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ABSTRACT

A SYSTEM IMPLEMENTATION FOR ANALYZING AND
TRACKING MOTILE OBJECTS IN BIOMEDICAL IMAGES

Hamza Osman ILHAN

Department of Computer Engineering
PhD. Thesis

Adviser: Prof. Dr. Nizamettin AYDIN

Spermiogram is the first step of the infertility diagnosis. Computer Aided Sperm
Analysis (CASA) and Visual Assessment (VA) are two evaluation techniques employed
in spermiogram analyses. The VA is carried out by manually observing the sperm on
counting chambers. Hence, analysis and diagnosis strongly depend on the skills and
experiences of the observers. On the other hand, the CASA is a more advanced
technology due to the improved computerized techniques and minimization of human
intervention. However, it is more expensive than VA since it is an integrated computer
based system and requires exhaustive parameter setting process.

In this thesis, we aim to develop a combinational approach using the smartphone and
computer for the sperm concentration and motility analysis. Smartphone was utilized to
obtain images similar to the VA technique. The acquired samples were analyzed by
using computerized methods to eliminate the observer variability. In this thesis, a
software named as Computerized Sperm Counting and Trajectory Analyzing Software
(CSCTAS) for automatically counting and tracking the sperm over one of the
commonly using counting chamber, is proposed. Proposed software consists of seven
modules executed sequentials: (1) Data Acquisition and Organization, (2) Automatic
Grid and Region of Interest (ROI) detection and extraction, (3) Video Stabilization, (4)
Motile/Immotile Spermatozoon Detection, (5) Spermatozoa Counting, (6) Motile
spermatozoa tracking, and (7) Trajectory Classification. Each module consists of
various combination of image processing techniques. Firstly, data acquisition and
organization were performed using a novel approach to provide inexpensive design
contrary to traditional CASA systems. Secondly, Region of Interest (ROI) extraction
was realized by a combinational approach of line detection and segmentation methods.
Then, feature matching based video stabilization was introduced to eliminate the
vibrations occurred during the data acquisition step. In this respect, different descriptors

xii



were tested. The fourthly, Background and foreground extraction techniques were
employed in immotile and motile spermatozoon detection process, respectively.
Additionally, active contour, dual thresholding and clustering were implemented to
enhance the segmentation of immotile spermatozoon in this step as well. Thereafter,
detected sperms were counted by pixel based blob analysis. Motile spermatozoa were
tracked by the Mean Shift and the Kalman Filters for the motility analysis. Various
motility features were extracted from the trajectories to classify them into four classes.
As the final step, results were reported to the users.

Each module of the proposed software was individually tested. Two approaches of the
automatic ROI detection and extraction steps were tested and compared on 80 videos of
20 subjects. Video stabilization idea was evaluated on 42 videos of 14 subjects. Two
techniques were performed for the sperm concentration analysis. The performance of
the Fuzzy C-Means based segmentation was measured on 15 videos of 5 subjects. A
more advanced technique, dual thresholding and active contour based segmentation,
was evaluated on 32 videos of 8 subjects. Finally, 32 videos of 8 subjects were used for
the verification of the tracking technique. As a result, totally 201 semen videos obtained
at different times from 55 subjects were included for the determination of the proposed
spermiogram analysis approach.

In the clinical research, we initilaly compared the counting results of CASA system,
VA, and proposed CSCTAS with the proper concentration calculation. Normally,
experts separately and manually count the motile and immotile spermatozoon within 16
and 10 squares to generalize the result as million per ml in the VA technique,
respectively. According to the concentration analysis, proposed CSCTAS resulted in
similar outputs as VA. It has less variation for immotile spermatozoa counting and is
more efficient than the VA for the determination of specific diseases such as
Asthenospermia. It is known that conventional SQA-Vision CASA is useless in the case
of less than 5 million sperm cells. Therefore, presented approach is more efficient in the
infertility diagnosis. In the motility analysis, CSCTAS gives the similar outputs when
compared to SQA-Vision CASA. The SQA-Vision is more reliable technique when
compared to VA in motility analysis because it is impossible to track single
spermatozoa by eye for a period of time within other spermatozoa. Therefore the
similarities between SQA-Vision and proposed CSCTAS is more meaningfull than the
comparision with VA technique for the motility analysis. According to the motility
analysis results, CSCTAS is also efficient, cheaper and easier to use in labs for the
motility analysis when compared to the conventional CASA systems.

According to the obtained concentration and motility results, the proposed smartphone
based sperm analysis can be adapted with the developed with the proposed CSCTAS in
laboratories. Our proposed system stands out by its modularity, functionality, accuracy
and low cost. Additionally, it eliminates the human factor in VA and CASA.

Key words: Spermiogram, Makler Counting Chamber, Semen Analysis, Sperm
Counting, Computer Aided Diagnosis Systems, Clinical Research
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OZET

BiYOMEDIKAL GORUNTULERDE HAREKETLI NESNELERIN
ANALIZI VE TAKIBI iCiN BiR SISTEM GERCEKLEMESI

Hamza Osman ILHAN

Bilgisayar Miihendisligi Anabilim Dali
Doktora Tezi

Tez Damismani: Prof. Dr. Nizamettin AYDIN

Sperm Saymu infertilite teshisinin ilk asamasidir. Bilgisayar Destekli Sperm Analizi
(BDSA) ve Gorsel Degerlendirme (GD) sperm analizlerinde kullanilan iki
degerlendirme teknigidir. GD, saymim c¢emberi lizerinden sperm gozlemleyerek
gerceklestirilir. Bu nedenle, teshis genelde beceri ve deneyime baghidir. Ote yandan,
BDSA, gelismis bilgisayar teknikleri ve insan etkilerinin izolesi sayesinde daha gelismis
bir teknolojidir. Ancak, timlesik bir sistem oldugundan GD tekniginden daha pahali bir
analizleme ¢oztimudiir. Buna ek olarak, BDSA sistemlerinde, ugrastirici bir parametre
belirleme islemi gereklidir. Sistemin basarimi, belirlenen parametrelerle bagintilidir.

Bu tez caligmasinda akilli telefon ve bilgisayar kullanarak sperm konsantrasyonu ve
motilite analizi i¢in kombinasyonel bir yaklasim gelistirmeyi amachyoruz. Akilli
telefon, GD teknigine benzer goriintiiler elde etmek i¢in kullanilmigtir. Sonrasinda,
insan etkilerini ortadan kaldirmak icin bilgisayarla analiz yontemleri kullanilarak
numune analiz edilir. Calisma kapsaminda, sperm sayim ¢emberleri iizerinden elde
edilen goriintiileri analiz etmek amaciyla Bilgisayar Destekli Sperm Sayma ve Hareket
Analiz Yazilimi (BSSHAS) adli bir yazilim 6nerildi. Yazilim, sirali olarak kosturulan
yedi modiilden olusmaktadir: (1) Veri Toplama ve Organizasyon, (2) Otomatik Izgara
Tespiti ve Ilgi Alanm cikartimi, (3) Video Sabitleme, (4) Hareketli / Hareketsiz Sperm
Hiicresi Algilama, (5) Spermlerin Sayimi, (6) Hareketli Sperm Takibi ve (7) Yoriinge
Siiflandirmasi.  Her adim, gorintii isleme tekniklerinden olusan ¢esitli
kombinasyondan olusur. Oncelikle, veri toplama ve organizasyonu, geleneksel BDSA
sistemlerinin aksine, daha az maliyetli bir tasarim saglamak icin yeni bir yaklasim
kullanilarak gergeklestirildi. Sonrasinda, yazilim tarafinda, Ilgi Alanlar1 (IA) c¢ikarma
islemi, cizgi algilama ve bdliitleme yontemlerinin kombinasyonel bir yaklasimi ile
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gerceklestirildi. Ardindan, veri toplama asamasinda olusan titresimleri ortadan
kaldirmak icin 6zellik esleme tabanli video sabitlemesi iizerine algoritma gelistirildi.
Ozelliklerin ¢ikartilmas1 anlaminda, farkli tanimlayicilar test edildi. Dordiincii olarak,
hareketsiz ve hareketli sperm hiicresinin algilamasinda sirasiyla arka plan ve 6n plan
cikartma teknikleri kullanildi. Ek olarak, bu asamada hareketsiz sperm boliitleme
basarimini arttirmak i¢in aktif kontur, ¢ift esikleme ve kiimeleme yontemleri uygulandi.
Bundan sonra tespit edilen spermler piksel tabanli blob analizi ile sayildi. Hareketlilik
analizi i¢in hareketli olarak tesbit edilen spermler, Mean Shift ve Kalman Filtreleri ile
takip edildi. Yoriingelerden cesitli hareket 6zellikleri ¢ikarilarak dort sinifa ayrildi. Son
adim olarak, sonuclar kullanicilara bildirildi.

Onerilen yazilimimn her modiilii ayr1 ayr1 test edildi. Otomatik IA saptama ve cikartma
adiminda, iki yaklagim incelendi ve 20 hastadan elde edilen 80 video {iizerinden
denendi. Sonuglar karsilastirildi. Video sabitleme c¢alismasi, 14 hastadan elde edilen 42
video tizerinde degerlendirildi. Sperm konsantrasyon analizi i¢in iki teknik test edildi.
Fuzzy C-Means tabanli bolimlemenin performansi 5 denckten elde edilen 15 video
tizerinde Ol¢iildii. Daha gelismis bir teknik, cift esikleme ve aktif kontur tabanl
boliitleme, 8 denegin 32 videosunda degerlendirildi. Son olarak, 8 hastadan elde edilen
32 video, izleme tekniginin dogrulanmasi ig¢in kullanildi. Sonug olarak, Onerilen
spermiogram analiz yaklagiminin test asamasina, 55 denekten farkli zamanlarda elde
edilen toplam 201 semen videosu dahil edilmistir.

Klinik arastirmada, baslangi¢ olarak BDSA sistemi, GA ve onerilen BSSHAS sperm
konsantrasyon sayim sonuglarini uygun yogunluk hesaplama teknigi kullanarak
karsilastirdik. GA tekniginde, uzmanlar manuel olarak hareketli ve hareketsiz spermleri
10 ve 16 kare genellemesini kullarak saymaktadirlar. Konsantrasyon analiz sonuglarina
gore, onerilen BSSHAS, GA ile benzer giktilar iiretmistir. Onerilen yontem, hareketsiz
spermlarin sayiminda daha tutarli ve az dalgalanma gostermektedir.  Ayrica,
Asthenospermi gibi spesifik hastaliklarin belirlenmesi igin GA'den daha etkilidir.
Geleneksel SQA-Vision BDSA sisteminin ise 5 milyondan az sperm hiicresi bulunan
orneklerde analiz yapamayacagi bilinmektedir. Bu nedenle, sunulan yaklasim, kisirlik
tanisinda daha etkilidir. Hareketli sperm analizinde ise, 6nerilen BSSHAS, SQA-Vision
CASA ile karsilastirildiginda benzer ¢iktilar vermektedir. Tek bir spermatozanin diger
spermler igerisinde bir siire boyunca manuel olarak gozle izlenmesinin gii¢ olmasindan
dolayi, SQA-Vision, hareketli hiicre sayimi analizinde, GA teknigine gore daha
giivenilir bir tekniktir. Dolayisiyla, SQA-Vision ile onerilen BSSHAS arasindaki
benzerlikler, hareketlilik analizi igin GA teknigi ile karsilastirmadan daha anlamlidir.

Elde edilen konsantrasyon ve hareket analizi sonuglarina gore, onerilen akilli telefon
temelli sperm analiz yaklasimi laboratuarlarda uyarlanabilecegi kanitlanmaktadir.
Onerilen sistemimiz modiilerlik, islevsellik, dogruluk ve diisiik maliyet ile dikkat
¢ekmektedir. Buna ek olarak, GA ve BDSA'deki insan faktoriiniine bagli hatalari
ortadan kaldirmaktadir.

Anahtar Kelimeler: Spermiogram, Makler Sayma Cemberi, Sperm Analizi, Sperm
Sayimi, Bilgisayar Destekli Tan1 Sistemleri, Klinik Aragtirma
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CHAPTER 1

INTRODUCTION

1.1 Literature Review

Fertility is necessary and substantial function for human being to sustain the generation.
In every segment of society, it is accepted as the key factor for the future. On the other
hand, infertility is scientifically described in literature as being unable to conceive after
1-year relationship having regular sexual intercourse without any contraceptive
substances [1]. Currently, it has become an increasingly significant worldwide problem
according to one of the recently published statistical report [2] and affected the people,
mentally and physically. Roser significantly emphasized in the report that the global
fertility rates are decreased from 4.97 to 1.99 between 1950 and 2015 [2]. Figure 1.1
shows the total fertility rates (TFRs), which represents the number of children born to a
woman, in Turkey, and the cumulative variability over the continents and world by

years.

x““—\ e = World

e . . =~ — Central America
‘—*_._:: T = Asia
" — Turkey
— South America
— Narthern America
— Europe

1950 1960 1970 1980 1990 2000 2010 2015

Figure 1.1 Total Fertility Rates (TFRs)



There might be many reasons behind the infertility problem which can be categorized as
male, female, both side based or unexplained reasons. Figure 1.2 indicates the infertility

rates of occurrence for specific reasons according to World Health Organization (WHO)

3].

Unexplained
25%

g 4

Female
30%

Figure 1.2 Infertility rates for specific reasons

Men are solely responsible for the difficulty in 20-25% of the time, and are involved in
20-25% of the time along with their female partners [3]. Consequently, male factor

equals to the female based problems and effective in 30% of all infertility problems.

More specifically to the male infertility, another published report about the sperm
quality and reproduction emphasized that the sperm concentration is decreasing to
critical level, gradually. Carlsen et al. revealed that the number of sperm (sperm/ml) in
the world surprisingly decreased by 50% in last 50 years [4]. In 1940, 113 million/ml
was accepted as normal sperm concentration, but in 1990, it was described as 66
million/ml. After 8 years, Swan et al. indicated that 37 million/ml is a new normal
sperm concentration [5]. The World Health Organization (WHO) also drew attention to
the trouble on sperm quality. They published several manuals by updating over years to
establish or validate reference limits for semen parameters such as volume,
concentration, total sperm count, motility etc. 15 million/ml is stressed out as the
normal sperm concentration in the last edition of the manual [3]. As a result, the sperm

concentration is decreased 100 million from 1940 to 2010 and the reasons are not
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clearly and fully described. The changes of motility rate is also reported as decreasing
from 60% to 30% between 1970 and 2010. The investigation of the reasons of decrease
has become the essential and crucial research topic for multidisciplinary researchers.
Many researchers seek diagnostic semen analysis to reveal the causes of the male factor
infertility. In this respect, medical doctors recommend the semen analysis tests as a first

assessment.

Typical semen analysis named as spermiogram include the parameters as sperm
concentration, total sperm number, percentage of motile sperm, percentage of forward
progression, and percentage of normal morphological sperm shape. Tests are carried out
using two evaluation techniques based on computerized or visual assessment [6]. In
visual assessment technique, different standardization equipment should be employed
such as Makler [7] or Hemocytometers [8] [9], to generalize the cell numbers in per ml.
According to [10], Makler is one of the promising materials and the most employed
chamber in laboratories. Today, visual assessment techniques is fast, heuristic and the
most used technique in laboratories. But, the results strongly depend on the observer
variability. Even if there are several practical guides to standardize the procedures such
as [3, 6 and 11], the experience and the expertise are still the key parameters in the
analysis. On the other hand, some laboratories utilize an automated analysis system
named as Computer Aided Sperm Analysis (CASA) in computerized techniques. It is
costly due to being an integrated system including embedded camera, microscope and
computer. Additionally, the parameters cannot be readjusted and results cannot be
verified by experts/doctors [12].

Computer based sperm analysis mainly utilizes two microscope imaging techniques; a)
Phase-Contrast and b) Fluorescence dying [12, 13]. The Phase-Contrast microscopic
images are obtained by using optical-microscopy. Studies in this kind of images mostly
focus on shape analyses such as acrosome classification [14, 15, 16], tail/head detection
[17, 18, 19], sperm counting [20, 21, 22], and morphological abnormality detection
[23]. Additionally, several studies are reported about computerized analyzing motility
of the sperms using Phase-Contrast imaging technique [24, 25]. However, challenging
issues such as occlusion, illumination changes, different image sets, camera effects, and
noise are presented in the related papers as the crucial problems that must be overcame.
Therefore, another microscope imaging technique called fluorescence dying is useful to

extract the objects from background and to form a noise free system. In this technique,



the field of view is more extensive, altough the details disappear due to the low
resolution of wide area. In this imaging technique, motile sperm counting can be easily
performed due to the reflection of light over semen as presented in [26]. However,
semen sample also includes several different particles such as blood cells, debris, or
leucocyte besides the sperm cells. In this kind of images, segmentation of immotile
spermatozoa and other particles may not be perfectly achieved since there is no textural
details. Only the spatial features (area, eccentricity etc.) of foreground objects detected
by the motility can be used in segmentation. Figure 1.3 shows example images obtained

from both techniques.

a b

Figure 1.3 Microscope Imaging Techniques: a) Fluorescence dying b) Phase-Contrast

In medical literature, the substances used in the dying process is reported as spoiling the
pure movement of the motile spermatozoon [27]. Therefore, fluorescence-dying
technique generally excluded for the comprehensive analysis. Recently, computer based
systems are preferred to perform all kind of analyses over images obtained by a camera
on phase-contrast microscopy. But, the images obtained by the camera over the phase
contrast microscopy might be in different scale, color space etc. In this respect, it is
impossible to develop all-in-one software that presents the analysis for each camera due
to the differences in images. Figure 1.4 indicates four different output images of

different camera settlement on the phase-contrast microscopy.

Figure 1.4 Different camera outputs of phase-contrast microscopy



Addition to the microscopic images based methods, Gillan et al. proposed flow
cytometry experimental techniques for the evaluation of sperm parameters on fertility
rates [28]. However, it is more expensive and not practical technique for the daily
laboratory analysis. It is reported in the study that the technique should be employed for
the sperm analysis related with the gene mutation or inherence based problems which
constitutes 25% unexplained reasons in Figure 1.2.

