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PARAMETER ESTIMATION OF PROBABILITY DISTRIBUTIONS BASED
ON RANKED SET SAMPLING

ABSTRACT

Recently, many researchers focused on the more effective sampling method that is
called Ranked Set Sampling (RSS) for estimating the population parameter when the
measurement of an observation is costly and/or time consuming. In RSS procedure,
we rank the units of the variable of interest without actual measurement and after the
ranking process, only selected units are measured exactly. Therefore, we have
effectiveness and advantageous as time and cost. Furthermore, it provides more
representative sample from the target population by selecting the units almost
everywhere from the interested population. RSS method has been studied by the
number of researchers under various scopes. While some of them has modified the
RSS, the others estimated the parameter of population by using these modifications.
In this study, we deal with the estimation of the shape and scale parameters for
Generalized Rayleigh (GR) distribution. We propose the maximum likelihood (ML)
estimators of unknown parameters of GR distribution based on RSS and its some
modifications. As we have no explicit form of estimators of parameters, numerical
methods are used for the solutions. For comparison of the performances of estimators,
a Monte Carlo simulation study is performed via Mathematica 11.0 with 10,000
repetitions. The biases, mean squared errors and relative efficiencies of estimators are
compared in simple random sampling (SRS), RSS, extreme RSS, median RSS and
imperfect RSS with different set and cycle sizes. Moreover, the study is supported

with a real data example.

Keywords: Ranked set sampling, median RSS, extreme RSS, imperfect RSS,
parameter estimation, maximum likelihood estimation, generalized Rayleigh

distribution
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OLASILIK DAGILIMLARININ SIRALI KUME ORNEKLEMESINE DAYALI
PARAMETRE KESTIRIMi

0z

Son zamanlarda, bir¢ok arastirmaci gézlemlerin Ol¢limiiniin masrafli ve/veya
zaman alic1 oldugu durumlarda kitle parametrelerinin kestirimi i¢in daha etkili bir
ornekleme metodu olan sirali kiime Orneklemesi (SKO) iizerinde yogunlagmustir.
SKO prosediiriinde, ilgilenilen degiskene ait birimler ger¢ek &lgiim yapilmadan
siralanir ve siralama siireci sonrasinda sadece segilen birimlere olgiiliir.Boylece,
zaman ve maliyet acisindan etkinlik ve avantaj elde edilir. Ayrica SKO, ilgilenilen
kitlenin neredeyse her yerinden birimler secerek kitleyi daha iyi temsil eden bir
orneklem elde etmemizi saglar. SKO yontemi bir¢ok arastirmaci tarafindan gesitli
kapsamlar altinda galisilmistir. Arastirmacilardan bazilar1 SKO’yii modifiye ederken,
digerleri de bu modifikasyonlar1 kullanarak kitle parametrelerini tahmin etmektedir.
Bu c¢alismada, Genellestirilmis Rayleigh (GR) dagilimimin sekil ve 6lgek
parametrelerinin  kestirimlerine deginilmistir. GR dagilimimin bilinmeyen
parametrelerinin SKO’ye ve onun bazi modifikasyonlarina dayali en ¢ok olabilirlik
kestiricileri sunulmustur. Parametre kestiricileri kapal1 bir formda yazilamadigindan,
¢Oziimler i¢in niimerik yontemler kullanilmistir. Kestiricilerin performanslarinin
karsilagtirilmas1 amaciyla Mathematica yazilimi kullanilarak 10.000 tekrarli Monte
Carlo benzetim calismasi yapilmustir. Kestiricilerin basit rasgele 6rnekleme, SKO, uc
deger SKO, ortanca SKO ve kusurlu SKO altindaki, yanliliklari, hata kareler
ortalamalar1 ve etkinlikleri farkli kiime ve dongii sayilariyla karsilagtirnlmistir.  Ek

olarak, calisma gercek veri 6rnegiyle de desteklenmistir.

Anahtar kelimeler: Sirali kiime 6rneklemesi, ortanca SKO, u¢ deger SKO, kusurlu
SKO, parametre kestirimi, en ¢ok olabilirlik kestirimi, genellestirilmis Rayleigh

dagilimi
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CHAPTER ONE
INTRODUCTION

Ranked Set Sampling (RSS) is a sampling method was first proposed by Mclntyre
(1952) as an advantegeous alternative to Simple Random Sampling (SRS) when
estimating the population mean. An important advantage of this approach is that it
improves the efficiency of estimators of the population parameters by providing more
representative sample from the target population cost and/or time effectively.
However, Mclntyre (1952) had not supported his work theoretically. Takahasi &
Wakimoto (1968) obtained the first theoretical results about RSS. They proved that
the mean estimator in RSS is unbiased with smaller variance compared to the mean
estimator in SRS when ranking is perfect. Also, Dell & Clutter (1972) showed the
same manner without ranking constraint. The other results can be obtained in the
study of Patil et al. (1999), Wolfe (2012) and Al-Omari & Bouza (2014). In RSS, we
select m random sets each of size m from the interested population. Each set is
ranked by an expert judgment, auxiliary variable or visual inspection without actual
measurement. After the ranking, smallest ranked unit is chosen from the first set, then
second smallest ranked unit from the second set and continuing until the largest
ranked unit is selected in the last set. Only these selected m units are measured for the
analysis. If the larger sample size is required, then we repeat this procedure r times as

a cycle and we obtain n = mr sample size of ranked set sample.

