eğilme)

- -

8 (yanal) - -

Mod ANSYS Sonuçları, (Hz) Deneysel Sonuçları, (Hz) Fark (%) 

1516.8

$

 

 

 

1381.2

$

 

 

 

 

 

694.26

$

 

 

 

 

 

288.66 

$

1414.6

$

 

 

 

939.4

$

 

 

 

 

 

$68



Tablo 9.6 Köpüklü bal peteği, A - S sınır şartları, sarsıcı DMA sonuçlar 

Mod ANSYS Sonuçları, (Hz) Deneysel Sonuçları, (Hz) Fark (%)

1 %22.46

2 83.46 %39.70

3 %152.0

4 161.05 %144.1

5 %215.7

393.43 (burulma) 

$

39.80 (eğilme) 

$

32.50 

$  

233.43 (eğilme) 

$

92.63 

$  

116.64 (yanal) 

$

600.17 (eğilme) 

$

190.63 

�
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6 196.2 %252.9

7 %303.8

8 314.70 %272.1

9 %305.1

Mod ANSYS Sonuçları, (Hz) Deneysel Sonuçları, (Hz) Fark (%)

1172.0 (burulma) 

$

692.57 (yanal) 

$

263.55 

�

1580.9 (eğilme) 

$

1062.6 (eğilme) 

$

389.79 

$
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10. SONUÇLAR 

 Bal peteği sandviç yapıların dinamik karakteristiklerinin bilinmesi pratik açıdan 

önem arzetmektedir. Bu çalışmada bu yapıların titreşim analizleri hem sayısal hem de 

deneysel olarak yapılıp karşılaştırılmıştır.  Balpeteği yapıların SE modellerinin 

oluşturulması zor olduğundan ve çözüm süresi oldukça uzun olduğundan literatürde 

eşdeğer modeller önerilmiştir. Bu çalışmada   literatürdeki iki eşdeğer model teorisi 

doğrulanmaya çalışılmıştır.  Alüminyum kapak, küçük hücreli bal peteği sandviç plaka, 

büyük hücreli bal peteği sandviç plaka ve PU köpük ile doldurulmuş büyük hücreli bal 

peteği sandviç plaka yapıları olmak üzere dört farklı yapının sayısal ve deneysel titreşim 

analizi sonuçları elde edilip karşılaştırılmıştır. 

 Bu çalışmada, öncelikle eşdeğer modellerden biri olan Gibson yöntemi doğrulandı.  

Literatürden iki bal peteği sandviç plakaya Gibson yöntemi uygulanıp sonuçları 

karşılaştırıldı.  Tablo 5.3’e bakarak Gibson yöntemi için %1.60 - 5.06 arasında bir fark 

olduğu söylenebilir.  Diğer plaka için bu çalışmadaki basitleştirilmemiş model ve Gibson 

modeli Tablo 5.16’da karşılaştırılmıştır.  Doğal frekanslar arasında %4.02 - 8.75’lik bir 

fark ortaya çıkmıştır.  Bundan dolayı Gibson yönteminin doğru bir eşdeğer model olduğu 

söylenebilir. 

 Deneysel çalışmaların güvenilirliğini ortaya koymak için basit bir çubuk ve bir plak 

için doğrulama çalışmaları yapılmıştır.  Bu yapıların deneysel ve SE yöntemleri ile titreşim 

analizleri yapılarak sonuçları karşılaştırıldı. Çelik çubuk için Tablo 6.4’teki 

karşılaştırılmaya göre %0.04-%0.20 arasında bir fark ortaya çıkmıştır. Alüminyum kapak 

için Tablo 6.8’de yapılan karşılaştırmada ilk beş frekans için fark %2.56 - 6.16 arasındadır. 

Bu farkın kabuledilebilir sınırlar içerisinde olması her iki yöntemin de gerçeğe yakın 

sonuçlar verdiğini göstermektedir. 

