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PARAMETER ESTIMATION OF PROBABILITY DISTRIBUTIONS BASED

ON RANKED SET SAMPLING

ABSTRACT

Recently, many researchers focused on the more effective sampling method that is

called Ranked Set Sampling (RSS) for estimating the population parameter when the

measurement of an observation is costly and/or time consuming. In RSS procedure,

we rank the units of the variable of interest without actual measurement and after the

ranking process, only selected units are measured exactly. Therefore, we have

effectiveness and advantageous as time and cost. Furthermore, it provides more

representative sample from the target population by selecting the units almost

everywhere from the interested population. RSS method has been studied by the

number of researchers under various scopes. While some of them has modified the

RSS, the others estimated the parameter of population by using these modifications.

In this study, we deal with the estimation of the shape and scale parameters for

Generalized Rayleigh (GR) distribution. We propose the maximum likelihood (ML)

estimators of unknown parameters of GR distribution based on RSS and its some

modifications. As we have no explicit form of estimators of parameters, numerical

methods are used for the solutions. For comparison of the performances of estimators,

a Monte Carlo simulation study is performed via Mathematica 11.0 with 10,000

repetitions. The biases, mean squared errors and relative efficiencies of estimators are

compared in simple random sampling (SRS), RSS, extreme RSS, median RSS and

imperfect RSS with different set and cycle sizes. Moreover, the study is supported

with a real data example.

Keywords: Ranked set sampling, median RSS, extreme RSS, imperfect RSS,

parameter estimation, maximum likelihood estimation, generalized Rayleigh

distribution
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OLASILIK DAĞILIMLARININ SIRALI KÜME ÖRNEKLEMESİNE DAYALI

PARAMETRE KESTİRİMİ

ÖZ

Son zamanlarda, birçok araştırmacı gözlemlerin ölçümünün masraflı ve/veya

zaman alıcı olduğu durumlarda kitle parametrelerinin kestirimi için daha etkili bir

örnekleme metodu olan sıralı küme örneklemesi (SKÖ) üzerinde yoğunlaşmıştır.

SKÖ prosedüründe, ilgilenilen değişkene ait birimler gerçek ölçüm yapılmadan

sıralanır ve sıralama süreci sonrasında sadece seçilen birimlere ölçülür.Böylece,

zaman ve maliyet açısından etkinlik ve avantaj elde edilir. Ayrıca SKÖ, ilgilenilen

kitlenin neredeyse her yerinden birimler seçerek kitleyi daha iyi temsil eden bir

örneklem elde etmemizi sağlar. SKÖ yöntemi birçok araştırmacı tarafından çeşitli

kapsamlar altında çalışılmıştır. Araştırmacılardan bazıları SKÖ’yü modifiye ederken,

diğerleri de bu modifikasyonları kullanarak kitle parametrelerini tahmin etmektedir.

Bu çalışmada, Genelleştirilmiş Rayleigh (GR) dağılımının şekil ve ölçek

parametrelerinin kestirimlerine değinilmiştir. GR dağılımının bilinmeyen

parametrelerinin SKÖ’ye ve onun bazı modifikasyonlarına dayalı en çok olabilirlik

kestiricileri sunulmuştur. Parametre kestiricileri kapalı bir formda yazılamadığından,

çözümler için nümerik yöntemler kullanılmıştır. Kestiricilerin performanslarının

karşılaştırılması amacıyla Mathematica yazılımı kullanılarak 10.000 tekrarlı Monte

Carlo benzetim çalışması yapılmıştır. Kestiricilerin basit rasgele örnekleme, SKÖ, uç

değer SKÖ, ortanca SKÖ ve kusurlu SKÖ altındaki, yanlılıkları, hata kareler

ortalamaları ve etkinlikleri farklı küme ve döngü sayılarıyla karşılaştırılmıştır. Ek

olarak, çalışma gerçek veri örneğiyle de desteklenmiştir.

Anahtar kelimeler: Sıralı küme örneklemesi, ortanca SKÖ, uç değer SKÖ, kusurlu

SKÖ, parametre kestirimi, en çok olabilirlik kestirimi, genelleştirilmiş Rayleigh

dağılımı
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CHAPTER ONE

INTRODUCTION

Ranked Set Sampling (RSS) is a sampling method was first proposed by McIntyre

(1952) as an advantegeous alternative to Simple Random Sampling (SRS) when

estimating the population mean. An important advantage of this approach is that it

improves the efficiency of estimators of the population parameters by providing more

representative sample from the target population cost and/or time effectively.

However, McIntyre (1952) had not supported his work theoretically. Takahasi &

Wakimoto (1968) obtained the first theoretical results about RSS. They proved that

the mean estimator in RSS is unbiased with smaller variance compared to the mean

estimator in SRS when ranking is perfect. Also, Dell & Clutter (1972) showed the

same manner without ranking constraint. The other results can be obtained in the

study of Patil et al. (1999), Wolfe (2012) and Al-Omari & Bouza (2014). In RSS, we

select m random sets each of size m from the interested population. Each set is

ranked by an expert judgment, auxiliary variable or visual inspection without actual

measurement. After the ranking, smallest ranked unit is chosen from the first set, then

second smallest ranked unit from the second set and continuing until the largest

ranked unit is selected in the last set. Only these selected m units are measured for the

analysis. If the larger sample size is required, then we repeat this procedure r times as

a cycle and we obtain n = mr sample size of ranked set sample.

