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ABSTRACT

INDEPENDENT TASK ASSIGNMENT FOR
HETEROGENEOUS SYSTEMS

E. Kartal Tabak

Ph.D. in Computer Engineering

Supervisor: Prof. Dr. Cevdet Aykanat

August, 2013

We study the problem of assigning nonuniform tasks onto heterogeneous systems.

We investigate two distinct problems in this context. The first problem is the

one-dimensional partitioning of nonuniform workload arrays with optimal load

balancing. The second problem is the assignment of nonuniform independent

tasks onto heterogeneous systems.

For one-dimensional partitioning of nonuniform workload arrays, we investi-

gate two cases: chain-on-chain partitioning (CCP), where the order of the pro-

cessors is specified, and chain partitioning (CP), where processor permutation

is allowed. We present polynomial time algorithms to solve the CCP problem

optimally, while we prove that the CP problem is NP complete. Our empirical

studies show that our proposed exact algorithms for the CCP problem produce

substantially better results than the state-of-the-art heuristics while the solution

times remain comparable.

For the independent task assignment problem, we investigate improving the

performance of the well-known and widely used constructive heuristics MinMin,

MaxMin and Sufferage. All three heuristics are known to run in O(KN2) time in

assigning N tasks to K processors. In this thesis, we present our work on an algo-

rithmic improvement that asymptotically decreases the running time complexity

of MinMin to O(KN logN) without affecting its solution quality. Furthermore,

we combine the newly proposed MinMin algorithm with MaxMin as well as Suffer-

age, obtaining two hybrid algorithms. The motivation behind the former hybrid

algorithm is to address the drawback of MaxMin in solving problem instances

with highly skewed cost distributions while also improving the running time per-

formance of MaxMin. The latter hybrid algorithm improves the running time

performance of Sufferage without degrading its solution quality. The proposed
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algorithms are easy to implement and we illustrate them through detailed pseu-

docodes. The experimental results over a large number of real-life datasets show

that the proposed fast MinMin algorithm and the proposed hybrid algorithms

perform significantly better than their traditional counterparts as well as more

recent state-of-the-art assignment heuristics. For the large datasets used in the

experiments, MinMin, MaxMin, and Sufferage, as well as recent state-of-the-art

heuristics, require days, weeks, or even months to produce a solution, whereas all

of the proposed algorithms produce solutions within only two or three minutes.

For the independent task assignment problem, we also investigate adopting

the multi-level framework which was successfully utilized in several applications

including graph and hypergraph partitioning. For the coarsening phase of the

multi-level framework, we present an efficient matching algorithm which runs in

O(KN) time in most cases. For the uncoarsening phase, we present two refine-

ment algorithms: an efficient O(KN)-time move-based refinement and an efficient

O(K2N logN)-time swap-based refinement. Our results indicate that multi-level

approach improves the quality of task assignments, while also improving the run-

ning time performance, especially for large datasets.

As a realistic distributed application of the independent task assignment prob-

lem, we introduce the site-to-crawler assignment problem, where a large number

of geographically distributed web servers are crawled by a multi-site distributed

crawling system and the objective is to minimize the duration of the crawl. We

show that this problem can be modeled as an independent task assignment prob-

lem.

As a solution to the problem, we evaluate a large number of state-of-the-art

task assignment heuristics selected from the literature as well as the improved

versions and the newly developed multi-level task assignment algorithm. We

compare the performance of different approaches through simulations on very

large, real-life web datasets. Our results indicate that multi-site web crawling

efficiency can be considerably improved using the independent task assignment

approach, when compared to relatively easy-to-implement, yet naive baselines.

Keywords: parallel computing, one-dimensional partitioning, load balancing,

chain-on-chain partitioning, dynamic programming, parametric search, Paral-

lel processors, heterogeneous systems, independent task assignment, MinMin,

MaxMin, Sufferage, constructive heuristics.



ÖZET

HETEROJEN SİSTEMLER İÇİN BAG̃IMSIZ İŞ
ATAMASI

E. Kartal Tabak

Bilgisayar Mühendisliği, Doktora

Tez Yöneticisi: Prof. Dr. Cevdet Aykanat

Ag̃ustos, 2013

Bu tezde, heterojen sistemler için büyüklüg̃ü farklılık gösteren işlerin işlemcilere

dag̃ıtılması problemleri üzerinde çalıştık. Bu bag̃lamda iki ayrı problemi in-

celedik. İlk olarak farklı işlem büyüklüg̃üne sahip iş katarlarının heterojen

işlemcilere bir boyutlu dag̃ıtılması problemi üzerinde durduk. İkinci olarak ise,

farklı işlem büyüklüg̃üne sahip bag̃ımsız işlerin heterojen sistemlerde atanması

problemi üzerinde çalıştık.

Farklı büyüklükteki iş katarlarının bir boyutlu parçalanması probleminde iki

alt problem üzerinde çalıştık. Birincisi, zincir-zincir parçalama (ZZP) olarak

bilenen bir boyutlu sıralı iş zincirinin bir boyutlu sıralı işlemci zinciri üzerine

parçalama problemi, ikincisi ise zincir parçalama (ZP) olarak tanımladıg̃ımız,

bir boyutlu sıralı iş zincirinin sıra önemli olmadan işlemcilere parçalanma prob-

lemi. ZZP problemi için heterojen sistemlerde polinom zamanda optimal

çözüm bulan algoritmalar sunduk, ZP probleminin ise NP-tam oldug̃unu ispat-

ladık. Yaptıg̃ımız çalışmalarla ZZP probleminde sundug̃umuz optimal çözümlerin

sezgisel yöntemlerden çok daha iyi sonuçları karşılaştırılabilir sürelerde bula-

bildig̃ini ortaya koyduk.

Bag̃ımsız iş atama probleminde, bilinen ve çok kullanılan yapıcı sezgisel

algoritmalardan MinMin, MaxMin ve Sufferage algoritmalarının iyileştirilmesi

üzerinde çalıştık. Bu sezgisel metotların N işi K işlemciye dag̃ıtırken O(KN2)

zamanda çalıştıg̃ı biliniyordu. Bu tezde, MinMin algoritmasında, çözümünü

ve çözüm kalitesini deg̃iştirmeden, çalışma zamanını O(KN logN) zamana

düşürecek algoritmik iyileştirmeler yaptık. Ayrıca, MinMin algoritması ile

MaxMin ve Sufferage algoritmalarını birleştirerek, iki adet daha hibrit algo-

ritma elde ettik. MaxMin ile MinMin hibritlemesi, MaxMin algoritmasının

özellikle kuvvet kanunu gibi özellikleri taşıyan dag̃ılımlardaki dezavantajlarını
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gidermenin yanında, MaxMin algoritmasının çalışma hızını da iyileştirdi. Suf-

ferage ile MinMin hibritlemesinin ise Sufferage algoritmasının çözüm kalitesini

düşürmeden çalışma hızını iyileştirdi. Algoritmalar için verdig̃imiz detaylı akışlar

sundug̃umuz algoritmaların kolay gerçekleştirilebilir olduklarını göstermektedir.

Gerçek hayattan alınan çok sayıdaki örnek veri üzerinde yaptıg̃ımız deneyler

sundug̃umuz MinMin ve hibrit algoritmaların klasik versiyonlarından ve dig̃er çok

kullanılan sezgisel algoritmalardan çok daha iyi çalıştıg̃ını gösterdi. Deneylerde

kullandıg̃ımız büyük örnek veriler için, MinMin, MaxMin ve Sufferage algorit-

maları ve dig̃er çok kullanılan sezgisel algoritmalar günler, haftalar hatta aylar

mertebesinde çalışırken, sundug̃umuz algoritmalar sonuçları iki-üç dakika içinde

hesaplayabildiler.

Bag̃ımsız iş atama probleminde ayrıca, graf ve hipergraf parçalama gibi uygu-

lamalarda başarıyla kullanılmış çok katmanlı mimari yöntemlerinin probleme

adaptasyonu üzerinde çalıştık. Çok katmanlı mimarinin katlama aşamasında kul-

lanılmak üzere etkili, çog̃u zaman O(KN) sürede çalışan bir algoritma tasarladık.

Çok katmanlı mimarinin açma kısmında kullanılmak üzere, iki adet iyileştirme

algoritması tasarladık: O(KN) sürede çalışan kaydırma temelli iyileştirme al-

goritması ve O(K2N) sürede çalışan deg̃iştirme temelli iyileştirme algoritması.

Yaptıg̃ımız çalışmalar çok katmanlı yaklaşımların, özellikle büyük örnek veriler

için hem iş atama kalitesini hem de çalışma süresi performansını ciddi olarak

iyileştirdig̃ini ortaya koymaktadır.

Bag̃ımsız iş atama probleminin gerçekçi bir dag̃ıtık uygulamasını göstermek

üzere, site-indirici eşleştirme problemini inceledik. Bu problem, Internet

üzerindeki çok sayıda web sitesinin birden fazla yerde konuşlanmış dag̃ıtık in-

dirici sistemleri vasıtası ile en az sürede tarama işleminin gerceklestirilmesini

hedeflemektedir. Bu problemin bag̃ımsız iş atama problemi olarak modellen-

mesini gerçekleştirdik. Günümüzde kullanılan bag̃ımsız iş atama algoritmalarını

sundug̃umuz iyileştirilmiş algoritmaları ve çok kaymanlı algoritmamızı problem

üzerinde deneyerek karşılaştırdık. Karşılaştırmalarımızda gerçek hayattan alınan

çok büyük örnek kümeler kullandık. Sonuçlarımız, kolay gerçekleştirilebilen

sezgisel yöntemler yerine, bag̃ımsız iş atama yaklaşımının dag̃ıtık indirici sistem-

lerin verimlilig̃ini ciddi olarak arttırdıg̃ını gösterdi.

Anahtar sözcükler : paralel hesaplama, tek boyutlu parçalama, yük den-

geleme, zincir-zincir parçalama, dinamik programlama, parametrik arama, paralel
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işlemciler, heterojen sistemler, bag̃ımsız iş yükleme, MinMin, MaxMin, Sufferage,

yapıcı sezgisel yöntemler.
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Chapter 1

Introduction

In many applications of parallel and distributed computing, load balancing is

achieved by static assignment at a preprocessing step. Static task assignment

at the preprocessing step is a crucial component in the efficiency of the parallel

and distributed applications. In this thesis, we will describe efficient solutions to

several heterogeneous partitioning and task assignment algorithms.

The main problems in focus of this thesis are: one-dimensional (1D) hetero-

geneous partitioning and heterogeneous independent task assignment problems.

In Section 2.1, we describe the background for the homogenous 1D parti-

tioning problem and the techniques to solve the well-known homogenous 1D

CCP (chains-on-chains) problem. In Chapter 3, we investigate how these tech-

niques can be generalized for heterogeneous systems, where processors have vary-

ing computational powers. Two distinct problems arise in partitioning chains

for heterogeneous systems. The first problem is the CCP problem, where a

chain T = 〈t1, t2, . . . , tN〉 of N tasks with associated computational weights

W = 〈w1, w2, . . . , wN〉 is to be mapped onto a chain of P = 〈P1, P2, . . . , PK〉
of K processors, i.e., the pth task subchain in a partition is assigned to the pth

processor. The execution time of task ti on processor Pp is wi/ep. The objec-

tive is to minimize the completion time of the latest finishing task. The second

problem is the chain partitioning (CP) problem, where a chain of tasks is to be
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mapped onto a set, as opposed to a chain, of processors, i.e., processors can be

permuted for subchain assignments. For brevity, the CCP problem for homoge-

nous systems and heterogeneous systems will be referred to as the homogenous

CCP problem and heterogeneous CCP problem, respectively. The CP problem

refers to the chain partitioning problem for heterogeneous systems, since it has

no counterpart for homogenous systems.

In Chapter 3, we show that the heterogeneous CCP problem can be solved

in polynomial time by enhancing the exact algorithms proposed for the solution

of the homogenous CCP problem [93]. We present how these exact algorithms

for homogenous systems can be enhanced for heterogeneous systems and imple-

mented efficiently for runtime performance. We also present how the heuristics

widely used for the solution of homogenous CCP problem can be adapted for

heterogeneous systems. We present the implementation details and pseudocodes

for the exact algorithms and heuristics for clarity and reproducibility. Our exper-

iments with workload arrays coming from image-space-parallel volume rendering

and row-parallel sparse matrix vector multiplication applications show that our

proposed exact algorithms produce substantially better results than the heuristics

while the partitioning times remain comparable. On average, optimal solutions

provide 4.9 and 8.7 times better load imbalance than heuristics for 128-way par-

titionings of volume rendering and sparse matrix datasets, respectively. On aver-

age, the time it takes to compute an optimal solution is less than 2.20 times the

time it takes to compute an approximation using heuristics for 128 processors,

and thus the preprocessing times can be easily compensated by the improved

efficiency of the subsequent computation even for a few iterations.

The CP problem on the other hand, is NP-complete as we prove in Chap-

ter 3. Our proof uses a pseudo-polynomial reduction from the 3-Partition prob-

lem, which is known to be NP-complete in the strong sense [50]. Our empirical

studies showed that processor ordering has a very limited effect on the solution

quality, and an optimal CCP solution on a random processing ordering serves as

an effective CP heuristic.

Another important focus of this work is on the independent task assignment
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problem, which often arises in applications related to heterogeneous computing

systems. In this problem, we have a set T = {T1, T2, . . . , TN} of N indepen-

dent tasks, a set P = {P1, P2, . . . , PK} of K heterogeneous processors, and an

expected-time-to-compute matrix E = {xi,k}N×K , where xi,k denotes the ex-

pected execution cost of task Ti on processor Pk. The objective is to find a task-to-

processor assignment that results in the minimum turnaround time (makespan).

In other words, the objective is to minimize the load of the maximally loaded

(bottleneck) processor. This problem is known to be NP-complete [63].

One of the most popular heuristics used for solving the independent task

assignment problem is the MinMin heuristic. It is constructive, simple, and is re-

ported to produce high quality assignments. However its running time is reported

to be O(KN2), which prevents the algorithm to be used on problem instances

with large number of tasks. We believe that the computational complexity of

MinMin is overlooked in the parallel and distributed computing literature. This

mainly stems from the task-oriented view of MinMin, constituting a lower bound

of Ω(KN2) on the running time. In this thesis, we propose an O(KN logN)-

time algorithm that improves this quadratic lower bound by switching from the

task-oriented view to a processor-oriented view. The proposed MinMin algorithm,

which is referred to herein as MinMin+, attains exactly the same solution qual-

ity as MinMin without degrading the ease of implementation. The results of our

experiments over a wide range of problem instances indicate that MinMin+ runs

several orders of magnitude faster than MinMin. For a large dataset that contains

about 2.5 million tasks, MinMin finds a 16-way assignment in about 22 days,

whereas MinMin+ finds the same assignment in about a minute.

Two other well-known constructive heuristics used for solving the indepen-

dent task assignment problem are MaxMin (MaxMin) [5, 10, 48, 63] and Suffer-

age (Suff) [78]. These heuristics differ from MinMin in the task selection policy

adopted during the task-to-processor assignment process. In Chapter 4, we pro-

pose improvements over these two heuristics as well. We combine MaxMin with

MinMin+ as well as Suff with MinMin+ to obtain the hybrid algorithms MaxMin+

and Suff+, respectively.
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The assignment of large tasks to their favorite processors1 is important to

obtain a good makespan, especially in skewed datasets. Although the MaxMin

heuristic assigns the largest task to its favorite processor, its inherent mechanism

is likely to fail to assign remaining large tasks to their favorite processors. The

motivation behind MaxMin+ is to address this drawback of MaxMin in solving

problem instances with highly skewed cost distributions while also improving the

running time performance of MaxMin.

Suff is reported to be among the algorithms that yield high-quality solu-

tions [69, 78, 107]. Despite its success, the quadratic running time prevents the

application of this heuristic to large datasets. The motivation behind Suff+ is

to improve the running time performance of Suff without degrading the solution

quality.

Although both MaxMin+ and Suff+ are, in the worst case, still O(KN2)-time

algorithms, our experimental results show that they run considerably faster than

the traditional MaxMin and Suff heuristics, respectively. The experimental results

also indicate that MaxMin+ finds considerably better solutions than MaxMin while

Suff+ finds slightly better solutions than Suff, on average.

MinMin is also used as a component in the design of more complex algo-

rithms [10, 105, 108]. Genetic algorithm (GA) [10, 105] is a typical example of

such complex algorithms. In this work, we also demonstrate that the running

time performance of the GA algorithm can be significantly improved simply by

replacing MinMin with MinMin+, without affecting the original solution quality at

all.

We also investigate adopting the multi-level framework which is success-

fully utilized in several applications including graph and hypergraph partition-

ing [13, 20, 67]. In Section 2.3, we describe the background on multi-level frame-

work. In Chapter 6, we describe our proposed multi-level algorithm for the inde-

pendent task assignment problem. Multi-level algorithms execute in three phases:

coarsening, initial solution, and uncoarsening. In the coarsening phase, the prob-

lem instance is coarsened to a smaller problem instance. For the coarsening phase

1A processor Pk is said to be a favorite processor for a task Ti if the expected cost of Ti is
minimum on Pk, i.e., k = argmin` xi,`.
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of the multi-level framework, we present an efficient matching algorithm which

runs in O(KN) time in most cases. Initial solution phase finds an initial solution

at the coarsest problem instance. In the uncoarsening phase, problem instance is

uncoarsened and refined at the finer level. For the uncoarsening phase, we present

two novel refinement algorithms: an efficient O(KN)-time move-based refinement

and an efficient O(K2N logN)-time swap-based refinement algorithms. Our re-

sults indicate that multi-level approach improves the quality of task assignments,

while also improving the running time performance, especially for large datasets.

We also demostrate the improved solutions to the independent task assign-

ment problem on a very large scale real-life problem of distributed web crawling.

So far, independent task assignment is not being used in the domain of dis-

tributed web crawling. Possibly the large asymptotic runtime complexities of

good heuristics prevented them to be used on task asssignment problems of web

crawling, which have very large number of tasks. We show that the assignment

problem of distributed web crawling can be formulated as a task assignment prob-

lem. Regarding that topic, we make the following contributions. We introduce

two variants of the task assignment problem for geographically distributed web

crawling architectures. We adapt several task assignment algorithms taken from

the literature to one of these problems. We conduct experiments using real-life

web data collections and network statistics. The obtained results demonstrate

the potential performance improvements that can be attained by our approach

over relatively easy-to-implement but naive baseline approaches.

The outline of this thesis is as follows: Chapter 2 describes the background and

related work of our target problems. Chapter 3 describes the heteregeneous 1D

CCP partitioning problem and efficient exact algorithms which are guaranteed to

find a globally optimum solution. Chapter 4 describes novel asympthotical and

practical improvements on well-known independent task assignment heuristics.

Chapter 5 presents our adoptation of assignment problem in distributed web

crawling as an independent task assignment problem. Chapter 6 describes a

multi-level approach for very-large-scale independent task assignment problem

instances. We finally conclude with Chapter 7.
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Chapter 2

Related Work

In this chapter, we provide a discussion on previous work on our target assignment

problems. Section 2.1 discusses the related work on one-dimensional (1D) chains-

on-chains (CCP) and Section 2.2 discusses related work on the independent task

assignment algorithms. Section 2.3 provides a discussion on the related work on

multi-level framework.

2.1 1D chains-on-chains partitioning

In many applications of parallel computing, load balancing is achieved by

mapping a possibly multi-dimensional computational domain down to a one-

dimensional (1D) array, and then partitioning this array into parts with equal

weights. Space filling curves are commonly used to map the higher dimensional

domain to a 1D workload array to preserve locality and minimize communication

overhead after partitioning [21, 37, 72, 91]. Similarly, processors can be mapped

to a 1D array so that communication is relatively faster between close processors

in this processor chain [74]. This eases mapping for computational domains and

improves efficiency of applications. The load balancing problem for these appli-

cations can be modeled as the chain-on-chain partitioning (CCP) problem, where

we map a chain of tasks onto a chain of processors. Formally, the objective of
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the CCP problem is to find a sequence of K − 1 separators to divide a chain

of N tasks with associated computational weights into K consecutive parts to

minimize maximum load among processors.

More formally, in the homogenous CCP problem, a chain T = 〈t1, t2, . . . , tN〉
of N tasks with associated positive computational weightsW = 〈w1, w2, . . . , wN〉
is to be mapped onto an identical processor chain of K processors. A task sub-

chain Ti,j = 〈ti, ti+1, . . . , tj〉 is defined as a subset of contiguous tasks. The compu-

tational weight of Ti,j is Wi,j =
∑

i≤h≤j wh. In the homogenous CCP, a partition Π

should map contiguous task subchains to contiguous processors. Hence, a K-way

partition of a task chain with N tasks onto a processor chain with K processors

is described by a sequence Π = 〈s0, s1, . . . , sK〉 of K + 1 separator indices, where

s0 = 0 ≤ s1 ≤ · · · ≤ sK = N . Here, sp denotes the index of the last task of

the pth part so that pth processor Pp receives the task subchain Tsp−1+1,sp with

load Wsp−1+1,sp . The cost C(Π) of a partition Π is determined by the maximum

processor load among all processors, i.e.,

C(Π) = max
1≤p≤K

{
Wsp−1+1,sp

}
(2.1)

The objective of CCP problem is to find a partition Πopt that minimizes the

bottleneck value C(Πopt).

A solution to the CCP problem is first proposed by Bokhari [8]. Bokhari’s

algorithm runs in O(N3K) time, which is based on finding a minimum path on a

layered graph. Nicol and O’Hallaron [85] presented an O(N2K)-time algorithm

by decreasing the number of edges on Bokhari’s graph. Following studies on

homogenous CCP can be categorized as: dynamic programming, iterative refine-

ment, and parametric search.

Dynamic-programming approach is initiated with O(N2K)-time algorithms

independently by Anily and Federgruen [3] and Hansen and Lih [55]. Choi and

Narahari [28] and Manne and Olstad [79] proposed faster algorithms and re-

duced the time complexity of dynamic-programming approach to O(NK) and

O((N − K)K), respectively. Pinar and Aykanat proposed a dynamic program-

ming algorithm with an O(N +K logN +K2wmax/wavg) time complexity, where

wmax is the load of the maximum weighted task and wavg is the average load of
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all tasks. Their algorithm becomes linear in N when wmax = O(Wtot/K
2) and

N � K.

In the iterative refinement approach, the algorithms start with an initial so-

lution, and the solution is iteratively improved. Manne and Sørevik proposed an

iterative refinement approach with an O((N−K)K logK)-time algorithm. Pinar

and Aykanat [93] proposed an iterative refinement algorithm which has a runtime

complexity of O(N +K logN +K3(wmax/wavg)) in the worst case.

The parametric search approach is based on a probing function which succeeds

or fails for a given candidate bottleneck value. The runtime complexity of the

probing function is θ(N), because each task has to be examined. However, when

there will be lots of calls to the probing function, the function can utilize an index

structure to reduce the complexity. Iqbal’s prefix-sum operation [64] on the task

chain can be used as an index structure. The prefix sum can be implemented

in O(N) time, and probing can be implemented in O(K logN) through binary

search on the prefix-summed array. Later, Han et al. [54] reduced the complexity

of the probing function to O(K logN/K).

Parametric search starts with Iqbal’s ε-approximation algorithm. It performs

O(logWtot/ε) probe calls, where Wtot denotes the total task weight. Iqbal’s

algorithm is a result of the observation that the bottleneck value is between

Wtot/K and Wtot. Iqbal followed a binary search on the bottleneck values

within that region. Nicol and O’Hallaron proposed an optimal parametric

search algorithm that performs at most 4N probes [85, 86]. This algorithm

has restrictions on task weights. Iqbal and Bokhari later relaxed those restric-

tions on Nicol’s proposal [66]. Iqbal [65] and Nicol [84] independently pro-

posed another search scheme that for an optimal solution that requires only

O(K logN) probe calls. Pinar and Aykanat [93] proposed two optimal para-

metric search algorithms, the first algorithm has an expected runtime complex-

ity of O(N + K logK logN + K logN logwmax/wavg). Their second algorithm

is an improvement of Nicol’s algorithm [84] and has a runtime complexity of

O(N +K logN + wmax(K logK)2 + wmaxK
2 logK log (wmax/wavg)).

Most of these efforts are for the optimal solution to the homogenous CCP
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problem. Despite those, heuristics are also used. [81] is an example to heuristics.

Heuristics may be preferred because of their ease of implementation, their effi-

ciency, and some additional specific characteristics such as parallelizability. The

heuristics are reported to be unnecessary with the existence of simple and efficient

optimal solutions [93].

Asymptotically efficient algorithms exists for the solution of homogenous CCP

problem. Frederickson [46, 47] proposed an O(N)-time algorithm using parti-

tioning trees. Han et al. proposed a recursive algorithm with a complexity of

O(N + K1+ε) for any ε > 0. Although these algorithms are asymptotically effi-

cient, they are reported to be impractical [93].

2.2 Independent Task Assignment

Assigning a set of independent tasks to a set of nonidentical processors is a com-

mon problem which often arises in parallel and distributed systems. The problem

is known in the literature as independent task assignment problem. Formally, the

objective of the independent task asignment problem is to assign N independent

tasks to K heterogeneous processors such that turnaround time (makespan, load

of maximally loaded processor) is minimized.

More formally, in the independent task assignment problem, we have a set T =

{T1, T2, . . . , TN} of N independent tasks, a set P = {P1, P2, . . . , PK} of K het-

erogeneous processors, and an expected-time-to-compute matrix E = {xi,k}N×K ,

where xi,k denotes the expected execution cost of task Ti on processor Pk. In

independent task assignment, an assignment should assign tasks to processors.

Hence, an assignment is described by a vector A = {ai}N of N elements. Here, ai

denotes the assignment of task Ti to processor Pai . The makespan M(A) of this

assignment is determined by the maximum processor load among all processors:

M(A) = max
1≤k≤K




∑

{i|ai=k}
{xi, k}



 (2.2)

The objective of independent task assingment is to find an assignment vector
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AOPT that minimizes the makespan value MOPT = M(AOPT). The problem is

NP-complete [12,43,59,63].

Independent task assignment problem is first introduced by Bruno et al. [12].

They also proposed the first heuristics to the independent task assignment prob-

lem. However, in their work, their main concern is to minimize mean finish

times of tasks and they discussed independent task assignment problem as a

supporting side topic. Horowitz and Sahni [59] provided an exact solution for

the special integer-weighted ETC-matrix case of the problem with exponential

complexity of O(KN). Horowitz and Sahni also described an approximation

algorithm with complexity O((1/ε)N2K), where ε is the distance from optimal

solution. Ibarra and Kim [63] are the first to introduce practical heuristics for

the independent task assignment problem. The well-known MinMin and MaxMin

are the heuristics introduced by this work. Since then, the area attracted many

researchers to propose new and better heuristics to the independent task as-

signment problem or to use the solutions in other possibly more complex algo-

rithms [5,10,24,29,32,42,48,69,77,78,90,94,95,101,104,105,107,108]. Maheswaran

et al. [78] introduced the Suff heuristic. Braun et al. [10] evaluated 11 common

heuristics for the problem and reported that MinMin is best on their testbed. Luo

et al. [77] presented 20 heuristics grouped under an hierarchy.

The MinMin heuristic is first introduced in [63] and since then it is used many

times for solving the independent task assignment problem [5, 10, 23, 35, 39, 63,

68, 75, 77, 78, 89, 97, 103]. MinMin is a constructive heuristic with some desirable

properties. It is free of parameters that require tuning and is easy to implement.

Moreover, it is reported to produce “high quality” solutions. Since its first pro-

posal, the running time of the MinMin algorithm is reported to be O(KN2) in the

literature [5,23,39,63,68,75,77,78,89]. Despite its success, the quadratic running

time complexity of the heuristic prevents its use in problem instances where the

number of tasks to be assigned is very large. Recently, the MinMin algorithm is

parallelized to enable the application of the algorithm to large datasets [94]. This

parallel version runs in O(N2K/P + N2 + N logP ) time, where P denotes the

number of homogenous processors used in parallelization of the MinMin algorithm

(P may be different than K).
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2.3 Multi-Level Framework

Multi-level framework is a widely used pattern in applying iterative improvement

refinements, especially in graph and hypergraph partitioning. In K-way graph

(hypergraph) partitioning problem, given a graph (hypergraph), the problem is

to find a partition of the vertices into K roughly equal disjoint subsets such that

the number of edges (hyperedges) connecting different subsets is minimized, while

maintaining balancing contraints. Objectives and constraints slightly change in

different versions of the problems. The problem is NP-hard, and several heuristics

have been developed. Kernighan and Lin [70] proposed the famous KL algorithm,

which is an iterative improvement heuristic for graph partitioning. The algorithm

is applied to hypergraph partitioning by Schweikert and Kernighan [98]. Fiduccia

and Mattheyses [45] introduced a faster implementation of the KL algorithm for

hypergraph partitioning, which is the famous FM algorithm.

Although FM algorithm is fast and can produce good solutions, the perfor-

mance of the FM algorithm detoriates for large and sparse graphs/hypergraphs.

Moreover, the quality of FM algorithm is not stable: on average the solutions gen-

erated by FM is worse than the solution of the KL. Running the FM algorithm

several times from random initial partitionings and picking the best solution is

a proposal to alleviate the problem [2]. Two-phase algorithms are introduced to

overcome the deficiencies [52]. In this version, a clustering algorithm is applied

to the original problem instance to obtain a coarser problem instance. Clustering

is performed on highly connected vertices. Then FM is executed on the coarser

instance and the resulting solution is projected back to the original problem in-

stance. FM is executed again at this level. Several algorithms are proposed for

better clustering and refinement for two-phase framework [33,99].

The two-phase approach is then extended to multi-level approach [13, 20, 57,

67]. The multi-level approach consists of three phases: Coarsening, initial so-

lution, and uncoarsening. In the coarsening phase, a multi-level clustering is

applied starting from the original graph/hypergraph by adopting various match-

ing heuristics until the size of the coarsened graph reduces below a predetermined

threshold value. In the initial solution phase, the coarsest graph is partitioned
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using various heuristics. In the uncoarsening phase, the partition found in the ini-

tial solution is successively projected back towards the original graph/hypergraph

by refining the projected partitions on the intermediate levels using an iterative

improvement algorithm. The success of multi-level approach both in runtime and

solution quality makes it a standard for the graph and partitioning problem.
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Chapter 3

One-Dimensional Partitioning for

Heterogeneous Systems: Theory

and Practice

In this chapter, we describe our studies on 1D heterogeneous CCP problem. The

sections of this chapter is organized as follows. Table 3.1 summarizes important

symbols used throughout the chapter. Section 3.1 introduces the heterogeneous

CCP problem. In Section 3.2, we summarize the solution methods for homoge-

nous CCP. In Section 3.3, we discuss how solution methods for homogenous sys-

tems can be enhanced to solve the heterogeneous CCP problem. In Section 3.4,

we discuss the CP problem, prove that it is NP-Complete. In Section 3.5, we

present our experiment results.
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Table 3.1: The summary of important abbreviations and symbols used in this
chapter
Notation Explanation
N number of tasks
T task chain, i.e., T = 〈t1, t2, . . . , tN〉
ti ith task in the task chain
Ti,j task subchain of tasks from ti upto tj, i.e., Ti,j = 〈ti, ti+1, . . . , tj〉
wi computational load of task ti
wmax maximum computational load among all tasks
wavg average computational load of all tasks
wmin minimum computational load of all tasks
Wi,j total computational load of task subchain Ti,j
Wtot total computational load, i.e., Wtot = W1,N

K number of processors
P processor chain, i.e., P = 〈P1, P2, . . . , PK〉 in the CCP problem

processor set, i.e., P = {P1, P2, . . . , PK} in the CP problem
Pp pth processor in the processor chain
Pq,r processor subchain from Pq upto Pr, i.e., Pq,r = 〈Pq, Pq+1, . . . , Pr〉
ep execution speed of processor Pp
Eq,r total execution speed of processor subchain Pq,r
Etot total execution speed of all processors, i.e., Etot = E1,K

B∗ ideal bottleneck value
UB upper bound on the value of an optimal solution
LB lower bound on the value of an optimal solution
sp index of the last task assigned to the pth processor.
lg x base-2 logarithm of x, i.e., lg x = log2 x.
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3.1 Chain-on-chain (CCP) Problem for Hetero-

geneous Systems

In the heterogeneous CCP problem, a computational problem, which is decom-

posed into a chain T = 〈t1, t2, . . . , tN〉 of N tasks with associated positive com-

putational weights W = 〈w1, w2, . . . , wN〉 is to be mapped onto a processor

chain P = 〈P1, P2, . . . , PK〉 of K processors with associated execution speeds

E = 〈e1, e2, . . . , eK〉. The execution time of task ti on processor Pp is wi/ep. For

clarity, we note that there are no precedence constraints among the tasks in the

chain.