In the literature, there are great number of studies focused on modifying the RSS
scheme. Extreme RSS (ERSS) is the first modification of RSS proposed by Samawi
et al. (1996) to estimate the population mean only using maximum or minimum
ranked unit from each set. Muttlak (1997) suggested median RSS (MRSS) for the
efficient population mean estimation. Al-Saleh & Al-Kadiri (2000) offered Double
RSS (DRSS) to estimate the population mean. Then multistage RSS (MSRSS), as a
generalization of DRSS proposed by Al-Saleh & Al-Omari (2002) and it is found
more effective than SRS when estimating the population mean. Muttlak (2003a)

considered quartile RSS (QRSS) in order to estimate the population mean. By using



the quartiles of the sets, it provides better results especially for asymmetric
distributions. Similar to this method, Muttlak (2003b) used percentiles of the sets
instead of quartiles for the selection, that is called percentile RSS (PRSS). On behalf
of a robust perspective, Al-Nasser (2007) offered L-RSS which is ground on the idea
of L-statistics and an combination of RSS, QRSS and MRSS. These modifications are
only some of all studies. For others also one can see Jemain et al. (2008), Al-Nasser
& Mustafa (2009), Al-Omari & Al-Saleh (2009), Al-Omari & Ragab (2013), Haq
et al. (2013, 2014). Besides, number of researchers studied on estimation of
parameters for the distributions by using these modifications of RSS with different
estimation methods. Stokes (1995) studied estimation of the parameters of the
location-scale family having cumulative distribution function (cdf) of the form
F(*F). They investigated both ML estimators and best linear unbiased estimators
(BLUE) of p and o using modified RSS. Al-Saleh & Al-Hadhrami (2003)
investigated moving extremes ranked set sampling (MERSS) for the location
parameter of symmetric distributions. They studied on ML estimators and a modified
ML estimators based on RSS. Moreover, they compared the efficiencies of
corresponding estimators with respect to SRS for the case of normal distribution
under perfect and imperfect ranking. Abu-Dayyeh et al. (2004) proposed different
estimators for the location and scale parameters of logistic distribution using SRS and
RSS. They provided the estimators in the cases of either one or both parameters are
unknown. They also compared the mean square error (MSE)s of method of moment
estimators (MOME), ML estimators and BLUE under RSS. Shaibu & Muttlak (2004)
compared ML estimators of the parameters of the location-scale parameter family of
distributions under the different methods of sampling namely, RSS, median RSS and
extreme RSS, and percentile RSS. Helu et al. (2010) provided that ML estimators,
MOME and Bayes estimators of the shape and scale parameters of Weibull
distribution in SRS, RSS and MRSS. Hassan (2013) studied on estimation of the
shape and scale parameters of exponentiated exponential distribution is considered
based on SRS and RSS. Hussian (2014) estimated the unknown parameters of the
Kumaraswamy distribution using both SRS and RSS techniques. Khamnei & Mayan
(2016) introduced the exponentiated Gumbel distribution and studied the ML



estimators of the parameters of exponentiated Gumbel distribution based on a SRS.
After the description of RSS, they studied the estimation of the parameters based on
RSS and finally compared these two sampling methods. Dey et al. (2017) considered
the estimation of Rayleigh distribution by using ML method and Bayesian method
and also different sampling schemes these are SRS, RSS, median RSS and modified
RSS. Also see much more studies about parameter estimation based on RSS;
Modarres & Zheng (2004), Abu-Dayyeh et al. (2013), Chen et al. (2013), Biradar &
Santosha (2014), Yousef & Al-Subh (2014) and Samuh & Qtait (2015).

1.1 Literature Review of Bivariate Distribution Based on RSS

On literature, there are a few works about bivariate distributions based on RSS while
there are a lot of univariate distribution studies depending on RSS. Most of these studies

are related to estimation of parameters for the distributions.

Firstly, Stokes (1980) considered the estimation of correlation coefficient for
bivariate normal distribution based on RSS with concomitant variable.  He
investigated the estimators of correlation coefficient for other parameters are known
and unknown. After that, Al-Saleh & Samawi (2005) estimated the correlation
coefficient for bivariate normal distribution based on bivariate RSS which is a
modification of RSS. Then, they considered nonparametric estimation of correlation
coefficient when other parameters are known. Also they suggested the modified ML
estimator for estimating the correlation coefficient when other parameters are
unknown. Al-Saleh & Al-Ananbeh (2007) used MERSS to estimate the two means of
bivariate normal distribution with concomitant variable. They also considered ML
estimators of means based on MERSS. These estimators are found that unbiased and
more effective than obtained by using SRS. Chacko & Thomas (2007) considered the
different estimators of a parameter which is associated with study variate Y when
(X,Y) is from bivariate Pareto distribution by using RSS. They compared the mean
estimator in RSS, BLUE in RSS and BLUE in lower ERSS for the interested

parameter. They found that BLUE in RSS of the parameter is more efficient than the



RSS mean estimator and BLUE in lower ERSS of the parameter is more effective
than the another estimators. Al-Saleh & Diab (2009) estimated the parameters of
Downton’s bivariate exponential distribution by using nonparametric and parametric
estimation methods based on RSS. They compared the efficiencies of estimators
depending on RSS and SRS. Tahmasebi & Jafari (2012) presented that several
estimators of a scale parameter of Morgenstern type bivariate uniform distribution;
mean estimator based on RSS, a BLUE using RSS and upper RSS. They also used
ERSS and MERSS to compare different estimators by a simulation study. Tahmasebi
& Jafari (2015) investigated the unbiased estimators for a parameter associated with
study variable Y when (X, Y") is from Morgenstern type bivariate gamma distribution
based on RSS, ERSS and MERSS. They compared mean estimators depending on
RSS, ERSS and MERSS and found that ERSS is more efficient than the another
methods. One can see the other works for bivariate distribution on RSS; Al-Saleh &
Samawi (2004), Chacko & Thomas (2008), Dieh et al. (2011), Singh & Mehta (2014),
Nematollahi & Shahi (2015), Chacko (2016), Hanandeh & Al-Saleh (2016), Chacko
(2017), Tahmasebi et al. (2017).