In the literature, there are great number of studies focused on modifying the RSS

scheme. Extreme RSS (ERSS) is the first modification of RSS proposed by Samawi

et al. (1996) to estimate the population mean only using maximum or minimum

ranked unit from each set. Muttlak (1997) suggested median RSS (MRSS) for the

efficient population mean estimation. Al-Saleh & Al-Kadiri (2000) offered Double

RSS (DRSS) to estimate the population mean. Then multistage RSS (MSRSS), as a

generalization of DRSS proposed by Al-Saleh & Al-Omari (2002) and it is found

more effective than SRS when estimating the population mean. Muttlak (2003a)

considered quartile RSS (QRSS) in order to estimate the population mean. By using
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the quartiles of the sets, it provides better results especially for asymmetric

distributions. Similar to this method, Muttlak (2003b) used percentiles of the sets

instead of quartiles for the selection, that is called percentile RSS (PRSS). On behalf

of a robust perspective, Al-Nasser (2007) offered L-RSS which is ground on the idea

of L-statistics and an combination of RSS, QRSS and MRSS. These modifications are

only some of all studies. For others also one can see Jemain et al. (2008), Al-Nasser

& Mustafa (2009), Al-Omari & Al-Saleh (2009), Al-Omari & Raqab (2013), Haq

et al. (2013, 2014). Besides, number of researchers studied on estimation of

parameters for the distributions by using these modifications of RSS with different

estimation methods. Stokes (1995) studied estimation of the parameters of the

location-scale family having cumulative distribution function (cdf) of the form

F (x−µ
σ

). They investigated both ML estimators and best linear unbiased estimators

(BLUE) of µ and σ using modified RSS. Al-Saleh & Al-Hadhrami (2003)

investigated moving extremes ranked set sampling (MERSS) for the location

parameter of symmetric distributions. They studied on ML estimators and a modified

ML estimators based on RSS. Moreover, they compared the efficiencies of

corresponding estimators with respect to SRS for the case of normal distribution

under perfect and imperfect ranking. Abu-Dayyeh et al. (2004) proposed different

estimators for the location and scale parameters of logistic distribution using SRS and

RSS. They provided the estimators in the cases of either one or both parameters are

unknown. They also compared the mean square error (MSE)s of method of moment

estimators (MOME), ML estimators and BLUE under RSS. Shaibu & Muttlak (2004)

compared ML estimators of the parameters of the location-scale parameter family of

distributions under the different methods of sampling namely, RSS, median RSS and

extreme RSS, and percentile RSS. Helu et al. (2010) provided that ML estimators,

MOME and Bayes estimators of the shape and scale parameters of Weibull

distribution in SRS, RSS and MRSS. Hassan (2013) studied on estimation of the

shape and scale parameters of exponentiated exponential distribution is considered

based on SRS and RSS. Hussian (2014) estimated the unknown parameters of the

Kumaraswamy distribution using both SRS and RSS techniques. Khamnei & Mayan

(2016) introduced the exponentiated Gumbel distribution and studied the ML
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estimators of the parameters of exponentiated Gumbel distribution based on a SRS.

After the description of RSS, they studied the estimation of the parameters based on

RSS and finally compared these two sampling methods. Dey et al. (2017) considered

the estimation of Rayleigh distribution by using ML method and Bayesian method

and also different sampling schemes these are SRS, RSS, median RSS and modified

RSS. Also see much more studies about parameter estimation based on RSS;

Modarres & Zheng (2004), Abu-Dayyeh et al. (2013), Chen et al. (2013), Biradar &

Santosha (2014), Yousef & Al-Subh (2014) and Samuh & Qtait (2015).

1.1 Literature Review of Bivariate Distribution Based on RSS

On literature, there are a few works about bivariate distributions based on RSS while

there are a lot of univariate distribution studies depending on RSS. Most of these studies

are related to estimation of parameters for the distributions.

Firstly, Stokes (1980) considered the estimation of correlation coefficient for

bivariate normal distribution based on RSS with concomitant variable. He

investigated the estimators of correlation coefficient for other parameters are known

and unknown. After that, Al-Saleh & Samawi (2005) estimated the correlation

coefficient for bivariate normal distribution based on bivariate RSS which is a

modification of RSS. Then, they considered nonparametric estimation of correlation

coefficient when other parameters are known. Also they suggested the modified ML

estimator for estimating the correlation coefficient when other parameters are

unknown. Al-Saleh & Al-Ananbeh (2007) used MERSS to estimate the two means of

bivariate normal distribution with concomitant variable. They also considered ML

estimators of means based on MERSS. These estimators are found that unbiased and

more effective than obtained by using SRS. Chacko & Thomas (2007) considered the

different estimators of a parameter which is associated with study variate Y when

(X,Y ) is from bivariate Pareto distribution by using RSS. They compared the mean

estimator in RSS, BLUE in RSS and BLUE in lower ERSS for the interested

parameter. They found that BLUE in RSS of the parameter is more efficient than the
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RSS mean estimator and BLUE in lower ERSS of the parameter is more effective

than the another estimators. Al-Saleh & Diab (2009) estimated the parameters of

Downton’s bivariate exponential distribution by using nonparametric and parametric

estimation methods based on RSS. They compared the efficiencies of estimators

depending on RSS and SRS. Tahmasebi & Jafari (2012) presented that several

estimators of a scale parameter of Morgenstern type bivariate uniform distribution;

mean estimator based on RSS, a BLUE using RSS and upper RSS. They also used

ERSS and MERSS to compare different estimators by a simulation study. Tahmasebi

& Jafari (2015) investigated the unbiased estimators for a parameter associated with

study variable Y when (X,Y ) is from Morgenstern type bivariate gamma distribution

based on RSS, ERSS and MERSS. They compared mean estimators depending on

RSS, ERSS and MERSS and found that ERSS is more efficient than the another

methods. One can see the other works for bivariate distribution on RSS; Al-Saleh &

Samawi (2004), Chacko & Thomas (2008), Dieh et al. (2011), Singh & Mehta (2014),

Nematollahi & Shahi (2015), Chacko (2016), Hanandeh & Al-Saleh (2016), Chacko

(2017), Tahmasebi et al. (2017).