Today, many CASA systems such as SQA-Vision [29], SCA CASA [30], Hamilton
Thorne [31] etc. are developed. Some of them provide only shape analyses named as
morphological assessment while advanced systems setting up with high level
computational power functionality focus on motility analyses as well as morphological
assessment [32]. They are the compact systems including integrated camera with
appropriate microscope and software. Microscopes with an embedded camera system
are far more expensive than regular microscopes. Therefore the systems are extra costly
for laboratories. Additionally, it is widely recognized that the image processing and
sperm tracking algorithms employed in the today’s CASA should be improved [12, 33,
and 34]. Systems operate with predefined reference points; thereby it strongly requires
more human intervention. Comparative studies such as [12, 27, 32 - 34] signify the
importance of parameter settings for high accuracy and correct results. More doctor
intervention to setting up the system is the essential part to obtain more trustful results.
Well-regulated CASA over predefined limitations and requirements will provide more
accurate and trustful results than manually observed analyses, but the settings will be
suitable for the specific one case [35]. In another case, doctors/experts should re-arrange
the parameters. In particular, most CASA cannot reconstruct reliably paths of two or
more sperm in close distance or in intersect problem for motility analysis. They solved
that problem by excluding cell-to-cell and near-misses sperms from the trajectory
analysis in many CASA software. But, this exclusion ignores the higher velocities
which is more likely to be involved in collisions and occlusions and reports the motility
with slower results [36]. In another approach to solve the tracking problem, dilution was
applied on the semen sample [37]. They reduced the collision by analyzing the diluted
sample. But, this does not reflect the original sample due to the used substances for
dilution process [37].

According to the pros and cons of two techniques (Visual and Computerized

Assessment), computerized analyses should be employed due to the higher reliability



and observer invariance, but the idea should be also improved in several aspects such as
practicability, modularity, intelligibility, cost, accessibility, capability etc. In this thesis,
we intent to improve the CASA. According to all abovementioned microscopic imaging
techniques, we also focus on the Phase-Contrast microscopic images with different
image acquisition steps to form cheap and more modular sperm analyzing system.
Similar to our approach, different studies emerged in literature to form CASA-like
systems. Witkowski developed an integrated system and published the results
describing the methods clearly in [39]. Another paper published by Wilson-Leedy and
Ingermann. They referred an automated zebrafish motility analyses software [40].
Authors emphasized that the software is open source. Shi et al. presented an original
design and prototype in [41] to analyze sperms in terms of motility with extra details
than regular CASA systems. Differently, we focus on the computer based analysis of
Makler images obtained from the ocular part of the phase contrast microscopes. We
proposed a novel approach to the data acquisition step and analyzing techniques.
Detailed literatures will be given in each chapter of the utilized and employed

techniques and methods.

1.2 Objective of the Thesis

Sperm counting for the concentration analysis and tracking is generally carried out
using two techniques: (1) Visual assessment by experts; (2) Automatic analysis by
Computer Aided Systems (CAS). Visual assessment is the manual examination of
samples over a counting chamber under microscopes by experienced laboratory
assistants, biologists or medical doctors. It is more practical and heuristic method, but
counting results can vary according to personal experiences and skills. Missing of even
one sperm in manually counting process results in different concentration output
depending on the counting chambers employed in the analysis. The error rate directly
related with the expertise and the experiences of laboratory assistant. Problem is defined
in the literature as the observer variability. Additionally, in the case of high sperm
concentrations, it is impossible to count entire region, manually. Samples should be
appropriately diluted into a fixative medium. But this affects the motility of sperms due
to disrupting the viscosity of the semen sample. In this scenario, one of the CAS
specified for sperm analyses, Computer Aided Sperm Analyze (CASA) systems, gives a

better sight when compared to manual observation. It is one of the promising



technologies. There are several CASA systems in medical market. However, most
laboratories still carry out spermiogram tests with visual assessment technique because

it is cheap and no parameter setting is required in contrast to current CASA systems.

In order to decrease the observer variability problem in the VA diagnosis, we aimed to
develop an automated semen analysis system using counting chambers. In this respect,
we modelled the VA technique in the computerized analysis.

In terms of the VA modelling, we intended to develop a system that use the idea of
visual assessment technique and consider to the current disadvantages of microscopy
imaging techniques in CASA based sperm analysis. Basically, the combination of the
data acquisition step of visual assessment and computerized analysis step of CASA
systems is the main goal in the proposed system. Makler counting chamber as in visual
assessment technique is utilized in our approach on computer side. Additionally, in this
system, laboratory assistant can still observe the samples and count the sperm manually
over the screen if necessity. In this respect, we also purposed to eliminate the mistakes,
oversight or any other user dependent errors. Additionally, we aimed to provide the
system as cheap, re-configurable, having wide field of view compared to existing

CASA systems by using the visual assessment based data acquisition idea.

1.3 Hypothesis

In this thesis, our hypothesis is that to count and track the sperm cells by more
accurately, objectively and sensitively by using modular, portable and inexpensive
systems when compared to conventionally CASA systems. In this respect, we proposed
a biomedical image analyzing software for spermiogram tests including the sperm
concentration evaluation and motility analysis with a novel image acquisition method.
Proposed approach named as Computerized Sperm Counting and Trajectory Analyzing
Software (CSCTAS) stands out with its hardware independency, easy to implement on
any kind of phase-contrast microscopy and cost by using a smartphone based data
acquisition approach in the image acquisition step. Shortly, visual assessment technique
is performed by the computer software with advanced image processing techniques.
Proposed system provides more convenient and inexpensive way to count the sperm
automatically into two categories as motile and immotile spermatozoa than the

traditional CASA systems and VA technique. Additionally, motility analysis is easily



and better performed by the trajectory analysis after successful tracking of spermatozoa
than the most CASA systems.

CSCTAS consists of 7 sequential modules; Data acquisition and organization, Region
of Interest (ROI) detection and extraction, Video stabilization, Motile/Immotile
Spermatozoon Detection, Spermatozoa Counting, Motile Spermatozoa Tracking,

Trajectory Classification. Flow diagram is presented in Figure 1.5.

Data Automatic ROI Software
. Detection and |—»| Based Video }
L1 ] Extraction Stabilization
Motile/Immotil
Spermatozoon
. Motile Detection
Trajectory Spermatozoa < Spermatozoa
Classification [ 4| P . Counting
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Figure 1.5 Flow diagram of Computerized Sperm Counting Software methodology

Each step will be explained with details in the corresponding chapters. Briefly, in the
data acquisition step, the novel approach to the current spermiogram techniques will be
explained. The images obtained from the novel approach includes different parts.
Therefore, images are required to be split into the sub-regions which will be analyzed in
the sperm concentration analysis part of the software. Two techniques performed in this
part will be explained in the automatic ROI detection and extraction chapter. Ocular
part of microscopy is a sensitive part to the vibrations which will directly affect to the
images. Therefore, we used a software based video microscopy stabilization idea which
will be introduced in the next chapter. Stabilization eliminated the miss detections of the
spermatozoa. The concentration evaluation will be evaluated in the Motile/Immotile
spermatozoon detection chapter. Makler counting chamber was utilized in our
spermiogram analysis approach. Therefore, the suitable counting process based on the
Makler counting standardization rule will also explained in the same chapter. As a last
analysis, motility analysis will be given in the last chapter with the evaluated two

tracking algorithms.



CHAPTER 2

DATA ACQUISITION AND ORGANIZATION

Analyses of visual assessment technique are performed by using different counting
chambers to standardize the counting process [10]. Makler is one of the commonly used
chambers in laboratories due to the easy implementation. In Makler chamber, the number
of counted sperm cells in one strip of grid can be generalized in millions per ml as the
sperm concentration [7]. Makler counting chamber and the accepted rule for the
spermatozoa concentration analysis is demonstrated in Figure 2.1.
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Figure 2.1 Makler Counting Chamber and the generalization standard in sperm
concentration analysis

In this thesis, developed CSCTAS works on the Makler images to generalize the results as
in visual assessment (VA) technique. Ocular images of optical phase-contrast
microscopes are similar, therefore, a smartphone based data acquisition was implemented.
Videos were recorded from the ocular part of microscopy by using a designed apparatus.
As a result, extra improvements, modification or adaptation for each microscope type are
not needed in the software. Apparatus provides more portable and easy attachable system.
Designed apparatus and the data acquisition by the smartphone over the ocular part of

microscopy are illustrated in Figure 2.2.



Figure 2.2 Smartphone based data acquisition approach

Makler videos were recorded by the mounted smartphone and transferred to the central
storage over local network for computer side analysis. Because of high speed motility and
ability change direction, sperm is known as maneuver target. Hence, the videos of the
samples were recorded by high-resolution camera with 1920x1080 resolution and 30 Hz
frame per second for better and more detailed analysis. Duration of video can be different.
Each video were automatically split into 30 seconds lengths sub-videos after transferring
to the computer software. Concentration and trajectory analysis were individually
performed over the each sub-videos by the CSCTAS. The counting result of entire video

was then calculated by averaging results of each sub-sample counting process.
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Figure 2.3 Sample Acquisition and Organization
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Figure 2.3 demonstrates the data acquisition and organization schema. ax and dk
represents the number of motile and immotile spermatozoon counted in each sub-samples,
respectively. n refers to total number of created sub-samples from the main sample video
(t) with respect to frame rate of video recording device. A and D denote the final average
numbers as motile and immotile spermatozoa according to sample numbers of

corresponding subjects. An example image that is obtained by the presented data

acquisition step and transferred to the server side analysis software is shown in Figure 2.4.

Figure 2.4 Example ocular image obtained by the proposed smartphone based data

acquisition technique

Each sequential steps of the server side analysis program, CSCTAS, will be explained

with details in the following chapters.
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CHAPTER 3

REGION OF INTEREST DETECTION AND EXTRACTION

3.1 Introduction

Spermiogram tests include a manual counting process using a Makler counting
chamber. The automatic detection of ROI in Makler images constitutes the first phase to
use the advantages of the Makler chamber in a computerized counting system. ROI is
defined between grids, hence, another challenging issue, that of exact grid detection, is
examined. In the proposed CSCTAS, initially several line detection algorithms with
their applications and possible usage on the grid-detection problem of Makler images
were reviewed. Next, a combinational grid-detection technique, particularly for Makler

images, was introduced.

Makler images include a square grid structure with horizontal and vertical lines. Grid
detection is mainly a line detection problem. However, it requires eliminating lines out
of grid structure and line crossings into a complete grid structure form. Each line is
normally in straight form, but there might be curvature or skewness occurring through
lens distortion of the camera. Additionally, there might be extra lines that overlap the
grid structure or partly constitute grid-like lines on images caused by microscope or
Makler chamber effects. Furthermore, immotile spermatozoa positioned next to lines
affect line detection by ruining the linearity of the lines. In this context, current line

detection and medical image processing studies are explored to overcome challenges.

Line detection is theoretically a segmentation problem and various segmentation
techniques in medical imaging have been conducted so far. Massood et al. gathered
different approaches on the segmentation of medical images in their survey [42].
McLean et al. [43] used hierarchical clustering for line detection, where the clustering

of pixels is maintained by the spatial contiguity and similarity of average gradient
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orientation. Segmentation is used in the estimation of line equation. They compared
four different strategies on synthetic and real images. The study emphasized the
modularity of the proposed approach, but complained about a distortion effect of lines
on results. Therefore, the pixel-based line detection algorithm is considered an unstable
technique on the Makler grid structure because of the lens distortion effect. Schuster
and Katsaggelos reported the importance of an edge detection process for problems in
line detection [44]. They tried to develop a line tracking robot in nature. However, edge
detection is easily affected by noise that causing false line detection. The authors used
minimum mean square error (MSE) to weight the edges. Consequently, the lines were
detected with less edges and noise. However, they also reported that the reduced edges
caused interrupts on detected lines. Therefore, their approach resulted in less success for
short and weak lines. The adaptation of this technique for grid-detection would result in

cropped lines because of the effect of immaotile semen cells near the grids.

The Hough transform (HT) is a form of the Radon transform technique. It is mainly
used for line detection applications by connecting edges in different angles. Herout et al.
published a review chapter about the usage and the comparison of various HT
techniques. He emphasized in the study that the selected parameters in techniques have
crucial importance on line detection [45]. Different shapes require different
parameterization and transform. Therefore, it is hard to form a more adaptive HT
solution on the detection of different shapes. Tchinda et al. used HT to detect circles
[46]. After, they employed the circles as the initial contour for an active contour
technique to detect parasites, reporting that the proposed schema was efficient for the
presented dataset. However, single HT implementations fail in the case of more
complex backgrounds such as Makler images and require a sufficient number of points
on straight lines. It is efficient in the detection of long lines, but useless for short lines.
Our grid structure, however, is mostly made of short lines. Additionally, lines are not
fully straight because of lens distortion. In other words, regular HT is not fully
adaptable on Makler grids. A modified HT technique is presented in [47]. Li and Tsai

utilized regular HT with a distance tolerance calculation.

The grids in Makler images are similar to the white lines on the road detection studies.
However, lines on the road provide enough in terms of distance for analyzing and the
feature extraction process. Additionally, this applications have no immotile spermatozoa

or lens distortion effects. Hayashi et al. extracted the luminosity feature of detected lines
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by a double circular operator [48]. They also performed HT to detect lines, but it was
enhanced by the double circular operator in terms of luminosity features. It was reported
in that paper that line detection with a luminosity feature is more robust to shadows or
occlusions. It might be a solution for the immotile spermatozoa effect, but lines should

be entirely straight to eliminate.

As a special case, Ahmad et al. [49] used dynamic programming and machine learning
to detect horizon lines. They presented an edge-less method to detect lines. In their
study, they employed support vector machine (SVM) and convolutional neural network
(CNN) techniques similar to another study made by Lie et al. [50]. The results are
promising, but the technique requires a training set. Another HT-based approach is
presented by Chen et al. [51]. They modified HT with a curve-fitting algorithm to detect
intersection points over lines. However, this solution is also designed for fully straight

lines obtained by a camera without any distortion effect.

The idea of clustering lines is used by Lee et al. and is named the TRACLUS method
[52]. They clustered the trajectories into a set of line segments. Then, another clustering
was performed to group the line segments. The proposed technique formed sub-
trajectories from main trajectory. Finally, the sub-trajectories were evaluated for
similarity with the main trajectory. According to the results, the proposed technique
correctly discovered sub-trajectories. Another clustering idea was tested in human
behavior analyses. Similar to [52], Piciarelli and Foresti segmented the human
trajectories obtained by surveillance camera systems [53]. They implemented a tree
structure over predefined distance metric in terms of cluster similarities where the

centers updated by tree.

Wu et al. aimed to find the chest wall line in magnetic resonance images of breasts [54].
They stressed that the chest wall line is a different shape in each case due to the physical
differences in the human body. In these cases, using regular line detection techniques
are not effective. Therefore, they conceived the idea of joining differently detected lines
[54]. They mainly used the Canny edge detection technique on anisotropic diffusion and
bilateral filtered images. This resulted in many line detections and they combined them
in a direction to compose a full path. This process also eliminated the contrast, or
device-based noise effects on detections. Another biomedical-related study was made
by Uyen et al. [55]. They proposed an effective approach for automatically detecting

retinal blood vessels. They implemented line detectors in various scales and 12
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directions (angular resolution of 15°) to connect parts linearly. Current practice on this
issue reports that the hardest problem is in defining the direction angle due to the many
lines at different angles. Uyen et al. formed the concept known as the “winning line,”

which uses gray-level pixel values to define correct angles [55].

In terms of fuzzy meaning, Dave et al. adapted a c-shell clustering algorithm on ellipse
detection [56]. They emphasized that the regular c-shell algorithm had a convergence
problem on partial shapes. They modified the algorithm, tested over real images, and
compared their improved algorithm to regular HT. It was emphasized in the paper that
the proposed method is faster and requires less memory than HT. In another paper
specifically on the line detection problem [57], they addressed the problem of line
detection algorithms with regard to the definition of the cluster center step. In this case,
they made the argument that the proposed technique automatically defines the centers of

clusters, especially on polynomial shapes, better than HT.

An image processing application requires pre- and post-processing steps. Filters are the
most implemented techniques [58]. Karuppathal and Palanisamy used a hybrid median
filter to preserve the edges of tumor images in post-processing segmentation [59].
Another filter, the Gaussian filter, has been applied on the same segmentation problem
of tumor images in several machine learning approaches [60]. Both such studies have

emphasized that the filtering increases the results.

Segmentation performance of lines is evaluated by different metrics in literature.
Matsopoulos and Economopoulos tested five matching algorithms on 263 medical
image pairs and reported the subjectivity and reliability of the algorithms [61]. Another
metric for images without ground truth (GT) has been published by Erdem et al. [62]
using inter- and intra-frame information of objects. In our study, we created a GT of
each grid and implemented one of the matching algorithms such as in [62] for the

evaluation of a combinational approach to the grid detection problem.

Makler chamber consists of a 1 sg. mm grid structure in the center, which is subdivided
into 100 squares of 0.1 x 0.1 mm each, and a 10-micron deep reservoir for the semen
sample [7]. Makler is the shallowest of all the various counting chambers [10]. The
Makler chamber provides a counting standardization with squares. The number of
immotile spermatozoa per ml can be generalized according to sperm numbers observed

in any 10 squares of the grid. In other cases, motile spermatozoa analysis is performed
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by counting motile sperm over 9 or 16 squares within a defined time. Normally, squares
can be examined easily by visual observation; however, in computer assessment, points
should be emphasized and the region within the points should be extracted as ROI. In
this respect, grids must be detected with high accuracy rates and F-measure scores in the
first stage; then, the ROI clarified from the grids should be extracted by using detected
grids.

Makler can be placed at different angles to the microscopes. Additionally, particles
and/or substances remained in the Makler chamber can be seen in the background of the
images with the halo effect occurred by the microscope light which disrupts detection of
grids. Examples of several Makler images derived from the ocular videos are given in

Figure 3.1.

Figure 3.1 Example frames of recorded Makler videos

Two approaches for the automatic grid detection of Makler images were introduced to
the literature based on the abovementioned studies [63, 64]. First one is not an efficient
technique, the second approach is a robust technique. Therefore we will discuss the

second approach in advance.