1.2 Outline of the Study

In this thesis, we consider the problem of estimating the parameters of Generalized
Rayleigh (GR) distribution based on RSS by using ML estimation method. GR
distribution is also named as the two parameters Burr Type X distribution was first
introduced by Surles & Padgett (2001). It plays a crucial role in modelling lifetime
data analysis. It has a relation with many other distributions such as; Rayleigh
distribution, Weibull distribution, gamma distribution, exponentiated Weibull
distribution and generalized exponential distribution. We are interested in ML
estimations of shape and scale parameters of GR distribution based on SRS, RSS,
MRSS and ERSS. In chapter two, we described the procedures of RSS and its some
modifications. Third chapter initially introduced the properties of GR distribution and
proposed the estimators of parameters based on SRS, RSS, ERSS and MRSS by using



the method of ML. Chapter four includes simulation results for GR distribution
depend on different sampling schemes under perfect and imperfect ranking for the
RSS. Also in this chapter, performances of the estimators are compared with
numerical study. Chapter five provides a real data example and the study ends up

with the conclusion remarks.



CHAPTER TWO
RANKED SET SAMPLING AND ITS SOME MODIFICATIONS

Recently, RSS is one of the most advantageous sampling method to estimate the
parameters of a population, since this method provides efficient results in terms of
cost and time. When the actual measurement of an observation is expensive and/or
difficult, RSS ensures the convenience for this with visual ranking and selection
procedure. Firstly, it was introduced by MclIntyre (1952) without any mathematical
background and study of Takahasi & Wakimoto (1968) supported it theoretically. It is
found that more effective than the SRS when estimating the population mean and
provides unbiased results. And then many modifications of RSS have been suggested
such as preliminarily; extreme RSS and median RSS. Initially, the procedure of RSS
is decribed as follows: Firstly, we select randomly m number of sets of sizes m from
the target population. Each set of sizes m is ranked by visually, expert judgment or
auxiliary variable without exact measurement. After this ranking process, ith smallest
ranked unit is chosen from the ith set for ¢ = 1,...,m. We only measure these
selected m units and the others are discarded for the analysis. If the larger sample size
is required, we can repeat this procedure r times as a cycle and we obtain n = mr
sample size of ranked set sample. The procedure for one cycle and case of m = 3 can

be shown as below:
Xiaa) < Xies) < Xias)

Xoas) < Xpe3) < Xos:3)
X31:3) < X3z23) < Xiea)

where X (j,..,) stands for ¢th set, hth ranked unit and m set size.

If the procedure is repeated r times, we have
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where m is the set size, j is the cycle number for sth set and i1th ranked unit in X;(..r,) 5.

2.1 Extreme Ranked Set Sampling

ERSS is the first modification of RSS offered by Samawi et al. (1996) to estimate
the population mean only using maximum or minimum ranked unit from each set. For
estimation based on ERSS, the following procedure can be used. The selected m
random sets each of size m units from the population can be ranked within each set
with respect to a variable of interest by visual inspection or any cost-free method.
According to set size m 1s even or odd, selection method may be altered. If the set
size m is even, the lowest ranked unit of each set is selected from the first m/2 sets
and the largest ranked unit of each set is chosen from the other m/2 sets. If the set
size is odd, select the lowest ranked unit from the first (m — 1)/2 sets, select the
largest ranked unit from the other (m — 1)/2 sets and median is taken from the
remaining last set. When the size of ERSS is increased by cycling the procedure r
times, then we have n = mr sample size. The procedure for one cycle and case of

m = 4 and m = 5 can be shown as below:

Xi4) < Xiea) < Xiga < Xiua
X4y £ Xopu) < Xozu) < Xouu
X3y < Xz < Xz@u) < Xj4a)

Xaa) £ Xa@ay < Xuza) < Xy

~



and

INA
>
=z
w
&
A
>
i
>~
ot
&
|
>
i
ot
ot
&

Xias) < Xy
Xoas) < Xo@s) < Xoas) < Xows) < Xoss)
X3s) < Xzs) < Xz@s) < Xzus) < Xjss)
Xys) < Xyi)

IA
fa
g
IA
Iy
N
IN
s
‘o

| Xs5) = Xss) S Xss) S Xsas) S Xs(an)

In literature, ERSS is widely used modification for estimating the population mean
effectively. Especially when underlying distribution is asymmetric, it provides
unbiased estimators. Also, Samawi & Al-Sagheer (2001) used ERSS and MRSS for
estimating the distribution functions. Muttlak (2001) considered two regression
estimators based on ERSS and MRSS to estimate the population mean and compared
with the regression estimators based on RSS. Samawi et al. (2002) studied the

impacts of ERSS on regression and residual analysis.