1.2 Outline of the Study

In this thesis, we consider the problem of estimating the parameters of Generalized

Rayleigh (GR) distribution based on RSS by using ML estimation method. GR

distribution is also named as the two parameters Burr Type X distribution was first

introduced by Surles & Padgett (2001). It plays a crucial role in modelling lifetime

data analysis. It has a relation with many other distributions such as; Rayleigh

distribution, Weibull distribution, gamma distribution, exponentiated Weibull

distribution and generalized exponential distribution. We are interested in ML

estimations of shape and scale parameters of GR distribution based on SRS, RSS,

MRSS and ERSS. In chapter two, we described the procedures of RSS and its some

modifications. Third chapter initially introduced the properties of GR distribution and

proposed the estimators of parameters based on SRS, RSS, ERSS and MRSS by using
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the method of ML. Chapter four includes simulation results for GR distribution

depend on different sampling schemes under perfect and imperfect ranking for the

RSS. Also in this chapter, performances of the estimators are compared with

numerical study. Chapter five provides a real data example and the study ends up

with the conclusion remarks.
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CHAPTER TWO

RANKED SET SAMPLING AND ITS SOMEMODIFICATIONS

Recently, RSS is one of the most advantageous sampling method to estimate the

parameters of a population, since this method provides efficient results in terms of

cost and time. When the actual measurement of an observation is expensive and/or

difficult, RSS ensures the convenience for this with visual ranking and selection

procedure. Firstly, it was introduced by McIntyre (1952) without any mathematical

background and study of Takahasi & Wakimoto (1968) supported it theoretically. It is

found that more effective than the SRS when estimating the population mean and

provides unbiased results. And then many modifications of RSS have been suggested

such as preliminarily; extreme RSS and median RSS. Initially, the procedure of RSS

is decribed as follows: Firstly, we select randomly m number of sets of sizes m from

the target population. Each set of sizes m is ranked by visually, expert judgment or

auxiliary variable without exact measurement. After this ranking process, ith smallest

ranked unit is chosen from the ith set for i = 1, . . . ,m. We only measure these

selected m units and the others are discarded for the analysis. If the larger sample size

is required, we can repeat this procedure r times as a cycle and we obtain n = mr

sample size of ranked set sample. The procedure for one cycle and case of m = 3 can

be shown as below: 
X1(1:3) ≤ X1(2:3) ≤ X1(3:3)

X2(1:3) ≤ X2(2:3) ≤ X2(3:3)

X3(1:3) ≤ X3(2:3) ≤ X3(3:3)


where Xi(h:m) stands for ith set, hth ranked unit and m set size.

If the procedure is repeated r times, we have
X1(1:3)1 ≤ X1(2:3)1 ≤ X1(3:3)1

X2(1:3)1 ≤ X2(2:3)1 ≤ X2(3:3)1

X3(1:3)1 ≤ X3(2:3)1 ≤ X3(3:3)1


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
X1(1:3)2 ≤ X1(2:3)2 ≤ X1(3:3)2

X2(1:3)2 ≤ X2(2:3)2 ≤ X2(3:3)2

X3(1:3)2 ≤ X3(2:3)2 ≤ X3(3:3)2


...

X1(1:3)r ≤ X1(2:3)r ≤ X1(3:3)r

X2(1:3)r ≤ X2(2:3)r ≤ X2(3:3)r

X3(1:3)r ≤ X3(2:3)r ≤ X3(3:3)r

 ,

where m is the set size, j is the cycle number for ith set and hth ranked unit in Xi(h:m)j .

2.1 Extreme Ranked Set Sampling

ERSS is the first modification of RSS offered by Samawi et al. (1996) to estimate

the population mean only using maximum or minimum ranked unit from each set. For

estimation based on ERSS, the following procedure can be used. The selected m

random sets each of size m units from the population can be ranked within each set

with respect to a variable of interest by visual inspection or any cost-free method.

According to set size m is even or odd, selection method may be altered. If the set

size m is even, the lowest ranked unit of each set is selected from the first m/2 sets

and the largest ranked unit of each set is chosen from the other m/2 sets. If the set

size is odd, select the lowest ranked unit from the first (m − 1)/2 sets, select the

largest ranked unit from the other (m − 1)/2 sets and median is taken from the

remaining last set. When the size of ERSS is increased by cycling the procedure r

times, then we have n = mr sample size. The procedure for one cycle and case of

m = 4 and m = 5 can be shown as below:


X1(1:4) ≤ X1(2:4) ≤ X1(3:4) ≤ X1(4:4)

X2(1:4) ≤ X2(2:4) ≤ X2(3:4) ≤ X2(4:4)

X3(1:4) ≤ X3(2:4) ≤ X3(3:4) ≤ X3(4:4)

X4(1:4) ≤ X4(2:4) ≤ X4(3:4) ≤ X4(4:4)


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and 

X1(1:5) ≤ X1(2:5) ≤ X1(3:5) ≤ X1(4:5) ≤ X1(5:5)

X2(1:5) ≤ X2(2:5) ≤ X2(3:5) ≤ X2(4:5) ≤ X2(5:5)

X3(1:5) ≤ X3(2:5) ≤ X3(3:5) ≤ X3(4:5) ≤ X3(5:5)

X4(1:5) ≤ X4(2:5) ≤ X4(3:5) ≤ X4(4:5) ≤ X4(5:5)

X5(1:5) ≤ X5(2:5) ≤ X5(3:5) ≤ X5(4:5) ≤ X5(5:5)


.

In literature, ERSS is widely used modification for estimating the population mean

effectively. Especially when underlying distribution is asymmetric, it provides

unbiased estimators. Also, Samawi & Al-Sagheer (2001) used ERSS and MRSS for

estimating the distribution functions. Muttlak (2001) considered two regression

estimators based on ERSS and MRSS to estimate the population mean and compared

with the regression estimators based on RSS. Samawi et al. (2002) studied the

impacts of ERSS on regression and residual analysis.