3.2 First Approach (Hough Transform + Angle Clustering)

HT and K-Means clustering were employed in our first approach [63]. We implemented
a well-known algorithm; Hough Transform, after Otsu Thresholding. Then, the angle of
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each detected line by the HT were calculated. K-Means clustering within a certain range
is utilized over angles for the line elimination process as outlier values. Finally, the
image is rotated by the cluster centers which indicating the weighted angle value. The

flowchart of this approach is presented in Figure 3.2.
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Figure 3.2 The flowchart of the first approach for the grid detection in Makler Images

Using only HT in the line detection step resulted in inefficient F-measure scores as a
result of the difficulties in the obtained images as demonstrated in Figure 3.3. Blue lines
indicate the Hough Transform result and the red lines show the only remained lines

after K-Means clustering of angles.
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Figure 3.3 Flow chart of methodology

To overcome this problem, we used two different line detection algorithms in

combination, HT and line segment detector (LSD) [65].
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3.3 Second Approach (Line Segment + Angle Clustering + Hough Transform)

The idea came from the aforementioned studies in the literature review section.
Conventional HT is inefficient on the detection of mixed lines because of being a
parameter-dependent algorithm. It is more appropriate to use on direct lines rather than
the skewed shapes. Defining optimal parameters is a hard problem. We also
experienced this difficulty in our previous work. In this approach, LSD was initially
utilized as line segmentation [65]. Each segmented line was, then, combined to each
other by using the joining idea. We employed HT to connect segmented lines. However,
HT requires an angle of direction to combine line parts. We performed another
segmentation, using K-Means clustering, on each LSD line angle to form a “winning
line”. A filter process was then adopted as a post-processing step. Finally, evaluation
was measured by a cross-correlation technique or, in other words, template-matching.
According to the satisfactory results, ROI selection of the images was realized by the

logical queries upon grid detections.

The flowchart of the second approach for the ROI detection is given in Figure 3.4.
Initially, a background model is extracted. Then, LSD is performed on the background
image to detect lines superficially. Pre-segmented lines are then clustered by K-Means
algorithm into two categories using slope angles of lines. HT provides reinforced lines
according to predefined parameters arranged by obtained class information of angles. If
the Makler chamber is situated with a different rotation than 0° according to clustering
result, the video is adjusted to a 0° state. As a final step of grid detection, filters, in
terms of post-processing, are utilized to sharpen and clarify the grids. The middle zone
of images including 36 squares is, then, selected as the target zone of images. Each
square inside that area is accepted as ROI, individually saved as an image with as much
line elimination as possible. The grid detection process is only performed on the first
image of the video sequences. The remainder of the images are accepted as identical
(except small vibrations) with the first frame because of the fixed Makler chamber
during the video recording process. Later, ROI for each frame are extracted without grid
lines upon already detected coordinates of squares derived from the first frame. The
details of the first approach will not be given due to the low F-measure scores but the

second proposed approach will be explained in the following subsections.
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Figure 3.4 Flow chart of the second approach for Grid Detection

3.3.1 Background Extraction

The grid layout and immotile objects are stable during the videos but the videos also
include high motility cells, which ruin the linearity of the grids during the detection
process. Additionally, in some cases, motile semen can be detected as lines by HT
or/and the LSD algorithm. In this case, segmentation of videos into background and
foreground was deployed in the first step to avoid motile cell effects. While immotile
cells and grids was left in the background image, motile semen remained into a

foreground image.

The mean value of the pixels alongside some duration of the frame set will reflect the
states of pixels for stable objects. In this case, an adaptive mean filter algorithm was
applied to calculate the mean of images in video sequence similar to [66]. Three
seconds of video (90 frames) was arranged as a down sample interval to skip 90 frames
after each processed frame. Basically, the down sample interval allows ignoring the
motile semen through the detection of variable pixels within a defined time interval. It
allows the detection of the steady objects by observing constant pixels as well. Mean

filter algorithm is mathematically presented in Equation (3.1).

B(x,Y)' :%xzd:(V(X, y,t—i)) k=1,2,3,...,% d<N (3.1)
i=1

where d represents the down sample rate (90 frame), N indicates the total number of

frames (~1800 frame) in the video. B is the kth background model derived from the

image sequence V alongside time t. Two example of background extraction are shown

in Figure 3.5. Images are in high resolution, thus only a small part of the image is

manually cropped and displayed to indicate the effectiveness of the background

extraction technique.
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Figure 3.5 Two example image of Original (L) and composed Background model (R)

3.3.2 Line Segment Detector (LSD)

A linear-time Line Segment Detector (LSD) detects locally straight contours of images
[65]. It is a piecewise technique that divides each contour with a verification process
during their linearity and concludes the line segmentation using an adaptive and
automatically arranged threshold point according to verification results.
Algorithmically, LSD has three main steps. Basically, contours are the parts of images
where the gray level rapidly changes. The gradient of the image as magnitude and
orientation is employed in LSD for the initial phase. Gradient magnitude gives the
power of the changes alongside the corresponding direction and the orientation refers to

the calculated magnitudinal direction inside the image.

Gradient of an image consists of the partial derivatives of pixels in direction of x and y
as given in Equation 3.2. I refers to the intensity values of an input image. Expansion of
the Equation 3.2 is given in Equations 3.3 and 3.4 where the gradients of the pixel at
(x,y) location of image | calculated for horizontal and vertical direction separately. Ax
and Ay indicate the distances to be convoluted with the center, respectively. LSD uses a

2x2 mask that refers to the convolution with the 1 pixel away from center.

(o a
Vi _(ax’ay] (3.2)

g, (X, y)=—al((;(x’y) = lim I(x+Ax,AyX)—I(x, y) (3.3

AX—0

9, (% y)=—a'(axy'y) _ i LY+ ) 7100Y) (34)

Ax—0 Ay
Gradient magnitude based on the obtained pixel gradients is calculated by using
Equation (3.5). Additionally, gradient orientation named as level line angle is deployed
to use in LSD algorithm. In this case, Equation (3.6) is adapted. gx and gy indicate the
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gradient magnitudes of x and y direction derived from Equation 3.3 and 3.4,

respectively.

M (X, y) =g (X y)+gZ(XY) (3.5)
4| 9,(xy)

0=t . 3.6

! {—gy(x,y)} (36)

As a last part of the initial phase of LSD, gradient magnitudes are sorted by using a
greedy algorithm called pseudo-ordering. The second phase includes the rectangle
arrangement procedure. The algorithm expands randomly a selected pixel that is derived
from the regions where the gradient magnitudes are of maximum value, to a rectangle
shape in gradient direction with its eight-connected pixel neighborhood. Finally, LSD
performs a validation process to control the linearity of the detected shape to decide the
region as line. Thresholding is performed by multiple criteria, i.e., angle validation,
rectangular approximation, number of false alarms computation, and point alignment

densities. In our study, usage of LSD is denoted as follow;

X, =LSD(B) (3.7)
where B represents the derived background model of original image by Equation (3.1). k
indicates the number of segmented line. LSD symbolizes the technique which
sequentially performs the aforementioned processes on background B, and segmented
lines are recorded as L with the corresponding segment number k.

LSD was mainly performed for the preliminary detection of lines in our study.
According to the abovementioned LSD methodology, lines were segmented into same
groups until intersecting points of lines, the curvature regions of lines, and immotile
spermatozoa effects were seen. Segmented lines were then transferred into clusters

using angle information.

3.3.3 Angle Clustering of Segmented Lines

Clustering is a way of producing image segmentation without the necessity of a training
process [67]. Samples are assigned to different classes based on distances between the
sample and cluster centers. Mainly, algorithms aim to minimize the sum of squares
within clusters while maximizing the distance of cluster centers. In this study, the K-

Means clustering algorithm was utilized because it is easy to implement, fast, and
efficient. Slope angles (.£*) of the segmented lines by LSD are calculated by using
21



Equations (3.8) and (3.9). First, slopes (mx) of segmented lines are derived from

Equation (3.8), then, angles are found by Equation (3.9).

y<=m x“+b, (3.8)

Z“=tanm, x@ (3.9)
T

Clustering is performed based on the minimal values within the clusters. Equation

(3.10) represents the deployed K-Means clustering technique in our study.
2 N

argming » > /- u? (3.10)
c=1keS,

where k indicates the number of segmented lines (L{,,) up to total N lines

(I,1,,15,...,1y) . c is the class number which is two class in our study as horizontal and

vertical alignment. K-Means clustering aims to put N lines into two sets S = {S1, S2}
taking into account of minimizing the sum of squares. When the algorithm converges a
local optimum, the mean and standard deviation of each clusters are calculated by using
Equation (3.11) and (3.12), respectively.

N
== (3.11)
N &
N
o, - \/ﬁZME ) (3.12)
k=1

¢ ={1(Vertical ),2(Horizantal )}
According to inner cluster standard deviation, line elimination is maintained by the
distances between the angles in cluster and the mean of the cluster until maintaining the

following criteria (3.13):

0°<o, <+2° (3.13)

Five lines, which are the furthest away from the mean of the cluster, are selected to be
removed in each iteration. Then, clustering is performed again over the angles of
remaining lines. When the inner cluster standard deviation is converged to Expression
3.13, the line elimination process is finalized. Figures 3.6(a) and 3.6(b) demonstrate K-
means clustering on an example image having a 168° (horizontal — equals to 12° in

compliment) and 78° (vertical) grid structure. After K-means, the slope angles of each
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of the segmented lines by LSD are mostly gathered around two clusters due to the

presence of the grid structure.
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Figure 3.6 Slope angle clustering of an example image having 12° and 78° grid

structure; a) First Iteration, b) Convergent state
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Cluster 1 is demonstrated with a star (*) and a cross (x) indicates Cluster 2 on the
figures. Dotted lines in Figure 3.6 (a) represent the reference zone denoted in
Expression (3.13). Straight lines are the + standard deviation limits around cluster
centers. It is calculated as +9.58 for Cluster 1 and +5.28 for Cluster 2 for this example.
In clustering theory, we adopted the K-means technique to align straight lines to the
dotted lines level by elimination of lines. The convergence is defined as the alignment
of straight lines inside dotted lines. Figure 3.6 (b) shows the convergence state of Figure
3.6 (a) after 4 iterations.

3.3.4 Hough Transform

The Hough Transform is a feature extraction technique used in image analysis and
computer vision [68]. It is a variation of Radon transform. It is used to detect lines,
circles, or other parametric curves by extracting several key features related to gradient

changes on an image and performing a voting procedure for a certain class of shapes.

We adopted HT in our study to provide the connection of segmented straight lines after
LSD and K-Means clustering processes. Eventually, HT forms curving lines by merging
segmented straight lines. Under the HT model, multiple lines, named as virtual lines at
different angles passing through to the center point of segmented lines (L), are

formed by using Equations (3.14) and (3.15). Only the remaining LSD lines after the
clustering process are enhanced by HT in the direction of the cluster center.

Yy =m,x“ +b, k=1,23..N (3.14)
m, =tan(a)) (3.15)
t =g —2° 4 —1.5%. .., +1.5% g +2° (3.16)

where a represents the angles of the tested virtual lines inside u. — 2° to u, + 2° with
0.5° intervals. Slope (m) is derived from Equation 3.15. x* and y* refer to the center
coordinates of kth segmented lines (L¥;,) after elimination process by clustering. by is
the intersect point of lines. Altogether, nine virtual lines with 0.5° intervals for each
segmented line were tested. Perpendicular lines to the constituted virtual lines were then
created to evaluate the angle alignment state of virtual lines. Distance between the
origin and the intersect point of a perpendicular line and virtual line was measured by
using Equation (3.17). d¥ indicates the distance measurement of the kth line to origin

with respect to t degree.
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df =(x*xcosa) +(y* xsina’) (3.17)

The distance metric and angle are deployed to transfer the coordinate system into
another space, called Hough space. A single point is transferred from (x, y) domain to
(a, d) domain where a and d represent the angle and the distance. Intersect points of
lines in Hough space refer to the direction of the segmented lines. The connection
between the segmented lines is maintained by using the derived angle information. To
illustrate the usage of HT in the proposed approach, the connection of two segmented
lines and their center points ((525,575) for dark line and (575,525) for bright line) is
illustrated in Figure 3.7. The interval limitation (t) for the tested lines is ignored in this
illustration. All the possible angles with 15° intervals are calculated. The axes in the
figures represent the coordinates. Virtual lines and perpendicular lines are indicated as

solid and dashed lines, respectively.
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Figure 3.7 Connection of the LSD segmented lines by HT; 0°, 30°, 45°, 60° virtual
(solid) and perpendicular (dashed) lines

15° intervals are arranged between the lines from 0° to 180°. Only 4 lines out of 13
angles are graphically drawn. Other results are recorded in Table 3.1 as the distance

metric (dF), calculated by using Equation (3.17).
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Table 3.1 Distance metrics between the origin and intersect point of virtual and
perpendicular lines calculated by Equation 3.16

Segm. Lines

0° 15° 30° 45° 60° 75° 90° 105° | 120° | 135° | 150° | 165° 180°
(Center Cord.)

Red (525,575) 525 656 | 742 778 760 691 575 420 235 35 -167 | -358 | -525

Green (575,525) 575 691 | 761 778 742 655 525 358 167 -35 -236 | -419 | -575

According to Table 3.1, lines in Hough space intersect at 45°, which means the
alignments of the segmented lines should be connected with a line having a 45° angle.
A new line is employed from one center to another with a 45° slope to connect the
segmented lines. In this example, segments are in fully linear alignment. However, in
most cases, there is curvature between segments. In this case, we calculated the values

by using Equation (3.17) and select the angle having the minimum differences.

We adopt HT only on segmented lines in the direction of the mean value of clusters (u.)
with £2° intervals. Figure 3.8 indicates the case of direct usage of HT after
segmentation of lines by LSD and the effects of the clustering process on the usage of
HT. Normally, HT performs to form virtual lines in every angle direction to connect
points. As a consequence, corners of segments will have multiple connections. In our
proposed method, we restrict angles into the cluster centers with £2° intervals which

provides sharper corners of lines.

(b)

Figure 3.8 Clustering effect on the Line Connection Process: a) Direct HT on LSD
segmented lines, b) HT implementation based on clustered angles to LSD segmented
lines

Consequently, new lines will be partly in curvature form by the connection of linear
lines. In the study, Equation (3.18) is used to reflect the aforementioned HT based
processes on kth and mth LSD based segmented lines. | refers to the number of

connected line in L.
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LHT - HT(LLSD SD) (318)

3.3.5 Post Processing

In this study, an outline enhancing kernel, the Laplacian of Gaussian (LoG), was
applied to the detected grid structure by the proposed approach [69]. The Laplacian is a
2-D isotropic measure of the 2nd spatial derivative of an image. The Laplacian of an
image highlights regions of rapid intensity changes, Therefore it is often used for edge
detection. The Laplacian is applied to an image that has first been smoothed with
something approximating a Gaussian smoothing filter in order to reduce its sensitivity

to noise.

Since the input image is represented as a set of discrete pixels, we have to find a
discrete convolution kernel that can approximate the second derivatives in the definition
of the Laplacian. Employed kernel and the filter effects on two example images are

shown in Figure 3.9.
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Figure 3.9 Employed Laplacian of Gaussian Kernel and the Effect of Filter on Images
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3.4 The Evaluation of the Automatic ROl Extraction

The proposed two grid detection based ROI extraction approach was tested on 80
Makler videos obtained from 20 specimens (four videos each). Three Makler chambers
were utilized in the sample acquisition step. Each specimen had different semen
characteristics. Additionally, the rotation of the Makler chamber and/or microscope
range might be different in the acquisition step. In this case, each video is distinctive.
Videos were recorded in 1 min. durations and HD resolutions. The recording speed of

the camera was 30 Hz/sec. Therefore, each video consists of 1800 frames.

F-measure and accuracy rates are considered as performance metrics for the proposed
grid detection approaches in the template-matching-based evaluation. Eighty ground
truth images of grids were formed manually. Each video had one ground truth for each
stable Makler chamber during the recording process. Similarities between detected and
ground truth lines were evaluated using the concept of Serensen—Dice index over a
generated template. Figure 3.10 shows three example Makler images with manually

formed GTs as templates.

Figure 3.10 Ground Truth examples

In the testing of two approach, f-measure and accuracy were measured using a
confusion matrix. In the confusion matrix, True Positive (TP) indicates the total number
of pixels on detected lines matched with ground truth lines. True Negative (TN)
represents the common number of pixels other than lines in both ground truth and input
image. False Positive (FP) symbolizes the number of pixels detected as lines when there
were no lines in a ground truth image. False Negative (FN) is the opposite form of FP in
that no lines are found using the proposed approach where, in fact, there are lines in a

ground truth image. (Table 3.2).
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Table 3.2 Confusion Matrix for performance evaluation. The values are number of
matched pixels

Pixels in Ground truth

Lines Other areas
Detected True Positive False Positive
Pixels in output Lines (TP) (FP)
image Other False True Negative
areas Negative (FN) (TN)

Since TN is misleading criteria due to the plenty of pixels outside of lines present in the
images, F-measure scores should be calculated. F-measure implicates FP and FN in
calculation including precision and recall terms and excluding the impact of TN. In this
sense, F-measure scores will be more objective to evaluate in the proposed approach.
Formulas of performance metrics, accuracy and F-Measure scores, presented in
Equation 3.19 and 3.20.

Accuracy = L ° 4l (3.19)
TP+FP+FN+TN
Precision =———
TP+FP
Recall = _dlaw (3.20)
TP+FN

Precision x Recall
Precision + Recall

F —Measure = 2x

Performance of the proposed two grid detection techniques were evaluated on 80
images after the post-processing step. Differences of the image pairs (ground truth and
proposed second technique result) on two example images are presented in Figure 3.11.
The purple color indicates the FN, while the green color represents the FP in the

examples.
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Figure 3.11 Image variation between GT and the result of Proposed Technique for two
example image

Results of the template-matching evaluation with regard to performance metrics are
listed in Table 3.3. 80 Makler images are divided into 6 subcategories by angle
information. Average detection results are registered in the table. The number of tested
images for the proposed technique is given in parentheses (Total 80). M1 represents our
first approach results and M2 indicates the rates of our proposed second technique.
Results prove that the second approach is significantly better than the first one which
resulted in a 90.66% accuracy and a 78% F-measure rate on average, but the second
combinational approach achieves 95.36% accuracy and 88.58% F-measure rates on
averages. However, the accuracy rate is misleading due to too many TN values. It is
also cited in literature as a data imbalance problem, or the “Accuracy Paradox”. The
95.36% accuracy rate indicates that almost all pixels inside the lines and area between
lines are correctly detected. However, it is misleading due to more pixels in area than
lines. Hence, F-measure rates give more convincing results. An 88.58% F-measure
score is accepted as real success of the presented approach for the grid detection phase

in this study.