2.2 Median Ranked Set Sampling

MRSS is the one of well-known modifications of RSS which is suggested by
Muttlak (1997) for estimating the population mean effectively. He indicated that the
MRSS gives unbiased results when the underlying distribution is symmetric and that
estimator was found to be more efficient than both SRS and RSS. The procedure of
MRSS is initially like as usual RSS in terms of randomly selection, allocation and
ranking within each m sets with respect to variable of interest. After cost-free ranking
process, selection is done according to the set size which is even or odd number. For
odd set size m, we select median unit of the each m set. If the set size m is even then
the (m/2)th ranked units are chosen from the first m/2 sets and the ((m + 2)/2)
ranked units are selected from the remaining m /2 sets. Others are discarded and only
selected units are measured. If necessary, procedure can be repeated r times as a
cycle and we have n = mr sample of size. The procedure for one cycle and case of

m = 3 and m = 4 can be shown as below:
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MRSS gives more efficient results than SRS for mean estimation in especially
symmetric distributions. Additionally, Muttlak (1998) used MRSS to estimate the
population mean when the ranking is depending on a concomitant variable and he
showed that MRSS gives more efficient results compared to RSS and regression
estimator in most cases. Samawi & Muttlak (2001) sugessted to MRSS for estimating
the population ratio. Muttlak & Al-Sabah (2003) offered new control charts by using
RSS, MRSS and ERSS for the population mean and they stated that MRSS dominates
all other methods in terms of the out-of-control average run length performance.
Alodat & Jetschke (2011) studied polynomial regression by using MRSS scheme and

they found that least square estimator under MRSS are more efficient than SRS.



CHAPTER THREE
ESTIMATIONS FOR PARAMETERS OF GENERALIZED RAYLEIGH
DISTRIBUTION

Burr (1942) proposed cumulative distribution function as 12 different types for
modelling lifetime data. The most popular ones of among these are Burr Type X and
Burr Type XII. Several researchers consider different aspects of these distributions,
one can see for example, Rodriguez (1977), Sartawi & Abu-Salih (1991), Jaheen
(1995, 1996), Ahmad et al. (1997), Raqab (1998), Surles & Padgett (1998),
Alshunnar et al. (2010) and Pathak & Chaturvedi (2014). Later, Surles & Padgett
(2001) (see also Surles & Padgett (2005)) proposed two parameters Burr Type X
distribution and also called as the generalized Rayleigh distribution. Note that it is a
particular case of exponentiated Weibull distribution suggested by Mudholkar &
Srivastava (1993). If X is the random variable from GR distribution with shape

parameter o > 0 and scale parameter A\ > 0 has the cummulative distibution function
F(z;a,\) = (1 —exp(—(A2)?)*, = > 0. (3.1)
Then the probability distribution function of GR is
f(z;a, X)) = 2aXzexp(—(Ax)?) (1 — exp(—(Ax)*)* !, 2 >0, (3.2)
and the survival and the hazard functions are given as below

S(z;a,\) =1 — (1 —exp(—(\x)?)*, x>0, (3.3)

200% exp(—(An)*) (1 — exp(~(Ax)*))*"!
T (1= exp(—(\)?)" '

h(z; o, ) = (3.4)

GR distribution will be denoted by G R(«, A) by Ragab & Kundu (2006) and they

also indicated that if & = 1, GR distribution coincides with the Rayleigh distribution.

10



If we put another shape parameter instead of 2 in (3.1), it is an exponentiated Weibull
distribution. For @ < 0.5, the probability density function (pdf) is a decreasing
function and hazard function of GR(«, \) is bathtub type and if « > 0.5, it is a right
skewed unimodal pdf and increasing hazard function. Figure 3.1 shows that various
forms of the density functions of GR distribution. GR distribution is a quite useful

when modelling general lifetime data and strength data.

3 T T

25 4 )

f(x ;al)
L.

0.5

Figure 3.1 The density functions of the GR distribution for different shape parameters (Ragab & Kundu
(2006))

In literature, there are many methods to estimate the parameters of target population.
In this chapter, we use the one of these estimation methods, namely ML technique. It
is the most widely used estimation method in statistical inference to inform about the

population.

To give a general definition of maximum likelihood estimates, let
X = [Xy,Xy,...,X,] is a random sample of size n whose joint distribution is
described by a density f,,(x; ) over the n-dimensional Euclidean space R"™ where 0 is
the vector of unknown parameters in parameter space 2. For fixed x, define the
likelihood function of x as L(0) = L,(0) = f.(x;0) considered as a function of
0 € Q.

11



Any 0 = (x) € Q which maximizes L(6) over (2 is called a maximum likelihood
estimate of the unknown true parameter 6. We often use logL(#) instead of L(6) since

it provides easiness for computations.

3.1 Estimation for Parameters of GR Distribution in SRS

In this section, we give the ML estimators of the parameters of GR(a, A) when
both parameters are unknown. Let X1, X5, ..., X, is a random sample of size n from
GR(a, M), then likelihood function L(«, \) and log-likelihood function /(c, \) are
written by Kundu & Raqab (2005) as

n

L(a, \;x) = H f(@i; o, A)

=1

= 2"a"\*n ﬁxl exp(—(Az;)?) (1 — exp(—(A\z;)?)* 1, (3.5)

=1

o, \) = C+nloga+2nlog)\+210g(xi) — )\szf + .
i=1

i=1

+(a—1) Zlog(l —exp(—(A\zy)?), (3.6)

=1

where C' = nlog?2.