2.2 Median Ranked Set Sampling

MRSS is the one of well-known modifications of RSS which is suggested by

Muttlak (1997) for estimating the population mean effectively. He indicated that the

MRSS gives unbiased results when the underlying distribution is symmetric and that

estimator was found to be more efficient than both SRS and RSS. The procedure of

MRSS is initially like as usual RSS in terms of randomly selection, allocation and

ranking within each m sets with respect to variable of interest. After cost-free ranking

process, selection is done according to the set size which is even or odd number. For

odd set size m, we select median unit of the each m set. If the set size m is even then

the (m/2)th ranked units are chosen from the first m/2 sets and the ((m + 2)/2)

ranked units are selected from the remaining m/2 sets. Others are discarded and only

selected units are measured. If necessary, procedure can be repeated r times as a

cycle and we have n = mr sample of size. The procedure for one cycle and case of

m = 3 and m = 4 can be shown as below:
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
X1(1:3) ≤ X1(2:3) ≤ X1(3:3)

X2(1:3) ≤ X2(2:3) ≤ X2(3:3)

X3(1:3) ≤ X3(2:3) ≤ X3(3:3)


and 

X1(1:4) ≤ X1(2:4) ≤ X1(3:4) ≤ X1(4:4)

X2(1:4) ≤ X2(2:4) ≤ X2(3:4) ≤ X2(4:4)

X3(1:4) ≤ X3(2:4) ≤ X3(3:4) ≤ X3(4:4)

X4(1:4) ≤ X4(2:4) ≤ X4(3:4) ≤ X4(4:4)

 .

MRSS gives more efficient results than SRS for mean estimation in especially

symmetric distributions. Additionally, Muttlak (1998) used MRSS to estimate the

population mean when the ranking is depending on a concomitant variable and he

showed that MRSS gives more efficient results compared to RSS and regression

estimator in most cases. Samawi & Muttlak (2001) sugessted to MRSS for estimating

the population ratio. Muttlak & Al-Sabah (2003) offered new control charts by using

RSS, MRSS and ERSS for the population mean and they stated that MRSS dominates

all other methods in terms of the out-of-control average run length performance.

Alodat & Jetschke (2011) studied polynomial regression by using MRSS scheme and

they found that least square estimator under MRSS are more efficient than SRS.
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CHAPTER THREE

ESTIMATIONS FOR PARAMETERS OF GENERALIZED RAYLEIGH

DISTRIBUTION

Burr (1942) proposed cumulative distribution function as 12 different types for

modelling lifetime data. The most popular ones of among these are Burr Type X and

Burr Type XII. Several researchers consider different aspects of these distributions,

one can see for example, Rodriguez (1977), Sartawi & Abu-Salih (1991), Jaheen

(1995, 1996), Ahmad et al. (1997), Raqab (1998), Surles & Padgett (1998),

Alshunnar et al. (2010) and Pathak & Chaturvedi (2014). Later, Surles & Padgett

(2001) (see also Surles & Padgett (2005)) proposed two parameters Burr Type X

distribution and also called as the generalized Rayleigh distribution. Note that it is a

particular case of exponentiated Weibull distribution suggested by Mudholkar &

Srivastava (1993). If X is the random variable from GR distribution with shape

parameter α > 0 and scale parameter λ > 0 has the cummulative distibution function

F (x;α, λ) = (1− exp(−(λx)2))α, x > 0. (3.1)

Then the probability distribution function of GR is

f(x;α, λ) = 2αλ2x exp(−(λx)2)(1− exp(−(λx)2))α−1, x > 0, (3.2)

and the survival and the hazard functions are given as below

S(x;α, λ) = 1− (1− exp(−(λx)2))α, x > 0, (3.3)

h(x;α, λ) =
2αλ2x exp(−(λx)2)(1− exp(−(λx)2))α−1

1− (1− exp(−(λx)2))α
. (3.4)

GR distribution will be denoted by GR(α, λ) by Raqab & Kundu (2006) and they

also indicated that if α = 1, GR distribution coincides with the Rayleigh distribution.
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If we put another shape parameter instead of 2 in (3.1), it is an exponentiated Weibull

distribution. For α ≤ 0.5 , the probability density function (pdf) is a decreasing

function and hazard function of GR(α, λ) is bathtub type and if α > 0.5 , it is a right

skewed unimodal pdf and increasing hazard function. Figure 3.1 shows that various

forms of the density functions of GR distribution. GR distribution is a quite useful

when modelling general lifetime data and strength data.

Figure 3.1 The density functions of the GR distribution for different shape parameters (Raqab & Kundu
(2006))

In literature, there are many methods to estimate the parameters of target population.

In this chapter, we use the one of these estimation methods, namely ML technique. It

is the most widely used estimation method in statistical inference to inform about the

population.

To give a general definition of maximum likelihood estimates, let

X = [X1, X2, . . . , Xn] is a random sample of size n whose joint distribution is

described by a density fn(x; θ) over the n-dimensional Euclidean space Rn where θ is

the vector of unknown parameters in parameter space Ω. For fixed x, define the

likelihood function of x as L(θ) = Lx(θ) = fn(x; θ) considered as a function of

θ ∈ Ω.
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Any θ̂ = θ̂(x) ∈ Ω which maximizes L(θ) over Ω is called a maximum likelihood

estimate of the unknown true parameter θ. We often use logL(θ) instead of L(θ) since

it provides easiness for computations.

3.1 Estimation for Parameters of GR Distribution in SRS

In this section, we give the ML estimators of the parameters of GR(α, λ) when

both parameters are unknown. Let X1, X2, . . . , Xn is a random sample of size n from

GR(α, λ), then likelihood function L(α, λ) and log-likelihood function l(α, λ) are

written by Kundu & Raqab (2005) as

L(α, λ;x) =
n∏

i=1

f(xi;α, λ)

= 2nαnλ2n
n∏

i=1

xi exp(−(λxi)
2)(1− exp(−(λxi)

2)α−1, (3.5)

l(α, λ) = C + n logα + 2n logλ+
n∑

i=1

log(xi)− λ2

n∑
i=1

x2
i + . . .

+(α− 1)
n∑

i=1

log(1− exp(−(λxi)
2), (3.6)

where C = nlog2.