Table 3.3 Average results of template matching for the ROI detection step

Angles

0-30 (14) | 30-60 (16) | 60-90 (14) | 90-120 (15)| 120-150 (9) | 150-180 (12)
M1 Mz M1 Mz M1 Mz M1 |V|2 Ml M2 Ml MZ

Acc. 94 972 | 87 944 | 91 967 | 88 919 | 91 954 | 93 96.6

F Meas. 76 877 |79 882 | 75 868 | 78 893 |83 911 | 77 884
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According to the results, we used the second approach for the grid detection process.
Then, regions of interests were selected by using the detected grid structure and
extracted in the next section.

3.5 Region of Interest (ROI) Selection and Extraction

Makler videos might be different in scale and rotation according to the settlement of the
video recording device. Additionally, several distortions and/or blurring on the corners
of images might occur owing to the camera lens. These challenges require selecting a
common area in order to evaluate all images with the same algorithm. To this end,
automatic detection of ROI is a necessary part. Therefore, as a final step, ROI are
selected by logical queries depending on the detected and post-processed grid structure.
Vertical and horizontal lines are individually counted and eliminated according to the

following criteria:

S' =L . ifi<6

lhul Ljr_{‘l .I .I < (321)
S =L ; if j<6

k = floor(_i +2)+1 _if i_ >6 (3.22)
| = floor (j+2)+1 if j>6
St 6= Lis ko er if mod, (i) =0
Slh\./.a = LT;3...|...|+2 i'f mOdz(D =0 (323)
S1...7 = Lk—3...k...k+3 if mOdz(l) =1
S1r.1..7 = L:‘—3.4.|...|+3 if mOdz(j) =1

where i and j refer to the total number of detected lines as vertical and horizontal after
aforementioned techniques, respectively. S? ; and S ; denotes the separately selected
lines as vertical and horizontal after the elimination by logical expressions. In case of
detection of less than 6 lines, each line is automatically accepted as a selected line. In
order to form a 6x6 or 5x5 ROI zone for images having a wider range than 6 lines,
only the first 3 lines near the center of the image are selected as ROI. In this scenario,
lines in the center are named as k for vertical and | for horizontal. Depending on
whether it is an odd or even total number of detected lines, different expressions are
defined. In case of singularity, the ROI zone is selected as the middle of the image

having 6x6 grid, whereas 5x5 grid schema is selected for duality.
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Figure 3.12 Steps of Grid and ROI detection; a)LSD results, b)Enhancement results by
HT after clustering, c)Selection of regions of interest after post processing and logical
operations

ROI selection approach on two different sample images is demonstrated in Figure 3.12.
LSD provides a superficial line detection and segmentation, as shown in Figure 3.12(a).
Next to LSD, K-Means clustering is employed over angles, and lines out of the
reference limit are eliminated. HT performs over segmented lines by the direction of
cluster results. It connects differently segmented lines and highlights each line, as
presented in Figure 3.12(b). Post-processing and ROI selection by logical queries are
then implemented. ROIls are demonstrated in Figure 3.12(c).

Figure 3.13 indicates the several ROIs of image that will be transferred to semen
analysis process. Each square with few or none grid effect will be individually analyzed
by Spermatozoa Detection Module after the Video Stabilization process which will be

elaborated on in the next chapter.

32



Figure 3.13 Regions of Interest transferred for cell analysis process
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CHAPTER 4

VIDEO STABILIZATION

4,1 Introduction

Proposed data acquisition approach can be used in all laboratory without any extra
device requirement. In order to provide stable videos, a mobile phone holder as
stabilizer was designed and printed out by a 3D printer. Stabilizer provides easy to
mount mobile phone to the ocular part; however, it is still not fully stable. Acquired
videos of semen samples have vibrations. Therefore, in this thesis, video-microscopy
stabilization technique is employed to fix the vibrated frame effects on motile sperm
detections. Otherwise, vibration affects the detection process of the spermatozoa.
Several software based stabilization studies are reviewed for this step to define the

appropriate solution.

Kwon et al. proposed an adapted Kalman Filter for the video stabilization problem [70].
They mainly focused on the jitter effect in real time cameras. So, they extracted the
motion vectors to estimate the jitter effects on motion. They emphasized that the
technique is not only for camera vibration, but also can be employed in elimination of
the effects occurred by other motile objects. Another Kalman based study has been
proposed by Tiko and Vahvelian [71]. They formed a practical system constraint with
respect to the amount of corrective motion. They performed Kalman based approach
between constants and each video frame. Matsushita et al. proposed motion impainting
technique to maintain a video stabilization problem [72]. They mainly aimed to stabilize
videos in good quality. Normally, stabilized images are in low resolution due to the
effect of technique. Spatial and temporal consistency of the video sequence in both
static and dynamic image areas were performed in their technique. Additionally, they
utilized sharpening idea by using the de-blurring algorithm as post-processing between

consequent frames. As a result, their technique provided more quality stabilized videos.
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Piva et al. proposed color based segmentation [73]. They extracted two one-dimensional
characteristic curves to form an efficient motion estimator. Then, they analogy the
consequent extracted curves to predict image displacement. As a validation test, they
compared the results of proposed approach with feature based segmentation techniques.
Most video stabilization techniques have complexity. The implementation of video
stabilization techniques on low resource devices is important as much as its robustness.
Auberger and Miro presented a stabilization technique especially for low cost devices
[74]. They formed binary motion estimation on some key points in frame to decrease
the complexity. Consequently, technique consumed less power than many techniques.
Additionally, they adapted the technique to use in not only displacement detection, but
also rotation based movement. They evaluated technique in realistic problems. Video
stabilization is implemented in many different applications in literature. Liang et al.
employed global feature extraction technique of the lane lines and the road vanishing
points for the camcorder stabilization mounted on car [75]. They formed a system using
priori information of traffic images to reduce the computational and time complexity.
Each frame features were combined with one previous frame. According to results, they
predicted the stable frame location. Another work made by Oreifej for the moving
object detection in turbulence [76]. During object detection process, they faced with
non-uniform deformation occurred by turbulence. They extracted background,
turbulence and the object as the initial part. Different norms were utilized to eliminate
the noises and detect the objects. Similar to [76], Smith et al. focused on the
stabilization of hand-held light field video camera [77]. They implemented video
camera array to stabilize video from the shaky input in static scenes by employing a
space-time optimization between the virtual camera and the camera array. Evaluation
has been performed by comparing their algorithm with the state-of-art stabilization
software. Liu et al. proposed depth based video stabilization technique in [78]. Feature
point tracking idea for video stabilization is fragile in videos having no texture, severe
occlusion or camera rotation. In this sense, they employed a depth sensor camera by
combining normal camera to avoid noise effects. The fusion of both camera provided
much better results but it required more time to process. Battiatto et al. proposed a block
matching technique for local extracted motion vectors [79]. They filtered motion
vectors by similarity and matching effectiveness to speed up stabilization process. They

emphasized the speed of the algorithm as the novel side of technique.
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Hu et al. utilized scale invariant features (SIFT) in stabilization problem with the
combination of Gaussian kernel filtering and parabolic fitting [80]. They reported that
their technique is effective not only in high frequency noise motion, but also minimize
the missing area as much as possible. Battiato et al. employed the same feature
extraction technique in feature-based motion estimation algorithm idea [81]. They used
the features in matching concept to estimate inter-frame motion. Different from direct
feature matching idea, Yang et al. used particle filters in stabilization idea [82]. Particle
filters were mainly employed to estimate posterior states of nonlinear systems. They
roughly extracted scale invariant feature points and then estimate their next important
states by particle filters. Shen et al. also utilized scale invariant features and particle
filter in their work [83]. Differently, they decreased the feature size by Principle
Component Analyses (PCA). Then, they composed block mean squared error metric to
use in particle filter. Pinto and Anurenjan utilized another feature extraction technique
in their study [84]. They used speed up robust features (SURF) in stabilization for the

global motion estimation with Kalman filter as post processing to smooth the result.

In a medical application, Xia et al. used one of the stabilization techniques to clear the
Rician noise effect on 3D MR data. They employed forward and inverse variance-
stabilizing transformations for the Rician distribution [85]. Another stabilization study
on medical imaging made by Aghajani et al [86]. They compensated for global
transformation between two consecutive frames. Then, they dedicated a local
deformation for stabilization. As a result, they eliminated the motion-based artifacts on
iris image set [86]. Sauve et al. utilized stabilization idea on robot-assisted beating heart
surgery [87]. They estimated the motion of the heart using two technique: motion
estimation and texture tracking. To the end, they efficiently achieved to the estimation

of heart beat and provided more stabilized robot-assisted surgery [88].

4,2 Feature Matching Based Software Microscope Video Stabilization

Even if a hardware stabilizer designed and mounted on the ocular, there are still
vibrations occurred in the videos during the recording. In case of vibrations, motile
spermatozoa counting results vary according to utilized counting algorithm. To this end,
software based video stabilization is a necessity in our system. In this respect, feature-
matching-based video stabilization idea is firstly utilized within the video-microscopy

concept. Several feature extraction techniques were tested to sustain more stable videos
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in stabilization module. Motile spermatozoa detection algorithm is then adapted to
evaluate the efficiency of video stabilization and analyzing part. In case of vibrated
frame sequence, the detection of total motile sperms concludes immediate peak values

while it is around average values in stable frames.

Makler images have a stable grid texture in the background. Therefore, we employed
feature-matching-based video stabilization technique. Speed Up Robust Features
(SURF) [90], Binary Robust Invariant Scalable Key-points (BRISK) [91] and Features
from Accelerated Segment Test (FAST) [92] were tested in this step to reveal the most
convenient one for the implementation in video-microscopy concept, especially for the
motile sperm evaluations. We used the idea of priori information image. The vibration
is in minimal and non-uniform therefore matching idea is restricted with a metric
similar to filtering motion vector. Then, moving pixels were clustered by morphological
operations and blob analysis to evaluate the stabilization. The outline of the proposed

study is shown in Figure 4.1.

SURF Features

FAST Features
BRISK Features

Figure 4.1 The flow chart of the Video Stabilization Methodology

T Frames H Frame n
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RMS Feature Frame
»|Calculation Matching Rotation

Video

Background models of the videos represent the stable states of pixels along the video
sequence. In the Makler images obtained from the ocular part of microscopy as
introduced in Figure 2.3, grid will be in the background because it appears in all the
images. We used the same background extraction technique explained in Equation 3.1
with different parameters for the stabilization process. Videos are split into sub-videos
to obtain more consistent and less noisy background models. Down-sample rate is
arranged as 300 frame. As a result, six background models were extracted for the
stabilization due to the 1 min. recording time and 30 Hz. sampling specification of
video capturing device (1800 frames) with 300 down-sample rate. An example of

extracted background model for the usage in stabilization is presented in Figure 4.2.
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(a) (b)
Figure 4.2 a) Original Image, b) Adaptive Mean Filter based Background Extraction

Video stabilization was, then, maintained by re-allocating each frame position (V(x,y,t))
in sequence to the nearest location of extracted background model (B(x,y)*). Feature-
matching algorithm was employed between frame t and extracted relevant ki
background model. Background model was used as the priori information. Relation
between k and t is defined in Equation (4.1).

(k—1)xd <t <kxd (4.1)

SURF, BRISK and FAST are the well-known key feature descriptors. In the thesis, we
evaluated the usage of each descriptors on video stabilization problem of video-
microscopy to reveal the most successive one in practice. Briefly, techniques were
performed once over extracted relevant kth background model while it was repetitively
employed over each frame t of the corresponding video according to Equation 4.1. Root
Mean Square Error (RMSE) between extracted features of background model and

current frame was then calculated by using Equation 4.2.
R (a,,5,) = FeatureExtraction(B(x, y)“)

F. (b,,s,) = FeatureExtraction(V (x, y,t)) (4.2)

RMSEFQ;F}, :iii\/(l:bg (am'sl)_ Fftr (bn’sl))2

n=1l m=1 I=1
where sz indicates the extracted features of kth background model. am represents the

mth point to be extracted having S, feature vector. Similar to background feature set,
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F; shows the feature sets of frame at t. b, is the nth detected point for extraction

relevant features. S, will be the same dimension in extraction of the same features.
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Figure 4.3 Eliminating of similar features at distant coordinates

RMSE was then calculated between the features derived from kth background and frame
at t. In this step, a threshold level was constituted to eliminate the effect of feature
similarities derived from distant located points. Only the RMSE of features within the
predefined distance in spatial domain were calculated because of the vibration of
camera accepted as minimal level but having high influence in motile sperm detection
process. Figure 4.3 indicates the threshold effects on matching of derived features.

Features at the nearest 50 pixel distance were used to calculate RMSE values.

Next to RMSE calculation, frames were rotated according to matching features within
defined 50 pixel criteria. In case of fully matched features, rotation process will be
neglected. Otherwise, each frame will be rotated to background model location. This

provides more stable videos due to the fixed background extracted model.

The success of the proposed software based stabilization technique was measured by the
controlling the vibrated frames. Counting of motile sperms and detection of vibrated
frames were both realized based on the pixel changes within predefined duration of
frame sequences. Flow chart of stabilization technique evaluation module is presented
in Figure 4.4. First, foreground was extracted by frame differencing technique between
background and current frame using Equation 2.1. Then, foreground extraction
technique is performed for emphasizing the long term motile objects which mostly

refers to the motile sperms and eliminates the short vibrations. The details of the

39



foreground extraction technique will be given in the motile spermatozoa detection

section of this thesis.

Motile Semen
Detection

Vibrated
Frame
Stable
Frame

Figure 4.4 The flow chart of the evaluation for the software based video stabilization
approach

Threshold
Control

Stabilized or Foreground Morphological Blob
Original Videos Extraction Operations Analyses

Motile Object
Detection

In stable frames, only the sperms are motile; hence, the number of detected motile
object refers to the number of motile sperm. But, vibration distort this generalization. In
case of vibration, not only sperms but several grid parts are also registered as sperms
due to the utilized segmentation. Even if the segmentation provides to ignore some parts
of grids according to defined criteria, vibration still needs to be fixed because of the
effect on detection of other sperms. An example of vibration effect on extracted
foreground image is demonstrated in Figure 4.5. Each yellow mask indicates the
segmentation of moving objects as sperm. White marks refer to motile objects but
decided as non-sperms according to blob analysis segmentation. In case of vibration,
total number of detected motile objects is increased. Duration of vibration is delineated
as vibration interval. High vibration interval results in detection not only motile sperms

(yellows), but other immotile objects such as leukocytes and grid parts (whites) in the

frame.
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Figure 4.5 Vibration effects on foreground extracted video sequence

Performance evaluation of proposed study was made by controlling the immediate and
sharply changes on the counting numbers of detected objects. According to threshold
level, frames were delineated as stable or vibrated. In case of vibrations, foreground

extraction technique results in remarkable high counting as motile objects due to the
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grid structure of Makler material as in Figure 4.5. Otherwise, grid structure remains in
background model. Motile object detection module detects only the real motile objects

in sample and frame nominated as stable.

Figure 4.6 illustrates the total number of detected objects (y) in frames (x). Instant peak
points drawn with green dotted lines indicate the start of vibrations. Peaks are caused by
the incorrectly detection of grid structure as motile objects in vibrations. Red dotted
lines indicate the ends of vibrated frames. Red line in vertical alignment represents the
calculated mean values of counted motile objects in stable frames. Initially, first 40

frames are reserved for learning interval to constitute initial mean value.
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Figure 4.6 Graphically demonstration of vibrated frame detection based on motile
object

After learning interval, an adaptive threshold level based on the mean values of total
detected motile objects is employed. Threshold level was experimentally determined to

be the mean number of motile objects + 40.

- 1 &
V=g 2 (4.1)

y=y+ax yF*F y (4.2)

where Y, represents the total detected motile objects at ith frame within learning

interval. Only the detected motile objects in stable frames were utilized in Equation 4.1

by using constant a. Otherwise, vibration control technique based on the criteria results
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in incorrect detection. Therefore, mean calculation was ignored during the vibration
interval. Additionally, in every stable frame, learning frame number (F ) was increased

to use updated version in Equation 4.2. Output images for the each main steps in
methodology is given on an example image in Figure 4.7.

d e

Figure 4.7 Output images of the main steps in methodology: a) Original Image, b)
Background Model, ¢) Foreground Model without Stabilization Process during the
vibration, d) SURF based stabilization version of the same image sequence
demonstrated in c. ) Counting of segmented sperm cells by using the connected
component analysis

':aA o b

4.3 The Evaluation of the Video-Microscopy Stabilization Approach

A total of 42 Makler videos of 14 subjects (3 videos per subject) were captured for the
evaluation of the proposed software based video stabilization approach. Videos have
different vibration intervals that occur during the acquisition step. Additionally, each
subject has distinctive number of motile spermatozoa due to the different subject
characteristics and disease. Samples were grouped into 3 categories as hormospermic,
azospermic and oligospermic by an expert in laboratory with visual assessment
technique. Motile sperms in 10 square of Makler chamber refer to million in per ml
according to Makler instruction manual for visual assessment technique. However, it is
impossible to observe all sperms due to the presence of excess number of sperms and
limitation of human eye in normospermic case. Therefore, a standard dilution process
by using formal saline (SC) was performed. The dilution was adjusted appropriately
according to the estimated concentration as 1:1 (sample / dilution) proportion. 7
replicate counts performed on each subjects.

Initially, first module of this study was performed on the original videos with feature
extraction techniques. We obtained differently stabilized videos by the matching of
corresponding features within the RMSE constraints. Outputs were named with the
relevant feature extraction technique as SURF, BRISK and FAST videos. Next, motile
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objects and vibrated frame detection module was performed over four type of videos of
each sample.

Stabilization success of each descriptor is evaluated by using the detection of immediate
peak points of the foreground motile sperm detection. Total vibrated frames of each
video sequences are given in Table 4.1. After the detection of extremely high peak of
motile pixels, each frame is counted as vibrated frame until the end of vibration, which
is the decrements of the detected motile pixels to the level, measured before vibration.
Red, purple and cyan represents the lowest vibration detection videos measured during

the video 1, 2 and 3 corresponding to each patients, respectively.