When they take the derivatives with respect to parameters, equations become

o n = 2

%= o + ;:1 log(1 — exp(—(A\z;)?), (3.7)
o s $- st expl—0a))
R e T

12



When (3.7) is equated to zero, ML estimator of « as a function of ), can be obtained as

n
G(\) = — == . (3.9)
N = =S ol — exp(— ()
Substituting & in (3.6), loglikelihood of A can be written as
(G(A),\) = C+n) log(l—exp(—(Az;)*)) +2nlogh = A\ a7 — ...
i=1 =1

— “log(1 — exp(—(Az;)?)). (3.10)

i=1

Thus, the ML estimator of A , say AvLE, is obtained by maximizing (3.10) with respect

to A\. The maximum of (3.10) can be shown as a fixed point solution of the following

equation:
h(p) = p, (3.11)
where
o @l exp(—pas ) o
h) 2.in1 1 —exp(— Z L1 i 27 exp(—pr?)
= ;
s S log(l — exp 1 — exp(—pua?)

If /1 is a solution of (3.11), fir;ze = +/Ji. By iteration, h(p)) = U+ where p9) is
the j%" iterative, A M LE 1S obtained. After that, &), can be obtained from (3.9). Note

that \ mre and Gy g cannot be written explicit form.

3.2 Estimation for Parameters of GR Distribution in RSS

In this title, ML equations of parameters of GR distribution based on RSS will be
attained. For now, we think the perfect ranking mechanism i.e. there is no ranking error

in ranking of variable of interest.
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Let Xinmy;» ¢ = h = 1,2,...,m, 5 = 1,2,...,r be a RSS drawn from GR
distribution with sample size n = mr where m is the set size and r is the cycle
number. For simplifying the notations, we denote Y;; = Xj(.m);. Then, Yj; ’s are
independent and its density equal to the density of the ith order statistic from a sample

of size m given by,

m! 1—1 . m—i
gi(yijv Q, )‘> = (Z _ 1)!(m _ i>!f(yijﬂ Q, )‘)[F(yij> a, A)] [1 - F(yijv «, A)]
(3.12)
where f(y;;; «, \) is pdf and F(y;;; o, A) is cdf of X .
Using the RSS algorithm and (3.12), the likelihood function can be written as
L(a, Asy) Hng Yijs & A)
j=11=1
= DI IT v exp(=(Awi)*) (1 = exp(—(hyiy)?)) >
j=1i=1
x (1 — (1 — exp(—(Agi;)") ™)™, (3.13)
m! "4 mr . mr\2mr
where D = (m) 2™ oy )\2 .
And the natural logarithm of likelihood function is
l(a,\) = mrlog K +mrloga+ 2mrlog A + Z Z log(vi;)
j=1 i=1
SN N kD Y (i — 1) log(1 — exp(—(Ayy)*)
j=1 i=1 j=1 i=1
+ZZ m — i) log(1 — (1 — exp(—(Ay;;)*))"), (3.14)
=1 =1
where K = —"—— When we differentiate (v, \) with respect to parameters and

(m—d)!(z—1)!"
equates the zero,

oL — % + Z Zz’log(l — exp(—(Ayi;)?))

da 7j=1 =1

r

SN — iy xR (A ))) " log(1 = exp(— (i)
jzl zzl( ) 1 — (1 —exp(—(Ayy;)2))~ (3.15)

14



ol 2mr -
o T_”ijl >V
2

& 20075 exp(—(Ayiy)?) (1 — exp(—(Ayi;)?))*
2 2 T e e

s, 28 exp(— (A )?) (1 — exp(—(Ayig)?) !
F2 2 feim) = exp(—(0, )

.(3.16)

j=1 i=1

Since equations have nonlinear forms, they are solved by using numerical method
that is Newton-Raphson method for parameters to obtain ML estimators of o and A ,

say OAéRSS and )‘RSS .

3.3 Estimation for Parameters of GR Distribution in ERSS

Now, the aim of this section is to estimate the parameters of GR distribution by using

ML method based on ERSS.

LetU = {Xi(lzm)j7 1= 1, ceey %, ] = 1, ...,7”} U{Xi(m:m)j7 1= % + 1, .., m, j =
1,...,r}. Here, Xi(1:m); 18 distributed as the first order statistic and X(,.,n,); as the
maximum order statistic in a random sample of size m from the original distribution.

Then the densities of U;; are given by
g1 (uij; e, A) = mf (wij; o, A1 — F(yiz; 0, N)]™ (3.17)

and

Gm(Wij; o, ) = mf(uig; o, M) [F (i )]t (3.18)