A task subchain Ti,j = 〈ti, ti+1, . . . , tj〉 is defined as a subset of contigu-

ous tasks. Note that Ti,j defines an empty task subchain when i > j. The

computational weight of Ti,j is Wi,j =
∑

i≤h≤j wh. A partition Π should map

contiguous task subchains to contiguous processors. Hence, a K-way partition

of a task chain with N tasks onto a processor chain with K processors is de-

scribed by a sequence Π = 〈s0, s1, . . . , sK〉 of K + 1 separator indices, where

s0 = 0 ≤ s1 ≤ · · · ≤ sK = N . Here, sp denotes the index of the last task of

the pth part so that processor Pp receives the task subchain Tsp−1+1,sp with load

Wsp−1+1,sp/ep. The cost C(Π) of a partition Π is determined by the maximum

processor load among all processors, i.e.,

C(Π) = max
1≤p≤K

{
Wsp−1+1,sp

ep

}
(3.1)

This C(Π) value of a partition is called its bottleneck value, and the processor

defining it is called the bottleneck processor. The CCP problem is to find a

partition Πopt that minimizes the bottleneck value C(Πopt).

Similar to the task subchain, a processor subchain Pq,r = 〈Pq, Pq+1, . . . , Pr〉
is defined as a subset of contiguous processors. Note that Pq,r defines an empty

processor subchain when q > r. The computational speed of Pq,r is Eq,r =
∑

q≤p≤r ep.
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The ideal bottleneck value B∗ is defined as

B∗ =
Wtot

Etot

, (3.2)

where Etot is the sum of all processor speeds and Wtot is the total task weight;

i.e., Etot = E1,K and Wtot = W1,N . Note that B∗ can only be achieved when all

processors are equally loaded, so it constitutes a lower bound on the achievable

bottleneck values, i.e., B∗ ≤ C(Πopt).

3.2 CCP Algorithms for Homogenous Systems

The homogenous CCP problem can be considered as a special case of the hetero-

geneous CCP problem, where the processors are assumed to have equal speed, i.e.,

ep = 1 for all p. In this section, we restate the existing heuristics for homogenous

systems, which we will adopt for heterogeneous systems in Section 3.3.

3.2.1 Heuristics

Possibly the most commonly used CCP heuristic is recursive bisection (RB), a

greedy algorithm. RB achieves P -way partitioning through lgP levels of bisection

steps. At each level, the workload array is divided evenly into two. RB finds the

optimal bisection at each level, but the sequence of optimal bisections at each

level may lead to a multi-way partition which is far away from an optimal. Pınar

and Aykanat [93] proved that RB produces partitions with bottleneck values no

greater than B∗ + wmax(K − 1)/K.

Miguet and Pierson [81] proposed another heuristic that determines sp by bi-

partitioning the task chain in proportion to the length of the respective processor

subchains. That is, sp is selected in such a way that W1,sp/W1,N is as close to the

ratio p/K as possible. Miguet and Pierson [81] prove that the bottleneck value

found by this heuristic has an upper bound of B∗ + wmax.

These heuristics can be implemented in O(N + K logN) time. The O(N)
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time is due to prefix-sum operation on the tasks array, after which each separator

index can be found by a binary search on the prefix-summed array.

3.2.2 Dynamic Programming

The overlapping subproblems and the optimal substructure properties of the CCP

problem enable dynamic programming solutions. The overlapping subproblems

are partitioning the first i tasks onto the first p processors, for all possible i and p

values. For the optimal substructure property, observe that if the last processor

is not the bottleneck processor in an optimal partition, then the partitioning of

the remaining tasks onto the first K − 1 processors must be optimal. Hence, the

recursive definition for the bottleneck value of an optimal partition is

Bp
i = min

0≤j≤i

{
max

{
Bp−1
j ,Wj+1,i

}}
(3.3)

Here, Bp
i denotes the optimal solution value for partitioning the first i tasks onto

the first p processors. In Eq. (3.3), searching for index j corresponds to searching

for separator sp−1 so that the remaining subchain Tj+1,i is assigned to the last

processor in an optimal partition. This definition defines a dynamic programming

table of size KN , and computing each entry takes O(N) time, resulting in an

O(N2K)-time algorithm. Choi and Narahari [28], and Manne and Olstad [79]

reduced the complexity of this scheme to O(NK) and O((N−K)K), respectively.

Pınar and Aykanat [93] presented enhancements to limit the search space of each

separator by exploiting upper and lower bounds on the optimal solution value for

better practical performance.

3.2.3 Parametric Search

Parametric search algorithms rely on two components: a probing operation to

determine if a solution exists whose bottleneck value is no greater than a specified

value, and a method to search the space of candidate values. The probe algorithm

can be computed in only O(K logN) time by using binary search on the prefix-

summed workload array. Below, we summarize algorithms to search the space of

bottleneck values.
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3.2.3.1 Nicol’s Algorithm

Nicol’s algorithm [84] exploits the fact that any candidate B value is equal to the

weight of a task subchain. A naive solution is to generate all subchain weights,

sort them, and then use binary search to find the minimum value for which a probe

succeeds. Nicol’s algorithm efficiently searches for this subchain by considering

each processor in order as a candidate bottleneck processor. For each processor

Pp, the algorithm does a binary search for the smallest index that will make

Pp the bottleneck processor. With the O(K logN) cost of each probing, Nicol’s

algorithm runs in O(N + (K logN)2) time.

Pınar and Aykanat [93] improved Nicol’s algorithm by utilizing the following

simple facts. If the probe function succeeds (fails) for some B, then probe function

will succeed (fail) for any B′ ≥ (≤) B. Therefore by keeping the smallest B that

succeeded and the largest B that failed, unnecessary probing is eliminated, which

drastically improves runtime performance [93].

3.2.3.2 Bidding Algorithm

The bidding algorithm [92, 93] starts with a lower bound and proceeds by grad-

ually increasing this bound until a feasible solution value is reached. The in-

crements are chosen to be minimal so that the first feasible bottleneck value is

optimal. Consider the partition generated by a failed probe call that loads the

first K− 1 processors maximally not to exceed the specified probe value. To find

the next bottleneck value, processors bid with the bottleneck value that would

add one more task to their domain, and the minimum bid among the processors

is chosen to be the next bottleneck value. The bidding algorithm moves each

one of the K separators for O(N) positions in the worst case, where choosing the

new bottleneck value takes O(logK) time using a priority queue. This makes the

complexity of the algorithm O(NK logK).
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3.2.3.3 Bisection Algorithms

The bisection algorithm starts with a lower and an upper bound on the solution

value and uses binary search in this interval. If the solution value is known to

be an integer, then the bisection algorithm finds an optimal solution. Other-

wise, it is an ε-approximation algorithm, where ε is the user defined accuracy for

the solution. The bisection algorithm requires O(log(wmax/ε)) probe calls, with

O(N +K logN log(wmax/ε)) overall complexity.

Pınar and Aykanat [93] enhanced the bisection algorithm by updating the

lower and upper bounds to realizable bottleneck values (subchain weights). After

a successful probe, the upper bound can be set to be the bottleneck value of the

partition generated by the probe function, and after a failed probe, the lower

bound can be set to be the smallest value that might succeed, as in the bidding

algorithm. These enhancements transform the bisection algorithm to an exact

algorithm, as opposed to an ε-approximation algorithm.

3.3 Proposed CCP Algorithms for Heteroge-

neous Systems

The algorithms we propose in this section extend the techniques for homogenous

CCP to heterogeneous CCP. All algorithms discussed in this section require an

initial prefix-sum operation on the task-weight arrayW for the efficiency of subse-

quent subchain-weight computations. The prefix-sum operation replaces the ith

entry W [i] with the sum of the first i entries (
∑i

h=1wh) so that computational

weight Wij of a task subchain Tij can be efficiently determined asW [j]−W [i−1]

in O(1) time. In our discussions, W is used to refer to the prefix-summed W
array, and O(N) cost of this initial prefix-sum operation is considered in the

complexity analysis. Similarly, Ea,b can be computed in O(1) time on a prefix-

summed processor-speed array. In all algorithms, we focus only on finding the

optimal solution value, since an optimal solution can be easily constructed, once

the optimal solution value is known.
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Unless otherwise stated, BINSEARCH represents a binary search that finds the

index to the element that is closest to the target value. There are variants of

BINSEARCH to find the index of the greatest element not greater than the target

value, and we will state whenever such variants are needed. BINSEARCH takes four

parameters: the array to search, the start and end indices of the sub-array, and

the target value. The range parameters are optional, and their absence means

that the search will be performed on the whole array.

3.3.1 Heuristics

We propose a heuristic, RB, based on the recursive bisection idea. During each

bisection, RB performs a two step process. First, it divides the current processor

chain Pp,r into two subchains Pp,q and Pq+1,r. Then, it divides the current task

chain Th,j into two subchains Th,i and Ti+1,j in proportion to the computational

powers of the respective processor subchains. That is, the task separator index

i is chosen such that the ratio Wh,i/Wi+1,j is as close to the ratio Ep,q/Eq+1,r as

possible. RB achieves optimal bisections at each level; however, the quality of

the overall partition may be far away from that of the optimal solution.

We have investigated two metrics for bisecting the processor chain: chain

length and chain processing power. The chain length metric divides the current

processor chain Pp,r into two equal-length processor subchains, whereas the chain

processing power metric divides Pp,r into two equal-power subchains. Since the

first metric performed slightly better than the second one in our experiments, we

will only discuss the chain length metric here. The pseudocode of the RB algo-

rithm is given in Algorithm 3.1, where the initial invocation takes its parameters

as (W , E , 1, K) with s0 = 0 and sK = N . Note that sp−1 and sr are already

determined at higher levels of recursion. Wtot is the total weight of current task

subchain, and Wfirst is the weight for the first processor subchain in propor-

tion to its processing speed. We need to add W1,sp−1 to Wfirst to seek sq in the

prefix-summed W array.

We also propose a generalization of Miguet and Pierson’s heuristic, MP [81].
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Algorithm 3.1 RB(W , E , p, r)

1: if p = r then
2: return
3: Wtot ←Wsp−1+1,sr

4: q ← (p+ r − 1)/2
5: Wfirst ←Wtot × Ep,q/Ep,r
6: W ←Wfirst +W1,sp−1

7: sq ← BinSearch(W, sp−1, sr,W )
8: RB(W, E , p, q)
9: RB(W, E , q + 1, r)

Algorithm 3.2 MP(W , N , E , P )

1: for p← 1 to P do
2: w ←W1,N × E1,p/E1,P

3: sp ← BinSearch(W, sp−1, N,w)

MP computes the separator index of each processor by considering that processor

as a division point for the whole processor chain. In our version, the load assigned

to the processor chain P1,p is set to be proportional to the computational power

E1,p of this subchain, as shown in Algorithm 3.2.

Both RB and MP can be implemented in O(N+K logN) time, where the O(N)

time is due to the initial prefix-sum operation on the task-weight array.

Below, we investigate the theoretical bounds on the quality of these two heuris-

tics. We assume K is a power of 2 for simplicity.

Lemma 3.3.1 BRB is upper bounded by B∗ + wmax/emin − wmax/(Kemin).

Proof: We use induction, and the basis is easy to show for K = 2. For the

inductive step, assume the hypothesis holds for any number of processors less

than K. Consider the first bisection, where the processors are split into two

subchains, each containing K/2 processors. Let the total processing power in

the left subchain be Eleft. RB will distribute the workload array between the left

and right processor subchains as evenly as possible. There will be a task ti such

that the left processor subchain will weigh more than the right subchain if ti is

assigned to the left subchain, and vice versa. Without loss of generality, assume
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that ti is assigned to the left subchain. In the worst case, ti is the maximum

weighted task, and the total task weight assigned to the left subchain, Wleft, can

be upper bounded by

Wleft ≤
(Wtot + wmax)Eleft

Etot

. (3.4)

Using the inductive hypothesis, the bottleneck value among the processors of the

left processor subchain can be upper bounded as follows.

BRB ≤ Wleft

Eleft

+
wmax

emin

− wmax

eminK/2
(3.5)

≤ Wtot + wmax

Etot

+
wmax

emin

− wmax

eminK/2
(3.6)

= B∗ +
wmax

Etot

+
wmax

emin

− wmax

eminK/2
(3.7)

≤ B∗ +
wmax

eminK
+
wmax

emin

− wmax

eminK/2
(3.8)

= B∗ +
wmax

emin

− wmax

Kemin

(3.9)

The same bound applies to the right processor subchain directly by the in-

ductive hypothesis, since right processor subchain is already underloaded. �

Lemma 3.3.2 BMP is upper bounded by B∗ + wmax/emin.

Proof: Let the sequence 〈s0, s1, . . . , sK〉 be the partition constructed by MP. For

a processor Pp, sp is chosen to be the separator that best divides P1,p and Pp+1,K .

Based on our discussion of bipartitioning quality in the proof of Lemma 3.3.1,

W1,sp is bounded by

E1,pB
∗ − wmax

2
≤ W1,sp ≤ E1,pB

∗ +
wmax

2

So, the load of processor p is upper bounded by

W1,sp −W1,sp−1

ep
≤ E1,pB

∗ + wmax/2− E1,p−1B∗ + wmax/2

ep
(3.10)

= B∗ +
wmax

ep
(3.11)

≤ B∗ +
wmax

emin

(3.12)
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The bottleneck value of a partition constructed by MP cannot be greater than

B∗ + wmax/emin. �

3.3.2 Dynamic Programming

The overlapping subproblems and the optimal substructure properties of the ho-

mogenous CCP can be extended to the heterogeneous CCP, and thus enabling

dynamic programming solutions. The recursive definition for the bottleneck value

of an optimal partition can be derived as

Bp
i = min

0≤j≤i

{
max

{
Bp−1
j ,

Wj+1,i

ep

}}
(3.13)

for the heterogeneous case. As in the homogenous case, Bp
i denotes the optimal

solution value for partitioning the first i tasks onto the first p processors. This

definition results in an O(N2K)-time DP algorithm.

We generalize the observations of Choi and Narahari [28] to develop an

O(NK)-time algorithm for heterogeneous systems as follows. Their first observa-

tion relies on the fact that the optimal position of the separator for partitioning

the first i tasks cannot be to the left of the optimal position for the first i − 1

tasks, i.e., jpi ≥ jpi−1. Their second observation is that we need to advance a

separator index only when the last part is overloaded and can stop when this is

no longer the case, i.e., Bp−1
j ≥ Wj+1,i/ep. Then an optimal jpi can be chosen

to correspond to the minimum of max{Bp−1
j ,Wj+1,i/ep} and max{Bp−1

j−1 ,Wj,i/ep}.
That is, the recursive definition becomes:

Bp
i = max

{
Bp−1
jpi

,
W
j
p
i
+1,i

ep

}
, (3.14)

where jpi = argminjpi−1≤j≤i

{
max

{
Bp−1
j ,

Wj+1,i

ep

}}
. (3.15)

It is clear that the search ranges of separators overlap at only one position, and

thus we can compute all Bp
i entries for 1 ≤ i ≤ N in only one pass over the task

subchain. This reduces the complexity of the algorithm to O(NK). Algorithm 3.3

presents this algorithm.
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Algorithm 3.3 DP(W , N , P , E)

1: for p← 1 to P do
2: B[p, 0]← 0

3: for i← 1 to N do
4: B[1, i]←W1,i/e1

5: for p← 2 to P do
6: j ← 0
7: for i← 1 to N do
8: if Wj+1,i/ep ≤ B[p− 1, j] then
9: B[p, i]← B[p− 1, j]

10: else
11: repeat
12: j ← j + 1
13: until Wj+1,i/ep ≤ B[p− 1, j] or j ≥ i
14: if Wj,i/ep < B[p− 1, j] then
15: B[p, i]←Wj,i/ep
16: j ← j − 1
17: else
18: B[p, i]← B[p− 1, j]

19: return Bopt ← B[P,N ]

In the homogenous case, Manne and Olstad [79] reduced the complexity fur-

ther to O((N −K)K) by observing that there is no merit in leaving a processor

empty, and thus the search for jpi can start at p instead of 1. However, this

does not apply to the heterogeneous CCP, since it might be beneficial to leave a

processor empty.

Alternatively, we propose another DP algorithm by extending the DP+ algo-

rithm (DP algorithm with static separator-index bounding) of Pınar and Aykanat

[93] for the heterogeneous case. DP+ limits the search space of each separator

to avoid redundant calculation of Bp
i values. DP+ achieves this separator index

bounding by running left-to-right and right-to-left probe functions with the upper

and lower bounds on the optimal bottleneck value.

We extend the probing operation to the heterogeneous case as shown in Al-

gorithms 3.5 and 3.6. In the figure, LR-PROBE and RL-PROBE denote the left-to-

right probe and right-to-left probe, respectively. These algorithms not only decide
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Algorithm 3.4 DP+(W , N , E , P , SL, SH)

1: for p← 1 to P do
2: B[p, 0]← 0

3: for i← SL1 to SH 1 do
4: B[1, i]←W1,i/e1

5: for p← 2 to P do
6: j ← SLp−1
7: for i← SLp to SH p do
8: if Wj+1,i/ep ≤ B[p− 1, j] then
9: B[p, i]← B[p− 1, j]

10: else
11: repeat
12: j ← j + 1
13: until Wj+1,i/ep ≤ B[p− 1, j] or j ≥ i
14: if Wj,i/ep < B[p− 1, j] then
15: B[p, i]←Wj,i/ep
16: j ← j − 1
17: else
18: B[p, i]← B[p− 1, j]

19: return Bopt ← B[P,N ]

whether a candidate value is a feasible bottleneck value, but they also set the sepa-

rator index (sp) values for their greedy approach. In LR-PROBE, BINSEARCH(W , w)

refers to a binary search algorithm that searches W for the largest index m such

that W1,m ≤ w. Similarly, in RL-PROBE, BINSEARCH(W , w) searches W for the

smallest index m such that W1,m ≥ w.

DP+, as presented in Algorithm 3.4, uses Lemma 3.3.3 to limit the search space

of sp values.

Lemma 3.3.3 For a given heterogeneous CCP instance (W , N, E , K), a fea-

sible bottleneck value UB and a lower bound on the bottleneck value LB; let

the sequences Π1 = 〈h10, h11, . . . , h1K〉, Π2 = 〈l20, l21, . . . , l2K〉, Π3 = 〈l30, l31, . . . , l3K〉
and Π4 = 〈h40, h41, . . . , h4K〉 be the partitions constructed by LR-PROBE(UB),

RL-PROBE(UB), LR-PROBE(LB) and RL-PROBE(LB), respectively. Then, an opti-

mal partition Πopt = 〈s0, s1, . . . , sK〉 satisfies SLp ≤ sp ≤ SHp for all 1 ≤ p ≤ K,

where SLp = max{l2p, l3p} and SHp = min{h1p, h4p}.
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Algorithm 3.5 LR-Probe(W , N , E , P , B)

1: sum ← 0
2: for p← 1 to P − 1 do
3: myB ← B × ep
4: Bsum ← sum + myB
5: m← BinSearch(W,Bsum)
6: sum ←W1,m

7: sp ← m

8: if sum +B × eP ≥W1,N then
9: return TRUE

10: else
11: return FALSE

Algorithm 3.6 RL-Probe(W , N , E , P , B)

1: sum ←W1,N

2: for p← P downto 2 do
3: myB ← B × ep
4: Bsum ← sum −myB
5: m← BinSearch(W,Bsum)
6: sum ←W1,m

7: sp−1 ← m

8: if sum −B × e1 ≤ 0 then
9: return TRUE

10: else
11: return FALSE

Proof: We know that any feasible bottleneck value is greater than or equal to

the optimal bottleneck value, i.e., UB ≥ Bopt. Consider h1p, which is the largest

index such that the first h1p tasks can be partitioned over p processors without

exceeding UB. Then sp > h1p implies Bopt > UB , which is a contradiction. So,

sp ≤ h1p. Since, RL-PROBE is just the symmetric algorithm of LR-PROBE, the same

argument proves sp ≥ l2p.

Consider the optimal partition constructed by RL-PROBE(Bopt). Since Bopt ≥
LB , by the greedy property of RL-PROBE, sp ≤ h4p. Assume sp < l3p for some p,

then another partition obtained by advancing the sp value to l3p does not increase

the bottleneck value, since the first l3p tasks are successfully partitioned over the

first p processors without exceeding LB and thus Bopt. An optimal partition

Πopt = 〈s0, s1, . . . , sK〉 satisfies l3p ≤ sp ≤ h4p. �

26



The lower bound LB can be initialized to the optimal lower bound when all

processors are equally loaded as

LB = B∗ =
Wtot

Etot

. (3.16)

An upper bound UB can be computed in practice with a fast and effective heuris-

tic, and Lemma 3.3.1 provides a theoretically robust bound as

UB = B∗ +
wmax

emin

− wmax

Kemin

. (3.17)

3.3.3 Parametric Search

Parametric search algorithms can be constructed with a PROBE function (either

LR-PROBE given in Algorithm 3.5 or RL-PROBE given in Algorithm 3.6), and a

method to search the space of candidate values. Below, we describe several algo-

rithms to search the space of bottleneck values for the heterogeneous case.

3.3.3.1 Nicol’s Algorithm

We revise Nicol’s algorithms for heterogeneous systems as follows. The candidate

B values become task subchain weights divided by processor subchain speeds.

The algorithm starts with searching for the smallest j so that probing withW1,j/e1

succeeds, and probing with W1,j−1/e1 fails. This means W1,j−1/e1 < Bopt ≤
W1,j/e1, and thus in an optimal solution the probe function will assign the first j

tasks to the first processor if it is the bottleneck processor, and the first j−1 tasks

to the first processor if not. Then the optimal solution value is the minimum

of W1,j/e1 and the optimal solution value for partitioning the remaining task

subchain Tj,N to the processor subchain P2,K , since any solution with a bottleneck

value less than W1,j/e1 will assign only the first j− 1 tasks to the first processor.

Finding the j value requires lgN probes, and we repeat this search operation for

all processors in order. This version of Nicol’s algorithm runs inO(N+(K logN)2)

time. Algorithm 3.7 displays this algorithm.
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Algorithm 3.7 Nicol(W , E , N , P )

1: i0 ← 1
2: for b← 1 to P − 1 do
3: ilow ← ib−1
4: ihigh ← N
5: while ilow < ihigh do
6: imid ← (ilow + ihigh)/2
7: B ←Wib−1,imid/eb
8: if Probe(B) then
9: ihigh ← imid

10: else
11: ilow ← imid + 1

12: ib ← ihigh
13: Bb ←Wib−1,ib/eb

14: BP ←WiP−1,N/eP
15: return Bopt ← min1≤b≤P {Bp}

3.3.3.2 Nicol’s Algorithm with Dynamic Bottleneck-Value Bounding

By keeping the largest B that succeeded and the smallest B that failed, we can

improve Nicol’s algorithm by eliminating unnecessary probing. Let LB and UB

represent the lower bound and upper bound for Bopt, respectively. If a processor

cannot update LB or UB, that processor does not make any PROBE calls. This

algorithm, presented in Algorithm 3.8, is referred to as NICOL+.

In the worst case, a processor makes O(logN) PROBE calls. But, as we

will prove below, the number of probes performed by NICOL+ cannot exceed

K lg (1 + wmax/(Keminwmin)). This analysis also improves known complexities

of homogeneous version of the algorithm. Lemma 3.3.4 describes an upper bound

on the number of probes performed by NICOL+ algorithm.

Lemma 3.3.4 The number of probes required by NICOL+ is upper bounded by

K lg (1 + (UB − LB) / (Kwmin)).

Proof: Consider the first step of the algorithm, where we search for the smallest

separator index that makes the first processor the bottleneck processor. We can

restrict this search in a range that covers only those indices for which the weight

28



Algorithm 3.8 Nicol+(W , E , N , P )

1: i0 ← 1
2: LB ← B∗ ←W1,N/E1,P

3: UB ← LB + wmax × (1/emin − 1/Etot)
4: for b← 1 to P − 1 do
5: ilow ← ib−1
6: ihigh ← N
7: while ilow < ihigh do
8: imid ← (ilow + ihigh)/2
9: B ←Wib−1,imid/eb

10: if LB ≤ B < UB then
11: if Probe(B) then
12: ihigh ← imid
13: UB ← B
14: else
15: ilow ← imid + 1
16: LB ← B
17: else if B ≥ UB then
18: ihigh ← imid
19: else
20: ilow ← imid + 1

21: ib ← ihigh
22: Bb ←Wib−1,ib/eb

23: BP ←WiP−1,N/eP
24: return Bopt ← min1≤b≤P {Bp}

of the first chain will be in the [LB ,UB ] interval. If there are n1 tasks in this

range, NICOL+ will require lg n1 probes. This means that the [LB ,UB ] interval is

narrowed by at least (n1 − 1)wmin after the first step.

Let kp be the number of probes by the pth processor. Since kp probes narrow

the [LB ,UB ] interval by
(
2kp − 1

)
wmin, we have

((
2k1 − 1

)
+
(
2k2 − 1

)
+ . . .+

(
2kK−1 − 1

))
wmin ≤ UB − LB ,

and thus 2k1 + 2k2 + . . . + 2kK−1 ≤ UB − LB

wmin

+ K − 1. The corresponding total

number of probes is
∑K−1

p=1 kp, which reaches its maximum when
∑K−1

p=1 2kp is

maximum and k1 = k2 = . . . = kK−1 = k for some k. In that case,

(K − 1)2k ≤ UB − LB

wmin

+K − 1
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and thus

k ≤ lg

(
1 +

UB − LB

wmin(K − 1)

)
.

So, the total number of probes performed by NICOL+ is upper bounded by:

K−1∑

p=1

kp ≤ (K − 1)k ≤ (K − 1) lg

(
1 +

UB − LB

wmin(K − 1)

)
< K lg

(
1 +

UB − LB

wminK

)

(3.18)

�

Corollary 3.3.1 NICOL+ requires at most K lg(1+wmax/(Keminwmin)) probes for

heterogeneous, and K lg(1 + wmax/(Kwmin)) probes for homogeneous systems.

NICOL+ runs in O(N + K2 logN log(1 + wmax/(Keminwmin))) time, with the

O(K logN) cost of a PROBE call. In most configurations, wmax/(eminwminK) is

very small, and is O(1) if Kemin = Ω(wmax/wmin). In that case, the runtime

complexity of NICOL+ reduces to O(N +K2 logN).

We also studied expected-case complexity analysis of NICOL+ algorithm. Our

analysis further indicate that the expected complexity of NICOL+ is better than the

worst-case complexities. The experiments also validate the theoretical findings.

We present the expected complexity of NICOL+ in Appendix A.1.

3.3.3.3 Bidding Algorithm

For heterogeneous systems, the bidding algorithm uses the lower bound given

in Eq. 3.16 for optimal bottleneck value, and gradually increases this lower

bound. The bid of each processor Pp, for p = 1, 2, . . . , K − 1, is calculated

as Wsp−1+1,sp+1 / ep, which is equal to the load of Pp if it also executes the first

task of PKp+1 in addition to its current load. Then, the algorithm selects the

processor with the minimum bid value so that this bid value becomes the next

bottleneck value to be considered for feasibility. The processors following the

bottleneck processor in the processor chain are processed in order, except the

last processor. The separator indices of these processors are adjusted accordingly
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Algorithm 3.9 Bidding(W , N , E , P )

1: minBid ←W1,N/E1,P

2: LR-Probe(W, N, E , P,minBid)
3: for p← 1 to P − 1 do
4: bids[p]←Wsp−1+1,sp+1/ep

5: Q← Build-Heap(P )
6: repeat
7: minP ← Extract-Min(Q)
8: wlast ←WsP−1+1,N/eP
9: minBid ← bids[minP ]

10: if minBid < wlast then
11: for p← minP to P − 1 do
12: sp ← BinSearch(W,minBid × ep +W1,sp−1)
13: previousBid ← bids[p]
14: bids[p]←Wsp−1+1,sp/ep
15: if bids[p] > previousBid then
16: Increase-Key(Q, p)
17: else if bids[p] < previousBid then
18: Decrease-Key(Q, p)

19: until minBid ≥ wlast

so that the processors are maximally loaded not to exceed that new bottleneck

value. The load of the last processor determines the feasibility of the current

bottleneck value. If current bottleneck value is not feasible, the process repeats.

Algorithm 3.9 presents the bidding algorithm, which uses a min-priority queue

that maintains the processors keyed according to their bid values. In the figure,

BUILD-HEAP, EXTRACT-MIN, INCREASE-KEY and DECREASE-KEY functions refer to

the respective priority queue operations [34].

In the worst case, the bidding algorithm moves K separators for O(N) posi-

tions. Choosing a new bottleneck value takes O(logK) time using a binary heap

implementation of the priority queue. Totally the complexity of the algorithm

is O(NK logK) in the worst case. Despite this high worst-case complexity, the

bidding algorithm is quite fast in practice.
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Algorithm 3.10 Bisection(W , N , E , P , ε)

1: LB ←W1,N/E1,P

2: UB ← LB + wmax/emin

3: while UB − LB ≥ ε do
4: midB ← (UB + LB)/2
5: if Probe(midB ) then
6: UB ← midB
7: else
8: LB ← midB
9: return UB

3.3.3.4 Bisection Algorithm

For heterogeneous systems, the bisection algorithm can use the LB and UB values

given in Eqs. 3.16 and 3.17. A binary search on this [LB ,UB ] interval requires

O(log(wmax/(εEtot))) probes, thus leading to an O(log(wmax/(εEtot))K logN)-

time algorithm, where ε is the specified accuracy of the algorithm. Algorithm 3.10

presents this ε-approximation bisection algorithm. We should note that, although

the homogenous version of this algorithm becomes an exact algorithm for integer-

valued workload arrays by setting ε = 1, this is not the case for heterogeneous

systems.

We enhance this bisection algorithm to be an exact algorithm for heteroge-

neous systems by extending the scheme proposed by Pınar and Aykanat [93] for

homogenous systems. After each probe, we move lower and upper bounds to

realizable bottleneck values, as opposed to the probed value. In heterogeneous

systems, realizable bottleneck values are subchain weights divided by appropriate

processor speeds. After a successful probe, we decrease UB to the bottleneck value

of the partition constructed by the probe, and after a failed probe we increase

LB to the bid value as described for the bidding algorithm in Section 3.3.3.3.

Each probe eliminates at least one candidate bottleneck value, and thus the bi-

section algorithm terminates in a finite number of steps with an optimal solution.

Algorithm 3.11 displays the exact bisection algorithm.
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Algorithm 3.11 Exact-Bisection(W , N , E , P )

1: LB ←W1,N/E1,P

2: UB ← LB + wmax/emin

3: while UB > LB do
4: midB ← (UB + LB)/2
5: if LR-Probe(midB ) then
6: UB ← min1≤p≤P Wsp−1+1,sp/ep
7: else
8: LB ← min1≤p≤P−1Wsp−1+1,sp+1/ep

9: return UB

3.4 Chain Partitioning (CP) Problem for Het-

erogeneous Systems

In this section, we study the problem of partitioning a chain of tasks onto a set of

processors, as opposed to a chain of processors. The solution to this problem is

not only separators on the task chain, but also processor-to-subchain assignments.

Thus, we define a mappingM as a partition Π = 〈s0 = 0, s1, . . . , sK = N〉 of the

given task chain T = 〈t1, t2, . . . tN〉 with sp ≤ sp+1 for 0 ≤ p < K, and a per-

mutation 〈π1, π2, . . . , πK〉 of the given set of K processors P = {P1, P2, . . . , PK}.
According to this mapping, the pth task subchain 〈tsp−1+1, . . . , tsp〉 is executed

on processor Pπp . The cost C(M) of a mapping M is the maximum subchain

computation time, determined by the subchain weight and the execution speed

of the assigned processor, i.e.,

C(M) = max
1≤p≤K

{
Wsp−1+1,sp

eπp

}
.

We will prove that the CP problem is NP-complete. The decision problem for

the CP problem for heterogeneous systems is as follows.

Given a chain of tasks T = 〈t1, t2, . . . , tN〉, a weight wi ∈ Z+ for each ti ∈ T ,

a set of processors P = {P1, P2, . . . , PK} with K < N , an execution speed ep ∈ Z+

for each Pp ∈ P, and a bound B, decide if there exists a mapping M of T onto

P such that C(M) ≤ B.