When they take the derivatives with respect to parameters, equations become

∂l

∂α
=

n

α
+

n∑
i=1

log(1− exp(−(λxi)
2), (3.7)

∂l

∂λ
=

2n

λ
− 2λ

n∑
i=1

x2
i + 2λ(α− 1)

n∑
i=1

x2
i exp(−(λxi)

2)

1− exp(−(λxi)2
. (3.8)
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When (3.7) is equated to zero, ML estimator of α as a function of λ, can be obtained as

α̂(λ) = − n∑n
i=1 log(1− exp(−(λxi)2))

. (3.9)

Substituting α̂ in (3.6), loglikelihood of λ can be written as

l(α̂(λ), λ) = C + n
n∑

i=1

log(1− exp(−(λxi)
2)) + 2n logλ− λ2

n∑
i=1

x2
i − . . .

−
n∑

i=1

log(1− exp(−(λxi)
2)). (3.10)

Thus, the ML estimator of λ , say λ̂MLE , is obtained by maximizing (3.10) with respect

to λ. The maximum of (3.10) can be shown as a fixed point solution of the following

equation:

h(µ) = µ, (3.11)

where

h(µ) =


∑n

i=1

x2
i exp(−µx2

i )

1− exp(−µx2
i )∑n

i=1 log(1− exp(−µx2
i )

+
1

n

n∑
i=1

x2
i +

1

n

n∑
i=1

x2
i exp(−µx2

i )

1− exp(−µx2
i )


−1

.

If µ̂ is a solution of (3.11) , µ̂MLE =
√
µ̂. By iteration, h(µ(j)) = µ(j+1) where µ(j) is

the jth iterative, λ̂MLE is obtained. After that, α̂MLE can be obtained from (3.9). Note

that λ̂MLE and α̂MLE cannot be written explicit form.

3.2 Estimation for Parameters of GR Distribution in RSS

In this title, ML equations of parameters of GR distribution based on RSS will be

attained. For now, we think the perfect ranking mechanism i.e. there is no ranking error

in ranking of variable of interest.
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Let Xi(h:m)j , i = h = 1, 2, ...,m, j = 1, 2, ..., r be a RSS drawn from GR

distribution with sample size n = mr where m is the set size and r is the cycle

number. For simplifying the notations, we denote Yij = Xi(h:m)j . Then, Yij ’s are

independent and its density equal to the density of the ith order statistic from a sample

of size m given by,

gi(yij;α, λ) =
m!

(i− 1)!(m− i)!
f(yij;α, λ)[F (yij;α, λ)]

i−1[1− F (yij;α, λ)]
m−i

(3.12)

where f(yij;α, λ) is pdf and F (yij;α, λ) is cdf of X .

Using the RSS algorithm and (3.12), the likelihood function can be written as

L(α, λ; y) =
r∏

j=1

m∏
i=1

gi(yij;α, λ)

= D
r∏

j=1

m∏
i=1

yij exp(−(λyij)
2)(1− exp(−(λyij)

2))αi−1

×(1− (1− exp(−(λyij)
2))α)m−i, (3.13)

where D =
(

m!
(m−i)!(i−1)!

)mr

2mrαmrλ2mr.

And the natural logarithm of likelihood function is

l(α, λ) = mr logK +mr logα + 2mr logλ+
r∑

j=1

m∑
i=1

log(yij)

−λ2

r∑
j=1

m∑
i=1

y2ij +
r∑

j=1

m∑
i=1

(αi− 1) log(1− exp(−(λyij)
2))

+
r∑

j=1

m∑
i=1

(m− i) log(1− (1− exp(−(λyij)
2))α), (3.14)

where K = m!
(m−i)!(i−1)!

. When we differentiate l(α, λ) with respect to parameters and

equates the zero,

∂l

∂α
=

mr

α
+

r∑
j=1

m∑
i=1

i log(1− exp(−(λyij)
2))

−
r∑

j=1

m∑
i=1

(m− i)
(1− exp(−(λyij)

2))α log(1− exp(−(λyij)
2))

1− (1− exp(−(λyij)2))α
(3.15)
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∂l

∂λ
=

2mr

λ
− 2λ

r∑
j=1

m∑
i=1

y2ij

−
r∑

j=1

m∑
i=1

(m− i)
2αλy2ij exp(−(λyij)

2)(1− exp(−(λyij)
2))α−1

1− (1− exp(−(λyij)2))α

+
r∑

j=1

m∑
i=1

(αi− 1)
2λy2ij exp(−(λyij)

2)(1− exp(−(λyij)
2))α−1

1− exp(−(λyij)2)
. (3.16)

Since equations have nonlinear forms, they are solved by using numerical method

that is Newton-Raphson method for parameters to obtain ML estimators of α and λ ,

say α̂RSS and λ̂RSS .

3.3 Estimation for Parameters of GR Distribution in ERSS

Now, the aim of this section is to estimate the parameters of GR distribution by using

ML method based on ERSS.

Let U = {Xi(1:m)j, i = 1, ..., m
2
, j = 1, ..., r}

∪
{Xi(m:m)j, i =

m
2
+ 1, ...,m, j =

1, ..., r}. Here, Xi(1:m)j is distributed as the first order statistic and Xi(m:m)j as the

maximum order statistic in a random sample of size m from the original distribution.

Then the densities of Uij are given by

g1(uij;α, λ) = mf(uij;α, λ)[1− F (yij;α, λ)]
m−1 (3.17)

and

gm(uij;α, λ) = mf(uij;α, λ)[F (yij;α, λ)]
m−1. (3.18)

Combining the ERSS procedure and densities, for even set size m, the likelihood
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function of parameters given U = u is as follows

LERSSe(α, λ;u) =
r∏

j=1

m/2∏
i=1

g1(uij;α, λ)
r∏

j=1

m∏
i=m

2
+1

gm(uij;α, λ)

= E

r∏
j=1

m∏
i=1

uij exp(−(λuij)
2)(1− exp(−(λuij)

2))α−1

×
r∏

j=1

m/2∏
i=1

(1− (1− exp(−(λuij)
2))α)m−1

×
r∏

j=1

m∏
i=m

2
+1

((1− exp(−(λuij)
2))α)m−1, (3.19)

where E = 2mrmmrαmrλ2mr.