According to Table 4.1, best stabilization is obtained by the SURF descriptors. It is
measured as minimum vibration on the 37 videos obtained by the SURF feature
matching based stabilization technique. FAST results are comparable to the SURF
results. Both methods are rotation invariant. Therefore, results are similar. Only the
vibrations in 3 videos were measured lower than SURF based stabilization. However,
FAST is computationally more efficient than the SURF as illustrated in Table 4.3.
BRISK features are worst descriptors in terms of stabilization idea according to
presented results. It distorted the entire sequence and increased undesirable vibration
effects even if the minimal vibrated frames detected in original raw videos. Main reason
behind this problem is the usage of brightness of images, because BRISK calculates
different RMSE and matches various points in once. Several graphs belongs to the
SUREF results in Table 4.1 are demonstrated in Figures 4.8, 4.9, and 4.10 to better
observe the effect of SURF descriptor based stabilization on original videos. Red lines
are drawn based on the detected motile sperms in original videos while the green lines

indicate the stabilized video analysis.
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Table 4.1 Total Number of Vibrated Frame Numbers in Sequence

Frame

Normospermia Oligospermia Azoospermia
Countings Subjl [ Subj2 | Subj3 Subj4 Subj5 Subjé | Subj7 | Subj8 Subj1 Subj2 Subj3 Subj4 Subjl  [Subj2
Vidl 53 24 6 28 280 35 132 188 282 88 34 8 48 28
E Vid2 50 8 150 47 457 52 114 157 163 60 57 257 57
'g Vid3 39 9 26 66 364 188 54 87 105 238 84 16 173 45
Minimum 39 9 6 28 47 35 52 87 105 88 34 8 48 28
Vidl 12 5 1 12 92 4 3 18 12 21 3 18 25 0
L Vid2 150 128
8 Vid3 10 7 3 15 16 39 38 12 13 55 11 0 34 0
Minimum 10 5 0 9 0 4 2 12 8 4 3 0 25 0
Vidl 63 71 114 107 100 54 106 148 101 77 74 71 174 12
% Vid2 241 232 138 189 8 170 14 89 14 27 389 23 146 6
% Vid3 80 133 396 131 30 127 139 215 24 101 138 1 35 11
Minimum 63 71 114 107 8 54 14 89 14 24 74 1 35 6
Vidl 32 0 34 15 191 19 94 61 82 106 23 182 43 2
= Vid2 436 1398 35 190 47 29 36 68 6 59 54 299 3
E Vid3 432 21 18 65 181 61 72 112 33 40 41 4 40 7
Minimum 32 0 18 15 47 19 29 36 33 6 23 4 40 2




Figure 4.8 were derived from the sperm counting results of the each frame sequence for
Subject 2 and 7, respectively. It can be observed from Figure 4.8 (a) that mostly
vibrated frames, nominated as the high peak points of red line, are aligned back to the
mean point of sequence. In another normospermic case, Subject 7, resulted in the
successful correction of red lines similar to Subject 2. However, descriptor generated
vibration effects which are not in the original video as a result of incorrect feature
matching. These vibrations are illustrated in Figure 4.8 (b). Despite these adverse
effects of SURF descriptor, vibrations were decreased to 5 and 3 frame from 24 and 132

for Subjects 2 and 7, respectively (Table 4.1).
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(@) Subject2 (b) Subject 7
Figure 4.8 Vibration effects on foreground extracted video sequence (Normospermic

Case)

Other two subjects are presented in Figure 4.9 as an example of oligospermic case.
Several vibrations were stabilized even if it was extremely high as in Figure 4.9 (a), but
multiple immediate peaks on the detection of motile sperm occurred as a result of
incorrect feature matching. While the final vibration count was determined as 8 and 5 in
stabilized SURF videos, they were measured as 157 and 57 in original videos for

Subjects 1 and 4, individually.

i
|

(@) Subject 1 (b) Subject 4

Figure 4.9 Vibration effects on foreground extracted video sequence (Oligospermic
Case)
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Figure 4.10 (a) represents the motile sperm detection process for the Subject 1 in
Azospermic case. Azoospermia is the disease as non-sperm presence in semen.
However, in vibration, excess number of sperm was measured due to the detection of
grid structure as motile sperm. Out of vibrations, presented algorithm resulted in non-
zero values. Stabilization by using the SURF features have high impact on Subject 1 as
it can be seen on Figure 4.10 (a). 169 frames out of 257 were stabilized by the proposed
technique. Motile sperm detection plot of Subject 5 in normospermic case is
demonstrated in Figure 4.10 (b) as the most successfully alignment in this study.
Vibrations were observed 364 frames (~12 sec.) in original video, but proposed
stabilization technique with SURF descriptor reduced the number of vibrated frames to
the 16 (~0.4 sec) frame.
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(@) Subject 1 - Azospermic Case (b) Subject 5 - Normospermic Case
Figure 4.10 Vibration effects on foreground extracted video sequence

In data acquisition step using the ocular part, vibration is unavoidable. Therefore,
proposed stabilization technique will improve the sperm detection. In order to see the
effects of vibrations, motile sperm counting results in stable frames (Fs) and all video
sequence were separately measured. Differences of results counted in all sequences and
only in stable frames give information about the stability of video. Mean of detected
motile objects in stable and all frames are expected to be the same in no vibration case.
Otherwise, mean values of all sequences are found to be more than the no vibration case

due to the incorrect detection of motile pixels remained in the foreground.

Normally, motile objects should correspond to the motile sperms because the only
motile objects in samples are sperms. However, the number of detected motile pixels
becomes higher than the stable consequent frames in case of vibration during the sample
acquisition step according to employed motile sperm detection technique. Therefore,
vibrated frames affect the motile sperm counting analysis. In this respect, the average

number of detected motile sperms out of vibrated frames (Stable Frames) was
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crosschecked to the average value of entire video sequence. Differences are registered
in Tables 4.2 and 4.3 as error e. In the counting process, the standardization of Makler
chamber as in visual assessment technique was employed for 36 square due to the range
of presented data acquisition approach. It is better to utilize 36 square instead of 10
square because more field of observation gives more accurate generalization. In visual
assessment technique, it is impossible to observe 36 squares at the same time manually,
hence, 10 squares are dedicated for human based systems while it is easy to process by
computer to analyze wide range. Therefore, counting results within 36 squares were

generalized to per ml and then registered in tables.

Convergence between mean values of motile sperm numbers counted in stable and all
frames indicates the less vibration status. Otherwise, vibration will cause the more
difference in result. In this sense, videos having minimum e values should be
maintained as the final result in counting process. SURF descriptor based stabilization
gave the minimum e rate. According to the counting results using BRISK based
stabilization, vibration effects in videos got worse than other stabilized and original

videos in several subjects.

In order to evaluate the efficiency of proposed computer based approach in terms of
only motile sperm counting aspects, another comparison was performed with the visual
assessment results. Table 4.4 shows the Visual Assessment (VA) and computer based
(CB) counting of SURF stabilized videos results.

It is not expected that the results will be exactly similar between computer based results
and visual assessment technique, not only due to the need for software-based
developments such as extra segmentation or noise removal filters in computer side, but
also due to observer variability. Counting results signify the efficiency of proposed
approach in spermiogram tests especially for the normospermic and oligospermic cases
since the differences can be ignored when considering the very high number of sperm
counts. However, in azospermic cases, system failed due to the segmentation step. It
should be measured as 0 sperm numbers, but counting process concluded with 1.5 and

1.3, respectively.

The last metric is the processing times of the descriptors in stabilization module. This
metric was evaluated in terms of the applicability of the methods to real-time systems.

Descriptor with short processing times will be more effective in establishing a real-time
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diagnostic system in order to provide the tests faster. Table 4.5 indicates the time
requirement for the entire process of module 1 aforementioned in this study.
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Table 4.2 Total Detected Motile Sperms for Normospermic Cases

Motile Normospermic
Sperms Subj1 Subj2 Subj3 Subj4 Subj5 Subj6 Subj7 Subj8
(millions/ml) |y, . | Yy, e [Yer | Y | e [Yeer | Vu e [Yeer | Y e [V [ Yo | € [V | Yo | € |Yer | Ve | @ Yo | Ye. | €
Vidl |63.6 [62.8| 0.8 [47.2 [46.9]0.3|59.4 | 59.4 0 [494 1486 (08| 35 [189]16.1150.3 |494| 09 |53.1 [51.4)|1.7]|556 [54.2] 1.4
E Vid2 |66.7 | 65 | 1.7 |59.2 [58.1 [1.1|56.7 | 56.7 0 |[48.6 1439 (4.7(228 [21.4]| 1.4 |79.2 |54.4(248]53.3 [51.9)1.4]|56.1 [52.8| 3.3
"g Vid3 | 71.4 708 0.6 |53.1 [53.1( 0 [54.7] 54.4 | 0.3 |51.1 |48.3|2.8]| 55 [328 222522 | 45 | 7.2 |53.3 |51.91.4]60.6 [58.9 1.7
Average [ 67.2 |66.2| 1 [53.2 1527105569 | 56.8 | 0.1 |49.7 |46.9|28|37.6 |244]13.2160.6 [49.6 11 [53.2 |51.7|15(574 |553| 2.1
Vidl |69.2 [69.2| 0 |49.7 [49.7( 0 [59.4 | 59.4 0 [511]50.8(0.3[27.2 [25.6| 1.6 |656 |656| O |54.4 |544 ] 0 |544 |[544] O
L Vid2 714 (69.2 | 2.2 [63.1 [62.5]0.6[56.9 | 56.9 0 |46.1 |46.1| 0 (258|258 0 |72.8 [69.7| 3.1 [57.8 |57.8]| 0 [558 |556| 0.2
®» Vid3 |716 [71.6| 0 |569 |569| 0 561|561 | 0 |528 [50.3|25|256 |256| 0 |628 [628| 0 |514 |514| 0 |61.7 |61.7] O
Average [ 70.7 | 70 | 0.7 [56.6 |56.410.2|57.5 | 57.5 0 50 [49.1(09]26.2 [25.7| 05 [67.1 |66.0| 1 |545 (5450 |57.3 |57.2] 0.1
Vidl | 658 | 65 | 0.8 |48.3 [47.2(1.1(486 | 46.1 | 25 |51.7 [49.7| 2 |26.7 [24.7| 2 |65.6 |64.7] 09 |56.7 | 55 [1.7]|54.4 (522 2.2
% Vid2 | 658 | 60 | 5.8 |52.8 [46.4(6.4(50.3 | 469 | 3.4 |47.8 |44.2|3.6|258 [258| O |[71.1 |675]| 3.6 |57.5 |575| 0 |544 (531 1.3
E Vid3 |[73.6 [728| 0.8 [56.4 [54.2 122|478 | 31.1 |16.7 (514 (453]6.1|1253 | 25 | 0.3 |60.8 [58.3| 2.5 [50.3 |46.1(4.2]63.3 |59.2| 4.1
Average | 68.4 | 659 | 25 |525 (49.3(3.2(489 | 414 | 75 |50.3 |46.4|39(259 |252 | 0.8 |658 [63.5| 23 |548 [529| 2 [57.4 |548( 25
Vidl | 675 |669| 04 |47.2 (47.2| 0 (586 | 583 | 0.3 |49.4 |49.210.2(289 |233| 56 |625 [625| 0 |53.9 [52.2|1.7(54.4 |53.6( 0.8
by Vid2 622 | 60 | 2.2 | 525 [43.1(9.4(59.2 | 589 | 0.3 |48.3 [43.1|5.2]23.3 [228| 05 (708 |678] 3 |553 | 55 [0.3|54.4 [53.9]| 0.5
E Vid3 |72.2 |60.3[11.9|55.3 [54.7 {0.6|51.7 | 51.7 0 [50.6 |489(1.7(29.7 [253]| 44 | 60 |58.9| 1.1 |51.7 [50.810.9]|62.8 [59.4| 3.4
Average | 67.3 [ 624 ] 48 |51.7 (483133565 | 56.3 | 0.2 |49.4 |47.1(24(27.3 [238| 3.5 |64.4 |63.1| 14 |536 (527 1 |57.2 [55.6] 1.6
Ye.es = In all frame set (vibrated + stable) Ye, = Only in stable frames e = error
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Table 4.3 Total Detected Motile Sperms for Oligospermic and Azospermic Cases

Motile

Oligospermic Azoospermic
Sperms Subjl Subj2 Subj3 Subj4 Subj1 Subj2

(millions/ml) Ve, Ve, e Ve Ve, e Yeors Yes € Ve, Ye, € Yeor Ve, € Ve e Ve, €
Vidl 26.4 15.6 10.8 5.3 2.8 2.5 3.6 31| 06 16.9 169 | 0.0 1.7 06 |11 1.7 1.1 | 06

E Vid2 194 15.8 3.6 6.4 25 3.9 3.9 251 14 194 18.6 0.8 7.2 11 161 25 14 11
g Vid3 16.9 14.2 2.8 3.9 3.1 0.8 4.7 28 | 19 16.7 164 | 0.3 94 0.6 |8.9 2.2 11 |11
Average 20.9 15.2 5.7 5.2 2.8 24 41 28 | 13 17.7 17.3 0.4 6.1 0.7 |54 21 12 0.9

Vid1l 18.9 18.6 0.3 2.2 19 |03 3.3 33 (00| 189 189 | 0.0 0.8 0.6 |03 0.8 08 |00

L Vid2 16.7 16.1 0.6 2.5 25 0.0 2.8 28 100 18.3 183 | 0.0 2.5 11 (14 14 14 |00
? Vid3 16.4 16.4 0.0 31 31 (00 3.3 33 (00| 189 189 | 0.0 11 08 |03 1.7 17 | 0.0
Average 17.3 17.0 0.3 2.6 25 (01 3.1 31100 | 187 18.7 | 0.0 15 0.8 |06 1.3 1.3 | 0.0

Vidl 20.6 18.3 2.2 3.3 19 14 4.4 3.6 |08 19.2 181 | 11 4.7 14 133 11 11 |00

% Vid2 17.2 15.3 1.9 2.8 25 0.3 15 58 | 9.2 18.3 181 | 0.3 3.9 1.1 (28 14 14 100
% Vid3 16.4 16.1 0.3 4.2 25 1.7 5.8 31128 20.6 206 | 0.0 11 08 |03 1.9 1.7 102
Average 18.1 16.6 1.5 34 2.3 1.1 8.4 42 | 4.3 194 189 | 05 3.2 1.1 121 15 14 |01

Vidl 20.3 18.3 1,9 5 19 3.1 3.6 33103 19.2 158 | 3.3 1.1 0.6 |0.6 0.8 0.8 | 0.0

= Vid2 22.5 14.2 8.3 2.2 2.2 0.0 4.2 25 | 1.7 16.7 164 | 0.3 8.1 08 7.2 14 14 |00
E Vid3 16.4 15.6 0.8 3.3 2.2 11 3.6 31106 18.9 189 | 0.0 1.4 0.8 | 0.6 1.9 1.7 102
Average 19.7 16.0 3.7 35 2.1 14 3.8 3.0 08 18.2 170 | 1.2 35 0.7 |28 14 13 |01

Ye.es = In all frame set (vibrated + stable)

Ye, = Only in stable frames e = error
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Table 4.4 Counting results by an expert with visual assessment technique

Normospermic Oligospermic Azoospermic
million/ml | ¢ i1 | subjz | subjs | subja | subjs | Subje | Subjz |subjs SubjL subj2 | subj3 | Subjs | Subjl | Subj2
VA CB|vA cB|vA cB|VA cB|vA cB|vA cB|vA cB |vA cB| vA cB|vA CB |[VA CB |[VA CB |vA cB |vA CB
Videol |65 69.2| 52 49.7|56 59.4| 47 51.1|24 27.2| 63 656|52 544 | 47 544 14 1893 22 |3 33|18 189 |0 08 |0 08
Video2 |67 71.4[59 63.1|52 56.9| 41 46.1|21 25.8| 62 728|47 578| 51 558| 15 1673 25 |4 28|16 183 [0 25 |0 14
Video3 | 68 71.6| 62 56.9|51 56.1| 48 52.8|24 256| 60 62.8|52 514 | 64 61.7| 17 1643 31 |3 33|15 189 |0 11 |0 17
Average |66.6 70.7(57.7 56.6| 53 57.5(45.3 50 |23 26.2|61.7 67.1]50.3 545 | 54 57.3|[ 153 17.3|3 26 [33 3187 194 |0 15 [0 13
Diff 4.1 11 45 4.7 3.2 5.4 4.2 3.3 2 0.4 0.2 0.7 15 13

VA = Visual Assessment

CB = Computer Based (Proposed Approach)

Diff = Difference between methods

Table 4.5 Processing Times for the Video Stabilization Module

ms. Normospermic | Oligospermic | Azoospermic
SURF 5524 4785 3448
BRISK 4023 3669 2704
FAST 2254 1957 782




CHAPTER 5

SPERMATOZOA DETECTION AND COUNTING

5.1 Introduction

The most important part of this thesis is the determination of the total number of sperm
in a given sample - in other words, sperm concentration. Infertility is highly related with
the sperm numbers, hence, counting process is crucial. Infertility zone is described in
the manual published by WHO as the presence of the immotile detected sperm number
as more than 70% of all sperms [3]. In this sense, correctly identified of motile sperm

number mostly reveals the possible infertility disease.

The detection of sperms is the first phase of the counting process. Olalla et al. used
Otsu’s thresholding and wavelet transform for sperm detection in their study [14]. As
last step, they performed SVM classifier to segment the acrosomes of sperm as intact or
damaged. In another studies published by Alegre et al. [15, 16], segmentation was
performed using the same method but classification was realized based on different
feature extraction techniques. Discrete Wavelet Transform (DWT) was employed to
extract Haralick Features [15] and Contour based features [16]. Features were classified
by different methods to analyze the acrosome states.

In order to segment exact sperm size instead of only acrosome classification, Khachane
et al. proposed a fuzzy rule based classification [17]. They segmented sperm into
regions as head, mid-piece and tail. Mainly, spatial features such as major and minor
axis, areas, and perimeters of sperm regions were used in classification. Authors defined
different logical expressions in terms of fuzzy meaning. Another study, Liu et al. [18]
mostly focuses on independently tracking of sperm head and tail. This study reveals the
correlation between tail beating amplitude and head motility. Authors subtracted

consecutive two frames to extract motile spermatozoon, and then used Kalman Filter to
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track. More detailed study of sperm head detection was published by Chang et al [19].
They presented an improved two-stage framework for not only acrosome but also
nucleus detection of sperm. They performed a combination of K-Means clustering and
histogram analysis. Additionally, they utilized different color spaces into clustering.
Anbumozhi employed fuzzy logic into the neural network classification for brain
tumors [93]. Eltoukhy et al. implemented watershed segmentation to extract ROI for
breast cancer [94]. Then, they performed wavelet transforms to extract features. SVM
classification, regression trees and rule classifiers were used in classification step.
Mageshwari et al. used morphological operations to segment HIV cells [95]. Another
cell segmentation was performed by Al-Dulaimi et al. adapting “active contours” in the
segmentation [96]. Bijar et al. segmented the sperm cell into acrosome, nucleus, and
mid-piece parts [97]. They used a Bayesian classifier to utilize the adaptive mixtures
method and Markov random field model. In another study, sperm-based segmentation
was performed by Ilhan and Elbir [98]. They tested descriptor effects on the

determination of sperm cell obtained from the embedded microscope camera.