 Üç farklı bal peteği sandviç plaka için hem sayısal hem de deneysel titreşim analizi 

yapıldı.  Küçük hücreli bal peteği sandviç plakanın deneysel analizi için sadece ilk mod 

şekli doğru çıktı.  Tablo 7.4’te deneysel sonuçlar sayısal sonuçlar ile karışlaştırıldı.  İlk 

mod için %14.45’lik bir fark orataya çıktı.  Bu hata kaynağının yapıştırıcı olması yüksek 

ihtimaldir. Yapıştırıcının yeterli olmadığı yerlerde kapaklar balpeteği katmanına iyi 

yapışmamıştır. Yapıştırıcı tüm yüzey boyunca homojen olmadığında da plakanın rijitliği 

düğümden düğüme değişecektir. 
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 Küçük hücreli bal peteğinin hücreleri kullanılan PU köpüğün özelliğinden dolayı 

tam olarak doldurulamadı.  Ayrıca küçük hücreli bal peteğinin gerçek modeli ile yapılan 

ANSYS analizleri sırasında çok büyük hafızaya ve hıza ihtiyaç duyulması nedeniyle 

bilgisayarda zaman sorunu yaşanmış ve analizler gerçekleştirilememiştir. Bu sorunu 

aşabilmek için daha büyük hücrelere sahip bal petekleri el yordamı ile imal edilmiş ve 

analiz gerçekleştirilmiştir.   

 Boş büyük hücreli bal peteği sandviç plakanın sayısal ve deneysel titreşim analizi 

sonuçları karşılaştırılınca bir iki kat fark ortaya çıktığı görülmüştür (Tablo 8.6).  Benzer 

biçimde köpük ile doldurulmuş büyük hücreli bal peteği sandviç plakasının sayısal ve 

deneysel titreşim analizi sonuçları karşılaştırılınca da iki üç kat fark ortaya çıktı (Tablo 

9.6).  Bu farkın nedeni şöyle açıklanabilir: Büyük hücreli bal peteği yapısı alüminyum 

levhadan el ile kesilen şeritlerin yapıştırılmasıyla elde edilmiştir.   Kesme işlemi el ile 

yapıldığı için her yerde düzgün bir boyut elde edilememiştir.  Kesildikten sonra şeritlerin 

yüksekliğinin 14,5 ± 0,5 mm olduğu görülmüştür.  Bundan dolayı yapıştırıcı bal peteğinin 

tüm kenarlarını düzgün dağıtılamadığı gibi kapaklar da düzgün bir şekilde yapıştırılamadı. 

Bundan dolayı kapaklar ve balpeteği arasında istenmeyen boşluklar oluşmuştur.  Ek olarak 

yapıştırıcı düzgün sürülemediğinden malzeme özelliklerinin düğümden düğüme değişmesi 

kaçınılmazdır.  Ayrıca köpük ile doldurulmuş sandviç plaka için köpüğün içinde boşluklar 

meydana gelmektedir.  Bu nedenle köpüğün yoğunluğu bal peteğinin her hücresinde 

farklıdır.  İmalat hataları enaza indirildikten sonra model güncelleme yöntemleri 

kullanılarak sonlu elemanlar çözümlerinin deneysel sonuçlara uydurulmasına çalışılabilir. 

 Bu çalışmada PU köpüğün balpeteği sandviç yapının dinamik özellikleri üzerindeki 

etkisi de incelenmiştir. İçi boş bal peteği sandviç plaka ve PU köpük ile doldurulmuş 

büyük hücreli bal peteği sandviç plaka sayısal analiz sonuçları Tablo 10.1’de karşılaştırıldı.  

Buna göre köpük ile doldurulmuş bal peteği sandviç plakanın doğal frekansları boş 

plakanınkilerden %20 - %40 oranında daha büyük çıktı.
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Tablo 10.1 S-S sınır şartları için köpük ile doldurulmuş ve boş büyük hücreli bal peteği 

sandviç plak SE analizi sonuçlarının karşılaştırması 

 Büyük hücreli bal peteği sandviç plaka ve PU köpük ile doldurulmuş büyük hücreli 

bal peteği sandviç plaka deneysel analiz sonuçları Tablo 10.2’de karşılaştırıldı. 

Tablo 10.2 S-S Sınır şartı için köpük ile doldurulmuş ve boş bal peteği sandviç plakalarının 

DMA sonuçlarının karşılaştırması (1 noktadan, modal çekiç) 

Köpük ile doldurulduğunda ilk dört eğilme doğal frekansı için fark %10’dan daha 

düşük olarak elde edilmiştir.  