Combining the ERSS procedure and densities, for even set size m, the likelihood

15



function of parameters given U = w is as follows

r m/2
LERSSFOC)‘U HHQI uz],oz)\ H H 9Im Uzgaa/\
j=11i=1 J=li=5+1
= E T T wis exp(— (i) (1 = exp(—(Auyy)?)) !
j=1i=1
r m/2
XHH (1 — (1 —exp(—(Auij)*)*)™ !
7j=11i=1
X H H ((1 — exp(—(Auz;)*) ™)™, (3.19)
J=li=%3+1

where E = 2m"m™" o/ \27

AlsoletV = {Xl(lm)]a F— 1, oy mT—l’ j = 1, ...,’I"} U{Xl(mm)ja 1= mTH, ey —
Lj=1.,rU{Xym

parameters given V' = v, for odd set size can be written as

mys E=m, J=1,.., r}. Then the likelihood function of

r mT_l r m—1
Lgrss,(a,A\jv) = HH%(UM;C%)\)H H gm(vij; , A) X

j=1 i=1 =1 j=mil
X H HQWTH(UU7Q7>\)
j=li=m
= M T i exp(=(viy)*) (1 = exp(—(hvyy)*))*
j 1i=1
xHH (1 — (1 —exp(—(vy)*))*)™
7j=1 =1
X H H (1 — exp(—(Avy)H))*)™ !
j=1i=mtL
xHH (1 — exp(—(Avy;)?)*) 7, (3.20)
j=1li=m
m! mr
where M = <W> Zme(m_l)r mr)\?m?", g7,< e’ )\) 91( e’ )\) and

gm (., A) are given by (3 12), (3.17) and (3.18) respectively. As there are no closed

form of the ML estimators of the parameters under odd and even sample size m,
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Ggrss and A ERss are obtained numerically by maximizing the likelihood functions

(3.19) and (3.20) respectively.

3.4 Estimation for Parameters of GR Distribution in MRSS

In this section, we will obtain the parameters of GR distribution via ML technique

depending on MRSS. Let W = {X ma1, i=1,...,%,j=1,...,r}. Then the

m)j?

likelihood function of parameters given W = w, for odd set size can be written as

Larrss, (o, A w) HHgm+1 Wi oy A)
Jj=11:=1
= H [ [ ] wis exp(—(wi;)*) (1 = exp(—(Aw;;)?)) =5
j=11i=1
x (1= (1 — exp(— (hwy;)*)*) 7, (3.21)

' mr
((_Tw> a™ 2 and g,(.; a, \) is given by (3.12).
—T)]

Also let T' = {Xi(%:m)ja 1 = 1,..

where H = 2™" (

,%, ] — 177T}U{XZ(mT+2m)j7 Z —
mT“, ...,m,j = 1,...,7}. Then the likelihood function of parameters given 1" = ¢, for

even set size can be written as

r mj/2 m
Larss, (o, Ast) = HHQ’" tij; o, A) H H gmy2 (Lijs o, A)
7j=11i=1 Jj= lZ:mTH
— KT Lt exp(—(0 )1 — exp(—(2t )"
j=1i=1
r m/2
a 2
x [TTI = exp(=(Ati)*)) ™
j=1 i=1
x (1 — (1 —exp(—(\t;;)?)™) 2, (3.22)
' mr
where K = 2™ (ﬁl(m)l) a™ N2 Also, ML estimators of parameters say,
T2 S\ )

Qarrss and A MmRss are solved by numerical method because of complex forms of (3.21)

and (3.22) .
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CHAPTER FOUR
SIMULATION STUDY

In this chapter, we analyze the performance of ML estimators of the unknown
parameters of GR distribution and a simulation study performed in Mathematica
v.11.0 for the analysis. The performance comparisan criteria that are biases, MSEs
and relative efficiencies (RE) of estimators rely on SRS, RSS, ERSS, MRSS and
imperfect RSS (IRSS). Monte Carlo simulation is conducted with different set sizes,
cycle numbers and different values of shape parameter « for the interested population.

The following formulas are used for the comparisons:

N
A 1 A
i=1

N
. 1 4N
RE(0,) = %
MSE(0)

where 6; is the estimated value of ith number of repetitions, 6 is the population
parameter and N = 10, 000 is the total repetition number. We denote él = és rs and

6, is estimated value of the parameter under another sampling method.

4.1 Results under Perfect Ranking in RSS Schemes

In this section, we consider that there is no presence of ranking errors for the
performance comparison of estimators. The findings are shown in Table 4.1, Table
4.2 and Figure 4.1. One can conclude from Table 4.1 that estimates of o and A based
on ERSS have smaller biases than the corresponding estimates using SRS, RSS and
MRSS. Biases and MSEs of the estimators based on RSS and its modifications
decrease when set sizes increase. Figure 4.1 shows us MSE of unknown parameters

of GR distribution based on different sampling method for only @« = 0.5 and A = 1
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but all « values have the similar results. Also, one can see from Table 4.2 that ML
estimators of both parameters derived on ERSS are more efficient than the other
methods except the case of m = 3. In that condition, RSS and ERSS have the similar
results. Actually, the reason of this situation is that case of m = 3 in ERSS
corresponds to the case of m = 3 in usual RSS in terms of the their schemes.
Furthermore, we can say that REs based on RSS methods increase as the set sizes

increase.