Theorem 3.4.1 The CP problem for heterogeneous systems is NP-complete.
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Proof: We use reduction from the 3-Partition (3P) problem. A pseudo-

polynomial transformation suffices, because 3P problem is NP-complete in the

strong sense (i.e., there is no pseudo-polynomial time algorithm for the problem

unless P=NP). The 3P problem is stated in [50] as follows.

Given a finite set A of 3m elements, a bound B ∈ Z+, and a cost ci ∈ Z+ for

each ai ∈ A, where
∑

ai∈A ci = mB and each ci satisfies B/4 < ci < B/2, decide

if A can be partitioned into m disjoint sets S1, S2, . . . , Sm such that
∑

ai∈Sp ci = B

for p = 1, 2, . . . ,m.

For a given instance of the 3P problem, the corresponding CP problem is

constructed as follows.

• The number of tasks N is m(B+ 1)−1. The weight of every (B+ 1)st task

is B, (i.e., wi = B for i mod (B + 1) = 0), and the weights of all other

tasks are 1.

• The number of processors K is 4m − 1. The first m − 1 processors have

execution speeds of B, (i.e., ep = B for p = 1, 2, . . . ,m − 1), and the

remaining processors have execution speeds equal to the costs of items in

the 3P problem (i.e., ep = cp−m+1 for p = m, . . . , 4m− 1).

We claim that there is a solution to the 3P problem if and only if there is a

mappingM with cost C(M) = 1 for the CP problem. The following observations

constitute the basis for our proof.

• The processors with execution speeds of B must be mapped to tasks with

weight B to have a solution with cost C(M) = 1, because the execution

speeds of all other processors are ≤ B/2. These processors (tasks) serve as

divider processors (tasks).

• The total weight of the chain is 3m+ (m− 1)B = (B + 3)m−B. The sum

of execution speeds of all processors is also (m−1)B+3m = (B+3)m−B.

This forces each processor to be assigned a load with value equal to its

execution speed to achieve a mapping with cost C(M) = 1.
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As noted above, the divider processors should be assigned to the divider tasks.

Between two successive divider tasks there is a subchain of B unit-weight tasks

with total weight B, which must be assigned to a subset of processors with total

execution speed B. Since there are m such subchains, the same grouping of the

processors is also valid for grouping ci values in the 3P problem. Thus the 3P

problem can be reduced to the CP problem, proving the CP problem is NP-hard.

The cost of a given mapping can be computed in polynomial time, thus the

problem is in NP. Thus we can conclude that the chain partitioning problem for

heterogeneous systems is NP-Complete. �

This complexity shows that we need to resort to heuristics for practical solu-

tions to the CP problem. With the nearly perfect balance results and extremely

fast runtimes as we will present in Section 3.5.2, CCP algorithms can serve as

good heuristics for the CP problem. We tried this approach by finding opti-

mal CCP solutions for randomly ordered processor chains of a CP instance. We

observed that the sensitivity to processor ordering is quite low. You can find a de-

scription of these studies in Section 3.5.3. We also tried improvement techniques,

where we swapped processors in the chain to decrease the bottleneck value, but

the improvements were modest and could hardly compensate for the increase in

runtimes.

3.5 Experimental Results

3.5.1 Experimental Setup

The 1D task arrays used in both CCP and CP experiments were derived from

two different applications: image-space-parallel direct volume rendering and row-

parallel sparse matrix vector multiplication.

Direct volume rendering experiments are performed on three curvilinear

datasets from NASA Ames Research Center, namely Blunt Fin (blunt) [62],

Combustion Chamber (comb) [38], and Oxygen Post (post) [96]. These datasets
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(a) Blunt Fin (b) Combustion Chamber (c) Oxygen Post

Figure 3.1: Visualization of direct volume rendering dataset workloads. Top:
workload distributions of 2D task arrays. Bottom: histograms showing weight
distributions of 1D task chains.

are processed using the tetrahedralization techniques described in [51] and [100]

to produce three-dimensional (3D) unstructured volumetric datasets. The two-

dimensional (2D) workload arrays are constructed by projecting 3D volumetric

datasets onto 2D screens of resolution 256 × 256 using the workload criteria of

image-space-parallel direct volume rendering algorithm described in [14]. Here,

the rendering operations associated with the individual pixels of the screen con-

stitute the computational tasks of the application. The resulting 2D task array

is then mapped to a 1D task array using Hilbert space-filling-curve traversal [91].

The workload distributions of the 2D task arrays are visualized in Fig. 3.1, where

darker areas represent more weighted tasks. The histograms at the bottom of the

2D pictures show the weight distributions of the resulting 1D task arrays.

In the sparse matrix experiments, we consider rowwise block partitioning of

the matrices obtained from University of Florida Sparse Matrix Collection [36].

In row-parallel matrix vector multiplies, the rows correspond to the tasks to

be partitioned, and the number of nonzeros in each row is the weight of the

corresponding task. The nonzero distributions of the sparse matrices are shown

in Fig. 3.2. The histograms on the right sides of the visualizations represent the

number of nonzeros in each row.
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(a) g7jac050sc (b) language

(c) mark3jac060 (d) Stanford

(e) Stanford Berkeley (f) torso1

Figure 3.2: Visualization of sparse matrix dataset workloads. Left: non-zero dis-
tributions of the sparse matrices. Right: histograms showing weight distributions
of the 1D task chains.
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Table 3.2: Properties of the test set

Name No. of tasks N Workload
Total Per task
Wtot wavg wmin wmax

Volume rendering dataset
blunt 20.6 K 1.9 M 90.95 36 171
comb 32.2 K 2.1 M 64.58 14 149
post 49.0 K 5.4 M 109.73 33 199
Sparse matrix dataset
g7jac050sc 14.7 K 0.2 M 10.70 2 149
language 399.1 K 1.2 M 3.05 1 11555
mark3jac060 27.4 K 0.2 M 6.22 2 44
Stanford 261.6 K 2.3 M 8.84 1 38606
Stanford Berkeley 615.4 K 7.6 M 12.32 1 83448
torso1 116.2 K 8.5 M 73.32 9 3263

Table 3.2 displays the properties of the 1D task chains used in our experiments.

In the volume rendering dataset, the number of tasks is considerably less than

the screen resolution, because zero-weight tasks are omitted. In the sparse matrix

dataset, the number of tasks is equal to the number of rows.

In both CCP and CP experiments, P = 32, 64, 128, 256, 512, 1024, and 2048-

way partitioning of the 1D task arrays were performed. We experimented with

different variances of processor speeds, where the processors speeds were chosen

uniformly distributed in the 1–4, 1–8, and 1–16 ranges.

In the experiments, the P -way partitioning of a given task chain for a given

processor speed range constitutes a partitioning instance. As randomization is

used in determining processor speeds, each task chain was partitioned onto 20 dif-

ferent uniformly random processor chains/sets for each speed range, and average

performance results are reported for each partitioning instance.

The solution qualities are represented by percent load imbalance values. The

percent load imbalance of a partition is computed as 100× (B − B∗)/B∗, where

B denotes the bottleneck value of the respective partition.
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Table 3.3: Percent load imbalance values for the processor speed range of 1–8 for
the volume rendering dataset

CCP instance Heuristics OPT
Name K RB MP

blunt 32 0.27 0.31 0.08
64 0.62 0.78 0.16

128 1.35 2.07 0.32
256 2.94 4.67 0.64
512 7.27 10.96 1.27

1024 15.15 21.94 2.83
2048 36.90 49.23 4.99

comb 32 0.17 0.24 0.06
64 0.44 0.63 0.11

128 1.11 1.60 0.23
256 2.38 3.63 0.45
512 5.42 7.97 0.92

1024 12.94 18.24 1.83
2048 26.61 41.66 3.64

post 32 0.11 0.13 0.03
64 0.25 0.39 0.07

128 0.61 0.86 0.13
256 1.34 2.05 0.27
512 3.10 4.32 0.54

1024 6.59 9.21 1.09
2048 16.21 19.82 2.15

3.5.2 CCP Experiments

The proposed CCP algorithms were implemented in the Java language. Ta-

bles 3.3–3.6 compare the solution qualities of heuristics with respect to those of

the optimal partitions obtained by the exact algorithms. In these tables, OPT

values refer to the optimal load imbalance values.

Tables 3.3 and 3.4 respectively display the percent load imbalance values ob-

tained in mapping the volume rendering and sparse matrix task chains onto pro-

cessor chains with 1–8 execution speed range. As seen in these two tables, RB

performs much better than MP. Out of 63 partitioning instances, RB found better

solutions than MP in all but one instance.

As seen in Tables 3.3 and 3.4, in general, the quality gap between exact
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Table 3.4: Percent load imbalance values for the processor speed range of 1–8 for
the sparse matrix dataset

CCP instance Heuristics OPT
Name K RB MP

g7jac050sc 32 2.21 3.08 0.40
64 4.88 6.06 0.75

128 12.21 17.16 1.52
256 29.06 42.86 3.10
512 84.54 90.48 6.60

1024 171.47 289.02 13.59
2048 261.51 624.91 30.96

language 32 4.58 4.93 0.21
64 22.60 23.06 0.40

128 42.06 71.35 1.25
256 98.08 184.87 35.81
512 230.49 379.11 171.98

1024 527.56 1, 173.23 443.95
2048 1, 191.77 2, 294.59 992.35

mark3jac060 32 0.32 0.54 0.08
64 0.87 1.01 0.17

128 2.09 2.75 0.36
256 5.98 6.90 0.69
512 15.47 18.17 1.36

1024 30.23 51.57 2.89
2048 64.50 127.93 5.92

Stanford 32 12.91 22.85 2.46
64 42.77 84.14 5.38

128 110.83 274.42 21.32
256 204.46 617.98 138.66
512 435.52 1, 058.28 377.97

1024 1, 009.58 2, 585.17 855.91
2048 1, 978.18 5, 313.99 1, 819.63

Stanford Berkeley 32 10.76 16.91 1.40
64 49.53 57.69 3.29

128 89.68 177.24 8.19
256 160.39 375.68 57.31
512 315.61 761.14 215.05

1024 624.98 1, 911.41 530.08
2048 1, 248.18 3, 949.65 1, 165.31

torso1 32 1.74 2.15 0.45
64 3.82 4.91 0.91

128 8.75 10.30 1.84
256 22.46 31.18 3.69
512 31.68 75.51 7.48

1024 75.55 75.89 17.86
2048 252.44 252.44 27.61
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Table 3.5: Percent load imbalance values for different processor speed ranges for
the volume rendering dataset

CCP instance 1–4 1–8 1–16
Name K RB OPT RB OPT RB OPT
blunt 32 0.21 0.08 0.27 0.08 0.38 0.08

64 0.39 0.16 0.62 0.16 0.93 0.16
128 1.06 0.31 1.35 0.32 2.21 0.31
256 2.19 0.64 2.94 0.64 5.54 0.64
512 4.62 1.27 7.27 1.27 11.57 1.25

1024 10.83 2.70 15.15 2.83 26.88 2.61
2048 22.43 4.93 36.90 4.99 52.25 5.42

comb 32 0.12 0.06 0.17 0.06 0.22 0.06
64 0.35 0.11 0.44 0.11 0.72 0.11

128 0.77 0.23 1.11 0.23 1.65 0.23
256 1.58 0.45 2.38 0.45 3.78 0.45
512 3.53 0.91 5.42 0.92 9.61 0.91

1024 7.71 1.82 12.94 1.83 19.75 1.83
2048 17.53 3.67 26.61 3.64 44.69 3.64

post 32 0.07 0.03 0.11 0.03 0.17 0.03
64 0.18 0.07 0.25 0.07 0.40 0.07

128 0.40 0.14 0.61 0.13 0.91 0.13
256 0.87 0.27 1.34 0.27 2.25 0.27
512 1.88 0.54 3.10 0.54 4.66 0.54

1024 4.41 1.09 6.59 1.09 11.42 1.08
2048 8.87 2.26 16.21 2.15 26.87 2.16

Geometric averages over K
32 0.12 0.05 0.17 0.05 0.24 0.05
64 0.29 0.11 0.41 0.11 0.65 0.11

128 0.69 0.21 0.97 0.21 1.49 0.21
256 1.44 0.43 2.11 0.43 3.61 0.43
512 3.13 0.86 4.96 0.86 8.03 0.85

1024 7.17 1.75 10.89 1.78 18.23 1.73
2048 15.16 3.45 25.15 3.39 39.73 3.49

algorithms and heuristics increases with increasing number of processors. For

instance, in 2048-way partitioning of the torso1 matrix, best heuristic finds a

solution with 252.44% load imbalance, which means a processor is loaded more

than 3.5 times the average load, causing a slowdown as the number of proces-

sors increase. An optimal solution however, will have a load imbalance value of

27.61%, providing scalability to thousands of processors.

Tables 3.5 and 3.6 display the variation of load balancing performances of
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Table 3.6: Percent load imbalance values for different processor speed ranges for
the sparse matrix dataset

CCP instance 1–4 1–8 1–16
Name K RB OPT RB OPT RB OPT
g7jac050sc 32 1.22 0.37 2.21 0.40 2.53 0.40

64 3.53 0.79 4.88 0.75 6.96 0.76
128 8.94 1.57 12.21 1.52 16.15 1.52
256 19.62 3.18 29.06 3.10 65.36 3.16
512 42.24 6.62 84.54 6.60 104.54 6.68

1024 124.82 14.92 171.47 13.59 162.21 13.56
2048 307.43 32.67 261.51 30.96 261.88 30.02

language 32 0.36 0.05 4.58 0.21 1.39 0.10
64 14.09 0.41 22.60 0.40 6.57 0.22

128 51.77 1.01 42.06 1.25 22.46 1.39
256 102.08 52.24 98.08 35.81 99.07 27.82
512 257.83 203.88 230.49 171.98 232.00 156.36

1024 554.09 506.99 527.56 443.95 519.77 415.09
2048 1, 210.34 1, 115.84 1, 191.77 992.35 1, 088.49 933.33

mark3jac060 32 0.27 0.08 0.32 0.08 0.40 0.08
64 0.68 0.17 0.87 0.17 1.17 0.16

128 1.67 0.34 2.09 0.36 3.15 0.35
256 4.15 0.69 5.98 0.69 10.32 0.69
512 8.82 1.38 15.47 1.36 22.87 1.40

1024 20.17 2.85 30.23 2.89 49.73 2.82
2048 41.26 5.82 64.50 5.92 111.65 5.68

Stanford 32 16.93 2.53 12.91 2.46 20.07 2.61
64 42.61 5.93 42.77 5.38 48.28 4.88

128 122.92 32.98 110.83 21.32 90.44 17.79
256 219.75 167.53 204.46 138.66 215.16 124.62
512 466.32 434.02 435.52 377.97 427.96 350.50

1024 1, 019.25 966.68 1, 009.58 855.91 956.15 805.19
2048 2, 131.61 2, 036.65 1, 978.18 1, 819.63 1, 935.93 1, 715.91

Stanford Berkeley 32 7.14 1.29 10.76 1.40 15.32 1.44
64 26.91 2.51 49.53 3.29 43.39 3.29

128 85.08 8.96 89.68 8.19 74.51 8.02
256 191.93 76.34 160.39 57.31 146.90 48.06
512 331.15 251.99 315.61 215.05 316.54 196.95

1024 622.85 603.10 624.98 530.08 584.74 496.65
2048 1, 339.44 1, 308.36 1, 248.18 1, 165.31 1, 261.41 1, 096.94

torso1 32 1.01 0.46 1.74 0.45 1.91 0.45
64 2.50 0.89 3.82 0.91 4.64 0.88

128 5.82 1.72 8.75 1.84 14.14 1.85
256 10.03 3.49 22.46 3.69 22.75 3.73
512 16.01 5.37 31.68 7.48 65.98 8.26

1024 40.87 13.12 75.55 17.86 186.70 15.92
2048 96.14 38.26 252.44 27.61 231.35 32.85

Geometric averages over K
32 1.57 0.36 3.04 0.47 3.06 0.42
64 6.78 0.94 9.59 0.97 8.97 0.86

128 18.99 2.55 21.30 2.45 21.85 2.41
256 38.99 13.12 48.21 11.44 60.30 10.51
512 78.70 32.11 104.64 31.31 130.58 30.67

1024 181.87 74.04 225.17 72.17 275.55 68.26
2048 401.91 166.92 481.94 148.31 511.84 146.37
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heuristics and exact algorithms with varying processor speed ranges for the vol-

ume rendering and sparse matrix task chains, respectively. Since RB outperforms

MP, only the results for the RB heuristic are displayed in these two tables. The

bottom parts of these two tables show the geometric averages of the percent load

imbalance values over the number of processors.

As seen in Tables 3.5 and 3.6, in general, the performance gap between heuris-

tics and exact algorithms decrease with decreasing processor speed range. How-

ever, there exists considerable quality difference between the heuristics and exact

algorithms even for the smallest 1–4 speed range.

In constructing the processor chains for the experiments, in addition to the

random processor ordering, we also investigated different orderings of the pro-

cessors having the same speed. In this context, we experimented with the cases

where processors having the same speed ordered consecutively, assuming that such

processors belong to the same homogenous cluster and hence they are naturally

adjacent to each other in the processor chain. We did not observe a consider-

able sensitivity of the relative load balancing performance between heuristics and

exact algorithms to the ordering of processors having the same speed.

Tables 3.7–3.9 display the execution times of the proposed CCP algorithms

on a workstation equipped with a 3 GHz Pentium-IV and 1 GB of memory. In

these tables, NC+, BID, and EBS respectively represent the NICOL+, BIDDING, and

EXACT-BISECTION presented in Algorithms 3.8, 3.9, and 3.10.

Tables 3.7 and 3.8 respectively display the execution times of the CCP al-

gorithms for mapping the volume rendering and sparse matrix task chains onto

processor chains with 1–8 execution speed range. In these two tables, relative

performance comparison of heuristics shows that MP is slightly faster than RB.

Since RB outperforms MP in terms of solution quality as shown in Tables 3.3 and

3.4, these results reveal the superiority of RB to MP.

In Tables 3.7 and 3.8, relative performances of exact CCP algorithms show

that both NICOL+ and EBS are an order of magnitude faster than DP+ and BID

for both volume rendering and sparse matrix datasets. As also seen in these two
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Table 3.7: Partitioning times (in msecs) for the processor speed range of 1–8 for
the volume rendering dataset

CCP instance Heuristics Exact algorithms
Name K RB MP DP+ NC+ BID EBS

blunt 32 0.37 0.36 1 0.58 0.52 0.49
64 0.39 0.38 1 0.85 0.84 0.66

128 0.44 0.42 2 1.39 1.91 1.05
256 0.51 0.47 4 2.42 4.91 1.74
512 0.64 0.57 14 4.68 13.97 3.28

1024 0.89 0.76 54 8.67 43.05 6.45
2048 1.37 1.12 201 15.27 97.54 12.09

comb 32 0.62 0.61 1 0.85 0.80 0.75
64 0.65 0.64 1 1.15 1.17 0.96

128 0.69 0.67 2 1.68 2.40 1.37
256 0.77 0.74 5 2.87 6.04 2.13
512 0.91 0.84 16 4.84 16.92 3.74

1024 1.17 1.04 59 9.44 47.19 7.08
2048 1.68 1.42 230 17.86 130.51 13.30

post 32 1.12 1.11 2 1.36 1.30 1.26
64 1.15 1.14 2 1.68 1.69 1.46

128 1.20 1.18 3 2.26 2.91 1.88
256 1.29 1.26 6 3.52 6.54 2.82
512 1.45 1.38 16 5.91 16.95 4.51

1024 1.73 1.59 55 10.36 44.10 7.52
2048 2.25 1.99 205 20.02 114.60 14.81
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Table 3.8: Partitioning times (in msecs) for the processor speed range of 1–8 for
the sparse matrix dataset

CCP instance Heuristics Exact algorithms
Name K RB MP DP+ NC BID EBS

g7jac050sc 32 0.31 0.30 1 0.54 0.56 0.46
64 0.33 0.32 1 0.83 1.08 0.65

128 0.37 0.35 4 1.31 2.61 1.04
256 0.44 0.40 13 2.47 7.23 1.80
512 0.56 0.49 54 4.51 18.88 3.27

1024 0.80 0.67 234 8.65 48.90 6.07
2048 1.27 1.02 1730 15.06 100.99 11.96

language 32 7.80 7.80 17 8.19 9.19 8.05
64 7.84 7.83 22 8.71 14.02 8.47

128 7.91 7.89 56 9.88 32.63 9.33
256 8.05 8.01 1999 11.27 8.25 10.63
512 8.28 8.21 6298 12.38 8.55 11.73

1024 8.70 8.57 15839 15.96 9.14 16.13
2048 9.47 9.20 33199 21.82 10.29 20.59

mark3jac060 32 0.47 0.46 1 0.69 0.62 0.60
64 0.49 0.48 1 0.96 0.94 0.76

128 0.54 0.52 2 1.48 1.73 1.09
256 0.62 0.58 7 2.43 3.55 1.78
512 0.76 0.69 23 4.35 7.95 3.04

1024 1.01 0.88 90 7.81 19.96 5.95
2048 1.50 1.25 371 15.91 45.62 11.39

Stanford 32 4.98 4.97 26 5.51 25.10 5.38
64 5.01 5.00 79 5.99 82.71 5.85

128 5.08 5.06 841 7.09 437.39 6.67
256 5.20 5.16 3989 8.42 3022.05 7.80
512 5.41 5.34 9667 10.77 7524.42 10.08

1024 5.79 5.65 22472 15.55 16580.61 14.83
2048 6.48 6.20 49112 25.02 34629.44 23.78

Stanford Berkeley 32 19.15 19.15 53 19.72 47.08 19.63
64 19.20 19.18 154 20.60 140.26 20.17

128 19.27 19.25 558 22.27 460.82 21.16
256 19.39 19.35 4273 24.34 3722.02 22.24
512 19.61 19.55 22065 27.82 10742.26 24.53

1024 20.02 19.89 47607 34.03 22496.33 28.87
2048 20.78 20.50 100548 46.18 46014.22 37.61

torso1 32 2.12 2.11 5 2.46 4.29 2.38
64 2.14 2.13 9 2.83 8.80 2.66

128 2.18 2.16 22 3.55 25.10 3.22
256 2.26 2.22 83 5.03 76.26 4.45
512 2.40 2.33 360 7.61 201.48 6.69

1024 2.68 2.56 1566 13.00 522.08 10.65
2048 3.24 2.98 6933 23.04 783.22 18.39
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Table 3.9: Partitioning time averages (over K) of the exact CCP algorithms
normalized with respect to those of the RB heuristic for different processor speed
ranges

1–4 1–8 1–16
K DP+ NC+ BID EBS DP+ NC+ BID EBS DP+ NC+ BID EBS

Volume rendering dataset
32 2 1.38 1.28 1.20 2 1.38 1.27 1.21 2 1.40 1.30 1.22
64 2 1.78 1.80 1.44 2 1.76 1.77 1.45 2 1.80 1.88 1.47

128 3 2.42 3.28 1.89 3 2.44 3.33 1.94 3 2.53 3.70 1.96
256 6 3.63 6.94 2.63 6 3.62 7.22 2.73 6 3.65 8.05 2.75
512 15 5.32 15.46 3.79 17 5.45 16.90 3.96 17 5.59 19.07 4.08

1024 43 7.66 32.01 5.21 46 7.77 37.55 5.79 47 7.78 43.59 5.87
2048 114 10.18 53.81 6.95 123 10.15 65.70 7.68 129 10.73 86.03 7.75
Sparse matrix dataset

32 3 1.25 2.33 1.15 3 1.26 2.30 1.18 3 1.28 2.67 1.17
64 6 1.50 5.34 1.31 6 1.52 5.77 1.34 6 1.54 5.90 1.36

128 34 1.93 24.89 1.59 37 1.93 22.48 1.66 35 2.01 23.37 1.69
256 212 2.58 122.47 2.01 217 2.69 136.83 2.17 219 2.68 147.12 2.12
512 650 3.51 277.96 2.64 649 3.65 340.06 2.89 638 3.75 389.97 2.90

1024 1,422 4.69 565.27 3.51 1,464 4.94 701.30 3.92 1,471 5.07 812.36 3.89
2048 3,136 6.02 1, 051.74 4.47 3,243 6.36 1, 301.49 5.04 3,234 6.70 1, 550.64 5.10

tables, EBS is slightly faster than NICOL+.

It is worth highlighting that for small to medium concurrency, the time EBS

and NICOL+ algorithms take to find optimal solutions is less than three times

the time of the fastest heuristic. More precisely, on overall average, EBS takes

only 147% more time than the fastest heuristic for 256-way partitioning. On the

other hand, at higher number of processors, the solution qualities of heuristics

degrade significantly: on overall average, optimal solutions provide 5.35, 5.47 and

6.00 times better load imbalance values than the best heuristic for 512, 1024 and

2048-way partitionings, respectively. According to these findings, we recommend

the use of exact CCP algorithms instead of heuristics for heterogeneous systems.

Table 3.9 displays the variation of running time performances of the CCP al-

gorithms with varying processor speed ranges for the volume rendering and sparse

matrix task chains. For a better performance comparison, execution times of the

algorithms were normalized with respect to those of the RB heuristic and averages

of these normalized values over K are presented in the table. We should men-

tion here that the running time of the RB heuristic does not change with varying

processor speed range, as expected. As seen in Table 3.9, notable performance

variation occurs only for the BIDDING algorithm whose running time generally

increases with increasing processor speed range.
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Table 3.10: Geometric averages (over K) of percent load imbalance values for
R randomly ordered processor chains for the volume rendering dataset with the
processor speed range of 1–8

R = 10 R = 100 R = 1000 R = 10000
K best avg best avg best avg best avg
32 0.042 0.050 0.038 0.049 0.036 0.049 0.033 0.048
64 0.097 0.111 0.091 0.112 0.082 0.112 0.077 0.112

128 0.199 0.217 0.189 0.219 0.176 0.218 0.172 0.219
256 0.402 0.427 0.391 0.430 0.377 0.428 0.370 0.428
512 0.852 0.870 0.823 0.870 0.807 0.868 0.791 0.868

1024 1.787 1.849 1.750 1.856 1.727 1.855 1.719 1.855
2048 3.337 3.414 3.245 3.401 3.159 3.402 3.150 3.401

3.5.3 CP Experiments

Tables 3.10 and 3.11 display the results of our experiments to show the sensitivity

of the solution quality of CP problem instances to the processor orderings for the

processor speed range of 1–8. In these experiments, we find the optimal CCP

solutions for R randomly ordered processor chains of a CP instance, and display

geometric averages of the best and average load imbalance values over number

of processors. As seen in the tables, for a fixed K, the average imbalance values

almost remain the same for different values of R. Although the best imbalance

values decrease with increasing R, the decreases are quite small, especially for

large K. Moreover, for a fixed R, the relative difference between the best and

average imbalance values decreases with increasing K.

These experimental findings show that processor ordering has only a minor

effect on solution quality. This is expected since the variance among processor

speeds is low, unlike the variance among task weights. Therefore, using an exact

CCP algorithm on a number of randomly permuted processor chains can serve as

an effective heuristic for the CP problem.

Table 3.12 displays the results of our experiments to show the sensitivity

of the solution quality of CP problem instances to the processor speed range.

In these experiments, for each CP instance, we find the optimal CCP solutions
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Table 3.11: Geometric averages (over K) of percent load imbalance values for
R randomly ordered processor chains for the sparse matrix dataset with the
processor speed range of 1–8

R = 10 R = 100 R = 1000 R = 10000
K best avg best avg best avg best avg
32 0.133 0.483 0.104 0.656 0.068 0.588 0.057 0.534
64 0.460 0.906 0.313 0.835 0.257 0.924 0.222 0.935

128 1.304 2.526 1.216 2.484 1.124 2.462 1.020 2.573
256 10.843 11.411 10.291 11.420 10.127 11.427 9.958 11.433
512 31.153 31.694 29.385 31.776 29.078 31.747 28.922 31.735

1024 70.403 71.296 69.160 71.540 68.472 71.530 67.855 71.521
2048 147.792 150.082 146.616 150.360 143.709 150.191 142.917 150.283

for R = 10000 randomly ordered processor chains, and display the best load

imbalance value. As seen in Table 3.12, we do not observe a considerable sensi-

tivity of the solution quality of the CP problem instances to the procesor speed

range. Notable sensitivity is observed only for the language, Stanford, and

Stanford Berkeley sparse matrix datasets, which have high task weight varia-

tion (i.e., large wmax/wavg value). In these datasets, load imbalance values de-

crease with increasing processor speed range, which possibly because the adverse

effect of tasks with large weight on load imbalance can be more easily resolved

by mapping them to the processors with larger execution speed.
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Table 3.12: Best percent load imbalance values for R = 10000 randomly ordered
processor chains with different processor speed ranges

Volume rendering dataset Sparse matrix dataset
CCP instance CCP instance
Name K 1–4 1–8 1–16 Name K 1–4 1–8 1–16
blunt 32 0.029 0.053 0.051 g7jac050sc 32 0.154 0.146 0.092

64 0.125 0.134 0.117 64 0.390 0.366 0.371
128 0.207 0.267 0.241 128 1.003 1.016 0.994
256 0.628 0.559 0.528 256 2.402 2.226 2.439
512 1.055 1.193 1.157 512 5.493 5.497 5.297

1024 2.300 2.992 2.543 1024 13.187 11.727 11.829
2048 5.000 4.554 4.938 2048 28.115 28.269 26.974

comb 32 0.037 0.034 0.034 language 32 0.004 0.003 0.004
64 0.076 0.075 0.079 64 0.011 0.010 0.013

128 0.183 0.180 0.179 128 0.052 0.050 0.040
256 0.377 0.387 0.380 256 55.560 34.304 24.151
512 0.818 0.814 0.812 512 206.845 168.371 151.509

1024 1.707 1.662 1.694 1024 511.078 443.036 407.589
2048 3.561 3.508 3.522 2048 1, 122.157 977.521 915.654

post 32 0.020 0.020 0.020 mark3jac060 32 0.033 0.039 0.041
64 0.048 0.046 0.047 64 0.095 0.104 0.103

128 0.109 0.107 0.108 128 0.245 0.232 0.245
256 0.233 0.234 0.230 256 0.536 0.547 0.544
512 0.466 0.510 0.479 512 1.173 1.154 1.215

1024 0.948 1.022 0.988 1024 2.501 2.474 2.504
2048 2.240 1.957 2.043 2048 5.516 5.255 5.225

Stanford 32 0.239 0.127 0.128
64 0.960 0.889 0.525

128 35.643 12.897 14.879
256 173.373 136.019 118.176
512 439.233 371.620 341.987

1024 973.874 854.300 792.008
2048 2, 047.748 1, 793.575 1, 684.852

Stanford Berkeley 32 0.047 0.063 0.073
64 0.740 0.554 0.666

128 2.831 3.307 2.843
256 80.192 55.570 43.809
512 255.431 210.865 191.333

1024 607.837 529.020 487.961
2048 1, 315.674 1, 148.137 1, 076.473

torso1 32 0.315 0.229 0.307
64 0.771 0.639 0.677

128 1.112 2.240 1.538
256 1.890 3.087 3.004
512 4.859 6.996 8.198

1024 12.046 16.806 15.439
2048 38.975 28.495 31.079
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Chapter 4

Independent Task Assignment:

Improving Performances of

Well-known Constructive

Heuristics

In this chapter, we present our studies on improving existing independent task

assignment heuristics, MinMin, MaxMin, Suff, and GA. The sections of this chap-

ter are organized as follows. Table 4.1 summarizes the notation used in this

chapter. Section 4.1 describes the existing algorithms. The proposed MinMin+ is

presented in Section 4.2. Improved MaxMin+ algorithm is described in Section 4.3.

Suff+ algorithm is in Section 4.4, and the improved GA algorithm is discussed in

Section 4.5. We present our experiment results in Section 4.6.