Also let V = {Xi(1:m)j, i = 1, ..., m−1
2

, j = 1, ..., r}
∪
{Xi(m:m)j, i =

m+1
2

, ...,m−

1, j = 1, ..., r}
∪
{Xi(m+1

2
:m)j, i = m, j = 1, ..., r}. Then the likelihood function of

parameters given V = v, for odd set size can be written as

LERSSo(α, λ; v) =
r∏

j=1

m−1
2∏

i=1

g1(vij;α, λ)
r∏

j=1

m−1∏
i=m+1

2

gm(vij;α, λ)× . . .

×
r∏

j=1

m∏
i=m

gm+1
2
(vij;α, λ)

= M
r∏

j=1

m∏
i=1

vij exp(−(λvij)
2)(1− exp(−(λvij)

2))α−1

×
r∏

j=1

m−1
2∏

i=1

(1− (1− exp(−(λvij)
2))α)m−1

×
r∏

j=1

m−1∏
i=m+1

2

((1− exp(−(λvij)
2))α)m−1

×
r∏

j=1

m∏
i=m

((1− exp(−(λvij)
2))α)

m−1
2 , (3.20)

where M =

(
m!

((m−1
2

!))2

)mr

2mrm(m−1)rαmrλ2mr, gi(.;α, λ), g1(.;α, λ) and

gm(.;α, λ) are given by (3.12), (3.17) and (3.18) respectively. As there are no closed

form of the ML estimators of the parameters under odd and even sample size m,
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α̂ERSS and λ̂ERSS are obtained numerically by maximizing the likelihood functions

(3.19) and (3.20) respectively.

3.4 Estimation for Parameters of GR Distribution in MRSS

In this section, we will obtain the parameters of GR distribution via ML technique

depending on MRSS. Let W = {Xi(m+1
2

:m)j, i = 1, ..., m
2
, j = 1, ..., r}. Then the

likelihood function of parameters given W = w, for odd set size can be written as

LMRSSo(α, λ;w) =
r∏

j=1

m∏
i=1

gm+1
2
(wij;α, λ)

= H
r∏

j=1

m∏
i=1

wij exp(−(λwij)
2)(1− exp(−(λwij)

2))
mα+α

2
−1

×(1− (1− exp(−(λwij)
2))α)

m−1
2 , (3.21)

where H = 2mr

(
m!

((m−1
2

)!)2

)mr

αmrλ2mr and gi(.;α, λ) is given by (3.12).

Also let T = {Xi(m
2
:m)j, i = 1, ..., m

2
, j = 1, ..., r}

∪
{Xi(m+2

2
:m)j, i =

m+2
2

, ...,m, j = 1, ..., r}. Then the likelihood function of parameters given T = t, for

even set size can be written as

LMRSSe(α, λ; t) =
r∏

j=1

m/2∏
i=1

gm
2
(tij;α, λ)

r∏
j=1

m∏
i=m+2

2

gm+2
2
(tij;α, λ)

= K
r∏

j=1

m∏
i=1

tij exp(−(λtij)
2)(1− exp(−(λtij)

2))α−1

×
r∏

j=1

m/2∏
i=1

((1− exp(−(λtij)
2))α)

m−2
2

×(1− (1− exp(−(λtij)
2))α)

m
2 , (3.22)

where K = 2mr

(
m!

(m−2
2

)!(m
2
)!

)mr

αmrλ2mr. Also, ML estimators of parameters say,

α̂MRSS and λ̂MRSS are solved by numerical method because of complex forms of (3.21)

and (3.22) .
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CHAPTER FOUR

SIMULATION STUDY

In this chapter, we analyze the performance of ML estimators of the unknown

parameters of GR distribution and a simulation study performed in Mathematica

v.11.0 for the analysis. The performance comparisan criteria that are biases, MSEs

and relative efficiencies (RE) of estimators rely on SRS, RSS, ERSS, MRSS and

imperfect RSS (IRSS). Monte Carlo simulation is conducted with different set sizes,

cycle numbers and different values of shape parameter α for the interested population.

The following formulas are used for the comparisons:

Bias(θ̂i, θ) =
1

N

N∑
i=1

(θ̂i − θ),

MSE(θ̂i, θ) =
1

N

N∑
i=1

(θ̂i − θ)2,

RE(θ̂2) =
MSE(θ̂1)

MSE(θ̂2)
.

where θ̂i is the estimated value of ith number of repetitions, θ is the population

parameter and N = 10, 000 is the total repetition number. We denote θ̂1 = θ̂SRS and

θ̂2 is estimated value of the parameter under another sampling method.

4.1 Results under Perfect Ranking in RSS Schemes

In this section, we consider that there is no presence of ranking errors for the

performance comparison of estimators. The findings are shown in Table 4.1, Table

4.2 and Figure 4.1. One can conclude from Table 4.1 that estimates of α and λ based

on ERSS have smaller biases than the corresponding estimates using SRS, RSS and

MRSS. Biases and MSEs of the estimators based on RSS and its modifications

decrease when set sizes increase. Figure 4.1 shows us MSE of unknown parameters

of GR distribution based on different sampling method for only α = 0.5 and λ = 1
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but all α values have the similar results. Also, one can see from Table 4.2 that ML

estimators of both parameters derived on ERSS are more efficient than the other

methods except the case of m = 3. In that condition, RSS and ERSS have the similar

results. Actually, the reason of this situation is that case of m = 3 in ERSS

corresponds to the case of m = 3 in usual RSS in terms of the their schemes.

Furthermore, we can say that REs based on RSS methods increase as the set sizes

increase.