Microscopic images are mostly noisy images due to optical effects. Hence, several
preprocesses should be applied. Abbiramy et al. [20] used a sequentially combination of
Laplace and Median Filter, Li et al. [21] adopted 2D gauss filter, and Karabiber et al.
[22] performed a low pass filter over images in their sperm counting approaches. A
different study based on fluorescence dying technique was published in [26]. Authors
simply performed morphological operations such as dilation and erosion to erase
irrelevant objects. Baazaoui et al. [99] enhanced the images by entropy based fuzzy
region growing techniques to minimize optical effects and provide semi-automated

segmentation.

In the thesis, spermatozoa detection was performed over the extracted and stabilized
ROIs in two categories; Motile and Immotile Spermatozoa regarding to the

abovementioned studies.

5.2 Immotile Spermatozoa Detection

Detection of immotile objects was performed over the background models which have
been extracted in ROI extraction step. Mean of the pixels alongside the defined frame
set will reflect of stable objects. Equation 3.1 is performed to obtain the background

model. 10 seconds of videos (300 frames) was arranged as down sampling interval to
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skip 300 frames after each processed frame. Basically, down sampling provides to
ignore the motile sperm by detection of altered pixels within defined time interval. In
other words, observing constant pixels of images over down sampling interval gives the
detection of the steady object. Each ROI has three background models (k) in immotile
spermatozoon detection due to the arrangement of sub-sample size (900 frame).
Examples of background extraction of two squares of ROI are shown in Figure 5.1.
Immotile spermatozoa and other immotile objects remained in background model while

motile spermatozoa are removed.
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Figure 5.1 Adaptive Mean Filter based Background Extractions

Not only immotile spermatozoa but also stable objects such as blood cells, debris or
halos remain on the background image. Therefore, segmentation of the objects is
required to select only immotile spermatozoa from the stable objects. We tested two

technique for the segmentation of the spermatozoa.

5.2.1 Fuzzy C-Means Based Segmentation

Clustering is a segmentation process. In short, it utilizes different groups by adjusting
the similarities of objects as maximum inside the same group (cluster) compared to
others. In regular clustering, each object can be assigned to one specific single group.
However, in Fuzzy C-Means (FCM) clustering, each object can be represented by
different clusters via similarity measures [100]. Therefore, it is also referred to as a soft

clustering technique.

Fuzzy logic-based segmentation, FCM, was initially tested for the immotile
spermatozoa segmentation. Spatial features of segmented objects are extracted with
blob analysis. Object clustering as sperm/non-sperm is performed with the feature
elimination of objects by comparing already defined parameters of manually selected

spermatozoa.
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FCM is similar to the regular K-means clustering technique, but different in that it
involves the membership values of each object to class with a fuzzifier level, which is
the determination of fuzziness. Equation 5.1 indicates the k™ centroid calculation of
FCM.

Zsszlwk (S)m S (5 l)
Z;Wk (S)m |

where S refers to total number of samples. k and s represents the selected cluster and

C, =

sample. wk(s) is the degree of being in the k™ cluster for sample s. m is the fuzzifier
level. Next to the calculation of the centroid for k™ cluster (cx), updates are performed

until the convergence by using Equation 5.2.
S K
argmin > > wj's, —c,? (5.2)
c i=L j=L
K indicates the total number of clusters defined in the first iteration. FCM aims to
minimize the centroids by controlling Equation 5.2. Wi indicates the degree of element

si belonging to cluster ¢;. It is calculated by Equation 5.3.

W, = L 5 (5.3)

k=1
S, —C,

After the segmentation of extracted ROI by FCM, pixel-based spatial analysis, by

another name blob analysis, was performed over segmented parts to extract spatial-
based features. Objects were classified as sperm according to previously defined

parameters of sperm shapes. Extracted features are demonstrated in Figure 5.2.
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Figure 5.2 Extracted Features by Blob Analysis

Figure 5.3 demonstrates two examples of the segmentation steps of extracted ROI. The

threshold levels of each feature for the determination of sperm cells were assigned as
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the average values of 100 manually selected sperms’ features. As a result, the features
of the sperm cells should be in the range presented in Figure 5.2. Clinical concentration

results will be given in the spermatozoa counting part of this chapter.
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Figure 5.3 Segmentation Steps of Sperm Cells

5.2.2 Active Contour with Dual Thresholding

Gray level histograms of the images play important role in the segmentation. According
to the histogram chart of the extracted ROI of the Makler images, a normal distribution
can be observed. Thresholding is an essential part of any image retrieval applications
[101]. The key idea behind the method is replacing each pixel with black pixel if the
intensity value is less and/or more than predefined threshold. Dual thresholding over
normal distribution was applied to signify immotile objects (immotile spermatozoa,
white blood cells, leucocyte, debris etc.) remained in background model. In terms of
dual thresholding, Expression 5.4 is utilized over Gaussian curve of Histogram values

illustrated in Figure 5.4.
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Figure 5.4 Dual Thresholding process over Gaussian curve of Histogram Values
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T,=1 T. <S, Dark Objects

T;=0 S, 2Ty 23, Background (5.4)

;=1 T. > S, Bright Objects

Tij represents the gray level pixel value of the image at (i,j) location. The dual
thresholding levels were calculated by Gaussian parameters denoted as S; and S..
Mathematically the threshold are calculated using Equation 5.5.

S, =u(H(T))+@xo(H(T)))
S, =u(H(T))-@xo(H(T)))

where H(T) indicates the histogram of image T. According to Gaussian theorem, if the

(5.5)

distribution is normal, mean and standard deviation can be calculated over the

distribution of histogram by using Equation (5.6).
l N
=—5Sh
N Zl: .

azﬂ/ﬁgm )

where h. denotes ith histogram level and N is the total number. 8 bit histogram was

(5.6)

used in this study. Hence, N is equal to 255 histogram level. Following to thresholding
process, several morphological operations were performed to emphasize the
segmentation of objects. Morphological methods rely on the mathematical and logical
operations. In order to give brief information of methods, erosion performs a simple
‘logic AND’ operation and dilation carries out ‘logic OR’ process with a mask structure
around the segmented object. Example outputs of abovementioned segmentation and
post processing steps on extracted background model are illustrated in Figure 5.5.

Background 1 Threshold Background 2 Threshold
o ' 3
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Figure 5.5 Dual thresholding segmentation results
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Afterwards, active contours as a diffusion method in spatial domain was performed to
strengthen spermatozoa with their edges and tails as fully detectable form [102]. Active
contour was used as delineating the outline of objects. In some specific cases, using
features derived by only histogram-based segmentation is not effective method for
elimination of objects. Tails of spermatozoa might be missed out due to similar
intensities with background. This similarities may result in elimination of spermatozoa
in next stages because of the segmentation of incorrectly derived features. Active
contours were principally employed in this study to fix sperm detection problem by
detecting the contours of complete structure. It stands on the energy minimizing
between internal and external forces. In theory, deformable spline is employed on
object. External forces pull the spline towards object contours and internal forces resist
deformation. Strictly changing points (edges) with high value ends up the algorithm.
Active contour (also known as snake equation) is presented in Expression 5.7. Details of
internal and external forces are formulized in Equation 5.8 and 5.9, respectively.

1 1
v|‘Esnake (V(C))dc =3 jEinternaI (V (C)) + Eexternal (V(C))dc (57)
0 0
Einternal = Econt + Esmth (5 8)
Eexternal = (\Nline x EIine ) + (Wedge x Eedge ) (59)

where v(c) represents the contour defined by a set of n points. Contour energy

nominated as E._. consists of separately calculated internal (E, ., ) and external (
E...mar ) €NErgies of objects. Internal energies are defined as the sum of the continuity (

E.) and smoothness (E,, ). It is mainly used to control snake deformation on
contours. External energy is a combination of the feature energies of images such as
edges and lines. W, and W, are the weights of the features. E,., can be

expanded as in Equation 5.10.

Eune = 5% (@(c)< V(0 )

E o = 5% (B(E)<|V(©))

(5.10)
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a and g are user-defined weights that control the internal energy function's sensitivity

to the amount of stretch in the snake and the amount of curvature in the snake,

respectively, and thereby control the number of constraints on the shape of the snake. In

practice, a large weight a(c) for the continuity term penalizes changes in distances

between points in the contour. A large weight B(c) for the smoothness term penalizes

oscillations in the contour and will cause the contour to act as a thin plate.

Since the active counter method requires predefined shape information of desired
contour, or seed points, the method is not fully automated method on finding contours
in images. It depends on other mechanisms such as interaction with a user to set up a
mask, some higher-level image understanding process, or information from image data.
We used the segmentation result obtained by histogram-based thresholding as mask
(seed point) for deformation. Energy of snake was calculated by minimizing the
differences of internal and external force energies by expending or collapsing the mask.

Each counter of segmented objects was estimated by using snake active contour
algorithm. After active contour calculation, another segmentation was utilized to detect
specifically spermatozoa within all segmented stable objects similar to FCM clustering
approach. Blob analyses were implemented to get several feature sets in this respect.
Area, Eccentricity, Perimeter and Circularity of the detected contours were extracted as

features. Mathematically demonstration of the features are given in Expression 5.11.

Area, :ii(sw)k

x=1 y=1

Perimeter, z;z[Sx (a, +b,)—4/(3a, +b)x(a, +3bk)]

. b?
Eccentricity, = 1_a_k2
k

Perimeter;
4x 7 x Area,

(5.11)

Circularity, =

N indicates the total number of segmented objects with the contours in the image.

(S, ) represents the pixel value at (x, y) location of kin segmented object. Value of the

pixels inside of detected object are equal to 1 because of the thresholding process.

Hence, sum of the pixel gives the area of the objects in image. 8, and b, refers to major
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and minor axes of the objects, respectively. Major axis explains the maximum distance
and minor axis indicates the minimum distance between the contours. Perimeter was

calculated by using Ramanujan approximation formula [103].

The area and perimeter features might be misleading parameters. Therefore,
eccentricities and circularities were also calculated to strengthen the segmentation
results. Eccentricities of objects tent to be O if the objects are in a circular structure.
However, spermatozoa are mostly elliptical. In this case, eccentricity of the
spermatozoon should be between 0 and 1. Another parameter, circularity, is taken into
account as well. Average of the manually selected 100 spermatozoa features with + o
interval were considered as reference values for each derived feature sets of objects.

Reference standards are listed in Table 5.1.

Table 5.1 Features and Reference Values

Feature Name Criteria to
Area 83 29
Perimeter 46 22
Eccentricity 0.6 0.1
Circularity 2.37 11

Segmentation was performed by the correlation between reference and object values. In
some cases only the size is not distinctive because of the plenty of debris and blood
cells with the similar size with spermatozoa. Therefore, size information is strengthened
with other features that are more identical and mostly the same for all spermatozoa
shapes. Figure 5.6 shows the segmentation and marking only the immotile spermatozoa

in the images.

Threshold 1 Segmented 1 Threshold 2 Segmented 2

€
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Figure 5.6 Segmentation results based on derived features by blob analyses over active
contours
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The results of this approach for the immotile spermatozoa detection will be given
together with the motile spermatozoa detection results in the spermatozoa counting

section.

5.3 Motile Spermatozoa Detection

In semen specimen, motile spermatozoa are the only moving objects. So, foreground
detection process is enough to detect motile spermatozoa. Additionally, the performance
of the video stabilization module is measured in this respect. Frame differencing was
utilized between the adaptive mean background model and the original video sequence
to extract the foreground model [104]. Method was performed over 90 images (3
seconds). Formula of algorithm is shown in Equation 5.12.

P[D(t)]=P[V(t)]-P[B]
(5.12)

f

F(x y)=2{(1—D(X, y,t—i))xﬂ

i=1

where B indicates the extracted background from Equation 2.1 and V/(t) is the frame at
time t. Subtraction of frames with background is realized over densities represented here
by P. D(t) is subtracted image at time t between background model and video frame.
After all, F(x, y) is the foreground image over f frame which refers to 90 frames in this
study. Totally 10 foreground models were extracted due to the duration of video sub-
samples (900 frames). Example results of foreground extraction is illustrated in Figure
5.7.
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Figure 5.7 Original images and Foreground models of two example images

5.4 Spermatozoa Counting

Motile and immotile spermatozoon detections were performed over foreground and
background models of videos derived from 90 and 300 frames, respectively. Totally, 10

foreground and 3 background models were extracted over each sub-sample (900
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frames). In this way, detection process was repeated every 3 seconds for motile and 10
seconds for immotile spermatozoon. Counting process in computer side was maintained
with the similar idea of using Makler chamber in VA technique. Normally, number of
sperm counted in 10 squares refers to the sperm concentration as millions in per ml for
given sample. In this study, ROI were increased from 10 to 36 squares. Detections of
motile and immotile spermatozoon inside the each square were individually counted.
Additionally, given main sample was split into 30 seconds sub-samples. Each partition
was analyzed separately to verify and ensure the results. Entire sperm detections as
motile and immotile spermatozoa of sub-samples were, then, calculated by sum of
detection in each square. Counting process was repeated as the total number of arranged
sub-samples. Final result of the given sample was accepted as the average results of
each counting result of sub-samples. Mathematically expressions of counting process

are presented as in follows:

1 10 10 36
a =—X—X m
10 36 ;WZ; fw
1 10 3 36
d ==x=—x n
“ 3736 éébw
sample_no 18
Apatisr:t:no = _Zak (513)
N

n
sample_no __ 1
D =>d
patient_no — k
N4
t

n=—
30
In the expressions, & and d, denote motile and immotile spermatozoa numbers

detected inside of sub-samples. n is the total number of sub-sample partition derived
from t seconds main sample. A and D refer to cumulative counted numbers of a and d,

respectively. Cumulative results are calculated by averaging results of sub-samples.

m; ,, and n, , indicate the detected motile and immotile spermatozoa in foreground and

background models. w refer to extracted ROI square number, f represents the

foreground model number, and b indicates the background model number.

In the clinical tests, we followed the instruction reported by Bjorndahl et al. [11].
Detection technique was tested on semen specimen which were collected from refrained

males from any sexual activity (no ejaculation) for at least two days, but not more than
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7 days. Patients have no missed early ejaculate fractions. Samples were requested from
subjects as ejaculating into provided sterile sample cup by masturbation in the morning
between 9 — 11 am. Samples were kept in 37° C for 30 min. after ejaculation process.
Then, ligquefaction, volume and viscosity analysis have been determined visually by the
experts. Next to the semen analysis, 5 pl. volume of semen or sperm suspension was
loaded into the Makler chamber according to manual. First, an expert manually counted
the sperm cells and registered under the VA in the tables. Manual counting procedure
was done in duplicate and compared; counts were repeated on new samples when the
difference between duplicates exceeded the acceptance limits. Then, the videos of
Makler chambers under the 20x Microscope magnification were recorded by the
smartphone based data acquisition approach illustrated in Figure 2.3. Videos were
transferred to a computer over a local network. CSCTAS analyses were then initialized.

Olympus BX50 microscope was used in both VA and CSCTAS analysis.

The evaluation of the FCM clustering-based sperm counting analysis was made by
comparing the results with the visual assessment technique. This part was tested as a
preliminary clinical research, hence, only 5 subjects were selected for immotile sperm-
counting analysis. Each extracted ROl was individually analyzed by FCM-based
segmentation. Then, the results of 36 squares total were collected. Normally, counting
sperm in 10 squares of the entire area of Makler indicates the millions per ml in the
visual assessment technique. Similarly, we performed the idea over 36 squares to
generalize the counting result as millions per ml. The results of proposed counting
approach (FCM) and visual assessment (VA) is presented in Table 5.2.

Table 5.2 Immotile spermatozoa results of FCM based segmentation and Visual
Assessment technique

million / Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
ml. Vi | V2| Vs| V1 V2 Vs Vi V2 Vs Vi V2 Vs V1 V2 V3
FCM 34|38|42]|107 122|121 |29.7 | 31.8 | 27.3 | 428 | 352 | 36.2 | 72.1 | 819 | 804
VA 0 0 0 7 9 7 24 27 22 34 29 31 | 40+ | 40+ | 40+
error 34|138|42| 37 |32 |51 |53 )| 48| 53| 88| 62|52

Sperm counting results indicate that the proposed approach should be improved. Subject
1 is the case for no sperm present in semen. However, a blob analysis-based
segmentation resulted in incorrect sperm detection. Additionally, more sperm than in

the VA technique was counted in all cases. Error is indicated in the differences. In the
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case of more sperm in semen, the proposed approach concludes more error. Therefore,
different feature extraction techniques such as wavelets or individual sperm analysis as
motile or immotile should be utilized in the counting part to decrease the error rate. On
the other hand, in of over sperm cases such as Subject 5, it is impossible to count
manually. Therefore, it is noted as “40+” to indicate more than 40 million per ml. Our
proposed counting method successfully reported the counting results in such cases. In
our second approach to this problem, we implemented active contour with a modified
Otsu thresholding; dual thresholding for increasing the success of the spermatozoa

detection.

The second technique for the immotile and motile detection was tested on 32 semen
videos obtained at four different times from 8 subjects. Patients were classified into
normal and abnormal classes according to the reference semen parameters published by
the WHO in VA technique. Experts separately counted the motile and immotile sperm
cells within 10 squares to generalize the result as million per ml. Therefore, manually
counted numbers inside 10 squares directly recorded into table as sperm concentration
in millions per ml according to manual of Makler. Addition to VA, one of the basic
CASA system, SQA-Vision, was also utilized in the study. It is an automated sperm
quality analyzer, which provides sperm concentrations, motility percentage as
progressive and non-progressive movement, and roughly morphology assessment.
However, recording or observing the sample in computer side is not possible. It does
not give full view of the semen in details. It is an integrated and compact system which
cannot analyze the samples having the concentration less than 5 million/ml. However,
system was employed in the tests owing to compare the Makler counting results of both
techniques as computerized and manual to one of CASA system. According to WHO
manual published in 2010, normal sperm concentration and active sperm ratio is
accepted as at least 15 million/ml and 40% of concentration, respectively. Results and
the comparison between VA, CASA and CSCTAS will be interpret in this scope.