4.1 Existing Algorithms

MinMin: The MinMin heuristic [63] proceeds in N iterations for the assignment

of N independent tasks to K processors. At each iteration, a previously unas-

signed task is selected and assigned to a processor. The selected task is removed
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Table 4.1: The notation used in this chapter
Notation Explanation
A task-to-processor assignment vector
E expected-time-compute matrix
G number of chromosomes used in the GA algorithm
H number of iterations of the GA algorithm
K number of processors
M makespan
M∗ ideal makespan
N number of tasks
P set of processors
Pk kth processor
Qk priority queue of Pk in the MinMin+ algorithm
R machine heterogeneity constant
T set of tasks
Ti ith task
U a set of tasks
ek current load of processor Pk
i, j indices that refer to tasks
k, ` indices that refer to processors
m number of MaxMin-based assignments in MaxMin+

xi,k computation cost of task Ti on processor Pk
α exponent constant for power-law distribution
γ relative cost for the RC algorithm
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Algorithm 4.1 MinMinSelect(U , e, x, K)

1: min ′ ←∞
2: for each i ∈ U do
3: min ←∞
4: for k ← 1 to K do
5: if ek + xi,k < min then
6: min ← ek + xi,k
7: kmin ← k
8: if min < min ′ then
9: min ′ ← ekmin + xi,kmin

10: k′ ← kmin
11: i′ ← i
12: return 〈i′, k′〉

from further consideration in the remaining iterations. The task-to-processor as-

signment in each iteration is decided based on a two-step procedure. In the first

step, MinMin computes the minimum completion time (MCT) of each unassigned

task over the processors to find the best processor, which can complete the pro-

cessing of that task at earliest time. This decision is made taking into account

the current loads of processors (ek) and the execution time of the task on each

processor (xi,k). In the second step, MinMin selects the task with the minimum

MCT among all unassigned tasks and assigns the task to its best processor found

in the first step. Due to the task selection policy adopted in the second step,

MinMin favors the assignment of tasks with lower costs in earlier iterations, and

hence the assignment of tasks with higher costs are usually performed during the

later iterations. The two-step selection algorithm is provided in Algorithm 4.1.

An O(KN2)-time algorithm for MinMin is given in Algorithm 4.2.

MaxMin: MaxMin [5,10,48,63] differs from MinMin in the task selection policy

adopted in the second step of the task-to-processor assignment procedure. Unlike

MinMin, which selects the task with the minimum MCT, MaxMin selects the task

with the maximum MCT and then assigns it to the best processor found in the

first step (Algorithm 4.3). Due to this task selection policy, MaxMin performs

the assignment of tasks with higher costs in earlier iterations. The algorithm for

MaxMin is presented in Algorithm 4.4.
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Algorithm 4.2 MinMin(x, K, N)

1: U ← {1, 2, . . . , N}
2: for k ← 1 to K do
3: ek ← 0

4: while U is not empty do
5: 〈i′, k′〉 ←MinMinSelect(U , e, x, K)
6: A[i′]← k′

7: ek′ ← ek′ + xi′,k′

8: U ← U − {i′}
9: return A

Algorithm 4.3 MaxMinSelect(U , e, x, K)
1: max ← 0
2: for each i ∈ U do
3: min ←∞
4: for k ← 1 to K do
5: if ek + xi,k < min then
6: min ← ek + xi,k
7: kmin ← k
8: if min > max then
9: max ← ekmin + xi,kmin

10: k′ ← kmin
11: i′ ← i
12: return 〈i′, k′〉

Algorithm 4.4 MaxMin(x, K, N)

1: U ← {1, 2, . . . , N}
2: for k ← 1 to K do
3: ek ← 0

4: while U is not empty do
5: 〈i′, k′〉 ←MaxMinSelect(U , e, x, K)
6: A[i′]← k′

7: ek′ ← ek′ + xi′,k′

8: U ← U − {i′}
9: return A
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Algorithm 4.5 Rasa(x, K, N)

1: U ← {1, 2, . . . , N}
2: for k ← 1 to K do
3: ek ← 0

4: for r ← 1 to N do
5: if r is odd then
6: 〈i′, k′〉 ←MaxMinSelect(U , e, x, K)
7: else
8: 〈i′, k′〉 ←MinMinSelect(U , e, x, K)

9: A[i′]← k′

10: ek′ ← ek′ + xi′,k′

11: U ← U − {i′}
12: return A

RASA: In [90], the drawbacks of MaxMin and MinMin are analyzed and a

hybrid algorithm, referred to as RASA, is proposed. RASA alternates between

MaxMin and MinMin in its iterations. In particular, MaxMin is used in odd rounds

while MinMin is used in even rounds. The RASA algorithm, which runs in O(KN2)

time, is displayed in Algorithm 4.5.

Sufferage: The main difference between Suff [78] and MinMin is the task

selection policy. In the first step of the process, Suff computes the second MCT

value in addition to the MCT value for each task. In the second step, the sufferage

value, which is defined as the difference between the MCT and the second MCT

values of a task, is taken into account. Suff selects the task with the largest

sufferage and assigns it to the best processor found in the first step. The algorithm

for Suff is presented in Algorithm 4.7.

Relative Cost (RC): RC [107] is a constructive heuristic similar to MinMin,

but it uses a different selection criterion which does not lead to a bias between

small tasks and large tasks. At each iteration of the algorithm, RC selects the

task with the lowest relative cost, which is calculated as

γ =

(
mink {xi,k + ek}
avgk {xi,k + ek}

)
+

(
xi,k∗(i)

avgk {xi,k}

)ξ
, (4.1)
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Algorithm 4.6 SuffSelect(U , x, K, N)

1: sufferage ′ ← 0
2: for each i ∈ U do
3: min ←∞
4: second min ←∞
5: for k ← 1 to K do
6: if ek + xi,k < min then
7: second min ← min
8: min ← ek + xi,k
9: kmin ← k

10: else if ek + xi,k < second min then
11: second min ← ek + xi,k

12: sufferage ← second min −min
13: if sufferage > sufferage ′ then
14: sufferage ′ ← sufferage
15: k′ ← kmin
16: i′ ← i
17: return 〈i′, k′〉

Algorithm 4.7 Suff(x, K, N)

1: U ← {1, 2, . . . , N}
2: for k ← 1 to K do
3: ek ← 0

4: while U is not empty do
5: 〈i′, k′〉 ← SuffSelect(U , e, x, K)
6: A[i′]← k′

7: ek′ ← ek′ + xi′,k′

8: U ← U − {i′}
9: return A
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Algorithm 4.8 RC(x, K, N)

1: U ← {1, 2, . . . , N}
2: for k ← 1 to K do
3: ek ← 0

4: for i← 1 to N do
5: avg ← avgk{xi,k}
6: for k ← 1 to K do
7: γs[i, k]← xi,k/avg

8: for j ← 1 to N do
9: γ min ←∞

10: for i← 1 to N do
11: avg ← avgk{ek + xi,k}
12: k ← argmink{ek + xi,k}
13: min ← xi,k
14: γ ← min/avg × γs[i, k]ξ

15: if γ < γ min then
16: γ min ← γ
17: i ′ ← i
18: k ′ ← k
19: A[i′]← k′

20: ek′ ← ek′ + xi′,k′

21: U ← U − {i′}
22: return A

56



where k∗(i) = argmink {xi,k + ek} in the current iteration. The selected task is

assigned to processor k∗(i). ξ is a parameter in the [0, 1] range and is used to

control the effects of the first and second terms in Eq. 4.1. RC is reported as a

high-quality algorithm and runs in O(KN2) time. The RC algorithm is displayed

in Algorithm 4.8.

Genetic Algorithm (GA): GA [10,105] is an example of more complex algo-

rithms that use MinMin as a component. GA uses MinMin as an initial chromosome

and improves the solution of MinMin using genetic algorithm techniques. In this

approach, each chromosome represents a different task-to-processor assignment.

Assuming G chromosomes, one of the chromosomes is initially populated with

MinMin while the remaining G− 1 chromosomes are populated with random as-

signments. Maintaining the best assignment (elitism) guarantees that the solution

quality of GA is not worse than the quality of MinMin. Crossover is implemented

as a single random cross on the paired chromosomes. Mutation is defined as

reassigning a random task to a random processor. The initial population runs

in O(KN2 + G logG + NG) time. Each iteration of GA runs in O(NG + G2)

time. Hence, GA runs in O(KN2 + HNG + HG2) time, where H is the number

of iterations.

4.2 MinMin+

The high running time complexity of the MinMin algorithm stems from the

O(KN)-time cost that is incurred while computing the MCT values for every

unassigned task and processor pair. Note that the MCT values and the best

processor of an unassigned task may change at each iteration of the loop in Al-

gorithm 4.2. This is because the ek + xi,k value associated with an unassigned

task Ti and processor Pk may change as the ek values are updated throughout

the iterations. Without any loss of generality, let us assume that a task is as-

signed to a processor Pk in the previous iteration. This assignment increases the

ek value. Therefore, in the next iteration, the ek + xi,k values for all unassigned

tasks need to be recomputed for processor Pk. This task-oriented view of the
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MinMin algorithm forms a lower bound of Ω(KN2) on the running time of the

algorithm.

In this work, we demonstrate that the above-mentioned quadratic lower bound

can be avoided by switching from the task-oriented view to a processor-oriented

view. To this end, we propose a novel algorithm, referred to as MinMin+. In this

algorithm, the MCT values that are associated with each processor are separately

maintained, instead of being unnecessarily recomputed at each iteration for every

unassigned task. In particular, we use a priority queue Qk for each processor Pk

to maintain the completion times of all tasks on that processor. More specifically,

each task Ti is maintained inK different priority queues, keyed by their xi,k values.

Each priority queue Qk supports the MIN, DELETE, and BUILD operations.

MIN(Qk) is a query operation that returns the id of the unassigned task that

has the minimum completion time on processor Pk. DELETE(Qk, i) is an update

operation that removes task Ti from Qk. The BUILD(k) operation initializes

the data structures. We also maintain a boolean array F of size N . Each array

element F [i] indicates whether task Ti is yet assigned to a processor or not.

Initially, we set all F [i] values to FALSE since no task is assigned to a processor

at the beginning.

The proposed MinMin+ algorithm is given in Algorithm 4.9. The MinMin+Init

function (Algorithm 4.10) is called in the first line of the algorithm to perform

the necessary initializations. The following main loop (lines 2–8) performs N

iterations, assigning a task to a processor at each iteration. The MinMin+Select

function (Algorithm 4.11) invokes a MIN(Qk) operation on each priority queue

Qk to find a candidate task for processor Pk. The candidate task Ti selected for

processor Pk is effectively the task that will increase the current completion time

of Pk (i.e., ek) by the smallest amount if Ti is assigned to Pk. For each processor

Pk, the execution time of the candidate task Ti on Pk is added to ek to compute

the updated ek value for Pk if Ti is assigned to Pk. A running-min operation

performed over these K updated ek values gives the minimum MCT value (min)

for the current iteration as well as the task-to-processor assignment (i ′, k ′) that

achieves this minimum MCT value. At the end of each iteration of the main loop,

the assigned task Ti ′ is deleted from all priority queues (lines 7 and 8).

58



Algorithm 4.9 MinMin+(x, K, N)

1: 〈e, F,Q〉 ←MinMin+Init(x, K)
2: for j ← 1 to N do
3: 〈i′, k′〉 ←MinMin+Select(Q, e, K)
4: A[i ′]← k ′

5: ek ′ ← ek ′ + xi ′,k ′

6: F [i ′]← TRUE
7: for k ← 1 to K do
8: Delete(Qk, i

′)

9: return A

Algorithm 4.10 MinMin+Init(x, K)
1: for k ← 1 to K do
2: ek ← 0

3: for i← 1 to N do
4: F [i]← FALSE

5: for k ← 1 to K do
6: Qk ← Build(k) . Qk contains records of 〈i, xi,k〉 .

7: return 〈e, F,Q〉

For the implementation of the priority queue, we have considered two alterna-

tives: binary heap and sorted linear array. Although both implementations lead

to the same worst-case running time complexity, our empirical results indicate

that the sorted linear array implementation yields significantly lower execution

times compared to the binary-heap implementation. Hence, in what follows, we

present the running time analysis of the MinMin+ algorithm only for the sorted

linear array implementation.

In the sorted linear array implementation, for each processor Pk, we maintain

a linear array Qk, which contains N tuples of the form 〈i, xi,k〉. The BUILD

operation sorts the tuples in Qk in increasing order of the xi,k values. For each

Qk, we maintain an index bk, indicating the unassigned task that currently has the

smallest completion time on processor Pk. The BUILD operation initializes the

bk value to 1. The overall running time of the BUILD operation is O(N logN).

The MIN(Qk) operation can be realized in O(1) time, simply by returning the
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Algorithm 4.11 MinMin+Select(Q, e, K)
1: min ←∞
2: for k ← 1 to K do
3: 〈i, x〉 ← Min(Qk)
4: if ek + x < min then
5: min ← ek + x
6: k ′ ← k
7: i ′ ← i
8: return 〈i′, k′〉

task id of the bk-th tuple in Qk. After a task Ti is assigned to a processor, it

is deleted by setting F [i] to TRUE and running a DELETE(Qk) operation on

every Qk. Since Qk[1, . . . , bk−1] contains the tasks that are already assigned, the

DELETE(Qk) operation can be realized by advancing the bk index on Qk until

an unassigned task is encountered. Although the worst-case running time of an

individual DELETE(Qk) operation is O(N), the amortized cost of DELETE(Qk)

operation is O(1). This is because N DELETE operations performed on Qk can

lead to at most N increments on bk. This simple yet efficient implementation of

the DELETE operation makes the sorted linear array implementation preferable

over the binary heap implementation. The proposed MinMin+ algorithm involves

K BUILD(k), K×N MIN(Qk), and K×N DELETE(Qk) operations. Hence, the

overall running time complexity is O(KN logN +KN +KN) = O(KN logN).

4.3 MaxMin+

In some problem instances, the task sizes follow a power-law distribution, i.e.,

there are a small number of very large tasks and a very large number of small

tasks. In such cases, the assignment of large tasks can have a significant impact

on the load of the most heavily loaded processor (i.e., makespan) and determine

the resulting solution quality. In case of the MinMin heuristic, due to the adopted

task selection policy, smaller tasks are assigned in earlier iterations, delaying the

assignment of larger tasks to later iterations. The solution quality obtained in
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the earlier iterations is likely to deteriorate due to the late assignment of very

large tasks. In case of the MaxMin heuristic, the larger tasks are assigned in earlier

iterations, but not necessarily to their favorite processors. To demonstrate the

issue, let us consider the first few iterations of MaxMin. The first iteration assigns

the largest task to its favorite processor. Let us assume that the second largest

task has the same favorite processor as the largest task. In the second iteration,

the task selection policy of MaxMin prevents the assignment of the second largest

task to its favorite processor. In the next iteration, the third largest task loses

the flexibility of being assigned to the favorite processors of the largest two tasks

and so on.

To alleviate the above-mentioned drawbacks of the MinMin and MaxMin heuris-

tics, we combine these two heuristics under a hybrid heuristic, which we refer to

as MaxMin+. Like MinMin and MaxMin, the MaxMin+ heuristic involves a main

loop that assigns a selected task to a processor at each iteration. Within an

iteration, the heuristic first computes a task-to-processor assignment according

to the MinMin heuristic. The computed assignment is realized only if it does not

lead to an increase in the makespan of the previous iteration. If, however, the

computed assignment increases the makespan, the task-to-processor assignment

is recomputed according to the MaxMin heuristic.

The MaxMin+ algorithm is presented in Algorithm 4.12, using the asymptot-

ically faster MinMin+ algorithm proposed in Section 4.2 instead of the standard

MinMin algorithm. In the algorithm, MinMin+Init (line 3) performs the necessary

initializations as in MinMin+. Line 5 computes the task-to-processor assignment

according to MinMin+. The if statement at line 6 checks whether the computed as-

signment increases the current makespan. Line 7 computes the task-to-processor

assignment according to MaxMin.

As described in Section 4.1, the RASA heuristic also combines MinMin and

MaxMin. In RASA, MinMin is executed in odd-numbered iterations while MaxMin

is executed at even-numbered iterations. The proposed MaxMin+ heuristic differs

from RASA in that the choice between MinMin and MaxMin at each iteration is made

in an adaptive manner, considering the current processor loads. The experimental
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Algorithm 4.12 MaxMin+(x, K, N)

1: U ← {1, 2, . . . , N}
2: makespan ← 0
3: 〈e, F,Q〉 ←MinMin+Init(x, K)
4: while U is not empty do
5: 〈i′, k′〉 ←MinMin+Select(Q, e, K)
6: if ek′ + xi′,k′ > makespan then
7: 〈i′, k′〉 ←MaxMinSelect(U , e, x, K)
8: makespan ← ek′ + xi′,k′

9: A[i′]← k′

10: ek′ ← ek′ + xi′,k′

11: U ← U − {i′}
12: F [i′]← TRUE
13: for k ← 1 to K do
14: Delete(Qk, i

′)

15: return A

results reported in Section 4.6 shows the success of this adaptive policy with

respect to the policy adopted in RASA.

The running time of MaxMin+ depends on the frequency of MaxMin-based

assignments. In practice, MaxMin+ is expected to run slower than MinMin+

since line 7 is executed when the assignment is performed according to MaxMin.

MaxMin+ is expected to run faster than MaxMin. The performance of MaxMin+

depends on the ratio of the MaxMin-based assignments to the total number of

assignments.

In the following lemmas, we describe the theoretical behavior of the MaxMin+

algorithm and find the expected number of MaxMin-based assignments for some

statistical distributions.

Lemma 4.3.1 MaxMin+ makes one MaxMin-based assignment in the best case,

and makes N MaxMin-based assignments in the worst case.

Proof: Consider the first iteration, ∀k, ek = 0 and hence makespan =

maxk ek = 0. Let 〈i′, k′〉 be the selection according to MinMin+Select. Since
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xi′,k′ > 0, ek′ + xi′,k′ > 0 = makespan. Thus, the selection will increase makespan

and, at least in the first iteration, MaxMin-based assignment will be used. Thus,

the number of MaxMin-based assignments is at least 1. To show that in the best

case the number of MaxMin-based assignments is 1, we will construct an exam-

ple that requires no other MaxMin-based assignments. Let xi,k be provided for

1 ≤ i < N, 1 ≤ k ≤ K. We will set the remaining values of the ETC matrix

(xN,1, . . . , xN,K) as

xN,1 =
∑

1≤i<N
max
1≤k≤K

xi,k, (4.2)

xN,k = k + xN,1, for 1 < k ≤ K. (4.3)

We are sure that, in the first iteration, MaxMin-based assignment will be used.

For task TN ,

min
1≤k≤K

xN,k = xN,1 (4.4)

=
∑

1≤i<N
max
1≤k≤K

xi,k (4.5)

> max
1≤i<N

max
1≤k≤K

xi,k (4.6)

≥ max
1≤i<N

min
1≤k≤K

xi,k. (4.7)

Hence, 〈N, 1〉 will be selected in the first iteration.

In the remaining iterations, the load ek on a processor Pk, k > 1 will be

bounded by

ek ≤
∑

1≤i<N
max
1<k≤K

xi,k (4.8)

= xN,1. (4.9)

The ek values for the remaining processors will never be greater than xN,1. The

makespan will never change after the first iteration and only one MaxMin-based

assignment will be performed for this problem instance.

We will construct another problem instance to prove that the number of

MaxMin-based assignments can be as high as N . Let xi,1 be provided for

1 ≤ i ≤ N . We will set the remaining xi,k values, for 1 < k ≤ K, as

xi,k =
∑

1≤j≤N
xj,1. (4.10)
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For this problem instance, always the first processor will be selected by both

MinMinSelect and MaxMinSelect algorithms. Thus, at each iteration, the

makespan will increase and MaxMin-based assignment will be used. For this prob-

lem instance, N MaxMin-based assignments will be performed. �

Lemma 4.3.2 MaxMin+ runs in O(KN logN + KNm) time, where m is the

number of MaxMin-based assignments.

Proof: Excluding the if-block at line 6, the MaxMin+ algorithm is almost the

same as MinMin+ and runs in O(KN logN) time. The MaxMinSelect algorithm

runs in O(KN) time. If the number of MaxMin-based assignments is m, then

the if-block will be executed m times, and the overall cost of the block will be

O(KNm) time. Thus, MaxMin+ will run in O(KN logN +KNm) time. �

In general, the number of MaxMin-based assignments is expected to decrease

with both increasing heterogeneity and increasing K. The former expectation is

due to the higher variation in task execution costs with increasing heterogeneity,

which generally results in an increase in the ratio between the weights of larger

tasks and smaller tasks. Hence, a MaxMin-based assignment of a large task will

be amortized by a large number of MinMin-based assignments of smaller tasks.

The latter expectation is due to the extra processing power provided by the addi-

tional processors, which results in more room for the MinMin selections until the

makespan changes. The experimental results reported in Section 4.6.2.1 support

this expectation.

We present the following theorems for the special and possibly the worst case

of K = 2 homogenous processors.

Theorem 4.3.1 For K = 2 homogenous processors, if the task weights of a

dataset have a power-law distribution with the probability density function f(x) =

Cx−α for x > xmin and α > 2, the expected number of MaxMin-based assignments

is
(
1
2

)α−1
α−2 N .

Proof: Without loss of generality, assume that 〈x1, x2, . . . , xN〉 is already
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sorted in increasing order, i.e., x1 ≤ x2 ≤ . . . ≤ xN . In the first iteration,

MaxMin-based assignment is used. MinMin-based assignments are utilized until the

selections are leveled against the first MaxMin selection, i.e., j MinMin-based as-

signments are used, where j is the maximum number that satisfies xN ≥
∑

i≤j xi.

After leveling, another MaxMin selection is used and MinMin-based assignments

are used until the bottleneck is leveled.

Assume that M is the number of MinMin-based assignments. The minimum

number of MaxMin-based assignments is used when all MaxMin-based assignments

select the same processor. In that case,
∑

i>M xi ≥
∑

i≤M xi. Thus, we are to

find the index M such that the sum of the smallest M elements is equal to half

of the sum of total values.

The expected index M can be determined by the help of Lorenz curves [76].

Lorenz curve L(F ) : [0, 1]→ [0, 1] is a function that takes a parameter F ∈ [0, 1],

the ratio of total distribution, and returns the expected ratio of the sum of the

smallest F of total values. For example, if L(0.8) = 0.2, then the smallest 80%

elements are expected to have a sum equal to the 20% of total values. For a given

distribution, the Lorenz curve L(F ) can be written in terms of a probability

density function f(x) of the distribution as

L(F ) =

∫ x(F )

xmin
xf(x) dx∫

x≥xmin
xf(x) dx

=

∫ F
0
x(t) dt

∫ 1

0
x(t) dt

, (4.11)

where x(F ) is the inverse of the cumulative density function. The power-law

distribution defines

x(F ) =
xmin

(1− F )1/(α−1)
. (4.12)

The Lorenz curve is then calculated as

L(F ) =

∫ F
0

xmin

(1−t)1/(α−1) dt
∫ 1

0
xmin

(1−t)1/(α−1) dt
(4.13)

L(F ) =
−xmin(1− t)(α−2)/(α−1)

∣∣F
t=0

−xmin(1− t)(α−2)/(α−1)|1t=0

(4.14)

For 1 < α < 2, this function degenerates to

L(F ) =

{
0 for 0 ≤ F < 1

1 for F = 1
(4.15)
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Thus, for 1 < α < 2, the largest value is expected to be much larger than the sum

of all other values, and only one MaxMin-based assignment is sufficient during the

execution.

For α > 2,

L(F ) =
xmin − xmin(1− F )(α−2)/(α−1)

xmin

(4.16)

L(F ) = 1− (1− F )(α−2)/(α−1) (4.17)

Thus, we are to find the F value such that L(F) = 0.5, and F can be evaluated

as

F = 1−
(

1

2

)α−1
α−2

. (4.18)

Thus, the expected number of MaxMin-based assignments is

(1− F )×N =

(
1

2

)α−1
α−2

N. (4.19)

�

Note that, if α gets closer to 2, the number of MaxMin-based assignments

decreases.

Theorem 4.3.2 For K = 2 homogenous processors, if the task weights of a

dataset are uniformly distributed between xmin and xmax, the expected number of

MaxMin-based assignments is 2r−
√
2r2+2

2r−2 N , where r = xmax/xmin.

Proof: The proof is similar to the proof of Theorem 4.3.1. The cumulative

density function for uniform distribution is given by

F =
x− xmin

xmax − xmin

(4.20)

and the inverse of cumulative density function for uniform distribution can be

derived as

x(F ) = F (xmax − xmin) + xmin. (4.21)

The Lorenz curve is then calculated as

L(F ) =

∫ F
0
x(t) dt

∫ 1

0
x(t) dt

(4.22)
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L(F ) =

∫ F
0
t(xmax − xmin) + xmin dt

∫ 1

0
t(xmax − xmin) + xmin dt

(4.23)

L(F ) =
F 2(r − 1) + 2F

r + 1
, (4.24)

where r = xmax/xmin. Thus, we need to find the F value such that L(F ) = 0.5

and F can be evaluated as

L(F ) =
F 2(r − 1) + 2F

r + 1
= 0.5 (4.25)

F =
−2 +

√
2r2 + 2

2(r − 1)
(4.26)

Thus, the expected number of MaxMin-based assignments is

(1− F )×N =

(
2r −

√
2r2 + 2

2(r − 1)

)
N (4.27)

�

Corollary 4.3.1 For K = 2 homogenous processors, if the task weights of a

dataset are uniformly distributed between xmin and xmax, the expected number of

MaxMin-based assignments is greater than 0.28N .

Proof: The function of Eq. 4.27 is a monotonically decreasing function which

gets its minimum while r →∞.

lim
r→∞

2r −
√

2r2 + 2

2(r − 1)
=

2−
√

2

2
≈ 0.28. (4.28)

�

According to Theorem 4.3.1, for a skewed dataset with a typical α value of

2.33 [56], the expected upper bound on the number of MaxMin-based assignments

to be performed by MaxMin+ is 0.061N . That is, at most 6.1% of the assignments

will be expensive MaxMin-based assignments. This approximately corresponds to

a speedup of 16 with respect to MaxMin.

According to Theorem 4.3.2, for a uniform dataset with xmax/xmin = 2, the

expected number of MaxMin-based assignments to be performed by MaxMin+ is
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41% of the total number of assignments. These theoretical findings show that

the relative speedup of MaxMin+ over MaxMin is expected to be much higher on

skewed datasets. The experimental results given in Section 4.6.2.1 validate this

expectation.

4.4 Suff+

Despite the success of Suff in producing high quality solutions [69, 78, 107], its

quadratic running time prevents the application of Suff to large datasets. To

make Suff applicable to large datasets, we combine it with MinMin+, under a

new heuristic referred to as Suff+. The main idea behind the Suff+ heuristic is

to perform critical assignment decisions by Suff so that the solution quality is

not significantly degraded and perform non-critical assignment decisions by the

fast MinMin+ algorithm. With this approach, we expect a considerable decrease

in the execution time of Suff with a small potential degradation in the solution

quality.

In Suff+, the criticality of an assignment decision is determined by the effect

of a possible MinMin+ assignment on the makespan. At each assignment itera-

tion, Suff+ first computes a task-to-processor assignment according to MinMin+.

The computed assignment is realized only if it does not lead to an increase in

the makespan of the previous iteration. If, however, the MinMin+-based assign-

ment increases the makespan, the task-to-processor assignment is recomputed

according to the Suff heuristic.

The algorithm for Suff+ is provided in Algorithm 4.13. As in MaxMin+, the

MinMin+Init function (line 3) performs the necessary initializations. Line 5 com-

putes the assignment according to MinMin+. The comparison operation at line 6

checks whether makespan will change if the computed assignment is used. Line 7

computes the task-to-processor assignment according to Suff.
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Algorithm 4.13 Suff+(x, K, N)

1: U ← {1, 2, . . . , N}
2: makespan ← 0
3: 〈e, F,Q〉 ←MinMin+Init(x, K)
4: while U is not empty do
5: 〈i′, k′〉 ←MinMin+Select(Q, e, K)
6: if ek′ + xi′,k′ > makespan then
7: 〈i′, k′〉 ← SuffSelect(U , e, x, K)
8: makespan ← ek′ + xi′,k′

9: A[i′]← k′

10: ek′ ← ek′ + xi′,k′

11: U ← U − {i′}
12: F [i′]← TRUE
13: for k ← 1 to K do
14: Delete(Qk, i

′)

15: return A

4.5 GA+

Traditionally, the MinMin heuristic is used as a submodule in more complex task

assignment algorithms. As mentioned in Section 4.1, GA is such an algorithm since

it uses MinMin to find an initial solution. In the literature, GA is reported as a

slow algorithm, compared to O(KN2) algorithms such as MaxMin and RC [10,107].

Herein, we consider GA to illustrate the impact of using MinMin+ instead of

MinMin on the performance of complex task assignment algorithms. Incorporation

of the MinMin+ heuristic into GA leads to an asymptotically faster algorithm, which

we refer to as GA+. This combination retains the original solution quality of GA.

GA+ runs in O(KN logN +HNG+HG2) time, making it run much faster than

O(KN2) algorithms and rendering it practical even for large datasets.
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Table 4.2: Properties of the datasets
Task weights

Dataset N Max. Avg. α
Social networks
coauthorship 725,344 672 6.81 3.43± 0.04
commonJob 241,233 10,270 7.08 2.30± 0.01

Distributed web crawling
ClueWeb-B 799,115 6.1×106 61.56 2.23± 0.00
ClueWeb-A 2,483,726 1.5×109 1010.50 2.16± 0.00

Image-space-parallel direct volume rendering (DVR)
blunt 20,611 171 90.95 6.51± 0.29
comb 32,238 149 64.58 3.84± 0.22

Row-parallel sparse matrix vector multiplication (SpMxV)
barrier2-1 113,076 7,031 33.65 3.78± 0.20
language 399,130 11,555 3.05 2.59± 0.01
k3plates 11,107 58 34.12 6.42± 0.92
big 13,209 12 6.92 7.42± 1.57
olafu 16,146 89 62.87 6.29± 0.81
mark3jac060 27,449 44 6.22 3.06± 0.16
Zhao1 33,861 6 4.92 4.60± 2.31
dawson5 51,537 33 19.61 3.02± 0.63
epb3 84,617 6 5.48 1.79± 0.79
lung2 109,460 8 4.50 2.33± 0.26
hood 220,542 77 48.83 6.56± 2.16
Lin 256,000 7 6.90 1.16± 0.10
pre2 659,033 628 9.04 2.50± 0.07

(*) Rows in gray indicate skewed datasets.
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4.6 Experimental Results

4.6.1 Datasets

The datasets used in the experiments belong to different application areas: social-

network analysis, distributed web crawling, image-space-parallel direct volume

rendering (DVR), and row-parallel sparse matrix vector multiplication (SpMxV).

In these contexts, the independent task assignment problem arises in load balanc-

ing of parallel/distributed applications. These datasets are displayed in Table 4.2.

Our social network datasets (coauthorship and commonJob) are in the form

of sparse graphs. In coauthorship, each vertex represents an author and an edge

represents the coauthorship relation between two authors. In commonJob, each

vertex represents an employee and there is an edge between two vertices if the

respective employees have ever worked in the same company. The coauthorship

and commonJob datasets are obtained from DBLP1 and LinkedIn2, respectively.

In both of these graphs, a vertex represents a task to be processed. The degree

of a vertex corresponds to the cost of executing the task.

In distributed web crawling datasets (ClueWeb-A and ClueWeb-B), the tasks

represent the web sites and the processors represent the crawlers that will down-

load the pages in the web sites. The weight of a task is set to the number of

pages in the respective web site. The ClueWeb-A and ClueWeb-B datasets, which

are obtained from the ClueWeb-09 collection [31], are the largest two datasets

among our datasets.

In row-parallel DVR datasets (blunt and comb), rendering each rectangular

pixel block of an image forms a separate task. The weight of a task is set to the

expected number of ray-face intersections to be performed while rendering the

pixels in the respective pixel block [72]. blunt (blunt fin) and comb (combustion)

are two curvilinear datasets obtained from the NASA Ames Research Center [38].

1http://www.informatik.uni-trier.de/~ley/db/
2http://www.linkedin.com/
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Figure 4.1: Log-log plots of the cumulative density distribution of task weights for
skewed datasets. x-axis: weights of tasks, y-axis: cumulative density distribution,
i.e., P (X ≥ x).

In row-parallel SpMxV datasets, each task corresponds to computing the inner

product of a distinct row of the sparse matrix with a dense column vector. The

weight of a task is equal to the number of nonzeros in the respective row. We use

13 sparse matrices that are selected from the University of Florida sparse matrix

collection [36].

For the distributed web crawling datasets, the ETC value of each task on each

crawler is calculated using the techniques described in [19]. For the other datasets,

the ETC matrices are constructed using the high machine heterogeneity method

discussed in [1]. For each xi,k, we multiply the weight of the corresponding task

with a random integer in the range [1 . . . R], where R is the machine heterogeneity

constant. Following [1], we selected R as 100 to reflect high machine heterogene-

ity. For all datasets, the ETC matrices are generated for K ∈ {4, 8, 16, 24, 32}
processors. Each dataset and K value combination forms a different assignment

instance for our experiments. Since we have 19 datasets and five different K

values, we have a total of 95 assignment instances.