Table 4.1 Biases of the estimators of the parameters of GR distribution

n_ oA Gsps  Asrs My Grss  Arss  GumRSS  AMRSS  OERSS  AERSS
0.0898 0.1369 34 0.0655 0.1019 0.0854 0.1298 0.0627 0.1001

12 04;1.0 4;3 0.0551 0.0852 0.0760 0.1209 0.0429  0.0667
6;2 0.0443 0.0690 0.0714 0.1122 0.0433 0.0631

0.1218 0.1280 3;4 0.0820 0.0902 0.1104 0.1198 0.0812 0.0898

0.5;1.0 4:3 0.0715 0.0779 0.0983 0.1085 0.0530 0.0615

6;2 0.0703 0.0790 0.1012 0.1070 0.0352 0.0410

0.1948 0.1013 34 0.1427 0.0728 0.1875 0.0868 0.1506 0.0765

0.7;1.0 4:3 0.1291 0.0659 0.1685 0.0801 0.1013  0.0546

6;2 0.1037 0.0525 0.1683 0.0755 0.0634 0.0375

0.3199 0.0995 34 0.2139 0.0710 0.3056 0.0874 0.2187 0.0703

1.0;1.0 4;3 0.1903 0.0647 0.2705 0.0826 0.1466 0.0510

6;2 0.1433 0.0503 0.2830 0.0842 0.0969 0.0362

0.0379 0.0632 38 0.0253 0.0423 0.0375 0.0624 0.0263 0.0457

24 04;1.0 4:6 0.0222 0.0370 0.0320 0.0547 0.0153 0.0273
6:4 0.0181 0.0302 0.0278 0.0460 0.0077 0.0161

0.0572 0.0550 3;8 0.0387 0.0443 0.0501 0.0629 0.0390 0.0477

0.5;1.0 4;6 0.0337 0.0417 0.0467 0.0402 0.0262 0.0328

6;4 0.0272 0.0358 0.0475 0.0392 0.0187 0.0219

0.0948 0.0604 38 0.0696 0.0468 0.0933 0.0575 0.0706 0.0474

0.7;1.0 4;6 0.0651 0.0396 0.0799 0.0510 0.0534 0.0334

64 0.0553 0.0357 0.0843 0.0540 0.0400 0.0258

0.1295 0.0487 38 0.0996 0.0364 0.1404 0.0489 0.0980 0.0368

1.0;1.0 4:6 0.0847 0.0322 0.1281 0.0453 0.0653 0.0267

6:4 0.0757 0.0297 0.1380 0.0474 0.0356 0.0183

0.0271 0.0605 3;12 0.0207 0.0479 0.0279 0.0654 0.0209 0.0482

36 04;1.0 4;9 0.0189 0.0458 0.0241 0.0573 0.0152 0.0376
66 0.0158 0.0394 0.0255 0.0613 0.0114  0.0296

0.0268 0.0419 3;12 0.0191 0.0326 0.0222 0.0362 0.0208 0.0358

0.5;1.0 4;9 0.0176 0.0303 0.0185 0.0299 0.0137 0.0268

66 0.0135 0.0261 0.0191 0.0305 0.0087  0.0220

0.0630 0.0432 3;12 0.0471 0.0343 0.0613 0.0412 0.0468 0.0336

0.7;1.0 4;9 0.0424 0.0298 0.0627 0.0427 0.0346 0.0276

66 0.0369 0.0279 0.0570 0.0396 0.0226  0.0202

0.0760 0.0236 3;12 0.0510 0.0156 0.0668 0.0202 0.0480 0.0143

1.0;1.0 4;9 0.0701 0.0210 0.0639 0.0193 0.0354  0.0095

66 0.0339 0.0093 0.0567 0.0171 0.0237  0.0058
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4.2 Results under Imperfect Ranking in RSS Schemes

Now, we consider that the performances of the estimators under imperfect RSS
(IRSS) where IRSS scheme is regarded as existence of ranking errors. This means
that there is a mismatching between the ranked order of the items and their actual
numerical orders. There are some works in the literature about impacts of imperfect
ranking on efficiencies of estimators. One can see; Park & Lim (2012), Frey (2014)
and references therein. In literature, the concomitant variable is mostly used one to
observe effects of imperfect ranking, but here we prefer to use a mathematical model
that is called fraction of random ranking mentioned in Vock & Balakrishnan (2011).

The model for the judgement ordering is as follows:

where the mixture distribution Fj; of the ith judgement order statistic, ;) is the
distribution of true ith order statistic, F' is the original cdf of GR distribution and [ is
the mixing parameter. We used mixing parameter 5=0.1, 0.4 and 0.9 in model 4.1 and
also different schemes have been generated from the pdf of GR distribution when
a = 0.5, A = 1. Figure 4.2 illustrates that RE of estimators of parameters under
various schemes of sampling including IRSS when n = 12(n = mr) with different
mixing parameters for IRSS. As we have expected, REs of estimators decreases while
ranking error 1.e. mixing parameter is rising. ERSS is still the most efficient sampling
method for this analysis. However, IRSS is more efficient than SRS and MRSS even

under high ranking error.
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Figure 4.1 MSEs of the estimators versus different sampling methods for « = 0.5, A = 1.0 and n = mr
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Table 4.2 RE values of the estimators of the parameters of GR distribution

RE

nooa;A m;r  Grss ARSS OMRSS AMRSS QERSS AERSS
3.4 1.9840 1.5915 1.3562 1.1521 2.0565 1.5700

12 04;1.0 43 2.5238 1.8783 1.6243 1.2779 3.2773 2.4733
6;2 3.6414 2.4641 1.7383 1.3601 3.2651 2.5234

3.4 19843 1.6717 1.1487 1.1912 1.9872 1.6773

0.5;1.0 43 2.5854 2.0002 1.6300 1.3737 3.4737 2.5526
6;2 25864 1.9995 1.4411 1.4024 5.5651 3.9471

3.4 1.8032 1.5762 1.1136 1.2268 1.6435 1.5106

0.7.1.0 43 2.1695 1.7713 1.4072 1.4330 3.0278 2.2628
6;2 3.2265 2.3649 1.4055 1.4350 5.5332 3.3819