In the tables, A3 and D, denote motile and immotile spermatozoa numbers for specimen
s of subject p, respectively. Numbers written in normal font represent the generalized
sperm concentration in millions per ml. while italic ones indicate the detected total
sperm cells by developed counting software. Additionally, the percentage of motile

spermatozoa over total sperm numbers is given in tables under “%” column to compare

64



the detection of motility rate between methods. All the comparative results in standard
deviation and the average rates will be given in the last table of this chapter.

Table 5.3 indicates the results for the azoospermia case. Azoospermia is defined as the
absence of the sperm cells in ejaculated semen. Each sample of subject 1 is evaluated
correctly by VA technique owing to observed none sperm in 10 squares. However,
proposed CSCTAS has partly misdetections in immotile spermatozoa evaluation, which
is indicated in italic numbers. When the results are generalized from 36 squares to ml by
using Equation 5.13, these misdetections can be negligible. There is no misdetection on
motile spermatozoa counting. On the other hand, SQA CASA system concludes with
“No Operation” because it is not functional on evaluation of samples less than 5

million/ml sperm concentrations.

Table 5.3 Test results of Subject 1 (Azoospermia)

A D} % | A2 D? % | A3 D3} % | At D# %
VA 0 0 o] o 0 o] o 0 0| o 0 0
CASA No Operation
cscTas | o | 02 (1) | 0 | 0 | 05(2) | 0 | 0 | 0.2 (1) | 0 | 0 | 02 (1) | 0

The results for the Oligospermia case are given in Table 5.4. Oligospermia explains the
cases having less sperm concentration than normal level which is defined as 15
million/ml in the WHO manual. Subject 2 has an oligospermia diagnoses according to
concentration evaluated between 3 and 5 million/ml. presented in Table 5.4. Again,
CASA system reports “No Operation” because of the same reason as in azoospermia
case. VA and CSCTAS results are similar, but CSCTAS results are more reliable and

effective owing to 36-square analyses instead of only 10 as in VA.

Table 5.4 Test results of Subject 2 (Oligospermia and Asthenospermia)

Al o} |w| 4 | 02 [w ]| a p; | % | a Dt | %
VA 0 4 o] 1 3 |25] o 2 o| o 4 0
CASA No Operation

CSCTAS | 0.3 (1) | 2.8 (10) | 9 | 0.3 (1) | 2.5 (9) | 10 | 03 (1) | 3.6 (13) | 7 | 03 (1) | 3.1(11) | 8

The manual of Makler suggests that the multiple test should be performed to obtain
more stable results. The main purpose of this is to expand the analyzing area which
provides more trustful and objective results. It can be seen on motility rates clearly. VA

results are inconsistent over motility rates due to only one or none motile sperm
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observation within 10 squares. When the range of field is expanded in analysis, sperm
counting over wide range provides more objective and consistent results. Motility rate is
evaluated between 8% and 10% by CSCTAS whereas VA is reported as 0% to 25%.
Another diagnoses, asthenospermia, can be achieved by the aid of CSCTAS for this
subject. Asthenospermia is identified as the low motility rates. On the other hand, VA is
inefficient to perform such analyses for this subject.

Table 5.5 Test results of other Subjects

A} D} | % | 43 D |%| 43 D} |%| A} D} %
VA 6 8 42 5 8 |38| 6 9 40| 4 8 33
CASA 14.1 36 137 34 142 35 138 36
CSCTAS5.2 (19)| 7.5(27) | 41 | 4.4(16) | 7.7(28) | 36 | 5.2 (19) | 7.7 (28) | 40 |3.88 (14)| 7.2 (26) | 35

A} Dy | % | A} D} |%| A} D} |%| A} D} %
VA 10 12 |45 | 10 11 |47 1 11 |50 10 11 47
CASA 222 45 21.9 47 214 49 224 46
CSCTAY 8(29) [10.6 (38)| 44 |8.9(32) | 10(36) | 47 | 9.4 (34) | 8.9(32) | 51 | 9.7 (35) [10.2 (37)| 48

A} D | % | A2 p: |%| A} D} |%| A D? %
VA 2 28 7 3 23 |11| 2 21 | 9 2 23 8
CASA 283 6 272 8 275 8 26.6 8
CSCTAY 2.5(9) [27.2(98)| 8 |[3.3(12)|25.2(91)| 11 | 1.6 (6) |20.8(75)| 8 | 1.9(7) |21.4(77)| 8

Ad Dt | % | A2 p: |%| A3 D} |%| A} D %
VA 21 10 |68]| 23 11 |68| 21 13 |62 22 13 63
CASA 34.1 65 344 67 338 66 329 65
CSCTAS21.1 (76)| 9.7 (35) | 68 [22.5(81)|11.1(40)| 67 | 20 (72) |11.1(40)| 64 |21.9 (79)|10.8 (39)| 67

A} DY | % | A2 Dz |% | 43 D3 |%| 4% D% %
VA 21 24 | 47| 20 22 |47 19 23 |45 22 25 47
CASA 44.1 48 43.7 46 44.8 46 45.1 49
CSCTAS20.2 (73)[21.6 (78)| 48 [19.1 (69)|21.9 (79)| 47 |18.3 (66)|23.8 (86)| 44 |20.8 (75)|23.3 (84)| 47

A§ DY | % | A3 D |%| 43 D} |%| A} D3 %
VA 23 25 | 48| 24 27 |47 24 25 |49| 25 25 50
CASA 50.8 48 51.1 47 50.3 48 50.7 49
CSCTAS|22.5 (81)[23.8 (86)| 48 [23.8 (86)|25.2 (91)| 48 |22.7 (82)|23.9 (86) | 48 |23.6 (85)|24.7 (89)| 49

Analyzing of other 6 subjects are given in Table 5.5. SQA CASA does not provide
individual numerical results for immotile and motile sperm concentration. System gives
the motile spermatozoa ratio over total number. The results recorded in tables as the
concentration and the motile ratio. According to Table 5.5, motility rates of VA and
CSCTAS are more similar. Because the developed sperm counting approach is basically

inspired from VA technique. Only the difference is about the field of range in
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calculation. Sperm concentration results between VA and CSCTAS are slightly
different, but developed counting software offer more objective and consistent results.
According to obtained concentration results, CSCTAS technique is effective and can be
used instead of VA and CASA.

According to experiments, the analysis of immotile spermatozoa by CSCTAS causes
several misdetections due to presence of noise and undesirable particles in the wide
range field of view. Results of subject 1 indicate this problem. However, generalization
of the results by using Makler standardization with 36 square minimizes the problem
and provides better understanding over diagnoses. Since the number of motile
spermatozoa detected by VA and CSCTAS are closer, foreground extraction method are

perfectly adapted to the proposed approach.

The average and standard deviation of 4 analysis for each subjects are presented in
Table 5.6. Individual detected sperm numbers by all techniques are averaged to present
better comparison between the techniques. Results also indicate the consistency of the
technique on practical use. Normally, similar results are supposed to obtain within sub-
samples of certain main sample. Standard deviation represents the probabilities of
getting similar results of samples that given by same subject in different times. Minimal
values of standard deviation refer to more consistent technique.

Table 5.6 Average results and Standard Deviations of 4 samples for each subjects

Motile Spermatozoa Immotile Spermatozoa

VA CASA CSCTAS VA CASA CSCTAS

Avg. o Avg. o Avg. o Avg. o Avg. o Avg. o

Subject 1 0 0 0 0 0 0 0.28 0.15
Subject. 2| 0.25 0.5 0.3 0 3.25 0.96 3 0.47
Subject. 3| 5.25 0.96 51 0.17 4.65 0.68 8.25 0.5 9 0.16 7.53 0.24

Subject4 | 10.25 | 0.5 10 0.21 9 074 | 1125 | 05 122 | 059 | 993 | 0.73

Subject5 | 2.25 0.5 1.7 0.24 2.33 0.75 | 23.75 | 2.99 26.6 0.90 | 23.65 | 3.07

Subject6 | 21.75 | 0.96 222 0.66 214 1.10 | 11.75 1.5 121 0.32 | 10.68 | 0.67

Subject7 | 20.5 1.29 211 0.85 19.6 1.12 235 1.29 23 0.57 | 22.65 | 1.07

Subject 8 24 0.82 244 0.36 | 23.15 | 0.65 255 1 26.4 0.51 244 0.67

SQA CASA is the most consistent technique due to the obtained lower standard
deviation than other techniques. But the difference between the CASA and CSCTAS is
less than VA. Maximum difference is recorded as 2.1 in immotile spermatozoa

concentration of Subject 5 which refers to 2.1 million/ml. differences. This difference
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with respect to 25 million sperm concentration is insignificant. Difference between VA
and CSCTAS is less than CASA because of their similarity. It is precise that the more
sample testing will reduce CSCTASSs deviation when compared to VA due to 36 square

analyses of semen.

Results of sperm concentration analysis is individually demonstrated by Bland-Altman
plot as motile and immotile spermatozoa concentration in Figures 5.8 and 5.9. Bland-
Altman plot, or difference plot, is an informative demonstration on comparing two
techniques [105]. The main idea is to demonstrate the differences between techniques
against the averages of techniques. Solid horizontal line indicates the mean difference,
and the dashed horizontal lines represents the limits of agreement, which are defined as

the mean difference plus and minus 1.96 times the standard deviation of the differences.
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Figure 5.8 Bland-Altman plot analysis of motile spermatozoa concentration

Figure 5.8 indicates the scatter plot of two counting approach of motile spermatozoa
concentration in terms of the Bland-Altman plot. According to the agreement level,
graph proves that the developed CSCTAS is considered to be in agreement and may be
used interchangeably with VA and CASA techniques. Only one sample analysis in each

technique remained out of agreement level with slight difference.

Figure 5.9 displays Bland-Altman plot for the immotile spermatozoa concentration
analysis. Similar to motile spermatozoa concentration scatter plot, developed CSCTAS
can be utilized interchangeably with VA and CASA due to the obtained results

remaining inside of defined agreement level.
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Figure 5.9 Bland-Altman plot analysis of immotile spermatozoa concentration

69



CHAPTER 6

SPERMATOZOA TRACKING AND TRAJECTORY ANALYSIS

6.1 Introduction

Sperm movement characteristic plays an important role in male fertility and motion
information is the key parameter for analyzing the sperm movement. Motion is often
represented by the trajectories after tracking process. In this respect, tracking is the first

step for the motility analysis.

Sperm tracking is a challenging matter, because sperm have same size and shape, move
fast, there is an uncertainty in their motions. Therefore, most studies have been
performed to reduce tracking mistakes, especially when sperms collide with each other.
Robust multi-target tracking algorithms, developed originally for radar applications and
video processing, have addressed similar challenges successfully in other domains
[106]. Over the years, interest in applying such algorithms to track viruses, bacteria,
stem cells, sub-cellular organelles and other biological particles has increased [107]. We

reviewed several tracking studies applied on especially for the sperm tracking problem.

Firstly, Katz and Davis introduced the automatic sperm tracking in the mid-1980s [108].
In the proposed system, a user-selected gray level threshold is applied to all video
frames to identify sperm pixels, and the centroids of the manually segmented blobs are
then accepted as sperm positions. A circular validation region centered at each position
in one frame is used to select a path measurement from the next frame in order to track
the sperm. User selects the radius according to the shape of spermatozoa. This method
works well for tracking a small number of well-separated targets in the absence of
clutter, but its effectiveness rapidly degrades if targets become closely spaced and their

overlapping conditions contain multiple conflicting measurements. In these cases,
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CASA systems often exclude the affected tracks from analysis or continue the track by

selecting the nearest-neighbor measurements.

Beresford-Smith and Van Helden tested radar tracking algorithms in sperm tracking
problem by modifying the probabilistic data association filter (PDAF) to track a single
sperm [109]. Shi et al. and Liu et al. applied the recent ad-hoc methods for tracking
single sperm through occlusion problem [110, 18]. Tomlinson et al. explained a CASA
system that is capable of tracking multi-targets [111]. They can track multiple sperm
and classify their motility using 1-sec video clips. However, the collisions or over long
durations of sperm motility problems was not addressed in the paper. Su et al.
developed a lens-free holographic imaging sensor to track the sperms in the 3D
swimming paths during 10 — 20 seconds in highly diluted sample preparations [112].
Their method requires a significant computational cost (greater than 2 hours of post-
processing). In [113], Berezansky et al. used the mean shift and optical flow techniques
for sperm detection and tracking, respectively. But, the execution time was excessive
and the method cannot detect immotile sperm. Sorensen et al. studied multi-sperm
tracking using both Kalman and particle filters [114]. Bar-Shalom et al. applied joint
probabilistic data association filter (JPDAF) for the sperm measurement-to-track
association conflicts occurring during real and apparent cell-to-cell collisions [115].
They tested the approach on the air traffic control systems. This approach uses
independent Kalman filters to estimate the position and velocity of each sperm tracked.
The recent work of Ristic et al. [116] summarizes these methods along with suggestions
for consistent assessment of tracking algorithm performance.

Moving objects should directly indicate the motile spermatozoa because the only motile
objects are spermatozoa in the semen viscosity. In the tracking part of this study, we
used the detection points obtained by the foreground detection technique (frame
differencing) which refers to the motile objects in the semen sample as the initialization
point for the tracking techniques. We have tested two tracking approaches on the
detected sperm locations. First, Mean Shift tracking was adopted [117]. Then more
advanced and estimation based technique, Kalman Filter, was utilized due to the

inefficient Mean Shift tracking results.
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6.2 Tracking with Mean Shift

Mean Shift tracking is a feature searching technique in the spatial domain within a
certain range [117]. After the defining initial points of objects, technique extracts
several features such as color, intensity, edge, histogram etc. of the initial points. Then,
in the next frame, extracted features are sought within the certain range defined by the
users. This part named as Mode-Seeking. Tracking is concluded by the probability
density function (PDF) which is the likelihood over object locations. The point which
gives the higher likelihood is connected for the tracking. The Mean Shift tracking idea

for the sperm tracking problem is demonstrated in Figure 6.1.

current frame +

likelihood over

object location current location

appearance model

(e.g. image template, or

Mode-Seeking
o~ (e.g. mean-shift; Lucas-Kanade;
ﬂ E a particle filtering)

color; intensity; edge histograms)

'

Figure 6.1 Mean Shift tracking demonstration on sperm tracking problem

Mean Shift tracking is a robust technique when the features are distinctive from the
background and objects are identical. But, in sperm tracking problem, it is not an
efficient technique due to the similar appearance models in the frame such as multiple
spermatozoa and the grid structure. In case of sperm or grid occlusion for specific sperm
tracking, technique confuses the derived features of the appearance model in the mode-
seeking step. An example of successful and unsuccessful tracking can be observed in
Figure 6.1. In the figure, the sperm marked as 1 is successfully tracked by seeking the
extracted features in the next frame, but tracking the number 2 failed due to the similar

extracted features with the grid structure.
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6.3 Tracking with Recursive Kalman Filter

As a result of unsatisfactory performance of visual evaluation for the Mean Shift
tracking technique, we applied the Kalman approach suggested in [118]. Recursive «

£ Kalman Filter (RKF) is employed over the sequential image sets. RKF is based on
Bayesian approach which employs the current and previous states and measurements of
the objects and estimates the objects new states in the next frame [124].

P(xX)xP(m|x)

=T (6.1)

P(X [ %1, m)

Equation 6.1 indicates the Bayesian theory in which P(x) is the prior probability and
P(m|x) is the measurement at the state x. P(x|m) explains the estimated new state of the
object according to the obtained measurements and previous states. Recursive form of
regular Bayesian equation by changing P(x) with P(x|m) for each frame and calculating
new P(x|m) due to the information obtained from former frame constitutes the RKF
which can be formulated as in Equation 6.2. Velocity of the spermatozoa is accepted as
the measurement (m) variable in the equations. The parameters used in the Equations

are given in Equation 6.3.

X =X, +vt*t+%att2

1 (6.2)
Yia =%t Vtyt + E att2
vy, =V, +at 6.3)
vy, =V +at '

where X, and Y, indicate the next state estimation in 2D coordinate plane. Images

are in 2D form, hence, [x y] and [v* V] are calculated individually for the horizontally
and vertically state and velocity, respectively. The estimation of velocity for the

estimated state of object is nominated as the measurement (m) variable in Kalman Filter

Equation 6.3 and obtained by the velocity and acceleration at the current time t. v;,, and

v/, indicate the estimation of velocity for the estimated state [x, y].

In the spermatozoa tracking problem, we utilized the « £ Kalman Filter for the

estimation of the next state. o and £ are the coefficients for the calculation of state
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and velocity estimation. Additionally, E parameter is defined as error parameter. a S

Kalman Filter can be formulated as in Equation 6.4. The last 10 sequential images were

analyzed for the estimation of next frame and the quantization was selected as 0.1t.
State is indicated by x, . Former state information is multiplied by « coefficient. New

state is estimated by the summing of current measurement which provides the

movement of the object's state and nominates as the velocity and its acceptable error

limit.
X =ax X, +fxm+E, (6.4)
Equation 6.5 is the expanded matrix form of given Equation 6.2 and 6.3 in the Kalman
Filters.
2T
X 1 0t O X E
+ 010t 2
Yt | < 7]+ L | (6.5)
Vi, 0 01 0]V 2
vy, 000 1] ]|V t
t

a, 3, and Ex is the Gaussian parameters in Equation 6.4. They can be written as in

expressions 6.6, 6.7 and 6.8 according to Equation 6.5.

101t 0
01 0t
o= (6.6)
0010
0001
2
2
t2
= — 6-7
F=5 (6.7)
t
_t_
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The variation in the velocity is also used in the updating process of the states. In this

respect, Equation 6.9 is utilized to update the velocity parameter.

z_t:CZ+EZ
X
o 1 0 0 Of Y, 6.9)
010 0}V
v,

B - o> 0
0 o°

where z, indicates the updates in the velocity, in other words, sensor prediction during
the tracking. Updating is performed by the variation in the estimated state Xx, .