In Table 4.2, the Max and Avg columns display the maximum and average
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Figure 4.2: Log-log plots of the cumulative density distribution of task weights
for non-skewed datasets. x-axis: weights of tasks, y-axis: cumulative density
distribution, i.e., P (X ≥ x).
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task weights, respectively. The α column shows the exponent constant of the

power-law distribution p(w) = Cw−α of task weights, together with their error

margins. The α values are computed by using the linear least squares method on

log-log distributions of the datasets and are used here to identify the datasets with

power-law distributions. The datasets that have α values with low error margin

and high max/avg ratio are good candidates to have power-law distributions.

In this respect, coauthorship, commonJob, ClueWeb-B, ClueWeb-A, barrier2-1,

and language datasets are considered to have a power-law distribution. In the

remaining tables, the rows are colored in gray to indicate skewed datasets.

Fig. 4.1 displays the log-log plots of the cumulative density distribution of

task weights for the skewed datasets. Fig. 4.2 displays the log-log plots of the

cumulative density distribution of task weights for the skewed datasets.

4.6.2 Performance Analysis

All of the algorithms are implemented in Java programming language. All ex-

periments were carried out on a Linux workstation equipped with six 2100-MHz

quad-core CPUs and 132 GB of memory.

The load balancing quality of the assignment algorithms are compared ac-

cording to the percent load imbalance ratio defined as

%LI = 100× M −M∗

M∗ , (4.29)

where M denotes the makespan of an assignment produced by an algorithm

and M∗ denotes the ideal makespan for the given assignment instance. M∗ is

computed as

M∗ =
W ∗

tot

K
=

∑
i mink{xi,k}

K
, (4.30)

where W ∗
tot is the execution time obtained when the tasks are assigned to their

favorite processor. This value forms a rather loose lower bound for the makespan.

The optimal makespan is potentially greater than M∗.
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Table 4.3: Percent load imbalance values for social network datasets
Original heuristics Proposed heuristics

MM GA
Dataset K MxM Suff RC RASA MM+ MxM+ Suff+ GA+

4 204.94 0.08 0.01 163.35 0.10 0.13 0.02 0.04
8 280.50 0.58 0.02 229.68 0.13 0.07 0.06 0.07

coauthorship 16 316.25 1.86 0.10 263.86 0.48 0.11 0.24 0.30
24 315.95 2.43 0.22 266.97 0.76 0.11 0.34 0.43
32 310.82 2.66 0.19 262.12 1.69 0.30 0.80 0.96

4 163.19 0.71 1.07 143.40 1.87 0.72 0.53 0.81
8 218.67 2.51 0.63 192.47 8.97 1.46 1.86 3.75

commonJob 16 239.99 5.26 3.28 212.25 18.92 3.87 10.14 9.24
24 235.61 5.62 5.08 213.56 23.90 8.77 17.85 14.50
32 227.71 6.97 4.58 204.58 37.28 14.51 16.81 23.42

Table 4.4: Percent load imbalance values for distributed web crawling datasets
Original heuristics Proposed heuristics

MM GA
Dataset K MxM Suff RC RASA MM+ MxM+ Suff+ GA+

4 81.49 22.28 19.91 80.06 41.82 17.24 18.52 37.62
8 175.88 102.35 103.61 173.05 168.72 99.63 99.02 159.99

ClueWeb-B 16 230.77 162.19 161.96 227.42 319.82 160.48 155.16 306.18
24 286.10 222.08 224.38 282.29 476.91 230.77 230.77 458.82
32 323.97 323.97 324.50 323.97 607.80 323.97 323.97 589.19

4 172.02 172.02 173.35 172.02 205.18 172.02 172.02 204.82
8 436.41 436.41 436.85 436.41 482.96 436.41 436.41 482.31

ClueWeb-A 16 802.88 802.88 802.92 802.88 891.27 802.88 802.88 889.61
24 1286.95 1286.95 1286.98 1286.95 1393.57 1286.95 1286.95 1388.59
32 1763.49 1763.49 1763.53 1763.49 1868.91 1763.49 1763.49 1862.57

Table 4.5: Percent load imbalance values for parallel DVR datasets
Original heuristics Proposed heuristics

MM GA
Dataset K MxM Suff RC RASA MM+ MxM+ Suff+ GA+

4 185.24 0.10 0.06 102.04 0.11 1.12 0.07 0.04
8 253.94 0.65 0.27 155.03 0.29 0.65 0.23 0.12

blunt 16 276.43 1.86 0.52 175.31 0.60 0.60 0.54 0.34
24 275.48 2.25 1.37 176.10 1.02 0.78 1.02 0.47
32 269.72 2.52 2.07 172.12 1.42 1.07 1.18 0.74

4 187.83 0.10 0.05 116.36 0.08 0.67 0.09 0.03
8 252.82 0.74 0.12 169.19 0.16 0.48 0.17 0.08

comb 16 278.85 1.83 0.43 195.78 0.49 0.31 0.35 0.24
24 276.05 2.56 0.86 191.02 0.85 0.66 0.83 0.47
32 271.01 2.81 1.40 189.24 0.94 0.70 0.92 0.55
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Table 4.6: Percent load imbalance values for parallel SpMxV datasets
Original heuristics Proposed heuristics

MM GA
Dataset K MxM Suff RC RASA MM+ MxM+ Suff+ GA+

4 202.22 0.12 0.01 119.77 0.89 0.46 0.04 0.15
8 278.87 0.59 0.03 180.31 2.25 0.26 0.09 0.51

barrier2-1 16 310.18 1.38 0.09 208.49 0.36 0.19 0.12 0.18
24 311.27 2.10 0.30 210.86 7.56 0.28 0.21 2.42
32 303.48 2.25 0.30 207.41 1.39 0.26 0.30 0.77

4 198.73 0.38 0.03 121.62 1.68 0.27 0.03 0.63
8 286.72 2.59 0.33 186.64 7.30 0.27 0.44 3.23

language 16 315.71 3.98 1.31 214.60 27.98 1.15 2.01 22.87
24 319.59 2.51 0.57 219.26 5.72 0.57 4.49 3.20
32 308.00 4.37 1.79 212.24 58.74 4.49 3.70 51.44

4 184.48 0.16 0.11 104.11 0.09 1.04 0.11 0.04
8 247.81 0.80 0.34 152.60 0.27 0.58 0.28 0.12

olafu 16 269.75 1.78 0.88 172.10 0.81 0.69 0.63 0.37
24 267.79 2.79 1.47 172.49 0.96 0.90 1.22 0.57
32 258.30 2.98 2.30 171.92 1.14 1.15 1.23 0.76

4 218.44 0.01 0.01 115.61 0.01 0.41 0.01 0.01
8 324.60 0.13 0.01 193.65 0.01 0.29 0.03 0.01

Lin 16 361.38 0.62 0.05 223.68 0.05 0.17 0.05 0.02
24 358.59 1.01 0.07 223.51 0.07 0.14 0.06 0.04
32 349.33 1.12 0.09 219.01 0.10 0.13 0.09 0.09

4 179.00 0.17 0.07 101.07 0.10 1.30 0.16 0.04
8 241.49 1.06 0.38 146.46 0.32 0.87 0.43 0.18

k3plates 16 260.96 2.16 1.21 166.24 1.01 0.75 0.96 0.52
24 255.10 2.82 1.75 165.63 1.70 1.19 1.16 0.76
32 249.78 3.23 2.54 161.44 3.29 1.78 2.73 1.36

4 181.42 0.12 0.03 100.12 0.11 1.21 0.11 0.04
8 248.43 0.86 0.31 152.67 0.23 0.81 0.27 0.11

big 16 268.72 2.06 0.82 169.92 0.83 0.95 0.79 0.45
24 264.66 2.60 1.59 169.22 1.22 1.11 0.87 0.79
32 254.69 3.23 2.62 167.07 2.75 1.45 2.24 1.62

4 176.46 0.35 0.09 118.32 0.25 0.65 0.09 0.17
8 234.30 1.17 0.16 165.75 0.57 0.43 0.24 0.21

mark3jac060 16 260.27 2.76 1.02 189.26 1.95 0.64 0.89 0.82
24 257.10 3.61 3.91 187.85 4.45 1.39 1.60 2.20
32 248.52 3.40 1.32 182.51 2.13 1.40 2.69 1.47
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Table 4.7: Percent load imbalance values for parallel SpMxV datasets (2)
Original heuristics Proposed heuristics

MM GA
Dataset K MxM Suff RC RASA MM+ MxM+ Suff+ GA+

4 196.65 0.05 0.03 107.07 0.03 0.94 0.04 0.01
8 272.92 0.47 0.14 163.69 0.10 0.53 0.16 0.05

Zhao1 16 302.54 1.37 0.38 187.93 0.30 0.45 0.34 0.14
24 296.84 1.80 0.54 188.41 0.54 0.47 0.39 0.33
32 287.62 2.21 0.85 181.98 1.01 0.54 0.73 0.56

4 196.91 0.07 0.04 111.86 0.03 0.70 0.03 0.02
8 268.83 0.49 0.08 168.32 0.09 0.34 0.09 0.04

dawson5 16 296.58 1.50 0.36 194.61 0.29 0.35 0.20 0.14
24 293.83 1.97 0.57 192.20 0.42 0.30 0.29 0.24
32 291.60 2.12 0.54 192.71 0.56 0.47 0.52 0.38

4 208.07 0.02 0.01 112.18 0.01 0.60 0.02 0.01
8 292.89 0.28 0.05 175.48 0.04 0.36 0.07 0.02

epb3 16 325.47 1.06 0.14 203.47 0.14 0.27 0.13 0.08
24 320.46 1.40 0.24 201.55 0.24 0.23 0.18 0.13
32 313.97 1.53 0.33 198.12 0.38 0.29 0.34 0.22

4 201.66 0.04 0.01 124.79 0.03 0.43 0.02 0.01
8 278.07 0.46 0.05 184.74 0.07 0.26 0.09 0.04

lung2 16 308.15 1.46 0.18 210.33 0.13 0.21 0.18 0.08
24 308.12 1.91 0.33 212.92 0.27 0.28 0.19 0.17
32 299.94 2.01 0.46 208.58 0.55 0.28 0.42 0.32

4 215.54 0.01 0.01 121.10 0.01 0.41 0.01 0.01
8 305.25 0.21 0.03 189.84 0.02 0.20 0.04 0.01

hood 16 340.15 0.93 0.07 219.67 0.08 0.16 0.05 0.05
24 340.49 1.29 0.14 221.24 0.10 0.13 0.12 0.06
32 332.24 1.45 0.16 216.91 0.13 0.15 0.16 0.09

4 211.05 0.07 0.01 137.48 0.13 0.20 0.01 0.06
8 294.44 0.50 0.17 204.69 0.37 0.07 0.20 0.16

pre2 16 329.40 1.63 0.70 236.59 0.92 0.39 0.67 0.63
24 329.62 2.08 2.05 237.63 1.67 0.72 1.59 1.04
32 323.29 2.42 0.39 234.68 1.49 0.87 1.61 1.22

77



Table 4.8: Averages of percent load imbalance values over all datasets
Original heuristics Proposed heuristics

MM GA
Dataset K MxM Suff RC RASA MM+ MxM+ Suff+ GA+

4 170.43 32.60 32.40 133.37 41.92 31.81 31.86 40.68
8 279.51 90.84 90.25 233.09 111.72 89.68 89.65 108.31

Skewed 16 369.30 162.92 161.61 321.58 209.80 161.45 161.76 204.73
24 459.25 253.61 252.92 413.32 318.07 254.57 256.77 311.33
32 539.58 350.62 349.15 495.64 429.30 351.17 351.51 421.39

4 195.60 0.10 0.04 113.24 0.08 0.74 0.06 0.04
8 270.44 0.60 0.16 170.93 0.20 0.45 0.18 0.09

Non-skewed 16 298.36 1.62 0.52 195.76 0.58 0.46 0.44 0.30
24 295.70 2.16 1.15 195.37 1.04 0.64 0.73 0.56
32 288.46 2.39 1.16 192.02 1.22 0.79 1.14 0.72

Tables 4.3–4.7 display the load imbalance values for 4-, 8-, 16-, 24-, and 32-

way assignments obtained by the existing (baseline) and proposed heuristics for

different types of datasets. Table 4.8 displays load imbalance averages for different

K values over all datasets. In these tables, we display the results of MinMin and

MinMin+ in the same column, since these heuristics attain the same results. The

results of GA and GA+ are displayed in the same column due to the same reason.

Tables 4.9–4.13 display the running times of the heuristics for different types

of datasets. Table 4.14 displays running time averages for different K values over

all datasets. These averages are obtained by normalizing the running time values

with those attained by the MinMin+ heuristic.

In Tables 4.6, Tables 4.7, 4.12 and 4.13 the performance results for row-

parallel SpMxV datasets are presented by splitting data into two tables. The

average performance results displayed in Tables 4.8 and 4.14 are computed by

considering the performance results of all datasets.

In Tables 4.3–4.7, the bold value(s) in each row indicate the best solution(s)

in terms of load balancing performance for the respective assignment instance. In

all tables, the MinMin, MinMin+, MaxMin, and MaxMin+ heuristics are abbreviated

as MM, MM+, MxM, and MxM+, respectively.
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Table 4.9: Running times (seconds) of heuristics for social network datasets
Original heuristics Proposed heuristics

Dataset K MM MxM Suff RC RASA GA MM+ MxM+ Suff+ GA+
4 53,859.2 63,053.1 67,678.7 89,023.9 64,896.3 54,884.8 5.7 172.5 387.4 1,031.2
8 70,204.6 66,434.0 97,158.5 1.2×105 81,245.7 72,146.3 11.5 71.8 218.3 1,953.2

coauthorship 16 1.2×105 1.4×105 2.0×105 1.9×105 1.4×105 1.3×105 20.9 66.3 168.2 4,407.1
24 1.8×105 2.0×105 2.8×105 2.4×105 1.7×105 1.9×105 33.4 85.7 235.6 4,277.8
32 2.1×105 2.1×105 3.5×105 2.8×105 1.9×105 2.2×105 40.9 84.8 171.4 4,414.9

4 8,276.9 6,810.9 5,346.2 4,883.6 7,059.9 8,781.3 1.3 2.3 2.7 505.6
8 8,242.8 9,522.5 9,031.0 9,810.2 8,604.5 9,375.7 2.4 3.0 3.7 1,135.3

commonJob 16 13,506.1 13,627.6 12,932.8 13,657.7 13,847.8 14,905.9 2.6 5.9 4.2 1,402.5
24 18,835.1 18,537.7 20,593.0 26,190.4 17,578.4 20,346.4 7.7 9.7 9.6 1,519.0
32 24,104.4 37,576.2 26,927.1 26,379.2 21,281.3 25,619.6 9.7 10.5 9.2 1,524.9

Table 4.10: Running times (seconds) of heuristics for distributed web crawling
datasets

Original heuristics Proposed heuristics
Dataset K MM MxM Suff RC RASA GA MM+ MxM+ Suff+ GA+

4 73,814.2 75,260.0 78,577.7 1.1×105 90,773.2 77,284.4 4.1 5.3 7.7 3,474.3
8 1.2×105 88,850.7 79,415.0 1.4×105 1.1×105 1.2×105 9.5 11.5 13.6 4,386.9

ClueWeb-B 16 2.3×105 1.4×105 1.9×105 2.8×105 1.3×105 2.4×105 18.2 17.6 22.5 5,144.0
24 2.9×105 2.6×105 2.9×105 3.7×105 1.8×105 2.9×105 36.5 42.4 28.2 4,059.6
32 4.1×105 3.2×105 3.6×105 4.3×105 2.2×105 4.1×105 47.3 41.6 46.0 4,169.8

4 6.7×105 8.1×105 7.3×105 9.3×105 6.5×105 6.9×105 19.6 19.4 20.8 12,573.3
8 8.4×105 1.1×106 1.0×106 1.4×106 7.9×105 8.5×105 39.2 38.8 51.1 11,473.6

ClueWeb-A 16 1.9×106 1.7×106 1.8×106 2.8×106 1.2×106 2.0×106 60.5 84.2 89.7 12,936.7
24 2.7×106 2.6×106 3.0×106 2.9×106 1.8×106 2.7×106 106.2 112.3 141.0 14,059.2
32 3.3×106 2.9×106 3.2×106 3.5×106 2.8×106 3.4×106 183.9 174.5 193.1 14,231.3

4.6.2.1 Comparison with Traditional Counterparts

In this subsection, we discuss the performance of each proposed heuristic against

its traditional counterpart.

MinMin+ versus MinMin: As mentioned in Section 4.2, MinMin+ finds exactly

the same solutions as MinMin. However, MinMin+ is several orders of magnitude

faster than MinMin in all assignment instances. On average, MinMin+ is 5603-,

3703-, 4192-, 3214-, and 2947-times faster than MinMin in 4-, 8-, 16-, 24-, and

32-way assignments, respectively.

As expected, the speedup of MinMin+ over MinMin increases with increasing

number of tasks. For the 16-way assignment of the largest dataset ClueWeb-A,

which contains about 2.5 million tasks, MinMin finds a solution in about 22 days

while MinMin+ finds the same solution in about a minute, i.e., MinMin+ runs about

31,400 times faster than MinMin.
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Table 4.11: Running times (seconds) of heuristics for parallel DVR datasets
Original heuristics Proposed heuristics

Dataset K MM MxM Suff RC RASA GA MM+ MxM+ Suff+ GA+
4 15.3 15.1 17.8 21.7 18.9 25.6 0.0 0.7 2.5 10.3
8 26.0 23.9 34.0 43.1 29.9 40.7 0.1 0.5 2.1 14.7

blunt 16 69.2 59.7 100.8 107.8 132.4 90.7 0.2 0.4 1.8 21.7
24 208.5 228.7 163.1 174.5 164.8 234.4 0.3 0.8 4.3 26.2
32 259.2 287.1 334.6 246.1 231.6 291.8 0.3 0.8 3.8 32.9

4 56.3 39.1 47.0 188.5 85.8 70.2 0.1 1.4 5.0 14.0
8 88.0 124.3 93.5 113.0 186.7 114.7 0.2 0.8 3.9 26.8

comb 16 159.5 191.2 279.7 236.9 256.7 200.6 0.3 1.0 3.8 41.4
24 314.0 289.2 356.3 466.2 350.3 360.7 0.6 1.7 6.7 47.3
32 437.3 445.9 446.2 457.5 436.5 475.7 0.6 1.5 6.8 38.9

MaxMin+ versus MaxMin: MaxMin+ finds drastically better solutions than

MaxMin in all assignment instances, except for the 32-way assignment of

ClueWeb-B and the assignment instances of ClueWeb-A, where both heuristics find

solutions with the same makespan. The averages displayed in Table 4.8 demon-

strate the large quality difference between MaxMin+ and MaxMin. On average,

MaxMin+ attains average load imbalance values of 177.74% and 0.62% compared

to 363.61% and 269.71% of MaxMin, for skewed and non-skewed datasets, respec-

tively. Moreover, MaxMin+ is several orders of magnitude faster than MaxMin in

all assignment instances. On average, MaxMin+ runs 6917- and 404-times faster

than MaxMin for skewed and non-skewed datasets, respectively. Note that the

performance gaps between MaxMin+ and MaxMin in load balancing and running

time are much higher in non-skewed datasets compared to skewed datasets in fa-

vor of MaxMin+. The former is expected since MaxMin is highly tuned for skewed

datasets and fails to find good solutions for non-skewed datasets, whereas MaxMin+

is a more balanced heuristic. The latter is also expected since skewed datasets

generally contain much larger number of tasks than non-skewed datasets.

Tables 4.15 and 4.16 display the number of MaxMin-based assignments per-

formed by MaxMin+. As seen in these tables, in general, the number of MaxMin-

based assignments considerably decreases with increasing K values, thus con-

forming with the expectation given in Section 4.3. This behavior explains the

decrease in the running time performance gap between MaxMin+ and MinMin+

with increasing K as shown in Table 4.14. Even for the smallest K value of
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Table 4.12: Running times (seconds) of heuristics for parallel SpMxV datasets
Original heuristics Proposed heuristics

Dataset K MM MxM Suff RC RASA GA MM+ MxM+ Suff+ GA+
4 1,044.0 1,245.0 1,978.2 1,065.2 1,505.8 1,176.6 0.6 20.6 74.8 133.1
8 1,809.8 1,835.4 2,295.3 2,343.4 2,008.1 2,134.5 1.1 15.9 61.9 325.8

barrier2-1 16 3,356.1 3,138.0 3,961.0 4,697.8 3,254.9 3,636.5 2.2 20.4 62.2 282.7
24 4,534.0 4,893.5 5,511.7 5,959.1 4,099.6 5,150.5 3.7 15.1 73.9 620.3
32 5,078.4 5,810.1 6,360.4 6,551.5 6,345.0 5,418.7 3.5 14.1 83.4 343.9

4 15,081.9 16,432.9 16,562.0 26,088.5 25,826.6 16,413.0 2.3 65.9 166.8 1,333.3
8 25,924.4 23,470.0 24,928.3 34,444.6 34,882.4 28,029.7 4.7 15.9 40.0 2,110.1

language 16 39,780.2 34,559.5 47,030.2 71,420.6 51,280.7 42,259.3 11.5 12.6 12.0 2,490.6
24 74,398.5 76,276.2 75,045.1 90,750.8 70,951.8 77,000.6 22.4 32.3 50.2 2,624.6
32 71,323.0 67,528.2 71,835.9 77,366.0 77,218.7 73,990.1 18.2 21.9 15.9 2,685.3

4 9.1 9.8 11.0 13.4 13.2 15.7 0.0 0.4 1.5 6.7
8 14.0 13.6 49.8 22.0 18.9 22.6 0.1 0.3 1.2 8.7

olafu 16 35.8 40.7 38.5 58.1 54.3 54.9 0.2 0.3 1.0 19.3
24 81.9 129.2 97.7 106.2 84.4 101.7 0.3 0.4 2.4 20.1
32 180.4 156.1 136.8 143.1 131.6 196.1 0.3 0.5 2.1 15.9

4 6,987.9 8,185.9 7,401.1 10,191.5 7,977.8 7,234.2 1.2 200.8 684.1 247.5
8 8,309.2 10,809.7 11,219.6 16,430.8 10,947.9 8,688.3 2.0 129.2 556.3 381.1

Lin 16 15,901.8 24,876.3 20,575.5 28,687.5 16,427.6 16,374.7 6.0 117.8 784.2 478.9
24 23,305.1 23,062.5 25,086.5 31,325.5 23,233.7 23,847.7 8.5 109.9 794.6 551.1
32 28,725.5 29,544.6 31,139.2 45,157.7 29,805.8 29,184.5 10.5 119.4 766.7 469.5

4 3.6 5.5 5.1 5.0 5.8 7.3 0.0 0.2 0.7 3.7
8 5.3 9.4 8.1 7.3 10.5 10.8 0.0 0.1 0.6 5.6

k3plates 16 22.6 27.6 15.4 23.0 13.2 32.2 0.1 0.9 0.5 9.7
24 30.0 34.9 64.2 63.9 29.1 39.7 0.4 0.5 0.9 10.1
32 30.5 28.1 50.9 53.3 24.2 37.6 1.5 0.2 0.8 8.7

4 5.9 8.9 9.3 8.1 7.7 10.4 0.0 0.5 1.1 4.5
8 8.6 9.3 11.9 13.6 11.2 16.2 0.1 0.2 0.9 7.6

big 16 19.7 17.6 26.2 39.6 22.5 28.6 0.1 0.2 0.7 9.0
24 28.1 74.1 68.1 121.5 47.9 37.7 0.2 0.3 1.3 9.8
32 44.0 44.2 74.8 79.1 57.3 50.2 0.2 0.4 1.2 6.4

4 47.9 56.2 67.9 40.5 79.8 59.5 0.1 0.7 2.2 11.7
8 79.5 86.4 87.4 107.9 153.6 93.5 0.2 0.4 1.6 14.1

mark3jac060 16 161.2 165.0 159.6 142.9 118.8 180.6 0.3 0.5 2.3 19.6
24 194.6 412.9 405.6 302.2 228.0 224.5 0.6 0.9 2.2 30.5
32 207.2 297.9 332.0 224.0 325.9 230.8 0.6 0.9 3.7 24.2

four, the number of MaxMin-based assignments is much smaller than the number

of MinMin-based assignments for each instance. For K = 4, the worst case oc-

curs for the big matrix, where only 9.25% of the assignments are MaxMin-based

assignments. These results show that the expected number of MaxMin-based as-

signments given in Theorem 4.3.1 for K = 2 homogenous processors is a rather

loose upper bound for K ≥ 4 heterogeneous processors.

As seen in Table 4.15, MaxMin+ makes only one MaxMin-based assignment for

the 32-way assignment of ClueWeb-B and all K-way assignments of ClueWeb-A.

ClueWeb-A has an extremely large task whose weight is greater than the sum
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Table 4.13: Running times (seconds) of heuristics for parallel SpMxV datasets
(2)

Original heuristics Proposed heuristics
Dataset K MM MxM Suff RC RASA GA MM+ MxM+ Suff+ GA+

4 80.7 57.9 92.8 73.9 72.8 93.6 0.2 2.7 7.7 13.0
8 109.8 117.8 162.0 154.7 131.8 130.7 0.2 2.6 6.7 21.2

Zhao1 16 279.3 270.5 311.1 288.0 234.0 306.1 0.3 1.1 7.1 27.1
24 268.0 510.0 461.3 489.1 278.6 291.4 0.6 1.8 8.5 24.0
32 487.0 444.3 443.8 346.6 384.8 509.6 0.6 2.7 10.1 23.3

4 219.5 327.8 324.7 324.8 271.6 245.0 0.9 4.4 14.7 26.4
8 562.8 502.0 409.2 530.7 406.9 602.8 0.3 2.3 14.6 40.4

dawson5 16 598.8 705.8 866.7 538.0 687.2 678.4 0.5 2.4 17.3 80.1
24 717.6 1,547.7 1,090.4 1,261.0 822.6 769.7 1.1 4.2 13.7 53.2
32 1,060.4 935.9 1,151.2 1,167.0 1,045.1 1,130.8 1.1 3.5 22.1 71.4

4 1,122.1 866.2 760.6 706.1 675.2 1,172.0 0.3 12.4 54.3 50.2
8 783.0 1,091.2 1,047.0 1,740.2 1,049.5 846.0 0.5 7.9 50.0 63.5

epb3 16 1,894.5 1,636.9 1,975.4 1,533.6 1,706.4 2,016.7 0.9 6.9 52.7 123.1
24 2,235.8 1,811.0 3,034.0 2,927.4 2,400.4 2,355.4 1.8 11.7 59.6 121.4
32 2,273.5 2,963.6 2,931.3 2,959.6 2,702.3 2,387.2 2.2 12.0 70.3 115.9

4 1,349.1 1,493.3 1,504.6 1,018.8 1,413.5 1,404.6 0.4 17.6 69.3 56.0
8 1,860.0 2,031.7 2,199.8 2,509.3 1,843.3 1,999.3 0.9 12.3 58.0 140.2

lung2 16 3,214.7 2,971.9 3,804.1 2,868.1 2,519.5 3,378.4 1.7 11.3 51.5 165.4
24 4,261.0 5,690.3 6,252.9 5,359.6 4,478.7 4,443.2 3.0 12.0 71.2 185.3
32 4,349.4 5,287.2 5,703.2 5,630.6 5,064.2 4,543.0 3.5 20.4 96.6 197.1

4 6,010.0 7,373.3 5,346.4 5,546.9 7,877.5 6,206.7 1.4 109.5 398.2 198.0
8 7,178.2 6,601.1 7,658.0 9,781.4 9,298.1 7,471.1 2.8 72.3 296.8 295.8

hood 16 12,451.9 16,071.5 14,179.9 14,639.6 14,818.7 12,878.2 5.0 58.3 274.9 431.3
24 21,433.8 21,570.2 23,065.8 25,256.5 19,730.1 21,955.1 9.0 91.9 494.1 530.2
32 20,735.2 30,549.0 22,441.7 20,808.9 25,090.0 21,276.0 8.4 68.1 430.9 549.2

4 44,568.1 56,055.2 62,351.2 81,854.7 50,118.6 45,398.7 5.1 254.0 668.8 835.6
8 54,970.0 80,027.6 64,028.6 1.0×105 65,710.6 57,131.3 10.4 54.3 161.3 2,171.6

pre2 16 99,706.8 91,535.7 1.2×105 2.2×105 1.1×105 1.0×105 18.5 33.9 47.8 3,719.3
24 1.5×105 2.3×105 2.4×105 2.0×105 1.3×105 1.5×105 32.2 41.0 84.8 4,278.1
32 1.5×105 2.6×105 2.8×105 3.4×105 1.7×105 1.5×105 36.3 47.9 68.8 4,375.2

Table 4.14: Normalized running time averages over all datasets
Original heuristics Proposed heuristics

Dataset K MM MxM Suff RC RASA GA MM+ MxM+ Suff+ GA+
4 12,813.9 14,307.1 13,863.1 17,964.0 14,379.7 13,294.8 1.0 16.7 46.8 481.9
8 8,357.6 9,069.9 8,878.2 12,122.8 8,653.1 8,711.3 1.0 4.5 14.5 354.7

Skewed 16 10,134.9 8,614.4 9,924.2 14,029.0 7,595.1 10,397.5 1.0 3.0 6.9 263.6
24 7,604.2 7,363.6 8,610.4 8,867.2 5,623.8 7,745.3 1.0 1.9 5.4 142.1
32 6,643.6 6,186.7 6,981.4 7,304.4 5,482.1 6,755.3 1.0 1.7 5.3 112.8

4 2,274.3 2,556.8 2,501.8 2,988.4 2,488.6 2,435.1 1.0 38.0 130.5 161.8
8 1,555.4 1,902.1 1,858.3 2,553.1 1,907.3 1,703.4 1.0 13.1 59.1 149.0

Non-skewed 16 1,449.6 1,577.0 1,766.1 2,168.1 1,539.7 1,565.2 1.0 5.9 29.5 116.6
24 1,187.6 1,558.1 1,625.2 1,620.5 1,171.9 1,250.5 1.0 4.1 21.5 63.9
32 1,241.6 1,618.3 1,639.7 1,814.9 1,343.0 1,298.0 1.0 3.8 20.4 57.4
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Table 4.15: Number of MaxMin-based assignments performed by MaxMin+ for
social network, distributed web crawling and parallel DVR datasets

Social network Distributed web crawling Parallel DVR

Dataset K m Dataset K m Dataset K m

coauthorship (N=725,344) ClueWeb-B (N=799,115) blunt (N=20,611)
4 13,528 4 257 4 1,840
8 3,631 8 289 8 696

16 1,190 16 9 16 282
24 686 24 2 24 172
32 444 32 1 32 128

commonJob (N=241,233) ClueWeb-A (N=2,483,726) comb (N=32,238)
4 441 4 1 4 2,466
8 93 8 1 8 912

16 23 16 1 16 370
24 11 24 1 24 226
32 9 32 1 32 165

of the weights of all other tasks. The assignment of such a large task to its

favorite processor avoids the need for a second MaxMin-based assignment in future

iterations. A similar reasoning holds for the 32-way assignment of ClueWeb-B.

In fact, MaxMin is also expected to find a “good” solution in such assignment

instances. As seen in Tables 4.3–4.7, these are the only assignment instances

where MaxMin was able to find a solution with the same makespan as MaxMin+.