3.4 1.9069 1.5641 0.9353 1.2106 1.8045 1.5687

1.0;1.0 4;3 2.3969 1.8464 1.2018 1.3757 3.4117 2.2930
6;2 3.5283 2.3659 1.0594 1.3717 6.2216 3.3959

3;8 1.6939 1.4864 1.2262 1.0897 1.6571 1.4342

24 04;1.0 46 2.0155 1.7104 1.5031 1.2848 2.3991 2.1345
6;:4 25695 2.1124 1.7467 13678 3.5168 3.0011

3;8 1.6436 1.3946 1.2508 0.9942 1.6182 1.3246

0.5;1.0 46 1.9873 1.5576 1.4124 1.2386 2.4290 1.9651
6;4 26584 1.9304 14744 1.3278 3.4496 2.9443

3:8 1.7016 1.4208 1.1620 1.0817 1.6958 1.4321

0.7;1.0 46 1.8864 1.6135 1.4199 1.2705 2.4654 1.9866
6;4 25650 2.0376 1.3795 1.1972 3.6788 2.9606

3;8 1.6074 1.4600 1.1062 1.1376  1.5829 1.4378

1.0;1.0 46 1.9846 1.6851 1.2299 1.2496 2.4473  2.0050
6;4 22846 1.9039 1.2404 1.2825 3.9869 2.8635

3;12 1.6148 1.3903 1.2424 09764 1.5834 1.3569

36 04;1.0 49 1.8301 1.5388 1.4439 1.1391 2.1366 1.9818
6;6 23704 1.9389 1.4430 1.0826 3.0766 2.9329

3;12 1.6098 1.4423 1.2983 1.1383 1.5490 1.3799

0.5;1.0 49 1.8375 1.6169 1.5278 1.2961 2.1376 1.9348
6;6 22241 19175 1.5427 1.2585 2.9195 2.7145

3;12 1.5348 1.4059 1.1789 1.1888 1.5241 1.4126

0.7;1.0 49 1.7428 1.6137 1.2335 1.2149 2.1516 1.9156
6;6 22172 2.0189 1.3702 1.2760 3.2244 2.7151

3;12 1.5225 1.3799 1.1399 1.0843 1.5280 1.4102

1.0;1.0 49 1.0189 1.0040 1.2701 1.2307 2.2081 1.8981
6;6 2.2607 19485 1.3187 1.2273  3.2514 2.6422
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CHAPTER FIVE
REAL DATA EXAMPLE

In this chapter, we give a data analysis with a real data was originated by Bader &
Priest (1982). Data set in Table 5.1 contains the 69 strength measured in GPA (giga-
Pascals), for single carbon fibers and impregnated 1000-carbon fiber tows. When we
applied the Kolmogorov-Smirnov test in R software, we see that data set fitted with GR
distribution very well in Figure 5.1. The ML estimators of the parameter o, A and the
p-value of the Kolmogorov-Smirnov test are 3.24615, 0.77510 and 0.9033 respectively.

Therefore, we conclude that data follow the GR distribution since p-value >a = 0.05

Table 5.1 The Strength Data

0.562 0564 0.729 0.802 0.950 1.053 1.111 1.115 1.194 1.208
1.216 1247 1256 1.271 1277 1305 1313 1348 1.390 1.429
1.474 1.490 1.503 1.520 1.522 1.524 1.551 1.551 1.609 1.632
1.632 1.676 1.684 1.685 1.728 1.740 1.761 1.764 1.785 1.804
1.816 1.824 1.836 1.879 1.883 1.892 1.898 1934 1.947 1.976
2.020 2.023 2.050 2.059 2.068 2.071 2.098 2.130 2.204 2.262
2317 2334 2340 2346 2378 2483 2.683 2.835 2.835

Empirical and Theoretical cdfs

Fnix)
06 08 1.0
I |

0.4

0.2
1

0.0
|

Figure 5.1 The cdf and emprical cdf of GR distribution for real data
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For the analysis, a random sample of size 12 is drawn without replacement with
different sampling scheme; SRS, RSS, ERSS and MRSS. In RSS and its modifications,
we select m = 6 and » = 2. The result of the analysis presented in Table 5.2. We
infer from the result, estimates based on ERSS are closer to the given values for both
parameters « and A. Also, we can say that our findings in this chapter sort together

simulation results.

Table 5.2 The ML estimators of parameters for GR distribution

o’ A
SRS RSS MRSS  ERSS SRS RSS MRSS ERSS
3.51296 3.10667 3.17405 3.45956 0.866591 0.729072 0.722887 0.754149
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CHAPTER SIX
CONCLUSION

In this thesis, we make an inference for unknown parameters of GR distribution
based on RSS, ERSS and MRSS by using ML method. These estimators have been
derived theoretically but we have no closed form solutions for the estimators.
Therefore the performance comparisons have been done by simulation study and it
has been supported with a real data example. Biases, MSEs and REs are calculated as
comparison criteria under both perfect and imperfect ranking process. We can
interpret from the study, biases and MSEs of the estimators for true parameters under
ERSS are smaller than the corresponding estimators calculated under SRS and other
RSS methods. This shows that ERSS is more effective than the other mentioned
approaches. Furthermore, even under the presence of ranking error, we see that it
works still better than SRS and MRSS. Finally, when we investigated the real data,
we have sight an analogous with a simulation result. Therefore, ERSS has a closer

values to the given values.
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