 A-S sınır şartları için boş ve köpüklü bal peteği plakaların SE sonuçları Tablo 

10.3’te karşılaştırıldı.  Doğral frekansların arasındaki farkı %11.24 - 40.52 oldu. 

Modları Köpük ile, (Hz) Boş bal peteği, (Hz) Fark (%) 

1 200.88 (eğilme) 173.27 (eğilme) %27.61

2 520.04 (eğilme) 432.95 (eğilme) %20.11

3 582.72 (yanal) 497.92 (burulma) -

4 694.26 (burulma) 526.23 (yanal) -

5 939.4 (eğilme) 751.49 (eğilme) %25.00

6 1381.2 (burulma) 992.24 (burulma) %39.20

7 1414.6 (eğilme) - -

8 1516.8 (yanal) - -

Modları Köpük ile, (Hz) Boş bal peteği, (Hz) Fark (%) 

1 (eğilme) 117,96 134,52 %-12,31

2 (eğilme) 210,93 202,08 %4,38

3 (eğilme) 288,66 314,80 %8,30

4 (eğilme) 397,02 409,42 %3,03
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Tablo 10.3 A-S sınır şartları için boş ve köpüklü bal peteği plakaların SE sonuçları 

karşılaştırılması 

 A - S sınır şartı için köpüklü ve boş bal peteği sandviç plakaların sarsıcı ile yapılan 

DMA sonuçları Tablo 10.4’da karşılaştırıldı.  Birinci doğal frekans için sadece %3.37 iken 

diğer frekanslardan %30’un üzerindedir.  Bu durum için modal modların uyumunu 

gösteren MAC (Modal Assurance Criteria) grafiği de çizilmiştir (Şekil 10.1).  Bu grafikte 

anlaşıldığı üzere doğal frekansların değerlerinin ve sırasının değiştiği görülmektedir. 

 

$   

Şekil 10.1 A-S sınır şartında boş ve dolu yapı için modal güvence grafiği 

Mod Köpüklü (Hz) Boş (Hz) Fark (%)

1 (eğilme) 39.80 34.506 %15.34

2 (yanal) 116.64 104.85 %11.24

3 (eğilme) 233.43 194.79 %19.84

4 (burulma) 393.43 279.98 %40.52

5 (eğilme) 600.17 479.28 %25.22

6 (yanal) 692.57 622.60 %11.24

7 (eğilme) 1062.6 -

8 (burulma) 1172.0 -

9 (eğilme) 1580.9 -
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Tablo 10.4 A - S sınır şartları köpüklü ve boş bal peteği sandviç plakaların sarsıcı DMA 

sonuçları karşılaştırılması 

Sonuçlar özetlenecek olursa, balpeteği sandviç yapıların hücre içlerinin poliüretan 

köpük ile doldurulması durumunda yapının doğal frekans, mod biçimleri ve sönüm 

oranları değişmektedir.  Bu bakımdan bu yapılar PU köpük doldurulması gerektiğinde 

şayet dinamik özelliklerin etkilenmesi istenmiyorsa dikkat edilmesi gerekir.  Böyle bir 

durumda bir optimizasyon çalışması yapılarak kısmi doldurma yapılması önerilmektedir.  

Balpeteği sandviç yapının titreşim analizlerinde deneysel sonuçların SE sonuçlarından 

farklı olduğu görülmüştür.  Bu farkın en aza indirilmesi sonraki çalışmalar için faydalı 

olacaktır.  Bu bakımdan modal güncelleme teknikleri kullanılarak SE modelin deneysel 

sonuçlara uydurulması sağlanmalıdır.  

Köpüklü Boş Fark

Mod Doğal Frekans 
(Hz)

Sönüm 
Oranı

Doğal 
Frekans (Hz)

Sönüm 
Oranı

Doğal 
Frekans (Hz)

1 32.50 %4.24 31.44 %4.42 %3.37

2 83.46 %2.97 97.61 %5.34 %-14.49

3 92.63 %3.40 117.36 %3.56 %-21.07

4 161.05 %1.11 217.47 %4.72 %-25.94

5 190.63 %3.92 303.45 %2.10 %-37.18

6 196.2 %0.91 339.65 %4.76 %-42.24

7 263.55 %4.28 388.82 %4.81 %-32.22

8 314.70 %3.01 - - -

9 389.79 %4.19 - - -
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