MaxMin+ versus RASA: Although RASA finds slightly better solutions than

MaxMin, MaxMin+ finds significantly better solutions than RASA in all assignment

instances, except for the 32-way assignment of ClueWeb-B and the assignment

instances of ClueWeb-A , where all three heuristics find solutions with the same

makespan. On average, MaxMin+ attains average load imbalance values of 177.74%

and 0.62% compared to 319.40% and 173.46% of RASA, for skewed and non-skewed

datasets, respectively. These results validate the success of the proposed adap-

tive selection policy of MaxMin+ over that of RASA. MaxMin+ is several orders of

magnitude faster than RASA in all assignment instances. On average, MaxMin+

runs 5953- and 333-times faster than RASA for skewed and non-skewed datasets,

respectively.
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Table 4.16: Number of MaxMin-based selections performed by MaxMin+ for
parallel SpMxV datasets

Dataset K m Dataset K m Dataset K m

barrier2-1 (N=113,076) language (N=399,130) olafu (N=16,146)
4 8,233 4 8,986 4 1,416
8 2,987 8 1,093 8 535

16 1,198 16 114 16 227
24 668 24 137 24 138
32 496 32 11 32 103

Lin (N=256,000) k3plates (N=11,107) big (N=13,209)
4 23,376 4 1,009 4 1,222
8 8,882 8 393 8 456

16 3,666 16 160 16 190
24 2,246 24 98 24 121
32 1,634 32 72 32 87

mark3jac060 (N=27,449) Zhao1 (N=33,861) dawson5 (N=51,537)
4 1,492 4 3,130 4 4,281
8 509 8 1,192 8 1,580

16 186 16 483 16 660
24 110 24 307 24 395
32 81 32 221 32 290

epb3 (N=84,617) lung2 (N=109,460) hood (N=220,542)
4 7,667 4 7,767 4 18,151
8 2,936 8 2,800 8 6,786

16 1,187 16 1,105 16 2,745
24 750 24 692 24 1,680
32 541 32 507 32 1,235

pre2 (N=84,617)
4 20,184
8 3,172

16 372
24 173
32 127
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Suff+ versus Suff: Out of 95 assignment instances, Suff+ finds better solu-

tions than Suff in 83 instances, whereas Suff finds better solutions than Suff+ in

only six instances. In the remaining six assignment instances (five assignment in-

stances of ClueWeb-A and the 32-way assignment of ClueWeb-B ), both Suff and

Suff+ find solutions with the same makespan. As seen in Table 4.8, in terms of

average load balancing quality, Suff+ shows comparable performance with Suff

for skewed datasets, whereas Suff+ performs better than Suff for non-skewed

datasets. On average, Suff+ attains average load imbalance values of 178.31%

and 0.51% compared to 178.12% and 1.37% of Suff, for skewed and non-skewed

datasets, respectively. As seen in Table 4.14, Suff+ is a few orders of magnitude

faster than Suff in all assignment instances. On average, Suff+ runs 6078- and

194-times faster than Suff for skewed and non-skewed datasets, respectively.

GA+ versus GA: As mentioned in Section 4.5, GA+ finds exactly the same solu-

tions as GA. However, GA+ is significantly faster than GA in all assignment instances.

On average, GA+ is 19-, 16-, 23-, 22-, and 38-times faster than GA in 4-, 8-, 16-, 24-,

and 32-way assignments, respectively. For the 16-way assignment of the largest

dataset ClueWeb-A, GA finds a solution in about 23 days while GA+ finds the same

solution in less than four hours, i.e., GA+ runs about 154 times faster than GA for

that assignment instance.

4.6.2.2 General Comparison

For general performance comparison, we will only consider MinMin+, MaxMin+,

Suff+, GA+, and RC since the improved versions perform better than their tradi-

tional counterparts and MaxMin+ performs significantly better than RASA.

For the six skewed datasets, both of the proposed hybrid algorithms, MaxMin+

and Suff+, find considerably better solutions than MinMin+, in terms of load bal-

ancing quality. Out of 30 assignment instances of skewed datasets, RC, MaxMin+,

and Suff+ find the best solutions in 14, 11, and 11 assignment instances, re-

spectively. As seen in Table 4.8, MaxMin+ and Suff+ respectively attain load
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imbalance values of 177.74% and 178.31% compared to 177.26% of RC, on av-

erage. Hence, MaxMin+ and Suff+ display comparable performance with RC in

terms of load balancing quality. However, both MaxMin+ and Suff+ are signifi-

cantly faster than RC in all of these 30 assignment instances. On average, MaxMin+

and Suff+ respectively run 2657- and 1588-times faster than RC. Hence, the use

of RC in large datasets is not feasible.

For skewed datasets, we recommend the use of MaxMin+. Because, as seen

in Tables 4.8 and 4.14, MaxMin+ is considerably faster than Suff+ and yields

comparable performance in terms of load balancing quality.

For the 13 non-skewed datasets, GA+ finds the best solutions in 51 assignment

instances out of 65 assignment instances in terms of load balancing quality. GA+

performs better than the other heuristics in assignment instances where MinMin+

already shows good performance (e.g., SpMxV and DVR datasets). This can

be attributed to the fact that GA+ improves the initial assignment provided by

MinMin+. Furthermore, GA+ is approximately two orders of magnitude slower

than MinMin+. Hence, to analyze the performance of MinMin+, we exclude GA+ in

the statistics given in the following paragraph to show the relative performance

of the algorithms in finding the best assignments.

Out of 65 assignment instances of the non-skewed datasets, RC, MinMin+,

MaxMin+, and Suff+ find the best assignments in 17, 17, 18, and 17 assignment

instances, respectively. As seen in Table 4.8, MinMin+, MaxMin+ and Suff+ re-

spectively attain load imbalance values of 0.62%, 0.62%, and 0.51% compared

to 0.61% of RC, on average. Hence, MinMin+, MaxMin+, and Suff+ display com-

parable load-balancing performance with RC for non-skewed datasets. However,

for these 65 assignment instances, MinMin+, MaxMin+, and Suff+ respectively run

2229-, 499-, and 236-times faster than RC, on average. Hence, the use of RC is not

feasible also for large non-skewed datasets. For these 65 assignment instances,

MinMin+ runs 13- and 52-times faster than MaxMin+ and Suff+, respectively, on

average. We observe a trade-off between the solution quality and running times of

MinMin+ and GA+. GA+ displays better load balancing performance than MinMin+,

whereas MinMin+ is significantly faster (110-times, on average).
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For non-skewed datasets, we recommend the use of MinMin+, since MinMin+

runs significantly faster than both MaxMin+ and Suff+ while achieving comparable

load balancing performance. The use of GA+ should be considered only if the

significantly higher running time of GA+ can be amortized by the improved load

balancing on the target application.
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Chapter 5

Geographically Distributed Web

Crawling: A Task Assignment

Approach

5.1 Web Crawling and Independent Task As-

signment

Web crawling is the process of locating, fetching, and storing the content available

in the Web [87]. It finds application in a wide range of areas including web

search engines, web archival systems, and data acquisition tasks involving web

data mining and processing. Depending on the application area, the performance

objectives of a web crawling system vary. For example, for a commercial web

search engine, primary objectives could be to cover a large fraction of the content

available in the Web and to keep the obtained content as fresh as possible [15].

For a data acquisition application (e.g., a focused web crawler that downloads

topic-specific content [22]), however, the speed at which the crawler discovers

relevant content may be a relatively more important objective.

A performance objective that is common to most web crawling applications
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is to attain high download speed, i.e., to maximize the amount of content fetched

from the Web per unit of time. Perhaps, the best example for this objective is an

archival system that continuously takes snapshots of web pages in time with the

goal of maximizing the number of distinct snapshots in its repository. In certain

cases, the download speed of a web crawling system may also have an impact on

the quality objectives [16, 44]. For example, as its download speed increases, the

crawling system can download more web pages, increasing its content coverage, or

can refetch downloaded pages more often, increasing the freshness of its content

repository.

So far, many attempts have been made to improve the efficiency of web

crawlers. Based on the type of parallelism employed within the crawling archi-

tecture, these efforts can be broadly classified under four headings, listed here in

increasing order of complexity: single-threaded, multi-threaded, multi-node, and

multi-site web crawling architectures. In its simplest form, a crawler is a single-

thread process that discovers and fetches the content by following the hyperlink

information within pages. Obviously, due to the sequential nature of content

acquisition, this type of crawling does not scale well in terms of the download

throughput. The possibility of fetching pages, concurrently, from different web

servers leads to multi-threaded crawling [58]. In this approach, the network band-

width available to the crawler is tried to be saturated until the context switching

overhead due to multi-threading becomes the main bottleneck. A slightly more

complex approach is to parallelize the crawling process over a multi-node sys-

tem (e.g., a cluster of computers) [25]. This approach allows scalability in terms

of multi-threading and memory consumption, with little parallelization overhead

in the form of inter-processor communication. Indeed, today’s large-scale web

crawlers (e.g., those used in commercial web search engines) are massively paral-

lel systems located in a large data center. A natural extension to parallelizing the

crawling process within a single data center is to distribute the process over mul-

tiple data centers that are geographically distant to each other [17]. Compared

to the centralized crawling architectures, geographically distributed web crawling

offers improved fault tolerance due to its resilience to network partitions, better

coupling with geographically distributed indexing, and higher download speeds
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since the network proximity can be exploited.

In this chapter, we concentrate on geographically distributed web crawling

architectures. In theory, such architectures may be highly distributed and involve

thousands or millions of crawlers (e.g., P2P web crawling). Herein, however, we

restrict our scope to a case where crawling is performed by several large-scale

data centers that are geographically distant to each other. We find this scenario

more interesting due to potential scalability issues in P2P-like web crawling and

the recent research interest in multi-site web search engines [6, 16,19].

In our setting, we assume that web servers are uniquely assigned to crawlers to

prevent redundant download of the same page by multiple crawlers. Hence, each

crawler independently crawls the content hosted on servers assigned to itself.

We also assume that, due to the potential variation in the hardware resources

available in data centers, web crawlers can be heterogeneous in terms of their

bandwidth and processing capacities. Finally, we take into account the fact that

a crawler’s download speed negatively correlates with its geographical proximity

to web servers, i.e., web crawlers should crawl the content hosted by nearby web

servers [17].

The above-mentioned assumptions and requirements lead to the geographi-

cally distributed web crawling problem, where the goal is to assign servers to

crawlers so that the download speed of the crawling system is maximized. We

show that this problem can be formulated as a task assignment problem, which

forms the focus of this chapter. In particular, we make the following contribu-

tions. We introduce two variants of the task assignment problem for geographi-

cally distributed web crawling architectures. We adapt several task assignment

algorithms taken from the literature to one of these problems. Finally, we con-

duct experiments using real-life web data collections and network statistics. The

obtained results demonstrate the potential performance improvements that can

be attained by the proposed task assignment approach over a relatively naive

baseline.

The rest of the chapter is organized as follows. In Section 5.2, we provide an
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Table 5.1: The notation used in this chapter
Symbol Description
A server-to-crawler assignment vector
A[i] assignment decision of server Si to crawler CA[i]
Bk bandwidth of crawler Ck
C set of web crawlers
Ck kth web crawler
G number of chromosomes in the genetic algorithm
H number of iterations in the genetic algorithm
K number of crawlers
Lk geographical location of crawler Ck
M makespan
N number of web servers
P set of processors
Pk kth processor
Ri,k round-trip network latency between Si and Ck
S set of web servers
Si ith web server
T set of tasks
Ti ith task
ti,k estimated time for Ck to crawl the content in Si
U a set of servers
X expected-time-to-crawl matrix
b index of the bottleneck crawler
c speed of light on copper wire
di,k geographical distance between Si and Ck
ek current load of Ck
i, j indices that refer to servers
k, ` indices that refer to crawlers
ni number of pages on server Si
wi amount of content in bytes on server Si
xi,k time required for crawler Ck to crawl server Si
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overview of the multi-site web crawling architecture that we consider in this chap-

ter and formally state the investigated task assignment problem for geographically

distributed web crawling. Several task assignment heuristics are discussed as po-

tential solutions in Section 5.3. In Section 5.4, we describe the cost model used

in simulations. Section 5.5 presents experimental findings regarding the crawling

performance. In Section 5.6, we provide a brief survey of the related work on

distributed web crawling. Table 5.1 summarizes the notation that we will use in

the rest of the chapter.

5.2 Server-to-Crawler Assignment Problem

5.2.1 Architecture

The envisioned crawling architecture involves a number of fixed-location data

centers that are geographically distant to each other (e.g., one data center per

major continent). Each data center is equipped with a limited amount of hard-

ware resources, i.e., bandwidth, storage, and computing power. Data centers can

be heterogeneous in terms of the amount and type of their hardware resources.

Each data center hosts a separate web crawler, which potentially runs on a large

cluster of computers.

In our architecture, a crawler fetches only the pages hosted by the web servers

assigned to itself. This leads to a natural partitioning of web servers as illustrated

in Fig. 5.1. The crawlers coordinate to avoid duplicate crawling of the same pages,

simply by exchanging the URLs, i.e., whenever a crawler discovers a URL belong-

ing to a web server that is assigned to a remote crawler, the URL is communicated

to that remote crawler where it will be fetched. We assume that the main perfor-

mance bottleneck in crawling is the network, i.e., sufficient processing power and

storage is always available. We also assume that the overhead of link exchanges

is negligible. These assumptions will shape the cost model that we will describe

in Section 5.4.
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DC2

DC1

DC4 DC3

Figure 5.1: A geographically distributed web crawling architecture with four data
centers (DC1–DC4), each crawling a non-overlapping subset of web servers (the
circles in the figure) in the Web.

In practice, depending on the application, crawled pages may be locally pro-

cessed without any coordination between the data centers (e.g., a data mining

application) or may be redistributed/replicated for indexing based on the past

usage patterns (e.g., a web search engine with a geographically distributed in-

dex [7, 11]). To be as general as possible, we do not tie our architecture to a

particular application. Hence, herein, we are not interested in the efficiency of

potential processing tasks which may follow the crawling process.

Finally, we note that our focus is not on incremental web crawling, where the

crawling system continuously crawls the web and tries to extend its frontier by

discovering new pages. We rather focus on a specific case where a fixed number

of servers are tried to be crawled (or re-crawled) by a geographically distributed

crawler. The closest use cases are a web archival system that periodically takes

snapshots of the Web or a search engine that aims to maintain the freshness of

its repository by re-crawling the same web content.
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5.2.2 Notation

We are given a set of web servers S = {S1, S2, . . . , SN} and a set of web crawlers

C = {C1, C2, . . . , CK}.1 Each server Si ∈ S is associated with two weights wi and

ni, which represent the amount of content (in bytes) and the number of pages

hosted by the server, respectively. Each crawler Ck ∈ C is associated with two

attributes: the geographical location Lk of the data center where the crawler is

running and the network bandwidth Bk available to the crawler.

For every server and crawler pair (Si, Ck), we are given the time cost incurred

to Ck if all content hosted in Si is downloaded by Ck, i.e., we have an expected-

time-to-compute (ETC) matrix

X =




x1,1 x1,2 · · · x1,K

x2,1 x2,2 · · · x2,K
...

...
. . .

...

xN,1 xN,2 · · · xN,K



, (5.1)

where xi,k denotes the estimated time for crawler Ck to crawl the content of server

Si. Note that, for the web crawling problem, the “compute” term means “crawl”.

The expected-time-to-compute matrix can also be read as expected-time-to-crawl

matrix.

In parallel computing literature, the ETC matrices are classified into two

categories: consistent and inconsistent [1,69]. In our context, the consistent ETC

matrices imply an ordering on the speed of crawlers. If a crawler Ck is faster

than another crawler C` in crawling a given web server, then Ck is faster than C`

in crawling any other web server as well. The inconsistent ETC matrices do not

imply any ordering. A crawler may be the fastest to crawl a given web server,

yet there may be a faster crawler for another server.

In our problem, the constructed ETC matrix is potentially inconsistent. For

two crawlers Ck and C`, the ordering between xi,k and xi,` for a server Si does not

1Throughout the text, the i and j indices will be used to refer to the servers while the k and
` indices will be used to refer to the crawlers.
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imply any ordering between xj,k and xj,` for another server Sj. In other words,

the crawler that can crawl a server in the shortest amount of time varies from

server to server. In the rest of the chapter, we refer to the fastest crawler for a

server as the favorite crawler of that server.

5.2.3 Problem

In this section, we present two variants of the server-to-crawler assignment prob-

lem for geographically distributed web crawlers.

5.2.3.1 Minimizing Total Crawling Time

In this version of the problem, the optimization objective is to assign the web

servers to the crawlers such that the total time spent by the system to download

the content of web servers is minimized. This problem can be formally defined

as an integer linear programming model:

minimize
∑

i,k

{xi,k × βi,k}

such that

βi,k ∈ {0, 1}, for each Si ∈ S, Ck ∈ C;∑

k

βi,k = 1, for each Si ∈ S,

where the decision variable βi,k indicates whether Si is assigned to Ck, i.e., βi,k is

1 if and only if Si is assigned to Ck, or 0, otherwise.

This problem instance can be solved by means of a greedy algorithm: Mini-

mum Execution Time (MET) [5,10,48], which assigns each server Si to its favorite

crawler. In other words, for each server Si, βi,k = 1 such that k = argmink xi,k.

MET is an exact algorithm, which finds an optimum solution, for this variant of

the problem. An O(KN)-time algorithm for MET is presented in Algorithm 5.1,

where A[i] denotes the index of the crawler responsible for crawling server Si.
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Algorithm 5.1 Met(X, K, N)
1: for i← 1 to N do
2: min ←∞
3: for k ← 1 to K do
4: if xi,k < min then
5: min ← xi,k
6: k′ ← k
7: A[i]← k′

8: return A

5.2.3.2 Minimizing Maximum Crawling Time

In this version of the problem, the objective is to minimize the workload of

the maximally loaded crawler (bottleneck crawler). This objective effectively

minimizes the duration of the crawling. As a solution, a formal integer linear

programming formulation is presented below:

minimize max
k

∑

i

xi,k × βi,k

such that

βi,k ∈ {0, 1}, for each Si ∈ S, Ck ∈ C;∑

k

βi,k = 1, for each Si ∈ S.

This optimization problem can be formulated as an independent task assign-

ment problem in heterogeneous computing systems. In this problem, we have

a set T = {T1, T2, . . . , TN} of N independent tasks, a set P = {P1, P2, . . . , PK}
of K heterogeneous processors, and an expected-time-to-compute matrix X =

{xi,k}N×K , where xi,k denotes the execution cost of task Ti on processor Pk. The

objective is to find a task-to-processor assignment that results in the minimum

turnaround time (makespan). In our problem context, Ti corresponds to the task

of crawling server Si, Pk corresponds to the crawler Ck, and xi,k corresponds to

the time required for crawler Ck to crawl server Si.

As mentioned earlier, the MET algorithm provides an exact solution to the first
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Algorithm 5.2 Mct(X, K, N)
1: for k ← 1 to K do
2: ek ← 0

3: for each i ∈ {1, . . . , N} in random order do
4: min makespan ←∞
5: for k ← 1 to K do
6: if ek + xi,k < min makespan then
7: min makespan ← ek + xi,k
8: k′ ← k
9: A[i]← k′

10: ek′ ← ek′ + xi,k′

11: return A

problem variant. We believe that from a research perspective, the second problem

variant is more complex and interesting. Moreover, it is more important in terms

of its implications in practice. Hence, in the rest of the chapter, we focus only on

the problem of minimizing the maximum crawling time.

5.3 Heuristic Solutions

In this section, we provide the most notable heuristics that are proposed in the lit-

erature as a solution for the independent task assignment problem. This problem

has been previously studied in the domain of parallel and distributed comput-

ing [10,35,39,63,77,97,103,107]. The problem is known to be NP-complete [63].

For the sake of a clear presentation, we describe the heuristics using the no-

tation we introduced before. For each heuristic, we provide an algorithm which

computes a server-to-crawler assignment in the form of a vector A of size N . A

vector element A[i] = k denotes the assignment of server Si to crawler Ck. In

all algorithms, the ek variable keeps track of the load that is currently assigned

to crawler Ck. All heuristics mentioned in this section (except for the genetic

algorithm) are constructive in nature, and they are based on greedy choices that

depend on the momentary completion times of crawling tasks.
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Algorithm 5.3 Ppb(X, K, N)

1: y ← dp×K/100e
2: for k ← 1 to K do
3: ek ← 0

4: for each i ∈ {1, . . . , N} in random order do
5: min makespan ←∞
6: τ ← Select(xi, y)
7: for k ← 1 to K do
8: if xi,k ≤ τ and ek + xi,k < min makespan then
9: min makespan ← ek + xi,k

10: k′ ← k
11: A[i]← k′

12: ek′ ← ek′ + xi,k′

13: return A

Minimum Completion Time (MCT) [5, 10]: This heuristic iterates over the

servers in an arbitrary order and assigns each server to a crawler that will result

in the minimum completion time for that server. An O(KN)-time algorithm for

MCT is presented in Algorithm 5.2.

p-percent Best (PPB) [78]: The heuristic is similar to the MCT algorithm. PPB

limits the assignment of servers only to the most favorite crawlers in the top p-

percent of crawlers, where 0 < p ≤ 100. When p = 100/K, PPB is equivalent to

MET. When p = 100, PPB is equivalent to MCT. An O(KN)-time algorithm for PPB

is presented in Algorithm 5.3. In the algorithm, SELECT refers to a function that

returns the yth smallest element in an array of values [34].

MinMin+ (MinMin+): The MinMin heuristic has been widely used in the lit-

erature as a benchmark to judge the performance of more recently proposed

heuristics. This heuristic performs N iterations, at each iteration, selecting an

unassigned server and assigning it to a crawler. The assignment decision is made

based on a two-step procedure. In the first step, a unique crawler is identified

for each unassigned server. The crawler is selected such that it will finish the

download of the server’s content at earliest time point (the current workloads

of crawlers are also taken into account), i.e., achieve the minimum completion
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time (MCT). In the second step, the server with the minimum MCT is selected

and assigned to the crawler identified in the first step. In the MinMin heuristic,

the assignment of servers with little content are performed in earlier iterations

while servers hosting large amounts of content are assigned later. We reduced

the time complexity of MinMin from O(KN2) to O(KN logN) without altering

the solution quality of the resulting assignments at all and achieving significant

runtime improvements. Details of MinMin+ can be found in Chapter 4.

MaxMin+ (MaxMin+): In the MaxMin heuristic, the servers are assigned to

crawlers after a two-step procedure, somewhat similar to that in MinMin. The

main difference is in the server selection policy in the second step, where MaxMin

selects the server with the maximum MCT (instead of the minimum MCT) and

assigns it to the crawler identified in the first step. Due to this selection policy,

MaxMin favors the assignment of servers with large amounts of content in earlier

iterations. MaxMin is an O(KN2)-time heuristic, which is too slow to be used in

practice when the number of tasks is large. We have proposed MaxMin+ heuristic,

which is a hybrid between MaxMin and MinMin+, aiming to improve MaxMin in

terms of both solution quality and running time. To this end, MaxMin+ adopts

the server selection policy of MaxMin or MinMin: When the load of the bottleneck

crawler changes, MaxMin+ behaves like MaxMin; otherwise, it behaves like MinMin.

The details of MaxMin+ heuristic is presented in Chapter 4.

Sufferage+ (Suff+): The Suff heuristic follows a similar procedure to that in

MaxMin and MinMin. The main difference is in that, in the first step of the process,

Suff computes the second MCT value for each server in addition to the MCT

value. In the second step, a sufferage value, which is defined as the difference

between the MCT and the second MCT values, is calculated for each server. The

Suff heuristic then selects the server with the largest sufferage value and assigns

it to the crawler identified in the first step. Like MaxMin, Suff is an O(KN2)-time

heuristic, and this quadratic running time complexity prevents its application to

problems with large number of tasks. The recently proposed Suff+ heuristic is a

hybrid between Suff and MinMin+. Suff+ adopts the selection criterion of Suff

whenever there will be an increase in the makespan or, otherwise, the selection

criterion of MinMin+. This way, Suff+ combines the speed of MinMin+ and the
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quality of Suff to obtain a faster heuristic that can be applied to large datasets.

The details of Suff+ can be found in Chapter 4.

Genetic Algorithm (GA): The use of GA for the solution of the independent task

assignment problem is described in [10]. In our problem setting, each chromosome

represents a different server-to-crawler assignment. Assuming G chromosomes,

one of the chromosomes is initially populated with MinMin while the remaining

G−1 chromosomes are populated with random assignments. Maintaining the best

assignment guarantees that the solution quality of GA is not worse than the quality

of MinMin. Crossover is implemented as a single random cross on the paired

chromosomes. Mutation is defined as reassigning a random server to a random

crawler. A faster GA algorithm, referred to as GA+, is obtained by replacing the

initial solver MinMin with faster MinMin+. The result is an asymptotically faster

algorithm. Details of GA+ algorithm is presented in Chapter 4.

5.4 Cost Model for Crawling Times

The task assignment heuristics described in Section 5.3 assume the availability

of an expected-time-to-crawl matrix. That is, the time cost xi,k for crawler Ck to

download the content on server Si is assumed to be known, for every (crawler,

server) pair. In practice, the xi,k values can be approximated by sampling pages

from web servers, by exploiting the information obtained in the previous crawling

sessions, or by relying on external services, such as Alexa2. In our chapter, since

we are conducting simulations, we rely on an analytical cost model. Although

the accurate estimation of the xi,k values is not the main focus of this chapter,

we try to devise a realistic cost model, as much as possible.

In our cost model, the time required for crawler Ck to download the content

of server Si is estimated as

xi,k = Ri,k + ti,k. (5.2)

Here, Ri,k represents the total round-trip network latency for establishing the

2http://www.alexa.com.
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TCP and HTTP connections between crawler Ck and server Si while ti,k denotes

the time that Ck spent while retrieving the content of Si over the network. Es-

sentially, the first summation term accounts for the propagation delay while the

second term accounts for the transfer time. If we assume that queueing delays

in the routers is negligible, these are the two common overheads in retrieving

content over the network.

When estimating the Ri,k values, we assume that the number of connections

that a crawler establishes to a server is proportional with the number of pages

in the server. This is because, in practice, the crawlers are expected to close the

established connection each time after a page is retrieved, due to the politeness

constraints. Hence, we write Ri,k as

Ri,k = 2× ni × ri,k, (5.3)

where ni denotes the number of pages in server Si and ri,k is the network latency

between Ck and Si. To estimate the ri,k values, we rely on the great-circle distance

estimation technique, assuming that the network latency correlates well with

geographical distance [61]. We estimate ri,k as

ri,k = c1 + c2 ×
di,k
c
, (5.4)

where c denotes the speed of light on copper wire (we use 200,000 km/s) and

di,k denotes the great-circle distance between Ck and Si. Here, c1 and c2 are

constants estimated by linear regression over sample latency values observed in

real life. Following [19], we use c1 = 8.239 ms and c2 = 1.983.

To calculate the di,k values, we use an IP-to-Geo database [80], which claims

to have an accuracy of 99.5% at the country level. For every server in our data,

using its IP address, we identify the country where the web server is hosted. The

great-circle distance between a server and a crawler is then approximated by the

distance between the capitals of the home countries hosting the server and the

crawler. We also add a constant value (set to 637 km) to account for the distance

between the capital and the actual city where the server is hosted.
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The second term in Eq. (5.2) depends on the amount of content to be down-

loaded from the server and the network bandwidth between the crawler and the

server. Herein, we make the simplifying assumption that the network bandwidth

between the crawler and any web server is determined by the download band-

width of the crawler. Hence, the time for crawler Ck to download the content of

server Si is estimated as

ti,k =
wi
Bk

, (5.5)

where wi is the amount of content (in bytes) on server Si and Bk is the bandwidth

of the crawler Ck.

In our cost model, we also take into account the freshness requirement of each

server, i.e., how frequently the pages of a server need to be crawled. In practice,

this is an application-specific parameter. For example, an archiving crawler may

give equal opportunity to each server, whereas a commercial search engine crawler

may prefer to recrawl pages on highly visited web servers more often.

In our model, we associate each server Si with a parameter fi that indicates

the frequency at which pages of Si are crawled. As an illustrative case, we assume

that the top-level pages in the directory hierarchy should be crawled more often

and compute the fi value as

fi =
ni

ni +
∑ni

p=1 si,p
, (5.6)

where si,p denotes the depth of a particular page p on server Si in the directory

hierarchy (i.e., the number of path separator characters in the URL of the page).

Given Eqs. (5.2)–(5.5), the total time that crawler Ck needs to crawl server

Si can now be written as

xi,k = fi × 2× ni ×
(
c1 + c2 ×

di,k
c

)
+ fi ×

wi
Bk

. (5.7)

We note that the second term in Eq. (5.7) decreases as the network bandwidth of

the crawlers increases. However, the first term is limited with the speed of light

and the characteristics of the physical network. Hence, the distance between
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Table 5.2: Properties of the datasets
Dataset # of servers # of pages # of countries Content size
ClueWeb-B 0.8 million 49.2 million 215 1.4 TB
ClueWeb-A 2.5 million 2.5 billion 232 28.3 TB
YWC 137.7 million 5.4 billion 248 229.3 TB
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Figure 5.2: The cumulative density distribution for the number of pages on
servers. x-axis (log scale): number of pages on servers, y-axis (log scale): cu-
mulative density distribution, i.e., P (X≥x).

the crawlers and web servers becomes more important with increasing network

bandwidth.

5.5 Experiments

5.5.1 Datasets

We conduct our simulations on three different web datasets: ClueWeb-B,

ClueWeb-A, and YWC (listed in increasing order of their size). The first two datasets

are part of the ClueWeb09 web page collection [31], which is obtained through a

large web crawl performed in 2009. ClueWeb-A contains all pages in the original

collection while ClueWeb-B contains a smaller subset of English pages. YWC is

the result of a considerably larger web crawl performed by Yahoo! in 2011. The

properties of the three datasets are displayed in Table 5.2.

Fig. 5.2 shows the cumulative density distribution for the number of web

pages on servers. In all datasets, we observe a highly skewed page distribution,
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Figure 5.3: The cumulative density distribution for the amount of content (in
bytes) on servers. x-axis (log scale): amount of content on servers, y-axis (log
scale): cumulative density distribution, i.e., P (X≥x).

i.e., there are many servers with few pages, but few servers with many pages.

Similarly, Fig. 5.3 provides the cumulative density distribution for the content

sizes of servers. We observe this distribution to be even more skewed. These

plots indicate high variation in task sizes, implying that our task assignment

problem is a relatively difficult one.

In Table 5.3, we display the distribution of web content on countries with the

largest presence in each dataset. The second column of each table, for a different

dataset, indicates the amount of content hosted by the web servers located in

a particular country. A bias in the content distribution can be noticed for the

ClueWeb-B and YWC datasets. The web pages in ClueWeb-B are skewed towards

European countries, potentially due to the small scale of this dataset and the fact

that it is limited to English pages (e.g., in the Netherlands, there are large web

hosts serving Wikipedia pages3. In case of YWC, we observe a strong bias towards

Asian countries. ClueWeb-A does not seem to have such a strong bias.

5.5.2 Centralized Crawling Performance

Table 5.4 shows the crawling performance for a centralized crawler located in a

particular country (the countries are limited to those in Table 5.3). In the table,

the “Days” column shows the number of days needed by a crawler located in a

country to download all of the pages in a dataset (e.g., it takes 47 days for a

3http://www.wikipedia.org
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Table 5.3: Distribution of web content on countries

Country Size (GB)
US 840.7
Netherlands 271.5
UK 52.2
Germany 40.4
Bulgaria 31.2
Canada 29.2
France 27.9
Italy 13.0
Australia 9.1
Turkey 7.8
China 7.4
Japan 6.8
Spain 6.5
Korea 5.5
Switzerland 4.7
Ireland 3.3

(a) ClueWeb-B

Country Size (GB)
US 11,930.8
France 5,852.8
China 3,087.7
Germany 1,731.8
Japan 1,195.6
UK 784.0
Spain 717.7
Netherlands 575.5
Korea 529.7
Italy 521.0
Canada 466.3
Bulgaria 350.6
Brazil 308.2
Switzerland 131.8
Australia 119.3
Taiwan 108.2

(b) ClueWeb-A

Country Size (GB)
US 76,237.4
Japan 31,445.3
Korea 15,584.4
China 12,695.8
Taiwan 11,830.8
UK 10,378.7
France 7,211.7
Germany 6,801.6
Spain 6,491.9
Italy 4,892.2
Hong Kong 3,866.2
Brazil 3,165.7
Russia 3,050.9
Canada 2,802.1
Australia 2,370.2
Vietnam 1,637.4

(c) YWC

crawler located in the US to download all pages in the ClueWeb-B dataset). The

last column of the tables shows the relative performance of a crawler with respect

to the best crawler for a particular dataset. According to the table, the crawler

located in the US is the fastest crawler for all datasets. This is mainly because

this country hosts large amounts of web content and its geographical location is

suitable for faster web crawling.

Fig. 5.4 demonstrates the impact of assigning a server to a faster crawler.

The bottom curve in the figures represents the cumulative density distribution

for the total download time, assuming that a server is always assigned to its

favorite crawler (the one that can crawl a server in the shortest amount of time).