Therefore, Cconstant is defined only for the coordinates [x, y]. Additionally, a
specified error parameter for the possible sensor errors is set to standard deviation of the

Gaussian curve and nominated as E;.
Xest = Xt +K(Zt - Zt) (610)

Equation 6.10 indicates the last estimated state including the update effects in the
velocities to the pre-estimated state. K is the Kalman gain parameter which aggravate

the effects of changes in velocity. Equation 6.10 provides more accurate state estimation

and X is the final location to be used for the tracking in the study.

The detections of spermatozoa and the estimated locations by Kalman Filter should be
assigned for the track identification and updating process. Euclidian distance between

the detected and estimated location of each spermatozoa is utilized for the cost matrix.
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Local minimum results in wrong assignments due to the presence of plenty of

spermatozoa. This is an assignment problem, which is illustrated in Figure 6.2.

Figure 6.2 Assignment Problem of the detection and the estimation location of the
spermatozoa

Black spermatozoa refer to the estimated locations at time t+1 of the orange, blue and
green spermatozoon at time t. Updating the parameters of Kalman Filter requires the
verification of the estimations with the detections of the spermatozoa at time t+1. A
matching for the verification is necessary within a certain range. The squares around the
estimations are used for the matching range. However, squares can involve multiple
detection. Without an assignment algorithm, finding the optimal solution takes
excessive times. Additionally, minimum distance matching results in inappropriate

matching which is misleading for the updating process.

Assign the detections to estimated track positions were performed by Hungarian
Algorithm which is utilized for the optimization of the distance vector to provide less
effected trajectories from the immediate motilities. The Hungarian method is an
algorithm to find an optimal assignment for a given cost (distance) matrix. In this
algorithm, distance vector between the detection and the estimated track position will be
assigned by using the global minimum instead of local minimums. Steps of the

algorithm are as follows;

76



Step 1. Subtract the smallest entry in each row from all the entries of its row.

Step 2. Subtract the smallest entry in each column from all the entries of its

column.

Step 3. Draw lines through appropriate rows and columns so that all the zero
entries of the cost matrix are covered and the minimum number of such lines is

used.

Step 4. Test for Optimality: If the minimum number of covering lines equals to
the total number of state, an optimal assignment of zeros is possible and
optimization is finished. (ii) If the minimum number of covering lines is less
than the total states, an optimal assignment of zeros is not possible yet. In that

case, proceed to Step 5.

Step 5. Determine the smallest entry not covered by any line. Subtract this entry
from each uncovered row, and then add it to each covered column. Return to
Step 3.

Estimated Locations.

1 2 3 Blue -1
250 400 350 Orange — 3
400 600 350 Green - 2
200 400 250
Cost = 1000
Minimum Distance Matching
Estimated
f 1 2
Blue 250 400 350
Orange 400 600 350
Green 200 400 250
Locations
. 1 2 3 Blue - 2
e 250 400 350 Orange — 3
1 Orange 400 600 350 Green —» 1
Green 200 400 250
Cost =950

Hungarian Algorithm

Figure 6.3 Calculation of the cost matrix for assignment problem

Numerical example of the illustrated three spermatozoa assignment problem in Figure

6.2 is given in Figure 6.3. Minimum distance assignment searches for the local

minimums which might be the misleading assignment. In this example, the incorrect
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assignment of matching the local minimums can be observed in the Figure 6.3.
According to the minimum distance matching results, the estimation of the green and
blue spermatozoa are updated by the detection of the blue and green spermatozoa,
respectively. It is a misleading assignment, which affects the all assignments. Contrary
to these results, Hungarian assignment results in the correct matching. Detection of the
blue and green spermatozoa are assigned to the correct estimated tracks to update the

parameters.

6.4 Feature Extraction and Trajectory Classification

Tracking was performed over the RKF based estimated states with their matching by
Hungarian algorithm inside of the predefined ROI. Long term tracking might be
misleading due to the possible long duration of blinking or noise appearing and
immediate changes in the direction and/or velocity of the motilities. Therefore,
trajectories of each 90 frame (3 sec.) were partly analyzed. The analyzing schema over
an example extracted trajectory is shown in Figure 6.4.

Figure 6.4 Trajectory splitting and analyzing

WHO has defined the several motility parameters of the spermatozoa [3]. Trajectory

parameters are demonstrated in Figure 6.5. Several metrics are calculated from the
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demonstrated VAP (Average Path Velocity), VCL (Curve Linear Velocity) and VSL

(Straight Line Velocity) parameters.

Figure 6.5 Evaluation Parameters in Visual Assessment Technique defined by WHO

The features that will be used in clustering is as follows;

Curve Linear Velocity (VCL) - Velocity parameter calculated from the total path

Average Path Velocity (VAP) - Velocity parameter calculated from the

smoothed path

Straight Line Velocity (VSL) - Velocity parameter calculated from the direct path

between start and end points of the motility

Amplitude of Lateral Head displacement (ALH) - Magnitude of Iateral

displacement of a sperm head about its average path

Beat Cross Velocity (BCF) - The frequency of the intersection between the

spermatozoa head piece and the trajectory

Straightness (STR) - A measure of the linear convergence of the spermatozoa to

the smooth path calculated by VSL/VAP

Linearity (LIN) - A measure of the linear convergence of the spermatozoa to the

curve linear path calculated by VSL/VCL

Wobble (WOB) - A measure of oscillation of the actual path about the average

path calculated by VAP/VCL
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= Mean Angular Displacement (MAD) - Immediate turning angle of the sperm

head along its curvilinear trajectory

WHO defined 4 type sperm motilities in the latest laboratory manual as follows;
Grade A - Fast progressive motility
Grade B - Progressive motility
Grade C - Non-progressive motility. Vibrations or inconsistent movements.
Grade D - Stable and immotile.

Motilities have been classified according to the reference values for specific features
defined by the Witkowski et al. [39]. The reference values of features for the each

motility types are explained as follows;
Grade A = VAP > 25 um/s and LIN > 75%
Grade B = VAP < 25 um/s and LIN > 75%
Grade C = LIN < 75%

Grade D = VAP <5 um/s

6.5 The Evaluation of the Spermatozoa Tracking Approach

It is important to first group motion trajectories by clustering homogeneous trajectories
into the same clusters before further modeling trajectory distributions and learning
motion patterns in order to handle different motion patterns more effectively and
efficiently. As an initial work, we verified our derived features of the trajectories in the
determination of the motility analysis with the reference values [39] by using
hierarchical clustering [119]. We merged trajectories derived from 32 videos of 8
subjects (4 videos of each subject including 3 healthy, 3 low motile, 2 non-motile case)
and then clustered into 4 clusters referring to the each grades. Totally 89438 trajectories
were included in the clustering of the features. The purpose of this part is to verify the
system in terms of feature extraction process by comparing each cluster centers to the

reference values explained in [39]. Dendrogram is given in Figure 6.6.
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Figure 6.6 Dendrogram of the hierarchical clustering for 89438 trajectories

Cluster centers and the reference values are compared in Table 6.1. System is verified
according to the similar cluster centers of the trajectory features obtained by the

proposed system with the reference values explained in [39].

Table 6.1 Cluster Centers and the Referance Values

VCL | VSL | VAP | STR | LIN | WOB | BCF
(um/s) | (umfs) | (umis) | (%) | (%) (%) *)

Cluster 1 (Grade A) 35.3 29.2 32.7 89.2 82.7 92.6 11

Reference Grade A - - >25 - >75

Cluster 2 (Grade B) 21.8 17.4 194 89.3 79.5 88.6 14

Reference Grade B - - <25 - >75

Cluster 3 (Grade C) 11.8 4.9 8.5 57.2 40.8 67.9 17
Reference Grade C - - - - <75

Cluster 4 (Grade D) 3.1 0.8 14 42.3 17.9 39.1 35
Reference Grade D - - <5

The distribution of the three clusters of the motilities as Progressive (A+B), Non-
Progressive (C) and Immotile (D) over the extracted features are shown in Figure 6.7.
Plots also indicate that the reference values for the specific features such as LIN and
VAP play important role on clustering. Additionally, extra features such as STR and

VSL which can be employed in the determination of the progressive and immotile
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motility, respectively. Plots also emphasized that the WOB feature is not useful for the
clustering or classification process of the motilities.

I Progressive
I Non-Progressive
I Immotile

.

T~7

0 20 a0 0 20 40 0 20 40 0 05 10 05 1.0 20 40 6 02 04 06 08 1
VCL VAP VSL STR LIN woe BCF

Figure 6.7 The distribution of the clusters over the extracted features

An example of the clustering results of each motilities over one specific patient is given
in Figure 6.8. Grade A has rapid and fast straight characteristic as indicated in Figure
6.8 (a). Grade B is in linear format but the speed is lower than Grade A. Figure 6.8 (b)
shows the Grade B trajectories recorded in the same duration with Grade A. The lengths
of trajectories are shorter than Grade A which indicates the slower motilities than Grade
A. In Figure 6.8 (c), inconsistent, elliptical movements can be observed as Grade C.
Lastly, Grade D motilities are given in Figure 6.8 (d).

Grade A is the extremely fast motilities which cannot be observed frequently in the
laboratories. Therefore, many CASA systems report the fast or rapid motility analysis in
the normal progressive motility. In our system, we report separately. Hence, in the test
results, our result were compared by one of the basic CASA systems by summing the

Grade A and B in the progressive motility analysis.
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Figure 6.8 Motility Feature clustering over a subject a) Grade A — Fast progressive, b)
Grade B — Progressive, c) Grade C — Non-progressive, d) Grade D — Stable

After the verification of the proposed tracking technique, we evaluated the tracking
analysis in the diagnosis of 6 subjects by using the reference values as the threshold
values. The same semen samples were also tested in one of the basic CASA systems;
SQA-Vision. It is utilized in analysis and the results are accepted as the ground truth.
The comparative results are given in Table 6.2.
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Table 6.2 Motility Analysis Results

Total Motile Type of Motility (%)

Spermatozoa Spermatozoa A B C D

Vi 478 238 0 21.2 21.7 57

V2 523 221 0 17.0 20.8 62

Subject1 | V3 569 225 0 21.2 18.1 60.5
Mean 523 228 0 19.9 20.2 59.8

SQA-V 507 202 26 8 66

Subject 2 | V1 405 197 0.06 28.1 17.1 54.5
V2 438 209 0.19 32 17.4 50.2

V3 464 219 0.06 34.1 18.9 46.8

Mean 435 208 0.11 314 17.8 50.5

SQA-V 406 180 34 11 95

Subject 3 | V1 212 115 2.01 51.3 9.2 375
V2 245 122 157 48.7 11.01 38.7

V3 262 142 1.82 474 10.6 40.2

Mean 240 126 1.8 49.1 10.3 38.8

SQA-V 260 135 52 5 43

Subject4 | V1 377 180 0 10.4 27.8 61.8
V2 321 174 0 8.7 34.3 o7

V3 352 197 0 111 30.8 58.1

Mean 350 184 0 101 30.9 58.9

SQA-V 320 188 9 30 61

Subject5 | V1 499 155 4.8 216 14.7 58.9
V2 524 172 6.1 19.9 12.4 61.6

V3 578 169 5.7 22.1 11.9 60.4

Mean 533 165 55 21.2 13 60.3

SQA-V 532 162 24 7 69

Subject 6 | V1 399 175 0.2 322 22.2 45.4
V2 404 192 0 34.7 18.2 47.1

V3 417 174 0 31.9 24,2 43.9

Mean 406 180 0.06 32.9 215 45.4

SQA-V 378 180 40 8 52

SQA-Vision system reports three types of motilities as Progressive (Grade A + B), Non-
Progressive (Grade C), and Immotile (Grade D). According to the results, system
outputs are similar to the SQA-Vision reports in the detection of progressive and
immotile movement types. Only the analysis for the high concentration samples is
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different due to the challenges for detection process. But, SQA-Vision is also not a
preferable CASA system in the laboratories because of the inefficiency in the low
and/or high concentration samples. Therefore, results obtained in those cases can be

neglected and should be compared with more advanced systems.
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CHAPTER 7

CONCLUSION AND DISCUSSION

Spermiogram tests are currently carried out by Visual Assessment (VA) and Computer
Assisted Sperm Analysis (CASA) systems in laboratories. VA is easy to implement and
inexpensive, but highly dependent on the user experiences and expertise, which called
as observer variability problem. Additionally, results might be misleading such as the
diagnoses of asthenospermia in oligospermia cases because of the human factor. In
order to eliminate the disadvantages of VA, CASA systems have been utilized. CASA
systems have advantages over VA, but they are more complicated and expensive. Also
the systems have dependencies and limitations. In this study, we developed a technique
combining computerized systems and manual evaluations. We proposed a new
computerized approach in which data acquisition is performed as in visual assessment,

but analysis is done by a computer.

Today, Makler chambers are the most commonly used counting chambers in the visual
assessment analysis. Therefore, computer-based systems for analyzing the Makler
images will be an innovation. In this respect, videos of the samples over the Makler
counting chamber were recorded from the ocular part of the microscopy by a mounted
smartphone in the developed system. Then, videos transferred to the server to be
analyzed in computer side software which is named as Computerized Sperm Counting
and Tracking Analyzing System (CSCTAS). First phase of this software is the ROI
detection and the extraction module. Hough transform (HT) with the clustering idea is
initially tested for this aim. However, the results indicated that the technique should be
improved. Then we proposed a combinational line detection approach. It was tested on
80 videos and the overall performance was evaluated with 95.36% and 88.58%
accuracy and F-measure scores, respectively. Eventually, ROIs in Makler images were

correctly extracted from images.
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In our approach, we mainly aim to form a cheap and easily accessible sperm analyzing
framework. Therefore, a holder accepting all mobile phones is designed and employed
for mounting the phone on the ocular part of microscope. However, camera cannot be
fully fixed on ocular part, hence, small vibrations can occur during the recording.
Therefore, video stabilization technique is applied to prevent the counting results from
the vibration effects that occur in the microscope. The main purpose is to provide more
accurate and consistent results. Otherwise, employed motile spermatozoa detection
algorithm results in more sperms in vibrated frames. We developed feature matching
based video stabilization technique to decrease the vibrations on the videos. Three
feature extraction techniques (SURF, FAST and BRISK) were employed to extract
features of each frames. Then, each frame was rotated according to the match results of
the features with the extracted background to stabilize the video sequence. In terms of
counting vibrated frames, SURF is the most efficient algorithm with the minimum
vibrations detected after the rotation process. On the other hand, FAST is the fastest
algorithm in terms of processing times, while the SURF requires lots of time and system
resources. BRISK increases the vibration of original video in several cases, hence
BRISK is not suitable to use in stabilization algorithms. FAST is a moderate technique
according to all performance metrics. However, counting of motile sperms is crucially
important process. Small variations in result can have high affects in counting due to the
generalization rule of Makler Chamber. Therefore, SURF is selected as the employed
feature extraction technique in stabilization module. Each recorded video in the
laboratories were initially stabilized by the SURF feature matching technique. Then the
detection module for motile and immotile spermatozoa is performed over the stabilized

videos.

Fuzzy c-means (FCM) and blob analysis-based segmentation were tested on each
extracted and stabilized sub-images (a total of 36 sub-images from one frame) for the
sperm-counting. Results were compared with the visual assessment technique.
According to the visual assessment technique, results indicate that the proposed
counting approach should be improved. Therefore, we utilized a hybrid method
including active contours and dual thresholding in the spermatozoa detection step in the
proposed CSCTAS.

32 video samples belonging to 8 subjects were tested for the spermatozoa detection by

the proposed hybrid method. Four samples were requested from each subject in
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different times to verify the results. Data organization was automatically performed by
forming 30 seconds length sub-samples from the given main samples in the server.
More extensive, objective and comprehensive counting analyses of the sperms are
performed by the developed CSCTAS. Number of sperm cells were counted as
immotile and motile spermatozoa according to the motilities inside the individual
regions of interest. After applying the standardization calculation procedure of Makler,
concentration results obtained by the VA and one of the basic CASA system, SQA,
were compared with our approach (CSCTAS).

CASA is the most consistent analyzing technique according to the minimal standard
deviation in the concentration results of identical subjects. CSCTAS employs the
automatization of VA technique. Therefore, CSCTAS results are similar to the VA
technique. However, CSCTAS is more consistent due to the less standard deviation in
sample concentration analysis of the same subject. Additionally, Bland-Altman plot
emphasized that the CSCTAS is in agreement limit with VA and CASA result which
indicates that the proposed approach can be employed interchangeably with VA and
CASA.

In the tracking module, o p Kalman Filter was used. Hungarian algorithm is utilized in
the object assignments. Trajectories were split into 3 seconds length (90 frame) to avoid
wrong assignments due to the immediate changes in motilities of the spermatozoa.
Seven features from the trajectories were then extracted. As an initial work, we verified
our system extracted features with the reference values of the each type of the motilities.
In this respect, we merged all trajectories obtained from 32 videos of 8 subjects (4
videos of each subject including 3 healthy, 3 low maotile, 2 non-motile cases). Totally
89438 trajectories were clustered into 4 clusters referring to the fast/rapid progressive,
progressive, non-progressive, and stable. We checked the cluster centers of each feature
with the reference values. Because of our cluster centers and the reference values are
similar, our approach can be assumed as verified. Next, we tested our tracking approach
on 18 videos of 6 subjects. Additionally, we analyzed the same semen sample in one of
the CASA like system, SQA-Vision. According to the comparative results, our system
is efficient in the determination of the fast and normal progressive motilities. However,
system should improve in terms of the non-progressive motility analysis. According to
the reference parameters for the type of the motility, non-progressive motility should be

classified by only one feature; LIN. However, in our case, we realized that the extra
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features should be appropriately included in the classification. Clustering results of the
each features also indicates that the one feature for the clustering is not enough. In this
respect, we will propose new parameter definitions for the motility analysis in future

studies.

CSCTAS reported more detailed results in several cases and surpassed CASA in terms
of being portability, cost and modularity. CSCTAS stands out with its hardware
independency, implementation simplicity on any kind of phase-contrast microscopy,
requirement of less parameters, and implementation and running cost. Software is not a
hardware dependent solution as it is in the CASA. It only requires an extra camera
apparatus. According to the obtained spermatozoa counting and tracking results,
proposed system can be utilized instead of visual assessment technique and offers a
computerized solution to spermatozoa analyzing much cheaper than the CASA systems

and more reliable and observer invariable than the VA.

In further studies, we will define new parameters for determination of the motility types
and also add morphological analysis capability to the system for the determination of

the spermatozoa shapes.
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