Table 4.1 Biases of the estimators of the parameters of GR distribution

n α;λ α̂SRS λ̂SRS m;r α̂RSS λ̂RSS α̂MRSS λ̂MRSS α̂ERSS λ̂ERSS

0.0898 0.1369 3;4 0.0655 0.1019 0.0854 0.1298 0.0627 0.1001
12 0.4;1.0 4;3 0.0551 0.0852 0.0760 0.1209 0.0429 0.0667

6;2 0.0443 0.0690 0.0714 0.1122 0.0433 0.0631
0.1218 0.1280 3;4 0.0820 0.0902 0.1104 0.1198 0.0812 0.0898

0.5;1.0 4;3 0.0715 0.0779 0.0983 0.1085 0.0530 0.0615
6;2 0.0703 0.0790 0.1012 0.1070 0.0352 0.0410

0.1948 0.1013 3;4 0.1427 0.0728 0.1875 0.0868 0.1506 0.0765
0.7;1.0 4;3 0.1291 0.0659 0.1685 0.0801 0.1013 0.0546

6;2 0.1037 0.0525 0.1683 0.0755 0.0634 0.0375
0.3199 0.0995 3;4 0.2139 0.0710 0.3056 0.0874 0.2187 0.0703

1.0;1.0 4;3 0.1903 0.0647 0.2705 0.0826 0.1466 0.0510
6;2 0.1433 0.0503 0.2830 0.0842 0.0969 0.0362

0.0379 0.0632 3;8 0.0253 0.0423 0.0375 0.0624 0.0263 0.0457
24 0.4;1.0 4;6 0.0222 0.0370 0.0320 0.0547 0.0153 0.0273

6;4 0.0181 0.0302 0.0278 0.0460 0.0077 0.0161
0.0572 0.0550 3;8 0.0387 0.0443 0.0501 0.0629 0.0390 0.0477

0.5;1.0 4;6 0.0337 0.0417 0.0467 0.0402 0.0262 0.0328
6;4 0.0272 0.0358 0.0475 0.0392 0.0187 0.0219

0.0948 0.0604 3;8 0.0696 0.0468 0.0933 0.0575 0.0706 0.0474
0.7;1.0 4;6 0.0651 0.0396 0.0799 0.0510 0.0534 0.0334

6;4 0.0553 0.0357 0.0843 0.0540 0.0400 0.0258
0.1295 0.0487 3;8 0.0996 0.0364 0.1404 0.0489 0.0980 0.0368

1.0;1.0 4;6 0.0847 0.0322 0.1281 0.0453 0.0653 0.0267
6;4 0.0757 0.0297 0.1380 0.0474 0.0356 0.0183

0.0271 0.0605 3;12 0.0207 0.0479 0.0279 0.0654 0.0209 0.0482
36 0.4;1.0 4;9 0.0189 0.0458 0.0241 0.0573 0.0152 0.0376

6;6 0.0158 0.0394 0.0255 0.0613 0.0114 0.0296
0.0268 0.0419 3;12 0.0191 0.0326 0.0222 0.0362 0.0208 0.0358

0.5;1.0 4;9 0.0176 0.0303 0.0185 0.0299 0.0137 0.0268
6;6 0.0135 0.0261 0.0191 0.0305 0.0087 0.0220

0.0630 0.0432 3;12 0.0471 0.0343 0.0613 0.0412 0.0468 0.0336
0.7;1.0 4;9 0.0424 0.0298 0.0627 0.0427 0.0346 0.0276

6;6 0.0369 0.0279 0.0570 0.0396 0.0226 0.0202
0.0760 0.0236 3;12 0.0510 0.0156 0.0668 0.0202 0.0480 0.0143

1.0;1.0 4;9 0.0701 0.0210 0.0639 0.0193 0.0354 0.0095
6;6 0.0339 0.0093 0.0567 0.0171 0.0237 0.0058
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4.2 Results under Imperfect Ranking in RSS Schemes

Now, we consider that the performances of the estimators under imperfect RSS

(IRSS) where IRSS scheme is regarded as existence of ranking errors. This means

that there is a mismatching between the ranked order of the items and their actual

numerical orders. There are some works in the literature about impacts of imperfect

ranking on efficiencies of estimators. One can see; Park & Lim (2012), Frey (2014)

and references therein. In literature, the concomitant variable is mostly used one to

observe effects of imperfect ranking, but here we prefer to use a mathematical model

that is called fraction of random ranking mentioned in Vock & Balakrishnan (2011).

The model for the judgement ordering is as follows:

F[i] = (1− β)F(i) + βF, i = 1, . . . ,m, β ∈ [0, 1], (4.1)

where the mixture distribution F[i] of the ith judgement order statistic, F(i) is the

distribution of true ith order statistic, F is the original cdf of GR distribution and β is

the mixing parameter. We used mixing parameter β=0.1, 0.4 and 0.9 in model 4.1 and

also different schemes have been generated from the pdf of GR distribution when

α = 0.5, λ = 1. Figure 4.2 illustrates that RE of estimators of parameters under

various schemes of sampling including IRSS when n = 12(n = mr) with different

mixing parameters for IRSS. As we have expected, REs of estimators decreases while

ranking error i.e. mixing parameter is rising. ERSS is still the most efficient sampling

method for this analysis. However, IRSS is more efficient than SRS and MRSS even

under high ranking error.
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Figure 4.1 MSEs of the estimators versus different sampling methods for α = 0.5, λ = 1.0 and n = mr
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Table 4.2 RE values of the estimators of the parameters of GR distribution

RE
n α;λ m;r α̂RSS λ̂RSS α̂MRSS λ̂MRSS α̂ERSS λ̂ERSS

3;4 1.9840 1.5915 1.3562 1.1521 2.0565 1.5700
12 0.4;1.0 4;3 2.5238 1.8783 1.6243 1.2779 3.2773 2.4733

6;2 3.6414 2.4641 1.7383 1.3601 3.2651 2.5234
3;4 1.9843 1.6717 1.1487 1.1912 1.9872 1.6773