The top curve shows the same information, but assuming that each server is

assigned to the crawler with the worst performance for that server. The curve

in the middle represents the average performance over all possible crawlers. On

average, we observe an order of magnitude difference between the crawling times

of the best and worst crawlers of a server. We also observe that the average

crawling time is about only half of that of the worst crawler. This is expected
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Table 5.4: Performance of a centralized crawler located in a particular country

Country Days %∆
US 47 0.0
Canada 61 30.8
Turkey 63 35.8
UK 67 44.1
Germany 69 47.5
Netherlands 83 78.1
China 84 80.9
Spain 101 117.9
Australia 102 119.2
Switzerland 107 128.7
Korea 157 237.1
Japan 182 291.1
Italy 187 301.7
Bulgaria 189 305.2
France 204 338.9

(a) ClueWeb-B

Country Days %∆
Canada 2,142 0.0
UK 2,647 23.6
US 2,717 26.8
China 3,514 64.0
Germany 3,890 81.6
Netherlands 3,964 85.1
Australia 4,806 124.3
Spain 4,832 125.5
Brazil 5,883 174.6
Switzerland 5,883 174.6
Korea 7,509 250.5
Japan 9,668 351.3
Bulgaria 10,153 374.0
Italy 10,173 374.9
France 11,029 414.8

(b) ClueWeb-A

Country Days %∆
US 10,719 0.0
Germany 11,635 8.5
Canada 11,750 9.6
UK 11,760 9.7
China 12,215 13.9
Spain 12,307 14.8
Brazil 12,832 19.7
Hong Kong 13,234 23.5
Australia 13,751 28.3
Japan 13,931 30.0
Russia 14,552 35.8
Taiwan 14,572 35.9
Korea 14,678 36.9
Italy 15,458 44.2
France 15,853 47.9

(c) YWC
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Figure 5.4: Log-log plots of the cumulative density distribution of best, average,
and worst crawler download times of servers in seconds. x-axis: download times,
y-axis: cumulative density distribution, i.e., P (X≥x).
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because the crawlers are somewhat evenly distributed over the globe. In general,

we find that the distance between a web server and its best performing crawler is

relatively small when compared to the average distance between the server and

other crawlers.

5.5.3 Performance of Task Assignment Heuristics

Crawler placement. Our simulations require assigning a fixed number of crawlers

to different geographical locations.4 To this end, we adopt a simple approach

and virtually place the crawlers in the top K countries with highest presence in

a dataset. For example, in a simulation using four crawlers and the ClueWeb-A

dataset, the crawlers are assumed to be located in the United States, France,

China, and Germany, i.e. the top four countries in Table 5.3(b).

The simulations are conducted with four different crawler counts: K =

2, 4, 8, 16, for each dataset. Each dataset and K combination forms a differ-

ent assignment instance in our simulations. Since we have three datasets and

four different K values, we have a total of 12 assignment instances.

Baseline. We compare the heuristics presented in Section 5.3 against a simple

baseline. We simply generate virtual Voronoi cells for each crawler on the surface

of the Earth and assign each server to the geographically closest crawler. If the

bandwidth of the crawlers are assumed to be equal, the cost model we described

in Section 5.4 implies that the crawler that obtains the minimum xi,k value for a

server is the one with the smallest di,k value. In that case, this baseline becomes

equivalent to the MET heuristic, described in Section 5.2. This is illustrated below.

argmin
k

xi,k = argmin
k

{
2× ni ×

(
c1 + c2 ×

di,k
c

)
+
wi
Bk

}
(5.8)

= argmin
k

{
2× ni ×

(
c1 + c2 ×

di,k
c

)}
(5.9)

= argmin
k
{di,k} (5.10)

4In this work, we are not interested in the dual problem of finding the best possible crawler
locations.
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Setup. The heuristics are implemented in the Java programming language.

The simulations are carried out on a Linux workstation equipped with six 2100-

MHz quad-core CPUs and 132 GB of memory. Since the MCT, PPB and GA+

heuristics involve non-deterministic components, these heuristics were executed

10 times with different random seeds for each assignment instance and the average

performance figures are reported. Due to the high running time and extremely

high memory requirements of the GA+ heuristic, it was not feasible to complete

the simulations on the YWC dataset for this heuristic. The incomplete results are

indicated by “–” in the tables.

Load balancing performance. One of the important performance metrics is

the imbalance in the total crawling times of the crawlers. We define the load

imbalance %LI of an assignment heuristic relative to the ideal makespan as

%LI =
M −M∗

M∗ , (5.11)

where M denotes the makespan of the assignment produced by the heuristic and

M∗ denotes the ideal makespan for the given assignment instance. The ideal

makespan is computed as

M∗ =
W ∗

tot

K
=

∑
i mink{xi,k}

K
, (5.12)

where W ∗
tot is a lower bound on the total crawling time that would be attained

if each server was assigned to its favorite crawler. Note that the M∗ value is a

rather loose lower bound on the makespan, i.e., the optimal makespan is very

likely to be greater than M∗.

Table 5.5 displays the load imbalance values for the 2-, 4-, 8-, and 16-way

assignments produced by the evaluated task assignment heuristics. The bold

values in each row indicate the best performing heuristic(s) for the corresponding

assignment instance. As seen in Table 5.5, the baseline leads to relatively large

imbalance values, especially when K is high. The PPB and MCT heuristics display

similar performance. There are, however, some performance differences in certain

assignment instances. For example, the load imbalance of PPB is much lower than

that of MCT, for the (K = 4, ClueWeb-A) assignment instance. The attained load
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Table 5.5: Percent load imbalance values
Task assignment heuristics

Test K Baseline PPB MCT MinMin+ MaxMin+ Suff+ GA+

ClueWeb-B

2 36.42 36.42 26.20 16.93 13.46 14.38 14.42
4 48.69 48.45 48.34 63.90 18.16 22.60 60.01
8 330.56 164.43 166.60 208.47 103.22 104.62 199.73

16 794.61 384.27 361.94 420.30 244.72 244.72 410.51

ClueWeb-A

2 49.64 49.64 44.26 16.80 21.05 21.02 15.97
4 32.77 22.29 53.80 16.02 11.53 11.31 14.40
8 216.18 79.36 86.02 76.81 58.32 61.19 74.32

16 663.36 169.77 152.95 171.83 128.95 127.51 168.50

YWC

2 6.33 6.33 30.87 1.24 0.47 1.34 –
4 23.09 27.01 53.01 7.58 5.46 5.80 –
8 97.33 55.59 67.70 23.91 18.77 17.76 –

16 367.85 110.73 110.71 96.74 68.98 69.54 –

imbalance values are 222.24%, 100.20%, and 96.19%, on average, for the baseline,

MCT, and PPB heuristics, respectively.

According to the table, MinMin+ shows a relatively inferior performance. It

has an average load imbalance of 93.38%, which is slightly better than that of PPB.

We observe MaxMin+ to perform considerably better. It is the winning heuristic in

eight out of 12 assignment instances. Suff+ is the closest heuristic to MaxMin+ in

terms of load balancing performance. The average load imbalance values attained

by MaxMin+ and Suff+ are 57.76% and 58.48%, respectively.

Since GA+ exploits the initial solutions provided by MinMin+, we may expect

it to perform better than MinMin+. In our results, however, we observe only a

small improvement. Excluding the YWC dataset, the average load imbalance for

GA+ is 119.73% while it is 123.88% for MinMin+. GA+ can find the best solution

for the (K = 2, ClueWeb-A) assignment instance. However, there are assignment

instances where GA+ fails to find a comparable solution. For example, for the

(K = 16, ClueWeb-B) assignment instance, GA+ finds a solution with a load

imbalance of 410.51 while Suff+ and MaxMin+ have a load imbalance of 244.72,

on average.

Makespan. As a better indicator of the crawling performance, in Table 5.6, we
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Table 5.6: Expected crawling duration (in days)
Task assignment heuristics

Test K Baseline PPB MCT MinMin+ MaxMin+ Suff+ GA+

ClueWeb-B

2 5.5 5.5 5.1 4.7 4.6 4.6 4.6
4 2.7 2.7 2.7 3.0 2.2 2.2 2.9
8 2.7 1.7 1.7 1.9 1.3 1.3 1.9

16 2.6 1.4 1.3 1.5 1.0 1.0 1.5

ClueWeb-A

2 152.1 152.1 146.7 118.7 123.1 123.0 117.9
4 51.2 47.1 59.3 44.7 43.0 42.9 44.1
8 47.0 26.6 27.6 26.3 23.5 23.9 25.9

16 46.8 16.5 15.5 16.7 14.0 13.9 16.5

YWC

2 1,158.8 1,158.8 1,426.3 1,103.4 1,095.0 1,104.4 –
4 447.4 461.6 556.1 391.0 383.3 384.5 –
8 278.0 219.2 236.2 174.5 167.3 165.9 –

16 237.4 106.9 106.9 99.8 85.7 86.0 –

display the expected crawling times (in days) for the bottleneck crawlers in each

assignment instance. The results in the table demonstrate how load imbalance

affects the duration of crawling. As an example, for the (K = 16, YWC) assignment

instance, the assignment generated by the baseline has an expected crawling

time of 237.4 days while the assignment generated by MaxMin+ has an expected

crawling time of only 85.7 days.

According to Table 5.6, increasing the number of crawlers considerably im-

proves the performance. For example, for the (K = 2, YWC) assignment instance,

MaxMin+ finds a solution with an expected crawling time of 1095.0 days while,

for the (K = 4, YWC) assignment instance, the expected crawling time reduces to

383.3 days. This improvement is super linear since the expected crawling time

has decreased by a factor of about 2.86 while K is doubled. In general, we ob-

serve similar super-linear improvements in large datasets and low K values. As

K increases, the performance gains are lower since the assignment of very large

servers begin to determine the makespan.

Execution time. Table 5.7 displays the running times of the heuristics. All

heuristics are sufficiently fast to be useful in practice as their running times are

much smaller compared to the gains in crawling times. In general, the running

time of most heuristics increases with increasingK. The running times of MaxMin+
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Table 5.7: Execution times (in seconds)
Task assignment heuristics

Test K Baseline PPB MCT MinMin+ MaxMin+ Suff+ GA+

ClueWeb-B

2 0.0 0.3 0.2 1.9 9.5 14.0 2,135.3
4 0.0 0.4 0.4 6.5 5.8 7.5 2,793.1
8 0.0 0.8 0.5 10.0 14.0 14.7 3,590.5

16 0.2 1.5 1.1 23.7 24.9 21.2 3,720.0

ClueWeb-A

2 0.1 1.5 1.2 11.1 171.3 268.1 7,696.0
4 0.1 2.2 1.8 21.5 26.1 25.3 8,965.3
8 0.1 3.1 3.2 59.2 46.4 58.2 27,306.5

16 0.2 6.2 4.9 100.8 86.3 121.1 13,212.2

YWC

2 3.7 151.8 133.4 1,231.4 33,438.0 68,740.4 –
4 5.0 230.9 180.6 2,387.5 3,716.3 8,744.0 –
8 7.3 312.0 280.6 5,078.4 2,393.8 5,129.7 –

16 14.5 598.4 530.9 3,697.1 3,225.0 3,985.9 –

and Suff+ exhibit a slightly different behavior as the lowest running times are

not achieved when K = 2. This can be explained by the variation in the ratio of

faster MinMin+-based assignments.

5.6 Related Work on Web Crawling

A large body of literature exists on web crawling [9, 22, 26, 27, 30, 44, 83, 88, 106].

Some practical crawler designs are disclosed in [58, 73, 102, 109]. For a survey of

literature on web crawling, interested reader may refer to [87]. A good overview

of practical issues in parallel web crawling can be found in [25]. Herein, we omit

the previous works on parallel web crawling [9,25,58,102,109], and focus mainly

on geographically distributed web crawling [16,17,40,41,49].

In [17], where simulations are conducted to assess the performance benefits in

crawling the Web from multiple, geographically distant data centers. Significant

improvements are reported in page download throughput relative to the cen-

tralized web crawling scenario. However, [17] does not algorithmically treat the

server-to-crawler assignment problem (the web servers are assigned to crawlers

based on the servers’ top-level country domains). The work in [49] formulated
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the assignment problem as a geographically focused web crawling problem.

A few works considered reducing the communication cost of inter-crawler link

exchange. In [18], a combinatorial model for assigning web pages to crawlers

is proposed to minimize the amount of inter-crawler link exchange. This work,

assumes that the Web is crawled from a central location, by crawlers running on

the nodes of a large cluster. In [25], the communication overhead of link exchange

is investigated for a parallel crawling setting. This work suggests exchanging the

links in batch mode, at regular time intervals. In our work, we do not focus on

this type of an overhead as we assume that the volume of link data exchanged

between crawlers will be orders of magnitude lower relative to the volume of data

downloaded from web servers.
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Chapter 6

Independent Task Assignment of

Very Large Sets: A Multi-Level

Approach

In this chapter, we propose a multi-level task-to-processor assignment approach,

which can yield good solutions in reasonable time even when the number of tasks

in the dataset is very large. We will refer to this approach as Multi-level later

on. As summarized in Section 2.3, multi-level paradigm has been successfully and

widely used in solving the graph and hypergraph partitioning problems. The al-

gorithms have three stages: coarsening, initial solution, and uncoarsening. Those

algorithms use the connections (edges) of the underlying model especially in the

coarsening and uncoarsening phases. However, in the independent task assign-

ment problem, there is no underlying connections between tasks, thus most of the

coarsening techniques used in the graph/hypergraph partitioning are not suitable

for the independent task assignment. In this chapter, while we follow the main

structure of coarsening-initial solution-uncoarsening phases in our multi-level al-

gorithm, we propose novel techniques for those phases, designed especially for the

independent task assignment problem on very large datasets.
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Similar to its use in multi-level graph/hypergraph partitioning, our multi-

level assignment approach involves three phases: task coarsening, initial task-

to-processor assignment, and task uncoarsening. The key components in these

phases are the task clustering metric and its efficient implementation used in

the coarsening phase, the assignment heuristic used in the initial assignment

phase, and the iterative refinement technique used in the uncoarsening phase.

We describe each phase, emphasizing the above-mentioned components.

The rest of the chapter is organized as follows. In Section 6.1, we present a

novel coarsening algorithm. In Section 6.2, we present techniques to find an initial

solution for the coarsest assignment instance. In Section 6.3, we propose refine-

ments for the uncoarsening phase of the multi-level algorithm. In Section 6.4,

experimental setup and results are presented.

6.1 Coarsening

In the coarsening phase, the original task-to-processor assignment problem

(T 0, X0) is coarsened through a Z-level coarsening process into a sequence

of smaller assignment instances
〈
(T 1, X1), (T 2, , X2), . . . , (T Z , , XZ)

〉
such that

|T 0| ≥ |T 1| ≥ . . . ≥ |T Z |, where the processor set P remains unchanged. At each

coarsening level z, the tasks in set T z−1 are clustered via matching heuristics.

Every cluster of tasks in T z−1 forms a separate super-task in the coarser set T z.
The number of coarsening levels, Z, is determined, on the fly, by the number of

tasks in the current coarsest set, i.e., the coarsening stops when |T Z | drops below

a threshold (typically, around 1000).

At each coarsening level z, the matching heuristic performs multiple iterations

over the tasks in T z−1. At each iteration, two tasks Ti and Tj are selected from

T z−1 and clustered together, creating a new super-task Tij in T z. Tij effectively

inherits all previous tasks clustered in Ti and Tj. In order for a solution of the

coarse assignment instance (T z, Xz) to be good with respect to that of (T 0, X0),

the ETC value xij,k of the super-task Tij is computed as the sum of the respective

114



ETC values of Ti and Tj, i.e.,

xij,k = xi,k + xj,k for k = 1, . . . , K. (6.1)

This is required when we evaluate the quality of a solution of a coarser assignment

instance to that of the original assignment instance. In this way, the makespan

of the solution found for a coarser task-to-processor assignment instance will be

equal to the makespan of the solution of the finer assignment instances including

the original instance.

6.1.1 Dissimilarity Metric for Matching

The objective in the matching heuristic is to cluster tasks with similar execution

features during the coarsening phase. When matching two tasks, we adopt an

optimistic measure that computes the opportunity loss in the best-case execution

times observed for the given matching. More specifically, given two tasks Ti and

Tj, our measure computes the minimum possible execution times, separately, for

the two cases where the tasks are matched or not matched. If the two tasks

are individually assigned to their favorite processors without any matching, the

minimum execution cost for the two tasks will be is equal to

min
k
xi,k + min

k
xj,k. (6.2)

If the two tasks are matched into a super-task Tij, however, the minimum execu-

tion cost for the two tasks becomes

min
k

(xi,k + xj,k) (6.3)

The difference between the two cost values given in Eqs. 6.2 and 6.3 defines the

following dissimilarity metric

αij = min
k

(xi,k + xj,k)−
(

min
k
xi,k + min

k
xj,k

)
. (6.4)

αij is a dissimilarity metric because it shows the potential increase in execution

times due to matching under the relaxed assumption that the tasks can always be
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assigned to their favorite processors. Lower αij values imply favorite processors

with a similar execution performance for tasks Ti and Tj. αij is always nonneg-

ative and αij becomes zero when the favorite processors of Ti and Tj are the

same.

6.1.2 Efficient Matching Algorithm

At each coarsening level, after we compute all possible αij values between the

task pairs, the problem of finding the best matching can be formulated as the

minimum-weight graph matching problem. There exists an optimal solution for

this problem [71], but it is computationally very expensive. A faster but subopti-

mal solution is based on sorting all possible task pairs in increasing order of their

αij values. Then, the pairs are visited in this order and the tasks in a pair are

matched if neither of the tasks is matched before. In practice, even this solution

is quite expensive since it requires O(N2 logN) time.

In our work, we use an effective two-stage matching heuristic that runs in

reasonable time. The main objective of the proposed algorithm is to avoid com-

puting αij values between all task pairs which incurs O(N2) time. In the first

stage, we compute the favorite κ processors of each task. A task is considered

for clustering with only the tasks that have an identical κ-favorite-processor set.

Note that the favorite-processor ordering information of the tasks are not pre-

served in these sets. That is, two tasks considered for matching may have differ-

ent favorite-processor orderings. To efficiently compute the candidate processor

sets, we generate buckets for κ-favorite-processor sets and place each task to its

corresponding bucket. We utilize a trie data structure to effficiently access the

corresponding bucket. While placing a task to a bucket, we consider matching

task pairs whose favorite processors are identical. The buckets also contain a

favorite-processor-to-task map to retrieve identical processors in O(1) time. Note

that these task pairs will have the minimum possible α values of zero. In the sec-

ond stage, we use the above mentioned O(N2 logN)-time random-visit algorithm

on the remaining unmatched tasks, where N is equal to the number r of tasks

that remained unmatched after the first stage.
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To prevent further clustering of tasks with larger weights, we use a filtering

approach. In particular, if the minimum execution time of a task is larger than

a threshold, the corresponding vertex is not considered for matching. After some

empirical analyses, we decided to use the minimum execution time of the 250th

largest task as the threshold value. This is especially useful if the dataset is

skewed.

The proposed matching algorithm is illustrated in Algorithm 6.1, where Ψ is

the set that maintains the matched tasks and U is the set of unassigned tasks.

Ψ is also the output of the algorithm. These two sets are initialized at lines 1

and 2. The for loop at lines 4–18 visits each task Ti in random order for a possible

matching. The threshold if-block at lines 5–8 prevents matching of largest tasks

using the given size threshold. Line 9 finds the favorite κ processors of task

Ti and line 10 determines the bucket for this κ-processor set using a trie data

structure. Line 11 determines the favorite processor k of task Ti. The if-then-else

block at lines 12–18 checks whether there exists a task Tj with the same favorite

processor k of Ti in the same bucket. If such a task Tj is found, Ti and Tj are

matched and Tj is removed from the bucket at lines 16–18. Otherwise task Ti

remains unmatched in the current iteration and it is added to the bucket for a

possible matching in the following iterations. Lines 20–26 calculate and sort the

αij values for the remaining unmatched tasks. Lines 27–30 traverse the αij pairs

in ascending order and try to match the unmatched tasks.

The running time analysis of the matching algorithm for a coarsening level

that contains Nz = |Sz| tasks is as follows: The threshold if-block (lines 5–8)

executes in O(K) time. Line 9 also executes in O(K) time. Using the trie data

structure, line 10 runs in O(κ log κ) time. Finding the favorite processor takes

O(K) time. Utilizing the favorite-processor-to-task map, line 12 runs in O(1)

time. The rest of the loop runs in O(1) time. An iteration of the for loop at

lines 4–18 runs in O(K + κ log κ) time. So the first stage of the algorithm runs

in O(KNz + κNz log κ) time.

The second stage executes in O(r2 log r) time, where r is the number of un-

matched tasks after the first stage. So, the running time of the overall algorithm
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Algorithm 6.1 Matching(X, K, N , threshold , κ)

1: Ψ← ∅ . Ψ: set of matched tasks
2: U ← {1, 2, . . . , N}
3: . First stage:
4: for each i ∈ {1, . . . , N} in random order do
5: if mink{xi,k} > threshold then . large task, do not cluster
6: U ← U − {i}
7: Ψ← Ψ ∪ {〈i〉}
8: continue loop i

9: processorSet ← FavoriteProcessors(i, K, κ)
10: bucket ← BucketOf(processorSet )
11: k ← argmink xi,k
12: if (j ← TaskWithFavoriteProcessor(bucket, k)) is nil then
13: . j is the task with favorite processor Pk in the bucket, if any
14: AddToBucket(bucket , i, k)
15: else
16: Ψ← Ψ ∪ {〈i, j〉}
17: U ← U − {i, j}
18: RemoveFromBucket(bucket , j)

19: . Second stage:
20: D ← ∅
21: for each i ∈ U do
22: for each j ∈ U do
23: if i 6= j then
24: αij ← mink (xi,k + xj,k)− (mink xi,k + mink xj,k)
25: D ← D ∪ {〈i, j, αij〉}
26: Sort(D) . sort D array by ascending αij values
27: for each 〈i, j, αij〉 ∈ D do
28: if i ∈ U and j ∈ U then . not matched yet
29: Ψ← Ψ ∪ {〈i, j〉}
30: U ← U ∪ {i, j}
31: return Ψ
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is O(NzK+κNz log κ+ r2 log r). The following proofs discuss the total execution

time of the coarsening phase.

Lemma 6.1.1 The number r of tasks that remained unmatched after the first

stage is at most κ
(
K
κ

)
.

Proof: In a bucket, there can be at most κ unmatched tasks, because of the

strategy of matching tasks with identical favorite processors in a bucket. There

are at most
(
K
κ

)
buckets, and thus the number r of tasks that remained unmatched

after the first stage is at most κ
(
K
κ

)
. �

Lemma 6.1.2 For κ = 2, the running time of a coarsening level z is O(NzK +

K4 logK).

Proof: For κ = 2, the running time of a coarsening level z is

O(NzK + κNz log κ+ r2 log r). (6.5)

Given κ = 2 and the constraint on r,

r ≤ κ

(
K

κ

)
= K2 −K, (6.6)

the running time of a coarsening level z becomes O(NzK +K4 logK). �

Theorem 6.1.1 The running time of the total coarsening phase is O(NK +

K4 logK logN) for κ = 2.

Proof: Only very few large tasks are excluded from matching and all remaining

tasks (expect possibly one) are matched. Hence, we can assume that the number

of tasks reduce by a factor of two at each coarsening level. Thus, the number

of levels is at most O(logN) and the running time of the total coarsening phase

becomes

O

(
logN∑

z=0

(
K
N

2z
+K4 logK

))
= O(NK +K4 logK logN), (6.7)
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for κ = 2. �

Note that, if N/ logN = Ω(K3 logK) then running time of the total coarsen-

ing phase becomes O(NK) for κ = 2.

6.2 Initial Task-to-Processor Assignment

In this phase, we obtain an initial task-to-processor assignment by running one

of the constructive heuristics on the coarsest assignment instance (T Z , XZ). We

experimented with constructive assignment heuristics for this phase, and MinMin+

appeared to be the best choice, even for the skewed datasets. MaxMin+ and Suff+

are executing much better on the skewed datasets as we report in Chapter 4.

The multi-level task clustering approach adopted in the coarsening phase have

the tendency to balance the execution costs of super-tasks, thus decreasing the

skewness of the assignment instances as the coarsening proceeds, leading to a

most-probably non-skewed assignment instance at the coarsest level. In Chap-

ter 4, MinMin+ is already found to perform better than MaxMin+ and Suff+ in the

independent task assignment of non-skewed datasets. This reason stands as an

explanation of better performance of MinMin+ compared to MaxMin+ and Suff+

as an initial assignment algorithm even for the skewed datasets.

6.3 Uncoarsening

During the uncoarsening phase, the solution AZ found in the initial assignment

phase for the coarsest assignment instance (T Z , XZ) is projected back to a solu-

tion A0 for the original assignment instance (T 0, X0) by going through the finer

instances (T Z−1, XZ−1), . . . , (T 0, X0). That is, at each level z of the uncoars-

ening phase, the task-to-processor assignment Az+1 found for T z+1 is projected

back to a task-to-processor assignment Az for T z. In this projection, the con-

stituent tasks Szi and Szj of each super task Sz+1
ij are both assigned to the same

processor to which Sz+1
ij is assigned, i.e., Az[i] = Az[j] = Az+1[ij]. Because of the
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clustering scheme adopted in the coarsening phase (see Eq. 6.4), the assignment

Az obtained by the projection has the same makespan with the assignment Az+1.

Fortunately, Az can be improved further in the finer level because of the higher

degree of freedom in the task-to-processor assignment of the finer level compared

to the coarser level. That is, for a super task Sz+1
ij , Szi and Szj are restricted to

be assigned to the same processor at the coarser level z + 1, whereas they have

the flexibility of being assigned to different processors at the finer level z.

The task-to-processor assignment obtained by the projection is improved

through a number of refinement passes, each involving a sequence of reassign-

ments of tasks to processors. We will describe our proposed refinement methods

in the following subsections.

6.3.1 Move Refinement

Move refinement is a refinement method where at each transaction a single change

in the assignment of a single task is considered, i.e., we move a single task from

one processor to another. At the beginning of each refinement pass, for each

processor Pk, a task reassignment list is obtained by sorting the tasks assigned

to Pk in decreasing order of their execution costs with respect to Pk. For each of

the reassignment lists, we maintain a pointer that initially shows the first task in

the list. The tasks of the bottleneck processor are traversed in the given order

for reassignment. This reassignment scheme is adopted because a possible reas-

signment of a task with the maximum execution time to a bottleneck processor

(Pb) is likely to decrease the makespan more than the others. For each task in

the list, we consider all reassignments that do not increase the makespan and, for

those target processors, we compute the reassignment gains. Then, we choose the

one with the maximum gain. If the maximum reassignment gain of the current

task to any other processor is positive, then we reassign the task to the target

processor and advance the pointer for the list of Pb. If the gain is not positive, we

skip the current task by advancing the pointer anyway. A reassigned task is not

included in the reassignment list of the target processor. Hence, this task is not

considered for further reassignments in the current pass. A task reassignment
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may also change the bottleneck processor Pb. If bottleneck processor changes,

the traversal continues on the list of the new bottleneck processor starting from

the respective pointer. A refinement pass ends when the last task of the current

bottleneck processor is processed for reassignment. In an uncoarsening level, the

refinement passes are terminated until there is no change in the assignments in a

pass.

The task reassignment gains are computed based on the decrease in the

makespan due to the reassignment. That is, the gain of assigning to a processor

Pk a task Ti that is already assigned to a bottleneck processor Pb is computed as

gi(b→ k) = eb −max{eb − xi,b, ek + xi,k}. (6.8)

Here, eb and the max term denote the maximum load of processors Pb and Pk

before and after the reassignment, respectively.

A single pass of the refinement step is illustrated in Algorithm 6.2. Here,

SRLk represents the task reassignment list of processor Pk. Each pk value de-

notes the pointer maintained for the corresponding task reallocation list SRLk.

sk denotes the number of tasks initially assigned to processor Pk. The first two

loops (lines 1–9) initialize and calculate the pk, sk, and SRLk variables. The third

loop (lines 10–11) sorts the SRLk arrays in decreasing order of xi,k values. Line 12

determines the bottleneck processor. The while-loop traverses the task reassign-

ment list of the bottleneck processor and stops when the list of the bottleneck

processor is exhausted. The first for-loop inside the while-loop considers all pro-

cessor alternatives and tries to find one with a positive gain. If a processor with

a positive gain is found, lines 23–26 perform the reassignment. In this algorithm,

the gain of an individual task reassignment can be computed in O(K) time. Since

at most Nz reassignments are considered in a single pass, the running time of a

single reassignment pass is O(NzK) at level z of the uncoarsening phase.
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Algorithm 6.2 MoveRefinement(X, K, N , A)
1: for k ← 1 to K do
2: pk ← 1
3: sk ← 0
4: ek ← 0

5: for i← 1 to N do
6: k ← A[i]
7: sk ← sk + 1
8: SRLk,sk ← i
9: ek ← ek + xi,k

10: for k ← 1 to K do
11: Sort(SRLk) . sort SRLk array by decreasing xi,k values

12: b← argmaxk ek
13: while pb ≤ sb do
14: i← SRLb,pb
15: maxg ← −∞
16: time gain ← −∞
17: for k ← 1 to K do
18: g ← eb −max{eb − xi,b, ek + xi,k}
19: if g > maxg or (g = maxg and time gain < xi,k − xi,b) then
20: maxg ← g
21: time gain ← xi,k − xi,b
22: kmax ← k
23: if maxg > 0 or (maxg = 0 and time gain > 0) then
24: A[i]← kmax
25: eb ← eb − xi,b
26: ekmax ← ekmax + xi,kmax

27: pb ← pb + 1
28: b← argmaxk ek
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6.3.2 Swap Refinement

Move refinement works well when there is room to move tasks between processors.

However, if all processors are balanced then move operations are not allowed

since all moves will increase bottleneck values. This is the case even if the move

of the task drastically decreases total execution time. On the other hand, swap

operations, which is the exchange of assigned processors for a selected pair of

tasks, may still refine the assignments.

The swap reassignment gains are computed based on the decrease in the

makespan due to the reassignment. The gain of exchanging a task Ti assigned to

a bottleneck processor Pb, with a task Tj assigned to a processor P` is computed

as

gij(b↔ `) = eb −max{eb − xi,b + xj,b, e` − xj, `+ xi,`}. (6.9)

If we consider each possible pair at each swap operation, the algorithm would

run in O(N3
z ) time: O(N2

z ) time is to traverse every possible pair and the op-

eration is repeated after each successful swap. This is quite impractical except

for the smallest values of Nz. We thus investigate better approaches to consider

candidates of the swap operation.

The approach of move refinement to traverse candidate tasks will also be

our base for the swap refinement. Similar to the move refinement, we traverse

the tasks of the bottleneck processor in decreasing order, and swap to the new

bottleneck processor when bottleneck changes. We do not reconsider a task again

for a swap operation if it is already chosen for exchange in the current pass. We

will traverse O(Nz) tasks in a single pass. To find the best pair for this task, we

may perform a brute force algorithm, which examines every possible pair. The

resulting algorithm will be O(N2
z ) at level z of the uncoarsening phase. This

algorithm is faster than O(N3
z ), which can be utilized for larger values of Nz, but

it is still impractical on levels where we have hundreds of millions of tasks.

We investigate further whether there are more practical implementations of

selecting the best swap pair of the task Ti. We will describe an approach utilizing
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a two-dimensional query structure.

Remember that we are to find a best matching pair task Tj for a task Ti which

is currently assigned to a bottleneck processor Pb. Let P` is a processor we want

to swap a task with. We want to find a task Tj among the tasks assigned to

processor Pb which generates a best swap gain.

The swap operation has a positive gain on Pb when xi,b > xj,b. The swap has a

positive gain on P` when e`−xj,` +xi,` < eb. The best task Tj can be determined

as

argmax
j
{gij(b↔ `)} = argmax

{j|Aj=`}
{eb −max {eb − xi,b + xj,b, e` − xj,` + xi,`}}

= argmax
{j|Aj=`}

{−max {eb − xi,b + xj,b, e` − xj,` + xi,`}}

= argmin
{j|Aj=`}

{max {eb − xi,b + xj,b, e` − xj,` + xi,`}}

Let γi,b = eb − xi,b and βi,` = e` + xi,`. The gain equation becomes

argmax
{j|Aj=`}

{gij(b↔ `)} = argmin
{j|Aj=`}

{max {αi,b + xj,b, βi,` − xj,`}}

To better analyze the internal max operation, we split the task data into two.

Among the tasks Tj with γi,b + xj,b ≥ βi,` − xj,`,

argmax
j
{gij(b↔ `)} = argmin

j
{γi,b + xj,b} = argmin

j
{xj,b} (6.10)

and we are to find a minimum xj,b for those tasks. Similarly, among the tasks Tj

with γi,b + xj,b < βi,` − xj,`,

argmax
j
{gij(b↔ `)} = argmin

j
{βi,` − xj,`} = argmax

j
{xj,`} (6.11)

and we are to find a maximum xj,` for those tasks.