0.5;1.0 4;3 2.5854 2.0002 1.6300 1.3737 3.4737 2.5526
6;2 2.5864 1.9995 1.4411 1.4024 5.5651 3.9471
3;4 1.8032 1.5762 1.1136 1.2268 1.6435 1.5106

0.7.1.0 4;3 2.1695 1.7713 1.4072 1.4330 3.0278 2.2628
6;2 3.2265 2.3649 1.4055 1.4350 5.5332 3.3819
3;4 1.9069 1.5641 0.9353 1.2106 1.8045 1.5687

1.0;1.0 4;3 2.3969 1.8464 1.2018 1.3757 3.4117 2.2930
6;2 3.5283 2.3659 1.0594 1.3717 6.2216 3.3959
3;8 1.6939 1.4864 1.2262 1.0897 1.6571 1.4342

24 0.4;1.0 4;6 2.0155 1.7104 1.5031 1.2848 2.3991 2.1345
6;4 2.5695 2.1124 1.7467 1.3678 3.5168 3.0011
3;8 1.6436 1.3946 1.2508 0.9942 1.6182 1.3246

0.5;1.0 4;6 1.9873 1.5576 1.4124 1.2386 2.4290 1.9651
6;4 2.6584 1.9304 1.4744 1.3278 3.4496 2.9443
3;8 1.7016 1.4208 1.1620 1.0817 1.6958 1.4321

0.7;1.0 4;6 1.8864 1.6135 1.4199 1.2705 2.4654 1.9866
6;4 2.5650 2.0376 1.3795 1.1972 3.6788 2.9606
3;8 1.6074 1.4600 1.1062 1.1376 1.5829 1.4378

1.0;1.0 4;6 1.9846 1.6851 1.2299 1.2496 2.4473 2.0050
6;4 2.2846 1.9039 1.2404 1.2825 3.9869 2.8635
3;12 1.6148 1.3903 1.2424 0.9764 1.5834 1.3569

36 0.4;1.0 4;9 1.8301 1.5388 1.4439 1.1391 2.1366 1.9818
6;6 2.3704 1.9389 1.4430 1.0826 3.0766 2.9329
3;12 1.6098 1.4423 1.2983 1.1383 1.5490 1.3799

0.5;1.0 4;9 1.8375 1.6169 1.5278 1.2961 2.1376 1.9348
6;6 2.2241 1.9175 1.5427 1.2585 2.9195 2.7145
3;12 1.5348 1.4059 1.1789 1.1888 1.5241 1.4126

0.7;1.0 4;9 1.7428 1.6137 1.2335 1.2149 2.1516 1.9156
6;6 2.2172 2.0189 1.3702 1.2760 3.2244 2.7151
3;12 1.5225 1.3799 1.1399 1.0843 1.5280 1.4102

1.0;1.0 4;9 1.0189 1.0040 1.2701 1.2307 2.2081 1.8981
6;6 2.2607 1.9485 1.3187 1.2273 3.2514 2.6422
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Figure 4.2 REs of the estimators versus different sampling methods for α = 0.5, λ = 1.0, β =
0.1, 0.4, 0.9 and n = 12
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CHAPTER FIVE

REAL DATA EXAMPLE

In this chapter, we give a data analysis with a real data was originated by Bader &

Priest (1982). Data set in Table 5.1 contains the 69 strength measured in GPA (giga-

Pascals), for single carbon fibers and impregnated 1000-carbon fiber tows. When we

applied the Kolmogorov-Smirnov test in R software, we see that data set fitted with GR

distribution very well in Figure 5.1. The ML estimators of the parameter α, λ and the

p-value of the Kolmogorov-Smirnov test are 3.24615, 0.77510 and 0.9033 respectively.

Therefore, we conclude that data follow the GR distribution since p-value >α = 0.05

Table 5.1 The Strength Data

0.562 0.564 0.729 0.802 0.950 1.053 1.111 1.115 1.194 1.208
1.216 1.247 1.256 1.271 1.277 1.305 1.313 1.348 1.390 1.429
1.474 1.490 1.503 1.520 1.522 1.524 1.551 1.551 1.609 1.632
1.632 1.676 1.684 1.685 1.728 1.740 1.761 1.764 1.785 1.804
1.816 1.824 1.836 1.879 1.883 1.892 1.898 1.934 1.947 1.976
2.020 2.023 2.050 2.059 2.068 2.071 2.098 2.130 2.204 2.262
2.317 2.334 2.340 2.346 2.378 2.483 2.683 2.835 2.835

Figure 5.1 The cdf and emprical cdf of GR distribution for real data
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For the analysis, a random sample of size 12 is drawn without replacement with

different sampling scheme; SRS, RSS, ERSS and MRSS. In RSS and its modifications,

we select m = 6 and r = 2. The result of the analysis presented in Table 5.2. We

infer from the result, estimates based on ERSS are closer to the given values for both

parameters α and λ. Also, we can say that our findings in this chapter sort together

simulation results.

Table 5.2 The ML estimators of parameters for GR distribution

α̂ λ̂
SRS RSS MRSS ERSS SRS RSS MRSS ERSS

3.51296 3.10667 3.17405 3.45956 0.866591 0.729072 0.722887 0.754149
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CHAPTER SIX

CONCLUSION

In this thesis, we make an inference for unknown parameters of GR distribution

based on RSS, ERSS and MRSS by using ML method. These estimators have been

derived theoretically but we have no closed form solutions for the estimators.

Therefore the performance comparisons have been done by simulation study and it

has been supported with a real data example. Biases, MSEs and REs are calculated as

comparison criteria under both perfect and imperfect ranking process. We can

interpret from the study, biases and MSEs of the estimators for true parameters under

ERSS are smaller than the corresponding estimators calculated under SRS and other

RSS methods. This shows that ERSS is more effective than the other mentioned

approaches. Furthermore, even under the presence of ranking error, we see that it

works still better than SRS and MRSS. Finally, when we investigated the real data,

we have sight an analogous with a simulation result. Therefore, ERSS has a closer

values to the given values.
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