To better utilize the two-dimensional query mechanism, we define three func-

tions:

f 1
`,b(j) = xj,b + xj,`

f 2
`,b(j) = xj,b

f 3
`,b(j) = xj,`
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We populate two two-dimensional systems, Q1 with 〈x, y〉 = 〈f 1
`,b(j), f

2
`,b(j)〉

tuples and Q2 with 〈x, y〉 = 〈f 1
`,b(j), f

3
`,b(j)〉 tuples. To find the task with maxi-

mum gain, we are to perform the following queries on Q1 and Q2.

On Q1, we perform a query to find the task Tj with minimum y constrainted

by x ≥ βi,l − γi,b. Similarly, on Q2, we perform a query to find the task Tj with

maximum y constrainted by x < βi,l − γi,b. We then compare these two tasks to

determine the winner.

For a task Ti on the bottleneck processor Pb, we perform the above calculation

for every other processor to choose their candidate swap tasks, we then compare

the results and determine the task Tj for the swap operation.

We generate these two-dimensional queries for each Pk and P` processor pairs

at the beginning of a swap reassignment pass. We implemented the query mech-

anism on a kd-tree. A kd-tree can be initialized in O(N logN) time. Thus the

initialize of O(K2) pairs of kd-trees will be in O(K2Nz logNz) time at level z of

the uncoarsening phase. The average query operation on a kd-tree is O(logN)

for an input of size N . The selection of a pair will take O(K logNz) average

time, which will perform O(Nz) times, thus accumulate to O(KNz logNz) aver-

age time. Hence, a single pass of the uncoarsening level z can be performed in

O(K2Nz logNz) average time. Since K � Nz, this complexity is better than to

the previous candidate of O(N2
z ).

A single pass of the swap refinement step is illustrated in Algorithm 6.3. SRLk,

pk and sk values are used with the same purpose as in Algorithm 6.2. The first

two loops (lines 1–9) initialize and calculate the pk, sk, and SRLk variables. The

third loop (lines 10–11) sorts the SRLk arrays in decreasing order of xi,k values,

as in Algorithm 6.2. Line 12 initializes the 2K2 kd-trees using Algorithm 6.4.

Line 12 determines the bottleneck processor. The while-loop traverses the task

reassignment list of the bottleneck processor and stops when the list of the bottle-

neck processor is exhausted. The first for-loop inside the while-loop considers all

processor alternatives and tries to find one with a positive gain. Algorithm 6.5 is

utilized to determine the candidate swap pair for the interested task on the bot-

tleneck processor (line 16). If a processor with a positive gain is found, lines 23–26
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Table 6.1: Properties of the datasets
Dataset # of tasks
ClueWeb-B 0.8 million
ClueWeb-A 2.5 million
YWC 137.7 million

perform the reassignments.

6.4 Experiments

We conduct our simulations on three different web datasets: ClueWeb-B,

ClueWeb-A, and YWC. These datasets are the datasets we used in Chapter 5. The

properties of the three datasets are displayed in Table 6.1. In all datasets, we

observe a highly skewed task distribution, i.e., there are small tasks, but few very

large tasks.

We compare our algorithm against the well-known heuristics MET, PPB, MCT,

MinMin+, MaxMin+, Suff+ and GA+. Other algorithms known to produce good

results such as RC [107], RASA [90] are not included in our comparison because

of their high running time complexities. The heuristics are implemented in the

Java programming language. The simulations are carried out on a Linux work-

station equipped with six 2100-MHz quad-core CPUs and 132 GB of memory.

Since the MCT, PPB, GA+ and Multi-level heuristics involve non-deterministic

components, these heuristics were executed 10 times with different random seeds

for each assignment instance and the average performance figures are reported.

Due to the high running time and extremely high memory requirements of the

GA+ heuristic, it was not feasible to complete the simulations on the YWC dataset

for this heuristic. The incomplete results are indicated by “–” in the following

tables.

The most important performance metric in independent task assignment prob-

lem is the makespan value. We define the load imbalance %LI of an assignment
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Algorithm 6.3 SwapRefinement(X, K, N , A)
1: for k ← 1 to K do
2: pk ← 1
3: sk ← 0
4: ek ← 0

5: for i← 1 to N do
6: k ← A[i]
7: sk ← sk + 1
8: SRLk,sk ← i
9: ek ← ek + xi,k

10: for k ← 1 to K do
11: Sort(SRLk) . sort SRLk array by decreasing xi,k values

12: Q← GenerateKdTrees(X, K, N , A)
13: b← argmaxk ek
14: while pb ≤ sb do
15: i← SRLb,pb
16: 〈j,maxg , time gain〉 ← FindBestSwapPair(i, A, X, e)
17: if maxg > 0 or (maxg = 0 and time gain > 0) then
18: `← A[j]
19: A[i]← `
20: A[j]← b
21: eb ← eb − xi,b + xj,b
22: e` ← e` − xj,` + xi,`
23: for k ← 1 to K do
24: DeleteKdTree(Qk,`,1, j)
25: DeleteKdTree(Qk,`,2, j)

26: pb ← pb + 1
27: b← argmaxk ek
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Algorithm 6.4 GenerateKdTrees(X, K, N , A)
1: for k ← 1 to K do
2: for `← 1 to K do
3: if k = ` then
4: continue loop `

5: A` ← AssignedTasks(`, A, N)
6: . Set of assigned tasks to processor P`
7: B1 ← EmptyList()
8: B2 ← EmptyList()
9: for each i ∈ A` do

10: b1.key ← i
11: b1.x← xi,k
12: b1.y ← xi,k + xi,`
13: AppendTo(b1, B1)
14: b2.key ← i
15: b2.x← xi,`
16: b2.y ← xi,k + xi,`
17: AppendTo(b2, B2)

18: Qk,`,1 ← InitializeKdTree(B1)
19: Qk,`,2 ← InitializeKdTree(B2)
20: . initialize the kd-trees using the populated lists B1 and B2

21: return Q
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Algorithm 6.5 FindBestSwapPair(i, A, X, e)
1: k ← Ai
2: γ ← ek − xi,k
3: for `← 1 to K do
4: if k = ` then
5: continue loop `

6: β ← e` + xi,`
7: z ← β − γ
8: j ← PickMinimumX(Qk,`,1, y ≥ z)
9: g ← ek −max{ek − xi,k + xj,k, e` + xi,` − xj,`}

10: if g > maxg or (g = maxg and time gain < xi,k − xi,` + xj,` − xj,k) then
11: maxg ← g
12: time gain ← xi,k − xi,` + xj,` − xj,k
13: jmax ← j

14: j ← PickMaximumX(Qk,`,2, y < z)
15: g ← ek −max{ek − xi,k + xj,k, e` + xi,` − xj,`}
16: if g > maxg or (g = maxg and time gain < xi,k − xi,` + xj,` − xj,k) then
17: maxg ← g
18: time gain ← xi,k − xi,` + xj,` − xj,k
19: jmax ← j

20: return 〈jmax ,maxg , time gain〉
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Table 6.2: Percent load imbalance values
Test K MET PPB MCT MinMin+ MaxMin+ Suff+ GA+ Multi-level

ClueWeb-B

2 36.42 36.42 26.20 16.93 13.46 14.38 14.42 3.78
4 48.69 48.45 48.34 63.90 18.16 22.60 60.01 17.78
8 330.56 164.43 166.60 208.47 103.22 104.62 199.73 89.62

16 794.61 384.27 361.94 420.30 244.72 244.72 410.51 246.13

ClueWeb-A

2 49.64 49.64 44.26 16.80 21.05 21.02 15.97 18.76
4 32.77 22.29 53.80 16.02 11.53 11.31 14.40 8.83
8 216.18 79.36 86.02 76.81 58.32 61.19 74.32 56.74

16 663.36 169.77 152.95 171.83 128.95 127.51 168.50 122.50

YWC

2 6.33 6.33 30.87 1.24 0.47 1.34 – 0.27
4 23.09 27.01 53.01 7.58 5.46 5.80 – 5.38
8 97.33 55.59 67.70 23.91 18.77 17.76 – 21.79

16 367.85 110.73 110.71 96.74 68.98 69.54 – 69.21

heuristic relative to the ideal makespan as

%LI =
M −M∗

M∗ , (6.12)

where M denotes the makespan of the assignment produced by the heuristic and

M∗ denotes the ideal makespan for the given assignment instance. The ideal

makespan is computed as

M∗ =
W ∗

tot

K
=

∑
i mink{xi,k}

K
, (6.13)

where W ∗
tot is a lower bound on the makespan that would be attained if each

task was assigned to its favorite processor. Note that the M∗ value is a rather

loose lower bound on the makespan, i.e., the optimal makespan is very likely to

be greater than M∗.

Table 6.2 displays the load imbalance values for the 2-, 4-, 8-, and 16-way

assignments produced by the evaluated task assignment heuristics. The bold

values in each row indicate the best performing heuristic(s) for the corresponding

assignment instance. As seen in Table 6.2, the fast assignment heuristics MET, PPB,

MCT produces low quality solutions. MinMin+ seems better than those heuristics,

but fails to find better solutions in some of the assignment instances especially

for larger K. MaxMin+ and Suff+ produces comparable results, where MaxMin+ is

a step ahead. GA+ produces better solutions than MinMin+, and succeeds to find

better solutions than MaxMin+ and Suff+ in some assignment instances, but fails

to find a better solution in the majority of the instances. Moreover, GA+ could

131



Table 6.3: Execution times (in seconds)
Test K MET PPB MCT MinMin+ MaxMin+ Suff+ GA+ Multi-level

ClueWeb-B

2 0.0 0.3 0.2 1.9 9.5 14.0 2,135.3 79.5
4 0.0 0.4 0.4 6.5 5.8 7.5 2,793.1 120.9
8 0.0 0.8 0.5 10.0 14.0 14.7 3,590.5 719.5

16 0.2 1.5 1.1 23.7 24.9 21.2 3,720.0 266.5

ClueWeb-A

2 0.1 1.5 1.2 11.1 171.3 268.1 7,696.0 62.1
4 0.1 2.2 1.8 21.5 26.1 25.3 8,965.3 115.8
8 0.1 3.1 3.2 59.2 46.4 58.2 27,306.5 297.5

16 0.2 6.2 4.9 100.8 86.3 121.1 13,212.2 576.5

YWC

2 3.7 151.8 133.4 1,231.4 33,438.0 68,740.4 – 386.3
4 5.0 230.9 180.6 2,387.5 3,716.3 8,744.0 – 631.5
8 7.3 312.0 280.6 5,078.4 2,393.8 5,129.7 – 1,062.6

16 14.5 598.4 530.9 3,697.1 3,225.0 3,985.9 – 2,008.6

not execute in our largest dataset YWC. Thus, we conclude GA+ is not appropriate

to execute on large datasets.

Multi-level is best among all of those heuristics: it succeeds to find best

solution in 8 assignment instances out of 12. MaxMin+ found two best solutions,

Suff+ found two best solutions, where MaxMin+ and Suff+ share the lead for

ClueWeb-A on K = 16 assignment instance. GA+ succeeds to find the best solution

for ClueWeb-A K = 2.

Table 6.3 displays the running times of the heuristics for different types of

datasets. The running times of MinMin+ generally increases with increasing K,

as expected. The running times of MaxMin+ and Suff+ decreases significantly

with increasing K for small values of K, then increases with increasing K for

larger values of K. This is expected since increasing K values increases the ratio

of faster MinMin+ based assignments. MaxMin+ and Suff+ algorithms require

large preprocessing times, especially with larger datasets and smaller crawler

counts. They require several hours to complete for the YWC dataset. Multi-level

algorithm does not execute fastest for smaller ClueWeb-B and ClueWeb-B datasets,

but it succeeds to find the solution within minutes. When the number of tasks get

larger, Multi-level algorithm is 1-2 orders of magnitute faster than Suff+ and

MaxMin+ heuristics, on the YWC dataset. Furthermore, Multi-level algorithm is

4-5 times faster than efficient MinMin+ algorithm on this largest dataset.
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These results reveal the efficiency of Multi-level algorithm: When the num-

ber of tasks is very large, the use Multi-level algorithm is highly recommended.
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Chapter 7

Conclusion

We studied the problem of one-dimensional partitioning of nonuniform work-

load arrays with optimal load balancing for heterogeneous systems. Within this

study, we investigated two cases: chain-on-chain partitioning, where a chain of

tasks is partitioned onto a chain of processors; and chain partitioning, where

the task chain is partitioned onto a set of processors (i.e., permutation of the

processors is allowed). We showed that chain-on-chain partitioning algorithms

for homogenous systems can be revised to solve this partitioning problem for

heterogeneous systems, without altering computational complexities of these al-

gorithms. We proved that the chain partitioning problem is NP-complete, and

empirically showed that exact CCP algorithms can serve as an effective heuristic,

for the CP problem. Our experiments proved the effectiveness of our techniques,

as the exact algorithms work much better than heuristics, and balanced work

decompositions can be achieved even for high numbers of processors.

We presented certain performance improvements over the popular indepen-

dent task assignment heuristics MinMin, MaxMin, and Suff. In particular, we

proposed the MinMin+ heuristic which improves the worst-case runtime complex-

ity of MinMin from O(KN2) to O(KN logN) in assigning N independent tasks to

K processors. Moreover, we proposed the MaxMin+ and Suff+ heuristics, which

are hybrid versions of MaxMin and Suff, obtained by combining the latter heuris-

tics with MinMin. We evaluated the performance of all heuristics over a large
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number of real-life datasets. The experiments indicate that each of our heuristics

runs considerably faster than their traditional counterparts, MinMin+ being the

fastest. In terms of the solution quality, both MaxMin+ and Suff+ are found to

perform considerably better than MinMin+ for skewed datasets while MinMin+ is

found to perform comparable for non-skewed datasets. Considering the tradeoffs

between the solution quality and the running times of the proposed assignment

algorithms, we recommend the use of MinMin+ for non-skewed datasets and rec-

ommend MaxMin+ for skewed datasets.

We adapted multi-level framework to the independent task assignment prob-

lem. We presented novel algorithms for the coarsening and uncoarsening phases

for the proposed multilevel algorithm. We experimented the multilevel algorithm

on very large task assignment problem instances. The results reveal that the per-

formance of the proposed multilevel algorithm supersedes compared algorithms,

both in quality and in runtime performance.

We demonstrated the improved solutions to the independent task assignment

problem on distributed web crawling. We show that the assignment problem of

distributed web crawling can be formulated as a task assignment problem. Our

simulations on real-life web data collections and network statistics indicate that

significant performance improvements can be attained by using independent task

assignment algorithms.
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José Rufino. Geographical Partition for Distributed Web Crawling.

In Proceedings of the 2005 Workshop on Geographic Information Re-

trieval, GIR ’05, pages 55–60, New York, NY, USA, 2005. ACM.

doi:10.1145/1096985.1096999.
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[72] Hüseyin Kutluca, Tahsin M. Kurç, and Cevdet Aykanat. Image-Space

Decomposition Algorithms for Sort-First Parallel Volume Rendering of

Unstructured Grids. The Journal of Supercomputing, 15(1):51–93, 2000.

doi:10.1023/A:1008169609963.

[73] Hsin-Tsang Lee, Derek Leonard, Xiaoming Wang, and Dmitri Loguinov.

IRLbot: Scaling to 6 Billion Pages and Beyond. In Proceedings of the 17th

International Conference on World Wide Web, WWW ’08, pages 427–436,

New York, NY, USA, 2008. ACM. doi:10.1145/1367497.1367556.

[74] Vitus J. Leung, Esther M. Arkin, Michael A. Bender, David Bunde,

Jeanette Johnston, Alok Lal, Joseph S. B. Mitchell, Cynthia Phillips, and

145

http://dx.doi.org/10.1109/92.748202
http://dx.doi.org/10.1109/TPDS.2006.105
http://dx.doi.org/10.1016/j.jpdc.2006.11.004
http://dx.doi.org/10.1007/s12532-009-0002-8
http://dx.doi.org/10.1023/A:1008169609963
http://dx.doi.org/10.1145/1367497.1367556


Steven S. Seiden. Processor Allocation on Cplant: Achieving General Pro-

cessor Locality Using One-Dimensional Allocation Strategies. In Proceed-

ings of the IEEE International Conference on Cluster Computing, CLUS-

TER ’02, pages 296–304, Washington, DC, USA, 2002. IEEE Computer

Society. doi:10.1109/CLUSTR.2002.1137758.

[75] Cong Liu and Sanjeev Baskiyar. A General Distributed Scalable Grid

Scheduler for Independent Tasks. Journal of Parallel and Distributed Com-

puting, 69, 2009. doi:10.1016/j.jpdc.2008.11.003.

[76] Max Otto Lorenz. Methods of measuring the concentration of wealth. Pub-

lications of the American Statistical Association, 9(70):209–219, Jun 1905.
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Appendix A

Detailed Analysis

A.1 Average Case Analysis of NICOL+

Below, we will provide average case analysis of NICOL+, this analysis prove that,

the worst-case runtime complexity of O(N+K2 logN log(1+wmax/(Keminwmin)))

reduces to O(N + K logK logN log(1 + wmax/(eminwmin logK))) in the average

case, which is an asymptotical improvement of O(K/ logK). This analysis also

valid for homogenous NICOL+ algorithm, with emin = 1.

Lemma A.1.1 On average, less than 1 + lnK of the processors update the LB

value.

Proof: Assume the bottleneck values produced by Nicol’s algorithm is given

by the sequence 〈B1, B2, . . . , BK〉. A Bp bottleneck value of processor Pp updates

LB iff Bp > Bi for all 1 ≤ i < p.

Assuming the order of Bp values are randomly distributed, the problem is

simplified to the expected number of up-records in a random permutation, ELK
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which can be effectively computed as:

ELK = Pr(B1 is a record) + Pr(B2 is a record)

+ . . .+ Pr(BK is a record)

= 1 +
1

2
+

1

3
+ · · ·+ 1

K
< 1 + lnK

So, on average, less than 1 + lnK of the processors update the LB value. �

Lemma A.1.2 On average, less than 1 + lnK of the processors update the UB

value.

Proof: Proof is similar to that of Lemma A.1.1. �

Corollary A.1.1 On average, during an execution of NICOL+, less than 2+2 lnK

of the processors requires PROBE calls.

Lemma A.1.3 On average, for K processors, NICOL+ require no more than

O(logK log(1 + wmax/(wminemin logK))) PROBE calls.

Proof: In average case, less than 2 + lnK of those processors call PROBE

functions.

The rest of the proof is similar to Lemma 3.3.4. Consider the first step of the

algorithm, where we search for the smallest separator index that makes the first

processor the bottleneck processor. We can restrict this search in a range that

covers only those indices for which the weight of the first chain will be in the

[LB ,UB ] interval. If there are n1 tasks in this range, NICOL+ will require lg n1

probes. This means that the [LB ,UB ] interval is narrowed by at least (n1−1)wmin

after the first step.

Let kp be the number of probes by the pth processor. Since kp probes narrow

the [LB ,UB ] interval by
(
2kp − 1

)
wmin, and less than 2 + lnK processors call
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probes, we have

((
2k1 − 1

)
+
(
2k2 − 1

)
+ . . .+

(
2kK′ − 1

))
wmin ≤ UB − LB , (A.1)

where K ′ = d2 + lnKe. Thus,

2k1 + 2k2 + . . .+ 2kK′ ≤ UB − LB

wmin

+K ′. (A.2)

The corresponding total number of probes is

K′∑

p=1

kp, (A.3)

which reaches its maximum when
K′∑

p=1

2kp (A.4)

is maximum and

k1 = k2 = . . . = kK′ = k (A.5)

for some k. In that case,

K ′2k ≤ UB − LB

wmin

+K ′ (A.6)

and thus

k ≤ lg

(
1 +

UB − LB

wminK ′

)
. (A.7)

So, the total number of probes performed by NICOL+ is upper bounded by:

K′∑

p=1

kp ≤ K ′k (A.8)

≤ K ′ lg

(
1 +

UB − LB

wminK ′

)
(A.9)

= d2 + lnKe lg

(
1 +

wmax

emin
− wmax

Kemin

wmin d2 + lnKe

)
(A.10)

= O

(
logK log

(
1 +

wmax

eminwmin logK

))
. (A.11)

The number of probes performed by d2 + lnKe processors is bounded by

O(logK log(1 + wmax/(eminwmin logK))). �

With the O(K logN) cost of a PROBE, the expected runtime complexity

of NICOL+ becomes O(N + K logN logK log(1 + wmax/(eminwmin logK))). If

emin logK = Ω(wmax/wmin), then the complexity reduces toO(N+K logN logK).
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Appendix B

Code

The algorithms proposed in Chapter 3 are implemented in Java language and

made publicly available at http://www.cs.bilkent.edu.tr/~tabak/hetccp/.

Other algorithms are available upon request.
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Appendix C

The Process of Generation of

ETC Matrices for ClueWeb-09

datasets

This chapter describes the processes used to generate the task-assignment

Expected-Time-To-Complete (ETC) matrices for large ClueWeb-09 datasets [31].

The output of this process is used in various chapters of this thesis. The mech-

anism can be thought as several layers of MapReduce procedures, each layer

summarizing a kind of information on the large dataset.

C.1 Outline

The outline for this generation is as follows:

• Obtain the Crawl Data

• Parse Crawl Data to obtain multi-part hosts and links information (War-

cProcessor1)

• Merge multi-part hosts information into a single hosts file
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C.2 Obtain the Crawl Data

A copy of the ClueWeb-09 data can be obtained from Carnegie Mellon University.

The license for Computer Science Department of Bilkent University is obtained

by Prof. Özgür Ulusoy. The data is in the form of four 1.5TB hard disks, and

each disk contains many folders, subfolders and files in .warc.gz format of the

crawl data.

Note that, the hard disks contains compressed version of the data. The com-

pressed version is around 5TB. Uncompressed version of this data is more than

30TB!

C.3 WarcProcessor1

First mount the obtained crawl data disk to some place. Be careful, there are

no backup copies of these disks. Mount these disks on a linux machine, with

read-only access. The format of the disks are ext4.

Then execute WarcProcessor1 executable. This process gets warc root direc-

tory and outputs the hosts and links information in a separate file for each of

the datasets. We also maintain a status directory for this process. This status

directory provides some kind of job distribution service for multi-process and

multi-machine execution of this phase. At the end of this phase we obtain hosts

and links information distributed in several files and directories.

From the dataset, we parse only “response” type warc information. Hosts

information include:

• Source Host Name

• 1 (To represent one page)

• Response Length
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WARC PROCESSOR 1

WARC file

hosts.dat

• hostname
• 1 (as URL count)
• pageSize
• URL

links.dat

• Source Host Name
• Target Host Name
• source URL
• Target URL
• 1 (as link count)
• link size

Figure C.1: WarcProcessor1 data flow

• Source URL

For the link extraction, we utilize ExtractorHTML processor class from

org.archive.crawler.extractor package of heritrix [82] project. To perform

a safe link extraction, we ignore the links with:

• unrecognized source URL

• links containing ‘\n’ character.

• links containing ‘\r’ character.

• links containing ‘\t’ character.

• links containing space character.

Links information include:

• Source Host Name

• Target Host
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• Source URL

• Target URL

• 1 (To represent one link)

• Target URL Length

The size of the output of this step is around 1TB.

The data flow diagram of a single WARC file for WarcProcessor1 is presented

in Fig. C.1.

C.4 WarcProcessor5

WARC PROCESSOR 5

links

• Source Host Name
• Target Host Name
• Source URL
• Target URL
• Link Count
• Link Size · · ·

links

• Source Host Name
• Target Host Name
• Source URL
• Target URL
• Link Count
• Link Size

xlinkW.dat

• Source Host Name
• Target Host Name
•

∑
(Link Count)

•
∑

(Link Size)

Figure C.2: WarcProcessor5 data flow diagram.

This process merges the links information gathered in Appendix C.3 into a

single link file. Link size is recalculated in the process. Link size is defined as the

sum of the lengths of source and target URLs.

WarcProcessor5B also defines another method of merging link information.
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C.5 WarcProcessor5B

WARC PROCESSOR 5B

links

• Source Host Name
• Target Host Name
• Source URL
• Target URL
• Link Count
• Link Size · · ·

links

• Source Host Name
• Target Host Name
• Source URL
• Target URL
• Link Count
• Link Size

xlinkW.dat

• 1
• Target URL
•

∑
(Link Count)

•
∑

(Link Size)

Figure C.3: WarcProcessor5B data flow diagram.

This process is very similar to the WarcProcessor5. The main difference is the

output key, which contains the target URL, instead of source host name and target

host name pair. The result is a bigger output file, which has the incoming link

information for all of the known URLs. Obvious advantage of using that method

over WarcProcessor5 is having an accurate number of incoming link counts for

all URLs on the crawl dataset.

As in WarcProcessor5, Link size is recalculated within the process. Link size

is defined as the sum of the lengths of source and target URLs.

C.6 WarcProcessor2

In this process, we merge the hosts information splitted on several files into a

single hosts file. At the end of this process, we obtain basic information of hosts.

The output file is sorted by host names, see Fig. C.4.
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WARC PROCESSOR 2

hosts

• Host Name
• URL Count
• Site Size · · ·

hosts

• Host Name
• URL Count
• Site Size

hosts.dat

• hostname
•

∑
(URL Count)

•
∑

(page size)
(a.k.a. site size)

Figure C.4: WarcProcessor2 data flow diagram. WarcProcessor2 merges host files
into a single sorted hosts file

Hosts information include:

• Source Host Name

• URL Count

• Site Size: total response length

Since the dataset is quite big that cannot fit into memory, we utilize some disk

merging techniques to merge the hosts data. To outcome memory limitation, we

have implemented an external K-way mergesort [60]. We read files one-by-one,

and output the results to a temporary file when we reach a certain number of

hosts information. Each of the temporary files contains a predefined number of

hosts, in sorted order. These files are then merged with groups (of 10) and we

obtain a larger sorted file. If we encounter the same host information on different

files, we merge the contents so that at the end we reach only one host information

for each host.
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C.7 WarcProcessor1B

WARC PROCESSOR 1B

xhost.dat Directory

• Host Name
• URL Count
• Site Size
• URL

xlinkW2.dat

• URL From
• URL To
• Link Count
• Link Size

xhost2.dat

• hostname
•

∑
(URL Count)

•
∑

(Site Size)
• URL
•

∑
(Incoming Link Count)

Figure C.5: WarcProcessor1B data flow diagram.

Fig. C.5 describes the data flow of WarcProcessor1b. WarcProcessor1b has

two inputs and one output. First input is the directory which contains xhost.dat

files produced by Appendix C.3. The second input is xlinkW2.dat produced by

Appendix C.5. The output is xhost2.dat.

The process is similar to that of WarcProcessor2, the main difference is the

input file, which is produced by WarcProcessor5B instead of WarcProcessor5.

C.8 WarcProcessor1c

Fig. C.6 describes the process of obtaining a file called xhost3.dat. The processor

takes xhost2.dat produced by WarcProcessor1B which contains the individual

URLs of pages, along with host names, URL counts (probably 1, but may vary),

page sizes, and incoming link counts.
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WARC PROCESSOR 1C

xhost2.dat

• hostName
• URLCount
• Site Size
• URL
• Incoming Link Count

xhost3.dat

• Host Name
•

∑
(URL Count)

•
∑

(Site Size)
• Link Count

Figure C.6: WarcProcessor1C data flow diagram.

The output is a summary of these pages, grouped by host name, and link

counts. URLs of a host name with no incoming edges are accumulated into a

single row, URLs of the same host name with 1 incoming edge are accumulated

into another single row, etc.

C.9 WarcProcessor3

Fig. C.7 describes the process of WarcProcessor3. The processor takes base-

host.dat which contains the hostName information and outputs the host name -

IP map.

Internally, WarcProcessor3 has a number of IP Resolvers which are executed

on a layered machanism. If IP can be resolved on one layer, it does not fall

through the next layer. However, if IP cannot be resolved on the current layer,

the host name falls through the next layer with the hope to resolve it on the next

layer. The figure describing the process is presented on Fig. C.8.
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WARC PROCESSOR 3

basehost.dat

• hostName
• ... (rest of the entity is ignored)

xBaseIp.dat

• Host Name
• IP

Figure C.7: WarcProcessor3 data flow diagram.

File IP Resolver

Host Name

ip.map

Database IP ResolverDerbyDB Database

DNS
Resolver-1

DNS
Resolver-2

· · · DNS
Resolver-M

Parallel DNS
Resolvers

DNS IP Resolver-1

DNS IP Resolver-2

.

.

.

DNS IP Resolver-M

Serial DNS
Resolvers

• Host Name

• IP

Figure C.8: WarcProcessor3 internal data flow diagram.
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The first layer is a file IP map. This map is a file based map that can fit into

memory. This layer is feeded by ip.map file that is small enough to be represented

by a HashMap in the local memory. If this layer cannot find the IP of the host

name, the result is retried on next layer.

The next layer is a database map. The database is implemented by the

database Apache DerbyDB [4].

The next layer is parallel DNS IP resolvers. There may be more than one DNS

servers. Free ones (e.g. Google DNS [53]) are slow but does not complain for the

load. Local DNS servers are generally expected to be faster, but be careful: If

your DNS server is not tuned for bulk queries, you may slow down local DNS

server and thus the whole internet access of your domain. Hence, we have many

DNS servers which are executing in parallel. In this layer, a host-to-ip task is

executed on only one DNS resolver. If that resolver fails to find a mapping, the

host name falls through the next layer.

Following the parallel DNS IP resolvers, there are a series of layers for serial

DNS IP resolvers. The host names that cannot be found on the previous layers

are retried on each of the DNS IP resolvers, one by one. If the resolver cannot

find on its server, the resolver delivers the host name to the next DNS IP resolver.

If none of the DNS IP resolvers can find the IP of the host name, we assume

the host name as invalid.

Note that, all of those resolvers are implemented as parallel processing queues,

to achieve highest throughput.

C.10 Ip2Geo

This process find the geographical locations of each host. The process utilizes

the MaxMind IP-to-geo database [80]. This database claims to be accurate more

than 99% at country level. The output of the process is a hosts file with host

names, along with the IP of the host and the host country of the IP.
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IP 2 GEO

GeoIP.dat
MaxMind data file

xhostip.dat

• Host Name
• IP

xhostIpGeo.dat

• Host Name
• IP
• Country Code
• Country Name

Figure C.9: Ip2Geo data flow diagram.

C.11 WarcProcessor6

This process produces processor.dat. The process finds the host countries of each

server and sorts the countries with the amount of data they serve. The process

selects the top K countries and assigns a data center with 10MB/sec bandwith

for each country.

C.12 WarcProcessor7

This process produces assign-K.dat, which is the main input file format expected

in many independent task assignment algorithms. countries.dat is a manually-

typesetted country geographic-location lookup-file. xhostIpGeo.dat is the output

of Appendix C.10. processor.dat is the output of Appendix C.11. The expected-

time-to-crawl values are calculated using the formulas provided in Chapter 5,

while WarcProcessor7 ignores the refresh frequency and assumes the frequencies

as 1. The output of this process is utilized in Chapter 4.
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WARC PROCESSOR 6

basehost.dat

• Host Name
• URL Count
• Site Size K

xhostIpGeo.dat

• Host Name
• IP
• Country Code
• Country Name

processor.dat

• Country Code
• Crawler Bandwidth

(10MB/sec)

Figure C.10: WarcProcessor6 data flow diagram.

WARC PROCESSOR 7

countries.dat

• Country
Code

• Latitude
• Longitude

xhostIpGeo.dat

• Host Name
• IP
• Country Code
• Country

Name

xhostIpGeoW.dat

• Host Name
• IP
• Country Code
• Host Size
• Host Weight

processor.dat

• Country Code
• Crawler Bandwidth

assign-K .dat

• Processor Count (Header)
• Task Count (Header)
• 0 (Header: Edge Count)
• ETC (For each processor x IP)

Figure C.11: WarcProcessor7 data flow diagram.
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C.13 WarcProcessor7B

WARC PROCESSOR 7B

countries.dat

• Country
Code

• Latitude
• Longitude

xhostIpGeo.dat

• Host Name
• IP
• Country Code
• Country

Name

xhost3.dat

• Host Name
• URL Count
• Link Count

processor.dat

• Country Code
• Crawler Bandwidth

assign-K .dat

• Processor Count (Header)
• Task Count (Header)
• 0 (Header: Edge Count)
• ETC (For each processor x IP)

Figure C.12: WarcProcessor7B data flow diagram.

As in WarcProcessor7, this process produces assign-K.dat, which is the main

input file format expected in many independent task assignment algorithms.

countries.dat is a manually-typesetted country geographic-location lookup-file.

xhostIpGeo.dat is the output of Appendix C.10. processor.dat is the output of

Appendix C.11. Unlike WarcProcessor7, the expected-time-to-crawl values con-

tain the refresh frequencies. The output of this process is utilized in Chapter 5.
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